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(Slides not used in talk, but see IHP-VFA.)
1. Conservation of number. (Leibniz, Poncelet, Schubert, ...)
2. Number of points of a variety over a finite field.
3. From PF (pseudo-fintie fields) to FAfin (finite-dimensional dif-
ference equations.)
4. Numbers (Grothendieck-Cavalieri ring)
5. Conservation of number (Weil-Cavalieri ring.)
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1. Conservation of number. (Leibniz, Poncelet, Schubert, ...)
The number of solutions of a given algebro-geometric configuration,
when it is finite, does not change upon a small perturbation of the
parameters; this persists even upon specialisations that change the
topology.

Intuition: let Xt be the solution set over t; we view it as varying over
t ∈ P1. Then Xt = {a1(t), . . . , an(t)}, and each ai(t) is a continuous
function of t with limit ai(0) in X0. This gives an explicit map
Xt0 → X0; need to justify why it exists at all, why the limit exists,
why it is surjective, what to do when it is not 1-1.
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Example: (Schubert) L0, L1, L2(skew) lines in space (in P3), Lt a
fourth line indexed by t. Nt = number of lines intersecting each of
the four.
Easy to see that Nt = 2 if Lt, L0 intersect. (Consider point of
intersection, and plane through both).
When all four intersect, or two are equal, infinite answer.
When Lt, L0, L1, L2 are skew, still Nt = 2.

Example: Bézout’s theorem.
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The problem consists in this: To establish rigorously and with an
exact determination of the limits of their validity those geometrical
numbers which Schubert especially has determined on the basis of the
so-called principle of special position, or conservation of number, by
means of the enumerative calculus developed by him.
Although the algebra of today guarantees, in principle, the possibility
of carrying out the processes of elimination, yet for the proof of
the theorems of enumerative geometry decidedly more is requisite,
namely, the actual carrying out of the process of elimination in the
case of equations of special form in such a way that the degree of the
final equations and the multiplicity of their solutions may be foreseen.
(Hilbert 1900; problem 15).

See Fulton, Intersection Theory (1985) for answer, involving alge-
braically closed fields, flat and proper morphisms, intersection mul-
tiplicity.
A partial generalisation of this approach to (1993) Zariski geometries
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was an important means for showing that they are, very nearly,
ordinary algebraic geometry. For difference or differential equations,
an ideal theoretic approach seems daunting.
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2. Number of points of a variety over a finite field.

X(Fq) = ∆X ∩ ΦX

∆,Φ the graphs of Id, φq on X.
Move Φq, or move ∆, and use conservation of number.
For fixed p, let

an = X(Fpn)

W1 (Weil, Lang-Weil) an = pn +O(pn−1/2)

W2 (Weil for curves, Grothendieck) The an satisfy a linear recur-
rence with integer coefficients.

In fact, for n ≥ some n0 the sequence is an exponential sum

b∑
i=1

αic
n
i
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for certain algebraic numbers ci and integers αi.
1

• Deligne: each |ci| = pm/2 for some m ≤ n (note this includes
W1). Though Deligne’s theorem is used in the proof, it will
not be relevant in this talk.)

The proof of (W2) uses cohomology, and does not exhibit an explicit
connection among the point sets X(Fpn). For curves, proofs by
Stepanov and by Kapranov do imply such a connection.

1; in the generalization to difference definable sets, we allow the coefficients
αi to have denominator pl.
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3. From PF to FAfin: asymptotic Frobenius.
Ax used (W1) to axiomatize the theory of pseudo-finite fields (ul-
traproducts of finite fields.)
Van den Dries: what about ultraproducts of Kq = (F algp ,+, ·, φq)?
φq = the Frobenius automorphism x 7→ xq.
Φq = graph of φq.
Difference equations:
Can bring to form: (x, σ(x)) ∈ S. S ≤ X ×Xσ.
FAfin: the union of all solutions to nontrivial difference equations;
an

∨
-definable subset of a model of FA.

Includes the solutions to the equation σ(x) = x , or S = ∆X - the
pseudo-finite fields.
- an = S ∩ Σn.

Theorem. |S ∩Φq| = aqd +O(qd−
1
2 ) Thus any nonprincipal ultra-

product of Kq is a model of ACFA = F̃A, the model companion of
the theory FA of fields with automorphism.

9



The estimate (and more) was conjectured by Deligne, and proved by
Pink (under resolution) and Fujiwara 94. But these proofs assumed
additional hypotheses on S, that appeared difficult to get around.
(Difference equations do not naturally live on X ×X; they may live
in Xn.) Finally in Varshavsky 2015 found a short cohomological
proof that |S ∩ Φq| > 0 for large n, which suffices for the logical
statement.
What about the linear recurrence, W2? How to state the conserva-
tion of number, for 0-dimensional difference varieties?
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4. Numbers.
N: Finite sets; up to bijective functions.
+, ·.
Build in /,−. Q>0,Q.
(Cav) If f : Y → X is definable and [Yx] := [f−1(x)] = c for all
x ∈ X, then [Y ] = c[X].
Now take everything definable, in some theory T . This defines
the Grothendieck-Cavaleri ring of T , GC(T ). (With − only, the
Grothendieck ring, K(T ).)
N.B. Kapranov showed that the recurrence relations for curves are
valid already in the Grothendieck ring. This is not true in higher
dimensions (Larsen-Luntz.) I would expect that a ’dynamic’ (con-
servation of number) equivalence may be needed. How to formulate
it?
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5. Internality.
Baldwin-Lachlan example of ’no Vaughtian pairs over P , yet Q is
not algebraic over P”. E.g. a free Z/4Z-module B. 0→ A→ B →
A→ 0 exact, where A = 2B.
Zilber understood that this is an essential structural feature of ℵ1-
categorical structures; groups can be non-commutative; but the ba-
sic structure is f : Y → X, f−1(x) a torsor for Gx, and in any case
isomorphic to an X-definable set Sx (actually, groupoid.)
Note in this situation we have, when all are finite: |Y | = |X||Sx|.
Assumption reduced to X stably embedded. If T ′ is a multi-sorted
theory, T some of the sorts, T stably embedded in T ′, and no Vaugh-
tian pairs T ′/T , then T ′ succumbs to an analysis by finitely many
T -internal extensions as above.

Theorem. Assume T ′ interprets T and is analyzable over T (with
a hypothesis on liaison groups, e.g. solvable or linear.). Then the
natural map CG(T )→ CG(T ′) is an isomorphism.
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Example. T ′ = iV FAfin; so the residue field is a model of FAfin;
T = theory of residue field.

Here iV FA is the theory of valued fields with an automorphism,
with v(σ(x)) > nv(x) whenever v(x) > 0 and n ∈ N. This is valid in
ultraproducts of valued fields L with the Frobenius automorphism
φq.
Picture in one variable.
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6. Conservation of number and the Cavalieri-Weil ring.
Let T, T ′ be pseudo-finite theories; T the asymptotic theory of Kq,
T ′ of an expansion Lq; and let j0, j∞ be two interpretations of T in
T ′, with T ′/T analyzable.
We have two isomorphisms j0, j∞ : CG(T )→ CG(T ′).
”Move” [X] to X ′ := j−1∞ j0[X].
Then for almost all q, X(Kq) = X ′(Kq).
Cavalieri-Weil ring: factor out CG(T) by this new motivic equiva-
lence.
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7. But is iFA embedded, and stably embedded, in iV FA?

Is there a model companion ˜iV FAfin, and is FAfin embedded
therein?

Theorem (Azgin 2007 thesis - char 0.). FAfin is embedded and
stably embedded in V FAfin

But this relies on residue char. 0, and runs into the usual technical
issues in char. p > 0.
Work with Yuval Dor.

theorem. FAfin is embedded and stably embedded in V FAfin

Theorem 1. For any formula φ of FAfin, (W2) holds for an =
|φ(Kq)|.

Theorem 2. For any formula ψ of V FAfin there exists a formula
φ of FAfin with |ψ(Kq) = |φ(Kq)|. In particular, (W1,W2) hold.
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Intertwined proofs. E.g. the proof for ACFAfin goes through

V FAfin. Also the proof that F̃Afin is the asymptotic theory of
Frobenius valued fields requires, for one axiom, the estimate (i) for
some valued difference formulas.
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A thoroughgoing analogy between difference geometry and algebraic
geometry, mediated by asymptotic Frobenius. So far, barely sam-
pled.
y: σ 7→ q
tr. deg. y logp degree
dimtotal(X) y logp|X|
tr.dim(X) y dim(X)
Z[σ] y

σ 7→q Z
k[X]σ y k[X]
σ-archimedean y archimedean
σ-DVR ’s : (—fair to work with algebraically closed fields, at first
go.) y DVR’s.
σ-henselian y henselian
Completion of k(X)σ y k((X)) E.g. solution to Xσ −X = t.
Tame ramification (prime to σ) y tame ramification (prime to p)
Abhyankar’s lemma. Tame ramification can become unramified un-
der base extension; but wild ramification persists and at the limit

17



turns into an immediate extension. E.g. solution to Xσ − tX = 1.
? y Poineau’s theorem ?
Axioms designed to make sense under this dictionary.
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Question 1. Let X be a strongly reduced affine difference variety,
v a valuation on k(X). Is it true (perhaps after an inseparable ex-
tension) that there exists a difference variety Y with a birational
(or purely inseparable) dominant morphism Y → X, such that v is
centered on a smooth point of Y ?

To begin with we can ask the question for k of characteristic zero.
This neither implies nor is implied by resolution or uniformization
in positive characteristic, but seems a very interesting asympototic
case. Of course one should begin with X of transformal dimension
one over k |= ACFA; is the transformal normalization transformally
finite over X? Is it smooth? What about the zero-dimensional case?
Is there a way to ignore it?
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