A Tutorial On Bilattices

Ofer Arieli

School of Computer Science, The Academic College of Tel-Aviv, Israel

> oarieli@mta.ac.il http://www.cs.mta.ac.il/~oarieli

Duality Theory in Algebra, Logic and Computer Science Oxford, UK, June 13-14, 2012

Bilattices – Three Perspectives

Bilattices – Three Perspectives

• Algebra

- Bilattice structures and their properties
- General constructions

Bilattices – Three Perspectives

• Algebra

- Bilattice structures and their properties
- General constructions

Logic

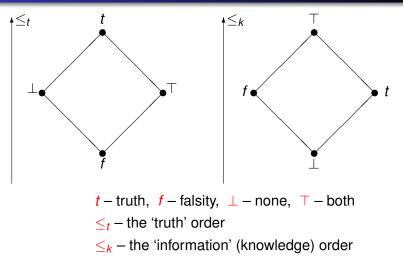
- Semantics for proof systems
- Inferences from incomplete and inconsistent data

Bilattices – Three Perspectives

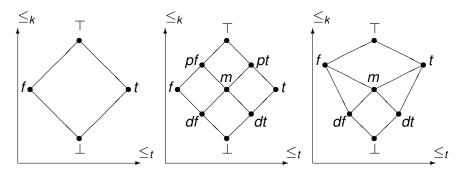
• Algebra

- Bilattice structures and their properties
- General constructions
- Logic
 - Semantics for proof systems
 - Inferences from incomplete and inconsistent data
- Computer Science
 - Fixpoint semantics for logic programs
 - Preferential modeling
 - Reasoning with uncertainty

N. Belnap, "How A Computer Should Think?"



Combining the Partial Orders



FOUR, NINE and SEVEN

Basic Definitions Basic Properties General Constructions

Pre-Bilattices

Definition (Fitting)

A *pre-bilattice* is a triple $\mathcal{PB} = \langle B, \leq_t, \leq_k \rangle$, where

- B is a set containing at least four elements,
- $\langle B, \leq_t \rangle$, $\langle B, \leq_k \rangle$ are complete lattices.

Basic Definitions Basic Properties General Constructions

Pre-Bilattices

Definition (Fitting)

A *pre-bilattice* is a triple $\mathcal{PB} = \langle B, \leq_t, \leq_k \rangle$, where

- B is a set containing at least four elements,
- $\langle B, \leq_t \rangle$, $\langle B, \leq_k \rangle$ are complete lattices.

Notations:

- $t \text{the } \leq_t$ -greatest element, $f \text{the } \leq_t$ -least element,
- \top the \leq_k -greatest element, \perp the \leq_k -least element.

Basic operators:

- \leq_t -meet and join: \land ('conjunction'), \lor ('disjunction'),
- \leq_k -meet and join: \otimes ('consensus'), \oplus ('accept all').

Basic Definitions Basic Properties General Constructions

Bilattices: Relating the Orders Through Negation

Definition (Ginsberg)

A *bilattice* is a quadruple $\mathcal{B} = \langle B, \leq_t, \leq_k, \neg \rangle$, where

- $\langle B, \leq_t, \leq_k \rangle$ is a pre-bilattice,
- \neg is a \leq_t -*negation* on *B*.

Basic Definitions Basic Properties General Constructions

Bilattices: Relating the Orders Through Negation

Definition (Ginsberg)

A *bilattice* is a quadruple $\mathcal{B} = \langle B, \leq_t, \leq_k, \neg \rangle$, where

- $\langle B, \leq_t, \leq_k \rangle$ is a pre-bilattice,
- \neg is a \leq_t -*negation* on *B*.

Properties of a \leq_t -negation:

- order reversing w.r.t. $\leq_t a \leq_t b \Rightarrow \neg a \geq_t \neg b$,
- order preserving w.r.t \leq_k : $a \leq_k b \Rightarrow \neg a \leq_k \neg b$,
- involution: $\neg \neg a = a$.

Basic Definitions Basic Properties General Constructions

Other Ways of Relating the Partial Orders

Definition

A (pre-) bilattice is *distributive* if all the (twelve) possible distributive laws concerning \land , \lor , \otimes , \oplus hold. (e.g., $a \lor (b \otimes c) = (a \otimes b) \lor (a \otimes c)$)

Basic Definitions Basic Properties General Constructions

Other Ways of Relating the Partial Orders

Definition

A (pre-) bilattice is *distributive* if all the (twelve) possible distributive laws concerning \land , \lor , \otimes , \oplus hold. (e.g., $a \lor (b \otimes c) = (a \otimes b) \lor (a \otimes c)$)

Definition (Fitting)

A (pre-) bilattice is *interlaced* if \land , \lor , \otimes , \oplus are monotonic w.r.t. \leq_t and \leq_k .

- $a \leq_t b$ implies that $a \otimes c \leq_t b \otimes c$ and $a \oplus c \leq_t b \oplus c$,
- $a \leq_k b$ implies that $a \wedge c \leq_k b \wedge c$ and $a \vee c \leq_k b \vee c$.

Basic Definitions Basic Properties General Constructions

Other Ways of Relating the Partial Orders

Definition

A (pre-) bilattice is *distributive* if all the (twelve) possible distributive laws concerning \land , \lor , \otimes , \oplus hold. (e.g., $a \lor (b \otimes c) = (a \otimes b) \lor (a \otimes c)$)

Definition (Fitting)

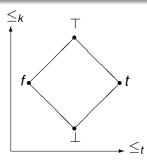
A (pre-) bilattice is *interlaced* if \land , \lor , \otimes , \oplus are monotonic w.r.t. \leq_t and \leq_k .

- $a \leq_t b$ implies that $a \otimes c \leq_t b \otimes c$ and $a \oplus c \leq_t b \oplus c$,
- $a \leq_k b$ implies that $a \wedge c \leq_k b \wedge c$ and $a \vee c \leq_k b \vee c$.

Note: Every distributive (pre-)bilattice is interlaced.

Basic Definitions Basic Properties General Constructions

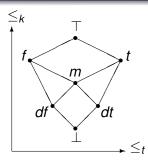
Example 1 – FOUR



- The smallest bilattice $(\neg t = f, \neg f = t, \neg \top = \top, \neg \bot = \bot).$
- Distributive (hence interlaced).

Basic Definitions Basic Properties General Constructions

Example 2 – SEVEN



- A bilattice introduced by Ginsberg for default reasoning $(\neg dt = df, \neg df = dt, \neg m = m)$.
- Not even interlaced
 (e.g., f <_t df but f ⊗ m >_t df ⊗ m).

Basic Definitions Basic Properties General Constructions

Some Basic Properties

 $\mathcal{B} = \langle B, \leq_t, \leq_k, \neg \rangle$ – a bilattice.

Lemma

a)
$$\neg (a \land b) = \neg a \lor \neg b$$
, $\neg (a \lor b) = \neg a \land \neg b$,
 $\neg (a \otimes b) = \neg a \otimes \neg b$, $\neg (a \oplus b) = \neg a \oplus \neg b$.
b) $\neg f = t$, $\neg t = f$, $\neg \bot = \bot$, $\neg \top = \top$.

Basic Definitions Basic Properties General Constructions

Some Basic Properties

 $\mathcal{B} = \langle B, \leq_t, \leq_k, \neg \rangle$ – a bilattice.

Lemma

a)
$$\neg (a \land b) = \neg a \lor \neg b, \ \neg (a \lor b) = \neg a \land \neg b, \ \neg (a \otimes b) = \neg a \otimes \neg b, \ \neg (a \oplus b) = \neg a \oplus \neg b.$$

b) $\neg f = t, \ \neg t = f, \ \neg \bot = \bot, \ \neg \top = \top.$

<u>Note</u>: If \mathcal{B} has a \leq_k -negation "–" (conflation), then:

a)
$$-(a \land b) = -a \land -b$$
, $-(a \lor b) = -a \lor -b$,
 $-(a \otimes b) = -a \oplus -b$, $-(a \oplus b) = -a \otimes -b$.
b) $-f = f$, $-t = t$, $-\bot = \top$, $-\top = \bot$.

Basic Definitions Basic Properties General Constructions

Some Basic Properties

 $\mathcal{B} = \langle B, \leq_t, \leq_k, \neg \rangle$ – a bilattice.

Lemma

a)
$$\neg(a \land b) = \neg a \lor \neg b$$
, $\neg(a \lor b) = \neg a \land \neg b$,
 $\neg(a \otimes b) = \neg a \otimes \neg b$, $\neg(a \oplus b) = \neg a \oplus \neg b$.
b) $\neg f = t$, $\neg t = f$, $\neg \bot = \bot$, $\neg \top = \top$.

<u>Note</u>: If \mathcal{B} has a \leq_k -negation "–" (conflation), then:

a)
$$-(a \land b) = -a \land -b$$
, $-(a \lor b) = -a \lor -b$,
 $-(a \otimes b) = -a \oplus -b$, $-(a \oplus b) = -a \otimes -b$.
b) $-f = f$, $-t = t$, $-\bot = \top$, $-\top = \bot$.

Lemma

If \mathcal{B} is interlaced, then $\bot \land \top = f$, $\bot \lor \top = t$, $f \otimes t = \bot$, $f \oplus t = \top$.

Basic Definitions Basic Properties General Constructions

The Bilattice Product $\mathcal{L} \odot \mathcal{L}$

Duality'12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices

Basic Definitions Basic Properties General Constructions

The Bilattice Product $\mathcal{L} \odot \mathcal{L}$

Definition (Ginsberg)

Let $\mathcal{L} = \langle L, \leq_L \rangle$ be a complete lattice.

The bilattice $\mathcal{L} \odot \mathcal{L} = \langle L \times L, \leq_t, \leq_k, \neg \rangle$ is defined as follows:

- $(b_1, b_2) \ge_t (a_1, a_2)$ iff $b_1 \ge_L a_1$ and $b_2 \le_L a_2$,
- $(b_1, b_2) \ge_k (a_1, a_2)$ iff $b_1 \ge_L a_1$ and $b_2 \ge_L a_2$,

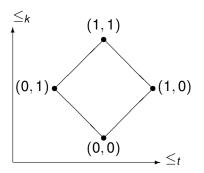
•
$$\neg(a_1, a_2) = (a_2, a_1).$$

Intuition: If $(x, y) \in L \times L$, then x represents the information for some assertion, and y is the information against it.

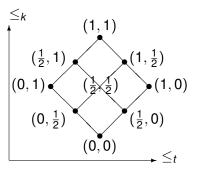
<u>Note</u>: Interlaced pre-bilattices may be constructed by $\mathcal{L}_1 \odot \mathcal{L}_2$.

Basic Definitions Basic Properties General Constructions

Examples of $\mathcal{L} \odot \mathcal{L}$



 $\mathcal{FOUR} = \mathcal{TWO} \odot \mathcal{TWO} \\ (\mathcal{TWO} = \langle \{0,1\}, 0 < 1 \rangle)$



$$\begin{split} \mathcal{NINE} &= \mathcal{THREE} \odot \mathcal{THREE} \\ (\mathcal{THREE} &= \langle \{0, \frac{1}{2}, 1\}, 0 < \frac{1}{2} < 1 \rangle) \end{split}$$

Basic Definitions Basic Properties General Constructions

Some Properties of $\mathcal{L} \odot \mathcal{L}$

Lemma

Let \mathcal{L} be a complete lattice with a join \sqcap_L and a meet \sqcup_L . Then:

Basic Definitions Basic Properties General Constructions

Some Properties of $\mathcal{L} \odot \mathcal{L}$

Lemma

Let \mathcal{L} be a complete lattice with a join \sqcap_L and a meet \sqcup_L . Then:

a) $\mathcal{L} \odot \mathcal{L}$ is a bilattice with the following basic operations:

$$(a,b) \lor (c,d) = (a \sqcup_L c, b \sqcap_L d),$$

 $(a,b) \land (c,d) = (a \sqcap_L c, b \sqcup_L d),$
 $(a,b) \oplus (c,d) = (a \sqcup_L c, b \sqcup_L d),$
 $(a,b) \otimes (c,d) = (a \sqcap_L c, b \sqcap_L d),$
 $\neg (a,b) = (b,a).$

Basic Definitions Basic Properties General Constructions

Some Properties of $\mathcal{L} \odot \mathcal{L}$

Lemma

Let \mathcal{L} be a complete lattice with a join \sqcap_L and a meet \sqcup_L . Then:

a) $\mathcal{L} \odot \mathcal{L}$ is a bilattice with the following basic operations:

$$(a,b) \lor (c,d) = (a \sqcup_L c, b \sqcap_L d), (a,b) \land (c,d) = (a \sqcap_L c, b \sqcup_L d), (a,b) \oplus (c,d) = (a \sqcup_L c, b \sqcup_L d), (a,b) \otimes (c,d) = (a \sqcap_L c, b \sqcap_L d), \neg (a,b) = (b,a).$$

b) The four basic elements of $\mathcal{L} \odot \mathcal{L}$ are the following: $\perp_{L \odot L} = (\inf(L), \inf(L)), \quad \top_{L \odot L} = (\sup(L), \sup(L)),$ $t_{L \odot L} = (\sup(L), \inf(L)), \quad f_{L \odot L} = (\inf(L), \sup(L)).$

Basic Definitions Basic Properties General Constructions

More Facts About $\mathcal{L} \odot \mathcal{L}$

Theorem

- a) $\mathcal{L} \odot \mathcal{L}$ is always interlaced [Fitting]
- b) $\mathcal{L} \odot \mathcal{L}$ is distributive if so is \mathcal{L} [Ginsberg]
- c) Every distributive bilattice is isomorphic to $\mathcal{L} \odot \mathcal{L}$ for some complete distributive lattice \mathcal{L} [Ginsberg]
- d) Every interlaced bilattice is isomorphic to L ⊙ L for some complete lattice L [Avron]

Basic Definitions Basic Properties General Constructions

More Facts About $\mathcal{L} \odot \mathcal{L}$

Theorem

- a) $\mathcal{L} \odot \mathcal{L}$ is always interlaced [Fitting]
- b) $\mathcal{L} \odot \mathcal{L}$ is distributive if so is \mathcal{L} [Ginsberg]
- c) Every distributive bilattice is isomorphic to $\mathcal{L} \odot \mathcal{L}$ for some complete distributive lattice \mathcal{L} [Ginsberg]
- d) Every interlaced bilattice is isomorphic to L ⊙ L for some complete lattice L [Avron]

Corollary: The number of elements of a finite interlaced bilattice is a perfect square.

Basic Definitions Basic Properties General Constructions

The Interval-based Construction $\mathcal{I}(\mathcal{L})$

Definition (Fitting)

Let $\mathcal{L} = \langle L, \leq_L \rangle$ be a complete lattice.

The structure $\mathcal{I}(\mathcal{L}) = \langle I(\mathcal{L}), \leq_t, \leq_k \rangle$ is defined as follows:

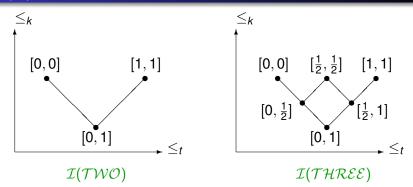
- $I(\mathcal{L}) = \{[a, b] \mid a \leq_L b\}, \text{ where } [a, b] = \{c \mid a \leq_L c \leq_L b\},\$
- $[b_1, b_2] \ge_t [a_1, a_2]$ iff $b_1 \ge_L a_1$ and $b_2 \ge_L a_2$,
- $[b_1, b_2] \ge_k [a_1, a_2]$ iff $b_1 \ge_L a_1$ and $b_2 \le_L a_2$.

Intuition:

- $I(\mathcal{L})$: the 'intervals' of \mathcal{L} (uncertain measurements).
- \leq_t : higher degree of truth; shift rightwards.
- \leq_k : better approximations; interval narrowing $([c,d] \geq_k [a,b] \Leftrightarrow [c,d] \subseteq [a,b]).$

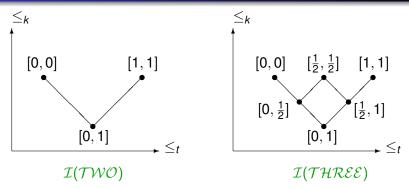
Basic Definitions Basic Properties General Constructions

$\mathcal{I}(\mathcal{L})$ – Examples and Applications



Basic Definitions Basic Properties General Constructions

$\mathcal{I}(\mathcal{L})$ – Examples and Applications



Applications:

- A generalization of Kleene's 3-valued structure.
- Interval-valued structures for fuzzy reasoning (using [0, 1]).

Basic Definitions Basic Properties General Constructions

Some Properties of $\mathcal{I}(\mathcal{L})$

Lemma

Let \mathcal{L} be a complete lattice with a join \sqcap_L and a meet \sqcup_L . Then:

a) $\mathcal{I}(\mathcal{L})$ is a \leq_k -lower pre-bilattice, where:

$$[a,b] \lor [c,d] = [a \sqcup_L c, b \sqcup_L d], \\ [a,b] \land [c,d] = [a \sqcap_L c, b \sqcap_L d], \\ [a,b] \otimes [c,d] = [a \sqcap_L c, b \sqcup_L d].$$

b) The three basic elements of $\mathcal{I}(\mathcal{L})$ are the following: $t_{\mathcal{I}(\mathcal{L})} = [\sup(L), \sup(L)], \quad f_{\mathcal{I}(\mathcal{L})} = [\inf(L), \inf(L)],$ $\perp_{\mathcal{I}(\mathcal{L})} = [\inf(L), \sup(L)].$

<u>Note</u>: $\mathcal{I}(\mathcal{L})$ is not closed w.r.t. \oplus .

Basic Definitions Basic Properties General Constructions

Relating $\mathcal{L} \odot \mathcal{L}$ and $\mathcal{I}(\mathcal{L})$

- \mathcal{L} : a complete lattice with an order-reversing involution,
- a^- : the \leq_L -involute of a.
 - A conflation is defined on L ⊙ L by –(a, b) = (b⁻, a⁻). (This is a ≤_k-negation on L⊙L: involutive, ≤_k-reversing, ≤_t-preserving)
 - An element $(a, b) \in L \times L$ is *coherent*, if $(a, b) \leq_k -(a, b)$.

Basic Definitions Basic Properties General Constructions

Relating $\mathcal{L} \odot \mathcal{L}$ and $\mathcal{I}(\mathcal{L})$

- \mathcal{L} : a complete lattice with an order-reversing involution,
- a^- : the \leq_L -involute of a.
 - A conflation is defined on L ⊙ L by –(a, b) = (b⁻, a⁻). (This is a ≤_k-negation on L⊙L: involutive, ≤_k-reversing, ≤_t-preserving)
 - An element $(a, b) \in L \times L$ is *coherent*, if $(a, b) \leq_k -(a, b)$.

Theorem

 $\mathcal{I}(\mathcal{L})$ is isomorphic to the substructure of the coherent elements of $\mathcal{L} \odot \mathcal{L}.$

Basic Definitions Basic Properties General Constructions

Relating $\mathcal{L} \odot \mathcal{L}$ and $\mathcal{I}(\mathcal{L})$

- \mathcal{L} : a complete lattice with an order-reversing involution,
- a^- : the \leq_L -involute of a.
 - A conflation is defined on L ⊙ L by –(a, b) = (b⁻, a⁻). (This is a ≤_k-negation on L⊙L: involutive, ≤_k-reversing, ≤_t-preserving)
 - An element $(a, b) \in L \times L$ is *coherent*, if $(a, b) \leq_k -(a, b)$.

Theorem

 $\mathcal{I}(\mathcal{L})$ is isomorphic to the substructure of the coherent elements of $\mathcal{L} \odot \mathcal{L}.$

Proof.

The function $f_{\mathcal{L}} : \mathcal{I}(\mathcal{L}) \to \mathcal{L} \odot \mathcal{L}$, defined by $f_{\mathcal{L}}([a, b]) = (a, b^{-})$, is an isomorphism between the structures.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bilattice-based Logics

What Is a Logic?

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bilattice-based Logics

What Is a Logic?

Definition

A (Tarskian) *consequence relation* for a language L is a relation

 \vdash between set of formulas in L and formulas in L, satisfying:

Reflexivity: $\psi \vdash \psi$.

```
Monotonicity: if \Gamma \vdash \psi and \Gamma \subseteq \Gamma', then \Gamma \vdash \psi.
```

Transitivity: if $\Gamma \vdash \psi$ and $\Gamma', \psi \vdash \phi$, then $\Gamma \cup \Gamma' \vdash \phi$.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bilattice-based Logics

What Is a Logic?

Definition

A (Tarskian) consequence relation for a language L is a relation

 \vdash between set of formulas in L and formulas in L, satisfying:

Reflexivity: $\psi \vdash \psi$.

```
Monotonicity: if \Gamma \vdash \psi and \Gamma \subseteq \Gamma', then \Gamma \vdash \psi.
```

Transitivity: if $\Gamma \vdash \psi$ and $\Gamma', \psi \vdash \phi$, then $\Gamma \cup \Gamma' \vdash \phi$.

Definition

A (propositional) *logic* is a pair $L = \langle L, \vdash \rangle$, where L is a propositional language and \vdash is a consequence relation for L.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Matrices

A semantic (model-theoretic) way of defining logics:

Definition

A (multi-valued) *matrix* for L is a triple $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$, where:

- *V* the *truth values*,
- \mathcal{D} the designated elements of \mathcal{V} ,
- \mathcal{O} the *interpretations* ('truth tables') of the L-connectives.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Matrices

A semantic (model-theoretic) way of defining logics:

Definition

A (multi-valued) *matrix* for L is a triple $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$, where:

- *V* the *truth values*,
- \mathcal{D} the designated elements of \mathcal{V} ,
- \mathcal{O} the *interpretations* ('truth tables') of the L-connectives.

Standard definitions for the induced semantic notions:

 $\begin{array}{ll} \mathcal{M}\text{-valuations:} & \Lambda_{\mathcal{M}} = \{\nu \mid \nu : \operatorname{Atoms}(\mathcal{L}) \to \mathcal{V}\}. \\ \mathcal{M}\text{-models of } \psi : & \operatorname{mod}_{\mathcal{M}}(\psi) = \{\nu \in \Lambda_{\mathcal{M}} \mid \nu(\psi) \in \mathcal{D}\}. & (\nu \models_{\mathcal{M}} \psi) \\ \mathcal{M}\text{-models of } \Gamma : & \operatorname{mod}_{\mathcal{M}}(\Gamma) = \bigcap_{\psi \in \Gamma} \operatorname{mod}(\psi). & (\nu \models_{\mathcal{M}} \Gamma) \end{array}$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Matrix-Based Logics

 $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ – a matrix for a language L.

Definition

 $\Gamma \vdash_{\mathcal{M}} \psi \text{ if } \operatorname{mod}_{\mathcal{M}}(\Gamma) \subseteq \operatorname{mod}_{\mathcal{M}}(\psi).$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Matrix-Based Logics

 $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle - \text{a matrix for a language L}.$

Definition

 $\Gamma \vdash_{\mathcal{M}} \psi \text{ if } \operatorname{mod}_{\mathcal{M}}(\Gamma) \subseteq \operatorname{mod}_{\mathcal{M}}(\psi).$

Theorem

 $\textbf{L}_{\mathcal{M}} = \langle \textbf{L}, \vdash_{\mathcal{M}} \rangle \text{ is a propositional logic (induced by } \mathcal{M}).$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Matrix-Based Logics

 $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ – a matrix for a language L.

Definition

 $\Gamma \vdash_{\mathcal{M}} \psi \text{ if } \operatorname{mod}_{\mathcal{M}}(\Gamma) \subseteq \operatorname{mod}_{\mathcal{M}}(\psi).$

Theorem

 $\textbf{L}_{\mathcal{M}} = \langle \textbf{L}, \vdash_{\mathcal{M}} \rangle \text{ is a propositional logic (induced by } \mathcal{M}).$

Next, we consider logics that are induced by bilattice-based matrices (i.e., whose truth values are elements of a bilattice and the connectives are defined by bilattice operators).

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bilattices and Logicality

Why bilattices?

- Incorporation of information considerations.
- Simple ways of representing different levels of inconsistency and incompleteness.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bilattices and Logicality

Why bilattices?

- Incorporation of information considerations.
- Simple ways of representing different levels of inconsistency and incompleteness.

Further considerations in defining logics:

- The connectives and their interpretations (standard connectives are usually defined by the basic ≤_t-operators).
- The choice of the designated elements.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bilattices and Logicality

Why bilattices?

- Incorporation of information considerations.
- Simple ways of representing different levels of inconsistency and incompleteness.

Further considerations in defining logics:

- The connectives and their interpretations (standard connectives are usually defined by the basic ≤_t-operators).
- The choice of the designated elements.

What should be the designated elements?

• We need dual notions for lattice filters and prime-filters.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bifilters and Satisfiability

Definition (Arieli, Avron)

Let $\mathcal{B} = (B, \leq_t, \leq_k)$ be a bilattice.

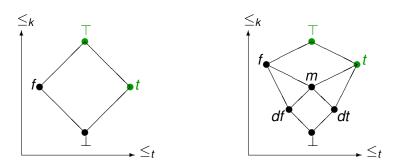
- a) A *bifilter* of \mathcal{B} is a nonempty subset $\mathcal{F} \subset B$, such that:

 - 2 $a \otimes b \in \mathcal{F}$ iff $a \in \mathcal{F}$ and $b \in \mathcal{F}$.
- b) A bifilter \mathcal{F} is *prime*, if it satisfies the following conditions:

 - 2 $a \oplus b \in \mathcal{F}$ iff $a \in \mathcal{F}$ or $b \in \mathcal{F}$.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

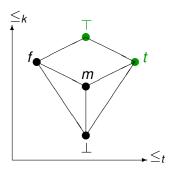
Examples of Bifilters



- Exactly one bifilter in \mathcal{FOUR} and \mathcal{SEVEN} : $\mathcal{F} = \{t, \top\}$.
- This bifilter is prime in both cases.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

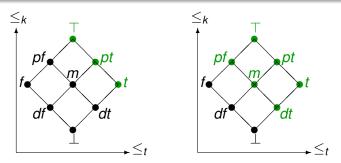
Examples of Bifilters (Cont'd.)



- $\mathcal{F} = \{t, \top\}$ is also the unique bifilter of \mathcal{FIVE} .
- This time, it is <u>not</u> prime: $m \lor \bot \in \mathcal{F}$ but $m \notin \mathcal{F}$ and $\bot \notin \mathcal{F}$.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Examples of Bifilters (Cont'd.)



 \mathcal{NINE} has two bifilters, both are prime: $\mathcal{F}_1 = \{t, pt, \top\},\$ $\mathcal{F}_2 = \{t, pt, dt, \top, m, pf\}.$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bifilters – Some Facts (Arieli, Avron)

Lemma

Let \mathcal{F} be a bifilter in \mathcal{B} . Then:

a) \mathcal{F} is upward-closed w.r.t. both \leq_t and \leq_k .

b) $t, \top \in \mathcal{F}$ while $f, \perp \notin \mathcal{F}$.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bifilters – Some Facts (Arieli, Avron)

Lemma

Let \mathcal{F} be a bifilter in \mathcal{B} . Then:

a) \mathcal{F} is upward-closed w.r.t. both \leq_t and \leq_k .

b) $t, \top \in \mathcal{F}$ while $f, \perp \notin \mathcal{F}$.

Lemma

Let $\mathcal{B} = (B, \leq_t, \leq_k)$ be an interlaced (pre-)bilattice.

- a) A subset *F* of B is a (prime) bifilter iff it is a (prime) filter relative to ≤_t, and ⊤ ∈ *F*.
- b) A subset *F* of B is a (prime) bifilter iff it is a (prime) filter relative to ≤_k, and t ∈ *F*.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bifilters – More Facts

Notation: $\mathcal{F}_k(a) = \{b \mid b \geq_k a\}, \ \mathcal{F}_t(a) = \{b \mid b \geq_t a\}.$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bifilters – More Facts

Notation: $\mathcal{F}_k(a) = \{b \mid b \geq_k a\}, \ \mathcal{F}_t(a) = \{b \mid b \geq_t a\}.$

Lemma

Let $\mathcal{B} = (B, \leq_t, \leq_k)$ be a (pre-)bilattice. If $\mathcal{F}_k(t) = \mathcal{F}_t(\top)$, then $\mathcal{F}_k(t)$ is the smallest bifilter (i.e., it is contained in any other bifilter of \mathcal{B}).

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bifilters – More Facts

Notation: $\mathcal{F}_k(a) = \{b \mid b \geq_k a\}, \ \mathcal{F}_t(a) = \{b \mid b \geq_t a\}.$

Lemma

Let $\mathcal{B} = (B, \leq_t, \leq_k)$ be a (pre-)bilattice.

If $\mathcal{F}_k(t) = \mathcal{F}_t(\top)$, then $\mathcal{F}_k(t)$ is the smallest bifilter (i.e., it is contained in any other bifilter of \mathcal{B}).

Lemma

In every interlaced bilattice it holds that $\mathcal{F}_k(t) = \mathcal{F}_t(\top)$, and this is the smallest bifilter.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bifilters in $\mathcal{L} \odot \mathcal{L}$

Lemma

Let $\mathcal{L} = \langle L, \leq_L \rangle$ be a complete lattice. Then \mathcal{F} is a [prime-] bifilter in $\mathcal{L} \odot \mathcal{L}$ iff $\mathcal{F} = \mathcal{F}_{\mathcal{L}} \times L$, where $\mathcal{F}_{\mathcal{L}}$ is a [prime-] filter in \mathcal{L} .

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bifilters in $\mathcal{L} \odot \mathcal{L}$

Lemma

Let $\mathcal{L} = \langle L, \leq_L \rangle$ be a complete lattice. Then \mathcal{F} is a [prime-] bifilter in $\mathcal{L} \odot \mathcal{L}$ iff $\mathcal{F} = \mathcal{F}_{\mathcal{L}} \times L$, where $\mathcal{F}_{\mathcal{L}}$ is a [prime-] filter in \mathcal{L} .

Notation: Let $a \in L$, $a \neq \inf(L)$. We denote: $\mathcal{F}(a) = \{(b_1, b_2) \mid b_1 \geq_L a, b_2 \in L\}, \ \mathcal{F}_{\mathcal{L}}(a) = \{y \in L \mid y \geq_L a\}.$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Bifilters in $\mathcal{L} \odot \mathcal{L}$

Lemma

Let $\mathcal{L} = \langle L, \leq_L \rangle$ be a complete lattice. Then \mathcal{F} is a [prime-] bifilter in $\mathcal{L} \odot \mathcal{L}$ iff $\mathcal{F} = \mathcal{F}_{\mathcal{L}} \times L$, where $\mathcal{F}_{\mathcal{L}}$ is a [prime-] filter in \mathcal{L} .

Notation: Let $a \in L$, $a \neq \inf(L)$. We denote: $\mathcal{F}(a) = \{(b_1, b_2) \mid b_1 \geq_L a, b_2 \in L\}, \ \mathcal{F}_{\mathcal{L}}(a) = \{y \in L \mid y \geq_L a\}.$

Lemma

- a) $\mathcal{F}(a)$ is a prime bifilter of $\mathcal{L} \odot \mathcal{L}$ iff $\mathcal{F}_{\mathcal{L}}(a)$ is a prime filter in \mathcal{L} .
- b) *F*(sup(*L*)) is a minimal prime bifilters of *L* ⊙ *L* if sup(*L*) is join irreducible (a ∨_L b = sup(L) ⇒ a = sup(L) or b = sup(L)).

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Logical Billatices

Definition (Arieli, Avron)

A *logical bilattice* is a pair $\langle \mathcal{B}, \mathcal{F} \rangle$, where \mathcal{B} is a bilattice and \mathcal{F} is a prime bifilter of \mathcal{B} .

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Logical Billatices

Definition (Arieli, Avron)

A *logical bilattice* is a pair $\langle \mathcal{B}, \mathcal{F} \rangle$, where \mathcal{B} is a bilattice and \mathcal{F} is a prime bifilter of \mathcal{B} .

General Constructions of Logical Bilattices

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Logical Billatices

Definition (Arieli, Avron)

A *logical bilattice* is a pair $\langle \mathcal{B}, \mathcal{F} \rangle$, where \mathcal{B} is a bilattice and \mathcal{F} is a prime bifilter of \mathcal{B} .

General Constructions of Logical Bilattices

 $\langle \mathcal{L} \odot \mathcal{L}, \mathcal{F}(a) \rangle$ is a logical bilattice iff $\mathcal{F}_{\mathcal{L}}(a)$ is a prime filter in \mathcal{L} .

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Logical Billatices

Definition (Arieli, Avron)

A *logical bilattice* is a pair $\langle \mathcal{B}, \mathcal{F} \rangle$, where \mathcal{B} is a bilattice and \mathcal{F} is a prime bifilter of \mathcal{B} .

General Constructions of Logical Bilattices

 $\langle \mathcal{L} \odot \mathcal{L}, \mathcal{F}(a) \rangle$ is a logical bilattice iff $\mathcal{F}_{\mathcal{L}}(a)$ is a prime filter in \mathcal{L} . $\langle \mathcal{L} \odot \mathcal{L}, \mathcal{F}(\sup(L)) \rangle$ is a logical bilattice iff $\sup(L)$ is join irreducible.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Logical Billatices

Definition (Arieli, Avron)

A *logical bilattice* is a pair $\langle \mathcal{B}, \mathcal{F} \rangle$, where \mathcal{B} is a bilattice and \mathcal{F} is a prime bifilter of \mathcal{B} .

General Constructions of Logical Bilattices

 $\langle \mathcal{L} \odot \mathcal{L}, \mathcal{F}(a) \rangle$ is a logical bilattice iff $\mathcal{F}_{\mathcal{L}}(a)$ is a prime filter in \mathcal{L} .

 $\langle \mathcal{L} \odot \mathcal{L}, \mathcal{F}(\sup(L)) \rangle$ is a logical bilattice iff $\sup(L)$ is join irreducible.

Every distributive bilattice can be turned into a logical bilattice.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Logical Billatices

Definition (Arieli, Avron)

A *logical bilattice* is a pair $\langle \mathcal{B}, \mathcal{F} \rangle$, where \mathcal{B} is a bilattice and \mathcal{F} is a prime bifilter of \mathcal{B} .

General Constructions of Logical Bilattices

 $\langle \mathcal{L} \odot \mathcal{L}, \mathcal{F}(a) \rangle$ is a logical bilattice iff $\mathcal{F}_{\mathcal{L}}(a)$ is a prime filter in \mathcal{L} .

 $\langle \mathcal{L} \odot \mathcal{L}, \mathcal{F}(\sup(L)) \rangle$ is a logical bilattice iff $\sup(L)$ is join irreducible.

Every distributive bilattice can be turned into a logical bilattice.

Every complete distributive lattice can be turned into a logical bilattice.

Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information

Back to Logic

Summary:

Duality'12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Back to Logic

Summary:

A logical bilattice $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle$ induces a matrix $\mathcal{M}_{\mathfrak{B}}$ for the language L with the connectives $\lor, \land, \oplus, \otimes, \neg$.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Back to Logic

Summary:

A logical bilattice $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle$ induces a matrix $\mathcal{M}_{\mathfrak{B}}$ for the language L with the connectives $\lor, \land, \oplus, \otimes, \neg$.

In $\mathcal{M}_{\mathfrak{B}}$, the set of truth values is *B* (the elements of \mathcal{B}), the designated elements are those in \mathcal{F} , and the connectives are interpreted by the basic operators of \mathcal{B} .

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Back to Logic

Summary:

A logical bilattice $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle$ induces a matrix $\mathcal{M}_{\mathfrak{B}}$ for the language L with the connectives $\lor, \land, \oplus, \otimes, \neg$.

In $\mathcal{M}_{\mathfrak{B}}$, the set of truth values is *B* (the elements of \mathcal{B}), the designated elements are those in \mathcal{F} , and the connectives are interpreted by the basic operators of \mathcal{B} .

In turn, $\mathcal{M}_{\mathfrak{B}}$ induces a corresponding *logic* $L_{\mathfrak{B}} = \langle L, \vdash_{\mathfrak{B}} \rangle$. We call it *the basic logic induced by the logical bilattice* \mathfrak{B} .

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Back to Logic

Summary:

A logical bilattice $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle$ induces a matrix $\mathcal{M}_{\mathfrak{B}}$ for the language L with the connectives $\lor, \land, \oplus, \otimes, \neg$.

In $\mathcal{M}_{\mathfrak{B}}$, the set of truth values is *B* (the elements of \mathcal{B}), the designated elements are those in \mathcal{F} , and the connectives are interpreted by the basic operators of \mathcal{B} .

In turn, $\mathcal{M}_{\mathfrak{B}}$ induces a corresponding *logic* $L_{\mathfrak{B}} = \langle L, \vdash_{\mathfrak{B}} \rangle$. We call it *the basic logic induced by the logical bilattice* \mathfrak{B} .

We recall that in this logic, $\Gamma \vdash_{\mathfrak{B}} \phi$ means that for every $\nu \in \Lambda_{\mathfrak{B}}$, if $\nu(\psi) \in \mathcal{F}$ for every $\psi \in \Gamma$ then $\nu(\phi) \in \mathcal{F}$ as well.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Adding Implication Connectives

<u>Note</u>: In the language of $\{\lor, \land, \oplus, \otimes, \neg\}$, $\vdash_{\mathfrak{B}}$ has no tautologies. (if $\forall p \in \operatorname{Atoms}(\psi) \ \nu(p) = \bot$, so $\nu(\psi) = \bot \notin \mathcal{F}$).

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Adding Implication Connectives

<u>Note</u>: In the language of $\{\lor, \land, \oplus, \otimes, \neg\}$, $\vdash_{\mathfrak{B}}$ has no tautologies. (if $\forall p \in \operatorname{Atoms}(\psi) \ \nu(p) = \bot$, so $\nu(\psi) = \bot \notin \mathcal{F}$).

We add an implication connective \supset for introducing tautologies and for reducing deducibility to theoremhood:

$$\mathbf{a} \supset \mathbf{b} = \left\{ egin{array}{ll} \mathbf{b} & ext{if } \mathbf{a} \in \mathcal{F}, \\ t & ext{if } \mathbf{a}
ot\in \mathcal{F}. \end{array}
ight.$$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Adding Implication Connectives

<u>Note</u>: In the language of $\{\lor, \land, \oplus, \otimes, \neg\}$, $\vdash_{\mathfrak{B}}$ has no tautologies. (if $\forall p \in \operatorname{Atoms}(\psi) \ \nu(p) = \bot$, so $\nu(\psi) = \bot \notin \mathcal{F}$).

We add an implication connective \supset for introducing tautologies and for reducing deducibility to theoremhood:

$$\mathbf{a} \supset \mathbf{b} = \left\{ egin{array}{ll} \mathbf{b} & ext{if } \mathbf{a} \in \mathcal{F}, \\ t & ext{if } \mathbf{a}
ot\in \mathcal{F}. \end{array}
ight.$$

- This connective is a generalization of the classical implication a → b = ¬a ∨ b (they are identical on {t, f}).
- Modus ponens and the deduction theorem are valid for ⊢_𝔅:
 Γ, ψ ⊢_𝔅 φ iff Γ ⊢_𝔅 ψ ⊃ φ.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Tweety Dilemma

$$\Gamma = \begin{cases} bird(tweety) \rightarrow fly(tweety) \\ penguin(tweety) \supset bird(tweety) \\ penguin(tweety) \supset \neg fly(tweety) \\ bird(tweety) \\ penguin(tweety) \end{cases}$$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Tweety Dilemma

$$\Gamma = \begin{cases} bird(tweety) \rightarrow fly(tweety) \\ penguin(tweety) \supset bird(tweety) \\ penguin(tweety) \supset \neg fly(tweety) \\ bird(tweety) \\ penguin(tweety) \end{cases}$$

Model No.	bird(tweety)	fly(tweety)	penguin(tweety)
$\nu_1 - \nu_2$	Т	Т	op, t
$\nu_{3} - \nu_{4}$	Т	f	op, t
$\nu_{5} - \nu_{6}$	t	Т	op, t

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Tweety Dilemma

$$\Gamma = \begin{cases} bird(tweety) \rightarrow fly(tweety) \\ penguin(tweety) \supset bird(tweety) \\ penguin(tweety) \supset \neg fly(tweety) \\ bird(tweety) \\ penguin(tweety) \end{cases}$$

Model No.	bird(tweety)	fly(tweety)	penguin(tweety)
$\nu_1 - \nu_2$	Т	Т	op, t
$\nu_3 - \nu_4$	Т	f	op, t
$\nu_{5} - \nu_{6}$	t	Т	op, t

$\Gamma \vdash_4 bird(tweety),$	$\Gamma \not\vdash_4 \neg bird(tweety),$
$\Gamma \vdash_4 penguin(tweety),$	$\Gamma \not\vdash_4 \neg penguin(tweety),$
$\Gamma \vdash_4 \neg fly(tweety),$	$\Gamma \not\vdash_4 fly(tweety).$
Duality'12, Oxford UK, June 13-14, 2012	A Tutorial On Bilattices

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Some properties of $\vdash_{\mathfrak{B}}$

Duality'12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Some properties of $\vdash_{\mathfrak{B}}$

• Praconsistency:

Lemma

 $p, \neg p \not\vdash_{\mathfrak{B}} q.$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Some properties of $\vdash_{\mathfrak{B}}$

• Praconsistency:

Lemma

 $p, \neg p \not\vdash_{\mathfrak{B}} q.$

Compactness:

Theorem (Arieli, Avron)

If $\Gamma \vdash_{\mathfrak{B}} \psi$ then $\Gamma' \vdash_{\mathfrak{B}} \psi$ for a finite $\Gamma' \subseteq \Gamma$.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Some properties of $\vdash_{\mathfrak{B}}$

• Praconsistency:

Lemma

 $p, \neg p \not\vdash_{\mathfrak{B}} q.$

Compactness:

Theorem (Arieli, Avron)

If $\Gamma \vdash_{\mathfrak{B}} \psi$ then $\Gamma' \vdash_{\mathfrak{B}} \psi$ for a finite $\Gamma' \subseteq \Gamma$.

• Characterization in *FOUR*:

Theorem (Arieli, Avron)

 $\Gamma \vdash_{\mathfrak{B}} \psi \text{ iff } \Gamma \vdash_{4} \psi.$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

The system GBS

(Gentzen-type Bilattice-based System)

Axioms:

$$\Gamma, \psi \Rightarrow \Delta, \psi$$

Structural Rules:

Permutation:

Contraction:

$$\begin{array}{ll} \frac{\Gamma_1, \psi, \phi, \Gamma_2 \Rightarrow \Delta}{\Gamma_1, \phi, \psi, \Gamma_2 \Rightarrow \Delta} & \frac{\Gamma \Rightarrow \Delta_1, \psi, \phi, \Delta_2}{\Gamma \Rightarrow \Delta_1, \phi, \psi, \Delta_2} \\ \end{array} \\ \Gamma_1, \psi, \psi, \Gamma_2 \Rightarrow \Delta & \Gamma \Rightarrow \Delta_1, \psi, \psi, \Delta_2 \end{array}$$

 $\Gamma_1, \psi, \Gamma_2 \Rightarrow \Delta$ $\Gamma \Rightarrow \Delta_1, \psi, \Delta_2$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

The Proof System GBS

Logical Rules:

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

The Proof System GBS

Logical Rules (Cont'd.):

$$[\otimes \Rightarrow] \qquad \frac{\Gamma, \psi, \phi \Rightarrow \Delta}{\Gamma, \psi \otimes \phi \Rightarrow \Delta}$$

$$[\neg \otimes \Rightarrow] \quad \frac{\mathsf{\Gamma}, \neg \psi, \neg \phi \Rightarrow \Delta}{\mathsf{\Gamma}, \neg(\psi \otimes \phi) \Rightarrow \Delta}$$

$$\oplus \Rightarrow] \qquad \frac{\mathsf{\Gamma}, \psi \Rightarrow \Delta \quad \mathsf{\Gamma}, \phi \Rightarrow \Delta}{\mathsf{\Gamma}, \psi \oplus \phi \Rightarrow \Delta}$$

$$\neg \oplus \Rightarrow] \quad \frac{\mathsf{\Gamma}, \neg \psi \Rightarrow \Delta \quad \mathsf{\Gamma}, \neg \phi \Rightarrow \Delta}{\mathsf{\Gamma}, \neg (\psi \oplus \phi) \Rightarrow \Delta}$$

$$\Gamma \rightarrow \Lambda \psi$$
 $\Gamma \rightarrow \Lambda \phi$

$$\begin{array}{c} \hline \Gamma \Rightarrow \Delta, \psi \otimes \phi \\ \hline \Gamma \Rightarrow \Delta, \neg \psi \quad \Gamma \Rightarrow \Delta, \neg \phi \\ \hline \Gamma \Rightarrow \Delta, \neg (\psi \otimes \phi) \end{array} \quad [\Rightarrow \neg \otimes] \end{array}$$

$$\frac{\Gamma \Rightarrow \Delta, \psi, \phi}{\Gamma \Rightarrow \Delta, \psi \oplus \phi} \qquad \qquad [\Rightarrow \oplus]$$

$$\frac{\Gamma \Rightarrow \Delta, \neg \psi, \neg \phi}{\Gamma \Rightarrow \Delta, \neg (\psi \oplus \phi)} \qquad \qquad [\Rightarrow$$

¬⊕

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

The Proof System GBS

Logical Rules (Cont'd.):

$[\supset\Rightarrow]$	$\frac{\Gamma \Rightarrow \psi, \Delta \Gamma, \phi \Rightarrow \Delta}{\Gamma, \psi \supset \phi \Rightarrow \Delta}$	$\frac{\Gamma,\psi\Rightarrow\phi,\Delta}{\Gamma\Rightarrow\psi\supset\phi,\Delta}$	$[\Rightarrow\supset]$
[¬⊃⇒]	$\frac{\Gamma,\psi,\neg\phi\Rightarrow\Delta}{\Gamma,\neg(\psi\supset\phi)\Rightarrow\Delta}$	$\frac{\Gamma \Rightarrow \psi, \Delta \Gamma \Rightarrow \neg \phi, \Delta}{\Gamma \Rightarrow \neg (\psi \supset \phi), \Delta}$	$[\Rightarrow \neg \supset]$
$[\neg t \Rightarrow]$	$\Gamma, \neg t \Rightarrow \Delta$	$\Gamma \Rightarrow \Delta, t$	[⇒t]
[f⇒]	$\Gamma, \mathfrak{f} \Rightarrow \Delta$	$\Gamma \Rightarrow \Delta, \neg f$	$[\Rightarrow \neg f]$
$[\perp \Rightarrow]$	$\Gamma, \bot \Rightarrow \Delta$	$\Gamma \Rightarrow \Delta, \top$	$[\Rightarrow \top]$
$[\neg \bot \Rightarrow]$	$\Gamma,\neg\bot\Rightarrow\Delta$	$\Gamma \Rightarrow \Delta, \neg \top$	$[\Rightarrow \neg \top]$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Main Results

Definition

 $\Gamma \vdash_{GBS} \psi$ if there is a finite $\Gamma' \subseteq \Gamma$, s.t. $\Gamma' \Rightarrow \psi$ is provable in *GBS*.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Main Results

Definition

 $\Gamma \vdash_{GBS} \psi$ if there is a finite $\Gamma' \subseteq \Gamma$, s.t. $\Gamma' \Rightarrow \psi$ is provable in *GBS*.

Theorem (Cut Elimination)

If $\Gamma_1 \vdash_{GBS} \psi$ and $\Gamma_2, \psi \vdash_{GBS} \phi$, then $\Gamma_1, \Gamma_2 \vdash_{GBS} \phi$.

Theorem (Soundness and Completeness)

 $\Gamma \vdash_{\mathfrak{B}} \psi \text{ iff } \Gamma \vdash_{GBS} \psi.$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Main Results

Definition

 $\Gamma \vdash_{GBS} \psi$ if there is a finite $\Gamma' \subseteq \Gamma$, s.t. $\Gamma' \Rightarrow \psi$ is provable in *GBS*.

Theorem (Cut Elimination)

If $\Gamma_1 \vdash_{GBS} \psi$ and $\Gamma_2, \psi \vdash_{GBS} \phi$, then $\Gamma_1, \Gamma_2 \vdash_{GBS} \phi$.

Theorem (Soundness and Completeness)

 $\Gamma \vdash_{\mathfrak{B}} \psi \text{ iff } \Gamma \vdash_{GBS} \psi.$

 $\underbrace{ \text{Corollary: } \Gamma \vdash_4 \psi \text{ iff } \Gamma \vdash_{\textit{GBS}} \psi. \text{ Thus, the } \{\land,\lor,\supset,t,f\} \text{-fragment} \\ \hline of \vdash_4 \text{ is identical to the } \{\land,\lor,\supset,t,f\} \text{-fragment of classical logic.}$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Hilbert-type Proof Systems

The system HBS

(Hilbert-type Bilattice-based System)

Defined Connective:

$$\psi \equiv \phi \stackrel{\text{def}}{=} (\psi \supset \phi) \land (\phi \supset \psi)$$

Inference Rule:

$$\frac{\psi \quad \psi \supset \phi}{\phi}$$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

The Proof System HBS

Axioms:

[⊃1]	$\psi \supset \phi \supset \psi$	[⊃2]	$(\psi \supset \phi \supset au) \supset (\psi \supset \phi) \supset (\psi \supset au)$
[⊃3]	$((\psi \supset \phi) \supset \psi) \supset \psi$		
$[\land \supset]$	$\psi \wedge \phi \supset \psi \psi \wedge \phi \supset \phi$	$[\supset \land]$	$\psi \supset \phi \supset \psi \wedge \phi$
[⊗⊃]	$\psi\otimes\phi\supset\psi\psi\otimes\phi\supset\phi$	[⊃⊗]	$\psi \supset \phi \supset \psi \otimes \phi$
$[\supset\vee]$	$\psi \supset \psi \lor \phi \phi \supset \psi \lor \phi$	$[\lor\supset]$	$(\psi \supset au) \supset (\phi \supset au) \supset (\psi \lor \phi \supset au)$
[⊃⊕]	$\psi \supset \psi \oplus \phi \phi \supset \psi \oplus \phi$	[⊕⊃]	$(\psi \supset au) \supset (\phi \supset au) \supset (\psi \oplus \phi \supset au)$
$[\neg \land]$	$\neg(\psi \land \phi) \equiv \neg\psi \lor \neg\phi$	[¬∨]	$\neg(\psi \lor \phi) \equiv \neg\psi \land \neg\phi$
$[\neg \otimes]$	$\neg(\psi\otimes\phi)\equiv\neg\psi\otimes\neg\phi$	[¬⊕]	$\neg(\psi\oplus\phi)\equiv\neg\psi\oplus\neg\phi$
[¬⊃]	$\neg(\psi \supset \phi) \equiv \psi \land \neg \phi$	[¬¬]	$\neg\neg\psi\equiv\psi$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Main Results

Theorem (*HBS* is well-axiomatized)

A complete and sound axiomatization of every fragment of $\vdash_{\mathfrak{B}}$ that includes \supset , is given by the axioms of HBS that mention only the connectives of this fragment.

Theorem (GBS and HBS are equivalent)

 $\psi_1,\ldots,\psi_n\vdash_{GBS}\phi \text{ iff }\vdash_{HBS}\psi_1\wedge\ldots\wedge\psi_n\supset\phi.$

Theorem (Soundness and Completeness)

 $\Gamma \vdash_{\mathsf{4}} \psi \text{ iff } \Gamma \vdash_{\mathsf{HBS}} \psi.$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Adding Quantifiers

- Standard extensions to first order languages, taking e.g., ∀ as a generalization of ∧.
- For a structure D, $\nu(\forall x\psi(x)) = \inf_{\leq_l} \{\nu(\psi(d)) \mid d \in D\}.$

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Adding Quantifiers

- Standard extensions to first order languages, taking e.g., ∀ as a generalization of ∧.
- For a structure D, $\nu(\forall x\psi(x)) = \inf_{\leq_l} \{\nu(\psi(d)) \mid d \in D\}.$

Corresponding Gentzen-type rules:

$$\begin{bmatrix} \forall \Rightarrow \end{bmatrix} \quad \frac{\Gamma, \psi(d) \Rightarrow \Delta}{\Gamma, \forall x \psi(x) \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \psi(y), \Delta}{\Gamma \Rightarrow \forall x \psi(x), \Delta} \quad [\Rightarrow \forall]$$
$$\begin{bmatrix} \neg \forall \Rightarrow \end{bmatrix} \quad \frac{\Gamma, \neg \psi(y) \Rightarrow \Delta}{\Gamma, \neg \forall x \psi(x) \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \neg \psi(d), \Delta}{\Gamma \Rightarrow \neg \forall x \psi(x), \Delta} \quad [\Rightarrow \neg \forall]$$

Assuming, as usual, that the variable *y* is not free in $\Gamma \cup \Delta$.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Adding Quantifiers

- Standard extensions to first order languages, taking e.g., ∀ as a generalization of ∧.
- For a structure D, $\nu(\forall x\psi(x)) = \inf_{\leq_l} \{\nu(\psi(d)) \mid d \in D\}.$

Corresponding Gentzen-type rules:

$$\begin{bmatrix} \forall \Rightarrow \end{bmatrix} \quad \frac{\Gamma, \psi(d) \Rightarrow \Delta}{\Gamma, \forall x \psi(x) \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \psi(y), \Delta}{\Gamma \Rightarrow \forall x \psi(x), \Delta} \quad [\Rightarrow \forall]$$
$$\begin{bmatrix} \neg \forall \Rightarrow \end{bmatrix} \quad \frac{\Gamma, \neg \psi(y) \Rightarrow \Delta}{\Gamma, \neg \forall x \psi(x) \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \neg \psi(d), \Delta}{\Gamma \Rightarrow \neg \forall x \psi(x), \Delta} \quad [\Rightarrow \neg \forall]$$

Assuming, as usual, that the variable *y* is not free in $\Gamma \cup \Delta$. Quantifiers for \oplus and \otimes can be introduced in a similar way.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Drawbacks of $\vdash_{\mathfrak{B}}$

- Strictly weaker than classical logic even for consistent theories.
- Rejects some very useful (and intuitively justified) inference rules, such as the Disjunctive Syllogism: ¬p, p ∨ q ∀_B q.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Preferential Reasoning by the Information Order

 $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle$ – a logical bilattice, where \leq_k is well-founded in \mathcal{B} .

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Preferential Reasoning by the Information Order

 $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle$ – a logical bilattice, where \leq_k is well-founded in \mathcal{B} .

Definition

- a) ν_1 is \leq_k -smaller than ν_2 , if for each atom p, $\nu_1(p) \leq_k \nu_2(p)$.
- b) ν is a ≤_k-minimal model of Γ if there is no model of Γ that is k-smaller than ν.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Preferential Reasoning by the Information Order

 $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle$ – a logical bilattice, where \leq_k is well-founded in \mathcal{B} .

Definition

- a) ν_1 is \leq_k -smaller than ν_2 , if for each atom p, $\nu_1(p) \leq_k \nu_2(p)$.
- b) ν is a ≤_k-minimal model of Γ if there is no model of Γ that is k-smaller than ν.

Definition

 $\Gamma \vdash_{\mathfrak{B}}^{\leq_k} \psi$ iff every \leq_k -minimal model of Γ is a model of ψ .

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Preferential Reasoning by the Information Order

 $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle$ – a logical bilattice, where \leq_k is well-founded in \mathcal{B} .

Definition

- a) ν_1 is \leq_k -smaller than ν_2 , if for each atom p, $\nu_1(p) \leq_k \nu_2(p)$.
- b) ν is a ≤_k-minimal model of Γ if there is no model of Γ that is k-smaller than ν.

Definition

 $\Gamma \vdash_{\mathfrak{B}}^{\leq_k} \psi$ iff every \leq_k -minimal model of Γ is a model of ψ .

<u>Intuition</u>: Do not assume anything that is not really known; As long as one keeps the redundant information as minimal as possible, the tendency of getting into conflicts decreases.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Tweety Dilemma, Revisited

$$\Gamma = \begin{cases} bird(tweety) \rightarrow fly(tweety) \\ penguin(tweety) \supset bird(tweety) \\ penguin(tweety) \supset \neg fly(tweety) \\ bird(tweety) \\ penguin(tweety) \end{cases}$$

Two \leq_k -minimal models (out of six models)

Model No.	bird(tweety)	fly(tweety)	penguin(tweety)
ν_1	Т	f	t
ν_2	t	Т	t

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Tweety Dilemma, Revisited

$$\Gamma = \begin{cases} bird(tweety) \rightarrow fly(tweety) \\ penguin(tweety) \supset bird(tweety) \\ penguin(tweety) \supset \neg fly(tweety) \\ bird(tweety) \\ penguin(tweety) \end{cases}$$

Two \leq_k -minimal models (out of six models)

Model No.	bird(tweety)	fly(tweety)	penguin(tweety)
ν_1	Т	f	t
ν_2	t	Т	t

 $\begin{array}{ll} \Gamma \vdash_{4}^{\leq_{k}} \textit{bird}(\textit{tweety}), & \Gamma \nvDash_{4}^{\leq_{k}} \neg \textit{bird}(\textit{tweety}), \\ \Gamma \vdash_{4}^{\leq_{k}} \textit{penguin}(\textit{tweety}), & \Gamma \nvDash_{4}^{\leq_{k}} \neg \textit{penguin}(\textit{tweety}), \\ \Gamma \vdash_{4}^{\leq_{k}} \neg \textit{fly}(\textit{tweety}), & \Gamma \nvDash_{4}^{\leq_{k}} \textit{fly}(\textit{tweety}). \end{array}$

A Tutorial On Bilattices

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Basic Properties of $\vdash_{\mathfrak{B}}^{\leq_k}$

Theorem

 $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle - a \text{ logical bilattice where } \mathcal{B} \text{ is interlaced.}$ If ψ is in the language without \supset , then $\Gamma \vdash_{\mathfrak{B}} \psi$ iff $\Gamma \vdash_{\mathfrak{B}}^{\leq k} \psi$.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Basic Properties of $\vdash_{\mathfrak{B}}^{\leq_k}$

Theorem

 $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle$ – a logical bilattice where \mathcal{B} is interlaced. If ψ is in the language without \supset , then $\Gamma \vdash_{\mathfrak{B}} \psi$ iff $\Gamma \vdash_{\mathfrak{B}}^{\leq k} \psi$.

Corollary: In the language without \supset , $\vdash_{\mathfrak{B}}$ -inferences are obtained by \leq_k -minimal models.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Basic Properties of $\vdash_{\mathfrak{B}}^{\leq_k}$

Theorem

 $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle - a \text{ logical bilattice where } \mathcal{B} \text{ is interlaced.}$ If ψ is in the language without \supset , then $\Gamma \vdash_{\mathfrak{B}} \psi$ iff $\Gamma \vdash_{\mathfrak{B}}^{\leq k} \psi$.

Corollary: In the language without \supset , $\vdash_{\mathfrak{B}}$ -inferences are obtained by \leq_k -minimal models.

<u>Note</u>: $\vdash_{\mathfrak{B}}^{\leq k}$ is in general nonmonotonic, but it is cautiously monotonic: If $\Gamma \vdash_{\mathfrak{B}}^{\leq k} \phi$ then $\Gamma, \psi \vdash_{\mathfrak{B}}^{\leq k} \phi$ when $\Gamma \vdash_{\mathfrak{B}}^{\leq k} \psi$.

Introduction Bilattice-based Semantics The Basic Logic of Logical Bilattices Taking Advantage of the Information Order

Basic Properties of $\vdash_{\mathfrak{B}}^{\leq_k}$

Theorem

 $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle - a \text{ logical bilattice where } \mathcal{B} \text{ is interlaced.}$ If ψ is in the language without \supset , then $\Gamma \vdash_{\mathfrak{B}} \psi$ iff $\Gamma \vdash_{\mathfrak{B}}^{\leq k} \psi$.

Corollary: In the language without \supset , $\vdash_{\mathfrak{B}}$ -inferences are obtained by \leq_k -minimal models.

<u>Note</u>: $\vdash_{\mathfrak{B}}^{\leq k}$ is in general nonmonotonic, but it is cautiously monotonic: If $\Gamma \vdash_{\mathfrak{B}}^{\leq k} \phi$ then $\Gamma, \psi \vdash_{\mathfrak{B}}^{\leq k} \phi$ when $\Gamma \vdash_{\mathfrak{B}}^{\leq k} \psi$.

Theorem (Characterization in \mathcal{FOUR})

 $\mathfrak{B} = \langle \mathcal{B}, \mathcal{F} \rangle - a \text{ logical bilattice such that } \inf_{\leq_k} \mathcal{F} \in \mathcal{F}.$ Then: $\Gamma \vdash_{\mathfrak{B}}^{\leq_k} \psi \text{ iff } \Gamma \vdash_{\mathbf{4}}^{\leq_k} \psi.$

Bilattices and Logic Programming

In a series of papers, Melving Fitting has shown that bilattices are very useful for defining and analyzing fixpoint semantics for logic programs.

Bilattices and Logic Programming

In a series of papers, Melving Fitting has shown that bilattices are very useful for defining and analyzing fixpoint semantics for logic programs.

Some advantages of using bilattices in this context:

- Extended languages for logic programs.
- Generalizations of standard two- and three-valued semantics to finite-valued semantics.
- Accommodation of incompleteness and inconsistency.
- Characterizing structures of standard approaches for negation handling (stable-model semantics, well-founded semantics).

(Bilattice-based) Logic Programs

A *clause* is an expression of the form $A \leftarrow \Psi$, where

- The clause's *head* A is a (first-order) atomic formula.
- The clause's *body* Ψ is a formula built-up from literals (atoms or negated atoms) using {∧, ∨, ⊗, ⊕, ∃, ∀} and constants from B, and whose free variables occur in A.

(Bilattice-based) Logic Programs

A *clause* is an expression of the form $A \leftarrow \Psi$, where

- The clause's *head* A is a (first-order) atomic formula.
- The clause's body Ψ is a formula built-up from literals (atoms or negated atoms) using {∧, ∨, ⊗, ⊕, ∃, ∀} and constants from B, and whose free variables occur in A.

A *logic program* \mathcal{P} is a finite set of clauses. If there are no negations in the clauses' bodies, \mathcal{P} is called *positive*.

(Bilattice-based) Logic Programs

A *clause* is an expression of the form $A \leftarrow \Psi$, where

- The clause's *head* A is a (first-order) atomic formula.
- The clause's body Ψ is a formula built-up from literals (atoms or negated atoms) using {∧, ∨, ⊗, ⊕, ∃, ∀} and constants from B, and whose free variables occur in A.

A *logic program* \mathcal{P} is a finite set of clauses. If there are no negations in the clauses' bodies, \mathcal{P} is called *positive*.

<u>Note</u>: We may assume that there are no different clauses with the same head, and that the bodies are non-empty, since $A \leftarrow \Psi_1$ and $A \leftarrow \Psi_2$ are replaced by $A \leftarrow \Psi_1 \lor \Psi_2$, and A is replaced by $A \leftarrow t$.

$$A \leftarrow t,$$

$$C \leftarrow B \oplus A,$$

$$D \leftarrow B \otimes C,$$

$$E \leftarrow C \lor D \lor E$$

The Immediate Consequence Operator $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

Notations:

 \mathcal{P}^* : the grounding of \mathcal{P} over the Herbard base, $\Lambda_{\mathcal{B}}^{\mathcal{P}} = \{\nu \mid \nu : \operatorname{Atoms}(\mathcal{P}^*) \to B\}$: the *B*-valuations for \mathcal{P} .

The Immediate Consequence Operator $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

Notations:

 $\begin{aligned} \mathcal{P}^*: \text{ the grounding of } \mathcal{P} \text{ over the Herbard base,} \\ \Lambda^{\mathcal{P}}_{\mathcal{B}} = \{ \nu \mid \nu: \text{Atoms}(\mathcal{P}^*) \to B \}: \text{ the } \textit{B}\text{-valuations for } \mathcal{P}. \end{aligned}$

<u>Note</u>: $\langle \Lambda_{\mathcal{B}}^{\mathcal{P}}, \leq_t, \leq_k \rangle$ is a pre-bilattice: • $\nu_1 \leq_t \nu_2$ iff $\nu_1(A) \leq_t \nu_2(A)$ for every ground atom *A*, • $\nu_1 \leq_k \nu_2$ iff $\nu_1(A) \leq_k \nu_2(A)$ for every ground atom *A*.

The Immediate Consequence Operator $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

Notations:

 $\begin{aligned} \mathcal{P}^*: \text{the grounding of } \mathcal{P} \text{ over the Herbard base,} \\ \Lambda^{\mathcal{P}}_{\mathcal{B}} = \{ \nu \mid \nu: \text{Atoms}(\mathcal{P}^*) \to B \}: \text{the } B\text{-valuations for } \mathcal{P}. \end{aligned}$

Note:
$$\langle \Lambda_{\mathcal{B}}^{\mathcal{P}}, \leq_t, \leq_k \rangle$$
 is a pre-bilattice:
• $\nu_1 \leq_t \nu_2$ iff $\nu_1(A) \leq_t \nu_2(A)$ for every ground atom A ,
• $\nu_1 \leq_k \nu_2$ iff $\nu_1(A) \leq_k \nu_2(A)$ for every ground atom A .

Definition (Fitting, Apt, van-Emden, Kowalski)

$$\mathcal{T}_{\mathcal{B}}^{\mathcal{P}} : \Lambda_{\mathcal{B}}^{\mathcal{P}} o \Lambda_{\mathcal{B}}^{\mathcal{P}} ext{ is defined by:}$$
 $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}(\nu)(\mathcal{A}) = \left\{ egin{array}{c}
u(\Psi) & ext{if } \mathcal{A} \leftarrow \Psi \in \mathcal{P}^*, \\
f & ext{ otherwise.}
\end{array}
ight.$

Fixpoints of $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

<u>Note</u>: If \mathcal{B} is an interlaced pre-bilattice, then

- $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$ is \leq_k -monotone on $\Lambda_{\mathcal{B}}^{\mathcal{P}}$: $\nu_1 \leq_k \nu_2 \Rightarrow \mathcal{T}_{\mathcal{B}}^{\mathcal{P}}(\nu_1) \leq_k \mathcal{T}_{\mathcal{B}}^{\mathcal{P}}(\nu_2)$.
- If \mathcal{P} is positive, then $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$ is \leq_t -monotone on $\Lambda_{\mathcal{B}}^{\mathcal{P}}$.

Fixpoints of $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

<u>Note</u>: If \mathcal{B} is an interlaced pre-bilattice, then

- $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$ is \leq_k -monotone on $\Lambda_{\mathcal{B}}^{\mathcal{P}}$: $\nu_1 \leq_k \nu_2 \Rightarrow \mathcal{T}_{\mathcal{B}}^{\mathcal{P}}(\nu_1) \leq_k \mathcal{T}_{\mathcal{B}}^{\mathcal{P}}(\nu_2)$.
- If \mathcal{P} is positive, then $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$ is \leq_t -monotone on $\Lambda_{\mathcal{B}}^{\mathcal{P}}$.

<u>Thus</u>: If \mathcal{P} is positive and \mathcal{B} is interlaced,

- $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$ has a \leq_t -least fixpoint ν_t and a \leq_t -greatest fixpoint V_t ,
- $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$ has a \leq_k -least fixpoint ν_k and a \leq_k -greatest fixpoints V_k .

(by Knaster-Tarski Theorem)

Computing the Fixpoints of $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

 $\begin{array}{l} \textbf{A} \leftarrow \textbf{t}, \\ \textbf{C} \leftarrow \textbf{B} \oplus \textbf{A}, \\ \textbf{D} \leftarrow \textbf{B} \otimes \textbf{C}, \\ \textbf{E} \leftarrow \textbf{C} \lor \textbf{D} \lor \textbf{E} \end{array}$

Computing the Fixpoints of $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

 $\begin{array}{l} \textbf{A} \leftarrow \textbf{t}, \\ \textbf{C} \leftarrow \textbf{B} \oplus \textbf{A}, \\ \textbf{D} \leftarrow \textbf{B} \otimes \textbf{C}, \\ \textbf{E} \leftarrow \textbf{C} \lor \textbf{D} \lor \textbf{E} \end{array}$

Computing the \leq_k -least fixpoint, ν_k :

Computing the Fixpoints of $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

 $\begin{array}{l} \textbf{A} \leftarrow \textbf{t}, \\ \textbf{C} \leftarrow \textbf{B} \oplus \textbf{A}, \\ \textbf{D} \leftarrow \textbf{B} \otimes \textbf{C}, \\ \textbf{E} \leftarrow \textbf{C} \lor \textbf{D} \lor \textbf{E} \end{array}$

Computing the \leq_k -least fixpoint, ν_k :

$$\bigcirc A: \bot, B: \bot, C: \bot, D: \bot, E: \bot \nu_0$$

Computing the Fixpoints of $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

 $\begin{aligned} & \textbf{A} \leftarrow \textbf{t}, \\ & \textbf{C} \leftarrow \textbf{B} \oplus \textbf{A}, \\ & \textbf{D} \leftarrow \textbf{B} \otimes \textbf{C}, \\ & \textbf{E} \leftarrow \textbf{C} \lor \textbf{D} \lor \textbf{E} \end{aligned}$

Computing the \leq_k -least fixpoint, ν_k :

Computing the Fixpoints of $\mathcal{T}^{\mathcal{P}}_{\mathcal{B}}$

 $\begin{aligned} & \textbf{A} \leftarrow \textbf{t}, \\ & \textbf{C} \leftarrow \textbf{B} \oplus \textbf{A}, \\ & \textbf{D} \leftarrow \textbf{B} \otimes \textbf{C}, \\ & \textbf{E} \leftarrow \textbf{C} \lor \textbf{D} \lor \textbf{E} \end{aligned}$

Computing the \leq_k -least fixpoint, ν_k :

Computing the Fixpoints of $\mathcal{T}^{\mathcal{P}}_{\mathcal{B}}$

 $\begin{aligned} & A \leftarrow \mathsf{t}, \\ & C \leftarrow B \oplus A, \\ & D \leftarrow B \otimes C, \\ & E \leftarrow C \lor D \lor E \end{aligned}$

Computing the \leq_k -least fixpoint, ν_k :

$$\begin{array}{c} \bullet \quad A: \bot, \quad B: \bot, \quad C: \bot, \quad D: \bot, \quad E: \bot \quad \nu_{0} \\ \hline \bullet \quad A: t, \quad B: f, \quad C: \bot, \quad D: \bot, \quad E: \bot \quad \nu_{1} = \mathcal{T}_{\mathcal{B}}^{\mathcal{P}}(\nu_{0}) \\ \hline \bullet \quad A: t, \quad B: f, \quad C: \top, \quad D: \bot, \quad E: \bot \quad \nu_{2} = \mathcal{T}_{\mathcal{B}}^{\mathcal{P}}(\nu_{1}) \\ \hline \bullet \quad A: t, \quad B: f, \quad C: \top, \quad D: f, \quad E: t \quad \nu_{3} = \mathcal{T}_{\mathcal{B}}^{\mathcal{P}}(\nu_{2}) \quad \nu_{k} = \nu_{3} \end{array}$$

Computing the Fixpoints of $\mathcal{T}^{\mathcal{P}}_{\mathcal{B}}$

 $\begin{array}{l} \textbf{A} \leftarrow \textbf{t}, \\ \textbf{C} \leftarrow \textbf{B} \oplus \textbf{A}, \\ \textbf{D} \leftarrow \textbf{B} \otimes \textbf{C}, \\ \textbf{E} \leftarrow \textbf{C} \lor \textbf{D} \lor \textbf{E} \end{array}$

Computing the \leq_k -greatest fixpoint, V_k :

Computing the Fixpoints of $\mathcal{T}^{\mathcal{P}}_{\mathcal{B}}$

 $\begin{aligned} & \textbf{A} \leftarrow \textbf{t}, \\ & \textbf{C} \leftarrow \textbf{B} \oplus \textbf{A}, \\ & \textbf{D} \leftarrow \textbf{B} \otimes \textbf{C}, \\ & \textbf{E} \leftarrow \textbf{C} \lor \textbf{D} \lor \textbf{E} \end{aligned}$

Computing the \leq_k -greatest fixpoint, V_k :

Start with the \leq_k -largest valuation, and iterate over $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$:

 $\bigcirc A:\top, B:\top, C:\top, D:\top, E:\top V_0$

Computing the Fixpoints of $\mathcal{T}^{\mathcal{P}}_{\mathcal{B}}$

 $\begin{aligned} & \textbf{A} \leftarrow \textbf{t}, \\ & \textbf{C} \leftarrow \textbf{B} \oplus \textbf{A}, \\ & \textbf{D} \leftarrow \textbf{B} \otimes \textbf{C}, \\ & \textbf{E} \leftarrow \textbf{C} \lor \textbf{D} \lor \textbf{E} \end{aligned}$

Computing the \leq_k -greatest fixpoint, V_k :

Start with the \leq_k -largest valuation, and iterate over $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$:

$$\bigcirc A:\top, B:\top, C:\top, D:\top, E:\top V_{C}$$

Computing the Fixpoints of $\mathcal{T}^{\mathcal{P}}_{\mathcal{B}}$

 $\begin{aligned} & A \leftarrow \mathsf{t}, \\ & C \leftarrow B \oplus A, \\ & D \leftarrow B \otimes C, \\ & E \leftarrow C \lor D \lor E \end{aligned}$

Computing the \leq_k -greatest fixpoint, V_k :

Start with the \leq_k -largest valuation, and iterate over $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$:

 $\bigcirc A:\top, B:\top, C:\top, D:\top, E:\top V_0$

Relating the Fixpoints of $\mathcal{T}^{\mathcal{P}}_{\mathcal{B}}$

 ν_t and V_t are computed similarly, starting with the \leq_t -smallest and the \leq_t -largest valuation (respectively) and iterating over $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

Relating the Fixpoints of $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

 ν_t and V_t are computed similarly, starting with the \leq_t -smallest and the \leq_t -largest valuation (respectively) and iterating over $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

In our example $\nu_t = V_k$ and $V_t = \nu_k$, thus:

- $\nu_k = V_t = \{A : t, B : f, C : \top, D : f, E : t\},\$
- $\nu_t = V_k = \{ \boldsymbol{A} : t, \ \boldsymbol{B} : f, \ \boldsymbol{C} : \top, \ \boldsymbol{D} : f, \ \boldsymbol{E} : \top \}.$

Relating the Fixpoints of $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

 ν_t and V_t are computed similarly, starting with the \leq_t -smallest and the \leq_t -largest valuation (respectively) and iterating over $\mathcal{T}_{\mathcal{B}}^{\mathcal{P}}$

In our example $\nu_t = V_k$ and $V_t = \nu_k$, thus:

•
$$\nu_k = V_t = \{A: t, B: f, C: \top, D: f, E: t\},\$$

•
$$\nu_t = V_k = \{ \boldsymbol{A} : t, \ \boldsymbol{B} : f, \ \boldsymbol{C} : \top, \ \boldsymbol{D} : f, \ \boldsymbol{E} : \top \}.$$

In general, we have:

Theorem (Fitting)

If \mathcal{P} is positive and \mathcal{B} is interlaced, then: $\nu_k = \nu_t \otimes V_t, \quad V_k = \nu_t \oplus V_t, \quad \nu_t = \nu_k \wedge V_k, \quad V_t = \nu_k \vee V_k.$

Another Example

 $even(0) \leftarrow t,$ $even(s(x)) \leftarrow odd(x),$ $odd(s(x)) \leftarrow even(x)$

Another Example

```
even(0) \leftarrow t,
even(s(x)) \leftarrow odd(x),
odd(s(x)) \leftarrow even(x)
```

Grounding:

```
\begin{array}{l} \textit{even}(0) \leftarrow \textit{t}, \\ \textit{even}(s(0)) \leftarrow \textit{odd}(0), \\ \textit{odd}(s(0)) \leftarrow \textit{even}(0), \\ \textit{even}(s(s(0))) \leftarrow \textit{odd}(s(0)), \\ \textit{odd}(s(s(0))) \leftarrow \textit{even}(s(0)), \ \dots \end{array}
```

Another Example

 $even(0) \leftarrow t,$ $even(s(x)) \leftarrow odd(x),$ $odd(s(x)) \leftarrow even(x)$

Grounding:

```
even(0) \leftarrow t,

even(s(0)) \leftarrow odd(0),

odd(s(0)) \leftarrow even(0),

even(s(s(0))) \leftarrow odd(s(0)),

odd(s(s(0))) \leftarrow even(s(0)), \dots
```

A unique fixpoint: $\nu(even(s^n(0)) = t \text{ iff } n \text{ is even.}$

Other Generalizations to the Bilattice Setting of Fixpoint Operators

The Gelfond-Lifschitz transformation for handling negation as failure in logic programs can also be generalized to the bilattice setting, yielding a *bilattice-based stable operator*.

Other Generalizations to the Bilattice Setting of Fixpoint Operators

The Gelfond-Lifschitz transformation for handling negation as failure in logic programs can also be generalized to the bilattice setting, yielding a *bilattice-based stable operator*.

Again, this operator is \leq_k -monotonic, so it has a \leq_k -least fixpoint s_k and a \leq_k -greatest fixpoint S_k . Fitting has shown that these \leq_k -external fixpoints are related to the \leq_t -external (oscillation) points s_t and S_t as follows:

- $s_k = s_t \otimes S_t$, $S_k = s_t \oplus S_t$.
- $s_t = s_k \wedge S_k$, $S_t = s_k \vee S_k$.

(Details are given in Fitting's papers on the family of stable models and the survey on logic programming, the references to which appear in the next slides).

References (Partial List)

1. General Background

- N. Belnap, "How a computer should think", Contemporary Aspects of Philosophy pp. 30–56, Oriel Press, 1977.
- M. L. Ginsberg, "Multi-valued logics: A uniform approach to reasoning in artificial intelligence", *Computer Intelligence* **4**:256–316, 1988.
- G. Gargov, "Knowledge, uncertainty and ignorance in logic: bilattices and beyond", *Applied Non-Classical Logics* 9(2–3):195–283, 1999.
- M. Fitting, "Bilattices are a nice thing", Self reference, CSLI Lecture Notes 178:53–77, 2006.

References (Cont'd.)

2. Bilattices and Logic Programming

- M. Fitting, "Bilattices and the semantics of logic programming", Journal of Logic Programming 11(1–2):91–116, 1991.
- M. Fitting, "The family of stable models", *Journal of Logic Programming* **17**(2-4):197–225, 1993.
- O. Arieli, "Paraconsistent declarative semantics for extended logic programs", *Annals of Mathematics and Artificial Intelligence* 36(4):381–417, 2002.
- M. Fitting, "Fixpoint semantics for logic programming A survey", *Theoretical Computer Science* 278(1–2):25–51, 2002.
- E. Komendantskaya and A. K. Seda, "Sound and complete SLD-resolution for bilattice-based annotated logic programs", *Electronic Notes in Theoretical Computer Science* 225:141–159, 2009.

References (Cont'd.)

3. Bilattice-Based Logics

- M. Fitting, "Kleene's three valued logics and their children", *Fundamenta Informaticae* 20(1–3):113–131, 1994.
- O. Arieli and A. Avron, "Reasoning with logical bilattices", *Journal of Logic, Language and Information* **5**(1):25–63, 1996.
- O. Arieli and A.Avron, "Bilattices and paraconsistency", Frontiers of Paraconsistent Logic, Studies in Logic and Computation 8:11–27, 2000.
- O. Arieli and M. Denecker. "Reducing preferential paraconsistent reasoning to classical entailment". Journal of Logic and Computation **13**(4):557–580, 2003.
- N. Kamide, "Gentzen-type methods for bilattice negation", *Studia Logica* 80 pp. 265–289, 2005.
- F. Bou and U. Rivieccio, "The logic of distributive bilattices", *Logic Journal of the IGPL* **19**(1):183–216, 2011.

References (Cont'd.)

4. Algebraic Study

- B. Jónsson, "Distributive bilattices", *Ph.D. Thesis, Vanderbilt University*, 1994.
- A. Avron, "A note on the structure of bilattices", *Journal of Mathematical Structures in Computer Science* **5**:431–438, 1995.
- A. Avron, "The structure of interlaced bilattices", Mathematical Structures in Computer Science 6(3):287–299, 1996.
- U. Rivieccio, "An algebraic study of bilattice-based logics", *Ph.D. Thesis, University of Barcelona*, 2010.

References (Cont'd.)

5. Miscellaneous Applications

- Data Integration: B. Messing, "Combining knowledge with many-valued logics", *Data and Knowledge Engineering* **23**:297–315, 1997.
- Natural Language Processing: R. Nelken and N. Francez, "Bilattices and the semantics of natural language questions" *Linguistics and Philosophy* 25(1):37–64, 2002.
- Preference Modelling: G. Deschrijver, O. Arieli, C. Cornelis, and E. Kerre. "A bilattice-based framework for handling graded truth and imprecision". Uncertainty, Fuzziness and Knowledge-Based Systems 15(1):13-41, 2007.
- Fuzzy Sets and Systems: C. Cornelis, O. Arieli, G. Deschrijver and E. Kerre, "Uncertainty modeling by bilattice-based squares and triangles", *IEEE Transactions on Fuzzy Systems* 15(2):161–175, 2007.
 P. Victor et. al "Practical aggregation operators for gradual trust and distrust" *Fuzzy Sets and Systems* 184(1):126–147, 2011

References (Cont'd.)

6. Generalizations

- Y. Shramko and H. Wansing, "Some useful 16-valued logics: How a computer network should think", *Journal of Philosophical Logic* 34: 121–153, 2005.
- N. Kamide and H. Wansing, "Sequent calculi for some trilattice logics", The Review of Symbolic Logic 2(2):374–395, 2009.
- D. Zaitsev, "A few more useful 8-valued logics for reasoning with tetralattice EIGHT₄", Studia Logica 92:265–280, 2009.
- N. Kamide and H. Wansing, "Completeness and cut-elimination theorems for trilattice logics" *Annals of Pure and Applied Logic*, 162(10):816–835, 2011.

This tutorial is on the web: http://www.cs.mta.ac.il/~oarieli (click on "presentations")

This tutorial is on the web: http://www.cs.mta.ac.il/~oarieli (click on "presentations")

Thank you!