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ABSTRACT. The family of V-variable fractals provides a means of interpolating
between two families of random fractals previously considered in the literature;
scale irregular fractals (V' = 1) and random recursive fractals (V = oc0). We
consider a class of V-variable affine nested fractals based on the Sierpinski
gasket with a general class of measures. We calculate the spectral exponent
for a general measure and find the spectral dimension for these fractals. We
show that the spectral properties and on-diagonal heat kernel estimates for
V-variable fractals are closer to those of scale irregular fractals, in that it is
the fluctuations in scale that determine their behaviour but that there are also
effects of the spatial variability.

1. INTRODUCTION

The field of analysis on fractals has been primarily concerned with the construc-
tion and analysis of Laplace operators on self-similar sets. This has yielded a well
developed theory for post critically finite (or p.c.f.) self-similar sets, a class of
finitely ramified fractals [32]. One motivation for the development of such a theory,
aside from its intrinsic mathematical interest, has come from the study of transport
in disordered media. However, in this setting the fractals arise naturally in mod-
els from statistical physics at or near a phase transition and are therefore random
objects without exact self-similarity but with some statistical self-similarity.

In order to develop the mathematical tools to tackle analysis on such random
fractals one approach has been to work with simple models based on self-similar sets
but exhibiting randomness. The first case to be treated was that of scale irregular
fractals [18], [2], [25] and [11], which have spatial homogeneity but randomness
in their scaling. A more natural setting is provided by random recursive fractals,
initially constructed by [39], [12], [17], where the fractal can be decomposed into a
random number of independent scaled copies. The study of some analytic properties
of classes of random recursive Sierpinski gasket can be found in [19], [21] [23] and
[35].

More recently there has been work tackling random sets arising from critical
phenomena directly, with a particular focus on the percolation model. Substan-
tial progress has been made in the study of random walk on critical percolation
clusters in the high dimensional case, see [3] and [37]. A bridge between these two
approaches can be found in work on the continuum random tree [9], [10] or on
critical percolation clusters on hierarchical lattices [24], both of which have ran-
dom self-similar decompositions and hence have descriptions as random recursive
fractals.

In this paper we consider V-variable fractals recently introduced in [6, 7]. This
class of random fractals is defined via a family of iterated function systems and
a positive integer parameter V. It interpolates between the class of homogeneous
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(scale irregular) random fractals, corresponding to V' =1, and the class of random
recursive fractals, corresponding to V = oco. As for the random recursive fractals
we can regard these V-variable fractals as determined by a probability measure on
the set of labelled trees. In this case the measure is not a product measure, but is
defined in a natural (if not completely obvious) manner which allows for at most
V distinct subtrees rooted at each level.

Our aim in this paper is to investigate the analytic properties of the class of
V-variable Sierpinski gaskets and to compare their behaviour to the scale irregular
and random recursive cases. We show their Hausdorff dimension in the resistance
metric is the zero of a certain pressure function and their spectral dimension, the
exponent for the growth of the eigenvalue counting function, is the zero of another
pressure function. The connection between these two dimensions is established.
We develop and extend standard methodology to examine more detailed properties
of the eigenvalue counting function and the on-diagonal heat kernel. These results
show that the V-variable fractals are closer to the scale irregular case, in that
their fine properties are generally determined by fluctuations in scale rather than
fluctuations which occur spatially across the fractal.

Model problems. We consider two model problems. Recall from [27] the descrip-
tion of a self-similar set as an iterated function system (or IFS) at each node of a
tree generated by the address space.

Homogeneous and Random Recursive Fractals. For the first model problem we con-
sider the two IFSs generating the Sierpinski gasket fractal SG(2) and the fractal
SG(3) defined in [18]. The scale factors for SG(2) are mass my = 3, length Iy = 2
and time s = 5. For SG(3) we have mass mg = 6, length I3 = 3 and time s3 = 90/7.
The conductance scale factors can be computed directly, or from the Einstein re-
lation p = s/m, giving ps = 5/3,p3 = 15/7. Let (M, S, L) be a triple of random
variables taking each of the values (m;, s;, ;) where i = 2,3 with probabilities p, 1—p
respectively.

Then, for the V' =1 (homogeneous) case, we construct a random fractal using a
sequence taking its values in {2,3} and applying the corresponding IFS to all sets
at a given level of construction. A realization of the first few stages can be seen
in Figure 2. Then a simple scaling analysis shows that the Hausdorff dimension
is given by dy = Elog M /Elog L where E denotes the expectation with respect to
the probability measure generating the sequence. For the spectral dimension with
respect to the natural “flat measure” one can extend the idea from [15] and [36]
in the case of a single IFS fractal and apply a scaling argument to the Dirichlet
form together with a Dirichlet-Neumann bracketing argument, see [20]. This gives
the spectral dimension ds; = 2Elog M/Elog S. For the V = oo (random recursive)
case, each IFS is chosen independently for each node at each level. In this case
we have ds = 2d}/(d} + 1) where d} is the Hausdorff dimension in the resistance
metric, that is d} is such that E(M(S/M)~%) = EM'+9 S~ = 1. The argument
again uses scaling properties of the Dirichlet form and a Dirichlet-Neumann brack-
eting argument, see [20, 21]. An alternative approach to computing the spectral
dimension for random V = 1,00 fractals is via heat kernel estimates, see [2] and
[18, 19, 20, 21].

The second model problem is drawn from the class of affine nested fractals con-
sidered in [14]. This model interpolates between the slit triangle (which is not itself
an affine nested fractal) and SG(3). Consider 7 triangles in the configuration shown
in Figure 1 and take £ as the side length of the three triangles at the corners of
the original triangle. The side lengths of the other triangles are given as 1 — 2¢ for
the three triangles on the centre of each side and 3¢ — 1 for the downward pointing
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central triangle, where 1/3 < ¢ < 1/2. As ¢ — 1/2 we have the slit triangle and at
¢ =1/3 we have SG(3). We construct a homogeneous random or random recursive

FIGURE 1. A member of the family of Sierpinski gaskets interpo-
lating SG(3) and the slit triangle, where 1/3 < £ < 1/2.

fractal by taking a suitable distribution for £ on [1/3,1/2) and either using a se-
quence, applying the same IFS at each node in the construction tree for the V =1
case, or independently choosing an IF'S for each node in the V' = oo case.

We note that even scale irregular (V' = 1) affine nested gaskets of this type
have not been treated before and as a consequence of our results we will be able
to calculate the Hausdorff and spectral dimension for the random homogeneous
version (V = 1). By the triangle-star transform, if we assume that the resis-
tance of each piece is proportional to its length, then the resistance scale factor is
(2¢+1)/(£+ 2) in that if we take resistances on the three different types of trian-
gle to be (£ +2)/(2¢+1)(¢,1 — 2¢,3¢ — 1) then this is electrically equivalent to the
triangle with unit resistance on each edge.

In Section 2 we recall from [8] the Hausdorff dimension result for V-variable
fractals, and we derive the spectral dimension from our calculations in Sections 4

and 5.

V-Variable Fractals. To understand the V-variable versions of our model problems,
first consider the V' = 1 (spatially homogeneous, scale irregular) case of a V-variable
labelled tree in a manner parallel to the approach taken in the general setting.
See Figure 2. For V' = 1 all subtrees rooted at each fixed level are the same,
as are the corresponding subfractals at each fixed level, hence the terminology
“homogeneous”. The subtrees at one level are typically not the same as the subtrees
at another level, hence the terminology “scale irregular”.

FIGURE 2. The level 3 approximation to a l-variable tree, and
the prefractal approximation to the associated 1-variable, or scale
irregular, fractal. Here the family of IFSs is F = {F(2), F(3)}
with members generating the sets SG(2) and SG(3) respectively.

For a general V-variable tree and for the corresponding V-variable fractal, there
are at most V distinct subtrees up to isomorphism rooted at each fixed level, and
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correspondingly at most V' distinct subfractals up to rescaling at each fixed level
of refinement. See Figure 3 for a level 2 approximation to a V-variable tree with
V' > 2. In Section 2 we discuss this in some detail and see that there is a natural
probability distribution on the class of V-variable fractals for each fixed V.

The construction of V-variable trees and hence V-variable fractals will require
an assignment of a type chosen from {1,...,V}, as well as an IFS; to each node
of the tree. Nodes with the same type and at the same level will have identical
subtrees rooted at those nodes. The subfractals corresponding to those nodes will
be identical up to scaling. See Figure 4. We choose the IFSs according to a
probability measure and will write Py for the probability measure on the space of
trees or V-variable fractals and Ey for expectation with respect to Py .

Let n(1) be a random variable denoting the first level after level 0 at which all
nodes are assigned the same type, see (13). Since the number of types is finite and
we will assume a uniform upper bound on the branching number, Eyn(1) < oc.
Note that n(1) =1 if V =1, and clearly Eyn(1) increases with V.

We write ¢ = 41 ...4; for a node in the tree and denote its height or length by
|i| = k. The root node is denoted by @ and |@| = 0. The Hausdorff dimension dy of
the V-variable gasket formed from SG(2) and SG(3) is given Py almost surely by
the zero of a pressure function in that (Py almost surely) it is the unique dy such
that Ev log ;1) (G - - i, y)" =0, where £, is the length contraction factor
1/2 or 1/3 according to which of SG(2) or SG(3) is chosen. See Theorem 2.18, also
Theorem 2.19 for the general statement.

Results. For further detail see the Overview at the beginning of the following Sec-
tions 2-5.

Our main results first establish an expression for the spectral exponent over a
general class of measures and determine the spectral dimension for these fractals.
We then provide finer results of two types. We consider the eigenvalue counting
function and the on-diagonal heat kernel and obtain upper and lower bounds on
these quantities which hold for a large set of V-variable trees. Under the probability
measure Py on the trees we obtain Py, almost sure results capturing more explicitly
their fluctuations. In the model problems the expectation is either over a discrete
measure on {2,3} or over a suitable distribution on [1/3,1/2).

We show in Theorem 4.13 that the spectral exponent can also be expressed as
the zero of a pressure function. In Theorems 4.15 and 4.17 we see that the spectral
dimension, the maximum value of the spectral exponent over all measures ;. defined
using a product of weights, satisfies the equation d,/2 = d}/(d} + 1) where d} is
the Hausdorff dimension in the resistance metric. This dimension in turn is the
zero of another pressure function, see Theorem 3.12.

We establish upper and lower estimates for the eigenvalue counting function
and on-diagonal heat kernel for a general class of measures. We show that the
observed fluctuations arise from two different effects. The first is due to global
scaling fluctuations as observed for scale irregular nested Sierpinski gaskets [2].
The second effect, which arises in the V-variable setting for V"> 1 or V' =1 when
the contraction factors are not all the same, gives additional, though much smaller,
fluctuations due to the spatial variability of these fractals.

We first establish from Lemma 4.6 the non-probabilistic result that for a large
set of all possible V-variable trees, if N'(A) denotes the number of eigenvalues less
than A (for the Dirichlet or Neumann Laplacian), then there is a time scale factor
T}, a mass scale factor M}, and a correction factor Ay, such that there are constants
C1,C2 with

Cle S N(Aka) and N(Tk) S Cng, Vk.
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In the scale irregular gaskets of [2], and the V =1 case here, this result is true for
all realizations. By construction the scale factors My, T} grow exponentially in k
but we will be able to show that Py almost surely we have A; < ck?, for some
constants ¢, 8. The spectral exponent for any measure p defined by a set of weights
associated with a given IFS is

log V'(N)

2 7 oz log\ ]

and we give a formula for this quantity as the zero of a suitable pressure function.
In the case where the weights are ‘flat’ in the resistance metric we can show that

there is a function ¢(X\) = exp(v/log Alogloglog A) such that Py -almost surely
(1) A 2P(N) T S N(A) < esd®2p(A),

for large A, where d; = 2d}/(d} + 1) and d} is the Hausdorff dimension in the
resistance metric.

To compare our results with previous work we note that in the V = 1 case for
nested Sierpinski gaskets it is shown in [2] that the Weyl limit for the normalized
counting function does not exist in general and we have for all realizations that

Cle S N(Tk) S CQMk».

This leads to the same size scale fluctuations as for the V-variable case given in (1).
For the random recursive case of [21], the averaging leads to a Weyl limit in that

N
im

A—00 )\ds/2
where dgs = 2d} /(d} +1) and d} is the Hausdorff dimension in the resistance metric.
We will also be able to obtain bounds on the on-diagonal heat kernel. We note
that the measures we work with in this setting do not have the volume doubling
property and hence it is harder work to produce good heat kernel estimates. In the
setting considered here we can extend the arguments of [2] and [5] to get fluctuation
results for the heat kernel. In Theorems 5.5 and 5.8 we show that the on-diagonal
heat kernel estimate is determined by the local environment. In the case where
the measure is the ‘flat’ measure in the resistance metric we can describe the small

time global fluctuations in that, Py, almost surely for any point x in the fractal,

et 2110 < pul @) < est™ U o(1/0)%, 0 <t < e,

exists Py a.s.,

for suitable deterministic constants ¢y, ¢, c3, ¢4, and for all ¢t < ¢5, a random con-
stant independent of the point z. These are of the same order as the V' = 1 case
obtained in [2] and much larger than those in the random recursive case, [23].

In the case of general measures we will see that Py -almost surely, p-almost every
x in the fractal does not have the same spectral exponent as the counting function
(except when we choose the flat measure) and thus there will be a multifractal
structure to the local heat kernel estimates in the same way as observed in [5], [22].

We restrict ourselves to affine nested fractals based on the Sierpinski gasket in
R? where d > 2. The problem of the existence of a limiting Dirichlet form is
not solved more generally, even for the case of homogeneous random fractals. If
this problem were solved, then the techniques used here would enable more general
results to be obtained concerning V-variable fractals constructed from more general
p.c.f. self-similar sets.

The structure of the paper is as follows. We give the construction of V-variable
affine nested fractals in Section 2. We show that by using the structure of V-
variability there is a natural decomposition of the fractals at ‘necks’; a level at which
all subtrees are the same. This idea was first used by Scealy in [40]. In Section 3 we
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focus on V-variable affine nested Sierpinski gaskets and we construct the Dirichlet
form, compute the resistance dimension, and determine other properties which will
facilitate analysis on these sets. In Section 4 we treat their spectral asymptotics.
The heat kernel is dealt with in Section 5.

Acknowledgement. We particularly wish to thank an anonymous referee for un-
usually careful and detailed sets of comments. Addressing these has led to a number
of improvements in the results of the paper.

2. GEOMETRY OF V-VARIABLE FRACTALS

2.1. Overview. Random V-variable fractals are generated from a possibly un-
countable family F' of IFSs. Each individual IFS F' € F generates an affine nested
fractal. We also impose various probability distributions on F'.

For motivation, consider the two model problems in the Introduction. Namely,
F = {F,, F5} is the pair of IFSs generating SG(2) and SG(3), or F is the family
of affine nested fractals Fy generating the prefractal in Figure 1 for £ € [1/3,1/2).

A V-variable tree corresponding to F' is a tree with an IFS from F' associated
to each node, a type from the set {1,...,V} associated to each node, and such
that if two nodes at the same level have the same type, then the corresponding
(labelled) subtrees rooted at those two nodes are isomorphic. This last requirement
is achieved by using a sequence of environments, one at each level, to construct a V-
variable tree. Each V-variable tree generates a V-variable fractal set in the natural
way. We define a natural probability measure Py on the space of V-variable trees
(and fractals). The case V' =1 corresponds to homogeneous fractals and V' — oo
corresponds to random recursive fractals.

If all nodes at some level have the same type, the level is called a neck. Under Py,
neck levels are given by a sequence of independent geometric random variables. In
Lemma 2.16 we record some useful results for such random variables. In Section 2.7
we recall the Hausdorff dimension result from [8] but in the framework of necks as
used in this paper, and then give a refinement by using the law of the iterated
logarithm. This provides motivation for some of the spectral results.

2.2. Families of Affine Nested Fractals. Let F' be a possibly uncountable class
of IFSs F, each generating a compact fractal K, and each defined via a set of
similitudes {¢f'};,cqr acting on R?, d > 2, with contraction factors {¢I'},cgr and
SF ={1,...,NF}. If it is clear from the context we write K, 1;, N and S for K,
P NT and S* respectively, and similarly for other notation.
We will have

(2)
3<d+1< Nyt :=inf{N¥:Fe F} <sup{N¥:F € F} = Ny < o0,

0 < ling ::inf{éf :1<i< Np,FeF} gsup{ff:l <i< Np,F e F} =l <l.

The first inequality follows from our later constructions, see (12). The other in-
equalities are for technical reasons arising in the proof of Lemma 2.9 and in the
study of the heat kernel and spectral asymptotics. See also the comments after Def-
inition 2.14, from which it is clear that weaker conditions will suffice to construct
V-variable fractals and establish their Hausdorff dimension.

Let WF denote the set of fired points of the {¥f }icgr. Then z € ¥F is an
essential fized point if there exists y € W and i # j such that ! (z) = 1/)]F(y) Let
Vo denote the set of essential fized points.

We always assume that Vjy does not depend on F' and is non-empty.
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Assume the uniform open set condition for the {1/}. That is, there is a non-
empty, bounded open set O, independent of F, such that {1 (O)};cgr are disjoint
and U;cgr ¥ (0) C O.

Let f , =¢F o-- oy and let

11

(3) VnF = U wiz"(%)7 V;F = U VnF'
i1, ,in€SF n>0
Then K = cl(V,F), the closure of V..
For iy,... i, € S¥, we call ¥f ; (Vo) an n-cell and of _; (K*') an n-complex.

For z,y € R? (z #y), set Hpy = {2z € R : |2 — 2| = |2 — y|} and let U,, : R? —
R be the reflection transformation with respect to Hyy.

When we discuss analysis on V-variable fractals we further assume each K* is
an affine nested fractal. That is, the open set condition holds, |V| > 2, and:
(1) KT is connected;
(2) (Nesting) If (i1, ,i,) and (j1,--- ,jn) are distinct n-tuples of elements
from S¥, then

fa (KDY 0wl (KT = wf L, (Vo) N, (Vo)

i1t ln Jidn
(3) (Symmetry) For z,y € Vg, (x # y), Uy, maps n-cells to n-cells, and it maps
any n-cell which contains elements in both sides of H,, to itself for each
n > 0.
We also make the technical assumption that | (Vo) Nyf (Vo) < 1 for all 1 <i <
j < NF.

2.3. Trees and Recursive Fractals. Fix a family F' of IFSs as before. For our
initial purposes it is sufficient only that the IF'Ss consist of uniformly contractive
maps on R%.

Each realisation of a random fractal is built by means of an IFS construction
tree, or tree for short, defined as follows.

Definition 2.1. (See Figure 3) An (IFS construction) tree T corresponding to F
is a tree with the following properties:

(1) there is a single, level 0, root node 0;

(2) the branching number N* at each node i has 2 < N* < oo (N*® > 3 later);

(3) the edges with initial node 4 are numbered (“left to right”) by 1,..., N%;
where ¢ = i ... in the usual manner and |¢| := k > 1 is the level of ¢, or
¢ = () in which case |z| := 0 is the level;

(4) there is an IFS F* € F associated with each node i, N* = |F?| (the
cardinality of F'*), and the kth edge with initial node 4 is associated with
the k-th function in the IFS F.

The unique compact set K = K (T') associated with T in the usual manner is called
a recursive fractal.

Notation 2.2. The boundary 0T of a tree T is the set of infinite paths through 7'
beginning at .

For ¢ € T the cylinder set [i] C OT is the set of all infinite paths w € 9T such
that % is an initial segment of w, written ¢ < w, with the same notation also for
t,weT.

The concatenation of two sequences ¢ and j, where 4 is of finite length, is denoted
by the juxtaposition 27.
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F(3)

FIGURE 3. Level 2 approximations to an IF'S tree and to the asso-
ciated fractal. Here F' = {F(2), F(3)} contains the IFSs generating
SG(2) and SG(3) respectively. Edges of the tree with a given ini-
tial node are enumerated from left to right; they correspond to
subcells enumerated anticlockwise from the bottom left corner of
the cell corresponding to the given node.

The truncation of i to the first n places is defined by ¢|n =iy ... 4p,.

A cut for the tree T is a finite set A C T with the property that for every w € 9T
there is exactly one ¢ € A such that ¢ < w. Equivalently, {[¢] : ¢ € A} is a partition
of OT.

For a tree T' and a node ¢ € T, there will usually be associated quantities such
as an IFS F* a type 7¢ € {1,...,V} (see Definition 2.4) or a branching number
N*. In this case 4 is shown as a superscript.

In particular, the transfer operator o® acts on T to produce the tree o*T', where,
writing 79 for the address of node 7,

(4) (o'T)” =T

That is, 0T is the subtree of T which has its base (or root) node at 3.

We frequently need to multiply a sequence of quantities, or compose a sequence
of functions, along a finite branch corresponding to a node ¢ = 4y ...4, of T. In
this case, ¢ is shown as a subscript. For example, if ¢ = iy ...4, then, with some
abuse of notation for the second term,

0 i i1i iy
(5) Cgi= Ly oo by o= 0F B
is the product of scaling factors corresponding to the edges along the branch ¢y . . .7,
and analogously for other scaling factors. Similarly,
Jal Fil Fili2 Filein_1
(6) Yy =1 0001, = 7/%‘1 © wiz © 1/%‘3 ©---0 %"

is the composition of functions along the same branch.

Notation 2.3 (Cells and Complexes). The recursive fractal K = K(T) generated
by T satisfies

Nw
(7) K(T) = JuF (K(o'D) = | ¢i(K(o*T)),
=1

|i|=n

where the second equality comes from iterating the first.
For |i| = n the n-complex and n-cell with address ¢ are respectively

(8) Ki = ¢i(K(o'T)), A= ¢i(W),

recalling that V{ is the set of essential fixed points of F' € F and is the same for
all F.

We will need various sequences of graph approximations {G,}52, to the fractal
K(T). In particular we use the notation G,, = (V,, Ey,), where Gy = (Vp, Ep) is
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the complete graph on V{, and
9) Vo= |J vi) = (J A5 Eai= [ wi(Eo).
|Z|=n |Z|=n

|i|=n
We can recover the fractal itself as K(T') = cl(U,, Vn), where ¢l denotes closure.
We will write x ~,, y for z,y € V,, if z,y are connected by an edge in E,,.

2.4. V-Variable Trees and V-Variable Fractals. Fix a natural number V. For
motivation see Figure 4.

The following definition of a V-variable tree and V-variable fractal is equivalent
to that in [7] and [8], but avoids working with V-tuples of trees and fractals.

Definition 2.4. A V-variable tree corresponding to F' is an IF'S construction tree
T corresponding to F, with a type 78 € {1,...,V} associated to each node 3.
Moreover, if two nodes ¢ and j at the same level |¢| = |j| have the same type
7% =79 then:
(1) 4 and j have the same associated IFS F* = FJ and hence the same branch-
ing number N? = N7,
(2) comparable successor nodes ip and jp, where 1 < p < N® = N7, have the
same type 7P = 7IP.
The recursive fractal K = K(T') associated to a V-variable tree T' as above is
called a V-variable fractal corresponding to F'.
The class of V-variable trees and class of V-variable fractals corresponding to
F are denoted by Qy = QF and Ky = KF respectively.

Remark 2.5. A V-variable tree has at most V distinct IFSs associated to the
nodes at each fixed level. If two nodes at the same level of a V-variable tree have
the same type then the subtrees rooted at these two nodes are identical, i.e.

(10) li| = |j| & T8 =717 = o'T = oT.
In particular, for each level, there are at most V' distinct subtrees rooted at that
level.

A 1-variable tree is essentially the same as an IFS tree which generates a scale
irregular or homogeneous fractal as in [18], [20] and [2].

The following is used in the construction and analysis of V-variable fractals.

Definition 2.6. An environment E assigns to each type v € {1,...,V} both an
IFS F, € F and a sequence of types (7,.;) g"ll, where |F),| is the number of functions

in F,. We write
(11) E=(E(1),...,E(V)), E{)=(FFrr ...,Tf‘Fvl).

v lu 1

For a pictorial example see Figure 4. For the following consider the case n = 2
in Figure 4.

Construction 2.7. A V-variable tree is constructed from a sequence of environ-
ments (E¥)g>1 in the natural way as follows:
Stage 0: Begin with the root node @ and an initial type 7% assigned to this node.
Stage 1: Use E' and the type 7% in the natural way to assign an IFS to the level 0
node, construct the level 1 nodes and assign a type to each of them.
More precisely, use E*(v) where
1 E' _E! E?
v i= 7'07 E (’U) = (Fv ’TU717""Tv,|F7{51|)’
to assign the IFS F? .= Ffl to the node () and in particular determine the
branching number N? := |FUE1‘ at 0, and to assign the type 77 := Tfjl to
each level 1 node j.
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Stage n: (By the completion of stage n — 1 for n > 2, an IFS F*® will have been
assigned to each node © of level |i] <n — 2, all nodes j of level |j] <n —1
will have been constructed and a type 79 will have been assigned to each.)

Use E™ in the natural way to assign an IFS to each level n — 1 node
according to its type, to construct the level n nodes and to assign a type
to them.

More precisely, use E™(v) for 1 < v <V where

n E" _E" E"
E (v) = (Fv s Tod ""’Tﬂ’lFf"'l)’

to assign the IFS F? := FUE to each level n — 1 node % of type v and in

particular to determine the branching number N* := ’Ff‘ at the node ¢,

and to assign the type 7% := TUE; to the level n node 2j.
It follows by an easy induction that the properties in Definition 2.4 hold at all
nodes. (]

Assumption 2.8. In the following lemma, and in Section 3 and subsequently, we
assume

(12)

Vi is the set of vertices of an equilateral tetrahedron in R® for some d > 2,
Ey is the set of edges such that Gy = (Vy, Eq) is the complete graph on Vj.

To emphasise this we often write “V -variable gasket” for “V-variable fractal”, “gas-
ket” for “fractal” etc.

Moreover, we take the open set O in the open set condition to be the interior of
the tetrahedron with vertex set Vi and assume the uniform nesting condition; that
is condition (2) of the definition of affine nested fractal in Section 2.2 with KT
replaced by O.

We note that under our assumption that fg,, < 1 we have that {Kﬂn}n is
a decreasing sequence of closed sets and thus has a non-empty limit. Thus, for
any V-variable fractal K, there is a well defined address map 7« : 0T — K with
{m (i)} = N;Z, K4),,- Under the open set condition we know that for z € K we have
7~1(x) is a finite set, see Falconer [13] Lemma 9.2.

Lemma 2.9. Let K be a V-variable gasket. Then

(1) K is pathwise connected and hence connected

(2) K is nested: For alli,j € T, if [i]N[F] = 0, then 1;(0)N;(0) = 1;(Vo) b (Vo)
and hence K; N K; = ¢¥;(Vo) N (Vo).

Proof. (1) Fix a vertex xg € Vy. Suppose 7(3),n(j) € K. For each n there is a
polygonal path in K joining vy, (2o) to ¥, (7o), given by a continuous function
fn :[0,1] - K. Moreover, using the uniform bounds Ny, < 00 and fe,p < 1,
these paths can clearly be constructed so they converge uniformly to a continuous
function f : [0,1] — K. (See the proof of Theorem 1.6.2 in [32].) This establishes
pathwise connectedness.

(2) In our setting this is straightforward to see as if [¢] N [§] = (), there exists
a k of maximal length with k < 4 and k < j, such that v;(0) C 9x(O) and
1¥;(0) C ¢Yx(0). If we write ¢ = kiy... and j = kji ..., then i1 # j; and by
the uniform nesting condition in Assumption 2.8 we have g, (O) N Y, (O) =
Ui, (Vo) N Vij, (Vo). If the intersection is empty we are done. Otherwise, by
our technical assumption on affine nested fractals (at the end of Section 2.2) that
lpE (Vo) N Vi "(Vo)| < 1, there is a single intersection point which is the image

of a fixed point in Vp. If 9;(O) N;(0) # O, this is the intersection point of
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¥;(0) N1;(0) and therefore of ¥;(Vo) N;(Vo) as required. If 1;(0) N4p;(0) = 0
we are done. g

2.5. Random V-Variable Trees and Random V-Variable Fractals.

Definition 2.10. Fix a probability distribution P on F'. This induces a probability
distribution Py on the set of environments as follows. Choose the IFSs FF for v €
{1,...,V}in anii.d. manner according to P. Choose types 75]» for1 <j <|FF|in
an i.i.d. manner according to the uniform distribution on {1,...,V} and otherwise
independently of the F.Z.

Definition 2.11. The probability distribution on the set 0y of V-variable trees is
obtained by choosing 7% € {1,...,V} according to the uniform distribution and
independently choosing the environments at each stage in an i.i.d. manner accord-
ing to Py. This probability distribution on V-variable trees induces a probability
distribution on the set Ky of V-variable fractals. Both the probability distribution
on trees and that on fractals are denoted by Py. We will write Ey for expectation
with respect to Py .

Random V -variable trees and random V -variable fractals are random labelled
trees and random compact subsets of R¢ respectively, having the distribution Py .
Later, when we add additional scale factors for resistance and weights associated
with each F' € F', we will assume they are measurable with respect to F' € F'.

Although the distribution Py on environments is a product measure, this is far
from the case for the corresponding distribution Py on 0y and Ky . There is a high
degree of dependency between the types (and hence the IFSs) assigned to different
nodes at the same level.

Remark 2.12. The classes Ky interpolate between the class of homogeneous frac-
tals in the case V = 1 and the class of recursive fractals as V' — oco. The probability
spaces (Ky, Py) interpolate between the natural probability distribution on homo-
geneous fractals in the case V = 1 and the natural probability distribution on the
class of recursive fractals as V' — oco. See [6] and [7].

Notation 2.13. It will often be convenient to identify the sample space for random
quantities such as trees, fractals, functions associated to a branch of a tree, etc.,
with the set Qy of V-variable trees. We use w to denote a generic element of Qy
and combine this with other notations in the natural manner. Thus we may write
T, K%, ¢y etc.

In particular, ow is the transfer operator defined in Notation 2.2 for a tree T.
See for example the first equality in (27). However, we usually suppress w as in the
second equation in (27).

2.6. Necks. The notion of a neck is critical for the analysis that follows.

Definition 2.14. The environment F in Definition 2.6 is a neck if all Tfi are equal.

A neck for a V-variable tree w is a natural number n such that the environment
E applied at stage n in the construction of w is a neck environment. In this case
we say a neck occurs at level n. If 4 is a node in w and |i] = n, then ¢ is called a
level n neck node.

If a neck occurs at level n then the type assigned to every node at that level
is the same. See Figure 5. It follows from Remark 2.5 that all subtrees rooted at
level n will be the same. Note that the subtrees themselves are only constructed at
later stages, and even the common value of the IFS at a level n neck node is not
determined until stage n + 1.
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Tree and prefractal approximations o

Level 2

Environment applied W W \V \V
0 |

O
Level 1 el

S O [ ]
Tree and prefractal approximations
0

[ ] ] |

FI1GURE 5. Compare with Figure 4, except that now a neck occurs
at level 2. All subtrees rooted at this level will be the same, al-
though they have not yet been constructed. All 2-complexes will be
the same up to scaling by factors determined by the construction
up to this level.

There is however no restriction on the IFSs occurring in a neck environment E.
For a level n neck these IFSs are applied at level n — 1.

Because there is an upper bound on the number of functions N¥ in any IFS
F € F, there is only a finite number of type choices to be made in selecting an
environment. It follows that necks occur infinitely often almost surely with respect
to the probability Py defined in Definition 2.11. The sequence of neck levels in the
construction of a V-variable tree or fractal is denoted by

(13) O=n(0)<n(1)<...<n(k)<...

Under Py the sequence {n(k) — n(k — 1)}, of times between necks is a se-
quence of independent and identically distributed geometric random variables, and
in particular the expected first neck satisfies

(14) Evn(l) < 0Q.

Many of our future estimates rely on various a.s. properties of necks. However,
some estimates just require that there be an infinite sequence of necks satisfying a
certain condition. For this reason we make the definition:
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Definition 2.15. For 0 < a <1 let Qy, C Qy be the set of V-variable trees with
an infinite sequence of necks satisfying

3 qr@-n-n -
J

We next give an elementary result on the asymptotic behaviour of a sequence of
geometric random variables (Y3)g>1. It follows that Y3 grows at most logarithmi-
cally in k, and powers of Y grow at most geometrically, with similar results for the
maximum and the empirical mean of {Y1,...,Ys}.

The following is standard but included for completeness. Note that the Yj need
not actually be geometric random variables.

Lemma 2.16. Suppose {Yj}72, is a sequence of not necessarily independent ran-
dom variables with P(Yy, > x) < Ap®, for all x > 0, where A >0 and 0 < p < 1
are constants. Suppose n > 1 is a natural number. Then a.s.

(15) lim sup Yok 1 Jim sup XL <nk Y 1
k—o0 logk logl/p’ k—00 logk — 10g1/p7
nk
Y 2
(16) lim sup 2iz1 Vi n

< .

e Tlogk = log1/p

Proof. The case n > 1 is a direct consequence of the case n = 1, which we establish.
Suppose € > 0. Since P(Y; > x) < Ap* for z > 0,
Z p <Yk (I1+¢) 1ogk) < AZp(H—e) log k/(log 1/p) _ AZ =49 < oo
log1/p E>1 E>1

Hence by the first Borel-Cantelli lemma,
Y < 1+e€
Since € > 0 is arbitrary, the first inequality in (15) follows.

a.s.

The second inequality in (15) is now an elementary consequence. Suppose 6 > 0.
Using the first inequality in (15) to get the second inequality below, P a.s. there
exists kg = ko(w, d) such that k > k¢ implies

7 2 1
max < max —— < +
ko<i<k logk ~ ke<i<k logi ~ logl/p

Hence
1

li L< 5 as.
I&S;pk?gi{k logk — log 1/p+ as

Replacing ko by 1 and letting § — 0 in the above implies the second inequality
n (15).
For (16) fix v > 0. Then

ZP(iYi>fyklogk> ZZP( 'ylogk;)

k>1 i=1 log1/p E>1i=1 log 1/p

< 3 RApTOSR8 1 — AR < oo iy > 2.
k>1 E>1

By the first Borel-Cantelli lemma, if v > 2,
. LY Y
1 1= <
TSP gk = logl/p
This gives (16). O
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We also include a decomposition of sums of products of scale factors.

It may help to note that the factors on the right side of (18) in the next Lemma
are calculated by first choosing and fixing, for each j = 1...k, an arbitrary node
of T at level n(j — 1). For fixed j all subtrees of T rooted at this level are identical
by the definition of a neck. The factor in (18) is the sum, of products of s¥ type
weights, along all paths in such a subtree starting from its root node and ending
at a first neck level node. There is a one-one correspondence between the set of
such paths in the subtree and the set of paths in the original tree starting from the
chosen node at level n(j — 1) and ending at a level n(j) node.

Lemma 2.17. Let s; = sf" € R fori=1,...,N¥ be scaling factors associated with

each family F, where
an 0 < sipe :=inf{s":ie1,... N' FeF},
Seup ;= sup{sl :ic1,...,N' Fe F} < .

Then, writing s; = Siy * ... 8;, fori =141...9y €T, and with ng) defined in the
natural way in the body of the proof, we have

k
(18) Z 8; = H ( Z ng—1)>.
li|=n(i)—n(i-1)

i€T,|i|=n(k) j=1
Moreover,

o1
(19) klgr;oglog Z s; = By log Z s;i Py a.s.

li|=n(k) [i]=n(1)

Proof. Let T®) denote the unique subtree of T rooted at the neck level n(k), so
that in particular 7(© = T

Then, as explained subsequently (and following the notation of (5) but with the
F there suppressed),

L 0 i1 Li1l2 i|(n(k)—1)
g 8; = E Siy Sty Siy et Si

i€T,i|=n(k) i€T,|i|=n(k)
_ E 0 i1, gind2 CAln(1)-1)
= { (51'1 Siz Sig . Sin(l)
i€T,|i|=n(k)
, (sjf'”(l) il Si\(n@)fl)) o
n(1)+1 In(1)+2 1n(2)
iln(k—=1)  in(k—1)+1 i|(n(k)—1)
S - S ce..t S
n(k—1)41 tn(k—1)+2 Tn(k)
— } : (0),0 (0)yi1 | (0)i1i2 (0),8](n(1)-1)
= Sil . Sig . Sig et Si"(l)

€T Ji]=n(1)

(1),0 (1), (1)i14 (1),2|(n(2)—n(1)-1)
X Z 83 8, L. S, 2L Sio)min) -
$€TW [i|=n(2)—n(1)
(k—=1),0  (k—1), (k—1),i1% (k—1),i|(n(k)—n(k—1)—1)
X Z 83, " Siy - Sis e St (k)= m(b—1)

i€Tkh=1 |i|=n(k)—n(k—1)
(20)

_ (0) (1) (k—1)
li|=n(1) li|=n(2)—n(1) li|=n(k)—n(k—1)

The first and last equality are immediate from the definitions. The second equal-
ity is just a bracketing of terms.
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iln(1)

In(1)+1’
which corresponds to the edge in T" from #[n(1) =41 ...iy1) t0 i1 ... in(1)in(1)+1, 1
independent of i|n(1) and can also be regarded as corresponding to the level one

edge from 0 to in(1)+1 of the unique tree T rooted at every level n(1) node. Thus
we rewrite 3;‘:1(31 as 8511),(7)7 with an abuse of notation in that 4 and i,1)41 in the

first term refer to words from T = T(9) whereas i; in the second term is the first

element of a word from 7). Similarly, s:yzl()lijl is also independent of #|n(1) and

can also be regarded as corresponding to a level two edge from T, etc. Now use
simple algebra to put the summations inside the parentheses.

The final equality is a rewriting of the previous line and provides the definition
()
i
For the Py almost sure convergence in (19) let
Xk = log Z Sgkil), k > 1.

li|=n(k)—n(k—1)

For the third equality note that each n(j) is a neck. A term such as s

of s

By construction the X are i.i.d. and in particular X; = log Zm:n(l) s;. By the
bounds on s; we have

Byl Xi| <7 P(n(1) = n) max { | log (Nisip)|» 108 (Niaesia) |}

n>1
= max {| log (Nsupssup) |, | log (NjnfSinf) | }Evn(l) < 0.

Hence, using (18), the Py almost sure convergence follows from the strong law
of large numbers for the sequence {Xj}. O

2.7. Hausdorff and Box Dimensions. Assume that the family of IF'Ss F' satisfies
the open set condition as in Section 2.2. We do not here require the affine nested
condition. Recall the notation from Section 2.2 and from Notation 2.2.

Splitting up and treating the necks in the manner here was done first by Scealy
in his PhD thesis [40].
Theorem 2.18. Suppose K is the random V -variable fractal generated from F'.
Then the Hausdorff and box dimension of K is Py a.s. given by the unique o such
that

(21) Eyv log Z 0% =0.
li|=n(1)
Proof. See the Main Theorem in Section 4.4 of [8]. The expression there for the
pressure function is equal to the simpler expression here. This in turn leads to a
simpler proof of that theorem, still along the lines of Lemma 5.7 in [8] but working
with a single neck as in the (somewhat more complicated) proofs of Theorems 3.12
and 4.13. (]
We give a slight refinement of this result.

Theorem 2.19. There exists a constant C such that

1
22 li —1 0 =C, Py a.s.
(22) I,ﬂs;p kloglogk Ogi|—2n:(k) v

Proof. We can apply Lemma 2.17 with s; = (¢
Since Ey IOgZM:n(l) 0% =0, limg_ oo %logzli‘:n(k) ;% =0, Py as. Using
2
the bounds (2) on N and ¢F it is easy to check that Ey (log ZM:n(l) Kﬁ) < o0.

The law of the iterated logarithm for the sequence of random variables { X},
where X, is as in the proof of Lemma 2.17 with s; = £%, now implies the result. [
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3. ANALYSIS ON V-VARIABLE SIERPINSKI (GASKETS

3.1. Overview. Recall Assumption 2.8. Our V-variable affine nested gaskets are
connected and nested by Lemma 2.9 but they need not have spatial symmetry, in
contrast to the scale irregular nested gaskets considered in [2].

In order to study analysis on these V-variable affine nested fractals we define
in Section 3.2 their Dirichlet forms and show that these are resistance forms. We
also show that the resistance metric between points is comparable to an appropriate
product of resistance factors. In Section 3.3 we introduce general families of weights
and measures and prove a few basic properties. We introduce in Section 3.4 the
notion of the cut set Ay, where each cut is at a neck level and the crossing time for
the corresponding neck cell is of order e~*. Asymptotic properties of various quan-
tities associated with these neck cells are established. In Section 3.5 we show the
Hausdorff dimension in the resistance metric is given by the zero of an appropriate
pressure function.

3.2. Dirichlet and Resistance Form. The construction of the Dirichlet form
follows [32] and is very close to [35] Section 22.

Assume as given a harmonic structure (D, pf) for each IFS F in the family F.
Since all our affine nested fractals are based on the same triangle or d-dimensional
tetrahedron with vertices V{), the matrix D will be independent of F' and is given
by
(23) D(z,y) =1, Vo,y € Vy with z #y, D(z,z)=—d, Yz € V.

Vectors pf = (pf',... ,p]F\,F)7 specifying the conductance scaling factors to be ap-

plied to each cell, will be chosen to respect the symmetries of the limiting fractal.

Assume
24 1< ping :=1inf{pf :1<i< N FeF},
psup :=sup{pf 11 <i< N Fe F} < oo

The associated renormalization map for each F' € F' is assumed to have the usual
fixed point property. We now state this more formally.
Let
1

(25) E(f.9)=75 > (fl@) = fw)(9(=) - 9()
z,yeVy

be the Dirichlet form on the graph Gy = (Vp, Ey) with conductances determined
by the matrix D. Each edge is summed over twice, and hence the factor 1/2.

The choice of p!" is such that
NF

(26) So(f,f)inf{prSo(howf,hoz/}f)
=1

h:VlaR,hh/of}.

One can also regard this as placing conductors pf” on each edge of the 1-cell with
address i, which ensure that the effective resistance between any two vertices of Gy
in the graph G is the same as the effective resistance between the vertices in the
graph G| itself — see Notation 2.3 and (31).
Define F,, := {f | f: Vi = R}. Use recursion on n > 1 to define
N® ,0
£5(f.9) Z e (Four® gou®) Vige Fy

(27)

ie. Zp? e Vgoul) VfgeFn
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It follows that
(28) Enlf9) =" pi&o(forhigos),

li|=n

where p; and ; are as in Notation 2.2.

The sequence of forms (£, F,) can be thought of as corresponding to conduc-
tances p; on the edges of the cell A; in the graph G,,, where |i| = n.

One next defines a resistance form first on V, := Un>0 V., and then on its closure
K in the standard manner as follows. Firstly, as in [32] Section 2.2, by the defini-
tion of the conductance scale factors pf’, one has monotonicity of the sequence of
quadratic forms &£ (f, f). Thus we can define

For = IV R Jim £a(5,6) < o)
E(ff) = lim EX(f.f) VfeFr.

Using the definition of the effective resistance R in (31) with K replaced by Vi,
one shows that R is a metric on V, as in Theorem 2.1.14 and Proposition 2.2.4 of
[32]. We then need to show that we can extend the form on V to a form on K.
To do this we follow [32] Section 3.3 and show (Vi, R) is uniformly homeomorphic
to (Vi,|.]), so that completing V; in the resistance metric induces the Euclidean
topology on K.

It is straightforward to establish, noting definition (32), the natural analogue
of Lemma 3.3 and Corollary 3.4 for Vi, without utilising Theorem 3.2. It is also
possible to see that

inf R(x >0
T€K;NV,,yeK,;NV, (,9) ’

for any ¢,7 € T with |¢| = |j| and K; N K = (. The proof is a minor modification
of that of [35] Lemma 22.6.

Thus we have that f € F** is uniformly continuous with respect to |.| and
hence can be canonically identified with its unique continuous extension to K so
that F** can be identified with

F={flf : K—>R, fis continuous,nlgngofﬁ(f,f) < 00}
One can now define a limit form on K by
(29) E(f,f) = lim E3(f,f) Vf e F
where f: K — R.

Remark 3.1. The construction of the Dirichlet form (£, F®) is carried out in
detail for the case of all realizations of a certain class of random recursive Sierpinski
gaskets in [35] Section 22. Although there are differences in the underlying class of
Sierpinski gaskets, the realizations of our V-variable fractals built from the same
gaskets will be possible realizations of these random recursive gaskets (for example
the first model problem mentioned in the introduction).

It follows from the definitions that there is a decomposition of the limit form for
any cut A of the tree T, see Notation 2.2. Namely, for continuous f : K — R we

have f € F¥ if and only if fo; € Fo for any ¢ € A, and
(30) E(f,9) =Y pi€ “(forhi,gots) VfgeF

EISHIN
Note the case A = {¢ : |i|] = k} for some k and the case A = Ay as in (51). The
result (30) in the first of these cases with k = 1 is essentially just a consequence
of the scaling property (27) and letting n — oo. The general result follows from
iterating this down the various levels corresponding to the partition A.
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The effective resistance metric between any pair of points x,y € K is defined by
R(z,y)™" =inf {E(f.0): f(2) = 0, f(y) = 1]

-
- f{lf(x)—f(y)lz'f()#f(y)}'

The proof this is a metric is essentially in Theorem 2.1.14, Section 2.2 and Lemma 2.3.9
of [32].

(31)

Recall that (€, F) is a local reqular Dirichlet form on L?(K,p) if it has the
following properties:

(1) closed: F is a Hilbert space under the inner product (f,g) — £(f,g) +
J fady; o B

(2) Markov or Dirichlet: E(f,f) < E(f, f) if f is obtained by truncating f
above by 1 and below by 0;

(3) core or reqular: if C(K) is the space of continuous functions on K then
C(K) N F is dense in F in the Hilbert space sense and dense in C'(K) in
the sup norm;

(4) local: E(f,g) =0if f and g have disjoint supports.

For (€, F) to be a resistance form it is sufficient that in addition R defines a metric,
and in particular that R(x,y) is finite and non zero if x # y.

Theorem 3.2. For each w € Q and each finite Borel reqular measure u“ on
K% with full topological support, (E¥,F*) defines a local regular Dirichlet form
on L*(K%,u®). The Dirichlet form is a resistance form with resistance metric R.

Proof. The existence of the Dirichlet form (€, F) as the limit of an increasing
sequence of Dirichlet forms is essentially as summarised in the first paragraph of
Section 3.4 of [32]. See [32] Appendix B3 for a discussion of Dirichlet forms. The
proof that the Dirichlet form is a resistance form is essentially as in Section 2.3
of [32]. O

It will be convenient here and subsequently to work with resistance scaling fac-
tors which are just the inverse of the conductance scaling factors introduced in
Section 3.2. Thus we define
(32) ri =) =t
We also note that for the resistance scale factors we have
(33) 0 < ripg:=inf{r:ic1,... NI, Fe F} = Psup s
Tsup 1= sup{rf ciel,..., N Fe F} = ping T < 1.

Next we see that the resistance metric distance between two vertices in a cell A;
(see (8)) is comparable to the resistance scaling factor r; for that cell.

Lemma 3.3. There is a non-random constant c¢; > 0 such that if v,y € A; and
x # y then

(34) cari < R(z,y) < ry.
Proof. Fix x, y and % as in the statement of the lemma.

If f(z) =0 and f(y) = 1, then using (30), (25), monotonicity of the limit in
(29), and (12),
d+1
Ef, f) = pi€o(f oy, forhs) 2 —5 Pi-
This gives the upper bound for R in (34).
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For the lower bound, following Notation 2.2, consider a cut A of the underlying
tree such that j = ji...j, € A if r; is comparable to ;. More precisely, 7 € A if

(35) 75 <15 < Ty

Let V = Ujea ¥5(Vo) be the set of vertices corresponding to cells A; for j € A

(analogous to (9)). Note that 4 € A and so 2,y € V. Consider the function f such
that f(y) = 1 and f(z) = 0 for all other z € V, and harmonically interpolate. Then

(36)  EfNH= 3 pEolfounfov)=d 3 p<,,

.
JEA, YEA; JEA, YEA; inf

using (35), taking d as in (12), and M the maximum number of regular tetrahedra
in R? with disjoint interiors that can have a common vertex.
This gives the lower bound in (34). O

Corollary 3.4. There is an upper bound on the diameter of the set K in the
resistance metric, in that there exists a non-random constant C' such that

(37) diampr K := sup R(z,y) <C.

z,yeK
More generally, for allt €T,
(38) diamp K; := sup R(z,y) < Cr;.

z,yeK;
Proof. First consider points z,y € V,, (see (9)) and suppose © € A; C V,,, y €
Aj CV,, with |2] = |j| =n.
Let xo = yo, Tk € D¢k, Yk € Ay for k=1,...,n, with x, =z and y, = y. By
the triangle inequality for the metric R,
n n
R(z,y) < Z R(zp—1, ) + Z R(Yrk—1,Yk)-
k=1 k=1
Since xi_1,x € Vi and all cells are triangles or tetrahedra, if a path from xp_4
to x, consisting of edges from Vj, N Kj),_; contains two edges from the same k-cell
then it can be replaced by a shorter path from zj_; to ) also consisting of edges
from Vj,. It follows there is a path from x;_; to xj, consisting of at most N, edges
from Vj. Hence
R(xk—la'rk) < Nsuprécupa
from (34). Hence
2Nsup
(1 = 7sup)
Using the density of the vertices | J,, V,, in K we have the result.
The second statement follows in the same way. U

R(z,y) <

Note that the result holds for all w € Qy .

3.3. Weights and Measures. We next introduce a general family of measures on
OT (see Notation 2.2) and on the corresponding fractal set K, by using a set of
weights (wi', ..., wh ) defined for each F € F with w/ > 0. We do not require

Siwl =1
Assume and/or define
0 < wint == inf{w/ : 1 <i < N¥ FeF},
(39) Wsup ::sup{wlegiSNF,FeF}<oo,

C = winf/wsup <1
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Following Notation 2.2 let the weight w; of the cell A; (corresponding complex,
or corresponding cylinder) be the natural product of weights along the branch given
by the node i. That is, if |¢] = n, then
(40) w; = wf:w wf:l -...~wf”i1min71.

Of particular interest are weights of the form w! = (rf)® for all F € F and
some fixed o > 0, in which case w; = r;%. This example is the reason we do not
require ), wf = 1, since it would not be possible to achieve the normalisation
simultaneously for all F' € F'.

The following construction is basic, and is special to the case of V-variable
fractals.

Definition 3.5. Let (wf,...,wk ) for F € F be a set of weights as before. For
|Z| a neck let
(41) i = pu([]) = e
2 jl=1i) Wi
The corresponding unit mass measure p on 97 is called the unit mass measure with
weights wr .
The pushforward measure on K under the address map 7 : 9T — K given by
Np—1 Kijn = {m(@)} is also denoted by s.

Note that from the definition of a neck, (41) is consistent via finite additivity
from one level of neck to the next, it extends by addition to any complex or cylinder,
and so by standard consistency conditions it extends to a unit mass (probability)
measure p on 97

We note the following simple estimates for use in the rest of this subsection and
in Lemmas 4.3, 4.4 and 5.11.

Lemma 3.6. Suppose i and j are two nodes of the same type with |i| = |j| = n.
Then
(42) g < s < Mgy
If i is a neck node then

- -1
(43) ("Ngp < pa <(1+¢") " <1
Proof. Suppose N is the first neck > n. Then

Z\ik\:N, ket Wik Z\k\:an,keT”i wy,
= = w; )

Z|p\:N,p€T Wp Z|p|:N, peT Wp

where w,‘;’i is the product of weights along any branch of T of length N —n
beginning at @), or equivalently any branch of T' of length N — n beginning at 7. A
similar expression is obtained for u;. Since 2 and j are of the same type and level,

the trees 7°" and T are identical, and so ti/w; = pj/wj. Then (42) follows from
w&f S Wy S wgup'
If n is a neck then ws

2 pl=n Wp

sup”
Also we have that

-1
wy

R
© Yipl=n

IN

w
1+ > -E
W

|p|=n,p#i

< A+ -1 T <1+ T <L,



22 U. FREIBERG, B.M. HAMBLY, AND JOHN E. HUTCHINSON
completing the proof of (43). O

We show in Lemma 3.8 that the pushforward measure on K is given by a similar
expression to that for g on 0T. For this we first show that the measure p on K is
non-atomic provided our trees satisfy a certain condition.

Recall Definition 2.15.

Lemma 3.7. For all w € Qv ¢ and hence also Py-a.s. fort e 0T
pu(z) = 0.
Proof. Since [i|n] is a decreasing sequence of sets, from (41)
) = i ; .
p(d) = Hm figjn )
By (43), and using the notation of Lemma 2.17, we can bound

Hijn(j) - -1
iln(j) iln(j)—n(—1 n(j)—n(i—1)
T (1 +¢ ) :

HinG=1) 3 pii=n()—n(i—1) 5

Taking logs

oo

> , . 1 , ,
log p1(2) < limsuplog pg)n k) < — log (1 + C"(])_"U_l)) < —= ¢r) ==,
(i) < limsuplog ijngy < =3 52

=1 j=1

Thus we have limg s o ft3jn k) = 0 for all w € Qy,¢ as required. It is straightforward
to check that Py-a.s. we have > ¢"0)=nU=1 = 00 as then {n(j) —n(j —1)}; is a
sequence of i.i.d. geometric random variables. (I

Note that by the law of large numbers we see, Py a.s., for all 4,

k—o00 k—

k
1 1 , .
lim sup Elog Hijn(k) < — lin;o P E log (1 + Cn(])—n(J—l)) = —Fylog (1 + Cn(l)) )
=1

Now, using the fact that n(1) is a geometric random variable, ¢ < 1 and log(14x) >
x/2 for x < 1, we conclude

1 S <
2 Eyn(1)(1-¢)+¢

In particular, Py almost surely, for all ¢ € 0T, we have limg o0 fijn(k) = 0 expo-
nentially fast.

0.

1
—FEy log (1 + Cn(l)) < _§EVCn(1) _

Lemma 3.8. The address map m : 0T — K is one-one except on a countable
set. For all w € Qv (and hence Py-a.s.) the pushforward measure p on K is
nonatomic and for |i| a neck,

w;

(44) ps = p(K)

2 )jl=li| Wi

Proof. We note that as only a finite number of sets can meet at a point = *(z)
is a finite set for any € K. Suppose a = 7(i) = 7(j) for some 3,5 € 9T with
% # j. Then for some n we have i1 ...4, = j1...Jn and 441 # jnt1. It follows
that a € Ki i N Kiyoinjny,- From Lemma 2.9, a € ¥4, 4,i,,, (Vo). This
establishes countability of the set of points in K with more than one address. From
Lemma 3.7 it follows this set has p-measure zero. The result (44) now follows
from (41) and the definition of the pushforward measure. O
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It follows from (44) that for all w € Qy ¢

(45) /fdu m/ fou du®

where as usual = p* is the measure on K = K* but here restricted to K; = K,

and p° = p“° is the measure on K° = K which is essentially just a scaled
copy of the subfractal K;. By construction, the left integral is a multiple of the
right integral, with constant independent of f. Setting f = 1 gives the constant.
Note that |i| = n need not be a neck.

The inner product (or any integral) can be decomposed as follows:

(46) (fag)lt = Zul (fow‘iago'(/)i)p‘az
i€A
for any cut A, see Notation 2.2.

Note that (46) is analogous to the decomposition (30) for the Dirichlet form.
The difference is that the scaling factors p; in (30) are simply computed from the
prescribed quantities p”, unlike the scaling factors y; in (46) which are related to
the prescribed quantities w! in a simple manner only in the case where the 4 are
all neck nodes.

We write
(47) I£ll2 = (f, f)/2

for the natural norm on L?(K, ).

3.4. Time and Neck Cuts. We now introduce the special cut sets which will be
essential for our analysis. The idea is to cut at neck nodes in such a manner that
crossing times are comparable.

Define
(48) ti = U375

From the Einstein relation ¢; can be thought of as a crossing time for the continuous
time random walk on the cell A;, with resistance given by r; and expected jump
time given by p;.

Note that whereas w; defined in (40) is a simple product of factors, as are ¢;, p;
and r; following the notation of (5), this is not the case for p; and hence not for ¢;.

Define
(49) TS
Nsup
and note that 0 < n < 1. Then from (48) and (43),
(50) n" <ty <rh,, if [i] =nis a neck.

The second inequality is clearly true for any %, not necessarily at a neck.

Recalling from (13) the notation n(¢) for the £th neck, define the cut sets of T
(51) Ao = {0}, Ap= {z €T EIE(|i| =n(l), t; <e k< tiw_l))} if k> 1,

where () is the root node. Thus Ay, is the set of neck nodes for which the crossing
times of the corresponding cells are comparable to e™*.
For any 4 such that |¢| is a neck, and in particular if ¢ € Ay, then we define

(52) 0@) =€ if |i] = n(0).

That is, £(¢) is the number of the neck corresponding to <.
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We introduce further notation to capture the scale factors.
- —1

(53) Mk=|Ak|, EkZMlgl Zti’ T =t ;
icAy
(54) yr(i) =n(l) —n(l —1) if i € Ay and |i| = n(l), yr = Ig?\xyk(i);

(55) 2 = max{|i| : ¢ € Ay}

Thus My, is the cardinality of the cut set Ay, #; is the average crossing time for
cells K; with ¢ € Ay or equivalently the average time scaling when passing from
K to K;, conversely Ty is the average time scaling when passing from K; to K for
1 € Ag; yr(2) is the number of generations between A; and its most recent ancestor
also at a neck level, and y; is the maximum such number of ancestral generations
over © € Ag; 2 is the maximum branch length of nodes in Ay.

Trivially,

(56) fg}\rllc t; <t < max t;.

For functions f(k) and g(k) we will use the notation

(57) F) < g(k) i ngogpgggq

That is, f(k) < g(k) means f is asymptotically dominated by g.

In the next lemma we use Lemma 2.16 to estimate the asymptotic behaviour
of y, and zg, and of the fluctuations of £(i) and t; for i € Ax. Note that sharper
estimates for the simple case V' =1 are given in Lemma 3.10.

Lemma 3.9. Suppose n is as in (49).
(a) There exist c1,co > 0 such that Py a.s., if i € Ay then
cik(logk) ™! < £(3) < eok.
(b) There exist c3,cq > 0 such that Py a.s.
1 <yr s cslogk, 2 < cik.
(¢) There exists f’ > 0 such that Py a.s., if © € Ay then
kP ek < nY* ek < t; < e k.
Proof. (a) Suppose ¢ € Ay and let £ = £(3). From (50) and the definition of A,
(58) " <t <eTF < tyngeony < TIETY.
In particular, n(¢ — 1) < k/log(1/rsup)-
It follows that

=1+{(-1)<1+n(l-1)<1+ < cok.

log1/reup —

On the other hand from (58), n(¢) > k/log(1/n). Using also logk > logl +

log 1/cs, it follows from Lemma 2.16 (16), since n(¢) = Y0_, (n(i) —n(i — 1)) is a
sum of geometric random variables, that a.s. (where i € Ay)

limsup —— < limsup n(£)log 1/ < 2log 1/

koo L(8)logk = o0 ((logl4logl/ca) — logl/p

Here p is the constant probability of not obtaining a neck at any particular level > 1.

= 1/61.

(b) Trivially, yx, > 1. By definition

v = maxyy (i) = max (n(ﬁ(i)) —n(l(i) — 1)) < max (n(j) —n(j - 1)),
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where the inequality comes from (a).
By Lemma 2.16 (15) with Y; = n(j) —n(j — 1), Py as.

MaxXi<;j<ek ¥j 1

lim sup Yk < lim sup < =
koo 108k T koo logcok —logey ~ logl/p

where p is as in (a).
It follows that with ¢ € A, and ¢ = £(¢), Py a.s.

i =n(0) =n(l—=1)+n) —n(l —1) <n(l — 1)+ yx
< k/1og(1/rsup) + c3logk < k/log(1/rsup).
This gives the last inequality in (b).

1 C3,

(¢) The third inequality in (c) is immediate from the definition of Ay.
For the second inequality suppose ¢ € Ay, with |¢| = n(¢). Then

ts = Tifli > Tipn(e—1)Hipn(e—1yn 0D

by a similar argument to that for the first inequality in (50). More precisely, note
that by definition p; is a product of p;,,(0—1) with factors that depend only on
weights w defined along edges in the subtree rooted at ¢|n(¢ — 1), followed by a
normalisation that depends only on the same weights since |¢| = n({) is a neck.

Hence
ti > tipn ey O > ey
by the definition of y, and Aj. This gives the second inequality in (c).

For the first inequality take any € > 0, in which case by (b), a.s. there exists
ko = ko(w) such that k > ko implies yr < (c3 + €) logk, and so k > ko implies

o > plestelogh _ p—(ca+e)log1/n _ K
where 8’ = (¢35 + €)log 1/n. Since € > 0 is arbitrary, this completes the proof. [
If V=1 the above can be sharpened to the following.
Lemma 3.10. In the case V =1 we have the following.
(a) There exist c1,co > 0 such that if i € Ay, then
ak < L(i) < cok.
(b) There exists cs > 0 such that
ye =1, 2z < csk.
(¢) There exists cqy > 0 such that if ¢ € Ay, then
C4€_k <t; < ek,

Proof. The first claim follows from (50) and the fact that for V = 1 every level is
a neck. The second and third follow similarly. O

3.5. The Haudorff Dimension in the Resistance Metric.

Definition 3.11. The a-dimensional Hausdorff measure of K using the resistance
metric R is denoted by H%(K). The Hausdorff dimension of K in the resistance
metric is denoted by d} = d}(K).

The following theorem is the analogue of Theorem 2.18. However, the resistance
metric R does not scale in the same way as the standard metric in R? and so
the proof needs to be modified. The proof combines ideas from Section 2 of [29],
Section 2 of [30] and Section 4 of [8]. In the case of [8] the corresponding argu-
ment is simplified here because of the use of necks. Note that we do not expect
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the appropriate Hausdorff measure function to be a power function, unlike in [29]
and [30].

Theorem 3.12. Py almost surely the Hausdorff dimension in the resistance metric
d;} of K 1is the unique power o such that

(59) Ey log Z ri® = 0.
li|=n(1)
Proof. This will follow from Lemmas 3.14 and 3.17. O

Lemma 3.13. The function
(60) v(a):=Evlog Y rf,
li|=n(1)
is finite, strictly decreasing and Lipschitz, with derivative in the interval
[(log ring) Evn(1), (log rsup) Evn(1)].
Since (0) > 0 there is a unique ag such that «y(ap) = 0 and moreover ag > 0.

Proof. If o < 3, then from (33),

v(a) + (8 — a)(log ring) Eyn(l) < v(8) < y(a) + (8 — a)(log raup) Evn(1).

This gives the Lipschitz estimate.
Since v(0) = Ev (log#{¢ € T | |é| = n(1)}), it follows that 0 < (0) < occ.
The rest of the lemma now follows. O

Lemma 3.14. Suppose «q is as in Lemma 3.13. Then d;(K) < ap, Py a.s.

Proof. Suppose a > «ag. Using Corollary 3.4,
K= |J K > diam{ Ky <0 > g
i|=n(k) li|=n(k) li|=n(k)
From (19) and Lemma 3.13,
o1 a a
kli)n;%log Z r; = Ey log Z ri <0, Py as.
li|=n(k) [i]=n(1)

Hence Py a.s.,

k—o0 k—o0

lim log Z Ty = —00, lim Z r® = 0.
[i]=n(k) li|=n(k)

Hence H(K) = 0, and so d’(K) < «ag. O
Definition 3.15. Suppose 0 < ¢ < 1. Then A, is the cut set of T' consisting of
those nodes j = ji ... j, such that

(61) 7§ S €< Th

Lemma 3.16. There exist non random constants ¢ and M, such that for any
O<e<landze K,

(62) #{jeA:Be(z)NK; #£0} <M,

where

Be(x) ={y € K: R(z,y) < ce}.
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Proof. Suppose x € K; where ¢ € A..
First note

(63) #{j €At KN K #0) < M(d+ 1),

where d + 1 is the number of vertices of a regular tetrahedron in R? (recall (12))
and M is as in (36).

Let Ve = Ujea, ¥5(Vo) =: Ujea, Aj denote the set of vertices corresponding to
the partition A..

Define v : Ve = R by u(y) = 1 if y € A; and u(y) = 0 otherwise. Extend u to
u : K — R by harmonic extension on each Kj for j € A.. Then u is constant on
K; if K; N K; =0, and so

Md(d+1)

Tinf€

Ew)= Y, pifoucty) < M(d+1)dmaxp; <
{j:K:NK;#0} I
where M (d+1) is from (63) and d is the number of edges in Aj; with one vertex in
A,.
Setting ¢ = rins/2Md(d + 1), it follows that R(z,y) > ce if y € K; where j € A,
and K; N K; = (0. That is,

(64) Ecs(l‘)ﬂKj#@ﬁKiﬂKj#[b.

Combining (64) and (63) gives (62). O
Lemma 3.17. Suppose a < . Let p be the unit mass measure on K constructed
as in Definition 5.5 and Lemma 3.8, with weights wl” = (rf)* for F € F. Then Py
a.s., for any x € K and 0 < § < ¢, /J,(B(s(x)) < 10%, where the random constant
c1 depends on w but not on x or 4.

In particular, by the mass distribution principle, d}'(K) > «a Py a.s., and so
d}(K) Z (%)) PV a.s.

Proof. Fix x € K and 0 < § < ¢. If k is a level in the construction of T, let s(k)
denote the first neck level > k. All balls are with respect to the resistance metric.
From Lemma 3.16 applied to the cut As,/., and with M as in that lemma, there

are at most M sets K; which meet Bs(z) and satisfy j € Ajj.. That is, satisfy, on
setting 7 = j1 ... Jk,

(65) r'j < 6/0 <Tjige—1-
It follows that

(66) p(Bs()) < > p(E),

JEAs e, Bs (2)NK; #D
and there are at most M terms in the sum. For each such K. j, using Lemma 3.8,

D jilil=s(k) TS
WK = Y p() = S0 Y

(67) j<i,‘i|:s(k) Z‘“:S(k) 7’?
s(k)—k s(k)—k
S A 0(k) 5.

T e T T T D i) T

Here Ny,p is an upper bound for the branching number, see (2).

We need to estimate the numerator and denominator of ¢(k) in (67). For this
we use estimates (68) and (70).

Until we establish (70) we allow k to be an arbitrary positive integer, not neces-
sarily satisfying (65).
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Since s(k) — k is a geometric random variable, by the same argument as in
Lemma 3.9(b), there is a constant ¢; such that s(k) — k < ¢;logk Py a.s., and so
there is a constant co(w) such that

s(k) —k <cylogk Py as.
for all £k > 1. Hence Py a.s., for k > 1,

s(k)—k cologk
(68) N < Nezoe

sup
Next let
8 = Eylog Z ri.

[¢]=n(1)

Then § > 0 since a < ay, see Lemma 3.13. It follows by (19) that as k — oo

1

Elog Z ry =B Py as.

li|=n(k)
Hence for some €y = eg(w) > 0,
(69) Z re > e efP? fork>1, Py as.
|2|=n(k)

However, we need an estimate similar to (69) involving s(k) rather than n(k).
First note, by setting ¥; = n(i)—n(i—1) and n = 1 in (16), that for some c3 = c3(w)
we have n(k) < csklogk Py a.s. if k> 1. Hence

k
Z T > €0 €xXp M for k > 1, Py as.
X 203 logk

li|=n(k)

Since n(k) is an arbitrary neck,

k
E rg > egexp (s()ﬁ~> for k > n(l), Py as.
li|=s(k) 2c3logk

where k is the number of the neck corresponding to s(k), i.e. n(k) = s(k). Note
s(k) > k. Also note that k < k. (Otherwise there are at least k + 1 necks between
levels 1 and s(k) inclusive, and so in particular s(k) > k. But then there are at
least k necks between levels 1 and k inclusive, and so k is a neck. However that
gives s(k) = k, a contradiction). Hence

o kg
(70) |i§k) Ty > € exp <20310gk‘) for k > n(l), Py as.

It follows from (68), (70) and the definition of A(k) in (67), that 6(k) — 0 as
k — o0o. On the other hand, with & := |j| we have from (65) that

k= 3| = log(c/d)/log(1/rmin) — 00

uniformly for j € A5/, as 0 — 0. From (67), (66) and the uniform bound M on the
number of terms, there exists dop = dp(w) > 0 such that

(71) p(Bs(z)) < 6% for 6 <8y Py as..

It now follows by the mass distribution principle that d;(K ) > a Py as., and
so d}(K) > ag Py ass. O
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4. EIGENVALUE COUNTING FUNCTION

4.1. Overview. In this section we consider random V-variable gaskets constructed
from essentially arbitrary resistances rf, from weights w!” which determine a mea-
sure p, and from a probability measure P on F'. See Sections 2.5, 3.2 and 3.3. With
every realisation of such a random fractal there is an associated Dirichlet form and
a Laplacian. The growth rate of the corresponding eigenvalue counting function is
defined to be d;/2, where d; is called the spectral exponent. We see in Theorem 4.13
that Py-a.s. ds exists, is constant and is the zero of a pressure function constructed
from the crossing times ¢;. The proof relies on estimates concerning the occurrences
of necks and on a Dirichlet-Neumann bracketing argument, see Lemmas 3.9 and 4.8.
Lemma 4.8 gives a result which holds for all realizations in Qy .

The natural metric on fractal sets constructed with resistances as here is the
resistance metric. We saw in Theorem 3.12 that the Hausdorff dimension d’ in this
metric is given by the zero of a certain pressure function. A natural set of weights
is wF = (rF)%. The measure v constructed from this set of weights is called the
flat measure with respect to the resistance metric.

We see in Theorem 4.15 that ds(v) /2 = d /(d}+1). This establishes the analogue
of Conjecture 4.6 in [31] for V-variable fractals. In Theorem 4.17 we show that for a
fixed set of resistances rf", and for arbitrary weights w! and corresponding measure
1, the spectral exponent dg(u) has a unique maximum when p is the flat measure
v. The spectral exponent in this case is called the spectral dimension associated
with the given resistances.

Finally, in the case of the flat measure v, we give in Theorem 4.18 an improved Py
almost sure estimate for the counting function itself rather than its log asymptotics.

4.2. Preliminaries. Following the notation of the previous section, we consider a
fractal K = K% and write 0K = Vj for the boundary of K. We fix a measure
= p¥ on K and, together with the Dirichlet form & = £%, this allows one to
define a Laplace operator A, = A%. We will be interested in the spectrum of —A,
as this consists of positive eigenvalues. However, instead of working directly with
—A\,, we use a formulation of the Dirichlet and Neumann eigenvalue problems in
terms of the Dirichlet form, see [32].

Recall the definition of F from (29). Let

(72) Fp={feF": fle)=0, 2 € 0K}, Ep(f,[)=E"(f,f) for f e Fp,

and let (-,-),~ be the inner product on L*(K*“,u“). It follows as in Theorem 3.2
that (€p,Fp) is a local regular Dirichlet form on L?(K \ 0K, u). Now X\ is a
Dirichlet eigenvalue with eigenfunction u € F§, u # 0, if

(73) ED(u,v) = AMu,v) 0 Yv € Fp.
Similarly, A is a Neumann eigenvalue with eigenfunction u € F¥, u # 0, if
(74) EYu,v) = AMu,v),0 Vv € F.

As usual, we will in future normally omit the dependence on w.

By standard results [32] the Dirichlet Laplacian has a discrete spectrum
(75) 0< A <X <... where \,, = 00 as n — o0,

and similarly for the Neumann Laplacian but with 0 = A;.
The Dirichlet and Neumann eigenvalue counting functions are defined by
Np(s) =max{i: \; <s, \; is a Dirichlet eigenvalue},

76
(76) Nn(s) = max{i: \; <s, \; is a Neumann eigenvalue}.
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As usual, eigenvalues are counted according to their multiplicity.

The following lemma implies the spectral exponent dq(u) in Definition 4.10 is at
most 2 for any realization of our V-variable fractals. It is used to prove the second
estimate in Lemma 4.6.

Lemma 4.1. With the same constant C as in Corollary 3./,
Np(s) <Cs, Vs> 0.
Proof. The effective resistance between x € K and the boundary set 0K = Vj is
defined by
R(z,0K) ' =inf {E(f,f): f € Fp, f(z) =1}.
From Corollary 3.4 with the same constant C, and for any y € 0K,
R(z,0K) < R(z,y) < C.

The Green function for the Dirichlet problem in K is a symmetric function g(z, y)
which has g(z,y) < g(z,z) = R(z,0K). See, for example, Proposition 4.2 of [33].
In particular,

g(z,y) <C
independently of w. Moreover, from Theorem 4.5 of [33],

‘g(m,y) - g(x,z)} < R(y,z).

Hence ¢ is continuous, and in particular uniformly Lipschitz continuous, in the
resistance metric.

It follows from Mercer’s theorem (for a proof of the theorem see the argument
in [38] pages 344-345) that

9w, 2) = (AP) ™ gi()?

and the series converges uniformly, where ¢; are the orthonormal eigenfunctions
corresponding to the Dirichlet eigenvalues AP. Integrating with respect to z,

o200 = o,
i>1

for any s > 0. (]

4.3. Dirichlet-Neumann Bracketing. In this and the following sections, fix a
set of weights w!" as in Section 3.3 and let ;1 be the corresponding measure.

In order to deduce properties of the counting function for V-variable fractals we
use the method of Dirichlet-Neumann bracketing.

Let Ay be the sequence of cutsets (51). Using the notation of (12) and analo-
gously to (9), define

Vi = (J{ti(Vo) 4 € Ay},
(77) By = J{wi(Eo) 1 i € Ai},
G = (i, Ey).

Thus ék = (‘N/k, Ek) is the graph associated with the vertices ‘~/k of the cells deter-
mined by Ag.
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Define (€%, F*) by
(78) 4 L
FE={f K\Vi, »R| Vi€ A, 3f; € F7 : foyyy = fi on K7 \OK° },

E¥(f.9) = pi€7 (fobi,goty) for fge Fr.

1€EA,

The functions in F* should be regarded as continuous functions on the disjoint
union Ll;c A, K together with its natural direct sum topology. Note that here we
are regarding F* as a linear subspace of L?(K, ).

Define (8, F%) by
Fh={f¢€ Fk | Vi€ Ag filg, =0, where f; is as in (78)},
Eb(f,9)=E"(f.9) for f,g € F.

Thus F§ is the restriction of F* (and of F) to those functions which are zero on

(79)

‘~/k7 and € is the restricted energy functional.
It is straightforward to see that

(80) FRCFpCFCFr, EvcéEpcéEcéEr

That is, &£ is just the restriction to F of the functional £F and similarly for the
other cases.

Note that (%, F*) and (€F, FK) are local regular Dirichlet forms on the spaces
L?(Wsen, Ky, 1) and L2(K \ ‘N/k, ) respectively, with discrete spectra and bounded
reproducing Dirichlet kernels, see [33].

Analogously to (74) and (73) we define the notion that A\ is an (€%, F*), re-
spectively (EF, FY), eigenvalue with eigenfunction u. The corresponding counting
functions are

(81)

N (s) = max{i: \; < s, \; is an (EF, F¥) eigenvalue},
NE(s) =max{i: \; <s, \; is an (E, FF) eigenvalue}.

In order to compare the various counting functions, first note that if A = Ay
then the decomposition (30) with £ replaced by €%, and the decomposition (46),
both generalise to functions f,g € F*. The key observation now is that if \ is a

(Neumann) (€%, F*) eigenvalue with eigenfunction u, then we have for all v € F*
that

(82) Z pi€7 (wo Yy, v o) = EF(u,v) = A, V) = A Z pri (w0 Yy, v 0 1hg) i
1€EAL 1€
If we take v to be a function supported on a complex with address ¢ € Ay, we
see that

(83) €7 (wo tbi v 0ths) = LA (w0 i, v o) i,

since t; = pi_1 ;. Thus t;\ is an eigenvalue of (€ ”1, F ‘71) with eigenfunction u; = uo
;. Conversely, from u; we can construct (Neumann) eigenfunctions and eigenvalues
for (EF, FF), since

~ uiO’l/),Zl on Kicl_lj@kKj,

(84) Ui = { 0 on |—|j€/\k\i KJ

is an eigenfunction with eigenvalue A. Hence

(85) NE(s) = ST NG (tis), Nh(s) = S NG (tis),
1EAN 1€EA

with the argument in the Dirichlet case being similar to that for the Neumann case.
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Lemma 4.2. The following relationships hold for all s >0
ST NG (tis) < Np(s) < Nu(s) < Y NF (ts),

(86) i€AL i€k

Np(s) < Ny(s) < Np(s)+d+1.

Proof. The proofs are a consequence of Dirichlet-Neumann bracketing and are
straightforward extensions of those found in [32] Section 4.1 for the p.c.f. fractal
case. The upper bound on the difference in the Neumann and Dirichlet counting
functions is given by the number of vertices of Vj, which is d+ 1 in our setting. [

4.4. Eigenvalue Estimates. As in the previous section, fix weights w!" and the
corresponding measure p. Let the random variable AP denote the first Dirichlet
eigenvalue.

Lemma 4.3. If C is the upper bound on the diameter of K in the resistance metric
giwen in Corollary 3.4 then forn > 2,

d(d+1)pl,
WK\ Ko

(d + 1)2/)gupw52up

2
Wing

cCl<aP <
(87)

V=1= M <

where Ky, is the union of the d + 1 boundary n-complexes attached to the d + 1
boundary vertices in Vj.

Proof. Since the Dirichlet form is a resistance form we have for f € Fp that

[f(z) = fW)I° < R(z,y)E(f, ).
Since p is a probability measure and f € Fp, using Corollary 3.4 and the definition
of R(x,y) in (31), it follows that

I1£113 < set;?wlf(w)IQS sup [f(z) — f(y)|* < sup R(z,y)E(f, f) < CE(f, f).

z,ye K z,ye K
Hence by Rayleigh-Ritz,

~

)

AP = inf E(f,z
reFo IIfI3

Next let f(x) = 0 for z € Vp, f(zx) = 1 for z € V,, \ Vo, and harmonically
interpolate. Then

>t

(fvf) :En(f7f) < d(d+ 1)pgup7
[ fwutdn) 2 i\ Ko

Again by Rayleigh-Ritz, this gives the upper bound.

If V =1 note that with n = 2 there are at least d(d + 1) interior cells as well as
d + 1 boundary cells. Since all cells have the same type, from (42) in Lemma 3.6
with ¢ = Wine/Wsup,

WK\ Ky 2) > dCpu(Kp,2) = d¢? (1 — p(K \ Kb.z2))

d¢? d¢?
K K >
WE N\ Ky 2) 2 1+d2=d+1
This now gives the result for V = 1. O

In order to obtain Py -almost sure results we need to estimate the tail of the
bottom eigenvalue random variable. Note that this result is only relevant in the
case where V' > 1 as if V = 1 then AP is bounded above by (87).
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Lemma 4.4. There exist constants A > 0 and v > 0 such that for any x > 0,
(88) Py(\P > z) < Az,

Proof. Let n = n* be the first neck such that n > 2. It follows from (42) with K3,
as in Lemma 4.3 that

. Winf " "
f¢:= th K\ K K, = 1—pu(K\ K .
G o= T then p(K\ Ki) > oqu(Ki) = g (U=l \ i)
Hence
1 &

K\ Ky,
WK\ Kyn) > 77
From Lemma, 4.3 it follows that

AP < d(d+1)(d+2)pl, ¢ = d(d+1)(d+2)¢",  where ¢ = Puplsue

Winf

(d+1)¢™ = d+2

Hence

log L
Py(AP > 2) < Py (d(d+1)(d+2)¢" > 2) = Py <n > ‘w> :

Let g be the probability that any fixed level is not a neck. Since the event of a
neck occurring or not at each level is independent of the corresponding event at all
other levels, it follows there exists C' > 0 such that if y > 0 then

Py(n>y) < Cq”.

Setting v = log(1/q)/log& and A = C/(d(d+ 1)(d + 2))7 gives the required result.
U

Define
(89) PLEES max{)\(fl’D 11 € Mg},

where /\cfi’D is the first Dirichlet eigenvalue of the Dirichlet form (£7°, F) = (7%, F¥)
with respect to the measure p° = p° . Note that Ay =P,
If V.=1by (87) we have A} < (d + 1)?p2,, w2,,/wi; for all k.

sup

Lemma 4.5. IfV > 1, then with~y as in Lemma 4./ and with ¢4 as in Lemma 3.9(b),
we have Py a.s. that

(90) N < (Veak)2/7,

Proof. In order to apply the growth estimate in the previous lemma and use
Lemma 2.16 we use two additional properties:
(1) The number of distinct subtrees, and hence eigenvalues, corresponding to
each level of T is uniformly bounded (by V);
(2) The maximum level corresponding to nodes in Ay, is asymptotically bounded
by a multiple of k, see Lemma 3.9.

First consider any sequence of random V-variable IFS trees (Tj);>1, not neces-
sarily independent but all with the same distribution P = Py, see Definition 2.11.
Let the corresponding random first eigenvalues be Y;.

Then for all z > 0,

P(Y; >x) < Az™7 by Lemma 4.4,
oo P(logY; > a) = P(Y; >€") < Ae™ 7,

. max logV; < v tlogk Py as. by Lemma 2.16,
1<j<k

. : 2/
(91) o 11%1?%(1@}/; <k Py as.
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For any tree T' = T there are at most V' non-isomorphic subtrees rooted at each
level. Let (Y;);>0 be the sequence of random variables given by the first eigenvalue
of T, followed by the first eigenvalues of non-isomorphic IFS subtrees of T" at level
one (there are at most V'), followed by the first eigenvalues of non-isomorphic IFS
subtrees of T' at level two (again there are at most V), etc. If ¥; corresponds to a
subtree rooted at level p then by construction j < Vp. With z as in (55) it follows
that )\If S mMax)<;j<vz, Y}

Hence Py a.s.,

—

A i sup A=<V Y (Vzk ) 2
- k

hm sup ]{12/7 PN (VZk)Q/,Y

k—o0

2/
< <lim sup VZk) from (91)
k— o0 k

< (VC4)2/’Y7

since zp < ¢4k from Lemma 3.9(b). This gives the result.

d

We now wish to determine the limiting behaviour of the counting function. We
first give the following result that is true for all w € Qy-.

Recall n (< 1) defined in (49), and the quantities defined in (89) and (53)—(55).

Lemma 4.6. There exists a constant c1 such that if w € Qv ¢ then
(92) Np(Ti) < exMy, My < Np(MiTn™¥*)
for all k > 0.

Proof. For the first estimate we have from (86), (53) and Lemma 4.1,
Np(Ti) < D NZ (6T) < (d+ )My + Y NP (4:T)
1EANL 1E€EA
< (d+ )My +cTp Y ti < c1 M.
1EAL
Next note from definitions (53), (76) and (89) of My, Np and X% respectively,

from the fact )\fi’D < )\gi’D for the equality below, and from (86) for the last
inequality provided ti_l < ¢(k) for all i € Ay, that

(93) My= Y NB(\P) < 30 N (AF) < Np (A ek)).

1€EAL 1€EAL
But t; ' < n7¥ek < y7¥ T} from Lemma 3.9(c) and the definition (53) of T. This
gives the second estimate. O

For V =1 we can improve this to the same estimate as that obtained in [2] Sec-
tion 7.

Corollary 4.7. ForV =1, for allw € Q4 there exist constants c¢1 and co such that
forallk >0,
M < ND(ClTk) and ND(Tk) < coMy,.

Proof. As V' =1 the conditions required for the existence of the measure p hold

for all w € Q1. We also know that )\’f is bounded above and as yp =1 for all k € N
the inequality on the right in (92) reduces to My < Np(c1T)) as required. O

We next use asymptotic information about the frequency of necks to obtain the
following.
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Lemma 4.8. For V > 1 there exist constants c1,co and a such that Py a.s. there
is a ko(w) for which

ND<Tk) < Mg, M< ND(CQkaTk> if k> ko(w).

Proof. This follows from Lemma 4.6, since X% < c3k?/7 by (90) and n~ Yk 5 k5" by
Lemma 3.9(c). O

4.5. Spectral Exponent. We again fix weights w!" and let u be the corresponding
measure as in Definition 3.5.

Definition 4.9. The pressure function v = v(8) where § € R, and the constant
Bo, are defined by

(94) ¥(B) = Eviog > t)% 4(Bo) =0.
lé]=n(1)
(It follows from Lemma 4.11 that 5y is unique.)

The pressure function and its zero can be found computationally. See [8] for
similar computations for the fractal dimension.

Definition 4.10. The spectral exponent ds(u) for u is defined by
1
L)y, 02 NDLS)

s—oo  logs

(95)

We see in Theorem 4.13 that a.s. the spectral exponent exists and equals the
constant 3. By Lemma 4.2 we could replace Np by Ay.

Recall the definition of 7 in (49) and the estimate for ¢; from (50).
Lemma 4.11. The function v(53) is finite, strictly decreasing and Lipschitz, with
derivative in the interval {log (n'/?) Eyn(1),log (7"511{;2)) Evn(l)] Since v(0) > 0
there is a unique By such that v(8p) = 0 and moreover By > 0.
Proof. If a < 3 then from (49) and (50),

1)+ 22 togmBun(1) < (8) < 4(a) + 252

This gives the Lipschitz estimate.

Since v(0) = Ev (log #{i € T | |i| = n(1)}), it follows that 0 < (0) < oo.

The rest of the lemma follows. O

(log rsup) Evn(l).

Proposition 4.12. Py a.s. we have

(96) lim llog Z tf/Q =~(B).

k—oco /{J
- i =n (k)

Proof. The idea is that from the definition of a neck, log ZI i|=n(k) tf /% is the differ-
ence of two random variables, each of which is the sum of & i.i.d. random variables
having the same distribution as log Z\i|:n(1)(riwi)5/2 and (8/2)10g > ;1) Wi

respectively.
More precisely, suppose |¢| = n(k) and in particular is a neck. Then
riWs
Ly =rifly = =
2 =) 3

and so

6/2 _ w2 P .
(97) log Z t;'” =log Z (rsw;) 2log Z wj.

li|=n(k) |2|=n(k) li|=n(k)
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If we let sI" = (rfwf)P/2 or s = wF, it follows from (24) and (39) that
0 < sinp :=1inf{s":ie1,...,N¥, Fe F},

98
(98) ssup::sup{sf:iGl,...,NF,FGF}<oo.

and we can apply Lemma 2.17. Thus (19) applied to each term on the right hand
side of (97) gives the result. O

Subsequently we write N for Np. But note that from the second line in Lemma 4.2
the main estimates in the rest of the paper also apply immediately to Ny.

The proof of the following theorem relies on the Dirichlet-Neumann bracketing
result in Lemma 4.8 and the estimates in Lemma 3.9(c).

Theorem 4.13. The spectral exponent is given by By in that

ds (I“L) . logN(s) ﬁo
”” = 1 m — P a.s.
( ) 2 t—>l oo 1()g S 2 ’

Proof of Theorem. Define the unit mass measure vg on 91" by setting, for any /3
and for |3| = n(k),

B2

i

D lil=n(k) t;/?
It is straightforward to check that vg is just the unit mass measure with weights
(r;w;)?/? as in Definition 3.5.

If v(8) < 0 or equivalently 5 > [y, then from (96) for ¢ > 0 small enough we
have Py a.s. that there is a constant kg such that

vali] > 172 RO > B2 ip e > g,

vgli]

As Ay is a cut set, by using the lower estimate above we have from Lemma 3.9(c)
that Py a.s. if £ > kg then

1= Z vgli] > Z ctf/2 = Mk PP 2e=%8/2  for some B > 0.
1E€EAL 1EA
Thus
(100) My, < ckPP'/2eRP12 Py as.
Suppose s > 1 and let k be such that e¥~! < s < e*. Then s < T} by
Lemma 3.9(c) and so
log N(s) _ logN(Ty) _ log(cMy) _ f

<7a P -S.,
logs — logs — k-1 2 vas

where the second inequality is from the first estimate in Lemma 4.8 and the third
inequality is from (100).
As this holds for all 5 > 8y we have

1
(101) log N (s) < @7 Py as.
log s 2

Similarly we have an asymptotic lower bound. For this choose 5 < By, or
equivalently such that () > 0. Then for small enough € > 0 we have Py a.s.
that for some ko = ko(w)

va(i) < ct?? if k> ko,
and hence from Lemma 3.9(c), that Py a.s. then

1= Z vg(i) < Z ctf/2 < cMye FP/2 i k> k.
1EAL 1ENL
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Thus Py a.s.
(102) My > ceP/2if k> k.
From the second estimate in Lemma 4.8 and using (102),
logJ\/’(?jkaTk) > long;C o g Py as.
Again choosing k such that =1 < s < €*, we have from Lemma 3.9(c) that for
some o,

(103)

kT, < k% e® < e(1+1logs)™s, Py as.
Hence

log N (cok®T; log N (2¢2¢(1 + log )
lim inf 08N W k) (62 k) < liminf 8 ( c¢(1 + log s) S)

k— 00 s§—00 log S

, Py as.

Setting y = y(s) = 2coe(141og 5)*'s, since lim, o logy(s)/log s = 1 and y(s) — oo
as s — oo, it follows

log N (cok®T,
tim g (28N (26 Th) fiminf 22V b

k—o0 k 5—00 log s

Combining this with (103), since 5 < fp is arbitrary, implies

logN'(s)  Bo
104 L8N 0 Py oas.
(104) log s 2 voas
The required result follows from (101) and (104). O

4.6. Spectral Dimension.

Definition 4.14. The flat measure with respect to the resistance metric is the unit
mass measure v with weights w? = (rF)%, where d’ is the Hausdorfl dimension in
the resistance metric (see Definition 3.5). The spectral dimension ds is the spectral
exponent for the flat measure.

Further justification for the definition of d; is given in Theorem 4.17.
Recall from Theorem 3.12 that d; is uniquely characterised by

(105) Eylog > rif =o.
li|=n(1)
As a consequence, the following theorem establishes the analogue of Conjecture 4.6
in [31] for V-variable fractals.
Theorem 4.15. The spectral exponent for the flat measure v is given Py a.s. by
dS(V ) _ d;
2 dy+ 1

(106)

Proof. From Definition 4.14, (94), (48) and (41), if |4| = n(¢) is a neck then
1+d}

T{Ww; i

107 t; == 1riv; = = =.

o PR ETCEE D PR

Hence the spectral exponent ds(v) is uniquely characterised by

(108)

oy ds(v)/2

0 =~(ds(v)) := Ev log Z t?s(”)/Q = FEylog Z Tlidr
jil=n(1) jil=n(1) \ 2jl=n() 75"
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Using (105),

T v ds 7‘v
0 = FEylog Z rinf)ds( VQ—%Evlog Z r;.if
li[=n(1) |31=n(1)
= Bylog 3 gt
li[=n(1)

Using (105) again and the uniqueness of d}, it follows that d} = (1 + d})ds(v)/2,
which gives (106). O

We next show that the spectral dimension maximises the spectral exponent dg(u)
over all measures y defined from a set of weights w!" as in Section 3.3. A related
result for deterministic fractals is established in Theorem A2 of [36] using Lagrange
multipliers. Here we need a different argument, but this also establishes uniqueness
of the w!” and hence of p.

The proof is partly motivated by [28], in particular Section 4 and the discussion
following Corollary 2.7. We first need the following general inequality.

Proposition 4.16. Suppose {p1,...,pn} and {q1,...,qn} are sets of positive real
valued random variables, each with the same random cardinality N, on a probability

space (Q,P). Suppose Elog Z}Ig\le pr = 0 and that the constant v satisfies 0 < v < 1.
Then

N N v
(109) Elog Y prq; < Elog <Zpqu> ;

k=1 k=1

with equality iff @ = -+ = qn a.s.

Proof. For any N, a suitable version of Holder’s inequality for sequences yields

N N =y / N gl
(110) Sl < (zpk> (zpk@ |
k=1 k=1 k=1

Taking logs and expectations, and using the assumption on the random sets
{p1,...,pn} gives

(111)
N N N v N v
Evlogy pray < (1—7)Elog) py +Elog (ZPka> = Elog <Zkak> :
k=1 k=1 k=1 k=1
This gives (109).
If g = --- = gy = c a.s. where c is a random variable, then equality holds in
(109) since both sides equal Elogc?.
If it is not the case that ¢ = --- = gy a.s. then strict inequality holds in (110)
with positive probability and hence strict inequality holds in (111). O

Theorem 4.17. The spectral dimension ds is the mazimum spectral exponent ds(p)
over all measures u defined from weights wl'. Equality holds if and only if for some
constant ¢, wF = ¢ (rF)¥ Py a.s., in which case the corresponding measure y is

the flat measure with respect to the resistance metric.

r

Proof. For |i| =n(1) let p; = rjf, so that Evlog_; _,q)pi = 0.
Suppose w = {w]F | f € F, 1<j<NF}isaset of weights and consider the

. dr
corresponding w;. Let ¢; = w;/r;”.
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Then from (109),

r\ 1—v v
Ey log Z (rjf) w] < Ey log< Z w1> .
)

li]=n(1) lil=n(1
Choosing 7 so that the powers of r; and w; are equal, gives v = d’/(d} + 1), i.e.
v = ds/2. Hence

Z\i|:n(1)(riwi)ds/2

Ey log Z th/Q = Fy log iz =
jil=n(1) (Z‘“:n(l) w) |

Moreover, rby Proposition 4.16 equality holds if and only if Py a.s. it is the case

that wi/rff is independent, of ¢ for |i| = n(1). Clearly, this is true iff w] = c(rf)d;
Py a.s. for some constant c.

From the definition (94) of dy(u), we have Ev log};_,q) t?s(“)/z = 0. From

Lemma 4.11 and the previous inequality, it follows that ds(u) < ds, and equality

holds iff wf” = ¢(rf' )% Py a.s. for some constant ¢ a

We next give a sharpening of Theorem 4.13 in the case of the flat measure with
respect to the resistance metric. This shows that for this measure, for all V' > 1,
we have the same fluctuations as observed in the version of the V = 1 case treated
in [2]. For this, let

O(s) = +/sloglogs,
(112) o(s) = exp (<I>(log s)) = exp (\/log slogloglog s).
Theorem 4.18. Suppose u is the flat measure in the resistance metric. Then there
exist positive (non-random) constants c1, ca, cs, ca, and there exists a positive finite
random variable ¢y = co(w), such that if s > ¢y then

N(s)

ap(s)2 < a2 <c3p(s)* Py a.s.

Proof. Consider the unit mass measure vg constructed in the proof of Theorem 4.13,
where now = d; is the spectral dimension as in (108).

In the following the constant ¢ may change from line to line, and even from one
inequality to the next.

If |4] is a neck and |¢| = n(¢) then from (106) and (107),

4ds/2 tde/2
q i = :
(113) va, |t = > (da/2 ap\ L/ (+dp)

Using the law of the iterated logarithm, as in Theorem 2.19 and from the decom-
position (20), Py a.s. there exists a constant ¢ such that, for ¢ sufficiently large,
g
log > i T .
(114) —c< 23'(;)(6)(5)’ <e, ie. e c®® < ‘Iz:(z) ,r.;if < ec2(O)
|=n

Since vy, is a unit mass measure and Ay, is a cut set, it follows from (113) and
(114) by summing over i € A that, for k sufficiently large,

(115) Z t?s/%*c@(é(i)) <1< Z t;is/2ec¢>(e(i))7
1€EANL €A
where £(i) is defined in (52). But from Lemma 3.9(c) and Lemma 3.9(a) respec-

tively, the following hold Py a.s. for ¢ € Ay and k sufficiently large:
P ek <t; <e’k £(i) < cok.
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Moreover, ®(ck) < ¢*®(k) for some ¢* = ¢*(¢) and all k > 3. Tt follows from (115)
that, for k sufficiently large,

I Mpekds/2e—c®(k) < 1 < CMke—kds/ze@(k)’

since k=#'4s/2 can be absorbed into e~¢®*)

, with a new c¢. That is
(116) ¢~ lekds/2=c®(k) < £Nf < cekds/2000(R)

Given s > 0 choose k so ef=1 < s < eF. Note also from Lemma 3.9(c) that
e¥ < Ty, < ckP'e¥, for k sufficiently large. Then from Lemma 4.8 and (116),

(117) N(s) S N(T}) < eMy, < ceFds/2ec®R) < e5/2 ()¢,

where for the last inequality we note that ®(k) < ®(1 +logs) < c®(log s).
Similarly, again from Lemma 4.8 and (116),

NE Ty) > My, > ¢ telde/2e=c®0) > ¢~1gde/2g(5) ¢,

But k7" T}, < c(logs)?'+F's < ¢*s for s > 2 and ¢* = ¢*(¢, ', 8). It follows that
N(c*t) > ¢ 1s%/2¢(s)~¢ and so

(118) N(s) > ¢ ts®/2p(t) ¢

if logloglog s > 0, hence if s > 16.
The result follows from (117) and (118). O

Remark 4.19. By using the law of the iterated logarithm in the above we can
show that the Weyl limit does not exist in that there is a positive constant ¢ such

that N (s)
. S
OB

5. ON-D1AGONAL HEAT KERNEL ESTIMATES

Py a.s.

5.1. Overview. The on-diagonal heat kernel is determined for resistance forms
by the volume growth of balls. In [9] it is shown how volume estimates can be
translated into heat kernel estimates in the case of non-uniform volume growth.
We are in the same setting but will express the bounds in a slightly different way.
As we have scale irregularity these will give rise to larger scale fluctuations than
the fluctuations arising from the spatial irregularity. Note that we will establish
bounds for the Neumann heat kernel and are in a setting where the measure is not
volume doubling.

In previous work, in the V' = 1 setting of [2], using our notation in (53) and (112),
the results obtained were that for all realizations there are non-random constants
c1, o such that

M, < ka—l(fE,l') < oMy, Ve K, k>0,

while using a sequence chosen according to Pj, there are non-random constants
c1, ¢, ¢3, ¢4 and a random variable ¢5 € (0,00) under P;, such that

et ™% 2p(1/1) 7% < py(x,x) < eot” B 2p(1/8), Ve e K, 0<t<cs, Pas.

In the random recursive case (V = oo) with its natural flat measure, as considered
in [23], the fluctuations were shown to be smaller in that there are fixed constants
¢1,¢2,a > 0 and a random variable ¢3 € (0,00) under P, such that

crt= /2| logt| ™ < py(z,x) < et~ %/2|logt|?, YO <t <c3, Vo€ K, Ps a.s.

We will show here that the on-diagonal heat kernel estimates for V-variable
fractals are determined by the local environment, see Theorems 5.5 and 5.8. In
the case of the flat measure in the resistance metric, see Definition 4.14, we show
in Theorem 5.13 that the global fluctuations are of the same order as the V =1
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case for nested Sierpinski gaskets with uniform measure as described in [2]. In the
case of a general class of measures we will see in Theorem 5.12 that p-almost every
x € K does not have the same spectral exponent as the counting function (except
when we choose the flat measure) and there will be a multifractal structure to the
local heat kernel estimates in the same way as observed in [5], [22].

In order to transfer the fluctuations in the measure to the on-diagonal heat kernel
we could apply a local Nash inequality, for example [34] or use [9]. However we use
more bare hands arguments adapted from those of [2], [5] and [22] in order to keep
the scale and spatial fluctuations separate.

Note that in [9], [35] it is shown that, in the case of resistance forms with non-
uniform volume growth and under assumptions which hold in our setting, there
exists a heat kernel which is jointly continuous in (¢,z,y) € (0,00) x K x K for
every w € Qy¢.

5.2. Upper Bound. We adapt the scaling argument given in [22] Appendix B to
this setting. This is a purely local argument and works for all w € Qy .

Firstly, recall from Theorem 3.2 and the definitions and discussions around (72),
(78), (79), that (£, F),(Ep, Fp), (EF, F*) and (&%, FY) are local regular Dirichlet
forms on L2(K, ), L2(K\Vy, ), L*(Wien, Ks, 1), L2(K \ Vi, ) respectively. For
A >0 let

Ex(f,9) =E(f,9) + AM[9)us
with similar expressions for the other Dirichlet forms. The space F equipped with
norm &£ f\/ % is again a reproducing kernel Hilbert space and we write gy, g2, g5, g];’D
for the corresponding reproducing kernels.

We state a scaling property of the Dirichlet form.

Lemma 5.1. For all f,g € F we have
Ex(fr9) =Y i3, (fotbi,gotby).
1EANL

Proof. This follows by the scaling in (30) and (46) and the definiton of ¢; in (48). O

Let g/j\j’g1 be the reproducing kernel associated with the Dirichlet form 5‘,’;} \ on
K°" with Dirichlet boundary conditions and let g§1 be the reproducing kernel for

the Dirichlet form £ on K " with Neumann boundary conditions.
Lemma 5.2. We have for all i € Ay and x € K;, that
D,o%,  — — k,D
9> (wz 1(x)71/}i 1($)) = Pig)\/ti (m,x)

and '

93 (W5 (@), ;1 (2) = pagh r, (z, ).

Proof. We consider gf’gi (wjl(x),dji_l(x)), for x € Kj;, which is the reproducing
kernel for ( ‘g,)\,}"{;) on LQ(K"Z,;ﬂi). We note that gf’”z(wjl(y)7z/};1(x)) =0
for all y € K\K;. Using this, the reproducing kernel property and the scaling, we
have for x € K,

a0 W @), @) = E AR (), gD ()i (@)
= Y 0, GNP W () ) gn (W (W), (@)

JEAL
= €D (057 (i), 1), 907 (L H(2))

k,D
= pigy (z,7)
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as required.
The second equation follows by the same argument. O
It is straightforward to see that, as
Fk c Fp c F c FF,
and gx(x,z) = [inf{E\(f, f) : f € F, f(x) > 1}]71, (with similar expressions for

k,D
g%, gy, gP) we have
(119) gf’D(x,x) < gP(z,z) < ga(z, ) < g¥(x,x), Vo e K\Vi.

Lemma 5.3. There ezists a function C(X) such that for all A < oo

sup gx(z,z) < C(N) < oo.
reK

Proof. We follow the proof of [1] Theorem 7.20. Note that for any fixed z € K we
have gx(z,.) € F and hence using (31)

|g>\(x, y) - gA(x,x)|2 < R((E,y)g)\(g)\(l’, ~),g)\(l', ))

By the reproducing kernel property and the global bound on the resistance across
K from Corollary 3.4 we have

lgx(z,y) — gr(z,2)|* < Cga(z, ).

Rearranging
g (@,y) > ga(z, ) — (Coa(w,x))"/?,
and integrating over y against p we have
1
ga(z,z) < 3 + (Cga(z,z))'/2.
The result then follows easily. O

Lemma 5.4. There exists a constant C such that for all i € A, and z € K,
g1 (w.2) < Cp; .
Proof. By Lemma 5.2 and (119) we have for z € K;
D,o%/,  — — k,D
9" Wit @), (@) = pigyy (@,7) < pigage,(a, @)
< pigl)f/ti (z,2) = gil (Zﬁfl(fﬂ)aw;l(iﬂ))
Now set A = 1 and note that by Lemma 5.3 g; is uniformly bounded. Thus
97 W1 (@), 45 (@) < pagrye(w,2) < gf (05 (2), 95 (@) < C.
Rearranging we have
g1 (e.2) < Cp; ",
as required. O
Theorem 5.5. There exists a constant ¢ such that
pe; (z,x) < c,ui_l, Vo € K;,Vi € Ay,.
Proof. As
gr(z,z) = / e Mp,(z, x)dt,
0

we have, by the monotonicity of p;(x,x) in ¢, that for all u

—Au

u 1 _
ar(z,x) > pu(a:,x)/ e Mdt = pﬂx,x)%.
0
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Thus, setting A = ;' = 1/u, we have
D, (as,x)(l - eil)ti < gt;l(xvx) < Cp1,_1
Rearranging and the definition of ¢; then gives the result. O

5.3. Lower Bound. We follow a standard approach see for instance [2], [5]. For
this we require an estimate on the exit time distribution for balls. We start with
some preliminary results.

Let {X; : ¢ > 0} be the diffusion with law P associated with the Dirichlet
form (£, F). We write P* for the law of the process with Xy = x and E” for the
corresponding expectation. We write T4 = inf{t > 0: X; € A} for the first hitting
time of the set A. For 7 € A, we write

D; = U {Kj:KjﬂKi;é@}
JEAK
for the union of the complex K; and its neighbours. Let Ag(z) :={j € Ay : z € K, }.
For z € V}, we define

Di= |J K; oD;= |J v¢;(Vo)\{z}, 0D; = U ¥ (Vo)\vi (Vo).
JEAL(2) JEAR(2) FEAR, K ;NK;#£0
We will also use the notation 0K; := 1;(Vp).
Recalling (2), (39) and (54) we let /) = NingWing/NsupWsup and write x(k,ng) =
nuepM(Em0) with M (k,no) := max;<g<cor(n(€+ng)—n(f)), where cg is the constant
¢z given in Lemma 3.9(a).

Lemma 5.6. There exist constants ¢; and ng such that

clx(k,no)e*k < E*Typ, < sup E*Typ, < coe F Ve K;,Vi € Ag.
zeD;

Proof. We begin by observing that

(120) E*Top, = E"Tox, + > P (Xrpe, = y)ETop,.
yeOK,;

To treat the first term we note that the Dirichlet form restricted to K; with
Dirichlet boundary conditions is a reproducing kernel Hilbert space with the associ-
ated Green function gk, (z,.) as the kernel. Let f(y) = gk, (x,vy)/9k, (z,z). By the
definition of f and the reproducing kernel property we have E(f, f) = 1/gx, (v, z).
By the definition of the effective resistance we also have that gg, (z, z) = R(z, 0K;).
As gk, is harmonic away from z and is 0 on JK; we have that 0 < f(y) < 1 for
all y. Hence, putting these observations together and using Corollary 3.4, we have
that, for any y € Kj,

(12)  B'Towc = [ o 2)u(de) £ Bl OKA(G) < eraps < exe ™,
K,

as 1 € Ayp.
We next consider the exit time from D; started at a point y € 0K;.
Let Up = 0 and set U; = inf {t >Ui_y: X, € f/k\{XUH}}. Then X; = Xy, is

a discrete time Markov chain on V. Let S = inf{n : X,, € D;}. By construction
we see that {Xn :n < S} can be viewed as a d+ 2 state discrete time Markov chain
with d+1 states as the vertices of K; and an absorbing state given by amalgamating
the vertices in D;. By construction this Markov chain has transition probabilities
given by the conductances on Gr. As d of the vertices in dK; must be internal
to a triangle or d-dimensional tretrahedron in Kjj;—; the conductance between
the edges across A; and at least one edge to 0D; are comparable or otherwise the
conductances across A; are smaller and hence EYS < oo independent of k.
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The time taken for the original process to exit is then EYUg. We now compute
the time for a step.
The same argument as before for the first term in (120) but using gpy gives

B'Ton; = | apy (0. 2)u(d=) < Ry 0DLu(DY).

Now observe that by the definition of resistance we have
R(y,0D}{) < R(y,z), Yz € 0Dj.
Thus we have R(y,dD}) < min,copr R(y,z). By our estimate on the resistance

in Lemma 3.3 this gives R(y,0D}) < minjecy, () rj. Hence, as the number of cells
that meet at y is bounded,

EYTypy < min ry E pi < ¢ max Ty < ce .
F T gehly) T 77 ienty 7
JE€A(Y)

We are now ready to show EYTyp, < Ce~*. To see this we use
s
EVYTyp, = EYUg = EY Z (Ui = Ui_1) .
i=1

Note that S is a stopping time with respect to {Fy,}5°,, where {F;}i>0 is the
filtration generated by X. As EY(U; — Ui—1|Fu,_,) = X .ev, Lixu, =3B Ty (2}
a minor modification of Wald’s identity shows that

(122) EVYTsp, < ce "EYS, Vy € OK;.

Putting this back into (120) gives the upper bound for this y.

Finally we let z € D; and establish our upper bound by showing E*Typ, < cek
for some constant ¢ > 0. As we have the result for z € K; we assume that
z € D;\K;. We can choose j € Ap\{i} such that K; N K; # () and z € K;. Then,
decomposing the exit time Typ, at the first exit time of K, we have P a.s.

Top, = TBKj + (TaDi o eTaKj )IaKi (XTaKj ),

where 07, K denotes the shift map for the diffusion process {X,;};>0. Thus, by the
strong Markov property of the diffusion we have

EZTaDi = EZT@KJ‘ +E* ((TaDi © QTBKj )IaKi (XTaKj)>

E TaKj +E (IaKi (XTaKj )E fox; (TaDi))
k

k

< cle_k + coe” " = cze”

where E*Tyx, < c1e™* by (121) and control of the second term comes from (122),
completing the proof of the upper bound.
For the mean hitting time lower bound we return to (120) to see that

E*Typ, > min EYTyp, > min EYTypv.
op; = Wi op; = Wi aDY
Using the properties of gpv, and setting f(z) = gpv (y,2)/9py (¥, y), we see that

_ P 2 Py — R(y7Z) _ R(y,Z)
[f(y) = f(2)I7 < R(y,2)E(f, f) 900 (0.9)  R(y,0D])

Let

Ay = {z: R(y,2) < cR(y,0Dy)}.
Let j° € Ax(y) denote the index at which minjca, () rj is attained. Thus, by the
boundedness of |Ak(y)|, we have

(123) R(y,0D}) > cirj-.
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We now show that Aj must have measure comparable with ;-
By decomposing the cell K;+ we have

K= |J v5(K(077T)),
3:lil=n
and we write k with |k| = n such that y € 1;-k(K (09 *T)) = Kjg. Then, by
Corollary 3.4, for any z € Kj+), we have a constant ¢ such that

n
sup’

R(y,z) < crj= < crj=r
and hence by (123)
crl

"2 R(y,0DY).
¢

R(y,2) <

Thus, if we take ng = inf{n : Toup < c1/c} and set ¢g = %, we have Kj-p C Aj?
where co < 1.

Hence for z € K-, we have |f(y) — f(2)]? < co. As f(y) = 1 we see that we
must have f(z) > ¢ =1 —,/¢ca. Thus for any y € 9K; we have, writing ky, + 57|
for the first neck after ng + |77|,

E'Tony = [ oy 2ulds) = opy v p)n(sen)
DY

k
S {wni : ki = kg i € T "}
S{w; ¢ i = kny i € T}
We now give an upper bound on k,,. Let £ := £(§%). Then n({) = |j7| and,

since there are at most ng necks in the levels from |5*| + 1 to |j| + kn,, we have
177 + Eny < n(f+mno) =n(l(5*) + np). Hence by Lemma 3.9(a),

kng < n(l(3") +n0) = |37 = n(l(F") + no) — n(E(5"))

1§}§ﬁk(n(€ +no) —n(l)) = M(k,no).

= R(y,dD}) ;-

IN |

Now applying (123) and the fact that rj«uj« > n¥e~* by Lemma 3.9 (c), we have

. kng
ETopy = cy‘j*ﬂj*Nii?o_no ( Ngi;;p)
> cante PN o0Rko
> CgNi;?OT]yke_kﬁM(k’”O)
= C4X(k’n0)eilC
as required. O

Lemma 5.7. There exist constants cs,cq such that for x € K;,1 € Ay
1
P*(Top, <t) <1—c3x(k,ng), fort< C4§X(k7no)2€7k-

Proof. We note that
Té)Di S t+ I{TBDi >t} (TaDz - t)

Taking expectations

IN

ExTaDi t+E” (I{TaDi >t}EXt TaDi)

t+P"(Top, >t) sup E¥Tsp,.
yeD;

A\
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Rearranging and then applying our exit time estimates from Lemma 5.6
t E*Tsp,
SUP,ep, EYTyp, SUp, e p, EYTsp,

< cefty(k,no) ™t + 1 — eax(k, ng).

P (Té)Di < t) <

Thus, if t < %cchlx(k:,no)ze_k, we have
. 1
JP)l(iz—‘aD.L é t) S 1-— 502){(1{?,%0),
as required. O

Theorem 5.8. There are constants c,a’ such that for t < cue ™ x(k,ng)?
pe(z, ) > ex(k,no)*u(D;) ™Y, Vo € Ky i € Ay.

Proof. A standard argument gives the following. If ¢ < %64x(k,n0)2e’k, then by
Lemma 5.7

(exxlimo)? < P*(Xe € D = (| ) < w(Dopa(, ).

as required. O

Finally we can estimate x(k,ng) to provide a Py a.s. estimate in terms of the
scale factors.

Theorem 5.9. There are constants ¢, 3 such that Py a.s. for sufficiently large k,
fort < ce *k=8

pe(x, ) > c,u(Di)*lk*'B,Vx € K;,1€ Ay

Proof. We first need to estimate M (k,ng) = maxi<s<c,k (R(€+ng) —n(l)). As
n(l +ng) —n(l) = >0 n(l+i) —n(l+i—1) is a sum of ny geometric random
variables it has the negative binomial distribution. If we set Y; = n(¢ + ng) — n(¢),
then there is an A and a p such that Y} satisfies the tail estimate required to apply
Lemma 2.16 (15) giving limsupy,_,., M (k,ng)/logk < 1/log(1/p), Py —a.s. Thus,
Py-a.s. for sufficiently large k there is a constant ¢ such that

ﬁM(k,no) > ﬁc log k.

Using this and the estimates on yj from Lemma 3.9-(b) we have Py-a.s. for suffi-
ciently large k there is a 8 such that

x(k,ng) > k=P/?
and using Theorem 5.8 gives the result. U

Remark 5.10. In a different setting [5] obtained a finer estimate on the exit time
from a complex which enables the derivation of a finer form of this on-diagonal
estimate. We do not derive such a result here though we expect that the same
techniques could be applied to do so. Our result is enough to enable us to compute
the p-almost everywhere local spectral exponent.

5.4. Local Spectral Exponent. As in [5] we will see that the local spectral di-
mension obtained by considering the limit as k — oo of py, (z, x) for z € K;, © € Ay
will in general not coincide with the global spectral dimension.

We have the following preliminary result. Let ¢* € 0T be such that K=, — {x}
as k — oo.

Lemma 5.11. There exists a constant ¢ such that Diz|pn(kt(clog k)] C Kiz|nk) for
all sufficiently large k for p-a.e. © € K, Py a.s.
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Proof. Let T,,(,,), denote the addresses of the d + 1 boundary cells at the m-th
neck. By Lemma 3.6 we must have

a:=FEy max pu; <Ll
JE€Th(1) b

Now for i € {5 € T : |j| = n(k +m)} we have D; C K;jn) if K; NOK;pn) = 0.
Then, setting A ={K; :i € {j € T : |j| =n(k+m)}, K; N OK;jx) # 0}, we have

Eyu(Ad) = EBEv Z :uiI{Kiﬁ@Kun(kﬁf@}
i€{jeT:|j|=n(k+m)}
[
- R Y m Y M
ie{jeTilil=nk)}  F€Tugkrmyn '
(4) _ _Hiln@)

i Hin(i—1)
t0 f4)n(1), allowing us to write

Evu(4) = Ey Z 11: Ey Z Hﬂgj)

ie{jeT:|jl=n(k)} FETn(m) b =1
< (d+1)a™.

By construction the terms p are independent and equal in distribution

Thus we have

Ev Yz € K : Disniirictogh)) & Kirpny) < ey a'%" < oo,
k=1 1

for large enough c. Hence Py a.s. we have
ﬂ(x €EK: Di*\n(k‘—i—[clogk]) ¢ Kiz\n(k) ZO) =0,
as required. O

For the rest of this section we write T;,1y = {j € T : [j| = n(1)} for the tree

up to the first neck. Take another set of weights {{w} }li'l} rerF satisfying the
conditions of Section 3.3 and define the associated measure f.
Observe that by (43) and the definition of 7 we have

n ) 1
MiZ( ) ;g > ) 1€ Ty

Tinf

Thus log p; > n(1)log ;= and as

0> Y jslogui > n(1)log —-,

r
iETn(l) inf

we have
Ev| Z ﬂl IOg,U,i| < cEVn(l) < 00.
’L’GTn(l)
We can control Ey | ZieTnm fi;logt;| in the same way.

As in [5] we can now determine the local spectral exponent for the heat kernel
pi(z, z) defined with respect to the reference measure u for ji almost every .

Theorem 5.12. Py almost surely, for fi-almost every x € K we have

~

logpi(e.x) _di(p) _ BV i, Filog i

t—0 —logt 2 Ey ZiETn(l) 15 log t; :
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Proof. For x € K we have a sequence i|n(k) for which Djj,,) — {2} as k — oc.
By monotonicity of the diagonal heat kernel in time for ¢ € (t;)n(k), tijnk—1)] We

have p(z, ) < py, ., (¥, ) and thus
1 logps., . (x,x
lim sup w < limsup M’ Py a.s.
t—50 —logt k—oo —l0gTin(k—1)

Now using Theorem 5.5 we have

Mln
log p; 1y (7, 7) < C —log pigny = C — Zlo _HinG)
j=1 Hiln(j-1)

We now consider the probability measure djidPy on {1,... ,Nsup}N x Qv (with
the product o-algebra). If the point z is chosen according to i, then the terms
MEJ ) = % are independent and equal in distribution to fi;),(1) under dadPy .
We can also express —logt;, ) in terms of independent random variables tgj )
defined in the same way. It is easy to see that logt,(k)/ 108 tsnk—1) — 1 for any
x € K, Py-almost surely and hence

()
1 log pe., T, T lo
(124)  limsup 28PUT) 18P (B8 :«Zal—gﬂ_
t—0 —logt k—s 00 —log Lijn(k) koo 1 Zj:l log tgj)

As the mean of log (/) is finite we can apply the strong law of large numbers under
didPy to see that

hm fZIOgu(J)—EV Z filogui, ftae e K, Py a.s.
’LET.,,(l)

Similarly we can find the limit for the denominator in (124). Thus we have
, log pe,,, ., (z,2) _ Ev ZieTn(l) fi log p;
lim sup < - .
k—soo  — 108 tin(k) Ev ) ier,,, filogti
For the lower bound we define £(i, k) = £ if 4|n(¢) € Ag. Thus

—log tijn(eiky—1) <k < —10gtsnee,n)-

Hence, it is clear that, by the independence
(125)
(i, k -/ -1
lim (i, k) = lim = - , phae.x €K, Py a.s.
k—oo k t—o0 log Liln(0) Ey ZiGTn(l) f1;logt;

Now, from Theorem 5.9, Py a.s. for sufficiently large k, for ce=*+1D(k +1)=# <
t < ce *k=P we have for = € K;,1 € Ay,
log pt(x, x) S log (cu(D;) " k=5)
—logt —  log(ce= (B (k +1)=F)
_ logc— Blogk —log w(D;)
logc—k—1—PBlog(k+1)
Thus for z € K,i € 0T with D,y — {7},

L —1 Dijne
lminf 8P @2) o 1o i(Diingeck).
t—0 —logt k—o00 k

We now observe that by Lemma 5.11 we have a constant ¢’ such that Py a.s. for
p-a.e. ¢ € K, for sufficiently large k,

—log p(Dijn(e(i,k))) = — 108 fhijn(e(i,k)—[c’ log £(3,k)]) -
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Using this, (125) and writing £(i, k) = £(3, k) — [¢ log £(3, k)], we have

108 Hijn i k) Ui, k) -
. 1 n s _ _ 1 ) 1 _ 1 _J)
dm T Z og 1§
 Bv Xier,, filog ps
By ZieTn(l) fiilogt; ’
for i a.e. x € K, Py almost surely, as required. O

In the case where the reference measure p is the flat measure v in the resistance
ar .

. . . d .
metric, the weights are proportional to 7, and Ey log ZieTMl) r;7 =0, a simple

calculation shows that

~

dy(f1) Eyv ZieTnm f1i log s
Eyv ZieTn(l) ii; logt;

7

A T,
Ev ) ien,, filog —
jETn(l) Tj
1+d;

A T,
EV ZiET,L(U i log 4 d}

:iETn(l) T3
% ZieTn(l) fiz log s
(1 + d;)EV ZiETn(l) ,LAl,z 10g T
d; ds

d;+1: 2"

Indeed in this case we can go further and give a bound on the size of the scale
fluctuations.

Theorem 5.13. If v is the flat measure in the resistance metric we have constants
c1,C2,¢3,¢4 € (0,00) and a random variable 0 < c¢5 such that Py a.s. for anyx € K

1p(1/1) 2t %/2 < py(w,x) < eap(1/8) 1474/ 0 <t < 5.

Proof. We begin by observing that for 4 € Aj, we have t; < e~* and thus substitut-
ing in the upper bound estimate from Theorem 5.5, for x € K;

(126) pe_k(xax) Spti(l’,l‘) Scyi_l'
By (114) we have that Py almost surely for sufficiently large k, v; > r:-l? exp(—c®(£(3)))
and hence 7‘;+df exp(—c®(£(i))) < t; < e~ . Thus, using Lemma 3.9,
rs < e MU exp(d'B(£())),
and
bk
Pe-r(z,2) < e 7T exp(c(L(4))).

Thus, for e7* < ¢ < e %t1 and as max;ca, £(1) < ck < —clogt, we have for any
re K,

pe(z, ) < Ot~/ exp(d®(log (1/t))) = Ct~%/2¢(1/t)°, Py a.s.

For the lower bound we observe from Theorem 5.9 that Py almost surely for
sufficiently large k, for t < ce ¥k=F

pe(z,2) > cv(D;) kP Vo € Ki,i € Ay
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) Py almost surely, we have
ry < e MU exp(d@(6(5))).

Then as the number of cells in D; is bounded and £(j) < ck by Lemma 3.9(a), we
have, using (114),

. _ 1+d% .
For j € Ay, as e % > tj = rju; > r; ! exp(—c®(((5)

)
)

d}
VD) = Y s
JEAL Zj':|j'|=n(é(j)) Ty
a .
< D i T 20y exp(c@(£(7)))
JEAL
< ce M) exp (k).

Thus, Py a.s. for sufficiently large k for t < ce *k=7,
pie(x, @) > ck™Pekdi/AFdE) exp(—c"®(k)), Vz e K.

For ce’(’”l)(kJr )78 <t <ce *k# we have ciee "k=# < t so that eFkP > cot !
and
pi(x, ) > k™ Gy HDB/(dp 1) =dy/A+d) oxp (' ®(k)), Yz € K.

Now as k < logc+ log (1/t) we have for sufficiently small 0 < ¢, for any x € K
(@, x) > b [logt| =7 ¢4/ exp(—"d(| logH]).

By adjusting ¢’ we can absorb the logarithm into the exponential term and we have
the result. O
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