Generalised Gelfand Spectra For Noncommutative Operator Algebras and Multi-Valued Logic for Quantum Systems

Workshop 2 on Duality Theory
Oxford
15. August 2012

Andreas Döring

Department of Computer Science
University of Oxford

andreas.doering@cs.ox.ac.uk
“Those who do not understand the nature of sin and virtue are attached to duality; they wander around deluded.”

Sri Guru Granth Sahib
Introduction
Introduction

We don’t have noncommutative Gelfand-Naimark duality yet.

But why would it be interesting?
We don’t have noncommutative Gelfand-Naimark duality yet.

But why would it be interesting?

- Gelfand-Naimark duality (1943) is an equivalence between the category of unital commutative C^*-algebras and the category of compact Hausdorff spaces,

\[
\begin{array}{ccc}
\text{UnitCommC}^* & \overset{\Sigma}{\longrightarrow} & \text{K HausSp}^{op} \\
\downarrow & & \\
C(-) & &
\end{array}
\]
Introduction

We don’t have noncommutative Gelfand-Naimark duality yet.

But why would it be interesting?

- Gelfand-Naimark duality (1943) is an equivalence between the category of unital commutative C^*-algebras and the category of compact Hausdorff spaces,

$$\text{UnitCommC}^* \cong \text{KHausSp}^{\text{op}}$$

- To each commutative algebra \mathcal{A}, the set of algebra homomorphisms $\lambda : \mathcal{A} \to \mathbb{C}$ is assigned. Conversely, to each compact Hausdorff space X, the algebra of continuous functions $f : X \to \mathbb{C}$ is assigned.
This gives an enormously useful bridge between algebra and topology. E.g.: maximal ideals in algebra \(\mathcal{A} = \) points of Gelfand spectrum \(\Sigma(\mathcal{A}) \).
This gives an enormously useful bridge between algebra and topology.
E.g.: maximal ideals in algebra $\mathcal{A} =$ points of Gelfand spectrum $\Sigma(\mathcal{A})$.

All this is for *commutative* algebras, but in quantum theory and many mathematical situations we need *noncommutative* algebras.
This gives an enormously useful bridge between algebra and topology. E.g.: maximal ideals in algebra $\mathcal{A} = \text{points of Gelfand spectrum } \Sigma(\mathcal{A})$.

All this is for *commutative* algebras, but in quantum theory and many mathematical situations we need *noncommutative* algebras.

A good, general notion of spectrum of a noncommutative (operator) algebra is still lacking.
This gives an enormously useful bridge between algebra and topology. E.g.: maximal ideals in algebra $\mathcal{A} = \text{points of Gelfand spectrum } \Sigma(\mathcal{A})$.

All this is for \textit{commutative} algebras, but in quantum theory and many mathematical situations we need \textit{noncommutative} algebras.

A good, general notion of spectrum of a noncommutative (operator) algebra is still lacking.

Noncommutative Geometry is based on the idea that many topological and geometric constructions have algebraic counterparts. Geometry is done algebraically.
This gives an enormously useful bridge between algebra and topology. E.g.: maximal ideals in algebra $\mathcal{A} = \text{points of Gelfand spectrum } \Sigma(\mathcal{A})$.

All this is for *commutative* algebras, but in quantum theory and many mathematical situations we need *noncommutative* algebras.

A good, general notion of spectrum of a noncommutative (operator) algebra is still lacking.

Noncommutative Geometry is based on the idea that many topological and geometric constructions have algebraic counterparts. Geometry is done algebraically.

Big aim: generalise Gelfand-Naimark duality to noncommutative operator algebras, provide spatial counterparts to algebraic constructions.
In the first half of the talk, I will sketch how some ideas from

- noncommutative operator algebras,
- topos theory,
- geometric model theory,
- and quantum physics

may help to get closer to a solution. A number of open questions remain.
The topos approach and the spectral presheaf
Categories of algebras

We will consider operator algebras in \textbf{Set}, as in standard functional analysis.
Categories of algebras

We will consider operator algebras in \textbf{Set}, as in standard functional analysis.

In particular, we will use the category vNA of von Neumann algebras (on separable Hilbert spaces). Appropriate morphisms are ultraweakly continuous, unital $*$-homomorphisms.
Categories of algebras

We will consider operator algebras in \textbf{Set}, as in standard functional analysis.

In particular, we will use the category \textbf{vNA} of von Neumann algebras (on separable Hilbert spaces). Appropriate morphisms are ultraweakly continuous, unital \ast-homomorphisms.

More generally, one can think of \textbf{UnitC*}, the category of unital C^*-algebras and unital \ast-homomorphisms.
The topos approach to quantum theory

In the topos approach to quantum theory (Isham, Butterfield ('97–'02); Isham, D ('06-'12)), we associate with each NC operator algebra (C^*- or von Neumann algebra; here mostly the latter) a topos and a distinguished spectral object in the topos.
The topos approach to quantum theory

In the topos approach to quantum theory (Isham, Butterfield (’97–’02); Isham, D (’06-’12)), we associate with each NC operator algebra (C*- or von Neumann algebra; here mostly the latter) a topos and a distinguished spectral object in the topos.

- The base category of the topos is the poset $\mathcal{V}(\mathcal{N})$ of nontrivial commutative von Neumann subalgebras of \mathcal{N} (which share the unit element with \mathcal{N}). The topos itself is $\text{Set}^{\mathcal{V}(\mathcal{N})^{\text{op}}}$, presheaves over $\mathcal{V}(\mathcal{N})$.
The topos approach to quantum theory

In the topos approach to quantum theory (Isham, Butterfield (’97–’02); Isham, D (’06–’12)), we associate with each NC operator algebra (C^*- or von Neumann algebra; here mostly the latter) a topos and a distinguished spectral object in the topos.

- The base category of the topos is the poset $\mathcal{V}(\mathcal{N})$ of nontrivial commutative von Neumann subalgebras of \mathcal{N} (which share the unit element with \mathcal{N}). The topos itself is $\textbf{Set}^{\mathcal{V}(\mathcal{N})^{\text{op}}}$, presheaves over $\mathcal{V}(\mathcal{N})$.

- The spectral object in the topos is called the spectral presheaf Σ. It is built from the Gelfand spectra of the commutative subalgebras in the ‘obvious’ way (see next slide).
The topos approach to quantum theory

In the topos approach to quantum theory (Isham, Butterfield ('97–'02); Isham, D ('06-'12)), we associate with each NC operator algebra (C^*- or von Neumann algebra; here mostly the latter) a topos and a distinguished spectral object in the topos.

- The base category of the topos is the poset $\mathcal{V}(\mathcal{N})$ of nontrivial commutative von Neumann subalgebras of \mathcal{N} (which share the unit element with \mathcal{N}). The topos itself is $\text{Set}^{\mathcal{V}(\mathcal{N})^{\text{op}}}$, presheaves over $\mathcal{V}(\mathcal{N})$.

- The spectral object in the topos is called the spectral presheaf Σ. It is built from the Gelfand spectra of the commutative subalgebras in the ‘obvious’ way (see next slide).

Physically, the abelian subalgebras $\mathcal{V} \in \mathcal{V}(\mathcal{N})$ are interpreted as ‘classical perspectives’ on the quantum systems, also called contexts. Hence, $\mathcal{V}(\mathcal{N})$ is the context category.
The spectral presheaf

Definition

Let \mathcal{N} be a von Neumann algebra, and let $\mathcal{V}(\mathcal{N})$ be its context category. The spectral presheaf Σ of \mathcal{N} over $\mathcal{V}(\mathcal{N})$ is given

(a) on objects: for all $V \in \mathcal{V}(\mathcal{N})$, let $\Sigma_V := \Sigma_V$, the Gelfand spectrum of the abelian von Neumann algebra V,

(b) on arrows: for all inclusions $i_{V' V} : V' \hookrightarrow V$, let

$$
\Sigma(i_{V' V}) : \Sigma_V \longrightarrow \Sigma_{V'}
$$

$$
\lambda \longmapsto \lambda|_{V'}.
$$
The spectral presheaf

Definition

Let \mathcal{N} be a von Neumann algebra, and let $\mathcal{V}(\mathcal{N})$ be its context category. The spectral presheaf Σ of \mathcal{N} over $\mathcal{V}(\mathcal{N})$ is given

(a) on objects: for all $V \in \mathcal{V}(\mathcal{N})$, let $\Sigma_V := \Sigma_V$, the Gelfand spectrum of the abelian von Neumann algebra V,

(b) on arrows: for all inclusions $i_{V',V} : V' \hookrightarrow V$, let

$$\Sigma(i_{V',V}) : \Sigma_V \longrightarrow \Sigma_{V'}$$

$$\lambda \longmapsto \lambda|_{V'}.$$

Question: Is Σ anything like the spectrum of \mathcal{N}?
The poset $\mathcal{V}(N)$ and Jordan structure

How much information about the algebra N is contained in the poset $\mathcal{V}(N)$ of its commutative subalgebras?

Obviously, we can reconstruct N as a partial algebra, where only operations between commuting operators exist. (This needs more than the poset structure alone.)

But we can do better:

Theorem (J. Harding, AD '10): There is a bijection between the set of order automorphisms of $\mathcal{V}(N)$ and the Jordan automorphisms of N.

Here, we consider N as a Jordan algebra, replacing the noncommutative product with the commutative, but nonassociative symmetrised product $\forall \hat{A}, \hat{B} \in N: \hat{A} \circ \hat{B} := \frac{1}{2}(\hat{A}\hat{B} + \hat{B}\hat{A})$.

Andreas Döring (Oxford)
The poset $\mathcal{V}(\mathcal{N})$ and Jordan structure

How much information about the algebra \mathcal{N} is contained in the poset $\mathcal{V}(\mathcal{N})$ of its commutative subalgebras?

Obviously, we can reconstruct \mathcal{N} as a partial algebra, where only operations between commuting operators exist. (This needs more than the poset structure alone.)
The poset $\mathcal{V}(\mathcal{N})$ and Jordan structure

How much information about the algebra \mathcal{N} is contained in the poset $\mathcal{V}(\mathcal{N})$ of its commutative subalgebras?

Obviously, we can reconstruct \mathcal{N} as a partial algebra, where only operations between commuting operators exist. (This needs more than the poset structure alone.)

But we can do better:

Theorem

(J. Harding, AD ’10): There is a bijection between the set of order automorphisms of $\mathcal{V}(\mathcal{N})$ and the Jordan automorphisms of \mathcal{N}.

The poset $\mathcal{V}(\mathcal{N})$ and Jordan structure

How much information about the algebra \mathcal{N} is contained in the poset $\mathcal{V}(\mathcal{N})$ of its commutative subalgebras?

Obviously, we can reconstruct \mathcal{N} as a partial algebra, where only operations between commuting operators exist. (This needs more than the poset structure alone.)

But we can do better:

Theorem

(J. Harding, AD '10): There is a bijection between the set of order automorphisms of $\mathcal{V}(\mathcal{N})$ and the Jordan automorphisms of \mathcal{N}.

Here, we consider \mathcal{N} as a Jordan algebra, replacing the noncommutative product with the commutative, but nonassociative symmetrised product

$$\forall \hat{A}, \hat{B} \in \mathcal{N} : \hat{A} \circ \hat{B} := \frac{1}{2}(\hat{A}\hat{B} + \hat{B}\hat{A}).$$
Jordan automorphisms

Let $\phi : \mathcal{N} \to \mathcal{N}$ be an ultraweakly continuous Jordan automorphism. This induces

$$\tilde{\phi} : \mathcal{V}(\mathcal{N}) \longrightarrow \mathcal{V}(\mathcal{N})$$

$$\mathcal{V} \longmapsto \phi(\mathcal{V}),$$

which gives a geometric automorphism $\Phi : \text{Set}^{\mathcal{V}(\mathcal{N})^{\text{op}}} \to \text{Set}^{\mathcal{V}(\mathcal{N})^{\text{op}}}$. One can use the inverse image part to pull back Σ,

$$\forall \mathcal{V} \in \mathcal{V}(\mathcal{N}) : (\Phi^*(\Sigma))_\mathcal{V} = \Sigma_{\tilde{\phi}(\mathcal{V})}.$$
Jordan automorphisms

Let $\phi : \mathcal{N} \to \mathcal{N}$ be an ultraweakly continuous Jordan automorphism. This induces

$$\tilde{\phi} : \mathcal{V}(\mathcal{N}) \longrightarrow \mathcal{V}(\mathcal{N})$$

$$\mathcal{V} \longmapsto \phi(\mathcal{V}),$$

which gives a geometric automorphism $\Phi : \text{Set}^{\mathcal{V}(\mathcal{N})^\text{op}} \to \text{Set}^{\mathcal{V}(\mathcal{N})^\text{op}}$. One can use the inverse image part to pull back Σ,

$$\forall \mathcal{V} \in \mathcal{V}(\mathcal{N}) : (\Phi^*(\Sigma))_{\mathcal{V}} = \Sigma_{\tilde{\phi}(\mathcal{V})}.$$

For each $\mathcal{V} \in \mathcal{V}(\mathcal{N})$, we have an isomorphism $\phi|_\mathcal{V} : \mathcal{V} \to \phi(\mathcal{V})$, such that by Gelfand duality we get an isomorphism

$$G_\mathcal{V} : (\Phi^*(\Sigma))_{\mathcal{V}} \longrightarrow \Sigma_\mathcal{V}.$$
Jordan automorphisms

Let $\phi : \mathcal{N} \to \mathcal{N}$ be an ultraweakly continuous Jordan automorphism. This induces

$$\tilde{\phi} : \mathcal{V}(\mathcal{N}) \longrightarrow \mathcal{V}(\mathcal{N})$$

$$\mathcal{V} \longmapsto \phi(\mathcal{V}),$$

which gives a geometric automorphism $\Phi : \text{Set}^{\mathcal{V}(\mathcal{N})^{\text{op}}} \to \text{Set}^{\mathcal{V}(\mathcal{N})^{\text{op}}}$. One can use the inverse image part to pull back Σ,

$$\forall \mathcal{V} \in \mathcal{V}(\mathcal{N}) : (\Phi^{*}(\Sigma))_{\mathcal{V}} = \Sigma_{\tilde{\phi}(\mathcal{V})}.$$

For each $\mathcal{V} \in \mathcal{V}(\mathcal{N})$, we have an isomorphism $\phi|_{\mathcal{V}} : \mathcal{V} \to \phi(\mathcal{V})$, such that by Gelfand duality we get an isomorphism

$$\mathcal{G}_{\mathcal{V}} : (\Phi^{*}(\Sigma))_{\mathcal{V}} \longrightarrow \Sigma_{\mathcal{V}}.$$

The $\mathcal{G}_{\mathcal{V}}$ are the components of a natural transformation $\mathcal{G} : \Phi^{*}(\Sigma) \to \Sigma$, so we get an invertible map (automorphism)

$$\mathcal{G} \circ \Phi^{*} : \Sigma \longrightarrow \Sigma.$$
Algebra automorphisms

Every algebra automorphism \(\phi : \mathcal{N} \to \mathcal{N} \) of the von Neumann algebra is also a Jordan automorphism. Hence, there is a map

\[
\text{Aut}(\mathcal{N}) \longrightarrow \text{Aut}(\Sigma) \\
\phi \longmapsto \mathcal{G} \circ \Phi^*,
\]

but this map is not surjective (since there are more Jordan automorphisms than algebra morphisms).

In this view \(\text{Aut}(\Sigma) \) is too large, so \(\Sigma \) has too little structure.

Aim: identify ‘good’ automorphisms of \(\Sigma \) that come from algebra automorphisms. Equivalently, equip \(\Sigma \) with more structure.

Ongoing work with John Harding.
Morphisms between different algebras

Up to now, we considered only (Jordan) automorphisms of von Neumann algebras. More generally, an ultraweakly continuous unital Jordan morphism

\[\phi : \mathcal{N}_1 \rightarrow \mathcal{N}_2 \]

preserves commutativity and hence induces a geometric morphism \(\Phi : \text{Set}^{\mathcal{N}_1^{\text{op}}} \rightarrow \text{Set}^{\mathcal{N}_2^{\text{op}}} \) and a morphism

\[G \circ \Phi^* : \Sigma_{\mathcal{N}_2} \rightarrow \Sigma_{\mathcal{N}_1}. \]
Morphisms between different algebras

Up to now, we considered only (Jordan) automorphisms of von Neumann algebras. More generally, an ultraweakly continuous unital Jordan morphism

\[\phi : \mathcal{N}_1 \to \mathcal{N}_2 \]

preserves commutativity and hence induces a geometric morphism

\[\Phi : \text{Set}^{\mathcal{V}(\mathcal{N}_1)^{\text{op}}} \to \text{Set}^{\mathcal{V}(\mathcal{N}_2)^{\text{op}}} \]

and a morphism

\[G \circ \Phi^* : \Sigma \mathcal{N}_2 \to \Sigma \mathcal{N}_1. \]

Every Jordan morphism \(\phi : \mathcal{N}_1 \to \mathcal{N}_2 \) acts as a \(*\)-homomorphism on one direct summand of \(\mathcal{N}_1 \), and as a \(*\)-antihomomorphism on the other direct summand. Either direct summand may be empty.
Morphisms between different algebras

Up to now, we considered only (Jordan) automorphisms of von Neumann algebras. More generally, an ultraweakly continuous unital Jordan morphism

$$\phi : \mathcal{N}_1 \longrightarrow \mathcal{N}_2$$

preserves commutativity and hence induces a geometric morphism

$$\Phi : \textbf{Set}^{\mathcal{V}(\mathcal{N}_1)^{\text{op}}} \rightarrow \textbf{Set}^{\mathcal{V}(\mathcal{N}_2)^{\text{op}}}$$

and a morphism

$$\mathcal{G} \circ \Phi^* : \Sigma_{\mathcal{N}_2} \longrightarrow \Sigma_{\mathcal{N}_1}.$$

Every Jordan morphism $$\phi : \mathcal{N}_1 \rightarrow \mathcal{N}_2$$ acts as a $$\ast$$-homomorphism on one direct summand of $$\mathcal{N}_1$$, and as a $$\ast$$-antihomomorphism on the other direct summand. Either direct summand may be empty.

The open task is to identify which of the morphisms $$\mathcal{G} \circ \Phi^* : \Sigma_{\mathcal{N}_2} \rightarrow \Sigma_{\mathcal{N}_1}$$ come from (ultraweakly continuous) $$\ast$$-homomorphisms $$\phi : \mathcal{N}_1 \rightarrow \mathcal{N}_2$$, i.e., the arrows in $$\text{vNA}.$$
Zariski geometries
Zariski geometries

B. Zilber, E. Hrushovski ’96: model-theoretic axiomatisation of algebraic varieties, called Zariski geometries. These are topological structures (in the model-theoretic sense) with a good notion of dimension.
Zariski geometries

B. Zilber, E. Hrushovski ’96: model-theoretic axiomatisation of algebraic varieties, called Zariski geometries. These are topological structures (in the model-theoretic sense) with a good notion of dimension.

- Soon observed: non-standard examples with noncommuting coordinate functions. These are spaces associated with NC algebras.
Zariski geometries

B. Zilber, E. Hrushovski ’96: model-theoretic axiomatisation of algebraic varieties, called Zariski geometries. These are topological structures (in the model-theoretic sense) with a good notion of dimension.

- Soon observed: non-standard examples with noncommuting coordinate functions. These are spaces associated with NC algebras.
- In some cases, the NC algebra can be reconstructed from the Zariski geometry (Zilber).
Zariski geometries

B. Zilber, E. Hrushovski ’96: model-theoretic axiomatisation of algebraic varieties, called Zariski geometries. These are topological structures (in the model-theoretic sense) with a good notion of dimension.

- Soon observed: non-standard examples with noncommuting coordinate functions. These are spaces associated with NC algebras.
- In some cases, the NC algebra can be reconstructed from the Zariski geometry (Zilber).
- Works (roughly speaking) because Lie algebra aspects are built in. The Lie group elements act as vector fields on the Zariski geometries.
Zariski geometries

B. Zilber, E. Hrushovski ’96: model-theoretic axiomatisation of algebraic varieties, called Zariski geometries. These are topological structures (in the model-theoretic sense) with a good notion of dimension.

- Soon observed: non-standard examples with noncommuting coordinate functions. These are spaces associated with NC algebras.
- In some cases, the NC algebra can be reconstructed from the Zariski geometry (Zilber).
- Works (roughly speaking) because Lie algebra aspects are built in. The Lie group elements act as vector fields on the Zariski geometries.

Recently, a connection between the topos approach and Zariski geometries has shown up: the spectral presheaf Σ is a Zariski geometry if \mathcal{N} is a matrix algebra (V. Solanki; presumably a more general result holds).
Zariski geometries

B. Zilber, E. Hrushovski '96: model-theoretic axiomatisation of algebraic varieties, called Zariski geometries. These are topological structures (in the model-theoretic sense) with a good notion of dimension.

- Soon observed: non-standard examples with noncommuting coordinate functions. These are spaces associated with NC algebras.
- In some cases, the NC algebra can be reconstructed from the Zariski geometry (Zilber).
- Works (roughly speaking) because Lie algebra aspects are built in. The Lie group elements act as vector fields on the Zariski geometries.

Recently, a connection between the topos approach and Zariski geometries has shown up: the spectral presheaf Σ is a Zariski geometry if \mathcal{N} is a matrix algebra (V. Solanki; presumably a more general result holds).

But Lie algebra aspects are not built in yet.
There are further connections: one can associate a presheaf (over commutative subalgebras) of Zariski structures with a suitable noncommutative algebras. For more on Zariski geometries, see Boris Zilber’s webpage,

http://people.maths.ox.ac.uk/zilber
A new logic for quantum systems
Standard quantum logic

Birkhoff and von Neumann ('36) suggested to use the (projections onto) closed subspaces of a Hilbert space \mathcal{H} as representatives of propositions about a quantum system. This is motivated by the spectral theorem that gives the link between propositions “$A \in \Delta$” and projection operators $\hat{P} \in \mathcal{B}(\mathcal{H})$. This can be generalised to the projections in a von Neumann algebra $\mathcal{N} \subseteq \mathcal{B}(\mathcal{H})$. The projections form a complete orthomodular lattice $\mathcal{P}(\mathcal{N})$ that is non-distributive iff \mathcal{N} is noncommutative. Non-distributivity leads to many well-known interpretational problems in standard quantum logic. Other issues are the lack of a deductive system, lack of a material implication, existence of physically meaningless conjunctions, etc.

Many generalisations beyond orthomodular lattices exist. For a review, including conceptual issues, see Dalla Chiara, Giuntini ('01).
Birkhoff and von Neumann ('36) suggested to use the (projections onto) closed subspaces of a Hilbert space \mathcal{H} as representatives of propositions about a quantum system. This is motivated by the spectral theorem that gives the link between propositions “$A \in \Delta$” and projection operators $\hat{P} \in \mathcal{B}(\mathcal{H})$.

This can be generalised to the projections in a von Neumann algebra $\mathcal{N} \subseteq \mathcal{B}(\mathcal{H})$. The projections form a complete orthomodular lattice $\mathcal{P}(\mathcal{N})$ that is non-distributive iff \mathcal{N} is noncommutative.
Standard quantum logic

Birkhoff and von Neumann (’36) suggested to use the (projections onto) closed subspaces of a Hilbert space \mathcal{H} as representatives of propositions about a quantum system. This is motivated by the spectral theorem that gives the link between propositions “$A \in \Delta$” and projection operators $\hat{P} \in \mathcal{B}(\mathcal{H})$.

This can be generalised to the projections in a von Neumann algebra $\mathcal{N} \subseteq \mathcal{B}(\mathcal{H})$. The projections form a complete orthomodular lattice $\mathcal{P}(\mathcal{N})$ that is non-distributive iff \mathcal{N} is noncommutative.

Non-distributivity leads to many well-known interpretational problems in standard quantum logic. Other issues are the lack of a deductive system, lack of a material implication, existence of physically meaningless conjunctions, etc.

Many generalisations beyond orthomodular lattices exist. For a review, including conceptual issues, see Dalla Chiara, Giuntini (’01).
A new logic for quantum systems

The fact that one deals with orthomodular lattices in standard quantum logic means that compared to classical Boolean logic, the law of distributivity is given up, but negation is kept.
A new logic for quantum systems

The fact that one deals with orthomodular lattices in standard quantum logic means that compared to classical Boolean logic, the law of distributivity is given up, but negation is kept.

In this talk, I will relate the logic of quantum systems to bi-Heyting algebras.

These are distributive lattices with two different kinds of implication and hence two kinds of negation.
A new logic for quantum systems

The fact that one deals with orthomodular lattices in standard quantum logic means that compared to classical Boolean logic, the law of distributivity is given up, but negation is kept.

In this talk, I will relate the logic of quantum systems to bi-Heyting algebras.

These are distributive lattices with two different kinds of implication and hence two kinds of negation.

Hence, we depart from Boolean logic in a different manner than standard quantum logic. This new form of logic for quantum systems is a part of the topos approach to the formulation of quantum theory.

For details on the bi-Heyting aspects, see D, “Topos-Based Logic for Quantum Systems and Bi-Heyting Algebras”, arXiv:1202.2750.
Bi-Heyting algebras
History

- Rauszer: bi-Heyting algebras in superintuitionistic logic (’73–’77)
- Lawvere: co-Heyting and bi-Heyting algebras in category and topos theory, in particular in connection with continuum physics (’86, ’91)
- Reyes/Makkai (’95) and Reyes/Zolfaghari (’96): bi-Heyting algebras and modal logic
- Bezhanishvili et al. (’10): new duality theorems for bi-Heyting algebras based on bitopological spaces
- Majid (’95, ’08): Heyting and co-Heyting algebras within a tentative representation-theoretic approach to the formulation of quantum gravity
Bi-Heyting algebras

History

- Rauszer: bi-Heyting algebras in superintuitionistic logic (’73–’77)
- Lawvere: co-Heyting and bi-Heyting algebras in category and topos theory, in particular in connection with continuum physics (’86, ’91)
- Reyes/Makkai (’95) and Reyes/Zolfaghari (’96): bi-Heyting algebras and modal logic
- Bezhanishvili et al. (’10): new duality theorems for bi-Heyting algebras based on bitopological spaces
- Majid (’95, ’08): Heyting and co-Heyting algebras within a tentative representation-theoretic approach to the formulation of quantum gravity

As far as I am aware, nobody has connected quantum systems and their logic with bi-Heyting algebras before.
A bi-Heyting algebra K is a lattice which is a Heyting algebra and a co-Heyting algebra. For each $A \in K$, the functor $A \land __ : K \to K$ has a right adjoint $A \Rightarrow __ : K \to K$, and the functor $A \lor __ : K \to K$ has a left adjoint $A \Leftarrow __ : K \to K$. We write \neg for the Heyting negation and \sim for the co-Heyting negation.
A bi-Heyting algebra K is a lattice which is a Heyting algebra and a co-Heyting algebra. For each $A \in K$, the functor $A \land -$: $K \to K$ has a right adjoint $A \Rightarrow -$: $K \to K$, and the functor $A \lor -$: $K \to K$ has a left adjoint $A \Leftarrow -$: $K \to K$. We write \neg for the Heyting negation and \sim for the co-Heyting negation.

A bi-Heyting algebra K is called \textbf{complete} if it is complete as a Heyting algebra and complete as a co-Heyting algebra.
Example

A canonical example of a bi-Heyting algebra is a Boolean algebra \mathcal{B}. Note that by Stone’s representation theorem, each Boolean algebra is isomorphic to the algebra of clopen, i.e., closed and open, subsets of its Stone space. This gives the connection with the canonical topological examples of Heyting and co-Heyting algebras (open resp. closed sets in a topological space).
Example

A canonical example of a bi-Heyting algebra is a Boolean algebra \mathcal{B}.

Note that by Stone’s representation theorem, each Boolean algebra is isomorphic to the algebra of clopen, i.e., closed and open, subsets of its Stone space. This gives the connection with the canonical topological examples of Heyting and co-Heyting algebras (open resp. closed sets in a topological space).

In a Boolean algebra, we have for the Heyting negation that, for all $A \in \mathcal{B}$,

$$A \lor \neg A = 1,$$

which is the characterising property of the co-Heyting negation. In fact, in a Boolean algebra, $\neg = \sim$.
Clopen subobjects of the spectral presheaf
If V is a commutative von Neumann algebra, then its projection lattice $\mathcal{P}(V)$ is a complete Boolean algebra. Let $\text{Cl}(\Sigma_V)$ denote the clopen subsets of the Gelfand spectrum of V. There is an isomorphism of complete Boolean algebras

$$\alpha_V : \mathcal{P}(V) \longrightarrow \text{Cl}(\Sigma_V)$$

$$\hat{P} \longmapsto \{ \lambda \in \Sigma_V \mid \lambda(\hat{P}) = 1 \}.$$
If V is a \textit{commutative} von Neumann algebra, then its projection lattice $\mathcal{P}(V)$ is a complete Boolean algebra. Let $\mathcal{C}l(\Sigma_V)$ denote the clopen subsets of the Gelfand spectrum of V. There is an isomorphism of complete Boolean algebras

$$\alpha_V : \mathcal{P}(V) \rightarrow \mathcal{C}l(\Sigma_V)$$

$$\hat{P} \mapsto \{ \lambda \in \Sigma_V | \lambda(\hat{P}) = 1 \}.$$

Hence, within each context, i.e., commutative subalgebra $V \subset \mathcal{N}$, we can freely switch between clopen subsets of Σ_V and projections in V.

We will write $S_{\hat{P}} := \alpha_V(\hat{P})$ and $\hat{P}_S := \alpha^{-1}(S)$.

Note also that the Gelfand spectrum Σ_V of an abelian von Neumann algebra V and the Stone spectrum of $\mathcal{P}(V)$ are homeomorphic.
Projections and clopen subsets

If V is a commutative von Neumann algebra, then its projection lattice $\mathcal{P}(V)$ is a complete Boolean algebra. Let $\mathcal{C}l(\Sigma_V)$ denote the clopen subsets of the Gelfand spectrum of V. There is an isomorphism of complete Boolean algebras

$$\alpha_V : \mathcal{P}(V) \longrightarrow \mathcal{C}l(\Sigma_V)$$

$$\hat{P} \longmapsto \{ \lambda \in \Sigma_V | \lambda(\hat{P}) = 1 \}.$$

Hence, within each context, i.e., commutative subalgebra $V \subset \mathcal{N}$, we can freely switch between clopen subsets of Σ_V and projections in V.

We will write $S_{\hat{P}} := \alpha_V(\hat{P})$ and $\hat{P}_S := \alpha^{-1}(S)$.

Note also that the Gelfand spectrum Σ_V of an abelian von Neumann algebra V and the Stone spectrum of $\mathcal{P}(V)$ are homeomorphic.
A subobject of the spectral presheaf Σ is simply a subfunctor S. It is determined by specifying a subset S_V of Σ_V for each context V such that

$$\forall V, V' \in \mathcal{V}(\mathcal{N}) : V' \subset V \quad \text{implies} \quad \Sigma(i_{V'V})(S_V) \subseteq S_{V'}.$$
Clopen subobjects of the spectral presheaf

A subobject of the spectral presheaf Σ is simply a subfunctor S. It is determined by specifying a subset S_V of Σ_V for each context V such that

$$\forall V, V' \in \mathcal{V}(\mathcal{N}) : V' \subset V \quad \text{implies} \quad \Sigma(i_{V'V})(S_V) \subseteq S_{V'}.$$

A subobject S of Σ is called \textbf{clopen} if $S_V \subseteq \Sigma_V$ is a clopen subset for all $V \in \mathcal{V}(\mathcal{N})$.
A subobject of the spectral presheaf Σ is simply a subfunctor S. It is determined by specifying a subset S_V of Σ_V for each context V such that

$$\forall V, V' \in \mathcal{V}(\mathcal{N}): V' \subset V \implies \Sigma(i_{V'V})(S_V) \subseteq S_{V'}.$$

A subobject S of Σ is called **clopen** if $S_V \subseteq \Sigma_V$ is a clopen subset for all $V \in \mathcal{V}(\mathcal{N})$.

Equivalently, we can consider the family $(\hat{P}_{S_V})_{V \in \mathcal{V}(\mathcal{N})}$ of corresponding projections. The subobject condition becomes

$$\forall V, V' \in \mathcal{V}(\mathcal{N}): V' \subset V \implies \hat{P}_{S_V} \leq \hat{P}_{S_{V'}}.$$

The set of clopen subobjects of Σ is denoted as $\text{Sub}_{\text{cl}}(\Sigma)$.
Contextuality and coarse-graining

The concept of **contextuality** is implemented by this construction: Σ is a presheaf over the context category \mathcal{V}. Each context is a ‘classical perspective’ on the quantum system. Within each context, we have classical Boolean logic; propositions are represented by elements of the complete Boolean algebra $\mathcal{P}(\mathcal{V})$.

Moreover, the concept of **coarse-graining** is implemented by the fact that we use subobjects of Σ: for each context $V \in \mathcal{V}^N$, the component $S_V \subseteq \Sigma_V$ represents a local proposition about the value of some physical quantity in V. If $V' \subset V$, then $\hat{P}_{S_V'} \geq \hat{P}_{S_V}$ (since S is a subobject), so $S_{V'}$ represents a local proposition at the smaller context $V' \subset V$ that is coarser (i.e., it is weaker than, a consequence of) the local proposition represented by S_V. Clopen subobjects hence are interpreted as contextualised families of local propositions, compatible w.r.t. coarse-graining.
Contextuality and coarse-graining

The concept of **contextuality** is implemented by this construction: Σ is a presheaf over the context category $\mathcal{V}(\mathcal{N})$.

Each context is a ‘classical perspective’ on the quantum system. Within each context, we have classical Boolean logic; propositions are represented by elements of the complete Boolean algebra $\mathcal{P}(V)$.

Moreover, the concept of **coarse-graining** is implemented by the fact that we use subobjects of Σ: for each context $V \in \mathcal{V}(\mathcal{N})$, the component $S_V \subseteq \Sigma_V$ represents a *local proposition* about the value of some physical quantity in V.

If $V' \subset V$, then $\hat{P}_{S_{V'}} \geq \hat{P}_{S_V}$ (since S is a subobject), so $S_{V'}$ represents a local proposition at the smaller context $V' \subset V$ that is *coarser* than (i.e., it is weaker than, a consequence of) the local proposition represented by S_V.

Clopen subobjects hence are interpreted as contextualised families of local propositions, compatible w.r.t. coarse-graining.
Contextuality and coarse-graining

The concept of **contextuality** is implemented by this construction: Σ is a presheaf over the context category $\mathcal{V}(\mathcal{N})$.

Each context is a ‘classical perspective’ on the quantum system. Within each context, we have classical Boolean logic; propositions are represented by elements of the complete Boolean algebra $\mathcal{P}(\mathcal{V})$.

Moreover, the concept of **coarse-graining** is implemented by the fact that we use subobjects of Σ: for each context $\mathcal{V} \in \mathcal{V}(\mathcal{N})$, the component $S_{\mathcal{V}} \subseteq \Sigma_{\mathcal{V}}$ represents a local proposition about the value of some physical quantity in \mathcal{V}.

If $\mathcal{V}' \subset \mathcal{V}$, then $\hat{P}_{S_{\mathcal{V}'}} \geq \hat{P}_{S_{\mathcal{V}}}$ (since S is a subobject), so $S_{\mathcal{V}'}$ represents a local proposition at the smaller context $\mathcal{V}' \subset \mathcal{V}$ that is coarser than (i.e., it is weaker than, a consequence of) the local proposition represented by $S_{\mathcal{V}}$.

Clopen subobjects hence are interpreted as **contextualised families of local propositions**, compatible w.r.t. coarse-graining.
Sub$_{cl}(\Sigma)$ as a lattice

It is obvious that $\text{Sub}_{cl}(\Sigma)$ is a partially ordered set if we set

$$\forall S, T \in \text{Sub}_{cl}(\Sigma) : S \leq T \iff (\forall V \in \mathcal{V}(\mathcal{N}) : S_V \subseteq T_V).$$
Sub_{cl}(\Sigma) as a lattice

It is obvious that Sub_{cl}(\Sigma) is a partially ordered set if we set

\forall S, T \in \text{Sub}_{cl}(\Sigma) : S \leq T \iff (\forall V \in V(\mathcal{N}) : S_V \subseteq T_V).

Meets and joins with respect to this order are defined as follows: for all families \((S_i)_{i \in I} \subseteq \text{Sub}_{cl}(\Sigma),

\forall V \in V(\mathcal{N}) : (\bigwedge_{i \in I} S_i)_V := \text{cl} \bigcup_{i \in I} S_i;_V,

\forall V \in V(\mathcal{N}) : (\bigvee_{i \in I} S_i)_V := \text{int} \bigcap_{i \in I} S_i;_V.

Sub$_{\text{cl}}$(Σ) as a lattice

It is obvious that Sub$_{\text{cl}}$(Σ) is a partially ordered set if we set

$$\forall S, T \in \text{Sub}_{\text{cl}}(\Sigma) : S \leq T \text{ iff } (\forall V \in \mathcal{V}(\mathcal{N}) : S_V \subseteq T_V).$$

Meets and joins with respect to this order are defined as follows: for all families $(S_i)_{i \in I} \subseteq \text{Sub}_{\text{cl}}(\Sigma),$

$$\forall V \in \mathcal{V}(\mathcal{N}) : (\bigwedge_{i \in I} S_i)_V := \text{cl} \bigcup_{i \in I} S_i;_V,$$

$$\forall V \in \mathcal{V}(\mathcal{N}) : (\bigvee_{i \in I} S_i)_V := \text{int} \bigcap_{i \in I} S_i;_V.$$

Since the lattice operations are defined locally, i.e., at each stage $V \in \mathcal{V}(\mathcal{N})$ separately, we obtain a distributive lattice by the fact that for all $V \in \mathcal{V}(\mathcal{N}),$

$$\text{Cl}(\Sigma_V) \simeq \mathcal{P}(V)$$

is distributive.
Sub_{cl}(\Sigma) as a complete Heyting algebra

In fact, we can say more: each Cl(\Sigma_V) is a complete Boolean algebra, so for each \(S \in \text{Sub}_{cl}(\Sigma) \) the functor

\[
_ \wedge S : \text{Sub}_{cl}(\Sigma) \rightarrow \text{Sub}_{cl}(\Sigma)
\]

\[
R \mapsto R \wedge S
\]

preserves all joins (note that meets and joins are defined stagewise) and hence has a right adjoint

\[
S \Rightarrow _ : \text{Sub}_{cl}(\Sigma) \rightarrow \text{Sub}_{cl}(\Sigma).
\]
Sub_{cl}(\Sigma) as a complete Heyting algebra

In fact, we can say more: each Cl(\Sigma_\vee) is a complete Boolean algebra, so for each S \in Sub_{cl}(\Sigma) the functor

\[_ \wedge S : Sub_{cl}(\Sigma) \longrightarrow Sub_{cl}(\Sigma) \]

\[R \longmapsto R \wedge S \]

preserves all joins (note that meets and joins are defined stagewise) and hence has a right adjoint

\[S \Rightarrow _ : Sub_{cl}(\Sigma) \longrightarrow Sub_{cl}(\Sigma). \]

This map, the **Heyting implication from** S, makes Sub_{cl}(\Sigma) into a complete Heyting algebra. The Heyting implication is given by the adjunction

\[R \wedge S \leq T \quad \text{if and only if} \quad R \leq (S \Rightarrow T). \]
Sub_{cl}(\Sigma) as a complete co-Heyting algebra

There is more structure: again since each \(CL(\Sigma_V) \) is a complete Boolean algebra, for each \(S \in Sub_{cl}(\Sigma) \) the functor

\[
S \vee - : Sub_{cl}(\Sigma) \rightarrow Sub_{cl}(\Sigma)
\]

preserves all meets, so it has a left adjoint

\[
S \Leftarrow - : Sub_{cl}(\Sigma) \rightarrow Sub_{cl}(\Sigma)
\]

which we call **co-Heyting implication from** \(S \). This map makes \(Sub_{cl}(\Sigma) \) into a complete co-Heyting algebra. It is characterised by the adjunction
Sub\(_{\text{cl}}(\Sigma)\) as a complete co-Heyting algebra

There is more structure: again since each \(\text{Cl}(\Sigma V)\) is a complete Boolean algebra, for each \(S \in \text{Sub}_{\text{cl}}(\Sigma)\) the functor

\[
S \lor _\neg : \text{Sub}_{\text{cl}}(\Sigma) \longrightarrow \text{Sub}_{\text{cl}}(\Sigma)
\]

preserves all meets, so it has a left adjoint

\[
S \leftarrow _\neg : \text{Sub}_{\text{cl}}(\Sigma) \longrightarrow \text{Sub}_{\text{cl}}(\Sigma)
\]

which we call **co-Heyting implication from** \(S\). This map makes \(\text{Sub}_{\text{cl}}(\Sigma)\) into a complete co-Heyting algebra. It is characterised by the adjunction

\[
(S \leftarrow T) \leq R \iff S \leq T \lor R,
\]

which means that

\[
(S \leftarrow T) = \bigwedge \{R \in \text{Sub}_{\text{cl}}(\Sigma) \mid S \leq T \lor R\}.
\]
Sub_{cl}(Σ) as a complete bi-Heyting algebra

We have shown

Proposition

(\text{Sub}_{cl}(Σ), \land, \lor, 0, Σ, \Rightarrow, \neg, \iff, \sim) \text{ is a complete bi-Heyting algebra.}
Daseinisation
Daseinisation

There is a way of ‘translating’ from standard quantum logic to the new logic based on clopen subobjects of the quantum state space Σ: first consider a single commutative subalgebra $V \subset \mathcal{N}$. There is an embedding $\mathcal{P}(V) \hookrightarrow \mathcal{P}(\mathcal{N})$ that is a morphism of complete orthomodular lattices, so it preserves all meets in particular.
Daseinisation

There is a way of ‘translating’ from standard quantum logic to the new logic based on clopen subobjects of the quantum state space Σ: first consider a single commutative subalgebra $V \subset \mathcal{N}$. There is an embedding

$$\mathcal{P}(V) \hookrightarrow \mathcal{P}(\mathcal{N})$$

that is a morphism of complete orthomodular lattices, so it preserves all meets in particular.

Hence, it has a left adjoint

$$\delta^{\circ}_{\mathcal{N},V} : \mathcal{P}(\mathcal{N}) \rightarrow \mathcal{P}(V)$$

$$\hat{P} \mapsto \delta^{\circ}_{\mathcal{N},V}(\hat{P}) = \bigwedge \{ \hat{Q} \in \mathcal{P}(V) \mid \hat{Q} \geq \hat{P} \}.$$

Note that commutativity of V plays no role here.
Then consider this map for all contexts $V \in \mathcal{V}(\mathcal{N})$ at once:

Definition

Let \mathcal{N} be a von Neumann algebra, and let $\mathcal{P}(\mathcal{N})$ be its lattice of projections. The map

$$\delta^o : \mathcal{P}(\mathcal{N}) \longrightarrow \text{Sub}_{cl}(\Sigma)$$

$$\hat{P} \longmapsto \delta^o(\hat{P}) := (\alpha_V(\delta^o_N, V(\hat{P})))_{V \in \mathcal{V}(\mathcal{N})}$$

is called **outer daseinisation of projections.**
Daseinisation (2)

Then consider this map for all contexts $V \in \mathcal{V}(\mathcal{N})$ at once:

Definition

Let \mathcal{N} be a von Neumann algebra, and let $\mathcal{P}(\mathcal{N})$ be its lattice of projections. The map

$$\delta^o : \mathcal{P}(\mathcal{N}) \longrightarrow \text{Sub}_\text{cl}(\Sigma)$$

$$\hat{P} \longrightarrow \delta^o(\hat{P}) := (\alpha_V(\delta^o_\mathcal{N}, \nu(\hat{P})))_{V \in \mathcal{V}(\mathcal{N})}$$

is called **outer daseinisation of projections**.

This map is injective (but not surjective), monotone and preserves all joins. For meets, we have

$$\forall \hat{P}, \hat{Q} \in \mathcal{P}(\mathcal{N}) : \delta^o(\hat{P} \land \hat{Q}) \leq \delta^o(\hat{P}) \land \delta^o(\hat{Q}).$$
Daseinisation (3)

More abstractly, outer daseinisation is a map from the category of complete join-semilattices to the category of complete bi-Heyting algebras, \(\delta^o : \text{CJSLat} \to \text{CBiHeyt} \).

The image is bigger than the Bruns-Lakser construction in general.
More abstractly, outer daseinisation is a map from the category of complete join-semilattices to the category of complete bi-Heyting algebras,

$$\delta^o : \text{CJSLat} \longrightarrow \text{CBiHeyt}.$$

The image is bigger than the Bruns-Lakser construction in general.

Outer daseinisation is based on the left adjoint of the inclusion $i : \mathcal{P}(V) \hookrightarrow \mathcal{P}(\mathcal{N})$. Using the right adjoint of i, we can define **inner daseinisation** analogously, so we get a second map

$$\delta^i : \text{CMSLat} \longrightarrow \text{CBiHeyt}$$

that preserves all meets.

Question: Are these maps known? Universal properties?
The daseinisation topology

Instead of considering all clopen subobjects of Σ, one can take suitable subframes, subcoframes or sub-bi-Heyting algebras.

E.g. consider the frame D generated by the $\delta^o(\hat{P})$, $\hat{P} \in \mathcal{P}(\mathcal{N})$, called the daseinisation topology on Σ. Dan Marsden showed that this frame is strictly smaller than $\text{Sub}_{\text{cl}}(\Sigma)$.
The daseinisation topology

Instead of considering all clopen subobjects of Σ, one can take suitable subframes, subcoframes or sub-bi-Heyting algebras.

E.g. consider the frame D generated by the $\delta^o(\hat{P})$, $\hat{P} \in \mathcal{P}(\mathcal{N})$, called the daseinisation topology on Σ. Dan Marsden showed that this frame is strictly smaller than $\text{Sub}_{\text{cl}}(\Sigma)$.

The choice of a (co)frame of subobjects of Σ determines

- which propositions we have available in our new form of quantum logic,
- whether propositions are closed under infinite conjunctions and disjunctions,
- which topology we give to the spectral presheaf,
- ...which in turn plays a key role in the question of continuity of maps between spectral presheaves.

Ongoing work with Pedro Resende, Jonathon Funk and Rui Soares Barbosa.
States and truth values
Pure states

In classical physics, a **(pure) state** is given by an element s of the state space S. A **proposition** is represented by a Borel subset $B \subset S$.

Theorem (Isham, Butterfield '00): The spectral presheaf Σ of a von Neumann algebra N has no global elements if N has no summand of type I_2. This is equivalent to the Kochen-Specker theorem.
Pure states

In classical physics, a \textbf{(pure) state} is given by an element s of the state space \mathcal{S}. A \textbf{proposition} is represented by a Borel subset $B \subset \mathcal{S}$.

The \textbf{truth value} of the proposition in the given state is

$$\nu(B; s) = (s \in B),$$

which is a Boolean formula that is either \textit{false} or \textit{true}.

Theorem (Isham, Butterfield '00): The spectral presheaf Σ of a von Neumann algebra \mathcal{N} has no global elements if \mathcal{N} has no summand of type I_{2^n}. This is equivalent to the Kochen-Specker theorem.
States and truth values

Pure states

In classical physics, a (pure) state is given by an element s of the state space S. A proposition is represented by a Borel subset $B \subset S$.

The truth value of the proposition in the given state is

$$v(B; s) = (s \in B),$$

which is a Boolean formula that is either false or true.

For quantum theory, we need an analogue of the pure state $s \in S$. But:

Theorem

(Isham, Butterfield ’00): The spectral presheaf Σ of a von Neumann algebra \mathcal{N} has no global elements if \mathcal{N} has no summand of type I_2. This is equivalent to the Kochen-Specker theorem.
Pseudo-states

In standard quantum theory (for $\mathcal{N} = \mathcal{B}(\mathcal{H})$), one uses vector states: let $\psi \in \mathcal{H}$ be a unit vector, then

$$w_\psi : \mathcal{B}(\mathcal{H}) \to \mathbb{C}$$

$$\hat{A} \mapsto \langle \psi, \hat{A}(\psi) \rangle.$$
Pseudo-states

In standard quantum theory (for $\mathcal{N} = \mathcal{B}(\mathcal{H})$), one uses vector states: let $\psi \in \mathcal{H}$ be a unit vector, then

$$w_\psi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathbb{C}$$

$$\hat{A} \longmapsto \langle \psi, \hat{A}(\psi) \rangle.$$

We simply ‘daseinise’ such a vector state: let \hat{P}_ψ the projection onto the line $\mathbb{C}\psi$, then the pseudo-state \overline{w}_ψ is given as

$$\overline{w}_\psi := \delta^o(\hat{P}_\psi).$$
Truth values

Let \mathfrak{w}^ψ be a pseudo-state, and let $S \in \text{Sub}_{cl}(\Sigma)$ be a proposition (e.g., $\bar{S} = \delta^o(\hat{E}[A \in \Delta])$). We can interpret the expression

$$\nu(S; \mathfrak{w}^\psi) := (\mathfrak{w}^\psi \in S)$$

in the Mitchell-Benabou language of the topos $\text{Set}^{\mathcal{V}(\mathcal{N})^{\text{op}}}$, which gives a truth value in the multi-valued, intuitionistic logic of the topos.
Truth values

Let ψ be a pseudo-state, and let $S \in \text{Sub}_{\text{cl}}(\Sigma)$ be a proposition (e.g., $S = \delta^o(\hat{E}[A \in \Delta])$). We can interpret the expression

$$\nu(S; \psi) := (\psi \in S)$$

in the Mitchell-Benabou language of the topos $\text{Set}^{\mathcal{N}^{\text{op}}}$, which gives a truth value in the multi-valued, intuitionistic logic of the topos.

Concretely, such a truth value is a global element of the subobject classifier of the topos, which is the presheaf of sieves Ω.
Truth values

Let $\psi \in \mathcal{P}$ be a pseudo-state, and let $S \in \text{Sub}_{cl}(\Sigma)$ be a proposition (e.g., $S = \delta^o(\hat{E}[A \in \Delta])$). We can interpret the expression

$$\nu(S; \psi) := (\psi \in S)$$

in the Mitchell-Benabou language of the topos $\text{Set}^{\mathcal{V}(N)^{op}}$, which gives a truth value in the multi-valued, intuitionistic logic of the topos.

Concretely, such a truth value is a global element of the subobject classifier of the topos, which is the \textbf{presheaf of sieves} Ω.

Since the base category $\mathcal{V}(N)$ of our topos is a poset, this becomes particularly simple: the global elements of Ω correspond bijectively to the lower sets in $\mathcal{V}(N)$,

$$\Gamma(\Omega) = \mathcal{L}(\mathcal{V}(N)).$$
Thanks for listening!