Specialization of difference equations in positive characteristic

Ehud Hrushovski

December 17, 2018

Abstract

A difference equation over an increasing transformal valued field is known to be analyzable over the residue field. This leads to a dynamical theory of equivalence of finite dimensional difference varieties, provided one knows that the residue field is stably embedded as a pure difference field.

This talk will be devoted to that latter problem.

- Joint work (nearing completion) with Yuval Dor.
- useful discussions with Zoé Chatzidakis.
- related results by Martin Hils and Gönenç Onay.
- characteristic zero settled by Salih Durhan in [Azgin10].

Transformally valued fields

$$(K, +, \cdot, \sigma); \ (\Gamma, +, <, \sigma); (k, +, \cdot, \sigma)$$
$$\text{val} : K^{\cdot} \to \Gamma \cup \{\infty\}$$
$$res : K \to k \cup \{\infty\}$$
$$v(\sigma(x)) = \sigma(v(x)), \ res(\sigma(x)) = \sigma(res(x))$$

Frobenius (valued) (fields:

 $\sigma(x) = x^q$

iVFA: (increasing valued fields with automorphism)

$$\gamma > 0 \implies \sigma(\gamma) > n\gamma$$

Finite dimension

Let k_0 be a difference field, K_0 a valued difference field of transformal dimension 1 over k_0 ; e.g. $k_0(C)_{\sigma}$, C a curve.

 FA_{fin/k_0} is the many sorted theory, whose sorts correspond to finite order difference equations over k_0 . A model of the model companion $\widetilde{FA_{fin}}$ can be identified with a model of ACFA, truncated to the FA_{fin} -sorts. $FA_{fin} = FA_{fin/\mathbb{F}_p}$.

The theory of pseudo-finite fields is present as the sort $\sigma(X) = X$.

Drinfeld modules.

 $iVFA_{fin}$ has sorts as FA_{fin/K_0} , but with the valuative structure as well; a model of $iVFA_{fin}$ is a model of iVFA, truncated to the FA_{fin} -sorts.

The additional structure is 'scattered'; for each sort S and any difference polynomial F, val $F(X_1, \ldots, X_n)$ can take only finitely many values on S^n .

- **Theorem 1.** $iVFA_{fin}$ admits a model companion $i\widetilde{VFA_{fin}}$, axiomatized by ACFA in the residue field, and Newton polygon axioms.
 - It eliminates quantifiers if one adds function symbols for definable functions of ACVF (=henselization) and ACFA (typical: $A_{\sigma}A_{p}^{-1}$ where $A_{p}(x) = x^{p} - x, A_{\sigma}(x) = x^{\sigma} - x$.) (Amalgamation over algebraically closed difference subfields.)
 - $iV\bar{F}A_{fin}$ is the asymptotic theory of models of $ACVF_p$ with Frobenius automorphisms $x \mapsto x^q$.
 - The residue field is fully embedded in *iVFA*_{fin}; the image under res of a definable subset of K^n is defined purely using difference equations.

This makes possible a dynamic theory of equivalence for $iVFA_{fin}$ (refining, conjecturally nontrivially, the scissors equivalence of the Grothendeick group of algebraic varieties.) To be discussed elsewhere, but here is an application. Fix a prime p, and a difference variety X of finite total dimension over \mathbb{F}_p . Recall $K_{p^n} = (F_p^{alg}, +, \cdot, x \mapsto x^{p^n})$.

Theorem (Rationality).

$$|X(K_{p^n})| = \sum_{i=1}^{b} \alpha_i c_i^n$$

for some $c_1, \ldots, c_m, \alpha_1, \ldots, \alpha_m \in \mathbb{Q}^{alg}$, and large enough $n \in \mathbb{N}$.

Proved by moving X to a formula where Grothendieck's cohomological representation is available.

In fact the theorem remains true when X is definable using $\{+, \cdot, \sigma, \operatorname{val}\}$, for $K_{p^n} = (F_p(t)^{alg}, +, \cdot, x \mapsto x^{p^n}, v)$.

I'll try to bring out three aspects of the proof of Theorem 1.

- The use of stable independence / base change for stably dominated types (HHM; HL).
- Lattice limits.
- Uniformization (used for the stable embeddedness. We use a version for transformal curves, after modification of the function field.)

- **Theorem 2.** iVFA admits a model companion iVFA, with natural axioms.
 - Amalgamation over inversive, transformally henselian, algebraically closed difference subfields; equivalently, \widetilde{iVFA} eliminates quantifiers if one adds function symbols for definable functions of ACFA, and for transformal henselization.

Stable amalgamation - valued fields

 $K \models ACVF.$

p = L/K an extension (L = K(a)), with value group $\Gamma(K) = \Gamma(L)$.

 L_d a finite dimensional K-subspace of L. (image of polynomials of degree $\leq d$ in a.)

$$J_d(L/K) = \{ f \in L_d : \operatorname{val} f \ge 0 \}$$

Assume each J_d is a *finitely generated* O-module. (Lattice). Then L/K is stably dominated, controlled by an element of $\lim_{d} Hom(J_d, k)$.

Conversely, given a compatible sequence p of lattices $\lceil \Lambda_d \rceil \in S_d(K) = GL_d(K)/GL_d(\mathcal{O}_K)$ over a base A, given any $M \ge A$, define canonically an extension p|M of M with $J_d(p|M/M) = \Lambda_d$. $M \mapsto p|M$ is a definable type p over A.

Here A may be a base structure compromising imaginaries; e.g. generic type of $\{x : val(x) = \alpha\}$.

When the extensions KM/M are Abhyankar, the sequence (J_d) is determined by finite data. In this case we say we have a *strongly stably dominated type*. These form a union of definable families; [H-Loeser], cf. Jerôme Poineau's talk.

Background: asymptotic Frobenius

A third bridge from difference geometry to algebraic geometry.

 $\frown : \qquad \sigma \mapsto q$

Replace $\sigma(x)$ by x^q in all equations. (Formally a functor from difference schemes to sequences of schemes; extending the usual functor from a scheme S over \mathbb{Z} to the sequence $S \otimes \mathbb{F}_{p}$.)

A rough dictionary:

tr. deg. $\sim log_p$ degree. Finite total dimension \sim finite. dim_{total}(X) $\sim log_p|X|$ transformal dimension \sim dimension $\mathbb{Z}[\sigma]_{\sigma \mapsto q} \mathbb{Z}$ $k[X]_{\sigma} \sim k[X]$.

Analyzability liaison groups \curvearrowright Galois theory, higher ramification groups.

Many notions of algebraic geometry readily lift to one of difference algebra, guided by compatibility with the $\sim M_q$

Transformally algebraic: satisfies a nontrivial difference equation.

Derivatives: $(X^{\sigma})' = 0.$

Transformal Hensel lemma. (For a complete, σ -archimedean K, if $F \in K[X]_{\sigma}$, $\operatorname{val} F(a) > 2\operatorname{val} F'(a)$ then F has a root near a.)

Transformally henselian field: transformal Hensel's lemma holds. $^{\rm 1}$

Newton polygon of $F(X) = \sum a_{\nu} X^{\nu}$:

lower convex hull of the set of points $(\nu, \operatorname{val}(a_{\nu}))$, in the plane over the ordered field $\mathbb{Q}(\sigma)$.

¹Warning: Urbana notation differs on this point. A beautiful theory of Hensel-Newton approximations is developed in [Azgin-Van-den-Dries09], [Azgin10], and called ϕ -henselian. They are designed *not* to specialize to 'henselian' but to give an account of immediate extensions. The ϕ -henselization in this sense is not in dcl. We suggest calling these *surhenselian* and will continue with the terminology of [H04].

 σ -archimedean : for $x \in \Gamma_{>0}$, $\sigma^{-n}(x)$ and $\sigma^{n}(x)$ are cofinal in $\Gamma_{>0}$.

Axioms for iVFA designed to make sense under this dictionary.

Newton polygon axioms

An: Let F be a difference polynomial, and α a slope of the Newton polygon of F. Then there exists a with val $(a) = \alpha$, F(a) = 0.

This captures all *one variable* axioms. In particular, it implies transformal henselianity.

Obviously true in Frobenius ultrapowers; this can be used to show that they are existentially closed and universal, and thus (An) holds in existentially closed models of iVFA.

Stable correspondences axioms

As: Let q(x, y) be a strongly stably dominated definable type in 2n variables x, y. Assume $q|y = (q|x)^{\sigma}$. Then there exist $(a, b) \models q$ with $\sigma(a) = b$.

Remarks:

- Using a Bertini principle from [H-Loeser], can restrict to the case: $\dim(p) = \dim(p_{|x}) = \dim(p_{|y})$.
- True in existentially closed models generalizes same proof for ACFA.
- (Ar): ACFA in residue field a special case of (As).
- A posteriori, for *iVFA_{fin}*, (Ar)+(An) imply (As). But (As) are considerably more flexible to work with. In particular,

Amalgamation for iVFA

Let $K = K^{alg}, K \leq L, M \models iVFA$.

Induction on σ -archimedean rank. In higher rank, assume K is transformally henselian. Consider σ -archimedean case: if $0 < \alpha, \beta \in \Gamma$ then $\beta < \sigma^n(\alpha)$ for some n.

The functorial nature of stable amalgamation for VF immediately implies amalgamation for Abhyankar iVFA extensions; the automorphisms must respect the canonical valued field amalgam LM; and $\Gamma(LM) = \Gamma(M)$.

Usual induction on $tr.deg._{K}L$.

Reduce to wildly ramified / immediate case.

Transformal wild ramification

 $K = k(t)^{alg}_{\sigma}, K_n = K(\sigma^{-n}(t)), K^{inv} = \bigcup K_n$ $\sigma(x) - tx = 1$

Root:

$$a = t^{1/\sigma} + t^{1/\sigma + 1/\sigma^2} + t^{1/\sigma + 1/\sigma^2 + 1/\sigma^3} + \cdots$$

 a/K_n is ramfied; order σ ; generic in a ball of vradius $1/\sigma + 1/\sigma^2 + \dots + 1/\sigma^n$

 a/K^{inv} is generic in a properly infinite intersection of balls; 'imperfect', boojum, type IV.

Way out

 $\lim = 1/(\sigma - 1)$ is σ -rational.

At least within σ -archimedean models, can treat the intersection of balls with rational limit as a new, slightly infinitary operation; from this point of view, the ball *b* around *a* of vradius $1/(\sigma - 1)$ is definable over the base.

Now, $tp(a/K^{inv}, b)$ is stably dominated.

Remark. Poineau defined a canonical amalgamation over any ACVF with value group \mathbb{R} . The above can be used to interpret Poineau's amalgamation as a stable amalgamation.

Here, we transpose from \mathbb{R} to $\mathbb{Q}(\sigma)$. But then the existence - and rationality - of a limit needs to be proved.

$$0 < \dots < \mathbb{Q}\sigma^{-2} < \mathbb{Q}\sigma^{-1} < \mathbb{Q} \cdot 1 < \mathbb{Q}\sigma < \mathbb{Q}\sigma^{2} < \dots$$

In general, say that a lattice Λ is the *limit* of a family Λ_i of lattices, if the associated (valuative) norms converge pointwise on the vector space.

$$v_{\Lambda}(a) = \operatorname{val}(c) \iff c^{-1}a \in \Lambda, (mc)^{-1}a \notin \Lambda(m \in \mathcal{M}).$$

Equivalently when Λ_i are increasing, the volume of Λ_i approaches the volume of Λ .

Proposition. $J_d(L/K)$, while not a lattice, has a unique limit lattice $\widehat{J_d}(L/K)$. It can be used to define a canonical extension, to any $M \ge K$ in which val(K) is cofinal towards 0^+ .

Some open questions

- 1. Is the residue field stably embedded iVFA?
- 2. Uniqueness of the transformal henselization? (True in σ -archimedean case.)
- 3. Is iVFA true asymptotically in the Frobenius valued fields K_q ?

A positive answer would imply QE for iVFA in the same language as for $iVFA_{fin}$. All follow from a concrete question in σ -archimedean rank 1:

Question. Let $L \models iVFA$, with field of representatives F, and $F \leq K \models FA$. Let $M = (LK)^h$. Can M have a proper, σ -invariant finite field extension?

In transformal dimension one, there can be no such extension; this is proved using:

Proposition. (a certain uniformization for transformal curves, [H04].) Let $L = L^{alg} \models iVFA$ have transformal

transcendence dimension 1 over a difference field F; assume F maps bijectively to res(L). Then $\widehat{L} \cong \widehat{F(t)_{\sigma}^{alg}}$, and similarly for the transformal henselization.

Question. Uniformization in higher dimension?