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Stability of a bi-layer free film: simultaneous or
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We consider the stability of a long free film of liquid composed of two immiscible
layers of differing viscosities, where each layer experiences a van der Waals force
between its interfaces. We analyse the different ways in which the system can
exhibit interfacial instability when the liquid layers are sufficiently thin. For an
excess of surfactant on one gas–liquid interface, the coupling between the layers
is relatively weak and the instability is manifested as temporally separated rupture
events in each layer. Conversely, in the absence of surfactant, the coupling between
the layers is much stronger and the instability is manifested as rupture of both layers
simultaneously. These features are consistent with recent experimental observations.

Key words: capillary flows, gas/liquid flow, interfacial flows (free surface)

1. Introduction

Bursting of bubbles at interfaces is a familiar everyday occurrence, playing an
important role in a spectrum of phenomena, including foam evolution (Neethling,
Lee & Grassia 2005), cell death (Cherry & Hulle 1992) and aerosol generation (Wu
1981; Fuentes et al. 2010). For example, Lhuissier & Villermaux (2012) performed
experiments characterizing the life cycle of a bursting bubble, examining the motion
from the instant the bubble first deflects the liquid surface until the bursting dynamics
that leads to dispersed drops in the air. In the initial stages, as the bubble rises, a
single liquid film is drawn out between the two gas phases forming the bubble
cap; this cap thins as it elongates and drains liquid towards the bath (Debrégeas,
De Gennes & Brochard-Wyart 1998; Howell 1999), and eventually becomes so thin
that it is broken by instabilities driven by van der Waals intermolecular attractions.
Following rupture, Bird et al. (2010) demonstrated how retraction of the curved liquid
sheet can fold and entrap air to form daughter bubble cascades.

Recently, Feng et al. (2014) examined the dynamics of a rising bubble in an
aqueous phase coated with a thin layer of oil, and demonstrated that bubble rupture
at the compound air/oil/aqueous interface can disperse submicrometre oil droplets
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FIGURE 1. (Colour online) (a) Plan-view photos in time sequence for the bursting of
a bubble at interfaces of air/hexadecane/water at [C16TAB] = 0.09 mM (the oil layer
thickness is 1 mm and the scale bar is 1 mm) and (b) corresponding side-view schematics:
(i) a bubble deforms the compound air–liquid interfaces; (ii) the oil film ruptures forming a
nucleation hole, highlighted with an arrow; (iii) the water films ruptures forming a second
nucleation hole, highlighted by a filled arrow; (iv) two different retracting liquid rims are
then observed simultaneously.

into the aqueous phase. Such a physical system is reminiscent of oil spillages floating
at sea, and the discovery suggests a mechanism whereby the oil droplets can be
drawn into the water, where the high surface-to-volume ratio of the small droplets
could help bacteria and algae to degrade the oil faster. However, the possibility of
pollutants digested by sea creatures is also expected to be increased as a negative
consequence. In addition, this system provides an energy-efficient mechanism for
generating nanoemulsions compared with classical high-shear-rate methods.

In some experimental scenarios, Feng et al. (2014) observed simultaneous rupture
of the oil and water layers. However, in others they observed rupture of the distinct
films of oil and water separately: the oil layer ruptures first, retracting across the water
layer beneath, which is then followed by the rupture of the water layer; we refer to
such dynamics as ‘separated rupture’. This process is illustrated in the four panels of
figure 1. The origin of the distinct rupture behaviour has not been studied to the best
of our knowledge, but the authors speculated that it may be due to a combination of
the presence of surfactant and fluid wettability, with rupture almost always occurring
simultaneously in the absence of surfactant and for completely wetting fluids. In this
paper we present a theoretical model for this canonical two-layer system that provides
predictions for the possible mechanism of separated rupture, the parameter regimes for
which we expect separated rupture and those when simultaneous rupture should take
place. The results of our analysis of this model problem provide indications of the
role that various features might play in more complex, physically relevant, scenarios
such as the bubble bursting in oil spills mentioned in Feng et al. (2014).

The canonical configuration comprises a rising bubble in a bath of water, which
is covered with a thin layer of oil. As the bubble approaches the surface it rapidly
decelerates as it begins to deflect the oil–water interface, trapping a water film
between the bubble and the oil layer. This scenario can be modelled as a two-layer
liquid film confined between the bubble and the atmosphere (figure 2a). As the bubble
continues to rise, the liquid films thin and attractive van der Waals forces between
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FIGURE 2. (Colour online) (a) Schematic of the physical system. (b) Model set-up in
dimensional variables. The normal and tangent to each interface are denoted by nk and tk
respectively for k= 0, 1, 2. The system is characterized by the Cartesian coordinate system
(x∗, y∗).

the interfaces drive an instability that will ultimately rupture the film in finite time.
For the system composed of alkanes with an aqueous solution with surfactant CnTAB,
typically the oil film is observed to rupture first, which then retracts over the aqueous
film beneath, with the aqueous layer rupturing up to several hundreds of milliseconds
later (Feng et al. 2014).

The stability of a single-phase liquid film to intermolecular forces has been
investigated for thin films on a substrate (e.g. Williams & Davis 1982; Oron, Davis
& Bankoff 1997; Craster & Matar 2009) and free films with two gas–liquid interfaces
(Erneux & Davis 1993). For attractive van der Waals forces, these films are long-wave
unstable to small perturbations and the interface profiles are self-similar approaching
finite-time rupture (Witelski & Bernoff 1999; Zhang & Lister 1999; Vaynblat, Lister
& Witelski 2001). Similar ideas have also been applied to understand the stability
of thinning foam lamellae, where it has been shown that drainage flow along these
films is partially stabilizing (Anderson, Brush & Davis 2010; Davis, Stewart & Davis
2013).

The stability of a bi-layer liquid film on a solid substrate (with two fluid–fluid
interfaces) bears many similarities to the experimental system outlined above, where
the layers can exhibit dewetting and rupture, with application to the flow of mucus
on the lining of the airways (Craster & Matar 2000; Matar, Craster & Warner 2002),
the tear film (Zhang, Matar & Craster 2003) or industrial coating processes (Pototsky
et al. 2004, 2005; Fisher & Golovin 2005). The stability of this bi-layer system to
van der Waals attractions has been widely studied, where the system exhibits two
temporal branches, one or both of which can be unstable (Pototsky et al. 2004;
Fisher & Golovin 2005). In addition, the uniform state admits both sinuous (zigzag)
and varicose perturbation modes, where the perturbed interfaces are in phase or in
antiphase respectively. Fully nonlinear simulations elucidated that the film ruptures
distinctly in either the upper layer or the lower layer (Pototsky et al. 2004) but
also demonstrated the existence of periodic (non-uniform) solutions that coarsen in
time (Pototsky et al. 2005, 2006). Further analysis of this system also uncovered
oscillatory dewetting behaviour in the presence of surfactants (Fisher & Golovin
2007), while a classification of the distinct rupture modes was made by Ward (2011).
The governing equations derived in these studies are similar to one class of equations
presented herein (equations (4.10) below) for a bi-layer free film with an abundance
of surfactant on the air–aqueous interface.

In this paper we present a canonical model that captures the key dynamical
features of a bi-layer free liquid film to characterize its rupture under van der Waals
forces, where the resulting system possesses three fluid–fluid interfaces (figure 2a).
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In particular, we consider the case where both layers experience a non-retarded
(attractive) van der Waals force between the interfaces so as to isolate parameter
regimes and interfacial conditions for which either both layers rupture simultaneously
or the two layers rupture distinctly, which provides insight into the role of surfactant
and wettability on the rupture mechanics. We choose to study a simplified geometry
comprising two liquid films with a common interface, surrounded on both sides by
a passive gas, which captures the key features of the final stages of bubble bursting
considered in Feng et al. (2014). Here, the gas beneath the films may be identified
with a rising bubble in the liquid while the gas above corresponds to the surrounding
atmosphere (figure 2a). This model simplification allows us to examine the planar
geometry illustrated in figure 2(b), where the difference in pressure between the
bubble and the atmosphere is assumed negligible, and large-scale film bending can
be ignored. The resulting set-up provides a tractable model that is amenable to
mathematical analysis, and offers a foundation to provide insights into the response
of corresponding physical systems.

The mathematical model for the full system is presented in § 2. In §§ 3 and 4
we exploit the slenderness of the geometry to reduce the governing equations to a
coupled system of one-dimensional partial differential equations. In particular, we
study two distinct regimes: one that models an oil-covered clean water film (§ 3)
and the second that mimics water containing an abundance of surfactant (§ 4). We
examine the stability of each configuration via linear stability analysis and full
numerical simulations, allowing us to explore the features necessary to induce distinct
film rupture. In § 5 we reconcile our predictions with the original experimental set-up
and in § 6 we draw conclusions on the implications of our model for practical
scenarios.

2. Mathematical modelling
2.1. Dimensional model equations and boundary conditions

We examine a model set-up of a planar free liquid film composed of two long and
thin immiscible fluid layers, shown in figure 2(b), surrounded on both sides by a
passive gas of constant pressure p∗0. We denote the lower layer as liquid 1 (water
in the experiment) and the upper layer as liquid 2 (oil in the experiment). Both
layers are assumed to be Newtonian liquids of viscosity µj (j = 1, 2) and the flows
are assumed to be incompressible. In the spirit of our assumption of a long slender
geometry, we also neglect any effects that may arise due to large-scale film bending,
and the resulting pressure differences that may arise. The system has three fluid–fluid
interfaces denoted by k = 0, 1, 2, with associated surface-tension coefficients γk: the
interface between liquid 1 and liquid 2 is denoted as k = 0, the interface between
liquid 1 and the gas is denoted as k = 1 and the interface between liquid 2 and the
gas is denoted as k = 2 (figure 2b). We assume that the surface-tension coefficients
are all constant, but will use the boundary condition on the liquid 1–gas interface to
mimic the presence or absence of surfactant adsorbed from the water phase.

We employ a two-dimensional Cartesian coordinate system, where x∗ denotes
the (dimensional) displacement along the flat interface 0 profile and y∗ denotes
the distance normal to this direction with direction into fluid 2 (figure 2b). We
denote interface 0 (between the two liquids) as y∗ = H∗(x∗, t∗), interface 1 as
y∗ = H∗(x∗, t∗) − h∗1(x

∗, t∗) and interface 2 as y∗ = H∗(x, t) + h∗2(x, t), and the
corresponding normal and tangent unit vectors along these interfaces as nk and
tk (k= 0, 1, 2) respectively, also illustrated in figure 2(b).
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The velocity and pressure fields in liquids 1 and 2 are denoted as u∗j = (u∗j , v∗j ) and
p∗j respectively (j= 1, 2). Throughout this study we neglect inertial and gravitational
effects, so the flow is governed by the Stokes equations in both fluids,

∇
∗
· u∗1 = 0, ∇∗p∗1 =µ1∇∗2u∗1, H∗ − h∗1 < y∗ <H∗, (2.1a)

∇
∗
· u∗2 = 0, ∇∗p∗2 =µ2∇∗2u∗2, H∗ < y∗ <H∗ + h∗2. (2.1b)

The corresponding stress tensors are denoted

σ ∗1 =−p∗1I +µ1(∇
∗u∗1 + (∇∗u∗1)T), σ ∗2 =−p∗2I +µ2(∇

∗u∗2 + (∇∗u∗2)T). (2.2a,b)

Each gas–liquid interface (k= 0, 1, 2) experiences a van der Waals force of attraction
to/repulsion from the other two interfaces in the system. In accordance with many
other studies on the stability of thin liquid films (reviewed by Oron et al. 1997;
Craster & Matar 2009), we approximate this force as the interaction between two
flat parallel interfaces (valid in the long-wavelength limit we adopt below); following
Israelachvili (2011), this force is proportional to the Hamaker constant of interaction
between the two interfaces (which may be positive or negative) and inversely
proportional to the cube of the perpendicular distance between these interfaces.
In this study we define an excess pressure p̆∗j (j = 1, 2) which (by definition) shifts
the influence of the van der Waals forces from the normal stress boundary conditions
to the bulk liquid (essentially appearing as a body force on the system). Such an
approach has been used widely in previous studies (e.g. Patzer & Homsy 1975; Matar
et al. 2002). In this case, the excess pressure is defined via

p∗j = p̆∗j + φ∗j (j= 1, 2), (2.3a)

where the Stokes equations in both fluids (2.1) can be written as

∇
∗
· u∗1 = 0, ∇∗(p̆∗1 + φ∗1)=µ1∇∗2u∗1, H∗ − h∗1 < y∗ <H∗, (2.3b)

∇
∗
· u∗2 = 0, ∇∗(p̆∗2 + φ∗2)=µ2∇∗2u∗2, H∗ < y∗ <H∗ + h∗2, (2.3c)

where φ∗j are van der Waals potentials for layer j (j= 1, 2) defined according to

φ∗1 =
A1

6πh∗1
3 +

A2

6π(h∗1 + h∗2)
3 , φ∗2 =

A3

6πh∗2
3 +

A4

6π(h∗1 + h∗2)
3 , (2.3d)

where A1, . . . , A4 are Hamaker constants. This description is consistent with the van
der Waals pressure used by Matar et al. (2002), and the Hamaker constants can be
derived using the method outlined by Pototsky et al. (2005). If the gas on both sides
of the film is the same then the two Hamaker constants A2 and A4 are identical, which
we assume throughout this study. To promote rupture, in the analysis in §§ 3 and 4 we
consider only non-retarded van der Waals forces, and so these Hamaker constants are
assumed to be non-negative. In § 5 we relax this constraint and consider the effect of
repulsive van der Waals forces. We henceforth drop breves (˘) on the pressure terms
for notational convenience.

On interface 0 we impose a kinematic condition as well as continuity of velocity,
and normal and tangential stresses in the form

u∗1 = u∗2, v∗1 = v∗2 =H∗t∗ + u∗1H∗x∗, σ ∗2 · n0 − σ ∗1 · n0 = γ0κ
∗
0 n0, on y∗ =H∗, (2.4a)
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where κ∗0 =∇s0 ·n0 is the mean curvature of the interface y∗=H∗(x∗, t∗), where ∇sj=
(I−njnj) ·∇ is the surface gradient operator on interface j, and subscripts x∗, t∗ denote
differentiation.

On interface 1 we impose kinematic conditions and continuity of normal stress
respectively, in the form

v∗1 = (H∗ − h∗1)t∗ + u∗1(H
∗ − h∗1)x∗, p∗0 + n1 · σ

∗
1 · n1 = γ1κ

∗
1 , on y∗ =H∗ − h∗1, (2.4b)

where κ∗1 =∇s1 · n1 is the mean curvature of the interface y∗ =H∗(x∗, t∗)− h∗1(x
∗, t∗).

One final interfacial condition is required, which we use to express the presence
(or absence) of surfactant. For example, in follow-up experiments it is observed that
surfactant must be present in the water phase for multiple rupture events to occur. To
validate this observation, in this paper we shall examine two distinct cases, namely

(i) zero tangential stress,

t1 · σ
∗
1 · n1 = 0, on y∗ =H∗ − h∗1, (2.4c)

to represent a surfactant-free interface (air–aqueous phase); or
(ii) a tangentially immobile surface,

u∗1 · t1 = 0, on y∗ =H∗ − h∗1, (2.4d)

to represent a surfactant-saturated air–aqueous interface. This assumption follows a
number of previous theoretical studies examining the microscale flow in surfactant-
saturated foam films (for example Patzer & Homsy 1975; Schwartz & Princen 1987).
This equates to assuming that the surface elastic modulus of the surfactant-laden
interface is large, consistent with experimental observations that the creation of an
interface in an extending soap foam lamella is restricted to a narrow region at the
edge of the elongating film (Mysels & Cox 1962).

We acknowledge that the effect of surfactant at a fluid boundary can be characterized
in a variety of ways with differing complexity. For instance, in some applications
‘remobilizing surfactants’ can allow for interfacial flow in a surfactant-loaded interface,
and it becomes necessary to explicitly track surfactant monomer and micelle
concentrations (Stebe & Maldarelli 1994). However, we choose these two distinct
boundary conditions to exemplify two contrasting limits in the simplest possible way.

On interface 2 we impose kinematic conditions and continuity of normal and
tangential stress respectively, in the form

v∗2 = (H∗ + h∗2)t∗ + u∗2(H
∗ + h∗2)x∗, n2 · p∗0 + σ ∗2 · n2 = γ2κ

∗
2 n2, on y∗ =H∗ + h∗2,

(2.4e)

where κ∗2 =∇s2 · n2 is the mean curvature of the interface y∗ =H∗(x∗, t∗)+ h∗2(x
∗, t∗).

Since the external gas pressure on both sides of the bi-layer has been assumed as
p∗0, this formulation implicitly neglects the pressure drop due to the curvature of the
bubble that would be present in the experiments of Feng et al. (2014).

2.2. Non-dimensionalization and scaling
Just prior to rupture, when the bubble is close to the surface, the liquid layers are
typically much longer than their thickness. We exploit this film slenderness to reduce
the governing equations via a systematic asymptotic analysis (Erneux & Davis 1993).
We shall assume that we begin with two viscous films whose thicknesses are initially
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uniform and comparable but not necessarily equal in magnitude, and define ε � 1
as the ratio of the initial thickness of fluid 1 to a characteristic axial extent, L. The
natural scaling choice is then

(x∗, y∗)= L(x, εy), u∗ = (u∗, v∗)=U0(u, εv), t∗ = L
U0

t, (2.5a−c)

p∗ = p∗0 +
(
µ1U0

L

)
p, H∗ = εLH, h∗ = εLh, (2.6a−c)

where U0 is a typical axial velocity.
If we select U0 = εγ0/µ1 then the remaining six dimensionless parameters that

appear in the resulting dimensionless equations in addition to the small parameter ε
are

µ= µ2

µ1
, Cj = γj

γ0
(j= 1, 2), An = 1

ε4

An

6πγ0L2
(n= 1, . . . , 3), (2.7a)

denoting respectively the viscosity contrast between the two layers, the surface-tension
contrast between interface 0 and interfaces 1 and 2 and the three dimensionless
Hamaker constants. In § 5 we estimate each of these parameters for the experiments
of Feng et al. (2014).

In dimensionless form the initial (uniform) film thicknesses can be written as

h1(x, 0)= 1, h2(x, 0)= h2, (2.8a,b)

where h2 is an order-one constant and corresponds to the initial ratio of the thicknesses
of the two films.

Our subsequent analysis will be arranged into three sections. We begin in § 3
by considering the regime in which no tangential stress is exerted on interface 1,
(2.4c), to analyse the potential rupture behaviour that may be observed in the absence
of surfactant within the water film. In § 4 we address the case where the water
phase contains an abundance of surfactant adsorbed on the air–liquid interface, by
assuming a tangentially immobile interface, (2.4d). In both sections our aim is to
identify conditions where the bi-layer free film is unstable, and determine whether
that instability will lead to an isolated dewetting event, that is, dewetting in one
layer only, or the dewetting of both layers simultaneously. In § 5 we reconcile these
predictions with the experiments of Feng et al. (2014).

The dimensionless van der Waals pressures can be written as

φ1 = A1

h1
3 +

A2

(h1 + h2)3
, φ2 = A3

h2
3 +

A2

(h1 + h2)3
. (2.9a,b)

To avoid an abundance of parameters and lengthy expressions, in §§ 3 and 4 below we
neglect the attraction between the two outer interfaces by setting A2 = 0 throughout:
since h1 and h2 are always positive, for comparable Hamaker constants this component
of the pressure must always be weaker that the attraction between the two interfaces
adjacent to that layer, and so we expect the rupture behaviour to be well characterized
by the first terms in φj (j = 1, 2). However, a more complete discussion of the
Hamaker constants will be given in § 5 where we use the full expression for the
van der Waals pressure (2.9), as we find that some of these Hamaker constants can
be negative in the experimental regime of Feng et al. (2014).
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3. A surfactant-free interface
3.1. Governing equations

In the absence of surfactant in the water phase we must solve the dimensionless
version of (2.1) subject to the dimensionless versions of the boundary conditions
(2.4a)–(2.4c) and (2.4e). We exploit the long thin geometry in our problem by
considering the limit ε→ 0, and expanding all dependent variables in power series
of the form

ψ =ψ (0) + ε2ψ (2) + · · · . (3.1)

At leading order the governing equations become, dropping the ‘(0)’ superscripts for
clarity,

∇ · u1 = 0, u1,yy = 0, p1,y + φ1,y = v1,yy, H − h1 < y<H, (3.2a)
∇ · u2 = 0, u2,yy = 0, p2,y + φ2,y =µv2,yy, H < y<H + h2, (3.2b)

and we also state the leading-order boundary conditions,

v1 = (H − h1)t + u1(H − h1)x, u1,y = 0, −p1 + 2v1,y =−C1(H − h1)xx, (3.2c)

on y=H − h1,

u1 = u2, v1 = v2 =Ht + u1Hx, µu2,y = u1,y,

−p2 + 2µv2,y + p1 − 2v1,y =−Hxx, (3.2d)

on y=H and

v2 = (H + h2)t + u2(H + h2)x, u2,y = 0, −p2 + 2µv2,y =C2(H + h2)xx, (3.2e)

on y=H + h2.
We observe that neither u1 nor u2 depends on y, so we have the same uniform plug

flow in both films, u1 = u2 = U(x, t), similar to models of draining foam lamellae
(Breward & Howell 2002; Brush & Davis 2005) and other problems bounded by free
surfaces (see, for example, Eggers 1997). Integrating the continuity equations over the
film thickness yields the depth-averaged continuity equations

h1,t + (Uh1)x = 0, (3.3a)
h2,t + (Uh2)x = 0. (3.3b)

Integrating the y-component of the Stokes-flow equations in (3.2) over the film
thickness and utilizing the pressure boundary conditions in (3.2d,e) provides a
relation between the curvatures of all three interfaces. We then close the problem
of solving (3.3) by considering the next-order correction to the x-component of
the Stokes-flow equations and the tangential component of the dynamic boundary
conditions. Our derivation follows closely that found in Erneux & Davis (1993) for
a single extensional film, although we do not restrict our problem to be symmetric
about a midline as they do. We obtain a third and final governing equation of the
form

4((h1 + µ̄h2)Ux)x − h1φ1,x − h2φ2,x + h1C1
(1+C2)h1,xxx +C2h2,xxx

1+C1 +C2

+ h2C2
(1+C1)h2,xxx +C1h1,xxx

1+C1 +C2
= 0. (3.3c)
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It should be noted that if we set h1=H h2, where H is a constant, the conservation
of mass equations for layers 1 and 2 (3.3a,b) become identical and the system (3.3)
reduces to two coupled partial differential equations (PDEs). However, we consider
the full system in the analysis below.

We notice that (3.3c) can be written more succinctly as

h1p1,x + h2p2,x − 4((h1 +µh2)Ux)x = 0, (3.4a)

where we define

p1 =−C1
(1+C2)h1,xx +C2h2,xx

1+C1 +C2
+ φ1, (3.4b)

p2 =−C2
(1+C1)h2,xx +C1h1,xx

1+C1 +C2
+ φ2 (3.4c)

as modified pressures. Equations (3.3) are the bi-layer equivalents of the free-film
equations of Erneux & Davis (1993) for two extensional thin films. The bi-layer
midline satisfies

Hxx = C1h1,xx −C2h2,xx

1+C1 +C2
, (3.5)

which can be calculated directly once h1 and h2 are known, given suitable boundary
conditions.

3.2. Linear stability analysis
To begin with we shall explore the features that characterize the onset of instability by
performing a linear stability analysis. The governing equations (3.3) admit a uniform
solution in which there is no flow and both films are of constant thickness. We perturb
the system about this state by posing the expansions

(h1, h2,U)= (1, h2, 0)+ (1, h′2,U′)δ exp(ωt+ ikx), (3.6)

where |δ| � 1.
Expanding (3.3a,b) at O(δ) we find that

U′ = iω/k, h′2 = h2 > 0, (3.7a,b)

and thus, in the absence of surfactant, any deviations in the interface are varicose
in nature. Similarly, writing (3.3c) at O(δ) and using (3.7) we obtain the dispersion
relation

ω= 3(h
2
2A1 +A3)

4h
2
2(1+µh2)

− (C2h
2
2 +C1(1+C2(1+ h2)

2))

4(1+ µ̄h2)(1+C1 +C2)
k2. (3.8)

We note that as k → ∞, ω → −∞, so short-wavelength perturbations are stable.
However, we also observe that there is a possibility for ω> 0, leading to instabilities
if (h

2
2A1 + A3) > 0. If A1 and A3 are non-negative (non-retarded van der Waals)

then this constraint is always satisfied. (We explore the influence of repulsive van der
Waals in § 5.) All wavenumbers k> kcrit will be stable, where

kcrit =
√√√√ 3(1+C1 +C2)(h

2
2A1 +A3)

h
2
2(C2h

2
2 +C1(1+C2(1+ h2)2))

. (3.9)

For disturbances of fixed wavenumber k = π (the shortest wavelength to fit into the
finite domain −1 6 x 6 1 considered in § 3.3 below), the neutral stability curves
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FIGURE 3. (Colour online) Development of an initial perturbation of the form (3.10) with
fixed wavenumber k=π, C1=C2= 1, µ= 2, δ= 0.01 and h′2 and U′ determined by (3.7).
(a) Neutral stability curves ((3.8) with ω=0) in the parameter space spanned by A3 and h2
for A1=0,1,2,5,10. The uniform state is stable to the right of the curves and unstable to
the left. The fully nonlinear simulations of (3.3) shown in (c–f ) are conducted at the point
marked with a cross. (b) Temporal evolution of the minimum thickness in both layers with
A1=0 and A3=1. The inset shows a close-up of the approach to rupture. (c–f ) Snapshots
of the two layers at various times illustrating the evolution towards simultaneous rupture,
with the corresponding times marked on (b) ((c) t = 3.000; (d) t = 3.500; (e) t = 3.700;
(f ) t= 3.769).

(Re(ω)= 0) in the space spanned by A3 and h2 are shown in figure 3(a) for various
values of A1. The uniform state is stable to the right of these curves and unstable
otherwise. The dimensionless Hamaker constants A1 and A3 appear additively in
the dispersion relation (3.8) and stability criteria (3.9), so the system can exhibit
instability even when van der Waals attractions act in one layer only.

We thus see that the system is unstable only in certain parameter regimes. More
importantly, (3.7) indicates that any instabilities will be varicose, and a thinning of one
film is necessarily coupled to thinning of the second film even when van der Waals
forces act in only one of the layers.

3.3. Nonlinear rupture
To examine the growth of the linear instabilities towards dewetting of one or
more of the liquid layers we must consider the full nonlinear system (3.3). The
spatial derivatives are discretized using fourth-order centred finite differences, and the
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resulting system of ordinary differential equations and algebraic constraints is solved
numerically using ode15s in MATLAB.

For computational practicality we consider a finite periodic domain −1 6 x 6 1
(corresponding to k = π in the linear stability analysis) to ensure that we continue
to apply the most passive end constraints on the system, so that any observed
phenomenon is induced by the bulk fluid behaviour and the interfacial boundary
conditions. We further reduce the problem by assuming that the interface profiles are
symmetric about x = 0, which requires no flow across x = 0. Since our aim is to
examine scenarios where we observe dewetting in one layer and not in the other, we
consider a regime in which van der Waals destabilizing forces act in fluid 2 but not
in fluid 1 (A1 = 0). We then examine the nonlinear growth of a sinusoidal varicose
initial perturbation

(h1, h2,U)= (1, h2, 0)+ δRe[(1, h′2,U′) exp(ikx)], (3.10)

where h′2 and U′ follow from the linear stability analysis in § 3.2. In all the numerical
simulations discussed below we set δ = 0.01, but this choice makes no qualitative
difference to the behaviour.

The initial perturbation is observed to grow, and the thickness of film 2 at the centre
of the domain decreases rapidly, approaching a finite-time singularity as a result of
the van der Waals attractive forces (time evolution shown in figure 3b). However, as
predicted by the linear stability analysis, the thinning of film 2 drives a simultaneous
varicose thinning in film 1, despite the absence of van der Waals forces in that layer
(figure 3c–f ). We note that, although the chosen perturbation is varicose, the system
is observed to evolve as a varicose instability regardless of the nature of the initial
perturbation, corroborating the prediction of the linear stability analysis, (3.7).

The linear stability analysis in § 3.2 suggests that perturbations to the layer
thickness h2 are always a constant multiple, h2, of h1. Given the structure of the
nonlinear equations (3.3), we can set h2= h2h1, upon which the conservation of mass
equations for layers 1 and 2 (3.3a,b) become identical. Hence, layers 1 and 2 must
always deform together, and thinning of layer 2 drives thinning in layer 1, so that
simultaneous rupture is inevitable.

4. A surfactant-laden interface
When the two liquid–gas interfaces are free of tangential stress (in the absence

of surfactant), the two outer interfaces deform in an identical manner and so the
two layers must rupture simultaneously. We now proceed to explore the effect of
surfactant on the system in an effort to understand the distinct rupture behaviour
observed experimentally.

In the presence of an abundance of surfactant that accumulates on interface 1, this
interface may be modelled as being tangentially immobile, (2.4d). We must solve the
dimensionless version of (2.1) subject to the dimensionless versions of the boundary
conditions (2.4a), (2.4b), (2.4d) and (2.4e). In this case the shear on interface 1 drives
a parabolic flow profile across layer 1.

There are two distinguished limits of interest. First, we consider the asymptotic
regime in which layer 2 is much more viscous than layer 1, driving a plug flow in
layer 2 (§ 4.1). A similar coupling between a thin film and an extensional film, but on
a rigid substrate, was considered by Matar et al. (2002) as a model for the two-layer
lining of lung airways. Second, we relax the constraint on the viscosity and consider
a regime in which the viscosity contrast is of order one. In this case a parabolic flow
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profile exists in both layers (§ 4.2). This regime is similar to the bi-layer thin films
considered by Fisher & Golovin (2005) and Pototsky et al. (2005), again on a rigid
substrate.

In both cases we employ the same non-dimensionalization as in (2.5) and (2.6), with
the exception of the scaling for the fluid pressures, for which we use

p∗ = p0 +
(
µ1U0

ε2L

)
p̃. (4.1)

In contrast to the surfactant-free case, the natural velocity scaling, which reduces the
number of free parameters, is now U0 = ε3γ0/µ1.

4.1. Case 1: a large viscosity contrast
4.1.1. Governing equations

A distinguished limit exists when µ = ε−2µ̃, where µ̃ is of order one. Expansion
of all dependent variables according to (3.1) provides the leading-order governing
equations, dropping ‘(0)’ superscripts for clarity,

∇ · u1 = 0, u1,yy = p̃1,x + φ1,x, p̃1,y + φ1,y = 0, H − h1 < y<H, (4.2a)
∇ · u2 = 0, µ̃u2,yy = 0, p̃2,y + φ2,y = µ̃v2,yy, H < y<H + h2. (4.2b)

We also restate the leading-order boundary conditions,

v1 = (H − h1)t, u1 = 0, −p̃1 =−C1(H − h1)xx, (4.2c)

on y=H − h1,

u1 = u2, v1 = v2 =Ht + u1Hx, u2,y = 0, −p̃2 + 2µ̃v2,y + p̃1 =−Hxx, (4.2d)

on y=H and

v2 = (H + h2)t + u2(H + h2)x, u2,y = 0, −p̃2 + 2µ̃v2,y =C2(H + h2)xx, (4.2e)

on y=H + h2.
We see immediately that we have a plug flow in layer 2 and introduce U(x, t) =

u2(x, y, t). As in § 3, the plug flow velocity along layer 2 is determined by proceeding
to next order and accounting for the momentum equation along layer 2, which takes
the form

µ̃u(2)2,yy =−µ̃u2,xx + p̃2,x + φ2,x, H < y<H + h2, (4.3a)

subject to tangential stress boundary conditions

µ̃u(2)2,y = u1,y − µ̃v2,x − 2µ̃Hx(v2,y − u2,x), y=H, (4.3b)

u(2)2,y =−v2,x − 2(H + h2)x(v2,y − u2,x), y=H + h2. (4.3c)

Following the procedure outlined in appendix A of Matar et al. (2002), we obtain the
governing equations for the two-layer flow,

h1,t +
(

1
2

h1U − h3
1

12
p1,x

)
x

= 0, (4.4a)

h2,t + (Uh2)x = 0, (4.4b)

4µ̃(h2Ux)x − h2p2,x −
1
2

h1p1,x −
U
h1
= 0, (4.4c)

where as in § 3.1, pj, j= 1, 2, are the modified pressures defined by (3.4). This system
is of the same form as (3.3) and the calculation of the film midline follows from (3.5).
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4.1.2. Linear stability analysis
Perturbing the system about the uniform state in which there is no flow and both

films are of constant thickness via (3.6) in this case leads to

h′2 =
(3A1k2 − 12ω)(1+C1 +C2)−C1(1+C2)k4

C1C2h2k4 − 6ω(1+C1 +C2)
h2. (4.5)

Here, in contrast to the surfactant-free case, the perturbation amplitude h′2 can
be positive or negative relative to the perturbation to h1. Thus, in contrast to the
surfactant-free case, perturbations to the system can now be either varicose (h′2 > 0)
or sinuous (h′2 < 0) (analogous to the varicose and zigzag modes reported by Pototsky
et al. 2004).

The corresponding dispersion relation is now given implicitly as

aω2 + bω+ c= 0, (4.6a)

where

a = 12h
2
2(1+C1 +C2)(1+ 4µ̃h2k2), (4.6b)

b = −12(3A3 +A1h
2
2)(1+C1 +C2)k2 + 4µ̃C1(1+C2)h

3
2k6

+ 4h
2
2(C1(1+C2)+ 3(C1C2 −A1µ̃(1+C1 +C2))h2 + 3C2(1+C1)h

2
2)k

4,

(4.6c)

c = 9A1A3(1+C1 +C2)k4 − 3(A3C1(1+C2)+A1(1+C1)C2h
4
2)k

6 +C1C2h
4
2k8,

(4.6d)

and so there are two temporal branches for the growth rate, one or both of which
can become unstable across the parameter space (similar to Pototsky et al. 2004). We
note that the discriminant of (4.6a) can be shown to be strictly non-negative and thus
the growth rate is always real, precluding the existence of travelling-wave solutions.
The threshold between unstable and stable perturbations is determined by identifying
the neutral stability curve (ω = 0, c(C1, C2, h2, A1, A3) = 0) for perturbations with
wavenumber k=π. We deduce that the uniform state is unstable when

A3 >A3,crit =Kh
4
2, where K = 3A1(1+C1)C2π

2 +C1C2π
4

9A1(1+C1 +C2)− 3C1(1+C2)π2
, (4.7)

in agreement with the traditional scaling observed for the stability of single-layer films,
where K(C1,C2,A1) is independent of µ̃. In figure 4(a) we plot the numerical value
of K as a function of A1 for C1 = C2 = 1. We note that in some parameter regions
the value of K can be negative, in which case the uniform base state is unstable for
all A3 > 0.

4.1.3. Nonlinear dewetting
In contrast to the surfactant-free configuration, in addition to varicose disturbances

the system (4.4) also admits sinuous solutions, which may provide a potential
mechanism for isolated rupture. To explore this possibility we must analyse the full
nonlinear equations (4.4), which exhibit an identical structure to (3.3), and so we
employ an identical numerical method to solve this system. We prescribe an initial
condition of the form (3.10). To prevent rupture and facilitate dewetting and retraction
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FIGURE 4. (Colour online) Development of a perturbation of the form (3.10) with fixed
wavenumber k = π, C1 = C2 = 1, µ̃= 2, hc1 = 0, hc2 = 0.1, δ = 0.01, with h′2 determined
by (4.5): (a) K as defined by (4.7); (b) temporal evolution of the minimum thickness in
both layers with A1 = 0 and A3 = 10 for a surfactant-laden system with large viscosity
contrast, governed by (4.4); the inset shows a close-up of the approach to rupture; (c–f )
snapshots of the two films at various times illustrating evolution towards isolated dewetting
((c) t= 0.500; (d) t= 0.605; (e) t= 0.615; (f ) t= 0.622).

of the liquid layers we use a modified van der Waals pressure with a cutoff at a
finite thickness hcj (a cojoining–disjoining pressure), where (2.9) is modified to

φ̆1 = φ1 − A1h3
c1

hm
1
, φ̆2 = φ2 − A3h3

c2

hm
2
. (4.8a,b)

This form of the cutoff term in the van der Waals pressure has an algebraic
dependence on the layer thickness hj (j = 1, 2), where the exponent m must be
chosen to be greater than 3; this assumption has been used widely for various
values of m (Schwartz et al. 2001; Seemann, Herminghaus & Jacobs 2001). In this
study we fix m = 6, but the precise value of m does not influence the dynamics of
rupture significantly. Other physically motivated forms of the cutoff in the van der
Waals pressure have been used elsewhere, such as an exponential decay in the layer
thickness (Pototsky et al. 2004).

The canonical rupture behaviour when viewed via the temporal contraction of the
film is similar to that for a surfactant-free bi-layer, with the film rupturing in finite
time (figure 4b). However, the bi-layer film thickness profiles now reveal an entirely
different rupture mechanism whereby layer 2 thins with time through excitation of the
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FIGURE 5. Nonlinear simulations of free-film rupture for a surfactant-laden layer 1 with
a large viscosity contrast, governed by (4.4), with C1=C2= 1, µ̃= 2, hc1= hc2= 0.1 and
δ= 0.01 for (a) an initially varicose perturbation with A1= 0 and A3= 25, and (b) a case
where van der Waals attractions act in both layers simultaneously with A1 =A3 = 2.

initial perturbation, during which layer 1 remains of order-one thickness (figure 4c–f ).
Once layer 2 becomes sufficiently thin the cutoff term in the van der Waals potential
(4.8) becomes important (hc2> 0) and a film of constant thickness is extruded in layer
2 (figure 4f ). Unlike in the surfactant-free case, we now observe a deformation in the
centreline between the two fluids. Such behaviour is indicative of a separated rupture,
as observed in the experiments when surfactant is adsorbed at the water–air interface.
We refer to such dynamics as dewetting.

Although we posed a sinuous initial perturbation (as it emerges for this case that
h′2<0), in which layer 1 is bulged and layer 2 is contracted at x=0, which lends itself
to promoting isolated rupture in layer 2, we find that even when the initial condition is
varicose the system still exhibits isolated-rupture behaviour, as illustrated in figure 5(a).
Thus, the separated rupture is not simply an artefact of a fortuitous choice of initial
perturbation. Furthermore, the isolated rupture is not restricted to a carefully chosen
van der Waals force configuration and is observed even when the van der Waals forces
in both layers are comparable, as illustrated in figure 5(b), where in this case the
isolated rupture is observed in layer 1.

4.2. Case 2: order-one viscosity contrast
4.2.1. Governing equations

In the limit when µ=O(1) the leading-order governing equations become

∇ · u1 = 0, p̃1,x + φ1,x = u1,yy, p̃1,y + φ1,y = 0, H − h1 < y<H, (4.9a)
∇ · u2 = 0, p̃2,x + φ2,x =µu2,yy, p̃2,y + φ2,y = 0, H < y<H + h2. (4.9b)

The leading-order boundary conditions are

v1 = (H − h1)t, u1 = 0, −p̃1 =−C1(H − h1)xx, (4.9c)

on y=H − h1,

u1 = u2, v1 = v2 =Ht + u1Hx, µu2,y = u1,y, −p̃2 + p̃1 =−Hxx, (4.9d)
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on y=H and

v2 = (H + h2)t + u2(H + h2)x, u2,y = 0, −p̃2 =C2(H + h2)xx, (4.9e)

on y=H + h2.
Since p̃1 and p̃2 are independent of y, the x-momentum equations in (4.9a,b) can

be integrated to construct the velocity profile across both layers. Combining with the
continuity and kinematic conditions, the leading-order governing equations for the
thicknesses of both layers are then given by

h1,t −
(

h3
1

3
p1,x +

h2
1h2

2µ
p2,x

)
x

= 0, (4.10a)

h2,t −
(

h3
2

3µ
p2,x +

h1h2
2

µ
p2,x +

h2
1h2

2
p1,x

)
x

= 0, (4.10b)

where pj (j = 1, 2) is again given by (3.4). As before, the shape of the bi-layer
midline is given by (3.5). It is interesting to note that these governing equations for
a bi-layer free film with order-one viscosity contrast and a surfactant-laden interface
are equivalent to those derived by Pototsky et al. (2004) (although their system was
expressed in variational form) for a bi-layer film on a rigid substrate. Their analysis
focused on the final static profile of the bi-layer system, but we instead focus on the
dynamics, the order of rupture and dewetting, and examine the conditions required for
a separated rupture event.

4.2.2. Linear stability analysis
The stability properties of this system are qualitatively similar to those reported in

§ 4.1.2, and an extensive stability analysis of this system was reported by Pototsky
et al. (2004) for a bi-layer thin film on a rigid substrate. The dispersion relation is of
the form

dω2 + eω+ f = 0, (4.11a)

where

d = 36µ(1+C1 +C2)h
2
2, (4.11b)

e = −36(1+C1 +C2)(A3(3+ h2)+A1µh
2
2)k

2 + 6h
2
2

× (2µC1(1+C2)+ 3(1+µ)C1C2h2 + 6(1+C1)C2h
2
2 + 2C2(1+C1)h

3
2)k

4,

(4.11c)

f = 9A1A3(1+C1 +C2)(3+ 4h2)k4 +C1C2h
4
2(3+ 4h2)k8

− 3(3+ 4h2)(A3C1(1+C2)+A1(1+C1)C2h
4
2)k

6. (4.11d)

For these equations, the discriminant now can be negative, which reveals the
possibility for travelling waves through complex growth rates, illustrated in shaded
regions in the phase space spanned by k and A1 in figure 6(a); travelling-wave
solutions were also found by Fisher & Golovin (2007) using a weakly nonlinear
model. As µ increases the region in which travelling-wave solutions exist becomes
longer and thinner, becoming infinitely thin as µ→∞ (figure 6a), indicating why
travelling-wave behaviour was not observed in § 4.2. Again fixing the perturbation
wavenumber k=π the corresponding regions of the phase space that exhibit travelling
rupture are shown in figure 6(b).
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system with order-one viscosity contrast (4.10) at various times, illustrating the transverse
propagation of the rupture position for an initial perturbation of the form (3.10) with fixed
wavenumber k=π, C1=C2=µ=1, hc1=0, hc2=0.1, δ=0.01 ((c) t=2.000; (d) t=2.285;
(e) t= 2.290; (f ) t= 2.295).

4.2.3. Nonlinear dewetting
The system (4.10) consists of two coupled parabolic PDEs, but since this system

admits travelling instabilities we cannot, in general, assume symmetry of solutions
about x = 0. Instead we solve the governing equations (4.10) on a periodic domain
−1 6 x 6 1 using a semi-implicit time-stepping method that is first order in time,
where spatial derivatives are discretized using fourth-order centred finite differences
(similar to the method used by Stewart, Waters & Jensen 2009). To prevent finite-
time rupture we again use a modified van der Waals pressure with a cutoff at a
finite thickness as described by (4.8). Interface shapes at four different times from a
typical nonlinear simulation of travelling rupture are shown in figure 6(c–f ). Similarly
to the results for large viscosity contrast between the layers (§ 4.1) we observe the
combined thinning of layer 2 through an instability propagating to the right across
the domain, while layer 1 deforms but remains of order-one thickness (figure 6c–f ).
As the instability grows, eventually layer 2 becomes sufficiently thin to trigger the
cutoff term in the van der Waals pressure, depositing a thin precursor film of constant
thickness hc2 as layer 2 retracts across layer 1 (figure 6f ) in a similar manner to
§ 4.1.3.
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Parameter ρ1 µ1 ρ2 µ2 A1 A2 A3 A4

Value 1000 0.89 773 3.03 −0.645 2.90 0.817 2.90
Unit kg m−3 10−3 Pa s kg m−3 10−3 Pa s 10−20 J 10−20 J 10−20 J 10−20 J
Parameter γ1 γ ′1 (surf) γ2 γ0 γ ′0 (surf)
Value 70 ∼65 27 ∼50 ∼40
Unit 10−3 N m−1 10−3 N m−1 10−3 N m−1 10−3 N m−1 10−3 N m−1

TABLE 1. Typical experimental parameter values for the bi-layer system of hexadecane
and an aqueous surfactant solution ([C12TAB] = 1.4 mM) (Matsubara et al. 2003).

5. Experimental insight

Having explored a general model for the stability of a bi-layer free liquid film,
we now use this model to provide a better understanding of the experimental
observations of Feng et al. (2014). Taking hexadecane as a typical alkane, values for
the experimental parameters are listed in table 1 both for no surfactant and for an
abundance of C12TAB surfactant. The four-dimensional Hamaker constants have been
estimated using the method outlined by Pototsky et al. (2005) based on the long-range
interaction energy constructed by Israelachvili (2011) for a pair of parallel interfaces.
We use typical values for the refractive indices of the three media (air, water, alkane)
and, following Pototsky et al. (2005), we assume that the absorption frequencies of all
three media are equal (νe ≈ 3× 1015 Hz) and neglect the zero-frequency contribution.

We observe that the dimensional Hamaker constant A1 is negative, so the van der
Waals force between the air–water and oil–water interfaces is repulsive across layer 1.
In §§ 3 and 4 we assumed that the Hamaker constants were non-negative (attractive
van der Waals forces), so we now investigate the influence of repulsive van der Waals
forces on the rupture mechanics.

The dimensionless Hamaker constants defined in (2.7a) depend on the aspect ratio
of the aqueous film ε; we wish to determine how ε influences the rupture behaviour,
and so we rewrite the dimensionless Hamaker constants in the form

An = 1
ε4

A n (n= 1, . . . , 4), (5.1)

where the rescaled Hamaker constants A n (n= 1, . . . , 4) can be determined directly
from the values reported in table 1. Typical values for the dimensionless groups are
given in table 2.

For the experimental parameters in the absence of surfactant, we explore the linear
stability of the uniform state in the space spanned by the dimensionless thickness of
layer 1, ε, and the thickness contrast between the two layers, h2, in figure 7(a); the
uniform base state is unstable to the left of the curve. For these parameters we observe
that the bi-layer system is always stable when the thickness contrast between the two
layers exceeds a threshold h2 & 1.758. Setting ε = 10−4 and h2 = 1 (the point marked
with a cross in the unstable region in figure 7a) we solve (3.3) numerically using the
method outlined in § 3.3; the corresponding minimal film thickness in both layers is
illustrated in figure 7(b), while typical profiles of the film are shown in figure 7(c,d).
This example demonstrates rupture of both layers simultaneously, as predicted in § 3.1
for the model parameters.
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FIGURE 7. (Colour online) Rupture and dewetting of a bi-layer free film for the parameter
values listed in table 1 corresponding to the experiments of Feng et al. (2014). (a–d) No
surfactant on the air–aqueous interface, satisfying (3.3): (a) stability of the uniform state
in the parameter space spanned by the aspect ratio of the aqueous layer, ε, and the
thickness contrast between the layers h2; (b) minimal thicknesses of both layers at the
point marked by a cross in (a), where the inset shows a close-up of behaviour close
to rupture; simulations are initiated using (3.6) with h′2 = 1, U′ = 0 and δ = 0.01;
(c,d) typical results showing simultaneous rupture of both layers ((c) t = 1.100; (d) t =
1.149). (e–h) Abundance of surfactant on the air–aqueous interface, satisfying (4.10) for an
order-one viscosity contrast (as in § 4.2): (e) stability of the uniform state in the parameter
space spanned by ε and h2; (f ) minimal thickness of both layers at the point marked
by a cross in (e), where the inset shows a close-up of behaviour close to dewetting of
layer 2; simulations are initiated using (3.6) with h′2 = 1 and δ= 0.01; (g,h) typical stills
of an isolated rupture of the oil layer and subsequent dewetting across the water layer
((g) t= 1.385; (h) t= 1.410).
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Description Symbol Value (surfactant) Value (no surfactant)

Water film aspect ratio ε 2.5× 10−5–2.5× 10−1 2.5× 10−5–2.5× 10−1

Oil film aspect ratio εh2 2.5× 10−5–2.5× 10−1 2.5× 10−5–2.5× 10−1

Viscosity contrast for fluids 1 and 2 µ 3.41 3.41
Surface-tension contrast,
interfaces 0 and 1

C1 1.75 1.40

Surface-tension contrast,
interfaces 0 and 2

C2 0.675 0.540

Dimensionless Hamaker constant 1 A 1 −1.71× 10−15 −2.14× 10−15

Dimensionless Hamaker constant 2 A 2 7.68× 10−15 9.60× 10−15

Dimensionless Hamaker constant 3 A 3 2.17× 10−15 2.71× 10−15

Dimensionless Hamaker constant 4 A 4 7.68× 10−15 9.60× 10−15

TABLE 2. Dimensionless parameters in the model estimated from the experimental
parameters in table 1.

Similarly, for experimental parameters with an abundance of surfactant we consider
an O(1) viscosity contrast between the layers described by (4.10) in § 4.2. We
again explore the linear stability of the uniform state in the space spanned by ε
and h2, as shown in figure 7(e), where the basic state is unstable to the left of the
curve. In contrast to figure 6(a), we now find that this bi-layer system is always
unstable for any h2 provided that ε is chosen sufficiently small. For example, setting
ε = 2× 10−4 and h2 = 1 (the point marked with a cross in the unstable region in 7e)
we present nonlinear solutions of (4.10) obtained numerically using the semi-implicit
time-stepping method discussed in § 4.2.3; the corresponding minimal film thickness
in both layers is illustrated in figure 7(f ), while typical profiles of the film are shown
in figure 7(g,h). This example demonstrates an isolated rupture of the oil layer only
(figure 7g), at which point it then retracts across the aqueous layer depositing a
precursor film (figure 7h), consistent with the behaviour illustrated in § 4 for the
model parameters.

6. Discussion
We have considered the stability of a large-aspect-ratio bi-layer free film formed by

two immiscible liquid layers to van der Waals intermolecular attractions. This provides
a simple set-up that captures many of the features present in the formation of two
films as a bubble of air approaches the free surface of a water bath coated with a
thin layer of oil. Here, the experiments of Feng et al. (2014) showed that, in the
presence of surfactant in the water phase, the system exhibits a distinct rupture and
dewetting of the oil layer followed by rupture of the water layer, which can be up
to several hundreds of milliseconds later. However, later experiments by the same
authors have shown that in the absence of surfactant both the oil layer and the water
separating the bubble from the surrounding air rupture simultaneously as the bubble
penetrates the surface in almost all cases. In agreement with these experiments, we
have demonstrated that the presence of surfactant on the air–water interface holds the
key to observing a separated rupture event.

In the absence of surfactant, the gas–liquid interfaces are free of tangential stress, so
that when the liquid layers are sufficiently thin attractive forces between the interfaces
drive both the oil and water layers to thin simultaneously: distinct rupture of one layer
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is impossible. We have shown that this behaviour is universally true, with rupture
taking place in both fluids even when the van der Waals attractive force is only acting
in one layer (figure 3). However, when the air–water interface is tangentially immobile,
mimicking an abundance of surfactant, the thinning of one layer is able to induce
thickening in the other, so that isolated rupture and dewetting of one layer only is
observed (figure 4). In addition, when viscous shear is present at leading order in both
layers simultaneously, a linear stability analysis uncovered the possibility of travelling-
wave instabilities in a small parameter window (figure 6a,b) similar to those predicted
by Fisher & Golovin (2007) for films on a solid substrate, which we verified by a full
nonlinear simulation (figure 6c–f ). However, in no cases did we observe a transition
to a fully nonlinear travelling wave and subsequent suppression of rupture due to
shear (as reported in similar systems by Davis, Gratton & Davis (2010) and Kalpathy,
Francis & Kumar (2010)).

The distinction between the simultaneous and separated rupture triggered by
surfactant on the air–aqueous interface is also evident using parameter values relevant
to the experiments of Feng et al. (2014) (figure 7). When the oil and water layers are
of equal initial thickness, for a film of length 4 mm both regimes predict a comparable
critical film thickness of 608 nm (809 nm) for a surfactant-free (surfactant-laden)
system. The surfactant-laden system is always unstable when the water layer becomes
sufficiently thin (figure 7e), but in the surfactant-free case the uniform initial state is
always stable when the thickness of the oil layer exceeds that of the water layer by
a factor of approximately 1.75 (figure 7a).

Since bubbles are easily generated in nature, such a bi-layer system may be
observed when a bubble floats on the ocean surface. As a result, some of the features
highlighted by our model, such as the role of the surfactant effects and the thickness
of the oil layer, might be used to identify some control parameters that influence
the rupture behaviour in more complex real-life scenarios, such as understanding the
behaviour of oil slicks floating at sea.

The model presented herein is a deliberately simplified representation of the
experimental set-up, ignoring the large-scale curvature of the bi-layer midline and the
thinning of both layers driven by both elongation of the film and drainage due to
capillary viscous suction into the adjacent Plateau borders (Howell 1999; Anderson
et al. 2010). In addition, we have neglected the dynamics of the surfactant adsorption
and desorption onto the water–air and water–oil interfaces, restricting its influence
to the boundary condition on the air–water interface. Despite these limitations, the
model corroborates the experimental observations of Feng et al. (2014) and is able to
provide parametric regimes in which we expect to observe distinct rupture behaviour,
with regard to wettability expressed through the relative strengths of the van der Waals
forces, and regimes in which simultaneous rupture is unavoidable. Such predictions
should ultimately lead to greater control in manipulating multilayer free-film systems.
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