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Abstract

I will discuss the notion of an ezistentially closed struc-
ture, and give classical examples, including the local fields R,
Qp, and k((t)). I will then describe a language capable of
capturing some global structure: roughly, the embedding of
a field in its adeles, constrained by the product formula. It is



conjectured that Q% and k(¢)® are existentially closed in this
language. I will discuss the statement, and a proof in the
function field case. There are connections to (distributional)
Fekete-Szegd theorems, and to non-archimedean Calabi-Yau
type theorems.

This is joint work with Ital Ben Yaacov.



® N o s W e
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k(t)® is existentially closed.

Example: distributional Fekete-Szégo.

Example: a Lefschtez principle.

Proof: Reduction to a theorem in geometry.

Proof: positive intersection products, Legendre duality.

Non-archimedean Yau-type theorems (surjectivity
statements for Monge-Ampere.)

Further conjectures. Example: Nevanlinna theory.



1 Existentially closed structures

Language.

Variables: X = (X1,...,X;), Y = (Y1,..., 7).

Basic formulas: For Lyings: p(X) =0, p € Z[X]; for Lyai,
also |p(X)| < 1.

We will also permit formulas ¢ taking real values, say in
a closed interval Iy, rather than truth values {0,1}.

A universal theory T: a collection of sentences
(VX)(1(X),...,¢n(X)) € C, where ¢, takes values in I,
and C is a closed subset of TI7_; Ij.

Definition. M is an existentially closed model of T' if for any
structure N > M, with N =T, basic formulas ¢;(X,Y) € L,
(i=1,...,0),e>0, and any b from M and a from N, there
exists a’ from M with |¢i(a,b) — ¢i(a’,b)| <€, i=1,...,1.



Examples

1. C is existentially closed for T'=commutative domains.
(Gauss, Hilbert).
Lefschetz principle: a sentence true in almost all F}' is
true in C.

2. R; T=real fields. (Descartes, Tarski.)
Robinson’s proof of Artin’s theorem / Hilbert’s 17th
problem: if a rational function f(t) is not a sum of
squares, construct an ordering of R(¢) where f(t) < 0;
then by existential closure, (3" € R)f(¢') < 0.

3. (Ax-Kochen) The class of valued fields Q,, asymptot-
ically. T'=theory valued field with conditions on value
group and residue field- including char. 0.
”asymptotically” means that p should be large com-
pared to the formula ¢(X,Y). Equivalently, nonprin-
cipal ultraproducts are existentially closed.

Asymptotic Artin’s conjecture /Ax-Kochen theorem fol-



lows from Chevalley-Tsen: if Y < P" is a hypersurface
of degree < /n, then Y (Fp((t)) # 0, so Y (Qp((¢))) # 0.

4. Finite fields (Cebotarev, Weil; Ax), the ring of algebraic
integers (Rumely, Moret-Bailly; Van den Dries, Macin-

tyre), ...

In each of these cases, the existential closure is a point
in a much more extensive theory: quantifier elimination to a
certain level, structure of definable sets, stability-type prop-
erties. Early consequences include:
—decidability.
—Lefschetz principle. (e.g. recently for motivic integration,
3).)
—precise statement of analogy F,((¢)) and Q, (isomorphism
of ultrapowers.)



Thus far, no analogous results in global geometry. It is
known (Gdodel, J. Robinson,Matiyasevich.) that Q cannot di-
rectly be a model companion of any reasonable theory. We
will try for Q% and k(t)®, viewed as limits of global fields,
number or function fields. We take essentially the minimal
reasonable language capable of expressing the product for-
mula.



2 The language

The terms are polynomials over Z; equality is a {0, 1}-valued
relation as usual.

Basic relations R;: A symbol R; for each tropical term t
= term in the language 4+, min, 0, -  of divisible ordered
Abelian groups. to be interpreted as functions (F7)" — R.
Local interpretation of R; Let (K,v) be a valued field, or a
subfield of C with v(z) = —alog|z|. For z with z; # 0,
interpret R:”(x) as t(ve1,...,0Tn).

Global intended intepretation: We think of R.(z) as the ez-
pected value of R:”(x) with respect to an implied measure on
valuations. Write a basic formula

Ri(fi(x),..., falx)) = /t(vfla:,...,vfna:)dv

Among them, the height: 7 = — min(—=z,0).
ht(z) = Ri(z) = [v(z)Tdo



Height has a structural role in the definition of quantifiers
and limits of GVF’s, but I will not go into this here.

Connectives min, max, 0, 4+, « - .

Quantifiers The analogue of quantifiers in real-valued logic
is inf and sup operators. Let ¢y () be 1 on [—n,n], 0 on
[t| > n+e¢, and a linear interpolation on [n,n+¢€]. Let ¢(z,y)
be a formula. Then so is sup, ¥n,c(ht(x))d(z,y).

We view this as a quantifier over x of height up to about
n.

All formulas are preserved by ultrapowers.

It will turn out that the Weil projective height functions
(zo,...,xn) = ht((xo : -+ : x,)) = —intmin; v(x;)dv suf-
fices to generate the language, at least in the purely non-
archimedean case. At any rate, it will suffice to remember
that heights are given by a formula.



3 Universal axioms

Let LV F be the set of pairs (¢,t) of formulas ¢(z1,...,zn)
in the language of rings implying II;x; # 0, ¢ a tropical term,
such that the theory of valued fields / normed fields implies
t is positive on the amoeba of ¢:

VF = (Va)(¢(z) = t(v(z1),...,v(zn)) 2 0)
Axioms GVF for globally valued fields:

1. (F,+,-) is an integral domain.

2. The R: are compatible with permutations of variables
and dummy variables.

3. (Linearity:) Rt1+12 = Rt1 + th. Rat = (lRt.

4. (Local-global positivity for amoebas) If (¢,t) € LVF
and ¢(a1,...,an) then [t(v(a1),...,v(an))dv > 0.

5. (Product formula) [ v(z)dv =0
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4 Classical structures

Number fields and function fields K have obvious GVF
structures: assign masses m, to the places v so that
(Vx € K*)>" myv(z) =0, and define

Ri(x1,...,xn) = Y mut(v(@1), ..., v(zn))

The assignment of masses m, is unique up to a scalar
multiple by Artin-Whaples, and in fact the GVF structure is
similarly unique. In particular, we can unamiguously refer to
K* as a GVF.

Incidentally, this is not true for all GVF’s K; but it is
true for K such that K is e.c. There is always a unique

a

Galois-invariant extension to K
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Conjecture 4.1. Let K be a global field. Then K¢ is exis-
tentially closed in the GVF language.

Theorem 1. Conjecture 4.1 holds in the function field case.
In fact for any field k, k(t)® is existentially closed as a GVF.

Explicitly: let K =k(C), C a curve over k. For any vari-
ety V over K, any finite number of GVF formulas ¢1, ..., ¢,
and potential values aq, ..., a, formally consistent with the
product formula, there exists a finite extension K’ of K and
¢ € V(K) with ¢;(c’) as close as desired to ;.
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Some standard corollaries:

Proposition. Automatic effectiveness  for  existence
questions that can be formulated in the GVF lanugage over
function fields.

Proposition. A Lefschetz principle holds for such questions.

Example (Bogomolov conjecture). Given an Abelian variety
A over a global field K with trace 0 to finite fields and (for
simplicity) a curve C on A of genus > 1, it is conjectured that
that for some h > 0,b € N, C(K*“) has < b points a1,...,a
of canonical height < h on A.

Proved by Ullmo, Zhang in the number field case, Gubler,
Yamaki, Cinkir in many cases for function fields.

Theorem 1 provides an algorithm guaranteed to produce
h,band (the degree of) these points p;. (’search for ay,...,ap
and a proof from GVF that no further solutions exist.’)
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Let f : C — U be a non-isotrivial, generically smooth
family of projective curves of genus > 2, say over QQ, and
embed Ck canonically in its Jacobian Ag. Cinkir proves
Bogomolov’s conjecture is true in this case, over K = Q*(U).

By Theorem 1, the same is true for F,(U) , for almost all
primes p.

A similar uniformity result holds for families of rational
curves:

There exists b € N, e > 0 such that if ¢ € U(Q") has large
enough height h, C' = C}, then C(Q%) has at most b points a
with

htcan(a) < €h

This follows from Theorem 1 and Cinkir’'s theorem,
though neither mentions number fields at all. To prove
it one uses the family of GVFs Q%[r]; they are just
renormalizations of Q%:

Rt(flz . '7fn)Qa[T] = %Rt(flw . '7f'ﬂ)Qa
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In Q%[r], the height of 2 is log(2)/r; asymptotically, these are
purely non-archimedean GVFs.

To prove the corollary, we suppose it is false; then there
exists a sequence of curves C; = Cy,, t; € U(Q?) of height 7,
and at least ¢ distinct points a;; € C;(Q%) with htcan(ai,;) <
er;. Then in Q%[r], a; has height 1, and htcan(ai ;) < e. It
follows that in the non-archimedean GVF in K = Q(z)® there
exists a curve C' = C; with ¢t € U(K) of height 1, so C; is
not isotrivial, and with as any points of C(K) as desired, of
arbitrarily small canonical height; this contradicts Cinkir’s
theorem. (In fact one can even find a sequence a; € C(K),
such that htcan(aj) — 0, using transitivity of Aut(K) on
height-1 elements of P')

Further examples of Lefschetz - intersection profiles of

subvarieties with curves of high degree - will be mentioned
later, if time permits.
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Distributional Fekete-Szeg6

Fekete-Szegd (1953) asked: When does a compact subset C' of
C contain infinitely many Galois orbits of algebraic integers?
(Polya, Schur 1918 for intervals: iff length > 4.)

This, they did not succeed in answering, but they gave a
beautiful answer to a toplogical relaxation of the question:
There exists a sequence of Galois orbits, whose Hausdorff
limit is an infinite subset of C, if and only if C' has capacity
> 1.

The capacity can be defined in several ways, including the
Chebyshev number and the transfinite diameter.

The theory was generalized by Cantor to an adelic setting.

K a global field; S be a finite set of primes of K, including
archimedean primes. Let X < P™ be a normal projective
variety over K, X = X NA™ the corresponding affine variety.
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Let X, be the Berkovich space of X over K,. An adelic
set: A = (Ap)p with Ay Ceompact Xp, and Ay, = X(0,) for

pgS. !t
The Chebyshev constant Ch(A) is defined by:

.1 .
log Ch(A) nhﬁngo - degs(l}I))gd 3p ulenffp v(f)

Rumely fully generalized the theory to curves. Several of
the definitions of capacity have been generalized to higher
dimensions (Chinburg 1991, ..., Chinburg-Moret-Bailly-
Pappas-Taylor 2012), with some implications for Galois
orbits, but no sharp characterization so far.

Here we will look at a further, measure-theoretic relax-
ation: roughly, we do not ask whether all points of the Galois
orbit are in a neighborhood of C, but almost all. For this we
obtain a sharp characterization in all dimensions.

L Actually Cantor used X (Cp), Chamber-Loir moved to X, for similar ques-
tions.
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Given a finite set S, the characteristic measure is the prob-
ability measure giving equal mass to each point of S.

Let K be a function field; so that K¢ is existentially closed
as a GVF. A an adelic set.

Say A supports a Galois limit measure iff there exists a
sequence of Galois orbits O; whose characteristic measures
weakly converge to a measure on A, and in addition,

e (genericity) only finitely many O; lie on any given
proper K-subvariety of X.

e (generic integrality) For x; € O;, as i — o0,

Z/ maxv (z;) =0

p¢S
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Theorem 2. K a global field, with K* existentially closed.
Then A supports a Galois limit measure if and only if
Ch(A) > 1.

Proof: the Chebyshev number condition allows a soft con-
struction of a GVF extension L & K(X), a € X (L), with
J t(v(a))dv = 0 for ¢ supported away from A. By Theorem 1,
there exist approximations a; to a within K. Now integrat-
ing t over all valuations above a place p of K = fixing one v,
above p and summing over the Galois orbit.

Remark on the transfinite capacity.
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Proof of Theorem 1

1. Reduction to equations over the constant subfield. This
is a standard model-theoretic lemma, using the large au-
tomorphism group of K*. approximate automorphisms of
K = k(z)?, e.g. with z +— 2't1/1% become automorphisms
at the limit. This works also over Q[1], but is not known to
me for Q[r] for nonconstant r. )

2. Geometric description of formulas.
X a normal projective variety over k = k%. K = k(X).
Given a very ample Cartier divisor H on X, consider the
associated projective embedding; recall that the Weil height
with respect to this embedding is given by a formula:

htH:/—min(v(so),.,.,v(sm))dv

where so,...,8m € K are a basis of the linear system of
H ((si) + H>0.)
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This gives a pairing:

(GVF structures on K/k) x (very ample divisors on X )
— R.

For a fixed GVF structure p on K, H — htY;, is a lin-
ear map on Picg(X), positive on the effective cone. From
this it follows that it must vanish on the bounded subgroup
Pic®(X).

Let N1(X) be the R-space generated by the curves on X,
up to numerical equivalence.

N (X) = {c € Ni(X) : (Veffective Cartier H)(c, H) > 0}

We have just described a map from GVF structures on
K/k to N{ (X).

3. Dually, for any H, p — ¢(p)- H is described by a formula,

and if H is allowed to range over Cartier divisors of blowups,

such formulas generate all. (Given the fixed field structure.)
NY(X) ~ {formulas}, D~ ¢p .
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4. On the other hand, points of X in K are given by irre-
ducible curves on X. To approximate a given structure, these
curves need to avoid a hypersurface, and approach the class
of the structural 1-cycle ¢ € N;"(X). We are thus led to the
following problem:

5. (*) Multiples of irreducible curves on Zariski open sets,
are dense in the nef 1-cycles.

From this point on, the problem is purely geometric.

Example: smooth projective surfaces. (*) follows from:
nef divisors are approximated by ample divisors. Here Nakai-
Moishezon + Bertini irreducibility suffice. [n the case of
arithmetic surfaces, does an ample line bundle have a pluri-
section whose poles form a single Galois orbit?

Higher dimensional case: nef 1-cycles approximated by
A""1 A ample on a blowup.

A theorem of Boucksom-Demailly-Pau-Peternell 2004 (in
char. 0) asserts that the convez hull of such divisors is dense.
A proof using positive intersection products is given in BFJ.
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We use the same methods, along with Legendre duality, to
obtain:

Theorem 3. Let X be a normal variety over an algebraically
closed field. Let c be in the open cone of curves dual to the
pseudo-effective cone of X. Then c is the increasing limit of
cycles A", A ample on a blowup of X.

In fact ¢ = B<""'>, B a big R-Cartier divisor on X,
< n —1> the ’positive intersection product’.

Along with Bertini, this gives (*).

Big divisors

X a normal projective variety over k, of dimension n.

We consider R-Cartier divisors; D = > a;D;, a; € R. If
each a; > 0, write D > 0, D effective.

An rational function f € K = k(X) is a section of D if
(f)+ D > 0. L(mD) is the space of sections of mD.

23



An effective divisor D is big if some L(mD) has alge-
braically independent sections.

Positive intersection product

We define < D >* with k=nor k=n—1.

Let O C X be Zariski open. Let m € N.

Let s1,..., sk be generic sections of L(mD). Let Z be the
Zariski closure of their common zero locus in O. (A curve
if Kk = n — 1, a 0O-dimensional scheme if & = n.) The class
[Z] in Np—k(X) does not depend on the generic choice, and
decreases with O but stabilizes for small enough O. Define
<X >ske= 4

m

<D>F= lim <X >3k

m— o0

Remark: taking & = n, Demailly (1993) gave this defi-
nition of volume, i.e. the leading coefficient of the section

24



growth function. BFJ showed vol is differentiable, and

vol' (D) - H = lim vol(D + tH) — vol(D)

=n<D>""'.H
t—0 t

Also, vol'/™ is concave on the big cone.

This was initially in char. 0, but using Okounkov’s meth-
ods, it is easy to obtain the same in all characteristics.

Theorem 2 follows using a version of Legendre duality,
concerning the derivative of a concave function.
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Non-archimedean Yau-type theorems

On a smooth Kéahler variety, the Monge-Ampere operator
takes metrized line bundles to volume forms.

A non-archimedean analogue was developed by
Kontsevich-Tschinkel and Chambert-Loir.It maps metrized
line bundles to measures on Berkovich space.

The general definition uses a limit procedure; here I will
discuss only the purely geometric level, which is easily de-
fined.

Let k be an algebraically closed field, U a smooth projec-
tive curve over k, w : X — U a normal projective variety over
U, dim(X) = n + 1. The divisors ¢ lying above divisors of U
are the vertical divisors of X/U, and a measure will just be
a positive real-valued function on them. Each such ¢ has a
multiplicity m. in its fiber.

Let L be an ample line bundle on X.

wr(c) :=mec- L™
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We extend this to big divisors B using the positive inter-
section product:

B — B
igs(c) = mee- < B >"

In the 1950’s, Calabi proved injectivity of the Ampere-
Monge operator on smooth Ké&hler metrizations of a given
line bundle, (up to a scalar), and conjectured surjectivity to
(appropriately normalized) volume forms; this was proved by
Yau in 1977.

A non-archimedean version in characteristic zero appears
in a recent theorem of Boucksom-Favre-Jonsson, with
antecedents in Kontsevich-Tschinkel (2001, unpublished
text). They obtain uniform convergence to general
semi-positive metrized line bundles, but ask for additional
information when beginning with a model measure.

With a little adjustment, Theorem 3 implies (but does not
seem to follow from) a relative version:
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Theorem 4. Let L be an ample line bundle on X. Let u be
a nowhere vanishing positive measure on the vertical divisors,
such that the total mass of each fiber X: is u(ly) = deg(L).
Then there exists a big R-Cartier divisor B on X with generic

part L, ip = p.
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Remarks:

Assume X is smooth, and let v be a valuation of K = k(U)
over k. Then p determines a measure on the Berkovich space
of X over (K,v); the theorem implies that there exists a
metrized line bundle, positive increasing limit of ones aris-
ing from nef models, whose Monge-Ampere measure is pu.
The same follows for any measure on the Berkovich space
with total mass prescribed as above, and with a certain non-
vanishing condition.

B can be taken to be quasi-free, i.e. determined as a
supremum of sections of mB.

One can add a multiple of a divisor arising from U (anal-
ogous to scalar multiples in Calabi.) I do not know other
sources of non-uniqueness (for quasi-free B.)
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Remark. The topological Fekete-Szegd theorem amounts to
finding an irreducible curve, close to a given ray of nef 1-
cycles, and at the same time orthogonal to a certain finite
set of irreducible Weil divisors. In the case of curves over
a function field, the set of divisors in question can be con-
tracted in a morphism to an Artin algebraic space, probably
giving another proof of Rumely’s function-field Fekete-Szeg6,
and showing that the distributional and topological condi-
tions coincide.
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A curve selection theorem

Let X be a smooth projective variety over Q; let Y,
Y1, ..., Ym be subschemes.

If L is a number field and = € X (L), let §(z,Y)" =
J 6u(z,Y)dv be the weighted sum of the local distances from
x to Y, over all valuations (and —log| - |) v of L.

Note that §(z,Y)” is the L-value of a certain quantifier-
free formula ¢y (z) in the language of GVFE’s.

Proposition. Assume a, € X(Q%), ht(an) — oo, with
limp 00 Oy, (an)/ht(an) = er; let € > 0. Then there exists
a curve C on X such that for any sequence a;,, € C(Q%),
ht(ay,) = o0, we have limp o0 |0y, (ar,)/ht(ar,) — ex] < €.

Proof. Choose r; = ht(2)/ht(a;) so that Q*[r;] gives a; height
1. Consider any non-principal ultrafilter v on the index set
N, and let (L,a) be the GVF ultraproduct of (Q%[r;],a;).
Then (L, a) is a purely non-archimedean GVF, and dy, (a) =
#(a)” = e. There exists a’ € K = k(t)* with ¢’ = ¢(a’)*
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satisfying |e’ — e|] < e. In fact a’ € k(C) for some curve C, so
a’ corresponds to a morphism g : C — X. We may choose
a’ so that g(C) avoids any given proper subvariety of X. By
computing the meaning of ¢ in k(¢)® we see that i(C, Yy) = €.

Conversely, if C' is a curve on X defined over Q%, then
for any sequence of distinct a; € C(Q*) of bounded degree
over Q, dy(a) — iy (C). This follows upon taking normal-
ized ultraproducts as above, from the uniqueness of the GVF
structure on k(C). O

In particular, there exists such a sequence a; of bounded
degree over Q.
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5 Further conjectures

A theory T admits a model companion if the class of existen-
tially closed models of T is axiomatizable.

Conjecture 5.1. There exists a model companion for GVF.

Corollary (assuming Conjecture 5.1 and existential closure).
Fp(t)*, Q[r]* have isomorphic ultraproducts.

Moreover, both are isomorphic to an ultrapower of Mn],
the meromorphic functions of growth of order at most n, with
certain GVF structure arising from Nevanlinna theory, de-
scribed below; this assuming also existential closure of the
latter.

Conjecture 5.2. The model companion for GVF is stable,
at least at the qf level.
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Value distribution theory

Let M be the field of meromorphic functions. (Or a countably
generated algebraically closed subfield.) Fix a function 7(r)
(say log(r) or 7%), and also an ultrafilter v on R”°, avoiding
finite measure sets.

Let p, be the measure space on {a : 0 < |a| < r} giving
mass log(r/a)/n(r) to each point 0 < |a| < 7, and the uniform
measure of mass 1/n(r) to the circle |¢| = r. Define

va(f) = orda f for |a| <7, wvi(f) = —log|f(t)]
htnu(f) = liin max(vq f,0)dpra
Mn,u] ={f € M: htyu(f) < o0}

Re(f1,..., fn) = }1_r>r711 t(vafi,...,vafn)dpra
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The product axiom is Jensen’s formula:

27 )
S log Lorda(f) + %/O log|f(re®)] d6 = O(1)

o<|al<r

The O(1) error term, divided by 7n(r), goes to 0 so that
we have asymptotically purely non-archimedean GVF.

In GVF language, by Theorem 1, M[n], has the same uni-
versal theory as the ultraproduct of the Q“[r], and also as
C(t)*[1]. This formalizes a (small!) part of Vojta’s dictio-
nary between number theory and value distribution theory,
and sets a goal of formalizing more.
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