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Abstract. The paper investigates completions in the context of finitely generated

lattice-based varieties of algebras. In particular the structure of canonical extensions in

such a variety A is explored, and the role of the natural extension in providing a realisation

of the canonical extension is discussed. The completions considered are Boolean topological

algebras with respect to the interval topology, and consequences of this feature for their

structure are revealed. In addition, we call on recent results from duality theory to show

that topological and discrete dualities for A exist in partnership.
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1. Introduction

This paper investigates the structure of particular completions of algebras
in any finitely generated variety of lattice-based algebras, and dual repre-
sentations of such algebras. A lattice-based algebra (also known as a lattice
expansion) is an algebraic structure which is a lattice equipped with a (pos-
sibly empty) set of additional operations. Completions of algebras of this
kind have received recent attention also from Gehrke and Vosmaer [23, Sec-
tion 5] and Vosmaer [35, Section 3.4]. Our approach is quite different from
theirs, though there are some results in common. We present a direct route
to the principal conclusions: this is tailored to the finitely generated case
and thereby has merit in its own right. Critically, our treatment, unlike that
in [23, 35], is independent of the machinery required for the general lattice-
based setting. In particular we make no use of the extension to this setting
of the δ-topology methodology as developed by Vosmaer (see, specifically,
[35, Section 2.1.4]); the δ-topology (formerly known as the σ-topology) was
introduced by Gehrke and Jónsson [21] to study distributive lattice expan-
sions. The second author of this paper acknowledges with gratitude fruitful
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discussions with Mai Gehrke during 2007 on canonical extensions in the
finitely generated case, concerning in particular Theorem 3.4 below.

Let us fix until further notice a finitely generated variety A of lattice-
based algebras. Underpinning our approach to completions are some well-
known facts from universal algebra, to be found for example in [4]. The vari-
ety A is necessarily congruence distributive and so, by Jónsson’s Lemma and
Birkhoff’s Subdirect Product Theorem, can be expressed as A = ISP(M),
where M = {M1, . . . ,M`} is a finite set of finite algebras, each having a
lattice reduct. Here ISP(M) denotes the class of isomorphic copies of subal-
gebras of products of algebras drawn from M.

We equip each member of M with the discrete topology. Each A ∈
ISP(M) can then be regarded as carrying the induced product topology.
Thereby we can form the closure A and view it as a member of a category
AT of Boolean topological algebras; this means that the underlying space is
Boolean (that is, compact and totally disconnected) and that the algebraic
operations are continuous. In addition A is complete as a lattice. So A is an
obvious candidate for a completion of A. This observation, in conjunction
with ideas underlying the theory of natural dualities, led Davey, Gouveia,
Haviar and Priestley [9] to introduce the concept of the natural extension
nA(A) for any algebra A in a class A, as specified above (and more generally
in any class ISP(M′), where M′ is a set (not necessarily finite) of finite alge-
bras of common type (not necessarily lattice-based)). In [14, Theorem 2.4]
we proved, for A ∈ A, that the lattice reduct of nA(A) is a canonical exten-
sion of LA, the lattice reduct of A. We stress that the proof relies solely on
the definition of canonical extension, without the intervention of other pos-
sible means of construction. In particular no reference is made to profinite
completions. These, and profinite lattice-based algebras more generally, are
a recurring theme in the thesis of Vosmaer [35]. In Section 4 we outline how
profiniteness fits into the overall picture.

We now provide further contextual background for the order-theoretic
and topological aspects of our study. The theory of canonical extensions is
very well established. It originated with Jónsson and Tarski’s work [29] on
Boolean algebras with operators (BAOs) but its scope has now widened to
encompass lattice-based (and even poset-based) algebras with arbitrary non-
lattice operations [20, 19, 21, 22, 23, 35]. Jónsson and Tarski sought to devise
an algebraic means of analysing operations, and the equations they satisfy,
by lifting these operations from algebras to their canonical extensions. This
aim has remained a central plank of canonical extension theory ever since.
The methodology is of most value for varieties which are canonical , that is,
closed under the passage to canonical extensions.
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The strategy, in general, for building a canonical extension of a lattice-
based algebra A is to form the canonical extension LδA of the underlying
lattice LA and then to lift any non-lattice operations from LA to LδA to form
an algebra of the same algebraic type as A. The properties of density and
compactness which characterise canonical extensions of (bounded) lattices
(we recall the details in Section 2) ensure that any operation f has two nat-
ural liftings, denoted fσ and fπ (the definitions can be found in Section 3);
f is said to be smooth if fσ = fπ. In lattice-based algebras in general, the
σ- and π-extensions may not coincide and may exhibit a rich diversity of
behaviours, which can be fully captured only through a subtle analysis in-
volving, alongside order-theoretic arguments, conditions expressed in terms
of a proliferation of topologies and order-theoretic properties; see [21, 35].

For almost as long as canonical extensions have been studied there has
been evidence that they must behave especially well in the case of finitely
generated varieties. However the foundational literature contains no analysis
focusing on this case and only recently have these varieties attracted the
attention they deserve. To specialise to a lattice-based variety A generated
by a finite algebra K, Gehrke and Vosmaer [23, 35] exploit the fact that,
by Jónsson’s Lemma, A can be expressed as HSPB(K), where PB denotes
Boolean product; the key point is that ultraproducts are absent (see [21,
Section 3]). By applying successively to K the operators PB, S and H, the
properties of canonical extensions of members of A are then developed, with
heavy reliance on ideas employed to study canonical extensions in general.

By contrast, we invoke our realisation of the canonical extension in terms
of the natural extension. We are able immediately to say that A is hyper-
canonical : each A ∈ A embeds in a Boolean topological algebra which,
viewed as an algebra, belongs to A and, viewed as a lattice, serves as LδA;
moreover, each algebraic operation f is smooth, with fσ = fπ = f . Hyper-
canonicity was established in [14] by a very direct method, keeping the set
M of generating algebras for A = ISP(M) explicitly in play. This approach
revealed, transparently, how the topological structure and the algebraic op-
erations relate to notions of order-convergence. However this tactic does
have limitations. An important feature of the canonical extensions method-
ology in general is that much can be achieved abstractly, that is, without
reference to how the canonical extension is constructed. Therefore it is ap-
propriate to recast our representation in a freestanding way and to capture
topological structure on canonical extensions directly from the order struc-
ture, and so to expose the internal structure of the extensions. Our natural
extensions, and hence canonical extensions too, are linked bi-algebraic lat-
tices equipped with the interval topology, and the non-lattice operations are



4 B.A.Davey and H.A.Priestley

interval-continuous. The term ‘linked bi-algebraic’ comes from the theory of
continuous lattices as presented for example in [24]. Although we draw on
this theory to a limited extent, we keep our treatment as self-contained and
elementary as possible.

Finally, in Section 5, we bring in recent results from the theory of natural
dualities. We show how to set up linked dual equivalences between A and XT

and between AT and X, where X and XT are, respectively, a category of struc-
tures and a category of topological structures, the relational structure being
the same for both. This puts on a more precise footing than hitherto the
relationship, in the finitely generated setting, between topological dualities
and discrete dualities.

The paper of Gehrke and Vosmaer [23] provides a valuable summary of
the way in which canonical extensions are employed in the semantic mod-
elling, in the style of Kripke semantics, of a range of deductive systems.
Many such logics, in particular modal logics, are modelled algebraically by
algebras based on the variety B of Boolean algebras or on the variety D of
bounded distributive lattices. The associated relational semantics can be
seen as being provided by a ‘semantic platform’ built using Stone duality
(for B) or Priestley duality (for D), with non-lattice operations and their
relational counterparts overlaid. The reason that non-lattice operations of-
ten cannot be incorporated into the basic platform is precisely because the
varieties under consideration are rarely finitely generated, so that it is nec-
essary first to consider reducts in a variety which is, such as B or D. Our
duality framework promises to provide, likewise, a uniform way to derive
relational semantics for certain many-valued logics modelled by algebras
having reducts in a finitely generated lattice-based variety. These ideas will
be taken forward in a subsequent paper.

2. Complete sublattices of products of finite lattices

This section summarises, and adds to, material from [14]. We begin by
recalling some basic definitions. Let L be a sublattice of a complete lattice C.
Then C is called a completion of L. (More generally, if e : L → C is an
embedding of the lattice L into the complete lattice C, then the pair (e, C) is
also called a completion of L.) Write T b S to mean that T is a finite subset
of S. The completion C of L is dense if every element of C can be expressed
both as a join of meets and as a meet of joins of elements of L. In addition,
C is called a compact completion of L if, for all non-empty subsets A and B
of L, we have that

∧
A 6

∨
B implies

∧
A0 6

∨
B0, for some A0 b A and

B0 b B or, equivalently, if for every filter F of L and every ideal I of L, we
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have that
∧
F 6

∨
I implies F ∩ I 6= ∅. A further equivalent condition is

obtained if A and B are replaced by (non-empty) sets which are respectively
up-directed and down-directed. A canonical extension of a lattice L is a
completion C of L that is both dense and compact. Gehrke and Harding
[19] proved that every bounded lattice L has a canonical extension and that
any two canonical extensions of L are isomorphic via an isomorphism that
fixes the elements of L.

Now assume A = ISP(M) is the quasivariety generated by M, where
M is a finite set of finite lattice-based algebras. We shall identify suitable
subalgebras of products of algebras in M as candidates for the canonical
extensions of algebras in A. We recall that a non-empty subset L of a com-
plete lattice K is called a complete sublattice of K if it is closed under joins
and meets (taken in K) of arbitrary non-empty subsets. Our first result,
Proposition 2.1 below, generalises [10, Lemma 2.2] and amplifies [14, Propo-
sition 2.1]. In preparation, we note the following well-known description of
the closure in topological products. Let {Ms}s∈S be a family of topological
spaces indexed by a non-empty set S. Let A be a subset of

∏
s∈SMs. An

element x of
∏
s∈SMs is locally in A if, for every T b S, there exists a ∈ A

with x�T = a�T . The set of all elements of
∏
s∈SMs that are locally in A

will be denoted by loc(A). If each Ms is finite and endowed with the discrete
topology, then loc(A) is the topological closure of A in

∏
s∈SMs.

Proposition 2.1. Let S be a non-empty set, let Ms be a complete lattice,
for all s ∈ S, and let L be a sublattice of

∏
s∈SMs.

(i) Let x ∈
∏
s∈SMs and assume that x is locally in L. Then, with the

joins and meets calculated pointwise in the product, the following hold:

(a) x =
∨
{
∧
Ai | i ∈ I }, for some non-empty set I and non-empty

subsets Ai of L, and

(b) x =
∧
{
∨
Ai | i ∈ I }, for some non-empty set I and non-empty

subsets Ai of L.

(ii) Assume that Ms is a finite lattice, for each s ∈ S. Then loc(L) forms
the complete sublattice of

∏
s∈SMs generated by L.

(iii) Assume that Ms is a finite lattice, for each s ∈ S. Then following are
equivalent for all x ∈

∏
s∈SMs:

(1) x ∈ loc(L);

(2) x =
∨
{
∧
Ai | i ∈ I }, for some non-empty set I and non-empty

subsets Ai of L;
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(3) x =
∧
{
∨
Ai | i ∈ I }, for some non-empty set I and non-empty

subsets Ai of L.

(iv) Assume that each Ms is a finite lattice endowed with the discrete topol-
ogy. Then L is a topologically closed sublattice of

∏
s∈SMs if and only

if L is a complete sublattice of
∏
s∈SMs.

Proof. Assume that x is locally in L. For each T b S, define

kTx :=
∧
{ a ∈ L | x�T = a�T }.

As x is locally in L, we have kTx �T = x�T . Clearly,
∨
{ kTx | T b S } > x, so

to prove equality it remains to show that kTx 6 x, for all T b S. Let T b S
and s ∈ S. Then there exists a ∈ L with x�T∪{s} = a�T∪{s}. It follows that

kTx 6 a, whence kTx (s) 6 a(s) = x(s). Thus, kTx 6 x, as required. This
proves (i)(a), and (i)(b) follows by duality.

Now assume that eachMs is a finite lattice. That loc(L) forms a complete
sublattice of

∏
s∈SMs will follow easily once we prove that (with the joins

and meets calculated pointwise in the product):

∅ 6= A ⊆ L =⇒
∨
A ∈ loc(L) &

∧
A ∈ loc(L). (∗)

Let A be a non-empty subset of L and let x :=
∨
A. Let T b S and let

t ∈ T . Then, since Mt is finite, x(t) =
∨
a∈Aa(t) = at1(t) ∨ · · · ∨ atjt(t), for

some jt ∈ N and at1, . . . , a
t
jt
∈ A. Define a :=

∨
{ at1 ∨ · · · ∨ atjt | t ∈ T }.

Then a ∈ L and a 6
∨
A = x. We have a(t) > at1(t) ∨ · · · ∨ atjt(t) = x(t) for

t ∈ T . Thus, x�T = a�T . So
∨
A ∈ loc(L), and

∧
A ∈ loc(L) by duality.

By replacing L by loc(L) in (∗), we conclude at once that loc(L) is a
complete sublattice of

∏
s∈SMs. The remainder of (ii) follows from (i).

Now another application of (∗) shows that (iii) follows from (i). Finally, (iv)
is an immediate corollary of (ii).

It is noteworthy that Proposition 2.1(iii) asserts that the two order-
theoretic conditions specifying density are equivalent. This would not be
expected to occur for dense lattice completions in general. While the lattices
Ms in parts (ii) and (iii) of the proposition are assumed to be finite, it is quite
easy to show that the conclusions are valid under the weaker assumption
that each Ms has no infinite chains: use the fact that lattices of this kind
are complete and have the property that every join, or meet, reduces to the
join, or meet, of a finite subset (see [13, Theorem 2.41]).

We now want to identify dense completions which are also compact.
To this end we specialise to lattices which are represented as sublattices of
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powers of finite lattices in such a way that each exponent in the represen-
tation is a Boolean power of the base. That is, the exponents are algebras
of the form C(Z,M), namely the continuous functions from Z to M with
pointwise-defined operations, where Z is a Boolean space.

Theorem 2.2. [14, Theorem 2.4(ii)] Let Z1, . . . , Z` be compact spaces, let
M1, . . . ,M` be discretely topologised finite lattices and let L be a sublattice
of
∏

16i6`C(Z1,M1). Then the topological closure of L in
∏

16i6`M
Zi
i is a

compact and dense completion, and so a canonical extension, of L.

For Theorem 2.2 to be of value, we must demonstrate how its assumptions
can be met. Given the quasivariety A = ISP({M1, . . . ,M`}) and A ∈ A, we
want to choose compact spaces Z1, . . . , Z` in such a way that LA embeds
into MZ1

1 × · · · ×MZ`
` in the manner demanded. As in [9, 14], we do this

by introducing the natural extension construction. We take Zi := A(A,Mi).
Here the underlying set of Zi is the set of homomorphisms from A into
Mi and Zi is endowed with the subspace topology derived from the power
MA
i , where Mi is equipped with the discrete topology. Since Zi is a closed

subspace of the product, it is compact; indeed it is a Boolean space.
We embed A into MZ1

1 × · · · ×M
Z`
` by means of the map

eA: A→
∏

16i6`

M
A(A,Mi)
i

given by eA(a)(i)(x) = x(a), for i ∈ {1, . . . , `} and x ∈ A(A,Mi); we call
the map eA(a), for a ∈ A, a multisorted evaluation map. The map eA is a
homomorphism and, because A ∈ ISP(M), it is also an embedding. We then
define the natural extension nA(A) of A (relative to M = {M1, . . . ,M`})
to be the topological closure of eA(A) in

∏
16i6`Mi

A(A,Mi), where each Mi

carries the discrete topology. Since each evaluation map eA(a) is continuous
we can restrict the codomain of eA and write eA: A→

∏
16i6` C(Zi,Mi). The

map eA embeds A as a topologically dense subalgebra of its natural extension
in just the way we require in order to be able to apply Theorem 2.2.

Theorem 2.3. [14, Theorem 2.4] Let A = ISP(M) where M is a finite set
of finite lattice-based algebras (of the same type). Then, for each A ∈ A,
the lattice reduct of the natural extension nA(A) is a dense and compact
completion of the lattice reduct LA, and so a canonical extension.

We shall wish in Section 5 to view the natural extension categorically, as
a functor nA from A into a category AT of topological algebras. We denote
by MT the set of members of M, each endowed with the discrete topology.
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We then define AT := IScP(MT), the topological prevariety generated by MT,
that is, the class of isomorphic copies of topologically closed non-empty
substructures of products of members of MT. We make AT into a category
by taking as morphisms the continuous A-homomorphisms. See [9, Section 2]
for the definition of the action of nA on morphisms, and also for the natural
extension construction in maximum generality and with all its bells and
whistles.

We stress that nA(A) belongs to AT, and so is a topological algebra with
algebraic reduct in A. The realisation of the canonical extension of A ∈ A

as nA(A) also leads to very simple proofs of some well-known properties of
operations and homomorphisms (cf. Gehrke and Harding [19], p. 360).

Proposition 2.4. Let A be a finitely generated lattice-based variety.

(i) Let f be an n-ary basic operation. Let A ∈ A and C := nA(A). Then,
if the interpretation fA of f on A preserves ∨ respectively ∧, in any
coordinate, the interpretation fC of f on C preserves arbitrary non-
empty joins, respectively meets, in that coordinate. In particular, if fA

is an operator on A (that is, it preserves ∨ in each coordinate), then fC

is a complete operator (preserves non-empty joins in each coordinate).

(ii) Any homomorphism between algebras in A lifts to a complete homo-
morphism between their natural extensions.

Proof. Because C is a complete sublattice of a product of finite lattices,
joins and meets in C are computed pointwise and in each component any
join (meet) reduces to a finite join (meet). Also, any non-lattice operations
are given pointwise on C. Hence (i) and (ii) hold.

3. The structure of canonical extensions and hypercanonicity

In this section we investigate more closely the topological and order-theoretic
structure of a topologically closed sublattice of a non-empty product of fi-
nite lattices, where these lattices carry the discrete topology. As noted in
Section 1 we make our exposition as self-contained as we can. However,
without proof, we do set our results in context by stating a portmanteau
result, Theorem 3.5. The continuous lattices methodology which is required
to prove this theorem also provides alternative derivations of those of our
prior, elementary, claims which the theorem subsumes.

We denote the completely join-irreducible elements of a complete lat-
tice C by J∞(C) and the completely meet-irreducible elements by M∞(C).
A lattice is bi-algebraic if it and its order dual are algebraic.
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Lemma 3.1. Let C be a complete sublattice of a product of finite lattices.
Then C is bi-algebraic. Consequently, C is meet-generated by M∞(C) and
join-generated by J∞(C).

Proof. Any finite lattice is algebraic, a product of algebraic lattices is
algebraic (see for example [24, I.4.14]) and it is elementary that a complete
sublattice of an algebraic lattice is algebraic ([13, Exercise 7.7]). For the
final claim, see for example [13, Proposition 10.27].

Let P be an ordered set. The interval topology on P , denoted ιP , is
defined by taking a sub-basis for its closed sets consisting of all sets ↑x and
↓x, for x ∈ P . Recall that an ordered topological space X is a Priestley
space if it is compact and totally order-disconnected, that is, given x 
 y
in X, there exists a clopen up-set containing x but not y.

Proposition 3.2. Assume that C is a topologically closed sublattice of Y ,
where Y =

∏
s∈SMs, with each Ms a finite lattice with the discrete topology.

Then the induced product topology T on C coincides with the interval topology
ιC , and with respect to this topology C is a Priestley space.

Proof. By Proposition 2.1(iv), C is a complete sublattice of Y . For any
a ∈ C, the set ↑C a := { y ∈ C | y > a } is the intersection of C with
the complete sublattice { y ∈ Y | y > a } of Y and hence itself a complete
sublattice of Y . By Lemma 2.1(iv) again, ↑C a is T-closed, and likewise for
↓C a. Therefore ιC ⊆ T.

Since the topology on each Ms is discrete, T has a sub-basis for its closed
sets consisting of the sets { a ∈ C | a(s) = ms }, where s varies over S and
ms varies over Ms. It follows immediately that the family of sets of the form

Us,ms := { a ∈ C | a(s) 6 ms } and Vs,ms := { a ∈ C | a(s) > ms }

together form a sub-basis for the T-closed sets. Since, by Proposition 2.1(iv),
C is closed under joins, calculated pointwise, b :=

∨
Us,ms exists in C

and belongs to Us,ms . Because Us,ms is a down-set in C we conclude that
Us,ms = ↓C b, and hence that Us,ms is ιC-closed. Likewise, the set Vs,ms is
ιC-closed. Therefore T ⊆ ιC . Since each Ms is trivially a Priestley space,
the final assertion holds since the class of Priestley spaces is closed under
the formation of products and closed subspaces.

It is clear that on each Ms the discrete topology coincides with the inter-
val topology, and, on a product of complete lattices, the product topology
derived from the interval topologies on the factors is the interval topology
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on the product (see [15, Theorem 2.6]). So on the full product
∏
s∈SMs

the product topology is the interval topology. Proposition 3.2 says more; in
general the interval topology on a closed subspace will not coincide with the
subspace topology derived from the interval topology.

We must now venture into the foothills of the theory of continuous lat-
tices. The next result is not new (cf. [24, 32, 34]), but for completeness we
outline a direct proof.

Proposition 3.3. Let C be a bi-algebraic lattice. Then conditions (1)–(4)
are equivalent:

(1) C is a Priestley space with respect to ιC ;

(2) the topology ιC is Hausdorff;

(3) the topology ιC coincides with the Lawson topology, with the dual Law-
son topology and with the bi-Scott topology;

(4) for each compact element k of C there exists a finite subset F of C
such that C\ ↑ k = ↓F, and the order-dual assertion also holds.

Proof. We note the following very basic facts from [24]. On any complete
lattice C the interval topology ιC and the Lawson topology λ(C) coincide if
ιC Hausdorff (because λ(C) is necessarily compact and contains ιC) and the
dual assertion also holds.

It is elementary that the Lawson-open up-sets are exactly the Scott-open
sets (that is, those whose complements are closed under directed joins) [24,
III-1.6], and dually. Hence (2) implies (3). Assume (3). Then a Lawson
open up-set is a union of principal up-sets [24, III.1.6 and III.1.9]. Consider
a non-empty clopen up-set U in C. Every element of U lies above a minimal
element of U , and each minimal element is compact. Since U is a closed
subset of C it is compact. Consequently U has only finitely many minimal
elements. Therefore non-empty clopen up-sets are of the form ↑G, with G
a finite set and, order dually, clopen down-sets are of the form ↓F with F
finite. Hence (4) holds. Certainly either condition in (4) implies (1) because
the compact elements in an algebraic lattice are join-dense, by definition.

Theorem 3.4 focuses on completely join- and meet-irreducible elements.
By Proposition 3.3 and Theorem 2.2 this theorem will apply to the lattice
reduct of the canonical extension of an algebra in a finitely generated lattice-
based variety. As it applies to canonical extensions, essentially the same
result is also given by Gehrke and Vosmaer [23, Section 5]. Our proof of
Theorem 3.4 takes as its starting point property (4) in Proposition 3.3.
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Theorem 3.4. Let C be a bi-algebraic lattice which is a Priestley space in
its interval topology ιC . Let x 
 y in C. Then there exists j ∈ J∞(C), with
j 6 x and j 
 y, and a finite set Mj ⊆ M∞(C) such that C\ ↑ j = ↓Mj.
The order dual statement also holds.

Proof. Let x 
 y in C. Because C is dually algebraic, it is join-generated
by J∞(C), so there exists j ∈ J∞(C) with j 6 x and j 
 y. Since C is
algebraic, j is the directed join of the compact elements in ↓ j and because
j ∈ J∞(C), we deduce that j is compact. Now we can apply (4) in Proposi-
tion 3.3 to write C\ ↑ j as ↓Mj , where Mj is a finite set and each member
of Mj can be assumed to be maximal in C\ ↑ j since each member of the
clopen down-set ↓Mj lies below a maximal element belonging to this set.
Let m ∈ Mj . If m were not completely meet-irreducible, then we could
write m as the meet of a set S of elements of C with s > m, for all s ∈ S.
But then s > j for all s ∈ S, so that

∧
S > j, which is a contradiction.

In the non-distributive case, we cannot strengthen the above result to
assert that Mj can be taken to be a singleton for every j ∈ J∞(C). If we
had Mj = {m}, then (j,m) would be a splitting pair, and j necessarily
completely join-prime. But a complete lattice that is join-generated by its
completely join-prime elements is necessarily completely distributive (see
for example [10], in particular Theorem 2.5, for this classic result, and full
references). A completion of a non-distributive lattice cannot, of course, be
completely distributive. We do however, have what may be seen as a weak
form of complete join-primeness: the finite set Mj above has the property
that, for any down-directed set F with

∧
F ∈ ↓Mj , we have F ∩ ↓Mj 6= ∅

(cf. [34, Proposition 1.7 and Theorem 2.2]).
The interval topology on a complete lattice being compact and Hausdorff,

as occurs in Proposition 3.3, already signals a weakened form of complete
distributivity. In [16, 17], Erné discusses topological equivalents of various
distributive laws on complete lattices. In particular, for a complete lattice C,
the topology ιC is compact and Hausdorff if and only if L is ultrafilter dis-
tributive in the sense that∧{∨

Y | Y ∈ Y
}

=
∨{∧

Z | Z ∈ Y#
}
,

where Y is the family of ultrafilters on C and

Y# =
{
Z ⊆

⋃
Y | (∀Y ∈ Y)Y ∩ Z 6= ∅

}
;

see [16, Theorem 5] and also [17], where it is revealed how ultrafilter distribu-
tivity relates to, and combines with, additional properties imposed on C.
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We now set our elementary treatment above in a wider context. We recall
that a lattice is linked bi-algebraic if it is bi-algebraic and has a Hausdorff
interval topology. Combining the conditions of Lemma 3.1 and Proposi-
tion 3.3 we see that a complete sublattice of a product of finite lattices (each
equipped with the discrete topology) is linked bi-algebraic. We record in
Theorem 3.5 equivalent characterisations of linked bi-algebraic lattices. For
the proof, we refer to [24, VII.2.6].

Theorem 3.5. For a complete lattice C, conditions (1)–(3) are equivalent:

(1) C is bi-algebraic and satisfies one, and hence all, of the equivalent
conditions given in Proposition 3.3;

(2) C is a Boolean topological lattice with respect to ιC ;

(3) C is a Boolean topological lattice with respect to some topology.

In the remainder of this section we consider a variety (or more generally
quasivariety) A = ISP(M), where M is a finite set of finite lattice-based
algebras of common type. Let us fix A ∈ A. We shall make direct use of the
preceding results to reconcile the operations of C := nA(A) with the σ- and
π-extensions of the operations on A. We identify A with its image under eA
in C. The sets K(C) of filter elements and O(C) of ideal elements of the
canonical extension C are defined as follows: p ∈ K(C) if and only if p is a
meet of elements from A and q ∈ O(C) if and only if q is a join of elements
from A. (Filter and ideal elements are known in the older literature as closed
and open elements, respectively.) As in [19, 21] when considering extensions
of maps we can restrict attention without loss of generality to the unary case:
formation of canonical extensions and of filter and ideal elements commutes
with the formation of finite products (see [19, Section 5] or [21, Section 2]).

Let f : LA → LA be any map. We recall that the maps fσ and fπ on C
are defined as follows:

fσ(x) :=
∨{∧

{ f(a) | a ∈ A and p 6 a 6 q }
∣∣

p ∈ K(C), q ∈ O(C) and p 6 x 6 q
}
,

fπ(x) :=
∧{∨

{ f(a) | a ∈ A and p 6 a 6 q }
∣∣

p ∈ K(C), q ∈ O(C) and p 6 x 6 q
}
.

It is elementary that fσ and fπ extend f (note that every element of LA is
in K(C) ∩ O(C)). Throughout this paper (and also in [14]) we have been
at pains to stress that the full machinery for analysing canonical extensions
in general can be circumvented in the finitely generated case. We shall
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however assume the basic result that fσ 6 fπ. This was proved by Gehrke
and Harding [19, Lemma 4.2(ii)], taking advantage of a restricted form of
distributivity valid in the canonical extension of any bounded lattice [19,
Lemma 2.3]. In [14, Lemma 3.4] we showed how this result could be side-
stepped in the finitely generated case.

In [14, Theorem 3.5] we established, for any finitely generated variety A,
that, for each A ∈ A and for each operation f in the algebraic type, (the
interpretation of) f on nA(A) coincides with both the σ- and π-extensions
of (the interpretation of) f on A. We now present yet another proof of the
smoothness of the basic operations. Theorem 3.6 implies in addition that
fσ = fπ is an interval-continuous map (this was proved in a quite different
way by Gehrke and Vosmaer [23]). In fact Theorem 3.6(ii) proves a little
more, since it applies to any map with an interval-continuous lifting.

Theorem 3.6. Let A ∈ A, where A is a finitely generated lattice-based
variety.

(i) The operations of the natural extension nA(A), viewed as a topological
algebra, are continuous with respect to the interval topology.

(ii) Let C be a dense and compact completion of LA, viewed as a topological
lattice. Assume that a map f : An → A (for some n > 1) has an ιC-
continuous extension g to Cn. Then fσ = fπ = g. In particular
fσ = fπ whenever f is an operation in the algebraic type.

Proof. The first assertion is immediate from the remarks at the end of
Section 2 and Proposition 3.2.

We now let C be any dense and compact completion of A. By the unique-
ness of the canonical extension, C can be identified with LnA(A). Hence C
is algebraic, dually algebraic, is a Priestley space with respect to its interval
topology and has the additional properties listed in Theorem 3.4. In addi-
tion we recall that the interval topology on a product of complete lattices
is the product of the interval topologies ([15, Theorem 2.6]). Therefore our
comment above that we may restrict f to be unary when considering fσ and
fπ applies equally to consideration of g. So assume f : LA → LA.

As noted already, fσ 6 fπ. Therefore, making use of order duality,
it will suffice to show that g(x) 6 fσ(x), for all x ∈ C. Suppose for a
contradiction that this fails for some x. Then we can find a compact element
k ∈ C such that g(x) ∈ ↑ k and fσ(x) /∈ ↑ k. By ιC-continuity of g, the set
W := g−1(↑ k) is ιC-clopen. The set W is a finite union of sets each of
which is the intersection of a clopen up-set and a clopen down-set. There
are various ways to verify this claim (for example, we may exploit the fact
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that we are dealing with a Priestley space; see [13, Lemma 11.22]). Hence
there exist clopen sets U and V , respectively an up-set and a down-set, such
that x ∈ U ∩ V ⊆W . Then there exist p minimal in U and q maximal in V
such that x ∈ [p, q] ⊆ g−1(↑ k). Here p is a compact element and so is a finite
join of elements from J∞(C) (because J∞(C) is join-dense in C) and so is
a filter element, and dually, q is an ideal element. For every a ∈ [p, q] ∩ A
we have f(a) = g(a) > k and so

∧
f([p, q] ∩ A) > k. The definition of

fσ(x) implies that fσ(x) >
∧
f([p, q] ∩ A) > k, and we have the required

contradiction. The final assertion is now immediate.

4. The role of profiniteness

In Section 2 we deliberately identified the natural extension as a canonical
extension without mentioning profinite completion. We now indicate how
profiniteness fits into the picture. For background we refer to Banaschewski
[1] and to Clark, Davey, Jackson and Pitkethly [7].

The general setting for the theory of profinite completions of algebras is
that of classes K := ISP(M), where M is a set of finite algebras of the same
type. In [9] such a class K is called an internally residually finite prevariety
(IRF-prevariety). Given an IRF-prevariety K, any algebra in K embeds in
its K-profinite completion (see [9, Section 2] for details). In general an IRF-
prevariety need not be a variety; when K is a variety, it is residually finite
in the sense that this term is traditionally used in algebra.

It is very well known that a profinite completion of an algebra in any
IRF-prevariety is in fact a Boolean topological algebra (see for example
[1, 6] and also [10] for the case of distributive lattices). Theorem 3.7 of [9]
shows that, for any IRF-prevariety K, the K-profinite completion and the
natural extension of any member of K are isomorphic, both algebraically and
topologically. IRF-prevarieties encompass many classes of algebras which are
not lattice-based, and so the scope of [9], even for varieties, is very much
wider than that of the present paper; see [9, Section 5]. A variety A of lattice-
based algebras of finite type (that is, with a finite number of operations in
the signature), is known to be residually finite if and only if it is finitely
generated (Kearnes and Willard [30]), so that for such varieties the results
of [9] apply only when A is finitely generated.

We now focus on a finitely generated variety A of lattice-based algebras.
The work of Harding [26] and Gouveia [25] directly relates the canonical
extension of an algebra A in A to its profinite completion Â. It was Harding’s
work, and also that of Bezhanishvili, Gehrke, Mines and Morandi [3], which
led the authors of [9] to develop the theory of natural extensions for IRF-
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prevarieties. In [26] Harding proved that Â serves, at the lattice level, as the
canonical extension of LA and that, for each additional operation f which is
monotone (in each coordinate), the corresponding operation of Â agrees with
each of fσ and fπ. By refining Harding’s arguments, Gouveia [25] removed
the restriction of monotonicity. Independently, and using quite different
methods, Vosmaer [35, Theorem 3.4.12] established that Â and Aδ coincide
as algebras. Vosmaer’s treatment relies on substantial technical machinery
concerning the δ-topology and liftings of maps, much of which is applicable
without the assumption of finite generation.

Therefore, for A ∈ A, the identification of

• Aδ, the canonical extension, as constructed and characterised in [19, 22];

• Â, the profinite completion of A;

• nA(A), the natural extension of A, as presented in [9],

and hence the full panoply of properties of these algebras, can be arrived at
by a variety of routes. Knowing that two pairs from Aδ, Â and nA(A) can
be identified, the third pair can be identified too. Which of the equivalent
representations, or simply an abstract characterisation, is most illuminating
or most convenient will depend on the context and the user’s preference.

An algebra in a variety V is profinite if it is (isomorphic to) the inverse
limit of finite algebras in V, so that, for A ∈ V, the algebra Â is certainly
profinite. In this paper, we do not study profinite algebras in general, nor
profinite completions outwith the finitely generated setting. We do note,
however, that without a residual finiteness assumption, we cannot expect
A to embed into Â; see for example [9, Lemma 2.1], and [3] for a strik-
ing example: an infinite Heyting algebra H for which |Ĥ| = 2. Profinite
algebras are often best handled via the universal mapping property which
characterises them. This is the philosophy adopted by Vosmaer in [35, Sec-
tion 3.4.3], where the relationship between Â and Aδ is explored for arbitrary
lattice-based algebras A.

5. Exploiting duality theory

In this section we indicate briefly what our approach owes to, and gains
from, duality theory. Thus far we have taken advantage of the theory of
natural dualities only insofar as we have employed its formalism to arrive at
the definition of the natural extension and hence to arrive at Theorem 2.3.

As before, we focus on a class A = ISP(M), where M = {M1, . . . ,M`}
is a finite set of finite lattice-based algebras. In the special cases that A is
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the variety B of Boolean algebras or the variety D of bounded distributive
lattices, we may take M = {M}, where M is a single 2-element algebra. In
general we shall need to work with the multisorted set-up, either because
the class A we wish to consider is not generated as a quasivariety by a
single finite algebra, or because A = HSP(M) for a single algebra M , but
A 6= ISP(M); in the latter case we may invoke Jónsson’s Lemma to express
A in the form ISP({M1, . . . ,M`}), with ` > 1.

Traditional duality theory is lopsided: it seeks to set up a dual adjunction
or, better, a dual equivalence, between a category A of algebras (without
topology) on the one hand and a category XT of structures (with topology)
on the other. We have already seen that topological algebras arise naturally
in our investigation of natural, alias canonical, extensions. We therefore wish
to look at a related dual adjunction between a category AT and a category
X of structures, obtained by removing topology from XT and adding it to A.
The key to this topology-swapping is the TopSwap Theorem of Davey, Haviar
and Priestley [11]. Here our structures may include, besides operations and
relations, also partial operations. To convey the flavour while keeping the
notation simple, we state the result, and the necessary preliminaries, only
for the single-sorted case.

Let N1 = 〈N ;G1, H1, R1〉 and N2 = 〈N ;G2, H2, R2〉 be finite structures
on the same underlying set. Here the Gi, Hi and Ri are respectively sets
of finitary operations, partial operations and relations on N . Assume that
N2 is compatible with N1, that is, each (n-ary) operation g ∈ G2 is a homo-
morphism from Nn

1 to N1, for each (n-ary) partial operation h ∈ H2, the
domain of h forms a substructure dom(h) of Nn

1 and h is a homomorphism
from dom(h) to N1, and each (n-ary) relation r ∈ R2 forms a substructure
of Nn

1 . The structure N1 is said to be total if H1 = ∅. The topological struc-
ture (N2)T obtained by adding the discrete topology to N2 is denoted by N∼2

and is referred to as an alter ego of N1. For further details see Davey [8].
We then have four categories: two categories of structures,

A := ISP(N1) and X := IS0P+(N2),

and two categories of Boolean topological structures,

AT := IScP(N∼1) and XT := IS0
cP+(N∼2).

(A technical note: here the class operator P allows empty indexed products
and so yields the total one-element structure while P+ does not; the operator
S excludes the empty structure while S0 includes the empty structure when
the type does not include nullary operations.)
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There are naturally defined hom-functors D: A → XT and E: XT → A,
given on objects by

D(A) := A(A,N1) 6 N∼
A
2 and E(X) := XT(X,N∼2) 6 NA

1 ,

for all A ∈ A and all X ∈ XT. The evaluation maps

eA: A→ ED(A) and εX : X → DE(X)

are embeddings and 〈D,E, e, ε〉 is a dual adjunction between A and XT.
Likewise, we have hom-functors F: AT → X and G: X → AT, given on
objects by

F(A) := AT(A,N∼1) 6 NA
2 and G(X) := X(X,N2) 6 N∼

X
1 ,

and evaluation maps eA: A → GF(A) and εX : X → FG(X), for all A ∈
AT and all X ∈ X. These functors give rise to a new dual adjunction
〈F,G, e, ε〉 between AT and X. The definition of the natural extension functor
given in Section 2 extends without change to the more general setting now
under consideration and the functor nA : A→ AT factors as nA = F ◦ [ ◦D,
where [ denotes the functor which forgets the topology.. The set-up is now
as indicated in Fig. 1.

A
D
-�

E
XT

AT

nA

? F
-

�
G

X

[

?

Figure 1. The functorial set-up for the TopSwap Theorem

We say that N∼2 yields a duality on A if eA is an isomorphism, for all
A ∈ A, that is, the only continuous homomorphisms α : A(A,N1)→ N∼2 are
the evaluations maps eA(a), for a ∈ A. If, in addition, εX is an isomorphism,
for all X ∈ XT, we say that N∼2 yields a full duality on A. In case that
eA an isomorphism for all finite A ∈ A we say N∼2 yields a duality at the
finite level, and a full duality at the finite level if in addition each εX is an
isomorphism for all finite X ∈ X.
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The following result is the main theorem obtained by Davey, Haviar
and Priestley in [11]. We note that the principal novelty here lies in (i);
the techniques of Hofmann [27] and Davey [8] then yield (ii). The proof
of the theorem makes essential use of the finiteness of the signature of AT:
this assumption is required in order that the Duality Compactness Theorem
(see [27, Theorem 2.3] and [8, Theorem 4.8], generalising [5, 2.2.11]) can be
applied.

TopSwap Theorem 5.1. Let N1 be a finite total structure of finite type,
let N2 be a structure compatible with N1 and define the categories A, AT, X
and XT as above.

(i) If N∼2 yields a duality at the finite-level between A and XT, then N2 yields
a duality between AT and X.

(ii) If N∼2 yields a full duality at the finite-level between A and XT, then a dual
equivalence between the categories AT and X is set up by the adjunction
〈F,G, e, ε〉.

It may be helpful at this point to emphasise how topology-swapping op-
erates when A = D. We may take N1 to be the 2-element lattice and N2

the two-element chain, regarded as an ordered set. The categories XT and X

are, respectively, the categories of Priestley spaces and of ordered sets. The
natural extension of A ∈ D is then simply the canonical extension of A, as
this was first defined by Gehrke and Jónsson in [20]. The category AT is the
category of Boolean topological distributive lattices with continuous lattice
homomorphisms (which is isomorphic to the category D+ of completely dis-
tributive bi-algebraic lattices with complete lattice homomorphisms). The
duality set up by F and G is due to Banaschewski [2]. For a full account see
Davey, Haviar and Priestley [10].

All the results presented so far in this section extend, mutatis mutandis,
to the multisorted case. By way of illustration, we draw attention to the
application of this theory to discriminator varieties. These varieties have
attracted attention in connection with substructural logics; see Galatos et
al. [18]. Further background can be found in Burris and Sankapannavar [4]
and also in [9] and the references cited there. In [9, Section 5], a multisorted
natural duality is derived for any finitely generated discriminator variety;
there is no assumption that the variety is lattice-based, though in many
applications it would be. In addition, the natural extension is described
explicitly as an algebra of structure-preserving maps and shown to be a full
direct product of quasiprimal algebras.
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Very many finitely generated varieties of algebras having affinities with
logic are lattice-based. This feature is a major asset in that it automatically
guarantees the existence of a full duality. Because the median term, viz.,
m(x, y, z) := (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x), in a lattice is a 3-ary near una-
nimity term, we can apply the NU Strong Duality Theorem from natural
duality theory; see [5, Section 3.3] and in particular Theorem 3.8, or, for
the multisorted version, [5, Theorem 7.1.2]. (We do not need to discuss the
concept of strong duality here; we note only that it provides a sufficient, but
not necessary, condition for a duality to be full.) For simplicity we state
Theorem 5.2 only for the single-sorted case.

Theorem 5.2. Let A = ISP(N1), where N1 is a finite lattice-based algebra.

(i) Let R2 = S(N2
1 ) and G2 = H2 = ∅, Then N∼2 = 〈N1;R2,T〉 dualises

N1.

(ii) If the duality in (i) is not already full, then a full duality can be obtained
by taking, as before, R2 = S(N2

1 ) and adding to the structure N2 all
partial homomorphisms from Nk

1 to N1 for k = 0, 1, . . . , n, where the
bound n can be explicitly computed from N1.

Combining the TopSwap Theorem 5.1 with Theorem 5.2 we see that
it is possible in the lattice-based case to ensure that both adjunctions in
Fig. 1 are dual equivalences (and this extends to the multisorted setting).
Summing up what we have achieved so far, we may assert that, given any
finitely generated lattice-based variety A of finite type, we can define X and
XT in such a way that we have

• a dual equivalence between A and XT, and

• a dual equivalence between AT and X.

We shall refer to these as, respectively, a topological duality and a discrete
duality . (We shall also use the term ‘discrete duality’ when we replace AT

by an isomorphic category; this aligns our usage with the customary one.)
We now consider once more A := ISP(M), where M is a finite set of

finite algebras, and investigate AT more closely,. We denote by ABt the set
of Boolean topological models of the axioms of A. Since AT = IScP(MT),
each member of AT belongs to ABt. The question then naturally arises
as to whether A is standard , that is, whether AT coincides with ABt. We
have already noted in passing that this is so when A = D. To address this
question more generally we call on recent investigations at the interface of
natural duality theory and universal algebra. The following theorem, due to
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Clark, Davey, Jackson and Pitkethly, specialises [7, Theorem 2.13] and the
discussion following it.

Theorem 5.3. Assume that A = ISP(M), where M is a finite set of finite
lattice-based algebras, and assume that A is a variety (or equivalently, as-
sume that every homomorphic image of every subalgebra of each algebra in
M is in A). Then A is standard.

We remark that congruence distributivity of the variety A (a consequence
of A being lattice-based) is crucial in Theorem 5.3: it serves to guarantee
that A has the property FDSC (finitely determined syntactic congruences)
that suffices to ensure standardness. In fact, FDSC also implies that every
Boolean topological algebra whose underlying algebra belongs to A is nec-
essarily profinite. This result is due to Clark, Davey, Freese and Jackson [6,
Theorem 8.1]. (We allude below to profiniteness issues as regards members
of XT; there we shall consider structures, rather than just algebras.)

We may argue that Theorem 5.3 gives AT a right to be regarded as the
natural home for the natural extensions of the members of A. Note, too, that
profinite algebras ought always to be seen as topological algebras. Thus the
most appropriate way to view a canonical extension of an algebra in A is as
a topological algebra, however it is concretely represented. Nevertheless we
may ask when, as happens for A = D, there is an isomorphism between AT

and a category, which we may denote by A+, which involves order structure,
but does not explicitly involve topology. For this to work in the same way
as it does for D, we need the non-lattice operations of A to interact with
the underlying order in a well-behaved way. We have the following result. It
encompasses, for example, varieties of distributive modal algebras and also
those with a negation operation satisfying De Morgan’s laws.

Theorem 5.4. Let A = ISP(M), where M is a finite set of finite lattice-based
algebras. Assume in addition that each non-lattice operation of arity > 1
either (a) preserves binary join (or binary meet) or (b) in each coordinate
separately preserves either ∨ or ∧. Then there is an isomorphism between AT

and the category A+ whose objects are members of A whose lattice reducts
are linked bi-algebraic lattices and whose non-lattice operations of type (a)
preserve non-empty joins (meets) and whose operations of type (b) preserve
non-empty joins (meets) in those coordinates in which the corresponding
operations of A are required to preserve ∨ (∧); the morphisms of A+ are
A-homomorphisms which preserve arbitrary non-empty joins and meets.

Proof. At the lattice level, Proposition 3.3 reconciles the objects of AT

and those of A+. Moreover the topology on each object of AT is the interval
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topology, and this coincides with the join of the Scott topology and its dual
(recall Proposition 3.3).

Now consider a non-lattice operation f : Cn → C of type (a), where
C ∈ AT and n > 1. We may, by replacing appropriate factors in Cn by their
order duals, assume without loss of generality that f preserves binary join in
each coordinate, that is, it is an operator; observe that C ∈ AT if and only
if its order dual C∂ belongs to AT and that the topology is invariant under
order-reversal. A basic property of the Scott topology is that a map defined
on a finite product of complete lattices is Scott continuous if and only if it is
Scott continuous in each coordinate, or equivalently (in the case of an order-
preserving map) if and only if it preserves directed joins in each coordinate
([24, II-2.9]). It follows that an n-ary operation which is an operator is,
when interpreted on an object in AT, continuous if and only if it preserves
directed joins in each coordinate. Therefore the objects of AT and of A+ can
be identified. The treatment of operations of type (a) is somewhat simpler,
there being no need to consider separate continuity.

Now consider morphisms. The argument given by Davey, Haviar and
Priestley [10, ] for A = D applies equally well here. A lattice homomorphism
between (the reducts of) objects in AT is continuous for the interval topology
if and only if it preserves arbitrary (non-empty) meets and joins. It follows
that a map is a A+-morphism if and only if it is an AT-morphism.

We remark that a map between complete lattices preserves non-empty
joins if and only if it preserves binary joins and directed joins, and dually for
meets. Therefore the assertions in Proposition 2.4 valid for natural exten-
sions can be seen as special cases of the claims in Theorem 5.4, but proved
in a different way. Theorem 5.4 says more, since the natural extension func-
tor from A to AT is not normally surjective. To see this, take for example
A = D, the variety of bounded distributive lattices. Here the image of XT

under the functor [ is the category of profinite ordered sets, a result origi-
nally proved by Speed [33]. Not every infinite ordered set is profinite: for
example Y := ω⊕ω∂ does not support a topology making it into a Priestley
space. If, in the notation of Fig. 1, G(Y ) were equal to nD(A) for some
A ∈ D, we would have Y ∼= D(A)[, a contradiction.

We now pick up on the content of Theorem 5.1 as regards (full) dualities
at the finite level. In Chapter VI of his classic text Stone Spaces, Johnstone
calls a dual equivalence between categories C and D a ‘Stone-type duality’
if it arises in a specific way from a dual equivalence between the full subcat-
egories Cfin and Dfin of finite objects. The requirement is that C = Ind-Cfin,
the Ind-completion of Cfin, and D = Pro-Dfin, the Pro-completion of Dfin;
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see [28] for the categorical background and precise statements. Johnstone
demonstrates how a number of well-known dualities arise this way.

Assume once more that we have the set-up of Fig. 1, and that A =
ISP(N1) is a finitely generated variety of algebras. It is immediate that,
because A is locally finite, A can be viewed as the Ind-completion of its finite
members. We then ask whether XT = Pro-Xfin (to simplify notation we have
suppressed the subscript T on the right-hand side, finite structures tacitly
being equipped with the discrete topology). It is obvious that every profinite
limit of members of Xfin is again in XT. For the reverse inclusion to hold
we need every member of XT = IS0

cP+(N∼2) to be profinite. On the positive
side, it is true that if N∼2 is an alter ego for N1 which is a total structure,
then XT does coincide with Pro-Xfin. This fact was established by Clark,
Davey, Jackson and Pitkethly [7, Corollary 2.4]. Moreover, the presence of
partial operations does not automatically rule out the possibility that every
member of XT is profinite: this is true in particular when A = ISP(N1)
with N1 a finite lattice-based algebra which is not injective in A; see the
discussion following Example 5.4 in [8].

However, even when a dual adjunction between A and XT gives a full
duality at the finite level, it need not be true that every member of XT is
profinite. An instructive example to demonstrate this is given by Davey [8,
Section 5], building on investigations by Davey, Haviar and Willard [12]. The
example views A = D as being generated by the 3-element bounded chain.
There is then an alter ego, having two unary operations, which suffices to
yield a duality for A; addition of one binary partial homomorphism provides
a structure N∼2 upgrading the duality to one which is full at the finite level.
However not every object in XT = IS0

cP+(N∼2) is profinite. In summary, the
NU Strong Duality Theorem in general requires that partial operations be
included in N∼2 to ensure that the duality it provides between A and XT

is full, and this may entail XT ( Pro-Xfin. Therefore a dual equivalence
between A and a category XT is not always ‘Stone-type’ in Johnstone’s
sense. Likewise, with the roles of A and X interchanged, an associated dual
equivalence between X and AT need not necessarily arise from lifting from
the finite level by, respectively, Ind- and Pro-completion.

We have in this paper deliberately not strayed beyond the finitely gen-
erated setting. We acknowledge that, as regards direct applications, we are
thereby imposing a stringent restriction: few varieties of major importance
in logic are finitely generated. However the algebras in question often have
reducts which lie in a finitely generated variety. This fact implicitly under-
pins traditional approaches to Kripke semantics for modal and intuitionistic
logics. Thus we may view the diagram in Fig. 1, applied with A as B, as
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D, or as some other finitely generated lattice-based variety, as providing a
‘semantic platform’. On top of such a platform one may hope to build alge-
braic and relational semantics for a variety of logics, including many-valued
logics. Some steps in this direction are taken by Vosmaer in [35, Chapter 4]
in the traditional cases in which A is B or D, and additional operations
are superimposed to model modalities or Heyting implication: AT and A+,
suitably enriched, are employed to characterise certain profinite algebras in
terms of Kripke frames.. More innovatively, and more in the spirit of the
potential applications we have in mind for our framework, Maruyama [31]
has recently shown how to adapt a natural duality for a variety generated
by a finite quasiprimal algebra with a bounded lattice reduct so as to ac-
commodate modalities.
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