
Dualities of Stably Compact Spaces
Jimmie Lawson

lawson@math.lsu.edu

Department of Mathematics

Louisiana State University

Baton Rouge, LA 70803, USA

Duality, Oxford, 2012 – p. 1/35



Locally Compact Spaces

A space X is locally compact if for any x ∈ U , U open, there
exist V open and K compact such that x ∈ V ⊆ K ⊆ U .
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Locally Compact Spaces

A space X is locally compact if for any x ∈ U , U open, there
exist V open and K compact such that x ∈ V ⊆ K ⊆ U .

The order of specialization on X is given by x ≤ y iff
x ∈ {y}. The relation ≤ is a pre-order and is a partial order
iff X is a T0-space. We write ↓y = {x : x ≤ y} = {y}. (In
general, ↓A := {y : ∃x ∈ A, y ≤ x}.)
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Locally Compact Spaces

A space X is locally compact if for any x ∈ U , U open, there
exist V open and K compact such that x ∈ V ⊆ K ⊆ U .

The order of specialization on X is given by x ≤ y iff
x ∈ {y}. The relation ≤ is a pre-order and is a partial order
iff X is a T0-space. We write ↓y = {x : x ≤ y} = {y}. (In
general, ↓A := {y : ∃x ∈ A, y ≤ x}.)

The saturation of a subset A is the intersection of all open
sets containing it, and a set is saturated if it is equal to its
saturation. The saturation of A is equal to
↑A := {y : ∃x ∈ A, x ≤ y}. The saturation of a compact set
is again compact, so we can replace K in the definition of
locally compact by its saturation.
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Stably Compact Spaces

A space X is coherent if the intersection of any two
compact saturated sets is again compact and is stably
compact if it is a compact, locally compact, coherent sober
space. One may replace the sobriety condition by requiring
the space to be T0 and well-filtered, that is, if a descending
family of compact saturated sets has intersection contained
in some open set, then some member of the family must be
in the set.
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Stably Compact Spaces

A space X is coherent if the intersection of any two
compact saturated sets is again compact and is stably
compact if it is a compact, locally compact, coherent sober
space. One may replace the sobriety condition by requiring
the space to be T0 and well-filtered, that is, if a descending
family of compact saturated sets has intersection contained
in some open set, then some member of the family must be
in the set.

One may alternatively obtain all stably compact spaces by
considering all compact pospaces, compact (Hausdorff)
spaces equipped with closed partial orders
(≤:= {(x, y) : x ≤ y} is closed in X × X), and passing to the
topology consisting of the open upper sets.
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The Fundamental Duality

For a topological space (X, τ), we define the cocompact
topology τ c by taking as a base for the topology the
complements of compact saturated subsets. The
topological space (X, τ c) is called the de Groot dual of X

and denoted Xd. The de Groot dual Xd has order of
specialization ≥, the reverse of the order of specialization of
X.
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The Fundamental Duality

For a topological space (X, τ), we define the cocompact
topology τ c by taking as a base for the topology the
complements of compact saturated subsets. The
topological space (X, τ c) is called the de Groot dual of X

and denoted Xd. The de Groot dual Xd has order of
specialization ≥, the reverse of the order of specialization of
X.

Proposition. (de Groot Duality) Given a stably compact
space X, the de Groot dual Xd is again stably compact.
Furthermore, Xdd = X.
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The Patch Topology

(1) The patch topology of a topological space is generated
by the join of the topology and its de Groot dual topology. If
X is stably compact, then the patch topology is a compact
Hausdorff topology for which the original order of
specialization is a closed order, i.e., (X, patch,≤) is a
compact pospace.
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The Patch Topology

(1) The patch topology of a topological space is generated
by the join of the topology and its de Groot dual topology. If
X is stably compact, then the patch topology is a compact
Hausdorff topology for which the original order of
specialization is a closed order, i.e., (X, patch,≤) is a
compact pospace.

(2) If X is a compact Hausdorff space equipped with a
closed order, then X↑, X equipped with the topology of
open upper sets, is stably compact with order of
specialization the given order.
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The Patch Topology

(1) The patch topology of a topological space is generated
by the join of the topology and its de Groot dual topology. If
X is stably compact, then the patch topology is a compact
Hausdorff topology for which the original order of
specialization is a closed order, i.e., (X, patch,≤) is a
compact pospace.

(2) If X is a compact Hausdorff space equipped with a
closed order, then X↑, X equipped with the topology of
open upper sets, is stably compact with order of
specialization the given order.

(3) Constructions (1) and (2) are inverse constructions.
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Equivalence of Categories

The preceding equivalence extends to a categorical
equivalence between the category Stab

∗ of stably compact
spaces and perfect maps (continuous maps for which
inverse images of compact, saturated sets are compact)
and the category of CP of compact pospaces and
continuous maps, where the inverse equivalence functors
are the identity on maps.
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The Fundamental Duality II

Given a compact pospace X, the de Groot dual of the
stably compact space X↑ is X↓, X equipped with the
topology of open lower sets.
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The Fundamental Duality II

Given a compact pospace X, the de Groot dual of the
stably compact space X↑ is X↓, X equipped with the
topology of open lower sets.

Given a stably compact space X and the corresponding
compact pospace (X, patch,≤), the compact pospace
corresponding to Xd is (X, patch,≥), the compact pospace
of X with the order reversed. Thus de Groot duality
corresponds to the duality of order reversal at the pospace
level.
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Inner and Outer Pavings

A paving on a set X is a non-empty collection of subsets.
Assume that X 6= ∅ is equipped with two pavings, an inner
paving I and an outer paving O satisfying:

(i) ∅ ∈ I; X ∈ O.

(ii) for each I ∈ I and O1, O2 ∈ O such that I ⊆ O1 ∩ O2,
there exists O3 ∈ O such that I ⊆ O3 ⊆ O1 ∩ O2. We say
that O filters to I.

(iii) for each O ∈ O and I1, I2 ∈ I such that I1 ∪ I2 ⊆ O,
there exists I3 ∈ I such that I1 ∪ I2 ⊆ I3 ⊆ O. We say I
is directed to O.

Members of I are called inner sets; members of O are
called outer sets. The triple (X,I,O) is called an
IO-structure.
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Interpolated IO-Structures

Let (X,I,O) be an IO-structure. If for each I ∈ I and
O ∈ O with I ⊆ O, there exist I ′ ∈ I and O′ ∈ O such that
I ⊆ O′ ⊆ I ′ ⊆ O. We say that I and O interpolate and call
the structure an interpolated IO-structure.
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Stably Compact IO-Structures

Let X be a topological space, let the inner sets I = Q, the
compact saturated sets, and the outer sets O = G, the open
sets. Then (X,Q,G) is an interpolated IO-structure iff X is
locally compact.
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Stably Compact IO-Structures

Let X be a topological space, let the inner sets I = Q, the
compact saturated sets, and the outer sets O = G, the open
sets. Then (X,Q,G) is an interpolated IO-structure iff X is
locally compact.

In particular, we obtain an interpolated IO-structure on a
stably compact space X, namely (X,Q,G), where Q is the
collection of compact saturated sets and G is the collection
of open sets, which we call the associated IO-structure.
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Dual IO-Structures

Let (X,I,O) be an IO-structure. Let I△ be the collection of
all complements of members of O and let O△ consist of all
complements of members of I. The triple (X,I△,O△) is
called the dual structure.
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Dual IO-Structures

Let (X,I,O) be an IO-structure. Let I△ be the collection of
all complements of members of O and let O△ consist of all
complements of members of I. The triple (X,I△,O△) is
called the dual structure.

Lemma. The dual X△ := (X,I△,O△) of an IO-structure
(X,I,O) is again an IO-structure, which is interpolated iff
X is. Furthermore, X△△ = X.
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Dual IO-Structures

Let (X,I,O) be an IO-structure. Let I△ be the collection of
all complements of members of O and let O△ consist of all
complements of members of I. The triple (X,I△,O△) is
called the dual structure.

Lemma. The dual X△ := (X,I△,O△) of an IO-structure
(X,I,O) is again an IO-structure, which is interpolated iff
X is. Furthermore, X△△ = X.

The duality X△△ = X is called the IO-duality.
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IO-Duality and de Groot Duality

Let X be stably compact. The associated IO-structure for
Xd is the dual IO-structure X∆. Thus the de Groot duality
of stably compact spaces corresponds to the IO-duality of
the corresponding IO-structures, i.e, the IO-dual of the
associated IO-structure is the the associated IO-structure
of Xd:

(X,Q,G)∆ = (X,Q∆,G∆) = (Xd,Q(Xd),G(Xd)).
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Topologies for I and O

Let (X,I,O) be an IO-structure. The I-topology on O has
as a basis of open sets all sets of the form {O ∈ O : I ⊆ O}
as I ranges over I. Similarly the O-topology on I has as
basis all sets �(O) := {I ∈ I : I ⊆ O} as O ranges over O.
(The defined sets form bases since I is directed to O and O
filters to I.)
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Topologies for I and O

Let (X,I,O) be an IO-structure. The I-topology on O has
as a basis of open sets all sets of the form {O ∈ O : I ⊆ O}
as I ranges over I. Similarly the O-topology on I has as
basis all sets �(O) := {I ∈ I : I ⊆ O} as O ranges over O.
(The defined sets form bases since I is directed to O and O
filters to I.)

If X is a topological space, I is the collection of closed sets
or compact sets, and O is the collection of open sets, then
the O-topology is often called the upper Vietoris topology.
The collection ♦(O) := {C ∈ I△ : C ∩ O 6= ∅} as O varies
over O is called the lower Vietoris topology on I△, the
collection of closed sets.
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Identifying Topologies on I and O

Let X be a locally compact sober space with the associated
IO-structure (X,Q,G). Then Q, equipped with the order of
reverse inclusion, is a continuous dcpo, and G is a
continuous lattice. From the Hofmann-MisloveTheorem:

the G-topology on Q =the upper Vietoris topology= the
Scott topology.

One can show directly that the Q-topology on G is also the
Scott topology.
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Identifying Topologies on I and O

Let X be a locally compact sober space with the associated
IO-structure (X,Q,G). Then Q, equipped with the order of
reverse inclusion, is a continuous dcpo, and G is a
continuous lattice. From the Hofmann-MisloveTheorem:

the G-topology on Q =the upper Vietoris topology= the
Scott topology.

One can show directly that the Q-topology on G is also the
Scott topology.

The lower Vietoris topology on the cocontinuous lattice of
closed sets I△ (ordered by inclusion) agrees with its weak
upper topology (defined by taking all principal ideals ↓x as a
subbasis of closed sets).
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Remarks on Complementarity

Since the outer (resp. inner) sets of an IO-structure X

correspond to the inner (resp. outer) sets of X△ under the
duality of IO-structures X and X△, general statements
about outer sets have dual statements about inner sets,
and a statement holds if and only if its dual holds. We call
this the duality of complementarity.
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Remarks on Complementarity

Since the outer (resp. inner) sets of an IO-structure X

correspond to the inner (resp. outer) sets of X△ under the
duality of IO-structures X and X△, general statements
about outer sets have dual statements about inner sets,
and a statement holds if and only if its dual holds. We call
this the duality of complementarity.

Let (X,I,O) be an IO-structure. The mapping of
complementation O 7→ Oc from O to I△ (resp. I → Ic from I
to O△) is a homeomorphism.

Duality, Oxford, 2012 – p. 15/35



Stably Compact Domains

In a continuous dcpo P , even a continuous poset, equipped
with the Scott topology, one can show that the cocompact
topology is the weak lower topology, the one with subbase
P \ ↑x, x ∈ P .
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Stably Compact Domains

In a continuous dcpo P , even a continuous poset, equipped
with the Scott topology, one can show that the cocompact
topology is the weak lower topology, the one with subbase
P \ ↑x, x ∈ P .

Thus the two topologies, the Scott and the weak lower, are
the de Groot duals of each other if (P, Scott) is stably
compact, which is the case iff P with the patch=Lawson
topology is compact.
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An Angelic-Demonic Duality

Let X be a stably compact space. We model demonic
nondeterminism with the Smyth powerdomain Q(X) of all
compact saturated sets with the reverse inclusion order and
the upper Vietoris=Scott topology and angelic determinism
by the Hoare powerdomain H(X) consisting of all closed
sets ordered by inclusion with the lower Vietoris=weak
upper topology.
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An Angelic-Demonic Duality

Let X be a stably compact space. We model demonic
nondeterminism with the Smyth powerdomain Q(X) of all
compact saturated sets with the reverse inclusion order and
the upper Vietoris=Scott topology and angelic determinism
by the Hoare powerdomain H(X) consisting of all closed
sets ordered by inclusion with the lower Vietoris=weak
upper topology.

From the earlier considerations we have:
Proposition (Goubault-Larrecq). For X stably compact

Q(Xd) = H(X)d.
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Stably Compact Spaces and Capacities

We consider certain powerdomains recently introduced by
Goubault-Larrecq that model more elaborate choice
procedures based on Choquet’s theory of capacities, which
are generalizations of measures. One obtains factorization
theorems that characterize the choice process as a
probabilistic choice followed by a nondeterministic one. In
these more sophisticated models, one notes that stable
compactness is preserved in their construction, that angelic
and demonic remain dual concepts, and that random
choice, like erratic choice (the Plotkin powerdomain), is
self-dual.
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Capacities

Let (X,I,O) be an IO-paving. A map c : I ∪ O → [0, 1] is
called a capacity if for each I ∈ I

c(I) = c∗(I) := inf{c(O) : I ⊆ O ∈ O} (1)

and for each O ∈ O

c(O) = c∗(O) := sup{c(I) : O ⊇ I ∈ I}. (2)
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Capacities

Let (X,I,O) be an IO-paving. A map c : I ∪ O → [0, 1] is
called a capacity if for each I ∈ I

c(I) = c∗(I) := inf{c(O) : I ⊆ O ∈ O} (3)

and for each O ∈ O

c(O) = c∗(O) := sup{c(I) : O ⊇ I ∈ I}. (4)

We could replace [0, 1] in the preceding definition by any
closed interval in the extended reals [−∞,∞], but restrict to
the case of primary interest for us.
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Outer Capacities

Recall the O-topology on I and I-topology on O.
Lemma. For c : O → [0, 1], c∗ : I → [0, 1] defined by
c∗(I) = inf{c(O) : I ⊆ O ∈ O} is order preserving and upper
semicontinuous on I. Dually c : I → [0, 1] induces an order
preserving, lower semicontinuous c∗ : O → [0, 1].
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Outer Capacities

Recall the O-topology on I and I-topology on O.
Lemma. For c : O → [0, 1], c∗ : I → [0, 1] defined by
c∗(I) = inf{c(O) : I ⊆ O ∈ O} is order preserving and upper
semicontinuous on I. Dually c : I → [0, 1] induces an order
preserving, lower semicontinuous c∗ : O → [0, 1].

Proposition. For an IO-structure (X,I,O) and c : O → [0, 1],
the following are equivalent and define outer capacities:

1. c is lower semicontinuous;

2. c = c∗∗;

3. c = d∗ for some d : I → [0, 1].

A dual result holds for c : I → [0, 1] and defines inner
capacities.
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Capacities as Extensions

Corollary. For an IO-structure (X,I,O) and an outer
capacity c : O → [0, 1], c̃ : I ∪ O → [0, 1] defined by
c̃(O) = c(O) and c̃(I) = c∗(I) is a capacity, which is unique in
the sense that it is the only capacity extending c. Dually for
an inner capacity c : I → [0, 1], c̃(I) = c(I) and c̃(O) = c∗(O)
defines a unique capacity extension.
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Capacities as Extensions

Corollary. For an IO-structure (X,I,O) and an outer
capacity c : O → [0, 1], c̃ : I ∪ O → [0, 1] defined by
c̃(O) = c(O) and c̃(I) = c∗(I) is a capacity, which is unique in
the sense that it is the only capacity extending c. Dually for
an inner capacity c : I → [0, 1], c̃(I) = c(I) and c̃(O) = c∗(O)
defines a unique capacity extension.

The previous extension process defines a one-to-one
correspondence between the set of lower semicontinuous
functions LSC(O, [0, 1]) and the set of capacities.
Alternatively, we obtain a bijection via extension between
USC(I, [0, 1]) and Cp(X). Hence we may regard the
capacities in any of these three equivalent ways. This
equivalence provides some grounds for understanding why
the notion of a capacity has various formulations in the
literature. (Also varied terminology: previsions, games, etc.)
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Topologizing Capacities

We topologize the set Cp(X) of capacities with respect to
an IO-paving on X with subbasic open sets of the form

[s < U ] := {µ ∈ Cp(X) : µ(U) > s} for s ∈ R, U ∈ O;
[t > I] := {µ ∈ Cp(X) : µ(I) < t} for t ∈ R, I ∈ I.

The first of these is called the outer topology on Cp(X), the
second the inner topology, and the patch of the two is
called the IO-topology.
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C-Spaces

A T0-space X is called a C-space (Erné) or an α-space
(Ershov) if each of its points has a neighborhood basis of
principal filters ↑x = {y ∈ X | x ≤ y} (sometimes called
cores) with respect to the specialization order. (This means
that given y ∈ U , U open, there exists x ∈ U and V open
such that y ∈ V ⊆ ↑x ⊆ U .) The definition may be applied to
general topological spaces, and in absence of the
T0-requirement, we call such spaces c-spaces.

Duality, Oxford, 2012 – p. 23/35



C-Spaces

A T0-space X is called a C-space (Erné) or an α-space
(Ershov) if each of its points has a neighborhood basis of
principal filters ↑x = {y ∈ X | x ≤ y} (sometimes called
cores) with respect to the specialization order. (This means
that given y ∈ U , U open, there exists x ∈ U and V open
such that y ∈ V ⊆ ↑x ⊆ U .) The definition may be applied to
general topological spaces, and in absence of the
T0-requirement, we call such spaces c-spaces.

The standard result that sets of the form {y : x ≪ y} form a
basis for the Scott topology in a continuous poset shows
that a continuous poset equipped with the Scott topology is
a C-space. Conversely, the c-spaces are precisely those
with sobrification a continuous dcpo equipped with the Scott
topology (or with completely distributive O(X) ).
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The Space of Capacities

Theorem. Let (X,I,O) be an interpolated IO-paving.

1. I, O are c-spaces.

2. The set Cp(X) ∼= LSC(O, [0, 1]) endowed with the
pointwise order of the latter is a completely distributive
lattice, in particular a continuous lattice.

3. The outer, Scott, and weak upper topologies on Cp(X)
all agree with the topology of pointwise convergence of
Cp(O, [0, 1]) where [0, 1] is endowed with the Scott
topology. Furthermore, the pointwise order is the order
of specialization for these topologies.

4. Analogous statements hold for the inner topology via
the identification Cp(X) ∼= USC(I, [0, 1]). The topology
in this case is the de Groot dual of the outer topology.
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The Space of Capacities (cont.)

5. The IO-topology of Cp(X) is the patch of the outer and
inner topologies, and is equal to the interval, bi-Scott, and
Lawson topologies, all of which collapse together for the
case of completely distributive lattices.
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Totally Convex Capacities

A capacity µ is totally convex (also called totally monotone)
if µ(∅) = 0 and it satisfies on O the inclusion-exclusion
inequality

µ

( n
⋃

i=1

Ui

)

≥
n

∑

i=1

µ(Ui)−
∑

i 6=j

µ(Ui∩Uj)+· · ·+(−1)n+1µ(U1∩. . .∩Un)

(TCXn)
for each n. A special case is the case of the convex
capacities, which satisfy the inequality for n = 2. Totally
convex capacities are called credibilities or belief functions.

The totally concave capacities, or plausibilities, are those
for which the reverse inequality (TCCn) holds.
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Stable Compactness and Convexity

Theorem. Assume the the operation of binary union on O is
exists and is continuous.

1. If a monotone function µ ∈ [0, 1]O≤ satisfies (TCXn) or
(TCCn), then so does its lsc hull ρ(µ) = µ†.

2. For each n, the set of capacities satisfying (TCXn) or
(TCCn) is compact in the IO-topology of Cp(X).

3. The subset of credibilities resp. plausibilities is a stably
compact space.
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Stable Compactness and Convexity

Theorem. Assume the the operation of binary union on O is
exists and is continuous.

1. If a monotone function µ ∈ [0, 1]O≤ satisfies (TCXn) or
(TCCn), then so does its lsc hull ρ(µ) = µ†.

2. For each n, the set of capacities satisfying (TCXn) or
(TCCn) is compact in the IO-topology of Cp(X).

3. The subset of credibilities resp. plausibilities is a stably
compact space.

The previous assertions are true if X is a coherent locally
compact sober space, I is the collection of compact
saturated sets, and O is the collection of open sets. In this
case binary union is continuous on O.
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Duality

We outline a general duality theorem for capacities and and
in a sequence of steps sharpen it to a result on stably
compact spaces.
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Duality

We outline a general duality theorem for capacities and and
in a sequence of steps sharpen it to a result on stably
compact spaces.

Step 1. Let (X,I,O) be an IO-paving for which ∅ ∈ I and
X ∈ O. We define for each µ ∈ Cp1(X), the set of
normalized capacities (µ(X) = 1, µ(∅) = 0) on X, the dual
capacity µ⊥ ∈ Cp1(X△):

µ⊥(X \ A) = 1 − µ(A) for A ∈ I ∪ O.
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Duality (2)

Step 2.

1. µ ∈ Cp1(X) implies µ⊥ ∈ Cp1(X△).

2. The map µ 7→ µ⊥ from Cp1(X) to Cp1(X△) has inverse
µ⊥ 7→ µ⊥⊥ = µ from Cp1(X△) to Cp1(X).

3. The map µ 7→ µ⊥ from Cp1(X) to Cp1(X△) is an
order-preserving bijection (the order being the
pointwise order) and a homeomorphism between the
outer resp. inner resp. IO-topology of Cp1(X) and the
inner resp. outer resp. IO-topology of Cp1(X△).
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Duality (3)

Step 3. Let us assume now in addition that (X,I,O) is an
interpolated IO-paving. Then for the space of normalized
capacities we have that Cp1(X) with the outer topology is a
stably compact space with dual space the inner topology
and patch topology the IO-topology. We obtain from this
result and Step 2 that

(Cp1(X, outer))d = Cp1(X, inner) ⊥
−→ Cp1(X△, outer),

where the right arrow is µ 7→ µ⊥.
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Duality (4)

Step 4. Let X be a stably compact space. Then X△ is the
standard IO-paving for Xd. This leads to the following
modification of Step 3:

(Cp1(X, outer))d = Cp1(X, inner) ⊥
−→ Cp1(X△, outer)

= Cp1(Xd, outer).

If we make the convention of equipping the capacity space
with the stably compact outer topology, then the preceding
equation can be stated: the de Groot dual of the normalized
capacity space is homeomorphic to the normalized capacity
space of the de Groot dual via the involution µ 7→ µ⊥.
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Duality (5)

Step 5. The negative sign introduced in µ⊥ turns a capacity
satisfying (TCXn) to one satisfying (TCCn). Using the
previous steps and the fact that these inequalities extend to
I and dually, we obtain the following result of
Goubault-Larrecq.
Theorem (Convex-Concave Duality). (i) Let X be stably
compact. For every normalized capacity µ on X, µ⊥ is a
normalized capacity on Xd. If µ is (totally) convex, then µ⊥

is (totally) concave and vice-versa. If µ is a continuous
valuation, then so is µ⊥. Finally, µ⊥⊥ = µ.
(ii) The duality via ⊥ induces a homeomorphism between
J∪(X)d, the totally convex capacities on X equipped with its
co-compact inner topology, and J∩(Xd), the totally concave
capacities on Xd with its stably compact outer topology.
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Duality (6)

Step 6. The preceding theorem shows that random choice
as captured by the probabilistic power domain of a stably
compact space is a self-dual concept. With a little extra
work, one can obtain another angelic-demonic duality by a
reformulation of the totally convex-concave duality.
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Duality (6)

Step 6. The preceding theorem shows that random choice
as captured by the probabilistic power domain of a stably
compact space is a self-dual concept. With a little extra
work, one can obtain another angelic-demonic duality by a
reformulation of the totally convex-concave duality.

We recall what Goubault-Larrecq calls the fundamental
theorem of credibilities, which states that credibilities are
nothing else than specifications of random choices among
sets of possible demonic choices, i.e., they are continuous
valuations (we assume everything is normalizied) on Q(X).
More specifically, for X stably compact and for any
continuous valuation µ on Q(X), the capacity defined by
µ̃(O) = µ(�(O)) is a credibility on X, and every credibilty
arises uniquely in this way.
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Duality (7)

Step 7. Via this identification (or factorization) the earlier
duality theorem can be restated as a duality between the de
Groot dual of the probabilistic powerdomain on Q(X) and
the probabilistic powerdomain on the Hoare powerdomain
of Xd. This is again a type of demonic-angelic duality,
involving as it does the Smyth and Hoare powerdomains.
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