Vertex Algebras

Lecture 1 of 8: Borcherds' approach to vertex algebras
Dominic Joyce, Oxford University Summer Term 2021

Recommended references:
V. Kac, Vertex Algebras for Beginners,
E. Frenkel \& D. Ben-Zvi, Vertex Algebras and Algebraic Curves.

These slides available at http://people.maths.ox.ac.uk/~joyce/

Plan of talk:

(1) Borcherds' approach to vertex algebras
(1.1) Basic definitions and constructions
1.2 Vertex operator algebras
(1.3) Commutative vertex algebras
1.4 Lie algebras from vertex algebras

Introduction

Vertex algebras are complicated algebraic objects. They are difficult to define, and when you have a definition, it is hard, initially, to see the point of it. I hope that the reasons for studying vertex algebras will become clearer in the next few lectures.
The most helpful definitions of vertex algebra are in terms of 'states' and 'fields', and are written in terms of formal power series in a (complex) variable z. Roughly speaking, we have a complex vector space V (usually infinite-dimensional) and a \mathbb{C}-linear operator $Y(z): V \otimes V \rightarrow V[[z]]\left[z^{-1}\right]$ giving a family of 'multiplications' $u \star_{z} v=Y(z)(u \otimes v)=Y(u, z) v$ depending on (infinitesimally) small $z \in \mathbb{C} \backslash 0$, where $u \star_{z} v$ may have poles in z at $z=0$, roughly satisfying $\left(u \star_{z_{1}} v\right) \star_{z_{2}} w=u \star_{z_{1}+z_{2}}\left(v \star_{z_{2}} w\right)$, and other identities.

Introduction

Vertex algebras are complicated algebraic objects. They are difficult to define, and when you have a definition, it is hard, initially, to see the point of it. I hope that the reasons for studying vertex algebras will become clearer in the next few lectures.
The most helpful definitions of vertex algebra are in terms of 'states' and 'fields', and are written in terms of formal power series in a (complex) variable z. Roughly speaking, we have a complex vector space V (usually infinite-dimensional) and a \mathbb{C}-linear operator $Y(z): V \otimes V \rightarrow V[[z]]\left[z^{-1}\right]$ giving a family of 'multiplications' $u \star_{z} v=Y(z)(u \otimes v)=Y(u, z) v$ depending on (infinitesimally) small $z \in \mathbb{C} \backslash 0$, where $u \star_{z} v$ may have poles in z at $z=0$, roughly satisfying $\left(u \star_{z_{1}} v\right) \star_{z_{2}} w=u \star_{z_{1}+z_{2}}\left(v \star_{z_{2}} w\right)$, and other identities. We explain the state-field approach next lecture. Today we use the definition of vertex algebra due to Richard Borcherds, who invented them, as it is easy to write down, though difficult to interpret.

Borcherds' vertex algebras (Will see this again later)

Here is the original definition of vertex algebra from Borcherds 1986. Let R be a commutative ring (often $R=\mathbb{C}$). A vertex algebra over R is an R-module V equipped with morphisms $D^{(n)}: V \rightarrow V$ for $n=0,1,2, \ldots$ with $D^{(0)}=\mathrm{id}_{V}$ and $v_{n}: V \rightarrow V$ for all $v \in V$ and $n \in \mathbb{Z}$, with $v_{n} R$-linear in v, and a distinguished element $\mathbb{1} \in V$ called the identity or vacuum vector, satisfying:
(i) For all $u, v \in V$ we have $u_{n}(v)=0$ for $n \gg 0$.
(ii) If $v \in V$ then $\mathbb{1}_{-1}(v)=v$ and $\mathbb{1}_{n}(v)=0$ for $-1 \neq n \in \mathbb{Z}$.
(iii) If $v \in V$ then $v_{n}(\mathbb{1})=D^{(-n-1)}(v)$ for $n<0$ and $v_{n}(\mathbb{1})=0$ for $n \geqslant 0$.
(iv) $u_{n}(v)=\sum_{k \geqslant 0}(-1)^{k+n+1} D^{(k)}\left(v_{n+k}(u)\right)$ for all $u, v \in V$ and $n \in \mathbb{Z}$, where the sum makes sense by (i), as it has only finitely many nonzero terms.
(v) $\left(u_{l}(v)\right)_{m}(w)=\sum_{n \geqslant 0}(-1)^{n}\binom{l}{n}\left(u_{I-n}\left(v_{m+n}(w)\right)-(-1)^{\prime} v_{l+m-n}\left(u_{n}(w)\right)\right)$ for all $u, v, w \in V$ and $I, m \in \mathbb{Z}$, where the sum makes sense by (i).

Remarks on the definition

- The relation with the state-field definition is that

$$
Y(z)(u \otimes v)=Y(u, z) v=\sum_{n \in \mathbb{Z}} u_{n}(v) z^{-n-1} .
$$

- Condition (i), that $u_{n}(v)=0$ for $n \gg 0$, is needed for many formulae to make sense. We do not require $u_{n}(v)=0$ for $n \ll 0$. So $Y(z)$ maps $V \otimes V \rightarrow V[[z]]\left[z^{-1}\right]$ (more next lecture).
- One can show from the axioms that for $m, n \geqslant 0$

$$
D^{(m)} \circ D^{(n)}=\binom{m+n}{n} D^{(m+n)} .
$$

Hence if R has characteristic 0 (i.e. $\mathbb{Q} \subseteq R$) then by induction $D^{(n)}=\frac{1}{n!} D^{n}$ for all $n \geqslant 0$, with $D=D^{(1)}$. Thus, when $\operatorname{char} R=0$ the operators $D^{(n)}$ simplify to a single operator D, which is called the translation operator. By (iii) the $D^{(m)}$ are determined by the operations $(u, v) \mapsto u_{n}(v)$ and $\mathbb{1}$, so the $D^{(m)}$ are not extra data.

- You can think of the operations $(u, v) \mapsto u_{n}(v)$ as being like an infinite family of Lie brackets, and (v) as like the Jacobiidentity.

What are vertex algebras for? (A first attempt.)

Some reasons to study vertex algebras:

- Vertex algebras come up in Moonshine: the mathematics around the Monster (a finite simple group of order $\approx 10^{54}$). One definition of the Monster is as the automorphism group of a certain vertex algebra.

What are vertex algebras for? (A first attempt.)

Some reasons to study vertex algebras:

- Vertex algebras come up in Moonshine: the mathematics around the Monster (a finite simple group of order $\approx 10^{54}$). One definition of the Monster is as the automorphism group of a certain vertex algebra.
- Given a vertex algebra, one can define a Lie algebra (see §1.4). For some classes of interesting infinite-dimensional Lie algebras (e.g. Kac-Moody algebras), perhaps the best way to construct them is to first construct a vertex algebra, and then pass to the Lie algebra. Borcherds invented vertex algebras starting from Lie algebra definitions.

What are vertex algebras for? (A first attempt.)

Some reasons to study vertex algebras:

- Vertex algebras come up in Moonshine: the mathematics around the Monster (a finite simple group of order $\approx 10^{54}$). One definition of the Monster is as the automorphism group of a certain vertex algebra.
- Given a vertex algebra, one can define a Lie algebra (see §1.4). For some classes of interesting infinite-dimensional Lie algebras (e.g. Kac-Moody algebras), perhaps the best way to construct them is to first construct a vertex algebra, and then pass to the Lie algebra. Borcherds invented vertex algebras starting from Lie algebra definitions.
- Vertex algebra notation can express some special ∞-dimensional Lie algebras very succinctly, using one, or just a few, vertex operators.

What are vertex algebras for? (A first attempt.)

Some reasons to study vertex algebras:

- Vertex algebras come up in Moonshine: the mathematics around the Monster (a finite simple group of order $\approx 10^{54}$). One definition of the Monster is as the automorphism group of a certain vertex algebra.
- Given a vertex algebra, one can define a Lie algebra (see §1.4). For some classes of interesting infinite-dimensional Lie algebras (e.g. Kac-Moody algebras), perhaps the best way to construct them is to first construct a vertex algebra, and then pass to the Lie algebra.
Borcherds invented vertex algebras starting from Lie algebra definitions.
- Vertex algebra notation can express some special ∞-dimensional Lie algebras very succinctly, using one, or just a few, vertex operators.
- Vertex algebras are important in Physics: roughly, given a vertex (operator) algebra, one can build a kind of Conformal Field Theory.
CFTs are supposed to quantize maps $u: \Sigma \rightarrow X$ for Riemann surfaces Σ, with X a classical space-time. The formal complex variable z in $Y(z)$ is roughly a local formal coordinate on Σ.

1.1. Basic definitions and constructions

Definition 1.1 (Borcherds' 1986 definition again)

Let R be a commutative ring. A vertex algebra (VA) over R is an R-module V equipped with morphisms $D^{(n)}: V \rightarrow V$ for $n=0,1,2, \ldots$ with $D^{(0)}=\operatorname{id} v$ and $v_{n}: V \rightarrow V$ for all $v \in V$ and $n \in \mathbb{Z}$, with $v_{n} R$-linear in v, and a distinguished element $\mathbb{1} \in V$ called the identity or vacuum vector, satisfying:
(i) For all $u, v \in V$ we have $u_{n}(v)=0$ for $n \gg 0$.
(ii) If $v \in V$ then $\mathbb{1}_{-1}(v)=v$ and $\mathbb{1}_{n}(v)=0$ for $-1 \neq n \in \mathbb{Z}$.
(iii) If $v \in V$ then $v_{n}(\mathbb{1})=D^{(-n-1)}(v)$ for $n<0$ and $v_{n}(\mathbb{1})=0$ for $n \geqslant 0$.
(iv) $u_{n}(v)=\sum_{k \geqslant 0}(-1)^{k+n+1} D^{(k)}\left(v_{n+k}(u)\right)$ for all $u, v \in V$ and $n \in \mathbb{Z}$, where the sum makes sense by (i), as it has only finitely many nonzero terms.
(v) $\left(u_{l}(v)\right)_{m}(w)=\sum_{n \geqslant 0}(-1)^{n}\binom{l}{n}\left(u_{l-n}\left(v_{m+n}(w)\right)-(-1)^{\prime} v_{l+m-n}\left(u_{n}(w)\right)\right)$
for all $u, v, w \in V$ and $I, m \in \mathbb{Z}$, where the sum makes sense by (i).

Vertex superalgebras and graded vertex algebras

Often it is important to take a vertex algebra $V=V_{*}$ to be graded over \mathbb{Z}_{2} (i.e. $V=V_{0} \oplus V_{\underline{1}}$ is a super vector space) or over \mathbb{Z} (i.e. $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$), with operations graded, and with sign changes (red).

Definition 1.2

Let R be a commutative ring, and V_{*} be an R-module graded over \mathbb{Z}_{2} or \mathbb{Z}. We call V_{*} a vertex superalgebra (for \mathbb{Z}_{2} grading) or graded vertex algebra) (for \mathbb{Z} grading) if V_{*} is equipped with R-linear morphisms $D^{(n)}: V_{k} \rightarrow V_{k+2 n}$ for $n=0,1,2, \ldots$, and $v_{n}: V_{b} \rightarrow V_{a+b-2 n-2}$ for all $v \in V_{a}$ and a, b in \mathbb{Z}_{2} or \mathbb{Z} and $n \in \mathbb{Z}$, and an identity $\mathbb{1} \in V_{0}$, satisfying Definition 1.1(i)-(iii) and:
(iv) $u_{n}(v)=\sum_{k \geqslant 0}(-1)^{a b+k+n+1} D^{(k)}\left(v_{n+k}(u)\right)$ for all $u \in V_{a}$, $v \in V_{b}$, with a, b in \mathbb{Z}_{2} or \mathbb{Z} and $n \in \mathbb{Z}$.
$(v)^{\prime}\left(u_{l}(v)\right)_{m}(w)=\sum_{n \geqslant 0}(-1)^{n}\binom{1}{n}\left(u_{l-n}\left(v_{m+n}(w)\right)\right.$
$\left.-(-1)^{a b+l} v_{l+m-n}\left(u_{n}(w)\right)\right)$ for all a, b, c in \mathbb{Z}_{2} or $\mathbb{Z}, u \in V_{a}$,
$v \in V_{b}, w \in V_{c}$ and $I, m \in \mathbb{Z}$.

If $V_{*}=\bigoplus_{n \in \mathbb{Z}} V_{n}$ is a graded vertex algebra then $V_{\underline{0}} \oplus V_{\underline{1}}$ is a vertex superalgebra, where $V_{\underline{0}}=\bigoplus_{k \in \mathbb{Z}} V_{2 k}$ and $V_{\underline{1}}=\bigoplus_{k \in \mathbb{Z}} V_{2 k+1}$. If $V_{*}=V_{\underline{0}} \oplus V_{\underline{1}}$ is a vertex superalgebra then $V_{\underline{0}}$ is an ordinary vertex algebra. Definitions and constructions for vertex algebras basically always extend to vertex superalgebras/graded vertex algebras in an obvious way, with sign changes like $(-1)^{a b}$ in (iv) $)^{\prime}(\mathrm{v})^{\prime}$.

If $V_{*}=\bigoplus_{n \in \mathbb{Z}} V_{n}$ is a graded vertex algebra then $V_{\underline{0}} \oplus V_{\underline{1}}$ is a vertex superalgebra, where $V_{\underline{0}}=\bigoplus_{k \in \mathbb{Z}} V_{2 k}$ and $V_{\underline{1}}=\bigoplus_{k \in \mathbb{Z}} V_{2 k+1}$. If $V_{*}=V_{\underline{0}} \oplus V_{\underline{1}}$ is a vertex superalgebra then $V_{\underline{0}}$ is an ordinary vertex algebra. Definitions and constructions for vertex algebras basically always extend to vertex superalgebras/graded vertex algebras in an obvious way, with sign changes like $(-1)^{a b}$ in (iv) $)^{\prime}(\mathrm{v})^{\prime}$. If V, W are vertex algebras over R we can make the direct sum $V \oplus W$ into a vertex algebra in an obvious way, with

$$
\begin{aligned}
D^{(n)}(v \oplus w) & =\left(D^{(n)} v\right) \oplus\left(D^{(n)} w\right), \\
(v \oplus w)_{n}\left(v^{\prime} \oplus w^{\prime}\right) & =\left(v_{n}\left(v^{\prime}\right)\right) \oplus\left(w_{n}\left(w^{\prime}\right)\right), \\
\mathbb{1}_{V \oplus W} & =\mathbb{1}_{V} \oplus \mathbb{1}_{W} .
\end{aligned}
$$

This extends to vertex superalgebras and graded vertex algebras.

Tensor products of vertex algebras

If V, W are vertex algebras over R we can make the tensor product $V \otimes_{R} W$ into a vertex algebra, with

$$
\begin{aligned}
D^{(n)}(v \otimes w) & =\sum_{k=0}^{n}\binom{n}{k}\left(D^{(k)} v\right) \otimes\left(D^{(n-k)} w\right), \\
(v \otimes w)_{n}\left(v^{\prime} \otimes w^{\prime}\right) & =\sum_{k \in \mathbb{Z}}\left(v_{k}\left(v^{\prime}\right)\right) \otimes\left(w_{n-k-1}\left(w^{\prime}\right)\right), \\
\mathbb{1}_{V \otimes W} & =\mathbb{1}_{V} \otimes \mathbb{1}_{W} .
\end{aligned}
$$

This extends to vertex superalgebras and graded vertex algebras. Note that for $(v \otimes w)_{n}\left(v^{\prime} \otimes w^{\prime}\right)$, the sum is finite as $v_{k}\left(v^{\prime}\right)=0$ for $k \gg 0$, and $w_{n-k-1}\left(w^{\prime}\right)=0$ for $k \ll 0$.

Morphisms, ideals, quotient vertex algebras

If V, W are vertex algebras over R, a morphism $\phi: V \rightarrow W$ is an R-module morphism preserving all the structure, i.e. $\phi\left(\mathbb{1}_{V}\right)=\mathbb{1}_{W}$, $D^{(n)} \circ \phi(v)=\phi \circ D^{(n)}(v),(\phi(v))_{n}\left(\phi\left(v^{\prime}\right)\right)=\phi\left(v_{n}\left(v^{\prime}\right)\right)$. For vertex superalgebras and graded vertex algebras we also require ϕ to preserve gradings.

Morphisms, ideals, quotient vertex algebras

If V, W are vertex algebras over R, a morphism $\phi: V \rightarrow W$ is an R-module morphism preserving all the structure, i.e. $\phi\left(\mathbb{1}_{V}\right)=\mathbb{1}_{W}$, $D^{(n)} \circ \phi(v)=\phi \circ D^{(n)}(v),(\phi(v))_{n}\left(\phi\left(v^{\prime}\right)\right)=\phi\left(v_{n}\left(v^{\prime}\right)\right)$. For vertex superalgebras and graded vertex algebras we also require ϕ to preserve gradings.
An ideal I in a vertex algebra V is an R-submodule $I \subseteq V$ such that if $u \in I$ and $v \in V$ then $D^{(n)} u, u_{n}(v), v_{n}(u) \in I$ for all n. Then the quotient V / I has a unique vertex algebra structure such that $\pi: V \rightarrow V / I$ is a (surjective) vertex algebra morphism.
(Multiple) intersections of ideals are ideals. If $S \subset V$ is any subset, there is a unique smallest ideal $I_{S}=\bigcap_{S \subseteq I, I \text { ideal }} I$ containing S, the ideal generated by S, and $V_{S}=V / I_{S}$ is a vertex algebra.
A vertex algebra V is simple if it has no nonzero ideals.
All this extends to vertex superalgebras and graded vertex algebras.

Representations of vertex algebras

Let V be a vertex algebra over R. A representation of V is an R-module W and R-module morphisms $v_{n}^{\rho}: W \rightarrow W$ for all $v \in V$ and $n \in \mathbb{Z}$, with $v_{n}^{\rho} R$-linear in v, satisfying:
(i) For all $v \in V$ and $w \in W$ we have $v_{n}^{\rho}(w)=0$ for $n \gg 0$.
(ii) If $w \in W$ then $\mathbb{1}_{-1}^{\rho}(w)=w$ and $\mathbb{1}_{n}^{\rho}(w)=0$ for $-1 \neq n \in \mathbb{Z}$.
(v) $\left(u_{l}(v)\right)_{m}^{\rho}(w)=\sum_{n \geqslant 0}(-1)^{n}\binom{l}{n}\left(u_{l-n}^{\rho}\left(v_{m+n}^{\rho}(w)\right)-(-1)^{l} v_{l+m-n}^{\rho}\left(u_{n}^{\rho}(w)\right)\right)$
for all $u, v \in V, w \in W$ and $I, m \in \mathbb{Z}$, where the sum exists by (i).
These are the obvious generalizations of Definition 1.1(i),(ii),(v).
Definition 1.1(iii),(iv) do not make sense for representations.
There are obvious notions of morphism, subrepresentation, quotient representation, irreducible representation, etc. V has an obvious representation on itself.
All this extends to vertex superalgebras and graded vertex algebras.

1.2. Vertex operator algebras

The Virasoro algebra (needed for vertex operator algebras)
Let R be a field of characteristic zero. The Virasoro algebra Vir is the Lie algebra over R with basis elements $L_{n}, n \in \mathbb{Z}$ and c (the central charge), and Lie bracket
$\left[c, L_{n}\right]=0,\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{1}{12}\left(m^{3}-m\right) \delta_{m,-n} c, m, n \in \mathbb{Z}$.
The factor $\frac{1}{12}$ is a convention, and can be eliminated by replacing c by 12c. To define the Virasoro algebra Vir_{R} over a general commutative ring R we omit $\frac{1}{12}$, in case $\frac{1}{12} \notin R$.
The quotient Vir $/\langle c\rangle$ is called the Witt algebra, and may be regarded as the Lie algebra of complex vector fields on the circle \mathcal{S}^{1} when $R=\mathbb{C}$. The Virasoro algebra is the unique central extension of the Witt algebra. It is very important in Conformal Field Theory and String Theory.

Vertex operator algebras (VOAs)

Vertex operator algebras are vertex algebras with an extra structure. Arguably, they are the most important kind of vertex algebra.

Definition 1.3

Let R be a field of characteristic zero. A vertex operator algebra (VOA, or conformal vertex algebra) over R is a graded vertex algebra $V_{*}=\bigoplus_{a \in \mathbb{Z}} V_{a}$ over R as in Definition 1.2, with a distinguished conformal element $\omega \in V_{4}$ and a central charge $c_{V_{*}} \in R$, such that writing $L_{n}=\omega_{n+1}: V_{*} \rightarrow V_{*}$, we have
(i) $L_{-1}=D^{(1)}=D$ is the translation operator.
(ii) $\left.L_{0}\right|_{V_{a}}=\frac{1}{2} a \cdot \mathrm{id}_{V_{a}}$ for $a \in \mathbb{Z}$.
(iii) $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{1}{12} c_{V_{*}}\left(m^{3}-m\right) \delta_{m,-n} \operatorname{id} V_{*}$ for $m, n \in \mathbb{Z}$. That is, the L_{n} define an action of the Virasoro algebra on V_{*}, with central charge $c_{V_{*}}$.

Remarks on vertex operator algebras

- A graded vertex algebra V_{*} need not admit a conformal element ω, and if ω exists it may not be unique.
- Many authors also impose additional conditions on VOAs, such as $\operatorname{dim} V_{n}<\infty$ and $V_{n}=0$ for $n \ll 0$, but we do not do this.
- The \mathbb{Z}-grading on V_{*} is determined by (ii), so it is not extra data.
- Physicists nearly always care about VOAs, not VAs. VAs/VOAs are connected to CFTs, which quantize maps $u: \Sigma \rightarrow X$ for Riemann surfaces Σ, with X a classical space-time. The formal complex variable z in $Y(z)$ is roughly a local formal coordinate on Σ. The VOA structure is something to do with the CFT being independent of choice of coordinates on Σ, it is physically essential. The Virasoro algebra appears as a central extension of a Lie algebra of changes of formal coordinate near a point, I think.
- Many VAs of importance in mathematics are also VOAs.

Why the Virasoro algebra? (Best answer l've got for now.)

Proposition 1.4 (Frenkel and Ben-Zvi Lem. 3.4.5)
Let R be a field of characteristic zero, V_{*} a graded vertex algebra over R, and $\omega \in V_{4}$. Then ω is a conformal element for V_{*}, making V_{*} into a vertex operator algebra with central charge $c_{V_{*}} \in R$, if and only if:
(a) $\omega_{0}=D$ is the translation operator.
(b) $\omega_{1} \left\lvert\, V_{a}=\frac{1}{2} a \cdot \operatorname{id} V_{a}\right.$ for $a \in \mathbb{Z}$.
(c) $\omega_{3}(\omega)=\frac{1}{2} c_{V_{*}} \cdot \mathbb{1}$.

Here we can take (b) as defining the grading on V_{*}, and (c) as defining the central charge $c_{V_{*}}$. So the important condition is (a). Roughly, the proposition says that (a) forces $L_{n}=\omega_{n+1}$ to satisfy the Virasoro algebra relations. So the Virasoro algebra is already somehow hidden in the structure of vertex algebras, it is not being imposed from the outside in an arbitrary way.

1.3. Commutative vertex algebras

Definition 1.5

A vertex algebra V over R is called commutative if $u_{n}(v)=0$ for all $u, v \in V$ and $n \geqslant 0$. This implies that $Y\left(u, z_{1}\right)$ and $Y\left(v, z_{2}\right)$ commute as operators on V for all $u, v \in V$.

Given a commutative VA V, define $*: V \times V \rightarrow V$ by $u * v=u_{-1}(v)$.
This is commutative and associative, and makes V a commutative R-algebra with identity $\mathbb{1}$. The translation operator $D: V \rightarrow V$ is a derivation of this algebra, i.e. $D(u * v)=(D u) * v+u *(D v)$. Conversely, if R is a \mathbb{Q}-algebra, given a commutative R-algebra $(V, \mathbb{1}, *)$ with a derivation $D: V \rightarrow V$, defining $D^{(n)}=\frac{1}{n!} D^{n}$ and

$$
u_{n}(v)=0, \quad n \geqslant 0, \quad u_{n}(v)=\left(\frac{1}{(-n-1)!} D^{-n-1}(u)\right) * v, \quad n<0,
$$

gives a commutative vertex algebra over R.

This extends to vertex superalgebras and graded vertex algebras, giving equivalences of categories for R a \mathbb{Q}-algebra:
commutative vertex \Longleftrightarrow commutative R-algebras R-algebras $\quad \Longleftrightarrow$ with derivation, commutative vertex \Longleftrightarrow supercommutative R-superalgebras R-superalgebras with even derivation,
commutative graded vertex R-algebras

Commutative VAs are an easy class of examples. Unfortunately:

Proposition 1.6

Let R be a field of characteristic zero and V a non-commutative vertex algebra over R. Then V is infinite-dimensional.

So all non-commutative VAs are complicated, and take quite a lot of work to write down.

1.4. Lie algebras from vertex algebras

Here is an important connection between vertex and Lie algebras:

Proposition 1.7 (Borcherds 1986)

Let V be a vertex algebra over R. Write $D(V) \subset V$ for the R-submodule generated by $D^{(n)} v$ for all $v \in V$ and $n>0$. If char $R=0$ then $D^{(n)}=\frac{1}{n!} D^{n}$, so $D(V)=\{D(v): v \in V\}$.
Then the quotient R-module $V / D(V)$ has the structure of a Lie algebra over R, with Lie bracket

$$
\begin{equation*}
[u+D(V), v+D(V)]=u_{0}(v)+D(V) \tag{1.1}
\end{equation*}
$$

Similarly, vertex superalgebras V_{*} over R yield Lie superalgebras over R, and graded vertex superalgebras V_{*} over R yield graded Lie algebras over R, but with the shifted grading $(V / D(V))_{n}=V_{n+2} / D(V)_{n+2}$, where $D(V)_{n+2}=D\left(V_{n}\right)$ when char $R=0$. In particular, $(V / D(V))_{0}$ is a Lie algebra over R.

Proof of Proposition 1.7 (vertex algebra case)

- To prove [,] in (1.1) is well defined, use the identities in any VA:

$$
\begin{aligned}
\left(D^{(m)}(u)\right)_{l}(v) & =(-1)^{m}\binom{l}{m} \cdot u_{l-m}(v) \\
u_{l}\left(D^{(m)}(v)\right) & =\sum_{k=0}^{m}\binom{l}{m-k} \cdot D^{(k)}\left(u_{k+I-m}(v)\right)
\end{aligned}
$$

In particular, for $I=0$ and $m>0$ these imply that

$$
\left(D^{(m)}(u)\right)_{0}(v)=0, \quad u_{0}\left(D^{(m)}(v)\right)=D^{(m)}\left(u_{0}(v)\right)
$$

so changing u or v by an element of $D(V)$ changes $u_{0}(v)$ by an element of $D(V)$.

Proof of Proposition 1.7 (vertex algebra case)

- To prove [,] in (1.1) is well defined, use the identities in any VA:

$$
\begin{aligned}
\left(D^{(m)}(u)\right)_{l}(v) & =(-1)^{m}\binom{l}{m} \cdot u_{l-m}(v) \\
u_{l}\left(D^{(m)}(v)\right) & =\sum_{k=0}^{m}\binom{l}{m-k} \cdot D^{(k)}\left(u_{k+l-m}(v)\right) .
\end{aligned}
$$

In particular, for $I=0$ and $m>0$ these imply that

$$
\left(D^{(m)}(u)\right)_{0}(v)=0, \quad u_{0}\left(D^{(m)}(v)\right)=D^{(m)}\left(u_{0}(v)\right)
$$

so changing u or v by an element of $D(V)$ changes $u_{0}(v)$ by an element of $D(V)$.

- To prove [,] is antisymmetric, by Definition 1.1(iv)

$$
u_{0}(v)=\sum_{k \geqslant 0}(-1)^{k+1} D^{(k)}\left(v_{k}(u)\right)=-v_{0}(u)+\text { terms in } D(V) .
$$

Proof of Proposition 1.7 (vertex algebra case)

- To prove [,] in (1.1) is well defined, use the identities in any VA:

$$
\begin{aligned}
\left(D^{(m)}(u)\right)_{l}(v) & =(-1)^{m}\binom{l}{m} \cdot u_{l-m}(v) \\
u_{l}\left(D^{(m)}(v)\right) & =\sum_{k=0}^{m}\binom{l}{m-k} \cdot D^{(k)}\left(u_{k+l-m}(v)\right)
\end{aligned}
$$

In particular, for $I=0$ and $m>0$ these imply that

$$
\left(D^{(m)}(u)\right)_{0}(v)=0, \quad u_{0}\left(D^{(m)}(v)\right)=D^{(m)}\left(u_{0}(v)\right)
$$

so changing u or v by an element of $D(V)$ changes $u_{0}(v)$ by an element of $D(V)$.

- To prove [,] is antisymmetric, by Definition 1.1(iv)

$$
u_{0}(v)=\sum_{k \geqslant 0}(-1)^{k+1} D^{(k)}\left(v_{k}(u)\right)=-v_{0}(u)+\text { terms in } D(V) .
$$

- To prove the Jacobi identity for [,], by Definition 1.1(v)

$$
\left(u_{0}(v)\right)_{0}(w)=u_{0}\left(v_{0}(w)\right)-v_{0}\left(u_{0}(w)\right)
$$

Remarks on vertex algebras and Lie algebras

- Quite often, one can construct graded vertex algebras V_{*}, such that $(V / D(V))_{0}$ is an interesting (usually infinite-dimensional) Lie algebra that representation theorists care about. It may be difficult to build $(V / D(V))_{0}$ without going via the vertex algebra V_{*}. For example, lattice vertex algebras V_{*} yield Kac-Moody Lie algebras $(V / D(V))_{0}$, which generalize finite dim'I semisimple Lie algebras.

Remarks on vertex algebras and Lie algebras

- Quite often, one can construct graded vertex algebras V_{*}, such that $(V / D(V))_{0}$ is an interesting (usually infinite-dimensional) Lie algebra that representation theorists care about. It may be difficult to build $(V / D(V))_{0}$ without going via the vertex algebra V_{*}. For example, lattice vertex algebras V_{*} yield Kac-Moody Lie algebras $(V / D(V))_{0}$, which generalize finite dim'l semisimple Lie algebras. - If V is a vertex algebra and W is a representation of V then the identity from $\S 1.1$
$\left(u_{l}(v)\right)_{m}^{\rho}(w)=\sum_{n \geqslant 0}(-1)^{n}\binom{l}{n}\left(u_{l-n}^{\rho}\left(v_{m+n}^{\rho}(w)\right)-(-1)^{\prime} v_{l+m-n}^{\rho}\left(u_{n}^{\rho}(w)\right)\right)$
restricts when $I=m=0$ to

$$
\left(u_{0}(v)\right)_{0}^{\rho}(w)=u_{0}^{\rho}\left(v_{0}^{\rho}(w)\right)-v_{0}^{\rho}\left(u_{0}^{\rho}(w)\right)
$$

Using this we can show that W is a representation of the (perhaps super or graded) Lie algebra $V / D(V)$. So the representation theories of V and $V / D(V)$ are closely linked.

Vertex Algebras

Lecture 2 of 8: Vertex algebras in terms of formal power series
Dominic Joyce, Oxford University Summer term 2021

These slides available at http://people.maths.ox.ac.uk/~joyce/

Plan of talk:

(2) Vertex algebras in terms of formal power series
2.1 Formal power series notation
2.2 Defining vertex algebras using formal power series
2.3) Vertex algebras via meromorphic functions
(2.4) Ways to explain vertex algebras

Introduction

Last lecture we defined vertex algebras V following Borcherds, whose structure is determined by an identity $\mathbb{1} \in V$ and operations $(u, v) \mapsto u_{n}(v)$ for $n \in \mathbb{Z}$. These are usually encoded in one operator

$$
Y(z)(u \otimes v)=Y(u, z) v=\sum_{n \in \mathbb{Z}} u_{n}(v) z^{-n-1}
$$

where $Y(z): V \otimes V \rightarrow V[[z]]\left[z^{-1}\right]$ or $Y: V \rightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]$ is called the state-field correspondence. Today we explain this notation. We need to start with a lot of preliminaries on formal power series spaces like $V[[z]]\left[z^{-1}\right]$ and operations on them.

Introduction

Last lecture we defined vertex algebras V following Borcherds, whose structure is determined by an identity $\mathbb{1} \in V$ and operations $(u, v) \mapsto u_{n}(v)$ for $n \in \mathbb{Z}$. These are usually encoded in one operator

$$
Y(z)(u \otimes v)=Y(u, z) v=\sum_{n \in \mathbb{Z}} u_{n}(v) z^{-n-1}
$$

where $Y(z): V \otimes V \rightarrow V[[z]]\left[z^{-1}\right]$ or $Y: V \rightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]$ is called the state-field correspondence. Today we explain this notation. We need to start with a lot of preliminaries on formal power series spaces like $V[[z]]\left[z^{-1}\right]$ and operations on them. It turns out that $Y(z)$ satisfies many extra identities on top of the original defining identities, and that various subsets of these identities imply all the rest. Therefore there are several equivalent definitions of vertex algebra, depending which identities you choose as primary, and different authors use different definitions.

2.1. Formal power series notation

Throughout let R be a commutative ring (sometimes we want a field of characteristic zero) and V be an R-module (vector space). We define R-modules $V[z], V[[z]], \ldots$ to be the R-modules of formal expressions $v(z)=\sum_{n \in \mathbb{Z}} v_{n} z^{n}$ for $v_{n} \in V$, with vanishing conditions on the v_{n} as follows:
(i) $V[z]: v_{n}=0$ if $n<0$ or $n \gg 0$.
(ii) $V[[z]]: v_{n}=0$ if $n<0$.
(iii) $V\left[z, z^{-1}\right]: v_{n}=0$ if $n \ll 0$ or $n \gg 0$.
(iv) $V[[z]]\left[z^{-1}\right]$ (also written $V((z))$): $v_{n}=0$ if $n \ll 0$.
(v) $V\left[\left[z, z^{-1}\right]\right]$: no vanishing conditions on v_{n}.

Think of $V[z]$ as polynomials with values in $V, V[[z]]$ as V-valued formal power series, $V\left[z, z^{-1}\right]$ as V-valued Laurent polynomials, etc. Note that for $V[[z]], V[[z]]\left[z^{-1}\right], V\left[\left[z, z^{-1}\right]\right]$ it does not make sense to give z an actual value in R or $R \backslash 0$, it is just a formal variable,

We can also introduce similar spaces in several variables, such as $V[x, y]$, etc. As a complicated example, consider

$$
V[[x, y]]\left[x^{-1}, y^{-1},(x-y)^{-1}\right]=V[[x, y]] \otimes_{R[x, y]} R\left[x^{ \pm 1}, y^{ \pm 1},(x-y)^{-1}\right] .
$$

Elements of this space may be written as $x^{a} y^{b}(x-y)^{c} v(x, y)$ for $v(x, y) \in V[[x, y]]$ and $a, b, c \in \mathbb{Z}$, with the relations for $I, m, n \geqslant 0$ $x^{a} y^{b}(x-y)^{c} v(x, y)=x^{a-1} y^{b-m}(x-y)^{c-n}\left(x^{\prime} y^{m}(x-y)^{n} v(x, y)\right)$.

We can also introduce similar spaces in several variables, such as $V[x, y]$, etc. As a complicated example, consider

$$
V[[x, y]]\left[x^{-1}, y^{-1},(x-y)^{-1}\right]=V[[x, y]] \otimes_{R[x, y]} R\left[x^{ \pm 1}, y^{ \pm 1},(x-y)^{-1}\right] .
$$

Elements of this space may be written as $x^{a} y^{b}(x-y)^{c} v(x, y)$ for $v(x, y) \in V[[x, y]]$ and $a, b, c \in \mathbb{Z}$, with the relations for $I, m, n \geqslant 0$

$$
x^{a} y^{b}(x-y)^{c} v(x, y)=x^{a-1} y^{b-m}(x-y)^{c-n}\left(x^{\prime} y^{m}(x-y)^{n} v(x, y)\right)
$$

We can multiply by functions, take tensor products, etc., but we must be careful about doubly infinite series such as $V\left[\left[z, z^{-1}\right]\right]$. For example, $R[z], R\left[z, z^{-1}\right], R[[z]]\left[z^{-1}\right]$ are all rings under multiplication $f g(z)=f(z) g(z)$, and if R is a field then $R[[z]]\left[z^{-1}\right]$ is a field. But $R\left[\left[z, z^{-1}\right]\right]$ is not a ring, as $f(z) g(z)$ is not always defined. For example, $f(z)=\sum_{n \in \mathbb{Z}} z^{n}$ lies in $R\left[\left[z^{ \pm 1}\right]\right]$, but $f(z)^{2}$ does not make sense as the coefficient of each z^{n} is a sum with infinitely many nonzero terms. We want sums to have finitely many nonzero terms, we don't use convergence.

Observe that $R\left[\left[x^{ \pm 1}, y^{ \pm 1}\right]\right]$ is a module over the ring $R\left[x^{ \pm 1}, y^{ \pm 1}\right]$, but has zero divisors. For example, $\sum_{n \in \mathbb{Z}} x^{n} y^{-n} \in R\left[\left[x^{ \pm 1}, y^{ \pm 1}\right]\right]$ and $x-y \in R\left[x^{ \pm 1}, y^{ \pm 1}\right]$ with $(x-y) \cdot\left(\sum_{n \in \mathbb{Z}} x^{n} y^{-n}\right)=0$. Because of this there is no unique way to write expressions like $(x-y)^{-1}$ as series in $R\left[\left[x^{ \pm 1}, y^{ \pm 1}\right]\right]$. Two obvious guesses would be $(x-y)^{-1} \sim \sum_{n \geqslant 0} x^{-n-1} y^{n},(x-y)^{-1}=-(y-x)^{-1} \sim-\sum_{n \geqslant 0} y^{-n-1} x^{n}$,
by expansion using the Binomial Theorem. Define morphisms

$$
i_{x, y}, i_{y, x}: V[[x, y]]\left[x^{-1}, y^{-1},(x-y)^{-1}\right] \longrightarrow V\left[\left[x^{ \pm 1}, y^{ \pm 1}\right]\right]
$$

such that $i_{x, y}$ replaces $(x-y)^{-1}$ by $\sum_{n \geqslant 0} x^{-n-1} y^{n}$, and $i_{y, x}$ replaces $(x-y)^{-1}$ by $-\sum_{n \geqslant 0} y^{-n-1} x^{n}$. That is, $i_{x, y} v(x, y)$ is the power series expansion of $v(x, y)$ in the region $|x|>|y|$, and $i_{y, x} v(x, y)$ the power series expansion in the region $|y| \geqslant|x|$.

The delta function $\delta(x-y) \in R\left[\left[x^{ \pm 1}, y^{ \pm 1}\right]\right]$ is

$$
\delta(x-y)=\sum_{n \in \mathbb{Z}} x^{-n-1} y^{n}=i_{x, y}(x-y)^{-1}-i_{y, x}(x-y)^{-1}
$$

Then $(x-y) \cdot \delta(x-y)=0$.

The delta function $\delta(x-y) \in R\left[\left[x^{ \pm 1}, y^{ \pm 1}\right]\right]$ is

$$
\delta(x-y)=\sum_{n \in \mathbb{Z}} x^{-n-1} y^{n}=i_{x, y}(x-y)^{-1}-i_{y, x}(x-y)^{-1}
$$

Then $(x-y) \cdot \delta(x-y)=0$.
If $v(z)=\sum_{n \in \mathbb{Z}} v_{n} z^{n} \in V\left[\left[z, z^{-1}\right]\right]$, its residue is $\operatorname{Res}_{z} v(z)=v_{-1}$. It satisfies $\operatorname{Res}_{z}\left(\frac{\mathrm{~d}}{\mathrm{~d} z} v(z)\right)=0$ for any $v(z)$. We can also take residues in one of several variables, for example

$$
\operatorname{Res}_{x}: V\left[\left[x^{ \pm 1}, y^{ \pm 1}\right]\right] \longrightarrow V\left[\left[y^{ \pm 1}\right]\right]
$$

maps $x^{-1} y^{n} \mapsto y^{n}$ and $x^{m} y^{n} \mapsto 0$ for $m \neq-1$. The delta function has the property that for all $v(x) \in V\left[\left[x, x^{-1}\right]\right]$ and $k \geqslant 0$

$$
\operatorname{Res}_{x}\left(v(x) \frac{\partial^{k}}{\partial x^{k}} \delta(x-y)\right)=(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} y^{k}} v(y) \quad \text { in } V\left[\left[y, y^{-1}\right]\right] .
$$

Fields

A field $a(z)$ on V is an R-linear morphism $a(z): V \rightarrow V[[z]]\left[z^{-1}\right]$. It is usual to write $a(z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$ where $a_{(n)} \in \operatorname{End}(V)$.
But this expression only says that $a(z) \in \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]$, or equivalently that $a(z)$ is a morphism $a(z): V \rightarrow V\left[\left[z, z^{-1}\right]\right]$. Requiring $a(z)$ to map to $V[[z]]\left[z^{-1}\right]$ (that is, for $a(z)$ to be a field) is equivalent to the condition that for each $v \in V$ there exists N_{v} with $a_{(n)}(v)=0$ for all $n>N_{v}$. But if V is infinite-dimensional, there may be no such $N_{v}=N$ independent of v for all v (this would mean that $a(z) \in \operatorname{End}(V)[[z]]\left[z^{-1}\right]$).

2.2. Defining vertex algebras using formal power series

The next definition is equivalent to Definition 1.1:

Definition 2.1

A vertex algebra $\left(V, \mathbb{1}, e^{z D}, Y\right)$ over a commutative ring R is an R-module V with an identity element $\mathbb{1} \in V$, and R-linear operators $e^{z D}: V \rightarrow V[[z]]$ written $e^{z D} v=\sum_{n \geqslant 0} D^{(n)}(v) z^{n}$ for $D^{(n)} \in \operatorname{End}(V)$, with $D^{(0)}=\operatorname{id}_{V}$, and $Y: V \otimes V \rightarrow V[[z]]\left[z^{-1}\right]$ written $Y(z)(u \otimes v)=Y(u, z) v=\sum_{n \in \mathbb{Z}} u_{n}(v) z^{-n-1}$, satisfying:
(i) $Y(\mathbb{1}, z) v=v$ for all $v \in V$.
(ii) $Y(v, z) \mathbb{1}=e^{z D} v$ for all $v \in V$.
(iii) For all $u, v, w \in V$, in $V\left[\left[z_{0}^{ \pm 1}, z_{1}^{ \pm 1}, z_{2}^{ \pm 1}\right]\right]$ we have $z_{2}^{-1} \delta\left(\frac{z_{1}-z_{0}}{z_{2}}\right) Y\left(Y\left(u, z_{0}\right) v, z_{2}\right) w=z_{0}^{-1} \delta\left(\frac{z_{1}-z_{2}}{z_{0}}\right) Y\left(u, z_{1}\right) Y\left(v, z_{2}\right) w$

$$
\begin{equation*}
-z_{0}^{-1} \delta\left(\frac{z_{2}-z_{1}}{-z_{0}}\right) Y\left(v, z_{2}\right) Y\left(u, z_{1}\right) w \tag{2.1}
\end{equation*}
$$

Equation (2.1) is called the Jacobi identity.

Remarks on the definition

- In physics language, V is the space of states. Then Y maps states v to fields $Y(v, z)$ on V. We call Y the state-field correspondence.
- $e^{z D}$ is determined by (ii), so is not really extra data.
- Definition 1.1(i) says that for $u, v \in V$ we have $u_{n}(v)=0$ for $n \gg 0$. This is encoded in Y mapping $Y: V \otimes V \rightarrow V[[z]]\left[z^{-1}\right]$, rather than $Y: V \otimes V \rightarrow V\left[\left[z, z^{-1}\right]\right]$ for example.
- Definition 2.1(i),(ii) are equivalent to Definition 1.1(ii),(iii).
- Taking the coefficient of $z_{0}^{-l-1} z_{1}^{-1} z_{2}^{-m-1}$ in (2.1) yields Definition 1.1(v). One can also deduce Definition 1.1(iv) from (2.1).
- Equation (2.1) is an exact identity. Later we meet 'weak' identities which hold only after multiplying by $(x-y)^{N}$ for $N \gg 0$, for example.
- There are versions of Definition 2.1 for vertex superalgebras and graded vertex algebras. We take z graded of degree -2 , and then $\mathbb{1} \in V_{0}$ and $e^{z D}, Y(z)$ are grading-preserving. If $u \in V_{a}, v \in V_{b}$, $w \in V_{c}$ then the final term in (2.1) has an extra sign $(-1)^{a b}$

Weak commutativity

For proofs of the next theorems, see e.g. the books by Frenkel-Huang-Lepowsky, Kac, and Lepowksy-Li. We state them for vertex algebras, but analogues hold in the super and graded cases.

Theorem 2.2 (Weak commutativity)

Let $\left(V, \mathbb{1}, e^{z D}, Y\right)$ be a vertex algebra over R. Then for all $u, v, w \in V$ there exists $N \geqslant 0$ depending only on u, v such that in $V\left[\left[z_{1}^{ \pm 1}, z_{2}^{ \pm 1}\right]\right]$ we have

$$
\begin{equation*}
\left(z_{1}-z_{2}\right)^{N}\left[Y\left(u, z_{1}\right) \circ Y\left(v, z_{2}\right) w-Y\left(v, z_{2}\right) \circ Y\left(u, z_{1}\right) w\right]=0 . \tag{2.2}
\end{equation*}
$$

That is, $Y\left(u, z_{1}\right)$ and $Y\left(v, z_{2}\right)$ commute in a weak sense. Note that this is nontrivial even if $u=v$.

Equation (2.2) would be a mess to write down in Borcherds' notation.
Note that $\left(z_{1}-z_{2}\right)^{N} \cdot \frac{\partial^{k}}{\partial z_{1}^{k}} \delta\left(z_{1}-z_{2}\right)=0$ for $0 \leqslant k<N$, so $[\cdots]$ in
(2.2) could (and must) be a sum of terms $\frac{\partial^{k}}{\partial z_{1}^{k}} \delta\left(z_{1}-z_{2}\right) \cdot f_{k}\left(z_{1}\right)$.

Weak associativity

Theorem 2.3 (Weak associativity)

Let $\left(V, \mathbb{1}, e^{z D}, Y\right)$ be a vertex algebra over R. Then for all $u, v, w \in V$ there exists $N \geqslant 0$ depending only on u, v such that in $V\left[\left[z_{1}^{ \pm 1}, z_{2}^{ \pm 1}\right]\right]$ we have the weak associativity property

$$
\begin{align*}
& \left(z_{1}+z_{2}\right)^{N} Y\left(Y\left(u, z_{1}\right) v, z_{2}\right) w \\
& \quad=\left(z_{1}+z_{2}\right)^{N} i_{z_{1}, z_{2}} \circ Y\left(u, z_{1}+z_{2}\right) \circ Y\left(v, z_{2}\right) w . \tag{2.3}
\end{align*}
$$

If we write $v \star_{z} w=Y(v, z) w$ this says that modulo weird formal power series issues we have $\left(u \star_{z_{1}} v\right) \star_{z_{2}} w \approx u \star_{z_{1}+z_{2}}\left(v \star_{z_{2}} w\right)$.

Again, (2.3) would be a mess to write down in Borcherds' notation.

Skew symmetry, translation covariance, exponential

Theorem 2.4

Let $\left(V, \mathbb{1}, e^{z D}, Y\right)$ be a vertex algebra over R, and $u, v \in V$. Then:
(a) The skew symmetry property holds

$$
\begin{equation*}
Y(u, z) v=e^{z D} \circ Y(v,-z) u \tag{2.4}
\end{equation*}
$$

(b) The translation covariance properties hold

$$
\begin{align*}
e^{z_{2} D} \circ Y\left(u, z_{1}\right) \circ e^{-z_{2} D}(v) & =i_{z_{1}, z_{2}} \circ Y\left(u, z_{1}+z_{2}\right) v, \tag{2.5}\\
Y\left(e^{z_{2} D} u, z_{1}\right) v & =i_{z_{1}, z_{2}} \circ Y\left(u, z_{1}+z_{2}\right) v . \tag{2.6}
\end{align*}
$$

(c) The exponential property holds

$$
\begin{equation*}
e^{\left(z_{1}+z_{2}\right) D}(v)=e^{z_{1} D} \circ e^{z_{2} D}(v) \tag{2.7}
\end{equation*}
$$

Equivalent definitions of vertex algebra

Various combinations of (2.1)-(2.7) imply the rest:

Theorem 2.5

The following are equivalent conditions on $\left(V, \mathbb{1}, e^{z D}, Y\right)$: (a) $\left(V, \mathbb{1}, e^{z D}, Y\right)$ is a vertex algebra as in Definition 2.1, in particular, the Jacobi identity (2.1) holds. This definition of vertex algebra is used by Frenkel-Lepowksy-Meurmann 1988.
(b) $\left(V, \mathbb{1}, e^{z D}, Y\right)$ satisfies Definition 2.1(i)-(ii), weak commutativity (2.2), and the first translation covariance property (2.5). This definition of vertex algebra is used by Kac 1998 and Frenkel-Ben-Zvi 2004.
(c) $\left(V, \mathbb{1}, e^{z D}, Y\right)$ satisfies Definition 2.1(i)-(ii), weak associativity (2.3), and skew symmetry (2.4). This definition of vertex algebra appears in Bakalov-Kac 2003.

2.3. Vertex algebras via meromorphic functions

Theorem 2.6 (Based on Anguelova-Bergvelt, N. Kim, and ...)

Let $\left(V, \mathbb{1}, e^{z D}, Y\right)$ be a vertex algebra over R. Then for all $n \geqslant 1$ and $v_{1}, \ldots, v_{n+1} \in V$ there exists $N \geqslant 0$ such that

$$
\left[\prod_{1 \leqslant i<j \leqslant n}\left(z_{i}-z_{j}\right)^{N}\right] \cdot Y\left(v_{1}, z_{1}\right) \circ \cdots \circ Y\left(v_{n}, z_{n}\right) v_{n+1}
$$

lies in $V\left[\left[z_{1}, \ldots, z_{n}\right]\right]\left[z_{1}^{-1}, \ldots, z_{n}^{-1}\right]$. Hence for all $n \geqslant 0$ there exist unique R-linear maps, where by convention $V^{\otimes^{0}}=R$,

$$
\begin{equation*}
X_{n}\left(z_{1}, \ldots, z_{n}\right): V^{\otimes^{n}} \longrightarrow V\left[\left[z_{1}, \ldots, z_{n}\right]\right]\left[\left(z_{i}-z_{j}\right)^{-1}: i<j\right] \tag{2.8}
\end{equation*}
$$

such that for all $v_{1}, \ldots, v_{n} \in V$ we have

$$
\begin{align*}
& i_{z_{1}, z_{2}, \ldots, z_{n}}\left(X_{n}\left(z_{1}, \ldots, z_{n}\right)\left(v_{1} \otimes \cdots \otimes v_{n}\right)\right) \\
& \quad=Y\left(v_{1}, z_{1}\right) \circ Y\left(v_{2}, z_{2}\right) \circ \cdots \circ Y\left(v_{n}, z_{n}\right) \mathbb{1} \tag{2.9}
\end{align*}
$$

where $i_{z_{1}, z_{2}, \ldots, z_{n}}$ expands $\left(z_{i}-z_{j}\right)^{-d}$ for $i<j$ and $d>0$ in nonnegative powers of z_{j}, generalizing $i_{x, y}$ in $\S 2.1$.

Theorem 2.6 (... Frenkel-Huang-Lepowsky. Continued.)

Furthermore these X_{n} satisfy:
(a) If $1 \leqslant i \leqslant m, n \geqslant 0$ and $v_{a}, w_{b} \in V$ then
$X_{m}\left(y_{1}, \ldots, y_{m}\right)\left(v_{1} \otimes \cdots \otimes v_{i-1} \otimes\right.$
$\left.X_{n}\left(z_{1}, \ldots, z_{n}\right)\left(w_{1} \otimes \cdots \otimes w_{n}\right) \otimes v_{i+1} \otimes \cdots \otimes v_{m}\right)=$
$i_{y, z}\left(X_{m+n-1}\left(y_{1}, \ldots, y_{i-1}, z_{1}+y_{i}, \ldots, z_{n}+y_{i}, y_{i+1}, \ldots, y_{m}\right)\right.$
$\left.\left(v_{1} \otimes \cdots \otimes v_{i-1} \otimes w_{1} \otimes \cdots \otimes w_{n} \otimes v_{i+1} \otimes \cdots \otimes v_{m}\right)\right)$
in $V\left[\left[y_{1}, \ldots, y_{m}\right]\right]\left[\left(y_{j}-y_{k}\right)^{-1}: j<k\right]\left[\left[z_{1}, \ldots, z_{n}\right]\right]\left[\left(z_{j}-z_{k}\right)^{-1}: j<k\right]$.
(b) For all $n \geqslant 0, \sigma \in S_{n}$ and $v_{1}, \ldots, v_{n} \in V$ we have
$\quad X_{n}\left(z_{1}, \ldots, z_{n}\right)\left(v_{1} \otimes \cdots \otimes v_{n}\right)$
$\quad=X_{n}\left(z_{\sigma(1)}, \ldots, z_{\sigma(n)}\right)\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}\right)$.
(c) $X_{0}(a)=a \mathbb{1}$ for all $a \in R$.
(d) $X_{1}(z)=e^{z D}: V \rightarrow V[[z]]$. In particular, $X_{1}(0)=\operatorname{id} V$.
(e) $Y(z)=X_{2}(z, 0): V \otimes V \rightarrow V[[z]]\left[z^{-1}\right]$.

Theorem 2.6 gives us another way to define vertex algebras:

Definition 2.7

A vertex algebra over R is a triple $\left(V, \mathbb{1}, X_{*}\right)$ where V is an R-module, $X_{*}=\left(X_{n}\right)_{n \geqslant 0}$ with each X_{n} an R-module morphism

$$
\begin{equation*}
X_{n}\left(z_{1}, \ldots, z_{n}\right): V^{\otimes^{n}} \longrightarrow V\left[\left[z_{1}, \ldots, z_{n}\right]\right]\left[\left(z_{i}-z_{j}\right)^{-1}: i<j\right] \tag{2.12}
\end{equation*}
$$

satisfying Theorem 2.6(a)-(c). This is equivalent to a vertex algebra ($V, \mathbb{1}, e^{z D}, Y$) from $\S 2.2$ as in Theorem 2.6(d)-(e).

If we work with graded vertex algebras $\left(V_{*}, \mathbb{1}, X_{*}\right)$ then the component of $X_{n}\left(z_{1}, \ldots, z_{n}\right)$ in V_{k} for each $k \in \mathbb{Z}$ lies in $V_{k}\left[z_{1}, \ldots, z_{n}\right]\left[\left(z_{i}-z_{j}\right)^{-1}: i<j\right]$, that is, it is a genuine meromorphic function, not just a formal function, and say over $R=\mathbb{C}$ we could substitute actual complex numbers for z_{1}, \ldots, z_{n}.

The Borcherds or $\left(V, \mathbb{1}, e^{z D}, Y\right)$ definitions of vertex algebras have the advantage of economy: they put the least information in the definition. The $\left(V, \mathbb{1}, X_{*}\right)$ definition requires more data, but has other advantages. For example, weak commutativity for $N \gg 0$

$$
\left(z_{1}-z_{2}\right)^{N}\left[Y\left(u, z_{1}\right) \circ Y\left(v, z_{2}\right) w-Y\left(v, z_{2}\right) \circ Y\left(u, z_{1}\right) w\right]=0
$$

is replaced by the exact symmetry in $V\left[\left[z_{1}, z_{2}\right]\right]\left[z_{1}^{-1}, z_{2}^{-1},\left(z_{1}-z_{2}\right)^{-1}\right]$

$$
\begin{equation*}
X_{3}\left(z_{1}, z_{2}, 0\right)(u \otimes v \otimes w)=X_{3}\left(z_{2}, z_{1}, 0\right)(v \otimes u \otimes w) \tag{2.13}
\end{equation*}
$$

That is, $Y\left(u, z_{1}\right) \circ Y\left(v, z_{2}\right) w$ and $Y\left(v, z_{2}\right) \circ Y\left(u, z_{1}\right) w$ are both power series expansions of the same meromorphic (2.13) in the two different regions $\left|z_{1}\right|>\left|z_{2}\right|>0$ and $\left|z_{2}\right|>\left|z_{1}\right|>0$. In general, the $\left(V, \mathbb{1}, X_{*}\right)$ definition tends to replace 'weak' identities by exact identities in meromorphic functions. It also makes clear where the poles are.

2.4. Ways to explain vertex algebras

Borcherds (1997) motivates vertex algebras this way: think of a vertex algebra $\left(V, \mathbb{1}, e^{z D}, Y\right)$ as like a commutative ring V with identity $\mathbb{1}$, (partially defined) multiplication \star, and an action $\rho: \mathbb{C} \rightarrow \operatorname{End}(V)$ of the additive group \mathbb{C} preserving $\mathbb{1}, \star$. Then $e^{z D}, Y$ and X_{n} in $\S 2.3$ are written in terms of \star, ρ by

$$
\begin{align*}
& \rho(z) v=e^{z D} v=\sum_{n \geqslant 0} z^{n} D^{(n)}(v), \quad Y(v, z) w=(\rho(z) v) \star w, \tag{2.14}\\
& X_{n}\left(z_{1}, \ldots, z_{n}\right)\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\left(\rho\left(z_{1}\right) v_{1}\right) \star \cdots \star\left(\rho\left(z_{n}\right) v_{n}\right) .
\end{align*}
$$

The catch is that \star is 'singular', so $u \star v$ is not always defined, and in particular $(\rho(z) u) \star v$ might have poles in z.

2.4. Ways to explain vertex algebras

Borcherds (1997) motivates vertex algebras this way: think of a vertex algebra $\left(V, \mathbb{1}, e^{z D}, Y\right)$ as like a commutative ring V with identity $\mathbb{1}$, (partially defined) multiplication \star, and an action $\rho: \mathbb{C} \rightarrow \operatorname{End}(V)$ of the additive group \mathbb{C} preserving $\mathbb{1}, \star$. Then $e^{z D}, Y$ and X_{n} in $\S 2.3$ are written in terms of \star, ρ by

$$
\begin{align*}
& \rho(z) v=e^{z D} v=\sum_{n \geqslant 0} z^{n} D^{(n)}(v), \quad Y(v, z) w=(\rho(z) v) \star w, \tag{2.14}\\
& X_{n}\left(z_{1}, \ldots, z_{n}\right)\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\left(\rho\left(z_{1}\right) v_{1}\right) \star \cdots \star\left(\rho\left(z_{n}\right) v_{n}\right) .
\end{align*}
$$

The catch is that \star is 'singular', so $u \star v$ is not always defined, and in particular $(\rho(z) u) \star v$ might have poles in z.
Actually I don't find Borcherds' attempt to make all this rigorous very helpful. But this picture is good for justifying the identities in $\S 2.2-\S 2.3$, modulo weird power series issues. For example;

- Definition 2.1(i) $Y(\mathbb{1}, z) v=v$ becomes $(\rho(z) \mathbb{1}) \star v=\mathbb{1} \star v=v$.
- If weak commutativity held in the strong sense it would become $Y\left(u, z_{1}\right) \circ Y\left(v, z_{2}\right) w=Y\left(v, z_{2}\right) \circ Y\left(u, z_{1}\right) w$. This corresponds to

$$
\left(\rho\left(z_{1}\right)(u)\right) \star\left(\left(\rho\left(z_{2}\right)(v)\right) \star w\right)=\left(\rho\left(z_{2}\right)(v)\right) \star\left(\left(\rho\left(z_{1}\right)(u)\right) \star w\right)
$$

as \star is commutative and associative.

- If weak associativity held in the strong sense it would become $Y\left(Y\left(u, z_{1}\right) v, z_{2}\right) w=Y\left(u, z_{1}+z_{2}\right) \circ Y\left(v, z_{2}\right) w$. This corresponds to

$$
\left(\rho\left(z_{2}\right)\left(\rho\left(z_{1}\right)(u) \star v\right)\right) \star w=\left(\rho\left(z_{1}+z_{2}\right)(u)\right) \star\left(\left(\rho\left(z_{2}\right)(v)\right) \star w\right) .
$$

- Skew symmetry $Y(u, z) v=e^{z D} \circ Y(v,-z) u$ becomes $(\rho(z) u) \star v=\rho(z) \circ \rho(-z) \circ(v \star(\rho(z) u))=\rho(z)((\rho(-z) v) \star u)$.
- Translation covariance $Y\left(e^{z_{2} D} u, z_{1}\right) v=i_{z_{1}, z_{2}} \circ Y\left(u, z_{1}+z_{2}\right) v$ becomes $\rho\left(z_{1}\right)\left(\rho\left(z_{2}\right)(u)\right) \star v=\left(\rho\left(z_{1}+z_{2}\right)(u)\right) \star v$.

Physical meaning of vertex operator algebras???

I am very confused, so all the following may be lies ... As I understand it, a VOA $\left(V_{*}, \mathbb{1}, e^{z D}, Y, \omega\right)$ roughly corresponds to a kind of QFT in Physics. See Huang 1991 for an attempt to make this precise. Consider the following class of objects ($\Sigma, \boldsymbol{p}, \boldsymbol{x}$): a compact Riemann surface Σ, with $n+1$ marked points p_{0}, \ldots, p_{n} where p_{1}, \ldots, p_{n} are 'inputs' and p_{0} the 'output', and choices of local (formal?) holomorphic coordinates x_{0}, \ldots, x_{n} on Σ, with x_{j} defined near p_{j} with $\left.x_{j}\right|_{p_{j}}=0$. To each such triple $(\Sigma, \boldsymbol{p}, \boldsymbol{x})$ we would like to associate a morphism $F_{(\Sigma, \boldsymbol{p}, \boldsymbol{x})}: V^{\otimes^{n}} \rightarrow V$ (possibly up to scale?), where $F_{(\Sigma, p, x)}\left(v_{1} \otimes \cdots \otimes v_{n}\right)$ means we insert states v_{1}, \ldots, v_{n} from V_{*} at the marked points p_{1}, \ldots, p_{n}, and then the physics outputs a state $F_{(\Sigma, \boldsymbol{p}, \boldsymbol{x})}\left(v_{1} \otimes \cdots \otimes v_{n}\right)$ at p_{0}.

We would like to make this independent of the choices of centred local coordinates x_{0}, \ldots, x_{n} in the following sense: there should be a group G of (germs of centred) coordinate changes with a (projective) representation on V, and acting on x_{0}, \ldots, x_{n} by $g_{0}, \ldots, g_{n} \in G$ should change $F_{(\Sigma, \boldsymbol{p}, \mathbf{x})}\left(v_{1} \otimes \cdots \otimes v_{n}\right)$ to $F_{(\Sigma, \boldsymbol{p}, \boldsymbol{g} \cdot \mathbf{x})}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=g_{0}^{-1} \cdot F_{(\Sigma, \boldsymbol{p}, \mathbf{x})}\left(g_{1} \cdot v_{1} \otimes \cdots \otimes g_{n} \cdot v_{n}\right)$. At the Lie algebra level, G corresponds (roughly) to the Witt algebra W, with central extension the Virasoro algebra Vir, so as the VOA V_{*} is a representation of Vir with central charge $c_{V_{*}}$, it is a projective representation of W.

We would like to make this independent of the choices of centred local coordinates x_{0}, \ldots, x_{n} in the following sense: there should be a group G of (germs of centred) coordinate changes with a (projective) representation on V, and acting on x_{0}, \ldots, x_{n} by
$g_{0}, \ldots, g_{n} \in G$ should change $F_{(\Sigma, \boldsymbol{p}, \boldsymbol{x})}\left(v_{1} \otimes \cdots \otimes v_{n}\right)$ to
$F_{(\Sigma, \boldsymbol{p}, \boldsymbol{g} \cdot \mathbf{x})}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=g_{0}^{-1} \cdot F_{(\Sigma, \boldsymbol{p}, x)}\left(g_{1} \cdot v_{1} \otimes \cdots \otimes g_{n} \cdot v_{n}\right)$. At the Lie algebra level, G corresponds (roughly) to the Witt algebra W, with central extension the Virasoro algebra Vir, so as the VOA V_{*} is a representation of Vir with central charge $c_{V_{*}}$, it is a projective representation of W.
There should be composition rules for the $F_{(\Sigma, \boldsymbol{p}, \boldsymbol{x})}$ as follows: given ($\Sigma, \boldsymbol{p}, \boldsymbol{x}$) and $\left(\Sigma^{\prime}, \boldsymbol{p}^{\prime}, \boldsymbol{x}^{\prime}\right)$, suppose the domains of x_{k} for $k>0$ and x_{0}^{\prime} include closed balls $\bar{B}_{r}(0), \bar{B}_{1 / r}(0)$ for $r>0$ containing no other x_{j}, x_{j}^{\prime}. We make a new triple ($\left.\Sigma^{\prime \prime}, \boldsymbol{p}^{\prime \prime}, \boldsymbol{x}^{\prime \prime}\right)$ by gluing $\Sigma \backslash x_{k}\left(B_{r}(0)\right)$ and $\Sigma^{\prime} \backslash x_{0}^{\prime}\left(B_{1 / r}(0)\right)$ along their boundary circle. Then $F_{\left(\Sigma^{\prime \prime}, \boldsymbol{p}^{\prime \prime}, \boldsymbol{x}^{\prime \prime}\right)}$ corresponds to substituting $F_{\left(\Sigma^{\prime}, \boldsymbol{p}^{\prime}, \boldsymbol{x}^{\prime}\right)}$ into the $k^{\text {th }}$ input of $F_{(\Sigma, \boldsymbol{p}, \boldsymbol{x})}$.

Then $Y(z): V \otimes V \rightarrow V[[z]]\left[z^{-1}\right]$ should correspond to $F_{(\Sigma, p, x)}$ for $\Sigma=\mathbb{C P}^{1}=\mathbb{C} \amalg\{\infty\}, \boldsymbol{p}=\left(p_{0}, p_{1}, p_{2}\right)=(\infty, z, 0)$, $x_{0}(y)=1 / y, x_{1}(y)=y+z, x_{2}(y)=y$, where z varies in $\mathbb{C P}^{1}$ and we expect singularities at $z=0, \infty$ when p_{1} collides with p_{0} or p_{2}. More generally, $X_{n}\left(z_{1}, \ldots, z_{n}\right)$ should correspond to $F_{(\Sigma, \boldsymbol{p}, x)}$ for $\Sigma=\mathbb{C P}^{1}, \boldsymbol{p}=\left(\infty, z_{1}, \ldots, z_{n}\right), x_{0}(y)=1 / y, x_{k}(y)=y+z_{k}$, $k=1, \ldots, n$.

