Minimum Entropy Calibration of a Point Process Model for CDO Pricing

René Carmona Nitin Saksena

Department of Operations Research and Financial Engineering
Princeton University

May 19, 2007
Oxford-Princeton Workshop on Financial Mathematics
Overview

- Model loss process as self-exciting point process (SEPP), in order to capture default correlation (top-down approach).

- Fit SEPP parameters to historical default data to obtain a Bayesian prior.

- Find an arbitrage-free point process close to the fitted one that matches market prices of liquid vanilla contracts and consistently prices certain exotic contracts.

- Numerical work in progress with real data.
Background on CDOs

Collateralized debt obligations (CDOs) repackage the credit risk of a pool of debt-like assets into multiple tranches, which are ranked in terms of seniority.

Creation of CDX, iTraxx indices in late 2003 has led to a liquid, standardized CDO market.

Abundance of pricing models in the literature, with recent push towards pricing more exotic contracts.

- common theme—need to capture default correlation
The CDX Index and Tranches

Dow Jones CDX.NA.IG
- liquid contracts with maturities 5, 7, and 10 years
- standardized tranches 0-3%, 3-7%, 7-10%, 10-15%, 15-30%

Cumulative loss $L(N_t) = \frac{1-\delta}{125} N_t$, where $N_t = \sum_{i=1}^{125} 1_{\{\tau_i \leq t\}}$.

Tranche loss for K_i-K_{i+1}% tranche is call spread

$$f_i(N_t) = \max(L(N_t) - K_i, 0) - \max(L(N_t) - K_{i+1}, 0).$$

Spread for tranche i (quoted in bp) can be approximated by

$$s_i = \frac{\sum_{0 \leq t_k \leq T} p(0, t_k) \left\{ \mathbb{E}^Q f_i(N_{t_k}) - \mathbb{E}^Q f_i(N_{t_k-1}) \right\}}{\sum_{0 \leq t_k \leq T} p(0, t_k)(t_k - t_{k-1}) \mathbb{E}^Q \left\{ K_{i+1} - K_i - f_i(N_{t_k-1}) \right\}}.$$
The CDX Index and Tranches

Dow Jones CDX.NA.IG

- liquid contracts with maturities 5, 7, and 10 years
- standardized tranches 0-3%, 3-7%, 7-10%, 10-15%, 15-30%

Cumulative loss \(L(N_t) = \frac{1-\delta}{125} N_t \), where \(N_t = \sum_{i=1}^{125} 1_{\{\tau_i \leq t\}} \).

Tranche loss for \(K_i - K_{i+1} \)% tranche is call spread

\[f_i(N_t) = \max(L(N_t) - K_i, 0) - \max(L(N_t) - K_{i+1}, 0). \]

Spread for tranche \(i \) (quoted in bp) can be approximated by

\[s_i = \frac{\sum_{0 \leq t_k \leq T} p(0, t_k) \left\{ \mathbb{E}^Q f_i(N_{t_k}) - \mathbb{E}^Q f_i(N_{t_{k-1}}) \right\}}{\sum_{0 \leq t_k \leq T} p(0, t_k)(t_k - t_{k-1}) \mathbb{E}^Q \left\{ K_{i+1} - K_i - f_i(N_{t_{k-1}}) \right\}}. \]
The CDX Index and Tranches

Dow Jones CDX.NA.IG
- liquid contracts with maturities 5, 7, and 10 years
- standardized tranches 0-3%, 3-7%, 7-10%, 10-15%, 15-30%

Cumulative loss $L(N_t) = \frac{1-\delta}{125} N_t$, where $N_t = \sum_{i=1}^{125} 1\{\tau_i \leq t\}$.

Tranche loss for $K_i-K_{i+1}\%$ tranche is call spread

$$f_i(N_t) = \max(L(N_t) - K_i, 0) - \max(L(N_t) - K_{i+1}, 0).$$

Spread for tranche i (quoted in bp) can be approximated by

$$s_i = \frac{\sum_{0 \leq t_k \leq T} p(0, t_k) \left\{ E^Q f_i(N_{t_k}) - E^Q f_i(N_{t_{k-1}}) \right\}}{\sum_{0 \leq t_k \leq T} p(0, t_k)(t_k - t_{k-1}) E^Q \left\{ K_{i+1} - K_i - f_i(N_{t_{k-1}}) \right\}}.$$

Nitin Saksena Minimum Entropy Calibration
Self-Exciting Point Processes

A point process \(N \) is called self-exciting when its intensity process \(R_t \) is affected by the past of \(N \) over \((0, t)\).

Hawkes (1971) process \(N \) with intensity

\[
R_t = \mu e^{-ct} + \int_{(0,t)} ae^{-c(t-s)} dN_s, \quad t > 0.
\]

Has been used to model
- high-frequency data [Bowsher (2003)]
- trade arrivals [Salmon and McCulloch (2005)]
- credit derivatives [Das et. al. (2005); Giesecke and Goldberg (2005)], as alternative to doubly stochastic processes
Fitting an SEPP to Historical Default Data

We fit parameters of the Hawkes intensity by numerically maximizing the **log likelihood**

\[
\ell(\tau_1, \ldots, \tau_n) = \int_0^T \log R_t \, dN_t - \int_0^T R_t \, dt.
\]

Data from Moody’s US corporate, senior, unsecured rating and default database—spans 1970-2002 with roughly 300 default observations.

Fit is quite good, assessed either with AIC or by time-changing to homogeneous Poisson process, then running goodness-of-fit tests.
Model calibration problem: obtain a pricing rule consistent with market quotes.

In general, pricing constraints insufficient to yield unique pricing measure Q. We regularize via relative entropy in order to stay close to SEPP prior P.

Optimization problem over measures on path space:

$$\inf_{Q \ll P} \mathbb{E}^Q \left[\log \frac{dQ}{dP} \right]$$

subject to

$$\mathbb{E}^Q f_i(N_{t_k}) = \pi_{ik} \quad \forall i, 0 \leq t_k \leq T.$$

Develop framework for pricing exotic and bespoke credit derivatives.

Nitin Saksena

Minimum Entropy Calibration
Minimum Entropy Calibration

Model calibration problem: obtain a pricing rule consistent with market quotes.

In general, pricing constraints insufficient to yield unique pricing measure \mathbb{Q}. We regularize via relative entropy in order to stay close to SEPP prior \mathbb{P}.

Optimization problem over measures on path space:

$$\inf_{\mathbb{Q} \ll \mathbb{P}} \mathbb{E}^{\mathbb{Q}} \left[\log \frac{d\mathbb{Q}}{d\mathbb{P}} \right]$$

subject to

$$\mathbb{E}^{\mathbb{Q}} f_i(N_{t_k}) = \pi_{ik} \quad \forall i, 0 \leq t_k \leq T.$$

Develop framework for pricing exotic and bespoke credit derivatives.
What are the Pricing Constraints?

Recall the spread formula

\[
s_i = \frac{\sum_{0 \leq t_k \leq T} p(0, t_k) \left\{ \mathbb{E}^Q f_i(N_{t_k}) - \mathbb{E}^Q f_i(N_{t_{k-1}}) \right\}}{\sum_{0 \leq t_k \leq T} p(0, t_k)(t_k - t_{k-1})\mathbb{E}^Q \left\{ K_{i+1} - K_i - f_i(N_{t_{k-1}}) \right\}}.
\]

Tranche spreads are nonlinear in \(Q \), so instead calibrate to expected tranche losses \(\pi_{ik} \). These quantities, however, are not market observables!

One approach: recover \(\pi_{ik} \) from observed tranche spreads using interpolation and constrained least-squares [Brigo, Pallavicini, Torresetti (2007)].
To reframe optimization problem as intensity control problem:

- scale \mathbb{P}^0-intensity R^0_t with Markovian control $u_t = u(t, N_t, R^0_t)$; call scaled process $R^u_t = u_t R^0_t$
- to each control u we associate a measure \mathbb{P}^u under which N_t has $(\mathbb{P}^u, \mathcal{F}_t)$-intensity R^u_t
- rewrite objective in Lagrangian form and define value function

$$V^\lambda(t, n, r^0) := \sup_{u_t \in \mathcal{U}} \mathbb{E}^u \left[\int_t^T \left(- R^0_t u_t \log u_t + R^0_t (u_t - 1) + \sum_k \sum_i \lambda_{ik} \{ f_i(N_t) - \pi_{ik} \} \delta(t - t_k) \right) dt \mid \mathcal{F}_t \right].$$

Goal is to solve min-max problem $\inf_{\lambda} V^\lambda(0, N_0, R^0_0)$.

Similar to Avellaneda et. al. (1997) for diffusion models; Carmona and Xu (1997), Nayak and Papanicolaou (2006) for SV models
Stochastic Intensity Control Formulation

To reframe optimization problem as intensity control problem:

- scale \mathbb{P}^0-intensity R^0_t with Markovian control $u_t = u(t, N_t, R^0_t)$; call scaled process $R^u_t = u_t R^0_t$
- to each control u we associate a measure \mathbb{P}^u under which N_t has $(\mathbb{P}^u, \mathcal{F}_t)$-intensity R^u_t
- rewrite objective in Lagrangian form and define value function

$$ V^\lambda(t, n, r^0) := \sup_{u_t \in \mathcal{U}} \mathbb{E}^u \left[\int_0^T \left[-R^0_t u_t \log u_t + R^0_t (u_t - 1) + \sum_k \sum_i \lambda_{ik} \{ f_i(N_t) - \pi_{ik} \} \delta(t - t_k) \right] \, dt \mid \mathcal{F}_t \right]. $$

Goal is to solve min-max problem $\inf_\lambda V^\lambda(0, N_0, R^0_0)$.
Similar to Avellaneda et. al. (1997) for diffusion models; Carmona and Xu (1997), Nayak and Papanicolaou (2006) for SV models
Stochastic Intensity Control Formulation

To reframe optimization problem as intensity control problem:

- scale P^0-intensity R^0_t with Markovian control $u_t = u(t, N_t, R^0_t)$; call scaled process $R^u_t = u_t R^0_t$
- to each control u we associate a measure P^u under which N_t has (P^u, F_t)-intensity R^u_t
- rewrite objective in Lagrangian form and define value function

$$ V^\lambda(t, n, r^0) := \sup_{u_t \in \mathcal{U}} \mathbb{E}^u \left[\int_t^T \left(- R^0_t u_t \log u_t + R^0_t (u_t - 1) + \sum_k \sum_i \lambda_{ik} \{ f_i(N_t) - \pi_{ik} \} \delta(t - t_k) \right) dt \mid \mathcal{F}_t \right]. $$

Goal is to solve min-max problem $\inf_{\lambda} V^\lambda(0, N_0, R^0_0)$.

Similar to Avellaneda et. al. (1997) for diffusion models; Carmona and Xu (1997), Nayak and Papanicolaou (2006) for SV models
Stochastic Intensity Control Formulation

To reframe optimization problem as intensity control problem:

- scale \mathbb{P}^0-intensity R_t^0 with Markovian control $u_t = u(t, N_t, R_t^0)$; call scaled process $R_t^u = u_t R_t^0$
- to each control u we associate a measure \mathbb{P}^u under which N_t has $(\mathbb{P}^u, \mathcal{F}_t)$-intensity R_t^u
- rewrite objective in Lagrangian form and define value function

$$V^\lambda(t, n, r^0) := \sup_{u_t \in \mathcal{U}} \mathbb{E}^u \left[\int_t^T \left[- R_t^0 u_t \log u_t + R_t^0 (u_t - 1) + \sum_k \sum_i \lambda_{ik} \{f_i(N_t) - \pi_{ik}\} \delta(t - t_k) \right] dt \mid \mathcal{F}_t \right].$$

Goal is to solve min-max problem $\inf_\lambda V^\lambda(0, N_0, R_0^0)$.
Similar to Avellaneda et. al. (1997) for diffusion models; Carmona and Xu (1997), Nayak and Papanicolaou (2006) for SV models
HJB Equation

In using dynamic programming to derive the HJB equation, we establish the following Markovian structure:

1. The pair \((N, R^0)\) is Markov under \(P^0\).
2. The pair \((N, R^0)\) remains Markov under \(P^u\).

The HJB equation is

\[
- \sum_k \sum_i \lambda_{ik} \{ f_i(n) - \pi_{ik} \} \delta(t - t_k) = \frac{\partial V^\lambda}{\partial t}(t, n, r^0) - c r^0 \frac{\partial V^\lambda}{\partial R^0}(t, n, r^0) + \\
\sup_u \{- r^0 u \log u + r^0 (u - 1) + r^0 u [V^\lambda(t, n + 1, r^0 + a) - V^\lambda(t, n, r^0)]\},
\]

with terminal condition \(V^\lambda(T + 0, n, r^0) = 0\).

We prove a Verification theorem to show HJB equation acts as a sufficient condition for the intensity control problem.
In using dynamic programming to derive the HJB equation, we establish the following Markovian structure:

1. The pair \((N, R^0)\) is Markov under \(\mathbb{P}^0\).
2. The pair \((N, R^0)\) remains Markov under \(\mathbb{P}^u\).

The HJB equation is

\[
- \sum_k \sum_i \lambda_{ik} \{f_i(n) - \pi_{ik}\} \delta(t - t_k) = \frac{\partial V^\lambda}{\partial t}(t, n, r^0) - cr^0 \frac{\partial V^\lambda}{\partial R^0}(t, n, r^0) + \sup_u \{ -r^0 u \log u + r^0 (u - 1) + r^0 u[V^\lambda(t, n + 1, r^0 + a) - V^\lambda(t, n, r^0)] \},
\]

with terminal condition \(V^\lambda(T + 0, n, r^0) = 0\).

We prove a Verification theorem to show HJB equation acts as a sufficient condition for the intensity control problem.
HJB Equation

In using dynamic programming to derive the HJB equation, we establish the following Markovian structure:

1. The pair \((N, R^0)\) is Markov under \(\mathbb{P}^0\).
2. The pair \((N, R^0)\) remains Markov under \(\mathbb{P}^u\).

The HJB equation is

\[- \sum_k \sum_i \lambda_{ik} \{f_i(n) - \pi_{ik}\} \delta(t - t_k) = \frac{\partial V^\lambda}{\partial t}(t, n, r^0) - cr^0 \frac{\partial V^\lambda}{\partial R^0}(t, n, r^0) + \sup_u \{-r^0 u \log u + r^0 (u - 1) + r^0 u [V^\lambda(t, n + 1, r^0 + a) - V^\lambda(t, n, r^0)]\},\]

with terminal condition \(V^\lambda(T + 0, n, r^0) = 0\).

We prove a Verification theorem to show HJB equation acts as a sufficient condition for the intensity control problem.
Numerical Algorithm

\(V^\lambda(t, n, r^0) \) is **convex** in the Lagrange multipliers \(\{\lambda_j\} \).

Check \(\frac{\partial V^\lambda}{\partial \lambda_j}(t, n, r^0) \) satisfies PDDE similar to that satisfied by \(V \).

Computational scheme:

1. For fixed \(\{\lambda_j\} \), use a finite-difference scheme to solve PDDEs for \(V(0, N_0, R_0^0), \frac{\partial V^\lambda}{\partial \lambda_1}(0, N_0, R_0^0), \ldots, \frac{\partial V^\lambda}{\partial \lambda_j}(0, N_0, R_0^0) \).
2. Update Lagrange multipliers using gradient-descent.

Once \(\{\lambda_j^*\} \) obtained, compute optimal control \(u^* \), then price by simulating from \(R^u^* \).
Numerical Algorithm

\(V^\lambda(t, n, r^0) \) is \textit{convex} in the Lagrange multipliers \(\{\lambda_j\} \).

Check \(\frac{\partial V^\lambda}{\partial \lambda_j}(t, n, r^0) \) satisfies PDDE similar to that satisfied by \(V \).

Computational scheme:

1. For fixed \(\{\lambda_j\} \), use a finite-difference scheme to solve PDDEs for \(V(0, N_0, R_0^0), \frac{\partial V^\lambda}{\partial \lambda_1}(0, N_0, R_0^0), \ldots, \frac{\partial V^\lambda}{\partial \lambda_J}(0, N_0, R_0^0) \).

2. Update Lagrange multipliers using gradient-descent.

Once \(\{\lambda_j^*\} \) obtained, compute optimal control \(u^* \), then price by simulating from \(R^{u^*} \).
Numerical Algorithm

$V^\lambda(t, n, r^0)$ is convex in the Lagrange multipliers $\{\lambda_j\}$.

Check $\frac{\partial V^\lambda}{\partial \lambda_j}(t, n, r^0)$ satisfies PDDE similar to that satisfied by V.

Computational scheme:

1. For fixed $\{\lambda_j\}$, use a finite-difference scheme to solve PDDEs for $V(0, N_0, R_0^0)$, $\frac{\partial V^\lambda}{\partial \lambda_1}(0, N_0, R_0^0)$, \ldots, $\frac{\partial V^\lambda}{\partial \lambda_j}(0, N_0, R_0^0)$.

2. Update Lagrange multipliers using gradient-descent.

Once $\{\lambda^*_j\}$ obtained, compute optimal control u^*, then price by simulating from R^{u^*}.
Conclusion and Future Work

- Develop a framework for calibrating a point process model to a prescribed set of CDO prices.

- Calibration problem formulated as constrained optimal control problem.

- Results in an arbitrage-free point process that minimizes the relative entropy distance to a Hawkes process prior.

- Establish existence of solution to optimization problem.

- Examine resulting loss distributions, potential to price path-dependent credit derivatives, improvements upon base correlation framework used to price bespoke tranches.
Conclusion and Future Work

- Develop a framework for calibrating a point process model to a prescribed set of CDO prices.

- Calibration problem formulated as constrained optimal control problem.

- Results in an arbitrage-free point process that minimizes the relative entropy distance to a Hawkes process prior.

- Establish existence of solution to optimization problem.

- Examine resulting loss distributions, potential to price path-dependent credit derivatives, improvements upon base correlation framework used to price bespoke tranches.