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Abstract

I will discuss the notion of an existentially closed struc-
ture, and give classical examples, including the local fields R,
Qp, and k((t)). I will then describe a language capable of
capturing some global structure: roughly, the embedding of
a field in its adeles, constrained by the product formula. It is
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conjectured that Qa and k(t)a are existentially closed in this
language. I will discuss the statement, and a proof in the
function field case. There are connections to (distributional)
Fekete-Szegő theorems, and to non-archimedean Calabi-Yau
type theorems.

This is joint work with Itäı Ben Yaacov.
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1. Existentially closed structures.

2. A language for global fields.

3. k(t)a is existentially closed.

4. Example: distributional Fekete-Sze̋go.

5. Example: a Lefschtez principle.

6. Proof: Reduction to a theorem in geometry.

7. Proof: positive intersection products, Legendre duality.

8. Non-archimedean Yau-type theorems (surjectivity
statements for Monge-Ampère.)

9. Further conjectures. Example: Nevanlinna theory.
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1 Existentially closed structures

Language.
Variables: X = (X1, . . . , Xr), Y = (Y1, . . . , Yl).
Basic formulas: For Lrings: p(X) = 0, p ∈ Z[X]; for Lval,

also |p(X)| < 1.
We will also permit formulas φ taking real values, say in

a closed interval Iφ, rather than truth values {0, 1}.
A universal theory T : a collection of sentences

(∀X)(φ1(X), . . . , φn(X)) ∈ C, where φk takes values in Ik,
and C is a closed subset of Πn

k=1Ik.

Definition. M is an existentially closed model of T if for any
structure N ≥M , with N |= T , basic formulas φi(X,Y ) ∈ L,
(i = 1, . . . , l), ε > 0, and any b from M and a from N , there
exists a′ from M with |φi(a, b)− φi(a′, b)| < ε, i = 1, . . . , l.
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Examples

1. C is existentially closed for T=commutative domains.
(Gauss, Hilbert).

Lefschetz principle: a sentence true in almost all F ap is
true in C.

2. R; T=real fields. (Descartes, Tarski.)

Robinson’s proof of Artin’s theorem / Hilbert’s 17th
problem: if a rational function f(t) is not a sum of
squares, construct an ordering of R(t) where f(t) < 0;
then by existential closure, (∃t′ ∈ R)f(t′) < 0.

3. (Ax-Kochen) The class of valued fields Qp, asymptot-
ically. T=theory valued field with conditions on value
group and residue field- including char. 0.

”asymptotically” means that p should be large com-
pared to the formula φ(X,Y ). Equivalently, nonprin-
cipal ultraproducts are existentially closed.

Asymptotic Artin’s conjecture /Ax-Kochen theorem fol-
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lows from Chevalley-Tsen: if Y ≤ Pn is a hypersurface
of degree ≤

√
n, then Y (Fp((t)) 6= ∅, so Y (Qp((t))) 6= ∅.

4. Finite fields (Cebotarev, Weil; Ax), the ring of algebraic
integers (Rumely, Moret-Bailly; Van den Dries, Macin-
tyre), ...

In each of these cases, the existential closure is a point
in a much more extensive theory: quantifier elimination to a
certain level, structure of definable sets, stability-type prop-
erties. Early consequences include:
—decidability.
—Lefschetz principle. (e.g. recently for motivic integration,
(3).)
—precise statement of analogy Fp((t)) and Qp (isomorphism
of ultrapowers.)
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Thus far, no analogous results in global geometry. It is
known (Gödel, J. Robinson,Matiyasevich.) that Q cannot di-
rectly be a model companion of any reasonable theory. We
will try for Qa and k(t)a, viewed as limits of global fields,
number or function fields. We take essentially the minimal
reasonable language capable of expressing the product for-
mula.
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2 The language

The terms are polynomials over Z; equality is a {0, 1}-valued
relation as usual.
Basic relations Rt: A symbol Rt for each tropical term t
= term in the language +,min, 0, α · x of divisible ordered
Abelian groups. to be interpreted as functions (F ∗)n → R.
Local interpretation of Rt Let (K, v) be a valued field, or a
subfield of C with v(x) = −α log |x|. For x with xi 6= 0,
interpret Rt

v(x) as t(vx1, . . . , vxn).
Global intended intepretation: We think of Rt(x) as the ex-
pected value of Rt

v(x) with respect to an implied measure on
valuations. Write a basic formula

Rt(f1(x), . . . , fn(x)) =:

∫
t(vf1x, . . . , vfnx)dv

.
Among them, the height: x+ = −min(−x, 0).

ht(x) = Rt(x) =
∫
v(x)+dv
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Height has a structural role in the definition of quantifiers
and limits of GVF’s, but I will not go into this here.

Connectives min,max, 0,+, α · x.
Quantifiers The analogue of quantifiers in real-valued logic

is inf and sup operators. Let ψn,ε(t) be 1 on [−n, n], 0 on
|t| > n+ε, and a linear interpolation on [n, n+ε]. Let φ(x, y)
be a formula. Then so is supx ψn,ε(ht(x))φ(x, y).

We view this as a quantifier over x of height up to about
n.

All formulas are preserved by ultrapowers.

It will turn out that the Weil projective height functions
(x0, . . . , xn) 7→ ht((x0 : · · · : xn)) = −intmini v(xi)dv suf-
fices to generate the language, at least in the purely non-
archimedean case. At any rate, it will suffice to remember
that heights are given by a formula.
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3 Universal axioms

Let LV F be the set of pairs (φ, t) of formulas φ(x1, . . . , xn)
in the language of rings implying Πixi 6= 0, t a tropical term,
such that the theory of valued fields / normed fields implies
t is positive on the amoeba of φ:

V F |= (∀x)(φ(x) =⇒ t(v(x1), . . . , v(xn)) ≥ 0)

Axioms GVF for globally valued fields:

1. (F,+, ·) is an integral domain.

2. The Rt are compatible with permutations of variables
and dummy variables.

3. (Linearity:) Rt1+t2 = Rt1 +Rt2 . Rαt = αRt.

4. (Local-global positivity for amoebas) If (φ, t) ∈ LV F
and φ(a1, . . . , an) then

∫
t(v(a1), . . . , v(an))dv ≥ 0.

5. (Product formula)
∫
v(x)dv = 0
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4 Classical structures

Number fields and function fields K have obvious GVF
structures: assign masses mv to the places v so that
(∀x ∈ K∗)

∑
vmvv(x) = 0, and define

Rt(x1, . . . , xn) =
∑
v

mvt(v(x1), . . . , v(xn))

The assignment of masses mv is unique up to a scalar
multiple by Artin-Whaples, and in fact the GVF structure is
similarly unique. In particular, we can unamiguously refer to
Ka as a GVF.

Incidentally, this is not true for all GVF’s K; but it is
true for K such that Ka is e.c. There is always a unique
Galois-invariant extension to Ka. .
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Conjecture 4.1. Let K be a global field. Then Ka is exis-
tentially closed in the GVF language.

Theorem 1. Conjecture 4.1 holds in the function field case.
In fact for any field k, k(t)a is existentially closed as a GVF.

Explicitly: let K = k(C), C a curve over k. For any vari-
ety V over K, any finite number of GVF formulas φ1, . . . , φr
and potential values α1, . . . , αr formally consistent with the
product formula, there exists a finite extension K′ of K and
c′ ∈ V (K) with φi(c

′) as close as desired to αi.
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Some standard corollaries:

Proposition. Automatic effectiveness for existence
questions that can be formulated in the GVF lanugage over
function fields.

Proposition. A Lefschetz principle holds for such questions.

Example (Bogomolov conjecture). Given an Abelian variety
A over a global field K with trace 0 to finite fields and (for
simplicity) a curve C on A of genus > 1, it is conjectured that
that for some h > 0, b ∈ N, C(Ka) has ≤ b points a1, . . . , ab
of canonical height ≤ h on A.

Proved by Ullmo, Zhang in the number field case, Gubler,
Yamaki, Cinkir in many cases for function fields.

Theorem 1 provides an algorithm guaranteed to produce
h, b and (the degree of) these points pi. (’search for a1, . . . , ab
and a proof from GVF that no further solutions exist.’)
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Let f : C → U be a non-isotrivial, generically smooth
family of projective curves of genus ≥ 2, say over Q, and
embed CK canonically in its Jacobian AK . Cinkir proves
Bogomolov’s conjecture is true in this case, over K = Qa(U).

By Theorem 1, the same is true for Fp(U) , for almost all
primes p.

A similar uniformity result holds for families of rational
curves:

There exists b ∈ N, ε > 0 such that if t ∈ U(Qa) has large
enough height h, C = Ct, then C(Qa) has at most b points a
with

htcan(a) ≤ εh

This follows from Theorem 1 and Cinkir’s theorem,
though neither mentions number fields at all. To prove
it one uses the family of GVFs Qa[r]; they are just
renormalizations of Qa:

Rt(f1, . . . , fn)Q
a[r] :=

1

r
Rt(f1, . . . , fn)Q

a
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In Qa[r], the height of 2 is log(2)/r; asymptotically, these are
purely non-archimedean GVFs.

To prove the corollary, we suppose it is false; then there
exists a sequence of curves Ci = Cti , ti ∈ U(Qa) of height ri,
and at least i distinct points ai,j ∈ Ci(Qa) with htcan(ai,j) ≤
εri. Then in Qa[r], ai has height 1, and htcan(ai,j) ≤ ε. It
follows that in the non-archimedean GVF in K = Q(x)a there
exists a curve C = Ct with t ∈ U(K) of height 1, so Ct is
not isotrivial, and with as any points of C(K) as desired, of
arbitrarily small canonical height; this contradicts Cinkir’s
theorem. (In fact one can even find a sequence aj ∈ C(K),
such that htcan(aj) → 0, using transitivity of Aut(K) on
height-1 elements of P1)

Further examples of Lefschetz - intersection profiles of
subvarieties with curves of high degree - will be mentioned
later, if time permits.
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Distributional Fekete-Szegő

Fekete-Szegő (1953) asked: When does a compact subset C of
C contain infinitely many Galois orbits of algebraic integers?
(Polya, Schur 1918 for intervals: iff length ≥ 4.)

This, they did not succeed in answering, but they gave a
beautiful answer to a toplogical relaxation of the question:
There exists a sequence of Galois orbits, whose Hausdorff
limit is an infinite subset of C, if and only if C has capacity
≥ 1.

The capacity can be defined in several ways, including the
Chebyshev number and the transfinite diameter.

The theory was generalized by Cantor to an adelic setting.
K a global field; S be a finite set of primes of K, including

archimedean primes. Let X̄ ≤ Pn be a normal projective
variety over K, X = X̄ ∩An the corresponding affine variety.
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Let Xp be the Berkovich space of X over Kp. An adelic
set: A = (Ap)p with Ap ⊂compact Xp, and Ap = X(Op) for
p /∈ S. 1

The Chebyshev constant Ch(A) is defined by:

− log Ch(A) = lim
n→∞

1

n
sup

deg(f)≤d
Σp inf

v∈Ap

v(f)

Rumely fully generalized the theory to curves. Several of
the definitions of capacity have been generalized to higher
dimensions (Chinburg 1991, . . ., Chinburg-Moret-Bailly-
Pappas-Taylor 2012), with some implications for Galois
orbits, but no sharp characterization so far.

Here we will look at a further, measure-theoretic relax-
ation: roughly, we do not ask whether all points of the Galois
orbit are in a neighborhood of C, but almost all. For this we
obtain a sharp characterization in all dimensions.

1Actually Cantor used X(Cp), Chamber-Loir moved to Xp for similar ques-
tions.
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Given a finite set S, the characteristic measure is the prob-
ability measure giving equal mass to each point of S.

Let K be a function field; so that Ka is existentially closed
as a GVF. A an adelic set.

Say A supports a Galois limit measure iff there exists a
sequence of Galois orbits Oi whose characteristic measures
weakly converge to a measure on A, and in addition,

• (genericity) only finitely many Oi lie on any given
proper K-subvariety of X.

• (generic integrality) For xi ∈ Oi, as i→∞,∑
p/∈S

∫
v|p

n
max
i=1

v−(xi)→ 0
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Theorem 2. K a global field, with Ka existentially closed.
Then A supports a Galois limit measure if and only if
Ch(A) ≥ 1.

Proof: the Chebyshev number condition allows a soft con-
struction of a GVF extension L ∼= K(X), a ∈ X(L), with∫
t(v(a))dv = 0 for t supported away from A. By Theorem 1,

there exist approximations ai to a within K. Now integrat-
ing t over all valuations above a place p of K = fixing one vp
above p and summing over the Galois orbit.

Remark on the transfinite capacity.
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Proof of Theorem 1

1. Reduction to equations over the constant subfield. This
is a standard model-theoretic lemma, using the large au-
tomorphism group of K∗. approximate automorphisms of
K = k(x)a, e.g. with x 7→ x1+1/100, become automorphisms
at the limit. This works also over Q̄[1], but is not known to
me for Q̄[r] for nonconstant r. )

2. Geometric description of formulas.
X a normal projective variety over k = ka. K = k(X).
Given a very ample Cartier divisor H on X, consider the

associated projective embedding; recall that the Weil height
with respect to this embedding is given by a formula:

htH =

∫
−min(v(s0), . . . , v(sm))dv

where s0, . . . , sm ∈ K are a basis of the linear system of
H ((si) +H ≥ 0.)
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This gives a pairing:
(GVF structures on K/k) × (very ample divisors on X )

→ R.
For a fixed GVF structure p on K, H 7→ htpH , is a lin-

ear map on PicR(X), positive on the effective cone. From
this it follows that it must vanish on the bounded subgroup
Pic0(X).

Let N1(X) be the R-space generated by the curves on X,
up to numerical equivalence.

N+
1 (X) = {c ∈ N1(X) : (∀effective Cartier H)(c,H) ≥ 0}

We have just described a map from GVF structures on
K/k to N+

1 (X).

3. Dually, for any H, p 7→ c(p) ·H is described by a formula,
and if H is allowed to range over Cartier divisors of blowups,
such formulas generate all. (Given the fixed field structure.)

N1(X) {formulas}, D 7→ φD .
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4. On the other hand, points of X in K are given by irre-
ducible curves on X. To approximate a given structure, these
curves need to avoid a hypersurface, and approach the class
of the structural 1-cycle c ∈ N+

1 (X). We are thus led to the
following problem:

5. (*) Multiples of irreducible curves on Zariski open sets,
are dense in the nef 1-cycles.

From this point on, the problem is purely geometric.
Example: smooth projective surfaces. (*) follows from:

nef divisors are approximated by ample divisors. Here Nakai-
Moishezon + Bertini irreducibility suffice. In the case of
arithmetic surfaces, does an ample line bundle have a pluri-
section whose poles form a single Galois orbit?

Higher dimensional case: nef 1-cycles approximated by
An−1, A ample on a blowup.

A theorem of Boucksom-Demailly-Pau-Peternell 2004 (in
char. 0) asserts that the convex hull of such divisors is dense.
A proof using positive intersection products is given in BFJ.
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We use the same methods, along with Legendre duality, to
obtain:

Theorem 3. Let X be a normal variety over an algebraically
closed field. Let c be in the open cone of curves dual to the
pseudo-effective cone of X. Then c is the increasing limit of
cycles An−1, A ample on a blowup of X.

In fact c = B<n−1>, B a big R-Cartier divisor on X,
< n− 1 > the ’positive intersection product’.

Along with Bertini, this gives (*).

Big divisors

X a normal projective variety over k, of dimension n.
We consider R-Cartier divisors; D =

∑
αiDi, αi ∈ R. If

each αi ≥ 0, write D ≥ 0, D effective.
An rational function f ∈ K = k(X) is a section of D if

(f) +D ≥ 0. L(mD) is the space of sections of mD.

23



An effective divisor D is big if some L(mD) has alge-
braically independent sections.

Positive intersection product

We define < D >k with k = n or k = n− 1.
Let O ⊂ X be Zariski open. Let m ∈ N.
Let s1, . . . , sk be generic sections of L(mD). Let Z be the

Zariski closure of their common zero locus in O. (A curve
if k = n − 1, a 0-dimensional scheme if k = n.) The class
[Z] in Nn−k(X) does not depend on the generic choice, and
decreases with O but stabilizes for small enough O. Define
< X ><k>m = [Z]

m
.

< D >k:= lim
m→∞

< X ><k>m

Remark: taking k = n, Demailly (1993) gave this defi-
nition of volume, i.e. the leading coefficient of the section
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growth function. BFJ showed vol is differentiable, and

vol′(D) ·H = lim
t→0

vol(D + tH)− vol(D)

t
= n < D >n−1 ·H

Also, vol1/n is concave on the big cone.
This was initially in char. 0, but using Okounkov’s meth-

ods, it is easy to obtain the same in all characteristics.
Theorem 2 follows using a version of Legendre duality,

concerning the derivative of a concave function.
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Non-archimedean Yau-type theorems

On a smooth Kähler variety, the Monge-Ampère operator
takes metrized line bundles to volume forms.

A non-archimedean analogue was developed by
Kontsevich-Tschinkel and Chambert-Loir.It maps metrized
line bundles to measures on Berkovich space.

The general definition uses a limit procedure; here I will
discuss only the purely geometric level, which is easily de-
fined.

Let k be an algebraically closed field, U a smooth projec-
tive curve over k, π : X → U a normal projective variety over
U , dim(X) = n+ 1. The divisors c lying above divisors of U
are the vertical divisors of X/U , and a measure will just be
a positive real-valued function on them. Each such c has a
multiplicity mc in its fiber.

Let L be an ample line bundle on X.

µL(c) := mcc · Ln
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We extend this to big divisors B using the positive inter-
section product:

B 7→ µ̂B

µ̂B(c) = mcc· < B >n

In the 1950’s, Calabi proved injectivity of the Ampère-
Monge operator on smooth Kähler metrizations of a given
line bundle, (up to a scalar), and conjectured surjectivity to
(appropriately normalized) volume forms; this was proved by
Yau in 1977.

A non-archimedean version in characteristic zero appears
in a recent theorem of Boucksom-Favre-Jonsson, with
antecedents in Kontsevich-Tschinkel (2001, unpublished
text). They obtain uniform convergence to general
semi-positive metrized line bundles, but ask for additional
information when beginning with a model measure.

With a little adjustment, Theorem 3 implies (but does not
seem to follow from) a relative version:
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Theorem 4. Let L be an ample line bundle on X. Let µ be
a nowhere vanishing positive measure on the vertical divisors,
such that the total mass of each fiber Xt is µ(It) = deg(L).
Then there exists a big R-Cartier divisor B on X with generic
part L, µ̂B = µ.
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Remarks:
AssumeX is smooth, and let v be a valuation ofK = k(U)

over k. Then µ determines a measure on the Berkovich space
of X over (K, v); the theorem implies that there exists a
metrized line bundle, positive increasing limit of ones aris-
ing from nef models, whose Monge-Ampere measure is µ.
The same follows for any measure on the Berkovich space
with total mass prescribed as above, and with a certain non-
vanishing condition.

B can be taken to be quasi-free, i.e. determined as a
supremum of sections of mB.

One can add a multiple of a divisor arising from U (anal-
ogous to scalar multiples in Calabi.) I do not know other
sources of non-uniqueness (for quasi-free B.)
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Remark. The topological Fekete-Szegő theorem amounts to
finding an irreducible curve, close to a given ray of nef 1-
cycles, and at the same time orthogonal to a certain finite
set of irreducible Weil divisors. In the case of curves over
a function field, the set of divisors in question can be con-
tracted in a morphism to an Artin algebraic space, probably
giving another proof of Rumely’s function-field Fekete-Szegő,
and showing that the distributional and topological condi-
tions coincide.

30



A curve selection theorem

Let X be a smooth projective variety over Q; let Y ,
Y1, . . . , Ym be subschemes.

If L is a number field and x ∈ X(L), let δ(x, Y )L =∫
δv(x, Y )dv be the weighted sum of the local distances from

x to Y , over all valuations (and − log | · |) v of L.
Note that δ(x, Y )L is the L-value of a certain quantifier-

free formula φY (x) in the language of GVF’s.

Proposition. Assume an ∈ X(Qa), ht(an) → ∞, with
limn→∞ δYk (an)/ht(an) = ek; let ε > 0. Then there exists
a curve C on X such that for any sequence a′n ∈ C(Qa),
ht(a′n)→∞, we have limn→∞ |δYk (a′n)/ht(a′n)− ek| < ε.

Proof. Choose ri = ht(2)/ht(ai) so that Qa[ri] gives ai height
1. Consider any non-principal ultrafilter u on the index set
N, and let (L, a) be the GVF ultraproduct of (Qa[ri], ai).
Then (L, a) is a purely non-archimedean GVF, and δYk (a) =
φ(a)L = e. There exists a′ ∈ K = k(t)a with e′ = φ(a′)K
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satisfying |e′ − e| < ε. In fact a′ ∈ k(C) for some curve C, so
a′ corresponds to a morphism g : C → X. We may choose
a′ so that g(C) avoids any given proper subvariety of X. By
computing the meaning of φ in k(t)a we see that ī(C, Yk) = e′.

Conversely, if C is a curve on X defined over Qa, then
for any sequence of distinct ai ∈ C(Qa) of bounded degree
over Q, δY (a) → iY (C). This follows upon taking normal-
ized ultraproducts as above, from the uniqueness of the GVF
structure on k(C).

In particular, there exists such a sequence a′i of bounded
degree over Q.
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5 Further conjectures

A theory T admits a model companion if the class of existen-
tially closed models of T is axiomatizable.

Conjecture 5.1. There exists a model companion for GVF.

Corollary (assuming Conjecture 5.1 and existential closure).
Fp(t)a, Q[r]a have isomorphic ultraproducts.

Moreover, both are isomorphic to an ultrapower of M[η],
the meromorphic functions of growth of order at most η, with
certain GVF structure arising from Nevanlinna theory, de-
scribed below; this assuming also existential closure of the
latter.

Conjecture 5.2. The model companion for GVF is stable,
at least at the qf level.
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Value distribution theory

Let M be the field of meromorphic functions. (Or a countably
generated algebraically closed subfield.) Fix a function η(r)
(say log(r) or rd), and also an ultrafilter u on R>0, avoiding
finite measure sets.

Let µr be the measure space on {a : 0 < |a| ≤ r} giving
mass log(r/a)/η(r) to each point 0 < |a| < r, and the uniform
measure of mass 1/η(r) to the circle |t| = r. Define

va(f) = ordaf for |a| < r, vt(f) = − log |f(t)|

htη,u(f) = lim
r→u

max(vaf, 0)dµra

M[η, u] = {f ∈M : htη,u(f) <∞}

Rt(f1, . . . , fn) := lim
r→u

∫
t(vaf1, . . . , vafn)dµra

.
.
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The product axiom is Jensen’s formula:∑
0<|a|<r

log
r

a
orda(f) +

1

2π

∫ 2π

0

− log |f(reiθ)| dθ = O(1)

The O(1) error term, divided by η(r), goes to 0 so that
we have asymptotically purely non-archimedean GVF.

In GVF language, by Theorem 1, M[η], has the same uni-
versal theory as the ultraproduct of the Qa[r], and also as
C(t)a[1]. This formalizes a (small!) part of Vojta’s dictio-
nary between number theory and value distribution theory,
and sets a goal of formalizing more.
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