Riemannian holonomy groups and calibrated geometry Dominic Joyce, Oxford Lecture 13. Calibrated geometry

These slides available at www.maths.ox.ac.uk/~joyce/talks.html

6. Calibrated geometry 6.1 Minimal submanifolds Let (M, g) be a compact Riemannian manifold, and Na compact submanifold of M. Using q, define the volume Vol(N) of N by integration. We call N minimal if Vol(N)is stationary under small variations of N. Let $\nu \to N$ be the normal bundle of N in M, so that $TM|_N = TN \oplus \nu$.

The second fundamental form $B \in C^{\infty}(S^2T^*N \otimes \nu)$ satisfies $B \cdot (v|_N \otimes w|_N) = \pi_{\nu} (\nabla_v w|_N)$ when $v, w \in C^{\infty}(TM)$ with $v|_N, w|_N \in C^{\infty}(TN).$ The mean curvature vector $\kappa \in C^{\infty}(\nu)$ is the trace of B. By the Euler–Lagrange method, a submanifold N is minimal if and only if $\kappa \equiv 0$. We use this to *define* minimal submanifolds in the noncompact case.

To find a compact minimal k-fold N in M with $[N] = \alpha$ in $H_k(M,\mathbb{Z})$, choose a minimizing sequence $(N_i)_{i=1}^{\infty}$ of compact k-folds N_i with $[N_i] =$ α , such that Vol(N_i) approaches the infimum of volumes with homology class α as $i \to \infty$. If the set of k-folds N with $Vol(N) \leq C$ were compact, we could then choose a subsequence $(N_{i_j})_{j=1}^{\infty}$ converging to a minimal limit N.

4

The set of submanifolds N with Vol $(N) \leq C$ is not compact. But the set of *rectifiable currents* N with Vol $(N) \leq C$ is. Therefore, every $\alpha \in H_k(M, \mathbb{Z})$ is represented by a minimal rectifiable current.

Rectifiable currents are generalizations of submanifolds, and have singularities. They are studied in *Geometric Measure Theory*. Some important questions: how close are minimal rectifiable currents to being submanifolds? How bad are their singularities? What are the singularities like? A k-dimensional minimal rectifiable current is an embedded submanifold except on a singular set of Hausdorff dimension at most k-2.

6.2 Calibrations

Let (M, g) be a Riemannian manifold. An oriented tangent k-plane V on M is an oriented vector subspace V of some tangent space T_xM to M with dim V = k. Each has a volume form vol_V defined using g.

A calibration on M is a closed k-form φ with $\varphi|_V \leq \operatorname{vol}_V$ for every oriented tangent k-plane V on M.

Let N be an oriented k-fold in M with dim N = k. We call N calibrated if $\varphi|_{T_xN} = \operatorname{vol}_{T_xN}$ for all $x \in N$.

If N is compact then $vol(N) \ge [\varphi] \cdot [N]$, and if N is compact and calibrated then $vol(N) = [\varphi] \cdot [N]$, where $[\varphi] \in H^k(M, \mathbb{R})$ and $[N] \in H_k(M, \mathbb{Z})$.

Thus calibrated submanifolds are volume-minimizing in their homology class, and are *minimal submanifolds*. Let (M, g) be Riemannian with calibration φ , and let $\iota : N \rightarrow M$ be an immersion. For N to be calibrated is a first-order p.d.e. on ι , but for N to be minimal is a second-order

p.d.e. on ι .

Thus, the calibrated equations are often easier to solve than the minimal equations, and are a good way of finding examples of minimal submanifolds.

6.3 Calibrations on \mathbb{R}^n Let (\mathbb{R}^n, g) be Euclidean, and arphi be a constant k-form on \mathbb{R}^n with $\varphi|_V \leq \operatorname{vol}_V$ for all oriented k-planes V in \mathbb{R}^n . Let \mathcal{F}_{φ} be the set of oriented k-planes V in \mathbb{R}^n with $\varphi|_V =$ vol_V . Then an oriented k-fold N in \mathbb{R}^n is a φ -submanifold iff $T_x N \in \mathcal{F}_{\varphi}$ for all $x \in N$. For φ to be interesting, \mathcal{F}_{φ} must be fairly large, or there will be few φ -submanifolds.

Write $\varphi \leq \varphi'$ if $\mathcal{F}_{\varphi} \subseteq \mathcal{F}_{\varphi'}$. Call a calibration φ maximal if it is maximal with respect to this partial order.

Maximal calibrations φ are the most interesting, as \mathcal{F}_{φ} is as big as possible. They usually have quite large symmetry groups G, and \mathcal{F}_{φ} may be a G-orbit. Often G is also a Riemannian holonomy group.

6.4 Calibrations and special holonomy metrics Let $G \subset O(n)$ be the holonomy group of a Riemannian metric. Then G acts on $\Lambda^k(\mathbb{R}^n)^*$. Suppose $\varphi_0 \in \Lambda^k(\mathbb{R}^n)^*$ is nonzero and G-invariant. Rescale φ_0 so that $\varphi_0|_V \leq \operatorname{vol}_V$ for all oriented k-planes $V \subset \mathbb{R}^n$, and $\varphi_0|_U = \operatorname{vol}_U$ for some U. Then $U \in \mathcal{F}_{\varphi_0}$, so by *G*-invariance \mathcal{F}_{φ_0} contains the *G*-orbit of U. Usually \mathcal{F}_{φ_0} is 'fairly big'.

Let (M,g) be have holonomy G. Then there is constant k-form φ on M corresponding to the G-invariant k-form φ_0 . It is a *calibration* on M.

At each $x \in M$ the family of oriented tangent k-planes Vwith $\varphi|_V = \operatorname{vol}_V$ is \mathcal{F}_{φ_0} , which is 'fairly big'. So we expect many φ -submanifolds N in M. Thus manifolds with special holonomy often have interesting calibrations. Here are some examples.

• The group $U(m) \subset O(2m)$ preserves a 2-form ω_0 on \mathbb{R}^{2m} . If (M, g) has holonomy U(m)then g is Kähler, with complex structure J, and the 2-form ω on M associated to ω_0 is the Kähler form of (q, J). Now $\omega^k/k!$ is a calibration for $1 \leqslant k \leqslant m$, with calibrated submanifolds the *complex* k-submanifolds of (M, J).

• The group $SU(m) \subset O(2m)$ preserves a complex m-form Ω_0 on \mathbb{R}^{2m} . A manifold (M,g)with holonomy SU(m) is a Calabi–Yau m-fold, with complex volume form Ω corresponding to Ω_0 . The real part $\operatorname{Re}\Omega$ is a calibration on M, and its calibrated submanifolds are called special Lagrangian submanifolds.

• The group $G_2 \subset O(7)$ preserves a 3-form φ_0 and a 4-form $*\varphi_0$ on \mathbb{R}^7 . A manifold (M,g) with holonomy G_2 carries a constant 3-form φ and 4-form $*\varphi$, which are both calibrations. Their calibrated submanifolds are called associative 3-folds and coassociative 4-folds.

• The group $\text{Spin}(7) \subset O(8)$ preserves a 4-form Ω_0 on \mathbb{R}^8 . A manifold (M,g) with holonomy Spin(7) carries a constant 4-form Ω , which is a calibration. Its calibrated submanifolds are called *Cayley* 4-folds. For each calibration φ on an *n*-manifold (M,g) with special holonomy constructed this way, there is a constant calibration φ_0 on \mathbb{R}^n . Locally, φ -submanifolds in M look like φ_0 -submanifolds in \mathbb{R}^n .

In particular, singularities of φ -submanifolds in M are locally modelled on singularities of φ_0 -submanifolds in \mathbb{R}^n .