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6. Calibrated geometry

6.1 Minimal submanifolds
Let (M, g) be a compact
Riemannian manifold, and N

a compact submanifold of M .
Using g, define the volume
Vol(N) of N by integration.
We call N minimal if Vol(N)
is stationary under small vari-
ations of N . Let ν → N be
the normal bundle of N in M ,
so that TM |N = TN ⊕ ν.
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The second fundamental form
B ∈ C∞(S2T ∗N ⊗

ν) satisfies
B · (

v|N ⊗
w|N

)
= πν

(∇vw|N
)

when v, w ∈ C∞(TM) with
v|N , w|N ∈ C∞(TN).
The mean curvature vector
κ ∈ C∞(ν) is the trace of B.
By the Euler–Lagrange method,
a submanifold N is minimal if
and only if κ ≡ 0. We use this
to define minimal submanifolds
in the noncompact case.
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To find a compact minimal
k-fold N in M with [N ] = α

in Hk(M,Z), choose a min-
imizing sequence (Ni)

∞
i=1 of

compact k-folds Ni with [Ni] =
α, such that Vol(Ni) approaches
the infimum of volumes with
homology class α as i →∞.
If the set of k-folds N with
Vol(N) 6 C were compact,
we could then choose a sub-
sequence (Nij)

∞
j=1 converging

to a minimal limit N .
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The set of submanifolds N with
Vol(N) 6 C is not compact.
But the set of rectifiable cur-
rents N with Vol(N) 6 C is.
Therefore, every α ∈ Hk(M,Z)
is represented by a minimal
rectifiable current.
Rectifiable currents are gen-
eralizations of submanifolds,
and have singularities. They
are studied in Geometric
Measure Theory.
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Some important questions:
how close are minimal
rectifiable currents to being
submanifolds? How bad are
their singularities? What are
the singularities like?
A k-dimensional minimal
rectifiable current is an
embedded submanifold except
on a singular set of Hausdorff
dimension at most k − 2.
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6.2 Calibrations
Let (M, g) be a Riemannian
manifold. An oriented tan-
gent k-plane V on M is an
oriented vector subspace V of
some tangent space TxM to
M with dimV = k. Each has
a volume form volV defined
using g.
A calibration on M is a closed
k-form ϕ with ϕ|V 6 volV for
every oriented tangent k-plane
V on M .
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Let N be an oriented k-fold in
M with dimN = k. We call N

calibrated if ϕ|TxN = volTxN

for all x ∈ N .
If N is compact then vol(N) >
[ϕ] · [N ], and if N is compact
and calibrated then vol(N) =
[ϕ]·[N ], where [ϕ] ∈ Hk(M,R)
and [N ] ∈ Hk(M,Z).
Thus calibrated submanifolds
are volume-minimizing in their
homology class, and are
minimal submanifolds.
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Let (M, g) be Riemannian with
calibration ϕ, and let ι : N →
M be an immersion. For N to
be calibrated is a first-order
p.d.e. on ι, but for N to be
minimal is a second-order
p.d.e. on ι.
Thus, the calibrated equations
are often easier to solve than
the minimal equations, and are
a good way of finding exam-
ples of minimal submanifolds.
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6.3 Calibrations on Rn

Let (Rn, g) be Euclidean, and
ϕ be a constant k-form on Rn

with ϕ|V 6 volV for all
oriented k-planes V in Rn.
Let Fϕ be the set of oriented
k-planes V in Rn with ϕ|V =
volV . Then an oriented k-fold
N in Rn is a ϕ-submanifold iff
TxN ∈ Fϕ for all x ∈ N .
For ϕ to be interesting, Fϕ

must be fairly large, or there
will be few ϕ-submanifolds.
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Write ϕ ¹ ϕ′ if Fϕ ⊆ Fϕ′. Call
a calibration ϕ maximal if it is
maximal with respect to this
partial order.
Maximal calibrations ϕ are the
most interesting, as Fϕ is as
big as possible. They usu-
ally have quite large symme-
try groups G, and Fϕ may be
a G-orbit. Often G is also a
Riemannian holonomy group.
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6.4 Calibrations and
special holonomy metrics
Let G ⊂ O(n) be the holon-
omy group of a Riemannian
metric. Then G acts on Λk(Rn)∗.
Suppose ϕ0 ∈ Λk(Rn)∗ is nonzero
and G-invariant. Rescale ϕ0
so that ϕ0|V 6 volV for all ori-
ented k-planes V ⊂ Rn, and
ϕ0|U = volU for some U . Then
U ∈ Fϕ0, so by G-invariance
Fϕ0 contains the G-orbit of
U . Usually Fϕ0 is ‘fairly big’.
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Let (M, g) be have holonomy
G. Then there is constant k-
form ϕ on M corresponding
to the G-invariant k-form ϕ0.
It is a calibration on M .
At each x ∈ M the family of
oriented tangent k-planes V

with ϕ|V = volV is Fϕ0, which
is ‘fairly big’. So we expect
many ϕ-submanifolds N in M .
Thus manifolds with special
holonomy often have interest-
ing calibrations.
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Here are some examples.
• The group U(m) ⊂ O(2m)
preserves a 2-form ω0 on R2m.
If (M, g) has holonomy U(m)
then g is Kähler, with
complex structure J, and the
2-form ω on M associated to
ω0 is the Kähler form of (g, J).
Now ωk/k! is a calibration for
1 6 k 6 m, with calibrated
submanifolds the complex
k-submanifolds of (M, J).
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• The group SU(m) ⊂ O(2m)
preserves a complex m-form
Ω0 on R2m. A manifold (M, g)
with holonomy SU(m) is a
Calabi–Yau m-fold, with
complex volume form Ω
corresponding to Ω0.
The real part ReΩ is a
calibration on M , and its
calibrated submanifolds are
called special Lagrangian
submanifolds.
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• The group G2 ⊂ O(7)
preserves a 3-form ϕ0 and a
4-form ∗ϕ0 on R7. A manifold
(M, g) with holonomy G2
carries a constant 3-form ϕ

and 4-form ∗ϕ, which are both
calibrations. Their calibrated
submanifolds are called
associative 3-folds and
coassociative 4-folds.
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• The group Spin(7) ⊂ O(8)
preserves a 4-form Ω0 on R8.
A manifold (M, g) with
holonomy Spin(7) carries a
constant 4-form Ω, which is
a calibration. Its calibrated
submanifolds are called
Cayley 4-folds.
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For each calibration ϕ on
an n-manifold (M, g) with
special holonomy constructed
this way, there is a constant
calibration ϕ0 on Rn. Locally,
ϕ-submanifolds in M look like
ϕ0-submanifolds in Rn.
In particular, singularities of
ϕ-submanifolds in M are lo-
cally modelled on singularities
of ϕ0-submanifolds in Rn.
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