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In this talk on our forthcoming paper [4], we describe a new topological duality for bounded
lattices. The two main features of our duality are that it generalizes Stone duality for bounded
distributive lattices, and that the morphisms on either side are not the standard ones. A positive
consequence of the choice of morphisms is that those on the topological side are functional. We
obtain the following results:

(a) canonical extensions of bounded lattices are the algebraic versions of the existing dualities
for bounded lattices by Urquhart [7] and Hartung [5];

(b) there is a universal construction which associates to an arbitrary lattice two distributive
lattice envelopes with an adjoint pair between them;

(c) we identify precisely which maps between bounded lattices admit functional duals on our
newly defined dual spaces.

For the result mentioned under (a), we rely on previous work of Gehrke, Jénsson and Harding
[2,3]. For the universal construction of (b), we modify a construction of the injective hull of
a semilattice by Bruns and Lakser [1], adjusting their concept of ‘admissibility’ to the fini-
tary case. For (c), we use Priestley duality for distributive lattices [6] and our own universal
characterization in (b) of the distributive envelopes a bounded lattice.
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