Orientations on moduli spaces of coherent sheaves on Calabi-Yau 4-folds. II

Markus Upmeier

Geometry meets Physics: Calabi-Yau fourfolds and beyond Joint with Dominic Joyce

Utrecht, 27 January 2025

Spin(7)-Instantons

Let X be an 8-dimensional $Spin(7)$ -manifold with admissible 4-form Φ (for example, a Calabi–Yau 4-fold).

- \triangleright ϕ induces an orientation and a Riemannian metric on X.
- \blacktriangleright There is a splitting of 2-forms

$$
\Lambda^2=\Lambda_7^2\oplus\Lambda_{21}^2
$$

into the eigenspaces of $\alpha \mapsto \ast(\alpha \wedge \Phi)$.

Definition

Let $P \rightarrow X$ be a principal G-bundle. The moduli space ${\mathcal M}_P^{\text{Spin}(7)}$ of Spin(7)-instantons is the quotient stack of

$$
\mathcal{A}_P^{\mathrm{Spin}(7)} = \{A \in \mathcal{A}_P \mid *(\mathit{F}_A \wedge \Phi) = -\mathit{F}_A\}
$$

by the action of the gauge group $\mathcal{G}_P = \text{Aut}(P)$.

Orientation bundles

The tangent space $T_A\mathcal{M}_P^{\mathrm{Spin}(7)}$ is given by the deformation complex

$$
C_{\mathcal{A}}^{\bullet}:\quad \Omega^0(\mathfrak{g}_{\mathcal{P}})\xrightarrow{\quad d_A\quad} \Omega^1(\mathfrak{g}_{\mathcal{P}})\xrightarrow{\quad \pi^2_\mathcal{P}\circ d_A\quad} \Omega^2_\mathcal{T}(\mathfrak{g}_{\mathcal{P}}).
$$

Definition

Let $\mathcal{G} \curvearrowright \mathcal{A}$ and $\{ \mathcal{C}_A^{\bullet} \}_{A \in \mathcal{A}}$ be a \mathcal{G} -equivariant family of elliptic complexes of differential operators.

The orientation bundle is a principal \mathbb{Z}_2 -bundle $O_A \rightarrow A$ with fibers

$$
\mathcal{O}_\mathcal{A}\big|_\mathcal{A} = \left(\bigotimes\nolimits_{\rho \in \mathbb{Z}} \det H^{\rho}(\mathcal{C}_\mathcal{A}^{\bullet})^{(-1)^{\rho}} \right) \setminus \{0\} \Big/ \mathbb{R}_{>0}.
$$

Since O_A is G-equivariant, it descends to the quotient

$$
O_{\mathcal{B}} \longrightarrow \mathcal{B} \coloneqq \mathcal{A}/\!\!/ \mathcal{G}.
$$

▶ B is orientable if O_B is trivial $(\Leftrightarrow O_A$ is G-equivariantly trivial). An orientation is a choice of trivialization.

Simplification 1

The deformation complex is homologous to a twisted Dirac operator

$$
D^+_A:\Gamma(\Sigma^+_X\otimes_{\mathbb R}\mathfrak g_P)\longrightarrow \Gamma(\Sigma^-_X\otimes_{\mathbb R}\mathfrak g_P).
$$

The orientation bundle of $\mathcal{M}_P^{\text{Spin}(7)}$ extends to \mathcal{B}_P as the orientation bundle $\mathcal{O}_{\mathcal{B}_P}$ of the \mathcal{G}_P -equivariant family $\{D^+_A\}_{A\in\mathcal{A}_P}$. In particular,

orientation of $\mathcal{B}_P \implies$ orientation of $\mathcal{M}_P^{\text{Spin}(7)}.$

Moreover, B_P and O_{B_P} make sense for every compact spin 8-manifold X.

Definition

The orientation \mathbb{Z}_2 -torsor is the \mathbb{Z}_2 -torsor of global sections $\Gamma(O_{\mathcal{A}_P})$, where we use that A_P is contractible.

 \triangleright Orientations of \mathcal{B}_P are just fixed points of the \mathcal{G}_P -action on $\Gamma(O_{\mathcal{A}_P})$.

Orientability and classical indices

A gauge transformation γ : $P \rightarrow P$ determines a principal G-bundle

$$
Q=(P\times\mathbb{R})/\sqrt{\mathbb{Z}}\longrightarrow X\times S^1.
$$

The action of γ on the orientation \mathbb{Z}_2 -torsor $\mathsf{\Gamma} (O_{\mathcal{A}_P})$ equals the skew-index of the 9-dimensional skew-adjoint Dirac operator twisted by Q.

The skew-index is bordism-invariant, so orientability of B_P depends on

$$
\Omega^{\rm Spin}_8(\mathcal{L}BG) \stackrel{\xi_8}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\longrightarrow} \Omega^{\rm Spin}_9(BG) \stackrel{\rm skew-ind}{-\!\!\!-\!\!\!\longrightarrow} \mathbb{Z}_2.
$$

► For $G = E_8$ we show $\Omega_9^{\text{Spin}}(BG) \cong \mathbb{Z}_2$ and that skew-ind is an isomorphism.

The map ξ_8 maps a principal E_8 -bundle $Q \to X \times S^1$ to

 $\int_X \bar{\beta} \cup \mathsf{Sq}^2(\bar{\beta}) \in \mathbb{Z}_2, \qquad \alpha = \beta \times [\mathsf{S}^1] + \gamma \times 1 \in H^4(X \times \mathsf{S}^1; \mathbb{Z}),$

where α is the characteristic class of Q.

Simplification 2

Besides classical indices, orientations are also bordism invariant, done suitably.

Picard groupoids

Definition

A Picard groupoid is a monoidal category $(\mathcal{C}, \otimes, 1)$ with symmetry isomorphisms $\sigma_{x,y}: x \otimes y \to y \otimes x$ such that

- \blacktriangleright every morphism is invertible,
- \triangleright for every object x there exists an object y such that $x \otimes y \cong 1$.

A morphism of Picard groupoids is a symmetric monoidal functor $F: \mathcal{C} \to \mathcal{C}'$.

Example: graded torsors

Let π_0 , π_1 be abelian groups.

- A π_0 -graded π_1 -torsor is a pair (x, S) , where $x \in \pi_0$ and S is a set with a free, transitive π_1 -action; these form a monoidal groupoid π_0/π_1 .
- **If** Given a skew-symmetric bilinear map $\sigma : \pi_0 \times \pi_0 \to \pi_1$, we can make π_0/π_1 into a Picard groupoid with symmetry isomorphisms

$$
s_0\otimes_{\pi_1} s_1\longmapsto \sigma(x_0,x_1)\cdot s_1\otimes_{\pi_1} s_0.
$$

In particular, Z-graded Z₂-torsors are a Picard groupoid with $\sigma \neq 0$.

Classification theorem for Picard groupoids

I Up to equivalence, a Picard groupoid C is classified by the abelian groups

$$
\pi_0 = \mathsf{Ob}(\mathcal{C})/\cong, \qquad \pi_1 = \mathsf{Aut}(\mathbb{I}),
$$

and the linear quadratic form

$$
q: \pi_0 \longrightarrow \pi_1, \quad [x] \longmapsto \sigma_{x,x} \in Aut_{\mathcal{C}}(x) \cong \pi_1.
$$

Given Picard groupoids C, C' and group morphisms

$$
f_0: \pi_0 \longrightarrow \pi'_0, \quad f_1: \pi_1 \longrightarrow \pi'_1,
$$

there exists a morphism $F:\mathcal{C}\to\mathcal{C}'$ of Picard groupoids with $\pi_i(F)=f_i$ if and only if $q' \circ f_0 = f_1 \circ q$.

 \triangleright A pair of morphisms F, G of Picard groupoids has a difference class $\omega(\mathcal{F},\mathcal{G})\in H^2_{\mathrm{sym}}(\pi_0,\pi_1')$ in group cohomology. Moreover,

$$
F \cong G \iff \omega(F,G) = 0.
$$

 \triangleright Given morphisms of Picard groupoids F, G, the space of natural isomorphisms $F \cong G$ is a torsor over $H^1(\pi_0, \pi_1')$.

Bordism category $\mathsf{Bord}^{\text{Spin}}_n(BG)$

- \triangleright Objects are compact spin *n*-manifolds X with principal G-bundle $P \rightarrow X$.
- ▶ Morphisms (X_0, P_0) \rightarrow (X_1, P_1) are bordisms

 $\blacktriangleright \ \otimes = \amalg$

Variant: If we allow only bordisms with $Y = X \times [0,1]$, the same construction yields the loop bordism category $\mathsf{Bord}^\mathrm{Spin}_n(\mathcal{L}BG)$. Fixing X throughout, we get a non-monoidal bordism category Bord $_X (BG)$.

The bordism category Bord $^{\mathrm{Spin}}_n(BG)$ is a Picard groupoid with

$$
\pi_0 = \Omega_n^{\text{Spin}}(BG), \quad \pi_1 = \Omega_{n+1}^{\text{Spin}}(BG),
$$

and $q=\alpha_1:\Omega^{\mathrm{Spin}}_n(BG)\rightarrow \Omega^{\mathrm{Spin}}_{n+1}(BG)$. Similarly for ${\cal L}BG$.

Computing the homotopy type of bordism categories

I spent a long time computing the groups $\Omega^{\text{Spin}}_n(BG)$ and $\Omega^{\text{Spin}}_{n-1}(\mathcal{L}BG)$ for various Lie groups G and $n \leq 9$ using the Atiyah–Hirzebruch spectral sequence.

For example,

$$
\Omega_8^{\text{Spin}}(BE_8) = \mathbb{Z}\langle \zeta_2, \zeta_3 \rangle, \Omega_9^{\text{Spin}}(BE_8) = \mathbb{Z}_2\langle \alpha_1 \zeta_2 \rangle,
$$

where

$$
\zeta_2 = [X_2, u_2], \qquad X_2 = \mathbb{HP}^2, \qquad u_2 = \mathsf{Pd}([\overline{\mathbb{HP}}^1]),
$$

$$
\zeta_3 = [X_3, u_3], \qquad X_3 = \mathbb{CP}^3 \times S_{\mathrm{b}}^1 \times S_{\mathrm{b}}^1, \qquad u_3 = \mathsf{Pd}([\mathbb{CP}^2] \times 1 \times 1)
$$

(principal E_8 -bundles amount to degree 4 cohomology classes).

Theorem (Upmeier 2023, special case)

A bordism

induces an isomorphism

$$
(Y,Q)_{*}:\Gamma(O_{\mathcal{A}_{P_{0}}})\rightarrow\Gamma(O_{\mathcal{A}_{P_{1}}})
$$

of orientation \mathbb{Z}_2 -torsors. Hence there is a morphism of Picard groupoids

 $O_8^{BG}: \mathsf{Bord}_8^{\rm Spin}(BG) \longrightarrow \mathbb{Z}\text{-}\mathsf{graded}\ \mathbb{Z}_2\text{-}\mathsf{torsors}, \quad (X, P) \longmapsto \big(\mathsf{ind}(D^+_A), \Gamma(O_{\mathcal{A}_P})\big),$

called the orientation functor. It has invariants

$$
\pi_0(\mathcal{O}_8^{BG}) = \text{ind} : \Omega_8^{\text{Spin}}(BG) \to \mathbb{Z}, \qquad \pi_1(\mathcal{O}_8^{BG}) = \text{skew-ind} : \Omega_9^{\text{Spin}}(BG) \to \mathbb{Z}_2.
$$

The action of $\gamma \in \mathcal{G}_P$ corresponds to the functoriality in the special case of cylinders $Y = X \times [0, 1]$.

Flag structures – fixing orientations

Theorem

The orientation functor maps $\pi_0(O_8^{BG})$: $\zeta_2 \mapsto 1, \zeta_3 \mapsto 0$ and $\pi_1(O_8^{BG})$: $\alpha_1 \zeta_2 \mapsto 1$.

Exect $G = E_8$. Fix once and for all a morphism of Picard groupoids

$$
\mathsf{Bord}_8^{\mathsf{Spin}}(\mathcal{B}\mathcal{G}) \xrightarrow{\mathcal{H}_8^{\mathcal{B}\mathcal{G}}}\mathbb{Z}_2\text{-graded }\mathbb{Z}_2\text{-torsors}
$$

with $\pi_i(H_8^{BG}) = \pi_i(O_8^{BG})$, $i = 0, 1$, called the flag functor. ► As $H_{sym}^2 = 0$ here, there is an isomorphism $O_8^{BG} \cong H_8^{BG}$ (fix once and for all). ► Suppose that $\int_X \bar{\beta} \cup Sq^2(\bar{\beta}) = 0$ for all $\beta \in H^3(X;\mathbb{Z})$. Then

$$
\mathsf{Bord}_X(BG)\stackrel{I_X}{\longrightarrow}\mathsf{Bord}_8^{\mathsf{Spin}}(BG)\stackrel{H^{\mathsf{BG}}_{\mathsf{8}}}{\longrightarrow}\mathbb{Z}_2\text{-torsors}
$$

factors through $\mathsf{Bord}^{\rm Spin}_8(\mathcal{L}BG)$ and is therefore naturally isomorphic to the trivial functor $\mathbb{I}_{\mathbb{Z}_2}$. A flag structure is a choice of natural isomorphism

$$
F_X: H_8^{BG} \circ I_X \cong \mathbb{I}_{\mathbb{Z}_2}.
$$

It determines an orientation of $O_{\mathcal{B}_P}$ for every principal E_8 -bundle $P\to X.$