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Abstract

We consider N Bernoulli random variables, which are independent conditional
on a common random factor determining their probability distribution. We show
that certain expected functionals of the proportion LN of variables in a given state
converge at rate 1/N as N → ∞. Based on these results, we propose a multi-level
simulation algorithm using a family of sequences with increasing length, to obtain
estimators for these expected functionals with a mean-square error of ε2 and com-
putational complexity of order ε−2, independent of N . In particular, this optimal
complexity order also holds for the infinite-dimensional limit. Numerical examples
are presented for tranche spreads of basket credit derivatives.

Key words: Multilevel Monte Carlo simulation, large deviations principle, exchange-
ability, basket credit derivatives

1 Introduction

This article is concerned with the efficient numerical estimation of expectations of func-
tionals of a large number, N , of exchangeable Bernoulli random variables. The objective
of this work is thus two-fold: to analyse the order of convergence in 1/N of expected
functionals as N tends to infinity, and to derive estimators for these expectations for
which the computational complexity is asymptotically independent of N .

We begin by analysing the convergence in the case of general Lipschitz and smooth
functions, p, of the average of N exchangeable Bernoulli random variables as N goes to
infinity. We then consider the case when p has a certain piecewise linear structure and
show that the convergence order is the same as in the smooth case. These results are
relevant, for instance, if one wants to approximate the result for large but finite N by
its limit. A number of applications come from the credit risk literature. In [14], Vasicek
derives an expression for the limiting distribution of portfolio losses in a Normal factor
model, where default of a firm is indicated by its value process being below a default
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barrier at maturity of the debt. In the large portfolio limit, the randomness comes
solely from a common market factor, while a law of large numbers holds for idiosyncratic
components conditionally on this factor. Bush et al., in [5], extend this to a dynamic set-
up where it is seen that the density of the limit empirical measure of firm values satisfies
a stochastic partial differential equation (SPDE) and can be used to approximate tranche
spreads of basket credit derivatives; [4] gives an extension to jump diffusion models while
[9] include extensions to heterogeneity and self-exciting defaults rendering the resulting
equations non-linear. Further studies focus particularly on the tail of the limiting loss
distribution, see [7], [12] and the references therein.

A driving practical motivation for investigating the limiting behaviour is that the
original sequence of random variables is costly to simulate, because of the large number
N of underlying processes, often required over large time horizons. Moreover, often many
Monte Carlo samples are necessary for sufficiently accurate estimation of, for instance,
expected tranche losses of credit basket. This paper takes a different tack and develops
a simulation method where the computational complexity is asymptotically independent
of N . A small tweak of the algorithm can also be used to approximate the limit obtained
when N goes to infinity.

More concretely, it turns out that an interpretation of the multi-level Monte Carlo
approach (see [11]) in the present context allows us to construct estimators based on
sequences with increasing lengths and a number of samples which decreases faster than
the length increases, such that the overall computational complexity is essentially no
larger than for fixed small N .

A conceptually similar though distantly related approach is used in [3], where the
multilevel idea is applied to a sequence of martingales to estimate a dual upper bound
for the value of an early exercise option. In that setting they are able to show, as we do
here, that the achievable complexity is not substantially larger than that of a non-nested
simulation. The general problem of estimating conditional expectations through nested
multilevel simulation is addressed in [6]. There, further extrapolation is used to reduce
the bias of estimators, while here we will propose an improved estimator which reduces
the variance of higher level estimators.

This article is organised as follows. In Section 2, we introduce the setting and outline
the main convergence results, explaining how they can be used to construct efficient
estimators. The first key result on the convergence order of expected functionals is proved
in Section 3, with numerical illustrations from an example of a basket credit derivative
presented in Section 4. In Section 5, we introduce in detail two multilevel simulation
methods and derive bounds on their computational complexity to achieve a prescribed
accuracy. Finally, in Section 6 we present numerical results illustrating the efficiency gains
achieved through multilevel simulation in this context and Section 7 discusses possible
extensions.

2 Set-up and main results

In this article, we are concerned with the behaviour of “loss” variables describing the
fraction of N random variables in a certain state, and expected functionals of this loss
variable, as N goes to infinity. The application we have in mind, and for which we will
present numerical illustrations, is that of a basket of defaultable firms, and then the loss
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is the fraction of firms which default over a certain period.
More precisely, on a probability space (Ω,F ,P), consider a sequence of Bernoulli

random variables Yi, i ∈ N, and a random variable L taking its values in [0,1]. If required

we write Ω = ΩY × ΩL where canonically we could take ΩY = {0,1}N and ΩL = [0,1].
The probability measure P is constructed as follows. The random variable L is generated
according to its marginal law PL and then, conditional on FL, the σ-algebra generated
by L, the Yi are independent random variables with law given by

P[Yi = 1∣FL] = L. (2.1)

To re-iterate, the Bernoulli random variables are conditionally independent given a com-
mon factor. Thus for each n ∈ N

P(Y1 = y1, . . . , Yn = yn, L ∈ B) = ∫
B
lsn(1 − l)n−snPL(L ∈ dl), ∀yi ∈ {0,1},B ⊂ [0,1]

where sn = ∑ni=1 yi. We will often write P∣L = P(. ∣ FL) for the conditional law of the Yi
given FL and E∣L for the associated conditional expectation. In the setting of defaultable
firms, Yi = 1 iff the i-th firm defaults, and L is a global factor modelling the common
tendency of firms to default. We define the loss variable to be the proportion of Bernoulli
variables in state 1

LN = 1

N

N

∑
i=1

Yi. (2.2)

We consider a Lipschitz function p and random variables P and PN defined as

P ≡ p(L), (2.3)

PN ≡ p(LN). (2.4)

In particular, we will study p of the form

p(l) ≡ [l −K1]+ − [l −K2]+ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 l ≤K1,
l −K1 K1 ≤ l ≤K2,

K2 −K1 l ≥K2,
(2.5)

where [x]+ = max(x,0) denotes the positive part and 0 ≤ K1 < K2 ≤ 1 are constants.
In credit derivative pricing, the particular shape of the function p in (2.5) measures the
losses in a certain tranche with attachment point K1 and detachment point K2, and
its expectation is the building block for formulae for CDO tranche spreads. A typical
CDO pool consists of N = 125 firms, while typical loan or mortgage books can have
substantially more obligors, and it is therefore practically relevant to understand the
behaviour of expected functionals for large N and to devise computationally efficient
estimators.

By a conditional version of the strong law of large numbers and the continuity of p

LN → L for N →∞, P∣L − a.s., (2.6)

PN → P for N →∞, P∣L − a.s. (2.7)

This convergence will also hold in L2(ΩY ,P∣L) (see Lemma 3.1).
We study here the convergence rate of PN −P and will prove the following two results.

The first statement for Lipschitz and smooth functions p is a relatively straightforward
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consequence of (2.1) and the easily computable L2 convergence rate of LN . The second
result shows that for a specific p which is only piecewise smooth we can still obtain the
same convergence order as in the smooth case and with explicitly computable bounds.

Theorem 2.1. Let P and PN be defined by (2.3) and (2.4), respectively, and assume
that p is Lipschitz with constant cp. We have that

∣E[PN − P ]∣ ≤ cp

2
√
N
, (2.8)

V ar[PN − P ] ≤
c2
p

4N
. (2.9)

If, moreover, p is differentiable and the derivative has Lipschitz constant Cp, then

∣E[PN − P ]∣ ≤ Cp

8N
. (2.10)

Theorem 2.2. For p defined in (2.5), if the cumulative density function (CDF) FL of L
is Lipschitz at K1 > 0 and K2 < 1 with Lipschitz constant cL, i.e.,

∣FL(Kj) − FL(l)∣ ≤ cL ∣Kj − l∣ (2.11)

for j = 1,2 and all l ∈ [0,1], then

∣E[PN − P ]∣ ≤ 4cL
√
π

N
.

Note that if L has a density function which is bounded, then the CDF is certainly
Lipschitz. The fact that we only need the Lipschitz property at K1 and K2 will be useful
for the applications considered later.

Taking the two Theorems together, order 1 for the convergence of expectations also
follows for piecewise smooth p which are Lipschitz overall, provided FL is Lipschitz.

These Theorems show that expected functionals for large or infinite N can be succes-
sively approximated by those with smaller N . Combining this with a control variate idea
leads to multilevel simulation with a substantial variance reduction for large N . Specifi-
cally, the above results imply that for Lipschitz p we have ∣E[PN − PMN ]∣ ≤ c1/

√
N and

V ar[PN − PMN ] ≤ c2/N for any positive integer M with some constants c1 and c2. We
can consider a sequence Nl = M l, l ∈ N, with corresponding L(l) = LNl

and P (l) = PNl
.

Translating the central idea in [11] to this setting, we use the decomposition

E[P (l)] = E[P (0)] +
l

∑
k=1

E[P (k) − P (k−1)] (2.12)

and estimate every summand E[P (k) − P (k−1)] separately by defining estimators

Zl ≡ n−1
l

nl

∑
j=1

(P (l,j) − P (l,j)c ) , (2.13)

where ‘c’ denotes a ‘coarse’ estimator on level l, i.e., using onlyNl−1 instead ofNl Bernoulli
random variables, precisely,

P (l,j) = p(L(l,j)), where L(l,j) = N−1
l

Nl

∑
i=1

Y
(l,j)
i , (2.14)

P (l,j)c = p(L(l,j)c ), where L(l,j)c = N−1
l−1

Nl−1
∑
i=1

Y
(l,j)
i , (2.15)
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where Y
(l,j)
i , j = 1, . . . , nl, are independent samples of Yi for fixed level l and independent

across levels. They are constructed from a loss factor L(l,j) (with the same distribution
as L, independent across l and j) in the same way that Yi is constructed from L.

The number of samples on each level, nl, can be chosen to obtain an optimal allo-
cation of computational cost for a given overall mean-square error (MSE). The general
construction in [11] immediately gives the following result.

Proposition 2.1 (cf. [11], Theorem 3.1). Let P , P (l) as above. If there exist independent
estimators Zl based on nl Monte Carlo samples, and positive constants α,β, c1, c2, c3 such
that α≥ 1

2 and

i) ∣E[P (l)−P ]∣ ≤ c1M
−α l

ii) E[Zl] =
⎧⎪⎪⎨⎪⎪⎩

E[P (0)], l = 0

E[P (l)−P (l−1)], l > 0

iii) V[Zl] ≤ c2 n
−1
l M

−β l

iv) Cl ≤ c3 nlNl, where Cl is the computational complexity of Zl

then there exists a positive constant c4 such that for any ε< e−1 there are values K and
nl for which the multilevel estimator

GK =
K

∑
l=0

Zl, (2.16)

has a mean-square-error with bound

MSE ≡ E [(GK −E[P ])2] < ε2

with a computational complexity C with bound

C ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c4 ε
−2, β > 1,

c4 ε
−2(log ε)2, β = 1,

c4 ε
−2−(1−β)/α, 0 < β < 1.

The above result is meaningful only in situations where it is not possible or practical to
sample from L directly, as otherwise E[P ] = E[p(L)] could be computed with complexity
O(ε−2) in the standard Monte Carlo way.

Moreover, in some situations it is not p(L) which is of interest, but p(LN) for large
but finite N , and then it is essential to have a method to estimate E[LN ] in a complexity
which does not increase sharply in N .

For instance, take N given and estimate PN with the standard (i.e., single level)
Monte Carlo estimator

P̂N ≡ 1

n

n

∑
j=1

p( 1

N

N

∑
i=1

Y
(j)
i ) ,
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where n is the number of samples and the (Y (j)i ), for different j, are independent samples

of (Yi). Then E[P̂N ] = E[PN ] and V ar[P̂N ] = 1
nV ar[PN ], where it follows from

V ar[P ] ≤ 2 (V ar[PN ] + V ar[PN − P ]) ,

under the conditions of either Theorem 2.1 or Theorem 2.2, that

V ar[PN ] ≥ V ar[P ]/2 − V ar[PN − P ] ≥ V ar[P ]/2 − c1/N ≥ c2V ar[P ],

for N sufficiently large and some constants c1, c2 independent of N . That is to say,
the variance of PN and subsequently that of the estimator P̂N is bounded below with
a positive number independent of N . Hence, if a MSE of ε2 is required for E[PN ], the
complexity is

C ≥ nN ≥ c2N/ε2,
i.e., increases (at least) linearly in N . (A similar argument shows that this is also an
upper bound.)

If one wants to use P̂N not as an estimator to E[PN ] but E[P ], a bias occurs and

MSE = E[P̂N − P ]2 + V ar[P̂N ] = E[PN − P ]2 + V ar[P̂N ] = O(N−2/α) +O(n−1),

assuming the bias is of order α as in Proposition 2.1. To reduce the bias and hence the
error, N has to be increased simultaneously with n. More precisely, for MSE ε2 it is
optimal to choose N = O(ε−1/α) and n = O(ε−2), leading to a computational complexity

C = O(nN) = O (ε−2−1/α) .

The following Corollary addresses both cases of large finite and infinite N and im-
proves on the convergence rates of the standard Monte Carlo estimator.

Corollary 2.1. Let PN and P be as in (2.3) and (2.4), and assume p is Lipschitz.

1. There is a multilevel estimator for E[P ] with MSE ε2 with computational complexity
C ≤ c4(log ε)2ε−2.

2. For all N , there is a multilevel estimator for E[PN ] with MSE ε2 with computational
complexity C ≤ c4(log ε)2ε−2, where c4 is independent of N .

Note that only order 1/2 is required for the convergence of expectations in Proposition
2.1, i), and that the complexity is then dictated by β, the case β = 1 implied by Theorem
2.1 for all Lipschitz payoffs being a boundary case.

The estimators for both E[P ] and E[P (L)] = E[PNL
], for NL =ML fixed, are given by

(2.16). In the first case, the maximum level K and the number of samples nl on each level
have to be increased successively as part of the simulation algorithm until a desired MSE
is reached, as explained in [11]. In the second case, a similar procedure can be used but
K is not increased further once the desired level L is reached. By construction, at that
point, the total MSE is small enough that no additional samples need to be generated.
This algorithm is formalised at the start of Section 6.

For the specific p as in (2.5), we can exploit the piecewise linearity of p to construct
multilevel estimators with even better complexity, by making the following observations:
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The summands in (2.12) are unchanged if we replace P (k−1) = p(L(k−1)) with any of

p(L(k−1)
m ) for m = 1, . . . ,M , where

L(k−1)
m ≡ 1

Nk−1

Nk−1
∑
i=1

Yi+(m−1)Nk−1 . (2.17)

This is a direct consequence of the exchangeability. Now,

L(k) = 1

M

M

∑
m=1

L(k−1)
m (2.18)

and, if all L
(k−1)
m lie in the same interval [0,K1], (K1,K2] or (K2,1], also P (k) = P (k−1)

,
where

P
(k−1) ≡ 1

M

M

∑
m=1

P (k−1)
m = 1

M

M

∑
m=1

p(L(k−1)
m ), (2.19)

since p is linear in these intervals. Because of E[P (k−1)] = E[P (k−1)], we can now write

E[P (l)] = E[P (0)] +
l

∑
k=1

E[P (k) − P (k−1)], (2.20)

and estimate the individual terms in the sum independently in the multilevel spirit, i.e.,
with estimators

Z l ≡ n−1
l

nl

∑
j=1

(P (l,j) − P (l,j)) , (2.21)

where P (l,j) is defined as in (2.14), but instead of P
(l,j)
c we use

P
(l,j) = M−1

M

∑
m=1

p(L(l,j)m ), where L(l,j)m = N−1
l−1

Nl−1
∑
i=1

Y
(l,j)
i+(m−1)Nl−1

, (2.22)

and where the rest of the set-up is as earlier.
There is only a variance contribution from a specific sample of the k-th term if at

least two P
(k−1)
m lie in different intervals. For large k, the probability of this is small, and

we will be able to show the following result.

Theorem 2.3. For p as in (2.5), let P (l) as in Proposition 2.1 and P
(l−1)

as in (2.19).
If the CDF FL of L is Lipschitz with Lipschitz constant cL, then

V ar[P (l) − P (l−1)] ≤ c2

N
3/2
l

, (2.23)

where c2 = cL 4
√
Mπ(

√
2 +

√
M)

√
7
8(M2 + 6M + 1).

Here and throughout the paper we give explicit expressions for the constants. These
should not be regarded as optimal in any sense.

Corollary 2.2. For Lipschitz FL and p as in (2.5), there is a constant c5 and multilevel
estimators for E[P ] and E[PN ] with MSE ε2 with computational complexity C ≤ c5 ε

−2.

Note that we have managed to remove the logarithmic factor present in Corollary 2.1
and that c5 does not depend on N .
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3 Proof of convergence rates

We first prove Theorem 2.1 which contains statements in the general and smooth case.
The rest of this section is devoted to the proof of Theorem 2.2 dealing with a specific
non-smooth payoff relevant to our application.

Lemma 3.1. Let PN and P be as in (2.3) and (2.4), and assume p is Lipschitz with
constant cp. Then

E∣L[(PN − P )2] ≤
c2
p

4N
.

Proof. Since the function p in (2.3) is assumed Lipschitz and E∣L[LN ] = L, we have

E∣L[(PN − P )2] ≤ c2
p E∣L[(LN −L)2] = c2

p V ar[LN ∣FL] =
c2
p

N
V ar[Yi∣FL] =

c2
p

N
L(1 −L).

For L ∈ [0,1], L(1 −L) ≤ 1
4 , which gives the result.

Proof of Theorem 2.1. Equation (2.9) follows directly from Lemma 3.1, and then, by
Cauchy-Schwarz,

∣E[P − PN ]∣ ≤
√

E[E∣L[(PN − P )2]] ≤ cp

2
√
N
.

For differentiable p, we can write

E[p(L) − p(LN)] = E[p′(L)(L −LN)] +E[r(L,LN)],

with some remainder r, where the first term on the left-hand side is

E[E∣L[p′(L)(L −LN)]] = 0.

If p has a Lipschitz derivative,

∣p(x) − p(y) − p′(x)(x − y)∣ ≤ 1

2
Cp(x − y)2

for all 0 ≤ x, y ≤ 1 and the remainder term satisfies

∣E[r(L,LN)]∣ ≤ Cp

8N
,

from which (2.10) follows.

Now, we turn to the proof of Theorem 2.2 and show a few Lemmas first. We divide the
ranges of L and LN into the three intervals I1 = [0,K1], I2 = (K2,1] and I3 = (K1,K2],
in each of which the function p from (2.3) is linear; the point being that the probability
of L and LN lying in different intervals is small for large N , and the expected difference
of P − PN is small if they are in the same interval. The following Lemmas quantify this.

Lemma 3.2. For j = 1,2, we have

P∣L(L ∈ Ij , LN ∈ Icj ) ≤ 1L∈Ij e
−N(L−Kj)

2

, (3.1)

P∣L(L ∈ Icj , LN ∈ Ij) ≤ 1L∈Icj e
−N(L−Kj)

2

. (3.2)
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Proof. This is a standard large deviations result. By Theorem 2.2.3 in [8], p. 27, and
Remark (c) thereafter, for FL-independent and identically distributed random variables
(Yi)1≤i≤N with E[Yi ∣ FL] = L, we obtain that if 0 < L ≤Kj ,

P∣L(LN >Kj) ≤ e−Ng(L,Kj),

and if Kj < L < 1,

P∣L(LN ≤Kj) ≤ e−Ng(L,Kj),

where the rate function g(L,Kj) is given on p. 35 in [8] as

g(L,Kj) =Kj log (Kj

L
) + (1 −Kj) log (1 −Kj

1 −L ) ,

since Yi are Bernoulli distributed random variables with P (Yi = 1 ∣ FL) = L. It is
straightforward to check that for all L ∈ (0,1)

g(L,Kj) ≥ (Kj −L)2. (3.3)

Hence, by (3.3), for 0 < L ≤Kj

P∣L(LN >Kj) ≤ e−Ng(L,Kj) ≤ e−N(Kj−L)
2

, (3.4)

and similarly for Kj < L < 1. These estimates are clearly true for the degenerate cases
L = 0 and L = 1. From this the result follows.

Lemma 3.3. Let p be as in (2.5). If AN is the event that LN and L are in the same
interval and AcN its complement, then

E[(PN − P )1AN
] = −E[(LN −L)1Ac

N
1{L∈I3}]. (3.5)

Proof. By splitting the range of L into the different intervals,

E[(PN − P )1AN
] =

3

∑
j=1

E[(PN − P )1AN
1{L∈Ij}]

= E[(LN −L)1AN
1{L∈I3}]

= −E[(LN −L)1Ac
N

1{L∈I3}],

where we have used in the second line that PN = P if both LN and L lie in either I1 or I2

and that PN −P = LN −L in I3; in the last line that E∣L[LN −L] = 0 and 1AN
+1Ac

N
= 1.

Lemma 3.4. Let AcN be as in Lemma 3.3. If the CDF FL of L is Lipschitz at Kj, j = 1,2,
with constant cL, then

E [(P∣L[AcN ])
1
2 ] ≤ cL 4

√
π√

N
. (3.6)
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Proof. Let Ic1 = (K1,1] and Ic2 = [0,K2] be the complements in [0,1] of I1 and I2, then

AcN ⊆ {L ∈ I1, LN ∈ Ic1} ∪ {L ∈ I2, LN ∈ Ic2} ∪ {L ∈ Ic1, LN ∈ I1} ∪ {L ∈ Ic2, LN ∈ Ic1}

and therefore

P∣L[AcN ] ≤ P∣L[L ∈ I1, LN ∈ Ic1] + P∣L[L ∈ I2, LN ∈ Ic2] + P∣L[L ∈ Ic1, LN ∈ I1]
+ P∣L[L ∈ Ic2, LN ∈ I2].

By (3.1), (3.2) we have

P∣L[AcN ] ≤ 2 (e−N(L−K1)
2 + e−N(L−K2)

2) ,

and we obtain

E [(P∣L[AcN ])
1
2 ] ≤ 2

1
2 (E [e−N

(L−K1)2
2 ] +E [e−N

(L−K2)2
2 ]) . (3.7)

If we extended FL by 0 and 1 from [0,1] to R then, for j = 1,2, we have

E [e−N
(L−Kj)2

2 ] = ∫
∞

−∞
e−N

(l−Kj)2
2 dFL(l) (3.8)

= N ∫
∞

−∞
(l −Kj)e−N

(l−Kj)2
2 FL(l) dl (3.9)

≤ NFL(Kj)∫
∞

−∞
(l −Kj)e−N

(l−Kj)2
2 dl + cL N ∫

∞

−∞
(l −Kj)2e−N

(l−Kj)2
2 dl

= cL
√

2π√
N

,

where we used the Lipschitz property of the CDF after (3.9) and then integrated exactly.
The result follows directly by insertion in (3.7).

Proof of Theorem 2.2. By the tower property of conditional expectations and Jensen’s
inequality, we have

∣E[(PN − P ) 1Ac
N
]∣ ≤ E[∣E∣L[(PN − P ) 1Ac

N
]∣]. (3.10)

Then Cauchy-Schwarz gives

∣E[(PN − P ) 1Ac
N
]∣ ≤ E∣L [(E[(PN − P )2])

1
2 (P∣L[AcN ])

1
2 ] . (3.11)

By Lemmas 3.1 and 3.4, we obtain

∣E[(PN − P ) 1Ac
N
]∣ ≤ cL2

√
π

N
. (3.12)

Similarly, using Lemma 3.3 and the same argument as above,

∣E[(PN − P ) 1AN
]∣ ≤ cL2

√
π

N
,

from which the statement follows.

10



4 An application and numerical results

To illustrate the theoretical rate of convergence, we study numerical results for expected
tranche losses of a synthetic CDO for an increasing size N of the underlying CDS pool.

We consider a structural factor model (see, e.g., [13, 4]), where the distance-to-default
of the i-th firm, i = 1, . . . ,N , evolves according to

Xi
t = Xi

0 + βt +
√

1 − ρ W i
t +

√
ρ Bt + Jt, t > 0, (4.1)

where ρ ∈ [0,1), β given. Here, B is assumed to be a standard Brownian motion and
Jt = ∑CP t

k=1 Πk, where CP t is a Poisson process with intensity λ and Πk are independent
Normals with mean µΠ and variance σ2

Π, while all W i are independent standard Brownian
motions and independent of B and J . Thus B and J model factors affecting the whole
market, whereas W i are idiosyncratic effects.

The i-th firm is considered to be in default if its distance-to-default is below 0 at any
one of the observation times Tj = jq, q = 0.25 (quarterly), up to T20 = T = 5, the assumed
maturity of the debt here. We introduce the default time τi and Bernoulli random variable
Yi indicating default of the i-th firm before T , by

τ i = inf ({t ∈ {T1, . . . , TM} ∶Xi
t ≤ 0} ∪ {∞}) ,

Yi = 1{τ i≤T}. (4.2)

For the numerical experiments, the initial values Xi
0 are drawn independently from a

Normal distribution,

Xi
0 ∼ N(µX0 , σ

2
X0

),

where the mean µX0 = 4.6 and standard deviation σX0 = 0.8 are obtained from a calibra-
tion to iTraxx data as detailed in [4], as are ρ = 0.13, λ = 0.04, µΠ = −0.5 and σ2

Π = 0.17.
That the definition of Yi in (4.2) fits into the initial set-up is a consequence of the

exchangeability of Xi
t in (4.1). If we define

X
i
t ≡ { Xi

t , t < τ i,
0, t ≥ τ i,

then the X
i
T are still exchangeable. Hence, by de Finetti’s Theorem (see [10]), there

exists a random measure α on R such that a.s.

α(B) = lim
N→∞

1

N

N

∑
i=1

1
X

i
T ∈B

for all Borel sets B. Conditional on α, the X
i
T and Yi are i.i.d. The link to the random

variable L is established by defining

L ≡ α({0}) = lim
N→∞

1

N

N

∑
i=1

1
{X

i
T =0}

= lim
N→∞

1

N

N

∑
i=1

Yi = lim
N→∞

LN .

Clearly, Yi takes values in {0,1} and P[Yi = 1∣FL] = E∣L[Yi] = E∣L[LN ] = L.
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It is shown in [4] that the above random measure α is the sum of L times a Dirac
measure located at 0 and a continuous part which satisfies a stochastic partial differential
equation. To generated (approximate) samples of L, we numerically solve the SPDE by a
combined Monte Carlo finite difference method (see again [4]) to generate samples of the
random measure, and use this to compute L. So, on this instance, there is an alternative
– albeit very costly – way of simulating L directly, and we use this to investigate the
relevant properties of L empirically.

Specifically, in view of the conditions of Theorem 2.2, we illustrate the numerically
computed CDF FL of L for different parameters in Figure 1. It appears that FL is
Lipschitz in (0,1) but that the derivative at 0 and 1 can become very large in certain
parameter ranges for µ0 = µX0 and overall instantaneous correlation

ρA = (ρ + ζ)/(1 + ζ), ζ = λ(µ2
Π + σ2

Π), (4.3)

between Xi
t and Xj

t (see [4]).
For large values of µ0, the probability of defaults becomes very small and the density

of L is concentrated around 0. For ρA approaching 1, all Yi become identical and therefore
either all or none of the firms default, such that here the density of L is concentrated at
0 and 1. In the degenerate case ρA = 0 (i.e., ρ = λ = 0), L is deterministic, the measure is
atomic and FL a step function.

The empirical evidence thus suggests that FL is Lipschitz in the range (0,1). Given
that Theorem 2.2 only requires the Lipschitz property at interior values Kj , the conditions
appear to be satisfied and the Theorem to apply in this setting. Even in situations where
FL has a bounded derivative at 0 and 1, the fact that only the Lipschitz constants from
K1 and K2 enter into the estimates gives us substantially smaller bounds.

We now move on to present numerical results for the payoff function p from (2.5)
illustrating the convergence as the number of firms N goes to infinity. We consider
portfolios consisting of Nk =Mk = 5k companies for k = 1, . . . ,7.

To include a recovery value of defaulted firms in the model, we rescale LN by (1−R),
where R = 0.4 is the recovery rate. Equivalently, we pick (K1,K2) = (1 − R)−1(a, d) in
(2.3) and (a, d) ∈ {(0,0.03), (0.03,0.06), (0.06,0.09), (0.09,0.12), (0.12,0.22), (0.22,1)} as
the attachment and detachment points for iTraxx tranches, and then study (1−R)p(LN).

A straightforward Monte Carlo estimator for expected tranche losses E[P (k)] is then
given by

Ĝk = 1

n

n

∑
j=1

(1 −R)p(L(k,j)), (4.4)

L(k,j) = 1

Nk

Nk

∑
i=1

Y
(j)
i , (4.5)

where (Y (j)i ) are independent samples of Yi, i.e., corresponding to independent paths
for B, W and J . There is no time discretisation error as (4.1) can be sampled directly.
However, it turns out to be computationally prohibitively expensive to choose n, the
number of samples, large enough to produce estimators with sufficiently small RMSE to
allow us to distinguish between Ĝk and Ĝk+1 for large k.

We therefore use the multilevel simulation approach outlined in Section 2 and detailed
further in Section 5. The point is that the differences Gk+1 −Gk are simulated directly in

12
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Figure 1: Top row: Empirical CDF FL for different values of µ0 = µX0 (left)
and different ρA (right). The values of ρA are arrived at by (4.3) from (ρ, λ) ∈
{(0.03,0.001), (0.1,0.002), (0.35,0.0035), (0.35,0.0351), (0.8,0.1)}. All other parameters
are fixed as given in the text. The plots in the second and third rows are zoomed into
the ranges of L close to 0 and 1, respectively.
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the multilevel approach. Therefore, we approximate ∣G −Gk∣, where G ≡ limk→∞Gk, by

Sk = ∣Gk −GK ∣ =
RRRRRRRRRRR

K

∑
l=k+1

Zl

RRRRRRRRRRR
(4.6)

for k < K, where Zl is an estimator for E[P (l) − P (l−1)] as used in the construction of
Gk in (2.16) (precisely, we used the estimator Zl defined later in (2.13)). The difference
between Sk and ∣G−Gk∣ for k =K − 1 is given by GK−1 −GK ≈ (GK−1 −G)(1− 1/M) and
for k =K − 2 by GK−2 −GK ≈ (GK−2 −G)(1 − 1/M2). Given M = 5 in our examples, the
error due to this approximation will be seen to be smaller than the estimation error.

The results are shown in Figure 2. We plot the logarithm of Sk to base M , together
with the sample standard deviation of the the multilevel estimators Gk (see (2.16)) and

yk = −k + y0, (4.7)

where y0 is a suitably chosen constant, to verify the predicted convergence order empiri-
cally. The data points appear to be in good agreement with first order convergence.

5 Analysis of the multilevel method

In this section, we describe and analyse a multilevel simulation approach for the esti-
mation of expected functionals of the form (2.3) and (2.4), the latter with a particular
emphasis on the case of large N .

The multilevel Monte Carlo method proposed by Giles in [11] estimates the expected
value of a functional of the solution to a stochastic differential equation obtained by
a timestepping scheme. It performs computations on different refinement levels l with
time steps hl = h0M

−l for M > 1, such as to minimise the overall computational time
of the Monte Carlo estimator for prescribed mean square error (MSE). Since the MSE
consists of a Monte Carlo error (variance) and a discretisation error (bias), the method
controls both the number of samples nl on level l, to bound the Monte Carlo variance of
order O(n−1

l ), and the finest L with time step h−L on which to approximate the SDE, in
order to reduce the bias. The multilevel method is based on two premises: Monte Carlo
estimators for an increasing number of time steps converge at a certain order in hl, and
the computational cost needed to calculate an estimator increases with nlh

−1
l . In this

approach, estimators obtained with a smaller number of time steps are used as control
variates for estimators with a larger number of time steps, which significantly decreases
the computation time.

To obtain a complexity result for an estimator of E[P ] with P from (2.3), we substitute
hl by N−1

l in Theorem 3.1 of [11] and immediately obtain Proposition 2.1 from Section 2.
By direct inspection, for the construction of Zl from (2.13), Assumption ii) holds in

Proposition 2.1. From Theorem 2.1, we know that i) holds with α = 1/2 for general
Lipschitz p. Clearly, the computational effort to compute Zl is proportional to nlNl as
required in iv). Finally, iii) holds by the following simple application of Lemma 3.1.

Proposition 5.1. Let P (l) = PNl
as per (2.4), where p is Lipschitz with constant cp, then

V ar[P (l) − P (l−1)] ≤ c2
p

M + 1

2Nl
. (5.1)
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Figure 2: Shown here is logM Sk, where Sk given by (4.6) is an estimator for ∣E[P (k)−P ]∣.
The various plots are for tranches ranging from [0%-3%] to [22%-100%], of a CDO basket
consisting of Nk = Mk = 5k companies, where k = 1, . . . ,6. The comparison with the
predicted trend yk from (4.7) confirms the first order convergence. Included is also the
standard deviation of the estimated tranche loss Gk.
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Proof. This follows directly from

E∣L[(P (l) − P (l−1))2] = E∣L[((P (l) − P ) − (P (l−1) − P ))2]

≤ 2 (E∣L[(P (l) − P )2] +E∣L[(P (l−1) − P )2]) (5.2)

by Lemma 3.1 and taking expectations over L.

We have therefore proven the first statement of Corollary 2.1.

In practice, it is also relevant to be able to compute E[PN ] efficiently for finite N . It
is clear that for fixed N , the complexity is bounded by c ε−2 for some c > 0, but for a näıve
(single-level) estimator the constant c will increase with N , as detailed in Section 2. From
the proof of Theorem 3.1 in [11] it is clear, however, that there is a multilevel estimator
with a priori bounded upper level K which satisfies the second statement in Corollary 2.1.

We now discuss the multilevel estimator Z l, based on the faster decay rate 3/2 for
piecewise linear payoffs in Theorem 2.3, which we prove subsequently.

It is clear that Z l satisfies ii) in Proposition 2.1 and that the computational complexity
is still bounded as required per iv). In fact, as the main computational cost is typically
in sampling Yi, the computational complexity is virtually identical to that of Zl. In
particular, if we evaluate (2.14) by using (2.18) and the already computed (2.22), the
difference in evaluating Zl and Z l is an O(M) cost, i.e., independent of Nl. Now, given
Theorem 2.3, we have that

V ar[Z l] ≤ cn−1
l M

−3/2 l, (5.3)

for some c, such that we are in the first regime in the complexity result of Proposition
2.1, i.e., we have optimal complexity order.

We have not commented so far on the (optimal) selection of M . The choice of M = 5
in Section 4 was to some extent dictated by the application of a CDO basket where the
target size is N = 125 = 53, and therefore for M = 5 this N is reached exactly for level
K = 3. For different M , or indeed for N which is not an integer power of an integer M , one
can adapt the method easily by choosing K as the largest integer such that MK−1 < N ,
and then estimate the correction between E[P (K−1)] and E[PN ] by a last estimator ZK .
Such considerations are obviously irrelevant for the estimation of E[P ], and there the
choice of M is entirely dictated by complexity issues.

The total error is a combination of the bias, dictated by the number of Bernoulli
random variables NK on the finest level and therefore largely independent of L, and the
variance of the individual estimators Zl or Z l. The effect of increasing M is that the
variance of Zl may increase, but conversely the number of levels required to reach a given
N will decrease and therefore the total number of random variables which need to be
simulated may be lower. There is a discussion in [11] on the optimal selection, with a
heuristic calculation for β = 1, suggesting an optimal value of 6 or 7, which is then lowered
to 4 in computations to incorporate a sufficient number of levels for a reliable estimation
of the variance on course levels. For a faster decay of the variance, β = 3/2, the optimal
M can be expected to be smaller, and therefore M = 5 seems a sensible choice, although
we did not test this systematically.

The remainder of this section is devoted to the proof of Theorem 2.3.
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Lemma 5.1. Assume the CDF FL of L is Lipschitz with constant cL. Let B(l) be the
event that L(l) lies in the same interval as L(l−1), B(l),c its complement, then

E [(P∣L[B(l),c])
1
2 ] ≤ C√

Nl

,

where C = cL 4
√
π(

√
2 +

√
M).

Proof. Let A(l) again be the event that L(l) and L are in the same interval, A(l),c its
complement. Then from

B(l),c ⊆ (A(l) ∩A(l−1),c)⋃ (A(l),c ∩A(l−1))⋃ (A(l),c ∩A(l−1),c)

follows

P∣L[B(l),c] ≤ P∣L[A(l) ∩A(l−1),c] + P∣L[A(l),c ∩A(l−1)] + P∣L[A(l),c ∩A(l−1),c]
≤ 2 P∣L[A(l),c] + P∣L[A(l−1),c],

which leads to

E [(P∣L[B(l),c])
1
2 ] ≤

√
2 E [(P∣L[A(l),c])

1
2 ] +E [(P∣L[A(l−1),c])

1
2 ] .

By Lemma 3.4, we obtain the result.

Lemma 5.2. For P , P (l), P (l−1) and P
(l−1)

as above, p Lipschitz with constant 1,

E∣L[(P (l) − P )4] ≤ 3

16N2
l

(1 + 4

3Nl
) ≤ 7

16N2
l

, (5.4)

E∣L[(P (l) − P (l−1))4] ≤ C

N2
l

, (5.5)

E∣L[(P (l) − P
(l−1))4] ≤ C

N2
l

, (5.6)

where C = 7
8(M

2 + 6M + 1).

Proof. See Appendix A.

Proof of Theorem 2.3. Let E(l) be the event that all L
(l−1)
m lie in the same interval, 1 ≤

m ≤M , and E(l),c its complement, then

E[(P (l) − P (l−1))2] = E[(P (l) − P (l−1))21E(l)] +E[(P (l) − P (l−1))21E(l),c].

By (2.18) and linearity of p in each interval, we have

E[(P (l) − P (l−1))21E(l)] = 0.

By Cauchy-Schwartz, we have

E∣L[(P (l) − P
(l−1))21E(l),c] ≤ (E∣L[(P (l) − P

(l−1))4])
1
2

(P∣L[E(l),c])
1
2
,
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hence,

E[(P (l) − P (l−1))21E(l),c] ≤ E
⎡⎢⎢⎢⎣
(E∣L[(P (l) − P

(l−1))4])
1
2

(P∣L[E(l),c])
1
2
⎤⎥⎥⎥⎦
.

By Lemma 5.2, we have that

(E∣L[(P (l) − P
(l−1))4])

1
2

≤
√
c1

Nl
, (5.7)

where c1 = 7
8(M

2 + 6M + 1).
If we denote by B

(l)
m the event that L

(l−1)
m and L(l) lie in the same interval, then

E(l),c =
M

⋃
m=1

B(l),cm

and therefore

P∣L(E(l),c) ≤
M

∑
m=1

P∣L(B(l),cm ) = M P∣L(B(l),c).

By Lemma 5.1, this gives

E [(P∣L[E(l),c])
1
2 ] ≤ c2

Nl
,

where c2 = cL 4
√
Mπ(

√
2 +

√
M). Together with (5.7), we obtain the result.

6 Multilevel tests

In this section, we present multilevel simulation results based on the estimators from the
previous section and illustrating the theoretical findings from there. We return to the
example from Section 4 and estimate expected tranche losses for credit baskets with an
increasing number of firms Nl =M l.

For the estimator Zl from (2.13), an upper bound for the variance – although not
a sharp one – is analytically known from (5.1) and we could use that to determine the
number nl of samples on level l which is required to bring the variance contribution under
a desired threshold. For the improved estimator Z l from (2.21), however, the bound in
(5.3) contains the unknown Lipschitz constant of the CDF of FL via Theorem 2.3. In
order to determine the optimal allocation n∗l , we use the following algorithm as per [11].
In contrast to there, the upper level K is fixed here which simplifies the stopping criterion
somewhat.

1. Start with k = 1.

2. Estimate the variance Vk of a single sample using nk = 104 realisations.

3. Calculate the optimal number of samples, n∗l , for l = 0,1, . . . , k, using

n∗l =
⎡⎢⎢⎢⎢⎢
γ−2

√
Vl N

−1
l

⎛
⎝
k

∑
j=1

√
Vj Nj

⎞
⎠

⎤⎥⎥⎥⎥⎥
, (6.1)

where γ2 is a chosen upper bound of V ar[GK].
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4. Draw extra samples for each level according to n∗l .

5. If k <K, set k = k + 1 and go to 2.

6. If k =K, finish.

Remark 6.1. As per [11], choosing n∗l by (6.1), guarantees that the variance V ar[GK]
is bounded by γ2, since

V ar[GK] =
K

∑
l=1

(n∗l )
−1
Vl ≤

K

∑
l=1

⎛
⎝
γ−2

√
VlN

−1
l

K

∑
j=1

√
VjNj

⎞
⎠

−1

Vl = γ2.

A side effect is that, for k <K, the variance is smaller than for k =K, since

V ar[Gk] =
k

∑
l=1

(n∗l )
−1
Vl < γ2∑kl=1

√
VlNl

∑Kl=1

√
VlNl

.

Hence, if we compute estimators Gk for all k as a by-product of GK , the variance is the
smallest for G1 and then for Gk, k = 2, . . . ,K, gradually reaches the upper bound γ2. This
effect can be observed in Figure 3.D.

In Figure 3 we show results for the same parameter setting as in Section 4 and only
for the equity tranche. Results from other tests were very similar and did not show any
noteworthy additional effects. In order to easily see the rate of convergence in 3.A., we
plot the logarithm of Vl to base M , together with

fk = −β k + f0 (6.2)

for different values of β. The estimated slope is β̂ ≈ 1 for the original estimator and
β̂ ≈ 3/2 for the improved estimator, which agrees with the theoretical findings. The order
of convergence of ∣E[P (l) − P (l−1)]∣ is α̂ ≈ 1, which also agrees with the previous results.
As can be observed in Figure 3.C, he number of samples ranges from 150 millions for k = 1
to 34000 for k = 7. The improved estimator gives further reductions in computational
time: the total number of samples ranges now from 35 millions for k = 1 to only 350 for
k = 7. The standard deviation of Gk is an increasing function of k, and is less than or
equal to the chosen upper bound γ = 4 × 10−6.

7 Conclusions and extensions

A main focus of this paper was the construction of an efficient simulation algorithm for
functionals of a large number of exchangeable random variables. For a specific set-up, we
were able to demonstrate optimal complexity order by theoretical analysis and numerical
illustrations.

Discussion

The results from the previous section show that the computational savings can be signif-
icant in situations of practical relevance. As seen from Figure 3.C, already for N = 125
(i.e., k = 3), the size of a CDO basket, the required number n3 of samples on this level
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Figure 3: Multilevel results for the expected loss in the equity tranche of a CDO basket
consisting of Nk companies, Nk = Mk = 5k, k = 1, . . . ,7. Overlined quantities refer
to the estimator Z l from (2.21), all others to the standard estimator Zl from (2.13).
A. Variance of a single Monte Carlo sample, Vl and V l, together with a predicted trend,
fl, given by (6.2), where β = 1 or β = 3/2. B. Mean at level l, Zl and Z l, and a trend,
yl, defined by (4.7), with slope -1. C. Optimal number of simulations in both cases, n∗l
and n∗l , calculated according to (6.1) for k = K = 7. D. Standard deviation of multilevel
estimators Gk defined in (2.16), and similar for Gk, with their chosen upper bound, γ.
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is reduced by about two orders of magnitude compared to the number of samples for
k = 1, n1. It is roughly this number which would be required for a standard (i.e., single
level) estimator on level 3 for a variance comparable to the one achieved by the multilevel
estimator at substantially lower cost.

Extensions – random recovery and random factor loadings

There is ample empirical evidence that a basic factor model such as the one described
in Section 4 does not adequately reproduce observed market spreads of credit derivatives
and other stylised facts of credit markets. Two effects that have so far been neglected
are credit contagion (i.e., the default of one firm has an impact on the credit worthiness
and dependence structure of others) and the dependence of recovery values on the wider
credit environment. We focus here on the latter effect and follow [2] for a model that
captures this dependence.

Consider thus the total loss as given by

L̃N = 1

N

N

∑
i=1

li Yi,

where li represent a random loss-given-default for company i and Yi are default indicators
as previously. It is sometimes convenient to write

li = lmax ⋅ (1 −Ri) ,

where lmax is a (constant) notional maximum loss and Ri ∈ [0,1] is the (random) recovery
rate of the i-th firm. In keeping with our general framework, we assume that the Ri are
identically distributed and independent conditional on FL.

For continuous payoffs p, we still have

L̃N → E[L̃N ] =∶ L̃ for N →∞, P∣L − a.s., (7.1)

P̃N ∶= p(L̃N) → E[P̃N ] =∶ P̃ for N →∞, P∣L − a.s. (7.2)

The L2-convergence is described in the following.

Corollary 7.1 (to Theorem 2.1). Let P̃ and P̃N be given by (7.2), and assume that p is
Lipschitz with constant cp. We have that

∣E[P̃N − P̃ ]∣ ≤ cp lmax√
N

, (7.3)

V ar[P̃N − P̃ ] ≤
c2
p l

2
max

N
. (7.4)

Proof. In the same way as the proof of Lemma 3.1,

E∣L[(P̃N − P̃ )2] ≤ c2
p E∣L[(L̃N − L̃)2] = c2

p V ar[L̃N ∣FL] =
c2
p

N
V ar[liYi∣FL] ≤

c2
p l

2
max

N
,

which gives the result for the variance. The result for the expectation follows again
immediately.
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The order 1/2 for the convergence of the expectations and order 1 for the variances is
sufficient to be able to apply Corollary 2.1 to establish the ε2 log2 ε complexity for MSE
ε2 of the multilevel method. The following numerical tests indicate that the order 1/2
is not sharp and indeed we expect order 1 for sufficient regularity of the payoffs and/or
distribution function of L. The proof of this becomes more technical than in the pure
Bernoulli case because we lose the explicit form of the characteristic function. Thus, and
because of the irrelevance of this for the convergence speed of the multilevel method, we
do not pursue this further here.

We now consider a particular model similar to the one in [2] and give a numerical
illustration. Specifically, let

Xi
t = Xi

0 + βt +
√

1 − ρ W i
t +

√
ρ Bt + Jt, t > 0, (7.5)

Rit = Φ(µR + βRt + σR
√

1 − ρR ξit + σR
√
ρR Bt + Jt), (7.6)

where the processes in the first line are defined as in (4.1), and in the second line (ξi)
is a standard Brownian motion independent of everything else, while µR, βR, σR > 0
and 0 ≤ ρR ≤ 1 are constants. Φ is the cumulative density of the standard normal, but
could be replaced by any increasing function f ∶ R → [0,1]. This has the effect that
the recovery rate is positively correlated with the market factors B and J , with some
idiosyncratic noise, and thus there is a negative dependence between recovery rates and
default frequencies. See, for instance, [1] for an early but influential study of this empirical
fact.

The above model is not precisely contained in the set-up of Corollary 7.1, because the
recovery rates processes (7.6) are not independent conditional on L (as a result of the
different exposure of Ri to B and J compared to Xi). However, both the Xi and Ri are
independent conditional on B and J , and therefore if FL in the proof of Corollary 7.1 is
replaced by FB ×FJ , the filtration generated by the common factors (a larger filtration
than FL), the result still follows.

In the numerical simulations, we choose the values of µR, βR and σR such that, for
all i = 1, . . . ,N , Ri0 = 0.4, E[li Yi ∣ τ i ≤ T ] ≈ 0.7 and V ar[li Yi ∣ τ i ≤ T ] ≈ 0.16, compared to
Section 6, where the recovery rate is constant at 0.4. In particular, we have µR = −0.25,
βR = 1.5 and σR = 0.9. Also, we assume that ρR = ρ. All other parameters are the same
as in the tests in Sections 4 and 6 (see the paragraphs after (4.1) for the model set-up
and parameter values).

The results in Fig. 4 are presented in the same format as Fig. 3 earlier for the constant
recovery rate. There is clear evidence that the convergence of the variance and mean are
still both of first order in 1/N , where N is the basket size.

Another extension, also proposed in [2], are random factor loadings of the type

Xi
t = Xi

0 + βt + ν W i
t + a(Bt) Bt, t > 0, (7.7)

where a is a given deterministic function and ν2 = 1 − V ar(a(Bt)Bt). This model can
capture contagion effects where, for decreasing a, firm values are more closely correlated
to the common market factor in bad times. Such an extension fits directly in the gen-
eral framework developed earlier in this paper, assuming the technical conditions on the
cumulative density FL hold where needed (see in particular Theorem 2.2).
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Figure 4: Multilevel results for the expected loss in the equity tranche of a CDO basket
consisting of Nk companies, Nk = Mk = 5k, k = 1, . . . ,7, where the recovery rate is
random and given by (7.6). The quantities refer to the standard estimator Zl from
(2.13). A. Variance of a single Monte Carlo sample, Vl together with a predicted trend,
fl, given by (6.2), where β = 1. B. Mean at level l, Zl and a trend, yl, defined by (4.7),
with slope -1. C. Optimal number of simulations, n∗l , calculated according to (6.1) for
k = K = 7. D. Standard deviation of multilevel estimators Gk defined in (2.16) with
chosen upper bound, γ.
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Outlook

We would expect there to be scope to apply the presented nested simulation approach to
a wider range of settings beyond the particular application studied here. An interesting
extension would be to the model from [9], where the analysis requires further tools ac-
counting especially for the heterogeneity of the basket, resulting in non-exchangeability.
While our motivation comes from credit baskets and some of the later results are specific
to piecewise linear functionals encountered in the valuation of basket credit derivatives,
we hope there to be a wider relevance of the main approach to the simulation of certain
functionals arising in large interacting particle systems and elsewhere.

Acknowledgement: We thank Mike Giles for suggesting the improved estimator, and
two anonymous referees for their helpful suggestions which improved the presentation of
the results.
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A Moment computations

Proof. [of Lemma 5.2] We begin by showing (5.4) and then deduce (5.5) and (5.6). We
have

∣ P (l) − P ∣ ≤ ∣ L(l) −L ∣,
where

L(l) = 1

Nl

Nl

∑
i=1

Yi.

Hence, we get

E∣L[(P (l) − P )4] ≤ E∣L[(L(l) −L)4] = E∣L[(
1

Nl

Nl

∑
i=1

(Yi −L))
4

].

As L is FL-measurable and the Yi are independent and identically distributed given FL
with E∣L[Yi −L] = 0, we have

E∣L[(L(l) −L)4] = 1

N4
l

E∣L[
Nl

∑
i=1

(Yi −L)4 + 6∑
i≠j

(Yi −L)2(Yj −L)2]

= 1

N3
l

((1 −L)4L +L4(1 −L)) + 3(Nl − 1)
N3
l

((1 −L)2L +L2(1 −L))2

= 3L2(1 −L)2

N2
l

+ L(1 −L)(1 − 6L(1 −L))
N3
l

.

Using the fact that 0 ≤ L(1 −L) ≤ 1/4 we have the required bound in (5.4).
For (5.5), observe that there are many ways of estimating this fourth moment; we

choose the following

(P (l) − P (l−1))4 = ((P (l) − P ) − (P (l−1) − P ))
4

≤ 2 ((P (l) − P )4 + (P (l−1) − P )4) + 12(P (l) − P )2(P (l−1) − P )2.

Therefore, using Cauchy-Schwarz on the last term and applying (5.4) we have

E∣L[(P (l) − P (l−1))4] ≤ 2 (E∣L[(P (l) − P )4] +E∣L[(P (l−1) − P )4])

+ 12 E∣L[(P (l) − P )4]1/2 E∣L[(P (l−1) − P )4]1/2

≤ 7

8N2
l

+ 7

8N2
l−1

+ 42

8NlNl−1
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as required to obtain (5.5).
Finally, (5.6) follows from

E∣L[(P (l) − P
(l−1))4] = E∣L[(

1

M

M

∑
m=1

(P (l) − P (l−1)
m ))

4

]

≤ E∣L[
1

M

M

∑
m=1

(P (l) − P (l−1))4]

= E∣L[(P (l) − P (l−1))4],

and an application of (5.5).
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