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3.3 Examples of vertex algebras
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Introduction

Recall from §2.2 that a vertex algebra (V ,1, ezD ,Y ) satisfies weak
commutativity : for all u, v ,w ∈ V there exists N > 0 depending
only on u, v such that

(z1−z2)N
[
Y (u, z1)◦Y (v , z2)w−Y (v , z2)◦Y (u, z1)w

]
= 0. (3.1)

Here Y (u, z),Y (v , z) are fields on V , and (3.1) is a compatibility
condition between them. If it holds we say that Y (u, z),Y (v , z)
are mutually local. This is nontrivial even if u = v : we can require
a field a(z) such as Y (v , z) to be local with itself, and then we call
a(z) a vertex operator. Weak commutativity says that the
operators Y (v , z) for all v ∈ V are mutually local vertex operators
on V .
Today we explore the approach to vertex algebras which
emphasizes local fields, and weak commutativity as the primary
property of vertex algebras.
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3.1. Local fields

Definition 3.1

Let R be a commutative ring, and V an R-module. We call
a(z) =

∑
n∈Z a(n)z

−n−1 in End(V )[[z , z−1]] a distribution on V .
As in §2.1, we call a(z) a field on V if it maps V → V [[z ]][z−1].
Equivalently, a(z) is a field if for all v ∈ V there exists Nv with
a(n)(v) = 0 for n > Nv .
Let a(z), b(z) be distributions or fields on V . We call a, b mutually
local if there exists N � 0 such that

(z − w)N [a(z), b(w)] = 0 in End(V )[[z ,w , z−1,w−1]], (3.2)

where [a(z), b(w)]=a(z) ◦ b(w)−b(w) ◦ a(z). We call a field a(z)
a local field, or vertex operator, if it is mutually local with itself.
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Remarks on locality

• The name comes from QFT in physics: we think of a(z) and b(w)
as two operators living at points z ,w in the Riemann surface Σ = C,
and locality says that a(z) and b(w) commute if z and w are spacelike
separated. That is, if z 6= w then (3.2) becomes [a(z), b(w)] = 0.
• We can show that (z − w)N [a(z), b(w)] = 0 if and only if

[a(z), b(w)] =
N−1∑
n=0

cn(w)
1

n!

∂n

∂wn
δ(z − w)

for some distributions c0(w), . . . , cN−1(w). Note that 1
n!

∂n

∂wn is a
well defined operator over any R, we don’t need Q ⊆ R.
• If instead V∗ is a super/graded R-module and a, b are of pure
grading we define the supercommutator to be

[a(z), b(w)] = a(z) ◦ z(w)− (−1)deg a deg bb(w) ◦ a(z).

We should use these to extend this lecture to vertex superalgebras /
graded vertex algebras, but for simplicity we do not.
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Defining vertex algebras using mutually local fields

Theorem 2.5(b) may now be rewritten:

Theorem 3.2

Let V be an R-module, 1 ∈ V and ezD : V → V [[z ]],
Y : V → V [[z , z−1]] be R-linear maps. Then (V ,1, ezD ,Y ) is a
vertex algebra if for all u, v ∈ V we have

(i) Y (1, z)v = v .
(ii) Y (v , z)1 = ezDv .
(iii) ez2D ◦ Y (u, z1) ◦ e−z2D(v) = iz1,z2 ◦ Y (u, z1 + z2)v .
(iv) Y (u, z) and Y (v , z) are mutually local vertex operators on V .

If we have defined some (V ,1, ezD ,Y ) and want to show it is
a vertex algebra, usually (i)-(iii) are easy, and the difficult thing is to
prove (iv). We explain methods for showing fields are mutually local.
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Products a(w)(n)b(w), normally ordered products

Definition 3.3

Let V be an R-module, and a(z), b(z) be fields on V . For n ∈ Z
define a field a(w)(n)b(w) on V by

a(w)(n)b(w)=Resz
(
a(z)b(w)iz,w (z−w)n−b(w)a(z)iw ,z(z−w)n

)
.

For n ∈ N this simplifies to

a(w)(n)b(w) = Resz
(
[a(z), b(w)](z − w)n

)
.

Writing a(z) =
∑

n∈Z a(n)z
−n−1, define distributions a(z)± on V by

a(z)+ =
∑

n<0 a(n)z
−n−1, a(z)− =

∑
n>0 a(n)z

−n−1.

Define the normally ordered product : a(z)b(w) : by

: a(z)b(w) : = a(z)+b(w) + b(w)a(z)−.

This maps : a(z)b(w) : : V → V [[z ,w ]][z−1,w−1]. We may set
z =w , and : a(z)b(z) : is a field, with : a(z)b(z) : =a(z)(−1)b(z).
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If (V ,1, ezD ,Y ) is a vertex algebra and u, v ∈ V then Y (u, z) and
Y (v , z) are mutually local fields on V , and for n ∈ Z we have

Y (u, z)(n)Y (v , z) = Y (un(v), z). (3.3)

Theorem 3.4 (Kac 1997, §2.3.)

Suppose a(z), b(z) are mutually local fields on V . Then for N � 0
(the same N as in (3.1)) we have a(z)(n)b(z) = 0 for n > N, and

[a(z), b(w)] =
∑N−1

n=0 a(w)(n)b(w) · 1
n!

∂n

∂wn δ(z − w), (3.4)

a(z) ◦ b(w) =
∑N−1

n=0 a(w)(n)b(w) · iz,w 1
(z−w)n+1

+: a(z)b(w) : ,
(3.5)

b(w) ◦ a(z) =
∑N−1

n=0 a(w)(n)b(w) · iw ,z 1
(z−w)n+1

+: a(z)b(w) : .
(3.6)
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Operator product expansions

If a(z), b(z) are mutually local fields, equation (3.5) says that

a(z) ◦ b(w) =
N−1∑
n=0

a(w)(n)b(w) · iz,w
1

(z − w)n+1
+: a(z)b(w) : .

Here : a(z)b(w) : has no pole when z = w . We write the singular
part as

a(z) ◦ b(w) ∼
N−1∑
n=0

a(w)(n)b(w) · 1

(z − w)n+1
. (3.7)

This is called an operator product expansion (OPE ), and is
important in physics. Theorem 3.4 shows that the r.h.s. of (3.7) is
the obstruction to a(z) and b(w) strictly commuting.
Sometimes vertex algebras can be described in an economical way
by specifying a small number of generating fields, and the OPEs
(3.7) relating them, in a similar way to specifying a Lie algebra by
generators and relations.
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Theorem 3.5 (Kac 1997, §3.2. Part (a) is ‘Dong’s Lemma’.)

(a) Suppose a(z), b(z), c(z) are pairwise mutually local fields on
V . Then a(z)(n)b(z) and c(z) are mutually local for n ∈ Z, and
: a(z)b(z) : and c(z) are mutually local.
(b) If a(z), b(z) are mutually local then 1

n!
∂n

∂zn a(z), b(z) are too.

Theorem 3.5 can be used to construct larger and larger sets of
mutually local fields, and so to build vertex algebras.

Theorem 3.6 (Goddard’s Uniqueness Thm, Frenkel–Ben-Zvi §3.1.)

Suppose (V ,1, ezD ,Y ) is a vertex algebra and a(z) is a field on V
such that a(z),Y (v , z) are mutually local for all v ∈ V , and there
exists u ∈ V with a(z)1=Y (u, z)1=ezDu. Then a(z)=Y (u, z).

Again, this is helpful for building vertex algebras.
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3.2. The Reconstruction Theorem

Theorem 3.7 (Reconstruction Theorem, Kac Th. 4.5, F–B-Z §3.6)

Let R be a field of characteristic zero, and V be an R-vector space.
Suppose we are given an element 1 ∈ V , a linear map D : V → V ,
and a countable family {aα(z) : α ∈ A} of fields on V such that:

(i) aα(z)1 ∈ V [[z ]] for all α ∈ A, so we set aα = aα(0)1 in V .
(ii) D(1) = 0, and [D, aα(z)] = d

dz a
α(z) for all α ∈ A.

(iii) aα(z), aβ(z) are mutually local for all α, β ∈ A.
(iv) V is spanned by the vectors aα1

(n1) ◦ · · · ◦ a
αm

(nm)(1) for all
m > 0, α1, . . . , αm in A and n1, . . . , nm < 0.

Then there exists a unique vertex algebra (V ,1, ezD ,Y ) with
aα(z) = Y (aα, z) for all α ∈ A.
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Remarks on the Reconstruction Theorem

• This is a generators-and-relations approach to vertex algebras.
• Even though V will be infinite-dimensional, A may be small,
even just one or two points. So the main data is a vector space V
and a small number of fields aα(z) on V , which may be a lot less
work to write down than the entire structure (V ,1, ezD ,Y ).
• If (iv) does not hold, replace V by the subspace spanned by all
vectors aα1

(n1) ◦ · · · ◦ a
αm

(nm)(1).

• The proof works by defining Y to satisfy

Y
(
aα1

(n1) ◦ · · · ◦ a
αm

(nm)(1), z
)

=
1

(−n1 − 1)! · · · (−nm − 1)!
:
d−n1−1

dz−n1−1
aα1(z) · · · d

−nm−1

dz−nm−1
aαm(z) : ,

where : · · · : extends normal ordering : a(z)b(z) : inductively to m
operators. Use Theorem 3.5 to deduce these are all mutually local.
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3.3. Examples of vertex algebras

Example 3.8 (The Heisenberg vertex algebra, or rank 1 free boson)

Let R = C and V = C[x1, x2, . . .] be the space of polynomials in
x1, x2, . . . . Let 1 ∈ V be the polynomial 1, and D : V → V act by

D
(
p(x1, x2 . . .)

)
=
∑
n>1

nxn+1
∂

∂xn
p(x1, x2 . . .). (3.8)

Define a field a(z) =
∑

n∈Z a(n)z
−n−1 on V , where a(n) : V → V

is a C-linear map, by

a(n) : p(x1, x2 . . .) 7−→


x−np(x1, x2 . . .), n < 0,

0, n = 0,

n ∂
∂xn

p(x1, x2 . . .), n > 0.

(3.9)

The Reconstruction Theorem applies with {aα(z) : α ∈ A}={a(z)}
and a = a(0)1 = x1, so there is a unique vertex algebra
(V ,1, ezD ,Y ) with a(z) = Y (x1, z).
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Example 3.8 (Continued.)

• Can show directly that (z −w)2[a(z), a(w)] = 0, so a(z) is local.
• We have a(z)(0)a(z) = 0 and a(z)(1)a(z) = idV , so we have the

OPE a(z)a(w) ∼ idV
1

(z−w)2 .

• We can make V into a graded vertex algebra in even degrees by
setting deg xn = 2n.
• V is a vertex operator algebra with (nonunique) conformal vector
ωs = 1

2x
2
1 + sx2 for any s ∈ C, and central charge cV = 1− 12s2.

• As elements of End(V ), the Fourier coefficients a(n) satisfy[
a(m), a(n)

]
= mδm,−n idV . (3.10)

Therefore 〈a(n), n ∈ Z, idV 〉C is the Heisenberg Lie algebra H, with
centre 〈a(0), idV 〉C. Representation theorists care about H, and tell
us there is a unique irreducible representation of H in which
a(0), idV act by 0, 1, which is V . Note that the infinite-dimensional
Lie algebra H has been encoded in the single vertex operator a(z).
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Example 3.9 (The Virasoro vertex algebra)

As in §1.2, the Virasoro algebra Vir is the Lie algebra over C with
basis elements Ln, n∈Z and c (the central charge), and Lie bracket

[c , Ln] = 0, [Lm, Ln] = (m− n)Lm+n + 1
12 (m3 −m)δm,−nc (3.11)

for m, n ∈ Z. Let K = 〈Ln, n > −1, c〉C ⊂ Vir, a Lie subalgebra.
For each γ ∈ C define a representation ργ of K on C by
ργ(Ln) = 0 for n > −1 and ργ(c) = γ idC. Let
Vγ = C⊗ργ ,U(K),inc U(Vir) be the induced representation of Vir,
and let 1 ∈ Vγ be the image of the generator 1 ∈ C. Regard the
Ln as lying in End(Vγ), via the representation of Vir on Vγ . Then
Ln(1) = 0 for n > −1 by definition. Define D = L−1 : V → V .
Define a field T (z) on Vγ by T (z)=

∑
n∈Z Lnz

−n−2 (not the usual

power of z). Then (z − w)4[T (z),T (w)] = 0, so T (z) is local.
Set ω=L−21 in V . The Reconstruction Theorem applies with
{aα(z) : α ∈ A}={T (z)} and T (0)1 = ω, so there is a unique
vertex algebra (Vγ ,1, e

zD ,Y ) with T (z) = Y (ω, z).
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Example 3.9 (Continued)

• (Vγ ,1, e
zD ,Y ) is a vertex operator algebra with conformal

element ω and central charge γ. This works for each γ ∈ C.
• The field T (z) has OPE

T (z) ◦ T (w) ∼ γ

2

idVγ

(z − w)4
+

2T (w)

(z − w)2
+

dT
dw (w)

z − w
, (3.12)

so by Theorem 3.4 we have

[T (z),T (w)] = (3.13)

γ

12
idVγ

∂3

∂w3
δ(z − w) + 2T (w)

∂

∂w
δ(z − w) +

dT

dw
(w)δ(z − w).

This is equivalent to the defining relations (3.11) of the Virasoro
algebra, with c = γ idVγ . Note that the single vertex operator T (z)
encodes the Virasoro algebra, and its OPE (3.12) the Lie bracket
of the Virasoro algebra, without knowing Vγ . Vertex operators and
OPEs can characterize interesting Lie algebras very succinctly.
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Example 3.10 (Vertex algebras from affine Lie algebras)

Let g be a finite-dimensional simple Lie algebra over C. Then
g[t, t−1] is an infinite-dimensional Lie algebra: think of it as
Laurent polynomials γ(t) : C∗ → g with Lie bracket
[γ, δ](t) = [γ(t), δ(t)], and restricting to S1 ⊂ C∗, this is basically
the Lie algebra of the loop group LG . The affine Lie algebra ĝ is a
nontrivial central extension of Lie algebras

0 // 〈c〉C // ĝ // g[t, t−1] // 0,

defined using the Killing form 〈 , 〉 of g. Let the Lie subalgebra
K ⊂ ĝ be the preimage of g[t], so K ∼= 〈c〉C ⊕ g[t] as Lie algebras.
Extend this to a vector space splitting ĝ ∼= 〈c〉C ⊕ g[t, t−1].
For each k ∈ C define a representation ρk of K on C by
ρk(g[t]) = 0 and ργ(c) = k idC. We call k the ‘level’.

Let V ĝ
k = C⊗ρk ,U(K),inc U(ĝ) and σ : ĝ→ End(V ĝ

k ) be the induced

representation of ĝ, and let 1 ∈ V ĝ
k be the image of 1 ∈ C.
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Example 3.10 (Continued)

For each γ ∈ g, define a field aγ(z) on V ĝ
k by

aγ(z) =
∑
n∈Z

σ(γtn)z−n−1. (3.14)

The aγ(z) for γ ∈ g are mutually local, with OPE

aγ(z)aδ(w) ∼ k id
V ĝ
k

〈γ, δ〉
(z − w)2

+ a[γ,δ](w)
1

z − w
. (3.15)

so by Theorem 3.4 we have

[aγ(z), aδ(w)]=k〈γ, δ〉 id
V ĝ
k

∂
∂w δ(z−w)+a[γ,δ](w)δ(z−w). (3.16)

For D I won’t give, the Reconstruction Theorem applies with
{aα(z) : α ∈ A} = {aγi (z) : i = 1, . . . , n} for γ1, . . . , γn a basis of

g, giving a vertex algebra (V ĝ
k ,1, e

zD ,Y ). If k is not a certain
critical value k = −h∨, this is a vertex operator algebra. The OPEs
(3.15) for γ, δ ∈ {γ1, . . . , γn} encode the Lie algebra ĝ by (3.16).
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Example 3.11 (Lattice vertex algebras)

Let (Λ, χ) be an even lattice. That is, Λ ∼= Zd is a free abelian
group of rank d and χ : Λ× Λ→ Z is biadditive and symmetric
with χ(λ, λ) ∈ 2Z for all λ ∈ Λ, and write ΛC = Λ⊗Z C. Define

VΛ = C[Λ]⊗C Sym(tΛC[t]). (3.17)

Here C[Λ] is the group algebra of Λ, a C-vector space with basis
eλ for λ ∈ Λ, and Sym(W ) =

⊕
n>0 S

nW the symmetric algebra.
So VΛ is a C-algebra spanned over C by elements of the form

eλ0 ⊗ (ta1λ1)⊗ · · · ⊗ (tanλn) (3.18)

for λ0, . . . , λn ∈ Λ and a1, . . . , an > 0, and generated by elements
eλ ⊗ 1 and e0 ⊗ (taλ) for 0 6= λ ∈ Λ and a > 0. We make VΛ

graded by giving (3.18) degree χ(λ0, λ0) + 2a1 + · · ·+ 2an (note
this is even). Define 1 = e0 ⊗ 1, where 1 ∈ S0(tΛC[t]) = C.
Choose signs ελ,µ = ±1 for λ, µ ∈ Λ satisfying ελ,0 = ε0,λ = 1 and

ελ,µ · εµ,λ = (−1)χ(λ,µ)+χ(λ,λ)χ(µ,µ), ελ,µ · ελ+µ,ν = ελ,µ+ν · εµ,ν .
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Example 3.11 (Continued)

Define D : VΛ → VΛ to be the C-algebra derivation with

D(eλ ⊗ 1) = eλ ⊗ (tλ), D(e0 ⊗ (taλ)) = a e0 ⊗ (ta+1λ).
For each µ ∈ Λ and n ∈ Z, define µn : VΛ → VΛ by
(i) If n>0 then µn : VΛ→VΛ is the derivation of VΛ determined by

µn(eλ ⊗ 1) = 0, µn(e0 ⊗ (taλ)) = nδanχ(µ, λ) e0 ⊗ 1.

(ii) µ0(eλ ⊗ p) = χ(µ, λ) eλ ⊗ p for any λ, p.
(iii) If n < 0 then µn is multiplication by e0 ⊗ (t−nµ).
Define µ(z) =

∑
n∈Z µnz

−n−1. Define µ̃(z) : VΛ → VΛ[[z ]][z−1] by

µ̃(z)(eλ ⊗ p) = ελ,µz
χ(λ,µ)(eµ ⊗ 1) · exp

[
−
∑

n<0
1
nz
−nµn

]
◦ exp

[
−
∑

n>0
1
nz
−nµn

]
(eλ ⊗ p).

Then µ(z), µ̃(z) are fields on VΛ for µ ∈ Λ. The Reconstruction
Theorem applies with {aα(z) : α ∈ A} = {µ1(z), . . . , µd(z), µ̃1(z),
. . . , µ̃d(z)} for µ1, . . . , µd a basis of Λ, giving a vertex algebra
(VΛ,1, e

zD ,Y ), a lattice vertex algebra.
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Example 3.11 (Continued)

• If χ is nondegenerate then VΛ is a vertex operator algebra with
central change cVΛ

= d and conformal vector

ω = 1
2

∑d
i ,j=1 Aije

0 ⊗ (tµi )⊗ (tµj),

where (Aij)
d
i ,j=1 is the inverse matrix to (χ(µi , µj))di ,j=1.

• For non-even lattices the construction generalizes to vertex
superalgebras / non-even graded vertex algebras.
• The subspace e0⊗ Sym(−) ⊂ VΛ is a vertex subalgebra of VΛ. If
χ is nondegenerate then by choosing an orthonormal basis of
(ΛC, χC) we may identify e0 ⊗ Sym(−) with the tensor product of
d copies of the Heisenberg vertex algebra in Example 3.8.
• If Λ is the lattice of root vectors of a simple Lie algebra g then
VΛ is a simple vertex algebra (has no nontrivial ideals) and is the

unique simple quotient of V ĝ
1 in Example 3.10 for at level k = 1.

• The Monster vertex algebra is related to VΛ for Λ the rank 24
Leech lattice.
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Plan of talk:

4 Representation theory of vertex algebras

4.1 Basic definitions on representations of VAs and VOAs

4.2 Rational VOAs and Zhu’s Theorem

4.3 The Zhu algebra and simple representations
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4.1. Basic definitions on representations of VAs and VOAs

Let K be a field of characteristic zero, e.g. K = C. Recall from §1.1:

Definition 4.1 (Representations of VAs, in the style of Borcherds.)

Let V be a vertex algebra over K. A representation of V is a
K-vector space W and linear maps vρn : W →W for all v ∈ V and
n ∈ Z, with vρn linear in v , satisfying:
(i) For all v ∈ V and w ∈W we have vρn (w) = 0 for n� 0.
(ii) If w ∈W then 1

ρ
−1(w) = w and 1

ρ
n(w) = 0 for −1 6= n ∈ Z.

(v) (ul(v))ρm(w)=
∑
n>0

(−1)n
( l
n

)(
uρl−n(vρm+n(w))−(−1)lvρl+m−n(uρn(w))

)
for all u, v ∈ V , w ∈W and l ,m ∈ Z, where the sum exists by (i).
These are the obvious generalizations of Definition 1.1(i),(ii),(v).
V has an obvious representation on itself.
All this extends to vertex superalgebras and graded vertex algebras
V∗, when we take W = W∗ to be graded over Z2 or Z.
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Here is an equivalent definition in the language of states and fields:

Definition 4.2

Let (V ,1, ezD ,Y ) be a vertex algebra over K. A representation
(W ,Y ρ) of (V ,1, ezD ,Y ), or V -module, is a K-vector space W
and a linear map Y ρ : V ⊗W →W [[z ]][z−1] (hence a map
V → End(W )[[z , z−1]]) satisfying:

(i) Y ρ(1, z) = idW .
(ii) For all u, v ∈ V and w ∈W , in W [[z±1

0 , z±1
1 , z±1

2 ]] we have

z−1
2 δ

(z1−z0

z2

)
Y ρ(Y (u, z0)v , z2)w =z−1

0 δ
(z1−z2

z0

)
Y ρ(u, z1)Y ρ(v , z2)w

− z−1
0 δ

(z2−z1

−z0

)
Y ρ(v , z2)Y ρ(u, z1)w . (4.1)

In Physics, V -modules are called primary fields.
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If u, v ∈ V and w ∈W then as for Theorems 2.2–2.4 there exist
N � 0 such that

(z1−z2)N
[
Y ρ(u, z1)◦Y ρ(v , z2)w−Y ρ(v , z2)◦Y ρ(u, z1)w

]
=0,(4.2)

(z1 + z2)NY ρ(Y (u, z1)v , z2)w

= (z1 + z2)N iz1,z2 ◦ Y ρ(u, z1 + z2) ◦ Y ρ(v , z2)w .
(4.3)

Y ρ(ez2Du, z1)w = iz1,z2 ◦ Y ρ(u, z1 + z2)w . (4.4)

As for Theorem 2.5, there are equivalent definitions of V -module
in which we replace (4.1) by (4.2) or (4.3) (as in Frenkel–Ben-Zvi).
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Finite-dimensionality and boundedness assumptions

To make progress on representations of VAs or VOAs, it is usual to
make simplifying assumptions on (V ,1, ezD ,Y ) and (W ,Y ρ):
• We usually take V∗,W∗ to be graded over Z (this is automatic if
V is a VOA). Although V∗,W∗ will be infinite-dimensional, we can
assume that dimK Vn,dimKWn <∞ for all n ∈ Z.
• We can also assume that Vodd = Wodd = 0, and that
Vn,Wn = 0 for n� 0, or (stronger) that Vn = 0 for n < 0.
• The grading of V∗ is fixed, but we can shift the grading of W∗
by Wn 7→Wn+c without changing anything important. So if Wn = 0
for n� 0 we can shift gradings so that Wn = 0 for n < 0 and W0 6= 0.
• For (W∗,Y

ρ) with dimKWn <∞, Wn = 0 for n < 0 and n odd,
and W0 6= 0, the character is chW∗ =

∑
n>0 dimW2nq

n. If assuming
Vodd = Wodd = 0, people tend to re-grade V2n 7→ Vn, but I won’t.
• Authors often incorporate these assumptions (e.g. dimVn <∞,
Vn = 0 for n < 0) into their definitions of VAs, VOAs, representations.
• I will say V∗,W∗ are well behaved if such assumptions hold.
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Sub- and quotient representations, simples

Definition 4.3

Let (V ,1, ezD ,Y ) be a vertex algebra over K, and (W ,Y ρ) a
representation of V . A subrepresentation is a vector subspace
W ′ ⊂W such that Y ρ maps V ⊗W ′ →W ′[[z ]][z−1]. Then W ′ is
a representation of V , and so is W ′′ = W /W ′.
For example, if w ∈W we can consider the subrepresentation
W ′ = 〈w〉 ⊂W generated by w , spanned by all elements
(v1)ρn1 ◦ (v2)ρn2 ◦ · · · ◦ (vk)ρnk (w) for v1, . . . , vk ∈ V , n1, . . . , nk ∈ Z.
We call W irreducible, or simple, if W 6= 0 and the only
subrepresentations W ′ ⊂W are 0 and W . Then W is generated
by any 0 6= w ∈W .
For well behaved V∗,W∗, it is reasonable to expect any
representation W∗ to be built from finitely many simple
representations by extensions. Thus, to classify V∗-representations,
it is enough to classify simple representations.
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Representations of vertex operator algebras

For vertex operator algebras we can add a compatibility condition
with the conformal vector ω:

Definition 4.4

Let (V∗,1, e
zD ,Y , ω) be a vertex operator algebra over K, and

(W∗,Y
ρ) a (graded) representation of (V∗,1, e

zD ,Y ). Recall that
by definition of VOA we have L−1 = ω0 = D and
L0|Va = ω1|Va = 1

2a idVa for a ∈ Z.
We call (W∗,Y

ρ) a conformal representation if
ωρ1 |Wa = ( 1

2a + h) idWa for some h ∈ K. If Wn = 0 for n < 0 and
W0 6= 0, we call h the highest weight.
Alternatively, we can take W∗ to be graded over K not Z, relabel
Wa 7→Wa+2h, and require that ωρ1 |Wa = 1

2a idWa for a ∈ K. This is
better for taking direct sums of representations with different h.
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4.2. Rational VOAs and Zhu’s Theorem

Rational VOAs have particularly nice representation theory:

Definition 4.5

Let (V∗,1, e
zD ,Y , ω) be a VOA over K with Vn = 0 for n < 0.

Consider only conformal representations (W∗,Y
ρ) with Wn = 0 for

n� 0. We call (V∗,1, e
zD ,Y , ω) rational if:

(i) There are only finitely many isomorphism classes of simple
V∗-modules W∗, up to shifts Wn 7→Wn+c .

(ii) Every simple V∗-module W∗ has dimWn <∞ for n ∈ Z.
(iii) Every V∗-module W∗ is a direct sum of simple V∗-modules.

Actually (iii) implies (i),(ii) (Dong–Li–Mason).
We call (V∗,1, e

zD ,Y , ω) holomorphic if it is rational with only
one simple V∗-module, which is V∗ itself.

Rational VOAs are a bit like finite groups: we would like to
understand them and classify their simple representations.
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Examples of rational VOAs

Example 4.6

(a) (Dong.) Let Λ be an even positive definite lattice. Then the
lattice VOA VΛ over C from Example 3.11 is rational. The simple
modules of VΛ are in 1-1 correspondence with Λ∨/Λ.
(b) (Frenkel–Zhu.) Let g be a simple Lie algebra over C, and k be

a positive integer. Example 3.10 constructs a VOA (V ĝ
k ,1, e

zD ,Y ).

It turns out that V ĝ
k has a maximal proper ideal I ⊂ V ĝ

k whose

quotient Lĝk = V ĝ
k /I is a simple VOA. Then Lĝk is a rational VOA

whose (simple) representations correspond to (simple)
representations of ĝ of level k .
(c) The Monster vertex operator algebra VMon

∗ is rational, and in
fact holomorphic.
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Zhu’s cofiniteness condition

Definition 4.7 (Zhu 1996.)

Let (V∗,1, e
zD ,Y , ω) be a VOA over K with Vn = 0 for n < 0 or n

odd. We say that V∗ satisfies Zhu’s cofiniteness condition if

(a) Write C2(V∗) for the vector subspace of V∗ spanned by
u−2(v) for u, v ∈ V∗. Then dimV∗/C2(V∗) <∞.

(b) Let Ln = ωn+1 : V∗ → V∗ be the Virasoro action on V∗. Then
V∗ is spanned by vectors of the form Ln1 ◦ · · · ◦ Lnk (v) for
ni < 0, where v ∈ V∗ satisfies Ln(v) = 0 for all n > 0.

This holds in Example 4.6(a)–(c).
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Zhu’s Theorem

Theorem 4.8 (Zhu 1996, extended by Miyamoto 2004.)

Let (V∗,1, e
zD ,Y , ω) be a VOA over C with central charge c ∈ C

satisfying Zhu’s cofiniteness condition. Then (V∗,1, e
zD ,Y , ω) is

rational. Let W 1
∗ , . . . ,W

N
∗ be the simple V∗-representations up to

isomorphism, where W i
0 6= 0 and W i

n = 0 for n < 0 or n odd, and
let W i

∗ have highest weight hi ∈ C. Consider the functions

fi (q) = qhi−c/24 ch(W i
∗) =

∑
n>0 q

hi−c/24+n dimW2n. (4.5)

Here ch(W i
∗) converges on {q ∈ C : |q| < 1}. Thus changing

variables to τ with q = e2πiτ , fi (τ) is a holomorphic function on
the upper half-plane H = {τ ∈ C : Im τ > 0}. Then c , hi ∈ Q, and
f1(τ), . . . , fN(τ) are linearly independent, and their span
〈fi (τ) : i = 1, . . . ,N〉C is invariant under the action of SL(2,Z)
on H, so the fi (τ) are vector-valued modular forms, a
generalization of modular forms.
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Remarks on Zhu’s Theorem

• Characters of representations of infinite-dimensional Lie algebras
(e.g. affine Lie algebras, Virasoro) are often modular forms.
• A heuristic explanation for Theorem 4.8 is as follows: to each
VOA V∗, Frenkel–Ben-Zvi associate a D-module on the moduli
space of Riemann surfaces, and so in particular on the moduli
space H/ SL(2,Z) of elliptic curves. For rational VOAs this
D-module is expected to be a vector bundle E → H/SL(2,Z) with
flat connection, and the W i

∗ should induce a basis of constant
sections of E on the universal cover H of H/ SL(2,Z) near
τ = i∞. The SL(2,Z) action on 〈fi (τ) : i = 1, . . . ,N〉C comes
from the monodromy action of SL(2,Z) = π1(H/ SL(2,Z)).
• I hope to return to the modular forms aspect later in term, but it
involves too much background to explain now.
Today I will just explain a more elementary part of the proof, relating
V∗-modules to representations of an algebra A(V∗), the Zhu algebra.
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4.3. The Zhu algebra and simple representations

Definition 4.9

Let K be a field of characteristic zero, and (V∗,1, e
zD ,Y ) be a

graded vertex algebra over K with Vodd = 0. Define bilinear
operations ∗, ◦ : V∗ × V∗ → V∗ by, for u ∈ V2a and v ∈ V2b,

u ∗ v = Resz

(
(1 + z)a

z
Y (u, z)v

)
=
∞∑
n=0

(
a

n

)
un−1(v), (4.6)

u ◦ v = Resz

(
(1 + z)a

z2
Y (u, z)v

)
=
∞∑
n=0

(
a

n

)
un−2(v). (4.7)

These are well-defined as un(v) = 0 for n� 0. Note that ∗, ◦ are
not grading-preserving. Write O(V∗) for the vector subspace of V∗
spanned by elements u ◦ v for all u, v ∈ V∗. Define
A(V∗) = V∗/O(V∗) to be the quotient vector space.
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Theorem 4.10 (Zhu 1996.)

In Definition 4.9, O(V∗) is a two-sided ideal for ∗, so ∗ descends to
a bilinear multiplication ∗ : A(V∗)× A(V∗)→ A(V∗). Furthermore:

(a) The product ∗ on A(V∗) is associative, and makes A(V∗) into
a K-algebra with identity 1 + O(V∗), the Zhu algebra.

(b) If (V∗,1, e
zD ,Y ) is a vertex operator algebra with conformal

element ω then ω + O(V∗) lies in the centre of A(V∗).
(c) As A(V∗) is an associative algebra, it is also a Lie algebra,

with Lie bracket [α, β] = α ∗ β − β ∗ α. In §1.4 we defined a
Lie bracket on V2/D(V0). We have D(V0) ⊂ A(V∗), and the
natural map V2/D(V0)→ A(V∗) is a Lie algebra morphism.
This induces an algebra morphism U(V2/D(V0))→ A(V∗),
where U(V2/D(V0)) is the universal enveloping algebra.
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Theorem 4.10 (Continued.)

(d) Suppose (W∗,Y
ρ) is a representation of (V∗,1, e

zD ,Y ) with
Wa = 0 for a < 0. Then W0 is a left module over A(V∗), with
action for v ∈ V2a and w ∈W0 given by

(v + O(V∗)) · w = vρa−1(w). (4.8)

(e) Let W0 be a left module over A(V∗). Then W0 extends to a
representation (W∗,Y

ρ) of (V∗,1, e
zD ,Y ) with Wa = 0 for

a < 0, such that the A(V∗)-module structure on W0 in (d) is
the given one, and there are no nonzero
(V∗,1, e

zD ,Y )-subrepresentations W̃∗ ⊂W∗ with W̃0 = 0.
(f) Parts (d),(e) induce a 1-1 correspondence between

isomorphism classes of nonzero simple A(V∗)-representations
W0, and isomorphism classes of simple representations
(W∗,Y

ρ) of (V∗,1, e
zD ,Y ) with Wa =0 for a<0 and W0 6=0.
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Partial proof of Theorem 4.10

For u, v ∈ V∗, w ∈W∗ and a, b ∈ Z, the Jacobi identity implies that
∞∑
n=0

(
a

n

)
(un−1(v))ρa+b−n−1(w) =

∞∑
n=0

(
uρa−1−n(vρb−1+n(w))

+vρb−2−n(uρa+n(w))
)
.

(4.9)

Apply this with u ∈ V2a, v ∈ V2b and w ∈W0. By (4.6) and (4.8),
the l.h.s. is (u ? v) · w . The first term on the r.h.s. when n = 0 is
u · (v ·w). Also vρb−1+n(w) ∈W−2n and uρa+n(w) ∈W−2n−2. Thus
the first term on the r.h.s. is zero for n > 0, and the second term
for n > 0, as W<0 = 0. Hence (4.9) becomes

(u ? v) · w = u · (v · w). (4.10)

This proves (d), assuming (a). It also motivates the definition of
the product ? in (4.6). We have a map · : V∗ → End(W0) taking
? to the (associative) composition in End(W0). So there should be
some subspace O(V∗) ⊂ V∗ with ? associative on V∗/O(V∗).
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Remarks on Zhu algebras and V∗-representations

• It is crucial that (V∗,1, e
zD ,Y ) is a graded vertex algebra, with

Vodd = 0, since v ∈ V2a acts on w ∈W0 by v · w = vρa−1(w),
which would not make sense without these conditions.
• Theorem 4.10 reduces understanding simple V∗-representations
to simple A∗(V )-representations. If V∗ is an (infinite-dimensional)
rational vertex algebra, one can prove that A(V∗) is a
finite-dimensional semisimple K-algebra – a much simpler object.
The simple V∗-representations W∗ also have dimW0 <∞. So we
reduce to ordinary algebra in finite dimensions.
• Rational VOAs are important in Physics.
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Example: the Heisenberg VOA

Recall the Heisenberg VOA VHeis
∗ = C[x1, x2, . . .] from Example

3.8. This is graded with deg xn = 2n, so VHeis
odd = 0, and with

conformal vector ω0 = 1
2x

2
1 has central charge c = 1. It is a simple

representation over itself, with highest weight h = 0.
The character of V∗ is chV∗ =

∑
n>0 dimV2nq

n. Writing

VHeis
∗ =

⊗
n>1 C[xn], where chC[xn] =

∑
k>0 q

nk = (1− qn)−1,
we see that chV∗ =

∏
n>1(1− qn)−1.

Thus the function fi (q) in (4.5) corresponding to VHeis
∗ is

fi (q) = qh−c/24 ch(V∗) = q−1/24
∏
n>1

(1− qn)−1 = η(q)−1, (4.11)

where η(q) is Dedekind’s η-function, a modular form of weight 1
2 .

The Heisenberg VOA is not rational.
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Example: lattice VOAs

Let (Λ, χ) be an even positive definite lattice of rank d . Example
3.11 defines the lattice VOA V Λ

∗ , with central charge d , which is
rational. As a graded vector space we have V Λ

∗
∼= C[Λ]⊗

⊗d VHeis
∗ ,

where C[Λ] has character the lattice theta function ΘΛ(q)

chC[Λ] = ΘΛ(q) =
∑
λ∈Λ

q
1
2χ(λ,λ).

Hence chV Λ
∗ = ΘΛ(q) ·

∏
n>1(1− qn)−d , and the function fi (q) in

(4.5) corresponding to V Λ
∗ is

fi (q) = ΘΛ(q) · η(q)−d . (4.12)

As (Λ, χ) is integral there is a natural morphism Λ ↪→ Λ∨. We call
(Λ, χ) unimodular if this is an isomorphism. Then it is known that
ΘΛ(q) is a modular form of weight d/2, so fi (q) has weight 0.
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