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6. Calibrated geometry

6.1 Minimal submanifolds
Let (M,g) be a compact
Riemannian manifold, and N
a compact submanifold of M.
Using g, define the volume
Vol(N) of N by integration.
We call N minimal if Vol(N)
IS stationary under small vari-
ations of N. Let v — N be
the normal bundle of N in M,
so that TM|y =TN .



The second fundamental form
B € C®°(S?T*Nev) satisfies
B - (U‘N@U]‘N) = Wy(va‘N)
when v, w € C°°(TM) with
’U‘N,wlN c C°°(TN).

The mean curvature vector

k € C°°(v) is the trace of B.
By the Euler—Lagrange method,
a submanifold N is minimal if
and only if k = 0. We use this
to define minimal submanifolds
IN the noncompact case.



To find a compact minimal
k-fold N in M with [N] = «
in H.(M,Z), choose a min-
imizing sequence (N;)$2, of
compact k-folds N; W|th [N;] =
o, such that Vol(N;) approaches
the infimum of volumes with
homology class o« as 1 — oo.

If the set of k-folds N with
Vol(N) < C were compact,
we could then choose a sub-
sequence (N; ) 2 ;1 converging
to a mlnlmal Ilrnlt N.



T he set of submanifolds N with
VoI(N) < C is not compact.
But the set of rectifiable cur-
rents N with Vol(N) < C is.
Therefore, every a € Hi.(M,7Z)
IS represented by a minimal
rectifiable current.

Rectifiable currents are gen-
eralizations of submanifolds,
and have singularities. They
are studied in Geometric
Measure T heory.



Some important questions:
how close are minimal
rectifiable currents to being
submanifolds? How bad are
their singularities? What are
the singularities like?

A k-dimensional minimal
rectifiable current is an
embedded submanifold except
on a singular set of Hausdorff
dimension at most k£ — 2.



6.2 Calibrations

Let (M, g) be a Riemannian
manifold. An oriented tan-
gent k-plane V. on M is an
oriented vector subspace V of
some tangent space 1,.M toO
M with dimV = k. Each has
a volume form voly, defined
using g.

A calibration on M is a closed
k-form ¢ with |y, < voly, for
every oriented tangent k-plane
V on M.



Let V be an oriented k-fold in
M withdim N = k. Wecall N
calibrated if p|7. y = VOl N
for all x € N.

If N is compact then vol(N) >
0] - [V], and if N is compact
and calibrated then vol(N) =
[¢]-[N], where [¢] € H*(M,R)
and [N] € H.(M, 7).

T hus calibrated submanifolds
are volume-minimizing in their
homology class, and are
minimal submanifolds.



Let (M, g) be Riemannian with
calibration ¢, and let « : N —
M be an immersion. For N to
pe calibrated is a first-order
D.d.e. on ¢, but for N to be
minimal is a second-order
p.d.e. on ..

Thus, the calibrated equations
are often easier to solve than
the minimal equations, and are
a good way of finding exam-
ples of minimal submanifolds.
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6.3 Calibrations on R"

Let (R™, g) be Euclidean, and
© be a constant k-form on R"
with ¢l < voly, for all
oriented k-planes V in R™.
Let F, be the set of oriented
k-planes V in R™ with ¢l =
voly,. Then an oriented k-fold
N in R™ is a p-submanifold iff
IxN € Fp for all x € N.

For ¢ to be interesting, Fy,
must be fairly large, or there
will be few p-submanifolds.
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Write ¢ < ¢ if F, C F ol Call
a calibration ¢ maximal if it is
maximal with respect to this
partial order.

Maximal calibrations ¢ are the
most interesting, as F, IS as
big as possible. They usu-
ally have quite large symme-
try groups G, and F, may be
a G-orbit. Often G is also a
Riemannian holonomy group.
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6.4 Calibrations and

special holonomy metrics
Let G C O(n) be the holon-
omy group of a Riemannian
metric. Then G acts on AR(R™)*.
Suppose pg € A(R™)* is nonzero
and G-invariant. Rescale g
so that gl < voly, for all ori-
ented k-planes V C R", and
wolyy = voly for some U. Then
U € Fpy, SO by G-invariance
Fpo contains the G-orbit of
U. Usually Fy,, is ‘fairly big’.
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Let (M, g) be have holonomy
(. Then there is constant k-
form ¢ on M corresponding
to the G-invariant k-form .
It Is a calibration on M.

At each x € M the family of
oriented tangent k-planes V
with ¢l = voly, is Fpy, which
IS ‘fairly big’'. So we expect
many e-submanifolds N in M.
Thus manifolds with special
holonomy often have interest-
INg calibrations.
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Here are some examples.

e The group U(m) C O(2m)
preserves a 2-form wg on R2™.
If (M,qg) has holonomy U(m)
then g Is Kahler, with
complex structure J, and the
2-form w on M associated to
wq is the Kahler form of (g, J).
Now w¥/E! is a calibration for
1 < kK < m, with calibrated
submanifolds the complex
k-submanifolds of (M, J).
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e The group SU(m) C O(2m)
preserves a complex m-form
Qo on R2™. A manifold (M, g)
with holonomy SU(m) is a
Calabi—Yau m-fold, with
complex volume form €2
corresponding to £2g.

The real part Re2 is a
calibration on M, and its
calibrated submanifolds are
called special Lagrangian
submanifolds.
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e The group G, C O(7)
preserves a 3-form ¢g and a
4-form xpg on R’. A manifold
(M, g) with holonomy G5
carries a constant 3-form ¢
and 4-form xp, which are both
calibrations. T heir calibrated
submanifolds are called
associative 3-folds and
coassociative 4-folds.
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e The group Spin(7) C O(8)
preserves a 4-form g on RS.
A manifold (M, g) with
holonomy Spin(7) carries a
constant 4-form €2, which is
a calibration. Its calibrated
submanifolds are called
Cayley 4-folds.
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For each calibration ¢ on

an n-manifold (M, g) with
special holonomy constructed
this way, there iIs a constant
calibration g on R"™. Locally,
p-submanifolds in M look like
po-submanifolds in R".

In particular, singularities of
p-submanifolds in M are lo-
cally modelled on singularities
of pg-submanifolds in R™.
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