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1. Calabi–Yau manifolds

A Calabi–Yau m-fold is a compact 2m-

dimensional manifold X equipped with four

geometric structures:

• a Riemannian metric g;

• a complex structure J;

• a symplectic form (Kähler form) ω; and

• a complex volume form Ω.

These satisfy pointwise compatibility con-

ditions: ω(u, v) = g(Ju, v), |Ω|g ≡ 2m/2, Ω

is of type (m,0) w.r.t. J, and p.d.e.s: J is

integrable, and dω ≡ dΩ ≡ 0. Usually we

also require H1(X;R) = 0.

This is a rich geometric structure, and

very interesting from several points of view.

2



Complex algebraic geometry: (X, J) is

a projective complex manifold. That is,

we can embed X as a complex submani-

fold of CPN for some N � 0, and then X

is the zero set of finitely many homoge-

neous polynomials on CN+1. Also Ω is a

holomorphic section of the canonical bun-

dle KX, so KX is trivial, and c1(X)=0.

Analysis: For fixed (X, J), Yau’s solution

of the Calabi Conjecture by solving a non-

linear elliptic p.d.e. shows that there exists

a family of Kähler metrics g on X making

X Calabi–Yau.

Combining complex algebraic geometry and

analysis proves the existence of huge num-

bers of examples of Calabi–Yau m-folds.
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Riemannian geometry: (X, g) is a Ricci-

flat Riemannian manifold with holonomy

group Hol(g) ⊆ SU(m).

Symplectic geometry: (X,ω) is a sym-

plectic manifold with c1(X) = 0.

Calibrated geometry: there is a distin-

guished class of minimal submanifolds in

(X, g) called special Lagrangian m-folds.

String Theory: a branch of theoretical

physics aiming to combine Quantum The-

ory and General Relativity. String Theo-

rists believe that space-time is not 4 di-

mensional, but 10-dimensional, and is lo-

cally modelled on R3,1 × X, where R3,1 is

Minkowski space, our observed universe,

and X is a Calabi–Yau 3-fold with radius

of order 10−33cm, the Planck length.
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String Theorists believe that each Calabi–
Yau 3-fold X has a quantization, a Super
Conformal Field Theory (SCFT), not yet
rigorously defined. Invariants of X such
as the Dolbeault groups Hp,q(X) and the
Gromov–Witten invariants of X translate
to properties of the SCFT. Using physical
reasoning they made amazing predictions
about Calabi–Yau 3-folds, an area known
as Mirror Symmetry, conjectures which are
slowly turning into theorems.
Part of the picture is that Calabi–Yau 3-
folds should occur in pairs X, X̂, such that
Hp,q(X) ∼= H3−p,q(X̂), and the complex
geometry of X is somehow equivalent to
the symplectic geometry of X̂, and vice
versa. This is very strange. It is an excit-
ing area in which to work.
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Today we are doing algebraic geometry,

though the other points of view will be

lurking in the background. So from now

on, a Calabi–Yau 3-fold X will mean a

smooth projective 3-fold X over a field

K, with trivial canonical bundle KX, and

with H1(OX) = 0. The field K will al-

most always be C, but we are interested

in extending this, say to K algebraically

closed of characteristic zero. We take X

to be equipped with an ample line bundle L
(roughly equivalent to the Kähler form ω:

take c1(L) = [ω] ∈ H2(X;Z)), with which

we define stability of coherent sheaves.
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2. Coherent sheaves on X

Let X be a Calabi–Yau 3-fold. A holo-
morphic vector bundle π : E → X of rank
r is a complex manifold E with a holo-
morphic map π : E → X whose fibres are
complex vector spaces Cr. A morphism
φ : E → F of holomorphic vector bundles
π : E → X, π′ : F → X is a holomorphic
map φ : E → F with π′ ◦ φ ≡ π, that is
linear on the vector space fibres. Then
Hom(E,F ) is a finite-dimensional vector
space. Holomorphic vector bundles form
an exact category Vect(X).
A holomorphic vector bundle E has
topological invariants, the Chern character
ch∗(E) in Heven(X,Q), with ch0(E) = r,
the rank of E. Holomorphic vector bun-
dles are very natural objects to study.
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However, vector bundles have two disad-

vantages:

• If φ : E → F is a morphism of vector

bundles, then the kernel Ker φ and coker-

nel Coker φ need not be vector bundles, as

their rank may not be constant on X.

• Moduli spaces (coarse moduli schemes)

of (semistable) holomorphic vector bun-

dles need not be compact (proper). But

compactness of moduli spaces is essential

to define counting invariants unchanged

under deformations.
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To get round these, we enlarge from Vect(X)

to the category coh(X) of coherent sheaves

on X. Intuitively, you can think of a

coherent sheaf E as being like a holomor-

phic vector bundle on a (possibly singular)

submanifold S in X.

Then coh(X) is an abelian category. That

is, it has a good notion of exact sequence

0 → E → F → G → 0, and every morphism

φ : E → F has a kernel and a cokernel. It

is the smallest abelian category containing

Vect(X).
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Let X be a projective K-scheme, and E,F ∈
coh(X). Then one can define the Ext

groups Exti(E,F) for i = 0,1, . . . . If X

is smooth of dimension m with canoni-

cal bundle KX, then Exti(E,F) are finite-

dimensional vector spaces over K for i =

0, . . . ,m, and are zero for i > m, and sat-

isfy Serre duality

Exti(F , E) ∼= Extm−i(E,F ⊗KX)∗. (1)

The groups Ext0(E,F),Ext1(E,F) have easy

interpretations: Ext0(E,F) = Hom(E,F),

and elements of Ext1(E,F) classify exact

sequences 0→ F → G → E → 0 in coh(X),

that is, extensions of E by F.
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The Euler form of E,F is

χ̄(E,F) =
∑m
i=0(−1)i dimK Exti(E,F).

By the Hirzebruch–Riemann–Roch Theo-
rem, it is given by

χ̄(E,F) = deg
(
ch(E)∨ · ch(F) · td(TX)

)
m,

where ch(E) is the Chern character of E,
a topological invariant. The Grothendieck
group K0(coh(X)) is the group generated
by isomorphism classes [E] of E ∈ coh(X)
with the relation [F] = [E] + [G] for each
exact sequence 0→ E → F → G → 0. The
numerical Grothendieck group K(coh(X))
is the quotient of K0(coh(X)) by the sub-
group of [E] with χ̄(E,F) = 0 for all F ∈
coh(X). Then χ̄ descends to K(coh(X)),
i.e. to χ̄([E], [F ]). The Chern character
embeds ch : K(coh(X)) ↪→ Heven(X;Q).
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Now suppose X is a Calabi–Yau 3-fold,

KX
∼= OX. Then Serre duality becomes

Exti(F , E) ∼= Ext3−i(E,F)∗. Hence:

• The Euler form χ̄ is antisymmetric.

• The full Ext groups are determined solely

by Ext0 = Hom and Ext1.
• For E,F ∈ coh(X), we have

dim Hom(E,F)− dim Ext1(E,F)

−dim Hom(F , E)+dim Ext1(F , E)= χ̄([E], [F]).
(2)

This means that in some ways, coherent

sheaves on a Calabi–Yau 3-fold behave like

a 1-dimensional category (like coherent

sheaves on a curve), not a 3-dimensional

category, as we have only Ext0,Ext1 to

worry about.
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Aside: Starting with the abelian category

coh(X), one forms the (bounded) derived

category D(X) = Db(coh(X)), a triangu-

lated category, which contains coh(X) as

a subcategory. The Ext groups satisfy

Exti(E,F) = HomD(X)(E,F[i]), where [i]

is shift by i. Derived categories appear in

Kontsevich’s Homological Mirror Symme-

try Conjecture. It is an important problem

to extend Donaldson–Thomas theory from

coh(X) to Db(coh(X)).

13



3. Donaldson–Thomas invariants

Let X be a Calabi–Yau 3-fold, and L an

ample line bundle on X. This induces

a notion of Gieseker stability on coh(X).

Write τ for the stability condition coming

from L. It depends on L, so a different

ample line bundle L̃ induces a different sta-

bility condition τ̃ . Given α ∈ K(X), we can

form the moduli spaces Mα
st(τ),Mα

ss(τ) of

τ-(semi)stable sheaves E in coh(X) with

[E] = α in K(X). We can regard these as

coarse moduli schemes, or as Artin stacks.

Donaldson–Thomas invariants DTα(τ) are

Z-valued invariants ‘counting’ τ-(semi)stable

sheaves in class α ∈ K(X).
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Milestones in D–T theory
• Thomas (1998): defined DTα(τ) ∈ Z,
proved deformation-invariant.
• MNOP (2003): conjectured relation be-
tween DTα(τ) for α of rank 1 and Gromov–
Witten invariants GWg(α) of X.
• Behrend (2005): wrote DTα(τ) as a

weighted Euler characteristic
∫
Mα

st(τ)
ν dχ,

where ν is the ‘Behrend function’.
• Joyce–Song (2008): defined generalized
D–T invariants D̄Tα(τ) ∈ Q, proved wall-
crossing formula under change of τ and
deformation-invariance.
• Kontsevich–Soibelman (2008): defined
motivic D–T invariants, with wall-crossing
(depends on conjectures).
• Kontsevich–Soibelman (2010): defined
cohomological Hall algebras, categorified
D-T theory (depends on conjectures).

15



3.1 Thomas math.AG/9806111
Form the coarse moduli schemes Mα

st(τ),
Mα

ss(τ) of τ-(semi)stable E ∈ coh(X) with
[E] = α in K(X). ThenMα

ss(τ) is a proper
projective K-scheme, andMα

st(τ) is an open
subscheme. Thomas showed that Mα

st(τ)
has a (symmetric) obstruction theory.
When Mα

st(τ) = Mα
ss(τ), i.e., when there

are no strictly semistable sheaves in class
α, Mα

st(τ) is also proper. Using the ob-
struction theory, one defines a virtual class
[Mα

st(τ)]vir in A0(Mα
st(τ)), and sets

DTα(τ) =
∫
[Mα

st(τ)]vir 1 ∈ Z.

Thomas proved DTα(τ) is unchanged by
continuous deformations of X, that is, it
is independent of the complex structure J
of X up to deformation. This is a strong
statement, as deforming X can change
coh(X) and Mα

st(τ) radically.
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3.2 MNOP math.AG/0312059
Let E be a torsion-free coherent sheaf of
rank 1 on X. The reflexive hull (E∨)∨ is a
line bundle, and E ↪→ (E∨)∨ is an isomor-
phism except in codimension > 2. Line
bundles on X are classified by H2(X;Z).
So we may as well take (E∨)∨ = OX. Then
E is a subsheaf of OX, the ideal sheaf IS
of a subscheme S of X with dimS 6 1.
In rank 1, stable=semistable=torsion-free.
So when rankα = 1, DTα(τ) is defined and
‘counts’ ideal sheaves IS for dimS 6 1 –
roughly, counts curves in X with a given
homology class and genus. The MNOP
Conjecture relates DTα(τ) for α of rank 1
with the Gromov–Witten invariants GWg(β)
of X. It is still unproven.
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Aside: higher rank D–T invariants

One evil thing MNOP did is make most

of the world believe that all D–T invari-

ants do is count ideal sheaves. But in fact

D–T invariants count vector bundles and

coherent sheaves of any rank.

Very little is known about the ‘meaning’

of higher rank D–T invariants.

Questions: What information is contained

in the system of invariants D̄Tα(τ) for all

α, especially when rankα > 1?

Do they depend on more than just χ(X)

and the Gromov–Witten invariants GWg(α)?

Is there some rank d such that all D̄Tα(τ)

for rankα > d may be written in terms

of D̄Tβ(τ) for rankβ 6 d? (True (?) for

Donaldson invariants with d = 2.)
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3.3 Behrend math.AG/0507523
Kai Behrend showed that DTα(τ) is a
weighted Euler characteristic

DTα(τ) =
∫
Mα

st(τ)
ν dχ, (3)

where ν is the ‘Behrend function’, a Z-
valued constructible function on Mα

st(τ)
depending only on the scheme structure
of Mα

st(τ). We think of ν as a multiplic-
ity function. If Mα

st(τ) is a k-fold point
SpecC[z]/(zk) then ν ≡ k. If Mα

st(τ) is
smooth of dimension d then ν ≡ (−1)d.
Suppose U is a complex manifold, f : U →
C is holomorphic, and M is a C-scheme
locally isomorphic to Crit(f) as a complex
analytic space. Then

νM(x) = (−1)dimU
(
1− χ(MFf(x))

)
, (4)

with MFf(x) the Milnor fibre of f at x.
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3.4 Joyce–Song arXiv/0810.5645
Joyce–Song defined generalized D–T in-
variants D̄Tα(τ) in Q, defined for all α ∈
K(X), such that
• D̄Tα(τ) is unchanged by deformations of
the underlying Calabi–Yau 3-fold.
• IfMα

st(τ)=Mα
ss(τ) thenD̄Tα(τ)=DTα(τ).

• The D̄Tα(τ) transform according to a
known transformation law under change of
stability condition, of the form
D̄Tα(τ̃) =

∑
iso. classes

of Γ, I, κ

± U(Γ, I, κ; τ, τ̃)·∏
i∈I

D̄Tκ(i)(τ)·
∏

edges
i− j in Γ

χ̄(κ(i), κ(j)).
(5)

Here Γ is a connected, simply-connected
undirected graph with vertices I, κ : I →
K(X) has

∑
i∈I κ(i) = α, and U(Γ, I, κ; τ, τ̃)

in Q are explicit combinatorial coefficients.
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The D̄Tα(τ) lie in Q rather than Z be-
cause strictly semistable sheaves E must
be ‘counted’ with rational weights.
Suppose E is stable and rigid in class α.
Then kE = E⊕· · ·⊕E is strictly semistable
in class kα, for k > 2. Calculations show
that E contributes 1 to D̄Tα(τ), and kE

contributes 1/k2 to D̄T kα(τ).
Define new invariants D̂Tα(τ) ∈ Q by

D̄Tα(τ) =
∑

k>1:k divides α

1

k2
D̂Tα/k(τ). (6)

Then the kE for k > 1 above contribute 1
to D̂Tα(τ) and 0 to D̂T kα(τ) for k > 1.

Conjecture. Suppose τ is generic, in the
sense that τ(α) = τ(β) implies χ̄(α, β) =
0. Then D̂Tα(τ) ∈ Z for all α ∈ K(X).

The D̂Tα(τ) may be interpreted as ‘num-
bers of BPS states’ in String Theory.
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Aside: counting special Lagrangians.

Let X be a Calabi–Yau 3-fold with ‘mir-

ror’ Calabi–Yau X̂. Then mirror symmetry

is supposed to identify Db(coh(X)) with

DbFuk(X̂), where Fuk(X̂) is the Fukaya

category of Lagrangians in X̂. (Semi)stable

coherent sheaves in Db(coh(X)) are ex-

pected to be identified with special

Lagrangians in DbFuk(X̂). So we expect

D̂Tα(τ) to be identified with an invariant

‘counting’ special Lagrangians in X̂.
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I actually got into this subject from the

mirror side: my work on singularities of

special Lagrangians led me to conjecture

the existence of an interesting invariant

‘counting’ special Lagrangians (see hep-

th/9907013), presumably mirror to D–T

invariants, though I didn’t know that then.

The shape of the wall-crossing formula (5)

as a sum over trees Γ is motivated from

the special Lagrangian side: given a spe-

cial Lagrangian Q-homology sphere L̂ in

X̂, as you deform the complex structure

Ĵ, you expect L̂ to break up into a tree of

special Lagrangian Q-homology spheres.
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Outstanding problems from Joyce–Song

• Extend field from C to K algebraically

closed of characteristic 0 – now done, with

Vittoria Bussi. Includes a strictly algebraic

proof of the ‘Behrend function identities’,

proved in Joyce–Song using gauge theory.

• Prove D̂Tα(τ) ∈ Z for generic τ .

• Extend from coh(X) to Db(coh(X)). Com-

bine methods of Bussi and Huybrechts–

Thomas to prove ‘Behrend function iden-

tities’ for Db(coh(X))?

• Prove that can write Mα
st(τ) globally in

the form Crit(f) for f : U → C a holomor-

phic function on a complex manifold U .

Done near a point in Mα
st(τ) in J–S.
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3.5. Kontsevich–Soibelman

arXiv/0811.2435

Behrend showed that D–T invariants are
weighted Euler characteristics DTα(τ) =
χ
(
Mα

st(τ), ν
)
. Similarly, Joyce–Song use

Euler characteristics to do the actual ‘count-
ing’ to define the invariants D̄Tα(τ), D̂Tα(τ).
The Euler characteristic χ is defined for
finite type schemes X over C, or general
fields K (usually characteristic 0). It sat-
isfies χ(X × Y ) = χ(X)χ(Y ), and if Z ⊆ Y
is closed then χ(Y ) = χ(Y \ Z) + χ(Z).
Define the Grothendieck group K(SchC)
to be the commutative ring generated by
isomorphism classes [X] of finite type C-
schemes X, with relations [Y ] = [Y \ Z] +
[Z] if Z ⊆ Y is closed, and with multipli-
cation [X] · [Y ] = [X × Y ].
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Then the Euler characteristic induces a

ring homomorphism χ : K(SchC) → Z. It

is an example of a motivic invariant of C-

schemes. A general motivic invariant is a

map Υ : {C−schemes} → R for a commu-

tative ring R, which factors through a ring

morphism K(SchC) → R. Examples are

(virtual) Poincaré polynomials, (virtual)

Hodge polynomials, and the universal

motivic invariant with R = K(SchC) and

Υ(X) = [X].
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Kontsevich and Soibelman outlined a very
general version of D–T theory, with lots of
exciting new ideas in it. One aspect was
that they wanted to define ‘motivic’ D–
T invariants in which Euler characteristics
are replaced by another motivic invariant
of C-schemes Υ, so that roughly we have

DTαmot(τ) = Υ
(
Mα

st(τ), νmot
)
, (7)

where νmot is a ‘motivic Behrend func-
tion’ – very roughly a constructible func-
tion νmot :Mα

st(τ)→ R, but actually more
complicated. So, if Υ(X) is the virtual
Poincaré polynomial PX(t), with PX(−1) =
χ(X), then DTαmot(τ) would be a polyno-
mial in t, with DTαmot(τ)(−1) = DTα(τ).
They are refinements of ordinary D–T in-
variants, containing more information.
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Working over motivic invariants has ad-
vantages and disadvantages. An advan-
tage: suppose Υ is a motivic invariant of
C-schemes with values in a ring R, and
Υ(GL(n,C)) is invertible in R for all n =
1,2, . . .. This holds for instance if Υ is vir-
tual Poincaré polynomials and R = Q(t) is
rational functions in t.
Now let R be a finite type Artin C-stack
(with affine geometric stabilizers). We can
write R =

∐k
i=1 Ri for R1, . . . ,Rk locally

closed substacks with Ri
∼= [Xi/GL(ni,C)]

for finite type C-schemes Xi. Define

Υ(R) =
k∑
i=1

Υ(Xi)

Υ(GL(n,C))
.

This is a well-behaved extension of Υ to
Artin stacks. It does not work for Euler
characteristics, as you divide by zero.
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This is very helpful: to ‘count’ strictly

semistables correctly, one should work not

with the coarse moduli scheme Mα
ss(τ),

but with the moduli stack Mα
ss(τ). The

Euler characteristic χ(Mα
ss(τ)) is undefined,

and getting round this causes a lot of work

in Joyce–Song.

A disadvantage: suppose φ : X → Y is an

étale locally trivial fibration of C-schemes,

with fibre F . Euler characteristics satisfy

χ(X) = χ(Y )χ(F ), but other motivic in-

variants Υ do not have Υ(X) = Υ(Y )Υ(F ).

Because of this, with Euler characteris-

tics, one works with constructible func-

tions CF(Y ), but with motivic invariants

one needs ‘stack functions’ K0(SchY )⊗ZR.
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Other features of Kontsevich–Soibelman:

• motivic D–T invariants DTαmot(τ) will

not be deformation-invariant in general.

• rather than working in the abelian cate-

gory coh(X) with Gieseker stability, as in

Joyce–Song, they worked in the derived

category Db(coh(X)) with Bridgeland sta-

bility conditions (no examples of Bridge-

land stability conditions on Db(coh(X)) for

X compact C–Y 3-fold currently known).

• K–S have their own wall-crossing for-

mula, essentially equivalent to J–S (5),

but more popular with general public.

• most results depend on conjectures, not

yet proved.
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Outstanding problems from

Kontsevich–Soibelman 2008:

There are many, but one area I’m inter-

ested in is to define ‘motivic Behrend func-

tions’ rigorously, and prove they satisfy

suitable ‘motivic Behrend function identi-

ties’ needed to make the K–S integration

map an algebra morphism (more later).

Two contexts for this:

(a) quiver with (polynomial) superpoten-

tial – toy model, but still difficult?

(b) compact C–Y 3-fold, using (algebraic)

almost closed 1-form methods rather than

superpotentials.
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3.6. Kontsevich–Soibelman

arXiv/1006.2706

One direction in which to generalize D–

T theory is to make it motivic, as in K–

S 2008. A second direction is to cate-

gorify it. The basic idea is this. Consider

for simplicity a D–T moduli space Mα
st(τ)

with Mα
st(τ) = Mα

ss(τ). Then DTα(τ) =

χ
(
Mα

st(τ), ν
)

is a kind of generalized Euler

characteristic of Mα
st(τ).

Now χ(X) =
∑dimX
i=0 (−1)i dimCH

i(X;C).

So it seems reasonable that there might

exist some natural ‘generalized cohomol-

ogy’ H∗gen

(
Mα

st(τ),C
)

of Mα
st(τ), such that

DTα(τ) =
∑
i>0

(−1)i dimCH
i
gen

(
Mα

st(τ),C
)
.
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This process is called ‘categorification’, as

we are moving one place rightwards in the

sequence: integers, vector spaces, cate-

gories, 2-categories, . . . .

Here are some reasons to believe that such

a ‘generalized cohomology’ H∗gen

(
Mα

st(τ),C
)

might exist, and be important:

• in String Theory, there is a notion of ‘al-

gebras of BPS states’ – these are a chunk

of the String Theory, not yet mathemat-

ically defined, but at least a graded vec-

tor space and perhaps an associative alge-

bra. Their graded dimensions are ‘num-

bers of BPS states’. The integer invari-

ants DTα(τ), D̂Tα(τ) are interpreted as

‘numbers of BPS states’.
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• exotic cohomology theories – ‘Floer co-

homology’ – occur in several areas of ge-

ometry connected to moduli spaces and to

physics. One such is the instanton Floer

homology HF ∗(Y ) of compact 3-manifolds

Y (must be a Q-homology sphere?). This

satisfies
∑
i(−1)i dimHF i(Y ) = Cass(Y ),

where Cass(Y ) is the Casson invariant of

Y . But D–T invariants are based on Cas-

son invariants, and were originally called

‘holomorphic Casson invariants’.
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• A heuristic argument of Richard Thomas

says we can regard Mα
st(τ) (at least for

moduli spaces of vector bundles E) as the

critical locus of the holomorphic Chern–

Simons functional CS, a holomorphic func-

tion on an infinite-dimensional complex man-

ifold of connections on E.

Using this, Joyce–Song proved thatMα
st(τ)

is isomorphic near a point [E] as a complex

analytic space to Crit(f) for f : U → C a

holomorphic function on a finite-dimensional

complex manifold.
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If you have a holomorphic function f :

U → C for U a complex manifold, there (at

least) are two ways (morally equivalent?)

in which you can make a ‘generalized co-

homology theory’ H∗gen(U, f):

(a) there is a perverse sheaf of vanishing

cycles Q on U , supported on Crit(f). The

hypercohomology H∗(Q) of Q is the gen-

eralized cohomology we want. Think of

perverse sheaves as a ‘categorification’ of

constructible functions, and Q as a cate-

gorification of the Behrend function νCrit(f).
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(b) Think of Re f : U → R as a smooth

function, and let f̃ : U → R be a small per-

turbation of Re f which is a Morse func-

tion. Then compute the Morse homology

H∗
f̃
(U ;C) of U with respect to f̃ . Note

that we expect U to be noncompact, so

H∗
f̃
(U ;C) is not just H∗(U ;C), but depends

on f̃ . It also may not be defined in general,

as one needs compactness properties for

gradient flow lines of f̃ . But these should

hold if f̃ perturbs Re f , f holomorphic.

Floer homology theories are motivated in

exactly this way, as computing Morse ho-

mology of infinite-dimensional manifolds

of connections/submanifolds etc., w.r.t.

gradient flow of an interesting functional.
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Aside: Donaldson and Segal, Gauge the-
ory and higher dimensions II,
arXiv:0902.3239, 2009, roughly speaking
contains a proposal to categorify D–T in-
variants counting holomorphic vector bun-
dles on a C–Y 3-fold X by a similar method
to instanton Floer homology of 3-manifolds,
using G2 geometry on X × R.
Kai Behrend (unpublished) also has a
programme aimed at categorifying D–T
invariants.
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There is a lot in K–S 2010. One strand
of it aims to define some kind of general-
ized cohomology H∗gen

(
Mα

st(τ),C
)
, or bet-

ter H∗gen

(
M,C

)
for M the moduli stack of

coherent sheaves on the C–Y 3-fold X,
with an associative (or twisted associa-
tive) multiplication, and such that

DTα(τ) =
∑
i>0

(−1)i dimCH
i
gen

(
Mα

st(τ),C
)
.

It is worked out for quivers without and
with potential, rather than C–Y 3-folds.
We think of H∗gen

(
M,C

)
as a kind of Ringel–

Hall algebra, in a sense I’ll explain later.
When M is a smooth stack, H∗gen

(
M,C

)
is the usual stack cohomology H∗sta

(
M,C

)
,

given by H∗sta

(
[X/G],C

)
= H∗G(X;C) for a

quotient stack [X/G], where H∗G(X;C) is
the G-equivariant cohomology of X.
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4. Ringel–Hall algebras
A fundamental part of Joyce–Song and
Kontsevich–Soibelman 2008 and 2010 is
the use of Ringel–Hall algebras. This is a
general method for constructing an
associative algebra H(A) from an abelian
category A.
We first explain the idea over finite fields.
Suppose A is an abelian category over the
finite field Fq, and Hom(E,F),Ext1(E,F)
are finite-dimensional over Fq for all E,F ∈
A and i > 0 (and so finite). Define H(A)
to be the Q-vector space spanned by iso-
morphism classes [E] of objects E in A.
Define a Q-bilinear product ∗ on H(A) by

[E] ∗ [G] =
∑

iso. classes of
exact sequences

0→E α→F β→G→0

1∣∣∣∣∣∣
{γ:F→F:
γ◦α=α,
β◦γ=β}

∣∣∣∣∣∣
· [F].
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This is a finite sum as Ext1(G, E) is fi-
nite, and the fraction is well-defined as
Hom(F ,F) is finite.
The important point is that ∗ is associa-
tive. To see this, note that

([E1] ∗ [E2]) ∗ [E3] = [E1] ∗ ([E2] ∗ [E3])

=
∑

[F]
nF

∏3
i=1 |Aut(Ei)|
|Aut(F)|

· [F],

where nF is the number of filtrations
0 = F0 ⊂ F1 ⊂ F2 ⊂ F3 = F with F i/F i−1

∼=
Ei for i = 1,2,3. So H(A) is an associative
algebra, with identity [0].
For A in which Hom(E,F),Ext1(E,F) are
not finite for all E,F, we must adapt this
construction. We need H(A) to be spanned
not just by isomorphism classes [E] of E ∈
A, but by ‘families of objects in A’, and
the ‘counting’ of exact sequences should
be done using some motivic invariant.

41



Here is a version of Ringel–Hall algebras
which works in great generality. Let A be
an abelian category in which one can ‘do
algebraic geometry’, i.e. we have a moduli
stack MA of objects in A, an Artin K-stack
locally of finite type. E.g. A = coh(X) for
X a projective K-scheme, A = mod-KQ/I,
(Q, I) quiver with relations.
We then define the vector space of ‘stack
functions’ SF(MA) on MA. This is gener-
ated by equivalence classes [R, φ] of mor-
phisms φ : R → MA for R a finite type
Artin K-stack, with motivic relation

[R, φ] = [R \S, φ|R\S] + [S, φ|S]

when S is a closed substack of R.
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Think of stack functions SF(MA) as a
generalization of constructible functions
CF(MA) on MA. Using the short ex-
act sequences 0 → E → F → G → 0 in
A, we define an associative, noncommuta-
tive multiplication ∗ on SF(MA), making
SF(MA) into a ‘Ringel–Hall algebra’.
Joyce also defines a Lie subalgebra
SFind(MA) of ‘indecomposable’ stack func-
tions in SF(MA), which is closed under
the Lie bracket [f, g] = f ∗g−g ∗f , but not
under the Ringel–Hall product ∗. Roughly,
SFind(MA) is generated by [R, φ] in which
R has stabilizer groups of rank 1.
Suppose τ is a stability condition on A
such that the open substacks Mα

ss(τ) of τ-
semistable objects in A in class α ∈ K(A)
are of finite type. Then we have elements
δαss(τ) =

[
Mα

ss(τ), inc
]

in SF(MA), thought
of as the characteristic function of Mα

ss(τ).
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The existence of unique Harder–Narasimhan
filtrations for the stability condition τ means
that we have an identity in SF(MA):

1Mα
A

=
∑

α1,...,αn∈K(A)\0:
α1+·+αn=α,
τ(α1)>···>τ(αn)

δ
α1
ss (τ) ∗ · · · δαnss (τ). (8)

If τ, τ̃ are different stability conditions, by
inverting this we can write δαss(τ̃) as a sum
of products of δ

β
ss(τ) in SF(MA). This

gives a wall-crossing formula in SF(MA).
Joyce also defines εα(τ) ∈ SFind(MA), es-
sentially by taking log of the generating
function of the δαss(τ), and gives a wall-
crossing formula for them using [ , ].
To find out more than you want to know
about this, read all of D. Joyce, ‘Configu-
rations in abelian categories. I,II,. . . ,∞’.
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Note that SF(MA),SFind(MA) are huge
algebras, can’t describe them explicitly.
Now for the interesting bit: suppose A is a
3-Calabi–Yau category, which means Serre
duality Exti(F , E) ∼= Ext3−i(E,F)∗ holds in
A, and maybe extra assumptions as well.
Then Joyce–Song define a Lie algebra mor-
phism Φ : SFind(MA)→ L(A), where L(A)
is the small, explicit Lie algebra over Q
generated by symbols λα for α ∈ K(A),
with [λα, λβ] = (−1)χ̄(α,β)χ̄(α, β)λα+β.
Similarly, given a motivic invariant Υ with
values in a ring R in which Υ(GL(n,K)) is
invertible for k > 1, K–S 2008 ‘define’ an
algebra morphism Ψ : SF(MA)→ Q(A, R),
where Q(A, R) is the R-algebra with basis
of symbols ρα for α ∈ K(A), and multipli-

cation ρα ? ρβ = L
1
2χ̄(α,β)ρα+β.
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We use these morphisms Φ,Ψ to define
D–T invariants. J–S define D̄Tα(τ) by

Φ(εα(τ)) = −D̄Tα(τ)λα.

Kontsevich and Soibelman define

Ψ(δαss(τ)) = −DTαmot(τ)ρα.

Then the wall-crossing formulae for εα(τ),
δαss(τ) and Φ,Ψ (Lie) algebra morphisms
gives wall-crossing formulae for D̄Tα(τ)λα,
DTαmot(τ)ρα in the (Lie) algebras L(A),
Q(A, R), and hence wall-crossing formulae
for D̄Tα(τ), DTαmot(τ).
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My morphism Φ : SFind(MA) → L(A) es-
sentially involves taking Euler characteris-
tics weighted by the Behrend function ν
of MA. The fact that Φ is a Lie alge-
bra morphism follows from two ‘Behrend
function identities’

ν(E1 ⊕ E2) = (−1)χ̄([E1],[E2])ν(E1)ν(E2), (9)∫
[λ]∈P(Ext1(E2,E1)):
λ⇔ 0→E1→F→E2→0

ν(F )dχ

−
∫

[λ′]∈P(Ext1(E1,E2)):
λ′ ⇔ 0→E2→F ′→E1→0

ν(F ′)dχ

=
(
dim Ext1(E2, E1)− dim Ext1(E1, E2)

)
νM(E1 ⊕ E2). (10)

Similarly, the K–S morphism Ψ takes a
motivic invariant Υ weighted by the (not
fully defined) ‘motivic Behrend function’
νmot, and is an algebra morphism because
of (unproved) ‘motivic Behrend function
identities’.
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Aside: The proof of the Behrend func-

tion identities (9)–(10) in Joyce–Song in-

volved first showing (using gauge theory)

that we can write the moduli stack M lo-

cally as [Crit(f)/G] for G a complex group,

U a complex manifold acted on by G, and

f : U → C a G-equivariant holomorphic

function. Then we used the formula

νM(uG) = (−1)dimU−dimG
(
1−χ(MFf(u))

)
for u ∈ Crit(f) ⊆ U , where MFf(u) is the

Milnor fibre of f at u. The gauge theory

part is non-algebraic, and works only over

the field K = C.
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Now, Vittoria Bussi and I have found a

new, algebraic proof of (9)–(10), using ‘al-

most closed 1-forms’, which works over K
algebraically closed of characteristic zero.

This suggests that almost closed 1-form

methods may be useful in motivic D–T

theory as in K–S 2008, as a substitute for

their formal power series methods.

Question: Let ω be an algebraic almost

closed 1-form on a smooth K-scheme U .

That is, ω is an algebraic 1-form on U , and

dw ∈ Iω · Λ2T ∗U , where Iω is the ideal of

functions vanishing on ω−1(0).

Can you define a ‘motivic Behrend func-

tion’ νmot of ω−1(0) with the expected

properties? Can you prove ‘motivic Behrend

function identities’ for it?
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Another question: We could also ask

whether almost closed 1-forms are enough

to do categorified D–T theory, e.g. can

you define a ‘perverse sheaf of vanishing

cycles’ Q supported on ω−1(0) for ω an

almost closed 1-form, which agrees with

the usual definition when ω = df . My

guess would be that you cannot, but I’d

like to hear what people who know about

perverse sheaves think.
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You can think of stack functions SF(M) as

being a generalized cohomology theory of

M, in that they are a functor {stacks} →
{algebras} with the same kind of push-

forwards, pullbacks etc. as a cohomology

theory. So, we can imagine repeating the

Ringel–Hall algebra construction, but re-

placing SF(M) by some other ‘generalized

cohomology theory’ H∗gen(M). This is the

basic idea of Kontsevich and Soibelman

2010.
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Questions: Suppose we apply some ver-

sion of the K–S 2010 ‘cohomological Hall

algebra’ construction to simple categories

A coming from algebra, e.g. representa-

tions of quivers with potential. Do we ob-

tain algebras of interest in (higher) repre-

sentation theory?

What can representation theory tell us about

D–T theory? E.g. should generating func-

tions of D–T invariants be characters of

some interesting algebra of ‘cohomologi-

cal Hall algebra’ type, and if so, can we

use them to make predictions on proper-

ties of generating functions of D–T invari-

ants, e.g. modularity?
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5. Geometric structures

on moduli spaces

Kinds of space used in complex algebraic

geometry, in decreasing order of ‘niceness’:

• complex manifolds (very nice)

• varieties (nice)

• schemes (not bad): Thomas’ DTα(τ).

• algebraic spaces (getting worse)

• Deligne–Mumford stacks (not nice)

• Artin stacks (horrible): our D̄Tα(τ).

• higher/derived stacks (deeply horrible)

• derived Artin (k, l)-stacks (yuck . . . )

***

• d-manifolds and d-orbifolds (gorgeous)

– see http://people.maths.ox.ac.uk/

∼joyce/dmanifolds.html
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An important issue in extending D–T the-
ory is: what geometric structure do you
put on moduli spacesM of coherent sheaves
on a Calabi–Yau m-fold X?
The deformation theory of coherent sheaves
E concerns by the Ext groups Exti(E,E).
So one way to talk about different geo-
metric structures on moduli spaces M is
to ask what information they store about
Ext∗(E,E) at each point [E].
The coarse moduli scheme Mα

st(τ) of sta-
ble sheaves E has T[E]Mα

st(τ) ∼= Ext1(E,E).

Although schemes do not remember Ext0,
for E stable Ext0(E,E) = C is standard. In
the C–Y 3 case we then have Ext2(E,E) ∼=
Ext1(E,E)∗ and Ext3(E,E) ∼= Ext0(E,E)∗.
This recovers the whole of Ext∗(E,E) from
T[E]Mα

st(τ). This is why for Thomas’ DTα(τ)
whenMα

ss(τ) =Mα
st(τ), schemes are enough.
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In fact Thomas works with more struc-
ture on M = Mα

st(τ): a (symmetric) ob-
struction theory. This is an object E• in
the derived category Db(coh(M)) of co-
herent sheaves on M, and a morphism
φ : E• → LM in Db(coh(M)), where LM
is the cotangent complex of M.
This is really a shadow of some deeper
‘derived’ geometry: morally speaking the
singular scheme M is the classical part (1-
category truncation) of a ‘derived scheme’
M, where M is ‘smooth’ in a derived
sense – a ‘derived complex manifold’. There
should be an inclusion i :M ↪→M. Then
φ : E• → LM is essentially di : i∗(T ∗M)→
T ∗M in a derived sense.
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Behrend (2005) showed that when the ob-

struction theory is symmetric, the virtual

class DTα(τ) = χ
(
Mα

st(τ), ν
)

depends only

on the scheme structure Mα
st(τ), not on

the choice of symmetric obstruction the-

ory. This corresponds to the fact that

T[E]Mα
st(τ) determines Ext∗(E,E) in the

C–Y 3 case.

For strictly semistables E, the coarse mod-

uli scheme Mα
ss(τ) is not a good model.

In this case we can have Ext0(E,E) 6∼= C,

and T[E]Mα
ss(τ) 6∼= Ext1(E,E). So Mα

ss(τ)

tells you almost nothing about Ext∗(E,E).

This is why Thomas’ definition fails when

Mα
ss(τ) 6=Mα

st(τ).
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Joyce–Song and Kontsevich–Soibelman

(2008) worked principally with Artin stacks.

If M is the moduli stack of coherent sheaves

E then each point [E] in M has a sta-

bilizer group IsoM(E) ∼= Aut(E), whose

Lie algebra is Ext0(E,E), and T[E]M
∼=

Ext1(E,E). So the stack M knows about

Ext0(E,E),Ext1(E,E). In the C–Y 3 case

Ext2(E,E) ∼= Ext1(E,E)∗ and Ext3(E,E) ∼=
Ext0(E,E)∗, so M determines Ext∗(E,E).

This is one reason why J–S and K–S work.
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Questions:

• What kind of geometric structure on

moduli spaces of coherent sheaves on a

C–Y 3-fold X is ‘best’ for doing motivic

and categorified D–T theory? Are Artin

stacks enough, or do we need some kind

of derived stack?

In K–S 2008 we already need some extra

structure on the moduli stack M to make

motivic D–T invariants, ‘orientation data’.
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J–S show that an atlas A for the moduli

stack M can locally be written in the form

Crit(f) for U a complex manifold and f :

U → C holomorphic. That is, Crit(f) is the

zeroes of a non-algebraic closed 1-form.

Behrend shows that a scheme with a sym-

metric obstruction theory is locally the ze-

roes ω−1(0) of an algebraic almost closed

1-form ω on a smooth scheme U . Con-

versely, given an algebraic almost closed

1-form ω on U , then ω−1(0) has a symmet-

ric obstruction theory. Maulik, Pandhari-

pande and Thomas give examples of an al-

most closed 1-form ω such that ω−1(0) is

not locally isomorphic to Crit(f) for holo-

morphic f .
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Hence, an atlas A for M has a property –

being locally of the form Crit(f) for holo-

morphic f – that is stronger than having

a symmetric obstruction theory, but cur-

rently has no algebraic description.

Questions:

• Is there an algebraic condition on M,

stronger than having a symmetric obstruc-

tion theory, which is equivalent to atlases

A for M being locally of the form Crit(f)?

If so, can one give an algebraic proof that

this condition holds?

• What structure on M best reflects the

fact that M is morally of the form Crit(f)

for f a holomorphic function on an infinite-

dimensional manifold?
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Questions:

• Is there an interesting generalization of

D-T theory to Calabi-Yaum-folds form>3?

I do not think there will be deformation-

invariant D–T style invariants when m >

3. But it seems possible that there may be

well-behaved ‘motivic Behrend functions’

and a K–S style ‘integration map’ which

yield motivic D–T invariants when m >

3 with nice wall-crossing formulae. We

should probably be thinking in terms of

derived stacks, since Artin moduli stacks

would lose information about Exti(E,E)

for 2 6 i 6 m− 2.

61


