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A few intersections.

1. (January 1986, Oberwolfach.) ACF definable groups are alge-
braic.

2. From pseudo-finite fields to ACFA and fields with automor-
phisms.

3. (courses 1981 Yale, 2011 UCLA, Goldbring) Hilbert 5.
A connected locally compact group is pro-Lie (Gleason,
Yamabe, Montgomery-Zippin; discrete version by Breuillard,
Green, Tao. )

4. (1988) The theory of the algebraic integers.
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Theorem 1 (van den Dries). The theory of the algebraic integers
is decidable.

Theorem 2 (van den Dries-Macintyre). So is the analogue for global
fields of positive characteristic.

Elements of proof.

K = Qa or K = Fp(t)
a.

O = integral closure of Z or Fp[t].
= {a ∈ K : (∀v)(v(a) ≥ 0).

1. The space X of maximal ideals of O, a locally compact space;
compact above each rational prime.

2. X is accessible to the logic via the clopen subsets =
finitely generated nonzero radical ideals =
2-generated radical ideals.
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3. These form a definable family Bfin; it is a maximal ideal in a
Boolean algebra B.

4. For p ∈ X, Op is the valuation ring of Kp |= ACV F , the theory
of nontrivially valued algebraically closed fields.

5. For any formula φ(x1, . . . , xn) of the language of valued fields,
and any a1, . . . , an ∈ K, a ’boolean truth value’

[φ(a1, . . . , an)] ∈ B

defined as:
{p : Kp |= φ(a1, . . . , an)}

6. Theory is axiomatized by: [ACV F ] = 1 or by: ACF +
[V AL] = 1, and characteristic. ((0, p) with nonzero truth
value for each p in arithmetic case, (p, p) in geometric case.)
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It can thus be described as the Booleanization of ACVF
relative to the theory of fields 1.

7. The validity of these axioms in the specific structure Z̃ uses a
deep theory of Rumely, that we will return to later. Actually
here a qualitative version of Moret-Bailly suffices.

8. A similar theory is available if any completion of the global
field is omitted, but at least one must be. (E.g. totally real al-
gebraic numbers, such that 2nx is integral for some n.) In this
case, when the archimedean primes are included, adjustments
must be made allowing absolute values, i.e. allow ACVF’
whose models include ((C,+, ·, v)), v(x) = − log |x|. I will
pass over these adjustments in silence when they occur.

1with ACVF0,0’s at a distinguished point of X.
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Some questions:

1. What about geometric case, C[t] ?

2. What about all primes?

A lot of tame mathematics is not visible at the level of a single
place or even ’all but one’. E.g.

(a) Finite dimensionality of spaces of holomorphic maps, or
sections, on compact Riemann surfaces;

(b) Irreducible lattices in SLn(Q2)×SLn(R)(Discreteness of
G(Q) in G(A).)

(c) quadratic reciprocity.
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The case of C[t] and the entire algebraic functions.
Let O be the ring of entire algebraic functions. So O is the integral

closure of C[x] in C(x)alg.

Theorem 3 (2). O interprets (Q,+, ·).

Consider family of smooth curves C = (C, j) along with finite
morphisms j : C → C.)

X = lim
←−

C

As before the algebra of clopen subsets of X is interpretable.

2w. Dupuis.
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Let D(C) be the group of maps with finite support C → Z.
(Divisors on C.)

For f ∈ C(C) we have (f) ∈ D(C), the principal divisor (f)(p) =
valp(f).

J(C) := D(C)/{(f) : f ∈ C(C)

= Jacobian of completion C̄ of C, modulo the differences a − b of
two elements mapping to ∞.

Natural map D(C)→ J(C)
Let D,J be the direct limits3 over all curves C. These are par-

tially ordered Q-vector spaces.
Interpretation of D,J in O. Any positive function is the mini-

mum of two principal positive elements.
For b ∈ Bfin, we have D(b), the elements supported on b; these

are sections of a sheaf and the model theory is well-understood.

3for appropriate maps D(C) → D(C′), taking ramification into account.
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Let J(b) be the image in J . Let C be a curve of genus g.

Lemma. Let a, b ∈ Bfin(C) r (0), |a+ b+ C∞| ≥ 2g. Then

J(a) ∩ J(b) 6= (0)

This uses curves C ′ whose definition depends on a, b; it would
not be true for a direct limit over a static index set.

On the other hand, if we consider only elements JC′/C(a) of
J(a) arising from a given curve C ′ (images in J of elements of J(C ′)
mapping to 0 ∈ J(C1)) we can see the opposite phenomenon:

Lemma. Assume p : C ′ → C1 is defined over k0. Let a ∈ C1(k0),
b ∈ C1(k) r C1(k0)alg, c = a− b. Then

JC′/C({a}) ∩ (J({b, c}) = (0)

Lemma. Let c ∈ C1. If c′ ∈ J and c′ is supported on b whenever c
is, then c′ ∈ Qc.

This leads to an intepretation of the field Q.
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What about all primes?
1. Julia Robinson. The totally real algebraic integers are unde-

cidable. Via finite subsets of roots of 1: (∀v)(v(x) = 0) + additional
condition.

2. In function field case, given access to all valuations, the same
formula interprets the field of constants k. But here we have an
exercise: Let R be an integral domain, k an infinite subfield, t ∈ R
such that t − α is not invertible for α ∈ k. Then (R, k,+, ·) is
undecidable.

But the ’tame’, purely global geometries mentioned earlier sug-
gest that (1,2) should not be the last word.

In the rest of this talk I will discuss an attempt at the alge-
braically closed case. We take essentially the minimal reasonable
language capable of expressing the product formula. Thus it is a
global version of Robinson’s ACVF, and not yet of Ax-Kochen’s
Henselian fields. Also, no discriminants. Work in progress with Ben
Yaacov.
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New universal law, but infinitary in nature: the product formula,
generalizing Eucilid’s theorem on unique decomposition into primes:
n = ±Πpp

vp(n), or

− log |n| =
∑
p

vp(n)

To formulate it, we move (at least implicitly) to L1(X,R) in place
of C(X, 2) as our algebraic model of X.

Continuous logic will be used, but lightly: we will have a field
K, functions Kn → R, and the use of continuous logic amounts to
demanding that R, viewed as a sort, remain the standard model.
The main, field sort will be discrete.
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1 The language

The terms in the field sort are polynomials over Z; equality is a
{0, 1}-valued relation as usual. We also consider tropical terms on
R, namely terms in the language +,min, 0, α · x of divisible ordered
Abelian groups.
Basic relations Rt: A symbol Rt for each tropical term
t = t(x1, . . . , xn) to be interpreted as functions (F ∗)n → R.
Local interpretation of Rt Let (K, v) be a valued field, or a subfield
of C with v(x) = −α log |x|. For x with xi 6= 0, interpret Rt

v(x) as
t(vx1, . . . , vxn).
Global intended intepretation: We think of Rt(x) 4 as an expected
value of t(v(x)) with respect to an implied measure on valuations.

Among them, the Weil height: for x = (x0 : · · · : xn) ∈ Pn,

ht(x) = −
∫

min
i
v(xi)dv

4or rather of ratios between them
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Height has a structural role in the definition of quantifiers and
limits of GVF’s, but I will not go into this here.

Connectives min,max, 0,+, α · x.
Quantifiers The analogue of quantifiers in real-valued logic is inf

and sup operators. Let ψn,ε(t) be 1 on [−n, n], 0 on |t| > n+ ε, and
a linear interpolation on [n, n + ε]. Let φ(x, y) be a formula. Then
so is supx ψn,ε(ht(x))φ(x, y).

We view this as a quantifier over x of height up to about n.
All formulas are preserved by ultrapowers.
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2 GVF axioms

1. (F,+, ·) is an integral domain.

2. The Rt are compatible with permutations of variables and
dummy variables.

3. (Linearity:) Rt1+t2 = Rt1 +Rt2 . Rαt = αRt.

4. (Local-global positivity) For φ(x1, . . . , xn) ∈ Lrings 5 and t a
term in +,−,min such that

V F |= (∀x)(φ(x) =⇒ t(v(x1), . . . , v(xn)) ≥ 0

an axiom:

φ(a1, . . . , an) =⇒ Rt(a1, . . . , an) ≥ 0

5. (Product formula) Rx = 0

5implying x1, . . . , xn 6= 0
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Axioms 1-4 are similar to the Boolean local/global axioms; but
Boolean truth values are replaced by ’expectations’. The local-global
axiom now states that everywhere locally positive implies positive
expectation.

From now on we will write
∫
t(vx1, . . . , vxn)dv in place of

Rt(x1, . . . , xn).
(This is in fact justified at the level of models.)
(Product formula)

∫
v(x)dv = 0

Implicitly, the algebraic avatar of X has shifted from C(X, 2) to
(L1(X),+,min). Henson et al have shown this, in itself, to be tame.
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3 Classical structures

Q, k(t) and their algebraic extensions have natural GVF structures.
There is also one arising asymptotically from Nevanlinna theory. In
the case of k(t), valuations over k = points of P1(k); take the measure
giving each point mass 1, and interpret the formulas naturally. The
product formula then states that rational functions have as many
poles as zeroes.

Let C be a curve over a field k = kalg, and K = k(C); let α > 0.
Define:

Rt(x1, . . . , xn) = α
∑

p∈C(k)

t(vp(x1), . . . , vp(xn))

This makes K = k(C) into a GVF, with k the field of constants
(and there is no other way.)

Similarly for number fields K, with appropriate weights.
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At the limit, Ka has a unique GVF structure over k, up to a
scalar renomalization.

Incidentally, this is not true for all GVF’s K; but it is true for
K such that Ka is e.c. There is always a unique Galois-invariant
extension to Ka. .
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Conjecture 3.1. Let K = Q or K = Fp(t). Then Ka is existen-
tially closed in the GVF language.

Further conjectures, not discussed today:

1. The theory of GVF’s admits a model companion; in other
words, the class of existentially closed GVF’s is axiomatizable.

2. The class of GVF’s admits amalgamation over structures A
that are qf-algebraically closed within some existentially closed
extension. NB: GVF is not algebraically bounded.

3. The theory of GVF’s is stable, at least at the qf level.

Definition. M is an existentially closed model of T if for any
structure N ≥ M , with N |= T , basic formulas φi(X,Y ) ∈ L,
(i = 1, . . . , l), ε > 0, and any b from M and a from N , there exists
a′ from M with |φi(a, b)− φi(a′, b)| < ε, i = 1, . . . , l.
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Theorem 4. For any field k, k(t)a is existentially closed as a GVF.
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Three corollaries of existential closedness.

Corollary. Automatic effectiveness, Lefschetz principle.

We exemplify this by means of Cinkir’s theorem; it is one of a
number of known cases of the Bogomolov conjecture for function
fields. (Gubler, Yamaki; Ullmo and Zhang for number fields.

Let f : C → U be a non-isotrivial, generically smooth family of
projective curves of genus ≥ 2 over k = Qa, K = k(C), and embed
CK canonically in its Jacobian AK (via some rational point.)

Theorem 5 (Cinkir). For some b ∈ N, h > 0, C(Ka) has ≤ b points
of canonical height ≤ h on A.

Equivalently: for any h, for some n, C(Ka) has ≤ b points
a1, . . . , ab such that nai has Weil height ≤ h on A.
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Automatic effectivity

An algorithm guaranteed to produce h, b and (the degree of) these
points pi. (’search for a1, . . . , ab and a proof from GVF that no
further solutions exist.’)

Lefschetz principle char. 0 ↔ large char. p

By Theorem 4, the same is true for Fp(U) , for almost all primes p.

Lefschetz principle, towards number fields

There exists b ∈ N, ε > 0 such that if t ∈ U(Qa) has large enough
height h, C = Ct, then C(Qa) has at most b points a with

htcan(a) ≤ εh
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This follows from Theorem 4 and Cinkir’s theorem, though nei-
ther mentions number fields at all. To prove it one uses the family
of GVFs Qa[r]; they are just renormalizations of Qa:

Rt(f1, . . . , fn)Q
a[r] :=

1

r
Rt(f1, . . . , fn)Q

a

In Qa[r], the height of 2 is log(2)/r; the ultraproducts are purely
non-archimedean GVFs.

To prove the corollary, we suppose it is false; then there exists
a sequence of curves Ci = Cti , ti ∈ U(Qa) of height ri, and at
least i distinct points ai,j ∈ Ci(Qa) with htcan(ai,j) ≤ εri. Then in
Qa[r], ai has height 1, and htcan(ai,j) ≤ ε. It follows that in the
non-archimedean GVF in K = Q(x)a there exists a curve C = Ct
with t ∈ U(K) of height 1, so Ct is not isotrivial, and with as any
points of C(K) as desired, of arbitrarily small canonical height; this
contradicts Cinkir’s theorem. (In fact one can even find a sequence
aj ∈ C(K), such that htcan(aj) → 0, using transitivity of Aut(K)
on height-1 elements of P1)
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An arithmetic-geometric curve selection theorem

Let X be a smooth projective variety over Q; let Y , Y1, . . . , Ym be
subschemes.

For x ∈ X(Qa) there is a standard definition of an adelic distance
δ(x, Y ) from Y (Schmidt, Faltings-Wusztholz, Vojta...). Product of
local distances smaller than one.

On A1, the distance from 0 is essentially e−ht(x).
Note that − log δ(x, Y ) is the value of a certain quantifier-free

formula φY (x) in the language of GVF’s.

Proposition. Assume an ∈ X(Qa) form a Zariski dense sequence
of unbounded height, with limn→∞ δYk

(an)/ht(an) = ek; let
ε > 0. Then there exists a curve C on X (not lying on Yi)
such that for any sequence a′n ∈ C(Qa), ht(a′n) → ∞, we have
limn→∞ |δYk

(a′n)/ht(a′n)− ek| < ε.

The proof in fact concerns the intersection of C with each Yk,
normalized by the degree of C. In particular, if algebraic points of
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exponential height H have minimal adelic distance ∼ r/H fro Y ,
then there exist curves of degree d with ∼ rd intersection points
with Y .

Proof. Choose ri = ht(2)/ht(ai) so that Qa[ri] gives ai height 1.
Consider any non-principal ultrafilter u on the index set N, and
let (L, a) be the GVF ultraproduct of (Qa[ri], ai). Then (L, a) is
a purely non-archimedean GVF, and δYk

(a) = φ(a)L = e. There
exists a′ ∈ K = k(t)a with e′ = φ(a′)K satisfying |e′ − e| < ε. In
fact a′ ∈ k(C) for some curve C, so a′ corresponds to a morphism
g : C → X. We may choose a′ so that g(C) avoids any given proper
subvariety of X. By computing the meaning of φ in k(t)a we see
that ī(C, Yk) = e′.

Conversely, if C is a curve on X defined over Qa, then for any
sequence of distinct ai ∈ C(Qa) of bounded degree over Q, δY (a)→
iY (C). This follows upon taking normalized ultraproducts as above,
from the uniqueness of the GVF structure on k(C).
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In particular, there exists such a sequence a′i of bounded degree
over Q.
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Distributional Fekete-Szegő

Fekete-Szegő (1953) asked: When does a compact subset C of C
contain infinitely many Galois orbits of algebraic integers? (Polya,
Schur 1918 for intervals: iff length ≥ 4.)

This, they did not succeed in answering, but they gave a beautiful
answer to a toplogical relaxation of the question: There exists a
sequence of Galois orbits, whose Hausdorff limit is an infinite subset
of C, if and only if C has capacity ≥ 1.

The capacity can be defined in several ways, including the Cheby-
shev number and the transfinite diameter.

Modern formulation (Cantor, Rumely, Chambert-Loir
(Berkovich spaces)): 6

6The Berkovich space is just the quantifier-free type space of the theory of
R-valued fields.
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Let A = C × Πp 6=∞Ôp, a compact affine subset of the adelic
Berkovich space of P1 over Q. Does there exist a sequence of Galois
orbits approaching A?

In general for compact affine subset of the adelic Berkovich space,
the Chebyshev constant Ch(A) is defined by:

− log Ch(A) = lim
d→∞

1

d
sup

deg(f)≤d
Σp inf

v∈Ap

v(f)

This describes the asymptotic volume of the smallest adelic en-
veloping cube, with sides described by degree d polynomial inequal-
ities.

This formulation immediately extends to global fields K, and to
varieties X other than P1. Rumely fully generalized the theory to
curves.7. Several of the definitions of capacity have been generalized
to higher dimensions (Chinburg 1991, . . ., Chinburg-Moret-Bailly-

7In the Cp-formulation
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Pappas-Taylor 2012), with some implications for Galois orbits, but
no sharp characterization so far.

Here we will look at a measure-theoretic formulation: we do not
ask whether all points of the Galois orbit are in a neighborhood of
C, but almost all (a fraction approaching 1). For this we obtain a
sharp characterization in all dimensions.

Given a finite set S, the characteristic measure is the probability
measure giving equal mass to each point of S.

Let K be a function field; so that Ka is existentially closed as a
GVF. A an adelic set.

Theorem 6. Let X be a projective variety, A a compact affine subset
of X as above. Then there exists a Zariski dense sequence of Galois
orbits approaching A distributionally iff Ch(A) ≥ 1.
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Proof: the Chebyshev number condition allows a soft construc-
tion of a GVF extension L ∼= K(X), a ∈ X(L), with

∫
t(v(a))dv = 0

for t supported away from A. By Theorem 4, there exist approxima-
tions ai to a within K. Now integrating t over all valuations above
a place p of K = fixing one vp above p and summing over the Galois
orbit.

Remark on the transfinite capacity.
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Proof of Theorem 4

1. Reduction to equations over the constant subfield. This is a stan-
dard model-theoretic lemma, using the large automorphism group
of K∗. approximate automorphisms of K = k(x)a, e.g. with x 7→
x1+1/100, become automorphisms at the limit. This works also over
Q̄[1], but is not known to me for Q̄[r] for nonconstant r. )

2. Geometric description of formulas.
X a normal projective variety over k = ka. K = k(X).
Given a very ample Cartier divisor H on X, consider the associ-

ated projective embedding; recall that the Weil height with respect
to this embedding is given by a formula:

htH =

∫
−min(v(s0), . . . , v(sm))dv

where s0, . . . , sm ∈ K are a basis of the linear system of H ((si)+
H ≥ 0.)
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This gives a pairing:
(GVF structures on K/k) × (very ample divisors on X ) → R.
For a fixed GVF structure p on K, H 7→ htpH , is a linear map on

PicR(X), positive on the effective cone. From this it follows that it
must vanish on the bounded subgroup Pic0(X).

Let N1(X) be the R-space generated by the curves on X, up to
numerical equivalence.

N+
1 (X) = {c ∈ N1(X) : (∀effective Cartier H)(c,H) ≥ 0}

We have just described a map from GVF structures on K/k to
N+

1 (X).

3. Dually, for any H, p 7→ c(p) ·H is described by a formula, and if
H is allowed to range over Cartier divisors of blowups, such formulas
generate all. (Given the fixed field structure.)

N1(X) {formulas}, D 7→ φD .
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4. On the other hand, points of X in K are given by irreducible
curves on X. To approximate a given structure, these curves need
to avoid a hypersurface, and approach the class of the structural
1-cycle c ∈ N+

1 (X). We are thus led to the following problem:

5. (*) Multiples of irreducible curves on Zariski open sets, are dense
in the nef 1-cycles.

From this point on, the problem is purely geometric.
Example: smooth projective surfaces. (*) follows from: nef divi-

sors are approximated by ample divisors. Here Nakai-Moishezon +
Bertini irreducibility suffice. In the case of arithmetic surfaces, does
an ample line bundle have a pluri-section whose poles form a single
Galois orbit?

Higher dimensional case: nef 1-cycles approximated by An−1, A
ample on a blowup.

A theorem of Boucksom-Demailly-Pau-Peternell 2004 (in char.
0) asserts that the convex hull of such divisors is dense. A proof
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using positive intersection products is given in BFJ. We use the
same methods, along with Legendre duality, to obtain:

Theorem 7. Let X be a normal variety over an algebraically closed
field. Let c be in the open cone of curves dual to the pseudo-effective
cone of X. Then c is the increasing limit of cycles An−1, A ample
on a blowup of X.

In fact c = B<n−1>, B a big R-Cartier divisor on X, < n− 1 >
the ’positive intersection product’.

Along with Bertini, this gives (*).

Big divisors

X a normal projective variety over k, of dimension n.
We consider R-Cartier divisors; D =

∑
αiDi, αi ∈ R. If each

αi ≥ 0, write D ≥ 0, D effective.
An rational function f ∈ K = k(X) is a section of D if (f)+D ≥

0. L(mD) is the space of sections of mD.

33



An effective divisor D is big if some L(mD) has algebraically
independent sections.

Positive intersection product

We define < D >k with k = n or k = n− 1.
Let O ⊂ X be Zariski open. Let m ∈ N.
Let s1, . . . , sk be generic sections of L(mD). Let Z be the Zariski

closure of their common zero locus in O. (A curve if k = n − 1, a
0-dimensional scheme if k = n.) The class [Z] in Nn−k(X) does not
depend on the generic choice, and decreases with O but stabilizes

for small enough O. Define < X ><k>m = [Z]
m .

< D >k:= lim
m→∞

< X ><k>m

Remark: taking k = n, Demailly (1993) gave this definition of
volume, i.e. the leading coefficient of the section growth function.
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BFJ showed vol is differentiable, and

vol′(D) ·H = lim
t→0

vol(D + tH)− vol(D)

t
= n < D >n−1 ·H

Also, vol1/n is concave on the big cone.
This was initially in char. 0, but using Okounkov’s methods, it

is easy to obtain the same in all characteristics.
Theorem 2 follows using a version of Legendre duality, concerning

the derivative of a concave function.
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Non-archimedean Yau-type theorems

On a smooth Kähler variety, the Monge-Ampère operator takes
metrized line bundles to volume forms.

A non-archimedean analogue was developed by Kontsevich-
Tschinkel and Chambert-Loir.It maps metrized line bundles to
measures on Berkovich space.

The general definition uses a limit procedure; here I will discuss
only the purely geometric level, which is easily defined.

Let k be an algebraically closed field, U a smooth projective curve
over k, π : X → U a normal projective variety over U , dim(X) =
n+1. The divisors c lying above divisors of U are the vertical divisors
of X/U , and a measure will just be a positive real-valued function
on them. Each such c has a multiplicity mc in its fiber.

Let L be an ample line bundle on X.

µL(c) := mcc · Ln

We extend this to big divisors B using the positive intersection
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product:

B 7→ µ̂B

µ̂B(c) = mcc· < B >n

In the 1950’s, Calabi proved injectivity of the Ampère-Monge op-
erator on smooth Kähler metrizations of a given line bundle, (up to
a scalar), and conjectured surjectivity to (appropriately normalized)
volume forms; this was proved by Yau in 1977.

A non-archimedean version in characteristic zero appears in
a recent theorem of Boucksom-Favre-Jonsson, with antecedents
in Kontsevich-Tschinkel (2001, unpublished text). They obtain
uniform convergence to general semi-positive metrized line bundles,
but ask for additional information when beginning with a model
measure.

With a little adjustment, Theorem 7 implies (but does not seem
to follow from) a relative version:
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Theorem 8. Let L be an ample line bundle on X. Let µ be a
nowhere vanishing positive measure on the vertical divisors, such
that the total mass of each fiber Xt is µ(It) = deg(L). Then there
exists a big R-Cartier divisor B on X with generic part L, µ̂B = µ.

38



Remarks:
Assume X is smooth, and let v be a valuation of K = k(U) over

k. Then µ determines a measure on the Berkovich space of X over
(K, v); the theorem implies that there exists a metrized line bun-
dle, positive increasing limit of ones arising from nef models, whose
Monge-Ampere measure is µ. The same follows for any measure on
the Berkovich space with total mass prescribed as above, and with
a certain non-vanishing condition.

B can be taken to be quasi-free, i.e. determined as a supremum
of sections of mB.

One can add a multiple of a divisor arising from U (analogous
to scalar multiples in Calabi.) I do not know other sources of non-
uniqueness (for quasi-free B.)
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Remark. The topological Fekete-Szegő theorem amounts to find-
ing an irreducible curve, close to a given ray of nef 1-cycles, and
at the same time orthogonal to a certain finite set of irreducible
Weil divisors. In the case of curves over a function field, the set of
divisors in question can be contracted in a morphism to an Artin
algebraic space, probably giving another proof of Rumely’s function-
field Fekete-Szegő, and showing that the distributional and topolog-
ical conditions coincide.
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Value distribution theory

Let M be the field of meromorphic functions. (Or a countably gen-
erated algebraically closed subfield.) Fix a function η(r) (say log(r)
or rd), and also an ultrafilter u on R>0, avoiding finite measure sets.

Let µr be the measure space on {a : 0 < |a| ≤ r} giving mass
log(r/a)/η(r) to each point 0 < |a| < r, and the uniform measure of
mass 1/η(r) to the circle |t| = r. Define

va(f) = ordaf for |a| < r, vt(f) = − log |f(t)|

htη,u(f) = lim
r→u

max(vaf, 0)dµra

M[η, u] = {f ∈M : htη,u(f) <∞}

Rt(f1, . . . , fn) := lim
r→u

∫
t(vaf1, . . . , vafn)dµra

.
.
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The product axiom is Jensen’s formula:

∑
0<|a|<r

log
r

a
orda(f) +

1

2π

∫ 2π

0

− log |f(reiθ)| dθ = O(1)

The O(1) error term, divided by η(r), goes to 0 so that we have
asymptotically purely non-archimedean GVF.

In GVF language, by Theorem 4, M[η], has the same universal
theory as the ultraproduct of the Qa[r], and also as C(t)a[1]. This
formalizes a (small!) part of Vojta’s dictionary between number
theory and value distribution theory, and sets a goal of formalizing
more.
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