Riemannian holonomy groups and calibrated geometry Dominic Joyce, Oxford Lecture 12. The holonomy groups G₂ and Spin(7)

These slides available at www.maths.ox.ac.uk/~joyce/talks.html

Geometry of G_2 The action of G_2 on \mathbb{R}' preserves the metric g_0 and a 3-form φ_{\cap} on \mathbb{R}^7 . Let g be a metric and φ a 3-form on M^7 . We call (φ, g) a G_2 -structure if $(\varphi, g) \cong (\varphi_0, g_0)$ at each $x \in M$. We call $\nabla \varphi$ the torsion of (φ, q) . If $\nabla \varphi = 0$ then (φ, q) is torsion-free.

We have $\nabla \varphi = 0$ iff $\mathrm{d}\varphi = \mathrm{d}^*\varphi = 0.$ If (φ, g) is torsion-free then $Hol(g) \subseteq G_2$, and g is Ricci-flat. Conversely, if g is a metric on M^7 then $Hol(g) \subset G_2$ iff there is a G_2 -structure (φ, q) with $\nabla \varphi = 0$. If M is compact and $Hol(g) \subset G_2$ then $Hol(g) = G_2$ iff $\pi_1(M)$ is finite.

Let M be compact and oriented, and (φ, g) a torsion-free G_2 -structure on M. Then $d\varphi = d * \varphi$ = 0, so $[\varphi] \in H^3(M,\mathbb{R})$ and $[*\varphi] \in H^4(M, \mathbb{R})$. Let \mathcal{M} be the moduli space of oriented torsion-free G_2 -structures on M up to diffeomorphisms isotopic to the identity.

Theorem. \mathcal{M} is smooth of dimension $b^3(M)$. The maps $\mathcal{M} \to H^3(M, \mathbb{R})$ and $\mathcal{M} \to H^4(M, \mathbb{R})$ taking $[(\varphi, g)] \mapsto [\varphi], [(\varphi, g)] \mapsto$ $[*\varphi]$ are local diffeomorphisms. The map $\mathcal{M} \rightarrow$ $H^3(M,\mathbb{R})\times H^4(M,\mathbb{R})$ taking $[(\varphi, g)] \mapsto ([\varphi], [*\varphi])$ has image a Lagrangian submanifold in $H^{3}(M,\mathbb{R}) \times H^{4}(M,\mathbb{R}).$

Constructing compact *G*₂-manifolds

I constructed the first compact 7-manifolds with holonomy G_2 in 1993-4. This is difficult as such manifolds have only finite symmetry groups, and are not algebraic.

It is interesting as such manifolds are Ricci-flat, they are important in String Theory, and they have beautiful geometrical properties. **The construction, 1** First we choose a compact 7-manifold M. We write down an explicit G_2 -structure (φ , g) on Mwith small torsion.

Then we use analysis to deform to a nearby G_2 structure ($\tilde{\varphi}, \tilde{g}$) with zero torsion. If $\pi_1(M)$ is finite then $\operatorname{Hol}(\tilde{g}) = G_2$ as we want.

The construction, 2 It is not easy to find G_2 -structures with small torsion! Here is one way to do it, in 4 steps. Step 1. Choose a finite group Γ of isometries of the 7-torus T^7 , and a flat, Γ -invariant G_2 -structure (φ_0, g_0) on T^7 . Then T^7/Γ is compact, with a torsionfree G_2 -structure (φ_0, g_0).

Step 2. However, T^7/Γ is an *orbifold*. We repair its singularities to get a compact 7-manifold M. We can resolve *complex* orbifolds using algebraic geometry.

If the singularities of T^7/Γ locally resemble $S^1 \times \mathbb{C}^3/G$ for $G \subset SU(3)$, then we model M on a crepant resolution X of \mathbb{C}^3/G .

Step 3. *M* is made by gluing patches $S^1 \times X$ into T^7/Γ . Now *X* carries ALE metrics of holonomy *SU*(3) As $SU(3) \subset G_2$, these give torsion-free G_2 -structures on $S^1 \times X$.

We join them to (φ_0, g_0) on T^7/Γ to get a family $\{(\varphi_t, g_t) : t \in (0, \epsilon)\}$ of G_2 -structures on M. **Step 4.** This (φ_t, g_t) has $\nabla \varphi_t = O(t^4)$. So $\nabla \varphi_t$ is small for small t. But $R(q_t) = O(t^{-2})$ and the injectivity radius $\delta(q_t) =$ O(t), since g_t becomes singular as $t \rightarrow 0$. For small t we deform (φ_t, g_t) to $(\tilde{\varphi}_t, \tilde{g}_t)$ with $\nabla \tilde{\varphi}_t = 0$, using analysis. Then $\operatorname{Hol}(\tilde{g}_t) = G_2$ if $\pi_1(M)$ is finite.

Steps in the analysis proof:

- Arrange that $d\varphi_t = 0$ and $d^*\varphi_t = d^*\psi_t$, where $\psi_t = O(t^4)$.
- Set $\tilde{\varphi}_t = \varphi_t + d\eta_t$, where $d^*\eta_t = 0$.
- Then $(\tilde{\varphi}_t, \tilde{g}_t)$ is torsion-free iff

 $(\mathsf{d}^*\mathsf{d} + \mathsf{d}\mathsf{d}^*)(\eta_t) = \mathsf{d}^*\psi_t + \mathsf{d}F(\mathsf{d}\eta_t)$

where F is nonlinear with $F(\chi) = O(|\chi|^2).$

 Integrating by parts gives $\|d\eta_t\|_{L^2} \leq 2\|\psi_t\|_{L^2}$ when $\|d\eta_t\|_{C^0}$ is small. Solve by contraction method in $L_2^{14}(\Lambda^2 T^*M)$, using elliptic regularity of $d^*d + dd^*$, balls of radius t and Sobolev embedding.

The construction, 3 Using different groups Γ acting on T^7 , and resolving T^7/Γ in more than one way, we get many compact manifolds with holonomy G_2 .

Geometry of Spin(7) The action of Spin(7) on \mathbb{R}^8 preserves the metric g_0 and a 4-form Ω_0 on \mathbb{R}^8 . Let g be a metric and Ω a 4-form on M^8 . We call (Ω, q) a Spin(7)-structure if $(\Omega, g) \cong (\Omega_0, g_0)$ at each $x \in M$. We call $\nabla \Omega$ the torsion of (Ω, q) .

If $\nabla \Omega = 0$ then (Ω, g) is torsion-free. Also $\nabla \Omega = 0$ iff $d\Omega = 0$. If $\nabla\Omega = 0$ then $Hol(g) \subseteq Spin(7)$. If g is a metric on M^8 then $Hol(q) \subset Spin(7)$ iff there is a Spin(7)-structure (Ω, q) with $\nabla \Omega = 0$. If M is compact and $Hol(q) \subset Spin(7)$ then g has holonomy Spin(7) iff $\pi_1(M) = \{1\}, \hat{A}(M) = 1.$

Compact examples The first examples of compact 8-manifolds with holonomy Spin(7)were constructed by me in 1995. Here is how. Let T^8 be a torus with flat Spin(7)-structure (Ω_0, g_0) , and let Γ be a finite group acting on T^8 preserving (Ω_0, g_0) . Then T^8/Γ is an orbifold.

We choose Γ so that the singularities of T^8/Γ are locally modelled on \mathbb{C}^4/G , for $G \subset SU(4)$.

Then we use complex algebraic geometry to resolve T^8/Γ , giving a compact 8-manifold M. Finally we use analysis to construct metrics on Mwith holonomy Spin(7).

A second construction

Another way to make compact 8-manifolds with holonomy Spin(7) is to start not with T^8 but with a Calabi-Yau 4-orbifold Y with isolated singular points p_1, \ldots, p_k . Find the complex orbifold Y using algebraic geometry, and the metric by the orbifold Calabi Conjecture. 19

Instead of a group Γ we use an antiholomorphic, isometric involution σ on Y fixing only the p_j . Then $Z = Y / \langle \sigma \rangle$ is a real 8-orbifold with singular points p_1, \ldots, p_k . We resolve the p_i to get a compact 8-manifold M, and construct holonomy Spin(7) metrics on M.