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Shrinking microbubbles with microfluidics: mathematical 
modelling to control microbubble sizes 
A. Salari,ade V. Gnyawali,cde I.M. Griffiths,f R. Karshafian,bde M.C. Kolios,bde and S.S.H. Tsaicde† 

Microbubbles have applications in industry and life-sciences. In medicine, small encapsulated bubbles (< 10 μm) are 
desirable because of their utility in drug/oxygen delivery, sonoporation, and ultrasound diagnostics. While there are various 
techniques for generating microbubbles, microfluidic methods are distinguished due to their precise control and ease-of-
fabrication. Nevertheless, sub-10 μm diameter bubble generation using microfluidics remains challenging, and typically 
requires expensive equipment and cumbersome setups. Recently, our group reported a microfluidic platform that shrinks 
microbubbles to sub-10 μm diameters. The microfluidic platform utilizes a simple microbubble-generating flow-focusing 
geometry, integrated with a vacuum shrinkage system, to achieve microbubble sizes that are desirable in medicine, and 
pave the way to eventual clinical uptake of microfluidically generated microbubbles. A theoretical framework is now needed 
to relate the size of the microbubbles produced and the system’s input parameters. In this manuscript, we characterize 
microbubbles made with various lipid concentrations flowing in solutions that have different interfacial tensions, and 
monitor the changes in bubble size along the microfluidic channel under various vacuum pressures. We use the physics 
governing the shrinkage mechanism to develop a mathematical model that predicts the resulting bubble sizes and elucidates 
the dominant parameters controlling bubble sizes. The model shows a good agreement with the experimental data, 
predicting the resulting microbubble sizes under different experimental input conditions. We anticipate that the model will 
find utility in enabling users of the microfluidic platform to engineer bubbles of specific sizes.

Introduction 
Microbubbles are currently used as ultrasound contrast agents,1 
and also increasingly applied to drug delivery systems,2 as therapy 
agents,3 and as oxygen-transfer agents.4 In ultrasound imaging, 
microbubbles help provide important information about tissues, 
blood vessels, and drug pathways in the body.5,6 For example, in 
cancer diagnostics, tumor detection using traditional ultrasound is 
challenging because tumors and the surrounding tissues have 
similar acoustic impedance. Therefore, microbubbles are employed 
to increase the ultrasound contrast. The bubble gas–liquid interface 
has a high reflectance, which causes the bubbles to resonate under 
ultrasonic clinical frequency ranges of 1–10 MHz. Another example 
related to imaging is echo particle image velocimetry (echo-PIV), 
which is a non-invasive flow characterization method, where 
microbubbles act as flow tracers.1 This technique is based on 
backscattered ultrasound waves from bubbles, and provides 
accurate velocity measurements in cardiovascular flows.7,8 

Apart from imaging, microbubbles are also used with ultrasound for 
therapeutic applications, including tissue/organ-specific drug and 
gene delivery.9–11 In these applications, the bubble surface (shell) 

may carry the molecule of interest. After bubbles are injected, 
ultrasonic waves at a specific frequency and amplitude impose 
pressure waves on the bubbles to release the drug molecules.12 

In all the applications discussed previously, the size of the 
microbubbles is an important factor that can limit their 
functionality.13–15 However, commercially available microbubbles 
are often polydisperse,16,17 which leads to heterogeneous responses 
under ultrasound. For this reason, several microfluidics-based 
techniques have been developed to generate monodisperse 
microbubbles that have narrow size distributions.1,18–25 Techniques 
for microbubble generation in microfluidics use axisymmetric26 and 
symmetric1 flow-focusing channels, T-junctions,21 and 
microneedles.27 While these microfluidics-based methods create 
bubbles that are monodisperse, achieving sub 10-µm diameter 
microbubbles, which are desirable in ultrasound imaging and 
therapy applications,28,29 is still challenging, and requires complex 
microfabrication techniques.19,30  

To overcome these challenges, our group recently reported a 
microfluidic bubble shrinkage technique that generates sub-10 μm 
diameter microbubbles and achieves easily tunable microbubble 
sizes between 1–10 μm. This technique is based on applying 
vacuum pressure in a polydimethylsiloxane (PDMS) based 
microfluidic chip to deplete air from the liquid-filled microchannels, 
so that suspended microbubbles shrink.25 The bubble-suspending 
microchannels are fabricated adjacent to vacuum microchannels, 
through which the negative pressure is applied.  

In this manuscript, we develop a theoretical framework that relates 
the size of the microbubbles produced and the microfluidic 
system’s experimental input parameters, such as the lipid 
concentration in the liquid, and the gas–liquid surface tension. We 
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systematically characterize the microbubble shrinkage performance 
of this technique via a series of experiments. We then develop and 
experimentally validate a mathematical model to predict and 
control the microbubble shrinkage process. Finally, by asymptotic 
analysis, we reduce the full mathematical model, which is only 
solvable numerically, to a simplified form that we solve analytically 
to produce an explicit relationship between the microbubble size 
and the experimental input parameters. We anticipate that this 
simple mathematical expression will be useful for engineering 
specific microbubble sizes in many biomedical applications, such as 
contrast-enhanced ultrasound imaging. 

Experimental Methods 
Chemical Preparation 
Encapsulated microbubbles are generated in a microfluidic chip 
where air is used as the bubble core gas and a lipid solution as the 
encapsulation structure. We prepare two different lipid mixtures. In 
the first lipid mixture (M1), 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-((polyethylene glycol-5000)folate) 
(ammonium salt) (DSPE-PEG5F-15) (Avanti Polar Lipids, Alabaster, 
AL, USA) is mixed with 1,2-distearoyl-sn-glycero-3-phosphocholine 
(DSPC) at 9:1 ratio in saline (1.5 mg mL-1). Glycerol (Sigma Aldrich 
Corporation, St. Louis, MO, USA) and pluronic F-68 (Fisher Scientific, 
Pittsburgh, PA, USA) are then added to the mixture in a 1:1:1 
volumetric ratio to make the aqueous solution. The second lipid 
mixture (M2) is prepared similarly with the same molar/volumetric 
ratios, with the only difference that in the second mixture 1,2-
distearoyl-sn-glycero-3-phosphoethanolamine-N-
[Methoxy(Polyethylene glycol)-5000)folate) (ammonium salt) is 
used instead of DSPE-PEG5F-15. We measure the interfacial 
tension, σ, between the aqueous solution and air using the 
pendant-drop method.31 

Experimental Setup 
The details of experimental setup are reported in our previous 
manuscript.25 Briefly, we pattern a cross flow-focusing microfluidic 
design (Fig. 1) on a wafer substrate using a photolithography 
method. The height of all channels, including the vacuum channels, 
is 80 μm. We use the wafer as a mold for making PDMS microfluidic 
channels by soft lithography.  

The injection of the aqueous solution is performed using a high-
precision constant-flow-rate syringe pump (Harvard Instruments, 
Holliston, MA, USA). A pressure gauge (Omega Engineering Inc., 
Norwalk, Connecticut, USA) is used to regulate the air pressure. The 
vacuum pressure is adjusted using a Mityvac hand vacuum pump 
(Mityvac, St. Louis, MO, USA). We conduct the experiments by 
injecting the aqueous solution at a constant flow rate of 4 μL minିଵ 
while air is supplied at a constant relative pressure of 27.6 kPa, and 
vacuum pressure is applied through the vacuum connections.  

We image the bubbles at approximately the centre of each 
serpentine segment (red dashed rectangular area in Fig. 1) using a 
high-speed camera (Phantom M110, Vision Research, Wayne, NJ, 
USA) attached to an inverted microscope (Olympus Corp., Tokyo, 
Japan). The images are analysed by MATLAB (Mathworks, MA, USA) 
software using imfindcircles function to find the bubble size 
variation along the microfluidic channel.  

The initial size of bubbles generated right after the flow-focusing 
junction is larger than the channel height, so bubbles are confined 
to discoid shapes. In order to accurately characterize bubble sizes, 
we use the bubbles’ projected diameters to calculate the volume of 
the discoid bubbles, using a mathematical approach described 
elsewhere.25,32 

 

 
Fig. 1 A schematic design of the microfluidic system containing a serpentine liquid-filled channel with a total length of 350 mm. 
Microbubbles are generated at a 20 μm width junction, where flows of air (central channel, grey arrow) and aqueous solution (side 
channels, red arrows) meet orthogonally. Vacuum is applied through two connections to achieve a uniform vacuum pressure across the 
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entire chip. The bubble size variation is monitored by moving the microscope within the area depicted by red dashed lines. Images are 
captured when bubbles pass through this area.  

Results and Discussions 
Experimental results 
In order to study the effect of vacuum pressure on bubble 
shrinkage, we conduct experiments using a range of vacuum 
pressures 𝑃௩ = 0 to − 87 kPa, and with lipid mixture M1 (described 
in Experimental Methods). We also isolated the effect of other 
design parameters, such as gas core and channel dimensions, on 
bubble shrinkage by keeping them constant throughout our 
experiments. We note that the absolute pressure in the vacuum 
channel is equal to 𝑃௩ + 𝑃௧ , where 𝑃௧  is the atmospheric 
pressure. 

The size of bubbles generated at microfluidic junctions is governed 
by the orifice geometry, gas pressure, liquid flow rate, liquid 
viscosity, and interfacial tension.1,19,33 In this set of experiments, we 
maintain a constant initial microbubble radius 𝑅 = 64 ± 1 μm 
(corresponding to a volume of 𝑉 = 11 × 10ହ μmଷ). This is the 
microbubble initial radius at the generation location, before 
exposure to vacuum shrinkage. 

Fig. 2 shows the plot of microbubble volume 𝑉 versus position in 
the microchannel 𝑙. At the baseline vacuum pressure 𝑃௩ = 0, the 
bubbles experience a ~60% reduction in volume by the end of the 
microchannel (after travelling approximately 350 mm). Increasing 
the vacuum pressures cause further reduction in the bubble size. A 
maximum final size reduction of ~99% is achieved for vacuum 
pressures 𝑃௩ ≤ −60 kPa. We note that for vacuum pressure 𝑃௩ ≤
−60 kPa, the final bubble size is on the order of ~1 μm, which 

approaches the diffraction limit of light, making the bubbles difficult 
to characterize. 

We measure the aqueous solution air–liquid interfacial tension 𝜎 =

36.60 mNmିଵ. To systematically study the dependence of the final 
microbubble size on interfacial tension, we prepare aqueous 
solutions with two other interfacial tensions by diluting the original 
solution M1 in saline to achieve interfacial tensions 𝜎 =

48.29 and 43.41 mNmିଵ.  

Fig. 3 shows the experimental results of bubble shrinkage using 
aqueous solutions with three different surface tensions. We find 
that the bubbles generated with solutions that have higher surface 
tensions are initially larger. When the interfacial tension 𝜎 =

36.60 mNmିଵ, bubbles are formed with an initial radius 𝑅 =

61 μm (volume 𝑉 = 9.46 × 10ହ μmଷ), and their radius decreases 
by ~62% by the end of the channel, when exposed to a vacuum 
pressure 𝑃௩ = −50 kPa. Under the same vacuum pressure, 𝑃௩ =

−50 kPa, microbubbles with initial radius 𝑅 = 94 μm (volume 𝑉 =

3.50 × 10 μmଷ), and interfacial tension 𝜎 = 48.29 mNmିଵ, shrink 
by ~43%.  

When we apply a vacuum pressure 𝑃௩ = −87 kPa, bubbles 
generated using solutions with interfacial tensions 𝜎 =

36.60 mNmିଵ and 43.41 mNmିଵ shrink to an approximate radius 
𝑅 = 0.5 μm by the channel positions 𝑙 = 250 mm and 325 mm, 
respectively. No data is collected beyond that point. This shows 
~99% reduction in radius when interfacial tension 𝜎 =

36.60 mNmିଵ and ~68% reduction when interfacial tension 𝜎 =

48.29 mNmିଵ.

  
Fig. 2 A plot of the experimental results for the bubble volume 𝑉 versus the location 𝑙, along the microchannel at ten different vacuum 
pressures. The error bars indicate the standard deviations calculated by analysing > 10 bubbles for each data point. In all experiments, the 
mixture surface tension, aqueous liquid flow rate, and air pressure are kept constant at 𝜎 = 36.60 mNmିଵ, 4 μL minିଵ, and 27.6 kPa, 
respectively. The plot shows a monotonic trend of increasing microbubble shrinkage rate with increasing vacuum pressure.  
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Fig. 3 Experimental results for the bubble volume 𝑉 versus the location along the microchannel 𝑙 for aqueous solutions with three different 
surface tensions. Error bars show standard deviations calculated by analysing > 10 bubbles for each data point. Here, the vacuum pressure 
is held constant at (a) 𝑃௩ = −50 kPa, and (b) 𝑃௩ = −87 kPa. In all experiments, the aqueous liquid flow rate and air pressure are kept 
constant at 4 μLminିଵ and 27.6 kPa, respectively. Bubbles generated at higher surface tensions are initially larger and shrink more 
throughout the channel. 

We also observe that changing the lipid mixture affects the 
shrinkage behaviour. Bubbles generated using mixture M2 
demonstrate less shrinkage compared to bubbles formed from 
mixture M1. For example, the radius 𝑅 of bubbles generated using 
mixture M2 decreases by ~52% by the end of the microchannel, 
while we observe a ~99% reduction in radius 𝑅 for bubbles formed 
from mixture M1 using the same vacuum pressure 𝑃௩ = −87 kPa. 
Here, the surface tensions 𝜎 of the two mixtures are similar, i.e. 

𝜎 = 36.60 mNmିଵ for mixture M1 and 𝜎 = 37.66 mNmିଵ for 
mixture M2. 

Mathematical Modelling 
When microbubbles are generated in the aqueous solution, lipid 
molecules, which consist of a hydrophilic head and a hydrophobic 
tail, migrate towards and deposit onto the interface of the 
liquid/gas covering the bubbles, forming a self-assembled layer 
called a shell.18 The main function of shells in microbubble 
technology is to reduce the surface tension and extend the life-time 
of microbubbles from seconds to years.34 Microbubble stability is 
studied extensively in the literature because the lifetime and shell 
property of microbubbles are important in their application.18,35–42 
Here, we apply some of the physical concepts from microbubble 
stability to model the shrinkage behaviour of the microbubbles in 
our microfluidic device, under vacuum pressure.  

We apply a stability analysis of a typical microbubble with known 
shell encapsulation, and with a gas core of known transport 
properties. We neglect the effects of flow on the shrinkage once the 
bubble is generated, assuming that the bubble is continuously 
advected downstream with the flow. Therefore, the modelling is 
simplified to a microbubble stability analysis over time. This 
simplification assists in correlating the experimental data taken at 
each section of the serpentine channel to the time passed for the 
bubbles to reach to that section after they are generated at the 
flow-focusing junction. 

Microbubble lifetimes were first mathematically modelled by 
Epstein and Plesset, where they considered a “clean” bubble, 
without encapsulation, in the bulk of a liquid and under diffusion-
limited physics.43 Without encapsulation, a “clean” microbubble is 
unstable, dissolving in less than a second. Microbubbles stabilized 
by encapsulations can be modelled the same way, but with 
modified shell properties.36,42,44 Here, we follow the same approach 
to model our shrinking bubbles. 

Assuming an encapsulated microbubble is fully immersed in a 
liquid, and the diffusion time-scale is much less than the dissolution 
time, the steady state conservation equation of core gas molecules 
in spherical coordinate is reduced to, 

1

𝑟ଶ

d

d𝑟
൬𝑟ଶ

d𝐶

d𝑟
൰ = 0, (1) 

where 𝐶, and 𝑟 are concentration (mole/volume) of the gas 
molecules in the aqueous bulk, and radial coordinate, respectively. 

As shown in Fig. 4, we can assume the following conditions for a 
single bubble with a radius 𝑅 and a shell thickness 𝛿, immersed in 
an aqueous solution, 

𝐶൫𝑟 < (𝑅 − 𝛿)൯ = 𝐶, 
𝐶൫𝑟 = (𝑅 − 𝛿)൯ = 𝐶௪ , 

𝐶(𝑟 = 𝑅) = 𝐶ோ , 

𝐶 ൬𝑟 → ∞൰ = 𝐶 , 

(2) 

where 𝐶, 𝐶௪, 𝐶ோ, and 𝐶  are the gas concentration inside the 
bubble, at the inner bubble wall (shell), at the bubble outer shell, 
and in the liquid bulk (aqueous solution) far from the bubble, 
respectively. Due to the laminar flow in the microfluidic channel, 
diffusion is the main transport mechanism responsible for gas 
release from bubbles to the vacuum channels, and thus the 
advection terms are neglected. Also, we neglect the effect of 
channel entrance and exit, and any bubble–bubble interactions on 
the gas transport mechanism. 
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Conservation of mass through the shell provides one boundary 
condition for Eq. (1), 

−𝑘

d𝐶

d𝑟
ฬ

ୀோ
= ℎ(𝐶௪ − 𝐶ோ), (3) 

where  𝑘 and ℎ are the gas diffusion coefficient in the aqueous 
phase, and shell permeability coefficient, respectively. 

Solving Eq. (1) with the boundary conditions 𝐶(𝑟 → ∞) = 𝐶 and 
Eq. (3) gives, 

𝐶(𝑟) = 𝑅ଶ

⎝

⎛
𝐶௪ − 𝐶

𝑟 ൬
𝑘

ℎ
+ 𝑅൰

⎠

⎞ + 𝐶 . (4) 

Therefore, 

𝐶ோ =

ℎ

𝑘
𝑅𝐶௪ + 𝐶

1 + 𝑅
ℎ

𝑘

. (5) 

Applying Ostwald’s law and the ideal gas law, we obtain the 
following relation between the gas core pressure and inner shell 
concentration (Fig. 1c), 

𝐶௪ = 𝐿𝐶 

𝐶 =
𝑃

𝑅ீ𝑇
, 

(6) 

where 𝐿, 𝑃, 𝑅ீ, and 𝑇 are the Ostwald coefficient of the core 
gas, gas pressure inside the bubble, universal gas constant, and gas 
temperature, respectively. 

Similarly, as shown in Fig. 4b, the concentration of gas in the 
aqueous solution far from the bubble, 𝐶 , is related to the 
concentration at the fluid channel wall outside of the aqueous 
phase, 𝐶, 

𝐶 = 𝑓𝐿𝐶 , (7) 

where, 𝑓 is typically defined as the level of saturation of the 
aqueous solution. However, since the level of saturation is not 
homogenous throughout the liquid in our system, we refer to 𝑓 as 
an effective level of saturation. 

The nominal level of saturation varies along the aqueous solution 
channel. For example, the value near the inlet may be different 
from that close to outlet. This inhomogeneity may arise from the 
effect of the pressure drop inside the aqueous solution,45,46 and 
diffusion through the PDMS bulk.6 Therefore, for simplicity and 
convenience, we define 𝑓 as an effective level of saturation, which 
we use as a fitting parameter in our model, to account for all of the 
inhomogeneities in liquid saturation. 

It has been shown in the literature that for high gas or air 
permeability (diffusivity, porosity, and solubility)47 and thin PDMS 
membranes (175 µm wall thickness in our case), equilibrium across 

the thicknesses can be achieved very quickly, often within a few 
seconds.48 Neglecting the concentration difference across the bulk 
PDMS, i.e. assuming  𝐶 ≈ 𝐶, and assuming the gas inside the 
vacuum channel is an ideal gas, we can write, 

𝐶 = 𝑓𝐿

𝑃

𝑅ீ𝑇
, (8) 

where 𝑃 is the pressure inside the vacuum channel and is 
determined by the vacuum pressure, 𝑃௩ , 

𝑃 = 𝑃௧ + 𝑃௩ . (9) 

To relate the bubble size to the gas concentration, we apply the 
mass conservation equation for the gas core assuming a bubble 
volume of 𝑉 = 4 3⁄ π𝑅ଷ and surface area of 𝐴 = 4π𝑅ଶ, 

d

d𝑡
൬

4

3
π𝑅ଷ𝐶൰ = −(4π𝑅ଶ)ℎ(𝐶௪ − 𝐶ோ). (10) 

Due to interfacial tension effects on the bubble shell, Laplace’s 
equation governs the pressure difference across the shell. We note 
that, for an encapsulated microbubble, the surface tension, 𝜎, is a 
function of bubble radius, 𝑅, and therefore, a dilatational surface 
elasticity 𝐸௦ can be defined as the derivative of surface tension with 
respect to fractional change in the interfacial area,36,41,42,49  

𝑃 − 𝑃 =
2𝜎(𝑅)

𝑅
, 

𝜎(𝑅) = 𝜎 + 𝐸௦ ቆ൬
𝑅

𝑅
൰

ଶ

− 1ቇ, 
(11) 

where 𝑃, 𝑅, and 𝜎 are the pressure inside bubble, initial radius 
of the stress-free bubble conformation, and initial stress-free 
interfacial tension of the bubble, respectively. 

Now, we can substitute Eq. (11) into Eq. (6), assuming 𝑃  is equal to 
the ambient pressure, 𝑃௧ , 

𝐶௪ = 𝐿

𝑃௧ +
2𝜎

𝑅
+

2𝐸௦

𝑅
ቆቀ

𝑅
𝑅

ቁ
ଶ

− 1ቇ

𝑅ீ𝑇
, 

𝐶 =

𝑃௧ +
2𝜎

𝑅
+

2𝐸௦

𝑅
ቆቀ

𝑅
𝑅

ቁ
ଶ

− 1ቇ

𝑅ீ𝑇
. 

(12) 

Similarly, we can substitute Eqs. (8) and (12) into Eq. (5), 

𝐶ோ =
𝐿

𝑅ீ𝑇 ൬1 + 𝑅
ℎ

𝑘
൰

ቌ
ℎ

𝑘
𝑅 ቌ𝑃௧ +

2𝜎

𝑅

+
2𝐸௦

𝑅
ቆ൬

𝑅

𝑅
൰

ଶ

− 1ቇቍ + 𝑓𝑃ቍ. 

(13) 

Finally, substituting Eqs. (12) and (13) into (10), we obtain the 
governing equation for the time-dependent bubble radius as 
follows,

 

 

d𝑅

d𝑡
= −

3𝑘𝐿

𝑘

ℎ
+ 𝑅

൮

(1 − 𝑓)𝑃௧ − 𝑓𝑃௩ +
2𝜎

𝑅
+

2𝐸௦𝑅

𝑅
ଶ −

2𝐸௦

𝑅

3𝑃௧ +
4𝜎

𝑅
+

8𝐸௦𝑅

𝑅
ଶ −

4𝐸௦

𝑅

൲. 

 
 

(14) 

Eq. (14) can be nondimensionalized by defining the following 
dimensionless parameters, 
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�̂� =
3𝑡𝑘𝐿

𝑅
ଶ ,                                  𝑅 =

𝑅

𝑅
, 

 

𝑘
 =

𝑘

ℎ𝑅
,                                    𝜎ො =

2𝜎

𝑃௧𝑅
, 

 

𝐸 =
2𝐸௦

𝑃௧𝑅
,                                 𝑃௩

 =
𝑃௩

𝑃௧
, 

 

(15) 

where �̂�, 𝑅, and 𝑃௩
  are dimensionless values representing time-

scale, bubble radius, and vacuum pressure, respectively. 𝑘
, 𝜎ො, and 

𝐸  are dimensionless values representing diffusion coefficient, 
interfacial tension, and elasticity, respectively. 

This allows us to write Eq. (14) as, 

d𝑅

d𝑡̂
= −

1

𝑘
 + 𝑅

൮
(1 − 𝑓) − 𝑓𝑃௩

 +
𝜎ො

𝑅
+ 𝐸𝑅 −

𝐸

𝑅

3 +
2𝜎ො

𝑅
+ 4𝐸𝑅 −

2𝐸

𝑅

൲. (16) 

In addition to modelling bubble size changes over time, we also use 
COMSOL Multiphysics software to conduct a 2D numerical 
simulation of typical gas (air) convection through a long (350 mm) 
microfluidic channel filled with fully saturated liquid (water) at 
ambient pressure. Here, we apply three different concentration 
conditions imposed by Ostwald’s law on the PDMS wall for each 
vacuum pressure (i.e. 𝑃௩ = 0, −50, −87 kPa). Fig. 5 shows the 
numerical solution of concentration variation along the centreline 

of a 350 mm long liquid filled microfluidic channel and the 2D 
geometry used in the simulation. The simulations show that, 
regardless of the vacuum pressure magnitude, the PDMS wall 
thickness is small enough that the air concentration in the aqueous 
flow attains its equilibrium value in less than ~15% of the channel 
length. This effect is thus ignored in our modelling, and can be 
made smaller if the PDMS wall between the liquid filled microfluidic 
channel and the vacuum channel is thinner. 

We can solve Eq. (16) by separation of variables, subject to the 
initial condition 𝑅 = 1 to give, 

�̂�൫𝑅൯

= න −൫𝑘
 + 𝑅෨൯

ோ

ଵ

൮
3 +

2𝜎ො

𝑅෨
+ 4𝐸𝑅෨ −

2𝐸

𝑅෨

(1 − 𝑓) − 𝑓𝑃௩
 +

𝜎ො

𝑅෨
+ 𝐸𝑅෨ −

𝐸

𝑅෨

൲ 𝑑𝑅෨. 

 

(17) 

The integral on the right-hand side of Eq. (17) can be evaluated 
analytically to give, 

𝑡̂൫𝑅൯ = 𝑔൫𝑅൯ − 𝑔(1), (18) 

where  
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(19) 

Equation (18) gives the dimensionless time at which a desired 
encapsulated microbubble radius is attained for a given vacuum 
pressure, an aqueous solution of known surface tension, gas 
diffusion coefficient, and effective level of gas saturation, and a 
bubble shell of known permeability and elasticity. We take vacuum 
pressure 𝑃௩ = 0 as the control experiment to obtain values for our 
fitting parameters, which are shell properties (ℎ , 𝐸௦) and the 
effective level of saturation 𝑓. We find a good agreement with the 
experimental data in predicting the bubble size versus time when 
𝑓 = 0.62, ℎ = 2.6 × 10ିହ msିଵ, and 𝐸௦ = 9 × 10ିଷ Nmିଵ. These 
values are all within the range of commonly used values in 
literature.36,42,44 We note that we maintain the same fitting 
parameter values for all experiments, including for solutions with 
different surface tensions and experiments under various vacuum 
pressures (Fig. 6). We also keep the following parameters 
constant: 𝐿 = 1.7 × 10ିଶ and 𝑘 = 2.05 × 10ିଽ mଶsିଵ.36  

The phenomenon of bubble shrinkage in the absence of vacuum 
pressure is reported in earlier publications when the saturation 𝑓 <

1,36,50 and observed here in our experiments. Our hypothesis for 
this somewhat unintuitive observation is the following. 

One part of our fabrication process leaves the PDMS bulk inside a 
vacuum chamber for a few minutes to perform plasma-treatment 
on the channel surfaces. In order to maintain constant surface 
chemistry in all of the microfluidic devices we use, all of our 
experiments are conducted within 30 min of this treatment step. 
Therefore, the PDMS bulk is degassed at the time of each 
experiment, causing the PDMS bulk to absorb air from all directions 
as well as from the aqueous solution at a very low rate, yielding the 
effective level of saturation 𝑓 < 1. 

To test this hypothesis, we perform a similar experiment with an 
air-saturated PDMS device at vacuum pressure 𝑃௩ = 0. As 
illustrated in Supplementary Information Fig. S1, the shrinkage of 
the bubbles in the air-saturated PDMS device, when vacuum 
pressure 𝑃௩ = 0, is almost negligible, suggesting that the usage of 
degassed PDMS device in our experiments is the main contributor 
to our observed bubble shrinkage at vacuum pressure 𝑃௩ = 0. 
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When 𝑃௩ > 0, the highest flux of gas mass transfer occurs in the 
direction from the aqueous solution to the vacuum channel, which 
has the lowest resistance to mass transfer, causing the bubble to 
shrink at a higher rate. 

In general, depending on the shell properties and effective level of 
saturation, the bubbles will either reach a stable final radius, or 
dissolve entirely. Our results show that, under the above-

mentioned conditions, bubble shrinkage continues if the vacuum 
pressure is applied. One can adjust the channel length in a way that, 
once the bubbles reach to the desired final size, they can be 
collected. Alternatively, the vacuum pressure can be adjusted 
accordingly so that the bubbles reach the channel outlet at the 
desired size. 

   

 

 

Fig. 4 Microscopy images showing the fluid channel, PDMS bulk, and the vacuum channel. (a) The schematic profile overlaid on the images, 
of absolute pressure distribution and (b) the concentration distribution across the microfluidic channel. The changes of absolute pressure 
and air concentration through the PDMS bulk is negligible. Ostwald’s law governs the relationship between the absolute pressure and air 
concentration in the fluid channel, and pressure and air concentration in the bulk PDMS. (c) A schematic diagram of the concentration 
changes across a microbubble shell. 
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Fig. 5 Simulation results representing the concentration of dissolved air along the channel centreline at three different vacuum pressures, 
𝑃௩ = 0, −50, and −87 kPa. In simulations, we assume that the microfluidic channel is filled with water only, and thus the effect of bubble 
flow is neglected. The effect of channel entrance on the air concentration within the liquid is diminished once the liquid travels 50 mm 
along the channel length. The inset shows the 2D geometry used in the simulation and the boundary conditions applied. 
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Fig. 6 Dimensionless experimental and modelling results for the bubble volume 𝑉 𝑉௧⁄  versus the location along the channel 𝑙 𝑙௧௧⁄ . 
The results are shown for different surface tensions 𝜎, while vacuum pressures (a) 𝑃௩ = −50 kPa, and (b) 𝑃௩ = −87 kPa. (c) Three 
different vacuum pressures with constant surface tension 𝜎 = 36.60 mNmିଵ. Data points state experimental results, while the solid lines 
represent the numerical solution of the mathematical model. The modelling results demonstrate a very good agreement with the 
experimental data. Here, initial bubble volume 𝑉௧ = 4 3⁄ 𝜋𝑅

ଷ and the microchannel length 𝑙௧௧ = 350 mm. In (a) and (b), initial 
bubble radius 𝑅 = 89 μm, 83 μm, and 61 μm, correspond to surface tensions 𝜎 = 48.29 mNmିଵ, 43.41 mNmିଵ, and 36.60 mNmିଵ, 
respectively. In (c), the initial bubble radius 𝑅 = 63 μm.

In all the experiments, the dimensionless surface tension 𝜎ො and 
elasticity 𝐸  are small quantities. Typically, 𝜎ො ≃ 𝑂(10ିଶ) and 𝐸 ≃

𝑂(10ିଷ)). In this limit, Eq. (18) is reducible to the simple 
expression, 

𝑅(�̂�) = −𝑘
 + ඨ൫1 + 𝑘

൯
ଶ

+
2

3
ቀ൫1 + 𝑃௩

 ൯𝑓 − 1ቁ �̂�, (20) 
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which is in excellent agreement with the full analytical solution (Fig. 
7). 

  
Fig. 7 A plot of the dimensionless bubble volume 𝑉 𝑉௧⁄  versus 
the position along the channel 𝑙 𝑙௧௧⁄ . Here, the dimensionless 
parameters are 𝜎ො = 1.18 × 10ିଶ, 𝑃௩

 = −0.5, 𝐸 = 2.90 × 10ିଷ, 
𝑘
 = 1.27, and 𝑓 = 0.62. The approximated solution (Eq. 20) is 
almost identical to the exact solution (Eq. 18).  

Thus, this simplified expression of the bubble radius (Eq. (20)) is 
valid for all liquid solutions that have relatively small surface 
tension 𝜎ො and dilatational surface elasticity 𝐸 . In these 
circumstances, our analysis shows that for a given initial bubble 
radius, the effect of liquid surface tension and dilatational surface 
elasticity of the bubble on the shrinkage rate is negligible.  

The agreement indicates that our shrinkage model is versatile 
enough to be applied to microfluidic systems where bubbly flows 
are mixed with flows with different surface tensions, such as 
biofluids. However, as shown in Figs. 6a and 6b, we still observe 
different shrinkage rates upon changing the liquid surface tension 𝜎 
since changes in the surface tension manifest themselves through 
changes in the initial bubble radius 𝑅.  

Eqs (18), (19) and (20) together provide a clear and powerful 
method for determining the operating conditions required to 
generate any desired bubble size. Eqs. (18) and (19) explicitly 
encapsulate all of the physical variables within the system, and the 
way in which they influence the bubble evolution. As a result, even 
if experimental limitations provide bounds on what can be 
physically achieved for one particular parameter, this equation 
indicates how the other physical parameters can be manipulated to 
produce a desired bubble size.  

 

 
Fig. 8 The dependence of shrinkage time required for bubbles to 
reach a radius 𝑅 = 0.01 (upper curve) and 𝑅 = 0.1 (lower curve) 
given an initial radius, 𝑅, on vacuum pressure. The vacuum 
pressure 𝑃௩

  is more effective on initially smaller bubbles.  

The further reduced form of Eq. (20) takes the analytical expression 
a step further by providing an explicit form for the bubble radius as 
a function of the key parameters in this particular microfluidic 
system, namely the diffusion coefficient, effective level of 
saturation, shell permittivity, Ostwald’s coefficient, and vacuum 
pressure.  The result provides a mechanism for rapid prediction of 
the appropriate operating regimes required to fabricate bubbles 
with desired radii.       

As one such illustration of the simplicity of Eq. (20), we can 
determine the bubble size reduction over a specific time interval. 
Fig. 8 shows the dimensionless shrinkage time required for bubble 
shrinkage to 𝑅 = 0.01 and 𝑅 = 0.1 versus vacuum pressure for 
bubbles with different initial sizes. This information is useful from 
an engineering standpoint. For instance, this model informs us that 
we require a dimensionless time of 𝑡̂ = 30 to shrink a bubble with 
initial size of 𝑅 = 10 μm to a final size of 𝑅 = 0.1 μm if a vacuum 
of 𝑃௩

 = −0.6 is applied, while we can achieve a final size of 𝑅 =

1 μm if a vacuum of 𝑃௩
 = −0.5 is applied. The amount of time 

required can be converted to the channel length and be used for 
designing a microfluidic shrinkage setup. 

 

Conclusion 
In this paper, we characterize a microfluidic microbubble shrinkage 
technique that utilizes the gas permeability of PDMS microchannels 
and the permeability of bubble encapsulations, to shrink 
microbubbles. We develop a mathematical model that predicts the 
size of the resulting microbubbles, and find a very good agreement 
between the model and experimental data, under different 
experimental conditions. We expect that this model, especially in 
the simplified closed-form version, will find utility in the engineering 
and manufacturing of microbubbles of specific sizes. 

Although our microfluidic bubble-shrinking device results in low 
volumes of gas surrounded by relatively large volume of liquid (i.e. 
low number of bubbles per volume of liquid), multiple techniques 
can be implemented to increase the throughput. These techniques 
include on-chip multiplexing of the bubble-generation orifices,51 
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reducing the width (< 5 µm) of the flow-focusing orifice using 
precise microfabrication techniques,39 and using an on-chip bubble 
separator to remove the carrier liquid and control the number of 
bubbles per liquid volume.52,53 Our modeling and experimental 
results reported in this paper can also be used to better understand 
the physical mechanism behind vacuum-based bubble shrinkage, 
and enable the design of a device capable of reducing the bubble 
sizes down to order 1 μm or less, thus potentially offering a sub-
micron bubble generation technique. In such a device, one can 
predict the amount of vacuum pressure required for a specific type 
of lipid solution in order that a desired bubble size is collected at 
the outlet. Channel design optimization, investigation of other types 
of bubble encapsulations, and integration with submicron bubble 
characterization techniques offer future research directions to pave 
the way towards making inexpensive and easy-to-fabricate 
stabilized nanobubbles. 
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