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ABsTRACT. We study a finite system of diffusions on the half-line, absorbed when they
hit zero, with a correlation effect that is controlled by the proportion of the processes that
have been absorbed. As the number of processes in the system becomes large, the empirical
measure of the population converges to the solution of a non-linear stochastic heat equation

with Dirichlet boundary condition — in the simplest case:

dl/t((b) = %Vt(agm(ﬁ)dt + p(Lt)ut(aqu)th, Lt =1- 1/15(].(0,00))7

for ¢ > 0, with W a standard Brownian motion and test functions ¢ vanishing at the ori-
gin. The diffusion coefficients are allowed to have finitely many discontinuities (piecewise
Lipschitz) and we prove pathwise uniqueness of solutions to the limiting stochastic PDE.
As a corollary we obtain a representation of the limit as the unique solution to a stochas-
tic McKean-Vlasov problem. Our techniques involve energy estimation in the dual of the
first Sobolev space, which connects the regularity of solutions to their boundary behaviour,
and tightness calculations in the Skorokhod M1 topology defined for distribution-valued pro-
cesses, which exploits the monotonicity of the loss process L. The motivation for this model

comes from the analysis of large portfolio credit problems in finance.
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1. Introduction

Motivation and framework. We prove the weak convergence of a system of interacting
diffusions to the unique solution of a non-linear stochastic PDE on the half-line. In our model
the diffusions are absorbed at the origin and the proportion of absorbed particles influences
the diffusion coefficients, which leads to a description of the limiting system as the solution to
a stochastic McKean—Vlasov problem. The motivation for studying the model in this paper is
to extend the mathematical framework of |8] for the pricing of large portfolio credit derivatives
to include processes whose dynamics are driven by statistics of the entire population. With
more complicated interaction terms, the methods in [8] are no longer tractable and so we
require new techniques. In particular, it is very difficult to analyse the correlation between
pairs of particles in our model (an essential ingredient of [8]) and, from a practical perspective,
it is desirable to allow the coefficients of the diffusions to be discontinuous, which presents a
further complication.

Portfolio credit derivatives (such as the collateralised debt obligation — CDO) have a pay-
off structure which depends on the total notional value of the loss due to default of entities in
the portfolio across the lifetime of the product, after a process of partial asset recovery takes
place. We will not explore the financial details of these contracts (see [48]), but two important
effects the modeller must capture are the intensity of defaults and the tendency for defaults to
occur simultaneously. Common modelling approaches include copula-based models, in which
the joint probability of default over a fixed time period is modelled directly, and reduced-form
models, in which the default rates are modelled as correlated stochastic processes. The model
we will consider is a structural model: default times are represented as the threshold hitting
times of a collection of correlated stochastic processes. These models were introduced in the
context of portfolio derivatives by [31] and [55], and their origins trace back to [5] and [44] for
single-name derivatives.

Our general framework is as follows. Suppose we have a collection of N > 1 defaultable
entities and a fixed finite time horizon T > 0. Assign the i*® entity a risk process, X»V, called
the distance-to-default process, with {Xé’N}lgiSN chosen to be positive independent random
variables supported on (0,00) with common law vg. Default of the i*" entity is modelled as

the first hitting time of zero of the distance-to-default process:
(1.1) N = inf{t > 0: X;" <0},

The empirical and loss processes then track the spatial evolution of the surviving particles
and the proportion of killed particles; defined respectively as

1 N 1 N
(1.2) Vt = N 1t<Ti,N5XZ,N, Lt = N 1Ti,N§t.
=1 =1

Here, §, denotes the Dirac delta measure of the point € R. The empirical process takes

values in the sub-probability measures on R and the loss process takes values in R. For S C R,
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v} (S) is simply the proportion of the diffusions that take values in S at time ¢ that have not

yet hit the origin by time ¢:

_#{lgiSN:XZ’NGSandt<Ti’N}

v (9) N ,

hence we have the relationship
LY =1 -0, 00).

In practice, once the dynamics of X*" have been specified, the model could be used to
generate realisations of LY from which portfolio credit derivatives (options on LY) could be
priced using Monte Carlo routines. Instead, we will approximate LY by its limit as N — oo.
This is known as a large portfolio approximation, an idea first introduced in [51] and now
found in several modern frameworks for copula-based models [13, 27, 43] and reduced-form
models |22, 23, 45]. We will return to the question of how this approximation is generated in
practice after a precise description of the limiting objects and mode of convergence.

Model specification. We will model the processes { X “N H<i<n as correlated diffusions with

parameters that are functions of the current proportional loss:

(13) XN = Xjt [ s, XV LN )as+ [ ols, XiV)pls, Y)W
0 0

t
4 / o(s, XN)(1 = p(s, LV )?) s aw.
0

Here, W, W', W?2, ... are independent standard Brownian motions and the precise conditions
on the coefficients are given in Assumption 2.1. In particular we assume p is piecewise Lipschitz
with finitely many discontinuities in the loss variable £ — p(s, ). (It is easy, but perhaps not
immediate, to show that this collection of processes exists, see Remark 2.2.)

In [8] this model is analysed for the case when the coefficients are constants and it is shown
that the sequence of empirical process, (vV) N>1, converges to a stochastic limit which can
be characterised as the unique solution to a heat equation with constant coefficients and a
random transport term driven by the systemic Brownian motion W [8, Thm. 1.1]. However,
numerical experiments show that the constant coefficient model is too simple to adequately
capture the traded prices of CDOs across all tranches simultaneously |8, Sct. 5]. This problem
is common for Gaussian models — the tails of the risk processes are too light to produce large
losses and so a large correlation parameter is required to generate scenarios in which many
defaults occur over a given time horizon [26, 48]. Consequently, different products on the same
underlying portfolio may produce different correlation parameters when calibrated to market
prices. This phenomenon is known as correlation skew (see Figure 1.1).

There is a large literature addressing the drawbacks of Gaussian credit models. Examples
include the addition of jump processes and heavy-tailed distributions [25, 41, 54], stochastic
parameters and inhomogeneity [2, 7| and contagion effects [17, 28, 29]. Close relatives to

our framework include [6], in which a jump process is added to the systemic factor, but in
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Figure 1.1. Implied correlation for each tranche for the data set from [8, Figure 2, 7 year
maturity]. With vy, p and o fixed in the constant coefficient model, the implied correlation
for a given tranche is the value of the correlation parameter required to give a model spread

equal to the market spread for that tranche. This is an example of correlation skew.

a discretised version of the system, and [32], in which the particles are taken to be general
diffusions. In [1] the constant coefficient model is studied on the unit interval with absorbing
boundaries at 0 and 1 and with an additional multiplicative killing rate as a model for mortgage
pools.

Our present approach is inspired by Figure 1.1. Suppose u and o are fixed constants and
p is only a function of ¢. If ¢ — p(¢) was piecewise constant across intervals corresponding
to the CDO tranches in Figure 1.1, then an obvious strategy for calibrating p to the market
prices is to calibrate the first level of p to the traded spread of the most junior tranche, fix this
value, repeat the calibration procedure for the next most junior tranche spread and continue
for all tranches. It is therefore a natural assumption to allow the diffusion coefficients in (1.3)
to have finitely many discontinuities. Piecewise Lipschitz coefficients encompass this class of
models whilst giving an analytically tractable system.

Main results. The dynamics of an individual distance-to-default process, X“V, are con-
trolled by the population behaviour, hence we have an example of a McKean—Vlasov system
— see [50] for an overview. Some applications of these systems include the modelling of large
collections of neurons and threshold hitting times for membrane potential levels in mathe-
matical neuroscience [21, 42|, the modelling of a large number of non-cooperative agents in
mean-field games [10, 12], filtering theory [3, 16] and mathematical genetics [18]. Examples in
portfolio credit modelling include [17, 49] in which systems with contagion effects are analysed
under their large population limits.

As N — oo, we will find that the influence of the idiosyncratic Brownian drivers, W', W2, ...,
averages-out to a deterministic effect, but that the randomness due to the systemic Brownian
motion, W, remains present. Hence the system must be characterised as the pair (vV, W),
and we will follow an established strategy to demonstrate the convergence in law of this pair
and to characterise the limiting law:
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(i) Prove tightness of (v, W)x>1 (in a suitable topology),
(i)
)
)

(iii
(iv) Conclude all limiting laws agree, and hence that we have convergence in law.

Characterise the limit points as weak solutions of a non-linear evolution equation,

Prove uniqueness of solutions for this equation,

The mathematical challenge comes from the interaction of the individuals through the
boundary behaviour of the population and the discontinuities in the diffusion coefficients. A
similar model has recently been studied where the particles interact through the quantiles of
the empirical measure [15], however there is no general uniqueness theory for this problem. For
a model without systemic noise there is a uniqueness theory in [35]. Discontinuous coefficients
have been considered in [14], but only on the whole space and in the deterministic setting. In
our model, parameter discontinuities are allowed because the limiting realisations of the loss
process are strictly increasing (Proposition 4.6). This implies the infinite system spends a null
set of time at points where the discontinuities in the coefficients prevent the application of the
continuous mapping theorem (Corollary 5.7). Stochastic PDEs of McKean—-Vlasov type are
popular tools in the analysis of mean-field games with common noise [11, 36]. In [19, 20] a
system of diffusions on the half-line is studied in which each particle undergoes a proportional
jump towards zero whenever any of the particles hits the absorbing boundary at zero. The
purpose of the model is to describe the self-excitatory behaviour of a large collection of neurons.
For small values of the feedback parameter, existence and uniqueness theorems hold for the
limiting system. It is shown in [9], however, that for large values of the feedback parameter the
limiting system must blow-up (in the sense that no continuous solutions exist) and a complete
existence and uniqueness theory in this case remains a challenge.

The topology we will use for establishing tightness of the sequence of laws of (v, W) n>1
is the product topology (D, M1) x (Cgr, U), where (D, M1) is the M1 topological space of
distribution-valued cadlag processes on [0, 7], introduced in [40], and (Cg, U) is the space of
real-valued continuous functions on [0, 7] with the topology of uniform convergence. (Through-
out, . denotes the space of rapidly decreasing functions and .’ the space of tempered distri-
butions.) It will not be necessary to explain the full details of the construction of (D g+, M1),
as the proof Theorem 1.1 uses only Theorem 3.2 and Proposition 2.7 of [40], together with
facts about the classical M1 toplogy on Dgr. The M1 topology is helpful because monotone
real-valued processes are automatically tight in (Dg,M1), a fact which has been exploited
in many other applications (see [40] for references). In our infinite-dimensional setting, the
decomposition trick in [40, Prop. 4.2| enables us to exploit the monotonicity of the loss pro-
cess in proving tightness of the empirical process. Tightness on the product space implies the

existence of subsequential limit points, whereby we recover:

Theorem 1.1 (Existence). Let (v, W) realise a limiting law of the sequence (v¥, W)n>1.

Then v is a continuous process taking values in the sub-probability measures and satisfies the
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Figure 1.2. Heat plot for the solution, v, of the limit SPDE for a fixed sample path of
W. Time is plotted on the horizontal axis, space on the vertical axis and the value of a pixel
represents the (scaled) intensity of v at that space-time point (blue for level zero increasing
to dark red for maximal value). The initial condition is a step function, x =0, 0 =1 and p
is given above. Markers are added to show the times at which the loss process, L, reaches
levels 1/5, 2/5, 3/5 and 4/5. Notice the corresponding three periods of smooth heat flow
between the two periods of highly correlated motion. (Figure produced using the algorithm

outlined in Section 10.)

regularity conditions of Assumption 2.8 and the limit SPDE:

t t
(@) = 0(0) + [ s LDe0s + 5 [ in(oH s, )00

t
+/ VS(U(S7 ')p(S, Ls)8x¢)dW87 with Ly =1— Vt(oa OO),
0

for every t € [0,T] and ¢ € C** := {¢ € .7 : $(0) = 0}, with probability 1. Furthermore, if
the limit point is attained along the subsequence (V™Vk, W)g>1, then (LN, W)k>1 converges in
law to (L, W) on the product space (Dr,M1) x (Cg, U).

The limit SPDE is a non-linear heat equation with stochastic transport term driven by the
systemic Brownian motion (see Figure 1.2 for an example with an exaggerated correlation
change), and the space of test functions, C*s, encodes the Dirichlet boundary conditions. In
the limit, the idiosyncratic noise averages-out to produce the diffusive evolution equation. The
intuition for this effect is explained easily in Section 3, however a full proof of Theorem 1.1
requires more technical details and is given in Section 5. Several estimates involving purely
probabilistic arguments are presented in Section 4, where a key result is Proposition 4.6 which
shows (in an asymptotic sense) that over any non-zero time interval the system must lose a

non-zero proportion of mass, and hence any limiting loss process is strictly increasing.
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With Theorem 1.1 established, demonstrating the full weak convergence of (vV, W)y>1 is

a matter of proving uniqueness of solutions to the limit SPDE:

Theorem 1.2 (Uniqueness/Law of large numbers). Let vy satisfy Assumption 2.1. Suppose
that (v, W) realises a limiting law of (v, W)n>1 and that ¥ satisfies Assumption 2.3. If v
and U solve the limit SPDE in Theorem 1.1 with respect to W and vy, then with probability 1

v (S) = (9), for every t € [0,t] and Borel measurable S C R.

Hence there ezists a unique law of a solution to the limit SPDE on (D, M1) x (Cr,U) and
(I/N, W)n>1 converges weakly to this law. Furthermore, if (v, W) realises the unique law, then
(LN, W)N>1 converges in law to (L, W) on (Dg,M1) x (Cg,U), where L; = 1 — 14(0, 00).

Remark 1.3 (Strong solutions). Theorem 1.2 shows that all weak solutions realise limiting
laws, and amongst limiting laws we have pathwise uniqueness. Following [33, Cor. 5.3.23],
we deduce that strong solutions exist on a sufficiently rich probability space, whereby v (and
hence L) is adapted to the filtration generated by W.

Remark 1.4. (Density) In Corollary 7.4 we show that v has a density process V; € L?(0, 00)
such that (@) = [;° ¢ x)dz for all ¢ € L?(0,00) and t € [0,T]. Tt is then instructive to
write the hmlt SPDE formally as

Vi(z) /a ))ds + = /am s, )Va(-))ds

—/O p(s, L)y (o (s, )Va(-)) AW, with V;(0) = 0.

To prove Theorem 1.2 (Section 7) we use the kernel smoothing method from [8], which is a
technique for mollifying potentially exotic solutions to the limit SPDE in order to work with
smooth tractable objects, at the expense of a small approximation error. The technique was
used on the whole space in [37, 38]. In [8] the approximation error is controlled in the space
L?(0,00) and there the key quantity to control is the second moment of the mass near the
origin: E14(0,¢)?, for a candidate solution v. This approach succeeds because the quantity
can be written in terms of the law of a two-dimensional Brownian motion in a wedge, for
which explicit formulae are available. In that case the kernel smoothing method can be used
to give a precise description of the regularity of the solution [39]. As the particle interactions
in our model are more complicated, however, these explicit formula are no longer available.
Although we are able to show that the unique solution to the limit SPDE has a density in
L? (Corollary 7.4), which is an auxiliary result towards Theorem 1.2, that method cannot be
used to fully establish uniqueness as it relies on a crude upper bound for v which neglects the
effect of the absorbing boundary (Remark 7.5). Our solution to this problem is to adapt the
kernel smoothing method to the dual of the first Sobolev space, which then only requires us
to control the first moment Ev;(0,¢) (Section 6). This is an easier quantity to estimate as
only individual particles need to be studied and not pairs of particles, hence we do not need

to consider the complicated correlation between particles (see Propositions 4.4 and 5.6).
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We must also deal with discontinuities in the coefficients of the limit SPDE and here the
strict monotonicity of the limiting loss processes is again important. Our strategy is to prove
uniqueness up to the first time the level of the loss reaches a discontinuity point of the co-
efficients, whereby continuity allows us to propagate the argument onto the next such time
interval. With a strictly increasing loss process and only finitely many discontinuities, this
argument terminates after finitely many iterations, whereby we have uniqueness on the whole

time horizon [0, 7.

Remark 1.5 (Pathological p). We cannot choose p arbitrarily and expect Theorem 1.2 to hold.
As an example, let © =0, c =1 and

g~ !, if £ = kq™" for some prime ¢, n € Nand 1<k<qg"—1

p(t,l) = .
0, otherwise.

For N = ¢", LV is supported on {kq_”}0<k<qn, hence vV behaves as the basic constant

. n
!, which we denote v|,_,-1. Therefore (17"),>1 converges

correlation system with p = ¢~
weakly to v|,_,~1 as n — 0o, hence there is a distinct limit point for every prime, so weak

convergence fails for this example.

In Section 9 we recast our results as a stochastic McKean-Vlasov problem (with randomness

from W) and this shows that v can be written as the conditional law of a single tagged particle:

Theorem 1.6 (Stochastic McKean-Vlasov problem). Let (v, W) be a strong solution to the
limit SPDE (Remark 1.8). For any independent Brownian motion, W=, there exists a contin-

uwous real-valued process, X, satisfying

Xy = Xo+ f(f M(5>X37 Ls)ds + f(f O’(S,Xs)p(S, Ls>dWs + ng(S, XS)(l - p(s, I/S)Q)%dvvsL
T =inf{t >0:X; <0}
vt(¢) = E[¢p(Xt)Lier W] and Ly =P(r <t|W).

(Here, Xo has law vy and is independent of all other random variables.) Furthermore, the law
of (X, W) is unique.

Returning to the question of applying our model, regarding a portfolio credit derivative as
an option on the loss process, L, with some payoff function, ¥ : Dg — R, the main practical
question is how to accurately estimate EW(L). This comes in two parts: we must first generate
an approximation to L (through v) to a given level of precision for a fixed Brownian trajectory
and then we must combine such estimates into a random sample. In Section 10 we give an
outline of a discrete-time algorithm for approximating the system and some potential variance
reduction techniques. We leave the tasks of checking the benefits and correctness of these
methods as open problems. A number of potential modifications to the model are also stated,

along with their corresponding mathematical challenges.
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Overview. In Section 2 we state the main technical assumptions on the model parameters
and review their purpose. In Section 3 we derive the evolution equation satisfied by the
empirical measure of the finite system, which gives a heuristic explanation for arriving at the
limit SPDE in Theorem 1.1. In Section 4 several probabilistic estimates are derived for the
finite system and these are applied in Section 5 to give a proof of Theorem 1.1. In Section 6 we
describe the kernel smoothing method, which is the main tool for the proof of Theorem 1.2 in
Section 7. In Section 8 several technical lemmas are presented which are used to in Section 7,
but which are deferred for readability. In Section 9 we use our results to give a short proof of
Theorem 1.6. In Section 10 we outline an algorithm for simulating the solution to the limit
SPDE and discuss open problems relating to this and to potential model extensions.

2. Notation and assumptions

The purpose of this section is to lay out the technical definitions omitted in the introduction

and to explain their purpose.

Assumption 2.1 (Coefficient assumptions). Let p: [0,7] x R x [0,1] = R, 0 : [0,T] xR —
[0,00) and p : [0,7] x [0,1] — [0,1) be the coefficients in (1.3) and vy be the common law of
the initial values of the distance-to-default processes introduced above (1.1). We assume that
we have a sufficient large constant, C' € (1, 00), such that all the following hold:

(i) (Initial condition) The probability measure vy is supported on (0,00), has a density
Vo € L?(0,00) and satisfies

(A, 00) = o(exp{—al}), as A — 400

for every o > 0. (Note: Vo € L?(0, 00) implies 14(0,¢) = O(e'/?) = o(1) as € — 0.)
(ii) (Spatial regularity) For all fixed ¢ € [0,T] and ¢ € [0,1], u(t,-,£),0(t, ) € C*(R) with

Dl . 0)], |00t 2)| < C

forall t € [0,T),z € R, £€[0,1] and n =0,1,2,
(iii) (Non-degeneracy) For all t € [0,T], x € R, £ € [0, 1]

o(t,x)>C 1 >0, 0<p(t,0)<1-C <1,
(iv) (Piecewise Lipschitz in loss) There exists 0 = 6y < 0; < --- < 0 = 1 such that
|,u(t,m,€) - ,U(t,.f,gﬂ, |p(t>€) - p(t>g>| < CW - Z|7

whenever ¢t € [0,T], € R and both ¢,7 € [;_1,0;) for some i € {1,2,...,k},
(v) (Integral constraint) supycjo 1 IS 10 (s, y)|dy < oo.

Remark 2.2 (X*N well defined). To see that we can find {X*V};<;<n satisfying (1.3) notice
that initially L = 0, so we can find N diffusions satisfying (1.3) up to the first time one
of the diffusions hits the origin (i.e. with coefficients of the form g(¢,2,0)) — notice that
the coefficients are globally Lipschitz by (ii) of Assumption 2.1, so standard diffusion theory
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applies. At this stopping time L = 1/N, and so the process can be restarted as a diffusion
with coefficients g(¢,2,1/N). This gives a solution up to the first time two particles have hit

the origin. Repeating this argument gives the construction of {X*™};<;<y.

Condition (i) ensures that limiting realisations of the system satisfy the regularity conditions
in Assumption 2.3, as required for Theorem 1.1. The tail assumption and boundary behaviour
of 1y are used in Proposition 4.4 and 4.5 to show that vV inherits the corresponding properties
at times t > 0, and this is transferred to limit points by Proposition 5.6.

The boundedness assumption on the coefficients, given by the case n = 0 in condition (ii),
is used many times throughout this paper. The cases n = 1 and 2 are used in Lemma 4.1
and 4.2 to relate the law of X to that of a standard Brownian motion, and in Lemma 8.1
and 8.2 to interchange coefficients and measures in the proof of Theorem 1.2.

Condition (iii) implies that there is always a diffusive effect acting on the system, and this
ensures that the limiting system does not become degenerate. If ¢ = 0 or p = 1 then the
particles are completely dependent and move according to a drift term given by p and W.
The assumption that p is bounded away from 1 is used directly in the proof of Theorem 1.2
in (7.2) and (7.7).

Condition (iv) is the main motivating assumption, which we have discussed at length in
Section 1.

Condition (v) is purely a technical assumption to ensure that the drift coefficient, D, in
Lemma 4.1 is uniformly bounded by a deterministic constant.

Finally, we will remark on the specific form of o = o(t,x) and p = p(t,¢). From (1.3) we

can write the dynamics of a single particle as
dx;N = p(t, XPN, LY)dt + o(t, XN )d By,

where B’ is a Brownian motion. Although the {B?}; are coupled through LY, this represen-
tation allows us to relate the law of an individual particle to a standard Brownian motion as
in Lemmas 4.1 and 4.2, since p is bounded and ¢ is independent of LY. A second advantage
of the taking o and p in this form is that the pairwise correlation between particles is purely
a function of p(t, L), and so is the same for all pairs. This is explicitly made use of in the
construction of the time-change defined in (4.8), and there it is again important that the cor-
relation function is bounded strictly away from 1, so that the system can be compared to a
standard multi-dimensional Brownian motion.

Below are the constraints we place on solutions to the limit SPDE in Theorem 1.2 to ensure
that we have uniqueness. As Theorem 1.1 indicates, these conditions are natural in the sense
that all limit points of the finite system satisfy them.

Assumption 2.3 (Regularity conditions). Let v be a cadlag process taking values in the
space of sub-probability measures on R. The regularity conditions on v are
(i) (Loss function) The process defined by L; := 1 — 14(0, 00) is non-decreasing at all times

and is strictly increasing when L; < 1,
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(ii) (Support) For every ¢t € [0, 7], v4 is supported on [0, 00),
(iii) (Exponential tails) For every a > 0

T
E/ vi(\, +o00)dt = o(e™ ), as A — 00,
0

(iv) (Boundary decay) There exists § > 0 such that

T
E/ (0, e)dt = O(e15), ase — 0,
0

(v) (Spatial concentration) There exists C' > 0 and 6 > 0 such that

T
E/ lvs(a, b))?dt < C|b — al’, for all a < b.
0

It is essential that limit points satisfy condition (i) in order to apply the continuous mapping
theorem to recover the limit SPDE for limit points (Corollary 5.7). There, strict monotonicity
ensures that there are only finitely many ¢ such that L; = 0; for some ¢, and hence that this
set of times is negligible in the limit. Knowing that L is monotone also allows us to split [0, 7]
into consecutive intervals such that in the #* interval L; € [0;,0i11), and this argument is
used in the uniqueness proof in Section 7 (Case 2).

N is supported on [0,00) by construction. However, it is

Condition (ii) is natural since v
also convenient to take our test functions, C**') to be supported on R, hence (ii) is needed
to rule out pathological solutions that have support on the negative half-line and that would
otherwise break the uniqueness claim.

Condition (iii) is used several times throughout Section 8 to check various integrability
requirements. It is also used in Lemma 8.8 to relate v and L via the H~! norm.

Condition (iv) is the key boundary estimate discussed in Section 1. Its main use is in
Lemma 7.6.

Condition (v) guarantees that solutions cannot become too concentrated in spatial locations.

This used to interchange coefficients and measures in Lemma 8.1 and 8.2.

3. Dynamics of the finite particle system

This section introduces the empirical process approximation to the limit SPDE from The-
orem 1.1 and explains the intuition behind the convergence of (v)y>;. Throughout, we
will drop the dependence of the coefficients on the time, space and loss variables and use the

following short-hand when it is safe to do so:

Remark 3.1 (Short-hand notation). For fixed N, when there is no confusion, we may use the

functional notation

e = M(t7 ’ 7L1{,V)7 oy = U(ta ‘)7 Pt = P(taLi\[)
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Proposition 3.2 (Finite evolution equation). For every N > 1, t € [0,T] and ¢ € C***
t

t 1 t
¥ (0) = @)+ [ ¥ Gudods+ 5 [ v (R00)s + [ ¥ @pdio)aW, + 1Y (6),

where we have the idiosyncratic driver

Z / 5, XIV)(L = pls, LYY 0, 0(X0N )L, - o dWVL.

Proof. Apply Ito’s formula to ¢(X*") to obtain

7 % ! i 1 ! %
('Zs(Xt;\]Zi»N) = (z)(XU,N) + /0 (M58$¢) (Xs7N)1s<Tide8 + 2/0 (U§a$$¢) (XS7N)1S<Ti’NdS

t t
. 1 . .
+ [ 0.0 (XN i dWe [ (01 = 2)20,0) (X3 <rum iV
0 0
If ¢ € O, then
N N
(3.1) ¢(XZATi7N) =d( Xy )yrin
Substituting this expression into the left-hand side above, summing over i € {1,2,... N} and
multiplying by N~! gives the result. O
Remark 3.3. We need to ensure that our test functions satisfy ¢(0) = 0 so that equation (3.1)
is valid.

Since the idiosyncratic noise, IV, is a sum of martingales with zero covariation, the process
converges to zero in the limit as N — oco. This explains why we arrive at the limit SPDE in
Theorem 1.1.

Proposition 3.4 (Vanishing idiosyncratic noise). For every ¢ € Ot
E sup [IV(9)]° = 0:0]% - O(N7Y),  as N — oo.
t€[0,T]
Proof. Since o and 0,¢ are bounded, the result follows from Doob’s martingale inequality

and the fact that

1 N

Y@= 7z 20 [ o5 XEYP0 = plo L 0,0(XE s
=1

g

The whole space process. In the proceeding sections it will be useful to work with the

process defined by

(3.2) AR NdezN,
which is a probability-measure valued processes on the whole of R. Clearly it is the case that

(3.3) vV(S) <o]N(S), forall N>1,t€[0,7] and S C R.
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Since 7V

is not affected by the absorbing boundary, from the work in Proposition 3.2 it
follows that 7V satisfies the same evolution equation as v, but on the whole space. This is

encoded through the test functions:

Proposition 3.5 (Evolution of V). For every N > 1,t € [0,T] and ¢ € .¥

—N N ! ~N 1 ! ~N(_ 2 ! ~N TN
20 =)+ [ o deots+ 5 [ A (0o)ds+ [ oY oo+ 1Y 6),

_ 1 Nt , L _ _
@)= 5 3 [ ol X3 = ol L)) 0,00 W
=1

4. Probabilistic estimates

Here we collect the main probabilistic estimates used in later proofs. The reader may wish
to skip this section and use it only as a reference. We begin by noting the following simple
result, which is just a consequence of the fact that { XV}, are identically distributed: for any
measurable S CR, N > 1 and ¢t € [0,7]

N
1
(41) EVtN(S) = N ZE[]'XZ’NES;t<7—i7N] = P(th’N e Sit< Tl’N).
=1

Under P, X' is a diffusion and with Lemmas 4.1 and 4.2 we are able to estimate (4.1)
for relevant choices of S by relating the law of X1V to that of standard Brownian motion.
Specifically, in Corollary 4.3 and Propositions 4.4 and 4.5 we show that vV satisfies the cor-
responding estimates to those in Assumption 2.3 (iii), (iv) and (v), which is of direct use in
Proposition 5.6 when we take a limit as N — oo. In Propositions 4.6 and 4.7 we prove two
estimates for which (4.1) is not helpful. These results require us to express the quantities of in-
terest in terms of independent particles to show that certain events concerning the increments
in the loss process are asymptotically negligible.

Lemma 4.1 (Scale transformation). Define ¢ : [0,7] x R — R by

_ (" dy
)= [ 5%

and Zy = C(t, X)), Then sgn(Z,) = sgn(X,"™) and dZ, = Dydt + dB, where B is the
Brownian motion

t t
Bi= [ oo )W+ [ (1= (s, 23RV
0 0

and the drift coefficient, D, is given by
1,N

X
uo — 0o N t Qo
Dy = o2 - (thtl >L£V)_/ ;2 (tvy)dya
0

which is uniformly bounded (in N and t).

Proof. Straightforward application of 1t6’s formula coupled with Assumption 2.1). O
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Lemma 4.2 (Removing drift). For every § € (0,1), there exists c5 > 0 such that
P(th’N €St <) < esFi(C(t, 9))°, for every measurable S C R,

where F} is the marginal low of a killed Brownian motion ot time t with initial distribution
vo 0 ((0,-)! and ¢ is as defined in Lemma 4.1. Likewise, if F is the law of the Brownian

motion without killing ot the origin and with the same initial distribution

P(th’N € 8) < esFy(¢(t, S))°, for every measurable S C R.
Proof. Let Z be as in Lemma 4.1, then 71% is also the first hitting time, 7%, of 0 by Z so
(4.2) P(X"N € Sit < VM) = P(Z, € ((t,9);t < T7).

Apply Girsanov’s Theorem with the change of measure

t t
dQ‘ :exp{—/ DsdBS—l/ Dzds},
dP |, 0 2 /o

then under Q, Z is a standard Brownian motion with Zy = C(O,X&’N), and, for any F € F;

1

and p_1 + g~ =1, Holder’s inequality gives

1

il 1
P(E) = Eq[Z; '15] < Eq[Z, "|» Q(E)*
1—piL 1 b, 1 1
—Ep[2] "] Q(E)7 = exp{C, | D2s}Q(E)1 < C,Q(E)s,
0
for some constant Cy > 0 as D is uniformly bounded. Applying this bound to (4.2) gives
1,N 1,N Zye :
P(X,"" € S;t<77) <CQ(Zr € ((t,9);t <1%)a = CyFy(S) .

The result is then complete by taking § = ¢~!. The case involving F follows by dropping the
dependence on {t < 7V} O

The following result is a simple consequence of Lemma 4.2 and controls the expected mass

concentrated in an interval.

Corollary 4.3 (Spatial concentration). For every 6 € (0,1) there exists cs > 0 such that
T T
E/ v (a,b)dt < E/ 7 (a,b)dt < c5(b—a)°, for alla < b and N > 1.
0 0

Proof. With F as in Lemma 4.2

o rb T — T 2
Fi((a,b) :/0 / \/;?exp{ - (C(zg’o))}da:yg(d:cg) < (2rt)"V2(b — a),

and then the result is immediate from Lemma 4.2 since t — ¢

—0/2 is integrable at the origin. [
Boundary estimate. A sharper application of Lemma 4.2 gives control of the concentration
of mass near the origin. Notice the stronger rate of convergence due to the absorption at the

boundary:
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Proposition 4.4 (Boundary estimate). There exists 5 > 0 such that as e — 0
T
Ev)N(0,¢) = t*%O(EH'B) and E/ vV (0,e)dt = O(e'7)
0

where the O’s are uniform in t € [0,T] and N > 1.

Proof. Let F be as in Lemma 4.2. The heat kernel for a Brownian motion absorbed at the

origin is

(4.3)  Gi(xg,x) = (27rt)_% [exp{—(%;txoy} - exp{—@—;txoy}], for xg,z,t > 0.

By using the bounds Gy(zq,z) < (2rt)~Y/2 and

which follows from the simple estimate 1 — e™* < z, for an arbitrary function f = f(e) we
have, writing 7y := vy o {(0, -)_1 that

e+f(e _ 2
Fi((0,e)) < it 2 / / o(dxo)dz + c1t™ 2/ / xxoexp{ M}ﬂo(dazo)dm
+f 21

/:L‘dx / x()ﬂ'() daj()

where ¢; > 0 is a numerical constant. By Assumption 2.1(i) we have a constant co > 0 such
that

< clt*%sﬂo(o,s + f(e)) + ait™ 3 eXp

F((0,¢)) < ext™2ew(0, e + f(€))) + et~ 22 exp{—f(e)?/2t}.
Since the function
u— u “exp{—p5/u}, foru>0,0,8 >0

is maximised at u = 3/«, we have the bound
Fo((0,€)) < est™2e{u0(0, ea(e + f(£))) +ef ()2}

Therefore taking f(e) = £!/3 completes the result since vy(0,z) = O(z/?) as & — 0 (recall
Assumption 2.1(i)). O

Tail estimate. A similar analysis applies for the decay of the mass that escapes to infinity.
Proposition 4.5 (Tail estimate). For every a > 0, as A — 400
EvN (), 00) = o(exp{—al}), uniformly in N > 1 and t € [0,T].

Proof. Working with F' from Lemma 4.2 and splitting the range of integration at \/2 gives
2

A—} + mo(A/2, 50),

Fil0oo) = [T P(B > AlBo = o)m(de) < et Fexp { -

where T = 19 0 ((0,-)L. By the conditions of Assumption 2.1, m9(A/2,00) = o(e~*}), so

Fi((\, ) < et zem N o(e™ ) < cl{t*%e*)‘Q/t}efAQ/T + o(e™), as A — 00,
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for every a > 0. The result follows since ¢ — t2e M/t s uniformly bounded for A >1. O

Loss increment estimate. So far the probabilistic estimates we have seen are consequences
of the behaviour of the first moment of the diffusion processes. The next two estimates require
knowledge of the correlation between particles and so are harder to prove. Heuristically, the
first result shows that over any non-zero time interval a non-zero proportion of particles hit the
absorbing boundary. Later in Proposition 5.6 this result will directly imply that limiting loss
functions are strictly increasing whenever there is a non-zero proportion of mass remaining in

the system.

Proposition 4.6 (Asymptotic loss increment). For all t € [0,T), h > 0 (such thatt + h €
[0,7]) and r < 1
lim limsup P(LyY, — LY < 6, LY <r) = 0.

=0 Nooo
Proof. Begin by noticing that, for any a,b > 0, if LY < r and vV (a,o0) < b, then v{¥(0,a) >
1 —r —b. By applying Markov’s inequality and Proposition 4.5 we get the bound
P(LY, — LY <6,LY <r) <P(LY, — LY < 6,07 (0,a) >1—7r—b) +P(1} (a,00) > b)
<P(LY, - LY <6,v)(0,a) >1—r—b)+ole®).
Therefore fix b =1—r — ¢, for ¢g = 3(1 —r), to arrive at
(4.4) P(LY, — LY <6,LY <r) <P(L, — LY < 6,v1(0,a) > co) +o(e™).

We now concentrate on the first term in the right-hand side above with IV, ¢t and a fixed.
Let Z denote the random set of indices

I::{lSiSN:XZ’N<aandTi’N>t}.
If vV (0,a) > co, then #Z > Ncg, so by conditioning on Z (which is F;-measurable)

45) PN, - LY <6 (0a)>c0) < > PLY, - LY <l =10)P(I =1)
To:#To>Nco
and

(4.6) P(LY, — LV <8|T =Ty) < P(#{i € Ty : inf X}[} <0} < NO|T = T)

inf
u<h
To estimate the right-hand side of (4.6) take ¢ as in Lemma 4.1 and define Z} := ((t, Xti’N)

for 1 <i < N. By Assumption 2.1, there exists a constant ¢; > 0 such that |Di| < ¢; for all
t. Returning to (4.6), since ((t,x) < 0 if and only if x < 0, we have

P(LY, — LY < 4| =T)) <P#{i €Iy : inf Z},, <0} < NO|T =1Iy).

From the bound Z},, < Z; + cih + Y}, for 0 < u < h, where

) ) t+u t+u )
Y, :=1,+J, = / p(s, LYYdW, + / \/1—p(s, LV)2dW?,,
t

t
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we obtain

P(LY, — LY <8I =T)) <P(#{i € Iy: inf Y! < ~Z! —cih} < NO|T =To).

From Assumption 2.1 |Z}| = O(\XZ’N]), so we have ¢ > 0 such that

(47 P, - LY <HT=T0) <P#{i€Tp: inf Y] < —caa — e} < NO|T = To).

Our next step is to remove the dependence on the process I in (4.7). To do this we split

the probability on the event {sup,<, |lu| > c2a} to get
P(LY, — LY <d|T=To) <PH#{i€Iy: inf J. < —2c0a — o} < NO|T = To)
u<

+ P(sup |Iy]| > c2a|T = 1).
u<h
Since I is a martingale, this final probability is o(1) as a — oo, by Doob’s maximal inequality.
We have reduced the problem far enough to apply a time-change in order to extract the

independence between the particles. To this end, conditioned on the event Z = Z;, define
t+u
(4.8) v(s) :=inf{u >0: / (1 — p(uo, L%)Q)duo = s},
t

then B, where B' := Jz(.), is an R#Z0_valued standard Brownian motion, therefore

P(LY, — LN < 8|T =Ty) <P(#{i € Ty : St Bl < —2cya — ¢} < NO|T = To) + o(1).
v(u)€|0,
By Assumption 2.1, csu < |v(u)| < cqu, hence
P(LY, — LY <d|T=To) <PH#{i€Iy: [inhf/ ]Bg < —2c9a — o} < NO|T = T) + o(1)
u€el0,h/ca

<P(#{i € Lo : By, < —2c2a — c2} < NO|Z = To) + o(1)
1
< P(N S Leic i) < 5) +o(1),
1€Zp
where {¢'}1<;<n is a collection of i.i.d. standard normal random variables and c3,c4,c5 > 0
are further numerical constants. By symmetry, this final probability depends only on #Zy,

hence
1 #1o
N N
P(Liyn— Ly <d|lI=1o) < P(N ; Leic—cs(a+) < 5) +o(1).
Returning to (4.5) we now have
1 #ZLo
P(Li\ih — Liv <0, Viv(07 a) > cp) < Z P(N Z leic_cy(at1) < 5>P(I =Ty) +o(1)

So:#Zo>Nco i=1

1 Nco
< P(N ; Lo eo(arn) < 5) +o(1),
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so the law of large numbers gives

(4.9) limsupP(LY,, — LY <6, LY <r) < Leop(ay<s +o(1),

n—oo

where p(a) := P(¢! < —c5(a + 1)) and where we have substituted back into (4.4). This
inequality holds for all a and 0, with the o(1) term denoting convergence as a — co. We now

choose the free parameter a to be a function of 4, specifically

a(6) == (2loglog(1/5))z.
This guarantees that a(d) — oo as & — oo, but also

57p(a(8)) > 55 ta(d) e O = \}55_1(10g(1/5))_1(10g10g(1/6))1/2 oo

as 0 — 0, where we have used the well-known Gaussian estimate ®(—xz) > (7! —273)¢(x) >
%m_lqﬁ(:n), for @ and ¢ the c.d.f. and p.d.f. of the standard normal distribution. Using this
choice of a(d) in (4.9) completes the result. O

The following is a partial converse of the previous result in that it shows that the system
cannot lose a large amount of mass in a short period of time. It will be used in Proposition 5.1
to verify a sufficient condition for the tightness of (v'V, W)n>1.

Proposition 4.7. For every t € [0,T] and n >0

lim lim sup P(Li\ié LYV >n) =o.

=0 Nooo

Proof. With ¢ > 0 fixed, we have

(4.10)  P(Ls— L =) <P (0,6) > 1/2) + P(Ls — LY > 0,1 (0,¢) < 1/2)
<2 'P(X, N € (0,0) + P(Ls — LYY 20,47 (0,6) < n/2),
<P(LYs— LY >n,v)N(0,6) <n/2) +o(1), ase—0,

where the second line uses Markov’s inequality and (4.1) and the third line uses Proposition 4.4
for t > 0 and Assumption 2.1 (i) for t = 0. Define Z to be the random set of indices

IT:={1<i<N:X">e}

then conditioning on Z gives

(4.11)

P(LYs — LY > n,u]N(0,6) < n/2) < > P(LYs — LY > 0T = To)P(Z = Io).
To:#To>N(1-n/2)

The conditional expectation in the summand can be bounded by

. N
P(LNs— LN >0 =T, <P(#{i € T : inf | XN <0y > 7"|z = 7o)
se(t,t+

<P#{icT: inf (XPV-xpV) < e} > T =),
s€[t,t+0] 2
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With ¢ fixed, define the process U! := ((t + s, Xf;rl\; — XZ’N), then
P(LYs— LY > T =To) <P(#{i € Iy: Seirﬁﬂ Ul < —cye} > %\I =To)
for ¢4 > 0 a numerical constant. As for Z in Lemma 4.1, we have
dU! = Elds + p(t + s, LY ) AWy s + (1 — p(t + s, LY. )2)Y2dWE, , =: Elds + dI, + dJ.,

where E! is uniformly bounded by Assumption 2.1, therefore we can find ¢5 > 0 such that
. N
P(LN;— LN > T =To) < P(#{i € Ty : inf Ji < —es(c—0—a)} 2 7"|I = To)
se|0,

+P(sup |JY > al|T =Ty).
s€[0,4]

By applying the time-change argument from (4.8) and using Markov and Doob’s maximal
inequality we have

. N
P(LY, — LY > 4T = To) < P(#{i € Ty - Jnt BL< —co(e =6 -a)} > 7”) +0(6a72),

where B’ are independent standard Brownian motions, a > 0 and ¢g > 0 is a numerical
constant.

Returning to (4.11) and noticing the the right-hand side above is maximised when Zy =
{1,2,...,N}

N
1 -
P(Li]\fké - Liv 21, VtN(O>E) < 77/2) < P(ﬁ Z 1infS€[0’5] Bi<—cg(e—d—a)} > 77/2> + 0(5(1 2)'
=1

The law of large numbers and the distribution of the minimum of Brownian motion gives

(4.12)  limsupP(LYs — LY > 0,1 (0,e) < n/2) < Lo(—er5-1/2(c—5—a))>n/2 T O(8a™2),

N—oo

provided € — 6 — a > 0, where ® is the normal c.d.f. We now make the choice
£(0) =6%1og(1/6)  and  a(8) = §loglog(1/4),
which guarantees
e(6) =0, 6 YV2(e(6)—6—a(d) w00 and  da(6)2—0,
as 0 — 0. Hence the result follows from (4.10), (4.11) and (4.12). O

5. Tightness of the system and existence of solutions; Proof of Theorem 1.1

We will now use the results from Section 4 to prove Theorem 1.1, which follows directly
from the combination of Propositions 5.5, 5.6 and 5.11. We first establish tightness of the
sequence of the laws of (v, W)xn>1 (Proposition 5.1) using the framework of [40]. The reader
is referred to that article for the technical definitions of the topological spaces used in this

section. Once we have tightness we can then extract limit points of the sequence (v, W) N>1,
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and Propositions 5.3, 5.5 and 5.6 are devoted to recovering the properties of the limiting laws
from the probabilistic properties of the finite system. Finally, the limit points are shown to
satisfy the evolution equation in Theorem 1.1 via a martingale argument (Proposition 5.11)
and care needs to be taken over the discontinuities in the coefficients of the limit SPDE
(Corollary 5.7).

Proposition 5.1 (Tightness). The sequence (v™N)n>1 is tight on the space (D, M1), hence
(vN, W) N>1 is tight on the space (D.g, M1) x (Cr, U), where (Cr, U) is the space of real-valued

continuous paths with the topology of uniform convergence.

Remark 5.2. We note that a version of this result is given in [40, Thm. 4.3] for the case u = 0,

oc=1.

Proof. The second statement follows from the first and the fact that joint tightness is implied
by marginal tightness.

By [40, Thm. 3.2] it suffices to show that (v"(¢))y>1 is tight on (Dg, M1) for every ¢ € 7.
To prove this we verify the conditions of [53, Thm. 12.12.2|, the first of which is trivial because
vV is a sub-probability measure so |[/)¥(¢)| < ||¢|lco. Hence we concentrate on condition (i),

which is implied by [40, Prop. 4.1], therefore we are done if we can find a, b, ¢ > 0 such that

(5-1) P(HR(Vg(ﬁb)a Vg(¢)7 Vt];[(d))) > 77) < Cnia’t?ﬁ - t1|1+b7

forall N >1,n>0and 0 <t <ty <ty <T, where

Hg(z1,29,23) := inf |xg— (1 — Az — Azg| for x1,x9, 23 € R,
A€(0,1)
and if
(5.2) Jim P( sup () — v (D) +  sup [ (8) — v (¢)| = ) =0,
=00 1(0,6) te(T—4,T)

for every n > 0.
With 7V as defined in (3.2), the decomposition in [40, Prop. 4.2] and Markov’s inequality
give
P(Hg (v (¢), v} (0), vy (6)) = ) < 0 "E[(|7) (§) — 7y ()| + 75 () — 713 (9)])]
< 8~ (E|7) (¢) — 71, (0)|" + Elzgy (6) — 7, (9)]).

For any t,s € [0, 7], from Hélder’s inequality we obtain

E|7)(¢) - |4<fZEr¢ PN = o(XEN O < Bl EIXSY v - X0

where ||¢||iip is the Lipschitz constant of ¢. By Assumption 2.1 and the Burkholder-Davis—
Gundy inequality [46, Thm. IV.42.1], the final expectation above is O(|t — s|?) uniformly in
N. Therefore we have (5.1) with a =4 and b = 1.
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Now consider the first supremum in (5.2). By again using the decomposition from [40,

Prop. 4.2], that is ¥ (¢) = ¥ (¢) — ¢(0) L, we have
N N _N _N N
P(sup |15 (¢) —vp (@)l =2 n) < P(sup [ (¢) — g (9)| = 1/2) + P(|9(0)|Ls = n/2).
t€(0,9) t€(0,9)
The first term on the right-hand side vanishes as § — 0 by the same work as for (5.1) and the
second term vanishes by Proposition 4.7. Therefore
P(sup [137(¢) =1 (9)| 2 m) =0, as 6 =0,
te(0,0)

and likewise for P (supye(r—s1) (W (¢) — vV (4)| > 1), so we have (5.2), which completes the
proof. O

Limit points. Tightness of (v, W)y>1 ensures that the sequence is relatively compact [40,
Thm. 3.2], hence every subsequence of (v", W) y>1 has a further subsequence which converges
in law. To avoid possible confusion about multiple distinct limit points, we will denote by
(v*, W) any pair of processes that realises one of these limiting laws. Using = to denote

convergence in law, we have
WV W) = (v, W),  on (D, Ml) x (Cg, U),

as k — oo, for some subsequence (Nj)r>1. Establishing full weak convergence is equivalent to
showing that there is exactly one limiting law.

So far we have that any limiting empirical process, v*, is an element of D /. The following
result recovers v* as a probability-measure-valued process:

Proposition 5.3. Let (v*, W) realise a limiting law. Then v} is a probability measure sup-

ported on [0,00) for every t € [0,T], with probability 1.

Remark 5.4. Technically, what we will show is that, for every ¢, v; agrees with a sub-probability

measure on . and from now on we associate v/ with this measure.

Proof of Proposition 5.8. Take (vk, W) = (v*,W). Fix ¢ € .7, then by [40, Prop. 2.7 (i)]
vNE(¢) = v*(¢) on (Dg,M1). Lemma 13.4.1 of [53] gives

sup [vi*(¢)| = sup [ (¢)l,  onR,

te[0,T) t€[0,T]
therefore the portmanteau theorem [4, Thm. 2.1] gives

P(sup [ (¢)] > [6]loo) < liminf P( sup [ (¢)] > [[¢loc) = 0,
te[0,T] k—oo  “tefo,1]

with the final equality due to v}¥ being a sub-probability measure. (The supremum over ¢
ensures that the following argument holds for all ¢ simultaneously.) By a similar analysis we
have that v/ (¢) is non-negative when ¢ is non-negative and v;(¢) = 0 when ¢ is supported
on (—00,0). Hence, v/ is a positive linear functional on .7, so extends to a positive linear

functional, &, on the space, Cp, of continuous and compactly support function on R with the
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uniform topology. The Riesz representation theorem [47, Thm. 2.14| then implies that, for

every t, there exists a regular Borel measure, (;, such that

&(p) = /Rgb(m)(t(dx) for every ¢ € Cj.

Associating ¢ and v* gives the result. O

Now that it is safe to regard a limit point, vV = v*, as taking values in the sub-probability
measures, it makes sense to introduce the limit loss process as L; := 1 — v (0,00). Of course
we would like to know that LN = L* on (Dg,M1), however the function x ~ 1 is not an
element of ., so [40, Prop. 2.7] does not allow us to deduce this fact from the continuous
mapping theorem. To remedy this we must work slightly harder:

Proposition 5.5 (Convergence of the loss process). Suppose that (v™Nk, W)g>1 converges
weakly to (v*, W) and that L} := 1—v;(0,00). Then (L%, W)i>1 converges weakly to (L*, W)
on (Dgr,M1) x (Cg, U).

Proof. For a contradiction suppose that the weak convergence does not hold. Since t — L is
increasing, LYY € [0,1] and we have Proposition 4.7, the conditions of [53, Thm. 12.12.2] are
satisfied and so (L") n>1 is tight on (Dg, M1), and because marginal tightness implies joint
tightness, (LY, W) ~N>1 is also tight. By taking a further subsequence if needed, assume that
(LN, W)g>1 = (LT, W)g>1 for some LT € Dg.

Notice from [53, Thm. 12.4.1] that the canonical time projection from (Dg, M1) to R is only
continuous at times for which its argument does not jump. That is, for every ¢, m(x) := =z,
is continuous at x € Dy if and only if z;_ = 2;. To this end, define cont(L") = {s € [0,7] :
P(Ll_ = Ll) = 1}, which we know by [4, Sec. 13] is cocountable in [0,7]. For A € N define
o € .7 to be any function satisfying ¢y = 1 on [\, A], ¢, = 0 on (—o0, —2X) U (2X, 00) and
ox € (0,1) otherwise. By [40, Prop. 2.7(1)] v™*(¢y) = v*(#)), and define cont(v*(¢y)) = {s €
0,7] : P(v_(62) = v:(én)) = 1}. Take

T := cont(L") N m cont(v*(dx)),
A=1

which is cocountable (since it is the countable intersection of cocountable sets) and so is dense
in [0, 7.

Since (L™Vk, W) = (LT, W) and T is dense in [0, T}, if (L*, W) and (LT, W) are not equal in
law on (Dg, M1), then it must be the case that not all of the finite-dimensional marginals of
L* and LT on T are equal in law. Tt is no loss of generality to assume that there exists € > 0,
f,9: R — R bounded and Lipschitz and ¢t € T such that

Bf(L{)g(We) + e < lim sup Ef(L)g(Wy).
oo

By Proposition 4.5

E\Livk —(1- VtNk(gZ)A))| =0(e™), uniformly in ¢ and Ny,
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as A — 0o, therefore the Lipschitz property of f gives

Ef(L})g(Wy) + ¢ < limsup EF(1 — v (¢2))g(Ws) + O(e ™),

k—o0

but ¢ € cont(v*(¢y)), so
Ef(L{)g(Wi) +e <Bf(1—v(62)g(Wh) + O(e™).

Since v is a probability measure v} (¢y) — v (R) =1 — L} (recall from Proposition 5.3 that
vf is supported on [0,00)), so taking A\ — oo gives the contradiction Ef(L})g(W;) + ¢ <
Ef(L})g(Wh). O

We are now in a position to verify the first half of Theorem 1.1, which is that any limit

point must satisfy the regularity conditions from Assumption 2.3:

Proposition 5.6 (Regularity conditions). If (v*, W) realises a limiting law of (v, W)n>1,

then v* satisfies Assumption 2.3.

Proof. Firstly, v* takes values in the sub-probability measures by Proposition 5.3, and that
result also gives Assumption 2.3 (ii).

For conditions (iv) and (v) of Assumption 2.3, let I = (x,y) C R be any finite open interval.
For 6 > 0, take any ¢5 € .7 satisfying ¢s = 1 on I, ¢5 = 0 on (—oo,z—0)U(y+9,00) and ¢s €
(0,1) otherwise. Taking (vNk, W) = (v*, W) and noting that [J v (6y)ds = [ vi(dr)ds in
R by [53, Thm. 11.5.1] and that these integrals are uniformly bounded (by T'||¢x||cc = T'), we

have
T

T T
E/ vi(Idt < E/ Vi (¢s)dt = lim E/ vk (g)dt.
0 0 k—o0 0
For both conditions (iv) and (v) we have bounds on the right-hand side which are indepen-
dent of Ny (Propositions 4.3 and 4.4), and then the conditions hold by sending 6 — 0. For
condition (iii) we have y = oo, so ¢5 ¢ .. However, for I = (\,n) with n > 0, the above work
gives
T T T
E/ vi (A, m)dt < lim E/ v (¢x)dt < lim infE/ vVE(N =8, + 8)dt < o(e” A7),
0 —ooJo 0

k—o00
so sending § — 0 and  — oo (using the dominated convergence theorem) gives the result.

It remains to show (i) of Assumption 2.3. First we prove that L* is non-decreasing. By
[4, Sec. 13] there is a (deterministic) cocountable set, T, on which (LY LN+) = (L¥, L*) in
R x R. Sofor s <t¢in T [4, Thm. 2.1] implies

P(Lf — L* < 0) < liminf P(LY* — LY < 0) =0,

k—o0
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and hence L* is non-decreasing on T. But T is dense in [0,7] and L* cadlag, so we conclude

L* is non-decreasing on [0, T]. To deduce the strict monotonicity, Proposition 4.6 implies
P(Li—L;=0,L;<r)= lignP(L;f'F —L:<o,L;<r)
< limsuplimsup P(LYs — LN < 6, LNV < 1) = 0,

§—0 k—oo

whenever r < 1 and sending r 1 1 gives the required result. O

So far we have seen no reason why it is important L* should be strictly increasing whenever
the mass in the system is not completely depleted (L* < 1). The following result is such an
example and shows why this condition is needed to pass to a weak limit. The result will be

applied directly in the next subsection.

Corollary 5.7 (Weak convergence of integrals). Fiz t € [0,T] and ¢ € 7. Let g = g(t,z,{)
be equal to either p(t,z,t), o(t,z)? or o(t,z,0)p(t,£). Define A to be all elements in D o1 that
take values in the sub-probability measures and let B = Do) € Dr. Then the map

(€, 0) € AX B+ /O Es(g(s,,Ls)o(+))ds € R

is continuous (with respect to the product topology on (D.g, M1) x (Do), M1)) at all point
(€,0) which satisfy the conditions of Assumption 2.8. Consequently, if (v, W) = (v*, W)
then

t
/VN"‘(g(Sv-,LN’“ ds:>/ (s,-, LY)o(+))ds on R.
0

Proof. For short-hand we will denote this map W : A x B — R. Suppose that (£,0) — (&,£)
in A x B, then

53) WED - w0 <| [ &latotaoris— [ elatonn o)

+ / 1€s(g(5,-,4s)p — g(s,-,ls)p)|ds =: T + J.
0

We will control I and J separately.

Begin by fixing e > 0 and 6 > 0. Take k = k(J) > 0 sufficiently large so that |g(s, z, £)p(x)| <
0 for all s € [0,T], z € R\ [k, k] and ¢ € [0, 1], which is possible because g is bounded and ¢
is rapidly decreasing. Let 1. be a mollifier and set ¢°(s,z,¢) := (g(s,-,£) * ¥:)(x) € C®(R),
then we have

t t
r<| [ et taons = [ el toonis]| +2 [ syt - oz 0lds.

z€R

Since g°(s,-,¢) € C*(R) and ¢ € .7, ¢°(s,-,£)¢(-) € . so the first term vanishes as & — &.
We can then split the second term as

t t
timsupl <200 [ sup |gf(sat) —glsa )lds + 2 [ sup o)l
E—¢ 0 z€[—2k,2Kk] 0 z€RN[-2K,2k]
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and here the first term vanishes as € — 0 by [24, App. C, Thm. 6] since [—k, k| is compact and
the second term can be guaranteed to be less than 2§ for k sufficiently large. Taking § — 0
gives limsup I = 0.

To deal with J in (5.3), first notice that since £ € A

t
J < 6] /0 suplg(s, @, £) — g(s, @, T,)|ds.

z€R
Define Ty := {s € [0,t] : {; = 0; for some ¢ € {0,1,...,k}}, where we recall Assumption 2.1
condition v. For § > 0, let TS := {s € [0,] : ming<;<x |0; — s| < &}. Define Ty to be all
s € [0,t] such that ¢s = ¢5_, which we know is a cocountable set [53, Cor. 12.2.1]. For s € Ty,
lg = l,in R, soif s € Ty ~ ']I‘g then eventually /4,05 € [0;_1,0;) for some i € {1,2,...,k},
whence sup,eg |9(s, z,€s) — g(s,2,£5)| — 0 by Assumption 2.1 condition (iv). We conclude

limsup J < cl/ ds < c1kd, for every § > 0,
e ([0,7]\T1)UTS

where ¢; > 0 is a numerical constant due to Assumption 2.1. This completes the result. [

Martingale approach. We complete this section and the proof of Theorem 1.1 by showing
that the limit SPDE holds for a general limit point. For this we will use a martingale argument

and we introduce three processes:

Definition 5.8 (Martingale components). For a fixed test function ¢ € C*t define the maps:

(i) M?: Dyr x D) — Dg,
MP(E,0)(¢) = &) — (6 / (15, £,)0:) ds—/ £,(0%(5, ) 0aud) s
(ii) S¢: Dy x Djg ) — Dg,
S, 0)(t) = M?(&,0)( / E5(a(s,-)p(s, b5)0,0)ds
(iii) C?: Dy x Dg x Cr — Dg,

CH (€0, w) () == MP(E, )t / Eu(0(5, L) (5 £) D) ds

These processes capture the dynamics of the limit SPDE:

Lemma 5.9 (Martingale approach). Let W be a standard Brownian motion and let & and
Ly =1—&/(0,00) be random processes satisfying the conditions of Assumption 2.3. If

M®(¢, L), S9¢,L)  and  CP(&,L,W)

are martingales for every ¢ € C*, then &, L and W satisfy the limit SPDE from Theorem 1.1.
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Proof. The hypothesis gives

MO(E, L)), = / £4(0(5, La)p(s, L)0p0)2ds

[M?(¢, L), t—/ s(o (s, Ls)p(s, Ls)0z¢)ds
hence
MO L)~ [ ulols Lol LB =0, for every t € [0.7],
which completes the proof. O

Our strategy is to take a limit in Proposition 3.2 and apply weak convergence. First notice
that we have:

Lemma 5.10. For every fited ¢ € O, there exists a deterministic cocountable subset of
[0,T] on which
MW LR (t) = M®(v*, L¥)(t), SNk LR (1) = SO(v*, L*)(t),
C? Wk, LN W) (t) = CO(v*, L*, W)(t)  inR.
Furthermore, these sequences are uniformly bounded (for fized ¢).
N

Proof. Note that all the above processes are uniformly bounded (for fixed ¢) since v is a

probability measure. The result then follows by Corollary 5.7. g

Proposition 5.11 (Evolution equation). Suppose (v*, W) = (v*,W). Then, for every
¢ € Ot the processes M?(v*,L*), S®(v*, L*) and C?(v*,L*, W) from Definition 5.8 are
martingales. Hence v* and W satisfy the evolution equation from Theorem 1.1. Furthermore,

v* 48 continuous.

Proof. Fix ¢ € C'*** and let T be the cocountable set of times on which we have the conclusion
of Lemma 5.10. To show that M?(v*, L*) is a martingale, it is enough to show that, for any
arbitrary k > 1, s,t € T, s1,...,8; € [0,s]NT and fi,..., fr : R — R continuous and bounded,
that the map defined by

F(&,0) := (M?(&,0)(t) — M?(¢, 0)( Hfz )(si)

satisfies EF'(v*, L*) = 0. By Lemma 5.10 and the boundedness and continuity of the f;’s
EF(v*, L*) = lim EF (N LY.
k—o00

However, from Proposition 3.2, we have that M?(v"Nk, LV%) is a martingale since
t
(5.4) M (e, L) (1) = / N (o (s, LY*)p(s, LN*)9)dWs + I (9),
0

therefore EF (vV, L"¥) = 0 and so M®(v*, L*) is a martingale.
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For S?, define the map
k

G(E,0) == (SP(&, (1) = S°(&,0)(s) [T Fi(SP (&, ) (s0))-

i=1

By applying 1to’s formula to (5.4), we have
SO (WNk, LNe) (t) = 8¢ (v, LV*)(0) 4 martingale term + 2[T7V*(¢)];.
So be the boundedness of the f; and Proposition 3.4
EG(Ne LV = O(1/Ny),
so EG(v*, L*) = 0 and S?(v*,L*) is a martingale. The work for C? follows similarly, so we
omit it. The result is then complete by Lemma 5.9, and the continuity of ¢ — v} follows by
the fact that the right-hand side of the evolution equation in Theorem 1.1 is continuous. [

6. The kernel smoothing method

The kernel smoothing method converts a measure into an approximating family of functions
and, by establishing uniform results on the functions, enables us to show the existence of a
density for the measure. In the next section we will use this to prove Theorem 1.2. Let ¢ be

a finite signed-measure and p. the Gaussian heat kernel
pe(x) := (2me) V2 exp{—1?/2¢}, xz € R.
Begin by noting the familiar fact that ¢ can be approximated by its convolution with p.:

(6.1) / d(x) (¢ *pe)(x)dr — (¢ / o(x for every continuous and bounded ¢

as ¢ = 0, and that

(6.2) To¢(x) = (pe * O)(x) = /R pe(z — y)C(dy)

is a C>°(R) function. We will sometimes abuse notation and write T.¢ = p.*¢ when ¢ : R — R
is a function. With (-, )2 denoting the usual L?(R) inner product, we have

(6.3) (¢, TC)2 = ((T=0).
Our first observation is that 7. is a contraction on L%(R):

Proposition 6.1 (Contraction). Let f € L*(R). Then ||T-fl||2 < ||f|l2, where || - ||2 is the L?
norm on R.

Proof. The Cauchy—Schwarz inequality gives
2
@R = | [ pela=nfas] < [ pta=wiv- [ oo —sian

The first integral on the right-hand side integrates to one, then integrating over z € R com-
pletes the proof. O
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We now give a condition which shows how to recover the existence of a density via kernel

smoothing.

Proposition 6.2. Suppose that  is a finite signed measure and
lim inf || T-¢||2 < oo.
e—0

Then ¢ has an L*(R) density, i.e. there erists f € L*(R) such that ((¢) = (f, $)2, for every
¢ € L*(R). Furthermore | T-C|l2 — || fll2 in R.

Proof. The hypothesis gives a bounded sequence (7%, ()n>1 in L*(R), with ¢, — 0. By [24,
App. D, Thm. 3], we can extract a weakly convergent subsequence

(Tz,, s #)2 = (f,9)2,  for every ¢ € L*(R),

for some f € L?(R). But by (6.1) we conclude that ((¢) = (f, )2 for all ¢ € ., and this
gives the first result since .7 is dense in L?(R).

We now have that T.( = T.f, therefore by Proposition 6.1 limsup,._, || 7:C|l2 < ||f|l2- By
(6.1) we also have

|(f, ¢)2] = lim [(T:C, ¢)o| < liminf || TeCll2]|¢f2,  forall ¢ € .7,
e—0 e—0

so || f|l2 < liminf. g ||7.C||2, which completes the proof. O

Smoothing in H~! and the anti-derivative. The material above will be used to establish a
preliminary regularity result (Proposition 7.1) in Section 7. However, for the main uniqueness
proof we will work in a space of lower regularity and on the half-line. Recall that the first
Sobolev space with Dirichlet boundary condition, Hg(0,00), is defined to be the closure of

C3°(0, 00) under the norm

1000y = (12000 + 190 F 120,000 2
The dual of Hg(0,00) will be denoted by H~! and its norm by

[Cll—1:= " sup  [C(o)].

”d)HHl(o’oo):l

This is a natural space for us to work in due to the following.
Proposition 6.3. If ¢ is a finite signed measure, then ¢ € H™".

Proof. First observe that |((¢)| < |(|||¢]|oo, for every ¢ € C5°(0,00). Morrey’s inequality |24,
Sec. 5.6, Thm. 4] gives a universal constant, C' > 0, such that ||¢||cc < C||¢| g1, and this

completes the proof. O

To work on the half-line we will use the absorbing heat kernel defined, as in the proof of

Proposition 4.4, by

(6.4) Ge(z,y) == pe(z —y) — pe(z +vy), for x,y >0
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and define -
T.((z) = /0 G- (. y)C(dy).

Notice that G(z,0) = 0 for every z, so y — Ge(x,y) is an element of C*! and also notice
that 7.¢(0) = 0. For T.C to approximate ¢, we need ¢ to be supported on [0, c0):

Proposition 6.4. If ( is supported on [0,00), then
(T€Ca ¢)2 — <(¢)a

as € — 0, for every ¢ continuous, bounded and supported on (0, 00):

Proof. Let ¢(x) := ¢(—x), then from (6.1)
(TeC, )2 = (T2C, 6)2 = (1€, )2 — C(9) — ().

But by the hypotheses ((¢) = 0, as required. O

To access the H~! norm, we will use the anti-derivative defined by
oo
O, f(x) = —/ fy)dy, for f: R — R integrable.
T

Notice that 0,0, 1f = f, and if 9, f is also integrable, then 9,0, f = f too. The result we

will use in Section 7 is the following.
Proposition 6.5. If ( € H™!, then ||¢||-1 < liminf. g H@;lTECHLz(Om).

Proof. First notice that for fixed e

[ [ e =)+ e+ aaiclian) < o
so T:( is integrable and hence 9, 'T.( is well-defined. Integration by parts gives

(071 TC, 020) 12(0,00) = (TC, ) 12(0,00) = C(T20),
for ¢ € C°(0,00). Therefore by Proposition 6.4 we have

()] = lim (9, T=C, Ox)a| < Timinf (|0, " Tecl2]|¢ll2 < Tim inf (|0, " TeC]l2]| |1,

which gives the result. O

7. Uniqueness of solutions; Proof of Theorem 1.2

In this section we will prove Theorem 1.2. Therefore take v, 7 and W as in the statement
with (vM W)gs1 = (v, W) along some subsequence. Let Ly = 1 — 14(0,00) and Ly = 1 —
74(0,00). The first step will be to show that v has some L? regularity (Proposition 7.1), which
is due to a comparison with 7V from (3.2) and from the dynamics of Proposition 3.5. We then
use this fact, along with energy estimates in H~!, to complete the proof. Several technical
lemmas are used throughout this section, however, to aid readability, their full statements and

proofs are deferred until Section 8.
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L?-regularity. The result we will prove in this subsection is the following:

Proposition 7.1 (L?-regularity). With v as introduced at the start of Section 7,
sup sup || Tevs||3 < oo, with probability 1.
s€[0,T] >0
We would like to work with some process v defined analogously to (3.2) that would satisfy
the bound 14(S) < 7(S), for every t € [0,7] and S C R. At this stage, however, we are
dealing only with weak limit points, so must recover the required process through a limiting

procedure on (7)) n>1:

Lemma 7.2 (Whole space SPDE). On a sufficiently rich probability space, there exists (v*,v*, W)
such that (v*, W) is equal in law to (v, W), v (S) < v} (S), for every t € [0,T] and S C R,
and U* satisfies the limit SPDE on the whole space:

t t
70 = w0(0) + [ Filn(s.n L)ds + 5 [ 7105, 00s00)ds

t
+ / D:(O-(Sv ‘)p(S, LS>8I¢)dWSa with LI =1- V:(O, OO)7
0

for everyt € [0,T] and ¢ € .7, together with condition (v) of Assumption 2.3 and the two-sided
tail bound

Ef((—00,—\) U (A,00)) = (™), as A +oo,
for every a > 0.

Proof. Notice that in Proposition 5.1 we have carried out sufficient work to prove (7V)y>1
is tight on (D, M1), hence (v, 7N, W)xN>1 is tight. We can therefore conclude that there
is a subsequence (Ng,),>1 for which (v 7™k W),>1 converges in law. Any realisation
of this limit must have a marginal law that agrees with the law of (v, W). As the work

N

in Propositions 5.3 and 5.11 is unchanged for 7V in place of vV, we conclude that 7* is

probability-measure-valued and, due to Proposition 3.5, that v* satisfies the limit SPDE on
the whole space. Finally, we note that for every ¢ € . with ¢ > 0 we have va’” (¢) < DtN'“ (),

therefore
P (v} (¢) > 7 (¢)) < iminf P(y, " (¢) > 7, " (¢)) =0,  for every ¢ € 7,6 > 0,

by [4, Thm. 2.1|. This inequality holds for all ¢ by the continuity of * and v* (which follows
from being solutions to the limit SPDE) and suffices to give the required dominance. Condi-
tion (v) of Assumption 2.3 is satisfied by 7* because the proof of Corollary 4.3 uses only the
behaviour of 7V. Likewise, the two-sided tail estimate is satisfied due to the same work as in
Proposition 4.5. U

Our strategy is to use the kernel smoothing method with L?-energy estimates on the SPDE
satisfied by v*. This is possible because we do not have to take boundary effects into account,
which is the main difficulty in the uniqueness proof that will follow. The following lemma

relates 7* to Proposition 7.1.
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Lemma 7.3. With v and v* as above and T. as in (6.2), if

liminf E[ sup ||T.7}]|3] < oo
g0 s€[0,T]

then Proposition 7.1 holds.

Proof. Since v* < v*, liminfe,0o Elsup,cpm |T-vf]|3] < oo. We would first like to deduce
that this fact also holds for T.v, but since the map vy — ||T:14||2 might not be continuous on
&', more care must be taken.

By fixing {¢;}i>1 to be the Haar basis of L?(R) we have

k k

(7.1) E sup |T.v||3=E Sup lim (T.vy, ¢)3 < liminf E sup vi(Teps)?.
te[0,T) ? te[0,7] * *00; k=00 tEOT];

by (6.3) and Fatou’s Lemma. Since each ¢; is compactly supported, we have that T.¢; € .7,
therefore v;(T.¢;) is equal in law to v (T.¢;), so by [53, Lem. 13.4.1]

sup Z Vt s(bz =law SUp Z Vt e¢z
tel0,7] ;4 te(0,7] ;4
Returning to (7.1), we now have that
* [ 2 k(12
E sup ||Tovl3 < hmme sup Z vi(T:¢:)* <E sup ||Tev;]5
t€(0,T] —o0 te[0,7] ;= t€(0,T)
By noting that 0 < T.1; < T.v; and applying Fatou’s lemma, once more we arrive at:

E[liminf sup ||T.vs|3] < E[hmmf sup || Tevs|l3] < hmme sup | Tevf )3 < oo.
€700 5e0,T] s€[0,T7] te[0,7]

We now have that liminf._, ||T:vs||2 < oo, for every s € [0, T], with probability 1. Propo-
sition 6.2 implies that 14 has an L?(R)-density, V;, for every t and that

|Vsll2 < liminf || T.vs||e < liminf sup |T:vs||2,
e—0 £200

)

therefore sup,c(o 7 [|Vsll2 < oo, with probability 1. Then by Proposition 6.1

sup sup [|[Tevsll2 < sup [[Vi]l2 < oo,
sel0,7] >0 selo.1]

almost surely, as required. O
As an immediate consequence of the previous proof we have the existence of a density:

Corollary 7.4 (L?(R)-regularity). With probability 1, for every t € [0,T] there exists V; €
L?(R) such that V; is supported on [0,00) and is a density of v, i.e.

— /OO o(2)Vy(z)dx, for every ¢ € L*(R).
0

Furthermore supycpo 7y [|Vill2 < oo, with probability 1.
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Remark 7.5. We might hope that this argument could be used to prove uniqueness. However,

notice that we have no control over v — I, as all we have are upper bounds on solutions.

Proof of Proposition 7.1. Fix x € R and set the function y — p.(z — y) € . into the SPDE

from Lemma 7.2 to get
T —% —% 1 —% —%
dTv; (2) = 7 (pe(y)ype(z — y))dt + 57, (01(y)?Oyype (& — ) dt + 7 (01 (y) piOype (z — y))dW,

* 1 —% —%
= =01 (Mtps(x - '))dt + 5835th (at2p6($ - '))dt — POy (Utp5($ - '))dWh

with the short-hand from Remark 3.1. We would like to move the diffusion coefficients out of

the integral against 7*, and to do so we use Lemma 8.2:
—_— - _ - 1 - _ 2 S 2
AT} = — (0. Tev) — Oy HY' . + EL)dt + §0x(038xT€ut — 0,07 HY . + E7L)dt
— pt(atangﬁj — 6I0t7:tzg + ggzs)th?

where H is as defined in Lemma 8.2 and the dependence on z is omitted for clarity. Applying

Ito’s formula to (7.7 (x))? gives
T =% T =% T =% ) / el T =% T =% 02 Go?
d(Tov})? = =210} (O Teirf — OppeHY' . + EL')dt + 1o} 02 (070, et} — Opof HY . + E72)dt
- 2ptTgﬂt*(O't8xT£ﬂ: - 8960157-_[?’6 + gtcjs)th + p?(atf)xfgﬂt* - 3500,57-_[25 + gg€)2dt.

Our strategy is to integrate over x € R, take a supremum over ¢ € [0,7] and then take an
expectation over the previous equation. For the first task we appeal to Lemma 8.2, Lemma 8.3

and Young’s inequality with free parameter n > 0 to obtain
707 < el +eo [ 55 s [ Tucts s
vy [ 1213+ 12213+ €c. s
[ 1o 0= ) - i 0T s

t
— 2/ / psTevi (050, Tev} + 0205 Hs e + EZ.)dxdW
0 JR

where ¢;, > 0 is a constant depending only on 7. Considering the third line, by Assumption 2.1
it is possible to choose 17 > 0 small enough so that

(7.2) o2(z)(1 — (1 +n)p2) —n — nus(x)? >0, for all z € R, s € [0,T7,
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therefore
t t
7.5 < 12wl + e [ 1702 s+ e [ | Toers s

t

woy [ IELIE + 12215 + €2
t

_2/ /psTEug‘(asaxTEu;k+8xas?fts,a+5;€)da:dws.
0 JR

Using Lemma 8.5 to take a supremum over ¢ and then expectation gives

t t
B sup [2.07]} < [T} + B [ 2255 s + B [ | Tacr; s
s€[0,t] 0 0

2
5ds,

t B _ —
L OE /O &2+ |1€22 3 + &2

where ¢; > 0 is a numerical constant.
Taking liminf as € — 0 over the previous inequality and applying Lemma 6.1 (to Vg € L?)
and Lemma 8.2 yields

t
f(t) :=liminf E sup ||Tgﬁ;‘|]§ < clHV()Hg + 2¢1 lim'nfE/ HTgD;‘H%ds < clHV()Hg + 2c1t f(t).
e—0 s€[0,t] e—0 0

Hence for t < 1/4c; we have f(t) < 2¢1]|Vol|3. The proof is completed by propagating the
argument onto [1/4¢q,2/4¢q] by the same work as above but started from s = 1/4¢, rather
than s = 0. This gives

liminf E | sup |Teot||3] < 21 liminfE[  sup  ||T.77]3] < (2¢1)3,
e=0  se[(4e1)1,2(4¢1) 1] 20 sef0,(4e1) 7

and so in general

liminf E [ sup IT.75]3] < (2¢1)F 1, for k > 0.
e=0 s€[k(der) =1, (k+1)(4cr) 1]

Since the largest such k£ we need to take is kg := 4¢1T', the simple bound

ko—1 ko—1
f(T) < liminf E sup 1772115 < ) - (2e)" ! < o0
e—0 0 S€lk(der) =L (k+1)(4e1) 1] =0
completes the proof. O

Resuming the uniqueness proof. Returning to proof of Theorem 1.2, notice that for a
fixed z > 0, the function y — G.(z,y) from (6.4) is an element of C''. Setting into the
SPDE for v gives

1
dv(Ge(z,-)) = ve(0yGe(, -))dt + §l/t(0't28ny5(J}, ))dt + pivi(010yGe(, ) ) dWr,
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and by applying Lemma 8.6
dlvi(x) = —0v (e Ge(x, -))dt + %ath(U?Ga(% ))dt — piOevi(0Ge(x, -))dWy
— 20,y (pupe(z + +))dt — 2p10pvi(0upe(z + ) )dWs.

To introduce the anti-derivative we integrate the above equation over x > 0 and apply
Lemma 8.3 to switch the time and space integrals. (Note: Lemma 8.3 is stated for o*, however
the proof only relies on the tail bound from Assumption 2.3 condition (iii), which is satisfied

by v and 7.) We arrive at
A0, Teve(x) = —vi(uGe(, ) dt + %%W(Ugas(% ))dt — pi(orGe(x, -))dW;
— 20y (pupe(z + -))dt — 2pv(oipe(z + -))dWr,
which, after applying Lemma 8.2, becomes
(7.3) do, ' Tovy = — (e Tovy + Ee)dt + %(%(QQTaut + Egj)dt = pi(odTovy + &7 )dWy
—2v(upe(x + +))dt — 2pvi(oepe(x + +))dWr.

We will now introduce the simplifying notation osq(1) to denote any family of processes,
{(ft.e)ejo,m fe>0, satisfying

T
E / 1 fie
0

Thus a formal linear combination of o044(1) terms is of order oy(1). Therefore (7.3) can be

‘%2(07w)dt — 0, as e — 0.

written
1
(74) d0; ' Tevy = —pTovedt + 50u(07 Tev + E72)dt — a1py T dW + 05 (1)t + 05 (1)dW,
— 2v(epe(x + -))dt — 2pei(oepe(z + +)) AWy,

and we claim that the integrands in the final two terms are also of order osq(1). This claim is

in fact the critical boundary result from [8], but here we only need first moment estimates:

Lemma 7.6 (Boundary estimate). We have

T 0 [e%s} 2
E/ / (/ pe(x + y)ut(dy)) dxdt — 0, as e — 0,
o Jo 0

hence vi(pepe(x + ) = 0sq(1) and vi(owpe(z + -)) = 05q(1).

Proof. Begin by noting that
we(pe(z + )| < e_xQ/a/ p-(W)vi(dy) < ere™ /571210, + exp{—¥171 2} ],
0

for n € (0, %) a free parameter and c¢; > 0 a universal constant. Squaring and integrating over
x > 0 gives

/ vy (pe(z + ) Pdz < cae™ 2 [14(0,€")% + exp{—e®1"'}],
0
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with ¢ > 0 another numerical constant. Condition (iv) of Assumption 2.3 and the fact that

l/t(S)2 < 1(S), since v is a sub-probability measure, allows us to write

T oo
E/ / e (pe (@ + ) |Pdz = O("IHA=12) 4 O(e™ /2 exp{—e2171}),
o Jo
which vanishes if we choose 7 to satisfy

1
— _<p< -,
21+8) -1 2

and this completes the proof. O

With Lemma 7.6, we can now reduce (7.4) to
1
(7.5) dO; 'Tovy = —piTovedt + 5a,,c(o—fTeut + E72)dt — oup TevndWy + 05q(1)dt + 05 (1)dW,,

and this equation is also satisfied by 7, as so far all we have used is Assumption 2.3. Writing
A :=v—vand 6 (z) := g(t,x, Ly) — g(t, z, L;), taking the difference of (7.5) for v and ¥ yields
— ~ 1 2 =542
Ao T = — ([T Ay + 04 Tevy)dt + 5agc(a,?TEAt + & — &L )dt
— Ut(ﬁthAt + 6tpT€Vt)th + OSq(l)dt + OSq(l)th,
where gfj is as in Lemma 8.2, but with v replaced by v. Applying It6’s formula to the square
(07 YT A)? gives
(7.6) d(9; ' Telr)? = =207 " ToA (e Te Ay + 84 Tevy)dt + 8, Te Dy (07 To A + E72 — EF)dt
— 20, T o (e T A 4 6P Tovy ) AWy 4 (5T A + 6P Tovy)dt
+ Oy M LA - 0 (1)dt + 07 ' TL A - 05q(1)dW; + 05q(1)2dt.
Note that the initial condition for this equation is zero because v and U have the same initial
condition.
Since the work in establishing the bounds in Lemma 8.3 only uses the tail estimate (iii) of
Assumption 2.3, they remain valid and so, together with Lemma 8.7, the stochastic integrals
in (7.6) are martingales for fixed  and e. Therefore first taking an expectation and then

integrating over x > 0 and using Young’s inequality with free parameter n > 0 produces a

constant ¢, > 0 such that

t t
(7.7) EH@;lTsAtHg<an/ Ha;lTeAstds+an/O 1162 + 661 Tes || ds

“E / / 21— (14 n)i?) — 1 — i || To s 2(w)dads + o(1),

where the terms involving osq(1) have collapsed to order o(1). Also notice that (7.7) remains
valid if ¢ is a stopping time.
If it was the case that Efg | T-Ag||3ds = 0, then by Proposition 6.2 we would have A = 0

n [0,¢], and so would have completed the proof for this value of ¢. It is therefore no loss of
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generality to assume that this value is bounded away from zero for all € > 0 sufficiently small.

Then by taking n > 0 we can find a positive value ¢y > 0 such that
t t
_ 2 . 2 .
(7.8) E|o;'TeA; < cE/ |0, T A |5 ds + cE/ 111681 + (82| Tes]|[5ds — co + o(1),
0 0

for ¢ > 0 constant. We now want to introduce a comparison between solutions in the § terms,

and to do so we consider two cases.

Case 1: Globally Lipschitz coefficients. First consider the simpler case where p and p
are Lipschitz in the loss variable, rather than piecewise Lipschitz. Therefore we have |67| <
C|L; — Ly|, so the inequality in (7.8) becomes

t t ~
E |07 7.0 < clE/ Ha;lTEAsH;derclE/ Ly — Ly| | Tt | 2ds — co + o(1),
0 0

with ¢; > 0 constant.
To bound the second term above, we introduce the stopping times

t, :=inf{t > 0: sup sup |Tios||3 > n} AT.
s€[0,T] e>0

From Proposition 7.1 we know that ¢, — T as n — oo, with probability 1. Since (7.7) is valid

for stopping times we have

tAtn tAtn ~
EH@;lTEAmth; < clE/ ||8;1T€Asllgds+clnE/ |Ls — Ls|ds — co + o(1)
0 0

t t
_ 2 =
< clE/ |05 M TeAsne, || ds + clnE/ |Lsnt, — Lsat, |ds — co + o(1).
0 0

—cit

By using the integrating factor e we obtain

t
_ 2 ~
E HE)I 1T5At/\th2 < clneclTE/ |Lsnt,, — Lsat, |ds — cp,
0
and applying Fatou’s lemma and Propositions 6.3 and 6.5 gives
t
B A € eaneTE [ 1Lans, = L, lds - i

0

where ¢ = cope~ T > 0.
Finally we apply Lemma 8.8 to the above inequality to reintroduce A to the right-hand
side. With fixed a > 0 we have

t
E (A, |2, < ea(67 + )\)E/ | Aune, 12, ds + a8 + cae™> — c),
0

where ¢g > 0 does not depend on « (but does depend on n). Now fix § = ¢{/c2 so that we

have .
B [Auns [ < eall 4 NB [ [Buns |2 ds + e~
0



A STOCHASTIC MCKEAN-VLASOV EQUATION ON THE HALF-LINE 37

—c3(14+N\)t

with c3 > 0 independent of o. By using the integrating factor e we deduce

E HAt/\th2_1 < cueHHNimar

50 setting o = 2¢c3t and sending A — oo gives B ||Ass, |2, = 0. Therefore v = & on [0,,],

and since t,, — T we have Theorem 1.2 in Case 1.

Case 2: Piecewise Lipschitz coefficients. To extend the argument to the general case,
we use a stopping argument and consider the system only on time intervals where the loss
processes are in the same interval [6;, 0;+1) — recall Assumption 2.1.

Define the stopping times

To:=inf{t >0:L; >0} AT  To:=inf{t>0:L; >0} AT

and Sy = Ty ATp. For the reason immediately proceeding (7.6), the argument in Case 1 can be
replicated on [0, Sp) by replacing ¢ by t A Sy, since before Sy, the coefficients can be compared
using the Lipschitz property on [0y, 01). Therefore we conclude v, = ; for t < Sy, which forces
L; = f/t for t < Sp and thus Ty = Sy = T@.

We can then repeat the argument for the interval [Sp, S1), since Ag, = 0 (by continuity of
v and 7), where

T 2=inf{t>SoiLt292}/\T Tl 2:inf{t>80:f/t292}/\T
and S = T4 AT. Continuing upto Sy, covers all the [6;,6;11) intervals, and this completes the
proof, since L and L are increasing (Assumption 2.3, condition (i)) so [0, 7] C Uf;ol [Siy Sit1)-
]

8. Technical lemmas

This section collects all the technical lemmas that were used in Section 7, and should be

read only as a reference.

Lemma 8.1. Let gs(z) = g(s,x, L) where g is one of u, o or 02 and Ly = 1 — v5(0,00).

Define the error term
gtg,e(x) 1= Opv(gtpe (v — -)) — ge(@) 0 Terr(x) + 8xgt(az)7-ltg’5(1:),

where ’Hf,g(i) = v ((z — y)Orpe(z — ).

Then
T

E/o HSgEH%Q(Ovoo)dt — 0, as e — 0.

Proof. Let A = A(e) — o0, as € — 0, be a function that we will specify later. For any x € R
o0
E7(z)] < Hf)xg\loo/ o —ylpe (r—y)ri(dy) < 1" 2vy(a—e", m+e")+ere 2 exp{ 21712},
0

with ¢; > 0 a universal constant, and where the second line follows by splitting the integral

on |y — x| < € and its complement. By considering the range |z| < A and using condition (v)



38 A STOCHASTIC MCKEAN-VLASOV EQUATION ON THE HALF-LINE

of Assumption 2.3

(8.1) / H HL2 a3) dt = A(E)O(5(1+5)’7—1/2+5—1/2 exp{—52”_1/2}),

for some 6 > 0.

Now consider the range |z| > A. Decomposing the y-integral on the range |y| < |z|/2 and

its complement gives

€2.(@)] < 2lgll., / pel — g)n(dy) < cape(w/2) + eae~up(|a] /2, +o00),
0

with ¢o > 0 another universal constant. Therefore

+oo
(8.2) / H HL2 e )dt:O(51/2+5_1/2/ e~dz) = O(e/? 4 e~ /2~ NE),
Ae)

Summing (8.1) and (8.2), taking any 7 in the range
1 1

21 +0) ~ 12

and fixing \(¢) = log(e™!) gives the result.

0

Lemma 8.2. Let gs(x) = g(s,x, L%) where g is one of u, o or 0 and LY = 1 — (0, 00).

Define the error term
El (@) = a1 (gepe(z — ) — 91(2)0u e} () + Ozgu(2)H(2)
where ﬁtg,s( ) = ((x — y)Oupe(z — ).
Then
T
E/ Hc‘,‘thHLg ydt — 0, ase —0
0

and there exists a numerical constant ¢ > 0 such that

1] (z)| < oy (), for allt € [0,T],2 € R and € > 0.
Proof. Interchanging differentiation and integration with respect to 7} gives

&7 (x) = /R [00(y) — 9u() + (v — 2)9pgu (@)]ape (& — )77 (dy)-

By bounding with the second-order derivative and using 9,p-(z —y) = -2 (z — y)p:(z — y)

gives
_ 1 _ .
@)1 < 5 [ 0nasi(@lia =P o = ) )

We therefore have the same order of € as in Lemma 8.1, so the first result follows by the same

work. For the second result, notice that

1
|Zawp€(z)’ = \/T%&_—lee—zQ/QS — \/56_1226_22/48p25(z),

—22/4e

and sup,cp 2%e =c.
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Lemma 8.3 (Stochastic Fubini). For all n,m >0, e >0 and t € [0,T]

t _ _ 1/2
/ (/ E[|0T v} (x) - ag‘Tgﬂ:(x)P]ds) dx < o0,
R o

hence the stochastic Fubini theorem |52, 1.4| gives

t
// (2) - T (@) - O T () AW, d:c—/ /gt T (2) - O () dd W
R Jo

whenever SUP;c(o 11,2k lg:(x)] < 0.

Proof. By applying Young’s inequality and concavity of z — /z, it suffices to show that
t _ 4 1/2
/(/ E[|00T v} (x)] ]ds) dx < oo.
R o
First notice that

ORI (x) = 73 (0pe( — ) = w3 (Pa(e™ (& = ))pelx 1)),

where P, is a polynomial of degree n. Since v} is a probability measure, Hélder’s inequality

gives
(8.3) E[|0r T <E/u3 ) el — )7 (dy).

For any value of z, the integrand above is bounded (recall that ¢ is fixed). Hence it suffices
to bound the right-hand side of (8.3) in terms of x only for large values of |z|. Splitting the

y-integral on the region |y| < x/2 and its complement gives the bound
E[|0} v} (2)|"] < e:Ev((2/2,+00) U (~00, ~2/2)) + cz exp{~a®/2c} = O(e ™),

where c. and the O depend only on € and where we have used the tail estimate from Lemma 7.2.

This suffices to complete the proof. O

Lemma 8.4 (An integration-by-parts calculation). Let f,g € C*(R) be bounded with bounded
first derivatives. Assume also that these functions and their first derivatives vanish at foo.

Then
[ s@s@pnsarin = =3 [ ogtw)s

Proof. Integration by parts. U
Lemma 8.5. There exists a constant ¢ > 0 such that

E sup ’ / /psTV (050.Te} + 0p0sHs e + EZ.)
u€(0,t]

< 5B s [} o / 7.0 s+ B [ €. s
[0t

s€

\)

for all t € [0,T7.
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Proof. By a similar analysis to (8.3) we know that, for every fixed ¢, the integrand above is a
rapidly decaying function of x, hence the stochastic integral is a martingale, so the Burkholder—
Davis—Gundy inequality [46, Thm. IV.42.1] gives a universal constant, ¢; > 0, for which the
left-hand side above is bounded by

e[ ( [ ( [ poteri(o0nT0; + oo + 0 00) as) )
0 R

By Lemma 8.4, this is equal to a constant multiple of

B[( [ ([ pitwi(-00,; + duo e + € 0d0) )

which, by Hélder’s inequality, is bounded by a constant multiple of

1/2}

)

t
E[(/O 152 2] a0 Do + DG + €2, 2ds) ]
_ t _ _ _ 1/2
<8 sup 2.5, / |~ 0r0, 1255 + Do T, + €7, |2ds) ).
s€[0,¢] 0

The result then follows by applying Young’s inequality with parameter 1/2 and using the
boundedness of the coefficients. g

Lemma 8.6 (Switching derivatives). For all z,y € R and £ > 0 we have

(i) 0yGe(w,y) = —0:Ge(x,y) — 20:p:(x + y),
(“) anys($>y) = aszs(way)-

Proof. An easy calculation. O
Lemma 8.7. For allz > 0,t€[0,T] ande >0

|0 T A ()] < wr(w/2,+00) + ()2, +00) + e /5,
Proof. Split the integral

O Ty (z / / Ge(y, 2)v(dz)dy

at z < x/2 and its complement to obtain

107 T ()| W e~ W2y 4y ()2, +00) < 7% 4 py(2/2, +00).
TE
The triangle inequality completes the result. O

Lemma 8.8. Let v, i, L, L and A be as in Section 7. For every a > 0 there exists a constant
ca > 0 such that

t . t
E/ Lo — Lo2ds < c(6~! + A)E/ 1812 1ds + 6 + cae.
0 0

for allt €]0,1],0<d <1 and XA > 1, where ¢ > 0 is a constant thal does not depend on «.
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Proof. For 0 < § <1 and A > 1, let ¢5 € HE(0,00) be any cut-off function satisfying

=0, ifxz=0
€(0,1), f0<z<$§
Psa(z)§ =1, ifd<z<A
€(0,1), ifA<xz<A+1
=0, ifx>A+1,

H@mqﬁg’)\HLw(o’é) < 1671 and H@xgb(g,)\|yLm(/\,/\+1) < c1, for some constant ¢; > 0. Then

A+1 P A+l
||¢)5,)\H§{3 </0 d.ﬁL‘—|—/0 C%(S_de—k/; C%d$:c2(5—1+A),

for ¢s > 0 a constant. Therefore
|Li = Li| = [v(0, 00) — (0, 00)|
< [vi(@sx) = ve(@sa)] + [ve(0,0)] 4 [7(0,8)| + (A, +00)| + [7(A, +-00)
< &2 (67 + N2y = |1+ (0, 8)] + [7(0,8)] + [ (A, +00)] + (A, +00)]
2

and so the result follows from conditions (iii) and (iv) of Assumption 2.3 (and that |14(.5)]
|1t (S)| for all S C R).

0 IA

The following result will be used in Section 9.

Lemma 8.9 (Interchanging stochastic integration and conditional expectation). Suppose we
are working on a probability space with filtration {F} and W is a standard Brownian motion
with natural filtration {F}V}. Let H be a real-valued {F;}-adapted process with

T
E/ H2ds < oo.
0

Then, with probability 1,

t
E [/ H,dWj
0

t
E [ / HydW!
0

t
ftW] :/ E [H,| FY] aw,
0

and

ftW]zo

for every t € [0,T].

Proof. As we can multiply Hs by 154, it suffices to take ¢t = T. First, suppose that H is a
basic process, that is
Hu = Z181<u§827
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where s1 < s3 <7 are real numbers and Z is F;,-measurable. Then

T
E[ 0 w} —E[Z(W,, — W) FY]
[ ]W52 Ws,)
_/ [Z‘Fs ]1s1<s§sgdWs
0
T
:/ E [ H,| FV] dw,
0
and
T
B| [ tmawi| 2| =B [z (v] - wh)| 7]
0

[

(B2 (W, =W)|o (71, Fo)]| 7]

[ZE[(Wy, =W,,)|o (1, Fo) ]| 7]
[ZE W, - W3] F] =0,

where we have used the fact that W) — W] is independent of o(F}¥, Fs,) since W' and W

are independent and W' has independent increments. So the result holds in this case and

immediately extends to linear combinations of basic processes. The usual density argument

then allows us to extend the result to all required H. O

9. Stochastic McKean—Vlasov problem; Proof of Theorem 1.6

This section presents a short proof of Theorem 1.6. Take a strong solution (v, W) to the
limit SPDE (Remark 1.3), an independent Brownian motion W+ and define X by

X, = Xo+ [ (s, Xo, L)ds + [ (s, X3)pls, L)W, + [} (s, X,)(1 = pls, L)) 5w
7 =inf{t > 0: X; <0}

(Tt is possible to find such an X by standard diffusion theory, since t = L; = 1 — 14(0, 00) is
given and fixed.) Let 7 be the conditional law of X given W killed at zero, that is

n(S) =P(X; € S;t < 7|W).

We will have the existence statement of Theorem 1.6 if we can prove v = D.
Applying Itd’s formula to ¢(X;) as in the proof of Proposition 3.2 gives

t 1 t
¢(Xt)1t<'r = ¢(XO) +/0 (N88x¢)(Xs)1s<Td5 + 2/0 (Ugamm¢)(Xs)1s<7'd3

t t 1
+/ (Uspsax¢)(xs)1s<7'dws +/ (0'5(1 - ﬂ3)5 x¢)(Xs)1s<TdW3l-
0 0



A STOCHASTIC MCKEAN-VLASOV EQUATION ON THE HALF-LINE 43

Take a conditional expectation with respect to W by applying Lemma 8.9 (and using that L
is o(W)-measurable) to get

(6) = (@) + [ 2. LD + 5 [ 50(0 s, La)Osao)ds

t
—|—/ Us(o(s,)p(s, Lg)0rd)dWs, with Ly =1 —14(0, 00).
0

Now, v also satisfies this equation, however in both cases the coefficients depend only on L.
Therefore we can regard L as fixed and v and v as solving the limit SPDE in the special case
when coefficients do not depend on the loss-variable. This is a much eagier linear problem and
Theorem 1.2 is certainly sufficient to conclude v = U, as required.

We have also just shown that if (X, W) solves the McKean—Vlasov problem in Theorem 1.6,
then its conditional law v = ¥ solves the limit SPDE. By Theorem 1.2, this fixes the law of v,

hence we have the uniqueness statement too. O

10. Open problems

We end by giving some open problems arising from our model and its related extensions:

(i) As indicated at the end of Section 1, the most important practical question is how do
we numerically approximate v from a given realisation of W7 This leads to the further
questions of how do we combine these approximations to get an estimator for EW(L),
where ¥ : Dr — R is some pay-off function, and how do we calibrate the model to any
data on traded prices for options with payoff W(L)?

Our proposed algorithm for the first problem is as follows. Here, we discretise the time
variable and treat the outputs of the following subroutines as functions on [0, 00) — in
practise we would also need a discretisation scheme for the spatial variable too, but we
will not consider that problem here. Fix a precision level § > 0 and assume we are given
a piecewise constant or piecewise linear approximation to a Brownian trajectory t +— wy
to precision at least § (generating such a path contributes negligible computational cost
in this algorithm) and an initial density V(?). Set L) = 0. For 1 <n < T/§ — 1, form

V(™) recursively by setting V(") = us5 where u solves the deterministic linear PDE

(10.1) dug(z) = —p(t, 2, L) dpu () dt + %a(t,x)p(t, LNy () dt

- U(t,az)\/l — p(t, L=1)29, w4 () duwy, with u:(0) = 0,

for t € [0,6] and > 0. Set L™ — [ VW (z)dx (calculated using some quadrature
routine). Our approximation to the den81ty process, V', of v and the loss process, L, are
given by piecewise interpolation of {V (™}, and {L(™},:

Vi := (1 — frac{s}) VD 4 frac{s} v {1+, L; = (1 — frac{s}) LD 4 frac{s} LU+,

where s :=1/0, [s] is the floor of s and frac{s} = s — [s].
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In the case when ¢ and p are constant and p depends only on the loss variable and
w is given as a piecewise constant interpolation of W with precision §, the solution to
(10.1) can be written explicitly in terms of the Brownian transition kernel. A numerical
solution can then be found by quadrature. (This instance of the algorithm was used to
produce Figure 1.2.) If these assumption do not hold, then further approximations may
be necessary. In [30] (10.1) is solved (for the constant coefficient case) by finite element
methods and the scheme is proven to converge when the system is considered on the
whole space. The authors conjecture and provide numerical evidence for a convergence
rate for the scheme on the half-line with space-time discretisation. A first open problem
is to verify that the piecewise-constant time-discretisation, V, above converges in law to
the solution v of limit SPDE as é — 0. A harder problem is to establish the rate of
convergence, in some appropriate norm, averaged over realisations of W.

Returning to the task of calculating the pay-off E¥ (L), we have the estimator
J R
gm,5 = E Zl \P(Lwi,ﬁ)
1=

where {wi}lgigm are independent standard Brownian motions and f)w75 denotes the ap-
proximation to the loss function using the algorithm above with precision § and Brownian
trajectory w. As the Monte Carlo routine depends on J, a natural variance reduction tech-
nique is to use multi-level Monte Carlo as in [30]. Another potentially useful technique
is to alter the drift coefficient in (1.3) using Girsanov’s theorem to produce a reweighted
estimator. In the case when the pay-off function, ¥, is supported on large losses, and
hence is sensitive only to rare events, changing the measure to one under which the
particles have a large negative drift and multiplying by the appropriate Radon—-Nikodym
derivative is a form of importance sampling. A simpler observation in this scenario is that
if the systemic Brownian motion has a realisation that has followed a largely increasing
path on [0,77], then although that realisation is likely to contribute little to &, 5, the
negative of this realisation is likely to give a heavy contribution. Hence the simple anti-
thetic sampling routine in which we draw 2m samples of the common Brownian motion
in pairs (w, —w) is a candidate for variance reduction. An open problem is to verify the
usefulness of these techniques either numerically or analytically.

Following on from the previous point, a natural extension to the model is to replace
the systemic Brownian motion term in (1.3) with a Lévy process. This would allow
the possibility of generating extreme losses. Mathematically we expect to arrive at a
non-linear SPDE driven by a Lévy process on the half-line — see, for example, [34].
Another possibility for generating large systemic losses is to incorporate a contagion term
in the particle dynamics along the lines of [19, 20]. For simplicity, consider the model
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where particles move according to the dynamics

N
(10.2) XN =X0+Wi—aL), r=nf{t>0:XV <0}, LY =) 1.,
=1

1
2]

(3]
4]

151
6]
7
8]
19

[10]

[11]

12

113

14

[15]

with @ > 0. Whenever a particle hits the origin, every other particle jumps by size
a/N towards the boundary. This can begin an avalanche effect where a default causes
many other entities to default. Convergence of a finite particle system to a limiting
McKean—Vlasov equation is shown in [20], and it is known that for small values of « the
solution is unique. For large values of a the limiting system undergoes a jump, whereby
a macroscopic proportion of mass is lost in an infinitesimal period of time. It remains
a challenge to prove uniqueness of solutions in this regime and to characterise a critical
value of a. From our perspective, a natural extension is to consider the system with a

common Brownian noise term between particles.
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