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N. Belnap, ”How A Computer Should Think?”
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t – truth, f – falsity, ⊥ – none, > – both
≤t – the ‘truth’ order
≤k – the ‘information’ (knowledge) order
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Combining the Partial Orders
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FOUR, NINE and SEVEN
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Pre-Bilattices

Definition (Fitting)

A pre-bilattice is a triple PB = 〈B,≤t ,≤k 〉, where

B is a set containing at least four elements,
〈B,≤t〉, 〈B,≤k 〉 are complete lattices.

Notations:
t – the ≤t -greatest element, f – the ≤t -least element,
> – the ≤k -greatest element, ⊥ – the ≤k -least element.

Basic operators:

≤t -meet and join: ∧ (‘conjunction’), ∨ (‘disjunction’),

≤k -meet and join: ⊗ (‘consensus’), ⊕ (‘accept all’).
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Bilattices: Relating the Orders Through Negation

Definition (Ginsberg)

A bilattice is a quadruple B = 〈B,≤t ,≤k ,¬〉, where
〈B,≤t ,≤k 〉 is a pre-bilattice,
¬ is a ≤t -negation on B.

Properties of a ≤t -negation:

order reversing w.r.t. ≤t : a ≤t b ⇒ ¬a ≥t ¬b,
order preserving w.r.t ≤k : a ≤k b ⇒ ¬a ≤k ¬b,
involution: ¬¬a = a.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 6/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Basic Definitions
Basic Properties
General Constructions

Bilattices: Relating the Orders Through Negation

Definition (Ginsberg)

A bilattice is a quadruple B = 〈B,≤t ,≤k ,¬〉, where
〈B,≤t ,≤k 〉 is a pre-bilattice,
¬ is a ≤t -negation on B.

Properties of a ≤t -negation:

order reversing w.r.t. ≤t : a ≤t b ⇒ ¬a ≥t ¬b,
order preserving w.r.t ≤k : a ≤k b ⇒ ¬a ≤k ¬b,
involution: ¬¬a = a.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 6/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Basic Definitions
Basic Properties
General Constructions

Other Ways of Relating the Partial Orders

Definition
A (pre-) bilattice is distributive if all the (twelve) possible
distributive laws concerning ∧, ∨, ⊗, ⊕ hold.
(e.g., a ∨ (b ⊗ c) = (a⊗ b) ∨ (a⊗ c))

Definition (Fitting)
A (pre-) bilattice is interlaced if ∧, ∨, ⊗, ⊕ are monotonic w.r.t.
≤t and ≤k .

a ≤t b implies that a⊗ c ≤t b ⊗ c and a⊕ c ≤t b ⊕ c,
a ≤k b implies that a ∧ c ≤k b ∧ c and a ∨ c ≤k b ∨ c.

Note: Every distributive (pre-)bilattice is interlaced.
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The smallest bilattice
(¬t = f ,¬f = t ,¬> = >,¬⊥ = ⊥).

Distributive (hence interlaced).
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Example 2 – SEVEN
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A bilattice introduced by Ginsberg for default reasoning
(¬dt = df ,¬df = dt ,¬m = m).

Not even interlaced
(e.g., f <t df but f ⊗m >t df ⊗m).
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Some Basic Properties

B = 〈B,≤t ,≤k ,¬〉 – a bilattice.

Lemma
a) ¬(a ∧ b) = ¬a ∨ ¬b, ¬(a ∨ b) = ¬a ∧ ¬b,
¬(a⊗ b) = ¬a⊗ ¬b, ¬(a⊕ b) = ¬a⊕ ¬b.

b) ¬f = t , ¬t = f , ¬⊥ = ⊥, ¬> = >.

Note: If B has a ≤k -negation “−” (conflation), then:
a) −(a ∧ b) = −a ∧ −b, −(a ∨ b) = −a ∨ −b,
−(a⊗ b) = −a⊕−b, −(a⊕ b) = −a⊗−b.

b) −f = f , −t = t , −⊥ = >, −> = ⊥.

Lemma
If B is interlaced, then ⊥∧> = f , ⊥∨> = t , f⊗t = ⊥, f⊕t = >.
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The Bilattice Product L � L

Definition (Ginsberg)

Let L = 〈L,≤L〉 be a complete lattice.
The bilattice L � L = 〈L× L,≤t ,≤k ,¬〉 is defined as follows:

(b1,b2) ≥t (a1,a2) iff b1 ≥L a1 and b2 ≤L a2,
(b1,b2) ≥k (a1,a2) iff b1 ≥L a1 and b2 ≥L a2,
¬(a1,a2) = (a2,a1).

Intuition: If (x , y) ∈ L× L, then x represents the information for
some assertion, and y is the information against it.

Note: Interlaced pre-bilattices may be constructed by L1 � L2.
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Examples of L � L
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FOUR = T WO � T WO NINE = T HREE � T HREE

(T WO = 〈{0,1},0 < 1〉) (T HREE = 〈{0, 1
2 ,1},0 <

1
2 < 1〉)
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Some Properties of L � L

Lemma
Let L be a complete lattice with a join uL and a meet tL. Then:

a) L � L is a bilattice with the following basic operations:
(a,b) ∨ (c,d) = (a tL c,b uL d),
(a,b) ∧ (c,d) = (a uL c,b tL d),
(a,b)⊕ (c,d) = (a tL c,b tL d),
(a,b)⊗ (c,d) = (a uL c,b uL d),
¬(a,b) = (b,a).

b) The four basic elements of L � L are the following:
⊥L�L = (inf(L), inf(L)), >L�L = (sup(L), sup(L)),
tL�L = (sup(L), inf(L)), fL�L = (inf(L), sup(L)).

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 13/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Basic Definitions
Basic Properties
General Constructions

Some Properties of L � L

Lemma
Let L be a complete lattice with a join uL and a meet tL. Then:

a) L � L is a bilattice with the following basic operations:
(a,b) ∨ (c,d) = (a tL c,b uL d),
(a,b) ∧ (c,d) = (a uL c,b tL d),
(a,b)⊕ (c,d) = (a tL c,b tL d),
(a,b)⊗ (c,d) = (a uL c,b uL d),
¬(a,b) = (b,a).

b) The four basic elements of L � L are the following:
⊥L�L = (inf(L), inf(L)), >L�L = (sup(L), sup(L)),
tL�L = (sup(L), inf(L)), fL�L = (inf(L), sup(L)).

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 13/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Basic Definitions
Basic Properties
General Constructions

Some Properties of L � L

Lemma
Let L be a complete lattice with a join uL and a meet tL. Then:

a) L � L is a bilattice with the following basic operations:
(a,b) ∨ (c,d) = (a tL c,b uL d),
(a,b) ∧ (c,d) = (a uL c,b tL d),
(a,b)⊕ (c,d) = (a tL c,b tL d),
(a,b)⊗ (c,d) = (a uL c,b uL d),
¬(a,b) = (b,a).

b) The four basic elements of L � L are the following:
⊥L�L = (inf(L), inf(L)), >L�L = (sup(L), sup(L)),
tL�L = (sup(L), inf(L)), fL�L = (inf(L), sup(L)).

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 13/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Basic Definitions
Basic Properties
General Constructions

More Facts About L � L

Theorem
a) L � L is always interlaced [Fitting]

b) L � L is distributive if so is L [Ginsberg]

c) Every distributive bilattice is isomorphic to L � L for some
complete distributive lattice L [Ginsberg]

d) Every interlaced bilattice is isomorphic to L � L for some
complete lattice L [Avron]

Corollary: The number of elements of a finite interlaced bilattice
is a perfect square.
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The Interval-based Construction I(L)

Definition (Fitting)

Let L = 〈L,≤L〉 be a complete lattice.
The structure I(L) = 〈I(L),≤t ,≤k 〉 is defined as follows:

I(L) = {[a,b] | a ≤L b}, where [a,b] = {c | a ≤L c ≤L b},
[b1,b2] ≥t [a1,a2] iff b1 ≥L a1 and b2 ≥L a2,
[b1,b2] ≥k [a1,a2] iff b1 ≥L a1 and b2 ≤L a2.

Intuition:
I(L): the ‘intervals’ of L (uncertain measurements).
≤t : higher degree of truth; shift rightwards.
≤k : better approximations; interval narrowing

([c,d ] ≥k [a,b]⇔ [c,d ] ⊆ [a,b]).
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I(L) – Examples and Applications
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Applications:

A generalization of Kleene’s 3-valued structure.
Interval-valued structures for fuzzy reasoning (using [0,1]) .
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Some Properties of I(L)

Lemma
Let L be a complete lattice with a join uL and a meet tL. Then:

a) I(L) is a ≤k -lower pre-bilattice, where:
[a,b] ∨ [c,d ] = [a tL c,b tL d ],
[a,b] ∧ [c,d ] = [a uL c,b uL d ],
[a,b]⊗ [c,d ] = [a uL c,b tL d ].

b) The three basic elements of I(L) are the following:
tI(L) = [sup(L), sup(L)], fI(L) = [inf(L), inf(L)],
⊥I(L) = [inf(L), sup(L)].

Note: I(L) is not closed w.r.t. ⊕.
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Relating L � L and I(L)
L: a complete lattice with an order-reversing involution,
a−: the ≤L-involute of a.

A conflation − is defined on L � L by −(a,b) = (b−,a−).
(This is a ≤k -negation on L�L: involutive, ≤k -reversing, ≤t -preserving)

An element (a,b) ∈ L× L is coherent , if (a,b) ≤k −(a,b).

Theorem
I(L) is isomorphic to the substructure of the coherent elements
of L � L.

Proof.
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Bilattice-based Logics

What Is a Logic?

Definition
A (Tarskian) consequence relation for a language L is a relation
` between set of formulas in L and formulas in L, satisfying:
Reflexivity : ψ ` ψ.
Monotonicity : if Γ ` ψ and Γ ⊆ Γ′, then Γ ` ψ.
Transitivity : if Γ ` ψ and Γ′, ψ ` φ, then Γ ∪ Γ′ ` φ.

Definition
A (propositional) logic is a pair L = 〈L,`〉, where L is a
propositional language and ` is a consequence relation for L.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 19/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Bilattice-based Logics

What Is a Logic?

Definition
A (Tarskian) consequence relation for a language L is a relation
` between set of formulas in L and formulas in L, satisfying:
Reflexivity : ψ ` ψ.
Monotonicity : if Γ ` ψ and Γ ⊆ Γ′, then Γ ` ψ.
Transitivity : if Γ ` ψ and Γ′, ψ ` φ, then Γ ∪ Γ′ ` φ.

Definition
A (propositional) logic is a pair L = 〈L,`〉, where L is a
propositional language and ` is a consequence relation for L.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 19/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Bilattice-based Logics

What Is a Logic?

Definition
A (Tarskian) consequence relation for a language L is a relation
` between set of formulas in L and formulas in L, satisfying:
Reflexivity : ψ ` ψ.
Monotonicity : if Γ ` ψ and Γ ⊆ Γ′, then Γ ` ψ.
Transitivity : if Γ ` ψ and Γ′, ψ ` φ, then Γ ∪ Γ′ ` φ.

Definition
A (propositional) logic is a pair L = 〈L,`〉, where L is a
propositional language and ` is a consequence relation for L.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 19/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Matrices

A semantic (model-theoretic) way of defining logics:

Definition
A (multi-valued) matrix for L is a tripleM = 〈V,D,O〉, where:

V – the truth values,
D – the designated elements of V,
O – the interpretations (‘truth tables’) of the L-connectives.

Standard definitions for the induced semantic notions:
M-valuations: ΛM = {ν | ν : Atoms(L)→ V}.
M-models of ψ: modM(ψ) = {ν ∈ ΛM | ν(ψ) ∈ D}. (ν |=M ψ)

M-models of Γ: modM(Γ) =
⋂
ψ∈Γ mod(ψ). (ν |=M Γ)
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Matrix-Based Logics

M = 〈V,D,O〉 – a matrix for a language L.

Definition
Γ `M ψ if modM(Γ) ⊆ modM(ψ).

Theorem
LM = 〈L,`M〉 is a propositional logic (induced byM).

Next, we consider logics that are induced by bilattice-based
matrices (i.e., whose truth values are elements of a bilattice
and the connectives are defined by bilattice operators).
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Bilattices and Logicality

Why bilattices?

Incorporation of information considerations.

Simple ways of representing different levels of
inconsistency and incompleteness.

Further considerations in defining logics:

The connectives and their interpretations (standard
connectives are usually defined by the basic ≤t -operators).
The choice of the designated elements.

What should be the designated elements?

We need dual notions for lattice filters and prime-filters.
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Bifilters and Satisfiability

Definition (Arieli, Avron)

Let B = (B,≤t ,≤k ) be a bilattice.

a) A bifilter of B is a nonempty subset F ⊂ B, such that:
1 a ∧ b ∈ F iff a ∈ F and b ∈ F ,
2 a⊗ b ∈ F iff a ∈ F and b ∈ F .

b) A bifilter F is prime, if it satisfies the following conditions:
1 a ∨ b ∈ F iff a ∈ F or b ∈ F ,
2 a⊕ b ∈ F iff a ∈ F or b ∈ F .
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Examples of Bifilters
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Exactly one bifilter in FOUR and SEVEN : F = {t ,>}.

This bifilter is prime in both cases.
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Examples of Bifilters (Cont’d.)
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F = {t ,>} is also the unique bifilter of FIVE .

This time, it is not prime: m ∨⊥ ∈ F but m 6∈ F and ⊥ 6∈ F .
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Examples of Bifilters (Cont’d.)
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NINE has two bifilters, both are prime:
F1 = {t ,pt ,>},
F2 = {t ,pt ,dt ,>,m,pf}.
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Bifilters – Some Facts (Arieli, Avron)

Lemma
Let F be a bifilter in B. Then:

a) F is upward-closed w.r.t. both ≤t and ≤k .
b) t ,> ∈ F while f ,⊥ 6∈ F .

Lemma
Let B = (B,≤t ,≤k ) be an interlaced (pre-)bilattice.

a) A subset F of B is a (prime) bifilter iff it is a (prime) filter
relative to ≤t , and > ∈ F .

b) A subset F of B is a (prime) bifilter iff it is a (prime) filter
relative to ≤k , and t ∈ F .
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Bifilters – More Facts

Notation: Fk (a) = {b | b ≥k a}, Ft (a) = {b | b ≥t a}.

Lemma
Let B = (B,≤t ,≤k ) be a (pre-)bilattice.
If Fk (t) = Ft (>), then Fk (t) is the smallest bifilter (i.e., it is
contained in any other bifilter of B).

Lemma
In every interlaced bilattice it holds that Fk (t) = Ft (>), and this
is the smallest bifilter.
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Bifilters in L � L

Lemma
Let L = 〈L,≤L〉 be a complete lattice. Then F is a [prime-]
bifilter in L � L iff F = FL × L, where FL is a [prime-] filter in L.

Notation: Let a ∈ L, a 6= inf(L). We denote:
F(a) = {(b1,b2) | b1 ≥L a,b2 ∈ L}, FL(a) = {y ∈ L | y ≥L a}.

Lemma
a) F(a) is a prime bifilter of L�L iff FL(a) is a prime filter in L.
b) F(sup(L)) is a minimal prime bifilters of L � L if sup(L) is

join irreducible (a ∨L b = sup(L)⇒ a = sup(L) or b = sup(L)).
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Logical Billatices

Definition (Arieli, Avron)

A logical bilattice is a pair 〈B,F〉, where B is a bilattice and F is
a prime bifilter of B.

General Constructions of Logical Bilattices

〈L � L,F(a)〉 is a logical bilattice iff FL(a) is a prime filter in L.

〈L � L,F(sup(L))〉 is a logical bilattice iff sup(L) is join
irreducible.

Every distributive bilattice can be turned into a logical bilattice.

Every complete distributive lattice can be turned into a logical
bilattice.
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Back to Logic

Summary:

A logical bilattice B = 〈B,F〉 induces a matrixMB for the
language L with the connectives ∨,∧,⊕,⊗,¬.

InMB, the set of truth values is B (the elements of B), the
designated elements are those in F , and the connectives are
interpreted by the basic operators of B.

In turn,MB induces a corresponding logic LB = 〈L,`B〉. We
call it the basic logic induced by the logical bilattice B.

We recall that in this logic, Γ `B φ means that for every ν ∈ ΛB,
if ν(ψ) ∈ F for every ψ ∈ Γ then ν(φ) ∈ F as well.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 31/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Back to Logic

Summary:

A logical bilattice B = 〈B,F〉 induces a matrixMB for the
language L with the connectives ∨,∧,⊕,⊗,¬.

InMB, the set of truth values is B (the elements of B), the
designated elements are those in F , and the connectives are
interpreted by the basic operators of B.

In turn,MB induces a corresponding logic LB = 〈L,`B〉. We
call it the basic logic induced by the logical bilattice B.

We recall that in this logic, Γ `B φ means that for every ν ∈ ΛB,
if ν(ψ) ∈ F for every ψ ∈ Γ then ν(φ) ∈ F as well.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 31/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Back to Logic

Summary:

A logical bilattice B = 〈B,F〉 induces a matrixMB for the
language L with the connectives ∨,∧,⊕,⊗,¬.

InMB, the set of truth values is B (the elements of B), the
designated elements are those in F , and the connectives are
interpreted by the basic operators of B.

In turn,MB induces a corresponding logic LB = 〈L,`B〉. We
call it the basic logic induced by the logical bilattice B.

We recall that in this logic, Γ `B φ means that for every ν ∈ ΛB,
if ν(ψ) ∈ F for every ψ ∈ Γ then ν(φ) ∈ F as well.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 31/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Back to Logic

Summary:

A logical bilattice B = 〈B,F〉 induces a matrixMB for the
language L with the connectives ∨,∧,⊕,⊗,¬.

InMB, the set of truth values is B (the elements of B), the
designated elements are those in F , and the connectives are
interpreted by the basic operators of B.

In turn,MB induces a corresponding logic LB = 〈L,`B〉. We
call it the basic logic induced by the logical bilattice B.

We recall that in this logic, Γ `B φ means that for every ν ∈ ΛB,
if ν(ψ) ∈ F for every ψ ∈ Γ then ν(φ) ∈ F as well.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 31/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Back to Logic

Summary:

A logical bilattice B = 〈B,F〉 induces a matrixMB for the
language L with the connectives ∨,∧,⊕,⊗,¬.

InMB, the set of truth values is B (the elements of B), the
designated elements are those in F , and the connectives are
interpreted by the basic operators of B.

In turn,MB induces a corresponding logic LB = 〈L,`B〉. We
call it the basic logic induced by the logical bilattice B.

We recall that in this logic, Γ `B φ means that for every ν ∈ ΛB,
if ν(ψ) ∈ F for every ψ ∈ Γ then ν(φ) ∈ F as well.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 31/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Adding Implication Connectives

Note: In the language of {∨,∧,⊕,⊗,¬}, `B has no tautologies.
(if ∀p ∈ Atoms(ψ) ν(p) = ⊥, so ν(ψ) = ⊥ 6∈ F).

We add an implication connective ⊃ for introducing tautologies
and for reducing deducibility to theoremhood:

a ⊃ b =

{
b if a ∈ F ,
t if a 6∈ F .

This connective is a generalization of the classical
implication a→ b = ¬a ∨ b (they are identical on {t , f}).
Modus ponens and the deduction theorem are valid for `B:
Γ, ψ `B φ iff Γ `B ψ ⊃ φ.
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Tweety Dilemma

Γ =



bird(tweety)→ fly(tweety)

penguin(tweety) ⊃ bird(tweety)

penguin(tweety) ⊃ ¬fly(tweety)

bird(tweety)

penguin(tweety)



Model No. bird(tweety) fly(tweety) penguin(tweety)
ν1 − ν2 > > >, t
ν3 − ν4 > f >, t
ν5 − ν6 t > >, t

Γ `4 bird(tweety), Γ 6`4 ¬bird(tweety),

Γ `4 penguin(tweety), Γ 6`4 ¬penguin(tweety),

Γ `4 ¬fly(tweety), Γ 6`4 fly(tweety).
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Some properties of `B

Praconsistency:

Lemma
p,¬p 6`B q.

Compactness:

Theorem (Arieli, Avron)

If Γ `B ψ then Γ′ `B ψ for a finite Γ′ ⊆ Γ.

Characterization in FOUR:

Theorem (Arieli, Avron)
Γ `B ψ iff Γ `4 ψ.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 34/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Some properties of `B

Praconsistency:

Lemma
p,¬p 6`B q.

Compactness:

Theorem (Arieli, Avron)

If Γ `B ψ then Γ′ `B ψ for a finite Γ′ ⊆ Γ.

Characterization in FOUR:

Theorem (Arieli, Avron)
Γ `B ψ iff Γ `4 ψ.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 34/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Some properties of `B

Praconsistency:

Lemma
p,¬p 6`B q.

Compactness:

Theorem (Arieli, Avron)

If Γ `B ψ then Γ′ `B ψ for a finite Γ′ ⊆ Γ.

Characterization in FOUR:

Theorem (Arieli, Avron)
Γ `B ψ iff Γ `4 ψ.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 34/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Some properties of `B

Praconsistency:

Lemma
p,¬p 6`B q.

Compactness:

Theorem (Arieli, Avron)

If Γ `B ψ then Γ′ `B ψ for a finite Γ′ ⊆ Γ.

Characterization in FOUR:

Theorem (Arieli, Avron)
Γ `B ψ iff Γ `4 ψ.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 34/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Proof Theory

The system GBS

(Gentzen-type Bilattice-based System)

Axioms:
Γ, ψ ⇒ ∆, ψ

Structural Rules:

Permutation:
Γ1, ψ, φ, Γ2 ⇒ ∆

Γ1, φ, ψ, Γ2 ⇒ ∆

Γ⇒ ∆1, ψ, φ,∆2

Γ⇒ ∆1, φ, ψ,∆2

Contraction:
Γ1, ψ, ψ, Γ2 ⇒ ∆

Γ1, ψ, Γ2 ⇒ ∆

Γ⇒ ∆1, ψ, ψ,∆2

Γ⇒ ∆1, ψ,∆2
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The Proof System GBS
Logical Rules:

[¬¬⇒]
Γ, ψ ⇒ ∆

Γ,¬¬ψ ⇒ ∆

Γ⇒ ∆, ψ

Γ⇒ ∆,¬¬ψ
[⇒¬¬]

[∧⇒]
Γ, ψ, φ⇒ ∆

Γ, ψ ∧ φ⇒ ∆

Γ⇒ ∆, ψ Γ⇒ ∆, φ

Γ⇒ ∆, ψ ∧ φ
[⇒∧]

[¬∧⇒]
Γ,¬ψ ⇒ ∆ Γ,¬φ⇒ ∆

Γ,¬(ψ ∧ φ)⇒ ∆

Γ⇒ ∆,¬ψ,¬φ
Γ⇒ ∆,¬(ψ ∧ φ)

[⇒¬∧]

[∨⇒]
Γ, ψ ⇒ ∆ Γ, φ⇒ ∆

Γ, ψ ∨ φ⇒ ∆

Γ⇒ ∆, ψ, φ

Γ⇒ ∆, ψ ∨ φ
[⇒∨]

[¬∨⇒]
Γ,¬ψ,¬φ⇒ ∆

Γ,¬(ψ ∨ φ)⇒ ∆

Γ⇒ ∆,¬ψ Γ⇒ ∆,¬φ
Γ⇒ ∆,¬(ψ ∨ φ)

[⇒¬∨]

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 36/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

The Proof System GBS

Logical Rules (Cont’d.):

[⊗⇒]
Γ, ψ, φ⇒ ∆

Γ, ψ ⊗ φ⇒ ∆

Γ⇒ ∆, ψ Γ⇒ ∆, φ

Γ⇒ ∆, ψ ⊗ φ
[⇒⊗]

[¬⊗⇒]
Γ,¬ψ,¬φ⇒ ∆

Γ,¬(ψ ⊗ φ)⇒ ∆

Γ⇒ ∆,¬ψ Γ⇒ ∆,¬φ
Γ⇒ ∆,¬(ψ ⊗ φ)

[⇒¬⊗]

[⊕⇒]
Γ, ψ ⇒ ∆ Γ, φ⇒ ∆

Γ, ψ ⊕ φ⇒ ∆

Γ⇒ ∆, ψ, φ

Γ⇒ ∆, ψ ⊕ φ
[⇒⊕]

[¬⊕⇒]
Γ,¬ψ ⇒ ∆ Γ,¬φ⇒ ∆

Γ,¬(ψ ⊕ φ)⇒ ∆

Γ⇒ ∆,¬ψ,¬φ
Γ⇒ ∆,¬(ψ ⊕ φ)

[⇒¬⊕]
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The Proof System GBS

Logical Rules (Cont’d.):

[⊃⇒]
Γ⇒ ψ,∆ Γ, φ⇒ ∆

Γ, ψ ⊃ φ⇒ ∆

Γ, ψ ⇒ φ,∆

Γ⇒ ψ ⊃ φ,∆
[⇒⊃]

[¬⊃⇒]
Γ, ψ,¬φ⇒ ∆

Γ,¬(ψ ⊃ φ)⇒ ∆

Γ⇒ ψ,∆ Γ⇒ ¬φ,∆
Γ⇒ ¬(ψ ⊃ φ),∆

[⇒¬⊃]

[¬t⇒] Γ,¬t⇒ ∆ Γ⇒ ∆, t [⇒ t]

[f⇒] Γ, f⇒ ∆ Γ⇒ ∆,¬f [⇒¬f]

[⊥⇒] Γ,⊥ ⇒ ∆ Γ⇒ ∆,> [⇒>]

[¬⊥⇒] Γ,¬⊥ ⇒ ∆ Γ⇒ ∆,¬> [⇒¬>]
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Main Results

Definition
Γ `GBS ψ if there is a finite Γ′ ⊆ Γ, s.t. Γ′⇒ψ is provable in GBS.

Theorem (Cut Elimination)
If Γ1 `GBS ψ and Γ2, ψ `GBS φ, then Γ1, Γ2 `GBS φ.

Theorem (Soundness and Completeness)
Γ `B ψ iff Γ `GBS ψ.

Corollary: Γ `4 ψ iff Γ `GBS ψ. Thus, the {∧,∨,⊃, t, f}-fragment
of `4 is identical to the {∧,∨,⊃, t, f}-fragment of classical logic.
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Hilbert-type Proof Systems

The system HBS

(Hilbert-type Bilattice-based System)

Defined Connective:

ψ ≡ φ def
= (ψ ⊃ φ) ∧ (φ ⊃ ψ)

Inference Rule:
ψ ψ ⊃ φ

φ
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The Proof System HBS
Axioms:

[⊃1] ψ ⊃ φ ⊃ ψ [⊃2] (ψ ⊃ φ ⊃ τ) ⊃ (ψ ⊃ φ) ⊃ (ψ ⊃ τ)

[⊃3] ((ψ ⊃ φ) ⊃ ψ) ⊃ ψ

[∧⊃] ψ ∧ φ ⊃ ψ ψ ∧ φ ⊃ φ [⊃∧] ψ ⊃ φ ⊃ ψ ∧ φ

[⊗⊃] ψ ⊗ φ ⊃ ψ ψ ⊗ φ ⊃ φ [⊃⊗] ψ ⊃ φ ⊃ ψ ⊗ φ

[⊃∨] ψ ⊃ ψ ∨ φ φ ⊃ ψ ∨ φ [∨⊃] (ψ ⊃ τ) ⊃ (φ ⊃ τ) ⊃ (ψ ∨ φ ⊃ τ)

[⊃⊕] ψ ⊃ ψ ⊕ φ φ ⊃ ψ ⊕ φ [⊕⊃] (ψ ⊃ τ) ⊃ (φ ⊃ τ) ⊃ (ψ ⊕ φ ⊃ τ)

[¬∧] ¬(ψ ∧ φ) ≡ ¬ψ ∨ ¬φ [¬∨] ¬(ψ ∨ φ) ≡ ¬ψ ∧ ¬φ

[¬⊗] ¬(ψ ⊗ φ) ≡ ¬ψ ⊗ ¬φ [¬⊕] ¬(ψ ⊕ φ) ≡ ¬ψ ⊕ ¬φ

[¬⊃] ¬(ψ ⊃ φ) ≡ ψ ∧ ¬φ [¬¬] ¬¬ψ ≡ ψ
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Main Results

Theorem (HBS is well-axiomatized)
A complete and sound axiomatization of every fragment of `B
that includes ⊃, is given by the axioms of HBS that mention
only the connectives of this fragment.

Theorem (GBS and HBS are equivalent)
ψ1, . . . , ψn `GBS φ iff `HBS ψ1 ∧ . . . ∧ ψn ⊃ φ.

Theorem (Soundness and Completeness)
Γ `4 ψ iff Γ `HBS ψ.
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Adding Quantifiers

Standard extensions to first order languages, taking e.g., ∀
as a generalization of ∧.

For a structure D, ν(∀xψ(x)) = inf≤t{ν(ψ(d)) | d ∈ D}.

Corresponding Gentzen-type rules:

[∀⇒]
Γ, ψ(d)⇒ ∆

Γ,∀xψ(x)⇒ ∆

Γ⇒ ψ(y),∆

Γ⇒ ∀xψ(x),∆
[⇒∀]

[¬∀ ⇒]
Γ,¬ψ(y)⇒ ∆

Γ,¬∀xψ(x)⇒ ∆

Γ⇒ ¬ψ(d),∆

Γ⇒ ¬∀xψ(x),∆
[⇒¬∀]

Assuming, as usual, that the variable y is not free in Γ ∪∆.

Quantifiers for ⊕ and ⊗ can be introduced in a similar way.
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For a structure D, ν(∀xψ(x)) = inf≤t{ν(ψ(d)) | d ∈ D}.

Corresponding Gentzen-type rules:

[∀⇒]
Γ, ψ(d)⇒ ∆

Γ, ∀xψ(x)⇒ ∆

Γ⇒ ψ(y),∆

Γ⇒ ∀xψ(x),∆
[⇒∀]

[¬∀ ⇒]
Γ,¬ψ(y)⇒ ∆

Γ,¬∀xψ(x)⇒ ∆

Γ⇒ ¬ψ(d),∆

Γ⇒ ¬∀xψ(x),∆
[⇒¬∀]

Assuming, as usual, that the variable y is not free in Γ ∪∆.

Quantifiers for ⊕ and ⊗ can be introduced in a similar way.
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Drawbacks of `B

Strictly weaker than classical logic even for consistent
theories.

Rejects some very useful (and intuitively justified) inference
rules, such as the Disjunctive Syllogism: ¬p,p ∨ q 6`B q.
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Preferential Reasoning by the Information Order

B = 〈B,F〉 – a logical bilattice, where ≤k is well-founded in B.

Definition
a) ν1 is ≤k -smaller than ν2, if for each atom p, ν1(p) ≤k ν2(p).
b) ν is a ≤k -minimal model of Γ if there is no model of Γ that

is k -smaller than ν.

Definition

Γ `≤k
B ψ iff every ≤k -minimal model of Γ is a model of ψ.

Intuition: Do not assume anything that is not really known; As
long as one keeps the redundant information as minimal as
possible, the tendency of getting into conflicts decreases.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 45/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Preferential Reasoning by the Information Order

B = 〈B,F〉 – a logical bilattice, where ≤k is well-founded in B.

Definition
a) ν1 is ≤k -smaller than ν2, if for each atom p, ν1(p) ≤k ν2(p).
b) ν is a ≤k -minimal model of Γ if there is no model of Γ that

is k -smaller than ν.

Definition

Γ `≤k
B ψ iff every ≤k -minimal model of Γ is a model of ψ.

Intuition: Do not assume anything that is not really known; As
long as one keeps the redundant information as minimal as
possible, the tendency of getting into conflicts decreases.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 45/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Preferential Reasoning by the Information Order

B = 〈B,F〉 – a logical bilattice, where ≤k is well-founded in B.

Definition
a) ν1 is ≤k -smaller than ν2, if for each atom p, ν1(p) ≤k ν2(p).
b) ν is a ≤k -minimal model of Γ if there is no model of Γ that

is k -smaller than ν.

Definition

Γ `≤k
B ψ iff every ≤k -minimal model of Γ is a model of ψ.

Intuition: Do not assume anything that is not really known; As
long as one keeps the redundant information as minimal as
possible, the tendency of getting into conflicts decreases.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 45/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Preferential Reasoning by the Information Order

B = 〈B,F〉 – a logical bilattice, where ≤k is well-founded in B.

Definition
a) ν1 is ≤k -smaller than ν2, if for each atom p, ν1(p) ≤k ν2(p).
b) ν is a ≤k -minimal model of Γ if there is no model of Γ that

is k -smaller than ν.

Definition

Γ `≤k
B ψ iff every ≤k -minimal model of Γ is a model of ψ.

Intuition: Do not assume anything that is not really known; As
long as one keeps the redundant information as minimal as
possible, the tendency of getting into conflicts decreases.

Duality’12, Oxford UK, June 13-14, 2012 A Tutorial On Bilattices 45/64



Introduction and Overview
Bilattice Theory

Bilattice-based Logics
Bilattices and Logic Programming

Summary and References

Introduction
Bilattice-based Semantics
The Basic Logic of Logical Bilattices
Taking Advantage of the Information Order

Tweety Dilemma, Revisited

Γ =


bird(tweety)→ fly(tweety)
penguin(tweety) ⊃ bird(tweety)
penguin(tweety) ⊃ ¬fly(tweety)
bird(tweety)
penguin(tweety)


Two ≤k -minimal models (out of six models)

Model No. bird(tweety) fly(tweety) penguin(tweety)
ν1 > f t
ν2 t > t

Γ `≤k
4 bird(tweety), Γ 6`≤k

4 ¬bird(tweety),

Γ `≤k
4 penguin(tweety), Γ 6`≤k

4 ¬penguin(tweety),

Γ `≤k
4 ¬fly(tweety), Γ 6`≤k

4 fly(tweety).
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Basic Properties of `≤k
B

Theorem
B = 〈B,F〉 – a logical bilattice where B is interlaced.
If ψ is in the language without ⊃, then Γ `B ψ iff Γ `≤k

B ψ.

Corollary: In the language without ⊃, `B-inferences are
obtained by ≤k -minimal models.

Note: `≤k
B is in general nonmonotonic, but it is cautiously

monotonic: If Γ `≤k
B φ then Γ, ψ `≤k

B φ when Γ `≤k
B ψ.

Theorem (Characterization in FOUR)

B = 〈B,F〉 – a logical bilattice such that inf≤k F ∈ F .
Then: Γ `≤k

B ψ iff Γ `≤k
4 ψ.
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Bilattices and Logic Programming

In a series of papers, Melving Fitting has shown that bilattices
are very useful for defining and analyzing fixpoint semantics for
logic programs.

Some advantages of using bilattices in this context:

Extended languages for logic programs.

Generalizations of standard two- and three-valued
semantics to finite-valued semantics.

Accommodation of incompleteness and inconsistency.

Characterizing structures of standard approaches for
negation handling (stable-model semantics, well-founded
semantics).
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(Bilattice-based) Logic Programs

A clause is an expression of the form A← Ψ, where
The clause’s head A is a (first-order) atomic formula.
The clause’s body Ψ is a formula built-up from literals
(atoms or negated atoms) using {∧,∨,⊗,⊕,∃, ∀} and
constants from B, and whose free variables occur in A.

A logic program P is a finite set of clauses. If there are no
negations in the clauses’ bodies, P is called positive.

Note: We may assume that there are no different clauses with
the same head, and that the bodies are non-empty, since
A← Ψ1 and A← Ψ2 are replaced by A← Ψ1 ∨Ψ2, and A is
replaced by A← t.
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Example

A← t,

C ← B ⊕ A,

D ← B ⊗ C,

E ← C ∨ D ∨ E
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The Immediate Consequence Operator T PB
Notations:
P∗: the grounding of P over the Herbard base,
ΛPB = {ν | ν : Atoms(P∗)→ B}: the B-valuations for P.

Note: 〈ΛPB ,≤t ,≤k 〉 is a pre-bilattice:
ν1 ≤t ν2 iff ν1(A) ≤t ν2(A) for every ground atom A,
ν1 ≤k ν2 iff ν1(A) ≤k ν2(A) for every ground atom A.

Definition (Fitting, Apt, van-Emden, Kowalski)

T PB : ΛPB → ΛPB is defined by:

T PB (ν)(A) =

{
ν(Ψ) if A← Ψ ∈ P∗,
f otherwise.
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Fixpoints of T PB

Note: If B is an interlaced pre-bilattice, then

• T PB is ≤k -monotone on ΛPB : ν1 ≤k ν2 ⇒ T PB (ν1) ≤k T PB (ν2).

• If P is positive, then T PB is ≤t -monotone on ΛPB .

Thus: If P is positive and B is interlaced,

• T PB has a ≤t -least fixpoint νt and a ≤t -greatest fixpoint Vt ,

• T PB has a ≤k -least fixpoint νk and a ≤k -greatest fixpoints Vk .

(by Knaster-Tarski Theorem)
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Computing the Fixpoints of T PB

A← t,
C ← B ⊕ A,
D ← B ⊗ C,
E ← C ∨ D ∨ E

Computing the ≤k -least fixpoint, νk :
Start with the ≤k -smallest valuation, and iterate over T PB :

1 A : ⊥, B : ⊥, C : ⊥, D : ⊥, E : ⊥ ν0

2 A : t , B : f , C : ⊥, D : ⊥, E : ⊥ ν1 = T PB (ν0)

3 A : t , B : f , C : >, D : ⊥, E : ⊥ ν2 = T PB (ν1)

4 A : t , B : f , C : >, D : f , E : t ν3 = T PB (ν2) νk = ν3
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Computing the Fixpoints of T PB

A← t,
C ← B ⊕ A,
D ← B ⊗ C,
E ← C ∨ D ∨ E

Computing the ≤k -greatest fixpoint, Vk :
Start with the ≤k -largest valuation, and iterate over T PB :

1 A : >, B : >, C : >, D : >, E : > V0

2 A : t , B : f , C : >, D : >, E : > V1 = T PB (V0)

3 A : t , B : f , C : >, D : f , E : > V2 = T PB (V1) Vk = V2
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Relating the Fixpoints of T PB

νt and Vt are computed similarly, starting with the ≤t -smallest
and the ≤t -largest valuation (respectively) and iterating over T PB

In our example νt = Vk and Vt = νk , thus:
νk = Vt = {A : t , B : f , C : >, D : f , E : t},
νt = Vk = {A : t , B : f , C : >, D : f , E : >}.

In general, we have:

Theorem (Fitting)
If P is positive and B is interlaced, then:
νk = νt ⊗ Vt , Vk = νt ⊕ Vt , νt = νk ∧ Vk , Vt = νk ∨ Vk .
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Another Example
even(0)← t,
even(s(x))← odd(x),

odd(s(x))← even(x)

Grounding:

even(0)← t,
even(s(0))← odd(0),

odd(s(0))← even(0),

even(s(s(0)))← odd(s(0)),

odd(s(s(0)))← even(s(0)), . . .

A unique fixpoint: ν(even(sn(0)) = t iff n is even.
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Other Generalizations to the Bilattice Setting of
Fixpoint Operators

The Gelfond-Lifschitz transformation for handling negation as
failure in logic programs can also be generalized to the bilattice
setting, yielding a bilattice-based stable operator.

Again, this operator is ≤k -monotonic, so it has a ≤k -least
fixpoint sk and a ≤k -greatest fixpoint Sk . Fitting has shown that
these ≤k -external fixpoints are related to the ≤t -external
(oscillation) points st and St as follows:

sk = st ⊗ St , Sk = st ⊕ St .
st = sk ∧ Sk , St = sk ∨ Sk .

(Details are given in Fitting’s papers on the family of stable models
and the survey on logic programming, the references to which appear
in the next slides).
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This tutorial is on the web: http://www.cs.mta.ac.il/∼oarieli
(click on “presentations”)

Thank you!
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