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Outline

• We will study the continuous-time optimal portfolio selection problem in a
mean-risk framework

• Weighted-mean-variance problem. ,
Explicit solution

• Mean-semivariance problem. /
No optimal solution

• Mean-downside-risk problem. /
No optimal solution

• When a general mean-risk problem admits optimal solutions? ,
Equivalent condition

• How about the single period mean-semivariance? ,
Optimal solution existing
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Markowitz’s (Original) Model

• Single period t = 0 t = T

• m(≥ 2) securities, each with return rate Rj Sj SjRj

• ERj = rj , Cov(Ri, Rj) = σij

• An agent with fund x0, and a targeted expected payoff z at the end of the
investment period

• To find a portfolio π = (π1, · · · , πm) so as to

Mimimize Var(
∑

j πjRj) =
∑m

i,j=1 πiσijπj (risk)

subject to











∑

i πi = x0 (budget constraints)
E(

∑

j πjRj) =
∑

i riπi = z (targeted payoff)
[πi ≥ 0 (no shorting)]
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Markowitz’s (Original) Model

• Single period t = 0 t = T

• m(≥ 2) securities, each with return rate Rj Sj SjRj

• ERj = rj , Cov(Ri, Rj) = σij

• An agent with fund x0, and a targeted expected payoff z at the end of the
investment period

• To find a portfolio π = (π1, · · · , πm) so as to

Mimimize Var(
∑

j πjRj) =
∑m

i,j=1 πiσijπj (risk)

subject to











∑

i πi = x0 (budget constraints)
E(

∑

j πjRj) =
∑

i riπi = z (targeted payoff)
[πi ≥ 0 (no shorting)]

• Given expectation return level, minimizing the risk

Continuous-Time Mean–Risk Portfolio Selection – p. 3/24



Risk Measures

• What is risk? Chance of bad consequences (Oxford Dictionary)

Continuous-Time Mean–Risk Portfolio Selection – p. 4/24



Risk Measures

• What is risk? Chance of bad consequences (Oxford Dictionary)
• A subjective notion as opposed to return

Continuous-Time Mean–Risk Portfolio Selection – p. 4/24



Risk Measures

• What is risk? Chance of bad consequences (Oxford Dictionary)
• A subjective notion as opposed to return

• Variance / covariance used to measure risk by Markowitz (1952)

Continuous-Time Mean–Risk Portfolio Selection – p. 4/24



Risk Measures

• What is risk? Chance of bad consequences (Oxford Dictionary)
• A subjective notion as opposed to return

• Variance / covariance used to measure risk by Markowitz (1952)

• Criticisms on using variance include
◦ penalty on upside return
◦ weight on upside and downside equal whereas asset return

distribution generally asymmetric

Continuous-Time Mean–Risk Portfolio Selection – p. 4/24



Risk Measures

• What is risk? Chance of bad consequences (Oxford Dictionary)
• A subjective notion as opposed to return

• Variance / covariance used to measure risk by Markowitz (1952)

• Criticisms on using variance include
◦ penalty on upside return
◦ weight on upside and downside equal whereas asset return

distribution generally asymmetric
• Semivariance proposed where only the return below its mean or a target

level counted as risk (Markowitz 1959: “semivariance seems more plausible
than variance as a measure of risk”)

Continuous-Time Mean–Risk Portfolio Selection – p. 4/24



Risk Measures

• What is risk? Chance of bad consequences (Oxford Dictionary)
• A subjective notion as opposed to return

• Variance / covariance used to measure risk by Markowitz (1952)

• Criticisms on using variance include
◦ penalty on upside return
◦ weight on upside and downside equal whereas asset return

distribution generally asymmetric
• Semivariance proposed where only the return below its mean or a target

level counted as risk (Markowitz 1959: “semivariance seems more plausible
than variance as a measure of risk”)

• Generalization of semivariance: Downside risk (Fishburn 1977, Sortino
and van der Meer 1991)
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A Continuous-Time Market

• A market in which m + 1 securities (assets) traded continuously

• Market randomness described by a complete filtered probability space
(Ω, F , {Ft}t≥0, P ) along with an m-dimensional, Ft-adapted standard
Brownian motion W (t) = (W 1(t), · · · , W m(t))′ with {Ft}t≥0 generated
by W (·)

• A bond (or bank account) whose price process S0(t) satisfies

dS0(t) = r(t)S0(t)dt, t ∈ [0, T ]; S0(0) = s0 > 0,

where r(·): interest rate

• m stocks whose price processes S1(t), · · ·Sm(t) satisfy stochastic
differential equation (SDE)

{

dSi(t) = Si(t)
{

µi(t)dt +
∑m

j=1 σij(t)dW j(t)
}

, t ∈ [0, T ];

Si(0) = si > 0,

where µi(t): appreciate rate; σij(t): volatility (dispersion) rate
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Wealth and Portfolio

• Define covariance matrix σ(t) and excess rate of return process B(t) by
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Wealth and Portfolio

• Define covariance matrix σ(t) and excess rate of return process B(t) by

σ(t) := (σij)m×m, B(t) := (µ1(t) − r(t), · · · , µm(t) − r(t))′

• Basic Assumption:
◦ r(·), Bi(·), σij(·) are all uniformly bounded, Ft-adapted stochastic

process
◦ σ(t)σ(t)′ ≥ δI for some δ > 0

• π(t) = (π1(t), · · · , πm(t))′, where πi(t) is the capital amount invested in
stock i, is called (monetary) portfolio

• π(·) is called admissible if it is Ft-adapted and E
∫ T

0
|π(t)|2dt < +∞.

• An investor’s wealth process x(t) follows wealth equation
{

dx(t) = [r(t)x(t) + B(t)π(t)]dt + π(t)′σ(t)dW (t)

x(0) = x0

(1)
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Continuous-time Mean-risk Problem

Continuous-time mean–Risk portfolio selection is formulated as the following
optimization problem parameterized by a pair of scalar (x0, z):
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Continuous-time Mean-risk Problem

Continuous-time mean–Risk portfolio selection is formulated as the following
optimization problem parameterized by a pair of scalar (x0, z):

Minimize Jx0,z(π(·)) := Ef(x(T ) − Ex(T ))

subject to











Ex(T ) = z,

(x(·), π(·)) admissible pair,

x(0) = x0

(2)
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

Ex(T ) = z,

(x(·), π(·)) admissible pair,
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where f : IR 7→ IR is a given risk function.
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Continuous-time Mean-risk Problem

Continuous-time mean–Risk portfolio selection is formulated as the following
optimization problem parameterized by a pair of scalar (x0, z):

Minimize Jx0,z(π(·)) := Ef(x(T ) − Ex(T ))

subject to











Ex(T ) = z,

(x(·), π(·)) admissible pair,

x(0) = x0

(2)

where f : IR 7→ IR is a given risk function.

• The continuous-time Markowitz model: f(x) = x2

- studied extensively recently (Zhou and Li 2000, Lim and Zhou; Lim
2004; Heunis and Labbe 2004; Bielecki, Jin, Pliska and Zhou 2005
......)
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Continuous-time Mean-risk Problem

Continuous-time mean–Risk portfolio selection is formulated as the following
optimization problem parameterized by a pair of scalar (x0, z):

Minimize Jx0,z(π(·)) := Ef(x(T ) − Ex(T ))

subject to











Ex(T ) = z,

(x(·), π(·)) admissible pair,

x(0) = x0

(2)

where f : IR 7→ IR is a given risk function.

• The continuous-time Markowitz model: f(x) = x2

- studied extensively recently (Zhou and Li 2000, Lim and Zhou; Lim
2004; Heunis and Labbe 2004; Bielecki, Jin, Pliska and Zhou 2005
......)

• Problem (2) is a dynamic optimization problem
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A Static Problem

• Define θ(t) = σ(t)−1B(t) and ρ(t) := e−
∫

t

0
[r(s)+|θ(s)|2/2]ds−

∫

t

0
θ(s)dW (s)
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A Static Problem

• Define θ(t) = σ(t)−1B(t) and ρ(t) := e−
∫

t

0
[r(s)+|θ(s)|2/2]ds−

∫

t

0
θ(s)dW (s)

• Wealth equation is equivalent to x(t) = ρ(t)−1E[x(T )ρ(T )|Ft]

• The market is complete. i.e., ∀ ξ ∈ L2(FT , IR), there exists an admissible
wealth-portfolio pair (x(·), π(·)) such that x(T ) = ξ (replication).
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A Static Problem

• Define θ(t) = σ(t)−1B(t) and ρ(t) := e−
∫

t

0
[r(s)+|θ(s)|2/2]ds−

∫

t

0
θ(s)dW (s)

• Wealth equation is equivalent to x(t) = ρ(t)−1E[x(T )ρ(T )|Ft]

• The market is complete.
• Budget constraint becomes x0 = E[x(T )ρ(T )]

Consider the following static optimization problem:

Minimize Ef(X − EX),

subject to
{

EX = z; E[ρ(T )X] = x0; X ∈ L2(FT , IR)
(3)
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• Define θ(t) = σ(t)−1B(t) and ρ(t) := e−
∫
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0
[r(s)+|θ(s)|2/2]ds−

∫

t

0
θ(s)dW (s)

• Wealth equation is equivalent to x(t) = ρ(t)−1E[x(T )ρ(T )|Ft]

• The market is complete.
• Budget constraint becomes x0 = E[x(T )ρ(T )]

Consider the following static optimization problem:

Minimize Ef(X − EX),

subject to
{

EX = z; E[ρ(T )X] = x0; X ∈ L2(FT , IR)
(3)

Theorem 1: If X∗ is the optimal solution for the static optimization problem (3),

then the optimal portfolio for the mean-risk problem (2) is the one to replicate X∗.
On the other hand, if (x∗(·), π∗(·)) is the optimal wealth-portfolio pair, then

X∗ = x∗(T ).
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A Static Problem

• Define θ(t) = σ(t)−1B(t) and ρ(t) := e−
∫

t

0
[r(s)+|θ(s)|2/2]ds−

∫

t

0
θ(s)dW (s)

• Wealth equation is equivalent to x(t) = ρ(t)−1E[x(T )ρ(T )|Ft]

• The market is complete.
• Budget constraint becomes x0 = E[x(T )ρ(T )]

Consider the following static optimization problem:

Minimize Ef(X − EX),

subject to
{

EX = z; E[ρ(T )X] = x0; X ∈ L2(FT , IR)
(3)

Theorem 1: If X∗ is the optimal solution for the static optimization problem (3),

then the optimal portfolio for the mean-risk problem (2) is the one to replicate X∗.
On the other hand, if (x∗(·), π∗(·)) is the optimal wealth-portfolio pair, then

X∗ = x∗(T ).

Problem: Solve the static problem (3)
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Weighted Mean-Variance Model

Let f(x) = αx2
+ + βx2

−, where α > 0, β > 0.

- Ef(X(T ) − EX(T )) the weighted variance of X(T )
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Weighted Mean-Variance Model

Let f(x) = αx2
+ + βx2

−, where α > 0, β > 0.

- Ef(X(T ) − EX(T )) the weighted variance of X(T )

Changing variable Y := X − z, the static problem (3) specializes to

Minimize E[αY 2
+ + βY 2

−]

subject to











EY = 0

E[Y ρ] = y0

Y ∈ L2(FT , IR)

where ρ := ρ(T ) and y0 := x0 − zEρ.
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Weighted Mean-Variance Model

Let f(x) = αx2
+ + βx2

−, where α > 0, β > 0.

- Ef(X(T ) − EX(T )) the weighted variance of X(T )

Changing variable Y := X − z, the static problem (3) specializes to

Minimize E[αY 2
+ + βY 2

−]

subject to











EY = 0

E[Y ρ] = y0

Y ∈ L2(FT , IR)

where ρ := ρ(T ) and y0 := x0 − zEρ.

Introducing two Lagrange multipliers (λ, µ) for the two constraints, one needs
only to solve

min
Y ∈L2(FT ,IR)

E[αY 2
+ + βY 2

− − 2(λ − µρ)Y ] (4)

And then determine (λ, µ) by the two constraints EY = 0, E[Y ρ] = y0.

Continuous-Time Mean–Risk Portfolio Selection – p. 9/24



Solution to Weighted MV Problem

Lemma 1: The optimal solution of Problem (4) is Y ∗ =
(λ−µρ)+

α
−

(λ−µρ)
−

β
.
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Solution to Weighted MV Problem

Lemma 1: The optimal solution of Problem (4) is Y ∗ =
(λ−µρ)+

α
−

(λ−µρ)
−

β
.

Lemma 2: For any y0, there exists a unique pair (λ, µ) such that the optimal
solution Y ∗ in Lemma 1 satisfies EY ∗ = 0, E[Y ∗ρ] = y0. Moreover,
λ < 0, µ < 0 if y0 > 0; λ > 0, µ > 0 if y0 < 0; λ = µ = 0 if y0 = 0.
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Solution to Weighted MV Problem

Lemma 1: The optimal solution of Problem (4) is Y ∗ =
(λ−µρ)+

α
−

(λ−µρ)
−

β
.

Lemma 2: For any y0, there exists a unique pair (λ, µ) such that the optimal
solution Y ∗ in Lemma 1 satisfies EY ∗ = 0, E[Y ∗ρ] = y0. Moreover,
λ < 0, µ < 0 if y0 > 0; λ > 0, µ > 0 if y0 < 0; λ = µ = 0 if y0 = 0.

Theorem 2: The unique optimal portfolio for the weighted MV problem
corresponding to (x0, z) is the one to replicate the contingent claim

X∗ =
(λ − µρ)+

α
−

(λ − µρ)−

β
+ z

with (λ, µ) being the unique solution to the system of algebraic equations

E(λ − µρ)+

α
−

E(λ − µρ)−

β
= 0,

E[ρ(λ − µρ)+]

α
−

(λ − µρ)−

β
= x0 − zEρ.

Moreover, the minimum risk value is given by J∗(x0, z) = −µ(x0 − zEρ).
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Solution to Weighted MV Problem

Lemma 1: The optimal solution of Problem (4) is Y ∗ =
(λ−µρ)+

α
−

(λ−µρ)
−

β
.

Lemma 2: For any y0, there exists a unique pair (λ, µ) such that the optimal
solution Y ∗ in Lemma 1 satisfies EY ∗ = 0, E[Y ∗ρ] = y0. Moreover,
λ < 0, µ < 0 if y0 > 0; λ > 0, µ > 0 if y0 < 0; λ = µ = 0 if y0 = 0.

Theorem 2: The unique optimal portfolio for the weighted MV problem
corresponding to (x0, z) is the one to replicate the contingent claim

X∗ =
(λ − µρ)+

α
−

(λ − µρ)−

β
+ z

with (λ, µ) being the unique solution to the system of algebraic equations

E(λ − µρ)+

α
−

E(λ − µρ)−

β
= 0,

E[ρ(λ − µρ)+]

α
−

(λ − µρ)−

β
= x0 − zEρ.

Moreover, the minimum risk value is given by J∗(x0, z) = −µ(x0 − zEρ).

Remark 1: When the market coefficients are deterministic, the optimal
portfolio can be obtained more explicitly via some Black-Scholes type equation.
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Mean-Semivariance Model

• Let f(x) = x2
−. Mean-risk problem specialized to mean-semivariance

problem
Minimize EY 2

−

subject to











EY = 0

E[Y ρ] = y0 := x0 − zEρ

Y ∈ L2(FT , IR)

(5)
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Mean-Semivariance Model

• Let f(x) = x2
−. Mean-risk problem specialized to mean-semivariance

problem
Minimize EY 2

−

subject to











EY = 0

E[Y ρ] = y0 := x0 − zEρ

Y ∈ L2(FT , IR)

(5)

• Define

ρ0 := inf{η ∈ IR : P (ρ < η) > 0} ρ1 := sup{η ∈ IR : P (ρ > η) > 0}
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Mean-Semivariance Model

• Let f(x) = x2
−. Mean-risk problem specialized to mean-semivariance

problem
Minimize EY 2

−

subject to











EY = 0

E[Y ρ] = y0 := x0 − zEρ

Y ∈ L2(FT , IR)

(5)

• Define

ρ0 := inf{η ∈ IR : P (ρ < η) > 0} ρ1 := sup{η ∈ IR : P (ρ > η) > 0}

- If r(·) and θ(·) are deterministic and
∫ T

0
|θ(t)|2dt > 0, then ρ0 = 0

and ρ1 = +∞.
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Mean-Semivariance Model

• Let f(x) = x2
−. Mean-risk problem specialized to mean-semivariance

problem
Minimize EY 2

−

subject to











EY = 0

E[Y ρ] = y0 := x0 − zEρ

Y ∈ L2(FT , IR)

(5)

• Define

ρ0 := inf{η ∈ IR : P (ρ < η) > 0} ρ1 := sup{η ∈ IR : P (ρ > η) > 0}

- If r(·) and θ(·) are deterministic and
∫ T

0
|θ(t)|2dt > 0, then ρ0 = 0

and ρ1 = +∞.

Theorem 3: The mean-semivariance problem does not admit any optimal
solution so long as z 6= x0

Eρ
.
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Mean-Semivariance Model

• Let f(x) = x2
−. Mean-risk problem specialized to mean-semivariance

problem
Minimize EY 2

−

subject to











EY = 0

E[Y ρ] = y0 := x0 − zEρ

Y ∈ L2(FT , IR)

(5)

• Define

ρ0 := inf{η ∈ IR : P (ρ < η) > 0} ρ1 := sup{η ∈ IR : P (ρ > η) > 0}

- If r(·) and θ(·) are deterministic and
∫ T

0
|θ(t)|2dt > 0, then ρ0 = 0

and ρ1 = +∞.

Theorem 3: The mean-semivariance problem does not admit any optimal
solution so long as z 6= x0

Eρ
.

Remark 2: z =
x0

Eρ
is a trivial case, where the optimal portfolio is

the risk-free one.
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Idea of Proof

• View the mean-semivariance problem as the limiting problem of the
weighted MV problem with β = 1 − α and α → 0

• Let Y (α) be the optimal solution to the weighted MV problem with
β = 1 − α and α > 0
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Idea of Proof

• View the mean-semivariance problem as the limiting problem of the
weighted MV problem with β = 1 − α and α → 0

• Let Y (α) be the optimal solution to the weighted MV problem with
β = 1 − α and α > 0

• If y0 < 0, one can show that E[Y (α)−]2 →
y2
0

E(ρ−ρ0)2
as α → 0. However,

for any feasible solution Y of (6), one can show via Cauchy-Schwartz’s
inequality that EY 2

− > y2
0/E(ρ − ρ0)

2. Hence there is no optimal solution.

• If y0 > 0, one can show that E[Y (α)−]2 →
y2
0

E(ρ1−ρ)2
as α → 0 ( y2

0

E(ρ1−ρ)2

is defined to be 0 when ρ1 = +∞). whereas E[Y (α)−]2 >
y2
0

E(ρ1−ρ)2
for

any feasible solution Y . Again there is no optimal solution.
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Idea of Proof

• View the mean-semivariance problem as the limiting problem of the
weighted MV problem with β = 1 − α and α → 0

• Let Y (α) be the optimal solution to the weighted MV problem with
β = 1 − α and α > 0

• If y0 < 0, one can show that E[Y (α)−]2 →
y2
0

E(ρ−ρ0)2
as α → 0. However,

for any feasible solution Y of (6), one can show via Cauchy-Schwartz’s
inequality that EY 2

− > y2
0/E(ρ − ρ0)

2. Hence there is no optimal solution.

• If y0 > 0, one can show that E[Y (α)−]2 →
y2
0

E(ρ1−ρ)2
as α → 0 ( y2

0

E(ρ1−ρ)2

is defined to be 0 when ρ1 = +∞). whereas E[Y (α)−]2 >
y2
0

E(ρ1−ρ)2
for

any feasible solution Y . Again there is no optimal solution.

Remark 3: Although the mean-semivariance problem in general does not
admit optimal solutions, the infimum of the problem has been obtained

explicitly, which is y2
0

E(ρ−ρ0)2
if y0 < 0 and y2

0

E(ρ1−ρ)2
if y0 > 0. Moreover,

asymptotically optimal portfolios can be obtained by replicating Y (α) + z as
α → 0.
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Mean-Downside-Risk Model

• Let f ≥ 0, left continuous at 0, strictly decreasing on IR−, and for
∀x ∈ IR+, f(x) = 0 (an example: f(x) = (x−)p for some p ≥ 0).
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Mean-Downside-Risk Model

• Let f ≥ 0, left continuous at 0, strictly decreasing on IR−, and for
∀x ∈ IR+, f(x) = 0 (an example: f(x) = (x−)p for some p ≥ 0).

• The corresponding risk Ef(X(T ) − EX(T )) only punish the downside
part of the deviation of X(T ). (downside-risk)
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Mean-Downside-Risk Model

• Let f ≥ 0, left continuous at 0, strictly decreasing on IR−, and for
∀x ∈ IR+, f(x) = 0 (an example: f(x) = (x−)p for some p ≥ 0).

• The corresponding risk Ef(X(T ) − EX(T )) only punish the downside
part of the deviation of X(T ). (downside-risk)

Assumption (B) For any 0 ≤ M1 < M2 ≤ +∞, P{ρ(T ) ∈ (M1,M2)} > 0 and
P{ρ(T ) = M1} = {ρ(T ) = M2} = 0.
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Mean-Downside-Risk Model

• Let f ≥ 0, left continuous at 0, strictly decreasing on IR−, and for
∀x ∈ IR+, f(x) = 0 (an example: f(x) = (x−)p for some p ≥ 0).

• The corresponding risk Ef(X(T ) − EX(T )) only punish the downside
part of the deviation of X(T ). (downside-risk)

Assumption (B) For any 0 ≤ M1 < M2 ≤ +∞, P{ρ(T ) ∈ (M1,M2)} > 0 and
P{ρ(T ) = M1} = {ρ(T ) = M2} = 0.

Remark 4: This assumption is satisfied when, say, r(·) and θ(·) are

deterministic and
∫ T

0
|θ(s)|2ds > 0.
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Mean-Downside-Risk Model

• Let f ≥ 0, left continuous at 0, strictly decreasing on IR−, and for
∀x ∈ IR+, f(x) = 0 (an example: f(x) = (x−)p for some p ≥ 0).

• The corresponding risk Ef(X(T ) − EX(T )) only punish the downside
part of the deviation of X(T ). (downside-risk)

Assumption (B) For any 0 ≤ M1 < M2 ≤ +∞, P{ρ(T ) ∈ (M1,M2)} > 0 and
P{ρ(T ) = M1} = {ρ(T ) = M2} = 0.

Remark 4: This assumption is satisfied when, say, r(·) and θ(·) are

deterministic and
∫ T

0
|θ(s)|2ds > 0.

Theorem 4: When Assumption (B) hold, the mean-downside-risk model with f(·)
as the risk measure admits no optimal solution for any z 6= x0

Eρ
. On the other hand, if

z = x0

Eρ
, then the model has an optimal portfolio which is the risk-free portfolio.
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Mean-Downside-Risk Model

• Let f ≥ 0, left continuous at 0, strictly decreasing on IR−, and for
∀x ∈ IR+, f(x) = 0 (an example: f(x) = (x−)p for some p ≥ 0).

• The corresponding risk Ef(X(T ) − EX(T )) only punish the downside
part of the deviation of X(T ). (downside-risk)

Assumption (B) For any 0 ≤ M1 < M2 ≤ +∞, P{ρ(T ) ∈ (M1,M2)} > 0 and
P{ρ(T ) = M1} = {ρ(T ) = M2} = 0.

Remark 4: This assumption is satisfied when, say, r(·) and θ(·) are

deterministic and
∫ T

0
|θ(s)|2ds > 0.

Theorem 4: When Assumption (B) hold, the mean-downside-risk model with f(·)
as the risk measure admits no optimal solution for any z 6= x0

Eρ
. On the other hand, if

z = x0

Eρ
, then the model has an optimal portfolio which is the risk-free portfolio.

Idea of proof: Find out the infimum inf Ef(Y ), and show it is not attainable.
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Mean-Downside-Risk Model

• Let f ≥ 0, left continuous at 0, strictly decreasing on IR−, and for
∀x ∈ IR+, f(x) = 0 (an example: f(x) = (x−)p for some p ≥ 0).

• The corresponding risk Ef(X(T ) − EX(T )) only punish the downside
part of the deviation of X(T ). (downside-risk)

Assumption (B) For any 0 ≤ M1 < M2 ≤ +∞, P{ρ(T ) ∈ (M1,M2)} > 0 and
P{ρ(T ) = M1} = {ρ(T ) = M2} = 0.

Remark 4: This assumption is satisfied when, say, r(·) and θ(·) are

deterministic and
∫ T

0
|θ(s)|2ds > 0.

Theorem 4: When Assumption (B) hold, the mean-downside-risk model with f(·)
as the risk measure admits no optimal solution for any z 6= x0

Eρ
. On the other hand, if

z = x0

Eρ
, then the model has an optimal portfolio which is the risk-free portfolio.

Question: When the optimal solutions exist for a general mean-risk
problem?
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General Mean-Risk Model

• Let f(·) be convex, and strictly convex at 0.
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General Mean-Risk Model

• Let f(·) be convex, and strictly convex at 0.

i.e. kf(x) + (1 − k)f(y) > f(0) for any k ∈ (0, 1), kx + (1 − k)y = 0)
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General Mean-Risk Model

• Let f(·) be convex, and strictly convex at 0.

• Define the subdifferential ∂f(x) in the sense of convex analysis

∂f(x) := {x∗ ∈ IR : f(y) − f(x) ≥ x∗(y − x), ∀y ∈ IR}
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General Mean-Risk Model

• Let f(·) be convex, and strictly convex at 0.

• Define the subdifferential ∂f(x) in the sense of convex analysis

∂f(x) := {x∗ ∈ IR : f(y) − f(x) ≥ x∗(y − x), ∀y ∈ IR}

We maintain the Assumption (B). And define







































g(y) := argmin
x∈IR:y∈∂f(x)

|x|

Λ := {λ ∈ IR : ∃µ = µ(λ) ∈ IR so that g(λ − µ(λ)ρ) ∈ L2(FT , IR),

Eg(λ − µ(λ)ρ) = 0, ρg(λ − µ(λ)ρ) ∈ L1(FT , IR) }

g̃(λ) = E[ρg(λ − µ(λ)ρ)], ∀λ ∈ Λ

λ̄ = supλ∈Λ λ, λ = infλ∈Λ λ

y := limλ↑λ̄ g̃(λ), ȳ := limλ↓λ g̃(λ)
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General Mean-Risk Model

• Let f(·) be convex, and strictly convex at 0.

• Define the subdifferential ∂f(x) in the sense of convex analysis

∂f(x) := {x∗ ∈ IR : f(y) − f(x) ≥ x∗(y − x), ∀y ∈ IR}

We maintain the Assumption (B). And define







































g(y) := argmin
x∈IR:y∈∂f(x)

|x|

Λ := {λ ∈ IR : ∃µ = µ(λ) ∈ IR so that g(λ − µ(λ)ρ) ∈ L2(FT , IR),

Eg(λ − µ(λ)ρ) = 0, ρg(λ − µ(λ)ρ) ∈ L1(FT , IR) }

g̃(λ) = E[ρg(λ − µ(λ)ρ)], ∀λ ∈ Λ

λ̄ = supλ∈Λ λ, λ = infλ∈Λ λ

y := limλ↑λ̄ g̃(λ), ȳ := limλ↓λ g̃(λ)

Remark 5: All these definition can be calculated offline
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Solution of the General MR problem

Theorem 5: One has the following conclusions regarding the solution to the

mean-risk portfolio selection problem with the general f :
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Solution of the General MR problem

Theorem 5: One has the following conclusions regarding the solution to the

mean-risk portfolio selection problem with the general f :

(i) Assume that ∪x∈IR∂f(x) = IR. Then the problem admits an optimal solution if

and only if x0 − zEρ ∈ A ∪ B, where

A =







[y, 0], if λ̄ ∈ Λ

(y, 0], if λ̄ /∈ Λ
, B =







[0, ȳ], if λ ∈ Λ

(0, ȳ), if λ /∈ Λ
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Solution of the General MR problem

Theorem 5: One has the following conclusions regarding the solution to the

mean-risk portfolio selection problem with the general f :

(i) Assume that ∪x∈IR∂f(x) = IR. Then the problem admits an optimal solution if

and only if x0 − zEρ ∈ A ∪ B, where

A =







[y, 0], if λ̄ ∈ Λ

(y, 0], if λ̄ /∈ Λ
, B =







[0, ȳ], if λ ∈ Λ

(0, ȳ), if λ /∈ Λ

(ii) Assume that there exists M1, M2 ∈ IR such that ∪x∈IR∂f(x) ⊂ [M1, M2].

Then the problem admits an optimal solution if and only if z = x0/Eρ.
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Solution of General MR problem (Cont’d)

(iii) Assume that either ∪x∈IR∂f(x) = (−∞, k̄] or ∪x∈IR∂f(x) = (−∞, k̄) for

some k̄ ∈ IR. Then λ = 0 ∈ Λ. If λ̄ /∈ Λ, then the problem admits an optimal

solution if and only if x0 − zEρ ∈ (y, 0]. If λ̄ ∈ Λ, then the problem admits an

optimal solution if and only if x0 − zEρ ∈ {g̃(λ̄)} ∪ (y, 0]. If in addition

λ̄ < k̄, then g̃(λ̄) = y
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Solution of General MR problem (Cont’d)

(iii) Assume that either ∪x∈IR∂f(x) = (−∞, k̄] or ∪x∈IR∂f(x) = (−∞, k̄) for

some k̄ ∈ IR. Then λ = 0 ∈ Λ. If λ̄ /∈ Λ, then the problem admits an optimal

solution if and only if x0 − zEρ ∈ (y, 0]. If λ̄ ∈ Λ, then the problem admits an

optimal solution if and only if x0 − zEρ ∈ {g̃(λ̄)} ∪ (y, 0]. If in addition

λ̄ < k̄, then g̃(λ̄) = y

(iv) Assume that either ∪x∈IR∂f(x) = [k,∞) or ∪x∈IR∂f(x) = (k,∞) for

some k ∈ IR, then λ̄ = 0 ∈ Λ. If λ /∈ Λ, then the problem admits an optimal

solution if and only if x0 − zEρ ∈ [0, ȳ). If λ ∈ Λ, then the problem admits an

optimal solution if and only if x0 − zEρ ∈ {g̃(λ̄)} ∪ [0, ȳ, ). If in addition

λ > k, then g̃(λ) = ȳ
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Examples

Example 1: f(x) = |x| (mean-absolute-deviation model ).
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Examples

Example 1: f(x) = |x| (mean-absolute-deviation model ).

f(·) is strictly convex at 0, and ∪
x∈IR∂f(x) = [−1, 1]. (Case (ii)).
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Examples

Example 1: f(x) = |x| (mean-absolute-deviation model ).

f(·) is strictly convex at 0, and ∪
x∈IR∂f(x) = [−1, 1]. (Case (ii)). Thus the

continuous-time mean-absolute-deviation model admits an optimal solution if
and only if z = x0/Eρ, in which case the optimal portfolio is simply the risk-free
one.
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Examples

Example 1: f(x) = |x| (mean-absolute-deviation model ).

f(·) is strictly convex at 0, and ∪
x∈IR∂f(x) = [−1, 1]. (Case (ii)). Thus the

continuous-time mean-absolute-deviation model admits an optimal solution if
and only if z = x0/Eρ, in which case the optimal portfolio is simply the risk-free
one.

Example 2: f(x) = e−x (more sensitive to large loss ).
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Examples

Example 1: f(x) = |x| (mean-absolute-deviation model ).

f(·) is strictly convex at 0, and ∪
x∈IR∂f(x) = [−1, 1]. (Case (ii)). Thus the

continuous-time mean-absolute-deviation model admits an optimal solution if
and only if z = x0/Eρ, in which case the optimal portfolio is simply the risk-free
one.

Example 2: f(x) = e−x (more sensitive to large loss ).

f is strictly convex, ∪
x∈IR∂f(x) = (−∞, 0).(Case (iii)).
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Examples

Example 1: f(x) = |x| (mean-absolute-deviation model ).

f(·) is strictly convex at 0, and ∪
x∈IR∂f(x) = [−1, 1]. (Case (ii)). Thus the

continuous-time mean-absolute-deviation model admits an optimal solution if
and only if z = x0/Eρ, in which case the optimal portfolio is simply the risk-free
one.

Example 2: f(x) = e−x (more sensitive to large loss ).

f is strictly convex, ∪
x∈IR∂f(x) = (−∞, 0).(Case (iii)). The MR problem

admits an optimal solution iff x0 − zEρ ∈ [(Eρ)(E ln ρ) − E(ρ ln ρ), 0] or,

equivalently, z ∈ [ x0

Eρ
, x0−(Eρ)(E ln ρ)+E(ρ ln ρ)

Eρ
]. When the problem does admit

an optimal solution, the optimal portfolio is the one replicating the claim
z − ln(−λ + µρ), where (λ, µ) is the unique solution pair to the following
algebraic equation ( which must admit a solution):

{

E ln(−λ + µρ) = 0

E[ρ ln(−λ + µρ)] = zEρ − x0
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Examples (Cont’d)

Example 3: f(x) = (x − 1)2− (shift of the mean-semivariance model).
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Examples (Cont’d)

Example 3: f(x) = (x − 1)2− (shift of the mean-semivariance model).

f is not strictly convex everywhere; but it is indeed strictly convex at 0.
∪

x∈IR∂f(x) = (−∞, 0]. (Case (iii)).
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Examples (Cont’d)

Example 3: f(x) = (x − 1)2− (shift of the mean-semivariance model).

f is not strictly convex everywhere; but it is indeed strictly convex at 0.
∪

x∈IR∂f(x) = (−∞, 0]. (Case (iii)). The original portfolio selection problem

admits an optimal solution if and only if x0 − zEρ ∈ [Eρ − Eρ2/Eρ, 0] or,

equivalently, z ∈ [ x0

Eρ
, x0

Eρ]
+ Eρ2

(Eρ)2
− 1]. When the problem does admit an

optimal solution, the optimal portfolio is the one replicating the claim
z + 1 + λ−µρ

2
where (λ, µ) is the unique solution pair to the following linear

algebraic equation:

{

λ − µEρ = −2

λEρ − µEρ2 = 2x0 − 2(1 + z)Eρ

Continuous-Time Mean–Risk Portfolio Selection – p. 18/24



Asymptotic Optimal Portfolios

• In all the cases, no matter the optimal portfolios exist or not, the infimum
of the risk is finite (Ef(X − EX) ≥ f(E[X − EX]) = f(0)).
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Asymptotic Optimal Portfolios

• In all the cases, no matter the optimal portfolios exist or not, the infimum
of the risk is finite (Ef(X − EX) ≥ f(E[X − EX]) = f(0)).

• When optimal portfolios do not exist, consider a perturbed risk function

fα(x) = f(x) + αx2, α > 0
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Asymptotic Optimal Portfolios

• In all the cases, no matter the optimal portfolios exist or not, the infimum
of the risk is finite (Ef(X − EX) ≥ f(E[X − EX]) = f(0)).

• When optimal portfolios do not exist, consider a perturbed risk function

fα(x) = f(x) + αx2, α > 0

It can be shown:

◦ The mean-risk portfolio selection problem with risk function fα must
admit an optimal solution

◦ The corresponding optimal portfolio πα is asymptotically optimal for
the original problem when α ↓ 0
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Back to Single Period

• Continuous-time mean-semivariance problem admits no optimal solution.
How about its single period counterpart?
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Back to Single Period

• Continuous-time mean-semivariance problem admits no optimal solution.
How about its single period counterpart?

• m(≥ 2) securities, each with return rate Rj , ERj = rj , Cov(Ri, Rj) = σij

• The single period Mean-semivariance problem

Mimimize E[(
∑

j πjRj − E
∑

j πjRj)−]2

subject to

{

∑

i πi = x0

E(
∑

j πjRj) =
∑

i riπi = z

(6)
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Back to Single Period

• Continuous-time mean-semivariance problem admits no optimal solution.
How about its single period counterpart?

• m(≥ 2) securities, each with return rate Rj , ERj = rj , Cov(Ri, Rj) = σij

• The single period Mean-semivariance problem

Mimimize E[(
∑

j πjRj − E
∑

j πjRj)−]2

subject to

{

∑

i πi = x0

E(
∑

j πjRj) =
∑

i riπi = z

(6)

• Vast literature on single-period mean-semivariance models

Continuous-Time Mean–Risk Portfolio Selection – p. 20/24



Back to Single Period

• Continuous-time mean-semivariance problem admits no optimal solution.
How about its single period counterpart?

• m(≥ 2) securities, each with return rate Rj , ERj = rj , Cov(Ri, Rj) = σij

• The single period Mean-semivariance problem

Mimimize E[(
∑

j πjRj − E
∑

j πjRj)−]2

subject to

{

∑

i πi = x0

E(
∑

j πjRj) =
∑

i riπi = z

(6)

• Vast literature on single-period mean-semivariance models
• Concentrate on numerical solution (as analytical solution impossible) and

comparison with mean-variance model
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Back to Single Period

• Continuous-time mean-semivariance problem admits no optimal solution.
How about its single period counterpart?

• m(≥ 2) securities, each with return rate Rj , ERj = rj , Cov(Ri, Rj) = σij

• The single period Mean-semivariance problem

Mimimize E[(
∑

j πjRj − E
∑

j πjRj)−]2

subject to

{

∑

i πi = x0

E(
∑

j πjRj) =
∑

i riπi = z

(6)

• Vast literature on single-period mean-semivariance models
• Concentrate on numerical solution (as analytical solution impossible) and

comparison with mean-variance model

• Existence of efficient portfolios/frontier not addressed
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Back to Single Period

• Continuous-time mean-semivariance problem admits no optimal solution.
How about its single period counterpart?

• m(≥ 2) securities, each with return rate Rj , ERj = rj , Cov(Ri, Rj) = σij

• The single period Mean-semivariance problem

Mimimize E[(
∑

j πjRj − E
∑

j πjRj)−]2

subject to

{

∑

i πi = x0

E(
∑

j πjRj) =
∑

i riπi = z

(6)

• Vast literature on single-period mean-semivariance models
• Concentrate on numerical solution (as analytical solution impossible) and

comparison with mean-variance model

• Existence of efficient portfolios/frontier not addressed

• Technically non-trivial as the feasible region generally unbounded, and
the objective not coercive

(f : IRd 7→ IR called coercive if lim|x|→+∞ f(x) = +∞)
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A Lemma

Consider
min

x∈IRd

E[(A + B′x)−]2, (7)

where B ≡ (B1, · · · , Bd)′, and A, Bi are random variables with EA2 < +∞,
EB2

i < +∞, i = 1, · · · , d.
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A Lemma

Consider
min

x∈IRd

E[(A + B′x)−]2, (7)

where B ≡ (B1, · · · , Bd)′, and A, Bi are random variables with EA2 < +∞,
EB2

i < +∞, i = 1, · · · , d.

Lemma 3: If EBi = 0, i = 1, · · · , d, then problem (7) admits optimal
solutions.
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A Lemma
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EB2

i < +∞, i = 1, · · · , d.

Lemma 3: If EBi = 0, i = 1, · · · , d, then problem (7) admits optimal
solutions.
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A Lemma

Consider
min

x∈IRd

E[(A + B′x)−]2, (7)

where B ≡ (B1, · · · , Bd)′, and A, Bi are random variables with EA2 < +∞,
EB2

i < +∞, i = 1, · · · , d.

Lemma 3: If EBi = 0, i = 1, · · · , d, then problem (7) admits optimal
solutions.

Remark 6: Assumption that EBi = 0 i = 1, ·, d is crucial.

Counter example: Let A = −1, B = (eW1 , · · · , eWd)′, where (W1, · · · , Wd)

follow N(0, Id). For any 0 6= x ∈ IRd
+, limα→+∞ E[(A + B′(αx))−]2 = 0. This

implies the optimal value of (7) is 0. However, this value cannot be achieved
since E[(A + B′(αx))−]2 > 0 for any x ∈ IRd.
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Existence for Single-Period M-S

Theorem 6: For any x0 ∈ IR and z ∈ IR, Problem (7) admits optimal solutions
if and only if it admits feasible solutions.
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Existence for Single-Period M-S

Theorem 6: For any x0 ∈ IR and z ∈ IR, Problem (7) admits optimal solutions
if and only if it admits feasible solutions.

Idea of Proof. Let ξi = Ri − ri. After eliminating π1 and π2 from the constraints,
one gets the following equivalent problem

min
(π3,··· ,πm)∈IRm−2

E[(A +

m
∑

i=3

πiBi)−]2,

where

A = x0ξ1 +
z − x0r1

r2 − r1
(ξ2 − ξ1), Bi = ξi − ξ1 − (ri − r1)

ξ2 − ξ1

r2 − r1
.

Then Lemma 3 applies.
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Existence for Single-Period M-S

Theorem 6: For any x0 ∈ IR and z ∈ IR, Problem (7) admits optimal solutions
if and only if it admits feasible solutions.

Idea of Proof. Let ξi = Ri − ri. After eliminating π1 and π2 from the constraints,
one gets the following equivalent problem

min
(π3,··· ,πm)∈IRm−2

E[(A +

m
∑

i=3

πiBi)−]2,

where

A = x0ξ1 +
z − x0r1

r2 − r1
(ξ2 − ξ1), Bi = ξi − ξ1 − (ri − r1)

ξ2 − ξ1

r2 − r1
.

Then Lemma 3 applies.

Sharply contrast Continuous-time mean-semivariance Vs Single-period
mean-semivariance
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Further Research

• Incomplete market (the replicating problem becomes significant)

- Some work has been done on the mean-variance problem. ...
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Further Research

• Incomplete market (the replicating problem becomes significant)

- Some work has been done on the mean-variance problem. ...

• Other risk measures: safety first, Var, minimax, ......
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END

Comments and questions are appreciated ... ...

Thank you very much!
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