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Abstract

This thesis is devoted to the mean-risk portfolio optimization problem in a continuous-

time financial market, where we want to minimize the risk of the investment and at the

same time ensure that a given expected return level is obtained. Three topics are studied

in this thesis.

• The first topic is the mean-variance portfolio selection problem with bankruptcy

prohibition in a complete continuous-time market. The problem is completely solved

using a decomposition approach. Specifically, when bankruptcy is prohibited, we

find that the efficient policy for a mean–variance investor is simply to purchase a

European put option that is chosen, according to his or her risk preferences, from a

particular class of options. Moreover, we obtain the efficient frontier by a system of

parameterized equations.

• The second topic is the mean-variance portfolio selection problem with or with-

out constraints in an incomplete continuous-time market. Four models are dis-

cussed: portfolios unconstrained, shorting prohibited, bankruptcy prohibited, and

both shorting and bankruptcy prohibited. A duality method is used to solve all the

models, and explicit solution are obtained when parameters of the market are all

deterministic.

• The third topic is the general mean-risk portfolio selection problem in a complete

continuous-time market. In this mean-risk problem, we measure the risk by the

expectation of a certain function of the deviation of the terminal payoff from its

mean. First of all, the weighted mean-variance problem is solved explicitly. The limit
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of this weighted mean-variance problem, as the weight on the upside variance goes to

zero, is the mean–semivariance problem which is shown to admit no optimal solution.

This negative result is further generalized to a mean–downside-risk portfolio selection

problem where the risk has non-zero value only when the terminal payoff is lower

than its mean. Finally, a general model is investigated where the risk function is

convex. Sufficient and necessary conditions for the existence of optimal portfolios are

given. Moreover, optimal portfolios are obtained when they do exist, and asymptotic

optimal portfolios are obtained when optimal portfolios do not exist.

Key Words: continuous-time market, portfolio selection, risk, bankruptcy, shorting,

backward stochastic differential equation (BSDE), option, semivariance, downside-risk.
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Notation

In this thesis, we use the following additional notation:

R+ : the set of nonnegative real numbers;

Rm
+ : the set of m-dimension real vectors with nonnegative components;

R− : the set of nonpositive real numbers;

Rm
− : the set of m-dimension real vectors with nonpositive components;

N : the set of positive integers;

Q : the set of rational numbers;

M ′ : the transpose of any vector or matrix M ;

|M | : =
√

∑

i,j m2
ij for any matrix or vector M = (mij);

α+ : = max{α, 0} for any real number α;

a− : = max{−a, 0} for any real number a;

int(A) : the interior of any set A;

1A : the indicator function of any set A;

L2
F(0, T ; X) : the set of all stochastic processes x(·) from [0, T ]× Ω to X , which are

{Ft}0≤t≤T progressively measurable and satisfy E
∫ T

0
|x(t)|2dt < +∞;

L2(FT , X) : the set of all X-valued, FT -measurable random variable x satisfying E|x|2 < +∞.

In this thesis, by convention, all vectors are column vectors.
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Chapter 1

Introduction

1.1 Background

Economics is a science for studying how to allocate the scarce resource efficiently. Capital

is one of the most important resources, and it is always scarce. Finance is the branch of

economics to study how to allocate capital efficiently.

A classical problem in finance is as follows. An investor has some (positive) initial

capital, and wants to make the best use of his/her capital. So the investor turns to a

financial market, where certain investment instruments such as bonds, stocks, and deriva-

tive securities are provided. Now the investor is facing his portfolio optimization problem,

that is, how to allocate his capital among these investment instruments.

To help an individual investor, we first need to know more about the financial mar-

ket: the principal of the investment, and the evolution of the prices of the investment

instruments. In other words, we need to model the financial market.

Time and uncertainty are two of the most important aspects of a financial market.

How to embed them into the evolution of the security prices is essential for modelling the

market. The financial market in the real world is so complex. In order to capture the

essence of the market, it is necessary to abstract the real market, so that the model can

focus on the important elements of the market.

2



Chapter 1 Introduction

For studying the investment problem, the single-period market is a natural and illumi-

nating model. In such a model, investors can only decide their capital allocations at the

beginning of the period, and then evaluate the returns of their investments until the end

of the period. The uncertainty of the market is modelled by the randomness of the prices

or their returns. In Magill, Quinzil and Quinzii’s book [47], they use a matrix to represent

the returns as discrete random variables. In most single-period market models, the return

of an asset is modelled as a general random variable, typically with normal or lognormal

distributions. Markowitz’s Nobel prize winning work [41, 42, 43] on mean-variance port-

folio selection, which is the most important single-period model, has laid a foundation for

modern finance.

Multi-period models are more practical than the single-period ones, In these models,

the whole period is divided by a sequence of time spots, and in each time interval between

two adjacent time spots, the market is modelled in the same way as in a single-period

model. Because of the dynamic evolution of the prices, multi-period models are more

than the combination of a sequence of single-period models. In a multi-period model,

the uncertainty of the market is built into the evolution of the security prices and the

information flow at those time spots. The evolution of the prices is often depicted by the

increment of the prices, and the information flow is often given by the historical security

prices. Sometimes the Markovian property is required to facilitate the study of these

models. Multi-period portfolio selection problem has been studied by Samuelson [57],

Hakansson [19], Grauer and Hakansson [18], Pliska [54] and Li and Ng [33].

In continuous-time models, investors can make investment decisions at any time dur-

ing the investment period. These models are more complicated than the discrete-time

ones. They are also different from discrete-time ones, because one cannot simply regard

a continuous-time model as the limit of the latter by dividing the investment period into

many smaller periods. In 1900, Brownian motion was introduced to study the continuous

price processes of securities by Bachelier [2]. But his work had not caught enough eyes

until around the 1960’s when the stochastic analysis was developed. In 1973 the ge-

ometric Brownian motion was used to model the price processes of stocks by Black and

Scholes in their seminal work [6]. From then on, using Brownian motion to model the price

3



Chapter 1 Introduction

evolution became standard fare in financial theory. It has been applied in most work on

continuous-time finance such as in Merton [45, 46], and Karatzas and Shreve [26]. Today

many complete theories have been built on these models, and powerful approaches have

been developed to study the financial market.

In the real financial market, transactions of securities involve many factors such as

transaction cost, minimal transaction unit, etc.. For the convenience of research, some

simplification is often made. The following assumptions are generally used, and we will

assume that they all hold through out this thesis.

1. Transactions bear no transaction fee and no tax is charged;

2. Investors can buy and sell at any admissible time and admissible amount;

3. Investors can borrow and lend money at the same interest rate;

4. The action of individual investors does not affect the prices of assets in the market.

In some special market models, additional transaction rules may be involved. For

example, investors may not short sell securities, or bankruptcy is not allowed. With those

additional rules, the market will be more complicated but comes closer to reality.

Another important consideration in investment is to clarify the objective of an investor.

Generally, an investor wants to make use of his/her capital as efficiently as possible. But

for the efficiency, every individual investor may have his/her own rule, based on which a

decision is made. Consequently, we need to model these rules for “efficiency”. One of the

popular ways to measure the ”efficiency” for an individual investor is by utility function.

Utility is a measure of the satisfaction of an individual on the consumption or income. In

the early years of the development of microeconomics, utility was depicted by indifference

curves. To the best of my knowledge, the numerical utility, now called utility function, was

first studied systematically by von Neumann and Morgenstern [64]. Later it was broadly

used in microeconomics, such as in Samuelson’s classical work [58].

Utility is an ideal concept in economics, which is often used when consumption is

involved. See Merton [45], Karatzas [26], among others. It is well accepted that capital is

a non-satiation resource, which means people will always prefer more capital. Therefore it

seems that the more return of an investment implies the more “efficiency”. But when there

4



Chapter 1 Introduction

is uncertainty in the market, we may not be able to compare the returns of two investments.

An alternative way is to compare the expectation of a certain function on the return of

the investment, which is called expected utility. In fact, most research involving utility

is based on the expected utility when facing uncertainty. The expectation of return itself

can also be a criterion in the portfolio optimization problem, which is quite unacceptable

because of the existence of uncertainty. As stated by Markowitz in [42], “The expected

utility maxim appears reasonable offhand. But so did the expected return maxim ......

Perhaps there is some equally strong reason for decisively rejecting the expected utility

maxim as well”.

It is arguable whether expected utility is good enough to serve as a criterion in a

portfolio optimization problem. As a practical alternative, expected return together with

some other criteria has also been broadly studied, for example, the mean-risk multi-

objective criterion. It is reasonable that the investors prefer higher expected return and

less uncertainty from the investment, and they need to balance the trade-off between

the expected return and risk. Although the measurement of risk is rather subjective,

there are some widely accepted measures of risk, as well as some axioms for the risk

measurement. One of the most famous mean-risk multi-objective frameworks is the mean-

variance framework proposed by Markowitz [41], whose work is widely regarded as the

beginning of the modern portfolio theory.

There have been a lot of works on continuous-time portfolio selection, most of which

use the utility approach. Inspired by the significance and elegance of Markowitz’s mean-

variance model in single-period market, we study in this thesis the mean-risk portfolio

optimization problem in continuous time. We will discuss both complete and incomplete

market, with various portfolio constraints. In summary, we will establish the Markowitz

theory in continuous time.

1.2 Outline of the thesis

Chapter 2 is devoted to building up the continuous market in which we will carry out our

study. In this chapter, we also introduce two important concepts of the financial market,

namely arbitrage and completeness. Arbitrage free is a crucial condition for the market to
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Chapter 1 Introduction

be viable. We try to find the condition as close to the equivalent condition as possible for

the arbitrage free condition. Completeness is also studied in this chapter, and a sufficient

and necessary condition is introduced under some technical assumption.

We begin the portfolio selection problem in Chapter 3. This chapter is motivated

by Zhou and Li [70], in which the Markowitz’s model was investigated in a complete

continuous-time market. In the conclusion obtained in [70], the optimal portfolio will

drive the wealth process to bankruptcy with a strictly positive probability during the

investment period. In Chapter 3, we set the bankruptcy prohibition as constraint on

the portfolio, and study the corresponding mean-variance portfolio selection problem in a

complete market. Martingale method is applied to separate the dynamic portfolio selection

problem into a static optimization problem and a portfolio replication problem. Lagrange

multipliers method is used to solve the former one. We find that the optimal portfolio

under the bankruptcy prohibition is the one that replicates a certain put option. Finally,

we obtain the efficient frontier explicitly.

In Chapter 4, we turn to the incomplete market. We go through the similar way as in

a complete market, but we encounter two difficulties. One is how to apply the separation

approach when the market is incomplete, and hence not all the contingent claims are repli-

cable. The other difficulty is how to solve the static optimization problem separated from

the original mean-variance portfolio selection problem. It will be demonstrated that the

static optimization problem is far more difficult than that in the complete case. In Chapter

4, we discuss how to deal with these two difficulties in four cases: portfolios unconstrained

case, no-shorting case, no bankruptcy case, and neither shorting nor bankruptcy case.

When the parameters are all deterministic, we are able to get the explicit optimal solution

in each case.

In Chapter 5 we go out of the mean-variance framework to the general mean-risk

framework. We start from a weighted mean-variance problem, and then study mean-

semivariance problem by regarding it as a limit of the weighted mean-variance problem

as the weight on the upside risk converges to zero. We find that other than a trivial case,

the mean-semivariance problem in a continuous-time market admits no optimal solution.

Furthermore, we generalize this negative result to a mean-downside-risk problem. While

6



Chapter 1 Introduction

in a single-period market, we prove at the end of Chapter 5 that the mean-semivariance

problem admits optimal solutions if it admits feasible solutions. Motivated by this sur-

prising conclusion, we then turn to find the equivalent condition for a general mean-risk

problem in a continuous-time market to admit optimal solutions. When the existence

of optimal solutions is assured, we find at least one of them. When there is no optimal

solution, we find a asymptotic optimal solution sequence for the mean-risk problem.

Finally, we conclude this thesis in Chapter 6.

7



Chapter 2

Continuous-Time Market

2.1 Introduction

��F¤������
This is a proverb by XunZi, a Chinese ancient philosopher. It says “where the hair

stands upon without skin?”.

A financial market is a platform for investment, where there are securities serving as

investment instruments. To study an investment problem, we first need to model the

market clearly. In order to do that, we need to describe the price processes of securities

and specify the trading rules.

The following trading rules are assumed to be true throughout this thesis:

1. Frictionless Market: There are no transaction cost or taxes, and all securities are

perfectly divisible. Securities can be traded at any time and any admissible amount.

2. Price-Taker: Investors’ actions will not affect the probability distributions of

returns of the available securities.

3. No Dividend: No dividend will be paid by securities.

There are different ways to model the price processes of securities and the transaction

strategies. In Karatzas and Shreve’s book [26], the price processes of risky assets are

modelled by stochastic differential equations (SDE) driven by an n-dimensional Brownian

8



Chapter 2 Continuous-Time Market

motion; the price process of riskless asset (bond) is modelled by an ordinary differential

equation (ODE). And the transaction strategies modelled by the so-called “tame portfo-

lio”. With the “tame portfolio”, a wealth process can be bounded from below by some

constant multiplying the price of bond. In their model, arbitrage-free and completeness of

the financial market can be depicted in almost equivalent ways. In Yan and Xia’s recent

work [65], a more general setup is proposed, where an d-dimensional semimartingale is

used to model the price processes of the securities. They define the transaction strategies

as such where the corresponding wealth processes are bounded from below by the inner

product of a constant vector and the price vector of the securities. They apply the integra-

tion of semimartingale to study the market, and build up a set of theorems even though

the market is very general.

In this thesis, we will work on the following L2-system.

2.2 L
2- system

T > 0 is a fixed terminal time and (Ω,F , P, {Ft}t≥0) is a filtered complete probability

space on which a standard Ft-progressively measurable, m-dimensional Brownian motion

W (t) ≡ (W 1(t), · · · , Wm(t))′ with W (0) = 0 is defined. It is assumed that the filtration

{Ft : 0 ≤ t ≤ T } is generated by the Brownian motion and augmented by all the P -null

sets. We denote by L2
F(0, T ;Rd) the set of all Rd-valued, Ft-progressively measurable

stochastic processes f(·) = {f(t) : 0 ≤ t ≤ T } such that E
∫ T

0 |f(t)|2dt < +∞, and

by L2(FT ,Rd) the set of all Rd-valued, FT -measurable random variables η such that

E|η|2 < +∞. Throughout this thesis, a.s. (the abbreviation of “almost surely”) signifies

that the corresponding statement holds true with probability 1 (with respect to P ).

Suppose in the market n + 1 assets (or securities) are traded continuously. One of the

assets is the bank account whose price process S0(t) is subject to the following (stochastic)

ordinary differential equation:






dS0(t) = r(t)S0(t)dt,

S0(0) = s0 > 0,
(2.1)

where the interest rate r(t) is a uniformly bounded, Ft-adapted, scalar-valued stochastic

process. Normally in practice, the interest rate r(t) ≥ 0, yet this assumption is not

9



Chapter 2 Continuous-Time Market

necessary in the model. The other n assets are stocks whose price processes Si(t), i =

1, · · · , n, satisfy the following stochastic differential equation:







dSi(t) = Si(t)
[

bi(t)dt +
∑m

j=1 σij(t)dW j(t)
]

,

Si(0) = si > 0,
(2.2)

where bi(t) and σij(t), the appreciation and diffusion (or volatility) rates, respectively, are

scalar-valued, Ft-adapted, uniformly bounded stochastic processes.

Define the volatility matrix σ(t) := (σij(t))n×m.

Consider an investor who invests his capital in the market in the following way: at

time t ≥ 0, the amount invested in the bank account is π0(t) and the amount invested

in security i is πi(t). We call (π0(t), π1(t), · · · , πn(t))′ a trading strategy. Denote his total

wealth at time t ≥ 0 by x(t). Then obviously x(t) =
∑n

i=0 πi(t).

We call a trading strategy (π0(t), π1(t), · · · , πn(t))′ to be self-financing if and only if

dx(t) := d
n

∑

i=0

πi(t) =
n

∑

i=0

πi(t)

Si(t)
dSi(t).

Self-financing condition can be understood as that there is no capital injection into nor

withdrawal from the investment.

Assume that trading of shares takes place continuously in a self-financing manner.

Then x(·) satisfies (see, e.g., Karatzas and Shreve [26] and Elliott and Kopp [14])



















dx(t) =
{

r(t)x(t) +
∑n

i=1

[

bi(t) − r(t)
]

πi(t)
}

dt

+
∑m

j=1

∑n
i=1 σij(t)π

i(t)dW j(t),

x(0) = x0 ≥ 0.

(2.3)

Notice that for a self-financing strategy, π0(t) is determined by (π1(t), · · · , πn(t))′ via (2.3).

So we can just use π(t) = (π1(t), · · · , πn(t))′ to represent a self-financing strategy.

Set

B(t) := (b1(t) − r(t), · · · , bn(t) − r(t))′. (2.4)

With this notation, equation (2.3) becomes







dx(t) = [r(t)x(t) + π(t)′B(t)]dt + π(t)′σ(t)dW (t),

x(0) = x0.
(2.5)

Now we need to define an “allowable” trading strategy.

10



Chapter 2 Continuous-Time Market

Definition 2.2.1 A self-financing trading strategy π(·) is said to be admissible if σ(·)′π(·) ∈
L2
F(0, T ;Rm). The set of all the admissible self-financing trading strategies is denoted by

Π.

We also call an admissible self-financing trading strategy as a portfolio.

Observe that by the standard SDE theory, a unique strong solution exists for the wealth

equation (2.5) for any portfolio π(·).
We call the system described above the L2-system, because all the admissible portfolios

π(·) pre-multiplied by the volatility matrix σ(·)′ are in L2
F(0, T,Rm), and as well as their

corresponding wealth processes.

In the following two sections, we will study two important concepts of the financial

market: arbitrage and completeness.

2.3 Arbitrage

Arbitrage-free is a fundamental concept in an economy market, especially in a financial

market.

Definition 2.3.1 A portfolio π(·) is called an arbitrage opportunity if there exists an

initial x0 ≤ 0 and a time t ∈ [0, T ], such that the corresponding wealth process x(·)
satisfies P (x(t) ≥ 0) = 1, and P (x(t) > 0) > 0.

Definition 2.3.2 A market is called arbitrage-free if there is no arbitrage opportunity.

Remark 2.3.1 It is easy to see that a market is not arbitrage-free if and only if there is

a portfolio π(·) and an initial wealth x(0) = x0 ≤ 0 such that the corresponding wealth

process satisfies x(T ) ≥ 0, a.s., and P{x(T ) > 0} > 0.

Absence of arbitrage opportunity is a necessary condition for a financial market to be

viable. If there are arbitrage opportunities in the market, then investors can make money

from the market as much as they want without paying for anything.

Next we give a sufficient condition and a necessary condition for a market being

arbitrage-free.

11



Chapter 2 Continuous-Time Market

Theorem 2.3.1 If there is no Ft-progressively measurable process θ(·) such that B(t) =

σ(t)θ(t), a.s., a.e.t ∈ [0, T ], then the market is not arbitrage-free.

Proof: By Theorem A.1 and Lemma B.2, we can prove that there exists a progressively

measurable process θ0(·) such that θ0(t) ∈ argminx∈Rm |σ(t)x − B(·)|2. Define π0(·) =

σ(·)θ0(·) − B(·), then σ(t)′π0(t) = 0, π0(t)
′B(t) = |π0(t)|2, which imply that π0(·) is a

portfolio.

Define x(·) as the wealth process of π0(·) with the initial wealth x(0) = 0, then

dx(t) = r(t)x(t)dt + π0(t)
′[B(t)dt + σ(t)dW (t)]

= r(t)x(t)dt + |π0(t)|2dt,

x(t) =

∫ T

0

e
∫

T

t
r(s)ds|π0(t)|2dt

≥ 0.

Define r to be a lower bound of the unique bounded process r(·). If there does not

exist a θ(·) satisfies σ(t)θ(t) = B(t) a.s., a.e.t ∈ [0, T ], then P{
∫ T

0 |π0(t)|2dt > 0} > 0.

However,

x(T ) =

∫ T

0

e
∫

T

t
r(s)ds|π0(t)|2dt

≥ emin{rT,0}
∫ T

0

|π0(t)|2ds.

Hence,

P{x(T ) > 0} ≥ P{
∫ T

0

|π0(t)|2dt > 0}

> 0.

This means that the market is not arbitrage-free. �

Theorem 2.3.2 If there exists a uniformly bounded Ft-adapted process θ(·), such that

B(t) = σ(t)θ(t) a.s. a.e.t ∈ [0, T ], then the market is arbitrage-free.

Proof: By Remark 2.3.1, we need only to prove that for any wealth process x(·) under

a portfolio π(·), if x(T ) ≥ 0, a.s. and P{x(T ) > 0} > 0 then x(0) ≥ 0.

Let us fix an admissible portfolio π(·) and let x(·) be the unique wealth process that

solves (2.5) and x(T ) ≥ 0, a.s. and P{x(T ) > 0} > 0. Note that ξ := x(T ) is a positive

12



Chapter 2 Continuous-Time Market

square-integrable FT -measurable random variable; hence (x(·), z(·)) := (x(·), σ(·)′π(·))
satisfies the following backward stochastic differential equation (BSDE):







dx(t) = [r(t)x(t) + z(t)′θ(t)]dt + z(t)′dW (t),

x(T ) = ξ.
(2.6)

Applying Proposition 2.2 (Page 22) in El Karoui, Peng and Quenez [13], we obtain the

following representation

x(t) = ρ(t)−1E(ρ(T )x(T )|Ft), ∀t ∈ [0, T ], a.s., (2.7)

where ρ(·) satisfies






dρ(t) = ρ(t)[−r(t)dt − θ(t)′dW (t)],

ρ(0) = 1,
(2.8)

or, equivalently,

ρ(t) = exp

{

−
∫ t

0

[r(s) +
1

2
|θ(s)|2]ds −

∫ t

0

θ(s)′dW (s)

}

. (2.9)

It follows from (2.7) that ∀t ∈ [0, T ], x(t) > 0, a.s.. In particular, x0 = x(0) > 0, which

implies that there is no arbitrage opportunity in the market. �

Observe that the above process ρ(·) in (2.9) is nothing else but what financial economists

call the deflator process. Since for our market, under the condition of Theorem 2.3.2, there

exists an equivalent martingale measure Q, satisfying

dQ

dP

∣

∣

∣

Ft

= η(t), a.s.,

where η(t) := S0(t)
s0

ρ(t). Thus representation (2.7) can be rewritten as the risk-neutral

valuation formula

x(t) = S0(t)EQ[S0(T )−1x(T )|Ft], ∀t ∈ [0, T ], a.s.,

where we denote by EQ the expectation with respect to the probability Q.

It should be noted that in Theorem 2.3.2, the requirement that θ(·) is uniformly

bounded is strong, and it is difficult to be weakened. However, for a market with de-

terministic parameters, we can weaken it to
∫ T

0
|θ(t)|2dt < +∞.
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Theorem 2.3.3 If r(·), b(·), σ(·) are all deterministic, then the market is arbitrage-free if

there exists a (deterministic) process θ(·) such that B(t) = σ(t)θ(t) a.s. a.e.t ∈ [0, T ] with
∫ T

0
|θ(t)|2dt < +∞.

Proof: Without loss of generality, suppose r(·) = 0. (Else we can study x̄(·) =

e
∫ ·
0

r(s)dsx(·) instead of x(·)). Thanks to
∫ T

0
|θ(s)|2ds < +∞, we have e

∫

T

0
|θ(s)|2ds < +∞.

By Novinkov’s condition, we know ρ(t) := e−
∫

t

0
|θ(s)|2ds/2−

∫

t

0
θ(s)′dW (s), t ∈ [0, T ], is a

martingale.

Take θk(t) = cap(θ(t), k), where for any x ∈ Rn, cap(x, k) is defined as the vector y =

(y1, · · · , yn)′ with yi = sgn(xi)min{|xi|, k}. Then θk(·) is bounded by k, and θk(·) L2

→ θ(·).
For any x0 and π(·), define



















dx(t) = π(t)′[B(t)dt + σ(t)dW (t)]

= [σ(t)′π(t)]′[θ(t)dt + dW (t)],

x(t) = x0,







dxk(t) = [σ(t)′π(t)]′[θk(t)dt + dW (t)],

xk(0) = x0.

Denote Dk(t) = xk(t) − x(t). It is easy to see







dDk(t) = [σ(t)′π(t)]′[θk(t) − θ(t)]dt,

Dk(0) = 0.

Therefore

0 ≤ EDk(T )2

= E

{

∫ T

0

[σ(t)′π(t)]′[θk(t) − θ(t)]dt

}2

≤ E

{

∫ T

0

|σ(t)′π(t)|2dt

∫ T

0

|θk(t) − θ(t)|2dt

}

=

∫ T

0

|θk(t) − θ(t)|2dt E

∫ T

0

|σ(t)′π(t)|2dt.

From the facts that θk(·) L2

→ θ(·) and E
∫ T

0
|σ(t)′π(t)|2dt < +∞, it follows that the last

one converges to 0. So E(xk(T ) − x(t))2 → 0.

14
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On the other hand, denote ρk(t) = e−
∫

T

0
|θk(t)|2/2−

∫

T

0
θk(t)′dW (t). A gain by Proposition

2.2 (Page 22) in El Karoui, Peng and Quenez [13], we obtain that E[xk(T )ρk(T )] = xk(0) =

x0. Furthermore,

E(ρk(T ) − ρ(T ))2 = Eρk(T )2 + Eρ(T )2 − 2E[ρk(T )ρ(T )]

= e
∫

T

0
|θk(t)|2dt + e

∫

T

0
|θ(t)|2dt − 2e

∫

T

0
θk(t)′θ(t)dt

→ 0.

Therefore E[xk(T )ρk(T )] → E[x(T )ρ(T )], implying E[x(T )ρ(T )] = x0. Therefore the

market is arbitrage-free. �

2.4 Completeness

The completeness of the market to be introduced here is different from the one in general

finance theory. Let us start with the definition.

Definition 2.4.1 A European contingent ξ ∈ L2(FT ,R) is said to be replicable if there

exist an initial wealth x0 and a portfolio π(·) such that the wealth of the portfolio x(·)
satisfies x(T ) = ξ. A market is called complete if any contingent claim ξ ∈ L2(FT ,R) is

replicable.

Completeness is another important notion for a market. A market being complete

means that the investors can obtain any (square integrable) contingent return at time T .

The completeness of a market can help us handle the market easier; but in most cases,

the market is incomplete.

Similar to the arbitrage-free condition, we are not yet able to obtain an equivalent

technical condition for the completeness in general. But with some additional assumption,

we can find a sufficient and necessary condition for the market to be complete.

Proposition 2.4.1 Suppose there exists a uniformly bounded θ(·) such that σ(t)θ(t) =

B(t), a.s., a.e.t ∈ [0, T ]. Then the market is complete if and only if rank(σ(t)) =

m, a.s., a.e.t ∈ [0, T ].
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Proof: Without loss of generality, suppose r(t) ≡ 0. Denote π̄(t) = σ(t)′π(t). Then we

can rewrite the wealth equation (2.5) as

dx(t) = π̄(t)′[θ(t)dt + dW (t)].

If rank(σ(t)) = m, a.s., a.e.t ∈ [0, T ], then for any contingent claim ξ ∈ L2(FT ,R),

the BSDE






dx(t) = π̄(t)′[θ(t)dt + dW (t)],

x(T ) = ξ.

admits a unique solution pair (x(·), π̄(·)) ∈ L2
F(0, T,R)×L2

F(0, T,Rm). Because rank(σ(t)) =

m, a.s. a.e.t ∈ [0, T ], we know there exists π(t) ∈ Rn such that σ′(t)π(t) = π̄(t), which

implies ξ is replicable.

On the other hand, for any π̄(·) ∈ L2
F(0, T,Rm), denote

x(t) =

∫ t

0

π̄(s)′θ(s)ds +

∫ t

0

π̄(s)′dW (s).

If the market is complete, then x(T ) is replicable, that is, there exists a π(·) ∈ L2
F(0, T,Rn)

such that σ(t)′π(t) ∈ L2
F(0, T,Rm) and

x(t) =

∫ t

0

π(s)′σ(s)θ(s)ds +

∫ t

0

π(s)′σ(s)dW (s).

By the uniqueness of the solution for BSDE







dy(t) = π̄(t)′[θ(t)dt + dW (t)],

y(T ) = ξ.

we know π̄(t) = σ(t)′π(t), which implies that rank(σ(t)) = m. �

2.5 Remarks on L
2-system

L2-system is a convenient system for studying the portfolio optimization problem, where

the martingale method and backward stochastic differential equation theory can be used

confidently. A major advantage in using this system, as will be shown later in this thesis,

is that the set of all the replicable European contingent claims can be depicted explicitly,

which provides a strong base for the dual method.
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As we see in Sections 2.3 and 2.4, many conclusions rely on the assumption that

r(·), B(·), σ(·) be uniformly bounded. Furthermore, the assumption that there exists a

uniformly bounded process θ(·) such that σ(t)θ(t) = B(t) a.s., a.e.t ∈ [0, T ] plays an

essential role in the study of the market. These two assumptions are set for martingale

method to work smoothly. In fact, under these assumptions, one can solve some complicate

problems in the market. These assumptions can be weakened by some lower bounded

condition, for instance the “tameness” in Karatzas and Shreve [26] and the “allowance”

in Xia and Yan [65]. But the corresponding results are also weakened.
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Chapter 3

Mean-Variance Criteria in a

Complete Market

3.1 Introduction

Mean–variance portfolio selection is concerned with the allocation of wealth among a

variety of securities so as to achieve the optimal trade-off between the expected return of

the investment and its risk over a fixed planning horizon. The model was first proposed

and solved more than fifty years ago in the single-period setting by Markowitz in his

Nobel-Prize winning work Markowitz [41], [42]. With the risk of a portfolio measured by

the variance of its return, Markowitz showed how to formulate the problem of minimizing

a portfolio’s variance subject to the constraint that its expected return equals a prescribed

level as a quadratic program. Such an optimal portfolio is said to be variance minimizing,

and if it also achieves the maximum expected return among all portfolios having the same

variance of return, then it is said to be efficient. The set of all points in the two-dimensional

plane of variance (or standard deviation) and expected return that are produced by efficient

portfolios is called the efficient frontier. Hence investors should focus on the efficient

frontier, with different investors selecting different efficient portfolios, depending upon

their risk preferences.
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Not only does this model and its single-period variations (e.g., there might be con-

straints on the investments in individual assets) witness widespread use in the financial

industry, but also the basic concepts underlying this model have become the cornerstone

of classical financial theory. For example, in Markowitz’s world (i.e., the world where all

the investors act in accordance with the single-period, mean–variance theory), one of the

important consequences is the so-called mutual fund theorem, which asserts that two mu-

tual funds, both of which are efficient portfolios, can be established so that all investors

will be content to divide their assets between these two funds. Moreover, if a risk-free

asset (such as a bank account) is available, then it can serve as one of the two mutual

funds. A logical consequence of this is that the other mutual fund, which itself is efficient,

must correspond to the “market.” This, in turn, leads to the elegant capital asset pricing

model (CAPM), see Sharpe [61], Lintner [37], Mossin [48].

Meanwhile, in subsequent years there has been considerable development of multi-

period and, pioneered by the famous work Merton [45], continuous-time models for port-

folio management. In these work, however, the approach is considerably different, as

expected utility criteria are employed. For example, for the problem of maximizing the

expected utility of the investor’s wealth at a fixed planning horizon, Merton [45] used

dynamic programming and partial differential equation theory to derive and analyze the

relevant Hamilton–Jacobi–Bellman (HJB) equation. The recent books by Karatzas and

Shreve [26] and Korn [29] summarize much of this continuous time, portfolio management

theory.

Multi-period, discrete-time mean–variance portfolio selection has been studied by Samuel-

son [57], Hakansson [19], Grauer and Hakansson [18], and Pliska [54]. But somewhat

surprisingly, the exact, faithful continuous-time versions of the mean–variance problem

have not been developed until very recently. This is surprising because the mean–variance

portfolio problem is known to be very similar to the problem of maximizing the expected

quadratic utility of terminal wealth. Solving the expected quadratic utility problem can

produce a point on the mean–variance efficient frontier, although a priori it is often unclear

what the portfolio’s expected return will turn out to be. So while it is straightforward
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to formulate a continuous-time version of the mean–variance problem as a dynamic pro-

gramming problem, researchers have been slow to produce significant results.

A more modern approach to continuous-time portfolio management, first introduced

by Pliska [52],[53], avoids dynamic programming by using the risk neutral (martingale)

probability measure; but this has not been much helpful either. This risk neutral com-

putational approach decomposes the problem into two sub-problems, where first one uses

convex optimization theory to find the random variable representing the optimal terminal

wealth, then solves the sub-problem of finding the trading strategy that replicates the

terminal wealth. The solution for the mean–variance problem of the first sub-problem is

known for the unconstrained case, 1 but apparently nobody has successfully solved for

continuous time applications the second sub-problem, which is essentially a martingale

representation problem.

A breakthrough of sorts was provided in a recent paper by Li and Ng [33], who studied

the discrete-time, multi-period, mean–variance problem using the framework of multi-

objective optimization, where the variance of the terminal wealth and its expectation are

viewed as competing objectives. They are combined in a particular way to give a single-

objective “cost” for the problem. An important feature of this paper is an embedding

technique, introduced because dynamic programming could not be directly used to deal

with their particular cost functional. Their embedding technique was used to transform

their problem to one where dynamic programming was used to obtain explicit optimal

solutions.

Zhou and Li [70] used the embedding technique and linear–quadratic (LQ) optimal

control theory to solve the continuous-time, mean–variance problem with assets having

deterministic diffusion coefficients. In their LQ formulation, the dollar amounts, rather

than the proportions of wealth, in individual assets are used to define the trading strategy.

This leads to a dynamic system that is linear in both the state (i.e., the level of wealth)

and the control (i.e., the trading strategy) variables. Together with the quadratic form

of the objective function, this formulation falls naturally into the realm of stochastic LQ

control. Moreover, since there is no running cost in the objective function, the resulting

1See, for example, Pliska [54]; the treatment there was for the single-period situation, but the basic
result easily generalizes to very similar results for the multi-period and continuous-time situations.
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problem is inherently an indefinite stochastic LQ control problem, the theory of which has

been developed only very recently (see, e.g., [67, Chapter 6]).

Exploiting the stochastic LQ control theory, Zhou and his colleagues have considerably

extended the initial continuous-time, mean–variance results obtained by Zhou and Li [70].

Lim and Zhou [36] allowed for stocks which are modeled by processes having random

drift and diffusion coefficients, Zhou and Yin [71] featured assets in a regime switching

market, and Li, Zhou, and Lim [34] introduced a constraint on short selling. Kohlmann

and Zhou [27] went in a slightly different direction, studying the problem of mean–variance

hedging of a given contingent claim. In all these papers, explicit forms of efficient/optimal

portfolios and efficient frontiers were presented. While many results in the continuous-time

Markowitz world are analogous to their single-period counterparts, there are some results

that are strikingly different. Most of these results are summarized by Zhou [69], who

also provided a number of examples that illustrate the similarities as well as differences

between the continuous-time and single-period settings.

In view of all this recent work on the continuous-time, mean–variance problem, what

is left to be done? The answer is that it is desirable to address a significant shortcoming of

the preceding models, for their resulting optimal trading strategies can cause bankruptcy

for the investor. Moreover, these models assume a bankrupt investor can keep on trading,

borrowing money even though his or her wealth is negative. In most of the portfolio

optimization literature the trading strategies are expressed as the proportions of wealth in

the individual assets, so with technical assumptions (such as finiteness of the integration

of a portfolio) about these strategies the portfolio’s monetary value will automatically be

strictly positive. But with strategies described by the money invested in individual assets,

as dictated by the stochastic LQ control theory approach, a larger set of trading strategies

is available, including ones which allow the portfolio’s value to reach zero or to become

and remain strictly negative (e.g., borrow from the bank, buy stock on margin, and watch

the stock’s price go into the tank). The ability to continue trading even though the value

of an investor’s portfolio is strictly negative is highly unrealistic. This brings us to the

subject of this chapter: the study of the continuous-time, mean–variance problem with

the additional restriction that bankruptcy is prohibited2.

2Here the bankruptcy is defined as the wealth being strictly negative. A zero wealth is not regarded
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In this chapter we use an extension of the risk neutral approach rather than making

heavy use of stochastic LQ control theory. However, we retain the specification of trading

strategies in terms of the monetary amounts invested in individual assets, and we add the

explicit constraint that feasible strategies must be such that the corresponding monetary

value of the portfolio is nonnegative (rather than strictly positive) at every point in time

with probability one. The resulting continuous time, mean–variance portfolio selection

problem is straightforward to formulate, as will be seen in the following section. Our

model of the securities market is complete, although we allow the asset drift and diffusion

coefficients, as well as the interest rate for the bank account, to be random. Once again,

we emphasize that the set of trading strategies we consider is larger than that of the

proportional strategies, and we will show that the efficient strategies we obtain are in

general not obtainable by the proportional ones. In Section 3.2 we also demonstrate

that the original nonnegativity constraint can be replaced by the constraint which simply

requires the terminal monetary value of the portfolio to be nonnegative. This leads to

the first sub-problem in the risk neutral computational approach: find the nonnegative

random variable having minimum variance and satisfying two constraints, one calling for

the expectation of this random variable under the original probability measure to equal

a specified value, and the other calling for the expectation of the discounted value of this

random variable under the risk neutral measure to equal the initial wealth.

In Section 3.3 we study the feasibility of our problem, an issue that has never been

addressed by other authors to the best of our knowledge. There we provide two nonnegative

numbers with the property that the variance minimizing problem has a unique, optimal

solution if and only if the ratio of the initial wealth to the desired expected wealth falls

between these two numbers. In Section 3.4 we solve the first sub-problem by introducing

two Lagrange multipliers that enable the problem to be transformed to one where the only

constraint is that the random variable, i.e., the terminal wealth, must be nonnegative.

This leads to an explicit expression for the optimal random variable, an expression that

is in terms of the two Lagrange multipliers which must, in turn, satisfy a system of

two equations. In Section 3.5 we show that this system has a unique solution, and we

as in bankruptcy. In fact, as will be seen in the sequel the wealth process associated with an efficient
portfolio may indeed “touch” zero with a positive probability.
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establish simple conditions for determining what the signs of the Lagrange multipliers. A

consequence here is the observation that the optimal terminal wealth can be interpreted

as the payoff of either, depending on the signs of the Lagrange multipliers, a European

put or a call on a fictitious security.

In Section 3.6 we turn to the second sub-problem, showing that the optimal trading

strategy of the variance minimizing problem can be expressed in terms of the solution of a

backward stochastic differential equation. We also provide an explicit characterization of

the mean–variance efficient frontier, which is a proper portion of the variance minimizing

frontier. Unlike the situation where bankruptcy is allowed, the expected wealth on the

efficient frontier is not necessarily a linear function of the standard deviation of the wealth.

In Section 3.7 we consider the special case where the interest rate and the risk premium

are deterministic functions of time (if not constants). Here we provide explicit expressions

for the Lagrange multipliers, the optimal trading strategies, and the efficient frontier. We

conclude in Section 3.8 with some remarks.

Somewhat related to our work are the continuous-time studies of mean–variance hedg-

ing by Duffie and Richardson [12], and Schweizer [59]. More pertinent is the study of

continuous-time, mean–variance portfolio selection in Richardson [55], a study where the

portfolio’s monetary value was allowed to become strictly negative. Also in the working

paper of Zhao and Ziemba [68], a mean–variance portfolio selection problem with deter-

ministic market coefficients and with bankruptcy allowed is solved using a martingale

approach. Closely connected to our research is the work by Korn and Trautmann [30]

and Korn [29]. They considered the continuous-time mean–variance portfolio selection

problem with nonnegativity constraints on the terminal wealth for the case of the Black–

Scholes market where there is a single risky asset that is modelled as simple geometric

Brownian motion and where the bank account has a constant interest rate. They provided

expressions for the optimal terminal wealth as well as the optimal trading strategy using

a duality method. Their first sub-problem fixes a single Lagrange multiplier and then

solves an unconstrained convex optimization problem for the optimal proportional strat-

egy. Their second sub-problem is to find the “correct” value of their Lagrange multiplier.

Actually, they do not have an explicit constraint for nonnegative wealth, but by using
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strategies that are in terms of proportions of wealth, a strictly positive wealth is automat-

ically achieved. In our paper we include strategies that allow the wealth to become zero

at intermediate dates, so apparently our set of feasible strategies is larger. Our results

are considerably more general, for we allow stochastic interest rates, an arbitrary num-

ber of assets, and asset drift and diffusion coefficients that are random. And we provide

characterizations of efficient frontiers, necessary and sufficient conditions for existence of

solutions, and several other kinds of results that Korn and Trautmann [30] did not address

at all.

3.2 Problem formulation

We adopt the market model given in Chapter 2. In this chapter, we suppose the number

of risk securities, n, is equal to m, the dimension of the Brownian motion. In addition, we

make the following basic assumption throughout this chapter

Assumption 3.2.1

σ(t)σ(t)′ ≥ δIm, ∀t ∈ [0, T ], a.s., (3.1)

for some δ > 0, where Im is the m × m identity matrix.

By Theorem 2.3.1 and Theorem 2.4.1, the market is arbitrage free and complete. Fur-

thermore, there exist a uniformly bounded θ(·) = σ(t)−1B(t). Note that θ(·) is the only

process satisfying σ(·)θ(·) = B(·), which is called the risk premium process.

As in Chapter 2, define ρ(·) to be the deflator process as







dρ(t) = ρ(t)[−r(t)dt − θ(t)′dW (t)],

ρ(0) = 1,
(3.2)

or, equivalently,

ρ(t) = exp

{

−
∫ t

0

[r(s) +
1

2
|θ(s)|2]ds −

∫ t

0

θ(s)′dW (s)

}

. (3.3)

Then we have

x(t) = ρ(t)−1E(ρ(T )x(T )|Ft), ∀t ∈ [0, T ] (3.4)

for any wealth process x(·).
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With (3.4), the wealth process x(·) is nonnegative if and only if the terminal wealth

x(T ) is nonnegative. From the economic standpoint, this is a consequence of the fact that

there exists a risk neutral probability measure under which the discounted wealth process

is a martingale. Hence if the terminal wealth is nonnegative, then so is the discounted

wealth process and thus x(·). This property can help us greatly simplify our problem,

which we formulate a little later.

It should be emphasized an important point concerning the way we specify our trading

strategies. Most papers in the research literature define a trading strategy or portfolio,

say u(·), as the (vector of) proportions or fractions of wealth allocated to different assets,

perhaps with some other “technical” constraints such as
∫ T

0
|u(t)|2dt < ∞, a.s., being

specified (see, e.g., Cvitanic and Karatzas (1992) and Karatzas and Shreve (1998)). With

this definition, and if additionally the self-financing property is postulated, then the wealth

at any time t ≥ 0 can be shown to be proportional to the wealth at time t = 0, in the

sense that x(t) = x0x̃(t), where x̃(t) is an (almost surely) strictly positive process. In fact,

with a proportional, self-financing strategy u(·) satisfying the above condition, it can be

shown that the wealth process is a unique strong solution of the following equation







dx(t) = x(t)[r(t) + B(t)′u(t)]dt + x(t)u(t)′σ(t)dW (t),

x(0) = x0.
(3.5)

Thus, x(t) = x0x̃(t), where

x̃(t) = exp
{

∫ t

0

(

[r(s) + B(s)′u(s)]2 − 1

2
|u(s)′σ(s)|2

)

ds +

∫ t

0

u(s)′σ(s)dW (s)
}

.

Consequently, with proportional, self-financing strategies satisfying the above condition,

the wealth process is strictly positive if the initial wealth x0 is strictly positive. In fact, in

this case the value x = 0 becomes a natural barrier of the wealth process.

However, in our model, with the portfolio defined to be the amounts of money allocated

to different assets, the wealth process can take zero or negative values, and we require the

nonnegativity of the wealth as an additional constraint rather than as a by-product of

the “proportions of wealth” approach. Clearly the class of admissible, proportional, self-

financing strategies is a proper sub-class of our set of admissible self-financing strategies.

In fact, any admissible strategy π(·) which produces a (strictly) positive wealth process
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x(t) > 0 gives rise to a proportional strategy, defined as u(t) := π(t)
x(t) . On the other hand,

any proportional strategy u(·) gives rise to a “monetary amount” strategy π(·) defined as

π(t) = u(t)x(t). We will see later that our final solutions involve strategies that cannot be

expressed as proportional ones. Thus our model is fundamentally different from approaches

based upon (2.5).

Now let us formulate the no bankruptcy mean-variance portfolio selection problem.

Definition 3.2.1 Consider the following optimization problem parameterized by z ∈ R:

Minimize Var x(T ) ≡ Ex(T )2 − z2,

subject to































Ex(T ) = z,

x(T ) ≥ 0, a.s.,

π(·) ∈ L2
F(0, T ;Rm),

(x(·), π(·)) satisfies equation (2.5).

(3.6)

The optimal portfolio for this problem (corresponding to a fixed z) is called a variance

minimizing portfolio, and the set of all points (Var x∗(T ), z), where Var x∗(T ) denotes

the optimal value of (3.6) corresponding to z and z runs over R, is called the variance

minimizing frontier.

The efficient frontier, to be defined in Section 3.6, is a portion of the minimizing

variance frontier. Once the minimizing variance frontier is identified, the efficient frontier

can be easily obtained as an appropriate subset of the former3; see Section 3.6. Hence in

this chapter we shall focus on problem (3.6).

If the initial wealth x0 of the agent is zero and if the constraint x(T ) ≥ 0 is in force,

then it follows from (3.4) that x(t) ≡ 0 under all admissible π(·). On the other hand, if

z is set to be 0, then the constraints of (3.6) yield x(T ) = 0, a.s., which in turn leads to

x(t) ≡ 0 by (3.4). Hence to eliminate these trivial cases from consideration we assume

from now on that

x0 > 0, z > 0. (3.7)

3In some of the literature, problem (3.6) itself is defined as the mean–variance portfolio selection
problem, with z required to be in a certain range.
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To solve problem (3.6) we use an extension of the risk-neutral computational approach

that was first introduced by Pliska [52], [53]. The idea is to decompose the problem into

two sub-problems, the first of which is to find the optimal attainable wealth X∗, that is,

the random variable that is the optimal value of all possible x(T ) obtainable by admissible

portfolios. The second sub-problem is to find the trading strategy π(·) that replicates X∗,

which is essentially a martingale representation problem.

To be specific, the first sub-problem is

Minimize EX2 − z2,

subject to



















EX = z,

E[ρ(T )X ] = x0,

X ∈ L2(FT ,R), X ≥ 0, a.s..

(3.8)

Assuming a solution X∗ exists for this problem, consider the following terminal-valued

equation:






dx(t) = [r(t)x(t) + B(t)π(t)]dt + π(t)′σ(t)dW (t),

x(T ) = X∗.
(3.9)

The following result verifies that problems (3.8) and (3.9) indeed lead to a solution of our

original problem.

Theorem 3.2.1 If (x∗(·), π∗(·)) is optimal for problem (3.6), then x∗(T ) is optimal for

problem (3.8) and (x∗(·), π∗(·)) satisfies (3.9). Conversely, if X∗ is optimal for problem

(3.8), then (3.9) must have a solution (x∗(·), π∗(·)) which is an optimal solution for (3.6).

Proof. Suppose (x∗(·), π∗(·)) is optimal for problem (3.6). First of all, by virtue of (3.4)

we have E[ρ(T )x∗(T )] = x0. Hence x∗(T ) is feasible for problem (3.8). Assume there is

another feasible solution, denoted by Y , of problem (3.8) with

EY 2 < Ex∗(T )2. (3.10)

The following linear BSDE






dx(t) = [r(t)x(t) + z(t)′θ(t)]dt + z(t)′dW (t),

x(T ) = Y
(3.11)

admits a unique square-integrable, Ft-adapted solution (x(·), z(·)) since the coefficients of

(3.11) are uniformly bounded due to the underlying assumptions. Write π(t) = (σ(t)′)−1z(t),
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which is square integrable due to the uniform boundedness of (σ(t)′)−1. Hence π(·) is an

admissible portfolio, and (x(·), π(·)) satisfies the same dynamics of (2.2.5). Moreover, it

follows from (3.4) that

x(0) = E[ρ(T )Y ] = x0,

where the second equality is due to the feasibility of Y to problem (3.8). This implies

(x(·), π(·)) is a feasible solution to (3.6). However, (3.10) yields Ex(T )2 = EY 2 <

Ex∗(T )2, contradicting the optimality of (x∗(·), π∗(·)).
Conversely, let X∗ be optimal for problem (3.8). Then by a similar argument to that

above, and using the BSDE (3.11) with terminal condition x(T ) = X∗, one sees that

one can construct a feasible solution (x∗(·), π∗(·)) to (3.6). Moreover, if there is another

feasible solution (x(·), π(·)) to (3.6) that is better than (x∗(·), π∗(·)), then x(T ) would be

better than X∗ for problem (3.8), leading to a contradiction. �

Remark 3.2.1 By virtue of the above theorem, solving the variance minimizing problem

boils down to solving the optimization problem (3.8). Once (3.8) is solved, the solution to

(3.9) can be obtained via standard BSDE theory.

3.3 Feasibility

Since problem (3.6) involves several constraints, the first issue is its feasibility, which is

the subject of this section.

Proposition 3.3.1 Problem (3.6) either has no feasible solution or it admits a unique

optimal solution.

Proof: In view of Remark 3.2.1 it suffices to investigate the feasibility of (3.8). Now

(3.8) can be regarded as an optimization problem on the Hilbert space L2(FT , R), with

the constraint set

D := {Y ∈ L2(FT ,R) : EY = z, E[ρ(T )Y ] = x0, Y ≥ 0}.

If D is nonempty, say with Y0 ∈ D, then an optimal solution of (3.8), if any, must be in

the set D′ := D ∩ {EY 2 ≤ EY 2
0 }. In this case, clearly D′ is a nonempty, bounded, closed
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convex set in L2(FT ,R). Moreover, the cost functional of (3.8) is strictly convex on D′

with a lower bound −z2. Hence (3.8) must admit a unique optimal solution. �

Define

a := infY ∈L2(FT ,R),Y ≥0,EY >0
E[ρ(T )Y ]

EY ,

b := supY ∈L2(FT ,R),Y ≥0,EY >0
E[ρ(T )Y ]

EY .
(3.12)

As will be evident from the sequel, the values a and b are critical. The following represen-

tations of a and b are useful.

Proposition 3.3.2 We have the following representation

a = inf{η ∈ R : P (ρ(T ) < η) > 0},
b = sup{η ∈ R : P (ρ(T ) > η) > 0}.

(3.13)

Proof: Denote ā := inf{η ∈ R : P (ρ(T ) < η) > 0}. For any η satisfying P (ρ(T ) <

η) > 0, take Y := 1ρ(T )<η. Then

Y ∈ L2(FT ,R), Y ≥ 0, EY > 0, and
E[ρ(T )Y ]

EY
< η.

As a result, by the definition of a, we have a ≤ E[ρ(T )Y ]
EY < η. Hence a ≤ ā. Conversely, by

the definition of ā we must have P (ρ(T ) < ā− ε) = 0 for any ε > 0, namely, ρ(T ) ≥ ā− ε,

a.s.. Hence for any Y ∈ L2(FT ,R) with Y ≥ 0, EY > 0, we have E[ρ(T )Y ]
EY ≥ ā − ε. This

implies a ≥ ā − ε for any ε > 0; thus a ≥ ā.

We have now proved the first equality of (3.13). The second one can be proved in a

similar fashion. �

Remark 3.3.1 When the risk premium process θ(·) is deterministic, and when
∫ T

0
|θ(t)|2dt >

0, the exponent in (3.3) at t = T is the sum of a bounded random variable and a normal

random variable with a strictly positive variance; hence a = 0, b = +∞ by Proposition

3.3.2. But when θ(·) is a stochastic process, both a > 0 and b < +∞ are possible even

if
∫ T

0 |θ(t)|2dt > 0, a.s.. To show this, by (3.3) it suffices to construct an example where
∫ T

0
θ(t)dW (t) is uniformly bounded. Indeed, consider a market with one bank account

and one stock with the corresponding one-dimensional standard Brownian Motion W (t).

For a given real number K > 0, define

τ :=







inf{t ≥ 0 : |W (t)| > K}, if sup0≤t≤T |W (t)| > K,

T, if sup0≤t≤T |W (t)| ≤ K.
(3.14)
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Take r(t) = 0.1, b(t) = 0.1 + 1t≤τ and σ(t) = 1. Thus θ(t) = 1t≤τ . Then
∫ T

0 θ(t)dW (t) =

W (τ), which is uniformly bounded by K.

The next result is very important, for it specifies an interval such that our problem

(3.6) has a solution almost if and only if the desired expected wealth z takes a value in

this interval.

Proposition 3.3.3 If a < x0

z < b, then there must be a feasible solution to (3.6). Con-

versely, if (3.6) has a feasible solution, then it must be that a ≤ x0

z ≤ b.

Proof: Assume a < x0

z < b. Again we only need to show the feasibility of the problem

(3.8). By the definition of a and b, for any x0 > 0 and z > 0 with a < x0

z < b there exist

Y1, Y2 ∈ {Y ∈ L2(FT ,R) : Y ≥ 0, EY > 0} such that

E[ρ(T )Y1]

EY1
<

x0

z
<

E[ρ(T )Y2]

EY2
.

Define a function

f(λ) :=
E[ρ(T )(λY1 + (1 − λ)Y2)]

E[λY1 + (1 − λ)Y2]
=

λE[ρ(T )Y1] + (1 − λ)E[ρ(T )Y2]

λEY1 + (1 − λ)EY2
, λ ∈ [0, 1].

Then f is continuous on [0, 1] with f(1) < x0

z < f(0), so there exists a λ0 ∈ (0, 1) such that

x0

z = f(λ0) = E[ρ(T )(λ0Y1+(1−λ0)Y2)]
E[λ0Y1+(1−λ0)Y2] . Set Y0 := λ0Y1 + (1 − λ0)Y2 and Y ∗ := zY0/E[Y0].

Then clearly Y ∗ ∈ L2(FT ,R), Y ∗ ≥ 0, E(Y ∗) = z, and

E[ρ(T )Y ∗] = zf(λ0) = x0.

This shows that Y ∗ is a feasible solution of (3.8).

Conversely, if there is a feasible solution of (3.6), then (3.8) also has a feasible solution,

say Y ∗. Hence Y ∗ ∈ L2(FT ,R), Y ∗ ≥ 0, and E[Y ∗] = z. Thus,

x0

z
=

E[ρ(T )Y ∗]

EY ∗ ≥ a.

Similarly, x0

z ≤ b. �

One naturally wonders what can be said about the feasibility of (3.6) when x0

z = a or

b. The answer is that at these “boundary” points, (3.6) may or may not be feasible, as

can be seen from the following example.

30



Chapter 3 Mean-Variance Criteria in a Complete Market

Example 3.3.1 First consider the process θ(·) as given in Remark 3.1, namely θ(t) =

1t≤τ , where τ is defined by (3.14) for a one-dimensional standard Brownian motion W (t)

and a given real number K > 0. Let r(t) := − |θ(t)|2
2 . Then it follows from (3.3) that

ρ(T ) = e−
∫

T

0
θ(t)dW (t) = e−W (τ). Now

a = inf{η ∈ R : P (ρ(T ) < η) > 0} = e−K ,

whereas

P (ρ(T ) = a) = P (W (τ) = K) = 1 − P ( sup
0≤t≤T

|W (t)| < K) > 0.

Take Y := 1ρ(T )=a. Then Y ≥ 0, EY > 0 and E[ρ(T )Y ] = aP (ρ(T ) = a). Hence with

x0 := aP (ρ(T ) = a) > 0 and z := EY = P (ρ(T ) = a) > 0, we have x0

z = a while Y is a

feasible solution to (3.8).

Next, let θ(·) be the same as above, and r(t) = − |θ(t)|2
2 −1t<τ . Then ρ(T ) = e−W (τ)+τ ,

a = inf{η ∈ R : P (ρ(T ) < η) > 0} = e−K , and

P (ρ(T ) > a) ≥ P (W (τ) ≤ K) = 1. (3.15)

If there is a feasible solution Y to (3.8) for certain x0 > 0 and z > 0 with x0

z = a, or

E[ρ(T )Y ]
EY = a, then

E[(ρ(T ) − a)Y ] = 0,

implying Y = 0 a.s. in view of (3.15). Thus, EY = 0 leading to a contradiction. So (3.8)

has no feasible solution when x0

z = a.

We summarize most of the results in this section as follows:

Theorem 3.3.1 If a < x0

z < b, then the minimizing variance problem (3.6) is feasible and

must admit a unique optimal solution. In particular, if the process θ(·) is deterministic

with
∫ T

0
|θ(t)|2dt > 0, then (3.6) must have a unique optimal solution for any x0 > 0, z > 0.

3.4 Solution to (3.8): the optimal attainable wealth

In this section we present the complete solution to the auxiliary problem (3.8). First a

preliminary result involving Lagrange multipliers follows.
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Proposition 3.4.1 Let D ⊂ L2(FT ,R) be a convex set, ai ∈ R, and ξi ∈ L2(FT ,R),

i = 1, 2, · · · , l, be given, and let f be a scalar-valued convex function on R. If the problem

minimize Ef(Y ),

subject to







E[ξiY ] = ai, i = 1, 2, · · · , l,
Y ∈ D

(3.16)

has a solution Y ∗, then there exists an l-dimensional deterministic vector (λ1, · · · , λl)
′ such

that Y ∗ also solves the following

minimize E[f(Y ) − Y
∑l

i=1 λiξi],

subject to Y ∈ D.
(3.17)

Conversely, if Y ∗ solves (3.17) for some (λ1, · · · , λl)
′, then it must also solve (3.16) with

ai = E[ξiY
∗].

Proof: Let Y ∗ solve (3.16). Define a set ∆ := {(E[ξ1Y ], · · · , E[ξlY ])′ : Y ∈ D} ⊆ Rl,

which is clearly a convex set, and a function

g(x) ≡ g(x1, · · · , xl) := inf
E[ξiY ]=xi,i=1,···,l,Y ∈D

E[f(Y )], x ∈ ∆.

In view of the assumptions, g is a convex function on ∆. By the convex separation theorem,

for the given a = (a1, · · · , al)
′, there exists an l-dimensional vector λ = (λ1, · · · , λl)

′ such

that g(x) ≥ g(a)+ λ′(x− a), ∀x ∈ ∆. Equivalently, g(x)−λ′x ≥ g(a)−λ′a. Now, for any

Y ∈ D,

E[f(Y ) − Y
∑l

i=1 λiξi] ≥ g(E[ξ1Y ], · · · , E[ξlY ]) − ∑l
i=1 λiE[ξiY ]

≥ g(a) − λ′a

= E[f(Y ∗) − Y ∗ ∑l
i=1 λiξi],

implying that Y ∗ solves (3.17).

Conversely, if Y ∗ solve (3.17), then for any Y ∈ D satisfying E[ξiY ] = E[ξiY
∗], we

have

E[f(Y ∗) − Y ∗
l

∑

i=1

λiξi] ≤ E[f(Y ) − Y

l
∑

i=1

λiξi] = E[f(Y ) − Y ∗
l

∑

i=1

λiξi].

Hence E[f(Y ∗)] ≤ E[f(Y )], thereby proving the desired result. �

We now solve problem (3.8) by using Proposition 3.4.1 to transform it to an equivalent

problem that has two Lagrange multipliers and only one constraint: X ≥ 0.
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Theorem 3.4.1 If problem (3.8) admits a solution X∗, then X∗ = (λ − µρ(T ))+, where

the pair of scalars (λ, µ) solves the system of equations







E[(λ − µρ(T ))+] = z,

E[ρ(T )(λ − µρ(T ))+] = x0.
(3.18)

Conversely, if (λ, µ) satisfies (3.18), then X∗ := (λ−µρ(T ))+ must be an optimal solution

of (3.8).

Proof: If X∗ solves problem (3.8), then by Proposition 3.4.1 there exists a pair of

constants (2λ,−2µ) such that X∗ also solves

minimize E[X2 − 2λX + 2µρ(T )X ]− z2,

subject to X ≥ 0, a.s..
(3.19)

However, the objective function of (3.19) equals

E[X − (λ − µρ(T ))]2 − z2 − E[λ − µρ(T )]2.

Hence problem (3.19) has an obvious unique solution (λ − µρ(T ))+ which must then

coincide with X∗. In this case, the two equations in (3.18) are nothing else than the two

equality constraints in problem (3.8).

The converse result of the theorem can be proved similarly in view of Proposition 3.4.1

�

Observe that if the non-negativity constraint X ≥ 0 is removed from problem (3.8),

then the optimal solution to such a relaxed problem is simply X∗ = λ − µρ(T ), with the

constants λ and µ satisfying







E[λ − µρ(T )] = z,

E[ρ(T )(λ − µρ(T ))] = x0.
(3.20)

Since these equations are linear, the solution is immediate:

λ =
zE[ρ(T )2] − x0E[ρ(T )]

Var ρ(T )
, µ =

zE[ρ(T )]− x0

Var ρ(T )
.

But for problem (3.8) the existence and uniqueness of Lagrange multipliers λ and µ sat-

isfying (3.18) is a more delicate issue, which we discuss in the following section.
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3.5 Existence and uniqueness of Largrange multipliers

By virtue of Theorem 3.4.1, an optimal solution to (3.8) is obtained explicitly if the system

of equations (3.18) for Lagrange multipliers admits solutions. In this section we study the

unique solvability of (3.18). For notational simplicity we rewrite (3.18) as







E[(λ − µZ)+] = z,

E[(λ − µZ)+Z] = x0,
(3.21)

where Z := ρ(T ). First we have three preliminary lemmas.

Lemma 3.5.1 For any random variable X and real number c,

E[X(c − X)] − E[X ]E[c − X ] ≤ 0, E[X(X − c)] − E[X ]E[X − c] ≥ 0.

Proof: We have

E[X(c − X)] − E[X ]E[c − X ] = −E[X2] + (EX)2 ≤ 0,

E[X(X − c)] − E[X ]E[X − c] = E[X2] − (EX)2 ≥ 0.

�

Lemma 3.5.2 The function R1(η) := E[(η−Z)+Z]
E[(η−Z)+] is continuous and strictly increasing for

η ∈ (a, +∞), and the function R2(η) := E[(Z−η)+Z]
E[(Z−η)+] is continuous and strictly decreasing

for η ∈ (−∞, b), where a and b are given in (3.13).

Proof: Let us first observe that in view of characterization (3.13) we have that P (Z <

η) > 0 for any η > a, and that P (Z > η) > 0 for any η < b. Consequently, P ((η −Z)+ >

0) > 0 for any η > a and P ((Z − η)+ > 0) > 0 for any η < b. Thus the following

inequalities are satisfied: E[(η − Z)+] > 0 for η > a, and E[(Z − η)+] > 0 for η < b. This

verifies continuity of both functions.

To prove the strict monotonicity of R1(·), take any η1 > η2 > a. Then we have

E[(η2−Z)+Z]
E[(η2−Z)+] = E[(η2−Z)Z|Z<η2]

E[(η2−Z)|Z<η2]

≤ E(Z|Z < η2) (by Lemma 3.5.1)

=
E[Z1Z<η2 ]

E[1Z<η2 ]

< η2

≤ E[(η1−Z)Z1η2≤Z≤η1
]

E[(η1−Z)1η2≤Z≤η1
] .

(3.22)
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Note that in particular the above inequalities imply that

E[(η1−η2)Z1Z<η2 ]

E[(η1−η2)1Z<η2 ] =
E[Z1Z<η2 ]

E[1Z<η2 ] <
E[(η1−Z)Z1η2≤Z≤η1

]

E[(η1−Z)1η2≤Z≤η1
] . (3.23)

On the other hand,

E{[(η1−Z)+−(η2−Z)+]Z}
E[(η1−Z)+−(η2−Z)+] =

E[(η1−η2)Z1Z<η2 ]+E[(η1−Z)Z1η2≤Z≤η1
]

E[(η1−η2)1Z<η2 ]+E[(η1−Z)1η2≤Z≤η1
]

>
E[(η1−η2)Z1Z<η2 ]

E[(η1−η2)1Z<η2 ]

≥ E[(η2−Z)+Z]
E[(η2−Z)+] ,

(3.24)

where the first inequality is due to (3.23) and the familiar inequality

x1 + x2

y1 + y2
>

x1

y1
if

x2

y2
>

x1

y1
and y1, y2 > 0, (3.25)

and the last inequality follows from (3.22). Finally,

E[(η1−Z)+Z]
E[(η1−Z)+] = E[(η2−Z)+Z]+E{[(η1−Z)+−(η2−Z)+]Z}

E[(η2−Z)+]+E[(η1−Z)+−(η2−Z)+]

> E[(η2−Z)+Z]
E[(η2−Z)+] ,

(3.26)

owing to (3.24) and inequality (3.25). This shows that R1(·) is strictly increasing. Simi-

larly, we can prove that R2(·) is strictly decreasing. �

Lemma 3.5.3 We have the following interval representations of the respective sets:

{R1(η) : η > a} = (a, E[Z]), (3.27)

{R2(η) : η < 0} = (E[Z],
E[Z2]

E[Z]
), (3.28)

{R2(η) : 0 ≤ η < b} = [
E[Z2]

E[Z]
, b). (3.29)

Proof: By the definition of a we have P (Z < a) = 0. In other words Z ≥ a, a.s. Hence

R1(η) =
E[(η − Z)+Z]

E[(η − Z)+]
≥ a, ∀η > a. (3.30)

Meanwhile,

E[(η − Z)+Z] ≤ E[(η − Z)+η] = ηE[(η − Z)+],

leading to

R1(η) ≤ η, ∀η > a. (3.31)
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Combining (3.30) and (3.31) we conclude

lim
η→a+

R1(η) = a. (3.32)

On the other hand,

limη→+∞ R1(η) = limη→+∞
E[(η−Z)+Z]
E[(η−Z)+]

= limη→+∞
E[(1−Z/η)+Z]
E[(1−Z/η)+]

= E[Z].

(3.33)

Hence, (3.27) follows from the fact that R1(η) is continuous and strictly increasing.

Next, observe that since Z is almost surely positive, then for every η ≤ 0 we have that

E[(Z − η)+Z] = E[(Z − η)Z] and E[(Z − η)+] = E(Z − η). Consequently, we obtain that

lim
η→−∞

R2(η) = lim
η→−∞

E[(Z − η)+Z]

E[(Z − η)+]
= lim

η→−∞
E[Z2] − ηE[Z]

E[Z] − η
= E[Z],

and

R2(0) =
E[Z2]

E[Z]
.

The above as well as the strict monotonicity of R2(·) imply (3.28). Finally, an argument

analogous to the one that lead to (3.32) yields

lim
η→b−

R2(η) = b,

and this implies (3.29). �

Now we are in a position to present our main results on the unique solvability of

equations (3.21). In particular, we characterize the signs of the two Lagrange multipliers.

Theorem 3.5.1 Equations (3.21) have a unique solution (λ, µ) for any x0 > 0, z > 0

satisfying a < x0

z < b. Moreover,

(1) λ = z, µ = 0 if x0

z = E[Z];

(2) λ > 0, µ > 0 if a < x0

z < E[Z];

(3) λ ≤ 0, µ < 0 if E[Z2]
E[Z] ≤ x0

z < b;

(4) λ > 0, µ < 0 if E[Z] < x0

z < E[Z2]
E[Z] .

Proof: First of all, if EZ2 = (EZ)2, then the variance of Z is zero or Z is a deterministic

constant almost surely. Hence a = b by (3.12), which violates the assumption of the

36



Chapter 3 Mean-Variance Criteria in a Complete Market

theorem. Consequently, E[Z2] > (E[Z])2. On the other hand, again by (3.12) we have

immediately (by letting Y = 1 and Y = Z in E[ZY ]
E[Y ] , respectively)

a ≤ E[Z] <
E[Z2]

E[Z]
≤ b,

where it is important to note the strict inequality above.

We now examine the four cases. Case (1) is easy, for when x0

z = E[Z], one directly

verifies that λ = z, µ = 0 solve (3.21).

For the other three cases we must have µ∗ 6= 0 for any solution (λ∗, µ∗) of (3.21), for

otherwise in view of (3.21) we have λ∗ = z and λ∗E[Z] = x0 leading to x0

z = E[Z] which

is Case (1).

Next, observe that if µ∗ > 0, then (η, µ) := (λ∗

µ∗ , µ∗) is a solution of the following

equations






E[(η−Z)+Z]
E[(η−Z)+] = x0

z ,

E[(η − Z)+] = z
µ .

(3.34)

Likewise, if µ∗ < 0, then (η, µ) := (λ∗

µ∗ , µ∗) is a solution of the following equations







E[(Z−η)+Z]
E[(Z−η)+] = x0

z

E[(Z − η)+] = − z
µ .

(3.35)

Now for case (2) where a < x0

z < E[Z] it follows from Lemma 3.5.3 that the first equation

of (3.34) admits a unique solution η∗ > a ≥ 0 and (3.35) admits no solution. Set

µ∗ :=
z

E[(η∗ − Z)+]
> 0, λ∗ := η∗µ∗ > 0.

Then (λ∗, µ∗) is the unique solution for (3.21).

If E[Z2]
E[Z] ≤ x0

z < b, which is case (3), then by Lemma 3.5.3 the first equation of (3.35)

admits a unique solution η∗ ≥ 0 and (3.34) admits no solution. Set

µ∗ := − z

E[(Z − η∗)+]
< 0, λ∗ := η∗µ∗ ≤ 0.

Then (λ∗, µ∗) is the unique solution for (3.21).

Finally, in case (4) where E[Z] < x0

z < E[Z2]
E[Z] , Lemma 3.5.3 yields that the first equation

of (3.35) admits a unique solution η∗ < 0 and (3.34) admits no solution. Letting

µ∗ := − z

E[(Z − η∗)+]
< 0, λ∗ := η∗µ∗ > 0,

we get that (λ∗, µ∗) uniquely solves (3.21). �
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Remark 3.5.1 In Theorem 3.5.1, we separate the feasible set (a, b) by two critical points:

EZ and EZ2

EZ . It’s easy to see that EZ is the reciprocal of the expected return rate of risk-

free investment, while EZ2

EZ is the reciprocal of the expected return rate of the investment

on a special contingent claim Z := ρ(T ).

Observe that the Lagrange multipliers have a homogeneous property, for if one denotes

by (λ(x0, z), µ(x0, z)) the solution to (3.21) when taking x0 > 0 and z > 0 as parameters,

then clearly

λ(x0, z) = x0λ(1,
z

x0
), µ(x0, z) = x0µ(1,

z

x0
).

In other words, the solution really depends only on the ratio z/x0, which is essentially the

expected return desired by the investor.

3.6 Efficient portfolios and efficient frontier

In this section we derive the efficient portfolios and efficient frontier of our mean–variance

portfolio selection problem based on the variance minimizing portfolios and variance min-

imizing frontier. We fix the initial capital level x0 > 0 for the rest of this section.

First we give the following definition, following p.6 in Markowitz [43].

Definition 3.6.1 The mean–variance portfolio selection problem with bankruptcy prohi-

bition is formulated as the following multi-objective optimization problem

Minimize (J1(π(·)), J2(π(·))) := (Var x(T ),−Ex(T )),

subject to



















x(T ) ≥ 0, a.s.,

π(·) ∈ L2
F(0, T ;Rm),

(x(·), π(·)) satisfies equation (2.5).

(3.36)

An admissible portfolio π∗(·) is called an efficient portfolio if there exists no admissible

portfolio π(·) satisfying (3.36) such that

J1(π(·)) ≤ J1(π
∗(·)), J2(π(·)) ≤ J2(π

∗(·)), (3.37)

with at least one of the inequalities holds strictly. In this case, we call (J1(π
∗(·)),−J2(π

∗(·))) ∈
R2 an efficient point. The set of all efficient points is called the efficient frontier.
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In words, an efficient portfolio is one for which there does not exist another portfolio

that has higher mean and no higher variance, and/or has less variance and no less mean

at the terminal time T . In other words, an efficient portfolio is one that is Pareto optimal.

The problem then is to identify all the efficient portfolios along with the efficient frontier.

By their very definitions the efficient frontier is a subset of the variance minimizing

frontier, and efficient portfolios must be variance minimizing portfolios. In fact, an alter-

native definition of an efficient portfolio is the following. A variance minimizing portfolio

π̃z corresponding to the terminal expected wealth z is called efficient if it is also mean

maximizing in the following sense: Exπ(T ) ≤ Exπ̃z (T ) for all portfolios π that satisfy the

conditions






























π(·) ∈ L2
F(0, T ;Rm),

(xπ(·), π(·)) satisfies equation (2.5),

xπ(T ) ≥ 0, a.s.,

Var xπ(T ) = Var xπ̃z (T ) ,

(3.38)

where xπ(·) denotes the wealth process under a portfolio π(·) and with the initial wealth

x0.

The preceding discussion shows that our first task is to obtain variance minimizing

portfolios, namely, the optimal trading strategies for problem (3.6).

Theorem 3.6.1 The unique variance minimizing portfolio for (3.6) corresponding to z >

0, where a < x0

z < b, is given by

π∗(t) = (σ(t)′)−1z∗(t), (3.39)

where (x∗(·), z∗(·)) is the unique solution to the BSDE







dx(t) = [r(t)x(t) + z(t)′θ(t)]dt + z(t)′dW (t)

x(T ) = (λ − µρ(T ))+,
(3.40)

with (λ, µ) being the solution to (3.18).

Proof: Since ρ(·) is the solution to (3.2), ρ(T ) ∈ L2(FT ,R). Meanwhile by Theorem

3.5.1 equation (3.18) admits a unique solution (λ, µ). By standard linear BSDE theory,

(3.40) has a unique solution (x∗(·), z∗(·)) ∈ L2
F(0, T ;R)× L2

F(0, T ;Rm). Thus, the port-

folio defined by (3.39) must be admissible. Now, the pair (x∗(·), π∗(·)) satisfies (3.9) with
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X∗ = (λ − µρ(T ))+, the latter being the optimal solution of (3.8) by virtue of Theorem

3.4.1. Thus, Theorem 3.2.1 stipulates that π∗(·) must be optimal for (3.6). �

Theorem 3.6.1 asserts that a variance minimizing portfolio is the one that replicates

the time-T payoff of the contingent claim (λ−µρ(T ))+. Note that computing solutions of

BSDE’s like (3.40) is reasonably standard; see, for example, Ma, Protter, and Yong [39]

or Ma and Yong [40]. In particular, if the market coefficients are deterministic, then it is

possible to solve (3.40) explicitly via some partial differential equations; see Section 3.7

for details.

Our next result pinpoints the value of z corresponding to the riskless investment in

our economy.

Theorem 3.6.2 The variance minimizing portfolio corresponding to z = x0

E[ρ(T )] is a risk-

free portfolio.

Proof: By Theorem 3.5.1, λ = z and µ = 0 when x0

z = E[ρ(T )]. The terminal wealth

under the corresponding variance minimizing portfolio, say π0(·), is therefore x0(T ) =

(λ − µρ(T ))+ = λ = z. Hence this portfolio is risk-free. �

In view of Theorem 3.6.2, the risk-free portfolio π0(·) exists even when all the market

parameters are random. Under π0(·) a terminal payoff x0

E[ρ(T )] is guaranteed. Hence

E[ρ(T )] can be regarded as the risk-adjusted discount factor between 0 and T . We may

explain this from another angle. Note in this case x0 = s0EQ[S0(T )−1z], namely, the

initial wealth x0 is equal to the present value of a (sure) cash flow of z units at time

t = T. Since our market is complete, there must be a portfolio having initial value x0 and

replicating this cash deterministic flow. Our portfolio π0(·) is such a replicating portfolio.

Note, however, that π0(·) might involve exposure to the stocks. When the spot interest

rates r(t) are random, it is necessary to hedge the interest rate risk by taking a suitable

position in the stocks; since the market is complete, this risk can be eliminated.

Due to the availability of the risk-free portfolio, it is sensible to restrict attention to

values of the expected payoff satisfying z ≥ x0

E[ρ(T )] when considering problem (3.6). On

the other hand, by Proposition 3.3.3, z will be too large for the mean–variance problem to

be feasible if z > x0

a (x0

a is defined to be ∞ if a = 0). Hence it is sensible to focus on values

of the parameter z (the targeted mean terminal payoff) satisfying x0

E[ρ(T )] ≤ z < x0

a (In
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particular, in the special case where the interest rate process r(·) and the other parameters

in the model are deterministic, then the relevant interval for the mean terminal payoff z

is simply [x0e
∫

T

0
r(t)dt,∞)). For such values of z we then have the following economic

interpretation of the optimal terminal wealth.

Proposition 3.6.1 The unique variance minimizing portfolio for (3.6) corresponding to

z with x0

E[ρ(T )] ≤ z < x0

a is a replicating portfolio for a European put option written on the

fictitious asset µρ(·) with a strike price λ > 0 and maturity T .

Proof: By Theorem 3.5.1, λ > 0 and µ ≥ 0 for x0

E[ρ(T )] ≤ z < x0

a . Thus the result

follows immediately from Theorem 3.6.1 �

The following lemma implies that the portion of the variance minimizing frontier cor-

responding to x0

E[ρ(T )] ≤ z < x0

a is exactly the efficient frontier that we are ultimately

interested in.

Lemma 3.6.1 Denote by J∗
1 (z) the optimal value of (3.6) corresponding to z > 0, where

a < x0

z < b. Then J∗
1 (z) is strictly increasing for z ∈ [ x0

E[ρ(T )] ,
x0

a ), and strictly decreasing

for z ∈ (x0

b , x0

E[ρ(T )] ].

Proof: For any z1 and z2 with x0

a > z2 > z1 ≥ z0 := x0

E[ρ(T )] , denote by x∗
i (·) the

optimal wealth process of (3.6) corresponding to zi, i = 0, 1, 2. Notice that z1 can be

represented as

z1 = kz2 + (1 − k)z0,

where k := z1−z0

z2−z0
∈ [0, 1). Define

x(t) := kx∗
2(t) + (1 − k)x∗

0(t), ∀t ∈ [0, T ].

Then x(·) is a feasible wealth process corresponding to z1 due to the linearity of the system

(2.5). Thus, noting that 0 ≤ k < 1,

J∗
1 (z1) ≤ Var x(T ) = k2Var x∗

2(T ) < J∗
1 (z2).

This shows that J∗
1 (z) is strictly increasing for z ∈ [ x0

E[ρ(T )] ,
x0

a ). Similarly we can prove

the second assertion of the lemma. �

We are now ready to state the final result of this section.
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Theorem 3.6.3 Let x0 be fixed. The efficient frontier for (3.36) is determined by the

following parameterized equations:







E[x∗(T )] = z,

Var x∗(T ) = λ(z)z − µ(z)x0 − z2, x0

E[ρ(T )] ≤ z < x0

a ,
(3.41)

where (λ(z), µ(z)) is the unique solution to (3.18) (parameterized by z). Moreover, all

the efficient portfolios are those variance minimizing portfolios corresponding to z ∈
[ x0

E[ρ(T )] ,
x0

a ).

Proof: First let us determine the variance minimizing frontier. Let x∗(·) be the wealth

process under the variance minimizing portfolio corresponding to z = E[x∗(T )]. Then

Var x∗(T ) = E[x∗(T )2] − z2

= E[(λ(z) − µ(z)ρ(T ))x∗(T )] − z2

= λ(z)E[x∗(T )] − µ(z)E[ρ(T )x∗(T )] − z2

= λ(z)z − µ(z)x0 − z2,

where the second equality followed from the general fact that x2 = αx if x = α+. Now,

Lemma 3.6.1 yields that the efficient frontier is the portion of the variance minimizing

frontier corresponding to x0

E[ρ(T )] ≤ z < x0

a . This completes the proof. �

We remark that for z as in (3.41) the equality Ex(T ) = z in (3.6) can be replaced by

the inequality Ex(T ) ≥ z, and one will get the same solution.

To conclude this section, we remark that the approaches and results of this chapter on

the no-bankruptcy problem (3.6) can easily be adapted to the problem with a benchmark

floor:

Minimize Var x(T ) ≡ Ex(T )2 − z2,

subject to































Ex(T ) = z,

x(t) ≥ x(t), a.s.,

π(·) ∈ L2
F(0, T ;Rm),

(x(·), π(·)) satisfies equation (2.5),

(3.42)

where x(·) is the wealth process of a benchmark portfolio (which is an admissible portfolio

but not necessarily starting with the same initial wealth x0).
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For the model (3.42) the condition x(t) ≥ x(t) implies that x(0) ≤ x0 and Ex(T ) ≤ z.

A similar argument as in the simplification of the no bankruptcy constraint yields that

this condition is equivalent to x(T ) ≥ x(T ).

The counterpart of problem (3.8) corresponding to problem (3.42) is

Minimize EX2 − z2,

subject to



















EX = z,

E[ρ(T )X ] = x0,

X ∈ L2(FT ,R), X ≥ x(T ), a.s..

(3.43)

The above problem is equivalent to

Minimize E[Y + x(T )]2 − z2,

subject to



















EY = z,

E[ρ(T )Y ] = y
0
,

Y ∈ L2(FT ,R), Y ≥ 0, a.s.,

(3.44)

where z = z−Ex(T ) and y
0

= x0−x(0). Compared with problem (3.8), the cost function

of (3.44) involves a first-order term of Y . However, (3.44) can be readily solved using

exactly the same approach as in the proof of Theorem 3.4.1.

An interesting special case of this model is when x(T ) = xT , where xT is a positive

deterministic constant. In this case x(·) is the wealth process under a risk-free portfolio

(similar to the one in Theorem 3.6.2) with the terminal wealth xT (alternatively, one may

regard x(t) = xT B(t, T ) where B(t, T ) is the time-t price of a unit discount Treasury bond

maturing at time T ). Thus, the process x(·) provides a natural floor for the wealth process

of an investor who wishes that his/her terminal wealth is at least xT with probability one.

Obviously, the benchmark portfolio cannot be chosen arbitrarily. It must be selected

so that the above problem is feasible. A feasibility study similar to the one in Section 3

will lead to proper conditions.

3.7 Special case of deterministic market coefficients

For the general case of a market with random coefficients, we have (see Proposition 3.6.1)

derived the efficient portfolios as ones that replicate certain European put options with
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exercise price λ and expiration date T and written on a fictitious security having time-T

price µρ(T ). Moreover, to find this replicating portfolio it suffices to find a trading strategy

π∗(·) along with a wealth process x∗(·) satisfying the BSDE






dx∗(t) = [r(t)x∗(t) + π∗(t)′B(t)]dt + π∗(t)′σ(t)dW (t),

x∗(T ) = (λ − µρ(T ))+.
(3.45)

By the BSDE theory we know there exist a unique admissible portfolio π∗(·) along with a

wealth process x∗(·) satisfying this BSDE, but actually solving this BSDE is sometimes eas-

ier said than done. This is because, in general, one is not able to express (x∗(·), π∗(·)) in a

closed form. However, if all the market coefficients are deterministic (albeit time-varying),

then, as will be shown in this section, an explicit form for (x∗(·), π∗(·)) is obtainable.

In particular, we shall obtain analytical representations of the efficient portfolios via the

Black–Scholes equation.

Throughout this section, in addition to all the basic assumptions specified earlier, we

assume that r(·) and θ(·) are deterministic functions (although b(·) and σ(·) themselves

do not need to be deterministic). Notice that, according to Theorem 3.6.3 in the present

case, the efficient portfolios are the variance minimizing portfolios corresponding to z ≥
x0e

∫

T

0
r(s)ds.

Theorem 3.7.1 Assume that
∫ T

0
|θ(t)|2dt > 0. Then there is a unique efficient portfolio

for (3.6) corresponding to any given z ≥ x0e
∫

T

0
r(s)ds. Moreover, the efficient portfolio and

the associated wealth process are given respectively as

π∗(t) = N(−d+(t, y(t)))(σ(t)σ(t)′)−1B(t)y(t)

= −(σ(t)σ(t)′)−1B(t)[x∗(t) − λN(−d−(t, y(t)))e−
∫

T

t
r(s)ds]

(3.46)

and

x∗(t) = λN(−d−(t, y(t)))e−
∫

T

t
r(s)ds − N(−d+(t, y(t)))y(t), (3.47)

where N(·), with N(x) := 1√
2π

∫ x

−∞ e−
v2

2 dv, is the cumulative distribution function of the

standard normal distribution,

y(t) := µ exp{−
∫ T

0
[2r(s) − |θ(s)|2]ds} exp{

∫ t

0
[r(s) − 3

2 |θ(s)|2]ds −
∫ t

0
θ′(s)dW (s)},

d+(t, y) :=
ln(y/λ)+

∫

T

t
[r(s)+ 1

2 |θ(s)|2]ds√
∫

T

t
|θ(s)|2ds

,

d−(t, y) := d+(t, y) −
√

∫ T

t
|θ(s)|2ds,

(3.48)
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and (λ, µ), with λ > 0, µ ≥ 0, is the unique solution to (3.18).

Proof: First of all, in view of Remark 3.3.1, a = 0 and b = +∞ under the given

assumptions. Moreover, taking expectation on equation (3.2) and solving the resulting

ordinary differential equation we get immediately that E[ρ(T )] = e−
∫

T

0
r(s)ds. Thus a

specialization of Theorem 3.6.3 establishes that the unique efficient portfolio exists for

(3.6) corresponding to any z ≥ x0e
∫

T

0
r(s)ds.

Now consider the fictitious security process y(·) explicitly given in (3.48). Ito’s formula

shows that y(·) satisfies







dy(t) = y(t)[(r(t) − |θ(t)|2)dt − θ(t)′dW (t)],

y(0) = µ exp{−
∫ T

0
[2r(s) − |θ(s)|2]ds}, y(T ) = µρ(T ).

(3.49)

By virtue of Proposition 3.6.1, the efficient portfolio π∗(·) corresponding to a z ≥ x0e
∫

T

0
r(s)ds

is a replicating portfolio for a European put option written on y(·) with the strike λ

and expiration date T . Now, we need to find (x∗(·), π∗(·)) that satisfies (3.45). Write

x∗(t) = f(t, y(t)) for some function f(·, ·) (to be determined). Applying Ito’s formula to f

and (3.49) and then comparing with (3.45) in terms of both the drift and diffusion terms,

we obtain

π∗(t) = −(σ(t)σ(t)′)−1B(t)
∂f

∂y
(t, y(t))y(t), (3.50)

whereas f satisfies the following partial differential equation







∂f
∂t (t, y) + r(t)y ∂f

∂y (t, y) + 1
2 |θ(t)|2y2 ∂2f

∂y2 (t, y) = r(t)f(t, y),

f(T, y) = (λ − y)+.
(3.51)

This is exactly the Black–Scholes equation (generalized to deterministic but not necessarily

constant coefficients) for a European put option; hence one can write down its solution

explicitly as 4

f(t, y) = λN(−d−(t, y))e−
∫

T

t
r(s)ds − N(−d+(t, y))y. (3.52)

Finally, simple (yet non-trivial) calculations lead to

∂f

∂y
(t, y) = −N(−d+(t, y)).

4There are at least two ways to obtain the solution (3.52). One is to use the more familiar European
call option formula and then use the put-call parity. The other is simply to check that the solution given
by (3.52) indeed satisfies the Black–Scholes equation (3.51).
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Thus the desired results (3.46) and (3.47) follow from (3.50) as well as the fact that

x∗(t) = f(t, y(t)). �

Remark 3.7.1 The second expression of the efficient portfolio in (3.46) is in a feedback

form, namely, it is a function of the wealth. In the case where bankruptcy is allowed (see

Zhou and Li [70]), the efficient portfolio is

π∗(t) = −(σ(t)σ(t)′)−1B(t)[x∗(t) − γe−
∫

T

t
r(s)ds], (3.53)

where

γ :=
z − x0e

∫

T

0
[r(t)−|θ(t)|2]dt

1 − e−
∫

T

0
|θ(t)|2dt

Note the striking resemblance in form between (3.46) and (3.53).

Remark 3.7.2 The discounted price process of any financial security must be a martin-

gale under the risk neutral probability measure Q. Since it can be easily verified that the

process y(·) given in (3.48) satisfies y(T ) = µρ(T ) and y(t) = S0(t)EQ[S0(T )−1y(T )|Ft]

for t ∈ [0, T ], it follows that the process y(·) can be interpreted as the price process of

a fictitious security that takes the value µρ(T ) at the maturity date T. We say fictitious

security, as the price process y(·) does not belong to our underlying market, which is

comprised of the securities with price processes Si(·), i = 0, 1, 2, . . . , m.

Remark 3.7.3 It appears that expression (3.46) for the optimal trading strategy π∗(·) is

not convenient for practical implementation because it is in terms of the fictitious security

process y(·) which, in fact, is not directly observable. There are at least two ways to deal

with this issue. First, simple manipulation shows that equation (3.49) is nothing else but

the wealth equation (2.5) under the portfolio

π̂(t) := −(σ(t)σ(t)′)−1B(t)y(t). (3.54)

Notice that, with the initial endowment y(0) = µ exp{−
∫ T

0
[2r(s) − |θ(s)|2]ds}, the above

π̂(·) is a legitimate, implementable continuous-time portfolio because it is a feedback of

the wealth process y(·). The portfolio π̂(·) is also called a (continuous-time) mutual fund

or a basket of stocks. Thus, one may compose, actually or virtually (via a simulation,

say), a portfolio using the initial wealth y(0) and the strategy π̂(·), and the corresponding
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wealth process as determined via (2.5) is exactly the fictitious security process y(·) which

is observable. The efficient portfolio is then the replicating portfolio for a European put

option (with strike λ and maturity T ) written on this basket of stocks. Another way

is based on the observation that, since the market is complete, the “auxiliary” process

y(·) can be inferred from the returns of the risky securities. To see this, define DS(t) :=

(dS1(t)
S1(t)

, . . . , dSm(t)
Sm(t) )′ and b(t) := (b1(t), . . . , bm(t))′. Then one can solve for dW (t) from

equation (2.2), obtaining

dW (t) = σ(t)−1
[

DS(t) − b(t)dt
]

.

Consequently, one can compute the value of y(t) for every t ≥ 0 by combining the above

with (3.48). In practice, this can provide an approximation of y(·) in terms of discrete–time

asset returns.

Remark 3.7.4 Continuing with the second approach discussed in the preceding remark,

we can express the fictitious process y(·) explicitly in terms of the stock prices if all the

coefficients are time-invariant. In fact, in this case Ito’s formula yields

lnSi(t) − lnSi(0) = (bi −
1

2

m
∑

j=1

|σij |2)t +

m
∑

j=1

σijW
j(t)

= (r − 1

2

m
∑

j=1

|σij |2)t + (bi − r)t +

m
∑

j=1

σijW
j(t).

Solving for W (t) we get

W (t) = σ−1V (t) − θ′t

where V (t) := (v1(t), · · · , vm(t))′ with vi(t) := lnSi(t) − lnSi(0) − (r − 1
2

∑m
j=1 |σij |2)t.

Substituting the above to (3.48) we obtain

y(t) = y(0) exp{(r − 3

2
|θ|2)t − θW (t)}

= y(0) exp{(r − 1

2
|θ|2)t − θσ−1V (t)}.

In particular, in the simple Black–Scholes case where the interest rate is constant and there

is a single risky asset whose price process S1(·) is taken as geometric Brownian motion:

S1(t) = S1(0) exp{(b − σ2/2)t + σW (t)}, by the preceding formula the fictitious security

process is of the form y(t) = αeβt[S1(t)]
−θ/σ, where α > 0 and β are two computable
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scalars. But since θ > 0 and σ > 0 it is apparent that this contingent claim has a positive

payoff (i.e., is “in the money”) if and only if the terminal price S1(T ) is greater than some

positive constant (the “strike price”). In this respect the contingent claim resembles a

conventional call, and it is in accordance with economic intuition: the bigger the terminal

price S1(T ) of the risky asset, the better for the investor.

Remark 3.7.5 The terminal wealth under an efficient portfolio is of the form (λ −
µρ(T ))+, which may take zero value with positive probability. Nevertheless, by risk neu-

tral valuation for each t < T the portfolio value is strictly positive with probability one,

and so a trading strategy that replicates this contingent claim is well-defined for t < T as

a proportional strategy. However, for the reasons discussed in Section 3.2, it is not clear

whether such a proportional strategy will satisfy a reasonable condition of admissibility,

such as the ones found in Cvitanic and Karatzas [10] and Karatzas and Shreve [26].

In Theorem 3.7.1, (λ, µ) is the unique solution to (3.18), a solution that is ensured by

Theorem 5.1. It turns out that, in the case of deterministic coefficients, (3.18) has a more

explicit form.

Proposition 3.7.1 Under the assumptions of Theorem 3.7.1, if z > x0e
∫

T

0
r(s)ds, then

(λ, µ) is the unique solution to the following system of equations:











λN

(

ln λ
µ

+
∫ T
0 [r(s)− 1

2
|θ(s)|2]ds√

∫

T
0 |θ(s)|2ds

)

− µe
∫ T
0 [|θ(s)|2−r(s)]dsN

(

ln λ
µ

+
∫ T
0 [r(s)− 3

2
|θ(s)|2]ds√

∫

T
0 |θ(s)|2ds

)

= x0e
∫ T
0 r(s)ds,

λN

(

ln λ
µ

+
∫ T
0 [r(s)+ 1

2
|θ(s)|2]ds√

∫

T
0 |θ(s)|2ds

)

− µe−
∫ T
0 r(s)dsN

(

ln λ
µ

+
∫ T
0 [r(s)− 1

2
|θ(s)|2]ds√

∫

T
0 |θ(s)|2ds

)

= z.

(3.55)

Proof: First note that when z > x0e
∫

T

0
r(s)ds, it follows from Theorem 3.5.1 that λ > 0

and µ > 0. We start with the second equation in (3.18):

E[ρ(T )(λ − µρ(T ))+] = x0. (3.56)

By the proof of Theorem 3.7.1, x0 = x∗(0) = f(0, y(0)). Using the expressions for f(·, ·)
and y(0) as given in (3.52) and (3.49) respectively, we conclude that f(0, y(0))e

∫

T

0
r(s)ds

equals the left hand side of the first equation in (3.55). Hence the first equation in (3.55)

follows.
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Next, the first equation in (3.18) can be rewritten as

E[ρ(T )(
λ

ρ(T )
− µ)+] = z. (3.57)

Drawing an analog between (3.57) and (3.56), we see that equation (3.57) is nothing else

than a statement that z is the initial price of a European call option on λ
ρ(T ) with strike

µ and maturity T . Define

ȳ(t) := λ exp{
∫ t

0

[r(s) +
1

2
|θ(s)|2]ds +

∫ t

0

θ(s)′dW (s)}, (3.58)

which satisfies






dȳ(t) = ȳ(t)[(r(t) + |θ(t)|2)dt + θ(t)dW (t)],

ȳ(0) = λ, ȳ(T ) = λ
ρ(T ) .

(3.59)

The well-known Black–Scholes call option formula (or going through a similar derivation

to that in the proof of Theorem 3.7.1) implies that z = g(0, ȳ(0)) where

g(t, y) = N(d̄+(t, y))y − µN(d̄−(t, y))e−
∫

T

t
r(s)ds, (3.60)

with

d̄+(t, y) :=
ln(y/µ)+

∫

T

t
[r(s)+ 1

2 |θ(s)|2]ds√
∫

T

t
|θ(s)|2ds

,

d̄−(t, y) := d̄+(t, y) −
√

∫ T

t
|θ(s)|2ds.

(3.61)

This leads to the second equation in (3.55). �

We now turn to the representation of the efficient frontier. For the general case this

is provided by Theorem 3.6.3, where we represented the minimal variance Var x∗(T ) as

a function of the expected terminal wealth E[x∗(T )] (= z). But there is the drawback

to representation (3.41) in Theorem 3.6.3, namely, the minimal variance Var x∗(T ) is an

implicit function of z, because the Lagrange multipliers λ(z) and µ(z) are, in general,

implicit functions of z. It turns out that in the deterministic coefficient case we can write

the efficient frontier in an explicit parametric form, as a function of a positive scalar

variable that we denote by η.

Theorem 3.7.2 Under the assumptions of Theorem 3.7.1, the efficient frontier is the
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following


























E[x∗(T )] = ηe
∫ T
0 r(t)dtN1(η)−N2(η)

ηN2(η)−e−
∫ T
0

[r(s)−|θ(s)|2]dsN3(η)
x0,

Var x∗(T ) =

[

η

ηN1(η)−e−
∫

T
0 r(t)dtN2(η)

− 1

]

[Ex∗(T )]2

− x0

ηN1(η)−e−
∫ T
0

r(t)dtN2(η)
Ex∗(T ), η ∈ (0,∞],

(3.62)

where

N1(η) := N

(

ln η+
∫

T

0
[r(s)+ 1

2 |θ(s)|2]ds√
∫

T

0
|θ(s)|2ds

)

,

N2(η) := N

(

ln η+
∫

T

0
[r(s)− 1

2 |θ(s)|2]ds√
∫

T

0
|θ(s)|2ds

)

,

N3(η) := N

(

ln η+
∫

T

0
[r(s)− 3

2 |θ(s)|2]ds√
∫

T

0
|θ(s)|2ds

)

.

(3.63)

Proof: Set η := λ
µ . From the proof of Theorem 3.5.1, it follows that as z runs from

x0e
∫

T

0
r(t)dt (inclusive) to ∞ (exclusive), η changes decreasingly from ∞ (inclusive) to 0

(exclusive). Therefore η ∈ (0,∞]. Dividing the second equation by the first one in (3.55)

we get the first equation of (3.62). Now, replacing λ by ηµ in the second equation of (3.55)

and solving for µ, we obtain

µ =
z

ηN1(η) − e−
∫

T

0
r(t)dtN2(η)

. (3.64)

Thus, appealing to (3.41), we have

Var x∗(T ) = λz − µx0 − z2 = ηµz − z2 − µx0.

Using (3.64) and noting z ≡ E[x∗(T )], we get the second equation of (3.62). �

Remark 3.7.6 Although the efficient frontier does not have a closed analytical form,

equation (3.62) is “explicit” enough in the sense that it has only one parameter η ∈ (0,∞].

It is easy to numerically draw the curve based on (3.62).

Analogous to the single-period case, the efficient frontier in continuous time will induce

the so-called capital market line (CML). Specifically, define r∗(t) := x∗(t)−x0

x0
, the return

rate of an efficient strategy at time t. Then in the case where bankruptcy is allowed, the

capital market line is the following straight line in the terminal mean–standard deviation

plane (see Zhou [69]):

Er∗(T ) = rf (T ) +

√

e
∫

T

0
|θ(t)|2dt − 1σr∗(T ), (3.65)
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where rf (T ) := e
∫

T

0
r(t)dt − 1 is the risk-free return rate over [0, T ], and σr∗(T ) denotes

the standard deviation of r∗(T ). In the present case of bankruptcy prohibition, we can

easily obtain the corresponding CML via the efficient frontier (3.62). Clearly the CML is

no longer a straight line, as seen from (3.62).

Example 3.7.1 Take the same example as in Zhou and Li [70] where a market has a bank

account with r(t) = 0.06 and only one stock with b(t) = 0.12 and σ(t) = 0.15. An agent

starts with an endowment x0 = $1 million and expects a terminal mean payoff z = $1.2

million at T = 1 (year). Bankruptcy is not allowed (as opposed to Zhou and Li [70]). In

this case θ(t) = 0.4. Thus the system of equations (3.55) reduces to






λN
(

ln(λ/µ)−0.02
0.4

)

− µe0.1N
(

ln(λ/µ)−0.18
0.4

)

= e0.06,

λN
(

ln(λ/µ)+0.14
0.4

)

− µe−0.06N
(

ln(λ/µ)−0.02
0.4

)

= 1.2.
(3.66)

Solving this equation we get

λ = 2.0220, µ = 0.8752.

Therefore the corresponding efficient portfolio is the replicating portfolio of a European

put option on the following fictitious stock






dy(t) = y(t)[−0.1dt − 0.4dW (t)],

y(0) = $0.9109
(3.67)

with a strike price $2.0220 maturing at the end of the year.

The CML when bankruptcy is allowed has been obtained in Zhou and Li (2000) as

Er∗(1) = 0.0618 + 0.4165σr∗(1). (3.68)

In the current case of no bankruptcy, the CML is the following based on (3.62):

Er∗(1) =
e0.06ηN( ln η+0.14

0.4 )−N( ln η−0.02
0.4 )

ηN( ln η−0.02
0.4 )−e0.1N( ln η−0.18

0.4 )
− 1,

σ2
r∗(1) = [ η

ηN( ln η+0.14
0.4 )−e−0.06N( ln η−0.02

0.4 )
− 1][Er∗(1) + 1]2

− 1

ηN( ln η+0.14
0.4 )−e−0.06N( ln η−0.02

0.4 )
[Er∗(1) + 1].

(3.69)

Both (3.68) and (3.69) are plotted on the same plane; see Figure 3.1. We see that (3.69)

falls below (3.68), which is certainly expected. In particular, if an agent is expecting an

annual return rate of 20%, then the corresponding standard deviation with bankruptcy

allowed is 33.1813%, whereas the one without bankruptcy is 33.3540%.
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Figure 3.1: Mean-standard deviation of the terminal return rate (CML)

3.8 Concluding remarks

In a complete financial market, the continuous mean-variance problem with unconstrained

portfolios was solved out completely by Zhou and Li [70]. In this chapter, we investigate

a continuous-time mean–variance portfolio selection problem with stochastic parameters

under a no bankruptcy constraint. The problem has been completely solved. The main

idea is the decomposition of the continuous-time portfolio selection problem. We first

identify the optimal terminal wealth attainable by those constrained portfolios, and then

replicate this optimal wealth. This idea in fact applies to a more general class of con-

strained continuous-time portfolio selection problem: first translate all the constraints to

the ones imposed on the terminal wealth, solve this constrained optimization problem

on random variables, and then replicate the contingent claim represented by the optimal

terminal wealth. As we showed in Section 3.4, we can easily apply this idea to solve the

unconstrained mean-variance problem. Later on, we will apply this idea for incomplete

market and other portfolio optimization problem as well.
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As we emphasize in Section 3.2 and elsewhere, by defining trading strategies in terms of

the amount of money invested in individual assets, rather than in terms of the proportion of

wealth invested in individual assets, we can allow for strategies where the portfolio’s value

becomes zero before the terminal date with positive probability. Hence our approach,

which includes an explicit constraint on nonnegative portfolio value, leads to a strictly

bigger set of admissible trading strategies than with the proportional strategy approach.

It is an open question whether this larger class of admissible strategies gives a strictly better

value of the optimal objective value than with the smaller class, although we conjecture

that the two values are the same. And if the two optimal objective values are indeed

the same, it is another open question whether this common value is attained by some

proportional trading strategy. This is an open question because if you try to convert our

optimal strategy to a proportional strategy, then it might be well defined for t < T , but

even so it might not be admissible because the ratio of the money in a risky asset to the

total wealth might not be well-behaved. Since the optimal attainable wealth takes the value

zero with positive probability, it is clear it cannot be replicated by a proportional trading

strategy satisfying the admissibility condition given immediately before (2.8). However,

since the attainable wealth process is strictly positive with probability one for all t < T , it

is an open question whether some other reasonable definition of admissibility might lead

to a proportional trading strategy that does replicate the optimal attainable wealth.

In some financial market there is no-shorting constraint on risky securities. This is

another type of constraint. When shorting is prohibited, there are a lot of un-replicable

contingent claims, therefore the market is essentially incomplete. We will study this con-

straint, along with the constraints combined by shorting prohibition and bankruptcy pro-

hibition, in the next chapter.
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Mean-Variance Criteria in an

Incomplete Market

4.1 Introduction

In Chapter 3, we investigated the mean-variance problem in a complete market. In that

chapter, the completeness of the market is essential, as there is a unique equivalent mar-

tingale measure in the market, and therefore one can completely transfer the complex

dynamic portfolio selection problem into a simpler static optimization problem.

Completeness of the market is an ideal assumption for the financial market. But to

be more practical, we cannot always suppose the market is complete. A fundamental

fact is that the number of the securities may not be the same as that of the random

resources (the dimension of the Brownian motion). Even if there are sufficient securities

being traded in the market, it is not realistic to require the investors to invest in all the

available securities. They may only concern on a subset of the securities in the market.

Therefore, for these investors, the “market” is essentially incomplete. Another possible

reason for the incompleteness of the market is the constraint, such as shorting prohibition,

on the portfolio.

There are two ways to deal with portfolio selection problems in a continuous-time

market. One is the “backward” method, like the one used in Chapter 3, which applies
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the martingale method to separate the problem into a static optimization problem and a

backward stochastic differential equation. This method was developed by Pliska [53], Cox

and Huang [8, 9], and Karatzas, Lehoczky and Shreve [24]. The other is the “forward”

method, which applies the stochastic optimal control technique to the problem. This

method was adopted by Li and Zhou [70], Hu and Zhou [20], Lim and Zhou [36], Li,

Zhou and Lim [34], and Lim [35] in recent years for solving mean-variance problems.

But when the market is incomplete, both approach require more complicated analysis.

Karatzas, Lehoczky, Shreve and Xu [25] deal with the incomplete market by constructing

some fictitious securities in the market and regarding the original market as a constrained

market where the fictitious securities are prohibited to be traded, and then apply the

martingale method to maximize the utility. The same technique was applied in Lim [35],

where stochastic optimal control method was adopted. In Hu and Zhou [20], a type of

so-called cone constraint was studied in a complete market, the result of which may also

be applied to deal with the incomplete market.

Portfolio selection problem in continuous-time, especially in an incomplete market, has

been studied by utility maximization framework in literature. In that mainly in the frame-

work, the utility function is typically assumed to be strictly increasing, infinite derivative

at 0, among others. These assumptions are so strict that even the quadratic function does

not satisfy them. See Karatzas, Lehoczky, Shreve and Xu [25] and Schachermayer [60].

In this chapter, we will study the mean-variance portfolio selection problem in an

incomplete market. The rest of this chapter is organized as follows: The incomplete

market and the (constrained) mean-variance problem will be specified in Section 4.2. In

Section 4.3, we investigate the unconstrained mean-variance problem, which is the simplest

case in this chapter. We set up the equivalent static optimization problem and its dual

problem. When the parameters are deterministic, we can solve the dual problem, and

obtain the optimal solution for the mean-variance problem explicitly. In Section 4.4, we

deal with the shorting prohibition model. Section 4.5 is devoted to no bankruptcy case.

At last, we discuss the case where both shorting and bankruptcy are prohibited in Section

4.6. Although in the last 3 cases, the problem become very complicated, we work out the

explicit optimal solutions when the parameters are deterministic. Finally we conclude the
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chapter in Section 4.7.

4.2 Problem formulation

Again we adopt the market given in Chapter 2. Contrary to Chapter 3, the market is

not necessarily complete, and the number of risky securities n may be less than m, the

dimension of the Brownian motion.

In this chapter, we make the following assumption to ensure that the market is arbitrage-

free (see Theorem 2.3.2).

Assumption 4.2.1 There exists θ ∈ L∞
F (0, T,Rn) such that σ(t)θ(t) = B(t), a.s., a.e. ∈

[0, T ].

Assumption 4.2.1 is satisfied if σ(t)′σ(t) is uniformly positive definite (i.e., there is

δ > 0 such that σ(t)′σ(t) ≥ δIn, a.s., a.e.t ∈ [0, T ]), in which case n ≤ m and there is a

unique such θ. In general, however, the process θ, if it exists, may not be unique.

Define

Θ := {θ ∈ L∞
F (0, T,Rn) : σ(t)θ(t) = B(t), a.s., a.e.t ∈ [0, T ]}, (4.1)

and

θ0(t) := argminσ(t)x=B(t)|x|2. (4.2)

By Lemma A.2, θ0 is a Ft-progressively measurable process. Moreover, due to Assumption

4.2.1 we also have θ0 ∈ L∞
F (0, T,Rn).

For any θ ∈ L∞
F (0, T,Rn), define

Hθ(t) := exp

{

−
∫ t

0

[r(s) +
1

2
|θ(s)|2]ds −

∫ t

0

θ(s)′dW (s)

}

. (4.3)

Equivalently, Hθ(·) can be defined as the unique solution to the following SDE






dHθ(t) = −r(t)Hθ(t)dt − Hθ(t)θ(t)
′dW (t),

Hθ(0) = 1.
(4.4)

The following technical lemma is useful in the sequel.

Lemma 4.2.1 Given a set A ⊆ L∞
F (0, T,Rn). If kθ1 + (1 − k)θ2 ∈ A whenever θ1 ∈

A, θ2 ∈ A and k ∈ L1
F (0, T ; [0, 1]), then the set {Hθ(·) : θ ∈ A} is convex.
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Proof: For any θ1, θ2 ∈ A and λ ∈ [0, 1], denote H(·) := λHθ1(·) + (1−λ)Hθ2(·). Then

H(0) = 1, and

dH(t)

= λ[−r(t)Hθ1(t)dt − Hθ1(t)θ1(t)
′dW (t)] + (1 − λ)[−r(t)Hθ2 (t)dt − Hθ2(t)θ2(t)

′dW (t)]

= −r(t)H(t)dt − H(t)[k(t)θ1(t) + (1 − k(t))θ2(t)]
′dW (t),

where k(t) :=
λHθ1

(t)

λHθ1
(t)+(1−λ)Hθ2

(t) . Define θ(t) := k(t)θ1(t) + [1 − k(t)]θ2(t). Then θ ∈ A.

It then follows from the definition of Hθ, see (4.4), that H(t) ≡ Hθ(t). This completes the

proof. �

Fix an initial wealth x0. A general (constrained) continuous-time Markowitz’s mean–

variance portfolio selection problem is formulated as

Minimize Var x(T ) ≡ Ex(T )2 − z2,

subject to































Ex(T ) = z,

π(·) ∈ Π,

(x(·), π(·)) satisfies equation (2.5) with x(0) = x0,

(x(·), π(·)) ∈ C,

(4.5)

where C is a given convex set in L2
F(0, T,R)×Π, and z ∈ R is a parameter. The optimal

portfolio for this problem (corresponding to a fixed z) is called an efficient portfolio, and

the set of all points (Var x∗(T ), z), where Var x∗(T ) denotes the optimal value of (4.5)

corresponding to z and z runs over R, is called the efficient frontier.

In this chapter, the following four cases of the constraint set C will be studied respec-

tively. It is easy to check that C is convex in each of the four cases.

Case 1. C = L2
F(0, T,R) × Π, corresponding to the case where portfolios are not con-

strained.

Case 2. C = {(x(·), π(·)) ∈ L2
F(0, T,R)× Π : π(t) ≥ 0, a.s., a.e.t ∈ [0, T ]}, corresponding

to the case where short-selling is prohibited.

Case 3. C = {(x(·), π(·)) ∈ L2
F (0, T,R) × Π : x(t) ≥ 0, a.s., ∀t ∈ [0, T ]}, corresponding

to the case where bankruptcy is prohibited.
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Case 4. C = {(x(·), π(·)) ∈ L2
F(0, T,R) × Π : x(t) ≥ 0, a.s., ∀t ∈ [0, T ]; π(t) ≥

0, a.s., a.e.t ∈ [0, T ]}, corresponding to the case where both bankruptcy and short-

selling are prohibited.

Given a constraint set C assosicated with one of the four cases above, define the

following attainable terminal wealth set:

AC := {X ∈ L2(FT ,R) : there exist x ∈ R and π(·) ∈ Π such that (xπ(·), π(·))
satisfies (2.5) with xπ(0) = x, xπ(T ) = X, and (xπ(·), π(·)) ∈ C}.

(4.6)

Proposition 4.2.1 AC is a convex set in L2(FT ,R).

Proof: This is evident by virtue of the linearity of the wealth equation (2.5) and the

convexity of the set C. �

By the decomposition approach, the following static optimization problem plays a

critical role for solving problem (4.5):

Minimize EX2 − z2,

subject to



















EX = z,

E[XHθ0(T )] = x0,

X ∈ AC .

(4.7)

This problem is to locate the optimal attainable terminal wealth X∗ in AC . Once this is

solved, an optimal portfolio for (4.5) can be obtained by replicating X∗ (which is possible

by the very definition of AC). In Chapter 3, we found that when the market is complete,

the static problem (4.7) is easier to solve than the original one because AC = L2(FT ,R).

When the market is incomplete, the main difficulty is to characterize the attainable set

AC for each of the four cases.

The following result verifies that in order to solve the original problem (4.5) it suffices

to solve (4.7).

Theorem 4.2.1 If (x∗(·), π∗(·)) is optimal for (4.5), then x∗(T ) is optimal for (4.7).

Conversely, if X∗ ∈ AC is optimal for (4.7), then any wealth–portfolio pair (x∗(·), π∗(·))
satisfying (2.5), (x∗(·), π∗(·)) ∈ C and x∗(T ) = X∗ is optimal for (4.5).
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Proof: . This is straightforward by the definition of AC . �

Thanks to the convexity of the attainable set AC , we can transform problem (4.7) by

Proposition 3.4.1 to an equivalent problem as stipulated in the following theorem.

Theorem 4.2.2 If problem (4.7) admits a solution X∗, then there exists a pair of scalars

(λ, µ) such that X∗ is also the optimal solution for the following problem:

Minimize E[X − (λ − µHθ0(T ))]2,

subject to X ∈ AC .
(4.8)

Conversely, if there is a pair of scales (λ, µ), such that the optimal solution X∗ of (4.8)

satisfies






EX∗ = z,

E[X∗Hθ0(T )] = x0.
(4.9)

then X∗ must be an optimal solution of (4.7).

This theorem suggests that one can first solve problem (4.8) for general (λ, µ), and

then determine the values of (λ, µ) via the equations (4.9).

In the next four sections, we will study the four cases respectively. We will mainly

devote ourselves to characterizing the attainable set AC and solving (4.8) for each case.

For the general situation when the market parameters r(·), µi(·) and σij(·) are stochastic

processes, it is very difficult to solve (4.8) explicitly in terms of (λ, µ). However, for the

case when all the market parameters are deterministic, we will obtain analytical solution

to (4.8) and thereby get explicit solution to the original problem (4.5) for all the four

cases.

4.3 Case 1: Unconstrained case

In this case the constraint set C = L2
F(0, T,R) × Π. Our first result characterizes the

attainable terminal wealth set AC for this constraint set.

Theorem 4.3.1 For any X ∈ L2(FT ,R), X ∈ AC if and only if E[XHθ(T )] is indepen-

dent of θ ∈ Θ.
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Proof: If X ∈ AC , then there is x0 ∈ R and a portfolio π(·) ∈ Π such that







dx(t) = [r(t)x(t) + B(t)′π(t)]dt + π(t)′σ(t)dW (t),

x(0) = x0, x(T ) = X.

Now, for any θ ∈ Θ,

dx(t) = [r(t)x(t) + B(t)′π(t)]dt + π(t)′σ(t)dW (t)

= [r(t)x(t) + θ(t)′σ(t)′π(t)]dt + π(t)′σ(t)dW (t).

Applying Ito’s formula, we obtain

x0 ≡ x(0) = E[x(T )Hθ(T )] = E[XHθ(T )],

implying that E[XHθ(T )] is independent of the choice of θ ∈ Θ.

Conversely, assume that E[XHθ(T )] does not depend on θ ∈ Θ. By the BSDE theory,

for any θ ∈ Θ, the following equation







dX(t) = [r(t)X(t) + θ(t)′Z(t)]dt + Z(t)′dW (t),

X(T ) = X
(4.10)

admits a unique solution pair (Xθ(·), Zθ(·)), with Xθ(0) = E[XHθ(T )]. So by the assump-

tion Xθ(0), θ ∈ Θ, are all the same, which is denoted by x0.

Next, fix θ ∈ Θ and let (Xθ(·), Zθ(·)) solves (4.10). We are to prove that there exist a

portfolio π0(·) ∈ Π such that

Zθ(t) = σ(t)′π0(t), a.s., a.e.t ∈ [0, T ]. (4.11)

Indeed, define

π0(t) := argminπ∈argmin
π∈Rm |σ(t)′π−Zθ(t)|2 |π|2.

Appealing to Lemma B.2 and Lemma A.2, π0(·) is well-defined and it is a progressively

measurable stochastic processes with respect to Ft.

Set D̄(t) := σ(t)′π0(t) − Zθ(t) and

D(t) :=







0, if D̄(t) = 0,

D̄(t)/|D̄(t)|, if D̄(t) 6= 0.
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Then D(·) ∈ L∞
F (0, T,Rn). Moreover, σ(t)D̄(t) = σ(t)σ(t)′π0(t)−σ(t)Zθ(t) = 0, owing to

the fact that π0(t) minimizes |σ(t)′π − Zθ(t)|2. This implies that σ(t)D(t) = 0 and hence

θ + D ∈ Θ. (4.12)

On the other hand, Zθ(t)
′D̄(t) = [π0(t)

′σ(t)D̄(t)−D̄(t)′D̄(t)] = −|D̄(t)|2; hence Zθ(t)
′D(t) =

−|D̄(t)|.
Define X̂(·) to be the solution of the following (forward) SDE:







dX̂(t) = [r(t)X̂(t) + (θ(t) + D(t))′Zθ(t)]dt + Zθ(t)
′dW (t),

X̂(0) = x0.

Ito’s formula implies

E[X̂(T )Hθ+D(T )] = X̂(0) = x0 = E[Xθ(T )Hθ+D(T )], (4.13)

where the last equality is due to (4.12) and the assumption. On the other hand,

d[X̂(t) − Xθ(t)] = r(t)[X̂(t) − Xθ(t)]dt + Zθ(t)
′D(t)dt, X̂(0) − Xθ(0) = 0;

hence X̂(T ) − Xθ(T ) =
∫ T

0 e
∫

T

t
r(s)dsZθ(t)

′D(t)dt = −
∫ T

0 e
∫

T

t
r(s)ds|D̄(t)|dt. Comparing

this with (4.13) we conclude that D̄(t) = 0, a.s., a.e.t ∈ [0, T ], which leads to (4.11). Since

σ(·)′π0(·) = Zθ(·) ∈ L2
F (0, T,Rn), it follows that π0(·) ∈ Π. Now, the BSDE (4.10) that

(Xθ(·), Zθ(·)) satisfies can be rewritten as







dXθ(t) = [r(t)Xθ(t) + B(t)′π0(t)]dt + π0(t)
′σ(t)dW (t),

Xθ(T ) = X,

which means that X is attained by the portfolio π0(·). �

Corollary 4.3.1 AC is a linear subspace of L2(FT ,R).

By Theorem 4.3.1, we can rewrite problem (4.8) as follows:

Minimize E[X − (λ − µHθ0(T ))]2,

subject to







X ∈ L2(FT ,R),

E[X(Hθ(T ) − Hθ0(T )] = 0, ∀θ ∈ Θ.

(4.14)

Note that (4.14) is an optimization problem with infinitely many constraints. Moreover,

since its objective function is strictly convex, there is at most one optimal solution. Denote
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L := span{Hθ1(T ) − Hθ2(T ) : θ1 ∈ Θ, θ2 ∈ Θ}, where span(A) means the minimal linear

space that contains A, and consider L̄, the closure of L in the L2(FT ,R)-norm. Since

each Hθ(T ) ∈ L2(FT ,R), it follows that L̄ ⊂ L2(FT ,R). The following theorem provides

a way to solving (4.14).

Theorem 4.3.2 For any given (λ, µ), consider the following problem

Minimize E(λ − µHθ0(T ) − Y )2,

subject to Y ∈ L̄.
(4.15)

We have the following conclusion:

(i) Problem (4.15) admits a unique optimal solution Y ∗ ∈ L̄.

(ii) Y ∗ is the optimal solution to (4.15) if and only if Y ∗ is the only Y ∈ L̄ such that

λ − µHθ0(T ) − Y ∈ AC .

(iii) The unique optimal solution to (4.14) can be expressed as X∗ = λ − µHθ0(T ) − Y ∗

Proof: (i) First of all, L̄ is a closed linear space. By the projection theorem in Hilbert

spaces (refer to, e.g., [38, p.51, Theorem 2]), (4.15) has a unique optimal solution Y ∗.

(ii) Y ∗ is optimal for (4.15) if and only if E[(λ − µHθ0(T ) − Y ∗)Y ] = 0, ∀Y ∈ L̄. The

latter implies that X∗ = λ − µHθ0(T ) − Y ∗ is feasible for (4.14). From Theorem 4.3.1,

it follows that λ − µHθ0(T ) − Y ∗ ∈ AC . By the uniqueness of the optimal solution for

problem (4.15), we know Y ∗ is the only one in L̄ such that λ − µHθ0 − Y ∈ AC .

(iii) We have proved in (i) that X∗ = λ − µHθ0(T ) − Y ∗ is feasible for (4.14) if Y ∗ is

optimal for (4.15). Now, for any feasible solution X of (4.14):

E[X − (λ − µHθ0(T ))]2

= E[X − (λ − µHθ0(T )) + Y ∗]2 + 2E[Y ∗(λ − µHθ0(T ))] − 2E[XY ∗] − E[Y ∗]2

= E[X − (λ − µHθ0(T ) − Y ∗)]2 + 2E[Y ∗(λ − µHθ0(T ))] − 2E[X∗Y ∗] − E[Y ∗]2

≥ E[X∗ − (λ − µHθ0(T ) − Y ∗)]2 + 2E[Y ∗(λ − µHθ0(T ))] − 2E[X∗Y ∗] − E[Y ∗]2

= E[X∗ − (λ − µHθ0(T ))]2,

where we have used the fact that E[XY ∗] = E[X∗Y ∗] = 0 due to the constraint of problem

(4.14). Hence X∗ is the unique optimal solution to (4.14). �
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The above theorem suggests that one can obtain the optimal solution to (4.14), hence

that to (4.8), via the (unique) optimal solution to the projection problem (4.15). In some

special cases, especially in the case when the market parameters, r(·), µ(·) and σ(·), are

all deterministic processes, (4.15) can be solved completely which in turn leads to the

complete solution to the underlying mean–variance portfolio selection problem.

Lemma 4.3.1 If r(·), µ(·) and σ(·) are deterministic, then λ − µHθ0(T ) ∈ AC for any

(λ, µ).

Proof: Fix θ(·) ∈ Θ. By the definition of θ0(·), see (4.2), point-wisely θ0(t) is the

projection of 0 onto the closed affine space {θ : σ(t)θ = B(t)} ⊂ Rn. Hence θ0(t)
′[θ(t) −

θ0(t)] = 0 or θ0(t)
′θ(t) = |θ0(t)|2. Now,

Hθ(T )Hθ0(T )

= exp{−
∫ T

0

[2r(t) +
1

2
(|θ(t)|2 + |θ0(t)|2)]dt −

∫ T

0

[θ(t) + θ0(t)]
′dW (t)}

= exp{−
∫ T

0

[2r(t) − |θ0(t)|2]dt} exp{−
∫ T

0

1

2
|θ(t) + θ0(t)|2dt −

∫ T

0

[θ(t) + θ0(t)]
′dW (t)}.

Thus, E[Hθ(T )Hθ0(T )] = exp{−
∫ T

0 [2r(t) − |θ0(t)|2]dt} which is independent of θ ∈ Θ.

We have then Hθ0(T ) ∈ AC thanks to Theorem 4.3.1. The conclusion follows as λ ∈ AC .

�

Theorem 4.3.3 If r(·), µ(·) and σ(·) are deterministic, then the efficient portfolio for the

mean–variance problem (4.5) corresponding to z is the one that replicates the terminal

claim λ − µHθ0(T ), where

λ =
ze

∫

T

0
|θ0(t)|2dt − x0e

∫

T

0
r(t)dt

e
∫

t

0
|θ0(t)|2dt − 1

, µ =
ze

∫

T

0
r(t)dt − x0e

∫

T

0
2r(t)dt

e
∫

T

0
|θ0(t)|2dt − 1

. (4.16)

Moreover, the efficient frontier is

Var(x(T )) =
1

e
∫

T

0
|θ0(t)|2dt − 1

[z − x0e
∫

T

0
r(t)dt]2, z ≥ x0e

∫

T

0
r(t)dt. (4.17)

Proof: By virtue of Lemma 4.3.1 and Theorem 4.3.2, Y ∗ = 0 is the unique optimal

solution to (4.15), or X∗ = λ − µHθ0(T ) is the unique optimal solution to (4.14). To
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determine (λ, µ) so as to obtain the solution to (4.7), we apply Theorem 4.2.2 to derive

the following system of equations







λ − µEHθ0(T ) = z,

λEHθ0(T ) − µEHθ0(T )2 = x0.

Solving these equations we get

λ =
zEHθ0(T )2 − x0EHθ0(T )

Var(Hθ0(T ))
, µ =

zEHθ0(T ) − x0

Var(Hθ0(T ))
.

Substituting EHθ0(T ) = e−
∫

T

0
r(t)dt, EHθ0(T )2 = e−

∫

T

0
[2r(t)−|θ0(t)|2]dt to the above, we get

the expressions (4.16). Finally, the variance of the optimal terminal wealth is

Var(x(T )) = Var(X∗) = µ2Var(Hθ0(T ))

=
[zEHθ0(T ) − x0]

2

Var(Hθ0(T ))

=
1

e
∫

T

0
|θ0(t)|2dt − 1

[z − x0e
∫

T

0
r(t)dt]2.

�

4.4 Case 2: No-shorting case

Again, we need to first characterize the attainable set AC in this case. Define Θ̂ := {θ ∈
L∞
F (0, T,Rn) : σ(t)θ(t) ≥ B(t), a.s., a.e.t ∈ [0, T ]}, where the greater or equal relation

between two vectors is in the component-wise sense.

Theorem 4.4.1 For any X ∈ L2(FT ,R), X ∈ AC if and only if there exists θ∗ ∈ Θ̂ such

that supθ∈Θ̂ E[XHθ(T )] = E[XHθ∗(T )]. Furthermore, supθ∈Θ̂ E[XHθ(T )] = E[XHθ0(T )]

if X ∈ AC .

Proof: If X ∈ AC , then there is (x(·), π(·)) ∈ C satisfying (2.5) with x0 = E[XHθ0(T )].

Take any θ ∈ Θ̂ and consider Hθ(·) that satisfies (4.4). Applying Ito’s formula we get easily

d[x(t)Hθ(t)] = [B(t) − σ(t)θ(t)]′π(t)Hθ(t)dt + [π(t)′σ(t) − x(t)θ(t)′]Hθ(t)dW (t);

thus E[XHθ(T )] = x0 + E
∫ T

0
[B(t) − σ(t)θ(t)]′π(t)Hθ(t)dt ≤ x0 = E[XHθ0(T )]. Thus

supθ∈Θ̂ E[XHθ(T )] = E[XHθ0(T )].
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Conversely, suppose there is θ∗ ∈ Θ̂ such that x0 := E[XHθ∗(T )] ≥ E[XHθ(T )]

∀θ ∈ Θ̂. Let (X∗(·), Z∗(·)) be the unique solution to the following BSDE






dX∗(t) = [r(t)X∗(t) + θ∗(t)′Z∗(t)]dt + Z∗(t)′dW (t),

X∗(T ) = X.
(4.18)

We are to show that there exist an no-shorting admissible portfolio π0(·) such that

Z∗(t) = σ(t)′π0(t), a.s., a.e.t ∈ [0, T ]. (4.19)

Indeed, define

π0(t) := argminπ∈argmin
π∈Rm

+
|σ(t)′π−Z∗(t)|2 |π|2.

Again, thanks to Lemma A.2, π0(·) is a progressively measurable stochastic processes

with respect to Ft. Note Z∗(t) 6∈ {σ(t)′π : π ∈ Rm
+} whenever σ(t)′π0(t) − Z∗(t) 6= 0.

Thus by Lemma B.3 and A.2, there is D̄(·) which is progressively measurable satisfying

D̄(t) 6= 0, Z∗(t)′D̄(t) < 0, σ(t)D̄(t) ≥ 0, a.s., a.e.t, on the set where σ(t)′π0(t)−Z∗(t) 6= 0.

Set

D(t) :=







0, if σ(t)′π0(t) − Z∗(t) = 0,

D̄(t)/|D̄(t)|, if σ(t)′π0(t) − Z∗(t) 6= 0.

Then D(·) ∈ L∞
F (0, T,Rn), σ(t)D(t) ≥ 0, and

Z∗(t)′D(t) < 0 whenever σ(t)′π0(t) − Z∗(t) 6= 0. (4.20)

Since σ(t)[θ∗(t) + D(t)] ≥ σ(t)θ∗(t) ≥ B(t), we conclude θ∗ + D ∈ Θ̂.

Define X̄(·) to be the solution of the following SDE:






dX̄(t) = [r(t)X̄(t) + (θ∗(t) + D(t))′Z∗(t)]dt + Z∗(t)′dW (t),

X̄(0) = x0.

Then

E[X̄(T )Hθ∗+D(T )] = X̄(0) = x0 = E[X∗(T )Hθ∗(T )] ≥ E[X∗(T )Hθ∗+D(T )]. (4.21)

On the other hand,

d[X̄(t) − X∗(t)] = r(t)[X̄(t) − X∗(t)]dt + Z∗(t)′D(t)dt, X̄(0) − X∗(0) = 0;

hence X̄(T ) − X∗(T ) =
∫ T

0
e

∫

T

t
r(s)dsZ∗(t)′D(t)dt. It then follows from (4.21) and (4.20)

that σ(t)′π0(t) − Z∗(t) = 0, a.s., a.e.t ∈ [0, T ]. This proves (4.19).
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Next, let X̂(·) be the solution to the following SDE:







dX̂(t) = [r(t)X̂(t) + θ0(t)
′Z∗(t)]dt + Z∗(t)′dW (t),

X̂(t) = x0.
(4.22)

Then E[X̂(T )Hθ0(T )] = x0 ≥ E[X∗(T )Hθ0(T )]. On the other hand,

d[X̂(t) − X∗(t)] = r(t)[X̂(t) − X∗(t)]dt + [θ0(t) − θ∗(t)]′Z∗(t)dt

= r(t)[X̂(t) − X∗(t)]dt + [B(t) − σ(t)θ∗(t)]′π0(t)dt,

where we have used the fact that Z∗(t) = σ(t)′π0(t). Hence,

X̂(T ) − X∗(T ) =

∫ T

0

e
∫

T

t
r(s)ds[B(t) − σ(t)θ∗(t)]′π0(t)dt ≤ 0

By E[(X̂(T ) − X∗(T ))Hθ0(T )] ≥ 0 we have

B(t)′π0(t) = θ∗(t)′σ(t)′π0(t) ≡ θ∗(t)′Z∗(t), (4.23)

and

E[XHθ∗(T )] ≡ x0 ≡ E[X̂(T )Hθ0(T )] = E[XHθ0(T )]. (4.24)

It follows from (4.18) and (4.23) that (X∗(·), π0(·)) satisfies







dX∗(t) = [r(t)X∗(t) + B(t)′π0(t)]dt + π0(t)
′σ(t)dW (t),

X∗(T ) = X,

meaning that X ∈ AC . Finally, the second assertion of the theorem follows from (4.24).

�

By virtue of Theorem 4.4.1, the problem (4.8) for Case 2 can be written as

Minimize E[X − (λ − µHθ0(T ))]2,

subject to







X ∈ L2(FT ,R),

maxθ∈Θ̂ E[XHθ(T )] = E[XHθ0(T )].

(4.25)

Denote M := cone{Hθ(T ) − Hθ0(T ) : θ ∈ Θ̂}. which can be easily verified to be a

closed convex cone.

The following theorem is the no-shorting counterpart of Theorem 4.3.2.

66



Chapter 4 Mean-Variance Criteria in an Incomplete Market

Theorem 4.4.2 For any given (λ, µ), consider the following problem

Minimize E(λ − µHθ0(T ) − Y )2,

subject to Y ∈ M.
(4.26)

We have the following conclusion:

(i) Y ∗ is the optimal solution to (4.26) if and only if Y ∗ ∈ M and

λ − µHθ0(T ) − Y ∗ ∈ AC , E[(λ − µHθ0(T ) − Y ∗)Y ∗] = 0. (4.27)

(ii) The unique optimal solution to (4.25) can be expressed as X∗ = λ − µHθ0(T ) − Y ∗,

where Y ∗ is the unique optimal solution to (4.26).

Proof: (i) First of all, (4.26) is an optimization problem with a coercive, strictly convex

cost function and a nonempty, closed convex constraint set, which therefore must admit a

unique optimal solution. Moreover, Y ∗ is optimal to (4.26) if and only if Y ∗ ∈ M and for

any Y ∈ M , 0 ∈ argmin0≤α≤1E[f(α)] where f(α) := [λ − µHθ0(T ) − Y ∗ + α(Y ∗ − Y )]2.

Denote X∗ = λ − µHθ0(T ) − Y ∗, then

Ef(α) − Ef(0) = E[(2X∗ + α(Y ∗ − Y ))(α(Y ∗ − Y ))]

= 2αE[X∗(Y ∗ − Y )] + α2E(Y ∗ − Y )2.

so 0 ∈ argmin0≤α≤1E[f(α)] if and only if 2E[X∗(Y ∗ − Y )] + αE(Y ∗ − Y )2 ≥ 0 for any

α ∈ [0, 1], which is equivalent with E[X∗(Y ∗ − Y )] ≥ 0. Therefore, Y ∗ is optimal if and

only if Y ∗ ∈ M and

E[(λ − µHθ0(T ) − Y ∗)(Y ∗ − Y )] ≥ 0 ∀Y ∈ M. (4.28)

To prove that (4.27) and (4.28) are equivalent, first note that (4.27) easily yields (4.28)

thanks to Theorem 4.4.1. Now, suppose (4.28) holds. Taking Y = 0 ∈ M we get from

(4.28) that E[(λ − µHθ0(T ) − Y ∗)Y ∗] ≥ 0, and taking Y = 2Y ∗ ∈ M (recall that M is a

cone) we get E[(λ− µHθ0(T )− Y ∗)Y ∗] ≤ 0. Consequently E[(λ− µHθ0(T )− Y ∗)Y ∗] = 0

and, together with (4.28), results in (4.27).

(ii) We proved in (i) that X∗ = λ−µHθ0(T )−Y ∗ is feasible for (4.25) if Y ∗ is optimal

for (4.26). On the other hand, for any feasible solution X of (4.25):

E[X − (λ − µHθ0(T ))]2
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= E[X − (λ − µHθ0(T )) + Y ∗]2 + 2E[Y ∗(λ − µHθ0(T ))] − 2E[XY ∗] − E[Y ∗]2

≥ E[X − (λ − µHθ0(T ) − Y ∗)]2 + 2E[Y ∗(λ − µHθ0(T ))] − 2E[X∗Y ∗] − E[Y ∗]2

≥ E[X∗ − (λ − µHθ0(T ) − Y ∗)]2 + 2E[Y ∗(λ − µHθ0(T ))] − 2E[X∗Y ∗] − E[Y ∗]2

= E[X∗ − (λ − µHθ0(T ))]2,

where we have used the fact that E[XY ∗] ≤ 0 and E[X∗Y ∗] = 0. This means that X∗ is

an optimal solution for (4.25). �

As with Case 1, we now discuss the case when all the market coefficients are determin-

istic and show how to apply Theorem 4.4.2 to solve the mean-variance problem.

Lemma 4.4.1 If r(·), B(·) and σ(·) are deterministic, then for any given (λ, µ) with µ ≥
0, (4.26) has the optimal solution Y ∗ := µ(Hθ∗

1
(T ) − Hθ0(T )), where

θ∗1(t) := argminθ∈{θ∈Rn:σ(t)θ≥B(t)}|θ|2. (4.29)

Proof: First we prove that

θ0(t)
′θ∗1(t) = |θ∗1(t)|2, ∀t ∈ [0, T ]. (4.30)

Indeed, θ∗1(t) is well-defined. And by the Largrange method, for any t ∈ [0, T ], there exists

a k(t) ∈ Rm
+ such that θ∗1(t) = σ(t)′k(t) and k(t)′(σ(t)θ∗1(t) − B(t)) = 0. so

θ0(t)
′θ∗1(t) = θ0(t)

′σ(t)′k(t) = k(t)′B(t) = k(t)′σ(t)θ∗1(t) = |θ∗1(t)|2.

Next, according to Theorem 4.4.2, to prove that Y ∗ := µ(Hθ1(T )−Hθ0(T )) is optimal

to (4.26) it suffices to show that

E[(λ − µHθ∗
1
(T ))(Hθ∗

1
(T ) − Hθ0(T ))] = 0,

E[(λ − µHθ∗
1
(T ))(Hθ(T ) − Hθ0(T ))] ≤ 0, ∀θ ∈ Θ̂.

Since in the present case of deterministic coefficients the value of E[Hθ(T )] is independent

of θ ∈ Θ̂, the above is equivalent to

E[Hθ∗
1
(T )(Hθ∗

1
(T )−Hθ0(T ))] = 0, and E[Hθ∗

1
(T )(Hθ(T )−Hθ0(T ))] ≥ 0 ∀θ ∈ Θ̂. (4.31)

Now,

Hθ∗
1
(T )Hθ0(T )
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= exp{−
∫ T

0

[2r(t) +
1

2
(|θ∗1(t)|2 + |θ0(t)|2)]dt −

∫ T

0

[θ∗1(t) + θ0(t)]
′dW (t)}

= exp{−
∫ T

0

[2r(t) − θ∗1(t)′θ0(t)]dt} exp{−
∫ T

0

1

2
|θ(t) + θ0(t)|2dt −

∫ T

0

[θ(t) + θ0(t)]
′dW (t)}

= exp{−
∫ T

0

[2r(t) − |θ∗1(t)|2]dt} exp{−
∫ T

0

1

2
|θ(t) + θ0(t)|2dt −

∫ T

0

[θ(t) + θ0(t)]
′dW (t)}.

Thus, E[Hθ∗
1
(T )Hθ0(T )] = exp{−

∫ T

0 [2r(t) − |θ∗1(t)|2]dt} = E[Hθ∗
1
(T )2], which proves the

first equality of (4.31). Next, the definition of θ∗1 ensures that θ(t)′θ∗1(t) ≥ |θ∗1(t)|2 ∀t ∈
[0, T ], ∀θ ∈ Θ̂. Now, a similar calculation as above shows that, for any θ ∈ Θ̂, E[Hθ∗

1
(T )Hθ(T )] =

exp{−
∫ T

0 [2r(t) − θ∗1(t)
′θ(t)]dt} ≥ exp{−

∫ T

0 [2r(t) − |θ∗1(t)|2]dt} = E[Hθ∗
1
(T )2]. This, to-

gether with the proved first equality of (4.31), leads to the second inequality of (4.31).

�

Theorem 4.4.3 If r(·), B(·) and σ(·) are deterministic, and
∫ T

0

∑n
i=1 B(t)+i dt > 0,

then the efficient portfolio for the mean–variance problem (4.5) corresponding to z ≥
x0e

∫

T

0
r(s)ds is the one that replicates the terminal claim λ − µHθ∗

1
(T ), where

λ =
ze

∫

T

0
|θ∗

1(t)|2dt − x0e
∫

T

0
r(t)dt

e
∫

t

0
|θ∗

1(t)|2dt − 1
, µ =

ze
∫

T

0
r(t)dt − x0e

∫

T

0
2r(t)dt

e
∫

T

0
|θ∗

1(t)|2dt − 1
. (4.32)

Moreover, the efficient frontier is

Var(x(T )) =
1

e
∫

T

0
|θ∗

1(t)|2dt − 1
[z − x0e

∫

T

0
r(t)dt]2, z ≥ x0e

∫

T

0
r(t)dt. (4.33)

Proof: By virtue of Lemma 4.4.1 and Theorem 4.4.2, X∗ := λ−µHθ1(T ) is the unique

optimal solution to (4.25), provided that µ ≥ 0. The system of equations (4.9) reduces to






λ − µEHθ1(T ) = z

λEHθ1(T ) − µEHθ1(T )2 = x0,

where we have used the fact that E[Hθ1(T )Hθ0(T )] = E[Hθ1(T )2] which was proved in the

proof of Lemma 4.4.1. Clearly (4.32) gives the (only) solution pair to the above system

with µ ≥ 0 under the assumption that z ≥ x0e
∫

T

0
r(t)dt. Finally, the efficient frontier

(4.33) can be derived in exactly the same way as in the unconstrained case; see the proof

of Theorem 4.3.3. �

Remark 4.4.1 The condition
∫ T

0

∑n
i=1 B(t)+i ds > 0 is mild. It does not hold only when

B(t) ≤ 0 for a.e.t ∈ [0, T ], which means the appreciation rates of all the risky assets are

no higher than the interest rate, which is unreasonable.
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4.5 Case 3: No bankruptcy case

In Section 3.2 we have shown that in a complete market, a wealth process x(·) ≥ 0 if and

only if its terminal wealth x(T ) ≥ 0. This conclusion still holds, due to Assumption 4.2.1,

in the incomplete market specified in Section 4.2. Hence in Case 3 the constraint set can

be written as C = {(x(·), π(·)) ∈ L2
F(0, T,R) × Π : x(T ) ≥ 0}.

The following result can be proved in exactly the same way as that of Theorem 4.3.1.

Theorem 4.5.1 For any X ∈ L2(FT ,R), X ∈ AC if and only if X ≥ 0 and E[XHθ(T )]

is independent of θ(·) ∈ Θ1
4
= {θ(·) : σ(t)θ(t) = B(t), |θ(t)−θ0(t)| ≤ 1, a.s., a.e.t ∈ [0, T ]}.

In view of Theorem 4.5.1, we can rewrite problem (4.8) for Case 3 as follows:

Minimize E[X − (λ − µHθ0(T ))]2,

subject to



















X ∈ L2(FT ,R),

supθ1,θ2∈Θ1
E[X(Hθ1(T ) − Hθ2(T ))] ≤ 0,

X ≥ 0.

(4.34)

Denote M1 := {Hθ1(T ) − Hθ2(T ) : θ1, θ2 ∈ Θ1}. It is clear that M1 ⊂ L2(FT ,R), and

M1 is a bounded convex set in view of Lemma 4.2.1.

Lemma 4.5.1 For any 0 ≤ k ≤ 1, if Y ∈ M1, then kY ∈ M1.

Proof: For any Y = Hθ1(T ) − Hθ2(T ) with θ1 ∈ Θ1, θ2 ∈ Θ1,

kY = kHθ1(T ) − kHθ2(T )

= kHθ1(T ) + (1 − k)Hθ2(T ) − Hθ2(T )

= Hθ3(T ) − Hθ2(T )

∈ M.

Next, for any Y ∈ M1, there exists a sequence Yn ∈ {Hθ1(T ) − Hθ2(T ) : θ1 ∈ Θ1, θ2 ∈
Θ1} such that Yn → Y . Therefore kYn ∈ M and kYn → kY , which implies kY ∈ M1. �

70



Chapter 4 Mean-Variance Criteria in an Incomplete Market

It is easy to see that problem (4.34) is equivalent to

Minimize E[X − (λ − µHθ0(T ))]2,

subject to



















X ∈ L2(FT ,R),

supY ∈M1
E[XY ] ≤ 0,

X ≥ 0,

(4.35)

which admits a unique optimal solution. For written convenience, denote λ̂ = λ−µHθ0(T ).

Theorem 4.5.2 Let F (·) be a strictly convex, coercive, and lower bounded function from

L2(FT ,R) to R, G(·) a convex function from L2(FT ,R) to R, and {X : G(X) ≤ 0}
nonempty. If X∗ is the optimal solution for

Minimize F (X),

subject to G(X) ≤ 0,
(4.36)

then there exists k ≥ 0 such that X∗ is also the unique solution for

min
X∈L2(FT ,R)

{F (X) + kG(X)}. (4.37)

Proof: By the properties of F (·), we know problem (4.36) admits a unique optimal

solution X∗. Define A
4
= {a : {X ∈ L2(FT ,R) : G(X) ≤ a} 6= ∅}. Then A is a convex

set, and for any a ∈ A, f(a) = minX∈L2(FT ,R),G(X)≤a F (X) is well defined and bounded

by some real number. Obviously, f(a) is decreasing on R+. Now we claim f(a) is convex.

Indeed, for any l ∈ [0, 1], a ∈ A, b ∈ A,

f(la + (1 − l)b) = min
X∈L2(FT ,R),G(X)≤la+(1−l)b

F (X)

= min
(lX1+(1−l)X2∈L2(FT ,R),G(lX1+(1−l)X2)≤la+(1−l)b

F (lX1 + (1 − l)X2)

≤ min
(X1∈L2(FT ,R),X2∈L2(FT ,R),G(X1)≤a,G(X2)≤b

F (lX1 + (1 − l)X2)

≤ min
(X1∈L2(FT ,R),X2∈L2(FT ,R),G(X1)≤a,G(X2)≤b

lF (X1) + (1 − l)F (X2)

= l min
X1∈L2(FT ,R),G(X1)≤a

F (X1) + (1 − l) min
X2∈L2(FT ,R),G(X2)≤b

F (X2)

= lf(a) + (1 − l)f(b).

Now take −k as the right hand side derivative of f at 0, then k ≥ 0, and by the

convexity of f(·), we have f(a)−f(0) ≥ −ka for any a ∈ A, which implies f(a)+ka ≥ f(0).
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Therefore for any X ∈ L2(FT ,R), denoting a = G(X) ∈ A, we have

F (X) + kG(X) ≥ f(a) + ka ≥ f(0) ≥ F (X∗) + kG(X∗).

This shows X∗ is optimal for problem (4.37); so k meets the requirement of the theorem.

�

Lemma 4.5.2 Let X∗ be the optimal solution to (4.35). Then there exist k0 ≥ 0 such

that for any k ≥ k0, X∗ is also the unique optimal solution for

min
X∈L2(FT ,R+)

{E(X − λ̂)2 + 2k sup
Y ∈M1

E[XY ]}, (4.38)

and the optimal value of (4.38) is equal to E(X∗ − λ̂)2.

Proof: Firstly, by Theorem 4.5.2, we know there exists k0 ≥ 0 such that X∗ is the

unique optimal solution for

min
X∈L2(FT ,R+)

{E(X − λ̂)2 + 2k0 sup
Y ∈M1

E[XY ]}. (4.39)

For any k ≥ k0, any X ∈ L2(FT ,R+),

E(X − λ̂)2 + 2k sup
Y ∈M1

E[XY ]

≥ E(X − λ̂)2 + 2k0 sup
Y ∈M1

E[XY ]

≥ E(X∗ − λ̂)2 + 2k0 sup
Y ∈M1

E[X∗Y ]

= E(X∗ − λ̂)2 + 2k sup
Y ∈M1

E[X∗Y ].

So X∗ is also the unique optimal for problem (4.38) for any k ≥ k0. �

Lemma 4.5.3 For any k ≥ k0, the unique optimal solution for problem (4.38) is X∗
k =

(λ̂ − kY ∗
k )+, where Y ∗

k is the optimal solution for

min
Y ∈M1

E[(λ̂ − kY )+]2. (4.40)

Proof: First of all, problem (4.40) admits optimal solutions. Rewrite problem (4.38)

as

min
X∈L2(FT ,R+)

sup
Y ∈M1

{E(X − λ̂)2 + 2kE[XY ]}. (4.41)

72



Chapter 4 Mean-Variance Criteria in an Incomplete Market

It is obvious that fk(X, Y ) := E(X − λ̂)2 +2kE[XY ] is convex in X and concave in Y .

Furthermore, L2(FT ,R+) is closed and convex, M1 is bounded, closed, and convex. By

Theorem 2.8.1 in [3](Page 55), we know for any optimal solution of problem (4.40), Y ∗
k ,

min
X∈L2(FT ,R+)

sup
Y ∈M1

{E(X − λ̂)2 + 2kE[XY ]}

= sup
Y ∈M1

min
X∈L2(FT ,R+)

{E(X − (λ̂ − kY ))2 − E(λ̂ − kY )2} + Eλ̂2

= sup
Y ∈M1

{E[(λ̂ − kY )−]2 − E(λ̂ − kY )2} + Eλ̂2

= − inf
Y ∈M1

E[(λ̂ − kY )+]2 + Eλ̂2

= −E[(λ̂ − kY ∗
k )+]2 + Eλ̂2.

By Lemma 4.5.2, the optimal value is independent of k ≥ k0. So E[(λ̂ − kY ∗
k )+]2 =

E[(λ̂ − k0Y
∗
k0

)+]2. By Lemma 4.5.1, for any Y ∈ M1, k
′ ≥ 0,

E[(λ̂ − k′Y )+]2 ≥ E[(λ̂ − k′Y ∗
k′ )+]2

≥ min
Y ∈M1

E[(λ̂ − (k′ + k)Y )+]2

= E[(λ̂ − (k + k′)Y ∗
k+k′ )+]2

= E[(λ̂ − kY ∗
k )+]2.

Therefore E[(λ̂−kY ∗
k )+]2 ≤ E[(λ̂−k′Y ∗

k )+]2 for any k′ ≥ 0. This implies E[(λ̂−kY ∗
k )Y ∗

k ] =

0. Therefore

sup
Y ∈M1

{E(X∗
k − λ̂)2 + 2kE[X∗

kY ]} = E(X∗
k − λ̂)2 + 2kEX∗

kY ∗
k

= −E[(λ̂ − kY ∗
k )+]2 + Eλ̂2

= min
X∈L2(FT ,R+)

sup
Y ∈M1

{E(X − λ̂)2 + 2kE[XY ]}.

So X∗
k is optimal for problem (4.38). By the uniqueness of the optimal solution to (4.38),

X∗
k is the only optimal solution. �

Corollary 4.5.1 There exists k0 ≥ 0 such that the optimal solution X∗ for problem (4.35)

must be X∗
k = (λ̂ − k0Y

∗
k0

)+, where Y ∗
k0

is the optimal solution for problem (4.39).

Theorem 4.5.3 Problem

min
Y ∈cone{M1}

E[(λ̂ − Y )+]2 (4.42)

73



Chapter 4 Mean-Variance Criteria in an Incomplete Market

admits optimal solutions in L2(FT ,R), and for different optimal solutions (if exist), (λ̂−
Y ∗)+ is the same, which is the unique optimal solution for problem (4.35) and problem

(4.34). Furthermore, Y ∗ is optimal for problem (4.42) if and only if X∗ = (λ̂−Y ∗)+ ∈ AC .

In the remainder of this section, we study the case when all the market paramters are

deterministic.

Lemma 4.5.4 If r(·), µ(·) and σ(·) are deterministic, then [λ− µHθ0(T )]+ ∈ AC for any

(λ, µ).

Proof. For any θ ∈ Θ, by Girsanov’s theorem W̃ (t) := W (t)+
∫ t

0 θ(s)ds is a standard

Brownian motion under a new probability measure P̃ defined as dP̃ = e
∫

T

0
r(t)dtHθ(T )dP .

Now,

E[Hθ(T )[λ − µHθ0(T )]+]

= E[Hθ(T )[λ − µe−
∫

T

0
r(t)dte−

∫

T

0
[|θ0(t)|2/2−θ0(t)

′θ(t)]dt−
∫

T

0
θ0(t)

′dW̃(t)]+]

= e−
∫

T

0
r(t)dtẼ[λ − µe−

∫

T

0
r(t)dte−

∫

T

0
[|θ0(t)|2/2−|θ0(t)|2]dt−

∫

T

0
θ0(t)

′dW̃(t)]+

= e−
∫

T

0
r(t)dtE[λ − µe−

∫

T

0
[r(t)−|θ0(t)|2/2]dt−

∫

T

0
θ0(t)

′dW (t)]+,

where we have used the fact that θ0(t)
′θ(t) = |θ0(t)|2. This completes the proof in view

of Theorem 4.5.1. �.

Define

a := inf{η ∈ R : P (Hθ0(T ) < η) > 0},
b = sup{η ∈ R : P (Hθ0(T ) > η) > 0}.

(4.43)

Theorem 4.5.4 If r(·), µ(·) and σ(·) are deterministic, and a < x0

z < b, then the efficient

portfolio for the mean–variance problem (4.5) corresponding to z is the one that replicates

the terminal claim [λ − µHθ0(T )]+, where (λ, µ) is the unique solution to







E(λ − µHθ0(T ))+ = z,

E[Hθ0(T )(λ − µHθ0(T ))+] = x0.
(4.44)

Proof: By virtue of Lemma 4.5.4 and Theorem 4.5.3, Y ∗ = 0 is an optimal solution

to (4.42), or X∗ = λ − µHθ0(T ) is the unique optimal solution to (4.34). To determine

(λ, µ) so as to obtain the solution to (4.7), we apply Theorem 4.2.2 to derive the system of
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equations (4.44). The existence and uniqueness of the solution to (4.44) were established

in Section 3.3. �

Remark 4.5.1 If we assume further that
∫ T

0 |θ0(t)|2dt > 0, then explicit forms of the

efficient portfolios and efficient frontier can be obtained in exactly the same way as in

Section 3.7 (by simply replacing ρ(T ) therein by Hθ0(T )).

4.6 Case 4: Neither shorting nor bankruptcy case

Similarly with Case 3, in Case 4 the constraint set can be written as C = {(x(·), π(·)) ∈
L2
F(0, T,R) × Π : x(T ) ≥ 0}.

Define θ0(t) = argminσ(t)x=B(t)|x|2. Let K be a real number satisfying |θ0(t)| ≤
K a.s., a.e.t ∈ [0, t], Θ̂1

4
= {θ ∈ L+∞

F (0, T,R) : σ(·)θ(·) ≥ B, ∃N < K+1 such that |θ(s, ω)| ≤
N, a.s., a.e.t ∈ [0, T ]}. It is obvious that Θ̂1 is a nonempty convex set, and the set

{Hθ(T ) : θ ∈ Θ̂1} is bounded in L2-norm.

Theorem 4.6.1 For any X ∈ L2(FT ,R), X ∈ AC if and only if X ≥ 0 and there exists

θ∗ ∈ Θ̂1 such that supθ∈Θ̂1
E[XHθ(T )] = E[XHθ∗(T )]. Furthermore, supθ∈Θ̂1

E[XHθ(T )] =

E[XHθ0(T )] if X ∈ AC .

Proof: The ”if” part is the same as Theorem 4.4.1.

Conversely, suppose there is θ∗ ∈ Θ̂1 such that x0 := E[XHθ∗(T )] ≥ E[XHθ(T )]

∀θ ∈ Θ̂1. Let (X∗(·), Z∗(·)) be the unique solution to the following BSDE






dX∗(t) = [r(t)X∗(t) + θ∗(t)′Z∗(t)]dt + Z∗(t)′dW (t),

X∗(T ) = X.
(4.45)

We are to show that there exists a no-shorting admissible portfolio π0(·) such that

Z∗(t) = σ(t)′π0(t), a.s., a.e.t ∈ [0, T ]. (4.46)

Suppose (4.46) does not hold. Define

π0(t) := argminπ∈argmin
π∈Rm

+
|σ(t)′π−Z∗(t)|2 |π|2.

Again, thanks to Lemma A.2, π0(·) is a progressively measurable stochastic processes

with respect to Ft. Note Z∗(t) 6∈ {σ(t)′π : π ∈ Rm
+} whenever σ(t)′π0(t) − Z∗(t) 6= 0.
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Thus by Lemma B.3 and A.1, there is D̄(·) which is progressively measurable satisfying

D̄(t) 6= 0, Z∗(t)′D̄(t) < 0, σ(t)D̄(t) ≥ 0, a.s., a.e.t on the set where σ(t)′π0(t)−Z∗(t) 6= 0.

Set

D̂(t) :=







0, if σ(t)′π0(t) − Z∗(t) = 0,

D̄(t)/|D̄(t)|, if σ(t)′π0(t) − Z∗(t) 6= 0.

Then D̂(·) ∈ L∞
F (0, T,Rn), σ(t)D̂(t) ≥ 0 and E

∫ T

0 |D̂(s)|2ds > 0.

Set N < K + 1 with |θ∗(t)| ≤ N, a.s., a.e.t ∈ [0, T ], k = (K + 1 − N)/2, D = kD̂.

Then D(·) ∈ L∞
F (0, T,Rn) with σ(t)D(t) ≥ 0. Moreover,

Z∗(t)′D(t) < 0 whenever σ(t)′π0(t) − Z∗(t) 6= 0. (4.47)

Since σ(t)[θ∗(t) + D(t)] ≥ σ(t)θ∗(t) ≥ B(t), and

|θ∗(t) + D(t)| ≤ |θ∗(s)| + |D(s)| ≤ N + (K + 1 − N)/2, a.s., a.e.t ∈ [0, T ],

we conclude θ∗ + D ∈ Θ̂.

Define X̄(·) to be the solution of the following SDE:






dX̄(t) = [r(t)X̄(t) + (θ∗(t) + D(t))′Z∗(t)]dt + Z∗(t)′dW (t),

X̄(0) = x0.

Then

E[X̄(T )Hθ∗+D(T )] = X̄(0) = x0 = E[X∗(T )Hθ∗(T )] ≥ E[X∗(T )Hθ∗+D(T )]. (4.48)

On the other hand,

d[X̄(t) − X∗(t)] = r(t)[X̄(t) − X∗(t)]dt + Z∗(t)′D(t)dt, X̄(0) − X∗(0) = 0;

hence X̄(T ) − X∗(T ) =
∫ T

0
e

∫

T

t
r(s)dsZ∗(t)′D(t)dt. It then follows from (4.48) and (4.47)

that σ(t)′π0(t) − Z∗(t) = 0, a.s., a.e.t ∈ [0, T ]. This proves (4.46).

Next, let X̂(·) be the solution to the following SDE:






dX̂(t) = [r(t)X̂(t) + θ0(t)
′Z∗(t)]dt + Z∗(t)′dW (t),

X̂(t) = x0.
(4.49)

Then E[X̂(T )Hθ0(T )] = x0 ≥ E[X∗(T )Hθ0(T )]. On the other hand,

d[X̂(t) − X∗(t)] = r(t)[X̂(t) − X∗(t)]dt + [θ0(t) − θ∗(t)]′Z∗(t)dt

= r(t)[X̂(t) − X∗(t)]dt + [B(t) − σ(t)θ∗(t)]′π0(t)dt,
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where we have used the fact that Z∗(t) = σ(t)′π0(t). Hence,

X̂(T ) − X∗(T ) =

∫ T

0

e
∫

T

t
r(s)ds[B(t) − σ(t)θ∗(t)]′π0(t)dt ≤ 0.

By E[(X̂(T ) − X∗(T ))Hθ0(T )] ≥ 0 we have

B(t)′π0(t) = θ∗(t)′σ(t)′π0(t) ≡ θ∗(t)′Z∗(t), (4.50)

and

E[XHθ∗(T )] ≡ x0 ≡ E[X̂(T )Hθ0(T )] = E[XHθ0(T )]. (4.51)

It follows from (4.45) and (4.50) that (X∗(·), π0(·)) satisfies






dX∗(t) = [r(t)X∗(t) + B(t)′π0(t)]dt + π0(t)
′σ(t)dW (t),

X∗(T ) = X,

meaning that X ∈ AC . Finally, the second assertion of the theorem follows from (4.51).

�

In view of Theorem 4.6.1, we can rewrite problem (4.8) for Case 4 as follows:

Minimize E[X − (λ − µHθ0(T ))]2,

subject to



















X ∈ L2(FT ,R),

supθ∈Θ̂1
E[X(Hθ(T ) − Hθ0(T ))] ≤ 0,

X ≥ 0.

(4.52)

Denote M̂ := {Hθ(T ) − Hθ0(T ) : θ ∈ Θ̂1}, It is clear that M̂ ⊂ L2(FT ,R), and M̂ is

a bounded convex set in view of Lemma 4.2.1.

Lemma 4.6.1 For any 0 ≤ k ≤ 1, if Y ∈ M̄ , then kY ∈ M̄ .

Proof: For any Y ∈ M , denote Y = Hθ(T ) − Hθ0(T ). Then

kY = kHθ(T ) − kHθ0(T )

= kHθ(T ) + (1 − k)Hθ0(T ) − Hθ0(T )

= Hθ′(T ) − Hθ0(T )

∈ M.

For any Y ∈ M̄ , there exists a sequence Yn ∈ M such that Yn → Y . Therefore

kYn ∈ M and kYn → kY , which implies kY ∈ M̄ . �
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It is easy to see that problem(4.52) is equivalent to

Minimize E[X − (λ − µHθ0(T ))]2,

subject to



















X ∈ L2(FT ,R),

supY ∈M̄ E[XY ] ≤ 0,

X ≥ 0,

(4.53)

which admits a unique optimal solution. For written convenience, denote λ̂ = λ−µHθ0(T ).

Theorem 4.6.2 Problem

min
Y ∈cone{M̄}

E[(λ̂ − Y )+]2 (4.54)

admits optimal solutions in L2(FT ,R), and for different optimal solutions (if exist), (λ̂−
Y ∗)+ is the same, which is the unique optimal solution for problem (4.53) and problem

(4.52).

Proof: The proof is the same as that of Theorem 4.5.3. �

Theorem 4.6.3 Y ∗ is optimal for problem (4.54) if and only if X∗ = (λ̂ − Y ∗)+ is

no-shorting attainable and E[X∗Y ∗] = 0.

Proof: The proof is the same as that of part (i) in Theorem 4.4.2. �

We can regard problem (4.54) as the dual problem of problem (4.54) in Case 4. The

static problem (4.7) in Case 4 is more difficult than in Case 2 and Case 3. But in the

deterministic parameters case, we can still find the optimal solution explicitly by virtual

of Theorem 4.6.3.

Let θ∗1(·) be the one defined in Section 4.4. It is easy to see that θ∗1 ∈ Θ̂1.

Proposition 4.6.1 For any λ ∈ R, µ ∈ R+, Y ∗ = µ(Hθ∗
1
(T ) − Hθ0(T )) is optimal for

problem (4.54). Therefore X∗ = [λ−µHθ∗
1
(T )]+ is the unique optimal solution for problem

(4.52).

Proof: For any θ ∈ Θ̂, θ(t)′θ∗1(t) ≤ |θ∗1(t)|2, a.e.t ∈ [0, T ]. Define Ŵ (t) = W (t) +
∫ t

0
θ∗1(s)ds, and let Ê be the expectation under the probability measure P̂ defined by
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dP̂
dP = e−

∫

T

0
|θ∗

1(s)|2/2ds−
∫

T

0
θ∗
1(s)′dW (s). Then by Girsanov’s theorem, Ŵ (·) is a standard

Brownian motion. Therefore,

E[(λ − µHθ∗
1
(T ))+Hθ(T )]

= e−
∫

T

0
rdsÊ(λ − µe−

∫

T

0
rdse−

∫

T

0
|θ∗

1 |2/2ds−
∫

T

0
θ∗
1(s)′dW (s))+

= e−
∫

T

0
rdsÊ(λ − µe−

∫

T

0
rdse

∫

T

0
θ′θ∗

1dse−
∫

T

0
|θ∗

1 |2/2ds−
∫

T

0
θ∗
1(s)′dŴ (s))+

= e−
∫

T

0
rdsE(λ − µe−

∫

T

0
rdse

∫

T

0
θ′θ∗

1dse−
∫

T

0
|θ∗

1 |2/2ds−
∫

T

0
θ∗
1(s)′dW (s))+

≤ e−
∫

T

0
rdsE(λ − µe−

∫

T

0
rdse

∫

T

0
|θ∗

1 |2dse−
∫

T

0
|θ∗

1 |2/2ds−
∫

T

0
θ∗
1(s)′dW (s))+

= E[(λ − µHθ∗
1
(T ))+Hθ∗

1
(T )],

and the equalities hold if and only if θ(·)′θ∗1(·) = |θ∗1(·)|2. Call θ∗1(t)
′θ0(t) = |θ∗1(t)|2,

therefore E[X∗Y ∗] = 0. So we have E[(λ − µHθ∗
1
(T ))+(Hθ(T ) − Hθ0)] ≤ 0. By Theorem

4.6.1, X∗ is no-shorting attainable. The conclusion then follows Theorem 4.6.3. �

Theorem 4.6.4 When ze−
∫

T

0
rdt > x0 > 0 and

∫ T

0

∑n
i=1 B(s)+i ds > 0, the optimal solu-

tion for problem (4.7) is X∗ = [λ − µHθ∗
1
(T )]+, where (λ, µ) satisfies







E[λ − µHθ∗
1
(T )]+ = z,

E[λ − µe
∫

T

0
|θ∗

1 |2dtHθ∗
1
(T )]+ = x0e

∫

T

0
r(t)dt.

Moreover the efficient frontier is the following


























E[x∗(T )] = ηe
∫ T
0 r(t)dtN1(η)−N2(η)

ηN2(η)−e−
∫

T
0 [r(s)−|θ∗1 (s)|2]dsN3(η)

x0,

Var x∗(T ) =

[

η

ηN1(η)−e−
∫

T
0 r(t)dtN2(η)

− 1

]

[Ex∗(T )]2

− x0

ηN1(η)−e−
∫ T
0 r(t)dtN2(η)

Ex∗(T ), η ∈ (0,∞],

(4.55)

where

N1(η) := N

(

ln η+
∫

T

0
[r(s)+ 1

2 |θ
∗
1(s)|2]ds√

∫

T

0
|θ∗

1(s)|2ds

)

,

N2(η) := N

(

ln η+
∫

T

0
[r(s)− 1

2 |θ
∗
1(s)|2]ds√

∫

T

0
|θ∗

1(s)|2ds

)

,

N3(η) := N

(

ln η+
∫

T

0
[r(s)− 3

2 |θ
∗
1(s)|2]ds√

∫

T

0
|θ∗

1(s)|2ds

)

.

(4.56)

Proof: Using a similar argument in Section 3.3, we can prove when z > 0, x0 > 0, the

equations






E[λ − µHθ∗
1
(T )]+ = z,

E[λ − µHθ∗
1
(T )]+Hθ∗

1
(T ) = x0
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admit a unique solution.

Comparing these two equations, along with the condition ze
∫

T

0
r(s)ds > x0, we find

µ > 0. By Proposition 4.6.3, E[X∗Hθ0(T )] = E[X∗Hθ∗
1
(T )] = x0. By Theorems 4.6.1,

4.6.2 and 4.6.3, we conclude X∗ ∈ AC . By Theorems 4.2.2 and Theorem 4.6.2, X∗ is the

optimal solution for Problem (4.7).

The calculation of efficient frontier is the same as that in Sections 3.6 and 3.7. �

4.7 Conclusion

In this chapter, we have tried the decomposition method developed in Chapter 3 to study

the mean-variance portfolio selection problem in an incomplete market. We studied two

types of constraint, shorting prohibition and bankruptcy prohibition, and discuss four

models generated by these two constraints.

From Section 4.3 to Section 4.6, we showed that the decomposition method worked,

although more complicated, in an incomplete market. But the static optimization prob-

lem separated from the original problem is very difficult. In this chapter, we used the

dual method to deal with the static optimization problem, and found the sufficient and

necessary condition for a feasible solution to be optimal.

It should be noted that the dual problems of those static optimization problems are

almost as difficult as their primal problems. But by the duality relation, we can get more

information about their optimal solutions. At least the optimal solutions of the static

problems can all be represented by the optimal solutions of their dual problems. When

parameters of the market are deterministic, the optimal solutions for the dual problems

can be found by the sufficient and necessary conditions, and then the static problems can

be solved through their dual problems.

Lim [35] has studied the unconstrained mean-variance portfolio selection problem in an

incomplete market in his recent work, where he applied the constrained linear-quadratic

optimal control theory and BSDE to study the problem. The optimal solution for the

unconstrained mean-variance problem in an incomplete market with stochastic parameters

can be represented by the solution for a stochastic Riccati equation, whose existence of

solution is proved. For the problem with no-bankruptcy constraint, Lim’s method does
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not seem to work because the optimal control problem is one with a state constraint which

is extremely difficult.
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Chapter 5

General Mean-Risk Criteria

5.1 Introduction

Risk is a central issue in financial investment, yet it is a subjective notion as opposed to

return. The practice of decision making under uncertainty frequently resorts to mean-

risk model. Mean-variance is a classical mean-risk model. The mean-risk model allows a

trade-off analysis between the mean level, which is sought, and the risk, which is aversive,

of decision outcome.

A fundamental problem for mean-risk model is how risk should be measured. Risk

measurement is a widely studied topic, which has been explored for a long time. In the

middle of eighteenth century, Daniel Bernoulli already noted that risk should be a key

fact for investment. In the early 1950s, Markowitz [41] proposed the single-period mean–

variance (M–V) portfolio selection model, where he used the variance to measure the risk.

This seminal work has been widely recognized to have laid the foundation of modern

portfolio theory. However, there has also been substantial amount of objection to the

measurement of risk by variance. The main aspects of the M–V theory under criticism

include the penalty on the upside return, and the equal weight on the upside and downside

whereas the asset return distribution is generally asymmetric. A critical argument against

the mean-variance model is that it cannot be always consistent with stochastic dominance.

See Ogryczak and Ruszczynski [50]. Consequently, some alternative risk measures were

82



Chapter 5 General Mean-Risk Criteria

proposed, noticeably the so-called downside risk where only the return below its mean

or a target level is counted as risk [16, 62, 49, 4]. One of the downside risk measures

is the semivariance. In [42] Markowitz himself agreed that “semivariance seems more

plausible than variance as a measure of risk”. On the other hand, in a single-period

financial market, other risk measures have also been proposed and studied, including VaR

[22], mean–absolute deviation [28], and minimax measure [7]. For a recent survey on the

Markowitz model and models with various risk measures, refer to [63].

The M–V approach “has received comparably little attention in the context of long-

term investment planning” ([63, p.32]), especially in continuous time setting, until very

recently. In a series of papers [70, 36, 34, 69] the continuous-time Markowitz models

have been investigated thoroughly with closed-form solutions obtained in most cases. In

this chapter, we will study continuous-time portfolio selection models with risk measures

different from the variance. We will start with a weighted mean–variance problem where

the risk has different weights on upside and downside returns. Explicit solution will be

obtained for this model. While the weighted mean–variance model is important in its own

right, it also converges to the mean–semivariance model when the weight on the upside

variance goes to zero. Surprisingly and in sharp contrast to the single-period setting,

based on this convergence approach we will show that the mean–semivariance model has

no optimal solution, although asymptotically optimal solution can be obtained from the

solution to the weighted mean–variance model. This “negative” result motivates us to

study a general mean–downside-risk model where only the downside return is penalized,

not necessarily in the fashion of variance. It turns out that this general downside-risk

model provides no optimal solution either, under a very mild condition. It should be noted

that Berlelarr [4] studied the downside-risk portfolio selection in a utility framework, and

obtained optimal solutions. However, the results are obtained under an explicit constraint

on the upper bound of the wealth. This constraint is not reasonable in the mean-risk

framework.

Finally, we will study a “most general” mean–risk model, where the risk is measured by

the expectation of a convex function of the deviation of the terminal payoff from its mean.

For this model, we give a complete solution in terms of characterization of the existence
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of optimal portfolio and presentation of the solution when it exists. Furthermore, when

there exists no optimal solution, we explore an asymptotic way to approach the infimum

of the problem and the corresponding asymptotic solution sequence.

This chapter is organized as follows. In Section 5.2, we specify the continuous-time

financial market under consideration, and introduce the equivalent static optimization

problem for a dynamic portfolio selection problem. In Section 5.3, we investigate the

weighted mean–variance problem, and in Section 5.4, we treat the mean–semivariance

model based on the results in section 3 and a convergence approach. Section 5.5 is devoted

to the study on the mean–downside-risk problem. In Section 5.6, we turn to the general

mean–risk model, and find the sufficient and necessary conditions for the problem to

admit optimal solutions, as well as the optimal solutions or asymptotic optimal solution

sequences. Several examples are presented to illustrate the general results obtained. By

the similar method, we solve the fixed-target portfolio selection problem in section 5.7. In

Section 5.8, we study the existence of the optimal solution for mean-semivariance problem

in a single-period, the conclusions are strikingly different from those in continuous-time

market. Finally, Section 5.9 presents some concluding remarks.

5.2 Problem formulation

In Chapter 4, we have shown how to apply the decomposition idea in an incomplete

market. In this chapter, we go back to the complete market specified in Section 3.2. Here

we repeat some important notations and assumptions for this market.

Assumption 5.2.1

σ(t)σ(t)′ ≥ δIm, ∀t ∈ [0, T ], a.s. (5.1)

for some δ > 0, where Im is the m × m identity matrix.

Define ρ(·) as the deflator process by

ρ(t) := exp

{

−
∫ t

0

[r(s) +
1

2
|θ(s)|2]ds −

∫ t

0

θ(s)dW (s)

}

. (5.2)
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With this definition, we know for any admissible portfolio defined in Definition 2.2.1, its

wealth process x(·) satisfies

x(t) = ρ(t)−1E(ρ(T )X(T )|Ft). (5.3)

The various portfolio selection models we are going to consider in this chapter are all

special cases of the following general problem

Minimize Ef(x(T ) − Ex(T )),

subject to



















π(·) ∈ L2
F(0, T ;Rm),

(x(·), π(·)) satisfies equation (2.5) with initial wealth x0,

Ex(T ) = z,

(5.4)

where x0, z ∈ R and the function f : R → R are given. In words, problem (5.4) is to

minimize the risk, measured by certain function of the deviation of the terminal wealth

from its mean, via continuous trading, subject to an initial budget constraint (specified by

x0) and a target expected terminal payoff (specified by z). The Markowitz mean–variance

problem is a special case of (5.4) with f(x) = x2.

In model (5.4), we measure the risk of the terminal return of an investment by the

expectation of a function f . The function f is supposed to be convex in general. The

convexity of the function f is important for the existence of the optimal portfolio for model

(5.4). With the convexity of f , an investor with the objective given in model (5.4) will,

as suggested in the maxim, “not put all the eggs in one basket”.

Thanks to the completeness of the market, we can apply the same technique used in

Chapter 2 to decompose problem (5.4) into a static optimization problem and a wealth

replication problem. The static optimization problem is

Minimize Ef(X − z),

subject to



















EX = z,

E[ρ(T )X ] = x0,

X ∈ L2(FT ,R).

(5.5)

Suppose X∗ is an optimal solution to (5.5), then the replication problem is to find a

portfolio such that its terminal wealth hits X∗; in other words, the problem is to find
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(x(·), π(·)) that solves the following equation






dx(t) = [r(t)x(t)dt + B(t)π(t)]dt + π(t)′σ(t)dW (t),

x(T ) = X∗.
(5.6)

Theorem 5.2.1 If (x∗(·), π∗(·)) is optimal for problem (5.4), then x∗(T ) is optimal for

problem (5.5) and (x∗(·), π∗(·)) satisfies (5.6). Conversely, if X∗ is optimal for problem

(5.5), then (5.6) must have a solution (x∗(·), π∗(·)) which is an optimal solution for (5.4).

Proof: The proof is the same as that of Theorem 3.2.1. �

Remark 5.2.1 The replication problem (5.6) is essentially a backward stochastic differ-

ential equation; refer to [39, 40, 67] for various approaches in solving BSDEs. Indeed, the

unique solution (x∗(·), π∗(t)) of (5.6) is given by

π∗(t) = (σ(t)′)−1y∗(t), (5.7)

whereas (x∗(·), y∗(·)) is the unique solution to the BSDE






dx(t) = [r(t)x(t) + θ(t)y(t)]dt + y(t)′dW (t),

x(T ) = X∗.
(5.8)

Thus, according to Theorem 5.2.1 the key is to solve the static optimization problem (5.5).

The remainder of this chapter will be mainly devoted to solving problem (5.5) for various

situations.

5.3 The weighted mean–variance model

The classical mean–variance portfolio selection problem uses the variance as the measure

for risk, which puts the same weight on the downside and upside (in relation to the mean)

of the return. In this section, we study the “weighted” mean–variance portfolio selection

model where the weights on the downside and upside may be different. Specifically, for

given α > 0, β > 0, z ∈ R, x0 ∈ R, the problem being considered is

Minimize J1(x0, z; π(·)) := E[α((x(T ) − z)+)2 + β((x(T ) − z)−)2],

subject to



















π(·) ∈ L2
F(0, T ;Rm),

(x(·), π(·)) satisfies equation (2.5) with initial wealth x0,

Ex(T ) = z.

(5.9)
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This model specializes (5.4) with f(x) = α(x+)2 + β(x−)2. It reduces to the classical

mean–variance model when α = β.

As discussed at the end of Section 5.2, to solve the above problem it suffices to solve a

static optimization problem (5.5) in terms of X . Define Y := X − z, then (5.5) specializes

to

Minimize E(α(Y +)2 + β(Y −)2),

subject to



















EY = 0,

E[ρY ] = y0,

Y ∈ L2(FT ,R),

(5.10)

where ρ := ρ(T ) and y0 := x0 − zEρ.

The above is a static convex optimization problem. Using the Lagrange multiplier

approach (Proposition 3.4.1), we conclude that Y ∗ is an optimal solution of (5.10) if and

only if Y ∗ is a feasible solution of (5.10) and there exists a pair (λ, µ) such that Y ∗ is an

optimal solution of the following problem

min
Y ∈L2(FT ,R)

E[α(Y +)2 + β(Y −)2 − 2(λ − µρ)Y ]. (5.11)

Lemma 5.3.1 Problem (5.11) admits a unique optimal solution Y ∗ = (λ−µρ)+

α − (λ−µρ)−

β .

Proof: For any Y ∈ L2(FT ,R), we have, samplewisely,

α(Y +)2 + β(Y −)2 − 2(λ − µρ)Y

= α((Y +)2 − 2
λ − µρ

α
Y +) + β((Y −)2 + 2

λ − µρ

β
Y −)

= α(Y + − λ − µρ

α
)2 − (λ − µρ)2

α
+ β(Y − +

λ − µρ

β
)2 − (λ − µρ)2

β

≥ − ((λ − µρ)+)2

α
− ((λ − µρ)−)2

β

= α((Y ∗)+)2 + β((Y ∗)−)2 − 2(λ − µρ)Y ∗.

This shows that Y ∗ is an optimal solution. The uniqueness of the optimal solution follows

from the strict convexity of the problem (5.11). �

Proposition 5.3.1 For any y0, there exists a unique pair (λ, µ) such that the optimal

solution Y ∗ in Lemma 5.3.1 satisfies EY ∗ = 0, E[ρY ∗] = y0. Moreover, λ < 0, µ < 0 if

y0 > 0, λ > 0, µ > 0 if y0 < 0, and λ = µ = 0 if y0 = 0.
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Proof: If y0 = 0, then we simply take λ = µ = 0 (in which case Y ∗ = 0).

If y0 < 0, then consider the following equation in the deterministic unknown ζ:

E(ζ − ρ)+/α = E(ζ − ρ)−/β. (5.12)

It is easy to see, using the mean-value theorem of a continuous function, that it admits a

unique positive solution, denoted by ζ > 0. Set

a := E[ρ(ζ − ρ)+]/α − E[ρ(ζ − ρ)−]/β.

Note

E[ρ(ζ − ρ)+]/α = E[ρ(ζ − ρ)+1ρ<ζ ]/α

< ζE(ζ − ρ)+/α

= ζE(ζ − ρ)−/β

< E[ρ(ζ − ρ)−1ρ>ζ ]/β

= E[ρ(ζ − ρ)−]/β.

Hence a < 0. Take µ := y0/a > 0, λ := ζµ > 0. Then it is straightforward that (λ, µ) is

the desired pair.

Finally, if y0 > 0, then let ξ > 0 be the unique solution of equation

E(ξ − ρ)−/α = E(ξ − ρ)+/β. (5.13)

Denoting

b := E[ρ(ξ − ρ)−]/α − E[ρ(ξ − ρ)+]/β,

an argument similar to above yields b > 0. Take µ := −y0/b < 0, λ := ξµ < 0. Then (λ, µ)

is the desired pair.

For the uniqueness, it is not difficult to prove by discussing for the cases µ < 0 and

µ > 0 respectively. �

Theorem 5.3.1 The unique optimal solution for problem (5.10) is

Y ∗ =
(λ − µρ)+

α
− (λ − µρ)−

β
,
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where (λ, µ) is the unique solution of the system of equations:







E(λ−µρ)+

α − E(λ−µρ)−

β = 0,

E[ρ(λ−µρ)+]
α − E[ρ(λ−µρ)−]

β = y0.
(5.14)

Moreover, the minimum value of the problem (5.10) is

E[α((Y ∗)+)2 + β((Y ∗)−)2] = −µy0 ≡



















− y2
0

E[ρ(ζ−ρ)+]/α−E[ρ(ζ−ρ)−]/β , if y0 > 0,

0, if y0 = 0,

y2
0

E[ρ(ξ−ρ)−]/α−E[ρ(ξ−ρ)+]/β , if y0 < 0,

(5.15)

where ζ and ξ are the solutions to (5.12) and (5.13) respectively.

Proof: The first part of the theorem is immediate from Lemma 5.3.1 and Proposition 5.3.1.

To prove the second part, note that the case when y0 = 0 is trivial; so we consider y0 6= 0.

One has

− 1

β
E((λ − µρ)−)2 =

1

β
E[(λ − µρ)−(λ − µρ)]

= λ
E(λ − µρ)−

β
− µ

E[ρ(λ − µρ)−]

β

= λ
E(λ − µρ)+

α
− µ

{

E[ρ(λ − µρ)+]

α
− y0

}

=
1

α
E[(λ − µρ)+(λ − µρ)] + µy0

=
1

α
E((λ − µρ)+)2 + µy0,

where we have utilized the equations (5.14). Consequently,

E[α((Y ∗)+)2 + β((Y ∗)−)2] =
1

α
E((λ − µρ)+)2 +

1

β
E((λ − µρ)−)2

= −µy0.

By the proof of Theorem 5.3.1, we have, when y0 < 0,

µ =
y0

a
=

y0

E[ρ(ζ − ρ)+]/α − E[ρ(ζ − ρ)−]/β
;

and when y0 > 0,

µ = −y0

b
= − y0

E[ρ(ξ − ρ)−]/α − E[ρ(ξ − ρ)+]/β
.
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Combining these equations, we obtain the desired result. �

The following theorem gives a complete solution to the weighted mean–variance port-

folio selection problem (5.9).

Theorem 5.3.2 The unique optimal portfolio for (5.9) corresponding to z > 0 is given

by

π∗(t) = (σ(t)′)−1y∗(t), (5.16)

where (x∗(·), y∗(·)) is the unique solution to the BSDE






dx(t) = [r(t)x(t) + θ(t)y(t)]dt + y(t)′dW (t)

x(T ) = (λ−µρ)+

α − (λ−µρ)−

β + z,
(5.17)

with (λ, µ) being the unique solution to the system of algebraic equations






E(λ−µρ)+

α − E(λ−µρ)−

β = 0

E[ρ(λ−µρ)+]
α − E[ρ(λ−µρ)−]

β = x0 − zEρ.
(5.18)

Moreover, the minimum value of (5.9), as a function of (x0, z) ∈ R × R, is given by

J∗
1 (x0, z) =



















− (x0−zEρ)2

E[ρ(ζ−ρ)+]/α−E[ρ(ζ−ρ)−]/β , if x0 − zEρ > 0,

0, if x0 − zEρ = 0,

(x0−zEρ)2

E[ρ(ξ−ρ)−]/α−E[ρ(ξ−ρ)+]/β , if x0 − zEρ < 0,

(5.19)

where ζ and ξ are the solutions to (5.12) and (5.13) respectively.

Proof: It has been proved that the optimal solution to the static optimization problem

(5.5) in the present case is X∗ = (λ−µρ)+

α − (λ−µρ)−

β + z. On the other hand, (5.17) is a

linear BSDE with uniformly bounded linear coefficients; hence it admits a unique solu-

tion (x∗(·), y∗(·)). As a result, (x∗(·), π∗(·)) ≡ (x∗(·), (σ(·)′)−1y∗(·)) solves the replication

problem (5.6). Finally, (5.19) follows readily from (5.15). �

Remark 5.3.1 If z = x0

Eρ , then λ = µ = 0 implying that x∗(T ) = z a.s. under the

optimal portfolio. Hence in this case the optimal portfolio is a risk-free portfolio. As a

by-product, we have proved that a risk-free portfolio is available (which involves exposure

to the stocks) even though the interest rate is random.

Remark 5.3.2 When the market coefficients are deterministic, optimal portfolio can be

obtained more explicitly via some Black–Scholes type equation as in Section 3.7.
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5.4 The mean–semivariance model

In this section we consider the mean–semivariance problem, where only the downside

return is penalized. For each z ∈ R, the problem is to

Minimize E[((x(T ) − z)−)2],

subject to



















π(·) ∈ L2
F(0, T ;Rm),

(x(·), π(·)) satisfies equation (2.5) with initial wealth x0,

Ex(T ) = z.

(5.20)

This is a case of (5.4) with f(x) = (x−)2.

Denote ρ := ρ(T ) where ρ(·) is defined by (5.2). As in Section 5.3, we define

ρ0 := inf{η ∈ R : P (ρ < η) > 0}, ρ1 := sup{η ∈ R : P (ρ > η) > 0}. (5.21)

Lemma 5.4.1 Let ζ(α), α ∈ (0, 1), be the solution to (5.12) with β = 1 − α, then

limα↓0 ζ(α) = ρ0. Similarly, let ξ(α), α ∈ (0, 1), be the solution to (5.13) with β = 1 − α,

then limα↓0 ξ(α) = ρ1.

Proof: Define f(ζ) := E(ζ−ρ)+

E(ζ−ρ)− , ζ ∈ (ρ0, ρ1). Then equation (5.12) is equivalent to

f(ζ) = α
1−α . Obviously, f(ζ) is a strictly positive and strictly increasing function on ζ ∈

(ρ0, ρ1); hence ζ(α) is strictly increasing on α ∈ (0, 1), and in this interval, ρ0 < ζ(α) < ρ1.

Denote limα↓0 ζ(α) = ζ0, then ζ0 ≥ ρ0. If ζ0 > ρ0, then take ζ ∈ (ρ0, ζ0). Since

ζ < ζ0 = limα↓0 ζ(α), we have E(ζ−ρ)+

E(ζ−ρ)− = 0, implying E(ζ − ρ)+ = 0. However, ζ > ρ0, so

P (ρ < ζ) > 0 leading to a contradiction. Therefore, ζ0 = ρ0.

Similarly, we can prove the other part of the lemma in terms of ξ(α). �

We are now in a position to prove the following negative result.

Theorem 5.4.1 The mean–semivariance problem (5.20) does not admit any optimal so-

lution so long as z 6= x0

Eρ .

Proof: In view of Theorem 5.2.1, it suffices to prove that the static optimization prob-

lem

Minimize E((Y −)2),

subject to



















EY = 0,

E[ρY ] = y0 ≡ x0 − zEρ,

Y ∈ L2(FT ,R),

(5.22)
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has no optimal solution. Consider problem (5.10) with β = 1 − α and α ∈ (0, 1). It has

been proved in the proof of Proposition 5.3.1 that there exists a pair (λ(α), µ(α)) such that

Y (α) = (λ(α)−µ(α)ρ)+

α − (λ(α)−µ(α)ρ)−

β satisfies EY (α) = 0, E[ρY (α)] = y0. This implies

that each Y (α) is feasible for problem (5.22).

Since z 6= x0

Eρ , we have y0 6= 0. First consider the case when y0 < 0. It was proved

in the proof of Proposition 5.3.1 that λ(α) > 0, µ(α) > 0. Let ζ(α) = λ(α)/µ(α). Then

ζ(α) is the solution to (5.12) with β = 1 − α. Lemma 5.4.1 along with its proof yields

ζ(α) > ρ0, and ζ(α) → ρ0 as α ↓ 0. However,

0 ≤ E[(ρ − ρ0)(ζ(α) − ρ)+]/α ≤ (ζ(α) − ρ0)E(ζ(α) − ρ)+/α

= (ζ(α) − ρ0)E(ζ(α) − ρ)−/(1 − α)

≤ (ζ(α) − ρ0)Eρ/(1 − α) → 0, as α ↓ 0,

and

E[(ρ − ρ0)(ζ(α) − ρ)−]/(1 − α) → E(ρ − ρ0)
2, as α ↓ 0.

Consequently,

µ(α) ≡ y0

E[(ρ − ρ0)(ζ(α) − ρ)+]/α − E[(ρ − ρ0)(ζ(α) − ρ)−]/(1 − α)
→ −y0/E(ρ−ρ0)

2, as α ↓ 0,

and, therefore,

E[(Y (α)−)2] =
µ(α)2E((ζ(α) − ρ)−)2

(1 − α)2
→ y2

0/E(ρ − ρ0)
2, as α ↓ 0. (5.23)

On the other hand, for any feasible solution Y of problem (5.22), Cauchy–Schwartz’s in-

equality yields {E[(ρ−ρ0)Y
−]}2 ≤ E[Y −]2E[(ρ−ρ0)

21Y <0]. Note that E[(ρ−ρ0)
21Y <0] 6=

0, for otherwise P (Y ≥ 0) = 1 which together with EY = 0 implies P (Y = 0) = 1 and

hence y0 = 0. As a result,

E[Y −]2 ≥ {E[(ρ − ρ0)Y
−]}2

E[(ρ − ρ0)21Y <0]
=

{E[(ρ − ρ0)Y
+] − y0}2

E[(ρ − ρ0)21Y <0]
>

y2
0

E(ρ − ρ0)2
, (5.24)

where the last strict inequality is due to the facts that y0 < 0 and EY = 0. Comparing

(5.23) and (5.24) we conclude that there is no optimal solution for (5.22) in this case.

For the case y0 > 0, we have proved that λ(α) < 0, µ(α) < 0 and ξ(α) := λ(α)/µ(α) >

0, where ξ(α) is the solution to (5.13) with β = 1−α. According to Lemma 5.4.1, ξ(α) → ρ1
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as α ↓ 0. First assume that ρ1 < +∞. Then an argument completely analogous to the

above yields

E[(Y (α)−)2] → y2
0/E(ρ1 − ρ)2, as α ↓ 0, (5.25)

whereas E[Y −]2 > y2
0/E(ρ1−ρ)2 for any feasible solution Y of problem (5.22). Thus there

is no optimal solution for (5.22).

If ξ(α) → ρ1 = +∞, then

E[ρ(ξ(α) − ρ)−]/α − E[ρ(ξ(α) − ρ)+]/(1 − α)

≥ ξ(α)E(ξ(α) − ρ)−/α − E[ρ(ξ(α) − ρ)+]/(1 − α)

= ξ(α)E(ξ(α) − ρ)+/(1 − α) − E[ρ(ξ(α) − ρ)+]/(1 − α)

= E((ξ(α) − ρ)+)2/(1 − α)

→ +∞, as α ↓ 0.

(5.26)

However,

E[(Y (α)−)2] = µ(α)2E((ξ(α)−ρ)+)2

(1−α)2

≤ µ(α)2

1−α {E[ρ(ξ(α) − ρ)−]/α − E[ρ(ξ(α) − ρ)+]/(1 − α)}
=

y2
0

(1−α){E[ρ(ξ(α)−ρ)−]/α−E[ρ(ξ(α)−ρ)+]/(1−α)}

→ 0 as α ↓ 0,

(5.27)

where the first inequality was due to (5.26) and the second equality was because of the fact

that µ(α) = − y0

E[ρ(ξ(α)−ρ)−]/α−E[ρ(ξ(α)−ρ)+] . On the other hand, for any feasible solution

Y , if E(Y −)2 = 0, then Y = 0 implying y0 = 0. This, once again, proves that (5.22) has

no optimal solution. �

Remark 5.4.1 If z = x0

Eρ , then there is a risk-free portfolio under which the terminal

wealth is exactly z; see Remark 5.3.1. This portfolio is therefore an optimal portfolio for

(5.22).

Remark 5.4.2 Although the mean–semivariance problem in general do not admit optimal

solutions, the infimum of the problem has been obtained explicitly in the proof of Theorem

5.4.1. Specifically, the infimum is
y2
0

E(ρ−ρ0)2 if y0 < 0, and is
y2
0

E(ρ1−ρ)2 if y0 > 0. Moreover,

asymptotically optimal portfolios can be obtained by replicating Y (α) as α → 0.

Theorem 5.4.1 shows that, quite contrary to the single-period case, the mean–semivariance

portfolio selection problem in a complete continuous-time financial market does not admit
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a solution (save for the trivial case when z = x0

Eρ ). In the next section, we shall extend

this “negative” result to a general model that concerns only the downside risk.

5.5 The mean–downside-risk model

Some alternative measures for risk have been proposed in lieu of the variance, and one

of such measures is the downside risk which concerns only the downside deviation of the

return from the mean. The semivariance studied in the previous section is a typical type

of downside risk measure. In this section, we will generalize the result obtained in Section

5.4 to a general portfolio selection model with downside risk.

Before we formulate the underlying portfolio selection problem, let us investigate an

abstract static optimization problem, which is interesting in its own right. Let (Ω,F , P )

be a probability space. For q ≥ 1, we denote by Lq(F ,R) the set of all F -measurable real

random variables X such that |X |q is integrable under P . Let ξ be a strictly positive real

random variable, with the property that

P{ξ ∈ (M1, M2)} > 0, and P{ξ = M1} = P{ξ = M2} = 0, ∀0 ≤ M1 < M2 ≤ +∞.

(5.28)

Consider the following optimization problem, with a given y0 ∈ R:

Minimize Ef(Y ),

subject to



















EY = 0,

E[ξY ] = y0,

Y ∈ Lq(F ,R),

(5.29)

where f : R → R is a given function. Throughout this section we impose the following

assumption on f :

Assumption 5.5.1 f ≥ 0, left continuous at 0, strictly decreasing on R−, and f(x) = 0

∀x ∈ R+.

Notice that here we even do not need the convexity of f , which will be an essential

requirement in the next section. An example of such a function is f(x) = (x−)p for some

p ≥ 0. By virtue of the assumed properties of f , problem (5.29) has a finite (nonnegative,

in fact) infimum.
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Theorem 5.5.1 Problem (5.29) admits no optimal solution for any y0 6= 0.

This theorem will be proved via several intermediate results. Denote Lq(F ,R−) :=

{X ∈ Lq(F ,R) : X ≤ 0}. For any a ≤ 0, define

h(α) := inf
Z∈Lq(F ,R−), E[ξZ]=α

Ef(Z).

Lemma 5.5.1 h(α) is decreasing on R−. Moreover, if for a given α1 < 0, there exists

Z̄ ∈ Lq(FT ,R−) such that E[ξZ̄] = α1, Ef(Z̄) = h(α1), then h(α1) > h(α2) ∀α2 ∈
(α1, 0).

Proof: For any α1 < α2 < 0, we have

h(α2) ≤ inf
Z∈Lq(FT ,R−), E[ξZ]=α1

Ef(
α2

α1
Z) ≤ inf

Z∈Lq(FT ,R−), E[ξZ]=α1

Ef(Z) = h(α1).

If there exists a Z̄ ∈ Lq(FT ,R−) with E[ξZ̄] = α1, Ef(Z̄) = h(α1), then

h(α2) ≤ Ef(
α2

α1
Z̄) < Ef(Z̄) = h(α1).

This completes the proof. �

Lemma 5.5.2 For any x > 0, δ > 0, and 0 < y < xδ, there exists a uniformly bounded

random variable Ȳ ≥ 0 such that EȲ = x, E[ξȲ ] = y, and Ȳ = 0 on the set {ω ∈ Ω : ξ ≥
δ}.

Proof: Take δ1 < δ2 < δ so that E(ξ|δ1 ≤ ξ < δ2) = y/x. The property of the dis-

tribution of ξ and the fact that y/x < δ ensure the existence of such δ1, δ2. Define

Ȳ = x
P (δ1≤ξ<δ2)1δ1≤ξ<δ2 . Then Ȳ satisfies all the desired requirements. �

Lemma 5.5.3 For any y0 < 0 and ε > 0, there exists a feasible solution Y for problem

(5.29) such that Ef(Y ) < h(y0) + ε.

Proof: For any ε > 0, there exists Z ∈ Lq(FT ,R−) such that E[ξZ] = y0, and h(y0) ≤
Ef(Z) < h(y0) + ε. Since α

y0
E[ξZ] = α ∀α < y0, we have h(α) ≤ Ef( α

y0
Z). Fix α < y0.

Since the distribution of ξ has no atom by the assumption, there exists δ0(α) > 0 such

that
α

y0
E[Zξ1ξ≥δ0(α)] = y0.
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As a result, one can take δ1(α) > 0 with δ1(α) < δ0(α) and

−E[ α
y0

Z1ξ≥δ1(α)]

y0 − α
y0

E[Zξ1ξ≥δ1(α)]
>

1

δ1(α)
.

It is easy to see that lima↑y0 δ0(α) = 0; hence lima↑y0 δ1(α) = 0.

Define

Yα =







α
y0

Z, if ξ ≥ δ1(α),

Ȳα, if ξ < δ1(α),

where Ȳα ≥ 0 is such that Ȳα = 0 on the set {ω ∈ Ω : ξ ≥ δ1(α)}, and

EȲα = −E[ α
y0

Z1ξ≥δ1(α)],

E[ξȲα] = y0 − E[ α
y0

ξZ1ξ≥δ1(α)].

The existence of such Ȳα is implied by Lemma 5.5.2. Consequently, EYα = 0, E[ξYα] = y0,

meaning that Yα is feasible for problem (5.29).

Now Ef(Yα) = E[f( α
y0

Z)1ξ≥δ1(α)]+E[f(Ȳα)1ξ<δ1(α)] = E[f( α
y0

Z)1ξ≥δ1(α)]. Thus, we

have

Ef(
α

y0
Z) ≥ Ef(Yα) ≥ E[f(Z)1ξ≥δ1(α)]

which implies lima↑η Ef(Yα) = Ef(Z) < h(y0) + ε. Thus, we can take a < y0 such that

Ef(Yα) < h(y0) + ε. �

Proposition 5.5.1 Problem (5.29) admits no optimal solution for any y0 < 0.

Proof: In view of Lemma 5.5.3 it suffices to show that Ef(Y ) > h(y0) for any feasible

solution Y of (5.29). To this end, first note that E[ξY +] > 0, for otherwise Y + = 0

which along with EY = 0 yields Y = 0 and hence y0 = 0. Therefore, α := E[−ξY −] < y0,

suggesting h(α) ≥ h(y0) by virtue of Lemma 5.5.1. If h(α) = h(y0), then the contrapositive

of Lemma 5.5.1 implies that Ef(−Y −) > h(α). So Ef(Y ) ≥ Ef(−Y −) > h(α) = h(y0).

Otherwise, if h(α) > h(y0), then Ef(Y ) ≥ h(α) > h(y0). �

Now let us turn to the case when y0 > 0.

Proposition 5.5.2 Problem (5.29) admits no optimal solution for any y0 > 0.
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Proof: Since y0 > 0, any feasible solution Y of problem (5.29) satisfies Ef(Y ) > 0. Thus

we only need to show that there exists a sequence {Yn} of feasible solutions for problem

(5.29) with limn→+∞ Ef(Yn) = 0. Indeed, for any n > 0, define

Yn =







−αn, if ξ < n,

βn, if ξ ≥ n,

where αn, βn are defined by

αn =
y0

[E(ξ|ξ ≥ n) − E(ξ|ξ < n)]P (ξ < n)
, βn =

y0

[E(ξ|ξ ≥ n) − E(ξ|ξ < n)]P (ξ ≥ n)
.

Then it is easy to verify that αn > 0, βn > 0, limn→+∞ αn = 0, and EYn = 0, E[ξYn] = y0.

Thus, {Yn} are feasible solutions for (5.29), and

0 ≤ Ef(Yn) = E[f(−αn)1ξ<n] ≤ f(−αn).

Since f is left continuous at 0, we conclude limn→+∞ Ef(Yn) = 0. �

Remark 5.5.1 In the proof of Proposition 5.5.2, only the following properties of f(·) was

utilized: f(x) > 0 if x < 0, f(x) = 0 if x ≥ 0, and limx↑0 f(x) = 0. The strictly decreasing

property of f(·) was not necessary.

Combining Proposition 5.5.1 and Proposition 5.5.2. we obtain the conclusion of The-

orem 5.5.1.

Now we turn to the continuous-time portfolio selection problem (5.4) where f satisfies

Assumption 5.5.1. The way the function f is given suggests that only the downside

deviation of the terminal wealth from its mean is penalized; hence the model constitutes

a (very general) mean–downside-risk portfolio selection problem.

Let ρ(·) be the price kernel defined by (5.2). We impose the following assumption:

Assumption 5.5.2 For any 0 ≤ M1 < M2 ≤ +∞, P{ρ(T ) ∈ (M1, M2)} > 0 and

P{ρ(T ) = M1} = P{ρ(T ) = M2} = 0.

This assumption is satisfied when, say, r(·) and θ(·) are deterministic and
∫ T

0
|θ(t)|2dt >

0.

The corresponding static optimization problem (5.5), after taking a transformation

Y := X − z, is exactly the problem (5.29) with q = 2. Hence, by virtue of Theorems 5.5.1

and 5.2.1, we conclude the following result.
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Theorem 5.5.2 Under Assumption (5.5.1) and 5.5.2, Problem (5.4) admits no optimal

solution for any z 6= x0

Eρ(T ) . On the other hand, if z = x0

Eρ(T ) , then (5.4) has an optimal

portfolio which is the risk-free portfolio.

Theorem 5.5.2 claims that a mean–downside-risk portfolio selection problem is gener-

ally not well-posed in a complete continuous-time financial market. It is a very general

result; however it does not completely cover Theorem 5.4.1 since the latter does not require

Assumption 5.5.2.

5.6 General mean–risk model

We have shown in the last section that in the continuous-time setting, the mean–downside-

risk model is in general not well-posed. In other words, problem (5.4) does not admit an

optimal solution if the function f has the property that it vanishes on the nonnegative

half real axis. Notice that for this negative result to hold the function f is not required

to be convex. In this section, we will study model (5.4) where a general convex function

f is used to measure the risk. We will give a complete solution to the problem in terms

of telling exactly when the portfolio selection problem possesses an optimal solution and,

when it does, giving the explicit solution.

5.6.1 A static optimization problem

As in the previous sections, we first need to investigate a static optimization problem.

Let (Ω,F , P ) be a probability space and ξ a strictly positive real random variable on

it satisfying (5.28). Consider a convex (hence continuous) function f : R → R, not

necessarily differentiable. For any x ∈ R, its subdifferential ∂f(x) in the sense of convex

analysis (see, e.g., [56]), is defined as the set

∂f(x) := {x∗ ∈ R : f(y) − f(x) ≥ x∗(y − x), ∀y ∈ R} ≡ [f ′
−(x), f ′

+(x)], (5.30)

where f ′
−(x) and f ′

+(x) are the left and right derivatives of f at x respectively. The set

∂f(x) is a nonempty bounded set for every x ∈ R ([56, Theorem 23.4]). Moreover, the

convexity of f implies that the subdifferential is non-decreasing in the sense that

f ′
+(x1) ≤ f ′

−(x2), ∀x1 ≤ x2. (5.31)
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We call a convex function f to be strictly convex at x0 ∈ R if

f(x0) < κf(x1) + (1 − κ)f(x2)

for any x1 < x0 < x2 and κ ∈ (0, 1) with κx1 + (1 − κ)x2 = x0. A convex function is

called strictly convex if it is strictly convex at every x ∈ R. Some properties of a convex

function that are useful in this chapter are presented in Appendix C.

For a given q ≥ 1 and y0 ∈ R, consider the following optimization problem:

Minimize Ef(Y ),

subject to



















EY = 0,

E[ξY ] = y0,

Y ∈ Lq(F ,R),

(5.32)

where f : R → R is a given function. Throughout this section we assume that f satisfies

Assumption 5.6.1 f is convex, and strictly convex at 0.

Note that the strict convexity at 0 is a very mild condition, which is valid in many

meaningful cases (see the examples in Section 5.6.4).

In view of Jensen’s inequality, one has Ef(Y ) ≥ f(EY ) = f(0) for any feasible solution

Y of (5.32). Hence problem (5.32) has a finite infimum if its feasible region is nonempty.

Also we see that if y0 = 0, then (5.32) has (trivially) an optimal solution Y ∗ = 0 a.s..

On the other hand, due to the convexity of f , we can apply Proposition 3.4.1 to conclude

that (5.32) admits an optimal solution Y ∗ if and only if Y ∗ is feasible for (5.32) and there

exists a pair (λ, µ) such that Y ∗ solves the following problem

min
Y ∈Lq(F ,R)

E[f(Y ) − (λ − µξ)Y ]. (5.33)

Lemma 5.6.1 Y ∗ ∈ Lq(F ,R) is an optimal solution to (5.33) if and only if

f(Y ∗) − (λ − µξ)Y ∗ = min
y∈R

[f(y) − (λ − µξ)y], a.s..

Proof: The “if” part is obvious. We now prove the “only if” part. Suppose Y ∗ ∈
Lq(F ,R) is an optimal solution to (5.33). Define h(y) := f(y) − (λ − µξ)y, y ∈ R, and

c := infy∈R h(y). Let Z := ∪n∈N{(z1, · · · , zn) : zi ∈ Q}, and h̄(z) := inf1≤i≤n h(zi, ω) for
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z = (z1, · · · , zn) ∈ Z. Since h(y) is continuous in y, we have c = infz∈Z h̄(z). Now, if

Y ∗ is not almost surely a minimum point of h(·), namely, P{c < h(Y ∗)} > 0, then there

exists z = (z1, · · · , zn) ∈ Z such that P{h̄(z) < h(Y ∗)} > 0. It is easy to see then that

there is y∗ ∈ Q with P{h(y∗) < h(Y ∗)} > 0. Put A := {ω : h(y∗, ω) < h(Y ∗(ω), ω)},
and Y ′ := y∗1A + Y ∗1Ac . Then Y ′ ∈ Lq(F ,R), and Eh(Y ′) < Eh(Y ∗), leading to a

contradiction. �

Define a set-valued function G: ∪x∈R∂f(x) → 2R

G(y) := {x ∈ R : y ∈ ∂f(x)}, ∀y ∈ ∪x∈R∂f(x),

and define g: ∪x∈R∂f(x) → R as the “inverse function” of ∂f as follows

g(y) := argminx∈G(y)|x|, ∀y ∈ ∪x∈R∂f(x).

In Appendix we prove that g is a well-defined function (on its domain), and the set of y’s

where G(y) is not a singleton is countable. In other words, denoting

Γ := {y ∈ ∪x∈R∂f(x) : G(y) is a singleton},

then the set [∪x∈R∂f(x)] \Γ is countable. Moreover, g(·) is increasing on ∪x∈R∂f(x) and

continuous at points in Γ (Proposition C.5).

The objective of this subsection is to identify the ranges of y0 where problem (5.32)

admits optimal solution(s) and, when it does, to obtain an optimal solution in various

situations of f . It follows from Lemma 5.6.1 that problem (5.32) admits an optimal

solution if and only if there exists a pair (λ, µ) satisfying the following condition:

There is Y ∗ ∈ Lq(F ,R) with Y ∗ ∈ G(λ − µξ), a.s., EY ∗ = 0, and E[ξY ∗] = y0. (5.34)

Moreover, when there exists a pair (λ, µ) satisfying the above condition, Y ∗ is one of the

optimal solutions for (5.32). Remark that if µ 6= 0, then, since the set [∪x∈R∂f(x)] \ Γ

is countable and the distribution of ξ has no atom, we have P{λ − µξ ∈ Γ} = 1. In this

case G(λ − µξ) is almost surely a singleton; hence problem (5.32) has a unique optimal

solution Y ∗ = g(λ − µξ).

We will solve problem (5.32) in each of the following four (mutually exclusive) cases:
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Case 1: The set ∪x∈R∂f(x) is upper bounded but not lower bounded;

Case 2: The set ∪x∈R∂f(x) is lower bounded but not upper bounded;

Case 3: ∪x∈R∂f(x) = R;

Case 4: The set ∪x∈R∂f(x) is both upper and lower bounded.

Let us first focus on Case 1. In this case, it follows from Proposition C.1 that

∪x∈R∂f(x) is either a closed interval (−∞, k̄] or an open one (−∞, k̄) where

k̄ := lim
x→+∞

f ′
+(x) ∈ R. (5.35)

It is also clear that limy→−∞ g(y) = −∞. Moreover, in this case one only needs to consider

µ ≥ 0 in searching for (λ, µ) satisfying condition (5.34), for otherwise ∪x∈R∂f(x) would

be unbounded from above.

The following technical lemma plays an important role in the subsequent analysis.

Lemma 5.6.2 In Case 1, assume that there are λ0 > f ′
−(0), µ0 > 0 such that g(λ0 −

µ0ξ) ∈ Lq(F ,R). Then for any µ1 ∈ (0, µ0), λ1 ∈ (f ′
−(0), λ0), there exists γ ∈ Lq(F ,R+),

such that |g(λ − µξ)| ≤ γ for any µ ∈ [0, µ1] and λ ∈ [f ′
−(0), λ1]. If in addition ξg(λ0 −

µ0ξ) ∈ Lq(F ,R), then γ satisfies ξγ ∈ Lq(F ,R).

Proof: Since g(·) is increasing (Proposition C.5), for any µ ∈ [0, µ1], λ ∈ [f ′
−(0), λ1], we

have

g(f ′
−(0) − µ1ξ) ≤ g(λ − µξ) ≤ g(λ1).

On the other hand, on the set {ω : ξ(ω) ≤ λ0−f ′
−(0)

µ0−µ1
}, we have

g(f ′
−(0) − µ1ξ) ≥ g

(

µ0f
′
−(0) − λ0µ1

µ0 − µ1

)

;

and on the set {ω : ξ(ω) >
λ0−f ′

−(0)

µ0−µ1
} we have

g(f ′
−(0) − µ1ξ) ≥ g(λ0 − µ0ξ).

Thus, if we put

γ := g(λ1) +

∣

∣

∣

∣

g

(

µ0f
′
−(0) − λ0µ1

µ0 − µ1

)∣

∣

∣

∣

+ |g(λ0 − µ0ξ)|,

then γ meets the requirement. �
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Lemma 5.6.3 In Case 1, for any given λ ∈ (−∞, k̄), gλ(µ) := Eg(λ − µξ) is strictly

decreasing in µ ∈ R+.

Proof: Since g(·) is increasing, gλ(·) is decreasing. Moreover, for any µ > 0, gλ(µ) <

gλ(0). Indeed, if gλ(µ) = gλ(0), then Eg(λ − µξ) = Eg(λ) leading to g(λ − µξ) = g(λ).

This, in turn, implies that λ − µξ ∈ ∂f(g(λ)) which contradicts to the boundedness of

∂f(g(λ)).

Next, for any 0 < µ1 < µ2, if gλ(µ1) = gλ(µ2), then g(λ − µ1ξ) = g(λ − µ2ξ) a.s..

We are to show that in this case g(·) must be constant on (−∞, λ − 1]. In fact, if g(·)
is not constant on (−∞, λ − 1], then for any ε > 0, there exists y1 ≤ λ − 1 such that

g(y1) < g(y1 + ε). Take ε = (µ2 − µ1)/(2µ2). Then it is straightforward to verify that

λ−y1

µ2
< λ−(y1+ε)

µ1
. Now, if ξ ∈ [λ−y1

µ2
, λ−(y1+ε)

µ1
], then the monotonicity of g(·) yields

g(λ − µ1ξ) ≥ g(y1 + ε) and g(λ − µ2ξ) ≤ g(y1). It then follows from the inequality

g(y1) < g(y1 + ε) that P{g(λ − µ2ξ) < g(λ − µ1ξ)} ≥ P{ξ ∈ [λ−y1

µ2
, λ−(y1+ε)

µ1
]} > 0, which

contradicts the assumption that g(λ − µ1ξ) = g(λ − µ2ξ) a.s..

We have shown that g(·) is constant on (−∞, λ − 1]; nevertheless this is impossible

because limy→−∞ g(y) = −∞. The proof is complete. �

Theorem 5.6.1 In Case 1, assume that there are λ0 > f ′
−(0), µ0 > 0 such that g(λ0 −

µ0ξ) ∈ Lq(F ,R) and Eg(λ0−µ0ξ) = 0. Then for any λ ∈ [f ′
−(0), λ0], there exists a unique

0 ≤ µ(λ) ≤ µ0 such that g(λ − µ(λ)ξ) ∈ Lq(F ,R) and Eg(λ − µ(λ)ξ) = 0. Moreover,

µ(λ) = 0 for λ ∈ [f ′
−(0), f ′

+(0)] ≡ ∂f(0), and µ(·) is continuous and strictly increasing on

[f ′
+(0), λ0].

Proof: For any fixed λ ∈ (f ′
−(0), λ0), define gλ(µ) := Eg(λ−µξ) for µ ∈ [0, µ0). It follows

from Lemma 5.6.2 that for any µ1 ∈ (0, µ0), the family of random variables {g(λ − µξ) :

µ ∈ [0, µ1]} are uniformly integrable. Hence by the dominated convergence theorem gλ(·)
is continuous on [0, µ0). On the other hand, g(λ−µξ) is decreasing when µ ↑ µ0, and when

µ0 > µ > µ0/2, g(λ− µξ) ≤ g(λ− ξµ0/2) ∈ Lq(F ,R). Hence, the monotonic convergence

theorem yields

lim
µ↑µ0

Eg(λ − µξ) = E lim
µ↑µ0

g(λ − µξ) = Eg(λ − µ0ξ).
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Note that the above equality may take the value of −∞. If Eg(λ − µ0ξ) > −∞, then the

strict monotonicity of g leads to Eg(λ − µ0ξ) < Eg(λ0 − µ0ξ) = 0. Thus it always holds

that limµ↑µ0 gλ(µ) < 0. But gλ(0) ≡ Eg(λ) ≥ Eg(f ′
−(0)) = 0; so it follows from the facts

that gλ(·) is strictly decreasing (Lemma 5.6.3) and continuous on [0, µ0) that there exists a

unique µ(λ) ∈ [0, µ0) with gλ(µ(λ)) ≡ Eg(λ−µ(λ)ξ) = 0. Moreover, Lemma 5.6.2 ensures

that g(λ − µ(λ)ξ) ∈ Lq(F ,R).

To prove the second part of the theorem, first notice that λ0 > f ′
+(0). Indeed, if it is not

true, then λ0 ∈ ∂f(0) and hence g(λ0) = 0. However, appealing to Lemma 5.6.3 we have

Eg(λ0 − µ0ξ) > g(λ0) = 0 which is a contradiction. Now, whenever λ ∈ [f ′
−(0), f ′

+(0)] ≡
∂f(0), we have Eg(λ) = g(λ) = 0; thus the uniqueness of µ(λ) yields µ(λ) = 0. Next,

consider λ0 ≥ λ1 > λ2 ≥ f ′
+(0). Since µ(λ) > 0 whenever λ > f ′

+(0), and Eg(λ2 − µξ) <

Eg(λ1−µξ) whenever µ > 0, we have gλ2(µ(λ1)) ≡ Eg(λ2−µ(λ1)ξ) < Eg(λ1−µ(λ1)ξ) ≡
0 ≡ gλ2(µ(λ2)). Since gλ2(·) is strictly decreasing, we conclude µ(λ1) > µ(λ2), proving

that µ(·) is strictly increasing on [f ′
+(0), λ0].

Next we show by contradiction the right continuity of µ(·) on [f ′
+(0), λ0). Assume that

there exists λ ∈ [0, λ0), and ε > 0 such that for any λ′ > λ, µ(λ′) > µ(λ) + ε. Without

loss of generality, suppose µ(λ) + ε < µ(λ0). Then

0 = lim
λ′↓λ

Eg(λ′ − µ(λ′)ξ) ≤ lim
λ′↓λ

Eg(λ′ − (µ(λ) + ε)ξ).

On the other hand, it follows from Lemma 5.6.2 that the family of random variables

{g(λ − (µ(λ) + ε)ξ) : λ ∈ [λ, λ1]}, for any fixed λ1 ∈ (λ, λ0), is uniformly integrable.

Therefore we have

lim
λ′↓λ

Eg(λ′ − (µ(λ) + ε)ξ) = Eg(λ − (µ(λ) + ε)ξ) < Eg(λ − µ(λ)ξ) = 0,

leading to a contradiction.

It finally remains to prove the left continuity of µ(·) on (f ′
+(0), λ0]. Assume that there

exists λ ∈ (f ′
+(0), λ0] and ε > 0 such that for any λ′ < λ, µ(λ′) < µ(λ) − ε. Without loss

of generality, suppose µ(λ) − ε > 0. Then

0 = lim
λ′↑λ

Eg(λ′ − µ(λ′)ξ) ≥ lim
λ′↑λ

Eg(λ′ − (µ(λ) − ε)ξ).

Obviously, g(λ′− (µ(λ)− ε)ξ) is increasing when λ′ ↑ λ, and when λ′ > λ/2, g(λ′− (µ(λ)−
ε)ξ) ≥ g(λ/2−(µ(λ)−ε)ξ) ∈ Lq(F ,R) by virtue of Lemma 5.6.2. Hence by the monotonic
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convergence theorem,

lim
λ′↑λ

Eg(λ′ − (µ(λ) − ε)ξ) = Eg(λ − (µ(λ) − ε)ξ) > Eg(λ − µ(λ)ξ) = 0.

Again, this is a contradiction. �

Define































Λ̄ := {λ ∈ [f ′
−(0), k̄] : There exists µ = µ(λ) so that g(λ − µ(λ)ξ) ∈ Lq(F ,R),

Eg(λ − µ(λ)ξ) = 0, ξg(λ − µ(λ)ξ) ∈ L1(F ,R)},
λ̄ := supλ∈Λ̄ λ,

g̃(λ) := E[ξg(λ − µ(λ)ξ)], λ ∈ [f ′
−(0), λ̄).

(5.36)

Notice that Λ̄ 6= ∅, since ∂f(0) ⊆ Λ̄. As a result f ′
+(0) ≤ λ̄ ≤ k̄. Also, by virtue of Lemma

5.6.2 and Theorem 5.6.1, [f ′
−(0), λ̄) ⊆ Λ̄.

Theorem 5.6.2 In Case 1, g̃(λ) = 0 for λ ∈ [f ′
−(0), f ′

+(0)] ≡ ∂f(0), and g̃(·) is continu-

ous and strictly decreasing on [f ′
+(0), λ̄). Moreover, if λ̄ ∈ Λ̄ and λ̄ < k̄, then g̃(·) is also

left continuous at λ̄.

Proof: Theorem 5.6.1 provides that µ(λ) = 0 for any λ ∈ ∂f(0); hence g̃(λ) = E[ξg(λ)] =

0. Furthermore, for λ̄ > λ1 > λ2 ≥ f ′
+(0) (if λ̄ ∈ F , then λ1 may take the value of λ̄),

it follows from Theorem 5.6.1 that µ(λ1) > µ(λ2) ≥ 0. Denote ξ0 := λ1−λ2

µ(λ1)−µ(λ2)
> 0. If

ξ ≥ ξ0, then λ1 − µ(λ1)ξ ≤ λ2 − µ(λ2)ξ resulting in g(λ1 − µ(λ1)ξ) − g(λ2 − µ(λ2)ξ) ≤ 0.

Similarly, if ξ < ξ0, then g(λ1 − µ(λ1)ξ) − g(λ2 − µ(λ2)ξ) ≥ 0. As a consequence,

g̃(λ1) − g̃(λ2)

= E {ξ[g(λ1 − µ(λ1)ξ) − g(λ2 − µ(λ2)ξ)]}

= E {ξ[g(λ1 − µ(λ1)ξ) − g(λ2 − µ(λ2)ξ)]1ξ≥ξ0} + E {ξ[g(λ1 − µ(λ1)ξ) − g(λ2 − µ(λ2)ξ)]1ξ<ξ0}

≤ ξ0E {[g(λ1 − µ(λ1)ξ) − g(λ2 − µ(λ2)ξ)]1ξ≥ξ0} + ξ0E {[g(λ1 − µ(λ1)ξ) − g(λ2 − µ(λ2)ξ)]1ξ<ξ0}

= ξ0E[g(λ1 − µ(λ1)ξ) − g(λ2 − µ(λ2)ξ)]

= 0.

Moreover, if g̃(λ1)− g̃(λ2) = 0, then g(λ1 −µ(λ1)ξ) = g(λ2 − µ(λ2)ξ) a.s.. By a reasoning
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similar to that in the proof of Lemma 5.6.3, we can prove that this is impossible. So g̃(·)
is strictly decreasing on [f ′

+(0), λ̄).

Fix λ ∈ [f ′
+(0), λ̄). There is λ0 ∈ Λ̄ with λ < λ0. By Lemma 5.6.2, the family

{ξg(λ′ − µ(λ′)ξ) : λ′ ∈ [0, (λ + λ0)/2]} is uniformly integrable. Thus by the continuity of

µ(·), we have

lim
λ′→λ

g̃(λ′) = lim
λ′→λ

E[ξg(λ′ − µ(λ′)ξ)]

= E[ lim
λ′→λ

ξg(λ′ − µ(λ′)ξ)]

= E[ξg(λ − µ(λ)ξ)]

= g̃(λ).

This proves the continuity of g̃(·) on [f ′
+(0), λ̄).

Finally, in the case when λ̄ ∈ Λ̄ and λ̄ < k̄, one has

g̃(λ̄) ≤ lim
λ′↑λ̄

g̃(λ′)

= lim
ξλ′↑λ̄

E[g(λ′ − µ(λ′)ξ)]

≤ lim
λ′↑λ̄

E[ξg(λ̄ − µ(λ′)ξ)].

On the other hand, since g(·) is increasing, we have |g(λ̄−µ(λ′)ξ)| ≤ |g(λ̄)|+|g(λ̄−µ(λ̄)ξ)|.
Thus the dominated convergence theorem yields

lim
λ′↑λ̄

E[g(λ̄ − µ(λ′)ξ)ξ] = E[g(λ̄ − µ(λ̄)ξ)]

= g̃(λ̄).

Therefore, g̃(·) is left continuous at λ̄. �

The following result gives the complete solution to problem (5.32) for Case 1.

Theorem 5.6.3 Consider Case 1.

(i) If λ̄ /∈ Λ̄, then (5.32) admits an optimal solution if and only if y0 ∈ (y, 0], where

y = limλ↑λ̄ g̃(λ). If λ̄ ∈ Λ̄, then (5.32) admits an optimal solution if and only if

y0 ∈ {g̃(λ̄)} ∪ (y, 0]. If in addition λ̄ < k̄, then g̃(λ̄) = y.

(ii) When y0 = 0, Y ∗ := 0 is the unique optimal solution to (5.32).
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(iii) When y0 < 0 and the existence of optimal solution is assured, Y ∗ := g(λ − µ(λ)ξ)

is the unique optimal solution to (5.32), and the optimal value of the objectives

is Ef∗(λ − µ(λ)ξ), where f∗ is the conjugate function of f defined by f∗(y) =

infx∈R{f(x) − xy} and λ is the unique solution to g̃(λ) = y0.

Proof: (i) The “if” part follows immediately from Theorem 5.6.2. To prove the “only

if” part, suppose that (5.32) admits an optimal solution Y ∗, then there exists a pair (λ, µ)

satisfying condition (5.34). If λ < f ′
−(0), then µ = 0 (for otherwise Eg(λ−µξ) < Eg(λ) ≤

g(f ′
−(0)) = 0). Hence it follows from (5.34) that EY ∗ = 0 and Y ∗ ∈ G(λ), a.s. or

λ ∈ ∂f(Y ∗), a.s.. If P (Y ∗ = 0) < 1, then P (Y ∗ > 0) > 0, P (Y ∗ < 0) > 0. Therefore

λ ∈ [∪x>0∂f(x)] ∩ [∪x<0∂f(x)], which is impossible by Proposition C.2 and the fact that

f is strictly convex at 0. Thus P (Y ∗ = 0) = 1 and, consequently, y0 = E[ξY ∗] = 0. On

the other hand, if λ ≥ f ′
−(0), then the conclusion follows from Theorem 5.6.2.

(ii) If y0 = 0, it follows from Jensen’s inequality that, for any feasible solution Y of

(5.32), Ef(Y ) ≥ f(EY ) = f(0) ≡ Ef(0). Hence Y ∗ := 0 is an optimal solution. To prove

that Y ∗ is the only solution, let Y be any feasible solution of (5.32) with P (Y 6= 0) > 0.

Since f is strictly convex at 0, there exists an affine function g(x) = ax + b so that

f(0) = g(0) and f(x) > g(x) ∀x 6= 0. Therefore P (f(Y ) > g(Y )) > 0, resulting in

Ef(Y ) > Eg(Y ) = g(EY ) = g(0) = f(0) = Ef(0). This shows that Y is not optimal.

(iii) From Theorem 5.6.2, we can easily see Y ∗ = g(λ − µ(λ)ξ) is the unique optimal

solution to problem 5.32. and the optimal value of the objective is Ef(Y ∗) = Ef(g(λ −
µ(λ)ξ)) = Ef∗(λ − µ(λ)ξ). �

Note that the “if” part of Theorem 5.6.3-(i) does not require the strict convexity of f

at 0. However, this assumption cannot be dropped for the “only if” part; see the following

example.

Example 5.6.1 Take f(x) = (x2−1)1x<−1, which is not strictly convex at 0. It is easy to

see that ∪x∈R∂f(x) = (−∞, 0]. Pick α ∈ R such that P (ξ > α) > 1
2 > P (ξ ≤ α) > 0, and

take Y ∗ := P (ξ≤α)
P (ξ>α)1ξ>α − 1ξ≤α. Then, EY ∗ = 0, and y∗

0 := E[ξY ∗] = P (ξ ≤ α)[E(ξ|ξ >

α) − E(ξ|ξ ≤ α)] > 0. On the other hand, Y ∗ ≥ −1 a.s., hence Ef(Y ∗) = 0. This shows

that problem (5.32) does admit an optimal solution Y ∗ even though y0 = y∗
0 > 0.
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We have now completed the study on Case 1. As for Case 2, it can be turned into

Case 1 by considering f̃(x) = f(−x). Hence we only state the result.

Set

k := lim
x→−∞

f ′
−(x) ∈ R, (5.37)

and define






























Λ := {λ ∈ [k, f ′
+(0)] : There exists µ = µ(λ) so that g(λ − µ(λ)ξ) ∈ Lq(F ,R),

Eg(λ − µ(λ)ξ) = 0, ξg(λ − µ(λ)ξ) ∈ L1(F ,R)},
λ := infλ∈Λ λ,

g̃(λ) := E[ξg(λ − µ(λ)ξ)], λ ∈ (λ, f ′
+(0)].

(5.38)

Theorem 5.6.4 Consider Case 2.

(i) If λ /∈ Λ, then (5.32) admits an optimal solution if and only if y0 ∈ [0, ȳ), where

ȳ = limλ↓λ g̃(λ). If λ ∈ Λ, then (5.32) admits an optimal solution if and only if

y0 ∈ {g̃(λ)} ∪ [0, ȳ). If in addition λ > k, then g̃(λ̄) = ȳ.

(ii) When y0 = 0, Y ∗ := 0 is the unique optimal solution to (5.32).

(iii) When y0 > 0 and the existence of optimal solution is assured, and the optimal value

of the objectives is Ef∗(λ − µ(λ)ξ), where f∗ is the conjugate function of f defined

by f∗(y) = infx∈R{f(x) − xy} and λ is the unique solution to g̃(λ) = y0.

Let us now turn to Case 3. It can be dealt with similarly combining the analysis for

the previous two cases. Define














































Λ := {λ ∈ R : There exists µ = µ(λ) so that g(λ − µ(λ)ξ) ∈ Lq(F ,R),

Eg(λ − µ(λ)ξ) = 0, ξg(λ − µ(λ)ξ) ∈ L1(F ,R)},
λ̄ := supλ∈Λ λ, λ := infλ∈Λ λ,

g̃(λ) := E[ξg(λ − µ(λ)ξ)], λ ∈ (λ, λ̄),

ȳ := limλ↓λ g̃(λ), y := limλ↑λ̄ g̃(λ).

(5.39)

Theorem 5.6.5 Consider Case 3. Problem (5.32) admits an optimal solution if and only

if y0 ∈ A ∪ B, where

A =







[y, 0], if λ̄ ∈ Λ

(y, 0], if λ̄ 6∈ Λ
, B =







[0, y], if λ ∈ Λ

[0, y), if λ 6∈ Λ.
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Moreover, when y0 = 0, Y ∗ := 0 is the unique optimal solution to (5.32), and when y0 6= 0

and the existence of optimal solution is assured, Y ∗ := g(λ− µ(λ)ξ) is the unique optimal

solution to (5.32), and the optimal value of the objectives is Ef∗(λ − µ(λ)ξ), where f∗

is the conjugate function of f defined by f∗(y) = infx∈R{f(x) − xy} and λ is the unique

solution to g̃(λ) = y0.

The final case, Case 4, only has a trivial solution, as shown in the following theorem.

Theorem 5.6.6 Consider Case 4. Problem (5.32) admits an optimal solution if and only

if y0 = 0, in which case the unique optimal solution is Y ∗ = 0.

Proof: Suppose that Y ∗ is optimal to (5.32). Then there exists (λ, µ) so that λ− µξ ∈
∂f(Y ∗), a.s.. It follows from the uniform boundedness of ∂f(x) that µ = 0. Employing

the same argument as in the proof of Theorem 5.6.3-(i) we conclude that Y ∗ = 0, a.s.. �

5.6.2 Asymptotic optimal portfolios

As shown in Theorems 5.6.3, 5.6.4, and5.6.5, when y0 is in the certain range, problem

(5.32) admits a unique optimal solution; when y0 is out of the range, (5.32) admits no

optimal solution. For the latter case, our results provide no resolution for the problem.

As we saw at the beginning of this section, the value of the risk admits a lower bounded

Ef(Y ) ≥ f(EY ) = f(0). So for any y0, there exists a finite infimum for the risk. Obvi-

ously, f(0) is not the infimum in general. What is the infimum? How to approach it? We

will discuss these problems in this subsection.

In addition to the assumptions imposed in the last subsection on the random variable

ξ, we suppose

Assumption 5.6.2 ξ ∈ Lq/(q−1)(F ,R).

With this assumption, we claim

Theorem 5.6.7 When f(y) = |y|q, Problem (5.32) admits a unique optimal solution for

any y0 ∈ R.

Proof: Obviously f(·) is strictly convex, f ′(y) = qsgn(y)|y|q−1. By the definition,

g(x) = sgn(x)(|x|/q)1/(q−1).
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For any λ > 0, it is easy to verify that there exists µ(λ) such that Eg(λ− µ(λ)ξ) = 0.

Furthermore, for any λ, µ, g(λ − µξ) ∈ Lq(F ,R), |ξg(λ − µξ)| = ξ(|λ − µξ|/q)1/(q−1) ≤
q−1/(q−1)|λ|1/(q−1)ξ + q−1/(q−1)|µ|1/(q−1)ξq/(q−1) ∈ L1(F ,R). So λ̄ = +∞, λ = −∞. By

Theorem 5.6.5, the problem admits a unique solution for any y0 ∈ R. �

As we have shown in the last subsection, in problem (5.32), y0 cannot be any number

in order to assure the existence of optimal solutions. In the following, we will design a

sequence of problems, which ensure the existence of optimal solutions for any y0, and

meanwhile converge to problem (5.32) in some sense.

For any α > 0, define fα(x) = f(x) + αxq , and consider the following problem:

Minimize Efα(Y ),

subject to



















EY = 0,

E[ξY ] = y0,

Y ∈ Lq(F ,R),

(5.40)

where f(·) is the one in problem (5.32).

Theorem 5.6.8 For any convex function f(·), any α > 0, Problem (5.40) admits a unique

optimal solution for any y0 ∈ R.

Proof: Obviously, fα(y) = f(y) + αyq is strictly convex. Denote g(x) as the inverse

function of ∂fα(·). By the property that ∂f(x) is bounded for any x ∈ R, g(+∞) =

+∞, g(−∞) = −∞. Furthermore, thanks to the fact that ∂fα(x) = αqsgn(x)|x|q−1 +

∂f(x) and 0 ∈ ∂f(0), we know 0 ≤ g(x) ≤ (x/(αq))1/(q−1), ∀x > 0, and 0 ≥ g(x) ≥
−(−x/(αq))1/(q−1), ∀x < 0.

For any λ, it is easy to prove that there exists u(λ) ∈ R such that Eg(λ− µ(λ)ξ) = 0.

For any λ, µ ∈ R, thanks to the property of g(x) and Assumption 5.6.2, we can prove that

g(λ − µ(λ)ξ) ∈ Lq(F ,R), ξg(λ − µ(λ)ξ) ∈ L1(F ,R). Therefore λ̄ = +∞, λ = −∞.

Like in the previous subsection, denote g̃(λ) = E[ξg(λ − µ(λ)ξ)]. Now we need to

prove that limλ→+∞ g̃(λ) = −∞, limλ→−∞ g̃(λ) = +∞. Here we only prove the for-

mer, as a proof of the latter is the same. It is easy to verify that limλ→+∞ µ(λ) =

+∞, limλ→+∞ µ(λ) = +∞. As shown in the last subsection, µ(λ) is increasing in λ, and

g̃(λ) is decreasing in λ.

109



Chapter 5 General Mean-Risk Criteria

Now we consider the problem in two cases, limλ→+∞
λ

µ(λ) = +∞ and limλ→+∞
λ

µ(λ) <

+∞, respectively. For the first case, take a sequence λn ↑ +∞ such that limn→+∞
λn

µ(λn) =

+∞. For written convenience, denote µn = µ(λn). Then

g̃(λn) = E[ξg(λn − µnξ)]

= E[(ξ − λn/µn)g(λn − µnξ)]

= E[(ξ − λn/µn)g(λn − µnξ)1ξ<λn/µn
] + E[(ξ − λn/µn)g(λn − µnξ)1ξ≥λn/µn

]

≤ E[(ξ − λn/µn)g(λn − µnξ)1ξ<λn/µn
]

≤ E[(ξ − λn/µn)g(λn − µnξ)1ξ<λn/(2µn)]

≤ E[(ξ − λn/µn)g(λn/2)1ξ<λn/(2µn)]

≤ E[(ξ − λn/(2µn))g(λn/2)1ξ<λn/(2µn)]

= −g(λn/2)E[(λn/(2µn) − ξ)+]

→ −∞.

By the decreasing property, we know limλ→+∞ g̃(λ) = −∞. For the second case. take a

sequence λn ↑ +∞ such that λn

µ(λn) converges to a finite constant c. Denote µn = µ(λn).

Then

g̃(λn) = E[ξg(λn − µnξ)]

= E[(ξ − λn/µn)g(λn − µnξ)1ξ<λn/µn
] + E[(ξ − λn/µn)g(λn − µnξ)1ξ≥λn/µn

]

≤ E[(ξ − λn/µn)g(λn − µnξ)1ξ≥λn/µn
]

≤ E[(ξ − λn/µn)g(λn − µnξ)1ξ≥2λn/µn
]

≤ E[(ξ − λn/µn)g(−λn)1ξ≥2λn/µn
]

≤ g(−λn)E[(ξ − λn/µn)1ξ≥2λn/µn
]

→ −∞.

Therefore limλ→+∞ g̃(λ) = −∞.

It follows then from Theorem 5.6.5 that problem (5.40) admits a unique solution for

any y0 ∈ R. �

Theorem 5.6.8 is very useful for studying problem (5.32) when it does not admit any

optimal solution, in which case we can assure the existence of the optimal solution by
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adding a small term α|x|q into the risk function. To assure that this approach works, we

still need some convergence property of problem (5.40) when α converges to 0.

For any α > 0, according to Theorem 5.6.8, problem (5.40) admits a unique optimal

solution, denoted as Yα.

Theorem 5.6.9 Ef(Yα) is increasing on (0, +∞).

Proof: Given 0 < α1 < α2, we have

E[f(Y1) + α1|Y1|q] ≤ E[f(Y2) + α1|Y2|q],

E[f(Y2) + α2|Y2|q] ≤ E[f(Y1) + α2|Y1|q].

Therefore α2E(|Y2|q − |Y1|q) ≤ Ef(Y1) − Ef(Y2) ≤ α1E(|Y2|q − |Y1|q), which implies

E|Y2|q < E|Y1|q, and so Ef(Y1) ≤ Ef(Y2). �

Theorem 5.6.10 Denote by H(y0) the infimum of the risk function in problem (5.32).

Then limα↓0 Ef(Yα) = H(y0).

Proof: It is easy to see that Ef(Yα) ≥ H(y0). By the monotonicity of Ef(Yα), we

have limα↓0 Ef(Yα) ≥ H(y0).

For any ε > 0, there exists a feasible Y such that Ef(Y ) < H(y0) + ε. Take any

α ∈ (0, ε/E|Y |q), then E[f(Yα) + α|Yα|q] ≤ E[f(Y ) + α|Y |q] < H(y0) + 2ε. So Ef(Yα) <

H(y0) + 2ε. This implies limα↓0 Ef(Yα) = H(y0) �

Remark 5.6.1 In fact, in the proof of Theorem 5.6.9, we can see that E[f(Yα)+α|Yα|q] is

increasing; and then in the proof of Theorem 5.6.10, we can see limα↓0 E[f(Yα)−α|Yα|q] =

H(y0). Remember that E[f(Yα) − α|Yα|q] = Ef∗
α(λα − µα(λα)ξ), where f∗

α(·) is the

conjugate function of fα(·), λα is the solution for g̃α = y0, and µα(λ) is the unique

solution for Egα(λ − µξ) = 0.

Remark 5.6.2 When y0 is not in the range specified in Theorems 5.6.3, 5.6.4, and 5.6.5,

we can just take Y ∗
α as the approximation optimal solution sequence to approach the

infimum of the risk function.
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5.6.3 The general mean–risk portfolio selection problem

Now we are in the position to solve the following continuous-time portfolio selection prob-

lem. For each parameter z ∈ R:

Minimize Ef(x(T ) − Ex(T )),

subject to



















π(·) ∈ L2
F(0, T ;Rm),

(x(·), π(·)) satisfies equation (2.5) with initial wealth x0,

Ex(T ) = z,

(5.41)

where f : R → R satisfies Assumption 5.6.1 and Assumption 5.6.2. In this model, the risk

is measured by the expectation of a convex function value of the deviation x(T )−Ex(T ).

The associated static optimization problem of (5.41) is

Minimize Ef(X − z),

subject to



















EX = z,

E[ρ(T )X ] = x0,

X ∈ L2(F ,R),

(5.42)

where ρ ≡ ρ(T ) is given by (5.2), satisfying Assumption 5.5.2. This problem is a special

case of (5.32) with Y = X − z, y0 = x0 − zEρ, q = 2, ξ = ρ. Hence the results in the

previous subsection readily apply. In the following theorem, we use the same notation,

such as g(·), Λ̄, λ̄, etc., as in the previous subsection where ξ is replaced by ρ(T ).

Theorem 5.6.11 Under Assumptions 5.6.1 and atom, one has the following conclusions

regarding the solution to the mean–risk portfolio selection problem (5.41):

(i) Assume that either ∪x∈R∂f(x) = (−∞, k̄] or ∪x∈R∂f(x) = (−∞, k̄) for some k̄ ∈ R.

If λ̄ /∈ Λ̄, then (5.41) admits an optimal solution if and only if x0 − zEρ ∈ (y, 0],

where y = limλ↑λ̄ g̃(λ). If λ̄ ∈ Λ̄, then (5.41) admits an optimal solution if and only

if x0 − zEρ ∈ {g̃(λ̄)} ∪ (y, 0]. If in addition λ̄ < k̄, then g̃(λ̄) = y.

(ii) Assume that either ∪x∈R∂f(x) = [k,∞) or ∪x∈R∂f(x) = (k,∞) for some k ∈ R.

If λ /∈ Λ, then (5.41) admits an optimal solution if and only if x0 − zEρ ∈ [0, ȳ),

where ȳ = limλ↓λ g̃(λ). If λ ∈ Λ, then (5.41) admits an optimal solution if and only

if x0 − zEρ ∈ {g̃(λ)} ∪ [0, ȳ). If in addition λ > k, then g̃(λ̄) = ȳ.
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(iii) Assume that ∪x∈R∂f(x) = R. Then (5.41) admits an optimal solution if and only

if x0 − zEρ ∈ A ∪ B, where

A =







[y, 0], if λ̄ ∈ Λ

(y, 0], if λ̄ 6∈ Λ
, B =







[0, y], if λ ∈ Λ

[0, y), if λ 6∈ Λ.

(iv) Assume that there exists M1, M2 ∈ R such that ∪x∈R∂f(x) ⊂ [M1, M2]. Then (5.41)

admits an optimal solution if and only if z = x0/Eρ.

(v) When z = x0/Eρ, the optimal portfolio is the risk-free one. When z 6= x0/Eρ and

the existence of optimal solution is assured, the unique optimal portfolio for (5.41)

is given by

π∗(t) = (σ(t)′)−1y∗(t), (5.43)

where (x∗(·), y∗(·)) is the unique solution to the BSDE







dx(t) = [r(t)x(t) + θ(t)y(t)]dt + y(t)′dW (t)

x(T ) = g(λ − µ(λ)ρ) + z,
(5.44)

with λ being the unique solution to E[ρg(λ − µ(λ)ρ)] = x0 − zEρ.

(vi) When problem (5.41) admits no optimal solution, the optimal value can be approached

by the feasible solution sequence {Yα : α ↓ 0}, where Yα is the unique optimal solution

for problem (5.40) (with q = 2).

5.6.4 Examples

In this subsection, we apply the general results obtained to several special problems.

Example 5.6.2 Let f(x) = α(x+)2 + β(x−)2 with α, β > 0. This corresponds to the

weighted mean–variance model that has been studied in Section 5.3. f is strictly convex,

∪x∈R∂f(x) = R, and g(y) = 1
2αy+ − 1

2β y−. For any λ > 0, it is straightforward to see

that the equation Eg(λ− µρ) = 0 has a unique solution µ(λ) = λ/ζ where ζ > 0 uniquely

solves (5.12). Hence λ̄ = +∞, and

g̃(λ) =
E[ρ(λ − µ(λ)ρ)+]

2α
− E[ρ(λ − µ(λ)ρ)−]

2β
= λg̃(1).
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As a result, limλ→+∞ g̃(λ) = −∞ (recall that g̃(1) < g̃(0) = 0). Similarly, we can prove

that λ = −∞ and limλ→−∞ g̃(λ) = +∞. We can then apply Theorem 5.6.11-(iii) to

conclude that the weighted mean-variance model admits a unique optimal solution for any

z ∈ R. Finally, the optimal portfolio obtained in Theorem 5.3.2 can be easily recovered by

Theorem 5.6.11-(v). (It should be noted, however, Theorem 5.3.2 cannot be superseded

as Assumption 5.5.2 is not imposed there.)

Example 5.6.3 Let f(x) = (x−)2. This is the mean–semivariance model investigated in

Section 5.4. Clearly, f is convex, strictly convex at 0, and ∪x∈R∂f(x) = (−∞, 0]. The

inverse function g(y) = 1
2y, y ≤ 0. It is easily seen that Λ̄ = {0} and λ̄ = 0 ∈ Λ̄.

Now, g̃(λ) = E[ρg(λ − µρ)] = 1
2 (Eρ − Eρ2

Eρ )λ. Thus y = limλ↑0 g̃(λ) = 0. It then follows

from Theorem 5.6.11-(i) that the mean–semivariance model admits an optimal solution if

and only if z = x0/Eρ. (Again, this does not recover Theorem 5.4.1 completely due to

Assumption 5.5.2.)

Example 5.6.4 Let f(x) = |x|. The corresponding portfolio selection problem is called

the mean–absolute-deviation model. Single-period mean–absolute-deviation model is stud-

ied in [28]. Now, f is strictly convex at 0, and ∪x∈R∂f(x) = [−1, 1]. Thus in view of

Theorem 5.6.11-(iv) the continuous-time mean–absolute-deviation model admits an opti-

mal solution if and only if z = x0/Eρ, in which case the optimal portfolio is simply the

risk-free one.

Example 5.6.5 Let f(x) = e−x. This function captures the situation where lager de-

viation of the terminal wealth from its mean is heavily penalized. Again, f is strictly

convex, ∪x∈R∂f(x) = (−∞, 0) (hence k̄ = 0), and g(y) = − ln(−y), y < 0. Now, the

equation Eg(0 − µρ) = 0 has a solution µ ≡ µ(0) = e−E ln ρ > 0, Moreover, g(0 −
µ(0)ρ) =

∫ T

0
[r(s) + |θ(s)|2

2 ]ds +
∫ T

0
θ(s)dW (s) + E ln ρ ∈ L2(F ,R). It follows then

from Theorem 5.6.1 that Λ̄ = [−1, 0] and, consequently, λ̄ = 0 = k̄. Furthermore,

g̃(0) = E[g(0 − µ(0)ρ)ρ] = (Eρ)(E ln ρ) − E(ρ ln ρ). On the other other hand, when

−1 < λ ↑ 0, g(λ − µ(λ)ρ) = − ln(−λ + µ(λ)ρ) ≥ − ln(1 + µ(0)ρ) ≥ −µ(0)ρ, and

g(λ − µ(λ)ρ) = − ln(−λ + µ(λ)ρ) ≤ − ln(µ(λ)ρ) ≤ − ln(µ(−1/2)) − ln ρ. Thus the dom-

inated convergence theorem ensures that y ≡ limλ↑0 g̃(λ) = g̃(0). By Theorem 5.6.11-

(i), the mean–risk portfolio selection problem admits an optimal solution if and only if
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x0 − zEρ ∈ [(Eρ)(E ln ρ) − E(ρ ln ρ), 0] or, equivalently, z ∈ [ x0

Eρ , x0−(Eρ)(E ln ρ)+E(ρ ln ρ)
Eρ ].

Finally, by Theorem 5.6.11-(v), when the problem does admit an optimal solution, the op-

timal portfolio is the one replicating the claim z − ln(−λ + µρ) where (λ, µ) is the unique

solution pair to the following algebraic equation (which must admit a solution):







E ln(−λ + µρ) = 0,

E[ρ ln(−λ + µρ)] = zEρ − x0.

Example 5.6.6 Let f(x) = ((x−1)−)2. The corresponding portfolio selection model is a

variant of the mean–semivariance model, except that the terminal wealth being less than

its mean plus 1 is now considered as risk. In this case, f is not strictly convex everywhere;

but it is indeed strictly convex at 0. It is easy to see that ∪x∈R∂f(x) = (−∞, 0] (hence

k̄ = 0), and g(y) = y/2 + 1, y ≤ 0. Meanwhile the equation Eg(0 − µρ) = 0 has a

solution µ ≡ µ(0) = 2/Eρ > 0. By virtue of Theorem 5.6.1, Λ̄ = [−2, 0] and, consequently,

λ̄ = 0 = k̄. Note that g(0−µ(0)ρ) = g(0−µρ) = Eρ−Eρ2/Eρ, and y ≡ limλ↑0 g̃(λ) = g̃(0).

By Theorem 5.6.11-(i) the original portfolio selection problem admits an optimal solution

if and only if x0 − zEρ ∈ [Eρ − Eρ2/Eρ, 0] or, equivalently, z ∈ [ x0

Eρ , x0

Eρ + Eρ2

(Eρ)2 − 1]. At

last, when the problem does admit an optimal solution, the optimal portfolio is the one

replicating the claim z +1+ λ−µρ
2 where (λ, µ) is the unique solution pair to the following

linear algebraic equation:







λ − µEρ = −2,

λEρ − µEρ2 = 2x0 − 2(1 + z)Eρ.

Compared with Example 5.6.3 it is interesting to see that a shift of the mean makes the

mean–semivariance model, which does not admit an optimal solution in any non-trivial

case, possess non-trivial optimal solution.

5.7 Fixed-target problem

In the mean-risk framework studied in Section 5.6, the risk is measured by the centered

return based on its mean. Sometime, investors may look at some fixed target rather

than the mean of the terminal return. In this section, we will investigate the fixed-target

115



Chapter 5 General Mean-Risk Criteria

investment problem. For an instance, an investor want to track a certain index at time T

with an initial endowment x0.

We study the problem in the same market as in section 5.6, and adopt the ρ(·) defined

in Section 5.2 and ρ
4
= ρ(T ). Z ∈ L2(FT ,R) is a given target at time T for the investment,

x0 is a given initial wealth. We want to find a portfolio such that the terminal wealth is

the closest to Z. Here we use Ef(X − Y ) to measure the ”distance” from X to Y , where

f is a convex real function, and f(y) > f(0) = 0 for any y ∈ R. Then the fixed-target

problem can be formulated as follows:

Minimize Ef(x(T ) − Z),

subject to







π(·) ∈ L2
F(0, T ;Rm),

(x(·), π(·)) satisfies equation (2.5) with initial wealth x0.

(5.45)

Like before, thanks to the completeness of the market, we can fist solve out the optimal

terminal wealth x(T ) of the problem (5.45) by its static problem:

Minimize Ef(Y − Z),

subject to







EY ρ = x0.

Y ∈ L2(FT ,R)

(5.46)

We suppose

Assumption 5.7.1 Assumption 5.5.2 hold; f(·) is a strictly convex function on R, and

f(x) > f(0) = 0, ∀x ∈ R.

By Proposition 3.4.1, we know (5.46) admits an optimal solution Y ∗ if and only if Y ∗

is feasible for problem (5.46) and there exists a λ ∈ R such that Y ∗ solves the following

problem

min
Y ∈L2(FT ,R)

E(f(Y − Z) − λρY ) (5.47)

By the same proof of Lemma 5.6.1, we conclude that Y ∗ ∈ L2(FT ,R) is an optimal

solution to problem (5.47) if and only

λρ ∈ ∂f(Y ∗ − Z), P − a.s. (5.48)
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For any y ∈ ∪x∈R∂f(x), define g(y) := argminx∈∂f(y)|x|. then g is continuous and

strictly increasing on R\Γ, where Γ = {x ∈ R, ∂f(x) is not a singleton } is a countable

subset of R.

Define F1 = {λ ∈ R : λρ ∈ ∪x∈R∂f(x), then the following claim is straightforward.

Theorem 5.7.1

(i) If ∪x∈R∂f(x) is lower bounded but not upper bounded, then F1 = [0, +∞);

(ii) If ∪x∈R∂f(x) is upper bounded but not lower bounded, then F1 = (−∞, 0];

(iii) If ∪x∈R∂f(x) is bounded on both sides, then F1 = 0;

(iv) If ∪x∈R∂f(x) is unbounded on both sides, then F1 = R.

Define F2 = {λ ∈ F1 : g(λρ) ∈ L2(FT ,R)}, then F2 is a convex subset of R.

Furthermore, g̃(λ) = E[ρg(λρ)] is strictly increasing and continuous on F2. Denote

F3 = {g̃(λ) + E[Zρ] : λ ∈ F2}, then F3 is also a convex subset of F2, therefore an

interval on R.

With these denotation, we have the following claim:

Theorem 5.7.2 For any x0 ∈ F3, problem (5.46) admits a unique optimal solution Y ∗ =

g(λρ)+Z, where λ is the unique solution for g̃(λ) = x0−E[Zρ]; For any x0 /∈ F3, problem

(5.46) admits no optimal solution.

Proof: The conclusion can be proved by the condition (5.47) and the fact that g̃(·) is

continuous and strictly increasing function from F2 to F3 − E[Zρ]. �

With Theorem 5.7.2 and the completeness of the financial market, the following theo-

rem is straightforward.

Theorem 5.7.3 For any x0 ∈ F3, problem (5.45) admits a unique optimal solution pair

(x∗(·), π∗(·)), which is the solution pair for







dx(t) = r(t)x(t)dt + π(t)′[B(t)dt + σ(t)dW (t)]

x(T ) = Y ∗
(5.49)

where Y ∗ is the one in Theorem 5.7.2. For any x0 /∈ F3, problem (5.45) admits no optimal

solution.
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Remark 5.7.1

(i) F3 is nonempty, because E[Zρ] ∈ F3;

(ii) F2 can be either closed or open at its extreme points. For example, Suppose

g2(x) =
∑∞

j=1 ajx
j , ∀x ≥ 0, for some positive sequence {aj}, and g2(x) < ∞.

Then Eg2(λρ) = E
∑∞

j=1 ajλ
jρj . By Tonelli Theorem,

Eg2(λρ) = E

∞
∑

j=1

ajλ
jρj =

∞
∑

j=1

ajEρjλj =

∞
∑

j=1

bjλ
j

where bj = aj ∗ Eρj . If the power series
∑∞

j=1 bjx
j converge at some x0 > 0 but

diverge at any x > x0, then the right extreme point of F2 is x0 and x0 ∈ F2; If the

power series
∑∞

j=1 bjx
j converge at any x < x0 but diverge at any x ≥ x0, then the

right extreme point of F2 is x0 and x0 /∈ F2.

As a concrete example, suppose ρ follows a exponential distribution with parame-

ter λ0, then Eρj = λj
0j!. Take aj = 1

j2Eρj = 1

(j2λj
0j!

, then bj = j−2. Therefore

Eg2(1) =
∑∞

j=1 J−2 < ∞, but Eg2(x) = ∞ for any x > 1. In this example,

g2(x) =
∑∞

j=1 ajx
j , it is finite for any x ∈ R+, and it’s strictly increasing.

If we take aj = 1
j∗Eρj , then we can easily find that the right extreme point of F2 is

1 but 1 /∈ F2.

We can construct the example for the left extreme point of F2 in the same way.

(iii) When F2 is open/closed at its right/left extreme point, F3 is also open/closed at its

right/left extreme point. This is because g̃(·) is continuous on F2.

5.8 Mean-semivariance in single-period

In Section 5.4, we showed that in a continuous-time market, the mean-semivariance port-

folio selection problem, save for a trivial case, admits no optimal solutions. This negative

result was generalized to the mean-downside-risk portfolio selection problem in Section

5.5. In this section, we will show that, in sharp contrast, in a single-period market the

mean-semivariance portfolio selection problem does admit optimal solutions in general.
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Furthermore, the conclusion can be generalized to the mean-downside-risk framework with

some additional conditions.

In this section, the notation is independent of that in the other sections.

Suppose there are n (n ≥ 2) securities traded in the market. The total return of the

ith security during the investment period is ξi (i.e., the payoff of $1 for security i is $ξi).

Suppose Eξi = ri and Var(ξi) < +∞, and ξ1, · · · , ξn are linearly independent, namely,

α1 = α2 = · · · = αn = 0 whenever
∑n

i=1 αiξi = 0 for real number α1, · · · , αn. The last

assumption means that there are no redundant securities in the market.

The single-period mean-semivariance portfolio selection problem is as follows:

Minimize E[(
∑n

i=1 xiξi − E
∑n

i=1 xiξi)
−]2,

subject to







∑n
i=1 xi = a,

∑n
i=1 xiri = z,

(5.50)

where xi ∈ R represents the capital amount invested in the ith security, a is the amount

of the initial investment, and z ∈ R is a given expectation level of the investment payoff.

Denote Ri = ξi−ri. Then ERi = 0 and we can rewrite the mean-semivariance problem

(5.50) as

Minimize E[(
∑n

i=1 xiRi)
−]2,

subject to







∑n
i=1 xi = a,

∑n
i=1 xiri = z.

(5.51)

Replacing x1 by the first constraint we get the following equivalent problem

Minimize E[(aR1 +
∑n

i=2 xi(Ri − R1))
−]2,

subject to
∑n

i=2 xi(ri − r1) = z − ar1.
(5.52)

Before studying this problem, we introduce a useful lemma.

Lemma 5.8.1 Let m be an integer, A, Bi be random variables with zero mean and finite

variance, and B = (B1, · · · , Bm)′. If A, B are linearly independent, then the following

optimization problem

min
x∈IRm

E[(A + B′x)−]2 (5.53)

admits optimal solutions.
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Proof: Define S = {(k, y) ∈ Rm+1 : 0 ≤ k ≤ 1, |y| = 1}, l := min(k,y)∈S E[(kA +

B′y)−]2. When (k, y) ∈ S, E[kA + B′y)−]2 ≤ E(kA + B′y)2 ≤ 2(EA2 + E|B|2). Hence

by the dominated convergence theorem, E[(kA + B′y)−]2 is continuous in (k, y) on the

set S. Obviously, S is closed and bounded; so there exists (k∗, y∗) ∈ S such that l =

E[(k∗A + B′y∗)−]2.

We now prove l > 0 by contradiction. Obviously l ≥ 0. If l = 0, then k∗A + B′y∗ = 0.

By the linear independence of A, B, we have y∗ = 0, which contradicts to the fact that

|y∗| = 1.

Next, for any x ∈ Rm with |x| ≥ 1, we have

E[(A + B′x)−]2 = |x|2E[(
A

|x| + B′ x

|x| )
−]2 ≥ |x|2l.

This shows that the function to be minimized in (5.53) is coercive (that is the function value

tends to positive infinity when |x| tends to positive infinity). As a result, the minimum, if

any, must be within a certain closed bounded region. Hence (5.53) is effectively a problem

of minimizing a continuous function over a closed bounded region, which therefore must

admit optimal solutions. �

Now let us return to problem (5.52), which is equivalent to the mean-semivariance

portfolio selection problem (5.50). We study the problem in two cases. The first case is

when all the securities have the same expected total return.

Theorem 5.8.1 Suppose ri = r1 for all i. If z 6= ar1, then problem (5.50) admits no

feasible solution; if z = ar1, then problem (5.50) admits optimal solutions.

Proof: The first claim is obvious. So we assume z = ar1. In this case, the constraint of

problem (5.52) is satisfied automatically. Hence (5.52) becomes

min
xi∈IR

E[(aR1 +
n

∑

i=2

xi(Ri − R1))
−]2.

If a = 0, then z = 0, in which case x1 = · · · = xn = 0 is obviously an optimal solution

for problem (5.50). Suppose a 6= 0, then by the linear independence of R1, · · · , Rn, we

know aR1, R2 −R1, · · · , Rn −R1 are also linearly independent. By Lemma 5.8.1, problem

(5.52) admits optimal solutions; so does the mean-semivariance portfolio selection problem

(5.50). �
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The second case is when there exists i so that ri 6= r1. Without loss of generality, we

suppose r2 6= r1.

Theorem 5.8.2 Suppose r2 6= r1. Then for any z ∈ R, problem (5.50) admits optimal

solutions.

Proof: In problem (5.52), replacing x2 by x2 = z−ar1

r2−r1
−∑n

i=3 xi
ri−r1

r2−r1
, we get the following

equivalent problem:

min
(x3,···,xn)∈IRn−2

E[(aR1+
z − ar1

r2 − r1
(R2−R1)+

n
∑

i=3

xi(Ri−R1−(ri−r1)
R2 − R1

r2 − r1
))−]2. (5.54)

Define A = aR1 + z−ar1

r2−r1
(R2 −R1), Bi = Ri −R1 − (ri − r1)

R2−R1

r2−r1
, B = (B3, · · · , Bn)′,

then EA = 0 and EB = 0. Suppose A 6= 0, then by the linear independence of R1, · · · , Rn,

A, B are linearly independent. By Lemma 5.8.1, problem (5.52) admits optimal solutions,

so does the mean-semivariance portfolio selection problem (5.50).

If A = 0, then x3 = · · · = xn = 0 is obviously an optimal solution for problem (5.54),

and therefore problem (5.50) admits at least an optimal solution. �

In conclusion, we claim the existence of optimal portfolios for the mean-semivariance

portfolio selection problem in the single-period market as follows.

Theorem 5.8.3 Problem (5.50) admits optimal solutions if and only if it admits feasible

solutions.

Remark 5.8.1 The conclusion in Theorem 5.8.3 can be generalized to the following mean-

downside-risk problem

Minimize Ef(
∑n

i=1 xiξi − E
∑n

i=1 xiξi),

subject to







∑n
i=1 xi = 1,

∑n
i=1 xiri = z,

(5.55)

where f(·) is a real function satisfying:

(i) f(x) = 0 when x ≥ 0;

(ii) f(·) is continuous, and decreasing on R−;

(iii) there exists q > 0 and L > 0 such that f(kx) ≥ Lkqf(x)∀k > 0;
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(iv) Ef(
∑n

i=1 xiRi) is continuous in (x1, · · · , xn).

The proof is the same as that of the mean-semivariance problem.

Remark 5.8.2 Compare the conclusions in this section with those in Section 5.4 and 5.5,

we can find that the continuous-time market is essentially different from the discrete-time

market.

5.9 Conclusion

In this chapter we have first solved a weighted mean–variance portfolio selection model in

a complete continuous-time financial market. Inspired by its result, we have proved that,

other than a trivial case, the mean–semivariance problem in the same market is not well-

posed in the sense that it does not have any optimal solution. This negative result has then

been extended to a general mean–downside-risk mode. Furthermore, for the model with

a general convex risk measure, delicate analysis has been carried out to obtain a complete

solution. By the similar way, we also analysis the fixed-target problem. At last, we have

showed that in a single-period market, the mean-semivariance problem admits optimal

solutions as long as it is feasible, and so does the mean-downside-risk problem under some

condition. The results in this chapter suggest that there are strikingly differences between

the single-period and continuous-time markets.
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Conclusion Remark

A half century ago, H. Markowitz pioneered the modern finance theory by his mean-

variance portfolio selection model. Although his work is perhaps technically simple in

today’s view, his idea still inspires the work in finance.

Zhou and Li [70] explored Markowitz’s work in a complete continuous-time financial

market. In this thesis, I investigated the continuous-time portfolio selection problem in

more details, including in complete markets and incomplete markets, with constraints

and without constraints. I also went beyond Markowitz’s mean-variance framework by

studying the mean-risk portfolio selection problem, and showed some properties of the

problem which are totally different from those in the single-period or multi-period markets.

Even within the mean-variance framework, the continuous-time model is also quite dif-

ferent from the discrete-time one. In Zhou and Li [70] as well as in Chapter 3 and Chapter

4 in this thesis, I find that when the parameters are deterministic, most elegant properties

of the mean-variance model in single period, such as the efficient frontier, the two-fund

theorem, etc., are carried over to the continuous-time model. Contrary to common belief,

when the parameters are deterministic, the mean-variance portfolio optimization problems

in continuous-time market are not really complex. In fact, when there are some additional

constraints, the sharper results can be obtained in the continuous-time market than those

in the single-period market.

When the parameters are stochastic—there is no counterpart in the single-period—the
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portfolio optimization problem will becomes very complex, especially in the case when

the market is incomplete and some constraints are present. In this thesis, I overcome the

difficulty by dual method. By constructing dual problems, the optimal solutions can be

uniquely determined by the optimal solutions of the corresponding dual problems.

Variance has been commonly taken as a measure of risk. Meanwhile there are a lot

of researches on how to measure the risk of an investment, such as semivariance advised

by Markowitz. In the mean-risk framework, only mean-variance was widely accepted in

the discrete-time market. One reason is there are only a few analytical results obtained

for mean-risk models other than the mean-variance one. In the continuous-time case, the

situation is different. In Chapter 5, we studied the mean-risk problem. A surprising con-

clusion is that other than a trivial case, a mean-downside-risk portfolio selection problem,

such as the mean-semivariance one, admits no optimal solutions. For a general mean-risk

portfolio optimization problem, we also need conditions to ensure the existence of optimal

solutions. These conditions found in Chapter 5 are sufficient and necessary. Furthermore,

I obtain an optimal solution if the existence is ensured, and find an asymptotic optimal

solution when optimal solutions do not exist.
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Measurable Selection Theorems

Before we state the next lemma, we note that a set A ⊂ [0, T ] × Ω is said to be Ft-

progressive if the corresponding indicator function 1A is Ft-progressively measurable. The

Ft-progressive sets form a σ-field (see, e.g., [23, p.99]).

Lemma A.1 Let X ≡ {X(t) : 0 ≤ t ≤ T } be a given n-dimensional, Ft-progressively

measurable stochastic process. Assume that S(t, ω) := {y ∈ Rm : f(X(t, ω), y) ≤ 0} 6= ∅

for any (t, ω) ∈ [0, T ]×Ω, where f : Rn×Rm → Rk is jointly measurable in both variables

and continuous in the second variable. Then the process α ≡ {α(t) : 0 ≤ t ≤ T } defined

as α(t, ω) := argminy∈S(t,ω)|y|2 is also Ft-progressively measurable.

Proof: First of all, for each (t, ω) ∈ [0, T ] × Ω, S(t, w) is a closed set, and the square

function is strictly convex and coercive. Hence α(t, ω) is well defined. Set g(t, ω) :=

|α(t, ω)|2. Then for any x ∈ R,

{(t, ω) : g(t, ω) < x} = ∪v∈Qn,|v|2<x{(t, ω) : f(X(t, ω), v) ≤ 0}.

This shows that g is Ft-progressively measurable.

Denote Sn(t, ω) := S(t, ω) ∩ {y ∈ Rm : |y|2 ≤ g(t, ω) + 1/n}, for (t, ω) ∈ [0, T ] × Ω,

and n = 1, 2, · · · . Fix n. For any open set O ⊂ Rm, we have

{(t, ω) : Sn(t, ω) ∩ O 6= ∅} = ∪v∈O∩Qm{(t, ω) : f(X(t, ω), v) ≤ 0, |v|2 ≤ g(t, ω) + 1/n},

which is therefore an Ft-progressive set. This shows that Sn(t, ω) satisfies the condition

required in the measurable selection theorem [32, p. 281, Theorem 8.3.ii]. Hence, there
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exists an Ft-progressively measurable process αn with αn(t, ω) ∈ Sn(t, ω) almost surely

on [0, T ] × Ω. It is clear that αn(t, ω) → α(t, ω), almost surely, as n → ∞. Thus α is

Ft-progressively measurable. �

Lemma A.2 Y ≡ {Y (t) : 0 ≤ t ≤ T } be a given n-dimensional Ft-progressively mea-

surable stochastic process. Assume that F (t, w) = argmind∈Ch(Y (t, ω), d) 6= ∅ for any

(t, ω) ∈ [0, T ] × Ω, where C is a closed subset of Rm, h : Rn × C → Rk is jointly mea-

surable in both variables and continuous in the second variable on C. Then the process

d ≡ {d(·) : 0 ≤ t ≤ T } defined as d(t, ω)
4
= argmind∈F (t,ω)|d|2 is also Ft-progressively

measurable.

Proof: Define g(t) = mind∈C h(Y (t), d), then

{(t, ω) : g(t, ω) < x} = ∪v∈Qn∩C{(t, ω) : h(Y (t, ω), v) < x}.

This shows that g is Ft-progressively measurable.

Define X(t) = (Y (t), g(t))′, f(X(t), d) = |h(Y (t), d) − g(t)| + miny∈C |d − y|2, then

X and f satisfies the conditions in Lemma A.1, and d(t, ω) = argminf(X(t),d)≤0|d|2, by

Lemma A.1, d is Ft-progressively measurable. �
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Some Lemmas on Vector

Optimization

We start by recalling properties of a pseudo matrix inverse [51]. Let a matrix M ∈ Rm×n

be given. Then there exists a unique matrix M † ∈ Rn×m, called the Moore–Penrose

pseudo inverse of M such that







MM †M = M, M †MM † = M †,

(MM †)′ = MM †, (M †M)′ = M †M.
(B.1)

Lemma B.1 Let matrices L, M , and N be given with appropriate dimension. Then the

matrix equation

LXM = N (B.2)

has a solution X if and only if

LL†NM †M = N. (B.3)

Proof: See [1, Lemma 2.7]. �

Lemma B.2 Let A ∈ Rm×n and b ∈ Rm. Then the following optimization problem

min
y∈Rn

|Ay − b|2 (B.4)

admits optimal solutions.
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Proof: Since (B.4) is an unconstrained convex optimization problem, the zero-gradient

condition yields that y is optimal if and only if A′Ay = A′b. By Lemma B.1, the latter

has a solution if and only if

(A′A)(A′A)†A′b = A′b. (B.5)

Denote M := A′[I − A(A′A)†A′]. Then MM ′ = A′[I − A(A′A)†A′][I − A(A′A)†A′]A =

A′[I − A(A′A)†A′]A = 0 where we have repeatedly used (B.1). This implies that M = 0

and, hence, (B.5) is satisfied. �

Lemma B.3 Given a ∈ Rn and A ∈ Rm×n. If a /∈ {A′u : u ∈ Rm
+}, then there exists

v ∈ Rn \ {0} such that a′v = −1 and Av ≥ 0.

Proof: By the assumption a 6= 0. Denote M := {w ∈ Rn : a′w < 0}, N := {w ∈ Rn :

Aw ≥ 0}, which are both nonempty convex cones. If M ∩ N = ∅, then by the convex

separation theorem, there exists y ∈ Rn\{0} with supw∈A y′w ≤ infw∈B y′w. This implies

y′w ≤ 0 ∀w with a′w < 0, (B.6)

and

y′w ≥ 0 ∀w with Aw ≥ 0. (B.7)

It follows from (B.6) that there exists k > 0 such that a = ky. On the other hand, (B.7)

together with Farkas’ lemma (see, e.g., [3, p.58, Theorem 2.9.1]) imply that there exists

π ∈ Rm
+ such that y = A′π. So a = ky = A′(kπ) ∈ {A′u : u ∈ Rm

+}, leading to a

contradiction. Hence M ∩ N 6= ∅. The desired conclusion then follows immediately. �
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Some Properties of Convex

Functions on R

In this appendix we present some properties of a convex function f : R → R. Let such a

convex function f be fixed, and ∂f(x) be its subdifferential at x ∈ R.

Proposition C.1 For any interval A ⊂ R, ∪x∈A∂f(x) is a convex set (and hence is an

interval).

Proof: Suppose y1 ∈ ∂f(x1), y2 ∈ ∂f(x2) where x1, x2 ∈ A with x1 < x2 and y1 < y2. It

suffices to show that for any y0 ∈ (y1, y2), there is x0 ∈ [x1, x2] such that y0 ∈ ∂f(x0).

It follows from the convexity that x1 ∈ argminx∈R{f(x)−y1x} and x2 ∈ argminx∈R{f(x)−
y2x}. On the other hand, the continuity of f ensures that there exists x0 ∈ [x1, x2] so

that f(x0) − y0x0 = minx∈[x1,x2]{f(x) − y0x}. However, for any x ≤ x1,

f(x) − y0x = f(x) − y1x + (y1 − y0)x

≥ f(x1) − y1x1 + (y1 − y0)x

= f(x1) − y0x1 + (y1 − y0)(x − x1)

≥ f(x1) − y0x1

≥ f(x0) − y0x0.
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Similarly we can prove that f(x) − y0x ≥ f(x0) − y0x0 for any x ≥ x2. Therefore

x0 ∈ argminx∈R{f(x) − y0x}, which implies that y0 ∈ ∂f(x0). �

Proposition C.2 If f is strictly convex at x0, then

(∪x<x0∂f(x)) ∩ (∪x>x0∂f(x)) = ∅. (C.1)

Proof: If the conclusion is not true, then there are x1 < x0 < x2 so that f ′
−(x2) ≤ f ′

+(x1).

Hence f ′
−(x2) = f ′

+(x1) due to the non-decreasing property of the subdifferential of f .

However, the convexity of f yields

f ′
+(x1) ≤ f ′

−(x0) ≤ f ′
+(x0) ≤ f ′

−(x2).

Thus, all the above inequalities become equalities which, in turn, implies that f is not

strictly convex at x0. �

Define a set-valued function G: ∪x∈R∂f(x) → 2R

G(y) := {x ∈ R : y ∈ ∂f(x)}, ∀y ∈ ∪x∈R∂f(x).

If f is strictly convex, then G(y) is a singleton for each y. In general, we have

Proposition C.3 For any y ∈ ∪x∈R∂f(x), G(y) is a closed interval in R.

Proof: First we prove that G(y) is an interval. For any x1 ∈ G(y), x2 ∈ G(y) with

x1 ≤ x2, and any x ∈ (x1, x2), we have f ′
−(x) ≤ f ′

−(x2) ≤ y ≤ f ′
+(x1) ≤ f ′

+(x). This

implies y ∈ ∂f(x), or x ∈ G(y).

To show the closedness of G(y), take xn ∈ G(y) with xn → x ∈ R. Since y ∈ ∂f(xn),

we have f(x′)−f(xn) ≥ y(x′−xn) ∀x′ ∈ R. This yields f(x′)−f(x) ≥ y(x′−x) ∀x′ ∈ R,

implying that y ∈ ∂f(x) or x ∈ G(y). �

Now, define the function g: ∪x∈R∂f(x) → R as

g(y) := argminx∈G(y)|x|, ∀y ∈ ∪x∈R∂f(x).

Thanks to Proposition C.3, g is well defined.
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Proposition C.4 The set {y ∈ ∪x∈R∂f(x) : G(y) is not a singleton} is countable.

Proof: Take any y1 < y2 such that G(y1) and G(y2) are not singletons. It follows

from Proposition C.3 that both int(G(y1)) and int(G(y2)) are nonempty. Moreover,

int(G(y1)) ∩ int(G(y2)) = ∅. Indeed, if it is not true, then there exist a < b such that

[a, b] ⊂ G(y1) ∩ G(y2), leading to f ′
+(a) ≥ y2 > y1 ≥ f ′

−(b) which is impossible. This

proves the desired result. �

Denote Γ := {y ∈ ∪x∈R∂f(x) : G(y) is a singleton}.

Proposition C.5 g is increasing on ∪x∈R∂f(x), and continuous at every y ∈ Γ.

Proof: For any y1, y2 ∈ ∪x∈R∂f(x) with y1 < y2, if x1 := g(y1) > g(y2) =: x2, then

y1 ≥ f ′
−(x1) ≥ f ′

+(x2) ≥ y2, which is a contradiction. So g(y1) ≤ g(y2).

To prove the continuity at points in Γ, fix y0 ∈ Γ and let x0 := g(y0). Since g is an

increasing function, x̄ := limy↓y0 g(y) ≥ g(y0) = x0. If x̄ > x0, then for any ε > 0 and

y > y0, one has g(y) > x̄ − ε. Hence y ≥ f ′
−(g(y)) ≥ f ′

+(x̄ − ε), which implies

y0 ≥ f ′
+(x1 − ε) ∀ε > 0. (C.2)

Now, for any x ∈ (x0, x1) and y ∈ ∂f(x), we have

y0 ≤ f ′
+(x0) ≤ y ≤ f ′

+(x) ≤ y0

where the last inequality is due to (C.2). The above argument leads to ∪x∈(x0,x1)∂f(x) =

{y0}; so G(y0) ⊇ (x0, x1) is not a singleton, which contradicts that fact that y0 ∈ Γ. This

proves the right continuity of g. Similarly, one can show the left continuity of g. �

Corollary C.1 If f is strictly convex, then g is increasing and continuous on ∪x∈R∂f(x).

Proof: In view of Proposition C.5, it suffices to prove Γ = ∪x∈R∂f(x) or, equivalently,

G(y) is a singleton for any y ∈ ∪x∈R∂f(x).

Suppose [x1, x2] ⊂ G(y), then y ≤ f ′
+(x1) ≤ f ′

−(x2) ≤ y. Hence f ′
+(x1) = f ′

−(x2) = y

which implies that ∂f(x) = {y} for all x ∈ (x1, x2). Therefore f(·) is not strictly convex

on (x1, x2). �
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Define g(y) := f(y) − (λ − µξ)y, y ∈ R, and h := infy∈R g(y). If Y ∗ is not almost

surely a minimum point of g(·), then P (h < g(Y ∗)) > 0. Hence there exists ε > 0 such

that P (h < g(Y ∗) − ε) > 0. Since (h < g(Y ∗) − ε) = ∪r∈Q(h < r, g(Y ∗) > r + ε), there

exists r ∈ Q so that P (h < r, g(Y ∗) > r + ε) > 0.

Set A := (h < r, g(Y ∗) > r + ε) and

Bn := (there exists y ∈ (−n, n) such that g(y) < r + ε, |y − Y ∗| < n), n ∈ N.

Since Bn = ∪y∈Q∩(−n,n){g(y) < r + ε, |y − Y ∗| < n} due to the continuity of g, each Bn

is an F -measurable set. Now,

∪n∈N(A ∩ Bn) = {there exists y ∈ R such that g(y) < r + ε} ∩ A ⊇ A;

hence P (A ∩ Bn) > 0 for some fixed n ∈ N, thanks to P (A) > 0. On A ∩ Bn, define

Y := sup{y ∈ (−n, n) : g(y) < r + ε}. Construct

Y ′ :=







Y, ω ∈ A ∩ Bn,

Y ∗, ω 6∈ A ∩ Bn.

Assuming that Y ′ ∈ Lq(F ,R) (which will be proved below), we have g(Y ) < g(Y ∗) on

A ∩ Bn whose probability is greater than zero. Hence Eg(Y ′) < Eg(Y ∗), leading to a

contradiction.

It remains to prove that Y ′ is F -measurable and Y ′ ∈ Lq(F ,R). For the measur-

ability, it suffices to show that Y is a measurable random variable on the measurable

space (Ω0,F0), where Ω0 := A ∩ Bn and F0 = {Γ ∩ Ω0 : Γ ∈ F}, or equivalently,

{Y ≤ x} ∈ Ω0 ∀x ∈ R. Indeed, {Y ≤ x} = ∅ for x ≤ −n, {Y ≤ x} = Ω0 for x ≥ n, and

{Y ≤ x} = Ω0 \ ∪y∈Q∩(x,n){g(y) < r + ε} for −n < x < n. This proves the measurability

of Y on (Ω0,F0). Finally, |Y | ≤ n on Ω0 which yields Y ′ ∈ Lq(F ,R). �
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