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A = (A;—,1) such that Natural ordering on A
(1) a=(b—=c)=1, a<biffa—sb=1

2) (a=(b—=b)—>((a—b)—>(a—c)=1,
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Hilbert algebras (I1)

> Spectral—like dualities for Hs and Hy in Celani, Cabrer, and
Montangie [2009]

H-space (X, 7.):
m k C KO(X) basis,
m VU,V ek, sat(UN V°) €k,
m (X, 7,) is sober.

H-relation R C X; x X5: (duals of semi-hom.)

m R7H(U) € K, for every U € x;
m R(x) closed of X3, for all x € X5

H-functional relation when moreover: (duals of hom.)

m (x,y) € R implies 3z € Xi(x < z and R(z) = cl(y))
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> Spectral—like dualities for Hs and Hy in Celani, Cabrer, and
Montangie [2009]

> Priestley—style dualities for Hs and Hy in Celani and Jansana
[2012b, (to appear)]

*-augmented Priestley space (X, 7,<,S):
m (X, 7, <) Priestley space
m S family of clopen upsets, that satisfies some conditions [...]
m VU, VES, ((UNVE))FeS.

*_augmented Priestley semi-morphism R C X; x Xo:
B (x1,x) ¢ R implies U € S;(x2 ¢ U and R(x1) C V)
] {Xl € X1 R(Xl) - U} €S forall UeS;
*-augmented Priestley morphism when moreover:

| | VXl S Xl,XQ S X52,
(x1,%) € R implies 3x{ € X5, (x1 < x{ and R(x{) = Tx2)
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(3) a—b=1liffa=aAb
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Natural ordering on A
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[2006]

A-homomorphism

h: Ay — A5 such that
(1) h(L) =1,
(2) h(a —1 b) = h(a) —2 h(b)
(3) h(a A1 b) = h(a) Az h(b)

A-semi-homomorphism

h: Ay — A5 such that
(1) h(L) =1,
(2) h(a =1 b) < h(a) —2 h(b)
(3) h(a A1 b) = h(a) Az h(b)
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o: A — P(Irr_,(A))
ar— {Felhr,(A):acF}
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Theorem
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Priestley-style duality. Basic tools (1)

Definition (Frink [1954])

ael’

| C Ais a Frink ideal when for all b € A and I’ C [ finite subset

() ta € b implies b € |

(Nisb: 1 cubrci)

Definition (Celani and Jansana [2012a])

I € Idr(A) is strong Frink ideal when for all BC Aand I’ C |
finite subsets:

m ta C (B) implies (B)yN [ #0
ael’
[NOTATION: (B) := implicative filter generated by B]
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=
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* ©(a) = @(b) := ({(p(a) V(b)) (= ¥(a— b))
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Theorem

For any DH"-algebra,
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Characterization of the dual spaces of DH"-algebras

DH"-Spectral spaces
e H-space

X=X, 1 )A(>

e Subset of X/ that generates
a Spectral space

e VU,V € k:
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For a DH"-algebra A = {A; —, A, 1}
(€Irr (A), 7p O, CIrrA(A))) is a DH"-Spectral space

e Foreachac A, o(a)={Fehir(A):ac F}
® 7., on Irr_,(A) with basis:  ka :={o(a)°:a€ F}

(@Op_(A), 7a, S, o[A], (Op,(A))) is a DH"-Priestley space
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From A-(semi)-homomorphisms to their dual relations

For a A-semi-homomorphism h: A; — A,
Rp C Trr— (A2) x Irr—, (A7) is given by:
(P,Q) € Ry iff 1P| C Q
is a DH"*-Spectral relation
Rnh € Op_,(A2) x Op_, (A1) is given by:
(P,Q) € Ry iff 1P| C Q

is a DH"'-Priestley relation

Similarly for A-homomorphisms and functional relations
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anb<ciffc<a—b

Spectral-like duality

IS spaces <~ DH/\-SpAectraI spaces
(defined in Celani [2003]) (X, 7w, X) such that
L] )A< = X

Priestley-style duality

x-generalized Esakia spaces <>  DH”-Priestley spaces
(defined in G. Bezhanishvili and (X,71,<,S,X) such that
Jansana [2011b]) e X =X
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e What about the dualities for H-algebras?

e May this strategy be followed for other classes of algebras?
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