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Abstract. The family of V -variable fractals provides a means of interpolating
between two families of random fractals previously considered in the literature;

scale irregular fractals (V = 1) and random recursive fractals (V = ∞). We

consider a class of V -variable affine nested fractals based on the Sierpinski
gasket with a general class of measures. We calculate the spectral exponent

for a general measure and find the spectral dimension for these fractals. We

show that the spectral properties and on-diagonal heat kernel estimates for
V -variable fractals are closer to those of scale irregular fractals, in that it is

the fluctuations in scale that determine their behaviour but that there are also

effects of the spatial variability.

1. Introduction

The field of analysis on fractals has been primarily concerned with the construc-
tion and analysis of Laplace operators on self-similar sets. This has yielded a well
developed theory for post critically finite (or p.c.f.) self-similar sets, a class of
finitely ramified fractals [32]. One motivation for the development of such a theory,
aside from its intrinsic mathematical interest, has come from the study of transport
in disordered media. However, in this setting the fractals arise naturally in mod-
els from statistical physics at or near a phase transition and are therefore random
objects without exact self-similarity but with some statistical self-similarity.

In order to develop the mathematical tools to tackle analysis on such random
fractals one approach has been to work with simple models based on self-similar sets
but exhibiting randomness. The first case to be treated was that of scale irregular
fractals [18], [2], [25] and [11], which have spatial homogeneity but randomness
in their scaling. A more natural setting is provided by random recursive fractals,
initially constructed by [39], [12], [17], where the fractal can be decomposed into a
random number of independent scaled copies. The study of some analytic properties
of classes of random recursive Sierpinski gasket can be found in [19], [21] [23] and
[35].

More recently there has been work tackling random sets arising from critical
phenomena directly, with a particular focus on the percolation model. Substan-
tial progress has been made in the study of random walk on critical percolation
clusters in the high dimensional case, see [3] and [37]. A bridge between these two
approaches can be found in work on the continuum random tree [9], [10] or on
critical percolation clusters on hierarchical lattices [24], both of which have ran-
dom self-similar decompositions and hence have descriptions as random recursive
fractals.

In this paper we consider V -variable fractals recently introduced in [6, 7]. This
class of random fractals is defined via a family of iterated function systems and
a positive integer parameter V . It interpolates between the class of homogeneous

Date: August 19, 2016.
Key words and phrases. random fractals; Laplace operator; eigenvalue counting function; spec-

tral dimension; heat kernel estimates; spectral asymptotics; V-variable; Sierpinski gasket.

1



2 U. FREIBERG, B.M. HAMBLY, AND JOHN E. HUTCHINSON

(scale irregular) random fractals, corresponding to V = 1, and the class of random
recursive fractals, corresponding to V = ∞. As for the random recursive fractals
we can regard these V -variable fractals as determined by a probability measure on
the set of labelled trees. In this case the measure is not a product measure, but is
defined in a natural (if not completely obvious) manner which allows for at most
V distinct subtrees rooted at each level.

Our aim in this paper is to investigate the analytic properties of the class of
V -variable Sierpinski gaskets and to compare their behaviour to the scale irregular
and random recursive cases. We show their Hausdorff dimension in the resistance
metric is the zero of a certain pressure function and their spectral dimension, the
exponent for the growth of the eigenvalue counting function, is the zero of another
pressure function. The connection between these two dimensions is established.
We develop and extend standard methodology to examine more detailed properties
of the eigenvalue counting function and the on-diagonal heat kernel. These results
show that the V -variable fractals are closer to the scale irregular case, in that
their fine properties are generally determined by fluctuations in scale rather than
fluctuations which occur spatially across the fractal.

Model problems. We consider two model problems. Recall from [27] the descrip-
tion of a self-similar set as an iterated function system (or IFS) at each node of a
tree generated by the address space.

Homogeneous and Random Recursive Fractals. For the first model problem we con-
sider the two IFSs generating the Sierpinski gasket fractal SG(2) and the fractal
SG(3) defined in [18]. The scale factors for SG(2) are mass m2 = 3, length l2 = 2
and time s2 = 5. For SG(3) we have mass m3 = 6, length l3 = 3 and time s3 = 90/7.
The conductance scale factors can be computed directly, or from the Einstein re-
lation ρ = s/m, giving ρ2 = 5/3, ρ3 = 15/7. Let (M,S,L) be a triple of random
variables taking each of the values (mi, si, li) where i = 2, 3 with probabilities p, 1−p
respectively.

Then, for the V = 1 (homogeneous) case, we construct a random fractal using a
sequence taking its values in {2, 3} and applying the corresponding IFS to all sets
at a given level of construction. A realization of the first few stages can be seen
in Figure 2. Then a simple scaling analysis shows that the Hausdorff dimension
is given by df = E logM/E logL where E denotes the expectation with respect to
the probability measure generating the sequence. For the spectral dimension with
respect to the natural “flat measure” one can extend the idea from [15] and [36]
in the case of a single IFS fractal and apply a scaling argument to the Dirichlet
form together with a Dirichlet-Neumann bracketing argument, see [20]. This gives
the spectral dimension ds = 2E logM/E logS. For the V = ∞ (random recursive)
case, each IFS is chosen independently for each node at each level. In this case
we have ds = 2drf/(d

r
f + 1) where drf is the Hausdorff dimension in the resistance

metric, that is drf is such that E(M(S/M)−d
r
f ) = EM1+drfS−d

r
f = 1. The argument

again uses scaling properties of the Dirichlet form and a Dirichlet-Neumann brack-
eting argument, see [20, 21]. An alternative approach to computing the spectral
dimension for random V = 1,∞ fractals is via heat kernel estimates, see [2] and
[18, 19, 20, 21].

The second model problem is drawn from the class of affine nested fractals con-
sidered in [14]. This model interpolates between the slit triangle (which is not itself
an affine nested fractal) and SG(3). Consider 7 triangles in the configuration shown
in Figure 1 and take ` as the side length of the three triangles at the corners of
the original triangle. The side lengths of the other triangles are given as 1− 2` for
the three triangles on the centre of each side and 3`− 1 for the downward pointing
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central triangle, where 1/3 < ` < 1/2. As `→ 1/2 we have the slit triangle and at
` = 1/3 we have SG(3). We construct a homogeneous random or random recursive

l

l

3 l −1
1−2l

Figure 1. A member of the family of Sierpinski gaskets interpo-
lating SG(3) and the slit triangle, where 1/3 < ` < 1/2.

fractal by taking a suitable distribution for ` on [1/3, 1/2) and either using a se-
quence, applying the same IFS at each node in the construction tree for the V = 1
case, or independently choosing an IFS for each node in the V =∞ case.

We note that even scale irregular (V = 1) affine nested gaskets of this type
have not been treated before and as a consequence of our results we will be able
to calculate the Hausdorff and spectral dimension for the random homogeneous
version (V = 1). By the triangle-star transform, if we assume that the resis-
tance of each piece is proportional to its length, then the resistance scale factor is
(2`+ 1)/(`+ 2) in that if we take resistances on the three different types of trian-
gle to be (`+ 2)/(2`+ 1)(`, 1− 2`, 3`− 1) then this is electrically equivalent to the
triangle with unit resistance on each edge.

In Section 2 we recall from [8] the Hausdorff dimension result for V -variable
fractals, and we derive the spectral dimension from our calculations in Sections 4
and 5.

V -Variable Fractals. To understand the V -variable versions of our model problems,
first consider the V = 1 (spatially homogeneous, scale irregular) case of a V -variable
labelled tree in a manner parallel to the approach taken in the general setting.
See Figure 2. For V = 1 all subtrees rooted at each fixed level are the same,
as are the corresponding subfractals at each fixed level, hence the terminology
“homogeneous”. The subtrees at one level are typically not the same as the subtrees
at another level, hence the terminology “scale irregular”.

F(2)

F(2) F(2) F(2)

F(3) F(3) F(3)

Figure 2. The level 3 approximation to a 1-variable tree, and
the prefractal approximation to the associated 1-variable, or scale
irregular, fractal. Here the family of IFSs is F = {F (2), F (3)}
with members generating the sets SG(2) and SG(3) respectively.

For a general V -variable tree and for the corresponding V -variable fractal, there
are at most V distinct subtrees up to isomorphism rooted at each fixed level, and
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correspondingly at most V distinct subfractals up to rescaling at each fixed level
of refinement. See Figure 3 for a level 2 approximation to a V -variable tree with
V ≥ 2. In Section 2 we discuss this in some detail and see that there is a natural
probability distribution on the class of V -variable fractals for each fixed V .

The construction of V -variable trees and hence V -variable fractals will require
an assignment of a type chosen from {1, . . . , V }, as well as an IFS, to each node
of the tree. Nodes with the same type and at the same level will have identical
subtrees rooted at those nodes. The subfractals corresponding to those nodes will
be identical up to scaling. See Figure 4. We choose the IFSs according to a
probability measure and will write PV for the probability measure on the space of
trees or V -variable fractals and EV for expectation with respect to PV .

Let n(1) be a random variable denoting the first level after level 0 at which all
nodes are assigned the same type, see (13). Since the number of types is finite and
we will assume a uniform upper bound on the branching number, EV n(1) < ∞.
Note that n(1) = 1 if V = 1, and clearly EV n(1) increases with V .

We write i = i1 . . . ik for a node in the tree and denote its height or length by
|i| = k. The root node is denoted by ∅ and |∅| = 0. The Hausdorff dimension df of
the V -variable gasket formed from SG(2) and SG(3) is given PV almost surely by
the zero of a pressure function in that (PV almost surely) it is the unique df such
that EV log

∑
|i|=n(1)(`i1 ·. . .·`in(1)

)df = 0, where `ik is the length contraction factor

1/2 or 1/3 according to which of SG(2) or SG(3) is chosen. See Theorem 2.18, also
Theorem 2.19 for the general statement.

Results. For further detail see the Overview at the beginning of the following Sec-
tions 2–5.

Our main results first establish an expression for the spectral exponent over a
general class of measures and determine the spectral dimension for these fractals.
We then provide finer results of two types. We consider the eigenvalue counting
function and the on-diagonal heat kernel and obtain upper and lower bounds on
these quantities which hold for a large set of V -variable trees. Under the probability
measure PV on the trees we obtain PV almost sure results capturing more explicitly
their fluctuations. In the model problems the expectation is either over a discrete
measure on {2, 3} or over a suitable distribution on [1/3, 1/2).

We show in Theorem 4.13 that the spectral exponent can also be expressed as
the zero of a pressure function. In Theorems 4.15 and 4.17 we see that the spectral
dimension, the maximum value of the spectral exponent over all measures µ defined
using a product of weights, satisfies the equation ds/2 = drf/(d

r
f + 1) where drf is

the Hausdorff dimension in the resistance metric. This dimension in turn is the
zero of another pressure function, see Theorem 3.12.

We establish upper and lower estimates for the eigenvalue counting function
and on-diagonal heat kernel for a general class of measures. We show that the
observed fluctuations arise from two different effects. The first is due to global
scaling fluctuations as observed for scale irregular nested Sierpinski gaskets [2].
The second effect, which arises in the V -variable setting for V > 1 or V = 1 when
the contraction factors are not all the same, gives additional, though much smaller,
fluctuations due to the spatial variability of these fractals.

We first establish from Lemma 4.6 the non-probabilistic result that for a large
set of all possible V -variable trees, if N (λ) denotes the number of eigenvalues less
than λ (for the Dirichlet or Neumann Laplacian), then there is a time scale factor
Tk, a mass scale factor Mk and a correction factor Ak, such that there are constants
c1, c2 with

c1Mk ≤ N (AkTk) and N (Tk) ≤ c2Mk, ∀k.
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In the scale irregular gaskets of [2], and the V = 1 case here, this result is true for
all realizations. By construction the scale factors Mk, Tk grow exponentially in k
but we will be able to show that PV almost surely we have Ak ≤ ckβ , for some
constants c, β. The spectral exponent for any measure µ defined by a set of weights
associated with a given IFS is

ds(µ)

2
:= lim

x→∞

logN (λ)

log λ
,

and we give a formula for this quantity as the zero of a suitable pressure function.
In the case where the weights are ‘flat’ in the resistance metric we can show that
there is a function φ(λ) = exp(

√
log λ log log log λ) such that PV -almost surely

(1) c1λ
ds/2φ(λ)−c2 ≤ N (λ) ≤ c3λds/2φ(λ)c4 ,

for large λ, where ds = 2drf/(d
r
f + 1) and drf is the Hausdorff dimension in the

resistance metric.
To compare our results with previous work we note that in the V = 1 case for

nested Sierpinski gaskets it is shown in [2] that the Weyl limit for the normalized
counting function does not exist in general and we have for all realizations that

c1Mk ≤ N (Tk) ≤ c2Mk.

This leads to the same size scale fluctuations as for the V -variable case given in (1).
For the random recursive case of [21], the averaging leads to a Weyl limit in that

lim
λ→∞

N (λ)

λds/2
exists P∞ a.s.,

where ds = 2drf/(d
r
f +1) and drf is the Hausdorff dimension in the resistance metric.

We will also be able to obtain bounds on the on-diagonal heat kernel. We note
that the measures we work with in this setting do not have the volume doubling
property and hence it is harder work to produce good heat kernel estimates. In the
setting considered here we can extend the arguments of [2] and [5] to get fluctuation
results for the heat kernel. In Theorems 5.5 and 5.8 we show that the on-diagonal
heat kernel estimate is determined by the local environment. In the case where
the measure is the ‘flat’ measure in the resistance metric we can describe the small
time global fluctuations in that, PV almost surely for any point x in the fractal,

c1t
−ds/2φ(1/t)−c2 ≤ pt(x, x) ≤ c3t−ds/2φ(1/t)c4 , 0 < t ≤ c5,

for suitable deterministic constants c1, c2, c3, c4, and for all t ≤ c5, a random con-
stant independent of the point x. These are of the same order as the V = 1 case
obtained in [2] and much larger than those in the random recursive case, [23].

In the case of general measures we will see that PV -almost surely, µ-almost every
x in the fractal does not have the same spectral exponent as the counting function
(except when we choose the flat measure) and thus there will be a multifractal
structure to the local heat kernel estimates in the same way as observed in [5], [22].

We restrict ourselves to affine nested fractals based on the Sierpinski gasket in
Rd where d ≥ 2. The problem of the existence of a limiting Dirichlet form is
not solved more generally, even for the case of homogeneous random fractals. If
this problem were solved, then the techniques used here would enable more general
results to be obtained concerning V -variable fractals constructed from more general
p.c.f. self-similar sets.

The structure of the paper is as follows. We give the construction of V -variable
affine nested fractals in Section 2. We show that by using the structure of V -
variability there is a natural decomposition of the fractals at ‘necks’; a level at which
all subtrees are the same. This idea was first used by Scealy in [40]. In Section 3 we
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focus on V -variable affine nested Sierpinski gaskets and we construct the Dirichlet
form, compute the resistance dimension, and determine other properties which will
facilitate analysis on these sets. In Section 4 we treat their spectral asymptotics.
The heat kernel is dealt with in Section 5.

Acknowledgement. We particularly wish to thank an anonymous referee for un-
usually careful and detailed sets of comments. Addressing these has led to a number
of improvements in the results of the paper.

2. Geometry of V -Variable Fractals

2.1. Overview. Random V -variable fractals are generated from a possibly un-
countable family F of IFSs. Each individual IFS F ∈ F generates an affine nested
fractal. We also impose various probability distributions on F .

For motivation, consider the two model problems in the Introduction. Namely,
F = {F2, F3} is the pair of IFSs generating SG(2) and SG(3), or F is the family
of affine nested fractals F` generating the prefractal in Figure 1 for ` ∈ [1/3, 1/2).

A V -variable tree corresponding to F is a tree with an IFS from F associated
to each node, a type from the set {1, . . . , V } associated to each node, and such
that if two nodes at the same level have the same type, then the corresponding
(labelled) subtrees rooted at those two nodes are isomorphic. This last requirement
is achieved by using a sequence of environments, one at each level, to construct a V -
variable tree. Each V -variable tree generates a V -variable fractal set in the natural
way. We define a natural probability measure PV on the space of V -variable trees
(and fractals). The case V = 1 corresponds to homogeneous fractals and V → ∞
corresponds to random recursive fractals.

If all nodes at some level have the same type, the level is called a neck. Under PV ,
neck levels are given by a sequence of independent geometric random variables. In
Lemma 2.16 we record some useful results for such random variables. In Section 2.7
we recall the Hausdorff dimension result from [8] but in the framework of necks as
used in this paper, and then give a refinement by using the law of the iterated
logarithm. This provides motivation for some of the spectral results.

2.2. Families of Affine Nested Fractals. Let F be a possibly uncountable class
of IFSs F , each generating a compact fractal KF , and each defined via a set of
similitudes {ψFi }i∈SF acting on Rd, d ≥ 2, with contraction factors {`Fi }i∈SF and
SF = {1, . . . , NF }. If it is clear from the context we write K, ψi, N and S for KF ,
ψFi , NF and SF respectively, and similarly for other notation.

We will have
(2)

3 ≤ d+ 1 ≤ Ninf := inf{NF : F ∈ F } ≤ sup{NF : F ∈ F } =: Nsup <∞,
0 < `inf := inf{`Fi : 1 ≤ i ≤ NF , F ∈ F } ≤ sup{`Fi : 1 ≤ i ≤ NF , F ∈ F } =: `sup < 1.

The first inequality follows from our later constructions, see (12). The other in-
equalities are for technical reasons arising in the proof of Lemma 2.9 and in the
study of the heat kernel and spectral asymptotics. See also the comments after Def-
inition 2.14, from which it is clear that weaker conditions will suffice to construct
V -variable fractals and establish their Hausdorff dimension.

Let ΨF denote the set of fixed points of the {ψFi }i∈SF . Then x ∈ ΨF is an
essential fixed point if there exists y ∈ ΨF and i 6= j such that ψFi (x) = ψFj (y). Let
V0 denote the set of essential fixed points.

We always assume that V0 does not depend on F and is non-empty.
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Assume the uniform open set condition for the {ψFi }. That is, there is a non-
empty, bounded open set O, independent of F , such that {ψFi (O)}i∈SF are disjoint
and

⋃
i∈SF ψ

F
i (O) ⊂ O.

Let ψFi1···in = ψFi1 ◦ · · · ◦ ψ
F
in

and let

(3) V Fn =
⋃

i1,··· ,in∈SF
ψFi1···in(V0), V F∗ =

⋃
n≥0

V Fn .

Then KF = cl(V F∗ ), the closure of V F∗ .
For i1, . . . , in ∈ SF , we call ψFi1···in(V0) an n-cell and ψFi1···in(KF ) an n-complex.

For x, y ∈ Rd (x 6= y), set Hxy = {z ∈ Rd : |z − x| = |z − y|} and let Uxy : Rd →
Rd be the reflection transformation with respect to Hxy.

When we discuss analysis on V -variable fractals we further assume each KF is
an affine nested fractal. That is, the open set condition holds, |V0| ≥ 2, and:

(1) KF is connected;
(2) (Nesting) If (i1, · · · , in) and (j1, · · · , jn) are distinct n-tuples of elements

from SF , then

ψFi1···in(KF ) ∩ ψFj1···jn(KF ) = ψFi1···in(V0) ∩ ψFj1···jn(V0);

(3) (Symmetry) For x, y ∈ V0 (x 6= y), Uxy maps n-cells to n-cells, and it maps
any n-cell which contains elements in both sides of Hxy to itself for each
n ≥ 0.

We also make the technical assumption that |ψFi (V0) ∩ ψFj (V0)| ≤ 1 for all 1 ≤ i <
j ≤ NF .

2.3. Trees and Recursive Fractals. Fix a family F of IFSs as before. For our
initial purposes it is sufficient only that the IFSs consist of uniformly contractive
maps on Rd.

Each realisation of a random fractal is built by means of an IFS construction
tree, or tree for short, defined as follows.

Definition 2.1. (See Figure 3) An (IFS construction) tree T corresponding to F
is a tree with the following properties:

(1) there is a single, level 0, root node ∅;
(2) the branching number N i at each node i has 2 ≤ N i <∞ (N i ≥ 3 later);
(3) the edges with initial node i are numbered (“left to right”) by 1, . . . , N i;

where i = i1 . . . ik in the usual manner and |i| := k ≥ 1 is the level of i, or
i = ∅ in which case |i| := 0 is the level;

(4) there is an IFS F i ∈ F associated with each node i, N i = |F i| (the
cardinality of F i), and the kth edge with initial node i is associated with
the k-th function in the IFS F i.

The unique compact set K = K(T ) associated with T in the usual manner is called
a recursive fractal.

Notation 2.2. The boundary ∂T of a tree T is the set of infinite paths through T
beginning at ∅.

For i ∈ T the cylinder set [i] ⊂ ∂T is the set of all infinite paths w ∈ ∂T such
that i is an initial segment of w, written i ≺ w, with the same notation also for
i,w ∈ T .

The concatenation of two sequences i and j, where i is of finite length, is denoted
by the juxtaposition ij.
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F(3)

F(2)F(3)F(3)F(2)F(2)F(3)

Figure 3. Level 2 approximations to an IFS tree and to the asso-
ciated fractal. Here F = {F (2), F (3)} contains the IFSs generating
SG(2) and SG(3) respectively. Edges of the tree with a given ini-
tial node are enumerated from left to right; they correspond to
subcells enumerated anticlockwise from the bottom left corner of
the cell corresponding to the given node.

The truncation of i to the first n places is defined by i|n = i1 . . . in.
A cut for the tree T is a finite set Λ ⊂ T with the property that for every w ∈ ∂T

there is exactly one i ∈ Λ such that i ≺ w. Equivalently, {[i] : i ∈ Λ} is a partition
of ∂T .

For a tree T and a node i ∈ T , there will usually be associated quantities such
as an IFS F i, a type τ i ∈ {1, . . . , V } (see Definition 2.4) or a branching number
N i. In this case i is shown as a superscript.

In particular, the transfer operator σi acts on T to produce the tree σiT , where,
writing T j for the address of node j,

(4)
(
σiT

)j
:= T ij .

That is, σiT is the subtree of T which has its base (or root) node at i.
We frequently need to multiply a sequence of quantities, or compose a sequence

of functions, along a finite branch corresponding to a node i = i1 . . . in of T . In
this case, i is shown as a subscript. For example, if i = i1 . . . in then, with some
abuse of notation for the second term,

(5) `i := `i1 · . . . · `in := `F
∅

i1 · `
F i1
i2 · `

F i1i2
i3 · . . . · `F

i1...in−1

in

is the product of scaling factors corresponding to the edges along the branch i1 . . . in,
and analogously for other scaling factors. Similarly,

(6) ψi := ψi1 ◦ · · · ◦ ψin := ψF
∅

i1 ◦ ψ
F i1
i2 ◦ ψF

i1i2

i3 ◦ · · · ◦ ψF
i1...in−1

in

is the composition of functions along the same branch.

Notation 2.3 (Cells and Complexes). The recursive fractal K = K(T ) generated
by T satisfies

(7) K(T ) =

N∅⋃
i=1

ψF
∅

i

(
K(σiT )

)
=
⋃
|i|=n

ψi(K(σiT )),

where the second equality comes from iterating the first.
For |i| = n the n-complex and n-cell with address i are respectively

(8) Ki = ψi(K(σiT )), ∆i := ψi(V0),

recalling that V0 is the set of essential fixed points of F ∈ F and is the same for
all F .

We will need various sequences of graph approximations {Gn}∞n=0 to the fractal
K(T ). In particular we use the notation Gn = (Vn, En), where G0 = (V0, E0) is
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Tree and prefractal approximations

Level 2

Environment applied

Tree and prefractal approximations

Level 1

Environment applied

Tree and prefractal approximations

Level 0

V=4 with types {1,2,3,4} represented by 

Figure 4. Approximations to a 4-variable tree and the prefractal
approximations to the corresponding 4-variable fractal. The IFSs
are F (2) and F (3) generating SG(2) and SG(3). The environment
at each level is applied to the approximation at the previous level.
The IFS labels are not shown since in this case they are determined
by the branching number.
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the complete graph on V0 and

(9) Vn :=
⋃
|i|=n

ψi(V0) =
⋃
|i|=n

∆i, En :=
⋃
|i|=n

ψi(E0).

We can recover the fractal itself as K(T ) = cl(
⋃
n Vn), where cl denotes closure.

We will write x ∼n y for x, y ∈ Vn if x, y are connected by an edge in En.

2.4. V -Variable Trees and V -Variable Fractals. Fix a natural number V . For
motivation see Figure 4.

The following definition of a V -variable tree and V -variable fractal is equivalent
to that in [7] and [8], but avoids working with V -tuples of trees and fractals.

Definition 2.4. A V -variable tree corresponding to F is an IFS construction tree
T corresponding to F , with a type τ i ∈ {1, . . . , V } associated to each node i.
Moreover, if two nodes i and j at the same level |i| = |j| have the same type
τ i = τ j , then:

(1) i and j have the same associated IFS F i = F j and hence the same branch-
ing number N i = Nj ;

(2) comparable successor nodes ip and jp, where 1 ≤ p ≤ N i = Nj , have the
same type τ ip = τ jp.

The recursive fractal K = K(T ) associated to a V -variable tree T as above is
called a V -variable fractal corresponding to F .

The class of V -variable trees and class of V -variable fractals corresponding to
F are denoted by ΩV = ΩF

V and KV = KF
V respectively.

Remark 2.5. A V -variable tree has at most V distinct IFSs associated to the
nodes at each fixed level. If two nodes at the same level of a V -variable tree have
the same type then the subtrees rooted at these two nodes are identical, i.e.

(10) |i| = |j| & τ i = τ j =⇒ σiT = σjT.

In particular, for each level, there are at most V distinct subtrees rooted at that
level.

A 1-variable tree is essentially the same as an IFS tree which generates a scale
irregular or homogeneous fractal as in [18], [20] and [2].

The following is used in the construction and analysis of V -variable fractals.

Definition 2.6. An environment E assigns to each type v ∈ {1, . . . , V } both an

IFS Fv ∈ F and a sequence of types (τv,i)
|Fv|
i=1 , where |Fv| is the number of functions

in Fv. We write

(11) E =
(
E(1), . . . , E(V )

)
, E(v) =

(
FEv , τ

E
v,1, . . . , τ

E
v,|Fv|

)
.

For a pictorial example see Figure 4. For the following consider the case n = 2
in Figure 4.

Construction 2.7. A V -variable tree is constructed from a sequence of environ-
ments (Ek)k≥1 in the natural way as follows:

Stage 0 : Begin with the root node ∅ and an initial type τ∅ assigned to this node.
Stage 1 : Use E1 and the type τ∅ in the natural way to assign an IFS to the level 0

node, construct the level 1 nodes and assign a type to each of them.
More precisely, use E1(v) where

v := τ∅, E1
(
v
)

=
(
FE

1

v , τE
1

v,1 , . . . , τ
E1

v,|FE1
v |

)
,

to assign the IFS F ∅ := FE
1

v to the node ∅ and in particular determine the

branching number N∅ :=
∣∣FE1

v

∣∣ at ∅, and to assign the type τ j := τE
1

v,j to
each level 1 node j.
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...
Stage n: (By the completion of stage n − 1 for n ≥ 2, an IFS F i will have been

assigned to each node i of level |i| ≤ n− 2, all nodes j of level |j| ≤ n− 1
will have been constructed and a type τ j will have been assigned to each.)

Use En in the natural way to assign an IFS to each level n − 1 node
according to its type, to construct the level n nodes and to assign a type
to them.

More precisely, use En(v) for 1 ≤ v ≤ V where

En
(
v
)

=
(
FE

n

v , τE
n

v,1 , . . . , τ
En

v,|FEnv |

)
,

to assign the IFS F i := FE
n

v to each level n − 1 node i of type v and in
particular to determine the branching number N i :=

∣∣FEnv ∣∣ at the node i,

and to assign the type τ ij := τE
n

v,j to the level n node ij.

It follows by an easy induction that the properties in Definition 2.4 hold at all
nodes. �

Assumption 2.8. In the following lemma, and in Section 3 and subsequently, we
assume

(12)
V0 is the set of vertices of an equilateral tetrahedron in Rd for some d ≥ 2,

E0 is the set of edges such that G0 = (V0, E0) is the complete graph on V0.

To emphasise this we often write “V -variable gasket” for “V -variable fractal”, “gas-
ket” for “fractal” etc.

Moreover, we take the open set O in the open set condition to be the interior of
the tetrahedron with vertex set V0 and assume the uniform nesting condition; that
is condition (2) of the definition of affine nested fractal in Section 2.2 with KF

replaced by O.

We note that under our assumption that `sup < 1 we have that {Ki|n}n is
a decreasing sequence of closed sets and thus has a non-empty limit. Thus, for
any V -variable fractal K, there is a well defined address map π : ∂T → K with
{π(i)} = ∩∞n=1Ki|n. Under the open set condition we know that for x ∈ K we have

π−1(x) is a finite set, see Falconer [13] Lemma 9.2.

Lemma 2.9. Let K be a V -variable gasket. Then
(1) K is pathwise connected and hence connected
(2) K is nested: For all i, j ∈ T , if [i]∩[j] = ∅, then ψi(O)∩ψj(O) = ψi(V0)∩ψj(V0)
and hence Ki ∩Kj = ψi(V0) ∩ ψj(V0).

Proof. (1) Fix a vertex x0 ∈ V0. Suppose π(i), π(j) ∈ K. For each n there is a
polygonal path in K joining ψi|n(x0) to ψj|n(x0), given by a continuous function
fn : [0, 1] → K. Moreover, using the uniform bounds Nsup < ∞ and `sup < 1,
these paths can clearly be constructed so they converge uniformly to a continuous
function f : [0, 1] → K. (See the proof of Theorem 1.6.2 in [32].) This establishes
pathwise connectedness.

(2) In our setting this is straightforward to see as if [i] ∩ [j] = ∅, there exists
a k of maximal length with k ≺ i and k ≺ j, such that ψi(O) ⊂ ψk(O) and
ψj(O) ⊂ ψk(O). If we write i = ki1 . . . and j = kj1 . . . , then i1 6= j1 and by

the uniform nesting condition in Assumption 2.8 we have ψki1(O) ∩ ψkj1(O) =
ψki1(V0) ∩ Vkj1(V0). If the intersection is empty we are done. Otherwise, by
our technical assumption on affine nested fractals (at the end of Section 2.2) that

|ψFk

i1
(V0) ∩ ψFk

j1
(V0)| ≤ 1, there is a single intersection point which is the image

of a fixed point in V0. If ψi(O) ∩ ψj(O) 6= ∅, this is the intersection point of
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ψi(O) ∩ ψj(O) and therefore of ψi(V0) ∩ ψj(V0) as required. If ψi(O) ∩ ψj(O) = ∅
we are done. �

2.5. Random V -Variable Trees and Random V -Variable Fractals.

Definition 2.10. Fix a probability distribution P on F . This induces a probability
distribution PV on the set of environments as follows. Choose the IFSs FEv for v ∈
{1, . . . , V } in an i.i.d. manner according to P . Choose types τEv,j for 1 ≤ j ≤ |FEv | in
an i.i.d. manner according to the uniform distribution on {1, . . . , V } and otherwise
independently of the FEw .

Definition 2.11. The probability distribution on the set ΩV of V -variable trees is
obtained by choosing τ∅ ∈ {1, . . . , V } according to the uniform distribution and
independently choosing the environments at each stage in an i.i.d. manner accord-
ing to PV . This probability distribution on V -variable trees induces a probability
distribution on the set KV of V -variable fractals. Both the probability distribution
on trees and that on fractals are denoted by PV . We will write EV for expectation
with respect to PV .

Random V -variable trees and random V -variable fractals are random labelled
trees and random compact subsets of Rd respectively, having the distribution PV .
Later, when we add additional scale factors for resistance and weights associated
with each F ∈ F , we will assume they are measurable with respect to F ∈ F .

Although the distribution PV on environments is a product measure, this is far
from the case for the corresponding distribution PV on ΩV and KV . There is a high
degree of dependency between the types (and hence the IFSs) assigned to different
nodes at the same level.

Remark 2.12. The classes KV interpolate between the class of homogeneous frac-
tals in the case V = 1 and the class of recursive fractals as V →∞. The probability
spaces (KV , PV ) interpolate between the natural probability distribution on homo-
geneous fractals in the case V = 1 and the natural probability distribution on the
class of recursive fractals as V →∞. See [6] and [7].

Notation 2.13. It will often be convenient to identify the sample space for random
quantities such as trees, fractals, functions associated to a branch of a tree, etc.,
with the set ΩV of V -variable trees. We use ω to denote a generic element of ΩV
and combine this with other notations in the natural manner. Thus we may write
Tω, Kω, ψωi etc.

In particular, σiω is the transfer operator defined in Notation 2.2 for a tree T .
See for example the first equality in (27). However, we usually suppress ω as in the
second equation in (27).

2.6. Necks. The notion of a neck is critical for the analysis that follows.

Definition 2.14. The environment E in Definition 2.6 is a neck if all τEv,i are equal.
A neck for a V -variable tree ω is a natural number n such that the environment

E applied at stage n in the construction of ω is a neck environment. In this case
we say a neck occurs at level n. If i is a node in ω and |i| = n, then i is called a
level n neck node.

If a neck occurs at level n then the type assigned to every node at that level
is the same. See Figure 5. It follows from Remark 2.5 that all subtrees rooted at
level n will be the same. Note that the subtrees themselves are only constructed at
later stages, and even the common value of the IFS at a level n neck node is not
determined until stage n+ 1.



SPECTRAL ASYMPTOTICS FOR V -VARIABLE SIERPINSKI GASKETS 13

Level 2

Level 1

Tree and prefractal approximations

Environment applied

Tree and prefractal approximations

Figure 5. Compare with Figure 4, except that now a neck occurs
at level 2. All subtrees rooted at this level will be the same, al-
though they have not yet been constructed. All 2-complexes will be
the same up to scaling by factors determined by the construction
up to this level.

There is however no restriction on the IFSs occurring in a neck environment E.
For a level n neck these IFSs are applied at level n− 1.

Because there is an upper bound on the number of functions NF in any IFS
F ∈ F , there is only a finite number of type choices to be made in selecting an
environment. It follows that necks occur infinitely often almost surely with respect
to the probability PV defined in Definition 2.11. The sequence of neck levels in the
construction of a V -variable tree or fractal is denoted by

(13) 0 = n(0) < n(1) < · · · < n(k) < · · · .

Under PV the sequence {n(k) − n(k − 1)}∞k=1 of times between necks is a se-
quence of independent and identically distributed geometric random variables, and
in particular the expected first neck satisfies

(14) EV n(1) <∞.

Many of our future estimates rely on various a.s. properties of necks. However,
some estimates just require that there be an infinite sequence of necks satisfying a
certain condition. For this reason we make the definition:
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Definition 2.15. For 0 < a ≤ 1 let ΩV,a ⊂ ΩV be the set of V -variable trees with
an infinite sequence of necks satisfying∑

j

an(j)−n(j−1) =∞.

We next give an elementary result on the asymptotic behaviour of a sequence of
geometric random variables (Yk)k≥1. It follows that Yk grows at most logarithmi-
cally in k, and powers of Yk grow at most geometrically, with similar results for the
maximum and the empirical mean of {Y1, . . . , Yk}.

The following is standard but included for completeness. Note that the Yk need
not actually be geometric random variables.

Lemma 2.16. Suppose {Yk}∞k=1 is a sequence of not necessarily independent ran-
dom variables with P (Yk > x) ≤ Apx, for all x > 0, where A > 0 and 0 < p < 1
are constants. Suppose n ≥ 1 is a natural number. Then a.s.

lim sup
k→∞

Ynk
log k

≤ 1

log 1/p
, lim sup

k→∞

max1≤i≤nk Yi
log k

≤ 1

log 1/p
,(15)

lim sup
k→∞

∑nk
i=1 Yi

k log k
≤ 2n

log 1/p
.(16)

Proof. The case n > 1 is a direct consequence of the case n = 1, which we establish.

Suppose ε > 0. Since P (Yk > x) ≤ Apx for x > 0,∑
k≥1

P

(
Yk >

(1 + ε) log k

log 1/p

)
≤ A

∑
k≥1

p(1+ε) log k/(log 1/p) = A
∑
k≥1

k−(1+ε) <∞.

Hence by the first Borel-Cantelli lemma,

lim sup
k→∞

Yk
log k

≤ 1 + ε

log 1/p
a.s.

Since ε > 0 is arbitrary, the first inequality in (15) follows.

The second inequality in (15) is now an elementary consequence. Suppose δ > 0.
Using the first inequality in (15) to get the second inequality below, P a.s. there
exists k0 = k0(ω, δ) such that k ≥ k0 implies

max
k0≤i≤k

Yi
log k

≤ max
k0≤i≤k

Yi
log i

≤ 1

log 1/p
+ δ.

Hence

lim sup
k→∞

max
k0≤i≤k

Yi
log k

≤ 1

log 1/p
+ δ a.s.

Replacing k0 by 1 and letting δ → 0 in the above implies the second inequality
in (15).

For (16) fix γ > 0. Then∑
k≥1

P

(
k∑
i=1

Yi >
γk log k

log 1/p

)
≤
∑
k≥1

k∑
i=1

P

(
Yi >

γ log k

log 1/p

)
≤
∑
k≥1

kApγ log k/ log 1/p = A
∑
k≥1

k1−γ <∞, if γ > 2.

By the first Borel-Cantelli lemma, if γ > 2,

lim sup
k→∞

∑k
i=1 Yi

k log k
≤ γ

log 1/p
a.s.

This gives (16). �
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We also include a decomposition of sums of products of scale factors.
It may help to note that the factors on the right side of (18) in the next Lemma

are calculated by first choosing and fixing, for each j = 1 . . . k, an arbitrary node
of T at level n(j − 1). For fixed j all subtrees of T rooted at this level are identical
by the definition of a neck. The factor in (18) is the sum, of products of spi type
weights, along all paths in such a subtree starting from its root node and ending
at a first neck level node. There is a one-one correspondence between the set of
such paths in the subtree and the set of paths in the original tree starting from the
chosen node at level n(j − 1) and ending at a level n(j) node.

Lemma 2.17. Let si = sFi ∈ R for i = 1, . . . , NF be scaling factors associated with
each family F , where

(17)
0 < sinf := inf{sFi : i ∈ 1, . . . , NF , F ∈ F },

ssup := sup{sFi : i ∈ 1, . . . , NF , F ∈ F } <∞.

Then, writing si = si1 · . . . · sin for i = i1 . . . in ∈ T , and with s
(j)
i defined in the

natural way in the body of the proof, we have

(18)
∑

i∈T,|i|=n(k)

si =

k∏
j=1

( ∑
|i|=n(j)−n(j−1)

s
(j−1)
i

)
.

Moreover,

(19) lim
k→∞

1

k
log

∑
|i|=n(k)

si = EV log
∑
|i|=n(1)

si PV a.s.

Proof. Let T (k) denote the unique subtree of T rooted at the neck level n(k), so
that in particular T (0) = T .

Then, as explained subsequently (and following the notation of (5) but with the
F there suppressed),∑
i∈T,|i|=n(k)

si =
∑

i∈T,|i|=n(k)

s∅i1 · s
i1
i2
· si1i2i3

· . . . · si|(n(k)−1)
in(k)

=
∑

i∈T,|i|=n(k)

{(
s∅i1 · s

i1
i2
· si1i2i3

· . . . · si|(n(1)−1)
in(1)

)
·
(
s
i|n(1)
in(1)+1

· si|n(1)+1
in(1)+2

· . . . · si|(n(2)−1)
in(2)

)
· . . .

·
(
s
i|n(k−1)
in(k−1)+1

· si|n(k−1)+1
in(k−1)+2

· . . . · si|(n(k)−1)
in(k)

)}
=

∑
i∈T (0),|i|=n(1)

s
(0),∅
i1
· s(0),i1
i2

· s(0),i1i2
i3

· . . . · s(0),i|(n(1)−1)
in(1)

×
∑

i∈T (1),|i|=n(2)−n(1)

s
(1),∅
i1
· s(1),i1
i2

· s(1),i1i2
i3

· . . . · s(1),i|(n(2)−n(1)−1)
in(2)−n(1)

· . . .

×
∑

i∈T (k−1),|i|=n(k)−n(k−1)

s
(k−1),∅
i1

· s(k−1),i1
i2

· s(k−1),i1i2
i3

· . . . · s(k−1),i|(n(k)−n(k−1)−1)
in(k)−n(k−1)

=

( ∑
|i|=n(1)

s
(0)
i

)
·

( ∑
|i|=n(2)−n(1)

s
(1)
i

)
· . . . ·

( ∑
|i|=n(k)−n(k−1)

s
(k−1)
i

)
.

(20)

The first and last equality are immediate from the definitions. The second equal-
ity is just a bracketing of terms.
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For the third equality note that each n(j) is a neck. A term such as s
i|n(1)
in(1)+1

,

which corresponds to the edge in T from i|n(1) = i1 . . . in(1) to i1 . . . in(1)in(1)+1, is
independent of i|n(1) and can also be regarded as corresponding to the level one
edge from ∅ to in(1)+1 of the unique tree T (1) rooted at every level n(1) node. Thus

we rewrite s
i|n(1)
in(1)+1

as s
(1),∅
i1

, with an abuse of notation in that i and in(1)+1 in the

first term refer to words from T = T (0) whereas i1 in the second term is the first

element of a word from T (1). Similarly, s
i|n(1)+1
in(1)+2

is also independent of i|n(1) and

can also be regarded as corresponding to a level two edge from T (1), etc. Now use
simple algebra to put the summations inside the parentheses.

The final equality is a rewriting of the previous line and provides the definition

of s
(j)
i .

For the PV almost sure convergence in (19) let

Xk = log
∑

|i|=n(k)−n(k−1)

s
(k−1)
i , k ≥ 1.

By construction the Xk are i.i.d. and in particular X1 = log
∑
|i|=n(1) si. By the

bounds on si we have

EV |X1| ≤
∑
n≥1

P
(
n(1) = n

)
max

{∣∣ log
(
Nn

sups
n
sup

)∣∣, ∣∣ log
(
Nn

infs
n
inf

)∣∣}
= max

{∣∣ log
(
Nsupssup

)∣∣, ∣∣ log
(
Ninfsinf

)∣∣}EV n(1) <∞.

Hence, using (18), the PV almost sure convergence follows from the strong law
of large numbers for the sequence {Xk}. �

2.7. Hausdorff and Box Dimensions. Assume that the family of IFSs F satisfies
the open set condition as in Section 2.2. We do not here require the affine nested
condition. Recall the notation from Section 2.2 and from Notation 2.2.

Splitting up and treating the necks in the manner here was done first by Scealy
in his PhD thesis [40].

Theorem 2.18. Suppose K is the random V -variable fractal generated from F .
Then the Hausdorff and box dimension of K is PV a.s. given by the unique α such
that

(21) EV log
∑
|i|=n(1)

`i
α = 0.

Proof. See the Main Theorem in Section 4.4 of [8]. The expression there for the
pressure function is equal to the simpler expression here. This in turn leads to a
simpler proof of that theorem, still along the lines of Lemma 5.7 in [8] but working
with a single neck as in the (somewhat more complicated) proofs of Theorems 3.12
and 4.13. �

We give a slight refinement of this result.

Theorem 2.19. There exists a constant C such that

(22) lim sup
k→∞

1√
k log log k

log
∑
|i|=n(k)

`i
α = C, PV a.s.

Proof. We can apply Lemma 2.17 with si = `αi
Since EV log

∑
|i|=n(1) `i

α = 0, limk→∞
1
k log

∑
|i|=n(k) `i

α = 0, PV a.s. Using

the bounds (2) on NF and `F it is easy to check that EV

(
log
∑
|i|=n(1) `i

α
)2

<∞.

The law of the iterated logarithm for the sequence of random variables {Xk}∞k=1,
where Xk is as in the proof of Lemma 2.17 with si = `αi , now implies the result. �
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3. Analysis on V -Variable Sierpinski Gaskets

3.1. Overview. Recall Assumption 2.8. Our V -variable affine nested gaskets are
connected and nested by Lemma 2.9 but they need not have spatial symmetry, in
contrast to the scale irregular nested gaskets considered in [2].

In order to study analysis on these V -variable affine nested fractals we define
in Section 3.2 their Dirichlet forms and show that these are resistance forms. We
also show that the resistance metric between points is comparable to an appropriate
product of resistance factors. In Section 3.3 we introduce general families of weights
and measures and prove a few basic properties. We introduce in Section 3.4 the
notion of the cut set Λk, where each cut is at a neck level and the crossing time for
the corresponding neck cell is of order e−k. Asymptotic properties of various quan-
tities associated with these neck cells are established. In Section 3.5 we show the
Hausdorff dimension in the resistance metric is given by the zero of an appropriate
pressure function.

3.2. Dirichlet and Resistance Form. The construction of the Dirichlet form
follows [32] and is very close to [35] Section 22.

Assume as given a harmonic structure (D, ρF ) for each IFS F in the family F .
Since all our affine nested fractals are based on the same triangle or d-dimensional
tetrahedron with vertices V0, the matrix D will be independent of F and is given
by

(23) D(x, y) = 1, ∀x, y ∈ V0 with x 6= y, D(x, x) = −d, ∀x ∈ V0.

Vectors ρF = (ρF1 , . . . , ρ
F
NF ), specifying the conductance scaling factors to be ap-

plied to each cell, will be chosen to respect the symmetries of the limiting fractal.
Assume

(24)
1 < ρinf := inf{ρFi : 1 ≤ i ≤ NF , F ∈ F },

ρsup := sup{ρFi : 1 ≤ i ≤ NF , F ∈ F } <∞.

The associated renormalization map for each F ∈ F is assumed to have the usual
fixed point property. We now state this more formally.

Let

(25) E0(f, g) =
1

2

∑
x,y∈V0

(
f(x)− f(y)

)(
g(x)− g(y)

)
be the Dirichlet form on the graph G0 = (V0, E0) with conductances determined
by the matrix D. Each edge is summed over twice, and hence the factor 1/2.

The choice of ρF is such that

(26) E0(f, f) = inf

{ NF∑
i=1

ρFi E0

(
h ◦ ψFi , h ◦ ψFi

) ∣∣∣∣h : V1 → R, h|V0
= f

}
.

One can also regard this as placing conductors ρFi on each edge of the 1-cell with
address i, which ensure that the effective resistance between any two vertices of G0

in the graph G1 is the same as the effective resistance between the vertices in the
graph G0 itself — see Notation 2.3 and (31).

Define Fn := {f | f : Vn → R}. Use recursion on n ≥ 1 to define

(27)

Eωn(f, g) =

Nω,∅∑
i=1

ρω,∅i E
σiω
n−1

(
f ◦ ψω,∅i , g ◦ ψω,∅i

)
∀f, g ∈ Fωn ,

i.e. En(f, g) =

N∅∑
i=1

ρ∅i E
σi

n−1

(
f ◦ ψ∅i , g ◦ ψ∅i

)
∀f, g ∈ Fn.
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It follows that

(28) En(f, g) =
∑
|i|=n

ρi E0
(
f ◦ ψi, g ◦ ψi

)
,

where ρi and ψi are as in Notation 2.2.
The sequence of forms (En,Fn) can be thought of as corresponding to conduc-

tances ρi on the edges of the cell ∆i in the graph Gn, where |i| = n.
One next defines a resistance form first on V∗ :=

⋃
n≥0 Vn and then on its closure

K in the standard manner as follows. Firstly, as in [32] Section 2.2, by the defini-
tion of the conductance scale factors ρFi , one has monotonicity of the sequence of
quadratic forms Eωn(f, f). Thus we can define

Fω,∗ = {f |f : V ∗ → R, lim
n→∞

En(f, f) <∞}

Eω(f, f) = lim
n→∞

Eωn(f, f) ∀f ∈ Fω,∗.

Using the definition of the effective resistance R in (31) with K replaced by V∗,
one shows that R is a metric on V∗ as in Theorem 2.1.14 and Proposition 2.2.4 of
[32]. We then need to show that we can extend the form on V∗ to a form on K.
To do this we follow [32] Section 3.3 and show (V∗, R) is uniformly homeomorphic
to (V∗, |.|), so that completing V∗ in the resistance metric induces the Euclidean
topology on K.

It is straightforward to establish, noting definition (32), the natural analogue
of Lemma 3.3 and Corollary 3.4 for V∗, without utilising Theorem 3.2. It is also
possible to see that

inf
x∈Ki∩V∗,y∈Kj∩V∗

R(x, y) > 0,

for any i, j ∈ T with |i| = |j| and Ki ∩Kj = ∅. The proof is a minor modification
of that of [35] Lemma 22.6.

Thus we have that f ∈ Fω,∗ is uniformly continuous with respect to |.| and
hence can be canonically identified with its unique continuous extension to K so
that Fω,∗ can be identified with

Fω = {f |f : K → R, f is continuous, lim
n→∞

Eωn(f, f) <∞}.

One can now define a limit form on K by

(29) Eω(f, f) = lim
n→∞

Eωn(f, f) ∀f ∈ Fω

where f : K → R.

Remark 3.1. The construction of the Dirichlet form (Eω,Fω) is carried out in
detail for the case of all realizations of a certain class of random recursive Sierpinski
gaskets in [35] Section 22. Although there are differences in the underlying class of
Sierpinski gaskets, the realizations of our V -variable fractals built from the same
gaskets will be possible realizations of these random recursive gaskets (for example
the first model problem mentioned in the introduction).

It follows from the definitions that there is a decomposition of the limit form for
any cut Λ of the tree Tω, see Notation 2.2. Namely, for continuous f : K → R we

have f ∈ Fω if and only if f ◦ ψi ∈ Fσ
iω for any i ∈ Λ, and

(30) Eω(f, g) =
∑
i∈Λ

ρi Eσ
iω(f ◦ ψi, g ◦ ψi) ∀f, g ∈ Fω.

Note the case Λ = {i : |i| = k} for some k and the case Λ = Λk as in (51). The
result (30) in the first of these cases with k = 1 is essentially just a consequence
of the scaling property (27) and letting n → ∞. The general result follows from
iterating this down the various levels corresponding to the partition Λ.
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The effective resistance metric between any pair of points x, y ∈ K is defined by

(31)

R(x, y)−1 = inf
{
E(f, f) : f(x) = 0, f(y) = 1

}
= inf

{
E(f, f)

|f(x)− f(y)|2
: f(x) 6= f(y)

}
.

The proof this is a metric is essentially in Theorem 2.1.14, Section 2.2 and Lemma 2.3.9
of [32].

Recall that (E ,F) is a local regular Dirichlet form on L2(K,µ) if it has the
following properties:

(1) closed : F is a Hilbert space under the inner product (f, g) 7→ E(f, g) +∫
fg dµ;

(2) Markov or Dirichlet : E(f, f) ≤ E(f, f) if f is obtained by truncating f
above by 1 and below by 0;

(3) core or regular : if C(K) is the space of continuous functions on K then
C(K) ∩ F is dense in F in the Hilbert space sense and dense in C(K) in
the sup norm;

(4) local : E(f, g) = 0 if f and g have disjoint supports.

For (E ,F) to be a resistance form it is sufficient that in addition R defines a metric,
and in particular that R(x, y) is finite and non zero if x 6= y.

Theorem 3.2. For each ω ∈ Ω and each finite Borel regular measure µω on
Kω with full topological support, (Eω,Fω) defines a local regular Dirichlet form
on L2(Kω, µω). The Dirichlet form is a resistance form with resistance metric R.

Proof. The existence of the Dirichlet form (E ,F) as the limit of an increasing
sequence of Dirichlet forms is essentially as summarised in the first paragraph of
Section 3.4 of [32]. See [32] Appendix B3 for a discussion of Dirichlet forms. The
proof that the Dirichlet form is a resistance form is essentially as in Section 2.3
of [32]. �

It will be convenient here and subsequently to work with resistance scaling fac-
tors which are just the inverse of the conductance scaling factors introduced in
Section 3.2. Thus we define

(32) rFi = (ρFi )−1, ri = ρi
−1.

We also note that for the resistance scale factors we have

(33)
0 < rinf := inf{rFi : i ∈ 1, . . . , NF , F ∈ F } = ρsup

−1,

rsup := sup{rFi : i ∈ 1, . . . , NF , F ∈ F } = ρinf
−1 < 1.

Next we see that the resistance metric distance between two vertices in a cell ∆i

(see (8)) is comparable to the resistance scaling factor ri for that cell.

Lemma 3.3. There is a non-random constant c1 > 0 such that if x, y ∈ ∆i and
x 6= y then

(34) c1ri ≤ R(x, y) ≤ ri.

Proof. Fix x, y and i as in the statement of the lemma.

If f(x) = 0 and f(y) = 1, then using (30), (25), monotonicity of the limit in
(29), and (12),

E(f, f) ≥ ρiE0(f ◦ ψi, f ◦ ψi) ≥
d+ 1

2
ρi.

This gives the upper bound for R in (34).
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For the lower bound, following Notation 2.2, consider a cut Λ of the underlying
tree such that j = j1 . . . jn ∈ Λ if rj is comparable to ri. More precisely, j ∈ Λ if

(35) rj ≤ ri < rj1...jn−1 .

Let Ṽ =
⋃

j∈Λ ψj(V0) be the set of vertices corresponding to cells ∆j for j ∈ Λ

(analogous to (9)). Note that i ∈ Λ and so x, y ∈ Ṽ . Consider the function f such

that f(y) = 1 and f(z) = 0 for all other z ∈ Ṽ , and harmonically interpolate. Then

(36) E(f, f) =
∑

j∈Λ, y∈∆j

ρjE0(f ◦ ψj , f ◦ ψj) = d
∑

j∈Λ, y∈∆j

ρj ≤
dM

rinf
ρi,

using (35), taking d as in (12), and M the maximum number of regular tetrahedra
in Rd with disjoint interiors that can have a common vertex.

This gives the lower bound in (34). �

Corollary 3.4. There is an upper bound on the diameter of the set K in the
resistance metric, in that there exists a non-random constant C such that

(37) diamRK := sup
x,y∈K

R(x, y) ≤ C.

More generally, for all i ∈ T ,

(38) diamRKi := sup
x,y∈Ki

R(x, y) ≤ Cri.

Proof. First consider points x, y ∈ Vn (see (9)) and suppose x ∈ ∆i ⊂ Vn, y ∈
∆j ⊂ Vn, with |i| = |j| = n.

Let x0 = y0, xk ∈ ∆i|k, yk ∈ ∆j|k for k = 1, . . . , n, with xn = x and yn = y. By
the triangle inequality for the metric R,

R(x, y) ≤
n∑
k=1

R(xk−1, xk) +

n∑
k=1

R(yk−1, yk).

Since xk−1, xk ∈ Vk and all cells are triangles or tetrahedra, if a path from xk−1

to xk consisting of edges from Vk ∩Ki|k−1 contains two edges from the same k-cell
then it can be replaced by a shorter path from xk−1 to xk also consisting of edges
from Vk. It follows there is a path from xk−1 to xk consisting of at most Nsup edges
from Vk. Hence

R(xk−1, xk) ≤ Nsupr
k
sup,

from (34). Hence

R(x, y) ≤ 2Nsup

(1− rsup)
.

Using the density of the vertices
⋃
n Vn in K we have the result.

The second statement follows in the same way. �

Note that the result holds for all ω ∈ ΩV .

3.3. Weights and Measures. We next introduce a general family of measures on
∂T (see Notation 2.2) and on the corresponding fractal set K, by using a set of
weights (wF1 , . . . , w

F
NF ) defined for each F ∈ F with wFi > 0. We do not require∑

i w
F
i = 1.

Assume and/or define

(39)

0 < winf := inf{wFi : 1 ≤ i ≤ NF , F ∈ F },
wsup := sup{wFi : 1 ≤ i ≤ NF , F ∈ F } <∞,

ζ := winf/wsup ≤ 1.
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Following Notation 2.2 let the weight wi of the cell ∆i (corresponding complex,
or corresponding cylinder) be the natural product of weights along the branch given
by the node i. That is, if |i| = n, then

(40) wi := wF
∅

i1 · w
F i1
i2 · . . . · wF

i1...in−1

in .

Of particular interest are weights of the form wFi = (rFi )α for all F ∈ F and
some fixed α > 0, in which case wi = ri

α. This example is the reason we do not
require

∑
i w

F
i = 1, since it would not be possible to achieve the normalisation

simultaneously for all F ∈ F .

The following construction is basic, and is special to the case of V -variable
fractals.

Definition 3.5. Let (wF1 , . . . , w
F
NF ) for F ∈ F be a set of weights as before. For

|i| a neck let

(41) µi := µ([i]) :=
wi∑
|j|=|i| wj

.

The corresponding unit mass measure µ on ∂T is called the unit mass measure with
weights wFi .

The pushforward measure on K under the address map π : ∂T → K given by⋂∞
n=1Ki|n = {π(i)} is also denoted by µ.

Note that from the definition of a neck, (41) is consistent via finite additivity
from one level of neck to the next, it extends by addition to any complex or cylinder,
and so by standard consistency conditions it extends to a unit mass (probability)
measure µ on ∂T .

We note the following simple estimates for use in the rest of this subsection and
in Lemmas 4.3, 4.4 and 5.11.

Lemma 3.6. Suppose i and j are two nodes of the same type with |i| = |j| = n.
Then

(42) ζnµj ≤ µi ≤ ζ−nµj .

If i is a neck node then

(43) ζnN−nsup ≤ µi < (1 + ζn)
−1

< 1.

Proof. Suppose N is the first neck ≥ n. Then

µi =

∑
|ik|=N,k∈Tσi wik∑
|p|=N,p∈T wp

= wi

∑
|k|=N−n,k∈Tσi w

σi

k∑
|p|=N,p∈T wp

,

where wσ
i

k is the product of weights along any branch of Tσ
i

of length N − n
beginning at ∅, or equivalently any branch of T of length N − n beginning at i. A
similar expression is obtained for µj . Since i and j are of the same type and level,

the trees Tσ
i

and Tσ
j

are identical, and so µi/wi = µj/wj . Then (42) follows from
wninf ≤ wi ≤ wnsup.

If n is a neck then
µi =

wi∑
|p|=n wp

≥ ζnN−nsup.

Also we have that

µi =
wi∑
|p|=n wp

≤

1 +
∑

|p|=n,p 6=i

wp

wi

−1

≤ (1 + (Nn
inf − 1)ζn)

−1
< (1 + ζn)

−1
< 1,
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completing the proof of (43). �

We show in Lemma 3.8 that the pushforward measure on K is given by a similar
expression to that for µ on ∂T . For this we first show that the measure µ on K is
non-atomic provided our trees satisfy a certain condition.

Recall Definition 2.15.

Lemma 3.7. For all ω ∈ ΩV,ζ and hence also PV -a.s. for i ∈ ∂T

µ(i) = 0.

Proof. Since [i|n] is a decreasing sequence of sets, from (41)

µ(i) = lim
k→∞

µi|n(k).

By (43), and using the notation of Lemma 2.17, we can bound

µi|n(j)

µi|n(j−1)
=

w
(j−1)
i|n(j)−n(j−1)∑

|j|=n(j)−n(j−1) w
(j−1)
j

≤
(

1 + ζn(j)−n(j−1)
)−1

.

Taking logs

logµ(i) ≤ lim sup
k→∞

logµi|n(k) ≤ −
∞∑
j=1

log
(

1 + ζn(j)−n(j−1)
)
≤ −1

2

∞∑
j=1

ζn(j)−n(j−1).

Thus we have limk→∞ µi|n(k) = 0 for all ω ∈ ΩV,ζ as required. It is straightforward

to check that PV -a.s. we have
∑
j ζ

n(j)−n(j−1) =∞ as then {n(j)− n(j − 1)}j is a
sequence of i.i.d. geometric random variables. �

Note that by the law of large numbers we see, PV a.s., for all i,

lim sup
k→∞

1

k
logµi|n(k) ≤ − lim

k→∞

1

k

k∑
j=1

log
(

1 + ζn(j)−n(j−1)
)

= −EV log
(

1 + ζn(1)
)
.

Now, using the fact that n(1) is a geometric random variable, ζ ≤ 1 and log(1+x) ≥
x/2 for x ≤ 1, we conclude

−EV log
(

1 + ζn(1)
)
≤ −1

2
EV ζ

n(1) = −1

2

ζ

EV n(1)(1− ζ) + ζ
< 0.

In particular, PV almost surely, for all i ∈ ∂T , we have limk→∞ µi|n(k) = 0 expo-
nentially fast.

Lemma 3.8. The address map π : ∂T → K is one-one except on a countable
set. For all ω ∈ ΩV,ζ (and hence PV -a.s.) the pushforward measure µ on K is
nonatomic and for |i| a neck,

(44) µi = µ(Ki) =
wi∑
|j|=|i| wj

.

Proof. We note that as only a finite number of sets can meet at a point π−1(x)
is a finite set for any x ∈ K. Suppose a = π(i) = π(j) for some i, j ∈ ∂T with
i 6= j. Then for some n we have i1 . . . in = j1 . . . jn and in+1 6= jn+1. It follows
that a ∈ Ki1...inin+1

∩ Ki1...injn+1
. From Lemma 2.9, a ∈ ψi1...inin+1

(V0). This
establishes countability of the set of points in K with more than one address. From
Lemma 3.7 it follows this set has µ-measure zero. The result (44) now follows
from (41) and the definition of the pushforward measure. �
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It follows from (44) that for all ω ∈ ΩV,ζ

(45)

∫
Ki

f dµ = µi

∫
Kσi

f ◦ ψi dµ
σi

,

where as usual µ = µω is the measure on K = Kω but here restricted to Ki = Kω
i ,

and µσ
i

= µω,σ
i

is the measure on Kσi

= Kω,σi

which is essentially just a scaled
copy of the subfractal Ki. By construction, the left integral is a multiple of the
right integral, with constant independent of f . Setting f = 1 gives the constant.
Note that |i| = n need not be a neck.

The inner product (or any integral) can be decomposed as follows:

(46) (f, g)µ =
∑
i∈Λ

µi (f ◦ ψi, g ◦ ψi)µσi

for any cut Λ, see Notation 2.2.
Note that (46) is analogous to the decomposition (30) for the Dirichlet form.

The difference is that the scaling factors ρi in (30) are simply computed from the
prescribed quantities ρFi , unlike the scaling factors µi in (46) which are related to
the prescribed quantities wFi in a simple manner only in the case where the i are
all neck nodes.

We write

(47) ‖f‖2 = (f, f)1/2
µ

for the natural norm on L2(K,µ).

3.4. Time and Neck Cuts. We now introduce the special cut sets which will be
essential for our analysis. The idea is to cut at neck nodes in such a manner that
crossing times are comparable.

Define

(48) ti = µiri.

From the Einstein relation ti can be thought of as a crossing time for the continuous
time random walk on the cell ∆i, with resistance given by ri and expected jump
time given by µi.

Note that whereas wi defined in (40) is a simple product of factors, as are `i, ρi
and ri following the notation of (5), this is not the case for µi and hence not for ti.

Define

(49) η =
rinf ζ

Nsup

and note that 0 < η < 1. Then from (48) and (43),

(50) ηn ≤ ti ≤ rnsup if |i| = n is a neck.

The second inequality is clearly true for any i, not necessarily at a neck.

Recalling from (13) the notation n(`) for the `th neck, define the cut sets of T

(51) Λ0 = {∅}, Λk =
{
i ∈ T : ∃`

(
|i| = n(`), ti ≤ e−k < ti|n(`−1)

)}
if k ≥ 1,

where ∅ is the root node. Thus Λk is the set of neck nodes for which the crossing
times of the corresponding cells are comparable to e−k.

For any i such that |i| is a neck, and in particular if i ∈ Λk, then we define

(52) `(i) := ` if |i| = n(`).

That is, `(i) is the number of the neck corresponding to i.
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We introduce further notation to capture the scale factors.

Mk = |Λk|, tk = M−1
k

∑
i∈Λk

ti, Tk = tk
−1

;(53)

yk(i) = n(`)− n(`− 1) if i ∈ Λk and |i| = n(`), yk = max
i∈Λk

yk(i);(54)

zk = max{|i| : i ∈ Λk}.(55)

Thus Mk is the cardinality of the cut set Λk, tk is the average crossing time for
cells Ki with i ∈ Λk or equivalently the average time scaling when passing from
K to Ki, conversely Tk is the average time scaling when passing from Ki to K for
i ∈ Λk; yk(i) is the number of generations between ∆i and its most recent ancestor
also at a neck level, and yk is the maximum such number of ancestral generations
over i ∈ Λk; zk is the maximum branch length of nodes in Λk.

Trivially,

(56) min
i∈Λk

ti ≤ tk ≤ max
i∈Λk

ti.

For functions f(k) and g(k) we will use the notation

(57) f(k) 4 g(k) iff lim sup
k→∞

f(k)

g(k)
≤ 1.

That is, f(k) 4 g(k) means f is asymptotically dominated by g.
In the next lemma we use Lemma 2.16 to estimate the asymptotic behaviour

of yk and zk, and of the fluctuations of `(i) and ti for i ∈ Λk. Note that sharper
estimates for the simple case V = 1 are given in Lemma 3.10.

Lemma 3.9. Suppose η is as in (49).

(a) There exist c1, c2 > 0 such that PV a.s., if i ∈ Λk then

c1k(log k)−1 4 `(i) ≤ c2k.
(b) There exist c3, c4 > 0 such that PV a.s.

1 ≤ yk 4 c3 log k, zk 4 c4k.

(c) There exists β′ > 0 such that PV a.s., if i ∈ Λk then

k−β
′
e−k 4 ηyk e−k ≤ ti ≤ e−k.

Proof. (a) Suppose i ∈ Λk and let ` = `(i). From (50) and the definition of Λk,

(58) ηn(`) ≤ ti ≤ e−k < ti|n(`−1) ≤ rn(`−1)
sup .

In particular, n(`− 1) ≤ k/ log(1/rsup).
It follows that

` = 1 + (`− 1) ≤ 1 + n(`− 1) ≤ 1 +
k

log 1/rsup
≤ c2k.

On the other hand from (58), n(`) ≥ k/ log(1/η). Using also log k ≥ log ` +

log 1/c2, it follows from Lemma 2.16 (16), since n(`) =
∑`
i=1

(
n(i)− n(i− 1)

)
is a

sum of geometric random variables, that a.s. (where i ∈ Λk)

lim sup
k→∞

k

`(i) log k
≤ lim sup

`→∞

n(`) log 1/η

`(log `+ log 1/c2)
≤ 2 log 1/η

log 1/p
=: 1/c1.

Here p is the constant probability of not obtaining a neck at any particular level ≥ 1.

(b) Trivially, yk ≥ 1. By definition

yk = max
i∈Λk

yk(i) = max
i∈Λk

(
n
(
`(i)

)
− n

(
`(i)− 1

))
≤ max

1≤j≤c2k

(
n(j)− n(j − 1)

)
,
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where the inequality comes from (a).
By Lemma 2.16 (15) with Yj = n(j)− n(j − 1), PV a.s.

lim sup
k→∞

yk
log k

≤ lim sup
k→∞

max1≤j≤c2k Yj
log c2k − log c2

≤ 1

log 1/p
=: c3,

where p is as in (a).
It follows that with i ∈ Λk and ` = `(i), PV a.s.

|i| = n(`) = n(`− 1) + n(`)− n(`− 1) ≤ n(`− 1) + yk

4 k/ log(1/rsup) + c3 log k 4 k/ log(1/rsup).

This gives the last inequality in (b).

(c) The third inequality in (c) is immediate from the definition of Λk.

For the second inequality suppose i ∈ Λk with |i| = n(`). Then

ti = riµi ≥ ri|n(`−1)µi|n(`−1)η
n(`)−n(`−1)

by a similar argument to that for the first inequality in (50). More precisely, note
that by definition µi is a product of µi|n(`−1) with factors that depend only on
weights w defined along edges in the subtree rooted at i|n(` − 1), followed by a
normalisation that depends only on the same weights since |i| = n(`) is a neck.

Hence

ti ≥ ti|n(`−1)η
n(`)−n(`−1) ≥ e−kηyk

by the definition of yk and Λk. This gives the second inequality in (c).

For the first inequality take any ε > 0, in which case by (b), a.s. there exists
k0 = k0(ω) such that k ≥ k0 implies yk ≤ (c3 + ε) log k, and so k ≥ k0 implies

ηyk ≥ η(c3+ε) log k = k−(c3+ε) log 1/η = k−β
′
,

where β′ = (c3 + ε) log 1/η. Since ε > 0 is arbitrary, this completes the proof. �

If V = 1 the above can be sharpened to the following.

Lemma 3.10. In the case V = 1 we have the following.

(a) There exist c1, c2 > 0 such that if i ∈ Λk then

c1k ≤ `(i) ≤ c2k.
(b) There exists c3 > 0 such that

yk = 1, zk ≤ c3k.
(c) There exists c4 > 0 such that if i ∈ Λk then

c4e
−k ≤ ti ≤ e−k.

Proof. The first claim follows from (50) and the fact that for V = 1 every level is
a neck. The second and third follow similarly. �

3.5. The Haudorff Dimension in the Resistance Metric.

Definition 3.11. The α-dimensional Hausdorff measure of K using the resistance
metric R is denoted by HαR(K). The Hausdorff dimension of K in the resistance
metric is denoted by drf = drf (K).

The following theorem is the analogue of Theorem 2.18. However, the resistance
metric R does not scale in the same way as the standard metric in Rd and so
the proof needs to be modified. The proof combines ideas from Section 2 of [29],
Section 2 of [30] and Section 4 of [8]. In the case of [8] the corresponding argu-
ment is simplified here because of the use of necks. Note that we do not expect
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the appropriate Hausdorff measure function to be a power function, unlike in [29]
and [30].

Theorem 3.12. PV almost surely the Hausdorff dimension in the resistance metric
drf of K is the unique power α0 such that

(59) EV log
∑
|i|=n(1)

rα0

i = 0.

Proof. This will follow from Lemmas 3.14 and 3.17. �

Lemma 3.13. The function

(60) γ(α) := EV log
∑
|i|=n(1)

rαi ,

is finite, strictly decreasing and Lipschitz, with derivative in the interval

[(log rinf)EV n(1), (log rsup)EV n(1)].

Since γ(0) > 0 there is a unique α0 such that γ(α0) = 0 and moreover α0 > 0.

Proof. If α < β, then from (33),

γ(α) + (β − α)(log rinf)EV n(1) ≤ γ(β) ≤ γ(α) + (β − α)(log rsup)EV n(1).

This gives the Lipschitz estimate.
Since γ(0) = EV

(
log #{i ∈ T | |i| = n(1)}

)
, it follows that 0 < γ(0) <∞.

The rest of the lemma now follows. �

Lemma 3.14. Suppose α0 is as in Lemma 3.13. Then drf (K) ≤ α0, PV a.s.

Proof. Suppose α > α0. Using Corollary 3.4,

K =
⋃

|i|=n(k)

Ki,
∑
|i|=n(k)

diamα
RKi ≤ Cα

∑
|i|=n(k)

rαi .

From (19) and Lemma 3.13,

lim
k→∞

1

k
log

∑
|i|=n(k)

rαi = EV log
∑
|i|=n(1)

rαi < 0, PV a.s.

Hence PV a.s.,

lim
k→∞

log
∑
|i|=n(k)

rαi = −∞, lim
k→∞

∑
|i|=n(k)

rαi = 0.

Hence HαR(K) = 0, and so drf (K) ≤ α0. �

Definition 3.15. Suppose 0 < ε < 1. Then Λε is the cut set of T consisting of
those nodes j = j1 . . . jn such that

(61) rj ≤ ε < rj1...jn−1 .

Lemma 3.16. There exist non random constants c and M̃ , such that for any
0 < ε < 1 and x ∈ K,

(62) #
{
j ∈ Λε : Bcε(x) ∩Kj 6= ∅

}
≤ M̃,

where

Bcε(x) = {y ∈ K : R(x, y) ≤ cε}.
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Proof. Suppose x ∈ Ki where i ∈ Λε.
First note

(63) # {j ∈ Λε : Ki ∩Kj 6= ∅} ≤M(d+ 1),

where d + 1 is the number of vertices of a regular tetrahedron in Rd (recall (12))
and M is as in (36).

Let Vε =
⋃

j∈Λε
ψj(V0) =:

⋃
j∈Λε

∆j denote the set of vertices corresponding to
the partition Λε.

Define u : Vε → R by u(y) = 1 if y ∈ ∆i and u(y) = 0 otherwise. Extend u to
u : K → R by harmonic extension on each Kj for j ∈ Λε. Then u is constant on
Kj if Ki ∩Kj = ∅, and so

E(u) =
∑

{j:Ki∩Kj 6=∅}

ρjE0(u ◦ ψj) ≤M(d+ 1)dmax
j∈Λε

ρj ≤
Md(d+ 1)

rinfε
,

where M(d+ 1) is from (63) and d is the number of edges in ∆j with one vertex in
∆i.

Setting c = rinf/2Md(d+ 1), it follows that R(x, y) > cε if y ∈ Kj where j ∈ Λε
and Ki ∩Kj = ∅. That is,

(64) Bcε(x) ∩Kj 6= ∅ =⇒ Ki ∩Kj 6= ∅.

Combining (64) and (63) gives (62). �

Lemma 3.17. Suppose α < α0. Let µ be the unit mass measure on K constructed
as in Definition 3.5 and Lemma 3.8, with weights wFi = (rFi )α for F ∈ F . Then PV
a.s., for any x ∈ K and 0 < δ < c, µ

(
Bδ(x)

)
< c1δ

α, where the random constant
c1 depends on ω but not on x or δ.

In particular, by the mass distribution principle, drf (K) ≥ α PV a.s., and so

drf (K) ≥ α0 PV a.s.

Proof. Fix x ∈ K and 0 < δ < c. If k is a level in the construction of T , let s(k)
denote the first neck level ≥ k. All balls are with respect to the resistance metric.

From Lemma 3.16 applied to the cut Λδ/c, and with M̃ as in that lemma, there

are at most M̃ sets Kj which meet Bδ(x) and satisfy j ∈ Λδ/c. That is, satisfy, on
setting j = j1 . . . jk,

(65) rj ≤ δ/c < rj1...jk−1
.

It follows that

(66) µ
(
Bδ(x)

)
≤

∑
j∈Λδ/c,Bδ(x)∩Kj 6=∅

µ(Kj),

and there are at most M̃ terms in the sum. For each such Kj , using Lemma 3.8,

(67)

µ(Kj) =
∑

j≺i,|i|=s(k)

µ(Ki) =

∑
j≺i,|i|=s(k) r

α
i∑

|i|=s(k) r
α
i

≤ N
s(k)−k
sup∑
|i|=s(k) r

α
i

rαj ≤
N
s(k)−k
sup

cα
∑
|i|=s(k) r

α
i

δα =: θ(k) δα.

Here Nsup is an upper bound for the branching number, see (2).
We need to estimate the numerator and denominator of θ(k) in (67). For this

we use estimates (68) and (70).
Until we establish (70) we allow k to be an arbitrary positive integer, not neces-

sarily satisfying (65).
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Since s(k) − k is a geometric random variable, by the same argument as in
Lemma 3.9(b), there is a constant c1 such that s(k)− k 4 c1 log k PV a.s., and so
there is a constant c2(ω) such that

s(k)− k ≤ c2 log k PV a.s.

for all k > 1. Hence PV a.s., for k > 1,

(68) Ns(k)−k
sup ≤ N c2 log k

sup

Next let

β = EV log
∑
|i|=n(1)

rαi .

Then β > 0 since α < α0, see Lemma 3.13. It follows by (19) that as k →∞

1

k
log

∑
|i|=n(k)

rαi → β PV a.s.

Hence for some ε0 = ε0(ω) > 0,

(69)
∑
|i|=n(k)

rαi ≥ ε0 ekβ/2 for k > 1, PV a.s.

However, we need an estimate similar to (69) involving s(k) rather than n(k).
First note, by setting Yi = n(i)−n(i−1) and n = 1 in (16), that for some c3 = c3(ω)
we have n(k) ≤ c3k log k PV a.s. if k > 1. Hence∑

|i|=n(k)

rαi ≥ ε0 exp

(
n(k)β

2c3 log k

)
for k > 1, PV a.s.

Since n(k) is an arbitrary neck,∑
|i|=s(k)

rαi ≥ ε0 exp

(
s(k)β

2c3 log k̃

)
for k > n(1), PV a.s.

where k̃ is the number of the neck corresponding to s(k), i.e. n(k̃) = s(k). Note

s(k) ≥ k. Also note that k̃ ≤ k. (Otherwise there are at least k + 1 necks between
levels 1 and s(k) inclusive, and so in particular s(k) > k. But then there are at
least k necks between levels 1 and k inclusive, and so k is a neck. However that
gives s(k) = k, a contradiction). Hence

(70)
∑
|i|=s(k)

rαi ≥ ε0 exp

(
kβ

2c3 log k

)
for k > n(1), PV a.s.

It follows from (68), (70) and the definition of θ(k) in (67), that θ(k) → 0 as
k →∞. On the other hand, with k := |j| we have from (65) that

k := |j| ≥ log(c/δ)/ log(1/rmin)→∞

uniformly for j ∈ Λδ/c as δ → 0. From (67), (66) and the uniform bound M̃ on the
number of terms, there exists δ0 = δ0(ω) > 0 such that

(71) µ
(
Bδ(x)

)
≤ δα for δ ≤ δ0 PV a.s..

It now follows by the mass distribution principle that drf (K) ≥ α PV a.s., and

so drf (K) ≥ α0 PV a.s. �
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4. Eigenvalue Counting Function

4.1. Overview. In this section we consider random V -variable gaskets constructed
from essentially arbitrary resistances rFi , from weights wFi which determine a mea-
sure µ, and from a probability measure P on F . See Sections 2.5, 3.2 and 3.3. With
every realisation of such a random fractal there is an associated Dirichlet form and
a Laplacian. The growth rate of the corresponding eigenvalue counting function is
defined to be ds/2, where ds is called the spectral exponent. We see in Theorem 4.13
that PV -a.s. ds exists, is constant and is the zero of a pressure function constructed
from the crossing times ti. The proof relies on estimates concerning the occurrences
of necks and on a Dirichlet-Neumann bracketing argument, see Lemmas 3.9 and 4.8.
Lemma 4.8 gives a result which holds for all realizations in ΩV,ζ .

The natural metric on fractal sets constructed with resistances as here is the
resistance metric. We saw in Theorem 3.12 that the Hausdorff dimension drf in this
metric is given by the zero of a certain pressure function. A natural set of weights
is wFi = (rFi )d

r
f . The measure ν constructed from this set of weights is called the

flat measure with respect to the resistance metric.
We see in Theorem 4.15 that ds(ν)/2 = drf/(d

r
f+1). This establishes the analogue

of Conjecture 4.6 in [31] for V -variable fractals. In Theorem 4.17 we show that for a
fixed set of resistances rFi , and for arbitrary weights wFi and corresponding measure
µ, the spectral exponent ds(µ) has a unique maximum when µ is the flat measure
ν. The spectral exponent in this case is called the spectral dimension associated
with the given resistances.

Finally, in the case of the flat measure ν, we give in Theorem 4.18 an improved PV
almost sure estimate for the counting function itself rather than its log asymptotics.

4.2. Preliminaries. Following the notation of the previous section, we consider a
fractal K = Kω and write ∂K = V0 for the boundary of K. We fix a measure
µ = µω on K and, together with the Dirichlet form E = Eω, this allows one to
define a Laplace operator 4µ = 4ωµ . We will be interested in the spectrum of −4µ
as this consists of positive eigenvalues. However, instead of working directly with
−4µ, we use a formulation of the Dirichlet and Neumann eigenvalue problems in
terms of the Dirichlet form, see [32].

Recall the definition of F from (29). Let

(72) FωD = {f ∈ Fω : f(x) = 0, x ∈ ∂K}, EωD(f, f) = Eω(f, f) for f ∈ FωD,
and let (·, ·)µω be the inner product on L2(Kω, µω). It follows as in Theorem 3.2
that (ED,FD) is a local regular Dirichlet form on L2(K \ ∂K, µ). Now λ is a
Dirichlet eigenvalue with eigenfunction u ∈ FωD, u 6= 0, if

(73) EωD(u, v) = λ(u, v)µω ∀v ∈ FωD.
Similarly, λ is a Neumann eigenvalue with eigenfunction u ∈ Fω, u 6= 0, if

(74) Eω(u, v) = λ(u, v)µω ∀v ∈ Fω.
As usual, we will in future normally omit the dependence on ω.

By standard results [32] the Dirichlet Laplacian has a discrete spectrum

(75) 0 < λ1 ≤ λ2 ≤ . . . where λn →∞ as n→∞,
and similarly for the Neumann Laplacian but with 0 = λ1.

The Dirichlet and Neumann eigenvalue counting functions are defined by

(76)
ND(s) = max{i : λi ≤ s, λi is a Dirichlet eigenvalue},
NN (s) = max{i : λi ≤ s, λi is a Neumann eigenvalue}.
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As usual, eigenvalues are counted according to their multiplicity.

The following lemma implies the spectral exponent ds(µ) in Definition 4.10 is at
most 2 for any realization of our V -variable fractals. It is used to prove the second
estimate in Lemma 4.6.

Lemma 4.1. With the same constant C as in Corollary 3.4,

ND(s) ≤ Cs, ∀s > 0.

Proof. The effective resistance between x ∈ K and the boundary set ∂K = V0 is
defined by

R(x, ∂K)−1 = inf
{
E(f, f) : f ∈ FD, f(x) = 1

}
.

From Corollary 3.4 with the same constant C, and for any y ∈ ∂K,

R(x, ∂K) ≤ R(x, y) ≤ C.

The Green function for the Dirichlet problem in K is a symmetric function g(x, y)
which has g(x, y) ≤ g(x, x) = R(x, ∂K). See, for example, Proposition 4.2 of [33].
In particular,

g(x, y) ≤ C
independently of ω. Moreover, from Theorem 4.5 of [33],∣∣g(x, y)− g(x, z)

∣∣ ≤ R(y, z).

Hence g is continuous, and in particular uniformly Lipschitz continuous, in the
resistance metric.

It follows from Mercer’s theorem (for a proof of the theorem see the argument
in [38] pages 344–345) that

g(x, x) =
∑
i≥1

(
λDi
)−1

φi(x)2

and the series converges uniformly, where φi are the orthonormal eigenfunctions
corresponding to the Dirichlet eigenvalues λDi . Integrating with respect to x,

C ≥
∑
i≥1

(
λDi
)−1 ≥ 1

s
ND(s),

for any s > 0. �

4.3. Dirichlet-Neumann Bracketing. In this and the following sections, fix a
set of weights wFi as in Section 3.3 and let µ be the corresponding measure.

In order to deduce properties of the counting function for V -variable fractals we
use the method of Dirichlet-Neumann bracketing.

Let Λk be the sequence of cutsets (51). Using the notation of (12) and analo-
gously to (9), define

(77)

Ṽk =
⋃
{ψi(V0) : i ∈ Λk},

Ẽk =
⋃
{ψi(E0) : i ∈ Λk},

G̃k = (Ṽk, Ẽk).

Thus G̃k = (Ṽk, Ẽk) is the graph associated with the vertices Ṽk of the cells deter-
mined by Λk.
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Define (Ek,Fk) by
(78)

Fk =
{
f : K\Ṽk → R

∣∣ ∀i ∈ Λk ∃fi ∈ Fσ
i

: f ◦ ψi = fi on Kσi

\∂Kσi}
,

Ek(f, g) =
∑
i∈Λk

ρiEσ
i

(f ◦ ψi, g ◦ ψi) for f, g ∈ Fk.

The functions in Fk should be regarded as continuous functions on the disjoint
union ti∈ΛkKi together with its natural direct sum topology. Note that here we
are regarding Fk as a linear subspace of L2(K,µ).

Define (EkD,FkD) by

(79)
FkD =

{
f ∈ Fk

∣∣ ∀i ∈ Λk fi|Ṽ0
= 0, where fi is as in (78)

}
,

EkD(f, g) = Ek(f, g) for f, g ∈ FkD.

Thus FkD is the restriction of Fk (and of F) to those functions which are zero on

Ṽk, and EkD is the restricted energy functional.
It is straightforward to see that

(80) FkD ⊂ FD ⊂ F ⊂ Fk, EkD ⊂ ED ⊂ E ⊂ Ek.
That is, E is just the restriction to F of the functional Ek and similarly for the
other cases.

Note that (Ek,Fk) and (EkD,FkD) are local regular Dirichlet forms on the spaces

L2(ti∈ΛkKi, µ) and L2(K \ Ṽk, µ) respectively, with discrete spectra and bounded
reproducing Dirichlet kernels, see [33].

Analogously to (74) and (73) we define the notion that λ is an (Ek,Fk), re-
spectively (EkD,FkD), eigenvalue with eigenfunction u. The corresponding counting
functions are

(81)
N k
N (s) = max{i : λi ≤ s, λi is an (Ek,Fk) eigenvalue},

N k
D(s) = max{i : λi ≤ s, λi is an (EkD,FkD) eigenvalue}.

In order to compare the various counting functions, first note that if Λ = Λk
then the decomposition (30) with E replaced by Ek, and the decomposition (46),
both generalise to functions f, g ∈ Fk. The key observation now is that if λ is a
(Neumann) (Ek,Fk) eigenvalue with eigenfunction u, then we have for all v ∈ Fk
that

(82)
∑
i∈Λk

ρiEσ
i

(u ◦ ψi, v ◦ ψi) = Ek(u, v) = λ(u, v)µ = λ
∑
i∈Λk

µi(u ◦ ψi, v ◦ ψi)µσi .

If we take v to be a function supported on a complex with address i ∈ Λk, we
see that

(83) Eσ
i

(u ◦ ψi, v ◦ ψi) = tiλ(u ◦ ψi, v ◦ ψi)µσi ,

since ti = ρ−1
i µi. Thus tiλ is an eigenvalue of (Eσ

i

,Fσ
i

) with eigenfunction ui = u◦
ψi. Conversely, from ui we can construct (Neumann) eigenfunctions and eigenvalues
for (Ek,Fk), since

(84) ũi :=

{
ui ◦ ψ−1

i on Ki ⊂ tj∈λkKj ,
0 on tj∈λk\i Kj

is an eigenfunction with eigenvalue λ. Hence

(85) N k
N (s) =

∑
i∈Λk

N σi

N (tis), N k
D(s) =

∑
i∈Λk

N σi

D (tis),

with the argument in the Dirichlet case being similar to that for the Neumann case.
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Lemma 4.2. The following relationships hold for all s > 0

(86)

∑
i∈Λk

N σi

D (tis) ≤ ND(s) ≤ NN (s) ≤
∑
i∈Λk

N σi

N (tis),

ND(s) ≤ NN (s) ≤ ND(s) + d+ 1.

Proof. The proofs are a consequence of Dirichlet-Neumann bracketing and are
straightforward extensions of those found in [32] Section 4.1 for the p.c.f. fractal
case. The upper bound on the difference in the Neumann and Dirichlet counting
functions is given by the number of vertices of V0, which is d+ 1 in our setting. �

4.4. Eigenvalue Estimates. As in the previous section, fix weights wFi and the
corresponding measure µ. Let the random variable λD1 denote the first Dirichlet
eigenvalue.

Lemma 4.3. If C is the upper bound on the diameter of K in the resistance metric
given in Corollary 3.4 then for n ≥ 2,

(87)

C−1 ≤ λD1 ≤
d(d+ 1)ρnsup

µ(K \Kb,n)
,

V = 1 =⇒ λD1 ≤
(d+ 1)2ρ2

supw
2
sup

w2
inf

,

where Kb,n is the union of the d + 1 boundary n-complexes attached to the d + 1
boundary vertices in V0.

Proof. Since the Dirichlet form is a resistance form we have for f ∈ FD that

|f(x)− f(y)|2 ≤ R(x, y)E(f, f).

Since µ is a probability measure and f ∈ FD, using Corollary 3.4 and the definition
of R(x, y) in (31), it follows that

‖f‖22 ≤ sup
x∈Kω

|f(x)|2 ≤ sup
x,y∈K

|f(x)− f(y)|2 ≤ sup
x,y∈K

R(x, y) E(f, f) ≤ C E(f, f).

Hence by Rayleigh-Ritz,

λD1 = inf
f∈FD

E(f, f)

‖f‖22
≥ C−1.

Next let f(x) = 0 for x ∈ V0, f(x) = 1 for x ∈ Vn \ V0, and harmonically
interpolate. Then

E(f, f) = En(f, f) ≤ d(d+ 1)ρnsup,∫
K

f(x)2µ(dx) ≥ µ(K \Kb,n).

Again by Rayleigh-Ritz, this gives the upper bound.

If V = 1 note that with n = 2 there are at least d(d+ 1) interior cells as well as
d + 1 boundary cells. Since all cells have the same type, from (42) in Lemma 3.6
with ζ = winf/wsup,

µ(K \Kb,2) ≥ dζ2µ(Kb,2) = dζ2
(
1− µ(K \Kb,2)

)
∴ µ(K \Kb,2) ≥ dζ2

1 + dζ2
≥ dζ2

d+ 1
.

This now gives the result for V = 1. �

In order to obtain PV -almost sure results we need to estimate the tail of the
bottom eigenvalue random variable. Note that this result is only relevant in the
case where V > 1 as if V = 1 then λD1 is bounded above by (87).
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Lemma 4.4. There exist constants A > 0 and γ > 0 such that for any x > 0,

(88) PV (λD1 > x) ≤ Ax−γ .

Proof. Let n = nω be the first neck such that n ≥ 2. It follows from (42) with Kb,n

as in Lemma 4.3 that

if ζ :=
winf

wsup
then µ(K \Kb,n) >

ζn

d+ 1
µ(Kb,n) =

ζn

d+ 1

(
1− µ(K \Kb,n)

)
.

Hence

µ(K \Kb,n) >
1

1 + (d+ 1)ζ−n
≥ ζn

d+ 2
.

From Lemma 4.3 it follows that

λD1 < d(d+ 1)(d+ 2)ρnsupζ
−n = d(d+ 1)(d+ 2)ξn, where ξ :=

ρsupwsup

winf
.

Hence

PV
(
λD1 > x

)
≤ PV

(
d(d+ 1)(d+ 2)ξn > x

)
= PV

(
n >

log x
d(d+1)(d+2)

log ξ

)
.

Let q be the probability that any fixed level is not a neck. Since the event of a
neck occurring or not at each level is independent of the corresponding event at all
other levels, it follows there exists C > 0 such that if y > 0 then

PV (n > y) ≤ Cqy.
Setting γ = log(1/q)/ log ξ and A = C/(d(d+ 1)(d+ 2))γ gives the required result.

�

Define

(89) λ̂k1 = max
{
λσ

i,D
1 : i ∈ Λk

}
,

where λσ
i,D

1 is the first Dirichlet eigenvalue of the Dirichlet form (Eσi

,F) = (Eσiω,Fω)

with respect to the measure µσ
i

= µσ
iω. Note that λ̂0

1 = λD1 .

If V = 1 by (87) we have λ̂k1 ≤ (d+ 1)2ρ2
supw

2
sup/w

2
inf for all k.

Lemma 4.5. If V > 1, then with γ as in Lemma 4.4 and with c4 as in Lemma 3.9(b),
we have PV a.s. that

(90) λ̂k1 4 (V c4k)2/γ .

Proof. In order to apply the growth estimate in the previous lemma and use
Lemma 2.16 we use two additional properties:

(1) The number of distinct subtrees, and hence eigenvalues, corresponding to
each level of T is uniformly bounded (by V );

(2) The maximum level corresponding to nodes in Λk is asymptotically bounded
by a multiple of k, see Lemma 3.9.

First consider any sequence of random V -variable IFS trees (Tj)j≥1, not neces-
sarily independent but all with the same distribution P = PV , see Definition 2.11.
Let the corresponding random first eigenvalues be Yj .

Then for all x ≥ 0,

P (Yj > x) ≤ Ax−γ by Lemma 4.4,

∴ P (log Yj > x) = P (Yj > ex) ≤ Ae−γx,
∴ max

1≤j≤k
log Yj 4 γ

−1 log k PV a.s. by Lemma 2.16,

∴ max
1≤j≤k

Yj 4 k
2/γ PV a.s.(91)
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For any tree T = Tω there are at most V non-isomorphic subtrees rooted at each
level. Let (Yj)j≥0 be the sequence of random variables given by the first eigenvalue
of T , followed by the first eigenvalues of non-isomorphic IFS subtrees of T at level
one (there are at most V ), followed by the first eigenvalues of non-isomorphic IFS
subtrees of T at level two (again there are at most V ), etc. If Yj corresponds to a
subtree rooted at level p then by construction j ≤ V p. With zk as in (55) it follows

that λ̂k1 ≤ max1≤j≤V zk Yj .
Hence PV a.s.,

lim sup
k→∞

λ̂k1
k2/γ

≤ lim sup
k→∞

max1≤j≤V zk Yj
(V zk)2/γ

(
V zk
k

)2/γ

≤
(

lim sup
k→∞

V zk
k

)2/γ

from (91)

≤ (V c4)2/γ ,

since zk 4 c4k from Lemma 3.9(b). This gives the result. �

We now wish to determine the limiting behaviour of the counting function. We
first give the following result that is true for all ω ∈ ΩV,ζ .

Recall η (< 1) defined in (49), and the quantities defined in (89) and (53)–(55).

Lemma 4.6. There exists a constant c1 such that if ω ∈ ΩV,ζ then

(92) ND(Tk) ≤ c1Mk, Mk ≤ ND
(
λ̂k1Tkη

−yk
)

for all k ≥ 0.

Proof. For the first estimate we have from (86), (53) and Lemma 4.1,

ND(Tk) ≤
∑
i∈Λk

N σi

N (tiTk) ≤ (d+ 1)Mk +
∑
i∈Λk

N σi

D (tiTk)

≤ (d+ 1)Mk + c Tk
∑
i∈Λk

ti ≤ c1Mk.

Next note from definitions (53), (76) and (89) of Mk, ND and λ̂k1 respectively,

from the fact λσ
i,D

1 < λσ
i,D

2 for the equality below, and from (86) for the last
inequality provided t−1

i ≤ c(k) for all i ∈ Λk, that

(93) Mk =
∑
i∈Λk

N σi

D

(
λσ

i,D
1

)
≤
∑
i∈Λk

N σi

D

(
λ̂k1
)
≤ ND

(
λ̂k1 c(k)

)
.

But t−1
i ≤ η−ykek ≤ η−ykTk from Lemma 3.9(c) and the definition (53) of Tk. This

gives the second estimate. �

For V = 1 we can improve this to the same estimate as that obtained in [2] Sec-
tion 7.

Corollary 4.7. For V = 1, for all ω ∈ Ω1 there exist constants c1 and c2 such that
for all k ≥ 0,

Mk ≤ ND(c1Tk) and ND(Tk) ≤ c2Mk.

Proof. As V = 1 the conditions required for the existence of the measure µ hold

for all ω ∈ Ω1. We also know that λ̂k1 is bounded above and as yk = 1 for all k ∈ N
the inequality on the right in (92) reduces to Mk ≤ ND(c1Tk) as required. �

We next use asymptotic information about the frequency of necks to obtain the
following.
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Lemma 4.8. For V > 1 there exist constants c1, c2 and α such that PV a.s. there
is a k0(ω) for which

ND(Tk) ≤ c1Mk, Mk ≤ ND(c2k
αTk) if k > k0(ω).

Proof. This follows from Lemma 4.6, since λ̂k1 4 c3k
2/γ by (90) and η−yk 4 kβ

′
by

Lemma 3.9(c). �

4.5. Spectral Exponent. We again fix weights wFi and let µ be the corresponding
measure as in Definition 3.5.

Definition 4.9. The pressure function γ = γ(β) where β ∈ R, and the constant
β0, are defined by

(94) γ(β) = EV log
∑
|i|=n(1)

t
β/2
i , γ(β0) = 0.

(It follows from Lemma 4.11 that β0 is unique.)

The pressure function and its zero can be found computationally. See [8] for
similar computations for the fractal dimension.

Definition 4.10. The spectral exponent ds(µ) for µ is defined by

(95)
ds(µ)

2
= lim
s→∞

logND(s)

log s
.

We see in Theorem 4.13 that a.s. the spectral exponent exists and equals the
constant β0. By Lemma 4.2 we could replace ND by NN .

Recall the definition of η in (49) and the estimate for ti from (50).

Lemma 4.11. The function γ(β) is finite, strictly decreasing and Lipschitz, with

derivative in the interval
[
log
(
η1/2

)
EV n(1), log

(
r

1/2
sup

)
EV n(1)

]
. Since γ(0) > 0

there is a unique β0 such that γ(β0) = 0 and moreover β0 > 0.

Proof. If α < β then from (49) and (50),

γ(α) +
β − α

2
(log η)EV n(1) ≤ γ(β) ≤ γ(α) +

β − α
2

(log rsup)EV n(1).

This gives the Lipschitz estimate.
Since γ(0) = EV

(
log #{i ∈ T | |i| = n(1)}

)
, it follows that 0 < γ(0) <∞.

The rest of the lemma follows. �

Proposition 4.12. PV a.s. we have

(96) lim
k→∞

1

k
log

∑
|i|=n(k)

t
β/2
i = γ(β).

Proof. The idea is that from the definition of a neck, log
∑
|i|=n(k) t

β/2
i is the differ-

ence of two random variables, each of which is the sum of k i.i.d. random variables
having the same distribution as log

∑
|i|=n(1)(riwi)

β/2 and (β/2) log
∑
|i|=n(1) wi

respectively.

More precisely, suppose |i| = n(k) and in particular is a neck. Then

ti = riµi =
riwi∑
|j|=n(k) wj

,

and so

(97) log
∑
|i|=n(k)

t
β/2
i = log

∑
|i|=n(k)

(riwi)
β/2 − β

2
log

∑
|i|=n(k)

wi.



36 U. FREIBERG, B.M. HAMBLY, AND JOHN E. HUTCHINSON

If we let sFi = (rFi w
F
i )β/2 or sFi = wFi , it follows from (24) and (39) that

(98)
0 < sinf := inf{sFi : i ∈ 1, . . . , NF , F ∈ F },

ssup := sup{sFi : i ∈ 1, . . . , NF , F ∈ F } <∞.

and we can apply Lemma 2.17. Thus (19) applied to each term on the right hand
side of (97) gives the result. �

Subsequently we write N for ND. But note that from the second line in Lemma 4.2
the main estimates in the rest of the paper also apply immediately to NN .

The proof of the following theorem relies on the Dirichlet-Neumann bracketing
result in Lemma 4.8 and the estimates in Lemma 3.9(c).

Theorem 4.13. The spectral exponent is given by β0 in that

(99)
ds(µ)

2
:= lim

t→∞

logN (s)

log s
=
β0

2
, PV a.s.

Proof of Theorem. Define the unit mass measure νβ on ∂T by setting, for any β
and for |i| = n(k),

νβ [i] =
t
β/2
i∑

|i|=n(k) t
β/2
i

.

It is straightforward to check that νβ is just the unit mass measure with weights

(riwi)
β/2 as in Definition 3.5.

If γ(β) < 0 or equivalently β > β0, then from (96) for ε > 0 small enough we
have PV a.s. that there is a constant k0 such that

νβ [i] ≥ tβ/2i e−k(γ(β)+ε) ≥ ctβ/2i if k ≥ k0.

As Λk is a cut set, by using the lower estimate above we have from Lemma 3.9(c)
that PV a.s. if k ≥ k0 then

1 =
∑
i∈Λk

νβ [i] ≥
∑
i∈Λk

ct
β/2
i < cMkk

−ββ′/2e−kβ/2, for some β′ > 0.

Thus

(100) Mk 4 ck
ββ′/2ekβ/2, PV a.s.

Suppose s > 1 and let k be such that ek−1 < s ≤ ek. Then s ≤ Tk by
Lemma 3.9(c) and so

logN (s)

log s
≤ logN (Tk)

log s
≤ log(cMk)

k − 1
4
β

2
, PV a.s.,

where the second inequality is from the first estimate in Lemma 4.8 and the third
inequality is from (100).

As this holds for all β > β0 we have

(101)
logN (s)

log s
4
β0

2
, PV a.s.

Similarly we have an asymptotic lower bound. For this choose β < β0, or
equivalently such that γ(β) > 0. Then for small enough ε > 0 we have PV a.s.
that for some k0 = k0(ω)

νβ(i) ≤ ctβ/2i if k ≥ k0,

and hence from Lemma 3.9(c), that PV a.s. then

1 =
∑
i∈Λk

νβ(i) ≤
∑
i∈Λk

ct
β/2
i ≤ cMke

−kβ/2 if k ≥ k0.
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Thus PV a.s.

(102) Mk ≥ cekβ/2 if k ≥ k0.

From the second estimate in Lemma 4.8 and using (102),

(103)
logN (c2k

αTk)

k
≥ logMk

k
<
β

2
PV a.s.

Again choosing k such that ek−1 ≤ s < ek, we have from Lemma 3.9(c) that for
some α′,

kαTk 4 k
α′ek ≤ e(1 + log s)α

′
s, PV a.s.

Hence

lim inf
k→∞

logN
(
c2k

αTk
)

k
≤ lim inf

s→∞

logN
(
2c2e(1 + log s)α

′
s
)

log s
, PV a.s.

Setting y = y(s) = 2c2e(1+log s)α
′
s, since lims→∞ log y(s)/ log s = 1 and y(s)→∞

as s→∞, it follows

lim inf
k→∞

logN
(
c2k

αTk
)

k
≤ lim inf

s→∞

logN (s)

log s
, PV a.s.

Combining this with (103), since β < β0 is arbitrary, implies

(104)
logN (s)

log s
<
β0

2
, PV a.s.

The required result follows from (101) and (104). �

4.6. Spectral Dimension.

Definition 4.14. The flat measure with respect to the resistance metric is the unit
mass measure ν with weights wFi = (rFi )d

r
f , where drf is the Hausdorff dimension in

the resistance metric (see Definition 3.5). The spectral dimension ds is the spectral
exponent for the flat measure.

Further justification for the definition of ds is given in Theorem 4.17.
Recall from Theorem 3.12 that drf is uniquely characterised by

(105) EV log
∑
|i|=n(1)

r
drf
i = 0.

As a consequence, the following theorem establishes the analogue of Conjecture 4.6
in [31] for V -variable fractals.

Theorem 4.15. The spectral exponent for the flat measure ν is given PV a.s. by

(106)
ds(ν)

2
=

drf
drf + 1

.

Proof. From Definition 4.14, (94), (48) and (41), if |i| = n(`) is a neck then

(107) ti := riνi =
riwi∑
|j|=n(`) wj

=
r

1+drf
i∑

|j|=n(`) r
drf
j

.

Hence the spectral exponent ds(ν) is uniquely characterised by
(108)

0 = γ(ds(ν)) := EV log
∑
|i|=n(1)

t
ds(ν)/2
i = EV log

∑
|i|=n(1)

 r
1+drf
i∑

|j|=n(1) r
drf
j

ds(ν)/2

.
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Using (105),

0 = EV log
∑
|i|=n(1)

r
(1+drf )ds(ν)/2

i − ds(ν)

2
EV log

∑
|j|=n(1)

r
drf
j

= EV log
∑
|i|=n(1)

r
(1+drf )ds(ν)/2

i .

Using (105) again and the uniqueness of drf , it follows that drf = (1 + drf )ds(ν)/2,

which gives (106). �

We next show that the spectral dimension maximises the spectral exponent ds(µ)
over all measures µ defined from a set of weights wFi as in Section 3.3. A related
result for deterministic fractals is established in Theorem A2 of [36] using Lagrange
multipliers. Here we need a different argument, but this also establishes uniqueness
of the wFi and hence of µ.

The proof is partly motivated by [28], in particular Section 4 and the discussion
following Corollary 2.7. We first need the following general inequality.

Proposition 4.16. Suppose {p1, . . . , pN} and {q1, . . . , qN} are sets of positive real
valued random variables, each with the same random cardinality N , on a probability

space (Ω,P). Suppose E log
∑N
k=1 pk = 0 and that the constant γ satisfies 0 < γ < 1.

Then

(109) E log

N∑
k=1

pkq
γ
k ≤ E log

(
N∑
k=1

pkqk

)γ
,

with equality iff q1 = · · · = qN a.s.

Proof. For any N , a suitable version of Hölder’s inequality for sequences yields

(110)

N∑
k=1

pkq
γ
k ≤

(
N∑
k=1

pk

)1−γ ( N∑
k=1

pkqk

)γ
.

Taking logs and expectations, and using the assumption on the random sets
{p1, . . . , pN} gives
(111)

EV log

N∑
k=1

pkq
γ
k ≤ (1− γ)E log

N∑
k=1

pk + E log

(
N∑
k=1

pkqk

)γ
= E log

(
N∑
k=1

pkqk

)γ
.

This gives (109).
If q1 = · · · = qN = c a.s. where c is a random variable, then equality holds in

(109) since both sides equal E log cγ .
If it is not the case that q1 = · · · = qN a.s. then strict inequality holds in (110)

with positive probability and hence strict inequality holds in (111). �

Theorem 4.17. The spectral dimension ds is the maximum spectral exponent ds(µ)
over all measures µ defined from weights wFi . Equality holds if and only if for some

constant c, wFi = c (rFi )d
r
f PV a.s., in which case the corresponding measure µ is

the flat measure with respect to the resistance metric.

Proof. For |i| = n(1) let pi = r
drf
i , so that EV log

∑
|i|=n(1) pi = 0.

Suppose w = {wFj | f ∈ F , 1 ≤ j ≤ NF } is a set of weights and consider the

corresponding wi. Let qi = wi/r
drf
i .
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Then from (109),

EV log
∑
|i|=n(1)

(
r
drf
i

)1−γ
wγi ≤ EV log

( ∑
|i|=n(1)

wi

)γ
.

Choosing γ so that the powers of ri and wi are equal, gives γ = drf/(d
r
f + 1), i.e.

γ = ds/2. Hence

EV log
∑
|i|=n(1)

t
ds/2
i = EV log

∑
|i|=n(1)(riwi)

ds/2(∑
|i|=n(1) wi

)ds/2 ≤ 0.

Moreover, by Proposition 4.16 equality holds if and only if PV a.s. it is the case

that wi/r
drf
i is independent of i for |i| = n(1). Clearly, this is true iff wFj = c(rFj )d

r
f

PV a.s. for some constant c.

From the definition (94) of ds(µ), we have EV log
∑
|i|=n(1) t

ds(µ)/2
i = 0. From

Lemma 4.11 and the previous inequality, it follows that ds(µ) ≤ ds, and equality
holds iff wFj = c(rFj )df PV a.s. for some constant c �

We next give a sharpening of Theorem 4.13 in the case of the flat measure with
respect to the resistance metric. This shows that for this measure, for all V > 1,
we have the same fluctuations as observed in the version of the V = 1 case treated
in [2]. For this, let

Φ(s) =
√
s log log s,

φ(s) = exp
(
Φ(log s)

)
= exp

(√
log s log log log s

)
.(112)

Theorem 4.18. Suppose µ is the flat measure in the resistance metric. Then there
exist positive (non-random) constants c1, c2, c3, c4, and there exists a positive finite
random variable c0 = c0(ω), such that if s ≥ c0 then

c1φ(s)−c2 ≤ N (s)

sds/2
≤ c3φ(s)c4 PV a.s.

Proof. Consider the unit mass measure νβ constructed in the proof of Theorem 4.13,
where now β = ds is the spectral dimension as in (108).

In the following the constant c may change from line to line, and even from one
inequality to the next.

If |i| is a neck and |i| = n(`) then from (106) and (107),

(113) νds [i] =
t
ds/2
i∑

|j|=n(`) t
ds/2
j

=
t
ds/2
i(∑

|j|=n(`) r
drf
j

)1/(1+drf )
.

Using the law of the iterated logarithm, as in Theorem 2.19 and from the decom-
position (20), PV a.s. there exists a constant c such that, for ` sufficiently large,

(114) − c ≤
log
∑
|i|=n(`) r

drf
i

Φ(`)
≤ c, i.e. e−cΦ(`) ≤

∑
|i|=n(`)

r
drf
i ≤ e

cΦ(`).

Since νds is a unit mass measure and Λk is a cut set, it follows from (113) and
(114) by summing over i ∈ Λk that, for k sufficiently large,

(115)
∑
i∈Λk

t
ds/2
i e−cΦ(`(i)) ≤ 1 ≤

∑
i∈Λk

t
ds/2
i ecΦ(`(i)),

where `(i) is defined in (52). But from Lemma 3.9(c) and Lemma 3.9(a) respec-
tively, the following hold PV a.s. for i ∈ Λk and k sufficiently large:

c−1k−β
′
e−k ≤ ti ≤ e−k, `(i) ≤ c2k.
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Moreover, Φ(ck) ≤ c∗Φ(k) for some c∗ = c∗(c) and all k ≥ 3. It follows from (115)
that, for k sufficiently large,

c−1Mke
−kds/2e−cΦ(k) ≤ 1 ≤ cMke

−kds/2ecΦ(k),

since k−β
′ds/2 can be absorbed into e−cΦ(k), with a new c. That is

(116) c−1ekds/2e−cΦ(k) ≤Mk ≤ cekds/2ecΦ(k).

Given s > 0 choose k so ek−1 < s ≤ ek. Note also from Lemma 3.9(c) that

ek ≤ Tk ≤ ckβ
′
ek, for k sufficiently large. Then from Lemma 4.8 and (116),

(117) N (s) ≤ N (Tk) ≤ cMk ≤ cekds/2ecΦ(k) ≤ csds/2φ(s)c,

where for the last inequality we note that Φ(k) ≤ Φ(1 + log s) ≤ cΦ(log s).
Similarly, again from Lemma 4.8 and (116),

N (kβ
′′
Tk) ≥Mk ≥ c−1ekds/2e−cΦ(k) ≥ c−1sds/2φ(s)−c.

But kβ
′′
Tk ≤ c(log s)β

′′+β′s ≤ c∗s for s ≥ 2 and c∗ = c∗(c, β′, β′′). It follows that
N (c∗t) ≥ c−1sds/2φ(s)−c and so

(118) N (s) ≥ c−1sds/2φ(t)−c

if log log log s > 0, hence if s ≥ 16.
The result follows from (117) and (118). �

Remark 4.19. By using the law of the iterated logarithm in the above we can
show that the Weyl limit does not exist in that there is a positive constant c such
that

0 < lim sup
s→∞

N (s)

sds/2φ(s)c
, PV a.s.

5. On-Diagonal Heat Kernel Estimates

5.1. Overview. The on-diagonal heat kernel is determined for resistance forms
by the volume growth of balls. In [9] it is shown how volume estimates can be
translated into heat kernel estimates in the case of non-uniform volume growth.
We are in the same setting but will express the bounds in a slightly different way.
As we have scale irregularity these will give rise to larger scale fluctuations than
the fluctuations arising from the spatial irregularity. Note that we will establish
bounds for the Neumann heat kernel and are in a setting where the measure is not
volume doubling.

In previous work, in the V = 1 setting of [2], using our notation in (53) and (112),
the results obtained were that for all realizations there are non-random constants
c1, c2 such that

c1Mk ≤ pT−1
k

(x, x) ≤ c2Mk, ∀x ∈ K, k ≥ 0,

while using a sequence chosen according to P1, there are non-random constants
c1, c2, c3, c4 and a random variable c5 ∈ (0,∞) under P1, such that

c1t
−ds/2φ(1/t)−c3 ≤ pt(x, x) ≤ c2t−ds/2φ(1/t)c4 , ∀x ∈ K, 0 < t < c5, P1 a.s.

In the random recursive case (V =∞) with its natural flat measure, as considered
in [23], the fluctuations were shown to be smaller in that there are fixed constants
c1, c2, a > 0 and a random variable c3 ∈ (0,∞) under P∞ such that

c1t
−ds/2| log t|−a ≤ pt(x, x) ≤ c2t−ds/2| log t|a, ∀0 < t < c3, ∀x ∈ K, P∞ a.s.

We will show here that the on-diagonal heat kernel estimates for V -variable
fractals are determined by the local environment, see Theorems 5.5 and 5.8. In
the case of the flat measure in the resistance metric, see Definition 4.14, we show
in Theorem 5.13 that the global fluctuations are of the same order as the V = 1
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case for nested Sierpinski gaskets with uniform measure as described in [2]. In the
case of a general class of measures we will see in Theorem 5.12 that µ-almost every
x ∈ K does not have the same spectral exponent as the counting function (except
when we choose the flat measure) and there will be a multifractal structure to the
local heat kernel estimates in the same way as observed in [5], [22].

In order to transfer the fluctuations in the measure to the on-diagonal heat kernel
we could apply a local Nash inequality, for example [34] or use [9]. However we use
more bare hands arguments adapted from those of [2], [5] and [22] in order to keep
the scale and spatial fluctuations separate.

Note that in [9], [35] it is shown that, in the case of resistance forms with non-
uniform volume growth and under assumptions which hold in our setting, there
exists a heat kernel which is jointly continuous in (t, x, y) ∈ (0,∞) × K × K for
every ω ∈ ΩV,ζ .

5.2. Upper Bound. We adapt the scaling argument given in [22] Appendix B to
this setting. This is a purely local argument and works for all ω ∈ ΩV,ζ .

Firstly, recall from Theorem 3.2 and the definitions and discussions around (72),

(78), (79), that (E ,F), (ED,FD), (Ek,Fk) and (EkD,F
k
D) are local regular Dirichlet

forms on L2(K,µ), L2(K\V0, µ), L2(ti∈ΛkKi, µ), L2(K \ Ṽk, µ) respectively. For
λ > 0 let

Eλ(f, g) = E(f, g) + λ(f, g)µ,

with similar expressions for the other Dirichlet forms. The space F equipped with

norm E1/2
λ is again a reproducing kernel Hilbert space and we write gλ, g

D
λ , g

k
λ, g

k,D
λ

for the corresponding reproducing kernels.
We state a scaling property of the Dirichlet form.

Lemma 5.1. For all f, g ∈ F we have

Eλ(f, g) =
∑
i∈Λk

ρiEσ
i

λti
(f ◦ ψi, g ◦ ψi).

Proof. This follows by the scaling in (30) and (46) and the definiton of ti in (48). �

Let gD,σ
i

λ be the reproducing kernel associated with the Dirichlet form Eσ
i

D,λ on

Kσi

with Dirichlet boundary conditions and let gσ
i

λ be the reproducing kernel for

the Dirichlet form Eσ
i

λ on Kσi

with Neumann boundary conditions.

Lemma 5.2. We have for all i ∈ Λk and x ∈ Ki, that

gD,σ
i

λ (ψ−1
i (x), ψ−1

i (x)) = ρig
k,D
λ/ti

(x, x).

and
gσ

i

λ (ψ−1
i (x), ψ−1

i (x)) = ρig
k
λ/ti

(x, x).

Proof. We consider gD,σ
i

λ (ψ−1
i (x), ψ−1

i (x)), for x ∈ Ki, which is the reproducing

kernel for (Eσ
i

D,λ,F
σi

D ) on L2(Kσi

, µσ
i

). We note that gD,σ
i

λ (ψ−1
i (y), ψ−1

i (x)) = 0
for all y ∈ K\Ki. Using this, the reproducing kernel property and the scaling, we
have for x ∈ Ki,

gD,σ
i

λti
(ψ−1

i (x), ψ−1
i (x)) = EkD,λ(gk,Dλ (., x), gD,σ

i

λti
(ψ−1

i (.), ψ−1
i (x)))

=
∑
j∈Λk

ρjEσ
j

D,λtj
(gk,Dλ (ψj(.), x), gD,σ

i

λti
(ψ−1

i (ψj(.)), ψ−1
i (x)))

= ρiEσ
i

D,λti
(gk,Dλ (ψi(.), x), gD,σ

i

λti
(., ψ−1

i (x)))

= ρig
k,D
λ (x, x)
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as required.
The second equation follows by the same argument. �

It is straightforward to see that, as

FkD ⊂ FD ⊂ F ⊂ F
k,

and gλ(x, x) = [inf{Eλ(f, f) : f ∈ F , f(x) ≥ 1}]−1, (with similar expressions for

gkλ, g
k,D
λ , gDλ ) we have

(119) gk,Dλ (x, x) ≤ gDλ (x, x) ≤ gλ(x, x) ≤ gkλ(x, x), ∀x ∈ K\Ṽk.

Lemma 5.3. There exists a function C(λ) such that for all λ <∞

sup
x∈K

gλ(x, x) ≤ C(λ) <∞.

Proof. We follow the proof of [1] Theorem 7.20. Note that for any fixed x ∈ K we
have gλ(x, .) ∈ F and hence using (31)

|gλ(x, y)− gλ(x, x)|2 ≤ R(x, y)Eλ(gλ(x, .), gλ(x, .)).

By the reproducing kernel property and the global bound on the resistance across
K from Corollary 3.4 we have

|gλ(x, y)− gλ(x, x)|2 ≤ Cgλ(x, x).

Rearranging

gλ(x, y) ≥ gλ(x, x)− (Cgλ(x, x))1/2,

and integrating over y against µ we have

gλ(x, x) ≤ 1

λ
+ (Cgλ(x, x))1/2.

The result then follows easily. �

Lemma 5.4. There exists a constant C such that for all i ∈ Λk and x ∈ Ki,

gt−1
i

(x, x) ≤ Cρ−1
i .

Proof. By Lemma 5.2 and (119) we have for x ∈ Ki

gD,σ
i

λ (ψ−1
i (x), ψ−1

i (x)) = ρig
k,D
λ/ti

(x, x) ≤ ρigλ/ti(x, x)

≤ ρig
k
λ/ti

(x, x) = gσ
i

λ (ψ−1
i (x), ψ−1

i (x)).

Now set λ = 1 and note that by Lemma 5.3 g1 is uniformly bounded. Thus

gD,σ
i

1 (ψ−1
i (x), ψ−1

i (x)) ≤ ρig1/ti(x, x) ≤ gσ
i

1 (ψ−1
i (x), ψ−1

i (x)) ≤ C.

Rearranging we have

gt−1
i

(x, x) ≤ Cρ−1
i ,

as required. �

Theorem 5.5. There exists a constant c such that

pti(x, x) ≤ cµ−1
i , ∀x ∈ Ki,∀i ∈ Λk.

Proof. As

gλ(x, x) =

∫ ∞
0

e−λtpt(x, x)dt,

we have, by the monotonicity of pt(x, x) in t, that for all u

gλ(x, x) ≥ pu(x, x)

∫ u

0

e−λtdt = pu(x, x)
1− e−λu

λ
.
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Thus, setting λ = t−1
i = 1/u, we have

pti(x, x)(1− e−1)ti ≤ gt−1
i

(x, x) ≤ Cρ−1
i .

Rearranging and the definition of ti then gives the result. �

5.3. Lower Bound. We follow a standard approach see for instance [2], [5]. For
this we require an estimate on the exit time distribution for balls. We start with
some preliminary results.

Let {Xt : t ≥ 0} be the diffusion with law P associated with the Dirichlet
form (E ,F). We write Px for the law of the process with X0 = x and Ex for the
corresponding expectation. We write TA = inf{t ≥ 0 : Xt ∈ A} for the first hitting
time of the set A. For i ∈ Λk we write

Di =
⋃

j∈Λk

{Kj : Kj ∩Ki 6= ∅}

for the union of the complexKi and its neighbours. Let Λk(z) := {j ∈ Λk : z ∈ Kj}.
For z ∈ Ṽk we define

Dz
k :=

⋃
j∈Λk(z)

Kj , ∂Dz
k :=

⋃
j∈Λk(z)

ψj(V0)\{z}, ∂Di :=
⋃

j∈Λk,Kj∩Ki 6=∅

ψj(V0)\ψi(V0).

We will also use the notation ∂Ki := ψi(V0).
Recalling (2), (39) and (54) we let η̂ = Ninfwinf/Nsupwsup and write χ(k, n0) =

ηyk η̂M(k,n0) with M(k, n0) := max1≤`≤c0k(n(`+n0)−n(`)), where c0 is the constant
c2 given in Lemma 3.9(a).

Lemma 5.6. There exist constants ci and n0 such that

c1χ(k, n0)e−k ≤ ExT∂Di
≤ sup
z∈Di

EzT∂Di
≤ c2e−k, ∀x ∈ Ki,∀i ∈ Λk.

Proof. We begin by observing that

(120) ExT∂Di
= ExT∂Ki

+
∑
y∈∂Ki

Px(XT∂Ki
= y)EyT∂Di

.

To treat the first term we note that the Dirichlet form restricted to Ki with
Dirichlet boundary conditions is a reproducing kernel Hilbert space with the associ-
ated Green function gKi

(x, .) as the kernel. Let f(y) = gKi
(x, y)/gKi

(x, x). By the
definition of f and the reproducing kernel property we have E(f, f) = 1/gKi

(x, x).
By the definition of the effective resistance we also have that gKi

(x, x) = R(x, ∂Ki).
As gKi

is harmonic away from x and is 0 on ∂Ki we have that 0 ≤ f(y) ≤ 1 for
all y. Hence, putting these observations together and using Corollary 3.4, we have
that, for any y ∈ Ki,

(121) EyT∂Ki
=

∫
Ki

gKi
(y, z)µ(dz) ≤ R(y, ∂Ki)µ(Ki) ≤ criµi ≤ c1e−k,

as i ∈ Λk.
We next consider the exit time from Di started at a point y ∈ ∂Ki.

Let U0 = 0 and set Ui = inf
{
t > Ui−1 : Xt ∈ Ṽk\{XUi−1

}
}

. Then X̂i = XUi is

a discrete time Markov chain on Ṽk. Let S = inf{n : X̂n ∈ ∂Di}. By construction

we see that {X̂n : n ≤ S} can be viewed as a d+2 state discrete time Markov chain
with d+1 states as the vertices of Ki and an absorbing state given by amalgamating
the vertices in ∂Di. By construction this Markov chain has transition probabilities
given by the conductances on G̃k. As d of the vertices in ∂Ki must be internal
to a triangle or d-dimensional tretrahedron in Ki||i|−1 the conductance between
the edges across ∆i and at least one edge to ∂Di are comparable or otherwise the
conductances across ∆i are smaller and hence EyS <∞ independent of k.



44 U. FREIBERG, B.M. HAMBLY, AND JOHN E. HUTCHINSON

The time taken for the original process to exit is then EyUS . We now compute
the time for a step.

The same argument as before for the first term in (120) but using gDyk gives

EyT∂Dyk =

∫
Dyk

gDyk (y, z)µ(dz) ≤ R(y, ∂Dy
k)µ(Dy

k).

Now observe that by the definition of resistance we have

R(y, ∂Dy
k) ≤ R(y, z), ∀z ∈ ∂Dy

k.

Thus we have R(y, ∂Dy
k) ≤ minz∈∂Dyk R(y, z). By our estimate on the resistance

in Lemma 3.3 this gives R(y, ∂Dy
k) ≤ minj∈Λk(y) rj . Hence, as the number of cells

that meet at y is bounded,

EyT∂Dyk ≤ min
j∈Λk(y)

rj
∑

j∈Λk(y)

µj ≤ c max
j∈Λk(y)

rjµj ≤ ce−k.

We are now ready to show EyT∂Di
≤ Ce−k. To see this we use

EyT∂Di
= EyUS = Ey

S∑
i=1

(Ui − Ui−1) .

Note that S is a stopping time with respect to {FUi}∞i=0, where {F t}t≥0 is the
filtration generated by X. As Ey(Ui −Ui−1|FUi−1

) =
∑
z∈Ṽk I{XUi−1

=z}EzTṼk\{z},
a minor modification of Wald’s identity shows that

(122) EyT∂Di
≤ ce−kEyS, ∀y ∈ ∂Ki.

Putting this back into (120) gives the upper bound for this y.
Finally we let z ∈ Di and establish our upper bound by showing EzT∂Di

≤ ce−k
for some constant c > 0. As we have the result for z ∈ Ki we assume that
z ∈ Di\Ki. We can choose j ∈ Λk\{i} such that Kj ∩Ki 6= ∅ and z ∈ Kj . Then,
decomposing the exit time T∂Di

at the first exit time of Kj , we have Pz a.s.

T∂Di
= T∂Kj

+ (T∂Di
◦ θT∂Kj

)I∂Ki
(XT∂Kj

),

where θT∂Kj
denotes the shift map for the diffusion process {Xt}t≥0. Thus, by the

strong Markov property of the diffusion we have

EzT∂Di
= EzT∂Kj

+ Ez
(

(T∂Di
◦ θT∂Kj

)I∂Ki
(XT∂Kj

)
)

= EzT∂Kj
+ Ez

(
I∂Ki

(XT∂Kj
)EXT∂Kj (T∂Di

)
)

≤ c1e
−k + c2e

−k = c3e
−k

where EzT∂Kj
≤ c1e−k by (121) and control of the second term comes from (122),

completing the proof of the upper bound.
For the mean hitting time lower bound we return to (120) to see that

ExT∂Di
≥ min
y∈∂Ki

EyT∂Di
≥ min
y∈∂Ki

EyT∂Dyk .

Using the properties of gDyk , and setting f(z) = gDyk (y, z)/gDyk (y, y), we see that

|f(y)− f(z)|2 ≤ R(y, z)E(f, f) =
R(y, z)

gDyk (y, y)
=

R(y, z)

R(y, ∂Dy
k)
.

Let
Acy := {z : R(y, z) ≤ cR(y, ∂Dy

k)}.
Let j∗ ∈ Λk(y) denote the index at which minj∈Λk(y) rj is attained. Thus, by the
boundedness of |Λk(y)|, we have

(123) R(y, ∂Dy
k) ≥ c1rj∗ .
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We now show that Acy must have measure comparable with µj∗ .
By decomposing the cell Kj∗ we have

Kj∗ =
⋃

j:|j|=n

ψj∗j(K(σj∗jT )),

and we write k with |k| = n such that y ∈ ψj∗k(K(σj∗kT )) = Kj∗k. Then, by
Corollary 3.4, for any z ∈ Kj∗k we have a constant c such that

R(y, z) ≤ crj∗k ≤ crj∗rnsup,

and hence by (123)

R(y, z) ≤
crnsup

c1
R(y, ∂Dy

k).

Thus, if we take n0 = inf{n : rnsup < c1/c} and set c2 =
crn0

sup

c1
, we have Kj∗k ⊂ Ac2y

where c2 < 1.
Hence for z ∈ Kj∗k we have |f(y) − f(z)|2 ≤ c2. As f(y) = 1 we see that we

must have f(z) ≥ c′ = 1−√c2. Thus for any y ∈ ∂Ki we have, writing kn0
+ |j∗|

for the first neck after n0 + |j∗|,

EyT∂Dyk =

∫
Dyk

gDyk (y, z)µ(dz) ≥ c′gDyk (y, y)µ(Kj∗k)

= c′R(y, ∂Dy
k)µj∗

∑
{wki : |ki| = kn0

, i ∈ Tσj∗k}∑
{wi : |i| = kn0 , i ∈ Tσ

j∗ }
.

We now give an upper bound on kn0 . Let ` := `(j∗). Then n(`) = |j∗| and,
since there are at most n0 necks in the levels from |j∗| + 1 to |j| + kn0

, we have
|j∗|+ kn0

≤ n(`+ n0) = n(`(j∗) + n0). Hence by Lemma 3.9(a),

kn0 ≤ n(`(j∗) + n0)− |j∗| = n(`(j∗) + n0)− n(`(j∗))

≤ max
1≤`≤c0k

(n(`+ n0)− n(`)) = M(k, n0).

Now applying (123) and the fact that rj∗µj∗ ≥ ηyke−k by Lemma 3.9 (c), we have

EyT∂Dyk ≥ c3rj∗µj∗N
kn0−n0

inf

(
winf

Nsupwsup

)kn0

≥ c3η
yke−kN−n0

inf η̂kn0

≥ c3N
−n0

inf ηyke−kη̂M(k,n0)

= c4χ(k, n0)e−k

as required. �

Lemma 5.7. There exist constants c3, c4 such that for x ∈ Ki, i ∈ Λk

P x(T∂Di
≤ t) ≤ 1− c3χ(k, n0), for t ≤ c4

1

2
χ(k, n0)2e−k.

Proof. We note that

T∂Di
≤ t+ I{T∂Di

>t}(T∂Di
− t).

Taking expectations

ExT∂Di
≤ t+ Ex

(
I{T∂Di

>t}EXtT∂Di

)
≤ t+ Px(T∂Di

> t) sup
y∈Di

EyT∂Di
.
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Rearranging and then applying our exit time estimates from Lemma 5.6

Px(T∂Di
≤ t) ≤ t

supy∈Di
EyT∂Di

+ 1− ExT∂Di

supy∈Di
EyT∂Di

≤ c1e
ktχ(k, n0)−1 + 1− c2χ(k, n0).

Thus, if t ≤ 1
2c2c

−1
1 χ(k, n0)2e−k, we have

Px(T∂Di
≤ t) ≤ 1− 1

2
c2χ(k, n0),

as required. �

Theorem 5.8. There are constants c, α′ such that for t ≤ c4e−kχ(k, n0)2

pt(x, x) ≥ cχ(k, n0)2µ(Di)
−1, ∀x ∈ Ki, i ∈ Λk.

Proof. A standard argument gives the following. If t ≤ 1
2c4χ(k, n0)2e−k, then by

Lemma 5.7

(c2χ(k, n0))2 ≤ P x(Xt ∈ Di)
2 = (

∫
Di

pt(x, y)µ(dy))2 ≤ µ(Di)p2t(x, x),

as required. �

Finally we can estimate χ(k, n0) to provide a PV a.s. estimate in terms of the
scale factors.

Theorem 5.9. There are constants c, β such that PV a.s. for sufficiently large k,
for t ≤ ce−kk−β

pt(x, x) ≥ cµ(Di)
−1k−β ,∀x ∈ Ki, i ∈ Λk.

Proof. We first need to estimate M(k, n0) = max1≤`≤c0k (n(`+ n0)− n(`)). As
n(` + n0) − n(`) =

∑n0

i=1 n(` + i) − n(` + i − 1) is a sum of n0 geometric random
variables it has the negative binomial distribution. If we set Y` = n(`+ n0)− n(`),
then there is an A and a p such that Y` satisfies the tail estimate required to apply
Lemma 2.16 (15) giving lim supk→∞M(k, n0)/ log k ≤ 1/ log(1/p), PV −a.s. Thus,
PV -a.s. for sufficiently large k there is a constant c such that

η̂M(k,n0) ≥ η̂c log k.

Using this and the estimates on yk from Lemma 3.9-(b) we have PV -a.s. for suffi-
ciently large k there is a β such that

χ(k, n0) ≥ c′k−β/2

and using Theorem 5.8 gives the result. �

Remark 5.10. In a different setting [5] obtained a finer estimate on the exit time
from a complex which enables the derivation of a finer form of this on-diagonal
estimate. We do not derive such a result here though we expect that the same
techniques could be applied to do so. Our result is enough to enable us to compute
the µ-almost everywhere local spectral exponent.

5.4. Local Spectral Exponent. As in [5] we will see that the local spectral di-
mension obtained by considering the limit as k →∞ of pti(x, x) for x ∈ Ki, i ∈ Λk
will in general not coincide with the global spectral dimension.

We have the following preliminary result. Let ix ∈ ∂T be such that Kix|k → {x}
as k →∞.

Lemma 5.11. There exists a constant c such that Dix|n(k+[c log k)] ⊂ Kix|n(k) for
all sufficiently large k for µ-a.e. x ∈ K, PV a.s.



SPECTRAL ASYMPTOTICS FOR V -VARIABLE SIERPINSKI GASKETS 47

Proof. Let Tn(m),b denote the addresses of the d + 1 boundary cells at the m-th
neck. By Lemma 3.6 we must have

a := EV max
j∈Tn(1),b

µj < 1.

Now for i ∈ {j ∈ T : |j| = n(k + m)} we have Di ⊂ Ki|n(k) if Ki ∩ ∂Ki|n(k) = ∅.
Then, setting A = {Ki : i ∈ {j ∈ T : |j| = n(k +m)},Ki ∩ ∂Ki|n(k) 6= ∅}, we have

EV µ(A) = EV
∑

i∈{j∈T :|j|=n(k+m)}

µiI{Ki∩∂Ki|n(k) 6=∅}

= EV
∑

i∈{j∈T :|j|=n(k)}

µi

∑
j∈Tn(k+m),b

µj

µi
.

By construction the terms µ
(j)
i =

µi|n(j)

µi|n(j−1)
are independent and equal in distribution

to µi|n(1), allowing us to write

EV µ(A) = EV
∑

i∈{j∈T :|j|=n(k)}

µiEV
∑

j∈Tn(m),b

m∏
j=1

µ
(j)
j

≤ (d+ 1)am.

Thus we have

EV

∞∑
k=1

µ(x ∈ K : Dix|n(k+[c log k]) 6⊂ Kix|n(k)) ≤ c1
∞∑
k=1

ac log k <∞,

for large enough c. Hence PV a.s. we have

µ(x ∈ K : Dix|n(k+[c log k]) 6⊂ Kix|n(k) i.o.) = 0,

as required. �

For the rest of this section we write Tn(1) = {j ∈ T : |j| = n(1)} for the tree

up to the first neck. Take another set of weights {{ŵFi }
|F |
i=1}F∈F satisfying the

conditions of Section 3.3 and define the associated measure µ̂.
Observe that by (43) and the definition of η we have

µi ≥
(

η

rinf

)n(1)

, ti ≥ ηn(1), i ∈ Tn(1).

Thus logµi ≥ n(1) log η
rinf

and as

0 >
∑

i∈Tn(1)

µ̂i logµi ≥ n(1) log
η

rinf
,

we have

EV |
∑

i∈Tn(1)

µ̂i logµi| ≤ cEV n(1) <∞.

We can control EV |
∑

i∈Tn(1)
µ̂i log ti| in the same way.

As in [5] we can now determine the local spectral exponent for the heat kernel
pt(x, x) defined with respect to the reference measure µ for µ̂ almost every x.

Theorem 5.12. PV almost surely, for µ̂-almost every x ∈ K we have

lim
t→0

log pt(x, x)

− log t
=
d̂s(µ̂)

2
=
EV

∑
i∈Tn(1)

µ̂i logµi

EV
∑

i∈Tn(1)
µ̂i log ti

.
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Proof. For x ∈ K we have a sequence i|n(k) for which Di|n(k) → {x} as k → ∞.
By monotonicity of the diagonal heat kernel in time for t ∈ (ti|n(k), ti|n(k−1)] we
have pt(x, x) ≤ pti|n(k)

(x, x) and thus

lim sup
t→0

log pt(x, x)

− log t
≤ lim sup

k→∞

log pti|n(k)
(x, x)

− log ti|n(k−1)
, PV a.s.

Now using Theorem 5.5 we have

log pti|n(k)
(x, x) ≤ C − logµi|n(k) = C −

k∑
j=1

log
µi|n(j)

µi|n(j−1)
.

We now consider the probability measure dµ̂dPV on {1, . . . , Nsup}N × ΩV (with
the product σ-algebra). If the point x is chosen according to µ̂, then the terms

µ
(j)
i =

µi|n(j)

µi|n(j−1)
are independent and equal in distribution to µi|n(1) under dµ̂dPV .

We can also express − log ti|n(k) in terms of independent random variables t
(j)
i

defined in the same way. It is easy to see that log ti|n(k)/ log ti|n(k−1) → 1 for any
x ∈ K, PV -almost surely and hence

(124) lim sup
t→0

log pt(x, x)

− log t
≤ lim sup

k→∞

log pti|n(k)
(x, x)

− log ti|n(k)
≤ lim sup

k→∞

1
k

∑k
j=1 logµ

(j)
i

1
k

∑k
j=1 log t

(j)
i

.

As the mean of logµ(j) is finite we can apply the strong law of large numbers under
dµ̂dPV to see that

lim
k→∞

1

k

k∑
j=1

logµ(j) = EV
∑

i∈Tn(1)

µ̂i logµi, µ̂ a.e. x ∈ K, PV a.s.

Similarly we can find the limit for the denominator in (124). Thus we have

lim sup
k→∞

log pti|n(k)
(x, x)

− log ti|n(k)
≤
EV

∑
i∈Tn(1)

µ̂i logµi

EV
∑

i∈Tn(1)
µ̂i log ti

.

For the lower bound we define `(i, k) = ` if i|n(`) ∈ Λk. Thus

− log ti|n(`(i,k)−1) < k ≤ − log ti|n(`(i,k)).

Hence, it is clear that, by the independence
(125)

lim
k→∞

`(i, k)

k
= lim
`→∞

−`
log ti|n(`)

=
−1

EV
∑

i∈Tn(1)
µ̂i log ti

, µ̂ a.e. x ∈ K, PV a.s.

Now, from Theorem 5.9, PV a.s. for sufficiently large k, for ce−(k+1)(k + 1)−β <
t ≤ ce−kk−β we have for x ∈ Ki, i ∈ Λk,

log pt(x, x)

− log t
≥ − log (cµ(Di)

−1k−β)

log (ce−(k+1)(k + 1)−β)

= − log c− β log k − logµ(Di)

log c− k − 1− β log (k + 1)
.

Thus for x ∈ K, i ∈ ∂T with Di|n(k) → {x},

lim inf
t→0

log pt(x, x)

− log t
≥ lim inf

k→∞

− logµ(Di|n(`(i,k)))

k
.

We now observe that by Lemma 5.11 we have a constant c′ such that PV a.s. for
µ̂-a.e. x ∈ K, for sufficiently large k,

− logµ(Di|n(`(i,k))) ≥ − logµi|n(`(i,k)−[c′ log `(i,k)]).



SPECTRAL ASYMPTOTICS FOR V -VARIABLE SIERPINSKI GASKETS 49

Using this, (125) and writing ˜̀(i, k) = `(i, k)− [c′ log `(i, k)], we have

− lim
k→∞

logµi|n(˜̀(i,k))

k
= − lim

k→∞

˜̀(i, k)

k
lim
k→∞

1
˜̀(i, k)

˜̀(i,k)∑
j=1

logµ
(j)
i

=
EV

∑
i∈Tn(1)

µ̂i logµi

EV
∑

i∈Tn(1)
µ̂i log ti

,

for µ̂ a.e. x ∈ K, PV almost surely, as required. �

In the case where the reference measure µ is the flat measure ν in the resistance

metric, the weights are proportional to r
drf
i and EV log

∑
i∈Tn(1)

r
drf
i = 0, a simple

calculation shows that

d̂s(µ̂)

2
=

EV
∑

i∈Tn(1)
µ̂i logµi

EV
∑

i∈Tn(1)
µ̂i log ti

=

EV
∑

i∈Tn(1)
µ̂i log

r
drf
i∑

j∈Tn(1)
r
dr
f

j

EV
∑

i∈Tn(1)
µ̂i log

r
1+dr

f
i∑

j∈Tn(1)
r
dr
f

j

=
drfEV

∑
i∈Tn(1)

µ̂i log ri

(1 + drf )EV
∑

i∈Tn(1)
µ̂i log ri

=
drf

drf + 1
=
ds
2
.

Indeed in this case we can go further and give a bound on the size of the scale
fluctuations.

Theorem 5.13. If ν is the flat measure in the resistance metric we have constants
c1, c2, c3, c4 ∈ (0,∞) and a random variable 0 < c5 such that PV a.s. for any x ∈ K

c1φ(1/t)−c2t−ds/2 ≤ pt(x, x) ≤ c3φ(1/t)c4t−ds/2, 0 < t < c5.

Proof. We begin by observing that for i ∈ Λk we have ti ≤ e−k and thus substitut-
ing in the upper bound estimate from Theorem 5.5, for x ∈ Ki

(126) pe−k(x, x) ≤ pti(x, x) ≤ cν−1
i .

By (114) we have that PV almost surely for sufficiently large k, νi ≥ r
drf
i exp(−cΦ(`(i)))

and hence r
1+drf
i exp(−cΦ(`(i))) ≤ ti ≤ e−k. Thus, using Lemma 3.9,

ri ≤ e−k/(1+drf ) exp(c′Φ(`(i))),

and

pe−k(x, x) ≤ e
k

drf
1+dr

f exp(c′′Φ(`(i))).

Thus, for e−k ≤ t < e−k+1, and as maxi∈Λk `(i) ≤ ck ≤ −c log t, we have for any
x ∈ K,

pt(x, x) ≤ Ct−ds/2 exp(c′Φ(log (1/t))) = Ct−ds/2φ(1/t)c
′
, PV a.s.

For the lower bound we observe from Theorem 5.9 that PV almost surely for
sufficiently large k, for t ≤ ce−kk−β

pt(x, x) ≥ cν(Di)
−1k−β ,∀x ∈ Ki, i ∈ Λk.
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For j ∈ Λk, as e−k ≥ tj = rjνj ≥ r
1+drf
j exp(−cΦ(`(j))) PV almost surely, we have

rj ≤ e−k/(1+drf ) exp(c′Φ(`(j))).

Then as the number of cells in Di is bounded and `(j) ≤ ck by Lemma 3.9(a), we
have, using (114),

ν(Di) =
∑
j∈Λk

r
drf
j∑

j′:|j′|=n(`(j)) r
drf
j′

I{Ki∩Kj 6=∅}

≤
∑
j∈Λk

r
drf
j I{Ki∩Kj 6=∅} exp(cΦ(`(j)))

≤ ce−kd
r
f/(1+drf ) exp(c′′Φ(k)).

Thus, PV a.s. for sufficiently large k for t ≤ ce−kk−β ,

pt(x, x) ≥ ck−βekd
r
f/(1+drf ) exp(−c′′Φ(k)), ∀x ∈ K.

For ce−(k+1)(k+ 1)−β < t ≤ ce−kk−β we have c1ee
−kk−β < t so that ekkβ > c2t

−1

and

pt(x, x) ≥ ck−(2drf+1)β/(drf+1)t−d
r
f/(1+drf ) exp(−c′′Φ(k)), ∀x ∈ K.

Now as k ≤ log c+ log (1/t) we have for sufficiently small 0 < t, for any x ∈ K

pt(x, x) ≥ b′| log t|−β
′
t−ds/2 exp(−c′′Φ(| log t|)).

By adjusting c′′ we can absorb the logarithm into the exponential term and we have
the result. �

References

[1] M.T. Barlow, Diffusions on fractals, in Lectures in Probability Theory and Statistics: Ecole
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