
Asymptotics for functions associated with heat flow

on the Sierpinski carpet

B.M. Hambly∗

November 17, 2008

Abstract

We establish the asymptotic behaviour of the partition function, the heat content, the

integrated eigenvalue counting function and, for certain points, the on-diagonal heat kernel

of generalized Sierpinski carpets. For all these functions the leading term is of the form

xγφ(log x) for a suitable exponent γ and φ a periodic function. We also discuss similar

results for the heat content of affine nested fractals.

1 Introduction

The study of the relationship between the analytic and geometric properties of a bounded domain
goes back at least to the celebrated Theorem of Weyl’s showing that the volume of a domain
could be recovered from the asymptotics of the eigenvalue counting function. Our interest here is
in some related but slightly smoother functions, the integrated eigenvalue counting function, the
partition function and the heat content. We will focus on determining the asymptotic behaviour
of these functions on the Sierpinski carpet, an infinitely ramified fractal, for which few detailed
properties are known.

For finitely ramified fractals there is a well developed theory concerning spectral asymptotics
going back to [16] and in the physics literature to [29]. In the case of the Sierpinski gasket,
using spectral decimation, it is possible to enumerate the eigenvalues of the Laplace operator
and explicitly construct the eigenvalue counting function N(λ). It can be shown [20] that, for
either the Dirichlet or Neumann Laplacian, there is a log 5-periodic function φ such that as
λ → ∞, the associated eigenvalue counting function N(λ) = λds/2φ(log λ) + O(1), where ds =
log 3/ log 5 is the spectral dimension of the Sierpinski gasket. More generally, in the case of
p.c.f. self-similar sets, there is a spectral dimension ds such that 0 < lim infλ→∞N(λ)λ−dS/2 ≤
lim supλ→∞N(λ)λ−dS/2 < ∞ and it is possible for the limit N(λ)λ−dS/2 to exist. However, if
the fractal has scale factors with logarithms that are rationally related, then there is a possibly
periodic function which appears in the large λ asymptotics, [21]. In the case of nested fractals
this function was shown to be periodic due to the existence of strictly localized eigenfunctions
in [8]. A further development due to [30] shows that the existence of localized eigenfunctions in
this setting is related to the existence of certain critical points in the complex dynamics of an
associated rational map.

As yet there are no corresponding results for infinitely ramified fractals such as the Sierpinski
carpet. In this paper we will consider some closely related functions and show that there are
possibly periodic functions which arise in their asymptotics. We do not have a proof that these
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periodic functions are non-constant. It should be noted that although the Laplace operator on
generalized Sierpinski carpet was constructed in [2],[5] as the generator of Brownian motion on the
carpet, there has only recently been progress on the question of the uniqueness of this Brownian
motion [7]. It was previously shown that there is a self-similar process on the carpet and it this
process with its associated Laplace operator that we use throughout the paper.

Let F ⊂ RD be a bounded Sierpinski carpet or affine nested fractal. In order to define the
heat content and partition function we will need to define the outer boundary of the set F .
For each closed set A, let Cov(A) be the set of points covered by A, that is if we decompose
RD \A into connected components {Vj}∞j=1 and denote by VU(A) the unbounded component, then
Cov(A) = R2 \ VU(A). We note that if the set A has holes, these may be contained in Cov(A).
The outer boundary of the fractal is defined to be ∂F = ∂Cov(F ).

The partition function ZF (t) is defined to be

ZF (t) =
∫

F

pat (x, x)µ(dx),

where pat (x, y) is the heat kernel for the Laplacian on the fractal with Dirichlet boundary conditions
or equivalently the transition density for the corresponding diffusion process with absorption on
∂F . The measure µ is the df -dimensional Hausdorff measure on the fractal F normalized so that
µ(F ) = 1.

We consider the short time asymptotics for the partition function, which is the Laplace trans-
form of the eigenvalue counting measure and show that there is a periodic function which appears
in the asymptotics of ZF . If this periodic function is indeed constant we could use a Tauberian
theorem to recover the existence of the limit for the normalized eigenvalue counting function NF
(for the Dirichlet Laplacian). However, with the result we obtain here, we cannot obtain a deeper
result for NF (λ) on the carpet than the existence of constants c1, c2 such that

c1λ
ds/2 ≤ NF (λ) ≤ c2λ

ds/2,

a result easily deduced from the transition density estimates of [5]. We will consider the eigenvalue
problem directly but will have to consider a smoother function than NF itself. We will be able to
produce an oscillatory function in the high frequency asymptotics for the integrated eigenvalue
counting function.

The heat content of the fractal F is the total heat energy in the set at a given time due to
unit boundary conditions and zero initial conditions within the set. We begin with a more general
problem. Let φ : ∂F → [0,∞) be bounded and measurable. We write ∆F for the Laplace operator
on F and consider the following partial differential equation in F . Let u : F × [0,∞) → [0,∞)
satisfy

∂u

∂t
= ∆Fu, x ∈ F\∂F, t > 0, (1.1)

u(x, 0) = 0, x ∈ F\∂F,
u(x, t) = φ(x), x ∈ ∂F, t > 0.

This equation has a probabilistic representation for its solution. Let {Xt} be the stochastic
process with generator ∆F on the set F and let TA = inf{t ≥ 0 : Xt ∈ A}. Then the solution to
(1.1) can be written as

u(x, t) = Ex(φ(XT∂F
)I{T∂F<t}).
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The heat content EF (t) of F at time t is given by setting φ(x) = 1 for all x ∈ ∂F and defining

EF (t) =
∫

F

u(x, t)µ(dx).

Our aim is to investigate for compact fractals the short time asymptotics of EF (t) when φ(x) = 1
for all x ∈ ∂F or sometimes φ(x) = 1 for all x ∈ A ⊂ ∂F and φ(x) = 0 for x ∈ F\A for some
subset A of the outer boundary. Our techniques are strongly influenced by [12] where comparison
estimates for fractal boundary problems are established. More detailed results for the heat content
of domains with fractal boundary can be found in [15, 10, 11, 13]. In our setting we have a fractal
domain with a boundary that may be piecewise smooth or fractal.

We also discuss the on-diagonal transition density (heat kernel) and consider its behaviour
at certain periodic points within the fractal. There have been many papers which estimate this
quantity uniformly over the set but here we are able to obtain sharper results at these particular
points using the self-similar structure of the set.

We state our results for the two-dimensional Sierpinski carpet, a set of Hausdorff dimension
df = log 8/ log 3 (shown in figure 1), with boundary given by the unit square. Let τ denote the
time scale factor for the Sierpinski carpet, a constant for which there is no explicit formula (for
estimates, see [3]), and define the walk dimension dw = log τ/ log 3.

Theorem 1.1 There exists a log τ -periodic function ψ1(t) such that as t ↓ 0,

ZF (t) = t−df/dwψ1(− log t) +O(t−1/dw).

There exists a log τ -periodic function ψ2(λ) such that as λ→∞,

∫ λ

0

NF (s)ds = λ1+df/dwψ2(log λ) +O(λ1+1/dw).

There exists a log τ -periodic function ψ3(t) such that as t ↓ 0,

EF (t) = t(df−1)/dwψ3(− log t) +O(tdf/dw).

There exists a log τ -periodic function ψ4(t) such that, for points x /∈ ∂F which are fixed points of
some finite combination of the contraction maps that define the carpet, as t ↓ 0,

pat (x, x) = t−df/dwψ4(− log t) +O(exp(−ct−1)).

The generic result is that a symmetric self-similar set with the same scale factors will have
ZF (t) = t−df/dw(ψ(− log t) + o(1)) and EF (t) = t(df−db)/dw(φ(− log t) + o(1)), where db is the
dimension of the boundary and ψ, φ are suitable periodic functions. A variety of such results are
given in Theorems 4.1, 4.2, 5.2, 5.4 and 5.6. For the case of the partition function recent work in
[19] gives a generalization to the case where the measure is not self-similar. In the affine nested
fractal case we show an example where the periodic function will be a constant if the set does not
have commensurate resistance scaling ratios.

The outline of the paper is as follows. In Section 2 we will establish two comparison lemmas
which are the main technical tools required to prove our results. They will be derived for fractional
diffusions on fractional metric spaces which will allow us to apply them to Sierpinski carpets as
well as to affine nested fractals. In Sections 3 and 4 we consider generalized Sierpinski carpets

3



and, by exploiting the existence of a self-similar diffusion on the carpet, show how the short
time asymptotics of both the partition function and the heat content can be reduced to a renewal
equation. Finally, in Section 5, we will give some examples to show the range of possible behaviour
of these functions for affine nested fractals. We note that throughout the paper we will write c
for a generic constant whose value may be different at each appearance, while ci will have a fixed
value within a given proof but will vary between proofs.

Acknowledgement: The author would like to thank Jun Kigami and Christophe Sabot for
helpful comments and Naotaka Kajino for a careful reading of an earlier version.

2 The comparison lemmas

The key results needed for the discussion are comparison lemmas. For the heat content such a
comparison is initially due to [12] in the case of a bounded domain in RD. We will establish these
results for a fractional diffusion in a bounded fractal domain.

We begin by recalling the definition of a fractional diffusion from [1]. Firstly we define a
fractional metric space.

Definition 2.1 Let (F, d) be a complete metric space and µ a Borel measure on (F,B(F )). We
call (F, d, µ) a fractional metric space if

1. (F, d) has the midpoint property.

2. There exists df > 0 and constants c1, c2 such that if r0 ∈ (0,∞] is the diameter of F , then

c1r
df ≤ µ(B(x, r)) ≤ c2r

df , x ∈ F, 0 < r ≤ r0,

where B(x, r) = {y : d(x, y) ≤ r}.

Definition 2.2 A fractional diffusion FD(df , dw) on a fractional metric space (F, d, µ) is a
Markov process X = (P x, x ∈ F,Xt, t ≥ 0) with the properties

1. X is a conservative diffusion with state space F .

2. X is µ-symmetric.

3. X has a symmetric transition density pt(x, y) = pt(y, x), t > 0, x, y ∈ F which satisfies the
Chapman-Kolmogorov equations and is, for each t > 0, jointly continuous.

4. There exist constants c1, c2, c3, c4, t0 = rdw
0 such that ∀x, y ∈ F, 0 < t ≤ t0,

c1t
−df/dw exp

(
−c2

(
d(x, y)dw

t

)1/(dw−1)
)
≤ pt(x, y)

≤ c3t
−df/dw exp

(
−c4

(
d(x, y)dw

t

)1/(dw−1)
)
.

The exit time from a set A is the hitting time for the complement Ac; TAc = inf{t ≥ 0 : Xt ∈
Ac}. The distance from a point to a set is defined to be d(x,A) = infy∈A d(x, y).
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Lemma 2.3 Let A ⊂ F be a closed set. There exist constants c1, c2 such that

Px(TAc < t) ≤ c1 exp

(
−c2

(
d(x,Ac)dw

t

)1/(dw−1)
)
.

Proof: In [1] Equation (3.21) it is shown that for fractional diffusions there are constants c, c̃
such that

P x(TB(x,r)c < t) ≤ c exp

(
−c̃

(
rdw

t

)1/(dw−1)
)
, ∀x ∈ F, 0 < t ≤ t0, 0 < r ≤ r0. (2.1)

If r′ = sup{r : B(x, r) ⊂ A}, then r′ = d(x,Ac). Thus, as

P x(TAc < t) ≤ P x(TB(x,r′)c < t),

applying (2.1) gives the result. ¤

We consider the fractional metric space F to be bounded and we denote its boundary by ∂F .
We write pat (x, y) for the transition density with respect to µ of the diffusion on F with absorption
on ∂F and pt(x, y) for the transition density with respect to µ of the diffusion with reflection on
∂F . It is elementary that pat (x, y) ≤ pt(x, y) for all x, y ∈ F, t > 0. Let pa,At (x, y) be the transition
density for the diffusion which is absorbed on ∂F and on the closed set A.

For the sets F we consider here the transition densities pat (x, y), p
a,A
t (x, y) for X absorbed

at the boundary and on A will be jointly continuous in x, y for t > 0. We will assume this for
obtaining our comparison results for fractional diffusions.

2.1 The transition density

Let C be a closed subset of F . The main comparison lemma is the following:

Lemma 2.4 There exist positive constants c1, c2, c3, t0 with c3 < 1 such that for all x ∈ F and
0 < t < t0 we have

pa,Ct (x, x) ≤ pat (x, x) ≤ pa,Ct (x, x) + c1t
−df/dw min

(
exp

(
−c2

(
d(x,C)dw

t

)1/(dw−1)
)
, c3

)
.

(2.2)

Proof: We begin by making the observation that if Xa denotes the fractional diffusion on F

with absorption on ∂F , then

pa,Ct (x, x) = lim
r↓0

P x(Xa
t ∈ Br(x))

µ(Br(x))
,

pa,Ct (x, x) = lim
r↓0

P x(Xa
t ∈ Br(x), TC > t)
µ(Br(x))

,

and
P x(Xa

t ∈ Br(x)) = P x(Xa
t ∈ Br(x), TC > t) + P x(Xa

t ∈ Br(x), TC ≤ t). (2.3)

The left hand inequality of (2.2) follows from the first term of (2.3).
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We show that there is a constant c4 such that if d(x,C) > c4t
1/dw , then

pat (x, x) ≤ pa,Ct (x, x) + c1t
−df/dw exp

(
−c2

(
d(x,C)dw

t

)1/(dw−1)
)
. (2.4)

To establish (2.4) we take x ∈ F and choose r < d(x,C)/2. We need to estimate

P x(Xa
t ∈ Br(x), TC ≤ t) =

∫ t

0

∫

C

P x(Xa
t ∈ Br(x)|TC ∈ ds,XTC

∈ dz)P x(TC ∈ ds,XTC
∈ dz)

=
∫ t

0

∫

C

P z(Xa
t−s ∈ Br(x))P x(TC ∈ ds,XTC ∈ dz)

≤ sup
z∈C,y∈Br(x),0≤s≤t

pas(z, y)µ(Br(x))P x(TC ≤ t)

≤ sup
z∈C,y∈Br(x),0≤s≤t

pas(z, y)µ(Br(x)).

We recall that by definition of a fractional diffusion there exist constants c5, c6, t0 such that for
all x, y ∈ F and s < t0,

ps(z, y) ≤ c5s
−df/dw exp

(
−c6

(
d(z, y)dw

s

)1/(dw−1)
)
. (2.5)

Let c4 = 2(df (dw − 1)/dwc6)1−1/dw . Now, if d(x,C) > c4t
1/dw , then

ξ = d(Br(x), C) = inf
y∈Br(x),z∈C

d(y, z) >
1
2
d(x,C) >

1
2
c4t

1/dw .

By (2.5), for z ∈ C, y ∈ Br(x) we have

ps(z, y) ≤ f(s) := c5s
−df/dw exp

(
−c6

(
ξdw

s

)1/(dw−1)
)
.

Our choice of c4, such that ξ > 1
2c4s

1/dw for 0 < s < t, ensures that

f ′(s) = s−1f(s)
(
− df
dw

+
c6

dw − 1
s−1/(dw−1)ξdw/(dw−1)

)
,

is positive and hence the bound f(s) is a non-decreasing function over 0 ≤ s ≤ t. Thus, as
pas(z, y) ≤ ps(z, y) for all s, z, y, we have

sup
z∈C,y∈Br(x),0≤s≤t

pas(z, y) ≤ c5t
−df/dw exp

(
−c6

(
ξdw

t

)1/(dw−1)
)
.

Letting r ↓ 0 so that ξ ↑ d(x,C) we have the required upper bound for (2.4).
As we have a fractional diffusion, we know that pat (x, x) ≤ pt(x, x) ≤ c5t

−df/dw for t < t0.
Hence, as pa,Ct (x, x) > 0, it is straightforward to see that,

pat (x, x) ≤ pa,Ct (x, x) + c5t
−df/dw . (2.6)

Combining this with (2.4) we set c1 = c5e
c6c

dw/(dw−1)
4 , c2 = c6, c3 = e−c6c

dw/(dw−1)
4 to get the

result. ¤
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Remark 2.5 We note that the above proof can be adapted to compare the transition density for
the reflected and the absorbed processes. As already noted pat (x, y) ≤ pt(x, y). We replace pa by
p and pa,C by pa and will obtain the existence of suitable constants such that for all 0 < t < 1
and x ∈ F ,

pt(x, x) ≤ pat (x, x) + c1t
−df/dw min

{
exp

(
−c2

(
d(x, ∂F )dw

t

)1/(dw−1)
)
, c3

}
.

2.2 The heat content

Let C ⊂ F be a closed subset. We fix the temperature of C to be 0 while ∂F\C is maintained at
temperature φ.

Let F̃ = F\C and ũ : F̃ × [0,∞) → [0,∞) be the weak solution to

∂ũ

∂t
= ∆F ũ, x ∈ F̃ (2.7)

ũ(x, 0) = 0, x ∈ F̃\∂F̃ ,
ũ(x, t) = 0, x ∈ C, t > 0,

ũ(x, t) = φ(x), x ∈ ∂F\C, t > 0.

Let
S = cl{x ∈ ∂F : φ(x) 6= 0}.

Lemma 2.6 There exist constants c1, c2, c3 such that

0 ≤ u(x, t)− ũ(x, t) ≤ c1‖φ‖∞ exp

(
−c2

(
d(x, S)dw

t

)1/(dw−1)

− c3

(
d(x,C)dw

t

)1/(dw−1)
)
,

(2.8)
for all x ∈ F, t > 0.

Proof: This follows exactly the same argument as the proof of Theorem 1.1 in [12], where we
replace their Brownian motion B by our fractional diffusion X, to derive their equation (2.7)

ũ(x, t) ≤ u(x, t) ≤ ũ(x, t) + ‖φ‖∞Px(TS < t)1/2Px(TC < t)1/2.

We can now apply Lemma 2.3 to obtain the result. ¤

Let ẼF =
∫
F̃
ũ(x, t)µ(dx) be the associated heat content.

Corollary 2.7 We assume that µ(C) = 0 and that there is a c such that
∫

F

exp(−c(d(x, S)dw/t)1/(dw−1))µ(dx) <∞.

Then

EF (t)− ẼF (t) ≤ c1‖φ‖∞
∫

F

exp

(
−c2

(
d(x, S)dw

t

)1/(dw−1)

− c3

(
d(x,C)dw

t

)1/(dw−1)
)
µ(dx),

for all t > 0.

Proof: We integrate the estimate (2.8) and use the fact that C has µ-measure 0. ¤
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3 The Sierpinski carpet

We will work with F a generalized Sierpinski carpet as defined in [5]. Let D ≥ 2 and set
F0 = [0, 1]D. Let lF ∈ N with lF ≥ 3 be the length scale factor. Let Sn denote the set of cubes
of side l−nF contained in F0. Now take mF ∈ N with 1 ≤ mF ≤ lDF and let F1 be the union
of mF distinct elements of S1. We make the following assumptions on F1. Note that the third
assumption differs from that used in [2, 5], a point which is discussed in [7].

Assumption 3.1 1. F1 is preserved by all of the isometries of the unit cube F0.
2. Int(F1) is connected and contains a path connecting the hyperplanes {x1 = 0} and {x1 = 1}.
3. Let n ≥ 1 and B be a cube in F0 of side length 2l−nF which is the union of 2D distinct elements
of Sn. Then, if Int(F1) ∩B 6= ∅, then it is connected.
4. F1 contains the line segment {0 ≤ x1 ≤ 1, x2 = 0, . . . , xd = 0}.

There exist maps {ψ1, . . . , ψmF
}, where the ψi are similitudes of contraction factor lF , taking

the unit cube to the mF subcubes of F1. We now consider the decreasing sequence of sets
Fn = ∪mF

i=1ψi(Fn−1) and obtain the set F as

F =
∞⋂
n=0

Fn.

This is a fractal set with Hausdorff dimension logmF / log lF .
We could consider the natural geodesic metric d on the carpet, but we will just work in the

Euclidean metric as these are equivalent under our Assumption 3.1(4) by [5]. We write µ for the
df -dimensional Hausdorff measure on F . We note that (F, |.|, µ) is a fractional metric space. Note
that the boundary ∂F of the fractal as a subset of RD could be a fractal itself.

B

C

C

C

C

B1 B2 B3

CC

Figure 1: The Sierpinski carpet and its decompositions

The existence and properties of a canonical diffusion on the Sierpinski carpet has been the
subject of much research [2], [4], [24], [5]. A major open question has been the uniqueness of this
Brownian motion and progress has recently been made in [7]. We begin with a Theorem stating
the results we will need to prove our main result. We first note that there is a constant ρF which
is determined by the scaling in the resistance of the Sierpinski carpet. We then define τF = mF ρF

to be the time scaling factor and then the walk dimension is dw = log τF / log lF . For a set A ⊂ F

we write ψi(A) = {ψi(x) : x ∈ A} for the set scaled by the similitude ψi.
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Theorem 3.2 (a) There exists a local regular Dirichlet form (E ,F) on L2(F, µ) satisfying the
self-similarity property

E(f, g) =
mF∑

i=1

ρFE(f ◦ ψi, g ◦ ψi).

(b) The corresponding stochastic process {Xt : t ≥ 0} on F satisfies the scaling law that for
any similitude ψi, A ⊂ F , x ∈ A the law of {ψi(Xt) : 0 ≤ t ≤ TA} under Px is equal to the law of
{Xt/τF

: 0 ≤ t ≤ Tψi(A)} under Pψi(x).
(c) There exists a jointly continuous transition density pt(x, y) which satisfies the sub-Gaussian

bounds, for all x, y ∈ F and t ≥ 0,

c1t
−df/dw exp(−c2( |x− y|dw

t
)1/(dw−1)) ≤ pt(x, y) ≤ c3t

−df/dw exp(−c4( |x− y|dw

t
)1/(dw−1)).

(d) The diffusion X with absorption on ∂F ∪ C for a closed set C has a transition density
pa,Ct (x, y) which is jointly continuous.

Proof: (a) The original construction of a Brownian motion on F for D = 2 was given in [2],
though the resulting diffusion was not shown to be self-similar. The existence of a self-similar
diffusion was established in [24]. In [4] the construction was extended to D ≥ 3 and a self-similar
process can be constructed following the technique of [24] as remarked in [4] Remark 5.11.
(b) is a straightforward consequence of (a).
(c) The original transition density estimates on the carpet were obtained in [4]. Now that the
Brownian motion on the Sierpinski carpet is known to be unique, these estimates will hold for
the unique self-similar diffusion on the carpet.
(d) This result, when C = ∅, is given in Proposition 6.15 in [5]. The same arguments can be
applied to deduce the result in the more general setting. ¤

Corollary 3.3 The self-similar diffusion X on the Sierpinski carpet is a FD(df , dw).

From this point on we will just work with the self-similar diffusion on the carpet and refer to
it as the Brownian motion on the carpet. We also need to show that we have joint continuity for
the transition density with absorption.

In order to define the heat content that we consider here we need to define an appropriate φ
on ∂F . We do this by setting φ(x) = 1 for x ∈ ∂F ∩ ∂[0, 1]D and φ(x) = 0 for x ∈ ∂F\∂[0, 1]D.
Thus if a cube has been removed from the ‘interior’ of a face we do not consider the full boundary
of the set in RD but just the part of the boundary that intersects the boundary of the unit cube
in RD. Think of this as pressing the face of F against a hyperplane held at temperature 1. The
heat content EF (t) of the carpet is then defined to be the corresponding integrated solution to
the original PDE, (1.1).

Let the number of hypercubes of F1 which intersect with a D−1-dimensional face of ∂[0, 1]D be
b1. We write db1 = log b1/ log lF for the dimension of the intersection of the boundary of the fractal
with a D−1 dimensional face of the unit cube. We also define b2 to be the number of hypercubes
of F1 which intersect with a D− 2 dimensional face of ∂[0, 1]D and let db2 = log b2/ log lF denote
the dimension of this boundary. By construction we have df > db1 > db2 . If D = 2 then, by
Assumption 3.1 4, we have db1 = 1, and we must also have db2 = 0. For D = 3 we must, by
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Assumption 3.1 4, have db2 = 1. Note that Assumption 3.1 4 is not essential for the existence of
a process and can be dropped [17].

The fundamental result we need is a scaling for both the partition function and the heat
content.

Lemma 3.4 The partition function for the Brownian motion on the Sierpinski carpet satisfies

Zψi(F )(t) = ZF (τF t), ∀i = 1, . . . ,mF . (3.1)

The heat content for the Brownian motion on the Sierpinski carpet satisfies

Eψi(A)(t) =
1
mF

EA(τF t), ∀i = 1, . . . ,mF . (3.2)

Proof: This is a simple application of the scaling of the diffusion and the definitions. For the
partition function we use the scaling in the transition density arising from Theorem 3.2 (b) to see
that

P x(Xt ∈ Br(x), t < T∂F ) = Pψi(x)(Xt/τF
∈ ψi(Br(x)), t/τF < Tψi(∂F )).

By dividing by µ(Br(x)) and taking the limit as r ↓ 0 we arrive at

pat (x, x) =
1
mF

p
a,ψi(∂F )
t/τF

(ψi(x), ψi(x)), ∀x ∈ F\∂F, t > 0.

Thus we have

Zψi(F )(t) =
∫

ψi(F )

p
a,ψi(∂F )
t (x, x)µ(dx)

=
∫

ψi(F )

paτF t(ψ
−1
i (x), ψ−1

i (x))µ(dψ−1
i (x))

=
∫

F

paτF t(x, x)µ(dx) = ZF (τF t).

For the heat content, note that by the scaling given in Theorem 3.2 (b) we have

P x(TA < t) = Pψi(x)(Tψi(A) < t/τF ).

Now integrate this and change variable in the same way as for the partition function to get the
result. ¤

We now state what could be considered as a simple version of the renewal theorem as given
in [26], with error estimate as in [20] Theorem B.4.3.

Lemma 3.5 Let f be a measurable function on R with f(u) → 0 as u→ −∞ which satisfies

f(u) = f(u− σ) + g(u),

for some piecewise continuous function g. If |g(u)| ≤ c1e
−c2|u| for some constants c1, c2 > 0 for

all u ∈ R, then there is a σ-periodic function θ such that

lim
n→∞

f(u+ nσ) = θ(u) =
∞∑

j=−∞
g(u− jσ).

Also, as u→∞, we have
|f(u)− θ(u)| = O(e−c2u).

10



Remark 3.6 It is easy to see that if |g(u)| ≤ c1 exp(−c2ec3|u|), then we have the same conclusion
with

|f(u)− θ(u)| = O(e−c2e
c3u

),

as u→∞.

We also need a lemma on the long time behaviour of the transition density for the absorbing
process.

Lemma 3.7 There exists a c0, λ0 > 0 such that

sup
x,y

pat (x, y) ≤ c0 exp(−λ0t), t > 1, (3.3)

EF (t) ≥ 1− c0e
−λ0t, t > 1. (3.4)

Proof: We note that from [5] Proposition 6.15 there is a discrete spectrum and a uniformly
convergent eigenvalue expansion for the transition density with absorption. It is not difficult to
show that the bottom eigenvalue of the Dirichlet spectrum is strictly positive and hence we have
(3.3).

To establish (3.4) we observe that

1− EF (t) =
∫

F

P x(T∂F > t)µ(dx).

=
∫

F

∫

F

pat (x, y)µ(dy)µ(dx).

Now use (3.3) to see that for t > 1 we have 1− EF (t) ≤ c0 exp(−λ0t). ¤

4 The asymptotics

4.1 The heat content and partition function

We can now state and prove our main results.

Theorem 4.1 Let F be a generalized Sierpinski carpet in RD. There exists a periodic function
φp such that as t→ 0, the partition function satisfies

ZF (t) = t−ds/2φp(− log t) +O(t−db1/dw).

Proof: For the partition function we define the set C to be the at most (lF − 1)D hyperplanes
which divide the carpet up into the mF subcubes of F1. The two dimensional case is shown on
the left of Figure 1 and consists of the four line segments from (1/3, 0) to (1/3, 1), (2/3, 0) to
(2/3, 1), (0, 1/3) to (1, 1/3), and (0, 2/3) to (1, 2/3), which disconnect the level one carpet into its
eight scaled copies. Let Z̃F (t) =

∫
F
pa,Ct (x, x)µ(dx). Then, by (3.1),

Z̃F (t) =
mF∑

i=1

∫

ψi(F )

pa,Ct (x, x)µ(dx)

=
mF∑

i=1

Zψi(F )(t)

= mFZF (τF t).

11



We now apply our comparison Lemma 2.4. Firstly, by (2.2) it is clear that Z̃F (t) ≤ ZF (t).
Next, by setting A = {x ∈ F : d(x,C) < c4t

1/dw}, where c4 = (− log(c3)/c2)1−1/dw , we have

ZF (t)− Z̃F (t) ≤
∫

A

c5t
−df/dwµ(dx) +

∫

F\A
c6t

−df/dwe−c7(
d(x,C)dw

t )1/(dw−1)
µ(dx)

≤ c5t
−df/dwµ(A) + c6t

−df/dw

∫ ∞

c4t1/dw

e−c7(ε
dw t−1)1/(dw−1)

ν(dε), (4.1)

where
ν(ε) = µ({x : d(x,C) ≤ ε}).

We observe that from the construction of C there is a constant c such that ν(ε) ≤ cεdf−db1 and
hence µ(A) = ν(c4t1/dw) ≤ ct(df−db1 )/dw . Using these estimates we have

ZF (t) ≤ Z̃F (t) + c8t
−db1/dw ,

and hence
|ZF (t)−mFZF (τF t)| ≤ c8t

−db1/dw .

By setting Z(t) = t−df/dwf(− log t) we have

|f(− log t)− f(− log t− log τF )| ≤ c9t
(df−db1 )/dw .

Thus putting u = − log t leads to a simple renewal equation

f(u) = f(u− log τF ) + g(u),

where for u > 0 we have

|g(u)| = |f(u)− f(u− log τF )| ≤ c10e
−u(df−db1 )/dw .

For the case where u < 0 we appeal to Lemma 3.7, where we see that for u < 0 we have t > 1
and for long times, by (3.3), we have exponential decay of the transition density and hence of the
partition function,

|g(u)| = |f(u)− f(u− log τF )| ≤ c11e
−λ0e

−u

.

Thus we can apply our Lemma 3.5 to see that f converges to a log τF -periodic function, with the
appropriate error bound, and hence we have our result for the partition function. ¤

Theorem 4.2 Let F be a generalized Sierpinski carpet in RD. There exists a periodic function
φh such that as t→ 0, the heat content satisfies

EF (t) = t(df−db1 )/dwφh(− log t) +O(t(df−db2 )/dw).

Proof: For the heat content we take a different decomposition of the carpet. Let C be the
2(D− 1) main diagonal hyperplanes for the unit hypercube. This divides the hypercube (and the
carpet) up into 2D hyperpyramids based on each face. We let E1(t) denote the heat content of
one of these pieces, where the part of the boundary given by C is set to have temperature 0.

By construction ẼF (t) = 2DE1(t) and applying Corollary 2.7 we have

|EF (t)−ẼF (t)| ≤ c1

∫

F̃

exp

(
−c2

(
d(x, S)dw

t

)1/(dw−1)
)

exp

(
−c3

(
d(x,C)dw

t

)1/(dw−1)
)
µ(dx).

12



We can estimate this integral by letting

ν(ε) = µ

(
{x ∈ F :

c2
p
d(x, S)dw/(dw−1) +

c3
q
d(x,C)dw/(dw−1) ≤ εdw/(dw−1)}

)
.

Then we can write

|EF (t)− ẼF (t)| ≤ c1

∫

F̃

exp

(
−c2
p

(
d(x, S)dw

t

)1/(dw−1)
)

exp

(
−c3
q

(
d(x,C)dw

t

)1/(dw−1)
)
µ(dx)

= c1

∫ 1

0

exp

(
−

(
εdw

t

)1/(dw−1)
)
ν(dε).

Now we observe that

{x ∈ F :
c2
p
d(x, S)dw/(dw−1) +

c3
q
d(x,C)dw/(dw−1) ≤ εdw/(dw−1)} ⊂

{x ∈ F : d(x, S) ≤ (
p

c2
)1−1/dwε, d(x,C) ≤ (

q

c3
)1−1/dwε},

and let
µ(ε) = µ({x ∈ F : d(x, S) ≤ (

p

c2
)1−1/dwε, d(x,C) ≤ (

q

c3
)1−1/dwε}}),

so that ν(ε) ≤ µ(ε) for all ε. As the intersection of S and C is contained in a D − 2-dimensional
hypersurface and has dimension db2 it is straightforward to see that there is a constant c4 such
that µ(ε) ≤ c4ε

df−db2 . Thus, using µ(ε) and a suitable change of variable, we have

|EF (t)− ẼF (t)| ≤ c1

∫

F̃

exp

(
−c2
p

(
d(x, S)dw

t

)1/(dw−1)
)

exp

(
−c3
q

(
d(x,C)dw

t

)1/(dw−1)
)
µ(dx)

≤ c5

∫ 1

0

exp

(
−c6

(
εdw

t

)1/(dw−1)
)
µ(dε)

≤ c7

∫ 1

0

exp

(
−c6

(
εdw

t

)1/(dw−1)
)
εdf−db2−1dε

≤ c7t
(df−db2 )/dw

∫ ∞

0

e−c6u
dw/(dw−1)

udf−db2−1du

= c8t
(df−db2 )/dw .

Let B denote the closed hyperpyramid in the carpet with outer boundary given by C and
the hyperplane {x1 = 0}. We note that F1 ∩ B consists of b1 cubes or parts of cubes of side
l−1
F which intersect the boundary {x1 = 0} and some (possibly none) other cubes which do not.
Thus B can be decomposed into B1, . . . , Bb1 which are scaled copies (by a factor l−1

F ) of the set
B and B\(B1 ∪ . . . ∪ Bb1) a set that has no intersection with the hyperplane {x1 = 0}. For
the two-dimensional carpet this decomposition is shown in Figure 1. We fix the temperature of
the hyperplanes constituting the interior boundaries of the sets Bi, i = 1, . . . , b1 to be 0. This
decomposes B into b1 + 1 regions, b1 of which, B1, . . . , Bb1 , are scaled copies of B with the same
boundary conditions and the fourth region, B′ = B\(B1 ∪ . . . ∪ Bb1), which has 0 boundary
conditions. We write ẼB for the heat content of the region B with all the hyperplanes except
the exterior held at temperature 0 and the exterior held at temperature 1. Thus, as B′ does not
contribute to ẼB , we have by (3.2), that ẼB(t) = b1

mF
EB(τF t).
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The same argument using the comparison lemma as for the whole carpet shows that there is
a constant c such that

0 ≤ EB(t)− ẼB(t) ≤ ct(df−db2 )/dw ,

and hence
|EB(t)− b1

mF
EB(τF t)| ≤ ct(df−db2 )/dw .

By taking the transformation EB(t) = t(df−db1 )/dwf(− log t) we have

|f(u)− f(u− log τF )| ≤ ce−u(db1−db2 )/dw .

Now define g(u) = f(u)− f(u− log τF ) so that

f(u) = f(u− log τF ) + g(u),

with |g(u)| ≤ ce−u(db1−db2 )/dw for u > 0. In the case of u < 0 we apply our Lemma 3.7 to deduce
that

|g(u)| = |f(u)− f(u− log τF )| ≤ ceu(df−db1 )/dwe−λ0e
−u

.

Thus we can apply Lemma 3.5 to show that asymptotically f is a periodic function. Returning
to the expression for the heat content we deduce that there is a log τF -periodic function φ such
that

EF (t) = t(df−db1 )/dwφ(− log t) +O(t(df−db2 )/dw),

completing the proof of our main theorem. ¤

We remark that for the D-dimensional Sierpinski carpet (where we remove only the central
hypercube), we have df = log (3D − 1)/ log 3 and db1 = D − 1, db2 = D − 2. For the three
dimensional Menger sponge df = log 20/ log 3, db1 = log 8/ log 3, db2 = 1. An open problem is
to determine precise two term asymptotic expansions. We would conjecture that, for the two
dimensional Sierpinski carpet, we should have further periodic functions φ̂p, φ̂h such that

ZF (t) = t−df/dwφp(− log t) + t−1/dw φ̂p(− log t) + o(1),

and
EF (t) = t(df−1)/dwφh(− log t) + tdf/dw φ̂h(− log t) + o(1).

4.2 The eigenvalue counting function

We might hope that the partition function, the Laplace transform of the eigenvalue counting
function, could be used to give us results on the counting function. Unfortunately it is not
possible to invert the transform and obtain oscillatory asymptotics. However we can use a similar
technique to get a result on the integrated counting function.

We introduce the eigenvalue counting function. The Dirichlet and Neumann eigenvalue prob-
lems for the Laplace operator on the carpet (interpreted as the generator of the self-similar
diffusion with absorbing and reflecting boundary conditions) are:
(1) The Dirichlet case:

−∆u = λu, in F,

u = 0, on ∂F.

14



(2) The Neumann case

−∆u = λu, in F,

du = 0, on ∂F,

where du has to be interpreted as a normal derivative on the boundary.
We will reformulate these definitions for the Dirichlet form. Let F0 = {f : f ∈ F , f(x) =

0, x ∈ ∂F} and write E0(f, f) = E(f, f) for f ∈ F0 and (., .) for the inner product on L2(F, µ).
Then we define λ to be a Dirichlet eigenvalue with eigenfunction u if

E0(u, v) = λ(u, v), ∀v ∈ F0.

Similarly, λ is defined to be a Neumann eigenvalue with eigenfunction u if

E(u, v) = λ(u, v), ∀v ∈ F .

By [5] Proposition 6.15 the Dirichlet Laplacian has a discrete spectrum. We write the spec-
trum as an increasing sequence of eigenvalues 0 < λ1 ≤ λ2 ≤ . . . with λn → ∞ as n →
∞. Thus we can define the Dirichlet eigenvalue counting function to be N0(x) = max{i :
λi ≤ x, λi is a Dirichlet eigenvalue}. Similarly there is a discrete spectrum for the Neumann
Laplacian and we define the Neumann eigenvalue counting function N(x) = max{i : λi ≤
x, λi is a Neumann eigenvalue}.

In order to deduce properties of the counting functions we use Dirichlet-Neumann bracketing.
We write F1 for the union of the hyperplanes which divide the carpet into its level 1 hypercubes.
Let (Ẽ , F̃) be defined by

F̃ = {f : F\F1 → R, f ◦ ψi = fi on F\∂F, for some fi ∈ F},

and

Ẽ(f, g) =
mF∑

i=1

ρFE(f ◦ ψi, g ◦ ψi), f, g ∈ F̃ .

Also let (Ẽ0, F̃0) be defined by

F̃0 = {f : f ∈ F0, f |F1 = 0},

and

Ẽ0(f, g) =
mF∑

i=1

E0(f ◦ ψi, g ◦ ψi), f, g ∈ F̃0.

It is straightforward to see that

F̃0 ⊂ F0 ⊂ F ⊂ F̃ .

We also note that (Ẽ , F̃) and (Ẽ0, F̃0) are local regular Dirichlet forms on L2(F, µ) and they have
discrete spectra. The key observation is that if λ is a Neumann eigenvalue, with eigenfunction u,
then for all v ∈ F

mF∑

i=1

ρF E(u ◦ ψi, v ◦ ψi) = E(u, v) = λ(u, v) = λ

mF∑

i=1

1
mF

(u ◦ ψi, v ◦ ψi).
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If we take v to be a function supported on a 1-cell with address i, we see that

E(u ◦ ψi, v ◦ ψi) =
λ

ρFmF
(u ◦ ψi, v ◦ ψi),

thus λ/τF is also an eigenvalue with eigenfunction ui = u ◦ ψi. From this we can construct
eigenfunctions and eigenvalues for (Ẽ , F̃), as

ũ(x) =

{
ui(x), x ∈ F ∩ int(ψi(F )),
0, x /∈ F ∩ int(ψi(F )),

gives an eigenfunction with eigenvalue λ. Hence

Ñ(x) =
mF∑

i=1

N(x/τF ) = mFN(x/τF ).

Similarly we can show that

Ñ0(x) =
mF∑

i=1

N0(x/τF ) = mFN0(x/τF ).

Lemma 4.3 The following relationships hold

mFN0(x/τF ) ≤ N0(x) ≤ N(x) ≤ mFN(x/τF ),

and
mF N̄0(x/τF ) ≤ N̄0(x) ≤ N̄(x) ≤ mF N̄(x/τF ).

In order to apply Dirichlet-Neumann bracketing all that is needed is to establish a comparison
between the Dirichlet and Neumann counting functions. Unfortunately we do not have quite
enough information about N(x) − N0(x) to get a result on the counting function itself. Instead
we can deduce oscillation for the integrated counting function N̄(x) =

∫ x
0
N(y)dy. To do this we

use the comparison lemma for the transition density.

Lemma 4.4 There exists a constant c such that

N̄0(x) ≤ N̄(x) ≤ N̄0(x) + cx1+db1/dw .

Proof: The left inequality is trivial. For the right we use the fact that we can write
∫ ∞

0

te−stN(s)ds =
∫

F

pt(x, x)µ(dx),

and from the relationships between transforms
∫ ∞

0

te−stN̄(s)ds =
1
t

∫

F

pt(x, x)µ(dx).

Applying the comparison result in Remark 2.5 we have,
∫ ∞

0

te−st(N̄(s)− N̄0(s))ds =
1
t

∫

F

(pt(x, x)− pat (x, x))µ(dx),

=
1
t

∫

A

(pt(x, x)− pat (x, x))µ(dx) +
1
t

∫

F\A
(pt(x, x)− pat (x, x))µ(dx)
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where A = {x : d(x, ∂F ) ≤ (− log c3/c2)1−1/dw t1/dw} (as we can take c3 < 1 in Remark 2.5). Now
we follow the same argument as in the proof of Theorem 4.1 from (4.1) to obtain

∫ ∞

0

te−st(N̄(s)− N̄0(s))ds ≤ ct−1−db1/dw .

As the function N̄(x)−N̄0(x) =
∫ x
0

(N(y)−N0(y))dy is monotone increasing we have for all t > 0,

ct−1−db/dw ≥
∫ ∞

0

te−st(N̄(s)− N̄0(s))ds

≥
∫ 2x

x

te−st(N̄(s)− N̄0(s))ds

≥ xte−2xt(N̄(x)− N̄0(x)).

Now choose t = 1/x to see that

N̄(x)− N̄0(x) ≤ cx1+db1/dw ,

as desired. ¤

We are now ready to prove a result for the integrated eigenvalue counting function.

Theorem 4.5 There exist periodic functions φ0(x), φ(x) such that as x→∞,

N̄0(x) = x1+df/dwφ0(log x) +O(x1+db1/dw),

and
N̄(x) = x1+df/dwφ(log x) +O(x1+db1/dw).

Proof: The proof is a reduction to the renewal equation. Let N̄0(x) = x1+df/dwf(log x) and
write g(log x) = x−(1+df/dw)(N̄0(x)−mF N̄0(x/τF )) to see that

f(u) = f(u− log τF ) + g(u),

where g(u) ≤ c exp(−u(df − db1)/dw)) for u large. For u < 0 we use the existence of a strictly
positive bottom eigenvalue to see that g(u) = 0 for u < u∗. An application of the renewal theorem
as given in Lemma 3.5 gives the result.

The result for N̄(x) follows using the upper estimate in Lemma 4.4, which shows that the
difference between the two functions is O(x1+db1/dw) as x→∞. ¤

4.3 The on-diagonal transition density

Finally we consider the on-diagonal transition density and we show how oscillations occur in this
function at particular points. Let xξ /∈ ∂F be such that it is a fixed point for a finite combination
of the similitudes that are used to construct the fractal. Thus there is a map ξ = ψi1 ◦. . .◦ψik such
that xξ = ξ(xξ). We assume that ξ is the minimal map (in the sense of number of compositions
of similitudes) which fixes xξ. Once again we will use our comparison theorem to derive a renewal
equation to obtain oscillatory asymptotics.
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By the scaling, we have for the map ξ, that

pat (x, x) = m−k
F p

a,ξ(∂F )

τ−k
F t

(ξ(x), ξ(x)), ∀x ∈ F.

The comparison theorem allows us to compare the transition density with absorption on the
boundary of the smaller copy with the transition density with absorption on the original boundary.
Thus for any x ∈ F and map ξ there are constants c, c̃ such that

h(t, x) := pat (ξ(x), ξ(x))− p
a,ξ(∂F )
t (ξ(x), ξ(x)) ≤ ct−df/dw exp(−c̃(d(ξ(x), ξ(∂F ))dw/t)1/(dw−1)).

By scaling we have d(ξ(x), ξ(∂F )) = l−kF d(x, ∂F ) and hence

h(t, x) ≤ ct−df/dw exp(−c̃(d(x, ∂F )dw/τkt)1/(dw−1)). (4.2)

Now consider the fixed point xξ and let pat (xξ, xξ) = t−df/dwf(log 1/t). As

pat (xξ, xξ) = m−k
F pa

τ−k
F t

(xξ, xξ)−m−k
F h(τ−kF t, xξ),

we have, by setting u = − log t, a renewal equation

f(u) = f(u− k log τF ) + g(u),

where g(log 1/t) = −m−k
F (τ−kF t)df/dwh(τ−kF t, xξ). By (4.2) we have that

−g(− log t) ≤ cm−k
F (τ−kF t)df/dw(τ−kF t)−df/dw exp(−c̃t−1/(dw−1))

= cm−k
F exp(−c̃t−1/(dw−1)).

Thus there is a constant c′(k) such that |g(u)| ≤ c′(k) exp(−c̃eu/(dw−1)) for u > 0 For u < 0 we
have by Lemma 3.7 that |g(u)| ≤ c0 exp(−λ0e

−u). An application of Remark 3.6 following our
renewal theorem gives the following result.

Theorem 4.6 For any point x, a fixed point of a composition of k maps, such that x /∈ ∂F we
have a periodic function φ of period k log τF such that as t→ 0,

pat (x, x) = t−df/dwφ(− log t) +O(e−ct
−1/(dw−1)

).

Remark 4.7 This result shows that non-boundary points with periodic addresses show asymp-
totic oscillations for their transition density. This set forms a subset of the fractal with Hausdorff
measure 0. As there is asymptotic oscillation in the partition function, the integral of the transi-
tion density, we would anticipate that there is asymptotic oscillation on a set of points of positive
measure.

5 Affine nested fractals

We have dealt initially with the Sierpinski carpet but the comparison lemmas of Section 2 can
be used to derive some results about finitely ramified fractals as well. We will mainly discuss the
heat content as the eigenvalue counting function asymptotics are well known in this setting [21]
and, by inversion of the Laplace transform, lead immediately to the partition function results. We
also note that the on-diagonal transition density result for carpets was derived in a way which was
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essentially independent of the set, just relying on the comparison lemma and the scaling. Thus
we can state a version of Theorem 4.6 for affine nested fractals as well.

For the heat content on the Sierpinski gasket there are two natural boundaries that could
be used. As in the carpet case we can consider the embedding of the fractal in R2. The other
possibility is to use the natural intrinsic boundary of the fractal - the three vertices of the outer
triangle. We will see that sharper asymptotics can be obtained in this case.

We will not give the full definitions here, they can be found in [1, 14], but note that affine
nested fractals are nested fractals which may have different contraction factors (which respect the
symmetries of the nested fractal). It is now well known that nested and affine nested fractals
support a FD(df , dw), through the work of [27, 22, 14], where the fractional metric space is (F, d),
where d is a shortest path metric.

An affine nested fractal F is constructed from a family {ψi, i = 1, .., N} of similitudes. We
label the 1-cells using a type, one for each of the sets of 1-cells which are invariant under the
symmetries of the set. We allocate a resistance weight ρi to a 1-cell of a given type i. Assume
that there are M types and Ni 1-cells of type i. We also assume that each boundary point is
only contained in one 1-cell. We recall that the natural measure for an affine nested fractal is the
Bernoulli measure in which a 1-cell of type i has µi = ρ−Si , where S is defined to be such that∑M
i=1Niρ

−S
i = 1. Then the timescale factors τi = ρi/µi = ρ1+S

i . We note that the Hausdorff
dimension and walk dimension of the fractal in the resistance metric are given by drf = S and
drw = S + 1 and thus the spectral dimension is ds = 2S/(S + 1) (which is independent of the
metric). Otherwise the exponents df , dw are with respect to the shortest path metric.

Theorem 5.1 (a) There exists a local regular Dirichlet form (E ,F) on L2(F, µ) with the self-
similar decomposition

E(f, g) =
N∑

i=1

ρiE(f ◦ ψi, g ◦ ψi).

(b) The corresponding stochastic process {Xt : t ≥ 0} on (Ω,F , P ) with state space F satisfies
the scaling law that for any similitude ψi, for A ⊂ F, x ∈ A, the law of {ψi(Xt) : 0 ≤ t ≤ TA}
under P x is equal to the law of {Xt/τi

: 0 ≤ t ≤ Tψi(A)} under Pψi(x).
(c) There exists a jointly continuous transition density pt(x, y) with respect to the natural

measure which satisfies the sub-Gaussian bounds, for all x, y ∈ F and t ≥ 0, there are constants
such that

c1t
−df/dw exp(−c2(d(x, y)

dw

t
)1/(dw−1)) ≤ pt(x, y) ≤ c3t

−df/dw exp(−c4(d(x, y)
dw

t
)1/(dw−1)).

(d) There exists a jointly continuous transition density pa,Ct (x, y) with respect to the natural
measure for the process X with absorption on ∂F ∪ C for any closed set C.

Proof: (a), (b) and (c) are standard, see [14].
(d) This is essentially shown for the Sierpinski gasket in [9] Theorem 7.11(a). The case of more
general affine nested fractals can be established using the approach for the carpet as given in
[5]. ¤

The Sierpinski gasket G supports a FD(log 3/ log 2, log 5/ log 2) as a fractional metric space
(G, |.|) with the Euclidean metric.
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5.1 The partition function and transition density

The partition function result is the exact analogue of the original result for the eigenvalue counting
function obtained in [21] for p.c.f. self-similar sets and could be derived for p.c.f. self-similar sets
by integrating the result on the eigenvalue counting function derived in [21].

Theorem 5.2 For any affine nested fractal:
1. If

∑N
i=1 Z logNρi is a dense subgroup of R, then there exists a constant c1 such that

lim
t→0

tds/2ZF (t) = c1.

2. If
∑N
i=1 Z logNρi is a discrete subgroup of R, then if T is its generator, there is a positive

T -periodic function φ such that as t→ 0,

ZF (t) = t−ds/2(φ(− log t) + o(1)).

3. If ρi = ρ for all i = 1, . . . , N , then there is a log τ -periodic function φ(t) such that as t→ 0,

ZF (t) = t−ds/2φ(− log t) +O(1).

For the on-diagonal transition density we observe that the same argument as for the Sierpinski
carpet used in Theorem 4.6 can be applied.

Theorem 5.3 For any point x, a fixed point of a composition of k maps, ψij , j = 1, . . . , k, ij ∈
{1, . . . , N}}, such that x /∈ ∂F we have a periodic function φ of period (S + 1)

∑k
j=1 log ρij and a

constant c such that as t→ 0,

pat (x, x) = t−ds/2φ(− log t) +O(e−ct
−1/(dw−1)

).

5.2 The heat content

We now turn to the heat content where the results are a little different depending on the embedding
of the fractal into RD. We remark that the scaling result

Eψi(F )(t) = ρ−Si EF (τit), (5.1)

will hold for affine nested fractals.
For the first case we take ∂F = V0 and we regard the fractal as a self-sufficient metric space

with boundary V0. The computation of the heat content is very straightforward. We let C be
the vertices of V1\V0 and set the temperature at these points to be 0. We write ẼF (t) for the
associated heat content.

We now apply the comparison Lemma 2.6. Note that in this case as there is no intersection
between the sets C and S we have a much sharper estimate in that

|EF (t)− ẼF (t)| ≤ c1e
−c2t−1/(dw−1)

.

We can now apply scaling to each of the N copies that make up F̃ . We note that all but those
copies containing a vertex of V0 will have zero boundary conditions and thus will not contribute
to ẼF (t). Also those copies attached to a vertex in V0 must have the same scale factor by the
symmetry assumptions for an affine nested fractal, without loss of generality we label the resistance
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weight of these copies ρ1. Thus EF̃ (t) = |V0|E1(t), where E1(t) is without loss of generality the
heat content of the copy ψ1(F ) where one boundary point is held at temperature 1, and the rest
at temperature 0. Then, E1(t) =

∑N
j=1 Ẽ1j(t), where the Ẽij = Ẽψ1◦ψj(F ) are the heat contents

of the components of ψ1(F ). As all but one of these has 0 boundary conditions and the one
that does not satisfies Ẽ1j = ρ−S1 E1(ρ1+S

1 t) by scaling, we have, with another application of the
comparison lemma,

E1(t)− ρ−S1 E1(ρ1+S
1 t) ≤ c3e

−c4t−1/(dw−1)
.

From this observation the following theorem is straightforward, using Remark 3.6.

Theorem 5.4 For an affine nested fractal with outer boundary V0 there exists a periodic function,
φ2 with period (1 + S) log ρ1, such that as t→ 0,

EF (t) = tdf/dwφ2(− log t) +O(e−ct
−1/(dw−1)

).

Next we consider affine nested fractals embedded in R2. In order to indicate the approach we
briefly discuss the Sierpinski gasket before giving the general result. For this fractal the boundary
is the unit triangle and, as before, we decompose the fractal into pieces, then use the comparison
lemma to obtain a renewal equation. In this setting we have to be a little more careful as the
behaviour of the different pieces is slightly different. It is clear that we can divide the original
triangle up into three level one pieces each with two sides held at temperature 1 as in the top line
of Figure 5.2. The next stage is to divide a level one triangle up into three pieces, one of which
has two edges at temperature 1, the other two having one edge at temperature 1. Let Ei(t) be

Figure 2: decomposition for the Sierpinski gasket with boundary the unit triangle

the heat content for a triangle with i sides held at temperature 1. We write Ẽi(t) for the heat
content of a triangle with i sides held at temperature 1 and its internal connection points held at
temperature 0. By considering how these triangles break down, as shown in the bottom two lines
of Figure 5.2, we can obtain a two dimensional recurrence

Ẽ1(t) =
2
3
E1(5t),

Ẽ2(t) =
1
3
E2(5t) +

2
3
E1(5t)

where |Ẽi(t)− Ei(t)| ≤ cit
df/dw . A simple renewal analysis of the first component E1(t), setting

E1(t) = t(df−1)/dwf1(− log t), gives the existence of a periodic function φ1 such that E1(t) =
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t(df−1)/dw)φ1(− log t) +O(tdf/dw) as t→ 0. As we can write Ẽ2(t) = Ẽ1(t) + 1
3E2(5t), we have

E2(t) = E1(t) +
1
3
E2(5t) + h(t),

where h(t) = |Ẽ1(t)−E1(t)+E2(t)−Ẽ2(t)| ≤ (c1 +c2)tdf/dw for t ≤ 1. For t > 1, by the analogue
of Lemma 3.7, we have h(t) ≤ 2c0e−λ0t. Now we have, by setting E2(t) = t(df−1)/dwf2(− log t),
that

f2(u) =
1
2
f2(u− log 5) + f1(u) + g(u).

We note that g(u) = e(df−1)u/dwh(e−u) ≤ ce−u/dw for u ≥ 0, while for u < 0 we have g(u) ≤
2c0e−λ0e

−u

. As f1(u) converges to a log 5 periodic function we see that the difference between
f2(u) and this function is also a log 5 periodic function and hence we have the following result.

Theorem 5.5 For the Sierpinski gasket with outer boundary consisting of the unit triangle in
R2, there exists a periodic function, φ3(log t) with period log 5, such that

EG(t) = t(df−1)/dwφ3(log t) +O(tdf/dw).

We will now give a theorem for a subclass of affine nested fractals. Firstly we recall that,
as remarked in [1], the symmetry assumptions for nested fractals restrict the initial set to be a
regular L-sided polygon in R2 or a D-dimensional tetrahedron or a D-dimensional simplex. We
will only consider the polygons in R2 and write L for the number of sides of our fractal. We let db
denote the dimension of the boundary. In the resistance metric this is Sb such that

∑Nb

i=1 ρ
Sb
i = 1,

where Nb is the number of cells that have an open subset of their boundaries on a side of the
fractal.

Theorem 5.6 Let F be an affine nested fractal in R2. If
∑
i log ρiZ is a discrete subgroup of R,

then there exists a periodic function φ such that

EF (t) = t(df−db)/dw(φ(− log t) + o(1)).

If
∑
i log ρiZ is a dense subgroup of R, then there exists a constant K such that

EF (t) = t(df−db)/dw(K + o(1)).

Proof: We label the N level one cells of F as B(k)
j , j = 1, ..., nk, k = 0, ..., L, where we classify

them according to the number of sides k of these cells which are in the boundary ∂F . We call a
set B(k)

j a side-type k cell and nk is the number of such cells. Thus

F =
L⋃

k=0

nk⋃

j=1

Bkj ,

and

∂F = ∂

L⋃

k=1

nk⋃

j=1

Bkj .

The set C is chosen to be (
⋃L
k=0

⋃nk

j=1 ∂B
k
j )\∂F , that is the edges in the boundaries of all the one

cells which do not lie in the outer boundary ∂F of the fractal.
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Hence, writing ẼF for the heat content of the set F with the set C held at temperature 0,

ẼF (t) =
L∑

k=1

nk∑

j=1

E
B

(k)
j

(t).

Applying the comparison lemma we obtain for t < 1,

|EF (t)− ẼF (t)| ≤ ctdf/dw .

For t > 1 we observe that the analogue of (3.4) holds for nested fractals and hence for t > 1, there
are constants c0, λ0 such that

|EF (t)− ẼF (t)| ≤ c0 exp(−λ0t).

By symmetry we just need to consider the heat content Ei(t) for one of the side-type i cells
B(i) where the edges of B(i) ∩ C are held at temperature 0 and the edges of B(i) ∩ ∂F held at
temperature 1. If we write nijk for the number of side-type j cells in a side-type i cell of type k
(and hence with resistance weight ρk), then by scaling and symmetry

ẼB(i)(t) =
L∑

j=1

M∑

k=1

nijkρ
−S
k Ej(τkt),

where ẼB(i) is the heat content of the set B(i) with the edges of the scaled copy of C inside it
held at temperature 0. Using our comparison lemma in the same way as before we have

Ei(t) =
L∑

j=1

M∑

k=1

nijkρ
−S
k Ej(τkt) +Ri(t),

where Ri(t) ≤ ctdf/dw .
Now, as (df − db)/dw = (S − Sb)/(S + 1), we let Ei(t) = t(df−db)/dwfi(− log t) to get the

renewal equation

fi(− log t) =
L∑

j=1

M∑

k=1

nijkρ
−S
k τ

(df−db)/dw

k fj(− log t− log τk) + t(db−df )/dwRi(t)

fi(u) =
L∑

j=1

M∑

k=1

nijkρ
−Sb

k fj(u− log τk) + gi(u),

where |gi(u)| ≤ e−|u|db/dw .
We note that the boundary of an affine nested fractal is a self-similar set and the boundary

dimension can be computed in the resistance metric by standard techniques for such graph directed
sets [28]. Thus if A(s) is the matrix with Aij(s) =

∑M
k=1 nijkρ

−s
k , then Sb is such that the

maximum eigenvalue of A(Sb) = 1. Thus we have a multidimensional renewal equation

f(u) = F ? f(u) + g(u),

where F (t) is the matrix of distribution functions Fij(t) =
∑
k nijkρ

−Sb

k I(τk < t). By construction
F (∞) has maximum eigenvalue 1 and is irreducible and therefore by the multidimensional renewal
theorem of [25] we have f(u) → c as u→∞ under a non-lattice condition. It is easily seen that
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this non-lattice condition is equivalent to the stated condition on log ρk. Similarly in the lattice
case we have the existence of a periodic function. ¤

We have already seen how the Sierpinski gasket can be treated. The Lindstrøm snow flake
is another example. This is a hexagonal fractal and thus has 6 sides. It is easy to see that the
boundary cells have 4 sides intersecting the boundary and that these 4 sided cells split into two 2
sided cells and three 4 sided cells. Similarly the 2 sided cells split into two 2 sided cells and one 4
sided cell and a straightforward computation gives the boundary dimension when we assume that
ρk = 1 for k = 1, . . . , 7. Thus it is easy to apply our theorem with df = log 7/ log 3, db = log 4/ log 3
and dw = log τ/ log 3. It is clearly lattice and hence we have a periodic function in the limit.

We note that the Lindstrøm snowflake has an inverted triangular Koch curve as a boundary.
In the case of the snowflake domain in RD there is a second order term for the heat content that
is periodic with period log 9. It would be interesting to determine the second order term for this
fractal. We would conjecture that, as in the snowflake domain in R2, there will be a second order
term of the form tdf/dwφ(− log t) where φ is a periodic function of period log τ .

Finally, in the case of the affine nested fractal considered in [23] and shown in Figure 5.2, we
can show an example of constant behaviour for the heat content. The unit triangle is decomposed
into seven triangles as shown. The triangles labelled U are given resistance scale factor ρ1, the
triangles labelled V have resistance scale factor ρ2 and the triangle labelled W has resistance scale
factor ρ3.

W

U
V

U

U

VV

Figure 3: An affine nested fractal

We consider the fractal to be embedded in R2 and hence its boundary is the unit triangle.
We note that the boundary dimension in the resistance metric is given by db = Sb where 2ρ−Sb

1 +
ρ−Sb
2 = 1.

Corollary 5.7 In the non-lattice case when log ρ1/ log ρ2 /∈ Q we have a constant K such that

lim
t→0

t−(df−db)/dwEF (t) = K.

In the lattice case when log ρ1/ log ρ2 ∈ Q we have a periodic function ϕ(t) such that

EF (t) = t(df−db)/dw(ϕ(− log t) + o(1)), t→ 0.

We end with some remarks.
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Remark 5.8 1. The Sierpinski gasket result we obtained directly has a sharper error estimate
than that given in this general theorem. Similarly for other specific examples the error estimate
may be improved.
2. For higher dimensional affine nested fractals it is straightforward to treat the case where it is
only the intersection of the fractal with the face of the tetrahedron or simplex which is maintained
at temperature 1.
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