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What is clone theory?

Notation
Let O

(n)
A be the set of all n-ary operations An → A.

OA :=
⋃

n∈N+
O

(n)
A (all non-nullary operations over A).

Definition
A subset C ⊆ OA is a clone (of operations) if

I it contains all projections πni : An → A : (x1, . . . , xn) 7→ xi ,

I for all f ∈ C (n), f1, . . . , fn ∈ C (k), the k-ary operation

f (f1, . . . , fn)(x1, . . . , xk) := f (f1(x1, . . . , xk), . . . , fn(x1, . . . , xk))

is also in C .

(think: term operations)
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Why bother?

Clones describe possible behaviours of algebras.
=⇒ Understanding all clones on A means understanding all

algebras with base set A.

However...
...as soon as |A| ≥ 3, it seems totally out of reach to understand
the lattice of all clones on A completely.

Sebastian Kerkhoff Technische Universität Dresden

A general duality theory for clones



Why bother?

Clones describe possible behaviours of algebras.
=⇒ Understanding all clones on A means understanding all

algebras with base set A.

However...
...as soon as |A| ≥ 3, it seems totally out of reach to understand
the lattice of all clones on A completely.

Sebastian Kerkhoff Technische Universität Dresden

A general duality theory for clones



Relations.

Notation
Let R

(n)
A be the set of all n-ary relations on A.

RA :=
⋃

n∈N+
R

(n)
A (all non-nullary relations on A).

Definition
An operation f ∈ O

(n)
A preserves a relation σ ∈ R

(k)
A , written

f B σ, whenever( a11
a12

..
.

a1k

)
, . . . ,

( an1
an2

..
.

ank

)
∈ σ =⇒

 f (a11,a21...,an1)
f (a12,a22...,an2)

..
.

f (a1k ,a2k ...,ank )

 ∈ σ.
That is, σ forms a subalgebra of (A, f )k .
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The “most basic Galois connection in algebra” (1/2).

Definition
Let F ⊆ OA, R ⊆ RA.

Inv F := {σ ∈ RA | ∀f ∈ F : f B σ},
Pol R := {f ∈ OA | ∀σ ∈ R : f B σ}.

(obviously a Galois connection)

A well-known result...
The Galois-closed classes of Pol-Inv are local closures of clones of
operations and local closures of so-called clones of relations.
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The “most basic Galois connection in algebra” (2/2).

Let A be a finite set.

OA

JA

RA

J∗A

Inv

##

Pol

cc
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Let A be a finite set.

OA

JA
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RA
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##
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The “most basic Galois connection in algebra” (2/2).

Let A be a finite set.

OA

JA

•F

RA

J∗A

•
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##
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The “most basic Galois connection in algebra” (2/2).

Let A be a finite set.

OA

JA

•Pol Inv F

RA

J∗A

•
Inv F

Pol

cc

Inv

##
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The “most basic Galois connection in algebra” (2/2).

Let A be a finite set.

F ⊆ OA,R ⊆ RA

Pol Inv F = Clo(F )

Inv Pol R = Clo(R)

OA

JA

•Pol Inv F

RA

J∗A

•
Inv F

Pol

cc

Inv

##
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The “most basic Galois connection in algebra” (2/2).

Let A be a finite set.

F ⊆ OA,R ⊆ RA

Pol Inv F = Loc Clo(F )

Inv Pol R = LOC Clo(R)

OA

JA

•Pol Inv F

RA

J∗A

•
Inv F

Pol

cc

Inv

##
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A small history of dualizing clones...

I Usual approach: A clone C is interpreted as the set of term
functions of an algebra and it is tried to dualize the algebra.

Works for some clones.

I A new approach was suggested by D. Mašulović in 2006:
Clones are dualized by treating them as sets of
homomorphisms in a quasi-variety of algebras (understood as
a category).

Only works for centralizer clones with finite base set and
dismisses Pol-Inv.
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The content of this talk.

What am I trying to tell here?

I The method of dualizing clones as sets of morphisms in
categories can be used much more generally.

I The Galois connection Pol-Inv can be generalized to
categories and dualized together with the clones.

I This is useful.
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Treating and dualizing clones categorically.
(a lot of triviality)

Sebastian Kerkhoff Technische Universität Dresden

A general duality theory for clones



We define clones in categories.

Let A be an object in a category C in which the non-empty finite
powers of A exist.

Definition
An n-ary operation over A is a morphism from An to A. Let OA be
the set of all finitary operations over A.

Definition
A set C ⊆ OA is a clone of operations over A if it contains all the
projection morphisms over A and, for f ∈ C (n), f1, . . . , fn ∈ C (k),
we also have

f
↑

An→A

◦ 〈f1, . . . , fn〉︸ ︷︷ ︸
Ak→An

∈ C .
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Examples.

I If C = Set , this notion coincides with the usual notion of a
clone.

I If A ∈ Top, then OA is the clone of the topological space A.

I Each clone C on a finite set A can be written as OA for some
algebraic structure A with carrier set A.
(for instance, take A = 〈A, Inv C 〉).

Sebastian Kerkhoff Technische Universität Dresden

A general duality theory for clones



What’s the connection to Lawvere theories?

A Lawvere theory is a small category with countably many objects
t0, t1, t2, . . . such that tn is the n-th power of t1.

Fact
A set of operations C over A ∈ C is a clone iff there exists a
Lawvere theory L and a product-preserving functor M : L → C
such that M(t1) = A and

C = {M(f ) | f ∈ L(tn, t1), n ∈ N}.
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Many definitions can be extended to this setting.

For many notions, it is completely straightforward to generalize
them into this setting:

I identities

(

f ◦ 〈π2
1, π

2
1, π

2
2〉 = π2

1

)
I types of operations (nu, idempotency, semiprojection...)

f ∈ O
(n)
A idempotent :⇐⇒ f ◦ 〈idA, . . . , idA〉 = idA.

I essential arity
i-th variable of f ∈ O

(n)
A nonessential :⇐⇒

f ◦ 〈πn+1
1 , . . . , πn+1

n 〉 = f ◦ 〈πn+1
1 , . . . , πn+1

i−1 , π
n+1
n+1 , π

n+1
i+1 , . . . , π

n+1
n 〉.

I minimality of a clone,

I ...
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We can now dualize all notions.

operations dual operations

clones of operations clones of dual operations

essential variables essential variables
of operations of dual operations

nu operations dual nu operations

..
.

..
.
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Dual operations and dual clones.

Let X be an object in a category X in which the non-empty finite
powers copowers of X exist.

Definition
An n-ary dual operation over X is a morphism from An to A X to
n · X. Let OX be the set of all finitary dual operations over X.

Definition
A set C ⊆ OX is a clone of dual operations over X if it contains all
the projection injection morphisms over X and, for f ∈ C (n),
f1, . . . , fn ∈ C (k), we also have

f ◦ 〈f1, . . . , fn〉 ∈ C [f1, . . . , fn]︸ ︷︷ ︸
n·X→k·X

◦ f
↑

X→n·X

∈ C .
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The clone-duality.

Let C and X be dually equivalent categories.

Let X ∈ X be D(A), the dual of A.

C X

A

I The set of dual operations C∂ = {f ∂ | f ∈ C} is a clone of
dual operations over X iff C is a clone of operations over A.
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Let X ∈ X be D(A), the dual of A.

C X
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A X
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(−)∂
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(−)∂
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D
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I The set of dual operations C∂ = {f ∂ | f ∈ C} is a clone of
dual operations over X iff C is a clone of operations over A.

Sebastian Kerkhoff Technische Universität Dresden

A general duality theory for clones



The duality on the clone lattices.

Consequence.

The lattice of clones of operations over A and that of clones of
dual operations over X are isomorphic.

LA

JA

OA

JX

OX

LX

//(−)∂
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Generalizing and dualizing Pol-Inv.
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Generalizing relations.

Rewrite relations as mappings...

A k-ary relation σ can be interpreted as a set of mappings, i.e.

σ ⊆ A{1,...,k}.

Then, for an n-ary operation f :

f B σ ⇐⇒ ∀r1, . . . , rn ∈ σ : f ◦ 〈r1, . . . , rn〉 ∈ σ.

This will be our starting point for generalizing relations.
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The idea.

We do not take sets of the form {1, . . . , k}, but objects from the
category C .
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Generalized relations.

Definition
Let {1, . . . , k} ∈ Set .
A k-ary relation is a subset of Set({1, . . . , k},A).

Definition
For f ∈ O

(n)
A and a relation σ of type B:

f B σ :⇐⇒ ∀r1, . . . , rn ∈ σ : f
↑

An→A

◦ 〈r1, . . . , rn〉︸ ︷︷ ︸
B→An

∈ σ.
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Generalized relations.
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Generalized relations (cont’d.).

Definition
Let T be an non-empty class of objects from (a skeleton of) C .

Let RT
A be the class of all relations on A of types from T.

For F ⊆ OA and R ⊆ RT
A, define

InvTA F := {σ ∈ RT
A | ∀f ∈ F : f B σ},

PolA R := {f ∈ OA | ∀σ ∈ R : f B σ}.

Remark
For C = Set and T = {{1, . . . , k} | k ∈ N}, PolA-InvTA coincides
with Pol-Inv.
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Generalized relations (cont’d.).
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Let T be an non-empty class of objects from (a skeleton of) C .
Let RT

A be the class of all relations on A of types from T.
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Generalized relations (cont’d.).

Definition
Let T be an non-empty class of objects from (a skeleton of) C .
Let RT

A be the class of all relations on A of types from T.
For F ⊆ OA and R ⊆ RT

A, define

InvTA F := {σ ∈ RT
A | ∀f ∈ F : f B σ},

PolA R := {f ∈ OA | ∀σ ∈ R : f B σ}.
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Generalized relations (cont’d.).

Definition
Let T be an non-empty class of objects from (a skeleton of) C .
Let RT

A be the class of all relations on A of types from T.
For F ⊆ OA and R ⊆ RT

A, define

InvTA F := {σ ∈ RT
A | ∀f ∈ F : f B σ},

PolA R := {f ∈ OA | ∀σ ∈ R : f B σ}.

Remark
For C = Set and T = {{1, . . . , k} | k ∈ N}, PolA-InvTA coincides
with Pol-Inv.
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The main result for PolA-InvTA (verbally).

The Galois-closed classes are what you expect.

Generalized local closures of clones of operations & generalized
local closures of clones of relations.
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Clones of relations.

Definition
A class R of relations is called a clone of relations on A if

I ∅ ∈ R,

I R is closed under general superposition, i.e. the following
holds: Let I be an index class, σi ∈ R(Bi ) (i ∈ I ) and let
ϕ : B→ C and ϕi : Bi → C be morphisms where C ∈ C and
B ∈ T. Then we also have

∧ϕ
(ϕi )

(σi ) ∈ R, where∧ϕ

(ϕi )
(σi ) := {r ◦ ϕ | ∀ i ∈ I : r ◦ ϕi ∈ σi , r ∈ C(C,A)}.

This is a very natural definition.

Really.
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Clones of relations.

Definition
A class R of relations is called a clone of relations on A if

I ∅ ∈ R,

I R is closed under general superposition, i.e. the following
holds: Let I be an index class, σi ∈ R(Bi ) (i ∈ I ) and let
ϕ : B→ C and ϕi : Bi → C be morphisms where C ∈ C and
B ∈ T. Then we also have

∧ϕ
(ϕi )

(σi ) ∈ R, where∧ϕ

(ϕi )
(σi ) := {r ◦ ϕ | ∀ i ∈ I : r ◦ ϕi ∈ σi , r ∈ C(C,A)}.

This is a very natural definition. Really.
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Local closure operators.

Definition
Let F ⊆ OA, R ⊆ RT

A, s ≥ 1 and let C ∈ T. We define the
following local closure operators:

C-Loc F :={f ∈ O
(n)
A | n ≥ 1,∀ r1, . . . , rn ∈ C(C,A) :

∃ f ′ ∈ F : f ◦ 〈r1, . . . , rn〉 = f ′ ◦ 〈r1, . . . , rn〉},
s-LOCT R :={σ ∈ RT

A | ∀B ⊆ σ, |B| ≤ s : ∃σ′ ∈ R : B ⊆ σ′ ⊆ σ}.

LocT F :=
⋂
C∈T

C-Loc F , LOCT R :=
⋂
s≥1

s-LOCT R.
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The main result for PolA-InvTA (formally).

Theorem
Let F ⊆ OA, R ⊆ OX. Then,

I PolA InvTA F = LocT Clo(F ),

I InvTA PolA R = LOCT Clo(R).
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When can we forget the local closure operators?

Fact (from the results about the usual Pol-Inv)

If C = Set and T = {{1, . . . , k} | k ≥ 1}, then we can dismiss both
local closure operators if A is a finite set.

Question
What is the category-theoretic property behind this?
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When can we forget the local closure operators (cont’d.)?

Proposition

We have LOCT R = R for all R ⊆ RT
A iff C(B,A) is finite for all

B ∈ T.

Proposition

We have LocT C = C for all C ≤ OA if, for each k ∈ N, there
exists n ≥ k and some B ∈ T such that there exists an
epimorphism from B to An.
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When can we forget the local closure operators (cont’d.)?

Proposition

We have LOCT R = R for all R ⊆ RT
A iff C(B,A) is finite for all

B ∈ T.

Proposition

We have LocT C = C for all C ≤ OA if, for each k ∈ N, there
exists n ≥ k and some B ∈ T such that there exists an
epimorphism from B to An.
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Do we still have a Baker-Pixley type result?

Theorem (Baker, Pixley)

Assume that F ⊆ OA contains a (d + 1)-ary near-unanimity
operation and that A is finite.

Then Clo(F ) = Pol Inv(d) F .

Question
What is the category-theoretic property behind this?

More precisely: Which category theoretic property of {1} and
which category-theoretic consequence of the finiteness of A is
needed in order to make this work?
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Do we still have a Baker-Pixley type result?

Theorem (Baker, Pixley)
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Theorem (Baker, Pixley)

Assume that F ⊆ OA contains a (d + 1)-ary near-unanimity
operation and that A ∈ Set is finite.

Then Clo(F ) = PolA Inv
(d ·{1})
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What is the category-theoretic property behind this?
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which category-theoretic consequence of the finiteness of A is
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Theorem (Baker, Pixley)
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operation and that A ∈ Set is finite.

Then Clo(F ) = PolA Inv
(d ·{1})
A F .

Question
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Do we still have a Baker-Pixley type result? (cont’d.)

Generalized Baker-Pixely Theorem

Assume that F ⊆ OA contains a (d + 1)-ary near-unanimity
operation and that B ∈ C such that

I d · B ∈ C ,

I For all n ∈ N, there exists a finite subset F ⊆ C(B,A) s.t. for

all f , g ∈ O
(n)
A we have f = g whenever

f ◦ 〈α1, . . . , αn〉 = g ◦ 〈α1, . . . , αn〉 for all α1, . . . , αn ∈ F .

Then Clo(F ) = PolA Inv
(d·B)
A F .
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The full clone duality.

Let C and X be dually equivalent via D : C → X .

JA

OA

JX

OX

J∗X

R
T′
X

//(−)∂
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PolA
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The full clone duality.

Let C and X be dually equivalent via D : C → X .

J∗A

RT
A

JA

OA

JX
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Using this framework.
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There is some use in this.

In abstract categories: Just a change of notation.
In concrete categories: Different.

J∗A

RT
A

JA

OA

JX

OX

J∗X

R
T′
X

//(−)∂

::

(−)∂
∗

PolA

ii

InvTA

))

PolX

ii

Inv
T′
X

))
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On the abstract level, its just pushing of symbols...

Let f ∈ O
(n)
A .

f idempotent ⇐⇒ f ◦ 〈idA, . . . , idA〉 = idA.

i-th variable of f nonessential ⇐⇒
f ◦ 〈πn+1

1 , . . . , πn+1
n 〉 = f ◦ 〈πn+1

1 , . . . , πn+1
i−1 , π

n+1
n+1, π

n+1
i+1 , . . . , π

n+1
n 〉
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On the abstract level, its just pushing of symbols...

Let f ∈ O
(n)
A .

f idempotent ⇐⇒ [idX, . . . , idX] ◦ f ∂ = idX.

i-th variable of f nonessential ⇐⇒
[ιn+1

1 , . . . , ιn+1
n ] ◦ f ∂ = [ιn+1

1 , . . . , ιn+1
i−1 , ι

n+1
n+1, ι

n+1
i+1 , . . . , ι

n+1
n ] ◦ f ∂ .
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...but the viewpoint really changes in the concrete case.

Let f ∈ O
(n)
A .

f idempotent ⇐⇒ [idX, . . . , idX] ◦ f ∂ = idX.

i-th variable of f nonessential ⇐⇒
[ιn+1

1 , . . . , ιn+1
n ] ◦ f ∂ = [ιn+1

1 , . . . , ιn+1
i−1 , ι

n+1
n+1, ι

n+1
i+1 , . . . , ι

n+1
n ] ◦ f ∂

⇐⇒

 f ∂ [X] ⊆ [ιn1, . . . , ι
n
i−1, ι

n
i , ι

n
i+1, . . . , ι

n
n][(n − 1) · X] if n ≥ 2,

ι21(x) = ι22(x) for all x ∈ f ∂ [X] if n = 1.
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Let’s try this for Top.

X = Top

..

.

...

X n · X
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Let’s try this for Top.

X = Top

..

.

...

X

g

n · X
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Let’s try this for Top.

X = Top

..

.

...

X

g

n · X

Essentially binary
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Let’s try this for Top.

X = Top

..

.

...

X

g

n · X

∀x ∈ X ∃i ∈ {1, . . . , n} :

g(x) = ιni (x)

Essentially binary
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Let’s try this for Top.

X = Top

..

.

...

X

g

n · X

∀x ∈ X ∃i ∈ {1, . . . , n} :

g(x) = ιni (x)

Idempotent

Essentially binary
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Let’s try this for Top.

X = Top

..

.

...

X

g

n · X

∀x ∈ X ∃i ∈ {1, . . . , n} :

g(x) = ιni (x)

Idempotent

Essentially ternary
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Let’s try this for Top.

X = Top

..

.

...

X

g

n · X

Essentially unary
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Continuity, please!

g : X→ n · X

X n · X

..

.

...
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Continuity, please!

g : X→ n · X

X n · X

..

.

...

open
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Continuity, please!

g : X→ n · X

X

g−1

n · X

..

.

...

open
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Continuity, please!

g : X→ n · X

X

g−1

n · X

Essentiality of variables
←→

Connectedness of X

..

.

...

open
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Continuity, please!

g : X→ n · X

X n · X

Idempotent dual

operations over X
←→

Connectedness of X

..

.

...
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Putting this together.

Theorem
Let n ∈ N. The following statements are equivalent:

a) X has exactly n connected components.

b) The essential arity of the dual operations among OX is strictly
bounded by n.

c) The lattice of idempotent clones of dual operations over X is
isomorphic to the partition lattice 〈Part({1, . . . , n}),4〉.

d) For each k ∈ N, there are exactly k!S(n, k) essential k-ary
dual idempotent operations over X.
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Putting this together.

Theorem
Let n ∈ N. The following statements are equivalent:

a) D(A) has exactly n connected components.

b) The essential arity of the operations among OA is strictly
bounded by n.

c) The lattice of idempotent clones of operations over A is
isomorphic to the partition lattice 〈Part({1, . . . , n}),4〉.

d) For each k ∈ N, there are exactly k!S(n, k) essential k-ary
idempotent operations over A.
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Putting this together.

Theorem
Let n ∈ N. The following statements are equivalent:

a) D(A) is the coproduct of n coproduct-irreducible top. spaces.

b) The essential arity of the operations among OA is strictly
bounded by n.

c) The lattice of idempotent clones of operations over A is
isomorphic to the partition lattice 〈Part({1, . . . , n}),4〉.

d) For each k ∈ N, there are exactly k!S(n, k) essential k-ary
idempotent operations over A.

Sebastian Kerkhoff Technische Universität Dresden

A general duality theory for clones



Putting this together.

Theorem
Let n ∈ N. The following statements are equivalent:

a) A is the product of n product-irreducible objects from C .

b) The essential arity of the operations among OA is strictly
bounded by n.

c) The lattice of idempotent clones of operations over A is
isomorphic to the partition lattice 〈Part({1, . . . , n}),4〉.

d) For each k ∈ N, there are exactly k!S(n, k) essential k-ary
idempotent operations over A.
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With the Stone duality D : Bool → Stone.

Corollary

Let A be a Boolean Algebra. For each n ∈ N, TFAE:

a) D(A) has exactly n connected components.

b) The essential arity of the polymorphisms of A is strictly
bounded by n.

c) The lattice of idempotent clones of polymorphisms of A is
isomorphic to the partition lattice 〈Part({1, . . . , n}),4〉.

d) For each k ∈ N, there are exactly k!S(n, k) essential k-ary
dual idempotent operations over X.
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With the Stone duality D : Bool → Stone.

Corollary

Let A be a Boolean Algebra. For each n ∈ N, TFAE:

a) A has exactly 2n elements.

b) The essential arity of the polymorphisms of A is strictly
bounded by n.

c) The lattice of idempotent clones of polymorphisms of A is
isomorphic to the partition lattice 〈Part({1, . . . , n}),4〉.

d) For each k ∈ N, there are exactly k!S(n, k) essential k-ary
dual idempotent operations over X.
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With the Gelfand duality D : C ∗Alg → Comp2.

Corollary

Let A be a comm. unital C ∗-Algebra. For each n ∈ N, TFAE:

a) D(A) has exactly n connected components.

b) The essential arity of the polymorphisms of A is strictly
bounded by n.

c) The lattice of idempotent clones of polymorphisms of A is
isomorphic to the partition lattice 〈Part({1, . . . , n}),4〉.

d) For each k ∈ N, there are exactly k!S(n, k) essential k-ary
dual idempotent operations over X.
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With the Gelfand duality D : C ∗Alg → Comp2.

Corollary

Let A be a comm. unital C ∗-Algebra. For each n ∈ N, TFAE:

a) A has exactly 2n idempotent elements.

b) The essential arity of the polymorphisms of A is strictly
bounded by n.

c) The lattice of idempotent clones of polymorphisms of A is
isomorphic to the partition lattice 〈Part({1, . . . , n}),4〉.

d) For each k ∈ N, there are exactly k!S(n, k) essential k-ary
dual idempotent operations over X.
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Let’s look at similar, yet different result.

We take the Priestley duality.

Proposition

Let A be a bounded distr. lattice. For each n ∈ N, TFAE:

a) D(A) is the coproduct of n coproduct-irreducible Priestley
spaces.

b) The essential arity of the polymorphisms of A is strictly
bounded by n.

c) The lattice of idempotent clones of polymorphisms of A is
isomorphic to the partition lattice 〈Part({1, . . . , n}),4〉.

d) For each k ∈ N, there are exactly k!S(n, k) essential k-ary
dual idempotent operations over X.
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Let’s look at similar, yet different result.

We take the Priestley duality.

Proposition

Let A be a bounded distr. lattice. For each n ∈ N, TFAE:

a) A is the product of n product-irreducible bounded distributive
lattices.

b) The essential arity of the polymorphisms of A is strictly
bounded by n.
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isomorphic to the partition lattice 〈Part({1, . . . , n}),4〉.

d) For each k ∈ N, there are exactly k!S(n, k) essential k-ary
dual idempotent operations over X.
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Let’s look at similar, yet different result.

We take the Priestley duality.

Proposition

Let A be a bounded distr. lattice. For each n ∈ N, TFAE:

a) There exist n (but not more) elements a1, . . . , an ∈ A \ {0}
such that

∨
ai = 1 and ai ∧ aj = 0 for i 6= j .
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Every slide needs a title.

Why did this work?
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The answer lies in the coproduct.
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The answer lies in the coproduct.

The form of the copowers
of X is decisive
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Looking at the copowers of the structures.

Definition (for concrete categories)

X has non-deformed copowers to the degree k , if, for any n ≥ k ,
each y ∈ n · X is in the image of ι : k · X→ n · X where ι is a
cotupling of injection morphisms.

This property is rare, but there are many well-known categories in
which all objects have non-deformed copowers to the degree 1:
Set , Top, pSet , Graph , Pries ,...
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An example of what easy copowers give us.

Let X be finite and let X be concrete.

Space, space, space, space,
space, space.

Theorem
The copowers of X are non-deformed to some degree k ∈ N.
=⇒ essential arity of operations among OA is bounded.
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An example of what easy copowers give us.

Let X be finite and let X arise via a concrete duality with the
dualizing object M being a retract of A.

Theorem
The copowers of X are non-deformed to some degree k ∈ N.
⇐⇒ essential arity of operations among OA is bounded.
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Another example of what easy copowers give us.

Let f ∈ O
(n)
A .

Result.
If f [X ] ⊆

⋃n
i=1 ι

n
i [X ], then...

I ...f does not satisfy a non-trivial irregular identity.
(=⇒ No nu, no Maltsev, no proper semiprojections,...)

II ...we can fully characterize all minimal clones in LA.
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There are (many) examples in which we can use this.

If we dualize the following clones, then we obtain a clone of dual
operations over X which has non-deformed copowers of degree 1:

I Clones over Boolean algebras,

I clones over De Morgan algebras,

I clones over Heyting algebras,

I clones over (bounded) distributive lattices,

I clones over median algebras,

I clones over commutative unital C ∗-algebras,

I clones over M-spaces with unit,

I ...
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Can we be more concrete, please?

Let us look at OA for A being a finite distributive lattice.

[some facts]

Is the clone generated by all unary and all idempotent
operations over A the full clone OA?
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Can we also get the concrete answer?

It depends.

Theorem
The following two statements are equivalent:

1. Clo (IA ∪ EndA) = OA.

2. For each Y ∈ Con(X) and (Y1,Y2) ∈ Spl(Y ) there exists
Y ′ ∈ Con(X) \ {Y } such that Y1 or Y2 can be
order-embedded into Y ′.
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Conclusion.

I Dualizing clones can be a useful tool to examine them.

I To dualize clones efficiently, one needs “nice” dual
equivalences. Particularly desirable are dual equivalences for
relational structures. However...it seems as if not so many of
those are known.

I Thank you!
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