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Abstract

I will describe a model theoretic setting that incorporates global phe-
nomena, such as heights, and allows for transfer of certain statements
between geometry and number theory. The extent of tameness of this
theory remains open, but the outlines are becoming increasingly sharp; I
will survey some of the methods and results. Joint work with Itai Ben
Yaacov.
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1. Speculative motivation from motivic integra-
tion

In various counting theorems, notably proofs of rationality of generating
series, the key is to replace numbers by (equivalence classes of) definable
sets in a tame theory T . The sequence of numbers an is then replaced by
one definable set D, evaluated in a sequence of structures An.

Some examples:

• X a scheme over Zp. bn = number of points of X(Z/pnZ) lifting to
X(Zp). Denef. Implicitly,
T theory of p-adic Henselian valued fields with distinguished generic
value group element γ φ = X(O)/γO; bn = φ((Zp, n)).

• Finite fields. T = Th({Fnp : n = 1, 2, · · · }) = PFAp. φ(Fq). Weil,
Ax, Kieffe. Kapranov.

Denef-Loeser: Grothendieck ring = rational Chow motives.

• motivic integration (Kontsevich, Denef-Loeser, Cluckers-Loeser.)

Takes values in Grothendieck ring of varieties / definable sets of
ACF.

Actually two theories play a role: Th(k((t))) ACF as residue field
of k((t)).

Essential point: k is stably embedded; induced structure = field
structure.

Contrast: (k[t], k). Finite sets become uniformly definable as {α :
(x− α)|a}.

• an = {x ∈ X(Falgp ) : φ(x, xp
n

)}. (H.-Dor) (Theory: ACFAfin, as
residue of iV FAfin; stably embedded with natural induced struc-
ture; though here for a different reason, ’preservation of number’
arguments.)
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What about counting of rational points (or curves), of bounded height
(degree) r?

Chambert-Loir-Loeser study such sets motivically in function field case
k(t), but motivically in k rather than r.
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Could there be a tame theory including heights? φ(Q[r]) = points on
X(Q) of height ≤ r?

Function field case: f : C → X. E.g. distribution of [f ] ∈ S(H2(X)) =
H2(X)/R+, as deg(f)→∞.

In any case it appears interesting develop a tame theory dealing di-
rectly with heights.
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The theory of globally valued fields

Technical note on the logic
Heights, degrees are naturally real numbers:
ht : PN (K)→ R.
deg : PN (K)→ R.
One could visualize generalizing R to other value groups (as done by

H-Loeser for the local theory of Berkovich spaces.) But for the present
we stick to R.

This requires the use of continuous logic, a well-understood extension
of first-order logic allowing to restrict the target of the height map to be
R, without losing compactness for bounded height regions of K.

Standard consequences of a first order axiomatization - effectiveness,
compactness, transfer principles - generalize smoothly to this setting, as
does stability theory.

The language

Two sorts: a field sort F ; and a value sort R.
Usual field operations +,−, · and relations =, 6= on F .

Basic symbols Rt : A symbol Rt for each tropical term t = continuous,
positively homogeneous function on Rn. 1 To be interpreted as functions
(F ∗)n → R.

Local interpretation, for an absolute value || on F , x = (x1, . . . , xn),
v(x) = (− log |x1|, . . . ,− log |xn).

Rt
v(x) = t(v(x))

Global intended intepretation: We think of Rt(x) as proportional to the
expected value

∫
Rt

v(x)dv of Rt
v(x) with respect to an implied measure

on absolute values.

1Or just a term in the language +,min, 0, α · x of divisible ordered Abelian groups.
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The height:
ht := −Rmin

ht(x0 : · · · : xn) = Rmin(u0,...,un)(x0, . . . , xn)

ht(x) := ht(x : 1)

Express: ‘for almost all v, s ≥ s′ as Rt = 0, where t = (s′ − s)+.
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Universal axioms

1. (F,+, ·) is an integral domain.

2. {Rt} Compatible with permutations of variables, dummy variables.

3. (Linearity:) Rt1+t2 = Rt1 +Rt2 . Rαt = αRt.

4. (Positivity) For an affine variety X ⊂ An: If t(v(x)) ≥ 0 for every
absolute value and every x ∈ X, then Rt(a) ≥ 0 for a ∈ X.

5. (Product formula) Rt = 0 where t(u) = u.
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Measure theoretic presentation (Gubler’s M-fields) For any (countable)
K |= GV F , there exists a measure µ on the space of absolute values of
K, v(x) = − log |x|, such that (v 7→ v(a)) is in L1(µ), and

Rt(x1, . . . , xn) =

∫
t(v(x1), . . . , v(xn))dµ(v)

Write
∫
t(v(x1), . . . , v(xn)) for Rt. In particular,

ht(x0 : · · · : xn) = −
∫

min(v(x0), . . . , v(xn)))

We have the product formula, for 0 6= a:∫
v(a) = 0

µ is unique up to a renormalization:
(v with mass m)  (2v with mass m/2.)
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GVF extensions
Given a GVF K, an extension of the structure to K(X) is determined

by

• For (a.e.) each nonzero valuation v of K, a (uniquely determined)
probability measure µv on the Berkovich space Xan

Kv
(or X(C)).

• a measure up to renormalization on Xan
K , K viewed as trivially val-

ued.
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Geometric presentation, over a constant field k Let K be a finitely gen-
erated field extension of k. Let XK be the family of normal projective
variety X over k with k(X) = K. Then these data are equivalent:

• A GVF structure on K;

• A Zariski-generic element a of some X ∈ XK .

• A compatible family of homomorphisms (for X ∈ XK)

hX : NS(X)→ R

positive on the effective cone.

• A compatible family of elements hX ∈ N+
1 (X) ⊂ N1(X) ⊂ H2(X;R)

hX([D]) = htD(a) = −
∫

min
s∈OX (D)

v(s)

for very ample D.

11



This is the quantifier-free GVF picture. Allowing algebraically
bounded quantifiers (e.g. φ(

√
x)) amounts to closing X under finite

covers, f : X̃ → X.
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. Basic examples

• Natural GVF structures on K = k(C), k = kalg, C a curve /k;
valuations = points of C(k): K[r] = each point of C(k) has mass r.

• Similarly Q[r]: Qp has weight r log(p), while R has weight r.

• Unique Galois-invariant extension to finite field extensions
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2nd motivation, from compactness: pas-
sage from number fields to function fields.

Q[r] = Q, with p given weight r log(p), r > 0.
Q̄[r], = unique GVF extension of Q[r].
Consider Q[r∗] for a nonstandard, infinitesimal r∗:
– We consider only elements a of height ≤ n for some n ∈ N. This

assures that every formula will have a finite value in R∗. Take standard
part to obtain real values for formulas.

Note: each a ∈ Q becomes a constant, i.e.
∫
|v(a)| = 0, i.e. v(a) = 0

for (almost) all v. So Q̄[r∗] resembles a function field. Indeed Q(t)[1] ≺1

Q̄[r∗].
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Example of (Robinson) ‘transfer’ from
function fields to number fields.

Let A be an Abelian variety over a function fieldK = Qa(C), ĥ a canonical
height, C a curve over Q.

Aε = {a ∈ A : ĥ(a) < ε}

Let X be a subvariety of A containing no translates of positive dimen-
sional group subvarieties. The ‘geometric Bogomolov conjecture’ asserts
for small enough ε > 0,

X ∩Aε
consists of finitely many torsion points. It is in fact known in ‘most’ cases
2, by work of Cinkir, Gubler, Yamaki.

2when each simple factor of A has a place of bad reduction
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A Abelian variety over K = Q(C), canonical height ĥ, X ≤ A

Aε = {a ∈ A : ĥ(a) < ε}

Assume Aε ∩X(Kalg) = {τ1, . . . , τk}, torsion points.
Consider the family At, t ∈ C(Qa).

Proposition. For any B, for some N , for any t ∈ C(Qa) of large enough
height, {a ∈ Xt : ht(Na) ≤ Bht(a)} is finite, with a bound uniform in t.

This is related to conjectures and results of David-Philippon; a linear
bound as above is known for powers of elliptic curves.

ht refers to a Weil height; one can also write (At,εht(t) ∩Xt) for some
ε ∼ B/N > 0.

In particular, for t ∈ C(Qa) of large enough height, any point of
(At)tor ∩ Xt is a specialization of some τi. The case dim(A) = 2 was
proved by Masser-Zannier (2015) (including t of small height!).

Proof. For almost all t we have the torsion points τ1(t), . . . , τk(t). Suppose
there exist points t ∈ C(Qalg) of arbitrarily large height, with a k + 1’st
torsion point at ∈ (At)tor ∩ Xt. Taking ultraproducts of (Qalg[r], t, at)
(where r = 1/ht(t)) we find a GVF K with an element t of height 1 and
with a k+ 1’st point of height zero. This point must in fact be in Q(t)alg.
As Q(t)alg has a unique GVF structure with constants Q and ht(t) = 1,
we obtain a contradiction to the choice of k.
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Some points of contact with geometry

1. Nakai-Moishezon, Kleiman, Bertini, theory of N+
1 (X): geometric

presenation of GVF structures.

2. Minkowski-Harder-Narasimhan, stability and semistability; model-
theoretic algebraic closure.

3. Non-archimedean Calabi-Yau, positive intersections, Bertini density
of curves.

4. Lefschetz hyperplane theorems for effective cone reduction to relative
curves;

5. Albanese, canonical heights; GVF canonical base change.

6. Auxiliary polynomials; qf stable embeddedness of the constants.

7. Hodge index theorem; stable embeddedness of k for algebraically
bounded quantifiers.
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Minkowski functions

An adelic valuation on E = Kn is a term u(b, x) (with x a variable for E,
and v a variable valuation) which defines everywhere locally a Kv-norm
on E.

For instance, over Q, one can construct a term that equals minni=1 v(xi)
for finite v and − log(Mx,Mx) on R; where M = M(b) ∈ GL(E).

We restrict to the non-archimedean case. Then uv carries the same
information as the Ov-module

Λ(u) = {x ∈ E : uv(x) ≥ 0}

Hence functors on modules induce functors on (adelic) valuations. In par-
ticular,

∧n u is defined on the one-dimensional determinant space
∧nE.

We define

vol(E, u) =

∫ n∧
uv(a)

slope(E, u) = vol(E, u)/ dim(E)

Lemma (Harder-Narasimhan). There exists a unique maximal subspace
Emax of (E, u) of maximal slope.

Now suppose u(x, b) depends on b; we obtain a function

b 7→ Emax ∈ Gr(Kn)

That we call the Minkowski function associated to u. 3

(Geometry of numbers; for any lattice in Rn there exists a filtration Ui
of Rn by subspaces, and bi ∈ Λ∩UirUi−1, with d(bi, Ui−1) ≥ Cn|bi|. This
translates precisely to the N-S filtration upon taking an ultraproduct.)

3There are also destabilization functions for asymmetric finite field extensions, probably
redundant.
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Let G̃V F be the theory of all existentially closed GVF’s. (Analogue
of ACF for fields.)

Conjecture. These generate the model-theoretic definable closure. More-

over G̃V F admits quantifier-elimination in a language with Minkowski
functions.

The proof involves in particular a canonical GVF type on Emax, con-
centrating on the Berkovich generic points of Λv ∩ Emax. Existence is is
closely related to the preservation of semistability under symmetric pow-
ers.
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Non-archimedean Yau-type theorems and univer-
sality of curves

On a smooth Kähler variety, the Calabi Monge-Ampère operator takes
metrized line bundles to volume forms. A non-archimedean analogue was
developed by Kontsevich-Tschinkel and Chambert-Loir.In the 1950’s, Cal-
abi proved injectivity of the Ampère-Monge operator on smooth Kähler
metrizations of a given line bundle, (up to a scalar), and conjectured
surjectivity to (appropriately normalized) volume forms; this was proved
by Yau in 1977. A non-archimedean version in characteristic zero ap-
pears in a recent theorem of Boucksom-Favre-Jonsson, strengthened by
by Gil-Gubler-Jell-Künnemann-Martin, with antecedents in Kontsevich-
Tschinkel (2001, unpublished text).
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Here is a purely algebro-geometric statement.
Let k be an algebraically closed field, U a smooth projective curve over

k, π : X → U a normal projective variety over U , dim(X) = n + 1. The
divisors c lying above divisors of U are the vertical divisors of X/U , and
a measure will just be a positive real-valued function on them. Each such
c has a multiplicity mc in its fiber.

Given an ample line bundle L on X.

µL(c) := mcc · Ln

We extend this to big divisors B using the positive intersection product
(Demailly, · · · ) (zeroes of n generically chosen sections of mL, away from
the base locus; renormalized limit with m.)

21



Proposition. Let L be an ample line bundle on X. Let µ be a nowhere
vanishing positive measure on the vertical divisors, such that the total
mass of each fiber Xt is µ(It) = deg(L). Then there exists a big R-Cartier
divisor B on X with generic part L, µ̂B = µ.

We actually need an ’absolute’ version:

Proposition. Let X be a normal variety over an algebraically closed field,
of dimension n + 1. Let c be a positive linear map on NS(X). Then
c = B<n>, B a big R-Cartier divisor on X.
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Any consistent GVF formula over a constant field k is finitely satisfi-
able in some k(C).

(They thus play the role of finite fields for schemes, or finite fields with
Frobenius for difference schemes.)

In the geometric description of GVF’s, must go from a curve class [c]
to an irreducible curve C on X.

Problem: The class of GVFs is convex; the irreducible curves are not.
Solved by the last Proposition, and Bertini.
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Example: multiplicative height 0

For x ∈ Qalg, ht(x) = 0 iff x is an algebraic integer and every Galois
conjugate lies on unit circle. This is iff x is root of unity. (Kronecker.)

Let µ = µGm be the (
∧

)-definable subset of Gm defined by ht(x) = 0.

Theorem. 1. The induced qf structure on µ is that of a pure group; it
is qf-stably embedded. (includes Lang, Bilu.)

2. In the purely non-archimedean case, the induced structure on µ is
that of a pure field; it is stably embedded for formulas including
bounded algebraic quantifiers.
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Hodge index theorem and stable embeddedness of
k for algebraically bounded quantifiers.

(An indication of the connection.)
With algebraically bounded quantifiers, can describe not only

hX : NS(X)→ R

but also hX̃ : NS(X̃)→ R, for any finite morphism X̃ → X.
Base change to k′ ≥ k is innocuous for hX and hX̃ .

However, we now have new finite morphisms π : X̃ ′ → X.
Stability predicts a canonical extension of h : NS(X̃ ′) → R to h̃ :

X̃ ′ → R.
Geometrically, say for a surface X, a canonical extension is guaranteed

by the Hodge index theorem: the kernel of h̃′ should vanish on the or-
thogonal complement to π∗(NS(X)). This uses the fact that the pullback
of an ample A is ample, and modulo A, intersection is negative definite.

Show that indeed any deviation from orthogonality of the kernel im-
plies forking.
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Auxiliary polynomials and qf stability of
mass in high codimension

Consider a variety X over a GVF K carrying a GVF structure. There
exists a canonical base change of X from K to L ≥ K; it assigns zero
mass to new subvarieties of codimension > 1. Stability predicts that
any alternative extension should ’fork’. For instance when L = K(α)
for a constant α, if the new structure Xα assigns mass to a codimension
2 subvariety of X, then an intersection of sufficiently many distinct Xα
should be empty. This indeed follows from:

Lemma. Let {Ut : t ∈ T} be an algebraic family of subvarieties of X ⊂
Pm of codimension ≥ 2. Let n be large and let U1, . . . , Un be elements
of the famliy. Then there exists a hypersurface H of X of degree O(

√
n)

containing all n varieties Ui.

This is part of the proof of stable embeddedness of the constant field
for qf formulas; it constrains the ability to assign positive mass to many
Ui; if H is a low degree polynomial vanishing on many Ui, the zeroes of
H would outbalance the poles.

Question 1. Does there exist a polynomial f on (A2)n, of degree o(n2),
vanishing on all diagonals ∆ij, i < j ≤ n?

Explicit positive answer given by Karim Adiprasito.

Question 2. Let X,Y be affine varieties, ∆ ≤ X×Y any correspondence
of codimension at least 2. Let πij : Xn × Y n → X × Y be the (i, j)-
projection, and ∆ij = π−1

ij (∆ij). Does there exist a polynomial f on
(X × Y )n, vanishing on M of the ∆ij (multiplicities taken into account),
with deg(f) = o(M)?

Positive answer if dim(X) = 2 or if codim(∆) ≥ 3.
This would imply that all qf formulas are stable.
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Model-theoretic conjectures

Let G̃V F be the theory of all existentially closed GVF’s. (Analogue of
ACF for fields.)

1. G̃V F is complete, after a specification of the prime field Q[r] (r > 0),
Q or Fp.

2. G̃V F admits quantifier elimination in a language with Minkowski
functions.

3. The classical GVF’s Q[r]a, k(t)[1]a are models of G̃V F .

4. Every formula of the above language is stable.

Beyond current boundaries:

• ’splitting conditions’. (Rumely). Expansions of residue field with a
(Frobenius) automorphism. (reciprocity maps).

• Generalizations to higher value groups (as H.-Loeser in local case).
(Widely spaced heights, as in Roth’s finiteness theorem.)

• L∞ along with L1. (as in abc, Vojta dictionary.)
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Universality of curves in transcendence
degree 2

Any consistent GVF formula over a constant field k is finitely satisfiable
in some k(C).

Proof when tr.deg.kL = 2:
L = k(S), S a smooth projective surface.
Div(S) = linear combinations of curves on S.
Recall the intersection pairing D1 ·D2 on Div(S) .

• The GVF structure gives a linear map m : Div(S) → R, vanishing
on on divisors (f) of f ∈ L.

• We are looking for a curve C such that C ∩D is close to m(D) for a
given finite number of D. (This requires some preparation, blowing
up S.)

• m vanishes on divisors algebraically equivalent to 0; hence it is given
by intersection with a divisor e.

• As e · [D] ≥ 0 for any irreducible curve D (nef), e can be ap-
proximated by 1

m
a with a very ample, m ∈ N. (Nakai-Moishezon,

Kleiman). In particular a is represented by an irreducible curve A.

• Let C be a smooth curve, f : C → A ≤ X an m-to-one morphism;
this is the point we looked for.

28



In higher dimension we need a theorem for nef curves, not for nef
divisors. Proof based on BDPP, and Legendre duality.

For curves over Q, all the ingredients of this proof appear to be in
place (last one by F. Charles.)

That would include Rumely’s results on capacity on curves, at least
in a measure-theoretic approximation.
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