## Vertex Algebras

Lecture 3 of 8: Locality, vertex operators, OPEs, and examples
Dominic Joyce, Oxford University Summer term 2021

These slides available at http://people.maths.ox.ac.uk/~joyce/

## Plan of talk:

3 Locality, vertex operators, OPEs, and examples
3.1 Local fields
3.2 The Reconstruction Theorem
3.3 Examples of vertex algebras

## Introduction

Recall from $\S 2.2$ that a vertex algebra $\left(V, \mathbb{1}, e^{z D}, Y\right)$ satisfies weak commutativity: for all $u, v, w \in V$ there exists $N \geqslant 0$ depending only on $u, v$ such that

$$
\begin{equation*}
\left(z_{1}-z_{2}\right)^{N}\left[Y\left(u, z_{1}\right) \circ Y\left(v, z_{2}\right) w-Y\left(v, z_{2}\right) \circ Y\left(u, z_{1}\right) w\right]=0 \tag{3.1}
\end{equation*}
$$

Here $Y(u, z), Y(v, z)$ are fields on $V$, and (3.1) is a compatibility condition between them. If it holds we say that $Y(u, z), Y(v, z)$ are mutually local. This is nontrivial even if $u=v$ : we can require a field $a(z)$ such as $Y(v, z)$ to be local with itself, and then we call $a(z)$ a vertex operator. Weak commutativity says that the operators $Y(v, z)$ for all $v \in V$ are mutually local vertex operators on $V$.
Today we explore the approach to vertex algebras which emphasizes local fields, and weak commutativity as the primary property of vertex algebras.

### 3.1. Local fields

## Definition 3.1

Let $R$ be a commutative ring, and $V$ an $R$-module. We call $a(z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$ in $\operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]$ a distribution on $V$. As in $\S 2.1$, we call $a(z)$ a field on $V$ if it maps $V \rightarrow V[[z]]\left[z^{-1}\right]$. Equivalently, $a(z)$ is a field if for all $v \in V$ there exists $N_{v}$ with $a_{(n)}(v)=0$ for $n \geqslant N_{v}$.
Let $a(z), b(z)$ be distributions or fields on $V$. We call $a, b$ mutually local if there exists $N \gg 0$ such that

$$
\begin{equation*}
(z-w)^{N}[a(z), b(w)]=0 \quad \text { in } \operatorname{End}(V)\left[\left[z, w, z^{-1}, w^{-1}\right]\right] \tag{3.2}
\end{equation*}
$$

where $[a(z), b(w)]=a(z) \circ b(w)-b(w) \circ a(z)$. We call a field $a(z)$ a local field, or vertex operator, if it is mutually local with itself.

## Remarks on locality

- The name comes from QFT in physics: we think of $a(z)$ and $b(w)$ as two operators living at points $z, w$ in the Riemann surface $\Sigma=\mathbb{C}$, and locality says that $a(z)$ and $b(w)$ commute if $z$ and $w$ are spacelike separated. That is, if $z \neq w$ then (3.2) becomes $[a(z), b(w)]=0$.
- We can show that $(z-w)^{N}[a(z), b(w)]=0$ if and only if

$$
[a(z), b(w)]=\sum_{n=0}^{N-1} c_{n}(w) \frac{1}{n!} \frac{\partial^{n}}{\partial w^{n}} \delta(z-w)
$$

for some distributions $c_{0}(w), \ldots, c_{N-1}(w)$. Note that $\frac{1}{n!} \frac{\partial^{n}}{\partial w^{n}}$ is a well defined operator over any $R$, we don't need $\mathbb{Q} \subseteq R$.

- If instead $V_{*}$ is a super/graded $R$-module and $a, b$ are of pure grading we define the supercommutator to be

$$
[a(z), b(w)]=a(z) \circ z(w)-(-1)^{\operatorname{deg} a \operatorname{deg} b} b(w) \circ a(z)
$$

We should use these to extend this lecture to vertex superalgebras / graded vertex algebras, but for simplicity we do not.

## Defining vertex algebras using mutually local fields

Theorem 2.5(b) may now be rewritten:

## Theorem 3.2

Let $V$ be an $R$-module, $\mathbb{1} \in V$ and $e^{z D}: V \rightarrow V[[z]]$,
$Y: V \rightarrow V\left[\left[z, z^{-1}\right]\right]$ be $R$-linear maps. Then $\left(V, \mathbb{1}, e^{z D}, Y\right)$ is a vertex algebra if for all $u, v \in V$ we have
(i) $Y(\mathbb{1}, z) v=v$.
(ii) $Y(v, z) \mathbb{1}=e^{z D} v$.
(iii) $e^{z_{2} D} \circ Y\left(u, z_{1}\right) \circ e^{-z_{2} D}(v)=i_{z_{1}, z_{2}} \circ Y\left(u, z_{1}+z_{2}\right) v$.
(iv) $Y(u, z)$ and $Y(v, z)$ are mutually local vertex operators on $V$.

If we have defined some $\left(V, \mathbb{1}, e^{z D}, Y\right)$ and want to show it is a vertex algebra, usually (i)-(iii) are easy, and the difficult thing is to prove (iv). We explain methods for showing fields are mutually local.

## Products $a(w)_{(n)} b(w)$, normally ordered products

## Definition 3.3

Let $V$ be an $R$-module, and $a(z), b(z)$ be fields on $V$. For $n \in \mathbb{Z}$ define a field $a(w)_{(n)} b(w)$ on $V$ by $a(w)_{(n)} b(w)=\operatorname{Res}_{z}\left(a(z) b(w) i_{z, w}(z-w)^{n}-b(w) a(z) i_{w, z}(z-w)^{n}\right)$.
For $n \in \mathbb{N}$ this simplifies to

$$
a(w)_{(n)} b(w)=\operatorname{Res}_{z}\left([a(z), b(w)](z-w)^{n}\right)
$$

Writing $a(z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$, define distributions $a(z)_{ \pm}$on $V$ by

$$
a(z)_{+}=\sum_{n<0} a_{(n)} z^{-n-1}, \quad a(z)_{-}=\sum_{n \geqslant 0} a_{(n)} z^{-n-1}
$$

Define the normally ordered product : $a(z) b(w)$ : by

$$
: a(z) b(w):=a(z)_{+} b(w)+b(w) a(z)_{-}
$$

This maps : $a(z) b(w):: V \rightarrow V[[z, w]]\left[z^{-1}, w^{-1}\right]$. We may set $z=w$, and : $a(z) b(z):$ is a field, with : $a(z) b(z):=a(z)_{(-1)} b(z)$.

If $\left(V, \mathbb{1}, e^{z D}, Y\right)$ is a vertex algebra and $u, v \in V$ then $Y(u, z)$ and $Y(v, z)$ are mutually local fields on $V$, and for $n \in \mathbb{Z}$ we have

$$
\begin{equation*}
Y(u, z)_{(n)} Y(v, z)=Y\left(u_{n}(v), z\right) \tag{3.3}
\end{equation*}
$$

## Theorem 3.4 (Kac 1997, §2.3.)

Suppose $a(z), b(z)$ are mutually local fields on $V$. Then for $N \gg 0$ (the same $N$ as in (3.1)) we have $a(z)_{(n)} b(z)=0$ for $n \geqslant N$, and

$$
\begin{gather*}
{[a(z), b(w)]=\sum_{n=0}^{N-1} a(w)_{(n)} b(w) \cdot \frac{1}{n!} \frac{\partial^{n}}{\partial w^{n}} \delta(z-w),}  \tag{3.4}\\
a(z) \circ b(w)=\sum_{n=0}^{N-1} a(w)_{(n)} b(w) \cdot i_{z, w} \frac{1}{(z-w)^{n+1}}  \tag{3.5}\\
\quad+: a(z) b(w): \\
b(w) \circ a(z)=\sum_{n=0}^{N-1} a(w)_{(n)} b(w) \cdot i_{w, z} \frac{1}{(z-w)^{n+1}}  \tag{3.6}\\
\quad+: a(z) b(w):
\end{gather*}
$$

## Operator product expansions

If $a(z), b(z)$ are mutually local fields, equation (3.5) says that

$$
a(z) \circ b(w)=\sum_{n=0}^{N-1} a(w)_{(n)} b(w) \cdot i_{z, w} \frac{1}{(z-w)^{n+1}}+: a(z) b(w):
$$

Here : $a(z) b(w)$ : has no pole when $z=w$. We write the singular part as

$$
\begin{equation*}
a(z) \circ b(w) \sim \sum_{n=0}^{N-1} a(w)_{(n)} b(w) \cdot \frac{1}{(z-w)^{n+1}} \tag{3.7}
\end{equation*}
$$

This is called an operator product expansion (OPE), and is important in physics. Theorem 3.4 shows that the r.h.s. of (3.7) is the obstruction to $a(z)$ and $b(w)$ strictly commuting.
Sometimes vertex algebras can be described in an economical way by specifying a small number of generating fields, and the OPEs (3.7) relating them, in a similar way to specifying a Lie algebra by generators and relations.

## Theorem 3.5 (Kac 1997, §3.2. Part (a) is 'Dong's Lemma'.)

(a) Suppose $a(z), b(z), c(z)$ are pairwise mutually local fields on $V$. Then $a(z)_{(n)} b(z)$ and $c(z)$ are mutually local for $n \in \mathbb{Z}$, and : $a(z) b(z)$ : and $c(z)$ are mutually local.
(b) If $a(z), b(z)$ are mutually local then $\frac{1}{n!} \frac{\partial^{n}}{\partial z^{n}} a(z), b(z)$ are too.

Theorem 3.5 can be used to construct larger and larger sets of mutually local fields, and so to build vertex algebras.

## Theorem 3.6 (Goddard's Uniqueness Thm, Frenkel-Ben-Zvi §3.1.)

Suppose $\left(V, \mathbb{1}, e^{z D}, Y\right)$ is a vertex algebra and $a(z)$ is a field on $V$ such that $a(z), Y(v, z)$ are mutually local for all $v \in V$, and there exists $u \in V$ with $a(z) \mathbb{1}=Y(u, z) \mathbb{1}=e^{z D} u$. Then $a(z)=Y(u, z)$.

Again, this is helpful for building vertex algebras.

### 3.2. The Reconstruction Theorem

## Theorem 3.7 (Reconstruction Theorem, Kac Th. 4.5, F-B-Z §3.6)

Let $R$ be a field of characteristic zero, and $V$ be an $R$-vector space. Suppose we are given an element $\mathbb{1} \in V$, a linear map $D: V \rightarrow V$, and a countable family $\left\{a^{\alpha}(z): \alpha \in A\right\}$ of fields on $V$ such that:
(i) $a^{\alpha}(z) \mathbb{1} \in V[[z]]$ for all $\alpha \in A$, so we set $a^{\alpha}=a^{\alpha}(0) \mathbb{1}$ in $V$.
(ii) $D(\mathbb{1})=0$, and $\left[D, a^{\alpha}(z)\right]=\frac{\mathrm{d}}{\mathrm{d} z} a^{\alpha}(z)$ for all $\alpha \in A$.
(iii) $a^{\alpha}(z), a^{\beta}(z)$ are mutually local for all $\alpha, \beta \in A$.
(iv) $V$ is spanned by the vectors $a_{\left(n_{1}\right)}^{\alpha_{1}} \circ \cdots \circ a_{\left(n_{m}\right)}^{\alpha_{m}}(\mathbb{1})$ for all $m \geqslant 0, \alpha_{1}, \ldots, \alpha_{m}$ in $A$ and $n_{1}, \ldots, n_{m}<0$.
Then there exists a unique vertex algebra $\left(V, \mathbb{1}, e^{z D}, Y\right)$ with $a^{\alpha}(z)=Y\left(a^{\alpha}, z\right)$ for all $\alpha \in A$.

## Remarks on the Reconstruction Theorem

- This is a generators-and-relations approach to vertex algebras.
- Even though $V$ will be infinite-dimensional, $A$ may be small, even just one or two points. So the main data is a vector space $V$ and a small number of fields $a^{\alpha}(z)$ on $V$, which may be a lot less work to write down than the entire structure $\left(V, \mathbb{1}, e^{z D}, Y\right)$.
- If (iv) does not hold, replace $V$ by the subspace spanned by all vectors $a_{\left(n_{1}\right)}^{\alpha_{1}} \circ \cdots \circ a_{\left(n_{m}\right)}^{\alpha_{m}}(\mathbb{1})$.
- The proof works by defining $Y$ to satisfy

$$
Y\left(a_{\left(n_{1}\right)}^{\alpha_{1}} \circ \cdots \circ a_{\left(n_{m}\right)}^{\alpha_{m}}(\mathbb{1}), z\right)
$$

$$
=\frac{1}{\left(-n_{1}-1\right)!\cdots\left(-n_{m}-1\right)!}: \frac{\mathrm{d}^{-n_{1}-1}}{\mathrm{~d} z^{-n_{1}-1}} a^{\alpha_{1}}(z) \cdots \frac{\mathrm{d}^{-n_{m}-1}}{\mathrm{~d} z^{-n_{m}-1}} a^{\alpha_{m}}(z):
$$

where : . . : extends normal ordering : $a(z) b(z)$ : inductively to $m$ operators. Use Theorem 3.5 to deduce these are all mutually local.

### 3.3. Examples of vertex algebras

Example 3.8 (The Heisenberg vertex algebra, or rank 1 free boson)
Let $R=\mathbb{C}$ and $V=\mathbb{C}\left[x_{1}, x_{2}, \ldots\right]$ be the space of polynomials in $x_{1}, x_{2}, \ldots$. Let $\mathbb{1} \in V$ be the polynomial 1 , and $D: V \rightarrow V$ act by

$$
\begin{equation*}
D\left(p\left(x_{1}, x_{2} \ldots\right)\right)=\sum_{n \geqslant 1} n x_{n+1} \frac{\partial}{\partial x_{n}} p\left(x_{1}, x_{2} \ldots\right) . \tag{3.8}
\end{equation*}
$$

Define a field $a(z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$ on $V$, where $a_{(n)}: V \rightarrow V$ is a $\mathbb{C}$-linear map, by

$$
a_{(n)}: p\left(x_{1}, x_{2} \ldots\right) \longmapsto \begin{cases}x_{-n} p\left(x_{1}, x_{2} \ldots\right), & n<0  \tag{3.9}\\ 0, & n=0, \\ n \frac{\partial}{\partial x_{n}} p\left(x_{1}, x_{2} \ldots\right), & n>0 .\end{cases}
$$

The Reconstruction Theorem applies with $\left\{a^{\alpha}(z): \alpha \in A\right\}=\{a(z)\}$ and $a=a(0) \mathbb{1}=x_{1}$, so there is a unique vertex algebra $\left(V, \mathbb{1}, e^{z D}, Y\right)$ with $a(z)=Y\left(x_{1}, z\right)$.

## Example 3.8 (Continued.)

- Can show directly that $(z-w)^{2}[a(z), a(w)]=0$, so $a(z)$ is local.
- We have $a(z)_{(0)} a(z)=0$ and $a(z)_{(1)} a(z)=i d v$, so we have the OPE $a(z) a(w) \sim \operatorname{id} v \frac{1}{(z-w)^{2}}$.
- We can make $V$ into a graded vertex algebra in even degrees by setting deg $x_{n}=2 n$.
- $V$ is a vertex operator algebra with (nonunique) conformal vector $\omega_{s}=\frac{1}{2} x_{1}^{2}+s x_{2}$ for any $s \in \mathbb{C}$, and central charge $c_{V}=1-12 s^{2}$.
- As elements of $\operatorname{End}(V)$, the Fourier coefficients $a_{(n)}$ satisfy

$$
\begin{equation*}
\left[a_{(m)}, a_{(n)}\right]=m \delta_{m,-n} \mathrm{id}_{V} . \tag{3.10}
\end{equation*}
$$

Therefore $\left\langle a_{(n)}, n \in \mathbb{Z}, \operatorname{id} v\right\rangle_{\mathbb{C}}$ is the Heisenberg Lie algebra $\mathfrak{H}$, with centre $\left\langle a_{(0)}, \text { id } v\right\rangle_{\mathbb{C}}$. Representation theorists care about $\mathfrak{H}$, and tell us there is a unique irreducible representation of $\mathfrak{H}$ in which $a_{(0)}, \operatorname{id}_{V}$ act by 0,1 , which is $V$. Note that the infinite-dimensional Lie algebra $\mathfrak{H}$ has been encoded in the single vertex operator $a(z)$.

## Example 3.9 (The Virasoro vertex algebra)

As in $\S 1.2$, the Virasoro algebra Vir is the Lie algebra over $\mathbb{C}$ with basis elements $L_{n}, n \in \mathbb{Z}$ and $c$ (the central charge), and Lie bracket

$$
\left[c, L_{n}\right]=0, \quad\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{1}{12}\left(m^{3}-m\right) \delta_{m,-n} c
$$

for $m, n \in \mathbb{Z}$. Let $\mathfrak{K}=\left\langle L_{n}, n \geqslant-1, c\right\rangle_{\mathbb{C}} \subset$ Vir, a Lie subalgebra.
For each $\gamma \in \mathbb{C}$ define a representation $\rho_{\gamma}$ of $\mathfrak{K}$ on $\mathbb{C}$ by
$\rho_{\gamma}\left(L_{n}\right)=0$ for $n \geqslant-1$ and $\rho_{\gamma}(c)=\gamma$ id $_{\mathbb{C}}$. Let $V_{\gamma}=\mathbb{C} \otimes_{\rho_{\gamma}, U(\mathfrak{K}) \text {,inc }} U($ Vir $)$ be the induced representation of Vir, and let $\mathbb{1} \in V_{\gamma}$ be the image of the generator $1 \in \mathbb{C}$. Regard the $L_{n}$ as lying in $\operatorname{End}\left(V_{\gamma}\right)$, via the representation of Vir on $V_{\gamma}$. Then $L_{n}(\mathbb{1})=0$ for $n \geqslant-1$ by definition. Define $D=L_{-1}: V \rightarrow V$. Define a field $T(z)$ on $V_{\gamma}$ by $T(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}$ (not the usual power of $z$ ). Then $(z-w)^{4}[T(z), T(w)]=0$, so $T(z)$ is local. Set $\omega=L_{-2} \mathbb{1}$ in $V$. The Reconstruction Theorem applies with $\left\{a^{\alpha}(z): \alpha \in A\right\}=\{T(z)\}$ and $T(0) \mathbb{1}=\omega$, so there is a unique vertex algebra $\left(V_{\gamma}, \mathbb{1}, e^{z D}, Y\right)$ with $T(z)=Y(\omega, z)$.

## Example 3.9 (Continued)

- $\left(V_{\gamma}, \mathbb{1}, e^{z D}, Y\right)$ is a vertex operator algebra with conformal element $\omega$ and central charge $\gamma$. This works for each $\gamma \in \mathbb{C}$.
- The field $T(z)$ has OPE

$$
\begin{equation*}
T(z) \circ T(w) \sim \frac{\gamma}{2} \frac{\mathrm{id} V_{\gamma}}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\frac{d T}{d w}(w)}{z-w} \tag{3.12}
\end{equation*}
$$

so by Theorem 3.4 we have

$$
\begin{aligned}
& {[T(z), T(w)]=} \\
& \frac{\gamma}{12} \mathrm{id}_{v_{\gamma}} \frac{\partial^{3}}{\partial w^{3}} \delta(z-w)+2 T(w) \frac{\partial}{\partial w} \delta(z-w)+\frac{\mathrm{d} T}{\mathrm{~d} w}(w) \delta(z-w)
\end{aligned}
$$

This is equivalent to the defining relations (3.11) of the Virasoro algebra, with $c=\gamma \operatorname{id} \nu_{\gamma}$. Note that the single vertex operator $T(z)$ encodes the Virasoro algebra, and its OPE (3.12) the Lie bracket of the Virasoro algebra, without knowing $V_{\gamma}$. Vertex operators and OPEs can characterize interesting Lie algebras very succinctly.

## Example 3.10 (Vertex algebras from affine Lie algebras)

Let $\mathfrak{g}$ be a finite-dimensional simple Lie algebra over $\mathbb{C}$. Then $\mathfrak{g}\left[t, t^{-1}\right]$ is an infinite-dimensional Lie algebra: think of it as Laurent polynomials $\gamma(t): \mathbb{C}^{*} \rightarrow \mathfrak{g}$ with Lie bracket $[\gamma, \delta](t)=[\gamma(t), \delta(t)]$, and restricting to $\mathcal{S}^{1} \subset \mathbb{C}^{*}$, this is basically the Lie algebra of the loop group LG. The affine Lie algebra $\hat{\mathfrak{g}}$ is a nontrivial central extension of Lie algebras

$$
0 \longrightarrow\langle c\rangle_{\mathbb{C}} \longrightarrow \hat{\mathfrak{g}} \longrightarrow \mathfrak{g}\left[t, t^{-1}\right] \longrightarrow 0
$$

defined using the Killing form $\langle$,$\rangle of \mathfrak{g}$. Let the Lie subalgebra $\mathfrak{K} \subset \mathfrak{g}$ be the preimage of $\mathfrak{g}[t]$, so $\mathfrak{K} \cong\langle c\rangle_{\mathbb{C}} \oplus \mathfrak{g}[t]$ as Lie algebras. Extend this to a vector space splitting $\hat{\mathfrak{g}} \cong\langle c\rangle_{\mathbb{C}} \oplus \mathfrak{g}\left[t, t^{-1}\right]$.
For each $k \in \mathbb{C}$ define a representation $\rho_{k}$ of $\mathfrak{K}$ on $\mathbb{C}$ by $\rho_{k}(\mathfrak{g}[t])=0$ and $\rho_{\gamma}(c)=k \operatorname{id}_{\mathbb{C}}$. We call $k$ the 'level'. Let $V_{k}^{\hat{\mathfrak{g}}}=\mathbb{C} \otimes_{\rho_{k}, U(\mathfrak{k}) \text {,inc }} U(\hat{\mathfrak{g}})$ and $\sigma: \hat{\mathfrak{g}} \rightarrow \operatorname{End}\left(V_{k}^{\hat{\mathfrak{q}}}\right)$ be the induced representation of $\hat{\mathfrak{g}}$, and let $\mathbb{1} \in V_{k}^{\hat{\mathfrak{g}}}$ be the image of $1 \in \mathbb{C}$.

## Example 3.10 (Continued)

For each $\gamma \in \mathfrak{g}$, define a field $a^{\gamma}(z)$ on $V_{k}^{\hat{\mathfrak{g}}}$ by

$$
\begin{equation*}
a^{\gamma}(z)=\sum_{n \in \mathbb{Z}} \sigma\left(\gamma t^{n}\right) z^{-n-1} \tag{3.14}
\end{equation*}
$$

The $a^{\gamma}(z)$ for $\gamma \in \mathfrak{g}$ are mutually local, with OPE

$$
\begin{equation*}
a^{\gamma}(z) a^{\delta}(w) \sim k \operatorname{id}_{v_{k}^{\hat{g}}} \frac{\langle\gamma, \delta\rangle}{(z-w)^{2}}+a^{[\gamma, \delta]}(w) \frac{1}{z-w} \tag{3.15}
\end{equation*}
$$

so by Theorem 3.4 we have

$$
\begin{equation*}
\left[a^{\gamma}(z), a^{\delta}(w)\right]=k\langle\gamma, \delta\rangle \operatorname{id}_{v_{k}^{\hat{\mathbf{g}}}} \frac{\partial}{\partial w} \delta(z-w)+a^{[\gamma, \delta]}(w) \delta(z-w) . \tag{3.16}
\end{equation*}
$$

For $D$ I won't give, the Reconstruction Theorem applies with $\left\{a^{\alpha}(z): \alpha \in A\right\}=\left\{a^{\gamma_{i}}(z): i=1, \ldots, n\right\}$ for $\gamma_{1}, \ldots, \gamma_{n}$ a basis of $\mathfrak{g}$, giving a vertex algebra $\left(V_{k}^{\hat{\mathfrak{q}}}, \mathbb{1}, e^{z D}, Y\right)$. If $k$ is not a certain critical value $k=-h^{\vee}$, this is a vertex operator algebra. The OPEs (3.15) for $\gamma, \delta \in\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ encode the Lie algebra $\hat{\mathfrak{g}}$ by (3.16).

## Example 3.11 (Lattice vertex algebras)

Let $(\Lambda, \chi)$ be an even lattice. That is, $\Lambda \cong \mathbb{Z}^{d}$ is a free abelian group of rank $d$ and $\chi: \Lambda \times \Lambda \rightarrow \mathbb{Z}$ is biadditive and symmetric with $\chi(\lambda, \lambda) \in 2 \mathbb{Z}$ for all $\lambda \in \Lambda$, and write $\Lambda_{\mathbb{C}}=\Lambda \otimes_{\mathbb{Z}} \mathbb{C}$. Define

$$
\begin{equation*}
V_{\Lambda}=\mathbb{C}[\Lambda] \otimes_{\mathbb{C}} \operatorname{Sym}\left(t \Lambda_{\mathbb{C}}[t]\right) \tag{3.17}
\end{equation*}
$$

Here $\mathbb{C}[\Lambda]$ is the group algebra of $\Lambda$, a $\mathbb{C}$-vector space with basis $e^{\lambda}$ for $\lambda \in \Lambda$, and $\operatorname{Sym}(W)=\bigoplus_{n \geqslant 0} S^{n} W$ the symmetric algebra. So $V_{\Lambda}$ is a $\mathbb{C}$-algebra spanned over $\mathbb{C}$ by elements of the form

$$
\begin{equation*}
e^{\lambda_{0}} \otimes\left(t^{a_{1}} \lambda_{1}\right) \otimes \cdots \otimes\left(t^{a_{n}} \lambda_{n}\right) \tag{3.18}
\end{equation*}
$$

for $\lambda_{0}, \ldots, \lambda_{n} \in \Lambda$ and $a_{1}, \ldots, a_{n}>0$, and generated by elements $e^{\lambda} \otimes 1$ and $e^{0} \otimes\left(t^{a} \lambda\right)$ for $0 \neq \lambda \in \Lambda$ and $a>0$. We make $V_{\Lambda}$ graded by giving (3.18) degree $\chi\left(\lambda_{0}, \lambda_{0}\right)+2 a_{1}+\cdots+2 a_{n}$ (note this is even). Define $\mathbb{1}=e^{0} \otimes 1$, where $1 \in S^{0}\left(t \Lambda_{\mathbb{C}}[t]\right)=\mathbb{C}$.
Choose signs $\epsilon_{\lambda, \mu}= \pm 1$ for $\lambda, \mu \in \Lambda$ satisfying $\epsilon_{\lambda, 0}=\epsilon_{0, \lambda}=1$ and

$$
\epsilon_{\lambda, \mu} \cdot \epsilon_{\mu, \lambda}=(-1)^{\chi(\lambda, \mu)+\chi(\lambda, \lambda) \chi(\mu, \mu)}, \epsilon_{\lambda, \mu} \cdot \epsilon_{\lambda+\mu, \nu}=\epsilon_{\lambda, \mu+\nu} \cdot \epsilon_{\mu, \nu}
$$

## Example 3.11 (Continued)

Define $D: V_{\Lambda} \rightarrow V_{\Lambda}$ to be the $\mathbb{C}$-algebra derivation with

$$
D\left(e^{\lambda} \otimes 1\right)=e^{\lambda} \otimes(t \lambda), \quad D\left(e^{0} \otimes\left(t^{a} \lambda\right)\right)=a e^{0} \otimes\left(t^{a+1} \lambda\right) .
$$

For each $\mu \in \Lambda$ and $n \in \mathbb{Z}$, define $\mu_{n}: V_{\Lambda} \rightarrow V_{\Lambda}$ by
(i) If $n>0$ then $\mu_{n}: V_{\Lambda} \rightarrow V_{\Lambda}$ is the derivation of $V_{\Lambda}$ determined by

$$
\mu_{n}\left(e^{\lambda} \otimes 1\right)=0, \quad \mu_{n}\left(e^{0} \otimes\left(t^{a} \lambda\right)\right)=n \delta_{a n} \chi(\mu, \lambda) e^{0} \otimes 1
$$

(ii) $\mu_{0}\left(e^{\lambda} \otimes p\right)=\chi(\mu, \lambda) e^{\lambda} \otimes p$ for any $\lambda, p$.
(iii) If $n<0$ then $\mu_{n}$ is multiplication by $e^{0} \otimes\left(t^{-n} \mu\right)$.

Define $\mu(z)=\sum_{n \in \mathbb{Z}} \mu_{n} z^{-n-1}$. Define $\tilde{\mu}(z): V_{\Lambda} \rightarrow V_{\Lambda}[[z]]\left[z^{-1}\right]$ by

$$
\begin{aligned}
\tilde{\mu}(z)\left(e^{\lambda} \otimes p\right)=\epsilon_{\lambda, \mu} z^{\chi(\lambda, \mu)} & \left(e^{\mu} \otimes 1\right) \cdot \exp \left[-\sum_{n<0} \frac{1}{n} z^{-n} \mu_{n}\right] \\
& \circ \exp \left[-\sum_{n>0} \frac{1}{n} z^{-n} \mu_{n}\right]\left(e^{\lambda} \otimes p\right) .
\end{aligned}
$$

Then $\mu(z), \tilde{\mu}(z)$ are fields on $V_{\Lambda}$ for $\mu \in \Lambda$. The Reconstruction Theorem applies with $\left\{a^{\alpha}(z): \alpha \in A\right\}=\left\{\mu_{1}(z), \ldots, \mu_{d}(z), \tilde{\mu}_{1}(z)\right.$, $\left.\ldots, \tilde{\mu}_{d}(z)\right\}$ for $\mu_{1}, \ldots, \mu_{d}$ a basis of $\Lambda$, giving a vertex algebra $\left(V_{\Lambda}, \mathbb{1}, e^{z D}, Y\right)$, a lattice vertex algebra.

## Example 3.11 (Continued)

- If $\chi$ is nondegenerate then $V_{\Lambda}$ is a vertex operator algebra with central change $c_{V_{\wedge}}=d$ and conformal vector

$$
\omega=\frac{1}{2} \sum_{i, j=1}^{d} A_{i j} e^{0} \otimes\left(t \mu_{i}\right) \otimes\left(t \mu_{j}\right)
$$

where $\left(A_{i j}\right)_{i, j=1}^{d}$ is the inverse matrix to $\left(\chi\left(\mu_{i}, \mu_{j}\right)\right)_{i, j=1}^{d}$.

- For non-even lattices the construction generalizes to vertex superalgebras / non-even graded vertex algebras.
- The subspace $e^{0} \otimes \operatorname{Sym}(-) \subset V_{\Lambda}$ is a vertex subalgebra of $V_{\Lambda}$. If $\chi$ is nondegenerate then by choosing an orthonormal basis of $\left(\Lambda_{\mathbb{C}}, \chi_{\mathbb{C}}\right)$ we may identify $e^{0} \otimes \operatorname{Sym}(-)$ with the tensor product of $d$ copies of the Heisenberg vertex algebra in Example 3.8.
- If $\Lambda$ is the lattice of root vectors of a simple Lie algebra $\mathfrak{g}$ then $V_{\Lambda}$ is a simple vertex algebra (has no nontrivial ideals) and is the unique simple quotient of $V_{1}^{\hat{\mathfrak{g}}}$ in Example 3.10 for at level $k=1$.
- The Monster vertex algebra is related to $V_{\wedge}$ for $\Lambda$ the rank 24 Leech lattice.


## Vertex Algebras

Lecture 4 of 8: Representation theory of vertex algebras

> Dominic Joyce, Oxford University Summer term 2021

References for this lecture: Frenkel and Ben-Zvi, 2nd ed. (2004), §5, Y. Zhu, Modular invariance of characters of vertex operator algebras, J. A.M.S. 9 (1996), 237-302.
M. Miyamoto, Duke Math. J. 122 (2004), 51-91. math.QA/0209101.

These slides available at http://people.maths.ox.ac.uk/~joyce/

## Plan of talk:

4 Representation theory of vertex algebras
4.1 Basic definitions on representations of VAs and VOAs
4.2 Rational VOAs and Zhu's Theorem
4.3 The Zhu algebra and simple representations

### 4.1. Basic definitions on representations of VAs and VOAs

Let $\mathbb{K}$ be a field of characteristic zero, e.g. $\mathbb{K}=\mathbb{C}$. Recall from §1.1:

## Definition 4.1 (Representations of VAs, in the style of Borcherds.)

Let $V$ be a vertex algebra over $\mathbb{K}$. A representation of $V$ is a $\mathbb{K}$-vector space $W$ and linear maps $v_{n}^{\rho}: W \rightarrow W$ for all $v \in V$ and $n \in \mathbb{Z}$, with $v_{n}^{\rho}$ linear in $v$, satisfying:
(i) For all $v \in V$ and $w \in W$ we have $v_{n}^{\rho}(w)=0$ for $n \gg 0$.
(ii) If $w \in W$ then $\mathbb{1}_{-1}^{\rho}(w)=w$ and $\mathbb{1}_{n}^{\rho}(w)=0$ for $-1 \neq n \in \mathbb{Z}$.
(v) $\left(u_{l}(v)\right)_{m}^{\rho}(w)=\sum_{n \geqslant 0}(-1)^{n}\binom{l}{n}\left(u_{l-n}^{\rho}\left(v_{m+n}^{\rho}(w)\right)-(-1)^{\prime} v_{l+m-n}^{\rho}\left(u_{n}^{\rho}(w)\right)\right)$
for all $u, v \in V, w \in W$ and $I, m \in \mathbb{Z}$, where the sum exists by (i). These are the obvious generalizations of Definition 1.1(i),(ii),(v). $V$ has an obvious representation on itself.
All this extends to vertex superalgebras and graded vertex algebras $V_{*}$, when we take $W=W_{*}$ to be graded over $\mathbb{Z}_{2}$ or $\mathbb{Z}$.

Here is an equivalent definition in the language of states and fields:

## Definition 4.2

Let $\left(V, \mathbb{1}, e^{z D}, Y\right)$ be a vertex algebra over $\mathbb{K}$. A representation $\left(W, Y^{\rho}\right)$ of $\left(V, \mathbb{1}, e^{z D}, Y\right)$, or $V$-module, is a $\mathbb{K}$-vector space $W$ and a linear map $Y^{\rho}: V \otimes W \rightarrow W[[z]]\left[z^{-1}\right]$ (hence a map $\left.V \rightarrow \operatorname{End}(W)\left[\left[z, z^{-1}\right]\right]\right)$ satisfying:
(i) $Y^{\rho}(\mathbb{1}, z)=\mathrm{id} W$.
(ii) For all $u, v \in V$ and $w \in W$, in $W\left[\left[z_{0}^{ \pm 1}, z_{1}^{ \pm 1}, z_{2}^{ \pm 1}\right]\right]$ we have

$$
\begin{align*}
& z_{2}^{-1} \delta\left(\frac{z_{1}-z_{0}}{z_{2}}\right) Y^{\rho}\left(Y\left(u, z_{0}\right) v, z_{2}\right) w=z_{0}^{-1} \delta\left(\frac{z_{1}-z_{2}}{z_{0}}\right) Y^{\rho}\left(u, z_{1}\right) Y^{\rho}\left(v, z_{2}\right) w \\
& \quad-z_{0}^{-1} \delta\left(\frac{z_{2}-z_{1}}{-z_{0}}\right) Y^{\rho}\left(v, z_{2}\right) Y^{\rho}\left(u, z_{1}\right) w . \tag{4.1}
\end{align*}
$$

In Physics, V-modules are called primary fields.

If $u, v \in V$ and $w \in W$ then as for Theorems 2.2-2.4 there exist $N \gg 0$ such that

$$
\begin{align*}
& \left(z_{1}-z_{2}\right)^{N}\left[Y^{\rho}\left(u, z_{1}\right) \circ Y^{\rho}\left(v, z_{2}\right) w-Y^{\rho}\left(v, z_{2}\right) \circ Y^{\rho}\left(u, z_{1}\right) w\right]=0,(4.2) \\
& \left(z_{1}+z_{2}\right)^{N} Y^{\rho}\left(Y\left(u, z_{1}\right) v, z_{2}\right) w \\
& \quad=\left(z_{1}+z_{2}\right)^{N} i_{z_{1}, z_{2}} \circ Y^{\rho}\left(u, z_{1}+z_{2}\right) \circ Y^{\rho}\left(v, z_{2}\right) w .  \tag{4.3}\\
& \quad Y^{\rho}\left(e^{z_{2} D} u, z_{1}\right) w=i_{z_{1}, z_{2}} \circ Y^{\rho}\left(u, z_{1}+z_{2}\right) w . \tag{4.4}
\end{align*}
$$

As for Theorem 2.5, there are equivalent definitions of $V$-module in which we replace (4.1) by (4.2) or (4.3) (as in Frenkel-Ben-Zvi).

## Finite-dimensionality and boundedness assumptions

To make progress on representations of VAs or VOAs, it is usual to make simplifying assumptions on $\left(V, \mathbb{1}, e^{z D}, Y\right)$ and $\left(W, Y^{\rho}\right)$ :

- We usually take $V_{*}, W_{*}$ to be graded over $\mathbb{Z}$ (this is automatic if $V$ is a VOA). Although $V_{*}, W_{*}$ will be infinite-dimensional, we can assume that $\operatorname{dim}_{\mathbb{K}} V_{n}, \operatorname{dim}_{\mathbb{K}} W_{n}<\infty$ for all $n \in \mathbb{Z}$.
- We can also assume that $V_{\text {odd }}=W_{\text {odd }}=0$, and that $V_{n}, W_{n}=0$ for $n \ll 0$, or (stronger) that $V_{n}=0$ for $n<0$.
- The grading of $V_{*}$ is fixed, but we can shift the grading of $W_{*}$ by $W_{n} \mapsto W_{n+c}$ without changing anything important. So if $W_{n}=0$ for $n \ll 0$ we can shift gradings so that $W_{n}=0$ for $n<0$ and $W_{0} \neq 0$.
- For $\left(W_{*}, Y^{\rho}\right)$ with $\operatorname{dim}_{\mathbb{K}} W_{n}<\infty, W_{n}=0$ for $n<0$ and $n$ odd, and $W_{0} \neq 0$, the character is ch $W_{*}=\sum_{n \geqslant 0} \operatorname{dim} W_{2 n} q^{n}$. If assuming $V_{\text {odd }}=W_{\text {odd }}=0$, people tend to re-grade $V_{2 n} \mapsto V_{n}$, but I won't.
- Authors often incorporate these assumptions (e.g. $\operatorname{dim} V_{n}<\infty$, $V_{n}=0$ for $n<0$ ) into their definitions of VAs, VOAs, representations.
- I will say $V_{*}, W_{*}$ are well behaved if such assumptions hold.


## Sub- and quotient representations, simples

## Definition 4.3

Let $\left(V, \mathbb{1}, e^{z D}, Y\right)$ be a vertex algebra over $\mathbb{K}$, and $\left(W, Y^{\rho}\right)$ a representation of $V$. A subrepresentation is a vector subspace $W^{\prime} \subset W$ such that $Y^{\rho}$ maps $V \otimes W^{\prime} \rightarrow W^{\prime}[[z]]\left[z^{-1}\right]$. Then $W^{\prime}$ is a representation of $V$, and so is $W^{\prime \prime}=W / W^{\prime}$.
For example, if $w \in W$ we can consider the subrepresentation $W^{\prime}=\langle w\rangle \subset W$ generated by $w$, spanned by all elements $\left(v_{1}\right)_{n_{1}}^{\rho} \circ\left(v_{2}\right)_{n_{2}}^{\rho} \circ \cdots \circ\left(v_{k}\right)_{n_{k}}^{\rho}(w)$ for $v_{1}, \ldots, v_{k} \in V, n_{1}, \ldots, n_{k} \in \mathbb{Z}$. We call $W$ irreducible, or simple, if $W \neq 0$ and the only subrepresentations $W^{\prime} \subset W$ are 0 and $W$. Then $W$ is generated by any $0 \neq w \in W$.
For well behaved $V_{*}, W_{*}$, it is reasonable to expect any representation $W_{*}$ to be built from finitely many simple representations by extensions. Thus, to classify $V_{*}$-representations, it is enough to classify simple representations.

## Representations of vertex operator algebras

For vertex operator algebras we can add a compatibility condition with the conformal vector $\omega$ :

## Definition 4.4

Let $\left(V_{*}, \mathbb{1}, e^{z D}, Y, \omega\right)$ be a vertex operator algebra over $\mathbb{K}$, and $\left(W_{*}, Y^{\rho}\right)$ a (graded) representation of $\left(V_{*}, \mathbb{1}, e^{z D}, Y\right)$. Recall that by definition of VOA we have $L_{-1}=\omega_{0}=D$ and $L_{0}\left|V_{a}=\omega_{1}\right| V_{a}=\frac{1}{2} a \operatorname{id} V_{v_{a}}$ for $a \in \mathbb{Z}$.
We call $\left(W_{*}, Y^{\rho}\right)$ a conformal representation if
$\left.\omega_{1}^{\rho}\right|_{W_{a}}=\left(\frac{1}{2} a+h\right) \operatorname{id}_{W_{a}}$ for some $h \in \mathbb{K}$. If $W_{n}=0$ for $n<0$ and $W_{0} \neq 0$, we call $h$ the highest weight.
Alternatively, we can take $W_{*}$ to be graded over $\mathbb{K}$ not $\mathbb{Z}$, relabel $W_{a} \mapsto W_{a+2 h}$, and require that $\left.\omega_{1}^{\rho}\right|_{W_{a}}=\frac{1}{2} a \operatorname{id}_{W_{a}}$ for $a \in \mathbb{K}$. This is better for taking direct sums of representations with different $h$.

### 4.2. Rational VOAs and Zhu's Theorem

Rational VOAs have particularly nice representation theory:

## Definition 4.5

Let $\left(V_{*}, \mathbb{1}, e^{z D}, Y, \omega\right)$ be a VOA over $\mathbb{K}$ with $V_{n}=0$ for $n<0$.
Consider only conformal representations $\left(W_{*}, Y^{\rho}\right)$ with $W_{n}=0$ for $n \ll 0$. We call $\left(V_{*}, \mathbb{1}, e^{z D}, Y, \omega\right)$ rational if:
(i) There are only finitely many isomorphism classes of simple $V_{*}$-modules $W_{*}$, up to shifts $W_{n} \mapsto W_{n+c}$.
(ii) Every simple $V_{*}$-module $W_{*}$ has $\operatorname{dim} W_{n}<\infty$ for $n \in \mathbb{Z}$.
(iii) Every $V_{*}$-module $W_{*}$ is a direct sum of simple $V_{*}$-modules.

Actually (iii) implies (i),(ii) (Dong-Li-Mason).
We call $\left(V_{*}, \mathbb{1}, e^{z D}, Y, \omega\right)$ holomorphic if it is rational with only one simple $V_{*}$-module, which is $V_{*}$ itself.

Rational VOAs are a bit like finite groups: we would like to understand them and classify their simple representations.

## Examples of rational VOAs

## Example 4.6

(a) (Dong.) Let $\Lambda$ be an even positive definite lattice. Then the lattice VOA $V_{\wedge}$ over $\mathbb{C}$ from Example 3.11 is rational. The simple modules of $V_{\Lambda}$ are in 1-1 correspondence with $\Lambda^{\vee} / \Lambda$.
(b) (Frenkel-Zhu.) Let $\mathfrak{g}$ be a simple Lie algebra over $\mathbb{C}$, and $k$ be a positive integer. Example 3.10 constructs a VOA $\left(V_{k}^{\hat{\mathfrak{g}}}, \mathbb{1}, e^{z D}, Y\right)$. It turns out that $V_{k}^{\hat{q}}$ has a maximal proper ideal $I \subset V_{k}^{\hat{\mathrm{g}}}$ whose quotient $L_{k}^{\hat{\mathfrak{g}}}=V_{k}^{\hat{\mathfrak{g}}} / I$ is a simple VOA. Then $L_{k}^{\hat{\mathfrak{g}}}$ is a rational VOA whose (simple) representations correspond to (simple) representations of $\hat{\mathfrak{g}}$ of level $k$.
(c) The Monster vertex operator algebra $V_{*}^{M o n}$ is rational, and in fact holomorphic.

## Zhu's cofiniteness condition

## Definition 4.7 (Zhu 1996.)

Let $\left(V_{*}, \mathbb{1}, e^{z D}, Y, \omega\right)$ be a VOA over $\mathbb{K}$ with $V_{n}=0$ for $n<0$ or $n$ odd. We say that $V_{*}$ satisfies Zhu's cofiniteness condition if
(a) Write $C_{2}\left(V_{*}\right)$ for the vector subspace of $V_{*}$ spanned by $u_{-2}(v)$ for $u, v \in V_{*}$. Then $\operatorname{dim} V_{*} / C_{2}\left(V_{*}\right)<\infty$.
(b) Let $L_{n}=\omega_{n+1}: V_{*} \rightarrow V_{*}$ be the Virasoro action on $V_{*}$. Then $V_{*}$ is spanned by vectors of the form $L_{n_{1}} \circ \cdots \circ L_{n_{k}}(v)$ for $n_{i}<0$, where $v \in V_{*}$ satisfies $L_{n}(v)=0$ for all $n>0$.

This holds in Example 4.6(a)-(c).

## Zhu's Theorem

## Theorem 4.8 (Zhu 1996, extended by Miyamoto 2004.)

Let $\left(V_{*}, \mathbb{1}, e^{z D}, Y, \omega\right)$ be a VOA over $\mathbb{C}$ with central charge $c \in \mathbb{C}$ satisfying Zhu's cofiniteness condition. Then $\left(V_{*}, \mathbb{1}, e^{z D}, Y, \omega\right)$ is rational. Let $W_{*}^{1}, \ldots, W_{*}^{N}$ be the simple $V_{*}-$ representations up to isomorphism, where $W_{0}^{i} \neq 0$ and $W_{n}^{i}=0$ for $n<0$ or $n$ odd, and let $W_{*}^{i}$ have highest weight $h_{i} \in \mathbb{C}$. Consider the functions

$$
\begin{equation*}
f_{i}(q)=q^{h_{i}-c / 24} \operatorname{ch}\left(W_{*}^{i}\right)=\sum_{n \geqslant 0} q^{h_{i}-c / 24+n} \operatorname{dim} W_{2 n} \tag{4.5}
\end{equation*}
$$

Here $\operatorname{ch}\left(W_{*}^{i}\right)$ converges on $\{q \in \mathbb{C}:|q|<1\}$. Thus changing variables to $\tau$ with $q=e^{2 \pi i \tau}, f_{i}(\tau)$ is a holomorphic function on the upper half-plane $\mathbb{H}=\{\tau \in \mathbb{C}: \operatorname{Im} \tau>0\}$. Then $c, h_{i} \in \mathbb{Q}$, and $f_{1}(\tau), \ldots, f_{N}(\tau)$ are linearly independent, and their span $\left\langle f_{i}(\tau): i=1, \ldots, N\right\rangle_{\mathbb{C}}$ is invariant under the action of $\operatorname{SL}(2, \mathbb{Z})$ on $\mathbb{H}$, so the $f_{i}(\tau)$ are vector-valued modular forms, a generalization of modular forms.

## Remarks on Zhu's Theorem

- Characters of representations of infinite-dimensional Lie algebras (e.g. affine Lie algebras, Virasoro) are often modular forms.
- A heuristic explanation for Theorem 4.8 is as follows: to each VOA $V_{*}$, Frenkel-Ben-Zvi associate a $\mathscr{D}$-module on the moduli space of Riemann surfaces, and so in particular on the moduli space $\mathbb{H} / \operatorname{SL}(2, \mathbb{Z})$ of elliptic curves. For rational VOAs this $\mathscr{D}$-module is expected to be a vector bundle $E \rightarrow \mathbb{H} / \operatorname{SL}(2, \mathbb{Z})$ with flat connection, and the $W_{*}^{i}$ should induce a basis of constant sections of $E$ on the universal cover $\mathbb{H}$ of $\mathbb{H} / \operatorname{SL}(2, \mathbb{Z})$ near $\tau=i \infty$. The $\mathrm{SL}(2, \mathbb{Z})$ action on $\left\langle f_{i}(\tau): i=1, \ldots, N\right\rangle_{\mathbb{C}}$ comes from the monodromy action of $\operatorname{SL}(2, \mathbb{Z})=\pi_{1}(\mathbb{H} / \operatorname{SL}(2, \mathbb{Z}))$.
- I hope to return to the modular forms aspect later in term, but it involves too much background to explain now.
Today I will just explain a more elementary part of the proof, relating $V_{*}$-modules to representations of an algebra $A\left(V_{*}\right)$, the Zhu algebra.


### 4.3. The Zhu algebra and simple representations

## Definition 4.9

Let $\mathbb{K}$ be a field of characteristic zero, and $\left(V_{*}, \mathbb{1}, e^{z D}, Y\right)$ be a graded vertex algebra over $\mathbb{K}$ with $V_{\text {odd }}=0$. Define bilinear operations $*, \circ: V_{*} \times V_{*} \rightarrow V_{*}$ by, for $u \in V_{2 a}$ and $v \in V_{2 b}$,

$$
\begin{align*}
& u * v=\operatorname{Res}_{z}\left(\frac{(1+z)^{a}}{z} Y(u, z) v\right)=\sum_{n=0}^{\infty}\binom{a}{n} u_{n-1}(v),  \tag{4.6}\\
& u \circ v=\operatorname{Res}_{z}\left(\frac{(1+z)^{a}}{z^{2}} Y(u, z) v\right)=\sum_{n=0}^{\infty}\binom{a}{n} u_{n-2}(v) . \tag{4.7}
\end{align*}
$$

These are well-defined as $u_{n}(v)=0$ for $n \gg 0$. Note that $*, \circ$ are not grading-preserving. Write $O\left(V_{*}\right)$ for the vector subspace of $V_{*}$ spanned by elements $u \circ v$ for all $u, v \in V_{*}$. Define $A\left(V_{*}\right)=V_{*} / O\left(V_{*}\right)$ to be the quotient vector space.

## Theorem 4.10 (Zhu 1996.)

In Definition 4.9, $O\left(V_{*}\right)$ is a two-sided ideal for $*$, so $*$ descends to a bilinear multiplication $*: A\left(V_{*}\right) \times A\left(V_{*}\right) \rightarrow A\left(V_{*}\right)$. Furthermore:
(a) The product $*$ on $A\left(V_{*}\right)$ is associative, and makes $A\left(V_{*}\right)$ into a $\mathbb{K}$-algebra with identity $\mathbb{1}+O\left(V_{*}\right)$, the $\mathbf{Z h u}$ algebra.
(b) If $\left(V_{*}, \mathbb{1}, e^{z D}, Y\right)$ is a vertex operator algebra with conformal element $\omega$ then $\omega+O\left(V_{*}\right)$ lies in the centre of $A\left(V_{*}\right)$.
(c) As $A\left(V_{*}\right)$ is an associative algebra, it is also a Lie algebra, with Lie bracket $[\alpha, \beta]=\alpha * \beta-\beta * \alpha$. In $\S 1.4$ we defined a Lie bracket on $V_{2} / D\left(V_{0}\right)$. We have $D\left(V_{0}\right) \subset A\left(V_{*}\right)$, and the natural map $V_{2} / D\left(V_{0}\right) \rightarrow A\left(V_{*}\right)$ is a Lie algebra morphism. This induces an algebra morphism $U\left(V_{2} / D\left(V_{0}\right)\right) \rightarrow A\left(V_{*}\right)$, where $U\left(V_{2} / D\left(V_{0}\right)\right)$ is the universal enveloping algebra.

## Theorem 4.10 (Continued.)

(d) Suppose $\left(W_{*}, Y^{\rho}\right)$ is a representation of $\left(V_{*}, \mathbb{1}, e^{z D}, Y\right)$ with $W_{a}=0$ for $a<0$. Then $W_{0}$ is a left module over $A\left(V_{*}\right)$, with action for $v \in V_{2 a}$ and $w \in W_{0}$ given by

$$
\begin{equation*}
\left(v+O\left(V_{*}\right)\right) \cdot w=v_{a-1}^{\rho}(w) \tag{4.8}
\end{equation*}
$$

(e) Let $W_{0}$ be a left module over $A\left(V_{*}\right)$. Then $W_{0}$ extends to a representation $\left(W_{*}, Y^{\rho}\right)$ of $\left(V_{*}, \mathbb{1}, e^{z D}, Y\right)$ with $W_{a}=0$ for $a<0$, such that the $A\left(V_{*}\right)$-module structure on $W_{0}$ in (d) is the given one, and there are no nonzero
$\left(V_{*}, \mathbb{1}, e^{z D}, Y\right)$-subrepresentations $\tilde{W}_{*} \subset W_{*}$ with $\tilde{W}_{0}=0$.
(f) Parts (d),(e) induce a 1-1 correspondence between isomorphism classes of nonzero simple $A\left(V_{*}\right)$-representations $W_{0}$, and isomorphism classes of simple representations $\left(W_{*}, Y^{\rho}\right)$ of $\left(V_{*}, \mathbb{1}, e^{z D}, Y\right)$ with $W_{a}=0$ for $a<0$ and $W_{0} \neq 0$.

## Partial proof of Theorem 4.10

For $u, v \in V_{*}, w \in W_{*}$ and $a, b \in \mathbb{Z}$, the Jacobi identity implies that

Apply this with $u \in V_{2 a}, v \in V_{2 b}$ and $w \in W_{0}$. By (4.6) and (4.8), the I.h.s. is $(u \star v) \cdot w$. The first term on the r.h.s. when $n=0$ is $u \cdot(v \cdot w)$. Also $v_{b-1+n}^{\rho}(w) \in W_{-2 n}$ and $u_{a+n}^{\rho}(w) \in W_{-2 n-2}$. Thus the first term on the r.h.s. is zero for $n>0$, and the second term for $n \geqslant 0$, as $W_{<0}=0$. Hence (4.9) becomes

$$
\begin{equation*}
(u \star v) \cdot w=u \cdot(v \cdot w) \tag{4.10}
\end{equation*}
$$

This proves (d), assuming (a). It also motivates the definition of the product $\star$ in (4.6). We have a map $: V_{*} \rightarrow \operatorname{End}\left(W_{0}\right)$ taking $\star$ to the (associative) composition in $\operatorname{End}\left(W_{0}\right)$. So there should be some subspace $O\left(V_{*}\right) \subset V_{*}$ with $\star$ associative on $V_{*} / O\left(V_{*}\right)$.

## Remarks on Zhu algebras and $V_{*}$-representations

- It is crucial that $\left(V_{*}, \mathbb{1}, e^{z D}, Y\right)$ is a graded vertex algebra, with $V_{\text {odd }}=0$, since $v \in V_{2 a}$ acts on $w \in W_{0}$ by $v \cdot w=v_{a-1}^{\rho}(w)$, which would not make sense without these conditions.
- Theorem 4.10 reduces understanding simple $V_{*}$-representations to simple $A_{*}(V)$-representations. If $V_{*}$ is an (infinite-dimensional) rational vertex algebra, one can prove that $A\left(V_{*}\right)$ is a finite-dimensional semisimple $\mathbb{K}$-algebra - a much simpler object. The simple $V_{*}$-representations $W_{*}$ also have $\operatorname{dim} W_{0}<\infty$. So we reduce to ordinary algebra in finite dimensions.
- Rational VOAs are important in Physics.


## Example: the Heisenberg VOA

Recall the Heisenberg VOA $V_{*}^{\text {Heis }}=\mathbb{C}\left[x_{1}, x_{2}, \ldots\right]$ from Example 3.8. This is graded with $\operatorname{deg} x_{n}=2 n$, so $V_{\text {odd }}^{\text {Heis }}=0$, and with conformal vector $\omega_{0}=\frac{1}{2} x_{1}^{2}$ has central charge $c=1$. It is a simple representation over itself, with highest weight $h=0$.
The character of $V_{*}$ is ch $V_{*}=\sum_{n \geqslant 0} \operatorname{dim} V_{2 n} q^{n}$. Writing $V_{*}^{\text {Heis }}=\bigotimes_{n \geqslant 1} \mathbb{C}\left[x_{n}\right]$, where $\operatorname{ch} \mathbb{C}\left[x_{n}\right]=\sum_{k \geqslant 0} q^{n k}=\left(1-q^{n}\right)^{-1}$, we see that ch $V_{*}=\prod_{n \geqslant 1}\left(1-q^{n}\right)^{-1}$.
Thus the function $f_{i}(q)$ in (4.5) corresponding to $V_{*}^{\text {Heis }}$ is

$$
\begin{equation*}
f_{i}(q)=q^{h-c / 24} \operatorname{ch}\left(V_{*}\right)=q^{-1 / 24} \prod_{n \geqslant 1}\left(1-q^{n}\right)^{-1}=\eta(q)^{-1} \tag{4.11}
\end{equation*}
$$

where $\eta(q)$ is Dedekind's $\eta$-function, a modular form of weight $\frac{1}{2}$. The Heisenberg VOA is not rational.

## Example: lattice VOAs

Let $(\Lambda, \chi)$ be an even positive definite lattice of rank $d$. Example 3.11 defines the lattice VOA $V_{*}^{\wedge}$, with central charge $d$, which is rational. As a graded vector space we have $V_{*}^{\wedge} \cong \mathbb{C}[\Lambda] \otimes \otimes{ }^{d} V_{*}^{\text {Heis }}$, where $\mathbb{C}[\Lambda]$ has character the lattice theta function $\Theta_{\wedge}(q)$

$$
\operatorname{ch} \mathbb{C}[\Lambda]=\Theta_{\Lambda}(q)=\sum_{\lambda \in \Lambda} q^{\frac{1}{2} \chi(\lambda, \lambda)}
$$

Hence $\operatorname{ch} V_{*}^{\Lambda}=\Theta_{\Lambda}(q) \cdot \prod_{n \geqslant 1}\left(1-q^{n}\right)^{-d}$, and the function $f_{i}(q)$ in (4.5) corresponding to $V_{*}^{\wedge}$ is

$$
\begin{equation*}
f_{i}(q)=\Theta_{\wedge}(q) \cdot \eta(q)^{-d} \tag{4.12}
\end{equation*}
$$

As $(\Lambda, \chi)$ is integral there is a natural morphism $\Lambda \hookrightarrow \Lambda^{\vee}$. We call $(\Lambda, \chi)$ unimodular if this is an isomorphism. Then it is known that $\Theta_{\Lambda}(q)$ is a modular form of weight $d / 2$, so $f_{i}(q)$ has weight 0 .

