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� A direct-flow filter comprises a series of hollow fibers packed into a single device.
� The transmembrane pressure distribution in each fiber affects the filter performance.
� The pressure evolves with time due to pore clogging by contaminants.
� We evaluate the optimum inter-fiber spacing that maximizes the fluid processed.
� Significant improvements can be made through careful choice in the fiber spacing.
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a b s t r a c t

The local transmembrane pressure (TMP) distribution plays a crucial role in the performance of hollow-
fiber microfiltration and ultrafiltration membrane devices. A direct-flow filter comprises an array of hol-
low fibers encased within a single module. The TMP in each hollow fiber is dependent on the spacing
between neighboring fibers, and evolves with time due to pore clogging by contaminants (fouling). We
consider an idealized set-up in which the fibers are undeformable and equally spaced within the device,
and study the impact of the pore-blocking phenomena on the TMP during the filtration process. The
model is used to evaluate the optimum inter-fiber spacing that maximizes the fluid processed either after
a prescribed time or before the filter blocks and its dependence on the membrane permeability and the
fouling rate. We show that significant improvements can be made on the operating efficiency of a direct-
flow device through careful choice in the fiber spacing during fabrication.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The design of filtration modules is key to membrane technol-
ogy: the performance and economics of a membrane process is
dependent on the art and sophistication of the device manufacture
(Ho and Sirkar, 2012). As a result, exploring the scope of module
design optimization for commercial exploitation of membrane sys-
tems has become increasingly important (Sutherland, 2003;
Belfort, 2012). The filtration technique may be classified by a series
of methods. In classical dead-end filtration, the flow and filtration
direction both occur normal to the membrane surface. However, in
cross-flow filtration the feed flows parallel to the surface of the
membrane with fluid filtration occurring normal to the flow
(Noble and Stern, 1995). Each filtration technique has its merits
and downfalls. Cross-flow filtration is the de facto method when
processing high volumes of fluid. However, it is complex in
operation and capital intensive. On the other hand, dead-end filtra-
tion is straightforward to implement but cannot compete when it
comes to processing high volumes of fluid or high contaminant
concentrations. Direct-flow filtration offers an efficient combina-
tion of the benefits of both dead-end and cross-flow filtration. This
is achieved by capping the end of a crossflow device so that all the
fluid is forced to pass through the walls. Direct-flow filtration
offers superior performance in situations where low contaminant
concentrations as well as moderate fluid volumes are processed
and the product quality as well as simplicity is preferred, such as
in applications related to bio-pharmaceuticals, virus separation
and sterile filtration.

The main quantity of interest in any filtration scenario is the
rate at which fluid is processed, or the throughput. This increases
with transmembrane pressure (TMP) and filtration area. In a typi-
cal industrial application, the filtration area in a direct-flow device
is increased by bundling together many hollow fibers with porous
walls, or lumen, into a single cartridge whose end is blocked, so the
inlet is through the hollow-fiber core and the outlet is across the
porous wall (Fig. 1a). However, if the fibers are packed too closely
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ũ2

ṽ2

ũ1

ṽ1

Flux Q̃

teltuOteltuO

Sy
m

m
et

ry

Sy
m

m
et

ry

M
em

br
an

e

M
em

br
an

e

Fig. 1. (a) Schematic of a hollow-fiber direct-flow filtration device. Multiple
permeable fibers are encased within a single unit. (b) Schematic of the flow within
a single hollow fiber. The solid lines denote impermeable walls, the blue dashed
lines are permeable membrane walls, and the dotted lines indicate symmetry in the
flow. Flow enters from the bottom and passes through the permeable walls. Beyond
the capped end the fluid continues to an outlet following the black arrows. The
inside of the membrane-walled channel is denoted by Region 1 and outside is
Region 2. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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the TMP across significant proportions of the fiber walls is reduced.
As a result, despite the increased membrane area, continuing to
pack in more fibers causes the overall rate of fluid processed by
the device to fall (Karode, 2001; Herterich et al., 2016). A key ques-
tion to ask is thus how many fibers should we pack into a single
cartridge to maximize the overall fluid processing rate (Pearce,
2011)?

A mathematical model of the direct-flow process has been pro-
posed by Hurwitz (1989) by considering the fluid transport inside a
single porous tube with a capped end. The flow was determined in
the asymptotic limits of low permeability and low Reynolds num-
ber. The effect of deposition of the particles on the surface in a sin-
gle hollow-fiber dead-end filtration set-up has been examined (see,
for example, Chang et al., 2006; Serra et al., 1998), while the block-
ing behavior in a membrane when channels are packed adjacent to
one another has also been investigated (Sanaei et al., 2016). While
emphasis has been placed on the spatio-temporal distribution of
the local pressure as a function of the length and diameter of the
fibers, the effect of the proximity of the neighboring tubes was
not considered.

Herterich et al. (2016) focus specifically on the variations in
TMP in a direct-flow device by accounting for neighboring fibers,
and show that a packing fraction that maximizes the processed
fluid exists. Here the membrane permeability is assumed to be uni-
form and unchanged as the fluid is filtered. In practice, however, as
time progresses the membrane will become blocked due to the
particles that become trapped within. This reduces the wall perme-
ability and thus the ease with which subsequent fluid may be pro-
cessed. Furthermore, since the flow across the membrane varies
with axial position this will lead to spatial inhomogeneities in
the wall permeability. When operating at a fixed pressure differ-
ence across the device the effect of this membrane blocking, or
fouling, presents itself through a continual decline in the rate at
which the filtered fluid is generated. Such fouling behavior poses
significant additional complications when addressing the question
of how best to arrange the hollow fibers within a direct-flow
device.

In this paper we develop a mathematical model to determine
the optimum fiber packing criteria taking into account the mem-
brane fouling due to particle clogging with filtration time. We dis-
cuss what is meant by efficiency in a direct-flow device and show
that this is not necessarily determined by a single measurable out-
come. We identify a family of metrics that are able to classify sys-
tem optimization for a given filtration challenge, and show how
the results are affected by the blocking behavior.
2. Model development

2.1. Set-up

A direct-flow device is composed of a series of fibers packed
within a larger vessel (Fig. 1a). For simplicity we consider a slice
through such a device, analyzing an analogous two-dimensional
problem. (Such an assumption has been justified in Herterich
et al. (2016).) We consider fluid entering a single 2D channel, of

length eL and width eH , with porous walls of permeability ~j, and a
capped end (Fig. 1b). We use a Cartesian coordinate system ð~x; ~yÞ
to represent the system, where ~x denotes the distance along the
channel and ~y the direction perpendicular to the permeable chan-
nel walls.

Fluid enters the channel (Region 1) and passes through the
membrane side walls into the permeate region (Region 2). The flow
in Region 2 is influenced by the proximity of the surrounding chan-
nels in the direct-flow device. (For a single channel Region 2 would
be a quiescent bath.) Since the end of the channel is blocked, all of
the fluid must eventually flow from Region 1, through the perme-
able walls, into Region 2. We consider an array of channels with a

center–center separation 2ðeH þ eDÞ and so impose a symmetry con-

dition at ~x ¼ �ðeH þ eDÞ. This symmetry means that we only need to

solve the system for (~x; ~y) 2 ð½0; eL�; ½0; eH þ eD�Þ. We denote the mem-

brane thickness by ~h so that Region 1 occupies (~x; ~y) 2 ð½0; eL�; ½0; eH�Þ
and Region 2 occupies (~x; ~y) 2 ð½0; eL�; ½eH þ ~h; eH þ eD�Þ. The fluid
velocity field in the ð~x; ~yÞ directions in Region i (¼ 1;2) is
ui ¼ ð~uið~x; ~yÞ; ~v ið~x; ~yÞÞ, while the pressure is ~pi.

We consider an idealized set-up in which the membrane is
composed of uniformly spaced pores of initially constant radius
~r0. In practice it is inevitable that there will be some randomness
in the inter-fiber spacing, but we expect that the results of the
analysis we present will provide the averaged behavior over a ser-
ies of such devices. In addition, the model we present here may be
generalized to describe a system that is characterized by a mean
inter-fiber spacing and standard deviation about this mean. We
assume that the fluid in Region 1 is uniformly laden with particles
of radius ~a < ~r0. As the fluid passes through the membrane the par-
ticles are filtered out by adhering to the pore walls with a finite
probability. We assume, for simplicity, that these particles are neu-
trally buoyant, so that the density of the fluid is unchanged when
the particles are removed, and that the viscosity is unaffected by
the presence of the particles (though our analysis readily general-
izes to account for such variations).
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2.2. Fluid equations

Typically, for hollow-fiber membrane module configurations,eL ¼ 1:5 m and 2eH ¼ 0:7—1 mm, so that the aspect ratio,
d ¼ H=L ¼ Oð10�3Þ. The membrane is thin (e.g. typical thicknesses

h � 10 lm (Van der Bruggen et al., 2003) and so ~h=eH � 10�3) and
we can ignore the behavior within the porous walls when solving
for the flow. The Reynolds number for the channel flow is defined

as Re ¼ 2~qeH eU=~l, where eU is the typical axial velocity, ~l is the fluid
viscosity and ~q is the fluid density. For water, this gives Re � 20,
and a reduced Reynolds number dRe ¼ Oð10�2Þ � 1 (Pearce,
2011). Since the reduced Reynolds number is small and the chan-
nel is thin, the fluid flow obeys the lubrication equations (Herterich
et al., 2014).

We non-dimensionalize distances with the channel length and

exploit the small aspect ratio d ¼ eH=eL � 1. We scale the velocities
with the typical axial velocity, the pressure assumes the conven-
tional lubrication scaling, and we consider the problem on the
advective timescale:

~x ¼ eLx; ~y ¼ deLy; ~t ¼
eLeU t;

~ui ¼ eUui; ~v i ¼ deUv i ~pi ¼
~leU
d2eL pi: ð1Þ

In Region i (¼ 1;2) (0 < x < 1) the fluid satisfies the lubrication
equations

@ui

@x
þ @v i

@y
¼ 0 ð2aÞ

@pi

@x
¼ @2ui

@y2
; ð2bÞ

where pi ¼ piðx; tÞ is independent of y. Region 1 occupies the dimen-
sionless domain ðx; yÞ 2 ð½0;1�; ½0;1�Þ and Region 2 occupies the

dimensionless domain ðx; yÞ 2 ð½0;1�; ½1;1þ ‘�Þ, where ‘ ¼ eD=eH .
We apply a constant pressure difference across the filter device

so that

p1ð0; tÞ ¼ 1; p2ð1; tÞ ¼ 0: ð3a;bÞ
We also apply appropriate symmetry conditions

@u1

@y
ðx;0; tÞ ¼ 0;

@u2

@y
ðx;1þ ‘; tÞ ¼ 0; ð4a;bÞ

v1ðx;0; tÞ ¼ 0; v2ðx;1þ ‘; tÞ ¼ 0: ð5a;bÞ
The end of Region 1 and the beginning of Region 2 are capped so

we have zero perpendicular flow:

u1ð1; y; tÞ ¼ u2ð0; y; tÞ ¼ 0: ð6a;bÞ
In this model, there is a transverse flow, v1, at the capped end, x ¼ 1.
In reality, there is a no-slip condition here (v1 ¼ 0). As a result of
exploiting the slenderness of the system geometry, the order of
the system is reduced and we do not need to impose this additional
constraint. However, this no-slip condition influences the flow only
in a boundary layer of size d near the capped end (where we would
have to solve the full Stokes equations, as considered in Hurwitz
(1989)) and so we are able to neglect this effect in our model.

At the membrane we assume a filtration velocity that is propor-
tional to the transmembrane pressure difference and the perme-
ability of the membrane (i.e., Darcy flow) (Kedem and Katchalsky,
1958). This gives

v1ðx;1; tÞ ¼ v2ðx;1; tÞ ¼ jðx; tÞðp1ðx; tÞ � p2ðx; tÞÞ; ð7Þ
where
j ¼ ~j
d2eL~h ;

is a dimensionless measure of the permeability. Here we shall
assume j ¼ Oð1Þ to obtain the richest system behavior. (The limits
j� 1 and j 	 1 will be subsets of this regime.) In general, at the
permeable wall there is a tangential slip velocity, whose magnitude
is determined by a Neumann boundary condition such as that given
in Beavers and Joseph (1967). However, it has been found that this
slip is not significant for a wide range of membranes (Shipley et al.,
2010; Altena and Belfort, 1984) and so here, for simplicity, we shall
assume a no-slip boundary condition:

u1ðx;1; tÞ ¼ u2ðx;1; tÞ ¼ 0: ð8Þ
For a given permeability, j, the system (2) subject to conditions

(3-8) determines the velocities ui; v i and pressures pi for i ¼ 1;2.
In the following section we derive an equation for the evolution
of the permeability with time due the accretion of particles within
the membrane pores, to close the system.

2.3. Fouling and solute polarization

On a microscopic level, we assume that the membrane is com-
posed of an array of circular pores, of radius rðtÞ. We assume that
the membrane is undeformed under application of a transmem-
brane pressure. The dimensional flux through a pore of radius ~r
is given by Poiseuille’s law as (Ockendon and Ockendon, 1995)

eQp ¼ pð~p1 � ~p2Þ~r4
8~l~h

: ð9Þ

The net volumetric flux per unit area of membrane is therefore
given byeQ ¼ eNA

eQp; ð10Þ

where eNA is the number of pores per unit area of membrane. Eq. (7)
(expressed in dimensional terms) also gives that

eQ ¼ ~j
~l~h

ð~p1 � ~p2Þ ð11Þ

and so by equating (10) and (11) we find that the permeability is
given by

~j ¼ peNA~r4

8
: ð12Þ

The radius of the pores will shrink in response to the internal
deposition of particles and, on average, for the simplest model
for radial contraction, the pore radius following the deposition of
nðtÞ P 1 spherical particles of radius ~a < ~r is

~rð~tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~rð0Þ2 � 4

3h
~a3nð~tÞ

r
: ð13Þ

This type of blocking law is commonly called standard blocking (see,
for example, Field et al., 1995).

We assume that the concentration of particles within the fluid,
~c, is constant and so the rate at which particles adhere to a pore
will be proportional to the flux of fluid through the pore (given
by (9)) multiplied by the particle concentration ~c and the probabil-
ity that a particle will adhere to the wall, k:

dn
d~t

¼ pkð~p1 � ~p2Þ~r4~c
8~l~h

: ð14Þ

Thus, upon differentiation of (12) and use of (13) and (14)we
arrive at the evolution equation for the dimensionless wall
permeability,
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@j
@t

¼ �aðp1 � p2Þj3=2; ð15Þ

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
8peLeNA

~h3

s
k~a3~c ð16Þ

characterizes the rate of the fouling. The rate of change of perme-
ability scales with the permeability to the power of 3/2, as also
shown in Bowen et al. (1995) for a standard-blocking configuration.

Eqs. (2) and (15) subject to conditions (3-8) and an initial con-
dition for j forms a closed system for the velocities ui; v i and pres-
sures pi for i ¼ 1;2, and the permeability j.

2.4. Model reduction

Using (2b) and conditions (4a,b) and (8) gives

u1 ¼ @p1

@x
y2

2
� 1
2

� �
; ð17Þ

u2 ¼ @p2

@x
y2

2
� ð1þ ‘Þyþ ‘þ 1

2

� �
: ð18Þ

Eq. (2a) subject to (5a,b) then gives

v1 ¼ � @2p1

@x2
y3

6
� y
2

� �
; ð19aÞ

v2 ¼ @2p2

@x2
� y3

6
þ 1þ ‘

2
y2 � 1

2
þ ‘

� �
yþ 1

6
þ ‘

2
� ‘3

3

 !
: ð19bÞ

Finally, conditions (7) may be used with (19) to give

1
3
@2p1

@x2
¼ jðx; tÞðp1ðx; tÞ � p2ðx; tÞÞ; ð20aÞ

‘3

3
@2p2

@x2
¼ jðx; tÞðp2ðx; tÞ � p1ðx; tÞÞ; ð20bÞ

subject to

p1ð0; tÞ ¼ 1;
@p1

@x
ð1; tÞ ¼ 0; ð21aÞ

@p2

@x
ð0; tÞ ¼ 0; p2ð1; tÞ ¼ 0: ð21bÞ

We have thus reduced the problem to solving the system (20) sub-
ject to the boundary conditions (21), with j determined by (15).

3. Results

Beginning with an initially uniformly permeable membrane
jðx;0Þ ¼ 1 we can solve the system (20) subject to (21) to deter-
mine the pressures and initial outflow:

p1 ¼ coshðcÞ þ ‘3 þ ‘6 coshðcð1� xÞÞ þ ‘3 coshðcxÞ�
þ ‘3ð1� xÞc sinhðcÞ� ð1þ ‘6Þ coshðcÞ þ ‘3ð2þ c sinhðcÞÞ� ��1

;

ð22Þ

p2 ¼ coshðcÞ þ ‘3 � ‘3 coshðcð1� xÞÞ � coshðcxÞ�
� ‘3ð1� xÞc sinhðcÞ� ð1þ ‘6Þ coshðcÞ þ ‘3ð2þ c sinhðcÞÞ� ��1

;

ð23Þ

v jy¼1 ¼ ‘3 ‘3 coshðcð1� xÞÞ þ coshðcxÞ� �
3 ð1þ ‘6Þ coshðcÞ þ ‘3ð2þ c sinhðcÞÞ� � ; ð24Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3j0ð1þ ‘3Þ=‘3

q
.

As time progresses the pores will constrict as particles adhere to
the membrane and the wall permeability will fall, obeying (15). In
this case an analytic solution no longer exists and we must solve
the system (20) numerically. The system was discretized using a
finite-difference scheme in space and time and solved in MATLAB
using the piecewise Chebyshev polynomial interpolation Chebfun
function (http://www.chebfun.org/, Driscoll et al., 2014).

When the channels appear in isolation (i.e., ‘ ! 1) the wall per-
meability initially falls close to the inlet, where the pressure differ-
ence is greatest and the flux across the membrane is higher
(Fig. 2a). As the beginning of the membrane module blocks quickly,
the fluid begins to favor transport through the unclogged mem-
brane surface further down the channel, inducing a permeability
decline that propagates down the channel. As time progresses
the TMP rises, approaching a constant value (Fig. 2b).

The initial flux through the walls falls with distance from the
inlet (Fig. 2c). Interestingly, as the membrane blocks the flux near
the inlet drops more quickly, so the position of maximum outflow
switches to further down the channel. This suggests that the out-
flow (which is the product of j and p1 � p2, as given by (7)) is dom-
inated by the TMP, p1 � p2, to begin with and then influenced by
the permeability, jðx; tÞ, later. Such qualitative observations have
also been reported during membrane fouling by cake filtration,
where there is a critical time beyond which the cake resistance
(which is manifested in the variation of permeability) dominates
the filtration performance (Mondal and De, 2009). As t ! 1 and
the membrane blocks, the flux through the wall tends to zero
everywhere.

When neighboring channels are included there is a significant
hydrodynamic interaction between the channels, which affects
the pressure profile across the membrane. Now the flow is directed
through the membrane walls not only close to the inlet but also
near the capped end (Fig. 3c). As a result, the wall permeability
falls most quickly in these areas, while the permeability in the cen-
ter remains higher (Fig. 3a). The permeability profile exhibits a
greater level of symmetry about the midpoint of the channel and
so although the TMP still approaches unity across the channel
length, it evolves in a more symmetric manner (Fig. 3b). As such,
the filter blocks more uniformly across its length, leading to a more
uniform wall flux with increasing time (Fig. 3c). We also note that
the flux decline is faster in the early stages for the case of an iso-
lated fiber but is faster in the later stages when neighboring fibers
are introduced.

4. Module design optimization

For a given permeability j0 we are interested in the optimal
fiber spacing that maximizes the instantaneous flux per unit area
occupied by the device, expressed as,

Q‘ðt;j0; ‘Þ ¼ Qðt;j0; ‘Þ
1þ ‘

: ð25Þ

Here the flux through the system at time t is given by

Qðt;j0; ‘Þ ¼ 2
Z 1

0
u1ð0; y; t;j0; ‘Þdy ¼ �2

3
@p1ð0; t;j0; ‘Þ

@x
; ð26Þ

using (17), and so

Q‘ ¼ � 2
3ð1þ ‘Þ

@p1ð0; t;j0; ‘Þ
@x

: ð27Þ

Using (22) we can determine explicitly the optimal separation ‘ for
a given j0 (Fig. 4a inset). When j0 ¼ 1 we find that the optimal fiber
spacing that maximizes the initial flux per unit area, Q ‘ð0;1; ‘Þ is
‘ � 1:37, indicating that approximately 30% more space should be
occupied outside the channel than inside (Fig. 4a). The change in

http://www.chebfun.org/
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Q‘ð0;1; ‘Þ with ‘ is greater when the separation distance is less than
the optimum value compared with when ‘ exceeds the optimum
value, indicating that it is better to overestimate the optimum
separation distance than underestimate it.

However, the metric Q‘ð0;j0; ‘Þ only takes into account the ini-
tial filtration behavior. When we incorporate the subsequent
effects of fouling then it is the overall fluid processed that takes
precedent over the instantaneous flux. Since there are a wide
variety of applications for direct-flow filtration there is no single
metric that is able to capture filtration optimization when
membrane blocking is important. However, two typical features
that are commonly desirable to maximize are either (i) the total
volume of fluid that has been processed by the device after a set
time; or (ii) the total volume of fluid that has been processed
before the flux falls to a given fraction of its initial value (at which
point the process ceases and the filter is changed). The former is
more desirable when the filtered material needs to be processed
as fast as possible and membrane costs are minimal; the latter is
typically required when the membrane device that is used is
expensive since this allows most of the fluid to be processed before
the filter reaches the end of its useful lifetime.

To characterize property (i) we consider a metric VT , defined to
be the total volume of fluid processed per unit area occupied by the
system, after a fixed time, T:

VT ¼ 1
ð1þ ‘Þ

Z T

0
Q dt0 ¼ � 2

3ð1þ ‘Þ
Z T

0

@p1

@x
dt0: ð28Þ

using (17).
Property (ii) is captured through the metric Vb, defined to be the

total volume of fluid processed per unit volume occupied by the
systemwhen the flux has fallen to a fraction, b, of its original value:

Vb ¼ 1
1þ ‘

Z t


0
Q dt0 � 2

3ð1þ ‘Þ
Z t


0

@p1

@x
dt0; ð29Þ

where t
 is given implicitly by

Qðt
;j0; ‘Þ
Qð0;j0; ‘Þ ¼ b; ð30Þ

which may be written as

@p1ð0; t
;j0; ‘Þ
@x

¼ b
@p1ð0; t
;j0; ‘Þ

@x
; ð31Þ

using (17).
When maximizing for the total fluid processed after a given

time (VT), we find that the faster the membrane blocks due to
the contaminants, the closer the fibers should be packed
(Fig. 4b). We have seen that packing fibers more closely together
lowers the velocity across the membrane (Fig. 2c, 3c). When the
membrane blocks, the initial uneven distribution in the velocity
across the walls is smoothed out with time since blocking occurs
more quickly in those regions where the permeate flow rate is fas-
ter. This has the result of improving the uniformity in the flow
across the membrane, and thus counteracting the main disadvan-
tage of packing fibers closer together. This indicates that we should
pack fibers more closely into direct-flow devices when the contam-
inant concentration in the feed solution is higher.

If the desired outcome is to maximize the volume of processed
fluid before the filter reaches the end of its useful lifespan, Vb, con-
trary to the case where we wish to maximize VT , the optimal sep-
aration now increases with increasing fouling rate a (though the
effect is minimal and the optimal spacing does not deviate too
far from unity) (Fig. 4c). This indicates that the device should be
composed of approximately equal internal and external space
when j0 ¼ 1.

4.1. Variation of optimum separation with initial permeability

The module design specification is dependent on the initial per-
meability of the membrane, since this affects the hydrodynamic
pressure profiles in the device. As the initial permeability increases
the membrane becomes more porous, or open. As a result, the local
TMP ðp1 � p2Þ decreases, which indicates that separating the fibers
will reduce ~p2, enhance the local TMP, and thus increase the wall
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flux v jy¼1. Thus we observe that the optimum fiber separation
distance increases with permeability (Fig. 5a). As discovered in
Fig. 4b and c, the spacing ‘
T that optimizes VT reduces with increas-
ing fouling rate a, while the spacing ‘
T that optimizes Vb, increases
with the rate of fouling, though only marginally.

4.2. Dynamic design optimization

An optimum fiber separation that maximizes the total volume
processed exists, but it is sensible to ask the question whether
we can improve on the filtration efficiency even further by chang-
ing the fiber separation distance with time. To maximize the
instantaneous flux per unit area occupied at each time,
Q‘ðt;j0; ‘Þ, we find that we must reduce the separation distance ‘

as time progresses (Fig. 6). Physically this could be achieved by
squeezing together the fibers by bundling them inside a flexible
or soft cartridge. However, this may be quite complicated to
achieve both from a fabrication and operational perspective. As a
result, we must weigh the advantages against the improvement
in performance.

Choosing the inter-fiber spacing that maximizes the total vol-
ume processed over that entire given time (i.e., ‘T) offers a signifi-
cant improvement when compared with the constant choice for ‘
that maximizes the initial flux per unit area (for instance, giving
an improvement of approximately 6% when j0 ¼ 1; a ¼ 1 and
T ¼ 1:5). Dynamically changing the inter-fiber spacing ‘ðtÞ offers
a small additional improvement over this case (approximately
1.4% when a ¼ 0:5, 2% when a ¼ 1 and 2.7% when a ¼ 2) (see
Fig. 7). Although the additional benefits are unlikely to justify the
extra manufacture and operating complications of a dynamically
adjusting inter-fiber spacing, in instances where the membrane is
very expensive to manufacture this may still be a worthwhile
improvement.

5. Conclusions

We have shown and quantified the role that membrane clog-
ging plays in direct-flow filtration and the design optimization that
arises as a result. We considered an idealized direct-flow filter
composed of a series of permeable fibers packed into a single
device with equal inter-fiber spacing and showed that an optimal
separation of the individual fibers was shown to exist. Choosing
to optimize the total fluid filtered over a filtration run yielded
improvements of around to 6% compared with the fiber spacing
chosen to maximize the flux initially. Dynamically controlling the
fiber separation was found to give an additional 2% improvement.
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Although this perhaps does not justify the extra manufacture and
operating effort, in instances where maximizing the filtered fluid
is the main priority it may be worth the extra effort.

In all of the modeling presented here we assume that the fibers
are uniformly spaced. In practice there will invariably be some ran-
domness in the inter-fiber spacing. However, we expect that such
irregularities will smooth out on average so that our analysis pro-
vides the typical expected behavior of a device. The fibers were
also assumed to be rigid. Recent studies illustrate that the fibers
may deform when high transmembrane pressures are applied,
leading to increased fouling as the pore sizes increase (She et al.,
2012). An interesting generalization would thus be to study the
effect that this has on the resulting behavior, and in particular
how this adjusts the optimum packing fraction.

The work that we have presented here offers a simple frame-
work that is readily adapted to describe a specific modeling chal-
lenge, either by appropriate choices in the system parameters in
this model or by simple model generalizations. An interesting
extension of the work would be to analyse the influence of
multiple-sized solutes on the agglomeration and fouling of the
membrane module and subsequent impact on the throughput, par-
ticularly when the disparity in particle sizes is such that some par-
ticles are small enough to penetrate the membrane while others
collect as a ‘cake’ layer on the membrane surface. The present anal-
ysis offers the potential for design improvement in both existing
and new direct-flow filtration devices with open porous
membranes.
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