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We investigate how a filter-medium microstructure influences filtration performance.
We derive a theory that generalizes classical multiscale models for regular structures
to account for filter media with more realistic microstructures, comprising random
microstructures with polydisperse unidirectional fibres. Our multiscale model accounts
for the fluid flow and contaminant transport at the microscale (over which the medium
structure is fully resolved) and allows us to obtain macroscopic properties such as
the effective permeability, diffusivity, and fibre surface area. As the fibres grow due
to contaminant adsorption this leads to contact of neighbouring fibres. We propose
an agglomeration algorithm that describes the resulting behaviour of the fibres upon
contact, allowing us to explore the subsequent time evolution of the filter media in a
simple and robust way. We perform a comprehensive investigation of the influence of the
filter-medium microstructure on filter performance in a spectrum of possible filtration
scenarios.

Key words: Particle/fluid flow, porous media, laminar reacting flows, computational
methods.

1. Introduction

Filtration of contaminant out of a fluid is vital for many industrial applications. Filtra-
tion technology is used in air conditioning and purifying systems, cars, vacuum cleaners,
water treatment and food industries to name a few. Filtration in these applications
operates under the same principles (Neunzert & Prätzel-Wolters 2015). Contaminated
fluid, such as air or water, is transported through a porous material, the filter medium.
As contaminants pass through the filter medium, they come into contact with the surface
of the porous medium and adhere, and as a result, a cleaner fluid is produced. Filtration
processes can be classified using four main characteristics: the transport mechanism, the
operational set-up, the adsorption mechanisms and the filter-medium type.

Transport mechanisms and operational set-ups

The transport of contaminants though filter media can be driven by advection, diffusion
and osmosis. In this work, we focus on the first two mechanisms. Depending on the
transport mechanisms and the objectives of the filtration, the process can have different
operational set-ups. A dead-end set-up, when the fluid flow is perpendicular to the filter
medium, is used in advection-dominated filtration, while a cross-flow set-up, when the
fluid flow is parallel to the filter medium, is commonly used for diffusion-dominated
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filtration. Moreover, when advection is present, the filtration can occur under a constant
flow rate or a constant pressure drop. Some examples of applications that employ a
constant flow rate are the air filters used in vacuum cleaners and air-conditioning systems
(Fisk et al. 2002). Filtration regimes in which a constant pressure drop is applied occur
in pharmaceutical and biotechnology industries, see, for example, Chen et al. (2015);
Goldrick et al. (2017). One of the aims of this work is to discuss the mathematical
modelling and to investigate numerically different transport mechanisms and set-ups.

Adsorption mechanisms

The adsorption mechanisms that usually act during the filtration process are diffusion,
interception, impaction and gravitational settling. In addition, adsorption can be en-
hanced by, for example, electrostatic forces and chemical treatment of the filter media. In
this paper, we ignore the enhanced adsorption mechanisms and account for the standard
mechanisms through a single so-called adsorption coefficient. For more discussions on
the adhesive forces acting on the contaminant particles and their quantification, see, for
example, Brown (1993) and Baron & Willeke (2001).

Filter-medium types

Contaminant adsorption occurs at the pore level, or microscale, of the filter medium.
Therefore, a natural question that arises is how the filtration performance is affected by
the microstructure of the filter medium, that is, by the filter-medium type. The second
aim of this paper is to investigate the influence of the microstructure on the filtration
performance.
The effect of the filter-medium type has been investigated in different studies using a

microscale approach with a fully resolved microstructure of filter media (see, for example,
Fotovati et al. 2010; Sambaer et al. 2012; Becker et al. 2013; Robinson & Bruna 2015;
Li et al. 2016; Iliev et al. 2017, and references therein). Some of these studies track each
particle individually using a Lagrangian approach, while others treat the contaminant as
a continuum, which is possible if the particles are sufficiently small in comparison with
the fibre size. Becker et al. (2013) evolve the microstructure as time progresses, while
the other studies mentioned above consider only the initial filtration, namely before the
adsorbed contaminants begin to influence the porous-medium microstructure. In general,
the microscale approach provides detailed information about the filtration process, but
it is computationally very expensive. Using this approach, we can only consider a small
representative volume of the filter, and so this does not provide us with the information
about the behaviour of the entire filter medium. Even if we can resolve the whole
thickness, due to the computational cost only a very limited number of simulations can
be performed, which makes the microscale approach unsuitable for comprehensive studies
with different kinds of microstructures.
Filtration problems are also commonly modelled using a macroscale approach (Lak-

dawala 2010; Manikantan & Gunasekaran 2013; Krupp et al. 2017). Here, the filter is mod-
elled as a continuum and its characteristics are accounted for via empirical macroscopic
parameters. Macroscale models are popular because one can relatively cheaply simulate
the whole filtration process and various operational set-ups. Hence, unlike microscopic
models, they are suitable for predictive studies. On the other hand, studying different
types of filter media using this approach would require supplementing the simulations
with experimental measurements, which are time-demanding and expensive to carry out.
Hence, the macroscale approach is impractical for such a study.
A multiscale approach combines the advantages of both micro- and macroscale meth-

ods. Starting from a microscale model, the multiscale approach uses an upscaling method
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to derive a simple model at the macroscale that can be solved easily and used in predictive
and comprehensive studies. But since the model is derived from a microscale model, its
parameters bear a direct relation to the microscale features (Hornung 1996). For these
reasons, multiscale models have become a popular tool in mathematical modeling (see
for example Allaire et al. 2014; Iliev et al. 2014; Ray et al. 2015; Schmuck & Bazant 2015;
Dalwadi et al. 2016).
Let us discuss three studies using the multiscale approach that are the most relevant

to the work in this paper. Iliev et al. (2014) use a volume averaging approach, which
yields the macroscopic equations via local averages in the form of volume integrals. The
proposed model accounts for the microscale features of the filtration while modelling
a whole filter element, that is, a casing for the filter medium with an inlet for the
contaminated fluid and an outlet for the filtered fluid. However, the computational
complexity of the resulting model is still quite challenging, requiring resolution of the
filter-medium thickness at the microscale in addition to performing separate simulations
for multiple location in the filter medium. Thus, while this model is good to understand
the effect of the microstructure on the filtration behaviour for a single set of parameters,
performing studies for different types of microstructure using such a model is not
practical.
The models by Ray et al. (2015) and Dalwadi et al. (2016) employ the method

of multiple scales, which assumes a separation of scales and averages the microscale
variations. Both papers consider the flow and particle transport problems in an evolving
porous medium, and Ray et al. (2015) also accounts for a general interaction potential
between fibres and particles (such as an electrostatic potential). Their multiscale models
consist of a coupled system of equations for the flow and transport with the effective
parameters determined by solving the so-called cell problems in a microscopic unit cell.
The model by Ray et al. (2015) considers a more general microstructure using a level-
set framework, but the downside is that the microscopic and macroscopic problems are
fully coupled, meaning that the cell-problems have to be solved for each point in space
and time. Under certain simplifications, namely no interaction potential and a quasi-
periodic microstructure with unidirectional fibres that grow radially due to contaminant
deposition, the model by Ray et al. (2015) reduces to the one derived by Dalwadi et al.
(2016). Under these assumptions, the cell problems depend only on the porosity and so the
microscopic and macroscopic problems decouple, resulting in a more efficient simulation.
On the other hand, the applicability of the model from (Dalwadi et al. 2016) is limited
due to its consideration only of microstructures of filter media with monodisperse fibres
located on a regular lattice. Moreover, under their model assumptions, the simulation
must be stopped when two fibres become in contact due the contaminant deposition.

Overview

In this paper, we use the method of multiple scales to study the effect of the filter
microstructure in various filtration regimes.We are concerned with nonwoven filter media,
which is one of the most common filter-medium types (see Brown 1993; Hutten 2015). The
nonwoven medium is a sheet made from directionally or randomly oriented fibres bonded
together by chemical, mechanical, heat or solvent treatment. The contaminant transport
is driven by diffusion and advection with the fluid and described using a continuum
approach.
Our set-up is similar to the one in (Dalwadi et al. 2016). In that paper the authors

assumed that fibres are arranged in a simple quasi-periodic structure (a hexagonal
lattice), and that all fibres have the same radius in a given unit cell. But real filter
media have fibres with some diameter distribution, that is, polydisperse fibres, and do
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not have a regular fibre arrangement. To this end, in this paper we allow for different fibre
sizes in the same unit cell and for random microstructures. By random microstructure we
mean a unit cell with randomly distributed fibres that is representative of the material
as a whole and then extended quasi-periodically. Quasi-periodicity means that we allow
for slow variations from unit cell to cell to enable us to capture porosity variations on the
macroscale (present either initially by design of the filter medium or due to nonuniform
contaminant adsorption).
In regular microstructures with equally sized fibres, fibres are grown (due to contami-

nant deposition) until the close-packing of the given lattice is reached and the simulation
is terminated (Dalwadi et al. 2016). In a random lattice this method would not work
well since two fibres could already be close initially, leading to a short filter lifetime. To
deal with this case, we propose an agglomeration algorithm whereby as fibres come into
contact they are combined into a larger fibre.

The structure of the paper is as follows. In Section 2, we present our model and
the algorithm for joining fibres. Then, we perform a comprehensive study on how the
microstructure influence the effective parameters of the filter media in Section 3. We con-
sider five different microstructures: regular square, regular hexagonal and three random
with different inter-fibre properties. Then, we discuss how the effective parameters are
affected by microstructure differences. In Section 4 we discuss criteria used to evaluate
the performance of filter media and different filtration regimes and operational set-
ups. In particular, we consider filtration when the contaminant transport occurs due
to advection, diffusion or both, and operation set-ups with either constant flow rate
or constant pressure drop. In Section 5, we carry out multiscale simulations for the five
types of microstructures and different filtration regimes and set-ups. Here, we discuss and
investigate in detail how each regime is affected by the filter-medium microstructure. We
perform further analysis of the transport mechanisms of the contaminants in Section 6
and investigate how the initial efficiency is influenced by contribution of the advection
and diffusion terms. Finally, in Section 7 we summarize our findings.

2. Mathematical model

In this section we present the derivation of the multiscale model. We consider the
general case when the transport of contaminant particles is due to a combination of
diffusion and advection in a fluid flow. The cases when transport is only diffusive or
advective are contained in this model.
We begin by describing the problem at the microscopic, or pore, scale, at which we

assume the medium has initially a known and periodic microstructure that consists of
so-called unit cells. Within each unit cell we allow fibres of different sizes to be present.

The distribution of the contaminant particles on the fibre surface depends on the
filtration regime and dominant capture mechanism. For example, in diffusion-dominated
regimes, the contaminants will deposit uniformly, while when advection dominates, the
deposition is biased towards the upstream side of the fibre. For simplicity, here we assume
that the fibres grow radially as contaminants adsorb onto their surface. As we will see
later, this assumption allows us to perform the micro- and macroscale simulations that
allow for an efficient simulation algorithm.
Contaminant adsorption occurs at different rates in different unit cells, depending

on the local particle concentration and flow. As a result, fibres in unit cells can grow
differently (see the schematic on the left of Figure 1). However, we assume that the
variations in diameter of the periodic fibres are small between adjacent unit cells, so that
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Figure 1. Microscale representation of the
filter medium on the left and notations for the
microscale quasi-periodic unit cell w with a
microscale variable y = x/δ varying in w on
the right

Figure 2. Nonwoven filter-medium mi-
crostructure with unidirectional fibres: 3D
and 2D representations on the left and right,
respectively

our microstructure is near-periodic and these variations are captured at the macroscale
(see more discussions in (Dalwadi et al. 2016)).
We suppose that the medium is composed of unidirectional fibres, which naturally

reduces the model to a two-dimensional microstructure (see Figure 2), though we note
that all of the analysis presented here readily extends to three dimensions.
The macroscopic domain is denoted Ω̃ ⊂ R

2 and consists of the fluid and solid
subdomains Ω̃f (t̃) and Ω̃s(t̃), respectively, where tildes denote dimensional quantities.

The solid subdomain Ω̃s represents the fibres. The interface between the subdomains is
denoted ∂Ω̃s(t̃) = Ω̃f ∩ Ω̃s and represents the total surface of the fibres. We note that
both subdomains depend on time t̃ due to fibre growth.

2.1. Microstructure with isolated fibres

First, we consider the case when fibres are not allowed to touch at any time t̃. We
recall this was the assumption used by Dalwadi et al. (2016), but here we extend it to
polydisperse fibres. We define the domain by setting the location of the fibres in Ω̃(t̃)
with centres located at x̃m and radii r̃m(x̃, t̃) for m ∈ M, where M is the set of all fibres
in the whole filter medium, and prescribe Ω̃(t̃ = 0). We denote the surface of each fibre
as:

∂Ω̃m
s (t̃) =

{

x̃ ∈ Ω̃ : ‖x̃− x̃m‖ = r̃m(x̃m, t̃)
}

, m ∈ M. (2.1)

The interface between the pore and solid subdomains is the union of all the fibre surfaces,
that is, ∂Ω̃s(t̃) =

⋃

m∈M ∂Ω̃m
s (t̃). We note that the assumption that fibres are not in

contact implies that ∂Ω̃m
s (t̃)

⋂

∂Ω̃n
s (t̃) = ∅ for n 6= m.

The contaminant particles and the fluid occupy the pore space of the filter medium,
Ω̃f (t̃). We assume that the particles are sufficiently small that they do not influence the
fluid flow and that the flow is incompressible and Newtonian. We also assume that the
flow is sufficiently slow and thus satisfies the Stokes equations:

−∇̃p̃+ µ∇̃2ũ = 0, x̃ ∈ Ω̃f (t̃); (2.2a)

∇̃ · ũ = 0, x̃ ∈ Ω̃f (t̃); (2.2b)

where p̃(x̃, t̃) is the fluid pressure in [Pa], ũ(x̃, t̃) is the fluid velocity in [m/s], ∇̃ is the
nabla operator with respect to the spacial coordinate x̃, and µ is the viscosity in [Pa · s].
The radial fibre growth results in the following no-slip boundary condition on the fibre
surface:

ũ = −∂r̃m

∂t̃
nm, x̃ ∈ ∂Ω̃m

s (t̃), m ∈ M; (2.2c)
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where nm is the unit normal to the fibres’ surface ∂Ω̃m
s pointing into the solid domain.

Despite the time-dependent nature of the boundary condition, eq. (2.2c), we use the
steady-state Stokes eqs. (2.2a) and (2.2b) because the timescale of fibre growth is slow
compared with that over which the fluid flow attains a steady state.
We assume that the contaminant particles are uniform in size. We also assume that they

are much smaller than the typical fibre diameter and that the contaminant suspension
is dilute, as is common for many filtration scenarios. This allows us to neglect particle–
particle and hydrodynamic interactions and to describe the contaminant by its number
concentration c̃(x̃, t̃) evolving according to:

∂c̃

∂t̃
= ∇̃ ·

(

D∇̃c̃− ũc̃
)

, x̃ ∈ Ω̃f (t̃); (2.3)

where c̃ is measured in [particle count/m3], and D ([m2/s]) is the diffusivity coefficient.
Using a linear adsorption model without desorption (Baret 1969) and eq. (2.2c), the
boundary condition for the concentration reads

−D∇̃c̃ · nm = k̃c̃, x̃ ∈ ∂Ω̃m
s (t̃), m ∈ M; (2.4)

where k̃ ([m/s]) is the adsorption coefficient. For a detailed derivation of the boundary
condition (2.4) we refer to Dalwadi et al. (2016). This represents a balance between the
diffusive flux of particles to the fibre surface and the net adsorption as a result of contact,
which, as discussed in the Introduction, may be due to a combination of mechanisms.
We assume that the contaminant particles become immobile once they adsorb onto the

fibre surface and add to the fibre volume. Since we assume that the fibres grow radially,
the radius of each fibre changes proportionally to the volumetric particle flux averaged
over the surface of the fibre ∂Ω̃m

s . This implies:

∂r̃m

∂t̃
=

1

|∂Ω̃m
s |

∫

∂Ω̃m
s

ρ−1v k̃c̃ ds, x̃ ∈ ∂Ω̃m
s (t̃), m ∈ M, (2.5)

where |∂Ω̃m
s | =

∫

∂Ω̃m
s

ds, v ([m3]) is the volume of a contaminant particle, and ρ is the

packing density of contaminant particles on the fibre surface. If we ignored voids between
the contaminant particles adsorbed onto the fibre surface, then ρ = 1; if they are perfectly
packed around the fibre, then ρ = 0.74. Generally, the particles do not pack so well and
form so-called dendrites, or very dense tree-like structures (Brown 1993, pp.201–205).
We consider ρ = 0.3 in this study.

2.1.1. Nondimensionalization

We introduce the following nondimensionalization:

x̃ = lx, ũ = Uu, p̃ =
µU
δ2l

p, t̃ = T t, r̃m = δlrm, c̃ = Cc, (2.6)

where l is the characteristic thickness of the filter medium in [m], U is the characteristic
face velocity in [m/s], T is the characteristic filtration time in [s], and C is the inlet
contaminant concentration in [particle count/m3]. Here δ is the ratio of the microscopic
quasi-periodic unit cell diameter to the (macroscopic) filter depth. The assumption
to apply the method of multiple scales is that there is a separation of between the
microscopic and macroscopic lengthscales, that is, δ ≪ 1.
We also introduce the following dimensionless groups:

α =
l

UT , β =
lδ

kT , γ =
Dδ

lk
, ζ =

Uδ
k
, η =

T vCk
ρδl

(2.7)
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and the dimensionless domainsΩ, Ωf , ∂Ω
m
s , analogous to their dimensional counterparts.

Inserting this nondimensionalization into eq. (2.2) yields:

−∇p+ δ2∇2u = 0, x ∈ Ωf (t); (2.8a)

∇ · u = 0, x ∈ Ωf (t); (2.8b)

u = −δα
∂rm

∂t
nm, x ∈ ∂Ωm

s (t), m ∈ M. (2.8c)

The mass-transport problem, eqs. (2.3) and (2.4), transforms into:

β
∂c

∂t
= ∇ · (γ∇c− ζuc), x ∈ Ωf (t); (2.9a)

γ∇c · n = −δc, x ∈ ∂Ωs(t). (2.9b)

Finally, using eqs. (2.4) and (2.5), the coupling condition in dimensionless form reads:

∂rm

∂t
=

1

|∂Ωm
s |

∫

∂Ωm
s

ηc ds, m ∈ M. (2.10)

2.1.2. Homogenized model

At the microscale, we consider the filter medium to consist of quasi-periodic unit cells
w(x, t) (see Figure 1). We allow for fibres of different sizes that may be randomly arranged
within each periodic cell. We introduce a microscale variable y = x/δ, which is defined
in the unit cell w(x, t). The macroscale variable x spans across the whole filter medium.
We denote the fluid and solid subdomains as wf (x, t) and ws(x, t), respectively. The
internal fluid–solid interface is denoted as ∂ws(x, t), which consists of the fibre surfaces
∂ws(x, t) = ∪m∈Mw

∂wm
s , where Mw is the set of the fibres found in the unit cell, which

is a subset of all fibres M in the filter medium, Mw ⊂ M. The outer fluid boundary of
the unit cell is denoted ∂wf (x, t) = ∂w ∩ wf .
Using the method of multiple scales, we seek a solution to the problem eqs. (2.8)

to (2.10) as a function of x and y, and treat these two variables as independent. The extra
freedom this gives is removed by enforcing that the solution is exactly periodic in y; small
variations from one unit cell to the next are thereby captured through the macroscale
variable x. We insert the change of variables y = x/δ and expand all dependent variables
in the form u = u(0) + δu(1) + · · · and similarly for the pressure p and the concentration
c.
The macroscopic quantities are introduced using the following averaging:

G(x, t, ·) = 1

|w(x, t)|

∫

wf

g(x,y, t, ·) dy = φG(x, t, ·), (2.11)

where g(x,y, t) is a microscopic quantity, G(x, t) is its volumetric average, G(x, t) is its
intrinsic average, and φ = |wf | / |w| is the porosity.
For our homogenization, we use the volumetric average for the velocity U and the

intrinsic average for the pressure P and concentration C. The velocity U is the Darcy
velocity and should not be confused with the actual velocity of the fluid travelling through
the pores.
The derivation of the homogenized model via the method of multiple scales is analogous

to that presented by Dalwadi et al. (2016) for monodisperse fibres. The same methodology
can be easily extended to fibres with polydisperse sizes in the unit cell, when the fibres
do not touch. For this reason, here we just present the final homogenized model and
refer the reader to Dalwadi et al. (2016) for the details. In what follows, we drop the
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superscript (0) that refers to the leading-order quantities in δ and simply write U
(0) ≡ U ,

and similarly for P and C.
The homogenization of the flow problem eq. (2.8) leads to Darcy’s equation, which

relates U and P in terms of the permeability tensor K:

U(x, t) = −K∇xP, (2.12a)

K(x, t) =
1

|w|

∫

wf

K dy. (2.12b)

Here, K is a matrix-valued function and together with a vector-valued function Π they
satisfy the following cell problem at each location x:

I−∇yΠ +∇2
yK = 0, y ∈ wf (x, t); (2.13a)

∇y ·K = 0, y ∈ wf (x, t); (2.13b)

K = 0, y ∈ ∂ws(x, t); (2.13c)

K, Π periodic, y ∈ ∂wf (x, t); (2.13d)

where I is the identity matrix. For isotropic filter media, the permeability tensor becomes
a multiple of the identity, that is, K = KI with K being a scalar. The macroscopic
analogue to the incompressibility condition, eq. (2.8b) is:

∇x ·U =
α

|w|
∑

m∈Mw

∫

∂wm
s

∂rm

∂t
ds =

α

|w|
∑

m∈Mw

∂rm

∂t
(2πrm) = −α

∂φ

∂t
, (2.14)

where α is given in eq. (2.7).
Under the multiple-scales transformation, the contaminant-transport equation (2.9)

becomes:

β
∂ (φC)

∂t
= ∇x ·

(

γφD∇xC − ζUC
)

−AC, (2.15)

where β and γ are given in eq. (2.7) and A is the effective surface area of the fibres
defined as A = |∂ws| / |w| (that is, the surface area per unit volume of the medium). The
effective diffusion coefficient D = D(x, t, q) is computed as:

D = I− 1

|wf |

∫

wf

JT
Γ dy, (2.16)

where
(

JT
Γ

)

ij
= ∂Γj/∂yi is the transpose of the Jacobian matrix of the vector-valued

function Γ . Its components Γi satisfy the cell problem:

∇2
yΓi = 0, y ∈ wf (x, t); (2.17a)

∇yΓi · nm
y =

(

nm
y

)

i
, y ∈ ∂wm

s (x, t), m ∈ Mw; (2.17b)

Γi periodic, y ∈ ∂wf (x, t); (2.17c)

where
(

nm
y

)

i
are the components of nm

y . We note that in an analogous fashion to the
permeability, we have D = DI for the case of isotropic filter media.
Finally, we obtain the following macroscopic coupling condition from eq. (2.10):

∂rm

∂t
= ηC, m ∈ Mw, (2.18)

where η is given in eq. (2.7). Multiplying the left-hand side of eq. (2.18) by |∂wm
s | / |w|

and summing over all fibres in the unit cell, we obtain the following relation between the



The influence of porous-medium microstructure on filtration 9

scenario 1

scenario 2

Figure 3. Agglomeration algorithm of touching fibres. Scenario 1: two fibres come into contact
with one another at some point and are unified into a single fibre with the same volume with the
same centre of mass. Scenario 2: two fibres come into contact with one another at some point
and are unified into a single fibre which then overlaps with a neighbouring fibre. The unified
fibre is then joined with the third fibre to form a fibre with the same volume and centre of mass
as the three fibres.

fibre radii and the macroscopic porosity:

∑

m∈Mw

|∂wm
s |

|w|
∂rm

∂t
=

1

|w|
∂

∂t

(

∑

m∈Mw

π (rm)
2

)

= −∂φ

∂t
. (2.19)

Doing the same for the right-hand side of eq. (2.18) and noticing that
∑

m∈Mw
|∂wm

s | / |w| =
A, from eqs. (2.18) and (2.19) we obtain:

∂φ

∂t
= −ηAC. (2.20)

The diffusion of contaminant particles has a two-fold impact on the filtration process.
First, it acts as a bulk transport mechanism of the contaminant particles, appearing in the
dimensionless parameter γ. Second, it corresponds to the driving feature in the capture
mechanism, expressed by eq. (2.20). The molecular diffusion D and correspondingly the
dimensionless parameter γ scale as q−1, where q is the size of the contaminant particles,
while the diffusion component in the adsorption coefficient k scales as q−2/3 according to
an empirical adsorption model from Baron & Willeke (2001, pp. 205–210). This means
that as particle size increases the molecular diffusion D converges to zero faster than the
diffusion effect in the adsorption. As a result, it is possible to have a filtration regime
where the diffusion term in eq. (2.15) is negligible but particle adsorption is still mostly
driven by diffusion. This will be the case in our advection only regime.
For the sake of clarity, in this study we shall assume that η is constant for all filtration

regimes and for all fibres, but recognize that in reality it may vary for different filtration
regimes and fibres and may also change with time. If we wanted to allow for different
adsorption coefficients for different fibre surfaces, we would need to derive the equations
in terms of an effective adsorption coefficient instead of the effective surface area A, but
we do not consider this here.

2.2. Microstructure with closely located fibres

In random microstructures, the distance between different fibres varies (see Figure 2).
As contaminants are being deposited and fibres are growing, fibres located close to one
another come into contact and form an agglomerate, while other more distant fibres can
continue growing individually. To account for this scenario, we introduce the following
agglomeration algorithm. If, as fibres grow radially, two or more fibres come into contact,
we replace them with one larger fibre located at the centre of mass of the original fibres
and with cross-section area equal to the sum of the areas of the individual fibres (see
scenario 1 in Figure 3 for an illustrative example). When replacing two fibres with a
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single larger fibre, the resulting fibre may overlap with other fibres located nearby in the
unit cell. In such an instance, we recursively replace the overlapping or closely located
fibres until the resulting fibre becomes isolated (see scenario 2 in Figure 3). Due to the
periodic boundary conditions on the unit cell, the agglomeration algorithm also accounts
for the periodic images of fibres.
The multiscale model of eqs. (2.12) to (2.17) and (2.20) is valid for any random and

polydisperse configuration of fibres with different radii in the same cell unit. When, due
to the fibre growth eq. (2.18), two or more fibres come into contact, we perform the
geometry transformation described above and then re-apply the same model to the new
geometry.
While this algorithm is clearly an idealization of the real process, it allows us to

account for the formation of fibre agglomerates while keeping our strategy simple and
robust. In Appendix A we investigate the effect of the fibres coming into contact on the
numerical simulations, in particular to confirm that the effective diffusivity D converges
to a limiting case.
The continuum assumption that was used to model the contaminant transport is

violated as the distance between two fibres become comparable with the particle size. To
resolve this issue one can introduce into the agglomeration algorithm a critical distance
between two fibres at which they coalesce to form an agglomerate, but we do not include
this in our analysis here.

2.3. Multiscale algorithm

In this subsection, we describe the numerical implementation of the multiscale model.
First, we perform the microscale simulations as a preprocessing step and find the
effective parameters, namely, the permeability K, the effective diffusivity D and the
effective surface area A, as functions of the porosity φ. The description of the microscale
simulations is presented as a schematic algorithm in Figure 4. As input parameters we
specify the microstructure type, and the initial porosity and fibre diameter distribution.
Using this input, we generate one unit cell in the case of regular microstructures (square
or hexagonal), and perform Monte Carlo simulations using multiple random instances of
unit cells in the case of random microstructures. Once the unit cell for the given porosity
is characterized (with the parameters of interest listed above), we decrease the porosity
by a small porosity step ∆φ. Then, we increase the fibre radii until the new porosity is
reached and, if necessary, apply the agglomeration algorithm described in Section 2.2.
Finally, we compute the effective parameters corresponding to the updated porosity
value. We continue this process until we have reconstructed the whole dependency of
the effective parameters on the porosity (see for example Figures 6 and 7). We note
that if we were to take a microstructure configuration obtained at a later time from this
algorithm and run the process in reverse (increasing rather than decreasing porosity)
then we would not recover the earlier configurations since we lose information about
the original microstructure upon merging fibres. We could however, create a different
algorithm to describe a scenario in which the obstacles decrease in size and divide.
As mentioned above and detailed in Figure 4, in the case of random microstructures

we need to perform Monte Carlo simulations using multiple samples of the unit cell for a
given porosity value. Then, the resulting effective parameter P ∈ {K,D,A} is computed
as an average over all samples. Our stopping criterion for the Monte Carlo algorithm
reads:

eMC =
eP

eP + SP

6 ε, (2.21)

where eMC is the dimensionless Monte Carlo error, ε is the accuracy, and eP and SP are
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Algorithm: Microscale simulations

Data: porosity φ0 ← φ(t = 0), fibre radius rm0 ← rm(t = 0) for m ∈ Mw

Result: effective parameters K, D, A as functions of porosity φ
φ← φ0;
while possible to create a unit cell with φ do

for P ∈ {K,D,A} do
if microstructure is random then

N ← 1;
while Monte Carlo error eMC > ε do

w← CreateGeometryByGrowingFibres(φ, φ0, r
m
0 );

if fibres in w overlap then

w← AgglomerationAlgorithm(w);
end

P ← ComputeEffectiveParameter(w);
if N=1 then

P
MC ← P

else

P
MC ← ComputeMean(PMC, P, N );

end

N ← N + 1;
end

P(φ)← P
MC

else

rm ← ComputeNewRadius(φ, φ0, r
m
0 );

w← CreateGeometry(φ, rm);
P(φ)← ComputeEffectiveParameter(w);

end

end

φ← φ−∆φ;
end

Figure 4. Schematic algorithm for microscale simulations.

computed as follows:

eP =
1.96

∑

i,j σPij√
N

, SP =
∑

i,j

∣

∣EPij

∣

∣ . (2.22)

Here, Pij is the effective surface area with i, j = 1 or the components of the tensor P

with i, j = 1, 2 in case of the permeability or effective diffusivity and corresponds to
the Monte Carlo samples w; EPij

and σPij
are the mean and standard deviation of Pij ,

respectively, and N is the number of Monte Carlo samples.
We implement the microscopic algorithm in Python. We generate the unit cells and a

triangular unstructured grid with refinement around the fibre surfaces using the open-
source mesh generator GMSH (Geuzaine & Remacle 2009). Then, we discretize the
cell problems using the finite element library FEniCS (Alnæs et al. 2015) using linear
Lagrange elements to solve eq. (2.17) and a mixed finite element method to solve eq. (2.13)
with linear and quadratic Lagrange elements for Π and K, respectively.
Once we know the dependencies of the effective parameters on the porosity, we use

them as coefficients in the macroscale model eqs. (2.12), (2.14), (2.15) and (2.20). The
system of macroscale equations is also implemented in Python, discretizing time with
an implicit backward Euler scheme and space finite elements from FEniCS library using
quadratic Lagrange elements for the pressure and linear Lagrange elements for all other
variables. Starting with an initial guess, we find the solution iteratively in time. For a
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given time step, we solve the mass conservation equation for the contaminant, eq. (2.15),
and the equation for the contaminant adsorption, eq. (2.20), as a fully coupled nonlinear
system using the Newton method. Then, we find the corresponding pressure and velocity
distributions from eqs. (2.12) and (2.14) using the obtained porosity and proceed to the
next time step.

3. Microscale simulations

In this section, we apply the microscale part of our homogenized model to quantify
the three effective characteristics of different types of filter media: the permeability
K, the diffusivity D, and the surface area A. In particular, we consider five different
microstructures, namely two regular and three random arrangements of fibres. The
random microstructures are then extended periodically.
We model nonwoven filter media with an initial porosity φ(0) = 0.93, which is a typical

value for nonwoven filter media used in air filters and purifiers (see, for example, Table 1 in
Das et al. 2009). To simulate the contaminant deposition, we employ the agglomeration
algorithm discussed in Section 2.2 to decrease the porosity φ and to reconstruct the
dependence of the effective parameters on the porosity φ.
As discussed in Section 2, we model nonwoven filter media using a unidirectional fibre

arrangement, which enables a 2D representation of the microstructure (see Figure 2). The
choice of this representation was motivated by some preliminary validation carried out
using experimental data and full 3D simulations using the commercial software package
GeoDict (Math2Market GmbH 2011). The analysis showed that a 2D representation
approximates well the permeability and the effective diffusivity of nonwoven media
with high porosity, while the effective surface area A is the same in the 2D case with
unidirectional fibres and the 3D case with random orientation of fibres.
The first row of Figure 5 shows the five different microstructures corresponding to the

clean filter media (before the contaminant deposition has begun). We note that, for the
random microstructures, we show one random instance of the fibre distribution but that
these will change from sample to sample. All microstructures have unidirectional fibres
and differ by the distribution of the fibre centres and by the distribution of the fibre radii.
The microstructures shown in columns 1–4 in Figure 5 have fibres with monodisperse radii
at t = 0, which are denoted rm(x, 0) = r constant for m ∈ M, x ∈ Ω. The microstructure
in the column 5 has polydisperse fibre radii and will be discussed in detail later.
We consider regular microstructures with fibre centres located on square and hexagonal

grids (see columns 1 and 2 in Figure 5). We then consider three types of random mi-
crostructures depending on the fibre position distribution and fibre diameter distribution.
In all three cases, fibres are not allowed to overlap (if we try to place a fibre that overlaps,
this is rejected and a new position is generated).
The first random microstructure has monodisperse fibre radii and fibre centres uni-

formly distributed in the unit cell. The problem with this structure is that it can
result in areas with many fibres clustered together, and large gaps empty of fibres (see
column 3 in Figure 5). Since this may not be very realistic for some filter media, in the
second random microstructure, we impose an additional restriction to have some isolation
distance around the fibres (see column 4 in Figure 5). While still considering fibres of
constant physical radius r, the idea is to introduce an average isolation distance so that
we cover the unit cell in a more uniform manner. In particular, when placing a new
fibre, we set an isolation distance diso, which is sampled from a lognormal distribution
with the mean value d and the variance d/3. Then, we attempt to place the new fibre,
making sure that the distance between its centre and that of previously placed fibres is
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φ
=

0
.9
3

φ
=

0
.8

Square Hexagonal Random with
isolation 0

Random with
isolation 2r

Random
polydisperse

Figure 5. Different types of microstructures, that is, square, hexagonal, random with mean
isolation distances 0 and 2r and random with polydisperse fibre radii (from the left to the
right). The top row shows microstructures when the filter media are clean with the porosity
φ(0) = 0.93. The bottom row shows the same microstructures after the simulations of the fibre
growth due to the contaminant adsorption are performed and the porosity φ = 0.8 is reached.

at least 2r+ diso (so note that, once a fibre is placed, we forget about its diso). If not, we
draw a new candidate position and a new isolation distance for the fibre and try again.
The microstructure in column 4 in Figure 5 has the mean isolation distance d = 2r. The
limiting case of the random microstructures with large isolation distance is the hexagonal
model, which demonstrates that we can switch between regular and completely random
microstructures by changing the isolation distance.
The third random microstructure has uniformly distributed fibre centres with polydis-

perse fibre radii (see column 5 in Figure 5). We consider a random microstructure with
two different fibre radii: 80% volume-wise of the fibres have the same as before radius
r and the rest 20% are replaced with fibres with radius r/2. No isolation distance is
imposed in this case, and the initial porosity is preserved to be φ(0) = 0.93.
The second row in Figure 5 shows the microstructures corresponding to the first

row after fibres are grown to reach a porosity φ = 0.8. The regular microstructures
change only the fibre diameter, while in the random ones some agglomerates are formed.
Microstructures with large mean isolation distance d (d = 2r in column 4 in Figure 5)
yield fewer agglomerates as contaminants deposited on the fibres in comparison with the
small d (d = 0 in column 3 in Figure 5). The microstructure with polydisperse fibre radii
also leads to the formation of many agglomerates, but due to the presence of small fibres
it preserves a more homogeneous structure during the lifetime of the medium than the
microstructure with monodisperse fibres and no isolation distance.
We perform microscale simulations for these five microstructure types to obtain the

effective parameters, namely the permeability K, the effective diffusivity D and the
effective area A, as functions of porosity φ. Since all microstructures considered are
isotropic, the permeability and effective diffusivity are presented as scalars, namely K ≡
KI and D ≡ DI (see Section 2.1). For the random microstructures we perform Monte
Carlo simulations to find the average effective parameters to an accuracy set to 10−2.
Figures 6, 7 and 9 show the three effective parameters as functions of porosity. The error
bars for the random microstructures are not shown, but they fall within the size of the
markers.
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The permeability K(φ) is computed using eq. (2.12b) after solving the cell prob-
lem (2.13). We observe that the permeability becomes more sensitive to the microstruc-
ture as the porosity decreases (Figure 6). For example, the ratio between the maximum
and minimum permeability values for the different microstructures is approximately 1.5
at φ = 0.93 and 5.7 at φ = 0.5. Figure 8 shows the magnitude of vectors (Kyx,Kyy),
which are components of the matrix-valued function K and correspond to the velocity
profiles of the fluid flow in the vertical direction for different microstructures with porosity
φ = 0.93. The flow profiles for the regular microstructures exhibit homogeneous behaviour
for low velocities, while the flow profiles for the random microstructures allow for the
development of high-velocity regions due to the presence of large empty spaces between
the fibres. In this case, even with the same porosity, the random microstructures have
higher average velocity than the regular ones and correspondingly larger permeability
values. Among the random microstructures, the random case with zero isolation distance
allows for the largest empty spaces. Increasing the isolation distance or adding fibre
polydispersity both reduce the occurrence of large spaces, leading to more homogeneous
velocity profiles.
The effective diffusivity D(φ) is computed using eq. (2.16) after solving the cell

problem (2.17). Figure 7 shows that all random microstructures have the same mean
effective diffusivity, while the hexagonal and square microstructures provide slightly
higher values. However, overall the effective diffusivity is less sensitive to different fibrous
media than the permeability.
Finally, the effective surface area A(φ) is the same when the filter media are clean

(φ = 0.93) for all microstructures except the one with polydisperse fibre radii, but it
varies significantly as porosity decreases (Figure 9). We also observe that the effective
surface area of all random microstructures exhibits a non-monotonic behaviour. This
happens due to the formation of agglomerates. As described in Section 2.2, we preserve
the cross-sectional area of the fibres when joining them in an agglomerate, which results
in the reduction of their surface area. Similarly, as in real filtration, the surface area of an
agglomerate is less than the total surface area of individual fibres forming the agglomerate
and so the surface area available for further contaminant adsorption is reduced.

4. Methodology for macroscale simulations

In this section, we discuss several criteria to measure filter performance and present
the operational regimes depending on the contaminant transport mechanism (advection,
diffusion, or both) and boundary conditions (filtration at constant pressure drop or
constant inflow velocity).
Our macroscale homogenized model describes the filtration of the contaminants in the

porous media, which is characterized by the three effective parameters: permeability,
diffusivity and effective surface area. Earlier we assumed that the filter media have
unidirectional fibres, which allowed us to describe the filtration problem using a two-
dimensional model with a spatial variable x = (x, y). Now we also assume that the
macroscale inflow velocity is purely one-dimensional in the direction of the depth of the
filter, which we denote by x, and takes the form U in =

(

U in, 0
)

, and periodic boundary
conditions in the transverse direction y. In addition, we assume the filter media have
initially a constant porosity, that is, without macroscopic variations in its microstructure.
As contaminant gets deposited in the fibres, the porosity will become a function of the
depth x but remain independent of y. Then, the macroscopic problem is reduced to
one-dimensional with x ≡ x ∈ (0, 1). We denote the scalar velocity by U .
We note that at the microscale individual simulations can lead to non-isotropic perme-
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Figure 6. Permeability K as a function
of porosity φ for different types of mi-
crostructures. The numbers next to the label
“random” denote the mean isolation distance.
For the random microstructures the error bars
are not shown, but fall within the markers’
size.
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Figure 7. The effective diffusivity D as a
function of porosity φ for different types of
microstructures. The numbers next to the
label “random” denote the mean isolation
distance. For the random microstructures the
error bars are not shown, but fall within the
markers’ size.
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Figure 8. Magnitude of vectors (Kyx,Kyy) for different types of microstructures with porosity
φ = 0.93. Here Kyx and Kyy are components of the matrix-valued function K and correspond to
the velocity profiles in the vertical direction. All velocity profiles use the same maximum colour
range exhibited by the random microstructure with no isolation distance.

ability and effective diffusivity tensors due to the finite size of the unit cells. However, we
are concerned with averaged effective tensors obtained via Monte Carlo simulations for
isotropic microstructures, which result in tensors with negligible off-diagonal elements
and allows us to consider a one-dimensional macroscale model.

4.1. Filter performance criteria

The performance of the filter media can be evaluated by different criteria. In this study
we consider the following metrics:

(i) Energy consumption: a small pressure drop ∆P (t) = P (0, t) − P (1, t) across
filter media ensures economic use of energy. The pressure drop is determined by the
permeability of the filter medium and the flow velocity.
(ii) Throughput: a high fluid velocity U achieves large throughput of contaminated

fluid across the filter medium. We use the fluid velocity at the inlet U in(t) = U(0, t).
(iii) Efficiency: to quantify how efficient the filter medium is at trapping the contami-
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Figure 9. Effective surface area A as a function of porosity φ for different types of
microstructures. The numbers next to the label “random” denote the mean isolation distance.
For the random microstructures the error bars are not shown, but fall within the markers’ size.

nants, we define the number efficiency E as

E(t) = 1− JC(1, t)

JC(0, t)
, with JC(x, t) = −γφDdC

dx
+ ζUC, (4.1)

where JC is the concentration flux.
(iv) Dirt-holding capacity: this tells us how much contaminant the filter medium stores

over time and, therefore, how long it can be used for. The dirt-holding capacity H is
defined as follows:

H(t) = ρ

∫ 1

0

φ(x, 0) − φ(x, t) dx. (4.2)

(v) Lifetime T > 0: different termination criteria of the filtration process can be
used. For example, in filtration with the constant flow rate, the filter medium can be
considered completely loaded when a critical pressure drop is reached. On the other
hand, in filtration under a constant pressure drop, the lifetime can be determined when
the flow rate becomes too small. We choose a criterion that suits both filtration regimes,
namely, we set the lifetime T as the time when a minimum porosity φmin = 0.5 is reached
at any location of the filter medium.
To quantify the influence of the microstructure on the filtration performance, we intro-

duce some sensitivity characteristics based on the performance criteria discussed above.
First, we consider how sensitive the dirt-holding capacity H is to the microstructure.
We compute the relative maximum difference in the dirt-holding capacity while all filter
media are in operation:

SH =
maxi,j=1...N |Hi(T

∗)−Hj(T
∗)|

maxi=1...N Hi(T ∗)
, where T ∗ = min

i=1...N
Ti; (4.3)

where the subscripts denote characteristics corresponding to different microstructures
and N is the number of microstructures considered (N = 5 for us). Second, we quantify
the deviations of the pressure drop and the fluid velocity depending on the microstructure:

{S∆P , SU
} = 1− mini=1...N |fi(Ti)− fi(0)|

maxi=1...N |fi(Ti)− fi(0)|
, where f =

{

∆P for S∆P ,

U in for S
U
.

(4.4)
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Finally, we introduce a sensitivity characteristic for the lifetime of the filter medium in
the same way we introduced it for the pressure drop deviation:

ST = 1− mini=1...N Ti

maxi=1...N Ti
. (4.5)

We note that the sensitivity characteristics SH , S∆P , SU and ST take values in [0, 1].
When they are close to zero, the respective performance criteria, that is, the dirt-holding
capacity, the pressure drop, the fluid velocity or the lifetime, is not sensitive to the
microstructures. In contrast, a sensitivity characteristic close to one implies there is an
important difference in the performance criteria between different microstructures.

4.2. Advection–diffusion regime

Equation (2.15) describes the transport of contaminant by advection and diffusion.
Typically for filtration regimes with advection, the timescale for the trapping of con-
taminant particles is much longer than the timescale for fluid to be advected through
the filter medium. Therefore, β ≪ 1 and the time derivative in the mass transport
eq. (2.15) can be neglected. Hence, we consider the steady-state of eq. (2.15) coupled
with the contaminant adsorption eq. (2.20). We supplement eq. (2.15) with the following
boundary conditions. At the inflow boundary x = 0, we specify the contaminant flux
Jin = 1. At the outflow boundary x = 1 we use zero Neumann boundary condition for
the concentration. Mathematically this reads (see Dalwadi et al. 2015):

(

−γφDdC

dx
+ ζUC

)
∣

∣

∣

∣

x=0

= Jin, t ∈ [0, T ]; (4.6a)

dC

dx

∣

∣

∣

∣

x=1

= 0, t ∈ [0, T ]. (4.6b)

In addition, we specify an initial condition for the porosity for eq. (2.20):

φ(x, 0) = φ0, x ∈ (0, 1). (4.7)

When β ≪ 1, we can rewrite eq. (2.15) using eq. (2.20) as follows

− dJC
dx

+
1

η

∂φ

∂t
= 0. (4.8)

Using eq. (4.6) and setting Jin = 1, we can integrate eq. (4.8) over the filter depth and
time to obtain:

H(t) = ρη

∫ t

0

E(s) ds. (4.9)

Hence, the dirt-holding capacity H becomes a cumulative measure of the number effi-
ciency E in filtration regimes when β ≪ 1 and the boundary conditions (4.6) are used.
For this reason, in what follows we mainly discuss the dirt-holding capacity H and not
the number efficiency E in all filtration regimes except in the diffusion-only regime.

4.3. Advection regime

If diffusion is negligible in comparison to advection, we have that γ ≪ 1 in addition
to β ≪ 1 and the time derivative in eq. (2.15) being negligible. We note that we must
enforce δ ≪ γ ≪ 1 for the asymptotic analysis that we perform on system (2.9) to hold.
(The case when γ and δ are of comparable orders leads to a different distinguished limit
and resulting multiscale model, and this is the subject of a future study.) Then, the
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Robin boundary condition (4.6a) reduces to a Dirichlet boundary condition. We solve
eqs. (4.6a) and (2.15) and find the concentration distribution as:

C(x, t) =
Jin

ζU(x, t)
exp

(

−
∫ x

0

A(φ(z, t))

ζU(z, t)
dz

)

. (4.10)

Thus, in the advection-only regime the model simplifies greatly. This is particularly useful
for an extended parameter study, where the same problem must be solved many times
for different sets of parameters.

4.4. Diffusion regime

When diffusion is the dominant transport mechanism of contaminants inside the filter,
we neglect the advection (ζ ≪ 1) and keep all other terms in eq. (2.15). We note that when
the diffusion is important the timescale of the contaminant trapping can be comparable
with the diffusive processes and so β may not necessarily be small.
To facilitate the diffusion transport of the contaminants across filter media, a large

difference in concentrations at the opposite sides of the medium has to be maintained, in
contrast to when advection is present. To model this set-up mathematically, we specify
Dirichlet boundary conditions for the concentration at both sides of the medium:

C(0, t) = Cin = 1, C(1, t) = 0, t ∈ [0, T ]. (4.11)

We note that in this regime, the contaminant transport eq. (2.15) decouples from the
fluid flow eqs. (2.12a) and (2.14). Therefore, we do not solve the fluid flow problem in
this regime.

4.5. U in = const regime

To specify the constant flow rate, we use the following boundary conditions for the
macroscopic equations (2.12a) and (2.14):

U(0, t) = U in, P (1, t) = 0, t ∈ [0, T ]. (4.12)

The parameter α in eq. (2.14) represents the ratio between the timescale of the fibre
growth due to the contaminant deposition and the timescale of the fluid advection
through the filter medium, which is usually very small. Using α ≪ 1 and eq. (4.12),
the solution of the one-dimensional flow model eqs. (2.12a) and (2.14) is given by:

U(x, t) = U in, x ∈ (0, 1) and t ∈ [0, T ]; (4.13a)

P (x, t) =

∫ 1

x

1

K(z, t)
dz, x ∈ (0, 1) and t ∈ [0, T ]. (4.13b)

We note that the permeability K is used only to compute the pressure distribution and it
does not affect the velocity, which is constant in space and time. Since the mass-transport
problem is coupled with the flow problem only via the fluid velocity (see eqs. (2.15)
and (2.20)), K does not impact the mass transport, and as a result the efficiency E, in
this operational regime.

4.6. ∆P = const regime

To model the filtration regime with a constant pressure drop, we use the following
boundary conditions for the flow equations (2.12a) and (2.14):

P (0, t) = ∆P, P (1, t) = 0, t ∈ [0, T ]. (4.14)
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Filtration regime α β γ ζ η

Advection–diffusion 0 0 1 1 1
Advection 0 0 0 1 1
Diffusion − 0.1 1 0 1

Table 1. Dimensionless parameters for all filtration regimes.

Parameter Definition Value

φ0 Initial porosity 0.93
δl/r Micro-lengthscale w.r.t. fibre radius 3.5
Jin Inflow contaminant flux 1
Cin Inflow concentration 1
U in Inflow velocity 1
∆P0 Pressure drop 50
φmin Minimum porosity 0.5

Table 2. Input parameters for all numerical experiments.

In this case the solution of the one-dimensional flow problem is:

U(x, t) = K̄(t)

(

∆P +

∫ 1

0

1

K(φ(y, t))

(

α

∫ y

0

∂φ(z, t)

∂t
dz

)

dy

)

− α

∫ x

0

∂φ(y, t)

∂t
dy,

(4.15)
where

K̄(t) =

(
∫ 1

0

1

K(φ(y, t))
dy

)−1

.

Moreover, using again that α ≪ 1, we find

U(x, t) = K̄(t)∆P, x ∈ (0, 1), t ∈ [0, 1]. (4.16)

Therefore, in since regime we see that the permeability K has direct impact on the fluid
velocity and thus the efficiency.

5. Multiscale simulations

In this section we present simulations of our multiscale model using the five mi-
crostructure types from Section 3 and the filtration regimes discussed in Section 4. In
particular, we consider three different scenarios for the transport of the contaminant,
diffusive, advective, or both. For the latter two, we distinguish between filtration processes
performed under the constant flow rate U in = const or the constant pressure drop
∆P = const (see a summary of each regime in Table 1).
To maintain generality across the examples considered, we use the dimensionless model

and, therefore, all parameters and results presented are also dimensionless. The input
parameters are presented in Table 2. Below we discuss the simulation results for each
filtration regime in detail. A summary of the results is shown in Table 3 in terms of the
four sensitivity characteristics SH , S∆P , SU , and ST and in Figure 10 in terms of the
lifetime values.

5.1. Advection–diffusion and U in = const regime

The fluid flow is described by eq. (4.13). The results of the numerical simulations for the
five different microstructures are shown in Figure 11. All microstructures exhibit similar
filtration behaviour. The reduction of the pore space as contaminants are captured inside



20 G. Printsypar, M. Bruna and I. M. Griffiths

Filtration regime SH S∆P S
U

ST

U in = const
Advection–diffusion 0.09 0.58 − 0.2
Advection 0.1 0.5 − 0.26

∆P = const
Advection–diffusion 0.39 − 0.36 0.33
Advection 0.48 − 0.39 0.43

Diffusion 0.17 − − 0.26

Table 3. Characteristics of the microstructure sensitivity for all filtration regimes.
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Figure 10. Lifetime T as a function of the microstructure type for all filtration regimes.

the filter media results in the increase in contaminant capture and the number efficiencyE
over time. Since we assume that the contaminants only adsorb and do not desorb, the dirt
holding capacity H is also an increasing function, which shows how much contaminant is
stored in the filter medium at a given time t. The dirt-holding capacity H at the lifetime
T represents the maximum amount of contaminant that can be stored by this type of
medium in this filtration regime.

Regarding the different microstructures, we observe some variations in the number
efficiency E and the dirt-holding capacity H in Figures 11A and B, respectively. The
random microstructure with no isolation distance and monodisperse fibres has the lowest
number efficiency of all microstructures considered. On the other hand, the random
microstructure with the polydisperse fibre radii shows the best number efficiency until
t ≈ 0.25, after which the regular microstructures exhibit the largest efficiency. Since the
random microstructure with no isolation distance does not store as much contaminant as
the other microstructures, it is not surprising that its lifetime is the longest (Figure 10).
However, overall the lifetime of the media is not very sensitive to the microstructure:
the sensitivity characteristic is ST = 0.2 (see Table 3). The variations in the dirt-holding
capacity H for the different microstructures (Figure 11B) are also small (SH = 0.09). In
contrast, the pressure drop ∆P (Figure 11C) shows significant variations depending on
the microstructure (S∆P = 0.58). For example, the square grid microstructure reaches a
pressure of approximately 160 at the end of the lifetime of the filter medium, while the
random microstructure with zero isolation distance reaches only around 60 at the same
time.
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5.2. Advection and U in = const regime

Figure 12 shows the simulation results for the advection-only flow regime with constant
flow rate for the different microstructures. The general filtration behaviour is the same
as the previous filtration regime. We also observe that the dirt-holding capacity H is
not significantly influenced by the microstructure type (SH = 0.1, Figure 12B), while
the pressure drop ∆P depends strongly on the microstructure model (S∆P = 0.5,
Figure 12C). The sensitivity of the lifetime of the filter media is ST = 0.26.
Comparing this regime with the advection–diffusion regime in Section 5.1, we observe

that the efficiency and dirt-holding capacity values are higher in the absence of the
diffusive transport mechanism at any moment in time. This means that diffusion reduces
the filtration efficacy for the same adsorption coefficient (see discussion in Section 2.1.2
and further investigations in Section 6). Nonetheless, the final dirt-holding capacity values
are higher for the advection–diffusion regime than for the case of advection only when
the filter media reach their lifetime. This means that the distribution of the dust within
the filter depth improves in the presence of diffusion and the filter media can store more
contaminants in total.
The pressure drop in the advection–diffusion regime is more sensitive to the different

microstructure types than in the advection regime, while the dirt-holding capacity and
the lifetime are slightly less sensitive to the microstructure. Overall, in these two filtration
regimes with the constant flow rate, the permeability K significantly impacts the pressure
drop, but does not influence the efficiency performance for the reasons discussed in
Section 4.5. In contrast, variations across microstructures in the effective diffusivity D
and the effective surface area A have a small effect on the efficiency and dirt-holding
capacity. For both filtration regimes, the random microstructure with the polydisperse
fibre radii shows the best efficiency and dirt-holding capacity while having an average
lifetime. Although this microstructure initially has the highest pressure drop, during the
lifetime of the filter medium the pressure drop does not increase as rapidly as for the
regular microstructures and so when the filter reaches its lifetime the pressure drop is as
low as that for the random microstructure with isolation distance 2r.

5.3. Advection–diffusion and ∆P = const regime

In this filtration regime, the fluid flow is determined by eq. (4.16). Figure 13 shows
the simulation results for the different microstructure models. Unlike the previous two
regimes, here we hold the pressure drop constant, which results in the decrease of the
throughput U in over time. This happens because of the reduction of the pore space
available for the fluid flow as the contaminants being stored inside the filter medium. If
we continued the simulations, the throughput would keep decreasing until it became zero
when the filter medium was completely blocked by the contaminants.
The number efficiency E and the dirt-holding capacity H show strong dependence

on the microstructure of the filter media in Figures 13A and 13B, respectively. The
maximum difference in the dirt-holding capacity arises between the polydisperse random
microstructure and the monodisperse random microstructure with no isolation distance,
which have the best and worst dirt-holding capacity respectively. The sensitivity of
the dirt-holding capacity is characterized by SH = 0.39. Again, the filter with the
random microstructure with no isolation distance has a longer lifetime than all other
microstructures because it does not store as much contaminant (Figure 10). Overall, the
lifetime of the filter media is quite sensitive to the microstructure (ST = 0.33). Since the
pressure drop is held constant during the filtration, the resulting pressure distribution
for all microstructures is the same and is not shown here. Instead, we show the inflow
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Figure 11. Multiscale simulation results for
advection–diffusion and U in = const regime.
We show the number efficiency E (A), the
dirt-holding capacity H (B) and the pressure
drop ∆P (C) as functions of time t.
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Figure 12. Multiscale simulation results for
advection and U in = const regime. We show
the number efficiency E (A), the dirt-holding
capacity H (B) and the pressure drop ∆P (C)
as functions of time t.

velocity U in as a function of time in Figure 13C, which demonstrates the throughput
of the fluid. The random microstructure with polydisperse fibre radii has the smallest
throughput until around t = 0.3 at which point it switches with the regular square
and hexagonal microstructures. The random microstructure with no isolation distance
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demonstrates the largest throughput for all time. In general, the throughput is sensitive
to the microstructure (SU = 0.36).

5.4. Advection and ∆P = const regime

This regime is described by eqs. (4.10), (4.16) and (2.20). Figures 14A and 14B show
that the number efficiency E and the dirt-holding capacityH are highly influenced by the
microstructure. The sensitivity characteristic for the dirt-holding capacity is SH = 0.48,
the largest among the considered filtration regimes. Figure 10 shows the lifetime of the
filter media that varies between 0.28 for the random microstructure with polydisperse
fibre radii and 0.5 for the random one with no isolation distance (ST = 0.43). The
throughput of the contaminated fluid has also a large sensitivity, S

U
= 0.39.

The filtration regimes when the pressure drop is held constant (this and previous
subsection) experience a large increase in the efficiency during the lifetime of the filter.
Moreover, these regimes are influenced significantly by the microstructure of the filter
medium (see Table 3). This implies that the effective parameters in eq. (2.15) have a
significant impact on the overall filtration. Comparing the two filtration regimes with
the constant pressure drop, we observe that the advection regime is more sensitive to the
microstructure than the advection–diffusion regime, which is similar to what we observed
for the regimes with constant flow rate.
In both regimes with constant pressure drop, the random microstructure with the

polydisperse fibre radii has the highest efficiency and dirt-holding capacity values. How-
ever, its lifetime and throughput are one of the lowest. On the other hand, the random
microstructure with no isolation distance has the highest throughput but it captures few
contaminants. Therefore, the best filter medium in these regimes is one with the random
microstructure with isolation distance 2r that balances all the performance criteria. This
medium offers good efficiency while providing the second largest throughput.

5.5. Diffusion regime

In this regime, we solve eqs. (2.15) and (2.20) with boundary conditions eq. (4.11)
and parameters specified in Table 1. Figures 15A and 15B show the number efficiency E
and the dirt-holding capacity H , respectively. Generally, for all microstructures, these
characteristics follow the same trends as discussed earlier for the advection–diffusion and
U in = const filtration regime (see the first paragraph in Section 5.1). Figure 10 shows the
lifetime for all microstructure types, which varies between 0.24 and 0.32. The sensitivity
characteristics for these two metrics are SH = 0.17 and ST = 0.26 (Table 3).
This regime is more influenced by the microstructure type than filtration regimes with

the constant flow rate, but less sensitive to the microstructure than regimes with the
constant pressure drop. The best choice of the microstructure depends on the priorities
of the filtration: the efficiency or the lifetime. The highest efficiency is exhibited by the
random microstructure with polydisperse fibres, but if the lifetime is more important
than the filtration efficiency, then the random mirostructure with isolation distance 2r
becomes appealing.
The lifetime of a filter medium T is determined by the time at which a minimum

prescribed value of the porosity is reached at any location of the filter medium. For our
filtration set-ups, this location is always at the inflow boundary, x = 0, where the max-
imum concentration and respectively the maximum of the contaminant adsorption are.
The diffusion filtration regime has constant concentration at the inflow (see eq. (4.11)).
The advection and U in = const regime also has constant inflow concentration due to the
negligible diffusion term that transforms the constant contaminant influx condition (4.6a)
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Figure 13. Multiscale simulation results for
advection–diffusion and ∆P = const regime.
We show the number efficiency E (A), the
dirt-holding capacity H (B) and the inflow

velocity U in (C) as functions of time t.
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Figure 14. Multiscale simulation results for
advection and ∆P = const regime. We show
the number efficiency E (A), the dirt-holding

capacityH (B) and the inflow velocity U in (C)
as functions of time t.

into a Dirichlet boundary condition for the concentration. For both of these filtration
regimes, the porosity at x = 0 evolves in time according to eq. (2.20) in exactly the same
way due to the constant concentration. Therefore, we also observe that the dimensionless
lifetime values for these regimes coincide exactly in Figure 10. However, we note that the
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Figure 15. Multiscale simulation results for diffusion regime. We show the number
efficiency E (A) and the dirt-holding capacity H (B) as functions of time t.

dimensional lifetime will be different for these filtration regimes because the time scaling
T for diffusion- and advection-dominated processes are different.

6. Transport mechanisms of filtration

Our simulation results show that including diffusion as a transport mechanism while
maintaining a constant advection, the initial efficiency decreases, see for example, Fig-
ures 11 and 12. In this section we consider a simplified version of our homogenised model
to understand the relative contributions of diffusion and advection. We note we assume
the adsorption rate is fixed, although in reality this may change with changes in the
contaminant diffusivity.

We consider the initial filtration behaviour before any changes in the porosity affect
the microstructure and the filter efficiency. Then, we are concerned with the steady-
state version of eq. (2.15), that is, C(x, t = 0) ≡ C(x). We assume that the initial
microstructure has no macroscopic variations throughout the medium depth, that is, φ,
D, A are constant. The fluid velocity U is also constant because we do not consider
changes in the microstructure. We focus on the case when the contaminant influx is
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prescribed, see eq. (4.6). Then, the filtration model eq. (2.15) in 1D reads:

−a
d2C

dx2
+ b

dC

dx
+ C = 0, x ∈ (0, 1); (6.1a)

−a
dC

dx
+ bC = c, x = 0; (6.1b)

dC

dx
= 0, x = 1. (6.1c)

where the parameters a, b and c are defined as follows:

a =
γφD
A , b =

ζU

A , c =
Jin
A . (6.2)

The solution of the eq. (6.1) is given by

C(x) = K1 exp (λ1x) +K2 exp (λ2x) , (6.3)

where:

λ1,2 =
b±

√
b2 + 4a

2a
, (6.4)

Ki = c

(

b− aλi −
λi exp(λi)

λj exp(λj)
(b− aλj)

)−1

, i, j = 1, 2, i 6= j. (6.5)

The initial number efficiency is, from eq. (4.1),

E(t = 0) ≡ E0 = 1− b

c
C(1). (6.6)

We find that the time t∗ that a single contaminant particle takes to transit the filter is:

t∗ =

∫ 1

0

C(x)

JC(x)
dx. (6.7)

Since we are interested in the contributions of the diffusion and advection transport
mechanisms, which are represented by the parameters a and b respectively, let us assume
that c = 1. Figure 16 shows the initial efficiency E0 as function of a and b. This
corroborates our simulation results that as diffusion gets smaller, the efficiency increases.
Similarly, the efficiency increases when we reduce the advection. Overall, the behaviour
of the number efficiency is monotone with respect to the advection and diffusion terms.
Figure 17 shows the transit time t∗ as a function of the parameters a and b. A

larger diffusion a means that, for the same concentration gradient, the transport of
the contaminant will be faster. Therefore, as a increases, the transit time t∗ reduces
along with the chance for this particle to adhere to the fibre surface, which yields lower
efficiency. The same holds for the increased advection b and we observe monotone decrease
of the transit time as a and b increase.
This offers a route towards improving the filtration efficiency, and quantifying the

improvements gained, by adjusting parameters of the filtration set-up. However, we
note that these conclusions are made based on the assumption of a constant adsorption
coefficient, while in real filtration processes this adsorption might change with filtration
parameters, space and time as discussed earlier.

7. Conclusions

In this study, we obtained a multiscale model using the method of multiple scales to
simulate contaminant filtration in fibrous filter media with unidirectional fibres. Our main
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contribution was to study how sensitive filter performance is to the microstructure under
different filtration regimes. First, we extended the homogenization model by Dalwadi
et al. (2015, 2016) to account for random microstructures and fibres with different sizes
in the same unit cell. Second, we proposed an agglomeration algorithm to model the
process whereby fibres that are located close to one another agglomerate as contaminant
deposits on their surface.

In filtration processes, it is important to be able to account for nonuniform filter
porosities: these appear in porosity-graded filters, but also in standard uniform filters that
become porosity-graded as contaminant is deposited in a nonuniform way in its depth.
In our model, we accounted for nonuniform porosity by allowing the microscopic cell
geometry to vary with the macroscopic variable. The advantage of this approach is that we
were able to parameterize the nonuniform microstructure via the porosity φ and compute
the effective parameters in the homogenized model (the permeability K, the effective
diffusivity D, and the effective surface area A) as a function of φ as a pre-processing
step. In other words, there is a one-way coupling between the microscopic model (the
cell problems) and the macroscopic homogenized model describing the evolution of the
contaminant concentration across the filter depth. The disadvantage is that it requires
the microstructure to be locally periodic, so large variations in porosity are not allowed.
This is in contrast with the more general work by Ray et al. (2015), which requires the
cell problems to be solved at every macroscopic location.

Thanks to the one-way coupling, our model provides an efficient simulation tool that
can handle regular microstructures (for example, square and hexagonal), but also for
random microstructures (random arrangements of fibres in a unit cell that are extended
periodically). We investigated five types of microstructures: square, hexagonal, two
random with different isolation distances between fibres and random with polydisperse
fibre radii. These microstructures provide us with different degrees of randomness. The
hexagonal microstructure is the limiting case of a random microstructure with large
isolation distance (as the hexagonal lattice maximizes the separation distance between
fibres), while the purely random one is with zero isolation distance. The microscale
simulations showed that the permeability K and the effective surface area A are very
sensitive to the microstructure of the fibrous media, but the effective diffusivity D is less
so.
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We considered five different filtration regimes and investigated how sensitive the final
filtration results to the microstructure type are. We summarize our findings below.
• Advection–diffusion and advection regimes with U in = const: The best choice for

the microstructure is random with polydisperse fibre radii. This set-up provides the best
number efficiency and dirt-holding capacity among the microstructures considered, and
its pressure does not rise very much during the whole lifetime of the filter medium.
However, while an optimum microstructure exists, the performance in this regime is
only weakly affected by the microstructure choice, and all other microstructures perform
almost as well (see Table 3).
• Advection–diffusion and advection regimes with ∆P = const: The random mi-

crostructure with isolation distance 2r balances all the performance criteria. It offers
good efficiency while providing the second largest throughput and lifetime. Filtration is
a lot more sensitive to the microstructure in these regimes.
• Diffusion regime: Again, the random microstructure with polydisperse fibre radii

exhibits the best efficiency results, while the random microstructure with no isolation
distance has the longest lifetime. This regime has a moderate sensitivity to the mi-
crostructure in comparison with the other filtration regimes.
To understand the interplay between the transport mechanisms in the filtration, we

investigated how the diffusion and advection terms affect the efficiency results. We found
that the initial number efficiency decreases monotonically as we increase the strength of
their dimensionless groups. This behaviour is explained by the fact that larger diffusion
or advection lead to a faster transport of contaminant across the filter medium and
consequently less time for them to adhere to the fibre surface.
Our multiscale model can be used to make predictions about filter performance

and find optimize its porosity or microstructure depending on the requirements of
the application. This could range from air-conditioning systems, pharmaceutical and
biotechnology industries. Predicting experimental data with a mathematical tool always
introduces additional challenges: defining realistic parameters that cannot be measured
(for example, the adsorption coefficient) and accounting for additional features of real-
life processes (for example, polydisperse contaminants and parameter uncertainties).
Moreover, we will also extend this model to account for additional effects that can
influence the filtration performance, such as electrostatic effects in air filtration. This
will require deriving a new mathematical model accounting for more physical complexity
while having the similar objective of developing a simple and efficient tool.
In the wider context, the mathematical framework that we have laid out applies to

a range of other problems in which obstacle growth and coalescence are important.
For example, in the application of tissue engineering and cell growth, the model may
be used to understand the effect that irregularities in the scaffold have on the rate of
tissue growth. The problem may also be studied in reverse, whereby material is being
removed from rather than deposited on obstacles. Such a scenario may occur in various
geological applications with dissolution of porous media or in cases where the goal is
to remove a particular substance, such as in the decontamination of chemical from
porous media (Dalwadi et al. 2017). The model could also be generalized to account
for transfer of material from obstacle to obstacle, mimicking scenarios such as Ostwald
ripening (Voorhees 1985).
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Appendix A. Convergence test for closely located fibres

As the distance between two fibres tends to zero, the diagonal elements of the Jacobian
matrix of Γ , which is a solution to the cell problem eq. (2.17), tend to infinity in a domain
whose measure tends to zero. To make sure that this numerical effect does not cause
problems while computing the effective diffusivity D for the random microstructures,
we perform a convergence test. We consider a unit cell with two fibres placed at the
centre of a unit cell with fibre centres located on the same horizontal line. We denote
the minimal distance between their surfaces in horizontal direction as ε. To obtain a
reference solution, we use a unit cell with the limiting case, that is, when the two fibres
are just in contact and form a connected ‘infinity-shaped ’volume. Then, we compute a
relative error of the effective diffusivity as a function of ε (see Figure 18).
The estimation of the relative error requires a refinement around the fibres, which poses

a restriction on the smallest size of the critical distance that we can consider. We are able
to estimate the error for the critical distances ε up to 10−4 (see Figure 18), which show
a monotonic convergence of the effective parameters for the two closely located fibres
to the limiting case with two joined fibres. The relative error for the diagonal elements
of the effective diffusivity D is less than 10−2 for the critical distance ε = 10−4. This
distance is usually less than average size of a contaminant particles and it is likely to be
blocked by a single particle, which yields to the formation of an agglomerate in a real
filtration process. Hence, forming the agglomerates for the distances around 10−4 in the
modelling process not only produces small errors, but is also justified from a physical
standpoint.
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