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Rival approaches?

Aim of talk: to compare two duality notions:
Suppose we have two concrete categories A and XT, where the
subscript T signals presence of topological structure. Concreteness
(in the weak sense that there are faithful grounding functors to
SET) enables us to talk about finite objects.

Stone-type duality (as the term is used by Johnstone in
Stone Spaces): a dual equivalence between A and XT arising
from a dual equivalence between Afin and XfinT (the ‘finite
level’) by taking, respectively, Ind-completion and
Pro-completion.

Natural duality (full): dual equivalence between suitable
categories A and XT set up by hom-functors into M and M∼T

with the same finite underlying set, with the unit and counit
maps of the adjunction being isomorphisms, given by
evaluations. Here (M,M∼T) acts as a dualising object.
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Two classic examples, each both Stone-type and natural

(1) Stone duality

A = BA—Boolean algebras

XT = STONE—Stone (alias Boolean) spaces

(2) A related dual equivalence:

AT = STONE–BA—Boolean-topological Boolean algebras

X = SET

A category isomorphic to AT is

CABA—complete and atomic Boolean algebras

[Obvious choice of morphisms in all cases.]



Features of the preceding examples

BA is a finitary algebraic category

SET is (degenerately) a finitary algebraic category

STONE is a category of topological spaces

We have isomorphic categories:{
CABA is an infinitary algebraic category,

STONE-BA is a topological algebraic category

NOTE: operating in ZFC throughout—spaces, not frames; no
glimpse of an Elephant here.



Generation properties

BA is expressible as

HSP(2)—a variety, definable by equations;

ISP(2) —a quasivariety, definable by implications

Each of the other categories too is generated by a 2-element
member, assumed to carry the discrete topology in case of STONE
and STONE-BA. [More detail later.]



Putting the pieces together
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[ is the obvious forgetful functor.
The two dual equivalences (horizontal arrows) are related by
‘topology-swapping’.
Topology-swapping originates at the level of the generating
objects.
The left-hand vertical arrow is the canonical extension
functor, when regarded as being into CABA.

Coalgebra buffs would now want to add endofunctors. . . ..



The distributive lattice case, likewise
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* = completely distributive linked bialgebraic lattices (≡ up-set
lattices)
This time, one of the categories without topology is

a category of algebras (DL)

and the other is

a category of structures (POS).

[This feature doesn’t show up with Stone duality.]



Duality theory: parts that category theory does reach
[informal discussion]

Assume we have a category C which is concrete in the strong sense
that

there is a faithful grounding functor U : C→ SET;
U is representable in the sense that there exists C0 ∈ C such
that U ∼= C(C0,−).

Then C0 acts as the ‘free object on one generator’.



Dualising objects

Now assume C and Y are concrete, with grounding functors U and
V , and that there are contravariant functors S : Y → C and
T : C→ Y yielding a dual adjunction ∠S ,T , e, ε〉:

C(C , SY ) ∼= Y(Y ,TC ).

This set-up guarantees the existence of a dualising object, given
by (SY0,TC0) which (modulo a bijection) have the same
underlying set. Refer to SY0 and TC0 as alter egos of each other.
With the grounding functors now suppressed
The unit and counit maps of the adjunction are necessarily given
by evaluation:

eC : C → STC , eC (c) : y 7→ y(c),

εY : Y → TSY , εY (y) : c 7→ c(y).



Levels of good behaviour of a dual adjunction with
associated dualising object

(1) just a dual adjunction;
(2) a dual adjunction, with unit and counit maps being

‘embeddings’;

(3) as in (2) and with each eC an isomorphism;
(4) a dual equivalence, with each eC and each εY an isomorphism.

How far one can get will depend on how well the alter egos making
up the dualising object operate in tandem.

Given that (1) holds, (2) relies on a compatibility requirement.

(3) and (4) are much harder to address in full generality.
Categorical methodology exists—but not pursued here.



Narrowing the focus: a more algebraic perspective

A motivation for studying lattice-based or poset-based algebras
often comes from logic—modelling syntactic specifications
algebraically.
Motivation for studying dualities for these comes from

the power of relational semantics (Kripke frames), eg for
modal logics;
coalgebraic modelling, of transition systems, eg.

We shall restrict to finite M—because we want to talk about
profiniteness.

So what sort of categories should we encompass? For sure, certain
categories whose models are

algebras, often lattice-based.

But more generally we shall want to

admit partial(ly defined) algebraic operations.



Narrowing the focus, continued

Within this framework, we’d want to focus on

varieties—specified by equations, or
quasivarieties—specified by implications.

These are, respectively, classes closed under H, S, P, or I, S, P.

Which should we go for: H or I?

To be specific, consider a single algebra M and compare HSP(M)
and ISP(M).

A ∈ A := ISP(M) iff morphisms from A into M separate
points.

In general, ISP(M) ( HSP(M).



The lattice-based algebra case, with M finite

HSP(M) = ISP(M), where M is a finite set of finite algebras
(actually can take M = HS(M))—by Jónsson’s Lemma.

So HSP case reduces to ISP case, at the small cost of working in a
multisorted set-up.

Key duality results extend, or can be expected to extend, to the
multisorted case.



From algebras to structures

We want to be even-handed in our use of categories, and to allow
for structures—not just algebras.

Let M be a finite non-empty set We shall call M a structure if
M = (M;G ,H,R), where

G is a set of (total) operations;
H is a set of partial operations;
R is a set of relations,

all of finite arity.

We call M a total structure if H = ∅.

The characterisations of of varieties and quasivarieties extend,
mutatis mutandis, to the structures we consider.

The corresponding topologised structure, MT, will always carry the
discrete topology.



A pair of structures, four categories

Given any two structures, M and M∼ (on the same underlying set,
but no compatibility yet) we have four categories:

A := ISP(M), X := IS0P+(M∼),

AT := IScP(MT), XT := IS0
cP+(M∼T).

The first pair are categories of structures, the second pair are
categories of Stone-structures of type M∼ .

Technical note
P allows empty indexed products, yielding the total one-element
structure; P+ doesn’t. Operator S excludes the empty structure
while S0 includes it, when the type does not include nullary
operations.



A dual equivalence on the cheap:
Hofmann–Mislove–Stralka duality for semilattices

S = ISP(2) SL = ∧, 1− semilattices

Z = ST = IScP(2T) STONE-SL

(Here we have two categories rather than four.)

On finite, discretely topologised, objects the topology does no
work, so

Zfin “is” Sfin.

With this identification the evaluation maps are just identities. SO
we have a dual equivalence at the finite level.



HMS duality, continued

Easy:

S built from Sfin by taking directed (cofiltered) limits,

Z built from Zfin by taking projective limits (filtered colimits).

and the limits/colimits are preserved by the functors.

S
D
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�
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Sfin

Ind

6

-� Zfin

Pro

6

Back a step . . .



Profiniteness, concretely

Profinite objects, are, loosely, those which are built from finite ones
by means of filtered colimits.

Let C be a concrete category and Cfin the full subcategory of finite
objects. We may ask whether

C = Pro-Cfin,

the categorical pro-completion of Cfin. (C a finitely accessible
category.)

There is a mismatch between concretely-realised profinite limits
and abstract ones (viewed as diagrams). This is why profinite
widgets (groups, BAs, . . .) are built from CfinT rather than Cfin

and so are treated as topological algebras. Henceforth keep the T

tacit since we always use the discrete topology on finite objects.



The dual notion: Ind-completion

This behaves well, for many classes of algebras.
In any variety V of algebras which is locally finite (ie, finitely
generated algebras are finite), then every every A ∈ V is the
directed union of its finite subalgebras. Hence

V = Ind-Vfin.

This extends, easily, to a corresponding local finiteness result for
any ISP(M∼) where M∼ is a finite structure.



HMS duality: lifting from the finite level

At the finite level, the duality works trivially.
S is the Ind-completion of Sfin.
Z is the Pro-completion of Zfin.
The finite-level dual equivalence lifts to that between S and
Z, by categorically routine arguments.

This was how the HMS duality was first proved.

What is NOT trivial is the recasting of Z in (infinitary) algebraic
terms—this is the Fundamental Theorem on Compact
Zero-Semilattices..



Compatibility of a pair of structures

M and M∼ are compatible structures on the same finite set M
(operations, relations and partial operations allowed); No
presumption that M is “algebraic” and M∼ “relational”.
Compatibility: the structure of M∼ is preserved by the
operations and partial operations of M and the relations are
substructures.

This notion is symmetric.



Paired adjunctions.

Let

A := ISP(M) and XT := IScP(M∼T).
AT := IScP(MT) and X := ISP(M∼).

We have a dual adjunction between A and XT set up by the
hom-functors

D : A→ XT,

{
D(A) = A(A,M)

D(f ) = − ◦ f

E : XT → A,

{
E(X) = X + T(X,M∼T)

E(φ) = − ◦ φ

and likewise for F and G .
Compatibility ensures that all the unit and counit maps are given
by evaluations and are embeddings.



Levels of good behaviour
Focus first on A and XT and the dual adjunction 〈D,E , e, ε〉.
Treat M as given, M∼ a candidate alter ego. Can M,M∼ be chosen
so that

M∼ yields a duality (eA is an isomorphism for all A ∈ A):
M∼ yields a full duality (ie 〈D,E , e, ε〉 sets up a dual
equivalence)
M∼ yields a [full] duality between Afin and XfinT (M∼ yields a
[full] duality, at the finite level.

Independence results: quasivarieties of algebras

Given A, dualisability and full dualisability (and strong
dualisability too) are independent of the choice of the
generator M.

Cautionary example (Hyndman/Willard)
In general A can be dualisable but not fully dualisable: example
provided by an M which is a 3-element chain with 2 unary
operations,



The finite level, in the natural duality set-up

We want, at the very least, a duality at the finite level.

This may be trivial (as for SL) or easy (as for BA or DL).

It may be possible only with an alter ego of infinite type.
Example:

M = ({0, 1},→)

(A = HSP(M) = ISP(M) is the variety of implication
algebras).



Finitely generated lattice-based (quasi)varieties

Let A = ISP(M), where M is a finite lattice with (maybe)
additional operations.

Then there exists M∼ yielding a duality, with M∼ a total
structure.

There exists M∼ yielding a full duality (in fact a strong
duality), but M∼ cannot always to chosen to be a total
structure: in general partial homomorphisms of arity 6 2 need
to be included in M∼ .

There is a corresponding result, in terms of multisorted dualities,
for a variety A = HSP(M).



Lifting from the finite level, via Pro- and Ind-completion

Proposition Take M finite, and M,M∼ compatible structures,

A := ISP(M) and XT := IScP(M∼T).

Assume that M∼ yields a duality between A and XT. Then M∼
yields a full duality between A and XT if and only if

M∼ yields a full duality at the finite level, and
XT = Pro−Xfin.

This is a purely categorical result.

SO we’re all set–or are we?
Must XT = Pro−Xfin??



Lifting from the finite level: compactness

The Duality Compactness Theorem
Assume M finite and that (M,M∼) yields a duality at the finite
level and M∼ is of finite type. Then M yields a duality:

for M an algebra (Zadori, Willard);
for M a structure (D. Hofmann, 2002—established in context
of finitary limit sketches).

We’d like to insert ‘full’ in assumption and conclusion. BUT WE
CAN’T!

Cautionary examples (Davey/Haviar/Willard et al.)

for M the 3-element chain, there exists M∼ of finite type which

? dualises DL,
? fully dualises DL at the finite level
? but which does NOT lift to a full duality for DL.

Same conclusion with M replaced by any finite non-Boolean
M ∈ DL.
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Lifting from the finite level: better news

A Weak Full Duality Compactness Theorem (Davey, 2006) A
full duality at the finite level based on (M,M∼) does lift to a full
duality if

M∼ is of finite type, and
M∼ is a total structure (no partial operations).

and then the dual equivalence between A and XT does arise from
Ind- and Pro-completion.

Catch 22: We often get full dualisability only at the expense pf
adding partial operations, and doing this may mean the duality is
NOT given by Ind- and Pro-completion,



Dualities in partnership, stage 1

Back to the four category set-up.

A
D
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?

with

A := ISP(M) and X := IS0P+(M∼);
AT := IScP(MT) and X := ISP(M∼).
M and M∼ compatible structures on the same underlying finite
set,



Dualities in partnership, stage 2
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Paired Adjunctions Theorem The following are equivalent:

(i) the outer square commutes, ie, nA(A) = G(D(A)[), for all
A ∈ A;

(ii) nA(A) consists of all maps α : A(A,M)→ M that preserve
the structure on M∼ , for all A ∈ A;

(iii) M∼ yields a duality between A and XT at the finite level.

Moreover, if M∼ is of finite type, then (i)–(iii) are equivalent to

(iv) M∼T yields a duality between A and XT.



Dualities in partnership, stage 3

The TopSwap Theorem (Davey/Haviar/Priestley, 2011)
Assume M a total structure of finite type.

(1) If M∼ yields a finite-level duality between A and XT, then M
yields a duality between AT and X.

(2) If M∼ yields a finite-level full duality between A and XT, then
F and G set up a dual equivalence between AT and X.

The substance here is in (1): the dualisability claim. It doesn’t
come from Ind- and Pro-completion arguments.



Describing pro-completions: a theorem with a long
genealogy

Result is part algebraic, part categorical:

Pro-BAfin = STONE-BA;
Pro-DLfin = STONE-DL;
Pro-SLfin = STONE-SL (SL = meet-semilattices with >);
Pro-Vfin = STONE-V, for V any finitely generated variety
of lattices;
. . ..

But there are limits to how far this goes.

And, beyond algebras,

Pro-POSfin 6= STONE-POS—LHS is the strictly smaller
category PRI of Priestley spaces.



Describing the category AT

Assume that A = ISP(M), where M is a finite set of finite
lattice-based algebras, and assume that A is a variety (or
equivalently, assume that every homomorphic image of every
subalgebra of each algebra in M is in A). Then A is such that

AT = STONE −A.

This is not the most general theorem possible, but it gives a widely
applicable result avoiding hard-to-state algebraic conditions. These
same conditions imply that ATp = Pro-Afin.
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