Orientations on moduli spaces of coherent sheaves on Calabi–Yau 4-folds. I

Dominic Joyce, Oxford University Geometry meets Physics Workshop, Zeist, Netherlands, January 2025.

Work in progress. Everything joint with Markus Upmeier. These slides available at http://people.maths.ox.ac.uk/~joyce/.

1. Introduction

Let X be a compact Calabi–Yau 4-fold, and \mathcal{M} the derived moduli stack of perfect complexes on X, and $\mathcal{M}^{\mathrm{st}}_{\alpha}(\tau) \subseteq \mathcal{M}^{\mathrm{ss}}_{\alpha}(\tau) \subset \mathcal{M}$ the open substacks of Gieseker (semi)stable coherent sheaves on Xwith Chern character $\alpha \in H^{\text{even}}(X, \mathbb{Q})$. Pantev–Toën–Vaguié– Vezzosi 2013 show \mathcal{M} has a -2-shifted symplectic structure. If $\mathcal{M}_{\alpha}^{\mathrm{st}}(\tau) = \mathcal{M}_{\alpha}^{\mathrm{ss}}(\tau)$ can be lifted to a moduli scheme, and can be given an orientation, Borisov-Joyce 2017 and Oh-Thomas 2023 show $\mathcal{M}^{ss}_{\alpha}(\tau)$ has a virtual class $[\mathcal{M}^{ss}_{\alpha}(\tau)]_{virt}$ in $H_*(\mathcal{M}^{ss}_{\alpha}(\tau),\mathbb{Z})$, which is used to define Donaldson-Thomas type DT4 invariants of X. This talk is about whether orientations exist on $\mathcal{M}^{ss}_{\alpha}(\tau)$, and what data you need to define canonical orientations. It makes sense to study orientations on the full moduli stack \mathcal{M}_{i} ,

and then restrict them to the substacks $\mathcal{M}^{\mathrm{ss}}_{lpha}(au) \subset \mathcal{M}$.

Definition (Borisov–Joyce 2017)

The -2-shifted symplectic structure on \mathcal{M} gives a quasi-isomorphism $\mathbb{L}_{\mathcal{M}} \to \mathbb{T}_{\mathcal{M}}[2]$, and thus an isomorphism of line bundles $\Phi : \det(\mathbb{L}_{\mathcal{M}}) \to \det(\mathbb{T}_{\mathcal{M}}) = \det(\mathbb{L}_{\mathcal{M}})^*$. An *orientation* on \mathcal{M} is an isomorphism $\phi : \det(\mathbb{L}_{\mathcal{M}}) \to \mathcal{O}_{\mathcal{M}}$ with $\Phi = \phi^* \circ \phi$.

The Cao–Gross–Joyce orientability theorem is wrong!

Theorem 1 (Cao–Gross–Joyce 2020)

Let X be a compact Calabi–Yau 4-fold. Then the moduli stack \mathcal{M} of perfect complexes on X is orientable.

Unfortunately, there is a mistake in the proof. The theorem itself may be false, though we don't have a counterexample. I apologize for this. Outline of proof in Cao–Gross–Joyce: **Step 1:** Let $P \to X$ be a principal U(m)-bundle, $m \ge 4$. Define moduli spaces \mathcal{B}_P of all connections on P. Define a principal \mathbb{Z}_2 -bundle $\mathcal{O}_P \to \mathcal{B}_P$ of orientations on \mathcal{B}_P , using gauge theory. Prove O_P is trivializable, that is, \mathcal{B}_P is orientable. (This proof wrong.) If X is a Spin(7)-manifold, orientations of \mathcal{B}_P restrict to orientations of moduli spaces \mathcal{M}_P of Spin(7)-instantons on P. **Step 2:** Define map of topological classifying spaces $\Psi: \mathcal{M}_{ch=ch P}^{cla} \to \mathcal{B}_{P}^{cla}$. Show orientations of \mathcal{B}_{P} pull back along Ψ to orientations of $\mathcal{M}_{ch=chP}$. Hence \mathcal{B}_P orientable implies \mathcal{M} orientable. (This proof is correct, as far as we know.)

How to fix the mistake in Cao-Gross-Joyce

Markus Upmeier and myself have developed a new theory for studying orientability and canonical orientations for moduli spaces \mathcal{B}_P , where X is a compact spin *n*-manifold with $n \equiv 1, 7, 8 \mod 8$, and G is a Lie group, and $P \rightarrow X$ is a principal G-bundle, and \mathcal{B}_P is the moduli space (topological stack) of all connections ∇ on P, and orientations on \mathcal{B}_P mean orientations of the (positive) Dirac operator on X twisted by $(ad(P), \nabla)$. If X is a Spin(7)-manifold, orientations on \mathcal{B}_P restrict to orientations on moduli spaces of Spin(7)-instantons on X. If X is a Calabi–Yau 4-fold and G = U(m), orientations on \mathcal{B}_P restrict to Borisov–Joyce orientations on moduli spaces of rank m algebraic vector bundles on X. When n = 8 (also n = 7) we give sufficient conditions on X for orientability of \mathcal{B}_P for many G, including G = U(m) (necessary and sufficient if $G = E_8$). If these sufficient conditions hold, the problem with Step 1 of Cao-Gross-Joyce is fixed, and we deduce the Cao-Gross-Joyce orientability theorem under this extra condition. We also specify data (a *flag structure*) which determines canonical orientations.

2. First look at the methods in the proof

A principal G-bundle $P \rightarrow X$ is topologically equivalent to a map $\phi_P: X \to BG$, where BG is the classifying space of X. Thus $[X, \phi_P]$ is an element of the spin bordism group $\Omega_n^{\text{Spin}}(BG)$. Orientability of \mathcal{B}_P depends on the monodromy of $\mathcal{O}_P \to \mathcal{B}_P$ around a loop $\gamma: \mathcal{S}^1 \to \mathcal{B}_P$. Then γ is equivalent to a principal *G*-bundle $Q \to X \times S^1$, giving a map $\phi_Q : X \times S^1 \to BG$, and a spin bordism class $[X \times S^1, \phi_Q]$ in $\Omega_{n+1}^{\text{Spin}}(BG)$. Now ϕ_Q is equivalent to a map $\psi_Q: X \to \mathcal{L}BG$, where $\mathcal{L}BG$ is the loop space of BG, so Q determines a bordism class $[X, \psi_Q]$ in $\Omega_n^{\text{Spin}}(\mathcal{L}BG)$, and $[X \times S^1, \phi_Q]$ is the image of $[X, \psi_Q]$ under a natural map $\Omega_n^{\mathrm{Spin}}(\mathcal{L}BG) \to \Omega_{n+1}^{\mathrm{Spin}}(BG).$

It turns out that orientation problems for \mathcal{B}_P factor via $\Omega_n^{\text{Spin}}(BG)$, $\Omega_{n+1}^{\text{Spin}}(BG)$, $\Omega_n^{\text{Spin}}(\mathcal{L}BG)$ in a certain sense. For given X, we can show that \mathcal{B}_P is orientable for all principal G-bundles $P \to X$ if and only if certain 'bad' classes α in $\Omega_n^{\text{Spin}}(\mathcal{L}BG)$ cannot be written $\alpha = [X, \psi]$. If there are no bad classes we get orientability for all X, P (this often happens for n = 7). We need to compute $\Omega_n^{\text{Spin}}(BG)$, $\Omega_{n+1}^{\text{Spin}}(BG)$, $\Omega_n^{\text{Spin}}(\mathcal{L}BG)$ using algebraic topology.

If $\iota: G \to H$ is a morphism of Lie groups of 'complex type', and $P \to X$ is a principal *G*-bundle, then $Q = (P \times H)/G$ is a principal *H*-bundle, and an orientation for \mathcal{B}_Q induces one for \mathcal{B}_P . Using complex type morphisms $SU(8) \hookrightarrow E_8$ and $SU(m) \hookrightarrow SU(m')$ for $m \leq m'$, we can show that if X is a spin 8-manifold then orientability of \mathcal{B}_Q for all principal E_8 -bundles $Q \to X$ implies orientability of \mathcal{B}_P for all principal U(m)-bundles $P \to X$. Thus, to solve the CY4 orientability problem, it is enough to understand orientability for E_8 -bundles.

There is a 16-connected map $BE_8 \to K(\mathbb{Z}, 4)$, where $K(\mathbb{Z}, 4)$ is the Eilenberg–MacLane space classifying $H^4(-,\mathbb{Z})$, so $\Omega_n^{\mathrm{Spin}}(BE_8) \cong \Omega_n^{\mathrm{Spin}}(K(\mathbb{Z}, 4))$ for n < 16, and $\Omega_n^{\mathrm{Spin}}(\mathcal{L}BE_8) \cong \Omega_n^{\mathrm{Spin}}(\mathcal{L}K(\mathbb{Z}, 4))$ for n < 15. Using this, we can reduce orientability questions for E_8 -bundles to conditions that can be computed using *cohomology* and *cohomology operations* on X, in particular Steenrod squares. The proofs involve lots of complicated calculations of bordism groups in Algebraic Topology, spectral sequences, etc.

3. Statement of main results: orientability

I'll explain only results in 8 dimensions relevant to DT4 invariants, and a bit extra on Spin(7) instantons. They are part of a bigger theory, which also includes results on orientability of moduli spaces of submanifolds, such as Cayley 4-folds in Spin(7)-manifolds. Let X be a compact oriented spin 8-manifold. Impose the condition: (*) Let $\alpha \in H^3(X, \mathbb{Z})$, and write $\bar{\alpha} \in H^3(X, \mathbb{Z}_2)$ for its mod 2 reduction, and Sq²($\bar{\alpha}$) $\in H^5(X, \mathbb{Z}_2)$ for its Steenrod square. Then $\int_X \bar{\alpha} \cup$ Sq²($\bar{\alpha}$) = 0 in \mathbb{Z}_2 for all $\alpha \in H^3(X, \mathbb{Z})$.

Theorem 2

Suppose X satisfies condition (*), and let G be a compact Lie group on the list, for all $m \ge 1$

 E_8 , E_7 , E_6 , G_2 , Spin(3), SU(*m*), U(*m*), Spin(2*m*). (1) Then \mathcal{B}_P is orientable for every principal *G*-bundle $P \to X$. For $G = E_8$, this holds if and only if (*) holds.

We do this by applying our general orientability theory for $G = E_8$ by studying $\Omega_n^{\text{Spin}}(\mathcal{K}(\mathbb{Z},4))$ and $\Omega_n^{\text{Spin}}(\mathcal{LK}(\mathbb{Z},4))$. The other cases are deduced from $G = E_8$ using complex type morphisms.

The case $G = E_8$ and Step 2 of Cao–Gross–Joyce implies:

Corollary 3

Suppose a Calabi–Yau 4-fold X satisfies condition (*). Then the moduli stack \mathcal{M} of perfect complexes on X is orientable in the sense of Borisov–Joyce 2017.

Example 4

Let $X \subset \mathbb{CP}^5$ be a smooth sextic. Then $H^3(X,\mathbb{Z}) = 0$ by the Lefschetz Hyperplane Theorem. So (*) and Corollary 3 hold.

Corollary 5

Suppose a compact Spin(7)-manifold (X, Ω) satisfies condition (*), and G lies on the list (1), and $P \to X$ is a principal G-bundle. Then the moduli space \mathcal{M}_P^{irr} of irreducible Spin(7)-instanton connections on P is orientable. (Here \mathcal{M}_P^{irr} is a smooth manifold if Ω is generic, and a derived manifold otherwise.)

4. Statement of main results: canonical orientations

Suppose now that (*) holds, so we have orientability of moduli spaces \mathcal{B}_P or \mathcal{M} on X. What extra choices do we need to make on X to define *canonical orientations* on \mathcal{B}_P or \mathcal{M} ?

Definition

Let X be a spin 8-manifold, and $P \to X$ a principal G-bundle, and $O_P \to \mathcal{B}_P$ be the orientation bundle. Define the *normalized orientation bundle* $\check{O}_P \to \mathcal{B}_P$ by $\check{O}_P = O_P \otimes_{\mathbb{Z}_2} \operatorname{Or}(O_{X \times G}|_{[\nabla_0]})$, where $\operatorname{Or}(O_{X \times G}|_{[\nabla_0]})$ is the \mathbb{Z}_2 -torsor of orientations of $\mathcal{B}_{X \times G}$ for the trivial G-bundle $X \times G \to X$ at the trivial connection ∇_0 . A trivialization of $\operatorname{Or}(O_{X \times G}|_{[\nabla_0]})$ is an orientation for $\operatorname{ind}(\mathcal{D}_X^+) \otimes \mathfrak{g}$, where \mathcal{D}_X^+ is the positive Dirac operator of X, $\operatorname{ind}(\mathcal{D}_X^+)$ its orientation torsor as a Fredholm operator, \mathfrak{g} the Lie algebra of G.

We show normalized orientations on \mathcal{B}_P are determined by a choice of *flag structure* (next slide). Orientations on \mathcal{B}_P also need an orientation on $\operatorname{ind}(\mathcal{D}_X^+) \otimes \mathfrak{g}$. If X is a Calabi–Yau 4-fold, there is a natural orientation for $\operatorname{ind}(\mathcal{D}_X^+)$, so we don't need this second choice.

Flag structures – first idea

Joyce 2018 and Joyce–Upmeier 2023 introduced flag structures on 7-manifolds, and used them to define orientations on moduli spaces of associative 3-folds and G_2 -instantons on compact G_2 -manifolds. We define a related (but more complicated) notion of flag structure F for compact spin 8-manifolds X satisfying condition (*), as a choice of natural trivialization of an orientation functor associated to X (more details later). We can write a flag structure F as $(F_{\alpha} : \alpha \in H^4(X, \mathbb{Z}))$, where each F_{α} lies in a \mathbb{Z}_2 -torsor. Thus, the set of flag structures on X is a torsor for $Map(H^4(X, \mathbb{Z}), \mathbb{Z}_2)$. By imposing extra conditions we can cut this down to a finite choice of flag structures.

If X is a Calabi–Yau 4-fold, the orientation on \mathcal{M} at a perfect complex $[\mathcal{E}^{\bullet}] \in \mathcal{M}$ depends on F_{α} for $\alpha = c_2(\mathcal{E}^{\bullet}) - c_1(\mathcal{E}^{\bullet})^2$. There is a canonical choice for F_0 . Hence, if $c_2(\mathcal{E}^{\bullet}) - c_1(\mathcal{E}^{\bullet})^2 = 0$, there is a canonical choice of orientation on the connected component of \mathcal{M} containing \mathcal{E}^{\bullet} . Thus we deduce:

Theorem 6

Suppose a Calabi–Yau 4-fold X satisfies condition (*). Choose a flag structure F on X. Then we can construct a canonical orientation on the moduli stack \mathcal{M} of perfect complexes on X. On the open and closed substack $\mathcal{M}_{c_2-c_1^2=0} \subset \mathcal{M}$ of perfect complexes \mathcal{E}^{\bullet} with $c_2(\mathcal{E}^{\bullet}) - c_1(\mathcal{E}^{\bullet})^2 = 0$, we can define the canonical orientation without choosing a flag structure.

The second part resolves a paradox. There are several conjectures in the literature by Bojko, Cao, Kool, Maulik, Toda, ..., of the form

Conventional invariants of $X \simeq \text{DT4}$ invariants of X, (2)

where the left hand side, involving Gromov–Witten invariants etc., needs no choice of orientation, but the right hand side needs a Borisov–Joyce orientation to determine the sign. All these conjectures are really about sheaves on points and curves — Hilbert schemes of points, MNOP, DT-PT, etc. — and so involve only complexes \mathcal{E}^{\bullet} with $c_2(\mathcal{E}^{\bullet}) - c_1(\mathcal{E}^{\bullet})^2 = 0$ in $H^4(X, \mathbb{Z})$.

5. Our orientability theory. Bordism categories.

We'll now explain our orientability theory for gauge theory moduli spaces \mathcal{B}_P for principal *G*-bundles $P \to X$. This works if *X* is a compact spin *n*-manifold with $n \equiv 1, 7, 8 \mod 8$, and any Lie group *G*. There is a parallel theory for orientations of moduli spaces of submanifolds $N \subset X$, such as associative 3-folds in G_2 -manifolds or Cayley 4-folds in Spin(7)-manifolds, in which *BG* is related by a Thom space. The basic ideas are:

Bord_X(BG) is a category with objects principal G-bundles P → X.
There is a functor F_X : Bord_X(BG) → s-Z₂-tor mapping P to the Z₂-torsor of orientations on the moduli space A_P of all connections on P, without quotienting by gauge transformations G_P. Here s-Z₂-tor is the category of (super) Z₂-torsors.

An orientation on B_P = A_P/G_P for all G-bundles P → X is equivalent to a natural isomorphism ω : F_X ⇒ 1_X, where 1_X : 𝔅ot∂_X(BG) → Z₂-tor is the constant functor with value Z₂. So B_P is orientable if and only such a natural isomorphism ω exists.
Flag structures are essentially equivalent to such ω when G = E₈.

• We define a *bordism category* $\mathfrak{Bord}_n^{\mathrm{Spin}}(BG)$. Objects of $\mathfrak{Bord}_n^{\mathrm{Spin}}(BG)$ are pairs (X, P) of a compact spin *n*-manifold X and a principal G-bundle $P \to X$. Morphisms $[Y, Q] : (X_0, P_0) \to (X_1, P_2)$ are equivalence classes of pairs (Y, Q), where Y is a spin bordism from X_0 to X_1 (that is, Y is a compact spin (n + 1)-manifold with $\partial Y = -X_0 \amalg X_1$) and $Q \to Y$ is a principal G-bundle extending $P_0 \amalg P_1 \to X_0 \amalg X_1$.

• There is an obvious functor $\Pi_X : \mathfrak{Bord}_X(BG) \to \mathfrak{Bord}_n^{\mathrm{Spin}}(BG)$ mapping $P \mapsto (X, P)$.

• There is a symmetric monoidal structure \otimes on $\mathfrak{Bord}_n^{\mathrm{Spin}}(BG)$ with $(X_0, P_0) \otimes (X_1, P_1) = (X_0 \amalg X_1, P_0 \amalg P_1)$. This makes $\mathfrak{Bord}_n^{\mathrm{Spin}}(BG)$ into a *Picard groupoid* (abelian 2-group), a categorified notion of an abelian group.

• A Picard groupoid \mathcal{P} is classified by abelian groups $\pi_0(\mathcal{P})$ and $\pi_1(\mathcal{P}) = \operatorname{Hom}_{\mathcal{P}}(0_{\mathcal{P}}, 0_{\mathcal{P}})$, and a linear quadratic form $q: \pi_0(\mathcal{P}) \to \pi_1(\mathcal{P})$. We have $\pi_i(\mathfrak{Bord}_n^{\operatorname{Spin}}(BG)) = \Omega_{n+i}^{\operatorname{Spin}}(BG)$ for i = 0, 1, and $q: [X, P] \mapsto [X \times S^1, P \times S^1]$. Thus, if we can compute $\Omega_m^{\operatorname{Spin}}(BG)$ for m = n, n+1, we understand $\mathfrak{Bord}_n^{\operatorname{Spin}}(BG)$.

• It turns out that the orientation functor F_X factors as

where O is a morphism of Picard groupoids. This depends on a nontrivial analytic fact (Upmeier 2021), needed to define O, that orientation problems of this type have a bordism-invariance property. • Morphisms of Picard groupoids $F : \mathcal{P} \to \mathcal{P}'$ are classified by group morphisms $\pi_i(F) : \pi_i(\mathcal{P}) \to \pi_i(\mathcal{P}')$ for i = 0, 1 satisfying $q' \circ \pi_0(F) = \pi_1(F) \circ q$. Thus, to understand the functor O, we have to compute the morphisms $\pi_i(O) : \Omega_{n+i}^{\text{Spin}}(BG) \to \mathbb{Z}_2$ for i = 0, 1. • If $P \to X$ is a principal *G*-bundle, then \mathcal{B}_P is orientable if and only if the following composition is trivial:

$$\operatorname{Aut}_{\mathfrak{Bord}_{X}(BG)}(P) \xrightarrow{\Pi_{X}} \operatorname{Aut}_{\mathfrak{Bord}_{n}^{\operatorname{Spin}}(BG)}((X,P)) \xrightarrow{\pi_{1}(O)} \operatorname{Aut}_{\operatorname{s-}\mathbb{Z}_{2}\operatorname{-tor}}(F_{X}(P)) \xrightarrow{\pi_{1}(O)} \mathbb{Z}_{2}.$$

Thus, B_P is orientable if and only if Π_X(Aut_{Bord_X(BG)}(P)) lies in Ker(π₁(O) : Ω^{Spin}_{n+1}(BG) → Z₂). We can hope to compute Ω^{Spin}_{n+1}(BG) and π₁(O) by algebraic-topological techniques.
Elements of Π_X(Aut_{Bord_X(BG)}(P)) are of the form [X × S¹, Q], and so lie in the image of a natural morphism Ξ : Ω^{Spin}_n(LBG) → Ω^{Spin}_{n+1}(BG). If Im Ξ ⊆ Ker π₁(O) then B_P is orientable for all compact spin *n*-manifolds X and principal G-bundles P → X, and vice versa.

This holds if n = 7 and G lies on the list (1), and using this we can prove strong orientability results for moduli spaces of G_2 -instantons on compact G_2 -manifolds.

• Unfortunately, $\operatorname{Im} \Xi \not\subseteq \operatorname{Ker} \pi_1(O)$ when n = 8 and $G = E_8$ or $G = \operatorname{U}(m)$ for $m \ge 4$. So for spin 8-manifolds, and compact Calabi-Yau 4-folds, to determine orientability we need to test whether $\prod_X(\operatorname{Aut}_{\mathfrak{Bord}_X(BG)}(P))$ lies in $\operatorname{Ker} \pi_1(O)$ separately for each X. (The answer is independent of P, at least when $P = \operatorname{U}(m)$ for $m \ge 4$.)