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A First Example

Consider C3 = 〈{⊥,a,⊤},∧,∨,¬〉 described by:

b

b

b

⊥

a

⊤

There are C3-valid quasiequations such as

{¬x ≈ y} ⇒ x ≈ ¬y ,

and C3-admissible (perhaps not C3-valid) quasiequations like

{x ≈ ¬x} ⇒ x ≈ y .
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Two Challenges

1. How can we check A-admissibility when A is finite?

A-admissibility corresponds to validity in the finite free algebra
FA(|A|) and is hence decidable .

But even FC3(2) has 82 elements. . . We look instead for (small)
subalgebras of FA(|A|) where validity matches A-admissibility.

2. How can we axiomatize A-admissibility in this case?

We seek characterizations of the finite members of Q(A) that can
be embedded into (powers of) FA(ω).

We obtain these characterizations via natural dualities .
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Validity

Fix a finite algebra A for a language L with term algebra TmL.

An L-quasiequation Σ ⇒ ϕ ≈ ψ is A-valid , written

Σ |=A ϕ ≈ ψ,

if for every homomorphism g : TmL → A,

g(ϕ′) = g(ψ′)

for all ϕ′ ≈ ψ′ ∈ Σ
=⇒ g(ϕ) = g(ψ).
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Admissibility

An A-unifier of a set of L-equations Σ is a homomorphism
(substitution) σ : TmL → TmL satisfying

|=A σ(ϕ) ≈ σ(ψ) for all ϕ ≈ ψ ∈ Σ.

An L-quasiequation Σ ⇒ ϕ ≈ ψ is A-admissible if

σ is an A-unifier of Σ =⇒ σ is an A-unifier of ϕ ≈ ψ.

(If A is non-trivial, then given variables x , y not occurring in Σ:

Σ is A-unifiable ⇐⇒ Σ ⇒ x ≈ y is not A-admissible.)
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Free Algebras and Admissibility

Recall that the free algebra F A(κ) on κ ≤ ω generators may be taken
to consist of equivalence classes of terms with respect to the
congruence defined on TmL(κ) × TmL(κ) by ϕ ∼ ψ iff |=A ϕ ≈ ψ.

For any finite algebra A:

Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=FA(|A|) ϕ ≈ ψ.

Moreover, FA(|A|) is finite , so checking A-admissibility is decidable .

But FA(n) can be big even for small |A| and n. . . Hence we seek
(small) algebras B such that

Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=B ϕ ≈ ψ.
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Checking Admissibility

For a subalgebra B of FA(|A|) with A a homomorphic image of B:

Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=B ϕ ≈ ψ.

Recall that V(A) = HSP(A) and Q(A) = ISP(A) for finite A, where
H, I, S, and P denote closure under homomorphic and isomorphic
images, subalgebras, and direct products, respectively.

Theorem
The following are equivalent:

(1) Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=B ϕ ≈ ψ.

(2) Q(FA(|A|)) = Q(B).

(3) B ∈ Q(FA(|A|)) and A ∈ V(B).

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 7 / 28



Checking Admissibility

For a subalgebra B of FA(|A|) with A a homomorphic image of B:

Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=B ϕ ≈ ψ.

Recall that V(A) = HSP(A) and Q(A) = ISP(A) for finite A, where
H, I, S, and P denote closure under homomorphic and isomorphic
images, subalgebras, and direct products, respectively.

Theorem
The following are equivalent:

(1) Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=B ϕ ≈ ψ.

(2) Q(FA(|A|)) = Q(B).

(3) B ∈ Q(FA(|A|)) and A ∈ V(B).

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 7 / 28



Checking Admissibility

For a subalgebra B of FA(|A|) with A a homomorphic image of B:

Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=B ϕ ≈ ψ.

Recall that V(A) = HSP(A) and Q(A) = ISP(A) for finite A, where
H, I, S, and P denote closure under homomorphic and isomorphic
images, subalgebras, and direct products, respectively.

Theorem
The following are equivalent:

(1) Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=B ϕ ≈ ψ.

(2) Q(FA(|A|)) = Q(B).

(3) B ∈ Q(FA(|A|)) and A ∈ V(B).

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 7 / 28



Checking Admissibility

For a subalgebra B of FA(|A|) with A a homomorphic image of B:

Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=B ϕ ≈ ψ.

Recall that V(A) = HSP(A) and Q(A) = ISP(A) for finite A, where
H, I, S, and P denote closure under homomorphic and isomorphic
images, subalgebras, and direct products, respectively.

Theorem
The following are equivalent:

(1) Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=B ϕ ≈ ψ.

(2) Q(FA(|A|)) = Q(B).

(3) B ∈ Q(FA(|A|)) and A ∈ V(B).

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 7 / 28



Checking Admissibility

For a subalgebra B of FA(|A|) with A a homomorphic image of B:

Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=B ϕ ≈ ψ.

Recall that V(A) = HSP(A) and Q(A) = ISP(A) for finite A, where
H, I, S, and P denote closure under homomorphic and isomorphic
images, subalgebras, and direct products, respectively.

Theorem
The following are equivalent:

(1) Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=B ϕ ≈ ψ.

(2) Q(FA(|A|)) = Q(B).

(3) B ∈ Q(FA(|A|)) and A ∈ V(B).

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 7 / 28



A Procedure (First Attempt)

For a finite algebra A:

(i) Find the smallest m ≤ |A| such that A ∈ H(FA(m)).

(ii) Compute the set S(FA(m)) of subalgebras of FA(m).

(iii) Construct the set Adm(A) = {B ∈ S(FA(m)) | A ∈ H(B)}.

(iv) Find a proof system to check validity in a smallest B ∈ Adm(A).

Steps (i)-(iii) have been implemented using the Algebra Workbench;
step (iv) can be implemented using, e.g., MUltlog/MUltseq or 3TAP.
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Structural Completeness

In some cases, A-admissibility coincides with A-validity; that is

Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒ Σ |=A ϕ ≈ ψ

and A is called structurally complete .

Consider, e.g., S→
3 = 〈{−1,0,1},→〉 with operation table:

→ -1 0 1
-1 1 1 1
0 -1 0 1
1 -1 -1 1

The procedure discovers a subalgebra of the 60-element free algebra
FS→

3
(2) isomorphic to S→

3 , and hence that S→
3 is structurally complete.

Structural completeness has also been confirmed for the 3-element
implicational Łukasiewicz algebra, Gödel algebra, and Stone algebra.
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Almost Structural Completeness

A is called almost structurally complete if A-admissibility coincides
with A-validity for quasiequations with A-unifiable premises; that is

Σ ⇒ ϕ ≈ ψ is A-admissible ⇐⇒
Σ |=A ϕ ≈ ψ or

Σ is notA-unifiable.

Lemma
For any finite algebra A and subalgebra B of FA(ω):

A is almost structurally complete ⇐⇒ Q(FA(|A|)) = Q(A × B).
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Example: A De Morgan Lattice

For the De Morgan lattice D4 = 〈{⊥,a,b,⊤},∧,∨,¬〉 described by

b

b b

b

⊥

a b

⊤

the procedure finds a smallest algebra in Adm(D4) isomorphic to
D4 × 2 with 2 ∈ S(FD4(ω)), so D4 is almost structurally complete.

Other almost structurally complete algebras include the 3-element
Łukasiewicz algebra and S→

3 with an involutive negation.

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 11 / 28



Example: A De Morgan Lattice

For the De Morgan lattice D4 = 〈{⊥,a,b,⊤},∧,∨,¬〉 described by

b

b b

b

⊥

a b

⊤

the procedure finds a smallest algebra in Adm(D4) isomorphic to
D4 × 2 with 2 ∈ S(FD4(ω)), so D4 is almost structurally complete.

Other almost structurally complete algebras include the 3-element
Łukasiewicz algebra and S→

3 with an involutive negation.

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 11 / 28



Example: A De Morgan Lattice

For the De Morgan lattice D4 = 〈{⊥,a,b,⊤},∧,∨,¬〉 described by

b

b b

b

⊥

a b

⊤

the procedure finds a smallest algebra in Adm(D4) isomorphic to
D4 × 2 with 2 ∈ S(FD4(ω)), so D4 is almost structurally complete.

Other almost structurally complete algebras include the 3-element
Łukasiewicz algebra and S→

3 with an involutive negation.

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 11 / 28



Other Examples

For the De Morgan algebra

Db
4 = 〈{⊥,a,b,⊤},∧,∨,¬,⊥,⊤〉

the procedure finds a smallest 10-element algebra in Adm(Db
4).

For the Kleene lattice and Kleene algebra

C3 = 〈{⊤,a,⊥},∧,∨,¬〉 and Cb
3 = 〈{⊤,a,⊥},∧,∨,¬,⊥,⊤〉

the procedure finds smallest 4-element chains.
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4).
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A Problem

Consider the algebra
P = 〈{a,b, c,d}, ⋆〉

with ⋆ and the free algebras FP(n) described by:

aP

b

c d

FP(n)

x1 ⋆(x1) ⋆(⋆(x1))

b

b

b

xn ⋆(xn) ⋆(⋆(xn))

The smallest algebra in Adm(P) is FP(2), but P can be embedded into
FP(1) × FP(1), so Q(P) = Q(FP(4)) and P is structurally complete.
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A Solution

For a finite algebra A:

(i) Express A as a subdirect product of Q(A)-subdirectly irreducible
algebras A1, . . . ,An ∈ Q(A).

(i) For each A i , find a smallest B i ∈ S(FA(|Ai |)) with A i ∈ H(B i).

(iii) Express each B i as a subdirect product of Q(FA(|A|))-subdirectly
irreducible algebras in Q(FA(|A|)).

(iv) Remove from the set of all algebras obtained in (iii), any algebra
that is isomorphic to a subalgebra of another algebra in the set.

We obtain a “smallest set” of generating algebras for Q(FA(|A|))
according to a multiset ordering of the multiset of their cardinalities.

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 14 / 28



A Solution

For a finite algebra A:

(i) Express A as a subdirect product of Q(A)-subdirectly irreducible
algebras A1, . . . ,An ∈ Q(A).

(i) For each A i , find a smallest B i ∈ S(FA(|Ai |)) with A i ∈ H(B i).

(iii) Express each B i as a subdirect product of Q(FA(|A|))-subdirectly
irreducible algebras in Q(FA(|A|)).

(iv) Remove from the set of all algebras obtained in (iii), any algebra
that is isomorphic to a subalgebra of another algebra in the set.

We obtain a “smallest set” of generating algebras for Q(FA(|A|))
according to a multiset ordering of the multiset of their cardinalities.

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 14 / 28



A Solution

For a finite algebra A:

(i) Express A as a subdirect product of Q(A)-subdirectly irreducible
algebras A1, . . . ,An ∈ Q(A).

(i) For each A i , find a smallest B i ∈ S(FA(|Ai |)) with A i ∈ H(B i).

(iii) Express each B i as a subdirect product of Q(FA(|A|))-subdirectly
irreducible algebras in Q(FA(|A|)).

(iv) Remove from the set of all algebras obtained in (iii), any algebra
that is isomorphic to a subalgebra of another algebra in the set.

We obtain a “smallest set” of generating algebras for Q(FA(|A|))
according to a multiset ordering of the multiset of their cardinalities.

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 14 / 28



A Solution

For a finite algebra A:

(i) Express A as a subdirect product of Q(A)-subdirectly irreducible
algebras A1, . . . ,An ∈ Q(A).

(i) For each A i , find a smallest B i ∈ S(FA(|Ai |)) with A i ∈ H(B i).

(iii) Express each B i as a subdirect product of Q(FA(|A|))-subdirectly
irreducible algebras in Q(FA(|A|)).

(iv) Remove from the set of all algebras obtained in (iii), any algebra
that is isomorphic to a subalgebra of another algebra in the set.

We obtain a “smallest set” of generating algebras for Q(FA(|A|))
according to a multiset ordering of the multiset of their cardinalities.

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 14 / 28



A Solution

For a finite algebra A:

(i) Express A as a subdirect product of Q(A)-subdirectly irreducible
algebras A1, . . . ,An ∈ Q(A).

(i) For each A i , find a smallest B i ∈ S(FA(|Ai |)) with A i ∈ H(B i).

(iii) Express each B i as a subdirect product of Q(FA(|A|))-subdirectly
irreducible algebras in Q(FA(|A|)).

(iv) Remove from the set of all algebras obtained in (iii), any algebra
that is isomorphic to a subalgebra of another algebra in the set.

We obtain a “smallest set” of generating algebras for Q(FA(|A|))
according to a multiset ordering of the multiset of their cardinalities.

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 14 / 28



A Solution

For a finite algebra A:

(i) Express A as a subdirect product of Q(A)-subdirectly irreducible
algebras A1, . . . ,An ∈ Q(A).

(i) For each A i , find a smallest B i ∈ S(FA(|Ai |)) with A i ∈ H(B i).

(iii) Express each B i as a subdirect product of Q(FA(|A|))-subdirectly
irreducible algebras in Q(FA(|A|)).

(iv) Remove from the set of all algebras obtained in (iii), any algebra
that is isomorphic to a subalgebra of another algebra in the set.

We obtain a “smallest set” of generating algebras for Q(FA(|A|))
according to a multiset ordering of the multiset of their cardinalities.

George Metcalfe (University of Bern) Admissibility in Finite Algebras August 2012 14 / 28



Experiments in Admissibility

A |A| Quasivariety Q(A) Free algebra |Output Algebra|

Ł3 3 algebras for Ł3 |FA(1)| = 12 6
Ł→

3 3 algebras for Ł→
3 |FA(2)| = 40 3

B1 3 Stone algebras |FA(1)| = 6 3
Cb

3 3 Kleene algebras |FA(1)| = 6 4
C3 3 Kleene lattices |FA(2)| = 82 4
S 3 algebras for RM→¬ |FA(2)| = 264 6

S→
3 3 algebras for RM→ |FA(2)| = 60 3

G3 3 algebras for G3 |FA(2)| = 18 3
D4 4 De Morgan lattices |FA(2)| = 166 8
Db

4 4 De Morgan algebras |FA(2)| = 168 10
P 4 Q(P) |FA(2)| = 6 6
S4 4 Q(S4) |FA(1)| = 18 6
B2 5 Q(B2) |FA(1)| = 7 5
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Axiomatizing Admissibility

Can we axiomatize A -admissibility (i.e., Q(FA(ω)))?

More generally, for a quasivariety Q, can we axiomatize

(a) the Q-admissible quasiequations (i.e., Q(FQ(ω)))?

(b) the Q-admissible clauses (i.e., U(FQ(ω)))?

When Q = Q(A) with A finite, natural dualities might help. . .
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Validity Again

An L-clause Σ ⇒ ∆ is K-valid for a class of L-algebras K, written

Σ |=K ∆,

if for every A ∈ K and homomorphism g : TmL → A,

g(ϕ) = g(ψ)

for all ϕ ≈ ψ ∈ Σ
=⇒

g(ϕ′) = g(ψ′)

for someϕ′ ≈ ψ′ ∈ ∆.
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Admissibility Again

A K-unifier of Σ is a homomorphism σ : TmL → TmL satisfying

|=K σ(ϕ) ≈ σ(ψ) for all ϕ ≈ ψ ∈ Σ.

An L-clause Σ ⇒ ∆ is K-admissible if

σ is a K-unifier of Σ =⇒ σ is a K-unifier of some ϕ ≈ ψ ∈ ∆.

For example, the clause

{x ∨ y ≈ ⊤} ⇒ {x ≈ ⊤, y ≈ ⊤}

is admissible in the variety of bounded distributive lattices.
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Characterizations of Admissibility

Theorem

For a quasivariety Q and clause Σ ⇒ ∆, the following are equivalent:

(i) Σ ⇒ ∆ is Q-admissible.

(ii) Σ |=FQ(ω) ∆.

(iii) For each finite set of equations Π:

|=Q Π ⇔ |=U Π (U = {A ∈ Q | Σ |=A ∆}).

If |∆| = 1, then the following is also equivalent to (i)-(iii) :

(iv) For each equation ϕ ≈ ψ:

|=Q ϕ ≈ ψ ⇔ |=Q′ ϕ ≈ ψ (Q′ = {A ∈ Q | Σ |=A ∆}).
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Bases

A basis for the admissible quasiequations of a quasivariety Q is a
set of quasiequations axiomatizing Q(FQ(ω)) relative to Q.

Similarly, a basis for the admissible clauses of Q is a set of clauses
axiomatizing U(FQ(ω)) relative to Q.
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A Notable Example

Iemhoff and Rozière established independently that the following
“Visser rules” form a basis for the admissible quasiequations of
Heyting algebras (equivalently, intuitionistic logic ) (n = 2,3 . . .):

{⊤ ≈ z ∨ (
n∧

i=1

(yi → xi) → (yn+1 ∨ yn+2))} ⇒

⊤ ≈ z ∨

n+2∨

j=1

(

n∧

i=1

(yi → xi) → yj).

To obtain a basis for the admissible clauses, add

{⊤ ≈ x ∨ y} ⇒ {⊤ ≈ x , ⊤ ≈ y}.
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Two Useful Lemmas

Suppose now that Q is a locally finite quasivariety (i.e., its finitely
generated members are finite); e.g., Q = Q(A) for A finite.

Lemma
The following are equivalent for any set of L-clauses Λ:

(1) Λ is a basis for the admissible clauses of Q.

(2) For each finite B ∈ Q: B ∈ IS(FQ(ω)) iff B satisfies Λ.

Lemma
The following are equivalent for any set of L-quasiequations Λ:

(1) Λ is a basis for the admissible quasiequations of Q.

(2) For each finite B ∈ Q: B ∈ ISP(FQ(ω)) iff B satisfies Λ.
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How Can Natural Dualities Help?

Suppose that A
∼

yields a strong natural duality on Q(A) (A finite).

A basis Λ for the admissible clauses of Q(A) characterizes the
finite algebras of Q(A) that can be embedded into FQ(A)(ω).

These algebras correspond on the dual side to a class C of images
of finite powers of A

∼
under morphisms of the dual category.

We first seek conditions S on dual spaces to be in C.

We then seek a set of clauses Λ such that a finite B ∈ Q(A)
satisfies Λ iff its dual space satisfies S.
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Example: Bounded Distributive Lattices

Lemma
The following are equivalent for any finite A ∈ BDL:

(i) A ∈ IS(FBDL(ω)).

(ii) The dual Priestley space of A is a non-empty bounded poset.

(iii) A satisfies the clauses:

{x ∨ y ≈ ⊤} ⇒ {x ≈ ⊤, y ≈ ⊤} (1)

{x ∧ y ≈ ⊥} ⇒ {x ≈ ⊥, y ≈ ⊥}. (2)

Theorem
{(1), (2)} is a basis for the admissible clauses of BDL.

Theorem
Σ ⇒ ϕ ≈ ψ is BDL-admissible iff Σ |=BDL ϕ ≈ ψ.
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(iii) A satisfies the clauses:

{x ∨ y ≈ ⊤} ⇒ {x ≈ ⊤, y ≈ ⊤} (1)

{x ∧ y ≈ ⊥} ⇒ {x ≈ ⊥, y ≈ ⊥}. (2)

Theorem
{(1), (2)} is a basis for the admissible clauses of BDL.

Theorem
Σ ⇒ ϕ ≈ ψ is BDL-admissible iff Σ |=BDL ϕ ≈ ψ.
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Example: De Morgan Algebras

Consider the variety DMA = ISP(Db
4) of De Morgan algebras .

Lemma
The following are equivalent for any finite A ∈ DMA:

(i) A ∈ IS(FDMA(ω)).

(ii) The dual (X ,≤, f ) of A is bounded and f (x) = x for some x ∈ X.

(iii) A satisfies the clauses:

{x ≈ ¬x} ⇒ {x ≈ y} (3)

{x ∨ y ≈ ⊤} ⇒ {x ≈ ⊤, y ≈ ⊤}. (4)

Theorem
{(3), (4)} is a basis for the DMA-admissible clauses.
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Example: De Morgan Algebras

Lemma

The following are equivalent for any finite non-trivial A ∈ DMA:

(i) A ∈ ISP(FDMA(ω)).

(ii) The dual 〈X ,≤, f 〉 of A satisfies the following:
(a) For every x ∈ min(X ,≤), there exists z ∈ X such that x ≤ z = f (z).
(b) For every x ∈ X, there exists y ∈ X such that y ≤ x , f (x).

(iii) A satisfies the quasiequations:

{x � ¬x , ¬(x ∨ y) � x ∨ y , ¬y ∨ z ≈ ⊤} ⇒ z ≈ ⊤ (5)

{x � ¬x , y � ¬y , x ∧ y ≈ ⊥} ⇒ x ∨ y � ¬(x ∨ y). (6)

Theorem
{(5), (6)} is a basis for the DMA-admissible quasiequations.
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A Last Example

Consider S = 〈{−1,0,1},→,¬〉 with operations ¬x = 1 − x and

→ -1 0 1
-1 1 1 1
0 -1 0 1
1 -1 -1 1

Let 0 � ϕ denote ϕ→ ϕ ≈ ϕ and ϕ↔ ψ =df ¬((ϕ→ ψ) → ¬(ψ → ϕ)).

Theorem
A basis for the S-admissible quasiequations is:

{0 � ¬((x1 → x1) ↔ . . . ↔ (xn → xn))} ⇒ x ≈ y (n = 1,2, . . .).

In fact Q(FS(ω)) = Q(2 × S) is not finitely axiomatizable.
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Concluding Remarks

We have developed (efficient) procedures for checking unifiability,
admissibility, and structural completeness in finite algebras.

G. Metcalfe and C. Röthlisberger. Unifiability and admissibility in finite algebras.
Proceedings of Computability in Europe 2012, LNCS 7318, Springer, 2012.

We also have a strategy for axiomatizing admissible clauses and
quasiequations for finite algebras via natural dualities.

L. Cabrer and G. Metcalfe. Admissibility via natural dualities. Submitted.

Can admissibility be useful for checking validity in finite algebras
(e.g., speeding-up proof search or shortening derivations)?
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