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Introduction

The last two lectures will be about two approaches to vertex
algebras (mostly VOAs) by Beilinson and Drinfeld, motivated by
Physics: chiral algebras and factorization algebras. The goal is that
to an even VOA (V∗,1, e

zD ,Y , ω) with Vk = 0 for k � 0 we will
associate geometric structures on X for every algebraic curve X :
• a chiral algebra on X : a D-module VX → X — essentially an
infinite-dimensional vector bundle over X with fibre V∗, and a flat
connection ∇ — with a D-module morphism
YX : j∗j

∗(VX � VX )→ ∆!(VX ) on X × X , where ∆ : X → X × X
is the diagonal and j : X × X \∆(X ) ↪→ X × X is the inclusion.
• a factorization algebra on X : a quasicoherent sheaf F → Ran(X )
on the Ran space Ran(X ), the prestack of all finite subsets
{x1, . . . , xn} ⊂ X , satisfying the factorization property
F|SqT ∼= F|S ⊗F|T in canonical isomorphisms for disjoint finite
S ,T ⊂ X , where F|{x1,...,xn}

∼= (V∗)
⊗n

.
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The basic idea here is that for the state-field correspondence
Y (z) : V ⊗V → V [[z ]][z−1], we should consider SpecC[[z ]] as the
formal disc D and SpecC[[z ]][z−1] as the punctured formal disc
D′ = D \ {0}. If X is an algebraic curve and x ∈ X then the formal
completion Xx of X at x has a non-canonical isomorphism Xx

∼= D,
natural up to the action of Aut(D), so X ′x = Xx \ {x} ∼= D \ {0}.
The Lie algebra aut(D) is (nearly) a Lie subalgebra of the Virasoro
algebra Vir which acts on V∗, and Vn = 0 for n� 0 implies that
we can exponentiate this to an action of Aut(D) on V∗. There is a
principal Aut(D)-bundle PX → X with fibre at x the isomorphisms
Xx
∼= D, so we can define an infinite-dimensional vector bundle

VX → X by VX = (V∗ × PX )/Aut(D) with fibre V∗.
Then we can ask: how can we translate the VOA structure on V∗
to geometric operations on the vector bundle VX → X?
Note that this is all physically motivated: VOAs should correspond
to CFTs in String Theory, which quantize maps X → S from a
Riemann surface X to a space-time S .
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7.1. Vertex algebra bundles on curves
Another definition of the Virasoro algebra

We defined the Virasoro algebra Vir to be the C-Lie algebra with
basis elements Ln, n ∈ Z and c (the central charge), and Lie bracket

[c , Ln] = 0, [Lm, Ln] = (m−n)Lm+n+ 1
12 (m3−m)δm,−nc , m, n ∈ Z.

It may be written as a universal central extension

0 // 〈c〉C // Vir =
〈c〉C ⊕DerC[z , z−1]

π // DerC[z , z−1] // 0,

where DerC[z , z−1] = C[z , z−1] d
dz is the Lie algebra of derivations of

the algebra C[z , z−1], and π(Ln) = −zn+1 d
dz , and Vir has Lie bracket[

p(z) d
dz , q(z) d

dz

]
= (pq′ − p′q) d

dz −
1

12 Resz(pq′′′) · c.

Observe that DerC[z ] = C[z ] d
dz = 〈Ln : n > −1〉 and

Der0 C[z ] = zC[z ] d
dz = 〈Ln : n > 0〉 are Lie subalgebras.
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We may extend this to a completion Vir of Vir

0 // 〈c〉C // Vir
π // DerC[[z ]][z−1] // 0,

given by the same formula, with p(z), q(z) ∈ C[[z ]][z−1], and
DerC[[z ]], Der0 C[[z ]] are Lie subalgebras of Vir. Here
Der0 C[[z ]] = aut(C[[z ]]) = aut(D) is the Lie algebra of
automorphisms of D = SpecC[[z ]].
Now let (V∗,1, e

zD ,Y , ω) be an even VOA with Vk = 0 for k � 0.
Then Vir acts on V∗. Also elements of Vir are of the form
γc +

∑
n∈Z λnLn with λn = 0 for n� 0, and if v ∈ V∗ then

Ln(v) = 0 for n� 0 as Vk = 0 for k � 0, so the action of Vir on
V∗ extends to an action of Vir, which restricts to an action of
Der0 C[[z ]] = aut(D). One can show that this exponentiates to an
action of the infinite-dimensional Lie group Aut(D) on V∗ (this
needs that L0 has eigenvalues in Z). It preserves the filtered
subspaces V6m ⊂ V∗ for each m ∈ Z.
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Now let X be an algebraic curve. Define a space PX to have
points (x , φ) for x ∈ X and φ : Xx → D an isomorphism, where Xx

is the formal completion of X at x , so φ is a formal coordinate at
x . Then Aut(D) acts on PX by γ : (x , φ) 7→ (x , γ ◦ φ), making
PX → X into a principal Aut(D)-bundle. Define
VX = (V∗ × PX )/Aut(D) to be the associated infinite-dimensional
vector bundle with fibre V∗. It has a canonical filtration
· · · ⊂ V6m ⊂ V6m+1 ⊂ · · · ⊂ VX modelled on
· · · ⊂ V6m ⊂ V6m+1 ⊂ · · · ⊂ V∗, where V6m is a finite rank vector
bundle if dimV6m <∞.
VX (or better, the sheaf of algebraic sections of VX ) is a
quasicoherent sheaf on X , and the V6m are coherent sheaves
(algebraic vector bundles) if dimV6m <∞.
Actually all this and the following results work not just for VOAs
(V∗,1, e

zD ,Y , ω) with Vk = 0 for k � 0, but for the larger class of
quasi-conformal vertex algebras (see Frenkel–Ben-Zvi §6.3), which
have a locally nilpotent DerC[z ]-action rather than a Vir-action.
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Proposition 7.1 (Frenkel and Ben-Zvi §6.6.)

There is a natural connection ∇ on VX → X , which is
automatically flat as X is a curve. It satisfies
∇V6m ⊂ V6m+1 ⊗ KX for m ∈ Z.

Sketch proof. We built VX → X using the action of
Der0 C[z ] = zC[z ] d

dz = 〈Ln : n > 0〉 on V∗, which preserves the

subspaces V6m ⊂ V∗. But DerC[z ] = C[z ] d
dz = 〈Ln : n > −1〉

also acts on V∗, where d
dz = −L−1 corresponds to infinitesimal

translation in D, which does not exponentiate to an actual
automorphism of D, and d

dz maps V6m → V6m+1.
If z : U → A1 is any local algebraic coordinate on open U ⊂ X ,
then z induces an isomorphism Xx

∼= D for x ∈ U, so that
PX |U ∼= U ×Aut(D), and VX |U ∼= U × V∗. Then ∇ acts by d

dz + L−1

in this trivialization. This is independent of coordinate z .
As VX is a quasicoherent sheaf with connection ∇, it is a
D-module on X (explained later).
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As 1 ∈ V∗ is invariant under Vir, it induces a section 1X ∈ Γ(VX ) with
∇1X = 0. Here is how to interpret the state-field correspondence Y (z):

Proposition 7.2 (Frenkel and Ben-Zvi §6.5.)

Y (z) : V∗ ⊗ V∗ → V∗[[z ]][z−1] induces for each x ∈ X a morphism
of quasicoherent sheaves on X ′x = Xx \ {x}, where V x = VX |x

Y ′x : VX |X ′x ⊗C V x −→ V x ⊗C OX ′x . (7.1)

Alternatively we may regard this as a meromorphic morphism on Xx

Yx : VX |Xx ⊗C V x 99K V x ⊗C OXx , (7.2)

which is allowed to have poles at x ∈ Xx .

Here X ′x
∼= D′ = SpecC[[z ]][z−1], but the important thing is that

(7.1)–(7.2) are independent of choice of formal coordinate on Xx .
Roughly, (7.1) says we have morphisms Y ′x(w) : Vw ⊗ V x −→ V x

for w ∈ X ′x , that is, w ‘infinitesimally close to x in X ’, or
(w , x) ∈ X × X ‘infinitesimally close to the diagonal ∆(X )’.
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Conformal blocks

So far we have considered only the local geometry of X , in an
infinitesimal neighbourhood of a point x ∈ X . But we can also do
global geometry on X , e.g. by considering meromorphic sections of
VX with poles at prescribed points x1, . . . , xn.

Definition 7.3 (Frenkel and Ben–Zvi §9.)

Suppose (V∗,1, e
zD ,Y , ω) is an even VOA with Vk = 0 for k � 0,

and X is a smooth projective curve, and x ∈ X . Let VX and Y ′x
be as above. We say that ϕ ∈ V ∨x is a conformal block for V∗ (in
the simplest case) if for all v ∈ V x , the section Yϕ,v of V ∨X |X ′x ,
Yϕ,v (w)=ϕ◦Y ′x(w⊗v), extends to a regular section of V ∨X |X\{x}.
Conformal blocks form a vector subspace of V ∨x

∼= V ∨∗ .

Conformal blocks are a central concept in Conformal Field Theory.
One can also consider conformal blocks with multiple points
x1, . . . , xn and V∗-modules M1, . . . ,Mn. Conformal blocks are used
in a kind of ‘Fourier decomposition’ of correlation functions in CFT.
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7.2. Chiral algebras
Introduction to D-modules

Let X be a smooth C-scheme, e.g. a curve, and E → X an
algebraic vector bundle. An (algebraic) connection ∇ on E is a
sheaf morphism ∇ : TX ⊗CX

E → E satisfying the Leibnitz rule
∇(v ⊗ fe) = f∇(v ⊗ e) + (v · df )e for all local sections
v ∈ Γ(TX ), e ∈ Γ(E ), f ∈ Γ(OX ). Here CX is the sheaf of locally
constant functions f : X → C. Write ∇ve = ∇v ⊗ e.
We say ∇ is flat if ∇v∇we −∇w∇ve = ∇[v ,w ]e for all local
sections v ,w ∈ Γ(TX ), e ∈ Γ(E ). This is automatic if X is a curve.
These definitions also make sense if E is a coherent sheaf or
quasicoherent sheaf on X , and if ∇ is a flat connection on E then
(E ,∇) is a (left) DX -module or just (left) D-module.
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An alternative way to define D-modules is to define a sheaf of
C-algebras DX on X to be the subsheaf of EndCX

(OX ) (that is,
CX -linear morphisms OX → OX , not OX -linear morphisms
OX → OX ) generated by OX acting by multiplication and TX
acting by Lie bracket. Then a DX -module is a sheaf of
DX -modules on X , quasicoherent as an OX -module. As DX is
non-commutative we must distinguish left DX -modules and right
DX -modules. If E is a left D-module then E ⊗OX

KX is a right
D-module, and vice versa.
The categories DX -modl ,DX -modr of left and right DX -modules
are abelian and have many nice properties, like coh(X ) and qcoh(X ).
There is an equivalence DX -modl → DX -modr , E 7→ E ⊗OX

KX .
If f : X → Y is a morphism satisfying suitable conditions then we
have two kinds of pushforwards f∗, f! : DX -modr → DY -modr , and
two kinds of pullbacks f ∗, f ! : DY -modr → DX -modr , satisfying
the Grothendieck six-functor formalism.
From now on ‘D-module’ means ‘right D-module’.
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Two operations on D-modules will be important to us:
• Let E be a D-module on a curve X . Then the external tensor
product E � E is a D-module on X × X . Let
j : X × X \∆(X ) ↪→ X × X be the inclusion, where
∆ : X → X × X , ∆ : x 7→ (x , x). Then j∗ ◦ j∗(E � E) is another
D-module on X × X .
Local sections of j∗ ◦ j∗(E � E) are meromorphic local sections of
E �E on X ×X which are regular on X ×X \∆(X ) but are allowed
to have arbitrary poles on ∆(X ) ⊂ X × X . (Needs dimX = 1.)
• Let E be a D-module on a curve X . Then ∆!(E) is a D-module
on X × X supported on the diagonal ∆(X ).
We can consider D-module morphisms µ : j∗ ◦ j∗(E � E)→ ∆!(E).
Morally j∗ ◦ j∗(E � E) lives on X × X \∆(X ), and ∆!(E) lives on
∆(X ), so you might expect such µ to be trivial, but they are not.
Roughly, such µ induce morphisms µ(w , x) : Ew ⊗ Ex −→ Ex for
w ∈ X ′x , that is, w ‘infinitesimally close to x in X ’, as for Y ′x(w) in
Proposition 7.2.
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Chiral algebras

Definition 7.4 (Beilinson–Drinfeld, notation abused a bit.)

Let X be an algebraic curve. A chiral algebra on X is a D-module
A on X with D-module morphisms µ : j∗ ◦ j∗(A�A)→ ∆!(A),
where j : X × X \∆(X ) ↪→ X × X is the inclusion and
∆ : X → X × X is the diagonal map, and 1 : KX → A, satisfying

(i) Antisymmetry: σ∗ ◦ µ ◦ σ∗ = −µ, where σ(x1, x2) = (x2, x1).
(ii) Jacobi identity: define ∆∗∗∗ : X × X → X × X × X to map

∆(12)3 : (x1, x2) 7→ (x1, x1, x2), ∆2(13) : (x1, x2) 7→ (x2, x1, x2),

∆1(23) : (x1, x2) 7→ (x1, x2, x2),

Define k : X 3\ all diagonals ↪→ X 3 to be the inclusion, and
∆3 : X ↪→ X 3 the diagonal. Let µ(12)3 be the composition

k∗ ◦ k∗(A�A�A)
µ12�id3 // (∆(12)3)!(A�A)

(∆(12)3)!(µ)
// (∆3)!(A)

on X × X × X , and similarly for µ2(13), µ1(23). Then
µ(12)3 = µ2(13) + µ1(23).
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Definition 7.3 (Continued.)

(iii) Unit: the following diagram commutes on X × X

j∗ ◦ j∗(KX �A)
j∗◦j∗(1�idA)

//

canonical map ..

j∗ ◦ j∗(A�A)

µ
��

∆!(A).

Note that (i),(ii) basically say that a chiral algebra is a Lie algebra
in D-modules on X (technically, a Lie algebra object for a certain
‘pseudotensor category structure’ on DX -modr ).
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Theorem 7.4 (Frenkel and Ben–Zvi §19.3.)

Let (V∗,1, e
zD ,Y , ω) be an even VOA with Vk = 0 for k � 0 (or

more generally, a ‘quasi-conformal vertex algebra’). Then for each
smooth curve X , the DX -module VX on X has the structure of a
chiral algebra on X .

Sketch proof. We have already explained the DX -module VX and
section 1X ∈ Γ(VX ). As in Proposition 7.2, for each x ∈ X we use
Y (z) to define a morphism

Y ′x : VX |X ′x ⊗C V x −→ V x ⊗C OX ′x .

We build a morphism µX : j∗ ◦ j∗(VX � VX )→ ∆!(VX ) such that
µX |X ′x×{x} = Y ′x for each x ∈ X , and show that (VX , µX ,1X ) is a
chiral algebra on X .
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Theorem 7.5 (Frenkel and Ben–Zvi §19.3.)

A quasi-conformal vertex algebra is equivalent to the data of a
chiral algebra VX on every smooth curve X , together with
compatible, functorial isomorphisms φ∗(VY ) ∼= VX for all étale
maps φ : X → Y of curves. That is, quasi-conformal vertex
algebras are equivalent to universal chiral algebras.

Note however that there are examples of chiral algebras on a curve
X which do not come from the universal curve, but are special to
X . One can also show that:
• Quasi-conformal vertex algebras are also equivalent to chiral
algebras on D equivariant under Aut(D).
• Ordinary graded vertex algebras (not VOAs) are equivalent to
chiral algebras on A1 which are translation-equivariant on A1.
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7.3. Vertex Lie algebras and Lie∗-algebras
A vertex Lie algebra is like ‘half a vertex algebra’:

Definition 7.6 (Borcherds style definition.)

Let R be a commutative ring. A vertex Lie algebra over R is an
R-module V equipped with morphisms D(n) : V → V for
n = 0, 1, 2, . . . with D(0) = idV and vn : V → V for all v ∈ V and
n ∈ N, with vn R-linear in v , satisfying:
(i) For all u, v ∈ V we have un(v) = 0 for n� 0.
(ii) If u, v ∈ V then (D(k)(u))n(v) = (−1)k

(n
k

)
un−k(v) for

0 6 k 6 n, and (D(k)(u))n(v) = 0 for 0 6 n < k.
(iii) un(v) =

∑
k>0(−1)k+n+1D(k)(vn+k(u)) for all u, v ∈ V and

n ∈ N, where the sum makes sense by (i).
(iv) (ul(v))m(w)=

∑
n>0

(−1)n
( l
n

)(
ul−n(vm+n(w))−(−1)lvl+m−n(un(w))

)
for all u, v ,w ∈ V and l ,m ∈ N, where the sum makes sense by (i).

We have operations un(v) for n ∈ N only, and no identity. Here
(ii),(iii) are consequences of the usual vertex algebra axioms.
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We may rewrite the definition in terms of a morphism

Y (z) : V ⊗ V −→ z−1V [z−1] ∼= V [[z ]][z−1]/V [[z ]],

mapping Y (z) : u ⊗ v 7→
∑

n>0 z
−n−1un(v). We think of a vertex

Lie algebra as remembering only the poles of an ordinary vertex
algebra (and hence the OPEs). Any vertex algebra gives a vertex
Lie algebra by forgetting 1 and the operations un(v) for n < 0.
There is a VOA version of vertex Lie algebras, called a conformal
vertex Lie algebra. It includes the data of a conformal vector
ω ∈ V such that Ln = ωn+1 for n > −1 satisfy the relations of the
Lie subalgebra 〈Ln, n > −1〉C of the Virasoro algebra.
One can prove (Primc 1999) that the forgetful functor
F : (vertex algebras)→ (vertex Lie algebras) has a left adjoint
U : (vertex Lie algebras)→ (vertex algebras), sending a vertex Lie
algebra to its universal enveloping vertex algebra. This is a lot like
the universal enveloping algebra of a Lie algebra.
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There is a chiral algebra version of vertex Lie algebras:

Definition 7.7 (Beilinson–Drinfeld.)

Let X be an algebraic curve. A Lie∗ algebra on X is a D-module
A on X with a D-module morphism µ : A�A → ∆!(A), where
∆ : X → X × X is the diagonal map, satisfying

(i) Antisymmetry: σ∗ ◦ µ ◦ σ∗ = −µ, where σ(x1, x2) = (x2, x1).
(ii) Jacobi identity: define ∆∗∗∗ : X × X → X × X × X to map

∆(12)3 : (x1, x2) 7→ (x1, x1, x2), ∆2(13) : (x1, x2) 7→ (x2, x1, x2),

∆1(23) : (x1, x2) 7→ (x1, x2, x2),

Write ∆3 : X ↪→ X 3 for the diagonal. Let µ(12)3 be the
composition

A�A�A µ12�id3 // (∆(12)3)!(A�A)
(∆(12)3)!(µ)

// (∆3)!(A)

on X × X × X , and similarly for µ2(13), µ1(23). Then
µ(12)3 = µ2(13) + µ1(23).

This is as for chiral algebras, but without j∗ ◦ j∗ and 1.
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Note that Lie∗ algebras are simpler than chiral algebras: they are
more-or-less the näıve notion of Lie algebras in D-modules on X .

Theorem 7.8 (Frenkel and Ben–Zvi §19.4.)

Let V∗ be a conformal vertex Lie algebra. Then for each smooth
curve X , the DX -module VX on X has the structure of a Lie∗

algebra on X .

If (A, µ,1) is a chiral algebra on X then the composition

A�A adjunction // j∗ ◦ j∗(A�A)
µ // ∆!(A)

makes A into a Lie∗ algebra. This is the analogue of the forgetful
functor F : (vertex algebras)→ (vertex Lie algebras). There is a
left adjoint functor called the chiral envelope
U : (Lie∗ algebras on X )→ (chiral algebras on X ).

21 / 38 Dominic Joyce, Oxford University Lecture 7: Vertex algebra bundles on curves, chiral algebras



Vertex algebra bundles on curves, and chiral algebras
Factorization algebras and geometric Langlands

Ran spaces
Factorization algebras
Factorization spaces

Vertex Algebras

Lecture 8 of 8: Factorization algebras and geometric Langlands

Dominic Joyce, Oxford University
Summer term 2021

References for this lecture: Frenkel and Ben-Zvi, 2nd ed. (2004), §20.
A. Beilinson and V. Drinfeld, Chiral algebras, A.M.S. 2004.

These slides available at
http://people.maths.ox.ac.uk/∼joyce/

22 / 38 Dominic Joyce, Oxford University Lecture 8: Factorization algebras and geometric Langlands



Vertex algebra bundles on curves, and chiral algebras
Factorization algebras and geometric Langlands

Ran spaces
Factorization algebras
Factorization spaces

Plan of talk:

8 Factorization algebras and geometric Langlands

8.1 Ran spaces

8.2 Factorization algebras

8.3 Factorization spaces

23 / 38 Dominic Joyce, Oxford University Lecture 8: Factorization algebras and geometric Langlands



Vertex algebra bundles on curves, and chiral algebras
Factorization algebras and geometric Langlands

Ran spaces
Factorization algebras
Factorization spaces

Introduction

Finally we discuss factorization algebras, Beilinson and Drinfeld’s
second way of generalizing vertex operator algebras (the first being
chiral algebras, as in §7). Given a curve X (or topological space, or
scheme), we define the Ran space Ran(X ) to be the set of all
finite subsets {x1, . . . , xn} ⊂ X , made into a geometric space. A
factorization algebra on X is roughly a quasicoherent sheaf
F → Ran(X ) with functorial isomorphisms F|IqJ ∼= F|I ⊗F|J for
all disjoint finite subsets I , J ⊂ X , with an identity section 1 ∈ H0(F).
Quasi-conformal vertex algebras are equivalent to universal
factorization algebras.
An interesting feature of this framework is that there is a
non-linear, space-level version, a factorization space
GX → Ran(X ), and factorization algebras may be obtained from
factorization spaces by applying some kind of cohomology theory.
These ‘factorization’ ideas have important applications in the
geometric Langlands programme.
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8.1. Ran spaces

Let X be a topological space. The Ran space Ran(X ) is the set
of nonempty finite subsets {x1, . . . , xn} of X , made into a topological
space with the strongest topology (most open sets) such that for n>1
the maps X n → Ran(X ), (x1, . . . , xn) 7→ {x1, . . . , xn} are continuous.

Theorem 8.1 (Beilinson–Drinfeld 2004.)

If X is connected then Ran(X ) is weakly contractible.

Another way to define Ran(X ): let m > n > 1 and
f : {1, . . . ,m}� {1, . . . , n} be surjective. Define the f -diagonal
∆f : X n → Xm by ∆f : (x1, . . . , xn) 7→ (xf (1), . . . , xf (m)). Then
Ran(X ) is the colimit in Top of all the spaces X n, n > 1 and
f -diagonals ∆f : X n → Xm. That is, Ran(X ) is the universal
topological space with maps Πn : X n → Ran(X ) for n > 1
satisfying Πm ◦∆f = ∆n for all f : {1, . . . ,m}� {1, . . . , n}.
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Now suppose we want an analogue of Ran(X ) in algebraic
geometry, for X a C-scheme say. The obvious thing to do is to
pick a suitable (higher) category of algebro-geometric spaces, and
define Ran(X ) to be the colimit of spaces X n and f -diagonals
∆f : X n → Xm in this category. Unfortunately, the colimit doesn’t
exist in schemes, or ind-schemes (though it nearly does), or Artin
stacks. We have to take the colimit in prestacks, which are
basically functors (commutative C-algebras)→ (groupoids).
Now prestacks are a pretty horrible kind of space, so we shouldn’t
expect to be able to say much about Ran(X ) in general. But one
thing we can understand reasonably well is sheaves on Ran(X ), as
these are characterized by their pullbacks to X n. For example, a
quasicoherent sheaf (or D-module) E on Ran(X ) is equivalent to
quasicoherent sheaves En = Π∗n(E) on X n for all n > 1, together
with isomorphisms E f : ∆∗f (Em)→ En for all
f : {1, . . . ,m}� {1, . . . , n} satisfying Eg◦f = Eg ◦∆∗g (E f ) for all
f : {1, . . . ,m}� {1, . . . , n} and g : {1, . . . , n}� {1, . . . , p}.
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Bundles on curves and affine Grassmannians

Last lecture I told you that although chiral algebras can be defined
on any scheme X , they are most interesting on smooth curves X ,
because on a curve X we can consider meromorphic functions on
X × X with poles on the diagonal ∆(X ) ⊂ X × X . The same
applies here: although Ran(X ) makes sense for any scheme X , the
most interesting applications (I believe) are to curves X .
To show you why, suppose G is an algebraic C-group, and X a
smooth projective curve, and write BunG for the moduli space of
principal G -bundles P → X , which is an Artin stack. If
G = GL(n,C) then BunG is the moduli stack of rank n vector
bundles E → X . Algebraic geometers care a lot about BunG , and
it is central in the geometric Langlands programme. I will explain a
method for studying BunG using Ran(X ).
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Bundles on curves and affine Grassmannians

Define the ‘adelic Grassmannian’ Grad
G to be the moduli stack of

pairs (P, φ), a prestack where P → X is a principal G -bundle and
φ : P 99K X × G is a rational trivialization, that is, we have an
isomorphism φ|X\{x1,...,xn} : P|X\{x1,...,xn} → (X \ {x1, . . . , xn})× G
for some finite subset {x1, . . . , xn} ⊂ X , but φ may have poles at
x1, . . . , xn. There is a projection ΠBunG

: Grad
G → BunG mapping

(P, φ) 7→ P. For fixed P, two rational trivializations φ, φ′ satisfy
φ′ = ψ ◦ φ for a unique rational map ψ : X 99K G . Thus
ΠBunG

: Grad
G → BunG is a principal Map(X ,G )rat-bundle, where

Map(X ,G )rat is an infinite-dimensional group, and an ind-scheme.

Theorem 8.2 (Gaitsgory 2012.)

Map(X ,G )rat is homologically contractible.

Thus ΠBunG
: Grad

G → BunG is basically a homotopy equivalence. So,
for example, the global sections of a sheaf or D-module E on BunG
should be the same as the global sections of its pullback to Grad

G .
28 / 38 Dominic Joyce, Oxford University Lecture 8: Factorization algebras and geometric Langlands



Vertex algebra bundles on curves, and chiral algebras
Factorization algebras and geometric Langlands

Ran spaces
Factorization algebras
Factorization spaces

Now define a morphism ΠRan(X ) : Grad
G → Ran(X ) to map

(P, φ) 7→ Sing(φ), the set of poles of φ. The fibre of ΠRan(X ) over
{x1, . . . , xn} is the ind-scheme

n∏
i=1

Map(X ′xi ,G ) \Map(Xxi ,G )

Map(Xxi ,G )
, (8.1)

where Xxi
∼= SpecC[[z ]] is the formal completion of X at xi , and

X ′xi = Xxi \ {xi} ∼= SpecC[[z ]][z−1]. To see why (8.1) holds, given
(P, φ) mapping to {x1, . . . , xn}, choose a local trivialization

χi : P|Xxi

∼=−→Xxi × G . This identifies φi |X ′xi with an element of

Map(X ′xi ,G ) \Map(Xxi ,G ). Two choices of χi differ by the action of
Map(Xxi ,G ). Thus, given a sheaf or D-module E on BunG , we have

H0(BunG , E) ∼= H0(Grad
G ,Π

∗
BunG

(E))

∼= H0(Ran(X ), (ΠRan(X ))∗ ◦ Π∗BunG
(E)).

(8.2)

Thus we reduce computations on BunG to computations on Ran(X ).
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As Map(X ′xi ,G )/Map(Xxi ,G ) is generally infinite-dimensional,
deleting the point Map(Xxi ,G )/Map(Xxi ,G ) doesn’t change
Map(X ′xi ,G )/Map(Xxi ,G ) up to homotopy equivalence.

The Beilinson–Drinfeld Grassmannian GrBD
G is the moduli space of(

{x1, . . . , xn},P, φ
)
, where {x1, . . . , xn} ∈ Ran(X ), P → X is a

principal G -bundle, and φ|X\{x1,...,xn} : P|X\{x1,...,xn} →
(X \ {x1, . . . , xn})× G is an isomorphism. There is a projection
ΠRan(X ) : GrBD

G →Ran(X ) mapping
(
{x1, . . . , xn},P, φ

)
7→{x1, . . . , xn},

with fibre
∏n

i=1 Map(X ′xi ,G )/Map(Xxi ,G ). There is an open

inclusion Grad
G ↪→ GrBD

G , a homotopy equivalence.
Thus we have a diagram

Grad
G

ΠBunG'
�� ΠRan(X ) ,,

� �

inc

' // GrBD
G

ΠRan(X ) ��
BunG Ran(X ),

with morphisms ‘'’ (homological) homotopy equivalences.
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If we choose a local formal coordinate zi near xi then we get a
particular isomorphism Xxi

∼= SpecC[[z ]] =: D, which identifies

Map(X ′xi ,G )

Map(Xxi ,G )
∼=

Map(D′,G )

Map(D,G )
.

Here Graff
G := Map(D′,G )/Map(D,G ) is the affine Grassmannian

of G , a formally smooth ind-scheme. The fibre of
ΠRan(X ) : GrBD

G → Ran(X ) over {x1, . . . , xn} is (Graff
G )n.

The Hecke category HG := D-mod(Graff
G ) is the category of

D-modules on Graff
G . The geometric Satake correspondence, for G

reductive, is an equivalence of monoidal categories

HG ' Rep LG ,

where LG is the Langlands dual group of G . This is a kind of
mirror symmetry for algebraic groups.
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8.2. Factorization algebras

Definition 8.3 (Beilinson–Drinfeld 2004.)

Let X be an algebraic curve. Write Ran(X )disj⊂Ran(X )×Ran(X )
for the open subset of (I , J) ∈ Ran(X )× Ran(X ) with I , J
disjoint, and let Φ : Ran(X )disj → Ran(X ) map (I , J) 7→ I q J. A
factorization algebra on X consists of:

(i) A quasicoherent sheaf F → Ran(X ).
(ii) An isomorphism Ψ : (F � F)|Ran(X )disj → Φ∗(F), functorial

under unions of disjoint triples I , J,K ∈ Ran(X ).
(iii) A morphism 1 : ORan(X ) → F (i.e. section 1 ∈ H0(F)) called

the unit, such that for every local section f of Π∗1(F)→ X ,
the local section Ψ(1� f ) of Π∗2(F) over (X × X ) \∆(X )
extends over ∆(X ), and restricts on ∆(X ) ∼= X to f .

Here FX = Π∗1(F) is a quasicoherent sheaf on X . Part (ii) implies
that F|{x1,...,xn}

∼= FX |x1 ⊗ · · · ⊗ FX |xn .
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We can think of a factorization algebra as consisting of a
quasicoherent sheaf FX → X with section 1X ∈ H0(FX ), together
with data on how to glue the sheaves FX → X ,
(FX � FX )|(X×X )\∆(X ) → (X × X ) \∆(X ), . . . ,

F�n

X |X n\{all diagonals} → X n \ {all diagonals}, . . . on the strata
(X n \ {all diagonals})/Sn, n > 1, of Ran(X ). This gluing
information is provided magically by working with sheaves on
Ran(X ). It is essentially the same data as the D-module
morphism µ : j∗ ◦ j∗(F � F)→ ∆!(F) in a chiral algebra.
It is a surprising fact that any factorization algebra (defined
as a quasicoherent sheaf F → Ran(X ) with extra data) has a unique
left D-module structure (i.e. a flat connection ∇ on F → Ran(X ))
compatible with the factorization structure. Here is how to build ∇
on FX → X . A connection on FX is equivalent to an isomorphism
(OX � FX )|∆(X )(1)

∼= (FX �OX )|∆(X )(1) on the first-order

neighbourhood ∆(X )(1) of ∆(X ) in X × X which restricts to idFX

on ∆(X ). Using 1 we get isomorphisms which induce ∇
(OX � FX )|∆(X )(1)

∼= Π∗2(FX )|∆(X )(1)
∼= (FX �OX )|∆(X )(1) .
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Factorization algebras and chiral algebras

Theorem 8.4 (Beilinson–Drinfeld 2004.)

Let X be an algebraic curve. There is an equivalence of categories

{factorization algebras on X} −→ {chiral algebras on X},
which maps a factorization algebra (F ,Ψ,1) to the right
D-module (FX ,∇)⊗ KX on X obtained from the left D-module
FX = Π∗1(F) with canonical connection ∇, with identity
Π∗1(1)⊗ idKX

: KX → FX ⊗ KX , and with chiral morphism µ
constructed from Π∗2(Ψ).

Combined with Theorem 7.5, this implies

Corollary 8.5 (Frenkel and Ben–Zvi §20.2.)

A quasi-conformal vertex algebra is equivalent to the data of a
factorization algebra FX → Ran(X ) for every smooth curve X ,
together with compatible, functorial isomorphisms φ∗(FY ) ∼= FX

for all étale maps φ : X → Y of curves. That is, quasi-conformal
vertex algebras are equivalent to universal factorization algebras.
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Write Ran(X )6n for the closed subspace of I ∈ Ran(X ) with
|I | 6 n. Then Ran(X )61

∼= X . Given a factorization algebra
F → Ran(X ), the corresponding chiral algebra (A, µ,1A) is
determined as an OX -module A ∈ OX -mod by
A = F|Ran(X )61

⊗ KX , with 1A = 1|Ran(X )61
⊗ idKX

. The
remaining structures ∇, µ are determined by F|Ran(X )62

, and the
relations on these structures are determined by F|Ran(X )63

. So we
could actually write the theory just in terms of Ran(X )63, which is
finite-dimensional. But then we would miss the consequences of
Ran(X ) being weakly contractible, for instance.
A topic which uses the full geometry of Ran(X ), not just
Ran(X )63, is Beilinson–Drinfeld’s chiral homology groups

H i
dR(Ran(X ),F),

the de Rham cohomology groups of F → Ran(X ) as a left
D-module. Here H0

dR(Ran(X ),F) is roughly the dual of the space
of conformal blocks.
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8.3. Factorization spaces

Definition 8.6 (Beilinson–Drinfeld 2004.)

Let X be an algebraic curve. A factorization space G over X is a
morphism of prestacks Π : G → Ran(X ) which is a formallly
smooth ind-scheme over Ran(X ) (i.e. the fibres are formally
smooth ind-schemes), with an isomorphism

Ψ : (G × G)×Π×Π,Ran(X )×Ran(X ),inc Ran(X )disj

−→ G ×Π,Ran(X ),Φ Ran(X )disj.
(8.3)

Writing GI = Π−1(I ) for I ∈ Ran(X ), as a formally smooth
ind-scheme, (8.3) gives isomorphisms GI × GJ → GIqJ for all
disjoint I , J ∈ Ran(X ). We require Ψ to be functorial under unions
of disjoint triples I , J,K ∈ Ran(X ). A unit for G is a section
1 : X → G of Π : G → Ran(X ), which is compatible with
factorization and restriction to diagonals.

This is a non-linear, space-level analogue of factorization algebras.
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The prototypical example of a factorization space is the
Beilinson–Drinfeld Grassmannian ΠRan(X ) : GrBD

G → Ran(X ) in §8.1.
We can pass from factorization spaces to factorization algebras by
‘linearization’, passing to some kind of cohomology: given a
suitable cohomology functor H(−), from a factorization space
Π : G → Ran(X ) we associate a factorization algebra
F → Ran(X ) with F(U) = H(Π−1(U)). One way to do this is to
take F = Π∗ ◦ 1!(KRan(X )), where KRan(X ) is the unit right
D-module on Ran(X ), and 1! the D-module pushforward along
1 : Ran(X )→ GX , and Π∗ the O-module pushforward along
Π : GX → Ran(X ).
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The geometric Langlands correspondence

Let X be an algebraic curve and G a reductive algebraic group,
with Langlands dual group LG . The geometric Langlands
correspondence is a conjectural equivalence of categories

D(D-mod(BunG )) ' D(qcoh(LocSysLG )) (8.4)

between the derived categories of D-modules on BunG , the moduli
stack of principal G -bundles on X , and of quasicoherent sheaves
on LocSysLG , the moduli stack of LG -local systems on X . This is
supposed to identify skyscraper sheaves on the right with ‘Hecke
eigensheaves’ on the left.
Actually in this form the conjecture is false, and needs to be
refined as in Arinkin–Gaitsgory 2012.
A programme of Beilinson–Drinfeld, starting with an LG -local
system E → X (and hence a skyscraper sheaf OE on LocSysLG ),
explains how to use factorization spaces over Ran(X ) to con-
struct a Hecke eigensheaf in D-mod(BunG ) with eigenvalue E . This
reduces geometric Langlands to a question in factorization algebras.
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