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Basic intuition

Consider a finite set X of inputs,
a finite set Y of outputs,
a progam that accepts inputs from X and,
depending on the input, calculates an element of Y as an output.

Direct semantics: A function t : X → Y that describes the
input-output behavour of the program.

Predicate transformer semantics: A function s : 2Y → 2X that for
every predicate p ⊆ Y concerning the output yields the weakest
condition s(p) ⊆ X on the input that guarantees that p holds for
the output. This function s preserves propositional connectors,
that is, it is a homomorphism of Boolean algebras.
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Basic intuition (ctd.)

The two semantics are equivalent in the following sense:

Given t : X → Y define s : 2Y → 2X by
s(p) = t−1(p) for every p ⊆ 2Y

Given a Boolean homomorphism s : 2Y → 2X , define t : X → Y by
t(x) = y if x ∈ s({y})

Thus the duality between direct and predicate transformer
semantics is the duality between the category of finite sets and the
category of finite Boolean algebras. The two element Boolean
algebra 2 plays the role of an algebra of observations. We can
observe whether, for a program, a certain property is true or false.
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Basic intuition (ctd.)

Above we have made an implicit hypothesis:
- For a given input a program produces exactly one output.

But if, firstly, we allow – for example – nondeterministic choice, a
program may produce different outputs from a single input and,
secondly, in the presence of recursion, there are nonterminating
programs.

Concerning the first feature, the programmer can use a choice
operator P ∪ Q which allows to continue with program P or with
program Q without any preference. On the semantic side, mimic
this choice operator by a binary operation ∪. Natural identities:

p ∪ p = p, p ∪ q = q ∪ p, (p ∪ q) ∪ r = p ∪ (q ∪ r)

that is, ∪ should be a semilattice operation.
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Basic intuition (ctd.)

Such operators in the language have to be mimiced in the
semantics. The operations in the model should not impose any
property that is not enforced by these natural requirements, that
is, the set Y together with the operation ∪ should generate the
free semilattice FY over Y . Thus, a nondeterministic program will
be interpreted by a map (a state transformer)

t : X → FY

The predicate transformers s : 2Y → 2X corresponding to such
state transformers are the ∪-semilattice homomorphisms.

From universal algebra we know that the free semilattice over Y
can be obtained as the subsemilattice FY ⊆ 22

Y
generated by the

projections ŷ = (f 7→ f (y)) : 2Y → 2.
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Directed complete posets (dcpos)

There are properties of programs that cannot be observed as, for
example, nontermination. For this and other reasons, D.S. Scott,
G.D. Plotkin, M.B. Smyth and others advocated the use the
category DCPO instead of SET for semantics.

Objects: Directed complete posets (= dcpos), that is, posets X
such that each directed subset D has a least upper bound supD.

Morphisms: Continuous maps f : X → Y between dcpos, that is,
maps preserving (1) the order and (2) suprema of directed sets.

Examples: 2 = {0, 1} with 0 < 1.
(1 stands for termination, 0 for nontermination.)

R+ = {r ∈ R | r ≥ 0} ∪ {+∞}, usual order.
[0, 1], usual order.
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Observable properties

Observable property:
In 2 only 1 (termination) is observable, but not 0 (nontermination).
In [0, 1]: One can observe if a program terminates with probability
p > r , but not, if it terminates with probabilty p < r or = r .

In a dcpo X :
Continuous map p : X → 2 ∼= U = p−1(1)
∼= Scott-open subset of X , that is, U is an upper set that cannot
be reached by suprema of directed subsets disjoint from U.
The Scott-open subsets of X form a topology denoted by OX .

Remark: The category SET can be considered as a full subcategory
of DCPO; just endow a set with the discrete partial order =.
There is an obvious forgetful functor from DCPO to SET: for a
dcpo X , let |X | denote the underlying set.
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The category DCPO is cartesian closed

Products:
∏

i Xi is the set theoretical product of dcpos Xi , ordered
pointwise. Suprema of directed families are formed pointwise.

Exponentials: RX = [X → R] denotes the set of all continuous
f : X → R ordered pointwise. Suprema of directed families of
continuous functions are formed pointwise.

Consequence: all functions definable in a natural way are
continuous (’Definable in a natural way’ means: definable by a
λ-expression.)
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Basic equivalence between state and predicate transformers

Let R be a fixed dcpo (of observations). To every dcpo X assign
the dcpos RX (predicates, previsions, expectations, . . . )

and RRX
= [RX → R] (valuations, distributions,. . . ).

Continuous maps t : X → RRY
= [RY → R] are state transformers.

Continuous maps s : RY → RX are predicate transformers.

Equivalence Theorem

P : [RY → R]X ←→ [RY → RX ] : Q

[X → [RY → R]] ∼= [X×RY → R] ∼= [RY×X → R] ∼= [RY → [X → R]]

P(t)(g)(x) = t(x)(g)

Q(s)(x)(g) = s(g)(x)
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The continuation monad

Let be given a fixed dcpo R.

Assigning to every dcpo X the dcpo RRX
= [RX → R] gives rise to

a monad, the continuation monad:

Unit: δX : X → [RX → R] defined for every x ∈ X by

δX (x)(f ) = f (x)

the projection on the x-th coordinate. Notation: x̂ = δX (x).

Kleisli lifting: For t : X → RRY
define t† : RRX → RRY

by

t†(ϕ)(g) = ϕ
(
x 7→ t(x)(g)

)
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Monads over DCPO

The state transformer semantics of progams with effects is
described by a monad F over DCPO : If X is the input domain
and Y the output domain, the (state transformer) semantics of a
program is a continuous map t : X → FY .

Desirables: - An equivalent predicate transformer semantics.
- Identify the class of F-algebras by an equational theory that
reflects the natural properties of the effects.

Claim: Continuation monads are the mothers of all monads F
which admit an equivalent predicate transformer semantics, that is,
for such monads F there is a dcpo R of ’observations’ such that
FX ⊆ [RX → R],
δX (x) ∈ FX for all x ∈ X ,
t† maps FX into FY for every t : X → FY
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Algebraic background

A signature Ω will be a sequence (Ω0,Ω1,Ω2, . . . ) of sets of
operation symbols of arity n = 0, 1, 2, . . . (e.g. + in Ω2).

A d-algebra will be a dcpo A endowed with continuous operations
ωA : An → A for every ω ∈ Ωn, n ∈ N.

A d-homomorphism (of d-algebras) is a continuous homomorphism
h : A→ B, that is, h(ωA(a1, . . . , an) = ωB(h(a1), . . . , h(an))
(e.g., h(a1 + a2) = h(a1) + h(a2)).

We denote by [A◦→B] the collection of all d-homomorphisms
h : A→ B.

Observe: [A◦→B] is a sub-dcpo of [A→ B].
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Monad I: the monad of homomorphism

From now on, fix a d-algebra R of ’observations’.

RX becomes a d-algebra for every dcpo X , the operations being
defined pointwise:

e.g., (f1 + f2)(x) = f1(x) + f2(x).

Similarly, RRX
= [RX → R] becomes a d-algebra.

Properties:
(a) x̂ = δX (x) : RX → R is a d-homomorphism for every x ∈ X .

(b) For every state transformer t : X → [RY → R], the Kleisli
lifting t† : [RX → R]→ [RY → R] maps [RX◦→R] into [RY ◦→R]
and

(c) t† : [RX → R]→ [RY → R] is a d-homomorphism.
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The monad of homomorphisms

Result: A

Assigning to each dcpo X the dcpo [RX◦→R] of all
d-homomorphisms ϕ : RX → R yields a monad over DCPO.

This monad is not of interest in itself, but it behaves well with
respect ot predicate transformers:

Result B

The predicate transformers corresonding to the state transformers
t : X → [RY ◦→R] ⊆ [RY → R] are the d-homomorphisms
s : RY → RX :

P : [RY ◦→R]X ←→ [RY ◦→RX ] : Q
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Monad II: d-algebra monads

For any dcpo X , let FRX be the d-subalgeba of [RX → R]
generated by the projections x̂ , x ∈ X (= the intersection of the
d-subalgebras containing all the projections).

Result C

Assigning to every dcpo X the d-algebra FRX yields a monad with
unit δX and Kleisli lifting t†.

Indeed, consider a continuous map t : X → FRY . By Property (c)
on the previous slide, t† is a homomorphism, thus it maps FRX
into the d-subalgeba of [RY → R] generated by the t(x), x ∈ X ,
which belong to the d-subalgebra FRY by hypothesis.

Klaus Keimel The duality between direct and predicate transformer semantics



Monad II: d-algebra monads

For any dcpo X , let FRX be the d-subalgeba of [RX → R]
generated by the projections x̂ , x ∈ X (= the intersection of the
d-subalgebras containing all the projections).

Result C

Assigning to every dcpo X the d-algebra FRX yields a monad with
unit δX and Kleisli lifting t†.

Indeed, consider a continuous map t : X → FRY . By Property (c)
on the previous slide, t† is a homomorphism, thus it maps FRX
into the d-subalgeba of [RY → R] generated by the t(x), x ∈ X ,
which belong to the d-subalgebra FRY by hypothesis.

Klaus Keimel The duality between direct and predicate transformer semantics



Freeness property

In classical universal algebra, a theorem due to G. Birkhoff says:
FRX is the free algebra over X in the ’variety’ HSP(R) of algebras
which are homomorphic images of subalgebras of powers of R.

Result D

FRX is the free d-algebra over X in the class SP(R) of d-algebras
isomorphic to a d-subalgebra of some RY .

A d-algebra A belongs to SP(R) if and only if it satisfies the order
separation property, that is, if for any a 6≤ a′ in A, there is a
d-homorphism h : A→ R such that h(a) 6≤ h(a′).
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Questions

1. Another theorem of classical universal algebra due to Birkhoff:
HSP(R) consist of those algebras that satisfy all the equational
laws that hold in R.
Is there an equational characterization of the class of d-algebras for
which FRX is free over X for every dcpo X?
(This class might be bigger than SP(R).)

2. It looks impossible to characerize the predicate transformers
s : RY → RX that correspond to the state transformers
t : X → FRX in general. Therefore we ask:
Under what conditions do we have [RX◦→R] = FRX or, at least
FRY ⊆ [RX◦→R]?
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Entropic algebras

An algebra A is called entropic if, for every operation symbol
ω ∈ Ωn, the operation ω : An → A is an algebra homomorphism,
that is, for every σ ∈ Ωm, ω and σ commute in the sense that

ω ◦ σn = σ ◦ ωm

(An)m ∼= (Am)n
σn

- An

Am

ωm

?

σ
- A

ω

?

Note that entropicity is defined by a set of equational laws, one for
each pair of operation symbols. Thus, entropicity is inherited by
products, subalgebras and homomorphic images.
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Examples of entropic algebras

In an entropic algebra, all constants agree and form a subalgebra.
A binary operation ∗ commutes with itself if and only if

(median law) (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d)

Thus commutative monoids and semilattices are entropic.

Two binary operations ∗ and + commute iff

(a + b) ∗ (c + d) = ((a ∗ c) + (b ∗ d)

Thus rings, lattices, ... are not entropic.

A unary operaton u commutes with a binary operation + iff
u(a + b) = u(a) + u(b). Thus vector spaces are entropic.
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Entropicity (ctd.)

Result E

A d-algebra R is entropic iff [A◦→R] is a d-subalgebra of RA for
every d-algebra A.

We now have an answer to our second question:

Result F

If R is an entropic d-algebra, then [RX◦→R] is a subalgebra of
[RX → R] and FRX ⊆ [RX◦→R].

I do not see a general property implying equality FRX = [RX◦→R].
But one might look at this question more closely.
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Example: The angelic powerdomain HX

d-Algebra of observations 2 = {0 < 1}, signature Ω = {∨, 0}, is a
d-join-semilattice with bottom, hence entropic.

HX = [2X◦→2] is a d-join-semilattice with bottom.

The predicate transformers corresponding to the state transformers
t : X → HY are those s : 2Y → 2X preserving arbitrary joins.

For ϕ ∈ [2X◦→2] we have ϕ = sup{x̂ | x̂ ≤ ϕ}. Hence
F2X = [2X◦→2] = HX .

For a d-join-semilattice S with bottom the continuous
join-semilattice homomorphisms into 2 preserving bottom are order
separating. Hence S ∈ SP(2).

Thus:

HX is the free d-join-semilattice with bottom over X .
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(Extended) probabilistic choice

d-Algebra of observations: R+ = R+ ∪ {+∞} of signature
Ω = (+, 0, (x 7→ rx)r∈R+

), is entropic.

VX = [RX
+◦→R+] is a d-cone.

The predicate transformers corresponding to the state transformers

t : X → VX are the continuous linear maps s : RY
+ → RX

+.

For a continuous dcpo X , every ϕ ∈ VX is the join of a directed
family of finite linear combinations

∑
i ri x̂i (C. Jones, R. Tix).

Hence, FR+
X = [RX

+◦→R+] = VX .

For a continuous d-cone C the continuous linear maps into R+ are
order separating (Tix’ Hahn-Banach), whence C ∈ SP(R+).

Thus

For continuous X , VX is the free continuous d-cone over X .
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Continuous domains order theoretically

Given a dcpo P and u, v ∈ P we say

u � v (u is way-below v or u is relatively compact in v) if
xi ↗ v =⇒ ∃i . xi ≥ u

A good approximation of v is a directed family xi � v such
that xi ↗ v

B ⊆ P is a basis if every v ∈ P has a good approximation by
a directed family of elements in B.

A dcpo P is called continuous, if it has a basis.

Example: R+ = R+ ∪ {+∞} is a continuous dcpo;
r � s iff r < s; the rational numbers form a basis;
the Scott-open sets are the intervals ]r ,+∞].
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Interlude: Cones

Cones are vector spaces without −x . More precisely, the signature
consists of a constant 0 a binary operation + and unary operation
r ·?, r ∈ R+ (multiplication with scalars). A cone is an algebra with
a constant 0 and an addition +

satisfying the laws of a commutative monoid
and a scalar multiplication (r , x) 7→ r · x : R+ × C → C satisfying

r(x + y) = rx + ry (r + s)x = rx + sx
r(sx) = (rs)x

0 · x = 0 1 · x = x

Cones are entropic. Homomorphisms of cones are linear maps,
since they are characterised by the equations
h(x + y) = h(x) + h(y) and h(rx) = rh(x) for all r ∈ R+.
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Combining angelic nondeterministic and probabilistic
choice

d-Algebra of observations: R+ of signature
Ω = (+,∨, 0, (x 7→ rx)r∈R+

), is not entropic.

[RX
+◦→R+] is not an algebra.

But instead of equality we have still the inequality

(a + c) ∨ (b + d) ≤ (a ∨ b) + (c ∨ d)

This incites us to introduce a relaxed notion of entropicity.
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Relaxed entropic algebras

For operations ω and σ on a d-algebra A, say that
ω subcommutes with σ (and σ supercommutes with ω),
if ω ◦ σn ≤ σ ◦ ωm. (Note: This is an inequational law.)

We suppose that the signature Ω is the union of two subsets Ω≤
and Ω≥ which may overlap.

We say that a d-algebra of signature Ω = Ω≤ ∪ Ω≥ is relaxed
entropic if every ω ∈ Ω≤ subcommutes with every σ ∈ Ω and every
ω ∈ Ω≥ supercommutes with every σ ∈ Ω.

Example: R+ of signature Ω = (+,∨, 0, (x 7→ rx)r∈R+
), is relaxed

entropic if we put + in Ω≤ and ∨ in Ω≥; the constant 0 and the
unary operations of multiplication with scalars are in both Ω≤ and
Ω≥.
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Relaxed d-morphisms

A relaxed d-morphism between two d-algebras A,B of signature
Ω = Ω≤ ∪ Ω≥ is a continuous map h : A→ B such that

h(ω(a1, . . . , an)) ≤ ω(h(a1), . . . , h(an))

for every ω ∈ Ω≤ of arity n, and the other way around for ω ∈ Ω≥.

Example: Consider d-algebras A,B of signature
Ω = (+,∨, 0, (x 7→ rx)r∈R+

), with + in Ω≥ and ∨ in Ω≥.
Relaxed d-morphism: Continuous map h : A→ B satisfying:

h(0) = 0

h(ra) = rh(a) for all r ∈ R+

h(a + b) ≤ h(a) + h(b)
h(a ∨ b) ≥ h(a) ∨ h(b)

Since the last requirement is satisfied for order preserving maps
anyway, it can be omitted. Thus:

relaxed d-morphism = continuous sublinear map.
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Relax

Fix a d-algebra R of signature Ω = Ω≤ ∪ Ω≥.

For every dcpo X , let [RX◦→rR] denote the set of relaxed
d-homomorphsms RX → R. They form a sub-dcpo of [RX → R].

For every state transformer t : X → [RY → R], the Kleisli lifting t†

maps [RX◦→rR] to [RY ◦→rR]. Thus, X 7→ [RX◦→rR] yields a
monad with unit δ and Kleisli lifting t†.

The predicate transformers corresponding to state transformers
t : X → [RY ◦→rR] are the relaxed homomorphisms s : RY → RX .

[RX◦→rR] is a subalgebra of [RX → R] if and only if R is relaxed
entropic. And in this case FRX is a subalgebra of [RX◦→rR].
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Example: Combining angelic and probabilistic choice

d-Algebra of observations: R+, signature
Ω = (+,∨, 0, (x 7→ rx)r∈R+

), with + in Ω≤ and ∨ in Ω≥,
is relaxed entropic.

Equational Theory (d-cone join-semilattice): Cone and
join-semilattice axioms connected by the ditributivity laws

x + (y ∨ z) = (x + y) ∨ (x + z)

r · (y ∨ z) = (r · y) ∨ (r · z)

HVX = [RX
+◦→rX ], the set of sublinear functionals on RX

+ is a

d-subalgebra of [RX
+ → R+].

The state transformers corresponding to the state transformers

t : X → HVX are the sublinear maps s : RY
+ → RX

+.
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Example: Combining angelic and probabilistic choice (ctd.)

If X is a continuous dcpo, then HVX = FR+
X . (For the proof one

needs a Hahn-Banach type argument, that every continuous
sublinear functional is the join of a family of continuous linear
functionals.)

For every continuous dcpo X , HVX is the free continuous d-cone
join-semilattice over X .
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Conclusion

I hope I have extracted the general pattern of those situations in
which one can hope for an equivalence (better duality) between
state and predicate transformer semantics using the category of
dcpos.

The general pattern does not relieve us from substantial work in
each particular situation. But the shape of the properties
properties to prove is clarified.
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Further work

1. Relaxed entropicity and relaxed morphisms make sense for
ordered algebras. It makes sense to investigate these notions for
monads over the category POSET as in intermediary step between
SET and DCPO.

2. In the (relaxed) entropic setting the monad of (relaxed)
homomorphisms contains the algebra monad FRX . Find
reasonable sufficient conditions under which the two monads agree.

3. Are there more good examples fitting into this setting?

4. Is there a relaxed setting for other categories as, for example,
qcb-spaces?
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The End

The applause could have been more enthusiastic!

You want to try again?
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