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What is Credit?

* Credit risk is the risk that an obligor does not honour its
obligations

* |t is often thought of as default risk
* Important to banks, corporations and investors

* Reason the multi-billion dollar credit derivatives market
exists

* Simplest: credit default swap (CDS)

* |nsurance against risk of default by a company
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The Market Today

* ITraxx and CDX indicies were launched in Europe and
the US, respectively, in 2004

* Each CDS index has 125 constituents which are
updated every 6 months

* Created massive liquidity

* Standardized collateralized debt obligations (CDOs)
and underlying tranches

* More esoteric products — CDO-sguareds, options on
CDO tranches etc.
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Default Characterisation

Firms do not operate in isolation and a company default
can be triggered in three main ways:

1. By factors directly impacting multiple companies
* Cyclical
* Market-wide shock
2. By company-specific incidents or situations
3. Due to inter-company ties
* Physical
* Perceived
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Default Characterisation

* Default dependence then occurs primarily through two
mechanisms

1. As a direct consequence of a common factor driving
default

2. Due to inter-company ties: contagion

* The result is a complex network of non-symmetrical
links between companies

* The impact of individual credit events can ripple
through the market
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The Structural Credit Model

* The original structural model dates back to the papers
of Black & Scholes (1973) and Merton (1974)

* Based on economic fundamentals through modelling
the dynamics of firm assets, default occurs if firm
value, V, drops below the value of debt, K

* Firm assets are modelled as a geometrical Brownian
motion, dV = uVdt+ oVdW

* Debt and equity valued as contingent claims on the
firm assets,
C(V,T) =min(K,V(T)) = K — max(0, K — V(T))
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The Literature

In the single-firm case, there are many extensions to the
basic model

* Black & Cox (1976) — allow default prior to maturity

* Longstaff & Schwarz (1995) — stochastic interest rates
* Leland & Toft (1996) — endogenous default trigger

* Zhou (1997) — jump diffusion model

* Duffie & Lando (2000), Giesecke (2003) — incomplete
iInformation

* Fouque, Sircar & Solna (2006) — stochastic volatility
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The Literature

Existing work on multiple-firm structural models is limited

* Zhou (2001) calculates default correlations for two
companies, modelled as correlated Brownian motions

* Hull, Predescu & White (2005) assume assets are
driven by a common factor and price CDO tranches
using Monte Carlo

* Luciano & Schoutens (2005), Moosbrucker (2006),
Baxter (2006) model firms as Levy processes
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Model Overview

* First passage model — firm values are modelled as
correlated geometric Brownian motions with
exponential default thresholds

* |diosyncratic ties are incorporated through a jump in
volatility on default of a related entity

* The framework is extremely flexible, incorporating
default causality and allowing for asymmetrical links

* Value k'"-to-default CDS baskets in the presence of
asset correlation and default contagion
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Model Methodology

* We consider n companies, firm values V;, with default
as the first time that V; hits a lower default barrier b;(¢)

dVi(t) = (ry — q)Vi(t) dt + o, Vi(t) dW; (1)

* cov(W;(t),W;(t)) = pytfori,j=1,...,n

* We assume exponential default barriers, reflecting the
existence of debt covenants,

bi(t) = Ke (T
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Model Methodology

Let ) represent the default probability event of interest. For
vector V of firm values, and infinitesimal generator £, we

solve
aU - 02U
LU = 5 T (rr — @) Vi + Z pijoio;ViV; VOV, =0

i=1 @]_

UV, T)=1q(V(T))

for U(V,t) to calculate the probability of (2 by
Feynman-Kac,

U(v,t) = E{Io(V(T))|V(t) = v; =P(V(T) € Q[V(t) = v)
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Implementation

* We solve backwards in time on [0, 7] x R’} using a
finite-difference method with Crank Nicolson
time-stepping and a multigrid solver

* Deal with boundary conditions by setting a firm’s drift
and volatility to zero on its barrier

* Count the number of companies whose values are at
or below their default barriers and define the initial
condition accordingly
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Introducing Contagion

* Dependence structure is currently driven just by
correlation in firm values

* Incorporate default contagion by allowing company
volatilities to jJump on default of related entity

* For example, if company : defaults, for : # 5, we let
o; — o FP

for some constant /' > 1
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Introducing Contagion

* |n other words,
b(t

> b(t),V,
0j(V,t) = o;Fri it (t)gbz(t)
0 it Vi(t) < b;(¢)

* Subsequent default by firm k& ¢ {4, j} would give

O'j—>O'jFpij —>O'jFpijFpk’j
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ki"-to-Default CDS Baskets

* Consider a contract par value K on a basket of n
companies, with bond recovery on default of R and
continuous spread payments, c

* The discounted default payment, paid to the CDS
buyer in the event of the k" company default, is

(1—R K/ e "T°P(s <1, < s+ds)ds

(1—R K/ —e_TfS—IP) (10 > s)ds
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ki"-to-Default CDS Baskets

* The discounted spread payment is
T
CK/ e "T*P(1, > s)ds,
0
» Equating these gives the k'-to-default CDS spread

1 —R){1—e™P(r, >T) — L e TSP T > s)ds
o 'f

Cl —

fOTe_""fSIP’(Tk > s)ds
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Two-firm Results

Joint survival probability
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Two-firm Results

Probability of 1 default Probability of 2 defaults
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Second-to-Default CDS Spreads

5-year 2nd-to-default CDS 10-year 2nd-to-default CDS

Correlation
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Contagion with Decay

* More realistic for the spike in volatility on default to
decay over time, o; — o;(1 + Agje =7))

* Setting A;; = F*4 — 1 enables direct comparison of
results with and without decay.

* After default by firm ¢, time-dependence of o,(t) for
j # i is removed by replacing o7 (t) with its average
over the remaining time-to-maturity, 7

2 1 o 2
j:T—Ti/o O'j(S)dS
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Contagion with Decay

* This gives the new volatility
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Contagion with Decay

Probability of 1 default Probability of 2 defaults
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Three-firm Results
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Conclusion

* Structural approach - powerful tool for investigating
Impact of dependence assumptions on default
probabilities and spreads

* Framework is extremely flexible, enabling calculation of
many default probabilities and CDS spreads of interest

* Dependence structure incorporates both asset
correlation and default contagion

* Default causality and asymmetric links possible

* Results reiterate need for credit models to account for
full dependence structure
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Future Work

* Extend current framework to include, for example,

* stochastic volatility
* stochastic correlation

°* random recovery rates

* Introduction of jJump discontinuities to remove
predictable nature of default

* Use of different numerical schemes to extend
framework to higher dimensions
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