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Spectral-like and Priestley-style dualities for Distributive
Hilbert algebras with Infimum

Spectral-like spaces

〈X , τ, . . . 〉 such that:

〈X , τ〉 is a sober

〈X , τ〉 is compactly based,
i.e. KO(X ) (compact open

subsets) forms a basis

Priestley-style spaces

〈X , τ,≤, . . . 〉 such that:
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〈X , τ,≤〉 is totally
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Hilbert algebras (I)

{→}-fragment of Intuitionistic logic

A = 〈A;→, 1〉 such that

(1) a→ (b → c) = 1,

(2) (a→ (b → b))→ ((a→ b)→ (a→ c)) = 1,

(3) a→ b = 1 = b → a implies a = b.

Natural ordering on A

a ≤ b iff a→ b = 1

Homomorphism

h : A1 −→ A2 such that

(1) h(11) = 12,

(2) h(a→1 b) = h(a)→2 h(b)

Semi-homomorphism

h : A1 −→ A2 such that

(1) h(11) = 12,

(2) h(a→1 b) ≤ h(a)→2 h(b)

⇒ HS - category of Hilbert algebras and semi-homomorphisms

⇒ HH - category of Hilbert algebras and homomorphisms
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I Spectral-like dualities for HS and HH in Celani, Cabrer, and

Montangie [2009]
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H-space 〈X , τκ〉:
κ ⊆ KO(X ) basis,

∀U,V ∈ κ, sat(U ∩ V c) ∈ κ,

〈X , τκ〉 is sober.

H-relation R ⊆ X1 × X2: (duals of semi-hom.)

R−1(U) ∈ κ1 for every U ∈ κ2

R(x) closed of X2, for all x ∈ X2

H-functional relation when moreover: (duals of hom.)

(x , y) ∈ R implies ∃z ∈ X1(x ≤ z and R(z) = cl(y))

I Priestley-style dualities for HS and HH in Celani and Jansana

[2012b, (to appear)]
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I Spectral-like dualities for HS and HH in Celani, Cabrer, and

Montangie [2009]

I Priestley-style dualities for HS and HH in Celani and Jansana

[2012b, (to appear)]

*-augmented Priestley space 〈X , τ,≤,S〉:
〈X , τ,≤〉 Priestley space

S family of clopen upsets, that satisfies some conditions [...]

∀U,V ∈ S , (↓(U ∩ V c))c ∈ S .

*-augmented Priestley semi-morphism R ⊆ X1 × X2:

(x1, x2) /∈ R implies ∃U ∈ S2

(
x2 /∈ U and R(x1) ⊆ U

)
{x1 ∈ X1 : R(x1) ⊆ U} ∈ S2 for all U ∈ S1

*-augmented Priestley morphism when moreover:

∀x1 ∈ X1, x2 ∈ XS2 ,
(x1, x2) ∈ R implies ∃x ′1 ∈ XS1

(
x1 ≤ x ′1 and R(x ′1) = ↑x2

)
5 / 27
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Hilbert algebras + supremum

Hilbert algebras with Supremum

A = 〈A;→,∨, 1〉 such that

(1) 〈A;→, 1〉 Hilbert algebra

(2) 〈A;∨, 1〉 join semilattice with top element

(3) a ∨ b = b iff a→ b = 1

Natural ordering on A

a ≤ b iff a → b = 1 iff

a ∨ b = b

{→,∨}-fragment of Intuitionistic logic

Subclass of BCK-algebras with lattice operations

I Spectral-like duality in Celani and Montangie [2011, (to appear)]
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Hilbert algebras + infimum (I)

Implicative semilattices

A = 〈A;→,∧, 1〉 such that

(1) 〈A;→, 1〉 Hilbert algebra

(2) 〈A;∧, 1〉 meet semilattice with top element

(3) a ∧ b ≤ c iff c ≤ a→ b (Residuation law)

Natural ordering on A

a ≤ b iff a → b = 1 iff

a = a ∧ b

{→,∧}-fragment of Intuitionistic logic

The underlying meet semilattice is
distributive

I Spectral-like duality in Celani [2003]

I Priestley-style duality in G. Bezhanishvili

and Jansana [2011b] b1 ∧ b2

b1 b2a

c1 c2

= c1 ∧ c2
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Hilbert algebras + infimum (II)

Hilbert algebras with Infimum (H∧-algebras)

A = 〈A;→,∧, 1〉 such that

(1) 〈A;→, 1〉 Hilbert algebra

(2) 〈A;∧, 1〉 meet semilattice with top element

(3) a→ b = 1 iff a = a ∧ b

Natural ordering on A

a ≤ b iff a → b = 1 iff

a = a ∧ b

Subclass of BCK-algebras with lattice operations
Correspond to a logic studied in Figallo, Jr., Ramón, and Saad

[2006]

∧-homomorphism

h : A1 −→ A2 such that

(1) h(11) = 12,

(2) h(a→1 b) = h(a)→2 h(b)

(3) h(a ∧1 b) = h(a) ∧2 h(b)

∧-semi-homomorphism

h : A1 −→ A2 such that

(1) h(11) = 12,

(2) h(a→1 b) ≤ h(a)→2 h(b)

(3) h(a ∧1 b) = h(a) ∧2 h(b)
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Hilbert algebras + infimum (III)

Distributive Hilbert algebras with Infimum
(DH∧-algebras)

A = 〈A;→,∧, 1〉 Hilbert algebra with Infimum, s.t.
the underlying meet semilattice is distributive

b1 ∧ b2

b1 b2
a = c1 ∧ c2

c1 c2

⇒ DH∧S - category of DH∧-algebras and ∧-semi-homomorphisms

⇒ DH∧H - category of DH∧-algebras and ∧-homomorphisms

I We present Spectral-like and Priestley-style dualities for
the two categories DH∧S and DH∧H :

that are based on the ones for Hilbert algebras
from which we can recover the ones for implicative semilattices
as a particular case

9 / 27



Preliminaries Spectral-like duality Priestley-style duality Objects Morphisms Implicative semilattices Conclusion

Hilbert algebras + infimum (III)

Distributive Hilbert algebras with Infimum
(DH∧-algebras)

A = 〈A;→,∧, 1〉 Hilbert algebra with Infimum, s.t.
the underlying meet semilattice is distributive

b1 ∧ b2

b1 b2
a = c1 ∧ c2

c1 c2

⇒ DH∧S - category of DH∧-algebras and ∧-semi-homomorphisms

⇒ DH∧H - category of DH∧-algebras and ∧-homomorphisms

I We present Spectral-like and Priestley-style dualities for
the two categories DH∧S and DH∧H :

that are based on the ones for Hilbert algebras
from which we can recover the ones for implicative semilattices
as a particular case

9 / 27



Preliminaries Spectral-like duality Priestley-style duality Objects Morphisms Implicative semilattices Conclusion

Hilbert algebras + infimum (III)

Distributive Hilbert algebras with Infimum
(DH∧-algebras)

A = 〈A;→,∧, 1〉 Hilbert algebra with Infimum, s.t.
the underlying meet semilattice is distributive

b1 ∧ b2

b1 b2
a = c1 ∧ c2

c1 c2

⇒ DH∧S - category of DH∧-algebras and ∧-semi-homomorphisms

⇒ DH∧H - category of DH∧-algebras and ∧-homomorphisms

I We present Spectral-like and Priestley-style dualities for
the two categories DH∧S and DH∧H :

that are based on the ones for Hilbert algebras
from which we can recover the ones for implicative semilattices
as a particular case

9 / 27



Preliminaries Spectral-like duality Priestley-style duality Objects Morphisms Implicative semilattices Conclusion

Hilbert algebras + infimum (III)

Distributive Hilbert algebras with Infimum
(DH∧-algebras)

A = 〈A;→,∧, 1〉 Hilbert algebra with Infimum, s.t.
the underlying meet semilattice is distributive

b1 ∧ b2

b1 b2
a = c1 ∧ c2

c1 c2

⇒ DH∧S - category of DH∧-algebras and ∧-semi-homomorphisms

⇒ DH∧H - category of DH∧-algebras and ∧-homomorphisms

I We present Spectral-like and Priestley-style dualities for
the two categories DH∧S and DH∧H :

that are based on the ones for Hilbert algebras
from which we can recover the ones for implicative semilattices
as a particular case

9 / 27



Preliminaries Spectral-like duality Priestley-style duality Objects Morphisms Implicative semilattices Conclusion

Hilbert algebras + infimum (III)

Distributive Hilbert algebras with Infimum
(DH∧-algebras)

A = 〈A;→,∧, 1〉 Hilbert algebra with Infimum, s.t.
the underlying meet semilattice is distributive

b1 ∧ b2

b1 b2
a = c1 ∧ c2

c1 c2

⇒ DH∧S - category of DH∧-algebras and ∧-semi-homomorphisms

⇒ DH∧H - category of DH∧-algebras and ∧-homomorphisms

I We present Spectral-like and Priestley-style dualities for
the two categories DH∧S and DH∧H :

that are based on the ones for Hilbert algebras
from which we can recover the ones for implicative semilattices
as a particular case

9 / 27



Preliminaries Spectral-like duality Priestley-style duality Objects Morphisms Implicative semilattices Conclusion

Hilbert algebras + infimum (III)

Distributive Hilbert algebras with Infimum
(DH∧-algebras)

A = 〈A;→,∧, 1〉 Hilbert algebra with Infimum, s.t.
the underlying meet semilattice is distributive

b1 ∧ b2

b1 b2
a = c1 ∧ c2

c1 c2

⇒ DH∧S - category of DH∧-algebras and ∧-semi-homomorphisms

⇒ DH∧H - category of DH∧-algebras and ∧-homomorphisms

I We present Spectral-like and Priestley-style dualities for
the two categories DH∧S and DH∧H :

that are based on the ones for Hilbert algebras
from which we can recover the ones for implicative semilattices
as a particular case

9 / 27



Preliminaries Spectral-like duality Priestley-style duality Objects Morphisms Implicative semilattices Conclusion

Spectral-like duality. Basic tools (I)

Definition

F ⊆ A is an meet filter (or ∧-filter) when:

a ∈ F and a ≤ b implies b ∈ F ,

a, b ∈ F implies a ∧ b ∈ F

Fi∧(A) distributive lattice - Irr∧(A) meet-irreducible elements

Definition

F ⊆ A is an implicative filter (or →-filter) when:

1 ∈ F ,

a, a→ b ∈ F implies b ∈ F

Fi→(A) distributive lattice - Irr→(A) meet-irreducible elements
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Spectral-like duality. Basic tools (II)

Fi→(A)

Fi∧(A) ⊆ Fi→(A)

Irr→(A) ⊆ Fi→(A) Irr∧(A) = Irr→(A) ∩ Fi∧(A)

Non-distributive case
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Spectral-like duality. Basic tools (III)

σ : A −→ P(Irr→(A))

a 7−→ {F ∈ Irr→(A) : a ∈ F}

σ(a)⇒ σ(b) := (↓(σ(a) ∩ σ(b)c))c (= σ(a→ b))

σ(a) u σ(b) := ↑ (σ(a) ∩ σ(b) ∩ Irr∧(A)) (= σ(a ∧ b))

Theorem

For any DH∧-algebra,

〈A,→,∧, 1〉 ∼= 〈σ[A],⇒,u, σ(1)〉

[NOTATION: σ(a)c := complement of σ(a), i.e. {F ∈ Irr→(A) : a /∈ F}
↑ (↓) := upset (downset) generated, w.r.t. the order ⊆ ]
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Priestley-style duality. Basic tools (I)

Definition (Frink [1954])

I ⊆ A is a Frink ideal when for all b ∈ A and I ′ ⊆ I finite subset:⋂
a∈I ′
↑a ⊆ ↑b implies b ∈ I

(⋂
{↓b : I ′ ⊆ ↓b} ⊆ I

)
Definition (Celani and Jansana [2012a])

I ∈ IdF (A) is strong Frink ideal when for all B ⊆ A and I ′ ⊆ I
finite subsets: ⋂

a∈I ′
↑a ⊆ 〈B〉 implies 〈B〉 ∩ I 6= ∅

[NOTATION: 〈B〉 := implicative filter generated by B]
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Priestley-style duality. Basic tools (II)

Definition (G. Bezhanishvili and Jansana [2011a])

F ∈ Fi∧(A) is a (∧-)optimal when there is a Frink ideal I such
that:

F maximal element of {G ∈ Fi∧(A) : G ∩ I 6= ∅}.

I maximal element of {J ∈ IdF (A) : F ∩ J 6= ∅}.

Definition (Celani and Jansana [2012a])

F ∈ Fi→(A) is (→-)optimal when there is a strong Frink ideal I
such that:
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Priestley-style duality. Basic tools (IV)

ϕ : A −→ P(Op→(A))

a 7−→ {F ∈ Op→(A) : a ∈ F}

ϕ(a)⇒ ϕ(b) := (↓(ϕ(a) ∩ ϕ(b)c))c (= ϕ(a→ b))

ϕ(a) u ϕ(b) := ↑ (ϕ(a) ∩ ϕ(b) ∩Op∧(A)) (= ϕ(a ∧ b))

Theorem

For any DH∧-algebra,

〈A,→,∧, 1〉 ∼= 〈ϕ[A],⇒,u, ϕ(1)〉
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Characterization of the dual spaces of DH∧-algebras

DH∧-Spectral spaces

H-space

X = 〈 X , τκ , X̂ 〉

Subset of X that generates
a Spectral space

∀U,V ∈ κ:
(1) Uc = cl(Uc ∩ X̂ )
(2) cl(Uc ∩ V c ∩ X̂ ) ∈ κ
(3) ∀W ⊆ κ,

cl
( ⋂

W∈W
W c ∩ X̂

)
⊆ Uc ⇒

cl(W c
0 ∩ · · · ∩W c

n ∩ X̂ ) ⊆ Uc

DH∧-Priestley spaces

*-generalized Priestley space

X = 〈 X , τ ,≤ ,S , X̂ 〉

Subset of X that generates
a Priestley space

∀U,V ∈ S :
(1) U = ↑(U ∩ X̂ )
(2) ↑(U ∩ V ∩ X̂ ) ∈ S
(3) ∀W clopen upset,

W c ∩ X̂ ⊆ ↓(W c ∩ X̂ ∩ XS ) iff

W = U ∩ X̂ for some U ∈ S,
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From DH∧-algebras to their dual spaces

For a DH∧-algebra A = {A;→,∧, 1}

〈 Irr→(A), τκA
, Irr∧(A) 〉 is a DH∧-Spectral space

For each a ∈ A, σ(a) = {F ∈ Irr→(A) : a ∈ F}
τκA on Irr→(A) with basis: κA := {σ(a)c : a ∈ F}

〈 Op→(A), τA,⊆, ϕ[A] , Op∧(A) 〉 is a DH∧-Priestley space

For each a ∈ A, ϕ(a) := {F ∈ Op→(A) : a ∈ F}
τA on Op→(A) with subbasis: {ϕ(a) : a ∈ A} ∪ {ϕ(b)c : b ∈ A}
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From the spaces to the algebras

For a DH∧-Spectral space X = 〈X , τκ, X̂ 〉
Define on D(X) := {Uc : U ∈ κ} the binary operations:

U ⇒X V := (sat(U ∩ V c))c

U uX V := cl(U ∩ V ∩ X̂ )

〈D(X),⇒X,uX,X 〉 is a DH∧-algebra.

For a DH∧-Priestley space X = 〈X , τ,≤, S , X̂ 〉
Define on S the binary operations:

U ⇒X V := (↓(U ∩ V c))c

U uX V := ↑(U ∩ V ∩ X̂ )

〈S ,⇒X,uX,X 〉 is a DH∧-algebra.
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Characterization of the dual morphisms of
∧-(semi)-homomorphisms

DH∧-Spectral relations DH∧-Priestley relations

Duals of ∧-semi-homomorphisms

R ⊆ X1 × X2

H-relation

∀x ∈ X̂1, R(x) = cl(R(x) ∩ X̂2).

R ⊆ X1 × X2

*-augmented Priestley
semi-morphism

∀x ∈ X̂1, R(x) = ↑(R(x) ∩ X̂2).

Duals of ∧-homomorphisms

functional - when moreover

(x , y) ∈ R implies ∃z ∈
X1(x ≤ z and R(z) = cl(y))

functional - when moreover

∀x1 ∈ X1, x2 ∈ XS2 ,
(x1, x2) ∈ R implies ∃x ′1 ∈
XS1

(
x1 ≤ x ′1 and R(x ′1) = ↑x2

)
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From ∧-(semi)-homomorphisms to their dual relations

For a ∧-semi-homomorphism h : A1 −→ A2

Rh ⊆ Irr→(A2)× Irr→(A1) is given by:

(P,Q) ∈ Rh iff h−1[P] ⊆ Q

is a DH∧-Spectral relation

Rh ⊆ Op→(A2)×Op→(A1) is given by:

(P,Q) ∈ Rh iff h−1[P] ⊆ Q

is a DH∧-Priestley relation

Similarly for ∧-homomorphisms and functional relations
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From the relations to the algebraic morphisms

For a DH∧-Spectral (functional) relation R ⊆ X1 × X2

�R : D(X2) −→ D(X1)

U 7−→ {x ∈ X1 : R(x) ⊆ U}

�R is a ∧-semi-homomosphism (∧-homomorphism).

For a DH∧-Priestley (functional) relation R ⊆ X1 × X2

�R : S2 −→ S1

U 7−→ {x ∈ X1 : R(x) ⊆ U}

�R is a ∧-semi-homomosphism (∧-homomorphism).
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Dualities for Implicative semilattices as a particular case

a ∧ b ≤ c iff c ≤ a→ b

Spectral-like duality

IS spaces
(defined in Celani [2003])

⇔ DH∧-Spectral spaces
〈X , τκ, X̂ 〉 such that

X̂ = X

Priestley-style duality

∗-generalized Esakia spaces
(defined in G. Bezhanishvili and

Jansana [2011b])

⇔ DH∧-Priestley spaces
〈X , τ,≤,S , X̂ 〉 such that

X̂ = X
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Conclusion and further work

I We have considered as objects of our categories,
DH∧-algebras, 〈A,→,∧, 1〉

a ∧ b = a iff a→ b = 1

I We use the existing dualities for
Hilbert algebras

I We add a subset, to represent the
conjunction

→ ∧

〈 X , . . . , X̂ 〉

What about the dualities for H∧-algebras?

May this strategy be followed for other classes of algebras?
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Thanks!
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