






Interpretations preserving atomic compactness — positive logic. I
will use today a very well-behaved special case, continuous logic.

General atomic compactness recently used critically for a general
structure theorem on approximate subgroups, and approximate lat-
tices in semi-simple Lie groups.



Model theory compactifies classes of structures, adding nonstandard
elements with the same theory. This allows studying asymptotic or
general properties of the original class by investigating single ele-
ments of the boundary.

Finite fields Fp pseudo-finite field F .

(F looks like Fp for large p).
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Trouble is that everything changes. If we want to study an additive
character

Ψp : Fp → T = {z ∈ C : |z| = 1}

Ψ : F → T∗

However, T is atomic compact: there exists a retraction

T∗ → T

In this case, canonically. This allows another limit operation, where
Fp  F while T stays put: Ψ : F → T. This special case is contin-
uous logic.
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Foundations.
Mathematical assertions represented as formulas. Clear conditions
for truth in a model, and for validity of arguments.
An exponential ’tree’ of statements St. An exponential ’tree’ of
proofs. Prf . A map Prf → St.
Gödel: This map is not surjective
Now the problem becomes to explain why anything is provable.
A priori, one would expect the image to be tiny (though this is hard
to quantify.)
Mathematical experience is otherwise: people expect to be able to
prove, or disprove, significant statements in their field. For the most
part they (eventually) succeed.
Model theory attempts to account for the existence of ’normal sci-
ence’; not globally for all of mathematics, but not at the level of
a single theorem either; rather by subject, and by structural fea-
tures cutting across subjects. This implies a process of permanent
expansion.
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Rich frameworks exist for e.g. real geometry; for p-adic geometry;
for equational classes; for stable and simple theories.
I will discuss finite fields.
And, to the extent that time permits, expansion by an additive char-
acter.
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1 Pseudo-finite fields.

Language allowing polynomials (+, ·), equality =, logical connectives
∧,∨,¬ and quantifiers (∀x), (∃x).

A field F is pseudo-finite if any sentence true in F is true in some
finite field.

Theorem (Ax 1967/8). F is pseudo-finite iff F |= PF :

(i) F is perfect;

(ii) F has a unique extension field Fn of order n; and

(iii) Every absolutely irreducible F - variety (or curve) has an F -
point.
If f(X,Y ) ∈ F [X,Y ] is irreducible in F alg[X,Y ], then there
exist infinitely many pairs (a, b) ∈ F 2 with f(a, b) = 0.
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• The third axiom scheme, PAC, is a qualitative consequence of
Weil’s Riemann Hypothesis for curves over finite fields.

|X(Fp)| = p+O(p1/2)

• To prove such a statement requires an understanding of de-
finable subsets of Fn. Previous work (Robinson) clarified the
phenomena of quantifier elimination (=every formula is equiv-
alent to a quantifier-free one, e.g. RCF; amalgamation) and of
model completeness (=every formula is equivalent to an exis-
tential one.) Ax had to recognize and work with an interme-
diate situation:

QE Definable sets are finite Boolean combinations of finite (étale)
projections.

f : U → V a finite covering map; f(U(F )) viewed as a basic
set.
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Consequences.

• Decidability of PF.

• Definable dimension and measure theory. (Van den Dries,
Chatzidakis-Macintyre-Van den Dries.)

• Nature of the dimension theory (simplicity).

• A conceptual home for the study of large finite fields. (e.g.
Tao, expanding polynomials; H.-Pillay, definable groups).
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Dimension theory: dim(X) ∈ N for X ⊂ Fn a definable set.
Three equivalent definitions:

1. dim(X) = min{dim(Y ) : X ⊂ Y, Y algebraic.}
algebraic boundedness, Van den Dries.

2. dim(X) = d iff for almost all p, c0p
d ≤ X(Fp) ≤ c1pd.

3. If (Xt) is a definable family of definable subsets of Y ,
dim(Xt) = d = dim(Y ), then dim(Xt ∩Xt′) < d for ‘many’ t.
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Definable measure theory
(2): In fact X(Fp) = µ(X)pd + O(pd−1/2), with 0 < µ(X) ∈ Q
definable and with the properties of a measure

Theorem (Chatzidakis-Van den Dries-Macintyre 1992). Let F be
a pseudo-finite field. Then there exists a definable measure µ on
definable subsets of F such that for a definable set V ,

p− dim(V )|V (Fp)| →p µ(V )
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Analogue of classification of definable sets:

Theorem (H.-Pillay 1994). A Zariski dense definable subgroup of an
algebaic group G is the image of H(F ) under a surjecdtive morphism
of algebraic groups H → G with finite kernel.

Strong approximation: A Zariski dense group of matrices in SLn(Z)
reduces mod p to SLn(Fp) for almost all p.
Weisfeiler (1984, modulo CFSG),
Gabber (in Katz 1988), Nori (1987), H.-Pillay (1995)
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Proof. H ≤ SLn(Fp).
N generated by elements of order p. By Jordan (1877), H/N is
commutative up to bounded index. (so in Zariski dense setting,
H = N .)
N generate by definable groups A1, A2, · · · . Let Bn = A1A2 · · ·An.
Bn is definable:

B3 = {x : (∃x1 ∈ A1)(∃x2 ∈ A2)(∃x3 ∈ A3)(x = x1x2x3)}

dim(Bn) is increasing, hence stabilizes at some n0.
Bn stabilizes at 4n0. (?! - simplicity)
Hence N is definable. By previous theorem, image under a finite
morphism of an algebraic group (now invoke simple connectedness
of SLn.)
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2 Finite fields with an additive character

Standard additive character

Ψp : Fp → T

Fp = Z/pZ→ R/pZ→ T

Ψp(n mod p) := exp(2πi
n

p
)

Exponential sums: given f : X → Fp,

Ex∈XΨpf(x)
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Weyl’s equidistribution criterion

Consider a sequence fn : Xn → [0, 1] (Xn a finite set)
Equidistribution:
for any 0 < α < β < 1,

lim
n

f−1(α, β)

|Xn|
→ (β − α)

Weyl: equidistribution holds iff for every m ∈ Z, m 6= 0,

lim
n

Ex∈Xne
2πimf(x) = 0

For f : Xp → Fp: iff for every nontrivial homomorphism χ : Fp → T,
(χ = Ψm),

lim
n

Ex∈Xn
χ(f(x)) = 0
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The Weil bound on exponential sums.

(Weil 1948) X an absolutely irreducible curve over F = Fq, f a non-
constant regular function on C, χ : Fp → T a nontrivial character.
Then:

1

q

∑
x∈C(F )

χ(f(x)) ≤ cq−1/2

Where c depends only on the degrees. (E.g. on deg f, deg g if X =
{(x, y) : g(x, y) = 0}.)
In particular, the values of the “polynomial phase” Ψp ◦ f on C are
equi-distributed; provided f is not constant on C.
A large thery extends this to higher-dimensional varieties (Deligne,
Katz,· · · ).
This work inspire by Kowalski (2007) Exponential sums over defin-
able subsets of finite fields. Obtains bounds on exponential sums
over Ax-definable sets.
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Theorem. [Kowalski] Let V ⊂ An be a definable set over Fp, whose
intersection with linear hyperplanes is lower-dimensional; and as-
sume f is not constant on any large set. Then

Ex∈V (Fp)Ψ(f(x))| ≤ O(p−1/2)

Can the additive character χ : Fp → T be put into the logic?
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Continuous logic (with a discrete universe).

Fundamental element of structure of standard Hilbert-style struc-
ture:
a relation R ⊂ An; or, equivalently:
a function χ : An → {0, 1} ; or
a function χ : An → X with X a finite space; or
a function χ : An → X with X a profinite space. (compact, Haus-
dorff, totally disconnected).

Generalization:
allow χ : An → X with X = Xχ ⊂ R (or C) a compact Hausdorff
space.
The new aspect is really possible connectedness of the image rather
than continuity.
The analogue of knowing the truth value of finitely many formulas
is knowing the value of a formula to some given resolution.
A thoroughgoing generalization of all basic notions of logic exists, begin-
ning with compactness and effectiveness. (Chang and Keisler 1966 - topo-
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logical approach. Ben-Yaacov, Berenstein, Henson, Usvyatsov -metric,
Xχ ⊂ R.)
Ultraproducts: χ((an)u) = limu χ(an).
Connectives: +, ·, ·α; quantifiers: sup, inf.
When allowing Xχ ⊂ C, add complex conjugation to connectives, and ·i.

Definition. T admits quantifier-elimination if for any formula ψ(x) and
any ε > 0 there exists a quantifier-free formula φ(x) such that whenever
M |= T and a ∈Mk, we have |ψ(a)− φ(a)| < ε.

The usual criteria for QE go through from the discrete 1st-order logic
case.

Lemma. T admits quantifier-elimination if and only if a type is deter-
mined by a quantifier-free type; iff a partial isomorphism between saturated
models extends.

(Proof: the continuous map restricting complete types to qf types will
under these circumstances be a bijection; as the two spaces are compact
Hausdorff, it is a homeomorphism.)
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Theorem. • The theory PF+ of finite fields with additive characters
F+
q is decidable.

• PF+ admits quantifier-elimination relative to algebraically bounded
quantifiers: ∑

{Ψ(x) : xn + c1x
n−1 + · · ·+ cn = 0}

is taken as basic.

• The completions are determined by the ‘absolute numbers’, the iso-
morphism type of the subfield of points algebraic over the prime
field, enriched with Ψ.

• The pseudo-finite measure is definable. (Generalizing
Ch-vdD-Mac).

• The discrete definable sets are just those definable in Ax’s theory of
finite fields. (Hence Ax’s theorem is included.)

• PF+ is a simple theory: indeed a higher amalgamation principle
holds.
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Analytically, the quantifier-elimination the following consequence:
Consider the class of functions Fnp → C obtained from characteristic func-

tions of varieties along with the additive character Ψ(n mod p) = e2πin/p,
by pre- or post-composing with polynomials and applying min and sup
operators. Then any element of this class can be uniformly approximated
by a polynomial expression in values of Ψ at certain algebraic functions of
the variables. Definability of the measure means that the same remains
true if averaging operators are also allowed.

Example of such an expression: weak Gowers norm (taken somewhat out
of context from Green-Tao 2007 (*).)

‖f‖ud+1 := sup
Q∈Pd(Fnp )

|Ex∈Fnf(x)Ψp(−Q(x))|,
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Remark (Thin ice). The first-order theory of the (Fp,Ψp) is undecidable.
Likewise the continuous-logic theory of finite fields enriched with Λ(k) =
k/p, k = {0, 1, · · · , p− 1}, is undecidable (Σ0

2-complete.)
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Axioms for PF+

Say that a hyperplane Y ⊂ An has height ≤ m if it can be defined by a
linear equation

∑
AiXi = b with Ai ∈ Z, |Ai| ≤ m.

1. F is a field, Q ⊂ F ; Ψ(x+ y) = Ψ(x)Ψ(y); |Ψ(x)| = 1.

2. F has a unique Galois extension of order n for each n; Ψ|Q factors
through Q/Z.

3. h ∈ Q[z1, z
−1
1 , . . . , zn, z

−1
n ] be a Laurent polynomial with degrees

≤ m, and no constant term.

For any absolutely irreducible curve C ⊂ An, not contained in any
hyperplane of height at most m, and any ε > 0, there exists x ∈ C
with h(χ(x)) < ε.

Compare:

1. Ψ(n)(C) = Tn provided C is contained in no proper hyperplane

2. If C is contained in no proper hyperplane, check if it is rational (!);
if it is, reduce to lower dimension.

21



Proposition. Let D ⊂ Fn be a PF-definable set. Then the image
Ψ(n)(D) is a finite unions of cosets of subtori of Un1 .

The pushforward measure Ψ
(n)
∗ µD is a finite linear combination of Haar

measures on such cosets.

However, when D varies, the image torus can jump; the dimension of the
torus is not a definable function.
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PF = pseudo-finite:
To show: a sentence consistent with PF is realized in a finite field Fp:
Every sentence is equivalent to a quantifier-free étale sentence σ.
σ looks only at the roots α1, . . . , αn of a polynomial f ∈ Q[X], to specify
(up to conjugacy) which ones lie in the field. For instance, it may say
n
√

1 ⊂ F . This holds when p = 1 mod n; by Dirichlet such primes exist.
The general case is Chebotarev’s density theorem.

Analogue for PF+; Duke-Friedlander-Iwaniec.
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The additive character, within finite dimensional
difference varieties

On PF+, the additive character seems to have no effect on the Galois
theory.
But viewed as a part of FAfin, the character (k,+) → U1 induces new
Galois characters.
Let f be a regular function on a curve C. We can also view C as a
transformal curve The transformal curve D defined by σ(y)− y = f(x) is
a transformally étale cover of C (smooth and zero-dimensional). Define
DΨ as the quotient of D×U1 by the identification of (d, t) with (d+a, t+
Ψ(a)); we obtain an archimedean analogue of an l-adic local system over
C, that plays an essential role in the Grothendieck-Deligne theory. The
structural automorphism σ lifts, given an element a of C(k), to translation
by Ψ(f(a)) on DΨ.
Could this hint of a possible directly archimedean approach to point-
counting questions over finite fields?
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Question. Let (F, µ1) be an ultraproduct of finite fields with the p−1/2-
normalized counting measure. Is Th(F, µ1) is simple as a continuous logic
structure? Is every definable subset of Fn, definable over the pseudo-finite
field F alone?
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