
Line Search Methods for

Unconstrained Optimisation

Lecture 8, Numerical Linear Algebra and Optimisation

Oxford University Computing Laboratory, MT 2007

Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

The Generic Framework

For the purposes of this lecture we consider the unconstrained minimisation
problem

(UCM) min
x∈Rn

f(x),

where f ∈ C1(Rn, R) with Lipschitz continous gradient g(x).

• In practice, these smoothness assumptions are sometimes violated, but
the algorithms we will develop are still observed to work well.

• The algorithms we will construct have the common feature that, starting
from an initial educated guess x0 ∈ Rn for a solution of (UCM), a sequence
of solutions (xk)N ⊂ Rn is produced such that

xk → x∗ ∈ R
n

such that the first and second order necessary optimality conditions

g(x∗) = 0,

H(x∗) � 0 (positive semidefiniteness)

are satisfied.

• We usually wish to make progress towards solving (UCM) in every itera-
tion, that is, we will construct xk+1 so that

f(xk+1) < f(xk)

(descent methods).

• In practice we cannot usually compute x∗ precisely (i.e., give a symbolic
representation of it, see the LP lecture!), but we have to stop with a xk

sufficiently close to x∗.

• Optimality conditions are still useful, in that they serve as a stopping
criterion when they are satisfied to within a predetermined error tolerance.

• Finally, we wish to construct (xk)N such that convergence to x∗ takes
place at a rapid rate, so that few iterations are needed until the stopping
criterion is satisfied. This has to be counterbalanced with the computa-
tional cost per iteration, as there typically is a tradeoff

faster convergence ⇔ higher computational cost per iteration.

We write fk = f(xk), gk = g(xk), and Hk = H(xk).

Generic Line Search Method:

1. Pick an initial iterate x0 by educated guess, set k = 0.

2. Until xk has converged,

i) Calculate a search direction pk from xk, ensuring that this direction
is a descent direction, that is,

[gk]Tpk < 0 if gk 6= 0,

so that for small enough steps away from xk in the direction pk the
objective function will be reduced.

ii) Calculate a suitable steplength αk > 0 so that

f(xk + αkpk) < fk.

The computation of αk is called line search, and this is usually an
inner iterative loop.

iii) Set xk+1 = xk + αkpk.

Actual methods differ from one another in how steps i) and ii) are computed.

Computing a Step Length αk

The challenges in finding a good αk are both in avoiding that

the step length is too long,

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

(the objective function f(x) = x2 and the iterates xk+1 = xk +αkpk generated
by the descent directions pk = (−1)k+1 and steps αk = 2+3/2k+1 from x0 = 2)

or too short,

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

(the objective function f(x) = x2 and the iterates xk+1 = xk +αkpk generated by the descent
directions pk = −1 and steps αk = 1/2k+1 from x0 = 2).

Exact Line Search:

In early days, αk was picked to minimize

(ELS) min
α

f(xk + αpk)

s.t. α ≥ 0.

Although usable, this method is not considered cost effective.

Inexact Line Search Methods:

• Formulate a criterion that assures that steps are neither too long nor too
short.

• Pick a good initial stepsize.

• Construct sequence of updates that satisfy the above criterion after very
few steps.

Backtracking Line Search:

1. Given αinit > 0 (e.g., αinit = 1), let α(0) = αinit and l = 0.

2. Until f(xk + α(l)pk)“<”fk,

i) set α(l+1) = τα(l), where τ ∈ (0,1) is fixed (e.g., τ = 1
2
),

ii) increment l by 1.

3. Set αk = α(l).

This method prevents the step from getting too small, but it does not prevent
steps that are too long relative to the decrease in f .

To improve the method, we need to tighten the requirement

f(xk + α(l)pk)“<”fk.

To prevent long steps relative to the decrease in f , we require the Armijo
condition

f(xk + αkpk) ≤ f(xk) + αkβ · [gk]Tpk

for some fixed β ∈ (0,1) (e.g., β = 0.1 or even β = 0.0001).

That is to say, we require that the achieved reduction if f be at least a fixed
fraction β of the reduction promised by the first-oder Taylor approximation
of f at xk.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Backtracking-Armijo Line Search:

1. Given αinit > 0 (e.g., αinit = 1), let α(0) = αinit and l = 0.

2. Until f(xk + α(l)pk) ≤ f(xk) + α(l)β · [gk]Tpk,

i) set α(l+1) = τα(l), where τ ∈ (0,1) is fixed (e.g., τ = 1
2),

ii) increment l by 1.

3. Set αk = α(l).

Theorem 1 (Termination of Backtracking-Armijo). Let f ∈ C1 with gradient
g(x) that is Lipschitz continuous with constant γk at xk, and let pk be a
descent direction at xk. Then, for fixed β ∈ (0,1),

i) the Armijo condition f(xk + αpk) ≤ fk + αβ · [gk]Tpk is satisfied for all
α ∈ [0, αk

max], where

αk
max =

2(β − 1)[gk]Tpk

γk‖pk‖2
2

,

ii) and furthermore, for fixed τ ∈ (0,1) the stepsize generated by the backtracking-
Armijo line search terminates with

αk ≥ min

(

αinit,
2τ(β − 1)[gk]Tpk

γk‖pk‖2
2

)

.

We remark that in practice γk is not known. Therefore, we cannot simply
compute αk

max and αk via the explicit formulas given by the theorem, and we
still need the algorithm on the previous slide.

Theorem 2 (Convergence of Generic LSM with B-A Steps).

Let the gradient g of f ∈ C1 be uniformly Lipschitz continuous

on Rn. Then, for the iterates generated by the Generic Line

Search Method with Backtracking-Armijo step lengths, one of

the following situations occurs,

i) gk = 0 for some finite k,

ii) limk→∞ fk = −∞,

iii) limk→∞min

(

|[gk]Tpk|,

∣

∣[gk]Tpk
∣

∣

‖pk‖2

)

= 0.

Computing a Search Direction pk

Method of Steepest Descent:

The most straight-forward choice of a search direction, pk = −gk, is called
steepest-descent direction.

• pk is a descent direction.

• pk solves the problem

min p ∈ R
n mL

k (x
k + p) = fk + [gk]Tp

s.t. ‖p‖2 = ‖gk‖2.

• pk is cheap to compute.

Any method that uses the steepest-descent direction as a search direction is
a method of steepest descent.

Intuitively, it would seem that pk is the best search-direction one can find. If
that were true then much of optimisation theory would not exist!

Theorem 3 (Global Convergence of Steepest Descent). Let the

gradient g of f ∈ C1 be uniformly Lipschitz continuous on Rn.

Then, for the iterates generated by the Generic LSM with B-A

steps and steepest-descent search directions, one of the following

situations occurs,

i) gk = 0 for some finite k,

ii) limk→∞ fk = −∞,

iii) limk→∞ gk = 0.

Advantages and disadvantages of steepest descent:

⊕ Globally convergent (converges to a local minimiser from any
starting point x0).

⊕ Many other methods switch to steepest descent when they
do not make sufficient progress.

⊖ Not scale invariant (changing the inner product on Rn changes
the notion of gradient!).

⊖ Convergence is usually very (very!) slow (linear).

⊖ Numerically, it is often not convergent at all.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2 (Rosenbrock function),
and the iterates generated by the generic line search steepest-descent method.

More General Descent Methods:

Let Bk be a symmetric, positive definite matrix, and define the

search direction pk as the solution to the linear system

Bkpk = −gk

• pk is a descent direction, since

[gk]Tpk = −[gk]T[Bk]−1gk < 0.

• pk solves the problem

min
p∈Rn

m
Q
k (xk + p) = fk + [gk]Tp +

1

2
pTBkp.

• pk corresponds to the steepest descent direction if the norm

‖x‖Bk :=

√

xTBkx

is used on Rn instead of the canonical Euclidean norm. This

change of metric can be seen as preconditioning that can be

chosen so as to speed up the steepest descent method.

• If the Hessian Hk of f at xk is positive definite, and Bk = Hk,

this is Newton’s method.

• If Bk changes at every iterate xk, a method based on the

search direction pk is called variable metric method. In par-

ticular, Newton’s method is a variable metric method.

Theorem 4 (Global Convergence of More General Descent Di-

rection Methods). Let the gradient g of f ∈ C1 be uniformly

Lipschitz continuous on Rn. Then, for the iterates generated by

the Generic LSM with B-A steps and search directions defined

by Bkpk = −gk, one of the following situations occurs,

i) gk = 0 for some finite k,

ii) limk→∞ fk = −∞,

iii) limk→∞ gk = 0,

provided that the eigenvalues of Bk are uniformly bounded above,

and uniformly bounded away from zero.

Theorem 5 (Local Convergence of Newton’s Method). Let the Hessian H of
f ∈ C2 be uniformly Lipschitz continuous on Rn. Let iterates xk be generated
via the Generic LSM with B-A steps using αinit = 1 and β < 1

2
, and using

the Newton search direction nk, defined by Hknk = −gk. If (xk)N has an
accumulation point x∗ where H(x∗) ≻ 0 (positive definite) then

i) αk = 1 for all k large enough,

ii) limk→∞ xk = x∗,

iii) the sequence converges Q-quadratically, that is, there exists κ > 0 such
that

lim
k→∞

‖xk+1 − x∗‖

‖xk − x∗‖2
≤ κ.

The mechanism that makes Theorem 5 work is that once the sequence
(xk)N enters a certain domain of attraction of x∗, it cannot escape again
and quadratic convergence to x∗ commences.

Note that this is only a local convergence result, that is, Newton’s method is
not guaranteed to converge to a local minimiser from all starting points.

The fast convergence of Newton’s method becomes apparent

when we apply it to the Rosenbrock function:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

Contours for the objective function f(x, y) = 10(y−x2)2+(x−1)2, and the iterates generated
by the Generic Linesearch Newton method.

Modified Newton Methods:

The use of Bk = Hk makes only sense at iterates xk where

Hk ≻ 0. Since this is usually not guaranteed to always be the

case, we modify the method as follows,

• Choose Mk � 0 so that Hk + Mk is “sufficiently” positive

definite, with Mk = 0 if Hk itself is sufficiently positive defi-

nite.

• Set Bk = Hk + Mk and solve Bkpk = −gk.

The regularisation term Mk is typically chosen as one of the following,

• If Hk has the spectral decomposition Hk = QkΛk[Qk]T, then

Hk + Mk = Qk max(ε I, |Dk|)[Qk]T.

• Mk = max(0,−λmin(H
k)) I.

• Modified Cholesky method:

1. Compute a factorisation PHkPT = LBLT, where P is a permutation
matrix, L a unit lower triangular matrix, and B a block diagonal matrix
with blocks of size 1 or 2.

2. Choose a matrix F such that B + F is sufficiently positive definite.

3. Let Hk + Mk = PTL(B + F)LTP .

Other Modifications of Newton’s Method:

1. Build a cheap approximation Bk to Hk:

• Quasi-Newton approximation (BFGS, SR1, etc.),

• or use finite-difference approximation.

2. Instead of solving Bkpk = −gk for pk, if Bk ≻ 0 approximately

solve the convex quadratic programming problem

(QP) pk ≈ arg min
p∈Rn

fk + pTgk +
1

2
pTBp.

The conjugate gradient method is a good solver for step 2:

1. Set p(0) = 0, g(0) = gk, d(0) = −gk, and i = 0.

2. Until g(i) is sufficiently small or i = n, repeat

i) α(i) =
‖g(i)‖2

2

[d(i)]TBkd(i) ,

ii) p(i+1) = p(i) + α(i)d(i),

iii) g(i+1) = g(i) + α(i)Bkd(i),

iv) β(i) =
‖g(i+1)‖2

2

‖g(i)‖2
2

,

v) d(i+1) = −g(i+1) + β(i)d(i),

vi) increment i by 1.

3. Output pk ≈ p(i).

Important features of the conjugate gradient method:

• [gk]Tp(i) < 0 for all i, that is, the algorithm always stops with

a descent direction as an approximation to pk.

• Each iteration is cheap, as it only requires the computation

of matrix-vector and vector-vector products.

• Usually, p(i) is a good approximation of pk well before i = n.

