Press (click for links)

Mathematics for glass manufacture
Mathematics Today, June 2017.

Unifying scientific disciplines to solve emerging membrane-filtration challenges
Oxford Water, 10 April 2017.

Using mathematics to realise the potential of a novel soil-based filter
ECMI Node, 19 October 2016.

Oxford mathematicians in Indian arsenic collaboration
Oxford Water, 1 August 2016.

How mathematics can help to solve the current water crisis
ECMI Node, 26 October 2015.

Mathematics in the glass industry
ECMI Node, 23 October 2015.

Scientists make nanofibers with a hairbrush
Nanowerk, 23 September 2015.

Touch and brush spinning of nanofibers
Materials Views, 23 September 2015.

Brushing your way to nanofibres
Frogheart, 23 September 2015.

A new way to manufacture nanofibers
Nanotechnology Now, 21 May 2015.
Innovations Report, 21 May 2015.
Eureka Alert, 20 May 2015., 13 May 2015.
UGA Today, 12 May 2015.

Magnetospinning with an inexpensive magnet
Frogheart, 11 May 2015.

How to make nanofibers using a fridge magnet
Nanowerk, 11 May 2015.

Surfactant patterns: L'étrange ballet des molécules dans l'eau
Le Monde, 14 July 2014.

Publications (click for links)

[52] Glass sheet redraw through a long heater zone
D. O'Kiely, C.J.W. Breward, I.M. Griffiths, P.D. Howell & U. Lange
Under review (2017)

[51] Nematohydrodynamics for Colloidal Self-Assembly and Transport Phenomena
S. Mondal, A. Majumdar & I.M. Griffiths
Under review (2017)

[50] Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes
A. Salari, V. Gnyawali, I.M. Griffiths, R. Karshafian, M.C. Kolios, and S.S.H. Tsai
Under review (2017)

[49] Solution landscapes in nematic microfluidics
M. Crespo, A. Majumdar, A. Manuel Ramos & I.M. Griffiths.
Physica D (in press).

[48] Stochastic modelling of membrane filtration
A.U. Krupp, I.M. Griffiths & C.P. Please.
Proc. Roy. Soc. A 473: 20160948.

[47] Scaling up of multi-capsule depth-filtration systems by modeling flow and pressure distribution
A.U. Krupp, C.P. Please, A. Kumar & I.M. Griffiths.
Advances in Engineering.

[46] The role of fouling in optimizing direct-flow filtration module design
M. Wang, S. Mondal & I.M. Griffiths.
Chem. Eng. Sci., 163, 215222

[45] Lubricated wrinkles: imposed constraints affect the dynamics of wrinkle coarsening
O. Kodio, I.M. Griffiths & D. Vella.
Phys. Rev. Fluids, 2, 014202.

[44] Scaling-up of multi-capsule depth filtration systems by modeling flow and pressure distribution
A.U. Krupp, A. Kumar, C.P. Please & I.M. Griffiths.
Separation and Purification Technol., 170, 350.

[43] Optimizing the operation of a direct-flow filtration device
J.G. Herterich, Q. Xu, R.W. Field, D. Vella & I.M. Griffiths.
J. Eng. Math (online version).

[42] A multiscale method to calculate filter blockage
M.P. Dalwadi, M. Bruna, & I.M. Griffiths.
J. Fluid Mech., 809, 264.

[41] Mathematical and computational modeling of a ferrofluid deformable mirror for high-contrast imaging     (weblink)     (pdf)
A.J. Lemmer, I.M. Griffiths, T.D. Groff, A.W. Rousing & N.J.Kasdin.
Proc. SPIE 9912, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation.

[40] Designing asymmetric multilayered membrane filters with improved performance
I.M. Griffiths, A. Kumar & P.S. Stewart.
J. Membrane Sci., 511, 108.

[39] Dissecting the self-assembly kinetics of multimeric pore-forming toxins
A.A. Lee, M.J. Senior, M.I. Wallace, T.E. Woolley & I.M. Griffiths.
J. Royal Society Interf., 13, 20150762.

[38] Interfacial deformation and jetting of a magnetic fluid
S. Afkhami, L.J. Cummings & I.M. Griffiths.
Computers and Fluids, 124, 149.

[37] Propagation of a viscous film over an elastic membrane
Z. Zheng, I.M. Griffiths & H.A. Stone.
J. Fluid Mech., 784, 443.

[36] Edge behaviour in the glass sheet redraw process
D. O'Kiely, C.J.W. Breward, I.M. Griffiths, U. Lange & P.D. Howell.
J. Fluid Mech., 785, 248.

[35] Straining flow of a weakly interacting polymer–surfactant solution
C.J.W. Breward, I.M. Griffiths, P.D. Howell & C.E. Morgan.
Eur. J. Appl. Math., 26, 743.

[34] Reactive magnetospinning of nano and microfibers
A. Tokarev, O. Trotsenko, D. Asheghali, I.M. Griffiths, H.A. Stone & S. Minko.
Angewandte Chemie, 127, 13817.

[33] Understanding how porosity gradients can make a better filter using homogenization theory
M.P. Dalwadi, I.M. Griffiths & M. Bruna.
Proc. Roy. Soc. A., 471, 20150464.

[32] Touch- and brush-spinning of nanofibers
A. Tokarev, D. Asheghali, I.M. Griffiths, O. Trotsenko, A. Gruzd, X. Lin, H.A. Stone & S. Minko.
Advanced Materials, 27, 6526.

[31] Stability of a bi-layer free film: simultaneous or individual rupture events?
P.S. Stewart, J. Feng, L.S. Kimpton, I.M. Griffiths & H.A. Stone.
J. Fluid Mech., 777, 27.

[30] Mathematical modelling of multilayer surfactant self-assembly at interfaces
C.E. Morgan, C.J.W. Breward, I.M. Griffiths & P.D. Howell.
SIAM J. Appl. Math., 75, 836.

[29] Magnetospinning of nano and microfibers
A. Tokarev, O. Trotsenko, I.M. Griffiths, H.A. Stone & S. Minko.
Advanced Materials, 27, 3560.

[28] Tailoring wall permeabilities for enhanced filtration
J.G. Herterich, D. Vella, R.W. Field, N.P. Hankins & I.M. Griffiths.
Phys. Fluids, 27, 053102.

[27] Particle capture efficiency in a multi-wire model for high gradient magnetic separation
A. Eisenträger, D. Vella & I.M. Griffiths.
Appl. Phys. Lett. 105, 033508.

[26] A combined network model for membrane fouling
I.M. Griffiths, A. Kumar & P.S. Stewart.
J. Coll. Interf. Sci. 432, 10.

[25] The Marangoni flow of soluble amphiphiles
M. Roché, Z. Li, I.M. Griffiths, S. Le Roux, I. Cantat, A. Saint-Jalmes & H.A. Stone.
Phys. Rev. Lett., 112, 208302.

[24] The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls
J.G. Herterich, I.M. Griffiths, R.W. Field & D. Vella.
AIChE J., 60, 1891.

[23] The spreading of hydrosoluble surfactants on water
M. Roché, Z. Li, I.M. Griffiths, A. Saint-Jalmes & H.A. Stone.
Phys. Fluids, 25, 091108.

[22] Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment
S.S.H. Tsai & I.M. Griffiths (joint first authors), Z. Li, P. Kim & H.A. Stone.
Soft Matter, 9, 8600.

[21] An experimental and theoretical investigation of particle–wall impacts in a T-junction
D. Vigolo & I.M. Griffiths (joint first authors), S. Radl & H.A. Stone.
J. Fluid Mech., 727, 236.

[20] Control and optimization of solute transport in a thin porous tube
I.M. Griffiths, P.D. Howell & R.J. Shipley.
Phys. Fluids, 25, 033101.

[19] Asymptotic solutions of glass temperature profiles during steady optical fibre drawing
M. Taroni, C.J.W. Breward, L.J. Cummings & I.M. Griffiths.
J. Eng. Math., 80, 1.

[18] A new pathway for the re-equilibration of a micellar surfactant solution
I.M. Griffiths, C.J.W. Breward, D.M. Colegate, P.D Howell & C.D. Bain.
Soft Matter, 9 853.

[17] Kinetics of surfactant desorption at the air–solution interface
C.E. Morgan, C.J.W. Breward, I.M. Griffiths, P.D. Howell, J. Penfold, R.K. Thomas, I. Tucker, J.T. Petkov & J.R.P. Webster.
Langmuir, 28, 17339.

[16] Axial dispersion via shear-enhanced diffusion in colloidal suspensions
I.M. Griffiths & H.A. Stone.
Europhys. Lett., 97, 58005.

[15] An asymptotic theory for the re-equilibration of a micellar surfactant solution
I.M. Griffiths, C.D. Bain, C.J.W. Breward, S.J. Chapman, P.D. Howell & S.L. Waters.
SIAM J. Appl. Math., 72, 201.

[14] On the predictions and limitations of the Becker-Döring model for reaction kinetics in micellar surfactant solutions
I.M. Griffiths, C.D. Bain, C.J.W. Breward, D.M. Colegate, P.D. Howell & S.L. Waters.
J. Coll. Interf. Sci. 360, 662.

[13] Microfluidic immunomagnetic multi-target sorting – A model for controlling deflection of paramagnetic beads
S.S.H. Tsai, I.M. Griffiths & H.A. Stone.
Lab on a Chip, 11, 2577.

[12] Design of the ITER In-Vessel Coils     (weblink)     (pdf)
C. Neumeyer, I.M. Griffiths et al.
Fusion Sci. and Technol.
60, 95.

[11] Separation of magnetic beads in a microfluidic device – Modeling and experimentation
S.S.H. Tsai, J.S. Wexler, I.M. Griffiths, & H.A. Stone.
Proc. ASME Int. Mech. Eng. Cong. Exp., 6, 615.

[10] The surface-tension-driven retraction of a viscida
I.M. Griffiths & P.D. Howell.
SIAM J. Appl. Math. 70 pp.1453-1487.

[9] Mathematical modelling of non-axisymetric capillary tube drawing
I.M. Griffiths & P.D. Howell.
J.Fluid Mech. 605 pp.181-206.

[8] The surface-tension-driven evolution of a two dimensional annular viscous tube
I.M. Griffiths & P.D. Howell.
J.Fluid Mech. 593 pp.181-208.

Proceedings and Reports

[7] Mathematical modelling in the glass industry.

I.M. Griffiths.
Springer ECMI Book Series on Mathematics in Industry.

[6] Matched asymptotic expansions of glass temperature profiles during optical fibre drawing.
C.J.W. Breward, I.M. Griffiths, H. Potter & M. Taroni.
Center for Applied Mathematics and Statistics (CAMS) Research Report Series
& Proc. 27th Mathematical Problems in Industry

[5] Filtercake forming mechanisms at fracture and cavity openings
I.M. Griffiths & L.S. Gallimore.
Proc. 1st KAUST Study Group in Industry.

[4] ITER In-Vessel Coil Design and R&D
M. Kalish, I.M. Griffiths et al.
Proc. 2011 Proc. Symp Fusion Engineering.

[3] Surfactant-assisted spreading of an oil-in-water emulsion on the surface of a liquid bath
M. Roché, Z. Li, I.M. Griffiths, A. Saint-Jalmes, H.A. Stone

[2] Stability of Fiber Pulling
J.S. Abbott, R.J. Braun, K. Bhalerao, I.M. Griffiths, M. Gratton, B. Smith, C.P. Please, C.J.W. Breward & D. Boy.
Proc. Mathematical Problems in Industry 2007.

[1] In vivo delivery of drug therapy to tumours
L.R. Band, R.J.S. Booth, L.J. Cummings, R.J. Dyson, K.D. Fisher, I.M. Griffiths, J.P. Moles & S.L. Waters.
Proc. 5th Medical Study Group.