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Abstract: We numerically and analytically study the flow and nematic order parameter profiles in1

a microfluidic channel, within the Beris–Edwards theory for nematodynamics, with two different2

types of boundary conditions – strong anchoring/Dirichlet conditions and mixed boundary3

conditions for the nematic order parameter. We primarily study the effects of the pressure gradient,4

the effects of the material constants and viscosities modelled by a parameter L2 and the nematic5

elastic constant L∗, along with the effects of the choice of the boundary condition. We study6

continuous and discontinuous solution profiles for the nematic director and these discontinuous7

solutions have a domain wall structure, with a layered structure that offers new possibilities.8

Our main results concern the onset of flow reversal as a function of L∗ and L2, including the9

identification of certain parameter regimes with zero net flow rate. These results are of value in10

tuning microfluidic geometries, boundary conditions and choosing liquid crystalline materials for11

desired flow properties.12

Keywords: Nematic liquid crystal; Beris–Edwards; Flow hydrodynamics; Asymptotic analysis13

1. Introduction14

Nematic liquid crystals are classical examples of partially ordered complex liquids for which15

the constituent molecules have translational freedom but exhibit a degree of long-range orientational16

ordering or certain preferred directions of averaged molecular alignment, that vary in space and time17

[1]. The nematic hydrodynamics is particularly rich because of the intrinsic coupling between fluid18

motion and nematic molecular orientations i.e. the fluid motion influences the nematic orientational19

ordering and equally, the inhomogeneities in the orientational ordering have a kick-back effect on the20

fluid flow, a phenomenon known as “backflow” [2]. Backflow has no counterpart in conventional21

isotropic Newtonian fluids. Consequently, nematics can offer unusual mechanical and rheological22

properties compared to their Newtonian counterparts, such as complex wetting transitions, surface23

effects and stable topological defects. Backflow is of fundamental scientific interest and equally, has24

practical consequences on switching rates of liquid crystal display devices and their refresh times25

[3,4].26

There are two popular hydrodynamic theories for nematic liquid crystals in the literature - the27

Ericksen–Leslie theory [5,6] and the Beris–Edwards model [7]. In the Ericksen–Leslie framework, we28

have two variables – the flow field and the nematic director which is interepreted as the direction of29

preferred averaged molecular alignment in space. The typical mathematical framework comprises30

the incompressibility constraint and evolution equations for the flow field and the nematic director.31
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The evolution equations for the flow field and the nematic director are intrinsically coupled with new32

anisotropic stresses, compared to the isotropic Newtonian counterpart, and the solution landscapes33

depend on flow parameters (such as the pressure gradient) and nematic parameters (nematic material34

constants, temperature, boundary conditions for the nematic director and nematic viscosities) [8].35

The Ericksen-Leslie theory for nematodynamics is based on the premise that the nematic is purely36

uniaxial, with one single distinguished direction of orientational ordering, referred to as “director”,37

with a constant degree of orientational order. As said before, the director is interpreted as the38

single preferred direction of molecular alignment in the sense, that all directions perpendicular to39

the director are physically equivalent. Hence, the Ericksen-Leslie theory is hugely successful for40

modelling situations which are expected to have a uniform degree of nematic ordering; this usually41

holds for defect-free situations or for certain choices of material constants that promote perfect42

nematic ordering such as the vanishing elastic constant limit of the Landau-de Gennes theory studied43

in [9]. However, the Ericksen-Leslie theory cannot capture sharp variations in the degree of nematic44

ordering, complicated topological defects and biaxiality, for which there is a primary and secondary45

direction of preferred molecular alignment, since the Ericksen-Leslie theory only has two dependent46

variables. The Beris–Edwards theory is more general than the Ericksen–Leslie since it employs the47

Landau-de Gennes Q-tensor order parameter to describe the nematic orientational ordering. The48

Landau-de Gennes Q-tensor order parameter is a symmetric, traceless 3 × 3 matrix that contains49

information about the preferred directions of nematic molecular alignment and the degree of ordering50

about these directions within its eigenvectors and eigenvalues respectively [9–11]. The Landau-de51

Gennes Q-tensor can capture both uniaxial and biaxial states, along with variable orientational order52

and is hence, better suited to capture finer structural details and topological defects. The evolution53

equations for the flow field and the Q-tensor are again coupled through "coupling stresses". A54

detailed discussion of the Beris–Edwards model and its connections to closely related models can55

be found in the literature [12–14].56

We work in a reduced Beris–Edwards framework to model a microfluidic channel, with an57

applied pressure gradient to induce fluid flow, and different types of boundary conditions for a58

reduced Q-tensor on the channel walls with the usual no-slip boundary conditions for the flow59

field. We use a reduced Q-tensor, which only has two degrees of freedom, in contrast to the60

usual five degrees of freedom in a three-dimensional approach. This reduced approach has been61

successfully used for severely confined systems elsewhere [15,16] and can be related to the usual62

Landau-de Gennes Q-tensor explicitly [17]. In particular, we model the microfluidic channel as a63

two-dimensional domain and this reduced approach is successful in capturing the in-plane system64

characteristics. The two degrees of freedom of the reduced Q-tensor are an angle θ that describes the65

preferred in-plane alignment of the nematic molecules or the direction of the nematic director n in the66

plane, and a scalar order parameter s, that is a measure of the degree of orientational order about the67

director n. We note that the Ericksen-Leslie framework does not include the order parameter s.The68

Beris–Edwards system can be recast as a coupled system for s, θ and the flow field parameterised69

by u (since we assume unidirectional channel flow). We study the effects of certain key variables on70

the long-time or equilibrium profiles for s, θ and u. Namely, we look at the effects of the pressure71

gradient px, the nematic elastic constant , the nematic material constants and viscosities (modelled72

by L2) and the anchoring conditions for θ (modelled by either the winding number ω or the surface73

anchoring coefficient B). For small L2, the evolution equation for the flow field effectively reduces74

to the Navier–Stokes equation and we recover the usual Poiseuille flow. However, the flow field75

does influence the θ profiles in this regime and we carry out some explicit analysis to compute the s76

and θ profiles in this limit, for both small and large L∗. The analysis captures both continuous and77

discontinuous solution profiles for θ; the discontinuous profiles are featured by domain walls with78

layered structures such that θ jumps abruptly across an interface. Again, the discontinuous solutions79

cannot be captured by the Ericksen-Leslie approach. The discontinuous solutions are the analogue80

of the well studied "order reconstruction" solutions [18], with the novel feature of flow effects. For81
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small px, the flow is negligible as expected. The most interesting regime is when px and L2 are of82

comparable magnitude and there is two-way coupling between the flow and nematic order, where83

the effects of backflow are most pronounced. We expect the asymptotic analysis in this paper to be84

useful for subsequent detailed analysis of the Beris–Edwards system in this interesting regime.85

There is a large body of existing literature on the Ericksen-Leslie theory and the Beris Edwards86

theory. For example, a beautiful review of existence and regularity results in the Ericksen-Leslie87

framework can be found in [19]. In [20], the authors use perturbation methods in the Ericksen-Leslie88

framework to study the effects of backflow on defect dynamics. In parallel, there are several89

papers which focus on the role of backflow in the hydrodynamics of defects, in the Beris-Edwards90

framework, see for example [12,21,22]. In recent years, there are rigorous existence and regularity91

results for the Beris-Edwards framework too [11,14,23] and numerical simulations for microfluidic92

set-ups in [24,25]. The various dynamical theories of nematic liquid crystals and the key results are93

surveyed in [26] and in [27], the authors rigorously derive the Ericksen-Leslie equations from the Beris94

Edwards model. In [28], the authors use a lattice-Boltzmann algorithm to study nematodynamics in95

a microfluidic channel, in the Beris-Edwards framework, with both Dirichlet and mixed boundary96

conditions on the channel walls. The emphasis is on the flow rate as a function of the applied pressure97

gradient and the qualitative effects of the boundary conditions on the director profiles. Our setting98

is similar but not the same as in [28]. For example, our Dirichlet conditions are inhomogeneous99

i.e. different fixed boundary conditions on the two bounding surfaces, whereas the authors employ100

the same Dirichlet condition on both surfaces in [28]. A large part of the elegant asymptotics in101

[28] is carried out in the L∗ → 0 limit, for which we expect a uniform degree of nematic order or102

s ≈ 1 almost everywhere. This limit cannot capture the discontinuous solutions for θ described103

above. Importantly, our emphasis is on “flow reversal" as a function of the pressure gradient, the104

material and temperature-dependent parameter L2 and the re-scaled elastic constant L∗ and this is105

not addressed in [28]. In fact, flow reversal or flow in the direction of increasing pressure gradient is106

a distinct manifestation of backflow, only observable for L2 large enough and warrants further study107

in the future.108

Our main findings can be summarised as follows.109

(a) We compute a phase plane in terms of L∗ and L2, for a fixed px, which demarcates regions of110

fluid flow in the direction of decreasing pressure from regions of fluid flow in the direction of111

increasing pressure and this flow reversal is a clear manifestation of backflow.112

(b) We compute the total flow rates in different parameter regimes. In particular, we show that113

backflow can be attained for a window of values of L∗ i.e L∗crit,1 < L∗ < L∗crit,2 and these critical114

values depend on px, L2, the boundary conditions and other material parameters.115

(c) We study two different kinds of boundary conditions for θ – Dirichlet and mixed boundary116

conditions. The mixed boundary conditions are phrased in terms of an anchoring coefficient B117

on the bottom surface and accompanied by a Dirichlet condition on the top surface. The mixed118

boundary conditions offer greater scope for tuning the solution landscape.119

(d) We perform some investigations on how we can choose a suitable initial condition to attain the120

discontinuous solution for θ at long times, and this may be useful for studying multistability in121

such model settings.122

The paper is organised as follows. In §2, we present the governing equations, the boundary123

conditions and the initial conditions. In §3, we present our results on the effects of px, L2, ω124

and L∗. In §4, we perform the explicit analysis in the small L2 limit and in §5, we give some125

conclusions.126

2. Theory127

We study spatio-temporal pattern formation in a long microfluidic channel

Ω =
{
(x, y) ∈ R2;−H < x < H;−L < y < L

}
(1)
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where L/H � 1, filled with nematic liquid crystals under the action of a pressure gradient applied128

at the end x = −H in the x direction. This pressure gradient naturally induces a fluid flow and we129

assume a unidirectional channel flow in the x-direction. There are two main macroscopic variables130

of interest: the flow field u = (u (x, y, t) , 0, 0), where t is time, and the nematic order parameter,131

which is a measure of the nematic ordering. We work in a reduced two-dimensional Landau-de132

Gennes framework, similar to the the setting in [15,16] for which the nematic order parameter q133

is a symmetric, traceless 2 × 2 matrix, with two degrees of freedom. Equivalently, we can write134

q = s (n
⊗

n− I/2) where I is the 2D identity matrix, with s =
√

2 |q| being the scalar order135

parameter and n = (cos θ, sin θ) being the two-dimensional director. The general Landau-de Gennes136

nematic order parameter, Q, is a symmetric, traceless 3 × 3 matrix with five degrees of freedom137

but for severely confined systems, where the vertical z-dimension is much smaller than the lateral138

dimensions, it is reasonable to assume that structural details are independent of the z-coordinate139

and we can relate the reduced tensor, q in this paper to the full Landau-de Gennes Q tensor as140

has been done in [17]. A reduced approach, such as the one employed in this paper and others,141

is analytically and computationally more efficient and is a physically relevant approach for severely142

confined systems.143

We work within the standard and powerful Beris–Edwards theoretical framework for
nematodynamics [24]. There are three governing equations: the incompressibility constraint, an
evolution equation for the flow field which is essentially the Navier–Stokes equation with an
additional stress (σ) due to the nematic ordering and an evolution equation for q which has an
additional stress induced by the fluid vorticity. The governing partial differential equations are given
below.

∇ · u = 0, ρ
Du
Dt

= −∇p +∇ ·
[
µ
(
∇u + (∇u)′

)
+ σ

]
, (2)

where D
Dt = ∂

∂t + u · ∇ is the material derivative, ρ and µ are the density and viscosity of the fluid
medium, p is the hydrodynamic pressure, and u is the fluid velocity. The nematic stress (σ) is [9,24,29]

σ = qh− hq, and h = κ∇2q + aq− c | q |2 q, (3)

where s =
√

2|q| is the scalar order parameter, h is the molecular field, κ is the nematic elastic
constant and a and c are parameters related to the temperature and material properties. We work
with temperatures below the nematic–isotropic transition temperature and hence we take a > 0. The
evolution equation for the q tensor is given by [11,29]

Dq
Dt

= qξ − ξq +
1
γ

h, (4)

where γ is the rotational diffusion constant [10,21] and ξ is the anti-symmetric part of the velocity144

gradient tensor. We can also identify q with a two-dimensional vector: q = (q11, q22) where q11 =145

s
2 cos 2θ; q12 = s

2 sin 2θ.146

We assume that all quantities of interest only depend on y i.e., we work in a reduced
one-dimensional setting, which is a physically relevant setting for very long channels with small
height. Eqs. (2) and (4) can be recast in terms of the order parameter (s) and the director angle (θ) in
one spatial dimension as

∂s
∂t
− κ

γ
syy = −4κs

γ
θ2

y −
s
γ

( c
2

s2 − a
)

, (5)

∂θ

∂t
− κ

γ
θyy = −uy +

2κ

sγ

(
syθy

)
, (6)

ρ
∂u
∂t
− µuyy = −px + κ

(
s2θy

)
yy

, (7)
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where ẑ denotes the unit vector in the z direction. Using the following scalings,

y = Lỹ, t =
γL2

κ
t̃, s = s̃

√
2a
c

, u =
κ

γL
ũ, px =

µκ

γL3 p̃x, (8)

Eqs. (5)–(7) can be non-dimensionalised as

s̃t̃ − s̃ỹỹ = −4s̃θ2
ỹ −

s̃
L∗
(

s̃2 − 1
)

, (9)

θt̃ − θỹỹ = −ũỹ +
2
s̃

s̃ỹθỹ, (10)

L1ũt̃ − ũỹỹ = − p̃x + L2

(
s̃2θỹ

)
ỹỹ

, (11)

where

L∗ =
κ

aL2 , L1 =
ρκ

µγ
, L2 =

2aγ

cµ
, (12)

and L is the half-height of the channel. Physically, L∗ is the scaled elastic constant. The parameter147

L1 = Re/Er∗ where Re is the Reynolds number and Er∗ = u0Lγ/κ is analogous to the Ericksen148

number (Er = u0Lµ/κ) in terms of the rotational diffusion constant, γ, rather than the viscosity149

µ. It can also be interpreted as the ratio of the inertial to rotational forces. The parameter L2 =150

(2a/c) (Er∗/Er) is the product of ratio of the temperature and material constants and the ratio of the151

rotational to momentum diffusion.152

The boundary conditions for s̃ and ũ are

s̃(−1, t̃) = s̃ (1, t̃) = 1, (13)

ũ (−1, t̃) = ũ (1, t̃) = 0. (14)

This simply means that we assume the nematic molecules are perfectly ordered at ỹ = ±1 and we
impose the typical no-slip boundary conditions on ỹ = ±1. For the nematic director, we look at two
different cases: (i) symmetric Dirichlet conditions for θ on ỹ = ±1 consistent with strong anchoring
and in the spirit of [8], (ii) a Neumann-type boundary condition modelling weak anchoring on ỹ = −1
accompanied by a Dirichlet condition on y = 1 as shown below.

Symmetric: θ (−1, t̃) = −ωπ and θ (1, t̃) = ωπ, (15)

Asymmetric: Bθỹ (−1, t̃)− sin [2θ (−1, t̃)] = 0 and θ (1, t̃) = ωπ, (16)

where

ω =
θ(1, t̃)− θ(−1, t̃)

2π
(17)

is the winding number and B is a rescaled anchoring strength (see figure 1 for a sketch of these
configurations.) It is worth pointing out that positive B models tangential or planar boundary
conditions on the bottom substrate i.e. it originates from a surface energy of the form

∫
A sin2 θ

that is minimised by either θ = 0 or θ = π, for a positive anchoring coefficient A that measures the
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strength of the anchoring and we integrate over the surface ỹ = −1. The initial conditions for the
system above (9–11) are given by

s̃ (ỹ, 0) = 1, (18)

θ (ỹ, 0) =
1
2
(ỹ− 1) [ωπ − θ(−1, 0)] + ωπ, (19)

ũ (ỹ, 0) = − p̃x

2

(
1− ỹ2

)
, (20)

where θ (−1, 0) is the root of the equation Bθ (−1, 0)− sin [2θ (−1, 0)] = 0 for the asymmetric case.153

Fluid flow

ỹ−1 +1

(a)

Fluid flow

ỹ−1 +1

(b)

Figure 1. Schematic of the director orientation in equilibrium when applying (a) symmetric anchoring
conditions (15) and (b) asymmetric anchoring conditions (16).

We will often make comparisons between situations with no flow to situations with fluid flow.
In the no-flow case, we simply set ũ(ỹ, t̃) = 0 in Eqs. (9, 10) and analyse the resulting system

s̃t̃ − s̃ỹỹ = −4s̃θ2
ỹ −

s̃
L∗
(

s̃2 − 1
)

, (21)

θt̃ − θỹỹ =
2
s̃

s̃ỹθỹ. (22)

with the same boundary (Eqs. 13, 15, 16) and initial conditions (Eqs. 18, 19).154

3. Results155

The numerical computations are carried out using the finite-element-based commercial package156

COMSOL v5.2 [30].157

3.1. Comparison of the flow and no–flow situation158

We neglect time dependence or transient dynamics in this section and focus on the long-time159

equilibrium profiles of s̃, ũ and θ in this section. We fix the parameters L∗ = 10−3 and L1 = 10−6 which160

are physically relevant values from the typical values of material constants reported in the literature161

and investigate the effects of the parameters, p̃x and L2 on the solution profiles for Eqs. (9)–(11) [9,24].162

The results are presented in Figs. 2 and 3 where we plot the no-flow profiles for s̃ and θ for reference163

and then compare these profiles to the distorted profiles with a non-zero pressure gradient p̃x. In164

Fig. 2, we study the effect of the ratio p̃x/L2 on the spatial profiles of s̃, ũ and θ with the symmetric165

Dirichlet boundary conditions, (Eq. 15). Here, the solution profiles are symmetric around ỹ = 0 due to166
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the imposed symmetry of the boundary conditions. For L2/| p̃x| � 1, it is relatively straightforward167

to see that the flow profile is simply the parabolic Poiseuille flow profile. We confirm this observation168

in §4, where we determine the precise form of ũ, along with s̃ and θ, via a systematic asymptotic169

analysis of the set-up in the limit L2/| p̃x| � 1. For very small values of p̃x, the flow is weak as170

expected. In Fig. 3, we do the same for asymmetric boundary conditions (Eq. 16). Naturally, the171

profiles of θ are not symmetric around ỹ = 0 in this case. The asymmetric behaviour in θ is weak,172

but more pronounced for larger values of L2. The profiles of s̃ and ũ are largely unaffected by the173

asymmetric boundary conditions for θ, at least for the parameter values employed in this section.174

ỹ

θ/
ω

π

(a)

ỹ

s̃
(b)

ỹ

ũ

(c)

Figure 2. The effect of the fluid flow on the director orientation (θ) and the order parameter (s̃) at
equilibrium, for the case of symmetric boundary condition (Eq. 15). The values of the parameters
used are ω = 1/2, L∗ = 10−3 and L1 = 10−6. (Here, and elsewhere, we plot the profiles at t̃ = 10,
after which time we find the solutions have relaxed to a steady state from the initial configuration,
Eqs. 18, 19 and 20.) Analytic solutions are given in §4 and §4.1.

ỹ

θ/
ω

π

(a)

ỹ

s̃

(b)

ỹ

ũ

(c)

Figure 3. The effect of the fluid flow on the director orientation (θ) and the order parameter (s̃) at
equilibrium (t̃ = 10), for the case of asymmetric boundary condition (Eq. 16). The values of the
parameters used are B = 1/3, ω = 1/2, L∗ = 10−3 and L1 = 10−6.

Further, we can also compute the total fluid flow rate

∫ 1

−1
ũdỹ (23)

as well as the wall shear stress,

τ̃w =

[
∂ũ
∂ỹ

]
ỹ=−1

, (24)

which is related to the skin friction coefficient, Cs, by

Cs =
2τw

ρu2
0
=

2τ̃w

L1Er∗2
. (25)
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The skin friction coefficient represents the friction drag exerted by the wall, which resists the fluid175

movement.176

In Fig. 4, we plot the total volumetric flow rate as a function of L2 for two different values of177

p̃x = ±1, Dirichlet conditions on ỹ = ±1 and two different values of B. The results suggest that for178

L2 ≥ 1, the net flow rate is greater for p̃x = −1 compared to p̃x = 1. This is the most interesting179

regime where both the pressure gradient and the liquid crystal parameter L2 influence fluid flow and180

it would be interesting to investigate how px and L2 couple together in fluid flow profiles. Moreover,181

the effect of the wall alignment constant B on the flow properties can be inferred from Fig. 4. This182

suggests that by altering the wall anchoring properties (manifested through B) one can manipulate183

the flow rate and the skin friction losses. For example, positive B corresponds to preferred tangential184

anchoring on ỹ = −1 and negative B indicates preferred normal/homeotropic boundary conditions185

on ỹ = −1. Since θ = π
2 on ỹ = 1 (ω = 1

2 ), we have homeotropic boundary conditions on ỹ = 1. These186

results suggest that the net flow rate and the wall shear stress are enhanced by Dirichlet conditions187

or mixed tangential conditions on ỹ = −1 along with normal boundary conditions on ỹ = 1. We188

emphasise that the wall shear stress τ̃w is computed on ỹ = −1 where the mixed boundary condition189

is imposed and the other boundary wall will have a different magnitude (or even direction) of τ̃w190

associated with it.191

A phase-space plot of the parameters that correspond to net zero flow rate is shown in Fig. 5, also192

demonstrating the effect of the wall anchoring conditions. For illustrative purposes, we take p̃x = 1.193

The combination of parameters in the region below the curves in Fig. 5 corresponds to fluid flow in the194

direction of negative pressure gradient (− p̃x), while the long-time fluid flow is in the direction of px or195

the pressure gradient in the region above the curves, which is a manifestation of backflow. A similar196

situation, in which a net zero fluid flow rate can be observed, is in electro-osmotic flows, for a critical197

electrical field strength that exactly balances the hydrodynamic driving pressure [31]. The results in198

Fig. 5 provide quantitative estimates for the onset of flow reversal for a specific choice of parameters.199

A more exhaustive study on these lines can predict the onset of flow reversal for experimentally200

relevant or applications-oriented modelling scenarios and flow reversal or tunable flow directions201

offer new possibilities for topological defects and transport phenomena in microfluidic channels. We202

do not explore this further in this manuscript.203

L2

∫ 1 −1ũ
d

ỹ
/ ∫

1 −
1

ũ∣ ∣ L 2
=

0
d

ỹ

(a)

L2

τ̃ w

(b)

Figure 4. Plot of (a) the total volumetric flow rate and (b) the wall shear stress (which relates to the
skin friction coefficient through Eq. 25) as a function of L2 for different values of the constant B in
the symmetric (Dirichlet) case, Eq. (15), and the asymmetric case, Eq. (16), for θ. The total flow rate
is scaled with the equivalent Poiseuille flow rate for a Newtonian fluid,

∫ 1
−1 ũ|L2=0 dỹ = −2p̃x/3.

The solid and the dotted lines correspond to the negative and positive values of p̃x respectively. The
values of the parameters used are | p̃x| = 1, ω = 1/2, L∗ = 10−3 and L1 = 10−6 � 1.



Version June 1, 2018 submitted to Fluids 9 of 18

L2

L∗

Flow in the direction of
decreasing hydrodynamic
pressure

Backflow

Figure 5. Phase space plot of the parameters (L∗ and L2) for no overall mass flow rate. Here p̃x > 0.
The curve (solid) corresponding to B = 1/3 is for the asymmetric boundary condition (Eq. 16). The
dotted curve is for the case of the symmetric (Dirichlet) boundary condition (Eq. 15). The values of
the parameters used are p̃x = 1, ω = 1/2 and L1 = 10−6.

3.2. Effect of the winding number ω204

The impact of the winding number ω on the long-time profiles for the symmetric (Eq. 15) and205

asymmetric case (using Eq. 16) respectively, are shown in Figs. 6 and 7 for L∗ = 10−3. As ω increases,206

the energetic penalties for distortions in θ increases (this can be seen by re-scaling θ = ωθ̃ in Eq. 9), so207

the long-time θ-profiles become more linear as ω increases. The gradient θỹ is usually maximum208

in magnitude at ỹ = 0 and consequently, s̃ is a minimum at ỹ = 0 since the energetic penalty209

is proportional to s̃2. Further, the minimum value of s̃ decreases as ω increases, again for similar210

reasons in the sense that the order decreases to compensate for more distortion in the θ profiles. It211

is interesting that the total flow rate decreases as ω increases, since the flow meets more resistance212

from the increasingly distorted θ profiles i.e. there is more structure in the channel and this opposes213

fluid flow. It seems difficult to extract this behaviour from a simple analysis of the governing partial214

differential equations.215

ỹ

θ/
ω

π

(a)

@
@@R

Increasing ω

ỹ

s̃

(b)
�
�
�
�
�
��

Increasing ω

ỹ

ũ

(c)

�
�
�
�
��

Increasing ω

Figure 6. The effect of the winding number ω on θ, s̃ and the velocity profile ũ at equilibrium (t̃ = 10).
In this case, we have considered the symmetric boundary condition in θ (Eq. 15). The values of the
parameters used are L∗ = 10−3, p̃x = −10, L2 = 1, and L1 = 10−6. The legends of all the sub-figures
are the same as in (a).
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ỹ

θ/
ω

π

(a)

@
@@R

Increasing ω

ỹ

s̃

(b)
�
�
�
�
�
��

Increasing ω

ỹ

ũ

(c)

�
�
�
���

Increasing ω

Figure 7. The effect of the winding number ω on θ, s̃ and the velocity profile (ũ) at equilibrium
(t̃ = 10). In this case, we have considered the asymmetric boundary condition in θ (Eq. 16). The
values of the parameters used are B = 1/3, L∗ = 10−3, p̃x = −10, L2 = 1, and L1 = 10−6. The
legends of all the sub-figures are the same as in (a).

3.3. Effect of the parameter L∗216

The regime of small L∗ is well understood in the no-flow case. Here s̃ is approximately unity217

everywhere and θ is linear with Dirichlet boundary conditions without flow. When a pressure218

gradient is imposed, one can do some heuristic calculations to predict that the flow profile is219

approximately parabolic for small L2, as in Figs. 8c and 9c. (See §4 for a more detailed analysis.) In220

the case of symmetric Dirichlet boundary conditions, as L∗ becomes larger, θ becomes approximately221

constant everywhere except for a jump at ỹ = 0 to enable the boundary conditions to be satisfied.222

This can be seen from Eq. (9) that as L∗ increases, θỹ tends to zero almost everywhere and there223

is reduced energetic penalty associated with deviations from s̃ = 1. In fact, s̃ = 0 when θ has224

a jump discontinuity, to regularise the solution. This is referred to as order reconstruction in the225

liquid-crystal literature when the system interpolates between two fixed boundary conditions by not226

rotating the eigenframe but by switching the leading eigenvalue at the centre of the cell. However,227

whilst the order reconstruction phenomenon is relatively well understood without flow effects, it is228

far less studied with flow effects. We make certain observations here. For the parameter choices229

in Figs. 8, the θ profile switches from a continuous solution to a discontinuous solution at ỹ = 0230

at L∗ ≈ 0.1. This has a very interesting effect on the flow profile (see Fig. 8c) in the sense that231

there is a distinct region in the channel interior where ũ < 0 for L∗ = 0.1 and the flow field has a232

cusp-like minimum at ỹ = 0. For larger values of L∗, when the system has settled into the order233

reconstruction regime, the flow profiles are less surprising and have the usual parabolic-like profile.234

We point out that θ is not a constant on either side of the jump discontinuity for order reconstruction235

with flow, in contrast to order reconstruction without flow. The qualitative features are unchanged236

with asymmetric boundary conditions, see the results in Fig. 9c.237

For a select range of values of L∗, both the continuous and discontinuous solutions for θ are238

attainable, with the state achieved dependent on the initial condition. We analyse this further in §3.5.239

There is evidence that the local fluid flow switches direction (at least locally) for certain choices240

of L∗ and we have investigated the impact of L∗ on the net fluid flow rate, as shown in Fig. 10. As241

we have seen in Fig. 5, for a given L2 large enough, there exists a critical L∗ (L∗crit,1) for which there is242

zero net flow. However, here we find that there is a second critical L∗ (L∗crit,2), beyond which the flow243

switches back to the direction of the decreasing pressure. The critical scaled elastic constants L∗crit,1244

and L∗crit,2 have almost the same values for both the symmetric and asymmetric boundary conditions,245

for the parameter choices in Figure 10. The critical values are relatively large however, and hence246

unlikely to be attained in most applications.247
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Figure 8. The effect of the parameter L∗ on the director orientation (θ), the order parameter (s̃) and
the velocity profile (ũ) at equilibrium (t̃ = 10), in the case of the symmetric boundary conditions for
θ (Eq. 15). The values of the parameters used are ω = 1/2, L2 = 1, p̃x = −10 and L1 = 10−6. The
legends of all the sub-figures are the same as in (a).
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Figure 9. The effect of the parameter L∗ on the director orientation (θ), the order parameter (s̃) and
the velocity profile (ũ) at equilibrium (t̃ = 10), in the case of the asymmetric boundary conditions for
θ (Eq. 16). The values of the parameters used are ω = 1/2, B = 1/3, L2 = 1, p̃x = −10 and L1 = 10−6.
The legends of all the sub-figures are the same as in (a).

L∗

∫ 1 −1ũ
d

ỹ
/ ∫

1 −
1

ũ∣ ∣ L 2
=
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d

ỹ

L∗crit,1 L∗crit,2

Asymmetric
Symmetric

Figure 10. The effect of the parameter L∗ on the net fluid flow rate at equilibrium (t̃ = 10), for the
asymmetric (Eq. 16) and symmetric case (Eq. 15). The values of the parameters used are B = 1/3,
ω = 1/2, L2 = 1, p̃x = −10 and L1 = 10−6. The total flow rate is scaled with the equivalent Poiseuille
flow rate,

∫ 1
−1 ũ|L2,L1=0 dỹ = −2p̃x/3.
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3.4. Dynamic evolution of the spatial profiles248

We briefly examine the dynamic evolution of the director profile, order parameter and the fluid249

flow profiles in Fig. 11 (symmetric case) and Fig. 12 (asymmetric case). We note that, even though250

L1 � 1 in our simulations, the velocity is time dependent because s̃ and θ are time dependent. The251

dynamics are not particularly interesting for this choice of parameters but illustrate how s̃ assumes252

a U-shaped profile with a shallow minimum as θ evolves from the perfectly linear initial condition,253

under the effect of flow. The initial flow profile is the Poiseuille flow and the nematic effects suppress254

the flow profile and distort the parabolic shape.255
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Figure 11. The dynamic evolution of the director orientation (θ), the order parameter (s̃) and the
velocity profile (ũ) for the symmetric case (Eq. 15). The values of the parameters used are ω = 1/2,
L∗ = 10−3, L2 = 10, p̃x = −10 and L1 = 10−6. The legends of all the sub-figures are the same as in
(a).
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Figure 12. The dynamic evolution of the director orientation (θ), the order parameter (s̃) and the
velocity profile (ũ) for the asymmetric case (Eq. 16). The values of the parameters used are B = 1/3,
ω = 1/2, L∗ = 10−3, L2 = 10, p̃x = −10 and L1 = 10−6. The profiles of θ are asymmetric (around
ỹ = 0) because of the inhomogeneity in the θ boundary conditions (Eq. 16). The legends of all the
sub-figures are the same as in (a).

3.5. Effect of the initial condition256

Next, we make some preliminary comments on the effect of the initial condition on the257

equilibrium solution. As noted in §3.3, as we increase the parameter L∗, the θ solution transitions258

from a continuous to a discontinuous profile, at a critical value of L∗ referred to as L∗switch. This259

motivates the question of whether, by an appropriate choice of initial condition, there are parameter260

regimes that admit multiple steady-state solutions with a basin of attraction.261

In Fig. 13, we consider a specific case of no fluid flow and symmetric Dirichlet boundary262

conditions in θ (Eq. 15) and show that the system can indeed exist in multiple steady states.263
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We find that there is a window of values of L∗ < L∗switch ≈ 0.0335 for ω = 1/2 (and L∗switch264

decreases as we increase ω) for which a continuous and discontinuous steady-state solution can be265

achieved, depending on the initial conditions, indicating that multiple steady states may only be266

possible in some parameter regimes. The continuous solution is stable in this parameter regime and267

the discontinuous solution is unstable with respect to perturbations near the centre of the cell. This268

is consistent with theoretical work in the field. The order reconstruction or discontinuous solution269

exists for all values of L∗, for our choice of symmetric Dirichlet conditions, with no flow. It is the270

unique solution for suitably large L∗ and unstable for suitably small L∗ [18]. However, the instability271

only manifests in certain directions, so that, for an appropriate choice of initial condition, we can272

recover the discontinuous solution for smaller values of L∗. As L∗ increases, we recover the order273

reconstruction or discontinuous solution for all initial conditions. These results are promising in the274

context of bistable devices, particularly if the order reconstruction or discontinuous solution can be275

"stabilised" by an appropriate control and we have two stable solutions – the continuous and the276

discontinuous solution for small values of L∗.277

ỹ

θ/
ω

π

(a)

ỹ

s̃

(b)

Figure 13. Equilibrium profiles of the (a) director orientation, θ and the (b) order parameter s̃ for
two different initial conditions for s̃ and a linear initial profile for θ, without any fluid flow. The blue
curves are the equilibrium profiles for θ and s̃ for s̃(ỹ, 0) = ỹ2 and the green curves are the equilibrium
profiles for s̃(ỹ, 0) = 1. We have considered symmetric condition for θ given by Eq. (15). The values
of the parameters used are ω = 1/2 and L∗ = 0.03.

4. Steady-state analysis278

In this section, we analytically study the system Eqs. (9), (10) and (11) in steady state. We assume279

that L2/| p̃x| � 1 so that the flow affects the nematic orientationally ordering but not vice versa, and280

that a uniform pressure gradient p̃x̃ = −G is applied. In particular, this regime does not capture281

backflow where the nematic order affects fluid flow.282

We integrate Eq. (11) with respect to ỹ twice and apply boundary conditions, Eq. (14) to give the
following leading order Poiseuille-type solution for ũ,

ũ = −G
2

(
ỹ2 − 1

)
. (26)

Substituting (26) into (10) and rearranging we obtain(
s̃2θỹ

)
ỹ
= −Gỹs̃2. (27)

We are thus left to solve Eq. (9) and (27), subject to Eq. (13), and either Eq. (15) or Eq. (16).283

The numerics have uncovered the possibility for two types of steady solution: continuous or284

discontinuous solutions in θ. We will study each of these in turn in the following subsections.285
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4.1. Continuous solutions in θ286

We first study the symmetric strong-anchoring regime or Dirichlet boundary conditions for θ.
Integrating Eq. (27) with respect to ỹ twice and applying the boundary conditions (Eq. 15) gives an
explicit expression for θ in terms of s̃:

θ = −G
∫ ỹ

0

dη

s̃(η)2

∫ η

0
ζ s̃(ζ)2 dζ + c1

∫ ỹ

0

dη

s̃(η)2 , (28)

where

c1 =

ωπ + G
∫ 1

0

dη

s̃(η)2

∫ η

0
ζ s̃(ζ)2 dζ∫ 1

0

dη

s(η)2

. (29)

Substituting for θỹ in Eq. (9) using Eq. (28), we obtain the integro-differential equation for s̃,

s̃ỹỹ = 4s̃
(
−G

s̃2

∫ ỹ

0
ηs̃(η)2 dη +

c1

s̃2

)2
+

s̃
L∗

(s̃2 − 1). (30)

This must be solved subject to the boundary conditions (Eq. 13).287

An analogous procedure follows for the asymmetric anchoring conditions (Eq. 16), but we do288

not present the details here.289

4.1.1. Small-L∗ limit290

It is observed that continuous solutions can only be obtained for L∗ � 1. We thus explore
the system in this reduced regime. In this case, the leading-order solution in L∗ to Eq. (30) can
immediately be seen to be s̃ = 1. As a result, Eq. (28) yields the corresponding leading-order solution
for θ,

θ = −Gỹ3

6
+

(
ωπ +

G
6

)
ỹ. (31)

A similar method in the asymmetric case, Eq. (16), yields the leading-order solution

θ = −G
6
(y3 − 1) + c2(y− 1) + ωπ, (32)

with c2 satisfying the transcendental equation(
G
2
+ c2

)
B = sin

[
2G
3
− 4c2 + 2ωπ

]
. (33)

We note also that in the small-L∗ limit, we may relax the assumption that L2 is small. In this case, the
flow profile is still parabolic to leading order, but is given by

ũ = − G
2(1− L2)

(
ỹ2 − 1

)
. (34)

We recall that L2 > 0 is positive since we are working with low temperatures, so a > 0. Negative291

values of L2 describe higher temperatures for which s̃ ≈ 1 does not hold. We also note that the flow292

profiles in the preceding section do not agree with the perfectly parabolic profile described above.293

This is largely because L∗ is not sufficiently small in the simulations for the sake of computational294

efficiency.295
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4.2. Discontinuous solutions in θ296

We now study the case to allow for discontinuities in θ. On physical grounds, s̃ = 0 vanishes at
such discontinuities to "regularise" the discontinuities. While such point discontinuities may appear
anywhere within the domain, for illustrative purposes we consider the case where a single point
discontinuity in θ is present, at ỹ = 0. We focus on the symmetric strong anchoring regime, but again
note that similar methods apply to the asymmetric boundary conditions. We solve in the domain
0 < ỹ ≤ 1 and replace the boundary conditions (Eqs. 13 and 15) with

s̃(0, t̃) = 0, s̃ (1, t̃) = 1, (35)

θỹ(0+, t̃) = finite, θ(1, t̃) = ωπ. (36)

Since L2 � 1, the velocity profile is not influenced by the discontinuities and is still given by Eq. (26).297

Integrating Eq. (27) and applying the modified boundary conditions, we find that θ is now given
by

θ = ωπ + G
∫ 1

ỹ

dη

s̃(η)2

∫ η

0
ζ s̃(ζ)2 dζ. (37)

Substituting for θ in Eq. (37) into Eq. (9) yields

s̃ỹỹ =
4G2

s̃3

(∫ ỹ

0
ηs̃(η)2 dη

)2
+

s̃
L∗

(s̃2 − 1), (38)

subject to Eq. (35).298

When there is no external flow, p̃x = G = 0 and Eq. (37) gives simply θ = ωπ. The solution for s̃
is then given implicitly from Eq. (30) as

ỹ =
√

2L∗
∫ s̃

0

dη√
η4 − 2η2 + c3

, (39)

where c3 is given by

√
2L∗

∫ 1

0

dη√
η4 − 2η2 + c3

= 1, (40)

for a given L∗. Note that, equivalently, Eq. (40) could be viewed as providing explicitly the value of299

L∗ corresponding to a particular chosen value of c3. The solution for −1 ≤ ỹ < 0 is found by an odd300

reflection of the solution in 0 < ỹ ≤ 1.301

When the pressure gradient G � 1, the system possesses a distinguished limit when L∗ =

O(1/G2). (Note we assume that L2 � G so that the second term on the right-hand side of Eq. (11)
can still be ignored.) In this relatively simple case, the equations are amenable to asymptotic analysis,
and we are able to write the solution for s̃ and θ explicitly as

s̃ = ỹ +
G2ỹ
168

(ỹ6 − 1) +
ỹ

20L∗
(ỹ4 − 1)− ỹ

6L∗
(ỹ2 − 1) + O(G4), (41)

θ = ωπ +
G
12

(
ỹ3 − 1

)
+ O(G2). (42)

5. Conclusions302

In this paper, we investigate the nematic order parameter (captured by θ and s̃) and flow profiles303

in a one-dimensional microfluidic channel, with Dirichlet boundary conditions and mixed boundary304

conditions for θ, as a function of the pressure gradient, the boundary conditions themselves (in305
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terms of ω and B), the nematic elastic constant (L∗) and the scaled viscosities (L2) in a reduced306

Beris–Edwards setting. For small L2, we can analyse the system and obtain at least semi-explicit307

solutions for the nematic order parameter and the flow profile, both with and without an applied308

pressure gradient. We consider continuous and discontinuous profiles for θ separately, again309

including the effect of the pressure gradient. In the discontinuous case, θ is effectively piecewise310

constant (without flow) for such solutions and discontinuities in θ are regularised by isotropic points311

with s̃ = 0. We can analytically construct solutions with multiple discontinuities although we suspect312

that these solutions lose stability with respect to higher-dimensional perturbations. The analytical313

results set the scene for some interesting control problems on how to stabilise discontinuous solutions314

for small L∗ and these discontinuous solutions could offer interesting examples of domain walls with315

s̃ = 0 in three dimensions.316

Our most interesting observations include the onset of flow reversal in these model microfluidic317

systems. We compute specific criteria for flow reversal (flow in the direction of the pressure gradient)318

as a function of L∗ and L2 and in particular, based on the results in Figure 10, we expect the curve319

in Fig. 5 to fold back on itself, so that for a given L2 large enough, flow reversal only occurs for a320

certain range of values L∗ and not in the entire region above the dotted and solid curves in Fig 5. The321

observed flow reversal is a distinct manifestation of backflow and only occurs for L2 large enough. We322

plan to investigate discontinuous order reconstruction solutions in the presence of flow and backflow323

in microfluidic channels as a function of temperature (treating a as a parameter or accounting for324

cases when L2 changes sign), geometrical dimensions and the anchoring coefficient B in subsequent325

work.326
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