Homework problems, days 1-4

1. Complex projective space $\mathbb{C P}^{n}$ is the set of 1 -dimensional vector subspaces of \mathbb{C}^{n+1}. Points in $\mathbb{C P}^{n}$ are written $\left[z_{0}, \ldots, z_{n}\right]$ for $\left(z_{0}, \ldots, z_{n}\right)$ in $\mathbb{C}^{n+1} \backslash\{0\}$, where $\left[z_{0}, \ldots, z_{n}\right]=\mathbb{C} \cdot\left(z_{0}, \ldots, z_{n}\right) \subseteq \mathbb{C}^{n+1}$, and $\left[\lambda z_{0}, \ldots, \lambda z_{n}\right]=\left[z_{0}, \ldots, z_{n}\right]$ for $\lambda \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$. Equivalently, $\mathbb{C P}^{n}=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{*}$, where \mathbb{C}^{*} acts by $\lambda:\left(z_{0}, \ldots, z_{n}\right) \mapsto\left(\lambda z_{0}, \ldots, \lambda z_{n}\right)$. It has the quotient topology induced from the surjective projection $\pi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C P}^{n}, \pi:\left(z_{0}, \ldots, z_{n}\right) \mapsto\left[z_{0}, \ldots, z_{n}\right]$.

Write down an explicit atlas on $\mathbb{C P}^{n}$, compute the transition functions between charts, and prove that it makes $\mathbb{C P}^{n}$ into a smooth $2 n$-dimensional manifold. (Hint: use $n+1$ charts $\left(U_{i}, \phi_{i}\right)$ for $i=0, \ldots, n$, such that $\phi_{i}\left(U_{i}\right)$ is the open subset of $\left[z_{0}, \ldots, z_{n}\right] \in \mathbb{C P}^{n}$ with $z_{i} \neq 0-\operatorname{try}$ fixing $z_{i}=1$.)
2. Let X, Y be manifolds. Show carefully that $X \times Y$ has a unique manifold structure such that if $(U, \phi),(V, \psi)$ are charts on X, Y then $(U \times V, \phi \times \psi)$ is a chart on $X \times Y$, and $\operatorname{dim}(X \times Y)=\operatorname{dim} X+\operatorname{dim} Y$.

3(a) Let X be the sphere $\mathcal{S}^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: x_{0}^{2}+\cdots+x_{n}^{2}=1\right\}$. Explain why we may identify

$$
T_{\left(x_{0}, \ldots, x_{n}\right)} \mathcal{S}^{n} \cong\left\{\left(y_{0}, \ldots, y_{n}\right) \in \mathbb{R}^{n+1}: x_{0} y_{0}+\cdots+x_{n} y_{n}=0\right\} .
$$

(b) By identifying $\mathbb{R}^{2 k+2} \cong \mathbb{C}^{k+1}$, show that any odd-dimensional sphere $\mathcal{S}^{2 k+1}$ has a nonvanishing vector field $v \in C^{\infty}\left(T \mathcal{S}^{2 k+1}\right)$ (i.e. $v \neq 0$ at every point).
For discussion: can the same thing hold for even-dimensional spheres $\mathcal{S}^{2 k}$?
4. Let X be a manifold and $v, w \in C^{\infty}(T X)$. Suppose $\left(x_{1}, \ldots, x_{n}\right)$ are local coordinates on an open set $U \subseteq X$, so that we may write $v=v_{1} \frac{\partial}{\partial x_{1}}+\cdots+v_{n} \frac{\partial}{\partial x_{n}}$ and $w=w_{1} \frac{\partial}{\partial x_{1}}+\cdots+w_{n} \frac{\partial}{\partial x_{n}}$ on U, for $v_{i}, w_{j}: U \rightarrow \mathbb{R}$ smooth.

Define the Lie bracket $[v, w] \in C^{\infty}(T X)$ by

$$
\begin{equation*}
[v, w]=\sum_{i, j=1}^{n}\left(v_{i} \frac{\partial w_{j}}{\partial x_{i}} \cdot \frac{\partial}{\partial x_{j}}-w_{j} \frac{\partial v_{i}}{\partial x_{j}} \cdot \frac{\partial}{\partial x_{i}}\right) \quad \text { on } U . \tag{1}
\end{equation*}
$$

Prove that this is independent of choice of local coordinates. That is, if $\left(y_{1}, \ldots, y_{n}\right)$ is another local coordinate system on $V \subseteq X$, then (1) and its analogue for $\left(y_{1}, \ldots, y_{n}\right), V$ define the same vector field on $U \cap V$.
5. Take $\alpha \in \Lambda^{k} V$ where $\operatorname{dim} V=n$ and consider the linear map $A_{\alpha}: \Lambda^{n-k} V \rightarrow$ $\Lambda^{n} V$ defined by $A_{\alpha}(\beta)=\alpha \wedge \beta$.
(i) Show that if $\alpha \neq 0$, then $A_{\alpha} \neq 0$.
(ii) Prove that the map $\alpha \mapsto A_{\alpha}$ is an isomorphism from $\Lambda^{k} V$ to the vector space $\operatorname{Hom}\left(\Lambda^{n-k} V, \Lambda^{n} V\right)$ of linear maps from $\Lambda^{n-k} V$ to $\Lambda^{n} V$. Thus if we choose an isomorphism $\Lambda^{n} V \cong \mathbb{R}$ we get isomorphisms $\Lambda^{k} V \cong\left(\Lambda^{n-k} V\right)^{*}$.
6. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $F(x, y, z)=(x y, y z, z x)$. Calculate $F^{*}(x \mathrm{~d} y \wedge$ $\mathrm{d} z)$ and $F^{*}(x \mathrm{~d} y+y \mathrm{~d} z)$.
7.(a) Prove explicitly that the de Rham cohomology groups of \mathbb{R} are $H^{0}(\mathbb{R}) \cong \mathbb{R}$ and $H^{1}(\mathbb{R})=0$.
(b) Similarly, for $\mathcal{S}^{1}=\mathbb{R} / \mathbb{Z}$, prove explicitly that $H^{0}\left(\mathcal{S}^{1}\right) \cong \mathbb{R}$ and $H^{1}\left(\mathcal{S}^{1}\right) \cong \mathbb{R}$.

Hint: Write $\Omega^{0}(\mathbb{R})=\{f(x) \mid f: \mathbb{R} \rightarrow \mathbb{R}$ is smooth $\}$, and $\Omega^{1}(\mathbb{R})=\{g(x) \mathrm{d} x \mid$ $g: \mathbb{R} \rightarrow \mathbb{R}$ is smooth $\}$, so that $\mathrm{d}: \Omega^{0}(\mathbb{R}) \rightarrow \Omega^{1}(\mathbb{R})$ maps $f(x) \longmapsto \frac{\mathrm{d} f}{\mathrm{~d} x}(x) \mathrm{d} x$. For \mathcal{S}^{1}, do the same, except that f, g are \mathbb{Z}-periodic, $f(x)=f(x+n)$ for $n \in \mathbb{Z}$.
8. Show that the product $X \times Y$ of two orientable manifolds is orientable.
9. Is $\mathcal{S}^{2} \times \mathbb{R P}^{2}$ orientable? What about $\mathbb{R P}^{2} \times \mathbb{R} \mathbb{P}^{2}$?
10. A Riemann surface is defined as a 2-dimensional manifold X with an atlas $\left\{\left(U_{i}, \phi_{i}\right): i \in I\right\}$ whose transition maps $\phi_{j}^{-1} \circ \phi_{i}$ for $i, j \in I$ are maps from an open set $\phi_{i}^{-1}\left(\phi_{j}\left(U_{j}\right)\right)$ of $\mathbb{C}=\mathbb{R}^{2}$ to another open set $\phi_{j}^{-1}\left(\phi_{i}\left(U_{j}\right)\right)$ which are holomorphic and invertible. By considering the Jacobian of $\phi_{j}^{-1} \circ \phi_{i}$, show that a Riemann surface is orientable.

