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Stone  and the subcategory  zKFrm  of  KRFrm  of  zero-dimensional compact  
(regular) frames, which yields Stone duality. 
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Instead of the frame of all open subsets, we can work with the Boolean frame of  
regular open subsets. Since our spaces are regular, regular opens form a basis, so 
they carry all needed information about the topology of the space. 
 
This yields de Vries duality: 
 
De Vries Duality (1962):  KHaus  is dually equivalent to the category  DeV  of de Vries 
algebras.  
 
In the zero-dimensional case, this also restricts to Stone duality. 
 
Thus, either  KRFrm  or  DeV  (which are equivalent) give point-free representation of  
KHaus.  



Another way to think about the Boolean algebra of clopens of a Stone space  X  is  
as continuous  characteristic functions on  X. 
 
Since  X  is zero-dimensional, they carry all the information about the topology  
of  X. 



Another way to think about the Boolean algebra of clopens of a Stone space  X  is  
as continuous  characteristic functions on  X. 
 
Since  X  is zero-dimensional, they carry all the information about the topology  
of  X. 
 
If  X  is not zero-dimensional, then we have to work with a much larger gadget  
C(X)  of all continuous functions on  X. Obviously  C(X)  carries all the information 
about the topology of  X. 
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Consequently  C(X)  is a commutative (real) C*-algebra 



Weierstrass Approximation Theorem (1885):  Let  X  be a 
compact (closed and bounded) interval of  R. The R-subalgebra of 
C(X)  of all polynomial functions on X  is uniformly dense in C(X).  
(That is, it is dense in the uniform topology on C(X)). 
 
In other words, each continuous function on X  can be uniformly 
approximated by polynomial functions on X. 



Karl Weierstrass (1815 –1897) 



In two papers published in 1937 and 1948, Stone generalized the 
Weierstrass Approximation Theorem in two directions. 
 
One is that we can replace a closed and bounded interval on R by 
any compact Hausdorff space. 
 
The second is that we can replace the R-algebra of polynomials by 
any R-subalgebra A of C(X) that separates points of X. That is, if x≠y 
then there exists fA such that f(x) ≠f(y). 



In two papers published in 1937 and 1948, Stone generalized the 
Weierstrass Approximation Theorem in two directions. 
 
One is that we can replace a closed and bounded interval on R by 
any compact Hausdorff space. 
 
The second is that we can replace the R-algebra of polynomials by 
any R-subalgebra A of C(X) that separates points of X. That is, if x≠y 
then there exists fA such that f(x) ≠f(y). 
 
Stone-Weierstrass Theorem:  Let X  be a compact Hausdorff space. 
If A is an R-subalgebra of C(X)  that separates points of X, then A is 
uniformly dense in C(X). 



The Stone-Weierstrass Theorem (SW) is the key in generalizing Stone 
duality in a different (more ring-theoretic) direction. 
 
The resulting duality is known as Gelfand duality (or Stone-Gelfand 
duality or Stone-Gelfand-Naimark duality). 



KHaus  = compact Hausdorff spaces and continuous maps 
 
C*Alg  = real (commutative) C*-algebras and *-homomorphisms. 
 
Gelfand Duality Theorem (1939): KHaus  is dually equivalent to  C*Alg. 



Israel Gelfand (1913—2009) 
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The contravariant functor  C*Alg → KHaus: 
 

A → Max(A)  and  𝑀→ α−1(𝑀) 
 
Fact 1: X is homeomorphic to Max(C(X)) (follows from compactness of  X  
because each M in C(X) is of the form 𝑀𝑥 = {𝑓 ∈ 𝐶 𝑋 : 𝑓 𝑥 = 0}, so 
The correspondence 𝑥 → 𝑀𝑥 is a homeomorphism). 
 
Fact 2: A is isomorphic to C(Max(A)) (follows from Stone-Weierstrass  
because A is isomorphic to an R-subalgebra of C(Max(A)) that separates 
points, so by (SW), A is uniformly dense in C(Max(A)). Now as A is a  
C*-algebra,  A is uniformly complete, hence is isomorphic to C(Max(A)). 
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In fact,  C(X)  with this order forms a lattice: 
 

(f ˅ g)(x) = max{f(x),g(x)}  
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Moreover, it is easy to verify that 
 

f ≤ g  implies  f+h ≤ g+h  for each  h 
0 ≤ f,g  implies 0 ≤ fg 

 
So  C(X)  is an ℓ-ring  (lattice ordered ring). 
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We call an  ℓ-algebra  A  bounded  if  for each a  A  there exists   
n  N  such that  a ≤ n∙1 
 
We call an  ℓ-algebra  A  Archimedean  if  for each a,b  A whenever 
na ≤ b for each n  N  then  0 ≤ a 
 
It is easy to see that  C(X)  is bounded (because  X  is compact) and 
Archimedean (because  R  is Archimedean). 
 
Let  bal  be the category of bounded Archimedean ℓ-algebras and  
ℓ-algebra homomorphisms. 
 
Then  bal  provides a natural generalization of the category  C*Alg  
of real commutative C*-algebras. 
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As  A  is bounded and Archimedean, this is a well-defined norm on  A. 
 
For  C(X)  we have 
 

| 𝑓 |(𝑥)  = 𝑠𝑢𝑝 { 𝑓 𝑦 ∶ 𝑦𝑋} = 𝑖𝑛𝑓 {𝜇 ∶ |𝑎| ≤ 𝜇} 
 

Consequently,  C*Alg  is the subcategory of  bal consisting of those 
objects in  bal  that are norm-complete. 
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Recall that with each C*-algebra  A  we associated the compact 
Hausdorff space  Max(A)  of maximal ideals of  A.   
 
If  A  bal,  then  Max(A)  may not in general be Hausdorff. Instead 
we work with maximal convex ideals, the so called maximal ℓ-ideals 
(that is, ideals that also preserve the lattice structure; i.e. are kernels 
of ℓ-homomorphisms). 
 
For A  bal  let  𝑋𝐴  be the set of maximal ℓ-ideals of  A  endowed 
with the Zariski topology. 
 
Then 𝑋𝐴 is compact Hausdorff. 
 
Note:  If  A  happens to be a C*-algebra, then maximal ideals coincide 
with maximal ℓ-ideals, so this construction generalizes the standard 
construction for C*-algebras. 
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(1) A  is a C*-algebra. 
(2) A  is isomorphic to  C(𝑋𝐴). 
(3) A  is uniformly complete. 
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In fact,  C*Alg  is the smallest reflective subcategory of  bal  and a 
unique reflective epicomplete subcategory of  bal. 
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Richard Dedekind (1831–1916) 
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Dedekind’s Theorem: Every poset  P  can be embedded into its Dedekind completion 
D(P), which is a Dedekind complete lattice. The embedding preserves all existing joins 
and meets in P, and is both  join-dense and meet-dense (meaning that every element 
of  D(P)  is the join of the elements of  P  beneath it and the meet of the elements of   
P  above it). 
 
It follows from the work of  Nakano  and Johnson  that if  A  bal  then  D(A)  bal, 
and that  A  is both join-dense and meet-dense in  D(A). 
 
Let  DA  be the (full) subcategory of bal  whose objects are Dedekind complete. 
 
As each Dedekind complete A  bal  is uniformly complete, we have that  DA  is a  
(full) subcategory of  C*Alg. 
 
Note:  Although taking the uniform completion is functorial (the reflector  bal → C*Alg), 
taking the Dedekind completion is not functorial. 
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So for A  bal  we have that the uniform completion of  A  is 𝐶(𝑋𝐴) 
and the Dedekind completion of  A  is  𝐶(𝑋𝐵)  where 𝑋𝐵  is the 
Gleason cover of  𝑋𝐴. 



Dedekind completion of  A  can also be characterized purely in terms of 
functions on  𝑋𝐴. 



Dedekind completion of  A  can also be characterized purely in terms of 
functions on  𝑋𝐴. 
 
Let  f  be a bounded function on  𝑋𝐴.  Let 
 

𝑓∗ 𝑥 = 𝑖𝑛𝑓𝑈𝑥
{𝑠𝑢𝑝𝑦∈𝑈𝑥

𝑓 𝑦 } 

 
𝑓∗ 𝑥 = 𝑠𝑢𝑝𝑈𝑥

{𝑖𝑛𝑓𝑦∈𝑈𝑥
𝑓 𝑦 } 

 
 
Recall that  f  is  upper semicontinuous  if  𝑓∗ = 𝑓. 
 
An upper semicontinuous function  f  is  normal  if 
 

(𝑓∗)∗= 𝑓 



Let  𝑁(𝑋𝐴)  be the set of normal functions on  𝑋𝐴. 
 
Then 𝑁(𝑋𝐴)  is isomorphic to the Dedekind completion  D(A)  of  A. 



A  is a  C*-algebra A  is a Dedekind algebra 

A  is uniformly complete A  is Dedekind complete 

A  is epicomplete A  is essentially closed =  
A  is injective 

A  is isomorphic to  𝐶(𝑋)  
where  X  is compact 
Hausdorff 

A  is isomorphic to  𝐶(𝑋)  
where  X  is compact 
Hausdorff  and extremally 
disconnected  



B  is the uniform completion 
of  A 

B  is the Dedekind completion 
of  A 

B  is the epicompletion of  A B  is the essential closure of  A  
=  B  is the injective hull of  A 

B  is isomorphic to  𝐶(𝑋𝐴) B  is isomorphic to  𝑁(𝑋𝐴) =  
B  is isomorphic to  𝐶(𝑋𝐵) 
where  𝑋𝐵  is the Gleason 
cover of  𝑋𝐴 



G. Bezhanishvili, P. J. Morandi, B. Olberding. Bounded Archimedean ℓ-algebras  
and Gelfand duality, under review. 
 
G. Bezhanishvili, P. J. Morandi, B. Olberding. Dedekind completions of bounded  
Archimedean ℓ-algebras, Journal of Algebra and Its Applications, to appear. 



Thank you! 


