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1. Introduction

Let X be a compact Calabi—Yau 4-fold, and M the derived moduli
stack of perfect complexes on X, and M5(7) C M¥(7) Cc M
the open substacks of Gieseker (semi)stable coherent sheaves on X
with Chern character a € H*V**(X, Q). Pantev—Toén—Vaquié—
Vezzosi 2013 show M has a —2-shifted symplectic structure. If
M(1) = M3(7) can be lifted to a moduli scheme, and can be
given an orientation, Borisov—Joyce 2017 and Oh—Thomas 2023
show M(7) has a virtual class [MZ(T)]virt in Hi(ME(7), Z),
which is used to define Donaldson—Thomas type DT4 invariants of
X. This talk is about whether orientations exist on M%(7), and
what data you need to define canonical orientations.

It makes sense to study orientations on the full moduli stack M,
and then restrict them to the substacks M (7) C M.

Definition (Borisov—Joyce 2017)

The —2-shifted symplectic structure on M gives a
quasi-isomorphism Laq — Ta4[2], and thus an isomorphism of line
bundles ® : det(Laq) — det(Taq) = det(Laq)*. An orientation on
M is an isomorphism ¢ : det(Laq) — Oaq with ® = ¢* 0 ¢.
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The Cao—Gross—Joyce orientability theorem

Theorem 1 (Cao—Gross—Joyce 2020)

Let X be a compact Calabi—Yau 4-fold. Then the moduli stack M
of perfect complexes on X is orientable.

Unfortunately, there is a mistake in the proof. The theorem itself may
be false, though we don't have a counterexample. | apologize for this.
Outline of proof in Cao—Gross—Joyce:

Step 1: Let P — X be a principal U(m)-bundle, m > 4. Define
moduli spaces Bp of all connections on P. Define a principal
Zp-bundle Op — Bp of orientations on Bp, using gauge theory.
Prove Op is trivializable, that is, Bp is orientable. (This proof wrong.)
If X is a Spin(7)-manifold, orientations of Bp restrict to

orientations of moduli spaces M p of Spin(7)-instantons on P.

Step 2: Define map of topological classifying spaces

VMG p — B2 Show orientations of Bp pull back along W

to orientations of My,—., p. Hence Bp orientable implies M
orientable. (This proof is correct, as far as we know.)
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How to fix the mistake in Cao—Gross—Joyce

Markus Upmeier and myself have developed a new theory for
studying orientability and canonical orientations for moduli spaces
Bp, where X is a compact spin n-manifold with n=1,7,8 mod 8,
and G is a Lie group, and P — X is a principal G-bundle, and Bp
is the moduli space (topological stack) of all connections V on P,
and orientations on Bp mean orientations of the (positive) Dirac
operator on X twisted by (ad(P), V). If X is a Spin(7)-manifold,
orientations on Bp restrict to orientations on moduli spaces of
Spin(7)-instantons on X. If X is a Calabi-Yau 4-fold and G = U(m),
orientations on Bp restrict to Borisov—Joyce orientations on moduli
spaces of rank m algebraic vector bundles on X.

When n = 8 (also n = 7) we give sufficient conditions on X for
orientability of Bp for many G, including G = U(m) (necessary
and sufficient if G = Eg). If these sufficient conditions hold, the
problem with Step 1 of Cao—Gross—Joyce is fixed, and we deduce
the Cao—Gross—Joyce orientability theorem under this extra
condition. We also specify data (a flag structure) which
determines canonical orientations.
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2. First look at the methods in the proof

A principal G-bundle P — X is topologically equivalent to a map
¢p : X = BG, where BG is the classifying space of X. Thus

[X, $p] is an element of the spin bordism group Q5P (BG).
Orientability of Bp depends on the monodromy of Op — Bp
around a loop 7 : St — Bp. Then 7 is equivalent to a principal
G-bundle Q — X x &, giving a map ¢g : X x S - BG, and a
spin bordism class [X x S, ¢g] in Qiﬁ’:{l(BG). Now ¢¢q is
equivalent to a map ¥¢g : X — LBG, where LBG is the loop space

of BG, so Q determines a bordism class [X, 1] in Q3P™(LBG),
and [X x 8!, pg] is the image of [X,1g] under a natural map

QRPM(LBG) — QY (BG).

It turns out that orientation problems for Bp factor via Q%pin(BG),

QET?(BG), QSP™(LBG) in a certain sense. For given X, we can

show that Bp is orientable for all principal G-bundles P — X if
and only if certain ‘bad’ classes a in Q"™ (£LBG) cannot be
written o = [X, ¢]. If there are no bad classes we get orientability
for all X, P (this often happens for n = 7). We need to compute

QP(BG), QP (BG), Q™ (LBG) using algebraic topology.
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If t: G — H is a morphism of Lie groups of ‘complex type’, and

P — X is a principal G-bundle, then Q = (P x H)/G is a principal
H-bundle, and an orientation for Bg induces one for Bp. Using
complex type morphisms SU(8) < Eg and SU(m) — SU(m') for
m < m’, we can show that if X is a spin 8-manifold then
orientability of Bg for all principal Eg-bundles @ — X implies
orientability of Bp for all principal U(m)-bundles P — X. Thus, to
solve the CY4 orientability problem, it is enough to understand
orientability for Eg-bundles.

There is a 16-connected map BEg — K(Z,4), where K(Z,4) is the
Eilenberg-MacLane space classifying H*(—,Z), so

QOP™(BEg) 22 Q3P (K (Z,4)) for n < 16, and

QP (LBEg) = Q3P™ (LK (Z,4)) for n < 15. Using this, we can
reduce orientability questions for Eg-bundles to conditions that can
be computed using cohomology and cohomology operations on X,
in particular Steenrod squares. The proofs involve lots of
complicated calculations of bordism groups in Algebraic Topology,
spectral sequences, etc.
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3. Statement of main results: orientability

I'll explain only results in 8 dimensions relevant to DT4 invariants,

and a bit extra on Spin(7) instantons. They are part of a bigger

theory, which also includes results on orientability of moduli spaces

of submanifolds, such as Cayley 4-folds in Spin(7)-manifolds.

Let X be a compact oriented spin 8-manifold. Impose the condition:

(*) Let a € H3(X,Z), and write & € H3(X,Zy) for its mod 2
reduction, and Sq?(&) € H>(X,Zy) for its Steenrod square.
Then [, &@USq?(a@) =0 in Z, for all a € H3(X, Z).

Suppose X satisfies condition (x), and let G be a compact Lie
group on the list, for all m > 1

Es, E7, Es, Go, Spin(3), SU(m), U(m), Spin(2m). (1)
Then Bp is orientable for every principal G-bundle P — X.
For G = Eg, this holds if and only if (x) holds.

We do this by applying our general orientability theory for G = Eg
by studying Q5P (K(Z,4)) and Q3P"(LK(Z,4)). The other cases
are deduced from G = Eg using complex type morphisms.
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The case G = Eg and Step 2 of Cao—Gross—Joyce implies:

Suppose a Calabi-Yau 4-fold X satisfies condition (x). Then the
moduli stack M of perfect complexes on X is orientable in the
sense of Borisov—Joyce 2017.

\,

Example 4

Let X C CP° be a smooth sextic. Then H3(X,Z) = 0 by the
Lefschetz Hyperplane Theorem. So (*) and Corollary 3 hold.

€

Suppose a compact Spin(7)-manifold (X, Q) satisfies condition
(x), and G lies on the list (1), and P — X is a principal G-bundle.
Then the moduli space MU' of irreducible Spin(7)-instanton
connections on P is orientable. (Here MY is a smooth manifold if

Q is generic, and a derived manifold otherwise.)

V.
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4. Statement of main results: canonical orientations

Suppose now that (*) holds, so we have orientability of moduli
spaces Bp or M on X. What extra choices do we need to make
on X to define canonical orientations on Bp or M?

Definition

Let X be a spin 8-manifold, and P — X a principal G-bundle, and
Op — Bp be the orientation bundle. Define the normalized
orientation bundle Op — Bp by ép = 0Op Rz, OT(OX><6|[VO]):
where Or(Oxxcl[v,]) is the Z-torsor of orientations of Bxx¢ for
the trivial G-bundle X x G — X at the trivial connection V.

A trivialization of Or(Oxxcl[v,]) is an orientation for ind(P%) ® g,

where [y is the positive Dirac operator of X, ind([y) its
orientation torsor as a Fredholm operator, g the Lie algebra of G.

We show normalized orientations on Bp are determined by a choice
of flag structure (next slide). Orientations on Bp also need

an orientation on ind(D})@g. If X is a Calabi—Yau 4-fold, there is a
natural orientation for ind(lD;), so we don't need this second choice.
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Flag structures — first idea

Joyce 2018 and Joyce-Upmeier 2023 introduced flag structures on
7-manifolds, and used them to define orientations on moduli spaces
of associative 3-folds and Gp-instantons on compact G,-manifolds.
We define a related (but more complicated) notion of flag
structure F for compact spin 8-manifolds X satisfying condition
(*), as a choice of natural trivialization of an orientation functor
associated to X (more details later). We can write a flag structure
F as (F, : a € HY(X,Z)), where each F, lies in a Zp-torsor. Thus,
the set of flag structures on X is a torsor for Map(H*(X, Z), Zy).
By imposing extra conditions we can cut this down to a finite
choice of flag structures.

If X is a Calabi-Yau 4-fold, the orientation on M at a perfect
complex [£°] € M depends on F, for a = c2(E°) — c1(£°)>.
There is a canonical choice for Fy. Hence, if (%) — c1(£°)? =0,
there is a canonical choice of orientation on the connected
component of M containing £°. Thus we deduce:
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Theorem 6

Suppose a Calabi—Yau 4-fold X satisfies condition (x). Choose a
flag structure F on X. Then we can construct a canonical
orientation on the moduli stack M of perfect complexes on X.
On the open and closed substack MCz—612=0 C M of perfect
complexes £* with c2(E°) — c1(£®)? = 0, we can define the
canonical orientation without choosing a flag structure.

v

The second part resolves a paradox. There are several conjectures in
the literature by Bojko, Cao, Kool, Maulik, Toda, ..., of the form

Conventional invariants of X ~ DT4 invariants of X,  (2)

where the left hand side, involving Gromov-Witten invariants etc.,
needs no choice of orientation, but the right hand side needs a
Borisov—Joyce orientation to determine the sign. All these
conjectures are really about sheaves on points and curves —
Hilbert schemes of points, MNOP, DT-PT, etc. — and so involve
only complexes £° with c2(£®) — c1(£°%)2 = 0 in H*(X, Z).
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5. Our orientability theory. Bordism categories.

We'll now explain our orientability theory for gauge theory moduli
spaces Bp for principal G-bundles P — X. This works if X is a
compact spin n-manifold with n=1,7,8 mod 8, and any Lie

group G. There is a parallel theory for orientations of moduli

spaces of submanifolds N C X, such as associative 3-folds in
Gy-manifolds or Cayley 4-folds in Spin(7)-manifolds, in which BG

is related by a Thom space. The basic ideas are:

e Bordx(BG) is a category with objects principal G-bundles P — X.
e There is a functor Fx : Bordx(BG) — s-Zy-tor mapping P to the
Zo-torsor of orientations on the moduli space Ap of all connections
on P, without quotienting by gauge transformations Gp. Here
s-Zy-tor is the category of (super) Zy-torsors.

e An orientation on Bp = Ap/Gp for all G-bundles P — X is
equivalent to a natural isomorphism w : Fx = 1x, where

1x : Bordx(BG) — Zy-tor is the constant functor with value Z,.
So Bp is orientable if and only such a natural isomorphism w exists.
e Flag structures are essentially equivalent to such w when G = Eg.
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e We define a bordism category Bord "™ (BG). Objects of
Bord,P"(BG) are pairs (X, P) of a compact spin n-manifold X
and a principal G-bundle P — X. Morphisms

[Y, Q] : (Xo, Po) — (X1, P2) are equivalence classes of pairs

(Y, @), where Y is a spin bordism from Xj to Xj (thatis, Y is a
compact spin (n+ 1)-manifold with 9Y = —Xp II X;) and Q — Y
is a principal G-bundle extending Py II P; — Xp 1T Xj. '

e There is an obvious functor My : Bordx(BG) — Bord,""(BG)
mapping P — (X, P). '

e There is a symmetric monoidal structure ® on Bord,""(BG)
with Xo, Po (Xl, Pl) (Xo I X1, Py 11 Pl) This makes
Boro,P"(BG) into a Picard groupoid (abelian 2-group), a
categorified notion of an abelian group.

e A Picard groupoid P is classified by abelian groups mo(P) and
71(P) = Homp(0p,0p), and a linear quadratic form

g : mo(P) — m1(P). We have m;(Bord,"™(BG)) = Q07 (BG) for
i=0,1,and g:[X,P] — [X x S, P x 8. Thus, if we can
compute QP (BG) for m = n, n + 1, we understand Bord,"™(BG).
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e It turns out that the orientation functor Fx factors as

%Otax(BG) Fx
”Xi N
Bord "™ (BG) ° s-Zo-tor,

where O is a morphism of Picard groupoids. This depends on a
nontrivial analytic fact (Upmeier 2021), needed to define O, that
orientation problems of this type have a bordism-invariance property.
e Morphisms of Picard groupoids F : P — P’ are classified by

group morphisms 7;(F) : w;(P) — m;(P’) for i = 0,1 satisfying

q' omo(F) =m1(F)oq. Thus, to understand the functor O, we

have to compute the morphisms 7;(0) : QET?(BG) — 7y for i =0, 1.
e If P — X is a principal G-bundle, then Bp is orientable if and

only if the following composition is trivial:

n AAutSB Spin BG ((X,P)) T (O) A t i F P
AUt%otDX(BG)(P) L> _ QS;i;D(NBé) ) 1*> _u S—Zz—toz( X( ))

n+1 = L.
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e Thus, Bp is orientable if and only if Mx (Autgen, (s6)(P)) lies in

Ker(71(0) : Qiﬁi{l(BG) — Z3). We can hope to compute
QET?(BG) and 71(O) by algebraic-topological techniques.

e Elements of Mx(Autgen, (s6)(P)) are of the form [X x S, Q.
and so lie in the image of a natural morphism

= QPPM(LBG) — QOP1(BG). If Im= C Kermi(0) then Bp is
orientable for all compact spin n-manifolds X and principal
G-bundles P — X, and vice versa.

This holds if n =7 and G lies on the list (1), and using this we can
prove strong orientability results for moduli spaces of Gp-instantons
on compact Gp-manifolds.

e Unfortunately, Im= Z Ker71(O) when n =8 and G = Eg or

G = U(m) for m > 4. So for spin 8-manifolds, and compact
Calabi—-Yau 4-folds, to determine orientability we need to test
whether Mx(Autgan, (86)(P)) lies in Ker m1(O) separately for
each X. (The answer is independent of P, at least when

P =U(m) for m > 4.)
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