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Spin(7)-Instantons

Let X be an 8-dimensional Spin(7)-manifold with admissible 4-form ¢ (for
example, a Calabi—Yau 4-fold).

» & induces an orientation and a Riemannian metric on X.

» There is a splitting of 2-forms
A2 =N @A,
into the eigenspaces of a — *(a A P).
Definition

Let P — X be a principal G-bundle. The moduli space MSpm(7) of
Spin(7)-instantons is the quotient stack of

AP — (A € Ap | %(Fa A®) = —Fa}

by the action of the gauge group Gp = Aut(P).




Orientation bundles
The tangent space TAM,S;pinm is given by the deformation complex

2
mz0da

Cr: Qgp) —2— Qgp) ——s Q2(gp).

Definition
Let G ~ A and {C2}aca be a G-equivariant family of elliptic complexes of
differential operators.
The orientation bundle is a principal Z>-bundle O4 — A with fibers
_ o\(—1)?
Oals= (@, det H(CHT) \ {0} / Ro.
Since O4 is G-equivariant, it descends to the quotient

O — B = A//Q

> B is orientable if Og is trivial (< O4 is G-equivariantly trivial).
» An orientation is a choice of trivialization.



Simplification 1

The deformation complex is homologous to a twisted Dirac operator
Di :T(Zf ®rgp) — M(Zx ®r gp).

The orientation bundle of ./\/lSpln extends to Bp as the orientation bundle Og,

of the Gp-equivariant family {D taca,. In particular,

orientation of Bp = orientation of MSpmm

Moreover, Bp and Op, make sense for every compact spin 8-manifold X.

Definition
The orientation Zy-torsor is the Zp-torsor of global sections (0.4, ), where we use
that Ap is contractible.

» Orientations of Bp are just fixed points of the Gp-action on [(O4,).



Orientability and classical indices
A gauge transformation 7 : P — P determines a principal G-bundle

Q=(PxR)/,Z — X x S.

The action of  on the orientation Zy-torsor (04, ) equals the skew-index of the
9-dimensional skew-adjoint Dirac operator twisted by Q.

The skew-index is bordism-invariant, so orientability of Bp depends on

QSPin(£BG) és QSPin(pG) —Skewind_, 7,
> For G = Eg we show Q3" (BG) = Z, and that skew-ind is an isomorphism.
» The map & maps a principal Eg-bundle @ — X x S! to
[xBUSG?(B) € Zo,  a=pBx[SY+vyx1eH X xSYZ),
where « is the characteristic class of Q.
Simplification 2

Besides classical indices, orientations are also bordism invariant, done suitably. J




Picard groupoids

Definition
A Picard groupoid is a monoidal category (C, ®, 1) with symmetry isomorphisms
Oxy ! X®Yy — ¥y ® x such that

» every morphism is invertible,

> for every object x there exists an object y such that x ® y = 1.

A morphism of Picard groupoids is a symmetric monoidal functor F : C — C'.

Example: graded torsors
Let 7o, w1 be abelian groups.

> A mo-graded 7i-torsor is a pair (x,S), where x € mg and S is a set with a
free, transitive mmy-action; these form a monoidal groupoid 7o /7.

> Given a skew-symmetric bilinear map o : mg X w9 — 71, we can make 7o /71
into a Picard groupoid with symmetry isomorphisms

S0 ®ry 51— 0(X0,%1) - S1 R, So-

In particular, Z-graded Z,-torsors are a Picard groupoid with o # 0.




Classification theorem for Picard groupoids
» Up to equivalence, a Picard groupoid C is classified by the abelian groups

o = Ob(C)/ &, m1 = Aut(T),
and the linear quadratic form
qg:mo —> T, [X] > oxx € Aute(x) = 7.
> Given Picard groupoids C, C’ and group morphisms
fo:mo —>my, f:im —

there exists a morphism F : C — C’ of Picard groupoids with 7;(F) = f; if
andonly if ¢ ofy = f0q.

» A pair of morphisms F, G of Picard groupoids has a difference class
w(F, G) € H2,,,(mo, ) in group cohomology. Moreover,

F=G < w(F,G)=0.

» Given morphisms of Picard groupoids F, G, the space of natural
isomorphisms F =2 G is a torsor over H(mg, ).



Bordism category Bord>P™(BG)

» Objects are compact spin n-manifolds X with principal G-bundle P — X.
» Morphisms (Xp, Po) — (X1, P1) are bordisms

Po = Q|x, Q P1 = Q|x,

| |

Xo Xl
0
> @ =1l
Variant: If we allow only bordisms with Y = X x [0, 1], the same construction
yields the loop bordism category Bord>P™(£BG). Fixing X throughout, we get a
non-monoidal bordism category Bordx(BG).

The bordism category Bord®P™(BG) is a Picard groupoid with

o = QP(BG), ™ = QT(BG),

and g = a; : QPn(BG) — Q°P(BG). Similarly for £BG.
n n+1




Computing the homotopy type of bordism categories

| spent a long time computing the groups Q5P"(BG) and QEET(CBG) for various
Lie groups G and n < 9 using the Atiyah—Hirzebruch spectral sequence.

For example,
Qgpin(BEs) = Z<<27 C3>a
Q3P (BEg) = Za{o1(2),
where
Q@ = [Xo, ue], X, = HP?, uz = Pd([HP']),
(3 = [Xs, u3], X3 = CP* x St x S, us = Pd([CP?] x 1 x 1)

(principal Eg-bundles amount to degree 4 cohomology classes).



Theorem (Upmeier 2023, special case)

A bordism
Po Q Py
| ) |
Xo Xl

induces an isomorphism
(Y, Q) : T(Oap,) = T(Oap,)
of orientation Zj-torsors. Hence there is a morphism of Picard groupoids
OFC : Bordg"™(BG) — Z-graded Zs-torsors, (X, P)— (ind(D}),T(04,)),
called the orientation functor. It has invariants

70(0F€) = ind : QSP™(BG) = Z,  m1(0FC€) = skew-ind : Q5P™(BG) — Zs.

The action of v € Gp corresponds to the functoriality in the special case of
cylinders Y = X x [0, 1].



Flag structures — fixing orientations

Theorem

The orientation functor maps mo(O£®) : (2 + 1,(3 + 0 and m1(0OL®) : a1(p +— 1.

» Let G = Eg. Fix once and for all a morphism of Picard groupoids

. 1B6
Bordgpm(BG) —2 3 Zo-graded Z,-torsors

with m;(HEC) = 7:,(0f¢), i = 0,1, called the flag functor.
> As H2,,, = 0 here, there is an isomorphism 08¢ = HEC (fix once and for all).

> Suppose that [, 3 U Sq?(B) = 0 for all B € H3(X;Z). Then

. BG
Bordx(BG) SN Bordg"™"(BG) LN Z-torsors

factors through Bordgpin(ﬁBG) and is therefore naturally isomorphic to the
trivial functor I, A flag structure is a choice of natural isomorphism

Fx : HEC o Iy = 1y,.

It determines an orientation of Op, for every principal Eg-bundle P — X.



