Modelling basket credit default swaps with default contagion

Helen Haworth
haworthh@maths.ox.ac.uk

OCIAM, Mathematical Institute
Oxford University
1. Some credit background
2. The structural model
3. Multiple firm model with default contagion
 - Methodology
 - Implementation
 - Results
 - Contagion with decay
4. Future work
What is Credit?

• Credit risk is the risk that an obligor does not honour its obligations
• It is often thought of as default risk
• Important to banks, corporations and investors
• Reason the multi-billion dollar credit derivatives market exists
 • Simplest: credit default swap (CDS)
 • Insurance against risk of default by a company
iTraxx and CDX indices were launched in Europe and the US, respectively, in 2004
Each CDS index has 125 constituents which are updated every 6 months
Created massive liquidity
Standardized collateralized debt obligations (CDOs) and underlying tranches
More esoteric products – CDO-squareds, options on CDO tranches etc.
Default Characterisation

Firms do not operate in isolation and a company default can be triggered in three main ways:

1. By factors directly impacting multiple companies
 - Cyclical
 - Market-wide shock

2. By company-specific incidents or situations

3. Due to inter-company ties
 - Physical
 - Perceived
Default Characterisation

- Default dependence then occurs primarily through two mechanisms
 1. As a direct consequence of a common factor driving default
 2. Due to inter-company ties: contagion
- The result is a complex network of non-symmetrical links between companies
- The impact of individual credit events can ripple through the market
The original structural model dates back to the papers of Black & Scholes (1973) and Merton (1974).

Based on economic fundamentals through modelling the dynamics of firm assets, default occurs if firm value, V, drops below the value of debt, K.

Firm assets are modelled as a geometrical Brownian motion,

$$dV = \mu V \, dt + \sigma V \, dW$$

Debt and equity valued as contingent claims on the firm assets,

$$C(V, T) = \min(K, V(T)) = K - \max(0, K - V(T))$$
In the single-firm case, there are many extensions to the basic model:

- Black & Cox (1976) – allow default prior to maturity
- Longstaff & Schwarz (1995) – stochastic interest rates
- Leland & Toft (1996) – endogenous default trigger
- Zhou (1997) – jump diffusion model
Existing work on multiple-firm structural models is limited

- Zhou (2001) calculates default correlations for two companies, modelled as correlated Brownian motions
- Hull, Predescu & White (2005) assume assets are driven by a common factor and price CDO tranches using Monte Carlo
Model Overview

- First passage model – firm values are modelled as correlated geometric Brownian motions with exponential default thresholds
- Idiosyncratic ties are incorporated through a jump in volatility on default of a related entity
- The framework is extremely flexible, incorporating default causality and allowing for asymmetrical links
- Value k^{th}-to-default CDS baskets in the presence of asset correlation and default contagion
We consider n companies, firm values V_i, with default as the first time that V_i hits a lower default barrier $b_i(t)$

$$dV_i(t) = (r_f - q_i)V_i(t)\,dt + \sigma_i V_i(t)\,dW_i(t)$$

$\text{cov}(W_i(t), W_j(t)) = \rho_{ij}t$ for $i, j = 1, \ldots, n$

We assume exponential default barriers, reflecting the existence of debt covenants,

$$b_i(t) = K_i e^{-\gamma_i(T-t)}$$
Let Ω represent the default probability event of interest. For vector V of firm values, and infinitesimal generator L, we solve

$$LU = \frac{\partial U}{\partial t} + \sum_{i=1}^{n}(r_f - q_i)V_i \frac{\partial U}{\partial V_i} + \frac{1}{2} \sum_{i,j=1}^{n} \rho_{ij} \sigma_i \sigma_j V_i V_j \frac{\partial^2 U}{\partial V_i \partial V_j} = 0$$

$$U(V, T) = 1_{\Omega}(V(T))$$

for $U(V, t)$ to calculate the probability of Ω by Feynman-Kac,

$$U(v, t) = \mathbb{E} \{1_{\Omega}(V(T)) | V(t) = v\} = \mathbb{P}(V(T) \in \Omega | V(t) = v)$$
Implementation

• We solve backwards in time on $[0, T] \times \mathbb{R}^n_+$ using a finite-difference method with Crank Nicolson time-stepping and a multigrid solver

• Deal with boundary conditions by setting a firm’s drift and volatility to zero on its barrier

• Count the number of companies whose values are at or below their default barriers and define the initial condition accordingly
Introducing Contagion

- Dependence structure is currently driven just by correlation in firm values
- Incorporate default contagion by allowing company volatilities to jump on default of related entity
- For example, if company i defaults, for $i \neq j$, we let

$$\sigma_j \rightarrow \sigma_j F^{\rho_{ij}}$$

for some constant $F \geq 1$
Introducing Contagion

• In other words,

\[\sigma_j(V, t) = \begin{cases}
\sigma_j & \text{if } V_i(t) > b_i(t), V_j(t) > b_j(t) \\
\sigma_j F^{\rho_{ij}} & \text{if } V_i(t) \leq b_i(t), V_j(t) > b_j(t) \\
0 & \text{if } V_j(t) \leq b_j(t)
\end{cases} \]

• Subsequent default by firm \(k \notin \{i, j\} \) would give

\[\sigma_j \rightarrow \sigma_j F^{\rho_{ij}} \rightarrow \sigma_j F^{\rho_{ij}} F^{\rho_{kj}} \]
Consider a contract par value K on a basket of n companies, with bond recovery on default of R and continuous spread payments, c

The discounted default payment, paid to the CDS buyer in the event of the k^{th} company default, is

\[
(1 - R)K \int_{0}^{T} e^{-r_{f}s} \mathbb{P}(s \leq \tau_k \leq s + ds) \, ds
\]

\[
= (1 - R)K \int_{0}^{T} -e^{-r_{f}s} \frac{\partial}{\partial s} \mathbb{P}(\tau_k > s) \, ds
\]
k^{th}-to-Default CDS Baskets

- The discounted spread payment is

$$cK \int_0^T e^{-rf_s} \mathbb{P}(\tau_k > s) \, ds,$$

- Equating these gives the k^{th}-to-default CDS spread

$$c_k = \frac{(1 - R) \left\{ 1 - e^{-rfT} \mathbb{P} (\tau_k > T) - \int_0^T r_f e^{-rf_s} \mathbb{P} (\tau_k > s) \, ds \right\}}{\int_0^T e^{-rf_s} \mathbb{P} (\tau_k > s) \, ds}$$
Two-firm Results

Joint survival probability

First-to-default CDS spread

\[\sigma_i = 0.2, \ r_f = 0.05, \ q_i = 0, \ \gamma_i = 0.03, \ \text{initial credit quality} = 2, \ R = 0.5 \]
Two-firm Results

Probability of 1 default

Probability of 2 defaults

Ten-year default probabilities

\[\sigma_i = 0.2, \quad r_f = 0.05, \quad q_i = 0, \quad \gamma_i = 0.03, \quad \text{initial credit quality} = 2 \]
Second-to-Default CDS Spreads

5-year 2nd-to-default CDS

10-year 2nd-to-default CDS

\[\sigma_i = 0.2, \ r_f = 0.05, \ q_i = 0, \ \gamma_i = 0.03, \ \text{initial credit quality} = 2, \ R = 0.5 \]
Contagion with Decay

• More realistic for the spike in volatility on default to decay over time, \(\sigma_j \rightarrow \sigma_j (1 + \Delta_{ij} e^{-\zeta(t-\tau_i)}) \)

• Setting \(\Delta_{ij} = F^{\rho_{ij}} - 1 \) enables direct comparison of results with and without decay.

• After default by firm \(i \), time-dependence of \(\sigma_j(t) \) for \(j \neq i \) is removed by replacing \(\sigma_j^2(t) \) with its average over the remaining time-to-maturity, \(\bar{\sigma}_j^2 \)

\[
\bar{\sigma}_j^2 = \frac{1}{T - \tau_i} \int_0^{T-\tau_i} \sigma_j^2(s) \, ds
\]
Contagion with Decay

- This gives the new volatility

\[
\sigma_j^2 + \frac{2\Delta_{ij}\sigma_j^2}{\zeta(T - \tau_i)} (1 - e^{-\zeta(T - \tau_i)}) + \frac{\sigma_j^2 \Delta_{ij}^2}{2\zeta(T - \tau_i)} (1 - e^{-2\zeta(T - \tau_i)})
\]

- The problem decouples on the boundary, allowing us to solve the two-firm problem on \([0, \tau_i]\) and a one-company problem on \([\tau_i, T]\).
Contagion with Decay

Probability of 1 default

- $\sigma_i = 0.2$, $r_f = 0.05$, $q_i = 0$, $\gamma_i = 0.03$, initial credit quality = 2

Probability of 2 defaults

Ten-year default probabilities with decaying contagion
Contagion with Decay

Additional spread on 2nd-to-default CDS due to contagion, $\rho = 0.75$

$\sigma_i = 0.2$, $r_f = 0.05$, $q_i = 0$, $\gamma_i = 0.03$, initial credit quality = 2, $R = 0.5$
Three-firm Results

1^{st}-to-default CDS spread

2^{nd}-to-default CDS spread

$\sigma_i = 0.2$, $r_f = 0.05$, $q_i = 0$, $\gamma_i = 0.03$, initial credit quality = 2, $R = 0.5$

3D: Asymmetrical corresponds to $\rho_{12} = 0.5$, $\rho_{13} = -0.5$, $\rho_{23} = -0.25$

3D: $\rho_{12} = 0.5$ corresponds to $\rho_{12} = 0.5$, $\rho_{23} = \rho_{13} = 0$.
Conclusion

- Structural approach - powerful tool for investigating impact of dependence assumptions on default probabilities and spreads
- Framework is extremely flexible, enabling calculation of many default probabilities and CDS spreads of interest
- Dependence structure incorporates both asset correlation and default contagion
- Default causality and asymmetric links possible
- Results reiterate need for credit models to account for full dependence structure
Future Work

• Extend current framework to include, for example,
 • stochastic volatility
 • stochastic correlation
 • random recovery rates

• Introduction of jump discontinuities to remove predictable nature of default

• Use of different numerical schemes to extend framework to higher dimensions