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Abstract. A bounded distributive lattice L has two unital semilattice reducts,
denoted L∧ and L∨. These ordered structures have a common canonical ex-

tension L
δ. As algebras, they also possess profinite completions, L̂, L̂∧ and

L̂∨; the first of these is well known to coincide with L
δ. Depending on the

structure of L, these three completions may coincide or may be different. Nec-
essary and sufficient conditions are obtained for the canonical extension of L
to coincide with the profinite completion of one, or of each, of its semilattice
reducts. The techniques employed here draw heavily on duality theory and on
results from the theory of continuous lattices.

1. Introduction

Canonical extensions are particular completions of ordered algebraic structures.
We recall the definition in Section 2, noting only here that the canonical extension
Lδ of a lattice L depends only on the underlying order, so is unchanged if we pass
to either of the semilattice reducts of L. For contextual background on canonical
extensions we refer to the papers of Gehrke and Vosmaer [10] and also to our paper
[13]. The former paper outlines the theory of canonical extensions for lattice-based
algebras and the applications to the study of associated logics which, historically,
initiated the theory and which has influenced the way it has evolved.

In our paper [13] we focused on canonical extensions of (unital) semilattices
in relation to their profinite completions. Given a residually finite variety V and
an algebra A ∈ V, we denote by ProV(A) the profinite completion of A. The
assumption of residual finiteness is satisfied for any V which is generated as a
quasivariety by a finite algebra; it ensures that A embeds in ProV(A) for each
A ∈ V. Profinite completions are available in any of the following varieties: S∧

(meet semilattices with 1), S∨ (join semilattices with 0) and D (distributive lattices
with 0, 1). The profinite completions of semilattices have a very rich theory. They
can be described in a variety of ways: concretely, via a set-based representation;
abstractly, via iterated free meet- and join-completions; via the duality theory for
semilattices; or, categorically, directly as projective limits of finite semilattices. Our
study in [13] revealed clearly the benefits for the treatment of canonical extensions
of semilattices of viewing these as sitting inside the associated semilattice profinite
completions. These benefits extend to the study of canonical extensions of bounded
lattices, by consideration of one or both of the semilattice reducts. The richness
of the theory increases further when we consider (semilattice reducts of) bounded
distributive lattices.

It is well known that the profinite completion ProD(L) for L ∈ D is isomorphic
to the canonical extension Lδ; details are recalled in Proposition 3.1. However

2010 Mathematics Subject Classification. Primary: 06A12, 06B35, Secondary: 06D50 .
Key words and phrases. Distributive lattice, semilattice, canonical extension, profinite com-

pletion, continuous lattice, locally meet breadth .
The first author acknowledges support from Portuguese Project PEst-OE/MAT/UI0143/2011

of CAUL financed by FCT and FEDER.

1



2 M.J. GOUVEIA AND H.A. PRIESTLEY

the situation changes radically when we consider semilattice reducts. Unlike the
canonical extension, the profinite completion of a member L of D is not in gen-
eral invariant under passage from L to its reducts L∧ ∈ S∧ and L∨ ∈ S∨. We
showed already in [13] that a range of behaviours can arise: the semilattice profi-
nite completion and canonical extension may coincide or be different, structurally
or as regards cardinality.

Our main results in this paper, Theorems 3.8 and 4.3 below, give a complete
answer to the following questions concerning a lattice L ∈ D: when is it the case
that

(1) the canonical extension Lδ, as it naturally sits inside ProS∧
(L∧), coincides

with ProS∧
(L∧), and

(2) both (1) and the order dual assertion are true.

These problems are tractable thanks to the descriptions of profinite completions
in D and in S∧ made available through duality theory. Besides involving both
Priestley duality forD and Hofmann–Mislove–Stralka duality for S∧, the techniques
we employ also draw heavily on the theory of continuous lattices. Our key tools
here are results on the presence or absence of infinite antichains in semilattices
which were obtained more than 20 years ago by Mislove [19, 20, 21] and Lawson,
Mislove and Priestley [16, 17, 18] and which have lain largely dormant ever since.

2. Profinite and canonical extensions of semilattices: resumé

As the default, we shall work with S∧ rather than S∨, noting that the difference
is more one of notation than of substance. When we consider these classes as
categories the morphisms are the homomorphisms.

We begin by recalling some order-theoretic notions. The underlying order of a
semilattice S ∈ S∧ is given in the expected way by the relation 6 defined by a 6 b
if and only if a∧ b = a. A completion of a semilattice S ∈ S∧ is a pair (e, C) where
C is a complete lattice and e : S → C is an order-embedding. In the cases in which
we are interested, e will in fact be an S∧-morphism. Two completions (e, C) and
(e′, C′) of S are isomorphic if there exists an order-isomorphism φ : C → C′ such
that e′ = φ ◦ e. When working with a given completion (e, C) of a semilattice S we
shall often leave tacit the embedding e and refer to the completion simply as C.

Given S ∈ S∧, a filter is a non-empty up-set in S which is closed under ∧ and
an ideal is a down-set in S which is (up-)directed; by convention, a directed set
is required to be non-empty. We denote by Filt(S) the set of filters of S and by
Idl(S), both ordered by set inclusion. The family Filt(S) is a complete lattice. A
completion (e, C) of S is said to be dense if every element of C is both a join of
meets of filters of e(S) and a meet of joins of ideals of e(S). The completion (e, C)
is compact if, whenever F and J are, respectively, a filter and an ideal in S, then∧
e(F ) 6

∨
e(J) in C implies F ∩J 6= ∅. Finally, (e, C) is a canonical extension of S

if it is both dense and compact. It is uniquely determined, up to an isomorphism
fixing S (see [8, Section 2], noting that our definition of the canonical extension Sδ

of S agrees with that of the canonical extension of the underlying poset of S).
We now briefly recall the duality theory for semilattices due to Hofmann, Mis-

love and Stralka [15]. It is well known that S∧ is generated, as a variety and
as a quasivariety, by the two-element semilattice 2 = 〈{0, 1};∧, 1〉 in which the
underlying strict order is given by requiring 0 < 1. We may form a topological
structure 2T by equipping 2 with the discrete topology T. Furthermore, we may
topologise the hom-set S∧(S,2) by treating S∧(S,2) as a subspace of 2S with the
product topology induced by T. In addition, S∧(S,2) can be given the structure of
a meet semilattice with 1 by lifting the operations of 2 pointwise. The Hofmann–
Mislove–Stralka duality sets up a dual equivalence between the category S∧ and
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the category Z of topological semilattices belonging to the topological quasivariety
IScP+(2T), that is, those which are isomorphic to closed subsemilattices of powers
of 2T . Morphisms in S∧ are the maps preserving ∧ and 1 and those in Z are the
maps which are continuous S∧ morphisms. The topology carried by any member
Z of Z is compact and totally disconnected, that is, Z is topologically a Boolean
space. The dual equivalence between S∧ and Z is given by the hom-functors

D = S∧(−,2) : S∧ → Z and E = Z(−,2T) : Z → S∧.

In particular, the duality for S∧ asserts that S ∈ S∧ can be recovered from its
dual D(S) as the Z-morphisms from S∧(S,2) into 2T , with semilattice structure
inherited from the power 2S∧(S,2). The evaluation map eS : S → 2S∧(S,2) defined
by

∀a ∈ S ∀h ∈ S∧(S,2) eS(a)(h) = h(a)

is an S∧-embedding. To see the duality subsumed within the general framework
of natural duality theory, see Clark and Davey [4, 4.4.6 and 4.4.7]. We note that
this duality is relatively unusual amongst natural dualities in that the generating
algebra 2 in S and the alter ego 2T which generates Z as a topological quasivariety
differ only as regards the absence or presence of the topology. We shall make direct
use of this feature shortly.

We have described the category Z dual to S∧ in terms of topological algebras.
However the duality for semilattices is often made much more powerful thanks to the
Fundamental Theorem for Compact Zero-dimensional Semilattices. This theorem,
which originates in [15, Chapter II] (or see [11, VI-3.13]) allows the dual category
Z to be alternatively described in algebraic and order-theoretic terms. Specifically,
at the object level, the members of Z are precisely the algebraic lattices equipped
with the Lawson topology. The Lawson topology of an algebraic lattice M has as
a closed subbasis the sets ↑k and ↓x, where k ranges over the semilattice K(M) of
compact elements of M and x ranges over M. The Z-morphisms are, by definition,
the continuous maps which preserve ∧ and 1. Since the topology is the Lawson
topology, these are precisely the maps preserving arbitrary meets and directed
joins. Therefore we may, when it expedient to do so, work with AL rather than
with Z, where AL is the category of algebraic lattices with morphisms the maps
preserving all meets and directed joins. We may also take advantage of the well-
known duality between AL and the category S∨. On objects, the functors setting
up this duality send S ∈ S∨ to Idl(S) and M ∈ AL to the set K(M), the compact
elements of M. For details see for example [11, Chapter V].

We now fit profinite completions into the picture. Take A ∈ V, where V is a
residually finite variety. Under the reverse inclusion order, the family of congruences
of A of finite index is directed and there are natural bonding homomorphisms
ϕαβ : A/α → A/β, for α ⊆ β, given by ϕαβ(a/α) = a/β. The categorical inverse

limit Â of the resulting inverse system can be realised concretely as a subalgebra
ProV(A) of the product of the finite algebras A/α. Equipping each finite algebra
with the discrete topology and a product of finite spaces with the product topology,
ProV(A) becomes a topological algebra. The natural homomorphism µA : A →
ProV(A) given by µA(a)(α) := a/α, for all a ∈ A and α ∈ SA is an embedding.

We shall henceforth refer to Â as the profinite completion of A.
We now specialise to S∧. The profinite limit ProS∧

(S) has a number of note-
worthy properties. Viewed as a member of S∧, it is an algebraic lattice, and
(µS,ProS∧

(S)) is a completion of S, according to our definition above. Viewed
as a topological algebra, it is a compact totally disconnected topological semilat-
tice and, by the Fundamental Theorem cited above, its topology is necessarily the
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Lawson topology. (In fact such topological semilattices are exactly the profinite
ones, as was proved by Numakura [22], but we shall not need this fact.)

There is a more amenable description of the topological semilattice ProS∧
(S)

than that given above. As an algebra, it is, up to isomorphism, S∧(S∧(S,2),2)),
or, in terms of functors, ( ♭ ◦ D ◦ ♭ ◦ D)(S), where D is the hom-functor S∧(−,2)
and ♭ : Z → S∧ is the functor forgetting topology. For a comment on the cat-
egorical roots of this claim see [15, I-3.11]. For any semilattice S ∈ S the map
x 7→ x−1 sets up an isomorphism from S∧(S,2) onto the filter lattice Filt(S) of S,
where Filt(S) is ordered by inclusion. Hence, as we observed in [13, Section 3] ,

S∧(S∧(S,2),2)) can be identified with Filt2(S), the filter lattice of the filter lattice
of S. Adopting this perspective, we can realise the profinite completion concretely
as an algebraic closure system, with meets given by intersection and directed joins
by union. We may summarise the preceding discussion in the following theorem.
This is an abbreviated form of [13, Theorem 3.2], sufficient for our present needs.

Theorem 2.1. Let S ∈ S∧. Then the following completions of S are isomorphic:

(i) (µS,ProS∧
(S));

(ii) (eS ,S∧(S∧(S,2),2)), where each hom-set is ordered pointwise and eS is the
natural evaluation map given by eS(a)(x) = x(a), for a ∈ S and x ∈ S∧(S,2);

(iii) (e,Filt2(S)), where at each stage the filter lattice is ordered by inclusion and e
sends a ∈ S to the principal filter in Filt2(S) generated by the principal filter
↑a in Filt(S).

The various incarnations of the profinite completion Ŝ of a semilattice S can
be used interchangeably, according to need or taste. We shall henceforth use the

generic notation Ŝ and we denote by e : S → Ŝ the associated natural embedding
map.

We do not recapitulate here in any detail on the theory of canonical extensions
as it applies to semilattices, referring the reader to [8, 10, 13] for background and
details. For our present purposes the facts summarised in the following theorem
will suffice (cf. [13], Section 2 and in particular Theorems 2.6 and 2.8).

Theorem 2.2. Let S ∈ S∧.

(i) The profinite completion (e, Ŝ) is 2/3 canonical, in that it satisfies
(a) the compactness property: for F ∈ Filt(S) and J ∈ Idl(S),

∧
e(F ) 6

∨
e(J) =⇒ F ∩ J 6= ∅;

(b)
∨∧

-density: every element of Ŝ is a join of down-directed meets of
elements drawn from e(S).

(ii) Let Sδ be the subset of Ŝ consisting of those elements of Ŝ which are meets
of directed joins of elements drawn from e(S). Then Sδ is a complete meet-

subsemilattice of Ŝ, e maps S into Sδ and the completion (e,Sδ) satisfies
(a) the compactness property: for F ∈ Filt(S) and J ∈ Idl(S),

∧
e(F ) 6

∨
e(J) =⇒ F ∩ J 6= ∅;

(b)
∨∧

-density: every element of Sδ is a join of down-directed meets of
elements drawn from e(S);

(c)
∧∨

-density: every element of Sδ is a meet of directed joins of elements
drawn from e(S).

Consequently (e,Sδ) is, up to isomorphism, the canonical extension of S.

A few comments are called for here. The derivation of (ii) from (i) is slightly
less obvious than it might appear at first glance, since in (i), meets and joins are

calculated in Ŝ and those in (ii) in Sδ. So it is necessary to show that the joins and
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meets in Sδ arising in (ii) coincide with those calculated in Ŝ; see [13, Theorem 2.7].
We note also that in (i)(b) and (ii)(b) the joins are in fact directed, but the meets in
(ii)(c) are in general not down-directed unless S is the reduct of a bounded lattice.

Subsequently in this paper we elect to work principally with Ŝ in its incarnation
as S∧(S∧(S,2),2), as in Theorem 2.1(ii). It will be helpful to spell out how The-
orem 2.2 operates in this setting. Proofs of the corresponding statements phrased
in terms of the set-based representation given in Theorem 2.1(iii) are given in [13,
Section 2]. In S∧(S∧(S,2),2), all meets and all directed joins are computed point-
wise. In particular joins of sets of the form e(J), where J is an ideal in S, are given
pointwise.

Analogues of Theorems 2.1 and 2.2 are available for S∨. The lattice Filt2(S) is
replaced by (Idl((Idl(S))∂)∂ , or equivalently by (Filt(Idl(S)))∂ . The embedding e
then sends a ∈ S to the principal filter in Filt(Idl(S)) generated by the principal
ideal ↓a in Idl(S), and the

∨∧
-density in Theorem 2.2(i)(b) is replaced by

∧∨
-

density. (Here P ∂ denotes the order dual of a poset P .)

3. The coincidence problem: the role played by countably generated
free semilattices

We now specialise to the variety D and the classes D∧ and D∨ with which this
paper is principally concerned. Here D∧ and D∨ denote, respectively, the classes
of semilattices of the form L∧ and of the form L∨, for L ∈ D. In the remainder of
the paper we shall assume familiarity with Priestley duality for D; an elementary
treatment can be found in [7].

We first record classic facts about canonical extensions of members of D, ex-
ploiting Priestley duality for D. The following proposition originates in [9]; see
also [6]. In it, and subsequently, we use 2 to denote the two-element algebra in D,
in S∧ or in S∨. Which is intended will be clear from the context.

Proposition 3.1. Let L ∈ D and let X = D(L,2) be its Priestley dual space and
identify L with the lattice of clopen up-sets of X. Then, up to isomorphism, the
canonical extension Lδ of L is the lattice of all up-sets of X, where the embedding
of L into Lδ is the inclusion map. Moreover, Lδ is an algebraic and dually algebraic
lattice.

We now begin to study, for a bounded distributive lattice L, the relationship

between the canonical extension Lδ and the profinite completions L̂∧ and L̂∨ formed
relative to S∧ and S∨, respectively. The following preliminary result will be used
later.

Proposition 3.2. Let L be a bounded distributive lattice. Then the canonical

extension Lδ is an S∧-retract of the S∧-profinite completion L̂∧ via a retraction
that preserves arbitrary meets.

Proof. By Proposition 3.1, the canonical extension of the bounded distributive lat-
tice L is, up to isomorphism, the complete lattice of all order-preserving maps from
D(L,2) into {0, 1}. Since the members of S∧(S∧(L∧,2),2) are order-preserving

maps and D(L,2) ⊆ S∧(L∧,2), there is a natural restriction map ψ : L̂∧ → Lδ

given by ψ(α) = α↾D(L,2). Since ∧ and 1 are defined pointwise in both its domain
and codomain, ψ is an S∧-morphism that in fact preserves arbitrary meets. Now
take γ ∈ Lδ and define the map φ(γ) from S∧(L∧,2) into {0, 1} by

(φ(γ))(h) =
∧{

γ(f) | f ∈ D(L,2), f > h
}
.

Every f ∈ D(L,2) satisfies f(0L) = 0 and consequently (φ(γ))(1) =
∧
∅ = 1. Also,

for every h1, h2 ∈ S∧(L∧,2) and f ∈ D(L,2), we have f > h1 ∧ h2 if and only
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if f > h1 or f > h2. Therefore it follows immediately from the definition of φ(γ)

that (φ(γ))(h1 ∧ h2) = (φ(γ))(h1) ∧ (φ(γ))(h2), and so φ(γ) ∈ L̂∧. Hence the map

φ : Lδ → L̂∨ is well defined and satisfies ψ(φ(γ)) = γ. Finally we claim that φ is

an S∧-morphism. In fact, for every h ∈ S∧(L∧,2) and every γ1, γ2 ∈ L̂∧ we have

φ(γ1 ∧ γ2)(h) =
∧

{ (γ1 ∧ γ2)(f) | f ∈ D(L,2), f > h }

=
∧

{ γ1(f) ∧ γ2(f) | f ∈ D(L,2), f > h }

=
∧

{ γ1(f) | f ∈ D(L,2), f > h }∧
∧

{ γ2(f) | f ∈ D(L,2), f > h }

= φ(γ1)(h) ∧ φ(γ2)(h)

= (φ(γ1) ∧ φ(γ2))(h).

Also

φ(1Lδ )(h) =
∧

{ 1(f) | f ∈ D(L,2), f > h } = 1,

for every h ∈ S∧(L∧,2), so that φ(1Lδ ) is the top element in L̂∧. �

As noted earlier, a canonical extension of an ordered structure is uniquely de-
termined by the underlying poset, so that the canonical extension Lδ of a bounded
lattice L (not necessarily distributive) can be obtained by considering either of its
semilattice reducts. Specifically, we have models, denoted respectively by Lδ

∧ and
Lδ
∨, of the canonical extension of L constructed, as in Theorem 2.2 and its order

dual version, within L̂∧ and within L̂∨. There is a natural isomorphism between

these models; see [13, Section 2]. When we refer to Lδ coinciding with L̂∧, we

mean that the subset Lδ
∧ of L̂∧ is equal to L̂∧, and likewise for the ∨-reduct. As

we recalled in Section 1, we already showed in [13] that, even in the restricted set-
ting of semilattices in D∨ or D∧, coincidence, as defined above, may or may not
occur. Here, in this same restricted setting, we shall obtain necessary and sufficient
conditions for coincidence, thereby contributing a deeper understanding of the re-
lationship between canonical extensions and profinite completions. Our arguments
will rely heavily on duality theory.

What distinguishes the analysis of the distributive case from that of bounded
lattices in general is that we have a fully-fledged topological duality available for D.
Furthermore, this connects well with the Hofmann–Mislove–Stralka duality for the
semilattice reducts. Fix L ∈ D. The hom-set D(L,2) can be viewed as a subset
of S∧(L∧,2), that is, the subset consisting of those maps into 2 which preserve ∨
and 0 as well as ∧ and 1. Under the correspondence h 7→ h−1(1) (h ∈ S∧(L∧,2)),
a non-constant map h is sent to a prime filter if and only if it is a prime element of
the complete lattice S∧(L∧,2), that is, if and only if h > h1 ∧ h2 implies h > h1 or
h > h2. (By convention here the top element of a complete lattice does not qualify
as a prime.) Furthermore, for each h ∈ S∧(L∧,2),

h =
∧
{ f ∈ D(L,2) | f > h }.

This last assertion—that every filter in a bounded distributive lattice L is an in-
tersection of prime filters—is a classic result, following easily from the Prime Filter
Theorem. The non-proper filter L may be subsumed here by regarding it as an
empty meet of prime filters. In what follows we shall switch backwards and for-
wards as expedient between (prime) elements of S∧(L∧,2) and (prime) elements in
the filter lattice of L. Because L is distributive, for any f ∈ D(L,2), the comple-
mentary sets f−1(1) and f−1(0) are respectively a prime filter and a prime ideal.
Note that coincidence of the S∧-profinite completion and the canonical completion
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of L can be stated by the assertion that, up to isomorphism, the lattice of all
S∧-morphisms from S∧(L∧,2) to 2 is the lattice of all order-preserving maps from
D(L,2) to {0, 1}.

The following theorem is a first step towards describing the members L of D

for which the canonical extension Lδ coincides with L̂∧ (and likewise for the order
dual version). It is the equivalence of (1) and (2) in Theorem 3.3 that we shall
exploit. We prove that (2) implies (1) by going via condition (3) but note that this
implication can also be proved directly.

Theorem 3.3. Let L be a bounded distributive lattice. Then the following state-
ments are equivalent:

(1) the canonical extension Lδ coincides with the S∧-profinite completion L̂∧;
(2) every element of Filt(L) \ {L} is a non-empty meet of finitely many primes;
(3) every member of S∧(S∧(L∧,2),2) preserves arbitrary meets.

Proof. For (1) implies (2) we establish the contrapositive. So assume that 1 6= h ∈
S∧(L∧,2) but that h is not a finite meet in S∧(L∧,2) of elements from D(L,2).
Take the filter F of S∧(L∧,2) defined as follows:

F = { x ∈ S∧(L∧,2) | ∃y1, · · · , yn ∈ D(L,2) x > y1 ∧ · · · ∧ yn > h }.

If it were the case that h ∈ F , then we would have elements y1, . . . , yn ∈ D(L,2)
such that h > y1 ∧ · · · ∧ yn > h. This would imply that h = y1 ∧ · · · ∧ yn, contrary
to hypothesis. Take α ∈ S∧(S∧(L∧,2),2) such that α−1(1) = F . This implies
that α(h) = 0. We claim that α does not belong to the canonical extension and
therefore the two completions do not coincide. Suppose for a contradiction that
α ∈ Lδ

∧. Then there exists a family J of ideals of L such that

α =
∧{∨

e(J) | J ∈ J
}
.

Since α(h) = 0, there exists J ∈ J such that J ⊆ h−1(0), or equivalently J ∩
h−1(1) = ∅. By the Prime Ideal Theorem for D, there exists a prime ideal I
such that J ⊆ I and I ∩ h−1(1) = ∅. Take g ∈ D(L,2) to satisfy g−1(0) = I.
Since I ⊆ h−1(0) we have g > h and hence g ∈ F , that is, g ∈ α−1(1). However
g(I) = {0}, which implies that α(g) = 0. Therefore we have reached the required
contradiction.

Now assume that (2) holds. To establish that (3) holds, we shall first prove
that the retraction ψ defined in the proof of Proposition 3.2 is bijective. Take
α1, α2 ∈ S∧(S∧(L∧,2),2) and suppose that α1 6= α2. Then we may assume there
exists h ∈ S∧(L∧,2) such that α1(h) = 1 and α2(h) = 0. By (2), there exist
f1, · · · , fn ∈ D(L,2) such that h = f1 ∧ · · · ∧ fn. Since α1 and α2 preserve finite
meets, α1(fi) = 1 and α2(fi) = 0 for some i ∈ {1, · · · , n}. Consequently ψ(α1) 6=
ψ(α2). Hence every α in S∧(S∧(L∧,2),2) is of the form φ(ψ(α)). But then the
preservation of arbitrary meets by α follows from the definition of φ and from the
fact that every element of S∧(L∧,2) is a finite meet of elements of D(L,2).

Finally assume that (3) holds. To establish that (1) holds, it is enough to prove
that every α in S∧(S∧(L∧,2),2) is a meet of directed joins of elements of e(L). Take
α ∈ S∧(S∧(L∧,2),2). Since α preserves arbitrary meets, for every h ∈ S∧(L∧,2)
the following holds:

α(h) = α(
∧

{ f ∈ D(L,2) | f > h }) =
∧
{α(f) | f ∈ D(L,2), f > h }
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and

α(h) = 0 ⇐⇒ ∃f ∈ D(L,2) (f > h ∧ α(f) = 0)

⇐⇒ ∃f ∈ D(L,2) (α(f) = 0 ∧ f−1(0) ⊆ h−1(0))

⇐⇒ ∃f ∈ D(L,2) (α(f) = 0 ∧
∨
h(f−1(0)) = 0)

⇐⇒ ∃f ∈ D(L,2) (α(f) = 0 ∧ (
∨
e(f−1(0)))(h) = 0).

Thus α =
∧
{
∨
e(f−1(0)) | f ∈ D(L,2), α(f) = 0 }. �

We have the following corollary of the contrapositive of (1) implies (2) in Theo-
rem 3.3.

Corollary 3.4. Let L ∈ D. Then every element F of Filt(L) which is not a finite

non-empty meet of primes gives rise to an element αF of L̂∧ \ Lδ
∧. Moreover the

map F 7→ αF is injective.

We now give an example in which we exploit the above methodology to witness
non-coincidence.

Example 3.5. Let C be an uncountable order-dense chain (for example, R with
the usual order). Give CC the pointwise order and let L be CC with top and
bottom elements, ⊤ and ⊥, adjoined. For every a, b ∈ C, let F b

a be

F b
a =

(
↑a× CC\{b}

)
∪ {⊤} :=

∏

x∈C

Gx ∪ {⊤}

where Gx = ↑a for x = b and Gx = C otherwise. Fix a ∈ C. The family
{
F b
a

}
b∈C

is

an antichain of prime filters of L. Note that
∧

b∈C F
b
a = (↑a)C ∪ {⊤}. Also observe

that if F ∪{⊤} is a prime filter of L such that πb(F ) = ↑a, for some projection map
πb : C

C → C, with b ∈ C, then F ∪{⊤} = F b
a . Clearly a finite intersection of prime

filters of CC must have image C under some projection map πb. Consequently∧
b∈C F

b
a is not a finite meet of prime filters of L. Hence we have exhibited a set of

elements of L̂∧ \ Lδ
∧ of cardinality |C|.

We now enquire exactly when it is the case that condition (2) in Theorem 3.3
holds. Here we are fortunate: much of the work has essentially already been done
for us since the literature contains a wealth of relevant information. The sources
on which we draw work in part with join semilattices (and their ideal lattices)
and in part with meet semilattices (and their filter lattices). At each stage of our
exposition we shall accordingly work with whichever formulation aligns best with
our source or works more smoothly. We shall show that a necessary and sufficient

condition for Lδ
∧ to coincide with L̂∧ is that Filt(L) should have locally finite meet

breadth (the definition is given below). We then draw on results from the theory of
continuous lattices to derive a number of conditions equivalent to this one, the aim
being to find conditions expressed directly in terms of L. One of these conditions
is that L∧ should fail to contain the free meet semilattice N2 on ℵ0 generators
as an S∧-subobject (see Theorem I.1.5 of [15]). The full results are presented in
Theorems 3.6 and 3.8 below.

We recall that a lattice M is said to have locally finite meet breadth if, for any
given x ∈M , the set

{ |A| | A is a finite and meet irredundant subset of M such that
∧
A = x }

has a finite upper bound. A subset A (not necessarily finite) of M is meet irredun-
dant if for every finite subset B of A we have

∧
B <

∧
C whenever ∅ 6= C ( B.

We stress that the definition of locally finite meet breadth requires the sets A to be
finite. This is in line with the definition as originally given by Gierz, Lawson and
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Stralka [12] and as employed by Mislove in [20]. We shall shortly draw on results
from [20]; there and in some other later sources the restriction to finite A is not
made explicit. Note that the presence of an infinite meet irredundant subset in M

does not necessarily imply that M fails to have locally finite meet breadth.
Theorem 3.6 below originates with Mislove ([19], in particular Proposition 6.3,

and [20, Section 2]). For further context and discussion see also [21]. We shall
require the theorem in the special case that M is the filter lattice of some L ∈ D.
Then the requirement that each element is the meet of primes is simply the assertion
that every filter is the intersection of prime filters, a fact we have recalled earlier;
note also [11, Proposition IV-1.21].

None of the implications in Theorem 3.6 is new but the result as we state it is
not given explicitly in this form in the literature. We therefore indicate how the
various constituent results combine to yield the result as presented here.

Theorem 3.6. Let M be a distributive continuous lattice in which every element
is the meet of primes. Then the following statements are equivalent:

(1) some element of M fails to be the meet of finitely many primes;
(2) there exists an element x of M such that the set of minimal primes above x

forms an infinite antichain, which is necessarily meet irredundant;
(3) 2N

′

embeds in M by a map preserving all non-empty meets and taking primes

to primes, where 2N
′

denotes the meet semilattice formed by taking the non-
empty subsets of N with union as the semilattice operation;

(4) 2N embeds in M by a map preserving all meets and directed joins;
(5) M fails to have locally finite meet breadth.

Proof. (Outline) The equivalence of (1), (2) and (3) is valid under the less restrictive
assumption that M is a complete (meet) semilattice (morphisms in this context
being maps which preserve non-empty meets; see [16, Section 1]). The equivalence
was established by Mislove in [20, Proposition 2.1] (or see [19, Proposition 6.3]).

Under the assumption that M is a distributive continuous lattice, the proof of
Corollary 2.2 in [20] establishes that (3) implies (4). We emphasise that this proof
draws heavily on the theory of continuous lattices, and in particular relies on the
Lemma on Primes [11, V-1.1]. (We cannot simply assert that the map supplied by
(3) extends to yield the map demanded in (4).)

The implication (4) implies (5) is elementary. To prove it, consider the meet x
of the copy of 2N in M. Then it can easily be shown that x is the meet of B, where
B can be taken to be a meet irredundant set of arbitrarily large finite cardinality;
see the proof of [20, Corollary 2.3] for the details. Finally, for any element x which
is the meet of n primes, the cardinality of a finite meet irredundant subset with
meet x must have cardinality at most n (as shown in the proof of [20, Corollary
2.3]). Therefore, via the contrapositive, (5) implies (1). �

We may deploy Theorem 3.6 with M as the filter lattice of a member L of D
or as the ideal lattice of L; the latter may when required be identified with the
lattice of filters of the order dual L∂ . The equivalence of primary interest to us in
Theorem 3.6 is that between (4) and (5). But we wish to go further and to present
conditions expressed in terms of L rather than in terms of Filt(L) and/or Idl(L).
We shall make use of Hofmann–Mislove–Stralka duality to achieve this.

We note that it is elementary to see that a countably infinite meet irredun-
dant subset generates a free semilattice on countably many generators, denoted N2,
within a (meet) semilattice, so that a meet semilattice contains such a set if and
only if it contains N2 as a subsemilattice, where ∧ is taken to be union. (This
observation appears as Remark 1.6 in [16].)
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The following lemma amplifies a statement made in the proof of [17, Theorem
3.1]. It mirrors [16, Proposition 1.13] but is slightly simpler to formulate thanks to
the additional assumption of distributivity, which gives us access to Theorem 3.6.
Here it will be convenient to work with the duality between S∨ and AL, in which
the first dual of S ∈ S∨ is taken to be Idl(S); see the discussion in Section 2. We
stress that, in the lemma, while the first pair of equivalences and the second pair
come from elementary duality theory, the link between the two pairs is established
with the aid of Theorem 3.6.

Lemma 3.7. Let L ∈ D. Then the following statements are equivalent:

(1) there is an embedding of 2N into Idl(L) which preserves arbitrary meets and
directed joins;

(2) there is a surjective S∨-morphism of L onto N2;
(3) there is an S∨-embedding of N2 into L;
(4) there is a surjective map from Idl(L) onto 2N which preserves arbitrary meets

and directed joins.

Proof. In (2) and (4) we are in fact dealing with epimorphisms. In addition, 2N and
N2 are mutually dual. Hence (1) and (2) are mutually dual, and hence equivalent
statements, and likewise for (3) and (4). See [15] for details.

Now assume that f : L → N2 is a surjective S∨-morphism. Then any set of points
an ∈ L such that f(an) = {n} for n ∈ N generates a copy of N2 in L. Therefore
(2) implies (3). Finally assume (4) holds. This implies that Idl(L) cannot have
locally finite meet breadth, since 2N does not. Then the implication (5) implies (4)
in Theorem 3.6 tells us that (1) holds. �

Combining all the preceding results, applied to L and, order dually, to L∂ , we
obtain the following theorem, which includes criteria in terms of L itself for the
canonical extension Lδ to coincide with the profinite completion of either of its
unital semilattice reducts.

Theorem 3.8. Let L ∈ D. Then the following statements are equivalent:

(M1) L fails to contain a meet subsemilattice isomorphic to the countably generated
free semilattice;

(M2) Filt(L) has locally finite meet breadth;

(M3) Lδ
∧ coincides with L̂∧.

Order dually, the following statements are equivalent:

(J1) L fails to contain a join subsemilattice isomorphic to the countably generated
free semilattice;

(J2) Idl(L) has locally finite meet breadth;

(J3) Lδ
∨ coincides with L̂∨.

We note that we showed directly in [13, Example 6.7] that a free semilattice on
an infinite number of generators has the property that the canonical extension and
S∧-profinite completion fail to coincide; indeed they have different cardinalities.

We have concentrated in this paper on distributive lattices, and distributivity
of the ideal and/or filter lattice was central in the derivations of the theorems in
this section. It is however of interest to know the extent to which the presence or
absence of a suitably embedded free semilattice influences the relationship between
the profinite completion and canonical extension of a unital semilattice.

To align with the literature on which we principally draw we shall work below
with S∨ rather than S∧. We follow the notation of Chakir and Pouzet [2, 3] and
denote by [κ]<ω the free S∨-algebra on κ generators, where κ is an infinite cardinal;
it can be identified with the join semilattice of finite subsets of κ, with ∨ as ∪ and
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0 as the empty set. We now elucidate when the free S∨-algebra on κ generators.
embeds into a given S in S∨ (or a given S ∈ S∧).

Proposition 3.9, in an order dual form, is given by Chakir and Pouzet [3, Sec-
tion 2], in part drawing on earlier studies on the presence or absence of infinite
antichains given in [16, 17, 18] and elsewhere. Chakir and Pouzet refer to a [join]
independent set in a join semilattice: order dually, a subset B of a meet semilattice
is [meet] independent if for all x ∈ B and every non-empty finite subset F of B\{x}
we have x �

∧
F . It is elementary to check that this condition is satisfied if and

only if B is meet irredundant, as we defined this term earlier. In the statement of
the proposition, preservation of the element 1 is not important: if an embedding
exists in (2) without 1 being preserved, then an embedding can be found which
does preserve 1 (see [3, Lemma 4(i)]).

Proposition 3.9. Let S ∈ S∧. Then the following statements are equivalent:

(1) S contains a meet irredundant subset of cardinality κ;
(2) S contains a meet-subsemilattice isomorphic to the free semilattice in S∧ on

κ generators.
(3) S contains a subposet isomorphic to the free algebra on κ generators in S∨;
(4) Filt(S) contains a subposet isomorphic to 2κ;
(5) 2κ embeds into Filt(S) by a map preserving arbitrary meets.

This result contributes to our study in several ways. When S ∈ D∧, condition

(3) is, by Theorem 3.8, necessary and sufficient for Sδ to fail to coincide with Ŝ.
The fact that in (5) the embedding map preserves arbitrary meets, rather than
arbitrary meets and directed joins, signals that the proposition does not subsume
our results for the distributive lattice case and, given the tools we needed to employ
there, we would not expect it to do so. However the fact that (3) implies (2) is
new information, even when S ∈ D∧. We might also apply the proposition to
S = Filt(L) where L ∈ D. Here, when κ = ℵ0, (1) is a necessary condition for
Filt(L) to fail to have locally finite meet breadth. Hence all of conditions (1)–(5)

must hold for S = Filt(L) whenever Lδ
∧ and L̂∧ do not coincide. For a semilattice S

which is not the meet reduct of some L ∈ D, we cannot expect condition (3) to be

necessary and sufficient for Sδ and Ŝ to fail to coincide. However the proposition

does indicate that, if its equivalent conditions are satisfied, then Ŝ is ‘big’. In such
a case coincidence is probably unlikely. (As noted earlier, we know that coincidence
fails if S = [κ]<ω.)

4. Characterisation of coincidence in terms of Priestley duality

Thus far in our comparison of Lδ
∧ and L̂∧ for L ∈ D, we have not made direct

use of Priestley duality. We do so now.
We call on some ideas originating with Lawson, Mislove and Priestley as part of

Theorem 3.1 in [17]. We note that the proofs of some implications in the full theorem
given there are abbreviated and cryptic. We shall take a somewhat different route.
On the way we obtain, in Proposition 4.1 and Corollary 4.2, a slight refinement of
the result given as Theorem 3.1 in [17]. Finally, in Theorem 4.3 we give necessary
and sufficient conditions on a distributive lattice to have coincidence of its canonical
extension with the profinite completions of its semilattice reducts.

Proposition 4.1. Let L ∈ D and let X = D(L,2) be its Priestley dual space.
Then the following statements are equivalent:

(1) L fails one, and hence all, of conditions (M1)–(M3) in Theorem 3.8;
(2) there is a countably infinite antichain of points xn in X converging to a point x

and such that there exists n for which x > xn.
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Order dually, the following statements are equivalent:

(1)
∂

L fails one, and hence all, of conditions (J1)–(J3) in Theorem 3.8;

(2)
∂

there is a countably infinite antichain of points x′n in X converging to a
point x′ and such that there exists n for which x′ 6 x′n.

Proof. We recall that under Priestley duality, and with L identified with the clopen
up-sets of X , the filter lattice of L can be identified with the lattice of open down-
sets of X , via the map F 7→

⋃
{ (X \ a) | a ∈ F }. Under this correspondence the

prime filters are exactly the open sets of the form X \ ↑u for u ∈ X . Given an
open down-set U , the sets X \ ↑z for z ∈ Min(X \U) are precisely the prime filters
minimal with respect to lying above U in Filt(L). Here MinS denotes the minimal
points of a subset S of X . Note that because X is a Priestley space,, S = ↑MinS
when S is closed in X ; this is easily proved by Zorn’s Lemma, using elementary
properties of Priestley spaces. Further details concerning duality for ideals and,
order dually, for filters, can be found in [7, Chapter 11].

Assume (1) holds and apply condition (2) in Theorem 3.6 to find an open down-
set U such that there exists an infinite antichain of points yk minimal in X \ U .
Since X \ U is closed, this antichain has a limit point, x say, and this belongs to
X \ U . Then there is a subsequence (ykn

)n>2 of (yk) converging to x. The point x
need not lie above any of the elements ykn

. However there is a minimal element of
X \U below x. Define yk1

to be such an element. Then let xn = ykn
(n = 1, 2, . . . )

to obtain a antichain sequence satisfying condition (2).
Now assume that (2) holds. Let Y = ↑{ xn | n ∈ N }. Since the sequence (xn)

is assumed to converge to x and X is Hausdorff, { xn | n ∈ N } ∪ {x} is closed,
and Y is the up-set it generates, by the assumption on x in (2). Therefore Y is
closed. Consider the filter F corresponding to the open down-set U := X \ Y . The
prime filters minimal with respect to lying below F in Filt(L) correspond to the
sets X \ ↑u, where u is minimal in Y . These are exactly the sets X \ ↑xn for n ∈ N.
Therefore condition (2) in Theorem 3.6 holds.

Since Idl(L) is Filt(L∂) and X∂ (with the same topology as on X) is the dual

space of L∂ , the dual conditions (1)∂ and (2)∂ are equivalent, by the previous
argument applied to L∂ . �

Corollary 4.2. Let L ∈ D and let X = D(L,2) be its Priestley dual space. Then
the following statements are equivalent:

(1) Filt(L) or Idl(L) fails to have locally finite meet breadth;
(2) X has an infinite antichain.

Both Filt(L) and Idl(L) fail to have locally finite meet breadth if both conditions

(2) and (2)
∂
in Proposition 4.1 hold.

Proof. Proposition 4.1 tells us that (1) implies (2).
Conversely, assume that X contains a countably infinite antichain of points xn,

which, by passing to a subsequence if necessary, we may assume converges to some
point x. Then we have the following cases:

(I) x > xn for some n;
(II) x 6 xn for some n;
(III) x is incomparable to all the elements xn.

In the first two cases, the results of Proposition 4.1 can be applied. In the third
case, we may add x to the original antichain to obtain one which satisfies both of

conditions (2) and (2)
∂
in Proposition 4.1. �

The next result deserves to be recorded explicitly. It follows from Theorem 3.8.
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Theorem 4.3. Let L ∈ D. Then in order that each of L̂∧ and L̂∨ serves as
the canonical extension Lδ of L it is necessary and sufficient that the Priestley
dual space of L contain no infinite antichain. Equivalently, L must not contain a
copy of the free countably generated semilattice, either as an S∧-subobject or as an
S∨-subobject.

We recollect that L inDmay contain an infinite antichain even when its Priestley
dual space does not. In [17, Proposition 3.3] it is shown that L contains an infinite
antichain but X = D(L,2) fails to contain an infinite antichain precisely when X
contains a subposet isomorphic to the disjoint union, Y say, of the chain ω and its
dual ω∂ . By way of an example we may consider L = (ω⊕ 1)× (1⊕ω∂), for which
D(L,2) = Y . In this case we can verify directly that Lδ = (ω ⊕ 2)× (2⊕ ω∂) and
that this serves also as the profinite completion of each of L∧ and L∨.

We now have criteria which enable us to recognise from the dual space of a

bounded distributive lattice L when the various completions, Lδ, L̂∧ and L̂∨ do
and do not coincide. There is a very special class of Priestley spaces which yield
examples in which we can recognise coincidence or non-coincidence of the comple-
tions very directly from the original lattice without the need to consider whether
it contains an infinite free semilattice.

We start from the observation that any algebraic lattice, equipped with its Law-
son topology, is a Priestley space and so the dual space of a member of D. The
lattices arising in this fashion have very special properties, as set out in [24]. Let
L be such a lattice, with dual space X , and let J (L) denote the ordered set of
join-irreducible elements of L. Then every non-zero element of L is a join of a finite
set of elements from J (L), and the ordered set J (L) is dually isomorphic to K(X),
the join semilattice of compact elements in the algebraic lattice X . The ideal lattice
Idl(L) is isomorphic to the lattice of Scott-open subsets of X . As a consequence
Idl(L) is completely distributive and is isomorphic to the lattice of down-sets of
J (L). The lattice of down-sets of an ordered set P fails to have locally finite meet
breadth if and only if it contains 2N as a complete sublattice (here the bounds
are not required to be preserved) or, equivalently, if and only if P has an infinite
antichain (see [18], where additional references to the result can also be found).

Proposition 4.4. Let X be an algebraic lattice equipped with the Lawson topology
and let L be the lattice of clopen up-sets of X. Then the following conditions are
equivalent:

(1) Idl(L) has locally finite meet breadth;
(2) J (L) does not contain an infinite antichain.

Corresponding order-dual statements can be made in the case that X∂ is an
algebraic lattice.

We can now construct many examples in which Lδ fails to coincide with L̂∨: we
simply take any join semilattice S having an infinite antichain, equip Idl(S) with
the Lawson topology and let L be the lattice of clopen up-sets of Idl(S).

An even more special case arises from lattices X which are linked bi-algebraic,
that is, both algebraic and dually algebraic and such that the interval topology
on X is Hausdorff. Any such lattice X carries the interval topology as its unique
Priestley space topology, this coincides with both the Lawson topology and dual
Lawson topology, and X is a compact zero-dimensional topological lattice; see [23]
and [11, Section VII-2]. In this situation Proposition 4.4 applies to both X and X∂ .

Hence the lattice L of clopen up-sets of X is such that Lδ coincides with both L̂∨

and L̂∧ if and only if X has neither an infinite antichain of compact elements nor
an infinite antichain of cocompact elements.
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