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1 Introduction and survey

1.1 Introduction

This book develops a new theory of ‘derived differential geometry’. The objects
in this theory are d-manifolds, ‘derived’ versions of smooth manifolds, which
form a (strict) 2-category dMan. There are also 2-categories of d-manifolds with
boundary dManb and d-manifolds with corners dManc, and orbifold versions
of all these, d-orbifolds dOrb,dOrbb,dOrbc.

Here ‘derived’ is intended in the sense of derived algebraic geometry. The
original motivating idea for derived algebraic geometry, as in Kontsevich [63]
for instance, was that certain moduli schemes M appearing in enumerative in-
variant problems may be very singular as schemes. However, it may be natural
to realize M as a categorical truncation of some ‘derived’ moduli space M, a
new kind of geometric object living in a higher category. The geometric struc-
ture on M should encode the full deformation theory of the moduli problem,
the obstructions as well as the deformations. It was hoped that M would be
‘smooth’, and so in some sense simpler than its truncation M.

Early work in derived algebraic geometry focussed on dg-schemes, as in
Ciocan-Fontanine and Kapranov [23]. These have largely been replaced by
the derived stacks of Toën and Vezzosi [100–102], and the structured spaces of
Lurie [70–72]. Derived differential geometry aims to generalize these ideas to
differential geometry and smooth manifolds. A brief note about it can be found
in Lurie [72, §4.5]; the ideas are worked out in detail by Lurie’s student David
Spivak [95], who defines an ∞-category of derived manifolds.

The author came to these questions from a different direction, symplectic
geometry. Many important areas in symplectic geometry involve forming mod-
uli spaces Mg,m(X, J, β) of J-holomorphic curves in some symplectic manifold
(X,ω), possibly with boundary in a Lagrangian Y , and then ‘counting’ these
moduli spaces to get ‘invariants’ with interesting properties. Such areas include
Gromov–Witten invariants (open and closed), Lagrangian Floer cohomology,
Symplectic Field Theory, contact homology, and Fukaya categories.

To do this ‘counting’, one needs to put a suitable geometric structure on
Mg,m(X,J, β) — something like the ‘derived’ moduli spacesM above — and
use this to define a ‘virtual class’ or ‘virtual chain’ in Z,Q or some homology
theory. Two alternative theories for geometric structures to put on moduli
spaces Mg,m(X, J, β) are the Kuranishi spaces of Fukaya, Oh, Ohta and Ono
[32,34] and the polyfolds of Hofer, Wysocki and Zehnder [43–48].

The philosophies of Kuranishi spaces and of polyfolds are in a sense opposite:
Kuranishi spaces remember only the minimal information needed to form virtual
chains, but polyfolds remember a huge amount more information, essentially a
complete description of the functional-analytic problem which gives rise to the
moduli space. There is a truncation functor from polyfolds to Kuranishi spaces.

The theory of Kuranishi spaces in [32, 34] does not go far – they define
Kuranishi spaces, and construct virtual cycles upon them, but they do not
define morphisms between Kuranishi spaces, for instance. The author tried to
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study and work with Kuranishi spaces as geometric spaces in their own right,
but ran into problems, and became convinced that a new definition was needed.
Upon reading Spivak’s theory of derived manifolds [95], it became clear that
some form of ‘derived differential geometry’ was required: Kuranishi spaces in
the sense of [32, §A] ought to be defined to be ‘derived orbifolds with corners’.

The purpose of this book is to build a comprehensive, rigorous theory of
derived differential geometry designed for applications in symplectic geometry,
and other areas of mathematics such as String Topology.

As the moduli spaces of interest in the symplectic geometry of Lagrangian
submanifolds should be ‘derived orbifolds with corners’, it was necessary that
this theory should cover not just derived manifolds without boundary, but also
derived manifolds and derived orbifolds with boundary and with corners. This
has much increased the length of the book: the parts dealing with d-manifolds
without boundary (Chapters 2–4 and Appendices A–B) are only roughly a quar-
ter of the whole. It turns out that doing ‘things with corners’ properly is a
complex, fascinating, and hitherto almost unexplored area.

The author wants the theory to be easily usable by symplectic geometers,
and others who are not specialists in derived algebraic geometry. In applications,
much of the theory can be treated as a ‘black box’, as they do not require a
detailed understanding of what a d-manifold or d-orbifold really is, but only a
general idea, plus a list of useful properties of the 2-categories dMan,dOrb.

With this in mind, the rest of Chapter 1 provides a long, detailed, and more-
or-less self-contained summary of the rest of the book. The intention is that
many readers should be able to find what they need in Chapter 1, only dipping
into later chapters for more detail, examples, or proofs.

Our theory of derived differential geometry has a major simplification com-
pared to the derived algebraic geometry of Toën and Vezzosi [100–102] and
Lurie [70–72], and the derived manifolds of Spivak [95]. All of the ‘derived’
spaces in [70–72, 95, 100–102] form some kind of ∞-category (simplicial cate-
gory, model category, Segal category, quasicategory, . . . ). In contrast, our d-
manifolds and d-orbifolds form (strict) 2-categories dMan, . . . ,dOrbc, which
are the simplest and most friendly kind of higher category.

Furthermore, the ∞-categories in [70–72,95,100–102] are usually formed by
localization (inversion of some class of morphisms), so the (higher) morphisms in
the resulting∞-category are difficult to describe and work with. But the 1- and
2-morphisms in dMan, . . . ,dOrbc are defined explicitly, without localization.

The essence of our simplification is this. Consider a ‘derived’ moduli space
M of some objects E, e.g. vector bundles on some C-scheme X. One expects
M to have a ‘cotangent complex’ LM, a complex in some derived category
with cohomology hi(LM)|E ∼= Ext1−i(E,E)∗ for i ∈ Z. In general, LM can
have nontrivial cohomology in many negative degrees, and because of this such
objectsM must form an ∞-category to properly describe their geometry.

However, the moduli spaces relevant to enumerative invariant problems are of
a restricted kind: one considers onlyM such that LM has nontrivial cohomol-
ogy only in degrees −1, 0, where h0(LM) encodes the (dual of the) deformations
Ext1(E,E)∗, and h−1(LM) the (dual of the) obstructions Ext2(E,E)∗. As in
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Toën [100, §4.4.3], such derived spaces are called quasi-smooth, and this is a
necessary condition onM for the construction of a virtual fundamental class.

Our construction of d-manifolds replaces complexes in a derived category
Db coh(M) with a 2-category of complexes in degrees −1, 0 only. For general
M this loses a lot of information, but for quasi-smoothM, since LM is concen-
trated in degrees −1, 0, the important information is retained. In the language
of dg-schemes, this corresponds to working with a subclass of derived schemes
whose dg-algebras are of a special kind: they are 2-step supercommutative dg-

algebras A−1 d−→A0 such that d(A−1) ·A−1 = 0. Then d(A−1) is a square zero

ideal in A0, and A−1 is a module over H0
(
A−1 d−→A0

)
.

An important reason why this 2-category style derived geometry works suc-
cessfully in our differential-geometric context is the existence of partitions of
unity on smooth manifolds, and on nice C∞-schemes. This means that (derived)
structure sheaves are ‘fine’ or ‘soft’, which simplifies their behaviour. Parti-
tions of unity are also essential for constructions such as gluing d-manifolds by
equivalences on open d-subspaces in dMan. In conventional derived algebraic
geometry, where partitions of unity do not exist, one needs the extra freedom
of an ∞-category to glue by equivalences.

Apart from Chapter 5, which summarizes [55], and Appendices A–C, the
material in this book is new research, being published for the first time. A
survey paper on this book, focussing on d-manifolds without boundary, is [58].

Sections 1.2–1.16 summarize the rest of the book, following the order of
chapters, except that §1.2 on C∞-schemes and §1.8 on C∞-stacks correspond to
Appendices B and C, and §1.9 on orbifolds and §1.12 on orbifolds with corners
correspond to the first and second halves of Chapter 8.

Throughout the book we will consistently use different typefaces to indicate
different classes of geometrical objects. In particular:

• W,X, Y, . . . will denote manifolds (of any kind), or topological spaces.

• W,X, Y , . . . will denote C∞-schemes.

• W,X,Y , . . . will denote d-spaces, including d-manifolds.

• W,X ,Y, . . . will denote Deligne–Mumford C∞-stacks, including orbifolds.

• W ,X ,Y , . . . will denote d-stacks, including d-orbifolds.

• W,X,Y, . . . will denote d-spaces with corners, including d-manifolds with
corners.

• W,X,Y, . . . will denote orbifolds with corners.

• W,X,Y, . . . will denote d-stacks with corners, including d-orbifolds with
corners.

Acknowledgements. My particular thanks to Dennis Borisov, Jacob Lurie and
Bertrand Toën for help with derived manifolds. I would also like to thank Man-
abu Akaho, Tom Bridgeland, James Cranch, Oliver Fabert, Kenji Fukaya, Ieke
Moerdijk, Hiroshi Ohta, Kauru Ono, and Timo Schürg for useful conversations.
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1.2 C∞-rings and C∞-schemes

If X is a manifold then the R-algebra C∞(X) of smooth functions c : X → R
is a C∞-ring. That is, for each smooth function f : Rn → R there is an n-fold
operation Φf : C∞(X)n → C∞(X) acting by Φf : c1, . . . , cn 7→ f(c1, . . . , cn),
and these operations Φf satisfy many natural identities. Thus, C∞(X) actually
has a far richer algebraic structure than the obvious R-algebra structure.

C∞-algebraic geometry is a version of algebraic geometry in which rings
or algebras are replaced by C∞-rings. The basic objects are C∞-schemes, a
category of differential-geometric spaces including smooth manifolds, and also
many singular spaces. They were introduced in synthetic differential geometry
(see for instance Dubuc [30] and Moerdijk and Reyes [86]), and developed further
by the author in [56] (surveyed in [57]).

This section briefly discusses C∞-rings, C∞-schemes, and quasicoherent
sheaves on C∞-schemes, with the aim of enabling the reader to understand the
definitions of d-spaces and d-manifolds. Appendix B provides a more complete
treatment, giving full definitions and results, and going into technical details.

1.2.1 C∞-rings

Definition 1.2.1. A C∞-ring is a set C together with operations Φf : Cn → C
for all n > 0 and smooth maps f : Rn → R, where by convention when n = 0 we
define C0 to be the single point {∅}. These operations must satisfy the following
relations: suppose m,n > 0, and fi : Rn → R for i = 1, . . . ,m and g : Rm → R
are smooth functions. Define a smooth function h : Rn → R by

h(x1, . . . , xn) = g
(
f1(x1, . . . , xn), . . . , fm(x1 . . . , xn)

)
,

for all (x1, . . . , xn) ∈ Rn. Then for all (c1, . . . , cn) ∈ Cn we have

Φh(c1, . . . , cn) = Φg
(
Φf1

(c1, . . . , cn), . . . ,Φfm(c1, . . . , cn)
)
.

We also require that for all 1 6 j 6 n, defining πj : Rn → R by πj :
(x1, . . . , xn) 7→ xj , we have Φπj (c1, . . . , cn) = cj for all (c1, . . . , cn) ∈ Cn.

Usually we refer to C as the C∞-ring, leaving the operations Φf implicit.
A morphism between C∞-rings

(
C, (Φf )f :Rn→R C∞

)
,
(
D, (Ψf )f :Rn→R C∞

)
is a map φ : C → D such that Ψf

(
φ(c1), . . . , φ(cn)

)
= φ ◦ Φf (c1, . . . , cn) for

all smooth f : Rn → R and c1, . . . , cn ∈ C. We will write C∞Rings for the
category of C∞-rings.

Here is the motivating example:

Example 1.2.2. Let X be a manifold. Write C∞(X) for the set of smooth
functions c : X → R. For n > 0 and f : Rn → R smooth, define Φf : C∞(X)n →
C∞(X) by (

Φf (c1, . . . , cn)
)
(x) = f

(
c1(x), . . . , cn(x)

)
, (1.1)

for all c1, . . . , cn ∈ C∞(X) and x ∈ X. It is easy to see that C∞(X) and the
operations Φf form a C∞-ring.

9



Now let f : X → Y be a smooth map of manifolds. Then pullback f∗ :
C∞(Y )→ C∞(X) mapping f∗ : c 7→ c ◦ f is a morphism of C∞-rings. Further-
more (at least for Y without boundary), every C∞-ring morphism φ : C∞(Y )→
C∞(X) is of the form φ = f∗ for a unique smooth map f : X → Y .

Write C∞Ringsop for the opposite category of C∞Rings, with directions
of morphisms reversed, and Man for the category of manifolds without bound-
ary. Then we have a full and faithful functor FC∞Rings

Man : Man→ C∞Ringsop

acting by FC∞Rings
Man (X) = C∞(X) on objects and FC∞Rings

Man (f) = f∗ on mor-
phisms. This embeds Man as a full subcategory of C∞Ringsop.

Note that C∞-rings are far more general than those coming from manifolds.
For example, if X is any topological space we could define a C∞-ring C0(X) to
be the set of continuous c : X → R, with operations Φf defined as in (1.1). For
X a manifold with dimX > 0, the C∞-rings C∞(X) and C0(X) are different.

Definition 1.2.3. Let C be a C∞-ring. Then we may give C the structure of
a commutative R-algebra. Define addition ‘+’ on C by c + c′ = Φf (c, c′) for
c, c′ ∈ C, where f : R2 → R is f(x, y) = x+ y. Define multiplication ‘ · ’ on C by
c · c′ = Φg(c, c

′), where g : R2 → R is g(x, y) = xy. Define scalar multiplication
by λ ∈ R by λc = Φλ′(c), where λ′ : R → R is λ′(x) = λx. Define elements
0, 1 ∈ C by 0 = Φ0′(∅) and 1 = Φ1′(∅), where 0′ : R0 → R and 1′ : R0 → R are
the maps 0′ : ∅ 7→ 0 and 1′ : ∅ 7→ 1. One can show using the relations on the
Φf that the axioms of a commutative R-algebra are satisfied. In Example 1.2.2,
this yields the obvious R-algebra structure on the smooth functions c : X → R.

An ideal I in C is an ideal I ⊂ C in C regarded as a commutative R-algebra.
Then we make the quotient C/I into a C∞-ring as follows. If f : Rn → R is
smooth, define ΦIf : (C/I)n → C/I by(

ΦIf (c1 + I, . . . , cn + I)
)
(x) = f

(
c1(x), . . . , cn(x)

)
+ I.

Using Hadamard’s Lemma, one can show that this is independent of the choice
of representatives c1, . . . , cn. Then

(
C/I, (ΦIf )f :Rn→R C∞

)
is a C∞-ring.

A C∞-ring C is called finitely generated if there exist c1, . . . , cn in C which
generate C over all C∞-operations. That is, for each c ∈ C there exists smooth
f : Rn → R with c = Φf (c1, . . . , cn). Given such C, c1, . . . , cn, define φ :
C∞(Rn)→ C by φ(f) = Φf (c1, . . . , cn) for smooth f : Rn → R, where C∞(Rn)
is as in Example 1.2.2 with X = Rn. Then φ is a surjective morphism of C∞-
rings, so I = Kerφ is an ideal in C∞(Rn), and C ∼= C∞(Rn)/I as a C∞-ring.
Thus, C is finitely generated if and only if C ∼= C∞(Rn)/I for some n > 0 and
some ideal I in C∞(Rn).

1.2.2 C∞-schemes

Next we summarize material in [56, §4] on C∞-schemes.

Definition 1.2.4. A C∞-ringed space X = (X,OX) is a topological space X
with a sheaf OX of C∞-rings on X.
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A morphism f = (f, f ]) : (X,OX) → (Y,OY ) of C∞ ringed spaces is a

continuous map f : X → Y and a morphism f ] : f−1(OY ) → OX of sheaves
of C∞-rings on X, where f−1(OY ) is the inverse image sheaf. There is another
way to write the data f ]: since direct image of sheaves f∗ is right adjoint to
inverse image f−1, there is a natural bijection

HomX

(
f−1(OY ),OX

) ∼= HomY

(
OY , f∗(OX)

)
. (1.2)

Write f] : OY → f∗(OX) for the morphism of sheaves of C∞-rings on Y corre-
sponding to f ] under (1.2), so that

f ] : f−1(OY ) −→ OX ! f] : OY −→ f∗(OX). (1.3)

Depending on the application, either f ] or f] may be more useful. We choose
to regard f ] as primary and write morphisms as f = (f, f ]) rather than (f, f]),
because we find it convenient to work uniformly using pullbacks, rather than
mixing pullbacks and pushforwards.

Write C∞RS for the category of C∞-ringed spaces. As in [30, Th. 8] there
is a spectrum functor Spec : C∞Ringsop → C∞RS, defined explicitly in [56,
Def. 4.12]. A C∞-ringed space X is called an affine C∞-scheme if it is isomor-
phic in C∞RS to SpecC for some C∞-ring C. A C∞-ringed space X = (X,OX)
is called a C∞-scheme if X can be covered by open sets U ⊆ X such that
(U,OX |U ) is an affine C∞-scheme. Write C∞Sch for the full subcategory of
C∞-schemes in C∞RS.

A C∞-scheme X = (X,OX) is called locally fair if X can be covered by
open U ⊆ X with (U,OX |U ) ∼= SpecC for some finitely generated C∞-ring
C. Roughly speaking this means that X is locally finite-dimensional. Write
C∞Schlf for the full subcategory of locally fair C∞-schemes in C∞Sch.

We call a C∞-scheme X separated, second countable, compact, locally com-
pact, or paracompact, if the underlying topological space X is Hausdorff, second
countable, compact, locally compact, or paracompact, respectively.

We define a C∞-scheme X for each manifold X.

Example 1.2.5. Let X be a manifold. Define a C∞-ringed space X = (X,OX)
to have topological space X and OX(U) = C∞(U) for each open U ⊆ X, where
C∞(U) is the C∞-ring of smooth maps c : U → R, and if V ⊆ U ⊆ X are open
define ρUV : C∞(U) → C∞(V ) by ρUV : c 7→ c|V . Then X = (X,OX) is a
local C∞-ringed space. It is canonically isomorphic to SpecC∞(X), and so is
an affine C∞-scheme. It is locally fair.

Define a functor FC∞Sch
Man : Man → C∞Schlf ⊂ C∞Sch by FC∞Sch

Man =

Spec ◦FC∞Rings
Man . Then FC∞Sch

Man is full and faithful, and embeds Man as a full
subcategory of C∞Sch.

By [56, Cor. 4.21 & Th. 4.33] we have:

Theorem 1.2.6. Fibre products and all finite limits exist in C∞Sch. The sub-
category C∞Schlf is closed under fibre products and finite limits. The functor
FC∞Sch

Man takes transverse fibre products in Man to fibre products in C∞Sch.
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The proof of the existence of fibre products in C∞Sch follows that for fibre
products of schemes in Hartshorne [38, Th. II.3.3], together with the existence
of C∞-scheme products X × Y of affine C∞-schemes X,Y . The latter follows
from the existence of coproducts C⊗̂D in C∞Rings of C∞-rings C,D. Here
C⊗̂D may be thought of as a ‘completed tensor product’ of C,D. The actual
tensor product C ⊗R D is naturally an R-algebra but not a C∞-ring, with an
inclusion of R-algebras C ⊗R D ↪→ C⊗̂D, but C⊗̂D is often much larger than
C ⊗R D. For free C∞-rings we have C∞(Rm)⊗̂C∞(Rn) ∼= C∞(Rm+n).

In [56, Def. 4.34 & Prop. 4.35] we discuss partitions of unity on C∞-schemes.

Definition 1.2.7. Let X = (X,OX) be a C∞-scheme. Consider a formal sum∑
a∈A ca, where A is an indexing set and ca ∈ OX(X) for a ∈ A. We say∑
a∈A ca is a locally finite sum on X if X can be covered by open U ⊆ X such

that for all but finitely many a ∈ A we have ρXU (ca) = 0 in OX(U).
By the sheaf axioms for OX , if

∑
a∈A ca is a locally finite sum there exists a

unique c ∈ OX(X) such that for all open U ⊆ X with ρXU (ca) = 0 in OX(U)
for all but finitely many a ∈ A, we have ρXU (c) =

∑
a∈A ρXU (ca) in OX(U),

where the sum makes sense as there are only finitely many nonzero terms. We
call c the limit of

∑
a∈A ca, written

∑
a∈A ca = c.

Let c ∈ OX(X). Then there is a unique maximal open set V ⊆ X with
ρXV (c) = 0 in OX(V ). Define the support supp c to be X \ V , so that supp c is
closed in X. If U ⊆ X is open, we say that c is supported in U if supp c ⊆ U .

Let {Ua : a ∈ A} be an open cover of X. A partition of unity on X
subordinate to {Ua : a ∈ A} is {ηa : a ∈ A} with ηa ∈ OX(X) supported on Ua
for a ∈ A, such that

∑
a∈A ηa is a locally finite sum on X with

∑
a∈A ηa = 1.

Proposition 1.2.8. Suppose X is a separated, paracompact, locally fair C∞-
scheme, and {Ua : a ∈ A} an open cover of X. Then there exists a partition of
unity {ηa : a ∈ A} on X subordinate to {Ua : a ∈ A}.

Here are some differences between ordinary schemes and C∞-schemes:

Remark 1.2.9. (i) If A is a ring or algebra, then points of the corresponding
scheme SpecA are prime ideals in A. However, if C is a C∞-ring then (by
definition) points of SpecC are maximal ideals in C with residue field R, or
equivalently, R-algebra morphisms x : C → R. This has the effect that if X is a
manifold then points of SpecC∞(X) are just points of X.

(ii) In conventional algebraic geometry, affine schemes are a restrictive class.
Central examples such as CPn are not affine, and affine schemes are not closed
under open subsets, so that C2 is affine but C2 \ {0} is not. In contrast, affine
C∞-schemes are already general enough for many purposes. For example:

• All manifolds are fair affine C∞-schemes.

• Open C∞-subschemes of fair affine C∞-schemes are fair and affine.

• If X is a separated, paracompact, locally fair C∞-scheme then X is affine.

Affine C∞-schemes are always separated (Hausdorff), so we need general C∞-
schemes to include non-Hausdorff behaviour.
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(iii) In conventional algebraic geometry the Zariski topology is too coarse for
many purposes, so one has to introduce the étale topology. In C∞-algebraic
geometry there is no need for this, as affine C∞-schemes are Hausdorff.

(iv) Even very basic C∞-rings such as C∞(Rn) for n > 0 are not noetherian as
R-algebras. So C∞-schemes should be compared to non-noetherian schemes in
conventional algebraic geometry.

(v) The existence of partitions of unity, as in Proposition 1.2.8, makes some
things easier in C∞-algebraic geometry than in conventional algebraic geometry.
For example, geometric objects can often be ‘glued together’ over the subsets of
an open cover using partitions of unity, and if E is a quasicoherent sheaf on a
separated, paracompact, locally fair C∞-scheme X then Hi(E) = 0 for i > 0.

1.2.3 Modules over C∞-rings, and cotangent modules

In [56, §5] we discuss modules over C∞-rings.

Definition 1.2.10. Let C be a C∞-ring. A C-module M is a module over C
regarded as a commutative R-algebra as in Definition 1.2.3. C-modules form an
abelian category, which we write as C-mod. For example, C is a C-module, and
more generally C⊗RV is a C-module for any real vector space V . Let φ : C → D
be a morphism of C∞-rings. If M is a C-module then φ∗(M) = M ⊗C D is a
D-module. This induces a functor φ∗ : C-mod→ D-mod.

Example 1.2.11. Let X be a manifold, and E → X a vector bundle. Write
C∞(E) for the vector space of smooth sections e of E. Then C∞(X) acts on
C∞(E) by multiplication, so C∞(E) is a C∞(X)-module.

In [56, §5.3] we define the cotangent module ΩC of a C∞-ring C.

Definition 1.2.12. Let C be a C∞-ring, and M a C-module. A C∞-derivation
is an R-linear map d : C →M such that whenever f : Rn → R is a smooth map
and c1, . . . , cn ∈ C, we have

dΦf (c1, . . . , cn) =
∑n
i=1 Φ ∂f

∂xi

(c1, . . . , cn) · dci.

We call such a pair M,d a cotangent module for C if it has the universal property
that for any C-module M ′ and C∞-derivation d′ : C →M ′, there exists a unique
morphism of C-modules φ : M →M ′ with d′ = φ ◦ d.

Define ΩC to be the quotient of the free C-module with basis of symbols
dc for c ∈ C by the C-submodule spanned by all expressions of the form
d
(
Φf (c1, . . . , cn)

)
−
∑n
i=1 Φ ∂f

∂xi

(c1, . . . , cn) · dci for f : Rn → R smooth and

c1, . . . , cn ∈ C, and define dC : C → ΩC by dC : c 7→ dc. Then ΩC ,dC is a
cotangent module for C. Thus cotangent modules always exist, and are unique
up to unique isomorphism.

Let C,D be C∞-rings with cotangent modules ΩC ,dC , ΩD,dD, and φ : C →
D be a morphism of C∞-rings. Then φ makes ΩD into a C-module, and there is
a unique morphism Ωφ : ΩC → ΩD in C-mod with dD◦φ = Ωφ◦dC . This induces
a morphism (Ωφ)∗ : ΩC ⊗C D→ ΩD in D-mod with (Ωφ)∗ ◦ (dC ⊗ idD) = dD.
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Example 1.2.13. Let X be a manifold. Then the cotangent bundle T ∗X
is a vector bundle over X, so as in Example 1.2.11 it yields a C∞(X)-module
C∞(T ∗X). The exterior derivative d : C∞(X)→ C∞(T ∗X) is a C∞-derivation.
These C∞(T ∗X),d have the universal property in Definition 1.2.12, and so form
a cotangent module for C∞(X).

Now let X,Y be manifolds, and f : X → Y be smooth. Then f∗(TY ), TX
are vector bundles over X, and the derivative of f is a vector bundle morphism
df : TX → f∗(TY ). The dual of this morphism is df∗ : f∗(T ∗Y )→ T ∗X. This
induces a morphism of C∞(X)-modules (df∗)∗ : C∞

(
f∗(T ∗Y )

)
→ C∞(T ∗X).

This (df∗)∗ is identified with (Ωf∗)∗ in Definition 1.2.12 under the natural
isomorphism C∞

(
f∗(T ∗Y )

) ∼= C∞(T ∗Y )⊗C∞(Y ) C
∞(X).

Definition 1.2.12 abstracts the notion of cotangent bundle of a manifold in
a way that makes sense for any C∞-ring.

1.2.4 Quasicoherent sheaves on C∞-schemes

In [56, §6] we discuss sheaves of modules on C∞-schemes.

Definition 1.2.14. Let X = (X,OX) be a C∞-scheme. An OX -module E on
X assigns a module E(U) over OX(U) for each open set U ⊆ X, with OX(U)-
action µU : OX(U) × E(U) → E(U), and a linear map EUV : E(U) → E(V ) for
each inclusion of open sets V ⊆ U ⊆ X, such that the following commutes:

OX(U)× E(U)
ρUV ×EUV��

µU
// E(U)
EUV ��

OX(V )× E(V )
µV // E(V ),

and all this data E(U), EUV satisfies the usual sheaf axioms [38, §II.1] .
A morphism of OX-modules φ : E → F assigns a morphism of OX(U)-

modules φ(U) : E(U)→ F(U) for each open set U ⊆ X, such that φ(V )◦EUV =
FUV ◦ φ(U) for each inclusion of open sets V ⊆ U ⊆ X. Then OX -modules
form an abelian category, which we write as OX -mod.

As in [56, §6.2], the spectrum functor Spec : C∞Ringsop → C∞Sch has
a counterpart for modules: if C is a C∞-ring and (X,OX) = SpecC we can
define a functor MSpec : C-mod → OX -mod. If C is a fair C∞-ring, there
is a full abelian subcategory C-modco of complete C-modules in C-mod, such
that MSpec |C-modco : C-modco → OX -mod is an equivalence of categories. Let
X = (X,OX) be a C∞-scheme, and E an OX -module. We call E quasicoherent
if X can be covered by open U with U ∼= SpecC for some C∞-ring C, and under
this identification E|U ∼= MSpecM for some C-module M . We call E a vector
bundle of rank n > 0 if X may be covered by open U such that E|U ∼= OU⊗RRn.

Write qcoh(X), vect(X) for the full subcategories of quasicoherent sheaves
and vector bundles in OX -mod. Then qcoh(X) is an abelian category. Since
MSpec : C-modco → OX -mod is an equivalence for C fair and (X,OX) = SpecC,
as in [56, Cor. 6.11] we see that if X is a locally fair C∞-scheme then every OX -
module E on X is quasicoherent, that is, qcoh(X) = OX -mod.
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Remark 1.2.15. (a) If X is a separated, paracompact, locally fair C∞-scheme
then vector bundles on X are projective objects in the abelian category qcoh(X).

(b) In §B.7 we also define a subcategory coh(X) of coherent sheaves in qcoh(X).
But we will not really use them in this book, as they do not have all the good
properties we want. In conventional algebraic geometry, one usually restricts
to noetherian schemes, where coherent sheaves are well behaved, and form an
abelian category. However, as in Remark 1.2.9(iv), even very basic C∞-schemes
X such as Rn for n > 0 are non-noetherian. Because of this, coh(X) is not
closed under kernels in qcoh(X), and is not an abelian category.

Definition 1.2.16. Let f : X → Y be a morphism of C∞-schemes, and let
E be an OY -module. Define the pullback f∗(E), an OX -module, by f∗(E) =

f−1(E) ⊗f−1(OY ) OX , where f−1(E), f−1(OY ) are inverse image sheaves. If φ :
E → F is a morphism in OY -mod we have an induced morphism f∗(φ) =

f−1(φ)⊗ idOX : f∗(E)→ f∗(F) in OX -mod. Then f∗ : OY -mod→ OX -mod is
a right exact functor between abelian categories, which restricts to a right exact
functor f∗ : qcoh(Y )→ qcoh(X).

Remark 1.2.17. Pullbacks f∗(E) are characterized by a universal property, and
so are unique up to canonical isomorphism, rather than unique. Our definition
of f∗(E) is not functorial in f . That is, if f : X → Y , g : Y → Z are morphisms
and E ∈ OZ-mod then (g ◦ f)∗(E) and f∗(g∗(E)) are canonically isomorphic in
OX -mod, but may not be equal. We will write If,g(E) : (g ◦f)∗(E)→ f∗(g∗(E))

for these canonical isomorphisms. Then If,g : (g ◦ f)∗ ⇒ f∗ ◦ g∗ is a natural
isomorphism of functors.

Similarly, when f is the identity idX : X → X and E ∈ OX -mod we may
not have id∗X(E) = E , but there is a canonical isomorphism δX(E) : id∗X(E)→ E ,
and δX : id∗X ⇒ idOX -mod is a natural isomorphism of functors.

In fact it is a common abuse of notation in algebraic geometry to omit these
isomorphisms If,g(E), id∗X(E), and just assume that (g ◦ f)∗(E) = f∗(g∗(E))

and id∗X(E) = E . An author who treats them rigorously is Vistoli [103], see in
particular [103, Introduction & §3.2.1]. One reason we decided to include them
is to be sure that dSpa,dMan, . . . defined below are strict 2-categories, rather
than weak 2-categories or some other structure.

Example 1.2.18. Let X be a manifold, and X the associated C∞-scheme from
Example 1.2.5, so that OX(U) = C∞(U) for all open U ⊆ X. Let E → X be a
vector bundle. Define an OX -module E on X by E(U) = C∞(E|U ), the smooth
sections of the vector bundle E|U → U , and for open V ⊆ U ⊆ X define
EUV : E(U)→ E(V ) by EUV : eU 7→ eU |V . Then E ∈ vect(X) is a vector bundle
on X, which we think of as a lift of E from manifolds to C∞-schemes.

Let f : X → Y be a smooth map of manifolds, and f : X → Y the
corresponding morphism of C∞-schemes. Let F → Y be a vector bundle over
Y , so that f∗(F ) → X is a vector bundle over X. Let F ∈ vect(Y ) be the
vector bundle over Y lifting F . Then f∗(F) is canonically isomorphic to the
vector bundle over X lifting f∗(F ).
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We define cotangent sheaves, the sheaf version of cotangent modules in §1.2.3.

Definition 1.2.19. Let X be a C∞-scheme. Define PT ∗X to associate to
each open U ⊆ X the cotangent module ΩOX(U), and to each inclusion of open
sets V ⊆ U ⊆ X the morphism of OX(U)-modules ΩρUV : ΩOX(U) → ΩOX(V )

associated to the morphism of C∞-rings ρUV : OX(U)→ OX(V ). Then PT ∗X
is a presheaf of OX-modules on X. Define the cotangent sheaf T ∗X of X to
be the sheafification of PT ∗X, as an OX -module.

Let f : X → Y be a morphism of C∞-schemes. Then by Definition

1.2.16, f∗
(
T ∗Y

)
= f−1(T ∗Y ) ⊗f−1(OY ) OX , where T ∗Y is the sheafification

of the presheaf V 7→ ΩOY (V ), and f−1(T ∗Y ) the sheafification of the presheaf
U 7→ limV⊇f(U)(T

∗Y )(V ), and f−1(OY ) the sheafification of the presheaf U 7→
limV⊇f(U)OY (V ). The three sheafifications combine into one, so that f∗

(
T ∗Y

)
is the sheafification of the presheaf P(f∗(T ∗Y )) acting by

U 7−→ P(f∗(T ∗Y ))(U) = limV⊇f(U) ΩOY (V ) ⊗OY (V ) OX(U).

Define a morphism of presheaves PΩf : P(f∗(T ∗Y ))→ PT ∗X on X by

(PΩf )(U) = limV⊇f(U)(Ωρf−1(V )U◦f](V ))∗,

where (Ωρf−1(V )U◦f](V ))∗ : ΩOY (V ) ⊗OY (V ) OX(U) → ΩOX(U) = (PT ∗X)(U)

is constructed as in Definition 1.2.12 from the C∞-ring morphisms f](V ) :
OY (V )→ OX(f−1(V )) from f] : OY → f∗(OX) corresponding to f ] in f as in

(1.3), and ρf−1(V )U : OX(f−1(V )) → OX(U) in OX . Define Ωf : f∗
(
T ∗Y

)
→

T ∗X to be the induced morphism of the associated sheaves.

Example 1.2.20. Let X be a manifold, and X the associated C∞-scheme.
Then T ∗X is a vector bundle on X, and is canonically isomorphic to the lift to
C∞-schemes from Example 1.2.18 of the cotangent vector bundle T ∗X of X.

Here [56, Th. 6.17] are some properties of cotangent sheaves.

Theorem 1.2.21. (a) Let f : X → Y and g : Y → Z be morphisms of
C∞-schemes. Then

Ωg◦f = Ωf ◦ f∗(Ωg) ◦ If,g(T ∗Z)

as morphisms (g ◦f)∗(T ∗Z)→ T ∗X. Here Ωg : g∗(T ∗Z)→ T ∗Y is a morphism

in OY -mod, so applying f∗ gives f∗(Ωg) : f∗(g∗(T ∗Z))→ f∗(T ∗Y ) in OX -mod,

and If,g(T
∗Z) : (g ◦ f)∗(T ∗Z)→ f∗(g∗(T ∗Z)) is as in Remark 1.2.17.

(b) Suppose W,X, Y , Z are locally fair C∞-schemes with a Cartesian square

W
f

//
e��

Y
h ��

X
g

// Z
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in C∞Schlf , so that W = X ×Z Y . Then the following is exact in qcoh(W ) :

(g ◦ e)∗(T ∗Z)

e∗(Ωg)◦Ie,g(T∗Z)⊕
−f∗(Ωh)◦If,h(T∗Z)

// e∗(T ∗X)⊕f∗(T ∗Y )
Ωe⊕Ωf // T ∗W // 0.

1.3 The 2-category of d-spaces

We will now define the 2-category of d-spaces dSpa, following Chapter 2. D-
spaces are ‘derived’ versions of C∞-schemes. In §1.4 we will define the 2-category
of d-manifolds dMan as a 2-subcategory of dSpa. For an introduction to 2-
categories, see Appendix A.

1.3.1 The definition of d-spaces

Definition 1.3.1. A d-space X is a quintuple X = (X,O′X , EX , ıX , X) such
that X = (X,OX) is a separated, second countable, locally fair C∞-scheme,
and O′X , EX , ıX , X fit into an exact sequence of sheaves on X

EX
X // O′X

ıX // OX // 0,

satisfying the conditions:

(a) O′X is a sheaf of C∞-rings on X, with X ′ = (X,O′X) a C∞-scheme.

(b) ıX : O′X → OX is a surjective morphism of sheaves of C∞-rings on X.
Its kernel κX : IX → O′X is a sheaf of ideals IX in O′X , which should be
a sheaf of square zero ideals. Here a square zero ideal in a commutative
R-algebra A is an ideal I with i · j = 0 for all i, j ∈ I. Then IX is an
O′X -module, but as IX consists of square zero ideals and ıX is surjective,
the O′X -action factors through an OX -action. Hence IX is an OX -module,
and thus a quasicoherent sheaf on X, as X is locally fair.

(c) EX is a quasicoherent sheaf on X, and X : EX → IX is a surjective
morphism in qcoh(X).

As X is locally fair, the underlying topological space X is locally homeomorphic
to a closed subset of Rn, so it is locally compact. But Hausdorff, second countable
and locally compact imply paracompact, and thus X is paracompact.

The sheaf of C∞-rings O′X has a sheaf of cotangent modules ΩO′X , which is an
O′X -module with exterior derivative d : O′X → ΩO′X . Define FX = ΩO′X ⊗O′X OX
to be the associated OX -module, a quasicoherent sheaf on X, and set ψX =
ΩıX ⊗ id : FX → T ∗X, a morphism in qcoh(X). Define φX : EX → FX to be
the composition of morphisms of sheaves of abelian groups on X:

EX
X // IX

d|IX // ΩO′X
∼ ΩO′X ⊗O′X O

′
X

id⊗ıX // ΩO′X ⊗O′X OX FX .

17



It turns out that φX is actually a morphism of OX -modules, and the following
sequence is exact in qcoh(X) :

EX
φX // FX

ψX // T ∗X // 0.

The morphism φX : EX → FX will be called the virtual cotangent sheaf of X,
for reasons we explain in §1.4.3.

Let X,Y be d-spaces. A 1-morphism f : X → Y is a triple f = (f, f ′, f ′′),

where f = (f, f ]) : X → Y is a morphism of C∞-schemes, f ′ : f−1(O′Y )→ O′X
a morphism of sheaves of C∞-rings on X, and f ′′ : f∗(EY ) → EX a morphism
in qcoh(X), such that the following diagram of sheaves on X commutes:

f−1(EY )⊗id
f−1(OY )f

−1(OY )

id⊗f]��

f−1(EY )
f−1(Y )

// f−1(O′Y )
f−1(ıY )

//

f ′

��

f−1(OY ) //

f]

��

0

f∗(EY ) =

f−1(EY )⊗f
]

f−1(OY ) OX f ′′

**VVVVVVV

EX
X // O′X

ıX // OX // 0.

Define morphisms f2 = Ωf ′ ⊗ id : f∗(FY ) → FX and f3 = Ωf : f∗(T ∗Y ) →
T ∗X in qcoh(X). Then the following commutes in qcoh(X), with exact rows:

f∗(EY )
f∗(φY )

//

f ′′��

f∗(FY )
f∗(ψY )

//

f2

��

f∗(T ∗Y ) //

f3

��

0

EX
φX // FX

ψX // T ∗X // 0.

(1.4)

If X is a d-space, the identity 1-morphism idX : X → X is idX =(
idX , δX(O′X), δX(EX)

)
, where δX(∗) are the canonical isomorphisms of Remark

1.2.17. Let X,Y ,Z be d-spaces, and f : X → Y , g : Y → Z be 1-morphisms.
Define the composition of 1-morphisms g ◦ f : X → Z to be

g ◦ f =
(
g ◦ f, f ′ ◦ f−1(g′) ◦ If,g(O′Z), f ′′ ◦ f∗(g′′) ◦ If,g(EZ)

)
, (1.5)

where I∗,∗(∗) are the canonical isomorphisms of Remark 1.2.17.
Let f , g : X → Y be 1-morphisms of d-spaces, where f = (f, f ′, f ′′) and

g = (g, g′, g′′). Suppose f = g. A 2-morphism η : f ⇒ g is a morphism
η : f∗(FY )→ EX in qcoh(X), such that

g′ = f ′ + X ◦ η ◦
(
id⊗ (f ] ◦ f−1(ıY ))

)
◦
(
f−1(d)

)
and g′′ = f ′′ + η ◦ f∗(φY ).

Then g2 = f2 +φX ◦ η and g3 = f3, so (1.4) for f , g combine to give a diagram

f∗(EY )
f∗(φY )

//
f ′′

��

g′′=f ′′+η◦f∗(φY )

��

f∗(FY )
f∗(ψY )

//

f2

��
g2=f2+φX◦η

��
η

tt

f∗(T ∗Y ) //

f3=g3

��

0

EX
φX // FX

ψX // T ∗X // 0.

(1.6)
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That is, η is a homotopy between the morphisms of complexes (1.4) from f , g.
If f : X → Y is a 1-morphism, the identity 2-morphism idf : f ⇒ f is the

zero morphism 0 : f∗(FY )→ EX . Suppose X,Y are d-spaces, f , g,h : X → Y
are 1-morphisms and η : f ⇒ g, ζ : g ⇒ h are 2-morphisms. The vertical
composition of 2-morphisms ζ � η : f ⇒ h as in (A.1) is ζ � η = ζ + η.

Let X,Y ,Z be d-spaces, f , f̃ : X → Y and g, g̃ : Y → Z be 1-morphisms,
and η : f ⇒ f̃ , ζ : g ⇒ g̃ be 2-morphisms. The horizontal composition of
2-morphisms ζ ∗ η : g ◦ f ⇒ g̃ ◦ f̃ as in (A.2) is

ζ ∗ η =
(
η ◦ f∗(g2) + f ′′ ◦ f∗(ζ) + η ◦ f∗(φY ) ◦ f∗(ζ)

)
◦ If,g(FZ).

This completes the definition of the 2-category of d-spaces dSpa.
Regard the category C∞Schlf

ssc of separated, second countable, locally fair
C∞-schemes as a 2-category with only identity 2-morphisms idf for (1-)mor-

phisms f : X → Y . Define a 2-functor FdSpa
C∞Sch : C∞Schlf

ssc → dSpa to map

X to X = (X,OX , 0, idOX , 0) on objects X, to map f to f = (f, f ], 0) on
(1-)morphisms f : X → Y , and to map identity 2-morphisms idf : f ⇒ f to

identity 2-morphisms idf : f ⇒ f . Define a 2-functor FdSpa
Man : Man → dSpa

by FdSpa
Man = FdSpa

C∞Sch ◦ FC∞Sch
Man .

Write Ĉ∞Schlf
ssc for the full 2-subcategory of objects X in dSpa equivalent

to FdSpa
C∞Sch(X) for some X in C∞Schlf

ssc, and M̂an for the full 2-subcategory

of objects X in dSpa equivalent to FdSpa
Man (X) for some manifold X. When

we say that a d-space X is a C∞-scheme, or is a manifold, we mean that
X ∈ Ĉ∞Schlf

ssc, or X ∈ M̂an, respectively.

In §2.2 we prove:

Theorem 1.3.2. (a) Definition 1.3.1 defines a strict 2-category dSpa, in which
all 2-morphisms are 2-isomorphisms.

(b) For any 1-morphism f : X → Y in dSpa the 2-morphisms η : f ⇒ f form
an abelian group under vertical composition, and in fact a real vector space.

(c) FdSpa
C∞Sch and FdSpa

Man in Definition 1.3.1 are full and faithful strict 2-functors.

Hence C∞Schlf
ssc,Man and Ĉ∞Schlf

ssc, M̂an are equivalent 2-categories.

Remark 1.3.3. (i) One should think of a d-space X = (X,O′X , EX , ıX , X) as
being a C∞-scheme X, which is the ‘classical’ part of X and lives in a cate-
gory rather than a 2-category, together with some extra ‘derived’ information
O′X , EX , ıX , X . 2-morphisms in dSpa are wholly to do with this derived part.
The sheaf EX may be thought of as a (dual) ‘obstruction sheaf’ on X.

(ii) Readers familiar with derived algebraic geometry may find the following
(oversimplified) explanation of d-spaces helpful; more details are given in §14.4.

In conventional algebraic geometry, a K-scheme (X,OX) is a topological
space X equipped with a sheaf of K-algebras OX . In derived algebraic geometry,
as in Toën and Vezzosi [101,102] and Lurie [70–72], a derived K-scheme (X,OX)
is (roughly) a topological space X with a (homotopy) sheaf of (commutative)
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dg-algebras over K. Here a (commutative) dg-algebra (A∗,d) is a nonpositively
graded K-algebra

⊕
k60Ak, with differentials d : Ak → Ak+1 satisfying d2 = 0

and ab = (−1)klba, d(ab) = (da)b+ (−1)ka(db) for all a ∈ Ak and b ∈ Al.
We call a dg-algebra (A∗,d) square zero if Ak = 0 for k 6= 0,−1 and A−1 ·

d(A−1) = 0. This implies that d(A−1) is a square zero ideal in A0. General
dg-algebras form an∞-category, but square zero dg-algebras form a 2-category.

Ignoring C∞-rings for the moment, we can think of the data EX
X−→O′X in a d-

space X as a sheaf of square zero dg-algebras A−1
d−→A0 on X. The remaining

data OX , ıX can be recovered from this, since O′X
ıX−→OX is the cokernel of

EX
X−→O′X . Thus, a d-space X is like a special kind of derived R-scheme, in

which the dg-algebras are all square zero.

1.3.2 Gluing d-spaces by equivalences

Next we discuss gluing of d-spaces and 1-morphisms on open d-subspaces.

Definition 1.3.4. Let X = (X,O′X , EX , ıX , X) be a d-space. Suppose U ⊆ X
is an open C∞-subscheme. Then U =

(
U,O′X |U , EX |U , ıX |U , X |U

)
is a d-space.

We call U an open d-subspace of X. An open cover of a d-space X is a family
{Ua : a ∈ A} of open d-subspaces Ua of X with X =

⋃
a∈A Ua.

As in §2.4, we can glue 1-morphisms on open d-subspaces which are 2-
isomorphic on the overlap. The proof uses partitions of unity, as in §1.2.2.

Proposition 1.3.5. Let X,Y be d-spaces, U ,V ⊆ X be open d-subspaces
with X = U ∪ V , f : U → Y and g : V → Y be 1-morphisms, and η :
f |U∩V ⇒ g|U∩V a 2-morphism. Then there exist a 1-morphism h : X → Y
and 2-morphisms ζ : h|U ⇒ f , θ : h|V ⇒ g such that θ|U∩V = η � ζ|U∩V :
h|U∩V ⇒ g|U∩V . This h is unique up to 2-isomorphism, and independent up
to 2-isomorphism of the choice of η.

Equivalences f : X → Y in a 2-category are defined in §A.3, and are the nat-
ural notion of when two objects X,Y are ‘the same’. In §2.4 we prove theorems
on gluing d-spaces by equivalences. See Spivak [95, Lem. 6.8 & Prop. 6.9] for re-
sults similar to Theorem 1.3.6 for his ‘local C∞-ringed spaces’, an∞-categorical
analogue of our d-spaces.

Theorem 1.3.6. Suppose X,Y are d-spaces, U ⊆ X, V ⊆ Y are open d-
subspaces, and f : U → V is an equivalence in dSpa. At the level of topological
spaces, we have open U ⊆ X, V ⊆ Y with a homeomorphism f : U → V, so we
can form the quotient topological space Z := X qf Y = (X q Y )/ ∼, where the
equivalence relation ∼ on X q Y identifies u ∈ U ⊆ X with f(u) ∈ V ⊆ Y .

Suppose Z is Hausdorff. Then there exist a d-space Z with topological space
Z, open d-subspaces X̂, Ŷ in Z with Z = X̂ ∪ Ŷ , equivalences g : X → X̂
and h : Y → Ŷ in dSpa such that g|U and h|V are both equivalences with
X̂ ∩ Ŷ , and a 2-morphism η : g|U ⇒ h ◦ f : U → X̂ ∩ Ŷ . Furthermore, Z is
independent of choices up to equivalence.
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In Theorem 1.3.6, Z is a pushout X qidU ,U ,f Y in the 2-category dSpa.

Theorem 1.3.7. Suppose I is an indexing set, and < is a total order on I, and
Xi for i ∈ I are d-spaces, and for all i < j in I we are given open d-subspaces
U ij ⊆ Xi, U ji ⊆ Xj and an equivalence eij : U ij → U ji, such that for all
i < j < k in I we have a 2-commutative diagram

U ji ∩U jk ejk|Uji∩Ujk
,,XXXXXXXXXXXXXXX

ηijk
��U ij ∩U ik

eij |Uij∩Uik 22fffffffffffffff eik|Uij∩Uik // Uki ∩Ukj

for some ηijk, where all three 1-morphisms are equivalences.
On the level of topological spaces, define the quotient topological space Y =

(
∐
i∈I Xi)/ ∼, where ∼ is the equivalence relation generated by xi ∼ xj if i < j,

xi ∈ Uij ⊆ Xi and xj ∈ Uji ⊆ Xj with eij(xi) = xj. Suppose Y is Hausdorff
and second countable. Then there exist a d-space Y and a 1-morphism f i :
Xi → Y which is an equivalence with an open d-subspace X̂i ⊆ Y for all i ∈ I,
where Y =

⋃
i∈I X̂i, such that f i|Uij is an equivalence U ij → X̂i ∩ X̂j for all

i < j in I, and there exists a 2-morphism ηij : f j ◦eij ⇒ f i|Uij . The d-space Y
is unique up to equivalence, and is independent of choice of 2-morphisms ηijk.

Suppose also that Z is a d-space, and gi : Xi → Z are 1-morphisms for all
i ∈ I, and there exist 2-morphisms ζij : gj ◦ eij ⇒ gi|Uij for all i < j in I.
Then there exist a 1-morphism h : Y → Z and 2-morphisms ζi : h◦f i ⇒ gi for
all i ∈ I. The 1-morphism h is unique up to 2-isomorphism, and is independent
of the choice of 2-morphisms ζij.

Remark 1.3.8. In Proposition 1.3.5, it is surprising that h is independent of
η up to 2-isomorphism. It holds because of the existence of partitions of unity
on nice C∞-schemes, as in Proposition 1.2.8. Here is a sketch proof: suppose
η,h, ζ, θ and η′,h′, ζ ′, θ′ are alternative choices in Proposition 1.3.5. Then we
have 2-morphisms (ζ ′)−1�ζ : h|U ⇒ h′|U and (θ′)−1�θ : h|V ⇒ h′|V . Choose
a partition of unity {α, 1− α} on X subordinate to {U, V }, so that α : X → R
is smooth with α supported on U ⊆ X and 1 − α supported on V ⊆ X. Then
α·
(
(ζ ′)−1�ζ

)
+(1−α)·

(
(θ′)−1�θ

)
is a 2-morphism h⇒ h′, where α·

(
(ζ ′)−1�ζ

)
makes sense on all of X (rather than just on U where (ζ ′)−1 � ζ is defined) as
α is supported on U, so we extend by zero on X \ U.

Similarly, in Theorem 1.3.7, the compatibility conditions on the gluing data
Xi,U ij , eij are significantly weaker than you might expect, because of the ex-

istence of partitions of unity. The 2-morphisms ηijk on overlaps X̂i ∩ X̂j ∩ X̂k

are only required to exist, not to satisfy any further conditions. In particular,
one might think that on overlaps X̂i ∩ X̂j ∩ X̂k ∩ X̂ l we should require

ηikl � (idfkl ∗ ηijk)|Uij∩Uik∩Uil = ηijl � (ηjkl ∗ idf ij )|Uij∩Uik∩Uil , (1.7)

but we do not. Also, one might expect the ζij should satisfy conditions on triple

overlaps X̂i ∩ X̂j ∩ X̂k, but they need not.
The moral is that constructing d-spaces by gluing together patches Xi is

straightforward, as one only has to verify mild conditions on triple overlaps
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Xi∩Xj ∩Xk. Again, this works because of the existence of partitions of unity
on nice C∞-schemes, which are used to construct the glued d-spaces Z and 1-
and 2-morphisms in Theorems 1.3.6 and 1.3.7.

In contrast, for gluing d-stacks in §1.10.3, we do need compatibility condi-
tions of the form (1.7). The problem of gluing geometric spaces in an∞-category
C by equivalences, such as Spivak’s derived manifolds [94, 95], is discussed by
Toën and Vezzosi [101, §1.3.4] and Lurie [70, §6.1.2]. It requires nontrivial con-
ditions on overlaps X i1 ∩ · · · ∩X in for all n = 2, 3, . . . .

1.3.3 Fibre products in dSpa

Fibre products in 2-categories are explained in §A.4. In §2.5–§2.6 we discuss
fibre products in dSpa, and their relation to transverse fibre products in Man.

Theorem 1.3.9. (a) All fibre products exist in the 2-category dSpa.

(b) Let g : X → Z and h : Y → Z be smooth maps of manifolds, and write

X = FdSpa
Man (X), and similarly for Y ,Z, g,h. If g, h are transverse, so that a

fibre product X ×g,Z,h Y exists in Man, then the fibre product X ×g,Z,h Y in

dSpa is equivalent in dSpa to FdSpa
Man (X ×g,Z,h Y ). If g, h are not transverse

then X ×g,Z,h Y exists in dSpa, but is not a manifold.

To prove (a), given 1-morphisms g : X → Z and h : Y → Z, we write down
an explicit d-space W = (W,O′W , EW , ıW , W ), 1-morphisms e = (e, e′, e′′) :
W →X and f = (f, f ′, f ′′) : W → Y and a 2-morphism η : g ◦ e⇒ h ◦ f , and
verify the universal property for

W
f

//
e�� � �� �

FN
η

Y
h ��

X
g // Z

to be a 2-Cartesian square in dSpa. The underlying C∞-scheme W is the fibre
product W = X ×g,Z,h Y in C∞Sch, and e : W → X, f : W → Y are the

projections from the fibre product. The definitions of O′W , ıW , W , e′, f ′ in §2.5
are complex, and we will not give them here. The remaining data EW , e′′, f ′′, η,
as well as the virtual cotangent sheaf φW : EW → FW , is characterized by the
following commutative diagram in qcoh(W ), with exact top row:

(g ◦ e)∗(EZ)


e∗(g′′)◦Ie,g(EZ)

−f∗(h′′)◦If,h(EZ)

(g◦e)∗(φZ)


//

e∗(EX)⊕
f∗(EY )⊕
(g ◦ e)∗(FZ)−e∗(φX) 0 e∗(g2)◦Ie,g(FZ)

0 −f∗(φY ) −f∗(h2)◦If,h(FZ)


��

(
e′′ f ′′ η

)
// EW //

φW

��

0

e∗(FX)⊕
f∗(FY )

(
e2 f2

)
∼=

// FW .
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1.3.4 Fixed point loci of finite groups in d-spaces

If a finite group Γ acts on a manifold X by diffeomorphisms, then the fixed
point locus XΓ is a disjoint union of closed, embedded submanifolds of X. In
a similar way, if Γ acts on a d-space X by 1-isomorphisms, in §2.7 we define a
d-space XΓ called the fixed d-subspace of Γ in X, with an inclusion 1-morphism
jX,Γ : XΓ ↪→X, whose topological space XΓ is the fixed point locus of Γ in X.

Note that by an action r : Γ → Aut(X) of Γ on X we shall always mean
a strict action, that is, r(γ) : X → X is a 1-isomorphism for all γ ∈ Γ and
r(γδ) = r(γ)r(δ) for all γ, δ ∈ Γ, rather than r(γδ) only being 2-isomorphic to
r(γ)r(δ). The next theorem summarizes our results.

Theorem 1.3.10. Let X be a d-space, Γ a finite group, and r : Γ→ Aut(X)
an action of Γ on X by 1-isomorphisms. Then we can define a d-space XΓ

called the fixed d-subspace of Γ in X, with an inclusion 1-morphism jX,Γ :

XΓ →X. It has the following properties:

(a) Let X,Γ, r and jX,Γ : XΓ → X be as above. Suppose f : W → X
is a 1-morphism in dSpa. Then f factorizes as f = jX,Γ ◦ g for some

1-morphism g : W → XΓ in dSpa, which must be unique, if and only if
r(γ) ◦ f = f for all γ ∈ Γ.

(b) Suppose X,Y are d-spaces, Γ is a finite group, r : Γ→ Aut(X), s : Γ→
Aut(Y ) are actions of Γ on X,Y , and f : X → Y is a Γ-equivariant
1-morphism in dSpa, that is, f ◦ r(γ) = s(γ) ◦ f for γ ∈ Γ. Then there
exists a unique 1-morphism fΓ : XΓ → Y Γ such that jY ,Γ◦f

Γ = f ◦jX,Γ.

(c) Let f , g : X → Y be Γ-equivariant 1-morphisms as in (b), and η :
f ⇒ g be a Γ-equivariant 2-morphism, that is, η ∗ idr(γ) = ids(γ) ∗ η
for γ ∈ Γ. Then there exists a unique 2-morphism ηΓ : fΓ ⇒ gΓ such
that idjY,Γ ∗ η

Γ = η ∗ idjX,Γ .

Note that (a) is a universal property that determines XΓ, jX,Γ up to canonical
1-isomorphism.

We will use fixed d-subspaces XΓ in Theorem 1.10.14 below to describe
orbifold strata XΓ of quotient d-stacks X = [X/G]. If X is a d-manifold, as in
§1.4, then in general the fixed d-subspaces XΓ are disjoint unions of d-manifolds
of different dimensions.

1.4 The 2-category of d-manifolds

We now survey Chapters 3–4 on d-manifolds (without boundary).

1.4.1 The definition of d-manifolds

Definition 1.4.1. A d-space U is called a principal d-manifold if is equivalent
in dSpa to a fibre product X ×g,Z,h Y with X,Y ,Z ∈ M̂an. That is,

U ' FdSpa
Man (X)×FdSpa

Man (g),FdSpa
Man (Z),FdSpa

Man (h) F
dSpa
Man (Y )
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for manifolds X,Y, Z and smooth maps g : X → Z and h : Y → Z. The virtual
dimension vdimU of U is defined to be vdimU = dimX + dimY − dimZ.
Proposition 1.4.11(b) below shows that if U 6= ∅ then vdimU depends only on
the d-space U , and not on the choice of X,Y, Z, g, h, and so is well defined.

A d-space W is called a d-manifold of virtual dimension n ∈ Z, written
vdimW = n, if W can be covered by nonempty open d-subspaces U which are
principal d-manifolds with vdimU = n.

Write dMan for the full 2-subcategory of d-manifolds in dSpa. IfX ∈ M̂an
then X ' X ×∗ ∗, so X is a principal d-manifold, and thus a d-manifold.
Therefore M̂an in §1.3.1 is a 2-subcategory of dMan. We say that a d-manifold
X is a manifold if it lies in M̂an. The 2-functor FdSpa

Man : Man→ dSpa maps

into dMan, and we will write FdMan
Man = FdSpa

Man : Man→ dMan.

Here, as in §3.2, are alternative descriptions of principal d-manifolds:

Proposition 1.4.2. The following are equivalent characterizations of when a
d-space W is a principal d-manifold:

(a) W 'X ×g,Z,h Y for X,Y ,Z ∈ M̂an.

(b) W 'X ×i,Z,j Y , where X,Y, Z are manifolds, i : X → Z, j : Y → Z are

embeddings, X = FdSpa
Man (X), and similarly for Y,Z, i, j. That is, W is an

intersection of two submanifolds X,Y in Z, in the sense of d-spaces.

(c) W ' V ×s,E,0 V , where V is a manifold, E → V is a vector bundle,
s : V → E is a smooth section, 0 : V → E is the zero section, V =
FdSpa

Man (V ), and similarly for E, s, 0. That is, W is the zeroes s−1(0) of a
smooth section s of a vector bundle E, in the sense of d-spaces.

Example 1.4.3. Let X ⊆ Rn be any closed subset. By a lemma of Whitney’s,
we can write X as the zero set of a smooth function f : Rn → R. Then
X = RRRn ×f ,RRR,0 ∗ is a principal d-manifold, with topological space X.

This example shows that the topological spaces X underlying d-manifolds
X can be fairly wild, for example, X could be a fractal such as the Cantor set.

1.4.2 ‘Standard model’ d-manifolds, 1- and 2-morphisms

The next three examples, taken from §3.2 and §3.4, give explicit models for
principal d-manifolds in the form V ×s,E,0 V from Proposition 1.4.2(c) and
their 1- and 2-morphisms, which we call standard models.

Example 1.4.4. Let V be a manifold, E → V a vector bundle (which we
sometimes call the obstruction bundle), and s ∈ C∞(E). We will write down
an explicit principal d-manifold S = (S,O′S , ES , ıS , S) which is equivalent to
V ×s,E,0 V in Proposition 1.4.2(c). We call S the standard model of (V,E, s),
and also write it SV,E,s. Proposition 1.4.2 shows that every principal d-manifold
W is equivalent to SV,E,s for some V,E, s.
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Write C∞(V ) for the C∞-ring of smooth functions c : V → R, and C∞(E),
C∞(E∗) for the vector spaces of smooth sections of E,E∗ over V . Then s lies in
C∞(E), and C∞(E), C∞(E∗) are modules over C∞(V ), and there is a natural
bilinear product · : C∞(E∗) × C∞(E) → C∞(V ). Define Is ⊆ C∞(V ) to be
the ideal generated by s. That is,

Is =
{
α · s : α ∈ C∞(E∗)

}
⊆ C∞(V ). (1.8)

Let I2
s = 〈fg : f, g ∈ Is〉R be the square of Is. Then I2

s is an ideal in C∞(V ),
the ideal generated by s⊗ s ∈ C∞(E ⊗ E). That is,

I2
s =

{
β · (s⊗ s) : β ∈ C∞(E∗ ⊗ E∗)

}
⊆ C∞(V ).

Define C∞-rings C = C∞(V )/Is, C′ = C∞(V )/I2
s , and let π : C′ → C be

the natural projection from the inclusion I2
s ⊆ Is. Define a topological space

S = {v ∈ V : s(v) = 0}, as a subspace of V . Now s(v) = 0 if and only if
(s ⊗ s)(v) = 0. Thus S is the underlying topological space for both SpecC
and SpecC′. So SpecC = S = (S,OS), SpecC′ = S′ = (S,O′S), and Specπ =
ıS = (idS , ıS) : S′ → S, where S, S′ are fair affine C∞-schemes, and OS ,O′S
are sheaves of C∞-rings on S, and ıS : O′S → OS is a morphism of sheaves of
C∞-rings. Since π is surjective with kernel the square zero ideal Is/I

2
s , ıS is

surjective, with kernel IS a sheaf of square zero ideals in O′S .
From (1.8) we have a surjective C∞(V )-module morphism C∞(E∗) → Is

mapping α 7→ α · s. Applying ⊗C∞(V )C gives a surjective C-module morphism

σ : C∞(E∗)/(Is · C∞(E∗)) −→ Is/I
2
s , σ : α+ (Is · C∞(E∗)) 7−→ α · s+ I2

s .

Define ES = MSpec
(
C∞(E∗)/(Is · C∞(E∗))

)
. Also MSpec(Is/I

2
s ) = IS , so

S = MSpecσ is a surjective morphism S : ES → IS in qcoh(S). Therefore
SV,E,s = S = (S,O′S , ES , ıS , S) is a d-space.

In fact ES is a vector bundle on S naturally isomorphic to E∗|S , where

E is the vector bundle on V = FC∞Sch
Man (V ) corresponding to E → V . Also

FS ∼= T ∗V |S . The morphism φS : ES → FS can be interpreted as follows:
choose a connection ∇ on E → V . Then ∇s ∈ C∞(E⊗T ∗V ), so we can regard
∇s as a morphism of vector bundles E∗ → T ∗V on V . This lifts to a morphism
of vector bundles ∇̂s : E∗ → T ∗V on the C∞-scheme V , and φS is identified
with ∇̂s|S : E∗|S → T ∗V |S under the isomorphisms ES ∼= E∗|S , FS ∼= T ∗V |S .

Proposition 1.4.2 implies that every principal d-manifold W is equivalent
to SV,E,s for some V,E, s. The notation O(s) and O(s2) used below should
be interpreted as follows. Let V be a manifold, E → V a vector bundle, and
s ∈ C∞(E). If F → V is another vector bundle and t ∈ C∞(F ), then we write
t = O(s) if t = α · s for some α ∈ C∞(F ⊗ E∗), and t = O(s2) if t = β · (s⊗ s)
for some β ∈ C∞(F ⊗E∗⊗E∗). Similarly, if W is a manifold and f, g : V →W
are smooth then we write f = g + O(s) if c ◦ f − c ◦ g = O(s) for all smooth
c : W → R, and f = g +O(s2) if c ◦ f − c ◦ g = O(s2) for all c.
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Example 1.4.5. Let V,W be manifolds, E → V , F → W be vector bundles,
and s ∈ C∞(E), t ∈ C∞(F ). Write X = SV,E,s, Y = SW,F,t for the ‘standard
model’ principal d-manifolds from Example 1.4.4. Suppose f : V → W is
a smooth map, and f̂ : E → f∗(F ) is a morphism of vector bundles on V
satisfying

f̂ ◦ s = f∗(t) +O(s2) in C∞
(
f∗(F )

)
. (1.9)

We will define a 1-morphism g = (g, g′, g′′) : X → Y in dMan using f, f̂ .
We will also write g : X → Y as Sf,f̂ : SV,E,s → SW,F,t, and call it a standard
model 1-morphism. If x ∈ X then x ∈ V with s(x) = 0, so (1.9) implies that

t
(
f(x)

)
=
(
f∗(t)

)
(x) = f̂

(
s(x)

)
+O

(
s(x)2

)
= 0,

so f(x) ∈ Y ⊆W . Thus g := f |X maps X → Y .
Define morphisms of C∞-rings

φ : C∞(W )/It −→ C∞(V )/Is, φ′ : C∞(W )/I2
t −→ C∞(V )/I2

s ,

by φ : c+ It 7−→ c ◦ f + Is, φ′ : c+ I2
t 7−→ c ◦ f + I2

s .

Here φ is well-defined since if c ∈ It then c = γ · t for some γ ∈ C∞(F ∗), so

c◦f=(γ ·t)◦f=f∗(γ) ·f∗(t)=f∗(γ) ·
(
f̂ ◦s+O(s2)

)
=
(
f̂ ◦f∗(γ)

)
·s+O(s2) ∈ Is.

Similarly if c ∈ I2
t then c ◦ f ∈ I2

s , so φ′ is well-defined. Thus we have C∞-
scheme morphisms g = (g, g]) = Specφ : X → Y , and (g, g′) = Specφ′ :

(X,O′X) → (Y,O′Y ), both with underlying map g. Hence g] : g−1(OY ) → OX
and g′ : g−1(O′Y )→ O′X are morphisms of sheaves of C∞-rings on X.

Since g∗(EY ) = MSpec
(
C∞(f∗(F ∗))/(Is · C∞(f∗(F ∗))

)
, we may define g′′ :

g∗(EY )→ EX by g′′ = MSpec(G′′), where

G′′ : C∞(f∗(F ∗))/(Is · C∞(f∗(F ∗)) −→ C∞(E∗)/(Is · C∞(E∗))

is defined by G′′ : γ + Is · C∞(f∗(F ∗)) 7−→ γ ◦ f̂ + Is · C∞(E∗).

This defines g = (g, g′, g′′). One can show it is a 1-morphism g : X → Y in
dMan, which we also write as Sf,f̂ : SV,E,s → SW,F,t.

Suppose Ṽ ⊆ V is open, with inclusion iṼ : Ṽ → V . Write Ẽ = E|Ṽ = i∗
Ṽ

(E)

and s̃ = s|Ṽ . Define iṼ ,V = SiṼ ,idẼ : SṼ ,Ẽ,s̃ → SV,E,s. If s−1(0) ⊆ Ṽ then

iṼ ,V is a 1-isomorphism, with inverse i−1
Ṽ ,V . That is, making V smaller without

making s−1(0) smaller does not really change SV,E,s; the d-manifold SV,E,s
depends only on E, s in an arbitrarily small open neighbourhood of s−1(0) in V .

Example 1.4.6. Let V,W be manifolds, E → V , F → W be vector bundles,
and s ∈ C∞(E), t ∈ C∞(F ). Suppose f, g : V → W are smooth and f̂ : E →
f∗(F ), ĝ : E → g∗(F ) are vector bundle morphisms with f̂ ◦ s = f∗(t) +O(s2)
and ĝ ◦ s = g∗(t) +O(s2), so we have 1-morphisms Sf,f̂ ,Sg,ĝ : SV,E,s → SW,F,t.

It is easy to show that Sf,f̂ = Sg,ĝ if and only if g = f+O(s2) and ĝ = f̂+O(s).
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Now suppose Λ : E → f∗(TW ) is a morphism of vector bundles on V .
Taking the dual of Λ and lifting to V gives Λ∗ : f∗(T ∗W )→ E∗. Restricting to

the C∞-subscheme X = s−1(0) in V gives λ = Λ∗|X : f∗(FY ) ∼= f∗(T ∗W )|X →
E∗|X = EX . One can show that λ is a 2-morphism Sf,f̂ ⇒ Sg,ĝ if and only if

g = f + Λ ◦ s+O(s2) and ĝ = f̂ + f∗(dt) ◦ Λ +O(s).

Then we write λ as SΛ : Sf,f̂ ⇒ Sg,ĝ, and call it a standard model 2-morphism.
Every 2-morphism η : Sf,f̂ ⇒ Sg,ĝ is SΛ for some Λ. Two vector bundle
morphisms Λ,Λ′ : E → f∗(TW ) have SΛ = SΛ′ if and only if Λ = Λ′ +O(s).

If X is a d-manifold and x ∈X then x has an open neighbourhood U in X
equivalent in dSpa to SV,E,s for some manifold V , vector bundle E → V and
s ∈ C∞(E). In §3.3 we investigate the extent to which X determines V,E, s
near a point in X and V , and prove:

Theorem 1.4.7. Let X be a d-manifold, and x ∈ X. Then there exists an
open neighbourhood U of x in X and an equivalence U ' SV,E,s in dMan for
some manifold V, vector bundle E → V and s ∈ C∞(E) which identifies x ∈ U
with a point v ∈ V such that s(v) = ds(v) = 0, where SV,E,s is as in Example
1.4.4. These V,E, s are determined up to non-canonical isomorphism near v by
X near x, and in fact they depend only on the underlying C∞-scheme X and
the integer vdimX.

Thus, if we impose the extra condition ds(v) = 0, which is in fact equivalent
to choosing V,E, s with dimV as small as possible, then V,E, s are determined
uniquely near v by X near x (that is, V,E, s are determined locally up to
isomorphism, but not up to canonical isomorphism). If we drop the condition
ds(v) = 0 then V,E, s are determined uniquely near v by X near x and dimV .

Theorem 1.4.7 shows that any d-manifold X = (X,O′X , EX , ıX , X) is de-
termined up to equivalence in dSpa near any point x ∈ X by the ‘classical’
underlying C∞-scheme X and the integer vdimX. So we can ask: what extra
information about X is contained in the ‘derived’ data O′X , EX , ıX , X? One can
think of this extra information as like a vector bundle E over X. The only local
information in a vector bundle E is rank E ∈ Z, but globally it also contains
nontrivial algebraic-topological information.

Suppose now that f : X → Y is a 1-morphism in dMan, and x ∈ X
with f(x) = y ∈ Y . Then by Theorem 1.4.7 we have X ' SV,E,s near x and
Y ' SW,F,t near y. So up to composition with equivalences, we can identify f
near x with a 1-morphism g : SV,E,s → SW,F,t. Thus, to understand arbitrary
1-morphisms f in dMan near a point, it is enough to study 1-morphisms g :
SV,E,s → SW,F,t. Our next theorem, proved in §3.4, shows that after making
V smaller, every 1-morphism g : SV,E,s → SW,F,t is of the form Sf,f̂ .

Theorem 1.4.8. Let V,W be manifolds, E → V, F →W be vector bundles, and
s ∈ C∞(E), t ∈ C∞(F ). Define principal d-manifolds X = SV,E,s, Y = SW,F,t,
with topological spaces X = {v ∈ V : s(v) = 0} and Y = {w ∈ W : t(w) = 0}.
Suppose g : X → Y is a 1-morphism. Then there exist an open neighbourhood
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Ṽ of X in V, a smooth map f : Ṽ → W, and a morphism of vector bundles
f̂ : Ẽ → f∗(F ) with f̂ ◦ s̃ = f∗(t), where Ẽ = E|Ṽ , s̃ = s|Ṽ , such that g =

Sf,f̂ ◦ i−1

Ṽ ,V
, where iṼ ,V = SidṼ ,idẼ

: SṼ ,Ẽ,s̃ → SV,E,s is a 1-isomorphism, and

Sf,f̂ : SṼ ,Ẽ,s̃ → SW,F,t is as in Example 1.4.5.

These results give a good differential-geometric picture of d-manifolds and
their 1- and 2-morphisms near a point. The O(s) and O(s2) notation helps keep

track of what information from V,E, s and f, f̂ and Λ is remembered and what
forgotten by the d-manifolds SV,E,s, 1-morphisms Sf,f̂ and 2-morphisms SΛ.

1.4.3 The 2-category of virtual vector bundles

In our theory of derived differential geometry, it is a general principle that cate-
gories in classical differential geometry should often be replaced by 2-categories,
and classical concepts be replaced by 2-categorical analogues.

In classical differential geometry, if X is a manifold, the vector bundles
E → X and their morphisms form a category vect(X). The cotangent bundle
T ∗X is an important example of a vector bundle. If f : X → Y is smooth then
pullback f∗ : vect(Y ) → vect(X) is a functor. There is a natural morphism
df∗ : f∗(T ∗Y ) → T ∗X. We now explain 2-categorical analogues of all this for
d-manifolds, following §3.1–§3.2.

Definition 1.4.9. LetX be a C∞-scheme, which will usually be the C∞-scheme
underlying a d-manifold X. We will define a 2-category vqcoh(X) of virtual
quasicoherent sheaves on X. Objects of vqcoh(X) are morphisms φ : E1 → E2

in qcoh(X), which we also may write as (E1, E2, φ) or (E•, φ). Given objects
φ : E1 → E2 and ψ : F1 → F2, a 1-morphism (f1, f2) : (E•, φ) → (F•, ψ)
is a pair of morphisms f1 : E1 → F1, f2 : E2 → F2 in qcoh(X) such that
ψ ◦ f1 = f2 ◦ φ. We write f• for (f1, f2).

The identity 1-morphism of (E•, φ) is (idE1 , idE2). The composition of 1-
morphisms f• : (E•, φ) → (F•, ψ) and g• : (F•, ψ) → (G•, ξ) is g• ◦ f• =
(g1 ◦ f1, g2 ◦ f2) : (E•, φ)→ (G•, ξ).

Given f•, g• : (E•, φ) → (F•, ψ), a 2-morphism η : f• ⇒ g• is a morphism
η : E2 → F1 in qcoh(X) such that g1 = f1+η◦φ and g2 = f2+ψ◦η. The identity
2-morphism for f• is idf• = 0. If f•, g•, h• : (E•, φ)→ (F•, ψ) are 1-morphisms
and η : f• ⇒ g•, ζ : g• ⇒ h• are 2-morphisms, the vertical composition of
2-morphisms ζ � η : f• ⇒ h• is ζ � η = ζ + η. If f•, f̃• : (E•, φ)→ (F•, ψ) and
g•, g̃• : (F•, ψ) → (G•, ξ) are 1-morphisms and η : f• ⇒ f̃•, ζ : g• ⇒ g̃• are
2-morphisms, the horizontal composition of 2-morphisms ζ∗η : g•◦f• ⇒ g̃•◦ f̃•
is ζ ∗ η = g1 ◦ η + ζ ◦ f2 + ζ ◦ ψ ◦ η. This defines a strict 2-category vqcoh(X),
the obvious 2-category of 2-term complexes in qcoh(X).

If U ⊆ X is an open C∞-subscheme then restriction from X to U defines a
strict 2-functor |U : vqcoh(X) → vqcoh(U). An object (E•, φ) in vqcoh(X) is
called a virtual vector bundle of rank d ∈ Z if X may be covered by open U ⊆ X
such that (E•, φ)|U is equivalent in vqcoh(U) to some (F•, ψ) for F1,F2 vector

bundles on U with rankF2 − rankF1 = d. We write rank(E•, φ) = d. If X 6= ∅
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then rank(E•, φ) depends only on E1, E2, φ, so it is well-defined. Write vvect(X)
for the full 2-subcategory of virtual vector bundles in vqcoh(X).

If f : X → Y is a C∞-scheme morphism then pullback gives a strict 2-functor
f∗ : vqcoh(Y )→ vqcoh(X), which maps vvect(Y )→ vvect(X).

We apply these ideas to d-spaces.

Definition 1.4.10. Let X = (X,O′X , EX , ıX , X) be a d-space. Define the
virtual cotangent sheaf T ∗X of X to be the morphism φX : EX → FX in
qcoh(X) from Definition 1.3.1, regarded as a virtual quasicoherent sheaf on X.

Let f = (f, f ′, f ′′) : X → Y be a 1-morphism in dSpa. Then T ∗X =

(EX ,FX , φX) and f∗(T ∗Y ) =
(
f∗(EY ), f∗(FY ), f∗(φY )

)
are virtual quasicoher-

ent sheaves on X, and Ωf := (f ′′, f2) is a 1-morphism f∗(T ∗Y ) → T ∗X in
vqcoh(X), as (1.4) commutes.

Let f , g : X → Y be 1-morphisms in dSpa, and η : f ⇒ g a 2-morphism.
Then η : f∗(FY ) → EX with g′′ = f ′′ + η ◦ f∗(φY ) and g2 = f2 + φX ◦ η,
as in (1.6). It follows that η is a 2-morphism Ωf ⇒ Ωg in vqcoh(X). Thus,
objects, 1-morphisms and 2-morphisms in dSpa lift to objects, 1-morphisms
and 2-morphisms in vqcoh(X).

The next proposition justifies the definition of virtual vector bundle. Because
of part (b), if X is a d-manifold we call T ∗X the virtual cotangent bundle of
X, rather than the virtual cotangent sheaf.

Proposition 1.4.11. (a) Let V be a manifold, E → V a vector bundle, and
s ∈ C∞(E). Then Example 1.4.4 defines a d-manifold SV,E,s. Its cotangent
bundle T ∗SV,E,s is a virtual vector bundle on SV,E,s of rank dimV − rankE.

(b) Let X be a d-manifold. Then T ∗X is a virtual vector bundle on X of rank
vdimX. Hence if X 6= ∅ then vdimX is well-defined.

The virtual cotangent bundle T ∗X of a d-manifold X is a d-space ana-
logue of the cotangent complex in algebraic geometry, as in Illusie [50, 51]. It
contains only a fraction of the information in X = (X,O′X , EX , ıX , X), but
many interesting properties of d-manifolds X and 1-morphisms f : X → Y
can be expressed solely in terms of virtual cotangent bundles T ∗X, T ∗Y and
1-morphisms Ωf : f∗(T ∗Y )→ T ∗X. Here is an example of this.

Definition 1.4.12. Let X be a C∞-scheme. We say that a virtual vector
bundle (E1, E2, φ) on X is a vector bundle if it is equivalent in vvect(X) to
(0, E , 0) for some vector bundle E on X. One can show (E1, E2, φ) is a vector
bundle if and only if φ has a left inverse in qcoh(X).

Proposition 1.4.13. Let X be a d-manifold. Then X is a manifold (that is,
X ∈ M̂an) if and only if T ∗X is a vector bundle, or equivalently, if φX :
EX → FX has a left inverse in qcoh(X).
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1.4.4 Equivalences in dMan, and gluing by equivalences

Equivalences in a 2-category are defined in §A.3. Equivalences in dMan are the
best derived analogue of isomorphisms in Man, that is, of diffeomorphisms of
manifolds. A smooth map of manifolds f : X → Y is called étale if it is a local
diffeomorphism. Here is the derived analogue.

Definition 1.4.14. Let f : X → Y be a 1-morphism in dMan. We call f étale
if it is a local equivalence, that is, if for each x ∈X there exist open x ∈ U ⊆X
and f(x) ∈ V ⊆ Y such that f(U) = V and f |U : U → V is an equivalence.

If f : X → Y is a smooth map of manifolds, then f is étale if and only if
df∗ : f∗(T ∗Y ) → T ∗X is an isomorphism of vector bundles. (The analogue is
false for schemes.) In §3.5 we prove a version of this for d-manifolds:

Theorem 1.4.15. Suppose f : X → Y is a 1-morphism of d-manifolds. Then
the following are equivalent:

(i) f is étale;

(ii) Ωf : f∗(T ∗Y )→ T ∗X is an equivalence in vqcoh(X); and

(iii) the following is a split short exact sequence in qcoh(X) :

0 // f∗(EY )
f ′′⊕−f∗(φY )

// EX ⊕ f∗(FY )
φX⊕f2

// FX // 0. (1.10)

If in addition f : X → Y is a bijection, then f is an equivalence in dMan.

Here a complex 0 → E → F → G → 0 in an abelian category A is called
a split short exact sequence if there exists an isomorphism F ∼= E ⊕ G in A
identifying the complex with 0→ E

id⊕0−→E ⊕G 0⊕id−→G→ 0.
The analogue of Theorem 1.4.15 for d-spaces is false. When f : X → Y

is a ‘standard model’ 1-morphism Sf,f̂ : SV,E,s → SW,F,t, as in §1.4.2, we can

express the conditions for Sf,f̂ to be étale or an equivalence in terms of f, f̂ .

Theorem 1.4.16. Let V,W be manifolds, E → V, F → W be vector bundles,
s ∈ C∞(E), t ∈ C∞(F ), f : V → W be smooth, and f̂ : E → f∗(F ) be a

morphism of vector bundles on V with f̂ ◦ s = f∗(t) + O(s2). Then Example
1.4.5 defines a 1-morphism Sf,f̂ : SV,E,s → SW,F,t in dMan. This Sf,f̂ is étale
if and only if for each v ∈ V with s(v) = 0 and w = f(v) ∈ W, the following
sequence of vector spaces is exact:

0 // TvV
ds(v)⊕ df(v) // Ev ⊕ TwW

f̂(v)⊕−dt(w) // Fw // 0. (1.11)

Also Sf,f̂ is an equivalence if and only if in addition f |s−1(0) : s−1(0)→ t−1(0)
is a bijection, where s−1(0)={v ∈ V : s(v)=0}, t−1(0)={w ∈W : t(w)=0}.

Section 1.3.2 discussed gluing d-spaces by equivalences on open d-subspaces.
It generalizes immediately to d-manifolds: if in Theorem 1.3.7 we fix n ∈ Z and
take the initial d-spaces Xi to be d-manifolds with vdimXi = n, then the glued
d-space Y is also a d-manifold with vdimY = n.
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Here is an analogue of Theorem 1.3.7, taken from §3.6, in which we take the
d-spaces Xi to be ‘standard model’ d-manifolds SVi,Ei,si , and the 1-morphisms
eij to be ‘standard model’ 1-morphisms Seij ,êij . We also use Theorem 1.4.16
in (ii) to characterize when eij is an equivalence.

Theorem 1.4.17. Suppose we are given the following data:

(a) an integer n;

(b) a Hausdorff, second countable topological space X;

(c) an indexing set I, and a total order < on I;

(d) for each i in I, a manifold Vi, a vector bundle Ei → Vi with dimVi −
rankEi = n, a smooth section si : Vi → Ei, and a homeomorphism ψi :
Xi → X̂i, where Xi = {vi ∈ Vi : si(vi) = 0} and X̂i ⊆ X is open; and

(e) for all i < j in I, an open submanifold Vij ⊆ Vi, a smooth map eij : Vij →
Vj , and a morphism of vector bundles êij : Ei|Vij → e∗ij(Ej).

Using notation O(si), O(s2
i ) as in §1.4.2, let this data satisfy the conditions:

(i) X =
⋃
i∈I X̂i;

(ii) if i < j in I then êij ◦si|Vij = e∗ij(sj)+O(s2
i ), ψi(Xi∩Vij) = X̂i∩X̂j , and

ψi|Xi∩Vij = ψj ◦eij |Xi∩Vij , and if vi ∈ Vij with si(vi) = 0 and vj = eij(vi)
then the following is exact:

0 // TviVi
dsi(vi)⊕ deij(vi) // Ei|vi⊕TvjVj

êij(vi)⊕−dsj(vj) // Ej |vj // 0;

(iii) if i < j < k in I then

eik|Vij∩Vik = ejk ◦ eij |Vij∩Vik +O(s2
i ) and

êik|Vij∩Vik = eij |∗Vij∩Vik(êjk) ◦ êij |Vij∩Vik +O(si).

Then there exist a d-manifold X with vdimX = n and underlying topolog-
ical space X, and a 1-morphism ψi : SVi,Ei,si →X with underlying continuous

map ψi, which is an equivalence with the open d-submanifold X̂i ⊆ X corre-
sponding to X̂i ⊆ X for all i ∈ I, such that for all i < j in I there exists a
2-morphism ηij : ψj ◦ Seij ,êij ⇒ ψi ◦ iVij ,Vi , where Seij ,êij : SVij ,Ei|Vij ,si|Vij →
SVj ,Ej ,sj and iVij ,Vi : SVij ,Ei|Vij ,si|Vij → SVi,Ei,si are as in Example 1.4.4. This

d-manifold X is unique up to equivalence in dMan.
Suppose also that Y is a manifold, and gi : Vi → Y are smooth maps for

all i ∈ I, and gj ◦ eij = gi|Vij + O(si) for all i < j in I. Then there exist a
1-morphism h : X → Y unique up to 2-isomorphism, where Y = FdMan

Man (Y ) =
SY,0,0, and 2-morphisms ζi : h ◦ ψi ⇒ Sgi,0 for all i ∈ I. Here SY,0,0 is
from Example 1.4.4 with vector bundle E and section s both zero, and Sgi,0 :
SVi,Ei,si → SY,0,0 = Y is from Example 1.4.5 with ĝi = 0.
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The hypotheses of Theorem 1.4.17 are similar to the notion of good coordi-
nate system in the theory of Kuranishi spaces of Fukaya and Ono [34, Def. 6.1],
as discussed in §1.11.9. The importance of Theorem 1.4.17 is that all the ingre-
dients are described wholly in differential-geometric or topological terms. So we
can use the theorem as a tool to prove the existence of d-manifold structures on
spaces coming from other areas of geometry, for instance, on moduli spaces.

1.4.5 Submersions, immersions and embeddings

Let f : X → Y be a smooth map of manifolds. Then df∗ : f∗(T ∗Y )→ T ∗X is
a morphism of vector bundles on X, and f is a submersion if df∗ is injective,
and f is an immersion if df∗ is surjective. Here the appropriate notions of
injective and surjective for morphisms of vector bundles are stronger than the
corresponding notions for sheaves: df∗ is injective if it has a left inverse, and
surjective if it has a right inverse.

In a similar way, if f : X → Y is a 1-morphism of d-manifolds, we would like
to define f to be a submersion or immersion if the 1-morphism Ωf : f∗(T ∗Y )→
T ∗X in vvect(X) is injective or surjective in some suitable sense. It turns out
that there are two different notions of injective and surjective 1-morphisms in
the 2-category vvect(X), a weak and a strong:

Definition 1.4.18. Let X be a C∞-scheme, (E1, E2, φ) and (F1,F2, ψ) be
virtual vector bundles on X, and (f1, f2) : (E•, φ) → (F•, ψ) be a 1-morphism
in vvect(X). Then we have a complex in qcoh(X):

0 // E1
f1⊕−φ // F1 ⊕ E2

ψ⊕f2

//
γ

oo F2

δ
oo // 0. (1.12)

One can show that f• is an equivalence in vvect(X) if and only if (1.12) is a
split short exact sequence in qcoh(X). That is, f• is an equivalence if and only
if there exist morphisms γ, δ as shown in (1.12) satisfying the conditions:

γ ◦ δ = 0, γ ◦ (f1 ⊕−φ) = idE1 ,

(f1 ⊕−φ) ◦ γ + δ ◦ (ψ ⊕ f2) = idF1⊕E2 , (ψ ⊕ f2) ◦ δ = idF2 .
(1.13)

Our notions of f• injective or surjective impose some but not all of (1.13):

(a) We call f• weakly injective if there exists γ : F1 ⊕ E2 → E1 in qcoh(X)
with γ ◦ (f1 ⊕−φ) = idE1 .

(b) We call f• injective if there exist γ : F1⊕E2 → E1 and δ : F2 → F1⊕E2

with γ◦δ = 0, γ◦(f1⊕−φ) = idE1 and (f1⊕−φ)◦γ+δ◦(ψ⊕f2) = idF1⊕E2 .

(c) We call f• weakly surjective if there exists δ : F2 → F1 ⊕ E2 in qcoh(X)
with (ψ ⊕ f2) ◦ δ = idF2 .

(d) We call f• surjective if there exist γ : F1⊕E2 → E1 and δ : F2 → F1⊕E2

with γ ◦ δ = 0, γ ◦ (f1 ⊕−φ) = idE1 and (ψ ⊕ f2) ◦ δ = idF2 .

If X is separated, paracompact, and locally fair, these are local conditions on X.
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Using these we define weak and strong forms of submersions, immersions,
and embeddings for d-manifolds.

Definition 1.4.19. Let f : X → Y be a 1-morphism of d-manifolds. Definition
1.4.10 defines a 1-morphism Ωf : f∗(T ∗Y )→ T ∗X in vvect(X). Then:

(a) We call f a w-submersion if Ωf is weakly injective.

(b) We call f a submersion if Ωf is injective.

(c) We call f a w-immersion if Ωf is weakly surjective.

(d) We call f an immersion if Ωf is surjective.

(e) We call f a w-embedding if it is a w-immersion and f : X → f(X) is a
homeomorphism, so in particular f is injective.

(f) We call f an embedding if it is an immersion and f is a homeomorphism
with its image.

Here w-submersion is short for weak submersion, etc. Conditions (a)–(d) all
concern the existence of morphisms γ, δ in the next equation satisfying identities:

0 // f∗(EY )
f ′′⊕−f∗(φY )

// EX ⊕ f∗(FY )
γ

oo
φX⊕f2

// FX
δ

oo // 0.

Parts (c)–(f) enable us to define d-submanifolds of d-manifolds. Open d-
submanifolds are open d-subspaces of a d-manifold. More generally, we call i :
X → Y a w-immersed, or immersed, or w-embedded, or embedded d-submanifold
of Y , if X,Y are d-manifolds and i is a w-immersion, immersion, w-embedding,
or embedding, respectively.

Here are some properties of these, taken from §4.1–§4.2:

Theorem 1.4.20. (i) Any equivalence of d-manifolds is a w-submersion, sub-
mersion, w-immersion, immersion, w-embedding and embedding.

(ii) If f , g : X → Y are 2-isomorphic 1-morphisms of d-manifolds then f is a
w-submersion, submersion, . . . , embedding, if and only if g is.

(iii) Compositions of w-submersions, submersions, w-immersions, immersions,
w-embeddings, and embeddings are 1-morphisms of the same kind.

(iv) The conditions that a 1-morphism of d-manifolds f : X → Y is a w-
submersion, submersion, w-immersion or immersion are local in X and Y .
That is, for each x ∈ X with f(x) = y ∈ Y , it suffices to check the conditions
for f |U : U → V with V an open neighbourhood of y in Y , and U an open
neighbourhood of x in f−1(V ) ⊆ X. The conditions that f : X → Y is a
w-embedding or embedding are local in Y , but not in X.

(v) Let f : X → Y be a submersion of d-manifolds. Then vdimX > vdimY ,
and if vdimX = vdimY then f is étale.

(vi) Let f : X → Y be an immersion of d-manifolds. Then vdimX 6 vdimY ,
and if vdimX = vdimY then f is étale.
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(vii) Let f : X → Y be a smooth map of manifolds, and f = FdMan
Man (f).

Then f is a submersion, immersion, or embedding in dMan if and only if f
is a submersion, immersion, or embedding in Man, respectively. Also f is a
w-immersion or w-embedding if and only if f is an immersion or embedding.

(viii) Let f : X → Y be a 1-morphism of d-manifolds, with Y a manifold.
Then f is a w-submersion.

(ix) Let X,Y be d-manifolds, with Y a manifold. Then πX : X × Y → X is
a submersion.

(x) Let f : X → Y be a submersion of d-manifolds, and x ∈ X with f(x) =
y ∈ Y . Then there exist open x ∈ U ⊆ X and y ∈ V ⊆ Y with f(U) = V ,
a manifold Z, and an equivalence i : U → V × Z, such that f |U : U → V is
2-isomorphic to πV ◦ i, where πV : V ×Z → V is the projection.

(xi) Let f : X → Y be a submersion of d-manifolds with Y a manifold. Then
X is a manifold.

1.4.6 D-transversality and fibre products

From §1.3.3, if g : X → Z and h : Y → Z are 1-morphisms of d-manifolds then
a fibre product W = Xg,Z,hY exists in dSpa, and is unique up to equivalence.
We want to know whether W is a d-manifold. We will define when g,h are
d-transverse, which is a sufficient condition for W to be a d-manifold.

Recall that if g : X → Z, h : Y → Z are smooth maps of manifolds, then a
fibre product W = X ×g,Z,h Y in Man exists if g, h are transverse, that is, if
TzZ = dg|x(TxX) + dh|y(TyY ) for all x ∈ X and y ∈ Y with g(x) = h(y) = z ∈
Z. Equivalently, dg|∗x⊕dh|∗y : TzZ

∗ → T ∗xX⊕T ∗y Y should be injective. Writing
W = X ×Z Y for the topological fibre product and e : W → X, f : W → Y for
the projections, with g ◦ e = h ◦ f , we see that g, h are transverse if and only if

e∗(dg∗)⊕ f∗(dh∗) : (g ◦ e)∗(T ∗Z)→ e∗(T ∗X)⊕ f∗(T ∗Y ) (1.14)

is an injective morphism of vector bundles on the topological space W , that is,
it has a left inverse. The condition that (1.15) has a left inverse is an analogue
of this, but on (dual) obstruction rather than cotangent bundles.

Definition 1.4.21. Let X,Y ,Z be d-manifolds and g : X → Z, h : Y → Z
be 1-morphisms. Let W = X ×g,Z,h Y be the C∞-scheme fibre product, and
write e : W → X, f : W → Y for the projections. Consider the morphism

α =

 e∗(g′′) ◦ Ie,g(EZ)

−f∗(h′′) ◦ If,h(EZ)

(g ◦ e)∗(φZ)

 : (g ◦ e)∗(EZ) −→
e∗(EX)⊕ f∗(EY )⊕ (g ◦ e)∗(FZ)

(1.15)

in qcoh(W ). We call g,h d-transverse if α has a left inverse. Note that this is
a local condition in W , since local choices of left inverse for α can be combined
using a partition of unity on W to make a global left inverse.
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In the notation of §1.4.3 and §1.4.5, we have 1-morphisms Ωg : g∗(T ∗Z)→
T ∗X in vvect(X) and Ωh : h∗(T ∗Z) → T ∗Y in vvect(Y ). Pulling these back
to vvect(W ) using e∗, f∗ we form the 1-morphism in vvect(W ):(

e∗(Ωg) ◦ Ie,g(T ∗Z)
)
⊕
(
f∗(Ωh) ◦ If,h(T ∗Z)

)
: (g ◦ e)∗(T ∗Z)

−→ e∗(T ∗X)⊕ f∗(T ∗Y ).
(1.16)

For (1.15) to have a left inverse is equivalent to (1.16) being weakly injective, as
in Definition 1.4.18. This is the d-manifold analogue of (1.14) being injective.

Here are the main results of §4.3:

Theorem 1.4.22. Suppose X,Y ,Z are d-manifolds and g : X → Z, h : Y →
Z are d-transverse 1-morphisms, and let W = X ×g,Z,h Y be the d-space fibre
product. Then W is a d-manifold, with

vdimW = vdimX + vdimY − vdimZ. (1.17)

Theorem 1.4.23. Suppose g : X → Z, h : Y → Z are 1-morphisms of d-
manifolds. The following are sufficient conditions for g,h to be d-transverse, so
that W = X ×g,Z,h Y is a d-manifold of virtual dimension (1.17):

(a) Z is a manifold, that is, Z ∈ M̂an; or

(b) g or h is a w-submersion.

The point here is that roughly speaking, g,h are d-transverse if they map the
direct sum of the obstruction spaces of X,Y surjectively onto the obstruction
spaces of Z. If Z is a manifold its obstruction spaces are zero. If g is a w-
submersion it maps the obstruction spaces ofX surjectively onto the obstruction
spaces of Z. In both cases, d-transversality follows. See [95, Th. 8.15] for the
analogue of Theorem 1.4.23(a) for Spivak’s derived manifolds.

Theorem 1.4.24. Let X,Z be d-manifolds, Y a manifold, and g : X → Z,
h : Y → Z be 1-morphisms with g a submersion. Then W = X ×g,Z,h Y is a
manifold, with dimW = vdimX + dimY − vdimZ.

Theorem 1.4.24 shows that we may think of submersions as ‘representable 1-
morphisms’ in dMan. We can locally characterize embeddings and immersions
in dMan in terms of fibre products with RRRn in dMan.

Theorem 1.4.25. (i) Let X be a d-manifold and g : X → RRRn a 1-morphism
in dMan. Then the fibre product W = X×g,RRRn,0∗ exists in dMan by Theorem
1.4.23(a), and the projection πX : W →X is an embedding.

(ii) Suppose f : X → Y is an immersion of d-manifolds, and x ∈ X with
f(x) = y ∈ Y . Then there exist open d-submanifolds x ∈ U ⊆ X and y ∈
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V ⊆ Y with f(U) ⊆ V , and a 1-morphism g : V → RRRn with g(y) = 0, where
n = vdimY − vdimX > 0, fitting into a 2-Cartesian square in dMan :

U
f |U��

//

� �� �
GO ∗

0 ��
V

g // RRRn.

If f is an embedding we may take U = f−1(V ).

Remark 1.4.26. For the applications the author has in mind, it will be crucial
that if g : X → Z and h : Y → Z are 1-morphisms with X,Y d-manifolds and
Z a manifold then W = X ×Z Y is a d-manifold, with vdimW = vdimX +
vdimY − dimZ, as in Theorem 1.4.23(a). We will show by example, following
Spivak [95, Prop. 1.7], that if d-manifolds dMan were an ordinary category
containing manifolds as a full subcategory, then this would be false.

Consider the fibre product ∗ ×0,RRR,0 ∗ in dMan. If dMan were a category
then as ∗ is a terminal object, the fibre product would be ∗. But then

vdim(∗×0,RRR,0 ∗) = vdim∗ = 0 6= −1 = vdim∗+ vdim∗− vdimRRR,

so equation (1.17) and Theorem 1.4.23(a) would be false. Thus, if we want fibre
products of d-manifolds over manifolds to be well behaved, then dMan must
be at least a 2-category. It could be an ∞-category, as for Spivak’s derived
manifolds [94, 95], or some other kind of higher category. Making d-manifolds
into a 2-category, as we have done, is the simplest of the available options.

1.4.7 Embedding d-manifolds into manifolds

Let V be a manifold, E → V a vector bundle, and s ∈ C∞(E). Then Example
1.4.4 defines a ‘standard model’ principal d-manifold SV,E,s. When E and s
are zero, we have SV,0,0 = V = FdMan

Man (V ), so that SV,0,0 is a manifold. For

general V,E, s, taking f = idV : V → V and f̂ = 0 : E → 0 in Example 1.4.5
gives a ‘standard model’ 1-morphism SidV ,0 : SV,E,s → SV,0,0 = V . One can
show SidV ,0 is an embedding, in the sense of Definition 1.4.19. Any principal
d-manifold U is equivalent to some SV,E,s. Thus we deduce:

Lemma 1.4.27. Any principal d-manifold U admits an embedding i : U → V
into a manifold V .

Theorem 1.4.32 below is a converse to this: if a d-manifold X can be em-
bedded into a manifold Y , then X is principal. So it will be useful to study
embeddings of d-manifolds into manifolds. The following classical facts are due
to Whitney [106].

Theorem 1.4.28. (a) Let X be an m-manifold and n > 2m. Then a generic
smooth map f : X → Rn is an immersion.

(b) Let X be an m-manifold and n > 2m+ 1. Then there exists an embedding
f : X → Rn, and we can choose such f with f(X) closed in Rn. Generic
smooth maps f : X → Rn are embeddings.
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In §4.4 we generalize Theorem 1.4.28 to d-manifolds.

Theorem 1.4.29. Let X be a d-manifold. Then there exist immersions and/or
embeddings f : X → RRRn for some n� 0 if and only if there is an upper bound
for dimT ∗xX for all x ∈ X. If there is such an upper bound, then immersions
f : X → RRRn exist provided n > 2 dimT ∗xX for all x ∈ X, and embeddings
f : X → RRRn exist provided n > 2 dimT ∗xX + 1 for all x ∈ X. For embeddings
we may also choose f with f(X) closed in Rn.

Here is an example in which the condition does not hold.

Example 1.4.30. RRRk×0,RRRk,0∗ is a principal d-manifold of virtual dimension 0,

with C∞-scheme Rk, and obstruction bundle Rk. Thus X =
∐
k>0RRR

k×0,RRRk,0 ∗
is a d-manifold of virtual dimension 0, with C∞-scheme X =

∐
k>0 R

k. Since

T ∗xX
∼= Rn for x ∈ Rn ⊂

∐
k>0 R

k, dimT ∗xX realizes all values n > 0. Hence

there cannot exist immersions or embeddings f : X → RRRn for any n > 0.

As x 7→ dimT ∗xX is an upper semicontinuous map X → N, if X is compact
then dimT ∗xX is bounded above, giving:

Corollary 1.4.31. Let X be a compact d-manifold. Then there exists an em-
bedding f : X → RRRn for some n� 0.

If a d-manifold X can be embedded into a manifold Y , we show in §4.4 that
we can write X as the zeroes of a section of a vector bundle over Y near its
image. See [95, Prop. 9.5] for the analogue for Spivak’s derived manifolds.

Theorem 1.4.32. Suppose X is a d-manifold, Y a manifold, and f : X → Y
an embedding, in the sense of Definition 1.4.19. Then there exist an open subset
V in Y with f(X) ⊆ V , a vector bundle E → V, and s ∈ C∞(E) fitting into a
2-Cartesian diagram in dSpa :

X
f

//
f�� � �� �

FN
η

V
0 ��

V
s // E.

Here Y = FdMan
Man (Y ), and similarly for V ,E, s,0, with 0 : V → E the zero

section. Hence X is equivalent to the ‘standard model’ d-manifold SV,E,s of
Example 1.4.4, and is a principal d-manifold.

Combining Theorems 1.4.29 and 1.4.32, Lemma 1.4.27, and Corollary 1.4.31
yields:

Corollary 1.4.33. Let X be a d-manifold. Then X is a principal d-manifold
if and only if dimT ∗xX is bounded above for all x ∈ X. In particular, if X is
compact, then X is principal.

Corollary 1.4.33 suggests that most interesting d-manifolds are principal, in
a similar way to most interesting C∞-schemes being affine in Remark 1.2.9(ii).
Example 1.4.30 gives a d-manifold which is not principal.
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1.4.8 Orientations on d-manifolds

Let X be an n-manifold. Then T ∗X is a rank n vector bundle on X, so its top
exterior power ΛnT ∗X is a line bundle (rank 1 vector bundle) on X. In algebraic
geometry, ΛnT ∗X would be called the canonical bundle of X. We define an
orientation ω on X to be an orientation on the fibres of ΛnT ∗X. That is, ω
is an equivalence class [τ ] of isomorphisms of line bundles τ : OX → ΛnT ∗X,
where OX is the trivial line bundle R × X → X, and τ, τ ′ are equivalent if
τ ′ = τ · c for some smooth c : X → (0,∞).

To generalize all this to d-manifolds, we will need a notion of the ‘top exterior
power’ L(E•,φ) of a virtual vector bundle (E•, φ) in §1.4.3. As the definition in
§4.5 is long, we will not give it, but just state its important properties:

Theorem 1.4.34. Let X be a C∞-scheme, and (E•, φ) a virtual vector bundle
on X. Then in §4.5 we define a line bundle (rank 1 vector bundle) L(E•,φ) on
X, which we call the orientation line bundle of (E•, φ). This satisfies:

(a) Suppose E1, E2 are vector bundles on X with ranks k1, k2, and φ : E1 → E2

is a morphism. Then (E•, φ) is a virtual vector bundle of rank k2 − k1,
and there is a canonical isomorphism L(E•,φ)

∼= Λk1(E1)∗ ⊗ Λk2E2.

(b) Let f• : (E•, φ)→ (F•, ψ) be an equivalence in vvect(X). Then there is a
canonical isomorphism Lf• : L(E•,φ) → L(F•,ψ) in qcoh(X).

(c) If (E•, φ) ∈ vvect(X) then Lidφ = idL(E•,φ)
: L(E•,φ) → L(E•,φ).

(d) If f• : (E•, φ) → (F•, ψ) and g• : (F•, ψ) → (G•, ξ) are equivalences in
vvect(X) then Lg•◦f• = Lg• ◦ Lf• : L(E•,φ) → L(G•,ξ).

(e) If f•, g• : (E•, φ) → (F•, ψ) are 2-isomorphic equivalences in vvect(X)
then Lf• = Lg• : L(E•,φ) → L(F•,ψ).

(f) Let f : X → Y be a morphism of C∞-schemes, and (E•, φ) ∈ vvect(Y ).
Then there is a canonical isomorphism If,(E•,φ) : f∗(L(E•,φ))→ Lf∗(E•,φ).

Now we can define orientations on d-manifolds.

Definition 1.4.35. Let X be a d-manifold. Then the virtual cotangent bundle
T ∗X is a virtual vector bundle onX by Proposition 1.4.11(b), so Theorem 1.4.34
gives a line bundle LT∗X on X. We call LT∗X the orientation line bundle of X.

An orientation ω on X is an orientation on LT∗X . That is, ω is an equiv-
alence class [τ ] of isomorphisms τ : OX → LT∗X in qcoh(X), where τ, τ ′ are
equivalent if they are proportional by a smooth positive function on X.

If ω = [τ ] is an orientation on X, the opposite orientation is −ω = [−τ ],
which changes the sign of the isomorphism τ : OX → LT∗X . When we refer to
X as an oriented d-manifold, −X will mean X with the opposite orientation,
that is, X is short for (X, ω) and −X is short for (X,−ω).

Example 1.4.36. (a) Let X be an n-manifold, and X = FdMan
Man (X) the asso-

ciated d-manifold. Then X = FC∞Sch
Man (X), EX = 0 and FX = T ∗X. So EX ,FX

are vector bundles of ranks 0, n. As Λ0EX ∼= OX , Theorem 1.4.34(a) gives a

38



canonical isomorphism LT∗X ∼= ΛnT ∗X. That is, LT∗X is isomorphic to the
lift to C∞-schemes of the line bundle ΛnT ∗X on the manifold X.

As above, an orientation on X is an orientation on the line bundle ΛnT ∗X.
Hence orientations on the d-manifold X = FdMan

Man (X) in the sense of Definition
1.4.35 are equivalent to orientations on the manifold X in the usual sense.

(b) Let V be an n-manifold, E → V a vector bundle of rank k, and s ∈ C∞(E).
Then Example 1.4.4 defines a ‘standard model’ principal d-manifold S = SV,E,s,
which has ES ∼= E∗|S , FS ∼= T ∗V |S , where E , T ∗V are the lifts of the vector
bundles E, T ∗V on V to V . Hence ES ,FS are vector bundles on SV,E,s of ranks

k, n, so Theorem 1.4.34(a) gives an isomorphism LT∗SV,E,s ∼= (ΛkE ⊗ΛnT ∗V )|S .
Thus LT∗SV,E,s is the lift to SV,E,s of the line bundle ΛkE⊗ΛnT ∗V over the

manifold V . Therefore we may induce an orientation on the d-manifold SV,E,s
from an orientation on the line bundle ΛkE ⊗ΛnT ∗V over V . Equivalently, we
can induce an orientation on SV,E,s from an orientation on the total space of
the vector bundle E∗ over V , or from an orientation on the total space of E.

We can construct orientations on d-transverse fibre products of oriented d-
manifolds. Note that (1.18) depends on an orientation convention: a different
choice would change (1.18) by a sign depending on vdimX, vdimY , vdimZ.
Our conventions follow those of Fukaya et al. [32, §8.2] for Kuranishi spaces.

Theorem 1.4.37. Work in the situation of Theorem 1.4.22, so that W,X,Y ,Z
are d-manifolds with W = X×g,Z,hY for g,h d-transverse, where e : W →X,
f : W → Y are the projections. Then we have orientation line bundles
LT∗W, . . . ,LT∗Z on W, . . . , Z, so LT∗W, e∗(LT∗X), f∗(LT∗Y ), (g ◦ e)∗(LT∗Z)
are line bundles on W . With a suitable choice of orientation convention, there
is a canonical isomorphism

Φ : LT∗W −→ e∗(LT∗X)⊗OW f∗(LT∗Y )⊗OW (g ◦ e)∗(LT∗Z)∗. (1.18)

Hence, if X,Y ,Z are oriented d-manifolds, then W also has a natural
orientation, since trivializations of LT∗X ,LT∗Y ,LT∗Z induce a trivialization
of LT∗W by (1.18).

Fibre products have natural commutativity and associativity properties.
When we include orientations, the orientations differ by some sign. Here is
an analogue of results of Fukaya et al. [32, Lem. 8.2.3] for Kuranishi spaces.

Proposition 1.4.38. Suppose V , . . . ,Z are oriented d-manifolds, e, . . . ,h are
1-morphisms, and all fibre products below are d-transverse. Then the following
hold, in oriented d-manifolds:

(a) For g : X → Z and h : Y → Z we have

X ×g,Z,h Y ' (−1)(vdimX−vdimZ)(vdimY−vdimZ)Y ×h,Z,g X.

In particular, when Z = ∗ so that X ×Z Y = X × Y we have

X × Y ' (−1)vdimX vdimYY ×X.
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(b) For e : V → Y , f : W → Y , g : W → Z, and h : X → Z we have

V ×e,Y ,f◦πW
(
W ×g,Z,hX

)
'
(
V ×e,Y ,f W

)
×g◦πW,Z,hX.

(c) For e : V → Y , f : V → Z, g : W → Y , and h : X → Z we have

V ×(e,f),Y×Z,g×h (W ×X) '
(−1)vdimZ(vdimY+vdimW)(V ×e,Y ,gW)×f◦πV ,Z,hX.

1.5 Manifolds with boundary and manifolds with corners

So far we have discussed only manifolds without boundary (locally modelled
on Rn). One can also consider manifolds with boundary (locally modelled on
[0,∞)×Rn−1) and manifolds with corners (locally modelled on [0,∞)k×Rn−k).
In [55], surveyed in Chapter 5, the author studied manifolds with boundary and
with corners, giving a new definition of smooth map f : X → Y between
manifolds with corners X,Y , satisfying extra conditions over ∂kX, ∂lY . This
yields categories Manb,Manc of manifolds with boundary and with corners
with good properties as categories.

1.5.1 Boundaries and smooth maps

The definition of an n-manifold with corners X in §5.1 involves an atlas of charts
(U, φ) on X with U ⊆ [0,∞)k × Rn−k open and φ : U ↪→ X a homeomorphism
with an open set in X. Apart from taking U ⊆ [0,∞)k × Rn−k rather than
U ⊆ Rn, there is no difference with the usual definition of n-manifold without
boundary. The definitions of the boundary ∂X of X in §5.1, and of smooth
map f : X → Y between manifolds with corners in §5.2, may be surprising for
readers who have not thought much about corners, so we give them here.

Definition 1.5.1. Let X be a manifold with corners, of dimension n. Then
there is a natural stratification X =

∐n
k=0 S

k(X), where Sk(X) is the depth k
stratum of X, that is, the set of points x ∈ X such that X near x is locally
modelled on [0,∞)k×Rn−k near 0. Then Sk(X) is an (n−k)-manifold without

boundary, and Sk(X) =
∐n
l=k S

l(X). The interior of X is X◦ = S0(X).
A local boundary component β of X at x is a local choice of connected com-

ponent of S1(X) near x. That is, for each sufficiently small open neighbourhood
V of x in X, β gives a choice of connected component W of V ∩ S1(X) with
x ∈ W , and any two such choices V,W and V ′,W ′ must be compatible in the
sense that x ∈ (W ∩W ′). As a set, define the boundary

∂X =
{

(x, β) : x ∈ X, β is a local boundary component for X at x
}
.

Then ∂X is an (n− 1)-manifold with corners if n > 0, and ∂X = ∅ if n = 0.
Define a smooth map iX : ∂X → X by iX : (x, β) 7→ x.
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Example 1.5.2. The manifold with corners X = [0,∞)2 has strata S0(X) =
(0,∞)2, S1(X) =

(
{0} × (0,∞)

)
q
(
(0,∞) × {0}

)
and S2(X) = {(0, 0)}. A

point (a, b) in X has local boundary components {x = 0} if a = 0 and {y = 0}
if b = 0. Thus

∂X =
{(

(x, 0), {y = 0}
)

: x ∈ [0,∞)
}
q
{(

(0, y), {x = 0}
)

: y ∈ [0,∞)
}

∼= [0,∞)q [0,∞).

Note that iX : ∂X → X maps two points
(
(0, 0), {x = 0}

)
,
(
(0, 0), {y = 0}

)
to (0, 0). In general, if a manifold with corners X has ∂2X 6= ∅ then iX is not
injective, so the boundary ∂X is not a subset of X.

Definition 1.5.3. Let X,Y be manifolds with corners of dimensions m,n. A
continuous map f : X → Y is called weakly smooth if whenever (U, φ), (V, ψ)
are charts on X,Y then

ψ−1 ◦ f ◦ φ : (f ◦ φ)−1(ψ(V )) −→ V

is a smooth map from (f ◦ φ)−1(ψ(V )) ⊂ Rm to V ⊂ Rn.
Let (x, β) ∈ ∂X. A boundary defining function for X at (x, β) is a pair

(V, b), where V is an open neighbourhood of x in X and b : V → [0,∞) is
a weakly smooth map, such that db|v : TvV → Tb(v)[0,∞) is nonzero for all

v ∈ V , and there exists an open neighbourhood U of (x, β) in i−1
X (V ) ⊆ ∂X,

with b ◦ iX |U = 0, and iX |U : U −→
{
v ∈ V : b(v) = 0

}
is a homeomorphism.

A weakly smooth map of manifolds with corners f : X → Y is called smooth
if it satisfies the following additional condition over ∂X, ∂Y . Suppose x ∈ X
with f(x) = y ∈ Y , and β is a local boundary component of Y at y. Let (V, b)
be a boundary defining function for Y at (y, β). We require that either:

(i) There exists an open x ∈ Ṽ ⊆ f−1(V ) ⊆ X such that (Ṽ , b ◦ f |Ṽ ) is a

boundary defining function for X at (x, β̃), for some unique local boundary
component β̃ of X at x; or

(ii) There exists an open x ∈W ⊆ f−1(V ) ⊆ X with b ◦ f |W = 0.

Form the fibre products of topological spaces

∂X×f◦iX ,Y,iY ∂Y =
{(

(x, β̃), (y, β)
)
∈∂X×∂Y : f ◦iX(x, β̃)=y= iY (y, β)

}
,

X ×f,Y,iY ∂Y =
{(
x, (y, β)

)
∈ X × ∂Y : f(x) = y = iY (y, β)

}
.

Define subsets Sf ⊆ ∂X×Y ∂Y and Tf ⊆ X×Y ∂Y by
(
(x, β̃), (y, β)

)
∈ Sf in case

(i) above, and
(
x, (y, β)

)
∈ Tf in case (ii) above. Define maps sf : Sf → ∂X,

tf : Tf → X, uf : Sf → ∂Y , vf : Tf → ∂Y to be the projections from the
fibre products. Then Sf , Tf are open and closed in ∂X ×Y ∂Y,X ×Y ∂Y and
have the structure of manifolds with corners, with dimSf = dimX − 1 and
dimTf = dimX, and st, tf , uf , vf are smooth maps with sf , tf étale.

We write Manc for the category of manifolds with corners, with morphisms
smooth maps, and Manb for the full subcategory of manifolds with boundary.

41



1.5.2 (Semi)simple maps, submersions, immersions, embeddings

In §5.4 and §5.7 we define some interesting classes of smooth maps:

Definition 1.5.4. Let f : X → Y be a smooth map of manifolds with corners.

(a) We call f simple if sf : Sf → ∂X in Definition 1.5.3 is bijective.

(b) We call f semisimple if sf : Sf → ∂X is injective.

(c) We call f flat if Tf = ∅ in Definition 1.5.3.

(d) We call f a diffeomorphism if it has a smooth inverse f−1 : Y → X.

(e) We call f a submersion if for all x ∈ Sk(X) ⊆ Y with f(x) = y ∈ Sl(Y ) ⊆
Y , then df |x : TxX → Tf(x)Y and df |x : Tx(Sk(X)) → Tf(x)(S

l(Y ))
are surjective. Submersions are automatically semisimple. We call f an
s-submersion if it is a simple submersion.

(f) We call f an immersion if df |x : TxX → Tf(x)Y is injective for all x ∈ X.
We call f an s-immersion (or sf-immersion) if f is also simple (or simple
and flat). We call f an embedding (or s-embedding, or sf-embedding) if f
is an immersion (or s-immersion, or sf-immersion), and f : X → f(X) is
a homeomorphism with its image.

For manifolds without boundary, one considers immersed or embedded sub-
manifolds. Part (f) gives six different notions of submanifolds X of manifolds
with corners Y : immersed, s-immersed, sf-immersed, embedded, s-embedded and
sf-embedded submanifolds.

Example 1.5.5. (i) The inclusion i : [0,∞) ↪→ R is an embedding. It is
semisimple and flat, but not simple, as si : Si → ∂[0,∞) maps ∅ → {0}, and is
not surjective, so i is not an s- or sf-embedding. Thus [0,∞) is an embedded
submanifold of R, but not an s- or sf-embedded submanifold.

(ii) The map f : [0,∞)→ [0,∞)2 mapping f : x 7→ (x, x) is an embedding. It is
flat, but not semisimple, as sf : Sf → ∂[0,∞) maps two points to one point, and
is not injective. Hence f is not an s- or sf-embedding, and

{
(x, x) : x ∈ [0,∞)

}
is an embedded submanifold of [0,∞)2, but not s- or sf-embedded.

(iii) The inclusion i : {0} ↪→ [0,∞) has di|0 injective, so it is an embedding. It is
simple, but not flat, as Ti =

{(
0, (0, {x = 0})

)}
6= ∅. Thus i is an s-embedding,

but not an sf-embedding. Hence {0} is an s-embedded but not sf-embedded
submanifold of [0,∞).

(iv) Let X be a manifold with corners with ∂X 6= ∅. Then iX : ∂X → X
is an immersion. Also siX : SiX → ∂2X is a bijection, so iX is simple, but
TiX

∼= ∂X 6= ∅, so iX is not flat. Hence iX is an s-immersion, but not an
sf-immersion. If ∂2X = ∅ then iX is an s-embedding, but not an sf-embedding.

(v) Let f : [0,∞) → R be smooth. Define g : [0,∞) → [0,∞) × R by g(x) =
(x, f(x)). Then g is an sf-embedding, and Γf =

{
(x, f(x) : x ∈ [0,∞)

}
is an

sf-embedded submanifold of [0,∞)× R.

Simple and semisimple maps have a property of lifting to boundaries:
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Proposition 1.5.6. Let f : X → Y be a semisimple map of manifolds with
corners. Then there exists a natural decomposition ∂X = ∂f+X q ∂

f
−X with

∂f±X open and closed in ∂X, and semisimple maps f+ = f ◦ iX |∂f+X : ∂f+X → Y

and f− : ∂f−X → ∂Y, such that the following commutes in Manc :

∂f−X f−

//

iX |
∂
f
−X��

∂Y
iY ��

X
f // Y.

(1.19)

If f is also flat, then (1.19) is a Cartesian square, so that ∂f−X
∼= X×Y ∂Y . If

f is simple then ∂f+X = ∅ and ∂f−X = ∂X. If f is simple, flat, a submersion,
or an s-submersion, then f± are also simple, . . . , s-submersions, respectively.

In fact we define ∂f−X = sf (Sf ), so that sf : Sf → ∂f−X is a bijection since

sf is injective as f is semisimple, and then f− = uf ◦ s−1
f , using the notation of

Definition 1.5.3. If f : X → Y is simple then f− : ∂X → ∂Y is also simple, so
f−k : ∂kX → ∂kY is simple for k = 1, 2, . . . . If f is also flat then f−k is flat and
∂kX ∼= X×Y ∂kY . A smooth map f : X → Y is flat if and only if f(X◦) ⊆ Y ◦,
or equivalently, if f : X → Y and iY : ∂Y → Y are transverse.

(S-)submersions are locally modelled on projections πX : X × Y → X:

Proposition 1.5.7. (a) Let X,Y be manifolds with corners. Then the projec-
tion πX : X × Y → X is a submersion, and an s-submersion if ∂Y = ∅.
(b) Let f : X → Y be a submersion of manifolds with corners, and x ∈ X
with f(x) = y ∈ Y . Then there exist open neighbourhoods V of x in X and W
of y in Y with f(V ) = W, a manifold with corners Z, and a diffeomorphism
V ∼= W × Z which identifies f |V : V → W with πW : W × Z → W . If f is an
s-submersion then ∂Z = ∅.

S-immersions and sf-immersions are also locally modelled on products:

Proposition 1.5.8. (a) Let X be a manifold with corners and 0 6 k 6 n. Then
idX × 0 : X → X ×

(
[0,∞)k × Rn−k

)
mapping x 7→ (x, 0) is an s-embedding,

and an sf-embedding if k = 0.

(b) Let f : X → Y be an s-immersion of manifolds with corners, and x ∈ X
with f(x) = y ∈ Y . Then there exist open neighbourhoods V of x in X and W
of y in Y with f(V ) ⊆ W, an open neighbourhood Z of 0 in [0,∞)k × Rn−k,
and a diffeomorphism W ∼= V ×Z which identifies f |V : V →W with idV × 0 :
V → V × Z. If f is an sf-immersion then k = 0.

Example 1.5.5(ii) shows general immersions are not modelled on products.

1.5.3 Corners and the corner functors

As in §5.5, we define the k-corners Ck(X) of a manifold with corners X.
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Definition 1.5.9. Let X be an n-manifold with corners. Applying ∂ repeatedly
gives manifolds with corners ∂X, ∂2X, . . . . There is a natural identification

∂kX ∼=
{

(x, β1, . . . , βk) : x ∈ X, β1, . . . , βk are distinct

local boundary components for X at x
}
.

(1.20)

Using (1.20), we see that the symmetric group Sk of permutations of {1, . . . , k}
has a natural, free action on ∂kX by diffeomorphisms, given by

σ : (x, β1, . . . , βk) 7−→ (x, βσ(1), . . . , βσ(k)).

Define the k-corners of X, as a set, to be

Ck(X) =
{

(x, {β1, . . . , βk}) : x ∈ X, β1, . . . , βk are distinct

local boundary components for X at x
}
.

Then Ck(X) is naturally a manifold with corners of dimension n − k, with
Ck(X) ∼= ∂kX/Sk. The interior Ck(X)◦ is naturally diffeomorphic to Sk(X).
We have natural diffeomorphisms C0(X) ∼= X and C1(X) ∼= ∂X.

A surprising fact about manifolds with corners X is that the disjoint union
C(X) :=

∐dimX
k=0 Ck(X) has strong functorial properties. Since C(X) is not a

manifold with corners, it is helpful to enlarge our category Manc:

Definition 1.5.10. Write M̌anc for the category whose objects are disjoint
unions

∐∞
m=0Xm, where Xm is a manifold with corners of dimension m, and

whose morphisms are continuous maps f :
∐∞
m=0Xm →

∐∞
n=0 Yn, such that

f |Xm∩f−1(Yn) :
(
Xm ∩ f−1(Yn)

)
→ Yn is a smooth map of manifolds with

corners for all m,n > 0.

Definition 1.5.11. Define corner functors C, Ĉ : Manc → M̌anc by C(X) =

Ĉ(X) =
∐dimX
k=0 Ck(X) on objects, and on morphisms f : X → Y in Manc,

C(f) :
(
x, {β̃1, . . . , β̃i}

)
7−→

(
y, {β1, . . . , βj}

)
, where y = f(x),

{β1, . . . , βj}=
{
β :
(
(x, β̃l), (y, β)

)
∈ Sf , some l = 1, . . . , i

}
,

Ĉ(f) :
(
x, {β̃1, . . . , β̃i}

)
7−→

(
y, {β1, . . . , βj}

)
, where y = f(x),

{β1, . . . , βj}=
{
β :
(
(x, β̃l), (y, β)

)
∈ Sf , l = 1, . . . , i

}
∪
{
β :
(
x, (y, β)

)
∈Tf

}
.

Write Cf,kj (X) = Cj(X) ∩ C(f)−1(Ck(Y )) and Ckj (f) = C(f)|Cf,kj (X) :

Cf,kj (X) → Ck(Y ) for all j, k, and similarly for Ĉf,kj (X), Ĉkj (f). Then Ckj (f)

and Ĉkj (f) are smooth maps of manifolds with corners. Note that Cf,00 (X) =

C0(X) ∼= X and C0(Y ) ∼= Y , and these isomorphisms identify C0
0 (f) : C0(X)→

C0(Y ) with f : X → Y .

It turns out that C, Ĉ are both functors Manc → M̌anc. Furthermore:
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(i) For each X ∈Manc we have a natural diffeomorphism C(∂X) ∼= ∂C(X)
identifying C(iX) : C(∂X)→ C(X) with iC(X) : ∂C(X)→ C(X)

(ii) For all X,Y in Manc we have a natural diffeomorphism C(X × Y ) ∼=
C(X)×C(Y ). These diffeomorphisms commute with product morphisms
and direct product morphisms in Manc, M̌anc.

(iii) If g : X → Z and h : Y → Z are strongly transverse maps in Manc

then C maps the fibre product X ×g,Z,h Y in Manc to the fibre product
C(X)×C(g),C(Z),C(h) C(Y ) in M̌anc.

(iv) If f : X → Y is semisimple, then C(f) maps Ck(X) →
∐k
l=0 Cl(Y ) for

all k > 0. The natural diffeomorphisms C1(X) ∼= ∂X, C0(Y ) ∼= Y and

C1(Y ) ∼= ∂Y identify Cf,01 (X) ∼= ∂f+X, C
0
1 (f) ∼= f+, C

f,1
1 (X) ∼= ∂f−X and

C1
1 (f) ∼= f−. If f is simple then C(f) maps Ck(X)→ Ck(Y ) for all k > 0.

The analogues hold for Ĉ, except for (iv) and the last part of (i).

1.5.4 (Strong) transversality and fibre products

In §5.6 we discuss conditions for fibre products to exist in Manc.

Definition 1.5.12. Let g : X → Z, h : Y → Z be smooth maps of manifolds
with corners. We call g, h transverse if whenever x ∈ Sj(X) ⊆ X, y ∈ Sk(Y ) ⊆
Y and z ∈ Sl(Z) ⊆ Z with g(x) = h(y) = z, then TzZ = dg|x(TxX)+dh|y(TyY )
and Tz(S

l(Z)) = dg|x(Tx(Sj(X))) + dh|y(Ty(Sk(Y ))).
We call g, h strongly transverse if they are transverse, and whenever there

are points in Cj(X), Ck(Y ), Cl(Z) with

C(g)(x, {β1, . . . , βj}) = C(h)(y, {β̃1, . . . , β̃k}) = (z, {β̇1, . . . , β̇l})

we have either j + k > l or j = k = l = 0.

If one of g, h is a submersion then g, h are strongly transverse. It is well
known that transverse fibre products of manifolds without boundary exist. Here
is the (more difficult to prove) analogue for manifolds with corners.

Theorem 1.5.13. Let g : X → Z, h : Y → Z be transverse smooth maps of
manifolds with corners. Then a fibre product W =X ×g,Z,h Y exists in Manc.

As a topological space, the fibre product in Theorem 1.5.13 is just the topo-
logical fibre product W =

{
(x, y) ∈ X × Y : g(x) = h(y)

}
. In general, the

boundary ∂W is difficult to describe explicitly: it is the quotient of a subset of
(∂X×Z Y )q (X×Z ∂Y ) by an equivalence relation. Here are some special cases
in which we can give an explicit formula for ∂W .

Proposition 1.5.14. Let g : X → Z, h : Y → Z be transverse smooth maps in
Manc, so that X ×g,Z,h Y exists by Theorem 1.5.13. Then:

(a) If ∂Z = ∅ then

∂
(
X ×g,Z,h Y

) ∼= (∂X ×g◦iX ,Z,h Y )q (X ×g,Z,h◦iY ∂Y ). (1.21)
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(b) If g is semisimple then

∂
(
X ×g,Z,h Y

) ∼= (∂g+X ×g+,Z,h Y
)
q
(
X ×g,Z,h◦iY ∂Y

)
. (1.22)

(c) If both g, h are semisimple then

∂
(
X ×g,Z,h Y

) ∼=(
∂g+X ×g+,Z,h Y

)
q
(
X ×g,Z,h+

∂h+Y
)
q
(
∂g−X ×g−,∂Z,h− ∂h−Y

)
.

(1.23)

Here all fibre products in (1.21)–(1.23) are transverse, and so exist.

For strongly transverse smooth maps, fibre products commute with the cor-
ner functors C, Ĉ : Manc → M̌anc. Since C1(W ) ∼= ∂W , equation (1.24) with
i = 1 gives another explicit description of ∂W in this case.

Theorem 1.5.15. Let g : X → Z, h : Y → Z be strongly transverse smooth
maps of manifolds with corners, and write W for the fibre product X ×g,Z,h Y
given by Theorem 1.5.13. Then there is a canonical diffeomorphism

Ci(W ) ∼=
∐

j,k,l>0:i=j+k−l

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y ) (1.24)

for all i > 0, where the fibre products are all transverse and so exist. Hence

C(W ) ∼= C(X)×C(g),C(Z),C(h) C(Y ) in M̌anc.

1.5.5 Orientations on manifolds with corners

In §5.8 we discuss orientations on manifolds with corners.

Definition 1.5.16. Let X be an n-manifold with corners. An orientation ω
on X is an orientation on the fibres of the real line bundle ΛnT ∗X over X.
That is, ω is an equivalence class [τ ] of isomorphisms τ : OX → ΛnT ∗X, where
OX = R × X → X is the trivial line bundle on X, and τ, τ ′ are equivalent if
τ ′ = τ · c for some smooth c : X → (0,∞).

If ω = [τ ] is an orientation, we write −ω for the opposite orientation [−τ ].
We call the pair (X,ω) an oriented manifold. Usually we suppress the ori-

entation ω, and just refer to X as an oriented manifold. When X is an oriented
manifold, we write −X for X with the opposite orientation.

IfX,Y, Z are oriented manifolds with corners, then we can define orientations
on boundaries ∂X, products X × Y , and transverse fibre products X ×Z Y . To
do this requires a choice of orientation convention. Our orientation conventions
are given in Convention 5.35. Having fixed an orientation convention, natural
isomorphisms of manifolds with corners such as X ×Z Y ∼= Y ×Z X lift to
isomorphisms of oriented manifolds of corners, modified by signs depending on
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the dimensions. For example, if g : X → Z and h : Y → Z are transverse maps
of oriented manifolds with corners then

X ×g,Z,h Y ∼= (−1)(dimX−dimZ)(dimY−dimZ)Y ×h,Z,g X,

and with orientations equations (1.21)–(1.23) become

∂
(
X×g,Z,hY

)∼=(∂X×g◦iX ,Z,hY )q(−1)dimX+dimZ
(
X×g,Z,h◦iY ∂Y

)
,

∂
(
X×g,Z,hY

)∼=(∂g+X×g+,Z,hY
)
q(−1)dimX+dimZ

(
X×g,Z,h◦iY ∂Y

)
,

∂
(
X ×g,Z,h Y

)∼=(∂g+X ×g+,Z,h Y
)
q(−1)dimX+dimZ

(
X×h,Z,h+

∂h+Y
)

q
(
∂g−X ×g−,∂Z,h− ∂h−Y

)
.

1.5.6 Fixed points of finite groups in manifolds with corners

In §5.5 we study the fixed point locus XΓ of a group Γ acting on a manifold
with corners X. These are related to orbifold strata XΓ of orbifolds with corners
X, which we will discuss in §1.12.5. Here is our main result.

Proposition 1.5.17. Suppose X is a manifold with corners, Γ a finite group,
and r : Γ → Aut(X) an action of Γ on X by diffeomorphisms. Applying the
corner functor C of §1.5.3 gives an action C(r) : Γ → Aut(C(X)) of Γ on
C(X) by diffeomorphisms. Write XΓ, C(X)Γ for the subsets of X,C(X) fixed
by Γ, and jX,Γ : XΓ → X for the inclusion. Then:

(a) XΓ has the structure of an object in M̌anc (a disjoint union of manifolds
with corners of different dimensions, as in §1.5.3) in a unique way, such
that jX,Γ : XΓ → X is an embedding. This jX,Γ is flat, but need not be
(semi)simple.

(b) By (a) we have a smooth map C(jX,Γ) : C(XΓ)→ C(X). This C(jX,Γ) is
a diffeomorphism C(XΓ)→ C(X)Γ. As jX,Γ need not be simple, C(jX,Γ)
need not map Ck(XΓ)→ Ck(X) for k > 0.

(c) By (b), C(jX,Γ) identifies C1(XΓ) ∼= ∂(XΓ) with a subset of C(X)Γ ⊆
C(X). This gives the following description of ∂(XΓ) :

∂(XΓ) ∼=
{

(x, {β1, . . . , βk}) ∈ Ck(X) : x ∈ XΓ, k > 1, β1, . . . , βk

are distinct local boundary components for X at x,

and Γ acts transitively on {β1, . . . , βk}
}
.

(d) Now suppose Y is a manifold with corners with an action of Γ, and f :
X → Y is a Γ-equivariant smooth map. Then XΓ, Y Γ are objects in M̌anc

by (a), and fΓ := f |XΓ : XΓ → Y Γ is a morphism in M̌anc.

Example 1.5.18. Let Γ = {1, σ} with σ2 = 1, so that Γ ∼= Z2, and let Γ
act on X = [0,∞)2 by σ : (x1, x2) 7→ (x2, x1). Then XΓ =

{
(x, x) : x ∈

[0,∞)
} ∼= [0,∞), a manifold with corners, and the inclusion jX,Γ : XΓ → X is
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jX,Γ : [0,∞) → [0,∞)2, jX,Γ : x 7→ (x, x), a smooth, flat embedding, which is
not semisimple. We have ∂X = ∂

(
[0,∞)2

) ∼= [0,∞)q[0,∞), where Γ acts freely
on ∂X by exchanging the two copies of [0,∞). Hence (∂X)Γ = ∅, but ∂(XΓ) is
a point ∗, so in this case (∂X)Γ 6∼= ∂(XΓ). Also C2(X) =

{(
0, {{x1 = 0}, {x2 =

0}}
)}

is a single point, which is Γ-invariant, and C(jX,Γ) : C(XΓ) → C(X)Γ

identifies (0, {{x = 0}}) ∈ C1(XΓ) ∼= ∂X with this point in C2(X)Γ.

If a finite group Γ acts on a manifold with corners X then as in Proposition
1.5.17(b) we have C(X)Γ ∼= C(XΓ), but as in Example 1.5.18 in general we do
not have (∂X)Γ ∼= ∂(XΓ), but only (∂X)Γ ⊆ ∂(XΓ). Thus for fixed point loci,
corners have more functorial behaviour than boundaries.

1.6 D-spaces with corners

The goal of Chapters 6 and 7 is to construct and study a well-behaved 2-category
dManc of d-manifolds with corners, a derived version of Manc. It is tempting
to try and define dManc as a 2-subcategory of d-spaces dSpa, but this turns out
not to be a good idea. For example, the natural functor FdSpa

Manc : Manc → dSpa

is not full, as 1-morphisms f : FdSpa
Manc(X) → FdSpa

Manc(Y ) correspond to weakly
smooth rather than smooth maps f : X → Y , in the notation of §1.5.1.

Therefore we begin in Chapter 6 by defining a 2-category dSpac of d-spaces
with corners, and then define dManc in Chapter 7 as a 2-subcategory of dSpac.
Many properties of manifolds with corners in §1.5 work for d-spaces with corners
— for example, boundaries ∂X, simple, semisimple and flat maps f : X → Y ,
decompositions ∂X = ∂f+X q ∂

f
−X and semisimple maps f+ : ∂f+X → Y and

f− : ∂f−X → ∂Y when f is semisimple, and the corner functors C, Ĉ.

1.6.1 Outline of the definition of the 2-category dSpac

The definition of the 2-category of d-spaces with corners dSpac in §6.1 is long,
complicated, and not that enlightening. So here we just sketch the main ideas.

Let X be a manifold with corners. Then it has a boundary ∂X with a proper
smooth map iX : ∂X → X. On ∂X we have an exact sequence

0 // NX
// i∗X(T ∗X)

(diX)∗ // T ∗(∂X) // 0, (1.25)

whereNX is the conormal bundle of ∂X inX. The line bundleNX has a natural
orientation ωX induced by outward-pointing normal vectors to ∂X in X.

Thus, for each manifold with cornersX we have a quadruple (X, ∂X, iX , ωX).
D-spaces with corners are based on this idea. A d-space with corners X is a
quadruple X = (X,∂X, iX, ωX) whereX,∂X are d-spaces, and iX : ∂X →X
is a proper 1-morphism, and we have an exact sequence in qcoh(∂X):

0 // NX
νX // i∗X(FX)

i2X // F∂X // 0, (1.26)

with NX a line bundle, and ωX is an orientation on NX. These X,∂X, iX, ωX

must satisfy some complicated conditions in §6.1, that we will not give. They
require ∂X to be locally equivalent to a fibre product X ×[0,∞) ∗ in dSpa.
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If X = (X,∂X, iX, ωX) and Y = (Y ,∂Y , iY, ωY) are d-spaces with cor-
ners, a 1-morphism f : X→ Y in dSpac is a 1-morphism f : X → Y in dSpa
satisfying extra conditions over ∂X,∂Y , which are analogous to the extra con-
ditions for a weakly smooth map of manifolds with corners f : X → Y to be
smooth in Definition 1.5.3.

If f : X → Y is a 1-morphism in dSpac, we can form the C∞-scheme
fibre products ∂X ×f◦iX,Y ,iY ∂Y and X ×f,Y ,iY ∂Y . As for Sf , Tf in Definition
1.5.3, we can define open and closed C∞-subschemes Sf ⊆ ∂X ×Y ∂Y and
T f ⊆ X×Y ∂Y , and define C∞-scheme morphisms sf : Sf → ∂X, tf : T f → X,
uf : Sf → ∂Y and vf : T f → ∂Y to be the projections from the fibre products.
Then sf , tf are étale.

If f , g : X → Y are 1-morphisms in dSpac, a 2-morphism η : f ⇒ g in
dSpac is a 2-morphism η : f ⇒ g in dSpa such that Sf = Sg, T f = T g and
extra vanishing conditions hold on η over Sf , T f . Identity 1- and 2-morphisms
in dSpac, and the compositions of 1- and 2-morphisms in dSpac, are all given
by identities and compositions in dSpa.

A d-space with corners X = (X,∂X, iX, ωX) is called a d-space with bound-
ary if iX : ∂X →X is injective, and a d-space without boundary if ∂X = ∅. We
write dSpab for the full 2-subcategory of d-spaces with boundary, and dS̄pa
for the full 2-subcategory of d-spaces without boundary, in dSpac. There is
an isomorphism of 2-categories FdSpac

dSpa : dSpa → dS̄pa mapping X 7→ X =
(X,∅,∅,∅) on objects, f 7→ f on 1-morphisms and η 7→ η on 2-morphisms. So
we can consider d-spaces to be examples of d-spaces with corners.

Remark 1.6.1. If X is a manifold with corners then the orientation ωX on NX

is determined uniquely by X, ∂X, iX . But there are examples of d-spaces with
corners X = (X,∂X, iX, ωX) in which ωX is not determined by X,∂X, iX,
and really is extra data. We include ωX in the definition so that orientations
of d-manifolds with corners behave well in relation to boundaries. If we had
omitted ωX from the definition, then there would exist examples of oriented
d-manifolds with corners X such that ∂X is not orientable.

For each d-space with corners X = (X,∂X, iX, ωX), in §6.2 we define a d-
space with corners ∂X = (∂X,∂2X, i∂X, ω∂X) called the boundary of X, and
show that iX : ∂X→ X is a 1-morphism in dSpac. Motivated by (1.20) when
k = 2, the d-space ∂2X in ∂X is given by

∂2X '
(
∂X ×iX,X,iX ∂X

)
\∆∂X(∂X), (1.27)

where ∆∂X : ∂X → ∂X×X ∂X is the diagonal 1-morphism. The 1-morphism
i∂X : ∂2X → ∂X is projection to the first factor in the fibre product. There
is a natural isomorphism N ∂X

∼= i∗X(NX), and the orientation ω∂X on N ∂X is
defined to correspond to the orientation i∗X(ωX) on i∗X(NX).

1.6.2 Simple, semisimple and flat 1-morphisms

In §6.3 we generalize the material on simple, semisimple, and flat maps of man-
ifolds with corners in §1.5.2 to d-spaces with corners. Here are the analogues of
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Definition 1.5.4(a)–(c) and Proposition 1.5.6.

Definition 1.6.2. Let f : X→ Y be a 1-morphism of d-spaces with corners.

(a) We call f simple if sf : Sf → ∂X is bijective.

(b) We call f semisimple if sf : Sf → ∂X is injective.

(c) We call f flat if T f = ∅.

Theorem 1.6.3. Let f : X→ Y be a semisimple 1-morphism of d-spaces with
corners. Then there exists a natural decomposition ∂X = ∂f+Xq∂f−X with ∂f±X
open and closed in ∂X, such that:

(a) Define f+ = f ◦ iX|∂f+X : ∂f+X→ Y. Then f+ is semisimple. If f is flat

then f+ is also flat.

(b) There exists a unique, semisimple 1-morphism f− : ∂f−X → ∂Y with

f ◦ iX|∂f−X = iY ◦ f−. If f is simple then ∂f+X = ∅, ∂f−X = ∂X, and

f− : ∂X → ∂Y is also simple. If f is flat then f− is flat, and the
following diagram is 2-Cartesian in dSpac :

∂f−X
f−

//
iX|

∂
f
−X �� � �� �

HP
idiY◦f−

∂Y
iY��

X
f // Y.

(1.28)

(c) Let g : X → Y be another 1-morphism, and η : f ⇒ g a 2-morphism in

dSpac. Then g is also semisimple, with ∂g−X = ∂f−X. If f is simple, or
flat, then g is simple, or flat, respectively. Part (b) defines 1-morphisms

f−, g− : ∂f−X → ∂Y. There is a unique 2-morphism η− : f− ⇒ g− in
dSpac such that idiY ∗ η−=η ∗ idiX|

∂
f
−X

: iY◦f− ⇒ iY◦g−.

We also show that the maps f 7→ f−, η 7→ η− in Theorem 1.6.3 are functo-
rial, in that they commute with compositions of 1- and 2-morphisms, and take
identities to identities. For simple 1-morphisms, this implies:

Corollary 1.6.4. Write dSpac
si for the 2-subcategory of dSpac with arbitrary

objects and 2-morphisms, but only simple 1-morphisms. Then there is a strict
2-functor ∂ : dSpac

si → dSpac
si mapping X 7→ ∂X on objects, f 7→ f− on

(simple) 1-morphisms, and η 7→ η− on 2-morphisms.

Thus, boundaries in dSpac have strong functoriality properties.

Remark 1.6.5. According to the general philosophy of working in 2-categories,
when one constructs an object with some property in a 2-category, it is usually
unique only up to equivalence. When one constructs a 1-morphism with some
property in a 2-category, it is usually unique only up to 2-isomorphism. When
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one considers diagrams of 1-morphisms in a 2-category, they usually commute
only up to (specified) 2-isomorphisms.

From this point of view, Theorem 1.6.3(b) looks unnatural, as it gives a 1-
morphism f− which is unique, not just up to 2-isomorphism, and a 1-morphism
diagram (1.28) which commutes strictly, not just up to 2-isomorphism.

In fact, this unnaturalness pervades our treatment of boundaries. In our
definition of d-space with corners X = (X,∂X, iX, ωX), the conditions on the
1-morphism iX : ∂X → X depend on ∂X up to 1-isomorphism in dSpa,
rather than up to equivalence, and depend on iX up to equality, not just up to
2-isomorphism. Boundaries ∂X are natural up to 1-isomorphism in dSpac, not
up to equivalence, and 1-morphisms iX : ∂X→ X natural up to equality.

The author chose this definition of dSpac for its (comparative!) simplicity.
In defining objects X,Y, 1-morphisms f , and 2-morphisms η in dSpac, we
must impose extra conditions, and possibly include extra data, over ∂X, ∂Y.
If these conditions/extra data are imposed weakly, up to equivalence of objects
or 2-isomorphism of 1-morphisms, things rapidly become very complicated and
unwieldy. For instance, 1-morphisms in dSpac would comprise not just a 1-
morphism f : X → Y in dSpa, but also extra 2-morphism data over Sf , T f .

So as a matter of policy, we generally do constructions involving boundaries
or corners in dSpac strictly, up to 1-isomorphism of objects, and equality of
1-morphisms. One advantage of this is that 1-morphisms f : X → Y and 2-
morphisms η : f ⇒ g in dSpac are special examples of 1- and 2-morphisms
in dSpa of the underlying d-spaces X,Y , rather than also containing further
data over ∂X, ∂Y. Another advantage is that boundaries in dSpac behave in
a strictly functorial way, as in Corollary 1.6.4, rather than weakly functorial.

1.6.3 Manifolds with corners as d-spaces with corners

In §6.4 we define a (2-)functor FdSpac

Manc : Manc → dSpac from manifolds with
corners to d-spaces with corners.

Definition 1.6.6. Let X be a manifold with corners. Then the boundary ∂X is
a manifold with corners, with a smooth map i∂X : ∂X → X. We will define a d-
space with corners X = (X,∂X, iX, ωX). Set X,∂X, iX = FdSpa

Manc(X, ∂X, iX).
Then the conormal bundle NX in (1.26) is the lift to the C∞-scheme ∂X of the
conormal line bundle NX of ∂X in X, as in (1.25). Let ωX be the orientation on
NX corresponding to that on NX induced by outward-pointing normal vectors
to ∂X in X. Then X is a d-space with corners. Set FdSpac

Manc (X) = X.

Let f : X → Y be a morphism in Manc, and set X,Y = FdSpac

Manc (X,Y ).

Write f = FdSpa
Manc(f) : X → Y , as a 1-morphism of d-spaces. Then f : X→ Y

is a 1-morphism of d-spaces with corners. Define FdSpac

Manc (f) = f .
The only 2-morphisms in Manc, regarded as a 2-category, are identity 2-

morphisms idf : f ⇒ f for smooth f : X → Y . We define FdSpac

Manc (idf ) = idf .

Define FdS̄pa
Man : Man → dS̄pa and FdSpab

Manb : Manb → dSpab to be the

restrictions of FdSpac

Manc to the subcategories Man,Manb ⊂Manc.
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Write M̄an, M̄anb, M̄anc for the full 2-subcategories of objects X in dSpac

equivalent to FdSpac

Manc (X) for some manifold X without boundary, or with bound-
ary, or with corners, respectively. Then M̄an ⊂ dS̄pa, M̄anb ⊂ dSpab and
M̄anc ⊂ dSpac. When we say that a d-space with corners X is a manifold, we
mean that X ∈ M̄anc.

In §6.4 we show that FdS̄pa
Man : Man → dS̄pa, FdSpab

Manb : Manb → dSpab

and FdSpac

Manc : Manc → dSpac are full and faithful strict 2-functors. We also
prove that if X is a manifold with corners, then there is a natural 1-isomorphism
FdSpac

Manc (∂X) ∼= ∂FdSpac

Manc (X), and if f : X → Y is a smooth map of manifolds

with corners and f = FdSpac

Manc (f), then f is simple, semisimple or flat in Manc

if and only if f is simple, semisimple or flat in dSpac, respectively.

1.6.4 Equivalences, and gluing d-spaces with corners by equivalences

In §6.5 and §6.6 we discuss equivalences in dSpac. First we characterize when a
1-morphism f : X→ Y in dSpac is an equivalence, in terms of the underlying
1-morphism in dSpa:

Proposition 1.6.7. (a) Suppose f : X → Y is an equivalence in dSpac.
Then f is simple and flat, and f : X → Y is an equivalence in dSpa, where
X = (X,∂X, iX, ωX) and Y = (Y ,∂Y , iY, ωY). Also f− : ∂X → ∂Y in
Theorem 1.6.3(b) is an equivalence in dSpac.

(b) Let f : X → Y be a simple, flat 1-morphism in dSpac with f : X → Y
an equivalence in dSpa. Then f is an equivalence in dSpac.

Then we consider gluing d-spaces with corners by equivalences, as for d-
spaces in §1.3.2. The story is the same. Here is the analogue of Definition 1.3.4:

Definition 1.6.8. Let X = (X,∂X, iX, ωX) be a d-space with corners. Sup-
pose U ⊆ X is an open d-subspace in dSpa. Define ∂U = i−1

X (U), as
an open d-subspace of ∂X, and iU : ∂U → U by iU = iX|∂U . Then
∂U ⊆ ∂X is an open C∞-subscheme, and the conormal bundle of ∂U in U is
NU = NX|∂U in qcoh(∂U). Define an orientation ωU on NU by ωU = ωX|∂U .
Write U = (U ,∂U , iU, ωU). Then U is a d-space with corners. We call U an
open d-subspace of X. An open cover of X is a family {Ua : a ∈ A} of open
d-subspaces Ua of X with X =

⋃
a∈A Ua.

Theorem 1.6.9. Proposition 1.3.5 and Theorems 1.3.6 and 1.3.7 hold without
change in the 2-category dSpac of d-spaces with corners.

1.6.5 Corners and the corner functors

In §6.7 we extend the material of §1.5.3 on corners and the corner functors from
Manc to dSpac. The next theorem summarizes our results.
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Theorem 1.6.10. (a) Let X be a d-space with corners. Then for each k =
0, 1, . . . , we can define a d-space with corners Ck(X) called the k-corners of
X, and a 1-morphism Πk

X : Ck(X)→ X in dSpac. It has topological space

Ck(X) =
{

(x, {x′1, . . . , x′k}) : x ∈X, x′1, . . . , x
′
k ∈ ∂X,

iX(x′a) = x, a = 1, . . . , k, x′1, . . . , x
′
k are distinct

}
.

(1.29)

There is a natural, free action of the symmetric group Sk on ∂kX, and a 1-
isomorphism Ck(X) ∼= ∂kX/Sk. We have 1-isomorphisms C0(X) ∼= X and
C1(X) ∼= ∂X in dSpac. Write C(X) =

∐∞
k=0 Ck(X) and ΠX =

∐∞
k=0 Πk

X, so
that C(X) is a d-space with corners and ΠX : C(X)→ X is a 1-morphism.

(b) Let f : X → Y be a 1-morphism of d-spaces with corners. Then there is
a unique 1-morphism C(f) : C(X)→ C(Y) in dSpac such that ΠY ◦ C(f) =
f ◦ΠX : C(X)→ Y, and C(f) acts on points as in (1.29) by

C(f) :
(
x, {x′1, . . . , x′k}

)
7−→

(
y, {y′1, . . . , y′l}

)
, where

{y′1, . . . , y′l}=
{
y′ : (x′i, y

′) ∈ Sf , some i = 1, . . . , k
}
.

For all k, l > 0, write Cf ,lk (X) = Ck(X) ∩ C(f)−1(Cl(Y)), so that Cf ,lk (X)

is open and closed in Ck(X) with Ck(X) =
∐∞
l=0 C

f ,l
k (X), and write Clk(f) =

C(f)|Cf,lk (X), so that Clk(f) : Cf ,lk (X)→ Cl(Y) is a 1-morphism in dSpac.

(c) Let f , g : X→ Y be 1-morphisms and η : f ⇒ g a 2-morphism in dSpac.
Then there exists a unique 2-morphism C(η) : C(f) ⇒ C(g) in dSpac, where
C(f), C(g) are as in (b), such that

idΠY
∗ C(η) = η ∗ idΠX

: ΠY ◦ C(f) = f ◦ΠX =⇒ ΠY ◦ C(g) = g ◦ΠX.

(d) Define C : dSpac → dSpac by C : X 7→ C(X) on objects, C : f 7→ C(f)
on 1-morphisms, and C : η 7→ C(η) on 2-morphisms, where C(X), C(f), C(η)
are as in (a)–(c) above. Then C is a strict 2-functor, called a corner functor.

(e) Let f : X→ Y be semisimple. Then C(f) maps Ck(X)→
∐k
l=0 Cl(Y) for

all k > 0. The natural 1-isomorphisms C1(X) ∼= ∂X, C0(Y) ∼= Y, C1(Y) ∼= ∂Y

identify Cf ,01 (X) ∼= ∂f+X, Cf ,11 (X) ∼= ∂f−X, C0
1 (f) ∼= f+ and C1

1 (f) ∼= f−.
If f is simple then C(f) maps Ck(X)→ Ck(Y) for all k > 0.

(f) Analogues of (b)–(d) also hold for a second corner functor Ĉ : dSpac →
dSpac, which acts on objects by Ĉ : X 7→ C(X) in (a), and for 1-morphisms
f : X→ Y in (b), Ĉ(f) : C(X)→ C(Y) acts on points by

Ĉ(f) :
(
x, {x′1, . . . , x′k}

)
7−→

(
y, {y′1, . . . , y′l}

)
, where

{y′1, . . . , y′l}=
{
y′ : (x′i, y

′) ∈ Sf , some i=1, . . . , k
}
∪
{
y′ : (x, y′)∈T f

}
.

If f : X→ Y is flat then Ĉ(f) = C(f).

The comments of Remark 1.6.5 also apply to Theorem 1.6.10: our construc-
tion characterizes Ck(X) up to 1-isomorphism in dSpac, not just up to equiv-
alence, the 1-morphisms C(f), Ĉ(f) are characterized up to equality, not just
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up to 2-isomorphism, and in ΠY ◦C(f) = f ◦ΠX we require the 1-morphisms
to be equal, not just 2-isomorphic. This may seem unnatural from a 2-category
point of view, but it has the advantage that corners are strictly 2-functorial
rather than weakly 2-functorial.

1.6.6 Fibre products in dSpac

In §6.8–§6.9 we study fibre products in dSpac. Here the situation is more
complex than for d-spaces. As in §1.3.2, all fibre products exist in dSpa, but
this fails for dSpac. The problem is that in a fibre product W = X×g,Z,hY in
dSpac, the boundary ∂W depends in a complicated way on X,Y,Z, ∂X, ∂Y,
∂Z, and sometimes there is no good candidate for ∂W. Here is an example.

Example 1.6.11. Let X = Y = [0,∞)×R and Z = [0,∞)2 ×R, as manifolds
with corners, and define smooth maps g : X → Z and h : Y → Z by g(u, v) =

(u, u, v) and h(u, v) = (u, evu, v). Set X,Y,Z, g,h = FdSpac

Manc (X,Y, Z, g, h).
In §6.8.6 we show that no fibre product W = X ×g,Z,h Y exists in dSpac.

We do this by showing that ∂W would have to have exactly one point, lying
over (0, 0) ∈ X and (0, 0) ∈ Y , which is the only point in X×Z Y where normal
vectors to ∂X, ∂Y in X,Y project under dg,dh to parallel vectors in TZ. But
this would contradict other properties of ∂W.

So, we would like to find useful sufficient conditions for existence of fibre
products X ×g,Z,h Y in dSpac; and these conditions should be wholly to do
with boundaries, since we already know that fibre products exist in dSpa. In
§6.8.1 we define two such sufficient conditions on g,h, called b-transversality
and c-transversality.

Definition 1.6.12. Let g : X→ Z and h : Y → Z be 1-morphisms in dSpac.
As in §1.6.1 we have line bundles NX,NZ over the C∞-schemes ∂X, ∂Z, and
a C∞-subscheme Sg ⊆ ∂X ×Z ∂Z. As in §7.1, there is a natural isomorphism
λg : u∗g(NZ)→ s∗f (NX) in qcoh(Sg). The same holds for h.

We say that g,h are b-transverse if whenever x ∈ X and y ∈ Y with
g(x) = h(y) = z ∈ Z, the following morphism in qcoh(∗) is injective:⊕

(x′,z′)∈Sg :iX(x′)=x

λg|(x′,z′) ⊕
⊕

(y′,z′)∈Sh:iY(y′)=y

λh|(y′,z′) :

⊕
z′∈i−1

Z (z)

NZ|z′ −→
⊕

x′∈i−1
X (x)

NX|x′ ⊕
⊕

y′∈i−1
Y (y)

NY|y′ .

Roughly speaking, this says that the corners of X,Y are transverse to the
corners of Z. In Example 1.6.11, this condition fails at x = 0 ∈ X and y = 0 ∈ Y ,
so g,h are not b-transverse.

We call g,h c-transverse if the following two conditions hold, using the
notation of Theorem 1.6.10:
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(a) whenever there are points in Cj(X), Ck(Y), Cl(Z) with

C(g)(x, {x′1, . . . , x′j}) = C(h)(y, {y′1, . . . , y′k}) = (z, {z′1, . . . , z′l}),

we have either j + k > l or j = k = l = 0; and

(b) whenever there are points in Cj(X), Ck(Y), Cl(Z) with

Ĉ(g)(x, {x′1, . . . , x′j}) = Ĉ(h)(y, {y′1, . . . , y′k}) = (z, {z′1, . . . , z′l}),

we have j + k > l.

Here b-transversality is a continuous condition on g,h, and c-transversality
is a discrete condition. Also c-transversality implies b-transversality (though
this is not obvious). Part (a) corresponds to the condition in Definition 1.5.12
for transverse g, h in Manc to be strongly transverse. We can show:

Lemma 1.6.13. Let g : X → Z and h : Y → Z be 1-morphisms in dSpac.
The following are sufficient conditions for g,h to be c-transverse, and hence
b-transverse:

(i) g or h is semisimple and flat; or

(ii) Z is a d-space without boundary.

We summarize the main results of §6.8 on fibre products in dSpac:

Theorem 1.6.14. (a) All b-transverse fibre products exist in dSpac.

(b) The 2-functor FdSpac

Manc of §1.6.3 takes transverse fibre products in Manc to
b-transverse fibre products in dSpac. That is, if

W
f

//
e��

Y
h ��

X
g // Z

is a Cartesian square in Manc with g, h transverse, and W,X,Y,Z, e,f , g,
h = FdSpac

Manc (W,X, Y, Z, e, f, g, h), then

W
f

//
e�� � �� �

HP
idg◦e

Y
h ��

X
g // Z

is 2-Cartesian in dSpac, with g,h b-transverse. If also g, h are strongly trans-
verse in Manc, then g,h are c-transverse in dSpac.

(c) Suppose we are given a 2-Cartesian diagram in dSpac:

W
f

//
e�� � �� �

FN
η

Y
h ��

X
g // Z,
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with g,h c-transverse. Then the following are also 2-Cartesian in dSpac :

C(W)
C(f)

//

C(e)�� � �� �
HP

C(η)

C(Y)
C(h) ��

C(X)
C(g) // C(Z),

(1.30)

C(W)
Ĉ(f)

//

Ĉ(e)�� � �� �
HP

Ĉ(η)

C(Y)

Ĉ(h) ��
C(X)

Ĉ(g) // C(Z).

(1.31)

Also (1.30)–(1.31) preserve gradings, in that they relate points in Ci(W), Cj(X),
Ck(Y), Ck(Z) with i = j + k − l. Hence (1.30) implies equivalences in dSpac :

Ci(W) '
∐

j,k,l>0:i=j+k−l

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y), (1.32)

∂W '
∐

j,k,l>0:j+k=l+1

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y). (1.33)

Part (a) takes some work to prove. For fibre products in dSpa, as in §1.3.3,
we gave an explicit global construction. But for fibre products in dSpac, we
first prove that local fibre products X×g,Z,hY exist in dSpac near each x ∈ X,
y ∈ Y with g(x) = h(y) ∈ Z, and then we use the results of §1.6.4 to glue these
local fibre products by equivalences to get a global fibre product.

For general b-transverse fibre products W = X ×g,Z,h Y in dSpac, the
description of ∂W can be complicated. For c-transverse fibre products, we do
at least have a (still complicated) explicit formula (1.33) for ∂W. Here are some
cases when this formula simplifies, an analogue of Proposition 1.5.14.

Proposition 1.6.15. Let g : X → Z and h : Y → Z be 1-morphisms of
d-spaces with corners. Then:

(a) If ∂Z = ∅ then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂X×g◦iX,Z,h Y

)
q
(
X×g,Z,h◦iY ∂Y

)
. (1.34)

(b) If g is semisimple and flat then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂g+X×g+,Z,h Y

)
q
(
X×g,Z,h◦iY ∂Y

)
. (1.35)

(c) If both g and h are semisimple and flat then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂g+X×g+,Z,h Y

)
q
(
X×g,Z,h+

∂h+Y
)

q
(
∂g−X×g−,∂Z,h− ∂

h
−Y
)
.

(1.36)

Here all fibre products in (1.34)–(1.36) are c-transverse, and so exist.
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1.6.7 Fixed points of finite groups in d-spaces with corners

In §1.3.4 we discussed the fixed d-subspace XΓ of a finite group Γ acting on a
d-space X, and in §1.5.6 we considered fixed point loci XΓ of a finite group Γ
acting on a manifold with corners X. Section 6.10 generalizes these to d-spaces
with corners. Here is the analogue of Theorem 1.3.10.

Theorem 1.6.16. Let X be a d-space with corners, Γ a finite group, and r :
Γ → Aut(X) an action of Γ on X by 1-isomorphisms. Then we can define
a d-space with corners XΓ called the fixed d-subspace of Γ in X, with an
inclusion 1-morphism jX,Γ : XΓ → X. It has the following properties:

(a) Let X,Γ, r and jX,Γ : XΓ → X be as above. Suppose f : W → X is
a 1-morphism in dSpac. Then f factorizes as f = jX,Γ ◦ g for some

1-morphism g : W→ XΓ in dSpac, which must be unique, if and only if
r(γ) ◦ f = f for all γ ∈ Γ.

(b) Suppose X,Y are d-spaces with corners, Γ is a finite group, r : Γ →
Aut(X), s : Γ → Aut(Y) are actions of Γ on X,Y, and f : X → Y is
a Γ-equivariant 1-morphism in dSpac, that is, f ◦ r(γ) = s(γ) ◦ f for
all γ ∈ Γ. Then there exists a unique 1-morphism fΓ : XΓ → YΓ such
that jY,Γ ◦ f

Γ = f ◦ jX,Γ.

(c) Let f , g : X → Y be Γ-equivariant 1-morphisms as in (b), and η :
f ⇒ g be a Γ-equivariant 2-morphism, that is, η ∗ idr(γ) = ids(γ) ∗ η for

all γ ∈ Γ. Then there exists a unique 2-morphism ηΓ : fΓ ⇒ gΓ such
that idjY,Γ ∗ η

Γ = η ∗ idjX,Γ .

Note that (a) is a universal property that determines XΓ, jX,Γ up to canonical
1-isomorphism.

As for manifolds with corners in §1.5.6, in general ∂(XΓ) 6' (∂X)Γ, so fixed
point loci do not commute with boundaries. But the following analogue of
Proposition 1.5.17(b) shows that fixed point loci do commute with corners.

Proposition 1.6.17. Let X be a d-space with corners, Γ a finite group, and
r : Γ→ Aut(X) an action of Γ on X. Applying the corner functor C of §1.6.5
gives an action C(r) : Γ → Aut(C(X)). Hence Theorem 1.6.16 defines fixed
d-subspaces XΓ, C(X)Γ and inclusion 1-morphisms jX,Γ : XΓ → X, jC(X),Γ :

C(X)Γ → C(X). Applying C to jX,Γ also gives C(jX,Γ) : C(XΓ)→ C(X).

Then there exists a unique equivalence kX,Γ : C(XΓ) → C(X)Γ in dSpac

such that C(jX,Γ) = jC(X),Γ ◦ kX,Γ.

We will use fixed d-subspaces XΓ in §1.13.7 below to describe orbifold strata
XΓ of quotient d-stacks with corners X = [X/G]. If X is a d-manifold with
corners, as in §1.7, then in general the fixed d-subspaces XΓ are disjoint unions
of d-manifolds with corners of different dimensions, that is, XΓ lies in dM̌anc.
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1.7 D-manifolds with corners

Next we summarize Chapter 7 on d-manifolds with boundary and corners.

1.7.1 The definition of d-manifolds with corners

In §1.4.1 we defined a d-manifold to be a d-space covered by principal open d-
submanifolds of fixed dimension, where Proposition 1.4.2 gave three equivalent
definitions of principal d-manifolds, the first as a fibre product X×ZY in dSpa
with X,Y ,Z ∈ M̂an, and the third as a fibre product V ×s,E,0 V in dSpa,
where V is a manifold, E → V a vector bundle, and s ∈ C∞(E).

When we pass to d-spaces and d-manifolds with corners in §7.1, the analogues
of Proposition 1.4.2(a)–(c) are no longer equivalent. So we have to choose
which of them gives the best idea of principal d-manifold with corners. Defining
principal d-manifolds with corners to be fibre products X×Z Y in dSpac with
X,Y,Z ∈ M̄anc is unsatisfactory, since as in §1.6.6 fibre products X×Z Y may
not exist in dSpac. So instead we define principal d-manifolds with corners to
be fibre products V ×s,E,0 V in dSpac.

Definition 1.7.1. A d-space with corners W is called a principal d-manifold
with corners if is equivalent in dSpac to a fibre product V ×s,E,0 V, where V
is a manifold with corners, E → V is a vector bundle, s : V → E is a smooth
section of E, 0 : V → E is the zero section, and V,E, s,0 = FdSpac

Manc (V,E, s, 0).
Note that s, 0 : V → E are simple, flat smooth maps in Manc, so s,0 : V→ E
are simple, flat 1-morphisms in dSpac, and thus s,0 are b-transverse by Lemma
1.6.13, and the fibre product V×s,E,0 V exists in dSpac by Theorem 1.6.14(a).

If W ' V×s,E,0 V then the virtual cotangent sheaf T ∗W of the d-space W
is a virtual vector bundle with rankT ∗W = dimV − rankE. Hence, if W 6= ∅
then the integer dimV − rankE depends only on W up to equivalence in dSpa,
and is independent of the choice of V,E, s with W ' V ×s,E,0 V. Define the
virtual dimension vdim W to be vdim W = rankT ∗W = dimV − rankE.

A d-space with corners X is called a d-manifold with corners of virtual dimen-
sion n ∈ Z, written vdim X = n, if X can be covered by open d-subspaces W
which are principal d-manifolds with corners with vdim W = n. A d-manifold
with corners X is called a d-manifold with boundary if it is a d-space with bound-
ary, and a d-manifold without boundary if it is a d-space without boundary.

Write dM̄an,dManb,dManc for the full 2-subcategories of d-manifolds
without boundary, and d-manifolds with boundary, and d-manifolds with cor-
ners in dSpac, respectively. The 2-functor FdSpac

dSpa : dSpa→ dSpac in §1.6.1 is

an isomorphism of 2-categories dSpa → dS̄pa, and its restriction to dMan ⊂
dSpa gives an isomorphism of 2-categories FdManc

dMan : dMan → dM̄an ⊂
dManc. So we may as well identify dMan with its image dM̄an, and con-
sider d-manifolds in §1.4 as examples of d-manifolds with corners.

If X = (X,∂X, iX, ωX) is a d-manifold with corners, then the virtual cotan-
gent sheaf T ∗X of the d-space X from Definition 1.4.10 is a virtual vector bun-
dle on X, of rank vdim X. We will call T ∗X ∈ vvect(X) the virtual cotangent
bundle of X, and also write it T ∗X.
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Much of §1.6 on d-spaces with corners applies immediately to d-manifolds
with corners. If X is a d-manifold with corners with vdim X = n then the
boundary ∂X as a d-space with corners from §1.6.1 is a d-manifold with cor-
ners, with vdim ∂X = n − 1. The material on simple, semisimple, and flat
1-morphisms in dSpac in §1.6.2 also holds in dManc. The functor FdSpac

Manc :
Manc → dSpac in §1.6.3 maps to dManc ⊂ dSpac, so we write FdManc

Manc =

FdSpac

Manc : Manc → dManc. The 2-categories M̄an, M̄anb, M̄anc in Definition
1.6.6 are 2-subcategories of dM̄an,dManb,dManc, respectively. When we say
that a d-manifold with corners X is a manifold, we mean that X ∈ M̄anc.

In §1.6.4, if we make a d-space with corners Y by gluing together d-manifolds
with corners Xi for i ∈ I by equivalences, then Y is a d-manifold with corners
with vdim Y = n provided vdim Xi = n for all i ∈ I.

In §1.6.5, if X is a d-manifold with corners with vdim X = n then the k-
corners Ck(X) is a d-manifold with corners, with vdimCk(X) = n − k. Note
however that C(X) =

∐∞
k=0 Ck(X) in Theorem 1.6.10 is in general not a d-

manifold with corners, but only a disjoint union of d-manifolds with corners
with different dimensions. As for M̌anc in §1.5.3, define dM̌anc to be the
full 2-subcategory of X in dSpac which may be written as a disjoint union
X =

∐
n∈Z Xn for Xn ∈ dManc with vdim Xn = n, where we allow Xn = ∅.

We call such X a d-manifold with corners of mixed dimension. Then C, Ĉ in
Theorem 1.6.10 restrict to strict 2-functors C, Ĉ : dManc → dM̌anc.

Here are some examples. The fibre products we give all exist in dManc by
results in §1.7.5 below.

Example 1.7.2. (i) Let X be the fibre product [0,∞)×i,RRR,0∗ in dManc, where
i : [0,∞) ↪→ R is the inclusion. Then X = (X,∂X, iX, ωX) is ‘a point with
point boundary’, of virtual dimension 0, and its boundary ∂X is an ‘obstructed
point’, a point with obstruction space R, of virtual dimension −1.

The conormal bundle NX of ∂X in X is the obstruction space R of ∂X. In
this case, the orientation ωX on NX cannot be determined from X,∂X, iX, in
fact, there is an automorphism of X,∂X, iX which reverses the orientation of
NX. So ωX really is extra data. We include ωX in the definition of d-manifolds
with corners to ensure that orientations of d-manifolds with corners are well-
behaved. If we omitted ωX from the definition, there would exist oriented
d-manifolds with corners X whose boundaries ∂X are not orientable.

(ii) The fibre product [0,∞) ×i,[0,∞),0 ∗ is a point ∗ without boundary. The
only difference with (i) is that we have replaced the targetRRR with [0,∞), adding
a boundary. So in a fibre product W = X×Z Y in dManc, the boundary of Z
affects the boundary of W. This does not happen for fibre products in Manc.

(iii) Let X′ be the fibre product [0,∞)×i,RRR,i (−∞, 0] in dManc, that is, the
derived intersection of submanifolds [0,∞), (−∞, 0] in R. Topologically, X′ is
just the point {0}, but as a d-manifold with corners X′ has virtual dimension
1. The boundary ∂X′ is the disjoint union of two copies of X in (i). The C∞-
scheme X ′ in X′ is the spectrum of the C∞-ring C∞

(
[0,∞)2

)
/(x+ y), which is

infinite-dimensional, although its topological space is a point.
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1.7.2 ‘Standard model’ d-manifolds with corners and 1-morphisms

In Examples 1.4.4 and 1.4.5 of §1.4.2, we defined ‘standard model’ d-manifolds
SV,E,s and 1-morphisms Sf,f̂ : SV,E,s → SW,F,t. In §7.1–§7.3 we show that all
this extends to d-manifolds with corners in a straightforward way.

Example 1.7.3. Let V be a manifold with corners, E → V a vector bundle,
and s : V → E a smooth section of E. We will write down an explicit principal
d-manifold with corners S = (S,∂S, iS, ωS).

Define a vector bundle E∂ → ∂V by E∂ = i∗V (E), and a section s∂ : ∂V →
E∂ by s∂ = i∗V (s). Define d-spaces S = SV,E,s and ∂S = S∂V,E∂ ,s∂ from the
triples V,E, s and ∂V,E∂ , s∂ exactly as in Example 1.4.4, although now V, ∂V
have corners. Define a 1-morphism iS : ∂S → S in dSpa to be the ‘standard
model’ 1-morphism SiV ,idE∂ : S∂V,E∂ ,s∂ → SV,E,s from Example 1.4.5.

Comparing the analogues of (1.25) for iV : ∂V → V and (1.26) for iS : ∂S →
S, we see that the conormal bundle NS of ∂S in S is canonically isomorphic
to the lift to ∂S ⊆ ∂V of the conormal bundle N V of ∂V in V . Define ωS to be
the orientation on NS induced by the orientation on N V by outward-pointing
normal vectors to ∂V in V . Then S = (S,∂S, iS, ωS) is a d-space with corners.
It is equivalent to V×s,E,0V in Definition 1.7.1, and so is a principal d-manifold
with corners. We call S the standard model of (V,E, s), and write it SV,E,s.

There is a natural 1-isomorphism ∂SV,E,s ∼= S∂V,E∂ ,s∂ in dManc.

Example 1.7.4. Let V,W be manifolds with corners, E → V , F → W be
vector bundles, and s : V → E, t : W → F be smooth sections. Then Example
1.7.3 defines ‘standard model’ principal d-manifolds with corners SV,E,s,SW,F,t,
with underlying d-spaces SV,E,s,SW,F,t. Suppose f : V → W is a smooth

map, and f̂ : E → f∗(F ) is a morphism of vector bundles on V satisfying

f̂ ◦ s = f∗(t) +O(s2) in C∞(f∗(F )), where f∗(t) = t ◦ f , and O(s2) is as §1.4.2.

Define a 1-morphism Sf,f̂ : SV,E,s → SW,F,t in dSpa using f, f̂ exactly as in
Example 1.4.5. Then Sf,f̂ : SV,E,s → SW,F,t is a 1-morphism in dManc, which
we call a ‘standard model’ 1-morphism.

Suppose Ṽ ⊆ V is open, with inclusion iṼ : Ṽ → V . Write Ẽ = E|Ṽ = i∗
Ṽ

(E)

and s̃ = s|Ṽ . Define iṼ ,V = SiṼ ,idẼ : SṼ ,Ẽ,s̃ → SV,E,s. If s−1(0) ⊆ Ṽ then iṼ ,V
is a 1-isomorphism, with inverse i−1

Ṽ ,V
.

In §7.2 and §7.3 we prove analogues of Theorems 1.4.7 and 1.4.8:

Theorem 1.7.5. Let X be a d-manifold with corners, and x ∈ X. Then there
exists an open neighbourhood U of x in X and an equivalence U ' SV,E,s in
dManc for some manifold with corners V, vector bundle E → V and smooth
section s : V → E which identifies x ∈ U with a point v ∈ Sk(V ) ⊆ V, where
Sk(V ) is as in §1.5.1, such that s(v) = ds|Sk(V )(v) = 0. Furthermore, V,E, s
and k are determined up to non-canonical isomorphism near v by X near x.

Theorem 1.7.6. Let V,W be manifolds with corners, E → V, F → W be
vector bundles, and s : V → E, t : W → F be smooth sections. Suppose
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g : SV,E,s → SW,F,t is a 1-morphism in dManc. Then there exist an open

neighbourhood Ṽ of s−1(0) in V, a smooth map f : Ṽ → W, and a morphism

of vector bundles f̂ : Ẽ → f∗(F ) with f̂ ◦ s̃ = f∗(t), where Ẽ = E|Ṽ , s̃ = s|Ṽ ,
such that g = Sf,f̂ ◦ i−1

Ṽ ,V , using the notation of Examples 1.7.3 and 1.7.4.

1.7.3 Equivalences of d-manifolds with corners, and gluing

In §7.4 we study equivalences and gluing in dManc, as for dMan in §1.4.4.
Here are the analogues of Definition 1.4.14 and Theorems 1.4.15–1.4.17.

Definition 1.7.7. Let f : X→ Y be a 1-morphism in dManc. We call f étale
if it is a local equivalence, that is, if for each x ∈ X there exist open x ∈ U ⊆ X
and f(x) ∈ V ⊆ Y such that f(U) = V and f |U : U→ V is an equivalence.

Theorem 1.7.8. Suppose f : X → Y is a 1-morphism of d-manifolds with
corners. Then the following are equivalent:

(i) f is étale;

(ii) f is simple and flat, in the sense of §1.6.2, and Ωf : f∗(T ∗Y)→ T ∗X is
an equivalence in vqcoh(X); and

(iii) f is simple and flat, and (1.10) is a split short exact sequence in qcoh(X).

If in addition f : X → Y is a bijection, then f is an equivalence in dManc.

Theorem 1.7.9. Let V,W be manifolds with corners, E → V, F → W be
vector bundles, s : V → E, t : W → F be smooth sections, f : V → W
be smooth, and f̂ : E → f∗(F ) be a morphism of vector bundles on V with

f̂◦s = f∗(t)+O(s2). Then Examples 1.7.3 and 1.7.4 define principal d-manifolds
with corners SV,E,s,SW,F,t and a 1-morphism Sf,f̂ : SV,E,s → SW,F,t. This Sf,f̂
is étale if and only if f is simple and flat near s−1(0) ⊆ V, in the sense of §1.5.2,
and for each v ∈ V with s(v) = 0 and w = f(v) ∈ W, equation (1.11) is exact.
Also Sf,f̂ is an equivalence if and only if in addition f |s−1(0) : s−1(0)→ t−1(0)
is a bijection, where s−1(0)={v ∈ V : s(v)=0}, t−1(0)={w ∈W : t(w)=0}.

Theorem 1.7.10. Suppose we are given the following data:

(a) an integer n;

(b) a Hausdorff, second countable topological space X;

(c) an indexing set I, and a total order < on I;

(d) for each i in I, a manifold with corners Vi, a vector bundle Ei → Vi with
dimVi−rankEi = n, a smooth section si : Vi → Ei, and a homeomorphism
ψi : Xi → X̂i, where Xi = {vi ∈ Vi : si(vi) = 0} and X̂i ⊆ X is open; and

(e) for all i < j in I, an open submanifold Vij ⊆ Vi, a simple, flat map
eij : Vij → Vj , and a morphism of vector bundles êij : Ei|Vij → e∗ij(Ej).

Let this data satisfy the conditions:
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(i) X =
⋃
i∈I X̂i;

(ii) if i < j in I then êij ◦ si|Vij = e∗ij(sj), and ψi(Xi ∩ Vij) = X̂i ∩ X̂j , and
ψi|Xi∩Vij = ψj ◦ eij |Xi∩Vij , and if vi ∈ Vi with si(vi) = 0 and vj = eij(vi)
then the following sequence of vector spaces is exact:

0 // TviVi
dsi(vi)⊕ deij(vi) // Ei|vi⊕TvjVj

êij(vi)⊕−dsj(vj) // Ej |vj // 0;

(iii) if i < j < k in I then eik|Vik∩e−1
ij (Vjk) = ejk ◦ eij |Vik∩e−1

ij (Vjk) + O(s2
i ) and

êik|Vik∩e−1
ij (Vjk) = eij |∗Vik∩e−1

ij (Vjk)
(êjk) ◦ êij |Vik∩e−1

ij (Vjk) +O(si).

Then there exist a d-manifold with corners X with vdim X = n and topolog-
ical space X, and a 1-morphism ψi : SVi,Ei,si → X in dManc with underlying

continuous map ψi which is an equivalence with the open d-submanifold X̂i ⊆ X
corresponding to X̂i ⊆ X for all i ∈ I, such that for all i < j in I there exists a
2-morphism ηij : ψj ◦ Seij ,êij ⇒ ψi ◦ iVij ,Vi , where Seij ,êij : SVij ,Ei|Vij ,si|Vij →
SVj ,Ej ,sj and iVij ,Vi : SVij ,Ei|Vij ,si|Vij → SVi,Ei,si are as in Example 1.7.4. This

X is unique up to equivalence in dManc.
Suppose also that Y is a manifold with corners, and gi : Vi → Y are smooth

maps for all i ∈ I, and gj ◦ eij = gi|Vij + O(s2
i ) for all i < j in I. Then

there exist a 1-morphism h : X → Y unique up to 2-isomorphism, where Y =
FdManc

Manc (Y ) = SY,0,0, and 2-morphisms ζi : h ◦ ψi ⇒ Sgi,0 for all i ∈ I. Here
SY,0,0 is from Example 1.7.3 with vector bundle E and section s both zero, and
Sgi,0 : SVi,Ei,si → SY,0,0 = Y is from Example 1.7.4 with ĝi = 0.

We can use Theorem 1.7.10 as a tool to prove the existence of d-manifold
with corner structures on spaces coming from other areas of geometry.

1.7.4 Submersions, immersions and embeddings

In §1.4.5 we defined two kinds of submersions (submersions and w-submersions),
immersions, and embeddings for d-manifolds. In §1.5.2 we defined two kinds of
submersions (submersions and s-submersions), and three kinds of immersions
(immersions, s- and sf-immersions), and embeddings for manifolds with corners.
In §7.5, we combine both alternatives for d-manifolds with corners, giving four
types of submersions, and six types of immersions and embeddings.

Definition 1.7.11. Let f : X → Y be a 1-morphism in dManc. As in
§1.4.3 and §1.7.1, T ∗X and f∗(T ∗Y) are virtual vector bundles on X of ranks
vdim X, vdim Y, and Ωf : f∗(T ∗Y)→ T ∗X is a 1-morphism in vvect(X). Also

we have 1-morphisms C(f), Ĉ(f) : C(X) → C(Y) in dM̌anc ⊂ dSpac as
in §1.6.5 and §1.7.1, so we can form ΩC(f) : C(f)∗(T ∗C(Y)) → T ∗C(X) and
ΩĈ(f) : Ĉ(f)∗(T ∗C(Y))→ T ∗C(X). Then:

(a) We call f a w-submersion if f is semisimple and flat and Ωf is weakly
injective. We call f an sw-submersion if it is also simple.
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(b) We call f a submersion if f is semisimple and flat and ΩC(f) is injective.
We call f an s-submersion if it is also simple.

(c) We call f a w-immersion if Ωf is weakly surjective. We call f an sw-
immersion, or sfw-immersion, if f is also simple, or simple and flat.

(d) We call f an immersion if ΩĈ(f) is surjective. We call f an s-immersion
if f is also simple, and an sf-immersion if f is also simple and flat.

(e) We call f a w-embedding, sw-embedding, sfw-embedding, embedding, s-
embedding, or sf-embedding, if f is a w-immersion, . . . , sf-immersion, re-
spectively, and f : X → f(X) is a homeomorphism, so f is injective.

Here (weakly) injective and (weakly) surjective 1-morphisms in vvect(X) are
defined in §1.4.5.

Parts (c)–(e) enable us to define d-submanifolds X of a d-manifold with
corners Y. Open d-submanifolds are open d-subspaces X in Y. For more
general d-submanifolds, we call f : X → Y a w-immersed, sw-immersed, sfw-
immersed, immersed, s-immersed, sf-immersed, w-embedded, sw-embedded, sfw-
embedded, embedded, s-embedded, or sf-embedded d-submanifold of Y if X,Y
are d-manifolds with corners and f is a w-immersion, . . . , sf-embedding, re-
spectively.

Here is the analogue of Theorem 1.4.20, proved in §7.5.

Theorem 1.7.12. (i) Any equivalence of d-manifolds with corners is a w-
submersion, submersion, . . . , sf-embedding.

(ii) If f , g : X→ Y are 2-isomorphic 1-morphisms of d-manifolds with corners
then f is a w-submersion, . . . , sf-embedding, if and only if g is.

(iii) Compositions of w-submersions, . . . , sf-embeddings are of the same kind.

(iv) The conditions that a 1-morphism f : X → Y in dManc is any kind of
submersion or immersion are local in X and Y. The conditions that f is any
kind of embedding are local in Y, but not in X.

(v) Let f : X→ Y be a submersion in dManc. Then vdim X > vdim Y, and
if vdim X = vdim Y then f is étale.

(vi) Let f : X → Y be an immersion in dManc. Then vdim X 6 vdim Y. If
f is an s-immersion and vdim X = vdim Y then f is étale.

(vii) Let f : X → Y be a smooth map of manifolds with corners, and f =
FdManc

Manc (f). Then f is a submersion, s-submersion, immersion, s-immersion,
sf-immersion, embedding, s-embedding, or sf-embedding, in dManc if and only
if f is a submersion, . . . , an sf-embedding in Manc, respectively. Also f is
a w-immersion, sw-immersion, sfw-immersion, w-embedding, sw-embedding, or
sfw-embedding in dManc if and only if f is an immersion, . . . , sf-embedding
in Manc, respectively.

(viii) Let f : X → Y be a 1-morphism in dManc, with Y a manifold. Then
f is a w-submersion if and only if it is semisimple and flat, and f is an sw-
submersion if and only if it is simple and flat.
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(ix) Let X,Y be d-manifolds with corners, with Y a manifold. Then πX :
X×Y → X is a submersion, and πX is an s-submersion if ∂Y = ∅.
(x) Suppose f : X → Y is a submersion in dManc, and x ∈ X with f(x) =
y ∈ Y. Then there exist open d-submanifolds x ∈ U ⊆ X and y ∈ V ⊆ Y with
f(U) = V, a manifold with corners Z, and an equivalence i : U→ V×Z, such
that f |U : U → V is 2-isomorphic to πV ◦ i, where πV : V × Z → V is the
projection. If f is an s-submersion then ∂Z = ∅.
(xi) Let f : X → Y be a submersion of d-manifolds with corners, with Y a
manifold with corners. Then X is a manifold with corners.

Parts (ix)-(x) are a d-manifold analogue of Proposition 1.5.7.

1.7.5 Bd-transversality and fibre products

In §7.6 we extend §1.4.6 to the corners case. Here are the analogues of Definition
1.4.21 and Theorems 1.4.22–1.4.25:

Definition 1.7.13. Let X,Y,Z be d-manifolds with corners and g : X → Z,
h : Y → Z be 1-morphisms. We call g,h bd-transverse if they are both b-
transverse in dSpac in the sense of Definition 1.6.12, and d-transverse in the
sense of Definition 1.4.21. We call g,h cd-transverse if they are both c-transverse
in dSpac in the sense of Definition 1.6.12, and d-transverse. As in §1.6.6, c-
transverse implies b-transverse, so cd-transverse implies bd-transverse.

Theorem 1.7.14. Suppose X,Y,Z are d-manifolds with corners and g : X→
Z, h : Y → Z are bd-transverse 1-morphisms, and let W = X ×g,Z,h Y be
the fibre product in dSpac, which exists by Theorem 1.6.14(a) as g,h are b-
transverse. Then W is a d-manifold with corners, with

vdim W = vdim X + vdim Y − vdim Z. (1.37)

Hence, all bd-transverse fibre products exist in dManc.

Theorem 1.7.15. Suppose g : X → Z and h : Y → Z are 1-morphisms in
dManc. The following are sufficient conditions for g,h to be cd-transverse,
and hence bd-transverse, so that W = X×g,Z,h Y is a d-manifold with corners
of virtual dimension (1.37):

(a) Z is a manifold without boundary, that is, Z ∈ M̄an; or

(b) g or h is a w-submersion.

Theorem 1.7.16. Let X,Y,Z be d-manifolds with corners with Y a manifold,
and g : X → Z, h : Y → Z be 1-morphisms with g a submersion. Then
W = X×g,Z,h Y is a manifold, with dim W = vdim X + dim Y − vdim Z.

Theorem 1.7.17. (i) Let X be a d-manifold with corners and g : X →
[0,∞)k × RRRn−k a semisimple, flat 1-morphism in dManc. Then the fibre
product W = X×g,[0,∞)k×RRRn−k,0 ∗ exists in dManc, and πX : W→ X is an
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s-embedding. When k = 0, any 1-morphism g : X→ RRRn is semisimple and flat,
and πX : W→ X is an sf-embedding.

(ii) Suppose f : X → Y is an s-immersion of d-manifolds with corners, and
x ∈ X with f(x) = y ∈ Y. Then there exist open d-submanifolds x ∈ U ⊆ X
and y ∈ V ⊆ Y with f(U) ⊆ V and a semisimple, flat 1-morphism g : V →
[0,∞)k×RRRn−k with g(y) = 0, where n = vdim Y−vdim X > 0 and 0 6 k 6 n,
fitting into a 2-Cartesian square in dManc :

U
f |U��

π
//

� �� �
IQ ∗

0 ��
V

g // [0,∞)k ×RRRn−k.

If f is an sf-immersion then k = 0. If f is an s- or sf-embedding then we may
take U = f−1(V).

For ordinary manifolds, a submanifold X in Y may be described locally
either as the image of an embedding X ↪→ Y , or equivalently as the zeroes of a
submersion Y → Rn, where n = dimY −dimX. Theorem 1.7.17 is an analogue
of this for d-manifolds with corners. It should be compared with Proposition
1.5.8 for manifolds with corners.

1.7.6 Embedding d-manifolds with corners into manifolds

In §1.4.7 we discussed embeddings of d-manifolds X into manifolds Y . Our
two major results were Theorem 1.4.29, which gave necessary and sufficient
conditions on X for existence of embeddings f : X ↪→ RRRn for n � 0, and
Theorem 1.4.32, which showed that if an embedding f : X ↪→ Y exists with X
a d-manifold and Y = FdMan

Man (Y ), then X ' SV,E,s for open V ⊆ Y , so X is a
principal d-manifold.

Section 7.7 generalizes these results to d-manifolds with corners. As in §1.7.4,
we have three kinds of embeddings in dManc, embeddings, s-embeddings and
sf-embeddings. The analogue of Theorem 1.4.29 naturally holds for embeddings:

Theorem 1.7.18. Let X be a d-manifold with corners. Then there exist im-
mersions and/or embeddings f : X → RRRn for some n � 0 if and only if there
is an upper bound for dimT ∗xX for all x ∈ X. If there is such an upper bound,
then immersions f : X→ RRRn exist provided n > 2 dimT ∗xX for all x ∈ X, and
embeddings f : X → RRRn exist provided n > 2 dimT ∗xX + 1 for all x ∈ X. For
embeddings we may also choose f with f(X) closed in Rn.

Example 1.4.30 shows the hypotheses of Theorem 1.7.18 need not hold, so
there exist d-manifolds with corners X with no embedding into Rn, or into any
manifold with corners. The analogue of Theorem 1.4.32 holds for sf-embeddings:

Theorem 1.7.19. Let X be a d-manifold with corners, Y a manifold with cor-
ners, and f : X→ Y an sf-embedding, in the sense of Definition 1.7.11. Then
there exist an open subset V in Y with f(X) ⊆ V, a vector bundle E → V, and
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a smooth section s : V → E of E fitting into a 2-Cartesian diagram in dManc,
where 0 : V → E is the zero section and Y,V,E, s,0 = FdManc

Manc (Y, V,E, s, 0) :

X
f

//
f�� � �� �

FN V
0 ��

V
s // E.

Hence X is equivalent to the ‘standard model’ SV,E,s of Example 1.7.3, and is
a principal d-manifold with corners.

Note that, unlike the d-manifolds case in §1.4.7, we cannot immediately
combine Theorems 1.7.18 and 1.7.19: we have first to bridge the gap between
embeddings and sf-embeddings. For d-manifolds with boundary, we can do this.

Theorem 1.7.20. Let X be a d-manifold with boundary. Then there exist
sf-immersions and/or sf-embeddings f : X → [0,∞) × RRRn−1 for some n �
0 if and only if dimT ∗xX is bounded above for all x ∈ X. Such an upper
bound always exists if X is compact. If there is such an upper bound, then
sf-immersions f : X → [0,∞) × RRRn−1 exist provided n > 2 dimT ∗xX + 1
for all x ∈ X, and sf-embeddings f : X → [0,∞) × RRRn−1 exist provided
n > 2 dimT ∗xX+2 for all x ∈ X. For sf-embeddings we may also choose f with
f(X) closed in [0,∞)× Rn−1.

Combining Theorems 1.7.19 and 1.7.20 shows that a d-manifold with bound-
ary X is principal if and only if dimT ∗xX is bounded above.

Since (nice) d-manifolds with boundary can be embedded into [0,∞)×Rn−1

for n � 0, one might guess that (nice) d-manifolds with corners can be em-
bedded into [0,∞)k × Rn−k for n � k � 0. However, this is not true even for
manifolds with corners, as the following example from §5.7 shows:

Example 1.7.21. Consider the teardrop T =
{

(x, y) ∈ R2 : x > 0, y2 6 x2 −
x4
}

, shown in Figure 1.1. It is a compact 2-manifold with corners.

x

y

• //oo

OO

��

Figure 1.1: The teardrop, a 2-manifold with corners.

Suppose that f : T → [0,∞)k × Rn−k is an sf-embedding. As f is simple
and flat, it maps Sj(T ) ↪→ Sj

(
[0,∞)k × Rn−k

)
for j = 0, 1, 2, in the notation

of §1.5.1. The connected components of Sj
(
[0,∞)k × Rn−k

)
correspond to

subsets I ⊆ {1, . . . , k} with |I| = j, with the component corresponding to I
given by the equations xi = 0 for i ∈ I and xa > 0 for a ∈ {1, . . . , k} \ I. As
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(0, 0) ∈ S2(T ), we see that f(0, 0) lies in the component of S2
(
[0,∞)k ×Rn−k

)
given by xa = xb = 0 for 1 6 a < b 6 k.

Considering local models for f near (0, 0) ∈ T , we see that f must map the
two ends of S1(T ) at (0, 0) into different connected components xa = 0 and
xb = 0 of S1

(
[0,∞)k×Rn−k

)
. However, S1(T ) ∼= (0, 1) is connected, so f maps

S1(T ) into a single connected component of S1
(
[0,∞)k×Rn−k

)
, a contradiction.

Hence there do not exist sf-embeddings f : T → [0,∞)k × Rn−k for any n, k.

Here are necessary and sufficient conditions for existence of sf-embeddings
from a d-manifold with corners X into a manifold with corners Y .

Theorem 1.7.22. Let X be a d-manifold with corners. Then there exist a man-
ifold with corners Y and an sf-embedding f : X→ Y, where Y = FdManc

Manc (Y ),
if and only if dimT ∗xX + |i−1

X (x)| is bounded above for all x ∈ X. If such
an upper bound exists, then we may take Y to be an embedded n-dimensional
submanifold of Rn for any n with n > 2

(
dimT ∗xX+ |i−1

X (x)|
)

+1 for all x ∈ X.
Such an upper bound always exists if X is compact. Thus, every compact

d-manifold with corners admits an sf-embedding into a manifold with corners.

The idea of the proof of Theorem 1.7.22 is that we first choose an embed-
ding g : X → RRRn using Theorem 1.7.18, and then show that we can choose a
submanifold Y ⊆ Rn which is the set of points in an open neighbourhood U
of g(X) in Rn satisfying local transverse inequalities of the form ci(x) > 0 for
i = 1, . . . , k, where ci : U → R are local smooth functions which lift under g to
local boundary defining functions for ∂X.

Combining Theorems 1.7.19 and 1.7.22 yields:

Corollary 1.7.23. Let X be a d-manifold with corners. Then X is principal,
that is, X is equivalent in dManc to some SV,E,s in Example 1.7.3, if and
only if dimT ∗xX and |i−1

X (x)| are bounded above for all x ∈ X. This holds
automatically if X is compact.

1.7.7 Orientations

In §7.8 we study orientations on d-manifolds with corners, following the d-
manifold case in §1.4.8. Here is the analogue of Definition 1.4.35:

Definition 1.7.24. Let X be a d-manifold with corners. Then the virtual
cotangent bundle T ∗X = (EX ,FX , φX) is a virtual vector bundle on X, so
Theorem 1.4.34 gives a line bundle LT∗X on X. We call LT∗X the orientation
line bundle of X.

An orientation ω on X is an orientation on LT∗X, in the sense of Definition
1.4.35. An oriented d-manifold with corners is a pair (X, ω) where X is a d-
manifold with corners and ω an orientation on X. Usually we refer to X as
an oriented d-manifold, leaving ω implicit. We also write −X for X with the
opposite orientation, that is, X is short for (X, ω) and −X short for (X,−ω).
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Example 1.4.36, Theorem 1.4.37 and Proposition 1.4.38 now extend to d-
manifolds with corners without change. We can also orient boundaries of ori-
ented d-manifolds with corners. Theorem 1.7.25 is the main reason for including
the data ωX in a d-manifold with corners X = (X,∂X, iX, ωX).

Theorem 1.7.25. Let X be a d-manifold with corners. Then ∂X is also a
d-manifold with corners, so we have orientation line bundles LT∗X on X and
LT∗(∂X) on ∂X. There is a canonical isomorphism of line bundles on ∂X :

Ψ : LT∗(∂X) −→ i∗X(LT∗X)⊗N ∗X, (1.38)

where NX is the conormal bundle of ∂X in X from §1.6.1.
Now NX comes with an orientation ωX in X = (X,∂X, iX, ωX). Hence, if

X is an oriented d-manifold with corners, then ∂X also has a natural orienta-
tion, by combining the orientations on LT∗X and N ∗X to get an orientation on
LT∗(∂X) using (1.38).

As for Proposition 1.4.38, natural equivalences of d-manifolds with corners
generally extend to natural equivalences of oriented d-manifolds with corners,
with some sign depending on the orientation conventions. Here are two such
results, which include signs in Theorem 1.6.3(b) and Proposition 1.6.15.

Proposition 1.7.26. Suppose X,Y are oriented d-manifolds with corners, and
f : X → Y is a semisimple, flat 1-morphism. Then the following holds in
oriented d-manifolds with corners, with fibre products cd-transverse:

∂f−X ' ∂Y ×iY,Y,f X ' (−1)vdim X+vdim YX×f ,Y,iY ∂Y.

If f is also simple then ∂f−X = ∂X.

Proposition 1.7.27. Let g : X → Z and h : Y → Z be 1-morphisms of ori-
ented d-manifolds with corners. Then the following hold in oriented d-manifolds
with corners, where all the fibre products are cd-transverse, and so exist:

(a) If Z is a manifold without boundary then there is an equivalence

∂
(
X×g,Z,hY

)
'
(
∂X×g◦iX,Z,hY

)
q (−1)vdim X+dim Z

(
X×g,Z,h◦iY ∂Y

)
.

(b) If g is a w-submersion then there is an equivalence

∂
(
X×g,Z,hY

)
'
(
∂g+X×g+,Z,hY

)
q (−1)vdim X+vdim Z

(
X×g,Z,h◦iY ∂Y

)
.

(c) If both g and h are w-submersions then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂g+X×g+,Z,h Y

)
q (−1)vdim X+vdim Z

(
X×g,Z,h+

∂h+Y
)
q
(
∂g−X×g−,∂Z,h− ∂

h
−Y
)
.
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1.8 Deligne–Mumford C∞-stacks

Appendix C and [56, §7–§11] discuss C∞-stacks, including Deligne–Mumford
C∞-stacks, which are related to C∞-schemes in the same way that Artin stacks
and Deligne–Mumford stacks in algebraic geometry are related to schemes.

1.8.1 C∞-stacks

The next few definitions assume a lot of standard material from stack theory,
which is summarized in [56, §7].

Definition 1.8.1. Define a Grothendieck topology J on the category C∞Sch of
C∞-schemes to have coverings {ia : Ua → U}a∈A where Va = ia(Ua) is open in
U with ia : Ua → (Va,OU |Va) an isomorphism for all a ∈ A, and U =

⋃
a∈A Va.

Up to isomorphisms of the Ua, the coverings {ia : Ua → U}a∈A of U correspond
exactly to open covers {Va : a ∈ A} of U . Then (C∞Sch,J ) is a site.

The stacks on (C∞Sch,J ) form a 2-category Sta(C∞Sch,J ), with all 2-
morphisms invertible. As the site (C∞Sch,J ) is subcanonical, there is a nat-
ural, fully faithful functor C∞Sch → Sta(C∞Sch,J ), defined explicitly below,
which we write as X 7→ X̄ on objects and f 7→ f̄ on morphisms. A C∞-stack is
a stack X on (C∞Sch,J ) such that the diagonal 1-morphism ∆X : X → X ×X
is representable, and there exists a surjective 1-morphism Π : Ū → X called an
atlas for some C∞-scheme U. Write C∞Sta for the full 2-subcategory of C∞-
stacks in Sta(C∞Sch,J ). The functor C∞Sch → Sta(C∞Sch,J ) above maps

into C∞Sta, so we also write it as FC∞Sta
C∞Sch : C∞Sch→ C∞Sta.

Formally, a C∞-stack is a category X with a functor pX : X → C∞Sch,
where X , pX must satisfy many complicated conditions, including sheaf-like con-
ditions for all open covers in C∞Sch. A 1-morphism f : X → Y of C∞-stacks
is a functor f : X → Y with pY ◦ f = pX : X → C∞Sch. Given 1-morphisms
f, g : X → Y, a 2-morphism η : f ⇒ g is an isomorphism of functors η : f ⇒ g
with idpY ∗ η = idpX : pY ◦ f ⇒ pY ◦ g.

If X is a C∞-scheme, the corresponding C∞-stack X̄ = FC∞Sta
C∞Sch(X) is

the category with objects (U, u) for u : U → X a morphism in C∞Sch, and
morphisms h : (U, u) → (V , v) for h : U → V a morphism in C∞Sch with
v◦h = u. The functor pX̄ : X̄ → C∞Sch maps pX̄ : (U, u) 7→ U and pX̄ : h 7→ h.

If f : X → Y is a morphism of C∞-schemes, the corresponding 1-morphism

f̄ = FC∞Sta
C∞Sch(f) : X̄ → Ȳ maps f̄ : (U, u) 7→ (U, f ◦ u) on objects (U, u) and

f̄ : h 7→ h on morphisms h in X̄. This defines a functor f̄ : X̄ → Ȳ with

pȲ ◦ f̄ = pX̄ : X → C∞Sch, so f̄ is a 1-morphism f̄ : X̄ → Ȳ in C∞Sta.

We define some classes of morphisms of C∞-schemes:

Definition 1.8.2. Let f : X → Y be a morphism in C∞Sch. Then:

• We call f an open embedding if it is an isomorphism with an open C∞-
subscheme of Y .

• We call f étale if it is a local isomorphism (in the Zariski topology).
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• We call f proper if f : X → Y is a proper map of topological spaces, that

is, if S ⊆ Y is compact then f−1(S) ⊆ X is compact.

• We call f universally closed if whenever g : W → Y is a morphism then
πW : X ×f,Y,g W →W is a closed map of topological spaces.

Each one is invariant under base change and local in the target in (C∞Sch,J ).
Thus, they are also defined for representable 1-morphisms of C∞-stacks.

Definition 1.8.3. Let X be a C∞-stack. We say that X is separated if the
diagonal 1-morphism ∆X : X → X ×X is universally closed. If X ' X̄ for some
C∞-scheme X then X is separated if and only if X is separated (Hausdorff).

Definition 1.8.4. Let X be a C∞-stack. A C∞-substack Y in X is a strictly
full subcategory Y in X such that pY := pX |Y : Y → C∞Sch is also a C∞-
stack. It has a natural inclusion 1-morphism iY : Y ↪→ X . We call Y an
open C∞-substack of X if iY is a representable open embedding. An open
cover {Ya : a ∈ A} of X is a family of open C∞-substacks Ya in X with∐
a∈A iYa :

∐
a∈A Ya → X surjective.

1.8.2 Topological spaces of C∞-stacks

By [56, §8.4], a C∞-stack X has an underlying topological space Xtop.

Definition 1.8.5. Let X be a C∞-stack. Write ∗ for the point SpecR in
C∞Sch, and ∗̄ for the associated point in C∞Sta. Define Xtop to be the set of
2-isomorphism classes [x] of 1-morphisms x : ∗̄ → X . If U ⊆ X is an open C∞-
substack then any 1-morphism x : ∗̄ → U is also a 1-morphism x : ∗̄ → X , and
Utop is a subset of Xtop. Define TXtop

=
{
Utop : U ⊆ X is an open C∞-substack

in X
}

. Then TXtop is a set of subsets of Xtop which is a topology on Xtop,
so (Xtop, TXtop

) is a topological space, which we call the underlying topological
space of X , and usually write as Xtop. If X = (X,OX) is a C∞-scheme, so that
X̄ is a C∞-stack, then X̄ top is naturally homeomorphic to X.

If f : X → Y is a 1-morphism of C∞-stacks then there is a natural continuous
map ftop : Xtop → Ytop defined by ftop([x]) = [f ◦ x]. If f, g : X → Y are 1-
morphisms and η : f ⇒ g is a 2-morphism then ftop = gtop. Mapping X 7→ Xtop,

f 7→ ftop and 2-morphisms to identities defines a 2-functor FTop
C∞Sta : C∞Sta→

Top, where the category of topological spaces Top is regarded as a 2-category
with only identity 2-morphisms.

Definition 1.8.6. Let X be a C∞-stack, and [x] ∈ Xtop. Pick a representative x
for [x], so that x : ∗̄ → X is a 1-morphism. Define the orbifold group (or isotropy
group, or stabilizer group) IsoX ([x]) of [x] to be the group of 2-morphisms η :
x ⇒ x. It is independent of the choice of x ∈ [x] up to isomorphism, which is
canonical up to conjugation in IsoX ([x]).

If f : X → Y is a 1-morphism of C∞-stacks and [x] ∈ Xtop with ftop([x]) =
[y] ∈ Ytop, for y = f ◦ x, then we define a group morphism f∗ : IsoX ([x]) →
IsoY([y]) by f∗(η) = idf ∗ η. It is independent of choices of x ∈ [x], y ∈ [y] up
to conjugation in IsoX ([x]), IsoY([y]).
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1.8.3 Strongly representable 1-morphisms

Strongly representable 1-morphisms, discussed in [56, §8.6], will be important in
the definitions of orbifolds, d-stacks, and d-orbifolds with corners.

Definition 1.8.7. Let Y,Z be C∞-stacks, and g : Y → Z a 1-morphism. Then
Y,Z are categories with functors pY : Y → C∞Sch, pZ : Z → C∞Sch, and
g : Y → Z is a functor with pZ ◦ g = pY .

We call g strongly representable if whenever A ∈ Y with pY(A) = U ∈
C∞Sch, so that B = g(A) ∈ Z with pZ(B) = U, and b : B → B′ is an
isomorphism in Z with pZ(B′) = U and pZ(b) = idU, then there exist a unique
object A′ and isomorphism a : A→ A′ in Y with g(A′) = B′ and g(a) = b.

Here are two important properties of strongly representable 1-morphisms.
The first says that we may replace a representable 1-morphism g : Y → Z with
a strongly representable 1-morphism g′ : Y ′ → Z with Y ′ ' Y.

Proposition 1.8.8. (a) Let g : Y → Z be a strongly representable 1-morphism
of C∞-stacks. Then g is representable.

(b) Suppose g : Y → Z is a representable 1-morphism of C∞-stacks. Then there
exist a C∞-stack Y ′, an equivalence i : Y → Y ′, and a strongly representable
1-morphism g′ : Y ′ → Z with g = g′ ◦ i. Also Y ′ is unique up to canonical
1-isomorphism in C∞Sta.

The second says that for some 2-commutative diagrams involving strongly
representable morphisms, we can require the diagrams to commute up to equal-
ity, not just up to 2-isomorphism.

Proposition 1.8.9. Suppose X ,Y,Z are C∞-stacks, f : X → Y, g : Y → Z,
h : X → Z are 1-morphisms with g strongly representable, and η : g◦f ⇒ h is a
2-morphism in C∞Sta. Then as in the diagram below there exist a 1-morphism
f ′ : X → Y with g ◦ f ′ = h, and a 2-morphism ζ : f ⇒ f ′ with idg ∗ ζ = η, and
f ′, ζ are unique under these conditions.

Y
g

**UUUUUUUUUUUUUUUUU

η ⇓
X

f ′
..

f

88
ζ ⇑

h // Z.

We will use strongly representable 1-morphisms to define orbifolds, d-stacks,
and d-orbifolds with corners so that boundaries behave in a strictly functorial
rather than weakly functorial way, as for d-spaces with corners in Remark 1.6.5.
Here is an explicit construction of fibre products X ×g,Z,h Y in C∞Sta when g
is strongly representable, yielding a strictly commutative 2-Cartesian square.

Proposition 1.8.10. Let g : X → Z and h : Y → Z be 1-morphisms of C∞-
stacks with g strongly representable. Define a category W to have objects pairs
(A,B) for A ∈ X , B ∈ Y with g(A) = h(B) in Z, so that pX (A) = pY(B)
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in C∞Sch, and morphisms pairs (a, b) : (A,B) → (A′, B′) with a : A → A′,
b : B → B′ morphisms in X ,Y with pX (a) = pY(b) in C∞Sch.

Define functors pW : W → C∞Sch, e : W → X , f : W → Y by pW :
(A,B) 7→ pX (A) = pY(B), e : (A,B) 7→ A, f : (A,B) 7→ B on objects and
pW : (a, b) 7→ pX (a) = pY(b), e : (a, b) 7→ a, f : (a, b) 7→ b on morphisms. Then
W is a C∞-stack and e :W → X , f :W → Y are 1-morphisms, with f strongly
representable, and g ◦ e = h ◦ f . Furthermore, the following diagram in C∞Sta
is 2-Cartesian:

W
f

//
e�� � �� �

IQ
idg◦e

Y
h ��

X
g // Z.

If also h is strongly representable, then e is strongly representable.

1.8.4 Quotient C∞-stacks

An important class of examples of C∞-stacks X are quotient C∞-stacks [X/G],
for X a C∞-scheme acted on by a finite group G. The next three examples define
quotient C∞-stacks [X/G], quotient 1-morphisms [f, ρ] : [X/G] → [Y /H], and
quotient 2-morphisms [δ] : [f, ρ]⇒ [g, σ].

In fact Examples 1.8.11–1.8.13 are simplifications of more complicated def-
initions given in [56, §9.1]. The construction of [56, §9.1] gives equivalent C∞-
stacks [X/G], but has the advantage of being strictly functorial, that is, quotient
1-morphisms compose as [g, σ] ◦ [f, ρ] = [g ◦ f, σ ◦ ρ], whereas in Example 1.8.12
we only have a 2-isomorphism [g, σ] ◦ [f, ρ] ∼= [g ◦ f, σ ◦ ρ]. We will occasionally
assume this strict functoriality below, for instance, in Definition 1.11.26.

Example 1.8.11. Let X be a separated C∞-scheme, G a finite group, and
r : G → Aut(X) an action of G on X by isomorphisms. We will define the
quotient C∞-stack X = [X/G].

Define a category X to have objects quintuples (T ,U, t, u, v), where T ,U
are C∞-schemes, t : G → Aut(T ) is a free action of G on T by isomorphisms,
u : T → X is a morphism with u ◦ t(γ) = r(γ) ◦ u : T → X for all γ ∈ G, and
v : T → U is a morphism which makes T into a principal G-bundle over U, that
is, v is proper, étale and surjective, and its fibres are G-orbits in T under t.

A morphism (a, b) : (T ,U, t, u, v) → (T ′, U′, t′, u′, v′) in X is a pair of mor-
phisms a : U → U′ and b : T → T ′ such that b ◦ t(γ) = t′(γ) ◦ b for γ ∈ G, and
u = u′ ◦ b, and a ◦ v = v′ ◦ b. Composition is (c, d) ◦ (a, b) = (c ◦ a, d ◦ b), and
identities are id(T ,...,v) = (idU, idT ).

This defines the category X . The functor pX : X → C∞Sch acts by pX :
(T ,U, t, u, v) 7→ U on objects, and pX : (a, b) 7→ a on morphisms. Then X is a
C∞-stack, which we write as [X/G].

Example 1.8.12. Let X,Y be separated C∞-schemes acted on by finite groups
G,H with actions r : G→ Aut(X), s : H → Aut(Y ), so that we have quotient
C∞-stacks [X/G] and [Y /H] as in Example 1.8.11. Suppose we have morphisms

72



f : X → Y of C∞-schemes and ρ : G→ H of groups, with f ◦ r(γ) = s(ρ(γ))◦f
for all γ ∈ G. Define a functor [f, ρ] : [X/G]→ [Y /H] on objects in [X/G] by

[f, ρ] : (T ,U, t, u, v) 7−→
(
(T ×H)/G,U, t̃, ũ, ṽ

)
.

Here for each δ ∈ H, write Lδ, Rδ : H → H for left and right multiplication by δ.
Then to define (T ×H)/G, each γ ∈ G acts by r(γ)×Rρ(γ)−1 : T ×H → T ×H.

For each δ ∈ H, the morphism t̃(δ) : (T ×H)/G→ (T ×H)/G is induced by the
morphism idT ×Lδ : T ×H → T ×H. The morphisms ũ : (T ×H)/G→ Y and
ṽ : (T×H)/G→ U are induced by f◦u◦πT : T×H → Y and v◦πT : T×H → U.

On morphisms (a, b) : (T ,U, t, u, v) → (T ′, U′, t′, u′, v′) in [X/G], define
[f, ρ] to map (a, b) 7→ (a, b̃), where b̃ : (T ×H)/G→ (T ′ ×H)/G is induced by

b × idH : T ×H → T ′ ×H. Then [f, ρ] : [X/G] → [Y /H] is a 1-morphism of
C∞-stacks, which we call a quotient 1-morphism.

If ρ : G→ H is injective, then [f, ρ] : [X/G]→ [Y /H] is representable.

Example 1.8.13. Let [f, ρ] : [X/G] → [Y /H] and [g, σ] : [X/G] → [Y /H] be
quotient 1-morphisms, so that f, g : X → Y and ρ, σ : G → H are morphisms.

Suppose δ ∈ H satisfies σ(γ) = δ ρ(γ) δ−1 for all γ ∈ G, and g = s(δ) ◦ f .
For each object (T ,U, t, u, v) in [X/G], define an isomorphism in [Y /H]:

[δ]
(
(T ,U, t, u, v)

)
=(idU, iδ) : [f, ρ]

(
(T ,U, t, u, v)

)
=
(
(T×H)/r×Rρ−1G,U, t̃, ũ,ṽ

)
−→ [g, σ]

(
(T ,U, t, u, v)

)
=
(
(T ×H)/r×Rσ−1G,U, ṫ, u̇, v̇

)
,

where iδ : (T×H)/r×Rρ−1G→(T×H)/r×Rσ−1G is induced idT×Rδ−1 :T ×H →
T × H. Then [δ] : [f, ρ] ⇒ [g, σ] is a natural isomorphism of functors, and a
2-morphism of C∞-stacks, which we call a quotient 2-morphism.

1.8.5 Deligne–Mumford C∞-stacks

Deligne–Mumford C∞-stacks, studied in [56, §9], are a C∞ analogue of Deligne–
Mumford stacks in algebraic geometry.

Definition 1.8.14. A Deligne–Mumford C∞-stack is a C∞-stack X which
admits an open cover {Ya : a ∈ A} with each Ya equivalent to a quotient stack
[Ua/Ga] in Example 1.8.11 for Ua an affine C∞-scheme and Ga a finite group.
We call X locally fair if it has such an open cover with each Ua a fair affine
C∞-scheme.

We call a Deligne–Mumford C∞-stack X second countable, compact, locally
compact, or paracompact, if the underlying topological space Xtop from §1.8.2 is
second countable, compact, locally compact, or paracompact, respectively.

Write DMC∞Sta,DMC∞Stalf ,DMC∞Stalf
ssc for the full 2-subcategories

of Deligne–Mumford C∞-stacks, and locally fair Deligne–Mumford C∞-stacks,
and separated, second countable, locally fair Deligne–Mumford C∞-stacks in
C∞Sta, respectively.
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If X is a Deligne–Mumford C∞-stack then IsoX ([x]) is finite for all [x] in
Xtop. If f : X → Y is a 1-morphism of Deligne–Mumford C∞-stacks then f is
representable if and only if the morphisms of orbifold groups f∗ : IsoX ([x]) →
IsoY([y]) from Definition 1.8.6 are injective for all [x] ∈ Xtop with ftop([x]) =
[x] ∈ Ytop. From [56, §9–§10] we have:

Theorem 1.8.15. (a) All fibre products exist in the 2-category C∞Sta.

(b) DMC∞Sta,DMC∞Stalf and DMC∞Stalf
ssc are closed under fibre prod-

ucts and under taking open C∞-substacks in C∞Sta.

Proposition 1.8.16. Let X be a Deligne–Mumford C∞-stack and [x] ∈ Xtop,
so that IsoX ([x]) ∼= H for some finite group H. Then there exists an open C∞-
substack U in X with [x] ∈ Utop ⊆ Xtop and an equivalence U ' [Y /H], where
Y = (Y,OY ) is an affine C∞-scheme with an action of H, and [x] ∈ Utop

∼=
Y/H corresponds to a fixed point y of H in Y .

Theorem 1.8.17. Suppose X is a Deligne–Mumford C∞-stack with IsoX ([x])∼=
{1} for all [x] ∈ Xtop. Then X is equivalent to X̄ for some C∞-scheme X.

In conventional algebraic geometry, a stack with all orbifold groups trivial is
(equivalent to) an algebraic space, but may not be a scheme, so the category of
algebraic spaces is larger than the category of schemes. Here algebraic spaces
are spaces which are locally isomorphic to schemes in the étale topology, but
not necessarily locally isomorphic to schemes in the Zariski topology.

In contrast, as Theorem 1.8.17 shows, in C∞-algebraic geometry there is
no difference between C∞-schemes and C∞-algebraic spaces. This is because
in C∞-geometry the Zariski topology is already fine enough, as in Remark
1.2.9(iii), so we gain no extra generality by passing to the étale topology.

1.8.6 Quasicoherent sheaves on C∞-stacks

In [56, §10] we study sheaves on Deligne–Mumford C∞-stacks.

Definition 1.8.18. Let X be a Deligne–Mumford C∞-stack. Define a category
CX to have objects pairs (U, u) where U is a C∞-scheme and u : Ū → X is an
étale 1-morphism, and morphisms (f, η) : (U, u) → (V , v) where f : U → V is

an étale morphism of C∞-schemes, and η : u ⇒ v ◦ f̄ is a 2-isomorphism. If
(f, η) : (U, u) → (V , v) and (g, ζ) : (V , v) → (W,w) are morphisms in CX then
we define the composition (g, ζ) ◦ (f, η) to be (g ◦ f, θ) : (U, u)→ (W,w), where
θ is the composition of 2-morphisms across the diagram:

Ū
f̄

$$JJJJJJ u

((
g◦f

��

____ks
id

V̄
v //

ḡzzttttt

������ η
X .

W̄ w

66������ ζ

Define an OX -module E to assign an OU -module E(U, u) on U = (U,OU ) for
all objects (U, u) in CX , and an isomorphism E(f,η) : f∗(E(V , v))→ E(U, u) for
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all morphisms (f, η) : (U, u) → (V , v) in CX , such that for all (f, η), (g, ζ), (g ◦
f, θ) as above the following diagram of isomorphisms of OU -modules commutes:

(g ◦ f)∗
(
E(W,w)

)
E(g◦f,θ)

//

If,g(E(W,w))
**VVVVV

E(U, u),

f∗
(
g∗(E(W,w)

) f∗(E(g,ζ))// f∗
(
E(V , v)

)E(f,η)

66nnnn (1.39)

for If,g(E(W,w)) as in Remark 1.2.17.
A morphism of OX -modules φ : E → F assigns a morphism of OU -modules

φ(U, u) : E(U, u) → F(U, u) for each object (U, u) in CX , such that for all
morphisms (f, η) : (U, u)→ (V , v) in CX the following commutes:

f∗
(
E(V , v)

)
f∗(φ(V ,v)) ��

E(f,η)

// E(U, u)

φ(U,u)��
f∗
(
F(V , v)

) F(f,η) // F(U, u).

We call E quasicoherent, or a vector bundle of rank n, if E(U, u) is quasico-
herent, or a vector bundle of rank n, respectively, for all (U, u) ∈ CX . Write
OX -mod for the category of OX -modules, and qcoh(X ), vect(X ) for the full
subcategories of quasicoherent sheaves and vector bundles, respectively. Then
OX -mod is an abelian category, and qcoh(X ) an abelian subcategory ofOX -mod.
If X is locally fair then qcoh(X ) = OX -mod.

Note that vector bundles E on X are locally trivial in the étale topology, but
need not be locally trivial in the Zariski topology. In particular, the orbifold
groups IsoX ([x]) of X can act nontrivially on the fibres E|x of E .

As in [56, §10.5], as well as sheaves of OX -modules, we can define other
kinds of sheaves on Deligne–Mumford C∞-stacks X by the same method. In
particular, to define d-stacks in §1.10, we will need sheaves of abelian groups
and sheaves of C∞-rings on Deligne–Mumford C∞-stacks.

Example 1.8.19. Let X be a Deligne–Mumford C∞-stack. Define a quasico-
herent sheaf OX on X called the structure sheaf of X by OX (U, u) = OU for all
objects (U, u) in CX , and (OX )(f,η) : f∗(OV )→ OU is the natural isomorphism

for all morphisms (f, η) : (U, u)→ (V , v) in CX .
We may also consider OX as a sheaf of C∞-rings on X .

Example 1.8.20. Let X be a Deligne–Mumford C∞-stack. Define an OX -
module T ∗X called the cotangent sheaf of X by (T ∗X )(U, u) = T ∗U for all
objects (U, u) in CX and (T ∗X )(f,η) = Ωf : f∗(T ∗V )→ T ∗U for all morphisms

(f, η) : (U, u)→ (V , v) in CX , where T ∗U and Ωf are as in §1.2.4.

Example 1.8.21. Let X be a C∞-scheme. Then X = X̄ is a Deligne–Mumford
C∞-stack. We will define an inclusion functor IX : OX -mod → OX -mod. Let
E be an object in OX -mod. If (U, u) is an object in CX then u : Ū → X = X̄
is 2-isomorphic to ū : Ū → X̄ for some unique morphism u : U → X. Define
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E ′(U, u) = u∗(E). If (f, η) : (U, u) → (V , v) is a morphism in CX and u, v are
associated to u, v as above, so that u = v ◦ f , then define

E ′(f,η) = If,v(E)−1 : f∗(E ′(V , v)) = f∗
(
v∗(E)

)
−→ (v ◦ f)∗(E) = E ′(U, u).

Then (1.39) commutes for all (f, η), (g, ζ), so E ′ is an OX -module.
If φ : E → F is a morphism of OX -modules then we define a morphism

φ′ : E ′ → F ′ in OX -mod by φ′(U, u) = u∗(φ) for u associated to u as above.
Then defining IX : E 7→ E ′, IX : φ 7→ φ′ gives a functor OX -mod → OX -mod,
which induces equivalences between the categories OX -mod, qcoh(X) defined in
§1.2.4 and OX -mod, qcoh(X ) above.

Definition 1.8.22. Let f : X → Y be a 1-morphism of Deligne–Mumford C∞-
stacks, and F be an OY -module. A pullback of F to X is an OX -module E ,
together with the following data: if U, V are C∞-schemes and u : Ū → X and
v : V̄ → Y are étale 1-morphisms, then there is a C∞-scheme W and morphisms
πU : W → U, πV : W → V giving a 2-Cartesian diagram:

W̄
π̄V

//
π̄U �� � �� �

FN
ζ

V̄
v��

Ū
f◦u // Y.

(1.40)

Then an isomorphism i(F , f, u, v, ζ) : π∗U
(
E(U, u)

)
→ π∗V

(
F(V , v)

)
of OW -

modules should be given, which is functorial in (U, u) in CX and (V , v) in CY
and the 2-isomorphism ζ in (1.40). We usually write pullbacks E as f∗(F).
Pullbacks f∗(F) exist, and are unique up to unique isomorphism. Using the
Axiom of Choice, we choose a pullback f∗(F) for all such f,F .

Let f : X → Y be a 1-morphism, and φ : E → F be a morphism in OY -mod.
Then f∗(E), f∗(F) ∈ OX -mod. The pullback morphism f∗(φ) : f∗(E)→ f∗(F)
is the unique morphism in OX -mod such that whenever u : Ū → X , v : V̄ → Y,
W,πU, πV are as above, the following diagram in OW -mod commutes:

π∗U
(
f∗(E)(U, u)

)
i(E,f,u,v,ζ)

//

π∗U(f∗(φ)(U,u)) ��

π∗V
(
E(V , v)

)
π∗V (φ(V ,v))��

π∗U
(
f∗(F)(U, u)

) i(F,f,u,v,ζ) // π∗V
(
F(V , v)

)
.

This defines a right exact functor f∗ : OY -mod → OX -mod, which also maps
qcoh(Y)→ qcoh(X ).

Let f, g : X → Y be 1-morphisms of Deligne–Mumford C∞-stacks, η : f ⇒ g
a 2-morphism, and E ∈ OY -mod. Then we have OX -modules f∗(E), g∗(E).
Define η∗(E) : f∗(E)→ g∗(E) to be the unique isomorphism such that whenever
U, V ,W, u, v, πU, πV are as above, so that we have 2-Cartesian diagrams

W̄
π̄V

//
π̄U �� � �� �

FNζ�(η∗idu◦π̄U )
V̄
v��

W̄
π̄V

//
π̄U �� ����

@Hζ
V̄
v��

Ū
f◦u // Y, Ū

g◦u // Y,
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as in (1.40), then we have commuting isomorphisms of OW -modules:

π∗U
(
f∗(E)(U, u)

)
i(E,f,u,v,ζ�(η∗idu◦π̄U ))

..\\\\\\\\\\\\\\\\\\\\\

π∗U((η∗(E))(U,u))
�� π∗V

(
E(V , v)

)
.

π∗U
(
g∗(E)(U, u)

)
i(E,g,u,v,ζ)

11bbbbbbbbbbbbbbbbbbbbb

This defines a natural isomorphism η∗ : f∗ ⇒ g∗.
As in Remark 1.2.17, if f : X → Y and g : Y → Z are 1-morphisms

of Deligne–Mumford C∞-stacks and E ∈ OZ -mod, then we have a canonical
isomorphism If,g(E) : (g ◦f)∗(E)→ f∗(g∗(E)). If X is a Deligne–Mumford C∞-
stack and E ∈ OX -mod, we have a canonical isomorphism δX (E) : id∗X (E)→ E .
These If,g, δX have the same properties as in the C∞-scheme case.

In a similar way, we can define pullbacks f−1(E) for sheaves of abelian groups
and of C∞-rings E on Y, and corresponding isomorphisms If,g(E), δX (E).

Example 1.8.23. Let f : X → Y be a 1-morphism of Deligne–Mumford C∞-
stacks. Then Example 1.8.19 defines sheaves of C∞-rings OX ,OY on X ,Y,
so as in Definition 1.8.22 we have a pullback sheaf f−1(OY) of C∞-rings on
X . There is a natural morphism f ] : f−1(OY) → OX of sheaves of C∞-rings
on X , characterized by the following property: for all (U, u), (V , v),W , ζ as in
Definition 1.8.22, the following diagram of sheaves of C∞-rings on W commutes:

π−1
U

(
f−1(OY)(U, u)

)
i(OY ,f,u,v,ζ)∼= ��

π−1
U (f](U,u))

// π−1
U

(
(OX )(U, u)

)
π−1
U (OU )

∼=π]U ��
π−1
V

(
OY(V , v)

)
π−1
V (OV

) π]V // OW ,

where πU = (πU , π
]
U ) and πV = (πV , π

]
V ).

Definition 1.8.24. Let f : X → Y be a 1-morphism of Deligne–Mumford C∞-
stacks. Then f∗(T ∗Y), T ∗X are OX -modules, by Example 1.8.20 and Definition
1.8.22. Define Ωf : f∗(T ∗Y) → T ∗X to be the unique morphism characterized
as follows. Let u : Ū → X , v : V̄ → Y, W,πU, πV be as in Definition 1.8.22,
with (1.40) 2-Cartesian. Then the following diagram commutes in OW -mod:

π∗U
(
f∗(T ∗Y)(U, u)

)
π∗U(Ωf (U,u))

��

i(T∗Y,f,u,v,ζ)
// π∗V
(
(T ∗Y)(V , v)

)
π∗V (T ∗V )

ΩπV
��

π∗U
(
(T ∗X )(U, u)

) (T∗X )(πU,idu◦πU )

// (T ∗X )(W,u ◦ πU) T ∗W.

Here [56, Th. 10.15] is the analogue of Theorem 1.2.21.

Theorem 1.8.25. (a) Let f : X → Y and g : Y → Z be 1-morphisms of
Deligne–Mumford C∞-stacks. Then Ωg◦f = Ωf ◦ f∗(Ωg) ◦ If,g(T ∗Z).

(b) Let f, g : X → Y be 1-morphisms of Deligne–Mumford C∞-stacks and
η : f ⇒ g a 2-morphism. Then Ωf = Ωg ◦ η∗(T ∗Y) : f∗(T ∗Y)→ T ∗X .
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(c) Suppose W,X ,Y,Z are locally fair Deligne–Mumford C∞-stacks with a
2-Cartesian square

W
f

//
e�� � �� �

FN
η

Y
h ��

X
g // Z

in DMC∞Stalf , so that W ' X×ZY. Then the following is exact in qcoh(W) :

(g ◦ e)∗(T ∗Z)

e∗(Ωg)◦Ie,g(T∗Z)⊕
−f∗(Ωh)◦If,h(T∗Z)◦η∗(T∗Z) //

e∗(T ∗X )⊕
f∗(T ∗Y)

Ωe⊕Ωf // T ∗W // 0.

1.8.7 Orbifold strata of Deligne–Mumford C∞-stacks

Let X be a Deligne–Mumford C∞-stack, and Γ a finite group. In [56, §11.1] we
define six different notions of orbifold strata of X , which are Deligne–Mumford
C∞-stacks written XΓ, X̃Γ, X̂Γ, and open C∞-substacks XΓ

◦ ⊆ XΓ, X̃Γ
◦ ⊆ X̃Γ,

X̂Γ
◦ ⊆ X̂Γ. The points and orbifold groups of XΓ, . . . , X̂Γ

◦ are given by:

(i) Points of XΓ are isomorphism classes [x, ρ], where [x] ∈ Xtop and ρ : Γ→
IsoX ([x]) is an injective morphism, and IsoXΓ([x, ρ]) is the centralizer of
ρ(Γ) in IsoX ([x]). Points of XΓ

◦ ⊆ XΓ are [x, ρ] with ρ an isomorphism,
and IsoXΓ

◦
([x, ρ]) ∼= C(Γ), the centre of Γ.

(ii) Points of X̃Γ are pairs [x,∆], where [x] ∈ Xtop and ∆ ⊆ IsoX ([x]) is
isomorphic to Γ, and IsoX̃Γ([x,∆]) is the normalizer of ∆ in IsoX ([x]).
Points of X̃Γ

◦ ⊆ X̃Γ are [x,∆] with ∆ = IsoX ([x]), and IsoX̃Γ
◦
([x,∆]) ∼= Γ.

(iii) Points [x,∆] of X̂Γ, X̂Γ
◦ are the same as for X̃Γ, X̃Γ

◦ , but with orbifold
groups IsoX̂Γ([x,∆]) ∼= IsoX̃Γ([x,∆])/∆ and IsoX̂Γ

◦
([x,∆]) ∼= {1}.

Since the C∞-stack X̂Γ
◦ has trivial orbifold groups, it is (equivalent to) a C∞-

scheme. That is, there is a genuine C∞-scheme X̂Γ
◦ , unique up to isomorphism

in C∞Sch, such that X̂Γ
◦ '

¯̂
XΓ
◦ in C∞Sta.

There are 1-morphisms OΓ(X ), . . . , Π̂Γ
◦ (X ) forming a strictly commutative

diagram, where the columns are inclusions of open C∞-substacks:

XΓ
◦

Π̃Γ
◦ (X ) //

OΓ
◦ (X ) ++WWWWWWWWWWWW

⊂
��

Aut(Γ)
,, X̃Γ

◦
Π̂Γ
◦ (X ) //

ÕΓ
◦ (X )ssgggggggggggg

⊂
��

X̂Γ
◦ '

¯̂
XΓ
◦

⊂
��

X

XΓ

Π̃Γ(X )

//
OΓ(X )

33ggggggggggggAut(Γ) 22 X̃Γ
Π̂Γ(X )

//
ÕΓ(X )

kkWWWWWWWWWWWW
X̂Γ.

(1.41)

Also Aut(Γ) acts on XΓ,XΓ
◦ , with X̃Γ ' [XΓ/Aut(Γ)], X̃Γ

◦ ' [XΓ
◦ /Aut(Γ)].

The topological space Xtop of X from §1.8.2 has stratifications

Xtop
∼=
∐

iso. classes of
finite groups Γ

XΓ
◦,top/Γ

∼=
∐

Γ
X̃Γ
◦,top

∼=
∐

Γ
X̂Γ
◦,top,
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which is why XΓ, . . . , X̂Γ
◦ are called orbifold strata. The 1-morphisms OΓ(X ),

ÕΓ(X ) in (1.41) are proper, and Π̂Γ(X )top : X̃Γ
top → X̂Γ

top is a homeomorphism

of topological spaces. Hence, if X is compact then XΓ, X̃Γ, X̂Γ are also compact.

Example 1.8.26. Let X be a Deligne–Mumford C∞-stack. The inertia stack
IX of X is the fibre product IX = X ×∆X ,X×X ,∆X X , where ∆X : X → X ×X
is the diagonal 1-morphism. One can show there is an equivalence

IX '
∐
k>1 X Zk .

Points of IX are isomorphism classes [x, η], where [x] ∈ Xtop and η ∈ IsoX ([x]).
Each such η ∈ IsoX ([x]) has some finite order k > 1, and generates an injective
morphism ρ : Zk → IsoX ([x]) mapping ρ : a 7→ ηa. We may identify X Zk with
the open and closed C∞-substack of [x, η] in IX for which η has order k.

Orbifold strata XΓ are strongly functorial for representable 1-morphisms
and their 2-morphisms. That is, if f : X → Y is a representable 1-morphism
of Deligne–Mumford C∞-stacks, we define a unique representable 1-morphism
fΓ : XΓ → YΓ with OΓ(Y) ◦ fΓ = f ◦OΓ(X ). If f, g : X → Y are representable
and η : f ⇒ g is a 2-morphism, we define a unique 2-morphism ηΓ : fΓ ⇒ gΓ

with idOΓ(Y) ∗ ηΓ = η ∗ idOΓ(X ). These fΓ, ηΓ are compatible with compositions

of 1- and 2-morphisms, and identities, in the obvious way. Orbifold strata X̃Γ

have the same kind of functorial behaviour, and X̂Γ have a weaker functorial
behaviour, in that f̂Γ is only natural up to 2-isomorphism.

For f : X → Y and Γ as above, the restriction fΓ|XΓ
◦

need not map XΓ
◦ → YΓ

◦ ,
but only XΓ

◦ → YΓ. So we do not define 1-morphisms fΓ
◦ : XΓ

◦ → YΓ
◦ . The same

applies for the actions f̃Γ, f̂Γ of f on orbifold strata X̃Γ
◦ , X̂Γ

◦ .
In [56, §11.3] we describe the orbifold strata of a quotient C∞-stack [X/G].

Theorem 1.8.27. Suppose X is a separated C∞-scheme and G a finite group
acting on X by isomorphisms, and write X = [X/G] for the quotient C∞-stack
from Example 1.8.11, which is a Deligne–Mumford C∞-stack. Let Γ be a finite
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group. Then there are equivalences of C∞-stacks

XΓ '
∐

conjugacy classes [ρ] of injective
group morphisms ρ : Γ→ G

[
Xρ(Γ)/

{
g ∈ G : gρ(γ) = ρ(γ)g ∀γ ∈ Γ

}]
, (1.42)

XΓ
◦ '

∐
conjugacy classes [ρ] of injective
group morphisms ρ : Γ→ G

[
Xρ(Γ)
◦ /

{
g ∈ G : gρ(γ) = ρ(γ)g ∀γ ∈ Γ

}]
, (1.43)

X̃Γ '
∐

conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆/

{
g ∈ G : ∆ = g∆g−1

}]
, (1.44)

X̃Γ
◦ '

∐
conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆
◦ /
{
g ∈ G : ∆ = g∆g−1

}]
. (1.45)

X̂Γ '
∐

conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆

/(
{g ∈ G : ∆ = g∆g−1}/∆

)]
, (1.46)

X̂Γ
◦ '

∐
conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆
◦
/(
{g ∈ G : ∆ = g∆g−1}/∆

)]
. (1.47)

Here for each subgroup ∆ ⊆ G, we write X∆ for the closed C∞-subscheme
in X fixed by ∆ in G, and X∆

◦ for the open C∞-subscheme in X∆ of points
in X whose stabilizer group in G is exactly ∆. In (1.42)–(1.43), morphisms
ρ, ρ′ : Γ → G are conjugate if ρ′ = Ad(g) ◦ ρ for some g ∈ G, and subgroups
∆,∆′ ⊆ G are conjugate if ∆ = g∆′g−1 for some g ∈ G. In (1.42)–(1.47) we
sum over one representative ρ or ∆ for each conjugacy class.

Let X be a Deligne–Mumford C∞-stack and Γ a finite group, so that as
above we have an orbifold stratum XΓ with a 1-morphism OΓ(X ) : XΓ → X .
Let E be a quasicoherent sheaf on X , so that EΓ := OΓ(X )∗(E) is a quasicoherent
sheaf on XΓ. In [56, §11.4] we show that there is a natural representation of Γ
on EΓ by isomorphisms. Also the action of Aut(Γ) on XΓ lifts naturally to EΓ,
so that Aut(Γ) n Γ acts equivariantly on EΓ.

Write R0, . . . , Rk for the irreducible representations of Γ over R (that is, we
choose one representative Ri in each isomorphism class of irreducible represen-
tations), with R0 = R the trivial representation. Then the Γ-representation on
EΓ induces a splitting

EΓ ∼=
⊕k

i=0 E
Γ
i ⊗Ri for EΓ

0 , . . . , E
Γ
k ∈ qcoh(XΓ). (1.48)

We will be interested in splitting EΓ into trivial and nontrivial representations
of Γ, denoted by subscripts ‘tr’ and ‘nt’. So we write

EΓ = EΓ
tr ⊕ E

Γ
nt, (1.49)

where EΓ
tr, E

Γ
nt are the subsheaves of EΓ corresponding to the factors EΓ

0⊗R0 and⊕k
i=1 E

Γ
i ⊗Ri respectively. The same applies for the orbifold stratum XΓ

◦ ⊆ XΓ.

We also have an orbifold stratum X̃Γ with a 1-morphism ÕΓ(X ) : X̃Γ → X ,
so that ẼΓ := ÕΓ(X )∗(E) is a quasicoherent sheaf on X̃Γ. In general there is no
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natural Γ-representation on ẼΓ, as the quotient by Aut(Γ) in X̃Γ ' [XΓ/Aut(Γ)]
does not preserve the Γ-action. However, we do have a natural splitting

ẼΓ = ẼΓ
tr ⊕ ẼΓ

nt (1.50)

corresponding to (1.49). The same applies for X̃Γ
◦ ⊆ X̃Γ.

As in (1.41), for the orbifold stratum X̂Γ we do not have a natural 1-
morphism X̂Γ → X , so we cannot just pull E back to X̂Γ. Instead, we push
ẼΓ down to X̂Γ along the 1-morphism Π̂Γ : X̃Γ → X̂Γ. It turns out that in
the splitting (1.50), the push down Π̂Γ

∗ (ẼΓ
nt) is zero, since Π̂Γ has fibre [∗/Γ],

and Π̂Γ
∗ essentially takes Γ-equivariant parts. So we define ÊΓ

tr = Π̂Γ
∗ (ẼΓ

tr), a
quasicoherent sheaf on X̂Γ. The same applies for X̂Γ

◦ ⊆ X̂Γ.
When passing to orbifold strata, it is often natural to restrict to the trivial

parts EΓ
tr, ẼΓ

tr, ÊΓ
tr of the pullbacks of E . The next theorem illustrates this.

Theorem 1.8.28. Let X be a Deligne–Mumford C∞-stack and Γ a finite group,
so that we have a 1-morphism OΓ(X ) : XΓ → X . As in Example 1.8.20 we
have cotangent sheaves T ∗X , T ∗(XΓ) and a morphism ΩOΓ(X ) : OΓ(X )∗(T ∗X )
→ T ∗(XΓ) in qcoh(XΓ). But OΓ(X )∗(T ∗X ) = (T ∗X )Γ, so by (1.49) we have
a splitting (T ∗X )Γ = (T ∗X )Γ

tr ⊕ (T ∗X )Γ
nt. Then ΩOΓ(X )|(T∗X )Γ

tr
: (T ∗X )Γ

tr →
T ∗(XΓ) is an isomorphism, and ΩOΓ(X )|(T∗X )Γ

nt
= 0.

Similarly, using ÕΓ(X ) : X̃Γ → X and (1.50) for ˜(T ∗X )Γ we find that

ΩÕΓ(X )| ˜(T∗X )Γ
tr

: ˜(T ∗X )Γ
tr→T ∗(X̃Γ) is an isomorphism, and ΩÕΓ(X )| ˜(T∗X )Γ

nt
=0.

Also, there is a natural isomorphism ̂(T ∗X )Γ
tr
∼= T ∗(X̂Γ) in qcoh(X̂Γ).

1.9 Orbifolds

We now summarize §8.1–§8.4 on orbifolds.

1.9.1 Different ways to define orbifolds

Orbifolds are geometric spaces locally modelled on Rn/G, for G ⊂ GL(n,R)
a finite group. There are several nonequivalent definitions of orbifolds in the
literature, which are reviewed in §8.1. They were first defined by Satake [90]
(who called them ‘V-manifolds’) and Thurston [99, §13]. Satake and Thurston
defined an orbifold to be a Hausdorff topological space X with an atlas of
charts (Ui,Γi, φi) for i ∈ I, where Γi ⊂ GL(n,R) is a finite subgroup, Ui ⊆ Rn
a Γi-invariant open subset, and φi : Ui/Γi → X a homeomorphism with an
open set in X, compatible on overlaps φi(Ui/Γi) ∩ φj(Uj/Γj) in X. Smooth
maps between orbifolds are continuous maps f : X → Y , which lift locally to
equivariant smooth maps on the charts.

There is a problem with this notion of smooth maps: some differential-
geometric operations, such as pullbacks of vector bundles by smooth maps, may
not be well-defined. To fix this problem, new definitions were needed. Moerdijk
and Pronk [84, 85] defined orbifolds to be proper étale Lie groupoids in Man.
Chen and Ruan [21, §4] gave an alternative theory more in the spirit of [90,99].
A book on orbifolds in the sense of [21,84,85] is Adem, Leida and Ruan [2].
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All of [2,21,84,85,90,99] regard orbifolds as an ordinary category. But orb-
ifolds are differential-geometric analogues of Deligne–Mumford stacks, which
form a 2-category. So it seems natural to define a 2-category of orbifolds
Orb. Several important geometric constructions need the extra structure of a
2-category to work properly. For example, transverse fibre products exist in the
2-category Orb, where they satisfy a universal property involving 2-morphisms,
as in §A.4. In the homotopy category Ho(Orb), ‘transverse fibre products’ can
be defined as an ad hoc geometric construction, but they are not fibre products
in the category-theoretic sense, and do not satisfy a universal property.

There are two main routes in the literature for defining a 2-category of
orbifolds Orb. The first, as in Pronk [89] and Lerman [67, §3.3], is to define
orbifolds to be groupoids in Man as in [84,85]. But to define 1- and 2-morphisms
in Orb one must do more work: one makes proper étale Lie groupoids into a
2-category Gpoid, and then Orb is defined as a (weak) 2-category localization
of Gpoid at a suitable class of 1-morphisms.

The second route, as in Behrend and Xu [13, §2], Lerman [67, §4] and Metzler
[82, §3.5], is to define orbifolds as a class of Deligne–Mumford stacks on the site
(Man,JMan) of manifolds with Grothendieck topology JMan coming from open
covers. The relationship between the two routes is discussed in [13,67,89].

In the ‘classical’ approaches to orbifolds [2, 21, 84, 85, 90, 99], the objects,
orbifolds, have a simple definition, but the smooth maps, or 1- and 2-morphisms,
are either badly behaved, or very complicated to define. In contrast, in the
‘stacky’ approaches to orbifolds [13,56,67,82], the objects are very complicated
to define, but 1- and 2-morphisms are well-behaved and easy to define — 1-
morphisms are just functors, and 2-morphisms are natural isomorphisms.

Our approach in this book, described in §8.2 below, is similar to the second
route: we define orbifolds to be special examples of Deligne–Mumford C∞-
stacks, so that they are stacks on the site (C∞Sch,J ). This will be convenient
for our work on d-stacks and d-orbifolds, which are also based on C∞-stacks.

Definition 1.9.1. An orbifold of dimension n is a separated, second countable
Deligne–Mumford C∞-stack X such that for every [x] ∈ Xtop there exist a
linear action of G = IsoX ([x]) on Rn, a G-invariant open neighbourhood U of 0
in Rn, and a 1-morphism i : [U/G] → X which is an equivalence with an open
neighbourhood U ⊆ X of [x] in X with itop([0]) = [x], where U = FC∞Sch

Man (U).
Write Orb for the full 2-subcategory of orbifolds in DMC∞Sta. We may

refer to 1-morphisms f : X → Y in Orb as smooth maps of orbifolds. Define a
full and faithful functor FOrb

Man : Man→ Orb by FOrb
Man = FC∞Sta

C∞Sch ◦ FC∞Sch
Man .

Here is [56, Th. 9.26 & Cor. 9.27]. Since equivalent (2-)categories are con-
sidered to be ‘the same’, the moral of Theorem 1.9.2 is that our orbifolds are
essentially the same objects as those considered by other recent authors.

Theorem 1.9.2. The 2-category Orb of orbifolds without boundary defined
above is equivalent to the 2-categories of orbifolds considered as stacks on Man
defined in Metzler [82, §3.4] and Lerman [67, §4], and also equivalent as a weak
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2-category to the weak 2-categories of orbifolds regarded as proper étale Lie
groupoids defined in Pronk [89] and Lerman [67, §3.3].

Furthermore, the homotopy category Ho(Orb) of Orb (that is, the category
whose objects are objects in Orb, and whose morphisms are 2-isomorphism
classes of 1-morphisms in Orb) is equivalent to the category of orbifolds re-
garded as proper étale Lie groupoids defined in Moerdijk [84]. Transverse fibre
products in Orb agree with the corresponding fibre products in C∞Sta.

We define five classes of smooth maps:

Definition 1.9.3. Let f : X → Y be a smooth map (1-morphism) of orbifolds.

(i) We call f representable if it acts injectively on orbifold groups, that is,
f∗ : IsoX ([x])→ IsoY

(
ftop([x])

)
is an injective morphism for all [x] ∈ Xtop.

Equivalently, f is representable if it is a representable 1-morphism of C∞-
stacks. This means that whenever V is a C∞-scheme and Π : V̄ → Y is a
1-morphism then the C∞-stack fibre product X ×f,Y,Π V̄ is a C∞-scheme.

(ii) We call f an immersion if it is representable and Ωf : f∗(T ∗Y)→ T ∗X is a
surjective morphism of vector bundles, i.e. has a right inverse in qcoh(X ).

(iii) We call f an embedding if it is an immersion, and f∗ : IsoX ([x]) →
IsoY

(
ftop([x])

)
is an isomorphism for all [x] ∈ Xtop, and ftop : Xtop → Ytop

is a homeomorphism with its image (so in particular it is injective).

(iv) We call f a submersion if Ωf : f∗(T ∗Y)→ T ∗X is an injective morphism
of vector bundles, i.e. has a left inverse in qcoh(X ).

(v) We call f étale if it is representable and Ωf : f∗(T ∗Y) → T ∗X is an
isomorphism, or equivalently, if f is étale as a 1-morphism of C∞-stacks.

Note that submersions are not required to be representable.

Definition 1.9.4. An orbifold X is called effective if X is locally modelled
near each [x] ∈ Xtop on Rn/G, where G acts effectively on Rn, that is, every
1 6= γ ∈ G acts nontrivially on Rn.

In §8.4 we prove a uniqueness property for 2-morphisms of effective orbifolds.

Proposition 1.9.5. Let X ,Y be effective orbifolds, and f, g : X → Y be 1-
morphisms. Suppose that either:

(i) f is an embedding, a submersion, étale, or an equivalence;

(ii) f∗ : IsoX ([x])→ IsoY
(
ftop([x])

)
is surjective for all [x] ∈ Xtop; or

(iii) Y is a manifold.

Then there exists at most one 2-morphism η : f ⇒ g.

Some authors include effectiveness in their definition of orbifolds. The
Satake–Thurston definitions are not as well-behaved for noneffective orbifolds.
One reason is that Proposition 1.9.5 often allows us to treat effective orbifolds
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as if they were a category rather than a 2-category, that is, one can work in
the homotopy category Ho(Orbeff ) of the full 2-subcategory Orbeff of effective
orbifolds, because genuinely 2-categorical behaviour comes from non-uniqueness
of 2-morphisms.

In §8.3 we discuss vector bundles on orbifolds. Now an orbifold X is an
example of a Deligne–Mumford C∞-stack, and in §1.8.6 we defined a category
qcoh(X ) of quasicoherent sheaves on X , and a full subcategory vect(X ) of vector
bundles on X . Unless we say otherwise, a vector bundle E on an orbifold X will
just mean an object in vect(X ), a special kind of quasicoherent sheaf on X , and
a smooth section s of E will mean an element of C∞(E), that is, a morphism
s : OX → E in vect(X ). The cotangent sheaf T ∗X of an n-orbifold X is a vector
bundle on X of rank n, which we call the cotangent bundle.

For some applications below, this point of view on vector bundles is not
ideal. If E → X is a vector bundle on a manifold, then E is itself a manifold
(with extra structure), with a submersion π : E → X, and a section s ∈ C∞(E)
is a smooth map s : X → E with π ◦ s = idX . In §1.4.1–§1.4.2 we considered
d-space fibre products V ×s,E,0V where V ,E, s,0 = FdSpa

Man (V,E, s, 0). For the
d-orbifold analogue of this, we would like to regard a vector bundle E over an
orbifold X as being an orbifold in its own right, rather than just a quasicoherent
sheaf, and a section s ∈ C∞(E) as being a 1-morphism s : X → E in Orb.

To get round this, in §8.3 we define a total space functor Tot, which to each
E in vect(X ) associates an orbifold Tot(E), called the total space of E , and to
each section s ∈ C∞(E) associates a 1-morphism Tot(s) : X → Tot(E) in Orb.
Then the d-orbifold analogue of V ×s,E,0V in Proposition 1.4.2(c) is V×s,E,0V ,
where V ,E, s,0 = FdSta

Orb

(
V,Tot(E),Tot(s),Tot(0)

)
.

Many other standard ideas in differential geometry extend simply to orb-
ifolds, such as submanifolds, transverse fibre products, and orientations, and we
will generally use these without comment.

1.9.2 Orbifold strata of orbifolds

In §1.8.7 we discussed orbifold strata XΓ, X̃Γ, X̂Γ,XΓ
◦ , X̃Γ

◦ , X̂Γ
◦ of a Deligne–

Mumford C∞-stack X . Section 8.4 works these ideas out for orbifolds. If X is
an orbifold, then XΓ, . . . , X̂Γ

◦ need not be orbifolds, as the next example shows,
but are disjoint unions of orbifolds of different dimensions.

Example 1.9.6. Let the real projective plane RP2 have homogeneous coor-
dinates [x0, x1, x2], and let Z2 = {1, σ} act on RP2 by σ : [x0, x1, x2] 7→
[x0, x1,−x2]. The fixed point locus of σ in RP2 is the disjoint union of the
circle

{
[x0, x1, 0] : [x0, x1] ∈ RP1

}
and the point

{
[0, 0, 1]}.

Write RP2 = FC∞Sch
Man (RP2), and form the quotient orbifold X = [RP2/Z2].

Then (1.42) shows that the orbifold stratum X Z2 is the disjoint union of orbifolds
RP1 × [∗/Z2] and [∗/Z2] of dimensions 1 and 0, respectively. Note that X Z2 is
not an orbifold, as it does not have pure dimension, and nor are X̃ Z2 , . . . , X̂ Z2

◦ .

So that our constructions remain within the world of orbifolds, we will find
it useful to define a decomposition XΓ =

∐
λ∈ΛΓ

+
XΓ,λ of XΓ such that each
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XΓ,λ is an orbifold of dimension dimX − dimλ.

Definition 1.9.7. Let Γ be a finite group. Consider representations (V, ρ) of
Γ, where V is a finite-dimensional real vector space and ρ : Γ → Aut(V ) a
group morphism. We call (V, ρ) nontrivial if V ρ(Γ) = {0}. Write Repnt(Γ) for
the abelian category of nontrivial (V, ρ), and K0(Repnt(Γ)) for its Grothendieck
group. Then any (V, ρ) in Repnt(Γ) has a class

[
(V, ρ)

]
in K0(Repnt(Γ)). For

brevity, we will use the notation ΛΓ = K0

(
Repnt(Γ)

)
and ΛΓ

+ =
{[

(V, ρ)
]

:

(V, ρ) ∈ Repnt(Γ)
}
⊆ ΛΓ. We think of ΛΓ

+ as the ‘positive cone’ in ΛΓ.
By elementary representation theory, up to isomorphism Γ has finitely many

irreducible representations. Let R0, R1, . . . , Rk be choices of irreducible repre-
sentations in these isomorphism classes, with R0 = R the trivial irreducible
representation, so that R1, . . . , Rk are nontrivial. Then ΛΓ is freely generated
over Z by [R1], . . . , [Rk], so that

ΛΓ =
{
a1[R1] + · · ·+ ak[Rk] : a1, . . . , ak ∈ Z

}
, and

ΛΓ
+ =

{
a1[R1] + · · ·+ ak[Rk] : a1, . . . , ak ∈ N

}
⊆ ΛΓ,

where N = {0, 1, 2, . . .} ⊂ Z. Hence ΛΓ ∼= Zk and ΛΓ
+
∼= Nk.

Define a group morphism dim : ΛΓ → Z by dim : a1[R1] + · · · + ak[Rk] 7→
a1 dimR1 + · · ·+ak dimRk, so that dim : [(V, ρ)] 7→ dimV . Then dim(ΛΓ

+) ⊆ N.
Now let X be an orbifold. As in (1.48)–(1.49) we have decompositions

OΓ(X )∗(T ∗X )=(T ∗X )Γ
tr⊕(T ∗X )Γ

nt with (T ∗X )Γ
tr
∼=(T ∗X )Γ

0⊗R0 and (T ∗X )Γ
nt
∼=⊕k

i=1(T ∗X )Γ
i ⊗Ri, where (T ∗X )Γ

0 , . . . , (T
∗X )Γ

k ∈ qcoh(XΓ). Since T ∗X is a
vector bundle, OΓ(X )∗(T ∗X ) is a vector bundle, and so the (T ∗X )Γ

i are vector
bundles of mixed rank, that is, locally they are vector bundles, but their ranks
may vary on different connected components of XΓ.

For each λ ∈ ΛΓ
+, define XΓ,λ to be the open and closed C∞-substack in XΓ

with rank
(
(T ∗X )Γ

1

)
[R1]+· · ·+rank

(
(T ∗X )Γ

k

)
[Rk] = λ in ΛΓ

+. Then (T ∗X )Γ
nt|XΓ,λ

is a vector bundle of rank dimλ, so (T ∗X )Γ
tr|XΓ,λ is a vector bundle of dimension

dimX − dimλ on XΓ,λ. But (T ∗X )Γ
tr
∼= T ∗(XΓ) by Theorem 1.8.28. Hence

T ∗(XΓ,λ) is a vector bundle of rank dimX − dimλ. Since XΓ is a disjoint
union of orbifolds of different dimensions, we see that XΓ,λ is an orbifold, with
dimXΓ,λ = dimX − dimλ. Then XΓ =

∐
λ∈ΛΓ

+
XΓ,λ.

Write OΓ,λ(X ) = OΓ(X )|XΓ,λ : XΓ,λ → X . It is a proper, representable
immersion of orbifolds. We interpret (T ∗X )Γ

nt|XΓ,λ as the conormal bundle of
XΓ,λ in X . It carries a nontrivial Γ-representation of class λ ∈ ΛΓ

+, so we refer
to λ as the conormal Γ-representation of XΓ,λ.

Define XΓ,λ
◦ = XΓ

◦ ∩ XΓ,λ, and OΓ,λ
◦ (X ) = OΓ

◦ (X )|XΓ,λ
◦

: XΓ,λ
◦ → X . Then

XΓ,λ
◦ is an orbifold with dimXΓ,λ

◦ = dimX − dimλ, and XΓ
◦ =

∐
λ∈ΛΓ

+
XΓ,λ
◦ .

As in §1.8.7, we have X̃Γ ' [XΓ/Aut(Γ)]. Now Aut(Γ) acts on the right
on Repnt(Γ) by α : (V, ρ) 7→ (V, ρ ◦ α) for α ∈ Aut(Γ), and this induces right
actions of Aut(Γ) on ΛΓ = K0

(
Repnt(Γ)

)
and ΛΓ

+ ⊆ ΛΓ. Write these actions
as α : λ 7→ λ · α. Then the action of α ∈ Aut(Γ) on XΓ maps XΓ,λ → XΓ,λ·α.
Write ΛΓ

+/Aut(Λ) for the set of Aut(Γ)-orbits µ = λ · Aut(Γ) in ΛΓ
+. The map

dim : ΛΓ → Z is Aut(Γ)-invariant, and so descends to dim : ΛΓ/Aut(Γ)→ Z.
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Then
∐
λ∈µ XΓ,λ is an open and closed Aut(Γ)-invariant C∞-substack in XΓ

for each µ ∈ ΛΓ
+/Aut(Λ), so we may define X̃Γ,µ '

[(∐
λ∈µ XΓ,λ

)/
Aut(Γ)

]
, an

open and closed C∞-substack of X̃Γ ' [XΓ/Aut(Γ)]. Write X̃Γ,µ
◦ = X̃Γ

◦ ∩ X̃Γ,µ.

Then X̃Γ,µ, X̃Γ,µ
◦ are orbifolds of dimension dimX − dimµ, with

X̃Γ =
∐
µ∈ΛΓ

+/Aut(Γ) X̃Γ,µ and X̃Γ
◦ =

∐
µ∈ΛΓ

+/Aut(Γ) X̃
Γ,µ
◦ .

Set ÕΓ,µ(X ) = ÕΓ(X )|X̃Γ,µ : X̃Γ,µ→X and ÕΓ,µ
◦ (X ) = ÕΓ

◦ (X )|X̃Γ,µ
◦

: X̃Γ,µ
◦ →X .

Then ÕΓ,µ(X ), ÕΓ,µ
◦ (X ) are representable immersions, with ÕΓ,µ(X ) proper.

The 1-morphism Π̂Γ(X ) : X̃Γ → X̂Γ maps open and closed C∞-substacks of
X̃Γ to open and closed C∞-substacks of X̂Γ. Let X̂Γ,µ = Π̂Γ(X )(X̃Γ,µ) for each

µ ∈ ΛΓ
+/Aut(Λ), and write X̂Γ,µ

◦ = X̂Γ
◦ ∩ X̂Γ,µ. Then X̂Γ,µ, X̂Γ,µ

◦ are orbifolds
of dimension dimX − dimµ, with

X̂Γ =
∐
µ∈ΛΓ

+/Aut(Γ) X̂Γ,µ and X̂Γ
◦ =

∐
µ∈ΛΓ

+/Aut(Γ) X̂
Γ,µ
◦ .

If f : X → Y is a representable 1-morphism of Deligne–Mumford C∞-stacks
and Γ a finite group, then as in §1.8.7 we have a representable 1-morphism of
orbifold strata fΓ : XΓ → YΓ. Note that if X ,Y are orbifolds, then fΓ need
not map XΓ,λ → YΓ,λ, or map XΓ

◦ → YΓ
◦ . The analogue applies for f̃Γ, f̂Γ.

Some important properties of orbifolds can be characterized by the vanishing
of certain orbifold strata XΓ,λ. For example:

• An orbifold X is locally orientable if and only if X Z2,λ = ∅ for all odd
λ ∈ ΛZ2

+
∼= N = {0, 1, 2, . . .}.

• An orbifold X is effective in the sense of Definition 1.9.4 if and only if
XΓ,0 = ∅ for all nontrivial finite groups Γ.

In §8.4 we consider the question: if X is an oriented orbifold, can we define
orientations on the orbifold strata XΓ,λ, . . . , X̂Γ,µ

◦ ? Here is an example:

Example 1.9.8. Let S4 =
{

(x1, . . . , x5) ∈ R5 : x2
1 + · · ·+ x2

5 = 1
}

, an oriented

4-manifold. Let G = {1, σ, τ, στ} ∼= Z2
2 act on S4 preserving orientations by

σ : (x1, . . . , x5) 7−→ (x1, x2, x3,−x4,−x5),

τ : (x1, . . . , x5) 7−→ (−x1,−x2,−x3,−x4, x5),

στ : (x1, . . . , x5) 7−→ (−x1,−x2,−x3, x4,−x5).

Then X = [S4/G] is an oriented 4-orbifold. The orbifold groups IsoX ([x]) for
[x] ∈ Xtop are all {1} or Z2. The singular locus of X is the disjoint union of a
copy of RP2 from the fixed points ±(x1, x2, x3, 0, 0) of σ, and two isolated points
{±(0, 0, 0, 0, 1)} and {±(0, 0, 0, 1, 0)} from the fixed points of τ and στ .

Identifying ΛZ2
+ and ΛZ2

+ /Aut(Z2) with N, it follows that

X Z2,2 = X Z2,2
◦
∼= X̃ Z2,2 = X̃ Z2,2

◦
∼= RP2 × [∗/Z2], X̂ Z2,2 = X̂ Z2,2

◦
∼= RP2,

X Z2,4 = X Z2,4
◦
∼= X̃ Z2,4 = X̃ Z2,4

◦
∼= [∗/Z2]q [∗/Z2], X̂ Z2,4 = X̂ Z2,4

◦
∼= ∗ q ∗.
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Since RP2 is not orientable, we see that X is an oriented orbifold, but none of
X Z2,2, X̃ Z2,2, X̂ Z2,2,X Z2,2

◦ , X̃ Z2,2
◦ , X̂ Z2,2

◦ are orientable.

Thus, we can only orient XΓ,λ, . . . , X̂Γ,µ
◦ for all oriented orbifolds X under

some conditions on Γ, λ, µ. The next proposition sets out these conditions:

Proposition 1.9.9. (a) Suppose Γ is a finite group and (V, ρ) a nontrivial
Γ-representation which has no odd-dimensional subrepresentations, and write
λ = [(V, ρ)] ∈ ΛΓ

+. Choose an orientation on V . Then for all oriented orbifolds

X we can define natural orientations on the orbifold strata XΓ,λ,XΓ,λ
◦ .

If |Γ| is odd then all nontrivial Γ-representations are even-dimensional, so

we can orient XΓ,λ,XΓ,λ
◦ for all λ ∈ ΛΓ

+.

(b) Let Γ, (V, ρ), λ be as in (a), and set µ = λ ·Aut(Γ) ∈ ΛΓ
+/Aut(Γ). Write H

for the subgroup of Aut(Γ) fixing λ in ΛΓ
+. Then for each δ ∈ H there exists an

isomorphism of Γ-representations iδ : (V, ρ ◦ δ) → (V, ρ). Suppose iδ : V → V
is orientation-preserving for all δ ∈ H. If λ ∈ 2ΛΓ

+ this holds automatically.
Then for all oriented orbifolds X we can define orientations on the orbifold

strata X̃Γ,µ, X̂Γ,µ, X̃Γ,µ
◦ , X̂Γ,µ

◦ . For X̃Γ,µ this works as X̃Γ,µ ' [XΓ,λ/H], where
XΓ,λ is oriented by (a), and the H-action on XΓ,λ preserves orientations, so
the orientation on XΓ,λ descends to an orientation on X̃Γ,µ ' [XΓ,λ/H].

(c) Suppose that Γ and λ ∈ ΛΓ
+ do not satisfy the conditions in (a), or Γ

and µ ∈ ΛΓ
+/Aut(Γ) do not satisfy the conditions in (b). Then as in Example

1.9.8 we can find examples of oriented orbifolds X such that XΓ,λ,XΓ,λ
◦ are not

orientable, or X̃Γ,µ, X̂Γ,µ, X̃Γ,µ
◦ , X̂Γ,µ

◦ are not orientable, respectively. That is,
the conditions on Γ, λ, µ in (a),(b) are necessary as well as sufficient to be able

to orient orbifold strata XΓ,λ, . . . , X̂Γ,µ
◦ of all oriented orbifolds X .

Note that Proposition 1.9.9(a),(b) do not apply in Example 1.9.8, since the
nontrivial representation of Z2 on R2 has an odd-dimensional subrepresentation.

1.10 The 2-category of d-stacks

Chapter 9 studies the 2-category of d-stacks dSta, which are orbifold versions
of d-spaces in §1.3. Broadly, to go from d-spaces X = (X,O′X , EX , ıX , X) to
d-stacks we just replace the C∞-scheme X by a Deligne–Mumford C∞-stack X .

One might expect that combining the 2-categories DMC∞Sta and dSpa
should result in a 3-category dSta, but in fact a 2-category is sufficient. For
1-morphisms f , g : X → Y in dSta, a 2-morphism η : f ⇒ g in dSta is a pair
(η, η′), where η : f ⇒ g is a 2-morphism in C∞Sta, and η′ : f∗(FY) → EX is
as for 2-morphisms in dSpa. These η, η′ do not interact very much.

1.10.1 The definition of d-stacks

Definition 1.10.1. A d-stack X is a quintuple X = (X ,O′X , EX , ıX , X ), where
X is a separated, second countable, locally fair Deligne–Mumford C∞-stack in
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the sense of §1.8, and O′X , EX , ıX , X fit into an exact sequence of sheaves of
abelian groups on X , in the sense of §1.8.6

EX
X // O′X

ıX // OX // 0,

satisfying the conditions:

(a) O′X is a sheaf of C∞-rings on X , and ıX : O′X → OX is a morphism of
sheaves of C∞-rings on X , where OX is the structure sheaf of X as in Ex-
ample 1.8.19, such that for all (U, u) in CX , (U,O′X (U, u)) is a C∞-scheme,
and ıX (U, u) : O′X (U, u) → OX (U, u) = OU is a surjective morphism of
sheaves of C∞-rings on U , whose kernel is a sheaf of square zero ideals.

We call ıX : O′X → OX satisfying these conditions a square zero extension.

(b) As ıX : O′X → OX is a square zero extension, its kernel IX is a quasi-
coherent sheaf on X . We require that EX is also a quasicoherent sheaf on
X , and X : EX → IX is a surjective morphism in qcoh(X ).

The sheaf of C∞-rings O′X has a sheaf of cotangent modules ΩO′X , which is an
O′X -module with exterior derivative d : O′X → ΩO′X . Define FX = ΩO′X ⊗O′X OX
to be the associated OX -module, a quasicoherent sheaf on X , and set ψX =
ΩıX ⊗ id : FX → T ∗X , a morphism in qcoh(X ). Define φX : EX → FX to be
the composition of morphisms of sheaves of abelian groups on X :

EX
X // IX

d|IX // ΩO′X
∼ ΩO′X ⊗O′X O

′
X

id⊗ıX // ΩO′X ⊗O′X OX FX .

Then φX is a morphism in qcoh(X ), and the following sequence is exact:

EX
φX // FX

ψX // T ∗X // 0. (1.51)

The morphism φX : EX → FX will be called the virtual cotangent sheaf of X .
It is a d-stack analogue of the cotangent complex in algebraic geometry.

Let X ,Y be d-stacks. A 1-morphism f : X → Y is a triple f = (f, f ′, f ′′),
where f : X → Y is a 1-morphism of C∞-stacks, f ′ : f−1(O′Y) → O′X a mor-
phism of sheaves of C∞-rings on X , and f ′′ : f∗(EY) → EX a morphism in
qcoh(X ), such that the following diagram of sheaves on X commutes:

f−1(EY)⊗id
f−1(OY)f

−1(OY)

id⊗f]��

f−1(EY)
f−1(Y)

// f−1(O′Y)
f−1(ıY)

//

f ′

��

f−1(OY) //

f]

��

0

f∗(EY) =

f−1(EY)⊗f
]

f−1(OY) OX f ′′

**VVVVVVV

EX
X // O′X

ıX // OX // 0.

Define morphisms f2 = Ωf ′⊗id : f∗(FY)→ FX and f3 = Ωf : f∗(T ∗Y)→ T ∗X
in qcoh(X ). Then the following commutes in qcoh(X ), with exact rows:

f∗(EY)
f∗(φY)

//

f ′′��

f∗(FY)
f∗(ψY)

//

f2

��

f∗(T ∗Y) //

f3

��

0

EX
φX // FX

ψX // T ∗X // 0.

(1.52)
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If X is a d-stack, the identity 1-morphism idX : X → X is idX =
(
idX ,

δX (O′X ), δX (EX )
)
, with δX (∗) the canonical isomorphisms of Definition 1.8.22.

Let X ,Y ,Z be d-stacks, and f : X → Y , g : Y → Z be 1-morphisms. As
in (1.5) define the composition of 1-morphisms g ◦ f : X → Z to be

g ◦ f =
(
g ◦ f, f ′ ◦ f−1(g′) ◦ If,g(O′Z), f ′′ ◦ f∗(g′′) ◦ If,g(EZ)

)
,

where I∗,∗(∗) are the canonical isomorphisms of Definition 1.8.22.
Let f , g : X → Y be 1-morphisms of d-stacks, where f = (f, f ′, f ′′) and

g = (g, g′, g′′). A 2-morphism η : f ⇒ g is a pair η = (η, η′), where η : f ⇒ g is
a 2-morphism in C∞Sta and η′ : f∗(FY)→ EX a morphism in qcoh(X ), with

g′ ◦ η−1(O′Y) = f ′ +κX ◦X ◦η′◦
(
id⊗ (f ]◦f−1(ıY))

)
◦
(
f−1(d)

)
,

and g′′ ◦ η∗(EY) = f ′′ + η′ ◦ f∗(φY).

Then g2 ◦ η∗(FY) = f2 + φX ◦ η′ and g3 ◦ η∗(T ∗Y) = f3, so (1.52) for f , g
combine to give a commuting diagram (except η′) in qcoh(X ), with exact rows:

f∗(EY)

f ′′+
η′◦f∗(φY) ��;;;;;;;;;;;

η∗(EY)
&&LLLLL
f∗(φY) // f∗(FY)

η′

��
f2+
φX ◦η′ ��<<<<<<<<<<<

η∗(FY)
&&MMMMM
f∗(ψY) // f∗(T ∗Y)

f3

��????????????
η∗(T∗Y)

''OOOOOO
// 0

g∗(EY)
g′′

��
g∗(φY)

// g∗(FY)
g2

��
g∗(ψY)

// g∗(T ∗Y)
g3

��

// 0

EX
φX // FX

ψX // T ∗X // 0.

If f = (f, f ′, f ′′) : X → Y is a 1-morphism, the identity 2-morphism idf :
f ⇒ f is idf = (idf , 0).

Let f , g,h : X → Y be 1-morphisms and η : f ⇒ g, ζ : g ⇒ h 2-morphisms.
Define the vertical composition of 2-morphisms ζ � η : f ⇒ h to be

ζ � η =
(
ζ � η, ζ ′ ◦ η∗(FY) + η′

)
.

Suppose X ,Y ,Z are d-stacks, f , f̃ : X → Y and g, g̃ : Y → Z are 1-
morphisms, and η : f ⇒ f̃ , ζ : g ⇒ g̃ are 2-morphisms. Define the horizontal
composition of 2-morphisms ζ ∗ η : g ◦ f ⇒ g̃ ◦ f̃ to be

ζ ∗ η =
(
ζ ∗ η,

[
η′ ◦ f∗(g2) + f ′′ ◦ f∗(ζ ′) + η′ ◦ f∗(φY) ◦ f∗(ζ ′)

]
◦ If,g(FZ)

)
.

This completes the definition of the 2-category of d-stacks dSta.
Write DMC∞Stalf

ssc for the 2-category of separated, second countable,
locally fair Deligne–Mumford C∞-stacks. Define a strict 2-functor FdSta

C∞Sta :
DMC∞Stalf

ssc → dSta to map objects X to X = (X ,OX , 0, idOX , 0), to map
1-morphisms f to f = (f, f ], 0), and to map 2-morphisms η to η = (η, 0). Write
DM̂C∞Stalf

ssc for the full 2-subcategory ofX ∈ dSta equivalent to FdSta
C∞Sta(X )

for X ∈ DMC∞Stalf
ssc. When we say that a d-stack X is a C∞-stack, we mean

that X ∈ DM̂C∞Stalf
ssc.

Define a strict 2-functor FdSta
Orb : Orb → dSta by FdSta

Orb = FdSta
C∞Sta|Orb,

noting that Orb is a full 2-subcategory of DMC∞Stalf
ssc. Write Ôrb for the
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full 2-subcategory of objectsX in dSta equivalent to FdSta
Orb (X ) for some orbifold

X . When we say that a d-stack X is an orbifold, we mean that X ∈ Ôrb.
Recall from §1.8.1 that there is a natural (2-)functor FC∞Sta

C∞Sch : C∞Sch →
C∞Sta mapping X 7→ X̄ on objects and f 7→ f̄ on morphisms. Also, if X is

a C∞-scheme and X̄ the corresponding C∞-stack then Example 1.8.21 defines
a functor IX : OX -mod → OX̄ -mod. In the same way, we can define functors
from the category of sheaves of abelian groups on X to the category of sheaves
of abelian groups on X̄, and from the category of sheaves of C∞-rings on X to
the category of sheaves of C∞-rings on X̄, both of which we also denote by IX .

With this notation, define a strict 2-functor FdSta
dSpa : dSpa → dSta to map

X = (X,O′X , EX , ıX , X) to X =
(
X̄, IX(O′X), IX(EX), IX(ıX), IX(X)

)
on

objects, and to map f = (f, f ′, f ′′) to f̂ =
(
f̄ , IX(f ′), IX(f ′′)

)
on 1-morphisms,

and to map η to η =
(
idf̄ , IX(η)

)
on 2-morphisms. Write dŜpa for the full

2-subcategory of X in dSta equivalent to FdSta
dSpa(X) for some X in dSpa.

In §9.2 we prove:

Theorem 1.10.2. (a) Definition 1.10.1 defines a strict 2-category dSta, in
which all 2-morphisms are 2-isomorphisms.

(b) FdSta
C∞Sta, F

dSta
Orb and FdSta

dSpa are full and faithful strict 2-functors. Hence

DMC∞Stalf
ssc,Orb,dSpa and DM̂C∞Stalf

ssc, Ôrb,dŜpa are equivalent 2-
categories, respectively.

1.10.2 D-stacks as quotients of d-spaces

In §1.8.4 we defined quotient Deligne–Mumford C∞-stacks [X/G], quotient 1-
morphisms [f, ρ] : [X/G] → [Y /H], and quotient 2-morphisms [δ] : [f, ρ] ⇒
[g, σ]. Section 9.3 generalizes all this to d-stacks. The next two theorems sum-
marize our results.

Theorem 1.10.3. (i) Let X be a d-space, G a finite group, and r : G →
Aut(X) a (strict) action of G on X by 1-isomorphisms. Then we can define a
quotient d-stack X = [X/G], which is natural up to 1-isomorphism in dSta.
The underlying C∞-stack X is [X/G] from Example 1.8.11.

(ii) Let X,Y be d-spaces, G,H finite groups, and r : G → Aut(X), s : H →
Aut(Y ) be actions of G,H on X,Y , so that by (i) we have quotient d-stacks
X = [X/G] and Y = [Y /H]. Suppose f : X → Y is a 1-morphism in dSpa
and ρ : G → H is a group morphism, satisfying f ◦ r(γ) = s(ρ(γ)) ◦ f for all
γ ∈ G (this is an equality of 1-morphisms in dSpa, not just a 2-isomorphism).
Then we can define a quotient 1-morphism f̃ : X → Y in dSta, which we
will also write as [f , ρ] : [X/G]→ [Y /H].

(iii) Let f̃ = [f , ρ] : [X/G] → [Y /H] and g̃ = [g, σ] : [X/G] → [Y /H] be two
quotient 1-morphisms as in (ii). Suppose δ ∈ H satisfies δ−1 σ(γ) = ρ(γ) δ−1

for all γ ∈ G, and η : f ⇒ s(δ−1) ◦ g is a 2-morphism in dSpa such that
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η ∗ idr(γ) = ids(σ(γ)) ∗ η for all γ ∈ G, using the diagram:

f ◦ r(γ)

η∗idr(γ)��

s(ρ(γ)) ◦ f
ids(σ(γ))∗η ��

s(δ−1) ◦ g ◦ r(γ) s(δ−1) ◦ s(σ(γ)) ◦ g s(ρ(γ)) ◦ s(δ−1) ◦ g.

Then we can define a quotient 2-morphism ζ : f̃ ⇒ g̃ in dSta, which we
also write as [η, δ] : [f , ρ]⇒ [g, σ].

Theorem 1.10.4. (a) Let X be a d-stack and [x] ∈ Xtop, and write G =
IsoX ([x]). Then there exist a quotient d-stack [U/G], as in Theorem 1.10.3(i),
and an equivalence i : [U/G] → X with an open d-substack U in X , with
itop : [u] 7→ [x] ∈ Utop ⊆ Xtop for some fixed point u of G in U .

(b) Let f̃ : X → Y be a 1-morphism in dSta, and [x] ∈ Xtop with f̃top :
[x] 7→ [y] ∈ Ytop, and write G = IsoX ([x]) and H = IsoY([y]). Part (a) gives
1-morphisms i : [U/G]→ X , j : [V /H]→ Y which are equivalences with open
U ⊆ X , V ⊆ Y , such that itop : [u] 7→ [x] ∈ Utop ⊆ Xtop, jtop : [v] 7→ [y] ∈
Vtop ⊆ Ytop for u, v fixed points of G,H in U, V .

Then there exist a G-invariant open d-subspace U ′ of u in U and a quo-
tient 1-morphism [f , ρ] : [U ′/G] → [V /H], as in Theorem 1.10.3(ii), such
that f(u) = v, and ρ : G → H is f̃∗ : IsoX ([x]) → IsoY([y]), fitting into a
2-commutative diagram:

[U ′/G]
[f ,ρ]

//

i|[U′/G]�� � �� �
IQ

ζ

[V /H]
j ��

X
f̃ // Y .

(c) Let f̃ , g̃ : X → Y be 1-morphisms in dSta and η : f̃ ⇒ g̃ a 2-morphism,
let [x] ∈ Xtop with f̃top : [x] 7→ [y] ∈ Ytop, and write G = IsoX ([x]) and
H = IsoY([y]). Part (a) gives i : [U/G] → X , j : [V /H] → Y which are
equivalences with open U ⊆ X , V ⊆ Y and map itop : [u] 7→ [x], jtop : [v] 7→ [y]
for u, v fixed points of G,H.

By making U ′ smaller, we can take the same U ′ in (b) for both f̃ , g̃. Thus
part (b) gives a G-invariant open U ′ ⊆ U , quotient 1-morphisms [f , ρ] :
[U ′/G] → [V /H] and [g, σ] : [U ′/G] → [V /H] with f(u) = g(u) = v and
ρ = f̃∗ : IsoX ([x])→ IsoY([y]), σ = g̃∗ : IsoX ([x])→ IsoY([y]), and 2-morphisms
ζ : f̃ ◦ i|[U ′/G] ⇒ j ◦ [f , ρ], θ : g̃ ◦ i|[U ′/G] ⇒ j ◦ [g, σ].

Then there exist a G-invariant open neighbourhood U ′′ of u in U ′ and a
quotient 2-morphism [λ, δ] : [f |U ′′ , ρ] ⇒ [g|U ′′ , σ], as in Theorem 1.10.3(iii),
such that the following diagram of 2-morphisms in dSta commutes:

f̃ ◦ i|[U ′′/G] η∗idi|
[U′′/G]

+3

ζ|[U′′/G]��

g̃ ◦ i|[U ′′/G]

θ|[U′′/G] ��
j ◦ [f |U ′′ , ρ]

idj∗[λ,δ] +3 j ◦ [g|U ′′ , σ].

91



Effectively, this says that d-stacks and their 1-morphisms and 2-morphisms
are Zariski locally modelled on quotient d-stacks, quotient 1-morphisms, and
quotient 2-morphisms, up to equivalence in dSta.

In §9.2 we define when a 1-morphism of d-stacks f : X → Y is étale. Essen-
tially, f is étale if it is an equivalence locally in the étale topology. It implies
that the C∞-stack 1-morphism f : X → Y in f is étale, and so representable.

We can characterize étale 1-morphisms in dSta using Theorem 1.10.4: a
1-morphism f̃ : X → Y in dSta is étale if and only if for all [f , ρ] : [U ′/G] →
[V /H] in Theorem 1.10.4(b), f : U ′ → V is an étale 1-morphism in dSpa (that
is, a local equivalence in the Zariski topology), and ρ : G→ H is injective.

1.10.3 Gluing d-stacks by equivalences

In §1.3.2 we discussed gluing d-spaces by equivalences in dSpa. Section 9.4
generalizes this to dSta. Here are the analogues of Definition 1.3.4, Proposition
1.3.5, and Theorems 1.3.6 and 1.3.7.

Definition 1.10.5. Let X = (X ,O′X , EX , ıX , X ) be a d-stack. Suppose U ⊆ X
is an open C∞-substack, in the Zariski topology, with inclusion 1-morphism
iU : U → X . Then U =

(
U , ı−1
U (O′X ), i∗U (EX ), i]U ◦ i

−1
U (ıX ), i∗U (X )

)
is a d-stack,

where i]U : i−1
U (OX )→ OU is as in Example 1.8.23, and is an isomorphism as iU

is étale. We call U an open d-substack of X . An open cover of a d-stack X is a
family {Ua : a ∈ A} of open d-substacks Ua of X such that {Ua : a ∈ A} is an
open cover of X , in the Zariski topology.

Proposition 1.10.6. Let X ,Y be d-stacks, U ,V⊆X be open d-substacks with
X = U ∪ V , f : U → Y and g : V → Y be 1-morphisms, and η : f |U∩V ⇒
g|U∩V a 2-morphism. Then there exist a 1-morphism h : X → Y and 2-
morphisms ζ : h|U ⇒ f , θ : h|V ⇒ g in dSta such that θ|U∩V = η � ζ|U∩V :
h|U∩V ⇒ g|U∩V . This h is unique up to 2-isomorphism.

Theorem 1.10.7. Suppose X ,Y are d-stacks, U ⊆ X , V ⊆ Y are open d-
substacks, and f : U → V is an equivalence in dSta. At the level of topological
spaces, we have open Utop ⊆ Xtop, Vtop ⊆ Ytop with a homeomorphism ftop :
Utop → Vtop, so we can form the quotient topological space Ztop := Xtop qftop

Ytop = (Xtop q Ytop)/ ∼, where the equivalence relation ∼ on Xtop q Ytop

identifies [u] ∈ Utop ⊆ Xtop with ftop([u]) ∈ Vtop ⊆ Ytop.
Suppose Ztop is Hausdorff. Then there exist a d-stack Z, open d-substacks

X̂ , Ŷ in Z with Z = X̂ ∪ Ŷ , equivalences g : X → X̂ and h : Y → Ŷ
such that g|U and h|V are both equivalences with X̂ ∩ Ŷ , and a 2-morphism
η : g|U ⇒ h ◦ f . Furthermore, Z is independent of choices up to equivalence.

Theorem 1.10.8. Suppose I is an indexing set, and < is a total order on I,
and X i for i ∈ I are d-stacks, and for all i < j in I we are given open d-
substacks U ij ⊆ X i, U ji ⊆ X j and an equivalence eij : U ij → U ji, satisfying
the following properties:
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(a) For all i < j < k in I we have a 2-commutative diagram

U ji ∩ U jk ejk|Uji∩Ujk
,,XXXXXXXXXXXXXXX

ηijk
��U ij ∩ U ik

eij |Uij∩Uik 22fffffffffffffff eik|Uij∩Uik // Uki ∩ Ukj

for some ηijk, where all three 1-morphisms are equivalences; and

(b) For all i < j < k < l in I the components ηijk in ηijk = (ηijk, η
′
ijk) satisfy

ηikl � (idfkl ∗ ηijk)|Uij∩Uik∩Uil = ηijl � (ηjkl ∗ idfij )|Uij∩Uik∩Uil . (1.53)

On the level of topological spaces, define the quotient topological space Ytop =
(
∐
i∈I Xi,top)/ ∼, where ∼ is the equivalence relation generated by [xi] ∼ [xj ]

if [xi] ∈ Uij,Xi,top ⊆ Xi,top and [xj ] ∈ Uji,top ⊆ Xj,top with eij,top([xi]) = [xj ].
Suppose Ytop is Hausdorff and second countable. Then there exist a d-stack
Y and a 1-morphism f i : X i → Y which is an equivalence with an open d-
substack X̂ i ⊆ Y for all i ∈ I, where Y =

⋃
i∈I X̂ i, such that f i|Uij is an

equivalence U ij → X̂ i ∩ X̂ j for all i < j in I, and there exists a 2-morphism
ηij : f j ◦ eij ⇒ f i|Uij . The d-stack Y is unique up to equivalence.

Suppose also that Z is a d-stack, and gi : X i → Z are 1-morphisms for all
i ∈ I, and there exist 2-morphisms ζij : gj ◦ eij ⇒ gi|Uij for all i < j in I,
such that for all i < j < k in I the components ζij , ηijk in ζij ,ηijk satisfy(
ζij |Uij∩Uik

)
�
(
ζjk ∗ ideij |Uij∩Uik

)
=
(
ζik|Uij∩Uik

)
�
(
idgk ∗ ηijk|Uij∩Uik

)
. (1.54)

Then there exist a 1-morphism h : Y → Z and 2-morphisms ζi : h ◦ f i ⇒ gi
for all i ∈ I. The 1-morphism h is unique up to 2-isomorphism.

Remark 1.10.9. Note that in Proposition 1.3.5 for d-spaces, h is independent
of η up to 2-isomorphism, but in Proposition 1.10.6 for d-stacks, h may depend
on η. Similarly, in Theorem 1.3.7 for d-spaces, we impose no conditions on 2-
morphisms ηijk on quadruple overlaps or ζij on triple overlaps, but in Theorem
1.10.8 for d-stacks, we do impose extra conditions (1.53) on the 2-morphisms
ηijk on quadruple overlaps and (1.54) on the 2-morphisms ζij on triple overlaps.
Thus, the d-stack versions of these results are weaker.

The reason for this is that 2-morphisms η : f ⇒ g of d-space 1-morphisms
f , g : X → Y are morphisms η : f∗(FY )→ EX in qcoh(X). We can interpolate
between such morphisms using partitions of unity on X, and in Remark 1.3.8
we explained why this enables us to prove h is independent of η in Proposition
1.3.5, and to do without overlap conditions on ηijk, ζij in Theorem 1.3.7.

In contrast, for 2-morphisms η = (η, η′) : f ⇒ g in dSta, the C∞-stack
2-morphisms η : f ⇒ g are discrete objects, and we cannot join them using
partitions of unity. So h may depend on η in Proposition 1.10.6, and we need
overlap conditions on the components ηijk, ζij in ηijk, ζij in Theorem 1.10.8.

If f, g : X → Y are 1-morphisms of Deligne–Mumford C∞-stacks, we can
make extra assumptions on X ,Y or f, g which imply that there is at most one
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2-morphism η : f ⇒ g, as in Proposition 1.9.5 for orbifolds. Such assumptions
can make (1.53) or (1.54) hold automatically, as both sides of (1.53) or (1.54)
are 2-morphisms f ⇒ g. So, for instance, if the C∞-stacks Xi are all effective
then (1.53) holds, and if the d-stack Z is a d-space then (1.54) holds.

1.10.4 Fibre products of d-stacks

In §1.3.3 we discussed fibre products of d-spaces. Section 9.5 generalizes this to
d-stacks. Here is the analogue of Theorem 1.3.9:

Theorem 1.10.10. (a) All fibre products exist in the 2-category dSta.

(b) The 2-functor FdSta
dSpa : dSpa→ dSta preserves fibre products.

(c) Let g : X → Z and h : Y → Z be smooth maps ( 1-morphisms) of orbifolds,
and write X = FdSta

Orb (X ), and similarly for Y ,Z, g,h. If g, h are transverse, so
that a fibre product X ×g,Z,hY exists in Orb, then the fibre product X ×g,Z,hY
in dSta is equivalent in dSta to FdSta

Orb (X ×g,Z,h Y). If g, h are not transverse
then X ×g,Z,h Y exists in dSta, but is not an orbifold.

As for d-spaces, we prove (a) by explicitly constructing a d-stack W =
X×g,Z,hY and showing it satisfies the universal property to be a fibre product in
the 2-category dSta. The proof follows that of Theorem 1.3.9 closely, inserting
extra terms for 2-morphisms of C∞-stacks.

1.10.5 Orbifold strata of d-stacks

In §1.8.7 we discussed orbifold strata of Deligne–Mumford C∞-stacks. Section
9.6 generalizes this to d-stacks. The next theorems summarize the results.

Theorem 1.10.11. Let X be a d-stack, and Γ a finite group. Then we can
define d-stacks XΓ, X̃Γ, X̂Γ, and open d-substacks XΓ

◦ ⊆ XΓ, X̃Γ
◦ ⊆ X̃Γ, X̂Γ

◦ ⊆
X̂Γ, all natural up to 1-isomorphism in dSta, a d-space X̂Γ

◦ natural up to
1-isomorphism in dSpa, and 1-morphisms OΓ(X ), Π̃Γ(X ), . . . fitting into a
strictly commutative diagram in dSta :

XΓ
◦

Π̃Γ
◦ (X ) //

OΓ
◦ (X ) ))TTTTTTTTTTT

⊂

��

Aut(Γ)
,, X̃Γ

◦
Π̂Γ
◦ (X ) //

ÕΓ
◦ (X )uujjjjjjjjjjj

⊂

��

X̂Γ
◦ ' FdSta

dSpa(X̂Γ
◦ )

⊂

��
X

XΓ

Π̃Γ(X )

//
OΓ(X )

44iiiiiiiiiiiAut(Γ)22 X̃Γ
Π̂Γ(X )

//
Õ

Γ
(X )

jjUUUUUUUUUUU
X̂Γ.

(1.55)

We will call XΓ, X̃Γ, X̂Γ,XΓ
◦ , X̃Γ

◦ , X̂Γ
◦ , X̂

Γ
◦ the orbifold strata of X .

The underlying C∞-stacks of XΓ, . . . , X̂Γ
◦ are the orbifold strata XΓ, . . . , X̂Γ

◦
from §1.8.7 of the C∞-stack X in X . The C∞-stack 1-morphisms underlying
the d-stack 1-morphisms in (1.55) are those given in (1.41).
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Theorem 1.10.12. (a) Let X ,Y be d-stacks, Γ a finite group, and f : X →
Y a representable 1-morphism in dSta, that is, the underlying C∞-stack 1-
morphism f : X → Y is representable. Then there is a unique representable
1-morphism fΓ : XΓ → YΓ in dSta with OΓ(Y) ◦ fΓ = f ◦ OΓ(X ). Here
XΓ,YΓ,OΓ(X ),OΓ(Y) are as in Theorem 1.10.11.

(b) Let f , g : X → Y be representable 1-morphisms and η : f ⇒ g a 2-
morphism in dSta, and fΓ, gΓ : XΓ → YΓ be as in (a). Then there is a
unique 2-morphism ηΓ : fΓ ⇒ gΓ in dSta with idOΓ(Y) ∗ ηΓ = η ∗ idOΓ(X ).

(c) Write dStare for the 2-subcategory of dSta with only representable 1-
morphisms. Then mapping X 7→ FΓ(X ) = XΓ on objects, f 7→ FΓ(f) = fΓ

on (representable) 1-morphisms, and η 7→ FΓ(η) = ηΓ on 2-morphisms defines
a strict 2-functor FΓ : dStare → dStare.

(d) Analogues of (a)–(c) hold for the orbifold strata X̃Γ, yielding a strict 2-
functor F̃Γ : dStare → dStare. Weaker analogues of (a)–(c) also hold for the
orbifold strata X̂Γ. In (a), the 1-morphism f̂Γ : X̂Γ → ŶΓ is natural only up
to 2-isomorphism, and in (c) we get a weak 2-functor F̂Γ : dStare → dStare.

Since equivalences in dSta are automatically representable, and (strict or
weak) 2-functors take equivalences to equivalences, we deduce:

Corollary 1.10.13. Suppose X ,Y are equivalent d-stacks, and Γ is a finite
group. Then XΓ and YΓ are equivalent in dSta, and similarly for X̃Γ, X̂Γ,
XΓ
◦ , X̃Γ

◦ , X̂Γ
◦ and ỸΓ, ŶΓ,YΓ

◦ , ỸΓ
◦ , ŶΓ

◦ . Also X̂Γ
◦ , Ŷ

Γ
◦ are equivalent in dSpa.

Here are the d-stack analogues of Theorems 1.8.27 and 1.8.28:

Theorem 1.10.14. Let X be a d-space and G a finite group acting on X by
1-isomorphisms, and write X = [X/G] for the quotient d-stack, from Theorem
1.10.3. Let Γ be a finite group. Then there are equivalences of d-stacks

XΓ '
∐

conjugacy classes [ρ] of injective
group morphisms ρ : Γ→ G

[
Xρ(Γ)/

{
g ∈ G : gρ(γ) = ρ(γ)g ∀γ ∈ Γ

}]
, (1.56)

XΓ
◦ '

∐
conjugacy classes [ρ] of injective
group morphisms ρ : Γ→ G

[
Xρ(Γ)
◦ /

{
g ∈ G : gρ(γ) = ρ(γ)g ∀γ ∈ Γ

}]
, (1.57)

X̃Γ '
∐

conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆/

{
g ∈ G : ∆ = g∆g−1

}]
, (1.58)

X̃Γ
◦ '

∐
conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆
◦ /
{
g ∈ G : ∆ = g∆g−1

}]
, (1.59)

X̂Γ '
∐

conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆

/(
{g ∈ G : ∆ = g∆g−1}/∆

)]
, (1.60)

X̂Γ
◦ '

∐
conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆
◦
/(
{g ∈ G : ∆ = g∆g−1}/∆

)]
. (1.61)
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Here for each subgroup ∆ ⊆ G, we write X∆ for the closed d-subspace in X
fixed by ∆ in G, as in §1.3.4, and X∆

◦ for the open d-subspace in X∆ of points
in X whose stabilizer group in G is exactly ∆. In (1.56)–(1.57), morphisms
ρ, ρ′ : Γ → G are conjugate if ρ′ = Ad(g) ◦ ρ for some g ∈ G, and subgroups
∆,∆′ ⊆ G are conjugate if ∆ = g∆′g−1 for some g ∈ G. In (1.56)–(1.61) we
sum over one representative ρ or ∆ for each conjugacy class.

Theorem 1.10.15. Let X be a d-stack and Γ a finite group, so that Theorem
1.10.11 gives a d-stack XΓ and a 1-morphism OΓ(X ) : XΓ → X . Equation
(1.52) for OΓ(X ) becomes:

OΓ(X )∗(EX )=
(EX )Γ

tr⊕(EX )Γ
nt
OΓ(X)∗(φX )

//

OΓ(X )′′��

OΓ(X )∗(FX )=
(FX )Γ

tr⊕(FX )Γ
nt
OΓ(X)∗(ψX )

//

OΓ(X )2

��

OΓ(X )∗(T ∗X )=
(T ∗X )Γ

tr⊕(T ∗X )Γ
nt

//

OΓ(X )3=
ΩOΓ(X)��

0

EXΓ
φXΓ // FXΓ

ψXΓ // T ∗(XΓ) // 0.

(1.62)

Then the columns OΓ(X )′′, OΓ(X )2, OΓ(X )3 of (1.62) are isomorphisms
when restricted to the ‘trivial’ summands (EX )Γ

tr, (FX )Γ
tr, (T

∗X )Γ
tr, and are zero

when restricted to the ‘nontrivial’ summands (EX )Γ
nt, (FX )Γ

nt, (T
∗X )Γ

nt. In par-
ticular, this implies that the virtual cotangent sheaf φXΓ : EXΓ → FXΓ of XΓ

is 1-isomorphic in vqcoh(XΓ) to (φX )Γ
tr : (EX )Γ

tr → (FX )Γ
tr, the ‘trivial’ part of

the pullback to XΓ of the virtual cotangent sheaf φX : EX → FX of X .
The analogous results also hold for X̃Γ, X̂Γ,XΓ

◦ , X̃Γ
◦ and X̂Γ

◦ .

1.11 The 2-category of d-orbifolds

Chapter 10 discusses d-orbifolds, which are orbifold versions of d-manifolds.

1.11.1 Definition of d-orbifolds

In §1.4.3 we discussed virtual quasicoherent sheaves and virtual vector bundles
on C∞-schemes X. The next remark, drawn from §10.1.1, explains how these
generalize to Deligne–Mumford C∞-stacks X .

Remark 1.11.1. In the C∞-stack analogue of Definition 1.4.9, the 2-categories
vqcoh(X ) and vvect(X ) for a Deligne–Mumford C∞-stack X are defined exactly
as for C∞-schemes. For X 6= ∅, virtual vector bundles (E•, φ) have a well-defined
rank rank(E•, φ) ∈ Z. If f : X → Y is a 1-morphism of Deligne–Mumford C∞-
stacks then pullback f∗ defines strict 2-functors f∗ : vqcoh(Y)→ vqcoh(X ) and
f∗ : vvect(Y)→ vvect(X ), as for C∞-schemes. If f, g : X → Y are 1-morphisms
and η : f ⇒ g a 2-morphism then η∗ : f∗ ⇒ g∗ is a 2-natural transformation.

In the d-stack version of Definition 1.4.10, we define the virtual cotangent
sheaf T ∗X of a d-stack X to be the morphism φX : EX → FX in qcoh(X ) from
Definition 1.10.1. If f : X → Y is a 1-morphism in dSta then Ωf := (f ′′, f2) is
a 1-morphism f∗(T ∗Y)→ T ∗X in vqcoh(X ). If f , g : X → Y are 1-morphisms
and η = (η, η′) : f ⇒ g is a 2-morphism in dSta, then we have 1-morphisms Ωf :
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f∗(T ∗Y) → T ∗X , Ωg : g∗(T ∗Y) → T ∗X , and η∗(T ∗Y) : f∗(T ∗Y) → g∗(T ∗Y)
in qcoh(X ), and η′ : Ωf ⇒ Ωg ◦ η∗(T ∗Y) is a 2-morphism in vqcoh(X ).

We can now define d-orbifolds.

Definition 1.11.2. A d-stackW is called a principal d-orbifold if is equivalent
in dSta to a fibre productX×g,Z,hY withX ,Y ,Z ∈ Ôrb. IfW is a nonempty
principal d-orbifold then as in Proposition 1.4.11, the virtual cotangent sheaf
T ∗W is a virtual vector bundle onW, in the sense of Remark 1.11.1. We define
the virtual dimension ofW to be vdimW = rankT ∗W ∈ Z. IfW ' X ×Z Y
for orbifolds X ,Y ,Z then vdimW = dimX + dimY − dimZ.

A d-stack X is called a d-orbifold (without boundary) of virtual dimension
n ∈ Z, written vdimX = n, if X can be covered by open d-substacks W
which are principal d-orbifolds with vdimW = n. The virtual cotangent sheaf
T ∗X = (EX ,FX , φX ) of X is a virtual vector bundle of rank vdimX = n, so
we call it the virtual cotangent bundle of X .

Let dOrb be the full 2-subcategory of d-orbifolds in dSta. The 2-functor
FdSta

Orb : Orb → dSta in Definition 1.10.1 maps into dOrb, and we will write

FdOrb
Orb = FdSta

Orb : Orb→ dOrb. Also Ôrb is a 2-subcategory of dOrb. We say

that a d-orbifold X is an orbifold if it lies in Ôrb. The 2-functor FdSta
dSpa maps

dMan → dOrb, and we will write FdOrb
dMan = FdSta

dSpa|dMan : dMan → dOrb.

Then FdOrb
dMan ◦ FdMan

Man = FdOrb
Orb ◦ FOrb

Man : Man→ dOrb.

Write dM̂an for the full 2-subcategory of objects X in dOrb equivalent
to FdOrb

dMan(X) for some d-manifold X. When we say that a d-orbifold X is a

d-manifold, we mean that X ∈ dM̂an.

The orbifold analogue of Proposition 1.4.2 holds. Using Theorem 1.8.17 we
can deduce:

Lemma 1.11.3. Let X be a d-orbifold. Then X is a d-manifold, that is, X is
equivalent to FdOrb

dMan(X) for some d-manifold X, if and only if IsoX ([x]) ∼= {1}
for all [x] in Xtop.

1.11.2 Local properties of d-orbifolds

Following Examples 1.4.4 and 1.4.5, we define ‘standard model’ d-orbifolds
SV,E,s and 1-morphisms Sf,f̂ .

Example 1.11.4. Let V be an orbifold, E ∈ vect(V) a vector bundle on V as in
§1.8.6, and s ∈ C∞(E) a smooth section, that is, s : OV → E is a morphism in
vect(V). We will define a principal d-orbifold SV,E,s = (S,O′S, ES, ıS, S), which
we call a ‘standard model’ d-orbifold.

Let the Deligne–Mumford C∞-stack S be the C∞-substack in V defined by
the equation s = 0, so that informally S = s−1(0) ⊂ V. Explicitly, as in §1.8,
a C∞-stack V consists of a category V and a functor pV : V → C∞Sch, where
there is a 1-1 correspondence between objects u in V with pV(u) = U in C∞Sch
and 1-morphisms ũ : Ū → V in C∞Sta. Define S to be the full subcategory of
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objects u in V such that the morphism ũ∗(s) : ũ∗(OV) → ũ∗(E) in qcoh(Ū) is
zero, and define pS = pV |S : S → C∞Sch.

Since iV : S → V is the inclusion of a C∞-substack, i]V : i−1
V (OV) → OS

is a surjective morphism of sheaves of C∞-rings on S. Write Is for the kernel
of i]V , as a sheaf of ideals in i−1

V (OV), and I2
s for the corresponding sheaf of

squared ideals, and O′S = i−1
V (OV)/I2

s for the quotient sheaf of C∞-rings, and
ıS : O′S → OS for the natural projection i−1

V (OV)/I2
s � i−1

V (OV)/Is ∼= OS
induced by the inclusion I2

s ⊆ Is.
Write E∗ ∈ vect(V) for the dual vector bundle of E , and set ES = i∗V(E∗).

There is a natural, surjective morphism S : ES→ IS = Is/I2
s in qcoh(S) which

locally maps α+ (Is ·C∞(E∗)) 7→ α · s+ I2
s. Then SV,E,s = (S,O′S, ES, ıS, S) is

a d-stack. As in the d-manifold case, we can show that SV,E,s is equivalent in
dSta to V ×s,E,0 V , where V ,E, s,0 = FdSta

Orb

(
V,Tot(E),Tot(s),Tot(0)

)
, using

the notation of §1.9.1. Thus SV,E,s is a principal d-orbifold. Every principal
d-orbifoldW is equivalent in dSta to some SV,E,s.

Sometimes it is useful to take V to be an effective orbifold, as in §1.9.1.

Example 1.11.5. Let V,W be orbifolds, E ,F be vector bundles on V,W, and
s ∈ C∞(E), t ∈ C∞(F) be smooth sections, so that Example 1.11.4 defines
‘standard model’ principal d-orbifolds SV,E,s,SW,F,t. Write SV,E,s = S =
(S,O′S, ES, ıS, S) and SW,F,t = T = (T ,O′T , ET , ıT , T ). Suppose f : V → W is

a 1-morphism, and f̂ : E → f∗(F) is a morphism in vect(V) satisfying

f̂ ◦ s = f∗(t). (1.63)

We will define a 1-morphism g = (g, g′, g′′) : S → T in dSta, which we write
as Sf,f̂ : SV,E,s → SW,F,t, and call a ‘standard model’ 1-morphism.

As in Example 1.11.4, V,W are categories, S ⊆ V, T ⊆ W are full sub-
categories, and f : V → W is a functor. Using (1.63) one can show that
f(S) ⊆ T ⊆ W. Define g = f |S : S → T . Then g : S → T is a 1-morphism of
Deligne–Mumford C∞-stacks, with iW ◦ g = f ◦ iV : S → W.

To define g′ : g−1(O′T )→ O′S, consider the commutative diagram:

g−1(I2
t )

//

��

g−1(i−1
W (OW)) //

i−1
V (f])◦IiV ,f (OW)◦
Ig,iW (OW)−1��

g−1(O′T )=g−1(i−1
W (OW)/I2

t )

g′��

// 0

I2
s

// i−1
V (OV) // O′S = i−1

V (OV)/I2
s

// 0.

The rows are exact. Using (1.63), we see the central column maps g−1(It)→ Is,
and so maps g−1(I2

t )→ I
2
s, and the left column exists. Thus by exactness there

is a unique morphism g′ making the diagram commute.
We have ES = i∗V(E∗) and ET = i∗W(F∗), and f̂ : E → f∗(F) induces

f̂∗ : f∗(F∗)→ E∗. Define g′′ = i∗V(f̂∗) ◦ IiV ,f (F∗) ◦ Ig,iW (F∗)−1 : g∗(ET )→ ES
in qcoh(S). Then g = (g, g′, g′′) : S → T is a 1-morphism in dSta, which we
write as Sf,f̂ : SV,E,s → SW,F,t.

Suppose now that Ṽ ⊆ V is open, with inclusion 1-morphism iṼ : Ṽ → V.
Write Ẽ = E|Ṽ = i∗̃V(E) and s̃ = s|Ṽ . Define iṼ,V = SiṼ ,idẼ : SṼ,Ẽ,s̃ → SV,E,s. If

s−1(0) ⊆ Ṽ then iṼ,V : SṼ,Ẽ,s̃ → SV,E,s is a 1-isomorphism.
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We do not define ‘standard model’ 2-morphisms in dOrb, as in Example
1.4.6 for d-manifolds, to avoid inconvenience in combining the O(s), O(s2) nota-
tion with 2-morphisms of orbifolds. But see Example 1.11.9 below for a different
form of ‘standard model’ 2-morphism.

Any d-orbifold X is locally equivalent near a point [x] to a principal d-
orbifold, and so to a standard model d-orbifold SV,E,s. The next theorem,
the analogue of Theorem 1.4.7, shows that V, E , s are locally determined es-
sentially uniquely if dimV is chosen to be minimal (which corresponds to the
condition ds(v) = 0).

Theorem 1.11.6. Suppose X is a d-orbifold, and [x] ∈ Xtop. Then there exists
an open neighbourhood U of [x] in X and an equivalence U ' SV,E,s in dOrb
for SV,E,s as in Example 1.11.4, such that the equivalence identifies [x] with
[v] ∈ Vtop with s(v) = ds(v) = 0. Furthermore, V, E , s are determined up to
non-canonical equivalence near [v] by X near [x]. In fact, they depend only on
the C∞-stack X , the point [x] ∈ Xtop, and the representation of IsoX ([x]) on
the finite-dimensional vector space Ker

(
x∗(φX ) : x∗(EX )→ x∗(FX )

)
.

In a d-orbifold X = (X ,O′X , EX , ıX , X ), we think of X as ‘classical’ and
O′X , EX , ıX , X as ‘derived’. The extra information in the ‘derived’ data is like a
vector bundle E over X . A vector bundle E on a Deligne–Mumford C∞-stack X
is determined locally near [x] ∈ Xtop by the representation of IsoX ([x]) on the
fibre x∗(E) of E at [x]. Thus, it is reasonable that X should be determined up
to equivalence near [x] by X and a representation of IsoX ([x]).

Here are alternative forms of ‘standard model’ d-orbifolds, 1-morphisms and
2-morphisms, using the quotient d-stack notation of §1.10.2.

Example 1.11.7. Let V be a manifold, E → V a vector bundle, Γ a finite group
acting smoothly on V,E preserving the vector bundle structure, and s : V → E a
smooth, Γ-equivariant section of E. Write the Γ-actions on V,E as r(γ) : V → V
and r̂(γ) : E → r(γ)∗(E) for γ ∈ Γ. Then Examples 1.4.4 and 1.4.5 give an
explicit principal d-manifold SV,E,s, and 1-morphisms Sr(γ),r̂(γ) : SV,E,s →
SV,E,s for γ ∈ Γ which are an action of Γ on SV,E,s. Hence Theorem 1.10.3(i)
gives a quotient d-stack [SV,E,s/Γ].

In fact [SV,E,s/Γ] ' SṼ,Ẽ,s̃ for Ṽ, Ẽ , s̃ defined using V,E, s,Γ, with Ṽ =
[V /Γ]. Thus, [SV,E,s/Γ] is a principal d-orbifold. But not all principal d-
orbifolds W have W ' [SV,E,s/Γ], as not all orbifolds V have V ' [V /Γ] for
some manifold V and finite group Γ.

Example 1.11.8. Let [SV,E,s/Γ], [SW,F,t/∆] be quotient d-orbifolds as in Ex-
ample 1.11.7, where Γ acts on V,E by q(γ) : V → V and q̂(γ) : E → q(γ)∗(E)
for γ ∈ Γ, and ∆ acts on W,F by r(δ) : W → W and r̂(δ) : F → r(δ)∗(F )

for δ ∈ ∆. Suppose f : V → W is a smooth map, and f̂ : E → f∗(F ) is a

morphism of vector bundles on V satisfying f̂ ◦ s = f∗(t) + O(s2), as in (1.9),
and ρ : Γ → ∆ is a group morphism satisfying f ◦ q(γ) = r(ρ(γ)) ◦ f : V → W

and q(γ)∗(f̂) ◦ q̂(γ) = f∗(r̂(ρ(γ))) ◦ f̂ : E → (f ◦ q(γ))∗(F ) for all γ ∈ Γ, so that

f, f̂ are equivariant under Γ,∆, ρ. Then Example 1.4.4 defines a 1-morphism
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Sf,f̂ : SV,E,s → SW,F,t in dMan. The equivariance conditions on f, f̂ imply
that Sf,f̂ ◦Sq(γ),q̂(γ) = Sr(ρ(γ)),r̂(ρ(γ))◦Sf,f̂ for γ ∈ Γ. Hence Theorem 1.10.3(ii)
gives a quotient 1-morphism [Sf,f̂ , ρ] : [SV,E,s/Γ]→ [SW,F,t/∆].

Example 1.11.9. Suppose [Sf,f̂ , ρ], [Sg,ĝ, σ] : [SV,E,s/Γ]→ [SW,F,t/∆] are two
1-morphisms as in Example 1.11.8, and write q, q̂ for the actions of Γ on V,E
and r, r̂ for the actions of ∆ on W,F . Then ρ, σ : Γ→ ∆ are group morphisms.
Suppose δ ∈ ∆ satisfies σ(γ) = δ ρ(γ) δ−1 for all γ ∈ Γ, and Λ : E → f∗(TW )
is a morphism of vector bundles on V which satisfies

r(δ−1) ◦ g = f + Λ · s+O(s2) and g∗(r̂(δ−1)) ◦ ĝ = f̂ + Λ · dt+O(s), (1.64)

f∗(dr(ρ(γ))) ◦ Λ = q(γ)∗(Λ) ◦ q̂(γ) : E −→ (f ◦ q(γ))∗(TW ), ∀γ ∈ Γ, (1.65)

where dr(ρ(γ)) : TW → r(ρ(γ))∗(TW ) is the derivative of r(ρ(γ)). Here (1.64)
is the conditions for Example 1.4.6 to define a ‘standard model’ 2-morphism
SΛ : Sf,f̂ ⇒ Sr(δ−1)◦g,g∗(r̂(δ−1))◦ĝ = Sr(δ−1),r̂(δ−1) ◦Sg,ĝ in dMan. Then (1.65)
implies that SΛ ∗ idSq(γ),q̂(γ)

= idSr(ρ(γ)),r̂(ρ(γ))
∗SΛ for all γ ∈ Γ. Hence Theorem

1.10.3(iii) gives a quotient 2-morphism [SΛ, δ] : [Sf,f̂ , ρ]⇒ [Sg,ĝ, σ].

Here is an analogue of Theorem 1.11.6 for the alternative form [SV,E,s/Γ].

Proposition 1.11.10. A d-stack X is a d-orbifold of virtual dimension n ∈ Z
if and only if each [x] ∈ Xtop has an open neighbourhood U equivalent to some
[SV,E,s/Γ] in Example 1.11.7 with dimV − rankE = n, where Γ = IsoX ([x])
and [x] ∈ Xtop is identified with a fixed point v of Γ in V with s(v) = 0
and ds(v) = 0. Furthermore, V,E, s,Γ are determined up to non-canonical
isomorphism near v by X near [x].

1.11.3 Equivalences in dOrb, and gluing by equivalences

Next we summarize the results of §10.2, the analogue of §1.4.4. Section 1.10.2
discussed étale 1-morphisms in dSta. We characterize when 1-morphisms f :
X → Y and Sf,f̂ : SV,E,s → SW,F,t in dOrb are étale, or equivalences.

Theorem 1.11.11. Suppose f : X → Y is a 1-morphism of d-orbifolds, and
f : X → Y is representable. Then the following are equivalent:

(i) f is étale;

(ii) Ωf : f∗(T ∗Y)→ T ∗X is an equivalence in vqcoh(X ); and

(iii) The following is a split short exact sequence in qcoh(X ) :

0 // f∗(EY)
f ′′⊕−f∗(φY)// EX ⊕ f∗(FY)

φX⊕f2

// FX // 0. (1.66)

If in addition f∗ : IsoX ([x]) → IsoY(ftop([x])) is an isomorphism for all [x] ∈
Xtop, and ftop : Xtop → Ytop is a bijection, then f is an equivalence in dOrb.
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Theorem 1.11.12. Suppose Sf,f̂ : SV,E,s → SW,F,t is a ‘standard model’ 1-
morphism, in the notation of Examples 1.11.4 and 1.11.5, with f : V → W
representable. Then Sf,f̂ is étale if and only if for each [v] ∈ Vtop with s(v) = 0
and [w] = ftop([v]) ∈ Wtop, the following sequence of vector spaces is exact:

0 // TvV
ds(v)⊕ df(v) // Ev ⊕ TwW

f̂(v)⊕−dt(w) // Fw // 0.

Also Sf,f̂ is an equivalence if and only if in addition ftop|s−1(0) : s−1(0) →
t−1(0) is a bijection, where s−1(0) = {[v] ∈ Vtop : s(v) = 0}, t−1(0) = {[w] ∈
Wtop : t(w) = 0}, and f∗ : IsoV([v]) → IsoW(ftop([v])) is an isomorphism for
all [v] ∈ s−1(0) ⊆ Vtop.

Here is an analogue of Theorem 1.4.17 for d-orbifolds, taken from §10.2. It
is proved by applying Theorem 1.10.8 to glue together the ‘standard model’
d-orbifolds SVi,Ei,si by equivalences. Now Theorem 1.10.8 includes extra con-
ditions (1.53)–(1.54) on the 2-morphisms ηijk, ζjk. But by taking the Vi,Y to
be effective orbifolds and the gi to be submersions, the ηijk, ζjk are unique by
Proposition 1.9.5, and so (1.53)–(1.54) hold automatically.

Theorem 1.11.13. Suppose we are given the following data:

(a) an integer n;

(b) a Hausdorff, second countable topological space X;

(c) an indexing set I, and a total order < on I;

(d) for each i in I, an effective orbifold Vi in the sense of Definition 1.9.4, a
vector bundle E i on Vi with dimVi − rank E i = n, a section si ∈ C∞(E i),
and a homeomorphism ψi : s−1

i (0) → X̂i, where s−1
i (0) = {[vi] ∈ Vi,top :

si(vi) = 0} and X̂i ⊆ X is open; and

(e) for all i < j in I, an open suborbifold Vij ⊆ Vi, a 1-morphism eij : Vij →
Vj , and a morphism of vector bundles êij : E i|Vij → e∗ij(Ej).

Let this data satisfy the conditions:

(i) X =
⋃
i∈I X̂i;

(ii) if i < j in I then (eij)∗ : IsoVij ([v]) → IsoVj (eij,top([v])) is an isomor-
phism for all [v] ∈ Vij,top, and êij ◦si|Vij = e∗ij(sj)◦ ιij where ιij : OVij →
e∗ij(OVj ) is the natural isomorphism, and ψi(si|−1

Vij (0)) = X̂i ∩ X̂j , and

ψi|si|−1
Vij

(0) = ψj ◦ eij,top|si|−1
Vij

(0), and if [vi] ∈ Vij,top with si(vi) = 0 and

[vj ] = eij,top([vi]) then the following sequence is exact:

0 // TviVi
dsi(vi)⊕ deij(vi) // E i|vi⊕TvjVj

êij(vi)⊕−dsj(vj) // Ej |vj // 0;

(iii) if i < j < k in I then there exists a 2-morphism ηijk : ejk ◦eij |Vik∩e−1
ij (Vjk)

⇒ eik|Vik∩e−1
ij (Vjk) in Orb with

êik|Vik∩e−1
ij (Vjk) =η∗ijk(Ek)◦Ieij ,ejk(Ek)−1◦eij |∗Vik∩e−1

ij (Vjk)
(êjk)◦êij |Vik∩e−1

ij (Vjk).

Note that ηijk is unique by Proposition 1.9.5.
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Then there exist a d-orbifold X with vdimX = n and underlying topological
space Xtop

∼= X, and a 1-morphism ψi : SVi,Ei,si → X with underlying con-

tinuous map ψi which is an equivalence with the open d-suborbifold X̂ i ⊆ X
corresponding to X̂i ⊆ X for all i ∈ I, such that for all i < j in I there exists a
2-morphism ηij : ψj ◦Seij ,êij ⇒ ψi ◦ iVij ,Vi , where Seij ,êij : SVij ,Ei|Vij ,si|Vij →
SVj ,Ej ,sj and iVij ,Vi : SVij ,Ei|Vij ,si|Vij → SVi,Ei,si , using the notation of Exam-

ples 1.11.4 and 1.11.5. This d-orbifold X is unique up to equivalence in dOrb.
Suppose also that Y is an effective orbifold, and gi : Vi → Y are submersions

for all i ∈ I, and there are 2-morphisms ζij : gj ◦ eij ⇒ gi|Vij in Orb for all
i < j in I. Then there exist a 1-morphism h : X → Y in dOrb unique up to
2-isomorphism, where Y = FdOrb

Orb (Y) = SY,0,0, and 2-morphisms ζi : h◦ψi ⇒
Sgi,0 for all i ∈ I.

Here is another version of the same result using the alternative form of
‘standard model’ d-orbifolds in §1.11.1.

Theorem 1.11.14. Suppose we are given the following data:

(a) an integer n;

(b) a Hausdorff, second countable topological space X;

(c) an indexing set I, and a total order < on I;

(d) for each i in I, a manifold Vi, a vector bundle Ei → Vi with dimVi −
rankEi = n, a finite group Γi, smooth, locally effective actions ri(γ) :
Vi → Vi, r̂i(γ) : Ei → r(γ)∗(Ei) of Γi on Vi, Ei for γ ∈ Γi, a smooth,
Γi-equivariant section si : Vi → Ei, and a homeomorphism ψi : Xi → X̂i,
where Xi = {vi ∈ Vi : si(vi) = 0}/Γi and X̂i ⊆ X is an open set; and

(e) for all i < j in I, an open submanifold Vij ⊆ Vi, invariant under Γi,
a group morphism ρij : Γi → Γj, a smooth map eij : Vij → Vj , and a
morphism of vector bundles êij : Ei|Vij → e∗ij(Ej).

Let this data satisfy the conditions:

(i) X =
⋃
i∈I X̂i;

(ii) if i < j in I then êij ◦ si|Vij = e∗ij(sj) +O(s2
i ), and for all γ ∈ Γ we have

eij ◦ ri(γ) = rj(ρij(γ)) ◦ eij : Vij −→ Vj ,

ri(γ)∗(êij) ◦ r̂i(γ) = e∗ij(r̂j(ρij(γ))) ◦ êij : Ei|Vij −→ (eij ◦ ri(γ))∗(Ej),

and ψi(Xi∩ (Vij/Γi)) = X̂i∩ X̂j , and ψi|Xi∩Vij/Γi = ψj ◦ (eij)∗|Xi∩Vij/Γj ,
and if vi ∈ Vij with si(vi) = 0 and vj = eij(vi) then ρ|StabΓi

(vi) :
StabΓi(vi) → StabΓj (vj) is an isomorphism, and the following sequence
of vector spaces is exact:

0 // TviVi
dsi(vi)⊕ deij(vi) // Ei|vi⊕TvjVj

êij(vi)⊕−dsj(vj) // Ej |vj // 0;
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(iii) if i < j < k in I then there exists γijk ∈ Γk satisfying

ρik(γ) = γijk ρjk(ρij(γ)) γ−1
ijk for all γ ∈ Γi,

eik|Vik∩e−1
ij (Vjk) = rk(γijk) ◦ ejk ◦ eij |Vik∩e−1

ij (Vjk), and

êik|Vik∩e−1
ij (Vjk) =

(
e∗ij(e

∗
jk(r̂k(γijk))) ◦ e∗ij(êjk) ◦ êij

)
|Vik∩e−1

ij (Vjk).

Then there exist a d-orbifold X with vdimX = n and underlying topological
space Xtop

∼= X, and a 1-morphism ψi : [SVi,Ei,si/Γi] → X with underlying

continuous map ψi which is an equivalence with the open d-suborbifold X̂ i ⊆ X
corresponding to X̂i ⊆ X for all i ∈ I, such that for all i < j in I there exists a
2-morphism ηij : ψj ◦ [Seij ,êij , ρij ]⇒ ψi ◦ [iVij ,Vi , idΓi ], where [SVi,Ei,si/Γi] is
as in Example 1.11.7, and [Seij ,êij , ρij ] : [SVij ,Ei|Vij ,si|Vij /Γi] → [SVj ,Ej ,sj/Γj ]

and [iVij ,Vi , idΓi ] : [SVij ,Ei|Vij ,si|Vij /Γi] → [SVi,Ei,si/Γj ] as in Example 1.11.8.

This d-orbifold X is unique up to equivalence in dOrb.
Suppose also that Y is a manifold, and gi : Vi → Y are smooth maps for all

i ∈ I with gi ◦ ri(γ) = gi for all γ ∈ Γi, and gj ◦ eij = gi|Vij for all i < j in I.
Then there exist a 1-morphism h : X → Y unique up to 2-isomorphism, where
Y = FdOrb

Man (Y ) = [SY,0,0/{1}], and 2-morphisms ζi : h ◦ ψi ⇒ [Sgi,0, π{1}] for
all i ∈ I. Here [SY,0,0/{1}] is from Example 1.11.7 with E, s both zero and
Γ = {1}, and [Sgi,0, π{1}] : [SVi,Ei,si/Γi] → [SY,0,0/{1}] = Y is from Example
1.11.8 with ĝi = 0 and ρ = π{1} : Γi → {1}.

The importance of Theorems 1.11.13 and 1.11.14 is that all the ingredients
are described wholly in differential-geometric or topological terms. So we can use
these theorems as tools to prove the existence of d-orbifold structures on spaces
coming from other areas of geometry, such as moduli spaces of J-holomorphic
curves. The theorems are used to define functors to d-orbifolds from other
geometric structures, as discussed in §1.16.

1.11.4 Submersions, immersions, and embeddings

Section 1.4.5 discussed (w-)submersions, (w-)immersions, and (w-)embeddings
for d-manifolds. Following §10.3, here are the analogues for d-orbifolds.

Definition 1.11.15. Let X be a Deligne–Mumford C∞-stack, so that as in
Remark 1.11.1 we have a 2-category vvect(X ) of virtual vector bundles on X .
We define when a 1-morphism f• : (E•, φ) → (F•, ψ) in vvect(X ) is weakly
injective, injective, weakly surjective or surjective exactly as in Definition 1.4.18.

Let f : X → Y be a 1-morphism of d-orbifolds. Then Ωf : f∗(T ∗Y)→ T ∗X
is a 1-morphism in vvect(X ).

(a) We call f a w-submersion if Ωf is weakly injective.

(b) We call f a submersion if Ωf is injective.

(c) We call f a w-immersion if f : X →Y is representable, i.e. f∗ : IsoX ([x])→
IsoY(ftop([x])) is injective for all [x] ∈ Xtop, and Ωf is weakly surjective.
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(d) We call f an immersion if f : X → Y is representable and Ωf is surjective.

(e) We call f a w-embedding or embedding if it is a w-immersion or immersion,
respectively, and f∗ : IsoX ([x])→ IsoY(ftop([x])) is an isomorphism for all
[x] ∈ Xtop, and ftop : Xtop → Ytop is a homeomorphism with its image, so
in particular ftop is injective.

Parts (c)–(e) enable us to define d-suborbifolds of d-orbifolds. Open d-
suborbifolds are (Zariski) open d-substacks of a d-orbifold. For more general
d-suborbifolds, we call i : X → Y a w-immersed d-suborbifold, or immersed
d-suborbifold, or w-embedded d-suborbifold, or embedded d-suborbifold of Y , if
X ,Y are d-orbifolds and i is a w-immersion, . . . , embedding, respectively.

Theorem 1.4.20 in §1.4.5 holds with orbifolds and d-orbifolds in place of
manifolds and d-manifolds, except part (v), when we need also to assume f :
X → Y representable to deduce f is étale, and part (x), which is false for
d-orbifolds (in the Zariski topology, at least).

1.11.5 D-transversality and fibre products

Section 1.4.6 discussed d-transversality and fibre products for d-manifolds. This
is extended to d-orbifolds in §10.4, with little essential change. Here are the
analogues of Definition 1.4.21 and Theorems 1.4.22–1.4.25.

Definition 1.11.16. Let X ,Y ,Z be d-orbifolds and g : X → Z, h : Y → Z
be 1-morphisms. LetW = X ×g,Z,hY be the C∞-stack fibre product, and write
e : W → X , f : W → Y for the projection 1-morphisms, and η : g ◦ e ⇒ h ◦ f
for the 2-morphism from the fibre product. Consider the morphism

α =

 e∗(g′′) ◦ Ie,g(EZ)
−f∗(h′′) ◦ If,h(EZ) ◦ η∗(EZ)

(g ◦ e)∗(φZ)

 : (g ◦ e)∗(EZ) −→
e∗(EX )⊕ f∗(EY)⊕ (g ◦ e)∗(FZ)

in qcoh(W). We call g,h d-transverse if α has a left inverse.

Theorem 1.11.17. Suppose X ,Y ,Z are d-orbifolds and g : X → Z, h : Y →
Z are d-transverse 1-morphisms, and let W = X ×g,Z,h Y be the d-stack fibre
product, which exists by Theorem 1.10.10(a). Then W is a d-orbifold, with

vdimW = vdimX + vdimY − vdimZ. (1.67)

Theorem 1.11.18. Suppose g : X → Z, h : Y → Z are 1-morphisms of
d-orbifolds. The following are sufficient conditions for g,h to be d-transverse,
so that W = X ×g,Z,h Y is a d-orbifold of virtual dimension (1.67):

(a) Z is an orbifold, that is, Z ∈ Ôrb; or

(b) g or h is a w-submersion.
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Theorem 1.11.19. Let X ,Z be d-orbifolds, Y an orbifold, and g : X → Z,
h : Y → Z be 1-morphisms with g a submersion. Then W = X ×g,Z,h Y is
an orbifold, with dimW = vdimX + dimY − vdimZ.

Theorem 1.11.20. (i) Let ρ : G → H be a morphism of finite groups, and
H act linearly on Rn. Then as in §1.10.2 we have quotient d-orbifolds [∗/G],
[RRRn/H] and a quotient 1-morphism [0, ρ] : [∗/G] → [RRRn/H]. Suppose X is a
d-orbifold and g : X → [RRRn/H] a 1-morphism in dOrb. Then the fibre prod-
uct W = X ×g,[RRRn/H],[0,ρ] [∗/G] exists in dOrb by Theorem 1.11.18(a). The
projection πX :W → X is an immersion if ρ is injective, and an embedding if
ρ is an isomorphism.

(ii) Suppose f : X → Y is an immersion of d-orbifolds, and [x] ∈ Xtop with
ftop([x]) = [y] ∈ Ytop. Write ρ : G→ H for f∗ : IsoX ([x])→ IsoY([y]). Then ρ
is injective, and there exist open neighbourhoods U ⊆ X and V ⊆ Y of [x], [y]
with f(U) ⊆ V , a linear action of H on Rn where n = vdimY − vdimX > 0,
and a 1-morphism g : V → [RRRn/H] with gtop([y]) = [0], fitting into a 2-
Cartesian square in dOrb :

U
f |U��

//

� �� �
GO

[∗/G]
[0,ρ] ��

V
g // [RRRn/H].

If f is an embedding then ρ is an isomorphism, and we may take U=f−1(V).

1.11.6 Embedding d-orbifolds into orbifolds

Section 1.4.7 discussed embeddings of d-manifolds into manifolds. Theorem
1.4.29 gave necessary and sufficient conditions for the existence of embeddings
f : X → RRRn for any d-manifold X, and Theorem 1.4.32 showed that if a d-
manifoldX has an embedding f : X → Y for a manifold Y thenX ' SV,E,s for
open f(X) ⊂ V ⊆ Y . Combining these proves that large classes of d-manifolds
— all compact d-manifolds, for instance — are principal d-manifolds.

Section 10.5 considers how to generalize all this to d-orbifolds. The proof of
Theorem 1.4.32 extends to (d-)orbifolds, giving:

Theorem 1.11.21. Suppose X is a d-orbifold, Y an orbifold, and f : X → Y
an embedding, in the sense of Definition 1.11.15. Then there exist an open
suborbifold V ⊆ Y with f(X ) ⊆ V , a vector bundle E on V, and a smooth section
s ∈ C∞(E) fitting into a 2-Cartesian diagram in dOrb, where Y ,V ,E, s,0 =
FdOrb

Orb

(
Y,V,Tot(E),Tot(s),Tot(0)

)
, in the notation of §1.9.1:

X
f

//
f�� � �� �

FN V
0 ��

V s // E.

Hence X is equivalent to the ‘standard model’ d-orbifold SV,E,s of Example
1.11.4, and is a principal d-orbifold.
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However, we do not presently have a good analogue of Theorem 1.4.29 for d-
orbifolds, so we cannot state useful necessary and sufficient conditions for when
a d-orbifold X can be embedded into an orbifold, or is a principal d-orbifold.

1.11.7 Orientations of d-orbifolds

Section 1.4.8 discusses orientations on d-manifolds. As in §10.6, all this material
generalizes easily to d-orbifolds, so we will give few details.

If X is a Deligne–Mumford C∞-stack and (E•, φ) a virtual vector bundle
on X , then we define a line bundle L(E•,φ) on X called the orientation line
bundle of (E•, φ). It has functorial properties as in Theorem 1.4.34(a)–(f). If X
is a d-orbifold, the virtual cotangent bundle T ∗X = (EX ,FX , φX ) is a virtual
vector bundle on X . We define an orientation ω on X to be an orientation
on the orientation line bundle LT∗X . The analogues of Theorem 1.4.37 and
Proposition 1.4.38 hold for d-orbifolds.

One difference between (d-)manifolds and (d-)orbifolds is that line bundles
L on Deligne–Mumford C∞-stacks X (such as orientation line bundles) need
only be locally trivial in the étale topology, not in the Zariski topology. Because
of this, orbifolds and d-orbifolds need not be (Zariski) locally orientable. For
example, the orbifold [R2n+1/{±1}] is not locally orientable near 0.

1.11.8 Orbifold strata of d-orbifolds

Section 1.8.7 discussed the orbifold strata XΓ, X̃Γ, . . . , X̂Γ
◦ of a Deligne–Mumford

C∞-stack X . When X is an orbifold, §1.9.2 explained that XΓ decomposes
as XΓ =

∐
λ∈ΛΓ

+
XΓ,λ, where each XΓ,λ is an orbifold of dimension dimX −

dimλ, and similarly for X̃Γ, . . . , X̂Γ
◦ . Section 1.10.5 discussed the orbifold strata

XΓ, X̃Γ, . . . , X̂Γ
◦ of a d-stack X . Section 10.7 shows that for a d-orbifold X ,

the orbifold strata decompose as XΓ =
∐
λ∈ΛΓ XΓ,λ, where XΓ,λ is a d-orbifold

of virtual dimension vdimX − dimλ, and similarly for X̃Γ, . . . , X̂Γ
◦ .

Definition 1.11.22. Let Γ be a finite group, and use the notation Repnt(Γ),
ΛΓ = K0

(
Repnt(Γ)

)
, ΛΓ

+ ⊆ ΛΓ and dim : ΛΓ → Z of Definition 1.9.7. Let
R0, R1, . . . , Rk be the irreducible Γ-representations up to isomorphism, with
R0 = R the trivial representation, so that ΛΓ ∼= Zk and ΛΓ

+
∼= Nk.

Suppose X is a d-orbifold. Theorem 1.10.11 gives a d-stack XΓ and a 1-
morphism OΓ(X ) : XΓ → X . The virtual cotangent bundle of X is T ∗X =
(EX ,FX , φX ), a virtual vector bundle of rank vdimX on X . So OΓ(X )∗(T ∗X ) =(
OΓ(X )∗(EX ), OΓ(X )∗(FX ), OΓ(X )∗(φX )

)
is a virtual vector bundle on XΓ. As

in §1.8.7, OΓ(X )∗(EX ), OΓ(X )∗(FX ) have natural Γ-representations inducing
decompositions of the form (1.48)–(1.49), and OΓ(X )∗(φX ) is Γ-equivariant and
so preserves these splittings. Hence we have decompositions in vqcoh(XΓ):

OΓ(X )∗(T ∗X ) ∼=
⊕k

i=0(T ∗X )Γ
i ⊗Ri for (T ∗X )Γ

i ∈ vqcoh(XΓ),

and OΓ(X )∗(T ∗X ) = (T ∗X )Γ
tr ⊕ (T ∗X )Γ

nt, with

(T ∗X )Γ
tr
∼= (T ∗X )Γ

0 ⊗R0 and (T ∗X )Γ
nt
∼=
⊕k

i=1(T ∗X )Γ
i ⊗Ri.

(1.68)
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Also Theorem 1.10.15 shows that T ∗(XΓ) ∼= (T ∗X )Γ
tr.

As OΓ(X )∗(T ∗X ) is a virtual vector bundle, (1.68) implies the (T ∗X )Γ
i

are virtual vector bundles of mixed rank, whose ranks may vary on different
connected components of XΓ. For each λ ∈ ΛΓ, define XΓ,λ to be the open and
closed d-substack in XΓ with rank

(
(T ∗X )Γ

1

)
[R1] + · · ·+ rank

(
(T ∗X )Γ

k

)
[Rk] = λ

in ΛΓ. Then XΓ,λ is a d-orbifold, with vdimXΓ,λ = vdimX − dimλ. Also we
have a decomposition XΓ =

∐
λ∈ΛΓ XΓ,λ in dSta.

Note that in the d-orbifold case dimλ may be negative, so we can have
vdimXΓ,λ > vdimX . This is counterintuitive: the (w-immersed) d-suborbifold
XΓ,λ has larger dimension than the d-orbifold X that contains it.

Write OΓ,λ(X ) = OΓ(X )|XΓ,λ : XΓ,λ → X . Then OΓ,λ(X ) is a proper

w-immersion of d-orbifolds, in the sense of §1.11.4. Define XΓ,λ
◦ = XΓ

◦ ∩XΓ,λ,

and OΓ,λ
◦ (X ) = OΓ

◦ (X )|XΓ,λ
◦

: XΓ,λ
◦ → X . Then XΓ,λ

◦ is a d-orbifold with

vdimXΓ,λ
◦ = vdimX − dimλ, and XΓ

◦ =
∐
λ∈ΛΓ XΓ,λ

◦ .

As for X̃Γ,µ, . . . , X̂Γ,µ
◦ in §1.9.2, for each µ ∈ ΛΓ/Aut(Γ) we define X̃Γ,µ '[(∐

λ∈µXΓ,λ
)/

Aut(Γ)
]

in X̃Γ ' [XΓ/Aut(Γ)], and X̃Γ,µ
◦ = X̃Γ

◦ ∩ X̃Γ,µ, and

X̂Γ,µ = Π̂Γ(X )(X̃Γ,µ), and X̂Γ,µ
◦ = X̂Γ

◦ ∩ X̂Γ,µ. Then X̃Γ,µ, . . . , X̂Γ,µ
◦ are

d-orbifolds with vdim X̃Γ,µ = · · · = vdim X̂Γ,µ
◦ = vdimX − dimµ, with

X̃Γ =
∐
µ X̃Γ,µ, X̃Γ

◦ =
∐
µ X̃

Γ,µ
◦ , X̂Γ =

∐
µ X̂Γ,µ, X̂Γ

◦ =
∐
µ X̂

Γ,µ
◦ .

Also X̂Γ,µ
◦ is a d-manifold, that is, it lies in dM̂an.

Section 10.7 also considers the question: if X is an oriented d-orbifold, under
what conditions on Γ, λ, µ do the orbifold strata XΓ,λ, . . . , X̂Γ,µ

◦ have natural
orientations? Here is the analogue of Proposition 1.9.9:

Proposition 1.11.23. (a) If Γ is a finite group with |Γ| odd and X an oriented

d-orbifold, then we can define orientations on XΓ,λ,XΓ,λ
◦ for all λ ∈ ΛΓ.

(b) Let Γ be a finite group with |Γ| odd, λ ∈ ΛΓ and µ = λ · Aut(Γ) in
ΛΓ/Aut(Γ). We may write λ = [(V +, ρ+)] − [(V −, ρ−)] for nontrivial Γ-
representations (V ±, ρ±) with no common subrepresentation, and then (V ±, ρ±)
are unique up to isomorphism. Define H to be the subgroup of Aut(Γ) fixing
λ in ΛΓ. Then for each δ ∈ H there exist isomorphisms of Γ-representations
i±δ : (V ±, ρ± ◦ δ) → (V ±, ρ±). Suppose i+δ ⊕ i−δ : V + ⊕ V − → V + ⊕ V − is
orientation-preserving for all δ ∈ H. If λ ∈ 2ΛΓ this holds automatically.

Then for all oriented d-orbifolds X we can define orientations on the orb-
ifold strata X̃Γ,µ, X̃Γ,µ

◦ , X̂Γ,µ, X̂Γ,µ
◦ . For X̃Γ,µ this works as X̃Γ,µ ' [XΓ,λ/H],

where XΓ,λ is oriented by (a), and the H-action on XΓ,λ preserves orientations,
so the orientation on XΓ,λ descends to an orientation on X̃Γ,µ ' [XΓ,λ/H].

(c) Suppose that Γ and λ ∈ ΛΓ do not satisfy the conditions in (a) (i.e. |Γ|
is even), or Γ and µ ∈ ΛΓ/Aut(Γ) do not satisfy the conditions in (b). Then

we can find examples of oriented d-orbifolds X such that XΓ,λ,XΓ,λ
◦ are not

orientable, or X̃Γ,µ, X̃Γ,µ
◦ , X̂Γ,µ, X̂Γ,µ

◦ are not orientable, respectively. That is,
the conditions on Γ, λ, µ in (a),(b) are necessary as well as sufficient to be able

to orient orbifold strata XΓ,λ, . . . , X̂Γ,µ
◦ of all oriented d-orbifolds X .
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Note that Proposition 1.11.23 for d-orbifolds is weaker than Proposition 1.9.9
for orbifolds. That is, if Γ is a finite group with |Γ| even then for some choices

of λ, µ we can orient XΓ,λ, . . . , X̂Γ,µ
◦ for all oriented orbifolds X , but we cannot

orient XΓ,λ, . . . , X̂Γ,µ
◦ for all oriented d-orbifolds X .

1.11.9 Kuranishi neighbourhoods and good coordinate systems

We now explain the main ideas of §10.8, which are based on parallel material
about Kuranishi spaces due to Fukaya, Oh, Ohta and Ono [32,34].

Definition 1.11.24. Let X be a d-orbifold. A type A Kuranishi neighbourhood
onX is a quintuple (V,E,Γ, s,ψ) where V is a manifold, E → V a vector bundle,
Γ a finite group acting smoothly and locally effectively on V,E preserving the
vector bundle structure, and s : V → E a smooth, Γ-equivariant section of E.
Write the Γ-actions on V,E as r(γ) : V → V and r̂(γ) : E → r(γ)∗(E) for γ ∈ Γ.
Then Example 1.11.7 defines a principal d-orbifold [SV,E,s/Γ]. We require that
ψ : [SV,E,s/Γ]→ X is a 1-morphism of d-orbifolds which is an equivalence with
a nonempty open d-suborbifold ψ([SV,E,s/Γ]) ⊆ X .

Definition 1.11.25. Suppose (Vi, Ei,Γi, si,ψi), (Vj , Ej ,Γj , sj ,ψj) are type A
Kuranishi neighbourhoods on a d-orbifold X , with

∅ 6= ψi([SVi,Ei,si/Γi]) ∩ψj([SVj ,Ej ,sj/Γj ]) ⊆ X .

A type A coordinate change from (Vi, Ei,Γi, si,ψi) to (Vj , Ej ,Γj , sj ,ψj) is a
quintuple (Vij , eij , êij , ρij ,ηij), where:

(a) ∅ 6= Vij ⊆ Vi is a Γi-invariant open submanifold, with

ψi
(
[SVij ,Ei|Vij ,si|Vij /Γi]

)
= ψi([SVi,Ei,si/Γi]) ∩ψj([SVj ,Ej ,sj/Γj ]) ⊆ X .

(b) ρij : Γi → Γj is an injective group morphism.

(c) eij : Vij → Vj is an embedding of manifolds with eij ◦ ri(γ) = rj(ρij(γ)) ◦
eij : Vij → Vj for all γ ∈ Γi. If vi, v

′
i ∈ Vij and δ ∈ Γj with rj(δ)◦eij(v′i) =

eij(vi), then there exists γ ∈ Γi with ρij(γ) = δ and ri(γ)(v′i) = vi.

(d) êij : Ei|Vij → e∗ij(Ej) is an embedding of vector bundles (that is, êij has
a left inverse), such that êij ◦ si|Vij = e∗ij(sj) and ri(γ)∗(êij) ◦ r̂i(γ) =
e∗ij(r̂j(ρij(γ))) ◦ êij : Ei|Vij → (eij ◦ ri(γ))∗(Ej) for all γ ∈ Γi. Thus
Example 1.11.8 defines a quotient 1-morphism

[Seij ,êij , ρij ] : [SVij ,Ei|Vij ,si|Vij /Γi] −→ [SVj ,Ej ,sj/Γj ], (1.69)

where [SVij ,Ei|Vij ,si|Vij /Γi] is an open d-suborbifold in [SVi,Ei,si/Γi].

(e) If vi ∈ Vij with si(vi) = 0 and vj = eij(vi) ∈ Vj then the following linear
map is an isomorphism:(

dsj(vj)
)
∗ :
(
TvjVj

)/(
deij(vi)[TviVi]

)
→
(
Ej |vj

)/(
êij(vi)[Ei|vi ]

)
.

Theorem 1.11.12 then implies that [Seij ,êij , ρij ] in (1.69) is an equivalence
with an open d-suborbifold of [SVj ,Ej ,sj/Γj ].
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(f) ηij : ψj ◦ [Seij ,êij , ρij ]⇒ ψi|[SVij,Ei|Vij ,si|Vij /Γi] is a 2-morphism in dOrb.

(g) The quotient topological space Vi qVij Vj = (Vi q Vj)/ ∼ is Hausdorff,
where the equivalence relation ∼ identifies v ∈ Vij ⊆ Vi with eij(v) ∈ Vj .

Definition 1.11.26. Let X be a d-orbifold. A type A good coordinate system
on X consists of the following data satisfying conditions (a)–(e):

(a) We are given a countable indexing set I, and a total order < on I making
(I,<) into a well-ordered set.

(b) For each i ∈ I we are given a Kuranishi neighbourhood (Vi, Ei,Γi, si,ψi)
of type A on X . Write X i = ψi([SVi,Ei,si/Γi]), so that X i ⊆ X is an
open d-suborbifold, and ψi : [SVi,Ei,si/Γi] → X i is an equivalence. We
require that

⋃
i∈I X i = X , so that {X i : i ∈ I} is an open cover of X .

(c) For all i < j in I with X i ∩ X j 6= ∅ we are given a type A coordinate
change (Vij , eij , êij , ρij ,ηij) from (Vi, Ei,Γi, si,ψi) to (Vj , Ej ,Γj , sj ,ψj).

(d) For all i < j < k in I with X i ∩ X j ∩ X k 6= ∅, we are given γijk ∈ Γk
satisfying ρik(γ) = γijk ρjk(ρij(γ)) γ−1

ijk for all γ ∈ Γi, and

eik|Vik∩e−1
ij (Vjk) = rk(γijk) ◦ ejk ◦ eij |Vik∩e−1

ij (Vjk),

êik|Vik∩e−1
ij (Vjk) =

(
e∗ij(e

∗
jk(r̂k(γijk))) ◦ e∗ij(êjk) ◦ êij

)
|Vik∩e−1

ij (Vjk).
(1.70)

Combining the first equation of (1.70) with Definition 1.11.25(c) for eik
and Γi acting effectively on Vik ∩ e−1

ij (Vjk) shows that γijk is unique. Ex-
ample 1.11.9 with δ = γijk and Λ = 0 then gives a 2-morphism in dOrb:

ηijk = [S0, γijk] : [Sejk,êjk , ρjk] ◦ [Seij ,êij , ρij ]|[S
Vik∩e

−1
ij

(Vjk),Ei,si
/Γi]

=⇒ [Seik,êik , ρik]|[S
Vik∩e

−1
ij

(Vjk),Ei,si
/Γi].

(e) For all i < j < k in I with X i ∩ X k 6= ∅ and X j ∩ X k 6= ∅, we require
that if vi ∈ Vik, vj ∈ Vjk and δ ∈ Γk with ejk(vj) = rk(δ) ◦ eik(vi) in
Vk, then X i ∩ X j ∩ X k 6= ∅, and vi ∈ Vij , and there exists γ ∈ Γj with
ρjk(γ) = δ γijk and vj = rj(γ) ◦ eij(vi).

Suppose now that Y is a manifold, and h : X → Y is a 1-morphism in
dOrb, where Y = FdOrb

Man (Y ). A type A good coordinate system for h : X → Y
consists of a type A good coordinate system

(
I,<, . . . , γijk

)
for X as in (a)–(e)

above, together with the following data satisfying conditions (f)–(g):

(f) For each i ∈ I, we are given a smooth map gi : Vi → Y with gi ◦ri(γ) = gi
for all γ ∈ Γi, so that Example 1.11.8 defines a quotient 1-morphism

[Sgi,0, π] : [SVi,Ei,si/Γi] −→ [SY,0,0/{1}] = Y ,

where π : Γi → {1} is the projection. We are given a 2-morphism ζi :
h ◦ψi ⇒ [Sgi,0, π] in dOrb. Sometimes we require gi to be a submersion.
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(g) For all i < j in I with X i ∩X j 6= ∅, we require that gj ◦ eij = gi|Vij . This
implies that

[Sgj ,0, π] ◦ [Seij ,êij , ρij ] = [Sgi,0, π]|[SVij,Ei|Vij ,si|Vij /Γi] :

[SVij ,Ei|Vij ,si|Vij /Γi] −→ [SY,0,0/{1}] = Y .

Here is the main result of §10.8, which is proved in Appendix D.

Theorem 1.11.27. Suppose X is a d-orbifold. Then there exists a type A good
coordinate system

(
I,<, (Vi, Ei,Γi, si,ψi), (Vij , eij , êij , ρij ,ηij), γijk

)
for X . If

X is compact, we may take I to be finite. If {U j : j ∈ J} is an open cover of
X , we may take X i = ψi([SVi,Ei,si/Γi]) ⊆ U ji for each i ∈ I and some ji ∈ J .

Now let Y be a manifold and h : X → Y = FdOrb
Man (Y ) a 1-morphism

in dOrb. Then all the above extends to type A good coordinate systems for
h :X→Y , and we may take the gi in Definition 1.11.26(f) to be submersions.

Section 10.8 also gives ‘type B’ versions of Definitions 1.11.24–1.11.26 and
Theorem 1.11.27 using the standard model d-orbifolds SV,E,s and 1-morphisms
Seij ,êij of Examples 1.11.4 and 1.11.5 in place of [SV,E,s/Γ] and [Seij ,êij , ρij ]
from Examples 1.11.7 and 1.11.8.

Observe that Definition 1.11.26 is similar to the hypotheses of Theorem
1.11.14. Given a good coordinate system I,<, (Vi, Ei,Γi, si,ψi), . . . on X , The-
orem 1.11.14 reconstructs X up to equivalence in dOrb from the data I,<, Vi,
Ei,Γi, si, Vij , eij , êij , ρij , γijk. Thus, we can regard Theorem 1.11.27 as a kind of
converse to Theorem 1.11.14. Combining the two, we see that every d-orbifold
X can be described up to equivalence by a collection of differential-geometric
data I,<, Vi, . . . , γijk. The ‘type B’ version of Theorem 1.11.27 is a kind of
converse to Theorem 1.11.13.

Fukaya and Ono [34, §5] and Fukaya, Oh, Ohta and Ono [32, §A1] de-
fine Kuranishi spaces, the geometric structure they put on moduli spaces of
J-holomorphic curves in symplectic geometry. We will argue in §14.3 that their
definition is not really satisfactory, and that the ‘right’ way to define Kuranishi
spaces is as d-orbifolds, or d-orbifolds with corners.

A Kuranishi space in [32, §A1] is a topological space X with a cover by
‘Kuranishi neighbourhoods’ (V,E,Γ, s, ψ), which are as in Definition 1.11.24
except that ψ is a homeomorphism with an open set in X, rather than an
equivalence with an open d-suborbifold. On overlaps between (images of) Ku-
ranishi neighbourhoods in X we are given ‘coordinate changes’, roughly as in
Definition 1.11.25 except for the 2-morphisms ηij . Fukaya et al. define ‘good
coordinate systems’ for Kuranishi spaces, roughly as in Definition 1.11.26. They
state without proof in [32, Lem. A1.11] that good coordinate systems exist for
any (compact) Kuranishi space, the analogue of Theorem 1.11.27.

Good coordinate systems are used in [32,34] in some kinds of proof involving
Kuranishi spaces, in particular, in the construction of virtual classes and virtual
chains. The proofs involve choosing data (such as a multi-valued perturbation
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of si) on each Kuranishi neighbourhood (Vi, Ei,Γi, si, ψi), by induction on i in
I in the order <, where the data must satisfy compatibility conditions with
coordinate changes (Vij , eij , êij , ρij).

In fact we have already met the problem good coordinate systems are de-
signed to solve in §1.11.6: in contrast to the d-manifold case, we do not have
useful criteria for when a d-orbifold X is principal. The parallel issue for Ku-
ranishi spaces is that we cannot cover a general Kuranishi space X with a
single Kuranishi neighbourhood (V,E,Γ, s, ψ). So we cover (compact) X with
(finitely) many Kuranishi neighbourhoods (Vi, Ei,Γi, si, ψi) with particularly
well-behaved coordinate changes on overlaps, and then carry out the construc-
tion we want on each (Vi, Ei,Γi, si, ψi), compatibly with coordinate changes.

The material above will be used in §14.3 to explain the relations between
d-orbifolds and Kuranishi spaces. As for Kuranishi spaces, it is also helpful for
some proofs involving d-orbifolds, for instance, in constructing virtual classes
for compact oriented d-orbifolds, and in studying d-orbifold bordism.

1.11.10 Semieffective and effective d-orbifolds

Section 10.9 defines semieffective and effective d-orbifolds, which are related to
the notion of effective orbifold in Definition 1.9.4.

Definition 1.11.28. Let X be a d-orbifold. For [x] ∈ Xtop, so that x : ∗̄ → X is
a C∞-stack 1-morphism, applying pullback x∗ to (1.51) gives an exact sequence
in qcoh(∗̄), where K[x] = Ker(x∗(φX )):

0 // K[x] // x∗(EX )
x∗(φX ) // x∗(FX )

x∗(ψX ) // x∗(T ∗X ) ∼= T ∗xX // 0.

We may think of this as an exact sequence of real vector spaces, where K[x], T
∗
xX

are finite-dimensional with dimT ∗xX − dimK[x] = vdimX .
The orbifold group IsoX ([x]) is the group of 2-morphisms η : x ⇒ x. Def-

inition 1.8.22 defines isomorphisms η∗(EX ) : x∗(EX ) → x∗(EX ) in qcoh(∗̄),
which make x∗(EX ) into a representation of IsoX ([x]). The same holds for
x∗(FX ), x∗(T ∗X ), and x∗(φX ), x∗(ψX ) are equivariant. Hence K[x], T

∗
xX are

also IsoX ([x])-representations.
We call X a semieffective d-orbifold if K[x] is a trivial representation of

IsoX ([x]) for all [x] ∈ Xtop. We call X an effective d-orbifold if it is semieffective,
and T ∗xX is an effective representation of IsoX ([x]) for all [x] ∈ Xtop.

That is, X is semieffective if the orbifold groups IsoX ([x]) act trivially on the
obstruction spaces of X , and effective if the IsoX ([x]) also act effectively on the
tangent spaces of X . One useful property of (semi)effective d-orbifolds is that
generic perturbations of semieffective (or effective) d-orbifolds are (effective)
orbifolds. We state this for ‘standard model’ d-orbifolds SV,E,s.

Proposition 1.11.29. Let V be an orbifold, E a vector bundle on V, and s ∈
C∞(E), and let SV,E,s be as in Example 1.11.4. Suppose SV,E,s is a semieffective
d-orbifold. Then for any generic perturbation s̃ of s in C∞(E) with s̃ − s
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sufficiently small in C1 locally on V, the d-orbifold SV,E,s̃ is an orbifold, that

is, it lies in Ôrb ⊂ dOrb. If SV,E,s is an effective d-orbifold, then SV,E,s̃ is
an effective orbifold.

The proof of results on (semi)effective d-orbifold bordism in §1.15 involves
an analogue of Proposition 1.11.29 for general d-orbifolds X , proved using
good coordinate systems as in §1.11.9. Here are some other good properties
of (semi)effective d-orbifolds:

• If X is an orbifold then X = FdOrb
Orb (X ) is a semieffective d-orbifold, and

if X is effective then X is effective.

• Let X be a semieffective d-orbifold, Γ a finite group, and λ ∈ ΛΓ. Then
the orbifold stratum XΓ,λ = ∅ unless λ ∈ ΛΓ

+ ⊂ ΛΓ. If X is effective then
XΓ,λ = ∅ unless λ = [R] for R an effective Γ-representation.

• If X ,Y are (semi)effective d-orbifolds, then the product X × Y is also
(semi)effective. More generally, any fibre product X ×Z Y in dOrb with
X ,Y (semi)effective and Z a manifold is also (semi)effective.

• Proposition 1.11.23 says that if X is an oriented d-orbifold, then when |Γ|
is odd we can define orientations on the orbifold strata XΓ,λ,XΓ,λ

◦ , and
under extra conditions on µ we can also orient X̃Γ,µ, X̃Γ,µ

◦ , X̂Γ,µ, X̂Γ,µ
◦ .

For general d-orbifolds X , this is the best we can do. But for semieffective
d-orbifolds X the analogue of Proposition 1.9.9 for orbifolds holds. This is
stronger, as it orients XΓ,λ, . . . , X̂Γ,µ

◦ under weaker conditions on Γ, λ, µ,
which allow |Γ| even for some λ, µ.

1.12 Orbifolds with corners

Sections 8.5–8.9 discuss 2-categories Orbb and Orbc of orbifolds with boundary
and orbifolds with corners, which are orbifold versions of manifolds with bound-
ary and corners in §1.5. This is new material, and the author knows of no other
foundational work on orbifolds with corners.

1.12.1 The definition of orbifolds with corners

Definition 1.12.1. An orbifold with corners X of dimension n > 0 is a triple
X = (X , ∂X , iX) with X , ∂X separated, second countable Deligne–Mumford
C∞-stacks, and iX : ∂X → X a proper, strongly representable 1-morphism of
C∞-stacks, in the sense of §1.8.3, such that for each [x] ∈ Xtop there exists a
2-Cartesian diagram in C∞Sta:

∂̄U u∂
//

īU�� � �� �
IQ

id

∂X
iX ��

Ū
u // X .

Here U is an n-manifold with corners, so that iU : ∂U → U is smooth,
and U, ∂U, iU = FC∞Sch

Manc (U, ∂U, iU ), and u, u∂ are étale 1-morphisms, and
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utop([p]) = [x] for some p ∈ U . We call X an orbifold with boundary, or an
orbifold without boundary, if the above condition holds with U a manifold with
boundary, or a manifold without boundary, respectively, for each [x] ∈ Xtop.

Now suppose X = (X , ∂X , iX) and Y = (Y, ∂Y, iY) are orbifolds with corners.
A 1-morphism f : X → Y, or smooth map, is a 1-morphism of C∞-stacks
f : X → Y such that for each [x] ∈ Xtop with ftop([x]) = [y] ∈ Ytop there exists
a 2-commutative diagram in C∞Sta:

Ū u
//

h̄�� �� ��	� η
X
f ��

V̄
v // Y.

Here U, V are manifolds with corners, h : U → V is a smooth map, U, V , h =
FC∞Sch

Manc (U, V, h), and u, v are étale, and utop([p]) = [x] for some p ∈ U .
Let f, g : X → Y be 1-morphisms of orbifolds with corners. A 2-morphism

η : f ⇒ g is a 2-morphism of 1-morphisms f, g : X → Y in C∞Sta.
Composition of 1-morphisms g ◦ f , identity 1-morphisms idX, vertical and

horizontal composition of 2-morphisms ζ � η, ζ ∗ η, and identity 2-morphisms
for orbifolds with corners, are all given by the corresponding compositions and
identities in C∞Sta. This defines the 2-category Orbc of orbifolds with corners.
Write Orbb and Ȯrb for the full 2-subcategories of orbifolds with boundary,
and orbifolds without boundary, in Orbc.

If X is an orbifold in the sense of Definition 1.9.1, then X = (X , ∅, ∅) is an orb-
ifold without boundary in this sense, and vice versa. Thus the 2-functor FOrbc

Orb :
Orb → Orbc mapping X 7→ X = (X , ∅, ∅) on objects, f 7→ f on 1-morphisms,
and η 7→ η on 2-morphisms, is an isomorphism of 2-categories Orb→ Ȯrb.

Define FOrbc

Manc : Manc → Orbc by FOrbc

Manc : X 7→ X = (X̄, ¯∂X, īX) on objects
X in Manc, where X, ∂X, iX = FC∞Sch

Manc (X, ∂X, iX), and FOrbc

Manc : f 7→ f̄ on

morphisms f : X → Y in Manc, where f = FC∞Sch
Manc (f). Then FOrbc

Manc is a full
and faithful strict 2-functor.

Let X = (X , ∂X , iX) be an orbifold with corners, and V ⊆ X an open C∞-
substack. Define ∂V = i−1

X (V), as an open C∞-substack of ∂X , and iV : ∂V → V
by iV = iX|∂V . Then V = (V, ∂V, iV) is an orbifold with corners. We call V an
open suborbifold of X. An open cover of X is a family {Va : a ∈ A} of open
suborbifolds Va of X with X =

⋃
a∈A Va.

Example 1.12.2. Suppose X is a manifold with corners, G a finite group, and
r : G→ Aut(X) an action of G on X by diffeomorphisms. Since r(γ) : X → X
is simple for each γ ∈ G, as in §1.5.2 we have r−(γ) : ∂X → ∂X, which is also
a diffeomorphism. Then r− : G→ Aut(∂X) is an action of G on ∂X, and iX :
∂X → X is G-equivariant. Set X, ∂X, iX , r, r− = FC∞Sch

Manc (X, ∂X, iX , r, r−).
Then X, ∂X are C∞-schemes with G-actions r, r−, and iX : ∂X → X is G-
equivariant, so Examples 1.8.11 and 1.8.12 define Deligne–Mumford C∞-stacks
[X/G], [∂X/G] and a 1-morphism [iX , idG] : [∂X/G]→ [X/G], which turns out
to be strongly representable. One can show that X =

(
[X/G], [∂X/G], [iX , idG]

)
is an orbifold with corners, which we will write as [X/G].
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Remark 1.12.3. (a) We could have defined Orbc equivalently and more simply
as a (non-full) 2-subcategory of DMC∞Sta, so that an orbifold with corners
would be a C∞-stack X rather than a triple X = (X , ∂X , iX). We chose the
set-up of Definition 1.12.1 partly for its compatibility with the definitions of
d-stacks and d-orbifolds with corners X = (X ,∂X , iX, ωX) in §1.13–§1.14, and
partly because, to make several important constructions more functorial, it is
useful to have a particular choice of boundary ∂X for X already made.

(b) In Remark 1.6.5 we noted that boundaries in dSpac are strictly functorial.
One sign of this is that for a semisimple 1-morphism f : X→ Y in dSpac, the
1-morphism f− : ∂f−X → ∂Y is unique, not just unique up to 2-isomorphism,
with an equality of 1-morphisms f ◦iX|∂f−X = iY◦f−, not just a 2-isomorphism.
By the general philosophy of 2-categories, this may seem unnatural.

We will arrange that boundaries in Orbc and also in dStac,dOrbc are
strictly functorial in the same way. This is our reason for taking iX : ∂X → X
in Definition 1.12.1 to be strongly representable, in the sense of §1.8.3. Propo-
sition 1.8.8(b) shows that this is no real restriction: iX : ∂X → X is naturally
representable, and we can make it strongly representable by replacing ∂X by an
equivalent C∞-stack. Then Proposition 1.8.9 applied to iY : ∂Y → Y is what
we need to show that a semisimple 1-morphism f : X → Y in dOrbc lifts to a
unique 1-morphism f− : ∂f−X→ ∂Y with f ◦ iX|∂f−X = iY ◦ f−.

(c) An orbifold with corners X of dimension n is locally modelled near each
point [x] ∈ Xtop on

(
[0,∞)k×Rn−k

)
/G near 0, where G is a finite group acting

linearly on Rn preserving the subset [0,∞)k × Rn−k. Note that G is allowed
to permute the coordinates x1, . . . , xk in [0,∞)k. So, for example, we allow
2-dimensional orbifolds with corners modelled on [0,∞)2/Z2, where Z2 = 〈σ〉
acts on [0,∞)2 by σ : (x1, x2) 7→ (x2, x1).

This implies that the 1-morphism iX : ∂X → X induces morphisms of orb-
ifold groups (iX)∗ : Iso∂X ([x′]) → IsoX ([x]) which are injective (so that iX is
representable), but need not be isomorphisms. We will call an orbifold with
corners X straight if the morphisms (iX)∗ : Iso∂X ([x′]) → IsoX ([x]) are isomor-
phisms for all [x′] ∈ ∂X top with iX,top([x′]) = [x]. That is, straight orbifolds

with corners are locally modelled on [0,∞)k×(Rn−k/G). Orbifolds with bound-
ary, with k = 0 or 1, are automatically straight. Boundaries of orbifold strata
behave better for straight orbifolds with corners.

In §1.9.1 we explained that a vector bundle E on an orbifold X is a vector
bundle on X as a Deligne–Mumford C∞-stack, in the sense of §1.8.6. But
sometimes it is convenient to regard E as an orbifold in its own right, so we
define a ‘total space functor’ mapping vector bundles E to orbifolds Tot(E).

In the same way, if X = (X , ∂X , iX) is an orbifold with corners, in §8.5 we
define a vector bundle E on X to be a vector bundle on X as a Deligne–Mumford
C∞-stack. To regard E as an orbifold with corners in its own right, we define
a ‘total space functor’ Totc : vect(X ) → Orbc, which maps a vector bundle E
on X to an orbifold with corners Totc(E), and maps a section s ∈ C∞(E) to a
simple, flat 1-morphism Totc(s) : X→ Totc(E) in Orbc.
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Definition 1.12.4. An orbifold with corners X is called effective if X is locally
modelled near each [x] ∈ Xtop on ([0,∞)k × Rn−k)/G, where G acts effectively

on Rn preserving [0,∞)k × Rn−k, that is, every 1 6= γ ∈ G acts nontrivially.

The analogue of Proposition 1.9.5 holds for effective orbifolds with corners.

1.12.2 Boundaries of orbifolds with corners, and
simple, semisimple and flat 1-morphisms

Section 8.6 defines boundaries of orbifolds with corners.

Definition 1.12.5. Let X = (X , ∂X , iX) be an orbifold with corners. We will
define an orbifold with corners ∂X = (∂X , ∂2X , i∂X), called the boundary of X,
such that iX : ∂X→ X is a 1-morphism in Orbc. Here ∂X and iX are given in
X, so the new data we have to construct is ∂2X , i∂X.

As iX : ∂X → X is strongly representable by Definition 1.12.1, Proposition
1.8.10 defines an explicit fibre product ∂X ×iX,X ,iX ∂X with strongly repre-
sentable projection morphisms π1, π2 : ∂X ×X ∂X → ∂X such that iX ◦ π1 =
iX ◦π2. We will use this explicit fibre product throughout. There is a unique di-
agonal 1-morphism ∆∂X : ∂X → ∂X×X ∂X with π1◦∆∂X = π2◦∆∂X = id∂X . It
is an equivalence with an open and closed C∞-substack ∆∂X (∂X ) ⊆ ∂X ×X ∂X .
Define ∂2X = ∂X ×X ∂X \ ∆∂X (∂X ). Then ∂2X is also an open and closed
C∞-substack in ∂X ×X ∂X . Define i∂X = π1|∂2X : ∂2X → ∂X . Then
∂X = (∂X , ∂2X , i∂X) is an orbifold with corners, with dim(∂X) = dimX − 1.
Also iX : ∂X → X in X is a 1-morphism iX : ∂X→ X in Orbc.

Here is the orbifold analogue of parts of §1.5.1–§1.5.2.

Definition 1.12.6. Let X = (X , ∂X , iX) and Y = (Y, ∂Y, iY) be orbifolds with
corners, and f : X → Y a 1-morphism in Orbc. Consider the C∞-stack fibre
products ∂X ×f◦iX,Y,iY ∂Y and X ×f,Y,iY ∂Y. Since iY is strongly representable,
we may define these using the explicit construction of Proposition 1.8.10.

The topological space (∂X ×Y ∂Y)top associated to the C∞-stack ∂X ×Y ∂Y
may be written explicitly as

(∂X ×Y ∂Y)top
∼=
{

[x′, y′] : x′ : ∗̄ → ∂X and y′ : ∗̄ → ∂Y are

1-morphisms with f ◦iX◦x′= iY◦y′ : ∗̄→Y
}
,

(1.71)

where [x′, y′] in (1.71) denotes the ∼-equivalence class of pairs (x′, y′), with
(x′, y′) ∼ (x̃′, ỹ′) if there exist 2-morphisms η : x′ ⇒ x̃′ and ζ : y′ ⇒ ỹ′

with idf◦iX ∗ η = idiY ∗ ζ. There is a natural open and closed C∞-substack
Sf ⊆ ∂X ×Y ∂Y, the analogue of Sf in §1.5.1, such that [x′, y′] in (1.71) lies
in Sf,top if and only if we can complete the following commutative diagram in
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qcoh(∗̄) with morphisms ‘99K’ as shown:

0 // (y′)∗(NY)
(y′)∗(νY) //

∼=
��

(y′)∗◦i∗Y(T ∗Y)
(y′)∗(ΩiY )

//

Ix′,iX
(T∗X )◦(iX◦x′)∗(Ωf )◦

IiX◦x′,f
(T∗Y)◦Iy′,iY (T∗Y)−1

��

(y′)∗(T ∗(∂Y))

��

// 0

0 // (x′)∗(NX)
(x′)∗(νX)

// (x′)∗◦i∗X(T ∗X )
(x′)∗(ΩiX )

// (x′)∗(T ∗(∂X )) // 0,

where NX,NY are the conormal line bundles of ∂X , ∂Y in X ,Y.
Similarly, the topological space (X ×Y ∂Y)top may be written explicitly as

(X ×Y ∂Y)top
∼=
{

[x, y′] : x : ∗̄ → X and y′ : ∗̄ → ∂Y are

1-morphisms with f ◦x= iY◦y′ : ∗̄→Y
}
,

(1.72)

where [x, y′] in (1.72) denotes the ≈-equivalence class of (x, y′), with (x, y′) ≈
(x̃, ỹ′) if there exist η : x ⇒ x̃ and ζ : y′ ⇒ ỹ′ with idf ∗ η = idiY ∗ ζ. There is
a natural open and closed C∞-substack T f ⊆ X ×Y ∂Y, the analogue of Tf in
§1.5.1, such that [x, y′] in (1.72) lies in T f,top if and only if we can complete the
following commutative diagram in qcoh(∗̄):

0 // (y′)∗(NY)
(y′)∗(νY)

// (y′)∗◦i∗Y(T ∗Y)
(y′)∗(ΩiY )

//

x∗(Ωf )◦Ix,f (T∗Y)◦Iy′,iY (T∗Y)−1

��

(y′)∗(T ∗(∂Y))

uu

// 0

x∗(T ∗X ).

Define sf = π∂X |Sf : Sf → ∂X , uf = π∂Y |Sf : Sf → ∂Y, tf = πX |Tf : T f →
X , and vf = π∂Y |Tf : T f → ∂Y. Then sf , tf are proper, étale 1-morphisms.
We call f simple if sf : Sf → ∂X is an equivalence, and we call f semisimple
if sf : Sf → ∂X is injective as a 1-morphism of Deligne–Mumford C∞-stacks,
and we call f flat if T f = ∅. Simple implies semisimple.

The condition that iX is strongly representable in Definition 1.12.1 is essen-
tial in constructing f−, η− in parts (b),(c) of the next theorem.

Theorem 1.12.7. Let f : X→ Y be a semisimple 1-morphism of orbifolds with
corners. Then there is a natural decomposition ∂X = ∂f+X q ∂

f
−X, where ∂f±X

are open and closed suborbifolds in ∂X, such that:

(a) Define f+ = f ◦ iX|∂f+X
: ∂f+X → Y. Then f+ is semisimple. If f is flat

then f+ is also flat.

(b) There exists a unique, semisimple 1-morphism f− : ∂f−X → ∂Y in Orbc

with f ◦ iX|∂f−X = iY ◦ f−. If f is simple then ∂f+X = ∅, ∂f−X = ∂X and

f− : ∂X→ ∂Y is simple. If f is flat then f− is flat.

(c) Let g : X → Y be another 1-morphism and η : f ⇒ g a 2-morphism in

Orbc. Then g is also semisimple, with ∂g−X = ∂f−X. If f is simple, or

flat, then g is too. Part (b) defines 1-morphisms f−, g− : ∂f−X → ∂Y.
There is a unique 2-morphism η− : f− ⇒ g− in Orbc such that
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idiY ∗ η−=η ∗ idiX|
∂
f
−X

: f ◦iX|∂f−X = iY◦f−=⇒g◦iX|∂f−X = iY◦g−.

1.12.3 Corners Ck(X) and the corner functors C, Ĉ

Section 8.7 extends §1.5.3 to orbifolds. Here is the orbifold analogue of the
category M̌anc in Definition 1.5.10.

Definition 1.12.8. We will define a 2-category Ǒrbc whose objects are dis-
joint unions

∐∞
m=0 Xm, where Xm is a (possibly empty) orbifold with corners of

dimension m. In more detail, objects of Ǒrbc are triples X = (X , ∂X , iX) with
iX : ∂X → X a strongly representable 1-morphism of Deligne–Mumford C∞-
stacks, such that there exists a decomposition X =

∐∞
m=0 Xm with each Xm ⊆ X

an open and closed C∞-substack, for which Xm :=
(
Xm, i−1

X (Xm), iX|i−1
X

(Xm)

)
is an orbifold with corners of dimension m.

A 1-morphism f : X → Y in Ǒrbc is a 1-morphism f : X → Y in C∞Sta
such that f |Xm∩f−1(Yn) :

(
Xm ∩ f−1(Yn)

)
→ Yn is a 1-morphism in Orbc for

all m,n > 0. For 1-morphisms f, g : X → Y, a 2-morphism η : f ⇒ g is a
2-morphism η : f ⇒ g in C∞Sta. Then Orbc is a full 2-subcategory of Ǒrbc.

The next theorem summarizes our results on corners functors in Orbc.

Theorem 1.12.9. (a) Let X be an orbifold with corners. Then for each
k = 0, 1, . . . ,dimX we can define an orbifold with corners Ck(X) of dimen-
sion dimX− k called the k-corners of X, and a 1-morphism Πk

X : Ck(X)→ X

in Orbc. It has topological space

Ck(X )top
∼=
{

[x, {x′1, . . . , x′k}] : x : ∗̄→X , x′i : ∗̄→∂X are 1-morphisms

with x′1, . . . , x
′
k distinct and x = iX ◦ x′1 = · · · = iX ◦ x′k

}
.

(1.73)

There is a natural action of the symmetric group Sk on ∂kX by 1-isomorphisms,
and an equivalence Ck(X) ' ∂kX/Sk. We have 1-isomorphisms C0(X) ∼= X and

C1(X) ∼= ∂X in Orbc. Write C(X) =
∐dimX
k=0 Ck(X) and ΠX =

∐dimX
k=0 Πk

X, so
that C(X) is an object and ΠX : C(X)→ X a 1-morphism in Ǒrbc.

(b) Let f : X → Y be a 1-morphism of orbifolds with corners. Then there is
a unique 1-morphism C(f) : C(X) → C(Y) in Ǒrbc such that ΠY ◦ C(f) =
f ◦ΠX : C(X)→ Y, and C(f) acts on points as in (1.73) by

C(f)top :
[
x, {x′1, . . . , x′k}

]
7−→

[
y, {y′1, . . . , y′l}

]
, where y = f ◦ x,

and {y′1, . . . , y′l} =
{
y′ : [x′i, y

′] ∈ Sf,top, some i = 1, . . . , k
}
,

(1.74)

where Sf is as in Definition 1.12.6.

For all k, l > 0, write Cf,lk (X) = Ck(X) ∩ C(f)−1(Cl(Y)), so that Cf,lk (X)

is open and closed in Ck(X) with Ck(X) =
∐dimY
l=0 Cf,lk (X), and write Clk(f) =

C(f)|Cf,lk (X), so that Clk(f) : Cf,lk (X)→ Cl(Y) is a 1-morphism in Orbc.
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(c) Let f, g : X → Y be 1-morphisms and η : f ⇒ g a 2-morphism in Orbc.
Then there exists a unique 2-morphism C(η) : C(f) ⇒ C(g) in Ǒrbc, where
C(f), C(g) are as in (b), such that

idΠY
∗ C(η) = η ∗ idΠX

: ΠY ◦ C(f) = f ◦ΠX =⇒ ΠY ◦ C(g) = g ◦ΠX.

(d) Define C : Orbc → Ǒrbc by C : X 7→ C(X) on objects, C : f 7→ C(f) on
1-morphisms, and C : η 7→ C(η) on 2-morphisms, where C(X), C(f), C(η) are
as in (a)–(c) above. Then C is a strict 2-functor, called a corner functor.

(e) Let f : X → Y be semisimple. Then C(f) maps Ck(X) →
∐k
l=0 Cl(Y) for

all k > 0. The natural 1-isomorphisms C1(X) ∼= ∂X, C0(Y) ∼= Y, C1(Y) ∼= ∂Y

identify Cf,01 (X) ∼= ∂f+X, C
f,1
1 (X) ∼= ∂f−X, C

0
1 (f) ∼= f+ and C1

1 (f) ∼= f−.
If f is simple then C(f) maps Ck(X)→ Ck(Y) for all k > 0.

(f) Analogues of (b)–(d) also hold for a second corner functor Ĉ : Orbc →
Ǒrbc, which acts on objects by Ĉ : X 7→ C(X) in (a), and for 1-morphisms
f : X→ Y in (b), Ĉ(f) : C(X)→ C(Y) acts on points by

Ĉ(f)top :
[
x, {x′1, . . . , x′k}

]
7−→

[
y, {y′1, . . . , y′l}

]
, where y = f ◦ x,

{y′1, . . . , y′l}=
{
y′ : [x′i, y

′]∈Sf,top, i=1, . . . , k
}
∪
{
y′ : [x, y′]∈T f,top

}
.

If f is flat then Ĉ(f) = C(f).

Example 1.12.10. Suppose X is a quotient [X/G] as in Example 1.12.2, where
X is a manifold with corners and G is a finite group. Then the action r : G→
Aut(X) lifts to C(r) : G→ Aut(C(X)), and there is an equivalence C([X/G]) '
[C(X)/G] in Ǒrbc, where to define [C(X)/G] we note that Example 1.12.2 also
works with X in M̌anc rather than Manc, yielding [X/G] ∈ Ǒrbc.

Section 1.5.2 defined (s-)submersions, (s- or sf-)immersions and (s- or sf-)
embeddings in Manc. Section 1.9.1 defined submersions, immersions and em-
beddings in Orb. We combine the two definitions.

Definition 1.12.11. Let f : X→ Y be a 1-morphism of orbifolds with corners.

(i) We call f a submersion if ΩC(f) : C(f)∗(T ∗C(Y))→ T ∗C(X ) is an injec-
tive morphism of vector bundles, i.e. has a left inverse in qcoh(C(X )), and
f is semisimple and flat. We call f an s-submersion if f is also simple.

(ii) We call f an immersion if it is representable and Ωf : f∗(T ∗Y)→ T ∗X is a
surjective morphism of vector bundles, i.e. has a right inverse in qcoh(X ).
We call f an s-immersion if f is also simple, and an sf-immersion if f is
also simple and flat.

(iii) We call f an embedding, s-embedding, or sf-embedding, if it is an im-
mersion, s-immersion, or sf-immersion, respectively, and f∗ : IsoX ([x]) →
IsoY

(
ftop([x])

)
is an isomorphism for all [x] ∈ Xtop, and ftop : Xtop → Ytop

is a homeomorphism with its image (so in particular it is injective).

Then submersions, . . . , sf-embeddings in Orbc are étale locally modelled on
submersions, . . . , sf-embeddings in Manc.
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1.12.4 Transversality and fibre products

Section 1.5.4 discussed transversality and fibre products for manifolds with cor-
ners. Section 8.8 generalizes this to orbifolds with corners.

Definition 1.12.12. Let X,Y,Z be orbifolds with corners and g : X → Z,
h : Y → Z be 1-morphisms. Then as in §1.13 we have 1-morphisms C(g) :
C(X) → C(Z) and C(h) : C(Y) → C(Z) in Ǒrbc, and hence 1-morphisms
C(g) : C(X ) → C(Z) and C(h) : C(Y) → C(Z) in C∞Sta. We call g, h
transverse if the following holds. Suppose x : ∗̄ → C(X ) and y : ∗̄ → C(Y) are
1-morphisms in C∞Sta, and η : C(g) ◦ x⇒ C(h) ◦ y a 2-morphism. Then the
following morphism in qcoh(∗̄) should be injective:(
x∗(ΩC(g))◦Ix,C(g)(T

∗C(Z))
)
⊕
(
y∗(ΩC(h))◦Iy,C(h)(T

∗C(Z))◦η∗(T ∗C(Z))
)

:

(C(g) ◦ x)∗(T ∗C(Z)) −→ x∗(T ∗C(X ))⊕ y∗(T ∗C(Y)).

Now identify Ck(X )top ⊆ C(X )top with the right hand of (1.73), and sim-
ilarly for C(Y)top, C(Z)top. Then C(g)top, C(h)top act as in (1.74). We call
g, h strongly transverse if they are transverse, and whenever there are points in
Cj(X )top, Ck(Y)top, Cl(Z)top with

C(g)top

(
[x, {x′1, . . . , x′j}]

)
=C(h)top

(
[y, {y′1, . . . , y′k}]

)
=[z, {z′1, . . . , z′l}],

we have either j + k > l or j = k = l = 0.
One can show that g, h are (strongly) transverse if and only if they are étale

locally equivalent to (strongly) transverse smooth maps in Manc.

Here is the analogue of Theorem 1.5.13:

Theorem 1.12.13. Suppose g : X → Z and h : Y → Z are transverse 1-
morphisms in Orbc. Then a fibre product W = X ×g,Z,h Y exists in the 2-
category Orbc.

Proposition 1.5.14 and Theorem 1.5.15 also extend to Orbc, with equiva-
lences natural up to 2-isomorphism rather than canonical diffeomorphisms.

1.12.5 Orbifold strata of orbifolds with corners

Sections 1.8.7 and 1.9.2 discussed orbifold strata of Deligne–Mumford C∞-stacks
and orbifolds, respectively. Section 8.9 extends this to orbifolds with corners.
This is also related to the material on fixed points of finite group actions on
manifolds with corners in §1.5.6.

Theorem 1.12.14. Let X be an orbifold with corners, and Γ a finite group.
Then we can define objects XΓ, X̃Γ, X̂Γ in Ǒrbc, and open subobjects XΓ

◦ ⊆ XΓ,

X̃Γ
◦ ⊆ X̃Γ, X̂Γ

◦ ⊆ X̂Γ, all natural up to 1-isomorphism in Ǒrbc, and 1-morphisms
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OΓ(X), Π̃Γ(X), . . . fitting into a strictly commutative diagram in Ǒrbc :

XΓ
◦

Π̃Γ
◦ (X) //

OΓ
◦ (X) ))TTTTTTTTTTT

⊂

��

Aut(Γ)
-- X̃Γ

◦
Π̂Γ
◦ (X) //

ÕΓ
◦ (X)uujjjjjjjjjjj

⊂

��

X̂Γ
◦

⊂

��
X

XΓ

Π̃Γ(X)

//
OΓ(X)

44jjjjjjjjjjjAut(Γ) 11 X̃Γ
Π̂Γ(X)

//
ÕΓ(X)

jjTTTTTTTTTTT
X̂Γ.

(1.75)

The underlying C∞-stacks of XΓ, . . . , X̂Γ
◦ are the orbifold strata XΓ, . . . , X̂Γ

◦
from §1.8.7 of the C∞-stack X in X, and the 1-morphisms in (1.75), as C∞-
stack 1-morphisms, are those given in (1.41).

Use the notation of Definition 1.9.7. Then there are natural decompositions

XΓ =
∐
λ∈ΛΓ

+
XΓ,λ, X̃Γ =

∐
µ∈ΛΓ

+/Aut(Γ) X̃
Γ,µ, X̂Γ =

∐
µ∈ΛΓ

+/Aut(Γ) X̂
Γ,µ,

XΓ
◦ =

∐
λ∈ΛΓ

+
X

Γ,λ
◦ , X̃Γ

◦ =
∐
µ∈ΛΓ

+/Aut(Γ) X̃
Γ,µ
◦ , X̂Γ

◦ =
∐
µ∈ΛΓ

+/Aut(Γ) X̂
Γ,µ
◦ ,

where XΓ,λ, . . . , X̂Γ,µ
◦ are orbifolds with corners, open and closed in XΓ, . . . , X̂Γ

◦ ,

and of dimensions dimX−dimλ,dimX−dimµ. All of XΓ, X̃Γ, X̂Γ,XΓ
◦ , X̃

Γ
◦ , X̂

Γ
◦ ,

XΓ,λ, X̃Γ,µ, X̂Γ,µ,XΓ,λ
◦ , X̃Γ,µ

◦ , X̂Γ,µ
◦ will be called orbifold strata of X.

The definitions of XΓ, X̃Γ, . . . , X̂Γ
◦ also make sense if X lies in Ǒrbc rather

than Orbc. We will not use notation XΓ,λ, . . . , X̂Γ,µ
◦ for X ∈ Ǒrbc \Orbc.

As for Deligne–Mumford C∞-stacks in §1.8.7, orbifold strata XΓ are strongly
functorial for representable 1-morphisms in Orbc and their 2-morphisms. That
is, if f : X → Y is a representable 1-morphism in Orbc, there is a unique
representable 1-morphism fΓ : XΓ → YΓ in Ǒrbc with OΓ(Y) ◦ fΓ = f ◦OΓ(X),
which is just the 1-morphism fΓ from §1.8.7 for the C∞-stack 1-morphism
f : X → Y. Note however that fΓ need not map XΓ,λ → YΓ,λ for λ ∈ ΛΓ

+.
If f, g : X → Y are representable and η : f ⇒ g is a 2-morphism in Orbc,

there is a unique 2-morphism ηΓ : fΓ ⇒ gΓ in Ǒrbc with idOΓ(Y) ∗ ηΓ =

η∗ idOΓ(X), which is just the C∞-stack 2-morphism ηΓ from §1.8.7. These fΓ, ηΓ

are compatible with compositions of 1- and 2-morphisms, and identities, in the
obvious way. Orbifold strata X̃Γ have the same strong functorial behaviour, and
orbifold strata X̂Γ a weaker functorial behaviour.

We also investigate the relationship between orbifold strata and corners.

Theorem 1.12.15. Let X be an orbifold with corners, and Γ a finite group. The
corners C(X) lie in Ǒrbc as in §1.12.3, so we have orbifold strata XΓ, C(X)Γ

and 1-morphisms OΓ(X) : XΓ → X, OΓ(C(X)) : C(X)Γ → C(X). Applying
the corner functor C from §1.12.3 gives a 1-morphism C(OΓ(X)) : C(XΓ) →
C(X). Then there exists a unique equivalence KΓ(X) : C(XΓ) → C(X)Γ such
that OΓ(C(X)) ◦ KΓ(X) = C(OΓ(X)) : C(XΓ) → C(X). It restricts to an
equivalence KΓ

◦ (X) := KΓ(X)|C(XΓ
◦ ) : C(XΓ

◦ )→ C(X)Γ
◦ .

Similarly, there is a unique equivalence K̃Γ(X) : C(X̃Γ) → ˜C(X)Γ with
ÕΓ(C(X)) ◦ K̃Γ(X) = C(ÕΓ(X)) and Π̃Γ(C(X)) ◦KΓ(X) = K̃Γ(X) ◦C(Π̃Γ(X)).
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There is an equivalence K̂Γ(X) : C(X̂Γ)→ ̂C(X)Γ, unique up to 2-isomorphism,
with a 2-morphism Π̂Γ(C(X))◦K̃Γ(X)⇒ K̂Γ(X)◦C(Π̂Γ(X)). They both restrict

to equivalences K̃Γ
◦ (X) : C(X̃Γ

◦ )→ ˜C(X)Γ
◦ and K̂Γ

◦ (X) : C(X̂Γ
◦ )→ ̂C(X)Γ

◦ .

Here is an example:

Example 1.12.16. Let Z2 = {1, σ} with σ2 = 1 act on X = [0,∞)2 by
σ : (x1, x2) 7→ (x2, x1). Then X =

[
[0,∞)2/Z2

]
is an orbifold with corners.

We have ∂X ∼= [0,∞) and ∂2X ∼= ∗, so that C2(X) ' [∗/S2] = [∗/Z2]. Hence
C(X) = C0(X) q C1(X) q C2(X) with C0(X) '

[
[0,∞)2/Z2

]
, C1(X) ' [0,∞)

and C2(X) ' [∗/Z2]. The orbifold strata XΓ, . . . , X̂Γ
◦ are given by

XZ2 = XZ2
◦ ' X̃Z2 = X̃Z2

◦ ' [0,∞)× [∗/Z2], X̂Z2 = X̂Z2
◦ ' [0,∞).

Therefore

C0(XZ2) ' [0,∞)× [∗/Z2], C1(XZ2) ' [∗/Z2], C2(XZ2) = ∅,
C0(X)Z2 ' [0,∞)× [∗/Z2], C1(X)Z2 = ∅, C2(X)Z2 ' [∗/Z2].

We see from this that KZ2(X) : C(XZ2) → C(X)Z2 identifies C1(XZ2) with
C2(X)Z2 , so KΓ(X) need not map Ck(XΓ) to Ck(X)Γ for k > 0. The same
applies to K̃Γ(X), K̂Γ(X).

The construction of KΓ(X) in Theorem 1.12.15 implies that it maps Ck(XΓ)
into

∐
l>k Cl(X)Γ for k > 0. This implies that C1(X)Γ ' (∂X)Γ is equiv-

alent to an open and closed subobject of C1(XΓ) ' ∂(XΓ). Hence we can
choose a 1-morphism JΓ(X) : (∂X)Γ → ∂(XΓ) identified with a quasi-inverse for
KΓ(X)|··· : KΓ(X)−1(C1(X)Γ) → C1(X)Γ by the equivalences C1(X)Γ ' (∂X)Γ

and C1(XΓ) ' ∂(XΓ), and JΓ(X) is an equivalence between (∂X)Γ and an open
and closed subobject of ∂(XΓ). We then deduce:

Corollary 1.12.17. Let X be an orbifold with corners, and Γ a finite group.

Then there exist 1-morphisms JΓ(X) : (∂X)Γ → ∂(XΓ), J̃Γ(X) : ˜(∂X)Γ →
∂(X̃Γ), ĴΓ(X) : ̂(∂X)Γ → ∂(X̂Γ) in Ǒrbc, natural up to 2-isomorphism, such
that JΓ(X) is an equivalence from (∂X)Γ to an open and closed subobject of
∂(XΓ), and similarly for J̃Γ(X), ĴΓ(X).

For λ ∈ ΛΓ
+, µ ∈ ΛΓ

+/Aut(Λ) these restrict to 1-morphisms JΓ,λ(X) :

(∂X)Γ,λ → ∂(XΓ,λ), J̃Γ,µ(X) : ˜(∂X)Γ,µ → ∂(X̃Γ,µ), ĴΓ,µ(X) : ̂(∂X)Γ,µ → ∂(X̂Γ,µ)
in Orbc, which are equivalences with open and closed suborbifolds. Hence, if

XΓ,λ = ∅ then (∂X)Γ,λ = ∅, and similarly for X̃Γ,µ, ˜(∂X)Γ,µ, X̂Γ,µ, ̂(∂X)Γ,µ.

As in Remark 1.12.3(c), an orbifold with corners X is called straight if (iX)∗ :
Iso∂X ([x′])→ IsoX ([x]) is an isomorphism for all [x′] ∈ ∂X top with iX,top([x′]) =
[x]. If X is straight then KΓ(X) in Theorem 1.12.15 is an equivalence Ck(XΓ)→
Ck(X)Γ for all k > 0, and so JΓ(X) in Corollary 1.12.17 is an equivalence
(∂X)Γ → ∂(XΓ). The same applies for J̃Γ(X), ĴΓ(X), K̃Γ(X), K̂Γ(X).

Proposition 1.9.9 on orientations of orbifold strata XΓ,λ, . . . , X̂Γ,µ
◦ of oriented

orbifolds X also holds without change for orbifolds with corners X.
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1.13 D-stacks with corners

Chapter 11 discusses the 2-category dStac of d-stacks with corners. There are
few new issues here: almost all the material just combines ideas we have seen
already on d-spaces with corners from §1.6, and on d-stacks from §1.10, and on
orbifolds with corners from §1.12. So we will be brief.

1.13.1 Outline of the definition of the 2-category dStac

The definition of the 2-category dStac in §11.1 is long and complicated. So as
for dSpac in §1.6.1, we will just sketch the main ideas.

A d-stack with corners is a quadruple X = (X ,∂X , iX, ωX), where X ,∂X
are d-stacks and iX : ∂X → X is a 1-morphism of d-stacks with iX : ∂X → X
a proper, strongly representable 1-morphism of Deligne–Mumford C∞-stacks,
as in §1.8.3. We should have an exact sequence in qcoh(∂X ):

0 // NX

νX // i∗X(FX )
i2X // F∂X // 0, (1.76)

where NX is a line bundle on ∂X , the conormal bundle of ∂X in X , and ωX is
an orientation onNX. TheseX ,∂X , iX, ωX must satisfy some complicated con-
ditions in §11.1, that we will not give. They require ∂X to be locally equivalent
to a fibre product X ×[0,∞) ∗ in dSta.

If X = (X ,∂X , iX, ωX) and Y = (Y ,∂Y , iY, ωY) are d-stacks with corners,
a 1-morphism f : X → Y in dStac is a 1-morphism f : X → Y in dSta
satisfying extra conditions over ∂X ,∂Y . If f , g : X → Y be 1-morphisms in
dStac, so f , g : X → Y are 1-morphisms in dSta, a 2-morphism η : f ⇒ g
in dStac is a 2-morphism η : f ⇒ g in dSta satisfying extra conditions over
∂X ,∂Y . In both cases, 1- and 2-morphisms in dStac are étale locally modelled
on 1- and 2-morphisms in dSpac. Identity 1- and 2-morphisms in dStac, and
the compositions of 1- and 2-morphisms in dStac, are all given by identities
and compositions in dSta.

A d-stack with corners X = (X ,∂X , iX, ωX) is called a d-stack with bound-
ary if iX : ∂X → X is injective as a representable 1-morphism of C∞-stacks,
and a d-stack without boundary if ∂X = ∅. We write dStab for the full 2-
subcategory of d-stacks with boundary, and dS̄ta for the full 2-subcategory of
d-stacks without boundary, in dStac. There is an isomorphism of 2-categories
FdStac

dSta : dSta → dS̄ta mapping X 7→ X = (X ,∅,∅,∅) on objects, f 7→ f on
1-morphisms and η 7→ η on 2-morphisms. So we can consider d-stacks to be
examples of d-stacks with corners.

Define a strict 2-functor FdStac

dSpac : dSpac → dStac as follows. If X = (X,

∂X, iX, ωX) is an object in dSpac, set FdStac

dSpac(X) = X = (X ,∂X , iX, ωX),

where X ,∂X , iX = FdSta
dSpa(X,∂X, iX). Then comparing equations (1.26) and

(1.76), we find there is a natural isomorphism of line bundles NX
∼= I∂X(NX),

where I∂X : qcoh(∂X) → qcoh( ¯∂X) is the equivalence of categories from Ex-
ample 1.8.21. We define ωX to be the orientation on NX identified with the
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orientation I∂X(ωX) on I∂X(NX) by this isomorphism. On 1- and 2-morphisms

f , η in dSpac, we define FdStac

dSpac(f) = FdSta
dSpa(f) and FdStac

dSpac(η) = FdSta
dSpa(η).

Write dŜpac for the full 2-subcategory of objects X in dStac equivalent to
FdStac

dSpac(X) for some d-space with corners X. When we say that a d-stack with

corners X is a d-space, we mean that X ∈ dŜpac.
Define a strict 2-functor FdStac

Orbc : Orbc → dStac as follows. If X =
(X , ∂X , iX) is an orbifold with corners, as in §1.12.1, define FdStac

Orbc (X) = X =
(X ,∂X , iX, ωX), where X ,∂X , iX = FdSta

C∞Sta(X , ∂X , iX). Then NX in (1.76)
is isomorphic to the conormal line bundle of ∂X in X , and we define ωX to be the
orientation on NX induced by ‘outward-pointing’ normal vectors to ∂X in X .
Then X = (X ,∂X , iX, ωX) is a d-orbifold with corners. On 1- and 2-morphisms
f, η in Orbc, we define FdStac

Orbc (f) = FdSta
C∞Sta(f) and FdStac

Orbc (η) = FdSta
C∞Sta(η).

Write Ōrb, Ōrbb, Ōrbc for the full 2-subcategories of objects X in dStac

equivalent to FdStac

Orbc (X) for some orbifold X without boundary, or with bound-
ary, or with corners, respectively. Then Ōrb ⊂ dS̄ta, Ōrbb ⊂ dStab and
Ōrbc ⊂ dStac. When we say that a d-stack with corners X is an orbifold, we
mean that X ∈ Ōrbc.

Remark 1.13.1. As discussed for orbifolds with corners in Remark 1.12.3(b),
in a d-stack with corners X = (X ,∂X , iX, ωX) we require iX : ∂X → X to be
strongly representable, in the sense of §1.8.3, so that we can make boundaries
and corners in dStac strongly functorial, as in Remark 1.6.5 for dSpac.

For each d-stack with corners X = (X ,∂X , iX, ωX), in §11.3 we define a
d-stack with corners ∂X = (∂X ,∂2X , i∂X, ω∂X) called the boundary of X, and
show that iX : ∂X→ X is a 1-morphism in dStac. As for d-spaces with corners
in (1.27), the d-stack ∂2X in ∂X satisfies

∂2X '
(
∂X ×iX,X ,iX ∂X

)
\∆∂X (∂X ),

where ∆∂X : ∂X → ∂X ×X ∂X is the diagonal 1-morphism. The 1-morphism
i∂X : ∂2X → ∂X is projection to the first factor in the fibre product. There
is a natural isomorphism N ∂X

∼= i∗X(NX), and the orientation ω∂X on N ∂X

corresponds to the orientation i∗X(ωX) on i∗X(NX).

1.13.2 D-stacks with corners as quotients of d-spaces with corners

Section 1.10.2 discussed quotient d-stacks [X/G], for X a d-space and r : G→
Aut(X) an action of G on X by 1-isomorphisms. Section 11.2 extends this to
d-spaces with corners and d-stacks with corners, and proves:

Theorem 1.13.2. Theorems 1.10.3 and 1.10.4 hold unchanged in dStac.

Here if X = (X,∂X, iX, ωX) is a d-space with corners and r : G→ Aut(X)
an action of G on X then each r(γ) : X → X for γ ∈ G is simple, so Theorem
1.6.3(b) gives a lift r−(γ) : ∂X → ∂X, defining an action r− : G → Aut(∂X)
of G on ∂X. Then r : G → Aut(X) and r− : G → Aut(∂X) are ac-
tions of G on the d-spaces X,∂X, and iX : ∂X → X is G-equivariant. So
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Theorem 1.10.3(a),(b) give quotient d-stacks [X/G], [∂X/G] and a quotient
1-morphism [iX, idG] : [∂X/G] → [X/G]. The quotient d-stack with cor-
ners [X/G] given by the analogue of Theorem 1.10.3 is defined to be [X/G] =(
[X/G], [∂X/G], [iX, idG], ω[X/G]

)
, for a natural orientation ω[X/G] on N [X/G]

constructed from ωX.
In §11.4 we define when a 1-morphism of d-stacks with corners f : X→ Y is

étale. Essentially, f is étale if it is an equivalence locally in the étale topology.
It implies that the C∞-stack 1-morphism f : X → Y in f is étale, and so
representable. As for d-stacks in §1.10.2, we can characterize étale 1-morphisms
in dStac using the corners analogue of Theorem 1.10.4(b) and the definition of
étale 1-morphisms in dSpac as (Zariski) local equivalences.

1.13.3 Simple, semisimple and flat 1-morphisms

Section 11.3 generalizes §1.6.2 to d-stacks with corners. Here is the analogue of
Definition 1.12.6.

Definition 1.13.3. Let X = (X ,∂X , iX, ωX) and Y = (Y ,∂Y , iY, ωY) be
d-stacks with corners, and f : X → Y a 1-morphism in dStac. Consider the
C∞-stack fibre products ∂X×f◦iX,Y,iY∂Y and X×f,Y,iY∂Y. Since iY is strongly
representable, we may define these using the construction of Proposition 1.8.10.

As in (1.71), we may write (∂X ×Y ∂Y)top explicitly as

(∂X ×Y ∂Y)top
∼=
{

[x′, y′] : x′ : ∗̄ → ∂X and y′ : ∗̄ → ∂Y are

1-morphisms with f ◦iX◦x′= iY◦y′ : ∗̄→Y
}
,

(1.77)

where [x′, y′] in (1.77) denotes the ∼-equivalence class of pairs (x′, y′), with
(x′, y′) ∼ (x̃′, ỹ′) if there exist 2-morphisms η : x′ ⇒ x̃′ and ζ : y′ ⇒ ỹ′

with idf◦iX ∗ η = idiY ∗ ζ. There is a natural open and closed C∞-substack
Sf ⊆ ∂X ×Y ∂Y such that [x′, y′] in (1.77) lies in Sf ,top if and only if we can
complete the following commutative diagram in qcoh(∗̄) with morphisms ‘99K’:

0 // (y′)∗(NY)
(y′)∗(νY) //

∼=
��

(y′)∗◦i∗Y(FY)
(y′)∗(i2Y) //

Ix′,iX
(FX )◦(iX◦x′)∗(f2)◦

IiX◦x′,f
(FY)◦Iy′,iY (FY)−1

��

(y′)∗(F∂Y)

��

// 0

0 // (x′)∗(NX)
(x′)∗(νX)

// (x′)∗◦i∗X(FX )
(x′)∗(i2X)

// (x′)∗(F∂X ) // 0.

Similarly, as in (1.72) we may write (X ×Y ∂Y)top explicitly as

(X ×Y ∂Y)top
∼=
{

[x, y′] : x : ∗̄ → X and y′ : ∗̄ → ∂Y are

1-morphisms with f ◦x= iY◦y′ : ∗̄→Y
}
,

(1.78)

where [x, y′] in (1.78) denotes the ≈-equivalence class of (x, y′), with (x, y′) ≈
(x̃, ỹ′) if there exist η : x⇒ x̃ and ζ : y′ ⇒ ỹ′ with idf ∗ η = idiY ∗ ζ. There is a
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natural open and closed C∞-substack T f ⊆ X ×Y ∂Y with [x, y′] in (1.78) lies
in T f ,top if and only if we can complete the following commutative diagram:

0 // (y′)∗(NY)
(y′)∗(νY)

// (y′)∗◦i∗Y(FY)
(y′)∗(i2Y)

//

x∗(f2)◦Ix,f (FY)◦Iy′,iY (FY)−1

��

(y′)∗(F∂Y)

uu

// 0

x∗(FX ).

Define sf = π∂X |Sf : Sf → ∂X , uf = π∂Y |Sf : Sf → ∂Y, tf = πX |Tf : T f →
X , and vf = π∂Y |Tf : T f → ∂Y. Then sf , tf are proper, étale 1-morphisms.
We call f simple if sf : Sf → ∂X is an equivalence, and we call f semisimple
if sf : Sf → ∂X is injective, as a 1-morphism of Deligne–Mumford C∞-stacks,
and we call f flat if T f = ∅. Simple implies semisimple.

Theorem 1.13.4. Let f : X→ Y be a semisimple 1-morphism of d-stacks with
corners. Then there exists a natural decomposition ∂X = ∂f+Xq∂

f
−X with ∂f±X

open and closed in ∂X, such that:

(a) Define f+ = f ◦ iX|∂f+X
: ∂f+X→ Y. Then f+ is semisimple. If f is flat

then f+ is also flat.

(b) There exists a unique, semisimple 1-morphism f− : ∂f−X → ∂Y with

f ◦ iX|∂f−X = iY ◦ f−. If f is simple then ∂f+X = ∅, ∂f−X = ∂X, and

f− : ∂X→ ∂Y is also simple. If f is flat then f− is flat, and the following
diagram is 2-Cartesian in dStac :

∂f−X f−

//
iX|

∂
f
−X �� � �� �

HP
idiY◦f−

∂Y
iY��

X
f // Y.

(c) Let g : X → Y be another 1-morphism and η : f ⇒ g a 2-morphism in

dStac. Then g is also semisimple, with ∂g−X = ∂f−X. If f is simple, or
flat, then g is simple, or flat, respectively. Part (b) defines 1-morphisms

f−, g− : ∂f−X → ∂Y. There is a unique 2-morphism η− : f− ⇒ g− in
dSpac such that idiY ∗ η−=η ∗ idiX|

∂
f
−X

: iY◦f− ⇒ iY◦g−.

1.13.4 Equivalences of d-stacks with corners, and gluing

Sections 1.3.2, 1.6.4 and 1.10.3 discussed equivalences and gluing for d-spaces,
d-spaces with corners, and d-stacks. Section 11.4 generalizes these to dStac.

Proposition 1.13.5. (a) Suppose f : X→ Y is an equivalence in dStac. Then
f is simple and flat, and f : X → Y is an equivalence in dSta, where X =
(X ,∂X , iX, ωX) and Y = (Y ,∂Y , iY, ωY). Also f− : ∂X → ∂Y in Theorem
1.13.4(b) is an equivalence in dStac.

(b) Let f : X→ Y be a simple, flat 1-morphism in dStac with f : X → Y an
equivalence in dSta. Then f is an equivalence in dStac.
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Here is the analogue of Definition 1.10.5:

Definition 1.13.6. Let X = (X ,∂X , iX, ωX) be a d-stack with corners. Sup-
pose V ⊆ X is an open d-substack in dSta. Define ∂V = i−1

X (V), as an open
d-substack of ∂X , and iV : ∂V → V by iV = iX|∂V . Then ∂V ⊆ ∂X is open,
and the conormal bundle of ∂V in V is NV = NX|∂V in qcoh(∂V). Define an
orientation ωV on NV by ωV = ωX|∂V . Write V = (V ,∂V , iV, ωV). Then V is
a d-stack with corners. We call V an open d-substack of X. An open cover of
X is a family {Va : a ∈ A} of open d-substacks Va of X with X =

⋃
a∈A Va.

Theorem 1.13.7. Proposition 1.10.6 and Theorems 1.10.7 and 1.10.8 hold
without change in the 2-category dStac of d-stacks with corners.

1.13.5 Corners Ck(X), and the corner functors C, Ĉ

Section 11.5 generalizes the material of §1.5.3, §1.6.5, and §1.12.3 to d-stacks
with corners. Here are the main results.

Theorem 1.13.8. (a) Let X be a d-stack with corners. Then for each k > 0
we can define a d-stack with corners Ck(X) called the k-corners of X, and
a 1-morphism Πk

X : Ck(X) → X, such that Ck(X) is equivalent to a quotient
d-stack [∂kX/Sk] for a natural action of Sk on ∂kX by 1-isomorphisms. The
construction of Ck(X) is unique up to canonical 1-isomorphism.

We can describe the topological space Ck(X )top as follows. Consider pairs
(x, {x′1, . . . , x′k}), where x : ∗̄ → X and x′i : ∗̄ → ∂X for i = 1, . . . , k are
1-morphisms in C∞Sta with x′1, . . . , x

′
k distinct and x = iX ◦ x′1 = · · · =

iX ◦ x′k. Define an equivalence relation ≈ on such pairs by (x, {x′1, . . . , x′k}) ≈
(x̃, {x̃′1, . . . , x̃′k}) if there exist σ ∈ Sk and 2-morphisms η : x⇒ x̃ and η′i : x′i ⇒
x̃′σ(i) for i = 1, . . . , k with η = idiX ∗η′1 = · · · = idiX ∗η′k. Write [x, {x′1, . . . , x′k}]
for the ≈-equivalence class of (x, {x′1, . . . , x′k}). Then

Ck(X )top
∼=
{

[x, {x′1, . . . , x′k}] : x : ∗̄→X , x′i : ∗̄→∂X 1-morphisms

with x′1, . . . , x
′
k distinct and x= iX◦x′1 = · · ·= iX◦x′k

}
.

(1.79)

We have 1-isomorphisms C0(X) ∼= X and C1(X) ∼= ∂X. We write C(X) =∐
k>0 Ck(X), so that C(X) is a d-stack with corners, called the corners of X.

(b) Let f : X → Y be a 1-morphism of d-stacks with corners. Then there
are unique 1-morphisms C(f) : C(X) → C(Y) and Ĉ(f) : C(X) → C(Y) in
dStac such that ΠY ◦ C(f) = f ◦ΠX = ΠY ◦ Ĉ(f) : C(X) → Y, with maps
C(f)top : C(X )top → C(Y)top, Ĉ(f)top : C(X )top → C(Y)top characterized as
follows. Identify Ck(X )top ⊆ C(X )top with the right hand side of (1.79), and
similarly for Cl(Y)top, and identify Sf ,top, T f ,top with subsets of (1.77)–(1.78)
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as in §1.13.3. Then C(f)top and Ĉ(f)top act by

C(f)top :
[
x, {x′1, . . . , x′k}

]
7−→

[
y, {y′1, . . . , y′l}

]
, where y = f ◦ x,

{y′1, . . . , y′l}=
{
y′ : [x′i, y

′] ∈ Sf ,top, some i = 1, . . . , k
}
, and

(1.80)

Ĉ(f)top :
[
x, {x′1, . . . , x′k}

]
7−→

[
y, {y′1, . . . , y′l}

]
, where y = f ◦ x,

{y′1, . . . , y′l}=
{
y′ : [x′i, y

′]∈Sf ,top, i=1, . . . , k
}
∪
{
y′ : [x, y′]∈T f ,top

}
.

(1.81)

For all k, l > 0, write Cf ,lk (X) = Ck(X) ∩ C(f)−1(Cl(Y)), so that Cf ,lk (X)

is an open and closed d-substack of Ck(X) with Ck(X) =
∐∞
l=0 C

f ,l
k (X), and

write Clk(f) = C(f)|Cf,lk (X) : Cf ,lk (X) → Cl(Y). If f is semisimple then C(f)

maps Ck(X) →
∐k
l=0 Cl(Y) for all k > 0. If f is simple then C(f) maps

Ck(X)→ Ck(Y) for all k > 0. If f is flat then C(f) = Ĉ(f).

(c) Let f , g : X → Y be 1-morphisms and η : f ⇒ g a 2-morphism in dStac.
Then there exist unique 2-morphisms C(η) : C(f) ⇒ C(g), Ĉ(η) : Ĉ(f) ⇒
Ĉ(g) in dStac, where C(f), C(g), Ĉ(f), Ĉ(g) are as in (b), such that

idΠY
∗ C(η)=η ∗ idΠX

: ΠY◦C(f)=f ◦ΠX =⇒ ΠY◦C(g)=g◦ΠX,

idΠY
∗ Ĉ(η)=η ∗ idΠX

: ΠY◦Ĉ(f)=f ◦ΠX =⇒ ΠY◦Ĉ(g)=g◦ΠX.

If f , g are flat then C(η) = Ĉ(η).

(d) Define C : dStac → dStac by C : X 7→ C(X), C : f 7→ C(f), C : η 7→
C(η) on objects, 1- and 2-morphisms, where C(X), C(f), C(η) are as in (a)–(c)
above. Similarly, define Ĉ : dStac → dStac by Ĉ : X 7→ C(X), Ĉ : f 7→ Ĉ(f),
Ĉ : η 7→ Ĉ(η). Then C, Ĉ are strict 2-functors, called corner functors.

1.13.6 Fibre products in dStac

Section 11.6 generalizes §1.6.6 and §1.10.4 to d-stacks with corners. Here are
the analogues of Definition 1.6.12, Lemma 1.6.13 and Theorem 1.6.14:

Definition 1.13.9. Let g : X → Z and h : Y → Z be 1-morphisms in dStac.
As in §1.13.1 we have line bundles NX,NZ over the C∞-stacks ∂X , ∂Z, and
§1.13.3 defines a C∞-substack Sg ⊆ ∂X ×Z ∂Z. As in §11.1, there is a natural
isomorphism λg : u∗g(NZ)→ s∗f (NX) in qcoh(Sg). The same holds for h.

We call g,h b-transverse if the following holds. Suppose x : ∗̄ → X and
y : ∗̄ → Y are 1-morphisms in C∞Sta, and η : g ◦ x ⇒ h ◦ y is a 2-morphism.
Since iX : ∂X → X is finite and strongly representable, there are finitely many
1-morphisms x′ : ∗̄ → ∂X with x = iX ◦ x′. Write these x′ as x′1, . . . , x

′
j .

Similarly, write y′1, . . . , y
′
k for the 1-morphisms y′ : ∗̄ → ∂Y with y = iY ◦ y′.

Write z = g◦x and z̃ = h◦y, so that z, z̃ : ∗̄ → Z and η : z ⇒ z̃. Write z′1, . . . , z
′
l

for the 1-morphisms z′ : ∗̄ → ∂Z with z = iZ◦z′. Then by Proposition 1.8.9, for
each c = 1, . . . , l there are unique z̃′c : ∗̄ → ∂Z and η′c : z′c ⇒ z̃′c with iZ ◦ z̃′c = z̃
and idiZ ∗ η′c = η.
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Definition 1.13.3 defined Sg ⊆ ∂X ×Z ∂Z in terms of points [x′, z′] in (1.77);
write (x′, z′) : ∗̄ → Sg for the corresponding 1-morphisms. Then we require that
for all such x, y, η, the following morphism in qcoh(∗̄) is injective:⊕

a=1,...,j, c=1,...,l: [x′a,z
′
c]∈Sg,top

I(x′a,z′c),sg (NX)−1 ◦ (x′a, z
′
c)
∗(λg) ◦ I(x′a,z′c),ug (NZ)⊕

⊕
b=1,...,k, c=1,...,l: [y′b,z̃

′
c]∈Sh,top

I(y′b,z̃′c),sh(NY)−1◦(y′b, z̃′c)∗(λh)◦I(y′b,z̃′c),uh(NZ)◦(η′c)∗(NZ) :

⊕l

c=1
(z′c)

∗(NZ) −→
⊕j

a=1
(x′a)∗(NX)⊕

⊕k

b=1
(y′b)

∗(NY).

We call g,h c-transverse if the following holds. Identify Ck(X )top ⊆ C(X )top

with the right hand of (1.79), and similarly for C(Y)top, C(Z)top. Then C(g)top,

C(h)top, Ĉ(g)top, Ĉ(h)top act as in (1.80)–(1.81). We require that:

(a) whenever there are points in Cj(X )top, Ck(Y)top, Cl(Z)top with

C(g)top

(
[x, {x′1, . . . , x′j}]

)
=C(h)top

(
[y, {y′1, . . . , y′k}]

)
=[z, {z′1, . . . , z′l}],

we have either j + k > l or j = k = l = 0; and

(b) whenever there are points in Cj(X )top, Ck(Y)top, Cl(Z)top with

Ĉ(g)top

(
[x, {x′1, . . . , x′j}]

)
= Ĉ(h)top

(
[y, {y′1, . . . , y′k}]

)
=[z, {z′1, . . . , z′l}],

we have j + k > l.

Then g,h c-transverse implies g,h b-transverse.

Lemma 1.13.10. Let g : X → Z and h : Y → Z be 1-morphisms in dStac.
The following are sufficient conditions for g,h to be c-transverse, and hence
b-transverse:

(i) g or h is semisimple and flat; or

(ii) Z is a d-stack without boundary.

Theorem 1.13.11. (a) All b-transverse fibre products exist in dStac.

(b) The 2-functor FdStac

dSpac : dSpac→dStac of §1.13.1 takes b- and c-transverse
fibre products in dSpac to b- and c-transverse fibre products in dStac.

(c) The 2-functor FdStac

Orbc of §1.13.1 takes transverse fibre products in Orbc to
b-transverse fibre products in dStac. That is, if

W
f

//
e�� � �� �

HP
η

Y
h ��

X
g // Z

is a 2-Cartesian square in Orbc with g, h transverse, and W,X,Y,Z, e,f , g,
h,η = FdStac

Orbc (W,X,Y,Z, e, f, g, h, η), then

W
f

//
e�� � �� �

HP
η

Y
h ��

X
g // Z
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is 2-Cartesian in dStac, with g,h b-transverse. If also g, h are strongly trans-
verse in Orbc, then g,h are c-transverse in dStac.

(d) Suppose we are given a 2-Cartesian diagram in dStac:

W
f

//

e
�� � �� �

GO
η

Y

h ��
X

g // Z,

with g,h c-transverse. Then the following are also 2-Cartesian in dStac :

C(W)
C(f)

//

C(e)�� � �� �
HP

C(η)

C(Y)
C(h) ��

C(X)
C(g) // C(Z),

(1.82)

C(W)
Ĉ(f)

//

Ĉ(e)�� � �� �
HP

Ĉ(η)

C(Y)

Ĉ(h) ��
C(X)

Ĉ(g) // C(Z).

(1.83)

Also (1.82)–(1.83) preserve gradings, in that they relate points in Ci(W), Cj(X),
Ck(Y), Ck(Z) with i = j + k − l. Hence (1.82) implies equivalences in dStac :

Ci(W) '
∐

j,k,l>0:i=j+k−l

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y),

∂W '
∐

j,k,l>0:j+k=l+1

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y).

The analogue of Proposition 1.6.15 also holds in dStac.

1.13.7 Orbifold strata of d-stacks with corners

Section 11.7 combines material in §1.10.5 and §1.12.5 on orbifold strata of d-
stacks and of orbifolds with corners. It is also related to §1.6.7 on fixed loci in
d-spaces with corners. Here is the analogue of Theorem 1.10.11.

Theorem 1.13.12. Let X be a d-stack with corners, and Γ a finite group.
Then we can define d-stacks with corners XΓ, X̃Γ, X̂Γ, and open d-substacks
XΓ
◦ ⊆ XΓ, X̃Γ

◦ ⊆ X̃Γ, X̂Γ
◦ ⊆ X̂Γ, all natural up to 1-isomorphism in dStac, a d-

space with corners X̂Γ
◦ natural up to 1-isomorphism in dSpac, and 1-morphisms

OΓ(X), Π̃Γ(X), . . . fitting into a strictly commutative diagram in dStac :

XΓ
◦

Π̃Γ
◦ (X) //

OΓ
◦ (X) ))SSSSSSSSSSS

⊂

��

Aut(Γ)
,, X̃Γ

◦
Π̂Γ
◦ (X) //

ÕΓ
◦ (X)uukkkkkkkkkkk

⊂

��

X̂Γ
◦ ' FdStac

dSpac(X̂Γ
◦ )

⊂

��
X

XΓ

Π̃Γ(X)

//
OΓ(X)

44jjjjjjjjjjjAut(Γ) 22 X̃Γ
Π̂Γ(X)

//
Õ

Γ
(X)

jjUUUUUUUUUUU
X̂Γ.

(1.84)
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We will call XΓ, X̃Γ, X̂Γ,XΓ
◦ , X̃

Γ
◦ , X̂

Γ
◦ , X̂

Γ
◦ the orbifold strata of X.

The underlying d-stacks of XΓ, . . . , X̂Γ
◦ are the orbifold strata XΓ, . . . , X̂Γ

◦
from §1.10.5 of the d-stack X in X. The 1-morphisms (1.84), as 1-morphisms
in dSta, are those given in (1.55).

The rest of §1.10.5 also extends to dStac:

Theorem 1.13.13. Theorems 1.10.12, 1.10.14, 1.10.15 and Corollary 1.10.13
hold without change in dStac,dSpac rather than dSta,dSpa.

Here are analogues of Theorem 1.12.15 and Corollary 1.12.17.

Theorem 1.13.14. Let X be a d-stack with corners, and Γ a finite group. The
corners C(X) from §1.13.5 lie in dStac, so Theorem 1.13.12 gives orbifold strata
XΓ, C(X)Γ and 1-morphisms OΓ(X) : XΓ → X, OΓ(C(X)) : C(X)Γ → C(X).
Applying the corner functor C from §1.13.5 gives a 1-morphism C(OΓ(X)) :
C(XΓ) → C(X). There exists a unique equivalence KΓ(X) : C(XΓ) → C(X)Γ

in dStac with OΓ(C(X)) ◦KΓ(X) = C(OΓ(X)) : C(XΓ) → C(X). It restricts
to an equivalence KΓ

◦ (X) := KΓ(X)|C(XΓ
◦ ) : C(XΓ

◦ )→ C(X)Γ
◦ .

Similarly, there is a unique equivalence K̃Γ(X) : C(X̃Γ) → ˜C(X)Γ with
ÕΓ(C(X))◦K̃Γ(X)=C(ÕΓ(X)) and Π̃Γ(C(X))◦KΓ(X)=K̃Γ(X)◦C(Π̃Γ(X)).

There is an equivalence K̂Γ(X) : C(X̂Γ)→ ̂C(X)Γ, unique up to 2-isomorphism,
with a 2-morphism Π̂Γ(C(X)) ◦ K̃Γ(X) ⇒ K̂Γ(X) ◦ C(Π̂Γ(X)). They restrict

to equivalences K̃Γ
◦ (X) : C(X̃Γ

◦ )→ ˜C(X)Γ
◦ and K̂Γ

◦ (X) : C(X̂Γ
◦ )→ ̂C(X)Γ

◦ .

Corollary 1.13.15. Let X be a d-stack with corners, and Γ a finite group. Then

there exist 1-morphisms JΓ(X) : (∂X)Γ → ∂(XΓ), J̃Γ(X) : ˜(∂X)Γ → ∂(X̃Γ),

ĴΓ(X) : ̂(∂X)Γ → ∂(X̂Γ) in dStac, natural up to 2-isomorphism, such that
JΓ(X) is an equivalence from (∂X)Γ to an open and closed d-substack of ∂(XΓ),
and similarly for J̃Γ(X), ĴΓ(X).

A d-stack with corners X is called straight if (iX)∗ : Iso∂X ([x′])→ IsoX ([x])
is an isomorphism for all [x′] ∈ ∂X top with iX,top([x′]) = [x]. D-stacks with
boundary are automatically straight. If X is straight then ∂X is straight, so
by induction ∂kX is also straight for all k > 0. If X is straight then KΓ(X)
in Theorem 1.13.14 is an equivalence Ck(XΓ) → Ck(X)Γ for all k > 0, and so
JΓ(X) in Corollary 1.13.15 is an equivalence (∂X)Γ → ∂(XΓ). The same applies
for J̃Γ(X), ĴΓ(X), K̃Γ(X), K̂Γ(X).

1.14 D-orbifolds with corners

Chapter 12 discusses the 2-category dOrbc of d-orbifolds with corners. Again,
there are few new issues here: almost all the material just combines ideas we have
seen already on d-manifolds with corners from §1.7, on orbifolds with corners
from §1.12, and on d-stacks with corners from §1.13. So we will be brief.
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1.14.1 Definition of d-orbifolds with corners

Section 12.1 defines d-orbifolds with corners, following §1.7.1 and §1.11.1.

Definition 1.14.1. A d-stack with corners W is called a principal d-orbifold
with corners if is equivalent in dStac to a fibre product V ×s,E,0 V, where
V is an orbifold with corners, E is a vector bundle on V, s ∈ C∞(E), and
V,E, s,0 = FdStac

Orbc

(
V,Totc(E),Totc(s),Totc(0)

)
, for Totc as in §1.12.1. Note

that Totc(s),Totc(0) : V → Totc(E) are simple, flat 1-morphisms in Orbc, so
s,0 : V→ E are simple, flat 1-morphisms in dStac. Thus s,0 are b-transverse
by Lemma 1.13.10(i), and V×s,E,0 V exists in dStac by Theorem 1.13.11(a).

If W is a nonempty principal d-orbifold with corners, then T ∗W is a vir-
tual vector bundle. We define the virtual dimension of W to be vdimW =
rankT ∗W ∈ Z. If W ' V×s,E,0 V then vdimW = dimV− rank E .

A d-stack with corners X is called a d-orbifold with corners of virtual dimen-
sion n ∈ Z, written vdimX = n, if X can be covered by open d-substacks W

which are principal d-orbifolds with corners with vdimW = n. A d-orbifold with
corners X is called a d-orbifold with boundary if it is a d-stack with boundary,
and a d-orbifold without boundary if it is a d-stack without boundary.

Write dŌrb,dOrbb,dOrbc for the full 2-subcategories of d-orbifolds with-
out boundary, and with boundary, and with corners, in dStac, respectively.
Then Ōrb, Ōrbb, Ōrbc in §1.13.1 are full 2-subcategories of dŌrb,dOrbb,
dOrbc. When we say that a d-orbifold with corners X is an orbifold, we mean
that X lies in Ōrbc. Define full and faithful strict 2-functors

FdOrbc

dOrb : dOrb→ dŌrb ⊂ dOrbc, FdOrbc

Orbc : Orbc → dOrbc,

FdOrbc

Orbb : Orbb → dOrbb⊂dOrbc, FdOrbc

Orb : Orb→ dŌrb ⊂ dOrbc,

FdOrbc

dManc : dManc → dOrbc, FdOrbc

dManb : dManb → dOrbb⊂dOrbc,

and FdOrbc

dMan : dMan→ dŌrb ⊂ dOrbc, by

FdOrbc

dOrb = FdStac

dSta |dOrb, FdOrbc

Orbc = FdStac

Orbc , FdOrbc

Orbb = FdStac

Orbc |Orbb ,

FOrbc

Orb =FdStac

dSta ◦FdSta
Orb , FdOrbc

dManc =FdStac

dSpac |dManc , FdOrbc

dManb =FdStac

dSpac |dManb ,

and FdOrbc

dMan = FdStac

dSpac ◦ FdManc

dMan = FdOrbc

dOrb ◦ FdOrb
dMan,

where FOrbc

Orb , FdSta
Orb , FdStac

dSta , FdStac

dSpac , FdManc

dMan , FdOrb
dMan, F

dStac

Orbc are as in §1.7.1,

§1.11.1, §1.12.1, and §1.13.1. Here FdOrbc

dOrb : dOrb→ dŌrb is an isomorphism
of 2-categories. So we may as well identify dOrb with its image dŌrb, and
consider d-orbifolds in §1.11 as examples of d-orbifolds with corners.

Write dM̂anc for the full 2-subcategory of objects X in dOrbc equivalent to
FdOrbc

dManc(X) for some d-manifold with corners X. When we say that a d-orbifold

with corners X is a d-manifold, we mean that X ∈ dM̂anc.
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These 2-categories lie in a commutative diagram:

dSpa

FdSta
dSpa

		

Man

wwooooooooooo
FdManc

Man
��

FdMan
Man

wwooooooooooo ⊂
//

FOrb
Man

		

Manb

FdManc

Manb

��

⊂
//

FOrbc

Manb

		

Manc

FOrbc

Manc

		

FdManc

Manc

��

FdSpac

Manc

''OOOOOOOOOOO

dMan

⊂

OO

FdManc

dMan

∼=
//

FdOrb
dMan

��

dM̄an
⊂ //

��

dManb
⊂ //

FdOrbc

dManb ��

dManc

FdOrbc

dManc ��

⊂ // dSpac

FdStac

dSpac ��
dOrb

⊂
��

FdOrbc

dOrb

∼= // dŌrb ⊂
// dOrbb

⊂
//

��

dOrbc
⊂

// dStac

dSta Orb

FdOrbc

Orb

OO

FdOrb
Orb

ggOOOOOOOOOOO
FOrbc

Orb // Orbb

FdOrbc

Orbb

OO

⊂ // Orbc.

FdOrbc

Orbc

OO

FdStac

Orbc

77nnnnnnnnnnn

If X = (X ,∂X , iX, ωX) is a d-orbifold with corners, then the virtual cotan-
gent sheaf T ∗X of the d-stack X from Remark 1.11.1 is a virtual vector bundle
on X , of rank vdimX. We will call T ∗X ∈ vvect(X ) the virtual cotangent
bundle of X, and also write it T ∗X.

Here is the analogue of Lemma 1.11.3:

Lemma 1.14.2. Let X be a d-orbifold with corners. Then X is a d-manifold,
that is, X ' FdOrbc

dManc(X) for some d-manifold with corners X, if and only if
IsoX ([x]) ∼= {1} for all [x] in Xtop.

D-orbifolds with corners are preserved by boundaries and corners.

Proposition 1.14.3. Suppose X is a d-orbifold with corners. Then ∂X in
§1.13.1 and Ck(X) in §1.13.5 are d-orbifolds with corners, with vdim ∂X =
vdimX− 1 and vdimCk(X) = vdimX− k for all k > 0.

Definition 1.14.4. As for dM̌anc in §1.7.1, define dǑrbc to be the full 2-
subcategory of X in dStac which may be written as a disjoint union X =∐
n∈Z Xn for Xn ∈ dOrbc with vdimXn = n, where we allow Xn = ∅. Then

dOrbc ⊂ dǑrbc ⊂ dStac, and the corner functors C, Ĉ : dStac → dStac in
§1.13.5 restrict to strict 2-functors C, Ĉ : dOrbc → dǑrbc.

1.14.2 Local properties of d-orbifolds with corners

Section 12.2 combines §1.7.2 and §1.11.2. Here are analogues of Examples 1.7.3,
1.7.4 and Theorem 1.7.5, and of Examples 1.11.4, 1.11.5 and Theorem 1.11.6.

Example 1.14.5. Let V = (V, ∂V, iV) be an orbifold with corners, E a vector
bundle on V as in §1.12.1, and s ∈ C∞(E). We will define an explicit principal
d-orbifold with corners S = (S,∂S, iS, ωS)

Define a vector bundle E∂ on ∂V by E∂ = i∗V(E), and a section s∂ = i∗V(s) ∈
C∞(E∂). Define d-stacks S = SV,E,s and ∂S = S∂V,E∂ ,s∂ from the triples
V, E , s and ∂V, E∂ , s∂ exactly as in Example 1.11.4, although now V, ∂V have
corners. Define a 1-morphism iS : ∂S → S in dSta to be the ‘standard model’
1-morphism SiV,idE∂ : S∂V,E∂ ,s∂ → SV,E,s from Example 1.11.5.
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As in Example 1.7.3, the conormal bundle NS of ∂S in S is canonically
isomorphic to the lift to ∂S ⊆ ∂V of the conormal bundle NV of ∂V in V.
Define ωS to be the orientation on NS induced by the orientation on NV by
outward-pointing normal vectors to ∂V in V. Then S = (S,∂S, iS, ωS) is a d-
stack with corners. It is equivalent in dStac to V×s,E,0 V in Definition 1.14.1.
We call S a ‘standard model’ d-orbifold with corners, and write it SV,E,s.

Every principal d-orbifold with corners W is equivalent in dOrbc to some
SV,E,s. Sometimes it is useful to take V to be an effective orbifold with corners,
as in §1.12.1. There is a natural 1-isomorphism ∂SV,E,s ∼= S∂V,E∂ ,s∂ in dOrbc.

Example 1.14.6. Let V,W be orbifolds with corners, E ,F be vector bundles
on V,W, and s ∈ C∞(E), t ∈ C∞(F), so that Example 1.14.5 defines d-orbifolds
with corners SV,E,s,SW,F,t. Suppose f : V→W is a 1-morphism in Orbc, and

f̂ : E → f∗(F) is a morphism in vect(V) satisfying f̂ ◦ s = f∗(t), as in (1.63).
The d-stacks SV,E,s,SW,F,t in SV,E,s,SW,F,t are defined as for ‘standard

model’ d-orbifolds SV,E,s in Example 1.11.4. Thus we can follow Example 1.11.5
to define a 1-morphism Sf,f̂ : SV,E,s → SW,F,t in dSta. Then Sf,f̂ : SV,E,s →
SW,F,t is a 1-morphism in dOrbc. We call it a ‘standard model’ 1-morphism.

Suppose now that Ṽ ⊆ V is open, with inclusion 1-morphism iṼ : Ṽ → V.
Write Ẽ = E|Ṽ = i∗̃V(E) and s̃ = s|Ṽ. Define iṼ,V = SiṼ,idẼ : SṼ,Ẽ,s̃ → SV,E,s. If

s−1(0) ⊆ Ṽ then iṼ,V : SṼ,Ẽ,s̃ → SV,E,s is a 1-isomorphism.

Theorem 1.14.7. Let X be a d-orbifold with corners, and [x] ∈ Xtop. Then
there exists an open neighbourhood U of [x] in X and an equivalence U ' SV,E,s
in dOrbc for some orbifold with corners V, vector bundle E over V and s ∈
C∞(E) which identifies [x] ∈ Utop with a point [v] ∈ Sk(V)top ⊆ Vtop such that
s(v) = ds|Sk(V)(v) = 0, where Sk(V) ⊆ V is the locally closed C∞-substack of
[v] ∈ Vtop such that ∗̄ ×v,V,iV ∂V is k points, for k > 0. Furthermore, V, E , s, k
are determined up to non-canonical equivalence near [v] by X near [x].

As in Examples 1.11.7–1.11.8 for d-orbifolds, we can combine the ‘standard
model’ d-manifolds with corners SV,E,s and 1-morphisms Sf,f̂ : SV,E,s → SW,F,t
of Examples 1.7.3–1.7.4 with quotient d-stacks with corners of §1.13.2 to define
an alternative form of ‘standard model’ d-orbifolds with corners [SV,E,s/Γ] and
‘standard model’ 1-morphisms [Sf,f̂ , ρ] : [SV,E,s/Γ]→ [SW,F,t/∆].

1.14.3 Equivalences in dOrbc, and gluing by equivalences

Section 12.3 combines §1.7.3 and §1.11.3. Here are the analogues of Theorems
1.11.11–1.11.14. Étale 1-morphisms in dStac were discussed in §1.13.2.

Theorem 1.14.8. Suppose f : X → Y is a 1-morphism of d-orbifolds with
corners, and f : X → Y is representable. Then the following are equivalent:

(i) f is étale;

(ii) f is simple and flat, in the sense of §1.13.3, and Ωf : f∗(T ∗Y)→ T ∗X is
an equivalence in vqcoh(X ); and
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(iii) f is simple and flat, and (1.66) is a split short exact sequence in qcoh(X ).

If in addition f∗ : IsoX ([x]) → IsoY(ftop([x])) is an isomorphism for all [x] ∈
Xtop, and ftop : Xtop → Ytop is a bijection, then f is an equivalence in dOrbc.

Theorem 1.14.9. Suppose Sf,f̂ : SV,E,s → SW,F,t is a ‘standard model’ 1-
morphism in dOrbc, in the notation of Examples 1.14.5 and 1.14.6, with f :
V → W representable. Then Sf,f̂ is étale if and only if f is simple and flat
near s−1(0) ⊆ V, in the sense of §1.12.2, and for each [v] ∈ Vtop with s(v) = 0
and [w] = ftop([v]) ∈ Wtop, the following sequence is exact:

0 // TvV
ds(v)⊕ df(v) // Ev ⊕ TwW

f̂(v)⊕−dt(w) // Fw // 0.

Also Sf,f̂ is an equivalence if and only if in addition ftop|s−1(0) : s−1(0) →
t−1(0) is a bijection, where s−1(0) = {[v] ∈ Vtop : s(v) = 0}, t−1(0) = {[w] ∈
Wtop : t(w) = 0}, and f∗ : IsoV([v]) → IsoW(ftop([v])) is an isomorphism for
all [v] ∈ s−1(0) ⊆ Vtop.

Theorem 1.14.10. Suppose we are given the following data:

(a) an integer n;

(b) a Hausdorff, second countable topological space X;

(c) an indexing set I, and a total order < on I;

(d) for each i in I, an effective orbifold with corners Vi, a vector bundle E i
on Vi with dimVi − rank E i = n, a section si ∈ C∞(E i), and a homeo-
morphism ψi : s−1

i (0) → X̂i, where s−1
i (0) =

{
[vi] ∈ Vi,top : si(vi) = 0

}
and X̂i ⊆ X is open; and

(e) for all i < j in I, an open suborbifold Vij ⊆ Vi, a simple, flat 1-morphism
eij : Vij → Vj , and a morphism of vector bundles êij : E i|Vij → e∗ij(Ej).

Let this data satisfy the conditions:

(i) X =
⋃
i∈I X̂i;

(ii) if i < j in I then (eij)∗ : IsoVij ([v]) → IsoVj (eij,top([v])) is an isomor-
phism for all [v] ∈ Vij,top, and êij ◦si|Vij = e∗ij(sj)◦ ιij where ιij : OVij →
e∗ij(OVj ) is the natural isomorphism, and ψi(si|−1

Vij
(0)) = X̂i ∩ X̂j , and

ψi|si|−1
Vij

(0) = ψj ◦ eij,top|si|−1
Vij

(0), and if [vi] ∈ Vij,top with si(vi) = 0 and

[vj ] = eij,top([vi]) then the following sequence is exact:

0 // TviVi
dsi(vi)⊕ deij(vi) // E i|vi⊕TvjVj

êij(vi)⊕−dsj(vj)// Ej |vj // 0;

(iii) if i < j < k in I then there exists a 2-morphism ηijk : ejk ◦eij |Vik∩e−1
ij (Vjk)

⇒ eik|Vik∩e−1
ij (Vjk) in Orbc with

êik|Vik∩e−1
ij (Vjk) =η∗ijk(Ek)◦Ieij ,ejk(Ek)−1◦eij |∗Vik∩e−1

ij (Vjk)
(êjk)◦êij |Vik∩e−1

ij (Vjk).

Note that ηijk is unique by the corners analogue of Proposition 1.9.5(ii).
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Then there exist a d-orbifold with corners X with vdimX = n and underlying
topological space Xtop

∼= X, and a 1-morphism ψi : SVi,Ei,si → X in dOrbc

with underlying continuous map ψi which is an equivalence with the open d-
suborbifold X̂i ⊆ X corresponding to X̂i ⊆ X for all i ∈ I, such that for all
i < j in I there exists a 2-morphism ηij : ψj ◦ Seij ,êij ⇒ ψi ◦ iVij ,Vi , where
Seij ,êij : SVij ,Ei|Vij ,si|Vij → SVj ,Ej ,sj and iVij ,Vi : SVij ,Ei|Vij ,si|Vij → SVi,Ei,si
are as in Examples 1.14.5–1.14.6. This X is unique up to equivalence in dOrbc.

Suppose also that Y is an effective orbifold with corners, and gi : Vi → Y are
submersions for all i ∈ I, and there are 2-morphisms ζij : gj ◦ eij ⇒ gi|Vij in
Orbc for all i < j in I. Then there exist a 1-morphism h : X → Y in dOrbc

unique up to 2-isomorphism, where Y = FdOrbc

Orbc (Y) = SY,0,0, and 2-morphisms
ζi : h ◦ψi ⇒ Sgi,0 for all i ∈ I.

Theorem 1.14.11. Suppose we are given the following data:

(a) an integer n;

(b) a Hausdorff, second countable topological space X;

(c) an indexing set I, and a total order < on I;

(d) for each i in I, a manifold with corners Vi, a vector bundle Ei → Vi with
dimVi − rankEi = n, a finite group Γi, smooth, locally effective actions
ri(γ) : Vi → Vi, r̂i(γ) : Ei → r(γ)∗(Ei) of Γi on Vi, Ei for γ ∈ Γi,
a smooth, Γi-equivariant section si : Vi → Ei, and a homeomorphism
ψi : Xi → X̂i, where Xi = {vi ∈ Vi : si(vi) = 0}/Γi and X̂i ⊆ X is an
open set; and

(e) for all i < j in I, an open submanifold Vij ⊆ Vi, invariant under Γi, a
group morphism ρij : Γi → Γj, a simple, flat, smooth map eij : Vij → Vj ,
and a morphism of vector bundles êij : Ei|Vij → e∗ij(Ej).

Let this data satisfy the conditions:

(i) X =
⋃
i∈I X̂i;

(ii) if i < j in I then êij ◦ si|Vij = e∗ij(sj) +O(s2
i ), and for all γ ∈ Γ we have

eij ◦ ri(γ) = rj(ρij(γ)) ◦ eij : Vij −→ Vj ,

ri(γ)∗(êij) ◦ r̂i(γ) = e∗ij(r̂j(ρij(γ))) ◦ êij : Ei|Vij −→ (eij ◦ ri(γ))∗(Ej),

and ψi(Xi∩ (Vij/Γi)) = X̂i∩ X̂j , and ψi|Xi∩Vij/Γi = ψj ◦ (eij)∗|Xi∩Vij/Γj ,
and if vi ∈ Vij with si(vi) = 0 and vj = eij(vi) then ρ|StabΓi

(vi) :
StabΓi(vi) → StabΓj (vj) is an isomorphism, and the following sequence
of vector spaces is exact:

0 // TviVi
dsi(vi)⊕ deij(vi) // Ei|vi⊕TvjVj

êij(vi)⊕−dsj(vj) // Ej |vj // 0;
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(iii) if i < j < k in I then there exists γijk ∈ Γk satisfying

ρik(γ) = γijk ρjk(ρij(γ)) γ−1
ijk for all γ ∈ Γi,

eik|Vik∩e−1
ij (Vjk) = rk(γijk) ◦ ejk ◦ eij |Vik∩e−1

ij (Vjk), and

êik|Vik∩e−1
ij (Vjk) =

(
e∗ij(e

∗
jk(r̂k(γijk))) ◦ e∗ij(êjk) ◦ êij

)
|Vik∩e−1

ij (Vjk).

Then there exist a d-orbifold with corners X with vdimX = n and underlying
topological space Xtop

∼= X, and a 1-morphism ψi : [SVi,Ei,si/Γi]→ X in dOrbc

with underlying continuous map ψi which is an equivalence with the open d-
suborbifold X̂i ⊆ X corresponding to X̂i ⊆ X for all i ∈ I, such that for all
i < j in I there exists a 2-morphism ηij : ψj ◦ [Seij ,êij , ρij ]⇒ ψi ◦ [iVij ,Vi , idΓi ],
where [Seij ,êij , ρij ] : [SVij ,Ei|Vij ,si|Vij /Γi] → [SVj ,Ej ,sj/Γj ] and [iVij ,Vi , idΓi ] :

[SVij ,Ei|Vij ,si|Vij /Γi] → [SVi,Ei,si/Γj ] combine the notation of Examples 1.7.3–

1.7.4 and §1.13.2. This X is unique up to equivalence in dOrbc.
Suppose also that Y is a manifold with corners, and gi : Vi → Y are smooth

maps for all i ∈ I with gi ◦ ri(γ) = gi for all γ ∈ Γi, and gj ◦ eij = gi|Vij for
all i < j in I. Then there exist a 1-morphism h : X → Y in dOrbc unique
up to 2-isomorphism, where Y = FdOrbc

Manc (Y ) = [SY,0,0/{1}], and 2-morphisms
ζi : h ◦ ψi ⇒ [Sgi,0, π{1}] for all i ∈ I. Here [Sgi,0, π{1}] : [SVi,Ei,si/Γi] →
[SY,0,0/{1}] = Y with ĝi = 0 and ρ = π{1} : Γi → {1}.

We can use Theorems 1.14.10 and 1.14.11 to prove the existence of d-orbifold
with corners structures on spaces coming from other areas of geometry, such as
moduli spaces of J-holomorphic curves.

1.14.4 Submersions, immersions and embeddings

Section 12.4 extends §1.7.4 and §1.11.4 to d-orbifolds with corners.

Definition 1.14.12. Let f : X → Y be a 1-morphism in dOrbc. Then T ∗X
and f∗(T ∗Y) are virtual vector bundles on X of ranks vdimX, vdimY, and
Ωf : f∗(T ∗Y) → T ∗X is a 1-morphism in vvect(X ), as in Remark 1.11.1 and
Definition 1.14.1. ‘Weakly injective’, . . . , below are as in Definition 1.11.15.

(a) We call f a w-submersion if f is semisimple and flat and Ωf is weakly
injective. We call f an sw-submersion if it is also simple.

(b) We call f a submersion if f is semisimple and flat and ΩC(f) is injective,
for C(f) as in §1.13.5. We call f an s-submersion if it is also simple.

(c) We call f a w-immersion if f : X →Y is representable and Ωf is weakly
surjective. We call f an sw-immersion, or sfw-immersion, if f is also
simple, or simple and flat.

(d) We call f an immersion if f : X → Y is representable and ΩĈ(f) is
surjective, for Ĉ(f) as in §1.13.5. We call f an s-immersion if f is also
simple, and an sf-immersion if f is also simple and flat.
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(e) We call f a w-embedding, sw-embedding, sfw-embedding, embedding, s-
embedding, or sf-embedding, if f is a w-immersion, . . . , sf-immersion, re-
spectively, and f∗ : IsoX ([x]) → IsoY(ftop([x])) is an isomorphism for all
[x] ∈ Xtop, and ftop : Xtop → Ytop is a homeomorphism with its image, so
in particular ftop is injective.

Parts (c)–(e) enable us to define d-suborbifolds X of a d-orbifold with corners
Y. Open d-suborbifolds are open d-substacks X in Y. For more general d-
suborbifolds, we call f : X → Y a w-immersed, sw-immersed, sfw-immersed,
immersed, s-immersed, sf-immersed, w-embedded, sw-embedded, sfw-embedded,
embedded, s-embedded, or sf-embedded suborbifold of Y if X,Y are d-orbifolds
with corners and f is a w-immersion, . . . , sf-embedding, respectively.

Theorem 1.7.12 in §1.7.4 holds with orbifolds and d-orbifolds with corners
in place of manifolds and d-manifolds with corners, except part (v), when we
need also to assume f : X → Y representable to deduce f is étale, and part (x),
which is false for d-orbifolds with corners (in the Zariski topology, at least).

1.14.5 Bd-transversality and fibre products

Section 12.5 generalizes §1.7.5 and §1.11.5 to dOrbc. Here are the analogues of
Definition 1.7.13 and Theorems 1.7.14–1.7.17.

Definition 1.14.13. Let X,Y,Z be d-orbifolds with corners and g : X→ Z, h :
Y→ Z be 1-morphisms. We call g,h bd-transverse if they are both b-transverse
in dStac in the sense of Definition 1.13.9, and d-transverse in the sense of
Definition 1.11.16. We call g,h cd-transverse if they are both c-transverse in
dStac in the sense of Definition 1.13.9, and d-transverse. As in §1.13.6, c-
transverse implies b-transverse, so cd-transverse implies bd-transverse.

Theorem 1.14.14. Suppose X,Y,Z are d-orbifolds with corners and g : X→
Z, h : Y → Z are bd-transverse 1-morphisms, and let W = X ×g,Z,h Y be
the fibre product in dStac, which exists by Theorem 1.13.11(a) as g,h are b-
transverse. Then W is a d-orbifold with corners, with

vdimW = vdimX + vdimY− vdimZ. (1.85)

Hence, all bd-transverse fibre products exist in dOrbc.

Theorem 1.14.15. Suppose g : X → Z and h : Y → Z are 1-morphisms in
dOrbc. The following are sufficient conditions for g,h to be cd-transverse, and
hence bd-transverse, so that W = X ×g,Z,h Y is a d-orbifold with corners of
virtual dimension (1.85):

(a) Z is an orbifold without boundary, that is, Z ∈ Ōrb; or

(b) g or h is a w-submersion.
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Theorem 1.14.16. Let X,Y,Z be d-orbifolds with corners with Y an orbifold,
and g : X → Z, h : Y → Z be 1-morphisms with g a submersion. Then
W = X×g,Z,h Y is an orbifold, with dimW = vdimX + dimY− vdimZ.

Theorem 1.14.17. (i) Let ρ : G → H be an injective morphism of finite
groups, and H act linearly on Rn preserving [0,∞)k × Rn−k. Then §1.13.2

gives a quotient 1-morphism [0, ρ] : [∗/G] →
[
[0,∞)k ×RRRn−k/H

]
in dOrbc.

Suppose X is a d-orbifold with corners and g : X →
[
[0,∞)k × RRRn−k/H

]
is a semisimple, flat 1-morphism in dOrbc. Then the fibre product W =
X×g,[[0,∞)k×RRRn−k/H],[0,ρ] [∗/G] exists in dOrbc. The projection πX : W→ X

is an s-immersion, and an s-embedding if ρ is an isomorphism.
When k = 0, any 1-morphism g : X → [RRRn/H] is semisimple and flat, and

πX : W→X is an sf-immersion, and an sf-embedding if ρ is an isomorphism.

(ii) Suppose f : X → Y is an s-immersion of d-orbifolds with corners, and
[x] ∈ Xtop with ftop([x]) = [y] ∈ Ytop. Write ρ : G → H for f∗ : IsoX ([x]) →
IsoY([y]). Then ρ is injective, and there exist open neighbourhoods U ⊆ X

and V ⊆ Y of [x], [y] with f(U) ⊆ V, a linear action of H on Rn preserving
[0,∞)k × Rn−k ⊆ Rn where n = vdimY − vdimX > 0 and 0 6 k 6 n, and a

1-morphism g : V →
[
[0,∞)k × RRRn−k/H

]
with gtop([y]) = [0], fitting into a

2-Cartesian square in dOrbc :

U

f |U��

//

� �� �
HP

[∗/G]

[0,ρ] ��
V

g // [[0,∞)k ×RRRn−k/H
]
.

If f is an sf-immersion then k = 0. If f is an s- or sf-embedding then ρ is an
isomorphism, and we may take U = f−1(V).

1.14.6 Embedding d-orbifolds with corners into orbifolds

Section 1.4.7 discussed embeddings of d-manifoldsX into manifolds Y . Our two
main results were Theorem 1.4.29, which gave necessary and sufficient conditions
on X for existence of embeddings f : X ↪→ RRRn for n� 0, and Theorem 1.4.32,
which showed that if an embedding f : X ↪→ Y exists with X a d-manifold and
Y = FdMan

Man (Y ), then X ' SV,E,s for open V ⊆ Y .
Section 1.7.6 generalized §1.4.7 to d-manifolds with corners, requiring f :

X ↪→ Y to be an sf-embedding for the analogue of Theorem 1.4.32. Section
1.11.6 explained that while Theorem 1.4.32 generalizes to d-orbifolds, we do not
have a good d-orbifold generalization of Theorem 1.4.29. Thus, we do not have
a useful necessary and sufficient criterion for when a d-orbifold is principal.

As in §12.6, the situation is the same for d-orbifolds with corners as for
d-orbifolds. Here is the analogue of Theorem 1.4.32:

Theorem 1.14.18. Suppose X is a d-orbifold with corners, Y an orbifold with
corners, and f : X → Y an sf-embedding, in the sense of §1.14.4. Then there
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exist an open suborbifold V ⊆ Y with f(X) ⊆ V, a vector bundle E on V, and a
section s ∈ C∞(E) fitting into a 2-Cartesian diagram in dOrbc :

X
f

//

f�� � �� �
FN V

0 ��
V

s // E,

where Y,V,E, s,0 = FdOrbc

Orbc

(
Y,V,Totc(E),Totc(s),Totc(0)

)
, in the notation of

§1.12.1. Thus X is equivalent to the ‘standard model’ SV,E,s of Example 1.14.5,
and is a principal d-orbifold with corners.

Again, in contrast to d-manifolds with corners, the author does not know
useful necessary and sufficient conditions for when a d-orbifold with corners
admits an sf-embedding into an orbifold, or is a principal d-orbifold with corners.

1.14.7 Orientations on d-orbifolds with corners

Section 1.4.8 discussed orientations on d-manifolds. This was extended to d-
manifolds with corners in §1.7.7, and to d-orbifolds in §1.11.7. As in §12.7, all
this generalizes easily to d-orbifolds with corners, so we will give few details.

If X is a d-orbifold with corners, the virtual cotangent bundle T ∗X is a virtual
vector bundle on X . We define an orientation ω on X to be an orientation on
the orientation line bundle LT∗X. The analogues of Example 1.4.36, Theorem
1.4.37, Proposition 1.4.38, Theorem 1.7.25, and Propositions 1.7.26 and 1.7.27
all hold for d-orbifolds with corners.

1.14.8 Orbifold strata of d-orbifolds with corners

Sections 1.8.7, 1.9.2, 1.11.8, 1.12.5, and 1.13.7 discussed orbifold strata for
Deligne–Mumford C∞-stacks, orbifolds, d-orbifolds, orbifolds with corners, and
d-stacks with corners. Section 12.8 extends this to d-orbifolds with corners.

Let X be a d-orbifold with corners and Γ a finite group, so that §1.13.7 gives
orbifold strata XΓ, X̃Γ, X̂Γ,XΓ

◦ , X̃
Γ
◦ , X̂

Γ
◦ , which are d-stacks with corners. Use

the notation ΛΓ,ΛΓ/Aut(Γ) of Definition 1.9.7. Exactly as in the d-orbifold
case in §1.11.8, there are natural decompositions

XΓ =
∐
λ∈ΛΓ XΓ,λ, X̃Γ =

∐
µ∈ΛΓ/Aut(Γ) X̃

Γ,µ, X̂Γ =
∐
µ∈ΛΓ/Aut(Γ) X̂

Γ,µ,

XΓ
◦ =

∐
λ∈ΛΓ XΓ,λ

◦ , X̃Γ
◦ =

∐
µ∈ΛΓ/Aut(Γ) X̃

Γ,µ
◦ , X̂Γ

◦ =
∐
µ∈ΛΓ/Aut(Γ) X̂

Γ,µ
◦ ,

where XΓ,λ, . . . , X̃Γ,µ
◦ are d-orbifolds with corners with vdimXΓ,λ = vdimXΓ,λ

◦
= vdimX− dimλ and vdim X̃Γ,µ = · · · = vdim X̂

Γ,µ
◦ = vdimX− dimµ.

The analogue of Proposition 1.11.23 on orientations of orbifold strata XΓ,λ,
. . . , X̂Γ,µ

◦ for oriented d-orbifolds X also holds for d-orbifolds with corners. In
an analogue of Corollary 1.12.17, we can relate boundaries of orbifold strata to
orbifold strata of boundaries:
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Proposition 1.14.19. Let X be a d-orbifold with corners, and Γ a finite group.
Then Corollary 1.13.15 gives 1-morphisms JΓ(X) : (∂X)Γ → ∂(XΓ), J̃Γ(X) :˜(∂X)Γ → ∂(X̃Γ), ĴΓ(X) : ̂(∂X)Γ → ∂(X̂Γ) in dǑrbc, which are equivalences

with open and closed subobjects in ∂(XΓ), ∂(X̃Γ), ∂(X̂Γ).
These restrict to 1-morphisms JΓ,λ(X) : (∂X)Γ,λ → ∂(XΓ,λ) in dOrbc for

λ ∈ ΛΓ and J̃Γ,µ(X) : ˜(∂X)Γ,µ → ∂(X̃Γ,µ), ĴΓ,µ(X) : ̂(∂X)Γ,µ → ∂(X̂Γ,µ) for
µ ∈ ΛΓ/Aut(Λ), which are equivalences with open and closed d-suborbifolds.

Hence, if XΓ,λ = ∅ then (∂X)Γ,λ = ∅, and similarly for X̃Γ,µ, X̂Γ,µ.
Now suppose X is straight, in the sense of §1.13.7, for instance X could be

a d-orbifold with boundary. Then JΓ(X), . . . , ĴΓ,µ(X) are equivalences, so that
(∂X)Γ ' ∂(XΓ), (∂X)Γ,λ ' ∂(XΓ,λ), and so on.

1.14.9 Kuranishi neighbourhoods and good coordinate systems

In §1.11.9 we defined type A Kuranishi neighbourhoods, coordinate changes,
and good coordinate systems, on d-orbifolds. Section 12.9 generalizes these to
d-orbifolds with corners. The definitions in the corners case are obtained by re-
placing Man,Orb,dMan,dOrb by Manc,Orbc,dManc,dOrbc throughout,
and making a few other easy changes such as taking the eij to be sf-embeddings
in Definitions 1.11.25(c). For brevity we will not write the definitions out again,
but just indicate the differences.

Definition 1.14.20. Let X be a d-orbifold with corners. Define a type A
Kuranishi neighbourhood (V,E,Γ, s,ψ) on X following Definition 1.11.24, but
taking V to be a manifold with corners, and defining the principal d-orbifold
with corners [SV,E,s/Γ] by combining Example 1.7.3 and §1.13.2, as in §1.14.2.

If (Vi, Ei,Γi, si,ψi), (Vj , Ej ,Γj , sj ,ψj) are type A Kuranishi neighbourhoods
on X with ∅ 6= ψi([SVi,Ei,si/Γi])∩ψj([SVj ,Ej ,sj/Γj ]) ⊆ X, define a type A coor-
dinate change (Vij , eij , êij , ρij ,ηij) from (Vi, Ei,Γi, si,ψi) to (Vj , Ej ,Γj , sj ,ψj)
following Definition 1.11.25, but taking eij : Vij → Vj to be an sf-embedding of
manifolds with corners, and defining the quotient 1-morphism [Seij ,êij , ρij ] by
combining Example 1.7.4 and §1.13.2, as in §1.14.2.

Define a type A good coordinate system on X following Definition 1.11.26,
defining quotient 2-morphisms ηijk = [0, γijk] in (d) using §1.13.2. Let Y be
a manifold with corners, and h : X → Y a 1-morphism in dOrbc, where Y =
FdOrbc

Manc (Y ). Define a type A good coordinate system for h : X → Y following
Definition 1.11.26.

Here is the analogue of Theorem 1.11.27. It will be proved in Appendix D.

Theorem 1.14.21. Suppose X is a d-orbifold with corners. Then there exists a
type A good coordinate system

(
I,<,(Vi,Ei,Γi,si,ψi),(Vij ,eij ,êij ,ρij ,ηij),γijk

)
for X, in the sense of Definition 1.14.20. If X is compact, we may take I
to be finite. If {Uj : j ∈ J} is an open cover of X, we may take Xi =
ψi([SVi,Ei,si/Γi]) ⊆ Uji for each i ∈ I and some ji ∈ J . If X is a d-orbifold
with boundary, we may take the Vi to be manifolds with boundary.
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Now let Y be a manifold with corners and h : X → Y = FdOrbc

Manc (Y ) a
semisimple, flat 1-morphism in dOrbc. Then all the above extends to type A
good coordinate systems for h : X→ Y, and we may take the gi : Vi → Y to be
submersions in Manc.

We can regard Theorem 1.14.21 as a kind of converse to Theorem 1.14.11.
Note that we make the extra assumption that h is semisimple and flat in the last
part. This happens automatically if Y is without boundary. Since submersions
in Manc are automatically semisimple and flat, h being semisimple and flat
is a necessary condition for the gi : Vi → Y to be submersions. Section 12.9
also gives ‘type B’ versions of Definition 1.14.20 and Theorem 1.14.21 using
the ‘standard model’ d-orbifolds with corners SV,E,s and 1-morphisms Seij ,êij of
Examples 1.14.5–1.14.6 instead of [SVi,Ei,si/Γi] and [Seij ,êij , ρij ].

1.14.10 Semieffective and effective d-orbifolds with corners

Section 1.11.10 discussed semieffective and effective d-orbifolds. As in §12.10,
all this material extends to d-orbifolds with corners essentially unchanged. We
define semieffective and effective d-orbifolds with corners X following Definition
1.11.28. The analogues of Proposition 1.11.29 and the rest of §1.11.9 then hold,
with (d-)orbifolds replaced by (d-)orbifolds with corners throughout.

Proposition 1.14.22. Let X be an effective (or semieffective) d-orbifold with
corners. Then ∂kX is also effective (or semieffective), for all k > 0.

However, X (semi)effective does not imply Ck(X) (semi)effective.

1.15 D-manifold and d-orbifold bordism, virtual cycles

Chapter 13 discusses bordism groups of manifolds and orbifolds, defined using
manifolds, d-manifolds, orbifolds, and d-orbifolds. We can use these to prove
that compact, oriented d-manifolds admit virtual cycles, and so can be used
in enumerative invariant problems. The same applies for compact, oriented
d-orbifolds, although the direct proof using bordism no longer works.

1.15.1 Classical bordism groups for manifolds

Section 13.1 reviews background material on bordism from the literature. Classi-
cal bordism groups MSOk(Y ) were defined by Atiyah [6] for topological spaces
Y , using continuous maps f : X → Y for X a compact, oriented manifold.
Conner [24, §I] gives a good introduction. We define bordism Bk(Y ) only for
manifolds Y , using smooth f : X → Y , following Conner’s differential bordism
groups [24, §I.9]. By [24, Th. I.9.1], the natural projection Bk(Y )→MSOk(Y )
is an isomorphism, so our notion of bordism agrees with the usual definition.

Definition 1.15.1. Let Y be a manifold without boundary, and k ∈ Z. Con-
sider pairs (X, f), where X is a compact, oriented manifold without boundary
with dimX = k, and f : X → Y is a smooth map. Define an equivalence
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relation ∼ on such pairs by (X, f) ∼ (X ′, f ′) if there exists a compact, oriented
(k+1)-manifold with boundary W , a smooth map e : W → Y , and a diffeomor-
phism of oriented manifolds j : −X qX ′ → ∂W , such that f q f ′ = e ◦ iW ◦ j,
where −X is X with the opposite orientation.

Write [X, f ] for the ∼-equivalence class (bordism class) of a pair (X, f). For
each k ∈ Z, define the kth bordism group Bk(Y ) of Y to be the set of all such
bordism classes [X, f ] with dimX = k. We give Bk(Y ) the structure of an
abelian group, with zero element 0Y = [∅, ∅], and addition given by [X, f ] +
[X ′, f ′] = [X qX ′, f q f ′], and additive inverses −[X, f ] = [−X, f ].

Define Πhom
bo : Bk(Y ) → Hk(Y ;Z) by Πhom

bo : [X, f ] 7→ f∗([X]), where
H∗(−;Z) is singular homology, and [X] ∈ Hk(X;Z) is the fundamental class.

If Y is oriented and of dimension n, there is a biadditive, associative, super-
commutative intersection product • : Bk(Y )×Bl(Y )→ Bk+l−n(Y ), such that if
[X, f ], [X ′, f ′] are classes in B∗(Y ), with f, f ′ transverse, then the fibre product
X ×f,Y,f ′ X ′ exists as a compact oriented manifold, and

[X, f ] • [X ′, f ′] = [X ×f,Y,f ′ X ′, f ◦ πX ].

As in [24, §I.5], bordism is a generalized homology theory. Results of Thom,
Wall and others in [24, §I.2] compute the bordism groups Bk(∗) of the point ∗.
This partially determines the bordism groups of general manifolds Y , as there
is a spectral sequence Hi

(
Y ;Bj(∗)

)
⇒ Bi+j(Y ).

1.15.2 D-manifold bordism groups

Section 13.2 defines d-manifold bordism by replacing manifolds X in pairs [X, f ]
in §1.15.1 by d-manifoldsX. For simplicity, we identify the 2-category dMan of
d-manifolds X in §1.4.1, and the 2-subcategory dM̄an of d-manifolds without
boundary X = (X,∅,∅,∅) in dManc in §1.7.1, writing both as X.

Definition 1.15.2. Let Y be a manifold without boundary, and k ∈ Z. Con-
sider pairs (X,f), where X ∈ dMan is a compact, oriented d-manifold with-
out boundary with vdimX = k, and f : X → Y is a 1-morphism in dMan,
where Y = FdMan

Man (Y ).
Define an equivalence relation ∼ between such pairs by (X,f) ∼ (X ′,f ′) if

there exists a compact, oriented d-manifold with boundary W with vdim W =
k + 1, a 1-morphism e : W → Y in dManb, an equivalence of oriented d-
manifolds j : −X qX ′ → ∂W, and a 2-morphism η : f q f ′ ⇒ e ◦ iW ◦ j.

Write [X,f ] for the ∼-equivalence class (d-bordism class) of a pair (X,f).
For each k ∈ Z, define the kth d-manifold bordism group, or d-bordism group,
dBk(Y ) of Y to be the set of all such d-bordism classes [X,f ] with vdimX = k.
As for Bk(Y ), we give dBk(Y ) the structure of an abelian group, with zero
element 0Y = [∅,∅], addition [X,f ] + [X ′,f ′] = [X qX ′,f q f ′], and additive
inverses −[X,f ] = [−X,f ].
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If Y is oriented and of dimension n, we define a biadditive, associative,
supercommutative intersection product • : dBk(Y )× dBl(Y )→ dBk+l−n(Y ) by

[X,f ] • [X ′,f ′] = [X ×f ,Y ,f ′ X ′,f ◦ πX ]. (1.86)

Here X×f ,Y ,f ′X ′ exists as a d-manifold by Theorem 1.4.23(a), and is oriented
by Theorem 1.4.37. Note that we do not need to restrict to [X, f ], [X ′, f ′] with
f, f ′ transverse as in Definition 1.15.1. Define a morphism Πdbo

bo : Bk(Y ) →
dBk(Y ) for k > 0 by Πdbo

bo : [X, f ] 7→
[
FdMan

Man (X), FdMan
Man (f)

]
.

In §13.2 we prove that B∗(Y ) and dB∗(Y ) are isomorphic. See Spivak [95,
Th. 2.6] for the analogous result for Spivak’s derived manifolds.

Theorem 1.15.3. For any manifold Y, we have dBk(Y ) = 0 for k < 0, and
Πdbo

bo : Bk(Y ) → dBk(Y ) is an isomorphism for k > 0. When Y is oriented,
Πdbo

bo identifies the intersection products • on B∗(Y ) and dB∗(Y ).

Here is the main idea in the proof of Theorem 1.15.3. Let [X,f ] ∈ dBk(Y ).
By Corollary 1.4.31 there exists an embedding g : X → RRRn for n � 0. Then
the direct product (f , g) : X → Y ×RRRn is also an embedding. Theorem 1.4.32
shows that there exist an open set V ⊆ Y × Rn, a vector bundle E → V
and s ∈ C∞(E) such that X ' SV,E,s. Let s̃ ∈ C∞(E) be a small, generic
perturbation of s. As s̃ is generic, the graph of s̃ in E intersects the zero section
transversely. Hence X̃ = s̃−1(0) is a k-manifold for k > 0, which is compact
and oriented for s̃ − s small, and X̃ = ∅ for k < 0. Set f̃ = πY |X̃ : X̃ → Y .
Then Πdbo

bo

(
[X̃, f̃ ]

)
= [X,f ], so that Πdbo

bo is surjective. A similar argument for
W, e in Definition 1.15.2 shows that Πdbo

bo is injective.
Theorem 1.15.3 implies that we may define projections

Πhom
dbo : dBk(Y ) −→ Hk(Y ;Z) by Πhom

dbo = Πhom
bo ◦ (Πdbo

bo )−1. (1.87)

We think of Πhom
dbo as a virtual class map. Virtual classes (or virtual cycles,

or virtual chains) are used in several areas of geometry to construct enumera-
tive invariants using moduli spaces. In algebraic geometry, Behrend and Fan-
techi [12] construct virtual classes for schemes with obstruction theories. In
symplectic geometry, there are many versions — see for example Fukaya et
al. [34, §6], [32, §A1], Hofer et al. [46], and McDuff [77].

The main message we want to draw from this is that compact oriented d-
manifolds admit virtual classes. Thus, we can use d-manifolds (and d-orbifolds)
as the geometric structure on moduli spaces in enumerative invariant problems
such as Gromov–Witten invariants, Lagrangian Floer cohomology, Donaldson–
Thomas invariants, . . . , as this structure is strong enough to contain all the
‘counting’ information.

1.15.3 Classical bordism for orbifolds

Section 13.3 generalizes §1.15.1 to orbifolds. Here we will be brief, much more
information is given in §13.3. We use the notation of §1.9 on orbifolds Orb
and §1.12 on orbifolds with boundary Orbb freely. For simplicity we do not
distinguish between the 2-categories Orb in §1.9.1 and Ȯrb in §1.12.1.
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Definition 1.15.4. Let Y be an orbifold, and k ∈ Z. Consider pairs (X , f),
where X is a compact, oriented orbifold (without boundary) with dimX = k,
and f : X → Y is a 1-morphism in Orb. Define an equivalence relation ∼
between such pairs by (X , f) ∼ (X ′, f ′) if there exists a compact, oriented
(k+ 1)-orbifold with boundary W, a 1-morphism e : W → Y in Orbb, an
orientation-preserving equivalence j : −X q X ′ → ∂W, and a 2-morphism η :
f q f ′ ⇒ e ◦ iW ◦ j in Orbb.

Write [X , f ] for the ∼-equivalence class (bordism class) of a pair (X , f). For
each k ∈ Z, define the kth orbifold bordism group Borb

k (Y) of Y to be the set of
all such bordism classes [X , f ] with dimX = k. It is an abelian group, with zero
0Y = [∅, ∅], addition [X , f ] + [X ′, f ′] = [X q X ′, f q f ′], and additive inverses
−[X , f ] = [−X , f ]. If k < 0 then Borb

k (Y) = 0.
Define effective orbifold bordism Beff

k (Y) in the same way, but requiring both
orbifolds X and orbifolds with boundary W to be effective (as in §1.9.1 and
§1.12.1) in pairs (X , f) and the definition of ∼.

If Y is an orbifold, define group morphisms

Πorb
eff : Beff

k (Y) −→ Borb
k (Y), Πhom

orb : Borb
k (Y) −→ Hk(Ytop;Q)

and Πhom
eff : Beff

k (Y) −→ Hk(Ytop;Z)

by Πorb
eff : [X , f ] 7→ [X , f ] and Πhom

orb ,Π
hom
eff : [X , f ] 7→ (ftop)∗([X ]), where [X ]

is the fundamental class of the compact, oriented k-orbifold X , which lies in
Hk(Xtop;Q) for general X , and in Hk(Xtop;Z) for effective X . The morphisms
Πorb

eff : Beff
k (Y)→ Borb

k (Y) are injective.
Suppose Y is an oriented orbifold of dimension n which is a manifold, that

is, the orbifold groups IsoY([y]) are trivial for all [y] ∈ Ytop. Define biadditive,
associative, supercommutative intersection products • : Borb

k (Y) × Borb
l (Y) →

Borb
k+l−n(Y) and • : Beff

k (Y) × Beff
l (Y) → Beff

k+l−n(Y) as follows. Given classes
[X , f ], [X ′, f ′], we perturb f, f ′ in their bordism classes to make f : X → Y and
f ′ : X ′ → Y transverse 1-morphisms, and then as in (1.86) we set

[X , f ] • [X ′, f ′] = [X ×f,Y,f ′ X ′, f ◦ πX ].

If Y is not a manifold then f, f ′ may not admit transverse perturbations.

Again, orbifold bordism is a generalized homology theory. Results of Dr-
uschel [28, 29] and Angel [3–5] give a complete description of the rational ef-
fective orbifold bordism ring Beff

∗ (∗) ⊗Z Q when Y is the point ∗, and some
information on the full ring Beff

∗ (∗). It is much more complicated than bordism
B∗(∗) for manifolds in §1.15.1, because of contributions from orbifold strata.

As in §1.9.2, if X is an orbifold and Γ a finite group then we may define
orbifold strata XΓ,λ for λ ∈ ΛΓ

+ and X̃Γ,µ for µ ∈ ΛΓ
+/Aut(Γ), which are

orbifolds, with proper 1-morphisms OΓ,λ(X ) : XΓ,λ → X and ÕΓ,µ(X ) : X̃Γ,µ →
X . Hence, if X is compact then XΓ,λ, X̃Γ,µ are compact. If X is oriented then
under extra conditions on Γ, λ, µ, which hold automatically for XΓ,λ if |Γ| is
odd, we can define natural orientations on XΓ,λ, X̃Γ,µ. Using these ideas, under
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the assumptions on Γ, λ, µ needed to orient XΓ,λ, X̃Γ,µ we define morphisms

ΠΓ,λ
orb : Borb

k (Y)→ Borb
k−dimλ(Y) by ΠΓ,λ

orb : [X , f ] 7→ [XΓ,λ, f ◦OΓ,λ(X )], (1.88)

Π̃Γ,µ
orb : Borb

k (Y)→ Borb
k−dimµ(Y) by Π̃Γ,µ

orb : [X , f ] 7→ [X̃Γ,µ, f ◦ ÕΓ,µ(X )]. (1.89)

One moral is that orbifold bordism groups Borb
∗ (Y), Beff

∗ (Y) are generally
much bigger than manifold bordism groups B∗(Y ), because in elements [X , f ]
of orbifold bordism groups, extra information is contained in the orbifold strata
of X . The morphisms ΠΓ,λ

orb , Π̃
Γ,µ
orb recover some of this extra information.

1.15.4 Bordism for d-orbifolds

Section 13.4 combines the ideas of §1.15.2 and §1.15.3 to define bordism for
d-orbifolds. As for Orb, Ȯrb in §1.15.3, for simplicity we do not distinguish
between the 2-categories dOrb in §1.11.1 and dŌrb ⊂ dOrbc in §1.14.1.

Definition 1.15.5. Let Y be an orbifold, and k ∈ Z. Consider pairs (X ,f),
where X ∈ dOrb is a compact, oriented d-orbifold without boundary with
vdimX = k, and f : X → Y is a 1-morphism in dOrb, where Y = FdOrb

Orb (Y).
Define an equivalence relation ∼ between such pairs by (X ,f) ∼ (X ′,f ′) if

there exists a compact, oriented d-orbifold with boundary W with vdimW =
k+1, a 1-morphism e : W→ Y in dOrbb, an equivalence of oriented d-orbifolds
j : −X qX ′ → ∂W, and a 2-morphism η : f q f ′ ⇒ e ◦ iW ◦ j.

Write [X ,f ] for the ∼-equivalence class (d-bordism class) of a pair (X ,f).
For each k ∈ Z, define the kth d-orbifold bordism group dBorb

k (Y) of Y to be the
set of all such d-bordism classes [X ,f ] with vdimX = k. We give dBorb

k (Y) the
structure of an abelian group, with zero element 0Y = [∅,∅], addition [X ,f ] +
[X ′,f ′] = [X qX ′,f q f ′], and additive inverses −[X ,f ] = [−X ,f ].

Similarly, define the semieffective d-orbifold bordism group dBsef
k (Y) and the

effective d-orbifold bordism group dBeff
k (Y) as above, but taking X and W to

be semieffective, or effective, respectively, in the sense of §1.11.10 and §1.14.10.
If Y is oriented and of dimension n, we define a biadditive, associative, su-

percommutative intersection product • : dBorb
k (Y)×dBorb

l (Y)→dBorb
k+l−n(Y) by

[X ,f ] • [X ′,f ′] = [X ×f ,Y,f ′ X ′,f ◦ πX ],

as in (1.86). Here X ×f ,Y,f ′ X ′ exists in dOrb by Theorem 1.11.18(a), and is
oriented by the d-orbifold analogue of Theorem 1.4.37.

If Y is an orbifold, define group morphisms

Πsef
orb : Borb

k (Y) −→ dBsef
k (Y), Πdeff

eff : Beff
k (Y) −→ dBeff

k (Y),

Πsef
deff : dBeff

k (Y) −→ dBsef
k (Y), Πdorb

deff : dBeff
k (Y) −→ dBorb

k (Y),

and Πdorb
sef : dBsef

k (Y) −→ dBorb
k (Y)

(1.90)

by Πsef
orb,Π

deff
eff : [X , f ] 7→ [X ,f ], where X ,f = FdOrb

Orb (X , f), and Πsef
deff ,Π

dorb
deff ,

Πdorb
sef : [X ,f ] 7→ [X ,f ].
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Here is the main result of §13.4, an orbifold analogue of Theorem 1.15.3. The
key idea is that semieffective (or effective) d-orbifolds X can be perturbed to
(effective) orbifolds, as in §1.11.10; to make this rigorous, we use good coordinate
systems on X , as in §1.11.9.

Theorem 1.15.6. For any orbifold Y, the maps Πsef
orb : Borb

k (Y) → dBsef
k (Y)

and Πdeff
eff : Beff

k (Y)→ dBeff
k (Y) in (1.90) are isomorphisms for all k ∈ Z.

As for (1.87), the theorem implies that we may define projections

Πhom
sef : dBsef

k (Y)→ Hk(Ytop;Q), Πhom
deff : dBeff

k (Y)→ Hk(Ytop;Z)

by Πhom
sef = Πhom

orb ◦ (Πsef
orb)−1 and Πhom

deff = Πhom
eff ◦ (Πdeff

eff )−1.

We think of these Πhom
sef ,Πhom

deff as virtual class maps on dBsef
∗ (Y), dBeff

∗ (Y). In
fact, with more work, one can also define virtual class maps on dBorb

∗ (Y):

Πhom
dorb : dBorb

k (Y) −→ Hk(Ytop;Q), (1.91)

satisfying Πhom
dorb ◦Πdorb

sef = Πhom
sef , for instance following the method of Fukaya et

al. [34, §6], [32, §A1] for virtual classes of Kuranishi spaces using ‘multisections’.
In future work the author intends to define a virtual chain construction for

d-manifolds and d-orbifolds, expressed in terms of new (co)homology theories
whose (co)chains are built from d-manifolds or d-orbifolds, as for the ‘Kuranishi
(co)homology’ described in [53,54].

As in §1.11.8, ifX is a d-orbifold and Γ a finite group then we may define orb-
ifold strataXΓ,λ for λ ∈ ΛΓ and X̃Γ,µ for µ ∈ ΛΓ/Aut(Γ), which are d-orbifolds,
with proper 1-morphisms OΓ,λ(X ) : XΓ,λ → X and ÕΓ,µ(X ) : X̃Γ,µ → X .
Hence, if X is compact then XΓ,λ, X̃Γ,µ are compact. If X is oriented and Γ
is odd then we under extra conditions on µ can define natural orientations on
XΓ,λ, X̃Γ,µ. As in (1.88)–(1.89), for such Γ, λ, µ we define morphisms

ΠΓ,λ
dorb : dBorb

k (Y)→ dBorb
k−dimλ(Y) by ΠΓ,λ

dorb : [X ,f ] 7→ [XΓ,λ,f ◦OΓ,λ(X )],

Π̃Γ,µ
dorb : dBorb

k (Y)→ dBorb
k−dimµ(Y) by Π̃Γ,µ

dorb : [X ,f ] 7→ [X̃Γ,µ,f ◦ ÕΓ,µ(X )].

We can use these operators ΠΓ,λ
dorb to study the d-orbifold bordism ring

dBorb
∗ (∗). Let Γ be a finite group with |Γ| odd, and R be a nontrivial Γ-

representation. Define an element [∗×0,R,0 ∗/Γ,π] in dBorb
− dimR(∗), where R =

FdMan
Man (R), and set λ = [R] ∈ ΛΓ

+. Then ΠΓ,−λ
dorb

(
[∗ ×0,R,0 ∗/Γ,π]

)
∈ dBorb

0 (∗),
so Πhom

dorb◦Π
Γ,−λ
dorb

(
[∗×0,R,0∗/Γ,π]

)
lies in Horb

0 (∗;Q) ∼= Q by (1.91). Calculation

shows that Πhom
dorb ◦ΠΓ,−λ

dorb

(
[∗×0,R,0 ∗/Γ,π]

)
is either |Aut(Γ)|/|Γ| or 0, depend-

ing on λ. In the first case, [∗ ×0,R,0 ∗/Γ,π] has infinite order in dBorb
− dimR(∗).

Extending this argument, we can show that dBorb
4k (∗) has infinite rank for all

k 6 0. In contrast, dBsef
k (∗) = dBeff

k (∗) = 0 for all k < 0 by Theorem 1.15.6.

1.16 Relation to other classes of spaces in mathematics

In Chapter 14 we study the relationships between d-manifolds and d-orbifolds
and other classes of geometric spaces in the literature. The next theorem sum-
marizes our results:
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Theorem 1.16.1. We may construct ‘truncation functors’ from various classes
of geometric spaces to d-manifolds and d-orbifolds, as follows:

(a) There is a functor ΠdMan
BManFS : BManFS→ Ho(dMan), where BManFS

is a category whose objects are triples (V,E, s) of a Banach manifold V,
Banach vector bundle E → V, and smooth section s : V → E whose
linearization ds|x : TxV → E|x is Fredholm with index n ∈ Z for each
x ∈ V with s|x = 0, and Ho(dMan) is the homotopy category of the
2-category of d-manifolds dMan.

There is also an orbifold version ΠdOrb
BOrbFS : Ho(BOrbFS) → Ho(dOrb)

of this using Banach orbifolds V, and ‘corners’ versions of both.

(b) There is a functor ΠdMan
MPolFS : MPolFS → Ho(dMan), where MPolFS

is a category whose objects are triples (V,E, s) of an M-polyfold without
boundary V as in Hofer, Wysocki and Zehnder [43, §3.3], a fillable strong
M-polyfold bundle E over V [43, §4.3], and an sc-smooth Fredholm section
s of E [43, §4.4] whose linearization ds|x : TxV → E|x [43, §4.4] has
Fredholm index n ∈ Z for all x ∈ V with s|x = 0.

There is also an orbifold version ΠdOrb
PolFS : Ho(PolFS) → Ho(dOrb) of

this using polyfolds V, and ‘corners’ versions of both.

(c) Given a d-orbifold with corners X, we can construct a Kuranishi space
(X,κ) in the sense of Fukaya, Oh, Ohta and Ono [32, §A], with the
same underlying topological space X. Conversely, given a Kuranishi space
(X,κ), we can construct a d-orbifold with corners X′. Composing the two
constructions, X and X′ are equivalent in dOrbc.

Very roughly speaking, this means that the ‘categories’ of d-orbifolds with
corners, and Kuranishi spaces, are equivalent. However, Fukaya et al. [32]
do not define morphisms of Kuranishi spaces, so we have no category of
Kuranishi spaces.

(d) There is a functor ΠdMan
SchObs : SchCObs → Ho(dMan), where SchCObs

is a category whose objects are triples (X,E•, φ), for X a separated, sec-
ond countable C-scheme and φ : E• → τ>−1(LX) a perfect obstruction
theory on X with constant virtual dimension, in the sense of Behrend and
Fantechi [12]. We may define a natural orientation on ΠdMan

SchObs(X,E
•, φ)

for each (X,E•, φ).

There is also an orbifold version ΠdOrb
StaObs : Ho(StaCObs) → Ho(dOrb),

taking X to be a Deligne–Mumford C-stack.

(e) There is a functor ΠdMan
QsDSch : Ho(QsDSchC) −→ Ho(dMan), where

QsDSchC is the ∞-category of separated, second countable, quasi-smooth
derived C-schemes X of constant dimension, as in Toën and Vezzosi [100–
102]. We may define a natural orientation on ΠdMan

QsDSch(X) for each X.

There is also an orbifold version ΠdOrb
QsDSta : Ho(QsDStaC)→ Ho(dOrb),

taking X to be a derived Deligne–Mumford C-stack.
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(f) (Borisov [16]) There is a natural functor ΠdMan
DerMan : Ho(DerManpd

ft )→
Ho(dManpr) from the homotopy category of the ∞-category DerManpd

ft

of derived manifolds of finite type with pure dimension, in the sense of
Spivak [95], to the homotopy category of the full 2-subcategory dManpr of
principal d-manifolds in dMan. This functor induces a bijection between
isomorphism classes of objects in Ho(DerManpd

ft ) and Ho(dManpr). It

is full, but not faithful. If [f ] is a morphism in Ho(DerManpd
ft ), then [f ]

is an isomorphism if and only if ΠdMan
DerMan([f ]) is an isomorphism.

Here, as in §A.3, if C is a 2-category (or∞-category), the homotopy category
Ho(C) of C is the category whose objects are objects of C, and whose morphisms
are 2-isomorphism classes of 1-morphisms in C. Then equivalences in C become
isomorphisms in Ho(C), 2-commutative diagrams in C become commutative
diagrams in Ho(C), and so on.

One moral of Theorem 1.16.1 is that essentially every geometric structure
on moduli spaces which is used to define enumerative invariants, either in dif-
ferential geometry, or in algebraic geometry over C, has a truncation functor
to d-manifolds or d-orbifolds. Combining Theorem 1.16.1 with proofs from the
literature of the existence on moduli spaces of the geometric structures listed in
Theorem 1.16.1, in Chapter 14 we deduce:

Theorem 1.16.2. (i) Any solution set of a smooth nonlinear elliptic equa-
tion with fixed topological invariants on a compact manifold naturally has the
structure of a d-manifold, uniquely up to equivalence in dMan.

For example, let (M, g), (N,h) be Riemannian manifolds, with M compact.
Then the family of harmonic maps f : M → N is a d-manifold HM,N with
vdimHM,N = 0. If M = S1, then HM,N is the moduli space of parametrized
closed geodesics in (N,h).

(ii) Let (X,ω) be a compact symplectic manifold of dimension 2n, and J an
almost complex structure on X compatible with ω. For β ∈ H2(X,Z) and
g,m > 0, write Mg,m(X, J, β) for the moduli space of stable triples (Σ, ~z, u) for
Σ a genus g prestable Riemann surface with m marked points ~z = (z1, . . . , zm)
and u : Σ → X a J-holomorphic map with [u(Σ)] = β in H2(X,Z). Using
results of Hofer, Wysocki and Zehnder [48] involving their theory of polyfolds,
we can makeMg,m(X, J, β) into a compact, oriented d-orbifold Mg,m(X,J, β).

(iii) Let (X,ω) be a compact symplectic manifold, J an almost complex structure
on X compatible with ω, and Y a compact, embedded Lagrangian submanifold in
X. For β ∈ H2(X,Y ;Z) and k > 0, write Mk(X,Y, J, β) for the moduli space
of J-holomorphic stable maps (Σ, ~z, u) to X from a prestable holomorphic
disc Σ with k boundary marked points ~z = (z1, . . . , zk), with u(∂Σ) ⊆ Y and
[u(Σ)] = β in H2(X,Y ;Z). Using results of Fukaya, Oh, Ohta and Ono [32, §7–
§8] involving their theory of Kuranishi spaces, we can makeMk(X,Y, J, β) into a
compact d-orbifold with corners Mk(X,Y, J, β). Given a relative spin structure
for (X,Y ), we may define an orientation on Mk(X,Y, J, β).

(iv) Let X be a complex projective manifold, and Mg,m(X,β) the Deligne–
Mumford moduli C-stack of stable triples (Σ, ~z, u) for Σ a genus g prestable
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Riemann surface with m marked points ~z = (z1, . . . , zm) and u : Σ → X a
morphism with u∗([Σ]) = β ∈ H2(X;Z). Then Behrend [7] defines a perfect
obstruction theory onMg,m(X,β), so we can makeMg,m(X,β) into a compact,
oriented d-orbifold Mg,m(X,β).

(v) Let X be a complex algebraic surface, and M a stable moduli C-scheme of
vector bundles or coherent sheaves E on X with fixed Chern character. Then
Mochizuki [83] defines a perfect obstruction theory on M, so we can make M
into an oriented d-manifold M.

(vi) Let X be a complex Calabi–Yau 3-fold or smooth Fano 3-fold, and M a
stable moduli C-scheme of coherent sheaves E on X with fixed Hilbert polyno-
mial. Then Thomas [98] defines a perfect obstruction theory on M, so we can
make M into an oriented d-manifold M.

(vii) Let X be a smooth complex projective 3-fold, and M a moduli C-scheme of
‘stable PT pairs’ (C,D) in X, where C ⊂ X is a curve and D ⊂ C is a divisor.
Then Pandharipande and Thomas [88] define a perfect obstruction theory on
M, so we can make M into a compact, oriented d-manifold M.

(ix) Let X be a complex Calabi–Yau 3-fold, and M a separated moduli C-
scheme of simple perfect complexes in the derived category Db coh(X). Then
Huybrechts and Thomas [49] define a perfect obstruction theory on M, so we
can make M into an oriented d-manifold M.

We can use d-manifolds and d-orbifolds to construct virtual classes or virtual
chains for all these moduli spaces.

Remark 1.16.3. D-manifolds should not be confused with differential graded
manifolds, or dg-manifolds. This term is used in two senses, in algebraic geom-
etry to mean a special kind of dg-scheme, as in Ciocan-Fontanine and Kapra-
nov [23, Def. 2.5.1], and in differential geometry to mean a supermanifold with
extra structure, as in Cattaneo and Schätz [19, Def. 3.6]. In both cases, a
dg-manifold E is roughly the total space of a graded vector bundle E• over a
manifold V , with a vector field Q of degree 1 satisfying [Q,Q] = 0.

For example, if E is a vector bundle over V and s ∈ C∞(E), we can make
E into a dg-manifold E by giving E the grading −1, and taking Q to be the
vector field on E corresponding to s. To this E we can associate the d-manifold
SV,E,s from Example 1.4.4. Note that SV,E,s only knows about an infinitesimal
neighbourhood of s−1(0) in V , but E remembers all of V,E, s.
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2 The 2-category of d-spaces

We now define and study the 2-category of d-spaces dSpa, which are derived
versions of C∞-schemes. In Chapter 3 we will define d-manifolds (without
boundary) to be a 2-subcategory of d-spaces, just as §B.5 allows us to regard
manifolds as a subcategory of the category of C∞-schemes. We will assume
familiarity with C∞-schemes, which are explained in §1.2 and Appendix B, and
with basic facts about 2-categories, which are summarized in §A.3–§A.4.

2.1 Square zero extensions of C∞-rings and C∞-schemes

Square zero extensions are an important tool in deformation theory in algebraic
geometry. They appear in the mathematics of cotangent complexes, obstruction
theories, and the construction of virtual classes, as in Behrend and Fantechi [12,
§4], for instance. They enter our story for similar reasons: we want a d-manifold
to be roughly the same as a C∞-scheme with an obstruction theory. We begin
with some basic facts about square zero extensions in C∞-geometry.

Definition 2.1. A square zero extension of C∞-rings is a surjective morphism
of C∞-rings φ : C′ → C such that the kernel I of φ in C′ is a square zero ideal,
that is, ij = 0 in C′ for all i, j ∈ I. Thus we have an exact sequence

0 // I
κφ // C′

φ // C // 0, (2.1)

where we write κφ : I → C′ for the kernel of φ.
As I is an ideal in C′, it is a C′-module. But it also has the structure of a

C-module: if i ∈ I and c ∈ C, we may choose c′ ∈ C′ with φ(c′) = c, and define
c ·i = c′ ·i. If c′′ ∈ C′ is an alternative choice with φ(c′′) = c, then φ(c′′−c′) = 0,
so c′′ − c′ ∈ I, and (c′′ − c′) · i = 0 as I is square zero. Thus c′ · i = c′′ · i, and
the C-module structure on I is well-defined.

If φ : C′ → C and ψ : D′ → D are square zero extensions, a morphism
of square zero extensions (α, α′) : φ → ψ is a pair of morphisms of C∞-rings
α : C → D and α′ : C′ → D′ with α ◦ φ = ψ ◦ α′. Then α′ takes the kernel I of
φ to the kernel J of ψ, giving α′′ := α′|I : I → J , in a commutative diagram

0 // I κφ
//

α′′��

C′
φ

//

α′��

C //

α��

0

0 // J
κψ // D′

ψ // D // 0.
(2.2)

Example 2.2. Suppose φ : C′ → C is a square zero extension with C′ finitely
generated. Choosing generators x1, . . . , xn in C induces a surjective morphism
of C∞-rings π : C∞(Rn) → C′. Let J be the kernel of π, and I the kernel of
φ ◦ π. Then J ⊆ I, and C ∼= C∞(Rn)/I, C′ ∼= C∞(Rn)/J , and (2.1) becomes

0 // I/J // C∞(Rn)/J // C∞(Rn)/I // 0.
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For I/J to be square zero is equivalent to I2 ⊆ J , so I2 ⊆ J ⊆ I. For example,
we can take I to be any ideal in C∞(Rn), and J = I2.

WriteX = SpecC, X ′ = SpecC′ and ıX = Specφ : X → X ′. The underlying
topological spaces are

X ∼=
{

(x1, . . . , xn) ∈ Rn : i(x1, . . . , xn) = 0 for all i ∈ I
}
,

X ′ ∼=
{

(x1, . . . , xn) ∈ Rn : j(x1, . . . , xn) = 0 for all j ∈ J
}
.

Now i(x1, . . . , xn) = 0 for all i ∈ I if and only if k(x1, . . . , xn) = 0 for all k ∈ I2,
so I2 ⊆ J ⊆ I implies that X ∼= X ′, and the continuous map ıX : X → X ′ in
ıX is a homeomorphism. The reduced C∞-schemes Xred, (X ′)red are also the
same, but X,X ′ can differ in their nonreduced structure.

We associate an exact sequence of C-modules to a square zero extension.

Definition 2.3. Let φ : C′ → C be a square zero extension of C∞-rings,
with kernel κφ : I → C′. As in §B.6, we have cotangent modules ΩC ,ΩC′

and a morphism of C-modules (Ωφ)∗ : ΩC′ ⊗C′ C → ΩC . Define a linear map
Ξφ : I → ΩC′ ⊗C′ C to be the composition

I
κφ // C′

dC′ // ΩC′ ΩC′ ⊗C′ C
′ id⊗φ // ΩC′ ⊗C′ C. (2.3)

In the next proposition, note that it is not obvious that Ξφ is a C-module
morphism, since in (2.3) none of κφ,dC′ , id ⊗ φ is a C-module morphism, and
dC′ is not even a C′-module morphism.

Proposition 2.4. In Definition 2.3, Ξφ is a morphism of C-modules, and

I
Ξφ // ΩC′ ⊗C′ C

(Ωφ)∗ // ΩC
// 0 (2.4)

is an exact sequence of C-modules.

Proof. Let i ∈ I and c ∈ C. Then c = φ(c′) for c′ ∈ C′, as φ is surjective. So

Ξφ(c · i) = Ξφ(c′ · i) = (id⊗ φ)
(
dC′(c

′ · i)
)

= (id⊗ φ)
(
c′ · dC′i+ i · dC′c

′)
= φ(c′) · dC′i+ φ(i) · dC′c

′ = c · dC′i+ 0 · dC′c
′ = c · Ξφ(i).

Hence Ξφ is a C-module morphism. Now ΩC is generated by dCc for c ∈ C.
Each c is φ(c′) for some c′ ∈ C, and then (Ωφ)∗(dC′c

′) = dCc. Thus (Ωφ)∗ is
surjective on generators of ΩC , so it is surjective, and (2.4) is exact at ΩC .

To show (2.4) is exact at ΩC′ ⊗C′ C, suppose β ∈ ΩC′ ⊗C′ C with (Ωφ)∗(β) =
0. Write β =

∑m
j=1 bj dC′c

′
j with bj ∈ C and c′j ∈ C′, and set cj = φ(c′j).

Then (Ωφ)∗(β) =
∑m
j=1 bj dCcj = 0 in ΩC . Now ΩC is the quotient of the

free C-module with basis dCc for c ∈ C by the relations dC

(
Φf (h1, . . . , hn)

)
−∑n

l=1 Φ ∂f
∂xl

(h1, . . . , hn) ·dChl = 0 for all smooth f : Rn → R and h1, . . . , hn ∈ C.
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Hence for k = 1, . . . , p there exist smooth functions fk : Rnk → R and elements
gk, h

1
k, . . . , h

nk
k in C such that

m∑
j=1

bj · dCcj =

p∑
k=1

gk ·
[
dC

(
Φfk(h1

k, . . . , h
nk
k )
)

−
∑nk
l=1 Φ ∂fk

∂xl

(h1
k, . . . , h

nk
k ) · dCh

l
k

] (2.5)

holds in the free C-module with basis of symbols dCc for c ∈ C.
For smooth f : Rn → R we write Φf : Cn → C and Φ′f : (C′)n → C′ for

the operations in the C∞-ring structures of C,C′. Since (2.1) is exact, we may
choose a right inverse r : C → C′ for φ such that C′ = r(C)⊕ I and φ ◦ r = idC .
Then φ(c′j − r(cj)) = cj − cj = 0, so c′j − r(cj) ∈ I. Also

φ ◦ Φ′fk
(
r(h1

k), . . . , r(hnkk )
)

= Φfk
(
φ ◦ r(h1

k), . . . , φ ◦ r(hnkk )
)

= Φfk(h1
k, . . . , h

nk
k ) = φ ◦ r

(
Φfk(h1

k, . . . , h
nk
k )
)
,

as φ is a C∞-ring morphism. Thus Φ′fk
(
r(h1

k), . . . , r(hnkk )
)
−r
(
Φfk(h1

k, . . . , h
nk
k )
)

lies in I. Define

γ =

m∑
j=1

bj · (c′j − r(cj))−
p∑
k=1

gk ·
[
Φ′fk

(
r(h1

k), . . . , r(hnkk )
)
− r
(
Φfk(h1

k, . . . , h
nk
k )
)]

in I. Then

Ξφ(γ) =

m∑
j=1

dC′
[
bj · (c′j − r(cj))

]
−

p∑
k=1

dC′
[
gk · Φ′fk(r(h1

k), . . . , r(hnkk ))−
gk · r(Φfk(h1

k, . . . , h
nk
k ))

]
=

m∑
j=1

bj · dC′c
′
j +

m∑
j=1

φ
[
c′j − r(cj)

]
· dC′b

′
j

−
p∑
k=1

φ
[
Φ′fk(r(h1

k), . . . , r(hnkk ))

− r(Φfk(h1
k, . . . , h

nk
k ))

]
· dC′g

′
k

−

{m∑
j=1

bj · dC′(r(cj))−
p∑
k=1

gk ·
[
dC′
(
r(Φfk(h1

k, . . . , h
nk
k ))

)
−
∑nk
l=1 Φ ∂fk

∂xl

(h1
k, . . . , h

nk
k ) · dC′(r(h

l
k))
]
}

= β,

where b′j , g
′
k ∈ C′ map to bj , gk under φ, and in the second line the first term is

β, the terms φ[· · · ] are zero as ‘· · · ’ lies in I, and in the third line {· · · } is zero
by (2.5), replacing dCc by dC′(r(c)). Therefore (2.4) is exact at ΩC′ ⊗C′ C.

The next lemma is straightforward:

Lemma 2.5. Let φ : C′ → C and ψ : D′ → D be square zero extensions,
and (α, α′) : φ → ψ a morphism of square zero extensions. Then we have a
commutative diagram

I
Ξφ

//

α′′

��

ΩC′ ⊗C′ C
(Ωφ)∗

//

Ωα′⊗α��

ΩC

Ωα��

// 0

J
Ξψ // ΩD′ ⊗D′ D

(Ωψ)∗ // ΩD
// 0,

(2.6)
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where the columns are equivariant under α : C → D.

Here is an identity satisfied by operations Φf ,Φ
′
f for square zero extensions.

Lemma 2.6. Let φ : C′ → C be a square zero extension of C∞-rings with kernel
I ⊆ C, and for smooth f : Rn → R write Φf : Cn → C and Φ′f : (C′)n → C′

for the C∞-ring operations in C,C′. Suppose c′1, . . . , c
′
n ∈ C′ and i1, . . . , in ∈ I

with φ(c′j) = cj ∈ C for i = 1, . . . , n. Then

Φ′f (c′1 + i1, . . . , c
′
n + in) = Φ′f (c′1, . . . , c

′
n) +

∑n
j=1 Φ ∂f

∂xj

(c1, . . . , cn) · ij .

Proof. By Hadamard’s Lemma there exist smooth functions gj : R2n → R for
j = 1, . . . , n with

f(y1, . . . , yn)− f(x1, . . . , xn) =
∑n
j=1(yj − xj)gj(x1, . . . , xn, y1, . . . , yn)

for all xj , yj ∈ R; also gj(x1, . . . , xn, x1, . . . , xn) = ∂f
∂xj

(x1, . . . , xn). Applying

the axioms of C∞-rings in C′ with c′j , c
′
j + ij in place of xj , yj yields

Φ′f (c′1 + i1, . . . , c
′
n + in)− Φ′f (c′1, . . . , c

′
n)

=
∑n
j=1(c′j + ij − c′j) · Φ′gj (c

′
1, . . . , c

′
n, c
′
1 + i1, . . . , c

′
n + in)

=
∑n
j=1 φ

(
Φ′gj (c

′
1, . . . , c

′
n, c
′
1 + i1, . . . , c

′
n + in)

)
· ij

=
∑n
j=1 Φgj (c1, . . . , cn, c1, . . . , cn) · ij =

∑n
j=1 Φ ∂f

∂xj

(c1, . . . , cn) · ij ,

where in the third step we use that the C′-action on I is induced by a C-action,
in the fourth that φ is a morphism of C∞-rings and φ(c′j) = φ(c′j + ij) = cj ,

and in the last that gj(x1, . . . , xn, x1, . . . , xn) = ∂f
∂xj

(x1, . . . , xn).

The lemma motivates a construction of square zero extensions:

Example 2.7. Let C be a C∞-ring, and G a C-module. Set C′ = C ⊕ G, and
write elements c′ of C′ as pairs (c, g) for c ∈ C and g ∈ G. Since C is a C∞-ring,
it has operations Φf : Cn → C for all smooth f : Rn → R satisfying axioms, as
in Definition B.1. Define Φ′f : (C′)n → C′ by

Φ′f
(
(c1, g1), . . . , (cn, gn)

)
=
(
Φf (c1, . . . , cn),

∑n
j=1 Φ ∂f

∂xj

(c1, . . . , cn) · gj
)
.

It is easy to show that these operations make C′ into a C∞-ring, which we will
write as C n G. Define φ : C′ → C by φ : (c, g) 7→ c. Then φ is a square zero
extension of C∞-rings. Not all square zero extensions φ : C′ → C are of this
form: we have C′ ∼= C n G if and only if φ admits a right inverse r : C → C′

which is a C∞-ring morphism. One can show that ΩC′ ⊗C′ C ∼= ΩC ⊕G.
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More generally, if φ : C′ → C is a square zero extension and G is a C-module
we may define Ĉ′ = C′ ⊕G and Φ̂′f : (Ĉ′)n → Ĉ′ by

Φ̂′f
(
(c′1, g1), . . . , (c′n, gn)

)
=
(
Φ′f (c′1, . . . , c

′
n),
∑n
j=1 Φ ∂f

∂xj

(φ(c′1), . . . , φ(c′n)) · gj
)
.

Then Ĉ′ is a C∞-ring, which we will write as C′ nG, and φ̂ : Ĉ′ → C given by
φ̂ : (c′, g) 7→ φ(c) is a square zero extension, with ΩĈ′ ⊗Ĉ′ C

∼= (ΩC′ ⊗C′ C)⊕G.

The next proposition will be important for defining 2-morphisms of d-spaces.

Proposition 2.8. Suppose φ : C′ → C and ψ : D′ → D are square zero ex-
tensions of C∞-rings with kernels I, J, and (α, α′1), (α, α′2) are both morphisms
φ→ ψ which induce morphisms α′′1 , α

′′
2 : I → J, so we have a diagram

0 // I κφ
//

α′′1 �� α′′2��

C′
φ

//

α′1 �� α′2��

C //

α��

0

0 // J
κψ // D′

ψ // D // 0.

Then there exists a unique D-module morphism µ : ΩC′ ⊗C′ D→ J such that

α′2 = α′1 + κψ ◦ µ ◦
(
id⊗ (α ◦ φ)

)
◦ dC′ , (2.7)

where the morphisms are given in

C′
dC′ // ΩC′ ΩC′ ⊗C′ C

′ id⊗(α◦φ) // ΩC′ ⊗C′ D
µ // J

κψ // D′.

We also have

α′′2 = α′′1 + µ ◦
(
id⊗ (α ◦ φ)

)
◦ dC′ ◦ κφ

and Ωα′2 = Ωα′1 + dD′ ◦ κψ ◦ µ ◦
(
id⊗ (α ◦ φ)

)
.

(2.8)

Conversely, if (α, α′1) : φ → ψ is a morphism, and µ : ΩC′ ⊗C′ D → J
a D-module morphism, then defining α′2 by (2.7) gives a C∞-ring morphism
α′2 : C′ → D′ with (α, α′2) : φ→ ψ a morphism of square zero extensions.

Proof. Define β = α′2 − α′1 : C′ → J . Let f : Rn → R be smooth, and
write Φf ,Φ

′
f , Φ̂f , Φ̂

′
f for the C∞-ring operations on C,C′,D,D′ respectively. Let

c′1, . . . , c
′
n ∈ C′. Then α′j

(
Φ′f (c1, . . . , cn)

)
= Φ̂′f

(
α′j(c

′
1), . . . , α′j(c

′
n)
)

for j = 1, 2
as α′j is a C∞-ring morphism. Hence

β
(
Φ′f (c′1, . . . , c

′
n)
)

= Φ̂′f
(
α′2(c′1), . . . , α′j(c

′
n)
)
− Φ̂′f

(
α′1(c′1), . . . , α′1(c′n)

)
= Φ̂′f

(
α′1(c′1) + β(c′1), . . . , α′1(c′n) + β(c′1)

)
− Φ̂′f

(
α′1(c′1), . . . , α′1(c′n)

)
=
∑n
j=1 Φ̂ ∂f

∂xj

(
ψ ◦ α′1(c′1), . . . , ψ ◦ α′1(c′n)

)
· β(c′j)

=
∑n
j=1

(
ψ ◦ α′1

(
Φ′∂f
∂xj

(c′1, . . . , c
′
n)
))
· β(c′j).
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Therefore β is a C∞-derivation on C′ in the sense of Definition B.31, making
J a C′-module via its D-module structure and ψ ◦ α′1 : C′ → D. Hence by the
universal property of the cotangent module ΩC′ , there is a unique morphism
of C′-modules λ : ΩC′ → J with β = λ ◦ dC′ . As the C′-action on J factors
through the D-action, λ factors through ΩC′ ⊗C′ D, so there is a unique D-
module morphism µ : ΩC′ ⊗C′ D→ J with λ = µ ◦ (id⊗ (α ◦ φ)). Putting this
all together gives (2.7), and (2.8) easily follows. This proves the first part.

For the converse, given (α, α′1), µ and defining α′2 by (2.7), we have α′1
(
Φ′f (c1,

. . . , cn)
)

= Φ̂′f
(
α′1(c′1), . . . , α′1(c′n)

)
since α′1 is a C∞-ring morphism. Running

the argument above in reverse then shows that α′2
(
Φ′f (c1, . . . , cn)

)
= Φ̂′f

(
α′2(c′1),

. . . , α′2(c′n)
)
. Thus α′2 is a C∞-ring morphism, and ψ ◦ α′2 = ψ ◦ α′1 = α ◦ φ as

ψ ◦ κψ = 0, so (α, α′2) is a morphism of square zero extensions.

All the above material for C∞-rings quickly translates to square zero ex-
tensions of C∞-schemes, by applying the spectrum functor, and working with
sheaves of C∞-rings or abelian groups and sheaves of OX -modules, rather than
just C∞-rings and modules. We leave the proofs as an exercise. See §B.3 and
§B.7 for the necessary background. Note in particular, as in Definitions B.15
and B.34, that there are two different kinds of pullback f−1, f∗, and we will
make use of both: if f : X → Y is a continuous map and E is a sheaf of
abelian groups or C∞-rings on Y then f−1(E) is a sheaf of abelian groups or
C∞-rings on Y . Also, if f = (f, f ]) : X → Y is a morphism of C∞-schemes

and E ∈ qcoh(Y ) then f∗(E) = f−1(E)⊗f−1(OY ) OX in qcoh(X).
Here are the C∞-scheme analogues of Definitions 2.1 and 2.3, Example 2.7,

and Proposition 2.8.

Definition 2.9. Let X = (X,OX) be a locally fair C∞-scheme. By Theorem
B.36(c), this implies all OX -modules are quasicoherent. A square zero extension
(O′X , ıX) of X consists of a sheaf of C∞-rings O′X on X, such that X ′ = (X,O′X)
is a C∞-scheme, and a morphism ıX : O′X → OX of sheaves of C∞-rings on X,
which is a sheaf of square zero extensions of C∞-rings, in the sense of Definition
2.1. Then ıX = (idX , ıX) is a morphism of C∞-schemes ıX : X → X ′. We also
call (X,O′X , ıX) a square zero extension of C∞-schemes.

Write κX : IX → O′X for the kernel of ıX . Then IX is a sheaf of square zero
ideals in O′X , so it is a sheaf of OX -modules, and thus a quasicoherent sheaf on
X. As for (2.1), we have an exact sequence of sheaves of abelian groups on X:

0 // IX
κX // O′X

ıX // OX // 0. (2.9)

The sheaf of C∞-rings O′X has a sheaf of cotangent modules ΩO′X , which
is a sheaf of O′X -modules with exterior derivative d : O′X → ΩO′X . Define
FX = ΩO′X ⊗O′X OX to be the associated sheaf of OX -modules, a quasicoherent
sheaf on X, and set ψX = ΩıX ⊗ id : FX → T ∗X, a morphism in qcoh(X).
Equivalently, FX = ı∗X(T ∗X ′) and ψX = ΩıX . In the analogue of (2.3), define
a morphism of sheaves of abelian groups ξX : IX → FX to be the composition

IX
κX // O′X

d // ΩO′X ΩO′X ⊗O′X O
′
X

id⊗ıX // ΩO′X ⊗O′X OX FX . (2.10)
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Proposition 2.4 then implies that ξX is a morphism of quasicoherent sheaves on
X, and the following sequence is exact in qcoh(X):

IX
ξX // FX

ψX // T ∗X // 0. (2.11)

Remark 2.10. Of course, we could have defined a square zero extension of
C∞-schemes to be a morphism of C∞-schemes ıX : X → X ′ with the properties
above. But this would run counter to the philosophy of this chapter. We do not
want to regard X ′ as a separate C∞-scheme in its own right; instead, we try to
work always with sheaves (whenever possible quasicoherent sheaves) on X. So
we express X ′ in terms of a second sheaf of C∞-rings O′X on X.

This will become important in the definition of d-stacks in §9.2. Then there
is a real difference between working with a morphism of C∞-stacks ıX : X → X ′,
and working with a C∞-stack X together with a sheaf of C∞-rings O′X on X .
In the first case we would have to worry about 2-morphisms of both X and X ′,
but in the second only about 2-morphisms of X , which makes things simpler.

Example 2.11. Let X = (X,OX) be a locally fair C∞-scheme, and G ∈
qcoh(X). Define a sheaf of C∞-rings OX nG on X by (OX nG)(U) = OX(U)n
G(U) ∼= OX(U)⊕G(U) for each open U ⊆ X, where the C∞-ringOX(U)nG(U) is
defined in Example 2.7, with restriction maps ρUV : (OXnG)(U)→ (OXnG)(V )
for open V ⊆ U ⊆ X induced from the restriction maps ρUV : OX(U)→ OX(V )
and ρUV : G(U) → G(V ) in OX ,G in the obvious way. Define a sheaf of mor-
phisms of C∞-rings ıX : OX n G → OX by taking ıX(U) : (OX n G)(U) ∼=
OX(U)⊕ G(U)→ OX(U) to be the natural projection. Then (OX n G, ıX) is a
square zero extension of X. It is easy to see that the associated quasicoherent
sheaves IX ,FX are IX ∼= G and FX ∼= T ∗X ⊕ G.

More generally, let (O′X , ıX) be a square zero extension of X, with sheaves
IX ,FX , and let G ∈ qcoh(X). Define a sheaf of C∞-rings O′̂X on X by O′̂X =
O′X n G, where (O′X n G)(U) = O′X(U) n G(U) ∼= O′X(U) ⊕ G(U) for all open
U ⊆ X, and the C∞-ring O′X(U) n G(U) is defined in Example 2.7, and with
the obvious restriction maps ρUV . Define a morphism of sheaves of C∞-rings
ıX̂ : O′̂X → OX by ıX̂(U) = ıX(U) ◦ πO′X(U), where πO′X(U) : (O′X n G)(U) ∼=
O′X(U) ⊕ G(U) → O′X(U) is the natural projection. Then (O′̂X , ıX̂) is a square
zero extension of X, with sheaves IX̂ ∼= IX ⊕ G and F X̂ ∼= FX ⊕ G.

Definition 2.12. Let (X,O′X , ıX) and (Y ,O′Y , ıY ) be square zero extensions
of C∞-schemes. A morphism of square zero extensions from (X,O′X , ıX) to
(Y ,O′Y , ıY ) is a pair (f, f ′), where f = (f, f ]) is a morphism of C∞-schemes

f : X → Y , so that f : X → Y is continuous and f ] : f−1(OY ) → OX is a

morphism of sheaves of C∞-rings on X, and f ′ : f−1(O′Y )→ O′X is a morphism
of sheaves of C∞-rings on X such that f ] ◦ f−1(ıY ) = ıX ◦ f ′ : f−1(O′Y )→ OX .

156



We will define a commutative diagram of sheaves of abelian groups on X:

f−1(IY )⊗id
f−1(OY )f

−1(OY )

id⊗f]��

f−1(IY )
f−1(κY )

//

f ′|f−1(IY )

��

f−1(O′Y )
f−1(ıY )

//

f ′

��

f−1(OY ) //

f]

��

0

f∗(IY ) =

f−1(IY )⊗f
]

f−1(OY ) OX f1

**UUUUUU

IX
κX // O′X

ıX // OX // 0.

(2.12)

Here the bottom line is (2.9) for (X,O′X , ıX), and the top line the pullback of
(2.9) for (Y ,O′Y , ıY ) by f : X → Y , so both are exact as f−1 is right exact. We
use the notation that if for instance ıX : O′X → OX is a morphism of sheaves
of C∞-rings and E a sheaf of O′X -modules, then E ⊗ıXO′X OX or just E ⊗O′X OX is

the associated sheaf of OX -modules.
As f ] ◦ f−1(ıY ) = ıX ◦ f ′, the right hand square of (2.12) commutes.

Hence f ′ maps the kernel f−1(IY ) of f−1(ıY ) to the kernel IX of ıX , and
f ′|f−1(IY ) in (2.12) is well-defined. This f ′|f−1(IY ) is the analogue of α′′ in (2.2).
Now f−1(IY ) is an f−1(OY )-module, and IX an OX -module, and f ′|f−1(IY ) is

equivariant under f ] : f−1(OY ) → OX . Therefore f ′|f−1(IY ) factors through
f−1(IY )⊗f−1(OY )OX = f∗(IY ), and there is a unique morphism f1 : f∗(IY )→
IX in qcoh(X) making (2.12) commute.

Define a morphism f3 = Ωf : f∗(T ∗Y ) → T ∗X in qcoh(X), and define

f2 : f∗(FY )→ FX in qcoh(X) by the commutative diagram

f∗(FY )

f2

��

f−1(ΩO′Y ⊗
ıY
O′Y
OY )⊗f

]

f−1(OY )OX ∼=
// f−1(ΩO′Y )⊗f

]◦f−1(ıY )
f−1(O′Y ) OX

FX ΩO′X ⊗
ıX
O′X
OX f−1(ΩO′Y )⊗ıX◦f

′

f−1(O′Y )OX .
Ωf′⊗id

oo

(2.13)

Then the analogue of (2.6) is the following commutative diagram in qcoh(X):

f∗(IY )
f∗(ξY )

//

f1

��

f∗(FY )
f∗(ψY )

//

f2

��

f∗(T ∗Y ) //

f3=Ωf��

0

IX
ξX // FX

ψX // T ∗X // 0.

(2.14)

Note that both rows are exact, as (2.11) is exact and f∗ is right exact.
Suppose (X,O′X , ıX), (Y ,O′Y , ıY ), (Z,O′Z , ıZ) are square zero extensions of

C∞-schemes, and (f, f ′) : (X,O′X , ıX) → (Y ,O′Y , ıY ), (g, g′) : (Y ,O′Y , ıY ) →
(Z,O′Z , ıZ) are morphisms. Define the composition of (f, f ′) and (g, g′) to be

(g, g′) ◦ (f, f ′) =
(
g ◦ f, f ′ ◦ f−1(g′) ◦ If,g(O′Z)

)
. (2.15)

One can check that this is a morphism of square zero extensions, and that
composition is associative.
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Proposition 2.13. Let (X,O′X , ıX) and (Y ,O′Y , ıY ) be square zero extensions
of C∞-schemes with kernel sheaves IX , IY , and (f, f ′), (g, g′) be morphisms
from (X,O′X , ıX) to (Y ,O′Y , ıY ). Suppose f = g. Use the notation κX , ξX , ψX ,

κY , ξY , ψY from Definition 2.9 and f1, f2, f3, g1, g2, g3 from Definition 2.12.
Then there exists a unique morphism µ : f∗(FY )→ IX in qcoh(X) such that

g′ = f ′ + κX ◦ µ ◦
(
id⊗ (f ] ◦ f−1(ıY ))

)
◦
(
f−1(d)

)
, (2.16)

where the morphisms are given in the diagram

f−1(O′Y )

f ′

��
g′

��

f−1(d)

// f−1(ΩO′Y ) f−1(ΩO′Y )⊗id
f−1(O′Y ) f

−1(O′Y )

id⊗(f]◦f−1(ıY )) ��

O′X IX
κXoo f∗(FY )

µoo f−1(ΩO′Y )⊗f
]◦f−1(ıY )
f−1(O′Y ) OX .

We also have

g1 = f1 + µ ◦ f∗(ξY ), g2 = f2 + ξX ◦ µ, and g3 = f3. (2.17)

So µ is a homotopy between morphisms of complexes (2.14) from (f, f ′), (g, g′).
Conversely, if (f, f ′) is a morphism (X,O′X , ıX) → (Y ,O′Y , ıY ) and µ :

f∗(FY )→ IX is a morphism in qcoh(X), then there exists a unique morphism

g′ : f−1(O′Y ) → O′X of sheaves of C∞-rings on X such that (g, g′) with g = f
is a morphism (X,O′X , ıX)→ (Y ,O′Y , ıY ), and (2.16)–(2.17) hold.

2.2 The definition of d-spaces

We will now define the 2-category of d-spaces dSpa. Theorem 2.15 will show it
satisfies the axioms of a 2-category.

Definition 2.14. A d-space X is a quintuple X = (X,O′X , EX , ıX , X) such
that X is a separated, second countable, locally fair C∞-scheme, and (O′X , ıX)
is a square zero extension of X in the sense of Definition 2.9 with kernel κX :
IX → O′X , so that IX ∈ qcoh(X), and EX is a quasicoherent sheaf on X, and
X : EX → IX is a surjective morphism in qcoh(X). Thus as for (2.9) we have
an exact sequence of sheaves of abelian groups on X:

EX
κX◦X // O′X

ıX // OX // 0. (2.18)

As X is locally fair, the underlying topological space X is locally homeomorphic
to a closed subset of Rn, so it is locally compact. But Hausdorff, second countable
and locally compact imply paracompact, so X is paracompact.

Let FX , ψX , ξX be as in Definition 2.9, and define φX = ξX ◦ X : EX → FX .
Then from (2.11) and X surjective we have an exact sequence in qcoh(X):

EX
φX // FX

ψX // T ∗X // 0. (2.19)

The morphism φX : EX → FX will be called the virtual cotangent sheaf of X,
for reasons we explain in §3.1.
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Write λX : CX → EX for the kernel of X : EX → IX in qcoh(X), and
µX : DX → EX for the kernel of φX : EX → FX in qcoh(X). Since φX = ξX ◦X ,
λX factors via µX , so there exists a unique morphism νX : CX → DX with
λX = µX ◦ νX . Thus we have a commutative diagram with exact diagonals:

0
0

++WWWWWWW T ∗X
22fffffff

CX
νX ��

λX
++XXXXXXX FX

ψX 22fffffff

EX
φX 33fffffff

X
++XXXXXXX

DX µX

33fffffff IX ,,YYYYYYYY
ξX

OO

0
33fffffff 0.

(2.20)

Let X,Y be d-spaces. A 1-morphism f : X → Y is a triple f = (f, f ′, f ′′),

where f : X → Y is a morphism of C∞-schemes, and f ′ : f−1(O′Y ) → O′X is a
morphism of sheaves of C∞-rings on X such that (f, f ′) is a morphism of square
zero extensions (X,O′X , ıX) → (Y ,O′Y , ıY ) in the sense of Definition 2.12, and
f ′′ : f∗(EY )→ EX is a morphism in qcoh(X) satisfying

X ◦ f ′′ = f1 ◦ f∗(Y ) : f∗(EY ) −→ IX , (2.21)

where f1, f2, f3 are as in Definition 2.12. Then from (2.14), (2.19) and (2.21)
we have a commutative diagram in qcoh(X), with exact rows:

f∗(EY )
f∗(φY )

//

f ′′��

f∗(FY )
f∗(ψY )

//

f2

��

f∗(T ∗Y ) //

f3=Ωf��

0

EX
φX // FX

ψX // T ∗X // 0.

(2.22)

Composing (2.21) with f∗(λY ) : f∗(CY ) → f∗(EY ) gives X ◦ f ′′ ◦ f∗(λY ) =

f1 ◦ f∗(Y ) ◦ f∗(λY ) = 0, since Y ◦ λY = 0. Hence f ′′ ◦ f∗(λY ) factors through

the kernel of X , which is λX . Thus there exists a unique morphism f4 :
f∗(CY )→ CX in qcoh(X) with λX ◦ f4 = f ′′ ◦ f∗(λY ). Similarly there exists a

unique f5 : f∗(DY )→ DX with µX ◦ f5 = f ′′ ◦ f∗(µY ).
If X is a d-space, the identity 1-morphism idX : X → X is idX =(

idX , δX(O′X), δX(EX)
)
. It is easy to check idX is a 1-morphism.

Now let X,Y ,Z be d-spaces, and f : X → Y , g : Y → Z be 1-morphisms.
Generalizing (2.15), define the composition of 1-morphisms to be

g ◦ f =
(
g ◦ f, f ′ ◦ f−1(g′) ◦ If,g(O′Z), f ′′ ◦ f∗(g′′) ◦ If,g(EZ)

)
. (2.23)

One can check that g ◦ f is a 1-morphism X → Z, with

(g◦f)1 = f1 ◦ f∗(g1) ◦ If,g(IZ), (g◦f)2 = f2 ◦ f∗(g2) ◦ If,g(FZ),

(g◦f)3 = f3 ◦ f∗(g3) ◦ If,g(T ∗Z), (g◦f)4 = f4 ◦ f∗(g4) ◦ If,g(CZ),

and (g ◦ f)5 = f5 ◦ f∗(g5) ◦ If,g(DZ). (2.24)

It is also easy to show that f ◦ idX = idY ◦ f = f .
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Let f , g : X → Y be 1-morphisms of d-spaces, where f = (f, f ′, f ′′) and

g = (g, g′, g′′), and let f1, . . . , g5 be as above. Suppose f = g. A 2-morphism
η : f ⇒ g is a morphism η : f∗(FY )→ EX in qcoh(X), such that

g′ = f ′ + κX ◦ X ◦ η ◦
(
id⊗ (f ] ◦ f−1(ıY ))

)
◦
(
f−1(d)

)
and g′′ = f ′′ + η ◦ f∗(φY ).

(2.25)

Here the first equation makes sense as Proposition 2.13 shows that (2.16) holds
for some µ : f∗(FY )→ IX , and we take µ = X ◦ η. Thus (2.17) implies that

g1 = f1 + X ◦ η ◦ f∗(ξY ), g2 = f2 + φX ◦ η,
g3 = f3, g4 = f4, and g5 = f5.

(2.26)

So (2.22) for f , g combine to give a diagram

f∗(EY )
f∗(φY )

//
f ′′

��

g′′=f ′′+η◦f∗(φY )

��

f∗(FY )
f∗(ψY )

//

f2

��
g2=f2+φX◦η

��
η

ttiiiiiiiiiiiiiiii
f∗(T ∗Y ) //

f3=g3=Ωf
��

0

EX
φX // FX

ψX // T ∗X // 0.

That is, η is a homotopy between the morphisms of complexes (2.22) from f , g.
If f : X → Y is a 1-morphism, the identity 2-morphism idf : f ⇒ f is the

zero morphism 0 : f∗(FY )→ EX . Suppose X,Y are d-spaces, f , g,h : X → Y
are 1-morphisms and η : f ⇒ g, ζ : g ⇒ h are 2-morphisms. Then f = g,
g = h, so f = h. Combining (2.25) for η, ζ gives

h′ = f ′ + κX ◦ X ◦ (ζ + η) ◦
(
id⊗ (f ] ◦ f−1(ıY ))

)
◦
(
f−1(d)

)
and h′′ = f ′′ + (ζ + η) ◦ f∗(φY ).

Hence the sum ζ+η : f∗(FX)→ EX is a 2-morphism f ⇒ h. Define the vertical
composition of 2-morphisms ζ � η : f ⇒ h as in (A.1) to be ζ � η = ζ + η.

Let X,Y ,Z be d-spaces, f , f̃ : X → Y and g, g̃ : Y → Z be 1-morphisms,
and η : f ⇒ f̃ , ζ : g ⇒ g̃ be 2-morphisms. Then f = f̃ , g = g̃, so g ◦ f = g̃ ◦ f̃ .

Combining (2.24) and (2.25) and using f = f̃ , g = g̃, we may prove that

(g̃ ◦ f̃)′ = f̃ ′ ◦ f−1(g̃′) ◦ If,g(O′Z)

=
[
f ′ + κX ◦ X ◦ η ◦

(
id⊗ (f ] ◦ f−1(ıY ))

)
◦
(
f−1(d)

)]
◦

f−1
[
g′+κY ◦Y ◦ζ◦

(
id⊗ (g]◦g−1(ıZ))

)
◦
(
g−1(d)

)]
◦If,g(O′Z)

= (g◦f)′+κX ◦X ◦θ◦
(
id⊗ ((g◦f)]◦(g◦f)−1(ıZ))

)
◦
(
(g◦f)−1(d)

)
,

(g̃ ◦ f̃)′′ = f̃ ′′ ◦ f∗(g̃′′) ◦ If,g(EZ)

=
[
f ′′ + η ◦ f∗(φY )

]
◦ f∗

(
g′′ + ζ ◦ g∗(φZ)

)
◦ If,g(EZ)

= (g ◦ f)′′ + θ ◦ (g ◦ f)∗(φZ),

where θ =
(
η ◦ f∗(g2) + f ′′ ◦ f∗(ζ) + η ◦ f∗(φY ) ◦ f∗(ζ)

)
◦ If,g(FZ).
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Here suppressing boring terms such as id ⊗ (f ] ◦ f−1(ıY )) and If,g(EZ), the

essential points for the (g̃ ◦ f̃)′ equation are that g2 ◦ g−1(d) = d ◦ g′, f ′ ◦
f−1(κY ◦ Y ) = κX ◦ X ◦f ′′, and d◦κY ◦ Y = φY , and for the (g̃ ◦ f̃)′′ equation
is that φY ◦ g′′ = g2 ◦ g∗(φZ). Hence θ : g ◦ f ⇒ g̃ ◦ f̃ is a 2-morphism. Define

the horizontal composition of 2-morphisms ζ ∗ η : g ◦ f ⇒ g̃ ◦ f̃ as in (A.2) by

ζ ∗ η =
(
η ◦ f∗(g2) + f ′′ ◦ f∗(ζ) + η ◦ f∗(φY ) ◦ f∗(ζ)

)
◦ If,g(FZ). (2.27)

This completes the definition of the 2-category of d-spaces dSpa.
Regard the category C∞Schlf

ssc of separated, second countable, locally fair
C∞-schemes as a 2-category with only identity 2-morphisms idf for (1-)mor-

phisms f : X → Y . Define a strict 2-functor FC∞Sch
dSpa : dSpa → C∞Schlf

ssc

to map X 7→ X on objects X, f 7→ f on 1-morphisms f : X → Y , and

η 7→ idf on 2-morphisms η : f ⇒ g. That is, FC∞Sch
dSpa forgets the information

O′X , EX , ıX , X in X, remembering only X, and forgets the information f ′, f ′′

in f , remembering only f .

Define a strict 2-functor FdSpa
C∞Sch : C∞Schlf

ssc → dSpa to map X to X =
(X,OX , 0, idOX , 0) on objects X, to map f to f = (f, f ], 0) on (1-)morphisms
f : X → Y , and to map identity 2-morphisms idf : f ⇒ f to identity 2-
morphisms idf : f ⇒ f . That is, on objects X we have O′X = OX , ıX = idOX
and EX = X = 0, and on 1-morphisms f ′ = f ] : f−1(OY )→ OX and f ′′ = 0.

Write Man,Manb,Manc for the categories of manifolds, and manifolds
with boundary, and manifolds with corners, respectively. We will discuss Manb,
Manc in more detail in Chapter 5. Define strict 2-functors FdSpa

Man : Man →
dSpa, FdSpa

Manb : Manb → dSpa, FdSpa
Manc : Manc → dSpa by FdSpa

Man∗ = FdSpa
C∞Sch◦

FC∞Sch
Man∗ . Write Ĉ∞Schlf

ssc for the full 2-subcategory of objects X in dSpa

equivalent to FdSpa
C∞Sch(X) for some X in C∞Schlf

ssc, and M̂an for the full 2-

subcategory of objectsX in dSpa equivalent to FdSpa
Man (X) for some manifold X.

When we say that a d-space X is a C∞-scheme, or is a manifold, we mean
that X ∈ Ĉ∞Schlf

ssc, or X ∈ M̂an, respectively.

Theorem 2.15. (a) Definition 2.14 defines a (strict) 2-category dSpa, in
which all 2-morphisms are 2-isomorphisms.

(b) For any 1-morphism f : X → Y in dSpa the 2-morphisms η : f ⇒ f form
an abelian group under vertical composition, and in fact a real vector space.

(c) FC∞Sch
dSpa , FdSpa

C∞Sch and FdSpa
Man∗ in Definition 2.14 are (strict) 2-functors.

(d) FdSpa
C∞Sch and FdSpa

Man are full and faithful in the 2-categorical sense, that
is, for all objects X,Y in the domain they induce equivalences (in fact iso-
morphisms) of categories F ∗∗ : Hom(X,Y ) → Hom

(
F ∗∗ (X), F ∗∗ (Y )

)
. Hence

C∞Schlf
ssc,Man and Ĉ∞Schlf

ssc, M̂an are equivalent 2-categories.

The 2-functors FdSpa
Manb , F

dSpa
Manc are faithful, but not full.

Proof. For (a), let f : W → X, g : X → Y and h : Y → Z be 1-morphisms in
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dSpa. Using (2.23) we see that

h ◦ (g ◦ f) =
(
h ◦ (g ◦ f), [f ′ ◦ f−1(g′) ◦ If,g(O′Y )] ◦ (g ◦ f)−1(h′) ◦ Ig◦f,h(O′Z),

[f ′′ ◦ f∗(g′′) ◦ If,g(EY )] ◦ (g ◦ f)∗(h′′) ◦ Ig◦f,h(EZ)
)
,

(h ◦ g) ◦ f =
(
(h ◦ g) ◦ f, f ′ ◦ f−1[g′ ◦ g−1(h′) ◦ Ig,h(O′Z)] ◦ If,h◦g(O′Z),

f ′′ ◦ f∗[g′′ ◦ g∗(h′′) ◦ Ig,h(EZ)] ◦ If,h◦g(EZ)
)
.

As C∞Sch is a category h◦ (g ◦f) = (h◦g)◦f . Also (h◦ (g ◦f))′ = ((h◦g)◦f)′

and (h ◦ (g ◦ f))′′ = ((h ◦ g) ◦ f)′′ follow from the identities

If,g(O′Y ) ◦ (g ◦ f)−1(h′) = f−1(g−1(h′)) ◦ If,g(h−1(O′Z)),

If,g(h
−1(O′Z)) ◦ Ig◦f,h(O′Z) = f−1(Ig,h(O′Z)) ◦ If,h◦g(O′Z),

If,g(EY ) ◦ (g ◦ f)∗(h′′) = f∗(g∗(h′′)) ◦ If,g(h∗(EZ)),

If,g(h
∗(EZ)) ◦ Ig◦f,h(EZ) = f∗(Ig,h(EZ)) ◦ If,h◦g(EZ),

by properties of the I∗,∗(∗). Hence h ◦ (g ◦ f) = (h ◦ g) ◦ f , and composition of
1-morphisms in dSpa is (strictly) associative.

If e,f , g,h : X → Y are 1-morphisms and η : e⇒ f , ζ : f ⇒ g, θ : g ⇒ h
are 2-morphisms in dSpa then

θ � (ζ � η) = θ + (ζ + η) = (θ + ζ) + η = (θ � ζ)� η.

Thus vertical composition of 2-morphisms is associative.
Let f , f̃ : W → X, g, g̃ : X → Y , h, h̃ : Y → Z be 1-morphisms, and

η : f ⇒ f̃ , ζ : g ⇒ g̃, θ : h ⇒ h̃ be 2-morphisms. Since composition of
1-morphisms is associative we may write h ◦ g ◦ f , h̃ ◦ g̃ ◦ f̃ without ambiguity.
Thus θ ∗ (ζ ∗ η) and (θ ∗ ζ) ∗ η are both 2-morphisms h ◦ g ◦ f ⇒ h̃ ◦ g̃ ◦ f̃ . To
prove θ ∗ (ζ ∗ η) = (θ ∗ ζ) ∗ η, consider the diagram:

(h◦g◦f)∗(FZ)

(g◦f)∗(θ)◦
Ig◦f,h(FZ) ))RRRRRRRRRRRRRR

(g◦f)∗(h2)◦
Ig◦f,h(FZ)

// (g◦f)∗(FY )
f∗(ζ)◦
If,g(FY )

((PPPPPPPPPPPPP

f∗(g2)◦
If,g(FY )

// f∗(FX)

η

&&MMMMMMMMMMMM

(g◦f)∗(EY )

(g◦f)∗(φY )

OO

f∗(g′′)
// f∗(EX)

f∗(φX )

OO

f ′′ // EW .

(2.28)

Here (2.28) need not be commutative, but the central rectangle commutes by
(2.22) for g. There are 8 possible routes from the top left to the bottom right
corner in (2.28) by composing arrows, but the 2 involving two sides of the central
rectangle give the same answer, so these yield 7 possibly different morphisms
(h ◦ g ◦ f)∗(FZ)→ EW . Using (2.27) and properties of the I∗,∗(∗) we find that
both θ ∗ (ζ ∗ η) and (θ ∗ ζ) ∗ η are the sum of these 7 terms, so they are equal,
and horizontal composition of 2-morphisms is associative.

Let f , f̃ , f̂ : X → Y and g, g̃, ĝ : Y → Z be 1-morphisms and η : f ⇒ f̃ ,
η̇ : f̃ ⇒ f̂ , ζ : g ⇒ g̃, ζ̇ : g̃ ⇒ ĝ be 2-morphisms in dSpa. Then (ζ̇� ζ)∗ (η̇�η)
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and (ζ̇ ∗ η̇)� (ζ ∗ η) are 2-morphisms g ◦ f ⇒ ĝ ◦ f̂ . We find that

(ζ̇ ∗ η̇)� (ζ ∗ η) =
(
η ◦ f∗(g2) + f ′′ ◦ f∗(ζ) + η ◦ f∗(φY ) ◦ f∗(ζ)

)
◦ If,g(FZ)

+
(
η̇ ◦ f∗(g̃2) + f̃ ′′ ◦ f∗(ζ̇) + η̇ ◦ f∗(φY ) ◦ f∗(ζ̇)

)
◦ If,g(FZ)

=
(
η ◦ f∗(g2) + f ′′ ◦ f∗(ζ) + η ◦ f∗(φY ) ◦ f∗(ζ)

)
◦ If,g(FZ)

+
(
η̇◦f∗(g2+φY ◦ζ)+(f ′′+η◦f∗(φY ))◦f∗(ζ̇)+η̇◦f∗(φY )◦f∗(ζ̇)

)
◦If,g(FZ)

=
(
(η̇+η)◦f∗(g2)+f ′′◦f∗(ζ̇+ζ)+(η̇+η)◦f∗(φY )◦f∗(ζ̇+ζ)

)
◦If,g(FZ)

= (ζ̇ � ζ) ∗ (η̇ � η),

using ζ � η = ζ + η, equation (2.27), f̃ = f and g̃ = g as f , g and f̃ , g̃ are 2-

isomorphic, and (2.25)–(2.26) to substitute for f̃ ′′, g̃2 in the second step. Thus
horizontal and vertical composition of 2-morphisms are compatible. All the
axioms concerning identity 1-morphisms and identity 2-morphisms are basically
trivial. Hence dSpa is a strict 2-category. If η : f ⇒ g is a 2-morphism then
from (2.25) we see that −η : g ⇒ f is a 2-morphism with (−η)� η = −η + η =
0 = idf and η � (−η) = η − η = 0 = idg, so −η is the inverse of η, and η is a
2-isomorphism. This proves (a).

For (b), from (2.25), since κX is injective and the image of
(
id ⊗ (f ] ◦

f−1(ıY ))
)
◦
(
f−1(d)

)
generates f∗(FY ) as a sheaf of abelian groups, we see that

the group of 2-isomorphisms η : f ⇒ f is the real vector space of η : f∗(FY )→
EX with X ◦ η = η ◦ f∗(φY ) = 0, and the group operation is addition. Part (c)
is more-or-less immediate from the definitions.

For (d), let X,Y lie in C∞Schlf
ssc and X,Y = FdSpa

C∞Sch(X,Y ). Then O′X =
OX , ıX = idOX , EX = 0 and O′Y = OY , ıY = idOY , EY = 0. Suppose f =
(f, f ′, f ′′) : X → Y is a 1-morphism in dSpa. Then f : X → Y is a morphism

of C∞-schemes and f ]◦f−1(idOY ) = idOX ◦f ′, so f ′ = f ]. Also f ′′ is a morphism

f∗(0) → 0, so f ′′ = 0. Hence f = (f, f ], 0) = FdSpa
C∞Sch(f). For 1-morphisms

f , g : X → Y , a 2-morphism η : f ⇒ g is a morphism η : f∗(FY ) → EX = 0,

and so is zero, forcing f = g and η = idf = FdSpa
C∞Sch(idf ). Therefore FdSpa

C∞Sch :

Hom(X,Y ) → Hom(X,Y ) is an isomorphism of categories, and FdSpa
C∞Sch is

full and faithful. Corollary B.27 now implies that FdSpa
Man = FdSpa

C∞Sch ◦ FC∞Sch
Man

is full and faithful, and that FdSpa
Manb , F

dSpa
Manc are faithful, but not full.

Remark 2.16. (a) We think of a d-space X = (X,O′X , EX , ıX , X) as being a
separated, second countable, locally fair C∞-scheme X, which is the ‘classical’
part of X and lives in a category rather than a 2-category, together with some
extra ‘derived’ information O′X , EX , ıX , X . 2-morphisms in dSpa are wholly
to do with this ‘derived’ part. The 2-functor FC∞Sch

dSpa forgets the ‘derived’
information O′X , EX , ıX , X .

The equations g4 = f4, g5 = f5 in (2.26) show that the kernels CX ,DX and
the morphism νX : CX → DX are unaffected by 2-morphisms, so they can also
be regarded as ‘classical’ data.
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(b) The 2-functor FdSpa
C∞Sch embeds C∞Schlf

ssc as a 2-subcategory of dSpa, so
we can think of such C∞-schemes X as examples of d-spaces. When we do this
we make the ‘derived’ information O′X , EX , ıX , X in X = FdSpa

C∞Sch(X) as simple
as possible, by taking O′X = OX , ıX = idOX and EX = X = 0.

Proposition 2.17. Suppose f : X → Y is a 1-morphism of d-spaces, and
η : f∗(FY ) → EX is a morphism in qcoh(X). Then there exists a unique
1-morphism g : X → Y in dSpa such that η : f ⇒ g is a 2-morphism.

Proof. Applying the final part of Proposition 2.13 to (f, f ′) : (X,O′X , ıX) →
(Y ,O′Y , ıU ) with morphism µ = X ◦ η : f∗(FY )→ EX gives a unique morphism

g′ : f−1(O′Y ) → O′X such that (g, g′) with g = f is a morphism (X,O′X , ıX) →
(Y ,O′Y , ıU ), and (2.16)–(2.17) hold with µ = X ◦ η. Thus (2.16) gives the first
equation of (2.25). Define g′′ = f ′′ + η ◦ f∗(φY ), as in the second equation of
(2.25). Then

X◦g′′=X◦f ′′+X◦η◦f∗(φY )=f1◦f∗(Y )+X◦η◦f∗(ξY )◦f∗(Y )=g1◦f∗(Y ),

using (2.21) for f , φY = ξY ◦ Y , and (2.17) with µ = X ◦η. Hence (2.21) holds
for g, and g : X → Y is a 1-morphism. Also η : f ⇒ g is a 2-morphism as
(2.25) holds. Uniqueness of g is clear from uniqueness of g′ above.

2.3 Equivalences in dSpa

Recall as in §A.3 that if C is a 2-category, an equivalence between objects X,Y
in C is a 1-morphism f : X → Y such that there exists a 1-morphism g : Y → X
and 2-isomorphisms η : g ◦ f ⇒ idX and ζ : f ◦ g ⇒ idY . Equivalence is usually
the best notion of when objects in C are ‘the same’. In this section we will study
equivalences in the 2-category dSpa.

The question we are interested in is this: if X = (X,O′X , EX , ıX , X) and
Y = (Y ,O′Y , EY , ıY , Y ) are equivalent in dSpa, what is the relationship between
the ‘derived’ data O′X , EX , ıX , X on X and O′Y , EY , ıY , Y on Y ? We first show
that equivalence can add an arbitrary quasicoherent sheaf G to O′X and EX .

Example 2.18. Let X = (X,O′X , EX , ıX , X) be a d-space and G ∈ qcoh(X).
From X,O′X , ıX ,G, Example 2.11 constructs a square zero extension (O′̂X , ıX̂)
of X, with O′̂X = O′X n G, and with sheaves IX̂ ∼= IX ⊕ G and F X̂ ∼= FX ⊕ G.
The morphisms ξX̂ : IX̂ → F X̂ , ψX̂ : F X̂ → T ∗X are given by

ξX̂ =

(
ξX 0

0 idG

)
: IX̂ ∼= IX ⊕ G −→ FX ⊕ G ∼= F X̂ ,

ψX̂ =
(
ψX 0

)
: F X̂ ∼= FX ⊕ G −→ T ∗X.

Define EX̂ = EX ⊕ G in qcoh(X), and define X̂ : EX̂ → IX̂ by

X̂ =

(
X 0

0 idG

)
: EX̂ = EX ⊕ G −→ IX ⊕ G ∼= IX̂ . (2.29)
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Then X̂ is surjective, as X is. Therefore X̂ = (X,O′̂X , EX̂ , ıX̂ , X̂) is a d-space.
We also have CX̂ ∼= CX and DX̂ ∼= DX .

Define f = g = idX : X → X. There are natural morphisms of sheaves

of C∞-rings f ′ : id−1
X (O′̂X) ∼= O′X n G → O′X and g′ : id−1

X (O′X) ∼= O′X →
O′X n G = O′̂X ; in the C∞-ring picture of Example 2.7, f ′ corresponds to the
C∞-ring morphism C′ nG→ C′ mapping (c′, γ) 7→ c′, and g′ to the morphism
C′ → C′ n G mapping c′ 7→ (c′, 0). These satisfy f ] ◦ f−1(ıX̂) = ıX ◦ f ′
and g] ◦ g−1(ıX) = ıX̂ ◦ g′, so (f, f ′) is a morphism of square zero extensions
(X,O′X , ıX)→ (X,O′̂X , ıX̂), and (g, g′) a morphism (X,O′̂X , ıX̂)→ (X,O′X , ıX).

Therefore Definition 2.12 defines morphisms f1, f2, f3 and g1, g2, g3, given in

f∗(IX̂) ∼=
id∗X(IX)⊕id∗X(G)

f∗(ξX̂)=id∗X(ξX) 0

0 id∗X(idG)


//

f1=

δX(IX)

0


��

f∗(F X̂) ∼=
id∗X(FX)⊕id∗X(G)

f∗(ψX̂)=(
id∗X(ψX) 0

)
//

f2=

δX(FX)

0


��

f∗(T ∗X) =

id∗X(T ∗X)
//

f3=δX(T∗X)
��

0

IX
ξX // FX

ψX // T ∗X // 0,

(2.30)

g∗(IX) =

id∗X(IX)

id∗X(ξX)
//

g1=
(
δX(IX) 0

)
��

g∗(FX) =

id∗X(FX)

id∗X(ψX)
//

g2=
(
δX(FX) 0

)
��

g∗(T ∗X) =

id∗X(T ∗X)
//

g3=δX(T∗X)

��

0

IX ⊕ G
∼= IX̂

ξX̂=

ξX 0

0 idG


// FX ⊕ G
∼= F X̂ ψX̂=

(
ψX 0

) // T ∗X // 0.
(2.31)

Define f ′′ : f∗(EX̂)→ EX and g′′ : g∗(EX)→ EX̂ by

f ′′ =
(
δX(EX) 0

)
: f∗(EX̂) = id∗X(EX)⊕ id∗X(G) −→ EX ,

g′′ =

(
δX(EX)

0

)
: g∗(EX) = id∗X(EX) −→ EX ⊕ G = EX̂ .

(2.32)

Then (2.29)–(2.32) imply that X ◦f ′′ = f1◦f∗(X̂) and X̂ ◦g′′ = g1◦g∗(X), as

in (2.21). Hence f = (f, f ′, f ′′) is a 1-morphism X → X̂, and g = (g, g′, g′′) is

a 1-morphism X̂ → X. Definition 2.14 defines morphisms f4, f5, g4, g5, which
all turn out to be isomorphisms.

One can now show that g ◦ f = idX : X → X, so η = 0 = ididX : g ◦ f ⇒
idX is a 2-morphism in dSpa. If G 6= 0 it is not true that f ◦ g = idX̂ , so f , g
are not 1-inverse. However, it is easy to show that

ζ =

(
0 0

0 δX(G)

)
: (g ◦ f)∗(F X̂) ∼= id∗X(FX)⊕ id∗X(G) −→ EX ⊕ G = EX̂

is a 2-morphism ζ : f ◦ g ⇒ idX̂ in dSpa. Therefore f : X → X̂ and
g : X̂ →X are both equivalences in dSpa.

165



Thus if X = (X,O′X , EX , ıX , X) and Y = (Y ,O′Y , EY , ıY , Y ) are equivalent,
the data O′X , EX , ıX , X and O′Y , EY , ıY , Y need not be isomorphic.

Definition 2.19. Let 0 → E α−→F β−→G → 0 be a complex in qcoh(X) for
some C∞-scheme X, so that β ◦α = 0. We call this a split short exact sequence,
or just split exact, if there exist γ : F → E , δ : G → F in qcoh(X) with

γ ◦ δ = 0, γ ◦ α = idE , α ◦ γ + δ ◦ β = idF , β ◦ δ = idG . (2.33)

Equation (2.33) implies that 0→ E α−→F β−→G → 0 is exact.

Equivalently, 0 → E α−→F β−→G → 0 is split exact if there exists an iso-

morphism F ∼= E ⊕ G identifying it with 0 → E idE⊕0−→ E ⊕ G 0⊕idG−→ G → 0, so
that

α ∼=
(

idE

0

)
, β ∼=

(
0 idG

)
, γ ∼=

(
idE 0

)
, δ ∼=

(
0

idG

)
.

The next two propositions characterize equivalences in dSpa. For an arbi-
trary 1-morphism f : X → Y , equation (2.34) is a complex as (2.22) commutes,
but it may not be exact. So our condition is that (2.34) is exact, and also split.

Proposition 2.20. Suppose f : X → Y is an equivalence in dSpa. Then f :

X → Y and f4 : f∗(CY ) → CX and f5 : f∗(DY ) → DX are all isomorphisms,
and the following is a split short exact sequence in qcoh(X) :

0 // f∗(EY )
f ′′⊕−f∗(φY )

// EX ⊕ f∗(FY )
φX⊕f2

// FX // 0. (2.34)

Proof. As f is an equivalence, there exist g : X → Y and η : g ◦ f ⇒ idX
and ζ : f ◦ g ⇒ idY . By Proposition A.6 we may also choose η, ζ to satisfy
idf ∗η = ζ ∗ idf and idg ∗ζ = η ∗ idg. These 2-morphisms imply that g ◦f = idX
and f ◦ g = idY , so g = f−1, and f is an isomorphism. Using η : g ◦ f ⇒ idX
and ζ : f ◦ g ⇒ idY and equations (2.24) and (2.26) shows that

f4 ◦ f∗(g4) ◦ If,g(CX) = (g ◦ f)4 = (idX)4 = δX(CX),

g4 ◦ g∗(f4) ◦ Ig,f (CY ) = (f ◦ g)4 = (idY )4 = δY (CY ).

The first equation implies that f∗(g4)◦If,g(CZ)◦δX(CX)−1 is a right inverse for

f4. Applying f∗ to the second equation and using g ◦f = idX and properties of

I∗,∗(∗) and δ∗(∗) also shows that f∗(g4) ◦ If,g(CZ) ◦ δX(CX)−1 is a left inverse

for f4. Hence f4 is an isomorphism, and similarly f5 is an isomorphism.
Define γ = γ1 ⊕ γ2 : EX ⊕ f∗(FY ) → f∗(EY ) and δ = δ1 ⊕ δ2 : FX →

EX ⊕ f∗(FY ) by

γ1 = f∗(g′′) ◦ If,g(EX) ◦ δX(EX)−1, γ2 = −f∗(ζ ◦ δY (FY )−1),

δ1 = η ◦ δX(FX)−1, δ2 = f∗(g2) ◦ If,g(FX) ◦ δX(FX)−1.
(2.35)
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Then using all four conditions on η, ζ we may show that γ, δ satisfy (2.33) for
the complex (2.34). So (2.34) is split exact by Definition 2.19.

Here is a converse to Proposition 2.20.

Proposition 2.21. Let f : X → Y be a 1-morphism in dSpa. Suppose
f : X → Y and f4 : f∗(CY )→ CX are isomorphisms, and (2.34) is a split short
exact sequence. Then f is an equivalence.

Proof. As f is an isomorphism, we may define g = f−1 : Y → X. Since (2.34)
is split exact, there exist γ = γ1 ⊕ γ2 and δ = δ1 ⊕ δ2 satisfying (2.33) for α, β
the morphisms in (2.34). Define g′′, g2, η, ζ uniquely such that (2.35) holds. We
claim there exists a unique morphism g′ : g−1(O′X) → OY of sheaves of C∞-
rings on Y such that g = (g, g′, g′′) is a 1-morphism Y →X, realizing the value

of g2 determined by δ2, and such that η : g ◦ f ⇒ idX and ζ : f ◦ g ⇒ idY are
2-morphisms. This then proves f is an equivalence, with quasi-inverse g.

It is enough to construct g′ on each V a for an open cover of C∞-subschemes
{V a : a ∈ A} of Y , since by uniqueness the constructed values of g′a on V a agree
on overlaps V a ∩ V b, and so glue to give a global morphism g′. Fix y ∈ Y , let
V be an open neighbourhood of y in Y , and set U = f−1(V ) ⊆ X. Let U, V
be the corresponding open C∞-subschemes of X,Y . As X,Y are locally fair
C∞-schemes, (X,O′X), (Y,O′Y ) are C∞-schemes, and f is a homeomorphism,
making V smaller if necessary, we can suppose that U, V are fair affine C∞-
schemes and (U,O′X |U ), (V,O′Y |Y ) are affine C∞-schemes. Also U ∼= V as f is
an isomorphism.

Hence there exist C∞-rings C,C′,D′ with C fair, and isomorphisms U ∼=
SpecC ∼= V , (U,O′X |U ) ∼= SpecC′, (V,O′Y |Y ) ∼= SpecD′. The morphisms ıX |U :
O′X |U → OX |U , ıY |V : O′Y |V → OY |V , f ′|U : f−1(O′Y )|U → O′X |U correspond
to morphisms of C∞-rings φ : C′ → C, ψ : D′ → C, ξ : D′ → C′ respectively,
where f ] ◦ f−1(ıY ) = ıX ◦ f ′ implies that φ ◦ ξ = ψ. Here φ, ψ are square zero
extensions of C∞-rings, with kernels I ⊂ C′ and J ⊂ D′, both C-modules, and
inclusions κ : I → C′ and λ : J → D′.

The isomorphisms U ∼= SpecC ∼= V mean that quasicoherent sheaves on U, V
are identified under MSpec with C-modules, and morphisms of quasicoherent
sheaves on U, V are identified under MSpec with morphisms of C-modules. Let
the sheaves EX |U, IX |U,FX |U on U and EY |V , IY |V ,FY |V on V be identified
with C-modules E, I,ΩC′ ⊗C′ C, F, J,ΩD′ ⊗D′ C respectively.

Let the morphisms X |U, f ′′|U, f1|U, f2|U, f3|U, η|U on U and Y |V , g′′|V ,
g2|V , ζ|V on V be identified with α : E → I, µ : F → E, ρ : J → I, Ωξ ⊗ idC :
ΩD′ ⊗D′ C → ΩC′ ⊗C′ C, idΩC

: ΩC → ΩC , τ : ΩC′ ⊗C′ C → E and β : F → J ,
ν : E → F , ω : ΩC′ ⊗C′ C → ΩD′ ⊗D′ C, υ : ΩD′ ⊗D′ C → F respectively. We
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have diagrams

F
β

//

µ
��

J
λ

//

ρ
��

D′

ξ
��

ψ

,,XXXXXXXXXXXXX

C,s

ll

r
rr

E
α //

ν

OO

I
κ //

σ

OO

C′

χ

OO

φ

22fffffffffffff

(2.36)

F
dD′◦λ◦β //

µ
��

ΩD′ ⊗D′ C

Ωξ⊗idC ��

Ωψ

//
υ

oo ΩCOO
idΩC��

// 0

E
dC′◦κ◦α

//

ν

OO

ΩC′ ⊗C′ C

ω

OO

Ωφ //τoo ΩC
// 0,

where σ, χ, r, s remain to be defined. Then (2.33) for γ, δ implies that

µ ◦ ν+τ ◦ dC′ ◦κ◦α =idE , dC′ ◦κ◦α◦τ+(Ωξ⊗idC)◦ω =idΩC′⊗C′C ,

ν◦µ+υ◦dD′ ◦λ◦β =idF , dD′ ◦λ◦β◦υ+ω◦(Ωξ⊗idC) =idΩD′⊗D′C ,

dC′ ◦ κ ◦ α ◦ µ = (Ωξ ⊗ idC) ◦ dD′ ◦ λ ◦ β, µ ◦ υ = τ ◦ (Ωξ ⊗ idC),

dD′ ◦ λ ◦ β ◦ ν = ω ◦ dC′ ◦ κ ◦ α, ν ◦ τ = υ ◦ ω.

(2.37)

Since f4 is an isomorphism, µ induces an isomorphism from the kernel of β
to the kernel of α. The first and third equations of (2.37) imply that µ and ν
are inverse on the kernels of α, β. Hence ν induces an isomorphism from the
kernel of α to the kernel of β. As α, β are surjective, it follows that there exists
a unique σ : I → J with σ ◦ α = β ◦ ν. Then (2.37) implies that

ρ ◦ σ + α ◦ τ ◦ dC′ ◦ κ = idI , σ ◦ ρ+ β ◦ υ ◦ dD′ ◦ λ = idJ . (2.38)

As ψ : D′ → C is surjective with kernel J , we may choose a right inverse
s : C → D′ for ψ. Then ψ ◦ s = idC , and D′ = s(C) ⊕ J . Define r = ξ ◦ s :
C → C′. As φ ◦ ξ = ψ we have φ ◦ r = idC , so r is a right inverse for φ, and
C′ = r(C)⊕ I. Note that r, s are only linear maps, not morphisms of C∞-rings.
Using C′ = r(C)⊕ I, D′ = s(C)⊕ J we identify C′ = C ⊕ I, D′ = C ⊕ J . Define

χ =
( idC 0
−β◦υ◦dD′ σ

)
: C′ = C ⊕ I → C ⊕ J = D′. Then (2.36) becomes

F
β

//

µ

��

J
λ=
(

0 idJ

)
T

//

ρ

��

D′ = C ⊕ J

ξ=

idC 0

0 ρ


��

ψ=
(

idC 0

)
''
C.

s

nn

r

pp
E

α //

ν

OO

I
κ=
(

0 idI

)
T

//

σ

OO

C′ = C ⊕ I

χ=

 idC 0

−β◦υ◦d
D′ σ


OO

φ=
(

idC 0

)77 (2.39)

Let f : Rn → R be smooth, and write Φf : Cn → C, Φ′f : (C′)n → C′,

Φ̃f : (D′)n → D′ for the C∞-ring operations on C,C′,D′. Lemma 2.6, equation
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(2.39) and φ, ψ, ξ morphisms of C∞-rings imply that we may write

Φ′f
(
(c1, i1), . . . , (cn, in)

)
=
(
Φf (c1, . . . , cn), ρ ◦Ψf (c1, . . . , cn)

+
∑n
a=1 Φ ∂f

∂xa

(c1, . . . , cn) · ia
)
,

(2.40)

Φ̃f
(
(c1, j1), . . . , (cn, jn)

)
=
(
Φf (c1, . . . , cn),Ψf (c1, . . . , cn)

+
∑n
a=1 Φ ∂f

∂xa

(c1, . . . , cn) · ja
)
,

(2.41)

for all c1, . . . , cn ∈ C, i1, . . . , in ∈ I and j1, . . . , jn ∈ J , and some Ψf : Cn → I.
Using (2.41), the C∞-derivation property of dD′ ,ΩD′ , ψ a C∞-ring mor-

phism, and that the D′-action on ΩD′ ⊗D′ C factors through the C-action, we
see that

dD′ ◦ Φf (c1, . . . , cn) + dD′ ◦ λ ◦Ψf (c1, . . . , cn) = dD′Φ̃f
(
(c1, 0), . . . , (cn, 0)

)
=

n∑
a=1

Φ̃ ∂f
∂xa

(
(c1, 0), . . . , (cn, 0)

)
· dD′ca =

n∑
a=1

Φ ∂f
∂xa

(c1, . . . , cn) · dD′ca. (2.42)

Combining equations (2.38)–(2.42) gives

χ◦Φ′f
(
(c1, i1), . . . , (cn, in)

)
=
(
Φf (c1, . . . , cn),−β ◦ υ ◦ dD′ ◦ Φf (c1, . . . , cn)

+ σ ◦ ρ ◦Ψf (c1, . . . , cn) + σ
[∑n

a=1 Φ ∂f
∂xa

(c1, . . . , cn) · ia
])

=
(
Φf (c1, . . . , cn),−β ◦ υ ◦ dD′ ◦ Φf (c1, . . . , cn)

+ (idJ − β ◦ υ ◦ dD′ ◦ λ) ◦Ψf (c1, . . . , cn) +
∑n
a=1 Φ ∂f

∂xa

(c1, . . . , cn) · σ(ia)
)

=
(
Φf (c1, . . . , cn),Ψf (c1, . . . , cn)

+
∑n
a=1 Φ ∂f

∂xa

(c1, . . . , cn) · (−β ◦ υ ◦ dD′(ca) + σ(ia))
)

−
(
0, β ◦ υ

[
dD′ ◦ Φf (c1, . . . , cn) + dD′ ◦ λ ◦Ψf (c1, . . . , cn)

−
∑n
a=1 Φ ∂f

∂xa

(c1, . . . , cn) · dD′(ca)
])

= Φ̃f
((
c1,−β ◦ υ ◦ dD′(c1) + σ(i1)

)
, . . . ,

(
cn,−β ◦ υ ◦ dD′(cn) + σ(in)

))
− 0

= Φ̃f
(
χ(c1, i1), . . . , χ(cn, in)

)
.

Therefore χ : C′ → D′ is a C∞-ring morphism. As (U,O′X |U ) ∼= SpecC′ and
(V,O′Y |Y ) ∼= SpecD′, and the identification V → U is g|V : V → U , Specχ
induces a morphism of sheaves of C∞-rings g′|V : g−1(O′X)|V → O′Y |V . One can
show this is the unique morphism g−1(O′X)|V → O′Y |V satisfying the conditions
above. Gluing these over an open cover of Y defines g′ : g−1(O′X) → O′Y , and
completes the definition of g. Hence f is an equivalence.

Lemma 2.22. Suppose X is a separated, paracompact, locally fair C∞-scheme,

and 0→ E α−→F β−→G → 0 is a complex in qcoh(X). Then being split exact is
a local condition in X. That is, if the restrictions of the complex to the sets of
an open cover of X are split exact, then the complex is split exact.
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Proof. Let {Ua : a ∈ A} be an open cover of X such that the restriction of 0→
E → F → G → 0 to each Ua is split exact. Then there exist γa : F|Ua → E|Ua
and δa : G|Ua → F|Ua satisfying (2.33) on Ua. As X is separated, paracompact
and locally fair, Proposition B.21 gives a partition of unity {ηa : a ∈ A} on X
subordinate to {Ua : a ∈ A}. That is, for each a ∈ A we have ηa ∈ OX(X)
supported in Ua, and

∑
a∈A ηa = 1, where the (possibly infinite) sum makes

sense as it is locally finite. Then ηa ·γa : F|Ua → E|Ua and ηa · δa : G|Ua → F|Ua
are morphisms of sheaves on Ua, and as ηa is supported on Ua we may extend
them uniquely over X\Ua to get γ′a : F → E and δ′a : G → E , with γ′a|Ua = ηa·γa,
δ′a|Ua = ηa · δa and γ′a, δ

′
a zero outside Ua.

Define γ′ =
∑
a∈A γ

′
a and δ′ =

∑
a∈A δ

′
a. These sums are locally finite, and

so well-defined, and give morphisms γ′ : F → E , δ′ : G → F in qcoh(X). As
γa, δa satisfy (2.33) for each a ∈ A, using

∑
a∈A ηa = 1 we find that γ′, δ′ satisfy

γ′ ◦ α = idE , α ◦ γ′ + δ′ ◦ β = idF and β ◦ δ′ = idG , (2.43)

as these are linear in γ′, δ′. But they may not satisfy γ′ ◦ δ′ = 0. However,
defining γ = γ′, δ = δ′ − α ◦ γ′ ◦ δ′, equation (2.43) implies that γ, δ satisfy
(2.33), so 0→ E → F → G → 0 is split exact.

We define open d-subspaces, open covers, and étale 1-morphisms.

Definition 2.23. Let X = (X,O′X , EX , ıX , X) be a d-space. Suppose U ⊆ X
is an open C∞-subscheme. Then U =

(
U,O′X |U, EX |U, ıX |U, X |U

)
is a d-space.

We call U an open d-subspace of X. An open cover of a d-space X is a family
{Ua : a ∈ A} of open d-subspaces Ua of X with X =

⋃
a∈A Ua.

Let f : X → Y be a 1-morphism in dSpa. We call f étale if it is a
local equivalence, that is, if for each x ∈ X there exist open x ∈ U ⊆ X and
f(x) ∈ V ⊆ Y such that f(U) = V and f |U : U → V is an equivalence.

As X is a d-space, X is separated, paracompact, and locally fair. So by
Lemma 2.22, for (2.34) to be split exact is a local condition in X. Thus Propo-
sitions 2.20 and 2.21 imply a characterization of étale 1-morphisms:

Corollary 2.24. Suppose f : X → Y is a 1-morphism in dSpa. Then f is
étale if and only if f : X → Y is étale, f4 : f∗(CY ) → CX is an isomorphism,
and equation (2.34) is a split short exact sequence in qcoh(X).

Here is a necessary and sufficient condition for a d-space X to be a C∞-
scheme, that is, for X to lie in Ĉ∞Schlf

ssc. A left inverse for φX : EX → FX is
γ : FX → EX in qcoh(X) with γ ◦ φX = idEX .

Proposition 2.25. Let X = (X,O′X , EX , ıX , X) be a d-space. Then X lies in

Ĉ∞Schlf
ssc, that is, X is equivalent to an object in the image of FdSpa

C∞Sch, which

can be FdSpa
C∞Sch(X), if and only if φX : EX → FX has a left inverse.

Proof. Suppose γ : FX → EX is a left inverse for φX . Consider the diagram:

0
// EXoo

φX // FX
γ

oo
ψX // T ∗X
δ

oo //
0.oo (2.44)
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Since γ ◦ φX = idEX we see that φX is injective, so as (2.19) is exact, the
rightwards sequence in (2.44) is exact. Also, as γ exists this exact sequence is
split, in the sense of Definition 2.19, so that FX ∼= EX ⊕ T ∗X, and there exists
a unique δ : T ∗X → FX such that the leftwards sequence in (2.44) is exact, and

γ ◦ δ = 0, γ ◦ φX = idEX , φX ◦ γ + δ ◦ ψX = idFX , ψX ◦ δ = idT∗X .

Set X̃ = FdSpa
C∞Sch(X) = (X,OX , 0, idOX , 0). Define a 1-morphism f : X̃ →

X in dSpa by f = (idX , ıX ◦ δX(O′X), 0). Then CX̃ = 0 as EX̃ = 0. Since
φX = ξX ◦ X is injective, X is injective, and so CX = Ker X = 0. Hence
f4 : f∗(CY )→ CX is 0→ 0, and so is an isomorphism. Also (2.34) for f is the
rightwards sequence in (2.44), and so is split exact from above. Hence f is an
equivalence by Proposition 2.21. This proves the ‘if’ part of the proposition.

For the ‘only if’ part, suppose X̃ = FdSpa
C∞Sch(X̃) and f : X → X̃ is an

equivalence, so that there exist g : X̃ →X and η : g ◦f ⇒ idX and ζ : f ◦g ⇒
idX̃ . Then from the definitions one can show that γ = η◦δX(FX)−1 : FX → EX
is a left inverse for φX .

If φX has a left inverse then φX is injective; having a left inverse is a strong
form of injectivity. Having a left inverse is invariant under pullbacks, since if
γ is a left inverse for φX : EX → FX then g∗(γ) is a left inverse for g∗(φX) :
g∗(EX)→ g∗(FX) with g : Y → X. Note that injectivity is not invariant under
pullbacks, i.e. φX injective does not imply g∗(φX) injective, since g∗ may not
be left exact. For φX to have a left inverse is a local condition on X:

Lemma 2.26. Let X be a d-space. Then φX : EX → FX has a left inverse
if and only if X may be covered by open C∞-subschemes U such that φX |U :
EX |U → FX |U has a left inverse in qcoh(U).

Proof. The ‘only if’ is trivial, taking U = X. For the ‘if’ part, we use the method
of Lemma 2.22. Let {Ua : a ∈ A} be an open cover of X such that φX |Ua has
a left inverse γ′a on each Ua. As X is separated, paracompact, and locally fair,
by Proposition B.21 there exists a partition of unity {ηa : a ∈ A} subordinate
to {Ua : a ∈ A}. Hence ηa · γ′a satisfies (ηa · γ′a) ◦ φX |Ua = ηa · idEX |Ua . We

may extend ηa · γ′a uniquely to X to get γa : FX → EX which restricts to ηa · γ′a
on Ua and to zero on X \ Ua, with γa ◦ φX = ηa · idEX . Then γ =

∑
a∈A γa

is a locally finite sum of morphisms in qcoh(X), so is a well-defined morphism
γ : FX → EX with γ ◦ φX =

∑
a∈A γa ◦ φX =

∑
a∈A ηa · idEX = idEX , since∑

a∈A ηa = 1. Therefore γ is a left inverse for φX .

2.4 Gluing d-spaces by equivalences

Given a collection of d-spaces Xi, i ∈ I, with open d-subspaces U ij ⊂ Xi for

i, j ∈ I and equivalences eij : U ij
∼−→U ji satisfying appropriate conditions on

triple overlaps, we study the problem of constructing a d-space Z by gluing the
Xi, i ∈ I together on U ij , so that Z has open d-subspaces X̂i equivalent to

Xi for i ∈ I, with Z =
⋃
i∈I X̂i, and X̂i ∩ X̂j ' U ij ' U ji. This will be
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important in relating d-manifolds to other geometric objects in Chapter 14, and
in proving the existence of d-manifold structures on moduli spaces.

We begin by showing that we can glue 1-morphisms on open d-subspaces
U ,V ⊆ X provided they are 2-isomorphic on the overlap U ∩ V . The last
part, in which h is independent of η, will simplify the statements of Theorems
2.29–2.32. As we will see in §9.4, the analogue of h independent of η is not true
for d-stacks, and this makes gluing d-stacks by equivalences more complicated.

Proposition 2.27. Suppose X,Y are d-spaces, U ,V ⊆X are open d-subspaces
with X = U ∪ V , f : U → Y and g : V → Y are 1-morphisms, and η :
f |U∩V ⇒ g|U∩V is a 2-morphism. Then there exist a 1-morphism h : X → Y
and 2-morphisms ζ : h|U ⇒ f , θ : h|V ⇒ g such that θ|U∩V = η � ζ|U∩V :
h|U∩V ⇒ g|U∩V . This h is unique up to 2-isomorphism.

Furthermore, h is independent up to 2-isomorphism of the choice of η.

Proof. Since {U, V } is an open cover of X, which is separated, paracompact and
locally fair, by Proposition B.21 there exists a partition of unity {εU , υV } on X
subordinate to {U, V }. That is, εU , εV ∈ OX(X) with εU + εV = 1, and εU , εV
are supported on U, V . The 2-morphism η is a morphism η : f∗(FY )|U∩V =
g∗(FY )|U∩V → EX |U∩V in qcoh(U ∩ V ). Hence −εV |U∩V · η is also a morphism
f∗(FY )|U∩V → EX |U∩V . Since εV |U is supported on U ∩ V in U, we can extend
−εV |U∩V · η uniquely by zero over U \ V to get a morphism ζ : f∗(FY )→ EX |U
in qcoh(U) such that ζ is supported in U ∩ V and ζ|U∩V = −εV · η. Similarly,
we can extend εU · η uniquely by zero over V \ U to get θ : g∗(FY ) → EX |V in
qcoh(V ) such that θ is supported in U ∩ V and θ|U∩V = εU · η.

Proposition 2.17 now shows that there are unique 1-morphisms hU : U → Y
and hV : V → Y such that ζ : hU ⇒ f and θ : hV ⇒ g are 2-morphisms. On
U ∩ V we have 2-morphisms

hU |U∩V
ζ|U∩V =−εV ·η +3 f |U∩V

η +3 g|U∩V
−θ|U∩V =−εU ·η +3 hV |U∩V .

Composing under � and using εU + εV = 1 shows (−εU ·η)+η+(−εV ·η) = 0 is
a 2-morphism hU |U∩V ⇒ hV |U∩V , so hU |U∩V = hV |U∩V . Hence there exists
a unique 1-morphism h : X → Y such that h|U = hU and h|V = hV . We have
2-morphisms ζ : h|U ⇒ f , θ : h|V ⇒ g, and θ|U∩V = εU · η = η + (−εV · η) =
η � ζ|U∩V , as we have to prove.

Suppose h̃, ζ̃, θ̃ are alternative choices of h, ζ, θ. Then we have 2-morphisms
ζ : h|U ⇒ f , ζ̃ : h̃|U ⇒ f , giving a 2-morphism ζ − ζ̃ : h|U ⇒ h̃|U , and
similarly θ − θ̃ : h|V ⇒ h̃|V . On U ∩ V we have

(θ − θ̃)|U∩V = θ|U∩V − θ̃|U∩V = (η � ζ|U∩V )− (η � ζ̃|U∩V )

= (η + ζ|U∩V )− (η + ζ̃|U∩V ) = (ζ − ζ̃)|U∩V .

Therefore there exists a unique morphism ω : h∗(FY )→ EX with ω|U = ζ−ζ̃ and

ω|V = θ−θ̃. Thus we have 2-morphisms ω|U : h|U ⇒ h̃|U and ω|V : h|V ⇒ h̃|V ,

so as being a 2-morphism is a local condition, ω : h⇒ h̃ is a 2-morphism, and
h is unique up to 2-isomorphism.

172



Finally, suppose η̂ is an alternative choice for η, which yields ζ̂, θ̂, ĥU , ĥV , ĥ
in place of ζ, θ,hU ,hV ,h. Then (η̂−η) : f |U∩V ⇒ f |U∩V , so as in the proof of
Theorem 2.15(b) we have (η̂−η)◦f∗(φY )|U∩V = X |U∩V ◦(η̂−η) = 0. Therefore

(ζ̂ − ζ) ◦ f∗(φY ) = X |U ◦ (ζ̂ − ζ) = 0, since ζ̂ − ζ = −εV · (η̂ − η) on U ∩ V and

ζ̂ = ζ = 0 on U \ V . Thus ζ̂ − ζ : f ⇒ f , so as ζ : hU ⇒ f , ζ̂ : ĥU ⇒ f we see
that 0 : hU ⇒ ĥU , so hU = ĥU . Similarly hV = ĥV , so h = ĥ. Hence h is
independent of η, though it does depend on the choice of εU , εV . The previous
part thus shows that up to 2-isomorphism h is independent of η.

Next we glue two d-spaces X,Y at equivalent open d-subspaces U ⊆ X,
V ⊆ Y to get a d-space Z which is the union of open d-subspaces X̂, Ŷ ⊆ Z
with X ' X̂, Y ' Ŷ and X̂ ∩ Ŷ ' U ' V . This is not always possible: our
definition of d-spaces Z requires that Z is separated, that is, the topological
space Z is Hausdorff, but Z = X qU=V Y may not be Hausdorff, for instance if
X = Y = R and U = V = (0,∞).

Thus, assuming Z = XqU=V Y is Hausdorff is a necessary condition for the
d-space Z to exist. Our next theorem shows it is also sufficient. See Spivak [95,
Lem. 6.8 & Prop. 6.9] for similar results for his derived manifolds.

Theorem 2.28. Suppose X,Y are d-spaces, U ⊆ X, V ⊆ Y are open d-
subspaces, and f : U → V is an equivalence in dSpa. At the level of topological
spaces, we have open U ⊆ X, V ⊆ Y with a homeomorphism f : U → V, so we
can form the quotient topological space Z := X qf Y = (X q Y )/ ∼, where the
equivalence relation ∼ on X q Y identifies u ∈ U ⊆ X with f(u) ∈ V ⊆ Y .

Suppose Z is Hausdorff. This condition may also equivalently be imposed
at the level of C∞-schemes, that is, we may form a quotient C∞-scheme Z =
X qf Y , and we require Z separated. Then there exist a d-space Z, open d-

subspaces X̂, Ŷ in Z with Z = X̂∪Ŷ , equivalences g : X → X̂ and h : Y → Ŷ
such that g|U and h|V are both equivalences with X̂ ∩ Ŷ , and a 2-morphism
η : g|U ⇒ h ◦ f : U → X̂ ∩ Ŷ . Furthermore, Z is independent of choices up to
equivalence.

Proof. As f is an equivalence there exist e : V → U and 2-morphisms ζ :
e ◦ f ⇒ idU , θ : f ◦ e ⇒ idV . By Proposition A.6 we may also suppose that
idf ∗ ζ = θ ∗ idf and ide ∗ θ = ζ ∗ ide. Then f : U → V and e : V → U
are inverse. Therefore there exists a C∞-scheme Z := (X q Y )/ ∼, where the
equivalence relation ∼ identifies U ⊆ X and V ⊆ Y by the isomorphism f . The
underlying topological space is Z = (XqY )/ ∼. Suppose Z is Hausdorff, i.e. Z
is separated. As X,Y are second countable and locally fair, so is Z, and these
and Z separated imply that Z is paracompact.

Write X̂, Ŷ for the open C∞-subschemes of Z corresponding to X,Y , and
g : X → X̂, h : Y → Ŷ for the natural isomorphisms. Then Z = X̂ ∪ Ŷ and

g|U : U → X̂ ∩ Ŷ , h|V : V → X̂ ∩ Ŷ are isomorphisms with g|U = h|V ◦ f : U →
X̂ ∩ Ŷ . As Z is Hausdorff and paracompact, it is a normal topological space.
Thus, as X̂ \ Ŷ and Ŷ \ X̂ are disjoint closed subsets in Z, there exist open
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Â, B̂ ⊂ Z with (X̂ \ Ŷ ) ⊆ Â, (Ŷ \ X̂) ⊆ B̂, and Â ∩ B̂ = ∅, where Â, B̂ are the
closures of Â, B̂ in Z.

Define Ĉ = Z \ B̂ and D̂ = Z \ Â. Then Â ⊆ Ĉ ⊆ X̂, B̂ ⊆ D̂ ⊆ Ŷ , and
Z = Ĉ ∪ D̂. Set A = g−1(Â), C = g−1(Ĉ), E = g−1(Ĉ ∩ D̂), G = g−1(D̂), B =
h−1(B̂), D = h−1(D̂), F = h−1(Ĉ ∩ D̂), H = h−1(Ĉ), so that A,C,E,G ⊆ X
and B,D,F,H ⊆ Y are open. Write A,C,E,G ⊆ X, B,D,F ,H ⊆ Y , for the
corresponding open C∞-subschemes, and C,E,G ⊆ X, D,F ,H ⊆ Y for the
open d-subspaces. Then X = C∪G, E = C∩G, Y = D∪H with F = D∩H,
E ⊆ G ⊆ U , F ⊆H ⊆ V , and f |E : E → F is an equivalence.

We will first define d-spaces Ċ, Ḋ with open d-subspaces Ė ⊆ Ċ, Ḟ ⊆ Ḟ ,
and equivalences a : C → Ċ, c : Ċ → C, b : D → Ḋ, d : Ḋ →D which restrict
to equivalences a|E : E → Ė, c|Ė : Ė → E, b|F : F → Ḟ , d|Ḟ : Ḟ → F , such
that c ◦ a = idC and d ◦ b = idD, and with 2-morphisms ηC : a ◦ c ⇒ idĊ ,
ηD : b ◦d⇒ idḊ. Then we will define a 1-isomorphism j : Ė → Ḟ with inverse
k : Ḟ → Ė, and we will define Z by gluing Ċ, Ḋ on Ė, Ḟ using j.

Using [56, Prop. 4.24] and ideas on partitions of unity in [56, §§4.4, 4.5 &
5.2], as in §B.4, since C,D are separated, paracompact, locally fair C∞-schemes,
we can choose γ ∈ OX(C) and δ ∈ OY (D) with γ|A > 0, γ|E = 0, δ|B > 0,
δ|F = 0. Note that γ|A > 0, δ|B > 0 imply that γ|A, δ|B are invertible. Define
GC ∈ qcoh(C), GD ∈ qcoh(D) by the exact sequences

f−1(FY )|C∩U
γ·idf−1(FY )|C∩U

// f−1(FY )|C∩U // GC |C∩U // 0,

e−1(FX)|D∩V
δ·ide−1(FX )|D∩V // e−1(FX)|D∩V // GD|D∩V // 0,

(2.45)

and GC |A = 0, GD|B = 0. For GC , these definitions are consistent on the overlap
A∩(C∩U) as γ > 0 on A, so γ · idf−1(FY )|C∩U is an isomorphism on A∩(C∩U),
and its cokernel is 0 there. Thus GC is well-defined up to canonical isomorphism,
and similarly so is GD. In (2.45) on E,F the first morphisms are zero, so the
second morphisms are isomorphisms. Thus we have

GC |A = 0, GC |E ∼= f∗(FY )|E , GD|B = 0, GD|F ∼= e∗(FX)|F . (2.46)

We have a d-space C = (C,O′X |C , EX |C , ıX |C , X |C) and a quasicoherent
sheaf GC on C. Examples 2.11 and 2.18 now construct a d-space by adding GC
to O′X |C and EX |C , which we write as Ċ = (Ċ,O′Ċ , E Ċ , ıĊ , Ċ), and equivalences

which we write as a = (a, a′, a′′) : C → Ċ and c = (c, c′, c′′) : Ċ → C, with
c ◦ a = idC , and a 2-morphism we write as ηC : a ◦ c⇒ idĊ . Explicitly, these
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are given by

Ċ = C, O′Ċ = O′X |C n GC , E Ċ = EX |C ⊕ GC , ıĊ = ıX |C ◦ πO′X |C ,

Ċ =

(
X |C 0

0 idGC

)
: E Ċ = EX |C ⊕ GC −→ IX |C ⊕ GC ∼= IĊ ,

a = c = idC , a
′ : id−1

C (O′Ċ) ∼= O′X |C ⊕ GC
(id 0)−→ O′X |C ,

c′ : id−1
C (O′X |C) ∼= O′X |C

(
id
0

)
−→ O′X |C ⊕ GC ∼= O′Ċ ,

a′′ =
(
δC(EX |C) 0

)
: a∗(E Ċ) = id∗C(EX |C)⊕ id∗C(GC) −→ EX |C ,

c′′ =

(
δC(EX |C)

0

)
: c∗(EX |C) = id∗C(EX |C) −→ EX |C ⊕ GC = E Ċ ,

and ηC =

(
0 0

0 δC(GC)

)
: (a ◦ c)∗(F Ċ) ∼= id∗C(FX |C)⊕ id∗C(GC)

−→ EX |C ⊕ GC = E Ċ .

(2.47)

Let Ė ⊆ Ċ be the open d-subspace associated to E ⊆ C = Ċ. Then a|E : E →
Ė, c|Ė : Ė → E are equivalences. Similarly we define Ḟ ⊆ Ḋ and equivalences
b : D → Ḋ, d : Ḋ → D, b|F : F → Ḟ , d|Ḟ : Ḟ → F from D,GD, F , with the
analogous notation.

Define ̃ : Ė → Ḟ and k̃ : Ḟ → Ė by ̃ = b ◦ f ◦ c|Ė , k̃ = a ◦ e ◦ d|Ḟ . Then
̃ = f |E , k̃ = e|F . Define ζĖ : ̃∗(F Ḋ)→ E Ċ |E and ζḞ : k̃∗(F Ċ)→ EḊ|F by

ζĖ =

(
0 ζ|E◦If,e(FX |E)−1

idf∗(FY )|E f∗(e2)|E

)
:

̃∗(F Ḋ) ∼= f∗(FY )|E ⊕ f∗(e∗(FX))|E −→ EX |E ⊕ f∗(FY )|E ∼= E Ċ |E ,
(2.48)

ζḞ =

(
0 θ|F ◦Ie,f (FY |F )−1

ide∗(FX )|F e∗(f2)|F

)
:

k̃∗(F Ċ) ∼= e∗(FX)|F ⊕ e∗(f∗(FY ))|F −→ EY |F ⊕ e∗(FX)|F ∼= EḊ|F .
(2.49)

Then Proposition 2.17 shows that there exist unique 1-morphisms j : Ė → Ḟ
and k : Ḟ → Ė such that ζĖ : j ⇒ ̃ and ζḞ : k⇒ k̃ are 2-morphisms.

Define θĖ : k ◦ j ⇒ idĖ and θḞ : j ◦k⇒ idḞ by the commutative diagrams

k ◦ j
θĖ��

ζḞ ∗ζĖ
+3 k̃ ◦ ̃ a ◦ e ◦ d ◦ b ◦ f ◦ c|Ė

idĖ a ◦ c|Ė
ηC |Ėks a ◦ e ◦ f ◦ c|Ė ,

idb∗ζ∗idc|Ėks
(2.50)

j ◦ k
θḞ��

ζĖ∗ζḞ
+3 ̃ ◦ k̃ b ◦ f ◦ c ◦ a ◦ e ◦ d|Ḟ

idḞ b ◦ d|Ḟ
ηD|Ḟks b ◦ f ◦ e ◦ d|Ḟ .

ida∗θ∗idd|Ḟks
(2.51)

Then using ζ � η = ζ + η and equations (2.27) and (2.46)–(2.49), we find that

θĖ : (k ◦ j)∗(F Ė) ∼= id∗E(FX |E)⊕ id∗E(f∗(FY )|E)→ EX |E ⊕ f∗(FY )|E ∼= E Ė
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is given by

θĖ =
(
ηC |Ė

)
�
(
ida ∗ ζ ∗ idc|Ė

)
�
(
ζḞ ∗ ζĖ

)
=

(
0 0

0 δE(f−1(FY )|E)

)
+

(
ζ|E 0

0 0

)
+

[(
0 ζ|E◦If,e(FX |E)−1

idf∗(FY )|E f∗(e2)|E

)
◦ f |∗E

(
e2|F 0

0 0

)
+

(
f ′′|E 0

0 0

)
◦ f |∗E

(
0 θ|F ◦Ie,f (FY |F )−1

ide∗(FX )|F e∗(f2)|F

)
(2.52)

−
(

0 ζ|E◦If,e(FX |E)−1

idf∗(FY )|E f∗(e2)|E

)
◦ f |∗E

(
φY |F 0

0 ide∗(FX )|F

)
◦f |∗E

(
0 θ|F ◦Ie,f (FY |F )−1

ide∗(FX )|F e∗(f2)|F

)]
◦
(
If,e(FX |E) 0

0 If,e(f
∗(FY )|E)

)
=

(
Θ11 Θ12

Θ21 Θ22

)
.

Here in the second step the terms [· · · ] are the expansion of ζḞ ∗ ζĖ using

ζḞ ∗ ζĖ =
[
ζĖ ◦ f |∗E(k̃2) + ̃′′ ◦ f |∗E(ζḞ )− ζĖ ◦ f |∗E(φḞ ) ◦ f |∗E(ζḞ )

]
◦ If,e(F Ė),

which follows from (2.27) and ̃ = f |E , k̃ = e|F . Multiplying out (2.52) gives

Θ11 = ζ|E − ζ|E ◦ If,e(FX |E)−1 ◦ f |∗E(ide∗(FX)|F ) ◦ If,e(FX |E),

Θ12 =
[
f ′′|E ◦ f |∗E(θ|F ◦ Ie,f (FY |F )−1)

− ζ|E ◦ If,e(FX |E)−1 ◦ f |∗E(e∗(f2)|F )
]
◦ If,e(f∗(FY )|E),

Θ21 =
[
idf∗(FY )|E ◦ f |

∗
E(e2|F )− f∗(e2)|E ◦ f |∗E(ide∗(FX)|F )

]
◦ If,e(FX |E),

Θ22 = δE(f−1(FY )|E)−
[
idf∗(FY )|E ◦ f |

∗
E(φY |F ) ◦ f |∗E(θ|F ◦ Ie,f (FY |F )−1)

+ f∗(e2)|E ◦ f |∗E(ide∗(FX)|F ) ◦ f |∗E(e∗(f2)|F )
]
◦ If,e(f∗(FY )|E).

Here Θ11 = Θ21 = 0 are immediate, and Θ12 = 0 follows from idf ∗ ζ = θ ∗ idf ,
and Θ22 = 0 follows from θ : f ◦ e ⇒ idV a 2-morphism. Hence θĖ = 0, so
k ◦ j = idĖ as θĖ : k ◦ j ⇒ idĖ . Similarly θḞ = 0 and j ◦ k = idḞ . Therefore
j : Ė → Ḟ and k : Ḟ → Ė are inverse 1-isomorphisms.

We can now define the d-space Z = (Z,O′Z , EZ , ıZ , Z) by gluing Ċ, Ḋ on

the open d-subspaces Ė ⊆ Ċ, Ḟ ⊆ Ḋ using the 1-isomorphism j : Ė → Ḟ .
The C∞-scheme is Z = C qj D = X qf Y as above. Write Ĉ, D̂ ⊆ Z for the

open d-subspaces identified with Ċ, Ḋ, and l : Ċ → Ĉ, m : Ḋ → D̂ for the
natural 1-isomorphisms. Then l|Ė : Ė → Ĉ ∩ D̂, m|Ḟ : Ḟ → Ĉ ∩ D̂ are also
1-isomorphisms, with l|Ė = m|Ḟ ◦ j.

Define ωE : l ◦ a|E ⇒m ◦ b ◦ f |E and ωF : m ◦ b|F ⇒ l ◦ a ◦ e|F by

l ◦ a|E
ωE=idm∗ζĖ∗ida|E��

m ◦ j ◦ a|E
idm∗ζĖ∗ida|E

+3 m ◦ ̃ ◦ a|E

m ◦ b ◦ f |E m ◦ b ◦ f ◦ idE m ◦ b ◦ f ◦ c ◦ a|E ,

m ◦ b|F
ωF=idl∗ζḞ ∗idb|F��

l ◦ k ◦ b|F
idl∗ζḞ ∗idb|F

+3 l ◦ k̃ ◦ b|F

l ◦ a ◦ e|F l ◦ a ◦ e ◦ idF l ◦ a ◦ e ◦ d ◦ b|F .
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As (2.50) commutes with θĖ = 0, composing on the left with idl and on the
right with ida|E shows the following commutes:

l◦a|E
idl◦a∗(−ζ)|E��

m◦j◦a|E
idm∗ζĖ∗ida|E

+3 m◦̃◦a|E m◦b◦f ◦c◦a|E

l◦a◦e◦ f |E l◦a◦e◦d◦b◦ f |E l◦k̃◦b◦f |E l◦k◦b◦ f |E .
idl∗ζḞ ∗idb|F ∗idf|E

ks

Thus the following diagram of 2-morphisms commutes:

l◦a|E ωE
+3 m◦b◦f |E
ωF ∗idf|E ��

l◦a◦idU |E
idl◦a∗(−ζ)|E +3 l◦a◦e◦f |E .

(2.53)

Next we construct the equivalences g : X → X̂, h : Y → Ŷ . To define g,
note that we have open d-subspacesC,G ⊆X withX = C∪G and E = C∩G,
and 1-morphisms l ◦ a : C → X̂, m ◦ b ◦ f |G : G → X̂, and a 2-morphism
ωE : l ◦a|E ⇒m ◦ b ◦f |E . Proposition 2.27 therefore constructs a 1-morphism
g : X → X̂ with 2-morphisms ζC : g|C ⇒ l ◦ a, θG : g|G ⇒ m ◦ b ◦ f |G such
that θG|C∩G = ωE � ζC |C∩G. In the same way we obtain h : Y → Ŷ with
ζD : hD ⇒m◦b and θH : h|H ⇒ l◦a◦e|H satisfying θH |D∩H = ωF�ζD|D∩H .

To see that g is an equivalence, note that a : C → Ċ is an equivalence and
l : Ċ → Ĉ a 1-isomorphism, so l ◦ a : C → Ĉ is an equivalence, and thus
g|C : C → Ĉ is an equivalence as g|C ∼= l ◦ a. Similarly g|G is an equivalence.
The morphism g in g = (g, g′, g′′) is the isomorphism g : X → X̂ from the

beginning of the proof. These imply that g : X → X̂ is an equivalence, and
similarly h : Y → Ŷ is an equivalence.

To construct η : g|U ⇒ h ◦ f , define η : g∗(FZ)|U → EX |U by

η|U∩C =
[
(−θH) ∗ idf |U∩C

]
+
[
idl◦a ∗ (−ζ)|U∩C

]
+
[
ζC |U∩C

]
,

η|G =
[
(−ζD) ∗ idf |G

]
+
[
θG
]
.

On (U ∩ C) ∩ G, the two lines agree as θG|C∩G = ωE � ζC |C∩G, θH |D∩H =
ωF � ζD|D∩H and (2.53) commutes. Thus we have commutative diagrams

g|U∩C
η|U∩C��

ζC |U∩C
+3 l◦a|U∩C

idl◦a∗(−ζ)|U∩C ��

g|G
η|G��

θG

+3 m◦b◦f |G

h◦f |U∩C l◦a◦e ◦f |U∩C ,
(−θH)∗idf|U∩Cks h◦f |G m◦b◦f |G.

(−ζD)∗idf|Gks

Hence η|U∩C : g|U∩C ⇒ h ◦ f |U∩C and η|G : g|G ⇒ h ◦ f |G are 2-morphisms,
so as U = (U ∩ C) ∪G and being a 2-morphism is local, η : g|U ⇒ h ◦ f is
a 2-morphism. Finally, Z being independent of choices up to equivalence will
follow from the characterization of Z as a pushout in dSpa in Theorem 2.29
below. This completes the proof of Theorem 2.28.

We can rewrite Theorem 2.28 in terms of pushouts in the 2-category dSpa.

As in §A.2, a pushout in a (1-)category C is a colimit of a diagram X
e←−W f−→Y .
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It is an object Z in C with morphisms g : X → Z and h : Y → Z with g◦e = h◦f ,
satisfying a universal property, and is unique up to isomorphism in C. We write
the pushout as Z = X qe,W,f Y or Z = X qW Y . Pushouts are dual to fibre
products, that is, a pushout in C is a fibre product in the opposite category Cop,
with directions of morphisms reversed.

There is an explicit construction of pushouts in the category Top of topolog-
ical spaces: given topological spaces W,X, Y and continuous maps e : W → X,
f : W → Y , we define Z = (X q Y )/ ∼, where ∼ is the equivalence relation
on X q Y generated by x ∼ y if x = e(w) ∈ X and y = f(w) ∈ Y for w ∈ W ,
and we give Z the quotient topology from X q Y � Z. The continuous maps
g : X → Z and h : Y → Z are the compositions of inclusions X,Y ↪→ XqY and
the projection X q Y � Z. If e, f are homeomorphisms with open sets U, V in
X,Y then g, h are homeomorphisms with open sets X̂, Ŷ in Z, with Z = X̂ ∪ Ŷ .

One can also define pushouts in 2-categories, by the dual definition to that of
fibre products in 2-categories in §A.4, with arrows reversed. Given 1-morphisms
e : W →X, f : W → Y in a 2-category C, the pushout Z = Xqe,W,fY in C, if
it exists, is unique up to equivalence. In the next theorem, b being independent
of η̃ up to 2-isomorphism is not true of all pushouts in 2-categories, it is due
to e,f being equivalences with open d-subspaces, and the existence of suitable
partitions of unity which we can use to glue 1- and 2-morphisms on open sets.

Theorem 2.29. Let e : W → X, f : W → Y be 1-morphisms of d-spaces
which are equivalences with open d-subspaces U ⊆ X, V ⊆ Y . Suppose that
the pushout of topological spaces Z = X qe,W,f Y is Hausdorff. Then a pushout
Z = Xqe,W,f Y exists in the 2-category dSpa, as constructed in Theorem 2.28,
with 1-morphisms g : X → Z, h : Y → Z and a 2-morphism η : g ◦ e⇒ h ◦ f .

By definition, pushouts have the property that if g̃ : X → Z̃, h̃ : Y → Z̃ are
1-morphisms and η̃ : g̃ ◦ e ⇒ h̃ ◦ f a 2-morphism in dSpa, then there exist a
1-morphism b : Z → Z̃ and 2-morphisms ζX : b ◦ g ⇒ g̃, ζY : b ◦h⇒ h̃, where
b is unique up to 2-isomorphism. In our case, this b has the additional property
of being independent up to 2-isomorphism of the choice of 2-morphism η̃.

Proof. As e : W → U is an equivalence we can choose a quasi-inverse i :
U → W, with 2-morphisms ζe : i ◦ e ⇒ idW, θe : e ◦ i ⇒ idU , which by
Proposition A.6 we take to satisfy ide ∗ ζe = θe ∗ ide and idi ∗ θe = ζe ∗ idi. Let
f ′ = f ◦ i : U → V . Then f ′ is an equivalence, as f , i are. So Theorem 2.28
applies, and constructs a d-space Z, 1-morphisms g : X → Z, h : Y → Z, and
a 2-morphism η′ : g|U ⇒ h ◦ f ′. Define a 2-morphism η : g ◦ e ⇒ h ◦ f by
η = (idh◦f ∗ζe)� (η′ ∗ ide), as a composition of 2-morphisms g ◦e⇒ h◦f ′ ◦e =
h ◦ f ◦ i ◦ e⇒ h ◦ f ◦ idW = h ◦ f .

We claim that Z, g,h, η are a pushout X qe,W,f Y in the 2-category dSpa.

That is, given g̃ : X → Z̃, h̃ : Y → Z̃ and η̃ : g̃◦e⇒ h̃◦f , we should construct
a 1-morphism b : Z → Z̃ and 2-morphisms ζX : b ◦ g ⇒ g̃, ζY : b ◦ h⇒ h̃ such
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that such that the following diagram of 2-isomorphisms commutes:

b ◦ g ◦ e
idb∗η

+3

ζX∗ide ��

b ◦ h ◦ f
ζY∗idf��

g̃ ◦ e
η̃ +3 h̃ ◦ f .

(2.54)

Furthermore, if ḃ, ζ̇X , ζ̇Y are alternative choices of b, ζX , ζY then there should
exist a unique 2-morphism θ : ḃ⇒ b with

ζ̇X = ζX � (θ ∗ idg) and ζ̇Y = ζY � (θ ∗ idh). (2.55)

Let g̃, h̃, η̃ be as above. Let p : X̂ → X and q : Ŷ → Y be quasi-inverses
for g,h, with 2-morphisms ζg : p◦g ⇒ idX , θg : g ◦p⇒ idX̂ , ζh : q ◦h⇒ idY ,
θh : h◦q ⇒ idŶ , which by Proposition A.6 we take to satisfy idg ∗ζg = θg ∗ idg,
idp ∗ θg = ζg ∗ idp, idh ∗ ζh = θh ∗ idh, and idq ∗ θh = ζh ∗ idq. Then we obtain

a 2-morphism ω : g̃ ◦ p|X̂∩Ŷ ⇒ h̃ ◦ q|X̂∩Ŷ by composition in the diagram:

g̃◦p|X̂∩Ŷ
ω��

idg̃∗(−θe)∗idp
+3 g̃◦e◦i◦p|X̂∩Ŷ η̃∗idi◦p

+3 h̃◦f ◦i◦p|X̂∩Ŷ
idh̃∗(−ζh)∗idf′◦p ��

h̃◦q|X̂∩Ŷ h̃◦q◦g◦p|X̂∩Ŷ
idh̃◦q∗θgks h̃◦q◦h◦f ′◦p|X̂∩Ŷ .

idh̃◦q∗(−η
′)∗idpks

Proposition 2.27 thus constructs a 1-morphism b : Z → Z̃, unique up to 2-
isomorphism, and 2-morphisms ζb : b|X̂ ⇒ g̃ ◦ p, θb : b|Ŷ ⇒ h̃ ◦ q such that
θb|X̂∩Ŷ = ω�ζb|X̂∩Ŷ . This b is independent up to 2-isomorphism of the choice
of ω, so in particular is independent of η̃, as we have to prove.

Define ζX : b ◦ g ⇒ g̃ and ζY : b ◦ h⇒ h̃ by

ζX = (idg̃ ∗ ζg)� (ζb ∗ idg) and ζY = (idh̃ ∗ ζh)� (θb ∗ idh).

The identities on ζe, θe, ζg, θg, ζh, θh, ω, ζb, θb above then imply that (2.54) com-

mutes. Given alternatives ḃ, ζ̇X , ζ̇Y , we define θ|X̂ , θ|Ŷ by the diagrams

ḃ|X̂
θ|X̂��

idḃ∗(−θg)
+3 ḃ ◦ g ◦ p

ζ̇X∗idp
+3 g̃ ◦ p ḃ|Ŷ

θ|Ŷ��
idḃ∗(−θh)

+3 ḃ ◦ h ◦ q
ζ̇Y∗idq

+3 h̃ ◦ q

b|X̂ b ◦ g ◦ p
idb∗θgks g̃ ◦ p,

(−ζX)∗idpks b|Ŷ b ◦ h ◦ qidb∗θhks h̃ ◦ q.
(−ζY )∗idqks

The identities above imply that these coincide on X̂ ∩ Ŷ , and so they glue to
define a morphism θ on Z. One can show it is the unique 2-morphism θ : ḃ⇒ b
satisfying (2.55). This completes the proof.

Next we generalize Theorems 2.28–2.29 to glue together n different d-spaces
X1, . . . ,Xn by equivalences on open d-subspaces, rather than just two.

Theorem 2.30. Suppose X1, . . . ,Xn are d-spaces, and for all i, j = 1, . . . , n
we are given an open d-subspace U ij ⊆Xi and an equivalence eij : U ij → U ji,
satisfying the following properties:
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(a) We have U ii = Xi and eii = idXi
for i = 1, . . . , n; and

(b) For all i, j, k = 1, . . . , n we have a 2-commutative diagram

U ji ∩U jk ejk|Uji∩Ujk
,,XXXXXXXXXXXXXXX

ηijk
��U ij ∩U ik

eij |Uij∩Uik 22fffffffffffffff eik|Uij∩Uik // Uki ∩Ukj

for some ηijk, where all three 1-morphisms are equivalences.

On the level of topological spaces, define the quotient topological space Y =
(
∐n
i=1Xi)/ ∼, where ∼ is the equivalence relation generated by xi ∼ xj if xi ∈

Uij ⊆ Xi and xj ∈ Uji ⊆ Xj with eij(xi) = xj. Suppose Y is Hausdorff. Then
there exist a d-space Y and a 1-morphism f i : Xi → Y which is an equivalence
with an open d-subspace X̂i ⊆ Y for i = 1, . . . , n, where Y = X̂1 ∪ · · · ∪ X̂n,
such that f i|Uij is an equivalence U ij → X̂i ∩ X̂j for all i, j = 1, . . . , n, and
there exists a 2-morphism ηij : f j ◦ eij ⇒ f i|Uij . The d-space Y is unique up
to equivalence, and is independent of choice of 2-morphisms ηijk in (b).

Suppose also that Z is a d-space, and gi : Xi → Z are 1-morphisms for
i = 1, . . . , n, and there exist 2-morphisms ζij : gj ◦ eij ⇒ gi|Uij for all i, j =
1, . . . , n. Then there exist a 1-morphism h : Y → Z and 2-morphisms ζi :
h◦f i ⇒ gi for i = 1, . . . , n. The 1-morphism h is unique up to 2-isomorphism,
and is independent of the choice of 2-morphisms ζij.

Proof. The proof is by induction on n. The case n = 1 is trivial, with Y = X1

and f1 = idX1
and h = g1, and the case n = 2 follows from Theorems 2.28

and 2.29. Suppose by induction that the theorem holds whenever n 6 m, where
m > 2, let X1, . . . ,Xm+1,U ij , eij be as in the first part of the theorem for

n = m+ 1, and suppose Y = (
∐m+1
i=1 Xi)/ ∼ is Hausdorff.

Apply Theorem 2.28 to the d-spacesXm,Xm+1, open d-subspaces Um(m+1)

⊆ Xm, U (m+1)m ⊆ Xm+1, and equivalence em(m+1) : Um(m+1) → U (m+1)m.

This gives a d-space X̃m with open d-subspaces Ẋm, Ẋm+1 ⊆ X̃m, and equiv-
alences jm : Xm → Ẋm, jm+1 : Xm+1 → Ẋm+1, such that jm|Um(m+1)

:

Um(m+1) → Ẋm ∩ Ẋm+1 and jm+1|U(m+1)m
: U (m+1)m → Ẋm ∩ Ẋm+1 are

equivalences, and a 2-morphism θm : jm|Um(m+1)
⇒ jm+1 ◦ em(m+1).

For i = 1, . . . ,m − 1 define open d-subspaces Ũ im = U im ∪U i(m+1) ⊆ Xi

and Ũmi = jm(Umi) ∪ jm+1(U (m+1)i) ⊆ X̃m. Then Ũmi with 1-morphisms

jm|Umi : Umi → Ũmi and jm+1|U(m+1)i
: U (m+1)i → Ũmi is the result of ap-

plying Theorem 2.28 to glue the d-spaces Umi,U (m+1)i via the equivalence
em(m+1)|Umi∩Um(m+1)

: Umi ∩ Um(m+1) → U (m+1)i ∩ U (m+1)m. We have

1-morphisms emi : Umi → Ũ im and e(m+1)i : U (m+1)i → Ũ im, and (b)
with m,m + 1, i in place of i, j, k shows that emi|Umi∩Um(m+1)

∼= e(m+1)i ◦
em(m+1)|Umi∩Um(m+1)

, where ‘∼=’ denotes 2-isomorphic. Thus the second part

of Theorem 2.29 gives a 1-morphism ẽmi : Ũmi → Ũ im with ẽmi◦jm|Umi ∼= emi
and ẽmi ◦ jm+1|U(m+1)i

∼= e(m+1)i.
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We have 1-morphisms jm◦eim : U im→Ũ im and jm+1◦ei(m+1) : U i(m+1)→
Ũ im, and on the overlap U im ∩U i(m+1) we have 2-morphisms

jm ◦ eim|Uim∩Ui(m+1) θm∗ideim
+3

*2

jm+1 ◦ em(m+1) ◦ eim|Uim∩Ui(m+1)

idjm+1
∗ηim(m+1)��

jm+1 ◦ ei(m+1)|Uim∩Ui(m+1)
.

Proposition 2.27 thus constructs a 1-morphism ẽim : Ũ im → Ũmi such that
ẽim|Uim ∼= jm ◦ eim and ẽim|Ui(m+1)

∼= jm+1 ◦ ei(m+1).
Since eim, emi are quasiinverse and ei(m+1), e(m+1)i are quasiinverse, one

can now show that ẽmi : Ũmi → Ũ im and ẽim : Ũ im → Ũmi are quasiinverse,
so both are equivalences. Define Ũmm = X̃m and ẽmm = idX̃m

as in (a). We

now claim that the data X1, . . . ,Xm−1, X̃m, U ij , eij for i, j = 1, . . . ,m − 1,

Ũ im, Ũmi, ẽim, ẽmi for i = 1, . . . ,m−1 and Ũmm, ẽmm satisfies the hypotheses
of the theorem with n = m. The only nontrivial thing to check is that (b) holds
when exactly one of i, j, k are m, and one can prove this by gluing together
2-morphisms on the parts coming from Xm,Xm+1 using a partition of unity
argument, in a similar way to Proposition 2.27.

By induction, we now get a d-space Y and 1-morphisms f i : Xi
∼−→ X̂i ⊆ Y

for i = 1, . . . ,m−1 and f̃m : X̃m → Y . Set fm = f̃m ◦jm, fm+1 = f̃m ◦jm+1,

X̂m = f̃m(Ẋm) = fm(Xm) and X̂m+1 = f̃m(Ẋm+1) = fm(Xm+1). These
satisfy the conclusions of the first part of the theorem, proving the first part
of the inductive step. For the second part of the inductive step, given Z and
gi : Xi → Z for i = 1, . . . ,m + 1, we first apply Proposition 2.27 to obtain
g̃m : X̃m → Z with g̃m ◦ jm ∼= gm and g̃m ◦ jm+1

∼= gm+1. Then we apply
the second part of the theorem with n = m to Z and g1, . . . , gm−1, g̃m to
get h : Y → Z, which satisfies the conditions we need. This completes the
inductive step. That Y ,h are independent of choices of 2-morphisms ηijk, ζij
holds by induction and the final parts of Proposition 2.27 and Theorem 2.29.

We can also generalize Theorem 2.30 to gluing infinitely many d-spaces
{Xi : i ∈ I}, provided only finitely many Xi intersect near any point in
Y = (

∐
i∈I Xi)/ ∼. The assumption that I be countable is necessary, since

otherwise Y would not be second countable, so Y would not be a d-space.

Theorem 2.31. Suppose I is a countable indexing set, and Xi for i ∈ I are
d-spaces, and for all i, j ∈ I we are given an open d-subspace U ij ⊆Xi and an
equivalence eij : U ij → U ji, satisfying the following properties:

(a) We have U ii = Xi and eii = idXi for all i ∈ I;

(b) For all i, j, k ∈ I we have a 2-commutative diagram

U ji ∩U jk ejk|Uji∩Ujk
,,XXXXXXXXXXXXXXX

ηijk
��U ij ∩U ik

eij |Uij∩Uik 22fffffffffffffff eik|Uij∩Uik // Uki ∩Ukj

for some ηijk, where all three 1-morphisms are equivalences; and
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(c) For all i∈ I and x∈Xi, there exists an open neighbourhood V of x in
Xi such that V ∩U ij 6= ∅ for only finitely many j∈I.

On the level of topological spaces, define the quotient topological space Y =
(
∐
i∈I Xi)/ ∼, where ∼ is the equivalence relation generated by xi ∼ xj if xi ∈

Uij ⊆ Xi and xj ∈ Uji ⊆ Xj with eij(xi) = xj. Suppose Y is Hausdorff. Then
there exist a d-space Y and a 1-morphism f i : Xi → Y which is an equivalence
with an open d-subspace X̂i ⊆ Y for all i ∈ I, where Y =

⋃
i∈I X̂i, such that

f i|Uij is an equivalence U ij → X̂i ∩ X̂j for all i, j ∈ I, and there exists a
2-morphism ηij : f j ◦ eij ⇒ f i|Uij . The d-space Y is unique up to equivalence,
and is independent of choice of 2-morphisms ηijk in (b).

Suppose also that Z is a d-space, and gi : Xi → Z are 1-morphisms for all
i ∈ I, and there exist 2-morphisms ζij : gj ◦ eij ⇒ gi|Uij for all i, j ∈ I. Then
there exist a 1-morphism h : Y → Z and 2-morphisms ζi : h ◦ f i ⇒ gi for all
i ∈ I. The 1-morphism h is unique up to 2-isomorphism, and is independent of
the choice of 2-morphisms ζij.

Proof. When I is finite the theorem reduces to Theorem 2.31 with n = |I|, so
suppose I is countably infinite. Then we may identify I = N = {1, 2, . . .}. Form
the topological space Y = (

∐∞
i=1Xi)/ ∼, with projections fi : Xi → Y which

are homeomorphisms with open subsets X̂i ⊂ Y for i = 1, 2, . . . . Then Y is
Hausdorff by assumption. Also, X̂i

∼= Xi is second countable (has a countable
basis for its topology) as Xi is a d-space. Thus Y is a countable union of second
countable open sets X̂i, so Y is second countable.

The gluing of topological spaces also works at the level of C∞-schemes.
That is, we may define a natural C∞-scheme Y = (

∐
i∈I Xi)/ ∼ with under-

lying topological space Y , and morphisms f i : Xi → Y for i ∈ I which are

isomorphisms with open C∞-subschemes X̂i in Y , such that Y =
⋃
i∈I X̂i, and

f j ◦ eij = f i|Uij for all i, j ∈ I. As Y is Hausdorff and second countable, and
each Xi is locally fair, Y is separated, second countable, and locally fair.

The idea of the proof is to take the limit n → ∞ in Theorem 2.30. For
the first part, for each n = 1, 2, . . . we may apply Theorem 2.30 to the data
Xi,U ij , eij for i, j 6 n to get a d-space Y n and 1-morphisms fni : Xi → Y n

for i = 1, . . . , n, with fnj ◦ eij ∼= fni |Uij . On the level of C∞-schemes we may

take Y n = X̂1 ∪ · · · ∪ X̂n, as a C∞-open subscheme of Y . Also, in the inductive
step of Theorem 2.30, Y n+1 is in effect constructed from Y n by gluing in Xn+1,
where the gluing was done using Theorem 2.28. This gluing does not change
Y n,Xn+1 outside their intersection. Hence Y n,Y n+1 are 1-isomorphic over(
X̂1 ∪ · · · ∪ X̂n

)
\ X̂n+1, and we can take them to be actually equal.

Let y ∈ Y . As Y =
⋃∞
i=1 X̂i we have y ∈ X̂i for some i, so y = f i(x) for

x ∈ Xi. Part (c) then gives an open x ∈ V ⊆ Xi such that V ∩ Uij 6= ∅ for
only finitely many j = 1, 2, . . . . Let Ny be the maximum of these j, and set

V̂ = f i(V ). Then V̂ is open in Y , and y ∈ V̂ ⊆ X̂1 ∪ · · · ∪ X̂Ny , and X̂n ∩ V̂ = ∅
for all n > Ny. Thus Y n is independent of n over y ∈ V̂ ⊆ Y for all n > Ny.

We can now construct a d-space Y = (Y ,O′Y , EY , ıY , Y ) by taking the limit
n → ∞ in Y n. Near each y ∈ Y the data O′nY , EnY , ınY , nY become independent
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of n for n � 0. Formally, we define presheaves PO′Y ,PEY and morphisms of

presheaves PıY ,PY over Y using the limiting data over V̂ 3 y as above for
each y ∈ Y , and then O′Y , EY , ıY , Y are the sheafifications of these presheaves
and morphisms. By similar limiting arguments as n → ∞ in Theorem 2.30 we
obtain f i : Xi → Y , ηij : f j ◦ eij ⇒ f i|Uij for i, j = 1, 2, . . . satisfying the first
part of the theorem, and h : Y → Z, ζi : h ◦ f i ⇒ gi for i = 1, 2, . . . satisfying
the second part. This completes the proof.

We can eliminate the assumptions that I is countable and the Xi have
locally finite intersections if we suppose that Y is second countable.

Theorem 2.32. Suppose Xi for i ∈ I are d-spaces, and for all i, j ∈ I we
are given an open d-subspace U ij ⊆ Xi and an equivalence eij : U ij → U ji,
satisfying the following properties:

(a) We have U ii = Xi and eii = idXi
for all i ∈ I; and

(b) For all i, j, k ∈ I we have a 2-commutative diagram

U ji ∩U jk ejk|Uji∩Ujk
,,XXXXXXXXXXXXXXX

ηijk
��

U ij ∩U ik

eij |Uij∩Uik 22fffffffffffffff eik|Uij∩Uik // Uki ∩Ukj

for some ηijk, where all three 1-morphisms are equivalences.

On the level of topological spaces, define the quotient topological space Y =
(
∐
i∈I Xi)/ ∼, where ∼ is the equivalence relation generated by xi ∼ xj if xi ∈

Uij ⊆ Xi and xj ∈ Uji ⊆ Xj with eij(xi) = xj. Suppose Y is Hausdorff and
second countable. Then there exist a d-space Y and a 1-morphism f i : Xi → Y
which is an equivalence with an open d-subspace X̂i ⊆ Y for all i ∈ I, where
Y =

⋃
i∈I X̂i, such that f i|Uij is an equivalence U ij → X̂i∩X̂j for all i, j ∈ I,

and there exists a 2-morphism ηij : f j ◦ eij ⇒ f i|Uij . The d-space Y is unique
up to equivalence, and is independent of choice of 2-morphisms ηijk in (b).

Suppose also that Z is a d-space, and gi : Xi → Z are 1-morphisms for all
i ∈ I, and there exist 2-morphisms ζij : gj ◦ eij ⇒ gi|Uij for all i, j ∈ I. Then
there exist a 1-morphism h : Y → Z and 2-morphisms ζi : h ◦ f i ⇒ gi for all
i ∈ I. The 1-morphism h is unique up to 2-isomorphism, and is independent of
the choice of 2-morphisms ζij.

Proof. As the Xi are d-spaces, the Xi are locally fair, so the Xi are locally
compact. Hence Y is locally compact, and Hausdorff and second countable by
assumption. These imply that Y is paracompact. Write X̂i for the open subset
of Y corresponding to Xi, and fi : Xi → X̂i for the natural homeomorphism.
Then {X̂i : i ∈ I} is an open cover of Y , so as Y is paracompact it has a locally
finite refinement. That is, there exists K ⊆ I and an open subset ∅ 6= Ŵk ⊆ X̂k

for k ∈ K such that {Ŵk : k ∈ K} is a locally finite open cover of Y . As Y is
second countable, K is countable.

Let Wk = f−1
k (Ŵk) ⊂ Xk for k ∈ K, and Wk ⊆ Xk be the corresponding

open d-subspace. For k, l ∈ K, set T kl = Ukl∩Wk∩e−1
kl (Wl) and dkl = ekl|T kl ,
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so that T kl ⊆ Ukl is an open d-subspace and dkl : T kl → T lk an equivalence.
Then Wk, k ∈ K, T kl,dkl, k, l ∈ K satisfy the hypotheses of Theorem 2.31,
noting that K is countable, and (c) holds as {Ŵk : k ∈ K} is locally finite. Thus
the first part of Theorem 2.31 gives a d-space Y and 1-morphisms f̃k : Wk → Y
for k ∈ K which are equivalences with Ŵ k ⊆ Y , such that Y =

⋃
k∈K Ŵ k, and

f̃k|T kl is an equivalence T kl → Ŵ k∩Ŵ l for all k, l ∈ K, and f̃ l ◦dkl ∼= f̃k|T kl ,
where ‘∼=’ denotes 2-isomorphic.

Regard these Y and f̃k, k ∈ K as fixed for the rest of the proof. Let i ∈ I.
To construct f i : Xi → Y , we apply the first part of Theorem 2.31 to the
data Wk, k ∈ K, T kl,dkl, k, l ∈ K, together with the one extra space Xi,
and extra overlap data Ũ ik, Ũki, ẽik, ẽki for k ∈ K, where we define Ũ ik ⊆Xi,
Ũki ⊆ Wk, ẽik : Ũ ik → Ũki, ẽki : Ũki → Ũ ik by Ũ ik = U ik ∩ e−1

ik (Wk),

Ũki = Uki ∩Wk, ẽik = eik|Ũik and ẽki = eki|Ũki . As we are adding only one
extra space, the indexing set K q{i} is countable, and condition (c) still holds.

Then the first part of Theorem 2.31 yields a d-space Y i, 1-morphisms f̃ ik :
Wk → Y i for k ∈ K, and a 1-morphism f i : Xi → Y i. But forgetting
Xi, Ũ ik, . . . ,f i, these Y i, f̃ ik satisfy the conclusions of Theorem 2.31 for the
data Wk, k ∈ K, T kl,dkl, k, l ∈ K. Thus by uniqueness of Y up to equivalence,
we may take Y i = Y , and f̃ ik = f̃k for k ∈ K. Hence we have constructed a
1-morphism f i : Xi → Y for each i ∈ I, which is an equivalence with an open
d-subspace X̂i ⊆ Y . Regard these f i, X̂i as fixed for the rest of the proof.

Let i, j ∈ I. To prove pairwise compatibility between f i and f j , we apply
the first part of Theorem 2.31 to the data Wk, k ∈ K, T kl,dkl, k, l ∈ K,
together with the two extra spaces Xi,Xj , and corresponding overlap data
including U ij ,U ji, eij . As above we can take the resulting d-space to be Y ,

and the 1-morphisms to be f̃k : Wk → Y and f i : Xi → Y , f j : Xj → Y .

Thus Theorem 2.31 shows that f i|Uij is an equivalence U ij → X̂i ∩ X̂j , and
f j ◦ eij ∼= f i|Uij . This completes the proof of the first part.

For the second part, suppose Z and gi : Xi → Z for i ∈ I are as in the
theorem. Then applying the second part of Theorem 2.31 with dataWk, k ∈ K,
T kl,dkl, k, l ∈ K, and 1-morphisms gk|Wk

: Wk → Z for k ∈ K, gives a 1-

morphism h : Y → Z, unique up to 2-isomorphism, such that h ◦ f̃k ∼= gk|Wk

for all k ∈ K. Regard this h as fixed for the rest of the proof.
Fix i ∈ I and apply the second part of Theorem 2.31 with data Wk, k ∈ K,

T kl,dkl, k, l ∈ K, together with one extra space Xi, and extra overlap data
Ũ ik, Ũki, ẽik, ẽki for k ∈ K, and 1-morphisms gk|Wk

: Wk → Z for k ∈ K
and gi : Xi → Z. This yields a 1-morphism hi : Y → Z. But forgetting
Xi, Ũ ik, . . . , gi, this hi satisfies the conclusions of Theorem 2.31 with data
Wk,T kl,dkl, gk|Wk

. Thus by uniqueness of h up to 2-isomorphism we may
take hi = h. Hence h ◦ f i ∼= gi. This completes the second part.

Some of the data in Theorem 2.32 is redundant: as eij : U ij → U ji and
eji : U ji → U ij are quasi-inverse, eij determines eij up to 2-isomorphism, so
we need remember only one of eij and eij .

Theorem 2.33. Suppose I is an indexing set, and < is a total order on I, and
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Xi for i ∈ I are d-spaces, and for all i < j in I we are given open d-subspaces
U ij ⊆ Xi, U ji ⊆ Xj and an equivalence eij : U ij → U ji, such that for all
i < j < k in I we have a 2-commutative diagram

U ji ∩U jk ejk|Uji∩Ujk
,,XXXXXXXXXXXXXXX

ηijk
��

U ij ∩U ik

eij |Uij∩Uik 22fffffffffffffff eik|Uij∩Uik // Uki ∩Ukj

for some ηijk, where all three 1-morphisms are equivalences.
On the level of topological spaces, define the quotient topological space Y =

(
∐
i∈I Xi)/ ∼, where ∼ is the equivalence relation generated by xi ∼ xj if i < j,

xi ∈ Uij ⊆ Xi and xj ∈ Uji ⊆ Xj with eij(xi) = xj. Suppose Y is Hausdorff
and second countable. Then there exist a d-space Y and a 1-morphism f i :
Xi → Y which is an equivalence with an open d-subspace X̂i ⊆ Y for all i ∈ I,
where Y =

⋃
i∈I X̂i, such that f i|Uij is an equivalence U ij → X̂i ∩ X̂j for all

i < j in I, and there exists a 2-morphism ηij : f j ◦eij ⇒ f i|Uij . The d-space Y
is unique up to equivalence, and is independent of choice of 2-morphisms ηijk.

Suppose also that Z is a d-space, and gi : Xi → Z are 1-morphisms for all
i ∈ I, and there exist 2-morphisms ζij : gj ◦ eij ⇒ gi|Uij for all i < j in I.
Then there exist a 1-morphism h : Y → Z and 2-morphisms ζi : h◦f i ⇒ gi for
all i ∈ I. The 1-morphism h is unique up to 2-isomorphism, and is independent
of the choice of 2-morphisms ζij.

Proof. If i < j in I then eij : U ij → U ji is an equivalence, so we can choose
a quasi-inverse eji : U ji → U ij , and 2-morphisms θij : eji ◦ eij ⇒ idUij ,
θji : eij ◦ eji ⇒ idUji . Define U ii = Xi and eii = idXi

for all i ∈ I as in
Theorem 2.32(a). We are given 2-morphisms ηijk whenever i < j < k in I.
Using these and the θij , θji we can define 2-morphisms ηijk for all i, j, k ∈ I,
such that the hypotheses of the first part of Theorem 2.32 hold. The first part
of the theorem then follows from Theorem 2.32. The second part is similar.

We can simplify Theorem 2.33, making it more restrictive, by taking all the
ηijk and ζij to be identities. That is, we assume that eik|Uij∩Uik = ejk|Uji∩Ujk◦
eij |Uij∩Uik for all i < j < k, and gj ◦ eij = gi|Uij for all i < j. This would
not be a useful modification to Theorem 2.32, as it would force the eij to be
1-isomorphisms rather than equivalences.

Remark 2.34. In Theorems 2.30–2.33, the compatibility conditions on the
gluing data Xi,U ij , eij are significantly weaker than you might expect. In
each theorem, the 2-morphisms ηijk on triple overlaps Xi ∩Xj ∩Xk are only
required to exist, not to satisfy any further conditions. In particular, one might
think that on quadruple overlaps Xi ∩Xj ∩Xk ∩X l we should require

ηikl � (idfkl ∗ ηijk)|Uij∩Uik∩Uil = ηijl � (ηjkl ∗ idf ij )|Uij∩Uik∩Uil ,

but we do not. This is a consequence of b being independent of η̃ in Theorem
2.29. Similarly, the 2-morphisms ζij are only required to exist, though you
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might expect that on triple overlaps Xi ∩Xj ∩Xk we should require(
ζij |Uij∩Uik

)
�
(
ζjk ∗ ideij |Uij∩Uik

)
=
(
ζik|Uij∩Uik

)
�
(
idgk ∗ ηijk|Uij∩Uik

)
.

As we explain in §4.7, these weak conditions mean that Theorems 2.30–2.33 can
be stated in the homotopy category of d-spaces Ho(dSpa).

In contrast, in the analogous result Theorem 9.19 for gluing d-stacks by
equivalences, we need compatibility conditions for the ηijk on quadruple overlaps
X i∩X j∩X k∩X l, and for the ζij on triple overlaps X i∩X j∩X k. This is what
you would expect for gluing geometric spaces in a 2-category by equivalences.
We give some sufficient conditions for these compatibility conditions to hold
automatically, using a uniqueness result for 2-morphisms.

The problem of gluing geometric spaces in an∞-category C by equivalences,
such as Spivak’s derived manifolds [95], is discussed by Toën and Vezzosi [101,
§1.3.4] and Lurie [70, §6.1.2]. One sets the problem up as finding a homotopy
colimit of a Segal groupoid or simplicial object in C. It is complicated, and
requires nontrivial conditions on overlaps Xi1 ∩ · · · ∩Xin for all n = 2, 3, . . . .

2.5 Fibre products of d-spaces

In the next definition we write down an explicit construction of fibre products in
dSpa. See §A.4 for an explanation of fibre products in 2-categories. Theorem
2.36 proves our construction has the universal property required.

Definition 2.35. Let g : X → Z, h : Y → Z be 1-morphisms of d-spaces.
We will define a d-space W = (W,O′W , EW , ıW , W ), and 1-morphisms e =
(e, e′, e′′) : W → X, f = (f, f ′, f ′′) : W → Y , and a 2-morphism η : g ◦ e ⇒
h◦f , such that W, e,f , η are a fibre product X×g,Z,hY in dSpa, in the sense
of Definition A.7. That is, we have a 2-Cartesian square in dSpa:

W
f

//
e�� � �� �

GO
η

Y
h ��

X
g // Z.

Define W = X×g,Z,hY to be the fibre product in C∞Sch. Then W is separated,

second countable and locally fair by Theorem B.19(b), as X,Y , Z are. Write
e : W → X and f : W → Y for the projections. Then g ◦ e = h ◦ f .

To define O′W , EW , ıW , W , e′, e′′, f ′, f ′′, η we must first discuss tensor prod-
ucts of sheaves of C∞-rings. Proposition B.4 and Theorem B.19 imply that
products X × Y of C∞-schemes X,Y exist in C∞Sch, and dually, coprod-
ucts of C∞-rings C,D exist in C∞Rings. We will write the coproduct of C,D
in C∞Rings as C ⊗̂D, and think of it as a completion of the tensor product
C ⊗R D of C and D as real vector spaces. The tensor product C ⊗R D is an
R-algebra, but in general not a C∞-ring. Coproducts of C∞-rings are unique up
to canonical isomorphism; there is also a natural construction for them. By defi-
nition, the coproduct C ⊗̂D comes with C∞-ring morphisms iC : C → C ⊗̂D and
iD : D → C ⊗̂D, and these induce a morphism of R-algebras C ⊗R D → C ⊗̂D.
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These have the universal property that if φ : C → E and ψ : D → E are
morphisms of C∞-rings, there is a unique morphism φ⊗̂ψ : C ⊗̂D → E with
(φ⊗̂ψ) ◦ iC = φ and (φ⊗̂ψ) ◦ iD = ψ. There is also a second kind of product
morphism: if φ : C → E and ψ : D → F are morphisms of C∞-rings, there
is a unique morphism φ�̂ψ : C ⊗̂D → E⊗̂F with (φ�̂ψ) ◦ iC = iE ◦ φ and
(φ�̂ψ) ◦ iD = iF ◦ ψ.

All this also works at the level of sheaves of C∞-rings. Thus, if O,P are
sheaves of C∞-rings on a topological space X, then the (completed) tensor
product O⊗̂P is a sheaf of C∞-rings on X equipped with morphisms of sheaves
of C∞-rings iO : O → O⊗̂P and iP : P → O⊗̂P, such that if φ : O → Q and
ψ : P → Q are morphisms of sheaves of C∞-rings on X, then there is a unique
morphism φ⊗̂ψ : O⊗̂P → Q with (φ⊗̂ψ) ◦ iO = φ and (φ⊗̂ψ) ◦ iP = ψ, and if
φ : O → Q and ψ : P → R are morphisms of sheaves of C∞-rings on X, then
there is a unique morphism φ�̂ψ : O⊗̂P → Q⊗̂R with (φ�̂ψ) ◦ iO = iQ ◦ φ
and (φ�̂ψ) ◦ iP = iR ◦ ψ.

On W we have seven sheaves of C∞-rings, namely OW , e−1(OX), f−1(OY ),
(g ◦ e)−1(OZ) = (h ◦ f)−1(OZ), e−1(O′X), e−1(O′Y ) and (g ◦ e)−1(O′Z) = (h ◦
f)−1(O′Z). We also have nine morphisms of sheaves of C∞-rings, that is

e] : e−1(OX) −→ OW , f ] : f−1(OY ) −→ OW ,
e−1(ıX) : e−1(O′X) −→ e−1(OX), f−1(ıY ) : f−1(O′Y ) −→ f−1(OY ),

e−1(g]) ◦ Ie,g(OZ) : (g ◦ e)−1(OZ) −→ e−1(OX),

f−1(h]) ◦ If,h(OZ) : (g ◦ e)−1(OZ) −→ f−1(OY ),

(g ◦ e)−1(ıZ) : (g ◦ e)−1(O′Z) −→ (g ◦ e)−1(OZ),

e−1(g′) ◦ Ie,g(O′Z) : (g ◦ e)−1(O′Z) −→ e−1(O′X),

f−1(h′) ◦ If,h(O′Z) : (g ◦ e)−1(O′Z) −→ f−1(O′Y ).

We will build O′W , . . . , η using tensor products of these sheaves and morphisms.
First note that the direct product (e, f) : W → X × Y embeds W as a

C∞-subscheme of X × Y , so it is an injective morphism of C∞-schemes. The
morphism (e, f)] : (e, f)−1(OX×Y ) → OW in (e, f) is naturally identified with

e] ⊗̂f ] : e−1(OX)⊗̂f−1(OY ) → OW . Thus, as (e, f) is injective, e] ⊗̂f ] is
a surjective morphism of sheaves of C∞-rings. Also ıX , ıY are surjective, so
e−1(ıX), f−1(ıY ) are surjective, and therefore e−1(ıX)�̂f−1(ıY ) is too. Hence(

e] ⊗̂f ]
)
◦
(
e−1(ıX)�̂f−1(ıY )

)
: e−1(O′X)⊗̂f−1(O′Y ) −→ OW (2.56)

is a surjective morphism of sheaves of C∞-rings on W .
Write JW for the kernel of (2.56), as a sheaf of ideals in e−1(O′X)⊗̂f−1(O′Y ).

Then J 2
W is another sheaf of ideals in e−1(O′X)⊗̂f−1(O′Y ). Define O′W =(

e−1(O′X)⊗̂f−1(O′Y )
)
/J 2

W to be the quotient sheaf of C∞-rings on W , with
projection πO′W : e−1(O′X)⊗̂f−1(O′Y )→ O′W . Then πO′W is surjective, with ker-

nel J 2
W . As J 2

W ⊆ JW , the morphism (2.56) factors through πO′W . Thus, there
exists a unique morphism of sheaves of C∞-rings ıW : O′W → OW such that(

e] ⊗̂f ]
)
◦
(
e−1(ıX)�̂f−1(ıY )

)
= ıW ◦ πO′W . (2.57)
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As (2.56) is surjective, so is ıW . The kernel of ıW is JW /J 2
W , which is a sheaf

of square zero ideals in O′W . Thus, (O′W , ıW ) is a square zero extension of W .
Definition 2.9 now defines quasicoherent sheaves IW = JW /J 2

W and FW =
ΩO′W ⊗O′W OW on W , and morphisms κW : IW → O′W , ξW : IW → FW
and ψW : FW → T ∗W . Define e′ = πO′W ◦ ie−1(O′X) : e−1(O′X) → O′W and

f ′ = πO′W ◦ if−1(O′Y ) : f−1(O′Y )→ O′W . Then

ıW ◦ e′ = ıW ◦ πO′W ◦ ie−1(O′X) =
(
e] ⊗̂f ]

)
◦
(
e−1(ıX)�̂f−1(ıY )

)
◦ ie−1(O′X)

=
(
e] ⊗̂f ]

)
◦ ie−1(OX) ◦ e−1(ıX) = e] ◦ e−1(ıX).

Thus (e, e′) is a morphism of square zero extensions (W,O′W , ıW )→(X,O′X , ıX).
Similarly ıW ◦ f ′ = f ] ◦ f−1(ıY ), and (f, f ′) is a morphism (W,O′W , ıW ) →
(Y ,O′Y , ıY ). Thus Definition 2.12 defines morphisms e1, e2, e3, f1, f2, f3.

As in (2.15) we have morphisms of square zero extensions (g, g′) ◦ (e, e′) =
(g◦e, (g◦e)′) and (h, h′)◦(f, h′) = (h◦f, (h◦f)′) from (W,O′W , ıW ) to (Z,O′Z , ıZ),

where (g ◦ e)′ = f ′ ◦f−1(g′)◦ If,g(O′Z), and similarly for (h◦f)′. Definition 2.12
defines morphisms (g ◦ e)j , (h ◦ f)j for j = 1, 2, 3. We have g ◦ e = h ◦ f , but in
general (g ◦ e)′ 6= (h ◦ f)′. Therefore Proposition 2.13 applies, so there exists a
unique morphism µ : (g ◦ e)∗(FZ)→ IW in qcoh(W ) such that

(h ◦ f)′ = (g◦e)′+κW ◦µ◦
(
id⊗((g◦e)]◦(g◦e)−1(ıZ))

)
◦
(
(g◦e)−1(d)

)
,

(h ◦ f)1 = (g ◦ e)1 + µ ◦ (g ◦ e)∗(ξZ), (2.58)

(h ◦ f)2 = (g ◦ e)2 + ξW ◦ µ, and (h ◦ f)3 = (g ◦ e)3.

Define morphisms α1, α2 in qcoh(W ) by

(g ◦ e)∗(EZ)

α1:=


e∗(g′′)◦Ie,g(EZ)

−f∗(h′′)◦If,h(EZ)

(g◦e)∗(φZ)


//

e∗(EX)⊕
f∗(EY )⊕
(g ◦ e)∗(FZ)

α2:=


e1◦e∗(X)

f1◦f∗(Y )

µ


T

// IW .
(2.59)

Then (2.59) is a complex in qcoh(W ), as

α2 ◦ α1

= e1◦e∗(X)◦e∗(g′′)◦Ie,g(EZ)−f1◦f∗(Y )◦f∗(h′′)◦If,h(EZ)+µ◦(g◦e)∗(φZ)

= e1◦e∗(g1◦g∗(Z))◦Ie,g(EZ)−f1◦f∗(h1◦h∗(Z))◦If,h(EZ)+µ◦(g◦e)∗(ξZ ◦Z)

=
[
e1◦e∗(g1)◦Ie,g(IZ)−f1◦f∗(h1)◦If,h(IZ)+µ◦(g◦e)∗(ξZ)

]
◦(g◦e)∗(Z)

=
[
(g ◦ e)1 − (h ◦ f)1 + µ ◦ (g ◦ e)∗(ξZ)

]
◦ (g ◦ e)∗(Z) = 0,

where in the second step we use (2.21) for g,h and φZ = ξZ◦Z , in the third that
Ie,g, If,h are natural isomorphisms, in the fourth the third equation of (2.24) for

g ◦ e,h ◦ f , and in the fifth the third equation of (2.58).
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We will show that α2 in (2.59) is surjective. Consider the morphisms of
sheaves of C∞-rings on W :

e−1(ıX)�̂ idf−1(O′Y ) : e−1(O′X)⊗̂f−1(O′Y ) −→ e−1(OX)⊗̂f−1(O′Y ),

ide−1(O′X) �̂f
−1(ıY ) : e−1(O′X)⊗̂f−1(O′Y ) −→ e−1(O′X)⊗̂f−1(OY ),

e−1(ıX)�̂f−1(ıY ) : e−1(O′X)⊗̂f−1(O′Y ) −→ e−1(OX)⊗̂f−1(OY ).

Write JX×Y ′ ,JX′×Y and JX×Y respectively for the kernels of these, as sheaves
of ideals in e−1(O′X)⊗̂f−1(O′Y ). Then JX×Y = JX×Y ′ ⊕ JX′×Y . Equation
(2.57) factors through all three morphisms, so JX×Y ′ ,JX′×Y ,JX×Y ⊆ JW .
One can now form a commutative diagram in qcoh(W ):

0
��

0
��

e∗(EX)⊕
f∗(EY )

(
e∗(X ) 0

0 f∗(Y )

)
//


id 0

0 id

0 0


��

e∗(IX)⊕
f∗(IY )

(
β1 0

0 β2

)
// (JX×Y ′+J

2
W )/J 2

W⊕
(JX′×Y +J 2

W )/J 2
W

��e∗(EX)⊕ f∗(EY )
⊕(g ◦ e)∗(FZ)(

0 0 id

)
��

α2 // IW = JW /J 2
W

��
(g ◦ e)∗(FZ)

��

(g◦e)∗(ψZ)

// (g ◦ e)∗(T ∗Z)
β3 // JW /(JX×Y +J 2

W )
��

0 0,

(2.60)

in which the outer columns are exact, and β1 : e∗(IX)→ (JX×Y ′ +J 2
W )/J 2

W ,
β2 : f∗(IY ) → (JX′×Y + J 2

W )/J 2
W , and β3 : (g ◦ e)∗(T ∗Z) → JW /(JX×Y +

J 2
W ) are natural, surjective morphisms. Since X , Y , ψZ are surjective, so are

e∗(X), f∗(Y ), (g ◦ e)∗(ψZ) as pullbacks are right exact, and thus the first and
third rows in (2.60) are surjective. Hence α2 is also surjective, by exactness of
the columns.

Define EW to be the cokernel of the morphism α1 in (2.59), with projec-
tion π : e∗(EX) ⊕ f∗(EY ) ⊕ (g ◦ e)∗(FZ) → EW . Since α2 ◦ α1 = 0 there is
a unique morphism W : EW → IW with W ◦ π = α2, and as α2 is surjec-
tive W is also surjective. This completes the definition of the d-space W =
(W,O′W , EW , ıW , W ). Define morphisms e′′ : e∗(EX)→ EW , f ′′ : f∗(EY )→ EW
and η : (g ◦ e)∗(FZ)→ EW in qcoh(W ) by

e′′ = π ◦

ide∗(EX )

0

0

 , f ′′ = π ◦

 0

idf∗(EY )

0

 , η = π ◦

 0

0

id(g◦e)∗(FZ )

 . (2.61)

Then equations (2.59)–(2.61) and W ◦ π = α2 give

W ◦ e′′ = W ◦ π ◦

ide∗(EX )

0

0

 = α2 ◦

ide∗(EX )

0

0

 = e1 ◦ e∗(X),
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so (2.21) holds for e = (e, e′, e′′), and thus e : W →X is a 1-morphism in dSpa.
Similarly W ◦ f ′′ = f1 ◦ f∗(Y ), so f = (f, f ′, f ′′) : W → Y is a 1-morphism.

Again, equations (2.59)–(2.61) and W ◦ π = α2 give

W ◦ η = W ◦ π ◦

 0

0

id(g◦e)∗(FZ )

 = α2 ◦

 0

0

id(g◦e)∗(FZ )

 = µ.

Thus the first equation of (2.58) yields

(h◦f)′=(g◦e)′+κW ◦W ◦η◦
(
id⊗ ((g◦e)]◦(g◦e)−1(ıZ)

)
◦
(
(g◦e)−1(d)

)
. (2.62)

Also, we have

(h ◦ f)′′ = f ′′ ◦ f∗(h′′) ◦ If,h(EZ) = π ◦

 0

idf∗(EY )

0

 ◦ f∗(h′′) ◦ If,h(EZ)

= π ◦

 0

f∗(h′′)◦If,h(EZ)

0

+ π ◦

 e∗(g′′)◦Ie,g(EZ)

−f∗(h′′)◦If,h(EZ)

(g◦e)∗(φZ)


= π ◦

ide∗(EX )

0

0

 ◦ e∗(g′′) ◦ Ie,g(EZ) + π ◦

 0

0

id(g◦e)∗(FZ )

 ◦ (g ◦ e)∗(φZ)

= e′′ ◦ e∗(g′′) ◦ Ie,g(EZ) + η ◦ (g ◦ e)∗(φZ)

= (g ◦ e)′′ + η ◦ (g ◦ e)∗(φZ), (2.63)

where we use (2.23) in the first and sixth steps, and (2.61) in the second and
fifth steps, and in the third step we add on π ◦ α1, where α1 is given in (2.59),
and π ◦ α1 = 0 as π is the cokernel of α1. Equations (2.25) and (2.62)–(2.63)
and g ◦ e = h ◦ f imply that η is a 2-morphism g ◦ e⇒ h ◦ f in dSpa.

Definition 2.12 gives e2 : e∗(FX)→ FW , f2 : f∗(FY )→ FW , so we form

e2 ⊕ f2 : e∗(FX)⊕ f∗(FY )
∼=−→FW . (2.64)

One can show that (2.64) is an isomorphism; essentially this comes down to

ΩO′W ⊗O′W OW = Ω(e−1(O′X) ⊗̂f−1(O′Y ))/J 2
W
⊗(e−1(O′X) ⊗̂f−1(O′Y ))/J 2

W
OW

∼= Ωe−1(O′X) ⊗̂f−1(O′Y ) ⊗e−1(O′X) ⊗̂f−1(O′Y ) OW (2.65)

∼= Ωe−1(O′X) ⊗O′X OW ⊕ Ωf−1(O′Y ) ⊗O′Y OW ,

where the first isomorphism in (2.65) holds as the first line may be identified
with the quotient of the second line by the submodule generated by derivatives
of functions in J 2

W . However, derivatives of functions in J 2
W lie in JW , and

tensoring by OW makes functions in JW zero, so the two agree. The second
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isomorphism in (2.65) holds by a property of cotangent modules of coproducts
of C∞-rings. Then φW : EW → FW and ψW : FW → T ∗W are determined by

φW ◦ π = (e2 ⊕ f2) ◦
(
e∗(φX) 0 −e∗(g2)◦Ie,g(FZ)

0 f∗(φY ) f∗(h2)◦If,h(FZ)

)
,

ψW ◦ (e2 ⊕ f2) =
(
e3 ◦ e∗(ψX)

)
⊕
(
f3 ◦ f∗(ψY )

)
.

(2.66)

Theorem 2.36. (a) The construction of Definition 2.35 gives fibre products in
the 2-category dSpa. Hence, all fibre products exist in dSpa.

(b) The 2-functor FC∞Sch
dSpa preserves fibre products.

Proof. For (a), suppose W̃ is a d-space, ẽ : W̃ → X and f̃ : W̃ → Y are
1-morphisms, and η̃ : g ◦ ẽ⇒ h◦ f̃ is a 2-morphism in dSpa. Then g ◦ ẽ = h◦ f̃ .

Using (2.23) to compute (g ◦ ẽ)′′, (h ◦ f̃)′′, equation (2.25) for η̃ becomes

(h ◦ f̃)′ = (g ◦ ẽ)′ + κW̃ ◦ W̃ ◦ η̃ ◦
(
id⊗ ((g ◦ ẽ)] ◦ (g ◦ ẽ)−1(ıZ))

)
◦
(
(g ◦ ẽ)−1(d)

)
,

(2.67)

f̃ ′′ ◦ f̃∗(h′′) ◦ If̃ ,h(EZ) = ẽ′′ ◦ ẽ∗(g′′) ◦ Iẽ,g(EZ) + η̃ ◦ (g ◦ ẽ)∗(φZ). (2.68)

We will construct a 1-morphism b = (b, b′, b′′) : W̃ → W and 2-morphisms
ζ : e ◦ b ⇒ ẽ, θ : f ◦ b ⇒ f̃ , unique up to suitable 2-isomorphisms, such that
the following analogue of (A.4) commutes:

g ◦ e ◦ b
η∗idb

+3

idg∗ζ ��

h ◦ f ◦ b
idh∗θ��

g ◦ ẽ
η̃ +3 h ◦ f̃ .

(2.69)

Since W = X ×g,Z,h Y is a fibre product in C∞Sch, there exists a unique

morphism b : W̃ →W such that e ◦ b = ẽ and f ◦ b = f̃ .

Consider the diagram of morphisms of sheaves of C∞-rings on W̃ :

b−1(JW )

��
(ẽ′ ⊗̂ f̃ ′)◦(Ib,e(O′X)−1 �̂Ib,f (O′Y )−1)|b−1(JW )

// IW̃
κW̃ ��

b−1
(
e−1(O′X)⊗̂f−1(O′Y )

)
b−1[(e] ⊗̂f])◦(e−1(ıX) �̂f−1(ıY ))]��

(ẽ′ ⊗̂ f̃ ′)◦(Ib,e(O′X)−1 �̂Ib,f (O′Y )−1)

// O′W̃
ıW̃ ��

b−1(OW )
b] //

��

OW̃
��

0 0,

(2.70)

where we identify

b−1
(
e−1(O′X)⊗̂f−1(O′Y )

)
= b−1(e−1(O′X))⊗̂b−1(f−1(O′Y )).
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The left morphism in (2.70) is the pullback of (2.56) by b. We have

ıW̃ ◦ (ẽ′ ⊗̂ f̃ ′) ◦ (Ib,e(O′X)−1 �̂Ib,f (O′Y )−1)

=
(
ıW̃ ◦ ẽ′ ◦ Ib,e(O′X)−1

)
⊗̂
(
ıW̃ ◦ f̃ ′ ◦ Ib,f (O′Y )−1

)
=
(
ẽ] ◦ ẽ−1(ıX) ◦ Ib,e(O′X)−1

)
⊗̂
(
f̃ ] ◦ f̃−1(ıY ) ◦ Ib,f (O′Y )−1

)
=
(
b] ◦ b−1(e]) ◦ Ib,e(OX) ◦ ẽ−1(ıX) ◦ Ib,e(O′X)−1

)
(2.71)

⊗̂
(
b] ◦ b−1(f ]) ◦ Ib,f (OY ) ◦ f̃−1(ıY ) ◦ Ib,f (O′Y )−1

)
=
(
b] ◦ b−1(e]) ◦ b−1(e−1(ıX))

)
⊗̂
(
b] ◦ b−1(f ]) ◦ b−1(f−1(ıY ))

)
= b] ◦ b−1

[
(e] ⊗̂f ]) ◦ (e−1(ıX)�̂f−1(ıY ))

]
,

using ẽ, f̃ 1-morphisms in the second step, and e ◦ b = ẽ, f ◦ b = f̃ and equation

(B.5) to rewrite ẽ], f̃ ] in the third, and properties of ⊗̂ , ⊗̂ and I∗,∗(∗).
Thus the central square in(2.70) commutes. As the columns are exact, this

implies that (ẽ′ ⊗̂ f̃ ′) ◦ (Ib,e(O′X)−1 �̂Ib,f (O′Y )−1) restricts to a morphism from
b−1(JW ) to the kernel IW̃ of ıW̃ , as shown. Therefore the morphism of sheaves
of C∞-rings (ẽ′ ⊗̂ f̃ ′) ◦ (Ib,e(O′X)−1 �̂Ib,f (O′Y )−1) takes b−1(JW ) to IW̃ , so it
takes b−1(J 2

W ) to I2
W̃ = 0, as IW̃ is a sheaf of square zero ideals.

Hence (ẽ′ ⊗̂ f̃ ′) ◦ (Ib,e(O′X)−1 �̂Ib,f (O′Y )−1) factors through b−1
(
e−1(O′X)⊗̂

f−1(O′Y )
)
/b−1(J 2

W ) = b−1(O′W ). That is, there exists a unique morphism of
sheaves of C∞-rings b′ : b−1(O′W )→ O′W̃ such that

(ẽ′ ⊗̂ f̃ ′) ◦ (Ib,e(O′X)−1 �̂Ib,f (O′Y )−1) = b′ ◦ b−1(πO′W ). (2.72)

Combining equations (2.57) and (2.71)–(2.72) yields

ıW̃ ◦ b′ ◦ b−1(πO′W ) = ıW̃ ◦ (ẽ′ ⊗̂ f̃ ′) ◦ (Ib,e(O′X)−1 �̂Ib,f (O′Y )−1)

= b] ◦ b−1
[
(e] ⊗̂f ]) ◦ (e−1(ıX)�̂f−1(ıY ))

]
= b] ◦ b−1[ıW ◦ πO′W ]

= b] ◦ b−1(ıW ) ◦ b−1(πO′W ).

Since b−1(πO′W ) is surjective, this implies that ıW̃ ◦ b′ = b] ◦ b−1(ıW ). Hence

(b, b′) is a morphism of square zero extensions (W̃ ,O′W̃ , ıW̃ )→ (W,O′W , ıW ).
As in (2.15), we can form the composition (e, e′) ◦ (b, b′) = (e ◦ b, (e ◦ b)′) :

(W̃ ,O′W̃ , ıW̃ )→ (X,O′X , ıX), where

(e ◦ b)′ = b′ ◦ b−1(e′) ◦ Ib,e(O′X) = b′ ◦ b−1
(
πO′W ◦ ie−1(O′X)

)
◦ Ib,e(O′X)

= (ẽ′ ⊗̂ f̃ ′) ◦ (Ib,e(O′X)−1 �̂Ib,f (O′Y )−1) ◦ b−1(ie−1(O′X)) ◦ Ib,e(O′X)

= ẽ′ ◦ Ib,e(O′X)−1 ◦ Ib,e(O′X) = ẽ′,

using the definition of e′ and (2.72). Also e◦b = ẽ. Hence (e, e′)◦(b, b′) = (ẽ, ẽ′),
and similarly (f, f ′) ◦ (b, b′) = (f̃ , f̃ ′). Thus by (2.24) we have

ẽ1 = b1 ◦ b∗(e1) ◦ Ib,e(IX) and f̃1 = b1 ◦ b∗(f1) ◦ Ib,f (IY ). (2.73)
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Combining the first equation of (2.58) and the second of (2.24) gives

(h ◦ f ◦ b)′ = b′ ◦ b−1
[
(h ◦ f)′

]
◦ Ib,h◦f (O′Z)

= b′ ◦ b−1
[
(g ◦ e)′

]
◦ Ib,g◦e(O′Z) + b′ ◦ b−1

[
κW ◦ µ◦

◦
(
id⊗ ((g ◦ e)] ◦ (g ◦ e)−1(ıZ))

)
◦
(
(g ◦ e)−1(d)

)]
◦ Ib,g◦e(O′Z)

= b′ ◦ b−1
[
(g ◦ e)′

]
◦ Ib,g◦e(O′Z) + κW̃ ◦ b1 ◦ (id⊗ b]) ◦ b−1(µ)

◦ b−1
[(

id⊗ ((g ◦ e)] ◦ (g ◦ e)−1(ıZ))
)
◦
(
(g ◦ e)−1(d)

)]
◦ Ib,g◦e(O′Z)

= (g ◦ e ◦ b)′ + κW̃ ◦ b1 ◦ b∗(µ) ◦ Ib,g◦e(FZ)

◦
(
id⊗ ((g ◦ ẽ)] ◦ (g ◦ ẽ)−1(ıZ))

)
◦
(
(g ◦ ẽ)−1(d)

)
,

using b′ ◦ b−1(κW ) = κW̃ ◦ b1 ◦ (id⊗ b]) in the third step as (2.12) commutes for
(b, b′), and (id⊗ b]) ◦ b−1(µ) = b∗(µ) ◦ (id⊗ b]) and properties of I∗,∗(∗) in the
fourth step. Comparing this with (2.67) shows that

W̃ ◦ η̃ = b1 ◦ b∗(µ) ◦ Ib,g◦e(FZ), (2.74)

where we have used (e, e′) ◦ (b, b′) = (ẽ, ẽ′), (f, f ′) ◦ (b, b′) = (f̃ , f̃ ′), and that
the image of d generates FZ .

Define β : b∗(e∗(EX))⊕ b∗(f∗(EY ))⊕ b∗((g ◦ e)∗(FZ))→ EW̃ by

β =
(
ẽ′′ ◦ Ib,e(EX)−1 f̃ ′′ ◦ Ib,f (EY )−1 η̃ ◦ Ib,g◦e(FZ)−1

)
. (2.75)

Then

β ◦ b∗(α1) = ẽ′′ ◦ Ib,e(EX)−1 ◦ b∗(e∗(g′′) ◦ Ie,g(EZ))

−f̃ ′′◦Ib,f (EY )−1◦b∗(f∗(h′′)◦If,h(EZ))+η̃◦Ib,g◦e(FZ)−1◦b∗((g◦e)∗(φZ))=0,

where in the second step we recognize the whole expression as the composition of
(2.68) with Ib,g◦e(EZ)−1, using properties of the I∗,∗(∗). Since π is the cokernel

of α1 in qcoh(W ) and b∗ : qcoh(W ) → qcoh(W̃ ) is right exact, b∗(π) is the
cokernel of b∗(α1) in qcoh(W̃ ). Hence as β ◦ b∗(α1) = 0 there exists a unique
morphism b′′ : b∗(EW )→ EW̃ with b′′ ◦ b∗(π) = β. We have

W̃ ◦ b′′ ◦ b∗(π) = W̃ ◦
(
ẽ′′ ◦ Ib,e(EX)−1 f̃ ′′ ◦ Ib,f (EY )−1 η̃ ◦ Ib,g◦e(FZ)−1

)
=
(
ẽ1◦ẽ∗(W )◦Ib,e(EX)−1 f̃1◦f̃∗(W )◦Ib,f (EY )−1 W̃ ◦η̃◦Ib,g◦e(FZ)−1

)
=
(
ẽ1 ◦ Ib,e(IX)−1 ◦ b∗ ◦ e∗(X) f̃1 ◦ Ib,f (IY )−1 ◦ b∗ ◦ f∗(Y ) b1 ◦ b∗(µ)

)
= b1 ◦ b∗

(
e1 ◦ e∗(X) f1 ◦ f∗(Y ) µ

)
= b1 ◦ b∗(α2) = b1 ◦ b∗(W ) ◦ b∗(π),

using (2.75) in the first step, (2.21) for ẽ, f̃ in the second, (2.74) and properties
of I∗,∗(∗) in the third, (2.73) in the fourth, (2.59) in the fifth, and W ◦ π = α2

in the sixth. Since b∗(π) is surjective, this proves that

W̃ ◦ b′′ = b1 ◦ b∗(W ) : b∗(EW ) −→ IW̃ ,
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which is (2.21) for b = (b, b′, b′′). Hence b : W̃ →W is a 1-morphism.
From equations (2.23), (2.61), (2.75) and b′′ ◦ b∗(π) = β we see that

(e ◦ b)′′ = b′′ ◦ b∗(e′′) ◦ Ib,e(EX) = b′′ ◦ b∗(π) ◦ b∗
ide∗(EX )

0

0

 ◦ Ib,e(EX)

=
(
ẽ′′ ◦ Ib,e(EX)−1 f̃ ′′ ◦ Ib,f (EY )−1 η̃ ◦ Ib,g◦e(FZ)−1

)Ib,e(EX)

0

0

 = ẽ′′.

Together with ẽ = e ◦ b and ẽ′ = (e ◦ b)′ this proves that ẽ = e ◦ b. Therefore
ζ = 0 = idẽ is a 2-morphism e ◦ b⇒ ẽ. Similarly f̃ = f ◦ b, so θ = 0 = idf̃ is a

2-morphism f ◦ b⇒ f̃ .
Using ζ=θ=idb=idg=idh=0, b′′ ◦ b∗(π)=β, and (2.61), (2.75) we have

(idh ∗ θ)�(η∗idb)=0+b′′◦b∗(η)◦Ib,g◦e(FZ)=b′′◦b∗(π)◦b∗
 0

0

id

◦Ib,g◦e(FZ)

=
(
ẽ′′◦Ib,e(EX)−1 f̃ ′′◦Ib,f (EY )−1 η̃◦Ib,g◦e(FZ)−1

) 0

0

Ib,g◦e(FZ)

= η̃+0= η̃�(idg ∗ ζ).

Thus (2.69) commutes. This provesW , e,f , η satisfy the first universal property
of fibre products in 2-categories from Definition A.7.

For the second universal property, suppose that b̃ = (b̃, b̃′, b̃′′), ζ̃ and θ̃ are
alternative choices for b, ζ, θ, so that the analogue of (2.69) with b̃, ζ̃, θ̃ in place
of b, ζ, θ commutes. Then e ◦ b̃ = ẽ = e ◦ b and f ◦ b̃ = f̃ = f ◦ b, so b̃ = b
by properties of the fibre product W = X ×g,Z,h Y . We must show that there

exists a unique 2-morphism ε : b̃⇒ b with ζ̃ = ζ� (ide ∗ ε) and θ̃ = θ� (idf ∗ ε).
Using ζ = θ = ide = idf = 0, ζ � η = ζ + η and equation (2.27) shows that

ζ̃ = ζ � (ide ∗ ε) and θ̃ = θ � (idf ∗ ε) are equivalent to

ζ̃ = ε ◦ b∗(e2) ◦ Ib,e(FX) and θ̃ = ε ◦ b∗(f2) ◦ Ib,f (FY ).

Since e2 ⊕ f2 in (2.64) is an isomorphism, these determine ε uniquely, namely

ε =
(
ζ̃ ◦ Ib,e(FX)−1 θ̃ ◦ Ib,f (FY )−1

)
◦ b∗

(
(e2 ⊕ f2)−1

)
. (2.76)

We will prove that this ε is a 2-morphism b̃⇒ b. From above b̃ = b. Proposition
2.13 applied to the pairs (b̃, b̃′), (b, b′) shows that there is a unique morphism
µ̃ : b∗(FW )→ IW̃ such that

b′ = b̃′ + κW̃ ◦ µ̃ ◦
(
id⊗ (b] ◦ b−1(ıW ))

)
◦
(
b−1(d)

)
. (2.77)

Proposition 2.13 applied to the pairs (e, e′)◦(b̃, b̃′) and (ẽ, ẽ′) = (e, e′)◦(b, b′)
gives a unique morphism ẽ∗(FX) → IW̃ , which we can write in two ways: the
2-morphism ζ̃ : e ◦ b̃ ⇒ ẽ shows that this morphism is W̃ ◦ ζ̃, and composing
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µ̃ relating (b̃, b̃′), (b, b′) with the identity on (e, e′) shows that the morphism
is µ̃ ◦ b∗(e2) ◦ Ib,e(FX). Hence W̃ ◦ ζ̃ = µ̃ ◦ b∗(e2) ◦ Ib,e(FX), and similarly

W̃ ◦θ̃ = µ̃◦b∗(f2)◦Ib,f (FY ). Combining these with (2.76) shows that µ̃ = W̃ ◦ε.
Substituting this into (2.77) proves the first equation of (2.25) for ε.

Using (2.23) for e ◦ b, e ◦ b̃ and (2.25) for ζ̃ : e ◦ b̃⇒ ẽ = e ◦ b gives

ẽ′′ = b′′ ◦ b∗(e′′) ◦ Ib,e(EX) = b̃′′ ◦ b∗(e′′) ◦ Ib,e(EX) + ζ̃ ◦ (e ◦ b)∗(φX).

Subtracting gives

(b′′ − b̃′′) ◦ b∗(e′′) = ζ̃ ◦ (e ◦ b)∗(φX) ◦ Ib,e(EX)−1 = ζ̃ ◦ Ib,e(FX)−1 ◦ b∗(e∗(φX))

=
(
ζ̃ ◦ Ib,e(FX)−1 θ̃ ◦ Ib,f (FY )−1

)
◦b∗
(
(e2 f2)−1

)
◦b∗
(
e2 f2

)
◦
(
b∗(e∗(φX))

0

)
= ε ◦ b∗(e2) ◦ b∗(e∗(φX)) = ε ◦ b∗(φW ) ◦ b∗(e′′), (2.78)

using (2.64) an isomorphism in the second step, (2.76) in the third, and (2.22)
for e in the fourth. Similarly

(b′′ − b̃′′) ◦ b∗(f ′′) = ε ◦ b∗(φW ) ◦ b∗(f ′′). (2.79)

Since the analogue of (2.69) for b̃, ζ̃, θ̃ commutes we have

η̃+ζ̃ ◦ (e◦b)∗(g2)◦Ie◦b,g(FZ)= θ̃◦(f ◦ b)∗(h2)◦If◦b,h(FZ)+b̃′′◦b∗(η)◦Ib,g◦e(FZ).

But η̃ = b′′ ◦ b∗(η) ◦ Ib,g◦e(FZ) as (2.69) commutes, so subtracting gives

(b′′ − b̃′′) ◦ b∗(η)

=
(
−ζ̃ ◦ (e ◦ b)∗(g2) ◦ Ie◦b,g(FZ) + θ̃ ◦ (f ◦ b)∗(h2) ◦ If◦b,h(FZ)

)
◦ Ib,g◦e(FZ)−1

= −ζ̃ ◦ Ib,e(FX)−1 ◦ b∗(e∗(g2)) ◦ Ib,e(g∗(FZ)) ◦ Ie◦b,g(FZ) ◦ Ib,g◦e(FZ)−1

+ θ̃ ◦ Ib,f (FY )−1 ◦ b∗(f∗(h2)) ◦ Ib,f (g∗(FZ)) ◦ If◦b,h(FZ) ◦ Ib,g◦e(FZ)−1

=
(
ζ̃ ◦ Ib,e(FX)−1 θ̃ ◦ Ib,f (FY )−1

)
◦b∗
(
(e2 f2)−1

)
◦ b∗

(
e2 f2

)
◦
(
−b∗(e∗(g2)) ◦ b∗(Ie,g(FZ))

b∗(f∗(h2)) ◦ b∗(If,h(FZ))

)
= ε ◦ b∗

[
f2 ◦ f∗(h2) ◦ If,h(FZ)− e2 ◦ e∗(g2) ◦ Ie,g(FZ)

]
= ε ◦ b∗

[
(h ◦ f)2 − (g ◦ e)2

]
= ε ◦ b∗(φW ◦ η) = ε ◦ b∗(φW ) ◦ b∗(η), (2.80)

using properties of the I∗,∗(∗) in the second and third steps, (2.64) an isomor-
phism in the third, (2.76) in the fourth, (2.24) for g ◦ e, h ◦ f in the fifth, and
(2.26) for η : g ◦ e⇒ h ◦ f in the sixth.

Combining equations (2.61) and (2.78)–(2.80) shows that (b′′− b̃′′) ◦ b∗(π) =
ε ◦ b∗(φW ) ◦ b∗(π). Hence b′′ = b̃′′ + ε ◦ b∗(φW ), as b∗(π) is surjective. This is
the second equation of (2.25) for ε. Therefore ε is a 2-morphism b̃ ⇒ b, and
is unique with ζ̃ = ζ � (ide ∗ ε) and θ̃ = θ � (idf ∗ ε). This proves the second
universal property (A.5) of fibre products in 2-categories from Definition A.7. So
(W, e,f , η) is a fibre product in dSpa, proving part (a). Part (b) is immediate
from the construction. This completes the proof of Theorem 2.36.
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Suppose now that X,Y , Z ∈ C∞Schlf
ssc and g : X → Z, h : Y → Z are mor-

phisms. Then we can form the fibre product W = X ×g,Z,h Y in C∞Schlf
ssc by

Theorem B.19(b). We can also define d-spacesX,Y ,Z = FdSpa
C∞Sch(X,Y , Z) and

1-morphisms g,h = FdSpa
C∞Sch(g, h). Thus we may form the explicit 2-category

fibre product W = X ×g,Z,h Y in dSpa by Definition 2.35. So we can ask

whether W is equivalent to FdSpa
C∞Sch(W ), that is, whether FdSpa

C∞Sch preserves
fibre products. Since the underlying C∞-scheme of W is W , Proposition 2.25
gives a necessary and sufficient condition for this to happen.

Corollary 2.37. Suppose g : X → Z, h : Y → Z are morphisms in C∞Schlf
ssc,

and define W = X ×g,Z,h Y to be the fibre product in C∞Schlf
ssc, with projec-

tions e : W → X and f : W → Y . Then FdSpa
C∞Sch(X ×Z Y ) is equivalent to

FdSpa
C∞Sch(X)×FdSpa

C∞Sch
(Z) F

dSpa
C∞Sch(Y ) in dSpa if and only if the morphism

e∗(Ωg)◦Ie,g(T ∗Z)⊕ f∗(Ωh) ◦ If,h(T ∗Z) :

(g ◦ e)∗(T ∗Z) −→ e∗(T ∗X)⊕ f∗(T ∗Y )
(2.81)

in qcoh(W ) has a left inverse.

As (2.81) need not have a left inverse, the 2-functor FdSpa
C∞Sch does not pre-

serve fibre products in general, and the 2-subcategory Ĉ∞Schlf
ssc in dSpa is

not closed under fibre products.

Example 2.38. Take X = Y = SpecR = ∗ and Z = R, and g : X → Z,
h : Y → Z to be the unique morphisms taking ∗ to the point 0 ∈ R. Then
the fibre product W = X ×g,Z,h Y = ∗ ×0,R,0 ∗ in C∞Schlf

ssc is a point ∗.
Quasicoherent sheaves on ∗ are just real vector spaces, and coherent sheaves are
finite-dimensional vector spaces. The morphism (2.81) in qcoh(∗) is 0 : R →
0 ⊕ 0, which does not have a left inverse, so FdSpa

C∞Sch(X ×Z Y ) 6' X ×Z Y by
Corollary 2.37. The fibre product W = X×ZY in dSpa has W = (W,O′W ) = ∗
and EW = O∗. It is a d-manifold of dimension −1, in the language of Chapter
3, which we could call the obstructed point.

Example 2.39. Take X = Z = R and X = SpecR = ∗, and g : X → Z to be

the image FC∞Sch
Man (x2) of the map x 7→ x2, and h : Y → Z to be the unique

morphism taking ∗ to the point 0 ∈ R. Then the fibre product R ×x2,R,0 ∗
in C∞Schlf

ssc is the double point W = Spec(R[x]/(x2)). The morphism (2.81)
in qcoh(W ) is x ⊕ 0 : OW → OW ⊕ 0, which does not have a left inverse, so

FdSpa
C∞Sch(X×Z Y ) 6'X×ZY by Corollary 2.37. We could call FdSpa

C∞Sch(X×Z Y )
the classical double point. It is not a d-manifold. The fibre productW = X×ZY
has W = Spec(R[x]/(x2)), (W,O′W ) = Spec(R[x]/(x4)), and EW = OW . It is a
d-manifold of dimension 0, which we could call the derived double point.

Products of d-spaces X×Y are a useful special case of fibre productsX×ZY
with Z = ∗, the point, which is a terminal object in dSpa.
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Example 2.40. Let X,Y be d-spaces. The product X×Y is the d-space fibre
product X ×g,∗,h Y , where Z = ∗ = FdSpa

C∞Sch(∗) is the point, and g : X → ∗,
h : Y → ∗ are the unique 1-morphisms. A product comes with projection 1-
morphisms πX : X × Y → X, πY : X × Y → Y , which satisfy a universal
property, so that if V is a d-space and a : V →X, b : V → Y are 1-morphisms
then there exists c : V → X × Y , unique up to 2-isomorphism, such that
πX ◦ c ∼= a and πY ◦ c ∼= b.

Definition 2.35 and Theorem 2.36 allow us to write down explicit formulae
for the d-space product W = X × Y and its projections πX ,πY . We have
W = X × Y , and O′W ∼= (O′X ⊗̂O′Y )/(IX ⊗̂IY ), and EW = π∗X(EX) ⊕ π∗Y (EY ),
and FW = π∗X(FX) ⊕ π∗Y (FY ). These have the usual package of properties of
products for other classes of geometric spaces. So if a : V →X, b : V → Y are
1-morphisms there is a direct product 1-morphism (a, b) : V →X×Y , which is
just c above, and if e : V →X, f : W → Y are 1-morphisms there is a product
1-morphism e × f : V ×W → X × Y , satisfying some universal properties.
Both (a, b) and e× f are unique up to 2-isomorphism.

Here is a d-space analogue of Theorem B.39(c).

Proposition 2.41. Suppose we are given a 2-Cartesian square in dSpa :

W
f

//
e�� � �� �

GO
η

Y
h ��

X
g // Z.

(2.82)

Then the following sequence in qcoh(W ) is exact:

(g ◦ e)∗(EZ)
β1 //

e∗(EX)⊕
f∗(EY )⊕
(g ◦ e)∗(FZ)

β2 //
EW⊕
e∗(FX)⊕
f∗(FY )

β3 // FW // 0, (2.83)

where

β1 =

 e∗(g′′)◦Ie,g(EZ)

−f∗(h′′)◦If,h(EZ)

(g◦e)∗(φZ)

 , β2 =

 e′′ f ′′ η

−e∗(φX) 0 e∗(g2)◦Ie,g(FZ)

0 −f∗(φY ) −f∗(h2)◦If,h(FZ)


and β3 =

(
φW e2 f2

)
.

(2.84)

Furthermore, equation (2.83) is split exact at the third term. That is, if we
replace the first two terms of (2.83) with 0 −→ Cokerβ1, the resulting short
exact sequence is split exact.

Proof. First note that β2 ◦ β1 = 0 follows from η : g ◦ e ⇒ h ◦ f and g,h 1-
morphisms, and β3 ◦β2 = 0 follows from e,f 1-morphisms and η : g ◦e⇒ h◦f .
Hence (2.83) is a complex. Let W̃ be the explicit fibre product X ×g,Z,h Y
constructed in Definition 2.35, with projections ẽ : W̃ → X and f̃ : W̃ →
Y . Then as (2.82) 2-commutes, there is a 1-morphism b : W → W̃ with 2-
morphisms ζ : ẽ ◦ b ⇒ e, θ : f̃ ◦ b ⇒ f , and as (2.82) is 2-Cartesian, b is an
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equivalence. Hence Proposition 2.20 shows that the following is a split short
exact sequence in qcoh(W ):

0 // b∗(EW̃ )
b′′⊕−b∗(φW̃ )// EW ⊕ b∗(FW̃ )

φW⊕b2 // FW // 0. (2.85)

Note that β1 in (2.84) is α1 in (2.59). By definition EW̃ is the cokernel of
α1 = β1, and (2.64) shows that FW̃ ∼= ẽ∗(FX) ⊕ f̃∗(FY ), and φW̃ is given in

(2.66), and b′′, b2 are constructed in the proof of Theorem 2.36. Making these
substitutions and using isomorphisms I∗,∗(∗), we see that (2.85) becomes (2.83).
Hence (2.83) is exact, and split exact at the third term.

2.6 Fibre products of manifolds in Man and dSpa

Definition 2.14 defined a functor FdSpa
Man : Man → dSpa, which is full and

faithful by Theorem 2.15(d). We now consider when FdSpa
Man takes fibre products

in Man to fibre products in dSpa. Recall that if g : X → Z, h : Y → Z are
smooth maps of manifolds then we call g, h transverse if whenever x ∈ X, y ∈ Y
and z ∈ Z with g(x) = z = h(y) we have TzZ = dg|x(TxX) + dh|y(TyY ). It is
well known that if g, h are transverse then a fibre product X ×g,Z,h Y exists in
Man. If g, h are not transverse then a fibre product X ×g,Z,h Y may or may
not exist in Man.

We now show that fibre products in Man and dSpa agree if and only if
g, h are transverse. Thus, if a non-transverse fibre product X ×g,Z,h Y exists in
Man, it is the ‘wrong’ fibre product, from the point of view of derived differential
geometry. A similar result for his derived manifolds is Spivak [95, Prop. 8.13].

Theorem 2.42. Let X,Y, Z be manifolds and g : X → Z, h : Y → Z be smooth
maps. Write X,Y ,Z, g,h = FdSpa

Man (X,Y, Z, g, h), and let W = X×g,Z,hY and
e : W → X, f : W → Y be the explicit fibre product in dSpa and projections
constructed in §2.5. Then

(a) Suppose g, h are transverse. Then a fibre product W̃ = X ×Z Y exists in
Man, with smooth projections ẽ = πX : W̃ → X and f̃ = πY : W̃ → Y
with g ◦ ẽ = h ◦ f̃ . Set W̃ , ẽ, f̃ = FdSpa

Man (W̃ , ẽ, f̃), so we have a 2-
commutative diagram in dSpa :

W̃
f̃

//

ẽ�� � �� �
HP

idg◦ẽ

Y
h ��

X
g // Z.

(2.86)

As in §2.5, from (2.86) we get a 1-morphism b : W̃ → W and 2-
morphisms ζ : e ◦ b⇒ ẽ, θ : f ◦ b⇒ f̃ . This b is an equivalence.

(b) Suppose g, h are not transverse. Then W is not a manifold. Thus, if a

fibre product W̃ = X ×Z Y does exist in Man, we have FdSpa
Man (W̃ ) 6'W.
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Proof. For (a), let g, h be transverse, and W, e,f , W̃ , ẽ, f̃ , W̃ , ẽ, f̃ , b, ζ, θ be
as above. Write W̃ ,X, Y , Z, ẽ, f̃ , g, h = FC∞Sch

Man (W̃ ,X, Y, Z, ẽ, f̃ , g, h). Then
W = (W,O′W , EW , ıW , W ), where W = X ×g,Z,h Y is the fibre product in

C∞Sch, and b = (b, b′, b′′) where b : W̃ → W is the unique morphism with
e ◦ b = ẽ and f ◦ b = f̃ . We will apply Proposition 2.21, so we must show that b

and b4 : b∗(CW )→ CW̃ are isomorphisms, and (2.34) is a split exact sequence.
For the first, FC∞Sch

Man takes transverse fibre products in Man to fibre prod-
ucts in C∞Sch by Theorem B.28, so b : W̃ → W is an isomorphism. For the
second, φW : EW → FW is(

−e∗(Ωg) ◦ Ie,g(T ∗Z)

f∗(Ωh) ◦ If,h(T ∗Z)

)
: (g ◦ e)∗(T ∗Z) −→ e∗(T ∗X)⊕ f∗(T ∗Y ), (2.87)

and this is injective as g, h are transverse. Hence DW = KerφW = 0, so CW = 0
as νW : CW → DW is injective. Also CW̃ = 0 as by definition EW̃ = 0. Thus
b4 : 0→ 0 is trivially an isomorphism. For the third, the complex

0 // b∗(EW )
b′′⊕−b∗(φW ) // EW̃ ⊕ b∗(FW )

φW̃⊕b2 // FW̃ // 0,

which is (2.34) for b, is

0 // b∗◦(g◦e)∗(T ∗Z)

b∗◦e∗(Ωg)◦b∗(Ie,g(T∗Z))⊕
−b∗◦f∗(Ωh)◦b∗(If,h(T∗Z))

//
b∗◦e∗(T ∗X)⊕
b∗◦f∗(T ∗Y )

Ωẽ◦Ib,e(T∗X)−1⊕
Ωf̃◦Ib,f (T∗Y )−1

// T ∗W̃ // 0.

This is the lift to C∞-schemes of the sequence of vector bundles on W̃

0 // (g ◦ ẽ)∗(T ∗Z)
ẽ∗((dg)∗)⊕f̃∗((dh)∗)// ẽ∗(T ∗X)⊕ f̃∗(T ∗Y )

(dẽ)∗⊕(df̃)∗// T ∗W̃ // 0,

which is split exact as W̃ = X ×g,Z,h Y with g, h transverse. Hence b is an
equivalence by Proposition 2.21, proving (a).

For (b), as g, h are not transverse there exist x ∈ X and y ∈ Y with g(x) =
h(y) = z ∈ Z and TzZ 6= dg|x(TxX) + dh|y(TyY ). Thus,

−(dg)|∗x ⊕ (dh)|∗y : T ∗z Z −→ T ∗xX ⊕ T ∗y Y (2.88)

is not injective. Now in W, the morphism φW : EW → FW is (2.87), and the
fibre of (2.87) over (x, y) ∈ W is (2.88). If φW had a left inverse, then its
pullback to (x, y) would be a left inverse for (2.88). But (2.88) is not injective,
and so has no left inverse. Thus φW has no left inverse, and therefore W is
not equivalent to an object in the image of FdSpa

C∞Sch by Proposition 2.25. As

FdSpa
Man = FdSpa

C∞Sch ◦ FC∞Sch
Man , this implies W is not a manifold.
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2.7 Fixed point loci of finite groups in d-spaces

If a finite group Γ acts on a manifold X by diffeomorphisms, then the fixed
point locus XΓ is a disjoint union of closed, embedded submanifolds of X. In
a similar way, if Γ acts on a d-space X by 1-isomorphisms, we will define a d-
space XΓ called the fixed d-subspace of Γ in X, with an inclusion 1-morphism
jX,Γ : XΓ ↪→X, whose topological space XΓ is the fixed point locus of Γ in X.

When X is a d-manifold, such XΓ are (locally) examples of w-embedded
d-submanifolds in the sense of §4.1. Also these ideas will be important in our
treatment of d-stacks in Chapter 9. When Γ acts on a d-space X, in §9.3 we will
define a quotient d-stack X = [X/Γ]. Fixed d-subspaces XΓ of finite groups Γ
acting on d-spaces X are étale local models for orbifold strata XΓ of a d-stack
X in §9.6, and Theorem 9.28 will use fixed d-subspaces to describe orbifold
strata of quotient d-stacks.

Definition 2.43. Let X = (X,O′X , EX , ıX , X) be a d-space and Γ a finite
group. An action r of Γ on X is an action r = (r, r′, r′′) : Γ→ Aut(X) of Γ on
X by 1-isomorphisms. Note that r(γ) : X →X must be a 1-isomorphism, not
merely an equivalence, for each γ ∈ Γ, and we require that r(γ) ◦ r(δ) = r(γδ),
not just that r(γ) ◦ r(δ) is 2-isomorphic to r(γδ), for all γ, δ ∈ Γ. The 2-
morphisms in dSpa play no rôle in defining Γ-actions on d-spaces.

Given such X,Γ, r, we will define a d-space XΓ, which we call the fixed
d-subspace of Γ in X, with a natural inclusion 1-morphism jX,Γ : XΓ → X.
Since r is an action of Γ on the separated, second countable, locally fair C∞-
schemeX, it has a fixed C∞-subschemeXΓ, a closed C∞-subscheme inX, which
is also separated, second countable, and locally fair. Write jX,Γ : XΓ ↪→ X for
the inclusion morphism. Then r(γ) ◦ jX,Γ = jX,Γ for all γ ∈ Γ.

For each γ ∈ Γ, define isomorphisms A(γ), B(γ) of sheaves of C∞-rings and
C(γ) of quasicoherent sheaves on XΓ by

A(γ) = j−1
X,Γ(r](γ−1)) ◦ IjX,Γ,r(γ−1)(OX) : j−1

X,Γ(OX) −→ j−1
X,Γ(O′X),

B(γ) = j−1
X,Γ(r′(γ−1)) ◦ IjX,Γ,r(γ−1)(O′X) : j−1

X,Γ(O′X) −→ j−1
X,Γ(O′X),

C(γ) = j∗X,Γ(r′′(γ−1)) ◦ IjX,Γ,r(γ−1)(EX) : j∗X,Γ(EX) −→ j∗X,Γ(EX).

(2.89)

If γ, δ ∈ Γ then as r(γδ) = r(γ)r(δ), equation (2.23) gives

r](γδ) = r](δ) ◦ r(δ)−1(r](γ)) ◦ Ir(δ),r(γ)(OX),

r′(γδ) = r′(δ) ◦ r(δ)−1(r′(γ)) ◦ Ir(δ),r(γ)(O′X)

r′′(γδ) = r′′(δ) ◦ r(δ)∗(r′′(γ)) ◦ Ir(δ),r(γ)(EX),

so using properties of I∗,∗(∗) and noting that the use of γ−1 rather than γ on
the r.h.s. of (2.89) deals with the contravariance of r′, r′′, we find that A(γδ) =
A(γ)A(δ), B(γδ) = B(γ)B(δ) and C(γδ) = C(γ)C(δ).

Hence A,B,C are Γ-actions on the sheaves j−1
X,Γ(OX), j−1

X,Γ(O′X), j∗X,Γ(EX).
Note that this is similar to sheaves on orbifold strata in §C.9, where we found
that if X is a Deligne–Mumford C∞-stack, E ∈ qcoh(X ), and OΓ(X ) : XΓ → X
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is an orbifold stratum, then the pullback sheaf EΓ := OΓ(X )∗(E) on XΓ has a
natural Γ-action. Thus as for (C.23) in §C.9, we have canonical splittings

j−1
X,Γ(OX) = j−1

X,Γ(OX)Γ
tr ⊕ j−1

X,Γ(OX)Γ
nt, j

−1
X,Γ(O′X) = j−1

X,Γ(O′X)Γ
tr ⊕ j−1

X,Γ(O′X)Γ
nt

and j∗X,Γ(EX) = j∗X,Γ(EX)Γ
tr ⊕ j∗X,Γ(EX)Γ

nt

into trivial ‘tr’ and nontrivial ‘nt’ Γ-representations.
Since j−1

X,Γ(ıX) maps (O′X)Γ
nt → (OX)Γ

nt it induces a quotient morphism

j−1
X,Γ(ıX)∗ : j−1

X,Γ(O′X)/
(
j−1
X,Γ(O′X)Γ

nt

)
−→ j−1

X,Γ(OX)/
(
j−1
X,Γ(OX)Γ

nt

)
, (2.90)

where
(
j−1
X,Γ(OX)Γ

nt

)
,
(
j−1
X,Γ(O′X)Γ

nt

)
are the sheaves of ideals in j−1

X,Γ(OX) and

j−1
X,Γ(O′X) generated by j−1

X,Γ(OX)Γ
nt, j

−1
X,Γ(O′X)Γ

nt. Also j]X,Γ : j−1
X,Γ(OX)→ OXΓ

is surjective, with kernel
(
(OX)Γ

nt

)
. Hence it induces an isomorphism

(j]X,Γ)∗ : j−1
X,Γ(OX)/

(
j−1
X,Γ(OX)Γ

nt

) ∼=−→OXΓ . (2.91)

Define the sheaf of C∞-rings O′XΓ by O′XΓ = j−1
X,Γ(O′X)/

(
j−1
X,Γ(O′X)Γ

nt

)
, and

the morphism ıXΓ : O′XΓ → OXΓ by ıXΓ = (j]X,Γ)∗ ◦ j−1
X,Γ(ıX)∗, using the nota-

tion of (2.90)–(2.91). We will show that
(
O′XΓ , ıXΓ

)
is a square zero extension of

XΓ, in the sense of §2.1. First note that as (O′X , ıX) is a square zero extension,
ıX is surjective, so (2.90) is surjective, and (2.91) is an isomorphism, so ıXΓ is
a surjective morphism of sheaves of C∞-rings.

Next, observe that as j−1
X,Γ(ıX) induces a surjective morphism of sheaves of

abelian groups (O′X)Γ
nt → (OX)Γ

nt, it induces a surjective morphism of sheaves
of ideals

(
(O′X)Γ

nt

)
→
(
(OX)Γ

nt

)
. Therefore

Ker
(
j−1
X,Γ(ıX)∗ : j−1

X,Γ(O′X)/
(
(O′X)Γ

nt

)
−→ j−1

X,Γ(OX)/
(
(OX)Γ

nt

))
∼=
[(

Ker j−1
X,Γ(ıX) :j−1

X,Γ(O′X)→j−1
X,Γ(OX)

)
+
(
(O′X)Γ

nt

)]/(
(O′X)Γ

nt

)
=
[
j−1
X,Γ(IX) +

(
(O′X)Γ

nt

)]/(
(O′X)Γ

nt

)
, (2.92)

using j−1
X,Γ(ıX)∗ :

(
(O′X)Γ

nt

)
→
(
(OX)Γ

nt

)
surjective in the first step. Since IX

is a sheaf of square zero ideals in O′X , it follows that the kernel of (2.90) is a
sheaf of square zero ideals in O′XΓ . As (2.91) is an isomorphism, this kernel is
the kernel of ıXΓ . Hence

(
O′XΓ , ıXΓ

)
is a square zero extension of XΓ.

As in §2.1, IXΓ is defined to be the kernel of ıXΓ , and is a quasicoherent
sheaf on XΓ. By (2.90)–(2.92) we have canonical isomorphisms

IXΓ ∼=
[
j−1
X,Γ(IX) +

(
(O′X)Γ

nt

)]/(
(O′X)Γ

nt

)
∼= j−1

X,Γ(IX)
/[
j−1
X,Γ(IX) ∩

(
(O′X)Γ

nt

)]
.

(2.93)

The pullback j∗X,Γ(IX) of IX to XΓ satisfies

j∗X,Γ(IX) = j−1
X,Γ(IX)⊗j−1

X,Γ(OX) OXΓ

∼= j−1
X,Γ(IX)⊗j−1

X,Γ(OX)

[
j−1
X,Γ(OX)/

(
(OX)Γ

nt

)]
∼= j−1

X,Γ(IX)
/[
j−1
X,Γ(IX) ·

(
(OX)Γ

nt

)]
,

(2.94)
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using the definition of j∗X,Γ in the first step, and (2.91) in the second. But

j−1
X,Γ(IX)·

(
(OX)Γ

nt

)
=j−1

X,Γ(IX)·
(
(O′X)Γ

nt

)
⊆j−1

X,Γ(IX)∩
(
(O′X)Γ

nt

)
,

where for the first step we use that the j−1
X,Γ(O′X)-action on j−1

X,Γ(IX) factors

through j−1
X,Γ(OX), and for the second that both j−1

X,Γ(IX) and
(
(O′X)Γ

nt

)
are

sheaves of ideals. Thus by (2.93)–(2.94), there is a natural, surjective morphism

πIXΓ : j∗X,Γ(IX) −→ IXΓ . (2.95)

The Γ-action B on j−1
X,Γ(O′X) above preserves j−1

X,Γ(IX) ⊂ j−1
X,Γ(O′X), so

that j−1
X,Γ(IX) = j−1

X,Γ(IX)Γ
tr ⊕ j−1

X,Γ(IX)Γ
nt, and j∗X,Γ(IX) = j∗X,Γ(IX)Γ

tr ⊕
j∗X,Γ(IX)Γ

nt as j∗X,Γ(IX) = j−1
X,Γ(IX) ⊗j−1

X,Γ(OX) OXΓ , where j∗X,Γ(IX)Γ
nt ⊆

KerπIXΓ . As X : EX → IX is surjective, j∗X,Γ(X) : j∗X,Γ(EX)→ j∗X,Γ(IX) is,

and it is Γ-equivariant, so j∗X,Γ(X) induces surjective morphisms j∗X,Γ(EX)Γ
tr →

j∗X,Γ(IX)Γ
tr and j∗X,Γ(EX)Γ

nt → j∗X,Γ(IX)Γ
nt. Define EXΓ = j∗X,Γ(EX)Γ

tr, as a qua-

sicoherent sheaf on XΓ, and define XΓ = πIXΓ ◦ j∗X,Γ(X)|EXΓ : EXΓ → IXΓ .

Then XΓ is surjective as πIXΓ , j∗X,Γ(X) are, and j∗X,Γ(IX)Γ
nt ⊆ KerπIXΓ . Set

XΓ =
(
XΓ,O′XΓ , EXΓ , ıXΓ , XΓ

)
. The discussion above shows XΓ is a d-space.

Define jX,Γ = (jX,Γ, j
′
X,Γ, j

′′
X,Γ), where j′X,Γ, j

′′
X,Γ are the projections in

j′X,Γ : j−1
X,Γ(O′X) −→ j−1

X,Γ(O′X)/
(
j−1
X,Γ(O′X)Γ

nt

)
= O′XΓ ,

j′′X,Γ : j∗X,Γ(EX) = j∗X,Γ(EX)Γ
tr ⊕ j∗X,Γ(EX)Γ

nt −→ j∗X,Γ(EX)Γ
tr = EXΓ .

It is easy to check that jX,Γ : XΓ →X is a 1-morphism in dSpa.

A 1-morphism f : W → X factorizes via jX,Γ : XΓ → X if and only if it

is Γ-invariant. This is a universal property of XΓ, jX,Γ, which determines XΓ

uniquely up to canonical 1-isomorphism.

Proposition 2.44. Let X,Γ, r,XΓ and jX,Γ : XΓ → X be as in Definition
2.43. Suppose f : W → X is a 1-morphism in dSpa. Then f factorizes as
f = jX,Γ ◦ g for some 1-morphism g : W → XΓ in dSpa, which must be
unique, if and only if r(γ) ◦ f = f for all γ ∈ Γ.

Proof. The definition of the fixed C∞-subscheme XΓ implies that f : W → X

factorizes as f = jX,Γ ◦ g for some necessarily unique g : W → XΓ if and only
if r(γ) ◦ f = f for all γ ∈ Γ. Suppose this holds. Then we have a diagram

f∗(EX)

f ′′��

(jX,Γ ◦ g)∗(EX)
Ig,jX,Γ (EX)

// g∗(j∗X,Γ(EX))

EW g∗(j∗X,Γ(EX)tr)⊕ g∗(j∗X,Γ(EX)nt)
f ′′◦Ig,jX,Γ (EX)−1

oo

in qcoh(W ), where the splitting j∗X,Γ(EX) = j∗X,Γ(EX)tr⊕ j∗X,Γ(EX)nt into triv-
ial and nontrivial representations comes from the Γ-action C on j∗X,Γ(EX) from
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Definition 2.43. Considering the Γ-actions, we see that f ′′ ◦ Ig,jX,Γ(EX)−1

is Γ-invariant if and only if the component of f ′′ ◦ Ig,jX,Γ(EX)−1 mapping

g∗(j∗X,Γ(EX)nt)→ EW is zero, if and only if (r(γ) ◦ f)′′ = f ′′ for all γ ∈ Γ.

Thus, (r(γ)◦f)′′ = f ′′ for all γ ∈ Γ if and only if f ′′◦Ig,jX,Γ(EX)−1 factorizes

via the projection g∗(j′′X,Γ) : g∗(j∗X,Γ(EX))→ g∗(j∗X,Γ(EX)tr) = g∗(EXΓ). That
is, (r(γ)◦f)′′ = f ′′ for all γ ∈ Γ if and only if there exists a (necessarily unique)
morphism g′′ : g∗(EXΓ) → EW with f ′′ ◦ Ig,jX,Γ(EX)−1 = g′′ ◦ g∗(j′′X,Γ), so

that f ′′ = g′′ ◦ g∗(j′′X,Γ) ◦ Ig,jX,Γ(EX), which is the condition on f ′′ in f =

jX,Γ ◦ g. A similar proof shows that (r(γ) ◦ f)′ = f ′ for all γ ∈ Γ if and
only if there exists a (necessarily unique) morphism g′ : g−1(O′XΓ)→ O′W with
f ′ = g′ ◦ g−1(j′X,Γ) ◦ Ig,jX,Γ(O′X). The proposition follows.

In particular, when W = XΓ, f = jX,Γ and g = idXΓ this implies that
r(γ) ◦ jX,Γ = jX,Γ for all γ ∈ Γ. We can lift Γ-equivariant 1- and 2-morphisms
to fixed d-subspaces.

Proposition 2.45. Suppose X,Y are d-spaces, Γ is a finite group, r : Γ →
Aut(X), s : Γ → Aut(Y ) are actions of Γ on X,Y , and f : X → Y is a Γ-
equivariant 1-morphism in dSpa, that is, f ◦ r(γ) = s(γ) ◦ f for γ ∈ Γ. Then
there exists a unique 1-morphism fΓ : XΓ → Y Γ such that jY ,Γ◦f

Γ = f ◦jX,Γ.
Now let f , g : X → Y be Γ-equivariant 1-morphisms and η : f ⇒ g a

Γ-equivariant 2-morphism, that is, η ∗ idr(γ) = ids(γ) ∗ η for γ ∈ Γ. Then there

exists a unique 2-morphism ηΓ : fΓ ⇒ gΓ such that idjY,Γ ∗ η
Γ = η ∗ idjX,Γ .

Proof. The C∞-scheme morphism f ◦ jX,Γ : XΓ → Y satisfies

s(γ) ◦ (f ◦ jX,Γ) = f ◦ r(γ) ◦ jX,Γ = f ◦ jX,Γ,

by Γ-equivariance of f and the defining property of jX,Γ. Therefore f ◦ jX,Γ
maps to the C∞-subscheme of Y fixed by Γ, so there exists a unique morphism
fΓ : XΓ → Y Γ with jY ,Γ ◦ fΓ = f ◦ jX,Γ.

We will construct a 1-morphism fΓ = (fΓ, fΓ′, fΓ′′) : XΓ → Y Γ. To define

fΓ′, fΓ′′, consider the commutative diagrams:

(fΓ)−1
(
(j−1
Y ,Γ(O′Y )Γ

nt)
)

��

// (fΓ)−1
(
j−1
Y ,Γ(O′Y )

)
j−1
X,Γ(f ′)◦IjX,Γ,f (O′Y )

◦IfΓ,jY,Γ
(O′Y )−1

��

(fΓ)−1(j′Y,Γ)

// (fΓ)−1
(
O′Y Γ

)
fΓ′

��

// 0

(j−1
X,Γ(O′X)Γ

nt) // j−1
X,Γ(O′X)

j′X,Γ // O′XΓ // 0,

(2.96)

(fΓ)∗(j∗Y ,Γ(EY ))

j∗X,Γ(f ′′)◦IjX,Γ,f (EY )◦IfΓ,jY,Γ
(EY )−1

��

(fΓ)∗(j′′X,Γ)

// (fΓ)∗
(
j∗Y ,Γ(EY )Γ

tr

)
(fΓ)∗(EY Γ)

fΓ′′

��
j∗X,Γ(EX)

j′′X,Γ // j∗X,Γ(EX)Γ
tr EXΓ .

(2.97)

In (2.96), the rows are exact by definition of O′XΓ ,O′Y Γ . By Γ-equivariance
the central column maps (fΓ)−1(j−1

Y ,Γ(O′Y )Γ
nt)→ j−1

X,Γ(O′X)Γ
nt, so the left column
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‘99K’ exists, and by exactness there is a unique morphism fΓ′ making (2.96)
commute. In (2.97), the left hand column is Γ-equivariant, and so induces a
unique morphism fΓ′′ on the trivial components to make (2.97) commute. The
rest of (a) is straightforward, and (b) follows by similar arguments.

Uniqueness in Proposition 2.45 implies that these 1- and 2-morphisms fΓ, ηΓ

have the obvious functorial properties under composition, e.g. (g◦f)Γ = gΓ◦fΓ.
Thus, we can express the results of this section as a functor: writing dSpaΓ

for the strict 2-category whose objects are pairs (X, r) of a d-space X and an
action r : Γ→ Aut(X), and whose 1- and 2-morphisms are Γ-equivariant 1- and
2-morphisms in dSpa, then mapping (X, r) 7→ XΓ on objects, f 7→ fΓ on 1-
morphisms and η 7→ ηΓ on 2-morphisms gives a strict 2-functor dSpaΓ → dSpa.
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3 The 2-category of d-manifolds

We now define and study the 2-category dMan of d-manifolds without bound-
ary, or just d-manifolds, as a 2-subcategory of the 2-category of d-spaces dSpa
from Chapter 2. We begin in §3.1 by discussing the 2-categories of virtual qua-
sicoherent sheaves and virtual vector bundles on a C∞-scheme X. We introduce
these first as we will need ideas from §3.1 to define d-manifolds in §3.2.

Given a manifold V , a vector bundle E → V , and a smooth section s : V →
E, in §3.2 we will define a ‘standard model’ d-manifold SV,E,s, with topological
space s−1(0) = {v ∈ V : s(v) = 0}. These SV,E,s are our preferred local models
for d-manifolds, up to equivalence. Section 3.3 studies their local properties,
and §3.4 describes 1- and 2-morphisms of SV,E,s in differential-geometric terms.
This is applied in §3.5 to characterize equivalences in dMan, and in §3.6 to
explain how to make a d-manifold by gluing together local charts SVi,Ei,si . In
this chapter all manifolds will be without boundary.

3.1 The 2-category of virtual quasicoherent sheaves

If X is a manifold of dimension n, the cotangent bundle T ∗X is a vector bundle
of rank n on X. Our derived analogue of this will be that if X is a d-manifold
of virtual dimension n ∈ Z, the morphism φX : EX → FX in qcoh(X) from §2.2
will be a ‘virtual vector bundle of rank n on X’, in the sense below, which we
call the ‘virtual cotangent bundle’ T ∗X.

Definition 3.1. Let X be a C∞-scheme. We will define a 2-category vqcoh(X)
of virtual quasicoherent sheaves on X. Objects of vqcoh(X) will be morphisms
φ : E1 → E2 in qcoh(X), which we also may write as (E1, E2, φ) or (E•, φ).
Given objects φ : E1 → E2 and ψ : F1 → F2, a 1-morphism (f1, f2) : (E•, φ)→
(F•, ψ) is a pair of morphisms f1 : E1 → F1, f2 : E2 → F2 in qcoh(X) such
that ψ ◦ f1 = f2 ◦ φ. We may write f• for (f1, f2).

The identity 1-morphism of (E•, φ) is (idE1 , idE2). If f• : (E•, φ) → (F•, ψ)
and g• : (F•, ψ) → (G•, ξ) are 1-morphisms, define the composition of 1-
morphisms to be g• ◦ f• = (g1 ◦ f1, g2 ◦ f2).

Given f•, g• : (E•, φ) → (F•, ψ), a 2-morphism η : f• ⇒ g• is a morphism
η : E2 → F1 in qcoh(X) such that g1 = f1+η◦φ and g2 = f2+ψ◦η. The identity
2-morphism for f• is idf• = 0. If f•, g•, h• : (E•, φ)→ (F•, ψ) are 1-morphisms
and η : f• ⇒ g•, ζ : g• ⇒ h• are 2-morphisms, the vertical composition of
2-morphisms ζ � η : f• ⇒ h• is ζ � η = ζ + η. If f•, f̃• : (E•, φ)→ (F•, ψ) and
g•, g̃• : (F•, ψ) → (G•, ξ) are 1-morphisms and η : f• ⇒ f̃•, ζ : g• ⇒ g̃• are
2-morphisms, the horizontal composition of 2-morphisms ζ∗η : g•◦f• ⇒ g̃•◦ f̃•
is ζ ∗ η = g1 ◦ η + ζ ◦ f2 + ζ ◦ ψ ◦ η. With these definitions, it is not difficult to
check that vqcoh(X) is a strict 2-category.

The underlying category of vqcoh(X) is an abelian category; short exact
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sequences in vqcoh(X) are commutative diagrams of the form

0 // E1

φ��
f1

// F1

ψ��
g1

// G1

χ��

// 0

0 // E2
f2

// F2
g2

// G2 // 0,

with rows exact in qcoh(X).
If U ⊆ X is an open C∞-subscheme then restriction from X to U defines a

strict 2-functor |U : vqcoh(X)→ vqcoh(U).
An object (E•, φ) in vqcoh(X) is called a virtual vector bundle of rank d ∈ Z

if X may be covered by open C∞-subschemes U such that (E•, φ)|U is equivalent

in vqcoh(U) to some (F•, ψ) for F1,F2 vector bundles on U with rankF2 −
rankF1 = d. We write rank(E•, φ) = d. Proposition 3.7 below shows that d
does depend only on E1, E2, φ, so this is well-defined. Define the 2-category
vvect(X) to be the full 2-subcategory of virtual vector bundles in vqcoh(X).

If f : X → Y is a morphism of C∞-schemes then pullback defines a strict
2-functor f∗ : vqcoh(Y ) → vqcoh(X), which is left exact on the underlying
abelian category. Also f∗ maps vvect(Y )→ vvect(X).

The next example explains how this is related to d-spaces in Chapter 2.

Example 3.2. Let X = (X,O′X , EX , ıX , X) be a d-space. Define the virtual
cotangent sheaf T ∗X of X to be the morphism φX : EX → FX in qcoh(X) from
Definition 2.14, regarded as a virtual quasicoherent sheaf on X. It is a d-space
analogue of the cotangent complex in algebraic geometry, as in Illusie [50,51].

Let f = (f, f ′, f ′′) : X → Y be a 1-morphism in dSpa. Then T ∗X =

(EX ,FX , φX) and f∗(T ∗Y ) =
(
f∗(EY ), f∗(FY ), f∗(φY )

)
are virtual quasicoher-

ent sheaves on X, and Ωf := (f ′′, f2) is a 1-morphism f∗(T ∗Y ) → T ∗X in
vqcoh(X), as (2.22) commutes.

Let f , g : X → Y be 1-morphisms in dSpa, and η : f ⇒ g a 2-morphism.
Then η : f∗(FY ) → EX with g′′ = f ′′ + η ◦ f∗(φY ) and g2 = f2 + φX ◦ η, by
(2.25)–(2.26). It follows that η is a 2-morphism Ωf ⇒ Ωg in vqcoh(X).

Thus, objects, 1-morphisms and 2-morphisms in dSpa lift to objects, 1-
morphisms and 2-morphisms in vqcoh(X). This is not a functor, as to make
vqcoh(X) we have to fix an object X. Nonetheless, one can show that compo-
sition of 1-morphisms, vertical and horizontal composition of 2-morphisms, and
identities in dSpa lift to composition of 1-morphisms, vertical and horizontal
composition of 2-morphisms, and identities in vqcoh(X) in a meaningful sense,
and the proof that vqcoh(X) is a strict 2-category is a simplification of the proof
that dSpa is a strict 2-category in Theorem 2.15.

Since 1-morphisms and 2-morphisms for X in dSpa lift to 1-morphisms and
2-morphisms in vqcoh(X), equivalences lift to equivalences. This gives:

Lemma 3.3. Suppose f : X → Y is an equivalence of d-spaces. Then

Ωf = (f ′′, f2) : f∗(T ∗Y ) =
(
f∗(EY ), f∗(FY ), f∗(φY )

)
−→ T ∗X = (EX ,FX , φX)

(3.1)
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is an equivalence in vqcoh(X).

We collect some results on equivalences in the 2-category vqcoh(X). The
first is related to f5 an isomorphism in Proposition 2.20.

Proposition 3.4. Let X be a C∞-scheme, φ1 : E1 → E2 and ψ1 : F1 → F2 be
virtual quasicoherent sheaves on X, and (f1, f2) : (E1, E2, φ1) → (F1,F2, ψ1)
be a 1-morphism in vqcoh(X). Write φ0 : E0 → E1, φ2 : E2 → E3 for the
kernel and cokernel of φ1, and ψ0 : F0 → F1, ψ2 : F2 → F3 for the kernel and
cokernel of ψ1. Then there are unique morphisms f0, f3 such that the following
commutes in qcoh(X) :

0 // E0

f0

��
φ0

// E1

f1

��
φ1

// E2

f2

��
φ2

// E3

f3

��

// 0

0 // F0
ψ0

// F1
ψ1

// F2
ψ2

// F3 // 0.

(3.2)

If (f1, f2) is an equivalence in vqcoh(X) then f0, f3 are isomorphisms.

Proof. The middle square of (3.2) commutes by definition of (f1, f2). Hence
ψ1 ◦ (f1 ◦ φ0) = f2 ◦ φ1 ◦ φ0 = 0, so as ψ0 = Kerψ1 there is a unique morphism
f0 : E0 → F0 with ψ0◦f0 = f1◦φ0. Similarly (ψ2◦f2)◦φ1 = ψ2◦ψ1◦f1 = 0, so
as φ2 = Cokerφ1 there is a unique morphism f3 : E3 → F3 with f3◦φ2 = ψ2◦f2.
Therefore (3.2) commutes.

Now suppose (f1, f2) is an equivalence in vqcoh(X). Then there exist a
1-morphism (g1, g2) : (F1,F2, ψ1)→ (E1, E2, φ1) and 2-morphisms η : (g1, g2) ◦
(f1, f2)⇒ id(E1,E2,φ1) and ζ : (f1, f2) ◦ (g1, g2)⇒ id(F1,F2,ψ1) in vqcoh(X). As

above we get a unique g0 : F0 → E0, g3 : F3 → E3 in qcoh(X) making the
analogue of (3.2) commute. Consider the diagram in qcoh(X):

0 // E0

f0
��

φ0
// E1

f1
��

φ1
// E2

f2
��

η
��

φ2
// E3

f3
��

// 0

0 // F0

g0
��

ψ0

// F1

g1
��

ψ1

// F2

g2
��

ψ2

// F3

g3
��

// 0

0 // E0
φ0

// E1
φ1

// E2
φ2

// E3 // 0.

(3.3)

This commutes, apart from η marked ‘99K’. Since η : (g1, g2) ◦ (f1, f2) ⇒
id(E1,E2,φ1) is a 2-morphism, we find the composition of the second column in

(3.3) is g1 ◦ f1 = idE1 − η ◦ φ1 : E1 → E1. Composing this with φ0 gives
idE1 ◦ φ0 = φ0 = φ0 ◦ idE0 , since φ1 ◦ φ0 = 0. Thus as (3.3) is commutative, φ0

composed with the first column is φ0◦idE0 , so the composition of the first column
is idE0 since φ0 is injective. Hence g0◦f0 = idE0 . Similarly g3◦f3 = idE3 . By the
analogue of (3.3) with f j , gj and η, ζ exchanged we can show that f0 ◦g0 = idF0

and f3 ◦ g3 = idF3 . Therefore f0, f3 are isomorphisms, with inverses g0, g3.

The second is related to Proposition 2.20 and 2.21:

207



Proposition 3.5. Let X be a C∞-scheme and f• : (E•, φ) → (F•, ψ) a 1-
morphism in vqcoh(X). Then f• is an equivalence if and only if the following
complex is a split short exact sequence in qcoh(X) :

0 // E1
f1⊕−φ // F1 ⊕ E2

ψ⊕f2

// F2 // 0. (3.4)

In particular, if f• is an equivalence then E1 ⊕F2 ∼= F1 ⊕ E2 in qcoh(X).

Proof. Note that (3.4) is a complex since ψ ◦ f1 = f2 ◦φ as f• is a 1-morphism.
Suppose f• is an equivalence. Then there exists a 1-morphism g• : (F•, ψ) →
(E•, φ) and 2-morphisms η : g• ◦ f• ⇒ id(E•,φ) and ζ : f• ◦ g• ⇒ id(F•,ψ).
By Proposition A.6 we can also choose η, ζ to satisfy idf• ∗ η = ζ ∗ idf• and
idg• ∗ζ = η ∗ idg• . Define morphisms γ : F1⊕E2 → E1 and δ : F2 → F1⊕E2 by
γ = g1⊕−η and δ = ζ⊕g2. Then using all the relations on f1, f2, g1, g2, φ, ψ, η, ζ
we find that γ, δ satisfy (2.33) for the complex (3.4), so (3.4) is a split short
exact sequence by Definition 2.19. This proves the ‘only if’ part.

Suppose (3.4) is a split short exact sequence. Then there exist γ = γ1 ⊕ γ2 :
F1 ⊕ E2 → E1 and δ = δ1 ⊕ δ2 : F2 → F1 ⊕ E2 satisfying (2.33) for (3.4).
Define g1 = γ1, g2 = δ2, η = −γ2 and ζ = δ1. Then (2.33) implies that (g1, g2)
is a 1-morphism (F•, ψ) → (E•, φ) in vqcoh(X) and η : g• ◦ f• ⇒ id(E•,φ),
ζ : f• ◦g• ⇒ id(F•,ψ) are 2-morphisms. Hence f• is an equivalence. This proves
the ‘if’ part. The last part is immediate.

For the next corollary, the last part of Proposition 3.5 gives F1 ⊕ G2 ∼=
G1 ⊕F2, so taking ranks gives rankF1 + rankG2 = rankG1 + rankF2.

Corollary 3.6. Let U be a nonempty C∞-scheme, and suppose (F•, ψ) and
(G•, ξ) are equivalent in vqcoh(U), with F1,F2,G1,G2 vector bundles on U.
Then rankF2 − rankF1 = rankG2 − rankG1.

Proposition 3.7. Suppose (E•, φ) is a virtual vector bundle of rank d on a
nonempty C∞-scheme X. Then the rank d can be recovered from the restrictions
of φ, E1, E2 to an arbitrarily small neighbourhood of any point x ∈ X. Hence
rank(E•, φ) is well-defined.

Proof. Let x ∈ X. By Definition 3.1 there exists open x ∈ U ⊆ X such that
φ|U : E1|U → E2|U is equivalent to ψ : F1 → F2, where F1,F2 are vector

bundles on U with rankF2 − rankF1 = d. Suppose also that x ∈ V ⊆ X is
open and φ|V : E1|V → E2|V is equivalent to ξ : G1 → G2, where G1,G2 are vector

bundles on V . Then the restrictions of ψ : F1 → F2 and ξ : G1 → G2 to U ∩ V
are equivalent, so Corollary 3.6 gives rankG2−rankG1 = rankF2−rankF1 = d.

Therefore we can characterize the rank d as follows: if φ|V : E1|V → E2|V
is equivalent to ξ : G1 → G2 on any open x ∈ V ⊆ X for G1,G2 vector bundles
on V , then d = rankG2 − rankG1. Such V , ξ,G1,G2 exist by definition. By
restricting to a smaller open neighbourhood we can make V arbitrarily small.
Thus we can recover the rank d from the restriction of φ, E1, E2 to an arbitrarily
small neighbourhood of any x ∈ X.
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In Definition 2.14 we defined a functor FdSpa
C∞Sch : C∞Schlf

ssc → dSpa and a

2-subcategory Ĉ∞Schlf
ssc in dSpa equivalent to C∞Schlf

ssc. Here is an analogue
of this at the level of quasicoherent and virtual quasicoherent sheaves on X.

Definition 3.8. Let X be a C∞-scheme. Regard the category qcoh(X) as a

2-category with only identity 2-morphisms. Define a strict 2-functor F
vqcoh(X)
qcoh(X) :

qcoh(X) → vqcoh(X) by F
vqcoh(X)
qcoh(X) (E) = (0, E , 0) on objects, F

vqcoh(X)
qcoh(X) (α) =

(0, α) : (0, E , 0)→ (0,F , 0) on (1-)morphisms α : E → F , and F
vqcoh(X)
qcoh(X) (idα) =

0 = id(0,α) : (0, α) ⇒ (0, α) on 2-morphisms idα : α ⇒ α. It is easy to check

that F
vqcoh(X)
qcoh(X) is full and faithful.

The restriction of F
vqcoh(X)
qcoh(X) to vect(X) maps to vvect(X), and so defines

a full and faithful strict 2-functor F
vvect(X)
vect(X) : vect(X) → vvect(X). Define

q̂coh(X) and v̂ect(X) to be the full 2-subcategories of objects in vqcoh(X) and

vvect(X) equivalent to objects in the images of F
vqcoh(X)
qcoh(X) and F

vvect(X)
vect(X) . Then

q̂coh(X), v̂ect(X) are equivalent as 2-categories to qcoh(X), vect(X).
By an abuse of notation, we will say that a virtual quasicoherent sheaf (E•, φ)

is a quasicoherent sheaf, or is a vector bundle, if it lies in q̂coh(X) or v̂ect(X).

The next result is related to Proposition 2.25.

Proposition 3.9. Let (E•, φ) be a virtual quasicoherent sheaf (or a virtual
vector bundle) on X. Then (E•, φ) is a quasicoherent sheaf (respectively a vector
bundle) if and only if φ : E1 → E2 has a left inverse in qcoh(X).

Proof. Suppose (E•, φ) is a quasicoherent sheaf. Then by definition (E•, φ)
is equivalent to (0,F , 0) for some F ∈ qcoh(X), so there exist 1-morphisms
f• : (E•, φ) → (0,F , 0), g• : (0,F , 0) → (E•, φ) and 2-morphisms η : g• ◦ f• ⇒
id(E•,φ) and ζ : f•◦g• ⇒ id(0,F,0). We have η◦φ+g1◦f1 = idE1 , but f1 = g1 = 0,
so η ◦ φ = idE1 , and η is a left inverse for φ.

Suppose φ : E1 → E2 has a left inverse η : E2 → E1. Let f2 : E2 → F be the
cokernel of φ. Since φ has a left inverse η we have E2 ∼= E1 ⊕ F , and there is a
unique morphism g2 : F → E2 which is the kernel of η and has g2 ◦ f2 = idF .
Define f1 = g1 = ζ = 0. Then we find that (f1, f2) : (E•, φ) → (0,F , 0)
and (g1, g2) : (0,F , 0) → (E•, φ) are 1-morphisms and η : g• ◦ f• ⇒ id(E•,φ),
ζ : f• ◦ g• ⇒ id(0,F,0) are 2-morphisms. Hence f• is an equivalence, and (E•, φ)
is a quasicoherent sheaf. For the (virtual) vector bundle parts, if (E•, φ) is a
virtual vector bundle, one can show using the last part of Proposition 3.5 that
F above is a vector bundle.

Propositions 2.25 and 3.9 characterize when a d-space is a C∞-scheme.

Corollary 3.10. Let X be a d-space. Then X lies in Ĉ∞Schlf
ssc if and only

if its virtual cotangent sheaf T ∗X is a quasicoherent sheaf.
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This illustrates the fact that although the virtual cotangent sheaf T ∗X =
(EX ,FX , φX) is only a small part of the data in a d-space X, it is useful infor-
mation, and questions about d-spaces and d-manifolds can often be answered
by working with virtual cotangent sheaves.

3.2 The definition of d-manifolds

We will now define the 2-category dMan of d-manifolds, as a 2-subcategory of
the 2-category of d-spaces dSpa. We follow Spivak’s treatment of his derived
manifolds [94, 95]. He first defines an ∞-category DLC∞RS of ‘derived local
C∞-ringed spaces’, with manifolds Man embedded as a discrete∞-subcategory,
and shows (homotopy) fibre products exist in DLC∞RS. Then he defines
principal derived manifolds as (homotopy) fibre products Rm ×g,Rn,0 {0} in
DLC∞RS for g : Rm → Rn smooth. Finally he defines X in DLC∞RS to be
a derived manifold if it can be covered by open subspaces U which are principal
derived manifolds.

For d-manifolds we replace DLC∞RS by our 2-category of d-spaces dSpa.
Our notion of principal d-manifold is more general, as we allow fibre products
X ×g,Z,h Y for manifolds X,Y, Z, but this is a cosmetic difference and does not
change the definition of d-manifold. We also define the virtual dimension of a
principal d-manifold, and require all the principal covering subspaces U of a
d-manifold X to have the same virtual dimension, which Spivak does not do.

Definition 3.11. A d-space W is called a principal d-manifold if is equiva-
lent in dSpa to a fibre product X ×g,Z,h Y with X,Y ,Z ∈ M̂an. That is,

W ' FdSpa
Man (X)×FdSpa

Man (g),FdSpa
Man (Z),FdSpa

Man (h) F
dSpa
Man (Y ) for manifolds X,Y, Z and

smooth maps g : X → Z, h : Y → Z.
If W = (W,O′W , EW , ıW , W ) then the underlying C∞-scheme W has W ∼=

X ×Z Y , where X,Y , Z = FC∞Sch
Man (X,Y, Z). From §B.5, X,Y , Z are finitely

presented affine C∞-schemes. But these are closed under fibre products by [56,
Th. 4.19], so W is also a finitely presented affine C∞-scheme. If X is a manifold,
then taking Y = Z = ∗, the point, and g = π : X → ∗, h = id∗ : ∗ → ∗, we get
W ' X ×∗ ∗ ' X. Thus FdSpa

Man (X) is a principal d-manifold, and any object

in M̂an is a principal d-manifold.

Actually, since anything equivalent to a (2-category) fibre product is also a
fibre product, we could just say that principal d-manifolds are fibre products
X ×g,Z,h Y with X,Y ,Z in M̂an. Here are two alternative definitions of
principal d-manifolds:

Proposition 3.12. The following are equivalent characterizations of when a
d-space W is a principal d-manifold:

(a) W 'X ×g,Z,h Y for X,Y ,Z ∈ M̂an.

(b) W ' X ×i,Z,j Y , where X,Y, Z are manifolds, i : X → Z, j : Y → Z

are embeddings, and X,Y ,Z, i, j = FdSpa
Man (X,Y, Z, i, j). That is, W is

an intersection of two submanifolds X,Y in Z, in the sense of d-spaces.

210



(c) W ' V ×s,E,0 V , where V is a manifold, E → V is a vector bundle,
s : V → E is a smooth section of E, 0 : V → E is the zero section,
and V ,E, s,0 = FdSpa

Man (V,E, s, 0). That is, W is the zeroes s−1(0) of a
smooth section s of a vector bundle E, in the sense of d-spaces.

Proof. Clearly (c) implies (b) implies (a). So it is enough to show (a) implies

(c). For W as in (a) we can take X,Y ,Z, g,h = FdSpa
Man (X,Y, Z, g, h) for g :

X → Z, h : Y → Z smooth maps of manifolds. By the existence of tubular
neighbourhoods, we can choose an open neighbourhood U of the zero section in
TZ and an étale map Φ : U → Z × Z such that Φ(z, 0) = (z, z) for all z ∈ Z.

Define a manifold V = (X × Y ) ×g×h,Z×Z,Φ U , where the fibre product
exists as Φ is étale. Define a vector bundle E → V by E = (πZ ◦ πU )∗(TZ),
where πU : V → U is the projection from the fibre product and πZ : U → Z
is the restriction of the projection TZ → Z. Define a smooth section s of V
by s :

(
(x, y), (z, v)

)
7→
(
((x, y), (z, v)), v

)
. Then we have equivalences of fibre

products in dSpa:

X ×g,Z,h Y ' (X × Y )×g×h,Z×Z,∆Z
Z

'
(
(X×Y )×g×h,Z×Z,Φ U

)
×πU ,U ,0Z'V ×πU ,TZ,0Z'V ×s,E,0 V ,

where ∆Z : Z → Z × Z is the diagonal map. So (c) implies (a).

Of (a)–(c) in Proposition 3.12, we usually prefer to work with form (c). It
is related to the notion of Kuranishi neighbourhood in the Kuranishi spaces of
Fukaya, Oh, Ohta and Ono [32,34], as we will explain in Chapter 14. The fibre
product V ×s,E,0 V is only defined up to equivalence in dSpa. We will find
it convenient to work with a particular explicit choice in this equivalence class,
which we call the standard model SV,E,s.

Definition 3.13. Let V be a manifold, E → V a vector bundle, and s : V → E
a smooth section of E. We will write down an explicit principal d-manifold S =
(S,O′S , ES , ıS , S) which is equivalent to V ×s,E,0 V in Proposition 3.12(c). We
call S the standard model of (V,E, s), and also write it SV,E,s. Proposition 3.12
shows that every principal d-manifoldW is equivalent to SV,E,s for some V,E, s.

Write C∞(V ) for the C∞-ring of smooth functions c : V → R, and C∞(E),
C∞(E∗) for the vector spaces of smooth sections of E,E∗ over V . Then s ∈
C∞(E), and C∞(E), C∞(E∗) are modules over C∞(V ), and there is a natural
bilinear product · : C∞(E∗)×C∞(E)→ C∞(V ) from the dual pairing E∗×E →
R. Define Is ⊆ C∞(V ) to be the ideal generated by s. That is,

Is =
{
α · s : α ∈ C∞(E∗)

}
⊆ C∞(V ). (3.5)

Let I2
s = 〈fg : f, g ∈ Is〉R be the square of Is. Then I2

s is an ideal in C∞(V ),
the ideal generated by s⊗ s ∈ C∞(E ⊗ E). That is,

I2
s =

{
β · (s⊗ s) : β ∈ C∞(E∗ ⊗ E∗)

}
⊆ C∞(V ). (3.6)
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Define C∞-rings C = C∞(V )/Is, C
′ = C∞(V )/I2

s , and let π : C′ → C be the
natural projection from the inclusion I2

s ⊆ Is. Then π is a square zero extension
of C∞-rings, in an exact sequence as for (2.1):

0 // Is/I2
s

κπ // C′
π // C // 0.

Define a topological space S = {v ∈ V : s(v) = 0}, as a subspace of V . Now
s(v) = 0 if and only if (s⊗s)(v) = 0. Thus S is the underlying topological space
for both SpecC and SpecC′. So applying Spec gives SpecC = S = (S,OS),
SpecC′ = S′ = (S,O′S), and Specπ = ıS = (idS , ıS) : S′ → S, where S, S′

are fair affine C∞-schemes, and OS ,O′S are sheaves of C∞-rings on S, and
ıS : O′S → OS is a morphism of sheaves of C∞-rings. Then (S,O′S , ıS) is a
square zero extension of C∞-schemes, as π is a square zero extension of C∞-
rings. As S is fair and affine it is separated, second countable and locally fair.

From (3.5) we have a surjective morphism of C∞(V )-modules C∞(E∗)→ Is
mapping α 7→ α · s. Applying ⊗C∞(V )C gives a morphism of C-modules

σ : C∞(E∗)/(Is · C∞(E∗)) −→ Is/I
2
s , σ : α+ (Is · C∞(E∗)) 7−→ α · s+ I2

s .

Here σ is surjective as ⊗C∞(V )C is right exact and so preserves surjectivity.

Define a quasicoherent sheaf ES on S by ES = MSpec
(
C∞(E∗)/(Is ·C∞(E∗))

)
.

Also MSpec(Is/I
2
s ) is the sheaf IS for the square zero extension (S,O′S , ıS).

Thus S = MSpecσ is a morphism S : ES → IS in qcoh(S), which is surjective
as σ is surjective and MSpec : C-mod→ qcoh(S) is an exact functor by [56, §6.2].
Therefore SV,E,s = S = (S,O′S , ES , ıS , S) is a d-space.

In fact ES is a vector bundle on S, naturally isomorphic to E∗|S , where E
is the vector bundle on V = FC∞Sch

Man (V ) corresponding to E → V , and E∗
the dual vector bundle, and E∗|S is the restriction of E∗ to the C∞-subscheme
S in V . One can also show that FS ∼= T ∗V |S . The morphism φS : ES →
FS can be interpreted as follows: choose a connection ∇ on E → V . Then
∇s ∈ C∞(E ⊗ T ∗V ), so we can regard ∇s as a morphism of vector bundles
E∗ → T ∗V on V . This lifts to a morphism of vector bundles ∇̂s : E∗ → T ∗V
on the C∞-scheme V , and φS is identified with ∇̂s|S : E∗|S → T ∗V |S under the
isomorphisms E∗|S ∼= ES , T ∗V |S ∼= FS . Although ∇s depends on the choice of
∇, its restriction to S = s−1(0) is independent of this choice.

This S is equivalent to the fibre product V ×s,E,0 V in Proposition 3.12(c).
One way to prove this is to compare it to the fibre product

S̃ = FdSpa
Man (V )×FdSpa

Man (s),FdSpa
Man (E),FdSpa

Man (0) F
dSpa
Man (V ),

where the fibre product is done using the explicit construction of §2.5. One can
show that S̃ is 1-isomorphic to the d-space constructed in Example 2.18 starting
with the d-space S and the quasicoherent sheaf FS , so that E S̃ ∼= ES ⊕ FS ,
I S̃ ∼= IS ⊕ IS , F S̃ ∼= FS ⊕FS . Thus S, S̃ are equivalent by Example 2.18.

Lemma 3.14. Let W be a principal d-manifold and U an open d-subspace of
W. Then U is also a principal d-manifold.
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Proof. By Proposition 3.12(b) we may write W 'X×i,Z,jY , where i(X), j(Y )
are embedded submanifolds of Z. The underlying topological space W of W is
i(X)∩j(Y ). So any open U ⊆W is of the form V ∩i(X)∩j(Y ) for V ⊆ Z open.
Equivalently, U = i(X̃) ∩ j(Ỹ ), where X̃ = i−1(V ) ⊆ X, Ỹ = j−1(V ) ⊆ Y .
Hence U ' X̃ ×i,Z,j Ỹ , and so is a principal d-manifold.

Proposition 3.15. Suppose W is a principal d-manifold, so that for mani-
folds X,Y, Z we have W ' FdSpa

Man (X) ×FdSpa
Man (Z) F

dSpa
Man (Y ). Then the virtual

cotangent sheaf T ∗W = (EW ,FW , φW ) is a virtual vector bundle on W, with

rank T ∗W = dimX + dimY − dimZ. (3.7)

Proof. Define W̃ = FdSpa
Man (X) ×FdSpa

Man (Z) F
dSpa
Man (Y ), where the fibre product

is done using the explicit construction of Definition 2.35. Then there exists an
equivalence b : W → W̃ in dSpa. As in the proof of Theorem 2.42, φW̃ : EW̃ →
FW̃ is given by (2.87), so EW̃ = (g ◦ e)∗(T ∗Z) and FW̃ ∼= e∗(T ∗X)⊕ f∗(T ∗Y ).

Hence EW̃ ,FW̃ are vector bundles on W̃ with rank EW̃ = dimZ and rankFW̃ =
dimX + dimY . Lemma 3.3 now shows that Ωb = (b′′, b2) is an equivalence
from

(
b∗(EW̃ ), b∗(FW̃ ), b∗(φW̃ )

)
to (EW ,FW , φW ). Therefore (EW ,FW , φW ) is

a virtual vector bundle on W , with rank rank b∗(FW̃ )− rank b∗(EW̃ ) = dimX+
dimY − dimZ.

Definition 3.16. Let W be a nonempty principal d-manifold. Then its virtual
cotangent sheaf T ∗W = (EW ,FW , φW ) is a virtual vector bundle by Propo-
sition 3.15, so we will call it the virtual cotangent bundle of W. Define the
virtual dimension vdimW of W to be the rank of T ∗W. This is well-defined
by Proposition 3.7. If W ' X ×Z Y with X,Y, Z manifolds vdimW =
dimX + dimY − dimZ by (3.7).

Example 3.17. Let V be a manifold and E → V a vector bundle. Let V =
FC∞Sch

Man (V ), and E ∈ qcoh(V ) be the vector bundle on V corresponding to E.
Define a d-space S = (V ,OV , E∗, idOV , 0). Then V comes from Definition 3.13
with section s = 0, so S is a principal d-manifold, which has virtual dimension
dimV − rankE. Note that this virtual dimension can be negative, and can take
all values in Z. We have modified the manifold V by adding an ‘obstruction
bundle’ E∗, which reduces the virtual dimension by rankE.

We can now define d-manifolds.

Definition 3.18. A d-space X is called a d-manifold of virtual dimension
n ∈ Z, written vdimX = n, if X can be covered by nonempty open d-subspaces
U which are principal d-manifolds with vdimU = n.

Then the underlying C∞-scheme X is covered by finitely presented, affine
open U ⊆ X, so X is locally finitely presented. It is also separated, second
countable, locally compact, paracompact, and locally fair by Definition 2.14.
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Proposition 3.15 and Definition 3.16 imply that the virtual cotangent sheaf
T ∗X = (EX ,FX , φX) of X is a virtual vector bundle of rank vdimX = n, so
we call it the virtual cotangent bundle of X. It is a d-manifold analogue of the
cotangent complex in algebraic geometry, as in Illusie [50,51]. If X is nonempty
then T ∗X determines vdimX, so vdimX depends only on X. The empty d-
manifold ∅ can be considered a d-manifold of any virtual dimension n ∈ Z, just
as ∅ is a manifold of any dimension, so we leave vdim∅ undefined.

Let dMan be the full 2-subcategory of d-manifolds in dSpa. As FdSpa
Man (X) is

a principal d-manifold for any manifold X by Definition 3.11, it is a d-manifold,
so the 2-functor FdSpa

Man : Man → dSpa maps into dMan, and we will write

FdMan
Man = FdSpa

Man : Man → dMan. Also M̂an is a 2-subcategory of dMan.

We say that a d-manifold X is a manifold if it lies in M̂an.

In §4.4 we will prove that every compact d-manifold is principal, and give
other sufficient conditions for d-manifolds to be principal, which suggest that
most interesting d-manifolds are principal d-manifolds. Lemma 3.14 implies:

Lemma 3.19. Let W be a d-manifold, and U an open d-subspace of W. Then
U is also a d-manifold, with vdimU = vdimW.

3.3 Local properties of d-manifolds

We now study the local geometry of a d-manifold X = (X,O′X , EX , ıX , X) near
a point x ∈ X, focussing on the C∞-scheme X. The questions we ask are:

• When can a C∞-scheme X be (locally) extended to a d-manifold X?

• How much of the information in X, up to equivalence, is contained in the
C∞-scheme X, and how much in the ‘derived’ data O′X , EX , ıX , X?

From Definition 3.18, if X is a d-manifold then X is locally finitely presented,
so we shall restrict to locally finitely presented C∞-schemes.

Definition 3.20. Let X be a locally finitely presented C∞-scheme, and x ∈ X.
We will define the cotangent space T ∗xX and the obstruction space OxX, both
finite-dimensional real vector spaces. Let Xx be the localization of X at x, as a
C∞-scheme. Then Xx

∼= SpecCx, where Cx is a C∞-local ring, as in Definition
B.7. Since X is locally finitely presented, Cx is the localization at a point of a
finitely presented C∞-ring. Thus Cx fits into an exact sequence

0 // I
ι // C∞0 (Rn)

π // Cx // 0, where

I = (f1, . . . , fk) ⊂ C∞0 (Rn) for f1, . . . , fk ∈ C∞(Rn) with fj(0) = 0.
(3.8)

Writing y1, . . . , yn for the generators of C∞0 (Rn), π(y1), . . . , π(yn) generate Cx.
Suppose dfj(0) 6= 0 ∈ (Rn)∗ for some j = 1, . . . , k. Then f−1

j (0) is an (n−1)-
submanifold in Rn near 0, and (y1, . . . , yi−1, yi+1, . . . , yn) are coordinates on

f−1
j (0) for some i = 1, . . . , n with

∂fj
∂yi

(0) 6= 0. We can then find an alternative
presentation for Cx with n − 1, k − 1 in place of n, k, omitting the generator
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yi and relation fj , and replacing fl for l 6= j by fl|f−1
j (0) near 0, regarded as a

function of y1, . . . , yi−1, yi+1, . . . , yn. Thus, if we choose a presentation (3.8) of
Cx with n as small as possible, then dfj(0) = 0 for j = 1, . . . , k.

Write mx for the maximal ideal in Cx, identified with
{
h+ Ix : h ∈ C∞(Rn),

h(0) = 0
}

under (3.8), and ΩCx for the cotangent module of Cx. Define

T ∗xX = ΩCx/(mx · ΩCx). (3.9)

From the presentation (3.8) we may write Cx as a pushout C∞0 (Rn)qC∞(Rk) R,
so by Theorem B.33(b), we get an exact sequence in Cx-mod

Rk ⊗R Cx
α // Rn ⊗R Cx

β // ΩCx
// 0, (3.10)

where α(c1, . . . , ck) = (d1, . . . , dn) with di =
∑k
j=1

∂fj
∂yi

(y1, . . . , yn) ·cj . Applying

the right exact functor ⊗Cx(Cx/mx) to (3.10) and using (3.9) shows that

T ∗xX
∼=

〈
dy1, . . . ,dyn

〉
R〈∑n

i=1
∂f1

∂yi
(0) dyi, . . . ,

∑n
i=1

∂fk
∂yi

(0) dyi
〉
R
. (3.11)

When n is least, so that dfj(0) = 0 for all j, we have T ∗xX
∼= 〈dy1, . . . ,dyn〉R.

Hence dimT ∗xX = n is the minimal number of generators of Cx.
Next, choose a presentation (3.8) for Cx with n least, and define

OxX = I/(m0 · I), (3.12)

where m0 is the maximal ideal in C∞0 (Rn). We claim that OxX is independent
of choices up to isomorphism. To see this, let Ĩ , ι̃, π̃, f̃1, . . . , f̃k̃ be an alternative
presentation (3.8) for Cx with n least, so the same n. As π̃ is surjective, for
each i = 1, . . . , n we can choose ai ∈ C∞(Rn) with ai(0, . . . , 0) = 0 such that
π̃(ai(y1, . . . , yn)) = π(yi). Define a morphism of C∞-rings A : C∞0 (Rn) →
C∞0 (Rn) by

A : g(y1, . . . , yn) 7−→ g
(
a1(y1, . . . , yn), . . . , an(y1, . . . , yn)

)
.

Then A(yi) = ai(y1, . . . , yn), so π̃ ◦ A(yi) = π(yi) for i = 1, . . . , n, and thus
π̃ ◦A = π : C∞0 (Rn)→ Cx as y1, . . . , yn generate C∞0 (Rn).

Using (3.11) for both presentations, we can make a commutative diagram〈
dy1, . . . ,dyn

〉
R dπ

∼= --\\\\\\\\\\\\\\\\\\\\\\\

dyi 7→
∑n
j=1

∂ai
∂yj

(0,...,0) dyj
��

T ∗xX.〈
dy1, . . . ,dyn

〉
R dπ̃

∼=
11ccccccccccccccccccccccc

Then dπ,dπ̃ are isomorphisms as n is minimal, so the vertical map is an isomor-
phism, and

(
∂ai
∂yj

(0, . . . , 0)
)
n
i,j=1 is an invertible n × n matrix. Hence the map
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Rn → Rn taking (y1, . . . , yn) 7→
(
a1(y1, . . . , yn), . . . , an(y1, . . . , yn)

)
is a diffeo-

morphism near 0, and A : C∞0 (Rn) → C∞0 (Rn) is an isomorphism. Therefore
we have a commutative diagram

0 // I
A|I∼= ��

ι
// C∞0 (Rn)

A∼= ��
π

// Cx
id∼= ��

// 0

0 // Ĩ
ι̃ // C∞0 (Rn)

π̃ // Cx // 0,

with columns isomorphisms. This induces an isomorphism I/(m0·I) ∼= Ĩ/(m0·Ĩ),
so OxX in (3.12) is independent of presentation up to isomorphism.

We have an exact sequence of C∞0 (Rn)-modules:

0 //
{

(g1, . . . , gk) : gi∈C∞0 (Rn), f1g1+· · ·+fkgk=0
} ⊆ // C∞0 (Rn)k // I // 0.

Applying ⊗C∞0 (Rn)(C
∞
0 (Rn)/m0) to this and using (3.12) shows that

OxX∼=
Rk{(

g1(0), . . . , gk(0)
)

: gi∈C∞0 (Rn), f1g1 + · · ·+ fkgk = 0
} . (3.13)

Suppose g1, . . . , gk ∈ C∞0 (Rn) with f1g1 + · · · + fkgk = 0 ∈ C∞0 (Rn), and
gi(0) 6= 0 for some i = 1, . . . , k. Then gi is invertible in C∞0 (Rn), so fi =∑
j=1,...,k, i 6=j(−g

−1
i gj) · fj . Hence fi is dependent on f1, . . . , fi−1, fi+1, . . . , fk,

and I = (f1, . . . , fi−1, fi+1, . . . , fk). Thus if we choose the generators f1, . . . , fk
of I so that k is minimal, then f1g1 + · · · + fkgk = 0 ∈ C∞0 (Rn) implies that
gi(0) = 0 for i = 1, . . . , k, so (3.13) gives OxX ∼= Rk. Hence dimOxX = n is
the minimal number of relations for Cx in C∞0 (Rn).

The next proposition follows from Definition 3.20. When we lift from the
C∞-local ring Cx of X at x to the C∞-ring C of a small neighbourhood U of
x in X, we replace (3.8) by a presentation C = C∞(W )/(f1|W , . . . , fk|W ) for
some small open neighbourhood W of 0 in Rn.

Proposition 3.21. Let X be a locally finitely presented C∞-scheme, and x ∈
X. Set n = dimT ∗xX and k = dimOxX. Then for any small enough open
neighbourhood U of x in X there exists a C∞-ring C = C∞(W )/(f1|W , . . . ,
fk|W ) and an isomorphism U ∼= SpecC identifying x ∈ U with 0 ∈W, where W
is an open neighbourhood of 0 in Rn, and f1, . . . , fk ∈ C∞(Rn) satisfy fj(0) =

dfj(0) = 0 for j = 1, . . . , k, and if g1, . . . , gk ∈ C∞0 (Rn) with
∑k
j=1 fj · gj = 0

in C∞0 (Rn) then gj(0) = 0 for all j = 1, . . . , k.

If dimTxX = n and dimOxX = 0 then X is isomorphic to SpecC∞(W )
near x for W open in Rn. That is, X is an n-manifold near x. We easily deduce:

Corollary 3.22. A C∞-scheme X is an n-manifold without boundary if and
only if X is second countable, separated, and locally finitely presented and
dimTxX = n, dimOxX = 0 for all x ∈ X.

216



We use the ideas of Definition 3.20 to show that if V is a manifold, E → V a
vector bundle, s ∈ C∞(E) and x ∈ V with s(x) = 0, then V,E, s are completely
determined up to isomorphism near x by the induced C∞-scheme X = s−1(0)
and two nonnegative integers a, b > 0.

Proposition 3.23. Suppose V is a manifold, E → V a vector bundle, and
s : V → E a smooth section. Write X for the locally finitely presented C∞-
scheme V ×s,E,0 V , where V ,E, s, 0 = FC∞Sch

Man (V,E, s, 0) and 0 : V → E is
the zero section. Equivalently, X = Spec(C∞(V )/Is) for Is as in (3.5). The
underlying topological space is X = {v ∈ V : s(v) = 0}.

Fix x ∈ X ⊆ V, and let U ⊆ X, n = dimT ∗xX, k = dimOxX, W ⊆ Rn
and f1, . . . , fk ∈ C∞(Rn) be as in Proposition 3.21. Then for some a, b > 0
we have dimV = n + b and rankE = k + a + b, and we can choose an open
neighbourhood Ṽ of x in V with Ũ = Ṽ ∩ X̃ ⊆ U, coordinates (z1, . . . , zn+b) on
Ṽ with x = (0, . . . , 0), and a trivialization E|Ṽ ∼= Rk+a+b × Ṽ → Ṽ , such that
using these coordinates and trivialization, we have

s(z1, . . . , zn+b)

=
(
f1(z1, . . . , zn), . . . , fk(z1, . . . , zn),

pa zeroesq
0, . . . , 0 , zn+1, . . . , zn+b

) (3.14)

for all (z1, . . . , zn+b) ∈ Ṽ . Furthermore, the coordinates y1, . . . , yn on W and
z1, . . . , zn on Ṽ map to the same functions on the C∞-subscheme Ũ in U.

Proof. Set m = dimV and l = rankE. Let Ṽ be an open neighbourhood of x
in V with Ṽ ∩ X̃ ⊆ U , and define Ũ = Ṽ ∩ X̃, and Ũ ⊆ U for the associated
C∞-subscheme. Now the isomorphism U ∼= SpecC induces a homeomorphism

U ∼=
{

(y1, . . . , yn) ∈W : f1(y1, . . . , yn) = · · · = fk(y1, . . . , yn) = 0
}
. (3.15)

Choose an open neighbourhood W̃ of 0 in W ⊆ Rn such that Ũ is identified
with the intersection of the right hand side of (3.15) with W̃ . Then we have
an isomorphism Ũ ∼= Spec C̃, where C̃ = C∞(W̃ )/(f1|W̃ , . . . , fk|W̃ ). At several
points in the proof we will need to make Ṽ and hence Ũ , W̃ smaller.

Making Ũ , Ṽ , W̃ smaller if necessary, we can suppose there exist coordi-
nates (x1, . . . , xm) on Ṽ with x = (0, . . . , 0), and that E|Ṽ is trivial, so we can

choose an isomorphism E|Ṽ ∼= Rl × Ṽ → Ṽ . In this trivialization, s|Ṽ corre-

sponds to an l-tuple of functions (s1, . . . , sl) on Ṽ , that is, si ∈ C∞(Ṽ ). The
coordinates x1, . . . , xm on Ṽ identify Ṽ with an open subset V̂ of Rm, that is,
si = si(x1, . . . , xm) for (x1, . . . , xm) ∈ V̂ . Making Ũ , Ṽ , W̃ smaller again, we
can suppose s1, . . . , sl extend smoothly to Rm, so we regard s1, . . . , sl as lying
in C∞(Rm). Then we have isomorphisms

Ũ ∼= Spec
(
C∞(W̃ )/(f1|W̃ , . . . , fk|W̃

) ∼= Spec
(
C∞(Ṽ )/(s1, . . . , sl)

)
,

which induce an isomorphism of C∞-rings

Φ : C∞(W̃ )/(f1|W̃ , . . . , fk|W̃ )
∼=−→C∞(Ṽ )/(s1, . . . , sl).
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Localizing Φ at 0 gives an isomorphism of C∞-local rings

Φ0 : C∞0 (Rn)/(f1, . . . , fk)
∼=−→C∞0 (Rm)/(s1, . . . , sl). (3.16)

Thus equation (3.11) implies that

〈
dy1, . . . ,dyn

〉
R ∼= T ∗xX

∼=
〈
dx1, . . . ,dxm

〉
R〈∑m

j=1
∂s1
∂xj

(0) dxj , . . . ,
∑m
j=1

∂sl
∂xj

(0) dxj
〉
R
. (3.17)

Hence m > n, so we may write m = n + b for b = m − n > 0, and the
matrix

(
∂si
∂xj

(0, . . . , 0)
)j=1,...,n+b
i=1,...,l has rank b, so that l > b. Applying a GL(m,R)

transformation to V ⊆ Rm and (x1, . . . , xm), and a GL(l,R) transformation to
the trivialization E|Ṽ ∼= Rl × Ṽ → Ṽ and to s1, . . . , sl, we can suppose that

∂si
∂xj

(0, . . . , 0) =

{
1, i = l − b+ c, j = n+ c, c = 1, . . . , b,

0, otherwise.
(3.18)

Then (3.17) becomes〈
dy1, . . . ,dyn

〉
R ∼= T ∗xX

∼=
〈
dx1, . . . ,dxn

〉
R. (3.19)

Choose w1, . . . , wn ∈ C∞(Rm) whose projections to C∞0 (Rm)/(s1, . . . , sl)
are Φ0(y1), . . . ,Φ0(yn), so that wi = wi(x1, . . . , xm) and wi(0, . . . , 0) = 0. Then
the isomorphism (3.19) is given by dyi 7−→

∑n
j=1

∂wi
∂xj

(0, . . . , 0) dxj . Therefore

the n×n matrix
(
∂wi
∂xj

(0, . . . , 0)
)n
i,j=1

is invertible. Define z1, . . . , zm ∈ C∞(Ṽ ) by

zi = wi(x1, . . . , xn+b) for i = 1, . . . , n and zn+c = sl−b+c(x1, . . . , xn+b) for c =
1, . . . , b. Then (3.18) and

(
∂wi
∂xj

(0, . . . , 0)
)n
i,j=1

invertible implies that the m×m
matrix

(
∂zi
∂xj

(0, . . . , 0)
)m
i,j=1

is invertible. Hence (z1, . . . , zm) are coordinates on

Ṽ near x = (0, . . . , 0).
Making Ũ , Ṽ , W̃ smaller if necessary, we can suppose (z1, . . . , zn+b) are co-

ordinates on Ṽ , and from now on we use these instead of (x1, . . . , xm). So we
may regard s1, . . . , sl ∈ C∞(Ṽ ) as functions of (z1, . . . , zn+b); making Ũ , Ṽ , W̃
smaller, we can suppose s1, . . . , sl extend to smooth functions of (z1, . . . , zn+b)
on all of Rn+b, and so regard si = si(z1, . . . , zn+b) as lying in C∞(Rn+b).

By definition we have Φ0(yi) = zi for i = 1, . . . , n, and sl−b+c(z1, . . . , zn+b) =
zn+c for c = 1, . . . , b. Define t1, . . . , tl−b ∈ C∞(Rn) by ti(z1, . . . , zn) = si(z1,
. . . , zn, 0, . . . , 0). Then by Hadamard’s Lemma, there exist functions uic in
C∞(Rn+b) for i = 1, . . . , l − b and c = 1, . . . , b such that

si(z1, . . . , zn+a) = ti(z1, . . . , zn) +
∑b
c=1 zn+c · uic(z1, . . . , zn+b)

for all (z1, . . . , zn+b) ∈ Rn+b. Let us now change the trivialization E|Ṽ ∼=
Rl × Ṽ → Ṽ by applying the automorphism

(e1, . . . , el) 7−→
(
e1 −

∑b
c=1 u1c(z1, . . . , zn+b) · el−b+c, . . . ,

el−b −
∑b
c=1 u(l−b)c(z1, . . . , zn+b) · el−b+c, el−b+1, . . . , el

)
.
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Since sl−b+c(z1, . . . , zn+b) = zn+c, this has the effect of mapping si(z1, . . . , zn+b)
to ti(z1, . . . , zn) for i = 1, . . . , l− b. Thus, in the new coordinates (z1, . . . , zn+b)
and trivialization E|Ṽ ∼= Rl × Ṽ → Ṽ , the section s|Ṽ ∈ C∞(E|Ṽ ) is given by

s|Ṽ (z1, . . . , zn+b) =
(
t1(z1, . . . , zn), . . . , tl−b(z1, . . . , zn), zn+1, . . . , zn+b

)
.

In the new coordinates (z1, . . . , zn+b), the isomorphism Φ0 of (3.16) becomes

Φ0 : C∞0 (Rn)/(f1, . . . , fk) −→ C∞0 (Rn)/
(
t1(z1, . . . , zn), . . . , tl−b(z1, . . . , zn)

)
∼= C∞0 (Rn+b)/

(
t1(z1, . . . , zn), . . . , tl−b(z1, . . . , zn), zn+1, . . . , zn+b

)
.

Since Φ0(yi) = zi for i = 1, . . . , n, this gives an equality of ideals in C∞(Rn):(
f1(z1, . . . , zn), . . . , fk(z1, . . . , zn)

)
=
(
t1(z1, . . . , zn), . . . , tl−b(z1, . . . , zn)

)
.

But by Definition 3.20, k = dimOxX is the minimal number of generators for
this ideal, so l − b > k, and l = k + a + b for some a > 0. Since the ideals are
equal, there exist Aij , Bji ∈ C∞(Rn) for i = 1, . . . , k and j = 1, . . . , k + a with

fi(z1, . . . , zn) =
∑k+a
j=1 Aij(z1, . . . , zn) · tj(z1, . . . , zn),

tj(z1, . . . , zn) =
∑k
i=1Bji(z1, . . . , zn) · fi(z1, . . . , zn),

in C∞0 (Rn). (3.20)

From (3.20) we see that
∑k
p=1(

∑k+a
j=1 AijBjp − δip) · fp = 0 for i = 1, . . . , k.

Thus the last part of Proposition 3.21 implies that

k+a∑
j=1

Aij(0, . . . , 0)Bjp(0, . . . , 0) =

{
1, i = p

0 otherwise.

So both matrices
(
Aij(0, . . . , 0)

)j=1,...,k+a
i=1,...,k and

(
Bjp(0, . . . , 0)

)p=1,...,k
j=1,...,k+a have

rank k. By applying a GL(k + a,R) transformation to the trivialization E|Ṽ ∼=
Rk+a × Rb × Ṽ → Ṽ and to t1, . . . , tk+a, we can suppose that

Aij(0, . . . , 0) = Bji(0, . . . , 0) =

{
1, i = j = 1, . . . , k,

0, otherwise.

Now define more functions Bji ∈ C∞(Rn) for i = k + 1, . . . , k + a and j =

1, . . . , k + a by Bji = 1 if i = j and Bji = 0 otherwise. Then (Bji)
i=1,...,k+a
j=1,...,k+a

is a (k + a) × (k + a) matrix in C∞(Rn) such that Bij(0, . . . , 0) = δij . Thus

(Bji)
i=1,...,k+a
j=1,...,k+a is invertible at 0 ∈ Rn, so it is invertible near 0 in Rn. Making

Ũ , Ṽ , W̃ smaller if necessary, we can suppose (Bji)
i=1,...,k+a
j=1,...,k+a is invertible at

(z1, . . . , zn) for all (z1, . . . , zn+b) ∈ Ṽ .
Equation (3.20) holds in C∞0 (Rn) rather than in C∞(Rn), which implies

that each equation holds for (z1, . . . , zn) close to zero in Rn. Making Ũ , Ṽ , W̃
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smaller if necessary, we can suppose all equations of (3.20) hold at (z1, . . . , zn)
for all (z1, . . . , zn+b) ∈ Ṽ . Then at each (z1, . . . , zn+b) ∈ Ṽ we have

 t1(z1,...,zn)

...
tk+a(z1,...,zn)

 =
(
Bji(z1, . . . , zn)

)i=1,...,k+a

j=1,...,k+a


f1(z1,...,zn)

...
fk(z1,...,zn)

0
...
0

 .

Thus, changing the trivialization E|Ṽ ∼= Rk+a × Rb × Ṽ → Ṽ in the first Rk+a

by the invertible matrix of functions
(
Bji(z1, . . . , zn)

)i=1,...,k+a

j=1,...,k+a
on Ṽ , we can

suppose ti(z1, . . . , zn) = fi(z1, . . . , zn) for i = 1, . . . , k and ti(z1, . . . , zn) = 0 for
i = k+1, . . . , k+a. In the new trivialization, s is given by (3.14). Also y1, . . . , yn
on W and z1, . . . , zn on Ṽ map to the same functions on Ũ by construction. This
completes the proof of Proposition 3.23.

We can make U in Proposition 3.21 into a family of d-manifolds Ua,b.

Example 3.24. Let X,x, n, k, U,C,W, f1, . . . , fk be as in Proposition 3.21, and
a, b be nonnegative integers. Define a manifold V = W × Rb, a vector bundle
E → V to be Rk+a+b × V → V , and a section s ∈ C∞(E) by (3.14). Let Ua,b
be the d-manifold SV,E,s of Definition 3.13. Then Ua,b is a principal d-manifold
with vdimUa,b = n− k − a, with underlying C∞-scheme U.

This proves that if X is a locally finitely presented C∞-scheme and x ∈ X,
then X near x can be made into a d-manifold X, where vdimX can take any
value with vdimX 6 dimT ∗xX − dimOxX. Therefore a C∞-scheme X locally
extends to a d-manifold X if and only if X is locally finitely presented.

Using the explicit description of Ua,b in Definition 3.13, it is easy to see that
Ua,b is 1-isomorphic to the d-space constructed in Example 2.18 starting with

the d-space Ua,0 and the quasicoherent sheaf Rb ⊗R OU on U. Therefore Ua,b
is equivalent to Ua,0, so Ua,b is independent of b > 0 up to equivalence.

Proposition 3.25. Suppose X is a d-manifold with C∞-scheme X, and x ∈ X.
Let U ⊆ X, n = dimT ∗xX, k = dimOxX, W ⊆ Rn and f1, . . . , fk ∈ C∞(Rn)
be as in Proposition 3.21. Write U ⊆ X for the open d-submanifold of X
corresponding to U ⊆ X. Then making U,U ,W smaller if necessary, U is
equivalent in dMan to the principal d-manifold Ua,0 of Example 3.24, where

a = dimT ∗xX − dimOxX − vdimX > 0. (3.21)

Proof. Making U,U ,W smaller if necessary, we can suppose U is a principal d-
manifold. Thus by Proposition 3.12 and Definition 3.13 we have U ' SV,E,s for
some V,E, s. Proposition 3.23 shows that V,E, s are given up to isomorphism
near x in terms of x, U, n, k,W, f1, . . . , fk and two integers a, b > 0. So making
U,U ,W and V smaller, Example 3.24 shows that U is equivalent to Ua,b, and
hence to Ua,0 as Ua,b ' Ua,0. But vdimX = vdimU = n − k − a and n =
dimT ∗xX, k = dimOxX, so a is given by (3.21).
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The next two corollaries follow from Proposition 3.25.

Corollary 3.26. Let X be a d-manifold, and x ∈ X. Then there exists an
open neighbourhood U of x in X and an equivalence U ' SV,E,s in dMan for
some manifold V, vector bundle E → V and smooth section s : V → E which
identifies x ∈ U with a point v ∈ V such that s(v) = ds(v) = 0. Furthermore,
V,E, s are determined up to non-canonical isomorphism near v by X near x.

Corollary 3.27. Let X = (X,O′X , EX , ıX , X) be a d-manifold. Then X is
determined up to non-canonical equivalence near each point x ∈ X by the C∞-
scheme X and the integer vdimX.

For a d-manifold X = (X,O′X , EX , ıX , X), we can now explain how much
information in X up to equivalence is stored in the C∞-scheme X, and how
much in the ‘derived’ data O′X , EX , ıX , X . By Corollary 3.27, locally the only
extra information in O′X , EX , ıX , X up to non-canonical equivalence is the vir-
tual dimension vdimX in Z, and everything else depends only on X.

Globally, the extra information in O′X , EX , ıX , X is like a vector bundle E
over X. The only local information in a vector bundle E is rank E ∈ Z, but
globally it also contains nontrivial algebraic-topological information such as the
Pontryagin classes pi(E) ∈ H4i(X;Z). This is illustrated by Example 3.17,
which builds a d-manifold S = (V ,OV , E∗, idOV , 0) from a manifold V and a
vector bundle E → V . In this case CS ∼= DS ∼= E∗, and equivalences of S
preserve CS ,DS up to isomorphism by Proposition 2.20, so equivalences of S
preserve the manifold V and vector bundle E → V up to isomorphism.

Here are two criteria for when a d-manifold is a manifold. Proposition 3.9
shows the two are equivalent.

Proposition 3.28. Let X be a d-manifold. Then X is a manifold (that is,
X ∈ M̂an) if and only if φX : EX → FX has a left inverse, or equivalently, if
and only if its virtual cotangent bundle T ∗X is a vector bundle.

Proof. By Proposition 2.25, X ' FdSpa
C∞Sch(X) if and only if φX has a left

inverse. The ‘only if’ part is immediate: if X ' FdSpa
Man (X) for a manifold X

then X ' FdSpa
C∞Sch(X) for X = FC∞Sch

Man (X), so φX has a left inverse.

For the ‘if’ part, suppose φX has a left inverse, so that X ' FdSpa
C∞Sch(X).

Let x ∈ X. By Proposition 3.25 there an open x ∈ U ⊆ X with U ' Ua,0
in Example 3.24. But also U ' FdSpa

C∞Sch(U) as this holds for X, so Ua,0 '
FdSpa

C∞Sch(U). Thus φUa,0 : EUa,0 → FUa,0 has a left inverse by Proposition 2.25.
But from the construction of Ua,0 we can show that the fibre of φUa,0 over

x ∈ U has kernel Rk+a. This fibre must be injective as it has a left inverse, so
k = dimOxX = 0 and a = 0, and (3.21) gives dimT ∗xX = vdimX. As this
holds for all x ∈ X, and X is second countable and separated, Corollary 3.22
shows X is a manifold.
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3.4 Differential-geometric picture of 1- and 2-morphisms

Let V,W be manifolds, E → V , F → W be vector bundles, and s : V → E,
t : W → F be smooth sections. Then Definition 3.13 defines ‘standard model’
principal d-manifolds X = SV,E,s, Y = SW,F,t. We will now interpret 1-

morphisms f : X → Y in terms of a pair (f, f̂) of a smooth map f : V → W

and a vector bundle morphism f̂ : E → f∗(F ), and interpret 2-morphisms

η : f ⇒ g as a relation between (f, f̂) and (g, ĝ). We will need some notation:

Definition 3.29. Let V be a manifold, E → V a vector bundle, and s ∈ C∞(E)
a smooth section. If F → V is another vector bundle and t1, t2 ∈ C∞(F ) are
smooth sections, we write t1 = t2 + O(s) if there exists α ∈ C∞(E∗ ⊗ F ) such
that t1 = t2 + α · s in C∞(F ), where the contraction α · s is formed using the
natural pairing of vector bundles (E∗⊗F )×E → F over V . Similarly, we write
t1 = t2 +O(s2) if there exists α ∈ C∞(E∗⊗E∗⊗F ) such that t1 = t2 +α ·(s⊗s)
in C∞(F ), where α · (s⊗ s) uses the pairing (E∗ ⊗ E∗ ⊗ F )× (E ⊗ E)→ F .

Now let W be another manifold, and f, g : V → W be smooth maps. We
write f = g + O(s) if whenever h : W → R is a smooth map, there exists
α ∈ C∞(E∗) such that h ◦ f = h ◦ g + α · s. Similarly, we write f = g + O(s2)
if whenever h : W → R is a smooth map, there exists α ∈ C∞(E∗ ⊗ E∗) such
that h ◦ f = h ◦ g + α · (s⊗ s).

Now suppose f, g : V → W with f = g + O(s2), and F → W is a vector
bundle, and t1, t2 ∈ C∞(W ). Later we will wish to compare f∗(t1) and g∗(t2).
Strictly speaking these are sections of different vector bundles f∗(F ), g∗(F ) over
V , so are not comparable. But as f = g +O(s2), we make the convention that
f∗(t2) = g∗(t2) +O(s2) for any t2. Thus, informally we have

f∗(t1)−g∗(t2)=
(
f∗(t1)−f∗(t2)

)
+
(
f∗(t2)−g∗(t2)

)
=f∗(t1)−f∗(t2)+O(s2).

Therefore, if f = g + O(s2), we will write f∗(t1) = g∗(t2) + O(s) if f∗(t1) =
f∗(t2) +O(s), and f∗(t1) = g∗(t2) +O(s2) if f∗(t1) = f∗(t2) +O(s2).

This has a simple interpretation using C∞-subschemes: if V = FC∞Sch
Man (V ),

and X,X ′ are the C∞-subschemes in V defined by the equations s = 0 and
s ⊗ s = 0, then t1 = t2 + O(s), f = g + O(s) mean t1|X = t2|X , f |X = g|X ,

and t1 = t2 + O(s2), f = g + O(s2) mean t1|X′ = t2|X′ , f |X′ = g|X′ . When

f = g + O(s2), f∗(t1) = g∗(t2) + O(s) means (f |X)∗(t1) = (g|X)∗(t2) and

f∗(t1) = g∗(t2) + O(s2) means (f |X′)∗(t1) = (g|X′)∗(t2). These make sense as
f |X = g|X and f |X′ = g|X′ .

Definition 3.30. Let V,W be manifolds, E → V , F → W be vector bundles,
and s : V → E, t : W → F be smooth sections. Write X = SV,E,s, Y = SW,F,t
for the ‘standard model’ principal d-manifolds from Definition 3.13. Suppose
f : V → W is a smooth map, and f̂ : E → f∗(F ) is a morphism of vector
bundles on V satisfying

f̂ ◦ s = f∗(t) +O(s2) in C∞(f∗(F )), (3.22)
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where f∗(t) = t ◦ f , and O(s2) is as in Definition 3.29. We will define a 1-

morphism g = (g, g′, g′′) : X → Y in dMan using f, f̂ . We will also write
g : X → Y as Sf,f̂ : SV,E,s → SW,F,t, and call it a standard model 1-morphism.

With our usual notation for X,Y , by Definition 3.13 we have

X={v ∈ V : s(v)=0}, X=Spec
(
C∞(V )/Is

)
, (X,O′X)=Spec

(
C∞(V )/I2

s

)
,

Y ={w ∈W : t(w)=0}, Y =Spec
(
C∞(W )/It

)
, (Y,O′Y )=Spec

(
C∞(W )/I2

t

)
,

EX = MSpec
(
C∞(E∗)/(Is · C∞(E∗))

)
, EY = MSpec

(
C∞(F ∗)/(It · C∞(F ∗))

)
,

(idX , ıX) = Spec
(
πX : C∞(V )/I2

s −→ C∞(V )/Is
)
,

X = MSpec
(
s · − : C∞(E∗)/(Is · C∞(E∗)) −→ Is/I

2
s

)
,

(idY , ıY ) = Spec
(
πY : C∞(W )/I2

t −→ C∞(W )/It
)
,

and Y = MSpec
(
t · − : C∞(F ∗)/(It · C∞(F ∗)) −→ It/I

2
t

)
.

If x ∈ X then x ∈ V with s(x) = 0, so (3.22) implies that

t
(
f(x)

)
=
(
f∗(t)

)
(x) = f̂

(
s(x)

)
+O

(
s(x)2

)
= 0,

so f(x) ∈ Y ⊆W . Thus g := f |X maps X → Y .
Define morphisms of C∞-rings

φ : C∞(W )/It −→ C∞(V )/Is, φ′ : C∞(W )/I2
t −→ C∞(V )/I2

s ,

by φ : c+ It 7−→ c ◦ f + Is, φ′ : c+ I2
t 7−→ c ◦ f + I2

s .

Here φ is well-defined since if c ∈ It then c = γ · t for some γ ∈ C∞(F ∗), so

c◦f=(γ ·t)◦f=f∗(γ) ·f∗(t)=f∗(γ) ·
(
f̂ ◦s+O(s2)

)
=
(
f̂ ◦f∗(γ)

)
·s+O(s2) ∈ Is.

Similarly if c ∈ I2
t then c◦f ∈ I2

s , so φ′ is well-defined. Thus we have C∞-scheme
morphisms g = (g, g]) = Specφ : X → Y , and (g, g′) = Specφ′ : (X,O′X) →
(Y,O′Y ), which both have underlying continuous map g. Hence g] : g−1(OY )→
OX and g′ : g−1(O′Y )→ O′X are morphisms of sheaves of C∞-rings on X. Also
πX ◦φ′ = φ◦πY , so applying Spec implies that g] ◦g−1(ıY ) = ıX ◦g′. Therefore
(g, g′) is a morphism of square zero extensions (X,O′X , ıX)→ (Y ,O′Y , ıY ).

Since g∗(EY ) = MSpec
(
C∞(f∗(F ∗))/(Is · C∞(f∗(F ∗))

)
, we may define g′′ :

g∗(EY )→ EX by g′′ = MSpec(G′′), where

G′′ : C∞(f∗(F ∗))/(Is · C∞(f∗(F ∗)) −→ C∞(E∗)/(Is · C∞(E∗))

is defined by G′′ : γ + Is · C∞(f∗(F ∗)) 7−→ γ ◦ f̂ + Is · C∞(E∗).

Here γ ∈ C∞(f∗(F ∗)), so γ gives a bundle map f∗(F ) → R. Composing with

f̂ : E → f∗(F ) gives a bundle map E → R, that is, γ ◦ f̂ ∈ C∞(E∗). Equation
(3.22) implies that X ◦ g′′ = g1 ◦ g∗(Y ), as in (2.41). Hence g = (g, g′, g′′) is a
1-morphism X → Y , which we also write as Sf,f̂ : SV,E,s → SW,F,t.

Suppose now that Ṽ ⊆ V is open, with inclusion map iṼ : Ṽ → V . Write
Ẽ = E|Ṽ = i∗

Ṽ
(E) and s̃ = s|Ṽ . Define iṼ ,V = SiṼ ,idẼ : SṼ ,Ẽ,s̃ → SV,E,s.
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Remark 3.31. Equation (3.22) means there exists α ∈ C∞
(
E∗⊗E∗⊗ f∗(F )

)
with f̂ ◦ s = f∗(t) +α · (s⊗ s). Hence

(
f̂ − (α · s)

)
· s = f∗(t). So (3.22) becomes

f̂ ′ ◦ s = f∗(t), where f̂ ′ = f̂ − (α · s). Also Sf,f̂ = Sf,f̂ ′ by Lemma 3.32 below.

Thus we can always eliminate O(s2) in (3.22) by modifying f̂ .

Lemma 3.32. Let V,W be manifolds, E → V, F →W vector bundles, s : V →
E, t : W → F smooth sections, f1, f2 : V → W smooth maps, and f̂1 : E →
f∗1 (F ), f̂2 : E → f∗2 (F ) vector bundle morphisms with f̂1 ◦s = f∗1 (t)+O(s2) and

f̂2 ◦s = f∗2 (t)+O(s2), so we have 1-morphisms Sf1,f̂1
,Sf2,f̂2

: SV,E,s → SW,F,t.

Then Sf1,f̂1 = Sf2,f̂2 if and only if f1 = f2 +O(s2) and f̂1 = f̂2 +O(s), in the
notation of Definition 3.29.

Proof. f1 = f2 +O(s2) is necessary and sufficient for f1, f2 to induce the same

morphisms φ, φ′, and then f̂1 = f̂2 + O(s) is necessary and sufficient for f̂1, f̂2

to induce the same morphisms G. Since φ, φ′, G can be recovered from Sf,f̂ by
φ ∼= f ](X), φ′ ∼= f ′(X) and G ∼= f ′′(X), the lemma follows.

Lemma 3.33. Let V be a manifold, E → V a vector bundle, s : V → E
a smooth section, and Ṽ ⊆ V be open. Then iṼ ,V : SṼ ,Ẽ,s̃ → SV,E,s is a

1-isomorphism with an open d-submanifold of SV,E,s. If s−1(0) ⊆ Ṽ then
iṼ ,V : SṼ ,Ẽ,s̃ → SV,E,s is a 1-isomorphism.

Proof. This follows from the fact that if V = (V,OV ) = SpecC∞(V ) and Ṽ ⊆ V
is open, then OV (Ṽ ) ∼= C∞(Ṽ ).

Our next result describes 1-morphisms g : SV,E,s → SW,F,t not up to
2-isomorphism, but up to equality. Combined with Lemma 3.32, it gives a
differential-geometric classification of 1-morphisms g : SV,E,s → SW,F,t.

Theorem 3.34. Let V,W be manifolds, E → V, F → W be vector bundles,
and s : V → E, t : W → F be smooth sections. Define principal d-manifolds
X = SV,E,s, Y = SW,F,t, with topological spaces X = {v ∈ V : s(v) = 0}
and Y = {w ∈ W : t(w) = 0}. Suppose g : X → Y is a 1-morphism. Then
there exist an open neighbourhood Ṽ of X in V, a smooth map f : Ṽ → W,
and a morphism of vector bundles f̂ : Ẽ → f∗(F ) with f̂ ◦ s̃ = f∗(t), where
Ẽ = E|Ṽ , s̃ = s|Ṽ , such that g = Sf,f̂ ◦ i−1

Ṽ ,V
, where iṼ ,V : SṼ ,Ẽ,s̃ → SV,E,s,

Sf,f̂ : SṼ ,Ẽ,s̃ → SW,F,t, and i−1

Ṽ ,V
exists by Lemma 3.33.

Proof. We run the construction of Definition 3.30 in reverse. In g = (g, g′, g′′),

we have C∞-scheme morphisms g : Spec
(
C∞(V )/Is

)
→ Spec

(
C∞(W )/It

)
and

(g, g′) : Spec
(
C∞(V )/I2

s

)
→ Spec

(
C∞(W )/I2

t

)
. Hence there exist unique C∞-

ring morphisms φ : C∞(W )/It → C∞(V )/Is and φ′ : C∞(W )/I2
t → C∞(V )/I2

s

such that g = Specφ and (g, g′) = Specφ′. Since g] ◦ g−1(ıY ) = ıX ◦ g′ we
have πX ◦ φ′ = φ ◦ πY .
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We will show that we can choose an open neighbourhood Ṽ of X in V and
a smooth map f : Ṽ →W such that the following diagram commutes:

C∞(W )
f∗

//

π′Y��

C∞(Ṽ )

π′X |Ṽ ��
C∞(W )/I2

t

φ′ //

πY��

C∞(V )/I2
s ∼=

|Ṽ //

πX ��

C∞(Ṽ )/I2
s̃

πX |Ṽ ��
C∞(W )/It

φ // C∞(V )/Is ∼=

|Ṽ // C∞(Ṽ )/Is̃,

(3.23)

where π′X : C∞(V ) → C∞(V )/I2
s and π′Y : C∞(W ) → C∞(W )/I2

t are the
projections, and Is̃ is the ideal in C∞(Ṽ ) generated by s̃ = s|Ṽ . Note that if
(3.23) commutes then for x ∈ X and h ∈ C∞(W ) we have h(f(x)) =

(
φ′ ◦

π′Y (h)
)
(x) = h(g(x)) as Specφ′ = (g, g′). Since this holds for all h we have

f(x) = g(x). Thus
f |X = g : X −→ Y ⊆W. (3.24)

First we show we can choose such f near any point x ∈ X. Let x ∈ X ⊆ V
and y = g(x) ∈ Y ⊆ W . Write m = dimV , n = dimW and choose coordinates
(x1, . . . , xm) on V near x with x = (0, . . . , 0) and (y1, . . . , yn) on W near y
with y = (0, . . . , 0). Then (x1, . . . , xm) and (y1, . . . , yn) induce isomorphisms
of C∞-local rings C∞x (V ) ∼= C∞0 (Rm), C∞y (W ) ∼= C∞0 (Rn). Write Is,x for the
image of Is ⊂ C∞(V ) in C∞x (V ) under the projection C∞(V ) → C∞x (V ), and
It,y for the image of It ⊂ C∞(W ) in C∞y (W ). Consider the diagram

C∞y (W ) ∼= C∞0 (Rn)
ψ=f∗x

//

��

C∞x (V ) ∼= C∞0 (Rm)

��
C∞y (W )/I2

t,y

φ′x,y // C∞x (V )/I2
s,x

C∞(W )/I2
t

φ′ //

OO

C∞(V )/I2
s .

OO
(3.25)

As Specφ′ = (g, g′) and g(x) = y, there is a unique localized morphism φ′x,y
making the bottom square commute. Since C∞y (W ) ∼= C∞0 (Rn) is free as a C∞-
local ring, we can choose a morphism ψ : C∞y (W ) → C∞x (V ) making the top
square of (3.25) commute: choose an element zi ∈ C∞x (V ) with φ′x,y(yi+I2

t,y) =
zi + I2

s,x for each i = 1, . . . , n, and then there is a unique morphism ψ with
ψ(yi) = zi for i = 1, . . . , n.

This morphism ψ : C∞y (W )→ C∞x (V ) may be thought of as Spec of a germ
at x of smooth maps fx : V →W with fx(x) = y. That is, there exists an open
neighbourhood Ṽx of x in V and a smooth map fx : Ṽx → W with fx(x) = y,
such that the induced morphism f∗x : C∞y (W )→ C∞x (Ṽx) ∼= C∞x (V ) is ψ. These

Ṽx, fx are not unique, but if Ṽ ′x, f
′
x are alternative choices for Ṽx, fx then there

is an open neighbourhood Ux of x in Ṽx ∩ Ṽ ′x with fx|Ux = f ′x|Ux .
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Choose such Ṽx, fx, and consider the diagram

C∞(W )
f∗x

//

π′Y��

C∞(Ṽx)

π′X |Ṽx ��

// C∞x (Ṽx) ∼= C∞x (V )

��
C∞(W )/I2

t

φ′ // C∞(V )/I2
s

|Ṽx // C∞(Ṽx)/I2
s̃x

// C∞x (V )/I2
s,x.

(3.26)

The outer rectangle commutes as (3.25) does. This does not imply the left hand
rectangle commutes. Now C∞(W ) is a fair C∞-ring, so we can choose a set
of generators c1, . . . , cN for C∞(W ). Then for i = 1, . . . , N , the projection of
π′X |Ṽx ◦ f

∗
x(ci) − φ′ ◦ π′Y (ci)|Ṽx to C∞x (V )/I2

s,x is zero as the outer rectangle of

(3.26) commutes, so π′X |Ṽx ◦f
∗
x(ci)−φ′ ◦π′Y (ci)|Ṽx is zero near x in C∞(Ṽx)/I2

s̃x
.

Therefore making Ṽx smaller we can suppose π′X |Ṽx ◦ f
∗
x(ci)−φ′ ◦π′Y (ci)|Ṽx = 0

in C∞(Ṽx)/I2
s̃x

for i = 1, . . . , N . As c1, . . . , cN generate C∞(W ), this means the
left hand rectangle of (3.26) commutes.

This proves that for each x ∈ X we can choose an open neighbourhood Ṽx
of x in V and a smooth map fx : Ṽx →W such that the top rectangle of (3.23)
commutes with Ṽx in place of V . But the bottom left rectangle commutes as
πX ◦ φ′ = φ ◦ πY , and the bottom right rectangle commutes trivially, so (3.23)
commutes. Therefore we can choose V, f to make (3.23) commute locally in X.

To make a global choice of V, f , we will combine local choices Vx, fx using
a partition of unity. Choose such Ṽx, fx for all x ∈ X. Then {Ṽx : x ∈ X}
is an open cover of X, which is paracompact, so we can choose a locally finite
refinement, and then as V is a manifold we can choose a subordinate partition
of unity. Thus we may choose a countable subset S ⊆ X and a choice (Ṽx, fx)
for each x ∈ S as above (where we may make Ṽx smaller to make the locally
finite refinement), such that setting Ṽ =

⋃
x∈S Ṽx, then {Ṽx : x ∈ S} is a locally

finite open cover of Ṽ , and there is a family {ηx : x ∈ S} with ηx : Ṽ → [0, 1]
smooth and supported in Ṽx, and

∑
x∈S ηx = 1.

Roughly speaking we want to define a smooth map f : Ṽ → W by f =∑
x∈S ηxfx. If W were a vector space this would make sense, but for general

manifolds it does not. So we need a way to combine smooth maps fx : V →W
using a partition of unity. We first explain the case when S = {x1, x2}, so we
must combine fx1 : Ṽx1 →W and fx2 : Ṽx2 →W on the overlap Ṽx1 ∩ Ṽx2 .

Choose a Riemannian metric h on W . Then whenever w0, w1 ∈ W are
sufficiently close there exists a unique short geodesic on W w.r.t. h from w0

to w1. We can write this uniquely as a smooth map γw0,w1
: [0, 1] → W with

γw0,w1
(0) = w0, γw0,w1

(1) = w1, and |γ̇w0,w1
(t)| = dh(w0, w1)−1 for t ∈ [0, 1],

that is, the parametrization of γw0,w1 is proportional to arc-length. These pairs
(w0, w1) and maps γw0,w1 combine to give an open neighbourhood UW of the
diagonal ∆W = {(w,w) : w ∈ W} in W ×W and a smooth map Γ : UW ×
[0, 1] → W such that Γ(w0, w1, t) = γw0,w1

(t), so that Γ(w0, w1, 0) = w0 and
Γ(w0, w1, 1) = w1 for all (w0, w1) ∈ UW , and Γ(w1, w0, 1− t) = Γ(w0, w1, t).

Now suppose S = {x1, x2} and Ṽx1
, Ṽx2

, fx1
fx2

and Ṽ = Ṽx1
∪ Ṽx2

are
as above. If v ∈ Ṽx1 ∩ Ṽx2 ∩ X then fx1(v) = fx2(v) = g(v) ∈ W , so(
fx1(v), fx2(v)

)
∈ UW as ∆W ⊂ UW . Hence

(
fx1(v), fx2(v)

)
∈ UW for v ∈
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Ṽx1
∩ Ṽx2

close to X, as UW is open. Thus, making Ṽx1
, Ṽx1

, Ṽ smaller without
changing Ṽx1

∩ X and Ṽx1
∩ X, we may assume

(
fx1

(v), fx2
(v)
)
∈ UW for all

v ∈ Ṽx1
∩ Ṽx2

. Define f : Ṽ →W by

f(v) =


fx1

(v), v ∈ Ṽx1
\ Ṽx2

,

fx2
(v), v ∈ Ṽx2

\ Ṽx1
,

Γ
(
fx1(v), fx2(v), ηx2(v)

)
, v ∈ Ṽx1 ∩ Ṽx2 .

(3.27)

Near the boundary between Ṽx1
\ Ṽx2

and Ṽx1
∩ Ṽx2

we have ηx2
= 0, as ηx2

is supported on Ṽx2 , so Γ
(
fx1(v), fx2(v), ηx2(v)

)
= fx1(v), so the first and third

lines of (3.27) join smoothly. Similarly, near the boundary between Ṽx2
\Ṽx1

and
Ṽx1
∩ Ṽx2

we have ηx1
= 0, so ηx2

= 1, and Γ
(
fx1

(v), fx2
(v), ηx2

(v)
)

= fx2
(v),

so the second and third lines of (3.27) join smoothly. Hence f is smooth. As
(3.23) commutes for (Ṽx1

, fx1
) and (Ṽx2

, fx2
) we can show that it commutes for

(Ṽ , f). This constructs Ṽ , f in the case |S| = 2.
For the general case, choose a total order < on S. Then any finite subset

of S may be numbered x1, . . . , xk with x1 < x2 < · · · < xk in this total order.
For such x1, . . . , xk, define a smooth function fx1,...,xk : Ṽx1

∩ · · · ∩ Ṽxk →W by
induction on k by fx1,...,xk = fx1

when k = 1 and

fx1,...,xk(v) = Γ
(
fx1,...,xk−1

(v), fxk(v),
ηxk(v)

ηx1(v) + · · ·+ ηxk(v)

)
.

We make the Ṽx for x ∈ S and Ṽ smaller if necessary without changing Ṽx ∩X
to ensure that

(
fx1,...,xk−1

(v), fxk(v)
)
∈ UW whenever v ∈ Ṽx1

∩ · · · ∩ Ṽxk , so

that fx1,...,xk is well defined. Then we define f : Ṽ → W by f(v) = fx1,...,xk(v)

whenever {x ∈ S : v ∈ Ṽx} = {x1, . . . , xk} and x1, . . . , xk are numbered so
that x1 < x2 < · · · < xk. One can then show that the transitions between the
different regions Ṽx1∩· · ·∩Ṽxk are smooth, so f is smooth, and (3.23) commutes,
as we want.

Next we construct f̂ . We have g′′ : g∗(EY )→ EX in qcoh(X), where

EX = MSpec
(
C∞(E∗)/(Is · C∞(E∗))

) ∼= MSpec
(
C∞(Ẽ∗)/(Is̃ · C∞(Ẽ∗))

)
,

g∗(EY ) ∼= MSpec
(
C∞(F ∗)/(It · C∞(F ∗))⊗φC∞(W )/It

C∞(V )/Is
)

∼= MSpec
(
C∞(F ∗)/(It · C∞(F ∗))⊗|Ṽ ◦φC∞(W )/It

C∞(Ṽ )/Is̃
)
.

So g′′ ∼= MSpecG′′ for some unique C∞(Ṽ )/Is̃-module morphism G′′ in (3.28).

We claim that we can choose a morphism of vector bundles f̂ : Ẽ → f∗(F )
such that the following commutes:

C∞(F ∗)⊗φC∞(W )C
∞(Ṽ ) ∼=

//

ΠF∗��

C∞(f∗(F ∗))
◦f̂

// C∞(E∗)

ΠẼ∗ ��
C∞(F ∗)/(It ·C∞(F ∗))⊗|Ṽ ◦φC∞(W )/It

(C∞(Ṽ )/Is̃)
G′′// C∞(Ẽ∗)/(Is̃ ·C∞(Ẽ∗)).

(3.28)

227



To see this, first suppose that f∗(F ∗) is a trivial vector bundle Rk × Ṽ → Ṽ ,
and C∞(f∗(F ∗)) is a free C∞(Ṽ )-module Rk ⊗R C

∞(Ṽ ) with basis δ1, . . . , δk
over C∞(Ṽ ). Choose ε1, . . . , εk ∈ C∞(Ẽ∗) such that ΠẼ∗(εi) = G′′ ◦ΠF∗(δi) for

i = 1, . . . , k. Then as C∞(f∗(F ∗)) is free, there exists a unique C∞(Ṽ )-module
morphism F̂ : C∞(f∗(F ∗)) → C∞(Ẽ∗) such that F̂ (δi) = εi for i = 1, . . . , k,

so there is a unique morphism f̂ : Ẽ → f∗(F ) with F̂ (δ) = δ ◦ f̂ for all δ ∈
C∞(f∗(F ∗)). If f∗(F ∗) is not trivial, then we can cover Ṽ by open subsets Ṽa
on which it is trivial, choose f̂a on Ṽa to make (3.28) commute on Ṽa, and then

combine these choices with a partition of unity to get f̂ on Ṽ .
Now consider the diagram

(It/I
2
t )⊗C∞(W )/It (C∞(W )/It)

id⊗φ��
∼=

// It/I2
t

h+I2
t 7→h◦f+I2

s̃

**VVVVVVVVVVVVVV

(It/I
2
t )⊗|Ṽ ◦φC∞(W )/It

(C∞(Ṽ )/Is̃)
G1

// Is̃/I2
s̃

C∞(F ∗)/(It ·C∞(F ∗))⊗|Ṽ ◦φC∞(W )/It
(C∞(Ṽ )/Is̃)

t·
OO

G′′// C∞(Ẽ∗)/(Is̃ ·C∞(Ẽ∗)).

s̃·
OO

(3.29)

Here the top quadrilateral is mapped under MSpec to the left quadrilateral in
(2.12) defining the morphism g1 : g∗(IY ) → IX for g. Hence there is a unique

morphism G1 with MSpecG1 = g1 making the top quadrilateral commute.
Then applying MSpec to the condition that the bottom rectangle commutes
gives X ◦ g′′ = g1 ◦ g∗(Y ), which is (2.21) for g. Thus (3.29) commutes.

Combining (3.28) and (3.29) shows that the following commutes:

C∞(f∗(F ∗))

◦f̂��

f∗(t)·
// Is̃ π

,,XXXXXXXXXXX

Is̃/I
2
s̃ .

C∞(E∗)
s̃· // Is̃

π

22fffffffffff

Hence f̂ ◦ s = f∗(t) + O(s2), as in (3.22). As in Remark 3.31, by replacing f̂

by f̂ − (α · s) we can arrange that f̂ ◦ s = f∗(t), and (3.28) still commutes.
It now follows from Definition 3.30 and (3.23), (3.24), (3.28) and (3.29) that
Sf,f̂ = g ◦ iṼ ,V , so that g = Sf,f̂ ◦ i−1

Ṽ ,V
, as we want.

One can also give a differential-geometric interpretation of 2-morphisms λ :
Sf,f̂ ⇒ Sg,ĝ of 1-morphisms Sf,f̂ ,Sg,ĝ : SV,E,s → SW,F,t.

Definition 3.35. Let V,W be manifolds, E → V , F → W be vector bundles,
and s : V → E, t : W → F be smooth sections. Suppose f, g : V → W are
smooth, and f̂ : E → f∗(F ), ĝ : E → g∗(F ) are morphisms of vector bundles

satisfying f̂ ◦ s = f∗(t) +O(s2) and ĝ ◦ s = g∗(t) +O(s2). Then Definition 3.30
defines 1-morphisms Sf,f̂ ,Sg,ĝ : SV,E,s → SW,F,t.

Choose some extra data: a complete Riemannian metric h on W , and a
connection ∇F on F → W . Then if f, g are sufficiently close in C0, for each
v ∈ V there is a unique short geodesic for the metric h in W joining f(v) and
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g(v). Thus we may write g(v) = expf(v)(γ(v)) for some γ(v) ∈ Tf(v)W , where
expf(v) : Tf(v)W → W is the geodesic exponential map. Then γ is a smooth
section of f∗(TW ) → V , and we write g = expf (γ) ◦ f . We also define an
isomorphism Θf,g : f∗(F ) → g∗(F ) by defining Θf,g(v) : Ff(v) → Fg(v) to be
the parallel transport map in F using ∇F along the unique short geodesic from
f(v) to g(v), for each v ∈ V .

Now suppose Λ : E → f∗(TW ) is a morphism of vector bundles on V . Then
Λ ◦ s ∈ C∞(f∗(TW )), so we can require that g = expf (Λ ◦ s) ◦ f . Also ∇F t is a

section of T ∗W ⊗F →W , so f∗(∇F t) is a section of f∗(T ∗W )⊗f∗(F )→ V , or
equivalently a morphism f∗(TW )→ f∗(F ). Hence f∗(∇F t) ◦ Λ is a morphism

E → f∗(F ). Thus we can require that ĝ = Θf,g ◦ (f̂ + f∗(∇F t) ◦Λ). Taking the
dual of Λ and lifting to V gives a morphism Λ∗ : f∗(T ∗W )→ E∗. Restricting to

the C∞-subscheme X = s−1(0) in V gives λ = Λ∗|X : f∗(FY ) ∼= f∗(T ∗W )|X →
E∗|X = EX . One can show that λ is a 2-morphism Sf,f̂ ⇒ Sg,ĝ if and only if

g = expf (Λ ◦ s) ◦ f +O(s2) and ĝ = Θf,g ◦ (f̂ + f∗(∇F t) ◦ Λ) +O(s).

A more informal way to write these equations is

g = f + Λ · s+O(s2) and ĝ = f̂ + Λ · f∗(dt) +O(s). (3.30)

We write λ as SΛ : Sf,f̂ ⇒ Sg,ĝ, and call it a standard model 2-morphism.
If η : Sf,f̂ ⇒ Sg,ĝ is a 2-morphism in dSpa then we can regard η as a

morphism of vector bundles η : f∗(T ∗W )|X → E∗|X in qcoh(X), where X ⊆ X
is the C∞-subscheme s−1(0) in V . We may extend η to a morphism of vector
bundles Λ∗ : f∗(T ∗W ) → E∗ on V , or equivalently, a morphism Λ : E →
f∗(TW ). The fact that η is a 2-morphism implies that (3.30) holds, and then
η = SΛ. So every η : Sf,f̂ ⇒ Sg,ĝ is a ‘standard model’ 2-morphism.

It is also easy to see that SΛ′ = SΛ : Sf,f̂ ⇒ Sg,ĝ if and only if Λ′ = Λ+O(s).

3.5 Equivalences in dMan

Suppose f : X → Y is a smooth map of manifolds without boundary. Then f is
étale if and only if df∗ : f∗(T ∗Y )→ T ∗X is an isomorphism of vector bundles,
and f is a diffeomorphism if in addition f is a bijection. This is not true for
C∞-schemes, or even for manifolds with boundary, as Examples 3.37 and 3.38
show. Our next theorem is a ‘derived’ analogue of this result. It should be
compared with Propositions 2.20 and 2.21 and Corollary 2.24 for 1-morphisms
of d-spaces f : X → Y ; we show that when X,Y are d-manifolds, we can omit
the conditions that f : X → Y is an isomorphism or étale and f4 : f∗(CY )→ CX
is an isomorphism.

Theorem 3.36. Suppose f : X → Y is a 1-morphism of d-manifolds. Then
the following are equivalent:

(i) f is étale;
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(ii) Ωf : f∗(T ∗Y )→ T ∗X is an equivalence in vqcoh(X); and

(iii) equation (2.34) is a split short exact sequence in qcoh(X).

If in addition f : X → Y is a bijection, then f is an equivalence in dMan.

Proof. Parts (ii) and (iii) are equivalent by Proposition 3.5 and the definition
of Ωf in Example 3.2, noting that (3.4) for Ωf is (2.34). If f is étale then
Corollary 2.24 implies that (2.34) is split exact, so (i) implies (ii),(iii). We will
show that (ii),(iii) imply (i).

Suppose f : X → Y satisfies (ii),(iii), and let x ∈X with f(x) = y ∈ Y . By
Proposition 3.25 and Example 3.24, there exist open neighbourhoods U ⊆ X,
Ũ ⊆ Y of x, y and equivalences i : SV,E,s → U , j : Ũ → SW,F,t, where V,W
are open neighbourhoods of 0 in Rm,Rn for m = dimT ∗xX, n = dimT ∗y Y , and
E,F are trivial vector bundles over V,W , and s ∈ C∞(E), t ∈ C∞(F ) with
s(0) = ds(0) = 0 and t(0) = dt(0) = 0, and i(0) = x, j(y) = 0. Making U , V
smaller if necessary, we can suppose that f(U) ⊆ Ũ .

Define g = j ◦ f ◦ i : SV,E,s → SW,F,t. Then g(0) = 0. Applying Theorem

3.34 to g and replacing V,E, s by Ṽ , Ẽ, s̃ gives a smooth map f : V → W
with f(0) = 0 and a morphism of vector bundles f̂ : E → f∗(F ) on V with

f̂ ◦ s = f∗(t), such that g = Sf,f̂ . Now Ωg : g∗(T ∗SW,F,t) → SV,E,s is the
composition of Ωi and pullbacks of Ωf and Ωj . But Ωi,Ωj are equivalences by
Lemma 3.3, and Ωf is an equivalence by assumption. Hence Ωg is a composition
of equivalences in vqcoh(SV,E,s), and is an equivalence. Pulling back by the

morphism 0 : ∗ → SV,E,s taking the point ∗ to 0 ∈ s−1(0) ⊆ V , we see that
0∗(Ωg) is an equivalence in vqcoh(∗).

Now T ∗SV,E,s is the morphism ds∗ : E∗|SV,E,s → T ∗V |SV,E,s , where E∗ is

the vector bundle on V = FC∞Sch
Man (V ) corresponding to E∗ → V , and SV,E,s is

the C∞-subscheme s = 0 in V . Hence 0∗(T ∗SV,E,s) is the morphism ds(0)∗ :
E|∗0 → T ∗0 V in qcoh(∗), which we identify with the category of real vector spaces.
But ds(0) = 0 from above, so 0∗(T ∗SV,E,s) is the morphism 0 : E|∗0 → T ∗0 V .
Similarly 0∗(g∗(T ∗SW,F,t)) is the morphism 0 : F |∗0 → T ∗0W , and 0∗(Ωg) is
given by the columns in the diagram

F |∗0
f̂ |∗0��

0
// T ∗0W

df |∗0 ��
E|∗0

0 // T ∗0 V.

Thus, 0∗(Ωg) an equivalence implies that df |0 : T0V → T0W and f̂ |0 :
E|0 → F |0 are isomorphisms. Therefore f : V → W is a local diffeomorphism

near 0 ∈ V , and f̂ : E → f∗(F ) is an isomorphism of vector bundles near 0 ∈ V .
Making U , Ũ , V,W smaller if necessary, we can suppose that f : V → W is a
diffeomorphism and f̂ : E → f∗(F ) is an isomorphism. Since f̂ ◦ s = f∗(t),

this implies that (f, f̂) is an isomorphism of triples (V,E, s) → (W,F, t), and
g = Sf,f̂ : SV,E,s → SW,F,t is a 1-isomorphism. As g = j ◦ f ◦ i with i, j
equivalences, we see that f |U : U → V is an equivalence. As we can find such
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x ∈ U , y ∈ V for all x ∈ X with f(x) = y ∈ Y , f is a local equivalence, that
is, f is étale. Hence (ii)–(iii) imply (i), and (i)–(iii) are equivalent.

For the last part, if f is étale then the underlying continuous map f : X → Y
is a local homeomorphism. As X,Y are Hausdorff, if f is a bijection then f is
a homeomorphism, so f : X → Y is an isomorphism as it is étale, and thus f is
an equivalence by Corollary 2.24 and Proposition 2.21.

Here are examples of morphisms in Manb,C∞Sch which induce isomor-
phisms on cotangent bundles, but are not étale. Applying FdSpa

Manb , F
dSpa
C∞Sch gives

1-morphisms of d-spaces f : X → Y satisfying Theorem 3.36(ii),(iii), but which
are not étale. Thus, Theorem 3.36 is special to d-manifolds.

Example 3.37. The inclusion i : [0,∞) ↪→ R is a smooth map of manifolds
with boundary and di∗ : i∗(T ∗R) → T ∗[0,∞) is an isomorphism, but i is not
étale near 0 ∈ [0,∞). This also holds for C∞-schemes i : [0,∞) ↪→ R.

Example 3.38. Let f ∈ C∞(Rn). Define ideals J ⊆ I ⊆ C∞(Rn) by I =(
f, ∂f∂x1

, . . . , ∂f∂xn

)
and I =

(
∂f
∂x1

, . . . , ∂f∂xn

)
. Then we have C∞-rings C∞(Rn)/I,

C∞(Rn)/J with a natural projection π : C∞(Rn)/J → C∞(Rn)/J . Set X =
Spec

(
C∞(Rn)/I

)
, Y = Spec

(
C∞(Rn)/J

)
and f = Specπ. Then X,Y are

finitely presented affine C∞-schemes and f : X → Y is a morphism.
We have cotangent modules

ΩC∞(Rn)/I
∼=

〈
dx1, . . . ,dxn

〉
R ⊗R C

∞(Rn)/I〈∑n
i=1

∂f
∂xi

dxi,
∑n
i=1

∂2f
∂xi∂xj

dxi, j = 1, . . . , n
〉

=

〈
dx1, . . . ,dxn

〉
R ⊗R C

∞(Rn)/I〈∑n
i=1

∂2f
∂xi∂xj

dxi, j = 1, . . . , n
〉 ,

ΩC∞(Rn)/J
∼=
〈
dx1, . . . ,dxn

〉
R ⊗R C

∞(Rn)/J〈∑n
i=1

∂2f
∂xi∂xj

dxi, j = 1, . . . , n
〉 ,

where the second expression for ΩC∞(Rn)/I holds as ∂f
∂xi

= 0 in C∞(Rn)/I. The
morphism Ωπ : ΩC∞(Rn)/J → ΩC∞(Rn)/I mapping dxi 7→ dxi which induces
(Ωπ)∗ : ΩC∞(Rn)/J ⊗C∞(Rn)/J (C∞(Rn)/I) → ΩC∞(Rn)/I . Comparing the ex-
pressions for ΩC∞(Rn)/I ,ΩC∞(Rn)/J we see that (Ωπ)∗ is an isomorphism. But
Ωf : f∗(T ∗Y )→ T ∗X is MSpec(Ωπ)∗, so Ωf is an isomorphism.

We have found a class of morphisms f : X → Y in C∞Sch such that
Ωf : f∗(T ∗Y ) → T ∗X is an isomorphism, but f is in general not étale. On

the reduced C∞-subschemes f red : Xred → Y red is étale, but the nonreduced
structures on X,Y can be different. Note that this holds for X,Y finitely
presented affine C∞-schemes, which are about as well-behaved as C∞-schemes
can be; in Example 3.37, [0,∞) is not finitely presented.

We can apply Theorem 3.36 to characterize equivalences in the differential-
geometric description of 1-morphisms in §3.4. Here is how to understand equa-
tion (3.31) below. Given V,E → V and s ∈ C∞(E), choose a connection ∇E
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on E. Then ∇Es ∈ C∞(E ⊗ T ∗V ), so we can regard ∇Es as a vector bundle
morphism TV → E on E. Now ∇Es depends on the choice of ∇E : if ∇̃E
is another possible choice then ∇̃E = ∇E + Γ, for Γ ∈ C∞(E ⊗ E∗ ⊗ T ∗V ),
and ∇̃Es = ∇Es + Γ · s. Hence at a point v ∈ V with s(v) = 0 we have
(∇̃Es)(v) = (∇Es)(v) + Γ(v) · s(v) = (∇Es)(v), so (∇Es)(v) is independent of
the choice of ∇E , and we write it ds(v).

Now choose connections∇E ,∇F on E,F . Differentiating the equation f̂◦s =
f∗(t) +O(s2) using ∇E ,∇F , noting that f̂ ◦ s should be differentiated using the
product rule but f∗(t) = t ◦ f should be differentiated using the chain rule, and

the derivative of f̂ uses both ∇E ,∇F so we write it ∇E,F f̂ , gives

(∇E,F f̂) ◦ s+ f̂ ◦ ∇Es = f∗(∇F t) ◦ df +O(s∇s).

At a point v ∈ V with s(v) = 0 and f(v) = w, the terms (∇E,F f̂)◦s and O(s∇s)
vanish, giving f̂(v) ◦ ds(v) = dt(w) ◦ df(v). Therefore (3.31) is automatically a
complex. It is in fact the dual of the complex (2.34) for Sf,f̂ , specialized at v.

Theorem 3.39. Let V,W be manifolds, E → V, F → W be vector bundles,
s : V → E, t : W → F be smooth sections, f : V → W be smooth, and
f̂ : E → f∗(F ) be a morphism of vector bundles on V with f̂ ◦s = f∗(t)+O(s2).
Then Definitions 3.13 and 3.30 define principal d-manifolds SV,E,s,SW,F,t and
a 1-morphism Sf,f̂ : SV,E,s → SW,F,t. This Sf,f̂ is étale if and only if for each
v ∈ V with s(v) = 0 and w = f(v) ∈W, the following sequence of vector spaces
(explained above) is exact:

0 // TvV
ds(v)⊕ df(v) // Ev ⊕ TwW

f̂(v)⊕−dt(w) // Fw // 0. (3.31)

Also Sf,f̂ is an equivalence if and only if in addition f |s−1(0) : s−1(0)→ t−1(0)
is a bijection, where s−1(0)={v ∈ V : s(v)=0}, t−1(0)={w ∈W : t(w)=0}.

Proof. Use the notation of Definition 3.30, so that X = SV,E,s, g = Sf,f̂ etc.
Then equation (2.34) for g is

0 // f∗(F∗)|X
f̂ |X⊕−f∗(∇F t)|X

// E∗|X⊕f∗(T ∗W )|X
∇Es|X⊕Ωf |X

// T ∗V |X // 0, (3.32)

where V ,W, f = FC∞Sch
Man (V,W, f), and X ⊆ V , Y ⊆ W the C∞-subschemes

defined by s = 0, t = 0, and E∗,F∗ the vector bundles on V ,W corresponding to
E∗ → V , F ∗ →W , and f̂ : f∗(F∗)→ E∗ the morphism in qcoh(V ) lifting (f̂)∗ :

f∗(F ∗) → E∗, and ∇E ,∇F are connections on E,F so that ∇Es : E∗ → T ∗V
and ∇F t : F ∗ → T ∗W are vector bundle morphisms, and ∇Es : E∗ → T ∗V ,
∇F t : F∗ → T ∗W are the corresponding morphisms on V ,W .

Then Theorem 3.36 shows that Sf,f̂ is étale if and only if (3.32) is split
exact. The terms in (3.32) are all vector bundles over X, which is a separated,
paracompact, locally fair C∞-scheme. Exact sequence of vector bundles over
such X have better properties than exact sequences of quasicoherent sheaves:
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(a) If 0→ E → F → G → 0 is an exact sequence of vector bundles over X and
h : Z → X is a morphism of C∞-schemes then 0 → h∗(E) → h∗(F) →
h∗(G) → 0 is an exact sequence of vector bundles over Z. That is, the
pullback h∗ is exact, not just right exact.

(b) Suppose 0 → E → F → G → 0 is a complex of vector bundles on X
and x ∈ X, with corresponding morphism x : ∗ → X. If 0 → x∗(E) →
x∗(F) → x∗(G) → 0 is exact in qcoh(∗), then 0 → E → F → G → 0 is
exact on an open neighbourhood U of x in X.

(c) Any exact sequence of vector bundles 0 → E → F → G → 0 over X is
automatically split exact.

For the ‘only if’ part, suppose Sf,f̂ is étale, so that (3.32) is split exact.
Let v ∈ V with s(v) = 0. Then v ∈ X, so v : ∗ → X is a morphism, and the
pullback of (3.32) by v∗ is exact by (a). But this pullback is the dual complex
of (3.31), so (3.31) is exact. For the ‘if’ part, suppose is (3.31) is exact for every
v ∈ s−1(0). As this is dual to the pullback of (3.32) by v∗, this pullback is
exact, so (b) shows that (3.32) is exact near v for every v ∈ X. Since exactness
is local, this proves (3.32) is exact, so it is split exact by (c). Therefore Sf,f̂ is
étale by Theorem 3.36. The last part, with Sf,f̂ an equivalence, follows from
the last part of Theorem 3.36.

Here is a case in which Theorem 3.39 simplifies. It is related to coordinate
changes of Kuranishi neighbourhoods in Fukaya et al. [32, App. A] and §14.3.

Corollary 3.40. Let V,W be manifolds, E → V, F → W vector bundles,
s : V → E, t : W → F smooth sections, f : V →W an embedding, and f̂ : E →
f∗(F ) an injective morphism of vector bundles on V with f̂ ◦ s = f∗(t) +O(s2).
For each v ∈ s−1(0) ⊆ V and w = f(v) ∈W, we have a linear map

dt(w)∗ : TwW
/

df(v)[TvV ] −→ Fw
/
f̂(v)[Ev]. (3.33)

Suppose (3.33) is an isomorphism for all such v, and f |s−1(0) : s−1(0)→ t−1(0)
is a bijection. Then Sf,f̂ : SV,E,s → SW,F,t is an equivalence in dMan.

3.6 Gluing d-manifolds by equivalences

Theorems 2.28–2.33 of §2.4 explain how to glue d-spaces by equivalences on
open d-subspaces. All these generalize immediately to d-manifolds: if we fix
n ∈ Z and take the initial d-spaces Xi to be d-manifolds with vdimXi = n,
then the glued d-space Y is also a d-manifold with vdimY = n. Here is the
analogue of Theorem 2.28. See Spivak [95, Lem. 6.8 & Prop. 6.9] for similar
results for his derived manifolds.

Theorem 3.41. Suppose X,Y are d-manifolds with vdimX = vdimY = n
in Z, and U ⊆ X, V ⊆ Y are open d-submanifolds, and f : U → V is an
equivalence in dMan. At the level of topological spaces, we have open U ⊆
X, V ⊆ Y with a homeomorphism f : U → V, so we can form the quotient
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topological space Z := X qf Y = (X q Y )/ ∼, where the equivalence relation ∼
on X q Y identifies u ∈ U ⊆ X with f(u) ∈ V ⊆ Y .

Suppose Z is Hausdorff. Then there exist a d-manifold Z with vdimZ = n,
open d-submanifolds X̂, Ŷ in Z with Z = X̂ ∪ Ŷ , equivalences g : X → X̂ and
h : Y → Ŷ such that g|U and h|V are both equivalences with X̂ ∩ Ŷ , and a
2-morphism η : g|U ⇒ h ◦ f : U → X̂ ∩ Ŷ . Furthermore, Z is independent of
choices up to equivalence.

Here is an analogue of Theorem 2.33 in which we take the d-spaces Xi to be
‘standard model’ d-manifolds SVi,Ei,si , and the 1-morphisms eij to be ‘standard
model’ 1-morphisms Seij ,êij , and the 2-morphisms ηijk to be ‘standard model’
2-morphisms SΛijk , and replace Y ,Z by X,Y . We also use Theorem 3.39 in
(ii) to characterize when eij = Seij ,êij is an equivalence, we take Y to be a
manifold rather than a d-space, and we rewrite by taking X to be given a priori
rather than constructing it by gluing the Xi together.

In the last part of the theorem, taking ζij = SΛij for Λij : Ei|Vij →
g∗i (TY )|Vij , the condition in Theorem 2.33 that ζij : gj ◦ eij ⇒ gi|Uij is a
2-morphism reduces by (3.30) to gj ◦ eij = gi|Vij + Λij · si + O(s2

i ) for some
arbitrary Λij . We can rewrite this as gj ◦ eij = gi|Vij +O(si).

Theorem 3.42. Suppose we are given the following data:

(a) an integer n;

(b) a Hausdorff, second countable topological space X;

(c) an indexing set I, and a total order < on I;

(d) for each i in I, a manifold Vi, a vector bundle Ei → Vi with dimVi −
rankEi = n, a smooth section si : Vi → Ei, and a homeomorphism ψi :
Xi → X̂i, where Xi = {vi ∈ Vi : si(vi) = 0} and X̂i ⊆ X is open; and

(e) for all i < j in I, an open submanifold Vij ⊆ Vi, a smooth map eij : Vij →
Vj , and a morphism of vector bundles êij : Ei|Vij → e∗ij(Ej).

Let this data satisfy the conditions:

(i) X =
⋃
i∈I X̂i;

(ii) if i < j in I then êij ◦si|Vij = e∗ij(sj)+O(s2
i ), ψi(Xi∩Vij) = X̂i∩X̂j , and

ψi|Xi∩Vij = ψj ◦eij |Xi∩Vij , and if vi ∈ Vij with si(vi) = 0 and vj = eij(vi)
then the following is exact:

0 // TviVi
dsi(vi)⊕ deij(vi) // Ei|vi⊕TvjVj

êij(vi)⊕−dsj(vj) // Ej |vj // 0;

(iii) if i < j < k in I then there exists a morphism of vector bundles Λijk :
Ei|Vik∩e−1

ij (Vjk) → e∗ik(TVk)|Vik∩e−1
ij (Vjk) on Vik ∩ e−1

ij (Vjk) ⊆ Vi, where

e−1
ij (Vjk) ⊆ Vij , satisfying, as in (3.30):

eik|Vik∩e−1
ij (Vjk) = ejk ◦ eij |Vik∩e−1

ij (Vjk) + Λijk · si +O(s2
i ), (3.34)

êik|Vik∩e−1
ij (Vjk) = eij |∗Vik∩e−1

ij (Vjk)
(êjk) ◦ êij |Vik∩e−1

ij (Vjk)

+ Λijk · e∗ik(dsk)|Vik∩e−1
ij (Vjk) +O(si).

(3.35)
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Then there exist a d-manifold X with vdimX = n and underlying topolog-
ical space X, and a 1-morphism ψi : SVi,Ei,si →X with underlying continuous

map ψi which is an equivalence with the open d-submanifold X̂i ⊆ X corre-
sponding to X̂i ⊆ X for all i ∈ I, such that for all i < j in I there exists a
2-morphism ηij : ψj ◦ Seij ,êij ⇒ ψi ◦ iVij ,Vi , where Seij ,êij : SVij ,Ei|Vij ,si|Vij →
SVj ,Ej ,sj and iVij ,Vi : SVij ,Ei|Vij ,si|Vij → SVi,Ei,si . This d-manifold X is unique

up to equivalence in dMan.
Suppose also that Y is a manifold, and gi : Vi → Y are smooth maps for

all i ∈ I, and gj ◦ eij = gi|Vij + O(si) for all i < j in I. Then there exist a
1-morphism h : X → Y unique up to 2-isomorphism, where Y = FdMan

Man (Y ) =
SY,0,0, and 2-morphisms ζi : h ◦ ψi ⇒ Sgi,0 for all i ∈ I. Here SY,0,0 is
from Definition 3.13 with vector bundle E and section s both zero, and Sgi,0 :
SVi,Ei,si → SY,0,0 = Y is from Definition 3.30 with ĝi = 0.

The hypotheses of Theorem 3.42 are similar to good coordinate systems in
§10.8. The importance of Theorem 3.42 is that all the ingredients are described
wholly in differential-geometric or topological terms. So we can use the theorem
as a tool to prove the existence of d-manifold structures on spaces coming from
other areas of geometry, e.g. on moduli spaces. We return to this in Chapter 14.
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4 Differential geometry of d-manifolds

We now develop some of the basic ideas of differential geometry for the d-
manifolds of Chapter 3: submersions, immersions, embeddings, submanifolds,
fibre products, and (co)orientations. We define two different notions of each of
submersions, immersions, embeddings, and submanifolds, a weak and a strong.
We define when 1-morphisms g : X → Z, h : Y → Z are d-transverse, and
show that if g,h are d-transverse then the fibre product W = X×g,Z,hY exists
as a d-manifold, with vdimW = vdimX + vdimY − vdimZ. D-transversality
is weaker than transversality for manifolds. For example, if Z is a manifold
then any g : X → Z, h : Y → Z are d-transverse.

In §4.4 we will show that any compact d-manifold X can be embedded into
Rn for n� 0, and that if a d-manifold X can be embedded into a manifold Y
then X may be written as the zeroes s−1(0) of a smooth section s of a vector
bundle E over an open set in Y , and so is a principal d-manifold. After some
preparatory material in §4.5, section 4.6 defines orientations on d-manifolds, and
constructs orientations on d-transverse fibre products of oriented d-manifolds.
Finally, §4.7 explains that for many purposes one can treat d-manifolds as an
ordinary category, rather than a 2-category.

4.1 Submersions, immersions, and embeddings

Submersions, immersions, and embeddings are classes of smooth maps of mani-
folds. We will generalize these to d-manifolds in Definition 4.4 below. To moti-
vate our definition, first consider submersions and immersions of manifolds. Let
f : X → Y be a smooth map of manifolds. Then df∗ : f∗(T ∗Y ) → T ∗X is a
morphism of vector bundles on X, and f is a submersion if df∗ is injective, and
f is an immersion if df∗ is surjective.

Here the appropriate notions of injective and surjective for morphisms of
vector bundles are stronger than the corresponding notions for sheaves: df∗

is injective if it has a left inverse, and surjective if it has a right inverse. For
example, let E → R be the trivial line bundle R × R → R, and consider the
vector bundle morphism x : E → E multiplying by the coordinate x on R.
Then x is injective as a morphism of quasicoherent sheaves on R, but we do not
consider it injective as a morphism of vector bundles, as x|0 : E|0 → E|0 is not
injective, so x does not have a left inverse.

Now let f : X → Y be a 1-morphism of d-manifolds. Then as in §3.1–§3.2,
T ∗X, f∗(T ∗Y ) are virtual vector bundles on X, and Ωf : f∗(T ∗Y ) → T ∗X is
a 1-morphism in vvect(X) which is the analogue of df∗ : f∗(T ∗Y ) → T ∗X for
manifolds. So to define submersions and immersions of d-manifolds, we need
to find suitable definitions of when a morphism Ωf in the 2-category vvect(X)
is injective or surjective, which should be analogues of having a left or right
inverse for the category of ordinary vector bundles.

It turns out that there are two different sensible definitions for each of in-
jective and surjective 1-morphisms in vvect(X), a weak and a strong, and these
will yield weak and strong notions of submersions and immersions in dMan.
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Definition 4.1. Let X be a C∞-scheme, (E1, E2, φ) and (F1,F2, ψ) be vir-
tual vector bundles on X, and (f1, f2) : (E•, φ) → (F•, ψ) be a 1-morphism
in vvect(X), in the sense of §3.1. Then Proposition 3.5 says that f• is an
equivalence if and only if the complex (3.4) in qcoh(X)

0 // E1
f1⊕−φ // F1 ⊕ E2

ψ⊕f2

//
γ

oo F2

δ
oo // 0 (4.1)

is split exact. So by Definition 2.19, f• is an equivalence if and only if there
exist morphisms γ, δ as in (4.1) satisfying (2.33), which is

γ ◦ δ = 0, γ ◦ (f1 ⊕−φ) = idE1 ,

(f1 ⊕−φ) ◦ γ + δ ◦ (ψ ⊕ f2) = idF1⊕E2 , (ψ ⊕ f2) ◦ δ = idF2 .
(4.2)

Our notions of f• injective or surjective impose some but not all of (4.2):

(a) We call f• weakly injective if there exists γ : F1 ⊕ E2 → E1 in qcoh(X)
with γ ◦ (f1 ⊕−φ) = idE1 .

(b) We call f• injective if there exist γ : F1⊕E2 → E1 and δ : F2 → F1⊕E2

with γ◦δ = 0, γ◦(f1⊕−φ) = idE1 and (f1⊕−φ)◦γ+δ◦(ψ⊕f2) = idF1⊕E2 .

(c) We call f• weakly surjective if there exists δ : F2 → F1 ⊕ E2 in qcoh(X)
with (ψ ⊕ f2) ◦ δ = idF2 .

(d) We call f• surjective if there exist γ : F1⊕E2 → E1 and δ : F2 → F1⊕E2

with γ ◦ δ = 0, γ ◦ (f1 ⊕−φ) = idE1 and (ψ ⊕ f2) ◦ δ = idF2 .

Here are some properties of these definitions.

Proposition 4.2. (i) If f• is an equivalence in vvect(X) then f• is also weakly
injective, injective, weakly surjective, and surjective.

(ii) If f•, g• are 2-isomorphic 1-morphisms in vvect(X) then f• is weakly in-
jective, injective, weakly surjective, or surjective, if and only if g• is.

(iii) Compositions of weakly injective, injective, weakly surjective, or surjective
1-morphisms in vvect(X) are 1-morphisms of the same kind.

(iv) Suppose X is separated, paracompact, and locally fair. Then the conditions
that f• be weakly injective, injective, weakly surjective, and surjective, are local
in X. That is, it suffices to check them on the sets of an open cover of X.

Proof. Part (i) is immediate from Definition 4.1. For (ii), let η : f• ⇒ g•

be a 2-morphism. Suppose that one of Definition 4.1(a)–(d) hold for f•, with
morphisms γ = γ1 ⊕ γ2 and/or δ = δ1 ⊕ δ2. One can then check that

γ̃ = γ1 ⊕ (γ2 + γ1 ◦ η) and δ̃ = (δ1 − η ◦ δ2)⊕ δ2

satisfy the corresponding one of Definition 4.1(a)–(d) for g•. Thus, if f•, g•

are 2-isomorphic then f• weakly injective, . . . , surjective implies f• weakly
injective, . . . , surjective, and vice versa.
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For (iii), let f• : (E•, φ)→ (F•, ψ), g• : (F•, ψ)→ (G•, ξ) be 1-morphisms in
vvect(X). Suppose one of Definition 4.1(a)–(d) hold for f•, g•, with morphisms
γ = γ1 ⊕ γ2 and/or δ = δ1 ⊕ δ2 for f• and γ̃ = γ̃1 ⊕ γ̃2 and/or δ̃ = δ̃1 ⊕ δ̃2 for
g•. By a long but elementary calculation, one can then check that

γ̂ = (γ̃1 ◦ γ1)⊕ (γ̃2 + γ̃1 ◦ γ2 ◦ g2), δ̂ = (δ1 + f1 ◦ δ̃1 ◦ δ2)⊕ (δ̃2 ◦ δ2)

satisfy the corresponding one of Definition 4.1(a)–(d) for g• ◦ f•. Part (iv)
follows from the proofs of Lemmas 2.22 and 2.26.

We study the cohomology of the complex (4.1).

Proposition 4.3. Suppose X is a separated, paracompact, locally fair C∞-
scheme and f• : (E•, φ) → (F•, ψ) is a 1-morphism in vvect(X), so that (4.1)
is a complex in qcoh(X). Define G,H, I ∈ qcoh(X) by

G = Ker
(
f1 ⊕−φ : E1 −→ F1 ⊕ E2

)
, (4.3)

H =
Ker

(
ψ ⊕ f2 : F1 ⊕ E2 −→ F2

)
Im
(
f1 ⊕−φ : E1 −→ F1 ⊕ E2

) , (4.4)

I = Coker
(
ψ ⊕ f2 : F1 ⊕ E2 −→ F2

)
, (4.5)

the cohomology of (4.1) at the second, third and fourth terms. Then:

(i) Let f•, f̃• : (E•, φ)→ (F•, ψ) be 1-morphisms, η : f• ⇒ f̃• a 2-morphism,
and G,H, I and G̃, H̃, Ĩ be as in (4.3)–(4.5) for f• and f̃•. Then there
are canonical isomorphisms G̃ ∼= G, H̃ ∼= H and Ĩ ∼= I in qcoh(X).

(ii) Let i• : (Ẽ•, φ̃) → (E•, φ), j• : (F•, ψ) → (F̃•, ψ̃) be equivalences in
vvect(X), and set f̃• = j• ◦ f• ◦ i• : (Ẽ•, φ̃) → (F̃•, ψ̃). Let G,H, I
and G̃, H̃, Ĩ be as in (4.3)–(4.5) for f• and f̃•. Then there are canonical
isomorphisms G̃ ∼= G, H̃ ∼= H and Ĩ ∼= I in qcoh(X).

(iii) Suppose f• is weakly injective. Then G = 0.

(iv) Suppose f• is injective. Then rank(E•, φ) 6 rank(F•, ψ), and G = H = 0,
and I is a vector bundle on X of rank rank(F•, ψ)− rank(E•, φ). If also
rank(E•, φ) = rank(F•, ψ) then I = 0 and f• is an equivalence.

(v) Suppose f• is weakly surjective. Then I = 0.

(vi) Suppose f• is surjective. Then rank(E•, φ) > rank(F•, ψ), and G = I = 0,
and H is a vector bundle on X of rank rank(E•, φ)− rank(F•, ψ). If also
rank(E•, φ) = rank(F•, ψ) then H = 0 and f• is an equivalence.

Proof. For (i), consider the diagram in qcoh(X):

0 // E1

idE1

��

f1⊕−φ
// F1 ⊕ E2

ψ⊕f2
//idF1 −η

0 idE2


��

F2

idF2

��

// 0

0 // E1
f̃1⊕−φ // F1 ⊕ E2

ψ⊕f̃2

// F2 // 0.
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The rows are complexes, the columns are isomorphisms, and as f̃1 = f1 +
η ◦ φ and f̃2 = f2 + ψ ◦ η the diagram commutes. Thus the columns induce
isomorphisms on cohomology, which is G,H, I on the top row and G̃, H̃, Ĩ on
the bottom. Hence G̃ ∼= G, H̃ ∼= H and Ĩ ∼= I.

For (ii), as i• : (E•, φ)→ (Ẽ•, φ̃) is an equivalence there exists a 1-morphism
k• : (Ẽ•, φ̃) → (E•, φ) and 2-morphisms η : k• ◦ i• ⇒ id(E•,φ), ζ : i• ◦ k• ⇒
id(Ẽ•,φ̃). Consider the diagram

0 // E1

k1

��

f1⊕−φ
// F1 ⊕ E2

ψ⊕f2
//j1 j1◦f1◦η

0 k2


��

F2 //

j2

��

0

0 // Ẽ1
f̃1⊕−φ̃ // F̃1 ⊕ Ẽ2

ψ̃⊕f̃2

// F̃2 // 0.

By a similar but more complicated argument to (i), one can show this commutes
and induces isomorphisms G̃ ∼= G, H̃ ∼= H, Ĩ ∼= I.

For (iii),(iv),(vi) we have γ ◦ (f1⊕−φ) = idE1 , so f1⊕−φ has a left inverse
γ and is injective, and G = 0. For (v),(vi) we have (ψ⊕f2)◦δ = idF2 , so ψ⊕f2

has a right inverse δ and is surjective, and I = 0. This proves (iii),(v).
To show I is a vector bundle in (iv), let x ∈ X. Then as (E•, φ), (F•, ψ)

are virtual vector bundles, there exists an open neighbourhood U of x in X,
objects (Ẽ•, φ̃), (F̃•, ψ̃) in vvect(U) with Ẽ1, Ẽ2, F̃1, F̃2 vector bundles on U,
and equivalences i• : (Ẽ•, φ̃)→ (E•, φ)|U, j• : (F•, ψ)|U → (F̃•, ψ̃) in vvect(U).

Define f̃• = j• ◦ f•|U ◦ i• : (Ẽ•, φ̃)→ (F̃•, ψ̃), and let Ĩ ∈ qcoh(U) be as in (4.5)

for f̃•. Then (ii) shows that Ĩ ∼= I|U. Also Proposition 4.2(i),(iii) shows that

f̃• is injective, as f• is and i•, j• are equivalences.
Thus we have a diagram

0 // Ẽ1
f̃1⊕−φ̃ // F̃1 ⊕ Ẽ2

ψ̃⊕f̃2

//
γ̃

oo F̃2

δ̃

oo // 0, (4.6)

with γ̃, δ̃ satisfying three equations. These equations imply that setting J̃ =
Coker(ψ̃⊕ f̃2) ∼= Ker δ̃, there are isomorphisms F̃1⊕ Ẽ2 ∼= Ẽ1⊕ J̃ , F̃2 ∼= Ĩ ⊕ J̃
which identify (4.6) with the diagram

0 // Ẽ1

idẼ1

0


// Ẽ1 ⊕ J̃(

idẼ1 0
)oo

0 0

0 idJ̃


// Ĩ ⊕ J̃0 0

0 idJ̃


oo // 0. (4.7)

Since Ẽ i, F̃ i are vector bundles, so are H̃, Ĩ, and we have

0 6 rank Ĩ = rank F̃2 − rank(F̃1 ⊕ Ẽ2) + rank(Ẽ1)

= (rank F̃2 − rank F̃1)− (rank Ẽ2 − rank Ẽ1) = rank(F•, ψ)− rank(E•, φ).
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Hence rank(F•, ψ) − rank(E•, φ) > 0, and I|U ∼= Ĩ is a vector bundle on U of
the prescribed rank. As X can be covered by such open U, I is a vector bundle
on X of the prescribed rank.

If rank(E•, φ) = rank(F•, ψ) then rank I = 0, so I = 0, and it then fol-
lows from the equivalence of (4.6)–(4.7) that (ψ̃ ⊕ f̃2) ◦ δ̃ = idF̃2 , so f̃• is an
equivalence in vvect(U). Therefore f•|U is an equivalence. As X is separated,
paracompact and locally fair and can be covered by such U, Lemma 2.22 shows
that f• is an equivalence. This proves (iv).

For (vi), we use a very similar argument, but replacing (4.7) with the diagram

0 // Ẽ1
idẼ1⊕0⊕0 // Ẽ1 ⊕ F̃2 ⊕ H̃
idẼ1⊕0⊕0

oo
0⊕idF̃2⊕0 // F̃2

0⊕idF̃2⊕0
oo // 0.

Now we can define weak and strong forms of submersions, immersions, and
embeddings for d-manifolds.

Definition 4.4. Let f : X → Y be a 1-morphism of d-manifolds. Example 3.2
defines T ∗X = (EX ,FX , φX) and f∗(T ∗Y ) =

(
f∗(EY ), f∗(FY ), f∗(φY )

)
, which

are virtual vector bundles on X of ranks vdimX, vdimY as in Definition 3.18,
and a 1-morphism Ωf = (f ′′, f2) : f∗(T ∗Y )→ T ∗X in vvect(X). Then:

(a) We call f a w-submersion if Ωf is weakly injective.

(b) We call f a submersion if Ωf is injective.

(c) We call f a w-immersion if Ωf is weakly surjective.

(d) We call f an immersion if Ωf is surjective.

(e) We call f a w-embedding if it is a w-immersion and f : X → f(X) is a
homeomorphism, so in particular f is injective.

(f) We call f an embedding if it is an immersion and f is a homeomorphism
with its image.

Here w-submersion is short for weak submersion, etc. These conditions all con-
cern the existence of morphisms γ, δ in the next equation satisfying identities.

0 // f∗(EY )
f ′′⊕−f∗(φY )

// EX ⊕ f∗(FY )
γ

oo
φX⊕f2

// FX
δ

oo // 0. (4.8)

Parts (c)–(f) enable us to define d-submanifolds of d-manifolds. In classical
differential geometry, if X,Y are manifolds and i : X → Y is an immersion or
an embedding, we consider X to be an immersed or embedded submanifold of
Y . In the embedded case we can think of X as a subset i(X) ⊂ Y , but for
immersed submanifolds we need to remember X and i : X → Y .

Open d-submanifolds are open d-subspaces of a d-manifold. For more general
d-submanifolds, we call i : X → Y a w-immersed d-submanifold, or immersed
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d-submanifold, or w-embedded d-submanifold, or embedded d-submanifold, of Y ,
if X,Y are d-manifolds and i is a w-immersion, immersion, w-embedding, or
embedding, respectively. We discuss these in Remark 4.15.

Propositions 4.2 and 4.3 now imply properties of these:

Proposition 4.5. (i) Any equivalence of d-manifolds is a w-submersion, sub-
mersion, w-immersion, immersion, w-embedding and embedding.

(ii) If f , g : X → Y are 2-isomorphic 1-morphisms of d-manifolds then f is a
w-submersion, submersion, . . . , embedding, if and only if g is.

(iii) Compositions of w-submersions, submersions, w-immersions, immersions,
w-embeddings, and embeddings are 1-morphisms of the same kind.

(iv) The conditions that a 1-morphism of d-manifolds f : X → Y is a w-
submersion, submersion, w-immersion or immersion are local in X and Y .
That is, for each x ∈ X with f(x) = y ∈ Y , it suffices to check the conditions
for f |U : U → V with V an open neighbourhood of y in Y , and U an open
neighbourhood of x in f−1(V )⊆X.

For f : X → Y to be a w-embedding or embedding is local in Y , but not in
X, as for f to be a homeomorphism with its image is local in Y but not in X.
Our next result follows from Proposition 4.3(iv),(vi) and Theorem 3.36.

Proposition 4.6. (a) Let f : X → Y be a submersion of d-manifolds. Then
vdimX > vdimY , and if vdimX = vdimY then f is étale.

(b) Let f : X → Y be an immersion of d-manifolds. Then vdimX 6 vdimY ,
and if vdimX = vdimY then f is étale.

Our next result shows that when X,Y are manifolds, submersions, immer-
sions, and embeddings are equivalent to their usual definition in Man. Also
w-immersions are immersions, and w-submersions are arbitrary smooth maps.

Proposition 4.7. (a) Let f : X → Y be a smooth map of manifolds, and
f = FdMan

Man (f). Then f is a submersion, immersion, or embedding in dMan if
and only if f is a submersion, immersion, or embedding in Man, respectively.
Also f is a w-immersion or w-embedding if and only if f is an immersion or
embedding.

(b) Let f : X → Y be a 1-morphism of d-manifolds, with Y a manifold. Then
f is a w-submersion.

Proof. For (a), by definition of FdMan
Man we have EX = EY = 0, FX = T ∗X,

FY = T ∗Y and f2 = Ωf : f∗(T ∗Y ) → T ∗X. Thus in (4.8) γ = 0, and δ is a

morphism T ∗X → f∗(T ∗Y ), and the conditions reduce to:

• f is a submersion if there exists δ with δ ◦ Ωf = idf∗(T∗Y ); and

• f is a w-immersion or an immersion if there exists δ with Ωf ◦ δ = idT∗X .
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Now Ωf : f∗(T ∗Y ) → T ∗X is the lift to C∞-schemes of df∗ : f∗(T ∗Y ) →
T ∗X. By definition, f is a submersion if df∗ is injective as a morphism of vector
bundles (has a left inverse), and f is an immersion if df∗ is surjective (has a
right inverse). Taking δ to be the lift to C∞-schemes of this left/right inverse,
part (a) follows. For (b), as Y is a manifold φY : EY → FY has a left inverse β
by Proposition 3.28. Then γ = 0 ⊕ −f∗(β) satisfies Definition 4.1(a), so Ωf is
weakly injective, and f is a w-submersion.

4.2 Local picture of (w-)submersions and (w-)immersions

As in Definitions 4.1 and 4.4, the conditions that f is w-submersion, submersion,
w-immersion or immersion are weakenings of the condition in Theorem 3.36 that
f be étale. Now Theorem 3.39 gave a differential-geometric criterion for when
a ‘standard model’ 1-morphism Sf,f̂ : SV,E,s → SW,F,t is étale. By essentially
the same proof, we obtain criteria for when Sf,f̂ is a w-submersion, submersion,
w-immersion or immersion:

Theorem 4.8. Let V,W be manifolds, E → V, F → W be vector bundles,
s : V → E, t : W → F be smooth sections, f : V → W be smooth, and
f̂ : E → f∗(F ) be a morphism of vector bundles on V with f̂ ◦s = f∗(t)+O(s2).
Then Definitions 3.13 and 3.30 define principal d-manifolds SV,E,s,SW,F,t and
a 1-morphism Sf,f̂ : SV,E,s → SW,F,t. As in (3.31), we have a complex

0 // TvV
ds(v)⊕ df(v) // Ev ⊕ TwW

f̂(v)⊕−dt(w) // Fw // 0 (4.9)

for each v ∈ V with s(v) = 0 and w = f(v) ∈W . Then:

(a) Sf,f̂ is a w-submersion if and only if for all v ∈ V with s(v) = 0 and
w = f(v) ∈W, equation (4.9) is exact at the fourth term.

(b) Sf,f̂ is a submersion if and only if for all v ∈ V with s(v) = 0 and
w = f(v) ∈W, equation (4.9) is exact at the third and fourth terms.

(c) Sf,f̂ is a w-immersion if and only if for all v ∈ V with s(v) = 0 and
w = f(v) ∈W, equation (4.9) is exact at the second term.

(d) Sf,f̂ is an immersion if and only if for all v ∈ V with s(v) = 0 and
w = f(v) ∈W, equation (4.9) is exact at the second and fourth terms.

The conditions in (a)–(d) are open conditions on v in {v ∈ V : s(v) = 0}.

In the next theorem we write (w-)submersions and (w-)immersions locally in
a canonical form. Parts (a)–(d) show how (w-)submersions and (w-)immersions
in dMan are related to submersions and immersions in Man.

Theorem 4.9. Suppose g : X → Y is a 1-morphism of d-manifolds, and x ∈X
with g(x) = y ∈ Y . Then there exist open d-submanifolds T ⊆ X and U ⊆ Y
with x ∈ T , y ∈ U and g(T ) ⊆ U , manifolds V,W, vector bundles E → V,
F → W, smooth sections s : V → E, t : W → F, a smooth map f : V → W,
a morphism of vector bundles f̂ : E → f∗(F ) with f̂ ◦ s = f∗(t), equivalences
i : T → SV,E,s, j : SW,F,t → U , and a 2-morphism η : j ◦Sf,f̂ ◦ i⇒ g|T , where
Sf,f̂ : SV,E,s → SW,F,t is as in Definitions 3.13 and 3.30. Furthermore:
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(a) If g is a w-submersion then we can choose the data T ,U , . . . , j above

such that f : V → W is a submersion in Man, and f̂ : E → f∗(F ) is a
surjective morphism of vector bundles.

(b) If g is a submersion we can choose T , . . . , j such that f : V → W is a

submersion and f̂ : E → f∗(F ) is an isomorphism.

(c) If g is a w-immersion we can choose T , . . . , j such that f : V → W is

an immersion in Man, and f̂ : E → f∗(F ) is an injective morphism.

(d) If g is an immersion we can choose T , . . . , j such that f : V → W is

an immersion and f̂ : E → f∗(F ) is an isomorphism.

Here are alternative forms for (a)–(d):

(a′) If g is a w-submersion we can choose T , . . . , j such that V = W×Z for
some manifold Z, and f = πW , E = π∗W (F ) ⊕G for some vector bundle

G→ V, f̂ = idπ∗W (F ) ⊕ 0, and s = π∗W (t)⊕ u for some u ∈ C∞(G).

(b′) If g is a submersion we can choose T , . . . , j such that V = W × Z for

some manifold Z, and f = πW , E = π∗W (F ), f̂ = idπ∗W (F ), s = π∗W (t).

(c′) If g is a w-immersion we can choose T , . . . , j such that W = V ×Z for
open 0 ∈ Z⊆Rn, and f maps v 7→ (v, 0), and f∗(F ) = E ⊕ G for some

G→ V, and f̂ = idE ⊕ 0, f∗(t) = s⊕ 0.

(d′) If g is an immersion we can choose T , . . . , j such that W = V × Z for

open 0 ∈ Z⊆Rn, and f : v 7→ (v, 0), f∗(F ) = E, f̂ = idE , f
∗(t) = s.

Proof. By Proposition 3.25 and Example 3.24, there exist open neighbourhoods
T ⊆ X, U ⊆ Y of x, y and quasi-inverse equivalences i : T → SV,E,s, k :
SV,E,s → T and j : SW,F,t → U , l : U → SW,F,t with 2-morphisms ζU : k ◦ i⇒
idT and ζV : l ◦ j ⇒ idU , where V,W are open neighbourhoods of 0 in Rm,Rn
for m = dimT ∗xX, n = dimT ∗y Y , and E = Ra× V → V , F = Rb×W →W are
trivial vector bundles over V,W of ranks a, b, and s = (s1, . . . , sa) ∈ C∞(E),
t = (t1, . . . , tb) ∈ C∞(F ) with s(0) = ds(0) = 0 and t(0) = dt(0) = 0, and
k(0) = x, l(y) = 0. Making T , V smaller if necessary, we can suppose g(T ) ⊆ U .

Applying Theorem 3.34 to the 1-morphism l ◦ g ◦ k : SV,E,s → SW,F,t and

replacing V,E, s by Ṽ , Ẽ, s̃ gives a smooth map f = (f1, . . . , fn) : V → W

with f(0) = 0 and a morphism of vector bundles f̂ : E → f∗(F ) on V with

f̂ ◦ s = f∗(t), such that l ◦ g ◦k = Sf,f̂ . We may write f̂ as a matrix of smooth

functions
(
Aji(x1, . . . , xm)

)j=1,...,b

i=1,...,a
on V satisfying∑a

i=1Aji(x1, . . . , xm)si(x1, . . . , xm)

= tj
(
f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)

) (4.10)

for j = 1, . . . , b. Hence j ◦ Sf,f̂ ◦ i = (j ◦ l) ◦ g ◦ (k ◦ i). Thus η = ζU ∗ idg ∗ ζV
is a 2-morphism j ◦ Sf,f̂ ◦ i⇒ g|U . This completes the first part.
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For (a)–(d), if g is a w-submersion, . . . , immersion then Sf,f̂ = l ◦ g ◦ k
is also a w-submersion, . . . , immersion by Proposition 4.5(i),(iii), as k, l are
equivalences. Thus we may apply Theorem 4.8 to Sf,f̂ at the point v = 0.
Because ds(0) = dt(0) = 0, the exactness conditions simplify, and yield:

(a) if g is a w-submersion then f̂(0) : E0 → F0 is surjective;

(b) if g is a submersion then df(0) : T0V → T0W is surjective and f̂(0) :
E0 → F0 is an isomorphism;

(c) if g is a w-immersion then df(0) : T0V → T0W is injective; and

(d) if g is an immersion then df(0) : T0V → T0W is injective and f̂(0) : E0 →
F0 is surjective.

Each of these conditions is open in v ∈ V and so hold near v = 0. So making
T , V smaller if necessary we can suppose that f̂(v) : Ev → Ff(v) is surjective
for all v ∈ V in (a), and similarly for (b)–(d).

To prove (a)–(d), we will modify these choices above. For (a), we leave
W,F, t unchanged, but we replace V by

V ′ =
{

(x1, . . . , xm, z1, . . . , zn)∈V ×Rn : f(x1, . . . , xm)+(z1, . . . , zn)∈W ⊆Rn
}
.

We replace E by the vector bundle E′ = π∗V (E) ⊕ Rn over V ′, and s by s′ =
π∗V (s) ⊕ idRn in C∞(E′) so that s′(x1, . . . , xm, z1, . . . , zn) = s(x1, . . . , xm) ⊕
(z1, . . . , zn) and f by f ′ : V ′ → W given by f ′(x1, . . . , xm, y1, . . . , yn) = f(x1,
. . . , xn) + (y1, . . . , yn), where addition is in Rn ⊇ W , and V ′ is chosen small
enough that f ′ maps V ′ → W ⊆ Rn. By Hadamard’s Lemma, there exist
functions Bji for j = 1, . . . , b and i = 1, . . . , n on

{
(y1, . . . , yn, z1, . . . , zn) ∈

R2n : (y1, . . . , yn), (y1 + z1, . . . , yn + zn) ∈W
}

such that

tj(y1 + z1, . . . , yn + zn) = tj(y1, . . . , yn)

+
∑n
i=1Bji(y1, . . . , yn, z1, . . . , zn) · zi.

(4.11)

Define a morphism of vector bundles f̂ ′ : E′ → f∗(F ) on V ′ by

f̂ ′|(x1,...,xm,z1,...,zn) : (u1, . . . , ua, v1, . . . , vn) 7−→ (w1, . . . , wb),

where wj =
∑a
i=1Aji(x1, . . . , xm) · ui

+
∑n
i=1Bji

(
f1(x1, . . . , xm), . . . , fn(x1, . . . , xm), z1, . . . , zn

)
· vi.

(4.12)

Combining equations (4.10)–(4.12) shows that f̂ ′ ◦ s′ = (f ′)∗(t), so we have

Sf ′,f̂ ′ : SV ′,E′,s′ → SW,F,t. Since f̂ is surjective, the matrix (Aji)
j=1,...,b
i=1,...,a is

surjective, so f̂ ′ is surjective by (4.12). Also df ′ : Rm⊕Rn → Rn is the identity
on the second factor, and so surjective, and thus f ′ : V ′ →W is a submersion.

Define h : V → V ′ by h : (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0) and ĥ =

idE ⊕ 0 : E → h∗(E′) ∼= E ⊕Rn. Then ĥ ◦ s = h∗(s′), so we have a 1-morphism
Sh,ĥ : SV,E,s → SV ′,E′,s′ . Theorem 3.39 implies that Sh,ĥ is an equivalence. As
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f = f ′ ◦ h and f̂ = h∗(f̂ ′) ◦ ĥ we have Sf,f̂ = Sf ′,f̂ ′ ◦Sh,ĥ. Define i′ = Sh,ĥ ◦ i.
Then i′ : T → SV ′,E′,s′ is an equivalence as i,Sh,ĥ are equivalences, and

j ◦ Sf ′,f̂ ′ ◦ i′ = j ◦ Sf ′,f̂ ′ ◦ Sh,ĥ ◦ i = j ◦ Sf,f̂ ◦ i,

so we still have a 2-morphism η : j ◦ Sf ′,f̂ ′ ◦ i′ ⇒ g|U . Replacing V,E, s, f, f̂ , i

by V ′, E′, s′, f ′, f̂ ′, i′ proves (a).

For (b), no changes are needed, as f is a submersion and f̂ is an isomor-

phism already. For (c) and (d), let f̂(0) : E|0 = Ra → F |0 = Rb have kernel

of dimension c, where c = b − a in case (d) as f̂(0) is surjective. Apply a

GL(a,R) transformation to E to make Ker
(
f̂(0)

)
=
{

(u1, . . . , uc, 0, . . . , 0) :

ui ∈ R
}

. In a similar way to (a), define W ′ = W × Rc with coordinates
(y1, . . . , yn, z1, . . . , zc), and F ′ = π∗W (F )⊕Rc, and t′ = π∗W (t)⊕ idRc in C∞(F ′),
so that t′(y1, . . . , yn, z1, . . . , zc) = t(y1, . . . , yn)⊕ (z1, . . . , zc).

Define f ′ : V →W ′ and f̂ ′ : E → (f ′)∗(F ′) by

f ′(x1, . . . , xm) =
(
f1(x1, . . . , xm), . . . , fn(x1, . . . , xm),

s1(x1, . . . , xm), . . . , sc(x1, . . . , xm)
)
,

f̂ ′|(x1,...,xm)

(
(u1, . . . , ua)

)
= f̂ |(x1,...,xm)

(
(u1, . . . , ua)

)
⊕ (u1, . . . , uc).

Observe that f̂ ′(0) is injective in case (c), and an isomorphism in case (d), since

f̂ ′(0) = f̂(0) ⊕ idKer f̂(0). Also df ′(0) is injective. Making V ′ smaller we can
suppose these hold for all v′ ∈ V ′, not just at 0. So f ′ is an immersion, and
f̂ ′ is injective in (c) and an isomorphism in (d). Also f̂ ′ ◦ s = (f ′)∗(t′), so we
have Sf ′,f̂ ′ : SV,E,s → SW ′,F ′,t′ .

Define h = πW : W ′ → W and ĥ = idh∗(F ) ⊕ 0 : F ′ = h∗(F ) ⊕ Rc →
h∗(F ). Then ĥ ◦ t′ = h∗(t), so we have a 1-morphism Sh,ĥ : SW ′,F ′,t′ →
SW,F,t. Theorem 3.39 implies that Sh,ĥ is an equivalence. As f = h ◦ f ′ and

f̂ = (f ′)∗(ĥ) ◦ f̂ ′ we have Sf,f̂ = Sh,ĥ ◦ Sf ′,f̂ ′ . Define j′ = j ◦ Sh,ĥ. Then
j′ : SW ′,F ′,t′ → U is an equivalence as j,Sh,ĥ are equivalences, and

j′ ◦ Sf ′,f̂ ′ ◦ i = j ◦ Sh,ĥ ◦ Sf ′,f̂ ′ ◦ i = j ◦ Sf,f̂ ◦ i,

so we have a 2-morphism η : j′ ◦ Sf ′,f̂ ′ ◦ i ⇒ g|U . Replacing W,F, t, f, f̂ , j by

W ′, F ′, t′, f ′, f̂ ′, j′ proves (c) and (d).
For (a′)–(d′) we use the fact that submersions in Man are locally modelled

on projections πW : W × Z → W , and immersions are locally modelled on
inclusions idV × 0 : V → V × Z for open 0 ∈ Z ⊆ Rn. Thus, making V,W
smaller, we may replace V, f by W × Z, πW in (a),(b), and replace W, f by

V × Z, id × 0 in (c),(d). Also, as f̂ is surjective in (a) we may replace E by

π∗W (F )⊕G and f̂ by idπ∗W (F )⊕0, for G = Ker f̂ a vector bundle on V = W ×Z.
This gives (a′), and (b′)–(d′) follow in a similar way.

The following lemma is easy to prove. Note that πX is not a submersion if
X 6= ∅ and Y is not a manifold.
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Lemma 4.10. Let X,Y be d-manifolds, with Y a manifold. Then πX : X ×
Y →X is a submersion.

Theorem 4.9(b′) implies the following two corollaries. The first is a local
converse to Lemma 4.10.

Corollary 4.11. Suppose f : X → Y is a submersion of d-manifolds, and x ∈
X with f(x) = y ∈ Y . Then there exist open d-submanifolds x ∈ U ⊆ X and
y ∈ V ⊆ Y with f(U) = V , a manifold Z, and an equivalence i : U → V ×Z,
such that f |U : U → V is 2-isomorphic to πV ◦ i, where πV : V ×Z → V is
the projection.

Corollary 4.12. Let f : X → Y be a submersion of d-manifolds with Y a
manifold. Then X is a manifold.

Fixed d-subspaces in d-manifolds are w-embedded d-submanifolds.

Example 4.13. Let V be a manifold, E → V a vector bundle, Γ a finite group
acting smoothly on V,E preserving the vector bundle structure, and s : V → E a
smooth, Γ-equivariant section of E. Write the Γ-actions on V,E as r(γ) : V → V
and r̂(γ) : E → r(γ)∗(E) for γ ∈ Γ. Then Definitions 3.13 and 3.30 give an
explicit principal d-manifold SV,E,s, and 1-morphisms Sr(γ),r̂(γ) : SV,E,s →
SV,E,s for γ ∈ Γ which are an action of Γ on SV,E,s. Therefore §2.7 defines a
fixed d-subspace (SV,E,s)

Γ, and 1-morphism jSV,E,s,Γ : (SV,E,s)
Γ → SV,E,s.

Write V Γ for the fixed locus of Γ in V . Then V Γ is a disjoint union of closed,
embedded submanifolds of V of different dimensions. The restriction E|V Γ is a
vector bundle on V Γ, and r̂|V Γ is a linear action of Γ on E|V Γ . Write EΓ for
the subbundle of E|V Γ fixed by Γ. Then EΓ is a vector bundle of mixed rank
on V Γ. Since s is Γ-equivariant, s|V Γ is a smooth section of EΓ.

For i = 0, . . . ,dimV and j = 0, . . . , rankE, write V Γ
ij for the open and closed

subset of V Γ where dimV −dimV Γ = i has dimension i and rankE−rankEΓ =
j, and write EΓ

ij = EΓ|V Γ
ij

, and sΓ
ij = s|V Γ

ij
. Then V Γ

ij is a submanifold of V , and

EΓ
ij a vector bundle on V Γ

ij , and sΓ
ij ∈ C∞(EΓ

ij). Hence Definition 3.13 gives a
d-manifold SV Γ

ij ,E
Γ
ij ,s

Γ
ij

. From §2.7, we can see there is a natural 1-isomorphism

(SV,E,s)
Γ ∼=

∐dimV
i=0

∐rankE
j=0 SV Γ

ij ,E
Γ
ij ,s

Γ
ij
. (4.13)

Therefore (SV,E,s)
Γ is a disjoint union of d-manifolds of different dimensions.

Also jSV,E,s,Γ is identified on SV Γ
ij ,E

Γ
ij ,s

Γ
ij

with SfΓ
ij ,f̂

Γ
ij

: SV Γ
ij ,E

Γ
ij ,s

Γ
ij
→ SV,E,s,

where fΓ
ij : V Γ

ij ↪→ V and f̂Γ
ij : EΓ

ij ↪→ E|V Γ
ij

= (fΓ
ij)
∗(E) are the natural

inclusions. As fΓ
ij is an embedding, Theorem 4.8(c) shows that SfΓ

ij ,f̂
Γ
ij

is a
w-immersion, and in fact a w-embedding. Thus jSV,E,s,Γ is a w-embedding.

To prove the next result, note that if x ∈ XΓ then X is locally equivalent
near jX,Γ(x) to some SV,E,s. We can choose V,E, s and the equivalence to

be Γ-equivariant, and then XΓ is locally equivalent near x to (SV,E,s)
Γ. The

proposition then follows from Example 4.13.
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Proposition 4.14. Suppose X is a d-manifold, and Γ is a finite group acting
on X. Section 2.7 defines the fixed d-subspace XΓ of Γ in X, and an inclusion
1-morphism jX,Γ : XΓ ↪→X. Then XΓ =

∐
n∈ZX

Γ
n, where XΓ

n is a d-manifold

with vdimXΓ
n = n, and jX,Γ|XΓ

n
: XΓ

n →X is a w-embedding.

Remark 4.15. In Definition 4.1 we defined (w-)immersed and (w-)embedded
d-submanifolds of a d-manifold. Theorem 4.9(c),(d) give us local models for
these, and so help us understand in what sense they are submanifolds.

First let i : X → Y be an immersion or an embedding, so that we think of
X as an immersed or embedded d-submanifold in Y . Then Proposition 2.17(b)
shows that vdimX 6 vdimY , and if vdimX = vdimY then i is étale, so that
locally X is (equivalent to) an open d-submanifold in Y . Theorem 4.9(d) shows
that locally we can writeX ' SV,E,s and Y ' SW,F,t, where V is a submanifold
in W and E = F |V , s = t|V . Also, Proposition 4.27 below shows that locally X
is (equivalent to) the zeroes of finitely many real equations in Y . Immersions
and embeddings are the most obvious notions of d-submanifold, with most of
the properties one would expect from classical differential geometry.

Now let i : X → Y be a w-immersion or a w-embedding. Then Theorem
4.9(c) shows that locally we can write X ' SV,E,s and Y ' SW,F,t, where V is
a submanifold in W and E is a vector subbundle of F |V , with t|V ∈ C∞(E) ⊆
C∞(F |V ), and s = t|V . So V,E are both subobjects of W,F . Note that
vdimY − vdimX = (dimW − dimV )− (rankF − rankE), which can take any
value in Z. In particular, if X is a w-immersed or w-embedded d-submanifold
in Y we can have vdimX > vdimY , which is counterintuitive. So w-immersed
and w-embedded d-submanifolds are submanifolds in a weaker sense.

One area these ideas are important is orbifold strata, as in §10.7, which are
very similar to fixed d-subspaces in Proposition 4.14 above. Orbifold strata of
d-orbifolds are w-immersed d-orbifolds, and can have larger dimension than the
ambient d-orbifold. So there are some natural problems in which we have to
deal with w-immersed and w-embedded d-submanifolds or d-orbifolds.

4.3 D-transversality and fibre products

Next we consider fibre products. From §2.5, a fibre product W = Xg,Z,hY of
d-manifolds X,Y ,Z always exists as a d-space. We want to know whether W is
a d-manifold. We will define when g,h are d-transverse, and show in Theorem
4.21 that if g,h are d-transverse then W is a d-manifold.

To motivate the definition, recall that if g : X → Z, h : Y → Z are smooth
maps of manifolds, then a fibre product W = X ×g,Z,h Y in Man exists if g, h
are transverse. By definition, this means that TzZ = dg|x(TxX) + dh|y(TyY )
for all x ∈ X and y ∈ Y with g(x) = h(y) = z ∈ Z. That is, dg|x ⊕ dh|y :
TxX ⊕ TyY → TzZ is surjective, or dually, dg|∗x⊕ dh|∗y : TzZ

∗ → T ∗xX ⊕ T ∗y Y is
injective. WritingW = X×ZY for the topological fibre product and e : W → X,
f : W → Y for the projections, with g ◦e = h◦f , we see that g, h are transverse
if and only if the morphism

e∗(dg∗)⊕ f∗(dh∗) : (g ◦ e)∗(T ∗Z)→ e∗(T ∗X)⊕ f∗(T ∗Y ) (4.14)
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of vector bundles on the topological space W is injective, that is, has a left
inverse. The condition that (4.15) has a left inverse is an analogue of this, but
on obstruction rather than cotangent bundles.

Definition 4.16. Let X,Y ,Z be d-manifolds and g : X → Z, h : Y → Z be
1-morphisms, and let W = X ×g,Z,h Y be the explicit d-space fibre product
from §2.5. Equation (2.59) defines a morphism α1 in qcoh(W ) :

α1 =

 e∗(g′′) ◦ Ie,g(EZ)

−f∗(h′′) ◦ If,h(EZ)

(g ◦ e)∗(φZ)

 : (g ◦ e)∗(EZ) −→
e∗(EX)⊕ f∗(EY )⊕ (g ◦ e)∗(FZ).

(4.15)

We call g,h d-transverse if α1 has a left inverse

β =
(
β1 β2 β3

)
: e∗(EX)⊕ f∗(EY )⊕ (g ◦ e)∗(FZ) −→ (g ◦ e)∗(EZ) (4.16)

with β ◦ α1 = id(g◦e)∗(EZ). Note that this is a local condition in W , since local
choices of left inverse for α1 can be combined using a partition of unity on W
to make a global left inverse.

Here is a way to interpret this in the notation of §4.1. On X we have virtual
vector bundles T ∗X, g∗(T ∗Z) and a 1-morphism Ωg : g∗(T ∗Z) → T ∗X in
vvect(X). Pulling back to W by e∗ gives a morphism e∗(Ωg) : e∗ ◦ g∗(T ∗Z)→
e∗(T ∗X) in vvect(W ). Composing with Ie,g(T

∗Z) := (Ie,g(EZ), Ie,g(FZ)) gives

e∗(Ωg) ◦ Ie,g(T ∗Z) : (g ◦ e)∗(T ∗Z) → e∗(T ∗X). Similarly we have f∗(Ωh) ◦
If,h(T ∗Z) : (g ◦ e)∗(T ∗Z)→ f∗(T ∗Y ), as g ◦ e = g ◦ f . Combining these gives
a 1-morphism(

e∗(Ωg) ◦ Ie,g(T ∗Z)
)
⊕
(
f∗(Ωh) ◦ If,h(T ∗Z)

)
: (g ◦ e)∗(T ∗Z)

−→ e∗(T ∗X)⊕ f∗(T ∗Y )
(4.17)

in vvect(W ). For (4.15) to have a left inverse is equivalent to (4.17) being
weakly injective, in the sense of Definition 4.1. This is the d-manifold analogue
of (4.14) being injective.

We will show in Theorem 4.21 below that if g,h are d-transverse then a fibre
product X×g,Z,hY exists in dMan. First, here are some elementary properties
of d-transversality. They follow from the characterization of g,h transverse
as (4.17) being weakly injective, Proposition 4.2, and the facts from Example
3.2 that 2-morphisms g ⇒ g̃ in dMan translate to 2-morphisms Ωg ⇒ Ωg̃ in
vvect(X), and a an equivalence in dMan implies Ωa an equivalence in vvect(X),
and compositions of 1-morphisms in dMan lifting to compositions of cotangent
1-morphisms in vvect(X).

Proposition 4.17. (a) The condition that g,h be d-transverse in Definition
4.16 is local in W, that is, it is enough to check it on any open cover of W .

(b) Suppose g, g̃ : X → Z and h, h̃ : Y → Z are 1-morphisms of d-manifolds,
and η : g ⇒ g̃, ζ : h ⇒ h̃ are 2-morphisms. Then g,h are d-transverse if and
only if g̃, h̃ are d-transverse.
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(c) Suppose a : X̃ → X, b : Ỹ → Y , c : Z → Z̃, g : X → Z and h :
Y → Z are 1-morphisms of d-manifolds with a, b, c equivalences. Then g,h are
d-transverse if and only if g̃ := c ◦ g ◦ a : X̃ → Z̃ and h̃ := c ◦ h ◦ b : Ỹ → Z̃
are d-transverse.

Theorems 3.39 and 4.8 gave differential-geometric characterizations of when
a ‘standard model’ 1-morphism Sf,f̂ : SV,E,s → SW,F,t is étale, a w-submersion,
. . . , an immersion. By the same method we can prove the following characteri-
zation of when two ‘standard model’ 1-morphisms are d-transverse.

Proposition 4.18. Suppose T,U, V are manifolds, F → T, G → U, H → V
are vector bundles, t : T → F, u : U → G, v : V → H are smooth sections,
p : T → V, q : U → V are smooth maps, and p̂ : F → p∗(H), q̂ : G→ q∗(H) are
vector bundle morphisms with p̂ ◦ t = p∗(v) +O(t2) and q̂ ◦ u = q∗(v) +O(u2).
Then Definitions 3.13 and 3.30 give 1-morphisms Sp,p̂ : ST,F,t → SV,H,v and
Sq,q̂ : SU,G,u → SV,H,v in dMan. These Sp,p̂,Sq,q̂ are d-transverse if and only
if for all x ∈ T with t(x) = 0 and y ∈ Y with u(y) = 0 and p(x) = q(y) = z in
V, the following morphism of vector spaces is surjective:

p̂(x)⊕−q̂(y)⊕ dv(z) : Fx ⊕Gy ⊕ TzV −→ Hz. (4.18)

With some simplifying assumptions on V,H, p, q, p̂, q̂, the next definition and
theorem show that a d-transverse fibre product ST,F,t ×Sp,p̂,SV,H,v,Sq,q̂ SU,G,u
in dSpa may be written in the form SS,E,s for explicit S,E, s.

Definition 4.19. Let T,U, V be manifolds with V ⊆ Rn open, and F → T,
G→ U, H → V be vector bundles with H the trivial vector bundle Rk×V → V ,
and t : T → F, u : U → G, v : V → H be smooth sections with v = (v1, . . . , vk)
for vi ∈ C∞(V ), and p : T → V, q : U → V be smooth with p = (p1, . . . , pn),
q = (q1, . . . , qn) for pi ∈ C∞(T ), qi ∈ C∞(U), and p̂ : F → p∗(H) = Rk, q̂ : G→
h∗(H) = Rk be vector bundle morphisms with p̂ = (p̂1, . . . , p̂k), q̂ = (q̂1, . . . , q̂k)
for p̂i ∈ C∞(F ∗), q̂i ∈ C∞(G∗), such that p̂ ◦ t = p∗(v) and q̂ ◦ u = q∗(v). Then
we have 1-morphisms Sp,p̂ : ST,F,t → SV,H,v and Sq,q̂ : SU,G,u → SV,H,v in
dMan. Suppose Sp,p̂,Sq,q̂ are d-transverse. Then (4.18) is surjective for all
x ∈ T , y ∈ U with s(x) = 0, t(y) = 0 and p(x) = q(y) = z ∈ V by Proposition
4.18. Suppose too that the closure of

{
z ∈ V : z = p(x) = q(y) for x ∈ T , y ∈ U

with t(x) = u(y) = 0
}

in Rn is a subset of V .
Applying Hadamard’s Lemma to the functions v1, . . . , vk on V ⊆ Rn shows

that there exist Aij ∈ C∞(V × V ) for all i = 1, . . . , k, j = 1, . . . , n such that

vi(z̃1, . . . , z̃n)−vi(z1, . . . , zn)=
n∑
j=1

Aij(z1, . . . , zn, z̃1, . . . , z̃n) · (z̃j − zj), (4.19)

for all (z1, . . . , zn), (z̃1, . . . , z̃n) ∈ V ⊆ Rn. Differentiating (4.20) w.r.t. z̃j at
(z1, . . . , zn) = (z̃1, . . . , z̃n) shows that

Aij(z1, . . . , zn, z1, . . . , zn) =
∂vi
∂zj

(z1, . . . , zn). (4.20)
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On the manifold T×U , consider the two vector bundles π∗T (F )⊕π∗U (G)⊕Rn

and Rk, where Rn,Rk stand for the trivial vector bundles Rn×(T×U)→ T×U ,
Rk × (T × U)→ T × U . Define a morphism of vector bundles

B : π∗T (F )⊕ π∗U (G)⊕ Rn −→ Rk over T × U by

B|(x,y) =
(
p̂1(x), . . . , p̂k(x)

)
⊕
(
−q̂1(y), . . . ,−q̂k(y)

)
⊕
(
Aij
(
p1(x), . . . , pn(x), q1(y), . . . , qn(y)

))j=1,...,n
i=1,...,k .

(4.21)

Define a section s ∈ C∞
(
π∗T (F )⊕ π∗T (G)⊕ Rn

)
by

s(x, y) = t(x)⊕ u(y)⊕
(
q1(x)− p1(y), . . . , qn(x)− pn(y)

)
. (4.22)

Then we have

B(s)|x,y = p̂ ◦ t(x)− q̂ ◦ u(y)

+
(∑n

j=1Aij
(
p1(x), . . . , pn(x), q1(y), . . . , qn(y)

)
· (qj(x)− pj(y))

)
i=1,...,k

= v(p(x))− v(q(y)) +
(
vi(q1(y), . . . , qn(y))− vi(p1(x), . . . , pn(x))

)
i=1,...,k

= v(p(x))− v(q(y)) + v(q(y))− v(p(x)) = 0,

using p̂ ◦ t = p∗(v), q̂ ◦ u = q∗(v) and (4.19). So B(s) = 0.
Suppose x ∈ T , y ∈ U with t(x) = 0, u(y) = 0 and p(x) = q(y) = z =

(z1, . . . , zn) ∈ V . Then by (4.20) we have

B|(x,y) = p̂(x)⊕−q̂(y)⊕
(
∂vi
∂zj

(z1, . . . , zn)
)j=1,...,n
i=1,...,k .

The third term is dv(z), so B|(x,y) is (4.19), and thus is surjective. This is an
open condition in (x, y) ∈ T ×U . Hence we may choose an open neighbourhood
S of W =

{
(x, y) ∈ T × U : t(x) = 0, u(y) = 0, p(x) = q(y)

}
in T × U

such that B|(x,y) is surjective for all (x, y) ∈ S. Then S is a manifold. As

B|S :
(
π∗T (F )⊕π∗U (G)⊕Rn

)
|S → Rk|S is surjective, its kernel is a vector bundle

on S. Define E = Ker(B|S), as a vector subbundle of
(
π∗T (F )⊕π∗U (G)⊕Rn

)
|S .

Then since B(s) = 0, we have s ∈ C∞(E). Hence Definition 3.13 defines a
‘standard model’ d-manifold SS,E,s.

Theorem 4.20. In the situation of Definition 4.19, with Sp,p̂ : ST,F,t → SV,H,v
and Sq,q̂ : SU,G,u → SV,H,v d-transverse 1-morphisms in dMan, let W =
ST,F,t ×Sp,p̂,SV,H,v,Sq,q̂ SU,G,u be the explicit fibre product in dSpa defined in
§2.5. Then W is 1-isomorphic to SS,E,s in dSpa. Also

vdimSS,E,s = vdimST,F,t + vdimSU,G,u − vdimSV,H,v. (4.23)

Proof. Write X = ST,F,t, Y = SU,G,u, Z = SV,H,v, g = Sp,p̂ : X → Z,
h = Sq,q̂ : Y → Z, and W = X ×g,Z,h Y = ST,F,t ×Sp,p̂,SV,H,v,Sq,q̂ SU,G,u for

the explicit fibre product in dSpa defined in §2.5, and W̃ = SS,E,s. We must

show that W, W̃ are 1-isomorphic in dSpa.
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Now X,Y ,Z, W̃ are defined in Definition 3.13, and g,h in Definition 3.30.
Writing X = (X,O′X , EX , ıX , X), g = (g, g′, g′′), and so on, we have

X = Spec
(
C∞(T )/It

)
, (X,O′X) = Spec

(
C∞(T )/I2

t

)
,

X = {x ∈ T : t(x) = 0}, EX = MSpec
(
C∞(F ∗)/(It · C∞(F ∗))

)
,

(idX , ıX) = Spec
(
πX : C∞(T )/I2

t −→ C∞(T )/It
)
,

X = MSpec
(
t · − : C∞(F ∗)/(It · C∞(F ∗)) −→ It/I

2
t

)
,

(4.24)

with the analogous notation for Y ,Z, W̃ , and

g = Spec(φp), (g, g′) = Spec(φ′p), g
′′ = MSpec(αp), where

φp : C∞(V )/Iv −→ C∞(T )/It, φ′p : C∞(V )/I2
v −→ C∞(T )/I2

t ,

αp : C∞(p∗(H∗))/(It · C∞(p∗(H∗)) −→ C∞(F ∗)/(It · C∞(F ∗))

are given by φp : c+ Iv 7−→ c ◦ p+ It, φ
′
p : c+ I2

v 7−→ c ◦ p+ I2
t ,

and αp : γ + It · C∞(f∗(H∗)) 7−→ γ ◦ p̂+ It · C∞(F ∗),

with the analogous notation using φq, φ
′
q, αq for h = (h, h′, h′′).

Since all the C∞-schemes involved are fair and affine, the construction of
W = (W,O′W , EW , ıW , W ) in Definition 2.35 may be done at the level of C∞-
rings and modules, rather than sheaves. We find that

W = SpecCW , (W,O′W ) = SpecC′W , (idW , ıW ) = Spec
(
πW : C′W → CW

)
,

KW = KerπW ⊆ C′W , IW = MSpecKW , EW = MSpecMW and

W = MSpec
(
βW : MW → KW

)
, where

CW =
(C∞(T )/It)⊗̂(C∞(U)/Iu)(

iC∞(U)/Iu ◦ φq(c)− iC∞(T )/It ◦ φp(c) : c ∈ C∞(V )/Iv
) , (4.25)

C′W =
(C∞(T )/I2

t )⊗̂(C∞(U)/I2
u)[(

iC∞(T )/I2
t
(c) : c ∈ It/I2

t

)
+
(
iC∞(U)/I2

u
(c) : c ∈ Iu/I2

u

)
+(

iC∞(U)/I2
u
◦ φ′q(c)− iC∞(T )/I2

t
◦ φ′p(c) : c ∈ C∞(V )/I2

v

)]2 , (4.26)

πW is induced by πX �̂πY : (C∞(T )/I2
t )⊗̂(C∞(U)/I2

u)

−→ (C∞(T )/It)⊗̂(C∞(U)/Iu),
(4.27)

MW =

(
C∞(F ∗)/It · C∞(F ∗)

)
⊗C∞(T )/It CW ⊕(

C∞(G∗)/Iu · C∞(G∗)
)
⊗C∞(U)/Iu CW ⊕(

ΩC∞(V )/I2
v
⊗C∞(V )/I2

v
C∞(V )/Iv

)
⊗C∞(V )/Iv CW(

C∞(H∗)/Iv · C∞(H∗)
)
⊗C∞(V )/Iv CW

,

(4.28)
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βW ◦Π = β1 ⊕ β2 ⊕ β3, where for a, b ∈ C∞(V ), c ∈ CW ,

γ ∈ C∞(F ∗) and δ ∈ C∞(G∗) we have

β1 : (γ + It · C∞(F ∗))⊗ c 7−→ c(iC∞(T )/I2
t
(γ · t+ I2

t ) + ideal),

β2 : (δ + Iu · C∞(G∗))⊗ c 7−→ c(iC∞(U)/I2
u
(δ · u+ I2

u) + ideal),

β3 : ((a+ I2
v ) d(b+ I2

v ))⊗ c 7→ c
(
(iC∞(T )/I2

t
◦ φ′p(a)) ·

(iC∞(U)/I2
u
◦ φ′q(b)− iC∞(T )/I2

t
◦ φ′p(b)) + ideal

)
.

(4.29)

for Π the projection from the numerator of (4.28) to MW .
The projections πT : C∞(T ) → C∞(T )/It, πU : C∞(U) → C∞(U)/Iu

induce a surjective πT �̂πU : C∞(T )⊗̂C∞(U) → (C∞(T )/It)⊗̂(C∞(U)/Iu).
But C∞(T )⊗̂C∞(U) ∼= C∞(T × U). Thus by (4.25) we may write CW as a
quotient of C∞(T × U). The same works for C′W in (4.26), giving

CW ∼=
C∞(T × U)(

π∗T (i) : i ∈ It
)

+
(
π∗U (j) : j ∈ Iu

)
+
(
c ◦ q ◦ πU − c ◦ p ◦ πT : c ∈ C∞(V )

) , (4.30)

C′W
∼=

C∞(T × U)[(
π∗T (i) : i ∈ It

)
+
(
π∗U (j) : j ∈ Iu

)
+
(
c ◦ q ◦ πU − c ◦ p ◦ πT : c ∈ C∞(V )

)]2 , (4.31)

πW is induced by id : C∞(T × U)→ C∞(T × U). (4.32)

For the first term in the numerator of (4.28) we have(
C∞(F ∗)/It · C∞(F ∗)

)
⊗C∞(T )/It CW

∼= C∞(F ∗)⊗C∞(T ) CW
∼=
(
C∞(F ∗)⊗C∞(T ) C

∞(T × U)
)
⊗C∞(T×U) CW

∼= C∞(π∗T (F ∗))⊗C∞(T×U) CW .

We treat the second term the same way. For the third term, we have(
ΩC∞(V )/I2

v
⊗C∞(V )/I2

v
(C∞(V )/Iv)

)
⊗C∞(V )/Iv CW

∼=
(
ΩC∞(V ) ⊗C∞(V ) (C∞(V )/Iv)

)
⊗C∞(V )/Iv CW

∼= C∞(T ∗V )⊗C∞(V ) CW
∼=
(
C∞(T ∗V )⊗C∞(V ) C

∞(T × U)
)
⊗C∞(T×U) CW

∼= C∞
(
(p ◦ πT )∗(T ∗V )

)
⊗C∞(T×U) CW .

Here the first step is as in (2.65). For the last two steps, the morphism C∞(V )→
CW factors through C∞(T ×U) in two different ways, via (p ◦πT )∗ : C∞(V )→
C∞(T ×U) or (q ◦πU )∗ : C∞(V )→ C∞(T ×U). The terms c◦p◦πT −c◦q ◦πU
in (4.30) imply that the compositions of (p ◦ πT )∗, (q ◦ πU )∗ with the projection
C∞(T × U) → CW are equal. Treating the denominator of (4.28) in the same
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way as the third term and putting all this together gives

MW
∼=
C∞

(
π∗T (F ∗)⊕ π∗U (G∗)⊕ (p ◦ πT )∗(T ∗V )

)
⊗C∞(T×U) CW

C∞
(
(p ◦ πT )∗(H∗)

)
⊗C∞(T×U) CW

, (4.33)

βW ◦ Π̃ = β̃1 ⊕ β̃2 ⊕ β̃3, where for a ∈ C∞(T × U), b ∈ C∞(V ),

c ∈ CW , γ ∈ C∞(π∗T (F ∗)) and δ ∈ C∞(π∗U (G∗)) we have

β̃1 : γ ⊗ c 7−→ c(γ · π∗T (t) + ideal),

β̃2 : δ ⊗ c 7−→ c(δ · π∗U (u) + ideal),

β̃3 :
(
a (p ◦ πT )∗(db)

)
⊗ c 7−→ c

(
a(b ◦ q ◦ πU − b ◦ p ◦ πT ) + ideal

)
,

(4.34)

for Π̃ the projection from the numerator of (4.33) to MW .
Next we restrict from T × U to the open set S ⊆ T × U . This transforms

(4.30)–(4.34) to (4.35)–(4.39). Restriction gives a morphism C∞(T × U) →
C∞(S), which clearly induces morphisms from the right hand sides of (4.30),
(4.31), (4.33) to the right hand sides of (4.35), (4.36), (4.38). But it is not
immediately obvious that these are isomorphisms, since restriction C∞(T ×
U)→ C∞(S) is neither injective nor surjective – there can be smooth functions
on S which do not extend to T × U .

However, S is an open neighbourhood of W in T × U , and the ideals in
the denominators of (4.30)–(4.31) include all functions which are zero near W .
Hence, any function in C∞(S) is equal near W to some other function in C∞(T×
U), and so is equal modulo the relevant ideal to something in the image of
C∞(T × U) → C∞(S). Hence the natural morphisms from (4.30)–(4.31) to
(4.35)–(4.36) are surjective, and the same argument on ideals shows that they
are injective. In this way we prove:

CW ∼=
C∞(S)(

πT |∗S(i) : i ∈ It
)

+
(
πU |∗S(j) : j ∈ Iu

)
+
(
c ◦ q ◦ πU |S − c ◦ p ◦ πT |S : c ∈ C∞(V )

) , (4.35)

C′W
∼=

C∞(S)[(
πT |∗S(i) : i ∈ It

)
+
(
πU |∗S(j) : j ∈ Iu

)
+
(
c ◦ q ◦ πU |S − c ◦ p ◦ πT |S : c ∈ C∞(V )

)]2 , (4.36)

πW is induced by id : C∞(S)→ C∞(S), (4.37)

MW
∼=
C∞

(
πT |∗S(F ∗)⊕ πU |∗S(G∗)⊕ (p ◦ πT |S)∗(T ∗V )

)
⊗C∞(S) CW

C∞
(
(p ◦ πT |S)∗(H∗)

)
⊗C∞(S) CW

, (4.38)

βW ◦ Π̇ = β̇1 ⊕ β̇2 ⊕ β̇3, where for a ∈ C∞(S), b ∈ C∞(V ),

c ∈ CW , γ ∈ C∞(πT |∗S(F ∗)) and δ ∈ C∞(πU |∗S(G∗)) we have

β̇1 : γ ⊗ c 7−→ c(γ · πT |∗S(t) + ideal),

β̇2 : δ ⊗ c 7−→ c(δ · πU |∗S(u) + ideal),
(4.39)

β̇3 :
(
a (p ◦ πT |S)∗(db)

)
⊗ c 7−→c

(
a(b◦q◦πU |S−b◦p◦πT |S)+ideal

)
,
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for Π̇ the projection from the numerator of (4.38) to MW .
Next we use V ⊆ Rn. Consider the term

(
c◦p◦πT |S−c◦q◦πU |S : c ∈ C∞(V )

)
in (4.35). By assumption in Definition 4.19, the closure of

{
z ∈ V : z = p(x) =

q(y) for x ∈ T , y ∈ U with t(x) = u(y) = 0
}

in Rn is a subset of V . Therefore
given any c ∈ C∞(V ), we can choose c′ ∈ C∞(Rn) such that c and c′ agree
on a neighbourhood of

{
z ∈ V : z = p(x) = q(y) for x ∈ T , y ∈ U with

t(x) = u(y) = 0
}

in V . Because of the other two terms in the denominator of
(4.35), replacing c by c′ has no effect. Hence we may replace C∞(V ) by C∞(Rn)
in this term in (4.35). As C∞(Rn) is generated by the functions z1, . . . , zn, it is
enough to take c = z1,. . . ,c = zn. So we see that

CW ∼=
C∞(S)(

πT |∗S(i) : i ∈ It
)

+
(
πU |∗S(j) : j ∈ Iu

)
+
(
qi ◦ πU |S − pi ◦ πT |S : i = 1, . . . , n

) = C∞(S)/Is, (4.40)

C′W
∼=

C∞(S)[(
πT |∗S(i) : i ∈ It

)
+
(
πU |∗S(j) : j ∈ Iu

)
+
(
qi ◦ πU |S − pi ◦ πT |S : i = 1, . . . , n

)]2 = C∞(S)/I2
s , (4.41)

by definition of the section s in (4.22). Hence

KW
∼= Is/I

2
s . (4.42)

Now T ∗V and H are the trivial vector bundles Rk × V → V , Rk × V → V ,
so (p ◦ πT |S)∗(T ∗V ), (p ◦ πT |S)∗(H∗) are the trivial vector bundles Rk × S → S
and Rk × S → S, and we may rewrite (2.36) as

MW
∼=
C∞

(
πT |∗S(F ∗)⊕ πU |∗S(G∗)⊕ (Rn × S → S)

)
⊗C∞(S) CW

C∞
(
Rk × S → S

)
⊗C∞(S) CW

. (4.43)

We claim that the morphism from the denominator to the numerator of
(4.43) which defines the quotient is induced by the morphism B∗|S of vector
bundles on S, for B as in (4.21). To see this, note that our first formula
(4.28) for MW came from Definition 2.35, and MSpec of the morphism from the
denominator to the numerator of (2.26) is α1 in equation (2.59). The first two
terms e∗(g′′)◦Ie,g(EZ) and −f∗(h′′)◦If,h(EZ) in (2.59) correspond immediately

to the first two terms (p̂1(x), . . . , p̂k(x)) and (−q̂1(y), . . . ,−q̂k(y)) in (4.21).
For the third term (g ◦ e)∗(φZ) in (2.59), φZ is the pullback to Z = v−1(0)

of the vector bundle morphism ∇v : H∗ → T ∗V on V . Since V ⊆ Rn and
v = (v1, . . . , vk), φZ is induced by the pullback to Z of the matrix of functions(
∂vi
∂zj

(z1, . . . , zn)
)j=1,...,n
i=1,...,k . Hence the morphism from the denominator of (4.43)

to the third term in the numerator is induced by the morphism of vector bundles
B̃3 : Rk → Rn on S given by

B̃3|(x,y) =
(
∂vi
∂zj

(p1(x), . . . , pn(x))
)j=1,...,n
i=1,...,k . (4.44)

The third term of B∗|S in (4.21) induces the morphism B3 : Rk → Rn given by

B3|(x,y) =
(
Aij(p1(x), . . . , pn(x), q1(y), . . . , qn(y))

)j=1,...,n
i=1,...,k . (4.45)
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Equation (4.20) shows that (4.44) and (4.45) agree at points (x, y) ∈ T ×U with
qj(y) = pj(x) for j = 1, . . . , n. Thus we may write

B̃3|(x,y) −B3|(x,y) =
∑n
j=1

(
qj(y)− pj(x)

)
Cj |(x,y)

for some vector bundle morphisms C1, . . . , Cn : Rk → Rn on S. The terms
qi ◦ πU |S − pi ◦ πT |S in (4.40) imply that when we apply ⊗C∞(S)CW in (4.43),

the terms (qj(y) − pj(x))Cj |(x,y) become zero, so B3 and B̃3 induce the same
morphism. So we see from (4.43) that

MW
∼=
C∞

(
πT |∗S(F ∗)⊕ πU |∗S(G∗)⊕ (Rn × S → S)

)
B∗
(
C∞(Rk × S → S)

) ⊗C∞(S) CW

∼= C∞
(
πT |∗S(F ∗)⊕ πU |∗S(G∗)⊕ (Rn × S → S)

B∗(Rk × S → S)

)
⊗C∞(S) CW

∼= C∞(E∗)⊗C∞(S) (C∞(S)/Is) = C∞(E∗)/(Is · C∞(E∗)),

(4.46)

where as by definition E → S is the kernel of B, so E∗ is the cokernel of B∗.
Since T ∗V is the trivial vector bundles Rn×V → V , where the basis for Rn

fibres of T ∗V is dz1, . . . ,dzn, making the identifications (4.40), (4.42) we can
think of β̇3 in (4.39) as mapping Rn ⊗ (C∞(S)/Is) → Is/S

2
s . Applying (4.39)

with a = ai ∈ C∞(S), b = zi and c = 1 for i = 1, . . . , n and using yi ◦ p = pi
and zi ◦ q = qi shows that in this representation we have

β̇3 : (a1 + Is, . . . , an + Is) 7−→
∑n
i=1 ai(qi ◦ πU |S − pi ◦ πT |S) + I2

s .

Combining this with the expressions for β̇1, β̇2 in (4.39) and the definition of s
in (4.22) shows that under the identifications (4.42) and (4.46), the morphism
βW : MW → KW is identified with

s · − : C∞(E∗)/(Is · C∞(E∗)) −→ Is/I
2
s . (4.47)

Equations (4.37), (4.40), (4.41), (4.46) and (4.47) now show that CW ,C
′
W , πW ,

MW , βW are isomorphic to those defining W̃ = SS,E,s from S,E, s in Definition

3.13, the analogues of (4.24) for X. Hence W and W̃ are 1-isomorphic.
Finally, note that

vdimSS,E,s = dimS−rankE=(dimT+dimU)−(rankF+rankG+n−k)

= (dimT − rankF ) + (dimU − rankG)− (n− k)

= vdimST,F,t + vdimSU,G,u − vdimSV,H,v.

This proves equation (4.23), and completes the proof of Theorem 4.20.

As in §2.6, it is well known that if g : X → Z, h : Y → Z are transverse
smooth maps of manifolds then a fibre product X×g,Z,h Y exists in Man. Here
is our analogue for d-manifolds.
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Theorem 4.21. Suppose X,Y ,Z are d-manifolds and g : X → Z, h : Y → Z
are d-transverse 1-morphisms, and let W = X ×g,Z,h Y be the d-space fibre
product. Then W is a d-manifold, with

vdimW = vdimX + vdimY − vdimZ. (4.48)

Proof. Let w ∈ W. Then w = (x, y) with x ∈ X, y ∈ Y and g(x) = h(y) =
z ∈ Z. Choose a principal d-submanifold Ẑ open in Z containing z. Then by
Proposition 3.12 there exists an equivalence k : Ẑ → SV,H,v for some manifold
V , vector bundle H → V and smooth section v : V → H, where k(z) = z0 for
z0 ∈ V with v(z0) = 0. Choose a neighbourhood V ′ of z0 in V such that V ′ is
diffeomorphic to an open set in Rn, and H|V ′ is isomorphic to a trivial vector
bundle Rk × V ′ → V ′. Making Ẑ smaller, we may replace V by V ′, and then
take V ⊆ Rn open, and H to be Rk × V → V .

Now choose principal d-submanifolds X̂ open in g−1(Ẑ) ⊆ X containing
x, and Ŷ open in h−1(Ẑ) ⊆ Y containing y. Then there exist equivalences
i : ST,F,t → X̂, j : SU,G,u → Ŷ for manifolds T,U , vector bundles F → T ,
G → U and smooth sections t : T → F , u : U → G. Apply Theorem 3.34 to
the 1-morphisms k ◦ g ◦ i : ST,F,t → SV,H,v and k ◦ h ◦ j : SU,G,u → SV,H,v.

Replacing T,U by their open subsets T̃ , Ũ , this gives smooth maps p : T → V ,
q : U → V and vector bundle morphisms p̂ : F → p∗(H), q̂ : G → q∗(H) such
that k◦g◦i = Sp,p̂ and k◦h◦j = Sq,q̂. Making X̂, Ŷ , T, U smaller if necessary,
we can suppose that the closure of

{
z ∈ V : z = p(x) = q(y) for x ∈ T , y ∈ U

with t(x) = u(y) = 0
}

in Rn is a subset of V .
Since g|X̂ ,h|Ŷ are d-transverse and i, j,k are equivalences, Proposition

4.17(c) shows that Sp,p̂ = k ◦ g|X̂ ◦ i and Sq,q̂ = k ◦ h|Ŷ ◦ j are d-transverse.
Hence Theorem 4.21 shows that ST,F,t×SV,H,v SU,G,u is 1-isomorphic to SS,E,s.

Let Ŵ be the open neighbourhood of w in X ×Z Y equivalent to X̂ ×Ẑ Ŷ .
Then Ŵ is equivalent to SS,E,s, as i, j,k are equivalences. So Ŵ is a principal
d-manifold, and (4.23) gives

vdim Ŵ = vdimSS,E,s = vdimST,F,t + vdimSU,G,u − vdimSV,H,v

= vdim X̂ + vdim Ŷ − vdim Ẑ = vdimX + vdimY − vdimZ.

Therefore W can be covered by open principal d-submanifolds Ŵ of virtual
dimension (4.48), and so is a d-manifold of virtual dimension (4.48).

Part (a) of the next theorem will be central to future applications of d-
manifolds. The analogue for derived manifolds is Spivak [95, Th. 8.15], and a
partial analogue for Kuranishi spaces is Fukaya et al. [32, §A1.2].

For 1-morphisms of d-manifolds to be d-transverse should be thought of
as a significantly weaker condition than for smooth maps of manifolds to be
transverse. Thus, fibre products exist more often in dMan than they do in
Man. Theorem 4.22 illustrates this: each of (a),(b) is a fairly weak condition,
e.g. for g,h to be w-submersions is weaker than for g,h to be submersions.
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Theorem 4.22. Suppose g : X → Z, h : Y → Z are 1-morphisms of d-
manifolds. The following are sufficient conditions for g,h to be d-transverse, so
that W = X ×g,Z,h Y is a d-manifold of virtual dimension (4.48):

(a) Z is a manifold, that is, Z ∈ M̂an; or

(b) g or h is a w-submersion.

Proof. For (a), since Z lies in M̂an, φZ : EZ → FZ has a left inverse γ by
Proposition 3.28. Then β =

(
0 0 (g ◦ e)∗(γ)

)
is a left inverse for α1 in (4.15),

and g,h are d-transverse. For (b), if g is a w-submersion then by Definition
4.4(a) there exists γ = (γ1 γ2) : EX ⊕ g∗(FZ) → g∗(EZ) in qcoh(X) with γ ◦
(g′′ ⊕−g∗(φZ)) = idg∗(EZ). Define β as in (4.16) by

β =
(
β1 β2 β3

)
=
(
Ie,g(EZ)−1 ◦ e∗(γ1) 0 − Ie,g(EZ)−1 ◦ e∗(γ2) ◦ Ie,g(FZ)

)
.

Then β is a left inverse for α1 in (4.15), and g,h are d-transverse. The proof
for h a w-submersion is similar.

If g : X → Z and h : Y → Z are smooth maps of manifolds and g or h
is a submersion then g, h are transverse, so X ×g,Z,h Y exists as a manifold.
Theorem 4.22(b), and our next theorem, are different analogues of this for d-
manifolds. They justify our definitions of w-submersions and submersions in
§4.1. Also, Theorem 4.23 shows that we can think of submersions as repre-
sentable 1-morphisms in dMan.

Theorem 4.23. Let X,Z be d-manifolds, Y a manifold, and g : X → Z,
h : Y → Z be 1-morphisms with g a submersion. Then W = X ×g,Z,h Y is a
manifold, with dimW = vdimX + dimY − vdimZ.

Proof. As g is a submersion it is a w-submersion, so W is a d-manifold of
virtual dimension (4.48) by Theorem 4.22(b). Write e : W → X, f : W → Y
for the projections. Let w ∈ W with e(w) = x ∈ X and f(w) = y. Since g
is a submersion, by Corollary 4.11 we can choose open neighbourhoods T ,V
of x, z in X,Z and an equivalence i : T → V × S for some manifold S such
that g|T : T → V is 2-isomorphic to πV ◦ i, where πV : V × S → V is the
projection. Choose an open neighbourhood U of y in Y with h(U) ⊆ V . Then
T ×V U is an open neighbourhood of w in W = X ×Z Y , with an equivalence
T ×V U ' (V ×S)×πV ,V ,h|U U ' S×U . But S×U is a manifold as S,Y are
manifolds, so w has an open neighbourhood T ×V U in W which is a manifold.
Since we can cover W by such neighbourhoods, W is a manifold.

Example 4.24. Let X = Y = ∗, the point, a d-manifold of dimension 0.
Let Z = ∗ ×0,RRR,0 ∗ be the ‘obstructed point’ of Example 2.38, with EZ = R
and FZ = 0, a d-manifold of dimension −1. There is a unique 1-morphism
π : ∗ → Z. Let W be the d-space fibre product X ×π,Z,π Y . From §2.5 we
see that W = ∗, the point, a d-manifold of dimension 0. Hence in this case the
d-space fibre product W of d-manifolds X,Y ,Z is again a d-manifold, but

vdimW = 0 6= 1 = 0 + 0− (−1) = vdimX + vdimY − vdimZ,
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so that (4.48) does not hold. There is no contradiction, as π,π are not d-
transverse, so Theorem 4.21 does not apply.

Remark 4.25. For the applications the author has in mind, it will be crucial
that if g : X → Z and h : Y → Z are 1-morphisms with X,Y d-manifolds and
Z a manifold then W = X ×Z Y is a d-manifold, with vdimW = vdimX +
vdimY − dimZ, as in Theorem 4.22(a). We will show by example, following
Spivak [95, Prop. 1.7], that if d-manifolds dMan were an ordinary category
containing manifolds as a full subcategory, then this would be false.

Consider the fibre product ∗×0,RRR,0∗ in dMan, as in Example 2.38. If dMan
were a category then as ∗ is a terminal object, the category fibre product would
be ∗. But then

vdim(∗×0,RRR,0 ∗) = vdim∗ = 0 6= −1 = vdim∗+ vdim∗− vdimRRR,

so equation (4.48) and Theorem 4.22(a) would be false.
Thus, if we want fibre products of d-manifolds over manifolds to be well

behaved, then dMan must be at least a 2-category. It could be an ∞-category,
as for Spivak’s derived manifolds [94,95], or some other kind of higher category.
Making d-manifolds into a 2-category, as we have done, is the simplest of the
available options.

In Theorem 2.42 we showed that a d-space fibre product of manifolds W =
X ×g,Z,h Y is a manifold if and only if g, h are transverse. For some non-
transverse g : X → Z, h : Y → Z a category fibre product W = X ×g,Z,h Y
may exist in Man, but from the point of view of d-manifolds it is the ‘wrong’
fibre product, and may have the wrong dimension. This happens in our example
above, as ∗ = ∗ ×0,R,0 ∗ is a non-transverse fibre product in Man. Example
4.24 illustrates a 2-category analogue of this. If g,h are not d-transverse then
a 2-category fibre product X ×g,Z,h Y may or may not exist in dMan, and if
it does then it may not have the expected dimension, as in Example 4.24.

We can also use fibre products with RRRn in dMan to locally characterize
embeddings and immersions in dMan.

Proposition 4.26. Let X be a d-manifold and g : X → RRRn a 1-morphism in
dMan. Then the fibre product W = X ×g,RRRn,0 ∗ exists in dMan by Theorem
4.22(a), and the projection πX : W →X is an embedding.

Proof. Taking W to be the explicit fibre product from §2.5, we have EW ∼=
π∗X(EX) ⊕ (OW ⊗R Rn) and FW ∼= π∗X(FX), and these isomorphisms identify
π′′X : π∗X(EX)→ EW with idπ∗X(EX) ⊕ 0 : π∗X(EX)→ π∗X(EX)⊕ (OW ⊗R Rn), and

π2
X : π∗X(FX) → FW with idπ∗X(FX). It follows easily that ΩπX = (π′′X , π

2
X) is

surjective, so πX is an immersion. On topological spaces πX : W → X is the
inclusion {x ∈ X : g(x) = 0} ↪→ X, so πX is a homeomorphism with its image.
Hence πX is an embedding.

Here is a local converse to Proposition 4.26.
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Proposition 4.27. Suppose f : X → Y is an immersion of d-manifolds, and
x ∈ X with f(x) = y ∈ Y . Then there exist open d-submanifolds x ∈ U ⊆ X
and y ∈ V ⊆ Y with f(U) ⊆ V , and a 1-morphism g : V → RRRn with g(y) = 0,
where n = vdimY − vdimX > 0, fitting into a 2-Cartesian square in dMan :

U
f |U��

//

� �� �
GO ∗

0 ��
V

g // RRRn.
(4.49)

If f is an embedding we may take U = f−1(V ).

Proof. Theorem 4.9(d′) shows that we may choose U ,V with equivalences i :
U → SW,E,s, j : SW×Z,F,t → V and a 2-morphism f |U ∼= j ◦ Sf,f̂ ◦ i, for W a
manifold, 0 ∈ Z ⊆ Rn open, f : W →W ×Z mapping f : w 7→ (w, 0), E →W ,

F → W × Z vector bundles with E = f∗(F ) and f̂ = idE , and s : W → E,
t : W × Z → F smooth sections with s = f∗(t). Using Theorem 4.20 we can
show that the following square is 2-Cartesian:

SW,E,s
Sf,f̂��

//

� �� �
IQ

∗
0 ��

SW×Z,F,t
SπZ,0 // SRn,0,0 = RRRn,

where πZ : W × Z → Z ⊆ Rn is the projection. Defining g : V → RRRn by
g = SπZ ,0 ◦ l, where l : V → SW×Z,F,t is a quasi-inverse for j, implies that
(4.49) is 2-Cartesian. The last part follows on making U ,V smaller.

4.4 Embedding d-manifolds into manifolds

The following classical facts are due to Whitney [106]. For a detailed discussion
see Adachi [1]. Part (b) implies that every m-manifold may be realized as a
closed, embedded submanifold of R2m+1.

Theorem 4.28 (Whitney [106]). (a) Let X be an m-manifold and n > 2m.
Then a generic smooth map f : X → Rn is an immersion.

(b) Let X be an m-manifold and n > 2m+ 1. Then there exists an embedding
f : X → Rn, and we can choose such f with f(X) closed in Rn. Generic smooth
maps f : X → Rn are embeddings.

It is also known that there exist embeddings f : X → R2m and immersions
f : X → R2m−α(m), where α(m) is the number of 1’s in the binary expansion
of m, though just taking f generic is not enough to ensure this, and that these
bounds are sharp for some X.

We will generalize Theorem 4.28 to d-manifolds X, giving sufficient condi-
tions for existence of immersions and embeddings f : X → RRRn. Then we will
show that if f : X → RRRn is an embedding then X is equivalent to a ‘standard
model’ d-manifold SV,E,s for V an open neighbourhood of f(X) in Rn. Our
results are modelled on Spivak [94, §6.1], [95, Prop. 3.3], who proves analogues
of Theorems 4.29 and 4.34 for his derived manifolds.
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Theorem 4.29. Let X be a compact d-manifold. Then there exists an embed-
ding f : X → RRRn for some n� 0.

Proof. Let x ∈X. Choose a principal open neighbourhood Ux of x inX and an
equivalence i : Ux → SVx,Ex,sx for some Vx, Ex, sx. Then i(x) = vx ∈ Vx with
sx(vx) = 0. As X is paracompact and Hausdorff it is a normal topological space,
so we can choose an open neighbourhood U ′x of x in Ux such that the closure
U ′x of U ′x in X is a subset of Ux. Let U ′x ⊆ Ux be the corresponding open
d-submanifold, and choose an open V ′x ⊆ Vx such that i(U ′x) = SV ′x,E′x,s′x ⊆
SVx,Ex,sx , where E′x = Ex|V ′x , s′x = sx|V ′x .

For some nx > dimVx, choose an open neighbourhood V ′′x of vx in V ′x and
a smooth map gx : Vx → Rnx with the properties that gx|Vx\V ′x = 0, gx|V ′′x :
V ′′x → Rnx is an embedding, and 0 /∈ gx(V ′′x ), and gx(V ′′x ) ∩ gx(Vx \ V ′′x ) = ∅.
This is possible. Set E′′x = Ex|V ′′x , s′′x = sx|V ′′x and U ′′x = i−1(SV ′′x ,E′′x ,s′′x ), so
that U ′′x is an open neighbourhood of x in U ′x ⊆ X and i|U ′′x → SV ′′x ,E′′x ,s′′x is
an equivalence.

Consider the 1-morphism Sgx,0 ◦ i : Ux → SRnx ,0,0 = FdMan
Man (Rnx) = RRRnx .

On Ux \ U ′x this 1-morphism is identically zero, since gx|Vx\V ′x = 0. That is,

Sgx,0 ◦ i|Ux\U ′x = 0 ◦ π, where π : Ux \ U ′x → ∗ is the unique morphism

and 0 : ∗ → RRRnx = FdSpa
Man (0 : ∗ → Rnx). Since U ′x ⊆ Ux, we may extend

Sgx,0 ◦i uniquely by zero to all of X. That is, there exists a unique 1-morphism
fx : X → RRRnx such that fx|Ux = Sgx,0 ◦ i and fx|X\U ′x = 0 ◦ π.

Since 0 /∈ gx(V ′′x ) and gx(V ′′x ) ∩ gx(Vx \ V ′′x ) = ∅, we see that fx(U ′′x) ∩
fx(X \ U ′′x) = ∅. We claim that fx|U ′′x : U ′′x → RRRnx is an embedding. To see
this, note that fx|U ′′x = Sgx|V ′′x ,0

◦ i|U ′′x , where i|U ′′x : U ′′x → SV ′′x ,E′′x ,s′′x is an

equivalence, and Sgx|V ′′x ,0
: SV ′′x ,E′′x ,s′′x → SRnx ,0,0 = RRRnx with gx|V ′′x : V ′′x →

Rnx an embedding. Equation (4.9) for Sgx|V ′′x ,0
is

0 // TvV ′′x
dsx(v)⊕ dgx(v) // Ev ⊕ Rnx

0⊕0 // 0 // 0,

which is exact at the second and fourth terms as dgx(v) is injective, so Sgx|V ′′x ,0
is

an immersion by Theorem 4.8(d), and thus an embedding as gx|V ′′x is an embed-
ding and so a homeomorphism with its image. Hence, fx|U ′′x is an embedding
by Proposition 4.5(i),(iii).

Choose such nx,U
′′
x,fx for all x ∈ X. Then {U ′′x : x ∈X} is an open cover

of X, so as X is compact we may choose a finite subcover {U ′′xi : i = 1, . . . , k}.
Define n = nx1

+· · ·+nxk , and f = fx1
×· · ·×fxk : X → RRRnx1×· · ·RRRnxk = RRRn.

We claim f is an embedding. Since fxi |U ′′xi is an embedding, f |U ′′xi is an

immersion for i = 1, . . . , k, so f is an immersion as X = U ′′x1
∪ · · · ∪ U ′′xk .

Suppose x 6= y ∈ X. Then x ∈ U ′′xi for some i = 1, . . . , k. If y ∈ U ′′xi then
fxi(x) 6= fxi(y) since fxi |U ′′xi is injective as fxi |U ′′xi is an embedding. If y /∈ U ′′xi
then fxi(x) 6= fxi(y) as fxi(U

′′
xi) ∩ fxi(X \U

′′
xi) = ∅. Hence f(x) 6= f(y), and

f : X → Rn is injective. As f is locally an embedding and X is compact, this
implies f is a homeomorphism with its image. Hence f is an embedding.
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If X is not compact, there may not exist immersions or embeddings f :
X → Rn, as the next lemma and example show.

Lemma 4.30. Let X be a d-manifold. A necessary condition for there to exist
an immersion or embedding f : X → Rn is that dimT ∗xX 6 n for all x ∈ X.

Proof. If f : X → Rn is an immersion or embedding then from Definitions 4.1
and 4.4, the morphism φX ⊕ f2 : EX ⊕ f∗(T ∗Rn) → FX has a right inverse

δ. But ψX : FX → T ∗X is the cokernel of φX by (2.19), and ψX ◦ f2 = Ωf :

f∗(T ∗Rn) → T ∗X. Let x ∈ X, and x : ∗ → X be the corresponding C∞-
scheme morphism. Pulling the above facts back to qcoh(∗) by x∗, which is right
exact, and identifying qcoh(∗) with the abelian category of real vector spaces,
shows that φX |x ⊕ f2|x : EX |x ⊕ Rn|x −→ FX |x has a right inverse δ|x, and
ψX |x : FX |x → T ∗xX is the cokernel of φX |x, and ψX |x ◦ f2|x = Ωf |x. These

imply that Ωf |x : T ∗xX → Rn is injective, so dimT ∗xX 6 n.

Example 4.31. RRRk ×0,RRRk,0 ∗ is a principal d-manifold of virtual dimension 0,

with C∞-scheme Rk, and obstruction bundle Rk. Thus X =
∐
k>0RRR

k×0,RRRk,0 ∗
is a d-manifold of virtual dimension 0, with C∞-scheme X =

∐
k>0 R

k. Since

T ∗xX
∼= Rn for x ∈ Rn ⊂

∐
k>0 R

k, dimT ∗xX realizes all values n > 0. Hence

there cannot exist immersions or embeddings f : X → RRRn for any n > 0.

Here are sufficient lower bounds for n.

Theorem 4.32. Let X be a compact d-manifold and n > 0. Then immersions
f : X → RRRn exist provided n > 2 dimT ∗xX for all x ∈ X, and embeddings
f : X → RRRn exist provided n > 2 dimT ∗xX + 1 for all x ∈ X.

Proof. By Theorem 4.29 there exists an embedding g : X → RRRm for some
m � 0. Let L : Rm → Rn be a linear map, write L = FdSpa

Man (L), and set
f = L ◦ g : X → RRRn. We claim that if L is generic in Hom(Rm,Rn) then
f is an immersion if n > 2 dimT ∗xX for all x ∈ X, and an embedding if n >
2 dimT ∗xX + 1 for all x ∈ X.

Let x ∈ X. Then by Proposition 3.25 there exists an open neighbourhood
Ux of x in X and an equivalence i : SVx,Ex,sx → Ux for some Vx, Ex, sx with
i(vx) = x, where dimVx = dimT ∗xX and vx ∈ Vx with s(vx) = dsx(vx) = 0.
Then g ◦ i is an embedding SVx,Ex,sx → SRm,0,0 = RRRm. So by Theorem 3.34,
making Vx smaller if necessary there exists a smooth map p : Vx → Rm with
g ◦ i = Sp,0. As Sp,0 is an immersion, applying Theorem 4.8(d) at v = vx and
using dsx(vx) = 0 shows that dp(vx) : TvxVx → Rm is injective. Thus making
Ux, Vx smaller if necessary, we can suppose p : Vx → Rm is an embedding.

By dimension counting arguments as in [1, §II.6], [106, §III], as p : Vx → Rm
is an embedding and dimVx = dimT ∗xX, for a generic linear L : Rm → Rn, if
n > 2 dimT ∗xX then L ◦ p : Vx → Rn is an immersion, and if n > 2 dimT ∗xX + 1
then L ◦ p : Vx → Rn is an embedding. Hence L ◦ g ◦ i : SVx,Ex,sx → RRRn is an
immersion if n > 2 dimT ∗xX and an embedding if n > 2 dimT ∗xX+1 for generic
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L, so f |Ux = L ◦ g|Ux : Ux → RRRn is an immersion if n > 2 dimT ∗xX and an
embedding if n > 2 dimT ∗xX + 1 for generic L.

Choose such Ux for each x ∈ X. Then {Ux : x ∈ X} is an open cover of
X, so as X is compact we may choose a finite subcover {Uxi : i = 1, . . . , k}.
Suppose n > 2 dimT ∗xX for all x ∈ X. Then f |Uxi is an immersion for generic L
for each i = 1, . . . , k, so f is an immersion for generic L as X = Ux1 ∪· · ·∪Uxk .
The embedding case follows in a similar way.

The assumption that X is compact in Theorems 4.29 and 4.32 can be re-
moved if dimT ∗xX is bounded above for all x ∈ X, using the same method as
in the classical case [1, §II], [106, §III]. So we may prove:

Theorem 4.33. Let X be a d-manifold. Then there exist immersions and/or
embeddings f : X → RRRn for some n� 0 if and only if there is an upper bound
for dimT ∗xX for all x ∈ X. If there is such an upper bound, then immersions
f : X → RRRn exist provided n > 2 dimT ∗xX for all x ∈ X, and embeddings
f : X → RRRn exist provided n > 2 dimT ∗xX + 1 for all x ∈ X. For embeddings
we may also choose f with f(X) closed in Rn.

If a d-manifold X can be embedded into a manifold Y , we can write X as
the zeroes of a section of a vector bundle over Y near its image.

Theorem 4.34. Suppose X is a d-manifold, Y a manifold, and f : X → Y
an embedding, in the sense of Definition 4.4. Then there exist an open subset V
in Y with f(X) ⊆ V , a vector bundle E → V, and a smooth section s : V → E
of E fitting into a 2-Cartesian diagram in dMan, where 0 : V → E is the zero
section and Y ,V ,E, s,0 = FdMan

Man (Y, V,E, s, 0) :

X
f

//

f�� � �� �
FN

η
V

0 ��
V

s // E,
(4.50)

for some 2-morphism η : s ◦ f ⇒ 0 ◦ f . Hence X is equivalent to the ‘standard
model’ d-manifold SV,E,s of Definition 3.13, and is a principal d-manifold.

Proof. As Y = FdMan
Man (Y ) we have EY = 0 and FY = T ∗Y . Since f is an

embedding, Definitions 4.1(d) and 4.4(d),(f) give morphisms γ, δ in

0 // 0
0 // EX ⊕ f∗(T ∗Y )

γ=0
oo

φX⊕f2

// FX
δ=δ1⊕δ2

oo // 0. (4.51)

Writing δ = δ1⊕ δ2, the identities satisfied by γ, δ reduce to φX ◦ δ1 + f2 ◦ δ2 =
idFX . Proposition 4.3(vi) shows that H = Ker(φX ⊕ f2) is a vector bundle on
X of rank r := dimY − vdimX > 0.

On the level of topological spaces, f(X) is a closed subset of Y homeomorphic
to X, since f : X → Y is closed and injective. As H → X is a vector bundle,
f∗(H) is a vector bundle over f(X), so we can choose an open neighbourhood
V of f(X) in Y and a vector bundle E → V with f∗(E∗) ∼= H as vector bundles

262



over X, where E∗ is the dual vector bundle to E. This is clear for topological
vector bundles over topological spaces, but the argument also works at the level
of C∞-schemes. That is, writing V = FC∞Sch

Man (V ) we have a vector bundle E
over V in qcoh(V ) and an isomorphism I : f∗(E∗)→ H in qcoh(X). As E → V
is a vector bundle over a manifold, (the total space of) E is also a manifold, so
E = FdMan

Man (E) lies in M̂an ⊂ dMan.
Let x ∈ X and y = f(x) ∈ V ⊆ Y . As f : X → V is an embedding,

Proposition 4.27 gives an open neighbourhood Vx of y in V and a smooth map
g = (g1, . . . , gr) : Vx → Rr, where r = dimY − vdimX = rankE, such that
Ux = f−1(V x) ⊆X fits into a 2-Cartesian diagram

Ux

f |Ux��
π

//

� �� �
GO

θx

∗
0 ��

V x
g // RRRr.

(4.52)

As in §2.2, the 1-morphisms g ◦ f |Ux ,0 ◦ π : Ux → RRRr induce morphisms

(g ◦ f |Ux)2, (0 ◦ π)2 : (g ◦ f |Ux)∗(T ∗Rr) −→ FX |Ux in qcoh(Ux) given by

(g ◦ f |Ux)2 = f2|Ux ◦ f |
∗
Ux

(Ωg) ◦ If |Ux ,g(T
∗Rr) and (0 ◦ π)2 = 0,

using (2.24) and the definition of FdMan
Man . Thus the 2-morphism θx in (4.52) is a

morphism θx : (g ◦ f |Ux)∗(T ∗Rr)→ EX |Ux in qcoh(X), which by (2.26) satisfies(
φX |Ux
f2|Ux

)(
f |∗Ux(Ωg) ◦ If |Ux ,g(T

∗Rr) θx
)

= 0. (4.53)

As H = Ker(φX ⊕ f2), equation (4.53) implies there is a unique morphism

Φx : (g ◦ f |Ux)∗(T ∗Rr) −→ H|Ux with

iH|Ux ◦ Φx =
(
f |∗Ux(Ωg) ◦ If |Ux ,g(T

∗Rr) θx
)
,

where iH : H → EX ⊕ f∗(T ∗Y ) is the inclusion morphism. Since (4.52) is 2-
Cartesian it induces an equivalence b : Ux → V x ×RRRr ∗, where V x ×RRRr ∗ is
defined by the explicit construction of §2.5. Equation (2.34) for b is

0 // f |∗Ux(g∗(T ∗Rr))
−θx◦If|Ux ,g(T∗Rr)−1⊕−f |∗Ux (Ωg)

// EX |Ux ⊕ f |
∗
Ux

(T ∗V x)

φX |Ux⊕f
2|Ux

// FX |Ux // 0.

Since b is an equivalence, this equation is split exact by Proposition 2.20. This
implies that Φx is an isomorphism. Making Vx smaller if necessary, we can
choose an isomorphism Ψx : Rr ∼= g∗(T ∗Rr) → E∗x of vector bundles over Vx,
where Ex = E|Vx , such that I ◦ f |∗Ux(Ψx) = Φx, where Ψx is the lift of Ψx to

vector bundles on the C∞-scheme V x, and I : f∗(E∗)→ H is as above.

Now define sx ∈ C∞
(
Ex
)

by sx = (Ψ−1
x )∗(g1, . . . , gr). The isomorphism

Φ∗x identifies the triples Vx,Rr × Vx → Vx, g and Vx, Ex, sx. Hence we have
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a 1-isomorphism SVx,Rr,g
∼= SVX ,Ex,sx . Since the 2-Cartesian diagram (4.52)

implies that Ux is equivalent to SVx,Rr,g, it is also equivalent to SVX ,Ex,sx .
Thus, we have a 2-Cartesian diagram

Ux
f |Ux

//

f |Ux�� � �� �
HP

ηx

V x

0 ��
V x

sx // Ex.

(4.54)

Furthermore, this choice of section sx has an extra property: from the data
in (4.54), following the construction of Φx above, we can construct a natural
isomorphism Ξx : f |∗Ux(E∗)→ H|Ux , and this Ξx is exactly I|Ux .

Here the cotangent bundle T ∗Ex at the zero section has a natural isomor-
phism T ∗Ex|0(Vx)

∼= T ∗Vx ⊕ E∗x, so we may identify

(0 ◦ f |Xx)∗(T ∗Ex) ∼=
(
f∗(T ∗V )⊕ f∗(E)

)
|Xx .

With this identification, ηx is a morphism

ηx = η1
x ⊕ η2

x :
(
f∗(T ∗V )⊕ f∗(E)

)
|Ux −→ EX |Ux satisfying

φX |Ux ◦ η
1
x = 0 and φX |Ux ◦ η

2
x = −f2|Ux ◦ f |

∗
Ux

(dsx).
(4.55)

Now consider the extent to which sx is unique. If Ṽx, s̃x are alternative
choices of Vx, sx, then we can compare sx, s̃x on Vx ∩ Ṽx. The fact that (4.54) is
2-Cartesian for both Vx, sx and Ṽx, s̃x implies that sx = 0 and s̃x = 0 define the
same C∞-subscheme of V x∩Ṽ x. Therefore locally there exists an automorphism
A of the vector bundle E|Vx∩Ṽx such that s̃x = A · sx. The extra property of
sx above, in which (4.54) induces the isomorphism Ξx = I|Ux , implies that
the pullback of A to Ux ∩ Ux is the identity. Since Ux ∩ Ux is isomorphic the
C∞-subscheme sx = 0 in V x ∩ Ṽ x, this implies that A = idE +O(sx). Hence

s̃x = sx +O(s2
x). (4.56)

Choose such data Vx, sx and 2-morphism ηx in (4.54) for each x ∈ X. As each
Vx is open in V , replacing V by the open subset

⋃
x∈X Vx, the {Vx : x ∈ X}

is an open cover of the manifold V . Therefore we can choose a partition of
unity {χx : x ∈ X}, so that χx : V → [0, 1] is smooth and supported in
Vx, and

∑
x∈X χx = 1, where the sum is locally finite and so makes sense.

Define a smooth section s of E → V by s =
∑
x∈S χx · sx, and a morphism

η : f∗(T ∗V )⊕ (0 ◦ f)∗(T ∗E) −→ EX in qcoh(X) by η =
∑
x∈X χx · ηx.

For x, x̃ ∈ X, equation (4.56) shows that sx̃ = sx + O(s2
x) on Vx ∩ Vx̃.

Hence by Definition 3.29 there exists Ax,x̃ ∈ C∞(E⊗E∗⊗E∗|Vx∩Vx̃) such that
sx̃ = sx +Ax,x̃ · (sx ⊗ sx). Multiplying by χx̃ and summing over x̃ ∈ X gives

s|Vx = sx +
(∑

x̃∈X χx̃ ·Ax,x̃
)
· (sx ⊗ sx) =

(
idEx +

(∑
x̃∈X χx̃ ·Ax,x̃

)
· sx
)
· sx.

Making V and each Vx smaller if necessary, we can suppose that the morphism
idEx +

(∑
x̃∈X χx̃ ·Ax,x̃

)
· sx : Ex → Ex is invertible on Vx for each x ∈ X.
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We now claim that with these choices of V,E, s, η, equation (4.50) is a 2-
Cartesian diagram. To see this, first note that sx ◦ f |Ux = 0◦ f |Ux : Ux → E for
each s ∈ S and s =

∑
x∈X χx · sx imply that s ◦ f = 0 ◦ f : X → E. So (4.50)

commutes at the level of C∞-schemes. For it to 2-commute we need to prove
the analogue of (4.55) on X, with ηx, sx replaced by η, s. Now

f |∗Ux
(
d(χx · sx)

)
= f |∗Ux

(
(dχx)⊗ sx + χx · dsx

)
= f |∗Ux

(
χx · dsx

)
,

since f |∗Ux(sx) = 0 as Ux is isomorphic to the C∞-subscheme sx = 0 in V x, with

inclusion morphism f |Ux : Ux → V x. Therefore (4.55) for η, s,X follows by
multiplying (4.55) by χx and summing over x ∈ X. Hence (4.50) 2-commutes.

A possible fibre product V ×s,E,0 V is SV,E,s, with projection 1-morphism
i = SidV ,0 : SV,E,s → SV,0,0 = V to the first factor of V . Since (4.50) 2-
commutes there exists a 1-morphism j : X → SV,E,s with f 2-isomorphic to
i ◦ j. We must show j is an equivalence. As for (4.51) we have a complex

0 // j∗◦i∗(E∗)
j1⊕−j∗◦i∗(ds)

// EX⊕j∗◦i∗(T ∗V )
φX⊕j2 // FX // 0 (4.57)

in qcoh(X). Since f is 2-isomorphic to i ◦ j, so f = i ◦ j, the morphism φX ⊕ j2

in (4.57) is naturally identified with φX⊕f2 in (4.51). Thus φX⊕ j2 has a right
inverse identified with δ, and Ker(φX ⊕ j2) is naturally isomorphic to H.

Hence (4.57) induces a morphism f∗(E∗) ∼= j∗ ◦ i∗(E∗) → H. Using s =∑
x∈S χx · sx we can show that this morphism f∗(E∗) → H is

∑
x∈S χx · Ξx,

where Ξx : f∗(E∗)|Ux → H|Ux is the (iso)morphism induced by (4.54). But
Ξx = I|Ux by choice of sx. Thus the morphism f∗(E∗) → H induced by (4.57)
is I, and is an isomorphism.

We have now proved that in (4.57), φX ⊕ j2 has a right inverse, and j1 ⊕
−j∗ ◦ i∗(ds) is an isomorphism with Ker(φX ⊕ j2) ∼= H. Hence (4.57) is a split
short exact sequence. Also f : X → V is injective as f is an embedding, and
s−1(0) = f(X) by construction, so j : X → s−1(0) = SV,E,s is a bijection.
Therefore j : X → SV,E,s is an equivalence by Theorem 3.36, and (4.50) is
2-Cartesian. This completes the proof of Theorem 4.34.

Combining Theorems 4.33 and 4.34, and noting by Proposition 3.12 that
if X is a principal d-manifold then X ' V ×s,E,0 V with πV : X → V an
embedding of X in a manifold V , yields:

Corollary 4.35. Let X be a d-manifold. Then X is a principal d-manifold if
and only if dimT ∗xX is bounded above for all x ∈ X.

Here are some sufficient conditions for a d-manifold to be principal:

Corollary 4.36. Let W be a d-manifold. Then W is a principal d-manifold if
any of the following hold: (i) W is compact;

(ii) W can be covered by finitely many principal open d-submanifolds; and
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(iii) W ' X ×Z Y , where Z is a d-manifold and X,Y are principal d-
manifolds.

Proof. Part (i) follows from Theorems 4.29 and 4.34. For (ii), if W is covered
by principal open W1, . . . ,Wn, then an upper bound Ci exists for dimT ∗wW for
w ∈ Xi, each i = 1, . . . , n, and max(C1, . . . , Cn) is an upper bound for dimT ∗wW
for w ∈W . For (iii), if e : W →X, f : W → Y are the projections and w ∈W
with e(w) = x, f(w) = y, then as W ∼= X×ZY we have dimT ∗wW 6 dimT ∗xW+
dimT ∗y Y . But dimT ∗xX,dimT ∗y Y are bounded above as X,Y are principal, so
dimT ∗wW is bounded above.

Corollary 4.36 suggests that most interesting d-manifolds are principal. Ex-
ample 4.31 gives a d-manifold which is not principal.

4.5 Orientation line bundles of virtual vector bundles

Let X be a C∞-scheme. Definition 3.1 defined the 2-category vvect(X) of virtual
vector bundles (E1, E2, φ) on X. This section will define a line bundle L(E•,φ)

on X which we call the orientation line bundle of (E•, φ), and explore its basic
properties. Section 4.6 will use this to define orientations on d-manifolds X, as
an orientation (in the sense of Definition B.40) on the orientation line bundle
LT∗X of the virtual cotangent bundle T ∗X of X.

The classical analogue of our orientation line bundles is that if E → X is a
vector bundle of rank k, then the orientation line bundle of E is the top exterior
power ΛkE. For a virtual vector bundle (E•, φ) with E1, E2 vector bundles of
ranks k1, k2, we have L(E•,φ)

∼= Λk1(E1)∗ ⊗ Λk2E2. But when E1, E2 are general
quasicoherent sheaves on X, the definition of L(E•,φ) is complex, and needs some
preparation in the next definition and proposition.

Definition 4.37. Let X be a C∞-scheme, (E•, φ) a virtual vector bundle on X
of rank d ∈ Z, and U = (U,OU ) an open C∞-subscheme in X. Consider 9-tuples
α = (k1, k2, α1, . . . , α7), where k1, k2 > 0 satisfy k2−k1 = d, and α1, . . . , α7 are
morphisms in qcoh(U) as in the following diagram

Rk1 ⊗R OU
α1 //

α3 ��

Rk2 ⊗R OUα2

oo

α5 ��
E1|U

φ|U //
α4

OO

E2|U,
α7

oo

α6

OO
(4.58)

satisfying the relations

α2 ◦ α1 + α4 ◦ α3 = idRk1⊗ROU , α1 ◦ α2 + α6 ◦ α5 = idRk2⊗ROU ,

α3 ◦ α4 + α7 ◦ φ|U = idE1|U , α5 ◦ α6 + φ|U ◦ α7 = idE2|U ,

α5 ◦ α1 = φ|U ◦ α3, α1 ◦ α4 = α6 ◦ φ|U,
α3 ◦ α2 = α7 ◦ α5, α2 ◦ α6 = α4 ◦ α7.

(4.59)
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We will call such α orientation generators for (E•, φ) on U.
Suppose α = (k1, k2, α1, . . . , α7) and β = (l1, l2, β1, . . . , β7) are orientation

generators. Then k2 − k1 = d = l2 − l1, so k1 + l2 = l1 + k2. Define

MU(α,β) : Rk1 ⊗R OU ⊕ Rl2 ⊗R OU −→ Rk2 ⊗R OU ⊕ Rl1 ⊗R OU

by MU(α,β) =

(
α1 −α6 ◦ β5

β4 ◦ α3 β2 + β4 ◦ α7 ◦ β5

)
.

(4.60)

As k1 + l2 = k2 + l1, we can regard MU(α,β) as a (k1 + l2) × (k1 + l2)
matrix with entries in Hom(OU ,OU ), which is the C∞-ring OX(U). Thus the
determinant detMU(α,β) makes sense, as an element of OX(U). Define

FU(α,β) = (−1)(1+l1)d detMU(α,β) ∈ OX(U). (4.61)

Now let V ⊆ U be an open C∞-subscheme. Then OU |V = OV , and
we have a restriction map ρUV : OX(U) → OX(V ). If α,β are orientation
generators for (E•, φ) on U, then α|V = (k1, k2, α1|V , . . . , α7|V ) and β|V =
(l1, l2, β1|V , . . . , β7|V ) are orientation generators for (E•, φ) on V . Equations
(4.58)–(4.61) restrict from U to V . It easily follows that

ρUV
(
FU(α,β)

)
= FV

(
α|V ,β|V

)
in OX(V ). (4.62)

Here are some properties of these definitions:

Proposition 4.38. In the situation of Definition 4.37:

(a) If α,β,γ are orientation generators for (E•, φ) on U then

FU(α,α) = 1, (4.63)

FU(α,β) · FU(β,α) = 1, and (4.64)

FU(α,γ) = FU(α,β) · FU(β,γ). (4.65)

(b) Any x ∈ X has an open neighbourhood U for which there exists an orien-
tation generator α for (E•, φ) on U.

Proof. For (a), write α = (k1, k2, α1, . . . , α7), β = (l1, l2, β1, . . . , β7) and γ =
(m1,m2, γ1, . . . , γ7). For (4.63), by equations (4.59) and (4.60) we have

MU(α,α)=

(
α1 −α6 ◦ α5

α4◦α3 α2+α4◦α7◦α5

)
=

(
α1 −Ik2

+ α1 ◦ α2

Ik1−α2◦α1 2α2−α2◦α1◦α2

)
=

(
Ik2

0
−α2 Ik1

)(
α1 −Ik2

Ik1
0

)(
Ik1

α2

0 Ik2

)
,

where Ik is the k × k identity matrix in OX(U). The three matrices on the
second line have determinants 1, (−1)k2+k1k2 , 1. Hence

FU(α,α)=(−1)(1+k1)d detMU(α,α)=(−1)(1+k1)(k2−k1) · (−1)k2+k1k2 =1.
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For (4.65), using (4.59) for α,β,γ we can show by a long calculation that α1 −α6β5 0
β4α3 β2 + β4α7β5 0

0 0 Im1

Ik1
0 0

0 β1 −β6γ5

0 γ4β3 γ2 + γ4β7γ5


Ik1

α4β3 α4(α7 + β7 − β7φα7)γ5

0 Il1 β4α7γ5

0 0 Im2

−Ik1
0 0

β4α3 Il1 0
0 0 Im2

 =

 −Ik2
0 0

0 Il1 0
−γ4β7α5 γ4β3 Im1

 α1 0 −α6γ5

0 Il1 0
γ4α3 0 γ2 + γ4α7γ5

 .

(4.66)

Here the four matrices on the left hand side are morphisms

Rk2⊕
Rl1⊕
Rm1

Rk1⊕
Rl2⊕
Rm1

oo
Rk1⊕
Rl1⊕
Rm2

oo
Rk1⊕
Rl1⊕
Rm2

oo
Rk1⊕
Rl1⊕
Rm2 ,

oo

and the two matrices on the right hand side are morphisms

Rk2⊕
Rl1⊕
Rm1

Rk2⊕
Rl1⊕
Rm1

oo
Rk1⊕
Rl1⊕
Rm2 .

oo

As k2 − k1 = l2 − l1 = m2 −m1 = d, we have k2 + l1 +m1 = k1 + l2 +m1 =
k1+l1+m2, so all six matrices in (4.66) are square, and we can take determinants
in (4.66). The matrices on the first line of (4.66) are MU(α,β) ⊕ Im1 and
Ik1 ⊕MU(α,β), with determinants detMU(α,β) and detMU(β,γ). The final

matrix in (4.66) is MU(α,γ)⊕Il1 , with determinant (−1)l1(k1+k2) detMU(α,γ).
The remaining three matrices have determinants 1, (−1)k1 , (−1)k2 . Hence taking
determinants in (4.66) yields

detMU(α,β) · detMU(β,γ) · 1 · (−1)k1 = (−1)k2 · (−1)l1(k1+k2) detMU(α,γ).

Substituting in (4.61) then gives

(−1)(1+l1)dFU(α,β) · (−1)(1+m1)dFU(β,γ) · (−1)k1

= (−1)k2+l1d · (−1)(1+m1)dFU(α,γ),

and (4.65) follows as k2 − k1 = d. Combining equations (4.65) with γ = α and
(4.63) gives (4.64). This proves (a).

For (b), let x ∈ X. As (E•, φ) is a virtual vector bundle of rank d, there
exists an open x ∈ U ⊆ X such that (E•, φ)|U is equivalent in vqcoh(U) to

(F•, ψ) for F1,F2 vector bundles on U. Making U smaller if necessary, we can
suppose F1,F2 are trivial vector bundles on U, and so take F1 = Rk1⊗ROU and
F2 = Rk2 ⊗R OU for k1, k2 > 0 with k2 − k1 = d. So by Proposition A.6 there
exist 1-morphisms (f1, f2) : (E•|U, φ|U)→ (Rk•⊗ROU , ψ) and (g1, g2) : (Rk•⊗R
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OU , ψ)→ (E•|U, φ|U) in vqcoh(U) and 2-isomorphisms η : g• ◦f• ⇒ id(E•|U,φ|U),
ζ : f• ◦ g• ⇒ id(Rk•⊗ROU ,ψ) satisfying idf• ∗ η = ζ ∗ idf• and idg• ∗ ζ = η ∗ idg• .

Then f1, f2, g1, g2, η, ζ are morphisms in qcoh(U):

f1 : E1|U→Rk1⊗ROU , f2 : E2|U→Rk2⊗ROU , g1 : Rk1⊗ROU→E1|U,
g2 : Rk2⊗ROU→E2|U, η : E2|U→E1|U, ζ : Rk2⊗ROU→Rk1⊗ROU ,

satisfying f2 ◦ φ|U = ψ ◦ f1, g2 ◦ ψ = φ|U ◦ g1, ζ ◦ f2 = f1 ◦ η,
η ◦ g2 = g1 ◦ ζ, idE1|U = g1 ◦ f1 + η ◦ φ|U, idE2|U = g2 ◦ f2 + φ|U ◦ η, (4.67)

idRk1⊗ROU = f1 ◦ g1 + ζ ◦ ψ and idRk2⊗ROU = f2 ◦ g2 + ψ ◦ ζ.

Define α1 = ψ, α2 = ζ, α3 = g1, α4 = f1, α5 = g2, α6 = f2 and α7 = η. Then
(4.67) is equivalent to (4.59). Hence α = (k1, k2, α1, . . . , α7) is an orientation
generator for (E•, φ) on U.

We can now define orientation line bundles L(E•,φ) of virtual vector bundles.

Definition 4.39. Let X be a C∞-scheme and (E•, φ) a virtual vector bundle
on X. For each open U ⊂ X, define an OX(U)-module L̂(E•,φ)(U) to be the
OX(U)-module generated by all orientation generators α for (E•, φ) on U, with
the relations that

β = FU(α,β) ·α (4.68)

for all orientation generators α,β. Proposition 4.38(a) implies that these re-
lations are consistent. If follows that if there exists an orientation generator
α for U then L̂(E•,φ)(U) is the free OX(U)-module spanned by α, so that
L̂(E•,φ)(U) ∼= OX(U), and if there exists no such α then L̂(E•,φ)(U) = 0.

Let V ⊆ U ⊆ X be open. Define (L̂(E•,φ))UV : L̂(E•,φ)(U)→ L̂(E•,φ)(V ) by

(L̂(E•,φ))UV : c ·α 7−→ ρUV (c) ·α|V ,

for c ∈ OX(U) and α an orientation generator for (E•, φ) on U. Equation
(4.62) implies this is compatible with the relations (4.68), so (L̂(E•,φ))UV is
well-defined, and the analogue of (B.9) commutes.

It is now easy to check that L̂(E•,φ) is a presheaf of OX -modules on X. Let
L(E•,φ) be the associated sheaf of OX -modules. If U ⊂ X is any open C∞-
subscheme for which there exists an orientation generator α for (E•, φ), then
for all open V ⊆ U, L̂(E•,φ)(V ) is the free OX(V )-module spanned by α|V .

Therefore the presheaf L̂(E•,φ)|U is already a sheaf isomorphic to OU , and the
sheafification has no effect, so L(E•,φ)|U is a sheaf isomorphic to OU , for which
α defines a nonvanishing section. By Proposition 4.38(b), X can be covered by
such open U. Hence L(E•,φ) is a line bundle (rank 1 vector bundle) on X. We
call it the orientation line bundle of (E•, φ).

When E1, E2 are vector bundles we can identify L(E•,φ) explicitly:

Proposition 4.40. Suppose E1, E2 are vector bundles on X with ranks k1, k2,
and φ : E1 → E2 is a morphism. Then (E•, φ) is a virtual vector bundle of rank
k2 − k1, and there is a canonical isomorphism L(E•,φ)

∼= Λk1(E1)∗ ⊗ Λk2E2.
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Proof. The first part is immediate. As E1, E2 are vector bundles on X we
can cover X by open U such that E1|U, E2|U are trivial. For such U we can

choose bases of sections e1, . . . , ek1
for E1|U and f1, . . . , fk2

for E2|U. Define

isomorphisms α3 : Rk1 ⊗R OU → E1|U and α5 : Rk2 ⊗R OU → E2|U by α3 :
(c1, . . . , ck1) 7→ c1e1 + · · ·+ ck1ek1 and α5 : (d1, . . . , dk2) 7→ d1f1 + · · ·+ dk2fk2 .
Define α4 = α−1

3 , α6 = α−1
5 , α1 = α6 ◦ φ1 ◦ α3 and α2 = α7 = 0. Then

α = (k1, k2, α1, . . . , α7) is an orientation generator for (E•, φ) on U.
Let ε1, . . . , εk1 be the basis of sections of (E1)∗|U dual to e1, . . . , ek1

. Then

ε1∧· · ·∧εk1 is a trivializing section of Λk1(E1)∗|U, and f1∧· · ·∧fk2 a trivializing

section of Λk2E2|U, so (ε1 ∧ · · · ∧ εk1) ⊗ (f1 ∧ · · · ∧ fk2
) is a trivializing section

of
(
Λk1(E1)∗ ⊗ Λk2E2

)
|U. Also α defines a section of L(E•,φ)|U. Hence there is

a unique isomorphism ΦU : L(E•,φ)|U →
(
Λk1(E1)∗ ⊗ Λk2E2

)
|U with

ΦU(α) = (ε1 ∧ · · · ∧ εk1)⊗ (f1 ∧ · · · ∧ fk2
). (4.69)

We claim that ΦU is independent of the choices of bases e1, . . . , ek1
and

f1, . . . , fk2
. To see this, let ẽ1, . . . , ẽk2

and f̃1, . . . , f̃k2
be alternative choices,

and let α̃ = (k1, k2, α̃1, . . . , α̃7) be the corresponding orientation generator. We
may write

ej =
∑k1

i=1Aij ẽi and f̃j =
∑k2

i=1Bijfi, (4.70)

for (Aij)i,j6k1 and (Bij)i,j6k2 invertible matrices over OX(U). We have ar-
ranged (4.70) such that (Aij) is the matrix of α̃4 ◦ α3, and (Bij) is the matrix
of α6 ◦ α̃5. Thus

MU(α, α̃) =

(
α1 −(Bij)i,j6k2

(Aij)i,j6k1
0

)
,

so that

FU(α, α̃) = (−1)(1+k1)(k2−k1) detMU(α, α̃) = det(Aij) · det(Bij). (4.71)

From (4.70) it follows that

e1∧· · ·∧ek1
= det(Aij) · ẽ1∧· · ·∧ ẽk1

and f̃1∧· · ·∧ f̃k2
= det(Bij) ·f1∧· · ·∧fk2

.

If ε̃1, . . . , ε̃k1 is the dual basis of (E1)∗|U to ẽ1, . . . , ẽk1
then the first equation

implies that ε1 ∧ · · · ∧ εk1 = det(Aij)
−1 · ε̃1 ∧ · · · ∧ ε̃k1 , so combining this with

the second equation gives

(ε̃1 ∧ · · · ∧ε̃k1)⊗ (f̃1 ∧ · · · ∧ f̃k2
)

= det(Aij) det(Bij) · (ε1 ∧ · · · ∧ εk1)⊗ (f1 ∧ · · · ∧ fk2
).

(4.72)

Comparing equations (4.68), (4.69), (4.71) and (4.72), we see that ΦU is inde-
pendent of the choices of e1, . . . , ek1

and f1, . . . , fk2
. It is then easy to show that

we may glue the local isomorphisms ΦU to get a global canonical isomorphism

Φ : L(E•,φ) → Λk1(E1)∗ ⊗ Λk2E2, as we want.
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Definition 4.41. Let f : X → Y be a morphism of C∞-schemes, and (E•, φ)
a virtual vector bundle on Y . Then the pullback f∗(E•, φ) = (f∗(E•), f∗(φ))
is a virtual vector bundle on X. Thus we have line bundles L(E•,φ) on Y and
Lf∗(E•,φ) on X, and the pullback f∗(L(E•,φ)) is also a line bundle on X. We will
construct a canonical isomorphism If,(E•,φ) : f∗(L(E•,φ))→ Lf∗(E•,φ). Suppose

V ⊆ Y is open and α = (k1, k2, α1, . . . , α7) is an orientation generator for (E•, φ)
on V . Then U = f−1(V ) ⊂ X is open. Define

α̃ =
(
k1, k1, δ

−1
2 ◦ f∗(α1) ◦ δ1, δ−1

1 ◦ f∗(α2) ◦ δ2, f∗(α3) ◦ δ1, δ−1
1 ◦ f∗(α4),

f∗(α5) ◦ δ2, δ−1
2 ◦ f∗(α6), f∗(α7)

)
,

where δ1 : Rk1⊗ROU → f∗(Rk1⊗ROV ), δ2 : Rk2⊗ROU → f∗(Rk2⊗ROV ) are the
natural isomorphisms. Then α̃ is an orientation generator for f∗(E•, φ) on U.
Now α̃ defines a nonvanishing section of Lf∗(E•,φ)|U, and α a nonvanishing sec-
tion of L(E•,φ)|V , so that f∗(α) defines a nonvanishing section of f∗(L(E•,φ))|U.
Define an isomorphism If,(E•,φ)|U : f∗(L(E•,φ))|U → Lf∗(E•,φ)|U to identify

f∗(α) with α̃. This If,(E•,φ)|U is independent of the choice of α, and the

If,(E•,φ)|U glue to form a global canonical isomorphism If,(E•,φ) : f∗(L(E•,φ))→
Lf∗(E•,φ) on X.

Definition 4.42. Let X be a C∞-scheme, (E•, φ) and (F•, ψ) be virtual vector
bundles on X, and f• : (E•, φ) → (F•, ψ) be an equivalence in vqcoh(X). We
will construct a canonical isomorphism Lf• : L(E•,φ) → L(F•,ψ) on X.

As f• is an equivalence, by Proposition A.6 there exist a 1-morphism g• :
(F•, ψ)→ (E•, φ) and 2-morphisms η : g• ◦ f• ⇒ id(E•,φ), ζ : f• ◦ g• ⇒ id(F•,ψ)

satisfying idf• ∗ η = ζ ∗ idf• and idg• ∗ ζ = η ∗ idg• . Then as for (4.67),
f1, f2, g1, g2, η, ζ are morphisms in qcoh(X):

f j : Ej → Fj , gj : Fj → Ej , g2 : F2 → E2, η : E2 → E1, ζ : F2 → F1,

satisfying f2 ◦ φ = ψ ◦ f1, g2 ◦ ψ = φ ◦ g1, ζ ◦ f2 = f1 ◦ η,
η ◦ g2 = g1 ◦ ζ, idE1 = g1 ◦ f1 + η ◦ φ, idE2 = g2 ◦ f2 + φ ◦ η,

(4.73)

idG1 = f1 ◦ g1 + ζ ◦ ψ and idG2 = f2 ◦ g2 + ψ ◦ ζ.

Suppose U ⊆ X is open and α = (k1, k2, α1, . . . , α7) is an orientation gener-
ator for (E•, φ) on U. Define

α̃1 = α1, α̃2 = α2 + α4 ◦ η|U ◦ α5, α̃3 = g1|U ◦ α3, α̃4 = α4 ◦ f1|U,
α̃5 = g2|U ◦ α5, α̃6 = α6 ◦ f2|U, α̃7 = ζ|U + g1|U ◦ α7 ◦ f2|U.

Then using (4.59) and (4.73) one can show that α̃1, . . . , α̃7 satisfy (4.59), so
α̃ = (k1, k2, α̃1, . . . , α̃7) is an orientation generator for (F•, ψ) on U.

Thus, α gives a nonvanishing section of L(E•,φ)|U, and α̃ a nonvanishing
section of L(F•,ψ)|U. We define Lf• |U : L(E•,φ)|U → L(F•,ψ)|U to be the isomor-
phism taking α to α̃. If β is another orientation generator for (E•, φ) on U and
β̃ the corresponding orientation generator for (F•, ψ) on U, then by a proof sim-
ilar to that of (4.65) one can show that FU(α̃, β̃) = FU(α,β). So (4.68) implies
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that Lf• |U is independent of the choice of α, and is canonical. Now X is covered
by open U for which there exists an orientation generator α for (E•, φ), and on
each such U we have defined an isomorphism Lf• |U : L(E•,φ)|U → L(F•,ψ)|U.
These glue to give a canonical isomorphism Lf• : L(E•,φ) → L(F•,ψ).

One can also prove that Lf• depends only on the equivalence f• : (E•, φ)→
(F•, ψ), and not on the additional choices of g•, η, ζ in Proposition A.6. We

do this by showing that if ĝ•, η̂, ζ̂ are alternative choices, then there exists a
2-morphism θ : ĝ• → g• for which η̂ = η� (idf• ∗θ) and ζ̂ = ζ� (θ ∗ idf•). Then
by writing the corresponding orientation generator α̂ in terms of θ and α̃, we
prove that FU(α̂, α̃) = 1, so that α̃, α̂ define the same section of L(F•,ψ)|U, and
thus the same isomorphism Lf• |U.

Here are some elementary properties of these morphisms L(E•,φ). The proofs
are straightforward: choose an orientation generator α for (E•, φ) on U ⊆ X,
and compare the actions of each side on α.

Proposition 4.43. (a) If (E•, φ) is a virtual vector bundle on X, so that
idφ : (E•, φ) → (E•, φ) is an equivalence in vvect(X), then Lidφ = idL(E•,φ) :
L(E•,φ) → L(E•,φ).

(b) If f• : (E•, φ) → (F•, ψ) and g• : (F•, ψ) → (G•, ξ) are equivalences of
virtual vector bundles on X then Lg•◦f• = Lg• ◦ Lf• : L(E•,φ) → L(G•,ξ).

(c) If f•, g• : (E•, φ)→ (F•, ψ) are 2-isomorphic equivalences of virtual vector
bundles on X then Lf• = Lg• : L(E•,φ) → L(F•,ψ).

4.6 Orientations on d-manifolds

Using §4.5, we can now define orientations on d-manifolds.

Definition 4.44. Let X be a d-manifold. Then the virtual cotangent bundle
T ∗X = (EX ,FX , φX) is a virtual vector bundle on X by Definition 3.18, so Def-
inition 4.39 constructs a line bundle LT∗X on X. We call LT∗X the orientation
line bundle of X.

An orientation ω on X is an orientation on LT∗X , in the sense of Definition
B.40. That is, ω is an equivalence class [τ ] of isomorphisms τ : OX → LT∗X ,
where τ, τ ′ are equivalent if they are proportional by a positive function on X.
We call X orientable if it admits an orientation, so X is orientable if and only
if LT∗X is trivializable. An oriented d-manifold is a pair (X, ω) where X is
a d-manifold and ω an orientation on X. But we will often refer to X as an
oriented d-manifold, leaving the orientation ω implicit.

If ω = [τ ] is an orientation on X, the opposite orientation is −ω = [−τ ],
which changes the sign of the isomorphism τ : OX → LT∗X . When we refer to
X as an oriented d-manifold, −X will mean X with the opposite orientation,
that is, X is short for (X, ω) and −X is short for (X,−ω).

Our definitions and conventions on orientations of manifolds will be ex-
plained in §5.8 below, together with the analogues for manifolds with corners.
We show that when the d-manifold X is a manifold, Definition 4.44 agrees with
the definition of orientations in §5.8.
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Example 4.45. Let X be an n-manifold, and X = FdMan
Man (X) the associated

d-manifold. Then X = FC∞Sch
Man (X), EX = 0 and FX = T ∗X. So EX ,FX

are vector bundles of ranks 0, n. As Λ0EX ∼= OX , Proposition 4.40 gives a
canonical isomorphism LT∗X ∼= ΛnT ∗X. That is, LT∗X is isomorphic to the
lift to C∞-schemes of the line bundle ΛnT ∗X on the manifold X.

By Definition 5.34, an orientation on the manifold X is just an orientation on
the line bundle ΛnT ∗X. Hence orientations on the d-manifold X = FdMan

Man (X)
in the sense of Definition 4.44 are equivalent to orientations on the manifold X
in the usual sense.

If f : X → Y is an étale map of n-manifolds then (df)∗ : f∗(T ∗Y ) → T ∗X
is an isomorphism of vector bundles, and so induces an isomorphism of line
bundles f∗(ΛnT ∗Y )→ ΛnT ∗X. Here is an analogue of this for d-manifolds:

Definition 4.46. Let f : X → Y be an étale 1-morphism of d-manifolds, for
instance f could be an equivalence. We have orientation line bundles LT∗X =
(EX ,FX , φX) on X and LT∗Y = (EY ,FY , φY ) on Y , so f∗(LT∗Y ) is a line bundle
on X. Definition 4.41 gives an isomorphism If,T∗Y : f∗(LT∗Y ) → Lf∗(T∗Y ) on

X. But Ωf = (f ′′, f2) : f∗(T ∗Y )→ T ∗X is a 1-morphism in vvect(X), which is
an equivalence in vvect(X) as f is étale. So Definition 4.42 gives an isomorphism
LΩf : Lf∗(T∗Y ) → LT∗X . Define an isomorphism Lf : f∗(LT∗Y ) → LT∗X in

qcoh(X) by Lf = LΩf ◦ If,T∗Y .

From Propositions 4.40 and 4.43 we may deduce:

Proposition 4.47. (a) Let X be a d-manifold, and suppose EX ,FX are vector
bundles on X with ranks k1, k2, so that k2 − k1 = vdimX. Then there is a
canonical isomorphism LT∗X ∼= Λk1(EX)∗ ⊗ Λk2FX .

(b) If X is a d-manifold then LidX = δX(LT∗X) : id∗X(LT∗X)→ LT∗X .

(c) If f : X → Y and g : Y → Z are étale 1-morphisms of d-manifolds then

Lg◦f = Lf ◦ f∗(Lg) ◦ If,g(LT∗Z) : (g ◦ f)∗(LT∗Z) −→ LT∗X .

(d) If f , g : X → Y are 2-isomorphic étale 1-morphisms of d-manifolds
then Lf = Lg : f∗(LT∗Y ) = g∗(LT∗Y )→ LT∗X .

We can define orientations on SV,E,s using differential-geometric data.

Definition 4.48. Let V be an n-manifold, E → V a rank k vector bundle,
and s : V → E a smooth section. Write X = SV,E,s for the ‘standard model’
d-manifold of Definition 3.13. Then we may identify X with the C∞-subscheme
s−1(0) in V = FdSpa

Man (V ), and EX ∼= E∗|V , FX ∼= T ∗V |X , where E is the vector
bundle on V lifting E → V . So Proposition 4.47(a) shows that LT∗X ∼= Λk(E)⊗
ΛnT ∗V . That is, LT∗X is isomorphic to the restriction to X of the lift to the
C∞-scheme V of the line bundle ΛkE ⊗ ΛnT ∗V on the manifold V .

Suppose we are given an orientation on the line bundle ΛkE ⊗ ΛnT ∗V on
V , in the sense of Definition 5.34. Then the isomorphism from LT∗X to the
pullback of ΛkE ⊗ ΛnT ∗V to X induces an orientation of SV,E,s. We will call
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this a standard model orientation, and SV,E,s with this orientation a standard
model oriented d-manifold.

Here is another way to write the orientation data on (V,E, s). The total
space of E∗ is a manifold of dimension n+ k, and the zero section 0 : V → E∗

is a smooth map with 0∗(T ∗(E∗)) ∼= E∗ ⊗ T ∗V . Therefore 0∗(Λn+kT ∗(E∗)) ∼=
ΛkE ⊗ ΛnT ∗V is equivalent to an orientation on 0∗(Λn+kT ∗(E∗)) on V , or to
an orientation on Λn+kT ∗(E∗) on 0(V ) ⊆ E∗, which extends uniquely to an
orientation on Λn+kT ∗(E∗) on E∗ as E∗ retracts to 0(V ). Thus, an orientation
on ΛkE ⊗ΛnT ∗V → V is equivalent to an orientation on the total space of E∗,
and also to an orientation on the total space of E.

It is easy to prove:

Lemma 4.49. Let X be an oriented d-manifold. Then every x ∈ X has
an open neighbourhood U equivalent as an oriented d-manifold to a ‘standard
model’ oriented d-manifold SV,E,s, as in Definition 4.48.

Now consider the situation of Theorem 4.21, so that W,X,Y ,Z are d-
manifolds with W = X ×g,Z,h Y for g,h d-transverse, where e : W → X,
f : W → Y are the projections. Then we have orientation line bundles
LT∗W, . . . ,LT∗Z onW, . . . , Z. We will construct a canonical isomorphism (4.74)
below, which writes LT∗W in terms of the pullbacks e∗(LT∗X), f∗(LT∗Y ), (g ◦
e)∗(LT∗Z) of LT∗X ,LT∗Y ,LT∗Z . Thus, orientations on X,Y ,Z induce an ori-
entation on W = X ×Z Y , so we can do oriented fibre products.

Note that (4.74) depends on a choice of orientation convention: a different
choice would change (4.74) by a sign depending on vdimX, vdimY , vdimZ.
Our conventions are chosen to match those of Fukaya et al. [32, §8.2] for fibre
products of Kuranishi spaces over orbifolds. Our orientation conventions for
manifolds are given in Convention 5.35 below.

Theorem 4.50. Work in the situation of Theorem 4.21, so that W,X,Y ,Z
are d-manifolds with W = X ×g,Z,h Y for g,h d-transverse, where e : W →
X, f : W → Y are the projections. Then we have orientation line bundles
LT∗W, . . . ,LT∗Z on W, . . . , Z, so LT∗W, e∗(LT∗X), f∗(LT∗Y ), (g ◦ e)∗(LT∗Z)
are line bundles on W . With a suitable choice of orientation convention, there
is a canonical isomorphism

Φ : LT∗W −→ e∗(LT∗X)⊗OW f∗(LT∗Y )⊗OW (g ◦ e)∗(LT∗Z)∗. (4.74)

Hence, if X,Y ,Z are oriented d-manifolds, then W also has a natural
orientation, since trivializations of LT∗X ,LT∗Y ,LT∗Z induce a trivialization
of LT∗W by (4.74).

Proof. We use the notation of the proof of Theorem 4.21. If w ∈W with w =
(x, y) with x ∈ X, y ∈ Y and g(x) = h(y) = z ∈ Z, we choose principal open
d-submanifolds x ∈ X̂ ⊆ X, y ∈ Ŷ ⊆ Y , z ∈ Ẑ ⊆ Z with g(X̂),h(Ŷ ) ⊆ Ẑ,
manifolds T,U, V , vector bundles F → T , G → U , H → V sections t : T → F ,
u : U → G, v : V → H, equivalences i : ST,F,t → X̂, j : SU,G,u → Ŷ ,
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k : Ẑ → SV,H,v, smooth maps p : T → V , q : U → V and vector bundle
morphisms p̂ : F → p∗(H), q̂ : G → q∗(H) such that k ◦ g ◦ i = Sp,p̂ and
k ◦ h ◦ j = Sq,q̂. Let k̃ : SV,H,v → Ẑ be a quasi-inverse for k.

Write Ŵ for the open neighbourhood of w in W equivalent to X̂ ×Ẑ Ŷ ⊆
X×ZY . Definition 4.19 defines a manifold S, vector bundle E → S and section
s : S → E from T,U, V, F,G,H, t, u, v, p, q, p̂, q̂, and Theorem 4.20 shows that
SS,E,s ' ST,F,t×Sp,p̂,SV,H,v,Sq,q̂ SU,G,u. The proof of Theorem 4.21 shows there

is an equivalence l : SS,E,s → Ŵ .
Set k1 = rankE, k2 = dimS, l1 = rankF , l2 = dimT , m1 = rankG,

m2 = dimU , n1 = rankH, and n2 = dimV . Then k2 = l2 +m2 as S ⊆ T × U
is open, and k1 = l1 +m1 + n2 − n1 by definition of E. Combining Proposition
4.47(a) and Definition 4.46 gives canonical isomorphisms

Ll : i∗(LT∗W|Ŵ ) −→ LSS,E,s ∼= (Λk1E ⊗ Λk2T ∗S)|SS,E,s , (4.75)

Li : i∗(LT∗X |X̂) −→ LST,F,t ∼= (Λl1F ⊗ Λl2T ∗T )|ST,F,t , (4.76)

Lj : j∗(LT∗Y |Ŷ ) −→ LSU,G,u ∼= (Λm1G ⊗ Λm2T ∗U)|SU,G,u , (4.77)

Lk̃ : k̃∗(LT∗Z |Z̃) −→ LSV,H,v ∼= (Λn1H⊗ Λn2T ∗V )|SV,H,v . (4.78)

By definition of S,E, as S ⊆ T × U is open we have

T ∗S ∼= π∗T (T ∗T )⊕ π∗U (T ∗U), (4.79)

and there is an exact sequence of vector bundles on S

0 // E // π∗T (F )⊕ π∗U (G)⊕ (p ◦ πT )∗(TV )
B // (p ◦ πT )∗(H) // 0,

noting that TV ∼= Rn, H ∼= Rk. Splitting this gives an isomorphism

E ⊕ (p ◦ πT )∗(H) ∼= π∗T (F )⊕ π∗U (G)⊕ (p ◦ πT )∗(TV ). (4.80)

Now from equations (4.79)–(4.80) we may construct canonical isomorphisms

Λk2T ∗S ∼= π∗T (Λl2T ∗T )⊗ π∗U (Λm2T ∗U), (4.81)

Λk1E ⊗ (p ◦ πT )∗(Λn1H) ∼= π∗T (Λl1F )⊗ π∗U (Λm1G)

⊗ (p ◦ πT )∗(Λn2TV ).
(4.82)

Here (4.81) and (4.82) depend, up to sign, on a choice of sign convention. We
use the most obvious choice: if U, V are vector spaces of dimensions k, l then we
define the isomorphism ΛkU ⊗ΛlV ∼= Λk+l(U ⊕ V ) to identify (u1 ∧ · · · ∧ uk)⊗
(v1 ∧ · · · ∧ vl) ∈ ΛkU ⊗ ΛlV with u1 ∧ · · · ∧ uk ∧ v1 ∧ · · · ∧ vl ∈ Λk+l(U ⊕ V ),
for u1, . . . , uk ∈ U and v1, . . . , vl ∈ V , and similarly for triple direct sums
U ⊕ V ⊕W . Note that this depends on the order of U, V : if we swap U, V we
multiply the isomorphism by (−1)kl. Therefore the signs of the isomorphisms in
(4.81)–(4.82) depend on the order we chose to write the factors in (4.79)–(4.80).
Combining (4.81)–(4.82) gives a canonical isomorphism of line bundles on S:

Λk1E ⊗ Λk2T ∗S ∼= π∗T (Λl1F ⊗ Λl2T ∗T )⊗ π∗U (Λm1G⊗ Λm2T ∗U)

⊗
(
(p ◦ πT )∗(Λn1H ⊗ Λn2T ∗V )

)∗. (4.83)
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Pulling (4.75)–(4.78) and the lift to C∞-schemes of (4.83) back to Ŵ and
combining them using canonical isomorphisms I∗,∗(∗) gives a canonical isomor-
phism LT∗W|Ŵ →

(
e∗(LT∗X) ⊗OW f∗(LT∗Y ) ⊗OW (g ◦ e)∗(LT∗Z)∗

)
|Ŵ . We

define ΦŴ to be this isomorphism, multiplied by a correction factor of

(−1)l1+l2+n2+l1m1+l1n1+l1n2+l2m1+l2n1+l2n2+n1n2 . (4.84)

This sign is chosen to correspond to the orientation conventions of Fukaya
et al. [32, §8.2] for fibre products of Kuranishi spaces over manifolds. By a
long but straightforward calculation, one can show that if w′, x′, y′, z′, Ŵ ′, X̂′,
Ŷ ′, Ẑ′, S′, T ′, U ′, V ′, E′, F ′, G′, H ′, s′, t′, u′, v′, p′, q′, p̂′, q̂′, k′i, l

′
i,m

′
i, n
′
i are alter-

native choices for w, x, . . . , ni, then ΦŴ |Ŵ∩Ŵ ′ = ΦŴ ′ |Ŵ∩Ŵ ′ . Clearly this must
hold up to sign, and the sign depends only on li,mi, ni, l

′
i,m

′
i, n
′
i for i = 1, 2.

The point of (4.84) is that it yields the sign 1. Since W can be covered by
such open C∞-subschemes Ŵ , and the ΦŴ are compatible on overlaps Ŵ ∩Ŵ ′,
we can glue the isomorphisms ΦŴ to give a unique isomorphism (4.74) with
Φ|Ŵ = ΦŴ , as we have to prove. This proves the isomorphism (4.74). The last
part is immediate. This completes the proof of Theorem 4.50.

In the case in which W = X ×g,Z,h Y is a fibre product of manifolds with h
a submersion, we can describe the isomorphism Φ in (4.74) very explicitly.

Example 4.51. Suppose X,Y, Z are manifolds, g : X → Z is smooth, and
h : Y → Z is a submersion, with dimX = l, dimY = m, dimZ = n. Then
m > n. Let W = X ×g,Z,h Y be the fibre product in Man, which exists as h is
a submersion, and let e : W → X, f : W → Y be the projections from the fibre
product. Then dimW = k = l +m− n, and e is submersion, as h, g is. As for
(B.11) we have an exact sequence of vector bundles on W :

0 // (g◦e)∗(T ∗Z)
e∗(dg∗)⊕−f∗(dh∗)// e∗(T ∗X)⊕f∗(T ∗Y )

de∗⊕df∗ // T ∗W // 0, (4.85)

where de : TW → e∗(TX) is the derivative of e and de∗ : e∗(T ∗X)→ T ∗W the
dual map. Let w ∈W and set x = e(w), y = f(w) and z = g(x) = h(y).

Choose bases α1, . . . , αl for T ∗xX and γ1, . . . , γn for T ∗z Z. As h is a submer-
sion, dh∗|y : T ∗z Z → T ∗y Y is injective. Therefore we can choose β1, . . . , βm−n ∈
T ∗y Y such that dh∗(γ1), . . . ,dh∗(γn), β1, . . . , βm−n are a basis for T ∗y Y . Then ex-
actness of (4.85) implies that de∗(α1), . . . ,de∗(αl),df

∗(β1), . . . ,df∗(βm−n) are
a basis for T ∗wW . Therefore we have

ΛkT ∗wW =
〈
de∗(α1) ∧ · · · ∧ de∗(αl) ∧ df∗(β1) ∧ · · · ∧ df∗(βm−n)

〉
R,

ΛlT ∗xX =
〈
α1 ∧ · · · ∧ αl

〉
R,

ΛmT ∗y Y =
〈
dh∗(γ1) ∧ · · · ∧ dh∗(γn) ∧ β1 ∧ · · · ∧ βm−n

〉
R, and

ΛnT ∗z Z =
〈
γ1 ∧ · · · ∧ γn

〉
R, so that (ΛnT ∗z Z)∗ =

〈
(γ1 ∧ · · · ∧ γn)−1

〉
R.

(4.86)

By Proposition 4.40 we can rewrite Φ in (4.74) as an isomorphism

Φ : ΛkT ∗W −→ e∗(ΛlT ∗X)⊗ f∗(ΛmT ∗Y )⊗ (g ◦ e)∗(ΛnT ∗Z)∗.
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Using this and (4.86), one can show that Φ acts at w by

Φ|w :
[
de∗(α1) ∧ · · · ∧ de∗(αl) ∧ df∗(β1) ∧ · · · ∧ df∗(βm−n)

]
7−→ (4.87)[

α1∧· · ·∧αl
]
⊗
[
dh∗(γ1)∧· · ·∧dh∗(γn)∧β1∧· · ·∧βm−n

]
⊗
[
(γ1∧· · ·∧γn)−1

]
.

It is easy to see this is independent of the choice of bases.

Fibre products have natural commutativity and associativity properties. For
instance, for any g : X → Z and h : Y → Z there is a natural equivalence
X ×g,Z,h Y ' Y ×h,Z,g X. When we lift these to (multiple) fibre products of
oriented d-manifolds, the orientations on each side differ by some sign depending
on the virtual dimensions of the factors. The next proposition is the analogue
of Proposition 5.37 below for manifolds, and of results by Fukaya et al. [32,
Lem. 8.2.3] for Kuranishi spaces, and is proved in the same way.

Proposition 4.52. Suppose V , . . . ,Z are oriented d-manifolds, e, . . . ,h are
1-morphisms, and all fibre products below are d-transverse. Then the following
hold, in oriented d-manifolds:

(a) For g : X → Z and h : Y → Z we have

X ×g,Z,h Y ' (−1)(vdimX−vdimZ)(vdimY−vdimZ)Y ×h,Z,g X. (4.88)

In particular, when Z = ∗ so that X ×Z Y = X × Y we have

X × Y ' (−1)vdimX vdimYY ×X.

(b) For e : V → Y , f : W → Y , g : W → Z, and h : X → Z we have

V ×e,Y ,f◦πW
(
W ×g,Z,hX

)
'
(
V ×e,Y ,f W

)
×g◦πW,Z,hX.

(c) For e : V → Y , f : V → Z, g : W → Y , and h : X → Z we have

V ×(e,f),Y×Z,g×h (W ×X) '
(−1)vdimZ(vdimY+vdimW)(V ×e,Y ,gW)×f◦πV ,Z,hX.

To compute the signs in fibre product identities, a simple method is to
suppose that all the d-manifolds are manifolds, and all the 1-morphisms are
submersions, and then to use (4.87). For example, to prove (4.88), if g, h are
both submersions in Example 4.51 we can replace the basis α1, . . . , αl for T ∗xX by
dg∗(γ1), . . . ,dg∗(γn), α1, . . . , αl−n. Then for X ×Z Y , equation (4.87) becomes

Φ|w :
[
d(g ◦ e)∗(γ1) ∧ · · · ∧ d(g ◦ e)∗(γn) ∧ de∗(α1) ∧ · · · ∧ de∗(αl−n) ∧ df∗(β1)

∧ · · · ∧ df∗(βm−n)
]
7−→

[
dg∗(γ1) ∧ · · · ∧ dg∗(γn) ∧ α1 ∧ · · · ∧ αl−n

]
⊗[

dh∗(γ1) ∧ · · · ∧ dh∗(γn) ∧ β1 ∧ · · · ∧ βm−n
]
⊗
[
(γ1 ∧ · · · ∧ γn)−1

]
, (4.89)

277



and for Y ×Z X, equation (4.87) becomes

Φ|w :
[
d(g ◦ e)∗(γ1) ∧ · · · ∧ d(g ◦ e)∗(γn) ∧ df∗(β1) ∧ · · · ∧ df∗(βm−n) ∧ de∗(α1)

∧ · · · ∧ de∗(αl−n)
]
7−→

[
dh∗(γ1) ∧ · · · ∧ dh∗(γn) ∧ β1 ∧ · · · ∧ βm−n

]
⊗[

dg∗(γ1) ∧ · · · ∧ dg∗(γn) ∧ α1 ∧ · · · ∧ αl−n
]
⊗
[
(γ1 ∧ · · · ∧ γn)−1

]
. (4.90)

The right hand sides of (4.89)–(4.90) count as the same, as exchanging the
order of line bundles e∗(LT∗X), f∗(LT∗Y ) does not change signs. The left hand

sides of (4.89)–(4.90) differ by a sign (−1)(l−n)(m−n), from exchanging the (l −
n) αi terms and the (m − n) βj terms. Hence the correct sign in (4.88) is
(−1)(l−n)(m−n) = (−1)(vdimX−vdimZ)(vdimY−vdimZ), as we want.

4.7 The homotopy category of d-manifolds

Throughout Chapters 2–4 we have taken pains to stress that dSpa and dMan
are strict 2-categories, to distinguish between 1-isomorphisms and equivalences,
to be careful in our use of 2-morphisms and 2-commutative diagrams, and so on.
The aim of this final section is to point out that actually dSpa,dMan can be
reduced to ordinary categories, and our results show that these categories are
well-behaved. So for many purposes, one can treat d-spaces and d-manifolds as
forming categories rather than 2-categories.

Let C be a 2-category. As in §A.3, the homotopy category Ho(C) of C
is the category whose objects are objects of C, and whose morphisms are 2-
isomorphism classes of 1-morphisms in C. Then equivalences in C become
isomorphisms in Ho(C), 2-commutative diagrams in C become commutative
diagrams in Ho(C), and so on. Thus we can form the homotopy categories
Ho(dSpa),Ho(dMan). If f : X → Y is a 1-morphism in dSpa or dMan,
write [f ] : X → Y for the corresponding morphism in Ho(dSpa) or Ho(dMan),
where [f ] is the set of 1-morphisms g : X → Y which are 2-isomorphic to f .

We now interpret parts of Chapters 2–4 in terms of Ho(dSpa),Ho(dMan).
Firstly, in §2.4 on gluing d-spaces by equivalences, many of our results yield a
d-space unique up to equivalence, or a 1-morphism unique up to 2-isomorphism,
and these d-spaces and 1-morphisms are independent of choices of 2-morphisms.
These translate in Ho(dSpa) to:

• Proposition 2.27 implies that if X,Y are d-spaces, U ,V ⊆X are open d-
subspaces with X = U ∪V , [f ] : U → Y and [g] : V → Y are morphisms
in Ho(dSpa) with [f ]|U∩V = [g]|U∩V , then there is a unique morphism
[h] : X → Y in Ho(dSpa) with [h]|U = [f ] and [h]|V = [g].

• Theorem 2.28 implies that if X,Y are d-spaces, U ⊆ X, V ⊆ Y are
open d-subspaces, [f ] : U → V is an isomorphism in Ho(dSpa), and
Xqf Y is Hausdorff, then there exists a d-space Z unique up to canonical

isomorphism in Ho(dSpa), open d-subspaces X̂, Ŷ ⊆ Z with Z = X̂∪Ŷ ,
and isomorphisms [g] : X → X̂ and [h] : Y → Ŷ in Ho(dSpa) with
[g]|U = [h] ◦ [f ]. Theorem 2.29 implies Z = X qU=V Y is a pushout in
the category Ho(dSpa).
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• Theorems 2.30–2.33 yield results on gluing a family of d-spaces Xi, i ∈ I
by isomorphisms [eij ] : Xij → Xji in Ho(dSpa) of open d-subspaces
Xij ⊆Xi, Xji ⊆Xj .

Sections 2.5 and 4.3 discuss fibre products W = X ×g,Z,h Y in dSpa
and dMan. When a fibre product exists, it is unique up to equivalence,
and up to equivalence is independent of g,h up to 2-isomorphism. Hence,
up to isomorphism in Ho(dSpa) or Ho(dMan), W depends only on X,Y ,Z
and [g], [h]. Thus, given d-spaces X,Y ,Z and morphisms [g] : X → Z,
[h] : Y → Z in Ho(dSpa), we can define a ‘fibre product’ X×̃[g],Z,[h]Y to
be the fibre product X ×g,Z,h Y in dSpa for any representatives g,h for
[g], [h]. Then W = X×̃[g],Z,[h]Y is unique up to canonical isomorphism in
Ho(dSpa), and comes with morphisms [e] : W →X, [f ] : W → Y in Ho(dSpa)
with [g] ◦ [e] = [h] ◦ [f ].

It is important that this ‘fibre product’X×̃[g],Z,[h]Y is not a fibre product in
the category Ho(dSpa). That is, it is not characterized internally in Ho(dSpa)
by a universal property. In Remark 4.25 we showed by example that dMan
must be at least a 2-category for fibre products in dMan to have the properties
we want, and the category Ho(dMan) fails this test. Instead, we can regard
the operation (X,Y ,Z, [g], [h]) 7→X×̃[g],Z,[h]Y as being an extra structure on
Ho(dSpa), a shadow of the 2-category structure on dSpa.

In §3.1, we can pass from the 2-category vvect(X) of virtual vector bundles
to its homotopy category Ho(vvect(X)). If X is a d-manifold, we regard T ∗X
as an object in Ho(vvect(X)). If f , g : X → Y are 1-morphisms in dMan then
as in Example 3.2, the corresponding 1-morphisms Ωf ,Ωg : f∗(T ∗Y ) → T ∗X
in vvect(X) are 2-isomorphic, so [Ωf ] = [Ωg] in Ho(vvect(X)). Hence, if [f ] :
X → Y is a morphism in Ho(dMan) we may define a morphism Ω[f ] = [Ωf ] :
f∗(T ∗Y )→ T ∗X in Ho(vvect(X)), where f is any representative for [f ]. Then:

• Call a morphism [f ] : X → Y in Ho(dMan) étale if it is a local iso-
morphism. Then Theorem 3.36 implies [f ] is étale if and only if Ω[f ] :
f∗(T ∗Y )→ T ∗X is an isomorphism in Ho(vvect(X)).

• Call a morphism [f ] : X → Y in Ho(dMan) a w-submersion, submersion,
w-immersion, immersion, w-embedding or embedding if any representative
f : X → Y for [f ] in dMan is a w-submersion, . . . , embedding, respec-
tively. Proposition 4.5(ii) shows these are independent of the choice of
representative f , and so are well-defined.

• Similarly, call morphisms [f ] : X → Z, [g] : Y → Z in Ho(dMan)
d-transverse if any representatives g,h in dMan are d-transverse. Propo-
sition 4.17(b) shows this is independent of g,h, and so is well-defined.

• Section 4.3 gives sufficient conditions for ‘fibre products’ X×̃[g],Z,[h]Y to
exist in Ho(dMan), for instance, X×̃[g],Z,[h]Y exists if [g] or [h] is a
w-submersion, or if Z is a manifold.

Let [f ] : X → Y be an étale morphism in Ho(dMan). Define an isomor-
phism L[f ] : f∗(LT∗Y ) → LT∗X of orientation line bundles on X by L[f ] = Lf
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for any representative f for [f ]. Proposition 4.47(d) shows this is well defined.
The material on orientations in §4.6 then makes sense in Ho(dMan).
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5 Manifolds with corners

Most of the literature in differential geometry discusses only manifolds with-
out boundary, and a smaller proportion manifolds with boundary. Only a
few authors have seriously studied manifolds with corners (locally modelled
on [0,∞)k × Rn−k). Some references are Cerf [20], Douady [27], Jänich [52],
Laures [66], Melrose [79, 80], Monthubert [87], and the author [55]. How one
sets up manifolds with corners is not universally agreed, but depends on the
applications one has in mind. As explained in [55, Rem.s 2.11 & 3.3], there are
at least four inequivalent definitions of manifolds with corners, two definitions
of boundary, and four definitions of smooth map in use in the literature.

In [55] the author set out a theory of manifolds with corners, including a new
notion of smooth map. This theory was designed to be part of the foundations
of our theories of d-manifolds and d-orbifolds with corners. We now summarize
those parts of [55] we need. Some material and notation is new, particularly
in §5.7.

5.1 Manifolds with corners, and boundaries

Here are the principal definitions of [55, §2].

Definition 5.1. For 0 6 k 6 n, write Rnk = [0,∞)k × Rn−k. Let X be a
topological space. An n-dimensional chart on X for n > 0 is a pair (U, φ),
where U is an open subset in Rnk for some 0 6 k 6 n, and φ : U → X is a
homeomorphism with a nonempty open set φ(U).

Let A ⊆ Rm and B ⊆ Rn and α : A → B be continuous. We call α smooth
if it extends to a smooth map between open neighbourhoods of A,B in Rm,Rn.
When m = n we call α : A → B a diffeomorphism if it is a homeomorphism
and α : A→ B, α−1 : B → A are smooth.

Let (U, φ), (V, ψ) be n-dimensional charts with corners on X. We call (U, φ)
and (V, ψ) compatible if ψ−1 ◦ φ : φ−1

(
φ(U) ∩ ψ(V )

)
→ ψ−1

(
φ(U) ∩ ψ(V )

)
is a

diffeomorphism between subsets of Rn, in the sense above.
An n-dimensional atlas for X is a system {(U i, φi) : i ∈ I} of pairwise

compatible n-dimensional charts on X with X =
⋃
i∈I φ

i(U i). Any atlas
{(U i, φi) : i ∈ I} is contained in a unique maximal atlas, the set of all charts
(U, φ) on X which are compatible with (U i, φi) for all i ∈ I.

An n-dimensional manifold with corners is a second countable Hausdorff
topological space X with a maximal n-dimensional atlas. We call X a manifold
without boundary if it has a compatible atlas {(U i, φi) : i∈I} with all U i open
in Rn, and a manifold with boundary if it has a compatible atlas {(U i, φi) : i∈I}
with all U i open in Rn or [0,∞)×Rn−1. As a topological space, X is locally
compact, and paracompact.

Definition 5.2. Let X be an n-manifold. A map f : X → R is called smooth if
whenever (U, φ) is a chart on the manifold X then f ◦φ : U → R is a smooth map
between subsets of Rn,R. Write C∞(X) for the R-algebra of smooth functions
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f : X → R. For x ∈ X define the tangent space TxX by

TxX =
{
v : v is a linear map C∞(X)→ R satisfying

v(fg) = v(f)g(x) + f(x)v(g) for all f, g ∈ C∞(X)
}
,

and define the cotangent space T ∗xX = (TxX)∗. Then TxX ∼= Rn ∼= T ∗xX.

Definition 5.3. Let U ⊆ Rnk be open. For each u = (u1, . . . , un) in U , define
the depth depthU u of u in U to be the number of u1, . . . , uk which are zero.
That is, depthU u is the number of boundary faces of U containing u.

Let X be an n-manifold with corners. For x ∈ X, choose a chart (U, φ) on
the manifold X with φ(u) = x for u ∈ U , and define the depth depthX x of x
in X by depthX x = depthU u. This is independent of the choice of (U, φ). For
each k = 0, . . . , n, define the depth k stratum of X to be

Sk(X) =
{
x ∈ X : depthX x = k

}
.

A local boundary component β of X at x is a local choice of connected com-
ponent of S1(X) near x. That is, for each sufficiently small open neighbourhood
V of x in X, β gives a choice of connected component W of V ∩ S1(X) with
x ∈ W , and any two such choices V,W and V ′,W ′ must be compatible in the
sense that x ∈ (W ∩W ′). As a set, define the boundary

∂X =
{

(x, β) : x ∈ X, β is a local boundary component for X at x
}
.

Define a map iX : ∂X → X by iX : (x, β) 7→ x. Note that iX need not be
injective, as

∣∣i−1
X (x)

∣∣ = depthX x. By [55, Prop. 2.7] ∂X is naturally an (n−1)-
manifold with corners for n > 0, and ∂X = ∅ if n = 0. Thus by induction we
may form the (n− k)-manifold with corners ∂kX for k = 0, . . . , n.

Our definition of ‘boundary defining function’ is a little stronger than that
used in [55], but yields the same notion of smooth function.

Definition 5.4. Let X be a manifold with corners, and (x, β) ∈ ∂X. A bound-
ary defining function for X at (x, β) is a pair (V, b), where V is an open neigh-
bourhood of x in X and b : V → [0,∞) is a map, such that b : V → R is smooth
in the sense of Definition 5.2, and db|v : TvV → Tb(v)[0,∞) is nonzero for all

v ∈ V , and there exists an open neighbourhood U of (x, β) in i−1
X (V ) ⊆ ∂X,

with b ◦ iX |U = 0, and iX |U : U −→
{
v ∈ V : b(v) = 0

}
is a homeomorphism.

5.2 Smooth maps of manifolds with corners

In [55, Def. 3.1] we define smooth maps between manifolds with corners.

Definition 5.5. Let X,Y be manifolds with corners of dimensions m,n. A
continuous map f : X → Y is called weakly smooth if whenever (U, φ), (V, ψ)
are charts on the manifolds X,Y then

ψ−1 ◦ f ◦ φ : (f ◦ φ)−1(ψ(V )) −→ V
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is a smooth map from (f ◦ φ)−1(ψ(V )) ⊂ Rm to V ⊂ Rn, where smooth maps
between subsets of Rm,Rn are defined in Definition 5.1.

A weakly smooth map f : X → Y is called smooth if it satisfies the following
additional condition over ∂X, ∂Y . Suppose x ∈ X with f(x) = y ∈ Y , and β
is a local boundary component of Y at y. Let (V, b) be a boundary defining
function for Y at (y, β). We require that either:

(i) There exists an open x ∈ Ṽ ⊆ f−1(V ) ⊆ X such that (Ṽ , b ◦ f |Ṽ ) is a

boundary defining function for X at (x, β̃), for some unique local boundary
component β̃ of X at x; or

(ii) There exists an open x ∈W ⊆ f−1(V ) ⊆ X with b ◦ f |W = 0.

We call a smooth map f : X → Y a diffeomorphism if it has a smooth
inverse f−1 : Y → X. We call f étale if it is a local diffeomorphism. That
is, for each x ∈ X there are open x ∈ U ⊆ X and f(x) ∈ V ⊆ Y such that
f |U : U → V is a diffeomorphism.

Most other authors define smooth maps to be weakly smooth maps in the
sense above. Our notion of smooth map is related to Monthubert’s morphisms
of manifolds with corners [87, Def. 2.8] and Melrose’s b-maps [80, §1.12], but is
not the same as either. By [55, Lem. 2.8 & Th. 3.4] we have:

Theorem 5.6. Let W,X, Y, Z be manifolds with corners.

(a) If f : X → Y and g : Y → Z are smooth then g ◦ f : X → Z is smooth.

(b) The identity map idX : X → X is smooth.

(c) The map iX : ∂X → X in Definition 5.3 is a smooth. As a continuous
map, it is finite and proper.

(d) If f : W → Y and g : X → Z are smooth, the product f × g : W ×X →
Y × Z given by (f × g)(w, x) =

(
f(w), g(x)

)
is smooth.

(e) If f : X → Y and g : X → Z are smooth, the direct product (f, g) :
X → Y × Z given by (f, g)(x) =

(
f(x), g(x)

)
is smooth.

Theorem 5.6(a),(b) show that manifolds with corners form a category , which
we write Manc, with objects manifolds with corners X and morphisms smooth
maps f : X → Y . We write Manb for the full subcategory of Manc whose
objects are manifolds with boundary, and Man for the full subcategory of Manc

whose objects are manifolds without boundary, so that Man ⊂Manb ⊂Manc.

5.3 Describing how smooth maps act on corners

If f : X → Y is a smooth map of manifolds with corners, then f may relate ∂kX
to ∂lY for k, l > 0 in complicated ways. We now define some notation which
is useful for describing this. It is based on [55, §4], but [55] uses the notation

Ξf−,Ξ
f
+, ξ

f
−, ξ

f
+ in place of jf (Sf ), Tf , sf ◦ j−1

f , tf .
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Definition 5.7. Let X,Y be manifolds with corners, and f : X → Y a smooth
map. Consider f : X → Y , iX : ∂X → X, iY : ∂Y → Y as continuous maps of
topological spaces. Form the fibre products of topological spaces

∂X×f◦iX ,Y,iY ∂Y =
{(

(x, β̃), (y, β)
)
∈∂X×∂Y : f ◦iX(x, β̃)=y= iY (y, β)

}
,

X ×f,Y,iY ∂Y =
{(
x, (y, β)

)
∈ X × ∂Y : f(x) = y = iY (y, β)

}
.

By Definition 5.5, for each
(
x, (y, β)

)
∈ X×Y ∂Y , if (V, b) is a boundary defining

function for Y at (y, β), then either (i) (Ṽ , b◦f |Ṽ ) is a boundary defining function

for X at some unique (x, β̃) for open x ∈ Ṽ ⊆ f−1(V ), or (ii) b ◦ f |W = 0 for
open x ∈ W ⊆ f−1(V ). Define subsets Sf ⊆ ∂X ×Y ∂Y and Tf ⊆ X ×Y ∂Y
by
(
(x, β̃), (y, β)

)
∈ Sf in case (i), and

(
x, (y, β)

)
∈ Tf in case (ii). These are

independent of the choice of (V, b), and so are well-defined. Define maps

jf : Sf→X ×Y ∂Y, sf : Sf→∂X, tf : Tf→X, uf : Sf→∂Y, vf : Tf→∂Y

by jf :
(
(x, β̃), (y, β)

)
7→
(
x, (y, β)

)
, sf :

(
(x, β̃), (y, β)

)
7→ (x, β̃),

tf :
(
x, (y, β)

)
7→ x, uf :

(
(x, β̃), (y, β)

)
7→ (y, β), vf :

(
x, (y, β)

)
7→ (y, β).

Here [55, Prop. 4.2] are some properties of these.

Proposition 5.8. Let f : X → Y be a smooth map of manifolds with corners,
and use the notation of Definition 5.7, with n = dimX. Then

(i) Sf is an open and closed subset of ∂X ×Y ∂Y, and sf : Sf → ∂X is an
étale map of topological spaces.

(ii) jf : Sf → X ×Y ∂Y is a homeomorphism with an open and closed subset
jf (Sf ) in X ×Y ∂Y .

(iii) Tf = (X ×Y ∂Y ) \ jf (Sf ), so that Tf is open and closed in X ×Y ∂Y by
(ii). Also tf : Tf → X is an étale map of topological spaces.

(iv) Parts (i)-(iii) imply there is a unique way to make Sf into an (n−1)-
manifold with corners and Tf into an n-manifold with corners so that
sf , tf are étale maps of manifolds. Then uf , vf are also smooth maps.

5.4 Simple, semisimple and flat maps, and submersions

In the next definition, submersions are as in [55, §3]. Semisimple, flat maps f
below were called semisimple in [55, §3]. The remaining notions are new.

Definition 5.9. Let f : X → Y be a smooth map of manifolds with corners.

(i) We call f simple if sf : Sf → ∂X is bijective, in the notation of §5.3.

(ii) We call f semisimple if sf : Sf → ∂X is injective.

(iii) We call f flat if Tf = ∅.
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(iv) Suppose x ∈ X with f(x) = y, and let x ∈ Sk(X) and y ∈ Sl(Y ).
Then the derivative gives a linear map df |x : TxX → TyY , which maps
Tx(Sk(X))→ Ty(Sl(Y )). We call f a submersion if df |x : TxX → Tf(x)Y

and df |x : Tx(Sk(X))→ Tf(x)(S
l(Y )) are surjective for all x ∈ X.

(v) We call f an s-submersion if f is a simple submersion.

Simple maps are semisimple. Submersions are automatically semisimple and
flat. S-submersions are automatically simple and flat. Diffeomorphisms and
étale maps are simple and flat. If X is a manifold with corners and ∂X 6= ∅
then iX : ∂X → X is simple, but not flat. For f : X → Y to be simple,
semisimple or flat is an essentially discrete condition on the behaviour of f over
∂kX, ∂lY . We will see in §5.6 that if f is simple and flat then ∂X ∼= X ×Y ∂Y ,
and boundaries of fibre products X×g,Z,h Y are easier to understand when g or
h is (semi)simple. Projections from products are examples of (s-)submersions.

Lemma 5.10. Let X,Y be manifolds with corners. Then the projections πX :
X × Y → X and πY : X × Y → Y are submersions. If ∂Y = ∅ then πX is an
s-submersion, and if ∂X = ∅ then πY is an s-submersion.

Our next proposition shows that all (s-)submersions are locally modelled on
projections from products. It is proved in [55, Prop. 5.1] for submersions. The
extension to s-submersions is straightforward.

Proposition 5.11. Let f : X → Y be a submersion of manifolds with corners,
and x ∈ X with f(x) = y ∈ Y . Then there exist open neighbourhoods V of
x in X and W of y in Y with f(V ) = W, a manifold with corners Z, and a
diffeomorphism V ∼= W ×Z which identifies f |V : V →W with πW : W ×Z →
W . If f is an s-submersion then Z is without boundary.

Note that we need both df |x : TxX → Tf(x)Y and df |x : Tx(Sk(X)) →
Tf(x)(S

l(Y )) to be surjective in Definition 5.9(i) to make Proposition 5.11 true.

A smooth map f : X → Y induces a decomposition ∂X = ∂f+X q ∂
f
−X:

Definition 5.12. Let f : X → Y be a smooth map of manifolds with corners.
Define subsets ∂f+X, ∂

f
−X of ∂X by ∂f−X = sf (Sf ) and ∂f+X = ∂X \ ∂f−X.

Then ∂X = ∂f+X q ∂
f
−X, and ∂f+X, ∂

f
−X are open and closed subsets of ∂X

by [55, Prop. 4.3], so they are manifolds with corners.
Now suppose f is semisimple, for instance, f could be a submersion. Then

sf : Sf → ∂X is injective, with image ∂f−X, and by Proposition 5.8(iv) sf is an

étale map of manifolds, and uf : Sf → ∂Y is smooth. Hence sf : Sf → ∂f−X is

a diffeomorphism. Define smooth maps f+ : ∂f+X → Y and f− : ∂f−X → ∂Y by

f+ = f ◦ iX |∂f+X : ∂f+X −→ Y and f− = uf ◦ s−1
f : ∂f−X −→ ∂Y. (5.1)

If f is simple then ∂f−X = ∂X, so ∂f+X = ∅, and f− maps ∂X → ∂Y .

285



For example, if X is a manifold with corners, then iX : ∂X → X is sim-
ple, and (iX)− = i∂X : ∂2X → ∂X. The next proposition is proved in [55,
Prop. 2.28] for submersions; the proof for the other cases is similar.

Proposition 5.13. Let f : X → Y be a semisimple map of manifolds with
corners, and ∂f±X, f± be as in Definition 5.12. Then f+, f− are also semisimple,
with f◦iX |∂f−X = iY ◦f−. If f is simple, flat, a submersion, or an s-submersion,
then f+, f− are also simple, . . . , s-submersions, respectively.

5.5 Corners Ck(X) and the corner functors

The corners Ck(X) of a manifold with corners X are closely related to ∂kX.

Definition 5.14. Let X be an n-manifold with corners. Define the k-corners
Ck(X) of X for k = 0, . . . , n to be

Ck(X) =
{

(x,{β1, . . . , βk}) : x ∈ X, β1, . . . , βk are distinct

local boundary components for X at x
} ∼= ∂kX/Sk.

As in [55, §2], Ck(X) has the structure of an (n− k)-manifold with corners. It
is related to the kth boundary ∂kX of X as follows: by [55, Prop. 2.9] we have
a natural isomorphism

∂kX ∼=
{

(x, β1, . . . , βk) :x ∈ X, β1, . . . , βk are distinct

local boundary components for X at x
}
.

(5.2)

From (5.2) we see that ∂kX has a natural, free action of the symmetric group
Sk of permutations of {1, . . . , k} by diffeomorphisms, given by

σ : (x, β1, . . . , βk) 7−→ (x, βσ(1), . . . , βσ(k)),

and Ck(X) ∼= ∂kX/Sk. In particular, C0(X) ∼= X and C1(X) ∼= ∂X.
Define ΠX : Ck(X) → X by ΠX : (x, β1, . . . , βk) 7→ x. Then ΠX is a

smooth map of manifolds with corners. By [55, Prop. 2.13] there are natural
identifications, with the first a diffeomorphism:

∂
(
Ck(X)

) ∼= Ck(∂X) ∼=
{

(x, β1, {β2, . . . , βk+1}) : x ∈ X, β1, . . . , βk+1

are distinct local boundary components for X at x
}
.

(5.3)

If X,Y are manifolds with corners then by [55, Prop. 2.12] there is a natural
diffeomorphism:

Ck(X × Y ) ∼=
∐
i,j>0, i+j=k Ci(X)× Cj(Y ). (5.4)
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Several results in [55] show that the assignment X 7→ C(X) =
∐dimX
k=0 Ck(X)

behaves in a very functorial way. For instance, (5.4) implies that∐dimX×Y
k=0 Ck(X × Y ) ∼=

[∐dimX
i=0 Ci(X)

]
×
[∐dimY

j=0 Cj(Y )
]
. (5.5)

Since
∐dimX
k=0 Ck(X) is generally not a manifold, but rather a disjoint union of

manifolds of different dimensions, we enlarge our category of manifolds with
corners to allow such disjoint unions.

Definition 5.15. Write M̌anc for the category whose objects are disjoint
unions

∐∞
m=0Xm, where Xm is a manifold with corners of dimension m, and

whose morphisms are continuous maps f :
∐∞
m=0Xm →

∐∞
n=0 Yn, such that

f |Xm∩f−1(Yn) :
(
Xm ∩ f−1(Yn)

)
→ Yn is a smooth map of manifolds with cor-

ners for all m,n > 0. Here Xm ∩ f−1(Yn) is open and closed in Xm as f is
continuous and Yn is open and closed in

∐∞
n=0 Yn, so Xm ∩ f−1(Yn) is an m-

manifold. A map f :
∐∞
m=0Xm →

∐∞
n=0 Yn satisfying the above conditions will

be called smooth.

Definition 5.16. We will define a functor C : Manc → M̌anc called the
corner functor. On objects, if X is a manifold with corners define C(X) =∐dimX
k=0 Ck(X). This is a disjoint union of manifolds of dimensions 0, . . . ,dimX,

and so an object in M̌anc. On morphisms, if f : X → Y is a smooth map of
manifolds with corners, define C(f) : C(X)→ C(Y ) by

C(f) :
(
x, {β̃1, . . . , β̃i}

)
7−→

(
y, {β1, . . . , βj}

)
, where y = f(x),

{β1, . . . , βj}=
{
β :
(
(x, β̃l), (y, β)

)
∈ Sf , some l = 1, . . . , i

}
.

(5.6)

Write Cf,ji (X) = Ci(X) ∩ C(f)−1(Cj(Y )) and Cji (f) = C(f)|Cf,ji (X) : Cf,ji (X)

→ Cj(Y ) for all i, j. Note that Cf,00 (X) = C0(X) ∼= X and C0(Y ) ∼= Y , and
these isomorphisms identify C0

0 (f) : C0(X)→ C0(Y ) with f : X → Y .

Here is [55, Th. 4.7], except for (vii) which we have expanded. Parts (i)–(iii)
show that C is a functor.

Theorem 5.17. Let W,X, Y, Z be manifolds with corners.

(i) If f : X → Y is smooth then C(f) : C(X)→ C(Y ) is smooth in the sense

of Definition 5.15. Equivalently, Cf,ji (X) is open and closed in Ci(X) and

Cji (f) : Cf,ji (X)→ Cj(Y ) is a smooth map of manifolds with corners for
all i = 0, . . . ,dimX and j = 0, . . . ,dimY .

(ii) If f : X → Y and g : Y → Z are smooth then C(g ◦ f) = C(g) ◦ C(f) :
C(X)→ C(Z).

(iii) C(idX) = idC(X) : C(X)→ C(X).

(iv) The diffeomorphisms Ck(∂X) ∼= ∂Ck(X) in (5.3) identify

C(iX) :
∐
k>0 Ck(∂X) −→

∐
k>0 Ck(X) with

i∐
k>0 Ck(X) :=

∐
k>0 iCk(X) =

∐
k>0 ∂Ck(X) −→

∐
k>0 Ck(X).
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(v) Let f : W → Y and g : X → Z be smooth maps. Then (5.5) gives

C(W ×X) ∼= C(W )× C(X) and C(Y × Z) ∼= C(Y )× C(Z). (5.7)

These identify C(f × g) : C(W × X) → C(Y × Z) with C(f) × C(g) :
C(W )× C(X)→ C(Y )× C(Z).

(vi) Let f : X → Y and g : X → Z be smooth maps. Then (5.7) identifies
C
(
(f, g)

)
: C(X)→ C(Y ×Z) with

(
C(f), C(g)

)
: C(X)→ C(Y )×C(Z).

(vii) Let f : X → Y be a semisimple smooth map. Then C(f) maps Ck(X)→∐k
l=0 Cl(Y ) for all k > 0. The natural diffeomorphisms C1(X) ∼= ∂X,

C0(Y ) ∼= Y and C1(Y ) ∼= ∂Y identify Cf,01 (X) ∼= ∂f+X, C
0
1 (f) ∼= f+,

Cf,11 (X) ∼= ∂f−X and C1
1 (f) ∼= f−. If f is simple then C(f) maps

Ck(X)→ Ck(Y ) for all k > 0.

As in [55, §4], there is also a second way to define a functor Ĉ : Manc →
M̌anc with almost the same properties. For X a manifold with corners define
Ĉ(X) = C(X) =

∐dimX
k=0 Ck(X), and for f : X → Y a smooth map of manifolds

with corners define

Ĉ(f) :
(
x, {β̃1, . . . , β̃i}

)
7−→

(
y, {β1, . . . , βj}

)
, where y = f(x),

{β1, . . . , βj}=
{
β :
(
(x, β̃l), (y, β)

)
∈ Sf , l = 1, . . . , i

}
∪
{
β :
(
x, (y, β)

)
∈Tf

}
.

(5.8)

Then the analogues of Theorem 5.17 and Theorem 5.26 below hold for Ĉ, with
the exception of Theorem 5.17(iv),(vii). If f is flat then Ĉ(f) = C(f). One way
to understand the relationship between C and Ĉ is that

C(f) :
(
x, {β̃1, . . . , β̃i}

)
7−→

(
y, {β1, . . . , βj}

)
if and only if

Ĉ(f) :
(
x, {β̃ : (x, β̃) ∈ ∂X} \ {β̃1, . . . , β̃i}

)
7−→(

y, {β : (y, β) ∈ ∂Y } \ {β1, . . . , βj}
)
.

(5.9)

That is, C, Ĉ are related by taking complements of subsets in i−1
X (x), i−1

Y (y).
Corners are also useful for understanding the fixed point locus XΓ of a group

Γ acting on a manifold with corners X. The next result, which is new, says that
XΓ lies in M̌anc and C(XΓ) ∼= C(X)Γ, though in general ∂(XΓ) 6∼= (∂X)Γ. To
prove it, we consider the local form of the Γ-action on X: near a fixed point x of
Γ, X looks locally like [0,∞)k×Rm−k near 0, where Γ acts on [0,∞)k×Rm−k by
permuting the coordinates x1, . . . , xk in [0,∞)k, and linearly on Rm−k. Then
XΓ near x looks locally like [0,∞)l × Rn−l near 0, where l is the number of
Γ-orbits in {1, . . . , k} under the permutation action of Γ on x1, . . . , xk, and
n− l = dim(Rm−k)Γ. We will use Proposition 5.18 to help understand orbifold
strata of orbifolds with corners in §8.9.

Proposition 5.18. Suppose X is a manifold with corners, Γ a finite group,
and r : Γ → Aut(X) an action of Γ on X by diffeomorphisms. Applying the
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corner functor C of Definition 5.16 gives an action C(r) : Γ → Aut(C(X)) of
Γ on C(X) by diffeomorphisms. Write XΓ, C(X)Γ for the subsets of X,C(X)
fixed by Γ, and jX,Γ : XΓ → X for the inclusion. Then:

(a) XΓ has the structure of an object in M̌anc (a disjoint union of manifolds
with corners of different dimensions, as in Definition 5.15) in a unique
way, such that jX,Γ : XΓ → X is an embedding. This jX,Γ is flat, but
need not be (semi)simple.

(b) By (a) we have a smooth map C(jX,Γ) : C(XΓ)→ C(X). This C(jX,Γ) is
a diffeomorphism C(XΓ)→ C(X)Γ. As jX,Γ need not be simple, C(jX,Γ)
need not map Ck(XΓ)→ Ck(X) for k > 0.

(c) By (b), C(jX,Γ) identifies C1(XΓ) ∼= ∂(XΓ) with a subset of C(X)Γ ⊆
C(X). This gives the following description of ∂(XΓ) :

∂(XΓ) ∼=
{

(x, {β1, . . . , βk}) ∈ Ck(X) : x ∈ XΓ, k > 1, β1, . . . , βk

are distinct local boundary components for X at x,

and Γ acts transitively on {β1, . . . , βk}
}
.

(5.10)

(d) Now suppose Y is a manifold with corners with an action of Γ, and f :
X → Y is a Γ-equivariant smooth map. Then XΓ, Y Γ are objects in M̌anc

by (a), and fΓ := f |XΓ : XΓ → Y Γ is a morphism in M̌anc.

Here is a simple example:

Example 5.19. Let Γ = {1, σ} with σ2 = 1, so that Γ ∼= Z2, and let Γ
act on X = [0,∞)2 by σ : (x1, x2) 7→ (x2, x1). Then XΓ =

{
(x, x) : x ∈

[0,∞)
} ∼= [0,∞), a manifold with corners, and the inclusion jX,Γ : XΓ → X is

jX,Γ : [0,∞) → [0,∞)2, jX,Γ : x 7→ (x, x), a smooth, flat embedding, which is
not semisimple. We have ∂X = ∂

(
[0,∞)2

) ∼= [0,∞)q[0,∞), where Γ acts freely
on ∂X by exchanging the two copies of [0,∞). Hence (∂X)Γ = ∅, but ∂(XΓ) is
a point ∗, so in this case (∂X)Γ 6∼= ∂(XΓ). Also C2(X) =

{(
0, {{x1 = 0}, {x2 =

0}}
)}

is a single point, which is Γ-invariant, and C(jX,Γ) : C(XΓ) → C(X)Γ

identifies (0, {{x = 0}}) ∈ C1(XΓ) ∼= ∂X with this point in C2(X)Γ.

5.6 Transversality and fibre products

In [55, Def. 6.1 & Th. 6.4] we give conditions for fibre products to exist in Manc.

Definition 5.20. Let X,Y, Z be manifolds with corners and g : X → Z, h :
Y → Z be smooth maps. We call g, h transverse if the following holds. Suppose
x ∈ X, y ∈ Y and z ∈ Z with g(x) = z = h(y), so that there are induced
linear maps of tangent spaces dg|x : TxX → TzZ and dh|y : TyY → TzZ.
Let x ∈ Sj(X), y ∈ Sk(Y ) and z ∈ Sl(Z), so that dg|x maps Tx(Sj(X)) →
Tz(S

l(Z)) and dh|y maps Ty(Sk(Y ))→ Tz(S
l(Z)). Then we require that TzZ =

dg|x(TxX) + dh|y(TyY ) and Tz(S
l(Z)) = dg|x(Tx(Sj(X))) + dh|y(Ty(Sk(Y )))

for all such x, y, z. If one of g, h is a submersion then g, h are transverse.
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Theorem 5.21. Suppose X,Y, Z are manifolds with corners and g : X → Z,
h : Y → Z are transverse smooth maps. Then there exists a fibre product
W = X ×g,Z,h Y in the category Manc of manifolds with corners, which is
given by an explicit construction, as follows.

As a topological space W =
{

(x, y) ∈ X×Y : g(x) = h(y)
}
, with the topology

induced by the inclusion W ⊆ X×Y, and the projections πX : W → X and πY :
W → Y map πX : (x, y) 7→ x, πY : (x, y) 7→ y. Let n = dimX+ dimY −dimZ,
so that n > 0 if W 6= ∅. The maximal atlas on W is the set of all charts (U, φ),
where U ⊆ Rnk is open and φ : U → W is a homeomorphism with a nonempty
open set φ(U) in W, such that πX ◦ φ : U → X and πY ◦ φ : U → Y are smooth
maps, and for all u ∈ U with φ(u) = (x, y), the following induced linear map of
real vector spaces is injective:

d(πX ◦ φ)|u ⊕ d(πY ◦ φ)|u : TuU = Rn −→ TxX ⊕ TyY.

In the general case of Theorem 5.21, the description of ∂W in terms of
∂X, ∂Y, ∂Z is rather complicated. Here [55, Prop.s 6.6–6.8] are three cases in
which the expression simplifies. For the first, [55, Prop. 6.6] is proved only for
f a submersion, and hence semisimple and flat, but the extension to the other
cases is straightforward.

Proposition 5.22. Let f : X → Y be a smooth map of manifolds with corners.

(a) Suppose f is semisimple and flat, for instance, f could be a submersion.
Then f, iY are transverse, and there is a canonical diffeomorphism

∂f−X
∼= X ×f,Y,iY ∂Y, (5.11)

which identifies f− : ∂f−X → ∂Y and π∂Y : X ×Y ∂Y → ∂Y .

(b) Suppose f is simple and flat. Then (5.11) becomes ∂X ∼= X ×f,Y,iY ∂Y .

Proposition 5.23. Let X,Y be manifolds with corners, Z a manifold without
boundary, and g : X → Z, h : Y → Z be transverse smooth maps. Then
g ◦ iX : ∂X → Z, h : Y → Z are transverse, and g : X → Z, h ◦ iY : ∂Y → Z
are transverse, and there is a canonical diffeomorphism

∂
(
X ×g,Z,h Y

) ∼= (∂X ×g◦iX ,Z,h Y )q (X ×g,Z,h◦iY ∂Y ). (5.12)

Proposition 5.24. Let X,Y, Z be manifolds with corners, g : X → Z a sub-
mersion and h : Y → Z smooth. Then there is a canonical diffeomorphism

∂
(
X ×g,Z,h Y

) ∼= (∂g+X ×g+,Z,h Y
)
q
(
X ×g,Z,h◦iY ∂Y

)
. (5.13)

If both g, h are submersions there is also a canonical diffeomorphism

∂
(
X ×g,Z,h Y

) ∼=(
∂g+X ×g+,Z,h Y

)
q
(
X ×g,Z,h+

∂h+Y
)
q
(
∂g−X ×g−,∂Z,h− ∂h−Y

)
.

(5.14)
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Equation (5.13) also holds if g, h are transverse and g is semisimple, and (5.14)
also holds if g, h are transverse and both are semisimple.

In [55, Def. 6.10] we also define a stronger notion of transversality.

Definition 5.25. Let X,Y, Z be manifolds with corners and g : X → Z, h :
Y → Z be smooth maps. We call g, h strongly transverse if they are transverse,
and whenever there are points in Cj(X), Ck(Y ), Cl(Z) with

C(g)(x, {β1, . . . , βj}) = C(h)(y, {β̃1, . . . , β̃k}) = (z, {β̇1, . . . , β̇l})

we have either j + k > l or j = k = l = 0. Some sufficient conditions for g, h to
be strongly transverse are that one of g, h is a submersion, or g, h are transverse
and ∂2Z = ∅, or g, h are transverse and one of g, h is semisimple.

In the situation of Theorem 5.21 we have a Cartesian square in Manc:

W πY
//

πX��

Y
h ��

X
g // Z,

which induces

a commutative
square in M̌anc

C(W )
C(πY )

//

C(πX)��

C(Y )
C(h) ��

C(X)
C(g) // C(Z).

(5.15)

It is natural to wonder whether the right hand square in (5.15) is Cartesian.
By [55, Th. 6.11], the answer is yes if and only if g, h are strongly transverse:

Theorem 5.26. Let X,Y, Z be manifolds with corners, and g : X → Z, h :
Y → Z be strongly transverse smooth maps, and write W for the fibre product
X ×g,Z,h Y in Theorem 5.21. Then there is a canonical diffeomorphism

Ci(W ) ∼=
∐

j,k,l>0:i=j+k−l

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y ) (5.16)

for all i > 0, where the fibre products are all transverse and so exist. Hence

C(W ) ∼= C(X)×C(g),C(Z),C(h) C(Y ). (5.17)

Here the right hand square in (5.15) induces a map from the left hand side of
(5.17) to the right hand side, which gives the identification (5.17).

Since ∂W ∼= C1(W ), equation (5.16) when i = 1 becomes

∂W ∼=
∐

j,k,l>0:j+k=l+1

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y ). (5.18)

Propositions 5.23 and 5.24 may be deduced from this. In [55, Ex. 6.12] we give
an example of g, h which are transverse, but not strongly transverse.

Example 5.27. Define smooth maps g : [0,∞) → [0,∞)2 by g(x) = (x, 2x)
and h : [0,∞)→ [0,∞)2 by h(y) = (2y, y). Then f(0) = g(0) = (0, 0). We have

dg|0
(
T0[0,∞)

)
+ dh|0

(
T0[0,∞)

)
= 〈(1, 2)〉R + 〈(2, 1)〉R = R2 = T(0,0)[0,∞)2,

dg|0
(
T0

(
S0([0,∞))

))
+ dh|0

(
T0

(
S0([0,∞))

))
= {0} = T(0,0)

(
S0([0,∞)2)

)
,
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so g, h are transverse. However we have

C(g)
(
0,
{
{x = 0}

})
= C(h)

(
0,
{
{y = 0}

}
) =

(
(0, 0),

{
{x = 0}, {y = 0}

})
,

with j = k = 1 and l = 2, so g, h are not strongly transverse. The fibre product
W = [0,∞)f,[0,∞)2,g[0,∞) is a single point {0}. In (5.16) when i = 0 the l.h.s.
is one point, and the r.h.s. is two points, one from j = k= l= 0 and one from
j=k=1, l=2, so (5.16) does not hold. For i 6=0, both sides of (5.16) are empty.

5.7 Immersions, embeddings, and submanifolds

We define three kinds of immersions and embeddings for manifolds with corners,
and hence six kinds of submanifolds.

Definition 5.28. Let f : X → Y be a smooth map of manifolds with corners.

(i) We call f an immersion if df |x : TxX → Tf(x)Y is injective for all x ∈ X.

(ii) We call f an embedding if f is an immersion and f : X → f(X) is a
homeomorphism with its image, so in particular f is injective.

(iii) We call f an s-immersion or s-embedding if f is simple and an immersion
or embedding.

(iv) We call f an sf-immersion or sf-embedding if f is simple and flat and an
immersion or embedding.

If f : X → Y is an immersion, . . . , sf-embedding, then we will also call X
an immersed or s-immersed or sf-immersed or embedded or s-embedded or sf-
embedded submanifold of Y ; often one leaves the map f implicit. For (s- or sf-)
embedded submanifolds, X, f are determined up to isomorphism by the image
f(X) in Y , so we can consider such submanifolds to be subsets of Y . But for
(s- or sf-)immersed submanifolds the image f(X) may not determine X, f , so it
is better to think of an immersed submanifold as just being an immersion.

Example 5.29. (a) The inclusion i : [0,∞) ↪→ R is an embedding. It is
semisimple and flat, but not simple, as si : Si → ∂[0,∞) maps ∅ → {0}, and is
not surjective, so i is not an s- or sf-embedding. Thus [0,∞) is an embedded
submanifold of R, but not an s- or sf-embedded submanifold.

(b) The map f : [0,∞)→ [0,∞)2 mapping f : x 7→ (x, x) is an embedding. It is
flat, but not semisimple, as sf : Sf → ∂[0,∞) maps two points to one point, and
is not injective. Hence f is not an s- or sf-embedding, and

{
(x, x) : x ∈ [0,∞)

}
is an embedded submanifold of [0,∞)2, but not s- or sf-embedded.

(c) The inclusion i : {0} ↪→ [0,∞) has di|0 injective, so it is an embedding. It is
simple, but not flat, as Ti =

{(
0, (0, {x = 0})

)}
6= ∅. Thus i is an s-embedding,

but not an sf-embedding. Hence {0} is an s-embedded but not sf-embedded
submanifold of [0,∞).

(d) Let X be a manifold with corners with ∂X 6= ∅. Then iX : ∂X → X
is an immersion. Also siX : SiX → ∂2X is a bijection, so iX is simple, but
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TiX
∼= ∂X 6= ∅, so iX is not flat. Hence iX is an s-immersion, but not an

sf-immersion. If ∂2X = ∅ then iX is an s-embedding, but not an sf-embedding.

(e) Let f : [0,∞) → R be smooth. Define g : [0,∞) → [0,∞) × R by g(x) =
(x, f(x)). Then g is an sf-embedding, and Γf =

{
(x, f(x) : x ∈ [0,∞)

}
is an

sf-embedded submanifold of [0,∞)× R.

The proof of the next proposition is straightforward.

Proposition 5.30. Let f : X → Y be an s-immersion of manifolds with cor-
ners, and x ∈ X with f(x) = y ∈ Y . Then there exist open neighbourhoods
V of x in X and W of y in Y with f(V ) ⊆ W, an open neighbourhood Z of
0 in Rnk , and a diffeomorphism W ∼= V × Z which identifies f |V : V → W
with idV × 0 : V → V × Z mapping idV × 0 : v 7→ (v, 0). Hence there
is a diffeomorphism V ∼= W ×g,Rnk ,0 ∗, where g : W → Rnk is identified with
πZ : V × Z → Z ⊆ Rnk , and the fibre product W ×Rnk ∗ in Manc is transverse.

If f is an sf-immersion then k = 0, so V ∼= W ×g,Rn,0 ∗.

In Theorem 4.28 we recalled results of Whitney [106] on existence of immer-
sions and embeddings f : X → Rn when X is an m-manifold without boundary.
Consider how these should be generalized to manifolds with corners. Then we
have three kinds of immersions and embeddings. The proof of Theorem 4.28
essentially unchanged yields:

Theorem 5.31. (a) Let X be an m-manifold with corners and n > 2m. Then
a generic smooth map f : X → Rn is an immersion.

(b) Let X be an m-manifold with corners and n > 2m + 1. Then there exists
an embedding f : X → Rn, and we can choose such f with f(X) closed in Rn.
Generic smooth maps f : X → Rn are embeddings.

For s- or sf-immersions and s- or sf-embeddings of manifolds with corners,
the situation is more complicated. If ∂X 6= ∅ then no map f : X → Rn can be
an s-immersion or s-embedding, as ∂Rn = ∅ implies Sf = ∅, so sf : Sf → ∂X
cannot be surjective. Another obvious possibility is to look for s-immersions
and s-embeddings f : X → Rnk = [0,∞)k ×Rn−k for k > 0. But these need not
exist either, as the next example shows.

Example 5.32. Consider the teardrop T =
{

(x, y) ∈ R2 : x > 0, y2 6 x2−x4
}

,
shown in Figure 5.1. It is a compact 2-manifold with corners, and we may choose
a diffeomorphism φ : [0, 1]→ ∂T .

Suppose for a contradiction that f : T → Rnk is an s-immersion with f(0, 0) =
(0, . . . , 0). At (0, 0) ∈ T we have i−1

T (0, 0) = {φ(0), φ(1)}. Also i−1
Rnk

(0, . . . , 0) =

{x′1, . . . , x′k}, where x′i ∈ ∂Rnk is the local boundary component {xi = 0} at
(0, . . . , 0) for i = 1, . . . , k. As f is an s-immersion, sf : Sf → ∂T is surjective,
so (φ(0), x′i), (φ(1), x′j) ∈ Sf for some i, j = 1, . . . , k, and i 6= j as jf is injective.

A smooth map f : X → Y of manifolds with corners maps each connected
component of Sk(X) to some connected component of some Sl(Y ). Hence
f ◦φ|(0,1) : (0, 1)→ Rnk must map into a single connected component of Sl(Rnk ),

293



x

y

• //oo

OO

��

Figure 5.1: The teardrop, a 2-manifold with corners.

as (0, 1) is connected. The connected components of Sl(Rnk ) for l = 0, . . . , k are
the 2k subsets for which either xa = 0, or xa > 0, for each a = 1, . . . , k. Using
(φ(0), x′i), (φ(1), x′j) ∈ Sf we find that f ◦ φ|(0,1) maps to xi = 0, xj > 0 near
0 and to xi > 0, xj = 0 near 1, which lie in different connected components of
Sl(Rnk ), a contradiction. Hence there do not exist s-immersions or s-embeddings
f : T → Rnk for any n, k.

However, for manifolds with boundary, there do exist sf-immersions and sf-
embeddings (and hence s-immersions and s-embeddings) into [0,∞)× Rn−1:

Theorem 5.33. (a) Let X be an m-manifold with boundary and n > 2m.
Then there exist sf-immersions f : X → Rn1 = [0,∞) × Rn−1, and a generic
simple flat map f : X → Rn1 is an sf-immersion.

(b) Let X be an m-manifold with boundary and n > 2m+ 1. Then there exist
sf-embeddings f : X → Rn1 , and we can choose such f with f(X) closed in Rn1 .
Generic simple flat maps f : X → Rn1 are sf-embeddings.

To prove Theorem 5.33, first note that a map f = (f1, . . . , fn) : X → Rn1
is smooth, simple and flat if and only if f1, . . . , fn are weakly smooth, and
f1|∂X = 0, and f1|X◦ > 0, and the inward normal derivative of f1 is positive at
each point of ∂X. We can construct such a function f1 by combining boundary
defining functions at each point of ∂X using a partition of unity, and extending
by an arbitrary smooth positive function away from ∂X. Hence simple flat maps
f : X → Rn1 exist for any n > 1. Similar considerations to Theorems 4.28 and
5.31 now imply that a generic simple flat map f is an sf-immersion if n > 2m,
and an sf-embedding if n > 2m+ 1.

5.8 Orientations

Finally we discuss orientations on manifolds with corners, following [55, §7].
There are several equivalent ways to define orientations; our way is chosen to
be compatible with our definition of orientations on d-manifolds in §4.5–§4.6.

Definition 5.34. Let X be an n-manifold with corners, and L → X a (real)
line bundle. Write OX for the trivial line bundle R ×X → X. An orientation
ω on L is an equivalence class [τ ] of isomorphisms of line bundles τ : OX → L,
where τ, τ ′ are equivalent if τ ′ = τ · c for some smooth c : X → (0,∞). If
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ω = [τ ] is an orientation, we write −ω for the opposite orientation [−τ ], where
if τ : OX → L is an isomorphism then −τ : OX → L is also an isomorphism.

Let E → X be a (real) vector bundle of rank k over X. Then the top
exterior power ΛkE is a line bundle. An orientation ωE on the fibres of E is
an orientation on ΛkE. Then we call (E,ωE) an oriented vector bundle.

Here is an alternative way to say all this. If L → X is a line bundle, there
is a 1-1 correspondence between isomorphisms τ : OX → L and nonvanishing
sections s ∈ C∞(L) by s = τ(1). Given an orientation ω on L, we call a
nonvanishing section s positive if ω = [τ ] for τ the isomorphism with τ(1) = s.

If E → X is an oriented vector bundle of rank k, then locally on X we
may choose a basis of sections (e1, . . . , ek) for E, and then e1 ∧ · · · ∧ ek is a
nonvanishing local section of ΛkE. If e1 ∧ · · · ∧ ek is a positive section, w.r.t.
the orientation on ΛkE, then we call (e1, . . . , ek) an oriented basis for E.

If E → X, F → X are vector bundles on X of ranks k, l and ωE , ωF are
orientations on the fibres of E,F , we define the direct sum orientation ωE⊕F =
ωE ⊕ ωF on the fibres of E ⊕ F by saying that if (e1, . . . , ek) and (f1, . . . , fl)
are oriented bases for E and F locally on X, then (e1, . . . , ek, f1, . . . , fl) is an
oriented basis for E ⊕ F locally on X. Note that the direct sum orientations
ωE⊕F on E ⊕ F and ωF⊕E on F ⊕E differ by a sign (−1)kl, under the natural
isomorphism E ⊕ F ∼= F ⊕ E.

An orientation ωX on X is an orientation on the fibres of the cotangent
bundle T ∗X, that is, an orientation on the line bundle ΛnT ∗X. Then we call
(X,ωX) an oriented manifold. Usually we suppress the orientation ωX , and just
refer to X as an oriented manifold. When X is an oriented manifold, we write
−X for X with the opposite orientation.

We need orientation conventions to say how to orient boundaries ∂X and
fibre products X ×Z Y of oriented manifolds X,Y, Z. Our conventions [55,
Conv. 7.2] follow those of Fukaya et al. [32, Conv. 45.1].

Convention 5.35. (a) Let (X,ωX) be an oriented manifold with corners. De-
fine ω∂X to be the unique orientation on ∂X such that

i∗X(TX) ∼= Rout ⊕ T (∂X) (5.19)

is an isomorphism of oriented vector bundles over ∂X, where i∗X(TX), T (∂X)
are oriented by ωX , ω∂X , and Rout is oriented by an outward-pointing normal
vector to ∂X in X, and the r.h.s. of (5.19) has the direct sum orientation.

(b) Let (X,ωX), (Y, ωY ), (Z, ωZ) be oriented manifolds with corners, and g :
X → Z, h : Y → Z be transverse smooth maps, so that a fibre product
W = X ×g,Z,h Y exists in Manc by Theorem 5.21. Then we have an exact
sequence of vector bundles over W

0 // TW
dπX⊕dπY// π∗X(TX)⊕ π∗Y (TY )

π∗X(dg)−π∗Y (dh)// (g ◦ πX)∗(TZ) // 0. (5.20)

Choosing a splitting of (5.20) induces an isomorphism of vector bundles

TW ⊕ (g ◦ πX)∗(TZ) ∼= π∗X(TX)⊕ π∗Y (TY ). (5.21)
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Define ωW to be the unique orientation on W such that the direct sum orienta-
tions in (5.21) induced by ωW , ωZ , ωX , ωY differ by a factor (−1)dimY dimZ .

Here are two ways to rewrite this convention in special cases. Firstly, suppose
g is a submersion. Then dg : TX → g∗(TZ) is surjective, so by splitting the

exact sequence 0→ Ker dg → TX
dg−→ g∗(TZ)→ 0 we obtain an isomorphism

TX ∼= Ker dg ⊕ g∗(TZ). (5.22)

Give the vector bundle Ker dg → X the unique orientation such that (5.22) is an
isomorphism of oriented vector bundles, where TX, g∗(TZ) are oriented using
ωX , ωZ . As g : X → Z is a submersion so is πY : W → Y , and dπX induces an
isomorphism Ker(dπY )→ π∗X(Ker dg). Thus we have an exact sequence

0 // π∗X(Ker dg)
(dπX)−1

// TW
dπY // π∗Y (TY ) // 0.

Splitting this gives an isomorphism

TW ∼= π∗X(Ker dg)⊕ π∗Y (TY ). (5.23)

The orientation on W makes (5.23) into an isomorphism of oriented vector
bundles, using ωY and the orientation on Ker dg to orient the right hand side.

Secondly, let h be a submersion. Then as for (5.22)–(5.23) we have isomor-
phisms

TY ∼= h∗(TZ)⊕Ker dh and TW ∼= π∗X(TX)⊕ π∗Y (Ker dh). (5.24)

We use the first equation of (5.24) to define an orientation on the fibres of
Ker dh, and the second to define an orientation on W .

Given any canonical diffeomorphism between expressions in boundaries and
fibre products of oriented manifolds with corners, we can use Convention 5.35 to
define orientations on each side. These will be related by some sign ±1, which
we can compute. Here [55, Prop. 7.4] is how to add signs to (5.11)–(5.14).

Proposition 5.36. In Propositions 5.22–5.24, suppose X,Y, Z are oriented.
Then in oriented manifolds, equations (5.11)–(5.14) respectively become

∂f−X
∼=(−1)dimX+dimYX ×f,Y,iY ∂Y, (5.25)

∂
(
X×g,Z,hY

)∼=(∂X×g◦iX ,Z,hY )q(−1)dimX+dimZ
(
X×g,Z,h◦iY ∂Y

)
, (5.26)

∂
(
X×g,Z,hY

)∼=(∂g+X×g+,Z,hY
)
q(−1)dimX+dimZ

(
X×g,Z,h◦iY ∂Y

)
, (5.27)

∂
(
X ×g,Z,h Y

)∼=(∂g+X ×g+,Z,h Y
)
q(−1)dimX+dimZ

(
X×h,Z,h+

∂h+Y
)

q
(
∂g−X ×g−,∂Z,h− ∂h−Y

)
.

(5.28)

Here [55, Prop. 7.5] are some more identities involving only fibre products:
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Proposition 5.37. (a) If g : X → Z, h : Y → Z are transverse smooth maps
of oriented manifolds with corners then in oriented manifolds we have

X ×g,Z,h Y ∼= (−1)(dimX−dimZ)(dimY−dimZ)Y ×h,Z,g X. (5.29)

(b) If e : V → Y, f : W → Y, g : W → Z, h : X → Z are smooth maps of
oriented manifolds with corners then in oriented manifolds we have

V ×e,Y,f◦πW
(
W ×g,Z,h X

) ∼= (V ×e,Y,f W )×g◦πW ,Z,h X, (5.30)

provided all four fibre products are transverse.
(c) If e : V → Y, f : V → Z, g : W → Y, h : X → Z are smooth maps of
oriented manifolds with corners then in oriented manifolds we have

V ×(e,f),Y×Z,g×h (W ×X) ∼=
(−1)dimZ(dimY+dimW )(V ×e,Y,g W )×f◦πV ,Z,h X,

(5.31)

provided all three fibre products are transverse.

Equations (5.26), (5.30), (5.31) can be found in Fukaya et al. [32, Lem. 45.3]
for the case of Kuranishi spaces.
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6 D-spaces with corners

We now define 2-categories dSpab,dSpac of d-spaces with boundary, and with
corners. In Chapter 7 we will define d-manifolds with boundary or corners as
full 2-subcategories of dSpab,dSpac.

One might think that the d-spaces of Chapter 2 are already sufficiently gen-
eral, and that we could just define d-manifolds with corners as a 2-subcategory
of dSpa. However, this turns out not to be a good idea. Recall from Chap-
ter 5 that our notion of smooth maps f : X → Y of manifolds with corners
is quite subtle, and includes compatibility conditions over ∂X, ∂Y . Because of
this, we saw in Corollary B.27 that the functors FC∞Sch

Manb : Manb → C∞Sch

and FC∞Sch
Manc : Manc → C∞Sch are faithful, but not full.

Thus, if we regard manifolds with corners as C∞-schemes, then we get the
wrong notion of smooth map. Similarly, if we regarded d-manifolds with corners
as d-spaces then we would get the wrong notion of 1-morphism. Also, there is
no well-behaved notion of boundary of a general d-space, but our d-spaces with
corners do have boundaries with all the properties we want.

6.1 The definition of d-spaces with corners

Definitions 6.1, 6.2 and 6.3 will define objects, 1-morphisms and 2-morphisms
in the 2-category of d-spaces with corners dSpac. It is modelled on properties
of manifolds with corners in Chapter 5.

Definition 6.1. A d-space with corners is a quadruple X = (X,∂X, iX, ωX),
where X = (X,O′X , EX , ıX , X) and ∂X = (∂X,O′∂X , E∂X , ı∂X , ∂X) are d-
spaces, and iX = (iX, i

′
X, i
′′
X) : ∂X → X is a 1-morphism of d-spaces, and ωX

is defined in (d) below, satisfying the following conditions (a)–(f):

(a) iX : ∂X → X is a proper morphism of C∞-schemes.

(b) i′′X : i∗X(EX)→ E∂X is an isomorphism in qcoh(∂X).

(c) Regard the point ∗ and [0,∞) as manifolds with boundary, and 0 : ∗ →
[0,∞) mapping 0 : ∗ 7→ 0 as a smooth map. Write [0,∞),∗,0 =

FdSpa
Manb

(
[0,∞), ∗, 0

)
. Then ∗ is a terminal object in dSpa, and 0 : ∗ →

[0,∞) is a 1-morphism in dSpa. Let x′ ∈ ∂X with iX(x′) = x ∈ X.
Then there should exist open x′ ∈ U ⊆ ∂X and x ∈ V ⊆ X with
iX(U) ⊆ V and a 1-morphism b : V → [0,∞) in dSpa such that
b ◦ iX|U = 0 ◦ π as 1-morphisms U → [0,∞), where π : U → ∗ is
the unique morphism, and the following diagram is 2-Cartesian in dSpa:

U π
//

iX|U�� � �� �
HP

id0◦π

∗
0 ��

V
b // [0,∞).

(6.1)

We also require that the morphism b2 : b∗(F [0,∞)) → FX |V in qcoh(V )
should have a left inverse. That is, there should exist β : FX |V →
b∗(F [0,∞)) with β ◦ b2 = idb∗(F [0,∞)).
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Before giving (d)–(f), we pause to examine some implications of (a)–(c).
First note that (c) implies that the continuous map iX : ∂X → X locally
embeds ∂X as a closed set in X. Hence the fibres i−1

X (x) for x ∈ X have the
discrete topology. But i−1

X (x) is compact, as iX is proper by (a). Therefore
i−1
X (x) is finite for each x ∈ X, that is, iX : ∂X → X is a finite morphism.

In (c), Proposition 2.41 shows the following is split exact in qcoh(U):

0 // iX|
∗
U(EX)⊕

(0 ◦ π)∗(F [0,∞))

 i′′X|U 0

−iX|∗U(φX)
iX|∗U(b2)◦
IiX|U,b(F [0,∞))


// E∂X |U⊕
iX|∗U(FX)

φ∂X |U
i2X|U

T
// F∂X |U // 0.

Since i′′X|U is an isomorphism by (b) and IiX|U,b(F [0,∞)) is an isomorphism, this
implies that the following is split exact in qcoh(U):

0 // iX|∗U ◦ b∗(F [0,∞))
iX|∗U(b2)

// iX|∗U(FX)
i2X|U // F∂X |U // 0. (6.2)

Also, as (6.1) is 2-Cartesian U ∼= V ×b,[0,∞),0 ∗, so Theorem B.39(c) implies the

following sequence in qcoh(U) is exact:

iX|∗U◦b∗(T ∗[0,∞))
iX|∗U(Ωb) // iX|∗U(T ∗X)

ΩiX |U // T ∗(∂X)|U // 0. (6.3)

Define NX, νX so that νX : NX → i∗X(FX) is the kernel of i2X. We will call
NX the conormal bundle of ∂X in X. Then we have a complex in qcoh(∂X):

0 // NX
νX // i∗X(FX)

i2X // F∂X // 0. (6.4)

Since (6.2) is split exact, we see that the restriction of (6.4) to U is split exact,
and NX|U ∼= iX|∗U ◦ b∗(F [0,∞)). As F [0,∞)

∼= T ∗[0,∞) ∼= O[0,∞), this implies
that NX|U ∼= OU , so NX is a line bundle on U. But we can cover ∂X by such
open U by (c). Since being split exact is a local condition on ∂X by Lemma
2.22, and being a line bundle is also local, we see that NX is a line bundle on
∂X, and (6.4) is a split exact sequence on ∂X. In a similar way, from (6.3) we
deduce the following sequence in qcoh(∂X) is exact:

NX

i∗X(ψX)◦νX // i∗X(T ∗X)
ΩiX // T ∗(∂X) // 0. (6.5)

Let x′ : ∗ → ∂X and x : ∗ → X be the C∞-scheme morphisms corresponding
to the points x′ ∈ ∂X, x ∈ X. Then x = iX ◦ x′ as iX(x′) = x. As pullbacks
take split exact sequences to split exact sequences, applying (x′)∗ to (6.4) and
conjugating the middle term by Ix′,iX(FX) gives an exact sequence in qcoh(∗),
that is, an exact sequence of vector spaces:

0 // (x′)∗(NX)

Ix′,iX
(FX)−1

◦(x′)∗(νX) // x∗(FX)

(x′)∗(i2X)◦
Ix′,iX

(FX)
// (x′)∗(F∂X) // 0. (6.6)

Here are the remaining conditions.
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(d) As above, the conormal bundle NX is a line bundle on ∂X. We require
that NX should be trivializable, and that ωX is an orientation on NX, in
the sense of Definition B.40.

(e) Let x′,U ,V , b be as in (c). Then (6.2) is exact, so as NX|U is the kernel
of i2X, there is a unique isomorphism of line bundles on U

γ : iX|∗U ◦ b∗(F [0,∞))
∼=−→NX|U (6.7)

with νX|U ◦ γ = iX|∗U(b2). We require that for all x′ ∈ ∂X, there should
exist U ,V , b as in (c) satisfying the extra condition that γ in (6.7) identi-
fies the negative orientation on iX|∗U ◦b∗(F [0,∞)) ∼= iX|∗U ◦b∗(O[0,∞)) ∼= OU
with the orientation ωX|U on NX|U. Then we call (V , b) a boundary defin-
ing function for X at x′ ∈ ∂X.

(f) Let x ∈ X. Since iX : ∂X → X is finite from above, we may write
i−1
X (x) = {x′1, . . . , x′k} for x′1, . . . , x

′
k ∈ ∂X. Let (V 1, b1), . . . , (V k, bk)

be boundary defining functions for X at x′1, . . . , x
′
k respectively. Write

x′1, . . . , x
′
k : ∗ → ∂X, x : ∗ → X for the morphisms corresponding to

x′1, . . . , x
′
k, x. Then as in (6.6) we have a morphism in qcoh(∗):⊕k

i=1 Ix′i,iX(FX)−1 ◦ (x′i)
∗(νX) :

⊕k
i=1(x′i)

∗(NX) −→ x∗(FX). (6.8)

We require that (6.8) should be an injective morphism in qcoh(∗), that
is, an injective linear map of vector spaces. Note that (6.6) exact implies
that Ix′i,iX(FX)−1 ◦ (x′i)

∗(νX) is injective for each i = 1, . . . , k, so this is
automatic when k = 1.

We call X a d-space with boundary if iX : ∂X → X is injective (that is, injective
on points) and a d-space without boundary if ∂X = ∅.

Let X = (X,∂X, iX, ωX) be a d-space with corners. Suppose U ⊆X is an
open d-subspace in dSpa. Define ∂U = i−1

X (U), as an open d-subspace of ∂X,
and iU : ∂U → U by iU = iX|∂U . Then ∂U ⊆ ∂X is an open C∞-subscheme,
and the conormal bundle of ∂U in U is NU = NX|∂U in qcoh(∂U). Define an
orientation ωU on NU by ωU = ωX|∂U . Write U = (U ,∂U , iU, ωU). Then U
is a d-space with corners. We call U an open d-subspace of X. If U is open and
closed in X we call U an open and closed d-subspace of X. An open cover of X
is a family {Ua : a ∈ A} of open d-subspaces Ua of X with X =

⋃
a∈A Ua.

Our next definition is an analogue of Definitions 5.5 and 5.7.

Definition 6.2. Let X = (X,∂X, iX, ωX) and Y = (Y ,∂Y , iY, ωY) be d-
spaces with corners. A 1-morphism f : X → Y is a 1-morphism of d-spaces
f : X → Y satisfying the condition that if x ∈ X with f(x) = y ∈ Y and
y′ ∈ ∂Y with iY(y′) = y ∈ Y , and (V , b) is a boundary defining function for
Y at y′, then either

(i) there exists x′ ∈ ∂X with iX(x′) = x and an open neighbourhood Ṽ of
x in X with f(Ṽ ) ⊆ V such that

(
Ṽ , b ◦ f |Ṽ

)
is a boundary defining

function for X at x′; or
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(ii) there exists an open neighbourhood W of x in X with f(W) ⊆ V and
b ◦ f |W = 0 ◦ π : W → [0,∞) in dSpa, where π : W → ∗ is the unique
1-morphism and 0 : ∗→ [0,∞) is as in Definition 6.1(c).

Note that cases (i),(ii) are exclusive, since (b ◦ f)2 6= 0 at x in (i), but
(b ◦ f)2 = 0 at x in (ii). In (i), Proposition 6.6(b) below implies that x′ is
unique. Also, from Proposition 6.6(c),(d) below we see that if (i) or (ii) holds
for one boundary defining function (V , b) for Y at y′, then (i) or (ii) also holds
for every other boundary defining function (V̂ , b̂) for Y at y′, so the conditions
are independent of the choice of (V , b).

Let X = (X,∂X, iX, ωX) be a d-space with corners. Define the identity
1-morphism idX : X → X to be the identity 1-morphism idX : X → X in
dSpa. Then (i) above holds with x′ = y′ and Ṽ = V for all x, y = x, y′, so idX

is a 1-morphism of d-spaces with corners.
Let f : X → Y and g : Y → Z be 1-morphisms of d-spaces with corners.

Define the composition of 1-morphisms g ◦ f : X → Z to be the composition
g ◦ f : X → Z in dSpa. We will show in Proposition 6.7(f) below that g ◦ f is
a 1-morphism X→ Z.

Let f : X → Y be a 1-morphism of d-spaces with corners. We have C∞-
scheme morphisms iX : ∂X → X, f : X → Y , iY : ∂Y → Y , so we can form
the C∞-scheme fibre products ∂X ×f◦iX,Y ,iY ∂Y and X ×f,Y ,iY ∂Y . Define a

C∞-subscheme Sf ⊆ ∂X ×Y ∂Y by (x′, y′) ∈ Sf if x′ ∈ ∂X, y′ ∈ ∂Y with
iX(x′) = x ∈ X, f(x) = iY(y′) = y ∈ Y , and if (V , b) is a boundary defining

function for Y at y′, then there exists open x ∈ Ṽ ⊆ f−1(V ) ⊆ X such that(
Ṽ , b ◦f |Ṽ

)
is a boundary defining function for X at x′, as in Definition 6.2(i).

Define a C∞-subscheme T f ⊆ X ×Y ∂Y by (x, y′) ∈ T f if x ∈ ∂X, y′ ∈ ∂Y
with f(x) = iY(y′) = y ∈ Y , and if (V , b) is a boundary defining function for Y

at y′, then there exists open x ∈W ⊆ f−1(V ) ⊆X such that b ◦ f |W = 0 ◦π,
as in Definition 6.2(ii). We will show in Proposition 6.7 that Sf , T f are open
and closed C∞-subschemes of ∂X ×Y ∂Y ,X ×Y ∂Y .

Define sf = π∂X |Sf : Sf → ∂X, uf = π∂Y |Sf : Sf → ∂Y , tf = πX |Tf :

T f → X and vf = π∂Y |Tf : T f → ∂Y . By properties of fibre products there is
a unique jf : Sf → X ×f,Y ,iY ∂Y with πX ◦ jf = iX ◦ sf and π∂Y ◦ jf = uf .

Next we define 2-morphisms of d-spaces with corners.

Definition 6.3. Let f , g : X → Y be 1-morphisms of d-spaces with corners.
Then f , g : X → Y are 1-morphisms of d-spaces. Suppose η : f ⇒ g is a
2-morphism of d-spaces. Then f = g by definition, so ∂X ×f◦iX,Y ,iY ∂Y =
∂X ×g◦iX,Y ,iY ∂Y , and Sf , Sg are open and closed C∞-subschemes of the same
C∞-scheme, so it makes sense to require Sf = Sg. Similarly, T f , T g are open
and closed in X ×f,Y ,iY ∂Y , so T f = T g makes sense.

A 2-morphism of d-spaces with corners η : f ⇒ g is a 2-morphism of d-spaces
η : f ⇒ g for which Sf = Sg, and satisfying

(iX◦sf )∗(η)◦IiX◦sf ,f (FY )◦Iuf ,iY (FY )−1◦u∗f (νY) = 0 in qcoh(Sf ), (6.9)

t∗f (η) ◦ Itf ,f (FY ) ◦ Ivf ,iY (FY )−1 ◦ v∗f (νY) = 0 in qcoh(T f ), (6.10)
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where the morphisms are given in

u∗f (NY)

0��
u∗f (νY)

// u∗f ◦ i∗Y(FY )
Iuf ,iY (FY )−1

// (iY ◦ uf )∗(FY )

IiX◦sf ,f (FY ) ��
(iX ◦ sf )∗(EX) (iX ◦ sf )∗ ◦ f∗(FY ),

(iX◦sf )∗(η)oo

v∗f (NY)

0��
v∗f (νY)

// v∗f ◦ i∗Y(FY )
Ivf ,iY (FY )−1

// (f ◦ tf )∗(FY )

Itf ,f (FY ) ��
t∗f (EX) t∗f ◦ f∗(FY ).

t∗f (η)
oo

If f : X→ Y is a 1-morphism, the identity 2-morphism idf : f ⇒ f is idf .
The condition Sf = Sf is trivial.

If f , g,h : X → Y are 1-morphisms and η : f ⇒ g, ζ : g ⇒ h are 2-
morphisms of d-spaces with corners, define vertical composition of 2-morphisms
ζ � η : f ⇒ h to be the vertical composition ζ � η of 2-morphisms in dSpa.
Since Sf = Sg and Sg = Sh we have Sf = Sh, and (6.9)–(6.10) for η, ζ imply
(6.9)–(6.10) for ζ � η, so ζ � η is a 2-morphism of d-spaces with corners.

If f , f̃ : X → Y and g, g̃ : Y → Z are 1-morphisms of d-spaces with
corners, and η : f ⇒ f̃ , ζ : g ⇒ g̃ are 2-morphisms of d-spaces with corners,
define horizontal composition of 2-morphisms ζ ∗ η : g ◦ f ⇒ g̃ ◦ f̃ to be the
horizontal composition ζ ∗η of 2-morphisms in dSpa. One can easily check that
ζ ∗ η is a 2-morphism of d-spaces with corners.

In Definitions 6.1, 6.2 and above we have defined all the structures of a 2-
category, which we call the 2-category of d-spaces with corners, written dSpac.
By Theorem 6.4 they satisfy the axioms of a 2-category. Write dSpab for the full
2-subcategory of d-spaces with boundary, and dS̄pa for the full 2-subcategory
of d-spaces without boundary. Define a 2-functor FdSpac

dSpa : dSpa → dSpac to
map X 7→ X = (X, ∅, ∅, ∅) on objects, f 7→ f on 1-morphisms, and η 7→ η on
2-morphisms, where the data ∂X, iX, ωX is trivial as the d-spaces concerned are
empty. Then FdSpac

dSpa is a (strict) isomorphism of 2-categories dSpa → dS̄pa.

So we may as well identify dSpa with its image dS̄pa, and consider d-spaces
in Chapter 2 as examples of d-spaces with corners.

Since 1-morphisms and 2-morphisms in dSpac are just special examples of
1-morphisms and 2-morphisms in dSpa, the proof in Theorem 2.15 that dSpa
is a strict 2-category immediately implies:

Theorem 6.4. In Definitions 6.1, 6.2 and 6.3, dS̄pa,dSpab,dSpac are strict
2-categories, in which all 2-morphisms are 2-isomorphisms, and FdSpac

dSpa is a
full and faithful strict 2-functor.

We discuss some aspects of the definitions above.

Remark 6.5. (i) Let X be a manifold with corners. Then the boundary ∂X
is a manifold with corners, with immersion iX : ∂X → X. We have an exact
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sequence of vector bundles on ∂X:

0 // T (∂X)
diX // i∗X(TX)

πν // ν // 0

where ν is the normal bundle of iX(∂X) in X, a line bundle over ∂X, which is
canonically oriented by outward-pointing normal vectors. The dual bundle ν∗,
the conormal bundle, is also an oriented line bundle on ∂X, in the dual sequence

0 // ν∗
π∗ν // i∗X(T ∗X)

(diX)∗ // T ∗(∂X) // 0. (6.11)

In Definition 6.1, X,∂X, iX,NX and ωX are analogues of X, ∂X, iX , ν
∗ and

the orientation on ν∗ respectively. Both (6.4) and (6.5) are analogues of (6.11).
Also boundary defining functions (V , b) are the analogue of boundary defining
functions (V, b) for X in Definition 5.4.

Our orientation convention will be that (co)normal bundles to boundaries
are oriented by outward-pointing normal vectors. Thus, in Definition 6.1(e) we
choose the negative orientation on iX|∗U ◦ b∗(F [0,∞)) because outward-pointing
normal vectors to [0,∞) at the boundary 0 point in the negative direction in R.

(ii) For a manifold with corners X, the orientation on ν is determined by
X, ∂X, iX . But there exist d-spaces with corners X = (X,∂X, iX, ωX) in which
the orientation ωX is not determined by X,∂X, iX, and (X,∂X, iX,−ωX) is
also a d-space with corners. So the orientation ωX really is extra data. We
include it because in §7.8, if X is an oriented d-manifold with corners, we will
need ωX to define an orientation on the boundary ∂X.

(iii) In Definition 6.1, the assumptions that i′′X an isomorphism and (6.1) is
2-Cartesian with 2-morphism id0◦π ensure that ∂X is immersed in X in a
very strong sense, so that ∂X, iX, ωX are locally determined up to canonical
(1-)isomorphism by X and a boundary defining function (V , b). In Definitions
6.2 and 6.3, we define 1- and 2-morphisms in dSpac to be 1- and 2-morphisms of
the underlying d-spaces satisfying extra conditions over the boundaries of X,Y.

These conditions on the immersion iX : ∂X → X, and the boundary con-
ditions on 1- and 2-morphisms f , η, have been carefully chosen to ensure that
1- and 2-morphisms lift uniquely to 1- and 2-morphisms of boundaries, when-
ever these should exist. For instance, in §6.3 we will discuss the class of simple
1-morphisms. These have the property that any simple 1-morphism f : X→ Y
lifts to a canonical simple 1-morphism f− : ∂X→ ∂Y, and if f , g : X→ Y are
simple 1-morphisms and η : f ⇒ g is a 2-morphism, then η lifts to a canonical
2-morphism η− : f− ⇒ g−.

(iv) The condition in Definition 6.1(c) that b2 has a left inverse β will be used
infrequently, but is sometimes important for showing that we can construct 2-
morphisms η on X to satisfy conditions such as (6.9) over Sf or ∂X. It will
be essential in the proof of Proposition 6.21 and of the existence of b-transverse
fibre products in dSpac in §6.8. It will hold automatically in dManc. Without
assuming b2 has a left inverse, we showed in Definition 6.1 that (6.2) is split
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exact, which implies that iX|∗U(b2) has a left inverse. So b2 naturally has a left
inverse over ∂X, and we require this to extend into X near ∂X.

(v) Let f , g : X→ Y be 1-morphisms in dSpac, and η : f ⇒ g a 2-morphism.
We now motivate the conditions (6.9)–(6.10) on η in Definition 6.3. First note
that (6.15) below for f implies an equation in qcoh(Sf ):

s∗f (i2X)◦Isf ,iX(FX)◦(iX◦sf )∗(f2)◦IiX◦sf ,f (FY )◦Iuf ,iY (FY )−1◦u∗f (νY)=0.

Suppose η : f ⇒ g is a 2-morphism in dSpa, but not necessarily in dSpac.
Then g2 = f2 + φX ◦ η by (2.26), so subtracting the equation above from its
analogue for g yields

s∗f (i2X) ◦ Isf ,iX(FX) ◦ (iX ◦ sf )∗(φX)◦
(iX ◦ sf )∗(η) ◦ IiX◦sf ,f (FY ) ◦ Iuf ,iY (FY )−1 ◦ u∗f (νY) = 0.

(6.12)

The second line of this equation is (6.9), so (6.9) implies (6.12). Thus, (6.9) is a
strengthening of an equation (6.12) in qcoh(Sf ) which follows from f , g being
1-morphisms in dSpac and η : f ⇒ g a 2-morphism in dSpa.

Similarly, from (6.17) below for f , g we deduce that

t∗f (φX) ◦
[
t∗f (η) ◦ Itf ,f (FY ) ◦ Ivf ,iY (FY )−1 ◦ v∗f (νY)

]
= 0, (6.13)

where [· · · ] is the left hand side of (6.10). Thus, (6.10) is a strengthening of
an equation (6.13) in qcoh(T f ) which follows from f , g being 1-morphisms in
dSpac and η : f ⇒ g a 2-morphism in dSpa. Equations (6.9)–(6.10) are used
in Proposition 6.8, §6.3 and §6.7 to define natural lifts of 2-morphisms η up to
the boundary and corners of X,Y, whenever these should exist.

(vi) There may be lots of ways to define a 2-category of d-spaces with cor-
ners, and the author experimented with many possibilities before settling on
the definitions above. Here we discuss some alternatives.

Let f , g : X→ Y be 1-morphisms in dSpac, and η : f ⇒ g be a 2-morphism
in dSpa. We call η a weak 2-morphism if Sf = Sg, but we do not require

equations (6.9)–(6.10) to hold. Write dS̃pac for the 2-category with objects
and 1-morphisms as in dSpac, but with weak 2-morphisms as 2-morphisms.

Then dS̃pac is also a strict 2-category, which is not equivalent to dSpac.
We will show in §6.8 that not all fibre products exist in our 2-category dSpac;

we will give a sufficient condition on 1-morphisms g : X→ Z, h : Y → Z, called
b-transversality, for a fibre product X ×g,Z,h Y to exist. In contrast, one can

show that in the 2-category dS̃pac, with weak 2-morphisms, all fibre products

exist. So dS̃pac is better behaved than dSpac in at least one respect.

However, in other ways dS̃pac is badly behaved. The purpose of (6.9)–(6.10)
is to ensure that 2-morphisms in dSpac lift up to 2-morphisms of boundaries

and corners, and in dS̃pac this may not happen. For example, if as in (iii)
above f , g : X → Y are simple 1-morphisms and η : f ⇒ g a 2-morphism in

dS̃pac, for the 1-morphisms f−, g− : ∂X→ ∂Y there may exist no 2-morphism

η− : f− ⇒ g− in dS̃pac.
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In Chapter 7 we will define the 2-subcategory of d-manifolds with corners
dManc in dSpac; in a similar way one can define an alternative 2-subcategory of

d-manifolds with corners dM̃anc in dS̃pac, which is not equivalent to dManc.
The advantage of dSpac,dManc is that boundaries and corners have much

better 2-functorial properties, but the advantage of dS̃pac,dM̃anc is that fibre
products exist under weaker conditions.

We also get two other non-equivalent strict 2-categories intermediate be-

tween dSpac and dS̃pac, if we define 2-morphisms requiring only one of (6.9)
and (6.10) to hold. So this yields four different 2-categories of d-spaces with
corners.

Here are some properties of boundary defining functions.

Proposition 6.6. Let X be a d-space with corners, x′ ∈ ∂X with iX(x′) = x,
and (V , b) be a boundary defining function for X at x′. Then

(a) (V , b) is also a boundary defining function for X at x̃′ for all x̃′ in an
open neighbourhood of x′ in ∂X.

(b) If x̃′ ∈ ∂X with iX(x̃′) = x and x̃′ 6= x′ then (V , b) is not a boundary
defining function for X at x̃′. Thus, x and (V , b) determine x′ uniquely.

(c) Suppose (Ṽ , b̃) is a second boundary defining function for X at x′. Then
there exists an open neighbourhood W of x in V ∩ Ṽ ⊆ X and a 1-
morphism c : W → (0,∞) in dSpa such that b̃|W = c · b|W, or equiva-
lently b|W = c−1 · b̃|W.

(d) Suppose c : V → (0,∞) is a 1-morphism in dSpa, and set b̃ = c · b :
V → [0,∞). Then (V , b̃) is a boundary defining function for X at x′.

Here in (c),(d) (0,∞) = FdSpa
Man

(
(0,∞)

)
, and we use the obvious notions of

multiplication b·c and multiplicative inverses c−1 for d-space 1-morphisms from
W to (0,∞), [0,∞) or RRR. That is, if b, c : W → RRR are 1-morphisms we define
b ·c : W → RRR by b ·c = µ◦ (b, c), where (b, c) : W → RRR×RRR is the direct product

and µ = FdSpa
Man (µ) : RRR × RRR → RRR, where µ : R × R → R maps µ(x, y) = xy.

Similarly if c : W → (0,∞) is a 1-morphism we define c−1 = ι ◦ c, where

ι = FdSpa
Man (ι) and ι : (0,∞)→ (0,∞) maps ι : x 7→ x−1.

Proof. For (a), Definition 6.1(c),(e) give an open neighbourhood U of x′ in
∂X, and (V , b) is a boundary defining function for all x̃′ ∈ U . For (b),
consider the morphisms Ix′,iX(FX)−1 ◦ (x′)∗(νX) : (x′)∗(NX) → x∗(FX) and
Ix̃′,iX(FX)−1 ◦ (x̃′)∗(νX) : (x̃′)∗(NX) → x∗(FX) in qcoh(∗). If (V , b) were a
boundary defining function for X at x̃′ then (6.6) would be exact for both x′

and x̃′, so the morphisms would have the same image in x∗(FX). But Definition
6.1(f) shows the two morphisms are linearly independent, a contradiction.

For (c), we have sheaves of C∞-rings OX ,O′X on X, so we can form the
stalks OX,x,O′X,x at x, which are C∞-local rings. Similarly, we have stalks

O∂X′,x,O′∂X,x′ of O∂X ,O′∂X at x′, and O[0,∞),0
∼= C∞0

(
[0,∞)

)
of O[0,∞) at

0. The morphisms of sheaves of C∞-rings ıX : O′X → OX , ı∂X : O′∂X →
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O∂X , i]X : i−1
X (OX) → O∂X , i′X : i−1

X (OX ′) → O′∂X , b] : b−1(O[0,∞)) →
OX and b′ : b−1(O[0,∞)) → O′X (noting that O′[0,∞) = O[0,∞)) have stalks

ıX,x, ı∂X,x′ , i
]
X,x′ , i

′
X,x′ , b

]
x, b
′
x at x′, x, which are morphisms of C∞-local rings

fitting into a commutative diagram:

C∞0
(
[0,∞)

)
b′x

// O′X,x
ıX,x

��

i′
X,x′

// O′∂X,x′
ı∂X,x′

��
C∞0

(
[0,∞)

) b]x // OX,x
i]
X,x′ // O∂X,x′ .

(6.14)

Using (6.1) 2-Cartesian and i′′X an isomorphism in Definition 6.1(b),(c), and

considering properties of fibre products in dSpa from §2.5, we can see that i]X,x′

is surjective and the kernel of i]X,x′ is the ideal
(
b]x(z)

)
in OX,x where z is the

coordinate on [0,∞) (this is immediate from ∂X ∼= X ×[0,∞) ∗), and also i′X,x′

is surjective and the kernel of i′X,x′ is the ideal
(
b′x(z)

)
in O′X,x.

Now suppose (Ṽ , b̃) is a second boundary defining function for X at x′.

Then we have a diagram (6.14) for b̃, and the kernel of i]X,x′ is
(
b̃]x(z)

)
, and the

kernel of i′X,x′ is
(
b̃′x(z)

)
. Therefore

(
b′x(z)

)
=
(
b̃′x(z)

)
as ideals in O∂X,x′ . Thus

there exists an invertible element α ∈ O′X,x with b̃′x(z) = α · b′x(z). Since O′X,x
is a C∞-local ring, α invertible is equivalent to α(x) 6= 0 in R.

Let γ, γ̃ be the morphisms in (6.7) from b, b̃. Both γ, γ̃ are orientation-
preserving isomorphisms by Definition 6.1(e), so they are proportional by a
positive function on U ∩ Ũ. But (x′)∗(γ̃) = α(x) · (x′)∗(γ). Thus α(x) > 0.
Now α is a germ of sections of OX ′ at x. So we may choose a small open
neighbourhood W of x in V ∩Ṽ ⊆ X and a section β ∈ O′X(W ) whose projection
to O′X,x is α. Since α(x) > 0, making W smaller we can suppose β > 0 on W .

As b̃′x(z) = α · b′x(z), we see that
(
b̃′(W )

)
(z) = β ·

(
b′(W )

)
(z) holds near x in

W , so making W smaller we can suppose that
(
b̃′(W )

)
(z) = β ·

(
b′(W )

)
(z).

Using β we can now construct a unique morphism c = (c, c′, c′′) : W →
(0,∞), where c : W → (0,∞) is induced by

(
ıX(W )

)
(β) ∈ OX(W ), and

c′ : c−1(O(0,∞)) → OX |W is induced by β, and c′′ : c∗(E(0,∞)) → EX |W is zero

as E(0,∞) = 0. This satisfies b̃|W = c · b|W as
(
b̃′(W )

)
(z) = β ·

(
b′(W )

)
(z), so

we have proved (c).
For (d), note that if (V , b) is a boundary defining function and c : V →

(0,∞) then (6.1) with b̃ = c·b in place of b is still locally 2-Cartesian, essentially
because for any open W ⊆ V ,

(
c](W )

)
(z) is invertible in OX(W ) as c > 0, so(

b](W )
)
(z) and

(
c](W )

)
(z) ·

(
b](W )

)
(z) generate the same ideal in OX(W ), and

similarly for
(
b′(W )

)
(z) and

(
c′(W )

)
(z) ·

(
b′(W )

)
(z) in OX ′(W ). So Definition

6.1(c) holds for c ·b. Also the morphisms γ, γ̃ in (6.7) induced by b and b̃ = c ·b
are related by γ̃ = (c ◦ iX|U) · γ, regarding c ◦ iX|U : U → (0,∞) ⊂ R as an
element of OX(U). So γ̃, γ are proportional by a positive function, as c > 0,
and γ orientation-preserving implies γ̃ orientation-preserving. Thus Definition
6.1(e) holds for c · b, and c · b is a boundary defining function for X at x′.
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Here are some properties of Sf , T f , jf , sf , tf , uf , vf in Definition 6.2. Parts
(a)–(c) are analogues of Proposition 5.8.

Proposition 6.7. Let f : X → Y be a 1-morphism of d-spaces with corners,
and use the notation of Definition 6.2. Then

(a) Sf , T f are open and closed C∞-subschemes in ∂X×Y ∂Y and X×Y ∂Y .

(b) jf is an isomorphism of C∞-schemes Sf → (X ×Y ∂Y ) \ T f .

(c) sf : Sf → ∂X and tf : T f → X are proper étale morphisms.

(d) There exist unique λf : u∗f (NY) → s∗f (NX) and µf : u∗f (F∂Y ) →
s∗f (F∂X) in qcoh(Sf ) such that the following diagrams commute:

0 // u∗f (NY)
u∗f (νY)

//

λf
��

u∗f ◦ i∗Y(FY )
u∗f (i2Y)

//

Isf ,iX (FX)◦(iX◦sf )∗(f2)◦
IiX◦sf ,f (FY )◦Iuf ,iY (FY )−1

��

u∗f (F∂Y )

µf
��

// 0

0 // s∗f (NX)
s∗f (νX)

// s∗f ◦ i∗X(FX)
s∗f (i2X)

// s∗f (F∂X) // 0,

(6.15)

u∗f (NY)
u∗f (i∗Y(ψY )◦νY)

//

λf
��

u∗f ◦i∗Y(T ∗Y )
u∗f (ΩiY )

//

Isf ,iX (T∗X)◦(iX◦sf )∗(Ωf )◦
IiX◦sf ,f (T∗Y )◦Iuf ,iY (T∗Y )−1

��

u∗f (T ∗(∂Y ))

Ω−1
sf
◦

Ωuf��

// 0

s∗f (NX)
s∗f (i∗X(ψX)◦νX)

// s∗f ◦i∗X(T ∗X)
s∗f (ΩiX )

// s∗f (T ∗(∂X)) // 0,

(6.16)

where the rows are exact, and Ωsf : s∗f (T ∗(∂X)) → T ∗Sf is an isomor-
phism as sf is étale by (c). Furthermore, λf is an isomorphism, and
identifies the orientations u∗f (ωY) on u∗f (NY) and s∗f (ωX) on s∗f (NX).

(e) The following diagram commutes in qcoh(T f ), using f ◦ tf = iY ◦ vf :

v∗f (NY)

0��
v∗f (νY)

// v∗f ◦ i∗Y(FY )
Ivf ,iY (FY )−1

// (f ◦ tf )∗(FY )

Itf ,f (FY ) ��
t∗f (FX) t∗f ◦ f∗(FY ).

t∗f (f2)
oo

(6.17)

(f) Let g : Y → Z be another 1-morphism of d-spaces with corners. Then the
composition g ◦f in dSpa is a 1-morphism g ◦f : X→ Z in dSpac, and
Sg◦f ⊆ ∂X ×Z ∂Z and T g◦f ⊆ X ×Z ∂Z have underlying sets

Sg◦f =
{

(x′, z′)∈∂X ×Z ∂Z : ∃ y′∈∂Y, (x′, y′)∈Sf , (y′, z′)∈Sg
}
,

Tg◦f =
{

(x, z′) ∈ X ×Z ∂Z : (f(x), z′) ∈ Tg
}
q (6.18){

(x, z′)∈X ×Z ∂Z : ∃ y′∈∂Y, (x, y′)∈Tf , (y′, z′)∈Sg
}
.

Compatibly with the first line of (6.18), there are natural morphisms Πf ,g1 :

Sg◦f → Sf and Πf ,g2 : Sg◦f → Sg satisfying sg◦f = sf ◦ Πf ,g1 , ug◦f =

ug ◦Πf ,g2 and uf ◦Πf ,g1 = sg ◦Πf ,g2 , and λf , λg, λg◦f and µf , µg, µg◦f in
part (d) are related by the commutative diagrams in qcoh(Sg◦f ) :
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u∗g◦f (NZ)

λg◦f
��

I
Π
f,g
2 ,ug

(NZ)
// (Πf ,g2 )∗◦u∗g(NZ)

(Πf,g2 )∗(λg)

// (Πf ,g2 )∗◦s∗g(NY)

I
Π
f,g
1 ,uf

(NY)◦I
Π
f,g
2 ,sg

(NY)−1

��
s∗g◦f (NX) (Πf ,g1 )∗◦s∗f (NX)

I
Π
f,g
1 ,sf

(NX)−1

oo (Πf ,g1 )∗◦u∗f (NY),
(Πf,g1 )∗(λf )oo

(6.19)

u∗g◦f (F∂Z)

µg◦f

��

I
Π
f,g
2 ,ug

(F∂Z)
// (Πf ,g2 )∗◦u∗g(F∂Z)

(Πf,g2 )∗(µg)

// (Πf ,g2 )∗◦s∗g(F∂Y )

I
Π
f,g
1 ,uf

(F∂Y )◦I
Π
f,g
2 ,sg

(F∂Y )−1

��
s∗g◦f (F∂X) (Πf ,g1 )∗◦s∗f (F∂X)

I
Π
f,g
1 ,sf

(F∂X)−1

oo (Πf ,g1 )∗◦u∗f (F∂Y ),
(Πf,g1 )∗(µf )oo

(6.20)

Proof. For (a), suppose (x′, y′) ∈ Sf . Then iX(x′) = x ∈ X and f(x) = y =
iY(y′) ∈ Y . Let (V , b) be a boundary defining function for Y at y′. Then there
exists open x ∈ Ṽ ⊆ f−1(V ) with

(
Ṽ , b◦f |Ṽ

)
a boundary defining function for

X at x′. By Proposition 6.6(a) there exist open x′ ∈ T ⊆ ∂X and y′ ∈ U ⊆ ∂Y
such that

(
Ṽ , b ◦ f |Ṽ

)
is a boundary defining function for X at all x̃′ ∈ T , and

(V , b) is a boundary defining function for Y at all ỹ′ ∈ U. Then T ×Y U is an
open neighbourhood of (x′, y′) in ∂X×Y ∂Y contained in Sf . Hence Sf is open
in ∂X ×Y ∂Y , and so is a well-defined C∞-scheme.

Suppose (x′, y′) ∈ (∂X ×Y ∂Y ) \ Sf . Then iX(x′) = x ∈ X and f(x) =
y = iY(y′) ∈ Y . Let (V , b) be a boundary defining function for Y at y′, and
choose open y′ ∈ U ⊆ ∂Y such that (V , b) is also a boundary defining function
for Y at all ỹ′ ∈ U. By Definition 6.2, either (i)

(
Ṽ , b ◦ f |Ṽ

)
is a boundary

defining function for X at some x′′ ∈ ∂X with iX(x′′) = x, for some open
x ∈ Ṽ ⊆ f−1(V ). Then (x′′, y′) ∈ Sf , so x′ 6= x′′; or (ii) b ◦ f |W = 0 ◦ π for

some open x ∈W ⊆ f−1(V ).
In case (i), for any x̃′ ∈ ∂X close enough to x′, as x̃′ is not close to x′′,(

Ṽ , b◦f |Ṽ
)

is not a boundary defining function for X at x̃′. So we can construct
an open neighbourhood of (x′, y′) in (∂X ×Y ∂Y ) \ Sf . In case (ii), if (x̃′, ỹ′) ∈
i−1
X (W )×Y U with iX(x̃′) = x̃ then Definition 6.2(ii) holds for (V , b) at x̃, ỹ′, so

Definition 6.2(i) cannot hold at x̃′, ỹ′, and thus (x̃′, ỹ′) 6∈ Sf . Hence i−1
X (W )×Y U

is an open neighbourhood of (x′, y′) in (∂X ×Y ∂Y ) \ Sf . Therefore (∂X ×Y
∂Y ) \Sf is open in ∂X×Y ∂Y , and Sf is closed. A similar argument shows T f
is open and closed in X ×Y ∂Y . This proves part (a).

For (b) and (c), suppose (x′, y′) ∈ Sf . Then there exist a boundary defining
function (V , b) for Y at y′ and open y′ ∈ U ⊆ ∂Y with (6.1) 2-Cartesian.
Hence U ∼= V ×b,[0,∞),0 ∗. There exist open iX(x′) ∈ Ṽ ⊆ f−1(V ) and x′ ∈
Ũ ⊆ ∂X with

(
Ṽ , b ◦ f |Ṽ

)
a boundary defining function for X at x′ and

Ũ ' Ṽ ×b◦f |Ṽ ,[0,∞),0 ∗, so that Ũ ∼= Ṽ×b◦f |Ṽ ,[0,∞),0, ∗. We now have

Ũ ×f◦iX|Ũ,Y ,iY|U U ∼= Ũ ×V
(
V ×b,[0,∞),0 ∗

) ∼= Ũ ×b◦f◦iX|Ũ,[0,∞),0 ∗ ∼= Ũ

∼= Ṽ×b◦f |Ṽ ,[0,∞),0, ∗ ∼= Ṽ ×V
(
V ×b,[0,∞),0 ∗

) ∼= Ṽ ×f |Ṽ ,Y ,iY|U U,

using b ◦ f ◦ iX|Ũ = 0 ◦ π : Ũ → [0,∞).
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The first line of this equation implies that sf is an isomorphism between the

open C∞-subschemes Ũ ×Y U ⊆ Sf ⊆ ∂X ×Y ∂Y and Ũ ⊆ ∂X, and the second

line that jf is an isomorphism between the open C∞-subschemes Ũ×Y U ⊆ Sf ⊆
∂X×Y ∂Y and Ṽ ×Y U ⊆ X×Y ∂Y . As we can cover Sf by such open Ũ×Y U,
this proves sf and jf are étale. A similar proof shows tf is étale. To show
sf , tf are proper, note that they are the restrictions to closed C∞-subschemes
Sf , T f of π∂X : ∂X ×f◦iX,Y ,iY ∂Y → ∂X and πX : X ×f,Y ,iY ∂Y → X, and

π∂X , πX are proper as iY is proper. This proves (c).
Suppose (x, y′) ∈ X ×Y ∂Y , so that f(x) = iY(y′) = y ∈ Y . Let (V , b)

be a boundary defining function for Y at y′. Then by Definition 6.2, either
(i) there is a unique x′ ∈ ∂X with iX(x′) = x and (x′, y′) ∈ Sf , so that
jf (x′, y′) = (x, y′), or (ii) (x, y′) ∈ T f , and (i),(ii) are exclusive. Hence jf is
injective, by uniqueness of x′ in (i), and has image (X ×Y ∂Y ) \ T f . Therefore
jf : Sf → (X ×Y ∂Y ) \ T f is étale and a bijection on points, which implies it
is an isomorphism, proving (b).

For (d), first note that the rows of (6.15) and (6.16) are pullbacks by uf , sf
of (6.4) and (6.5) for X,Y. Pullbacks are right exact, and also take split exact
sequences to split exact sequences. Hence as (6.4) is split exact and (6.5) is
exact, the rows of (6.15) and (6.16) are exact. Exactness of the rows in (6.15)
implies that λf , µf are unique if they exist. Hence it is enough to construct
λf , µf satisfying the restrictions of (6.15), (6.16) to an open cover of Sf , since
by uniqueness the morphisms on the C∞-subschemes of the open cover can be
glued on overlaps to make global morphisms λf , µf .

Let (x′, y′) ∈ Sf , and choose y′ ∈ U , (V , b), Ṽ ⊆ f−1(V ) and x′ ∈ Ũ ⊆ ∂X
with U ' V ×b,[0,∞),0 ∗ and Ũ ' Ṽ ×b◦f |Ṽ ,[0,∞),0 ∗ as in the proof of (b),(c).

Then Ũ ×Y U is an open neighbourhood of (x′, y′) in Sf . Now consider the

diagram in qcoh(Ũ ×Y U):

0 // u
∗
f ◦iY|∗U◦b∗

(F [0,∞))|Ũ×Y U

u∗f (iX|∗Ũ((b◦f)2))

//

Isf ,iX|Ũ
((b◦f)∗(F [0,∞))◦

IiX|Ũ◦sf ,b◦f
(F [0,∞))◦

IiY|U◦uf ,b
(F [0,∞))−1◦

Iuf ,iY|U
b∗(F [0,∞))−1

��

u∗f ◦i∗Y(FY )|Ũ×Y U
u∗f (i2Y)

//

Isf ,iX
(FX )◦(iX◦sf )∗(f2)◦

IiX◦sf ,f (FY )◦Iuf ,iY (FY )−1

��

u∗f (F∂Y )|Ũ×Y U

µf |Ũ×Y U

��

// 0

0 // s
∗
f ◦iX|∗Ũ ◦ (b◦f)∗

(F [0,∞))|Ũ×Y U
s∗f (iY|∗U(b2))

// s∗f ◦i∗X(FX)|Ũ×Y U
s∗f (i2X)

// s∗f (F∂X)|Ũ×Y U // 0.

(6.21)

Here the rows are the pullbacks of the split exact sequence (6.2) for (V , b) on
U by uf and for (f−1(V ), b ◦ f) on Ũ by sf , and so are (split) exact.

There is a natural orientation-preserving isomorphism, shown in the left
hand column of (6.21), which makes the left hand square of (6.21) commute.
Hence there exists a unique morphism µf |Ũ×Y U making the right hand of (6.21)

square commute. In Definition 6.1 we showed there is an orientation-preserving
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isomorphism NX|U ∼= iX|∗U ◦ b∗(F [0,∞)) identifying (6.2) with the restriction

of (6.4) to U. These for X, Ũ and Y, U induce an identification of (6.21) with
the restriction of (6.15) to Ũ ×Y U. Hence there exists a unique orientation-
preserving isomorphism λ|Ũ×Y U identified with the left hand column of (6.21),

making the restriction of (6.15) to Ũ ×Y U commute. As we can cover Sf by

such open Ũ ×Y U, there exist unique global λf , µf making (6.15) commute,
with λf an orientation-preserving isomorphism. The left hand square of (6.16)
commutes by (6.15) and (2.22) for f . The right hand square of (6.16) commutes
by f ◦ iX ◦ sf = iY ◦ uf and Theorem B.39(b). This proves (d).

For (e), let (x, y′) ∈ T f , with f(x) = iY(y′) = y ∈ Y . Let (V , b) be
a boundary defining function for Y at y′. Then as in Definition 6.1 there
exists open y′ ∈ U ⊆ ∂Y with (6.1) 2-Cartesian, and as in (6.7) there is an
isomorphism γ : iY|∗U ◦ b∗(F [0,∞)) → NY|U with νY|U ◦ γ = iY|∗U(b2). Also by

Definition 6.2 there exists open x ∈W ⊆ f−1(V ) ⊆X such that b◦f |W = 0◦π.
Define Z = t−1

f (W ) ∩ v−1
f (U), so that (x, y′) ∈ Z ⊆ T f is open. We have(

t∗f (f2) ◦ Itf ,f (FY ) ◦ Ivf ,iY (FY )−1 ◦ v∗f (νY)
)
|Z

= tf |∗Z(f2) ◦ Itf ,f (FY )|Z ◦ Ivf ,iY (FY )|−1
Z ◦ vf |

∗
Z(iY|∗U(b2)) ◦ vf |∗Z(γ−1)

= tf |∗Z(f2 ◦ f |∗W (b2)) ◦ Itf ,f (FY )|Z ◦ Ivf ,iY (FY )|−1
Z ◦ vf |

∗
Z(γ−1) = 0,

using νY|U ◦ γ = iY|∗U(b2) and γ an isomorphism in the first step, properties

of I∗,∗(∗) in the second, and that (b ◦ f |W )2 = (0 ◦ π)2 = 0 in the third. This
proves the restriction of (6.17) to Z commutes. As we can cover T f by such
open Z, part (e) follows.

For (f), to prove that g◦f is a 1-morphism of d-spaces with corners, suppose
x ∈ X with (g ◦ f)(x) = z ∈ Z, and z′ ∈ ∂Z with iZ(z′) = z, and (V , b) is a
boundary defining function for Z at z′. Then f(x) = y ∈ Y , and g(y) = z ∈ Z.
So as g is a 1-morphism of d-spaces, either (i)′ there exists y′ ∈ ∂Y with
iY(y′) = y and open y ∈ Ṽ ⊆ g−1(V ) such that (Ṽ , b ◦ g|Ṽ

)
is a boundary

defining function for Y at y′, or (ii)′ there exists open y ∈ W ⊆ g−1(V ) with
b ◦ g|W = 0 ◦ π.

In case (i)′, as f is a is a 1-morphism of d-spaces and (Ṽ , b ◦ g|Ṽ ) is a
boundary defining function for Y at y′, either (i)′′ there exists x′ ∈ ∂X with
iX(x′) = x and open x ∈ V̂ ⊆ f−1(Ṽ ) such that (V̂ , b ◦ g ◦ f |V̂ ) is a boundary
defining function for X at x′, so (i) above holds for g ◦ f , or (ii)′′ there exists
open x ∈W ⊆ f−1(Ṽ ) ⊆X with b ◦ g ◦ f |W = 0 ◦π, so (ii) holds for g ◦ f . In
case (ii)′, setting W̃ = f−1(W), we have

b ◦ (g ◦ f)|W̃ = (b ◦ g|W) ◦ f |W̃ = 0 ◦ π ◦ f |W̃ = 0 ◦ π,

so (ii) holds for g ◦ f . Hence g ◦ f is a 1-morphism of d-spaces with corners.
Equation (6.18) follows from cases (i)′,(ii)′,(i)′′,(ii)′′ above. To construct

Πf ,g1 ,Πf ,g2 , note that the morphisms f ◦ iX ◦ sg◦f : Sg◦f → Y and ug◦f :
Sg◦f → ∂Z satisfy g ◦ (f ◦ iX ◦ sg◦f ) = iZ ◦ ug◦f . Hence there is a unique
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morphism π : Sg◦f → Y ×Z ∂Z with πY ◦π = f ◦ iX ◦ sg◦f and π∂Z ◦π = ug◦f .
Equation (6.18) implies that π maps Sg◦f to (Y ×Z ∂Z) \ T g. Since jg : Sg →
(Y ×Z ∂Z)\T g is an isomorphism by part (b), we may define Πf ,g2 : Sg◦f → Sg
by Πf ,g2 = j−1

g ◦π. Then ug ◦Πf ,g2 = ug ◦ j−1
g ◦π = π∂Z ◦π = ug◦f , as we want.

Similarly, sg◦f : Sg◦f → ∂X and sg◦Πf ,g2 : Sg◦f → ∂Y satisfy f ◦iX◦sg◦f =

iY ◦ (sg ◦ Πf ,g2 ). Hence there is a unique Πf ,g1 : Sg◦f → ∂X ×Y ∂Y with

π∂X ◦ Πf ,g1 = sg◦f and π∂Y ◦ Πf ,g1 = sg ◦ Πf ,g2 . Equation (6.18) implies that

Πf ,g1 maps into Sf ⊆ ∂X ×Y ∂Y . Thus π∂X , π∂Y become sf , uf , so that

sg◦f = sf ◦Πf ,g1 and uf ◦Πf ,g1 = sg ◦Πf ,g2 , as we have to prove.
To show (6.19)–(6.20) commute, consider the diagram in qcoh(Sg◦f ):

u∗g◦f (NZ)
u∗g◦f (νZ)

//

I
Π
f,g
2 ,ug

(NZ)

��

u∗g◦f ◦ i∗Z(FZ)
u∗g◦f (i2Z)

//

I
Π
f,g
2 ,ug

(i∗Z(FZ))

��

u∗g◦f (F∂Z)

I
Π
f,g
2 ,ug

(F∂Z)

��
(Πf ,g2 )∗◦u∗g(NZ)

(Π
f,g
2 )∗◦u∗g(νZ)

//

(Π
f,g
2 )∗(λg)

��

(Πf ,g2 )∗◦u∗g◦i∗Z(FZ)
(Π
f,g
2 )∗◦u∗g(i2Z)

//

(Π
f,g
2 )∗(Isg,iY (FY )◦(iY◦sg)∗(g2)

◦IiY◦sg,g(FZ)◦Iug,iZ (FZ)−1)

��

(Πf ,g2 )∗◦u∗g(F∂Z)

(Π
f,g
2 )∗(µg)

��
(Πf ,g2 )∗◦s∗g(NY)

(Π
f,g
2 )∗◦s∗g(νY)

//
I
Π
f,g
1 ,uf

(NY)◦

I
Π
f,g
2 ,sg

(NY)−1

��

(Πf ,g2 )∗◦s∗g◦i∗Y(FY )
(Π
f,g
2 )∗◦s∗g(i2Y)

//

I
Π
f,g
1 ,uf

(i∗Y(FY ))◦

I
Π
f,g
2 ,sg

(i∗Y(FY ))−1

��

(Πf ,g2 )∗◦s∗g(F∂Y )
I
Π
f,g
1 ,uf

(F∂Y )◦

I
Π
f,g
2 ,sg

(F∂Y )−1

��
(Πf ,g1 )∗◦u∗f (NY)

(Π
f,g
1 )∗◦u∗f (νY)

//

(Π
f,g
1 )∗(λf )

��

(Πf ,g1 )∗◦u∗f ◦i∗Y(FY )
(Π
f,g
1 )∗◦u∗f (i2Y)

//

(Π
f,g
1 )∗(Isf ,iX (FX )◦(iX◦sf )∗(f2)

◦IiX◦sf ,f (FY )◦Iuf ,iY (FY )−1)

��

(Πf ,g1 )∗◦u∗f (F∂Y )

(Π
f,g
1 )∗(µf )

��
(Πf ,g1 )∗◦s∗f (NX)

(Π
f,g
1 )∗◦s∗f (νX)

//

I
Π
f,g
1 ,sf

(NX)−1

��

(Πf ,g1 )∗◦s∗f ◦i∗X(FX)
(Π
f,g
1 )∗◦s∗f (i2X)

//

I
Π
f,g
1 ,sf

(i∗X(FX ))−1

��

(Πf ,g1 )∗◦s∗f (F∂X)

I
Π
f,g
1 ,sf

(F∂X )−1

��
s∗g◦f (NX)

s∗g◦f (νX)
// s∗g◦f ◦ i∗X(FX)

s∗g◦f (i2X)
// s∗g◦f (F∂X).

This commutes, by (6.15) for f , g and properties of I∗,∗(∗). The composition of
the middle column is the middle column of (6.15), by (2.24) and properties of
I∗,∗(∗). Hence by uniqueness of λg◦f , µg◦f in part (d) for g◦f , the compositions
of the left and right columns are λg◦f , µg◦f . This proves part (f).

Here are some properties of 2-morphisms:

Proposition 6.8. Let f , g : X → Y be 1-morphisms and η : f ⇒ g a 2-
morphism in dSpac. Then:

(a) λf , λg : u∗f (NY)→ s∗f (NX) in Proposition 6.7(d) satisfy λf = λg.
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(b) There is a unique morphism ηS : u∗f (F∂Y ) → s∗f (E∂X) in qcoh(Sf ) such
that the following commutes:

(iX◦sf )∗◦f∗(FY )

(iX◦sf )∗(η)

��

Iuf ,iY (FY )◦
IiX◦sf ,f (FY )−1

// u∗f ◦ i∗Y(FY )
u∗f (i2Y)

// u∗f (F∂Y )

ηS

��
(iX ◦ sf )∗(EX)

Isf ,iX (EX)
// s∗f ◦ i∗X(EX)

s∗f (i′′X)
// s∗f (E∂X).

(6.22)

(c) There is a unique morphism ηT : v∗f (F∂Y ) → t∗f (EX) in qcoh(T f ) such
that the following commutes:

t∗f ◦ f∗(FY )

t∗f (η)

��

Itf ,f (FY )−1

// (f ◦ tf )∗(FY )
Ivf ,iY (FY )

// v∗f ◦ i∗Y(FY )

v∗f (i2Y)

��
t∗f (EX) v∗f (F∂Y ).

ηToo

(6.23)

Proof. For (a), we have

s∗f (νX) ◦ (λg − λf )

= Isf ,iX(FX)◦(iX ◦ sf )∗(g2−f2)◦IiX◦sf ,f (FY )◦Iuf ,iY (FY )−1◦ u∗f (νY)

= Isf ,iX(FX)◦(iX◦sf )∗(φX ◦η)◦IiX◦sf ,f (FY )◦Iuf ,iY (FY )−1◦ u∗f (νY)=0,

using (6.15) for f , g in the first step, (2.26) for η in the second, and (6.9) in the
third. As νX is injective by (6.4), and sf is étale by Proposition 6.7(c), s∗f (νX)
is injective, so λg − λf = 0.

For (b), first note that as (6.4) for Y is split exact, its pullback

0 // u∗f (NY)
u∗f (νY)

// u∗f ◦ i∗Y(FY )
u∗f (i2Y)

// u∗f (F∂Y ) // 0 (6.24)

is also split exact. Now (6.9) implies that(
s∗f (i′′X)◦Isf ,iX(EX)◦(iX◦sf )∗(η)◦IiX◦sf ,f (FY )◦Iuf ,iY (FY )−1

)
◦ u∗f (νY)=0,

so by exactness of (6.24) there is a unique ηS : u∗f (F∂Y )→ s∗f (E∂X) with

s∗f (i′′X)◦Isf ,iX(EX)◦(iX◦sf )∗(η)◦IiX◦sf ,f (FY )◦Iuf ,iY (FY )−1 = ηS ◦ u∗f (i2Y).

This is the unique ηS for which (6.22) commutes. The proof for (c) is similar,
using equation (6.10).

Here is the analogue of Proposition 2.17. Note that equations (6.9)–(6.10)
are necessary conditions on η for η : f ⇒ g to be a 2-morphism in dSpac.

Proposition 6.9. Suppose f : X → Y is a 1-morphism of d-spaces with cor-
ners, and η : f∗(FY ) → EX is a morphism in qcoh(X) such that (6.9) and
(6.10) hold in qcoh(Sf ) and qcoh(T f ). Then there exists a unique 1-morphism
g : X→ Y in dSpac such that η : f ⇒ g is a 2-morphism in dSpac.
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Proof. As f : X → Y is a 1-morphism in dSpa, Proposition 2.17 gives a
unique 1-morphism g : X → Y in dSpa such that η : f ⇒ g is a 2-morphism
in dSpa. We first show that g is a 1-morphism in dSpac. Suppose x ∈ X
with g(x) = y ∈ Y , and y′ ∈ ∂Y with iY(y′) = y, and (V , b) is a boundary
defining function for Y at y′. Since f , g are 2-isomorphic in dSpa we have
f(x) = g(x) = y. Thus by Definition 6.2 for f , either:

(i) there exists x′ ∈ ∂X with iX(x′) = x and open x ∈ Ṽ ⊆ f−1(V ) ⊆ X
such that

(
Ṽ , b ◦ f |Ṽ

)
is a boundary defining function for X at x′; or

(ii) there exists an open x ∈W ⊆ f−1(V ) ⊆X with b ◦ f |W = 0 ◦ π.

In case (i), by Definition 6.1 there exist open y′ ∈ U ⊆ i−1
Y (V ) ⊆ ∂Y

and x′ ∈ Ũ ⊆ i−1
X (Ṽ ) ⊆ ∂X so that U ,V , b, iY|U and Ũ , Ṽ , b ◦ f |Ṽ , iX|Ũ

fit into 2-Cartesian diagrams (6.1) in dSpa. Since sf : Sf → ∂X is étale by

Proposition 6.7(c) and sf (x′, y′) = x′, uf (x′, y′) = y′, making Ũ , Ṽ smaller if

necessary, there exists open (x′, y′) ∈ Z ⊆ Sf such that sf |Z : Z → Ũ is an
isomorphism, and uf (Z) ⊆ U. By Definition 6.1(e) there exists an isomorphism
γ : iY|∗U ◦ b∗(F [0,∞))→ NY|U with νY|U ◦ γ = iY|∗U(b2). So by (6.9) we have

0 =
(
(iX ◦ sf )∗(η) ◦ IiX◦sf ,f (FY ) ◦ Iuf ,iY (FY )−1 ◦ u∗f (νY)

)
|Z

= (iX◦sf |Z)∗(η)◦IiX◦sf |Z ,f (FY )◦Iuf |Z ,iY (FY )−1◦uf |∗Z(iY|∗U(b2))◦uf |∗Z(γ−1)

= (iX◦sf |Z)∗(η◦f∗(b2))◦IiX◦sf |Z ,f (F [0,∞))◦Iuf |Z ,iY (F [0,∞))
−1◦uf |∗Z(γ−1).

Hence (iX ◦ sf |Z)∗(η ◦ f∗(b2)) = 0 in qcoh(Z). As sf |Z : Z → Ũ is an isomor-

phism, this implies that iX|∗Ũ(η ◦ f∗(b2)) = 0 in qcoh(Ũ).

Since (6.1) for Ũ , Ṽ , b ◦ f |Ṽ , iX|Ũ is 2-Cartesian in dSpa, using η : f ⇒ g,
we deduce that the following diagram in dSpa is also 2-Cartesian:

Ũ π
//

iX|Ũ�� � �� �
IQ

idb∗(−η|Ṽ )∗idiX|Ũ

∗
0 ��

Ṽ
b◦g|Ṽ // [0,∞).

(6.25)

Expanding idb ∗ (−η|Ṽ ) ∗ idiX|Ũ using Definition 2.14 gives

idb ∗ (−η|Ṽ ) ∗ idiX|Ũ

= −i′′X|Ũ ◦ iX|
∗
Ũ

(η ◦ f∗(b2) ◦ If |Ṽ ,b(F [0,∞))) ◦ IiX|Ũ,b◦f (F [0,∞))) = 0 = id0◦π,

since iX|∗Ũ(η ◦ f∗(b2)) = 0. Hence (6.25) is of the form (6.1). We now deduce

that
(
Ṽ , b ◦ g|Ṽ

)
is a boundary defining function for X at x′, as

(
Ṽ , b ◦ f |Ṽ

)
is. Thus in case (i), Definition 6.2(i) holds for g at x′, y′, (V , b).

In case (ii), by a similar argument using tf : T f → X étale by Proposition

6.7(c), we can show there exists open x ∈ W̃ ⊆ W such that the 2-morphism
idb ∗ η|W̃ : b ◦ f |W̃ ⇒ b ◦ g|W̃ is identified with (6.10) and so is zero. Hence
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b ◦ g|W̃ = b ◦ f |W̃ = 0 ◦π, so that Definition 6.2(ii) holds for g at x, y′, (V , b).
This shows that g : X→ Y is a 1-morphism in dSpac, and also that Sg = Sf .
Since η : f ⇒ g is a 2-morphism in dSpa, and Sg = Sf , and (6.9)–(6.10) hold,
η : f ⇒ g is a 2-morphism in dSpac. This completes the proof.

6.2 Boundaries of d-spaces with corners

Let X be a d-space with corners. In a long definition, we will define a d-space
with corners ∂X, the boundary of X, and a 1-morphism iX : ∂X → X of
d-spaces with corners. To understand the definitions of ∂2X and i∂X below,
note that if X is a manifold with corners with boundary ∂X and immersion
iX : ∂X → X, then from (5.2) we see that

∂2X ∼=
{

(x′, x′′) ∈ ∂X ×iX ,X,iX ∂X : x′ 6= x′′
}
.

That is, as a topological space ∂2X is the complement of the diagonal in the
topological fibre product ∂X ×iX ,X,iX ∂X, and then i∂X : ∂2X → ∂X is the
projection to the first factor in the fibre product.

Definition 6.10. Let X = (X,∂X, iX, ωX) be a d-space with corners, where
X = (X,O′X , EX , ıX , X) and ∂X = (∂X,O′∂X , E∂X , ı∂X , ∂X). We will define
a d-space with corners ∂X = (∂X,∂2X, i∂X, ω∂X), called the boundary of X,
and show that iX : ∂X→ X is a 1-morphism in dSpac.

Here ∂X and iX are given in X, so the new data we have to construct is
∂2X, i∂X, ω∂X, where ∂2X = (∂2X,O′∂2X , E∂2X , ı∂2X , ∂2X) is a d-space, and
i∂X = (i∂X, i

′
∂X, i

′′
∂X) : ∂2X → ∂X is a 1-morphism in dSpa, and ω∂X is an

orientation on a line bundle N ∂X defined later.
We will also construct a 1-morphism j∂X = (j∂X, j

′
∂X, j

′′
∂X) : ∂2X → ∂X

in dSpa with iX ◦ i∂X = iX ◦ j∂X, such that the 2-commutative diagram

∂2X
j∂X

//

i∂X�� � �� �
IQ

idiX◦i∂X

∂X
iX ��

∂X
iX // X

(6.26)

is locally 2-Cartesian in dSpa, in that it induces an equivalence from ∂2X to
an open d-subspace of ∂X ×iX,X,iX ∂X, the complement of the diagonal.

Form the C∞-scheme fibre product ∂X ×iX,X,iX ∂X, and write π1, π2 :
∂X ×X ∂X → ∂X for the projections. The underlying topological space is
∂X ×X ∂X =

{
(x′, x′′) : x′, x′′ ∈ ∂X, iX(x′) = iX(x′′)

}
. We have a subset

∆X ⊆ ∂X×X ∂X, the diagonal, given by ∆X =
{

(x′, x′) : x′ ∈ ∂X
}

. It is closed
in ∂X×X ∂X as ∂X is Hausdorff, and open as iX : ∂X → X is an immersion of
topological spaces. Hence ∂2X = (∂X ×X ∂X) \∆X is also open and closed in
∂X×X∂X. Define ∂2X to be corresponding the open and closed C∞-subscheme
in ∂X ×X ∂X. It is separated, second countable and locally fair as ∂X,X are.
Define C∞-scheme morphisms i∂X, j∂X : ∂2X → ∂X by i∂X = π1|∂2X and
j∂X = π2|∂2X . Since iX : ∂X → X is proper, π1, π2 : ∂X ×X ∂X → ∂X are
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proper, so i∂X, j∂X are proper as they are the restrictions of π1, π2 to a closed
C∞-subscheme.

Now fibre products of C∞-schemes correspond to tensor products of the
corresponding sheaves of C∞-rings. Thus we have

O∂2X =
(
π−1

1 (O∂X)⊗̂ (iX◦π1)−1(OX)π
−1
2 (O∂X)

)∣∣
∂2X

, (6.27)

where the tensor product is taken using the morphisms of sheaves of C∞-rings

π−1
1 (i]X) ◦ Iπ1,iX(OX) : (iX ◦ π1)−1(OX) −→ π−1

1 (O∂X),

π−1
2 (i]X) ◦ Iπ2,iX(OX) : (iX ◦ π1)−1(OX) −→ π−1

2 (O∂X),

noting that iX ◦ π1 = iX ◦ π2 : ∂X ×X ∂X → X. So we have a co-Cartesian
square of morphisms of sheaves of C∞-rings on ∂2X:

(iX ◦ π1)−1(OX)|∂2X
π−1

2 (i]X)◦Iπ2,iX
(OX)|∂2X

//

π−1
1 (i]X)◦Iπ1,iX

(OX)|∂2X��

π−1
2 (O∂X)|∂2X = j−1

∂X(O∂X)

π]2|∂2X=j]∂X ��
π−1

1 (O∂X)|∂2X = i−1
∂X(O∂X)

π]1|∂2X=i]∂X // O∂2X .

In the same way, define a sheaf of C∞-rings O′∂2X on ∂2X by

O′∂2X =
(
π−1

1 (O′∂X)⊗̂ (iX◦π1)−1(O′X)π
−1
2 (O′∂X)

)∣∣
∂2X

= i−1
∂X(O′∂X)⊗̂ (iX◦i∂X)−1(O′X)j

−1
∂X(O′∂X),

(6.28)

to fit in the co-Cartesian square of morphisms of sheaves of C∞-rings on ∂2X:

(iX◦π1)−1(O′X)|∂2X
π−1

2 (i′X)◦Iπ2,iX
(O′X)|∂2X

//

π−1
1 (i′X)◦Iπ1,iX

(O′X)|∂2X��

π−1
2 (O′∂X)|∂2X =j−1

∂X(O′∂X)

π′2|∂2X=j′∂X ��
π−1

1 (O′∂X)|∂2X = i−1
∂X(O′∂X)

π′1|∂2X=i′∂X // O′∂2X .

(6.29)

where i′∂X : i−1
∂X(O′∂X) → O′∂2X and j′∂X : j−1

∂X(O′∂X) → O′∂2X are defined by
(6.29). We have morphisms of sheaves of C∞-rings on ∂2X:(

π]1 ◦ π
−1
1 (ı∂X)

)
|∂2X : π−1

1 (O′∂X)|∂2X −→ O∂2X ,(
π]2 ◦ π

−1
2 (ı∂X)

)
|∂2X : π−1

2 (O′∂X)|∂2X −→ O∂2X ,

which satisfy (
π]1 ◦ π

−1
1 (ı∂X)

)
|∂2X ◦

(
π−1

1 (i′X) ◦ Iπ1,iX(O′X)
)
|∂2X =(

π]2 ◦ π
−1
2 (ı∂X)

)
|∂2X ◦

(
π−1

2 (i′X) ◦ Iπ2,iX(O′X)
)
|∂2X .

Hence by properties of the co-Cartesian square (6.29), there is a unique mor-
phism of sheaves of C∞-rings ı∂2X : O′∂2X → O∂2X satisfying(

π]1 ◦ π
−1
1 (ı∂X)

)
|∂2X = ı∂2X ◦ π′1|∂2X ,(

π]2 ◦ π
−1
2 (ı∂X)

)
|∂2X = ı∂2X ◦ π′2|∂2X .
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These equations may also be written

i]∂X ◦ i
−1
∂X(ı∂X) = ı∂2X ◦ i′∂X,

j]∂X ◦ i
−1
∂X(ı∂X) = ı∂2X ◦ j′∂X.

(6.30)

Consider the commutative square of sheaves of C∞-rings on ∂X:

i−1
X (O′X)

i′X

//

i−1
X (ıX)��

O′∂X
ı∂X

��
i−1
X (OX)

i]X // O∂X .
(6.31)

Let U ,V , b be as in Definition 6.1(c), so that U ⊆ ∂X is open. Then (6.1)
2-Cartesian and i′′X an isomorphism implies that

O∂X |U ∼= i−1
X (OX)|U ⊗̂ (b◦iX|U )−1(O[0,∞))π

−1(O∗),

O′∂X |U ∼= i−1
X (OX ′)|U ⊗̂ (b◦iX|U )−1(O[0,∞))π

−1(O∗).

It follows that the restriction of (6.31) to U is co-Cartesian. As we can cover
∂X by such U , equation (6.31) is co-Cartesian. That is,

O∂X ∼= i−1
X (OX)⊗̂ i−1

X (O′X)O
′
∂X . (6.32)

Applying the exact functor (iX ◦ i∂X)−1 to (2.9) gives an exact sequence of
sheaves of (iX ◦ i∂X)−1(O′X)-modules on ∂2X:

0 // (iX◦i∂X)−1(IX)

(iX◦i∂X)−1(κX)

// (iX◦i∂X)−1(O′X)

(iX◦i∂X)−1(ıX)

// (iX◦i∂X)−1(OX) // 0.

Applying the right exact functor ⊗̂ (iX◦i∂X)−1(O′X)O′∂2X gives an exact sequence

of O′∂2X -modules on ∂2X:

(iX ◦ i∂X)−1(IX)
⊗̂ (iX◦i∂X)−1(O′X)O′∂2X

(iX◦i∂X)−1(κX)
⊗id // O′∂2X

(iX◦i∂X)−1(ıX)
⊗id // (iX ◦ i∂X)−1(OX)
⊗̂ (iX◦i∂X)−1(O′X)O′∂2X

// 0. (6.33)

Now we have natural isomorphisms

(iX ◦ i∂X)−1(OX)⊗̂ (iX◦i∂X)−1(O′X)O′∂2X

∼= (iX◦i∂X)−1(OX)⊗̂ (iX◦i∂X)−1(O′X)

(
i−1
∂X(O′∂X)⊗̂ (iX◦i∂X)−1(O′X)j

−1
∂X(O′∂X)

)
∼= i−1

∂X

(
i−1
X (OX)⊗̂ i−1

X (O′X)O
′
∂X

)
⊗̂ (iX◦i∂X)−1(O′X)j

−1
∂X(O′∂X)

∼= i−1
∂X(O∂X)⊗̂ (iX◦i∂X)−1(O′X)j

−1
∂X(O′∂X)

(6.34)

∼= i−1
∂X(O∂X)⊗̂ (iX◦i∂X)−1(OX)j

−1
∂X

(
i−1
X (OX)⊗̂ i−1

X (O′X)O
′
∂X

)
∼= i−1

∂X(O∂X)⊗̂ (iX◦i∂X)−1(OX)j
−1
∂X(O∂X) ∼= O∂2X ,
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using (6.28) in the first step, (6.32) in the third and fifth steps, and (6.27) in
the last. Also we have natural isomorphisms

(iX ◦ i∂X)−1(IX)⊗̂ (iX◦i∂X)−1(O′X)O′∂2X

∼= (iX◦i∂X)−1(IX)⊗(iX◦i∂X)−1(OX)

(
(iX◦i∂X)−1(OX)⊗̂ (iX◦i∂X)−1(O′X)O′∂2X

)
∼= (iX ◦ i∂X)−1(IX)⊗(iX◦i∂X)−1(OX) O∂2X = (iX ◦ i∂X)∗(IX), (6.35)

using the fact that the O′X -action on IX factors through an OX -action in the
first step, and (6.34) in the second. Substituting (6.34)–(6.35) into (6.33) gives
an exact sequence of O′∂2X -modules on ∂2X:

(iX ◦ i∂X)∗(IX) // O′∂2X

ı∂2X // O∂2X
// 0. (6.36)

Thus ı∂2X is surjective. Write I∂2X for the kernel of ı∂2X , a sheaf of ideals
in O′∂2X on ∂2X. Then (6.36) gives a unique surjective O′∂2X -module morphism

ξ∂X : (iX ◦ i∂X)∗(IX) −→ I∂2X . (6.37)

Since IX is a sheaf of square zero ideals and ξ∂X is a surjective morphism of
ideals, I∂2X is a sheaf of square zero ideals. Hence (∂2X,O′∂2X , ı∂2X) is a square
zero extension of C∞-schemes, in the sense of Definition 2.9. Also, the O′∂2X -
action on both sides of (6.37) factors through an O∂2X -action, so ξ∂X is an
O∂2X -module morphism, that is, a morphism in qcoh(∂2X). By §2.1 we have
morphisms i1X : i∗X(IX) → I∂X in qcoh(∂X), and i1∂X : i∗∂X(I∂X) → I∂2X in
qcoh(∂2X). In terms of these one can show that

ξ∂X = i1∂X ◦ i∗∂X(i1X) ◦ Ii∂X,iX(IX). (6.38)

From X we have a surjective X : EX → IX . Hence (iX ◦ i∂X)∗(X) :
(iX ◦ i∂X)∗(EX) → (iX ◦ i∂X)∗(IX) is surjective in qcoh(∂2X). Define E∂2X

and ∂2X : E∂2X → I∂2X in qcoh(∂2X) by E∂2X = (iX ◦ i∂X)∗(EX) and ∂2X =
ξ∂X ◦ (iX ◦ i∂X)∗(X). Then ∂2X is surjective, as ξ∂X and (iX ◦ i∂X)∗(X) are.
This completes the definition of ∂2X = (∂2X,O′∂2X , E∂2X , ı∂2X , ∂2X). We
have already shown that ∂2X is separated, second countable and locally fair,
and (O′∂2X , ı∂2X) is a square zero extension of ∂2X, and ∂2X : E∂2X → I∂2X

is surjective in qcoh(∂2X). Hence ∂2X is a d-space.
Define morphisms i′′∂X : i∗∂X(E∂X) → E∂2X and j′′∂X : j∗∂X(E∂X) → E∂2X in

qcoh(∂2X) by the commutative diagrams

i∗∂X(E∂X)

i′′∂X��
i∗∂X((i′′X)−1)

// i∗∂X◦i∗X(EX)

Ii∂X,iX
(EX)−1

��
E∂2X (iX◦i∂X)∗(EX),

j∗∂X(E∂X)

j′′∂X��
j∗∂X((i′′X)−1)

// j∗∂X◦i∗X(EX)

Ij∂X,iX
(EX)−1

��
E∂2X (jX◦i∂X)∗(EX),

noting that i′′X : i∗X(EX)→ E∂X is an isomorphism by Definition 6.1(b).
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This defines i∂X = (i∂X, i
′
∂X, i

′′
∂X) and j∂X = (j∂X, j

′
∂X, j

′′
∂X). Equation

(6.30) shows that (i∂X, i
′
∂X) and (j∂X, j

′
∂X) are morphisms of square zero ex-

tensions of C∞-schemes. Equation (2.21) for i∂X follows from

∂2X ◦ i′′∂X = ξ∂X ◦ (iX ◦ i∂X)∗(X) ◦ Ii∂X,iX(EX)−1 ◦ i∗∂X((i′′X)−1)

= i1∂X◦i∗∂X(i1X)◦Ii∂X,iX(IX)◦Ii∂X,iX(IX)−1◦i∗∂X◦iX(X)◦i∗∂X((i′′X)−1)

= i1∂X ◦ i∗∂X(i1X ◦ i∗X(X)) ◦ i∗∂X((i′′X)−1)

= i1∂X ◦ i∗∂X(∂X ◦ i′′X) ◦ i∗∂X((i′′X)−1) = i1∂X ◦ i∗∂X(∂X),

using (6.38) and properties of I∗,∗(∗) in the second step, and (2.21) for iX in
the fourth. Therefore i∂X : ∂2X → ∂X and similarly j∂X : ∂2X → ∂X are
1-morphisms in dSpa.

It is now easy to check that iX ◦ i∂X = iX ◦ j∂X, so that (6.26) 2-commutes,
and induces a 1-morphism h : ∂2X → ∂X ×iX,X,iX ∂X. One can show h is
an equivalence with an open d-subspace by comparing the construction of ∂2X
above with the explicit construction of ∂X ×X ∂X in §2.5; ∂X ×X ∂X is
locally obtained from ∂2X by adding on the sheaf G = E∂2X using Example
2.18. Hence (6.26) is locally 2-Cartesian.

Next we verify Definition 6.1(a)–(f) for ∂X = (∂X,∂2X, i∂X, ω∂X), con-
structing ω∂X along the way. We have already shown that i∂X is proper, so (a)
holds, and i′′∂X = Ii∂X,iX(EX)−1 ◦ i∗∂X((i′′X)−1) is an isomorphism, so (b) holds.
For (c), let (x′1, x

′
2) ∈ ∂2X, so that x′1 6= x′2 ∈ ∂X with iX(x′1) = iX(x′2) =

x ∈ X. Let (V 1, b1), (V 2, b2) be boundary defining functions for X at x1, x
′
2.

Then x ∈ V 1,V 2 ⊆ X are open, and there exist open x′1 ∈ U1 ⊆ ∂X and
x′2 ∈ U2 ⊆ ∂X with (6.1) 2-Cartesian for U1,V 1, b1 and U2,V 2, b2.

Making U1,V 1,U2,V 2 smaller we can suppose that V 1 = V 2 = V , say.
By Definition 6.1(c), b21 : b∗1(F [0,∞)) → FX |V and b22 : b∗2(F [0,∞)) → FX |V
have left inverses β1, β2. Hence b21 and b22 embed the line bundles b∗1(F [0,∞))
and b∗2(F [0,∞)) as direct summands in FX |V . Definition 6.1(f) shows these
embeddings are linearly independent at x, which is an open condition. Hence,
making U1,U2,V smaller we can suppose that b21, b

2
2 are linearly independent

on V , so that b21 ⊕ b22 embeds b∗1(F [0,∞)) ⊕ b∗2(F [0,∞)) as a direct summand in
FX |V . Thus we can choose the left inverses β1, β2 such that β1◦b22 = β2◦b21 = 0.
Suppose x̃′1 ∈ U1 and x̃′2 ∈ U2 with iX(x̃′1) = iX(x̃′2) = x̃ ∈ V . Since b21, b

2
2 are

linearly independent at x̃ we see that x̃′1 6= x̃′2. It follows that U1 ∩U2 = ∅.
Define U∂ = i−1

∂X(U1) ∩ j−1
∂X(U2), and V ∂ = U1, and b∂ = b2 ◦ iX|V ∂ :

V ∂ → [0,∞). Then (x′1, x
′
2) ∈ U∂ ⊆ ∂2X is open, and x′1 ∈ V ∂ ⊆ ∂X is

open, and iX|U∂ : U∂ → V ∂ . Consider the 2-commutative diagram

U∂
j∂X|U∂

//
π∂

..

i∂X|U∂ �� � �� �
GOidiX◦i∂X|U∂

U2 π
//

iX|U2�� � �� �
HP

id0◦π

∗
0 ��

V ∂

b∂

00
iX|V ∂ // V

b2 // [0,∞).

(6.39)

The right hand square in (6.39) is 2-Cartesian by (6.1) for U2,V , b2. The left
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hand square is an open subdiagram of (6.16), which is locally 2-Cartesian. As
U1 ∩U2 = ∅ the open d-subspace U1×V U2 in ∂X ×X ∂X does not intersect
the diagonal, so it lies in ∂2X, as this is equivalent to the complement of the
diagonal in ∂X×X ∂X, and U∂ is defined so that U∂ ' U1×V U2. Hence the
left hand square in (6.39) is 2-Cartesian, so the outer rectangle is 2-Cartesian.

This proves the first part of Definition 6.1(c) for (x′1, x
′
2) ∈ ∂2X with

U∂ , (V ∂ , b∂). For the second part, consider the diagram in qcoh(V ∂):

0 // 0 //

0

��

iX|∗V ∂ ◦ b
∗
2(F [0,∞))

iX|∗V∂ (b22)

��

IiX|V∂ ,b2
(F [0,∞))

−1

// b∗∂(F [0,∞))

b2∂

��

// 0

0 // iX|∗V ∂ ◦b
∗
1(F [0,∞))

iX|∗V∂ (b21)
//

0

OO

i∗X(FX)|V ∂

iX|∗V∂ (β2)

OO

iX|∗V∂ (β1)
oo

i2X|V∂ // F∂X |V ∂

β

OO

// 0.

The bottom row is (6.2) for U1, (V 1, b1), noting that V ∂ = U1, and so is
exact. As β2 ◦ b21 = 0 we have iX|∗V ∂ (β2) ◦ iX|∗V ∂ (b21) = 0, so by exactness of

the bottom row there exists a unique morphism β : F∂X |V ∂ → b∗∂(F [0,∞)) with
β ◦ i2X|V ∂ = IiX|V∂ ,b2(F [0,∞))

−1 ◦ iX|∗V ∂ (β2). Therefore

β ◦ b2∂ = β ◦
(
i2X|V ∂ ◦ iX|

∗
V ∂

(b22) ◦ IiX|V∂ ,b2(F [0,∞))
)

= IiX|V∂ ,b2(F [0,∞))
−1 ◦ iX|∗V ∂ (β2) ◦ iX|∗V ∂ (b22) ◦ IiX|V∂ ,b2(F [0,∞))

= IiX|V∂ ,b2(F [0,∞))
−1 ◦ idiX|∗V∂ ◦b

∗
2(F [0,∞)) ◦ IiX|V∂ ,b2(F [0,∞)) = idb∗∂(F [0,∞)),

where in the first line we use b∂ = b2 ◦ iX|V ∂ and (2.24), and in the third that
β2 is a left inverse for b22. Therefore b2∂ has a left inverse β, proving the second
part of Definition 6.1(c) for U∂ , (V ∂ , b∂).

Definition 6.1 now defines a conormal line bundle N ∂X on ∂2X, in the split
exact sequence (6.4). Consider the commutative diagram in qcoh(∂2X):

0 // i∗∂X(NX)

χ∂X

��

i∗∂X(νX)
// i∗∂X ◦ i∗X(FX)

i∗∂X(i2X)��

i∗∂X(i2X)

// i∗∂X(F∂X)

i2∂X��

// 0

0 // N ∂X
ν∂X // i∗∂X(F∂X)

i2∂X // F∂2X
// 0.

(6.40)

Here the top line is i∗∂X applied to (6.4) for X, and the bottom line is (6.4) for
∂X. So both are (split) exact, as pullbacks take split exact sequences to split
exact sequences. The right hand square commutes trivially. Therefore there
exists a unique morphism χ∂X as shown making (6.40) commute.

In Definition 6.1 we explained that in Definition 6.1(c), we can identify the
restriction of (6.4) to U with (6.2). In the same way, for U2,V , b2,U∂ ,V ∂ , b∂
as above, we can identify the restriction of (6.40) to U∂ with

0 // i∂X|∗U∂ (iX|∗U2
◦b∗2(F [0,∞)))

i∂X|∗U∂ (IiX|U2
,b2

(F [0,∞)))

��

i∂X|∗U∂ (iX|∗U2
(b22))

// i∂X|∗U∂ ◦i
∗
X(FX)

i∂X|∗U∂ (i2X)

��

i∂X|∗U∂ (i2X)

// i∂X|∗U∂ (F∂X)

i2∂X|U∂
��

// 0

0 // i∂X|∗U∂ ◦b
∗
∂(F [0,∞))

i∂X|∗U∂ (b2∂)
// i∂X|∗U∂ (F∂X)

i2∂X|U∂ // F∂2X |U∂ // 0.

(6.41)
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This identifies χ∂X|U∂ with an isomorphism. Thus χ∂X : i∗∂X(NX) → N ∂X is
an isomorphism of line bundles on ∂2X, as we can cover ∂2X by such open U∂ .

Define ω∂X to be the orientation on N ∂X identified with the orientation
i∗∂X(ωX) on i∗∂X(NX) by χ∂X. This gives Definition 6.1(d) for ∂X. For (e), as
above there is a natural identification between the restriction of (6.40) to U∂
with (6.41). This induces isomorphisms

i∂X|∗U∂ (γ) : i∂X|∗U∂ (iX|∗U◦b∗(F [0,∞)))
∼=−→ i∗∂X(NX)|U∂ ,

γ∂ : i∂X|∗U∂ ◦ b
∗
∂(F [0,∞))

∼=−→N ∂X|U∂ ,

for γ as in (6.7) for U2,V , b2. Now i∗∂X(NX), ω∂X in (6.40) have orienta-
tions i∗∂X(ωX), ω∂X, where χ∂X is orientation-preserving, and i∂X|∗U∂ (iX|∗U2

◦
b∗2(F [0,∞))), i∂X|∗U∂ ◦ b

∗
∂(F [0,∞)) in (6.41) both have orientations coming from

the negative orientation on F [0,∞), and i∂X|∗U∂ (IiX|U2
,b2(F [0,∞))) is orientation-

preserving. Since γ identifies orientations by Definition 6.1(e), it follows that
γ∂ also identifies orientations. This proves Definition 6.1(e) for U∂ ,V ∂ , b∂ , so
that (V ∂ , b∂) is a boundary defining function for ∂X at (x′1, x

′
2).

For (f), let x′ ∈ ∂X, with iX(x′) = x ∈ X. Write i−1
X (x) = {x′, x′1, . . . , x′k}

for distinct x′, x′1, . . . , x
′
k ∈ ∂X. Then i−1

∂X(x′) =
{

(x′, x′1), . . . , (x′, x′k)
}

. Con-
sider the diagram in qcoh(∗):

0

��
0

��
(x′)∗(NX)

id(x′)∗(NX) //

id⊕
⊕k
i=1 0

��

(x′)∗(NX)

(x′)∗(νX)

��(x′)∗(NX)⊕⊕k
i=1(x′i)

∗(NX)

Ix′,iX
(FX)◦(

Ix′,iX
(FX)−1◦(x′)∗(νX)⊕⊕k

i=1 Ix′i,iX
(FX)−1◦(x′i)

∗(νX)
)

//

0⊕
⊕k
i=1(x′,x′i)

∗(χ∂X)
◦I(x′,x′

i
),i∂X

(NX)
��

(x′)∗ ◦ i∗X(FX)

(x′)∗(i2X)

��⊕k
i=1(x′, x′i)

∗(N ∂X)

⊕k
i=1 I(x′,x′i),i∂X

(F∂X)−1

◦(x′,x′i)
∗(ν∂X) //

��

(x′)∗(F∂X)

��
0 0.

Here the left hand column is exact as χ∂X in (6.40) is an isomorphism, and the
right hand column is pullback of (6.4) by (x′)∗, and so is exact as (6.4) is split
exact. The top square commutes trivially, and the bottom square commutes as
the right hand column is exact, and the left hand square in (6.40) commutes.
The central horizontal morphism is injective by Definition 6.1(f) for X at x.
Therefore the lower horizontal morphism is injective. This proves Definition
6.1(f) for ∂X at x′. Hence ∂X is a d-space with corners.

Lastly we show that the d-space morphism iX : X → ∂X in X = (X,∂X,
iX, ωX) is a 1-morphism iX : ∂X → X in dSpac. Suppose x′1 ∈ ∂X with
iX(x′) = x ∈ X, and x′2 ∈ ∂X with iX(x′2) = x ∈ X, and let (V 2, b2) be a
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boundary defining function for X at x′2. Divide into the two cases (i) x′1 6= x′2,
and (ii) x′1 = x′2. In case (i) we may choose a boundary defining function
(V 1, b1) for X at x′1, and then as above use (V 1, b1), (V 2, b2) to construct open
x′1 ∈ V ∂ ⊆ i−1

X (V 2) ⊆ ∂X such that (V ∂ , b∂) = (V ∂ , b2 ◦iX|V ∂ ) is a boundary
defining function for ∂X at (x′1, x

′
2), where i∂X(x′1, x

′
2) = x′1. Hence Definition

6.2(i) holds for iX in this case. In case (ii), let U2 be as in Definition 6.1(c)
for (V 2, b2). Then x′1 = x′2 ∈ U2 ⊆ ∂X is open and b2 ◦ iX|U2

= 0 ◦ π.
Thus Definition 6.2(i) holds for iX in this case, with W = U2. Therefore
iX : ∂X→ X is a 1-morphism in dSpac. This concludes Definition 6.10.

We will prove properties of boundaries ∂X in §6.3–§6.5 and §6.8. For now,
note that our construction of the boundary ∂X of X is canonical: it does not
depend on any arbitrary choices (provided we do not regard fibre products in
C∞Sch and pullbacks of quasicoherent sheaves as choices). We will show in
§6.5 that if X is equivalent to Y in dSpac, then ∂X is equivalent to ∂Y. We
can iterate the construction to define ∂kX for all k = 1, 2, . . . .

6.3 Simple, semisimple and flat 1-morphisms

The next definition and theorem are analogues of Definitions 5.9(i)–(iii) and
5.12 and Proposition 5.13 for d-spaces with corners.

Definition 6.11. Let f : X → Y be a 1-morphism of d-spaces with corners,
and ∂X the boundary of X from §6.2. Then sf : Sf → ∂X is proper and
étale by Proposition 6.7(c). As sf is étale, sf (Sf ) is open in ∂X. Also ∂X
is separated and locally fair, and so locally compact, and this and sf proper
implies that sf (Sf ) is closed in ∂X.

Define ∂f−X = sf (Sf ), and ∂f+X = ∂X \ ∂f−X. Then ∂f±X are open and

closed C∞-subschemes of ∂X, with ∂X = ∂f+Xq∂
f
−X. Write ∂f+X, ∂f−X for the

open and closed d-subspaces of ∂X corresponding to ∂f+X, ∂
f
−X, as in Definition

6.1. Then ∂f±X are d-spaces with corners, with ∂X = ∂f+Xq ∂f−X.
We call f simple if sf : Sf → ∂X is bijective, and we call f semisimple

if sf : Sf → ∂X is injective, and we call f flat if T f = ∅. Simple implies

semisimple. If f is simple then ∂f−X = ∂X and ∂f+X = ∅.

One moral of parts (b),(c) of our next theorem is that when appropriate, 1-
and 2-morphisms in dSpac lift uniquely up to 1- and 2-morphisms of boundaries,
in a functorial way. In Remark 6.5(vi) we defined an alternative 2-category

dS̃pac, with a weaker notion of 2-morphism. Theorem 6.12(c) is false in dS̃pac,
as there are examples of semisimple 1-morphisms f , g : X→ Y with a weak 2-
morphism η : f ⇒ g, for which there exists no weak 2-morphism η− : f− ⇒ g−.

Theorem 6.12. Let f : X→ Y be a semisimple 1-morphism of d-spaces with
corners. Then:

(a) Define f+ = f ◦ iX|∂f+X : ∂f+X→ Y. Then f+ is semisimple. If f is flat

then f+ is also flat.
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(b) There exists a unique, semisimple 1-morphism f− : ∂f−X → ∂Y with
f ◦ iX|∂f−X = iY ◦ f−. If f is simple then f− : ∂X→ ∂Y is also simple.

If f is flat then f− is flat.

(c) Let g : X → Y be another 1-morphism and η : f ⇒ g a 2-morphism in

dSpac. Then g is also semisimple, with ∂g−X = ∂f−X. If f is simple, or
flat, then g is simple, or flat, respectively. Part (b) defines 1-morphisms

f−, g− : ∂f−X → ∂Y. There is a unique 2-morphism η− : f− ⇒ g− in

dSpac such that the following diagram in qcoh(∂f−X) commutes:

iX|∗∂f−X
◦f∗(FY )

iX|∗
∂
f
−X

(η)

��

If−,iY (FY )◦
IiX|∂f−X,f

(FY )−1

// f∗− ◦ i∗Y(FY )
f∗−(i2Y)

// f∗−(F∂Y )

η−

��
iX|∗∂f−X

(EX)
i′′X|∂f−X // E∂X |∂f−X .

(6.42)

Equation (6.42) is equivalent to the 2-morphism equation

idiY ∗ η−=η ∗ idiX|
∂
f
−X

: f ◦iX|∂f−X =iY◦f− =⇒ g◦iX|∂f−X =iY◦g−. (6.43)

Proof. For (a), from the proof that iX : ∂X → X is a 1-morphism in §6.2, one
can show the sets SiX|

∂
f
+

X
, TiX|

∂
f
+

X
underlying SiX|

∂
f
+

X
, T iX|

∂
f
+

X
are given by

SiX|
∂
f
+

X
=
{(

(x′1, x
′
2), x′2

)
: x′1 ∈ ∂

f
+X, x

′
2 ∈ ∂X, x′1 6= x′2, iX(x′1) = iX(x′2)

}
,

TiX|
∂
f
+

X
=
{

(x′, x′) : x′ ∈ ∂f+X
}
.

Thus from f+ = f ◦ iX|∂f+X and Proposition 6.7(f) we see that

Sf+
=
{(

(x′1, x
′
2), y′

)
∈ ∂(∂f+X)×Y ∂Y : x′1 ∈ ∂

f
+X, x

′
2 ∈ ∂X,

y′ ∈ ∂Y, x′1 6= x′2, iX(x′1) = iX(x′2), (x′2, y
′) ∈ Sf

}
,

(6.44)

Tf+
=
{

(x′, y′) ∈ ∂f+X ×Y ∂Y : (iX(x′), y′) ∈ Tf
}
q{

(x′, y′) ∈ ∂f+X ×Y ∂Y : (x′, y′) ∈ Sf
}
.

(6.45)

By (6.44), sf+
: Sf+

→ ∂(∂f+X) maps sf+
:
(
(x′1, x

′
2), y′

)
7→ (x′1, x

′
2), where

(x′2, y
′) ∈ Sf and sf : (x′2, y

′) 7→ x′2. Since f is semisimple, sf is injective, so
sf+

is injective, and f+ is semisimple. Suppose f is flat. Then Tf = ∅, so
the first term on the right hand side of (6.45) is empty. If (x′, y′) ∈ Sf then

sf (x′, y′) = x′, so x′ ∈ ∂f−X = sf (Sf ), and x′ /∈ ∂f+X. Thus the second term
on the right hand side of (6.45) is empty, and Tf+

= ∅. Therefore f+ is flat,
proving part (a).

For (b), we construct f− = (f−, f
′
−, f

′′
−) : ∂f−X → ∂Y in dSpa with

f ◦ iX|∂f−X = iY ◦ f−. Now sf : Sf → ∂X is étale by Proposition 6.7(c),
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has image ∂f−X by Definition 6.11, and is injective as f is semisimple. Hence

sf : Sf → ∂f−X is an isomorphism. Define f− = uf ◦ s−1
f : ∂f−X → ∂Y . Then

iY ◦ f− = iY ◦ uf ◦ s−1
f = f ◦ iX ◦ sf ◦ s−1

f = f ◦ iX|∂f−X , (6.46)

since iY ◦ uf = f ◦ iX ◦ sf : Sf → Y .

We claim there is a unique morphism f ′− : f−1
− (O′∂Y )→ O′∂X |∂f−X of sheaves

of C∞-rings on ∂f−X fitting into a commutative diagram:

(iY ◦ f−)−1(O′Y )
iX|−1

∂
f
−X

(f ′)◦IiX|
∂
f
−X

,f (O′Y )

//

f−1
− (i′Y)◦If−,iY (O′Y )

��

iX|−1

∂f−X
(O′X)

i′X|∂f−X ��
f−1
− (O′∂Y )

f ′− // O′∂X |∂f−X .
(6.47)

To see f ′− is unique if it exists, note that i′Y : i−1
Y (O′Y ) → O′∂Y is surjective, so

f−1
− (i′Y) ◦ If−,iY (O′Y ) in (6.47) is surjective. Thus by uniqueness it is enough to

construct f ′− locally on ∂f−X, that is, on the sets of an open cover of ∂f−X.

Let x′ ∈ ∂f−X, and set f−(x′) = y′ ∈ ∂Y . Then (x′, y′) ∈ Sf . Let (V , b)

be a boundary defining function for Y at y′. Then there exists open x′ ∈ Ṽ ⊆
f−1(V ) ⊆X such that (Ṽ , b◦f |Ṽ ) is a boundary defining function for X at x′.

Hence there exist open y′ ∈ U ⊆ i−1
Y (V ) ⊆ ∂Y and x′ ∈ Ũ ⊆ i−1

Y (Ṽ ) ⊆ ∂X
such that (6.1) is 2-Cartesian for y′,Y,U , (V , b) and for x′,X, Ũ , (Ṽ , b ◦ f |Ṽ ).

As x′ ∈ ∂f−X, making Ũ , Ṽ smaller if necessary, we can suppose that Ũ ⊆ ∂f−X.

Consider the diagram of sheaves of C∞-rings on Ũ :

(b◦iY◦f−)−1(O[0,∞))
id

//

π−1(0′)◦
Iπ,0(O[0,∞))

��

(iY◦f−)−1(b′)◦IiY◦f−,b(O[0,∞))

&&NNNNNNN
(b◦iY◦f−)−1(O[0,∞))

π−1(0′)◦
Iπ,0(O[0,∞))

��

iX|−1

Ũ
((b◦f |Ṽ )′)◦

IiX|Ũ ,b◦f
(O[0,∞))

&&NNNNNNN

(iY◦f−)−1(O′Y )|Ũ
iX|−1

Ũ
(f ′)◦IiX|Ũ ,f (O′Y )

//

f−1
− (i′Y)◦If−,iY (O′Y )|Ũ

��

iX|−1

Ũ
(O′X)

i′X|Ũ

��

π−1(O∗)

f−1
− (π′)◦
If−,π(O∗)

&&NNNNNNN id
// π−1(O∗)

π′ &&NNNNNNNN

f−1
− (O′∂Y )|Ũ

f ′−|Ũ // O′∂X |Ũ .

(6.48)

The whole diagram commutes, apart from f ′−|Ũ marked ‘99K’ which is not yet
constructed. The left hand and right hand quadrilaterals are co-Cartesian be-
cause (6.1) is 2-Cartesian for U , (V , b) and for Ũ , (Ṽ , b ◦ f |Ṽ ), and i′′X, i

′′
Y are

isomorphisms. By the co-Cartesian property of the left hand quadrilateral, there
exists a unique morphism f ′−|Ũ making (6.48) commute. As we can cover ∂f−X

by such open Ũ , there is a unique morphism f ′− making (6.47) commute.
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Consider the cube of morphisms of sheaves of C∞-rings on ∂f−X:

(iY◦f−)−1(O′Y )
iX|−1

∂
f
−X

(f ′)◦IiX|
∂
f
−X

,f (O′Y )

//

f−1
− (i′Y)◦
If−,iY (O′Y )

��

(iY◦f−)−1(ıY )

''OOOOOOOO
iX|−1

∂f−X
(O′X)

i′X|∂f−X

��

iX|−1

∂
f
−X

(ıX)

''OOOOOO

(iY◦f−)−1(OY )
iX|−1

∂
f
−X

(f])◦IiX|
∂
f
−X

,f (OY )

//

f−1
− (i]Y)◦If−,iY (OY )

��

iX|−1

∂f−X
(OX)

i]X|∂f−X

��

f−1
− (O′∂Y )

f ′−

//

f−1
− (ı∂Y ) ''OOOOOOOO

O′∂X |∂f−X
ı∂X |

∂
f
−X

''OOOOOOO

f−1
− (O∂Y )

f]− // O∂X |∂f−X .

Of the six faces, all except possibly the bottom face commute. Using the other
five, we see that

(
f ]− ◦ f−1

− (ı∂Y )− ı∂X |∂f−X ◦ f
′
−
)
◦ f−1
− (i′Y) ◦ If−,iY (O′Y ) = 0. As

f−1
− (i′Y) ◦ If−,iY (O′Y ) is surjective, this shows the last face commutes, that is,

f ]− ◦ f−1
− (ı∂Y ) = ı∂X |∂f−X ◦ f

′
−. (6.49)

Consider the diagram in qcoh(∂f−X):

(iY ◦ f−)∗(EY )
iX|∗

∂
f
−X

(f ′′)◦IiX|
∂
f
−X

,f (EY )

//

∼= f∗−(i′′Y)◦If−,iY (EY )
��

iX|∗∂f−X
(EX)

∼=i′′X|∂f−X ��
f∗−(E ′∂Y )

f ′′− // E∂X |∂f−X .
(6.50)

Since i′′Y is an isomorphism by Definition 6.1(b) for Y, f∗−(i′′Y) ◦ If−,iY (EY ) is

an isomorphism, so there exists a unique morphism f ′′− making (6.50) commute.
A similar proof to that of (6.49) shows that

∂X |∂f−X ◦ f
′′
− = f1

− ◦ f∗−(∂Y ) : f∗−(E∂Y ) −→ I∂X . (6.51)

This completes the definition of f− = (f−, f
′
−, f

′′
−). Equations (6.49) and

(6.51) prove that f− : ∂f−X → ∂Y is a 1-morphism in dSpa. Equations (6.46),
(6.47) and (6.50) show that f ◦ iX|∂f−X = iY ◦ f−, as 1-morphisms in dSpa.

Moreover, (6.46), (6.47) and (6.50) determine f−, f
′
− and f ′′− uniquely, so f− is

the unique 1-morphism in dSpa with f ◦ iX|∂f−X = iY ◦ f−.

Next we show that f− is a 1-morphism ∂f−X → ∂Y in dSpac. Let x′1 ∈
∂f−X with f−(x′1) = y′1 ∈ ∂Y and iX(x′1) = x ∈ X, and let (y′1, y

′
2) ∈ ∂2Y

with i∂Y(y′1, y
′
2) = y′1, so that y′1 6= y′2 and f(x) = iY(y′1) = iY(y′2) = y ∈ Y .

As in §6.2, we may choose boundary defining functions (V , b1), (V , b2) for Y
at y′1, y

′
2 and open y′1 ∈ U1 ⊆ i−1

Y (V ) ⊆ ∂Y , y′2 ∈ U2 ⊆ i−1
Y (V ) ⊆ ∂Y

with U1 ∩ U2 = ∅, and define U∂ = i−1
∂Y (U1) ∩ j−1

∂Y (U2), V ∂ = U1, and
b∂ = b2 ◦ iY|V ∂ : V ∂ → [0,∞), and then (V ∂ , b∂) is a boundary defining
function for ∂Y at (y′1, y

′
2), and U∂ ,V ∂ , b∂ form a 2-Cartesian square (6.1).
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Since f−(x′1) = y′1 we have (x′1, y
′
1) ∈ Sf . Hence there exist open x ∈

Ṽ 1 ⊆ f−1(V ) ⊆X such that (Ṽ 1, b̃1) = (Ṽ 1, b1 ◦f |Ṽ 1) is a boundary defining
function for X at x′1. By Definition 6.2 for f at x, y′2, (V , b2), either

(i) there exist a unique x′2 ∈ ∂X with iX(x′2) = x and open x ∈ Ṽ 2 ⊆
f−1(V ) ⊆X such that (Ṽ 2, b̃2) =

(
Ṽ 2, b2 ◦f |Ṽ 2

)
is a boundary defining

function for X at x′2; or

(ii) there exists an open x ∈W ⊆ f−1(V ) ⊆X with b2 ◦ f |W = 0 ◦ π.

In case (i), (x′2, y
′
2) ∈ Sf . Since sf maps (x′1, y

′
1) 7→ x′1, (x′2, y

′
2) 7→ x′2

and is injective as f is semisimple, and y′1 6= y2, we see that x′1 6= x′2. Hence

(x′1, x
′
2) ∈ ∂(∂f−X). As (Ṽ 1, b̃1) and (Ṽ 2, b̃2) are boundary defining functions

for X at x′1, x
′
2, there exist open x′1 ⊆ Ũ1 ⊆ i−1

X (Ṽ 1) ⊆ ∂X and x′2 ⊆ Ũ2 ⊆
i−1
X (Ṽ 2) ⊆ ∂X such that (6.1) is 2-Cartesian for Ũ1, Ṽ 1, b̃1 and Ũ2, Ṽ 2, b̃2.

As in §6.2, making Ũ1, Ṽ 1, Ũ2, Ṽ 2 smaller we can suppose that Ũ1 ⊆ ∂f−X,

and f−(Ũ1) ⊆ U1, and Ṽ 1 = Ṽ 2 = Ṽ , and Ũ1 ∩ Ũ2 = ∅. Define Ũ∂ =

i−1
∂X(Ũ1) ∩ j−1

∂X(Ũ2), Ṽ ∂ = Ũ1, and b̃∂ = b̃2 ◦ iX|Ṽ ∂ : Ṽ ∂ → [0,∞). Then

(Ṽ ∂ , b̃∂) is a boundary defining function for ∂f−X at (x′1, x
′
2). We now have a

boundary defining function (Ṽ ∂ , b̃∂) with x′1 ∈ Ṽ ∂ ⊆ f−1
− (V ∂) ⊆ ∂f−X and

b̃∂ = b̃2 ◦ iX|Ṽ ∂ = b2 ◦ f ◦ iX|Ṽ ∂ = b2 ◦ iY ◦ f−|Ṽ ∂ = b∂ ◦ f−|Ṽ ∂ .

Therefore Definition 6.2(i) holds for f− in this case.

In case (ii), define W̃ = i−1
X (W) ∩ f−1

− (V ∂), so that x′ ∈ W̃ ⊆ f−1
− (V ∂) ⊆

∂f−X is open. Then

b∂ ◦ f−|W̃ = b2 ◦ iY ◦ f−|W̃ = b2 ◦ f ◦ iX|W̃ = 0 ◦ π ◦ iX|W̃ = 0 ◦ π,

so Definition 6.2(ii) holds for f− in this case. We have shown that for all

x′1 ∈ ∂
f
−X with f−(x′1) = y′1 ∈ ∂Y and (y′1, y

′
2) ∈ ∂2Y with i∂Y(y′1, y

′
2) = y′1,

and for the particular choice of boundary defining function (V ∂ , b∂) for ∂Y at
(y′1, y

′
2), one of Definition 6.2(i),(ii) holds for f−. As in Definition 6.2, if (i) or

(ii) holds for one choice of boundary defining function (V ∂ , b∂), then it holds

for every choice. Therefore f− : ∂f−X→ ∂Y is a 1-morphism in dSpac.
From the proof above it follows that Sf− has underlying set

Sf− =
{(

(x′1, x
′
2), (y′1, y

′
2)
)

: (x′1, y
′
1), (x′2, y

′
2) ∈ Sf , x′1 6= x′2, y

′
1 6= y′2,

iX(x′1) = iX(x′2) = x ∈X, f(x) = iY(y′1) = iY(y′1) = y ∈ Y
}
.

(6.52)

Now sf maps (x′1, y
′
1) 7→ x′1, (x′2, y

′
2) 7→ x′2, and is injective as f is semisimple.

Hence sf− :
(
(x′1, x

′
2), (y′1, y

′
2)
)
7→ (x′1, x

′
2) is also injective, and f− is semisimple.

Similarly, f simple implies sf , sf− bijective, and f− is simple.

Suppose f is flat, so that T f = ∅. Let
(
x′1, (y

′
1, y
′
2)
)
∈ ∂f−X ×∂Y ∂2Y . Then

f−(x′1) = y′1 = i∂Y(y′1, y
′
2), so (x′1, y

′
1) ∈ Sf , and iX(x′1) = x ∈ X, f(x) =
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iY(y′1) = iY(y′2) = y ∈ Y . Thus (x, y′2) ∈ X ×Y ∂Y , so (x, y′2) = jf (x′2, y
′
2) for

some (x′2, y
′
2) ∈ Sf as T f = ∅. It then follows that

(
(x′1, x

′
2), (y′1, y

′
2)
)
∈ Sf−

and jf−
(
(x′1, x

′
2), (y′1, y

′
2)
)

=
(
x′1, (y

′
1, y
′
2)
)
. Thus jf− : Sf− → ∂f−X ×∂Y ∂2Y is

surjective, and T f− = ∅, so that f− is flat. This proves part (b).

For (c), as η : f ⇒ g is a 2-morphism in dSpac we have f = g and Sf = Sg,
which imply that T f = T g and sf = sg. Since the definitions of f simple,

semisimple, or flat and of ∂f−X involve only the data Sf , T f , sf in f , we see

that f simple, semisimple, or flat implies g is, and that ∂g−X = ∂f−X.

Since f is semisimple, sf : Sf → ∂f−X is an isomorphism, so s∗f : qcoh(∂f−X)
→ qcoh(Sf ) is an equivalence of categories. Now s∗f identifies equations (6.22)
and (6.42), up to natural isomorphisms I∗,∗(∗). Hence Proposition 6.8(b) shows

that there is a unique morphism η− : f∗−(F∂Y ) → E∂X |∂f−X in qcoh(∂f−X)

making (6.42) commute, which corresponds to ηS in (6.22).
We will show η− : f− ⇒ g− is a 2-morphism in dSpac. Consider the

diagram in qcoh(∂f−X):

iX|∗∂f−X
◦f∗(EY )

i∗X◦f
∗(φY )

//

i∗X(f ′′)

��

i∗X(g′′)

��

f∗−(i′′Y)◦If−,iY (EY )◦IiX,f (EY )−1

%%LLLLLLLL
iX|∗∂f−X

◦f∗(FY )

i∗X(f2)

��

i∗X(g2)

��

f∗−(i2Y)◦
If−,iY (FY )◦
IiX,f (FY )−1

%%LLLLLLLL

i∗X(η)

tt

f∗−(E∂Y )
f∗−(φ∂Y )

//

f ′′−

��

g′′−

��

f∗−(F∂Y )

f2
−

��

g2
−

��

η−

tt

iX|∗∂f−X
(EX)

i∗X(φX)
//

i′′X %%LLLLLLLL
iX|∗∂f−X

(FX)

i2X %%LLLLLLLL

E∂X |∂f−X
φ∂X // F∂X |∂f−X .

We have

(g′′− − f ′′−) ◦ f∗−(i′′Y) ◦ If−,iY (EY ) ◦ IiX,f (EY )−1

= i′′X ◦
(
i∗X(g′′)− i∗X(f ′′)

)
= i′′X ◦ i∗X

(
η ◦ f∗(φY )

)
= η− ◦ f∗−(i2Y) ◦ If−,iY (FY ) ◦ IiX,f (FY )−1 ◦ i∗X(f∗(φY ))

= η− ◦ f∗−(i2Y) ◦ f∗−(i∗Y(φY )) ◦ If−,iY (EY ) ◦ IiX,f (EY )−1

= η− ◦ f∗−(φ∂Y ) ◦ f∗−(i′′Y) ◦ If−,iY (EY ) ◦ IiX,f (EY )−1,

using f ◦ iX|∂f−X = iY ◦ f− and g ◦ iX|∂f−X = iY ◦ g− in the first step, and

(2.25) for η in the second, and (6.42) in the third, and properties of I∗,∗(∗) in the
fourth, and (2.22) for iY in the fifth. As f∗−(i′′Y)◦If−,iY (EY )◦IiX,f (EY )−1 is an

isomorphism by Definition 6.1(b) for Y, this proves that g′′−−f ′′− = η−◦f∗−(φ∂Y ),
which is half of the condition (2.25) for η− : f− ⇒ g− to be a 2-morphism in
dSpa. The other half of (2.25) follows by a similar argument involving the
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diagram of sheaves on ∂f−X:

iX|−1

∂f−X
◦f−1(EY )

i−1
X ◦f

−1(κY ◦Y )
//

i−1
X (f ′′◦

(id⊗f]))

��

i−1
X (g′′◦

(id⊗f]))

��

f−1
− (i′′Y⊗(id⊗i]Y))◦If−,iY (EY )◦IiX,f (EY )−1

%%KKKKKKK
iX|−1

∂f−X
◦f−1(O′Y )

i−1
X (f ′)

��

i−1
X (g′)

��

f−1
− (i′Y)◦
If−,iY (O′Y )◦
IiX,f (O′Y )−1

%%KKKKKKKK

i−1
X (η◦··· )

tt

f−1
− (E∂Y )

f−1
− (κ∂Y ◦∂Y )

//

f ′′−◦(id⊗f
]
−)

��

g′′−◦(id⊗f
]
−)

��

f−1
− (O′∂Y )

f ′−

��

g′−

��
η−◦···

tt

iX|−1

∂f−X
(EX)

i−1
X (κX◦X)

//

i′′X◦(id⊗i
]
X) %%KKKKKKK

iX|−1

∂f−X
(O′X)

i′X %%KKKKKKK

E∂X |∂f−X
κ∂X◦∂X |∂f−X // O′∂X |∂f−X .

Therefore η− : f− ⇒ g− is a 2-morphism in dSpa.
To show that η− is a 2-morphism in dSpac, note that Sf− = Sg− follows

from (6.52) for f , g and Sf = Sg as η : f ⇒ g is a 2-morphism. To verify
equation (6.9) for η−, consider the diagram in qcoh(Sf−):

u∗f−◦i
∗
∂Y(NY)

∼= u∗f−
(χ∂Y)

��

0
..

u∗f−
◦i∗∂Y(νY)

// u∗f−◦i
∗
∂Y◦i∗Y(FY )

(iX◦i∂X◦sf− )∗(η)◦IiX◦i∂X◦sf− ,f
(FY )◦

Iuf− ,iY◦i∂Y
(FY )−1◦u∗f− (Ii∂Y,iY

(FY )−1)

//

u∗f−
◦i∗∂Y(i2Y)

��

(iX ◦ i∂X ◦ sf−)∗(EX)

(i∂X◦sf− )∗(i′′Y)◦Ii∂X◦sf− ,iX
(EX)

��
u∗f−(N ∂Y)

0

11

u∗f−
(ν∂Y)

// u∗f− ◦i
∗
∂Y(F∂Y )

(i∂X◦sf− )∗(η−)◦Ii∂X◦sf− ,f−
(F∂Y )

◦Iuf− ,i∂Y
(F∂Y )−1

// (i∂X ◦ sf−)∗(E∂X).

The composition of the top line is zero by (6.9) for η. The left hand square is u∗f−
applied to the left hand square of (6.40) for Y, and so commutes, where χ∂Y is
an isomorphism. The right hand square is a pullback of (6.42), and so commutes.
It follows that the composition of the bottom line is zero, which proves (6.9)
for η−. A similar proof shows (6.10) holds for η−. Thus η− : f− ⇒ g− is
a 2-morphism in dSpac. The equivalence of (6.42) and (6.43) follows from
Definition 2.14. This completes the proof of Theorem 6.12.

Here are some further easy properties of simple, semisimple and flat 1-
morphisms. We leave the proof as an exercise.

Proposition 6.13. (a) Suppose f : X → Y and g : Y → Z are 1-morphisms
in dSpac. If f , g are simple, or semisimple, or flat, then g ◦ f : X → Z is
simple, or semisimple, or flat, respectively. Suppose f , g are semisimple. Then
∂g◦f− X ⊆ ∂f−X, and f−(∂g◦f− X) ⊆ ∂g−Y, and (g ◦ f)− = g− ◦ f−|∂g◦f− X :

∂g◦f− X→ ∂Z. If f , g are simple then (g ◦ f)− = g− ◦ f− : ∂X→ ∂Z.
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(b) If f : X → Y is a 1-morphism and ∂2Y = ∅, then f is semisimple. If
∂Y = ∅, then f is flat.

(c) Identities idX : X→ X in dSpac are simple and flat, and (idX)− = id∂X.

(d) If X∈dSpac and ∂X 6=∅ then iX : ∂X→X is simple, but not flat.

(e) In Theorem 6.12(c), the map η 7→ η− is compatible with vertical and hor-
izontal composition of 2-morphisms and identity 2-morphisms in the obvious
ways, so that (ζ � η)− = ζ− � η−, (ζ ∗ η)− = ζ− ∗ η−, and (idf )− = idf− .

Theorem 6.12(b),(c) and Proposition 6.13(a),(c),(e) imply:

Corollary 6.14. Write dSpac
si for the 2-subcategory of dSpac with arbitrary

objects and 2-morphisms, but only simple 1-morphisms. Then there is a strict
2-functor ∂ : dSpac

si → dSpac
si mapping X 7→ ∂X on objects, f 7→ f− on

(simple) 1-morphisms, and η 7→ η− on 2-morphisms.

In §6.4 and §6.8 we will prove the following properties of simple, semisimple
and flat 1-morphisms f and the induced 1-morphisms f−:

• The functor FdSpac

Manc : Manc → dSpac of §6.4 takes simple, semisimple or
flat maps in Manc to simple, semisimple or flat 1-morphisms in dSpac.

• If X,Y ∈ dSpac then the projection πX : X×Y → X is semisimple and
flat, and simple if ∂Y = ∅.

• Suppose f : X→ Y is a semisimple and flat 1-morphism in dSpac. Then
the following diagram is 2-Cartesian in dSpac:

∂f−X
f−

//
iX|

∂
f
−X �� � �� �

HP
idiY◦f−

∂Y
iY��

X
f // Y.

Hence there is an equivalence ∂f−X ' X ×f ,Y,iY ∂Y. If f is simple then
∂X ' X×f ,Y,iY ∂Y. Since f− is simple, by induction on k we see that

∂kX ' X×f ,Y,iY◦i∂Y◦···◦i∂k−1Y
∂kY.

• Let f : W→ Y, g : X→ Z be 1-morphisms, and f×g : W×X→ Y×Z
the product 1-morphism. If f , g are simple, semisimple, or flat, then f×g
is also simple, semisimple, or flat, respectively.

• Let f : X→ Y, g : X→ Z be 1-morphisms, and (f , g) : X→ Y × Z the
direct product 1-morphism. If f , g are flat then (f , g) is flat. However,
f , g simple or semisimple do not imply (f , g) simple or semisimple.

To summarize, we have shown that semisimple 1-morphisms f : X → Y
are a class of 1-morphisms in dSpac which have a useful extra property — the
existence of lifts f− : ∂f−X → ∂Y up to the boundaries of X,Y — and are
also closed under most natural operations on 1-morphisms, with the exception
of direct products. We can also require f to be simple, or flat. If f is simple
and flat then f− is a 1-morphism ∂X→ ∂Y, and ∂X ' X×f ,Y,iY ∂Y, so the
boundary of Y determines the boundary of X.
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6.4 Manifolds with corners as d-spaces with corners

We now define a (2-)functor FdSpac

Manc : Manc → dSpac from manifolds with
corners to d-spaces with corners, and show that it is full and faithful. Note that
in §2.2 we defined FdSpa

Manc : Manc → dSpa, and in §6.1 we defined FdSpac

dSpa :

dSpa→ dSpac. Our FdSpac

Manc is not the composition FdSpac

dSpa ◦ F
dSpa
Manc , which is

faithful but not full, as for FC∞Sch
Manc in Corollary B.27.

Definition 6.15. Let X be a manifold with corners. Then the boundary ∂X is
a manifold with corners, with a smooth map i∂X : ∂X → X. We will define a d-
space with corners X = (X,∂X, iX, ωX). Set X,∂X, iX = FdSpa

Manc(X, ∂X, iX).
To define ωX, consider the exact sequence

0 // T (∂X)
diX // i∗X(TX)

πν // ν // 0

of vector bundles over ∂X, where ν is the normal bundle of iX(∂X) in X, a
line bundle over ∂X, which is canonically oriented by outward-pointing normal
vectors. The dual ν∗ is also an oriented line bundle on ∂X, in the dual sequence

0 // ν∗
π∗ν // i∗X(T ∗X)

(diX)∗ // T ∗(∂X) // 0. (6.53)

Now as X = FdSpa
Manc(X) we have FX ∼= T ∗X, and both are isomorphic

to the lift to C∞-schemes of the vector bundle T ∗X on X. Similarly F∂X ∼=
T ∗(∂X) is the lift to C∞-schemes of the vector bundle T ∗(∂X) on ∂X, and
i2X : i∗X(FX) → F∂X is the lift to C∞-schemes of the vector bundle morphism
(diX)∗ : i∗X(T ∗X) → T ∗(∂X) on ∂X. Therefore (6.4) for X,∂X, iX is the lift
to C∞-schemes of (6.53), so NX = Ker i2X is the C∞-scheme lift of ν∗. Define
ωX to be the orientation on NX corresponding to the orientation on ν∗ induced
by outward-pointing normal vectors.

Define X = (X,∂X, iX, ωX), and FdSpac

Manc (X) = X. We will show in Theo-
rem 6.16 that X is a d-space with corners. Let f : X → Y be a smooth map of
manifolds with corners, and set X,Y = FdSpac

Manc (X,Y ). Write f = FdSpa
Manc(f) :

X → Y , as a 1-morphism of d-spaces. We will show in Theorem 6.16 that
f : X→ Y is a 1-morphism of d-spaces with corners. Define FdSpac

Manc (f) = f .
The only 2-morphisms in Manc, regarded as a 2-category, are identity 2-

morphisms idf for smooth f : X → Y . We define FdSpac

Manc (idf ) = idf .

Define FdS̄pa
Man : Man → dS̄pa and FdSpab

Manb : Manb → dSpab to be the

restrictions of FdSpac

Manc to the subcategories Man,Manb ⊂Manc.
Write M̄an, M̄anb, M̄anc for the full 2-subcategories of objects X in dSpac

equivalent to FdSpac

Manc (X) for some manifold X without boundary, or with bound-
ary, or with corners, respectively. Then M̄an ⊂ dS̄pa, M̄anb ⊂ dSpab and
M̄anc ⊂ dSpac. When we say that a d-space with corners X is a manifold, we
mean that X ∈ M̄anc.

The next theorem should be contrasted with the fact that FC∞Sch
Manc : Manc→

C∞Sch is faithful but not full, as in Corollary B.27, and therefore FdSpa
Manc :
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Manc → dSpa is also faithful but not full. So if we regard manifolds with
corners either as C∞-schemes or as d-spaces, then we get the wrong notion
of (1-)morphism, but regarding them as d-spaces with corners gives the right
notion. This will be essential for our definition of d-manifolds with corners.

Theorem 6.16. FdS̄pa
Man : Man → dS̄pa, FdSpab

Manb : Manb → dSpab and

FdSpac

Manc : Manc → dSpac are well-defined, full and faithful strict 2-functors.

Proof. First we show that if X is a manifold with corners then X = (X,∂X,

iX, ωX) = FdSpac

Manc (X) in Definition 6.15 is a d-space with corners. We must
verify Definition 6.1(a)–(f). For (a), iX : ∂X → X is proper by Theorem
5.6(c), so iX = FC∞Sch

Manc : ∂X → X is proper. For (b), EX = 0 = E∂X , so
i′′X : i∗X(EX)→ E∂X is trivially an isomorphism.

For (c), let x′ ∈ ∂X with iX(x′) = x ∈ b. Then x′ ∈ ∂X, so there exists
a boundary defining function (V, b) for X at x′, in the sense of Definition 5.4.
Thus x ∈ V ⊆ X is open, and b : V → [0,∞) is smooth with db|v 6= 0 for
all v ∈ V , and there exists open x′ ∈ U ⊆ i−1

X (V ) ⊆ ∂X with b ◦ iX |U = 0,
and iX |U : U −→

{
v ∈ V : b(v) = 0

}
is a homeomorphism. Define U ,V , b =

FdSpa
Manc(U, V, b). Then x′ ∈ U ⊆ i−1

X (V ) ⊆ ∂X and x ∈ V ⊆ X are open, and
b : V → [0,∞) is a 1-morphism, and b ◦ iX|U = 0 ◦ π.

Now U ∼= V ×b,[0,∞),0 ∗ is a transverse fibre product in Manc, so the proof
of Theorem 2.42 shows that U ' V ×b,[0,∞),0 ∗ in dSpa. Hence (6.1) is 2-
Cartesian. As db|v 6= 0 for all v ∈ V , the vector bundle morphism (db)∗ :
b∗(T ∗[0,∞)) → T ∗V over V embeds the line bundle b∗(T ∗[0,∞)) as a vector
subbundle of T ∗V , and there exists a left inverse β : T ∗V → b∗(T ∗[0,∞)). But
b2 : b∗(F [0,∞)) → FX |V is the lift to C∞-schemes of (db)∗ : b∗(T ∗[0,∞)) →
T ∗V . Hence b2 also has a left inverse, so Definition 6.1(c) holds for X.

Parts (d),(e) are now immediate. Definition 6.1(f) holds as if x ∈ X with
i−1
X (x) = {x′1, . . . , x′k} then (6.8) is identified with⊕k

i=1 π
∗
ν |x′i :

⊕k
i=1 ν

∗|x′i −→ T ∗xX. (6.54)

Locally we may identify X ∼= Rnk , where Rnk has coordinates (y1, . . . , yn), such
that x′i corresponds to the local boundary component {yi = 0} at (0, . . . , 0).

Then (6.54) becomes the map
⊕k

i=1 R → Rn taking (z1, . . . , zk) 7→ (z1, . . . , zk,
0, . . . , 0), which is clearly injective. Hence X is a d-space with corners. This
also shows that (V , b) is a boundary defining function for X at x′, as in Lemma
6.17(a) below.

Next let f : X → Y be a smooth map of manifolds with corners, and
set X,Y = FdSpac

Manc (X,Y ) and f = FdSpa
Manc(f) : X → Y . Suppose x ∈ X

with f(x) = y ∈ Y and y′ ∈ ∂Y with iY(y′) = y ∈ Y . Then y′ ∈ ∂Y , so
we can choose a boundary defining function (V, b) for Y at y′. Set (V , b) =

FdSpa
Manc(V, b). Then from above (V , b) is a boundary defining function for Y at

y′. By Definition 5.5, either (i) there exists open x ∈ Ṽ ⊆ f−1(V ) ⊆ X such
that (Ṽ , b ◦ f |Ṽ ) is a boundary defining function for X at x′, for some unique
x′ ∈ ∂X with iX(x′) = x, or (ii) there exists an open x ∈ W ⊆ f−1(V ) ⊆ X
with b ◦ f |W = 0.
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Applying FdSpa
Manc we see that these (i),(ii) imply Definition 6.2(i),(ii) for

(V , b). So Definition 6.2 holds for f , at least for the particular choice of bound-

ary defining function (V , b) = FdSpa
Manc(V, b) for Y at y′. But as in Definition

6.2, if the condition holds for one choice of (V , b) for Y at y′, then it holds for
any choice. Hence f : X → Y is a 1-morphism in dSpac. This shows that
FdSpac

Manc : Manc → dSpac is well-defined. Since 1- and 2-morphisms in dSpac

are special examples of 1- and 2-morphisms in dSpa, and FdSpac

Manc acts on 1- and

2-morphisms f, idf as FdSpa
Manc does, the proof that FdSpa

Manc : Manc → dSpa is a

strict 2-functor in Theorem 2.15(c) now shows that FdSpac

Manc : Manc → dSpac is

a strict 2-functor. Hence FdS̄pa
Man : Man→ dS̄pa and FdSpab

Manb : Manb → dSpab

are also strict 2-functors, as they are restrictions of FdSpac

Manc .

To prove FdSpac

Manc is full and faithful, first note that if X,Y = FdSpac

Manc (X,Y ),
f , g : X → Y are 1-morphisms and η : f ⇒ g is a 2-morphism, then as η is
a morphism f∗(FY ) → EX and EX = 0, the only possibility is η = 0, so that
f = g and η = idf . So all relevant 2-morphisms are identities. Under these

circumstances, FdSpac

Manc is full if it is surjective on 1-morphisms, and faithful if

it is injective on 1-morphisms. Since f is part of the data of FdSpac

Manc (f), FdSpac

Manc

is clearly injective on 1-morphisms, and so faithful.
To show FdSpac

Manc is full, suppose X,Y = FdSpac

Manc (X,Y ) and f : X→ Y is a
1-morphism in dSpac, where f = (f, f ′, f ′′). Then f : X → Y is a morphism
of C∞-schemes. So by Proposition B.26, there is a unique weakly smooth map
f : X → Y corresponding to f . Using Definition 6.2 and the fact that boundary
defining functions (V , b) for X,Y in Definition 6.1 correspond to boundary
defining functions (V, b) for X,Y in Definition 5.4, we see that f is smooth, so
f : X → Y is a morphism in Manc. The morphism f ′ : f−1(O′Y ) → O′X of
sheaves of C∞-rings on X satisfies f ] ◦ f−1(ıY ) = ıX ◦ f ′. As ıX = idOX and
ıY = idOY , this forces f ′ = f ]. Also f ′′ is a morphism f∗(EY )→ EX and EX =

EY = 0, so f ′′ = 0. Thus f = (f, f ], 0) = FdSpa
Manc(f) = FdSpac

Manc (f), and FdSpac

Manc

is full. Since FdS̄pa
Man , F

dSpab

Manb are restrictions of FdSpac

Manc to full subcategories,
they are also full and faithful. This completes the proof of Theorem 6.16.

The proof above also implies:

Lemma 6.17. (a) If X is a manifold with corners and (V, b) is a boundary
defining function for X at x′ ∈ ∂X, in the sense of Definition 5.4, then (V , b) =

FdSpa
Manc(V, b) is a boundary defining function for X = FdSpac

Manc (X) at x′ ∈ ∂X,
in the sense of Definition 6.1.

(b) Suppose f : X → Y is a smooth map of manifolds with corners, and let

f = FdSpac

Manc (f). Then the C∞-schemes Sf , T f for f from §6.1 have underlying
sets Sf , Tf for f from §5.3.

From Definitions 5.9 and 6.11 and Lemma 6.17(b), we deduce:

Corollary 6.18. Let f : X → Y be a smooth map of manifolds with corners,
and f = FdSpac

Manc (f). Then f is simple, semisimple, or flat if and only if f is
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simple, semisimple, or flat, respectively.

We show FdSpac

Manc takes boundaries in Manc to boundaries in dSpac.

Proposition 6.19. If X is a manifold with corners and X = FdSpac

Manc (X) then

id∂X is a 1-isomorphism FdSpac

Manc (∂X) → ∂X. Thus, FdSpac

Manc intertwines the
constructions of boundaries in Manc,dSpac, up to canonical 1-isomorphism.

Proof. Write X = (X,∂X, iX, ωX), FdSpac

Manc (∂X) = (∂X,∂2X, i∂X, ω∂X) and

∂X = (∂X, ∂̃2X, ı̃∂X, ω̃∂X), where X,∂X,∂2X, iX, i∂X = FdSpa
Manc(X, ∂X,

∂2X, iX , i∂X), and ∂̃2X, ı̃∂X, ω̃∂X are constructed in Definition 6.10 from X,
∂X, iX, ωX. Comparing the constructions of ∂2X and ∂̃2X, it is easy to show
there is a unique 1-isomorphism j : ∂2X → ∂̃2X with i∂X = ı̃∂X ◦ j. It then
follows that (V , b) is a boundary defining function for FdSpac

Manc (∂X) at x′′ ∈ ∂2X

if and only if (V , b) is a boundary defining function for ∂X at j(x′′) ∈ ∂̃2X.

We deduce that id∂X : FdSpac

Manc (∂X)→ ∂X and id∂X : ∂X→ FdSpac

Manc (∂X) are

1-morphisms in dSpac, so id∂X : FdSpac

Manc (∂X)→ ∂X is a 1-isomorphism.

6.5 Equivalences and étale 1-morphisms in dSpac

The next two propositions, analogues of Propositions 2.20 and 2.21, characterize
when a 1-morphism in dSpac is an equivalence. The first also shows that if X
is equivalent to Y in dSpac, then ∂X is equivalent to ∂Y, as one would hope.

Proposition 6.20. Suppose f : X → Y is an equivalence in dSpac. Then f
is simple and flat, and f : X → Y is an equivalence in dSpa. Also f− : ∂X→
∂Y is an equivalence in dSpac.

Proof. As f is an equivalence, there exist a 1-morphism g : Y → X and 2-
morphisms η : g ◦ f ⇒ idX and ζ : f ◦ g ⇒ idY in dSpac. Regarding
f , g, idX, idY, η, ζ as 1- and 2-morphisms in dSpa, we see that f : X → Y is
an equivalence in dSpa. From Definition 6.3 for η, ζ we have Sg◦f = SidX

and

Sf◦g = SidY
. The underlying set Sg◦f is given by (6.18), and SidX

=
{

(x′, x′) :

x′ ∈ ∂X
}

. Hence we have{
(x′, x′′) ∈ ∂X ×X ∂X : ∃ y′ ∈ ∂Y, (x′, y′) ∈ Sf , (y′, x′′) ∈ Sg

}
=
{

(x′, x′) : x′ ∈ ∂X
}
,

(6.55){
(y′, y′′) ∈ ∂Y ×Y ∂Y : ∃x′ ∈ ∂X, (y′, x′) ∈ Sg, (x′, y′′) ∈ Sf

}
=
{

(y′, y′) : y′ ∈ ∂Y
}
.

(6.56)

Suppose x′ ∈ ∂X. By (6.55) there exists y′ ∈ ∂Y with (x′, y′) ∈ Sf and
(y′, x′) ∈ Sg. Then sf (x′, y′) = x′, so sf is surjective. Suppose also that
(x′, y′′) ∈ Sf . Then (y′, y′′) lies in the l.h.s. of (6.56), so y′ = y′′. Thus
sf is injective, so sf : Sf → ∂X is a bijection, and f is simple. Suppose
(x, y′) ∈ X ×Y ∂Y , so that f(x) = y = iY(y′). Then by (6.56) there exists

x′ ∈ ∂X with (x′, y′) ∈ Sf and (y′, x′) ∈ Sg, so iX(x′) = g(y) = x as g = f−1.
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Hence jf (x′, y′) = (x, y′), so jf : Sf → X ×Y ∂Y is surjective, and T f = ∅.
Therefore f is flat.

Theorem 6.12(b) now gives 1-morphisms f− : ∂X → ∂Y and g− : ∂Y →
∂X, and Proposition 6.13(a),(c) show that (g◦f)− = g−◦f−, (f◦g)− = f−◦g−,
(idX)− = id∂X and (idY)− = id∂Y. Hence Theorem 6.12(c) gives 2-morphisms
η− : g− ◦ f− ⇒ id∂X, and ζ− : f− ◦ g− ⇒ id∂Y in dSpac. These g−, η−, ζ−
imply that f− is an equivalence.

In the next proposition, note that sufficient conditions for f : X → Y to be
an equivalence in dSpa are given in Proposition 2.21.

Proposition 6.21. Let f : X → Y be a simple, flat 1-morphism in dSpac

with f : X → Y an equivalence in dSpa. Then f is an equivalence in dSpac.

Proof. Since f : X → Y is an equivalence in dSpa, there exist a 1-morphism
g : Y → X in dSpa and 2-morphisms η : g ◦ f ⇒ idX and ζ : f ◦ g ⇒ idY
in dSpa. By Proposition A.6 we may choose g, η, ζ to satisfy idf ∗ η = ζ ∗ idf
and idg ∗ ζ = η ∗ idg. The issue is that g need not be a 1-morphism Y → X in
dSpac, and η, ζ need not be 2-morphisms in dSpac.

Our solution will run as follows. Suppose θ : g∗(FX) → EY is a morphism
in qcoh(Y ). Then Proposition 2.17 shows that there is a unique 1-morphism
g̃ : Y → X in dSpa such that θ : g ⇒ g̃ is a 2-morphism in dSpa. Define
2-morphisms η̃ : g̃◦f ⇒ idX and ζ̃ : f ◦g̃ ⇒ idY in dSpa by η̃ = η�((−θ)∗idf )

and ζ̃ = ζ � (idf ∗ (−θ)). Then idf ∗ η = ζ ∗ idf and idg ∗ ζ = η ∗ idg imply

that idf ∗ η̃ = ζ̃ ∗ idf and idg̃ ∗ ζ̃ = η̃ ∗ idg̃. We will show that we can choose

θ such that g̃ : Y → X is a 1-morphism in dSpac, and η̃, ζ̃ are 2-morphisms
in dSpac. Therefore f is an equivalence in dSpac. From (6.55)–(6.56) we can
also show that

Sg̃ =
{

(y′, x′) ∈ ∂Y ×X ∂X : (x′, y′) ∈ Sf
}
. (6.57)

Suppose for the moment that g̃ is a 1-morphism in dSpac and (6.57) holds.
As for (6.55)–(6.56), it then follows that Sg̃◦f = SidX

and Sf◦g̃ = SidY
. Since

idX is flat, T idX
= ∅, so equation (6.10) for η̃ is trivial. Hence η̃ is a 2-

morphism in dSpac if and only if (6.9) holds for η̃ in qcoh(SidX
). As idX is

simple, sidX
: SidX

→ ∂X is an isomorphism, so we can show (6.9) for η̃ is
equivalent to the equation in qcoh(∂X):

i∗X(η̃) ◦ IiX,idX (FX) ◦ νX = 0. (6.58)

Similarly, ζ̃ is a 2-morphism in dSpac if and only if the following equivalent of
(6.9) for ζ̃ holds in qcoh(∂Y ):

i∗Y(ζ̃) ◦ IiY,idY (FY ) ◦ νY = 0. (6.59)
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Suppose (6.59) holds. Then in qcoh(Sf ) we have

0 = (iX◦sf )∗(f ′′)◦IiX◦sf ,f (EY )◦Iuf ,iY (EY )−1◦u∗f
[
i∗Y(ζ̃)◦IiY,idY (FY )◦νY

]
= (iX◦sf )∗

(
f ′′◦f∗(ζ̃)◦If,idY (FY )

)
◦IiX◦sf ,f (FY )◦Iuf ,iY (FY )−1◦u∗f (νY)

= (iX◦sf )∗
(
η̃◦id∗X(f2)◦IidX ,f (FY )

)
◦IiX◦sf ,f (FY )◦Iuf ,iY (FY )−1◦u∗f (νY)

= Isf ,iX(EX) ◦ s∗f (i∗X(η̃) ◦ IiX,idX (FX)) ◦ Isf ,iX(FX) ◦ (iX ◦ sf )∗(f2)

◦ IiX◦sf ,f (FY ) ◦ Iuf ,iY (FY )−1 ◦ u∗f (νY)

= Isf ,iX(EX) ◦ s∗f
[
i∗X(η̃) ◦ IiX,idX (FX) ◦ νX

]
◦ λf ,

using (6.59) in the first step, properties of I∗,∗(∗) in the second and fourth,

idf ∗ η̃ = ζ̃ ∗ idf in the third, and (6.15) in the fifth, where λf is the isomorphism
from Proposition 6.7(d). Since Isf ,iX(EX), λf are isomorphisms in Sf and sf
an isomorphism in C∞Sch, this shows that (6.59) implies (6.58).

Next we show that (6.59) implies that g̃ is a 1-morphism in dSpac, and
(6.57) holds. Suppose (6.59) holds, let (x′, y′) ∈ Sf with iX(x′) = x and
f(x) = y = iX(y′), and choose a boundary defining function (V , b) for Y at

y′. Then there exists an open x ∈ Ṽ ⊆ f−1(V ) such that (Ṽ , b ◦ f |Ṽ ) is a
boundary defining function for X at x′.

We claim that there exists open x ∈ V̂ ⊆ g−1(Ṽ ) ⊆ V such that
(
V̂ , b ◦

f ◦ g̃|V̂
)

is a boundary defining function for Y at y′. To see this, let y′ ∈ U ⊆
i−1
Y (V ) ⊆ ∂Y be as in Definition 6.1(c) for (V , b), so that (6.1) is 2-Cartesian

for U ,V , b. Choose some open x ∈ V̂ ⊆ g−1(Ṽ ), and let Û = U ∩ i−1
Y (V̂ ).

Then the analogue of (6.1) for Û , V̂ , b|V̂ is also 2-Cartesian.
We have 1-morphisms b ◦ iY|Û , b ◦ f ◦ g̃ ◦ iY|Û : Û → [0,∞) and a 2-

morphism idb ∗ ζ̃ ∗ idiY|Û : b ◦ f ◦ g̃ ◦ iY|Û ⇒ b ◦ iY|Û . Expanding using
Definition 2.14, we have

idb ∗ ζ̃ ∗ idiY|Û = i′′Y|Û ◦ iY|
∗
Û

(
ζ̃ ◦ id∗Y (b2) ◦ IidY ,b(F [0,∞))

)
◦ IiY|Û ,b(F [0,∞)).

Using i′′Y an isomorphism by Definition 6.1(b), and the isomorphism γ of

Definition 6.1(e) with νY|Û ◦ γ = iY|∗Û(b2), we see that idb ∗ ζ̃ ∗ idiY|Û = 0 is

equivalent to the restriction of (6.59) to Û. Hence b ◦ f ◦ g̃ ◦ iY|Û = b ◦ iY|Û .
Therefore (6.1) with Û , V̂ and b◦f ◦ g̃|V̂ in place of U ,V , b is also 2-Cartesian.
This proves the first part of Definition 6.1(c) for

(
V̂ , b ◦ f ◦ g̃|V̂

)
.

For the second part, by Definition 6.1(c) for (V , b) there exists a left inverse
β : FX |V → b∗(F [0,∞)) for b2 : b∗(F [0,∞)) → FX |V . We have morphisms
b2|V̂ , (b ◦ f ◦ g̃|V̂ )2 : b|∗

V̂
(F [0,∞)) → FX |V̂ , where β|V̂ is a left inverse for b2|V̂ .

Using (6.59) we can show that

iY|∗Û(b2) = iY|∗Û
(
(b ◦ f ◦ g̃|V̂ )2

)
. (6.60)

Hence b2|V̂ and (b ◦ f ◦ g̃|V̂ )2 coincide on iY(Û), which contains x.
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Consider the morphism β|V̂ ◦ (b◦f ◦ g̃|V̂ )2 : b|∗
V̂

(F [0,∞))→ b|∗
V̂

(F [0,∞)). This

is an automorphism of a line bundle on V̂ , and is the identity on iY(Û). Thus
it is multiplication by a smooth function c on V̂ , with c = 1 on x ∈ iY(Û).
Making V̂ , Û smaller we can ensure that c > 0 on V̂ , so that β|V̂ ◦ (b◦f ◦ g̃|V̂ )2 is

invertible. Then β̃ =
(
β|V̂ ◦(b◦f ◦ g̃|V̂ )2

)−1◦β|V̂ is a left inverse for (b◦f ◦ g̃|V̂ )2.

This proves the second part of Definition 6.1(c) for
(
V̂ , b ◦ f ◦ g̃|V̂

)
. Equation

(6.60) implies that the isomorphism γ in (6.7) for (V , b) and for
(
V̂ , b◦f ◦ g̃|V̂

)
coincide on Û. Thus Definition 6.1(e) for

(
V̂ , b ◦ f ◦ g̃|V̂

)
follows from that for

(V , b). Hence
(
V̂ , b ◦ f ◦ g̃|V̂

)
is a boundary defining function for Y at y′.

Thus, (Ṽ , b ◦ f |Ṽ ) is a boundary defining function for X at x′, and
(
V̂ , (b ◦

f |Ṽ ) ◦ g̃|V̂
)

is a boundary defining function for Y at y′. Therefore Definition
6.2(i) holds for g̃ at y, x, y′, x′. As this holds for all (x′, y′) ∈ Sf , this shows
that (6.59) implies that g̃ is a 1-morphism in dSpac, and (6.57) holds.

Let us summarize what we have proved so far. Starting with some choice
of g, η, ζ, we choose an arbitrary morphism θ : g∗(FX) → EY . Then there
exist a unique 1-morphism g̃ : Y → X and 2-morphisms η̃ : g̃ ◦ f ⇒ idX
and ζ̃ : f ◦ g̃ ⇒ idY in dSpa with θ : g ⇒ g̃, η̃ = η � ((−θ) ∗ idf ) and

ζ̃ = ζ � (idf ∗ (−θ)). If ζ̃ satisfies equation (6.59) then g̃ is a 1-morphism in

dSpac and η̃, ζ̃ are 2-morphisms in dSpac, which implies that f : X → Y is
an equivalence in dSpac.

It remains to show that we can choose θ so that ζ̃ satisfies (6.59). To do this,
let (x′, y′) ∈ Sf , (V , b),U , Ṽ , V̂ , Û be as above. Then idb ∗ ζ̃ ∗ idiY|Û = 0 is

equivalent to the restriction of (6.59) to Û, and both are implied by idb∗ ζ̃|V̂ = 0.
Expanding using Definition 2.14 and ζ̃ = ζ � (idf ∗ (−θ)), this is equivalent to

0=idb ∗ ζ̃|V̂ = ζ̃|V̂ ◦ id∗
V̂

(b2) ◦ IidV̂ ,b(F [0,∞))

=ζ|V̂ ◦ id∗
V̂

(b2)◦IidV̂ ,b(F [0,∞))−θ|V̂ ◦g|
∗
V̂

(
(b◦f |Ṽ )2

)
◦Ig|V̂ ,b◦f (F [0,∞)).

(6.61)

Since (Ṽ , b ◦f |Ṽ ) is a boundary defining function for X at x′, by Definition
6.1(c) there exists a left inverse β̃ for (b ◦ f |Ṽ )2. Thus we have a canonical
isomorphism β̃⊕γ̃ : FX |Ṽ → (b◦f |Ṽ )∗(F [0,∞))⊕CṼ , where γ̃ : FX |Ṽ → CṼ is the

cokernel of (b◦f |Ṽ )2 in qcoh(Ṽ ). Hence g|∗
V̂

(β̃⊕ γ̃) is also an isomorphism. Thus

we may write θ|V̂ = (θ1
V̂
⊕θ2

V̂
)◦g|∗

V̂
(β̃⊕γ̃) for unique θ1

V̂
: g∗◦(b◦f)∗(F [0,∞))|V̂ →

EY |V̂ and θ2
V̂

: g|∗
V̂

(CṼ )→ EY |V̂ . Substituting this into (6.61) and using β̃ a left

inverse for (b ◦ f |Ṽ )2 and γ̃ ◦ (b ◦ f |Ṽ )2 = 0 shows that (6.61) is equivalent to

θ1
V̂

= ζ|V̂ ◦ id∗
V̂

(b2) ◦ IidV̂ ,b(F [0,∞)) ◦ Ig|V̂ ,b◦f (F [0,∞))
−1. (6.62)

Hence, a sufficient condition for (6.59) to hold on Û is that the component θ1
V̂

of θ|V̂ should be given by (6.62).
Next we show that we can satisfy these conditions near each point y ∈ Y .

Let y ∈ Y with g(y) = x ∈ X, and write i−1
Y (y) = {y′1, . . . , y′k} for y′1, . . . , y

′
k

335



distinct in ∂Y . As f is flat there exist unique x′1, . . . , x
′
k ∈ i

−1
X (x) with (x′i, y

′
i) ∈

Sf for i = 1, . . . , k, and as f is simple x′1, . . . , x
′
k are distinct, and i−1

X (x) =
{x′1, . . . , x′k}. Choose a boundary defining function (V i, bi) for Y at y′i for

i = 1, . . . , k. Then as (x′i, y
′
i) ∈ Sf , there exists an open x ∈ Ṽ i ⊆ f−1(V i)

such that (Ṽ i, bi ◦f |Ṽ i) is a boundary defining function for X at x′i. As above,
making V 1, . . . ,V k and Ṽ 1, . . . , Ṽ k smaller if necessary we can suppose V 1 =
· · · = V k = V and Ṽ 1 = · · · = Ṽ k = Ṽ = f−1(V ).

Now Definition 6.1(f) for X at x says that (6.8) is injective. Using the
isomorphisms NX|Ui ∼= iX|∗Ui ◦ (bi ◦ f)∗(F [0,∞)) from Definition 6.1, we see that⊕k

i=1 x
∗((bi ◦ f |Ṽ )2

)
:
⊕k

i=1 x
∗ ◦ (bi ◦ f |Ṽ )∗(F [0,∞)) −→ x∗(FX) (6.63)

is injective. As (bi ◦ f |Ṽ )2 has a left inverse, (bi ◦ f |Ṽ )2 : (bi ◦ f |Ṽ )∗(F [0,∞))→
FX |Ṽ for i = 1, . . . , k includes (bi ◦f |Ṽ )∗(F [0,∞)) as a direct summand of FX |Ṽ .

Since (6.63) is injective, these direct summands are linearly independent near x.
So making V , Ṽ , V̂ smaller if necessary, we can suppose the direct summands
are linearly independent on Ṽ .

Thus there exists a β̃1 ⊕ · · · ⊕ β̃k for (b1 ◦ f |Ṽ )2 ⊕ · · · (bk ◦ f |Ṽ )2. That is,

by Definition 6.1(c) there exists a left inverse β̃i for (bi ◦ f |Ṽ )2 for i = 1, . . . , k,

and we have shown we can choose β̃1, . . . , β̃k such that β̃i ◦ (bj ◦ f |Ṽ )2 = 0 for

i 6= j = 1, . . . , k. As for β̃, γ̃ above we obtain an isomorphism(⊕k
i=1 β̃i

)
⊕ γ̃1,...,k : FX |Ṽ

∼=−→
(⊕k

i=1(bi ◦ f |Ṽ )∗(F [0,∞))
)
⊕ CṼ ,1,...,k,

where γ̃1,...,k : FX |Ṽ → CṼ ,1,...,k is the cokernel of
⊕k

i=1(bi ◦ f |Ṽ )2. Hence we

may write θ|V̂ = (θ1
V̂
⊕ · · · ⊕ θk+1

V̂

)
◦ g|∗

V̂
(β̃1 ⊕ · · · ⊕ β̃k ⊕ γ̃1,...,k

)
for unique

θi
V̂

: g∗ ◦ (bi ◦ f)∗(F [0,∞))|V̂ → EY |V̂ for i = 1, . . . , k and θk+1

V̂
: g|∗

V̂
(CṼ ,1,...,k)→

EY |V̂ . As for (6.62), we find that (6.59) holds on i−1
Y (V̂ ) = Û1 q · · · q Ûk if the

components θ1
V̂
, . . . , θk

V̂
of θ|V̂ are given by

θi
V̂

= ζ|V̂ ◦ id∗
V̂

(b2i ) ◦ IidV̂ ,bi(F [0,∞)) ◦ Ig|V̂ ,bi◦f (F [0,∞))
−1, i = 1, . . . , k.

This proves that for each y ∈ Y we can choose an open neighbourhood V̂ y
of y in Y and a morphism θy : g∗(FX)|V̂ y → EY |V̂ y such that ζ̃|V̂ y constructed

using θy satisfies (6.59) on i−1
Y (V̂ y). Then {V̂ y : y ∈ Y } is an open cover of Y ,

which is separated, paracompact, and locally fair. Thus by Proposition B.21 we
may choose a partition of unity {ηy : y ∈ Y } subordinate to {V̂ y : y ∈ Y }, and
define θ =

∑
y∈Y ηy ·θy. Since (6.59) is equivalent to an affine linear equation in

θ, combining different local choices of θy solving (6.59) using a partition of unity
gives a global choice θ solving (6.59). Hence we can choose θ : g∗(FX) → EY
in qcoh(Y ) such that ζ̃ = ζ � (idf ∗ (−θ)) satisfies (6.59). This completes the
proof of Proposition 6.21.

Here is the analogue of Definition 2.23 for dSpac.
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Definition 6.22. Let f : X→ Y be a 1-morphism in dSpac. We call f étale
if it is a local equivalence, that is, if for each x ∈ X there exist open x ∈ U ⊆ X
and f(x) ∈ V ⊆ Y such that f(U) = V and f |U : U→ V is an equivalence.

Propositions 6.20 and 6.21 imply the following characterization of étale 1-
morphisms in dSpac. Necessary and sufficient conditions for f : X → Y to be
étale in dSpa are given in Corollary 2.24.

Corollary 6.23. Let f : X→ Y be a 1-morphism in dSpac. Then f is étale
if and only if f is simple and flat and f : X → Y is étale in dSpa.

6.6 Gluing d-spaces with corners by equivalences

All the material of §2.4 on gluing d-spaces by equivalences extends to d-spaces
with corners. Here are the analogues of Proposition 2.27 and Theorem 2.28.

Proposition 6.24. Suppose X,Y are d-spaces with corners, U,V ⊆ X are
open d-subspaces with X = U ∪ V, f : U → Y and g : V → Y are 1-
morphisms, and η : f |U∩V ⇒ g|U∩V is a 2-morphism. Then there exists a
1-morphism h : X→ Y and 2-morphisms ζ : h|U ⇒ f , θ : h|V ⇒ g in dSpac

such that θ|U∩V = η � ζ|U∩V : h|U∩V ⇒ g|U∩V. This h is unique up to
2-isomorphism. Furthermore, h is independent of η up to 2-isomorphism.

Proof. Applying Proposition 2.27 to the d-space data X,Y ,U ,V ,f , g, η gives
a d-space 1-morphism h : X → Y and d-space 2-morphisms ζ : h|U ⇒ f ,
θ : h|V ⇒ g with θ|U∩V = η � ζ|U∩V . Furthermore, by construction we have
ζ|U∩V = −ε · η and θ|U∩V = (1− ε) · η, where ε is a partition of unity function,
and ζ|U\V = 0 = θ|V\U. Since η satisfies (6.9)–(6.10) over U∩V, it follows that
ζ satisfies (6.9)–(6.10) over U, and θ satisfies (6.9)–(6.10) over V.

As f , g are 1-morphisms in dSpac and ζ : h|U ⇒ f , θ : h|V ⇒ g are 2-
morphisms in dSpa with ζ, θ satisfying (6.9)–(6.10), Proposition 6.9 implies that
h|U and h|V are 1-morphisms in dSpac, and ζ, θ are 2-morphisms in dSpac.
So h is a 1-morphism in dSpac over U ∪ V = X. The proof in Proposition
2.27 that h is unique and independent of η up to 2-isomorphism is also valid
in dSpac.

Theorem 6.25. Suppose X,Y are d-spaces with corners, U ⊆ X, V ⊆ Y are
open d-subspaces, and f : U → V is an equivalence in dSpac. At the level
of topological spaces, we have open U ⊆ X, V ⊆ Y with a homeomorphism
f : U → V, so we can form the quotient topological space Z := X qf Y =
(X q Y )/ ∼, where the equivalence relation ∼ on X q Y identifies u ∈ U ⊆ X
with f(u) ∈ V ⊆ Y .

Suppose Z is Hausdorff. Then there exist a d-space with corners Z, open d-
subspaces X̂, Ŷ in Z with Z = X̂∪ Ŷ, equivalences g : X→ X̂ and h : Y → Ŷ
in dSpac such that g|U and h|V are both equivalences with X̂ ∩ Ŷ, and a 2-
morphism η : g|U ⇒ h ◦ f : U → X̂ ∩ Ŷ. Furthermore, Z is independent of
choices up to equivalence.
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Proof. As f : U→ V is an equivalence in dSpac, we may choose a 1-morphism
e : V → U and 2-morphisms ζ : e ◦ f ⇒ idU, θ : f ◦ e ⇒ idV in dSpac.
Then f , e are simple and flat by Proposition 6.20, so Theorem 6.12(b),(c) gives
1-morphisms f− : ∂U→ ∂V, e− : ∂V→ ∂U and 2-morphisms ζ− : e− ◦ f− ⇒
id∂U, θ− : f− ◦ e− ⇒ id∂V, so that f−, e− are equivalences. By Proposition
A.6 we may also suppose that idf ∗ ζ = θ ∗ idf and ide ∗ θ = ζ ∗ ide, and these
imply that idf− ∗ ζ− = θ− ∗ idf− and ide− ∗ θ− = ζ− ∗ ide− .

We now apply Theorem 2.28 twice:

(a) we construct a d-space Z with open X̂, Ŷ ⊆ Z, equivalences g : X → X̂
and h : Y → Ŷ with g(U) = h(V ) = X̂ ∩ Ŷ , and a 2-morphism η :
g|U ⇒ h ◦ f in dSpa; and

(b) we construct a d-space ∂Z with open ∂X̂,∂Ŷ ⊆ ∂Z, equivalences g− :

∂X → ∂X̂ and h− : ∂Y → ∂Ŷ with g−(∂U) = h−(∂V ) = ∂X̂ ∩ ∂Ŷ ,
and a 2-morphism η− : g−|∂U ⇒ h− ◦ f− in dSpa.

The proof of Theorem 2.28 involves choices of e, ζ, θ, open Â, B̂ ⊆ Z, and
γ ∈ OX(C), δ ∈ OY (D). For (a) we choose e, ζ, θ as above, and Â, B̂, γ, δ
arbitrary. For (b) we choose e−, ζ−, θ− as above, and Â− = i−1

X (Â), B̂− =

i−1
Y (B̂), γ− = i]X(C)(γ), and δ− = i]Y(D)(δ).

Because the two gluing constructions are done with compatible choices, it
is now easy to check that there is a unique, natural d-space 1-morphism iZ :
∂Z → Z with g ◦ iX = iZ ◦ g− : ∂X → Z and h ◦ iY = iZ ◦ h− : ∂Y → Z.
This satisfies Definition 6.1(a)–(c), so that we get a conormal bundle NZ on ∂Z.
Using g◦iX = iZ◦g− and h◦iY = iZ◦h− we construct canonical isomorphisms
g∗−(NZ) ∼= NX, h∗−(NZ) ∼= NY. There is then a unique orientation ωZ on NZ

such that these isomorphisms identify g∗−(ωZ) ∼= ωX and h∗−(ωZ) ∼= ωY.
Write Z = (Z,∂Z, iZ, ωZ). Then one can show Z is a d-space with corners,

and g : X→ Z, h : Y → Z are simple, flat 1-morphisms in dSpac, with

Sg =
{

(x′, g−(x′)) : x′ ∈ ∂X
}

and Sh =
{

(y′, h−(y′)) : y′ ∈ ∂Y
}
. (6.64)

The identities g ◦ iX = iZ ◦ g− and h ◦ iY = iZ ◦ h− imply that g−,h− in (b)
above are the same as the 1-morphisms g− : ∂X → ∂Z and h− : ∂Y → ∂Z

constructed in Theorem 6.12(b). Since g : X → X̂ and h : Y → Ŷ are
equivalences in dSpa, and g,h are also simple, flat 1-morphisms in dSpac,
Proposition 6.21 shows that g : X → X̂ and h : Y → Ŷ are equivalences in
dSpac. Hence g|U and h|V are equivalences with X̂ ∩ Ŷ.

As f : U → V is simple we have Sf =
{

(x′, f−(x′)) : x′ ∈ ∂U
}

. But
g−|U = h− ◦ f−, as we have a 2-morphism η− : g−|∂U ⇒ h− ◦ f− in dSpa
from (b) above. Using these, (6.64) and Proposition 6.7(f) we see that Sg|U =
Sh◦f . The compatibility between (a) and (b) above implies that equation (6.42)
in Theorem 6.12(c) commutes. Now (6.42) was proved using (6.9) for η, and
reversing the argument using g|U simple we find that (6.42) implies (6.9) for η.
Also T g|U = ∅ as g|U is flat, so (6.10) for η is trivial. Hence η : g|U ⇒ h◦f is a
2-morphism in dSpac. The analogue of Theorem 2.29 implies Z is independent
of choices up to equivalence.
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The proofs of Theorems 2.29–2.33 now work in dSpac, using Proposition
6.24 and Theorem 6.25 in place of Proposition 2.27 and Theorem 2.28, and
otherwise with only cosmetic changes. Thus we obtain the following analogue
of Theorem 2.33:

Theorem 6.26. Suppose I is an indexing set, and < is a total order on I, and
Xi for i ∈ I are d-spaces with corners, and for all i < j in I we are given open
d-subspaces Uij ⊆ Xi, Uji ⊆ Xj and an equivalence eij : Uij → Uji, such that
for all i < j < k in I we have a 2-commutative diagram in dSpac :

Uji ∩Ujk ejk|Uji∩Ujk

,,XXXXXXXXXXXXXXX
ηijk

��Uij ∩Uik

eij |Uij∩Uik
22fffffffffffffff eik|Uij∩Uik // Uki ∩Ukj

for some ηijk, where all three 1-morphisms are equivalences.
On the level of topological spaces, define the quotient topological space Y =

(
∐
i∈I Xi)/ ∼, where ∼ is the equivalence relation generated by xi ∼ xj if i < j,

xi ∈ Uij ⊆ Xi and xj ∈ Uji ⊆ Xj with eij(xi) = xj. Suppose Y is Hausdorff
and second countable. Then there exist a d-space with corners Y and a 1-
morphism f i : Xi → Y which is an equivalence with an open d-subspace X̂i ⊆ Y
for all i ∈ I, where Y =

⋃
i∈I X̂i, such that f i|Uij

is an equivalence Uij →
X̂i∩X̂j for all i < j in I, and there exists a 2-morphism ηij : f j ◦eij ⇒ f i|Uij

.
The d-space with corners Y is unique up to equivalence, and is independent of
choice of 2-morphisms ηijk.

Suppose also that Z is a d-space with corners, and gi : Xi → Z are 1-
morphisms in dSpac for all i ∈ I, and there exist 2-morphisms ζij : gj ◦ eij ⇒
gi|Uij

for all i < j in I. Then there exist a 1-morphism h : Y → Z and 2-
morphisms ζi : h ◦ f i ⇒ gi for all i ∈ I. The 1-morphism h is unique up to
2-isomorphism, and is independent of the choice of 2-morphisms ζij.

6.7 Corners Ck(X), and the corner functors C, Ĉ

We now generalize the material of §5.5 on corners Ck(X) and the corner functors
C, Ĉ from Manc to dSpac. The construction of Ck(X) in Definition 6.28 es-
sentially follows from that of ∂kX in §6.2, and the constructions of 1-morphisms
C(f) and 2-morphisms C(η) in Theorem 6.29 are similar to those of f−, η− in
Theorem 6.12(b),(c) in §6.3. So we will be brief in places. We begin with a
remark describing properties of k-fold boundaries ∂kX that we will need.

Remark 6.27. Let X be a d-space with corners. Then §6.2 defines a d-
space with corners ∂kX for k = 1, 2, . . . , by induction on k. Here ∂kX =
(∂kX,∂k+1X, i∂kX, ω∂kX), where ∂kX,∂k+1X are d-spaces and i∂kX : ∂kX
→ ∂k+1Xa 1-morphism. From §6.2, the topological space underlying ∂2X is

∂2X =
{

(x′1, x
′
2) : x′1, x

′
2 ∈ ∂X, x′1 6= x′2, iX(x′1) = iX(x′2)

}
, (6.65)

where i∂X : ∂2X → ∂X maps (x′1, x
′
2) 7→ x′1. In §6.2 we also defined a 1-

morphism j∂X : ∂2X → ∂X mapping (x′1, x
′
2) 7→ x′2, with iX ◦ i∂X = iX ◦ j∂X,
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such that (6.26) is locally 2-Cartesian. That is, ∂2X is equivalent to an open
d-subspace of ∂X ×iX,X,iX ∂X.

Another way to write (6.65) is

∂2X ∼=
{

(x, x′1, x
′
2) : x ∈ X, x′1 6= x′2 ∈ ∂X, iX(x′1) = iX(x′2) = x

}
. (6.66)

So we regard ∂2X as an open d-subspace of X ×∆2
X ,X×X,iX×iX (∂X × ∂X),

where ∆2
X : X → X ×X is the diagonal 1-morphism. There is a natural 1-

isomorphism ρ
(12)
2 : ∂2X → ∂2X with ρ

(12)
2 = id∂2X , acting on points in the

representation (6.66) by ρ
(12)
2 : (x, x′1, x

′
2) 7→ (x, x′2, x

′
1), with j∂X = i∂X ◦ ρ(12)

2

and i∂X = j∂X ◦ ρ
(12)
2 . We think of ρ

(12)
2 as defining a free action ρ2 of the

symmetric group S2 =
{

id, (12)
} ∼= Z2 on ∂2X by 1-isomorphisms.

More generally, by induction on k, one can show that the topological space
∂kX underlying ∂kX is naturally homeomorphic to

∂kX ∼=
{

(x, x′1, . . . , x
′
k) : x ∈ X, x′1, . . . , x′k ∈ ∂X,

iX(x′1) = · · · = iX(x′k) = x, x′1, . . . , x
′
k are distinct

}
.

(6.67)

There are natural 1-morphisms πX : ∂kX → X and πa∂X : ∂kX → ∂X for
a = 1, . . . , k, with iX ◦ πa∂X = πX for a = 1, . . . , k, and such that under the
isomorphism (6.67), on points we have πX : (x, x′1, . . . , x

′
k) 7→ x and πa∂X :

(x, x′1, . . . , x
′
k) 7→ x′a, where π1

∂X = i∂X and π2
∂X = j∂X when k = 2. We

have πX = iX ◦ i∂X ◦ · · · ◦ i∂k−1X. Definition 6.1(b) for iX, . . . , i∂k−1X therefore
implies that π′′X : π∗X(EX)→ E∂kX is an isomorphism.

There is a natural, free action ρk of the symmetric group Sk on ∂kX by
1-isomorphisms, where for σ ∈ Sk, ρσk : ∂kX → ∂kX is a 1-isomorphism
acting on points by ρσk : (x, x′1, . . . , x

′
k) 7→ (x, x′σ(1), . . . , x

′
σ(k)), and satisfying

πX ◦ρσk = πX and πa∂X ◦ρσk = π
σ(a)
∂X for a = 1, . . . , k. Under the isomorphisms

(6.67), i∂kX maps (x, x′1, . . . , x
′
k+1) 7→ (x, x′1, . . . , x

′
k), and regarding Sk as the

subgroup of Sk+1 fixing k + 1, for σ ∈ Sk we have i∂kX ◦ ρσk+1 = ρσk ◦ i∂kX.

We can relate ∂kX locally to X in a 2-Cartesian diagram as follows. Let
(x, x′1, . . . , x

′
k) ∈ ∂kX, in the representation (6.67). Choose boundary defining

functions (V 1, b1), . . . , (V k, bk) for X at x′1, . . . , x
′
k. Then x ∈ V a ⊆ X is

open, and there exists open x′a ∈ Ua ⊆ ∂X such that (6.1) is 2-Cartesian for
Ua,V a, ba, a = 1, . . . , k. Making Ua,V a smaller for all a and using x′1, . . . , x

′
k

distinct and ∂X Hausdorff, we can suppose V 1 = · · · = V a = V , say, and
U1, . . . ,Uk are disjoint in ∂X.

Define W = (π1
∂X)−1(U1) ∩ · · · ∩ (πk∂X)−1(Uk), so that (x, x′1, . . . , x

′
k) ∈

W ⊆ ∂kX is open. We now claim that the diagram in dSpa

W π
//

πX|W�� � �� �
IQ

id(0,...,0)◦π

∗
(0,...,0) ��

V
(b1,b2,...,bk) // [0,∞)k

(6.68)

is 2-commutative and 2-Cartesian. Thus, just as locally ∂X ' X ×[0,∞) ∗, so

locally ∂kX 'X ×[0,∞)k ∗.
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We prove this by induction on k. When k = 1 it follows from Definition
6.1(c), as (6.68) reduces to (6.1). For the inductive step, suppose the claim holds
for k, let (x, x′1, . . . , x

′
k+1) ∈ ∂k+1X, choose V ,U1, . . . ,Uk+1, b1, . . . , bk+1 as

above, and let Wk = (π1
∂X)−1(U1)∩ · · · ∩ (πk∂X)−1(Uk) ⊆ ∂kX and Wk+1 =

(π1
∂X)−1(U1) ∩ · · · ∩ (πk+1

∂X )−1(Uk+1) ⊆ ∂k+1X. Consider the diagram:

Wk+1 π
//

i
∂kX
|Wk+1��

πX|Wk+1

��

� �� �
JR

id0◦π

∗
0 ��

0





Wk

bk+1◦πX |Wk //

πX|Wk�� � �� �
JR

id(0,...,0)◦π

[0,∞) = ∗× [0,∞)

(0,...,0)×id[0,∞) ��
V

(b1,b2,...,bk+1) // [0,∞)k+1 = [0,∞)k × [0,∞).

The top rectangle is (6.1) for the boundary defining function (Wk, bk+1◦πX |Wk
)

for ∂kX at (x, x′1, . . . , x
′
k+1), and so is 2-commutative and 2-Cartesian. The

bottom rectangle is the extension of (6.68) for Wk, which is 2-commutative
and 2-Cartesian by induction, by a 1-morphism to [0,∞). Thus the bottom
rectangle is 2-commutative and 2-Cartesian, and hence the outer rectangle is
2-commutative and 2-Cartesian. This proves the inductive step.

Definition 6.28. Let X be a d-space with corners. For each k = 0, 1, 2, . . . we
will define a d-space with corners Ck(X) called the k-corners of X, and a 1-
morphism Πk

X : Ck(X)→ X in dSpac. These will have the following properties.
Write Ck(X) =

(
Ck(X),∂Ck(X), iCk(X), ωCk(X)

)
, where Ck(X),∂Ck(X)

are d-spaces with underlying topological spaces Ck(X), ∂Ck(X). Then we have

Ck(X) =
{

(x, {x′1, . . . , x′k}) : x ∈X, x′1, . . . , x
′
k ∈ ∂X,

iX(x′a) = x, a = 1, . . . , k, x′1, . . . , x
′
k are distinct

}
,

(6.69)

∂Ck(X) =
{

(x, {x′1, . . . , x′k}, x′k+1) : x ∈X, x′1, . . . , x
′
k+1 ∈ ∂X,

iX(x′a) = x, a = 1, . . . , k + 1, x′1, . . . , x
′
k+1 are distinct

}
.

(6.70)

On points, iCk(X),Π
k
X act by iCk(X) : (x, {x′1, . . . , x′k}, x′k+1) 7→ (x, {x′1, . . . , x′k})

and Πk
X : (x, {x′1, . . . , x′k}) 7→ x. There is a unique local 1-isomorphism qX :

∂kX → Ck(X), acting on points by qX : (x, x′1, . . . , x
′
k) 7→ (x, {x′1, . . . , x′k})

using the representation (6.67) for ∂kX, such that

Πk
X ◦ qX = πX : ∂kX −→ X. (6.71)

In a similar way to Definition 6.1(b), (Πk
X)′′ : (Πk

X)∗(EX) → ECk(X) is an iso-

morphism. Also Π0
X : C0(X) → X is a 1-isomorphism, and there is a unique

1-isomorphism cX : C1(X)→ ∂X acting on points by cX :
(
iX(x′), {x′}

)
7→ x′,

such that Π1
X = iX ◦ cX : C1(X)→ X. Thus, C0(X) ∼= X and C1(X) ∼= ∂X.

In Remark 6.27 we explained that there is a natural, free action ρk of
the symmetric group Sk on ∂kX by 1-isomorphisms. The basic idea is that
Ck(X) = (∂kX)/ρk(Sk), and qX : ∂kX → ∂kX/Sk = Ck(X) is the projection
to the quotient. It is not difficult to show that quotients of d-spaces by free
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finite groups of 1-isomorphisms always exist in dSpa, and are unique up to
canonical 1-isomorphism. The underlying topological space Ck(X) of Ck(X)
is therefore homeomorphic to the quotient of (6.67) by Sk, where Sk acts by
permuting x′1, . . . , x

′
k.

The effect of quotienting by Sk is to replace the ordered k-tuple (x′1, . . . , x
′
k)

by the unordered set {x′1, . . . , x′k}. Hence Ck(X) = ∂kX/Sk is homeomorphic to
the right hand side of (6.69). Since the quotient Ck(X) = ∂kX/Sk only specifies
Ck(X) up to canonical 1-isomorphism, not equality, we are free to choose Ck(X)
so that (6.69) is an equality, not just a canonical homeomorphism. Similarly, the
action of Sk on ∂k+1X permutes x′1, . . . , x

′
k in (x, x′1, . . . , x

′
k+1), so the effect of

quotienting by Sk is to turn (x, x′1, . . . , xk+1) into (x, {x′1, . . . , x′k}, x′k+1), and
we may choose Ck(X) so that (6.70) holds.

This explains the construction of Ck(X) and qX. To define Πk
X, note that

πX : ∂kX → X satisfies πX ◦ ρσk = πX for all σ ∈ Sk. Therefore it factors
through the quotient Ck(X) = (∂kX)/ρk(Sk), and there is a unique 1-morphism
Πk

X : Ck(X)→ X satisfying (6.71). From (6.71), qX a local 1-isomorphism, and
π′′X : π∗X(EX) → E∂kX an isomorphism, we deduce that (Πk

X)′′ : (Πk
X)∗(EX) →

ECk(X) is an isomorphism. The remaining claims are easy to check.
Now let (x, {x′1, . . . , x′k}) ∈ Ck(X). Then {x′1, . . . , x′k} is an unordered set,

but by numbering the points we have implicitly chosen a preimage (x, x′1, . . . , x
′
k)

of (x, {x′1, . . . , x′k}) in ∂kX. Let U1, . . . ,Uk,V ,W and b1, . . . , bk be as in Re-
mark 6.27 for (x, x′1, . . . , x

′
k), so that x′a ∈ Ua ⊆ ∂X is open, and U1, . . . ,Uk

are disjoint in ∂X, and W = (π1
∂X)−1(U1) ∩ · · · ∩ (πk∂X)−1(Uk) is an open

neighbourhood of (x, x′1, . . . , x
′
k) in ∂kX fitting into a 2-Cartesian diagram (6.68)

in dSpa. Let W̃ = qX(W). Then as U1, . . . ,Uk are disjoint, W̃ is open in
Ck(X), and qX|W : W → W̃ is a 1-isomorphism in dSpa. So (6.68) and (6.71)
imply that we have a 2-Cartesian diagram in dSpa:

W̃ π
//

Πk
X|W̃�� � �� �

IQ
id(0,...,0)◦π

∗
(0,...,0) ��

V
(b1,b2,...,bk) // [0,∞)k

(6.72)

Thus locally Ck(X) 'X ×[0,∞)k ∗.
Write C(X) =

∐∞
k=0 Ck(X) and ΠX =

∐∞
k=0 Πk

X, so that C(X) is a d-space
with corners and ΠX : C(X)→ X is a 1-morphism.

Here is the analogue of Theorem 5.17(i)–(iii). Note the similarity of (a),(b)
to Theorem 6.12(b),(c), and of (c) to Corollary 6.14. The proof of Theorem 6.29
is long but uses very similar ideas to those of Theorem 6.12, Proposition 6.13
and Corollary 6.14, so we leave it as an exercise.

Theorem 6.29. (a) Let f : X→ Y be a 1-morphism of d-spaces with corners.
Then there is a unique 1-morphism C(f) : C(X) → C(Y) in dSpac such that
ΠY ◦ C(f) = f ◦ΠX : C(X)→ Y, and C(f) acts on points as in (5.6) by

C(f) :
(
x, {x′1, . . . , x′k}

)
7−→

(
y, {y′1, . . . , y′l}

)
, where

{y′1, . . . , y′l}=
{
y′ : (x′i, y

′) ∈ Sf , some i = 1, . . . , k
}
.

(6.73)
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For all k, l > 0, write Cf ,lk (X) = Ck(X) ∩ C(f)−1(Cl(Y)), so that Cf ,lk (X)

is an open and closed d-subspace of Ck(X) with Ck(X) =
∐∞
l=0 C

f ,l
k (X), and

write Clk(f) = C(f)|Cf,lk (X), so that Clk(f) : Cf ,lk (X)→ Cl(Y) is a 1-morphism

in dSpac. Then Cf ,lk (X) has underlying topological space

Cf ,lk (X) =
{

(x, {x′1, . . . , x′k}) ∈ Ck(X) :

|{y′ : (x′i, y
′) ∈ Sf , some i = 1, . . . , k}| = l

}
.

(6.74)

(b) Let f , g : X→ Y be 1-morphisms and η : f ⇒ g a 2-morphism in dSpac.
Then there exists a unique 2-morphism C(η) : C(f) ⇒ C(g) in dSpac, where
C(f), C(g) are as in (a), such that

idΠY
∗ C(η)=η ∗ idΠX

: ΠY◦C(f)=f ◦ΠX =⇒ ΠY◦C(g)=g◦ΠX. (6.75)

(c) Define C : dSpac → dSpac by C : X 7→ C(X) on objects, where C(X) is as
in Definition 6.28, and C : f 7→ C(f), C : η 7→ C(η) on 1- and 2-morphisms,
where C(f), C(η) are as in (a),(b) above. Then C is a strict 2-functor, which
we call a corner functor.

One can also show that in the analogue of Theorem 5.17(iv), there is a
natural 1-isomorphism ∂Ck(X)→ Ck(∂X), which acts on points by(

x, {x′1, . . . , x′k}, x′k+1

)
7−→

(
x′k+1,

{
(x′k+1, x

′
1), . . . , (x′k+1, x

′
k)
})
,

but we will not use this. The next proposition, the analogue of Theorem
5.17(vii), relates Theorems 6.12 and 6.29. We can also prove that if f , g : X→
Y are semisimple and η : f ⇒ g is a 2-morphism, then η− and C(η)|Cf,11 (X) are

related in the obvious way.

Proposition 6.30. Let f : X → Y be a semisimple 1-morphism in dSpac,
and use the notation of Theorems 6.12 and 6.29. Then C(f) maps Ck(X) →∐k
l=0 Cl(Y) for all k > 0, that is, Cf ,lk (X) = ∅ for l > k. As in Definition 6.28

there are natural 1-isomorphisms cX : C1(X) → ∂X, cY : C1(Y) → ∂Y and

Π0
Y : C0(Y) → Y. We have cX

(
Cf ,01 (X)

)
= ∂f+X and cX

(
Cf ,11 (X)

)
= ∂f−X,

with Π0
Y ◦ C0

1 (f) = f+ ◦ cX|Cf,01 (X) and cY ◦ C1
1 (f) = f− ◦ cX|Cf,11 (X).

If f is simple then C(f) maps Ck(X)→ Ck(Y) for all k > 0.

Proof. Suppose C(f) :
(
x, {x′1, . . . , x′k}

)
7−→

(
y, {y′1, . . . , y′l}

)
. Let j = 1, . . . , l.

Then (x′i, y
′
j) ∈ Sf for some i = 1, . . . , k. As jf : (x′i, y

′
j) 7→ (x, y′j) is injective,

this i is unique. Since f is semisimple, sf : (x′i, y
′
j) 7→ x′i is injective, so distinct

j, j′ = 1, . . . , l lift to distinct i, i′ = 1, . . . , k. Hence the map j 7→ i is an injective
map {1, . . . , l} → {1, . . . , k}, so k > l. This proves C(f) maps Ck(X) →∐k
l=0 Cl(Y) for all k > 0. If f is simple then sf is bijective, so the map

j 7→ i is a bijection {1, . . . , l} → {1, . . . , k}, forcing k = l, and C(f) maps
Ck(X)→ Ck(Y) for all k > 0, proving the last part.
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It now follows from (6.73) that

Cf ,01 (X) =
{

(x, {x′}) ∈ C1(X) : @y′ ∈ ∂Y with (x′, y′) ∈ Sf
}
,

Cf ,11 (X) =
{

(x, {x′}) ∈ C1(X) : ∃y′ ∈ ∂Y with (x′, y′) ∈ Sf
}
.

Since cX maps (x, {x′}) 7→ x′ on points, we see that cX

(
Cf ,01 (X)

)
= ∂f+X

and cX

(
Cf ,11 (X)

)
= ∂f−X. Using ΠY ◦ C(f) = f ◦ ΠX, Π1

X = iX ◦ cX and
f+ = f ◦ iX|∂f+X we deduce that

Π0
Y ◦ C0

1 (f) = f ◦Π1
X|Cf,01 (X) = f ◦ iX ◦ cX|Cf,01 (X) = f+ ◦ cX|Cf,01 (X).

Similarly we find that iY ◦ cY ◦ C1
1 (f) = iY ◦ f− ◦ cX|Cf,11 (X). Then cY ◦

C1
1 (f) = f− ◦ cX|Cf,11 (X) follows from cX a 1-isomorphism and uniqueness of

f− in Theorem 6.12(b).

As in §5.5, in Manc there is a second corner functor Ĉ : Manc → M̌anc

defined by (5.8). The proof of the next theorem is very similar to that of
Theorem 6.29, except that Theorem 6.29(b) uses (6.9) for η and arguments
similar to Proposition 6.8(b), whereas Theorem 6.31(c) also uses (6.10) for η
and arguments similar to Proposition 6.8(c).

Theorem 6.31. (a) Let f : X→ Y be a 1-morphism of d-spaces with corners.
Then there is a unique 1-morphism Ĉ(f) : C(X) → C(Y) in dSpac such that
ΠY ◦ Ĉ(f) = f ◦ΠX : C(X)→ Y, and Ĉ(f) acts on points as in (5.8) by

Ĉ(f) :
(
x, {x′1, . . . , x′k}

)
7−→

(
y, {y′1, . . . , y′l}

)
, where

{y′1, . . . , y′l}=
{
y′ : (x′i, y

′) ∈ Sf , some i=1, . . . , k
}
∪
{
y′ : (x, y′)∈T f

}
.

(6.76)

For all k, l > 0, write Ĉf ,lk (X) = Ck(X) ∩ Ĉ(f)−1(Cl(Y)), so that Ĉf ,lk (X)

is an open and closed d-subspace of Ck(X) with Ck(X) =
∐∞
l=0 Ĉ

f ,l
k (X), and

write Ĉlk(f) = Ĉ(f)|Ĉf,lk (X), so that Ĉlk(f) : Ĉf ,lk (X)→ Cl(Y) is a 1-morphism

in dSpac. Then Ĉf ,lk (X) has underlying topological space

Ĉf ,lk (X) =
{

(x, {x′1, . . . , x′k}) ∈ Ck(X) :

|{y′ : (x′i, y
′) ∈ Sf , some i = 1, . . . , k} ∪ {y′ : (x, y′) ∈ T f}| = l

}
.

(6.77)

If f is flat then Ĉ(f) = C(f), for C(f) as in Theorem 6.29(a).

(b) Let f , g : X→ Y be 1-morphisms and η : f ⇒ g a 2-morphism in dSpac.
Then there exists a unique 2-morphism Ĉ(η) : Ĉ(f) ⇒ Ĉ(g) in dSpac, where
Ĉ(f), Ĉ(g) are as in (a), such that

idΠY
∗ Ĉ(η)=η ∗ idΠX

: ΠY◦Ĉ(f)=f ◦ΠX =⇒ ΠY◦Ĉ(g)=g◦ΠX. (6.78)

If f , g are flat then Ĉ(η) = C(η), for C(η) as in Theorem 6.29(b).
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(c) Define Ĉ : dSpac → dSpac by Ĉ : X 7→ C(X) on objects, where C(X) is
as in Definition 6.28, and f 7→ Ĉ(f), η 7→ Ĉ(η) on 1- and 2-morphisms, where
Ĉ(f), Ĉ(η) are as in (a),(b) above. Then Ĉ is a strict 2-functor, which we call
a corner functor.

As for (5.9), on the level of sets the functors C, Ĉ are related by

C(f) :
(
x, {x′1, . . . , x′k}

)
7−→

(
y, {y′1, . . . , y′l}

)
if and only if

Ĉ(f) :
(
x, i−1

X (x) \ {x′1, . . . , x′k}
)
7−→

(
y, i−1

Y (y) \ {y′1, . . . , y′l}
)
.

(6.79)

That is, C, Ĉ are related by taking complements of subsets in i−1
X (x), i−1

Y (y).

6.8 Fibre products in dSpac

Finally we study fibre products in dSpac. In contrast to d-spaces in §2.5, not
all fibre products exist in dSpac, as Example 6.47 below shows. If g : X → Z
and h : Y → Z are 1-morphisms in dSpac, we will define when g,h are b-
transverse and c-transverse. These are mild conditions on how g,h behave
over ∂jX, ∂kY, ∂lZ, where c-transverse implies b-transverse. B-transverse and
c-transverse 1-morphisms are analogous to transverse and strongly transverse
maps in Manc in §5.6, respectively. If g,h are b-transverse, we will prove that
a fibre product W = X×g,Z,h Y exists in dSpac. If they are c-transverse, we
will show also that

C(W) ' C(X)×C(g),Z,C(h) C(Y) ' C(X)×Ĉ(g),Z,Ĉ(h) C(Y),

for C, Ĉ as in §6.7, where C(g), C(h) and Ĉ(g), Ĉ(h) are also c-transverse.

6.8.1 The definitions of b-transversality and c-transversality

When g : X → Z, h : Y → Z are 1-morphisms in dSpac, we will define
what it means for g,h to be ‘b-transverse’ and ‘c-transverse’, which are short
for ‘boundary-transverse’ and ‘corners-transverse’. In Corollary 6.39 we will
show that c-transverse implies b-transverse. In Theorem 6.45 we will show that
if g : X → Z, h : Y → Z are smooth maps in Manc and X,Y,Z, g,h =
FdSpac

Manc (X,Y, Z, g, h) then g, h transverse (or strongly transverse) imply that
g,h are b-transverse (or c-transverse, respectively).

Definition 6.32. Let g : X→ Z and h : Y → Z be 1-morphisms in dSpac. We
call g,h b-transverse if whenever x ∈ X and y ∈ Y with g(x) = h(y) = z ∈ Z,
the following morphism in qcoh(∗) is injective:⊕

(x′,z′)∈Sg :iX(x′)=x

I(x′,z′),sg (NX)−1 ◦ (x′, z′)∗(λg) ◦ I(x′,z′),ug (NZ)⊕

⊕
(y′,z′)∈Sh:iY(y′)=y

I(y′,z′),sh(NY)−1 ◦ (y′, z′)∗(λh) ◦ I(y′,z′),uh(NZ) :

⊕
z′∈i−1

Z (z)

(z′)∗(NZ) −→
⊕

x′∈i−1
X (x)

(x′)∗(NX)⊕
⊕

y′∈i−1
Y (y)

(y′)∗(NY).

(6.80)
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Here if x′ ∈ i−1
X (x) ⊆ ∂X we write x′ : ∗ → ∂X for the corresponding morphism

in C∞Sch, and similarly for y′, z′, and if (x′, z′) ∈ Sg we write (x′, z′) : ∗ → Sg
for the corresponding morphism in C∞Sch, and similarly for (y′, z′). Also
sg, ug, sh, uh are as in Definition 6.2, and λg, λh are as in Proposition 6.7(d).
Note that if (x′, z′) ∈ Sg then x′ = sg ◦ (x′, z′) : ∗ → ∂X and then z′ =

ug ◦ (x′, z′) : ∗ → ∂Z, and similarly for (y′, z′) ∈ Sh.
Informally we may rewrite (6.80) as⊕

(x′,z′)∈Sg :iX(x′)=x

λg|(x′,z′) ⊕
⊕

(y′,z′)∈Sh:iY(y′)=y

λh|(y′,z′) :

⊕
z′∈i−1

Z (z)

NZ|z′ −→
⊕

x′∈i−1
X (x)

NX|x′ ⊕
⊕

y′∈i−1
Y (y)

NY|y′ ,
(6.81)

where as NX,NY,NZ are real line bundles, each of NX|x′ ,NY|y′ ,NZ|z′ is a
real vector space isomorphic to R, and (6.81) is a linear map between finite-
dimensional real vector spaces, whose component mapping NZ|z′ → NX|x′ is
λg|(x′,z′) if (x′, z′) ∈ Sg and zero otherwise, and whose component mapping
NZ|z′ → NY|y′ is λh|(y′,z′) if (y′, z′) ∈ Sh and zero otherwise. For g,h to be
b-transverse the linear maps (6.81) must be injective for all such x, y, z.

Definition 6.33. Let g : X → Z and h : Y → Z be 1-morphisms in dSpac,
and let C(g), C(h), Ĉ(g), Ĉ(h) be as in §6.7. We call g,h c-transverse if the
following two conditions hold:

(a) whenever there are points in Cj(X), Ck(Y), Cl(Z) with

C(g)(x, {x′1, . . . , x′j}) = C(h)(y, {y′1, . . . , y′k}) = (z, {z′1, . . . , z′l}), (6.82)

we have either j + k > l or j = k = l = 0; and

(b) whenever there are points in Cj(X), Ck(Y), Cl(Z) with

Ĉ(g)(x, {x′1, . . . , x′j}) = Ĉ(h)(y, {y′1, . . . , y′k}) = (z, {z′1, . . . , z′l}), (6.83)

we have j + k > l.

Note that part (a) corresponds to the condition in Definition 5.25 for trans-
verse g, h in Manc to be strongly transverse.

The next example illustrates the fact that b-transversality is a continuous
condition, as it depends on the value of a real parameter α. In contrast, c-
transversality is a discrete condition.

Example 6.34. Define manifolds with corners X = [0,∞), Y = [0,∞) and
Z = [0,∞)2. Let α > 0, and define smooth maps g : X → Z, h : Y → Z
by g(x) = (x, x), h(y) = (y, αy). In a similar way to Example 5.27, g, h are
transverse in Manc if and only if α 6= 1, and they are not strongly transverse.

Set X,Y,Z, g,h = FdSpac

Manc (X,Y, Z, g, h). To check whether g,h are b-
transverse, note that at x = 0, y = 0 and z = (0, 0), equation (6.81) is a linear
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map R2 → R2 with matrix
(

1 1
1 α

)
. This is injective if and only if α 6= 1. When

α 6= 1 there are no other points x ∈ X and y ∈ Y with g(x) = h(y) = z ∈ Z.
Thus g,h are b-transverse if and only if α 6= 1.

For c-transversality, note that for any α > 0 we have

C(g)
(
0,
{
{x = 0}

})
= C(h)

(
0,
{
{y = 0}

}
) =

(
(0, 0),

{
{x = 0}, {y = 0}

})
,

so that (6.82) holds with j = k = 1 and l = 2. Hence Definition 6.33(a) is false,
and g,h are not c-transverse.

Here are some sufficient conditions for g,h to be b- and c-transverse. One
should think of b- and c-transversality as mild conditions on g,h which are
satisfied most of the time — they are much weaker than requiring smooth maps
g, h of manifolds with corners to be transverse, for instance.

Lemma 6.35. Let g : X → Z and h : Y → Z be 1-morphisms in dSpac.
The following are sufficient conditions for g,h to be c-transverse, and hence
b-transverse:

(i) g or h is semisimple and flat; or

(ii) Z is a d-space without boundary.

Proof. For (i), suppose g is semisimple and flat. Then C(g) = Ĉ(g) as g is
flat. Therefore Proposition 6.30 shows that if (6.82) or (6.83) holds then j > l.
Definition 6.33(b) is immediate, as k > 0. For Definition 6.33(a), suppose (6.82)
holds, so that j > l. If k > 0 then j + k > l. If k = 0 then l = 0, so either
j > 0 and j + k > l, or j = k = l = 0. Hence Definition 6.33(a) holds, and g,h
are c-transverse. For (ii), as ∂Z = ∅ we must have l = 0 in (6.82)–(6.83), and
c-transversality follows.

6.8.2 Rewriting b- and c-transversality in terms of graphs Γx,y

It will be convenient to think about b- and c-transversality using graphs.

Definition 6.36. Let g : X → Z and h : Y → Z be 1-morphisms in dSpac,
and let x ∈ X and y ∈ Y with g(x) = h(y) = z ∈ Z. Define a finite graph

Γx,y to have vertex set i−1
X (x) q i−1

Y (y) q i−1
Z (z), and to have edges

x′• − z′• if

x′ ∈ i−1
X (x), z′ ∈ i−1

Z (z) and (x′, z′) ∈ Sg, and
y′

• − z′• if y′ ∈ i−1
Y (y), z′ ∈ i−1

Z (z)
and (y′, z′) ∈ Sh. When we refer to x′, y′ or z′ as vertices of Γx,y, we will always
mean that x′ ∈ i−1

X (x), y′ ∈ i−1
Y (y), or z′ ∈ i−1

Z (z), respectively.
Definition 6.2 implies that for each vertex z′ in Γx,y, either there is a unique

edge
x′• − z′• , or there is no edge

x′• − z′• and (x, z′) ∈ T g. Similarly, either there

is a unique edge
y′

• − z′• , or there is no edge
y′

• − z′• and (y, z′) ∈ Th. Hence
every vertex z′ in Γx,y lies on 0, 1 or 2 edges.
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We will be interested in topological properties of Γx,y, such as its connected

components, and whether it is simply-connected. Let Γ̂ be a connected compo-
nent of Γx,y, and write j, k, l for the number of vertices x′, y′, z′ in Γ̂ respectively,
and m for the number of edges. Since every edge contains a unique vertex z′,
and every vertex z′ lies on 0, 1 or 2 edges, we have m 6 2l. The Euler char-
acteristic of Γ̂ is χ(Γ̂) = b0(Γ̂) − b1(Γ̂) = j + k + l −m. But b0(Γ̂) = 1 as Γ̂ is
connected, so we see that

b1(Γ̂) = 1− j − k − l +m > 0. (6.84)

Observe that equation (6.81) splits as a direct sum over connected compo-
nents Γ̂ of Γx,y, since there are only nonzero morphisms from NZ|z′ to NX|x′
or NX|y′ if z′ and x′ or y′ lie in the same component Γ̂. Therefore, g,h are

b-transverse if and only if for all connected components Γ̂ of graphs Γx,y as
above, the following linear map is injective:⊕

edges
x′• − z′• in Γ̂

λg|(x′,z′) ⊕
⊕

edges
y′
• − z′• in Γ̂

λh|(y′,z′) :

⊕
vertices z′ in Γ̂

NZ|z′ −→
⊕

vertices x′ in Γ̂

NX|x′ ⊕
⊕

vertices y′ in Γ̂

NY|y′ .
(6.85)

Here is a characterization of b-transversality in terms of the graphs Γx,y.
Note that for types (A),(B) we will prove that the injectivity of (6.85) is auto-
matic, and does not need to be imposed as an extra condition.

Proposition 6.37. Let g : X→ Z and h : Y → Z be 1-morphisms in dSpac.
Then g,h are b-transverse if and only if whenever x ∈ X and y ∈ Y with
g(x) = h(y) = z ∈ Z, and the graph Γx,y is as above, and Γ̂ is a connected
component of Γx,y with j, k, l vertices of the form x′, y′, z′ respectively and m

edges, then Γ̂ satisfies exactly one of the following three conditions:

(A) Every vertex z′ in Γ̂ lies on two edges, so m = 2l, and Γ̂ is simply-
connected, so j + k = l + 1 by (6.84).

(B) One vertex z′1 in Γ̂ lies on one edge, and all other vertices z′ in Γ̂ lie on
two edges, so m = 2l−1, and Γ̂ is simply-connected, so j+k = l by (6.84).

(C) Every vertex z′ in Γ̂ lies on two edges, so m = 2l, and b1(Γ̂) = 1, so
j + k = l by (6.84), and (6.85) is an isomorphism of real vector spaces.

We will call such Γ̂ components of type (A),(B) and (C), respectively.

Proof. For the ‘only if’ part, suppose g,h are b-transverse, and let x, y,Γx,y, Γ̂
and j, k, l,m be as in the proposition. Then g,h b-transverse implies that
(6.85) is injective. But (6.85) is a linear map Rl → Rj ⊕Rk, so j + k > l. As in
Definition 6.36 we also have m 6 2l and 1− j − k − l +m > 0, and combining
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these gives j+ k 6 l+ 1. Hence either j+ k = l+ 1 or j+ k = l. If j+ k = l+ 1
then 1 − j − k − l + m > 0 gives m > 2l, so as m 6 2l we have m = 2l. If
j + k = l then 1− j − k − l +m > 0 gives m > 2l − 1, so either m = 2l − 1 or
m = 2l. Therefore we may divide into three cases:

(A) j + k = l + 1 and m = 2l.

(B) j + k = l and m = 2l − 1.

(C) j + k = l and m = 2l.

In case (A), as every vertex z′ lies on 0, 1 or 2 edges, m = 2l shows every
vertex z′ in Γ̂ lies on two edges, and (6.84) gives b1(Γ̂) = 0 so Γ̂ is simply-
connected, so part (A) of the proposition holds. In case (B) m = 2l − 1 shows
one vertex z′1 lies on one edge and all other z′ lie on two edges, and (6.84) gives
b1(Γ̂) = 0 so Γ̂ is simply-connected, so part (B) of the proposition holds. In
case (C) m = 2l shows every vertex z′ in Γ̂ lies on two edges, and (6.84) gives
b1(Γ̂) = 1. Also (6.85) is injective as g,h are b-transverse, but (6.85) is a linear
map Rl → Rl as j + k = l, so being injective implies that it is an isomorphism,
and part (C) of the proposition holds. This proves the ‘only if’ part.

For the ‘if’ part, suppose that for all x, y and components Γ̂ of Γx,y, one of
conditions (A),(B) or (C) holds. To show g,h are b-transverse we must show
that (6.85) is injective for each such Γ̂. In case (C) this is immediate. In case
(B), as Γ̂ is connected and simply-connected, there is a unique shortest path in
Γ̂ from the centre of an edge e to the distinguished vertex z1. Colour an edge e
of Γ̂ black if this path has an even number of edges (including e), and white if it
has an odd number of edges. It is not difficult to see that every vertex x′, y′, z′

in Γ̂ lies on exactly one white edge, though it may lie on an arbitrary number of
black edges, and this is the unique colouring of Γ̂ with this property.

Choose an ordering z′1, . . . , z
′
l of the l vertices z′ in Γ̂, beginning with the

distinguished vertex z′1, with the property that if the unique shortest path in
Γ̂ from z′1 to z′j passes through z′i, then i 6 j. Order the j + k = l vertices

x′, y′ in Γ̂ as x′i, y
′
i for i = 1, . . . , l such that each white edge

x′• − z′• or
y′

• − z′•
in Γ̂ joins x′i or y′i to z′i for i = 1, . . . , l. Using these orderings, and choosing
isomorphisms NX|x′ ,NY|y′ ,NZ|z′ ∼= R, equation (6.85) becomes an l×l matrix
over R, where white edges contribute terms λg|(x′i,z′i) 6= 0 or λh|(y′i,z′i) 6= 0 in
position (i, i) for i = 1, . . . , l, and black edges contribute terms in position (i, j)
for i > j. Hence (6.85) is identified with an upper triangular l × l matrix with
nonzero terms on the diagonal, and so is invertible. Thus in case (B) equation
(6.85) is an isomorphism, and so injective.

In case (A), pick an arbitrary vertex x′1 or y′1 in Γ̂. Let Γ̂′ be the graph

obtained from Γ̂ by deleting this vertex, and all edges
x′1• − z′• or

y′1• − z′• con-
taining it. Then each connected component of Γ̂′ is simply-connected, as Γ̂ is,
and has a unique vertex z′1 on one edge (that joined to x′1 or y′1 in Γ̂), and other
vertices z′ lie on two edges. Thus, each connected component of Γ̂′ is of type
(B), so (6.85) is an isomorphism for Γ̂′ from above. But (6.85) for Γ̂ is obtained
from (6.85) for Γ̂′ by adding an extra space NX|x′1 or NX|y′1 to the right hand
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side, with extra linear maps λg|(x′1,z′) or λh|(y′1,z′). Therefore (6.85) for Γ̂ is
injective. So g,h are b-transverse, proving the ‘if’ part.

Sections 6.8.3–6.8.4 will prove that for b-transverse g,h a fibre product W =
X×g,Z,hY exists in dSpac, and there is a 1-1 correspondence between points of

∂W and type (A) components Γ̂. Here is a characterization of c-transversality.

Proposition 6.38. Let g : X→ Z and h : Y → Z be 1-morphisms in dSpac.
Then g,h are c-transverse if and only if whenever x ∈ X and y ∈ Y with
g(x) = h(y) = z ∈ Z, and Γ̂ is a connected component of Γx,y in Definition

6.36, then Γ̂ satisfies exactly one of conditions (A),(B) in Proposition 6.37.

Proof. For the ‘if’ part, suppose one of Proposition 6.37(A),(B) hold for all Γ̂
as above. One can show that (6.82) holds for (x, {x′1, . . . , x′j}), (y, {y′1, . . . , y′k}),
(z, {z′1, . . . , z′l}) if and only if {x′1, . . . , x′j} q {y′1, . . . , y′k} q {z′1, . . . , z′l} is the

disjoint union of the vertex sets of some collection of type (A) components Γ̂
of Γx,y. Summing the equality j + k = l + 1 in Proposition 6.37(A) over these

components Γ̂ shows that for j, k, l as in (6.82), j + k − l is the number of
connected components Γ̂ involved. Hence either j + k > l or j = k = l = 0 in
(6.82), proving Definition 6.33(a) for g,h.

Similarly, one can show (6.83) holds for (x, {x′1, . . . , x′j}), (y, {y′1, . . . , y′k}),
(z, {z′1, . . . , z′l}) if and only if {x′1, . . . , x′j} q {y′1, . . . , y′k} q {z′1, . . . , z′l} is the

disjoint union of the vertex sets of some collection of type (A) components Γ̂ of
Γx,y, and all of the type (B) components Γ̂. Summing the equalities j+k = l+1

in (A) and j + k = l in (B) over all such Γ̂ shows that j + k > l in (6.83),
proving Definition 6.33(a) for g,h. So g,h are c-transverse, and the ‘if’ part of
the proposition holds.

For the ‘only if’ part, let g,h be c-transverse. Suppose x ∈ X and y ∈ Y with
g(x) = h(y) = z ∈ Z, and Γ̂ is a connected component of Γx,y. We divide into

two cases: (A) every vertex z′ in Γ̂ lies on two edges
x′• − z′• and

y′

• − z′• ; and (B)
otherwise. In case (A), write the vertices of Γ̂ as x′1, . . . , x

′
j , y
′
1, . . . , y

′
k, z
′
1, . . . , z

′
l.

Then (6.82) holds, and we do not have j = k = l = 0 as Γ̂ 6= ∅, so Definition
6.33(a) gives j + k > l. But Γ̂ has m = 2l edges as every z′ in Γ̂ lies on two
edges, so (6.84) gives j + k − l = 1 − b1(Γ̂). As j + k > l and b1(Γ̂) > 0, the
only possibility is j + k = l + 1 and b1(Γ̂) = 0. Thus in case (A), Proposition
6.37(A) holds for Γ̂.

In case (B), let Γ̂ have j, k, l vertices of types x′, y′, z′ and m edges. As at
least one vertex z′ in Γ̂ lies on 0 or 1 edge, we have m 6 2l − 1. From (6.84)
we have j + k − l = (m − 2l + 1) − b1(Γ̂), so j + k 6 l as m − 2l + 1 6 0 and
b1(Γ̂) > 0. Write the vertices of the union of all the case (B) components Γ̂ on
Γx,y as x′1, . . . , x

′
j , y
′
1, . . . , y

′
k, z
′
1, . . . , z

′
l. Then one can show that (6.83) holds, so

Definition 6.33(b) gives j + k > l. But for each individual case (B) component
we have j + k 6 l, so the only possibility is that for all Γ̂ in case (B) we have
j + k = l. As m 6 2l − 1, we see from (6.84) that m = 2l − 1, so that one
vertex z′1 in Γ̂ lies on one edge, and all other z′ in Γ̂ lie on two, and b1(Γ̂) = 0.
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Thus in case (B), Proposition 6.37(B) holds for Γ̂, and the ‘only if’ part of the
proposition holds.

Propositions 6.37 and 6.38 imply:

Corollary 6.39. Suppose g : X → Z and h : Y → Z are c-transverse 1-
morphisms in dSpac. Then g,h are also b-transverse.

6.8.3 Local existence of b-transverse fibre products in dSpac

We will now prove that if g : X → Z and h : Y → Z are b-transverse then a
fibre product W = X ×g,Z,h Y exists in dSpac. The plan of the proof is that
in Definition 6.40 and Theorem 6.41 we first show that a local fibre product
X×Z Y exists near x ∈ X, y ∈ Y with g(x) = h(y) = z ∈ Z, using the explicit
construction of fibre products in dSpa from §2.5. Then in §6.8.4 we use the
results of §6.6 to glue these local fibre products by equivalences to get a global
fibre product. The next definition and proof are rather long.

Definition 6.40. Suppose g : X → Z and h : Y → Z are b-transverse 1-
morphisms in dSpac, and x ∈ X, y ∈ Y with g(x) = h(y) = z ∈ Z. We
will construct open d-subspaces x ∈ R ⊆ X, y ∈ S ⊆ Y and z ∈ T ⊆ Z with
g(R),h(S) ⊆ T, a d-space with corners Q, 1-morphisms e : Q→ R, f : Q→ S,
and a 2-morphism η : g ◦ e⇒ h ◦ f in dSpac, in the 2-commutative diagram,

Q
f

//
e�� � �� �

GO
η

S
h|S ��

R
g|R // T.

(6.86)

Then Theorem 6.41 will show that (6.86) is 2-Cartesian.
Let Γx,y be the graph from Definition 6.36. As g,h are b-transverse, Propo-

sition 6.37 shows that every connected component Γ̂ of Γx,y is of type (A), (B)

or (C). As in the proof of Proposition 6.38, every type (A) component Γ̂ either
is a single point x′ or y′, or has at least two vertices of the form x′ or y′ lying
on only one edge. Choose subsets I ⊆ i−1

X (x) and J ⊆ i−1
Y (y) such that I q J

contains exactly one vertex from each type (A) component Γ̂, and no vertices
from type (B),(C) components.

Consider now the linear map of real vector spaces⊕
(x′,z′)∈Sg :iX(x′)=x, x′ /∈I

λg|(x′,z′) ⊕
⊕

(y′,z′)∈Sh:iY(y′)=y, y′ /∈J

λh|(y′,z′) :

⊕
z′∈i−1

Z (z)

NZ|z′ −→
⊕

x′∈i−1
X (x)\I

NX|x′ ⊕
⊕

y′∈i−1
Y (y)\J

NY|y′ ,
(6.87)

which is equation (6.81) with spaces NX|x′ ,NY|y′ and maps λg|(x′,z′), λh|(y′,z′)
for x′ ∈ I and y′ ∈ J omitted. As in §6.8.2, we may write (6.87) as a direct
sum over connected components Γ̂ of Γx,y of linear maps (6.85), where for Γ̂ of

type (A) we omit NX|x′ , λg|(x′,z′) for x′ ∈ I ∩ Γ̂, or we omit NY|y′ , λh|(y′,z′)
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for y′ ∈ J ∩ Γ̂. Now the proof of Proposition 6.37 showed that for each Γ̂, this
linear map is an isomorphism. Therefore (6.87) is an isomorphism.

Let (Rx′ , rx′) be a boundary defining function for X at x′ for each x′ ∈ I, so
that x ∈ Rx′ ⊆X is open. Making the Rx′ smaller if necessary we can suppose
Rx′ = R for all x′ ∈ i−1

X (x), say. Let R be the corresponding open d-subspace
of X. Similarly, we choose open y ∈ S ⊆ Y and sy′ : S → [0,∞) such that
(S, sy′) is a boundary defining function for Y at y′ for each y′ ∈ J , and open
z ∈ T ⊆ Z and tz′ : T → [0,∞) such that (T , tz′) is a boundary defining
function for Z at z′ for each z′ ∈ i−1

Z (z). Let S,T be the corresponding open
d-subspaces of Y,Z. Making R,R,S,S smaller if necessary, we can suppose
that g(R),h(S) ⊆ T.

By Definition 6.2 for g, for each z′ ∈ i−1
Z (z), either:

(i) there is an open x ∈ Ṽ ⊆ g−1(T ) such that
(
Ṽ , tz′ ◦ g|Ṽ

)
is a boundary

defining function for X at some x′ ∈ I, and (x′, z′) ∈ Sg; or

(ii) for some open x ∈W ⊆ g−1(T ) we have tz′ ◦ g|W = 0 ◦ π : W → [0,∞)
in dSpa, and (x, z′) ∈ T g.

In case (i), by Proposition 6.6(c) there exists open x ∈ W ⊆ Ṽ and a 1-
morphism px′z′ : W → (0,∞) in dSpa such that tz′ ◦ g|W = px′z′ · rx′ |W. In
both cases, by making R,R smaller we can take W = R for all z′ ∈ i−1

Z (z).
Thus, for each z′ ∈ i−1

Z (z), either (x′, z′) ∈ Sg for some unique x′ ∈ i−1
X (x),

and then tz′ ◦ g|R = px′z′ · rx′ for some 1-morphism px′z′ : R → (0,∞) in
dSpa, or (x, z′) ∈ T g and tz′ ◦ g|R = 0 ◦ π. Similarly, using Definition 6.2

for h and making S,S smaller, we can arrange that for each z′ ∈ i−1
Z (z), either

(y′, z′) ∈ Sh for some unique y′ ∈ i−1
Y (y), and then tz′ ◦h|S = qy′z′ ·sy′ for some

1-morphism qy′z′ : S → (0,∞) in dSpa, or (y, z′) ∈ Th and tz′ ◦ h|S = 0 ◦ π.
By (6.1) for the boundary defining functions (R, rx′), (S, sy′), (T , tz′) for

x′ ∈ i−1
X (x), y′ ∈ i−1

Y (y) and z′ ∈ i−1
Z (z), there are open x′ ∈ Bx′ ⊆ i−1

X (R) ⊆
∂X and y′ ∈ Cy′ ⊆ i−1

Y (S) ⊆ ∂Y and z′ ∈ Dz′ ⊆ i−1
Z (T ) ⊆ ∂Z fitting into

2-Cartesian diagrams

Bx′ π
//

iX|B
x′��

����
=Eid0◦π

∗
0 ��

Cy′ π
//

iY|C
y′��

����
=Eid0◦π

∗
0 ��

Dz′ π
//

iZ|D
z′��

����
=Eid0◦π

∗
0 ��

R
rx′ // [0,∞), S

sy′ // [0,∞), T
tz′ // [0,∞).

(6.88)

By making R,R smaller we may suppose that the Bx′ are disjoint with ∂R =
i−1
X (R) =

∐
x′∈i−1

X (x)Bx′ . Similarly we can take the Cy′ ,Dz′ disjoint with

∂S = i−1
Y (S) =

∐
y′∈i−1

Y (y)Cy′ and ∂T = i−1
Z (T ) =

∐
z′∈i−1

Z (z)Dz′ .

By Definition 6.1(c) for (R, rx′), the morphism r2
x′ : r∗x′(F [0,∞)) → FX |R

admits a left inverse βx′ in qcoh(R) for x′ ∈ i−1
X (x). As in the last part of the

proof of Proposition 6.21, using Definition 6.1(f) for X at x and making R,R
smaller, we can choose these βx′ such that βx′ ◦ r2

x′′ = 0 for x′ 6= x′′. Similarly,
making S,S,T ,T smaller, we can choose left inverses γy′ for s2

y′ in qcoh(S) for

y′ ∈ i−1
Y (y), with γy′ ◦ s2

y′′ = 0 for y′ 6= y′′.
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We will now construct the d-space with corners Q = (Q,∂Q, iQ, ωQ). Define
Q = R×g|R,T ,h|S S to be the explicit d-space fibre product from §2.5, and write

ẽ : Q → R, f̃ : Q → S for the explicit 1-morphisms and η̃ : g ◦ ẽ ⇒ h ◦ f̃ for
the explicit 2-morphism in dSpa from §2.5. Define a d-space ∂Q by

∂Q =
∐
x′∈I

(
Bx′ ×g◦iX|B

x′
,T ,h|S S

)
q
∐
y′∈J

(
R×g|R,T ,h◦iY|C

y′
Cy′

)
, (6.89)

where again we use the explicit d-space fibre product of §2.5. For x′ ∈ I, write
ax′ : Bx′ ×T S → Bx′ and bx′ : Bx′ ×T S → S for the projection 1-morphisms
and κx′ : g ◦ iX ◦ ax′ ⇒ h ◦ bx′ for the 2-morphism constructed in §2.5. For
y′ ∈ J , write cy′ : R×T Cy′ → R and dy′ : R×T Cy′ → Cy′ for the projection
1-morphisms and λy′ : g ◦ cy′ ⇒ h ◦ iY ◦ dy′ for the 2-morphism from §2.5.

Since κx′ : g◦(iX◦ax′)⇒ h◦bx′ , the proof in Theorem 2.36 thatQ, ẽ, f̃ , η̃ is
a fibre product R×T S in dSpa constructs an explicit 1-morphism iQ|Bx′×TS :
Bx′ ×T S → Q (called b in that proof) such that ẽ ◦ iQ|Bx′×TS = iX ◦ax′ and

f̃ ◦ iQ|Bx′×TS = bx′ in dSpa for x′ ∈ I. Note that the construction of §2.5
gives equality of 1-morphisms here, since ζ = η = 0 in the proof of Theorem
2.36; the universal property of fibre products would only give 2-morphisms ẽ ◦
iQ|Bx′×TS ⇒ iX ◦ ax′ and f̃ ◦ iQ|Bx′×TS ⇒ bx′ .

Similarly, since λy′ : g ◦ cy′ ⇒ h ◦ (iY ◦ dy′), from §2.5 we get explicit

iQ|R×TCy′ : R ×T Cy′ → Q with ẽ ◦ iQ|R×TCy′ = cy′ and f̃ ◦ iQ|R×TCy′ =
iY ◦ dy′ for y′ ∈ J . From (6.89), these iQ|Bx′×TS and iQ|R×TCy′ for x′ ∈ I
and y′ ∈ J make up a 1-morphism iQ : ∂Q→ Q in dSpa. We will show in the
proof of Theorem 6.41 that there is a unique ωQ such that Q = (Q,∂Q, iQ, ωQ)
is a d-space with corners, and (Q, rx′ ◦ ẽ) is a boundary defining function for
Q at any (x̃′, ỹ) ∈ Bx′ ×T S ⊆ ∂Q for x′ ∈ I, and (Q, sy′ ◦ f̃) is a boundary
defining function for Q at any (x̃, ỹ′) ∈ R×T Cy′ ⊆ ∂Q for y′ ∈ J .

Now ẽ, f̃ , η̃ above are 1- and 2-morphisms in dSpa, but in general are not 1-
and 2-morphisms in dSpac, so we will construct modified versions e,f , η which
are. Consider the morphism in qcoh(Q):

Φ :
⊕

z′∈i−1
Z (z)(g ◦ ẽ)∗ ◦ t∗z′(F [0,∞)) −→⊕

x′∈i−1
X (x)\I ẽ

∗ ◦ r∗x′(F [0,∞))⊕
⊕

y′∈i−1
Y (y)\J f̃

∗ ◦ s∗y′(F [0,∞))

Φ =
⊕

x′∈i−1
X (x)\I, z′∈i−1

Z (z) ẽ
∗(βx′)◦ẽ∗(g2)◦Iẽ,g(FZ)◦(g◦ẽ)∗(t2z′)⊕⊕

y′∈i−1
Y (y)\J, z′∈i−1

Z (z) f̃
∗(γy′)◦f̃∗(h2)◦If̃ ,h(FZ)◦(g◦ẽ)∗(t2z′).

(6.90)

Since F [0,∞) is a line bundle, Φ is a morphism between vector bundles of rank

|i−1
Z (z)| = |i−1

X (x)\I|+|i−1
Y (y)\J |. We claim that Φ is invertible near (x, y) ∈ Q.

To see this, note that for z′ ∈ i−1
Z (z) there are natural isomorphisms

(g ◦ ẽ)∗ ◦ t∗z′(F [0,∞))|(x,y)
∼= t∗z′(F [0,∞))|z ∼= i∗Z ◦ t∗z′(F [0,∞))|z′ ∼= NZ|z′ ,

where we use (6.7) for the last step. Thus the domain of Φ|(x,y) is naturally
isomorphic to

⊕
z′∈i−1

Z (z)NZ|z′ , which is the domain of (6.87). Similarly the
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targets of Φ|(x,y) and (6.87) are naturally isomorphic, and using Definition 6.1(e)
and (6.14) commuting we can show that these isomorphisms identify Φ|(x,y) and
(6.87). Therefore Φ|(x,y) is an isomorphism, as (6.87) is.

As this is an open condition, Φ is invertible near (x, y) ∈ Q. Making Q,R,S
smaller if necessary, we can suppose Φ is invertible. Write the inverse of Φ as

ρ⊕ σ :
⊕

x′∈i−1
X (x)\I

ẽ∗◦r∗x′(F [0,∞))⊕
⊕

y′∈i−1
Y (y)\J

f̃∗◦s∗y′(F [0,∞))→
⊕
z′∈i−1

Z (z)

(g◦ẽ)∗◦t∗z′(F [0,∞)).

Define morphisms τ : ẽ∗(FX)→ EQ, υ : f̃∗(FY )→ EQ in qcoh(Q) by

τ = η̃ ◦
(⊕

z′∈i−1
Z (z)(g ◦ ẽ)∗(t2z′)

)
◦ ρ ◦

(⊕
x′∈i−1

X (x)\I ẽ
∗(βx′)

)
,

υ = η̃ ◦
(⊕

z′∈i−1
Z (z)(g ◦ ẽ)∗(t2z′)

)
◦ σ ◦

(⊕
y′∈i−1

Y (y)\J f̃
∗(γy′)

)
.

(6.91)

Since βx′ ◦ r2
x′′ = 0 for x′ 6= x′′ and γy′ ◦ s2

y′′ = 0 for y′ 6= y′′, (6.91) gives

τ ◦ ẽ∗(r2
x′) = 0, x′ ∈ I, and υ ◦ f̃∗(s2

y′) = 0, y′ ∈ J. (6.92)

By Proposition 2.17, there exist unique 1-morphisms e : Q→ R, f : Q→ S
in dSpa such that τ : ẽ ⇒ e and −υ : f̃ ⇒ f are 2-morphisms in dSpa. For
x′ ∈ I, we have 1-morphisms rx′ ◦ ẽ, rx′ ◦ e : Q → [0,∞) and a 2-morphism
idrx′ ∗ τ : rx′ ◦ ẽ⇒ rx′ ◦ e. But idrx′ ∗ τ = τ ◦ ẽ∗(r2

x′) ◦ Iẽ,rx′ (F [0,∞)), which is
zero by (6.92), so rx′ ◦ ẽ = rx′ ◦ e. By the same argument for υ, sy′ we get

rx′ ◦ ẽ = rx′ ◦ e, x′ ∈ I, and sy′ ◦ f̃ = sy′ ◦ f , y′ ∈ J. (6.93)

Define a 2-morphism η : g ◦ e⇒ h ◦ f in dSpa by

η = (idh ∗ (−υ))� η̃ � (idg ∗ (−τ)). (6.94)

Then for z′ ∈ i−1
Z (z) we have 1-morphisms tz′ ◦ g ◦ e, tz′ ◦ h ◦ f : Q → [0,∞)

in dSpa and a 2-morphism idtz′ ∗ η : tz′ ◦ g ◦ e⇒ tz′ ◦ h ◦ f . We find that

idtz′ ∗ η = η ◦ (g ◦ ẽ)∗(t2z′) ◦ Ig◦ẽ,tz′ (F [0,∞))

=
[
η̃− τ ◦ẽ∗(g2)◦Iẽ,g(FZ)−υ◦f̃∗(h2)◦If̃ ,h(FZ)

]
◦(g◦ẽ)∗(t2z′)◦Ig◦ẽ,tz′ (F [0,∞))

= η̃ ◦
(⊕

z′′∈i−1
Z (z)(g ◦ ẽ)∗(t2z′′)

)
◦
[
id⊕

z′′∈i−1
Z

(z)
(g◦ẽ)∗◦t∗

z′′ (F [0,∞)) − (ρ⊕ σ) ◦ Φ
]

◦
(
id(g◦ẽ)∗◦t∗

z′ (F [0,∞)) ⊕ 0
)
◦ Ig◦ẽ,tz′ (F [0,∞)) = 0,

using (6.90)–(6.91), ρ⊕σ = Φ−1 and Definition 2.14, where id(g◦ẽ)∗◦t∗
z′ (F [0,∞))⊕0

means the inclusion (g ◦ ẽ)∗ ◦ t∗z′(F [0,∞)) ↪→
⊕

z′′∈i−1
Z (z)(g ◦ ẽ)∗ ◦ t∗z′′(F [0,∞)). So

idtz′ ∗ η = idtz′◦g◦e, which proves that

η ◦ (g ◦ ẽ)∗(t2z′) = 0 and tz′ ◦ g ◦ e = tz′ ◦ h ◦ f for all z′ ∈ i−1
Z (z). (6.95)
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We now prove that Q, e,f , η are a fibre product R×g|R,T,h|S S in dSpac.

Theorem 6.41. In Definition 6.40, Q is a d-space with corners, and e : Q→
R, f : Q→ S are 1-morphisms in dSpac, and η : g◦e⇒ h◦f is a 2-morphism
in dSpac, and equation (6.86) is 2-Cartesian in dSpac.

Proof. To show Q is a d-space with corners, we will verify Definition 6.1(a)–(f)
for Q,∂Q, iQ, constructing ωQ along the way. For (a), for each x′ ∈ I we have
a Cartesian square in C∞Sch:

Bx′ ×T S ax′
//

iQ|B
x′×T S��

Bx′

iX|B
x′ ��

Q = R×T S
ẽ // R.

Since iX is proper by Definition 6.1(a) for X and Bx′ is closed in i−1
X (R), we see

that iX|Bx′ : Bx′ → R is proper, and therefore iQ|Bx′×TS : Bx′ ×T S → Q is
proper by properties of Cartesian squares. Similarly iQ|R×TCy′ : R×T Cy′ → Q
is proper for y′ ∈ J . Taking the disjoint union over x′ ∈ I and y′ ∈ J shows
that iQ : ∂Q→ Q is proper, proving Definition 6.1(a) for Q.

For (b), for x′ ∈ I, to show that i′′Q is an isomorphism on Bx′ ×S T ⊆ ∂Q,
consider the diagram in qcoh(Bx′ ×S T ):

i∗Q ◦ (g ◦ ẽ)∗(EZ)

IiQ,g◦ẽ(EZ)

��

i∗Q◦


ẽ∗(g′′)◦Iẽ,g(EZ)

−f̃∗(h′′)◦I
f̃,h

(EZ)

(g◦ẽ)∗(φZ)


// i
∗
Q(ẽ∗(EX)⊕ f̃∗(EY )

⊕(g ◦ ẽ)∗(FZ))

a∗
x′ (i
′′
X)◦

Ia
x′ ,iX

(EX )◦

IiQ,ẽ
(EX )−1

0 0

0 I
iQ,f̃

(EY )−1 0

0 0 IiQ,g◦ẽ(FZ)−1


��

// i∗Q(EQ)|Bx′×T S

i′′Q|Bx′×T S

��

// 0

(g ◦ ẽ ◦ iQ)∗(EZ)


a∗
x′ ((g◦iX)′′)◦Ia

x′ ,g◦iX
(EZ)

−b∗
x′ (h

′′)◦Ib
x′ ,h

(EZ)

(g◦ẽ◦iQ)∗(φZ)


// a
∗
x′(E∂X)⊕ b∗x′(EY )⊕
(g ◦ ẽ ◦ iQ)∗(FZ)

// E∂Q|Bx′×T S // 0.

(6.96)

Here as in §2.5, EQ, E∂Q are defined to be the cokernels of α1 in (2.59). The
bottom row is the corresponding exact sequence for E∂Q, and the top row is
iQ|∗Bx′×TS applied to the exact sequence for EQ. The definitions imply that

(6.96) commutes. Since i′′X is an isomorphism by Definition 6.1(b) for X, the
first two columns in (6.96) are isomorphisms. Hence by exactness of the rows,
the third column i′′Q|Bx′×TS is an isomorphism for x′ ∈ I. Similarly, i′′Q|R×TCy′
is an isomorphism for y′ ∈ J . Therefore i′′Q is an isomorphism on ∂Q, proving
Definition 6.1(b) for Q.

For (c), consider the 2-commutative diagram in dSpa for x′ ∈ I:

Bx′ ×T S ax′
//

iQ|B
x′×T S�� 				

@HidiX◦ax′

Bx′ π
//

iX|B
x′�� 

BJid0◦π

∗
0 ��

Q = R×T S
ẽ // R

rx′ // [0,∞).

(6.97)
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The right hand square is 2-Cartesian as in (6.88), since (R, rx′) is a bound-
ary defining function for X at x′. The left hand square 2-commutes as ẽ ◦
iQ|Bx′×TS = iX ◦ax′ , and is 2-Cartesian by properties of fibre products. Hence
the outer rectangle of (6.97) is 2-Cartesian in dSpa. This proves the first part
of Definition 6.1(c) for Q for any x̃′ ∈ Bx′ ×T S ⊆ ∂Q, with U = Bx′ ×T S,
V = Q and b = rx′ ◦ ẽ, so that the outer rectangle of (6.97) becomes (6.1).

For the second part of Definition 6.1(c), consider the diagram

(r∗x′ ◦ ẽ)∗
(F [0,∞))

Iẽ,r
x′

(F [0,∞)) // ẽ
∗ ◦ r∗x′

(F [0,∞))Iẽ,r
x′

(F [0,∞))
−1

oo
ẽ∗(r2

x′ ) // ẽ∗(FX)
ẽ∗(βx′ )
oo

id⊕0 // ẽ∗(FX)⊕f̃∗(FY )
∼= FQ.id⊕0

oo

The composition of the rightwards morphisms is (rx′ ◦ ẽ)2. Each leftwards
morphism is a left inverse for the rightwards morphism above it, noting that
βx′ is a left inverse for r2

x′ . Thus the composition of the leftwards morphisms
is a left inverse for (rx′ ◦ ẽ)2. Hence Definition 6.1(c) for Q holds for any
(x̃′, ỹ) ∈ Bx′×T S ⊆ ∂Q for x′ ∈ I, with U = Bx′×T S, V = Q and b = rx′ ◦ẽ.
Similarly, Definition 6.1(c) for Q holds for any (x̃, ỹ′) ∈ R ×T Cy′ ⊆ ∂Q for

y′ ∈ J , with U = R ×T Cy′ , V = Q and b = sy′ ◦ f̃ . This proves Definition
6.1(c) for Q.

Definition 6.1 now constructs a conormal line bundle NQ for Q in qcoh(∂Q),
in an exact sequence (6.4). For Definition 6.1(d),(e), for x′ ∈ I we define
ωQ|Bx′×TS to be the unique orientation on NQ|Bx′×TS such that (e) holds with
U = Bx′×T S, V = Q and b = rx′◦ẽ, and for y′ ∈ J we define ωQ|R×TCy′ to be
the unique orientation on NQ|R×TCy′ such that (e) holds with U = R×T Cy′ ,

V = Q and b = sy′ ◦ f̃ . This defines ωQ, and shows that (Q, rx′ ◦ ẽ) is a
boundary defining function for Q at any (x̃′, ỹ) ∈ Bx′×T S ⊆ ∂Q for x′ ∈ I, and
(Q, sy′◦f̃) is a boundary defining function for Q at any (x̃, ỹ′) ∈ R×TCy′ ⊆ ∂Q
for y′ ∈ J .

For (f), let q = (x̃, ỹ) ∈ Q, so that x̃ ∈ R ⊆ X and ỹ ∈ S ⊆ Y . Then
q∗(FQ) ∼= x̃∗(FX) ⊕ ỹ∗(FY ). The construction of boundary defining functions
for Q above shows that (6.8) for Q at q is isomorphic to

⊕
x̃′∈i−1

X (x̃):

x̃′∈Bx′ , x
′∈I

Ix̃′,iX(FX)−1 ◦ (x̃′)∗(νX) 0

0
⊕

ỹ′∈i−1
Y (ỹ):

ỹ′∈Cy′ , y
′∈J

Iỹ′,iY (FY )−1 ◦ (ỹ′)∗(νY)

 :

⊕
x̃′∈i−1

X (x̃):

x̃′∈Bx′ , x
′∈I

(x̃′)∗(NX)⊕
⊕

ỹ′∈i−1
Y (ỹ):

ỹ′∈Cy′ , y
′∈J

(ỹ′)∗(NY) −→ x̃∗(FX)⊕ ỹ∗(FY ).

Therefore Definition 6.1(f) for Q at q = (x̃, ỹ) follows from Definition 6.1(f) for
X,Y at x̃, ỹ. This proves that Q is a d-space with corners.

Next we prove e : Q→ R is a 1-morphism in dSpac. Suppose that (x̃, ỹ) ∈
Q, so that e(x̃, ỹ) = x̃ ∈ R, and x̃′ ∈ ∂R with iX(x̃′) = x̃. Since ∂R =∐
i−1
X (x)Bx′ , we divide into four cases:

(a) x̃′ ∈ Bx′ for x′ ∈ I;
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(b) x̃′ ∈ Bx′ for x′ ∈ i−1
X (x) \ I a vertex in a type (A) component Γ̂ of Γx,y;

(c) x̃′ ∈ Bx′ for x′ ∈ i−1
X (x) \ I a vertex in a type (B) component Γ̂; and

(d) x̃′ ∈ Bx′ for x′ ∈ i−1
X (x) \ I a vertex in a type (C) component Γ̂.

In case (a), (R, rx′) is a boundary defining function for R at x̃′, and (x̃′, ỹ) ∈
Bx′×T S ⊆ ∂Q, and (Q, rx′ ◦ ẽ) is a boundary defining function for Q at (x̃′, ỹ)
from above, and rx′ ◦ ẽ = rx′ ◦ e by (6.93). Hence (Q, rx′ ◦ e) is a boundary
defining function for Q at (x̃′, ỹ). This proves Definition 6.2(i) holds for e at
(x̃, ỹ), x̃′ in case (a), for the particular choice of boundary defining function
(R, rx′) for R at x̃′. But as in Definition 6.2, if Definition 6.2(i) for e holds for
one choice of boundary defining function, it also holds for any other choice.

In case (b), suppose
x′′• − z′′• and

y′′

• − z′′• are two edges in Γ̂. Then tz′′ ◦
g|R = px′′z′′ · rx′′ for px′′z′′ : R → (0,∞) and tz′′ ◦ h|S = qy′′z′′ · sy′′ for
qy′′z′′ : S → (0,∞) from Definition 6.40. So we have equivalences

Bx′′ ×T S ' (R×rx′′ ,[0,∞),0 ∗)×T S ' (R×T S)×rx′′◦e,[0,∞),0 ∗
' (R×T S)×tz′′◦g◦e,[0,∞),0 ∗ = (R×T S)×tz′′◦h◦f ,[0,∞),0 ∗
' (R×T S)×sy′′◦f ,[0,∞),0 ∗ ' R×T (S ×sy′′ ,[0,∞),0 ∗) ' R×T Cy′′ ,

where in the third step we note that tz′′ ◦ g|R = px′′z′′ · rx′′ and multiplying by
px′′z′′ does not affect the fibre product, in the fifth we use tz′′ ◦h|S = qy′′z′′ ·sy′′
in the same way, and in the fourth we use (6.95) for z′′.

Let x̂′ ∈ I or ŷ′ ∈ J be the unique vertex of Γ̂ in IqJ . Since Γ̂ is connected,
we can connect the vertex x′ from (b) and x̂′ or ŷ′ with a finite sequence of such

pairs of edges
x′′• − z′′• ,

y′′

• − z′′• . This gives an equivalence

Bx′ ×T S ' Bx̂′ ×T S or Bx′ ×T S ' R×T C ŷ′ . (6.98)

Note that this shows that ∂Q is independent up to equivalence of the arbitrary
choice of I q J representing type (A) components of Γx,y in Definition 6.40.

The equivalences (6.98) identify (x̃′, ỹ) ∈ Bx′ ×T S with a unique point
(x̃′′, ỹ) ∈ Bx̂′ ×T S or (x̃, ỹ′′) ∈ R×T C ŷ′ . As in (a), (Q, rx̂′ ◦ e) is a boundary
defining function for Q at (x̃′′, ỹ), or (Q, sŷ′ ◦f) is a boundary defining function

for Q at (x̃, ỹ′′). Let
x′′• − z′′• and

y′′

• − z′′• be as above. Then

rx′′ ◦ e = e∗(p−1
x′′z′′) ·

(
tz′′ ◦ g ◦ e

)
= e∗(p−1

x′′z′′) ·
(
tz′′ ◦ h ◦ f

)
= e∗(p−1

x′′z′′) · f
∗(qy′′z′′) ·

(
sy′′ ◦ f

)
,

(6.99)

using (6.95) for z′′. Thus, Proposition 6.6(c),(d) imply that (Q, rx′′ ◦ e) is a
boundary defining function for Q at (x̃′′, ỹ) or (x̃, ỹ′′) if and only if (Q, sy′′ ◦ f)
is one too. Connecting x′ to x̂′ or ŷ′ by a finite sequence of such triples x′′, y′′, z′′

we see that (Q, rx′ ◦e) is a boundary defining function for Q at (x̃′′, ỹ) or (x̃, ỹ′′).
This proves Definition 6.2(i) for e holds at (x̃, ỹ), x̃′ in case (b).
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In case (c), by assumption one vertex z′1 in Γ̂ lies on one edge, and all

other z′ in Γ̂ lie on two. If z′1 lies on the edge
x′1• −

z′1• then (y, z′1) ∈ Th, so
tz′ ◦h|S = 0◦π : S → [0,∞). Hence tz′ ◦h◦f = 0◦π◦f = 0◦π : Q→ [0,∞).
But tz′1 ◦ g ◦ e = tz′1 ◦ h ◦ f by (6.95), so tz′1 ◦ g ◦ e = 0 ◦ π. Similarly,

if z′1 lies on the edge
y′1• −

z′1• then (x, z′1) ∈ T g, so tz′ ◦ g|R = 0 ◦ π, and
again tz′1 ◦ g ◦ e = tz′1 ◦ h ◦ f = 0 ◦ π.

Since Γ̂ is connected, we may go from x′ to z′1 by a path of a finite number
of edges in Γ̂. The argument of (b) then shows that we may write rx′ ◦ e as the
product of tz′1 ◦ g ◦ e with a term e∗(p±1

x′′z′′) or f∗(q±1
y′′z′′) for each edge in this

path. Since tz′1 ◦ g ◦ e = 0 ◦ π, and multiplication by a positive function does
not change 0 ◦ π, we see that rx′ ◦ e = 0 ◦ π, and Definition 6.2(ii) for e holds
at (x̃, ỹ), x̃′ in case (c), with W = Q.

In case (d), each vertex z′′ in Γ̂ lies on two edges
x′′• − z′′• ,

y′′

• − z′′• , and
(6.99) holds. We may write these equations in matrix form as:

(
rx′′ ◦ e vertices

x′′ in Γ̂

−sy′′ ◦ f vertices
y′′ in Γ̂

)
e∗(px′′z′′) edges

x′′• − z′′• in Γ̂

f∗(qy′′z′′) edges
y′′
• − z′′• in Γ̂

 = 0. (6.100)

Now the right hand matrix in (6.100) evaluated at (x, y) ∈ Q is identified with
(6.85) under the isomorphisms NX|x′′ ∼= R, NY|y′′ ∼= R, NZ|z′′ ∼= R induced
by the derivatives of rx′′ , sy′′ , tz′′ at x′′, y′′, z′′. But (6.85) is an isomorphism by
Proposition 6.37(C). Hence the right hand matrix in (6.100) is an isomorphism
near (x, y) ∈ Q. Making Q,R,S,Q,R,S smaller if necessary, we can suppose
the right hand matrix in (6.100) is invertible, and hence the left hand matrix is
zero. That is, rx′′ ◦ e = 0 ◦ π : Q→ [0,∞) and sy′′ ◦ f = 0 ◦ π : Q→ [0,∞)

for all vertices x′′, y′′ in Γ̂. When x′′ = x′, this proves Definition 6.2(ii) for e
holds at (x̃, ỹ), x̃′ in case (d), with W = Q. So e : Q → R is a 1-morphism in
dSpac. Similarly f : Q→ S is a 1-morphism in dSpac.

To prove η : g ◦ e ⇒ h ◦ f is a 2-morphism in dSpac, we have to verify
(6.9) in qcoh(Sg◦e) and (6.10) in qcoh(T g◦e). For (6.9), we have open inclusions

Sg◦e ⊆
∐
z′∈i−1

Z (z) ∂Q×T Dz′ ⊆ ∂Q×T ∂T . Fix z′ ∈ i−1
Z (z). Then as Definition

6.1(c),(e) hold for Z with Dz′ ,T , tz′ in place of U ,V , b, equation (6.7) gives an
isomorphism εz′ : iZ|∗Dz′ ◦ t

∗
z′(F [0,∞))→ NZ|Dz′ with νZ|Dz′ ◦ εz′ = iZ|∗Dz′ (t

2
z′).

Thus we have

(iZ ◦ sg◦e)∗(η) ◦ IiQ◦sg◦e,g◦e(FZ) ◦ Iug◦e,iZ(FZ)−1 ◦ u∗g◦e(νZ)|Sg◦e∩(∂Q×TDz′ )

= (iZ◦sg◦e)∗(η)◦IiQ◦sg◦e,g◦e(FZ)◦Iug◦e,iZ(FZ)−1◦u∗g◦e(iZ|∗Dz′ (t
2
z′)◦ε−1

z′ )|...
= (iZ ◦ sg◦e)∗(η ◦ (g ◦ e)∗(t2z′)) ◦ IiQ◦sg◦e,g◦e(t∗z′(F [0,∞))) ◦

Iug◦e,iZ(t∗z′(F [0,∞)))
−1 ◦ u∗g◦e(ε−1

z′ )|Sg◦e∩(∂Q×TDz′ ) = 0

in qcoh
(
Sg◦e∩(∂Q×T Dz′)

)
, using (6.95) and u = ẽ. This proves the restriction

of (6.9) for η to Sg◦e ∩ (∂Q×T Dz′). So (6.9) holds.
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For (6.10), we have open inclusions T g◦e ⊆
∐
z′∈i−1

Z (z)Q×T Dz′ ⊆ Q×T ∂T .

Fix z′ ∈ i−1
Z (z). The same argument then shows that

t∗g◦e(η) ◦ Itg◦e,g◦e(FZ) ◦ Ivg◦e,iZ(FZ)−1 ◦ v∗g◦e(νZ)|T g◦e∩(Q×TDz′ )

= t∗g◦e(η) ◦ Itg◦e,g◦e(FZ) ◦ Ivg◦e,iZ(FZ)−1 ◦ v∗g◦e(iZ|∗Dz′ (t
2
z′)◦ε−1

z′ )|...
= t∗g◦e(η ◦ (g ◦ e)∗(t2z′)) ◦ Itg◦e,g◦e(t∗z′(F [0,∞))) ◦

Ivg◦e,iZ(t∗z′(F [0,∞)))
−1 ◦ v∗g◦e(iZ|∗Dz′ (ε

−1
z′ )|T g◦e∩(Q×TDz′ ) = 0,

which proves the restriction of (6.10) for η to T g◦e ∩ (Q×T Dz′). Hence (6.10)

holds, and η : g ◦ e⇒ h ◦ f is a 2-morphism in dSpac.
Thus (6.86) is 2-commutative in dSpac. We prove it is 2-Cartesian. Suppose

Q̂ is a d-space with corners, and ê : Q̂ → R, f̂ : Q̂ → S are 1-morphisms and
η̂ : g ◦ ê ⇒ h ◦ f̂ a 2-morphism in dSpac. Regarding ê, f̂ , η̂ as 1- and 2-
morphisms in dSpa, as Q, ẽ, f̃ , η are the explicit fibre product R×g|R,T ,h|S S
from Definition 2.36, the proof of Theorem 2.36 constructs a 1-morphism b̂ :
Q̂→ Q in dSpa such that ê = ẽ◦b̂ and f̂ = f̃ ◦b̂. This equality of 1-morphisms
is a special feature of the construction of §2.5; the universal property of fibre
products would only give 2-morphisms ẽ ◦ b̂⇒ ê and f̃ ◦ b̂⇒ f̂ .

Define a morphism ω : b̂∗(FQ)→ EQ̂ to be the composition of morphisms

b̂∗(FQ)
b̂∗((ẽ2⊕f̃2)−1) // b̂∗◦ẽ∗(FX)⊕b̂∗◦f̃∗(FY )

1
2 b̂
∗(−τ⊕υ)// b̂∗(EQ)

b̂′′ // EQ̂ (6.101)

in qcoh(Q̂), where τ, υ are as in Definition 6.40, and ẽ2⊕f̃2 : ẽ∗(FX)⊕f̃∗(FY )→
FQ is an isomorphism as in (2.64), and so has an inverse (ẽ2 ⊕ f̃2)−1. By

Proposition 2.17 there is a unique morphism b : Q̂ → Q in dSpa such that
ω : b̂⇒ b is a 2-morphism. The 2-morphism τ ∗ ω : ê = ẽ ◦ b̂⇒ e ◦ b satisfies

τ ∗ ω =
[
b̂′′ ◦ b̂∗(τ) + ω ◦

(
b̂∗(ẽ2) + b̂∗(φQ) ◦ b̂∗(τ)

)]
◦ Ib̂,e(FX)

= b̂′′ ◦ b̂∗
[
τ + 1

2 (−τ ⊕ υ) ◦ (ẽ2 ⊕ f̃2)−1 ◦
(
ẽ2 + φQ ◦ τ

)]
◦ Ib̂,e(FX)

= b̂′′ ◦ b̂∗
[
τ − 1

2τ + 1
2

(
−τ υ

) (
ẽ2 f̃2

)−1 (
ẽ2 f̃2

)(−ẽ∗(g2)◦Iẽ,g(FZ)

f̃∗(h2)◦If̃,h(FZ)

)
◦
(⊕

z′∈i−1
Z (z)(g ◦ ẽ)∗(t2z′)

)
◦ ρ ◦

(⊕
x′∈i−1

X (x)\I ẽ
∗(βx′)

)]
◦ Ib̂,e(FX)

= 1
2 b̂
′′ ◦ b̂∗

[
τ − η̃ ◦

(⊕
z′∈i−1

Z (z)(g ◦ ẽ)∗(t2z′)
)

◦
(
ρ σ

)( (
⊕
x′∈i−1

X
(x)\I

ẽ∗(βx′ ))◦ẽ
∗(g2)◦Iẽ,g(FZ)◦(

⊕
z′∈i−1

Z
(z)

(g◦ẽ)∗(t2
z′ ))

(
⊕
y′∈i−1

Y
(y)\J

f̃∗(γy′ ))◦f̃
∗(h2)◦If̃,h(FZ)◦(

⊕
z′∈i−1

Z
(z)

(g◦ẽ)∗(t2
z′ ))

)
◦ ρ ◦

(⊕
x′∈i−1

X (x)\I ẽ
∗(βx′)

)]
◦ Ib̂,e(FX)

= 1
2 b̂
′′ ◦ b̂∗

[
τ − τ

]
◦ Ib̂,e(FX) = 0. (6.102)

Here in the first step of (6.102) we use (2.27), in the second (6.101), in the
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third we switch to matrix notation, substitute in (6.91) for the last τ and use

φQ ◦ η̃ =
(
ẽ2 f̃2

)(−ẽ∗(g2) ◦ Iẽ,g(FZ)

f̃∗(h2) ◦ If̃ ,h(FZ)

)
which follows from expressions (2.61) and (2.66) for η̃ and φQ, and in the fourth
we cancel inverse matrices, substitute (6.91) for (−τ υ), and cancel two signs.
By (6.90), the column matrix on the sixth line of (6.102) is Φ, so the sixth line is
(ρ⊕ σ) ◦Φ = id by definition of ρ, σ. Cancelling the sixth line, the surrounding
terms on the fifth and seventh lines are τ by (6.91), giving the fifth step.

Equation (6.102) implies that ê = e ◦ b. Similarly f̂ = f ◦ b. We will show
that b : Q̂→ Q is a 1-morphism in dSpac. Suppose q̂ ∈ Q̂ with b(q̃) = (x̃, ỹ) ∈
Q, and q̃′ ∈ ∂Q with iQ(q̃′) = (x̃, ỹ). By (6.89), either

(a) q̃′=(x̃′, ỹ)∈Bx′×T S for x′∈I and x̃′∈Bx′⊆∂R with iX(x̃′)= x̃; or

(b) q̃′=(x̃, ỹ′)∈R×TCy′ for y′∈J and ỹ′∈Cy′⊆∂S with iY(ỹ′)= ỹ.

In case (a), from the first part of the proof (Q, rx′ ◦ e) is a boundary defining
function for Q at q̃′, where (R, rx′) is a boundary defining function for R at x̃′.
Since ê : Q̂→ R is a 1-morphism in dSpac, by Definition 6.2 either

(i) there exists open q̂ ∈ V ⊆ Q̂ such that
(
V , rx′ ◦ ê|V

)
is a boundary

defining function for Q̂ at some q̂′ ∈ i−1
Q̂ (q̂); or

(ii) there exists open q̂ ∈W ⊆ Q̂ X with rx′ ◦ ê|W = 0 ◦ π : W → [0,∞).

Substituting ê = e ◦ b, these (i),(ii) imply that Definition 6.2(i),(ii) hold for b
at q̂, q̃′, for the particular choice (Q, rx′ ◦ e) of boundary defining function for
Q at q̃′. But as in Definition 6.2, if (i),(ii) hold for one choice they hold for any
choice. The proof in case (b) is similar, using (Q, sy′ ◦ f) and f̂ = f ◦ b.

Hence b : Q̂ → Q is a 1-morphism in dSpac. Also ζ = 0 = idê : e ◦ b ⇒ ê
and θ = 0 = idf̂ : f ◦ b⇒ f̂ are 2-morphisms in dSpac. Consider the diagram
of 2-morphisms in dSpa:

g ◦ e ◦ b
η∗idb

+3

−idg∗τ∗ω=0 ��

h ◦ f ◦ b
−idh∗(−υ)∗ω=0��

g ◦ ẽ ◦ b̂
η̃∗idb̂

+3

idg∗ζ̃=0 ��

h ◦ f̃ ◦ b̂
idh∗θ̃=0��

g ◦ ê
η̂ +3 h ◦ f̂ .

(6.103)

The top square commutes by (6.94). The bottom square commutes by equation
(2.69) in the proof that Q = R ×T S. The columns are zero as τ ∗ ω = 0 by
(6.102), and (−υ) ∗ ω = 0, and ζ̃ = θ̃ = 0 as ζ = θ = 0 in the proof of Theorem
2.36 for Q = R ×T S. Thus the outer rectangle of (6.103) commutes. This
proves (A.4) commutes for ζ = θ = 0, as for (2.69) in §2.5, and proves the first
universal property for (6.86) to be 2-Cartesian in Definition A.7.

For the second universal property, suppose that ḃ : Q̂→ Q, ζ̇ : e◦ ḃ⇒ ê and
θ̇ : f ◦ ḃ⇒ f̂ are alternate choices for b, ζ, θ. As by construction Q = R×T S

360



in dSpa, equation (6.86) is 2-Cartesian in dSpa. Hence there exists a unique
2-morphism ε : b̃ ⇒ b in dSpa with ζ̃ = ζ � (ide ∗ ε) and θ̃ = θ � (idf ∗ ε),
as in (A.5). We must prove ε is a 2-morphism in dSpac. Since ζ, θ, ζ̃, θ̃ are 2-
morphisms in dSpac, ide ∗ ε and idf ∗ ε are too, so (6.9) holds for ide ∗ ε, idf ∗ ε.

One can show that the restriction of (6.9) for ε to Sb∩
(
∂Q̂×Q (Bx′×T S)

)
for

x′ ∈ I is equivalent to the restriction of (6.9) for ide∗ε to Se◦b∩(∂Q̂×RBx′), and

the restriction of (6.9) for ε to Sb ∩
(
∂Q̂×Q (R×T Cy′)

)
for y′ ∈ J is equivalent

to the restriction of (6.9) for idf ∗ ε to Sf◦b ∩ (∂Q̂×S Cy′). So (6.9) holds for ε.

Similarly, the restriction of (6.10) for ε to T b ∩
(
Q̂×Q (Bx′ ×T S)

)
for x′ ∈ I is

equivalent to the restriction of (6.10) for ide ∗ ε to T e◦b ∩ (Q̂×R Bx′), and the

restriction of (6.10) for ε to T b ∩
(
Q̂×Q (R×T Cy′)

)
for y′ ∈ J is equivalent to

the restriction of (6.10) for idf ∗ ε to T f◦b ∩ (Q̂×S Cy′). So (6.10) holds for ε.
Therefore ε is a 2-morphism in dSpac, proving the second universal property.
This completes the proof of Theorem 6.41.

6.8.4 Global existence of b-transverse fibre products in dSpac

We can now prove one of the main results of this chapter, that if g : X→ Z and
h : Y → Z are b-transverse then a fibre product X×g,Z,h Y exists in dSpac.

Theorem 6.42. All b-transverse fibre products exist in dSpac.

Proof. Let g : X → Z and h : Y → Z be b-transverse 1-morphisms in dSpac.
We will construct a d-space with corners W, 1-morphisms e : W → X and
f : W→ Y and a 2-morphism η : g ◦ e⇒ h ◦ f in dSpac such that

W
f

//
e�� � �� �

FN
η

Y
h ��

X
g // Z

(6.104)

is 2-Cartesian. Let W be the fibre product of topological spaces

W = X ×g,Z,h Y =
{

(x, y) ∈ X × Y : g(x) = h(y)
}
.

Then W is Hausdorff and second countable, as X,Y are.
For each (x, y) ∈ W with g(x) = h(y) = z ∈ Z, Definition 6.40 constructs

open x ∈ Ry
x ⊆ X, y ∈ Syx ⊆ Y, a d-space with corners Qy

x, 1-morphisms
eyx : Qy

x → Ry
x, fyx : Qy

x → Syx and a 2-morphism ηyx : g ◦eyx ⇒ h ◦fyx in dSpac.
Theorem 6.41 shows Qy

x is a fibre product Ry
x×Z Syx in dSpac. The underlying

topological space Qyx is the open set
{

(x, y) ∈W : x ∈ Ryx, y ∈ Syx
}

in W .
Suppose (x1, y1), (x2, y2) ∈ W . Then Ry1

x1
∩Ry2

x2
⊆ X and Sy1

x1
∩ Sy2

x2
⊆ Y

are open d-subspaces. Define open Qy1y2
x1x2

⊆ Qy1
x1

and Qy2y1
x2x1

⊆ Qy2
x2

by

Qy1y2
x1x2

= (ey1
x1

)−1(Ry1
x1
∩Ry2

x2
) ∩ (fy1

x1
)−1(Sy1

x1
∩ Sy2

x2
),

Qy2y1
x2x1

= (ey2
x2

)−1(Ry1
x1
∩Ry2

x2
) ∩ (fy2

x2
)−1(Sy1

x1
∩ Sy2

x2
).
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Then Qy1y2
x1x2

,Qy2y1
x2x1

are fibre products (Ry1
x1
∩ Ry2

x2
) ×Z (Sy1

x1
∩ Sy2

x2
) in dSpac,

so there is an equivalence iy1y2
x1x2

: Qy1y2
x1x2

→ Qy2y1
x2x1

, which is natural up to 2-
isomorphism, and 2-morphisms ζy1y2

x1x2
: ey2

x2
◦ iy1y2

x1x2
⇒ ey1

x1
|Qy1y2

x1x2
and θy1y2

x1x2
:

fy2
x2
◦ iy1y2

x1x2
⇒ fy1

x1
|Qy1y2

x1x2
, such that the following commutes:

g ◦ ey2
x2
◦ iy1y2

x1x2 ηy2x2
∗id

i
y1y2
x1x2

+3

idg∗ζy1y2x1x2��

h ◦ fy2
x2
◦ iy1y2

x1x2

idh∗θy1y2x1x2 ��
g ◦ ey1

x1
|Qy1y2

x1x2

ηy1x1
|Qy1y2x1x2 +3 h ◦ fy1

x1
|Qy1y2

x1x2
.

(6.105)

Suppose (x1, y1), (x2, y2), (x3, y3) ∈W . Then Qy1y2
x1x2
∩Qy1y3

x1x3
, Qy2y1

x2x1
∩Qy2y3

x2x3
,

Qy3y1
x3x1
∩Qy3y2

x3x2
are all fibre products (Ry1

x1
∩Ry2

x2
∩Ry3

x3
) ×Z (Sy1

x1
∩ Sy2

x2
∩ Sy3

x3
),

and we have a triangle of equivalences

Qy2y1
x2x1
∩Qy2y3

x2x3
iy2y3x2x3

|
Q
y2y1
x2x1

∩Q
y2y3
x2x3

,,XXXXXXXXXXXXX
ωy1y2y3x1x2x3

��Qy1y2
x1x2
∩Qy1y3

x1x3

iy1y2x1x2
|
Q
y1y2
x1x2

∩Q
y1y3
x1x3

22fffffffffffff iy1y3x1x3
|
Q
y1y2
x1x2

∩Q
y1y3
x1x3 // Qy3y1

x3x1
∩Qy3y2

x3x2
.

Since equivalences between different possible fibre products are natural up to
2-isomorphism, there exists a 2-morphism ωy1y2y3

x1x2x3
as shown.

As in §6.6, analogues of Theorems 2.28–2.33 hold in dSpac, though we only
gave analogues of Theorems 2.28 and 2.33. Apply the analogue of Theorem 2.32
with W, (x, y),Qy

x,Q
y1y2
x1x2

, iy1y2
x1x2

, ωy1y2y3
x1x2x3

in place of I, i,Xi,Uij , eij , ηijk, respec-
tively. The quotient topological space Y = (

∐
(x,y)∈W Qyx)/ ∼ in Theorem 2.32

is homeomorphic to W , which is Hausdorff. Hence the first part of Theorem
2.32 gives a d-space with corners W, open d-subspaces Q̂y

x ⊆W, equivalences
kyx : Qy

x → Q̂y
x for (x, y) ∈ W with W =

⋃
(x,y)∈W Q̂y

x, and 2-morphisms

κy1y2
x1x2

: ky2
x2
◦ iy1y2

x1x2
⇒ ky1

x1
|Qy1y2

x1x2
. Then we apply the second part of Theorem

2.32 twice, firstly with X, eyx, ζ
y1y2
x1x2

and secondly with Y,fyx, θ
y1y2
x1x2

in place of
Z, gi, ζij , respectively. This yields 1-morphisms e : W → X and f : W → Y
with 2-morphisms αyx : e ◦ kyx ⇒ eyx and βyx : f ◦ kyx ⇒ fyx.

Using the fact that kyx is an equivalence, one can show that there is a unique
2-morphism η̂yx : g ◦e|Q̂y

x
⇒ h◦f |Q̂y

x
for each (x, y) ∈W such that the following

diagram of 2-morphisms of 1-morphisms Qy
x → Z commutes:

g ◦ e ◦ kyx η̂yx∗idkyx

+3

idg∗αyx��

h ◦ f ◦ kyx
idh∗βyx ��

g ◦ eyx
ηyx +3 h ◦ fyx,

and then the following diagram is 2-Cartesian in dSpac for all (x, y) ∈W :

Q̂y
x f |Q̂yx

//

e|Q̂yx�� � �� �
HP

η̂yx

Syx
h|Syx ��

Ry
x

g|Ryx // Z.

(6.106)
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Let (x1, y1), (x2, y2) ∈ W . Then combining κy1y2
x1x2

: ky2
x2
◦ iy1y2

x1x2
⇒ ky1

x1
|Qy1y2

x1x2

and (6.105) and (6.106) for (x1, y1), (x2, y2) gives a commutative diagram:

g ◦ e ◦ ky1
x1
|Qy1y2

x1x2 η̂y2x2
∗id

k
y1
x1
|Qy1y2x1x2

+3

idg◦e∗(−κy1y2x1x2
)

��

idg∗γy1y2x1x2
∗

id
k
y1
x1
|Qy1y2x1x2

��

h ◦ f ◦ ky1
x1
|Qy1y2

x1x2

idh◦h∗(−κy1y2x1x2
)

��

idh∗δy1y2x1x2
∗

id
k
y1
x1
|Qy1y2x1x2

��

g ◦ e ◦ ky2
x2
◦ iy1y2

x1x2 η̂y2x2
∗id

k
y2
x2
◦iy1y2x1x2

+3

idg∗αy2x2
∗id

i
y1y2
x1x2��

h ◦ f ◦ ky2
x2
◦ iy1y2

x1x2

idh∗βy2x2
∗id

i
y1y2
x1x2 ��

g ◦ ey2
x2
◦ iy1y2

x1x2 ηy2x2
∗id

i
y1y2
x1x2

+3

idg∗ζy1y2x1x2��

h ◦ fy2
x2
◦ iy1y2

x1x2

idh∗θy1y2x1x2 ��
g ◦ ey1

x1
|Qy1y2

x1x2

ηy1x1
|Qy1y2x1x2 +3

idg∗(−αy1x1
|Qy1y2x1x2

)
��

h ◦ fy1
x1
|Qy1y2

x1x2

idh∗(−βy1x1
|Qy1y2x1x2

)
��

g ◦ e ◦ ky1
x1
|Qy1y2

x1x2

η̂y1x1
∗id

k
y1
x1
|Qy1y2x1x2 +3 h ◦ f ◦ ky1

x1
|Qy1y2

x1x2
.

By omitting the ‘g◦’, ‘idg∗’ from the left column and using ky1
x1
|Qy1y2

x1x2
: Qy1y2

x1x2
→

Q̂y1
x1
∩ Q̂y2

x2
an equivalence, we see that there is a unique 2-morphism γy1y2

x1x2
:

e|Q̂y1
x1
∩Q̂

y2
x2
⇒ e|Q̂y1

x1
∩Q̂

y2
x2

making the left hand semicircle commute. Similarly

there is a unique δy1y2
x1x2

: f |Q̂y1
x1
∩Q̂

y2
x2
⇒ f |Q̂y1

x1
∩Q̂

y2
x2

making the right semicircle

commute. Then considering the outer quadrilateral and using ky1
x1
|Qy1y2

x1x2
an

equivalence, we see that the following commutes:

g ◦ e|Q̂y1
x1
∩Q̂

y2
x2 η̂y2x2

|
Q̂
y1
x1
∩Q̂

y2
x2

+3

idg∗γy1y2x1x2��

h ◦ f |Q̂y1
x1
∩Q̂

y2
x2

idh∗δy1y2x1x2 ��
g ◦ e|Q̂y1

x1
∩Q̂

y2
x2

η̂y1x1
|
Q̂
y1
x1
∩Q̂

y2
x2 +3 h ◦ f |Q̂y1

x1
∩Q̂

y2
x2
.

(6.107)

Now
{
Q̂yx : (x, y) ∈ W

}
is an open cover of W , which is a separated, para-

compact, locally fair C∞-scheme. Hence by Proposition B.21 there exists a
partition of unity

{
εyx : (x, y) ∈ W

}
on W subordinate to

{
Q̂yx : (x, y) ∈ W

}
.

Define a morphism η : (g ◦ e)∗(FZ)→ EW in qcoh(W ) by η =
∑

(x,y)∈W εyx · η̂yx.
Since each η̂yx is a local choice of 2-morphism g ◦ e⇒ h ◦ f in dSpac, and the
conditions on 2-morphisms are local, η : g◦e⇒ h◦f is a 2-morphism in dSpac.

Fix (x, y) ∈W . Then we have

η|Q̂yx = η̂yx +
∑

(x,y)6=(x′,y′)∈W εy
′

x′ ·
(
η̂y
′

x′ − η̂yx
)

= η̂yx +
∑

(x,y)6=(x′,y′)∈W εy
′

x′ ·
(
idg ∗ γyy

′

xx′−idh ∗ δyy
′

xx′
)

= η̂yx + idg ∗ γyx − idh ∗ δyx,

(6.108)

using (6.107) in the second step, where

γyx =
∑

(x,y)6=(x′,y′)∈W εy
′

x′ · γyy
′

xx′ and δyx =
∑

(x,y) 6=(x′,y′)∈W εy
′

x′ · δyy
′

xx′ .

As the γyy
′

xx′ , δ
yy′

xx′ are 2-morphisms in dSpac and the conditions on 2-morphisms
are linear, we see that γyx : e|Q̂y

x
⇒ e|Q̂y

x
and δyx : f |Q̂y

x
⇒ f |Q̂y

x
are 2-morphisms
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in dSpac. Since (6.106) is 2-Cartesian, and (6.108) shows that by modifying
e|Q̂y

x
and f |Q̂y

x
by 2-morphisms γyx, δ

y
x we may replace η̂yx in (6.106) by η|Q̂yx , we

see that the following diagram is 2-Cartesian in dSpac for all (x, y) ∈W :

Q̂y
x f |Q̂yx

//

e|Q̂yx�� � �� �
HP

η|Q̂yx

Syx
h|Syx ��

Ry
x

g|Ryx // Z.

(6.109)

We have now constructed W, e,f , η forming a 2-commutative square (6.104),
and we have shown that (6.104) is locally 2-Cartesian, that is, we can cover
W,X,Y with open d-subspaces Q̂y

x,R
y
x,S

y
x such that the restriction (6.109) of

(6.104) is 2-Cartesian. It remains to show that (6.104) is globally 2-Cartesian.
Suppose that W̃ is a d-space with corners, ẽ : W̃ → X and f̃ : W̃ → Y are
1-morphisms and η̃ : g ◦ ẽ⇒ h ◦ f̃ a 2-morphism in dSpac.

For each (x, y) ∈W , define an open d-subspace Q̃y
x ⊆ W̃ by Q̃y

x = ẽ−1(Ry
x)∩

f̃−1(Syx). Then we have 1-morphisms ẽ|Q̃y
x

: Q̃y
x → Ry

x and f̃ |Q̃y
x

: Q̃y
x → Syx

and a 2-morphism η̃|Q̃y
x

: g ◦ ẽ|Q̃y
x
⇒ h ◦ f̃ |Q̃y

x
. As (6.109) is 2-Cartesian, there

exists a 1-morphism b̃yx : Q̃y
x → Q̂y

x and 2-morphisms ζyx : e ◦ b̃yx ⇒ ẽ|Q̃y
x
,

θyx : f ◦ b̃yx ⇒ f̃ |Q̃y
x
, such that the following diagram of 2-morphisms of 1-

morphisms Q̃y
x → Z commutes:

g ◦ e ◦ b̃yx η∗idb̃yx
+3

idg∗ζyx��

h ◦ f ◦ b̃yx
idh∗θyx ��

g ◦ ẽ|Q̃y
x

η̃|Q̃yx +3 h ◦ f̃ |Q̃y
x
.

(6.110)

Let (x1, y1), (x2, y2) ∈W . Then we have a 2-Cartesian diagram in dSpac:

Q̂y1
x1
∩ Q̂y2

x2 f |Q̂y1x1
∩Q̂

y2
x2

//

f |Q̂y1x1
∩Q̂

y2
x2�� � �� �

IQ
η|Q̂y1x1

∩Q̂
y2
x2

Sy1
x1
∩ Sy2

x2

h|
S
y1
x1
∩S
y2
x2 ��

Ry1
x1
∩Ry2

x2

g|
R
y1
x1
∩R

y2
x2 // Z.

(6.111)

Now both b̃y1
x1
|Q̃y1

x1
∩Q̃

y2
x2
, ζy1
x1
|Q̃y1

x1
∩Q̃

y2
x2
, θy1
x1
|Q̃y1

x1
∩Q̃

y2
x2

and b̃y2
x2
|Q̃y1

x1
∩Q̃

y2
x2
, ζy2
x2
|Q̃y1

x1
∩Q̃

y2
x2
,

θy2
x2
|Q̃y1

x1
∩Q̃

y2
x2

satisfy the first universal property of (6.111) in Definition A.7.

Hence by the second universal property, there is a unique λy1y2
x1x2

: b̃y1
x1
|Q̃y1

x1
∩Q̃

y2
x2
⇒

b̃y2
x2
|Q̃y1

x1
∩Q̃

y2
x2
, ζy2
x2
|Q̃y1

x1
∩Q̃

y2
x2

in dSpac satisfying the analogue of (A.5):

ζy1
x1
|Q̃y1

x1
∩Q̃

y2
x2

= ζy2
x2
|Q̃y1

x1
∩Q̃

y2
x2
� (ide ∗ λy1y2

x1x2
),

θy1
x1
|Q̃y1

x1
∩Q̃

y2
x2

= θy2
x2
|Q̃y1

x1
∩Q̃

y2
x2
� (idf ∗ λy1y2

x1x2
).

If (x1, y1), (x2, y2), (x3, y3) ∈W , the uniqueness of λ
yiyj
xixj implies that

λy1y3
x1x3
|Q̃y1

x1
∩Q̃

y2
x2
∩Q̃

y3
x3

= λy1y2
x1x2
|Q̃y1

x1
∩Q̃

y2
x2
∩Q̃

y3
x3

+ λy2y3
x2x3
|Q̃y1

x1
∩Q̃

y2
x2
∩Q̃

y3
x3
. (6.112)
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Using the partition of unity
{
εyx : (x, y) ∈ W

}
above, for each (x, y) ∈ W ,

since the λyy
′

xx′ are 2-morphisms in dSpac and so satisfy (6.9)–(6.10), Proposition
6.9 shows that there is a unique 1-morphism byx : Q̃y

x → Q̂y
x ⊆W in dSpac with

a 2-morphism µyx =
∑

(x,y)6=(x′,y′)∈W εy
′

x′ ·λyy
′

xx′ : b̃yx ⇒ byx. If (x1, y1), (x2, y2) ∈W
we have 2-morphisms

by1
x1
|Q̃y1

x1
∩Q̃

y2
x2

−µy1x1
|
Q̃
y1
x1
∩Q̃

y2
x2 +3 b̃y1

x1
|Q̃y1

x1
∩Q̃

y2
x2

λy1y2x1x2 +3 b̃y2
x2
|Q̃y1

x1
∩Q̃

y2
x2

µy2x2
|
Q̃
y1
x1
∩Q̃

y2
x2 +3 by2

x2
|Q̃y1

x1
∩Q̃

y2
x2
.

From (6.112) we see that µy2
x2
|Q̃y1

x1
∩Q̃

y2
x2

+ λy1y2
x1x2

− µy1
x1
|Q̃y1

x1
∩Q̃

y2
x2

= 0, so that

by1
x1
|Q̃y1

x1
∩Q̃

y2
x2

= by2
x2
|Q̃y1

x1
∩Q̃

y2
x2

. Therefore there is a unique 1-morphism b : W̃ →
W in dSpac with b|Q̃y

x
= byx for all (x, y) ∈W .

By a similar argument using (6.112), there exist unique 2-morphisms ζ :
e ◦ b⇒ ẽ and θ : f ◦ b⇒ f̃ such that for all (x, y) ∈W we have

ζ|Q̃y
x

= ζyx �
(
ide ∗ (−µyx)

)
, θ|Q̃y

x
= θyx �

(
idf ∗ (−µyx)

)
. (6.113)

Now consider the diagram

g ◦ e ◦ b|Q̃y
x η∗idb|

Q̃
y
x

+3

idg◦e∗(−µyx)��
idg∗ζ|Q̃yx

��

h ◦ f ◦ b|Q̃y
x

idh◦f∗(−µyx) ��
idh∗θ|Q̃yx

��

g ◦ e ◦ b̃yx
η∗idb̃yx +3

idg∗ζyx��

h ◦ f ◦ b̃yx
idh∗θyx ��

g ◦ ẽ|Q̃y
x

η̃|Q̃yx +3 h ◦ f̃ |Q̃y
x
.

The top square commutes trivially, the bottom square commutes by (6.110), and
the left and right semicircles commute by (6.113). Hence the outer quadrilateral
commutes. But this is the restriction to Q̃y

x of

g ◦ e ◦ b
η∗idb

+3

idg∗ζ��

h ◦ f ◦ b
idh∗θ ��

g ◦ ẽ
η̃ +3 h ◦ f̃ .

(6.114)

Since the Q̃y
x cover W, equation (6.114) commutes. This proves the first uni-

versal property for (6.104) to be 2-Cartesian in Definition A.7.
For the second universal property, suppose b̃, ζ̃, θ̃ are alternative choices for

b, ζ, θ. Restricting to Q̃y
x, the second universal property for the 2-Cartesian

square (6.109) shows there is a unique 2-morphism ωyx : b̃|Q̃y
x
⇒ b|Q̃y

x
with

ζ̃|Q̃y
x

= ζ|Q̃y
x
� (ide ∗ ωyx), θ̃|Q̃y

x
= θ|Q̃y

x
� (idf ∗ ωyx). (6.115)

If (x1, y1), (x2, y2) ∈ W then as the ωyx are unique we see that ωy1
x1
|Q̃y1

x1
∩Q̃

y2
x2

=

ωy2
x2
|Q̃y1

x1
∩Q̃

y2
x2

. Hence there is a unique 2-morphism ω : b̃ ⇒ b with ω|Q̃y
x

= ωyx
for all (x, y) ∈W , and (6.115) for all (x, y) implies that

ζ̃ = ζ � (ide ∗ ω) and θ̃ = θ � (idf ∗ ω),

as we want. This completes the proof of Theorem 6.42.
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For the local b-transverse fibre products Q = R ×g|R,T,h|S S in dSpac

from §6.8.3, the underlying d-space Q is the fibre product R ×g|R,T ,h|S S in
dSpa. The global b-transverse fibre products of Theorem 6.42 work by gluing
together the local fibre products by equivalences, so they are also locally, and
thus globally, fibre products in dSpa. But from §2.5, fibre products in dSpa
are also fibre products at the level of C∞-schemes. We deduce:

Corollary 6.43. Suppose W = X ×g,Z,h Y is a b-transverse fibre product in
dSpac. Then the d-space W ' X ×g,Z,h Y is also a fibre product in dSpa,
and the C∞-scheme W ∼= X ×g,Z,h Y is a fibre product in C∞Sch.

As in Example 2.40 for d-spaces, products of d-spaces with corners X ×Y
are a useful special case of fibre products X×Z Y with Z = ∗, the point.

Example 6.44. Let X and Y be d-spaces with corners. The product X ×Y
is the fibre product X×g,∗,h Y in dSpac, where Z = ∗ is the point, a terminal
object in dSpac, and g : X → ∗, h : Y → ∗ are the unique 1-morphisms. As
∂∗ = ∅, g,h are always b-transverse by Lemma 6.35(ii), so all products X×Y
exist in dSpac by Theorem 6.42. They come with projection 1-morphisms
πX : X×Y → X, πY : X×Y → Y, and satisfy universal properties in dSpac.

Defining X ×Y as a fibre product only determines it up to equivalence in
dSpac. There is a canonical representative for this equivalence class, given by

X×Y =
(
X × Y , (∂X × Y )q (X × ∂Y ), (iX × idY )q (idX × iY), ωX×Y

)
,

where X × Y ,∂X × Y ,X × ∂Y are explicit d-space products from Example
2.40, and iX × idY , idX × iY are the product 1-morphisms. The projection
πX : X×Y → X has SπX

∼= ∂X×Y and TπX
= ∅, and sπX

: SπX
→ ∂(X × Y )

is the inclusion ∂X × Y ↪→ (∂X × Y )q (X × ∂Y ). Therefore πX : X×Y → X
is semisimple and flat, and is simple if ∂Y = ∅.

The universal properties of products imply the existence of two kinds of
product 1-morphisms. Firstly, if f : W → Y and g : X→ Z are 1-morphisms,
there is a product 1-morphism f × g : W ×X→ Y × Z. Using expressions for
how f ×g acts on boundaries, one can show that if f , g are simple, semisimple,
or flat, then f × g is also simple, semisimple, or flat, respectively.

Secondly, if f : X → Y and g : X → Z are 1-morphisms, there is a direct
product 1-morphism (f , g) : X → Y × Z. If f , g are flat then (f , g) is flat.
However, f , g simple or semisimple do not imply (f , g) simple or semisimple.
For example, if f = g = id[0,∞) : [0,∞) → [0,∞) then f , g are simple but
(f , g) is not semisimple.

6.8.5 Transverse fibre products of manifolds with corners

Here is an analogue of Theorem 2.42(a) for manifolds and d-spaces with corners.

Theorem 6.45. The 2-functor FdSpac

Manc takes transverse fibre products in Manc
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to b-transverse fibre products in dSpac. That is, if

W
f

//
e��

Y
h ��

X
g // Z

(6.116)

is a Cartesian square in Manc with g, h transverse, and W,X,Y,Z, e,f , g,
h = FdSpac

Manc (W,X, Y, Z, e, f, g, h), then

W
f

//
e�� � �� �

HP
idg◦e

Y
h ��

X
g // Z

(6.117)

is 2-Cartesian in dSpac, with g,h b-transverse. If also g, h are strongly trans-
verse in Manc, then g,h are c-transverse in dSpac.

Proof. Let g : X → Z and h : Y → Z be transverse smooth maps in Manc in
the sense of §5.6, and write X,Y,Z, g,h = FdSpac

Manc (X,Y, Z, g, h). We first prove
g,h are b-transverse. Let x ∈ X and y ∈ Y with g(x) = h(y) = z. Then as g, h
are transverse dg|x ⊕ dh|y : TxX ⊕ TyY → TzZ is surjective, and dually,

dg|∗x ⊕ dh|∗y : T ∗z Z −→ T ∗xX ⊕ T ∗y Y (6.118)

is an injective linear map.
Write νZ → ∂Z for the normal line bundle of ∂Z in Z, and ν∗Z for its dual.

Then for each z′ ∈ ∂Z with iZ(z′) = z, ν∗Z |z′ ⊆ T ∗z Z, and the restriction of dg|∗x
to ν∗Z |z′ is the map λg|(x′,z′) : ν∗Z |z′ → ν∗X |x′ if x′ ∈ i−1

X (x) with (x′, z′) ∈ Sg,
where x′ is unique, and dg|∗x is zero on ν∗Z |z′ if there is no such x′. Taking the
sum over all z′ ∈ i−1

Z (z), and doing the same for h, we see that(
dg|∗x ⊕ dh|∗y

)∣∣⊕
z′∈i−1

Z
(z)
ν∗Z |z′

=
⊕

(x′,z′)∈Sg:iX(x′)=x

λg|(x′,z′) ⊕
⊕

(y′,z′)∈Sh:iY (y′)=y

λh|(y′,z′) :

⊕
z′∈i−1

Z (z)

ν∗Z |z′ −→
⊕

x′∈i−1
X (x)

ν∗X |x′ ⊕
⊕

y′∈i−1
Y (y)

ν∗Y |y′ . (6.119)

As (6.118) is injective, (6.119) is injective. But (6.81) for g,h is the lift to
C∞-schemes of (6.119), so (6.81) is injective, and g,h are b-transverse.

As g, h are transverse a fibre product W = X ×g,Z,h Y exists in Manc by
Theorem 5.21, with projections e : W → X, f : W → Y . Since g,h are b-
transverse a fibre product W̃ = X×g,Z,h Y exists in dSpac by Theorem 6.42,

with projections ẽ : W̃→ X, f̃ : W̃→ Y, and a 2-morphism η̃ : g ◦ ẽ⇒ h ◦ f̃ .
As (6.117) is 2-commutative, properties of fibre products give a 1-morphism
b : W→ W̃ and 2-morphisms ζ : ẽ ◦ b⇒ e, θ : f̃ ◦ b⇒ f in dSpac.

Since the d-space W̃ in W̃ is a fibre product X ×g,Z,h Y in dSpa by

Corollary 6.43, the proof of Theorem 2.42(a) implies that b : W → W̃ is
an equivalence in dSpa. Comparing the constructions of ∂W in the proof of
Theorem 5.21 in [55, §8], and of ∂W̃ in §6.8.3–§6.8.4, we find there is a natural
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1-1 correspondence between ∂W and ∂W̃ on the level of sets, and using this we
can show that b is simple and flat. Therefore b is an equivalence in dSpac by
Proposition 6.21. Hence (6.117) is 2-Cartesian in dSpac.

Finally we show that if g, h are strongly transverse in the sense of §5.6, then
g,h are c-transverse. Definition 6.33(a) for g,h follows immediately from strong
transversality in Definition 5.25 for g, h. For (b), suppose equation (6.83) holds.
As for (6.119), we find that(

dg|∗x⊕dh|∗y
)∣∣⊕l

i=1 ν
∗
Z |z′i

:
⊕l

i=1
ν∗Z |z′i −→

⊕j

i=1
ν∗X |x′i ⊕

⊕k

i=1
ν∗Y |y′i . (6.120)

As (6.118) is injective, (6.120) is injective. But (6.120) is a linear map Rl →
Rj+k, so j+k > l, and Definition 6.33(b) holds. Hence g,h are c-transverse.

6.8.6 Examples of non-b-transverse fibre products in dSpac

If g : X → Z and h : Y → Z are 1-morphisms in dSpac which are not b-
transverse, then a fibre product X×g,Z,hY may or may not exist in dSpac, as
the following two examples show.

Example 6.46. Let X = Y = ∗, the point in Manc, and Z = [0,∞), and
g : X → Z, h : Y → Z map ∗ 7→ 0. Then g, h are not transverse in Manc.
Define W = ∗ and e = id∗ : W → X, f = id∗ : W → Y . Since X,Y are
terminal objects ∗ in Manc, it easily follows that W = X ×g,Z,h Y is a fibre
product in Manc. Note that dimW = 0 6= −1 = dimX + dimY − dimZ,
whereas for transverse fibre products W = X ×g,Z,h Y in Manc we always
have dimW = dimX + dimY − dimZ.

Set W,X,Y,Z, e,f , g,h = FdSpac

Manc (W,X, Y, Z, e, f, g, h). Then g,h are not
b-transverse in dSpac. However, one can show that (6.117) is 2-Cartesian in
dSpac, so that the fibre product W = X ×g,Z,h Y exists in dSpac. To prove
this, we verify directly that (6.117) satisfies the universal properties in §A.4.

The important point in the proof is this: suppose W̃ is a d-space with
corners, ẽ : W̃ → X and f̃ : W̃ → Y are 1-morphisms and η̃ : g ◦ ẽ ⇒ h ◦ f̃
a 2-morphism in dSpac. As X = Y = ∗, the only possibility for ẽ, f̃ is the
unique projection π : ẽ : W̃ → ∗. Then g ◦ ẽ = h ◦ f̃ = 0 ◦ π : W̃ → [0,∞).
It follows that T g◦ẽ = W̃ ×[0,∞) 0 ∼= W̃. Equation (6.10) for η̃ on T g◦ẽ then

implies that η̃ = 0 = idg◦ẽ. So b = π : W̃ → ∗ = W and ζ = 0 : e ◦ b ⇒ ẽ,
θ = 0 : f ◦ b⇒ f̃ make (6.114) commute.

Example 6.46 has several interesting features. Firstly, FdSpac

Manc takes the
fibre product in Manc to the fibre product in dSpac, although they are not
(b-)transverse, so Theorem 6.45 does not apply. Thus the analogue of Theorem
2.42(b) is false in the corners case.

Secondly, in the fibre product W = X×g,Z,h Y, the underlying d-spaces do
not satisfy W 'X ×g,Z,h Y , since the fibre product ∗×[0,∞) ∗ in dSpa is the
‘obstructed point’ of Example 2.38 rather than the point ∗. Hence the analogue
of Corollary 6.43 is false for non b-transverse fibre products.
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Thirdly, in the language of Chapter 7, W,X,Y,Z are d-manifolds with
corners, and vdim W = vdim X = vdim Y = 0, vdim Z = 1, so that vdim W 6=
vdim X + vdim Y − vdim Z. So although the non bd-transverse fibre product
X×g,Z,h Y exists in dManc, it does not have the expected dimension.

Example 6.47. Let X = Y = [0,∞) × R and Z = [0,∞)2 × R, and define
g : X → Z and h : Y → Z by g(u, v) = (u, u, v) and h(u, v) = (u, evu, v).
Then X,Y, Z are manifolds with corners and g, h are smooth, but they are not
transverse, since TzZ 6= dg|x(TxX) + dh|y(TyY ) at x = (0, 0) ∈ X, y = (0, 0) ∈
Y and z = (0, 0, 0) ∈ Z. No fibre product X ×g,Z,h Y exists in Manc, as such
a fibre product could not be a manifold over (0, 0) ∈ X and (0, 0) ∈ Y .

Set X,Y,Z, g,h = FdSpac

Manc (X,Y, Z, g, h). For v ∈ R, consider the points
x = (0, v) ∈ X, y = (0, v) ∈ Y and z = (0, 0, v) ∈ Z. We have g(x) = h(y) = z,
and i−1

X (x), i−1
X (y) are each one points, and i−1

Z (z) is two points. Equation (6.81)
is the map R2 → R2 with matrix

(
1 1
1 ev

)
. This is invertible when v 6= 0. Thus

(6.81) is injective when v 6= 0, but not injective when v = 0. Hence g,h are not
b-transverse, as (6.81) is not injective at x = y = (0, 0) and z = (0, 0, 0).

We will prove that no fibre product X ×g,Z,h Y exists in dSpac. Suppose
for a contradiction that W, e,f , η are such a fibre product, in a 2-Cartesian
diagram (6.104). Define W1 = [0,∞) and smooth maps e1 : W1 → X, f1 :
W1 → Y by e1(u) = f1(u) = (u, 0). Then g ◦ e1 = h ◦ f1. Set W1, e1,f1 =

FdSpac

Manc (W1, e1, f1). Then g ◦ e1 = h ◦ f1, so idg◦e1 : g ◦ e1 ⇒ h ◦ f1 is
a 2-morphism in dSpac. The universal property of fibre products gives a 1-
morphism b1 : W1 →W and 2-morphisms ζ1 : e ◦ b1 ⇒ e1, θ1 : f ◦ b1 ⇒ f1.

Identify ∂X = R, with iX : ∂X → X mapping v 7→ (0, v). Then (X,u)
is a boundary defining function for X at any v ∈ ∂X. Hence (X,u) is a
boundary defining function for X at any v ∈ ∂X by Lemma 6.17(a). The
points w = b1(0) ∈ W and x′ = 0 ∈ ∂X satisfy e(w) = e ◦ b1(0) = e1(0) =
(0, 0) = iX(0) = iX(x′). So as e : W → X is a 1-morphism in dSpac, one of
Definition 6.2(i),(ii) holds for e at w ∈ W and x′ ∈ ∂X. But if (ii) held, this
would force (ii) to hold for e◦b1 at 0 ∈W1 and 0 ∈ ∂X, and so (ii) would hold
for e1 at 0 ∈ W1 and 0 ∈ ∂X, a contradiction. Thus Definition 6.2(i) holds
for e at w ∈ W and x′ ∈ ∂X. So there exists a unique w′ ∈ i−1

W (w) and an
open neighbourhood V of w in W such that

(
V ,u◦e|V

)
is a boundary defining

function for W at w′. By Definition 6.1, there is an open neighbourhood U of
w′ in ∂W in a 2-Cartesian square in dSpa:

U π
//

iW|U�� � �� �
HP

id0◦π

∗
0 ��

V
u◦e|V // [0,∞).

(6.121)

The same argument gives a unique w′′ ∈ i−1
W (w) and open w ∈ V̂ ⊆ W

such that
(
V̂ ,u ◦ f |V̂

)
is a boundary defining function for W at w′′. Write

(t, u, v) for the coordinates on Z, and let z′ ∈ i−1
Z (0, 0, 0) be the boundary point

corresponding to the local boundary component t = 0 of Z. Since u = t ◦ g on
X and u = t ◦ h on Y , we have u ◦ e = t ◦ g ◦ e and u ◦ f = t ◦ h ◦ f . As
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g ◦ e and h ◦ f are 2-isomorphic,
(
V , t ◦ g ◦ e|V

)
and

(
V̂ , t ◦ h ◦ f |V̂

)
must be

boundary defining functions for the same point in i−1
W (w). Therefore w′ = w′′.

Making U ,V , Ṽ smaller we can take V̂ = V , and suppose (6.121) with u◦f |V
in place of u ◦ e|V is also 2-Cartesian, with the same U .

Define W2 = R and smooth maps e2 : W2 → X, f2 : W2 → Y by e2(v) =

f2(v) = (0, v). Then g ◦ e2 = h ◦ f2. Set W2, e2,f2 = FdSpac

Manc (W2, e2, f2).
Then g ◦ e2 = h ◦ f2, so as above we get a 1-morphism b2 : W2 → W and
2-morphisms ζ2 : e◦b2 ⇒ e2, θ2 : f ◦b2 ⇒ f2. By considering the maps ∗ →W1

and ∗ → W2 mapping ∗ 7→ 0 we can show that b1(0) = b2(0) = w ∈ W. As
V is an open neighbourhood of w = b2(0) in W, W3 = b−1

2 (V ) is an open
neighbourhood of 0 in W2. Then b2|W3 : W3 → V , and we have a 2-morphism
idu ∗ θ2|W3

: u ◦ e|V ◦ b2|W3
⇒ u ◦ e2 = 0 ◦π, since u ◦ e2 = 0. Since (6.121) is

2-Cartesian in dSpa, there exists a 1-morphism b3 : W3 → U and 2-morphism
iW ◦ b3 ⇒ b2|W3

in dSpa.
Now as

(
V ,u ◦e|V

)
and

(
V ,u ◦f |V

)
are both boundary defining functions

for W at w′, they are also boundary defining functions for W at any w̃′ ∈ ∂W
sufficiently close to w′. Thus, if 0 6= v ∈W2 is close to zero then v ∈ b−1

2 (V ), so
w̃′ = b3(v) lies in ∂W , and

(
V ,u ◦ e|V

)
and

(
V ,u ◦ f |V

)
are both boundary

defining functions for W at w̃′. Write i−1
X (0, v) = {x̃′}, i−1

Y (0, v) = {ỹ′} and
i−1
Z (0, 0, v) = {z̃′1, z̃′2}, where z̃′1, z̃

′
2 correspond to the boundary components

t = 0 and u = 0 respectively. Then
(
V ,u ◦ e|V

)
a boundary defining function

for W at w̃′ implies that (w̃′, x̃′) ∈ Se, and similarly (w̃′, ỹ′) ∈ Sf .
As for (6.81), consider the diagram of linear maps

R ∼= NZ|z̃′1 λg|(x̃′,z̃′1)=1
//

λh|(ỹ′,z̃′1)=1

**UUUUUUUUUUUUUUUUUUUUU
R ∼= NX|x̃′ λe|(w̃′,x̃′)

++WWWWWWWWWW

NW|w̃′ .

R ∼= NZ|z̃′2
λh|(ỹ′,z̃′2)=e

v

//

λg|(x̃′,z̃′2)=1

44iiiiiiiiiiiiiiiiiiiii
R ∼= NY|ỹ′

λf |(w̃′,ỹ′)

33gggggggggg

(6.122)

Here the identifications R ∼= NX|x̃′ , R ∼= NY|ỹ′ , R ∼= NZ|z̃′j come from

T0[0,∞) ∼= R, and λe, . . . , λh are as in Proposition 6.7(d). The equations
λg|(x̃′,z̃′1) = 1, . . . , λh|(ỹ′,z̃′2) = ev, mean that λg|(x̃′,z̃′1) : R → R and λh|(ỹ′,z̃′2) :
R→ R act by multiplication by 1, ev, and the values 1, 1, 1, ev are the appropri-
ate components of dg∗|(0,v) and dh∗|(0,v).

Since η : g◦e⇒ h◦f is a 2-morphism, Proposition 6.8(a) gives λg◦e = λh◦f .
Hence for j = 1, 2 we have

λe|(w̃′,x̃′) ◦ λg|(x̃′,z̃′j) = λg◦e|(x̃′,z̃′j) = λh◦f |(x̃′,z̃′j) = λf |(w̃′,ỹ′) ◦ λh|(ỹ′,z̃′j).

Making the substitutions in (6.122), this reduces to the two equations

λe|(w̃′,x̃′) = λf |(w̃′,ỹ′) and λe|(w̃′,x̃′) = ev · λf |(w̃′,ỹ′).

As v 6= 0 and λe, λf are isomorphisms, this is a contradiction. Therefore no
fibre product X×g,Z,h Y exists in dSpac. This completes Example 6.47.
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Remark 6.48. In Example 6.46, the key point in determining the fibre product
X ×Z Y was that 2-morphisms in dSpac satisfy equation (6.10). Similarly, in
Example 6.47 the key point in showing no fibre product X×Z Y exists was that
η : g ◦ e⇒ h ◦ f implies that λg◦e = λh◦f , and this holds as 2-morphisms η in
dSpac satisfy equation (6.9).

If we omit (6.9)–(6.10) from the definition of 2-morphisms, as in the alternate

2-category dS̃pac of Remark 6.5, then Examples 6.46 and 6.47 work out rather

differently. In Example 6.46, the fibre product in dS̃pac is the ‘obstructed
point’ of Example 2.38, rather than the point ∗. In Example 6.47, a fibre

product X×Z Y does exist in dS̃pac. The proof by contradiction fails because

η : g ◦ e⇒ h ◦ f does not imply λg◦e = λh◦f in dS̃pac.
If g : X→ Z and h : Y → Z are c-transverse, then fibre products X×g,Z,h

Y in dSpac and dS̃pac agree. However, if g,h are b-transverse but not c-

transverse then fibre products X ×g,Z,h Y in dSpac and dS̃pac are different.

This is because each type (C) component Γ̂ in Proposition 6.37 contributes

a point to ∂(X ×Z Y) in dS̃pac, but no point in dSpac. This implies that

Theorem 6.45 fails in dS̃pac for g,h b-transverse but not c-transverse.

6.9 Boundary and corners of c-transverse fibre products

In §5.6 we saw that if g : X → Z and h : Y → Z are strongly transverse in Manc

and W = X ×g,Z,h Y then C(g) : C(X) → C(Z) and C(h) : C(Y ) → C(Z)
are transverse in M̌anc, and C(W ) ∼= C(X) ×C(g),C(Z),C(h) C(Y ). The same

also applies for the second corner functor Ĉ : Manc → M̌anc in (5.8). We now
prove analogues of all this for c-transverse g,h in dSpac.

Proposition 6.49. Let g : X→ Z and h : Y → Z be c-transverse 1-morphisms
in dSpac, and use the notation of §6.7. Then C(g) : C(X) → C(Z) and
C(h) : C(Y) → C(Z) are c-transverse, and Ĉ(g) : C(X) → C(Z) and Ĉ(h) :
C(Y)→ C(Z) are c-transverse.

Proof. We first describe the underlying set C(C(X)) of C(C(X)). As in §6.7
we have Ck(X) ∼= ∂kX/Sk. Hence

Ck1

(
Ck2(X)

) ∼= ∂k1
(
∂k2X/Sk2

)
/Sk1

∼= ∂k1+k2X/(Sk1 × Sk2).

Here as in (6.67) we may describe points of ∂k1+k2X as (x, x′1, . . . , x
′
k1+k2

)

for x ∈ X and distinct x′1, . . . , x
′
k1+k2

∈ i−1
X (x) ⊆ ∂X, and then Sk1 acts

on (x, x′1, . . . , x
′
k1+k2

) by permuting x′1, . . . , x
′
k1

and fixing x, x′k1+1, . . . , x
′
k1+k2

,
and Sk2

acts on (x, x′1, . . . , x
′
k1+k2

) by permuting x′k1+1, . . . , x
′
k1+k2

and fixing
x, x′1, . . . , x

′
k1

. Therefore as for (6.69)–(6.70), we have natural homeomorphisms

Ck1

(
Ck2(X)

) ∼= {(x, {x′1, . . . , x′k1
}, {x′k1+1, . . . , x

′
k1+k2

}) : x ∈X,

x′1, . . . , x
′
k1+k2

∈ ∂X are distinct, iX(x′a) = x, a = 1, . . . , k1 + k2

}
.

(6.123)

In the representation (6.123) for X,Z, we find C(C(g)) acts by C(C(g)) :
(x, {x′1, . . . , x′j1}, {x

′
j1+1, . . . , x

′
j1+j2

}) 7−→ (z, {z′1, . . . , z′l1}, {z
′
l1+1, . . . , z

′
l1+l2
})
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when C(g) : (x, {x′1, . . . , x′j1}) 7→ (z, {z′1, . . . , z′l1}) and C(g) : (x, {x′j1+1, . . . ,

x′j1+j2
}) 7→ (z, {z′l1+1, . . . , z

′
l1+l2
}). Suppose C(C(g))

(
(x, {x′1, . . . , x′j1}, {x

′
j1+1,

. . . , x′j1+j2
})
)

= C(C(h))
(
(y, {y′1, . . . , y′k1

}, {y′k1+1, . . . , y
′
k1+k2

})
)

= (z, {z′1, . . . ,
z′l1}, {z

′
l1+1, . . . , z

′
l1+l2
}). Then C(g)

(
(x, {x′1, . . . , x′j1})

)
= C(h)

(
(y, {y′1, . . . ,

y′k1
})
)

= (z, {z′1, . . . , z′l1}), so as g,h are c-transverse either j1 + k1 > l1 or
j1 = k1 = l1 = 0. This proves C(g), C(h) satisfy Definition 6.33(a). Similar
proofs show that C(g), C(h) satisfy Definition 6.33(b), so that C(g), C(h) are
c-transverse, and that Ĉ(g), Ĉ(h) are c-transverse.

Here is an analogue of Theorem 5.26 for the corner functors C, Ĉ in dSpac.

Theorem 6.50. Suppose we are given a 2-Cartesian diagram in dSpac:

W
f

//
e�� � �� �

FN
η

Y
h ��

X
g // Z,

with g,h c-transverse. Then the following are also 2-Cartesian in dSpac :

C(W)
C(f)

//

C(e)�� � �� �
HP

C(η)

C(Y)
C(h) ��

C(X)
C(g) // C(Z),

(6.124)

C(W)
Ĉ(f)

//

Ĉ(e)�� � �� �
HP

Ĉ(η)

C(Y)

Ĉ(h) ��
C(X)

Ĉ(g) // C(Z).

(6.125)

Let (w,P ) ∈ C(W) with C(e)
(
(w,P )

)
= (x,Q) ∈ C(X), C(f)

(
(w,P )

)
=

(y,R) ∈ C(Y), and C(g)
(
(x,Q)

)
= C(h)

(
(y,R)

)
= (z, S) ∈ C(Z). Then

|P |+ |S| = |Q|+ |R|. Therefore (6.124) implies equivalences in dSpac :

Ci(W) '
∐

j,k,l>0:i=j+k−l

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y), (6.126)

∂W '
∐

j,k,l>0:j+k=l+1

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y). (6.127)

Similarly, if (w, P̂ ) ∈ C(W), Ĉ(e)
(
(w, P̂ )

)
= (x, Q̂) ∈ C(X), Ĉ(f)

(
(w, P̂ )

)
= (y, R̂) ∈ C(Y), and Ĉ(g)

(
(x, Q̂)

)
= Ĉ(h)

(
(y, R̂)

)
= (z, Ŝ) ∈ C(Z), then

|P̂ |+ |Ŝ| = |Q̂|+ |R̂|, and we have equivalences in dSpac :

Ci(W) '
∐

j,k,l>0:i=j+k−l

Ĉg,lj (X)×Ĉlj(g),Cl(Z),Ĉlk(h) Ĉ
h,l
k (Y). (6.128)

Proof. By Proposition 6.49 C(g), C(h) are c-transverse, so by Theorem 6.42 a
fibre product C(X) ×C(g),C(Z),C(h) C(Y) exists in dSpac, which we write as

372



C ′(W), with projections C ′(e) : C ′(W)→ C(X) and C ′(f) : C ′(W)→ C(Y),
and a 2-morphism C ′(η) : C(g) ◦ C ′(e) ⇒ C(h) ◦ C ′(f). As (6.124) is 2-
commutative, the universal property of this fibre product gives a 1-morphism
b : C(W)→ C ′(W) and 2-morphisms ζ : C ′(e)◦b⇒ C(e), θ : C ′(f)◦b⇒ C(f).

Similarly, Ĉ(g), Ĉ(h) are c-transverse, so Ĉ ′(W) = C(X) ×Ĉ(g),C(Z),Ĉ(h)

C(Y) exists in dSpac with 1-morphisms Ĉ ′(e) : Ĉ ′(W) → C(X), Ĉ ′(f) :
Ĉ ′(W)→ C(Y), b̂ : C(W)→ Ĉ ′(W) and 2-morphisms Ĉ ′(η) : Ĉ(g) ◦ Ĉ ′(e)⇒
Ĉ(h)◦ Ĉ ′(f), ζ̂ : Ĉ ′(e)◦ b̂⇒ Ĉ(e), θ̂ : Ĉ ′(f)◦ b̂⇒ Ĉ(f). To show that (6.124)–
(6.125) are 2-Cartesian, we must prove that b, b̂ are equivalences in dSpac.

By Corollary 6.43, as C(g), C(h) are c-transverse the d-space C′(W ) in
C ′(W) is a fibre product C(X)×C(Z) C(Y ) in dSpa, and so by §2.5 is also
a fibre product on the level of sets, C ′(W ) ∼= C(X)×C(Z) C(Y ). We will prove
that on points (6.124) induces a Cartesian square in Sets, so that C(W ) ∼=
C(X) ×C(Z) C(Y ). This will imply that b : C(W ) → C ′(W ) is a bijection, so
b is a bijection on points. It is enough to check this on the fibres over each
w ∈ W , since W ∼= X ×Z Y is Cartesian in Sets by the same argument. That
is, for each w ∈W with e(w) = x ∈ X, f(w) = y ∈ Y and g(x) = h(y) = z ∈ Z,
we must prove that the commutative diagram{

(w,P ) : P ⊆ i−1
W (w)

}
C(f)|

Π
−1
W

(w)

//

C(e)|
Π
−1
W

(w)��

{
(y,R) : R ⊆ i−1

Y (y)
}

C(h)|
Π
−1
Y

(y) ��{
(x,Q) : Q ⊆ i−1

X (x)
} C(g)|

Π
−1
X

(x)
//
{

(z, S) : S ⊆ i−1
Z (z)

} (6.129)

is Cartesian in Sets.
Consider the graph Γx,y of Definition 6.36. As g,h are c-transverse, by

Proposition 6.38, every connected component Γ̂ of Γx,y is of type (A) or (B) in
Proposition 6.37. The construction of c-transverse fibre products in §6.8.3–§6.8.4
implies that there is a 1-1 correspondence w′ between points of i−1

W (w) and type

(A) components Γ̂ of Γx,y. We can also describe the maps in (6.129) in terms
of Γx,y. If P ⊆ i−1

W (w) then C(e) : (w,P ) 7→ (x,Q) and C(f) : (w,P ) 7→ (y,R),

where Q,R are the sets of vertices x′, y′ respectively in type (A) components Γ̂
corresponding to w′ ∈ P . If Q ⊆ i−1

X (x) then C(g) : (x,Q) 7→ (z, S), where S

is the set of z′ lying on edges
x′• − z′• in Γx,y for x′ ∈ Q. If R ⊆ i−1

Y (y) then

C(h) : (y,R) 7→ (z, S), with S the set of z′ lying on
y′

• − z′• for y′ ∈ R.
Using this graph description, it is easy to see that (6.129) is Cartesian in sets,

and therefore b : C(W)→ C ′(W) is a bijection on points. A similar argument
shows that the analogue of (6.129) for Ĉ is Cartesian, and so b̂ : C(W)→ Ĉ ′(W)
is a bijection on points. In this case, if P̂ ⊆ i−1

W (w) then Ĉ(e) : (w, P̂ ) 7→ (x, Q̂)

and Ĉ(f) : (w, P̂ ) 7→ (y, R̂), where Q̂, R̂ are the sets of vertices x′, y′ in type (A)
Γ̂ corresponding to w′ ∈ P , plus those x′, y′ in any type (B) Γ̂. If Q̂ ⊆ i−1

X (x)

then Ĉ(g) : (x, Q̂) 7→ (z, Ŝ), with Ŝ the set of z′ lying on
x′• − z′• for x′ ∈ Q̂,

plus those z′ not on any
x′′• − z′• , and Ĉ(h) is similar.

By the same kind of method, and using ideas in the proof of Proposition
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6.49, we can show that C(b) : C(C(W))→ C(C ′(W)) and C(b̂) : C(C(W))→
C(Ĉ ′(W)) are bijections on points. It follows that b, b̂ are simple and flat.

We can also use these ideas to prove |P |+|S| = |Q|+|R| and |P̂ |+|Ŝ| = |Q̂|+
|R̂| in the second and third paragraphs of the theorem. Suppose C(e)

(
(w,P )

)
=

(x,Q), C(f)
(
(w,P )

)
= (y,R), and C(g)

(
(x,Q)

)
= C(h)

(
(y,R)

)
= (z, S).

Then Q,R, S are the sets of vertices x′, y′, z′ respectively in type (A) com-
ponents Γ̂ in Γx,y corresponding to w′ ∈ P . By Proposition 6.37(A), any such

Γ̂ has j, k, l vertices of type x′, y′, z′ respectively, where 1 + l = j+ k. Summing
1 + l = j + k over all Γ̂ corresponding to w′ ∈ P gives |P |+ |S| = |Q|+ |R|.

Similarly, suppose Ĉ(e)
(
(w, P̂ )

)
= (x, Q̂), Ĉ(f)

(
(w, P̂ )

)
= (y, R̂), and Ĉ(g)(

(x, Q̂)
)

= Ĉ(h)
(
(y, R̂)

)
= (z, Ŝ). Then Q̂, R̂, Ŝ are the sets of vertices x′, y′, z′

respectively in type (A) components Γ̂ corresponding to w′ ∈ P̂ , plus those in
all type (B) components Γ̂. By Proposition 6.37(B), any type (B) component Γ̂
has j, k, l vertices of type x′, y′, z′, where 0 + l = j + k. Summing 1 + l = j + k
over type (A) Γ̂ corresponding to w′ ∈ P̂ , and summing 0 + l = j + k over all
type (B) Γ̂, gives |P̂ |+ |Ŝ| = |Q̂|+ |R̂|.

Next we prove that b : C(W ) → C′(W ) and b̂ : C(W ) → Ĉ′(W ) are
étale 1-morphisms in dSpa. This is a local condition, so it is enough to prove
it for the explicit local fibre products of §6.8.3. Work in the situation of §6.8.3,
supposing in addition that g,h are c-transverse so that there are no type (C)
components Γ̂ in Γx,y. Then x ∈ R ⊆ X, y ∈ S ⊆ Y, z ∈ T ⊆ Z, and
we construct an explicit fibre product Q = R ×T S in dSpac. By definition
i−1
Q (w) = I q J for subsets I ⊆ i−1

X (x) and J ⊆ i−1
X (y). Let A ⊆ I q J , so

that (w,A) ∈ Ci(Q) for i = |A|, and let C(e)
(
(w,A)

)
= (x,B) ∈ Cj(R) for

j = |B|, C(f)
(
(w,A)

)
= (y, C) ∈ Ck(S) for k = |C|, and C(g)

(
(x,B)

)
=

C(g)
(
(y, C)

)
= (z,D) ∈ Cl(T) for l = |D|, so that B ⊆ i−1

X (x), C ⊆ i−1
Y (y)

and D ⊆ i−1
Z (z). Write A = AI q AJ where AI = A ∩ I and AJ = A ∩ J .

Then B,C,D are the sets of vertices x′, y′, z′ in type (A) components Γ̂ of Γx,y
containing a vertex x′ or y′ in A, and AI ⊆ B, AJ ⊆ C.

Define open neighbourhoods (w,A) ∈ M ⊆ Ci(Q), (x,B) ∈ N ⊆ Cj(R),
(y, C) ∈ O ⊆ Ck(S) and (z,D) ∈ P ⊆ Cl(T) to have open sets

M =
{(

(x̃, ỹ), {(x̃′a, ỹ) : a ∈ AI} q {(x̃, ỹ′a) : a ∈ AJ}
)

: (x̃, ỹ) ∈ Q,

x̃′a ∈ i
−1
X (x̃) ∩Ba, a ∈ AI , ỹ′a ∈ i

−1
Y (ỹ) ∩Ca, a ∈ AJ

}
,

N =
{

(x̃, {x̃′b : b ∈ B}) : x̃ ∈ R, x̃′b ∈ i
−1
X (x̃) ∩Bb, b ∈ B

}
,

O =
{

(ỹ, {ỹ′b : c ∈ C}) : ỹ ∈ S, ỹ′c ∈ i
−1
Y (ỹ) ∩Cc, c ∈ C

}
,

P =
{

(z̃, {z̃′b : d ∈ D}) : z̃ ∈ T, z̃′d ∈ i
−1
Z (z̃) ∩Dd, d ∈ D

}
.
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As for (6.72), the d-spaces M ,N ,O,P fit into 2-Cartesian squares in dSpa:

M π
//

Πi
W|M�� � �� �

GO
id0◦π

∗
0 ��

N π
//

Πj
X|N�� � �� �

GO
id0◦π

∗
0 ��

Q ∏
a∈AI

ra◦e×
∏

a∈AJ
sa◦f

// [0,∞)i, R ∏
b∈B rb

// [0,∞)j ,

O π
//

Πk
Y|O�� � �� �

GO
id0◦π

∗
0 ��

P π
//

Πl
Z|P�� � �� �

GO
id0◦π

∗
0 ��

S ∏
c∈C sc

// [0,∞)k, T ∏
d∈D td

// [0,∞)l.

Therefore b|M maps M →N ×P O, where

M '
(
R×T S

)
×∏

a∈AI
ra◦πR×

∏
a∈AJ

sa◦πS ,[0,∞)i,0 ∗

'
(
R× ∏

a∈AI
ra,[0,∞)|AI |,0 ∗

)
×T

(
S × ∏

a∈AJ
sa,[0,∞)|AJ |,0 ∗

)
, (6.130)

N ×P O '
(
R×∏

b∈B
rb,[0,∞)j ,0 ∗

)
×T× ∏

d∈D
td,[0,∞)l,0

∗
(
S ×∏

c∈C
sc,[0,∞)k,0 ∗

)
'
(
R× ∏

a∈AI
ra,[0,∞)|AI |,0 ∗

)
×T

(
S × ∏

a∈AJ
sa,[0,∞)|AJ |,0 ∗

)
. (6.131)

Here in the first step of (6.130) we identify Q, e,f with R ×T S,πR,πS , and
in the second we transfer the fibre products by ra ◦ πR onto R, and the fibre
products by sa ◦ πS onto S.

In the second step of (6.131), we argue as follows. Define Γ̃ to be the sub-
graph of Γx,y with vertices B q C qD. Then Γ̃ is a disjoint union of type (A)

components Γ̂ of Γx,y, where each Γ̂ has a unique vertex x′1 or y′1 in A ⊆ I q J .

By choice of I q J , each such Γ̂ is either a single vertex x′1 or y′1 in A, or the
distinguished vertex x′1 or y′1 lies on exactly one edge. Write Γ̃′ for the sub-

graph of Γ̃ obtained by deleting all vertices x′1, y
′
1 in A, and all edges

x′1• −
z′1•

and
y′1• −

z′1• for x′1, y
′
1 ∈ A. Then Γ̃′ has vertices (B \AI)q (C \AJ)qD.

In the proof of Proposition 6.37 we defined a colouring of Γ̃′ into black
and white edges, where every vertex x′, y′, z′ in Γ̃′ lies on exactly one white
edge. Thus, the white edges in Γ̂′ give a 1-1 correspondence between D and

(B \ AI) q (C \ AJ). Let
x′• − z′• be a white edge in Γ̃′, so that (x′, z′) ∈ Sg,

and tz′ ◦ g|R = px′z′ · rx′ for px′z′ : R→ (0,∞) by Definition 6.40. Therefore,
in the first term R ×[0,∞)j ∗ of the r.h.s. of the first line of (6.131), the fibre
product ×rx′ ,[0,∞)∗ may be replaced by ×tz′◦g|R,[0,∞)∗ without changing it.
Then the first term R ×[0,∞)j ∗ contains ×tz′◦g|R,[0,∞),0∗, and the second
term T ×[0,∞)l ∗ contains ×tz′ ,[0,∞),0∗. We may omit both of these without
changing the fibre product up to equivalence.

Similarly, if
y′

• − z′• is a white edge in Γ̂′ then we may simultaneously omit
×tz′ ,[0,∞),0∗ from the second term T ×[0,∞)l ∗, and ×sy′ ,[0,∞)∗ from the third
term S ×[0,∞)k ∗, without changing it. Omitting such pairs from all white

375



edges in Γ̃′ gives the second line of (6.131). Comparing (6.130) and (6.131)
gives an equivalence M ' N ×P O, which is b|M : M → N ×P O. So
b : C(W )→ C′(W ) is a local equivalence, that is, it is étale.

We have now proved that b : C(W) → C ′(W) is a bijection, simple, and
flat, and b : C(W ) → C′(W ) is étale in dSpa. Proposition 6.21 now shows
that b is an equivalence in dSpac. Hence (6.124) is 2-Cartesian in dSpac. The
equality |P |+ |S| = |Q|+ |R| proved above shows that (6.124) decomposes into
equations (6.126) for each i > 0. Since ∂W ' C1(W), the case i = 1 in (6.126)
gives (6.127). A similar proof shows b̂ : C(W ) → Ĉ′(W ) is étale, (6.125) is
2-Cartesian, and (6.128) holds. This completes the proof of Theorem 6.50.

Remark 6.51. If g : X → Z and h : Y → Z are b-transverse, but not c-
transverse, then C(g), C(h) and Ĉ(g), Ĉ(h) are both b-transverse, so that fibre
products C(X) ×C(g),C(Z),C(h) C(Y) and C(X) ×Ĉ(g),C(Z),Ĉ(h) C(Y) exist in
dSpac. However, we do not have equivalences C(W) ' C(X) ×C(g),C(Z),C(h)

C(Y) and C(W) ' C(X)×Ĉ(g),C(Z),Ĉ(h) C(Y), where W = X×g,Z,h Y.
Instead, C(W) is naturally equivalent to open, closed, proper d-subspaces

of C(X) ×C(g),C(Z),C(h) C(Y) and C(X) ×Ĉ(g),C(Z),Ĉ(h) C(Y). For w ∈ W,

the number k of type (C) components Γ̂ in Γx,y for x = e(w) and y = f(w) is
locally constant as a function of w, and locally C(X)×C(g),C(Z),C(h) C(Y) and

C(X) ×Ĉ(g),C(Z),Ĉ(h) C(Y) may be thought of as 2k copies of C(W). When
k = 0, so that 2k = 1, there are no type (C) components Γ̂, so g,h are c-
transverse by Propositions 6.37 and 6.38.

The expression (6.127) for the boundary ∂(X ×Z Y) of a c-transverse fibre
product is rather complicated. Also, when we discuss orientations of d-manifolds
with corners in §7.8, equation (6.127) will not be helpful, as if X,Y,Z are ori-
ented d-manifolds with corners, Cj(X), Ck(Y), Cl(Z) are generally not oriented
for j, k, l > 2. Here are some special cases in which we can give alternative ex-
pressions for ∂(X×Z Y), which are suitable for working with orientations.

Theorem 6.52. Let g : X → Z and h : Y → Z be 1-morphisms of d-spaces
with corners. Then the following hold, where all fibre products in (6.132)–(6.138)
are c-transverse, and so exist:

(a) If ∂Z = ∅ then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂X×g◦iX,Z,h Y

)
q
(
X×g,Z,h◦iY ∂Y

)
. (6.132)

(b) If g is semisimple and flat then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂g+X×g+,Z,h Y

)
q
(
X×g,Z,h◦iY ∂Y

)
. (6.133)

(c) If g is simple and flat then there is an equivalence

∂
(
X×g,Z,h Y

)
' X×g,Z,h◦iY ∂Y. (6.134)

376



(d) If h is semisimple and flat then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂X×g◦iX,Z,h Y

)
q
(
X×g,Z,h+ ∂

h
+Y
)
. (6.135)

(e) If h is simple and flat then there is an equivalence

∂
(
X×g,Z,h Y

)
' ∂X×g◦iX,Z,h Y. (6.136)

(f) If both g and h are semisimple and flat then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂g+X×g+,Z,h Y

)
q
(
X×g,Z,h+

∂h+Y
)

q
(
∂g−X×g−,∂Z,h− ∂

h
−Y
)
.

(6.137)

(g) If both g and h are simple and flat then there is an equivalence

∂
(
X×g,Z,h Y

)
' ∂X×g−,∂Z,h− ∂Y. (6.138)

Proof. Parts (a),(f),(g) follow immediately from Proposition 6.30, Lemma 6.35,
and equation (6.127) of Theorem 6.50. Parts (b)–(e) are not equivalent to
(6.127). Instead, we can prove them directly from the local construction of fibre
products in §6.8.3.

In case (b), in the situation of §6.8.3, g semisimple and flat implies that every
type (A) component Γ̂ of Γx,y is either (i) a single vertex x′, where x′ ∈ ∂g+X;

or (ii) contains a unique vertex y′. Every y′ ∈ i−1
Y (y) lies in a unique type

(A) component Γ̂ as in (ii). Also, every type (B) component Γ̂ is a single edge
x′• − z′• , with (y, z′) ∈ Th. We choose IqJ so that I is all vertices x′ of type (i),
and J = i−1

Y (y) is the set of vertices y′ in (ii). Then ∂Q in (6.89) corresponds
to the right hand side of (6.133), and a proof similar to Theorem 6.50 gives the
result. In case (c) ∂g+X = ∅ as g is simple, so (6.134) follows from (6.133). For
(d),(e) we exchange g,h in (b),(c).

Using Theorem 6.52 we show that if f : X→ Y is semisimple and flat then
∂f−X ' X×Y ∂Y. If f is also simple then ∂kX ' X×Y ∂kY for all k > 0.

Proposition 6.53. Suppose f : X→ Y is semisimple and flat in dSpac. Then
using the notation of §6.3, the following diagram is 2-Cartesian in dSpac :

∂f−X
f−

//
iX|

∂
f
−X �� � �� �

HP
idiY◦f−

∂Y
iY��

X
f // Y,

(6.139)

so that ∂f−X ' X×f ,Y,iY ∂Y. If f is also simple then (6.139) becomes

∂X
f−

//

iX �� � �� �
IQ

idiY◦f−

∂Y
iY��

X
f // Y,

(6.140)
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so that ∂X ' X×f ,Y,iY ∂Y. Also for all k > 0 we have equivalences

∂kX ' X×f ,Y,iY◦i∂Y◦···◦i∂k−1Y
∂kY. (6.141)

Proof. Apply Theorem 6.52(b) with Z = Y , g = f and h = idY . Then
X ×g,Z,h Y = X ×f ,Y,idY

Y ' X, so the left hand side of (6.133) is ∂X. The

two terms on the right hand side of (6.133) are equivalent to ∂f+X and ∂f−X

respectively. Equation (6.139) expresses the resulting expression for ∂f−X as a
2-Cartesian diagram. The 2-morphism in (6.139) is the identity as f ◦iX|∂f−X =

iY ◦ f− by Theorem 6.12(b).

When f is simple ∂f−X = ∂X, so (6.139) reduces to (6.140). Also in this
case f− is simple and flat by Theorem 6.12(b). Hence

∂(∂X) ' ∂X×f−,∂Y,i∂Y
∂2Y '

(
X×f ,Y,iY ∂Y

)
×π∂Y,∂Y,i∂Y

∂2Y

' X×f ,Y,i∂Y◦iY ∂2Y,

using natural equivalences of fibre products. This proves the case k = 2 of
(6.141). The general case follows in the same way by induction on k.

6.10 Fixed points of finite groups in d-spaces with corners

When a finite group Γ acts on a d-spaceX by 1-isomorphisms, in §2.7 we defined
the fixed d-subspace XΓ of Γ in X, a d-space with an inclusion 1-morphism
jX,Γ : XΓ ↪→ X, whose topological space XΓ is the fixed point locus of Γ in
X. We now generalize this to d-spaces with corners.

The unusual part of the next definition is the choice of boundary d-space
∂(XΓ) in XΓ = (XΓ,∂(XΓ), iXΓ , ωXΓ). This is modelled on the formula (5.10)
in Proposition 5.18(c) for the boundary ∂(XΓ) of the fixed locus XΓ of a finite
group Γ acting on a manifold with corners X.

Definition 6.54. Let X = (X,∂X, iX, ωX) be a d-space with corners, and Γ
a finite group. An action r of Γ on X is an action r : Γ→ Aut(X) of Γ on X
by 1-isomorphisms in dSpac. Sections 6.2 and 6.7 define the boundary ∂X =
(∂X,∂2X, i∂X, ω∂X) and corners C(X) =

(
C(X),∂C(X), iC(X), ωC(X)

)
of

X. As r(γ) : X → X is simple for each γ ∈ Γ, Theorems 6.12(b) and 6.29(a)
lift r to actions r− : Γ → Aut(∂X) and C(r) : Γ → Aut(C(X)) of G on ∂X
and C(X) in dSpac.

Hence r, r−, C(r) are also actions r : Γ → Aut(X), r− : Γ → Aut(∂X),
C(r) : Γ→ Aut(C(X)) in dSpa of Γ on the d-spacesX,∂X,C(X). Therefore
Definition 2.43 defines d-spaces XΓ, (∂X)Γ,C(X)Γ which are the fixed loci of
Γ in X,∂X,C(X), with inclusion 1-morphisms jX,Γ : XΓ → X, j∂X,Γ :

(∂X)Γ → ∂X, jC(X),Γ : C(X)Γ → C(X). Since iX : ∂X → X and ΠX :

C(X)→X are Γ-equivariant, Proposition 2.45 gives unique 1-morphisms iΓX :
(∂X)Γ → XΓ and ΠΓ

X : C(X)Γ → XΓ such that j∂X,Γ ◦ i
Γ
X = iX ◦ jX,Γ

and jC(X),Γ ◦ΠΓ
X = ΠX ◦ j∂X,Γ.
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We will define a d-space with corners XΓ = (XΓ,∂(XΓ), iXΓ , ωXΓ), which
we call the fixed d-subspace of Γ in X, with a natural inclusion 1-morphism
jX,Γ : XΓ → X in dSpac. Here the d-space XΓ and 1-morphism jX,Γ = jX,Γ :

XΓ → X are from Definition 2.43 for the d-space X, and ∂(XΓ), iXΓ , ωXΓ

remain to be defined. We do not take ∂(XΓ) = (∂X)Γ and iXΓ = iΓX, though
these would seem to be obvious choices. This is because, as in Proposition
5.18 and Example 5.19, if Γ acts on a manifold with corners X then in general
∂(XΓ) 6∼= (∂X)Γ, but instead ∂(XΓ) is given in terms of C(X) by (5.10).

As in (6.69), points of C(X) are of the form (x, {x′1, . . . , x′k}) for x ∈ X,
{x′1, . . . , x′k} ⊆ i

−1
X (x) ⊆ ∂X and k > 0, and Γ acts on these by

C(r)(γ) : (x, {x′1, . . . , x′k}) 7−→
(
r(γ)(x),

{
r−(γ)(x′1), . . . , r−(γ)(x′k)

})
.

Thus points of C(X)Γ are (x, {x′1, . . . , x′k}) fixed by this Γ-action. That is, x

must be fixed by r(Γ), i.e. x ∈ XΓ, and the subset {x′1, . . . , x′k} in ∂X must
be fixed by r−(Γ), although r−(Γ) may permute x′1, . . . , x

′
k.

Following (5.10), define ∂(XΓ) to be the open and closed d-subspace of
C(X)Γ consisting of points (x, {x′1, . . . , x′k}) such that k > 1 and r−(Γ) acts

transitively on {x′1, . . . , x′k}, and define a 1-morphism iXΓ : ∂(XΓ) → XΓ in

dSpa by iXΓ = ΠΓ
X|∂(XΓ). Define νXΓ : NXΓ → i∗XΓ(FXΓ) to be the kernel of

i2XΓ , giving a complex in qcoh(∂XΓ):

0 // NXΓ
νXΓ // i∗

XΓ(FXΓ)
i2XΓ // F∂XΓ // 0. (6.142)

We claim that NXΓ is a line bundle on ∂XΓ, and that there is a canonical
orientation ωXΓ on NXΓ such that XΓ = (XΓ,∂(XΓ), iXΓ , ωXΓ) is a d-space
with corners. To prove this, we will lift from Ck(X) ∼= (∂kX)/Sk to ∂kX.

From §6.1, equation (6.4) is split exact in qcoh(∂X ). Hence i∗X(FX) ∼=
NX ⊕F∂X . Pulling back by i∂X : ∂2X → ∂X and using Ii∂X,iX(FX) gives

(iX ◦ i∂X)∗(FX) ∼= i∗∂X(NX)⊕ i∗∂X(F∂X) in qcoh(∂2X ).

Combining this with (6.4) split exact for ∂X yields

(iX ◦ i∂X)∗(FX) ∼= i∗∂X(NX)⊕N ∂X ⊕F∂2X in qcoh(∂2X ).

Continuing by induction shows that

(iX ◦ i∂X ◦ · · · ◦ i∂k−1X)∗(FX) ∼= (i∂X ◦ · · · ◦ i∂k−1X)∗(NX)⊕ · · ·
⊕ i∗∂k−1X(N ∂k−2X)⊕N ∂k−1X ⊕F∂kX in qcoh(∂kX).

Doing the same argument with split exact sequences rather than direct sums
shows that we have a split exact sequence in qcoh(∂kX):

0 //
⊕k−1

i=0 (i∂X ◦ · · ·
◦ i∂k−1−iX)∗(N ∂iX)

// (iX ◦ · · ·
◦ i∂k−1X)∗(FX)

(iX◦···◦i∂k−1X
)2

// F∂kX // 0. (6.143)
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Define Kk, κk to be the kernel of (Πk
X)2 in qcoh(Ck(X)), giving a complex

0 // Kk
κk // (Πk

X)∗(FX)
(ΠkX)2

// FCk(X) // 0. (6.144)

Recall from Definition 6.28 that Ck(X) ∼= (∂kX)/Sk, and we have a local 1-
isomorphism qX : ∂kX → Ck(X) with Πk

X ◦ qX = iX ◦ · · · ◦ i∂k−1X. Pulling
(6.144) back to qcoh(∂kX) using qX : ∂kX → Ck(X), and noting that q2

X :
q∗X(FCk(X))→ F∂kX is an isomorphism as qX is a local 1-isomorphism, we see
that the pullback of (6.144) by qX is isomorphic to (6.143). As (6.143) is split
exact, which is an étale local condition, and qX is surjective, this implies that
(6.144) is split exact. Also we have

q∗X(Kk) ∼=
⊕k−1

i=0 (i∂X ◦ · · · ◦ i∂k−1−iX)∗(N ∂iX). (6.145)

As in Definition 2.43, for any Γ-equivariant quasicoherent sheaf on Ck(X),
its pullback to qcoh(Ck(X)Γ) by jCk(X),Γ : Ck(X)Γ → Ck(X) has a natural
Γ-action, and so splits into trivial and nontrivial Γ-representations. Thus

j∗Ck(X),Γ[Kk] = j∗Ck(X),Γ[Kk]tr ⊕ j∗Ck(X),Γ[Kk]nt,

j∗Ck(X),Γ

[
FCk(X)

]
= j∗Ck(X),Γ

[
FCk(X)

]
tr
⊕ j∗Ck(X),Γ

[
FCk(X)

]
nt
,

j∗Ck(X),Γ

[
(Πk

X)∗(FX)
]

= j∗Ck(X),Γ

[
(Πk

X)∗(FX)
]
tr
⊕ j∗Ck(X),Γ

[
(Πk

X)∗(FX)
]
nt
,

and (6.144) splits into ‘trivial’ and ‘nontrivial’ split exact sequences. Also by
definition of XΓ,Ck(X)Γ in Definition 2.43 we have

j∗Ck(X),Γ

[
(Πk

X)∗(FX)
]
tr
∼= ((Πk

X)Γ)∗(FXΓ), j∗Ck(X),Γ

[
FCk(X)

]
tr
∼= FCk(X)Γ .

Taking trivial parts of (6.144) and using the last two equations now shows that
we have a split exact sequence in qcoh(Ck(X)Γ):

0 // j∗Ck(X),Γ(Kk)tr // ((Πk
X)Γ)∗(FXΓ)

((ΠkX)Γ)2

// FCk(X)Γ // 0.

(6.146)
As above, ∂(XΓ) is open and closed in C(X)Γ, and iXΓ = ΠΓ

X|∂(XΓ).
Thus, the restrictions of (6.142) and (6.146) to ∂(XΓ)∩Ck(X)Γ are isomorphic.
This proves that (6.142) is split exact, as (6.146) is, and

NXΓ

∣∣
∂(XΓ)∩Ck(X)Γ

∼= j∗Ck(X),Γ(Kk)tr

∣∣
∂(XΓ)∩Ck(X)Γ . (6.147)

By (6.145), q∗X(Kk) is the direct sum of k line bundles on ∂kX, so it is a rank k
vector bundle. Hence Kk and j∗Ck(X),Γ(Kk) are also rank k vector bundles on

Ck(X) and Ck(X)Γ respectively, and locally the direct sum of k line bundles.
To describe j∗Ck(X),Γ(Kk)tr we must understand how Γ acts on these k line

local bundles on Ck(X)Γ. At a point (x, {x′1, . . . , x′k}) in Ck(X)Γ, we just have

j∗Ck(X),Γ(Kk)|(x,{x′1,...,x′k})
∼=
⊕k

i=1NX|x′i ,
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and Γ acts by permuting the factors of NX|x′1 , . . . ,NX|x′k in the same way that

it permutes x′1, . . . , x
′
k. Therefore the fixed subspace of Γ in

⊕k
i=1NX|x′i is

the sum of one copy of R for each orbit of Γ in {x′1, . . . , x′k}. By definition of
∂(XΓ), for (x, {x′1, . . . , x′k}) ∈ ∂(XΓ)∩Ck(X)Γ the Γ-action on {x′1, . . . , x′k} is
transitive. This implies that j∗Ck(X),Γ(Kk)tr

∣∣
∂(XΓ)∩Ck(X)Γ is a line bundle. So

NXΓ in (6.142) is a line bundle, as we have to prove.
We can also use these ideas to define the orientation ωXΓ onNXΓ . In (6.145),

the N ∂iX have orientations ω∂iX, so q∗X(Kk) is the sum of k oriented line bun-
dles. Thus j∗Ck(X),Γ(Kk) is locally the sum of k oriented line bundles, and Γ acts

on j∗Ck(X),Γ(Kk) by permuting these line bundles transitively, preserving the

orientations. There is then a unique orientation ωXΓ on NXΓ ∼= j∗Ck(X),Γ(Kk)tr

such that the projection from j∗Ck(X),Γ(Kk)tr to each oriented local line bundle
is orientation-preserving.

This completes the definition of XΓ = (XΓ,∂(XΓ), iXΓ , ωXΓ). To show XΓ

is a d-space with corners, we must verify Definition 6.1(a)–(f). Part (d) is done.
For (a), we have Πk

X ◦ qX = iX ◦ · · · ◦ i∂k−1X, where iX, . . . , i∂k−1X are proper

by Definition 6.1(a), and qX is surjective, so Πk
X : Ck(X)→ X is proper. Since

∂kX = ∅ for k � 0 locally in X, it follows that ΠX : C(X) → X is proper.
Hence iXΓ is proper, as it is the restriction of ΠX to a closed C∞-subscheme.

For (b), using Πk
X ◦qX = iX ◦· · ·◦i∂k−1X and omitting isomorphisms I∗,∗(∗)

for simplicity gives an equation in morphisms in qcoh(Ck(X)):

q′′X◦q∗X(Πk′′
X )= i′′∂k−1X◦· · ·◦(i∂X◦· · ·◦i∂k−1X)∗(i′′X) : (Πk

X◦qX)∗(EX)→E∂kX .

Since i′′∂jX is an isomorphism by Definition 6.1(b), and q′′X is an isomorphism
as qX is a 1-isomorphism, this shows q∗X(Πk′′

X ) is an isomorphism. Because qX

is étale and surjective, Πk′′
X is an isomorphism, for each k > 0. Hence Π′′X is an

isomorphism, and so i′′XΓ = Π′′X|∂(XΓ) is.
For (c) and (e), let (x, {x′1, . . . , x′k}) ∈ ∂(XΓ). Then x is Γ-invariant, k > 1,

and Γ acts transitively on {x′1, . . . , x′k}. Let ∆ be the subgroup of Γ fixing
x′1, so that |Γ|/|∆| = k. Let (V , b1) be a boundary defining function for X
at x′1. We can choose V , b1 so that V is Γ-invariant, and b1 is ∆-invariant,
that is, b1 ◦ r(δ)|V = b1 for all δ ∈ ∆. For each j = 2, . . . , k, let γj ∈ Γ with
r−(γj) : x′1 7→ x′j , and set bj = b1 ◦ r(γ−1

j )|V . Then (V , bj) is a boundary
defining function for X at x′j , for all j = 1, . . . , k.

As for (6.72), making V smaller if necessary, there exists an open neighbour-
hood U of (x, {x′1, . . . , x′k}) in (Πk

X)−1(V ) ⊆ Ck(X) in a 2-Cartesian square

U π
//

Πk
X|U�� � �� �

IQ
id(0,...,0)◦π

∗
(0,...,0) ��

V
(b1,b2,...,bk) // [0,∞)k

(6.148)

in dSpa. Making U ,V smaller if necessary, we can also suppose U ,V are Γ-
invariant, and U ⊆ ∂(XΓ). Now Γ acts on the whole diagram (6.148), so we
may restrict to Γ-invariant d-subspaces. Since Γ acts on [0,∞)k by permuting
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the coordinates x1, . . . , xk transitively, the fixed d-subspace ([0,∞)k)Γ is [0,∞),
diagonally embedded in [0,∞)k. Thus the Γ-invariant part of (6.148) is

UΓ
π

//

(Πk
X)Γ|UΓ�� � �� �

IQ
id0◦π

∗
0 ��

V Γ b // [0,∞),

(6.149)

where b = b1 ◦ jV ,Γ = · · · = bk ◦ jV ,Γ.
Since (6.149) is the Γ-invariant part of the 2-Cartesian diagram (6.148), we

can show (6.149) is 2-Cartesian. As (V , bi) is a boundary defining function for
X at x′i, by Definition 6.1(c) b2i has a left inverse βi in qcoh(V ) for i = 1, . . . , k,
and pulling these back by iV ,Γ we can show b2 has a left inverse β in qcoh(V Γ).

Hence Definition 6.1(c) holds for XΓ at (x, {x′1, . . . , x′k}). The construction of

the orientation ωXΓ above then implies that Definition 6.1(e) holds, so (V Γ, b) is
a boundary defining function for XΓ at (x, {x′1, . . . , x′k}). For Definition 6.1(f),

note that equation (6.8) for XΓ at x ∈XΓ is isomorphic to the Γ-invariant part
of (6.8) for X at x ∈X. Thus (f) for X at x implies (f) for XΓ at x.

Therefore XΓ is a d-space with corners. Above, (V , bi) was a boundary
defining function for X at x′i, and (V Γ, b) =

(
j−1
X,Γ(V ), bi ◦ jX,Γ|j−1

X,Γ(V )

)
a

boundary defining function for XΓ at (x, {x′1, . . . , x′k}). From this we see that

jX,Γ = jX,Γ : XΓ → X is a flat 1-morphism in dSpac.

As for Propositions 2.44 and 2.45, we have:

Proposition 6.55. Let X,Γ, r,XΓ and jX,Γ : XΓ → X be as in Definition
6.54. Suppose f : W → X is a 1-morphism in dSpac. Then f factorizes as
f = jX,Γ ◦ g for some 1-morphism g : W → XΓ in dSpac, which must be
unique, if and only if r(γ) ◦ f = f for all γ ∈ Γ.

Proposition 6.56. Suppose X,Y are d-spaces with corners, Γ is a finite group,
r : Γ→ Aut(X), s : Γ→ Aut(Y) are actions of Γ on X,Y, and f : X→ Y is a
Γ-equivariant 1-morphism in dSpac, that is, f ◦r(γ) = s(γ)◦f for γ ∈ Γ. Then
there exists a unique 1-morphism fΓ : XΓ → YΓ such that jY,Γ◦f

Γ = f ◦jX,Γ.
Now let f , g : X → Y be Γ-equivariant 1-morphisms and η : f ⇒ g a Γ-

equivariant 2-morphism, that is, η ∗ idr(γ) = ids(γ) ∗ η for γ ∈ Γ. Then there

exists a unique 2-morphism ηΓ : fΓ ⇒ gΓ such that idjY,Γ ∗ η
Γ = η ∗ idjX,Γ .

To prove Proposition 6.55, note that Proposition 2.44 gives a unique 1-
morphism g : W → XΓ in dSpa if and only if r(γ) ◦ f = f for all γ ∈ Γ,
so we have only to show that this g is a 1-morphism in dSpac. Similarly, to
prove Proposition 6.56, observe that Proposition 2.45 gives unique fΓ, ηΓ as
1- and 2-morphisms in dSpa, so we have only to show that these fΓ, ηΓ are
1- and 2-morphisms in dSpac, that is, they satisfy the additional conditions
of Definitions 6.2 and 6.3. In both cases this can be done by working with
boundary defining functions as in Definition 6.54.

In Proposition 5.18 we saw that if a finite group Γ acts on a manifold with
corners X then C(XΓ) ∼= C(X)Γ. The analogue holds for d-spaces with corners.
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Proposition 6.57. Let X be a d-space with corners, Γ a finite group, and
r : Γ → Aut(X) an action of Γ on X. Applying the corner functor C of §6.7
gives an action C(r) : Γ → Aut(C(X)). Hence Definition 6.54 defines fixed
d-subspaces XΓ, C(X)Γ and inclusion 1-morphisms jX,Γ : XΓ → X, jC(X),Γ :

C(X)Γ → C(X). Applying C to jX,Γ also gives C(jX,Γ) : C(XΓ)→ C(X).

Then there exists a unique equivalence kX,Γ : C(XΓ) → C(X)Γ in dSpac

such that C(jX,Γ) = jC(X),Γ ◦ kX,Γ.

Proof. For each γ ∈ Γ we have

C(r(γ)) ◦ C(jX,Γ) = C(r(γ) ◦ jX,Γ) = C(jX,Γ),

as C is a strict 2-functor, and r(γ) ◦ jX,Γ = jX,Γ as in §2.7. Hence Proposition

6.55 for C(X) shows there exists a unique 1-morphism kX,Γ : C(XΓ)→ C(X)Γ

with C(jX,Γ) = jC(X),Γ ◦ kX,Γ.

Points of Ck(XΓ) are
(
x,
{

(x, {x′1,1, . . . , x′1,a1
}), . . . , (x, {x′k,1, . . . , x′k,ak})

})
,

where x ∈ XΓ and {x′1,1, . . . , x′1,a1
}, . . . , {x′k,1, . . . , x′k,ak} are distinct (hence dis-

joint) nonempty Γ-orbits in i−1
X (x) ⊆ ∂X. Points of Cl(X)Γ are (x, {x′1, . . . , x′l})

where x ∈ XΓ and {x′1, . . . , x′l} is a Γ-invariant subset of i−1
X (x) ⊆ ∂X. Then

kX,Γ :
(
x,
{

(x,{x′1,1, . . . , x′1,a1
}), . . . , (x, {x′k,1, . . . , x′k,ak})

})
7−→

(
x, {x′1,1, . . . , x′1,a1

} ∪ · · · ∪ {x′k,1, . . . , x′k,ak}
)
.

This is a bijection, as for any (x, {x′1, . . . , x′l}) in Cl(X)Γ, the Γ-invariant subset
{x′1, . . . , x′l} is the disjoint union of finitely many Γ-orbits which we write as
{x′1,1, . . . , x′1,a1

}, . . . , {x′k,1, . . . , x′k,ak} with a1 + · · · + ak = l, and this gives a

unique preimage in Ck(XΓ). So kX,Γ is a bijection on points.
To prove that kX,Γ is étale (a local equivalence), we generalize the argument

of (6.148)–(6.149). Let
(
x,
{

(x, {x′1,1, . . . , x′1,a1
}), . . . , (x, {x′k,1, . . . , x′k,ak})

})
be

a point in Ck(XΓ), with l = a1 + · · ·+ ak. As in Definition 6.54, we can choose
Γ-invariant open neighbourhoods V of x in X and U of

(
x, {x′1,1, . . . , x′1,a1

} ∪
· · · ∪ {x′k,1, . . . , x′k,ak}

)
in Cl(X) and 1-morphisms bi,j : V → [0,∞) such that

(V , bi,j) is a boundary defining function for X at x′i,j , and the family of bi,j is
Γ-invariant, and as in (6.148) we have a 2-Cartesian diagram

U π
//

Πl
X|U�� � �� �

IQ
id(0,...,0)◦π

∗
(0,...,0) ��

V
(bi,j :i=1,...,k, j=1,...,ai)

// [0,∞)l.
(6.150)

Then Γ acts on (6.150), and the Γ-invariant part is 2-Cartesian, as in (6.149):

UΓ
π

//

(Πl
X)Γ|UΓ�� � �� �

IQ
id0◦π

∗
0 ��

V Γ
(b1,...,bk) // [0,∞)k,

(6.151)
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where bi = bi,1 ◦ jV ,Γ = · · · = bi,ai ◦ jV ,Γ for i = 1, . . . , k.

From Definition 6.54, (V Γ, bi) is a boundary defining function for XΓ at
(x, {x′i,1, . . . , x′i,ai}). So by comparing (6.151) with the analogue of (6.150)

for XΓ at
(
x,
{

(x, {x′1,1, . . . , x′1,a1
}), . . . , (x, {x′k,1, . . . , x′k,ak})

})
, and noting that

both are 2-Cartesian in dSpac, we see that neighbourhoods of
(
x, {x′1,1, . . . ,

x′1,a1
} ∪ · · · ∪ {x′k,1, . . . , x′k,ak}

)
in Ck(XΓ) and of

(
x, {x′1,1, . . . , x′1,a1

} ∪ · · · ∪
{x′k,1, . . . , x′k,ak}

)
in Cl(X)Γ are equivalent. This equivalence is realized by kX,Γ,

so kX,Γ is étale. As it is also a bijection, it is an equivalence in dSpac.
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7 D-manifolds with corners

We now define 2-categories dManb,dManc of d-manifolds with boundary, and
d-manifolds with corners, as full 2-subcategories of dSpab,dSpac in Chapter 6,
and generalize the material on d-manifolds in Chapters 3 and 4 to the boundary
and corners case.

7.1 Defining d-manifolds with corners

Proposition 3.12 gave three equivalent characterizations (a)–(c) of principal d-
manifolds W in dMan. Our initial definition of principal d-manifold was option
(a), a fibre product X×Z Y in dSpa with X,Y ,Z ∈ M̂an, but the most useful
notion was option (c), a fibre product V s,E,0V for V a manifold, E a vector
bundle and s ∈ C∞(E), as we used these in ‘standard model’ d-manifolds SV,E,s.

If we try to generalize Proposition 3.12 to Manc and dSpac, the given
proof no longer works. The problem is that when ∂Z 6= ∅, we cannot smoothly
identify TZ near the zero section with Z ×Z near the diagonal, as their corner
structure is different. So it is not obvious that options (a)–(c) of Proposition
3.12 are equivalent in the corners case. Also, in (a),(b) the fibre products may
not exist in dSpac unless g,h and i, j are b-transverse. We model our definition
of principal d-manifolds with corners on part (c) of Proposition 3.12, as again
this will be the most useful of the three.

Definition 7.1. A d-space with corners W is called a principal d-manifold with
corners if is equivalent in dSpac to a fibre product V ×s,E,0 V, where V is a
manifold with corners, E → V is a vector bundle, s : V → E is a smooth section
of E, 0 : V → E is the zero section, and V,E, s,0 = FdSpac

Manc (V,E, s, 0). Note
that s, 0 : V → E are simple, flat smooth maps in Manc, so s,0 : V → E
are simple, flat 1-morphisms in dSpac. Thus s,0 are b-transverse by Lemma
6.35(i), and a fibre product V ×s,E,0 V exists in dSpac by Theorem 6.42.

By Corollary 6.43, the underlying d-space W and C∞-scheme W are fibre
products W ' V ×s,E,0 V in dSpa and W ∼= V ×s,E,0 V in C∞Sch. We will
also see below that ∂W ' ∂V ×s◦iV,E,0 V and ∂W ∼= ∂V ×s◦iV ,E,0 V .

If X is any manifold with corners, taking V = X, E the zero vector bundle
over X and s = 0 gives W ' X×idX,X,idX

X ' X for X = FdSpac

Manc (X). Hence
any X in M̄anc is a principal d-manifold with corners.

In Definition 3.13 we defined a family of principal d-manifolds SV,E,s we
called standard models. Here is the analogue for d-manifolds with corners.

Definition 7.2. Let V be a manifold with corners, E → V a vector bundle, and
s : V → E a smooth section of E. We will write down an explicit principal d-
manifold with corners S = (S,∂S, iS, ωS) equivalent to V×s,E,0V in Definition
7.1. We call S the standard model of (V,E, s), and also write it SV,E,s.

Define a vector bundle E∂ → ∂V by E∂ = E|∂V = i∗V (E), and a smooth
section s∂ : ∂V → E∂ by s∂ = s|∂V = i∗V (s). Define d-spaces S = SV,E,s and
∂S = S∂V,E∂ ,s∂ from the triples V,E, s and ∂V,E∂ , s∂ exactly as in Definition
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3.13, although now V, ∂V have corners. Define a 1-morphism iS : ∂S → S in
dSpa to be the ‘standard model’ 1-morphism SiV ,idE∂ : S∂V,E∂ ,s∂ → SV,E,s
from Definition 3.29.

Then from Definitions 3.13 and 3.29, ES ,FS are the restrictions to S ⊆ V
of the vector bundles E∗, T ∗V on the C∞-scheme V lifting the vector bundles
E∗, T ∗V on V , and E∂S ,F∂S are the restrictions to ∂S ⊆ ∂V of the vector
bundles E∗∂ , T ∗(∂V ) on ∂V lifting the vector bundles E∗∂ , T

∗(∂V ) on ∂V , and
i′′S : i∗S(ES)→ E∂S is the lift to ∂S of the identity morphism idE∗∂ : i∗V (E∗)→ E∗∂
of vector bundles on ∂V , and i2S : i∗S(FS)→ F∂S is the lift to ∂S of the vector
bundle morphism diV : i∗V (T ∗V )→ T ∗(∂V ) on ∂V .

The pullback E∂ = i∗V (E) is in effect a transverse fibre product, E∂ =
E ×V ∂V . Theorem 2.42 then implies that E∂ ' E ×V ∂V in dSpa. Thus we
have equivalences

∂S ' ∂V ×s∂ ,E∂ ,0 ∂V ' ∂V ×s∂ ,(E×V ∂V ),0 ∂V ' ∂V ×s◦iV,E,0 V
' ∂V ×iV,V ,π1

(V ×s,E,0 V ) ' ∂V ×iV,V ,π1
S.

Therefore we have a 2-Cartesian diagram in dSpa:

∂S π∂V
//

iS�� � �� �
IQ

idπV ◦iS

∂V
iV ��

S
πV // V ,

(7.1)

where πV = SidV ,0 : S = SV,E,s → SV,0,0 = V and π∂V = Sid∂V ,0 : ∂S =
S∂V,E∂ ,s∂ → S∂V,0,0 = ∂V . The 2-morphism in (7.1) is the identity as

πV ◦ iS = SidV ,0 ◦ SiV ,idE∂ = SiV ,0 = SiV ,0 ◦ Sid∂V ,0 = iV ◦ π∂V .

We will verify Definition 6.1(a)–(f) for S = (S,∂S, iS, ωS), constructing ωS

along the way. For (a), as iV : ∂V → V is a proper map of topological spaces, iV
is proper in (7.1), and thus iS and hence iS are proper by properties of Cartesian
squares. For (b), as i′′S is the lift to ∂S of idE∗∂ , it is clearly an isomorphism. For
(c), let x′ ∈ ∂S with iS(x′) = x ∈ S. Then x′ ∈ V ′ and x ∈ V with iV (x′) = x,
and s∂(x′) = s(x) = 0. Let (W, b) be a boundary defining function for the
manifold with corners V at x′ ∈ ∂V , so that by Definition 5.4 x ∈ W ⊆ V is
open and b : W → [0,∞) is smooth, and there exists open x′ ∈ W ′ ⊆ ∂V with
b ◦ iV |W ′ = 0 and iV |W ′ : W ′ → {w ∈W : b(w) = 0} is a homeomorphism.

Define W,W ′, b = FdSpac

Manc (W,W ′, b), W̃ = π−1
V (W), W̃ ′ = π−1

∂V (W ′), and

b̃ = b ◦ πV |W̃ : W̃ → [0,∞). Consider the 2-commutative diagram in dSpac:

W̃ ′
π∂V |W̃ ′

//

iS|W̃ ′�� � �� �
HP

idπV ◦iS

W ′

iV|W ′ ��

π
//

iX|U�� � �� �
HP

id0◦π

∗
0 ��

W̃
b̃

00
πV |W̃ // W

b // [0,∞).
(7.2)

The left hand square is 2-Cartesian as it is a restriction of (7.1) to open d-
subspaces. The right hand square is 2-Cartesian as W ′ ∼= W ×b,[0,∞),0 ∗ is a
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transverse fibre product in Manc. Hence the outer square of (7.2) is 2-Cartesian.
This is (6.1) for S at x′ ∈ ∂S with W̃ , W̃ ′, b̃ in place of V ,U , b, and proves
the first part of Definition 6.1(c) for S.

For the second part, note that b̃2 : b̃∗(F [0,∞)) → FS |W̃ is the lift to W̃
of (db)∗ : b∗(T ∗[0,∞)) → T ∗W , which is an embedding of vector bundles as
db|w 6= 0 for w ∈W , and so has a right inverse. Therefore b̃2 has a right inverse
β in qcoh(W̃ ). Hence Definition 6.1(a)–(c) hold for S.

Definition 6.1 now defines a conormal bundle NS, in an exact sequence (6.4).
This is just the lift from ∂V to ∂S of the exact sequence (6.53) for V . Hence
NS is the lift to ∂S of the conormal bundle ν∗ of ∂V in V . Now ν and ν∗ have
natural orientations by outward-pointing vectors at the boundary ∂V of V .
Define ωS to be the orientation on NS which lifts this orientation on ν∗. Parts
(d),(e) of Definition 6.1 are now immediate, and (W̃ , b̃) above is a boundary
defining function for S at x′. Part (f) follows from the corresponding statement
for V at x, since x∗(FS) ∼= T ∗xV and (x′i)

∗(NX) ∼= ν∗|x′i .
Therefore S is a d-space with corners. One can show using the material of

§6.8.3 that S is equivalent to the fibre product V×s,E,0 V in dSpac, and so is
a principal d-manifold with corners.

It is easy to show that the constructions of boundaries in §6.2 and corners
in §6.7 have the obvious compatibilities with ‘standard model’ d-manifolds.

Lemma 7.3. Let V be a manifold with corners, E → V a vector bundle, and
s : V → E a smooth section of E. Define a vector bundle E∂ = i∗V (E) on ∂V
and a smooth section s∂ = i∗V (s) : ∂V → E∂ . Define SV,E,s and S∂V,E∂ ,s∂ as in
Definition 7.2. Then there is a natural 1-isomorphism ∂SV,E,s ∼= S∂V,E∂ ,s∂ in
dSpac, where ∂SV,E,s is as in §6.2.

Similarly, for k > 0 define a vector bundle Ek = Π∗k(E) on the k-corners
Ck(V ) and a section sk = Π∗k(s) : Ck(V ) → Ek, where Πk : Ck(V ) → V is
the natural projection. Then there is a natural 1-isomorphism Ck(SV,E,s) ∼=
SCk(V ),Ek,sk in dSpac, where Ck(SV,E,s) is as in §6.7.

Here is an analogue of Proposition 3.15.

Lemma 7.4. Suppose W = (W,∂W , iW, ωW) is a principal d-manifold with
corners, so that W ' V×s,E,0 V, where V is a manifold with corners, E → V

is a vector bundle, s ∈ C∞(E), and V,E, s,0 = FdSpac

Manc (V,E, s, 0). Then the
virtual cotangent sheaf T ∗W of the d-space W is a virtual vector bundle on W,
with rank T ∗W = dimV − rankE.

Proof. Since W ' V ×s,E,0 V there exists an equivalence i : W → SV,E,s. In
Definition 7.2, ES ,FS are the lifts of E∗, T ∗V to S, and so are vector bundles of
ranks rankE,dimV respectively. Therefore T ∗SV,E,s = (ES ,FS , φS) is a virtual
vector bundle on S of rank dimV − rankE. So i∗(T ∗SV,E,s) is a is a virtual
vector bundle on W of rank dimV − rankE. But Ωi : i∗(T ∗SV,E,s)→ T ∗W is
an equivalence in vqcoh(W ), as i is an equivalence. The lemma follows.

We can now define the 2-category dManc of d-manifolds with corners.
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Definition 7.5. Let W be a nonempty principal d-manifold with corners. Then
the virtual cotangent sheaf T ∗W is a virtual vector bundle on W by Lemma
7.4. Define the virtual dimension vdim W of W to be the rank of T ∗W.

A d-space with corners X is called a d-manifold with corners of virtual di-
mension n ∈ Z, written vdim X = n, if X can be covered by open d-subspaces
U which are principal d-manifolds with corners with vdim U = n. A d-manifold
with corners X is called a d-manifold with boundary if it is a d-space with bound-
ary, and a d-manifold without boundary if it is a d-space without boundary.

Write dM̄an,dManb,dManc for the full 2-subcategories of d-manifolds
without boundary, and d-manifolds with boundary, and d-manifolds with cor-
ners in dSpac, respectively. The 2-functor FdSpac

dSpa : dSpa→ dSpac of Defini-

tion 6.3 is an isomorphism of 2-categories dSpa→ dS̄pa, and its restriction to
dMan ⊂ dSpa gives a (strict) isomorphism of 2-categories FdManc

dMan : dMan→
dM̄an ⊂ dManc. So we may as well identify dMan with its image dM̄an,
and consider d-manifolds without boundary in Chapters 3–4 as examples of
d-manifolds with corners.

If X = (X,∂X, iX, ωX) is a d-manifold with corners, then the virtual cotan-
gent sheaf T ∗X of the d-space X from Example 3.2 is a virtual vector bundle
in vvect(X), of rank vdim X. We will call T ∗X the virtual cotangent bundle of
X, and also write it T ∗X.

As FdSpac

Manc (X) is a principal d-manifold with corners for any manifold with
corners X by Definition 7.1, it is a d-manifold with corners, so the 2-functor
FdSpac

Manc : Manc → dSpac in Definition 6.15 maps into dManc, and we will

write FdManc

Manc =FdSpac

Manc : Manc→dManc, and FdManc

Manb : Manb→dManb⊂
dManc, FdManc

Man : Man→dM̄an⊂dManc for its restrictions to Manb,Man.
The 2-categories M̄an, M̄anb, M̄anc in Definition 6.15 are 2-subcategories of
dM̄an,dManb,dManc, respectively. When we say that a d-manifold with
corners X is a manifold, we mean that X ∈ M̄anc.

As for Lemmas 3.14 and 3.19, we prove:

Lemma 7.6. Let W be a d-manifold with corners, and U an open d-subspace
of W. Then U is also a d-manifold with corners, with vdim U = vdim W. If
W is principal, then U is principal.

Boundaries and corners of d-manifolds with corners are also d-manifolds with
corners, with the dimensions one would expect.

Proposition 7.7. Suppose X is a d-manifold with corners. Then ∂X in §6.2
and Ck(X) in §6.7 are d-manifolds with corners, with vdim ∂X = vdim X − 1
and vdimCk(X) = vdim X− k for all k > 0.

Proof. Let x′ ∈ ∂X with iX(x′) = x ∈ X. Then x has a principal open neigh-
bourhood U in X, so there is an equivalence U ' SV,E,s for some V,E, s. Thus
∂U is an open neighbourhood of x′ in ∂X. But ∂U ' ∂SV,E,s ' S∂V,E∂ ,s∂
by Proposition 6.20 and Lemma 7.3, and S∂V,E∂ ,s∂ is a principal d-manifold of
virtual dimension vdim SV,E,s − 1 = vdim X− 1. Therefore ∂X can be covered
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by principal open ∂U with vdim ∂U = vdim X− 1, so ∂X is a d-manifold with
corners with vdim ∂X = vdim X − 1. The proof for Ck(X) is similar, using
Ck(SV,E,s) ∼= SCk(V ),Ek,sk from Lemma 7.3.

In §5.5 we defined a category M̌anc generalizing Manc, whose objects are
disjoint unions

∐∞
n=0Xn, where Xn ∈ Manc with dimXn = n. This was

convenient because the corner functor C : Manc → M̌anc with C(X) =∐dimX
k=0 Ck(X) maps into M̌anc, so the category M̌anc gives a neat way of

packaging the properties of Ck(X) for all k > 0. For the same reason we intro-
duce a 2-category dM̌anc of d-manifolds with corners of mixed dimension.

Definition 7.8. Define dM̌anc to be the full 2-subcategory of X in dSpac

which may be written as a disjoint union X =
∐
n∈Z Xn for Xn ∈ dManc with

vdim Xn = n, where we allow Xn = ∅. We call such X a d-manifold with corners
of mixed dimension. Then dManc ⊂ dM̌anc ⊂ dSpac, and Proposition 7.7
implies that the corner functors C, Ĉ : dSpac → dSpac in §6.7 restrict to strict
2-functors C, Ĉ : dManc → dM̌anc.

If X is a C∞-scheme, define v̌vect(X) to be the full 2-subcategory of objects
(E•, φ) in vqcoh(X) such that X has a decomposition X =

∐
n∈ZXn with

(E•, φ)|Xn a virtual vector bundle on X of rank n. We call (E•, φ) a virtual
vector bundle of mixed rank. Then vvect(X) ⊂ v̌vect(X) ⊂ vqcoh(X). If X is
an object in dM̌anc then T ∗X ∈ v̌vect(X). In particular, if X is a d-manifold
with corners, then T ∗(C(X)) is a virtual vector bundle of mixed rank on C(X).
The material of §4.5 on orientation line bundles extends immediately to virtual
vector bundles of mixed rank.

We call (E•, φ) a vector bundle of mixed rank if X=
∐
n∈ZXn with (E•, φ)|Xn

a vector bundle on X of rank n. By Proposition 3.9, an object (E•, φ) in
v̌vect(X) is a vector bundle of mixed rank if and only if φ has a left inverse.

7.2 Local properties of d-manifolds with corners

In §3.3 we showed that any d-manifold X is determined up to equivalence near
x ∈ X by the ‘classical’ C∞-scheme X and the integer vdimX. To find an
analogue of this for d-manifolds with corners X = (X,∂X, iX, ωX), we must
first decide what in X counts as ‘classical’ data. Broadly we want to reduce to
C∞-schemes, so from X,∂X, iX we count X, ∂X, iX as classical. We need the
orientation ωX on NX, so we must include the line bundle NX on ∂X. We also
need some way to relate NX to X, ∂X, iX. Since NX is the conormal bundle
of ∂X in X, the appropriate data is a morphism %X : NX → KX, where KX is
the conormal sheaf of ∂X in X. Here is how to define KX and %X.

Definition 7.9. Let X be a d-manifold with corners. Then X contains C∞-
schemes X = (X,OX), ∂X = (∂X,O∂X) and a morphism iX = (iX, i

]
X) : ∂X →

X. Then i]X : i−1
X (OX)→ O∂X is a surjective morphism of sheaves of C∞-rings

on ∂X. Write JX for the kernel of i]X, a sheaf of ideals in i−1
X (OX) on ∂X. Then

J 2
X ⊆ JX is also a sheaf of ideals in i−1

X (OX). Write KX = JX/J 2
X. As JX is
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an i−1
X (OX)-module, KX is an i−1

X (OX)/JX-module. But i−1
X (OX)/JX

∼= O∂X
as i]X is surjective, so KX is an O∂X -module, that is, KX ∈ qcoh(∂X). We think
of KX as the conormal sheaf of ∂X in X.

Using similar arguments to §2.1 and §6.1, one can show that there exist
unique morphisms %X : NX → KX and σX = i−1

X (d)⊗ idO∂X : KX → i∗X(T ∗X)
in qcoh(∂X) such that the following diagram commutes, with exact rows:

0 // J ′X =Ker i′X
yyssss

��88888888
// i−1

X (O′X)
i′X

//
i−1
X

(ıX ) yysss i−1
X

(d⊗ıX )

��88888888
O′∂X

ı∂Xyysss
d⊗ı∂X

��88888888
// 0

0 // JX =Ker i]X

��88888888
// i−1

X (OX)
i
]
X //

i−1
X

(d)⊗i]
X

��88888888
O∂X

d

��88888888
// 0

0 // NX

%Xyyssss νX
// i∗X(FX)

i2X

//
i∗X(ψX )yysss

F∂X
ψ∂Xyysss

// 0

KX

σX // i∗X(T ∗X)
ΩiX // T ∗(∂X) // 0.

Then %X is surjective, as the projections J ′X → JX → KX are surjective and
the left hand diamond commutes.

We consider the ‘classical’ data in a d-manifold with corners X to be X, ∂X,
iX,NX, %X, ωX. Here KX, σX are constructed from X, ∂X, iX, and so do not
count as extra data. All this data is ‘classical’ in the sense that it is unaffected
by 2-morphisms. This means that if X,Y are equivalent in dManc then the
classical parts X, ∂X, . . . , ωX and Y , ∂Y , . . . , ωY are strictly isomorphic. To
see that NX,NY are unaffected by 2-morphisms, note that if f , g : X → Y
are 1-morphisms and η : f ⇒ g a 2-morphism in dSpac, then λf = λg by
Proposition 6.8(a), where λf , λg are how f , g act on NX,NY.

We can now prove a partial analogue of Propositions 3.21 and 3.23.

Proposition 7.10. Suppose V is a manifold with corners, E → V a vector
bundle, s : V → E a smooth section, and v ∈ V with s(v) = 0. Then for some
k, l,m, a, b > 0 we have dimV = k +m+ b and rankE = l+ a+ b, and we can
choose an open neighbourhood Ṽ of v in V and coordinates (x1, . . . , xk+m+b)
on V identifying v with (0, . . . , 0) and Ṽ with an open neighbourhood W of 0 in
Rk+m+b
k , so that x1, . . . , xk ∈ [0,∞) and xk+1, . . . , xk+m+b ∈ R. We can also

choose a trivialization E|Ṽ ∼= Rl+a+b × Ṽ → Ṽ , so that s|Ṽ = (s1, . . . , sl+a+b)

for si ∈ C∞(Ṽ ), where in the coordinates (x1, . . . , xk+m+b) on Ṽ we have

si(x1, . . . , xk+m+b) =


fi(x1, . . . , xk+m), i = 1, . . . , l,

0, i = l + 1, . . . , l + a,

xk+m−l−a+i, i = l+a+1, . . . , l+a+b,

(7.3)

for functions f1, . . . , fl ∈ C∞(Rk+m
k ) with fi(0, . . . , 0) = 0 and ∂fi

∂xj
(0, . . . , 0) = 0

for all i = 1, . . . , l and j = k+1, . . . , k+m, and if g1, . . . , gl ∈ C∞0 (Rk+m
k ) with∑l

j=1 fj · gj = 0 in C∞0 (Rk+m
k ) then gj(0) = 0 for all j = 1, . . . , l.

Write S = SV,E,s for the ‘standard model’ d-manifold with corners from

Definition 7.2. Then k, l,m and possible choices for f1, . . . , fl ∈ C∞(Rk+m)
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may be reconstructed solely from the point v ∈ S ⊆ V and the ‘classical’ data
S, ∂S, iS,NS, %S, ωS in SV,E,s. Knowing dimV, rankE then determines a, b.
Hence, V,E, s are determined up to non-canonical isomorphism near v solely by
v, S, ∂S, iS,NS, %S, ωS and the integers dimV, rankE.

Proof. Let i−1
V (v) = {v′1, . . . , v′k}, and set n = dimV and r = rankE. Since

V is an n-manifold with corners and v′1, . . . , v
′
k parametrize the local bound-

ary components of V at v ∈ V , we can choose coordinates (x1, . . . , xn) on an
open neighbourhood Ṽ of v in V which identify v with (0, . . . , 0) and Ṽ with
an open neighbourhood W of (0, . . . , 0) in Rnk = [0,∞)k × Rn−k, where k 6 n,
and which identify v′i with

(
(0, . . . , 0), {xi = 0}

)
in ∂Rnk , that is, v′i corresponds

to the local boundary component xi = 0 at (0, . . . , 0) in Rnk for i = 1, . . . , k.
Making Ṽ ,W smaller if necessary we can suppose E|Ṽ is trivial, and iden-

tify it with Rr × Ṽ → Ṽ . So in coordinates (x1, . . . , xn) on Ṽ we have s =(
s1(x1, . . . , xn), . . . , sr(x1, . . . , xn)

)
for s1, . . . , sr ∈ C∞(W ). Making Ṽ ,W still

smaller, we can suppose s1, . . . , sr extend to Rnk , so that s1, . . . , sr ∈ C∞(Rnk ).
Let Sv be the localization of S at v, as a C∞-scheme, and ∂Sv′i the localiza-

tion of ∂S at v′i for i = 1, . . . , k. As iS(v′i) = v, we have a localized morphism
iS,v′i : ∂Sv′i → Sv for i = 1, . . . , k. Then Sv

∼= SpecCv, ∂Sv′i
∼= SpecDv′i

and
iS,v′i

∼= Specψv′i for C∞-local rings Cv,Dv′i
and morphisms ψv′i : Cv → Dv′i

for
i = 1, . . . , k. We now have isomorphisms

Cv ∼= C∞0 (Rnk )/(s1, . . . , sr) and Dv′i
∼= C∞0 (Rnk )/(xi, s1, . . . , sr)

identifying ψv′i : Cv → Dv′i
with c+ (s1, . . . , sr) 7→ c+ (xi, s1, . . . , sr).

(7.4)

Note that Cv,Dv′1
, . . . ,Dv′k

and ψv′1 , . . . , ψv′k depend only on S, ∂S, iS, v up to
isomorphisms and reorderings of the Dv′i

, ψv′i .

For the first part of the proposition, we must show that we can choose Ṽ ,W ,
(x1, . . . , xn), and the trivialization E|Ṽ ∼= Rr×Ṽ such that s1, . . . , sr assume the
special form (7.3). We follow the proof of Proposition 3.23, with the following
changes. In the coordinates (x1, . . . , xn), we are only allowed to make coordinate
transformations that preserve the conditions xj > 0 for j = 1, . . . , k, because of
the corners of V . So we leave x1, . . . , xk fixed, and only change the choice of
xk+1, . . . , xn. Because of this we can only ensure that ∂fi

∂xj
(0) = 0 for all i and

j > k + 1, rather than ∂fi
∂xj

(0) = 0 for all i, j as in Proposition 3.23.

For the second part of the proposition, we have to explain how to re-
construct k, l,m and possible choices for f1, . . . , fl ∈ C∞(Rk+m) solely from
S, ∂S, iS,NS, %S, ωS and v. We do this in six steps:

(a) k = |i−1
S (v)|, so k depends only on S, ∂S, iS, v.

(b) For i = 1, . . . , k we choose an image x̃i of xi in Cv, using NS, %S, ωS.

(c) m is the minimal number of generators of the C∞-ring Cv/(x̃1, . . . , x̃k).

(d) We choose x̃k+1, . . . , x̃k+m ∈ Cv with x̃i(v) = 0, whose projections to
Cv/(x̃1, . . . , x̃k) are a minimal set of generators. These x̃k+1, . . . , x̃k+m

will be the images in Cv of the coordinates xk+1, . . . , xk+m.
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(e) There is now a unique surjective morphism πk+m
k : C∞0 (Rk+m

k )→ Cv with

πk+m
k (xi) = x̃i for i = 1, . . . , k+m. So Kerπk+m

k is an ideal in C∞0 (Rk+m
k ).

Then l is the minimal number of generators of Kerπk+m
k .

(f) Choose f1, . . . , fl in C∞(Rk+m
k ) whose images in C∞0 (Rk+m

k ) are a minimal

set of generators for Kerπk+m
k .

Part (a) is immediate. For (b), note from (7.4) that Kerψv′i = (xi) ⊆ Cv for
i = 1, . . . , k, so the ideal (xi) generated by xi in Cv depends only on Cv,Dv′i

, ψv′i .
We will use the dataNS, %S, ωS to choose an appropriate generator x̃i in Kerψv′i .
If Kerψv′i = {0} the only choice is x̃i = 0, so suppose Kerψv′i 6= {0}. Pick
a representative τ for ωS, so that τ : O∂S → NS is an isomorphism, and
%X ◦ τ : O∂S → KS is surjective in qcoh(∂S). Restricting to the C∞-subscheme
∂Sv′i in ∂S gives %X ◦ τ |∂Sv′

i

: O∂S |∂Sv′
i

→ KS|∂Sv′
i

. We have O∂S |∂Sv′
i

∼=
MSpecDv′i

and KS|∂Sv′
i

∼= MSpec(xi)/(x
2
i ), where (x̃i)/(x̃

2
i ) is a Dv′i

-module.

Hence %X ◦ τ |∂Sv′
i

∼= MSpecPi for some surjective Dv′i
-module morphism Pi :

Dv′i
→ (xi)/(x

2
i ). Thus Pi(−1) is a generator of (xi)/(x

2
i ). Hence we can choose

a generator x̃i of (xi) ⊆ Cv with x̃i + (x2
i ) = Pi(−1).

As Cv is a local ring, a consequence of the Nakayama Lemma shows that
x̃i = c · xi for some invertible element c ∈ Cv. Note that c ∈ Cv is invertible
if and only if c(v) 6= 0 in R. If x̃i = c · xi = c′ · xi for invertible c, c′ ∈ Cv
then (c − c′) · xi = 0. If c(v) 6= c′(v) then c − c′ is invertible, so xi = 0 in
Cv, contradicting Kerψv′i = (xi) 6= {0}. Hence c(v) = c′(v), so c(v) ∈ R \ {0}
depends only on the choice of τ and not on the choice of c.

Since different τ, τ ′ ∈ ωS are proportional by a positive function, different
choices x̃i, x̃

′
i for x̃i are proportional by a positive function, so the sign of c(v)

is independent of choices. As xi induces a boundary defining function for S at
v′i, we can show that xi is a possible choice for x̃i, so that c(v) > 0. The sign
−1 in Pi(−1) is necessary because in Definition 6.1(e), ωX is identified with the
negative orientation on F [0,∞).

We have now shown that using only the data Cv,Dv′i
, ψv′i and NS, %S, ωS

at v′i, we can choose an element x̃i ∈ Kerψv′i = (xi) such that x̃i = c · xi for
c ∈ Cv with c(v) > 0. The point here is that the inclusion iS : ∂S → S at near
v′i ∈ ∂S determines the hypersurface xi = 0 in S, but it may not be enough
to distinguish the two ‘sides’ xi > 0 and xi 6 0 of this hypersurface. We use
the orientation ωS to distinguish the two. This is important because if xi, x̃i, c
are functions on Ṽ with x̃i = c · xi, then x̃i is a suitable replacement for the
coordinate xi near v if and only if c(v) > 0. This proves (b). Parts (c)–(f) and
the rest of the proposition now follow from Definition 3.20 and Propositions
3.21 and 3.23 with only straightforward modifications.

In Example 3.24 we studied a family of d-manifolds Ua,b. Proposition 3.23
implies that every ‘standard model’ d-manifold SV,E,s is locally 1-isomorphic
to some Ua,b. But Ua,b is independent of b up to equivalence, so as in Propo-
sition 3.25, every d-manifold X is locally equivalent to some Ua,0. Now b in
Proposition 7.10 plays the same rôle as b in Ua,b in Example 3.24. Therefore

392



SV,E,s near v in Proposition 7.10 is independent of b up to equivalence. So
up to equivalence we can set b = 0. Proposition 7.10 then shows that k, l,m
and f1, . . . , fl may be reconstructed from v, S, ∂S, iS,NS, %S, ωS, and a can be
recovered from vdim S = dimV − rankE by a = k − l +m− vdim S. Thus we
deduce analogues of Corollaries 3.26 and 3.27:

Corollary 7.11. Let X be a d-manifold with corners, and x ∈ X. Then there
exists an open neighbourhood U of x in X and an equivalence U ' SV,E,s in
dManc for some manifold with corners V, vector bundle E → V and smooth
section s : V → E which identifies x ∈ U with a point v ∈ Sk(V ) ⊆ V, where
Sk(V ) is as in §5.1, such that s(v) = ds|Sk(V )(v) = 0. Furthermore, V,E, s are
determined up to non-canonical isomorphism near v by X near x.

Here in Proposition 7.10 the depth k stratum Sk(V ) of V is locally identified
with 0k×Rm+b ⊆ [0,∞)k×Rm+b = Rk+m+b

k , so ∂fi
∂xj

(0, . . . , 0) = 0 for i = 1, . . . , l

and j = k + 1, . . . , k +m translates to ds|Sk(V )(v) = 0 by (7.3) and b = 0.

Corollary 7.12. Let X be a d-manifold with corners. Then X is determined
up to non-canonical equivalence near each point x ∈ X by the ‘classical’ data
X, ∂X, iX,NX, %X, ωX in X and the integer vdim X.

Corollary 7.12 shows that locally the only extra information in the ‘derived’
data in X up to non-canonical equivalence is vdim X ∈ Z. Globally, the extra
information is like a vector bundle E over X. Here is an analogue of Proposition
3.28 for d-manifolds with corners.

Proposition 7.13. Let X be a d-manifold with corners. Then X is a manifold
(that is, X ∈ M̄anc) if and only if φC(X) : EC(X) → FC(X) has a left inverse,
or equivalently, if the cotangent bundle T ∗(C(X)) of the corners C(X) of X is
a vector bundle of mixed rank on C(X), in the sense of Definition 7.8.

Proof. Since T ∗(C(X)) is a virtual vector bundle of mixed rank, the two condi-
tions that φC(X) has a left inverse, and T ∗(C(X)) is a vector bundle of mixed
rank, are equivalent by Proposition 3.9. Using Proposition 2.25, Lemma 2.26
and Theorem 6.29 we find the condition that φC(X) has a left inverse is local in
X, that is, it is enough to check it on any cover of X by open d-submanifolds
U, and unchanged under replacing X by an equivalent X̃ in dManc.

For the ‘only if’ part, let X be a manifold with corners and X = FdManc

Manc (X),
as in Definition 6.15. Then EX = 0, and EC(X) = 0, so φC(X) : EC(X) → FC(X)

trivially has a left inverse. More generally, if X ∈ M̄anc then X ' FdManc

Manc (X)
for some X ∈Manc, so by the first part φC(X) has a left inverse.

For the ‘if’ part, suppose φC(X) has a left inverse. Fix x ∈ X. Then by
Corollary 7.11 there exist open x ∈ U ⊆ X and an equivalence U ' S = SV,E,s
for some V,E, s identifying x ∈ U with v ∈ Sk(V ) ⊆ V , where s(v) =
ds|Sk(V )(v) = 0. Let i−1

V (v) = {v′1, . . . , v′k}, and set w =
(
v, {v′1, . . . , v′k}

)
∈

C(S). Let w : ∗ → C(X) be the corresponding morphism in C∞Sch. Identify-
ing qcoh(∗) with the category of real vector spaces, w∗(φC(S)) becomes the map

0 = ds|Sk(V )(v) : E|∗v → T ∗v (Sk(V )). By the first part, φC(S) has a left inverse
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γ : FC(S) → EC(S), so w∗(γ) is a left inverse for 0 : E|∗v → T ∗v (Sk(V )), which

forces rankE = 0. Thus SV,E,s = SV,0,0 = FdManc

Manc (V ) is a manifold, so U is a
manifold. Since we can cover X by such U, X is a manifold.

In Proposition 3.28, a d-manifold X is a manifold provided φX : EX → FX
has a left inverse. But in the next example, X is a d-manifold with corners such
that φX : EX → FX has a left inverse, but X is not a manifold. This shows that
the conditions over Ck(X) for k > 1 in Proposition 7.13 are really necessary.

Example 7.14. Let X be the d-manifold with corners defined informally by
the inequality x3 > 0 in R. We may write X as a b-transverse fibre product
RRR ×g,RRR,h [0,∞) in dSpac, where g,h = FdManc

Manc (g, h) for g : R → R and
h : [0,∞) → R given by g(x) = x3 and h(y) = y. Equivalently, we may write
X = SV,E,s, where V = R× [0,∞) with coordinates (x, y), and E is the trivial
vector bundle R× V → V , and s(x, y) = y − x3.

Then the d-space X in X is equivalent to [0,∞) = FdSpa
Manc([0,∞)), and

so T ∗X is a vector bundle, and φX : EX → FX has a left inverse. But the
d-space ∂X ' RRR×g,RRR,0 ∗ is a non-reduced point, not a manifold, and φ∂X does
not have a left inverse. So X is not a manifold, and φC(X) has an inverse over
C0(X) ' X, but does not have a left inverse over C1(X) ' ∂X.

7.3 Differential-geometric picture of 1-morphisms

We now develop versions of the material of §3.4 for d-manifolds with corners.
Here is the analogue of Definition 3.30.

Definition 7.15. Let V,W be manifolds with corners, E → V , F → W be
vector bundles, and s : V → E, t : W → F be smooth sections. Write X =
SV,E,s, Y = SW,F,t for the ‘standard model’ principal d-manifolds with corners

from Definition 7.2. Suppose f : V →W is a smooth map, and f̂ : E → f∗(F ) is

a morphism of vector bundles on V satisfying f̂◦s = f∗(t)+O(s2) in C∞(f∗(F )),
where f∗(t) = t ◦ f , and O(s2) is as in Definition 3.29. By Definition 7.2, the
d-spaces X = SV,E,s and Y = SW,F,t in X = (X,∂X, iX, ωX) and Y =
(Y ,∂Y , iY, ωY) are defined as in Definition 3.13 for the without corners case.

Define a 1-morphism g : X → Y in dSpa using f, f̂ exactly as in Definition 3.30.
To show g : X → Y is a 1-morphism in dManc, suppose x ∈ X with

g(x) = y ∈ Y , and y′ ∈ ∂Y with iY(y′) = y. Then x ∈ V with s(x) = 0, and
f(x) = y ∈ W with t(w) = 0, and y′ ∈ ∂W with iW (y′) = y. Let (W̃ , b) be a
boundary defining function for W at y′, as in Definition 5.4, so that y ∈ W̃ ⊆W
is open and b : W̃ → [0,∞) is smooth. Then by Definition 5.5, either:

(i) there exists an open x ∈ Ṽ ⊆ f−1(W̃ ) ⊆ V such that (Ṽ , b ◦ f |Ṽ ) is a
boundary defining function for V at some x′ ∈ i−1

V (x) ⊂ ∂V ; or

(ii) there exists open x ∈ Ṽ ⊆ f−1(W̃ ) ⊆ V with b ◦ f |Ṽ = 0.

In case (i), define Ṽ , W̃ , b = FdSpa
Manc(Ṽ , W̃ , b), and set X̃ = π−1

V (Ṽ ) and

Ỹ = πW
−1(W̃ ). Then x ∈ X̃ ⊆X and y ∈ Ỹ ⊆ Y are open, with g(X̃) ⊆ Ỹ .
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By Definition 7.2, since (Ṽ , b ◦ f |Ṽ ) and (W̃ , b) are boundary defining functions
for V,W at x′, y′, so (X̃, b◦f ◦πV |X̃) and (Ỹ , b◦πW|Ỹ ) are boundary defining
functions for X,Y at x′, y′, respectively. Since πW ◦ g = f ◦ πV , we see that(
X̃, (b ◦ πW|Ỹ ) ◦ g|X̃

)
is a boundary defining function for X at x′. Hence

Definition 6.2(i) holds for g at x′, y′. Similarly, in case (ii) Definition 6.2(ii)
holds for g at x, y′. Therefore g : X→ Y is a 1-morphism in dManc, and

Sg =
{

(x′, y′) ∈ ∂X ×Y ∂Y ⊆ ∂V ×W ∂W : (x′, y′) ∈ Sf
}
,

T g =
{

(x, y′) ∈ X ×Y ∂Y ⊆ V ×W ∂W : (x, y′) ∈ Tf
}
.

(7.5)

We will also write g : X → Y as Sf,f̂ : SV,E,s → SW,F,t, and call it a standard
model 1-morphism.

Suppose now that Ṽ ⊆ V is open, with inclusion map iṼ : Ṽ → V . Write
Ẽ = E|Ẽ = i∗

Ṽ
(E) and s̃ = s|Ẽ . Define iṼ ,V = SiṼ ,idẼ : SṼ ,Ẽ,s̃ → SV,E,s.

Here are the analogues of Lemmas 3.32 and 3.33. The proofs are obvious
generalizations of those in §3.4.

Lemma 7.16. Let V,W be manifolds with corners, E → V, F → W vector
bundles, s : V → E, t : W → F smooth sections, f1, f2 : V → W smooth
maps, and f̂1 : E → f∗1 (F ), f̂2 : E → f∗2 (F ) vector bundle morphisms with

f̂1 ◦ s = f∗1 (t) + O(s2) and f̂2 ◦ s = f∗2 (t) + O(s2), so we have 1-morphisms
Sf1,f̂1

,Sf2,f̂2
: SV,E,s → SW,F,t. Then Sf1,f̂1

= Sf2,f̂2
if and only if f1 =

f2 +O(s2) and f̂1 = f̂2 +O(s), in the notation of Definition 3.29.

Lemma 7.17. Let V be a manifold with corners, E → V a vector bundle,
s : V → E a smooth section, and Ṽ ⊆ V be open. Then iṼ ,V : SṼ ,Ẽ,s̃ → SV,E,s
is a 1-isomorphism with an open d-submanifold of SV,E,s. If Ṽ is an open
neighbourhood of s−1(0) in V then iṼ ,V : SṼ ,Ẽ,s̃→SV,E,s is a 1-isomorphism.

From (7.5) we deduce:

Lemma 7.18. In Definition 7.15, the 1-morphism Sf,f̂ : SV,E,s → SW,F,t,
is simple, semisimple, or flat, if and only if f is simple, semisimple, or flat
respectively near {v ∈ V : s(v) = 0} ⊆ V .

Here is the analogue of Theorem 3.34:

Theorem 7.19. Let V,W be manifolds with corners, E → V, F →W be vector
bundles, and s : V → E, t : W → F be smooth sections. Define principal d-
manifolds with corners X = SV,E,s, Y = SW,F,t, with topological spaces X =
{v ∈ V : s(v) = 0} and Y = {w ∈ W : t(w) = 0}. Suppose g : X → Y
is a 1-morphism. Then there exist an open neighbourhood Ṽ of X in V, a
smooth map f : Ṽ → W, and a morphism of vector bundles f̂ : Ẽ → f∗(F )

with f̂ ◦ s̃ = f∗(t), where Ẽ = E|Ṽ , s̃ = s|Ṽ , such that g = Sf,f̂ ◦ i−1

Ṽ ,V
, where

iṼ ,V : SṼ ,Ẽ,s̃→SV,E,s, Sf,f̂ : SṼ ,Ẽ,s̃→SW,F,t, and i−1

Ṽ ,V
exists by Lemma 7.17.
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Proof. We explain how to modify the proof of Theorem 3.34 to include corners.
In the first part of the proof we fixed x ∈ X ⊆ V with g(x) = y ∈ Y ⊆ W ,
and chose coordinates (x1, . . . , xm) on V near x and (y1, . . . , yn) on W near y
which induced isomorphisms of C∞-local rings C∞x (V ) ∼= C∞0 (Rm), C∞y (W ) ∼=
C∞0 (Rn), and we showed that we can choose open x ∈ Ṽx ⊆ V and smooth
fx : Ṽx →W such that (3.23) commutes with Ṽx, fx in place of Ṽ , f .

When V,W have corners, setting k = |i−1
V (x)|, l = |i−1

W (y)|, we instead have
C∞x (V ) ∼= C∞0 (Rmk ) and C∞y (W ) ∼= C∞0 (Rnl ), where the coordinates on V near
x and on Rmk are (x1, . . . , xm) with x1, . . . , xk ∈ [0,∞), and the coordinates on
W near y and on Rnl are (y1, . . . , yn) with y1, . . . , yl ∈ [0,∞). Write i−1

V (x) =
{v′1, . . . , v′k} ⊆ ∂X ⊆ ∂V and i−1

W (y) = {w′1, . . . , w′l} ⊆ ∂Y ⊆ ∂W , where v′i
corresponds to the local boundary component xi = 0 of Rmk at 0 for i = 1, . . . , k,
and w′j corresponds to yj = 0.

For each j = 1, . . . , l, either (x,w′j) ∈ T g, or (x,w′j) = jg(v′i, w
′
j) for some

i = 1, . . . , k with (v′i, w
′
j) ∈ Sg, and this v′i is unique as jg is injective. Renumber

w′1, . . . , w
′
l, y1, . . . , yl so that (v′bj , w

′
j) ∈ Sg for j = 1, . . . , a and some a 6 l and

b1, . . . , ba ∈ {1, . . . , k}, and (x,w′j) ∈ T g for j = a + 1, . . . , l. We want to
construct a morphism ψ : C∞0 (Rnl )→ C∞0 (Rmk ) such that Specψ is a germ at 0
of smooth maps Rmk → Rnl , and if fx is the corresponding germ at x of smooth
maps V →W , the following analogue of (3.25) commutes:

C∞0 (Rnl )
ψ

//

∼=��

C∞0 (Rmk )
∼= ��

C∞y (W )
f∗x //

��

C∞x (V )

��
C∞y (W )/I2

t,y

φ′x,y // C∞x (V )/I2
s,x

C∞(W )/I2
t

φ′ //

OO

C∞(V )/I2
s .

OO

(7.6)

Suppose we had such a ψ. For j = 1, . . . , n, choose ψj ∈ C∞(Rmk ) such
that the image of ψj in C∞0 (Rmk ) is ψ(yj). Then in coordinates (x1, . . . , xm) on

Ṽx ⊆ V and (y1, . . . , yn) on W near y, the smooth map fx : Ṽx →W acts by

fx : (x1, . . . , xm) 7−→ (y1, . . . , yn) =
(
ψ1(x1, . . . , xm), . . . , ψn(x1, . . . , xn)

)
.

The condition that fx is a smooth map of manifolds with corners near x turns
out to be equivalent to:

(a) for all j = 1, . . . , a and (x1, . . . , xm) near 0 in Rmk with xbj = 0, we have

ψj(x1, . . . , xm) = 0 and
∂ψj
∂xbj

(x1, . . . , xm) > 0; and

(b) for all j = a+ 1, . . . , l and (x1, . . . , xm) near 0 in Rmk , ψj(x1, . . . , xm) = 0.

Here (a) comes from (v′bj , w
′
j) ∈ Sg for j = 1, . . . , a, and says that if (x1, . . . , xm)

in Rmk is near 0 with xbj = 0 then fx(x1, . . . , xm) = (y1, . . . , yn) has yj = 0,
and fx pulls the boundary defining function (Rnl , yj) for Rnl at (y1, . . . , yn) back
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to the boundary defining function (Rnl , ψi) for Rmk at (x1, . . . , xm), which is
equivalent to the boundary defining function (Rnl , xbj ). Similarly (b) comes
from (x,w′j) ∈ T g for j = a+1, . . . , l, and says that if (x1, . . . , xm) ∈ Rmk is near
0 with fx(x1, . . . , xm) = (y1, . . . , yn) then yi = 0, and the boundary defining
function (Rnl , yi) for Rnl at (y1, . . . , yn) pulls back to zero near (x1, . . . , xm).

Let Ĩs,x, Ĩt,y be the ideals in C∞0 (Rmk ), C∞0 (Rnl ) identified with Is,x, It,y by

C∞x (V ) ∼= C∞0 (Rmk ) and C∞y (W ) ∼= C∞0 (Rnl ), and let φ̃′x,y : C∞0 (Rnl )/Ĩ2
t,y →

C∞0 (Rmk )/Ĩ2
s,x be identified with φ′x,y. Then (7.6) commuting is equivalent to

ψj(x1, . . . , xm) + Ĩ2
s,x = φ̃′x,y(yj + Ĩ2

t,y) for j = 1, . . . , n. (7.7)

We must show that we can choose ψ1, . . . , ψn ∈ C∞(Rmk ) such that (7.7) and
(a),(b) above hold. For j = 1, . . . , a, using Definition 6.2(i) for g at (v′bj , w

′
j) ∈

Sg and noting that xbj + Ĩ2
s,x, yj + Ĩ2

t,y are identified with boundary defining

functions for X at v′bj and Y at w′j , we find that φ̃′x,y(yj + Ĩ2
t,y) lies in the

ideal (xbj + Ĩ2
s,x) in C∞0 (Rmk )/Ĩ2

s,x. Hence we can choose ψj ∈ C∞(Rmk ) of the
form ψj(x1, . . . , xm) = xbj · cj(x1, . . . , xm) for cj ∈ C∞(Rmk ) so that (7.7) holds.
Furthermore, the compatibility condition of g with ωX, ωY imply that we can
take cj(0, . . . , 0) > 0. So (a) holds.

For j = a+ 1, . . . , l, using Definition 6.2(ii) for g at (x,w′j) ∈ T g and noting

that yi + Ĩ2
t,y is identified with a boundary defining function for Y at w′i shows

that φ̃′x,y(yj + Ĩ2
t,y) = 0. So we may take ψj = 0, and (7.7) and (b) hold. For

j = l + 1, . . . , n we choose arbitrary ψj ∈ C∞(Rmk ) such that (7.7) holds. Thus
we can choose ψ1, . . . , ψn to satisfy all the conditions. These define ψ in (7.6),
where fx is a germ at x of smooth functions V → W . This generalizes the
choice of Ṽx, fx in the proof of Theorem 3.34 to the corners case.

Next we explain how to generalize the proof which joins Ṽx, fx for x ∈ X
using a partition of unity on Ṽ to get a global choice of open X ⊆ Ṽ ⊆ V and
smooth f : Ṽ → W . The important point here is that the Riemannian metric
h on W should be chosen so that the strata Sk(W ) of W from §5.1 should be
locally geodesically closed, that is, a geodesic in

(
Sk(W ), h|Sk(W )

)
should also be

a geodesic in (W,h). This implies that the definition of UW ⊆W ×W and the
smooth map Γ : UW × [0, 1] → W still works (in particular, UW is open), and
if (w0, w1) ∈ UW with w0, w1 lie in the same local component of Sk(W ) then
Γ(w0, w1, t) ∈ Sk(W ) for t ∈ [0, 1], as the geodesic from w0 to w1 in Sk(W ) is
the geodesic from w0 to w1 in W .

Let Ṽ , f be constructed as in the proof of Theorem 3.34. We claim that
making Ṽ smaller if necessary, f : Ṽ → W is a smooth map of manifolds with
corners. To see this, it is enough to show that in the case S = {x1, x2}, the map
f in (3.27) made by combining the smooth maps fx1 : Ṽx1 →W and fx2 : Ṽx2 →
W is a smooth map of manifolds with corners near X ⊆ Ṽ . The important point
is this: suppose x ∈ Ṽx1

∩ Ṽx2
∩X. Then fx1

(x) = fx2
(x) = g(x) = y ∈ Y . We

have x ∈ Sk(V ) and y ∈ Sl(W ) for some unique k, l. Suppose v lies in the same
connected component of Ṽx1

∩ Ṽx2
∩ Sk(V ) as x. Then fx1

(v) and fx2
(v) both

lie in Sl(W ), since it is a property of smooth maps of manifolds with corners
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f : V →W that depthW f(v) is locally constant on each stratum Sk(V ).
Therefore for v ∈ Ṽx1

∩ Ṽx2
close to x, fx1

(v) and fx2
(v) lie in the same

stratum Sl(W ) of W . We can also suppose they lie in the same local component,
so that f(v) = Γ

(
fx1

(v), fx2
(v), ηx2

(v)
)

in (3.27) also lies in Sl(W ). Thus, the
construction of f in the proof of Theorem 3.34 yields a weakly smooth map
f : Ṽ → W such that depthW f(v) is locally constant on each stratum Sk(Ṽ )
near X. This and the fxi smooth and coinciding at X imply that f is smooth
near X, so making Ṽ smaller if necessary, f is smooth. This generalizes the
choice of Ṽ and f : Ṽ → W in the proof of Theorem 3.34 to the corners case.
The rest of the proof works with essentially no changes.

We can generalize Definition 3.35 to interpret 2-morphisms λ : Sf,f̂ ⇒ Sg,ĝ
in dManc using morphisms Λ : E → f∗(TW ) on V , but we will not use this.

7.4 Equivalences of d-manifolds with corners, and gluing

Proposition 2.21 and Corollary 2.24 gave sufficient conditions for a 1-morphism
f : X → Y in dSpa to be an equivalence or étale. Theorem 3.36 showed that
when X,Y ∈ dMan, these conditions can be weakened. Similarly, Proposition
6.21 and Corollary 6.23 gave sufficient conditions for a 1-morphism f : X→ Y
in dSpac to be an equivalence or étale. In an analogue of Theorem 3.36, we
will show that when X,Y ∈ dManc, these conditions can be weakened.

Theorem 7.20. Suppose f : X → Y is a 1-morphism of d-manifolds with
corners. Then the following are equivalent:

(i) f is étale;

(ii) f is simple and flat, in the sense of Definition 6.11, and Ωf : f∗(T ∗Y)→
T ∗X is an equivalence in vqcoh(X); and

(iii) f is simple and flat, and (2.34) is a split short exact sequence in qcoh(X).

If in addition f : X → Y is a bijection, then f is an equivalence in dManc.

Proof. The proof follows that of Theorem 3.36, using Proposition 6.21, Corollary
6.23, Theorem 7.19 and Corollary 7.11 in place of Proposition 2.21, Corollary
2.24, Theorem 3.34, and Proposition 3.25, respectively. The main difference is
this: rather than having open 0 ∈ V ⊆ Rm and 0 ∈ W ⊆ Rn and s, t with
s(0) = ds(0) = 0 and t(0) = dt(0) = 0, we have open 0 ∈ V ⊆ Rmk and
0 ∈W ⊆ Rnl and s, t with s(0) = t(0) = 0 and

∂s
∂xi

(0) = 0, i = k + 1, . . . ,m, and ∂t
∂yj

(0) = 0, j = l + 1, . . . , n. (7.8)

To show (ii),(iii) imply (i), suppose (ii),(iii) hold. Let i−1
X (x)={v′1, . . . , v′k}⊆

∂X ⊆ ∂X, where v′i corresponds to the boundary component xi = 0 in Rmk , and
i−1
X (y) = {w′1, . . . , w′l} ⊆ ∂Y ⊆ ∂W , where v′i corresponds to the boundary

component xi = 0 in Rmk , and w′j to yj = 0 in Rnl . For each j = 1, . . . , l we
have (x,w′j) ∈ X ×Y ∂Y = jf (Sf ) since T f = ∅ as f is flat, so (x,w′j) =
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jf (v′i, w
′
j) for some i = 1, . . . , k, and i is unique as jf is injective. Also, each

v′i is sf (v′i, w
′
j) for some unique j, since sf is a bijection as f is simple. Hence

there is a 1-1 correspondence between v′1, . . . , v
′
k and w′1, . . . , w

′
l such that v′i ↔

w′j if (v′i, w
′
j) ∈ Sf . So k = l. Renumber w′1, . . . , w

′
l and y1, . . . , yl so that

(v′i, w
′
i) ∈ Sf for i = 1, . . . , k. Then writing f : V → W as f = (f1, . . . , fn) for

fj = fj(x1, . . . , xm), we see that

∂fj
∂xi

(0, . . . , 0) =


0, i, j 6 k and i 6= j,

> 0, i = j 6 k,

in R, i > k or j > k.

(7.9)

The condition that 0∗(Ωg) is an equivalence in the proof of Theorem 3.36
then becomes that the following is a (split) exact sequence of real vector spaces:

0 // F |∗0
f̂ |∗0⊕−dt(0)∗ // E|∗0 ⊕ T ∗0 R

n df |∗0⊕ds(0)∗ // T ∗0 R
m // 0. (7.10)

But using (7.8)–(7.9) and k = l we can show that (7.10) is exact only if df |0 :

T0V → T0W and f̂ |0 : E|0 → F |0 are isomorphisms. The rest of the proof is as
for Theorem 3.36.

Here is the analogue of Theorem 3.39 for d-manifolds with corners. To prove
it, note that the proof of Theorem 3.39 shows that (2.34) is split exact if and
only if (7.11) is exact for all v ∈ s−1(0). The theorem then follows from Lemma
7.18 and Theorem 7.20.

Theorem 7.21. Let V,W be manifolds with corners, E → V, F → W be
vector bundles, s : V → E, t : W → F be smooth sections, f : V → W
be smooth, and f̂ : E → f∗(F ) be a morphism of vector bundles on V with

f̂ ◦s = f∗(t)+O(s2). Then Definitions 7.2 and 7.15 define principal d-manifolds
with corners SV,E,s,SW,F,t and a 1-morphism Sf,f̂ : SV,E,s → SW,F,t. This
Sf,f̂ is étale if and only if f is simple and flat near s−1(0) ⊆ V, in the sense
of Definition 5.9, and for each v ∈ V with s(v) = 0 and w = f(v) ∈ W, the
following sequence of vector spaces is exact:

0 // TvV
ds(v)⊕ df(v) // Ev ⊕ TwW

f̂(v)⊕−dt(w) // Fw // 0. (7.11)

Also Sf,f̂ is an equivalence if and only if in addition f |s−1(0) : s−1(0)→ t−1(0)
is a bijection, where s−1(0)={v ∈ V : s(v)=0}, t−1(0)={w ∈W : t(w)=0}.

We can also prove the following analogues of Theorems 3.41 and 3.42. Theo-
rem 7.22 is immediate from Theorem 6.25. Theorem 7.23 follows from Theorems
6.26 and 7.21 in the same way as Theorem 3.42; we include the condition that
eij is simple and flat in (e) so that, together with (iii), Theorem 7.21 implies that
Seij ,êij : SVij ,Ei|Vij ,si|Vij → SVj ,Ej ,sj is an equivalence with its image in dManc.

Theorem 7.22. Suppose X,Y are d-manifolds with corners with vdim X =
vdim Y = n in Z, and U ⊆ X, V ⊆ Y are open d-submanifolds, and f : U→ V
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is an equivalence in dManc. At the level of topological spaces, we have open
U ⊆ X, V ⊆ Y with a homeomorphism f : U → V, so we can form the quotient
topological space Z := X qf Y = (X q Y )/ ∼, where the equivalence relation ∼
on X q Y identifies u ∈ U ⊆ X with f(u) ∈ V ⊆ Y .

Suppose Z is Hausdorff. Then there exist a d-manifold with corners Z with
vdim Z = n, open d-submanifolds X̂, Ŷ in Z with Z = X̂ ∪ Ŷ, equivalences
g : X → X̂ and h : Y → Ŷ such that g|U and h|V are both equivalences with
X̂ ∩ Ŷ, and a 2-morphism η : g|U ⇒ h ◦ f : U → X̂ ∩ Ŷ. Furthermore, Z is
independent of choices up to equivalence.

Theorem 7.23. Suppose we are given the following data:

(a) an integer n;

(b) a Hausdorff, second countable topological space X;

(c) an indexing set I, and a total order < on I;

(d) for each i in I, a manifold with corners Vi, a vector bundle Ei → Vi with
dimVi−rankEi = n, a smooth section si : Vi → Ei, and a homeomorphism
ψi : Xi → X̂i, where Xi = {vi ∈ Vi : si(vi) = 0} and X̂i ⊆ X is open; and

(e) for all i < j in I, an open submanifold Vij ⊆ Vi, a simple, flat map
eij : Vij → Vj , and a morphism of vector bundles êij : Ei|Vij → e∗ij(Ej).

Let this data satisfy the conditions:

(i) X =
⋃
i∈I X̂i;

(ii) if i < j in I then êij ◦ si|Vij = e∗ij(sj), and ψi(Xi ∩ Vij) = X̂i ∩ X̂j , and
ψi|Xi∩Vij = ψj ◦ eij |Xi∩Vij , and if vi ∈ Vi with si(vi) = 0 and vj = eij(vi)
then the following sequence of vector spaces is exact:

0 // TviVi
dsi(vi)⊕ deij(vi) // Ei|vi⊕TvjVj

êij(vi)⊕−dsj(vj) // Ej |vj // 0;

(iii) if i < j < k in I then eik|Vik∩e−1
ij (Vjk) = ejk ◦ eij |Vik∩e−1

ij (Vjk) + O(s2
i ) and

êik|Vik∩e−1
ij (Vjk) = eij |∗Vik∩e−1

ij (Vjk)
(êjk) ◦ êij |Vik∩e−1

ij (Vjk) +O(si).

Then there exist a d-manifold with corners X with vdim X = n and topolog-
ical space X, and a 1-morphism ψi : SVi,Ei,si → X in dManc with underlying

continuous map ψi which is an equivalence with the open d-submanifold X̂i ⊆ X
corresponding to X̂i ⊆ X for all i ∈ I, such that for all i < j in I there exists a
2-morphism ηij : ψj ◦ Seij ,êij ⇒ ψi ◦ iVij ,Vi , where Seij ,êij : SVij ,Ei|Vij ,si|Vij →
SVj ,Ej ,sj and iVij ,Vi : SVij ,Ei|Vij ,si|Vij → SVi,Ei,si are as in Definition 7.15. This

X is unique up to equivalence in dManc.
Suppose also that Y is a manifold with corners, and gi : Vi → Y are smooth

maps for all i ∈ I, and gj ◦ eij = gi|Vij + O(s2
i ) for all i < j in I. Then

there exist a 1-morphism h : X → Y unique up to 2-isomorphism, where Y =
FdManc

Manc (Y ) = SY,0,0, and 2-morphisms ζi : h ◦ ψi ⇒ Sgi,0 for all i ∈ I. Here
SY,0,0 is from Definition 7.2 with vector bundle E and section s both zero, and
Sgi,0 : SVi,Ei,si → SY,0,0 = Y is from Definition 7.15 with ĝi = 0.
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All the ingredients in Theorem 7.23 are described wholly in differential-
geometric or topological terms. So we can use it to construct d-manifold with
corner structures on spaces coming from other areas of geometry, for instance,
on moduli spaces of J-holomorphic curves with boundary in a Lagrangian.

7.5 Submersions, immersions, and embeddings

In §4.1 we defined two kinds of submersions (submersions and w-submersions),
immersions and embeddings for d-manifolds without boundary. In §5.4 we
defined two kinds of submersions (submersions and s-submersions), and in §5.7
three kinds of immersions (immersions, s- and sf-immersions), and embeddings
for manifolds with corners. For d-manifolds with corners, in an analogue of
Definition 4.4, we combine both alternatives, giving four types of submersions,
and six types of immersions and embeddings.

Definition 7.24. Let f : X→ Y be a 1-morphism in dManc. As in Definition
7.5, T ∗X = (EX ,FX , φX) and f∗(T ∗Y) =

(
f∗(EY ), f∗(FY ), f∗(φY )

)
are virtual

vector bundles on X of ranks vdim X, vdim Y, and Ωf = (f ′′, f2) : f∗(T ∗Y)→
T ∗X is a 1-morphism in vvect(X). Also we have 1-morphisms C(f), Ĉ(f) :
C(X) → C(Y) as in §6.7, so we can form ΩC(f) : C(f)∗(T ∗C(Y)) → T ∗C(X)
and ΩĈ(f) : Ĉ(f)∗(T ∗C(Y))→ T ∗C(X). Then:

(a) We call f a w-submersion if f is semisimple and flat and Ωf is weakly
injective. We call f an sw-submersion if it is also simple.

(b) We call f a submersion if f is semisimple and flat and ΩC(f) is injective.
We call f an s-submersion if it is also simple.

(c) We call f a w-immersion if Ωf is weakly surjective. We call f an sw-
immersion, or sfw-immersion, if f is also simple, or simple and flat.

(d) We call f an immersion if ΩĈ(f) is surjective. We call f an s-immersion
if f is also simple, and an sf-immersion if f is also simple and flat.

(e) We call f a w-embedding, sw-embedding, sfw-embedding, embedding, s-
embedding, or sf-embedding, if f is a w-immersion, . . . , sf-immersion, re-
spectively, and f : X → f(X) is a homeomorphism, so f is injective.

More generally, we make the same definitions for f : X → Y a 1-morphism in
dM̌anc from Definition 7.8.

Parts (c)–(e) enable us to define d-submanifolds X of a d-manifold with
corners Y. Open d-submanifolds are open d-subspaces X in Y. For more
general d-submanifolds, we call f : X → Y a w-immersed, sw-immersed, sfw-
immersed, immersed, s-immersed, sf-immersed, w-embedded, sw-embedded, sfw-
embedded, embedded, s-embedded, or sf-embedded d-submanifold of Y if X,Y
are d-manifolds with corners and f is a w-immersion, . . . , sf-embedding, re-
spectively.

Remark 7.25. The conditions in Definition 7.24(a)–(d) are chosen to make
the results of Chapter 4 extend to d-manifolds with corners, and in particular
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so that Theorem 7.31 below holds. For (a),(b), note that submersions in Manc

are semisimple and flat, so making (w-)submersions in dManc semisimple and
flat is natural. As f is flat C(f) = Ĉ(f), so ΩC(f) injective in (b) is equivalent
to ΩĈ(f) injective. Also, in (a),(c) one can show that Ωf weakly injective or
weakly surjective is equivalent to ΩĈ(f) weakly injective or weakly surjective.
So in (a)–(d) we can rewrite the conditions on Ωf ,ΩC(f),ΩĈ(f) uniformly to
say that ΩĈ(f) is weakly injective/injective/weakly surjective/surjective.

If f is simple then C(f) maps Ck(X) → Ck(Y) for all k. Using this, one
can show that f is an s-submersion if and only if f is simple and flat and Ωf is
injective. Similarly, f is an sf-immersion if and only if f is simple and flat and
Ωf is surjective.

We show that for each kind of submersion and immersion, C(f), Ĉ(f),f+

and f− inherit the same properties as f . We do not include the various kinds

of embeddings, as f injective does not imply C(f), Ĉ(f),f± injective.

Proposition 7.26. Suppose f : X → Y is a w-submersion, sw-submersion,
. . . , s-immersion or sf-immersion in dManc. Then C(f) and Ĉ(f) : C(X)→
C(Y) from §6.7 are also w-submersions, . . . , sf-immersions in dM̌anc. If f

is semisimple then f+ : ∂f+X → Y and f− : ∂f−X → ∂Y from §6.3 are also
w-submersions, . . . , sf-immersions in dManc.

Proof. In the proof of Proposition 6.49 we explained that points of Ck(Cl(X))
may be written

(
x, {x′1, . . . , x′k}, {x′k+1, . . . , x

′
k+l}

)
for x ∈ X and distinct x′1,

. . . , x′k+l in i−1
X (x). Using the ideas of §6.7 one can show there is a natural

1-morphism Ik,lX : Ck(Cl(X)) → Ck+l(X) acting on points by
(
x, {x′1, . . . , x′k},

{x′k+1, . . . , x
′
k+l}

)
7→
(
x, {x′1, . . . , x′k+l}

)
. It is a local 1-isomorphism, and so

étale. Let IX : C(C(X)→ C(X) act by Ik,lX on Ck(Cl(X)) for all k, l > 0.
We now claim that the following diagrams strictly commute in dM̌anc:

C(C(X))

IX��
Ĉ(C(f))

// C(C(Y))

IY ��

C(C(X))

IX��
Ĉ(Ĉ(f))

// C(C(Y))

IY ��
C(X)

Ĉ(f) // C(Y), C(X)
Ĉ(f) // C(Y).

(7.12)

To prove this, we verify that (7.12) commutes at the level of points, and use
Theorem 6.29(a) for C(f), C(C(f)) and ΠX ◦ IX = ΠX ◦ΠC(X), ΠY ◦ IY =
ΠY ◦ΠC(Y). Since (7.13) commutes with IX, IY local 1-isomorphisms, we see
that ΩĈ(C(f)),ΩĈ(Ĉ(f)) are both locally identified with ΩĈ(f).

Hence ΩĈ(f) weakly injective/injective/weakly surjective/surjective implies
that ΩĈ(C(f)),ΩĈ(Ĉ(f)) are both weakly injective/. . . /surjective. But as in Re-
mark 7.25, the conditions on Ωf ,ΩC(f),ΩĈ(f) in Definition 7.24(a)–(d) equiv-
alently apply to ΩĈ(f). Also, one can show that f simple, semisimple or flat
implies C(f), Ĉ(f) are simple, semisimple or flat, respectively. Therefore f
a w-submersion, . . . , sf-immersion implies C(f), Ĉ(f) are w-submersions, . . . ,
sf-immersions. The result for f+,f− then follows from Proposition 6.30.
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Here is the analogue of Proposition 4.5, proved the same way. By ‘w-
submersion, . . . , sf-embedding’ we mean all 16 classes in Definition 7.24.

Proposition 7.27. (i) Any equivalence of d-manifolds with corners is a w-
submersion, submersion, . . . , sf-embedding.

(ii) If f , g : X→ Y are 2-isomorphic 1-morphisms of d-manifolds with corners
then f is a w-submersion, . . . , sf-embedding, if and only if g is.

(iii) Compositions of w-submersions, . . . , sf-embeddings are of the same kind.

(iv) The conditions that a 1-morphism f : X → Y in dManc is any kind of
submersion or immersion are local in X and Y. The conditions that f is any
kind of embedding are local in Y, but not in X.

Here are the analogues of Propositions 4.6 and 4.7 and Theorem 4.8.

Proposition 7.28. (a) Let f : X → Y be a submersion in dManc. Then
vdim X > vdim Y, and if vdim X = vdim Y then f is étale.

(b) Let f : X → Y be an immersion in dManc. Then vdim X 6 vdim Y. If
f is an s- or sf-immersion and vdim X = vdim Y then f is étale.

Proof. For (a), as ΩC(f) is injective, and C0
0 (f) : C0(X) → C0(Y) is identified

with f : X→ Y, so Ωf : f∗(T ∗Y)→ T ∗X is injective, where T ∗X, f∗(T ∗Y) ∈
vvect(X) have ranks vdim X, vdim Y. Therefore Proposition 4.3(iv) shows that
vdim X > vdim Y, and if vdim X = vdim Y then Ωf is an equivalence.

Suppose vdim X = vdim Y. By definition f is semisimple and flat. If f is
not simple then sf : Sf → ∂X is not surjective, and ∂X \ Im(sf ) ⊆ Cf ,01 (X),

so that Cf ,01 (X) 6= ∅. But ΩC0
1 (f) : C0

1 (f)∗(T ∗C0(Y)) → T ∗Cf ,01 (X) is injec-

tive, and vdimCf ,01 (X) = vdim X − 1 < vdim Y = vdimC0(Y), contradicting
Proposition 4.3(iv). Hence f is simple, so f is étale by Theorem 7.20.

For (b), let x ∈ X, so that (x, ∅) ∈ C0(X), and let Ĉ(f) =
(
y, {y′1, . . . , y′k}

)
∈

Ck(Y). Then ΩĈ(f) injective near (x, ∅) and Proposition 4.3(vi) imply that
vdim X 6 vdim Y − k, so vdim X 6 vdim Y as k > 0. If vdim X = vdim Y
then k = 0 for all x ∈ X, which implies f is flat, and Ĉ0

0 (f) : C0(X)→ C0(Y)
is identified with f : X → Y, so Ωf is injective, and thus an equivalence by
Proposition 4.3(vi). If also f is an s- or sf-embedding then f is simple and flat
and Ωf is an equivalence, so f is étale by Theorem 7.20.

Proposition 7.29. (a) Let f : X → Y be a smooth map of manifolds with
corners, and f = FdManc

Manc (f). Then f is simple, semisimple, flat, a submersion,
s-submersion, immersion, s-immersion, sf-immersion, embedding, s-embedding,
or sf-embedding, in dManc if and only if f is simple, . . . , an sf-embedding in
Manc, respectively. Also f is a w-immersion, sw-immersion, sfw-immersion,
w-embedding, sw-embedding, or sfw-embedding in dManc if and only if f is an
immersion, . . . , sf-embedding in Manc, respectively.

(b) Let f : X → Y be a 1-morphism in dManc, with Y a manifold. Then
f is a w-submersion if and only if it is semisimple and flat, and f is an sw-
submersion if and only if it is simple and flat.
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Proof. For (a), first note that as in §6.4, FdManc

Manc maps sf : Sf → ∂X and Tf
from §5.3 to sf : Sf → ∂X and T f . So comparing Definitions 5.9 and 6.11
shows that f is simple, semisimple or flat if and only if f is. For the rest of
(a), note that as in the proof of Proposition 4.7, df : TX → f∗(TY ) surjective
(or injective) is equivalent to Ωf injective (or surjective, respectively), and the

same holds for C(f), Ĉ(f). Part (a) then follows by comparing Definitions 5.9,
5.28 and 7.24, and using Theorem 5.17(viii) for submersions. Part (b) is as for
Proposition 4.7.

In the next theorem, note that exactness of (7.13) and (7.14) are not in-
dependent: (7.13) exact at the second term implies (7.14) exact at the second
term, and (7.14) exact at the fourth term implies (7.13) exact at the fourth
term. So in (a) we could replace (7.13)–(7.14) by (7.14), and in (b) we could
replace (7.13)–(7.14) by (7.13). When f is simple and flat near v we have k = l
in equation (7.14).

Theorem 7.30. Let V,W be manifolds with corners, E → V, F → W be
vector bundles, s : V → E, t : W → F be smooth sections, f : V → W
be smooth, and f̂ : E → f∗(F ) be a morphism of vector bundles on V with

f̂ ◦s = f∗(t)+O(s2). Then Definitions 7.2 and 7.15 define principal d-manifolds
with corners SV,E,s,SW,F,t and a 1-morphism Sf,f̂ : SV,E,s → SW,F,t. As in
(3.31), we have a complex

0 // TvV
ds(v)⊕ df(v) // Ev ⊕ TwW

f̂(v)⊕−dt(w) // Fw // 0 (7.13)

for each v ∈ V with s(v) = 0 and w = f(v) ∈W . If v ∈ Sk(V ) and w ∈ Sl(W )
then we also have a complex

0 // Tv(Sk(V ))

(ds(v)⊕ df(v))|
Tv(Sk(V ))

// Ev⊕Tw(Sl(W ))

f̂(v)⊕−dt(w)|
Tw(Sl(W ))

// Fw // 0. (7.14)

(a) Sf,f̂ is a w-submersion if and only if f : V → W is semisimple and flat
near {v ∈ V : s(v) = 0} ⊆ V, and for all v ∈ V with s(v) = 0 and
w = f(v) ∈ W, equations (7.13)–(7.14) are exact at the fourth term. Sf,f̂
is an sw-submersion if and only if also f is simple near {v ∈ V : s(v) = 0}.

(b) Sf,f̂ is a submersion if and only if for all v ∈ V with s(v) = 0 and w =
f(v) ∈W, equations (7.13)–(7.14) are exact at the third and fourth terms.
These imply that f is semisimple and flat near {v ∈ V : s(v) = 0}. Sf,f̂
is an s-submersion if and only if also f is simple near {v ∈ V : s(v) = 0}.

(c) Sf,f̂ is a w-immersion if and only if for all v ∈ V with s(v) = 0 and
w = f(v) ∈W, equations (7.13)–(7.14) are exact at the second term. Sf,f̂
is an sw-immersion (or sfw-immersion) if and only if also f is simple (or
simple and flat) near {v ∈ V : s(v) = 0}.

(d) Sf,f̂ is an immersion if and only if for all v ∈ V with s(v) = 0 and
w = f(v) ∈W, equations (7.13)–(7.14) are exact at the second and fourth
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terms. Sf,f̂ is an s-immersion (or sf-immersion) if and only if also f is
simple (or simple and flat) near {v ∈ V : s(v) = 0}.

The conditions in (a)–(d) are open conditions on v in {v ∈ V : s(v) = 0}.

Proof. In (a),(b) we will need the following facts. Let f, f̂ , v, w, k, l be as in the
theorem. Consider the induced map

(df)∗ : TvV/Tv(S
k(V )) −→ TwW/Tw(Sl(W )). (7.15)

Then f is semisimple and flat (or simple and flat) near v if and only if (7.15)
is surjective (or an isomorphism). Now (7.14) is a subcomplex of (7.13), with
quotient (7.15) in the second and third places and zeroes elsewhere. Thus we
get a long exact sequence of real vector spaces:

H2(7.13) // Ker (7.15) // H3(7.14) // H3(7.13)

��
0 H4(7.13)oo H4(7.14)oo Coker (7.15).oo

(7.16)

Using this we will relate surjectivity of (7.15) with exactness of (7.13)–(7.14) at
the third and fourth places.

For (a), Definition 7.24(a), Lemma 7.18 and the proof of Theorem 4.8(a),
show that Sf,f̂ is a w-submersion if and only if f is semisimple and flat near {v ∈
V : s(v) = 0}, and (7.13) is exact at the fourth term for all v, w. By the first part,
f semisimple and flat imply (7.15) is surjective, so Coker (7.15) = H4(7.13) = 0
in (7.16). Hence H4(7.14) = 0, so (7.14) is exact at the fourth term. This gives
the first part of (a), and the second part follows from Lemma 7.18.

For (b), first suppose that Sf,f̂ is a submersion. Then f is semisimple
and flat near {v ∈ V : s(v) = 0} by Lemma 7.18. Let v, w, k, l be as in
the theorem. Then C(f) : (v, ∅) 7→ (w, ∅). Write i−1

V (v) = {v′1, . . . , v′k} and
i−1
W (w) = {w′1, . . . , w′l}. As f is flat near v, for each j = 1, . . . , l, there exists i =

1, . . . , k with (v′i, w
′
j) ∈ Sf . Hence C(f) :

(
v, {v′1, . . . , v′k}

)
7→
(
w, {w′1, . . . , w′k}

)
.

Since ΩC(f) is injective, the proof of Theorem 4.8(b) at the points (v, ∅) and(
v, {v′1, . . . , v′k}

)
in C(SV,E,s) shows that (7.13) and (7.14) are exact at the third

and fourth terms. This proves the ‘only if’ in the first part of (b).
Next, suppose (7.13) and (7.14) are exact at the third and fourth terms

for all v, w, k, l as in the theorem. Then (7.16) gives Coker (7.15) = 0, so f
is semisimple and flat near v, proving the second sentence of (b), and thus
Sf,f̂ is semisimple and flat by Lemma 7.18. Suppose I ⊆ {v′1, . . . , v′k}, and let
C(f) : (v, I) 7→ (w, J) for J ⊆ {w′1, . . . , w′l}. Then the proof of Theorem 4.8(b)
shows that ΩC(f) is injective near (v, I) ∈ C(SV,E,s) if and only if the following
complex is exact at the third and fourth terms:

0 // T(v,I)(C|I|(V ))

(ds(v)⊕ df(v))|T(v,I)(C|I|(V ))

// Ev⊕T(w,J)(C|J|(W ))

f̂(v)⊕−dt(w)|T(w,J)(C|J|(W ))

// Fw // 0. (7.17)

Now (7.17) interpolates between (7.13) and (7.14), and one can show that
(7.13)–(7.14) exact at third and fourth terms implies (7.17) exact at third and
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fourth terms. Hence ΩC(f) is injective near (v, I) ∈ C(SV,E,s) for all (v, I), so
ΩC(f) is injective, and Sf,f̂ is a submersion. This proves the ‘if’ in the first
part of (b). The last part of (b) follows from Lemma refdm7lem6. Parts (c),(d)
follow using similar arguments, and Theorem 4.8(c),(d). For (c) note that (7.13)
exact at the second term implies (7.14) exact at the third term. For the ‘only
if’ part of (d), we deduce (7.13) and (7.14) exact at second and fourth terms
from ΩĈ(f) surjective at the points (v, ∅) and

(
v, {v′1, . . . , v′k}

)
in C(SV,E,s),

respectively.

Here is the analogue of Theorem 4.9.

Theorem 7.31. Suppose g : X → Y is a 1-morphism of d-manifolds with
corners, and x ∈ X with g(x) = y ∈ Y. Then there exist open d-submanifolds
T ⊆ X and U ⊆ Y with x ∈ T, y ∈ U and g(T) ⊆ U, manifolds with corners
V,W, vector bundles E → V, F → W, smooth sections s : V → E, t : W → F,
a smooth map f : V → W, a morphism of vector bundles f̂ : E → f∗(F ) with

f̂ ◦ s = f∗(t), equivalences i : T → SV,E,s, j : SW,F,t → U, and a 2-morphism
η : j ◦ Sf,f̂ ◦ i⇒ g|T, where Sf,f̂ : SV,E,s → SW,F,t is as in Definitions 7.2 and
7.15. Furthermore:

(a) If g is a w-submersion then we can choose the data T ,U , . . . , j above

such that f : V → W is a submersion in Manc, and f̂ : E → f∗(F ) is
a surjective morphism of vector bundles. If g is an sw-submersion in
dManc, then f is an s-submersion in Manc.

(b) If g is a submersion we can choose T , . . . , j such that f : V → W is a

submersion in Manc, and f̂ : E → f∗(F ) is an isomorphism. If g is an
s-submersion in dManc, then f is an s-submersion in Manc.

(c) If g is a w-immersion we can choose T , . . . , j such that f : V → W

is an immersion in Man, and f̂ : E → f∗(F ) is an injective morphism.
If g is an sw-immersion or sfw-immersion in dManc, then f is an
s-immersion or sf-immersion in Manc.

(d) If g is an immersion we can choose T , . . . , j such that f : V → W

is an immersion and f̂ : E → f∗(F ) is an isomorphism. If g is an s-
immersion or sf-immersion in dManc, then f is an s-immersion or
sf-immersion in Manc.

Here are alternative forms for (a)–(d), excluding (w-)immersions in (c),(d):

(a′) If g is a w-submersion we can choose T , . . . , j such that V = W × Z
for some manifold with corners Z, and f = πW , E = π∗W (F ) ⊕ G for

some vector bundle G→ V, f̂ = idπ∗W (F )⊕ 0, and s = π∗W (t)⊕ u for some
u ∈ C∞(G). If g is an sw-submersion then ∂Z = ∅.

(b′) If g is a submersion we can choose T , . . . , j such that V = W × Z for

some manifold with corners Z, and f = πW , E = π∗W (F ), f̂ = idπ∗W (F ),
s = π∗W (t). If g is an s-submersion then ∂Z = ∅.
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(c′) If g is an sw-immersion we can choose T , . . . , j such that W = V × Z
for open 0 ∈ Z ⊆ Rnk , and f maps v 7→ (v, 0), and f∗(F ) = E ⊕ G for

some G→ V, and f̂ = idE⊕0, f∗(t) = s⊕0. If g is an sfw-immersion
then k = 0, so ∂Z = ∅.

(d′) If g is an s-immersion we can choose T , . . . , j such that W = V × Z
for open 0 ∈ Z⊆Rnk , and f : v 7→ (v, 0), f∗(F ) = E, f̂ = idE , f

∗(t) = s.
If g is an sf-immersion then k = 0, so ∂Z = ∅.

Proof. By Corollary 7.11 there exist open neighbourhoods T ⊆ X, U ⊆ Y
of x, y and quasi-inverse equivalences i : T → SV,E,s, k : SV,E,s → T and
j : SW,F,t → U, l : U → SW,F,t with 2-morphisms ζU : k ◦ i ⇒ idT and ζV :
l◦j ⇒ idU, where we may take V and W to be open neighbourhoods of 0 in Rmk
and Rnl , and E,F to be trivial vector bundles Ra × V → V , Rb ×W →W , and
s = (s1, . . . , sa) ∈ C∞(E), t = (t1, . . . , tb) ∈ C∞(F ) with s(0) = ds|Sk(V )(0) = 0
and t(0) = dt|Sl(W )(0) = 0, and i(x) = 0, l(y) = 0. Note that this is weaker
than in the proof of Theorem 4.9, in which we had ds(0) = dt(0) = 0.

Making T, V smaller if necessary, we can suppose g(T) ⊆ U. Applying
Theorem 7.19 to the 1-morphism l◦g◦k : SV,E,s → SW,F,t and replacing V,E, s

by Ṽ , Ẽ, s̃ gives a smooth map f : V → W with f(0) = 0 and a morphism of

vector bundles f̂ : E → f∗(F ) on V with f̂ ◦s = f∗(t), such that l◦g◦k = Sf,f̂ .
Hence j ◦ Sf,f̂ ◦ i = (j ◦ l) ◦ g ◦ (k ◦ i). Thus η = ζU ∗ idg ∗ ζV is a 2-morphism
j ◦ Sf,f̂ ◦ i⇒ g|U . This completes the first part.

For (a)–(d), if g is a w-submersion, . . . , immersion then Sf,f̂ = l ◦ g ◦ k
is also a w-submersion, . . . , immersion by Proposition 7.27(i),(iii), as k, l are
equivalences. Thus we may apply Theorem 7.30 to Sf,f̂ . Using ds|Sk(V )(0) =
dt|Sl(W )(0) = 0 in equation (7.14), the conditions on (7.13)–(7.14) reduce to:

(a) if g is a w-submersion then f̂(0) : E0 → F0 is surjective;

(b) if g is a submersion then f̂(0) : E0 → F0 is an isomorphism and df(0) :
T0V → T0W , df(0)|T0(Sk(V )) : T0(Sk(V ))→ T0(Sl(W )) are surjective;

(c) if g is a w-immersion then df(0)|T0(Sk(V )) : T0(Sk(V )) → T0(Sl(W )) is
injective; and

(d) if g is an immersion then df(0)|T0(Sk(V )) : T0(Sk(V )) → T0(Sl(W )) is

injective and f̂(0) : Ev → Fv is surjective.

The proofs of the first parts of (a)–(d) follow those of Theorem 4.9(a)–(d),
with the following changes. For w-submersions in (a), we replace V by

V ′ =
{

(x1, . . . , xm, zl+1, . . . , zn) ∈ V × Rn−l :

f(x1, . . . , xm) + (0, . . . , 0, zl+1, . . . , zn) ∈W ⊆ Rnl
}
,

and we replace E by E′ = π∗V (E)⊕Rn−l, and s by s′ = π∗V (s)⊕ idRn−l . To prove
that f ′ is a submersion near 0, note that f ′ maps Sk(V ′)→ Sl(W ) near 0, and
df ′(0)|T0(Sk(V ′)) : T0(Sk(V ′))→ T0(Sl(W )) maps Rm−k ⊕ Rn−l → Rn−l and is
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the identity on the second factor, so df ′(0)|T0(Sk(V ′)) is surjective. Also Sf,f̂ is
semisimple and flat as g is, so f is semisimple and flat near 0 by Lemma 7.18.
Thus (df ′)∗ : T0V

′/T0(Sk(V ′)) −→ T0W/T0(Sl(W )) is surjective. Combining
this with df ′(0)|T0(Sk(V ′)) surjective shows df ′(0) : T0V → T0W is surjective.
Hence f ′ is a submersion near 0 ∈ V ′ by Definition 5.9(iv). Making V ′ smaller
if necessary, f ′ is a submersion.

For submersions in (b), f is a submersion and f̂ is an isomorphism near
0 ∈ V already, so after making V smaller, no further changes are needed. For
w-immersions in (c) and immersions in (d), we define W ′, F ′, t′, f ′, f̂ ′, h, ĥ, j′

as in the proof of Theorem 4.9(c),(d), without change. The analogue of (7.13)

with f ′, f̂ ′, 0, 0 in place of f, f̂ , v, w is still exact at the second term, and f̂ ′(0)
is injective. From this we see that df ′(0) is injective, even though df(0) need
not be injective. So f ′ is an immersion near 0 ∈ V ′.

This proves the first parts of (a)–(d). The remaining cases of sw-submersions
in (a), . . . , sf-immersions in (d) follow from the first parts and Lemma 7.18, mak-
ing V smaller if necessary. Finally, (a′)–(d′) follow from (a)–(d) as for Theorem
4.9(a′)–(d′), but using Proposition 5.11 to give a local form for (s-)submersions
in (a′),(b′) and Proposition 5.30 to give a local form for s- and sf-immersions
in (c′),(d′). We exclude (w-)immersions in (c′),(d′) as we have no analogue of
Proposition 5.30 for immersions in Manc.

The following lemma, the analogue of Lemma 4.10, is easy to prove.

Lemma 7.32. Let X,Y be d-manifolds with corners, with Y a manifold. Then
πX : X×Y → X is a submersion, and πX is an s-submersion if ∂Y = ∅.

Theorem 7.31(b′) implies the following analogues of Corollaries 4.11 and
4.12. The first is a local converse for Lemma 7.32, as for Proposition 5.11.

Corollary 7.33. Suppose f : X → Y is a submersion in dManc, and x ∈ X
with f(x) = y ∈ Y. Then there exist open d-submanifolds x ∈ U ⊆ X and
y ∈ V ⊆ Y with f(U) = V, a manifold with corners Z, and an equivalence
i : U → V × Z, such that f |U : U → V is 2-isomorphic to πV ◦ i, where
πV : V × Z→ V is the projection. If f is an s-submersion then ∂Z = ∅.

Corollary 7.34. Let f : X→ Y be a submersion of d-manifolds with corners,
with Y a manifold with corners. Then X is a manifold with corners.

Example 4.13 generalizes to d-manifolds with corners: if V is a manifold
with corners, E → V a vector bundle, Γ a finite group acting smoothly on
V,E preserving the vector bundle structure, and s : V → E a smooth, Γ-
equivariant section of E, then the standard model d-manifold with corners SV,E,s
in Definition 7.2 has a Γ-action, so §6.10 defines a fixed d-subspace (SV,E,s)

Γ in
dSpac. As for (4.13), we have a 1-isomorphism in dSpac

(SV,E,s)
Γ ∼=

∐dimV
i=0

∐rankE
j=0 SV Γ

ij ,E
Γ
ij ,s

Γ
ij
.

Therefore (SV,E,s)
Γ is an object in dM̌anc. As for Proposition 4.14, we prove:
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Proposition 7.35. Let X be a d-manifold with corners, and Γ is a finite group
acting on X. Section 6.10 defines the fixed d-subspace XΓ and a 1-morphism
jX,Γ : XΓ → X. Then XΓ lies in dM̌anc, and jX,Γ is a w-embedding.

7.6 Bd-transversality and fibre products

We now extend §4.3 to the corners case. Here are the analogues of Definition
4.16 and Theorem 4.21.

Definition 7.36. Let X,Y,Z be d-manifolds with corners and g : X → Z,
h : Y → Z be 1-morphisms. We call g,h bd-transverse if they are both b-
transverse in dSpac in the sense of Definition 6.32, and d-transverse in the
sense of Definition 4.16. We call g,h cd-transverse if they are both c-transverse
in dSpac in the sense of Definition 6.33, and d-transverse. As in §6.8.2, c-
transverse implies b-transverse, so cd-transverse implies bd-transverse.

Theorem 7.37. Suppose X,Y,Z are d-manifolds with corners and g : X→ Z,
h : Y → Z are bd-transverse 1-morphisms, and let W = X×g,Z,hY be the fibre
product in dSpac, which exists by Theorem 6.42 as g,h are b-transverse. Then
W is a d-manifold with corners, with

vdim W = vdim X + vdim Y − vdim Z. (7.18)

Hence, all bd-transverse fibre products exist in dManc.

Proof. Since g,h are b-transverse, a fibre product W = X ×g,Z,h Y exists in
dSpac by Theorem 6.42, with projections e : W→ X and f : W→ Y. We will
show that W is a d-manifold with corners, of virtual dimension (7.18). Thus
W = X×Z Y is a fibre product in dManc, as we want.

Let w ∈ W, with e(w) = x ∈ X and f(w) = y ∈ Y, so that g(x) =
h(y) = z ∈ Z. In §6.8.3 we constructed open d-subspaces x ∈ R ⊆ X, y ∈
S ⊆ Y and z ∈ T ⊆ Z with g(R),h(S) ⊆ T, and an explicit fibre product
Q = R ×g|R,T,h|S S in dSpac. So Q is equivalent in dSpac to the open

neighbourhood Ŵ = e−1(R) ∩ f−1(S) of w in W.
As X,Y,Z are d-manifolds with corners, making R,S,T smaller, we can

suppose they are principal d-manifolds with corners. So we have equivalences
i : ST,F,t → R, j : SU,G,u → S, k : T → SV,H,v for manifolds with corners
T,U, V , vector bundles F → T , G → U , H → V with H the trivial bundle
Rr × V → V , and smooth sections t : T → F , u : U → G, v : H → V . Then
k ◦ g ◦ i : ST,F,t → SV,H,v, k ◦ h ◦ j : SU,G,u → SV,H,v are 1-morphisms, so by
Theorem 7.19, making R,S, T, U smaller we may suppose k ◦ g ◦ i = Sp,p̂ and
k ◦ h ◦ j = Sq,q̂ for p : T → V , q : U → V be smooth maps of manifolds with
corners, and p̂ : F → p∗(H), q̂ : G → h∗(H) be vector bundle morphisms with
p̂ ◦ t = p∗(v) and q̂ ◦ u = q∗(v).

Since i, j,k are equivalences, g,h bd-transverse implies that Sp,p̂,Sq,q̂ are
bd-transverse. As they are b-transverse, a fibre product ST,F,t ×Sp,p̂,SV,H,v,Sq,q̂

SU,G,u exists in dSpac, with

Ŵ ' R×T S = Q ' ST,F,t ×Sp,p̂,SV,H,v,Sq,q̂ SU,G,u. (7.19)
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As they are d-transverse, the analogue of Proposition 4.18 shows that

p̂(x̃)⊕−q̂(ỹ)⊕ dv(z̃) : Fx̃ ⊕Gỹ ⊕ Tz̃V −→ Hz̃ (7.20)

is surjective for all x̃∈T , ỹ∈U with t(x̃)=0, u(ỹ)=0 and p(x̃)=q(ỹ)= z̃∈V .
Making R,S,T, T, U, V smaller if necessary, we can suppose that T,U, V are

open neighbourhoods of 0 in Rla,R
m
b ,R

n
c respectively, and t(0) = u(0) = v(0) = 0

so that 0 ∈ ST,F,t, 0 ∈ Su,G,u, 0 ∈ SV,H,v, and i(x) = 0, j(x) = 0, k(0) =
z, and p(0) = q(0) = 0. Write (x1, . . . , xl), (y1, . . . , ym), (z1, . . . , zn) for the
coordinates on T,U, V , and write i−1

T (0) = {t′1, . . . , t′a}, i−1
U (0) = {u′1, . . . , u′b},

and i−1
V (0) = {v′1, . . . , v′c}, where t′i, u

′
j , v
′
k correspond to the local boundary

components xi = 0, yj = 0, zk = 0 of T,U, V at 0, respectively.
As p = (p1, . . . , pn) is a smooth map of manifolds with corners, we show that

if (x1, . . . , xl) is sufficiently close to 0 in T then for k = 1, . . . , c we have

pk(x1, . . . , xl) =

{
xi · gk(x1, . . . , xl), (t′i, v

′
k) ∈ Sp, some i = 1, . . . , a,

0, (0, v′k) ∈ Tp,
(7.21)

where gk : T → (0,∞) is smooth, and given by gk(x1, . . . , xl)=pk(x1, . . . , xl)/xi
if xi > 0, and gk(x1, . . . , xl) = ∂pk

∂xi
(x1, . . . , xl) if xi = 0. Making R, T smaller

we can suppose (7.21) holds for all (x1, . . . , xl) ∈ T . Similarly, we may suppose
that for all k = 1, . . . , c and (y1, . . . , ym) ∈ U we have

qk(y1, . . . , ym) =

{
yj · hk(y1, . . . , ym), (u′j , v

′
k)∈Sq, some j=1, . . . , b,

0, (0, v′k) ∈ Tq,
(7.22)

for smooth hk : U → (0,∞). Equations (7.21)–(7.22) correspond to the condi-
tions on the boundary defining functions (R, rx′), (S, sy′), (T , tz′) for R,S,T
in Definition 6.40.

From Definition 5.1, any smooth function on T ⊆ Rla extends to a smooth
function on an open neighbourhood Ṫ of T in Rl. Hence we can choose open
sets Ṫ ⊆ Rl, U̇ ⊆ Rm, V̇ ⊆ Rn with T = Ṫ ∩ Rla, U = U̇ ∩ Rmb , V = V̇ ∩ Rnc ,
and vector bundles Ḟ → Ṫ , Ġ → U̇ and Ḣ = Rr × V̇ → V̇ with Ḟ |T = F ,
Ġ|U = G, Ḣ|V = H, so that p, q, t, u, v, p̂, q̂ extend to smooth maps ṗ : Ṫ → V̇ ,
q̇ : U̇ → V̇ , smooth sections ṫ : Ṫ → Ḟ , u̇ : U̇ → Ġ and v̇ : V̇ → Ḣ, and vector
bundle morphisms ˙̂p : Ḟ → ṗ∗(Ḣ), ˙̂q : Ġ → q̇∗(Ḣ) such that ˙̂p ◦ ṫ = ṗ∗(v̇) and
˙̂q◦ u̇ = q̇∗(v̇). Making Ṫ , U̇ smaller if necessary, we can suppose the analogues of
(7.21)–(7.22) hold for smooth ġj : Ṫ → (0,∞) and ḣj : U̇ → (0,∞), and (7.20) is

surjective for all x̃ ∈ Ṫ , ỹ ∈ U̇ with ṡ(x̃) = 0, ṫ(ỹ) = 0 and ṗ(x̃) = q̇(ỹ) = z̃ ∈ V̇ .
Now §6.8.3 constructs an explicit fibre product Q = R×g|R,T,h|S S in dSpac,

or equivalently, a fibre product ST,F,t ×Sp,p̂,SV,H,v,Sq,q̂ SU,G,u. The construction
involves a graph Γx,y from Definition 6.36, where in our case x = 0 ∈ ST,F,t and
y = 0 ∈ SU,G,u. The vertices of Γ0,0 are {t′1, . . . , t′a}q{u′1, . . . , u′b}q{v′1, . . . , v′c},

and the edges are
t′i• −

v′k• if (t′i, v
′
k) ∈ Sp and

u′j• −
v′k• if (u′j , v

′
k) ∈ Sq. Since

Sp,p̂,Sq,q̂ are b-transverse, each connected component Γ̂ of Γ0,0 is of type (A),(B)
or (C) in Proposition 6.37.
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In the construction of Q in Definition 6.40, we chose subsets I ⊆ {t′1, . . . , t′a}
and J ⊆ {u′1, . . . , u′b} such that I q J contains one vertex from each type (A)

component Γ̂ of Γ0,0, and each element of I q J lies on at most one edge in

Γ0,0. Define Γ̃ to be the subgraph of Γ0,0 with vertices
(
{t′1, . . . , t′a} \ I

)
q(

{u′1, . . . , u′b} \ J
)
q {v′1, . . . , v′c}. In the proof of Proposition 6.37 we defined a

colouring of (each connected component of) Γ̃ into black and white edges, where
every vertex t′i, u

′
j , v
′
k in Γ̃ lies on exactly one white edge.

Define manifolds with corners T́ , Ú with T ⊆ T́ ⊆ Ṫ and U ⊆ Ú ⊆ U̇ by

T́ =
{

(x1, . . . , xl)∈ Ṫ : xi>0, i ∈ I
}
, Ú=

{
(y1, . . . , ym)∈ U̇ : yj>0, j ∈ J

}
.

We have isomorphisms of transverse fibre products in Manc:

T ∼= T́ ×∏
i=1,...,a:t′

i
/∈I xi,Ra−|I|,inc [0,∞)a−|I|,

U ∼= Ú ×∏
j=1,...,b:u′

j
/∈J yj ,Rb−|J|,inc [0,∞)b−|J|,

V ∼= V̇ ×∏
k=1,...,c zk,Rc,inc [0,∞)c,

(7.23)

where inc : [0,∞)d → Rd is the inclusion.

Set F́ = Ḟ |T́ , t́ = ṫ|T́ , Ǵ = Ġ|Ú , ú = u̇|Ú , ṕ = ṗ|T́ , ´̂p = ˙̂p|T́ , q́ = q̇|Ú ,

and ´̂q = ˙̂q|Ú . Then we have d-manifolds with corners ST́ ,F́ ,t́,SÚ,Ǵ,ú and 1-

morphisms Sṕ, ´̂p : ST́ ,F́ ,t́ → SV̇ ,Ḣ,v̇, Sq́, ´̂q : SÚ,Ǵ,ú → SV̇ ,Ḣ,v̇. Following (7.24),
we have equivalences of fibre products

ST,F,t ' ST́ ,F́ ,t́ ×∏
i=1,...,a:t′

i
/∈I xi,RRR

a−|I|,inc [0,∞)
a−|I|

, (7.24)

SU,G,u ' SÚ,Ǵ,ú ×∏
j=1,...,b:u′

j
/∈J yj ,RRR

b−|J|,inc [0,∞)
b−|J|

, (7.25)

SV,G,v ' SV̇ ,Ḣ,v̇ ×∏
k=1,...,c zk,RRR

c,inc [0,∞)
c
, (7.26)

in dSpac, where xi : ST́ ,F́ ,t́ → RRR, yj : SÚ,Ǵ,ú → RRR, zk : SV̇ ,Ḣ,v̇ → RRR are the 1-

morphisms induced by the coordinate functions xi, yj , zk on T́ , Ú , V̇ respectively.
We now have equivalences of fibre products in dSpac:

ST,F,t ×Sp,p̂,SV,H,v,Sq,q̂ SU,G,u '
(
ST́ ,F́ ,t́ ×∏

i=1,...,a:t′
i
/∈I xi,RRR

a−|I|,inc [0,∞)
a−|I|)

×SV̇ ,Ḣ,v̇×∏k=1,...,c zk,RRRc,inc,[0,∞)c
(
SÚ,Ǵ,ú ×∏

j=1,...,b:u′
j
/∈J yj ,RRR

b−|J|,inc [0,∞)
b−|J|)

' ST́ ,F́ ,t́ ×Sṕ, ´̂p,SV̇ ,Ḣ,v̇,Sq́, ´̂q SÚ,Ǵ,ú. (7.27)

Here in the first step we substitute in (7.24)–(7.26). In the second step of

(7.27), as in the proof of (6.131), we argue as follows. Suppose
t′i• −

v′k• is a
white edge in Γ̃. Then i = 1, . . . , c with t′i /∈ I, so that i corresponds to the
factor ×xi,RRR,inc[0,∞) in (7.24) and the first line of (7.27), and k corresponds
to the factor ×zk,RRR,inc[0,∞) in (7.26) and the second line of (7.27).
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As (t′i, v
′
k) ∈ SSṕ, ´̂p , by Definition 6.2(i) there exists an open neighbourhood

V of 0 in ST́ ,F́ ,t́ such that (V , zk ◦ Sṕ, ´̂p|V
)

is a boundary defining function for
ST́ ,F́ ,t́ at t′i. But (ST́ ,F́ ,t́,xi) is also a boundary defining function for ST́ ,F́ ,t́ at
t′i. Hence by Proposition 6.6(c), making V smaller if necessary we have that

xi|V = c · zk ◦ Sṕ, ´̂p|V , for some c : V → (0,∞). Making R, T, Ṫ , T́ smaller if
necessary we can take V = Sṕ, ´̂p, so that xi = c · zk ◦ Sṕ, ´̂p on Sṕ, ´̂p for c > 0.

Thus, in the term ST́ ,F́ ,t́×∏
i xi,RRR

a−|I|,inc[0,∞)
a−|I|

on the first line of (7.27),

the fibre product ×xi,RRR,inc[0,∞) may be replaced by ×zk◦Sṕ, ´̂p,RRR,inc[0,∞) with-
out changing it. We may then simultaneously omit this ×zk◦Sṕ, ´̂p,RRR,inc[0,∞),
and the term ×zk,RRR,inc[0,∞) from the beginning of the second line of (7.27),
without changing the fibre product up to equivalence.

Hence, for each white edge
t′i• −

v′k• in Γ̃, we may omit ×xi,RRR,inc[0,∞) and
×zk,RRR,inc[0,∞) from the first and second lines of (7.27), without changing

the fibre product. Similarly, for each white edge
u′j• −

v′k• in Γ̃, we may omit
×yj ,RRR,inc[0,∞) and ×zk,RRR,inc[0,∞) from the first and second lines of (7.27),

without changing the fibre product. But every vertex t′i, u
′
j , v
′
k in Γ̃ lies on ex-

actly one white edge, and the vertices of Γ̃ correspond to the fibre products
×RRR[0,∞) in (7.27). So making these omissions for all white edges in Γ̃ deletes
all fibre products ×RRR[0,∞) in the first and second lines of (7.27), leaving the
third line of (7.27). This proves (7.27).

Now in the final term ST́ ,F́ ,t́ ×SV̇ ,Ḣ,v̇ SÚ,Ǵ,ú in (7.27), we have ∂SV̇ ,Ḣ,v̇ = ∅
as ∂V̇ = ∅. We can apply the construction of Definition 4.19 to the data
T́ , F́ , t́, Ú , Ǵ, ú, V̇ , Ḣ, v̇ and ṕ, ´̂p, q́, ´̂q. This gives a manifold S which is an open
neighbourhood of Ẃ =

{
(x, y) ∈ T́ × Ú : t́(x) = 0, ú(y) = 0, ṕ(x) = q́(y)

}
in

T́ × Ú , a vector bundle E → S, and a smooth section s : S → E, satisfying

dimS − rankE = dim T́ − rank F́ + dim Ú − rank Ǵ− dim V̇ + rank Ḣ

= vdim X + vdim Y − vdim Z.
(7.28)

Since T́ , Ú have corners, S also has corners. The important point for the con-
struction to work is that V̇ is without boundary. We can now adapt the proof
of Theorem 4.20 to give an equivalence in dSpac:

ST́ ,F́ ,t́ ×Sṕ, ´̂p,SV̇ ,Ḣ,v̇,Sq́, ´̂q SÚ,Ǵ,ú ' SS,E,s. (7.29)

Equations (7.19), (7.27) and (7.29) give an equivalence Ŵ ' SS,E,s in

dSpac. Hence any point w ∈ W has an open neighbourhood Ŵ which is a
principal d-manifold, and has dimension vdim X + vdim Y − vdim Z by (7.28).
Therefore W is a d-manifold with corners, and (7.18) holds. This completes the
proof of Theorem 7.37.

Here is an analogue of Theorem 4.22.

Theorem 7.38. Suppose g : X → Z and h : Y → Z are 1-morphisms in
dManc. The following are sufficient conditions for g,h to be cd-transverse,
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and hence bd-transverse, so that W = X×g,Z,h Y is a d-manifold with corners
of virtual dimension (7.18):

(a) Z is a manifold without boundary, that is, Z ∈ M̄an; or

(b) g or h is a w-submersion.

Proof. In each case (a),(b), g,h are d-transverse by Theorem 4.22, and c-
transverse by Lemma 6.35, as w-submersions are semisimple and flat. Thus
they are cd-transverse, and the result follows from Theorem 7.37.

Here is the analogue of Theorem 4.23. It has the same proof, but using The-
orem 7.38(b) and Corollary 7.33 instead of Theorem 4.22(b) and Corollary 4.11.

Theorem 7.39. Let X,Y,Z be d-manifolds with corners with Y a manifold,
and g : X → Z, h : Y → Z be 1-morphisms with g a submersion. Then
W = X×g,Z,h Y is a manifold, with dim W = vdim X + dim Y − vdim Z.

Here are analogues of Propositions 4.26 and 4.27. They are proved by the
same method, using the fibre product of §6.8 rather than §2.5, and using Theo-
rems 7.31(d′) and 7.37 instead of Theorems 4.9(d′) and 4.20. Note that Propo-
sition 7.41 discusses s-immersions and sf-immersions, but not immersions, and
the analogue of Proposition 7.41 is false for general immersions.

Proposition 7.40. Let X be a d-manifold with corners and g : X → RRRnk a
semisimple, flat 1-morphism in dManc. Then the fibre product W = X×g,RRRnk ,0
∗ exists in dManc, and πX : W → X is an s-embedding. When k = 0, any
1-morphism g : X→ RRRn0 = RRRn is semisimple and flat, and πX : W→ X is an
sf-embedding.

Proposition 7.41. Suppose f : X→ Y is an s-immersion of d-manifolds with
corners, and x ∈ X with f(x) = y ∈ Y. Then there exist open d-submanifolds
x ∈ U ⊆ X and y ∈ V ⊆ Y with f(U) ⊆ V and a semisimple, flat 1-morphism
g : V → RRRnk with g(y) = 0, where n = vdim Y − vdim X > 0 and 0 6 k 6 n,
fitting into a 2-Cartesian square in dManc :

U
f |U��

π
//

� �� �
FN ∗

0 ��
V

g // RRRnk .

If f is an sf-immersion then k = 0. If f is an s- or sf-embedding then we may
take U = f−1(V).

The material of §6.9 extends immediately to cd-transverse fibre products
in dManc, since these are examples of c-transverse fibre products in dSpac.
Thus Theorem 6.50 describes Ci(W) and ∂W for a cd-transverse fibre product
W = X×g,Z,hY in dManc. Furthermore, one can show using g,h cd-transverse
that the fibre products in (6.126)–(6.127) are also cd-transverse. This gives:
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Corollary 7.42. Suppose g : X → Z and h : Y → Z are cd-transverse 1-
morphisms in dManc, and let W = X×g,Z,hY be the fibre product in dManc,
which exists by Theorem 7.37. Then we have equivalences in dManc for all
i > 0, where each fibre product is cd-transverse and so exists in dManc :

Ci(W) '
∐

j,k,l>0:i=j+k−l

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y), (7.30)

∂W '
∐

j,k,l>0:j+k=l+1

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y). (7.31)

Similarly, Theorems 6.45 and 6.52 and Proposition 6.53 in §6.8–§6.9 extend
immediately to fibre products in dManc, with all fibre products in equations
(6.132)–(6.138) cd-transverse.

7.7 Embedding d-manifolds with corners into manifolds

In §4.4 we showed in Theorem 4.29 that any compact d-manifold X without
boundary can be embedded in Rn for n� 0, and gave necessary and sufficient
conditions for when a noncompactX can be embedded in Rn. We also showed in
Theorem 4.34 that if X can be embedded in a manifold Y then X ' SV,E,s for
open V ⊆ Y . Putting these together shows every compact d-manifold without
boundary is principal. We now extend these results to d-manifolds with corners.
Some of the issues have already been discussed for Manc in §5.7.

For manifolds and d-manifolds with corners, we have three notions of embed-
ding — embeddings, s-embeddings and sf-embeddings — but in this section we
will be concerned only with embeddings and sf-embeddings. If X is a compact
d-manifold with corners, the natural analogue of Theorem 4.29 is that X has
an embedding into Rn, and of Theorem 4.34 is that if X has an sf-embedding
into a manifold with corners Y then X ' SV,E,s for open V ⊆ Y . Before we can
combine the two to show that X is principal, we have to bridge the gap between
embeddings and sf-embeddings, which requires more work.

Here is the analogue of Theorem 4.29. The proof is the same, using Theorem
7.30(d) and Proposition 7.27 instead of Theorem 4.8(d) and Proposition 4.5.

Theorem 7.43. Let X be a compact d-manifold with corners. Then there exists
an embedding f : X→ RRRn for some n� 0.

In the same way, the analogues of Lemma 4.30 and Theorems 4.32 and 4.33
for dManc hold, the last being:

Theorem 7.44. Let X be a d-manifold with corners. Then there exist immer-
sions and/or embeddings f : X → RRRn for some n � 0 if and only if there is
an upper bound for dimT ∗xX for all x ∈ X. If there is such an upper bound,
then immersions f : X→ RRRn exist provided n > 2 dimT ∗xX for all x ∈ X, and
embeddings f : X → RRRn exist provided n > 2 dimT ∗xX + 1 for all x ∈ X. For
embeddings we may also choose f with f(X) closed in Rn.
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Next we study existence of sf-embeddings of d-manifolds with corners in
manifolds. The next two results deal with d-manifolds with boundary.

Proposition 7.45. Suppose X is a d-manifold with boundary. Then there exists
a simple, flat 1-morphism f : X → [0,∞), where [0,∞) = FdManc

Manc

(
[0,∞)

)
,

fitting into a 2-Cartesian diagram in dManc :

∂X
iX��

π
//

� �� �
GO

id0◦π

∗
0 ��

X
f // [0,∞).

(7.32)

Proof. For each x′ ∈ ∂X we may choose a boundary defining function (V x′ , bx′)
for X at x′, where V x′ is an open neighbourhood of iX(x′) inX. Using iX injec-
tive, by making V x′ smaller we may suppose that (V x′ , bx′) is also a boundary-
defining function for X at any x′′ ∈ i−1

X (V x′) ⊆ ∂X. As iX is proper, iX(∂X) is
closed in X, so X◦ = X \iX(∂X) is open in X. Hence {V x′ : x′ ∈ ∂X}∪{X◦} is
an open cover of X, which is separated, paracompact, and locally fair. Therefore
by Proposition B.21 there exists a partition of unity {ηx′ : x′ ∈ ∂X} ∪ {ηX◦}
on X subordinate to {V x′ : x′ ∈ ∂X} ∪ {X◦}, where we take the ηx′ and ηX◦

to have values in [0, 1].
We will define a 1-morphism f : X → [0,∞) in dSpa by

f =
∑
x′∈∂X ηx′ · bx′ + ηX◦ · 1, (7.33)

Here ηx′ = (ηx′ , η
′
x′ , η

′′
x′) : X → [0,∞) is a 1-morphism in dSpa with ηx′ :

X → [0,∞) the unique morphism induced by ηx′ ∈ OX(X), and η′′x′ = 0 as

E [0,∞) = 0, and η′x′ is chosen arbitrarily such that ηx′ is a 1-morphism which
is supported on supp ηx′ ⊆ V x′ . One can show this is possible. Although bx′

is only defined on V x′ , since ηx′ = 0 outside V x′ we can regard ηx′ · bx′ as a
1-morphism X → [0,∞) which is zero outside V x′ . We define ηX◦ in the same
way as ηx′ , and 1 : X → [0,∞) is the constant function 1 on X. Then (7.33)
is a locally finite sum, and f : X → [0,∞) is well-defined.

Now let x′ ∈ ∂X. Since {ηx′ : x′ ∈ ∂X} ∪ {ηX◦} is locally finite and
iX(x′) /∈ X◦, there exist x′1, . . . , x

′
n ∈ ∂X and an open neighbourhood Ux′ of

iX(x′) in X such that x′ ∈ Ux′ ⊆ V x′i for i = 1, . . . , n, and ηx′′ |Ux′ = 0 for all

x′′ ∈ ∂X \ {x1, . . . , xn} and ηX◦ |Ux′ = 0. Then (V x′ , bx′) and (V x′i
, bx′i) for

i = 1, . . . , n are all boundary-defining functions for X at x′. Thus by Proposition
6.6(c) for i = 1, . . . , n there exists an open neighbourhood of x′, which making
Ux′ we may take to be Ux′ , and a 1-morphism cx′i : Ux′ → (0,∞) such that
bx′i |Ux′ = cx′i · bx′ |Ux′ . Hence (7.33) gives

f |Ux′ =
∑n
i=1 ηx′i · bx′i =

(∑n
i=1 ηx′i · cx′i

)
· bx′ .

Since the ηx′i take values in [0, 1] with
∑n
i=1 ηx′i = 1 on Ux′ and cx′i > 0,

we see that
∑n
i=1 ηx′i · cx′i : Ux′ → (0,∞). Therefore Proposition 6.6(d) shows

that
(
Ux′ ,f |Ux′

)
is a boundary defining function for X at x′ ∈ ∂X.
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Now if X is a d-manifold with corners and (V , b) is a boundary defining
function for X at x′ for V ⊆ X, then with V ⊆ X the d-manifold with cor-
ners corresponding to V , making V smaller if necessary, b : V → [0,∞) is a
semisimple, flat 1-morphism in dSpac, which is simple if iX is injective over V ,
and the analogue of (6.1) in dSpac is 2-Cartesian. Hence f |Ux′ : Ux′ → [0,∞)
is a simple, flat 1-morphism in dSpac, and the following is 2-Cartesian in dSpac:

i−1
X (Ux′)

iX|i−1
X

(U
x′ )��

π
//

� �� �
HP

id0◦π

∗
0 ��

Ux′
f |U

x′ // [0,∞).

(7.34)

Therefore f is a simple, flat 1-morphism in dSpac near any point iX(x′) ∈X
for each x′ ∈ ∂X. If x ∈ X◦ = X \ iX(∂X) then i−1

X (x) = ∅, and f(x) > 0
so i−1

[0,∞)(f(x)) = ∅. Thus, as f is a 1-morphism in dSpa, the extra conditions

for f to be a 1-morphism in dSpac near x ∈ X◦, and to be simple and flat,
are trivial. Hence f : X→ [0,∞) is a simple, flat 1-morphism in dSpac. Also
(7.34) 2-Cartesian shows that (7.32) is locally 2-Cartesian near each x′ ∈ ∂X.
As iX is injective, f = 0 on iX(∂X) and f > 0 on X \ iX(∂X), we see that
(7.32) is globally 2-Cartesian.

Here is an analogue of Theorem 5.33.

Corollary 7.46. Let X be a d-manifold with boundary. Then there exist sf-
immersions and/or sf-embeddings f : X → RRRn1 = [0,∞) × RRRn−1 for some
n � 0 if and only if dimT ∗xX is bounded above for all x ∈ X. Such an upper
bound always exists if X is compact. If there is such an upper bound, then
sf-immersions f : X → RRRn1 exist provided n > 2 dimT ∗xX + 1 for all x ∈ X,
and sf-embeddings f : X→ RRRn1 exist provided n > 2 dimT ∗xX+2 for all x ∈ X.
For sf-embeddings we may also choose f with f(X) closed in Rn1 .

Proof. Write i : Rn1 ↪→ Rn for the inclusion, and i = FdManc

Manc (i). If f : X→ RRRn1
is an sf-immersion or sf-embedding then i ◦ f : X → RRRn is an immersion or
embedding. Hence the ‘only if’ in the first part follows from the ‘only if’ part
of Theorem 7.44. For the ‘if’ part, Proposition 7.45 gives a simple, flat 1-
morphism g : X → [0,∞), and Theorem 7.44 gives an immersion h : X →
RRRn−1 if n > 2 dimT ∗xX + 1 for all x, and an embedding h : X → RRRn−1

if n > 2 dimT ∗xX + 2 for all x. Then the direct product 1-morphism f =
(g,h) : X→ [0,∞)×RRRn−1 = RRRn1 is simple and flat as g is simple and flat and
∂RRRn−1 = ∅, and an immersion or embedding as h is. Hence f is an sf-immersion
or sf-embedding. The last part follows from the last part of Theorem 7.44.

Here are necessary and sufficient conditions for existence of sf-embeddings
from a d-manifold with corners X into a manifold with corners Y .

Theorem 7.47. Let X be a d-manifold with corners. Then there exist a mani-
fold with corners Y and an sf-embedding f : X→ Y, where Y = FdManc

Manc (Y ), if
and only if dimT ∗xX+ |i−1

X (x)| is bounded above for all x ∈ X. If such an upper

416



bound exists, then we may take Y to be an embedded n-dimensional submanifold
of Rn for any n with n > 2

(
dimT ∗xX + |i−1

X (x)|
)

+ 1 for all x ∈ X.
Such an upper bound always exists if X is compact. Thus, every compact

d-manifold with corners admits an sf-embedding into a manifold with corners.

Proof. For the ‘only if’ part, if f : X→ Y is an sf-embedding with Y a manifold
then dimT ∗xX 6 dimT ∗f(x)Y = dimY and |i−1

X (x)| = |i−1
Y (f(x))| 6 dimY for

all x ∈ X, so dimT ∗xX + |i−1
X (x)| is bounded above by 2 dimY .

For the ‘if’ part, suppose n > 2
(
dimT ∗xX + |i−1

X (x)|
)

+ 1 for all x ∈ X. We
will first show that we can choose the following data:

(a) a d-manifold with corners W;

(b) a finite local 1-isomorphism p : W→ X in dManc;

(c) a 1-morphism q : ∂X→ ∂W which is a 1-isomorphism with an open and
closed d-submanifold q(∂X) in ∂W, satisfying p ◦ iW ◦ q = iX; and

(d) a 1-morphism b : W → [0,∞) in dSpa such that (W, b) is a boundary
defining function for W at q(x′) for all x′ ∈ ∂X.

This part of the proof does not depend on n, and works for all d-manifolds
with corners X. We can think of W as a ‘collar’ of ∂X in X, and of W,p, q, b
as a ‘universal boundary defining function’ for X at every point in ∂X. To
construct W,p, q, the rough idea is that if x ∈ X with i−1

X (x) = {x′1, . . . , x′k}
then p : W → X should be an k-sheeted étale cover of X near x, with sheets
corresponding to x′1, . . . , x

′
k, and q should send x′i to the corresponding point of

∂W in the sheet corresponding to x′i.
More formally, we define W =

[∐
x′∈∂X Vx′

]
/ ∼, where Vx′ is a small open

neighbourhood of iX(x′) in X, and the equivalence relation ∼ identifies Vx′ and
Vx′′ on their overlap Vx′ ∩Vx′′ in X provided x′ and x′′ are ‘close’ in ∂X. If
x′ 6= x′′ but iX(x′) = iX(x′′), then x′, x′′ are not counted as ‘close’ in ∂X, so
Vx′ and Vx′′ are not identified on their overlap. It takes some care to show
that we can choose such neighbourhoods Vx′ and identifications on overlaps so
that ∼ is an equivalence relation and W is Hausdorff, but it can be done.

The morphism p : W → X is defined locally to take Vx′ ⊂W to Vx′ ⊂ X
by the identity. The morphism q : ∂X→ ∂W is defined near x′ ∈ ∂X to take
∂Vx′ ⊂ ∂X to ∂Vx′ ⊂ ∂W by the identity. Then p◦ iW ◦q = iX is immediate.
To construct b, making the Vx′ smaller if necessary, for each x′ ∈ ∂X we can
choose bx′ : V x′ → [0,∞) such that (V x′ , bx′) is a boundary defining function
for X at x′. Then we combine the bx′ using a partition of unity on W to get
b : W → [0,∞) as in the proof of Proposition 7.45, and making W smaller if
necessary we find (W, b) is a boundary defining function for W at q(x′) for all
x′ ∈ ∂X. Hence we can choose W,p, q, b satisfying (a)–(d).

Next, as n > 2
(
dimT ∗xX + |i−1

X (x)|
)

+ 1 > 2 dimT ∗xX + 1, by Theorem 7.44
we may choose an embedding g : X → RRRn. Since p : W → X is a local 1-
isomorphism and g : X→ RRRn is an embedding, g ◦p : W→ X is an immersion,
but may not be an embedding as p may not be injective. By the same argument
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used to define W above, making W smaller if necessary, we can construct an n-
manifold without boundary U , a finite étale map π : U → Rn, and an embedding
h : W→ U, such that π ◦ h = g ◦ p for U,π = FdManc

Man (U, π).
We have U =

[∐
x′∈∂X Ux′

]
/ ∼, where Ux′ is a small open neighbourhood of

g ◦ iX(x′) in Rn, and ∼ identifies Ux′ and Ux′′ on their overlap Ux′ ∩Ux′′ in Rn
provided x′ and x′′ are ‘close’ in ∂X. Making U smaller if necessary, we can also
ensure the following property holds: let x ∈ X with p−1(x) = {w1, . . . , wl} ⊆
W. Then for sufficiently small ε > 0, writing Bε(g(x)) for the open ball about
g(x) in Rn, we have a natural diffeomorphism U ⊇ π−1

(
Bε(g(x))

) ∼= Bε(g(x))×
{w1, . . . , wl} which identifies wi with (g(x), wi) and π|π−1(Bε(g(x))) with the
projection Bε(g(x))× {w1, . . . , wl} → Bε(g(x)).

We now have an embedding h : W → U and a 1-morphism b : W →
[0,∞) ⊂ RRR. We claim we can choose a smooth map c : U → R such that
there exists a 2-morphism b ⇒ c ◦ h, where c = FdManc

Man (c), regarding b, c ◦ h
as 1-morphisms W → RRR. Since h is an embedding, any 1-morphism W → RRR
can locally be extended to a 1-morphism U→ RRR up to 2-isomorphism, and we
combine such local choices with a partition of unity to get c.

We need c to satisfy the following extra condition: suppose x ∈ X with
i−1
X (x) = {x′1, . . . , x′k}. For i = 1, . . . , k set ui = h ◦ iW ◦ q(x′i) ∈ U , so that
π(ui) = g(x) ∈ Rn. Then dc|ui ∈ T ∗uiU . But dπ|ui : TuiU → Tg(x)Rn = (Rn)∗

is an isomorphism as π is étale, so (dπ|−1
ui )∗ : T ∗uiU → (Rn)∗ is an isomorphism,

and we write ti = (dπ|−1
ui )∗(dc|ui) ∈ (Rn)∗. We require that t1, . . . , tk should

be linearly independent in (Rn)∗ for all x ∈ X. Using the condition that n >
2
(
dimT ∗xX+|i−1

X (x)|
)
+1, one can show that this holds for generic g by the same

kind of dimension-counting arguments used to prove Theorems 4.32 and 4.33.
Now consider the set

T =
{

(y1, . . . , yn)∈Rn : c(u)>0 for all u∈U with π(u)=(y1, . . . , yn)
}
. (7.35)

Let x ∈ X with g(x) = (y1, . . . , yn), write i−1
X (x) = {x′1, . . . , x′k}, and set

w′i = q(x′i) ∈ ∂W and wi = iW(w′i) ∈ W for i = 1, . . . , k. Then p(wi) = x as

p ◦ iW ◦ q = iX, so w1, . . . , wk are distinct points of p−1(x). As p is finite we

may write p−1(x) = {w1, . . . , wk, wk+1, . . . , wl} for some l > k. Now (W, b) is a
boundary defining function for W at w′i for i = 1, . . . , k, so b(wi) = b◦iW(w′i) =
0 for i = 1, . . . , k. But wi /∈ iW ◦ q(∂X) for i = k + 1, . . . , l, and so b(wi) > 0
for i = k + 1, . . . , l.

Set wi = h(wi) ∈ U for i = 1, . . . , l. Since b and c ◦ h are 2-isomorphic we
have b(wi) = b ◦ h(wi) = c(ui) = c(ui). Hence c(ui) = 0 for i = 1, . . . , k
and c(ui) > 0 for i = k + 1, . . . , l. The property of U above shows that

π−1
(
Bε(y1, . . . , yn)

) ∼= ∐l
i=1Bε(ui), where Bε(ui) is an open ball of radius ε

about ui in U . Since c(ui) > 0 for i = k + 1, . . . , l, for small ε we have c > 0
on Bε(ui) for i = k + 1, . . . , l. Using this and the condition that t1, . . . , tk are
linearly independent, we see that for ε > 0 small enough, T ∩ Bε(y1, . . . , yn) is
a manifold with corners diffeomorphic to a small open ball about 0 in Rnk .

Thus, close to each point in g(X), the set T in (7.35) is an n-manifold with
corners. So we may choose an open neighbourhood Y of g(X) in T which is an
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n-manifold with corners, an embedded submanifold of Rn. Write r : Y ↪→ Rn
for the inclusion, and Y, r = FdManc

Manc (Y, r). We claim that there exists an
sf-embedding f : X → Y with a 2-morphism η : r ◦ f ⇒ g in dManc. To
prove this, we first show that we can choose such f near any point x ∈ X.
The important point here is that with notation x, k, l, w′i, wi, ui, ε as above, Y is
defined near (y1, . . . , yn) = g(x) by c|Bε(ui) ◦ π|

−1
Bε(ui)

> 0 for i = 1, . . . , k. But

as b ∼= c ◦ h and (W, b) is a boundary defining function for W at w′i, we see
that c|Bε(ui) ◦ π|

−1
Bε(ui)

is an extension to Bε(g(x)) ⊂ Rn of a boundary defining

function for X at x′i for i = 1, . . . , k. Finally, we combine the local choices for
f near each x ∈ X using a partition of unity to get a global choice for f .

Here is the analogue of Theorem 4.34. The proof is essentially the same,
using Proposition 7.41 and Theorem 7.20 instead of Proposition 4.27 and Theo-
rem 3.36. The important thing about requiring f to be an sf-embedding rather
than an embedding or s-embedding is that we may apply Proposition 7.41.

Theorem 7.48. Suppose X is a d-manifold with corners, Y a manifold with
corners, and f : X→ Y an sf-embedding, in the sense of Definition 7.24. Then
there exist an open subset V in Y with f(X) ⊆ V, a vector bundle E → V, and
a smooth section s : V → E of E fitting into a 2-Cartesian diagram in dSpac,
where 0 : V → E is the zero section and Y,V,E, s,0 = FdManc

Manc (Y, V,E, s, 0) :

X
f

//
f�� � �� �

FN V
0 ��

V
s // E.

Hence X is equivalent to the ‘standard model’ SV,E,s of Definition 7.2, and is
a principal d-manifold with corners.

Conversely, if X is a principal d-manifold with corners then X ' V×s,E,0 V
and πV : X→ V is an sf-embedding of X in a manifold V. Thus from Theorems
7.47 and 7.48 we deduce analogues of Corollaries 4.35 and 4.36:

Corollary 7.49. Let X be a d-manifold with corners. Then X is principal if
and only if dimT ∗xX and |i−1

X (x)| are bounded above for all x ∈ X.

Corollary 7.50. Let W be a d-manifold with corners. Then W is a principal
d-manifold with corners if any of the following hold: (i) W is compact;

(ii) W can be covered by finitely many principal open d-submanifolds; and

(iii) W ' X×ZY, where Z is a d-manifold with corners and X,Y are principal
d-manifolds with corners.

7.8 Orientations

We now define orientations on d-manifolds with corners, following §4.6.
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Definition 7.51. Let X be a d-manifold with corners. Then the virtual cotan-
gent bundle T ∗X = (EX ,FX , φX) is a virtual vector bundle on X by Definition
7.5, so Definition 4.39 constructs a line bundle LT∗X on X. We call LT∗X the
orientation line bundle of X.

An orientation ω on X is an orientation on LT∗X, in the sense of Definition
B.40. We call X orientable if it admits an orientation, so X is orientable if
and only if LT∗X is trivializable. An oriented d-manifold with corners is a pair
(X, ω) where X is a d-manifold with corners and ω an orientation on X. But
we will often refer to X as an oriented d-manifold, leaving the orientation ω
implicit. We will also write −X for X with the opposite orientation, that is, X
is short for (X, ω) and −X is short for (X,−ω).

All the results of §4.6 now generalize to d-manifolds with corners essentially
without change. Thus, as in Example 4.45, if X is a manifold with corners and
X = FdManc

Manc (X) then orientations on X in the sense of §5.8 are equivalent
to orientations on X in the sense above. The analogues of Theorem 4.50 and
Proposition 4.52 are:

Theorem 7.52. Work in the situation of Theorem 7.37, so that W,X,Y,Z are
d-manifolds with corners with W = X×g,Z,hY for g,h bd-transverse, where e :
W→ X, f : W→ Y are the projections. Then we have orientation line bundles
LT∗W, . . . ,LT∗Z on W, . . . , Z, so LT∗W, e∗(LT∗X), f∗(LT∗Y), (g◦e)∗(LT∗Z) are
line bundles on W . With a suitable choice of orientation convention, there is a
canonical isomorphism

Φ : LT∗W −→ e∗(LT∗X)⊗OW f∗(LT∗Y)⊗OW (g ◦ e)∗(LT∗Z)∗. (7.36)

Hence, if X,Y,Z are oriented d-manifolds with corners, then W also has a
natural orientation, since trivializations of LT∗X,LT∗Y,LT∗Z induce a trivial-
ization of LT∗W by (7.36).

Proposition 7.53. Suppose V, . . . ,Z are oriented d-manifolds with corners,
e, . . . ,h are 1-morphisms, and all fibre products below are bd-transverse. Then
the following hold, in oriented d-manifolds with corners:

(a) For g : X→ Z and h : Y → Z we have

X×g,Z,h Y ' (−1)(vdim X−vdim Z)(vdim Y−vdim Z)Y ×h,Z,g X.

In particular, when Z = ∗ so that X×Z Y = X×Y we have

X×Y ' (−1)vdim X vdim YY ×X.

(b) For e : V→ Y, f : W→ Y, g : W→ Z, and h : X→ Z we have

V ×e,Y,f◦πW

(
W ×g,Z,h X

)
'
(
V ×e,Y,f W

)
×g◦πW,Z,h X.

(c) For e : V→ Y, f : V→ Z, g : W→ Y, and h : X→ Z we have

V ×(e,f),Y×Z,g×h (W ×X) '
(−1)vdim Z(vdim Y+vdim W)(V ×e,Y,g W)×f◦πV,Z,h X.
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One new feature of orientations for d-manifolds with corners is that given
an orientation on X, we will define a natural orientation on ∂X. We do this in
our next theorem, which is similar to Theorems 4.50 and 7.52. As for (7.36),
the isomorphism Ψ in (7.37) depends on a choice of orientation convention:
a different choice would change (7.37), and the orientation on ∂X, by a sign
depending on vdim X.

Our orientation conventions are chosen to match those of Fukaya et al. [32,
§8.2] for Kuranishi spaces. For manifolds they are given in Convention 5.35. If
X is an n-manifold with corners, they can be expressed as follows: if x′ ∈ ∂X
with iX(x′) = x ∈ X, and v0 ∈ TxX is an outward-pointing normal vector
to ∂X at x′, and (v1, . . . , vn−1) is an oriented basis for Tx′(∂X) ⊂ TxX, then
(v0, v1, . . . , vn−1) is an oriented basis for TxX.

Theorem 7.54. Let X be a d-manifold with corners. Then ∂X is also a d-
manifold with corners, so we have orientation line bundles LT∗X on X and
LT∗(∂X) on ∂X. With a suitable choice of orientation convention, there is a
canonical isomorphism

Ψ : LT∗(∂X) −→ i∗X(LT∗X)⊗N ∗X (7.37)

of line bundles on ∂X, where NX is the conormal bundle of ∂X in X from
Definition 6.1, and N ∗X its dual line bundle.

Now NX comes with an orientation ωX in X = (X,∂X, iX, ωX). Hence, if
X is an oriented d-manifold with corners, then ∂X also has a natural orienta-
tion, by combining the orientations on LT∗X and N ∗X to get an orientation on
LT∗(∂X) using (7.37).

Proof. Let x′ ∈ ∂X with iX(x′) = x ∈ X. As X is a d-manifold with corners,
there exists an open neighbourhood U of x in X which is a principal d-manifold
with corners, and so has an equivalence i : U→ SV,E,s for some manifold with
corners V , vector bundle E → V and smooth section s : V → E. Then ∂U
is an open neighbourhood of x′ in ∂X, and i− : ∂U → ∂SV,E,s by Proposition
6.20. By Lemma 7.3 there is a natural 1-isomorphism j : ∂SV,E,s → S∂V,E∂ ,s∂ ,
where E∂ = i∗V (E) is a vector bundle on ∂V and s∂ = i∗V (s) : ∂V → E∂ . So
j ◦ i− : ∂U→ S∂V,E∂ ,s∂ is an equivalence in dSpac.

Write dimV = n and rankE = k, so that dim ∂V = n− 1 and rankE∂ = k.
Then Definition 4.46 and Proposition 4.47(a) give isomorphisms

Li : i∗(LT∗SV,E,s) −→ LT∗U = LT∗X|U,
Lj◦i− : (j ◦ i−)∗(LT∗S∂V,E∂,s∂ ) −→ LT∗∂U = LT∗∂X|∂U ,

LT∗SV,E,s ∼= (ΛkE∗ ⊗ ΛnT ∗V )|SV,E,s ,

LT∗S∂V,E∂,s∂
∼= (ΛkE∗∂ ⊗ Λn−1(T ∗∂V ))|S∂V,E∂,s∂ ,

(7.38)

where V , ∂V = FC∞Sch
Manc (V, ∂V ), and E , E∂ are the lifts of E,E∂ to vector bun-

dles on V , ∂V , and SV,E,s, S∂V,E∂ ,s∂ are regarded as C∞-subschemes of V , ∂V .
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As i is an equivalence, si : Si → ∂U and ui : Si → S∂V,E∂ ,s∂ are both

isomorphisms, with ui ◦s−1
i = i− : ∂U → S∂V,E∂ ,s∂ . So Proposition 6.7(d) gives

an isomorphism

δ∂U (NU) ◦ I−1

s−1
i ,si

(NU) ◦ (s−1
i )∗(λi) ◦ Is−1

i ,ui
(NSV,E,s) :

i∗−(NSV,E,s) −→ NX.
(7.39)

We also have natural isomorphisms

NSV,E,s
∼= ν∗|S∂V,E∂,s∂ , i∗SV,E,s(E|SV,E,s) ∼= E∂ |S∂V,E∂,s∂ , (7.40)

where ν = i∗V (TV )/T∂V is the normal line bundle of ∂V in V . Its dual ν∗ fits
into an exact sequence in qcoh(∂V ), as for (6.11):

0 // ν∗
π∗ν // i∗V (T ∗V )

ΩiV // T ∗(∂V ) // 0. (7.41)

Combining equations (7.38)–(7.40) gives isomorphisms

LT∗(∂X)|∂U ∼= i∗−
(
(ΛkE∗∂ ⊗ Λn−1(T ∗∂V ))|S∂V,E∂,s∂

)
,(

i∗X(LT∗X)⊗N ∗X
)
|∂U ∼= i∗−

(
(ΛkE∗∂ ⊗ Λn(i∗V (T ∗V ))⊗ ν)|S∂V,E∂,s∂

)
.

(7.42)

Define an isomorphism ψ : Λn(i∗V (T ∗V )) ⊗ ν → Λn−1(T ∗∂V )) in qcoh(∂V ) as
follows. At a point x′ ∈ ∂V , choose a basis element e for ν|x′ , and let ε be the
dual basis element for ν∗|x′ . Then ε0 = π∗ν(ε) is nonzero in i∗V (T ∗V )|x′ , so we
can choose ε1, . . . , εn−1 so that ε0, ε1, . . . , εn−1 is a basis for i∗V (T ∗V )|x′ . Then
ΩiV (ε1), . . . ,ΩiV (εn−1) is a basis for T ∗(∂V )|x′ by (7.41). We define ψ to satisfy

ψ|x′ : (ε0 ∧ ε1 ∧ · · · ∧ εn−1)⊗ e 7−→ ΩiV (ε1) ∧ · · · ∧ ΩiV (εn−1). (7.43)

One can show that (7.43) is independent of choices of e, ε1, . . . , εn−1, and that
this characterizes a unique isomorphism ψ.

Combining ψ with (7.42) gives an isomorphism LT∗(∂X)|∂U → (i∗X(LT∗X)⊗
N ∗X)|∂U . We define Ψ∂U to be this, multiplied by a correction factor of (−1)k.

By a long but straightforward calculation one can show that if x̃′, Ũ, ı̃, Ṽ , Ẽ, s̃, ñ,
k̃ are alternative choices for x′,U, i, V, E, s, n, k, then Ψ∂U |∂U∩∂Ũ = Ψ∂Ũ |∂U∩∂Ũ .

Clearly this must hold up to sign, and the sign depends only on n, k, ñ, k̃. The
point of the extra factor (−1)k is that it yields the sign 1. Since ∂X can
be covered by such open C∞-subschemes ∂U , and the Ψ∂U are compatible
on overlaps ∂U ∩ ∂Ũ , we can glue the isomorphisms Ψ∂U to give a unique
isomorphism (7.37) with Ψ|∂U = Ψ∂U . The last part is immediate.

If X is an oriented d-manifold with corners then ∂X, ∂2X, . . . are also ori-
ented d-manifolds with corners, by induction in Theorem 7.54. As in §6.7, the
corners Ck(X) satisfy Ck(X) ∼= ∂kX/Sk. However, for k > 2, the action of the
symmetric group Sk on ∂kX does not preserve orientations, as σ ∈ Sk multiplies
orientations by sign(σ). So Ck(X) has no natural orientation for k > 2, and
need not be orientable, as the next example shows.
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Example 7.55. Let W be the oriented 4-manifold with corners S2 × [0,∞)2,
and write points of W as (x1, x2, x3, y1, y2), where xi, yj ∈ R with x2

1 + x2
2 +

x2
3 = 1 and y1, y2 > 0. Define σ : W → W by σ : (x1, x2, x3, y1, y2) 7→

(−x1,−x2,−x3, y2, y1). Then σ is an orientation-preserving free involution, so
X = W/〈σ〉 is also an oriented 4-manifold with corners. We find that ∂X ∼=
S2× [0,∞) is an oriented 3-manifold with boundary, and ∂2X ∼= S2 an oriented
2-manifold. However, C2(X) ∼= S2/Z2

∼= RP2 is a non-orientable 2-manifold.

In Theorem 6.52, in some special cases we expressed the boundary of a fibre
product X×ZY in dSpac as a disjoint union of fibre products of ∂X, ∂Y, ∂Z,X,
Y,Z. Here is a version of this for oriented d-manifolds with corners, in which
we include signs to compare the orientations on each side. The analogue for
manifolds with corners is Proposition 5.36, and Fukaya et al. [32, Lem. 8.2.3(1)]
give the analogue of part (a) for Kuranishi spaces.

Theorem 7.56. Let g : X → Z and h : Y → Z be 1-morphisms of ori-
ented d-manifolds with corners. Then the following hold in oriented d-manifolds
with corners, where by Theorem 7.38 all fibre products in (7.44)–(7.50) are cd-
transverse, and so exist, and the orientations on cd-transverse fibre products
and boundaries are determined by Theorems 7.52 and 7.54:

(a) If Z is a manifold without boundary then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂X×g◦iX,Z,h Y

)
q (−1)vdim X+dim Z

(
X×g,Z,h◦iY ∂Y

)
.

(7.44)

(b) If g is a w-submersion then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂g+X×g+,Z,h Y

)
q (−1)vdim X+vdim Z

(
X×g,Z,h◦iY ∂Y

)
.

(7.45)

(c) If g is an sw-submersion then there is an equivalence

∂
(
X×g,Z,h Y

)
' (−1)vdim X+vdim ZX×g,Z,h◦iY ∂Y. (7.46)

(d) If h is a w-submersion then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂X×g◦iX,Z,h Y

)
q (−1)vdim X+vdim Z

(
X×g,Z,h+ ∂

h
+Y
)
.

(7.47)

(e) If h is an sw-submersion then there is an equivalence

∂
(
X×g,Z,h Y

)
' ∂X×g◦iX,Z,h Y. (7.48)

(f) If both g and h are w-submersions then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂g+X×g+,Z,h Y

)
q (−1)vdim X+vdim Z

(
X×g,Z,h+

∂h+Y
)
q
(
∂g−X×g−,∂Z,h− ∂

h
−Y
)
.

(7.49)
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(g) If both g and h are sw-submersions then there is an equivalence

∂
(
X×g,Z,h Y

)
' ∂X×g−,∂Z,h− ∂Y. (7.50)

Proof. Omitting signs, equations (7.44)–(7.50) hold in unoriented d-manifolds
with corners by Theorems 6.52 and 7.38. So it remains to determine the signs
for each term on the right hand sides of (7.44)–(7.50). On general grounds, the
signs can only be functions of vdim X, vdim Y, vdim Z. Also, we only have to
compute three signs, as the 12 terms divide into those of type ∂X ×Z Y, for
which we claim the sign is 1, and those of type X ×Z ∂Y, for which we claim
the sign is (−1)vdim X+vdim Z, and those of type ∂X×∂Z ∂Y, for which we claim
the sign is 1. To prove these claims it is enough to consider the case in which
X,Y, Z are manifolds with corners and g, h are submersions, and these follow
from equations (5.26)–(5.28) of Proposition 5.36.

In a similar way, we can add signs to Proposition 6.53, yielding an analogue
of equation (5.25) of Proposition 5.36:

Proposition 7.57. Suppose X,Y are oriented d-manifolds with corners, and
f : X → Y is a semisimple, flat 1-morphism. Then the following holds in
oriented d-manifolds with corners, with fibre products cd-transverse:

∂f−X ' ∂Y ×iY,Y,f X ' (−1)vdim X+vdim YX×f ,Y,iY ∂Y. (7.51)

If f is also simple then ∂f−X = ∂X.
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8 Orbifolds and orbifolds with corners

As a preparation for our work on d-orbifolds and d-orbifolds with corners in
Chapters 9–12, we now study orbifolds and orbifolds with corners. There are
several non-equivalent definitions of orbifolds in use in the literature, which are
surveyed in §8.1. Our approach, advocated in [56, §9.6] and explained in §8.2,
is to regard orbifolds as special examples of Deligne–Mumford C∞-stacks.

Deligne–Mumford C∞-stacks and sheaves upon them are the foundation
of Chapters 8–12, just as C∞-schemes and their sheaves are the foundation
of Chapters 2–7. They are discussed in §1.8 and Appendix C, and readers are
advised to peruse §1.8 before proceeding. Parts of the chapter use more detailed
knowledge of topics on C∞-stacks, in particular, §8.4, §8.9 depend on §§C.5, C.8,
C.9, and §8.5–§8.7 depend on §C.3.

Sections 8.5–8.9 consider orbifolds with corners, the orbifold analogue of
Chapter 5. We will define an orbifold with corners to be a triple X = (X , ∂X , iX)
where iX : ∂X → X is a 1-morphism of Deligne–Mumford C∞-stacks, the
analogue of the smooth map iX : ∂X → X in §5.1 for a manifold with corners
X. Roughly speaking, the orbifold with corners is just the C∞-stack X , but
including ∂X , iX in the definition as extra data enables us to define boundaries
and corners in a strictly functorial rather than weakly functorial way, and is
more compatible with Chapters 11–12. Sections 8.3–8.9 are new material.

8.1 Review of definitions of orbifolds in the literature

Orbifolds (without boundary) are geometric spaces locally modelled on Rn/G,
for G a finite group acting linearly on Rn, just as manifolds without boundary
are locally modelled on Rn. Orbifolds were introduced by Satake [90], who
called them ‘V-manifolds’. Later they were studied by Thurston [99, Ch. 13] in
his work on 3-manifolds, who gave them the name ‘orbifold’, and showed they
have well-behaved notions of fundamental group and universal cover.

Satake and Thurston defined n-orbifolds in the spirit of the usual defini-
tion of manifolds in §5.1, as a Hausdorff topological space X with extra struc-
ture given by an atlas

{
(Ui,Γi, φi) : i ∈ I

}
of orbifold charts (Ui,Γi, φi),

where Γi ⊂ GL(n,R) is a finite subgroup, Ui ⊆ Rn a Γi-invariant open sub-
set, φi : Ui/Γi → X a homeomorphism with an open set in X, and pairs of
charts (Ui,Γi, φi), (Uj ,Γj , φj) satisfy compatibility conditions on their overlaps
in X. Smooth maps between orbifolds are continuous maps f : X → Y of the
underlying spaces, which lift locally to equivariant smooth maps on the charts.

There is a problem with this notion of smooth maps, discussed by Adem
et al. [2, p. 23–4, p. 47–50]: some differential-geometric operations, such as the
pullback of vector bundles by smooth maps, may not be well-defined. The issue
is this: if f : X → Y is smooth, and x ∈ X with f(x) = y ∈ Y , and (U,Γ, φ),
(V,∆, ψ) are orbifold charts on X,Y near x, y with f ◦ φ(U/Γ) ⊆ ψ(V/∆), for
(U,Γ, φ) ‘sufficiently small’, then there should exist a group morphism ρ : Γ→
∆ and a smooth ρ-equivariant map g : U → V , such that the induced map
g∗ : U/Γ → V/∆ satisfies ψ ◦ g∗ = f ◦ φ. These g, ρ may not be unique, but
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pullbacks of vector bundles, etc., depend on the particular choices of g, ρ.
To fix this problem, new definitions of orbifolds and smooth maps were

needed. Moerdijk and Pronk [84, 85] defined orbifolds to be proper étale Lie
groupoids (U, V, s, t, u, i,m) in Man. Roughly speaking, a groupoid-orbifold is
a Satake–Thurston orbifold together with particular choices of atlas of charts
(Ui,Γi, φi) and transition functions between them. Their definition of smooth
map f : X → Y, called strong maps [85, §5] is complicated: it is an equivalence
class of diagrams X φ←−X ′ ψ−→Y, where X ′ is a third orbifold, and φ, ψ are
morphisms of groupoids with φ an equivalence (loosely, a diffeomorphism).

Chen and Ruan [21, §4] gave an alternative theory. Their definition of
orbifold as a topological space with extra structure is similar to Satake and
Thurston, but uses germs of orbifold charts (U,Γ, φ). Their notion of smooth
map, called good maps [21, §4.4], is a continuous map f : X → Y of the topo-
logical spaces together with compatible choices of germs of smooth lifts to the
orbifold charts. Lupercio and Uribe [69, Prop. 5.1.7] prove that these notions of
strong maps and good maps are equivalent. A book on orbifolds from the point
of view of [84,85] and [21] is Adem, Leida and Ruan [2].

All of [2,21,84,85,90,99] regard orbifolds as an ordinary category. But orb-
ifolds are differential-geometric analogues of Deligne–Mumford stacks, which are
known to form a 2-category. So it seems natural to try and define a 2-category
of orbifolds Orb. One reason for doing this is that several important geometric
constructions need the extra structure of a 2-category to work properly. For
example, transverse fibre products exist and behave nicely in the 2-category
Orb, where they satisfy a universal property involving 2-morphisms. But fibre
products in the homotopy category Ho(Orb) are not well behaved, and are not
a good generalization of fibre products in Man.

There are two main routes in the literature for defining a 2-category of
orbifolds Orb. The first, as in Pronk [89] and Lerman [67, §3.3], is to define
orbifolds to be groupoids (U, V, s, t, u, i,m) in Man as in [84,85]. But to define
1- and 2-morphisms in Orb one must do more work: one makes proper étale
Lie groupoids into a 2-category Gpoid, and then Orb is defined as a (weak)
2-category localization of Gpoid at a suitable class of 1-morphisms.

The second route, as in Behrend and Xu [13, §2], Lerman [67, §4] and Metzler
[82, §3.5], is to define orbifolds as a class of Deligne–Mumford stacks on the site
(Man,JMan) of manifolds with Grothendieck topology JMan coming from open
covers. The relationship between the two routes is discussed by Behrend and
Xu [13, §2.6], Lerman [67], and Pronk [89], who proves the two approaches give
equivalent weak 2-categories.

The author’s approach [56, §9.6], described in §8.2 below, is similar to the
second route: we define orbifolds to be examples of Deligne–Mumford C∞-
stacks, so that they are stacks on the site (C∞Sch,J ). This will be convenient
for our work on d-stacks and d-orbifolds, which are also based on C∞-stacks.

In the ‘classical’ approaches to orbifolds [2, 21, 84, 85, 90, 99], the objects,
orbifolds, have a simple definition, but the smooth maps, or 1- and 2-morphisms,
are either badly behaved, or very complicated to define. In contrast, in the
‘stacky’ approaches to orbifolds [13,56,67,82], the objects are very complicated

426



to define, but 1- and 2-morphisms are well-behaved and easy to define — 1-
morphisms are just functors, and 2-morphisms are natural isomorphisms.

8.2 Orbifolds as C∞-stacks

Here is our definition of orbifolds [56, Def. 9.25], which will be used in the rest
of the book. It is based on Metzler [82, §3.5] and Lerman [67, Rem. 4.33], but
replacing stacks on the site (Man,JMan) by stacks on the site (C∞Sch,J ).

Definition 8.1. A C∞-stack X is called an orbifold (without boundary) if it
is equivalent to a groupoid stack [V ⇒ U] for some groupoid (U, V , s, t, u, i,m)
in C∞Sch which is the image under FC∞Sch

Man of a groupoid (U, V, s, t, u, i,m)
in Man respectively, where s : V → U is an étale smooth map, and s × t :
V → U × U is a proper smooth map. That is, X is the C∞-stack associated to
a proper étale Lie groupoid in Man, in the sense of [84, 85]. Every orbifold X
is a separated, second countable, locally compact, paracompact, locally finitely
presented Deligne–Mumford C∞-stack.

An equivalent definition, which is closer to Satake and Thurston’s definitions
[90,99], is that a separated, second countable Deligne–Mumford C∞-stack X is
an orbifold of dimension n if for every [x] ∈ Xtop there exist a linear action of
G = IsoX ([x]) on Rn, a G-invariant open neighbourhood U of 0 in Rn, and a
1-morphism i : [U/G]→ X which is an equivalence with an open neighbourhood
U ⊆ X of [x] in X with itop([0]) = [x], where U = FC∞Sch

Man (U). That is, X
is a separated, second countable Deligne–Mumford C∞-stack which is locally
modelled on Rn/G for some finite group G near any point.

Write Orb for the full 2-subcategory of orbifolds in DMC∞Sta. We may
refer to 1-morphisms f : X → Y in Orb as smooth maps of orbifolds. Define a
full and faithful functor FOrb

Man : Man → Orb by FOrb
Man = FC∞Sta

C∞Sch ◦ FC∞Sch
Man .

When we say that an orbifold X is a manifold, we mean that X ' FOrb
Man(X)

for some manifold X.

Here is [56, Th. 9.26 & Cor. 9.27]. Since equivalent (2-)categories are con-
sidered to be ‘the same’, the moral of Theorem 8.2 is that our orbifolds are
essentially the same objects as those considered by other recent authors.

Theorem 8.2. The 2-category Orb of orbifolds without boundary defined above
is equivalent to the 2-categories of orbifolds considered as stacks on Man de-
fined in Metzler [82, §3.4] and Lerman [67, §4], and also equivalent as a weak
2-category to the weak 2-categories of orbifolds regarded as proper étale Lie
groupoids defined in Pronk [89] and Lerman [67, §3.3].

Furthermore, the homotopy category Ho(Orb) of Orb (that is, the category
whose objects are objects in Orb, and whose morphisms are 2-isomorphism
classes of 1-morphisms in Orb) is equivalent to the category of orbifolds re-
garded as proper étale Lie groupoids defined in Moerdijk [84]. Transverse fibre
products in Orb agree with the corresponding fibre products in C∞Sta.

We define five classes of smooth maps:
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Definition 8.3. Let f : X → Y be a smooth map (1-morphism) of orbifolds.

(i) We call f representable if it acts injectively on orbifold groups, that is,
f∗ : IsoX ([x])→ IsoY

(
ftop([x])

)
is an injective morphism for all [x] ∈ Xtop.

By Corollary C.24 this is equivalent to f being a representable 1-morphism
of C∞-stacks. That is, whenever V is a C∞-scheme and Π : V̄ → Y is a
1-morphism, the fibre product X ×f,Y,Π V̄ in C∞Sta is a C∞-scheme.

(ii) We call f an immersion if it is representable and Ωf : f∗(T ∗Y)→ T ∗X is a
surjective morphism of vector bundles, i.e. has a right inverse in qcoh(X ).

(iii) We call f an embedding if it is an immersion, and f∗ : IsoX ([x]) →
IsoY

(
ftop([x])

)
is an isomorphism for all [x] ∈ Xtop, and ftop : Xtop → Ytop

is a homeomorphism with its image (so in particular it is injective).

(iv) We call f a submersion if Ωf : f∗(T ∗Y)→ T ∗X is an injective morphism
of vector bundles, i.e. has a left inverse in qcoh(X ).

(v) We call f étale if it is representable and Ωf : f∗(T ∗Y) → T ∗X is an
isomorphism, or equivalently, if f is étale as a 1-morphism of C∞-stacks.

Note that submersions are not required to be representable.

Many other standard ideas in differential geometry extend simply to orb-
ifolds, such as submanifolds, transverse fibre products, and orientations, and we
will generally use these without comment.

8.3 Vector bundles on orbifolds

In [56, §10], summarized in [57, §4.3] and §C.6 below, the author defined and
studied the category qcoh(X ) of quasicoherent sheaves on a Deligne–Mumford
C∞-stack X , and the subcategory vect(X ) of vector bundles in qcoh(X ). As
orbifolds are examples of Deligne–Mumford C∞-stacks, if X is an orbifold this
defines a category vect(X ) of vector bundles on X . So for us, a vector bundle
E on X is by definition a special kind of quasicoherent sheaf on X .

A smooth section s of a vector bundle E on X is a morphism s : OX → E
in qcoh(X ). Smooth sections form a vector space, which we write as C∞(E). If
φ : E → F is a morphism of vector bundles on X then φ induces a linear map
φ∗ : C∞(E)→ C∞(F) sending s 7→ φ ◦ s.

If f : X → Y is a smooth map (1-morphism) of orbifolds and F is a vector
bundle over Y, the pullback f∗(F) is a vector bundle over X . It induces a
linear map f∗ : C∞(F) → C∞(f∗(F)) sending s 7→ f∗(s) ◦ ι, where ι : OX →
f∗(OY) = f−1(OY)⊗f−1(OY) OX is the natural isomorphism.

As in [56, Prop. 10.14], the cotangent sheaf T ∗X of an n-orbifold X is a
vector bundle on X of rank n, which we call the cotangent bundle. We can then
define the tangent bundle TX = (T ∗X )∗. If f : X → Y is a smooth map of
orbifolds we have a natural morphism Ωf : f∗(T ∗Y) → T ∗X of vector bundles
on X , and a dual morphism Ω∗f : TX → f∗(TY). We think of Ω∗f as df and Ωf
as (df)∗.
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Here is a feature of vector bundles on orbifolds which does not appear in the
manifold case. Let X be an n-orbifold, E → X a rank k vector bundle on X , and
[x] ∈ Xtop be a geometric point of X , with orbifold groupG = IsoX ([x]). Then X
is locally modelled near [x] on Rn/G near 0, where G acts linearly on Rn, and E
is locally modelled near [x] on the orbifold vector bundle (Rk×Rn)/G→ Rn/G,
where G acts linearly on Rk, and this action need not be trivial. That is, at
each geometric point [x] ∈ Xtop the fibre Ex is a vector space isomorphic to Rk,
equipped with a representation of IsoX ([x]), which need not be trivial.

Smooth sections of E (in the Zariski topology) are locally modelled near [x]
on G-equivariant smooth maps s : Rn → Rk near 0. Now s(0) must take values
in the G-invariant subspace (Rk)G of Rk. Thus a smooth section s of a vector
bundle E over an orbifold X must take values at each [x] ∈ Xtop in the subspace
of Ex invariant under IsoX ([x]).

So, for example, there can be nonzero vector bundles E → X which have
no nonzero sections. Also, if E is a rank k vector bundle over an n-manifold,
then a generic section s ∈ C∞(E) is transverse, so that s−1(0) is a submanifold
of X of dimension n − k. However, a vector bundle E over an orbifold X may
have no transverse sections. This will be important in Chapter 13, as it means
that every compact d-manifold is bordant to a compact manifold, but compact
d-orbifolds may not be bordant to compact orbifolds.

For some applications below, this point of view on vector bundles is not ideal.
If E → X is a vector bundle on a manifold, then E is itself a manifold (with
extra structure), with a submersion π : E → X, and a section s ∈ C∞(E) is a
smooth map s : X → E with π ◦ s = idX . In Proposition 3.12(c) we considered

d-space fibre products V ×s,E,0V where V ,E, s,0 = FdSpa
Man (V,E, s, 0). For the

d-orbifold analogue of this, we would like to regard a vector bundle E over an
orbifold X as being an orbifold in its own right, rather than just a quasicoherent
sheaf, and a section s ∈ C∞(E) as being a 1-morphism s : X → E in Orb.

To get round this, we will define a total space functor Tot, which to each
E in vect(X ) associates an orbifold Tot(E), called the total space of E , and to
each section s ∈ C∞(E) associates a 1-morphism Tot(s) : X → Tot(E) in Orb.
Then the d-orbifold analogue of V ×s,E,0V in Proposition 3.12(c) is V×s,E,0V ,
where V ,E, s,0 = FdSta

Orb

(
V,Tot(E),Tot(s),Tot(0)

)
.

Definition 8.4. Let X be an orbifold, and E ∈ vect(X ) a vector bundle on
X . Then X is a C∞-stack, and so as in Definition C.1 consists of a category
X and a functor pX : X → C∞Sch satisfying many complicated conditions.
There is a 1-1 correspondence between objects u in X with pX (u) = U in
C∞Sch and 1-morphisms ũ : Ū → X in C∞Sta. If u, v ∈ X with pX (u) = U,
pX (v) = V correspond to ũ : Ū → X and ṽ : V̄ → X in C∞Sta, there is a 1-1
correspondence between morphisms η : u → v in X with pX (η) = f : U → V

and 2-morphisms η̃ : ũ⇒ ṽ ◦ f̄ in C∞Sta.
Define a category Tot(E) to have objects pairs (u, α), where u is an object in

X with pX (u) = U in C∞Sch, and ũ : Ū → X is the corresponding 1-morphism
in C∞Sta, and α : ũ∗(OX ) → ũ∗(E) is a morphism in vect(Ū). If (u, α) and
(v, β) are objects in Tot(E) with pX (u) = U, pX (v) = V and corresponding
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1-morphisms ũ : Ū → X , ṽ : V̄ → X , a morphism η : (u, α) → (v, β) in Tot(E)
is a morphism η : u → v in X with pX (η) = f : U → V and corresponding 2-

morphism η̃ : ũ⇒ ṽ◦f̄ in C∞Sta, such that the following commutes in vect(Ū):

ũ∗(OX )

α��
η̃∗(OX )

// (ṽ ◦ f̄)∗(OX )
If̄,ṽ(OX )

// f̄∗(ṽ∗(OX ))

f̄∗(β) ��
ũ∗(E)

η̃∗(E) // (ṽ ◦ f̄)∗(E)
If̄,ṽ(E)

// f̄∗(ṽ∗(E)),

where ι : OŪ → f̄∗(OV̄ ) is the natural isomorphism.
Composition of morphisms in Tot(E) is as in X , and identities are id(u,α) =

idu. The functor pTot(E) : Tot(E)→ C∞Sch is given by pTot(E) : (u, α) 7→ pX (u)
on objects and pTot(E) : η 7→ pX (η) on morphisms. With these definitions, one
can show that Tot(E) is a category, pTot(E) : Tot(E)→ C∞Sch is a functor, and
Tot(E), pTot(E) is a C∞-stack, and in fact an orbifold.

Define π : Tot(E) → X by π : (u, α) 7→ u on objects and π : η → η on
morphisms. Then π is a functor with pX ◦ π = pTot(E), so π : Tot(E) → X is
a 1-morphism in Orb. Let s ∈ C∞(E), so that s : OX → E is a morphism in
vect(X ). Define a functor Tot(s) : X → Tot(E) to map Tot(s) : u 7→

(
u, ũ∗(s)

)
on objects, where ũ : Ū → X corresponds to u, and to map Tot(s) : η 7→ η on
morphisms. Then pTot(E)◦Tot(s) = pX , so Tot(s) : X → Tot(E) is a 1-morphism
in Orb. It satisfies π ◦ Tot(s) = idX .

These Tot(E),Tot(s) have good functorial properties with respect to mor-
phisms φ : E → F in vect(X ), and 1-morphisms f : X → Y and 2-morphisms
η : f ⇒ g in Orb, but we will not need them, so we leave them as an exercise.

Chen and Ruan [21, §4] give a different treatment of vector bundles on
orbifolds. Their definition of orbifold X involves covering the topological space
X by an atlas of orbifold charts (V,G, π) with V a manifold, G a finite group
acting on V and π : V/G→ X a homeomorphism with an open set. Then they
define an orbifold vector bundle E to be an orbifold E whose charts are of the
special form (V × Rk, G, π) for each (V,G, π) in the atlas for X . So their E is
an orbifold in its own right, as for our Tot(E). Chen and Ruan’s orbifold vector
bundles form a category (not a 2-category) equivalent to our vect(X ).

8.4 Orbifold strata of orbifolds, and effective orbifolds

8.4.1 Orbifold strata XΓ,λ, X̃Γ,µ, X̂Γ,µ,XΓ,λ
◦ , X̃Γ,µ

◦ , X̂Γ,µ
◦ of orbifolds X

In [56, §11] and §C.8 we study orbifold strata of a Deligne–Mumford C∞-stack
X . We define six variations of this idea, C∞-stacks written XΓ, X̃Γ, X̂Γ, and
open C∞-substacks XΓ

◦ ⊆ XΓ, X̃Γ
◦ ⊆ X̃Γ, X̂Γ

◦ ⊆ X̂Γ, for each finite group Γ.

The C∞-stack X̂Γ
◦ is a C∞-scheme, so that X̂Γ

◦ '
¯̂
XΓ
◦ for a C∞-scheme X̂Γ

◦ .
The geometric points and orbifold groups of XΓ, . . . , X̂Γ

◦ are given by:

(i) Points of XΓ are isomorphism classes [x, ρ], where [x] ∈ Xtop and ρ : Γ→
IsoX ([x]) is an injective morphism, and IsoXΓ([x, ρ]) is the centralizer of
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ρ(Γ) in IsoX ([x]). Points of XΓ
◦ ⊆ XΓ are [x, ρ] with ρ an isomorphism,

and IsoXΓ
◦
([x, ρ]) ∼= C(Γ), the centre of Γ.

(ii) Points of X̃Γ are pairs [x,∆], where [x] ∈ Xtop and ∆ ⊆ IsoX ([x]) is
isomorphic to Γ, and IsoX̃Γ([x,∆]) is the normalizer of ∆ in IsoX ([x]).
Points of X̃Γ

◦ ⊆ X̃Γ are [x,∆] with ∆ = IsoX ([x]), and IsoX̃Γ
◦
([x,∆]) ∼= Γ.

(iii) Points [x,∆] of X̂Γ, X̂Γ
◦ are the same as for X̃Γ, X̃Γ

◦ , but with orbifold
groups IsoX̂Γ([x,∆]) ∼= IsoX̃Γ([x,∆])/∆ and IsoX̂Γ

◦
([x,∆]) ∼= {1}.

There are 1-morphisms OΓ(X ), . . . , Π̂Γ
◦ (X ) forming a strictly commutative dia-

gram, where the columns are inclusions of open C∞-substacks:

XΓ
◦

Π̃Γ
◦ (X ) //

OΓ
◦ (X ) ++WWWWWWWWWWWW

⊂
��

Aut(Γ)
,, X̃Γ

◦
Π̂Γ
◦ (X ) //

ÕΓ
◦ (X )ssgggggggggggg

⊂
��

X̂Γ
◦ '

¯̂
XΓ
◦

⊂
��

X

XΓ

Π̃Γ(X )

//
OΓ(X )

33ggggggggggggAut(Γ) 22 X̃Γ
Π̂Γ(X )

//
ÕΓ(X )

kkWWWWWWWWWWWW
X̂Γ.

Also Aut(Γ) acts on XΓ,XΓ
◦ , with X̃Γ ' [XΓ/Aut(Γ)], X̃Γ

◦ ' [XΓ
◦ /Aut(Γ)].

The 1-morphisms OΓ(X ), ÕΓ(X ), Π̃Γ(X ), Π̂Γ(X ) are proper, so if X is com-
pact then XΓ, X̃Γ, X̂Γ are also compact, although the open C∞-substacks XΓ

◦ ,
X̃Γ
◦ , X̂Γ

◦ are generally noncompact.
In [56, §11] and §C.9 we discuss sheaves on orbifold strata. We show, for

example, that if E is a quasicoherent sheaf on a Deligne–Mumford C∞-stack X
and Γ is a finite group, then the pullback EΓ := OΓ(X )∗(E) of E to XΓ carries
a natural representation of Γ, and so decomposes as a direct sum of subsheaves
corresponding to irreducible representations of Γ.

We now discuss how these ideas work out when X is an orbifold, where as in
§8.2 we regard orbifolds as examples of Deligne–Mumford C∞-stacks. Let X be
an n-orbifold, and Γ a finite group. Then XΓ is a C∞-stack. As X is an orbifold
it can be covered by open U ⊆ X with U ' [U/G] for G a finite group acting
linearly on Rn, and U ⊆ Rn a G-invariant open subset, and U = FC∞Sch

Man (U).
Equation (C.14) of Theorem C.53 then implies that

UΓ '
∐

conjugacy classes [ρ] of injective ρ : Γ→ G

[
Uρ(Γ)/CG(ρ(Γ))

]
.

Here Uρ(Γ) ∼= FC∞Sch
Man

(
U ∩ (Rn)ρ(Γ)

)
, where (Rn)ρ(Γ) is the linear subspace of

Rn fixed by the subgroup ρ(Γ) ⊆ G. Thus, [Uρ(Γ)/CG(ρ(Γ))] is an orbifold of
dimension dim(Rn)ρ(Γ). But because different choices of ρ may yield different
dimensions dim(Rn)ρ(Γ), in general UΓ is not an orbifold, but only a disjoint
union of orbifolds of different dimensions.

Since XΓ is covered by such UΓ, it follows that XΓ is also in general a
disjoint union of orbifolds of different dimensions, but may not be an orbifold.
The same applies for X̃Γ, X̂Γ,XΓ

◦ , X̃Γ
◦ , X̂Γ

◦ . As for M̌anc in Definition 5.15,
write Ǒrb for the full 2-subcategory of DMC∞Sta whose objects are disjoint
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unions of orbifolds of different dimensions, so that Orb ⊂ Ǒrb ⊂ DMC∞Sta.
Then XΓ, . . . , X̂Γ

◦ lie in Ǒrb for any orbifold X and finite group Γ.
So that our constructions remain within the world of orbifolds, we will find

it useful to define a decomposition XΓ =
∐
λ∈ΛΓ

+
XΓ,λ of XΓ such that each

XΓ,λ is an orbifold of dimension dimX − dimλ.

Definition 8.5. Let Γ be a finite group. Consider representations (V, ρ) of
Γ, where V is a finite-dimensional real vector space and ρ : Γ → Aut(V ) a
group morphism. We call (V, ρ) nontrivial if V ρ(Γ) = {0}. Write Repnt(Γ) for
the abelian category of nontrivial (V, ρ), and K0(Repnt(Γ)) for its Grothendieck
group. Then any (V, ρ) in Repnt(Γ) has a class

[
(V, ρ)

]
in K0(Repnt(Γ)). For

brevity, we will use the notation ΛΓ = K0

(
Repnt(Γ)

)
and ΛΓ

+ =
{[

(V, ρ)
]

:

(V, ρ) ∈ Repnt(Γ)
}
⊆ ΛΓ. We think of ΛΓ

+ as the ‘positive cone’ in ΛΓ.
There is a simple description of ΛΓ,ΛΓ

+ in terms of irreducible representa-
tions. By elementary representation theory, up to isomorphism Γ has finitely
many irreducible representations. Let R0, R1, . . . , Rk be choices of irreducible
representations in these isomorphism classes, with R0 = R the trivial irreducible
representation, so that R1, . . . , Rk are nontrivial. Then ΛΓ is freely generated
over Z by [R1], . . . , [Rk], so that

ΛΓ =
{
a1[R1] + · · ·+ ak[Rk] : a1, . . . , ak ∈ Z

}
, and

ΛΓ
+ =

{
a1[R1] + · · ·+ ak[Rk] : a1, . . . , ak ∈ N

}
⊆ ΛΓ,

(8.1)

where N = {0, 1, 2, . . .} ⊂ Z. Hence ΛΓ ∼= Zk and ΛΓ
+
∼= Nk.

Define a group morphism dim : ΛΓ → Z by dim : a1[R1] + · · · + ak[Rk] 7→
a1 dimR1 + · · ·+ak dimRk, so that dim : [(V, ρ)] 7→ dimV . Then dim(ΛΓ

+) ⊆ N.
Now let X be an orbifold. Then T ∗X is a vector bundle, so OΓ(X )∗(T ∗X ) is

a vector bundle on XΓ. Definition C.54 gives an action of Γ on OΓ(X )∗(T ∗X ) by
isomorphisms, so OΓ(X )∗(T ∗X ) = (T ∗X )Γ

tr⊕ (T ∗X )Γ
nt as in (C.22)–(C.23), with

(T ∗X )Γ
tr
∼= (T ∗X )Γ

0 ⊗R0 and (T ∗X )Γ
nt
∼=
⊕k

i=1(T ∗X )Γ
i ⊗Ri, where (T ∗X )Γ

0 , . . . ,
(T ∗X )Γ

k ∈ qcoh(XΓ). As OΓ(X )∗(T ∗X ) is a vector bundle, the (T ∗X )Γ
i are

vector bundles of mixed rank, that is, locally they are vector bundles, but their
ranks may vary on different connected components of XΓ.

For each λ ∈ ΛΓ
+, define XΓ,λ to be the open and closed C∞-substack in XΓ

with rank
(
(T ∗X )Γ

1

)
[R1]+· · ·+rank

(
(T ∗X )Γ

k

)
[Rk] = λ in ΛΓ

+. Then (T ∗X )Γ
nt|XΓ,λ

is a vector bundle of rank dimλ, so (T ∗X )Γ
tr|XΓ,λ is a vector bundle of dimension

dimX − dimλ on XΓ,λ. But (T ∗X )Γ
tr
∼= T ∗(XΓ) by Theorem C.58. Hence

T ∗(XΓ,λ) is a vector bundle of rank dimX − dimλ. Since XΓ is a disjoint
union of orbifolds of different dimensions, we see that XΓ,λ is an orbifold, with
dimXΓ,λ = dimX −dimλ. (We make the convention that the empty C∞-stack
∅ is an orbifold of every dimension n ∈ Z.) As every point of XΓ lies in XΓ,λ

for a unique λ ∈ ΛΓ
+, we see that

XΓ =
∐
λ∈ΛΓ

+
XΓ,λ. (8.2)

Write OΓ,λ(X ) = OΓ(X )|XΓ,λ : XΓ,λ → X . Then OΓ,λ(X ) is a smooth
map of orbifolds (i.e. a 1-morphism in Orb). It is a proper, representable
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immersion, in the sense of Definition 8.3, where proper and representable follow
from Theorem C.49(f),(g), as XΓ,λ is closed in XΓ. We interpret (T ∗X )Γ

nt|XΓ,λ

as the conormal bundle of XΓ,λ in X . It carries a nontrivial Γ-representation of
class λ ∈ ΛΓ

+, so we refer to λ as the conormal Γ-representation of XΓ,λ.

Define XΓ,λ
◦ = XΓ

◦ ∩ XΓ,λ, and OΓ,λ
◦ (X ) = OΓ

◦ (X )|XΓ,λ
◦

: XΓ,λ
◦ → X . Then

XΓ,λ
◦ is an orbifold with dimXΓ,λ

◦ = dimX − dimλ, and XΓ
◦ =

∐
λ∈ΛΓ

+
XΓ,λ
◦ ,

and OΓ,λ
◦ (X ) is a representable immersion, but not necessarily proper.

As in §C.8, we have X̃Γ ' [XΓ/Aut(Γ)]. Now Aut(Γ) acts on the right
on Repnt(Γ) by α : (V, ρ) 7→ (V, ρ ◦ α) for α ∈ Aut(Γ), and this induces right
actions of Aut(Γ) on ΛΓ = K0

(
Repnt(Γ)

)
and ΛΓ

+ ⊆ ΛΓ. Write these actions
as α : λ 7→ λ · α. Then the action of α ∈ Aut(Γ) on XΓ maps XΓ,λ → XΓ,λ·α.
Write ΛΓ

+/Aut(Λ) for the set of Aut(Γ)-orbits µ = λ · Aut(Γ) in ΛΓ
+. The map

dim : ΛΓ → Z is Aut(Γ)-invariant, and so descends to dim : ΛΓ/Aut(Γ)→ Z.
Then

∐
λ∈µ XΓ,λ is an open and closed Aut(Γ)-invariant C∞-substack in XΓ

for each µ ∈ ΛΓ
+/Aut(Λ), so we may define X̃Γ,µ '

[(∐
λ∈µ XΓ,λ

)/
Aut(Γ)

]
, an

open and closed C∞-substack of X̃Γ ' [XΓ/Aut(Γ)]. Write X̃Γ,µ
◦ = X̃Γ

◦ ∩ X̃Γ,µ.

Then X̃Γ,µ, X̃Γ,µ
◦ are orbifolds of dimension dimX − dimµ, with

X̃Γ =
∐
µ∈ΛΓ

+/Aut(Γ) X̃Γ,µ and X̃Γ
◦ =

∐
µ∈ΛΓ

+/Aut(Γ) X̃
Γ,µ
◦ . (8.3)

Set ÕΓ,µ(X ) = ÕΓ(X )|X̃Γ,µ : X̃Γ,µ→X and ÕΓ,µ
◦ (X ) = ÕΓ

◦ (X )|X̃Γ,µ
◦

: X̃Γ,µ
◦ →X .

Then ÕΓ,µ(X ), ÕΓ,µ
◦ (X ) are representable immersions, with ÕΓ,µ(X ) proper.

The 1-morphism Π̂Γ(X ) : X̃Γ → X̂Γ induces a homeomorphism of topolog-
ical spaces by Theorem C.49(e), so it maps open and closed C∞-substacks of
X̃Γ to open and closed C∞-substacks of X̂Γ. Let X̂Γ,µ = Π̂Γ(X )(X̃Γ,µ) for each

µ ∈ ΛΓ
+/Aut(Λ), and write X̂Γ,µ

◦ = X̂Γ
◦ ∩ X̂Γ,µ. Then X̂Γ,µ, X̂Γ,µ

◦ are orbifolds
of dimension dimX − dimµ, with

X̂Γ =
∐
µ∈ΛΓ

+/Aut(Γ) X̂Γ,µ and X̂Γ
◦ =

∐
µ∈ΛΓ

+/Aut(Γ) X̂
Γ,µ
◦ . (8.4)

Furthermore, X̂Γ,µ
◦ is a manifold (that is, it is equivalent in Orb to something

in the image of FOrb
Man), and X̂Γ,µ

◦ ' ¯̂
XΓ,µ
◦ for a C∞-scheme X̂Γ,µ

◦ which is also
a manifold. Thus, the decomposition following from (C.7)

Xtop =
∐

isomorphism classes
of finite groups Γ

∐
µ∈ΛΓ

+/Aut(Γ)
X̂Γ,µ
◦,top (8.5)

is a stratification of the topological space Xtop of an orbifold X into manifolds

X̂Γ,µ
◦,top. This is the usual sense of ‘orbifold strata’ of X in the literature.

If f : X → Y is a representable 1-morphism of Deligne–Mumford C∞-stacks
and Γ a finite group, Definition C.51 defined a representable 1-morphism of
orbifold strata fΓ : XΓ → YΓ. Note that if X ,Y are orbifolds, then fΓ need
not map XΓ,λ → YΓ,λ, or map XΓ

◦ → YΓ
◦ . The same applies for f̃Γ, f̂Γ.

Although the author has not found a treatment of our notions of orbifold
strata XΓ, X̃Γ, X̂Γ or XΓ,λ, X̃Γ,µ, X̂Γ,µ anywhere in the literature, similar ideas
occur in several places. For example:
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• Given a Satake–Thurston orbifold X , Kawasaki [60, §1] defines orbifolds

of mixed dimension Σ̃X and ˜̃ΣX , with morphisms π : Σ̃X → X and

π′ : ˜̃ΣX → Σ̃X , which occur in the orbifold versions of the Signature
and Index Theorems. In our notation these are Σ̃X '

∐
k>2 X̃ Zk and

˜̃ΣX '
∐
k>2 X Zk , with π ∼=

∐
k>2 Õ

Zk(X ) and π′ ∼=
∐
k>2 Π̃Zk(X ).

• Chen and Ruan [22] define a cohomology theory Hd
orb(X , J) of complex

orbifolds (X , J), graded by d ∈ Q, which has an associative multiplication,
and appears naturally in String Theory. In our notation it is

Hd
orb(X , J) =

⊕
k>1

⊕
λ∈Λ

Zk
+ (C)

Hd−2ιk(λ)(X Zk,λ
top ;R),

where ΛZk
+ (C) is as for ΛZk

+ above but using complex representations, and

ιk : ΛZk
+ (C) → Q is the unique group morphism mapping ιk : [Rj ] 7→ j/k

for j = 0, . . . , k − 1, where Rj is the representation of Zk on C in which
the generator of Zk acts by multiplication by e2πij/k.

• When X is an effective Satake–Thurston n-orbifold and Γ ⊂ SO(n) a fi-
nite subgroup, Druschel [28, Def. 2.9] defines an effective Satake–Thurston
orbifold XΓ which is essentially the same as our X̂Γ,λ for λ ∈ ΛΓ

+ the class
of the nontrivial part (Rn)nt of the given representation of Γ on Rn, pro-
vided X̂Γ,λ is effective, and is the effective truncation of X̂Γ,λ otherwise.
Here effective orbifolds are discussed in §8.4.3.

8.4.2 Orbifold strata and orientations

We now consider issues linking orbifold strata and orientations of orbifolds. First
observe that an orbifold X need not be even locally orientable. For example,
the orbifold [Rn/{±1}] is not orientable near 0 if n is odd. More generally, if a
finite group G acts on Rn by ρ : G→ GL(n,R), then [Rn/G] is orientable near
0 if and only if det ρ(γ) = 1 for all γ ∈ G. This holds if and only if G has no
subgroup Γ ∼= Z2 whose generator has eigenvalue −1 with odd multiplicity. We
can express this in terms of orbifold strata:

Lemma 8.6. An orbifold X is locally orientable if and only if X Z2,λ = ∅ for
all odd λ ∈ ΛZ2

+
∼= N = {0, 1, 2, . . .}.

Next consider the question: if X is an oriented orbifold, when can we define
orientations on the orbifold strata XΓ,λ, . . . , X̂Γ,µ

◦ ? Here is an example:

Example 8.7. Let S4 =
{

(x1, . . . , x5) ∈ R5 : x2
1 + · · · + x2

5 = 1
}

, an oriented

4-manifold. Let G = {1, σ, τ, στ} ∼= Z2
2 act on S4 preserving orientations by

σ : (x1, . . . , x5) 7−→ (x1, x2, x3,−x4,−x5),

τ : (x1, . . . , x5) 7−→ (−x1,−x2,−x3,−x4, x5),

στ : (x1, . . . , x5) 7−→ (−x1,−x2,−x3, x4,−x5).
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Then X = [S4/G] is an oriented 4-orbifold. The orbifold groups IsoX ([x]) for
[x] ∈ Xtop are all {1} or Z2. The singular locus of X is the disjoint union of a
copy of RP2 from the fixed points ±(x1, x2, x3, 0, 0) of σ, and two isolated points
{±(0, 0, 0, 0, 1)} and {±(0, 0, 0, 1, 0)} from the fixed points of τ and στ .

Identifying ΛZ2
+ and ΛZ2

+ /Aut(Z2) with N as in Lemma 8.6, as Aut(Z2) =
{idZ2}, it follows that

X Z2,2 = X Z2,2
◦
∼= X̃ Z2,2 = X̃ Z2,2

◦
∼= RP2 × [∗/Z2], X̂ Z2,2 = X̂ Z2,2

◦
∼= RP2,

X Z2,4 = X Z2,4
◦
∼= X̃ Z2,4 = X̃ Z2,4

◦
∼= [∗/Z2]q [∗/Z2], X̂ Z2,4 = X̂ Z2,4

◦
∼= ∗ q ∗.

Since RP2 is not orientable, we see that X is an oriented orbifold, but none of
X Z2,2, X̃ Z2,2, X̂ Z2,2,X Z2,2

◦ , X̃ Z2,2
◦ , X̂ Z2,2

◦ are orientable.

However, under extra conditions on Γ, λ, µ we can define orientations on
XΓ,λ, . . . , X̂Γ,µ

◦ . To do this, we will need to choose coherent orientations on all
Γ-representations in a given class λ ∈ ΛΓ

+.

Definition 8.8. Let Γ be a finite group. The following facts are easy to prove
using Schur’s Lemma and elementary representation theory:

(i) Suppose (V, ρ) ∈ Repnt(Γ) has an odd-dimensional subrepresentation W .
Then by splitting V = W ⊕ W⊥, we can find an orientation-reversing
isomorphism α : (V, ρ)→ (V, ρ) in Repnt(Γ) with α|W = −1, α|W⊥ = 1.

(ii) Suppose (V, ρ) ∈ Repnt(Γ) has no odd-dimensional subrepresentations.
Then every isomorphism α : (V, ρ)→ (V, ρ) is orientation-preserving.

(iii) dimV is even for all (V, ρ) ∈ Repnt(Γ) if and only if |Γ| is odd.

Choose representatives (R1, ρ1), . . . , (Rk, ρk) for all the isomorphism classes
of nontrivial, irreducible, even-dimensional, real Γ-representations, and choose
orientations on the vector spaces R1, . . . , Rk. Write ΛΓ

ev for the sublattice of ΛΓ

spanned by [(R1, ρ1)], . . . , [(Rk, ρk)], and ΛΓ
ev,+ = ΛΓ

ev ∩ ΛΓ
+. Then ΛΓ

ev
∼= Zk

and ΛΓ
ev,+

∼= Nk. Also part (iii) implies that ΛΓ
ev = ΛΓ and ΛΓ

ev,+ = ΛΓ
+ if

and only if |Γ| is odd. If (V, ρ) ∈ Repnt(Γ) then (V, ρ) has no odd-dimensional
subrepresentations if and only if [(V, ρ)] ∈ ΛΓ

ev,+.

Suppose (V, ρ) ∈ Repnt(Γ) with [(V, ρ)] ∈ ΛΓ
ev,+. Then there exists an iso-

morphism α : (V, ρ)→
⊕k

i=1 ai(Ri, ρi) for unique integers a1, . . . , ak > 0, where
ai(Ri, ρi) is the direct sum of ai copies of (Ri, ρi). The chosen orientations on

R1, . . . , Rk induce an orientation on
⊕k

i=1 aiRi, which pulls back by α to an
orientation on V . This is independent of the choice of α by (ii), since (V, ρ) has
no odd-dimensional subrepresentations.

Thus, we have constructed an orientation on V for every (V, ρ) ∈ Repnt(Γ)
with [(V, ρ)] ∈ ΛΓ

ev,+, such that if α : (V, ρ) → (V ′, ρ′) is an isomorphism in
Repnt(Γ), then α identifies the orientations on V and V ′. We will call these
coherent orientations. If [(V, ρ)] ∈ ΛΓ

+ \ ΛΓ
ev,+ it is not possible to choose such

coherent orientations, since (V, ρ) admits orientation-reversing automorphisms
by (i). If |Γ| is odd we have coherent orientations for all (V, ρ) ∈ Repnt(Γ).

435



Next we define a map ΦΓ : Aut(Γ) × ΛΓ
ev → {±1} which will be important

in orienting orbifold strata X̃Γ,µ, X̃Γ,µ
◦ , X̂Γ,µ, X̂Γ,µ

◦ . Let δ ∈ Aut(Γ), and i =
1, . . . , k. Then (Ri, ρi ◦ δ) is an irreducible, nontrivial, even-dimensional Γ-
representation, so there exists an isomorphism α : (Ri, ρi ◦ δ) → (Rj , ρj) for
some unique j = 1, . . . , k. Define φ(δ, i) = 1 if α : Ri → Rj identifies the
chosen orientations on Ri, Rj , and φ(δ, i) = −1 otherwise. This is independent
of the choice of α, as all automorphisms of (Rj , ρj) are orientation-preserving. If

λ ∈ ΛΓ
ev then λ =

∑k
i=1 ai[(Ri, ρi)] for unique a1, . . . , ak ∈ Z. Define ΦΓ(δ, λ) =∏k

i=1 φ(δ, i)ai . These ΦΓ(δ, λ) have the following properties:

(a) Suppose (V, ρ) ∈ Repnt(Γ) with [(V, ρ)] = λ ∈ ΛΓ
ev,+, and δ ∈ Aut(Λ).

Then (V, ρ ◦ δ) also lies in Repnt(Γ) with [(V, ρ ◦ δ)] ∈ ΛΓ
ev,+. As above, we

have coherent orientations on (V, ρ) and on (V, ρ ◦ δ). These orientations
on V agree if and only if ΦΓ(δ, λ) = 1.

(b) ΦΓ(δ, λ) depends on the choice of orientations on R1, . . . , Rk for general
δ, λ. But if λ·δ = λ, the case of most interest, then ΦΓ(δ, λ) is independent
of the choice of orientations.

(c) Let λ ∈ ΛΓ
ev and ∆ be the subgroup of Aut(Γ) fixing λ. Then δ 7→ ΦΓ(δ, λ)

is a group morphism ∆→ {±1}.
(d) λ 7→ ΦΓ(δ, λ) is a group morphism ΛΓ

ev → {±1} for each δ ∈ Aut(Λ).

We first study orientations on XΓ,λ,XΓ,λ
◦ .

Proposition 8.9. Let X be an oriented orbifold, and Γ a finite group. Then
we can define orientations on XΓ,λ,XΓ,λ

◦ for all λ ∈ ΛΓ
ev,+. These depend on

choices of orientations on R1, . . . , Rk for representatives (R1, ρ1), . . . , (Rk, ρk)
of the nontrivial, irreducible, even-dimensional Γ-representations. If |Γ| is odd

then ΛΓ
ev,+ = ΛΓ

+, so all orbifold strata XΓ,λ,XΓ,λ
◦ are oriented.

Proof. Let X be an oriented orbifold, Γ a finite group, and λ ∈ ΛΓ
ev,+. Then

we have an orbifold stratum XΓ,λ and 1-morphism OΓ,λ(X ) : XΓ,λ → X . As
in Definition 8.5, the vector bundle OΓ,λ(X )∗(T ∗X ) on XΓ,λ has an action of

Γ, and splits as OΓ,λ(X )∗(T ∗X ) = (T ∗X )Γ,λ
tr ⊕ (T ∗X )Γ,λ

nt , where (T ∗X )Γ,λ
tr
∼=

T ∗(XΓ,λ) by Theorem C.58, and (T ∗X )Γ,λ
nt is a vector bundle on XΓ,λ, whose

fibres x∗((T ∗X )Γ,λ
nt ) for [x] ∈ XΓ,λ

top are Γ-representations with class λ.

As λ ∈ ΛΓ
ev,+, Definition 8.8 defines coherent orientations on the fibres of

(T ∗X )Γ,λ
nt . Also the orientation on X pulls back to an orientation on the fibres

of OΓ,λ(X )∗(T ∗X ). As OΓ,λ(X )∗(T ∗X ) ∼= T ∗(XΓ,λ) ⊕ (T ∗X )Γ,λ
nt , combining

these two orientations gives an orientation on the fibres of T ∗(XΓ,λ), that is, an

orientation on XΓ,λ, and so on XΓ,λ
◦ ⊆ XΓ,λ.

In Example 8.7 we have ΛZ2
+
∼= N and ΛZ2

ev,+
∼= {0}, and the non-orientable

orbifold strata X Z2,λ,X Z2,λ
◦ with λ ∼= 2 have λ ∈ ΛZ2

+ \ ΛZ2
ev,+. If |Γ| is even,

then ΛΓ
ev,+ 6= ΛΓ

+, and generalizing Example 8.7 for each λ ∈ ΛΓ
+ \ ΛΓ

ev,+ we
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can construct examples of oriented orbifolds X with XΓ,λ,XΓ,λ
◦ non-orientable.

Hence, the conditions on Γ, λ in Proposition 8.9 are both necessary and sufficient
to be able to orient XΓ,λ,XΓ,λ

◦ for all oriented orbifolds X .
For the orbifold strata X̃Γ,µ, X̃Γ,µ

◦ , X̂Γ,µ, X̂Γ,µ
◦ , recall from §8.4.1 and §C.8

that Aut(Γ) acts on XΓ with X̃Γ ' [XΓ/Aut(Γ)], and Aut(Γ) acts on ΛΓ
+, and

if λ ∈ ΛΓ
+ with µ = λ · Aut(Γ) and ∆ is the subgroup of Aut(Γ) fixing λ in

ΛΓ
+ then X̃Γ,µ ' [XΓ,λ/∆]. Suppose λ ∈ ΛΓ

ev,+, so that XΓ,λ is oriented by
Proposition 8.9. Then by considering how δ ∈ ∆ acts on the orientation on the
vector bundle (T ∗X )Γ,λ

nt in the proof of Proposition 8.9, we see that the action
of δ on XΓ,λ multiplies the orientation by ΦΓ(δ, λ) = ±1 in Definition 8.8.

If ΦΓ(δ, λ) = 1 for all δ ∈ ∆ then ∆ acts on XΓ,λ preserving orientations, and
X̃Γ,µ ' [XΓ,λ/∆] is oriented. Also Π̂Γ,µ(X ) : X̃Γ,µ → X̂Γ,µ takes orientations
on X̃Γ,µ to orientations on X̂Γ,µ. Thus we deduce:

Proposition 8.10. Let Γ be a finite group and λ ∈ ΛΓ
ev,+ with ΦΓ(δ, λ) = 1 for

all δ ∈ Aut(Γ) with λ · δ = λ. Set µ = λ ·Aut(Γ) ∈ ΛΓ
ev,+/Aut(Γ). Then for all

oriented orbifolds X , the orbifold strata X̃Γ,µ, X̃Γ,µ
◦ , X̂Γ,µ, X̂Γ,µ

◦ are oriented.

Note that if λ = 2λ′ for λ′ ∈ ΛΓ
ev,+ then ΦΓ(δ, λ) = 1 for all δ ∈ Aut(Γ), so

the conditions of Proposition 8.10 are satisfied.

Example 8.11. Let Γ = Z3 = {1, ζ, ζ2} where ζ3 = 1. Then Aut(Z3) =
{1, σ} ∼= Z2, where σ maps 1 7→ 1, ζ 7→ ζ2, ζ2 7→ ζ. There is one nontrivial,
irreducible, real Z3-representation (V, ρ) up to isomorphism, with V ∼= R2, so
ΛZ3 = ΛZ3

ev
∼= Z and ΛZ3

+ = ΛZ3
ev,+

∼= N. Also Aut(Z3) acts trivially on ΛZ3

and ΛZ3
+ . The map ΦZ3 : Aut(Z3) × ΛZ3

ev → {±1} in Definition 8.8 is given by
ΦZ3(1, k) = 1 and ΦZ3(σ, k) = (−1)k for k ∈ Z ∼= ΛZ3

ev . Thus, Proposition 8.10
shows that if X is an oriented orbifold and µ ∈ ΛZ3

+ /Aut(Z3) ∼= N is even, then

X̃ Z3,µ, X̃ Z3,µ
◦ , X̂ Z3,µ, X̂ Z3,µ

◦ are oriented.
Here is an example. Let X = S2 × R2, an oriented 4-manifold, and write

points of X as (x1, x2, x3, y1, y2) for xi, yj ∈ R with x2
1 + x2

2 + x2
3 = 1. Let

G = Z2 × Z3 with generators σ, τ with σ2 = τ3 = 1, and define an orientation-
preserving action of G on X by

σ : (x1, x2, x3, y1, y2) 7−→ (−x1,−x2,−x3, y1,−y2),

τ : (x1, x2, x3, y1, y2) 7−→ (x1, x2, x3,− 1
2y1 +

√
3

2 y2,−
√

3
2 y1 − 1

2y2).

Let X = [X/G] be the corresponding oriented orbifold. Then we find that

X Z3,λ=X Z3,λ
◦
∼=S2×[∗̄/Z3], X̃ Z3,µ= X̃ Z3,µ

◦
∼=RP2×[∗̄/Z3], X̂ Z3,µ= X̂ Z3,µ

◦
∼=RP2,

where λ ∈ ΛZ3
+
∼= N and µ ∈ ΛZ3

+ /Aut(Z3) ∼= N both correspond to 1 ∈ N. Thus

X Z3,λ,X Z3,λ
◦ are oriented, as in Proposition 8.9, but X̃ Z3,µ, X̃ Z3,µ

◦ , X̂ Z3,µ, X̂ Z3,µ
◦

are not orientable. This is consistent with the first part, as µ = 1 is not even.
In a similar way, if Γ and µ ∈ ΛΓ

+/Aut(Γ) do not satisfy the conditions
of Proposition 8.10, we can find examples of oriented orbifolds X such that
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X̃Γ,µ, X̃Γ,µ
◦ , X̂Γ,µ, X̂Γ,µ

◦ are not orientable. Hence, the conditions on Γ, µ in
Proposition 8.10 are both necessary and sufficient to be able to orient X̃Γ,µ, . . . ,
X̂Γ,µ
◦ for all oriented orbifolds X .

Example 8.12. Suppose Γ is a finite abelian group. Then the inverse map
i : Γ→ Γ mapping i : γ 7→ γ−1 lies in Aut(Γ), and one can show that ΦΓ(i, λ) =
(−1)dimλ/2 for all λ ∈∈ ΛΓ

ev. Thus the conditions of Proposition 8.10 hold for
λ ∈ ΛΓ

ev,+ and µ = λ ·Aut(Γ) only if dimλ = dimµ = 4k for some k > 0.

There do exist examples of nonabelian Γ and λ ∈ ΛΓ
ev,+, µ = λ · Aut(Γ)

satisfying the conditions of Proposition 8.10 with dimλ = dimµ = 4k+ 2. Here
is one way to find some. A finite group Γ is called complete if all automorphisms
of Γ are inner automorphisms. If Γ is complete and (R, ρ) is a Γ-representation
then λ = [(R, ρ)] satisfies Proposition 8.10 if and only if (R, ρ) has no odd-
dimensional subrepresentations and ρ is orientation-preserving.

It is known that the symmetric groups Sn for n 6= 2, 6 are complete. The
symmetric group S8 has an irreducible, faithful, orientation-preserving represen-
tation ρ on R70. Hence λ = [(R70, ρ)] satisfies the conditions of Proposition 8.10
with dimλ = 4k+2 for k = 17. This example is used by Druschel [28, Cor. 3.12]
to show that the orbifold bordism group Beff

70 (∗)⊗Z Q in §13.3 is nonzero.

8.4.3 Effective orbifolds

In §C.5 we defined effective Deligne–Mumford C∞-stacks. Since orbifolds are
examples of Deligne–Mumford C∞-stacks, this gives a notion of effective orb-
ifold. Here are four ways to characterize effective orbifolds.

Proposition 8.13. An orbifold X is effective if any of the following equivalent
conditions hold:

(i) X is locally modelled near each [x] ∈ Xtop on Rn/G, where G acts effec-
tively on Rn, that is, every 1 6= γ ∈ G acts nontrivially on Rn;

(ii) Generic points [x] ∈ Xtop have IsoX ([x]) = {1};
(iii) XΓ,λ = ∅ whenever Γ 6= {1} is a nontrivial finite group and λ ∈ ΛΓ

+ with
λ 6= [R] for R an effective representation of Γ; and

(iv) XΓ,0 = ∅ whenever Γ 6= {1} is a nontrivial finite group.

Proof. Clearly (i) is equivalent to Definition C.28 for X . If G acts linearly on
Rn, then G acts effectively if and only if generic points of Rn have stabilizer
group {1} in G. Thus (ii) is equivalent to (i). If X is locally modelled on Rn/G
then XΓ,λ is locally modelled on [Rn/G]Γ,λ. Using the explicit expression for
[Rn/G]Γ,λ from Theorem C.53, we can see that G acts effectively on Rn if and
only if [Rn/G]Γ,λ = ∅ whenever Γ 6= {1} and λ 6= [R] for R effective, if and only
if [Rn/G]Γ,0 = ∅ whenever Γ 6= {1}. Parts (iii),(iv) follow.

By the method of Proposition C.29, we can also prove:
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Proposition 8.14. Let X ,Y be effective orbifolds, and f, g : X → Y be 1-
morphisms. Suppose any one of the following conditions hold:

(i) f is an embedding;

(ii) f is a submersion;

(iii) f∗ : IsoX ([x])→ IsoY
(
ftop([x])

)
is surjective for all [x] ∈ Xtop;

(iv) IsoY
(
ftop([x])

) ∼= {1} for generic [x] ∈ Xtop; or

(v) Y is a manifold.

Then there exists at most one 2-morphism η : f ⇒ g.

Some authors include effectiveness in their definition of orbifolds. The
Satake–Thurston definitions are not as well-behaved for noneffective orbifolds.
One reason is that Proposition 8.14 often allows us to treat effective orbifolds
as if they were a category rather than a 2-category, that is, one can work in
the homotopy category Ho(Orbeff ) of the full 2-subcategory Orbeff of effective
orbifolds, because genuinely 2-categorical behaviour comes from non-uniqueness
of 2-morphisms. But if X ,Y are effective orbifolds, and f, g : X → Y are 1-
morphisms, there can be many 2-morphisms η : f ⇒ g if f, g map X to a
nontrivial orbifold stratum YΓ,λ of Y.

If X is an effective n-orbifold then the frame bundle FX of X is a manifold,
and we may write X as a quotient C∞-stack [FX /GL(n,R)], or by choosing
a Riemannian metric g on X , we can write X as [F gX /O(n)]. An article on
non-effective orbifolds X is Henriques and Metzler [39], who investigate when
X may be written as [P/K] for P a manifold and K a compact Lie group.

Effective orbifolds are also important in questions of integrality in homology
and cohomology. Let X be a compact, oriented n-orbifold. Then the funda-
mental class [X ] is naturally defined in Hn(Xtop;Q), as each point [x] ∈ Xtop

contributes to [X ] with the rational weight 1/
∣∣IsoX (x)

∣∣. But if X is effective,
then [X ] is defined in Hn(Xtop;Z).

8.5 Orbifolds with boundary and orbifolds with corners

We now define 2-categories Orbb,Orbc of orbifolds with boundary and orb-
ifolds with corners, the orbifold analogues of Manb,Manc in Chapter 5. Our
definition uses the notion of strongly representable 1-morphisms from §C.3, and
readers may wish to familiarize themselves with these before continuing.

Definition 8.15. An orbifold with corners X of dimension n > 0 is a triple X =
(X , ∂X , iX) where X , ∂X are separated, second countable Deligne–Mumford
C∞-stacks, and iX : ∂X → X is a proper, strongly representable 1-morphism of
C∞-stacks, such that for each [x] ∈ Xtop there exists a 2-Cartesian diagram in
C∞Sta satisfying conditions:

∂̄U u∂
//

īU�� � �� �
IQ

id

∂X
iX ��

Ū
u // X .

(8.6)
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Here U is an n-manifold with corners, so that iU : ∂U → U is smooth,
and U, ∂U, iU = FC∞Sch

Manc (U, ∂U, iU ), and u, u∂ are étale 1-morphisms, and
utop([p]) = [x] for some p ∈ U . Note that it is no restriction to take the 2-
morphism in (8.6) to be the identity, as if (8.6) held with some other 2-morphism
η, then as iX is strongly representable, by Proposition C.13 we could replace u∂
by a unique 2-isomorphic u′∂ to make η = id.

We have an exact sequence of vector bundles on ∂X :

0 // NX

νX // i∗X(T ∗X )
ΩiX // T ∗(∂X ) // 0, (8.7)

where NX, νX are defined to be the kernel of ΩiX . Then NX is a line bundle on
∂X , the conormal line bundle of ∂X in X , and has a natural orientation ωX by
outward-pointing normal vectors.

We call X an orbifold with boundary, or an orbifold without boundary if the
above condition holds with U a manifold with boundary, or a manifold without
boundary, respectively, for each [x] ∈ Xtop. Equivalently, X is an orbifold with
boundary if and only if iX : ∂X → X is injective as a representable 1-morphism
of C∞-stacks, that is, if iX,top : ∂X top → Xtop is injective and all the induced
morphisms (iX)∗ : Iso∂X ([x′]) → IsoX ([x]) are isomorphisms. And X is an
orbifold without boundary if and only if ∂X = ∅, so that X = (X , ∅, ∅).

Now suppose X = (X , ∂X , iX) and Y = (Y, ∂Y, iY) are orbifolds with corners.
A 1-morphism f : X → Y, or smooth map, is a 1-morphism of C∞-stacks
f : X → Y such that for each [x] ∈ Xtop with ftop([x]) = [y] ∈ Ytop there exists
a 2-commutative diagram in C∞Sta satisfying conditions:

Ū u
//

h̄��
�� ���� η

X
f

��
V̄

v // Y.
(8.8)

Here U, V are manifolds with corners, h : U → V is a smooth map, U, V , h =
FC∞Sch

Manc (U, V, h), and u, v are étale, and utop([p]) = [x] for some p ∈ U .
Let f, g : X → Y be 1-morphisms of orbifolds with corners. A 2-morphism

η : f ⇒ g is a 2-morphism of 1-morphisms f, g : X → Y in C∞Sta.
Composition of 1-morphisms g ◦ f , identity 1-morphisms idX, vertical and

horizontal composition of 2-morphisms ζ � η, ζ ∗ η, and identity 2-morphisms
for orbifolds with corners, are all given by the corresponding compositions and
identities in C∞Sta. It is easy to show that 1- and 2-morphisms of orbifolds
with corners are closed under these compositions, so these are well-defined.

We have now defined all the structures of the 2-category Orbc of orbifolds
with corners. Since 1- and 2-morphisms in Orbc are just examples of 1- and
2-morphisms in C∞Sta, the axioms of a 2-category are satisfied. Write Orbb

and Ȯrb for the full 2-subcategories of orbifolds with boundary, and orbifolds
without boundary, in Orbc.

If X is an orbifold in the sense of §8.2, then X = (X , ∅, ∅) is an orbifold
without boundary in this sense, and vice versa. Thus the 2-functor FOrbc

Orb :
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Orb → Orbc mapping X 7→ X = (X , ∅, ∅) on objects, f 7→ f on 1-morphisms,
and η 7→ η on 2-morphisms, is an isomorphism of 2-categories Orb→ Ȯrb.

Define a full and faithful strict 2-functor FOrbc

Manc : Manc → Orbc by FOrbc

Manc :
X 7→ X = (X̄, ¯∂X, īX) on objects X in Manc, where X, ∂X, iX = FC∞Sch

Manc (X,
∂X, iX). Proposition C.16 shows īX is strongly representable, and for each [x]
in X̄ top we can take (8.6) to have U = X and u, u∂ identities, so X is an orbifold
with corners. On (1-)morphisms f : X → Y in Manc define FOrbc

Manc : f 7→ f̄ ,

where f = FC∞Sch
Manc (f), and on 2-morphisms idf : f ⇒ f in Manc (regarded as

a 2-category with only identity 2-morphisms) define FOrbc

Manc : idf 7→ idf̄ . When

we say an orbifold with corners X is a manifold, we mean that X ' FOrbc

Manc(X)
for some manifold with corners X.

Let X = (X , ∂X , iX) be an orbifold with corners, and V ⊆ X an open C∞-
substack. Define ∂V = i−1

X (V), as an open C∞-substack of ∂X , and iV : ∂V → V
by iV = iX|∂V . Then V = (V, ∂V, iV) is an orbifold with corners. We call V
an open suborbifold of X. If V is open and closed in X we call V an open and
closed suborbifold of X. An open cover of X is a family {Va : a ∈ A} of open
suborbifolds Va of X with X =

⋃
a∈A Va.

Example 8.16. Suppose X is a manifold with corners, G a finite group, and
r : G→ Aut(X) an action of G on X by diffeomorphisms. Since r(γ) : X → X
is simple for each γ ∈ G, as in §5.4 we have r−(γ) : ∂X → ∂X, which is also a
diffeomorphism. Then r− : G → Aut(∂X) is an action of G on ∂X, and iX :
∂X → X is G-equivariant. Set X, ∂X, iX , r, r− = FC∞Sch

Manc (X, ∂X, iX , r, r−).
Then X, ∂X are C∞-schemes with G-actions r, r−, and iX : ∂X → X is G-
equivariant, so Definitions C.17 and C.18 define Deligne–Mumford C∞-stacks
[X/G], [∂X/G] and a 1-morphism [iX , idG] : [∂X/G]→ [X/G].

We will show [iX , idG] is strongly representable. Let (A,µ, T , U, t, u, v) be
an object in [∂X/G], and let p̃ : T → T ×A G and ũ : T ×A G → ∂X be
as in Definition C.17, so that u = ũ ◦ p̃ : T → ∂X. Then [iX , idG] maps
(A,µ, T , U, t, u, v) 7→ (A,µ, T , U, t, iX ◦u, v), by Definition C.18. Suppose (a, ã) :
(A,µ, T , U, t, iX ◦ u, v) → (A′, µ′, T ′, U′, t′, u′, v′) is an isomorphism in [X/G],
with inverse (a−1, ã−1). Write p̃′ : T ′ → T ′ ×A′ G and ũ′ : T ′ ×A′ G → X for

p̃, ũ for (A′, µ′, T ′, U′, t′, u′, v′). We can now check that

(a, ã) : (A,µ, T , U, t, u, v) 7→ (A′, µ′, T ′, U′, t′, ũ ◦ ã−1 ◦ p̃′, v′)

is the unique isomorphism in [∂X/G] with [iX , idG] : (a, ã) 7→ (a, ã). Thus
[iX , idG] is strongly representable. It is now easy to show that X =

(
[X/G],

[∂X/G], [iX , idG]
)

is an orbifold with corners, which we may write as [X/G].

Remark 8.17. (a) Our definition of smooth maps f : X → Y in Manc in
Chapter 5 has good properties on lifting to boundaries and corners, e.g. from
§5.4, if f is simple there is a unique smooth f− : ∂X → ∂Y with iY ◦f− = f ◦iX .

When we generalize this to 2-categories, for a simple 1-morphism f : X→ Y

in Orbc, one might expect to define f− : ∂X → ∂Y uniquely only up to 2-
isomorphism, with a 2-morphism η : iY ◦ f− ⇒ f ◦ iX. However, as we can, and
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it seems more elegant, we have defined Orbc so that the lifts f− : ∂X → ∂Y
are unique, and satisfy iY ◦ f− = f ◦ iX, and other similar functorial aspects of
boundaries and corners also hold strictly, not just weakly up to 2-isomorphism.
This works because iY : ∂Y → Y is strongly representable, in the sense of §C.3,
so Proposition C.13 gives uniqueness of f− with iY ◦ f− = f ◦ iX.

(b) Definition 8.15 is more complicated than it need be. We can define an
equivalent 2-category Õrbc in a simpler way as a (non-full) 2-subcategory of
DMC∞Sta, by taking objects X of Õrbc to be separated, second countable
Deligne–Mumford C∞-stacks locally equivalent to [U/G] for U an n-manifold
with corners, and 1-morphisms f : X → Y in Õrbc to be 1-morphisms in
DMC∞Sta locally 2-isomorphic to [f, ρ] : [U/G] → [V /H] for f : U → V a

morphism in Manc, and 2-morphisms η : f ⇒ g in Õrbc to be arbitrary.
We chose the more complicated definition for two reasons. Firstly, it im-

proves compatibility with the definitions of d-stacks and d-orbifolds with corners
in Chapters 11 and 12. Secondly, constructions below such as the definitions of
boundaries ∂X, and of Sf , T f and f− : ∂f−X→ ∂Y for f : X→ Y a (semisimple)
1-morphism, are more functorial and do not need arbitrary choices if we have a
particular choice of boundary ∂X for X already made.

(c) Definition 8.15 basically says that objects and 1-morphisms in Orbc are
étale locally modelled on objects and morphisms in Manc.

Using Theorem C.25, we can show that an equivalent way to define an orb-
ifold with corners X = (X , ∂X , iX) of dimension n is that X , ∂X are separated,
second countable Deligne–Mumford C∞-stacks, and iX : ∂X → X is a proper,
strongly representable 1-morphism of C∞-stacks, such that for each [x] ∈ Xtop

there exists a 2-Cartesian diagram in C∞Sta satisfying conditions:

[∂U/G]
u∂

//

[iU ,idG]�� � �� �
IQ

id

∂X
iX ��

[U/G]
u // X .

(8.9)

Here G = IsoX ([x]) is a finite group acting linearly on Rn preserving the subset
[0,∞)k ×Rn−k for some k = 0, . . . , n, and U ⊆ [0,∞)k ×Rn−k is a G-invariant
open subset, and U, ∂U, iU = FC∞Sch

Manc (U, ∂U, iU ), and u, u∂ are equivalences
with open C∞-substacks of X , ∂X , and utop([0]) = [x].

(d) In part (c), when G acts linearly on Rn preserving the subset [0,∞)k×Rn−k,
note that G is allowed to permute the coordinates x1, . . . , xk in [0,∞)k. So, for
example, we allow 2-dimensional orbifolds with corners modelled on [0,∞)2/Z2,
where Z2 = 〈σ〉 acts on [0,∞)2 by σ : (x1, x2) 7→ (x2, x1).

This means that if X is locally modelled on [U/G] for U a manifold with
corners, and G fixes some p ∈ U , then G can still act nontrivially on i−1

U (p) ⊆
∂U . If p′ ∈ ∂U with iU (p′) = p, then the stabilizer groups satisfy StabG(p′) ⊆
StabG(p), but can have StabG(p′) 6= StabG(p). So the 1-morphism iX : ∂X → X
induces morphisms of orbifold groups (iX)∗ : Iso∂X ([x′])→ IsoX ([x]) which are
injective (so that iX is representable), but need not be isomorphisms.
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As in Definition 8.37 below, we will call X in Orbc straight if the morphisms
(iX)∗ : Iso∂X ([x′]) → IsoX ([x]) are isomorphisms for all [x′] ∈ ∂X top with
iX,top([x′]) = [x]. That is, straight orbifolds with corners are locally modelled on

[0,∞)k×(Rn−k/G), where G acts trivially on [0,∞)k. Orbifolds with boundary,
with k = 0 or 1, are automatically straight. We will see in §8.9 that boundaries
of orbifold strata behave better for straight orbifolds with corners.

(e) In §8.1 we explained that one approach to defining orbifolds is as proper
étale Lie groupoids in Man. In the same way, one approach to defining orbifolds
with corners is as proper étale Lie groupoids (U, V, s, t, u, i,m) in Manc. That
is, U, V are manifolds with corners, and s, t : V → U are étale smooth maps
in Manc (so in particular they are simple and flat), and (s, t) : V → U × U is
proper, and U, V, s, t, u, i,m satisfy the groupoid conditions in Definition C.2.

Given such a groupoid (U, . . . ,m), we form a boundary groupoid (∂U, ∂V, s∂ ,
. . . ,m∂) where s∂ = s− : ∂V → ∂U , well-defined as s is simple, and t∂ , . . . ,m∂

also have natural definitions. Thus by Definition C.2 we get C∞-stacks [V ⇒ U],
[∂V ⇒ ∂U ], and iU : ∂U → U , iV : ∂V → V induce a 1-morphism of groupoids
(∂U, . . . ,m∂) → (U, . . . ,m), and hence a (representable) 1-morphism of C∞-
stacks [iU , iV ] : [∂V ⇒ ∂U ] → [V ⇒ U]. Define X = [V ⇒ U]. Apply
Proposition C.14(b) to [iU , iV ] to get a C∞-stack ∂X , a strongly representable
1-morphism iX : ∂X → X , and an equivalence j : [∂V ⇒ ∂U ] → ∂X with
[iU , iV ] = iX ◦ j. Then X = (X , ∂X , iX) is an orbifold with corners.

Conversely, if X = (X , ∂X , iX) is an orbifold with corners and u : Ū → X
is an atlas for X with the C∞-scheme U separated and second countable, then
U ' FC∞Sch

Manc (U) for some U ∈ Manc, and we can extend U naturally to a
proper étale Lie groupoid (U, V, s, t, u, i,m) in Manc with V̄ ' Ū ×u,X ,u Ū.

In §5.3, for f : X → Y a smooth map in Manc, we defined open and closed
subsets Sf ⊆ ∂X ×Y ∂Y and Tf ⊆ X ×Y ∂Y . Here is the orbifold analogue.

Definition 8.18. Let X = (X , ∂X , iX) and Y = (Y, ∂Y, iY) be orbifolds with
corners, and f : X → Y a 1-morphism. Consider the C∞-stack fibre products
∂X ×f◦iX,Y,iY ∂Y and X ×f,Y,iY ∂Y. Since iY is strongly representable, we may
define these using the explicit construction of Proposition C.15, and then we
have 2-Cartesian diagrams

∂X ×f◦iX,Y,iY ∂Y π∂Y
//

π∂X�� ����
CK

id

∂Y
iY ��

X ×f,Y,iY ∂Y π∂Y
//

πX�� ����
CK

id

∂Y
iY ��

∂X
f◦iX // Y, X

f // Y,
(8.10)

with π∂X , πX strongly representable. Define a 1-morphism Πf : ∂X ×Y ∂Y →
X ×Y ∂Y by Πf : (A,B) 7→ (iX(A), B) on objects and Πf : (a, b) 7→ (iX(a), b)
on morphisms, using the notation of Proposition C.15. Then Πf is strongly
representable, as iX is, and iX ◦ π∂X = πX ◦Πf , π∂Y = π∂Y ◦Πf .

We will describe the topological space (∂X ×Y ∂Y)top associated to the C∞-
stack ∂X ×Y ∂Y. Note that this is not simply the topological fibre product
∂X top ×Ytop

∂Y top. Consider pairs (x′, y′) where x′ : ∗̄ → ∂X and y′ : ∗̄ → ∂Y
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are 1-morphisms with f ◦iX◦x′ = iY◦y′ : ∗̄ → Y. Define an equivalence relation
∼ on such pairs by (x′, y′) ∼ (x̃′, ỹ′) if there exist 2-morphisms η : x′ ⇒ x̃′ and
ζ : y′ ⇒ ỹ′ with idf◦iX ∗ η = idiY ∗ ζ. Write [x′, y′] for the ∼-equivalence class
of (x′, y′). Using the explicit construction of ∂X ×Y ∂Y in Proposition C.15, we
can show that such [x′, y′] correspond to points of (∂X ×Y ∂Y)top. That is,

(∂X ×Y ∂Y)top
∼=
{

[x′, y′] : x′ : ∗̄ → ∂X and y′ : ∗̄ → ∂Y are

1-morphisms with f ◦iX◦x′= iY◦y′ : ∗̄→Y
}
.

(8.11)

Similarly, for X ×Y ∂Y consider pairs (x, y′) where x : ∗̄ → X , y′ : ∗̄ → ∂Y
with f ◦x = iY ◦ y′. Define an equivalence relation ≈ by (x, y′) ≈ (x̃, ỹ′) if there
exist η : x ⇒ x̃ and ζ : y′ ⇒ ỹ′ with idf ∗ η = idiY ∗ ζ, and write [x, y′] for the
≈-equivalence class of (x, y′). Then we have a natural identification

(X ×Y ∂Y)top
∼=
{

[x, y′] : x : ∗̄ → X and y′ : ∗̄ → ∂Y are

1-morphisms with f ◦x= iY◦y′ : ∗̄→Y
}
.

(8.12)

Suppose we are given a diagram (8.8) as in Definition 8.15 with 1- and 2-
morphisms h̄, u, v, η, and corresponding diagrams (8.6) for U,X and V ,Y with
1-morphisms u, u∂ and v, v∂ . Then we have 1-morphisms

u∂ ◦ π̄∂U : (∂U ×h◦iU ,V ,iV ∂V )→ ∂X , v∂ ◦ π̄∂V : (∂U ×h◦iU ,V ,iV ∂V )→ ∂Y,

and a 2-morphism η ∗ idīU◦π̄∂U : (iX ◦ f) ◦ (u∂ ◦ π̄∂U ) ⇒ iY ◦ (v∂ ◦ π̄∂V ). So

properties of fibre products give a 1-morphism a : (∂U ×V ∂V ) → ∂X ×Y ∂Y,
unique up to 2-isomorphism, with π∂X ◦a ∼= u∂◦π̄∂U and π∂Y◦a ∼= v∂◦π̄∂V . This
a is étale as u, u∂ , v, v∂ are. Similarly, we construct étale b : (U ×f,V ,iV ∂V ) →
X ×f,Y,iY ∂Y. Taken over all choices of U, u, V , v, h, such a, b form étale open
covers of ∂X ×Y ∂Y and X ×Y ∂Y.

Definition 5.7 defined open Sh ⊆ ∂U ×V ∂V and Th ⊆ U ×V ∂V , which
lift to open C∞-subschemes Sh ⊆ ∂U ×V ∂V and Th ⊆ U ×V ∂V . Since the
constructions are étale local, and all choices of a, b give étale open covers of
∂X ×Y ∂Y and X ×Y ∂Y, it follows that there are unique open C∞-substacks
Sf ⊆ ∂X ×Y ∂Y and T f ⊆ X ×Y ∂Y with a−1(Sf ) = S̄h and b−1(T f ) = T̄h for
all such U, u, V , v, h.

Following Definition 5.7, define sf = π∂X |Sf : Sf → ∂X , uf = π∂Y |Sf : Sf →
∂Y, tf = πX |Tf : T f → X , vf = π∂Y |Tf : T f → ∂Y, and jf = Πf |Sf : Sf →
X ×Y ∂Y. Then sf , tf are strongly representable by Proposition C.14(c), as
π∂X , πX are. Also (8.10) and iX ◦π∂X = πX ◦Πf , π∂Y = π∂Y ◦Πf give identities
on sf , uf , . . . , jf , which are equalities rather than 2-isomorphisms:

f ◦ iX ◦ sf = iY ◦ uf , f ◦ tf = iY ◦ vf , πX ◦ jf = iX ◦ sf , π∂Y ◦ jf = uf .

Then sh, uh, . . . , jh = FC∞Sch
Manc (sh, uh, . . . , jh) are étale lifts of sf , uf , . . . , jf .

Thus, from Proposition 5.8 for h for all U, u, V , v, h we deduce:

(a) Sf , T f are open and closed C∞-substacks in ∂X ×Y ∂Y and X ×Y ∂Y.
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(b) jf is an equivalence of C∞-stacks Sf → (X ×Y ∂Y) \ T f .

(c) sf : Sf → ∂X and tf : T f → X are proper étale 1-morphisms.

We can also characterize the topological spaces Sf,top ⊆ (∂X ×Y ∂Y)top and
T f,top ⊆ (X ×Y ∂Y)top of Sf , T f using (8.11)–(8.12). We find that

Sf,top
∼=
{

[x′, y′] : x′ : ∗̄ → ∂X , y′ : ∗̄ → ∂Y with f ◦iX◦x′= iY◦y′,
(iX ◦ x′)∗(Ωf ) ◦ IiX◦x′,f (T ∗Y) ◦ Iy′,iY(T ∗Y)−1 ◦ (y′)∗(νY) 6= 0,

and (x′)∗(ΩiX) ◦ Ix′,iX(T ∗X ) ◦ (iX ◦ x′)∗(Ωf ) ◦
IiX◦x′,f (T ∗Y) ◦ Iy′,iY(T ∗Y)−1 ◦ (y′)∗(νY) = 0

}
, (8.13)

T f,top
∼=
{

[x, y′] : x : ∗̄ → X , y′ : ∗̄ → ∂Y with f ◦x= iY◦y′, and

x∗(Ωf ) ◦ Ix,f (T ∗Y) ◦ Iy′,iY(T ∗Y)−1 ◦ (y′)∗(νY) = 0
}
. (8.14)

These give alternative definitions of Sf , T f . Here the morphisms for the final
conditions in (8.13)–(8.14) are given in

0 // (y′)∗(NY)
(y′)∗(νY) //

∼=
��

(y′)∗◦i∗Y(T ∗Y)
(y′)∗(ΩiY )

//

Ix′,iX
(T∗X )◦(iX◦x′)∗(Ωf )◦

IiX◦x′,f
(T∗Y)◦Iy′,iY (T∗Y)−1

��

(y′)∗(T ∗(∂Y))

��

// 0

0 // (x′)∗(NX)
(x′)∗(νX)

// (x′)∗◦i∗X(T ∗X )
(x′)∗(ΩiX )

// (x′)∗(T ∗(∂X )) // 0,

(8.15)

0 // (y′)∗(NY)
(y′)∗(νY)

// (y′)∗◦i∗Y(T ∗Y)
(y′)∗(ΩiY )

//

x∗(Ωf )◦Ix,f (T∗Y)◦Iy′,iY (T∗Y)−1

��

(y′)∗(T ∗(∂Y))

uu

// 0

x∗(T ∗X ).

(8.16)

The conditions in (8.13),(8.14) are equivalent to the existence of (iso)morphisms
‘99K’ in (8.15),(8.16) respectively making (8.15)–(8.16) commute.

The material of §8.3 also extends to orbifolds with corners.

Definition 8.19. Let X = (X , ∂X , iX) be an orbifold with corners. By a vector
bundle E on X we mean that E is an object in the category vect(X ) ⊂ qcoh(X )
of vector bundles on the Deligne–Mumford C∞-stack X , as in §C.6. A smooth
section s of E on X is a morphism s : OX → E in qcoh(X ). Smooth sections
form a vector space, which we write as C∞(E).

In §12.1 we will want to regard a vector bundle E on X as being an orbifold
with corners in its own right. To do this, we define the analogue Totc of the
total space functor Tot of Definition 8.4 for orbifolds with corners.

Define Totc(E) = Ẽ = (Ẽ , ∂Ẽ , iẼ), where Ẽ = Tot(E) and ∂Ẽ = Tot(i∗X(E))
are the total spaces of the vector bundles E and i∗X(E) on the Deligne–Mumford

C∞-stacks X and ∂X , as in Definition 8.4, and iẼ : ∂Ẽ → Ẽ is a 1-morphism
acting as a functor by iẼ : (u, α) 7→

(
iX(u), Iũ,iX(E)−1 ◦α ◦ ι

)
on objects, where

ι : (iX ◦ ũ)∗(OX )→ ũ∗(O∂X ) is the natural isomorphism, and by iẼ : η 7→ iX(η)
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on morphisms. Using iX strongly representable we can show that iẼ is strongly
representable. By considering local models, it is easy to see that Totc(E) = Ẽ is
an orbifold with corners, of dimension dimX + rank E .

Definition 8.4 defines 1-morphisms π : Tot(E)→ X and Tot(s) : X → Tot(E)
in Orb for s ∈ C∞(E), with π ◦ Tot(s) = idX . The same definitions yield 1-
morphisms π : Totc(E)→ X and Totc(s) : X→ Totc(E) in Orbc for s ∈ C∞(E),
with π ◦ Totc(s) = idX.

8.6 Boundaries of orbifolds with corners, and
simple, semisimple and flat 1-morphisms

Next we define boundaries of orbifolds with corners.

Definition 8.20. Let X = (X , ∂X , iX) be an orbifold with corners. We will
define an orbifold with corners ∂X = (∂X , ∂2X , i∂X), called the boundary of X,
such that iX : ∂X→ X is a 1-morphism in Orbc. Here ∂X and iX are given in
X, so the new data we have to construct is ∂2X , i∂X.

As iX : ∂X → X is strongly representable by Definition 8.15, Proposition
C.15 defines an explicit fibre product ∂X×iX,X ,iX∂X with strongly representable
projection morphisms π1, π2 : ∂X ×X ∂X → ∂X such that iX ◦ π1 = iX ◦ π2.
We will use this explicit fibre product throughout. There is a unique diagonal
1-morphism ∆∂X : ∂X → ∂X ×X ∂X with π1 ◦∆∂X = π2 ◦∆∂X = id∂X . Since
∂X is separated and iX is an immersion, ∆∂X is an equivalence with an open
and closed C∞-substack ∆∂X (∂X ) ⊆ ∂X ×X ∂X . Define ∂2X = ∂X ×X ∂X \
∆∂X (∂X ). Then ∂2X is also an open and closed C∞-substack in ∂X ×X ∂X .
It is separated and second countable as ∂X is.

Define C∞-stack 1-morphisms i∂X = π1|∂2X : ∂2X → ∂X and j∂X = π2|∂2X :
∂2X → ∂X . Since iX is proper, π1, π2 are proper, so i∂X, j∂X are proper as they
are the restrictions of π1, π2 to a closed C∞-substack. Also i∂X, j∂X are strongly
representable by Proposition C.14(c), as π1, π2 are strongly representable and
∂2X is open in ∂X ×X ∂X .

To show that ∂X = (∂X , ∂2X , i∂X) is an orbifold with corners, note that
if [x′] ∈ ∂X top with iX,top([x′]) = [x] ∈ Xtop, then Definition 8.15 gives a 2-
Cartesian diagram (8.6) with utop([p]) = [x] for p ∈ U . So there is a unique
p′ ∈ ∂U with iU (p′) = p and u∂,top([p′]) = [x′]. We can then show there is a
unique 1-morphism u∂2 such that equation (8.6) for ∂X at [x′] is

∂2U u∂2
//

ī∂U�� � �� �
IQ

id

∂2X
i∂X ��

∂U
u∂ // ∂X .

The 1-morphism iX : ∂X → X is étale locally modelled on the maps iU : ∂U →
U for U as above, which are smooth maps of manifolds with corners by Theorem
5.6(c). Hence iX : ∂X→ X is a 1-morphism in Orbc.

Here is the orbifold analogue of parts of §5.4.
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Definition 8.21. Let f : X→ Y be a 1-morphism of orbifolds with corners, and
∂X the boundary of X. Then sf : Sf → ∂X is proper and étale by Definition
8.18(c). This and ∂X locally compact imply that sf (Sf ) is open and closed in

∂X . Define ∂f−X = sf (Sf ) and ∂f+X = ∂X \ ∂f−X . Then ∂f±X are open and

closed C∞-substacks of ∂X , with ∂X = ∂f+X q ∂
f
−X . Write ∂f+X, ∂

f
−X for the

open and closed suborbifolds of ∂X corresponding to ∂f+X , ∂
f
−X , as in Definition

8.15. Then ∂X = ∂f+Xq ∂
f
−X.

We call f simple if sf : Sf → ∂X is an equivalence, so that ∂f+X = ∅, and

we call f semisimple if sf : Sf → ∂f−X is an equivalence, and we call f flat if

T f = ∅. Simple implies semisimple. If f is simple then ∂f−X = ∂X and ∂f+X = ∅.
One can show that f : X→ Y is simple, semisimple or flat if and only if the

smooth maps h : U → V in Definition 8.15 for f are simple, semisimple or flat
in the sense of §5.4 for all diagrams (8.8). That is, 1-morphisms f : X → Y in
Orbc are simple, semisimple or flat if and only if they are étale locally modelled
on simple, semisimple or flat morphisms in Manc.

The condition that iX is strongly representable in Definition 8.15 is essen-
tial in constructing f−, η− in parts (b),(c) of the next theorem, an analogue
of Proposition 5.13 and Theorem 6.12, and our main reason for including iX
strongly representable in Definition 8.15 was to make the theorem hold.

Theorem 8.22. Let f : X → Y be a semisimple 1-morphism of orbifolds with
corners. Then:

(a) Define f+ = f ◦ iX|∂f+X
: ∂f+X → Y. Then f+ is semisimple. If f is flat

then f+ is also flat.

(b) There exists a unique, semisimple 1-morphism f− : ∂f−X → ∂Y in Orbc

with f ◦iX|∂f−X = iY◦f−. If f is simple then f− : ∂X→ ∂Y is also simple.

If f is flat then f− is flat.

(c) Let g : X → Y be another 1-morphism and η : f ⇒ g a 2-morphism in

Orbc. Then g is also semisimple, with ∂g−X = ∂f−X. If f is simple, or
flat, then g is simple, or flat, respectively. Part (b) defines 1-morphisms

f−, g− : ∂f−X → ∂Y. There is a unique 2-morphism η− : f− ⇒ g− in
Orbc such that

idiY ∗ η−=η ∗ idiX|
∂
f
−X

: f ◦iX|∂f−X = iY◦f−=⇒g◦iX|∂f−X = iY◦g−. (8.17)

Proof. In part (b), we define f− : ∂f−X → ∂Y as follows. As f is semisimple,

sf : Sf → ∂f−X is an equivalence, so there exists a quasi-inverse j : ∂f−X → Sf
and a 2-morphism η : sf ◦ j ⇒ id∂f−X

. This gives a 2-morphism

idf ∗ η : iY ◦ (uf ◦ j) = f ◦ iX ◦ sf ◦ j =⇒ f ◦ iX ◦ id∂f−X
= f ◦ iX|∂f−X .

Since iY is strongly representable, Proposition C.13 gives a unique f− : ∂f−X →
∂Y with iY ◦ f− = f ◦ iX|∂f−X and ζ : uf ◦ j ⇒ f− with idiY ∗ ζ = idf ∗ η.
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For part (c), by considering diagrams combining (8.8) for f and g:

Ū u
//

h̄��
�� ���� ζ

X
g

��
f

��
η

⇐
V̄

v // Y,

so that f, g are étale locally modelled on the same smooth map h : U → V , we
see that f semisimple implies all such h semisimple implies g semisimple. Also,
as ∂f−X, ∂

g
−X are both étale locally modelled on ∂h−U , we see that ∂g−X = ∂f−X.

From (b) we have unique 1-morphisms f−, g− : ∂f−X → ∂Y with iY ◦ f− =
f ◦ iX|∂f−X and iY ◦ g− = g ◦ iX|∂f−X . Thus we have a 2-morphism

η ∗ idiX|
∂
f
−X

: iY ◦ f− =⇒ g ◦ iX|∂f−X .

As iY is strongly representable, Proposition C.14 gives a unique 1-morphism
f̃− : ∂f−X → ∂Y with iY ◦ f̃− = g ◦ iX|∂f−X , and a 2-morphism η− : f− ⇒ f̃−
with idiY ∗η− = η ∗ idiX|∂f−X

. But the uniqueness of g− with iY ◦g− = g ◦ iX|∂f−X
forces f̃− = g−, so η− is a 2-morphism f− ⇒ g− as we want.

The rest of the proof follows from §5.4 by deducing properties in Orbc from
the corresponding properties on étale open covers in Manc.

8.7 Corners Ck(X) and the corner functors C, Ĉ

In §5.5 and [55, §2] we explained that if X is a manifold with corners, then
the kth boundary ∂kX has a natural action of the symmetric group Sk by
diffeomorphisms. This is not immediately obvious from the definition, but as in
(5.2) there is a natural diffeomorphism

∂kX ∼=
{

(x, β1, . . . , βk) :x ∈ X, β1, . . . , βk are distinct

local boundary components for X at x
}
,

(8.18)

where i∂kX : ∂k+1X → ∂kX acts by i∂kX : (x, β1, . . . , βk+1) 7→ (x, β1, . . . , βk),
and in this presentation Sk acts by permuting β1, . . . , βk. The next remark
explains the analogue of this for orbifolds with corners.

Remark 8.23. Let X = (X , ∂X , iX) be an orbifold with corners. Then Defi-
nition 8.20 defines orbifolds with corners ∂X, ∂2X = ∂(∂X), . . . , where ∂kX =
(∂kX , ∂k+1X , i∂kX) for i∂kX : ∂k+1X → ∂kX a 1-morphism of C∞-stacks. As
in the manifold case, there is a natural action rk of Sk on the orbifold with
corners ∂kX by 1-isomorphisms for all k = 0, 1, . . . , which we will write as a
group morphism rk : Sk → Aut(∂kX ). Here is one way to construct this.

Define an explicit C∞-stack ∂̃kX as follows. Objects of the category ∂̃kX are
k-tuples (A1, . . . , Ak) for A1, . . . , Ak ∈ ∂X with iX(A1) = · · · = iX(Ak) in X ,
such that if 1 6 i < j 6 k then there does not exist an object P and morphisms
ai : P → Ai, aj : P → Aj in ∂X such that p∂X (P ) = ∗ and p∂X (ai) = p∂X (aj) in
C∞Sch. Morphisms (a1, . . . , ak) : (A1, . . . , Ak)→ (B1, . . . , Bk) in the category
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∂̃kX are k-tuples (a1, . . . , ak) with ai : Ai → Bi a morphism in ∂X for i =
1, . . . , k, with iX(a1) = · · · = iX(ak). Composition is (b1, . . . , bk)◦(a1, . . . , ak) =
(b1 ◦ a1, . . . , bk ◦ ak), and identities id(A1,...,Ak) = (idA1

, . . . , idAk). Define a

functor p∂̃kX : ∂̃kX → C∞Sch by p∂̃kX : (A1, . . . , Ak) 7→ p∂X (A1) = · · · =
p∂X (Ak) and p∂̃kX : (a1, . . . , ak) 7→ p∂X (a1) = · · · = p∂X (ak).

Using similar ideas to Proposition C.15, one can now show ∂̃kX is a Deligne–
Mumford C∞-stack, with a natural 1-isomorphism ∂kX → ∂̃kX . For example,
∂2X = ∂̃2X , objects of ∂3X are

(
(A1, A2), (A1, A3)

)
for some object (A1, A2, A3)

in ∂̃3X , objects of ∂4X are
((

(A1, A2), (A1, A3)
)
,
(
(A1, A2), (A1, A4)

))
for some

(A1, A2, A3, A4) in ∂̃4X , and so on. Now Sk acts on ∂̃kX by permutation of
A1, . . . , Ak and a1, . . . , ak in objects (A1, . . . , Ak) and morphisms (a1, . . . , ak).
Lifting through the 1-isomorphism ∂kX → ∂̃kX gives rk : Sk → Aut(∂kX ).

If we embed Sk into Sk+1 as the subgroup of permutations of 1, . . . , k + 1
fixing k+ 1, then i∂kX : ∂k+1X → ∂kX is Sk-equivariant. Also, the 1-morphism
iX ◦ i∂X ◦ · · · ◦ i∂k−1X : ∂kX → X is Sk-invariant, that is,

iX ◦ i∂X ◦ · · · ◦ i∂k−1X ◦ rk(σ) = iX ◦ i∂X ◦ · · · ◦ i∂k−1X for all σ ∈ Sk.

Here is a description of the topological space (∂kX )top parallel to (8.18), and
similar to (8.11)–(8.12). Consider (k+1)-tuples (x, x′1, . . . , x

′
k), where x : ∗̄ → X

and x′i : ∗̄ → ∂X for i = 1, . . . , k are 1-morphisms in C∞Sta such that x′1, . . . , x
′
k

are distinct and x = iX ◦x′1 = · · · = iX ◦x′k. Define an equivalence relation ∼ on
such k+1-tuples by (x, x′1, . . . , x

′
k) ∼ (x̃, x̃′1, . . . , x̃

′
k) if there exists (η, η′1, . . . , η

′
k)

where η : x ⇒ x̃ and η′i : x′i ⇒ x̃′i are 2-morphisms with η = idiX ∗ η′1 = · · · =
idiX ∗η′k. Write [x, x′1, . . . , x

′
k] for the ∼-equivalence class of (x, x′1, . . . , x

′
k). Such

[x, x′1, . . . , x
′
k] correspond to points of (∂kX )top, that is,

(∂kX )top
∼=
{

[x, x′1, . . . , x
′
k] : x : ∗̄→X , x′i : ∗̄→∂X are 1-morphisms

with x′1, . . . , x
′
k distinct and x= iX◦x′1 = · · ·= iX◦x′k

}
.

(8.19)

To prove this, we show that (8.19) is naturally identified with (∂̃kX )top. Note
that (8.19) relies on iX strongly representable, so that equalities of 1-morphisms
x = iX ◦ x′1 = · · · = iX ◦ x′k rather than 2-isomorphisms of 1-morphisms x ∼=
iX ◦ x′1 ∼= · · · ∼= iX ◦ x′k are well-behaved.

From §5.5, for X a manifold with corners, the k-corners Ck(X) of X is

Ck(X) =
{

(x, {β1, . . . , βk}) : x ∈ X, β1, . . . , βk are distinct

local boundary components for X at x
} ∼= ∂kX/Sk.

(8.20)

It is a manifold with corners. The map Πk
X : Ck(X) → X taking Πk

X :
(x, {β1, . . . , βk}) 7→ x is smooth. Here is the orbifold analogue of this.

Definition 8.24. By §C.4, we may now define quotient Deligne–Mumford C∞-
stacks [∂kX/Sk], [∂k+1X/Sk] and quotient 1-morphisms

[iX ◦ i∂X ◦ · · · ◦ i∂k−1X, π{1}] : [∂kX/Sk] −→ [X/{1}] = X ,
[i∂kX, idSk ] : [∂k+1X/Sk] −→ [∂kX/Sk],
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where π{1} : Sk → {1} is the unique projection. If X is étale locally modelled

on Ū for U a manifold with corners, then [∂kX/Sk], [∂k+1X/Sk] are étale locally
modelled on Ck(U), ∂Ck(U), and [iX ◦ · · · ◦ i∂k−1X, π{1}] is étale locally modelled

(in a 2-Cartesian square) on Πk
U : Ck(U) → U , and [i∂kX, idSk ] is étale locally

modelled (in a 2-Cartesian square) on iCk(U) : ∂Ck(U)→ Ck(U).
Since [iX ◦ · · · ◦ i∂k−1X, π{1}], [i∂kX, idSk ] are étale locally modelled on C∞-

scheme morphisms, they are representable. So by Proposition C.14(b) applied to
[iX ◦ · · · ◦ i∂k−1X, π{1}], there exists a Deligne–Mumford C∞-stack Ck(X ) unique

up to 1-isomorphism, a strongly representable 1-morphism Πk
X : Ck(X ) → X ,

and an equivalence j : [∂kX/Sk] → Ck(X ) with [iX ◦ · · · ◦ i∂k−1X, π{1}] =

Πk
X ◦ j. Then by Proposition C.14(b) applied to j ◦ [i∂kX, idSk ], there exists

a Deligne–Mumford C∞-stack ∂Ck(X ) unique up to 1-isomorphism, a strongly
representable 1-morphism iCk(X) : ∂Ck(X ) → Ck(X ), and an equivalence k :

[∂k+1X/Sk]→ ∂Ck(X ) with j ◦ [i∂kX, idSk ] = iCk(X) ◦ k.
Suppose now that U is a manifold with corners, and u : Ū → X is an étale 1-

morphism of C∞-stacks, as in (8.6). Then Ck(U) and ∂Ck(U) are manifolds with
corners, and Πk

U : Ck(U) → U , iCk(U) : ∂Ck(U) → Ck(U) are smooth maps, so

we have 1-morphisms of C∞-stacks īCk(U) : ∂Ck(U)→ Ck(U), Π̄k
U : Ck(U)→ Ū,

where U,Ck(U), ∂Ck(U), iCk(U),Π
k
U = FC∞Sch

Manc

(
U,Ck(U), ∂Ck(U), iCk(U),Π

k
U

)
.

We now claim that there are unique, étale 1-morphisms uCk , u∂Ck such that the
following diagram 2-commutes, with both squares 2-Cartesian:

∂Ck(U)
u∂Ck

//

īCk(U)�� � �� �
IQ

id

∂Ck(X )

iCk(X) ��
Ck(U)

uCk

//

Π̄kU�� � �� �
IQ

id

Ck(X )

ΠkX ��
Ū

u // X .

(8.21)

To see this, note that as Ck(U) ∼= ∂kU/Sk, Ck(X ) ' ∂kX/Sk and ∂Ck(U) ∼=
∂k+1U/Sk, ∂Ck(X ) ' ∂k+1X/Sk, there exists a diagram of the form (8.21)
with morphisms u′Ck , u

′
∂Ck

unique up to 2-isomorphism, and with squares 2-
Cartesian, but with 2-morphisms not necessarily identities. Then as Πk

X, iCk(X)

are strongly representable, we can apply Proposition C.13 to the bottom and
then the top square of (8.21) to show that there exist unique uCk , u∂Ck making
the squares of (8.21) 2-Cartesian with identity 2-morphisms.

Define Ck(X) = (Ck(X ), ∂Ck(X ), iCk(X)). Using the top square of (8.21) in
place of (8.6), and noting that as u : Ū → X above form an étale open cover
of X , the uCk : Ck(U) → Ck(X ) form an étale open cover of Ck(X ), we see
that Ck(X) is an orbifold with corners, which we call the k-corners of X. Using
the bottom square of (8.21) in place of (8.8), we also see that Πk

X : Ck(X)→ X

is a 1-morphism of orbifolds with corners, which is strongly representable as a
1-morphism of C∞-stacks Πk

X : Ck(X )→ X .
Here is a description of the topological space Ck(X )top parallel to (8.20). As

Ck(X ) ' [∂kX/Sk] we have a homeomorphism Ck(X )top
∼= (∂kX )top/Sk. In
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the description (8.19) of (∂kX )top, Sk acts by permuting x′1, . . . , x
′
k, so dividing

by Sk turns an ordered k-tuple (x′1, . . . , x
′
k) into an unordered set {x′1, . . . , x′k}.

Consider pairs (x, {x′1, . . . , x′k}), where x : ∗̄ → X and x′i : ∗̄ → ∂X for i =
1, . . . , k are 1-morphisms in C∞Sta such that x′1, . . . , x

′
k are distinct and x =

iX ◦ x′1 = · · · = iX ◦ x′k. Define an equivalence relation ≈ on such pairs by
(x, {x′1, . . . , x′k}) ≈ (x̃, {x̃′1, . . . , x̃′k}) if there exists (η, η′1, . . . , η

′
k) and σ ∈ Sk

(that is, σ is a permutation of 1, . . . , k) where η : x⇒ x̃ and η′i : x′i ⇒ x̃′σ(i) are

2-morphisms in C∞Sta for i = 1, . . . , k with η = idiX ∗ η′1 = · · · = idiX ∗ η′k.
Write [x, {x′1, . . . , x′k}] for the ≈-equivalence class of (x, {x′1, . . . , x′k}). Such
[x, {x′1, . . . , x′k}] are naturally identified with points of Ck(X )top, that is,

Ck(X )top
∼=
{

[x, {x′1, . . . , x′k}] : x : ∗̄→X , x′i : ∗̄→∂X are 1-morphisms

with x′1, . . . , x
′
k distinct and x= iX◦x′1 = · · ·= iX◦x′k

}
.

(8.22)

Here is the orbifold analogue of the category M̌anc in Definition 5.15.

Definition 8.25. We will define a 2-category Ǒrbc whose objects are disjoint
unions

∐∞
m=0 Xm, where Xm is a (possibly empty) orbifold with corners of di-

mension m. In more detail, objects of Ǒrbc are triples X = (X , ∂X , iX) with
iX : ∂X → X a strongly representable 1-morphism of Deligne–Mumford C∞-
stacks, such that there exists a decomposition X =

∐∞
m=0 Xm with each Xm ⊆ X

an open and closed C∞-substack, for which Xm :=
(
Xm, i−1

X (Xm), iX|i−1
X

(Xm)

)
is an orbifold with corners of dimension m. This decomposition is unique, as
Xm ⊆ X is the open C∞-substack on which T ∗X has rank m.

A 1-morphism f : X → Y in Ǒrbc is a 1-morphism f : X → Y such that
f |Xm∩f−1(Yn) :

(
Xm ∩ f−1(Yn)

)
→ Yn is a 1-morphism of orbifolds with corners

for all m,n > 0. For 1-morphisms f, g : X → Y, a 2-morphism η : f ⇒ g is a
2-morphism η : f ⇒ g in C∞Sta. Then Orbc is a full 2-subcategory of Ǒrbc.

For each orbifold with corners X, define C(X) =
∐dimX
k=0 Ck(X), and define

ΠX : C(X) → X by ΠX|Ck(X) = Πk
X : Ck(X) → X for k = 0, . . . ,dimX. Then

C(X) is an object in Ǒrbc, and ΠX : C(X)→ X a 1-morphism in Ǒrbc.
The definitions of C(X),Πk

X,ΠX above also make sense if X,Y are objects in
Ǒrbc rather than Orbc.

Example 8.26. Suppose X is a quotient [X/G] as in Example 8.16, where X is a
manifold with corners and G is a finite group. Then the action r : G→ Aut(X)
lifts to C(r) : G→ Aut(C(X)), and we find there is an equivalence C([X/G]) '
[C(X)/G] in Ǒrbc, where to define [C(X)/G] we note that Example 8.16 also
works with X in M̌anc rather than Manc, yielding [X/G] ∈ Ǒrbc.

Here is the analogue of Definition 5.16 and Theorems 5.17 and 6.29.

Theorem 8.27. (a) Let f : X→ Y be a 1-morphism of orbifolds with corners.
Then there are unique 1-morphisms C(f) : C(X) → C(Y) and Ĉ(f) : C(X) →
C(Y) in Ǒrbc such that ΠY ◦ C(f) = f ◦ ΠX = ΠY ◦ Ĉ(f) : C(X) → Y, and
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whenever as in (8.8) we are given a 2-commutative diagram in C∞Sta

Ū u
//

h̄�� �� ��	� η
X
f ��

V̄
v // Y,

(8.23)

where U, V are manifolds with corners, h : U → V is a smooth map, U, V , h =
FC∞Sch

Manc (U, V, h), and u, v are étale, then there are 2-commutative diagrams

C(U)
uC

//

C(h)�� rrrru} ηC

C(X )

C(f) ��

C(U)
uC

//

Ĉ(h)�� rrrru} ηĈ

C(X )

Ĉ(f) ��
C(V )

vC // C(Y), C(V )
vC // C(Y),

(8.24)

where C(h) : C(U) → C(V ) and Ĉ(h) : C(U) → C(V ) are defined in (5.6)
and (5.8), and C(U), C(V ), C(h), Ĉ(h) = FC∞Sch

M̌anc

(
C(U), C(V ), C(h), Ĉ(h)

)
,

and uC : C(U) → C(X ) is defined by uC |Ck(U) = uCk : Ck(U) → Ck(X ) for
uCk as in (8.21), and similarly for vC .

We can also characterize the maps C(f)top : C(X )top → C(Y)top, Ĉ(f)top :
C(X )top → C(Y)top. Identify Ck(X )top ⊆ C(X )top with the right hand side of
(8.22), and similarly for C(Y)top, and identify Sf,top, T f,top with the right hand

sides of (8.13)–(8.14). Then as in (5.6) and (5.8), C(f)top and Ĉ(f)top act by

C(f)top :
[
x, {x′1, . . . , x′k}

]
7−→

[
y, {y′1, . . . , y′l}

]
, where y = f ◦ x,

{y′1, . . . , y′l}=
{
y′ : [x′i, y

′] ∈ Sf,top, some i = 1, . . . , k
}
, and

(8.25)

Ĉ(f)top :
[
x, {x′1, . . . , x′k}

]
7−→

[
y, {y′1, . . . , y′l}

]
, where y = f ◦ x,

{y′1, . . . , y′l}=
{
y′ : [x′i, y

′]∈Sf,top, i=1, . . . , k
}
∪
{
y′ : [x, y′]∈T f,top

}
.

(8.26)

For 06k6dimX, 06 l6dimY write Cf,lk (X) = Ck(X)∩C(f)−1(Cl(Y)) and

Ĉf,lk (X) = Ck(X)∩ Ĉ(f)−1(Cl(Y)), so that Cf,lk (X), Ĉf,lk (X) are open and closed

suborbifolds of Ck(X) with Ck(X) =
∐dimY
l=0 Cf,lk (X) =

∐dimY
l=0 Ĉk

f,l(X), and

write Clk(f) = C(f)|Cf,lk (X), Ĉ
l
k(f) = Ĉ(f)|Ĉf,lk (X), so that Clk(f) : Cf,lk (X) →

Cl(Y) and Ĉlk(f) : Ĉf,lk (X) → Cl(Y) are 1-morphisms in Orbc. If f is simple

then C(f) maps Ck(X)→ Ck(Y) for all k > 0. If f is flat then C(f) = Ĉ(f).

(b) Let f, g : X → Y be 1-morphisms and η : f ⇒ g a 2-morphism in Orbc.
Then there exist unique 2-morphisms C(η) : C(f) ⇒ C(g) and Ĉ(η) : Ĉ(f) ⇒
Ĉ(g) in Ǒrbc, where C(f), C(g), Ĉ(f), Ĉ(g) are as in (a), such that

idΠY
∗ C(η)=η ∗ idΠX

: ΠY◦C(f)=f ◦ΠX =⇒ ΠY◦C(g)=g◦ΠX,

idΠY
∗ Ĉ(η)=η ∗ idΠX

: ΠY◦Ĉ(f)=f ◦ΠX =⇒ ΠY◦Ĉ(g)=g◦ΠX.
(8.27)

If f, g are flat then C(η) = Ĉ(η).

(c) Define C : Orbc → Ǒrbc by C : X 7→ C(X) on objects, where C(X) is as
in Definition 8.25, and C : f 7→ C(f), C : η 7→ C(η) on 1- and 2-morphisms,
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where C(f), C(η) are as in (a),(b) above. Similarly, define Ĉ : Orbc → Ǒrbc

by Ĉ : X 7→ C(X), Ĉ : f 7→ Ĉ(f), Ĉ : η 7→ Ĉ(η). Then C, Ĉ are strict
2-functors, which we call corner functors.

Parts (a)–(c) above also hold if X,Y are objects in Ǒrbc rather than Orbc.
Thus we get corner functors C, Ĉ : Ǒrbc → Ǒrbc.

Proof. For (a), we first show that the 1-morphisms C(f), Ĉ(f) exist locally in
C(X). Suppose [x] ∈ Xtop with ftop([x]) = [y] ∈ Ytop, and set G = IsoX ([x]),
H = IsoY([y]), and write ρ : G → H for f∗ : IsoX ([x]) → IsoY([y]). Using
Theorem C.25 we can show that there exist manifolds with corners U, V , a
smooth map h : U → V , actions of G,H on U, V such that h is equivariant
under ρ : U → V , and a 2-commutative diagram

[U/G]
u

//

[h,ρ]�� �� ��	� η
X
f ��

[V /H]
v // Y,

(8.28)

with U, V , h = FC∞Sch
Manc (U, V, h), in which u, v are equivalences with open neigh-

bourhoods U ⊆ X of [x] in X and V ⊆ Y of [y] in Y. Equation (8.28) is a
substitute for (8.8), giving an alternative definition of 1-morphisms f : X → Y

in Orbc, just as (8.9) in Remark 8.17(c) is a substitute for (8.6).
Then G,H act on C(U), C(V ), and as for uCk in (8.21), we find there are

unique 1-morphisms uC , vC in 2-Cartesian diagrams

[C(U)/G]
uC

//

[ΠU ,idG]�� ssss 5=id
C(X )

ΠX ��

[C(V )/H]
vC

//

[ΠV ,idH ]�� ssss 5=id
C(Y)
ΠY ��

[U/G]
u // X , [V /H]

v // Y,
(8.29)

and furthermore uC , vC are equivalences with open C∞-substacks C(U) ⊆
C(X ), C(V) ⊆ C(Y). By choosing a quasi-inverse for uC , we see that there
exists a 1-morphism C(f)U , unique up to 2-isomorphism, and a 2-morphism ζ
to make the following diagram 2-commute:

[C(U)/G]
uC

//

[C(h),ρ]��
�� �� 	� ζ

C(U) ⊆ C(X )

C(f)U ��
[C(V )/H]

vC // C(V) ⊆ C(Y).

(8.30)

Combining (8.28)–(8.30) shows that ΠY ◦ C(f)U ∼= f ◦ ΠX|C(U). So as ΠY

is strongly representable, Proposition 4.17 shows that we may choose C(f)U
uniquely in its 2-isomorphism class such that ΠY ◦ C(f)U = f ◦ΠX|C(U). Since
X is covered by such open U ⊆ X , C(X ) is covered by the corresponding
C(U) ⊆ C(X ). By uniqueness, these 1-morphisms C(f)U : C(U) → C(Y)
agree on overlaps C(U)∩C(U ′) in C(X ). Hence sheafifying gives a 1-morphism
C(f) : C(X ) → C(Y) with C(f)|C(U) = C(f)U for all such U above, and
applying Proposition 4.17 again shows there is a unique such C(f) with ΠY ◦
C(f) = f ◦ΠX. The proof for Ĉ(f) is the same.
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To prove (8.25)–(8.26), we use (5.6) and (5.8) for the étale local models
h : U → V in Manc. Part (a) follows. Part (b) is proved by the same argument
as for η− in Theorem 8.22(c). For (c), we may deduce functoriality of C, Ĉ on
Orbc from the functoriality of C, Ĉ on Manc by Theorem 5.17(i)–(iii) and its
analogue for Ĉ, and uniqueness of C(f), Ĉ(f), C(η), Ĉ(η) in (a),(b).

Theorem 5.17(iv)–(vii) also extend to orbifolds with corners.
Definitions 5.9 and 5.28 defined (s-)submersions, (s- or sf-)immersions and

(s- or sf-)embeddings in Manc. Definition 8.3 defined submersions, immersions
and embeddings in Orb. We combine the two definitions.

Definition 8.28. Let f : X→ Y be a 1-morphism of orbifolds with corners.

(i) We call f a submersion if ΩC(f) : C(f)∗(T ∗C(Y))→ T ∗C(X ) is an injec-
tive morphism of vector bundles, i.e. has a left inverse in qcoh(C(X )), and
f is semisimple and flat. We call f an s-submersion if f is also simple.

(ii) We call f an immersion if it is representable and Ωf : f∗(T ∗Y)→ T ∗X is a
surjective morphism of vector bundles, i.e. has a right inverse in qcoh(X ).
We call f an s-immersion if f is also simple, and an sf-immersion if f is
also simple and flat.

(iii) We call f an embedding, s-embedding, or sf-embedding, if it is an im-
mersion, s-immersion, or sf-immersion, respectively, and f∗ : IsoX ([x]) →
IsoY

(
ftop([x])

)
is an isomorphism for all [x] ∈ Xtop, and ftop : Xtop → Ytop

is a homeomorphism with its image (so in particular it is injective).

Then submersions, . . . , sf-embeddings in Orbc are étale locally modelled on
submersions, . . . , sf-embeddings in Manc.

8.8 Transversality and fibre products

Next we extend §5.6 to orbifolds. Here is the analogue of Definitions 5.20
and 5.25.

Definition 8.29. Let X,Y,Z be orbifolds with corners and g : X→ Z, h : Y→ Z

be 1-morphisms. Then as in §8.7 we have 1-morphisms C(g) : C(X)→ C(Z) and
C(h) : C(Y) → C(Z) in Ǒrbc, and hence 1-morphisms C(g) : C(X ) → C(Z)
and C(h) : C(Y) → C(Z) in C∞Sta. We call g, h transverse if the following
holds. Suppose x : ∗̄ → C(X ) and y : ∗̄ → C(Y) are 1-morphisms in C∞Sta,
and η : C(g) ◦ x ⇒ C(h) ◦ y a 2-morphism. Then the following morphism in
qcoh(∗̄) should be injective:(
x∗(ΩC(g))◦Ix,C(g)(T

∗C(Z))
)
⊕
(
y∗(ΩC(h))◦Iy,C(h)(T

∗C(Z))◦η∗(T ∗C(Z))
)

:

(C(g) ◦ x)∗(T ∗C(Z)) −→ x∗(T ∗C(X ))⊕ y∗(T ∗C(Y)). (8.31)

An equivalent definition is the following: suppose e : U →W and f : V →W
are smooth maps of manifolds with corners, and u : Ū → X , v : V̄ → Y and
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w : W̄ → Z are étale 1-morphisms, fitting into 2-commutative diagrams:

Ū u
//

ē�� ������

X
g ��

V̄ v
//

f̄�� ������

Y
h ��

W̄
w // Z, W̄

w // Z.

Then g, h are transverse in Orbc if and only if e, f are transverse in Manc for
all such U, V,W, e, f . That is, g, h are transverse if and only if they are étale
locally equivalent to transverse smooth maps in Manc.

Now identify Ck(X )top ⊆ C(X )top with the right hand of (8.22), and sim-
ilarly for C(Y)top, C(Z)top. Then C(g)top, C(h)top act as in (8.25). We call
g, h strongly transverse if they are transverse, and whenever there are points in
Cj(X )top, Ck(Y)top, Cl(Z)top with

C(g)top

(
[x, {x′1, . . . , x′j}]

)
=C(h)top

(
[y, {y′1, . . . , y′k}]

)
=[z, {z′1, . . . , z′l}],

we have either j + k > l or j = k = l = 0. Again, g, h are strongly transverse if
and only if they are étale locally equivalent to strongly transverse smooth maps
in Manc.

Here is the analogue of Theorem 5.21. One can deduce it from Theorem 5.21
using the method of proof of Theorem 11.24 below.

Theorem 8.30. Suppose g : X→ Z and h : Y→ Z are transverse 1-morphisms
in Orbc. Then a fibre product W = X×g,Z,h Y exists in the 2-category Orbc.

Propositions 5.22–5.24 and Theorem 5.26 also extend to Orbc, with equiv-
alences natural up to 2-isomorphism rather than canonical diffeomorphisms.

8.9 Orbifold strata of orbifolds with corners

In §C.8 we studied orbifold strata XΓ, . . . , X̂Γ
◦ of a Deligne–Mumford C∞-stack

X and finite group Γ, and in §8.4.1 we applied these ideas to orbifolds X , showing
that the orbifold stratum XΓ has a decomposition XΓ =

∐
λ∈ΛΓ

+
XΓ,λ with each

XΓ,λ an orbifold. We now extend these ideas to orbifolds with corners X, defin-
ing orbifold strata XΓ, X̃Γ, X̂Γ,XΓ

◦ , X̃
Γ
◦ , X̂

Γ
◦ in Ǒrbc, and refinements XΓ,λ,XΓ,λ

◦
for λ ∈ ΛΓ

+ and X̃Γ,µ, X̂Γ,µ, X̃Γ,µ
◦ , X̂Γ,µ

◦ for µ ∈ ΛΓ
+/Aut(Λ) which are orbifolds

with corners of dimensions dimX− dimλ, dimX− dimµ.
In XΓ =

(
XΓ, ∂(XΓ), iXΓ

)
, the underlying C∞-stack of XΓ is the orbifold

stratum XΓ of the C∞-stack X in X = (X , ∂X , iX). However (except for straight
orbifolds with corners X below), in general the boundary C∞-stack ∂(XΓ) in
XΓ is not the orbifold stratum (∂X )Γ of the boundary C∞-stack ∂X in X, but
is a certain open and closed C∞-substack of the orbifold stratum C(X)Γ of
the corners C(X) from §8.7. The motivation for the definition of ∂(XΓ) is the
description (5.10) in Proposition 5.18(c) of the boundary ∂(XΓ) of the fixed
point locus XΓ of a finite group Γ acting on a manifold with corners X.
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Definition 8.31. Let X = (X , ∂X , iX) be an orbifold with corners, and Γ
a finite group. Then §8.7 defines the corners C(X) in Ǒrbc, and a projec-
tion ΠX : C(X) → X in Ǒrbc. As a 1-morphism of the underlying Deligne–
Mumford C∞-stacks, ΠX : C(X ) → X is strongly representable. Thus Defi-
nitions C.45 and C.51 define orbifold strata XΓ, C(X )Γ of X , C(X ), which are
Deligne–Mumford C∞-stacks, 1-morphisms OΓ(X ) : XΓ → X , OΓ(C(X )) :
C(X )Γ → C(X ) which are strongly representable by Theorem C.49(f), and a
1-morphism ΠΓ

X : C(X )Γ → XΓ with OΓ(X ) ◦ ΠΓ
X = ΠX ◦ OΓ(C(X )). Since

ΠX, O
Γ(X ), OΓ(C(X )) are strongly representable, it follows that ΠΓ

X is too.
Combining the description (8.22) of points in C(X )top with Theorem C.49(c)

shows that we may write the topological space C(X )Γ
top of C(X )Γ explicitly as

C(X )Γ
top
∼=
{

[x, {x′1, . . . , x′k}, ρ, σ] : k > 0, x : ∗̄→X and x′i : ∗̄→∂X
are 1-morphisms, x′1, . . . , x

′
k are distinct, x= iX◦x′1 = · · ·= iX◦x′k,

σ : Γ→ Sk is a group morphism, ρ(γ) = (η(γ), η′1(γ), . . . , η′k(γ))

for γ ∈ Γ with η(γ) : x⇒ x and η′i(γ) : x′i ⇒ x′σ(i) 2-morphisms,

η(γ)∗η(δ)=η(γδ), η′σ(δ)(i)(γ)∗η′i(δ)=η′i(γδ), γ, δ∈Γ, i=1, . . . , k
}
.

(8.32)

Write ∂(XΓ)top ⊆ C(X )Γ
top for the subset corresponding to [x, {x′1, . . . , x′k}, ρ, σ]

in (8.32) such that k > 1 and σ(Γ) ⊆ Sk acts transitively on {1, . . . , k} (these
conditions are the analogue of (5.10)). We will show ∂(XΓ)top is open and closed
in C(X )Γ

top, so it induces an open and closed C∞-substack ∂(XΓ) in C(X )Γ.

Define a 1-morphism iXΓ : ∂(XΓ) → XΓ by iXΓ = ΠΓ
X|∂(XΓ). Then iXΓ is

strongly representable by Proposition C.14(c), as ΠΓ
X is strongly representable

and ∂(XΓ) ⊂ C(X )Γ is open. Define XΓ =
(
XΓ, ∂(XΓ), iXΓ

)
. We claim that

XΓ is an object in Ǒrbc. To prove this, note that X is covered by Zariski open
C∞-substacks V equivalent to [U/G] for U a manifold with corners acted on by
a finite group G and U = FC∞Sch

Manc (U). Then C(X ) is covered by corresponding
C(V) ' [C(U)/G]. Thus by equation (C.10) of Theorem C.53 we have

UΓ ' [U/G]Γ '
[(∐

injective morphisms ρ : Γ→ G U
ρ(Γ)

)
/G
]
,

C(U)Γ ' [C(U)/G]Γ '
[(∐

injective morphisms ρ : Γ→ G C(U)ρ(Γ)
)
/G
]

'
[(∐

injective morphisms ρ : Γ→ G C(Uρ(Γ))
)
/G
]
,

using Proposition 5.18(b) to identify C(U)ρ(Γ) and C(Uρ(Γ)) in the last step.
Comparing (5.10) and (8.32) shows that the subset ∂(XΓ)top ∩ C(U)Γ

top

in C(U)Γ
top is identified with

[(∐
ρ C1(Uρ(Γ))

)
/G
]

top in
[(∐

ρ C(Uρ(Γ))
)
/G
]

top.

Since C1(Uρ(Γ)) is open and closed in C(Uρ(Γ)), this shows that ∂(XΓ)top ∩
C(U)Γ

top is open and closed in C(U)Γ
top, so ∂(XΓ)top is open and closed in

C(X )Γ
top as we claimed, since such C(U)Γ

top form an open cover of C(X )Γ
top.

Also, as C1(Uρ(Γ)) ∼= ∂(Uρ(Γ)), this shows that

UΓ '
[(∐

injective morphisms ρ : Γ→ G U
ρ(Γ)

)
/G
]
,

∂(XΓ) ∩ C(U)Γ '
[(∐

injective morphisms ρ : Γ→ G ∂(Uρ(Γ))
)
/G
]
.
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Thus we see that the triple
(
XΓ, ∂(XΓ), iXΓ

)
is Zariski locally modelled on

triples
(
[Uρ(Γ)

)
/G], [∂(Uρ(Γ))/G], [iUρ(Γ), idG]

)
, which is an orbifold with corners

as Uρ(Γ) is a manifold with corners by Proposition 5.18(a). Since the dimension
of Uρ(Γ) can vary with connected component of XΓ, this shows that XΓ is
a disjoint union of orbifolds with corners of different dimensions, that is, an
object in Ǒrbc.

Use the notion ΛΓ,ΛΓ
+, R0, R1, . . . , Rk of Definition 8.5. As X = (X , ∂X , iX)

is an orbifold with corners, the cotangent bundle T ∗X is a vector bundle on X , so
OΓ(X )∗(T ∗X ) is a vector bundle on XΓ. As in Definition 8.5, we have a splitting

OΓ(X )∗(T ∗X ) ∼=
⊕k

i=0(T ∗X )Γ
i ⊗ Ri, where (T ∗X )Γ

i for i = 0, . . . , k are vector
bundles of mixed rank on XΓ. For each λ ∈ ΛΓ

+, define XΓ,λ to be the open and
closed C∞-substack in XΓ with rank

(
(T ∗X )Γ

1

)
[R1]+· · ·+rank

(
(T ∗X )Γ

k

)
[Rk] = λ

in ΛΓ
+. Then XΓ =

∐
λ∈ΛΓ

+
XΓ,λ. As in §C.8, XΓ

◦ ⊆ XΓ is an open C∞-substack.

Set XΓ,λ
◦ = XΓ,λ ∩ XΓ

◦ for λ ∈ ΛΓ
+, so that XΓ,λ

◦ is an open and closed C∞-

substack of XΓ
◦ with XΓ

◦ =
∐
λ∈ΛΓ

+
XΓ,λ
◦ .

Define XΓ
◦ ,X

Γ,λ,XΓ,λ
◦ to be the open subobjects of XΓ with C∞-stacks XΓ

◦ ,

XΓ,λ,XΓ,λ
◦ ⊆ XΓ, so that for instance XΓ

◦ =
(
XΓ
◦ , ∂(XΓ

◦ ), iXΓ
◦

)
where ∂(XΓ

◦ ) =

i−1
XΓ(XΓ

◦ ) and iXΓ
◦

= iXΓ |∂(XΓ
◦ ). Then XΓ

◦ ,X
Γ,λ,XΓ,λ

◦ are objects in Ǒrbc. As in

Definition 8.5, T ∗XΓ,λ and T ∗XΓ,λ
◦ are vector bundles of rank dimX−dimλ, so

XΓ,λ,XΓ,λ
◦ are orbifolds with corners of dimension dimX− dimλ. We have

XΓ =
∐
λ∈ΛΓ

+
XΓ,λ and XΓ

◦ =
∐
λ∈ΛΓ

+
X

Γ,λ
◦

In a similar way, using the other classes of orbifold strata X̃Γ, X̃Γ
◦ , X̂Γ, X̂Γ

◦ in

§C.8, we may define objects X̃Γ, X̃Γ
◦ , X̂

Γ, X̂Γ
◦ in Ǒrbc, and following Definition 8.5

for orbifolds without boundary, for each µ ∈ ΛΓ
+/Aut(Λ) we may define orbifolds

with corners X̃Γ,µ, X̃Γ,µ
◦ , X̂Γ,µ, X̂Γ,µ

◦ of dimension dimX− dimµ, such that as in
(8.3)–(8.4) we have X̃Γ =

∐
µ∈ΛΓ

+/Aut(Γ) X̃
Γ,µ, and similarly for X̃Γ

◦ , X̂Γ, X̂Γ
◦ .

For X̃Γ, X̃Γ
◦ , the definitions are essentially the same as for XΓ,XΓ

◦ . In par-
ticular, using ÕΓ(X ) strongly representable by Theorem C.49(f), we show Π̃Γ

X

is strongly representable as for ΠΓ
X. However, Π̂Γ

X : ̂C(X )Γ → X̂Γ need not be

strongly representable, though it is representable. So in X̂Γ =
(
X̂Γ, ̂∂(XΓ), iX̂Γ

)
,

we should not define ̂∂(XΓ) as a C∞-substack of ̂C(X )Γ and iX̂Γ as the restric-
tion of Π̂Γ

X, since then iX̂Γ might not be strongly representable. Instead, as in

the definition of Ck(X) in §8.7, we use Proposition C.14(b) to replace Π̂Γ
X by

a strongly representable 1-morphism Π̂′ΓX : ̂C(X )′Γ → X̂Γ with an equivalence

i : ̂C(X )Γ → ̂C(X )′Γ such that Π̂′ΓX ◦ i = Π̂Γ
X, and then define ̂∂(XΓ) as an open

and closed C∞-substack of ̂C(X )′Γ.
Since the C∞-stack X̂Γ

◦ is a C∞-scheme (it has trivial orbifold groups), the

X̂
Γ,µ
◦ are manifolds with corners (they are equivalent in Orbc to something in

the image of FOrbc

Manc), so there exists X̂Γ,µ
◦ in Manc unique up to isomorphism

with X̂
Γ,µ
◦ ' FOrbc

Manc(X̂Γ,µ
◦ ), giving a homeomorphism X̂

Γ,µ
◦,top

∼= X̂Γ,µ
◦ . Thus,
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(C.7) gives a decomposition

Xtop
∼=
∐

isomorphism classes
of finite groups Γ

∐
µ∈ΛΓ

+/Aut(Γ)
X̂Γ,µ
◦ ,

a stratification of the topological space Xtop of an orbifold with corners X into

manifolds with corners X̂Γ,µ
◦ . All of XΓ, X̃Γ, X̂Γ,XΓ

◦ , X̃
Γ
◦ , X̂

Γ
◦ ,X

Γ,λ, X̃Γ,µ, X̂Γ,µ,

X
Γ,λ
◦ , X̃Γ,µ

◦ , X̂Γ,µ
◦ , X̂Γ,µ

◦ will be called orbifold strata of X.
The definitions of XΓ, X̃Γ, . . . , X̂Γ

◦ also make sense if X lies in Ǒrbc rather

than Orbc. We will not use notation XΓ,λ, . . . , X̂Γ,µ
◦ for X ∈ Ǒrbc \Orbc.

In Definitions C.47, C.48 and C.51 we defined classes of 1- and 2-morphisms
between orbifold strata, for instance, if X is a Deligne–Mumford C∞-stack we
defined 1-morphisms OΓ(X ) : XΓ → X and Π̃Γ(X ) : XΓ → X̃Γ, and if f : X →
Y is a representable 1-morphism we defined 1-morphisms fΓ : XΓ → YΓ and
f̃Γ : X̃Γ → ỸΓ. When X ,Y are the C∞-stacks of orbifolds with corners X,Y,
and f is a 1-morphism in Orbc, all these 1- and 2-morphisms are also 1- and
2-morphisms in Ǒrbc, and fit into a strictly commutative diagram in Ǒrbc:

XΓ
◦

Π̃Γ
◦ (X) //

OΓ
◦ (X) ))TTTTTTTTTTT

⊂

��

Aut(Γ)
-- X̃Γ

◦
Π̂Γ
◦ (X) //

ÕΓ
◦ (X)uujjjjjjjjjjj

⊂

��

X̂Γ
◦

⊂

��
X

XΓ

Π̃Γ(X)

//
OΓ(X)

44jjjjjjjjjjjAut(Γ) 11 X̃Γ
Π̂Γ(X)

//
ÕΓ(X)

jjTTTTTTTTTTT
X̂Γ.

To prove this, we show that they are étale locally modelled on smooth maps in
Manc, which in most cases follows from Proposition 5.18(a),(d).

Thus, for example, if f : X→ Y is a representable 1-morphism in Orbc then
fΓ : XΓ → YΓ and f̃Γ : X̃Γ → ỸΓ in Definition C.51 are also 1-morphisms
fΓ : XΓ → YΓ and f̃Γ : X̃Γ → ỸΓ in Ǒrbc. Note however that fΓ need
not map XΓ,λ → YΓ,λ for λ ∈ ΛΓ

+, and f̃Γ need not map X̃Γ,µ → ỸΓ,µ for
µ ∈ ΛΓ

+/Aut(Γ), unless f is an equivalence. As in Definition C.51, it follows

that we may define strict 2-functors FΓ, F̃Γ : Orbc
re → Ǒrbc

re and a weak 2-
functor F̂Γ : Orbc

re → Ǒrbc
re, where Orbc

re, Ǒrbc
re are the 2-subcategories of

Orbc, Ǒrbc with representable 1-morphisms.
Our next theorem says, roughly, that the corner functor C of §8.7 commutes

with the orbifold strata functors in Ǒrbc. It is related to Proposition 5.18,
which roughly says that C commutes with fixed point loci in M̌anc.

Theorem 8.32. Let X be an orbifold with corners, and Γ a finite group. The
corners C(X) lie in Ǒrbc as in §8.7, so we have orbifold strata XΓ, C(X)Γ and
1-morphisms OΓ(X) : XΓ → X, OΓ(C(X)) : C(X)Γ → C(X). Applying the
corner functor C from §8.7 gives a 1-morphism C(OΓ(X)) : C(XΓ) → C(X).
Then there exists a unique equivalence KΓ(X) : C(XΓ) → C(X)Γ such that
OΓ(C(X)) ◦KΓ(X) = C(OΓ(X)) : C(XΓ)→ C(X). It restricts to an equivalence
KΓ
◦ (X) := KΓ(X)|C(XΓ

◦ ) : C(XΓ
◦ )→ C(X)Γ

◦ .
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Similarly, there is a unique equivalence K̃Γ(X) : C(X̃Γ) → ˜C(X)Γ with
ÕΓ(C(X)) ◦ K̃Γ(X) = C(ÕΓ(X)) and Π̃Γ(C(X)) ◦KΓ(X) = K̃Γ(X) ◦C(Π̃Γ(X)).

There is an equivalence K̂Γ(X) : C(X̂Γ)→ ̂C(X)Γ, unique up to 2-isomorphism,
with a 2-morphism Π̂Γ(C(X))◦K̃Γ(X)⇒ K̂Γ(X)◦C(Π̂Γ(X)). They both restrict

to equivalences K̃Γ
◦ (X) : C(X̃Γ

◦ )→ ˜C(X)Γ
◦ and K̂Γ

◦ (X) : C(X̂Γ
◦ )→ ̂C(X)Γ

◦ .

Proof. First consider the case in which X is a quotient [X/G] as in Example
8.16, for X a manifold with corners and G a finite group acting on X. Then
C(X) ' [C(X)/G] as in Example 8.26. We now have equivalences

C(XΓ) '
∐

conjugacy classes [ρ]
of injective ρ : Γ→ G

C
(
[Xρ(Γ)/CG(ρ(Γ))]

)
'

∐
conjugacy classes [ρ]
of injective ρ : Γ→ G

[
C(Xρ(Γ))/CG(ρ(Γ))

]
'

∐
conjugacy classes [ρ]
of injective ρ : Γ→ G

[
C(X)ρ(Γ)/CG(ρ(Γ))

]
' C(X)Γ,

where CG(ρ(Γ)) is the centralizer of ρ(Γ) in G. Here in the first and fourth steps
we use equation (C.14) of Theorem C.53 transferred to Ǒrbc, in the second
C([X/G]) ' [C(X)/G] as in Example 8.26, in the third C(XΓ) ∼= C(X)Γ by
Proposition 5.18(b). Thus there exists an equivalence KΓ(X) : C(XΓ)→ C(X)Γ

in Ǒrbc, unique up to 2-isomorphism.
Using the formula for OΓ(X) in the representation (C.14) as in the last

part of Theorem C.53, we see that there is a 2-morphism OΓ(C(X)) ◦KΓ(X)⇒
C(OΓ(X)). But OΓ(C(X)) is strongly representable by Theorem C.49(f). Hence
Proposition C.13 shows that we can choose KΓ(X) uniquely in its 2-isomorphism
class such that OΓ(C(X)) ◦KΓ(X) = C(OΓ(X)).

In the same way, using equations (C.16), (C.18) we find equivalences K̃Γ(X) :

C(X̃Γ) → ˜C(X)Γ and K̂Γ(X) : C(X̂Γ) → ̂C(X)Γ, unique up to 2-isomorphism,
with 2-morphisms ÕΓ(C(X)) ◦ K̃Γ(X) ⇒ C(ÕΓ(X)), Π̃Γ(C(X)) ◦ KΓ(X) ⇒
K̃Γ(X)◦C(Π̃Γ(X)) and Π̂Γ(C(X))◦ K̃Γ(X)⇒ K̂Γ(X)◦C(Π̂Γ(X)). As ÕΓ(C(X))
is strongly representable by Theorem C.49(f), we can choose K̃Γ(X) uniquely
with ÕΓ(C(X)) ◦ K̃Γ(X) = C(ÕΓ(X)) by Proposition C.13.

We have now chosen KΓ(X), K̃Γ(X) uniquely such that OΓ(C(X))◦KΓ(X) =
C(OΓ(X)) and ÕΓ(C(X)) ◦ K̃Γ(X) = C(ÕΓ(X)), and there is a 2-morphism
ζ : Π̃Γ(C(X)) ◦KΓ(X)⇒ K̃Γ(X) ◦ C(Π̃Γ(X)). Consider the diagram

ÕΓ(C(X)) ◦ Π̃Γ(C(X)) ◦KΓ(X)
id
ÕΓ(C(X))

∗ζ
��

OΓ(C(X)) ◦KΓ(X) C(OΓ(X))

ÕΓ(C(X)) ◦ K̃Γ(X) ◦ C(Π̃Γ(X)) C(ÕΓ(X)) ◦ C(Π̃Γ(X)) C(ÕΓ(X) ◦ Π̃Γ(X)),

using OΓ(X) = ÕΓ(X) ◦ Π̃Γ(X) by Definition C.47 and C a strict 2-functor by
Theorem 8.27. Since ÕΓ(C(X)) is strongly representable, Proposition C.13 now
implies that Π̃Γ(C(X))◦KΓ(X) = K̃Γ(X)◦C(Π̃Γ(X)). It is also easy to check that

KΓ(X), K̃Γ(X), K̂Γ(X) map C(XΓ
◦ ), C(X̃Γ

◦ ), C(X̂Γ
◦ ) to C(X)Γ

◦ ,
˜C(X)Γ

◦ ,
̂C(X)Γ

◦ , and
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so restrict to equivalences KΓ
◦ (X), K̃Γ

◦ (X), K̂Γ
◦ (X) as claimed. This proves the

theorem in the case that X = [X/G].
For the general case, if X is an orbifold with corners, we can cover X by

open suborbifolds U equivalent to [U/G] for some manifold with corners U and
finite group G. Then we have C(UΓ) ' C([U/G]Γ) ' C([U/G])Γ ' C(U)Γ, so
there exists an equivalence KΓ(U) : C(UΓ) → C(U)Γ. Using OΓ(C([U/G])) ◦
KΓ([U/G]) = C(OΓ([U/G])), we see there is a 2-morphism OΓ(C(U))◦KΓ(U)⇒
C(OΓ(U)). Thus as above we can choose KΓ(U) uniquely in its 2-isomorphism
class so that OΓ(C(U)) ◦KΓ(U) = C(OΓ(U)).

Therefore we can cover X by open U on which KΓ(X)|C(UΓ) = KΓ(U) is
uniquely defined. By uniqueness these KΓ(U) agree on overlaps C(UΓ)∩C(ŨΓ),
so we can glue them to make a global equivalence KΓ(X) : C(XΓ) → C(X)Γ

with OΓ(C(X)) ◦ KΓ(X) = C(OΓ(X)). The same argument yields a global

equivalence K̃Γ(X) : C(X̃Γ) → ˜C(X)Γ with ÕΓ(C(X)) ◦ K̃Γ(X) = C(ÕΓ(X))
and Π̃Γ(C(X)) ◦KΓ(X) = K̃Γ(X) ◦ C(Π̃Γ(X)).

For K̂Γ(X), observe that C(Π̂Γ(X)) : C(X̃Γ)→ C(X̂Γ) is a BΓ-gerbe. It fol-
lows that any 1-morphism f : C(X̃Γ)→ Y in DMC∞Sta factors via C(Π̂Γ(X))
up to 2-isomorphism (that is, f ∼= g ◦C(Π̂Γ(X)) for some g : C(X̂Γ)→ Y, which
is unique up to 2-isomorphism) if and only if for all [x] ∈ C(X̃Γ)top

Ker
[
f∗ : IsoC(X̃Γ)([x])→ IsoY(ftop([x]))

]
⊆

Ker
[
C(Π̂Γ(X))∗ : IsoC(X̃Γ)([x])→ IsoC(X̂Γ)(C(Π̂Γ(X))top([x]))

]
.

(8.33)

Applying this to f = Π̂Γ(C(X)) ◦ K̃Γ(X), we already know that f factor-
izes via C(Π̂Γ(X)) locally, so (8.33) holds, and thus f factorizes via C(Π̂Γ(X))

globally. That is, there exists K̂Γ(X) : C(X̂Γ) → ̂C(X)Γ, unique up to 2-
isomorphism, with Π̂Γ(C(X))◦K̃Γ(X) ∼= K̂Γ(X)◦C(Π̂Γ(X)). Then for U ' [U/G]
as above we have K̂Γ(X)|C(ÛΓ)

∼= K̂Γ(U), where K̂Γ(U) is an equivalence. As

such C(ÛΓ) cover C(X̂Γ), this implies K̂Γ(X) is an equivalence.

Here is an example, based on Example 5.19.

Example 8.33. Let Z2 = {1, σ} with σ2 = 1 act on X = [0,∞)2 by σ :
(x1, x2) 7→ (x2, x1). Then X =

[
[0,∞)2/Z2

]
is an orbifold with corners. We

have ∂X ∼= [0,∞) and ∂2X ∼= ∗, so that C2(X) ' [∗/S2] = [∗/Z2]. Hence
C(X) = C0(X) q C1(X) q C2(X) with C0(X) '

[
[0,∞)2/Z2

]
, C1(X) ' [0,∞)

and C2(X) ' [∗/Z2]. The orbifold strata XΓ, . . . , X̂Γ
◦ are given by

XZ2 = XZ2
◦ ' X̃Z2 = X̃Z2

◦ ' [0,∞)× [∗/Z2], X̂Z2 = X̂Z2
◦ ' [0,∞).

Therefore

C0(XZ2) ' [0,∞)× [∗/Z2], C1(XZ2) ' [∗/Z2], C2(XZ2) = ∅,
C0(X)Z2 ' [0,∞)× [∗/Z2], C1(X)Z2 = ∅, C2(X)Z2 ' [∗/Z2].

We see from this that KZ2(X) : C(XZ2) → C(X)Z2 identifies C1(XZ2) with
C2(X)Z2 , so KΓ(X) need not map Ck(XΓ) to Ck(X)Γ for k > 0. The same
applies to K̃Γ(X), K̂Γ(X).
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The 1-morphisms KΓ(X), K̃Γ(X), K̂Γ(X) in Theorem 8.32 are étale locally
modelled on the diffeomorphisms C(jX,Γ) : C(XΓ)→ C(X)Γ from Proposition
5.18. Now C(jX,Γ) maps Ck(XΓ) to

∐
l>k Cl(X)Γ for each k > 0. Thus KΓ(X)

maps Ck(XΓ) into
∐
l>k Cl(X)Γ for k > 0, and similarly for K̃Γ(X), K̂Γ(X). This

implies that KΓ(X)−1(C1(X)Γ) is open and closed in C1(XΓ). That is, C1(X)Γ '
(∂X)Γ is equivalent to an open and closed subobject of C1(XΓ) ' ∂(XΓ).

Hence we can choose a 1-morphism JΓ(X) : (∂X)Γ → ∂(XΓ) which is iden-
tified with a quasi-inverse for KΓ(X)|··· : KΓ(X)−1(C1(X)Γ) → C1(X)Γ by the
equivalences C1(X)Γ ' (∂X)Γ and C1(XΓ) ' ∂(XΓ), and JΓ(X) is an equivalence
between (∂X)Γ and an open and closed subobject of ∂(XΓ). Considering local
models shows that JΓ(X) maps (∂X)Γ,λ to an open and closed suborbifold of
∂(XΓ,λ), for each λ ∈ ΛΓ

+. The analogues hold for K̃Γ(X), K̂Γ(X). This proves:

Corollary 8.34. Let X be an orbifold with corners, and Γ a finite group. Then

there exist 1-morphisms JΓ(X) : (∂X)Γ → ∂(XΓ), J̃Γ(X) : ˜(∂X)Γ → ∂(X̃Γ),

ĴΓ(X) : ̂(∂X)Γ → ∂(X̂Γ) in Ǒrbc, natural up to 2-isomorphism, such that
JΓ(X) is an equivalence from (∂X)Γ to an open and closed subobject of ∂(XΓ),
and similarly for J̃Γ(X), ĴΓ(X).

For λ ∈ ΛΓ
+, µ ∈ ΛΓ

+/Aut(Λ) these restrict to 1-morphisms JΓ,λ(X) :

(∂X)Γ,λ → ∂(XΓ,λ), J̃Γ,µ(X) : ˜(∂X)Γ,µ → ∂(X̃Γ,µ), ĴΓ,µ(X) : ̂(∂X)Γ,µ → ∂(X̂Γ,µ)
in Orbc, which are equivalences with open and closed suborbifolds. Hence, if

XΓ,λ = ∅ then (∂X)Γ,λ = ∅, and similarly for X̃Γ,µ, ˜(∂X)Γ,µ, X̂Γ,µ, ̂(∂X)Γ,µ.

Actually Corollary 8.34 is clear from Definition 8.31, since ∂(XΓ) consists of
all of C1(X )Γ ' (∂X )Γ plus pieces of Ck(X )Γ for k > 2.

In general JΓ(X), J̃Γ(X), ĴΓ(X) may not be equivalences, and we can have

(∂X)Γ 6' ∂(XΓ), ˜(∂X)Γ 6' ∂(X̃Γ) and ̂(∂X)Γ 6' ∂(X̂Γ), as Example 8.33 shows.
That is, the 2-functors FΓ, F̃Γ, F̂Γ do not commute with boundaries ∂. Here is
a class of orbifolds with corners for which ∂(XΓ) ' (∂X)Γ, etc.

Definition 8.35. An orbifold with corners X is called straight if the injective
morphisms (iX)∗ : Iso∂X ([x′])→ IsoX ([x]) on orbifold groups are isomorphisms
for all [x′] ∈ ∂X top with iX,top([x′]) = [x]. That is, straight orbifolds with

corners are locally modelled on [0,∞)k × (Rn−k/G), where G acts trivially on
[0,∞)k. Orbifolds with boundary, with k = 0 or 1, are automatically straight.

If X is straight one can show using §8.6 that ∂X is straight, so by induction
∂kX is also straight for all k > 0.

If X is straight then Definition 8.31 simplifies in the following way. In points
[x, {x′1, . . . , x′k}, ρ, σ] in (8.32), the morphism σ : Γ → Sk is automatically triv-
ial, σ = 1. Thus, when we defined ∂(XΓ)top ⊆ C(X )Γ

top to correspond to
[x, {x′1, . . . , x′k}, ρ, σ] in (8.32) such that k > 1 and σ(Γ) ⊆ Sk acts transitively
on {1, . . . , k}, this holds if and only if k = 1, so ∂(XΓ)top = C1(X )Γ

top, and

∂(XΓ) = C1(X )Γ, so ∂(XΓ) ∼= (∂X )Γ as C1(X ) ∼= ∂X .
Hence for X straight we have XΓ =

(
XΓ, C1(X )Γ, (Π1

X)Γ
)
. Also X′Γ :=(

XΓ, ∂XΓ, iΓX
)

lies in Ǒrbc, and idX : XΓ → X′Γ is a 1-isomorphism in Ǒrbc.
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Thus, for straight orbifolds with corners X = (X , ∂X , iX) we could have adopted
the simpler definition XΓ =

(
XΓ, ∂XΓ, iΓX

)
. The same holds for XΓ

◦ , X̃
Γ, X̃Γ

◦ .
If X is straight then KΓ(X) in Theorem 8.32 is an equivalence Ck(XΓ) →

Ck(X)Γ for all k > 0, and so JΓ(X) in Corollary 8.34 is an equivalence (∂X)Γ →
∂(XΓ). The same applies for J̃Γ(X), ĴΓ(X), K̃Γ(X), K̂Γ(X). This gives:

Corollary 8.36. Let X be a straight orbifold with corners, and Γ a finite
group. Then we have equivalences (∂X)Γ ' ∂(XΓ) in Ǒrbc and (∂X)Γ,λ '
∂(XΓ,λ) in Orbc for λ ∈ ΛΓ

+. The analogues hold for the other orbifold strata

X̃Γ, X̂Γ,XΓ
◦ , X̃

Γ
◦ , X̂

Γ
◦ and X̃Γ,µ, X̂Γ,µ,XΓ,λ

◦ , X̃Γ,µ
◦ , X̂Γ,µ

◦ .

The material of §8.4.2 on orbifold strata and orientations extends to orbifolds
with corners essentially without change. As in §8.4.3 and §C.5, we can consider
effective orbifolds with corners.

Definition 8.37. An orbifold with corners X is called effective if the underlying
C∞-stack X is effective in the sense of §C.5. Equivalently, X is effective if it is
Zariski locally modelled on quotients [U/G] for U a manifold with corners and
G a finite group acting locally effectively on U .

If G acts locally effectively on U , then it acts locally effectively on ∂U .
Hence X effective implies that ∂X is effective, and ∂kX is effective for k > 0.
However, X effective does not imply Ck(X) effective for k > 2. For example,
X =

[
[0,∞)2/Z2

]
in Example 8.33 is effective, but C2(X) ' [∗/Z2] is not.

The analogues of Propositions 8.13 and 8.14 hold, with the same proofs.
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9 The 2-category of d-stacks

Next we define and study the 2-category of d-stacks dSta, which are derived ver-
sions of Deligne–Mumford C∞-stacks. Sections 9.1–9.5 are a C∞-stack version
of Chapter 2. Broadly, we replace C∞-schemes by Deligne–Mumford C∞-stacks
throughout, and then deal with the extra issues introduced by 2-morphisms of
C∞-stacks. We will often omit proofs in this part, or just comment on the
differences. Section 9.6 discusses orbifold strata of d-stacks.

9.1 Square zero extensions of C∞-stacks

We extend the material of §2.1 on square zero extensions of C∞-schemes to
Deligne–Mumford C∞-stacks. See §C.6–§C.7 for the necessary background on
quasicoherent sheaves, and sheaves of abelian groups and C∞-rings, on Deligne–
Mumford C∞-stacks. Here are the analogues of Definitions 2.9 and 2.12:

Definition 9.1. Let X be a locally fair Deligne–Mumford C∞-stack. By Propo-
sition C.31, this implies all OX -modules are quasicoherent. As in §C.6–§C.7,
sheaves on X are defined in terms of the category CX from Definition C.30,
with objects (U, u) and morphisms (f, η) : (U, u)→ (V , v).

A square zero extension (O′X , ıX ) of X consists of a sheaf of C∞-rings O′X
on X and a morphism of sheaves of C∞-rings ıX : O′X → OX on X , where OX
is the structure sheaf of X as in Example C.42, such that for all (U, u) in CX

ıX (U, u) : O′X (U, u) −→ OX (U, u) = OU (9.1)

is a square zero extension of C∞-schemes on U, in the sense of Definition 2.9.
We also call (X ,O′X , ıX ) a square zero extension of C∞-stacks.

For each (U, u) in CX , define quasicoherent sheaves IX (U, u), FX (U, u) on
U, a morphism κX (U, u) : IX (U, u) → O′X (U, u) of sheaves of abelian groups
on U , and morphisms ξX (U, u) : IX (U, u)→ FX (U, u), ψX (U, u) : FX (U, u)→
T ∗U = (T ∗X )(U, u) of quasicoherent sheaves on U, to be IX ,FX , κX , ξX , ψX in
Definition 2.9 respectively for the square zero extension of C∞-schemes (9.1).

If (f, η) : (U, u) → (V , v) in CX then f ′ := (O′X )(f,η) : f−1(O′X (V , v)) →
O′X (U, u) is a morphism of sheaves of C∞-rings on U , and (f, f ′) is a mor-

phism of square zero extensions of C∞-schemes
(
U,O′X (U, u), ıX (U, u)

)
→
(
V ,

O′X (V , v), ıX (V , v)
)
, in the sense of Definition 2.12. So Definition 2.12 defines

morphisms f1, f2, f3 in qcoh(U), which are isomorphisms as f is étale and f ′

an isomorphism. Define

(IX )(f,η) = f1 : f∗(IX (V , v)) −→ IX (U, u)

(FX )(f,η) = f2 : f∗(FX (V , v)) −→ FX (U, u).

It is now easy to check that the data IX (U, u),FX (U, u), (IX )(f,η), (FX )(f,η)

defines quasicoherent sheaves IX ,FX on X , in the sense of Definition C.30, and
the data ξX (U, u), ψX (U, u) defines morphisms of quasicoherent sheaves ξX :
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IX → FX , ψX : FX → T ∗X . Also, regarding IX as a sheaf of abelian groups
on X as in Remark C.41, the data κX (U, u) defines a morphism κX : IX → O′X
of sheaves of abelian groups on X , in the sense of Definition C.40.

Equation (2.9) for each (U, u) implies that we have an exact sequence of
sheaves of abelian groups on X :

0 // IX
κX // O′X

ıX // OX // 0, (9.2)

and equation (2.11) for each (U, u) implies that we have an exact sequence of
sheaves of quasicoherent sheaves on X :

IX
ξX // FX

ψX // T ∗X // 0. (9.3)

Definition 9.2. Let (X ,O′X , ıX ) and (Y,O′Y , ıY) be square zero extensions
of C∞-stacks. A morphism of square zero extensions from (X ,O′X , ıX ) to
(Y,O′Y , ıY) is a pair (f, f ′), where f : X → Y is a 1-morphism of C∞-stacks,
and f ′ : f−1(O′Y) → O′X a morphism of sheaves of C∞-rings on X such that
f ] ◦ f−1(ıY) = ıX ◦ f ′ : f−1(O′Y) → OX , for f ] : f−1(OY) → OX as in Ex-
ample C.44. Define morphisms f1 : f∗(IY) → IX , f2 : f∗(FY) → FX and
f3 : f∗(T ∗Y)→ T ∗X in qcoh(X ) by f3 = Ωf and the commutative diagrams

f−1(IY)⊗id
f−1(OY)f

−1(OY)

id⊗f]��

f−1(IY)
f−1(κY)

//

f ′|f−1(IY )

��

f−1(O′Y)
f−1(ıY)

//

f ′

��

f−1(OY) //

f]

��

0

f∗(IY) =

f−1(IY)⊗f
]

f−1(OY) OX f1

**UUUUUU

IX
κX // O′X

ıX // OX // 0,

(9.4)

f∗(FY)

f2

��

f−1(ΩO′Y⊗
ıY
O′Y
OY)⊗f

]

f−1(OY)OX ∼=
// f−1(ΩO′Y )⊗f

]◦f−1(ıY)
f−1(O′Y) OX

FX ΩO′X ⊗
ıX
O′X
OX f−1(ΩO′Y )⊗ıX ◦f

′

f−1(O′Y)OX ,
Ωf′⊗id

oo

(9.5)

the analogues of (2.12)–(2.13). Here for (9.4) the right hand square commutes
as f ] ◦ f−1(ıY) = ıX ◦ f ′, so the morphism f ′|f−1(IY) exists by exactness, and

it is f ]-equivariant, and so factors via a morphism f1.
Then the analogue of (2.14) is a commutative diagram in qcoh(X ):

f∗(IY)
f∗(ξY)

//

f1

��

f∗(FY)
f∗(ψY)

//

f2

��

f∗(T ∗Y) //

f3=Ωf��

0

IX
ξX // FX

ψX // T ∗X // 0,

(9.6)

with exact rows. We will explain how to deduce this from (2.14), using the
definition of pullbacks f∗ on C∞-stacks in Definition C.36.
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Suppose (U, u) ∈ CX and (V , v) ∈ CY . Then u : Ū → X and v : V̄ → Y are
étale 1-morphisms, so there is a C∞-scheme W and morphisms πU : W → U,
πV : W → V giving a 2-Cartesian diagram in C∞Sta:

W̄
π̄V

//

π̄U �� � �� �
FN

ζ

V̄

v
��

Ū
f◦u // Y,

as in (C.6). Note that πU is étale as u is étale, and πV : W → V is an étale
lift of f : X → Y. Define O′U = O′X(U, u), ıU = ıX (U, u), O′V = O′Y(V , v),

ıV = ıY(V , v), O′W = π−1
U (O′X (U, u)), and ıW = π]U ◦ π

−1
U (ıX (U, u)).

Then (U,O′U , ıU ), (V ,O′V , ıV ) and (W,O′W , ıW ) are square zero extensions

of C∞-schemes, where for (W,O′W , ıW ) we use π]U : π−1
U (OU )→ OW an isomor-

phism as πU : W → U is étale. Define π′U = idO′W : π−1
U (O′U )→ O′W , and define

π′V : π−1
V (O′V )→ O′W to be the composition

π−1
V (O′V ) π−1

V (O′Y(V , v))
i(O′Y ,f,u,v,ζ)

−1

// π−1
U ((f−1(O′Y))(U, u))

π−1
U (f ′(U,u))

// π−1
U (O′X (U, u)) O′W .

Then (πU, π
′
U ) : (W,O′W , ıW ) → (U,O′U , ıU ) and (πV , π

′
V ) : (W,O′W , ıW ) →

(V ,O′V , ıV ) are morphisms of square zero extensions of C∞-schemes.
Consider the diagram of morphisms in qcoh(W ):

π∗U
(
(f∗(IY))(U, u)

)
π∗U((f∗(ξY))(U,u))

//

i(IY ,f,u,v,ζ)∼=
��

π∗U
(
(f∗(FY))(U, u)

)
π∗U((f∗(ψY))(U,u))

//

i(FY ,f,u,v,ζ)∼=
��

π∗U
(
(f∗(T ∗Y))(U, u)

)
//

i(T∗Y,f,u,v,ζ)∼=
��

0

π∗V
(
IY(V , v)

)π∗V (ξY(V ,v))
// π∗V
(
FY(V , v)

)π∗V (ψY(V ,v))
// π∗V
(
(T ∗Y)(V , v)

)
// 0

π∗V (IV )
π∗V (ξV )

//

π1
V

��

π∗V (FV )
π∗V (ψV )

//

π2
V

��

π∗V (T ∗V ) //

π3
V =ΩπV

��

0

IW
ξW //

(π1
U )−1∼=

��

FW
ψW //

(π2
U )−1∼=

��

T ∗W //

(π3
U )−1=Ω−1

πU
∼=

��

0

π∗U(IU )
π∗U(ξU )

// π∗U(FU )
π∗U(ψU )

// π∗U(T ∗U) // 0

π∗U
(
IX (U, u)

)π∗U(ξX (U,u))
// π∗U
(
FX (U, u)

)π∗U(ψX (U,u))
// π∗U
(
T ∗X (U, u)

)
// 0.

(9.7)

Here the first two lines of (9.7) commute by definition of f∗ in Definition C.36.
The second two lines are equal by definition of (V ,O′V , ıV ). The third two
lines are (2.14) for (πV , π

′
V ). The fourth two lines are the inverse of (2.14) for

(πU, π
′
U ), where π1

U , π
2
U , π

3
U are isomorphisms as πU is étale and π′U an isomor-

phism. The fifth two lines are equal by definition of (U,O′U , ıU ).
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Thus (9.7) commutes. The compositions of the columns are π∗U(f j(U, u))
for j = 1, 2, 3. This proves that (9.6) evaluated on (U, u), pulled back to W by
the étale morphism πU, commutes. If v : V̄ → Y is an étale atlas for Y then
πU : W → U is surjective, so (9.6) commuting implies that (9.6) evaluated on
(U, u) commutes. As this is true for all (U, u), equation (9.6) commutes.

We have now seen two examples of proofs deducing facts about square zero
extensions of C∞-stacks from corresponding facts about square zero extensions
of C∞-schemes: the easy proof of the exactness of (9.3), and the proof that
(9.6) commutes, which is more complicated because the definition of pullbacks
f∗, f−1 in Definitions C.36 and C.43 is somewhat indirect. Once you have the
idea, these proofs are routine, so we will generally omit them.

If f, g : X → Y are 1-morphisms of Deligne–Mumford stacks and η : f → g
is a 2-morphism, then as in §C.6–§C.7, we have functors f∗, g∗, f−1, g−1 from
sheaves on Y to sheaves on X , and natural isomorphisms η∗ : f∗ ⇒ g∗, η−1 :
f−1 ⇒ g−1. By considering the commutative diagram:

g−1(O′Y)

g′

--
η−1(O′Y)−1

//

g−1(ıY)��

f−1(O′Y)
f ′

//

f−1(ıY)��

O′X
ıX

��
g−1(OY)

g]

11
η−1(OY)−1

// f−1(OY)
f] // OX ,

we may deduce:

Lemma 9.3. Let (X ,O′X , ıX ) and (Y,O′Y , ıY) be square zero extensions of C∞-
stacks, and (f, f ′) : (X ,O′X , ıX )→ (Y,O′Y , ıY) a morphism of square zero exten-
sions. Suppose g : X → Y is a 1-morphism of C∞-stacks, and η : f ⇒ g a 2-
morphism. Define g′ = f ′ ◦η−1(O′Y)−1 : g−1(O′Y)→ O′X , a morphism of sheaves
of C∞-rings on X , so that g′ ◦ η−1(O′Y) = f ′. Then (g, g′) : (X ,O′X , ıX ) →
(Y,O′Y , ıY) is a morphism of square zero extensions. We also have

g1 ◦ η∗(IY) = f1, g2 ◦ η∗(FY) = f2, and g3 ◦ η∗(T ∗Y) = f3.

Proposition 2.13 lifts unchanged from C∞-schemes to C∞-stacks, enabling
us to compare (f, f ′), (g, g′) : (X ,O′X , ıX )→ (Y,O′Y , ıY) with f = g. Combining
this with Lemma 9.3 compares (f, f ′), (g, g′) with f, g 2-isomorphic:

Proposition 9.4. Let (X ,O′X , ıX ) and (Y,O′Y , ıY) be square zero extensions
of C∞-stacks with kernel sheaves IX , IY , and (f, f ′), (g, g′) be morphisms from
(X ,O′X , ıX ) to (Y,O′Y , ıY). Suppose η : f ⇒ g is a 2-morphism of C∞-stacks.
Use the notation κX , ξX , ψX , κY , ξY , ψY from Definition 9.1 and f1, f2, f3, g1,
g2, g3 from Definition 9.2. Then there exists a unique morphism µ : f∗(FY)→
IX in qcoh(X ) such that

g′ ◦ η−1(O′Y) = f ′ + κX ◦ µ ◦
(
id⊗ (f ] ◦ f−1(ıY))

)
◦
(
f−1(d)

)
, (9.8)
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where the morphisms are given in the diagram

f−1(O′Y)

f ′

��

η−1(O′Y)
∼=

yyttttttt f−1(d)

// f−1(ΩO′Y ) f−1(ΩO′Y )⊗id
f−1(O′Y) f

−1(O′Y)

id⊗(f]◦f−1(ıY)) ��

g−1(O′Y)
g′ // O′X IX

κXoo f∗(FY)
µoo f−1(ΩO′Y )⊗f

]◦f−1(ıY)
f−1(O′Y) OX .

We also have

g1 ◦ η∗(IY) = f1 + µ ◦ f∗(ξY), g2 ◦ η∗(FY) = f2 + ξX ◦ µ,
and g3 ◦ η∗(T ∗Y) = f3.

(9.9)

Conversely, if (f, f ′) : (X ,O′X , ıX ) → (Y,O′Y , ıY) is a morphism of square
zero extensions, g : X → Y is a 1-morphism, η : f ⇒ g is a 2-morphism,
and µ : f∗(FY) → IX is a morphism in qcoh(X ), then there exists a unique
morphism g′ : g−1(O′Y)→ O′X of sheaves of C∞-rings on X such that (g, g′) is
a morphism (X ,O′X , ıX )→ (Y,O′Y , ıY), and (9.8)–(9.9) hold.

Remark 9.5. In §2.1 we defined a square zero extension of a C∞-scheme X =
(X,OX) to be a pair (O′X , ıX), where in fact X ′ = (X,O′X) is a C∞-scheme,
and ıX = (idX , ıX) is a morphism of C∞-schemes ıX : X → X ′. So we could
have written Chapter 2 in terms of two C∞-schemes X,X ′ and morphism ıX :
X → X ′, rather than a single C∞-scheme X with data ıX : O′X → OX . But as
in Remark 2.10, we chose not to do this.

For C∞-stacks, the situation is different. Given a C∞-stack X and a square
zero extension (O′X , ıX ), we do not immediately get a second C∞-stack X ′ and
a 1-morphism ıX : X → X ′. We can in fact define such X ′, ıX , but they depend
on arbitrary choices, and are only natural up to equivalence and 2-isomorphism.

We could have defined d-stacks using C∞-stacks X ,X ′ and a 1-morphism ıX :
X → X ′, rather than a triple (X ,O′X , ıX ). This would have made things more
complicated, because X ′ would also live in a 2-category, and we would have to
consider 2-morphisms of 1-morphisms associated to X ′, and so on. In contrast,
once X is fixed, O′X lives in a category rather than a 2-category. Writing things
in terms of O′X , ıX also makes it easier to generalize proofs from d-spaces to
d-stacks.

9.2 The definition of d-stacks

We now define the 2-category dSta of d-stacks, which are analogues of d-spaces
in which C∞-schemesX,X ′ are replaced by Deligne–Mumford C∞-stacks X ,X ′.
The main difference with §2.2 is that to define 2-morphisms in dSta we have
to include 2-morphisms of the Deligne–Mumford C∞-stacks X ,Y. Here is the
analogue of Definition 2.14.

Definition 9.6. A d-stack X is a quintuple X = (X ,O′X , EX , ıX , X ), where
X is a separated, second countable, locally fair Deligne–Mumford C∞-stack in
the sense of §C.5, and (O′X , ıX ) is a square zero extension of X in the sense
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of Definition 9.1 with kernel κX : IX → O′X , so that IX ∈ qcoh(X ), and
EX ∈ qcoh(X ), and X : EX → IX is a surjective morphism in qcoh(X ). As for
(2.18), by (9.2) we have an exact sequence of sheaves of abelian groups on X :

EX
κX ◦X // O′X

ıX // OX // 0.

Let FX , ψX , ξX be as in Definition 9.2, and define φX = ξX ◦ X : EX → FX .
As for (2.19), from (9.3) and X surjective we have an exact sequence in qcoh(X ):

EX
φX // FX

ψX // T ∗X // 0. (9.10)

The morphism φX : EX → FX will be called the virtual cotangent sheaf of X .
Write λX : CX → EX for the kernel of X : EX → IX in qcoh(X ), and

µX : DX → EX for the kernel of φX : EX → FX in qcoh(X ). Then there
exists a unique morphism νX : CX → DX with λX = µX ◦ νX . Thus we have a
commutative diagram with exact diagonals:

0
0

++WWWWWWW T ∗X
33fffffff

CX
νX ��

λX
++WWWWWWW FX

ψX 22fffffff

EX
φX 33ggggggg

X ++WWWWWWW
DX µX

33ggggggg IX
,,XXXXXXXX

ξX
OO

0
33ggggggg 0.

Let X ,Y be d-stacks. A 1-morphism f : X → Y is a triple f = (f, f ′, f ′′),
where f : X → Y is a 1-morphism of C∞-stacks, f ′ : f−1(O′Y) → O′X a mor-
phism of sheaves of C∞-rings on X such that (f, f ′) is a morphism of square
zero extensions (X ,O′X , ıX ) → (Y,O′Y , ıY) in the sense of Definition 9.2, and
f ′′ : f∗(EY)→ EX is a morphism in qcoh(X ) satisfying

X ◦ f ′′ = f1 ◦ f∗(Y) : f∗(EY) −→ IX , (9.11)

where f1, f2, f3 are as in Definition 9.2. Then as for (2.22), from (9.6), (9.10)
and (9.11) we have a commutative diagram in qcoh(X ), with exact rows:

f∗(EY)
f∗(φY)

//

f ′′��

f∗(FY)
f∗(ψY)

//

f2

��

f∗(T ∗Y) //

f3

��

0

EX
φX // FX

ψX // T ∗X // 0.

(9.12)

There are unique morphisms f4 : f∗(CY) → CX and f5 : f∗(DY) → DX in
qcoh(X ) with λX ◦ f4 = f ′′ ◦ f∗(λY) and µX ◦ f5 = f ′′ ◦ f∗(µY).

If X is a d-stack, the identity 1-morphism idX : X → X is idX =
(
idX ,

δX (O′X ), δX (EX )
)
. It is easy to check idX is a 1-morphism.

Now let X ,Y ,Z be d-stacks, and f : X → Y , g : Y → Z be 1-morphisms.
As in (2.23) define the composition of 1-morphisms to be

g ◦ f =
(
g ◦ f, f ′ ◦ f−1(g′) ◦ If,g(O′Z), f ′′ ◦ f∗(g′′) ◦ If,g(EZ)

)
.
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Then g ◦f is a 1-morphism X → Z, and the analogue of (2.24) holds. Also f ◦
idX = idY ◦ f = f .

Let f , g : X → Y be 1-morphisms of d-stacks, where f = (f, f ′, f ′′) and
g = (g, g′, g′′). A 2-morphism η : f ⇒ g is a pair η = (η, η′), where η : f ⇒ g is
a 2-morphism in C∞Sta and η′ : f∗(FY)→ EX a morphism in qcoh(X ), with

g′ ◦ η−1(O′Y) = f ′ +κX ◦X ◦η′◦
(
id⊗ (f ]◦f−1(ıY))

)
◦
(
f−1(d)

)
,

and g′′ ◦ η∗(EY) = f ′′ + η′ ◦ f∗(φY). (9.13)

Here the first equation makes sense as Proposition 9.4 shows that (9.8) holds
for some µ : f∗(FY)→ IX , and we take µ = X ◦ η′. Generalizing (2.26) gives

g1 ◦ η∗(IY) = f1 + X ◦ η′ ◦ f∗(ξY), g2 ◦ η∗(FY) = f2 + φX ◦ η′,
g3 ◦ η∗(T ∗Y) = f3, g4 ◦ η∗(CY) = f4, and g5 ◦ η∗(DY) = f5,

so the following diagram commutes (except η′) in qcoh(X ), with exact rows:

f∗(EY)

f ′′+
η′◦f∗(φY) ��999999999999

η∗(EY)

%%KKKKKK
f∗(φY) // f∗(FY)

η′

��
f2+
φX ◦η′ ��::::::::::::

η∗(FY)

%%LLLLLL
f∗(ψY) // f∗(T ∗Y)

f3

��=============
η∗(T∗Y)

&&NNNNNN
// 0

g∗(EY)
g′′

��

g∗(φY)
// g∗(FY)

g2

��

g∗(ψY)
// g∗(T ∗Y)

g3

��

// 0

EX
φX // FX

ψX // T ∗X // 0.

If f = (f, f ′, f ′′) : X → Y is a 1-morphism, the identity 2-morphism idf :
f ⇒ f is idf = (idf , 0).

Suppose f , g,h : X → Y are 1-morphisms and η : f ⇒ g, ζ : g ⇒ h
are 2-morphisms. Writing f = (f, f ′, f ′′), η = (η, η′), and so on, we have 2-
morphisms η : f ⇒ g, ζ : g ⇒ h in C∞Sta, so that ζ�η : f ⇒ h is a 2-morphism
in C∞Sta by vertical composition of 2-morphisms in C∞Sta. Composing the
analogue of (9.13) for ζ with η−1(O′Y), η∗(EY) and using properties of the natural
isomorphisms η−1, η∗ yields

h′ ◦ (ζ � η)−1(O′Y) =
[
h′ ◦ ζ−1(O′Y)

]
◦ η−1(O′Y)

=
[
g′ + κX ◦ X ◦ ζ ′ ◦ (id⊗ (g] ◦ g−1(ıY))) ◦ (g−1(d))

]
◦ η−1(O′Y)

= g′ ◦ η−1(O′Y) +κX ◦X ◦ζ ′ ◦ η∗(FY)◦(id⊗(f ]◦f−1(ıY)))◦(f−1(d)),

h′′ ◦ (ζ � η)∗(EY) =
[
h′′ ◦ ζ∗(EY)

]
◦ η∗(EY) =

[
g′′ + ζ ′ ◦ g∗(φY)

]
◦ η∗(EY)

= g′′ ◦ η∗(EY) + ζ ′ ◦ η∗(FY) ◦ f∗(φY).

Combining these with (9.13) yields

h′ ◦ (ζ � η)−1(O′Y) = f ′+κX ◦X ◦θ′◦
(
id⊗ (f ]◦f−1(ıY))

)
◦
(
f−1(d)

)
,

h′′ ◦ (ζ � η)∗(EY) = f ′′ + θ′ ◦ f∗(φY),

with θ′ = ζ ′ ◦ η∗(FY) + η′.
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Thus we may define the vertical composition of 2-morphisms ζ � η to be

ζ � η =
(
ζ � η, ζ ′ ◦ η∗(FY) + η′

)
: f ⇒ h.

Let X ,Y ,Z be d-stacks, f , f̃ : X → Y and g, g̃ : Y → Z be 1-morphisms,
and η : f ⇒ f̃ , ζ : g ⇒ g̃ be 2-morphisms. A similar proof to that in Definition
2.14 shows that we have a 2-morphism ζ ∗ η : g ◦ f ⇒ g̃ ◦ f̃ given by

ζ ∗ η =
(
ζ ∗ η,

[
η′ ◦ f∗(g2) + f ′′ ◦ f∗(ζ ′) + η′ ◦ f∗(φY) ◦ f∗(ζ ′)

]
◦ If,g(FZ)

)
.

This is the horizontal composition of 2-morphisms η, ζ. This completes the
definition of the 2-category of d-stacks dSta.

Write DMC∞Stalf
ssc for the 2-category of separated, second countable, lo-

cally fair Deligne–Mumford C∞-stacks. Define a strict 2-functor FC∞Sta
dSta :

dSta → DMC∞Stalf
ssc to map X = (X ,O′X , EX , ıX , X ) 7→ X on objects,

f = (f, f ′, f ′′) 7→ f on 1-morphisms, and η = (η, η′) 7→ η on 2-morphisms.
Define a strict 2-functor FdSta

C∞Sta : DMC∞Stalf
ssc → dSta to map objects X

to X = (X ,OX , 0, idOX , 0), to map 1-morphisms f to f = (f, f ], 0), and to map
2-morphisms η to η = (η, 0). Write DM̂C∞Stalf

ssc for the full 2-subcategory
of X ∈ dSta equivalent to FdSta

C∞Sta(X ) for X ∈ DMC∞Stalf
ssc. When we say

that a d-stack X is a C∞-stack, we mean that X ∈ DM̂C∞Stalf
ssc.

Define a strict 2-functor FdSta
Orb : Orb → dSta by FdSta

Orb = FdSta
C∞Sta|Orb,

noting that Orb is a full 2-subcategory of DMC∞Stalf
ssc. Write Ôrb for the

full 2-subcategory of objectsX in dSta equivalent to FdSta
Orb (X ) for some orbifold

X . When we say that a d-stack X is an orbifold, we mean that X ∈ Ôrb.
Recall from §C.1 that there is a natural (2-)functor C∞Sch → C∞Sta

mapping X 7→ X̄ on objects and f 7→ f̄ on morphisms. Also, if X is a C∞-

scheme and X̄ the corresponding C∞-stack then Example C.32 defines a functor
IX : OX -mod → OX̄ -mod. In the same way, we can define functors from the
category of sheaves of abelian groups on X to the category of sheaves of abelian
groups on X̄, and from the category of sheaves of C∞-rings on X to the category
of sheaves of C∞-rings on X̄, both of which we also denote by IX .

With this notation, define a strict 2-functor FdSta
dSpa : dSpa → dSta to map

X = (X,O′X , EX , ıX , X) to X =
(
X̄, IX(O′X), IX(EX), IX(ıX), IX(X)

)
on

objects, and to map f = (f, f ′, f ′′) to f̂ =
(
f̄ , IX(f ′), IX(f ′′)

)
on 1-morphisms,

and to map η to η =
(
idf̄ , IX(η)

)
on 2-morphisms. Write dŜpa for the full

2-subcategory of X in dSta equivalent to FdSta
dSpa(X) for some X in dSpa.

Here is the analogue of Theorem 2.15. The proof follows that of Theorem
2.15, but inserting extra canonical isomorphisms like η−1(O′Y), η∗(EY) coming
from 2-morphisms η in C∞Sta. We leave it as an exercise.

Theorem 9.7. (a) Definition 9.6 defines a (strict) 2-category dSta, in which
all 2-morphisms are 2-isomorphisms.

(b) FC∞Sta
dSta , FdSta

C∞Sta, F
dSta
Orb and FdSta

dSpa are (strict) 2-functors.
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(c) FdSta
C∞Sta, F

dSta
Orb and FdSta

dSpa are full and faithful in the 2-categorical sense.

Hence DMC∞Stalf
ssc,Orb,dSpa and DM̂C∞Stalf

ssc, Ôrb,dŜpa are equiva-
lent 2-categories, respectively.

Remark 9.8. (a) If we replace all Deligne–Mumford C∞-stacks X ,Y,Z in
Definition 9.6 by C∞-schemes X,Y , Z, and replace 2-morphisms η : f ⇒ g in
η above by identity 2-morphisms, so that f = g, then Definition 9.6 reduces
to Definition 2.14. This is why the embedding FdSta

dSpa : dSpa ↪→ dSta is a
2-functor. Thus, we can regard d-spaces as special examples of d-stacks, just as
schemes are regarded as special examples of stacks.

(b) A d-stack X = (X ,O′X , EX , ıX , X ) consists of a ‘classical’ part X , the
underlying Deligne–Mumford C∞-stack X , and a ‘derived’ part, the data O′X ,
EX , ıX , X . The truncation functor FC∞Sta

dSta forgets the ‘derived’ information.
The embedding functor FdSta

C∞Sta allows us to regard separated, second countable,
locally fair Deligne–Mumford C∞-stacks X as special examples of d-stacks, in
which the ‘derived’ information O′X , EX , ıX , X is as simple as possible, with
O′X = OX , ıX = idOX , and EX = X = 0.

The 2-morphisms η = (η, η′) in dSta combine a 2-morphism η of the ‘clas-
sical’ part X , and a 2-morphism η′ of the ‘derived’ part O′X , EX , ıX , X , which
corresponds to the 2-morphisms η in dSpa in §2.2. These two components η, η′

do not interact very much, and have a rather different flavour.

Here is the d-stack analogue of Proposition 2.17, which we deduce from
Proposition 9.4 rather than Proposition 2.13.

Proposition 9.9. Suppose f = (f, f ′, f ′′) : X → Y is a 1-morphism of d-
stacks, g : X → Y a 1-morphism of C∞-stacks, η : f ⇒ g a 2-morphism,
and η′ : f∗(FY) → EX a morphism in qcoh(X ). Then there exists a unique
1-morphism g = (g, g′, g′′) : X → Y in dSta such that η = (η, η′) : f ⇒ g is a
2-morphism.

We now give d-stack analogues of the material of §2.2. Here are the analogues
of Propositions 2.20, 2.21 and 2.25. The proofs are straightforward generaliza-
tions, using Proposition 9.9 in the proofs of Propositions 9.11 and 9.12.

Proposition 9.10. Suppose f : X → Y is an equivalence in dSta. Then f :
X → Y is an equivalence in C∞Sta, and f4 : f∗(CY)→ CX , f5 : f∗(DY)→ DX
are isomorphisms, and the following is a split short exact sequence in qcoh(X ) :

0 // f∗(EY)
f ′′⊕−f∗(φY) // EX ⊕ f∗(FY)

φX⊕f2

// FX // 0. (9.14)

Proposition 9.11. Let f : X → Y be a 1-morphism in dSta. Suppose f :
X → Y is an equivalence, f4 : f∗(CY) → CX is an isomorphism, and (9.14) is
a split short exact sequence. Then f is an equivalence.
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Proposition 9.12. Let X = (X ,O′X , EX , ıX , X ) be a d-stack. Then X lies in

DM̂C∞Stalf
ssc, that is, X is equivalent to an object in the image of FdSta

C∞Sta,
which can be FdSta

C∞Sta(X ), if and only if φX : EX → FX has a left inverse.

As in Definition C.4, a representable 1-morphism of C∞-stacks f : X → Y
is called étale if it is an equivalence locally in the étale topology. This is a
weaker condition than being an isomorphism locally in the Zariski topology. For
example, if a finite group G acts on a C∞-scheme U, then we have a quotient
C∞-stack [U/G] with atlas Π : Ū → [U/G], and Π is étale, though it is not a
local equivalence in the Zariski topology wherever the action of G is not free.

For d-stacks, we define étale 1-morphisms by the analogue of Corollary 2.24.
By Propositions 9.10 and 9.11, the definition essentially means that f is étale
if it is an equivalence locally in the étale topology, though we do not actually
define the étale topology for d-stacks.

Definition 9.13. Let f : X → Y be a 1-morphism of d-stacks. We call f
étale if f : X → Y is an étale 1-morphism of C∞-stacks, so in particular f is
representable, and f4 : f∗(CY) → CX is an isomorphism, and (9.14) is a split
short exact sequence in qcoh(X ).

Definition 2.23 defined open d-subspaces and open covers for d-spaces. One
can generalize this to d-stacks in two different ways, using either the Zariski or
the étale topology. We use the Zariski topology.

Definition 9.14. Let X = (X ,O′X , EX , ıX , X ) be a d-stack. Suppose U ⊆ X
is an open C∞-substack, in the Zariski topology, with inclusion 1-morphism
iU : U → X . Then U =

(
U , ı−1
U (O′X ), i∗U (EX ), i]U ◦ i

−1
U (ıX ), i∗U (X )

)
is a d-stack,

where i]U : i−1
U (OX ) → OU is as in Example C.44, and is an isomorphism as iU

is étale. We call U an open d-substack of X . An open cover of a d-stack X is a
family {Ua : a ∈ A} of open d-substacks Ua of X such that {Ua : a ∈ A} is an
open cover of X , in the Zariski topology.

9.3 D-stacks as quotients of d-spaces

In Definitions C.17, C.18 and C.19 we defined quotient C∞-stacks [X/G], 1-
morphisms [f, ρ] : [X/G]→ [Y /H], and 2-morphisms [δ] : [f, ρ]⇒ [g, σ]. Thus,
we can build Deligne–Mumford C∞-stacks X ,Y and their 1- and 2-morphisms
out of C∞-schemes X,Y with actions of groups G,H, and equivariant mor-
phisms f, g : X → Y . All this also works for d-stacks and d-spaces.

Definition 9.15. Let r be an action of G by 1-isomorphisms on a d-space X,
in the sense of Definition 2.43. We will define a d-stack X , which we call the
quotient d-stack [X/G]. The definition involves some arbitrary choices, but
is natural up to canonical 1-isomorphism in dSta. The first component r of
r = (r, r′, r′′) is an action of G on the separated, second countable, locally fair
C∞-scheme X by isomorphisms. Hence the quotient C∞-stack X = [X/G] from
Definition C.17 is a separated, second countable, locally fair Deligne–Mumford
C∞-stack, with étale atlas Π : X̄ → X .
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Now the action of G on X defines a groupoid in C∞-schemes G×X ⇒ X,
with [G×X ⇒ X] = [X/G] = X . A quasicoherent (G×X ⇒ X)-module (E ,Φ),
in the sense of Definition C.34, is just a quasicoherent sheaf E on X together
with a lift of the action of G on X up to E . That is, (E ,Φ) is a G-equivariant
quasicoherent sheaf on X. We write qcohG(X) = qcoh(G×X ⇒ X). Theorem
C.35 shows that FΠ : qcoh(X )→ qcohG(X) is an equivalence of categories. The
data r′′ in r is a lift of the action of G up to EX , so we can interpret (EX , r′′)
as an object in qcohG(X). Since FΠ is an equivalence of categories, we can
choose EX ∈ qcoh(X ) such that FΠ(EX ) ∼= (EX , r′′). Fix a particular choice of
isomorphism FΠ(EX ) ∼= (EX , r′′).

In the same way as Definition C.34 and Theorem C.35, we can define cate-
gories of G-equivariant sheaves of abelian groups and C∞-rings on X, and equiv-
alences to them from the categories of sheaves of abelian groups and sheaves
of C∞-rings on X , which we will also write as FΠ. With this notation, the
data r], r′ in r are lifts of the action of G up to OX ,O′X , so we can interpret
(OX , r]), (O′X , r′) as G-equivariant sheaves of C∞-rings on X, there is a natural
isomorphism FΠ(OX ) ∼= (OX , r]), and we can choose a sheaf of C∞-rings O′X
on X with FΠ(O′X ) ∼= (O′X , r′).

The data ıX , X in X is G-equivariant, and so yields morphisms of (EX , r′′),
(O′X , r′), (OX , r]). Hence as the functors FΠ are equivalences of categories,
there are unique morphisms ıX : O′X → OX and X : EX → IX on X such that
FΠ(ıX ), FΠ(X ) are identified with ıX , X by the chosen isomorphisms FΠ(EX ) ∼=
(EX , r′′), FΠ(O′X ) ∼= (O′X , r′), FΠ(OX ) ∼= (OX , r]). One can now show that
X = (X ,O′X , EX , ıX , X ) is a d-stack, defined up to canonical 1-isomorphism,
which we also write as [X/G].

Next let X,Y be d-spaces, G,H finite groups, and r : G → Aut(X), s :
H → Aut(Y ) be actions of G,H on X,Y , so that we have quotient d-stacks
X = [X/G] and Y = [Y /H]. Suppose f : X → Y is a 1-morphism and
ρ : G→ H is a group morphism, satisfying f ◦ r(γ) = s(ρ(γ)) ◦ f for all γ ∈ G
— again, this is an equality of 1-morphisms in dSpa, not just a 2-isomorphism.
We will define a 1-morphism f̃ : X → Y in dSta, which we will also write as
[f , ρ] : [X/G]→ [Y /H], and call a quotient 1-morphism.

Write f̃ : X → Y for the C∞-stack 1-morphism [f, ρ] : [X/G] → [Y /H]
defined in Definition C.18 using the morphism f : X → Y in f = (f, f ′, f ′′).

We have categories qcohG(X), qcohH(Y ) of equivariant quasicoherent sheaves
on X,Y . Since f : X → Y satisfies f ◦ r(γ) = s(ρ(γ)) ◦ f for all γ ∈ G, we have

a pullback functor (f, ρ)∗ : qcohH(Y ) → qcohG(X) given by (f, ρ)∗(E ,Φ) =(
f∗(E), f∗(Φ) ◦ ρ

)
on objects and (f, ρ)∗(α) = f∗(α) on morphisms.

As above we have (EX , r′′) ∈ qcohG(X) and (EY , s′′) ∈ qcohH(Y ), so we
form (f, ρ)∗(EY , s′′) ∈ qcohG(X). The morphism f ′′ in f is equivariant, so is a

morphism f ′′ : (f, ρ)∗(EY , s′′) → (EX , r′′) in qcohG(X). Define f̃ ′′ : f̃∗(EY) →
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EX to be the unique morphism in qcoh(X ) such that the following commutes:

FΠ(f̃∗(EY))
∼=��

FΠ(f̃ ′′)

// FΠ(EX )

∼= ��
(f, ρ)∗(EY , s′′)

f ′′ // (EX , r′′),
(9.15)

where the columns come from the isomorphisms FΠ(EX ) ∼= (EX , r′′), FΠ(EY) ∼=
(EY , s′′) chosen while constructing [X/G], [Y /H]. Since the functors FΠ are
equivalences of categories, f̃ ′′ is well-defined.

Similarly, we define f̃ ′ : f̃−1(O′Y) → O′X to be the unique morphism such
that the following commutes:

FΠ(f̃−1(O′Y))

∼=��
FΠ(f̃ ′)

// FΠ(O′X )

∼= ��
(f, ρ)−1(O′Y , s′)

f ′ // (O′X , r′).

Then f ]◦f−1(ıY ) = ıX ◦f ′ and X ◦f ′′ = f1◦f∗(Y ) imply f̃ ]◦ f̃−1(ıY) = ıX ◦ f̃ ′

and X ◦ f̃ ′′ = f̃1 ◦ f̃∗(Y), so f̃ = (f̃ , f̃ ′, f̃ ′′) is a 1-morphism X → Y , which
we write as [f , ρ] : [X/G]→ [Y /H].

Now let f̃ = [f , ρ] : [X/G] → [Y /H] and g̃ = [g, σ] : [X/G] → [Y /H] be
two 1-morphisms of the above form, so that f, g : X → Y and ρ, σ : G → H

are morphisms. Suppose δ ∈ H satisfies δ−1 σ(γ) = ρ(γ) δ−1 for all γ ∈ G, and
η : f ⇒ s(δ−1) ◦ g is a 2-morphism in dSpa, such that η ∗ idr(γ) = ids(σ(γ)) ∗ η
for all γ ∈ G, using the diagram:

f ◦ r(γ)

η∗idr(γ)
��

s(ρ(γ)) ◦ f
ids(σ(γ))∗η

��
s(δ−1) ◦ g ◦ r(γ) s(δ−1) ◦ s(σ(γ)) ◦ g s(ρ(γ)) ◦ s(δ−1) ◦ g.

Then Definition C.19 defines [δ] : [f, ρ]⇒ [g, σ], which we write as ζ : f̃ ⇒ g̃.
Using η ∗ idr(γ) = ids(σ(γ)) ∗ η for γ ∈ G we see that η : f∗(FY )→ EX is G-

equivariant, so is also a morphism η : (f, ρ)∗(FY , s2) → (EX , r′′) in qcohG(X).
Define ζ ′ : f̃−1(FY)→ EX to be the unique morphism in qcoh(X ) such that the
following commutes in qcohG(X):

FΠ(f̃−1(FY))
∼=��

FΠ(ζ′)

// FΠ(EX )

∼= ��
(f, ρ)∗(FY , s2)

η // (EX , r′′),
(9.16)

where the columns are induced by the isomorphisms FΠ(EX ) ∼= (EX , r′′) and
FΠ(FY) ∼= (FY , s2). This is well-defined as FΠ is an equivalence of categories.

We claim that ζ = (ζ, ζ ′) is a 2-morphism ζ : f̃ ⇒ g̃ in dSta, which we also
write as [η, δ] : [f , ρ]⇒ [g, σ], and call a quotient 2-morphism. We must verify
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(9.13) for ζ. The second equation of (9.13) is g̃′′ ◦ ζ∗(EY) = f̃ ′′ + ζ ′ ◦ f̃∗(φY).
This follows from

g′′ ◦ g∗(s(δ−1)′′) ◦ Ig,s(δ−1)(EY ) =
(
s(δ−1) ◦ g

)′′ = f ′′ + η ◦ f∗(φY ),

which combines the third entry of (2.23) for s(δ−1)◦g with the second equation
of (2.25) for η : f ⇒ s(δ−1) ◦ g, and the commutative diagrams (9.15) and

FΠ(f̃−1(EY))
∼=��

FΠ(ζ∗(EY))
// FΠ(g̃∗(EY))

∼=��
FΠ(g̃′′)

// FΠ(EX )

∼= ��
(f, ρ)∗(EY , s′′)

g∗(s(δ−1)′′)◦Ig,s(δ−1)(EY )
// (g, σ)∗(EY , s′′)

g′′ // (EX , r′′),
(9.17)

FΠ(f̃−1(EY))
∼=��

FΠ(f̃∗(φY))

// FΠ(f̃−1(FY))
∼=��

FΠ(ζ′)

// FΠ(EX )

∼= ��
(f, ρ)∗(EY , s′′)

f∗(φY )
// (f, ρ)∗(FY , s2)

η // (EX , r′′).
(9.18)

Here the left hand square of (9.17) follows from the definition of ζ = [δ], the
left hand square of (9.18) is the pullback by f, f̃ of the obvious relation between
φY , φY , and the right hand squares of (9.17)–(9.18) are (9.15) for g̃ and (9.16).
The first equation of (9.13) for ζ follows by a similar but longer argument.

As in Definitions C.17, C.18 and C.19, quotient 1- and 2-morphisms of d-
stacks have the obvious, strictly functorial properties under compositions. For
instance, if [f , ρ] : [X/G] → [Y /H], [g, σ] : [Y /H] → [Z/I] are quotient 1-
morphisms then [g, σ]◦[f , ρ] = [g◦f , σ◦ρ] : [X/G]→ [Z/I] (these 1-morphisms
are equal, not just 2-isomorphic), and if [f , ρ], [g, σ], [h, τ ] : [X/G] → [Y /H]
are 1-morphisms and [η, δ] : [f , ρ] ⇒ [g, σ], [ζ, ε] : [g, σ] ⇒ [h, τ ] are quotient
2-morphisms then [ζ, ε]� [η, δ] = [(ids(δ−1) ∗ ζ)� η, εδ] : [f , ρ]⇒ [h, τ ].

Here is an analogue of Theorem C.25 for d-spaces and d-stacks. To prove
it we use Theorem C.25 to get the underlying C∞-scheme and C∞-stack data
U, i,U , V , j,V, U′, f , ζ, g, θ, [δ] in U , i,U ,U , j,V ,U ′,f , ζ, g,θ, [λ, δ]. Then we
essentially run Definition 9.15 in reverse to construct the remaining sheaf data
O′U , EU , ıU , U in U , and similarly for i,U , . . . , [λ, δ], frequently using the fact
that the FΠ are equivalences of categories. In Definition 9.15, to define X =
[X/G] we had to make an arbitrary choice of an object EX ∈ qcoh(X ) and
isomorphism FΠ(EX ) ∼= (EX , r′′). But to define EU in U in part (a) we can
set (EU , r′′) = FΠ(EU ). The rest of the construction of U , i, . . . , [λ, δ] is also
natural, rather than natural up to canonical isomorphism.

Theorem 9.16. (a) Let X be a d-stack and [x] ∈ Xtop, and write G =
IsoX ([x]). Then there exists a quotient d-stack [U/G] and a 1-morphism i :
[U/G] → X which is an equivalence with an open d-substack U in X , and
itop : [u] 7→ [x] ∈ Utop ⊆ Xtop for some fixed point u of G in U .

(b) Let f̃ : X → Y be a 1-morphism in dSta, and [x] ∈ Xtop with f̃top :
[x] 7→ [y] ∈ Ytop, and write G = IsoX ([x]) and H = IsoY([y]). Part (a) gives
1-morphisms i : [U/G]→ X , j : [V /H]→ Y which are equivalences with open
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U ⊆ X , V ⊆ Y , such that itop : [u] 7→ [x] ∈ Utop ⊆ Xtop, jtop : [v] 7→ [y] ∈
Vtop ⊆ Ytop for u, v fixed points of G,H in U, V .

Then there exists a G-invariant open d-subspace U ′ of u in U and a quotient
1-morphism [f , ρ] : [U ′/G] → [V /H] such that f(u) = v, and ρ : G → H is
f̃∗ : IsoX ([x])→ IsoY([y]), fitting into a 2-commutative diagram:

[U ′/G]
[f ,ρ]

//

i|[U′/G]�� � �� �
HP

ζ

[V /H]

j
��

X
f̃ // Y .

(c) Let f̃ , g̃ : X → Y be 1-morphisms in dSta and η : f̃ ⇒ g̃ a 2-morphism,
let [x] ∈ Xtop with f̃top : [x] 7→ [y] ∈ Ytop, and write G = IsoX ([x]) and
H = IsoY([y]). Part (a) gives i : [U/G] → X , j : [V /H] → Y which are
equivalences with open U ⊆ X , V ⊆ Y and map itop : [u] 7→ [x], jtop : [v] 7→ [y]
for u, v fixed points of G,H.

By making U ′ smaller, we can take the same U ′ in (b) for both f̃ , g̃.
Thus part (b) gives a G-invariant open U ′ ⊆ U , quotient morphisms [f , ρ] :
[U ′/G] → [V /H] and [g, σ] : [U ′/G] → [V /H] with f(u) = g(u) = v and
ρ = f̃∗ : IsoX ([x])→ IsoY([y]), σ = g̃∗ : IsoX ([x])→ IsoY([y]), and 2-morphisms
ζ : f̃ ◦ i|[U ′/G] ⇒ j ◦ [f , ρ], θ : g̃ ◦ i|[U ′/G] ⇒ j ◦ [g, σ].

Then there exists a G-invariant open neighbourhood U ′′ of u in U ′, an
element δ ∈ H with σ(γ) = δ ρ(γ) ◦ δ−1 for all γ ∈ G, and a 2-morphism
λ : f |U ′′ ⇒ s(δ−1) ◦ g|U ′′ in dSpa with λ ∗ idr(γ)|U′′ = ids(σ(γ))|U′′ ∗ λ for all
γ ∈ G, so that [λ, δ] : [f |U ′′ , ρ] ⇒ [g|U ′′ , σ] is a quotient 2-morphism, and the
following diagram of 2-morphisms in dSta commutes:

f̃ ◦ i|[U ′′/G] η∗idi|
[U′′/G]

+3

ζ|[U′′/G]��

g̃ ◦ i|[U ′′/G]

θ|[U′′/G] ��
j ◦ [f |U ′′ , ρ]

idj∗[λ,δ] +3 j ◦ [g|U ′′ , σ].

9.4 Gluing d-stacks by equivalences

Next we generalize the material of §2.4 to d-stacks. A new issue arises in passing
from C∞-schemes to C∞-stacks, which is that the claims in §2.4 on indepen-
dence of choice of 2-morphisms no longer hold for d-stacks, since they are not
true for gluing C∞-stacks and their 1-morphisms. This can be seen from the
results of §C.2: Propositions C.9 and C.10 are analogues of Theorem 2.28 and
Proposition 2.27 in §2.4 for C∞-stacks, and Example C.11 shows that the inde-
pendence of choice of 2-morphism in Proposition 2.27 fails for C∞-stacks.

For d-spaces, we can join different choices of 2-morphisms using a partition
of unity, but for C∞-stacks 2-morphisms are discrete objects, and we cannot
interpolate between them. So, in the analogue of §2.4 for d-stacks, we must im-
pose extra conditions on the 2-morphisms in C∞Sta, as in (9.19)–(9.20) below,
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to ensure that we can glue C∞-stacks and their 1-morphisms on open C∞-
substacks, using Propositions C.9 and C.10. Apart from this, the generalization
to C∞-stacks is fairly straightforward: the proof of Theorem 2.28 is largely lo-
cal arguments about sheaves on C∞-schemes, and these lift to local arguments
about sheaves on C∞-stacks using the techniques of §9.1–§9.2. We explain in
Remark C.27 and Example C.33 how to extend partition of unity arguments on
C∞-schemes X to Deligne–Mumford C∞-stacks X , by using partitions of unity
on the coarse moduli C∞-scheme X top.

In this way we can prove the following analogues of Proposition 2.27 and
Theorems 2.28 and 2.33.

Proposition 9.17. Suppose X ,Y are d-stacks, U ,V⊆X are open d-substacks
with X = U ∪ V , f : U → Y and g : V → Y are 1-morphisms, and η :
f |U∩V ⇒ g|U∩V is a 2-morphism. Then there exist a 1-morphism h : X → Y
and 2-morphisms ζ : h|U ⇒ f , θ : h|V ⇒ g in dSta such that θ|U∩V =
η � ζ|U∩V : h|U∩V ⇒ g|U∩V . This h is unique up to 2-isomorphism.

Furthermore, h is independent up to 2-isomorphism of the component η′ in
η = (η, η′), but it may depend on η.

Theorem 9.18. Suppose X ,Y are d-stacks, U ⊆ X , V ⊆ Y are open d-
substacks, and f : U → V is an equivalence in dSta. At the level of topological
spaces, we have open Utop ⊆ Xtop, Vtop ⊆ Ytop with a homeomorphism ftop :
Utop → Vtop, so we can form the quotient topological space Ztop := Xtop qftop

Ytop = (Xtop q Ytop)/ ∼, where the equivalence relation ∼ on Xtop q Ytop

identifies [u] ∈ Utop ⊆ Xtop with ftop([u]) ∈ Vtop ⊆ Ytop.
Suppose Ztop is Hausdorff. This condition may also equivalently be imposed

at the level of C∞-stacks, that is, we may form a pushout C∞-stack Z = XqfY
by Proposition C.9, and we require Z separated. Then there exist a d-stack Z,
open d-substacks X̂ , Ŷ in Z with Z = X̂ ∪ Ŷ , equivalences g : X → X̂ and
h : Y → Ŷ such that g|U and h|V are both equivalences with X̂ ∩ Ŷ , and a
2-morphism η : g|U ⇒ h ◦ f : U → X̂ ∩ Ŷ. Furthermore, Z is independent of
choices up to equivalence.

Theorem 9.19. Suppose I is an indexing set, and < is a total order on I,
and X i for i ∈ I are d-stacks, and for all i < j in I we are given open d-
substacks U ij ⊆ X i, U ji ⊆ X j and an equivalence eij : U ij → U ji, satisfying
the following properties:

(a) For all i < j < k in I we have a 2-commutative diagram

U ji ∩ U jk ejk|Uji∩Ujk
,,XXXXXXXXXXXXXXX

ηijk
��U ij ∩ U ik

eij |Uij∩Uik 22fffffffffffffff eik|Uij∩Uik // Uki ∩ Ukj

for some ηijk, where all three 1-morphisms are equivalences; and

(b) For all i < j < k < l in I the components ηijk in ηijk = (ηijk, η
′
ijk) satisfy

ηikl � (idfkl ∗ ηijk)|Uij∩Uik∩Uil = ηijl � (ηjkl ∗ idfij )|Uij∩Uik∩Uil . (9.19)
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Note that if the C∞-stacks Xi in X i are effective for all i ∈ I, then
Proposition C.29(ii) implies that (9.19) holds automatically, as there is
only one 2-morphism ekl ◦ ejk ◦ eij |Uij∩Uik∩Uil ⇒ eil|Uij∩Uik∩Uil .

On the level of topological spaces, define the quotient topological space Ytop =
(
∐
i∈I Xi,top)/ ∼, where ∼ is the equivalence relation generated by [xi] ∼ [xj ]

if [xi] ∈ Uij,Xi,top ⊆ Xi,top and [xj ] ∈ Uji,top ⊆ Xj,top with eij,top([xi]) = [xj ].
Suppose Ytop is Hausdorff and second countable. Then there exist a d-stack
Y and a 1-morphism f i : X i → Y which is an equivalence with an open d-
substack X̂ i ⊆ Y for all i ∈ I, where Y =

⋃
i∈I X̂ i, such that f i|Uij is an

equivalence U ij → X̂ i ∩ X̂ j for all i < j in I, and there exists a 2-morphism
ηij : f j ◦ eij ⇒ f i|Uij . The d-stack Y is unique up to equivalence, and is
independent of choices of the components η′ijk in ηijk = (ηijk, η

′
ijk) in (a). If

the C∞-stacks Xi in X i are effective for all i ∈ I, then the ηijk are unique by
Proposition C.29(ii), so Y is independent of the choices of ηijk in (a).

Suppose also that Z is a d-stack, and gi : X i → Z are 1-morphisms for all
i ∈ I, and there exist 2-morphisms ζij : gj ◦ eij ⇒ gi|Uij for all i < j in I,
such that for all i < j < k in I the components ζij , ηijk in ζij ,ηijk satisfy(
ζij |Uij∩Uik

)
�
(
ζjk ∗ ideij |Uij∩Uik

)
=
(
ζik|Uij∩Uik

)
�
(
idgk ∗ ηijk|Uij∩Uik

)
. (9.20)

Then there exist a 1-morphism h : Y → Z and 2-morphisms ζi : h◦f i ⇒ gi for
all i ∈ I. The 1-morphism h is unique up to 2-isomorphism, and is independent
of the components ζ ′ij in ζij = (ζij , ζ

′
ij).

Note that Proposition C.29 gives conditions for uniqueness of C∞-stack 2-
morphisms η : f ⇒ g, and if any of these conditions apply to gi : Xi → Z
for all i ∈ I, then (9.20) holds automatically, as there is only one 2-morphism
gk ◦ ejk ◦ eij |Uij∩Uik ⇒ gi|Uij∩Uik , and also ζij is unique, so h is independent of
the choice of ζij. In particular, if Z is a d-space, so that Z is a C∞-scheme,
then (9.20) always holds, and h is independent of the choice of ζij.

Remark 9.20. In §4.7 we pointed out that many of the results on d-spaces and
d-manifolds in Chapters 2–4 can be stated in terms of the homotopy categories
Ho(dSpa),Ho(dMan), and so we can for some purposes treat dSpa,dMan as
categories rather than 2-categories. Theorem 9.19 is an example in which this
fails for d-stacks: the 2-morphism overlap conditions (9.19)–(9.20) do not make
sense in Ho(dSta), they are a genuinely 2-categorical phenomenon.

However, in Theorem 9.19 we give conditions for (9.19)–(9.20) to hold au-
tomatically, and under these conditions the theorem makes sense in Ho(dSta).
That is, we can glue d-stacks X i whose C∞-stacks Xi are effective by isomor-
phisms [eij ] in Ho(dSta) on overlaps X i ∩X j , provided [ejk] ◦ [eij ] = [eik] in
Ho(dSta) on triple overlaps X i ∩X j ∩X k.

Similarly, Proposition C.10 does not descend to Ho(DMC∞Sta), unless we
impose conditions as in Proposition C.29 to ensure uniqueness of 2-morphisms.
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9.5 Fibre products of d-stacks

We can also modify the material of §2.5–§2.6 to work for d-stacks. This is easier
than for §2.4. Given 1-morphisms of d-stacks g : X → Z, h : Y → Z, following
Definition 2.35 we can define an explicit d-stackW , 1-morphisms e :W → X ,
f :W → Y and a 2-morphism η : g ◦ e⇒ h ◦ f such thatW , e,f ,η is a fibre
product X ×g,Z,h Y in dSta. We will not repeat the long definition, but will
comment briefly on the differences.

Define W = X ×g,Z,h Y to be the fibre product in DMC∞Stalf
ssc, which

exists by Theorem C.22(a), and fits into a 2-Cartesian square in C∞Sta:

W
f

//

e�� � �� �
FN

η

Y
h ��

X
g // Z.

This defines W, e, f and η. The 2-morphism η : g ◦ e ⇒ h ◦ f then induces
natural isomorphisms η−1 : (g ◦ e)−1 ⇒ (h ◦ f)−1 for sheaves of abelian groups
and C∞-rings, and η∗ : (g ◦e)∗ ⇒ (h◦f)∗ for quasicoherent sheaves, as in §C.6–
§C.7, and at various points we have to insert terms like η−1(O′Z) and η∗(EZ) in
the formulae of Definition 2.35. For instance, (2.59) becomes

(g ◦ e)∗(EZ)

α1:=


e∗(g′′)◦Ie,g(EZ)

−f∗(h′′)◦If,h(EZ)◦η∗(EZ)

(g◦e)∗(φZ)


//

e∗(EX )⊕
f∗(EY)⊕
(g ◦ e)∗(FZ)

α2:=


e1◦e∗(X )

f1◦f∗(Y)

µ


T

// IW .
(9.21)

Apart from this, there are few differences. The computations with sheaves on
W in §2.5 lift to computations with sheaves on W with little change. Thus we
prove an analogue of Theorem 2.36. Here FdSta

dSpa preserves fibre products as it
maps the explicit construction of fibre products in dSpa in Definition 2.35 to
the explicit construction of fibre products in dSta described above.

Theorem 9.21. All fibre products exist in the 2-category dSta. The 2-functors
FC∞Sta

dSta : dSta→C∞Sta and FdSta
dSpa : dSpa→dSta preserve fibre products.

As for Corollary 2.37, from Proposition 9.12 and Theorem 9.21 we deduce:

Corollary 9.22. Suppose g : X → Z, h : Y → Z are 1-morphisms in
DMC∞Stalf

ssc, and let W = X ×g,Z,hY be the fibre product in DMC∞Stalf
ssc,

with projections e : W → X , f : W → Y and 2-morphism η : g ◦ e ⇒ h ◦ f .
Then FdSta

C∞Sta(X ×Z Y) is equivalent to FdSta
C∞Sta(X )×FdSta

C∞Sta
(Z) F

dSta
C∞Sta(Y) in

dSta if and only if the morphism

e∗(Ωg)◦Ie,g(T ∗Z)⊕ f∗(Ωh) ◦ If,h(T ∗Z) ◦ η∗(T ∗Z) :

(g ◦ e)∗(T ∗Z) −→ e∗(T ∗X )⊕ f∗(T ∗Y)

in qcoh(W) has a left inverse.
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Here is the analogue of Theorem 2.42. It has essentially the same proof,
using Propositions 9.11 and 9.12 and Theorem 8.2 rather than Propositions
2.21 and 2.25 and Theorem B.28.

Theorem 9.23. Let X ,Y,Z be orbifolds without boundary, and g : X → Z,
h : Y → Z be smooth maps ( 1-morphisms). Write X ,Y ,Z, g,h = FdSta

Orb (X ,
Y,Z, g, h), and let W = X ×g,Z,h Y and e :W → X , f :W → Y be the fibre
product and projections from Theorem 9.21. Then

(a) Suppose g, h are transverse. Then a fibre product W̃ = X ×Z Y exists in
Orb, with smooth projections ẽ = πX : W̃ → X , f̃ = πY : W̃ → Y and
2-morphism η̃ : g ◦ ẽ ⇒ h ◦ f̃ . Set W̃ , ẽ, f̃ , η̃ = FdSta

Orb (W̃ , ẽ, f̃ , η̃), so we
have a 2-commutative diagram in dSta :

W̃
f̃

//

ẽ�� � �� �
GO

η̃

Y
h ��

X
g // Z.

(9.22)

From (9.22) we get a 1-morphism b : W̃ → W and 2-morphisms ζ :
e ◦ b⇒ ẽ, θ : f ◦ b⇒ f̃ in dSta. This b is an equivalence.

(b) Suppose g, h are not transverse. Then W is not an orbifold. Thus, if a
fibre product W̃ = X ×Z Y does exist in Orb, we have FdSta

Orb (W̃) 6'W.

9.6 Orbifold strata of d-stacks

Finally we generalize the material of §C.8 to d-stacks. If X is a Deligne–
Mumford C∞-stack and Γ a finite group, then in §C.8 we defined Deligne–
Mumford C∞-stacks XΓ, X̃Γ, X̂Γ, and open C∞-substacks XΓ

◦ ⊆ XΓ, X̃Γ
◦ ⊆ X̃Γ,

X̂Γ
◦ ⊆ X̂Γ, fitting into a strictly commutative diagram (C.8) in C∞Sta. In ex-

actly the same way, if X is a d-stack and Γ a finite group, we will define d-stacks
XΓ, X̃Γ, X̂Γ, and open d-substacks XΓ

◦ ⊆ XΓ, X̃Γ
◦ ⊆ X̃Γ, X̂Γ

◦ ⊆ X̂Γ, and a
d-space X̂Γ

◦ , fitting into a strictly commutative diagram in dSta:

XΓ
◦

Π̃Γ
◦ (X ) //

OΓ
◦ (X ) **TTTTTTTTTTT

⊂

��

Aut(Γ)
,, X̃Γ

◦
Π̂Γ
◦ (X ) //

ÕΓ
◦ (X )ttjjjjjjjjjjj

⊂

��

X̂Γ
◦ ' FdSta

dSpa(X̂Γ
◦ )

⊂

��
X

XΓ

Π̃Γ(X )

//
OΓ(X )

44iiiiiiiiiiiAut(Γ)22 X̃Γ
Π̂Γ(X )

//
Õ

Γ
(X )

jjUUUUUUUUUUU
X̂Γ.

(9.23)

We will call XΓ, X̃Γ, X̂Γ,XΓ
◦ , X̃Γ

◦ , X̂Γ
◦ , X̂

Γ
◦ orbifold strata of X .

Definition 9.24. Let X = (X ,O′X , EX , ıX , X ) be a d-stack, and Γ a finite
group. We will define a d-stack XΓ = (XΓ,O′XΓ , EXΓ , ıXΓ , XΓ). The definition
is modelled on Definition 2.43. Here XΓ is defined in Definition C.45. By
Theorem C.49(a),(b),(f),(g), XΓ is a separated, second countable, locally fair
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Deligne–Mumford C∞-stack, as X is, and has a proper, strongly representable
1-morphism OΓ(X ) : XΓ → X given in Definition C.47.

Now ıX : O′X → OX is a morphism of sheaves of C∞-rings on X , where OX
is the structure sheaf of X as in Example C.42. Pulling back to XΓ gives
sheaves of C∞-rings OΓ(X )−1(O′X ), OΓ(X )−1(OX ) on XΓ, and a morphism
OΓ(X )−1(ıX ) : OΓ(X )−1(O′X ) → OΓ(X )−1(OX ). Also, as OΓ(X ) : XΓ → X
is a 1-morphism of Deligne–Mumford C∞-stacks, we have a natural morphism
OΓ(X )] : OΓ(X )−1(OX )→ OXΓ explained in Example C.44. Since O′X ,OX are
sheaves of C∞-rings, they are sheaves of real vector spaces. So, as in Defini-
tion C.54, the pullbacks OΓ(X )−1(O′X ), OΓ(X )−1(OX ) have natural splittings
as sheaves of real vector spaces:

OΓ(X )−1(O′X ) = (O′X )Γ
tr ⊕ (O′X )Γ

nt, O
Γ(X )−1(OX ) = (OX )Γ

tr ⊕ (OX )Γ
nt. (9.24)

As OΓ(X )−1(ıX ) is Γ-equivariant and surjective, it induces surjective morphisms
(O′X )Γ

tr → (OX )Γ
tr and (O′X )Γ

nt → (OX )Γ
nt.

Write
(
(O′X )Γ

nt

)
,
(
(O′X )Γ

nt

)
for the sheaves of ideals in the sheaves of C∞-

rings OΓ(X )−1(O′X ), OΓ(X )−1(OX ) generated by (O′X )Γ
nt, (O′X )Γ

nt. Then as for
(2.90)–(2.91) we have morphisms

OΓ(X )−1(ıX )∗ : OΓ(X )−1(O′X )/
(
(O′X )Γ

nt

)
→ OΓ(X )−1(OX )/

(
(OX )Γ

nt

)
, (9.25)(

OΓ(X )]
)
∗ : OΓ(X )−1(OX )/

(
(OX )Γ

nt

) ∼=−→OXΓ . (9.26)

Define the sheaf of C∞-ringsO′XΓ on XΓ byO′XΓ = OΓ(X )−1(O′X )/
(
(O′X )Γ

nt

)
,

and the morphism ıXΓ : O′XΓ → OXΓ by ıXΓ =
(
OΓ(X )]

)
∗ ◦ OΓ(X )−1(ıX )∗, in

the notation of (9.25)–(9.26). Using the argument of (2.92)–(2.95) we may show
that

(
O′XΓ , ıXΓ

)
is a square zero extension of XΓ, in the sense of Definition 9.1,

and construct a natural, surjective morphism

πIXΓ : OΓ(X )∗(IX ) −→ IXΓ . (9.27)

On X we have a surjective morphism X : EX → IX in qcoh(X ). By
Definition C.54, the pullbacks OΓ(X )∗(EX ), OΓ(X )∗(IX ) to XΓ have splittings

OΓ(X )∗(EX ) = (EX )Γ
tr ⊕ (EX )Γ

nt, O
Γ(X )∗(IX ) = (IX )Γ

tr ⊕ (IX )Γ
nt,

and OΓ(X )∗(X ) : OΓ(X )∗(EX ) → OΓ(X )∗(IX ) maps (EX )Γ
tr → (IX )Γ

tr and
(EX )Γ

nt → (IX )Γ
nt. Here OΓ(X )∗(X ) is surjective as X is and OΓ(X )∗ is

right exact, so the morphisms (EX )Γ
tr → (IX )Γ

tr and (EX )Γ
nt → (IX )Γ

nt are
also surjective. Also, since (IX )Γ

nt = OΓ(X )−1(IX )nt ⊗OΓ(X )−1(OX ) OXΓ and

OΓ(X )−1(IX )nt ⊆
(
(O′X )Γ

nt

)
, we see that (IX )Γ

nt ⊆ KerπIXΓ .
Define EXΓ = (EX )Γ

tr, as a quasicoherent sheaf on XΓ, and define XΓ :
EXΓ → IXΓ by XΓ = πIXΓ ◦ OΓ(X )∗(X )|(EX )Γ

tr
. Since OΓ(X )∗(X )|(EX )Γ

tr
:

(EX )Γ
tr → (IX )Γ

tr is surjective, and (9.27) is surjective, and (IX )Γ
nt ⊆ KerπIXΓ ,

we see that XΓ is surjective. This shows that XΓ = (XΓ,O′XΓ , EXΓ , ıXΓ , XΓ)
is a d-stack, by Definition 9.6. As in §C.8, we have an open C∞-substack
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XΓ
◦ ⊆ XΓ. Define XΓ

◦ = (XΓ
◦ ,O′XΓ |XΓ

◦
, EXΓ |XΓ

◦
, ıXΓ |XΓ

◦
, XΓ |XΓ

◦
) to be the corre-

sponding open d-substack of XΓ.
By an almost identical definition, but replacing XΓ, OΓ(X ) by X̃Γ, ÕΓ(X )

throughout, we can define a d-stack X̃Γ = (X̃Γ,O′X̃Γ , E X̃Γ , ıX̃Γ , X̃Γ) and an open
d-substack X̃Γ

◦ = (X̃Γ
◦ ,O′X̃Γ |X̃Γ

◦
, E X̃Γ |X̃Γ

◦
, ıX̃Γ |X̃Γ

◦
, X̃Γ |X̃Γ

◦
) in X̃Γ. Although the

pullbacks ÕΓ(X )−1(O′X ), ÕΓ(X )−1(OX ), ÕΓ(X )∗(IX ), ÕΓ(X )∗(EX ) of O′X ,OX ,
IX , EX to X̃Γ do not have natural Γ-actions, as in Definition C.55 they still
have decompositions into trivial ‘tr’ and nontrivial ‘nt’ parts, and this is what
we need to make the construction work.

In §C.8 we defined the orbifold stratum X̂Γ, which has no natural projection
X̂Γ → X , but does have a natural 1-morphism Π̂Γ(X ) : X̃Γ → X̂Γ, a non-
representable 1-morphism, with fibre [∗̄/Γ]. If E is a quasicoherent sheaf on X
then Definition C.55 defined a splitting ÕΓ(X )∗(E) = ẼΓ

tr ⊕ ẼΓ
nt, and Definition

C.56 defined a quasicoherent sheaf ÊΓ
tr on X̂Γ by ÊΓ

tr = Π̂Γ(X )∗(ẼΓ
tr), using push-

forwards along Π̂Γ(X ). We also have Π̂Γ(X )∗(ÊΓ
tr)
∼= ẼΓ

tr, so that pushforward
Π̂Γ(X )∗ and pullback Π̂Γ(X )∗ are inverse in this case, and Π̂Γ(X )∗(ẼΓ

nt) = 0, so
that nontrivial components EΓ

nt, ẼΓ
nt on XΓ, X̃Γ have no analogue on X̂Γ.

Motivated by this, we define a d-stack X̂Γ = (X̂Γ,O′X̂Γ , E X̂Γ , ıX̂Γ , X̂Γ) by
O′X̂Γ = Π̂Γ(X )∗(O′X̃Γ), E X̂Γ = Π̂Γ(X )∗(E X̃Γ), ıX̂Γ = ι◦ Π̂Γ(X )∗(ıX̃Γ), and X̂Γ =
Π̂Γ(X )∗(X̃Γ), where ι : Π̂Γ(X )∗(OX̃Γ)→ OX̂Γ is the natural isomorphism. We
also define an open d-substack X̂Γ

◦ = (X̂Γ
◦ ,O′X̂Γ |X̂Γ

◦
, . . . , X̂Γ |X̂Γ

◦
) in X̂Γ.

Since O′X̃Γ ,OX̃Γ , E X̃Γ all behave like trivial components ẼΓ
tr, pushforwards

Π̂Γ(X )∗ and pullbacks Π̂Γ(X )−1, Π̂Γ(X )∗ are inverse upon them, so that we
have canonical isomorphisms O′X̃Γ ∼= Π̂Γ(X )−1(O′X̂Γ), OX̃Γ ∼= Π̂Γ(X )−1(OX̂Γ)
and E X̃Γ ∼= Π̂Γ(X )∗(E X̂Γ), which identify Π̂Γ(X )−1(ıX̂Γ), Π̂Γ(X )∗(X̂Γ) with
ıX̃Γ , X̃Γ . Thus, the conditions on O′X̂Γ , . . . , X̂Γ for X̂Γ to be a d-stack, when
pulled back to X̃Γ by Π̂Γ(X ), follow as X̃Γ is a d-stack. But Π̂Γ(X ) is étale and
surjective, and the conditions are local, so they hold on X̂Γ. Therefore X̂Γ and
hence X̂Γ

◦ are d-stacks.
As in §C.8, the C∞-stack X̂Γ

◦ has trivial orbifold groups, so there is a C∞-

scheme X̂Γ
◦ , unique up to isomorphism, such that X̂Γ

◦ '
¯̂
XΓ
◦ . Hence there exists

a d-space X̂Γ
◦ = (X̂Γ

◦ ,O′̂XΓ
◦
, EX̂Γ

◦
, ıX̂Γ

◦
, X̂Γ

◦
) with X̂Γ

◦ ' FdSta
dSpa(X̂Γ

◦ ), and in fact

X̂Γ
◦ is natural up to 1-isomorphism in dSpa, not just up to equivalence.

Here is the analogue of Definitions C.47 and C.48.

Definition 9.25. LetX be a d-stack, and Γ a finite group. Define a 1-morphism
OΓ(X ) : XΓ → X in dSta by OΓ(X ) =

(
OΓ(X ), OΓ(X )′, OΓ(X )′′

)
, where

OΓ(X ) : XΓ → X is given in Definition C.47, and

OΓ(X )′ : OΓ(X )−1(O′X ) −→ O′XΓ := OΓ(X )−1(O′X )/
(
(O′X )Γ

nt

)
to be the obvious projection, and

OΓ(X )′′ : OΓ(X )∗(EX ) −→ EXΓ := (EX )Γ
tr

to project to the first component in OΓ(X )∗(EX ) = (EX )Γ
tr ⊕ (EX )Γ

nt.
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Define ÕΓ(X ) : X̃Γ → X in the same way. Define Π̃Γ(X ) : XΓ → X̃Γ

by Π̃Γ(X ) =
(
Π̃Γ(X ), Π̃Γ(X )′, Π̃Γ(X )′′

)
, where Π̃Γ(X ) : XΓ → X̃Γ is given in

Definition C.47, and

Π̃Γ(X )′ : Π̃Γ(X )−1
[
ÕΓ(X )−1(O′X )/

( ˜(O′X )Γ
nt

)]
−→ OΓ(X )−1(O′X )/

(
(O′X )Γ

nt

)
,

Π̃Γ(X )′′ : Π̃Γ(X )∗
[(
ÕΓ(X )∗(EX )

)
tr

]
−→

(
OΓ(X )∗(EX )

)
tr are induced by

IΠ̃Γ(X ),ÕΓ(X )(O
′
X )−1 : Π̃Γ(X )−1

[
ÕΓ(X )−1(O′X )

]
−→ OΓ(X )−1(O′X ),

IΠ̃Γ(X ),ÕΓ(X )(EX )−1 : Π̃Γ(X )∗
[
ÕΓ(X )∗(EX )

]
−→ OΓ(X )∗(EX ),

using ÕΓ(X ) ◦ Π̃Γ(X ) = OΓ(X ) from Definition C.47.
Define a 1-morphism Π̂Γ(X ) : X̃Γ → X̂Γ in dSta by Π̂Γ(X ) =

(
Π̂Γ(X ),

Π̂Γ(X )′, Π̂Γ(X )′′
)
, where Π̂Γ(X ) : X̃Γ → X̂Γ is given in Definition C.47, and

Π̂Γ(X )′ : Π̂Γ(X )−1(O′X̂Γ) → O′X̃Γ , Π̂Γ(X )′′ : Π̂Γ(X )∗(E X̂Γ) → E X̃Γ are the
natural isomorphisms mentioned in Definition 9.24.

For each Λ ∈ Aut(Γ), Definition C.47 gives a 1-morphism LΓ(Λ,X ) : XΓ →
XΓ with OΓ(X ) ◦ LΓ(Λ,X ) = OΓ(X ). Define a 1-morphism LΓ(Λ,X ) : XΓ →
XΓ by LΓ(Λ,X ) =

(
LΓ(Λ,X ), LΓ(Λ,X )′, LΓ(Λ,X )′′

)
, where

LΓ(Λ,X )′ : LΓ(Λ,X )−1
[
OΓ(X )−1(O′X )/

(
(O′X )Γ

nt

)]
→OΓ(X )−1(O′X )/

(
(O′X )Γ

nt

)
,

LΓ(Λ,X )′′ : LΓ(Λ,X )∗
[(
ÕΓ(X )∗(EX )

)
tr

]
→
(
OΓ(X )∗(EX )

)
tr are induced by

ILΓ(Λ,X ),ÕΓ(X )(O
′
X )−1 : LΓ(Λ,X )−1

[
ÕΓ(X )−1(O′X )

]
−→ OΓ(X )−1(O′X ),

ILΓ(Λ,X ),ÕΓ(X )(EX )−1 : LΓ(Λ,X )∗
[
ÕΓ(X )∗(EX )

]
−→ OΓ(X )∗(EX ).

It is easy to check OΓ(X ), ÕΓ(X ), Π̃Γ(X ), Π̂Γ(X ),LΓ(Λ,X ) are 1-morphisms
in dSta. Define 1-morphisms OΓ

◦ (X ), . . . ,LΓ
◦ (Λ,X ) to be the restrictions of

OΓ(X ), . . . ,LΓ(Λ,X ) to the open d-substacks XΓ
◦ , X̃Γ

◦ , X̂Γ
◦ . As (C.8) strictly

commutes, one can show that (9.23) strictly commutes in dSta.
Definition C.48 defined 2-morphisms EΓ(γ,X ) : OΓ(X )⇒ OΓ(X ) in C∞Sta

for γ ∈ Γ, giving an action of Γ on OΓ(X ) by 2-morphisms. It is easy to show
that EΓ(γ,X ) = (EΓ(γ,X ), 0) is a 2-morphism OΓ(X ) ⇒ OΓ(X ) in dSta,
and gives an action of Γ on OΓ(X ) by 2-morphisms. Similarly EΓ

◦ (γ,X ) =
(EΓ
◦ (γ,X ), 0) gives an action of Γ on OΓ

◦ (X ) by 2-morphisms.

The analogue of Theorem C.49 for d-stacks is now immediate, since every-
thing in the d-stack analogue depends only on the underlying C∞-stacks anyway.
Here is the analogue of Definition C.51.

Definition 9.26. Let X ,Y be d-stacks, Γ a finite group, and f = (f, f ′, f ′′) :
X → Y be a 1-morphism in dSta which is representable, that is, f : X →
Y is a representable 1-morphism in C∞Sta. Then Definition C.51 gives a
representable 1-morphism fΓ : XΓ → YΓ, with OΓ(Y)◦fΓ = f ◦OΓ(X ). Define

483



a 1-morphism fΓ = (fΓ, fΓ′, fΓ′′) : XΓ → YΓ in dSta, where

fΓ′ : (fΓ)−1
[
OΓ(Y)−1(O′Y)/

(
(O′Y)Γ

nt

)]
−→ OΓ(X )−1(O′X )/

(
(O′X )Γ

nt

)
and

fΓ′′ : (fΓ)∗
[(
OΓ(Y)∗(EY)

)
tr

]
−→

(
OΓ(X )∗(EX )

)
tr are induced by

OΓ(X )−1(f ′) ◦ IOΓ(X ),f (O′Y) ◦ IfΓ,OΓ(Y)(O′Y)−1 :

(fΓ)−1
[
OΓ(Y)−1(O′Y)

]
−→ OΓ(X )−1(O′X ) and

OΓ(X )∗(f ′′) ◦ IOΓ(X ),f (EY) ◦ IfΓ,OΓ(Y)(EY)−1 :

(fΓ)∗
[
OΓ(Y)∗(EY)

]
−→ OΓ(X )∗(EX ).

It is straightforward to check that fΓ is a representable 1-morphism in dSta,
and is the unique 1-morphism with OΓ(Y) ◦ fΓ = f ◦OΓ(X ).

Definition C.51 gives a representable 1-morphism f̃Γ : X̃Γ → ỸΓ with
ÕΓ(Y) ◦ f̃Γ = f ◦ ÕΓ(X ), and we define f̃Γ : X̃Γ → ỸΓ as for fΓ.

Definition C.51 also gives a representable 1-morphism f̂Γ : X̂Γ → ŶΓ, unique
up to 2-isomorphism, with a 2-morphism ζ : Π̂Γ(Y)◦ f̃Γ ⇒ f̂Γ ◦Π̂Γ(X ). Define a

1-morphism f̂Γ = (f̂Γ, f̂Γ′, f̂Γ′′) : X̂Γ → ŶΓ, where f̂Γ′ : (f̂Γ)−1(O′̂YΓ) → O′X̂Γ

and f̂Γ′′ : (f̂Γ)∗(E ŶΓ)→ E X̂Γ are the unique morphisms such that

Π̂Γ(X )′ ◦ Π̂Γ(X )−1(f̂Γ′) ◦ IΠ̂Γ(X ),f̂Γ(O′ŶΓ) ◦ ζ−1(O′ŶΓ)

= f̃Γ′ ◦ (f̃Γ)−1(Π̂Γ(Y)′) ◦ If̃Γ,Π̂Γ(Y)(O
′
ŶΓ),

Π̂Γ(X )′′ ◦ Π̂Γ(X )∗(f̂Γ′′) ◦ IΠ̂Γ(X ),f̂Γ(E ŶΓ) ◦ ζ∗(E ŶΓ)

= f̃Γ′′ ◦ (f̃Γ)∗(Π̂Γ(Y)′′) ◦ If̃Γ,Π̂Γ(Y)(E ŶΓ).

As Π̂Γ(X )′, IΠ̂Γ(X ),f̂Γ(O′̂YΓ), ζ−1(O′̂YΓ) are isomorphisms the first equation de-

termines Π̂Γ(X )−1(f̂Γ′) uniquely, and since as in Definition 9.24 Π̂Γ(X )−1 and

Π̂Γ(X )∗ are inverse in this case, this determines f̂Γ′. Similarly f̂Γ′′ is uniquely
determined. One can now check that f̂Γ : X̂Γ → ŶΓ is a 1-morphism in dSta,
and ζ = (ζ, 0) : Π̂Γ(Y) ◦ f̃Γ ⇒ f̂Γ ◦ Π̂Γ(X ) is a 2-morphism.

Now let f , g : X → Y be representable 1-morphisms in dSta, and η =
(η, η′) : f ⇒ g be a 2-morphism. Then η : f ⇒ g is a 2-morphism in C∞Sta,
so Definition C.51 defines a 2-morphism ηΓ : fΓ ⇒ gΓ. Define a 2-morphism
ηΓ = (ηΓ, ηΓ′) : fΓ ⇒ gΓ in dSta, where ηΓ′ fits in the commutative diagram

(fΓ)∗
[
(FY)Γ

tr

]
(fΓ)∗(OΓ(Y)2

tr)
∼=��

[(OΓ(X )∗(η′)◦IOΓ(X),f (FY)◦IfΓ,OΓ(Y)(FY)−1)]tr

,,YYYYYYYYYYYYYYYYY

(fΓ)∗
[
FYΓ

] ηΓ′
// EXΓ = (EX )Γ

tr.

Here OΓ(Y) : YΓ → Y induces OΓ(Y)2 : OΓ(Y)∗(FY) → FYΓ in qcoh(YΓ),
where OΓ(Y)∗(FY) = (FY)Γ

tr ⊕ (FY)Γ
nt as in §C.9. We will show in Theorem

9.29 below that OΓ(Y)2 induces an isomorphism OΓ(Y)2
tr : (FY)Γ

tr → FYΓ , and
OΓ(Y)2 = 0 on (FY)Γ

nt. It is straightforward to show ηΓ is a 2-morphism in
dSta, and is the unique 2-morphism satisfying idOΓ(Y) ∗ ηΓ = η ∗ idOΓ(X ).
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Similarly, we can define 2-morphisms η̃Γ : f̃Γ ⇒ g̃Γ and η̂Γ : f̂Γ ⇒ ĝΓ.
As in Definition C.51, we can express all this in terms of (strict or weak)

2-functors. Write dStare for the 2-subcategory of dSta with only representable
1-morphisms. Define strict 2-functors FΓ, F̃Γ : dStare → dStare by FΓ :
X 7→ FΓ(X ) = XΓ on objects, FΓ : f 7→ FΓ(f) = fΓ on representable 1-
morphisms, and FΓ : η 7→ FΓ(η) = ηΓ on 2-morphisms, and similarly for
F̃Γ. They are strict as they preserve composition of 1-morphisms, that is,
FΓ(g ◦ f) = FΓ(g) ◦ FΓ(f) for 1-morphisms f : X → Y , g : Y → Z.

For the orbifold strata X̂Γ, we can define a weak 2-functor F̂Γ : dStare →
dStare mapping F̂Γ : X 7→ F̂Γ(X ) = X̂Γ on objects, F̂Γ : f 7→ F̂Γ(f) = f̂Γ

on representable 1-morphisms, and F̂Γ : η 7→ F̂Γ(η) = η̂Γ on 2-morphisms.
If f : X → Y , g : Y → Z are representable then we need not have F̂Γ(g ◦
f) = F̂Γ(g) ◦ F̂Γ(f), since as in Definition C.51 the underlying C∞-stack 1-

morphisms f̂Γ, ĝΓ, ( ̂g ◦ f)Γ are defined by stackification, and involve arbitrary
choices. Instead there is a canonical 2-isomorphism F̂Γ(f , g) =

(
F̂Γ(f, g), 0

)
:

F̂Γ(g ◦ f) ⇒ F̂Γ(g) ◦ F̂Γ(f), which is the final piece of data in the weak 2-
functor F̂Γ.

Since equivalences in dSta are automatically representable, and (strict or
weak) 2-functors take equivalences to equivalences, we deduce:

Corollary 9.27. Suppose X ,Y are equivalent d-stacks, and Γ is a finite group.
Then XΓ and YΓ are equivalent in dSta, and similarly for X̃Γ, X̂Γ,XΓ

◦ , X̃Γ
◦ ,

X̂Γ
◦ and ỸΓ, ŶΓ,YΓ

◦ , ỸΓ
◦ , ŶΓ

◦ . Also X̂Γ
◦ , Ŷ

Γ
◦ are equivalent in dSpa.

The last part follows as FdSta
dSpa(X̂Γ

◦ ) ' X̂Γ
◦ ' ŶΓ

◦ ' FdSta
dSpa(Ŷ Γ

◦ ) in dŜpa,

and FdSta
dSpa : dSpa→ dŜpa is an equivalence of categories by Theorem 9.7(c).

Here is a d-stack analogue of Theorem C.53, when the d-stackX is a quotient
[X/G] as in Definition 9.15, written in terms of the fixed d-subspaceXΓ of finite
group Γ acting on a d-space X defined in §2.7. The analogues of (C.10)–(C.13)
also hold, but for brevity we omit them.

To prove Theorem 9.28, we extend the proof of Theorem C.53 to include
the sheaf data O′X , EX , ıX , X on X = (X ,O′X , EX , ıX , X ), and on XΓ, . . . , X̂Γ

◦ .
We do this using Theorem C.57 (and its analogue for sheaves of C∞-rings),
which is a tool for comparing sheaves on X ,XΓ and G-equivariant sheaves on
X,
∐
ρX

ρ(Γ). When we make this comparison, we find that Definition 9.24
applied to X = [X/G] is parallel to Definition 2.43 applied to X for subgroups
of G isomorphic to Γ. We leave the details to the reader.

Theorem 9.28. Let X be a d-space and G a finite group acting on X by 1-
isomorphisms, and write X = [X/G] for the quotient d-stack, from Definition
9.15. Let Γ be a finite group. Then there are equivalences of d-stacks

XΓ '
∐

conjugacy classes [ρ] of injective
group morphisms ρ : Γ→ G

[
Xρ(Γ)/

{
g ∈ G : gρ(γ) = ρ(γ)g ∀γ ∈ Γ

}]
, (9.28)
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XΓ
◦ '

∐
conjugacy classes [ρ] of injective
group morphisms ρ : Γ→ G

[
Xρ(Γ)
◦ /

{
g ∈ G : gρ(γ) = ρ(γ)g ∀γ ∈ Γ

}]
, (9.29)

X̃Γ '
∐

conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆/

{
g ∈ G : ∆ = g∆g−1

}]
, (9.30)

X̃Γ
◦ '

∐
conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆
◦ /
{
g ∈ G : ∆ = g∆g−1

}]
, (9.31)

X̂Γ '
∐

conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆

/(
{g ∈ G : ∆ = g∆g−1}/∆

)]
, (9.32)

X̂Γ
◦ '

∐
conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆
◦
/(
{g ∈ G : ∆ = g∆g−1}/∆

)]
. (9.33)

Here morphisms ρ, ρ′ : Γ → G are conjugate if ρ′ = Ad(g) ◦ ρ for some
g ∈ G, and subgroups ∆,∆′ ⊆ G are conjugate if ∆ = g∆′g−1 for some g ∈ G.
In (9.28)–(9.33) we sum over one representative ρ or ∆ for each conjugacy class.
For each subgroup ∆ ⊆ G, allowing ∆ = ρ(Γ), we write X∆ for the closed d-
subspace in X fixed by ∆ in G, as in Definition 2.43, and X∆

◦ for the open
d-subspace in X∆ of points in X whose stabilizer group in G is exactly ∆.
The groups acting on X∆ in (9.28)–(9.33) have natural actions induced by the
G-action on X, such that jX,∆ : X∆ ↪→X is equivariant.

Under the equivalences (9.28)–(9.33), the 1-morphisms in (9.23) are identi-
fied up to 2-isomorphism with 1-morphisms between quotient d-stacks induced
by natural d-space 1-morphisms between Xρ(Γ),X, . . . .

Here is the analogue of Theorem C.58.

Theorem 9.29. Let X be a d-stack and Γ a finite group, so that Definitions
9.24 and 9.25 define a d-stack XΓ and a 1-morphism OΓ(X ) : XΓ → X .
Equation (9.12) for OΓ(X ) becomes:

OΓ(X )∗(EX )=
(EX )Γ

tr⊕(EX )Γ
nt
OΓ(X)∗(φX )

//

OΓ(X )′′��

OΓ(X )∗(FX )=
(FX )Γ

tr⊕(FX )Γ
nt
OΓ(X)∗(ψX )

//

OΓ(X )2

��

OΓ(X )∗(T ∗X )=
(T ∗X )Γ

tr⊕(T ∗X )Γ
nt

//

OΓ(X )3=
ΩOΓ(X)��

0

EXΓ
φXΓ // FXΓ

ψXΓ // T ∗(XΓ) // 0.

(9.34)

Then the columns OΓ(X )′′, OΓ(X )2, OΓ(X )3 of (9.34) are isomorphisms
when restricted to the ‘trivial’ summands (EX )Γ

tr, (FX )Γ
tr, (T

∗X )Γ
tr, and are zero

when restricted to the ‘nontrivial’ summands (EX )Γ
nt, (FX )Γ

nt, (T
∗X )Γ

nt. In par-
ticular, this implies that the virtual cotangent sheaf φXΓ : EXΓ → FXΓ of XΓ

is 1-isomorphic in vqcoh(XΓ) to (φX )Γ
tr : (EX )Γ

tr → (FX )Γ
tr, the ‘trivial’ part of

the pullback to XΓ of the virtual cotangent sheaf φX : EX → FX of X .
The analogous results also hold for X̃Γ, X̂Γ,XΓ

◦ , X̃Γ
◦ and X̂Γ

◦ .

Proof. For the first column of (9.34), Definitions 9.24 and 9.25 defined EXΓ =
(EX )Γ

tr and OΓ(X )′′ = id(EX )Γ
tr

on (EX )Γ
tr, an isomorphism, and OΓ(X )′′ = 0 on
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(EX )Γ
nt. For the third column of (9.34), Theorem C.58 shows that ΩOΓ(X ) is an

isomorphism on (T ∗X )Γ
tr and ΩOΓ(X ) = 0 on (T ∗X )Γ

nt. For the second column

of (9.34), we have a morphism OΓ(X )′ : OΓ(X )−1(O′X ) → O′XΓ of sheaves of
C∞-rings on XΓ, so we may consider the diagram[(

ΩO′X
)

Γ
tr⊕
(
ΩO′X

)
Γ
nt

]
⊗OΓ(X )−1(O′X ) O′XΓ

OΓ(X )−1(ΩO′X )⊗OΓ(X )−1(O′X ) O′XΓ

∼=��
ΩOΓ(X )−1(O′X ) ⊗OΓ(X )−1(O′X ) O′XΓ

ΩOΓ(X)′��
ΩO′XΓ .

(9.35)

The proof of Theorem C.58 implies that the composition of (9.35) is an
isomorphism on the ‘tr’ summand, and zero on the ‘nt’ summand. But applying
⊗O′XΓOXΓ to (9.35) yields a morphism naturally identified with the second
column of (9.34), as FXΓ = ΩO′XΓ ⊗O′XΓ OXΓ . The first part of the theorem

follows. The proofs for X̃Γ, X̂Γ are similar, and the result for XΓ
◦ , X̃Γ

◦ , X̂Γ
◦ then

follows by restriction to XΓ
◦ , X̃Γ

◦ , X̂Γ
◦ .
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10 The 2-category of d-orbifolds

We now define and study the 2-category dOrb of d-orbifolds without boundary,
or just d-orbifolds, as a 2-subcategory of the 2-category of d-stacks dSta from
Chapter 9. Sections 10.1–10.6 are analogues of material on d-manifolds from
Chapters 3 and 4, and in these parts we often omit proofs, or just indicate the
differences with the d-manifold case. Sections 10.7–10.9 cover material special
to (d-)orbifolds, namely orbifold strata, Kuranishi neighbourhoods and good
coordinate systems, and (semi)effective d-orbifolds.

10.1 Definition and local properties of d-orbifolds

This section extends §3.1–§3.4 to d-orbifolds.

10.1.1 Virtual quasicoherent sheaves on C∞-stacks

The material of §3.1 on virtual quasicoherent sheaves and virtual vector bundles
on a C∞-scheme X extends easily to Deligne–Mumford C∞-stacks X , using
§C.6. We briefly explain the differences in the C∞-stack case.

In the C∞-stack analogue of Definition 3.1, the definition of the 2-category
vqcoh(X ) is exactly as for C∞-schemes. We call (E•, φ) in vqcoh(X ) a virtual
vector bundle of rank d ∈ Z if X may be covered by Zariski open C∞-substacks
U such that (E•, φ)|U is equivalent in vqcoh(U) to some (F•, ψ) for F1,F2 vector
bundles on U with rankF2 − rankF1 = d. But note from Definition C.30 that
vector bundles F1,F2 on U need only be locally trivial in the étale topology, so
the orbifold groups IsoU ([u]) of U can act nontrivially on the fibres of F1,F2.
Then vvect(X ) is the full 2-subcategory of virtual vector bundles in vqcoh(X ).

If f : X → Y is a 1-morphism of Deligne–Mumford C∞-stacks then pullback
f∗ defines strict 2-functors f∗ : vqcoh(Y) → vqcoh(X ) and f∗ : vvect(Y) →
vvect(X ), as for C∞-schemes. If f, g : X → Y are 1-morphisms of Deligne–
Mumford C∞-stacks and η : f ⇒ g is a 2-morphism then η∗ : f∗ ⇒ g∗ is a
strict 2-natural transformation; such η∗ do not occur in the C∞-scheme case.

In the d-stack version of Example 3.2, we define the virtual cotangent sheaf
T ∗X of a d-stack X to be the morphism φX : EX → FX in qcoh(X ) from
Definition 9.6. If f : X → Y is a 1-morphism in dSta then Ωf := (f ′′, f2) is
a 1-morphism f∗(T ∗Y) → T ∗X in vqcoh(X ). For 2-morphisms in dSta, the
picture is more complicated than the d-space case. Suppose f , g : X → Y
are 1-morphisms and η = (η, η′) : f ⇒ g is a 2-morphism in dSta. Then
we have 1-morphisms Ωf : f∗(T ∗Y) → T ∗X , Ωg : g∗(T ∗Y) → T ∗X , and
η∗(T ∗Y) : f∗(T ∗Y) → g∗(T ∗Y) in qcoh(X ), with η∗(T ∗Y) a 1-isomorphism,
and η′ : Ωf ⇒ Ωg ◦ η∗(T ∗Y) is a 2-morphism in vqcoh(X ).

The C∞-stack and d-stack analogues of Lemma 3.3, Propositions 3.4, 3.5
and 3.7, Corollaries 3.6 and 3.10, and Definition 3.8 are immediate.
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10.1.2 The definition of d-orbifolds

We will now define the 2-category dOrb of d-orbifolds without boundary, fol-
lowing §3.2. Here is the analogue of Definitions 3.11, 3.16 and 3.18.

Definition 10.1. A d-stackW is called a principal d-orbifold (without bound-
ary) if is equivalent in dSta to a fibre product X×g,Z,hY with X ,Y ,Z ∈ Ôrb.
The underlying C∞-stack W ' X ×Z Y is locally finitely presented, as X ,Y,Z
are. Any object in Ôrb is a principal d-orbifold.

If W is a nonempty principal d-orbifold then as in Proposition 3.15, the
virtual cotangent sheaf T ∗W is a virtual vector bundle on W. We define the
virtual dimension of W to be vdimW = rankT ∗W ∈ Z. This is well-defined
as in Proposition 3.7. If W ' X ×Z Y for orbifolds X ,Y ,Z then vdimW =
dimX + dimY − dimZ.

A d-stack X is called a d-orbifold (without boundary) of virtual dimension
n ∈ Z, written vdimX = n, if X can be covered by open d-substacksW which
are principal d-orbifolds with vdimW = n. The underlying C∞-stack X is
separated, second countable, locally compact, paracompact, and locally finitely
presented. The virtual cotangent sheaf T ∗X = (EX ,FX , φX ) of X is a virtual
vector bundle of rank vdimX = n, so we call it the virtual cotangent bundle of
X . We consider the empty d-stack ∅ to be a d-orbifold of any virtual dimension
n ∈ Z, so we leave vdim∅ undefined.

Let dOrb be the full 2-subcategory of d-orbifolds in dSta. The 2-functor
FdSta

Orb : Orb → dSta in Definition 9.6 maps into dOrb, and we will write

FdOrb
Orb = FdSta

Orb : Orb → dOrb. Also Ôrb is a 2-subcategory of dOrb. We

say that a d-orbifoldX is an orbifold if it lies in Ôrb. The 2-functor FdSta
dSpa maps

dMan → dOrb, and we will write FdOrb
dMan = FdSta

dSpa|dMan : dMan → dOrb.

Then FdOrb
dMan ◦ FdMan

Man = FdOrb
Orb ◦ FOrb

Man : Man→ dOrb.

Write dM̂an for the full 2-subcategory of objects X in dOrb equivalent
to FdOrb

dMan(X) for some d-manifold X. When we say that a d-orbifold X is a

d-manifold, we mean that X ∈ dM̂an.

Here is the analogue of Proposition 3.12. For part (b), embeddings i : X → Z
are defined in Definition 8.3(iii), and include the condition that i∗ : IsoX ([x])→
IsoZ

(
itop([x])

)
is an isomorphism for all [x] ∈ Xtop.

Proposition 10.2. The following are equivalent characterizations of when a
d-stack W is a principal d-orbifold:

(a) W ' X ×g,Z,h Y for X ,Y ,Z ∈ Ôrb.

(b) W ' X ×i,Z,j Y , where X ,Y,Z are orbifolds, i : X → Z, j : Y → Z are
embeddings, and X ,Y ,Z, i, j = FdSta

Orb (X ,Y,Z, i, j). That is, W is an
intersection of two suborbifolds X ,Y in Z, in the sense of d-stacks.

(c) W ' V×s,E,0V , where V is an orbifold, E ∈ vect(V) is a vector bundle on
V in the sense of §8.3, s ∈ C∞(E) is a smooth section of E , 0 ∈ C∞(E) is
the zero section, and V ,E, s,0 = FdSta

Orb

(
V,Tot(E),Tot(s),Tot(0)

)
, using
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the ‘total space functor’ of Definition 8.4. That is,W is the zeroes s−1(0)
of a section s of a vector bundle E , in the sense of d-stacks.

We have written the proof of Proposition 3.12 so that essentially the same
proof works for Proposition 10.2. But note that in the manifold case we can
take Φ to be a diffeomorphism with an open neighbourhood U ′ of the diagonal
in Z ×Z, and then V is diffeomorphic to the open set (g × h)−1(U ′) in X × Y .
In the orbifold case, if z is an orbifold point of Z then Φ is not a diffeomorphism
near (z, 0) ∈ U and (z, z) ∈ Z × Z, but rather a |IsoZ(z)|-fold branched cover,
and fibre product with Φ modifies orbifold groups.

The analogue of Lemma 3.19 is immediate:

Lemma 10.3. Let W be a d-orbifold, and U an open d-substack of W. Then
U is also a d-orbifold, with vdimU = vdimW.

Using Theorem C.23 and Example C.32 we deduce:

Lemma 10.4. Let X be a d-orbifold. Then X is a d-manifold, that is, X is
equivalent to FdOrb

dMan(X) for some d-manifold X, if and only if IsoX ([x]) ∼= {1}
for all [x] in Xtop.

10.1.3 Local properties of d-orbifolds

In Definition 3.13 we defined ‘standard model’ d-manifolds SV,E,s, a class of
explicit principal d-manifolds. We give two d-orbifold analogues of this, starting
either with an orbifold V, or with a manifold V acted on by a finite group Γ.

Definition 10.5. Let V be an orbifold, E ∈ vect(V) a vector bundle on V as
in §8.3, and s ∈ C∞(E) a smooth section, that is, s : OV → E is a morphism in
vect(V). We will define a principal d-orbifold SV,E,s = (S,O′S, ES, ıS, S), which
we call a ‘standard model’ d-orbifold.

Let the Deligne–Mumford C∞-stack S be the C∞-substack in V defined
by the equation s = 0, so that informally S = s−1(0) ⊂ V. Explicitly, as
in Definition C.1, a C∞-stack V consists of a category V and a functor pV :
V → C∞Sch, where there is a 1-1 correspondence between objects u in V with
pV(u) = U in C∞Sch and 1-morphisms ũ : Ū → V in C∞Sta. Define S to be
the full subcategory of objects u in V such that the morphism ũ∗(s) : ũ∗(OV)→
ũ∗(E) in qcoh(Ū) is zero, and define pS = pV |S : S → C∞Sch.

The inclusion of categories iV : S ↪→ V is a 1-morphism of C∞-stacks, which
is a closed embedding. It satisfies 0 = i∗V(s) : i∗V(OV)→ i∗V(E) in qcoh(S), and S
is the largest C∞-substack of V with this property. One can show S is equivalent
to the C∞-stack fibre product S ' V ×Tot(s),Tot(E),Tot(0) V, where the orbifold
Tot(E) and 1-morphisms Tot(s),Tot(0) : V → Tot(E) are as in Definition 8.4.

Since iV : S → V is the inclusion of a C∞-substack, i]V : i−1
V (OV) → OS

is a surjective morphism of sheaves of C∞-rings on S. Write Is for the kernel
of i]V , as a sheaf of ideals in i−1

V (OV), and I2
s for the corresponding sheaf of

squared ideals, and O′S = i−1
V (OV)/I2

s for the quotient sheaf of C∞-rings, and
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ıS : O′S → OS for the natural projection i−1
V (OV)/I2

s � i−1
V (OV)/Is ∼= OS

induced by the inclusion I2
s ⊆ Is. Then (O′S, ıS) is a square zero extension of S,

in the sense of §9.1.
Write E∗ ∈ vect(V) for the dual vector bundle of E , and set ES = i∗V(E∗).

There is a natural, surjective morphism S : ES→ IS = Is/I2
s in qcoh(S) which

locally maps α+ (Is ·C∞(E∗)) 7→ α · s+ I2
s. Then SV,E,s = (S,O′S, ES, ıS, S) is

a d-stack. As in the d-manifold case, we can show that SV,E,s is equivalent in
dSta to V×s,E,0V in Proposition 10.2(c). Thus SV,E,s is a principal d-orbifold,
and every principal d-orbifoldW is equivalent in dSta to some SV,E,s.

Sometimes it is useful to take V to be an effective orbifold, as in §8.4.3.

All the material of §3.3 can now be extended to d-orbifolds. To study a
d-orbifold X near a point [x] ∈ Xtop, we can use two approaches. We could
note that X ' SV,E,s in dOrb near [x] for some SV,E,s, and then extend
§3.3 from d-manifolds SV,E,s to d-orbifolds SV,E,s. Alternatively, we could use
Theorem 9.2(a) to show that X ' [U/G] near [x], where U is a d-manifold,
G = IsoX ([x]), and the equivalence identifies [x] with a fixed point u of G in U .
Then U ' SV,E,s in dMan near u for some SV,E,s. We can take G to act on
V,E, s and the equivalence to be G-equivariant. Then X ' [SV,E,s/G] near [x].
We can then apply the results of §3.3 to SV,E,s, showing where necessary that
the proofs work equivariantly with respect to G.

In the d-orbifold version of Example 3.24 there are extra choices, namely
representations of G = IsoX ([x]) on Ra,Rb, which help determine the action of
G on Ua,b. Up to equivalence, the d-orbifold [Ua,b/G] is independent of b and

the representation of G on Rb, but it does remember a and the representation
of G on Ra. In this way we may prove a d-orbifold version of Proposition 3.25:

Proposition 10.6. Suppose X is a d-orbifold, and [x] ∈ Xtop. Let G,U , U, u
be as in Theorem C.25(a), with G = IsoX ([x]), U ⊆ X and U ' [U/G] with
[x] ∈ Utop ⊆ Xtop corresponding to [u] ∈ U/G. Since X is locally finitely
presented, U is too, so T ∗uU and OuU are defined as in §3.3.

Then a := dimT ∗uU − dimOuU − vdimX > 0, and X is determined up to
non-canonical equivalence near [x] by the C∞-stack X , the integer vdimX , and
a choice of representation of G on Ra, up to automorphisms of Ra.

As for d-manifolds, in a d-orbifold X = (X ,O′X , EX , ıX , X ), the extra infor-
mation in O′X , EX , ıX , X is like a vector bundle E over X . But in the orbifold
case, as in §8.3, locally a vector bundle E is not determined up to isomorphism
by rank E : at a point [x] ∈ Xtop, the finite group IsoX ([x]) acts on the fibre E|x
of E , and E depends on this representation of IsoX ([x]) on Rrank E locally up to
isomorphism. The extra data of the representation of G on Ra in Proposition
10.6 corresponds to this representation of IsoX ([x]) on Rrank E .

Here are d-orbifold analogues of Corollary 3.27 and Proposition 3.28.

Proposition 10.7. Suppose X is a d-orbifold, and [x] ∈ Xtop. Then there
exists an open neighbourhood U of [x] in X and an equivalence U ' SV,E,s in
dOrb for SV,E,s as in Definition 10.5, such that the equivalence identifies [x]
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with [v] ∈ Vtop with s(v) = ds(v) = 0. Furthermore, V, E , s are determined up
to non-canonical equivalence near [v] by X near [x].

Proposition 10.8. Let X be a d-orbifold. Then X is an orbifold (that is,
X ∈ Ôrb) if and only if φX : EX → FX has a left inverse, or equivalently, if
and only if its virtual cotangent bundle T ∗X is a vector bundle.

10.1.4 Differential-geometric picture of 1- and 2-morphisms

In §3.4 we defined and studied ‘standard model’ 1-morphisms Sf,f̂ : SV,E,s →
SW,F,t in dSpa. Here are d-stack analogues for SV,E,s in §10.1.3. There we
used notation f = g+O(s), f = g+O(s2) for f, g : V →W smooth maps, and
t1 = t2 +O(s) if E,F → V are vector bundles and s ∈ C∞(E), t1, t2 ∈ C∞(F ),

and by doing this we weakened the conditions on f, f̂ , g, ĝ needed to define
1-morphisms Sf,f̂ : SV,E,s → SW,F,t and 2-morphisms SΛ : Sf,f̂ ⇒ Sg,ĝ.

We could introduce similar notation for orbifolds, but it would be more
complicated, as we would need to define 2-morphisms ‘η : f ⇒ g + O(s)’ and
‘η : f ⇒ g+O(s2)’ for f, g : V → W 1-morphisms of orbifolds. So for simplicity
we will omit the O(s), O(s2) terms and assume the equations hold exactly.

Definition 10.9. Let V,W be orbifolds, E ,F be vector bundles on V,W, and
s ∈ C∞(E), t ∈ C∞(F) be smooth sections, so that Definition 10.5 defines
‘standard model’ principal d-orbifolds SV,E,s,SW,F,t. Write SV,E,s = S =
(S,O′S, ES, ıS, S) and SW,F,t = T = (T ,O′T , ET , ıT , T ). Suppose f : V → W is

a 1-morphism, and f̂ : E → f∗(F) is a morphism in vect(V) satisfying

f̂ ◦ s = f∗(t). (10.1)

We will define a 1-morphism g = (g, g′, g′′) : S → T in dSta, which we write
as Sf,f̂ : SV,E,s → SW,F,t, and call a standard model 1-morphism.

As in Definition 10.5, V,W are categories, and S ⊆ V, T ⊆ W are full
subcategories, and f : V → W is a functor. We claim that f(S) ⊆ T ⊆ W. To
show this, suppose u is an object in S with pV(u) = U ∈ C∞Sch, and let ũ :
Ū → V be the corresponding 1-morphism. Then ũ∗(s) = 0. The object f(u) in

V has pW(f(u)) = U, and has corresponding 1-morphism ˜f(u) = f ◦ ũ : Ū → V.
Consider the diagram in qcoh(Ū):

ũ∗(OV)

ũ∗(s)=0
��

ũ∗(ι)

∼= // ũ∗(f∗(OW))

ũ∗(f∗(t))
��

Iũ,f (OW)−1

∼= // ˜f(u)∗(OW)

( ˜f(u))∗(t) ��
ũ∗(E)

ũ∗(f̂) // ũ∗(f∗(F))
Iũ,f (F)−1

// ˜f(u)∗(F).

Here the left hand square commutes by applying ũ∗ to (10.1), the right hand

square commutes by ˜f(u) = f ◦ ũ and properties of I∗,∗(∗), and the top row

is isomorphisms. So as ũ∗(s) = 0 we see that ( ˜f(u))∗(t) = 0, and f(u) is an
object in T . Therefore f |S is a functor S → T . Define g = f |S : S → T .
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Then g : S → T is a 1-morphism of Deligne–Mumford C∞-stacks. It satisfies
iW ◦g = f ◦iV : S → W, where the 1-morphisms are equal, not just 2-isomorphic.

To define g′ : g−1(O′T )→ O′S, consider the commutative diagram:

g−1(I2
t )

//

��

g−1(i−1
W (OW)) //

i−1
V (f])◦IiV ,f (OW)◦
Ig,iW (OW)−1��

g−1(O′T )=g−1(i−1
W (OW)/I2

t )

g′��

// 0

I2
s

// i−1
V (OV) // O′S = i−1

V (OV)/I2
s

// 0.

The rows are exact. Using (10.1), one can show the central column maps
g−1(It)→ Is, and so maps g−1(I2

t )→ I
2
s, and the left column exists. Thus by

exactness there is a unique morphism g′ making the diagram commute.
We have ES = i∗V(E∗) and ET = i∗W(F∗), where E∗,F∗ are the duals of

E ,F . Then f̂ : E → f∗(F) induces f̂∗ : f∗(F∗) → E∗ in vect(V). Define

g′′ = i∗V(f̂∗) ◦ IiV ,f (F∗) ◦ Ig,iW (F∗)−1 : g∗(ET ) → ES in qcoh(S). One can now
show that g = (g, g′, g′′) : S → T is a 1-morphism in dSta, which we write as
Sf,f̂ : SV,E,s → SW,F,t, and call a standard model 1-morphism.

Suppose now that Ṽ ⊆ V is open, with inclusion 1-morphism iṼ : Ṽ → V.
Write Ẽ = E|Ṽ = i∗̃V(E) and s̃ = s|Ṽ . Define iṼ,V = SiṼ ,idẼ : SṼ,Ẽ,s̃ → SV,E,s.
As in Lemma 3.33, if s−1(0) ⊆ Ṽ then iṼ,V is a 1-isomorphism.

We can write down an analogue of Theorem 3.34 for the standard model
1-morphisms of Definition 10.9, but it is weaker. Theorem 3.34 classifies 1-
morphisms g : SV,E,s → SW,F,t in dMan up to equality, not just up to 2-
isomorphism. But if g : SV,E,s → SW,F,t is a 1-morphism in dSta, it is
only sensible to classify the C∞-stack 1-morphism g in g = (g, g′, g′′) up to 2-
isomorphism, not up to equality. Thus, the analogue of Theorem 3.34 should say
only that any g : SV,E,s → SW,F,t is 2-isomorphic in dOrb to some Sf,f̂ ◦i−1

Ṽ ,V
.

Definition 3.29 also defined ‘standard model’ 2-morphisms SΛ : Sf,f̂ ⇒ Sg,ĝ
in dMan. We could write down a d-orbifold analogue of this, but will not, to
avoid having to combine O(s), O(s2) and 2-morphisms of orbifolds. But here is
a simpler construction of 2-morphisms Sf,f̂ ⇒ Sg,ĝ coming from 2-morphisms
η : f ⇒ g. The proof is easy.

Proposition 10.10. Let Sf,f̂ ,Sg,ĝ : SV,E,s → SW,F,t be ‘standard model’ 1-
morphisms of d-orbifolds, in the notation of Definitions 10.5 and 10.9. Suppose
η : f ⇒ g is a 2-morphism in Orb which satisfies ĝ = η∗(F) ◦ f̂ : E → g∗(F).
Then η = (η|SV,E,s , 0) is a 2-morphism η : Sf,f̂ ⇒ Sg,ĝ in dOrb.

10.1.5 An alternative form of ‘standard model’ d-orbifolds

Rather than building ‘standard models’ SV,E,s,Sf,f̂ for d-orbifolds and their 1-
morphisms using orbifolds V, we can instead use combine the ‘standard model’
notation SV,E,s,Sf,f̂ ,SΛ for d-manifolds in §3.3–§3.4 with the quotient d-stack
notation of §9.3. We explain this for d-orbifolds, 1-morphisms and 2-morphisms
in the next three examples.
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Example 10.11. Let V be a manifold, E → V a vector bundle, Γ a finite
group acting smoothly on V,E preserving the vector bundle structure, and s :
V → E a smooth, Γ-equivariant section of E. Write the Γ-actions on V,E
as r(γ) : V → V and r̂(γ) : E → r(γ)∗(E) for γ ∈ Γ. Then Definitions
3.13 and 3.30 give an explicit principal d-manifold SV,E,s, and 1-morphisms
Sr(γ),r̂(γ) : SV,E,s → SV,E,s for γ ∈ Γ which are an action of Γ on SV,E,s.
Hence Definition 9.15 defines a quotient d-stack [SV,E,s/Γ].

Now Ṽ = [V /Γ] is an orbifold, and by Definition C.34 and Theorem C.35
E, s induce a vector bundle Ẽ on Ṽ and section s̃ ∈ C∞(Ẽ), so that Definition
10.5 gives a ‘standard model’ principal d-orbifold SṼ,Ẽ,s̃. One can show that
[SV,E,s/Γ] ' SṼ,Ẽ,s̃, so [SV,E,s/Γ] is a principal d-orbifold. But not all principal
d-orbifoldsW haveW ' [SV,E,s/Γ], as not all orbifolds V have V ' [V /Γ] for
some manifold V and finite group Γ.

Example 10.12. Let [SV,E,s/Γ], [SW,F,t/∆] be quotient d-orbifolds as in Ex-
ample 10.11, where Γ acts on V,E by q(γ) : V → V and q̂(γ) : E → q(γ)∗(E)
for γ ∈ Γ, and ∆ acts on W,F by r(δ) : W → W and r̂(δ) : F → r(δ)∗(F )

for δ ∈ ∆. Suppose f : V → W is a smooth map, and f̂ : E → f∗(F ) is a

morphism of vector bundles on V satisfying f̂ ◦ s = f∗(t) +O(s2), as in (3.22),
and ρ : Γ → ∆ is a group morphism satisfying f ◦ q(γ) = r(ρ(γ)) ◦ f : V → W

and q(γ)∗(f̂) ◦ q̂(γ) = f∗(r̂(ρ(γ))) ◦ f̂ : E → (f ◦ q(γ))∗(F ) for all γ ∈ Γ, so that

f, f̂ are equivariant under Γ,∆, ρ. Then Definition 3.30 defines a 1-morphism
Sf,f̂ : SV,E,s → SW,F,t in dSpa. The equivariance conditions on f, f̂ imply
that Sf,f̂ ◦ Sq(γ),q̂(γ) = Sr(ρ(γ)),r̂(ρ(γ)) ◦ Sf,f̂ for γ ∈ Γ. Hence Definition 9.15
defines a quotient 1-morphism [Sf,f̂ , ρ] : [SV,E,s/Γ]→ [SW,F,t/∆].

Example 10.13. Suppose [Sf,f̂ , ρ], [Sg,ĝ, σ] : [SV,E,s/Γ]→ [SW,F,t/∆] are two
1-morphisms as in Example 10.12, and write q, q̂ for the actions of Γ on V,E
and r, r̂ for the actions of ∆ on W,F . Then ρ, σ : Γ→ ∆ are group morphisms.
Suppose δ ∈ ∆ satisfies σ(γ) = δ ρ(γ) δ−1 for all γ ∈ Γ, and Λ : E → f∗(TW )
is a morphism of vector bundles on V which satisfies

r(δ−1) ◦ g = f + Λ · s+O(s2) and g∗(r̂(δ−1)) ◦ ĝ = f̂ + Λ · dt+O(s), (10.2)

f∗(dr(ρ(γ))) ◦ Λ = q(γ)∗(Λ) ◦ q̂(γ) : E −→ (f ◦ q(γ))∗(TW ), ∀γ ∈ Γ, (10.3)

where dr(ρ(γ)) : TW → r(ρ(γ))∗(TW ) is the derivative of r(ρ(γ)). Here (10.2)
is the conditions for Definition 3.29 to define a ‘standard model’ 2-morphism
SΛ : Sf,f̂ ⇒ Sr(δ−1)◦g,g∗(r̂(δ−1))◦ĝ = Sr(δ−1),r̂(δ−1) ◦ Sg,ĝ in dSpa. Then (10.3)
implies that SΛ∗idSq(γ),q̂(γ)

= idSr(ρ(γ)),r̂(ρ(γ))
∗SΛ for all γ ∈ Γ. Hence Definition

9.15 defines a quotient 2-morphism [SΛ, δ] : [Sf,f̂ , ρ]⇒ [Sg,ĝ, σ].

Proposition 10.14. A d-stack X is a d-orbifold of virtual dimension n ∈ Z
if and only if each [x] ∈ Xtop has an open neighbourhood U equivalent to some
[SV,E,s/Γ] in Example 10.11 with dimV − rankE = n, where Γ = IsoX ([x])
and [x] ∈ Xtop is identified with a fixed point v of Γ in V with s(v) = 0
and ds(v) = 0. Furthermore, V,E, s,Γ are determined up to non-canonical
isomorphism near v by X near [x].
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Proof. For the ‘if’ part, note that [SV,E,s/Γ] is a principal d-orbifold of virtual
dimension n by Example 10.11, so X is covered by open principal d-orbifolds
U with vdimU = n, and X is a d-orbifold with vdimX = n.

For the ‘only if’ part, suppose X is a d-orbifold and [x] ∈ Xtop. Proposition
10.7 gives open U ⊆ X and an equivalence U ' SṼ,Ẽ,s̃ identifying [x] with
[ṽ] for [ṽ] ∈ Ṽtop with s̃(v) = ds̃(v) = 0. As V is an orbifold it is equivalent
to [V /Γ] near [v], where V = FC∞Sch

Man (V ) and V is a manifold acted on by
Γ = IsoṼ([ṽ]) = IsoX ([x]). Making U , Ṽ smaller we can take Ṽ = [V /Γ]. Then
Definition C.34 and Theorem C.35 show E , s come from a Γ-equivariant vector
bundle E → V and section s : V → E up to isomorphism. So Example 10.11
defines [SV,E,s/Γ] with [SV,E,s/Γ] ' SṼ,Ẽ,s̃ ' U . The last part follows from the
last part of Proposition 10.7.

Proposition 10.15. A quotient d-stack [U/G] is a d-orbifold if and only if the
d-space U is a d-manifold, and then vdim[U/G] = vdimU .

Proof. Suppose [U/G] is a d-orbifold. Then Proposition 10.14 shows we can
cover [U/G] by openW with equivalences i : [SV,E,s/Γ]→W ⊆ [U/G]. Form
the 2-Cartesian square in dSta:

FdSta
dSpa(U)×[U/G] F

dSta
dSpa(SV,E,s)

f
//

e�� � �� �
IQ

FdSta
dSpa(SV,E,s)

i◦h ��
FdSta

dSpa(U)
g // [U/G],

where g,h are projections of the form FdSta
dSpa(V ) → [V /G], and so are étale.

Thus i ◦ h is étale, so e,f are étale by properties of fibre products. Since
FdSta

dSpa(SV,E,s) is a d-manifold FdSta
dSpa(U) ×[U/G] F

dSta
dSpa(SV,E,s) is a d-manifold

as f is étale, so FdSta
dSpa(U) and hence U is a d-manifold of dimension vdim[U/G]

on the image of e, which is g−1(W). As we can cover [U/G] by suchW , U is
a d-manifold of dimension vdim[U/G], proving the ‘only if’ part.

For the ‘if’ part, suppose U is a d-manifold, and let u ∈ U have stabilizer
group H in G. Applying Corollary 3.26 to U at u gives an open neighbourhood
U ′ of u in U and an equivalence U ′ ' SV,E,s identifying u ∈ U ′ and v ∈ V with
s(v) = ds(v) = 0. The proof works equivariantly w.r.t. H, so we can choose U ′

H-invariant, and V,E with H-actions fixing v ∈ V and s H-equivariant, so that
H acts on SV,E,s, and [U ′/H] ' [SV,E,s/H]. Making U ′, V smaller if necessary
we can suppose γ(U ′) ∩ U ′ = ∅ for γ ∈ G \ H. Then [U ′/H] is equivalent
to an open neighbourhood of [u] in [U/G]. Hence [U/G] is equivalent to the
principal d-orbifold [SV,E,s/H] of virtual dimension vdimU near [u], so [U/G]
is a d-orbifold with vdim[U/G] = vdimU .

10.2 Equivalences and gluing

We now extend §3.5–§3.6 to d-orbifolds, using the results of §9.4. Definition
9.13 defined when a 1-morphism of d-stacks f : X → Y is étale, so this gives
a notion of when a 1-morphism of d-orbifolds f : X → Y is étale. Here is the
d-orbifold analogue of Theorem 3.36.
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Theorem 10.16. Suppose f : X → Y is a 1-morphism of d-orbifolds, and
f : X → Y is representable. Then the following are equivalent:

(i) f is étale;

(ii) Ωf : f∗(T ∗Y)→ T ∗X is an equivalence in vqcoh(X ); and

(iii) equation (9.14) is a split short exact sequence in qcoh(X ).

If in addition f∗ : IsoX ([x]) → IsoY(ftop([x])) is an isomorphism for all [x] ∈
Xtop, and ftop : Xtop → Ytop is a bijection, then f is an equivalence in dOrb.

Proof. Note that (ii),(iii) are equivalent by Proposition 3.5, and (i) implies (iii)
by Definition 9.13. To show (ii),(iii) imply (i), we must prove that (ii),(iii) force
f : X → Y to be étale and f4 : f∗(CY) → CX to be an isomorphism. But we
can reduce these to the d-manifold case Theorem 3.36 using Theorem 9.16(b).
Hence (i)–(iii) are equivalent. For the final part, f étale, f∗ : IsoX ([x]) →
IsoY(ftop([x])) an isomorphism for all [x] and ftop : Xtop → Ytop a bijection
imply that f is an equivalence, so the theorem follows by Proposition 9.11.

Here is an analogue of Theorem 3.39. The proof follows that of Theorem
3.39, using Theorem 10.16 in place of Theorem 3.36.

Theorem 10.17. Suppose Sf,f̂ : SV,E,s → SW,F,t is a ‘standard model’ 1-
morphism, in the notation of Definitions 10.5 and 10.9, with f : V → W
representable. Then Sf,f̂ is étale if and only if for each [v] ∈ Vtop with s(v) = 0
and [w] = ftop([v]) ∈ Wtop, the following sequence of vector spaces is exact:

0 // TvV
ds(v)⊕ df(v) // Ev ⊕ TwW

f̂(v)⊕−dt(w) // Fw // 0.

Also Sf,f̂ is an equivalence if and only if in addition ftop|s−1(0) : s−1(0) →
t−1(0) is a bijection, where s−1(0) = {[v] ∈ Vtop : s(v) = 0}, t−1(0) = {[w] ∈
Wtop : t(w) = 0}, and f∗ : IsoV([v]) → IsoW(ftop([v])) is an isomorphism for
all [v] ∈ s−1(0) ⊆ Vtop.

Here is the analogue of Corollary 3.40:

Corollary 10.18. Let V,W be orbifolds, E ,F vector bundles over V,W, s ∈
C∞(E), t ∈ C∞(F) smooth sections, f : V → W an embedding of orbifolds, and

f̂ : E → f∗(F) an injective morphism of vector bundles (that is, f̂ has a left
inverse) satisfying (10.1). For each [v] ∈ Vtop with s(v) = 0 and ftop([v]) =
[w] ∈ Wtop, we have a linear map

dt(w)∗ : TwW
/

df(v)[TvV] −→ Fw
/
f̂(v)[Ev]. (10.4)

Suppose (10.4) is an isomorphism for all [v] ∈ s−1(0) ⊆ Vtop, and ftop|s−1(0) :
s−1(0)→ t−1(0) is a bijection. Then Sf,f̂ : SV,E,s→SW,F,t is an equivalence.

Proposition 9.17 and Theorems 9.18 and 9.19 of §9.4 explained how to glue
d-stacks and their 1-morphisms by equivalences on open d-substacks. As for
d-manifolds in §3.6, these generalize immediately to d-orbifolds: if we fix n ∈ Z
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and take the initial d-stacks X i to be d-orbifolds with vdimX i = n, then the
glued d-stack X is also a d-orbifold with vdimX = n. Note that if we apply
Theorem 9.19 with the X i effective d-orbifolds, then the Xi are effective by
Lemma 10.61, so (9.19) holds automatically. So, gluing effective d-orbifolds by
equivalences is simpler than gluing general d-orbifolds by equivalences.

Here is a d-orbifold analogue of Theorem 3.42. To prove it we apply The-
orem 9.19 taking the d-stacks X i to be ‘standard model’ d-orbifolds SVi,Ei,si
in Definition 10.5, and the 1-morphisms eij , gi ‘standard model’ 1-morphisms
Seij ,êij ,Sgi,0 in Definition 10.9, and the 2-morphisms ηijk, ζij 2-morphisms
(ηijk|S... , 0), (ζij |S... , 0) from Proposition 10.10. Part (ii) and Theorem 10.17
imply that Seij ,êij is an equivalence. Since Vi,Y are effective, Proposition 8.14
implies that (9.19)–(9.20) hold automatically.

Theorem 10.19. Suppose we are given the following data:

(a) an integer n;

(b) a Hausdorff, second countable topological space X;

(c) an indexing set I, and a total order < on I;

(d) for each i in I, an effective orbifold Vi, a vector bundle E i on Vi with
dimVi − rank E i = n, a section si ∈ C∞(E i), and a homeomorphism
ψi : s−1

i (0)→ X̂i, where s−1
i (0) = {[vi] ∈ Vi,top : si(vi) = 0} and X̂i ⊆ X

is open; and

(e) for all i < j in I, an open suborbifold Vij ⊆ Vi, a 1-morphism eij : Vij →
Vj , and a morphism of vector bundles êij : E i|Vij → e∗ij(Ej).

Let this data satisfy the conditions:

(i) X =
⋃
i∈I X̂i;

(ii) if i < j in I then (eij)∗ : IsoVij ([v]) → IsoVj (eij,top([v])) is an isomor-
phism for all [v] ∈ Vij,top, and êij ◦si|Vij = e∗ij(sj)◦ ιij where ιij : OVij →
e∗ij(OVj ) is the natural isomorphism, and ψi(si|−1

Vij (0)) = X̂i ∩ X̂j , and

ψi|si|−1
Vij

(0) = ψj ◦ eij,top|si|−1
Vij

(0), and if [vi] ∈ Vij,top with si(vi) = 0 and

[vj ] = eij,top([vi]) then the following sequence is exact:

0 // TviVi
dsi(vi)⊕ deij(vi) // E i|vi⊕TvjVj

êij(vi)⊕−dsj(vj) // Ej |vj // 0;

(iii) if i < j < k in I then there exists a 2-morphism ηijk : ejk ◦eij |Vik∩e−1
ij (Vjk)

⇒ eik|Vik∩e−1
ij (Vjk) in Orb with

êik|Vik∩e−1
ij (Vjk) =η∗ijk(Ek)◦Ieij ,ejk(Ek)−1◦eij |∗Vik∩e−1

ij (Vjk)
(êjk)◦êij |Vik∩e−1

ij (Vjk).

Note that ηijk is unique by Proposition 8.14.

Then there exist a d-orbifold X with vdimX = n and underlying topological
space Xtop

∼= X, and a 1-morphism ψi : SVi,Ei,si → X with underlying con-

tinuous map ψi which is an equivalence with the open d-suborbifold X̂ i ⊆ X
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corresponding to X̂i ⊆ X for all i ∈ I, such that for all i < j in I there exists a
2-morphism ηij : ψj ◦Seij ,êij ⇒ ψi ◦ iVij ,Vi , where Seij ,êij : SVij ,Ei|Vij ,si|Vij →
SVj ,Ej ,sj and iVij ,Vi : SVij ,Ei|Vij ,si|Vij → SVi,Ei,si . This d-orbifold X is unique

up to equivalence in dOrb.
Suppose also that Y is an effective orbifold, and gi : Vi → Y are 1-morphisms

for all i ∈ I satisfying any of Proposition 8.14(i)–(v), and there are 2-morphisms
ζij : gj ◦ eij ⇒ gi|Vij in Orb for all i < j in I. Then there exist a 1-morphism
h : X → Y in dOrb unique up to 2-isomorphism, where Y = FdOrb

Orb (Y) =
SY,0,0, and 2-morphisms ζi : h ◦ψi ⇒ Sgi,0 for all i ∈ I.

Remark 10.20. (a) The assumptions in Theorem 10.19 that the Vi and Y
are effective orbifolds, and (eij)∗ : IsoVij ([v])

∼=−→ IsoVj (eij,top([v])), and the gi
satisfy any of Proposition 8.14(i)–(v), are all made so that the conditions (9.19)–
(9.20) on 2-morphisms on quadruple and triple overlaps in Theorem 9.19 hold
automatically, because of Proposition 8.14, so we can omit them.

(b) Because we have no overlap conditions on 2-morphisms, Theorem 10.19
makes sense in the homotopy category Ho(Orbeff ) of the 2-category of effective
orbifolds, as in §4.7 and Remark 9.20. That is, for the purposes of constructing
d-orbifolds using Theorem 10.19 we can treat effective orbifolds as forming a
category rather than a 2-category.

(c) Taking the orbifolds Vi effective does not force the d-orbifold X to be effec-
tive. Every d-orbifold X is locally equivalent to some SV,E,s with V effective.

(d) We can simplify the theorem by taking the eij , êij to satisfy the hypotheses
of Corollary 10.18 instead of part (iii).

(e) In §10.8 we will prove a kind of converse to Theorem 10.19: we will show
that every d-orbifold X admits a good coordinate system, a collection of data
I,<,Vi, E i, si,ψi,Vij , eij , êij ,ηij , ηijk satisfying the hypotheses of the first part
of Theorem 10.19. This shows these hypotheses are not unrealistically strong.

(f) The importance of Theorem 10.19 is that all the ingredients are described
wholly in differential-geometric or topological terms. So we can use the theorem
as a tool to prove the existence of d-orbifold structures on spaces coming from
other areas of geometry, such as moduli spaces of J-holomorphic curves. We
will discuss this in Chapter 14.

Here is a similar result using the quotient d-orbifolds [SV,E,s/Γ] and 1-
morphisms [Sf,f̂ , ρ] of §10.1.5, proved in the same way.

Theorem 10.21. Suppose we are given the following data:

(a) an integer n;

(b) a Hausdorff, second countable topological space X;

(c) an indexing set I, and a total order < on I;

(d) for each i in I, a manifold Vi, a vector bundle Ei → Vi with dimVi −
rankEi = n, a finite group Γi, smooth, locally effective actions ri(γ) :
Vi → Vi, r̂i(γ) : Ei → r(γ)∗(Ei) of Γi on Vi, Ei for γ ∈ Γi, a smooth,
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Γi-equivariant section si : Vi → Ei, and a homeomorphism ψi : Xi → X̂i,
where Xi = {vi ∈ Vi : si(vi) = 0}/Γi and X̂i ⊆ X is an open set; and

(e) for all i < j in I, an open submanifold Vij ⊆ Vi, invariant under Γi,
a group morphism ρij : Γi → Γj, a smooth map eij : Vij → Vj , and a
morphism of vector bundles êij : Ei|Vij → e∗ij(Ej).

Let this data satisfy the conditions:

(i) X =
⋃
i∈I X̂i;

(ii) if i < j in I then êij ◦ si|Vij = e∗ij(sj) +O(s2
i ), and for all γ ∈ Γ we have

eij ◦ ri(γ) = rj(ρij(γ)) ◦ eij : Vij −→ Vj ,

ri(γ)∗(êij) ◦ r̂i(γ) = e∗ij(r̂j(ρij(γ))) ◦ êij : Ei|Vij −→ (eij ◦ ri(γ))∗(Ej),

and ψi(Xi∩ (Vij/Γi)) = X̂i∩ X̂j , and ψi|Xi∩Vij/Γi = ψj ◦ (eij)∗|Xi∩Vij/Γj ,
and if vi ∈ Vij with si(vi) = 0 and vj = eij(vi) then ρ|StabΓi

(vi) :
StabΓi(vi) → StabΓj (vj) is an isomorphism, and the following sequence
of vector spaces is exact:

0 // TviVi
dsi(vi)⊕ deij(vi) // Ei|vi⊕TvjVj

êij(vi)⊕−dsj(vj) // Ej |vj // 0;

(iii) if i < j < k in I then there exists γijk ∈ Γk satisfying

ρik(γ) = γijk ρjk(ρij(γ)) γ−1
ijk for all γ ∈ Γi,

eik|Vik∩e−1
ij (Vjk) = rk(γijk) ◦ ejk ◦ eij |Vik∩e−1

ij (Vjk), and

êik|Vik∩e−1
ij (Vjk) =

(
e∗ij(e

∗
jk(r̂k(γijk))) ◦ e∗ij(êjk) ◦ êij

)
|Vik∩e−1

ij (Vjk).

Then there exist a d-orbifold X with vdimX = n and underlying topolog-
ical space Xtop

∼= X, and a 1-morphism ψi : [SVi,Ei,si/Γi] → X with under-
lying continuous map ψi which is an equivalence with the open d-suborbifold
X̂ i ⊆ X corresponding to X̂i ⊆ X for all i ∈ I, such that for all i < j
in I there exists a 2-morphism ηij : ψj ◦ [Seij ,êij , ρij ] ⇒ ψi ◦ [iVij ,Vi , idΓi ],
where [Seij ,êij , ρij ] : [SVij ,Ei|Vij ,si|Vij /Γi] → [SVj ,Ej ,sj/Γj ] and [iVij ,Vi , idΓi ] :

[SVij ,Ei|Vij ,si|Vij /Γi] → [SVi,Ei,si/Γj ] are as in Example 10.12. This d-orbifold

X is unique up to equivalence in dOrb.
Suppose also that Y is a manifold, and gi : Vi → Y are smooth maps for all

i ∈ I with gi ◦ ri(γ) = gi for all γ ∈ Γi, and gj ◦ eij = gi|Vij for all i < j in I.
Then there exist a 1-morphism h : X → Y unique up to 2-isomorphism, where
Y = FdOrb

Man (Y ) = [SY,0,0/{1}], and 2-morphisms ζi : h ◦ ψi ⇒ [Sgi,0, π{1}]
for all i ∈ I. Here [SY,0,0/{1}] is from Example 10.11 with E, s both zero and
Γ = {1}, and [Sgi,0, π{1}] : [SVi,Ei,si/Γi] → [SY,0,0/{1}] = Y is from Example
10.12 with ĝi = 0 and ρ = π{1} : Γi → {1}.
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10.3 Submersions, immersions and embeddings

We now extend §4.1–§4.2 to d-orbifolds. If X is a Deligne–Mumford C∞-stack
and f• : (E•, φ) → (F•, ψ) is a 1-morphism in vvect(X ), then we define when
f• is weakly injective, injective, weakly surjective or surjective exactly as in
Definition 4.1. Propositions 4.2 and 4.3 then hold on X , where Proposition
4.2(iv) is true whether we interpret ‘local’ in the Zariski or the étale topology.
Here is the analogue of Definition 4.4, which uses ideas from Definition 8.3:

Definition 10.22. Let f : X → Y be a 1-morphism of d-orbifolds. Then
T ∗X = (EX ,FX , φX ) and f∗(T ∗Y) =

(
f∗(EY), f∗(FY), f∗(φY)

)
are virtual vec-

tor bundles on X of ranks vdimX , vdimY , and Ωf = (f ′′, f2) : f∗(T ∗Y) →
T ∗X is a 1-morphism in vvect(X ).

(a) We call f a w-submersion if Ωf is weakly injective.

(b) We call f a submersion if Ωf is injective.

(c) We call f a w-immersion if f : X →Y is representable, i.e. f∗ : IsoX ([x])→
IsoY(ftop([x])) is injective for all [x] ∈ Xtop, and Ωf is weakly surjective.

(d) We call f an immersion if f : X → Y is representable and Ωf is surjective.

(e) We call f a w-embedding or embedding if it is a w-immersion or immersion,
respectively, and f∗ : IsoX ([x])→ IsoY(ftop([x])) is an isomorphism for all
[x] ∈ Xtop, and ftop : Xtop → Ytop is a homeomorphism with its image, so
in particular ftop is injective.

Parts (c)–(e) enable us to define d-suborbifolds of d-orbifolds. Open d-
suborbifolds are (Zariski) open d-substacks of a d-orbifold. For more general
d-suborbifolds, we call i : X → Y a w-immersed d-suborbifold, or immersed
d-suborbifold, or w-embedded d-suborbifold, or embedded d-suborbifold of Y , if
X ,Y are d-orbifolds and i is a w-immersion, . . . , embedding, respectively.

The 1-morphisms OΓ,λ(X ) : XΓ,λ → X and ÕΓ,λ(X ) : X̃Γ,λ → X of §10.7
are examples of w-immersions. Propositions 4.5, 4.6 and 4.7 hold for d-orbifolds
and orbifolds, except that in the d-orbifold analogue of Proposition 4.6(a) we
also have to assume f : X → Y is representable to deduce f is étale. Here is
an analogue of Theorem 4.8. It is proved in the same way, following Theorem
10.17 rather than Theorem 3.39.

Theorem 10.23. Suppose Sf,f̂ : SV,E,s → SW,F,t is a ‘standard model’ 1-
morphism in dOrb, as in Definition 10.9. For each [v] ∈ Vtop with s(v) = 0
and [w] = ftop([v]) ∈ Wtop, we have a complex

0 // TvV
ds(v)⊕ df(v) // Ev ⊕ TwW

f̂(v)⊕−dt(w) // Fw // 0. (10.5)

(a) Sf,f̂ is a w-submersion if and only if for all [v] ∈ Vtop with s(v) = 0 and
[w] = ftop(v) ∈ Wtop, (10.5) is exact at the fourth term.

(b) Sf,f̂ is a submersion if and only if for all [v] ∈ Vtop with s(v) = 0 and
[w] = ftop(v) ∈ Wtop, (10.5) is exact at the third and fourth terms.
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(c) Sf,f̂ is a w-immersion if and only if for all [v] ∈ Vtop with s(v) = 0
and [w] = ftop(v) ∈ Wtop, (10.5) is exact at the second term and f∗ :
IsoV([v])→ IsoW([w]) is injective.

(d) Sf,f̂ is an immersion if and only if for all [v] ∈ Vtop with s(v) = 0 and
[w] = ftop(v) ∈ Wtop, (10.5) is exact at the second and fourth terms and
f∗ : IsoV([v])→ IsoW([w]) is injective.

The conditions in (a)–(d) are open conditions on [v] in {[v] ∈ Vtop : s(v) = 0}.

Here is an analogue of the first part of Theorem 4.9, proved in the same way.

Theorem 10.24. Suppose g : X → Y is a 1-morphism of d-orbifolds, and
[x] ∈ Xtop with gtop([x]) = [y] ∈ Ytop. Then there exist open d-suborbifolds
T ⊆ X and U ⊆ Y with [x] ∈ T top, [y] ∈ Utop and g(T ) ⊆ U , a ‘standard
model’ 1-morphism Sf,f̂ : SV,E,s → SW,F,t in dOrb, equivalences i : T →
SV,E,s, j : SW,F,t → U , and a 2-morphism η : j ◦Sf,f̂ ◦i⇒ g|T . Furthermore:

(a) If g is a w-submersion then we can choose the data T ,U , . . . , j above

such that f : V → W is a submersion in Orb, and f̂ : E → f∗(F) is a
surjective morphism of vector bundles (i.e. has a right inverse).

(b) If g is a submersion we can choose T , . . . , j such that f : V → W is a

submersion and f̂ : E → f∗(F) is an isomorphism.

(c) If g is a w-immersion we can choose T , . . . , j such that f : V → W is

an immersion in Orb, and f̂ : E → f∗(F) is an injective morphism of
vector bundles (i.e. has a left inverse).

(d) If g is an immersion we can choose T , . . . , j such that f : V → W is

an immersion and f̂ : E → f∗(F) is an isomorphism.

Theorem 4.9(a′)–(d′) do not extend to (d-)orbifolds as stated, since submer-
sions in Orb are not (Zariski) locally modelled on projections πX : X ×Y → X ,
and similarly for immersions. As for Corollary 4.12, Theorem 10.24(b) implies:

Corollary 10.25. Let f : X → Y be a submersion of d-orbifolds with Y an
orbifold. Then X is an orbifold.

10.4 D-transversality and fibre products

Next we generalize §4.3 to d-orbifolds. As for Definition 4.16, we define:

Definition 10.26. Let X ,Y ,Z be d-manifolds and g : X → Z, h : Y → Z
be 1-morphisms, and letW = X ×g,Z,hY be the explicit d-stack fibre product
from §9.5. Equation (9.21) defines a morphism α1 in qcoh(W) :

α1 =

 e∗(g′′) ◦ Ie,g(EZ)
−f∗(h′′) ◦ If,h(EZ) ◦ η∗(EZ)

(g ◦ e)∗(φZ)

 : (g ◦ e)∗(EZ) −→
e∗(EX )⊕ f∗(EY)⊕ (g ◦ e)∗(FZ).

501



We call g,h d-transverse if α1 has a left inverse

β =
(
β1 β2 β3

)
: e∗(EX )⊕ f∗(EY)⊕ (g ◦ e)∗(FZ) −→ (g ◦ e)∗(FZ)

with β ◦ α1 = id(g◦e)∗(FZ).

Propositions 4.17 and 4.18 extend immediately to (d-)orbifolds. Here is the
analogue of Theorem 4.21, deduced from Theorem 4.21 using Theorem 9.16.

Theorem 10.27. Suppose X ,Y ,Z are d-orbifolds and g : X → Z, h : Y → Z
are d-transverse 1-morphisms, and let W = X ×g,Z,h Y be the d-stack fibre
product. Then W is a d-orbifold, with

vdimW = vdimX + vdimY − vdimZ. (10.6)

Proof. Write e : W → X and f : W → Y for the projections from the fibre
product. Let [w] ∈ Wtop, and write etop([w]) = [x] ∈ Xtop, ftop([w]) = [y] ∈
Ytop, and gtop([x]) = htop([y]) = [z] ∈ Ztop. Apply Theorem 9.16(a) to X ,Y ,Z
at [x], [y], [z], and Theorem 9.16(b) to g : X → Z at [x] and h : Y → Z at [y].
Replacing U by U ′, this yields:

• open neighbourhoods T ⊆ X , U ⊆ Y , V ⊆ Z of [x], [y], [z] in X ,Y ,Z
with g(T ),h(U) ⊆ V ;

• finite groups G = IsoX ([x]), H = IsoY([y]), K = IsoZ([z]);

• d-spaces T ,U ,V with actions p : G→ Aut(T ), q : H → Aut(U), r : K →
Aut(V ), so that Definition 9.15 gives quotient d-stacks [T /G], [U/H],
[V /K];

• fixed points t ∈ T , u ∈ U , v ∈ V of G,H,K;

• 1-morphisms i : [T /G] → X , j : [U/H] → Y , k : [V /K] → Z which
are equivalences with T ⊆ X , U ⊆ Y , V ⊆ Z, such that itop : [t] 7→ [x],
jtop : [u] 7→ [y] and ktop : [v] 7→ [z];

• group morphisms ρ : G → K, σ : H → K which are g∗ : IsoX ([x]) →
IsoZ([z]) and h∗ : IsoY([y])→ IsoZ([z]);

• d-space 1-morphisms m : T → V and n : U → V which are equivariant
w.r.t. ρ : G→ K and σ : H → K and map m : t 7→ v, n : u 7→ v, so that
Definition 9.15 gives quotient 1-morphisms [m, ρ] : [T /G] → [V /K] and
[n, σ] : [U/G]→ [V /K]; and

• 2-morphisms η : g ◦ i⇒ k ◦ [m, ρ] and ζ : h ◦ j ⇒ k ◦ [n, σ] in dSta.

LetW ′ be the open neighbourhood T ×g|T ,Z,h|U U of [w] inW . Then we
have equivalences of d-stacks

W ′ ' T ×g|T ,V,h|U U ' [T /G]×[m,ρ],[V /K],[n,σ] [U/H], (10.7)

since i : [T /G] → X , j : [U/H] → Y , k : [V /K] → Z are equivalences and
η : g ◦ i⇒ k ◦ [m, ρ] and ζ : h ◦ j ⇒ k ◦ [n, σ] are 2-morphisms.
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Define a 1-morphism l : T × K → V in dSpa by l|T×{κ} = r(κ) ◦m :
T × {κ} ∼= T → V for κ ∈ K. Then we can form the d-space fibre product
(T × K) ×l,V ,n U by the explicit construction of §2.5. Define actions p′ :
G×H → Aut(T ×K), q′ : G×H → Aut(U), r′ : G×H → Aut(V ) of G×H
on T ×K,U ,V by

p′(γ, δ)|T×{κ} = p(γ)× (κ 7→ σ(δ) ◦ κ ◦ ρ(γ)−1) :

T × {κ} −→ T × {σ(δ) ◦ κ ◦ ρ(γ)−1},
q′(γ, δ) = q(δ) : U → U and r′(γ, δ) = r(σ(δ)) : V → V ,

(10.8)

for γ ∈ G, δ ∈ H and κ ∈ K. Then we have

l◦p′(γ, δ)|T×{κ} = l|T×{σ(δ)◦κ◦ρ(γ)−1}p(γ)× (κ 7→ σ(δ) ◦ κ ◦ ρ(γ)−1)

= r
(
σ(δ) ◦ κ ◦ ρ(γ)−1

)
◦m ◦ p(γ) = r

(
σ(δ) ◦ κ ◦ ρ(γ)−1

)
◦ r(ρ(γ)) ◦m

= r(σ(δ)) ◦ r(κ) ◦m = r′(γ, δ) ◦ l|T×{κ},

so l ◦ p′(γ, δ) = r′(γ, δ) ◦ l for all (γ, δ) ∈ G×H, and n ◦ q′(γ, δ) = r′(γ, δ) ◦ n
follows from n ◦ q(γ) = r(σ(γ)) ◦ n.

Thus l,n are G×H invariant. As the construction of §2.5 is natural up to
1-isomorphism, the actions of G×H on T ×K,U ,V therefore induce an action
of G×H on (T ×K)×l,V ,nU by 1-isomorphisms, so we can form the quotient
d-stack

[
(T × K) ×l,V ,n U/G × H

]
. By comparing the definition of quotient

d-stacks in §9.3 with the explicit constructions of fibre products of d-spaces and
d-stacks in §2.5 and §9.5, one can show there is a natural equivalence

[T /G]×[m,ρ],[V /K],[n,σ] [U/H] '
[
(T ×K)×l,V ,n U/G×H

]
. (10.9)

Since T ⊆ X , U ⊆ Y , V ⊆ Z are d-orbifolds with [T /G] ' T , [U/H] ' U ,
[V /K] ' V , Proposition 10.15 shows that T ,U ,V are d-manifolds with virtual
dimensions vdimX , vdimY , vdimZ. As g,h are d-transverse in dOrb, i, j,k
are equivalences, and η : g ◦ i ⇒ k ◦ [m, ρ] and ζ : h ◦ j ⇒ k ◦ [n, σ] are 2-
morphisms, the d-orbifold analogue of Proposition 4.17 shows that [m, ρ], [n, σ]
are d-transverse in dOrb, and hence m,n are d-transverse in dMan, and also
l,n are d-transverse in dMan.

Theorem 4.21 now proves that (T ×K)×l,V ,n U is a d-manifold, of virtual
dimension vdimX + vdimY − vdimZ. So Proposition 10.15 shows that

[
(T ×

K) ×l,V ,n U/G × H
]

is a d-orbifold of the same dimension. Thus (10.7) and
(10.9) imply that W ′ is a d-orbifold of virtual dimension vdimX + vdimY −
vdimZ. As we can coverW by such openW ′, the theorem follows.

Here are the analogues of Theorems 4.22 and 4.23, with similar proofs.

Theorem 10.28. Suppose g : X → Z, h : Y → Z are 1-morphisms of d-
orbifolds. The following are sufficient conditions for g,h to be d-transverse, so
that W = X ×g,Z,h Y is a d-orbifold of virtual dimension (10.6):

(a) Z is an orbifold, that is, Z ∈ Ôrb; or
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(b) g or h is a w-submersion.

Theorem 10.29. Let X ,Z be d-orbifolds, Y an orbifold, and g : X → Z,
h : Y → Z be 1-morphisms with g a submersion. Then W = X ×g,Z,h Y is
an orbifold, with dimW = vdimX + dimY − vdimZ.

Next we give d-orbifold analogues of Propositions 4.26 and 4.27, proved in
a similar way. In contrast to Proposition 4.27, it is not true that if f : X → Y
is an immersion of d-orbifolds (or even of orbifolds) then locally X ' Y ×RRRn ∗;
the best we can do is that X ' Y ×[RRRn/H] [∗/G] for finite groups G,H.

Proposition 10.30. Let ρ : G → H be a morphism of finite groups, and
H act linearly on Rn. Then as in §9.3 we have quotient d-orbifolds [∗/G],
[RRRn/H] and a quotient 1-morphism [0, ρ] : [∗/G] → [RRRn/H]. Suppose X is
a d-orbifold and g : X → [RRRn/H] a 1-morphism in dOrb. Then the fibre
product W = X ×g,[RRRn/H],[0,ρ] [∗/G] exists in dOrb by Theorem 10.28(a). The
projection πX :W → X is an immersion if ρ is injective, and an embedding if
ρ is an isomorphism.

Proposition 10.31. Suppose f : X → Y is an immersion of d-orbifolds, and
[x] ∈ Xtop with ftop([x]) = [y] ∈ Ytop. Write ρ : G → H for f∗ : IsoX ([x]) →
IsoY([y]). Then ρ is injective, and there exist open neighbourhoods U ⊆ X and
V ⊆ Y of [x], [y] with f(U) ⊆ V , a linear action of H on Rn where n =
vdimY − vdimX > 0, and a 1-morphism g : V → [RRRn/H] with gtop([y]) = [0],
fitting into a 2-Cartesian square in dOrb :

U
f |U��

//

� �� �
GO

[∗/G]

[0,ρ] ��
V

g // [RRRn/H].

If f is an embedding then ρ is an isomorphism, and we may take U = f−1(V).

10.5 Embedding d-orbifolds into orbifolds

Section 4.4 proved Theorems 4.29, 4.32 and 4.33 giving necessary and sufficient
conditions for the existence of embeddings f : X → RRRn for any d-manifold X,
and Theorem 4.34 showing that if a d-manifoldX has an embedding f : X → Y
for a manifold Y then X ' SV,E,s for open f(X) ⊂ V ⊆ Y . Combining these
theorems in Corollaries 4.35 and 4.36 showed that large classes of d-manifolds
— all compact d-manifolds, for instance — are principal d-manifolds.

The proof of Theorem 4.34 extends to (d-)orbifolds, giving:

Theorem 10.32. Suppose X is a d-orbifold, Y an orbifold, and f : X → Y an
embedding, in the sense of Definition 10.22. Then there exist an open suborbifold
V ⊆ Y with f(X ) ⊆ V , a vector bundle E on V, and a smooth section s ∈ C∞(E)
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fitting into a 2-Cartesian diagram in dOrb, where Y ,V ,E, s,0 = FdOrb
Orb

(
Y,V,

Tot(E),Tot(s),Tot(0)
)
, in the notation of Definition 8.4:

X
f

//
f�� � �� �

FN V
0 ��

V s // E.

Hence X is equivalent to the ‘standard model’ d-orbifold SV,E,s of Definition
10.5, and is a principal d-orbifold.

However, Theorems 4.29, 4.32 and 4.33 do not seem to extend nicely to d-
orbifolds. If X is an orbifold and [x] ∈ Xtop such that IsoX ([x]) acts nontrivially
on TxX , then it is easy to see that for any 1-morphism f : X → Rn the linear
map df |x : TxX → Rn is not injective, as its kernel contains the nontrivial part
of the representation of IsoX ([x]) on TxX . Thus f is not an immersion or an
embedding. So general d-orbifolds X do not admit embeddings f : X → Rn.

Another natural thing to try is to look for embeddings f : X → [Rn/G] for
G a finite group acting linearly on Rn. However, this also does not work. There
exist representable 1-morphisms f : X → [Rn/G] if and only if X ' [X/G] for
some d-manifold X. But most orbifolds and d-orbifolds cannot be written as
global quotients. For example, the weighted projective space CP1

1,k for k > 1 is
a 2-orbifold homeomorphic to S2, with one orbifold point at [0, 1] with orbifold
group Zk. As CP1

1,k \ {[0, 1]} is a simply-connected manifold, one can show

CP1
1,k 6' [V /G] for any manifold V and finite group G.
We can ask:

Question 10.33. Let X be a d-orbifold, and suppose dimT ∗xX is bounded above
for [x] ∈ Xtop. Does there exist an embedding f : X → Y , for Y an orbifold?

If the answer is yes then Corollaries 4.35 and 4.36 also hold for d-orbifolds.
Here is one possibly useful criterion for the existence of embeddings.

Proposition 10.34. Suppose X is a compact d-orbifold, Y an effective orbifold,
and f : X → Y a 1-morphism with f : X → Y representable, where Y =
FdOrb

Orb (Y). Then there exist a vector bundle E on Y and an embedding g : X →
E with π ◦ g ∼= f , where E,π = FdOrb

Orb

(
Tot(E), π

)
, and π : Tot(E) → Y is as

in Definition 8.4. Hence X is a principal d-orbifold by Theorem 10.32.

To prove Proposition 10.34, we set E =
⊕N

k=0

(
Rnk ⊗

⊗k
T ∗Y

)
for N,n0,

. . . , nN � 0, and build g : X → E from a generic smooth section of f∗(E) on X .
If [x] ∈ Xtop with ftop([x]) = [y] then f∗ : IsoX ([x]) → IsoY([y]) is injective as
f is representable, and the representation of IsoY([y]) on T ∗Y is effective as Y
is effective, so the representation of IsoX ([x]) on g∗(E)|x contains all irreducible
representations of IsoX ([x]) for N � 0, and so contains the representation of
IsoX ([x]) on TxX for n0, . . . , nN � 0. Using this, one can show in a similar
way to the proof of Theorem 4.29 that for large enough N,n0, . . . , nN , a generic
section of f∗(E) yields an embedding g.
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10.6 Orientations on d-orbifolds

Next we generalize the material of §4.5 to d-orbifolds.

Definition 10.35. Let X be a Deligne–Mumford C∞-stack. Then as in §10.1.1
we have the 2-category vqcoh(X ) of virtual quasicoherent sheaves on X , and
the 2-subcategory vvect(X ) of virtual vector bundles on X . Let φ : E1 → E2

be a virtual vector bundle in vqcoh(X ). We will define a line bundle L(E•,φ)

on X we call the orientation line bundle of (E•, φ), generalizing orientation line
bundles for C∞-schemes in §4.5.

Let CX be the category of Definition C.30, with objects pairs (U, u) for U
a C∞-scheme and u : Ū → X an étale 1-morphism, and morphisms (f, η) :
(U, u) → (V , v) for f : U → V is an étale morphism of C∞-schemes, and

η : u⇒ v ◦ f̄ . Then since φ : E1 → E2 is a morphism in qcoh(X ), for each object

(U, u) in CX we have a morphism φ(U, u) : E1(U, u)→ E2(U, u) in qcoh(U). As
φ : E1 → E2 is a virtual vector bundle on X , φ(U, u) : E1(U, u)→ E2(U, u) is a
virtual vector bundle on the C∞-scheme U. Hence §4.5 defines the orientation
line bundle L(E•(U,u),φ(U,u)) on U. Define L(E•,φ)(U, u) = L(E•(U,u),φ(U,u)).

Next let (f, η) : (U, u)→ (V , v) be a morphism in CX . Then by definition of
qcoh(X ) we get a commutative diagram in qcoh(U), with columns isomorphisms:

f∗
(
E1(V , v)

)
E1

(f,η)��
f∗(φ1(V ,v))

// f∗
(
E2(V , v)

)
E2

(f,η)��
E1(U, u)

φ(U,u) // E2(U, u).

Thus E•(f,η) : f∗(E•(V , v), φ(V , v)) → (E•(U, u), φ(U, u)) is a 1-isomorphism in

vvect(U), and hence an equivalence. Definitions 4.41 and 4.42 now give canonical
isomorphisms

If,(E•(V ,v),φ(V ,v)) : f∗(L(E•,φ)(V , v))=f∗(L(E•(V ,v),φ(V ,v)))→Lf∗(E•(V ,v),φ(V ,v)),

LE•
(f,η)

: Lf∗(E•(V ,v),φ(V ,v)) −→ L(E•(U,u),φ(U,u)) = L(E•,φ)(U, u).

Define (L(E•,φ))(f,η) = LE•(f,η)
◦ If,(E•(V ,v),φ(V ,v)). It is now easy to check that

this data L(E•,φ)(U, u), (L(E•,φ))(f,η) defines a quasicoherent sheaf L(E•,φ) on X
in the sense of §C.6, which is a line bundle on X as each L(E•,φ)(U, u) is a line
bundle. We call L(E•,φ) the orientation line bundle of φ : E1 → E2.

Definitions 4.41 and 4.42 and Propositions 4.40 and 4.43 also generalize im-
mediately to Deligne–Mumford C∞-stacks. We leave the details as an exercise.
Here is the analogue of Definition 4.44.

Definition 10.36. Let X be a d-orbifold. Then the virtual cotangent bundle
T ∗X = (EX ,FX , φX ) is a virtual vector bundle on X , so Definition 10.35 con-
structs a line bundle LT∗X on X . We call LT∗X the orientation line bundle
of X . An orientation ω on X is an orientation on LT∗X . That is, ω is an
equivalence class [τ ] of isomorphisms τ : OX → LT∗X , where τ, τ ′ are equivalent
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if they are proportional by a positive function on X . We call X orientable if it
admits an orientation. An oriented d-orbifold is a pair (X , ω) where X is a d-
orbifold and ω an orientation on X . But we will often refer to X as an oriented
d-orbifold, leaving the orientation ω implicit. If ω = [τ ] is an orientation on
X , the opposite orientation is −ω = [−τ ]. When we refer to X as an oriented
d-orbifold, −X will mean X with the opposite orientation.

If X is a Deligne–Mumford C∞-stack, then line bundles L on X are étale
locally trivial, but need not be Zariski locally trivial. If [x] ∈ Xtop with
IsoX ([x]) = G, then line bundles L on X near [x] are classified up to isomor-
phism by representations of G on R, that is, by group morphisms ρ : G→ {±1}.
If ρ 6≡ 1 then L is not trivializable, even locally. This means that orbifolds and
d-orbifolds need not be orientable even locally near one point. For example, the
orbifold [Rn/{±1}] is not orientable near [0] for n odd.

All of the results and examples on orientations of d-manifolds in §4.6 now
extend to d-orbifolds in the obvious way. Proposition 4.47(d) must be modified
to say that if f , g : X → Y are étale 1-morphisms of d-orbifolds and η = (η, η′) :
f ⇒ g is a 2-morphism then Lf = Lg ◦ η∗(LY) : f∗(LY) → LX . Here is the
analogue of Theorem 4.50:

Theorem 10.37. Work in the situation of Theorem 10.27, so that W ,X ,Y ,Z
are d-orbifolds with W = X ×g,Z,h Y for g,h d-transverse, where e : W →
X , f : W → Y are the projections. Then we have orientation line bundles
LT∗W , . . . ,LT∗Z on W, . . . ,Z, so LT∗W , e∗(LT∗X ), f∗(LT∗Y), (g ◦ e)∗(LT∗Z)
are line bundles on W. With a suitable choice of orientation convention, there
is a canonical isomorphism

Φ : LT∗W −→ e∗(LT∗X )⊗OW f∗(LT∗Y)⊗OW (g ◦ e)∗(LT∗Z)∗. (10.10)

Hence, if X ,Y ,Z are oriented d-orbifolds, thenW has a natural orientation.

Proof. Use the notation of the proof of Theorem 10.27, so that W ′ ⊆ W ,
T ⊆ X , U ⊆ Y , V ⊆ Z are open with equivalences T ' [T /G], U ' [U/H],
V ' [V /K], and by (10.7)–(10.9) we have

W ′ ' T ×g|T ,V,h|U U '
[(

(T ×K)×l,V ,n U
)
/G×H

]
. (10.11)

The equivalence T ' [T /G] induces an equivalence of categories FΠ :
qcoh(T ) → qcohG(T ), as in Definition C.34 and Theorem C.35, and up to
canonical isomorphism FΠ maps LX |T = LT 7→ (LT , ρ), where LT ∈ qcoh(T )
and ρ is the natural lift of the G-action on T to LT . The same applies for
U ,V ,W ′. So by (10.11) we have

FΠ[LW |W′ ] = FΠ[LW′ ] ∼=
(
L(T×K)×l,V ,nU , σ

)
∼=
(
e∗(LT∗(T×K))⊗ f∗(LT∗U )⊗ (g ◦ e)∗(LT∗V )∗, σ

)
∼= FΠ

[
e∗(LT∗X )|W′

]
⊗FΠ

[
f∗(LT∗Y)|W′

]
⊗FΠ

[
(g ◦ e)∗(LT∗Z)∗|W′

]
∼= FΠ

[(
e∗(LT∗X )⊗OW f∗(LT∗Y)⊗OW (g ◦ e)∗(LT∗Z)∗

)
|W′
]
,

(10.12)
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where in the second line we use Theorem 4.50 for the d-manifold fibre product
(T ×K) ×l,V ,n U . As FΠ is an equivalence of categories, (10.12) implies that
there is a canonical isomorphism

ΦW′ : LT∗W |W′ −→
(
e∗(LT∗X )⊗OW f∗(LT∗Y)⊗OW (g ◦ e)∗(LT∗Z)∗

)
|W′ .

We can coverW by such openW ′ ⊆ W. As the isomorphisms ΦW′ are canonical,
they agree on overlaps. Hence they glue to define a unique isomorphism Φ in
(10.10) with Φ|W′ = ΦW′ for each W ′ ⊆ W as above.

The analogue of Proposition 4.52 holds for orientations of d-orbifolds, with
the same proof.

10.7 Orbifold strata of d-orbifolds

Section C.8 defined orbifold strata XΓ, X̃Γ, . . . , X̂Γ
◦ of a C∞-stack X . When

X is an orbifold, §8.4.1 showed that XΓ decomposes as XΓ =
∐
λ∈ΛΓ

+
XΓ,λ,

where each XΓ,λ is an orbifold of dimension dimX − dimλ, and similarly for
X̃Γ, . . . , X̂Γ

◦ . Section 9.6 defined the orbifold strata XΓ, X̃Γ, . . . , X̂Γ
◦ of a d-stack

X . We will now show that when X is a d-orbifold, these decompose naturally as
XΓ =

∐
λ∈ΛΓ XΓ,λ, where XΓ,λ is a d-orbifold of virtual dimension vdimX −

dimλ, and similarly for X̃Γ, . . . , X̂Γ
◦ . Here is the analogue of Definition 8.5.

Definition 10.38. Let Γ be a finite group, and use the notation Repnt(Γ),
ΛΓ = K0

(
Repnt(Γ)

)
, ΛΓ

+ ⊆ ΛΓ and dim : ΛΓ → Z of Definition 8.5. Let
R0, R1, . . . , Rk be representatives for the isomorphism classes of irreducible Γ-
representations, with R0 = R the trivial irreducible representation, so that
R1, . . . , Rk are nontrivial. Then ΛΓ is freely generated over Z by [R1], . . . , [Rk],
so that (8.1) gives isomorphisms ΛΓ ∼= Zk, ΛΓ

+
∼= Nk.

Let X be a d-orbifold. As X is a d-stack, Definitions 9.24 and 9.25 define
a d-stack XΓ and a 1-morphism OΓ(X ) : XΓ → X . The virtual cotangent
bundle of X is T ∗X = (EX ,FX , φX ), a virtual vector bundle of rank vdimX on
X . So OΓ(X )∗(T ∗X ) =

(
OΓ(X )∗(EX ), OΓ(X )∗(FX ), OΓ(X )∗(φX )

)
is a virtual

vector bundle on XΓ. As in Definition C.54, OΓ(X )∗(EX ), OΓ(X )∗(FX ) have
natural Γ-representations inducing decompositions of the form (C.22)–(C.23),
and OΓ(X )∗(φX ) is Γ-equivariant and so preserves these splittings. Hence we
have decompositions in vqcoh(XΓ):

OΓ(X )∗(T ∗X ) ∼=
⊕k

i=0(T ∗X )Γ
i ⊗Ri for (T ∗X )Γ

i ∈ vqcoh(XΓ),

and OΓ(X )∗(T ∗X ) = (T ∗X )Γ
tr ⊕ (T ∗X )Γ

nt, with

(T ∗X )Γ
tr
∼= (T ∗X )Γ

0 ⊗R0 and (T ∗X )Γ
nt
∼=
⊕k

i=1(T ∗X )Γ
i ⊗Ri.

(10.13)

Also Theorem 9.29 shows that T ∗(XΓ) ∼= (T ∗X )Γ
tr.

As OΓ(X )∗(T ∗X ) is a virtual vector bundle, (10.13) implies the (T ∗X )Γ
i are

virtual vector bundles of mixed rank, whose ranks may vary on different con-
nected components of XΓ. For each λ ∈ ΛΓ, define XΓ,λ to be the open and
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closed d-substack in XΓ with rank
(
(T ∗X )Γ

1

)
[R1] + · · · + rank

(
(T ∗X )Γ

k

)
[Rk] =

λ in ΛΓ. Then (T ∗X )Γ
nt|XΓ,λ is a virtual vector bundle of rank dimλ, so

T ∗(XΓ,λ) ∼= (T ∗X )Γ
tr|XΓ,λ is a virtual vector bundle of rank dimX − dimλ

on XΓ,λ. We will show in Corollary 10.40 that XΓ,λ is a d-orbifold, with
vdimXΓ,λ = vdimX − dimλ. Note that in the d-orbifold case dimλ may
be negative, so we can have vdimXΓ,λ > vdimX . As for (8.2), we have a
decomposition in dSta:

XΓ =
∐
λ∈ΛΓ XΓ,λ. (10.14)

Write OΓ,λ(X ) = OΓ(X )|XΓ,λ : XΓ,λ → X . Then OΓ,λ(X ) is a proper
w-immersion of d-orbifolds, in the sense of §10.3. We interpret (T ∗X )Γ

nt|XΓ,λ

as the virtual conormal bundle of XΓ,λ in X . It carries a nontrivial (virtual)
Γ-representation of class λ ∈ ΛΓ, so we refer to λ as the (virtual) conormal
Γ-representation of XΓ,λ.

Define XΓ,λ
◦ = XΓ

◦ ∩XΓ,λ, and OΓ,λ
◦ (X ) = OΓ

◦ (X )|XΓ,λ
◦

: XΓ,λ
◦ → X . Then

XΓ,λ
◦ is a d-orbifold with vdimXΓ,λ

◦ = vdimX −dimλ, and XΓ
◦ =

∐
λ∈ΛΓ XΓ,λ

◦ ,

and OΓ,λ
◦ (X ) is a w-immersion, but need not be proper.

As for X̃Γ,µ in Definition 8.5, for each µ ∈ ΛΓ/Aut(Γ) we may define X̃Γ,µ '[(∐
λ∈µXΓ,λ

)/
Aut(Γ)

]
, an open and closed d-substack of X̃Γ ' [XΓ/Aut(Γ)],

and X̃Γ,µ
◦ = X̃Γ

◦ ∩ X̃Γ,µ. Then X̃Γ,µ, X̃Γ,µ
◦ are d-orbifolds with vdim X̃Γ,µ =

vdim X̃Γ,µ
◦ = vdimX − dimµ, with

X̃Γ =
∐
µ∈ΛΓ/Aut(Γ) X̃Γ,µ and X̃Γ

◦ =
∐
µ∈ΛΓ/Aut(Γ) X̃

Γ,µ
◦ .

Set ÕΓ,µ(X ) = ÕΓ(X )|X̃Γ,µ : X̃Γ,µ→X , ÕΓ,µ
◦ (X ) = ÕΓ

◦ (X )|X̃Γ,µ
◦

: X̃Γ,µ
◦ →X .

Then ÕΓ,µ(X ), ÕΓ,µ
◦ (X ) are w-immersions, with ÕΓ,µ(X ) proper.

The 1-morphism Π̂Γ(X ) : X̃Γ → X̂Γ induces a homeomorphism of topo-
logical spaces by Theorem C.49(e), so it maps open and closed d-substacks of
X̃Γ to open and closed d-substacks of X̂Γ. Let X̂Γ,µ = Π̂Γ(X )(X̃Γ,µ) for each

µ ∈ ΛΓ/Aut(Λ), and write X̂Γ,µ
◦ = X̂Γ

◦∩X̂Γ,µ. Then X̂Γ,µ, X̂Γ,µ
◦ are d-orbifolds

of virtual dimension vdimX − dimµ, with

X̂Γ =
∐
µ∈ΛΓ/Aut(Γ) X̂Γ,µ and X̂Γ

◦ =
∐
µ∈ΛΓ/Aut(Γ) X̂

Γ,µ
◦ .

Also Theorem C.49(e) and Lemma 10.4 imply that X̂Γ,µ
◦ is a d-manifold, that

is, it lies in dM̂an.

Example 10.39. Suppose V is an orbifold, E → V a vector bundle, s : V → E
a smooth section, and SV,E,s the ‘standard model’ d-orbifold of Definition 10.5.
Let Γ be a finite group. We will describe the orbifold strata (SV,E,s)Γ,λ of SV,E,s.

As in §8.4.1 we have a decomposition VΓ =
∐
λ1∈ΛΓ

+
VΓ,λ1 . Also, as in §C.9

the vector bundle EΓ = OΓ(V)∗(E) on VΓ has a natural Γ-representation, and
has decompositions (C.22)–(C.23). Since EΓ is a vector bundle, the EΓ

i for
i = 0, . . . , k in (C.22) are vector bundles of mixed rank.

For all λ1, λ2 ∈ ΛΓ
+, define VΓ,λ1,λ2 to be the open and closed suborbifold

of VΓ,λ1 such that rank(EΓ
1 )[R1] + · · · + rank(EΓ

k )[Rk] = λ2 in ΛΓ
+. Then VΓ =

509



∐
λ1,λ2∈ΛΓ

+
VΓ,λ1,λ2 . For each λ1, λ2 we have

(T ∗V)Γ|VΓ,λ1,λ2 = (T ∗V)Γ
tr|VΓ,λ1,λ2 ⊕ (T ∗V)Γ

nt|VΓ,λ1,λ2 ,

EΓ|VΓ,λ1,λ2 = EΓ
tr|VΓ,λ1,λ2 ⊕ EΓ

nt|VΓ,λ1,λ2 ,

where all the factors are vector bundles with

rank(T ∗V)Γ
tr|VΓ,λ1,λ2 = dimV − dimλ1, rank(T ∗V)Γ

nt|VΓ,λ1,λ2 = dimλ1,

rank EΓ
tr|VΓ,λ1,λ2 = rank E − dimλ2, rank EΓ

nt|VΓ,λ1,λ2 = dimλ2.

For all λ1, λ2 ∈ ΛΓ
+, define a vector bundle EΓ,λ1,λ2 on VΓ,λ1,λ2 by EΓ,λ1,λ2 =

EΓ
tr|VΓ,λ1,λ2 . Now s : V → E is a smooth section of E → V, so lifts to a smooth

section OΓ(V)∗(s) of EΓ → VΓ. It is invariant under the Γ-action on EΓ, and
so is a section of EΓ

tr. Hence sΓ,λ1,λ2 := OΓ(V)∗(s)|VΓ,λ1,λ2 is a smooth section
of the vector bundle EΓ,λ1,λ2 → VΓ,λ1,λ2 , so Definition 10.5 gives a ‘standard
model’ d-orbifold SVΓ,λ1,λ2 ,EΓ,λ1,λ2 ,sΓ,λ1,λ2 , with

vdimSVΓ,λ1,λ2 ,EΓ,λ1,λ2 ,sΓ,λ1,λ2 = dimVΓ,λ1,λ2 − rank EΓ,λ1,λ2

= dimV − rank E − λ1 + λ2.
(10.15)

We now claim that for all λ ∈ ΛΓ we have an equivalence in dSta:

(SV,E,s)Γ,λ '
∐
λ1,λ2∈ΛΓ

+:λ1−λ2=λ SVΓ,λ1,λ2 ,EΓ,λ1,λ2 ,sΓ,λ1,λ2 . (10.16)

To prove this we compare the construction of (SV,E,s)Γ in §C.8–§9.6 with the
definition of SV,E,s in Definition 10.5. There is a natural equivalence

(SV,E,s)Γ ' SVΓ,EΓ,OΓ(V)∗(s) =
∐
λ1,λ2∈ΛΓ

+
SVΓ,λ1,λ2 ,EΓ,λ1,λ2 ,sΓ,λ1,λ2 , (10.17)

where VΓ is an orbifold of mixed dimension, and EΓ a vector bundle of mixed
rank. Writing X = SV,E,s, we see that OΓ(X )∗(EX )nt, O

Γ(X )∗(FX )nt are vector
bundles with Γ-representations of class λ1, λ2 ∈ ΛΓ

+ on SVΓ,λ1,λ2 ,EΓ,λ1,λ2 ,sΓ,λ1,λ2

in XΓ, so (T ∗X )Γ
nt is a virtual vector bundle with Γ-representation of class

λ1 − λ2 on SVΓ,λ1,λ2 ,EΓ,λ1,λ2 ,sΓ,λ1,λ2 , and SVΓ,λ1,λ2 ,EΓ,λ1,λ2 ,sΓ,λ1,λ2 in (10.17) lies

in (SV,E,s)Γ,λ1−λ2 ⊆ (SV,E,s)Γ. Equation (10.16) follows. Note that (10.15)–
(10.16) imply that (SV,E,s)Γ,λ is a disjoint union of principal d-orbifolds of
virtual dimension dimV − rank E − dimλ, so is a d-orbifold of this dimension.

Corollary 10.40. In Definition 10.38, XΓ,λ,XΓ,λ
◦ , X̃Γ,µ, X̃Γ,µ

◦ , X̂Γ,µ, X̂Γ,µ
◦ are

d-orbifolds of virtual dimensions vdimX − dimλ, vdimX − dimµ.

Proof. As X is a d-orbifold it can be covered by principal open d-suborbifolds
U ⊆ X . Then U ' SV,E,s for some V, E , s as U is principal. Corollary 9.27

implies that UΓ,λ ' (SV,E,s)Γ,λ for all Γ, λ. So Example 10.39 shows that UΓ,λ

is a d-orbifold with vdimUΓ,λ = vdimU − dimλ = vdimX − dimλ. But XΓ,λ

is covered by such open UΓ,λ, so XΓ,λ is also a d-orbifold with vdimXΓ,λ =
vdimX − dimλ. Since XΓ,λ

◦ , . . . , X̂Γ,µ
◦ are constructed from XΓ,λ by open d-

substacks and quotients, they are also d-orbifolds of the same dimension.
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Section 8.4.2 discussed issues involving orbifold strata and orientations. By
studying local models SV,E,s, the analogue of Lemma 8.6 is easy to prove:

Lemma 10.41. A d-orbifold X is locally orientable if and only if X Z2,λ = ∅
for all odd λ ∈ ΛZ2 ∼= Z.

As in §8.4.2, we consider the question: if X is an oriented orbifold, when can
we define orientations on the orbifold strata XΓ,λ, . . . , X̂Γ,µ

◦ ? Use the notation
ΛΓ

ev,Φ
Γ(δ, λ) of Definition 8.8. By analogy with Proposition 8.9, we might expect

that if X is an oriented d-orbifold and λ ∈ ΛΓ
ev, then we can define orientations

on the orbifold strata XΓ,λ,XΓ,λ
◦ . However, this turns out to be false (although

we will show in §10.9 that it holds for X semieffective).

Example 10.42. Let V = S2 × R, and write points of V as (x1, x2, x3, y) for
xi, y ∈ R with x2

1 + x2
2 + x2

3 = 1. Let E → V be the trivial vector bundle
R× V → V , so that sections of E are functions V → R, and define s ∈ C∞(E)
by s(x1, x2, x3, y) = x3y. Let G = Z2

2 = {1, σ, τ, στ}, and define actions r, r̂ of
G on V and E = R× V by

r(σ) : (x1, x2, x3, y) 7−→ (−x1,−x2,−x3, y),

r(τ) : (x1, x2, x3, y) 7−→ (x1, x2, x3,−y),

r̂(σ) : (e, x1, x2, x3, y) 7−→ (−e,−x1,−x2,−x3, y),

r̂(τ) : (e, x1, x2, x3, y) 7−→ (−e, x1, x2, x3,−y).

Then SV,E,s is an oriented d-manifold of virtual dimension 2. The G-actions
r, r̂ induce a G-action on SV,E,s preserving the orientation, so X = [SV,E,s/G]
is an oriented d-orbifold, as in Example 10.11. We find that

X Z2,0 = X Z2,0
◦
∼= X̃ Z2,0 = X̃ Z2,0

◦
∼= RPRPRP2 × [∗/Z2], X̂ Z2,0 = X̂ Z2,0

◦
∼= RPRPRP2.

None of these are orientable d-orbifolds, as RP2 is not orientable. Observe that if
X is an oriented orbifold, then Propositions 8.9, 8.10 imply that X Z2,0, . . . , X̂ Z2,0

◦
are all oriented, as 0 ∈ ΛΓ

ev,+. Thus, this example shows that for d-orbifolds,
the direct analogues of Propositions 8.9 and 8.10 fail.

The topological space Xtop is the union of two components, an RP2 of points
[±(x1, x2, x3, 0)] with orbifold group Z2, and an annulus A of points [±(x1, x2,
0,±y)] with orbifold group {1} if y 6= 0, which intersect in a circle S1 of points
[±(x1, x2, 0, 0)]. The oriented d-orbifold X is an oriented orbifold except along
this circle S1. The orientation on RP2 changes sign across the singular circle S1.

This example is also interesting in relation to (semi)effective d-orbifolds in
§10.9 below. The d-orbifold X is not (semi)effective. In contrast to Proposition
10.58, for all small G-equivariant perturbations s̃ of s, X̃ = [SV,E,s̃/G] is not
an orbifold, but must have singularities close to S1 ⊂ Xtop. To prove this, note

that X̃ would have to be an oriented orbifold, but also contain RP2 × [∗/Z2].

To prove Proposition 8.9, it was enough to coherently orient all (V, ρ) ∈
Repnt(Γ) with [(V, ρ)] = λ. But for the d-orbifold analogue, we need to coher-
ently orient all (V, ρ) ∈ Repnt(Γ), since arbitrary nontrivial Γ-representations
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can occur in the sheaves (EX )Γ,λ
nt , (FX )Γ,λ

nt in the virtual normal bundle (T ∗X )Γ,λ
nt

of XΓ,λ. This is possible only if ΛΓ
ev,+ = ΛΓ

+, which as in Definition 8.8 holds if
and only if |Γ| is odd. So we must suppose |Γ| odd in our d-orbifold version:

Proposition 10.43. Let Γ be a finite group with |Γ| odd, let (Ri, ρi) for i =
1, . . . , k be representatives for the nontrivial, irreducible, real Γ-representations
up to isomorphism, and choose orientations on R1, . . . , Rk. Then for all oriented
d-orbifolds X we may define orientations on XΓ,λ,XΓ,λ

◦ for all λ ∈ ΛΓ.

Proof. Let X be an oriented d-orbifold and λ ∈ ΛΓ, so that we have an orb-
ifold stratum XΓ,λ and 1-morphism OΓ,λ(X ) : XΓ,λ → X . As in (10.13) and
Theorem 9.29 we have decompositions of virtual vector bundles on XΓ,λ:

OΓ,λ(X )∗(T ∗X ) = (T ∗X )Γ,λ
tr ⊕ (T ∗X )Γ,λ

nt , where

(T ∗X )Γ,λ
tr
∼= T ∗(XΓ,λ) and (T ∗X )Γ,λ

nt
∼=
⊕k

i=1(T ∗X )Γ,λ
i ⊗Ri.

(10.18)

Also R1, . . . , Rk are even-dimensional, as |Γ| is odd.
Suppose V,R are finite-dimensional real vector spaces, with R oriented and

even-dimensional. Then there is a canonical orientation on V ⊗ R, without
choosing an orientation for V , characterized as follows: let v1, . . . , vk be a basis
for V , and r1, . . . , r2n be an oriented basis for R. Then v1 ⊗ r1, . . . , v1 ⊗ r2n,
v2 ⊗ r1, . . . , v2 ⊗ r2n, . . . , vk ⊗ r1, . . . , vk ⊗ r2n is an oriented basis for V ⊗R.

In the same way, as (T ∗X )Γ,λ
i is a virtual vector bundle on XΓ,λ, and Ri is an

oriented, even-dimensional real vector space, we can define a canonical orienta-
tion on the virtual vector bundle (T ∗X )Γ,λ

i ⊗Ri, without assuming (T ∗X )Γ,λ
i is

oriented or orientable. Combining these orientations for i = 1, . . . , k gives an ori-
entation on the virtual vector bundle (T ∗X )Γ,λ

nt . Also the orientation on X gives
an orientation on T ∗X , which pulls back to an orientation on OΓ,λ(X )∗(T ∗X ).
Combining these orientations using (10.18) we can define an orientation on

T ∗(XΓ,λ), and hence on XΓ,λ, and on XΓ,λ
◦ ⊆ XΓ,λ.

For the orbifold strata X̃Γ,µ, X̃Γ,µ
◦ , X̂Γ,µ, X̂Γ,µ

◦ , we follow the method of
Proposition 8.10. Let Γ be a finite group with |Γ| odd, and let λ ∈ ΛΓ with
µ = λ · Aut(Γ) ∈ ΛΓ/Aut(Γ). Write ∆ for the subgroup of Aut(Γ) fixing
λ in ΛΓ. Suppose X is an oriented d-orbifold. Then ∆ acts on XΓ,λ, with
X̃Γ,µ ' [XΓ,λ/∆]. Proposition 10.43 defines an orientation on XΓ,λ. As in
§8.4.2, the action of δ ∈ ∆ on XΓ,λ multiplies the orientation by ΦΓ(δ, λ) = ±1.
If ΦΓ(δ, λ) = 1 for all δ ∈ ∆ then ∆ preserves the orientation on XΓ,λ, and
X̃Γ,µ ' [XΓ,λ/∆] is oriented. Also Π̂Γ,µ(X ) : X̃Γ,µ → X̂Γ,µ takes orientations
on X̃Γ,µ to orientations on X̂Γ,µ. Thus we deduce:

Proposition 10.44. Let Γ be a finite group with |Γ| odd, and λ ∈ ΛΓ with
ΦΓ(δ, λ) = 1 for all δ ∈ Aut(Γ) with λ ·δ = λ. Set µ = λ ·Aut(Γ) ∈ ΛΓ/Aut(Γ).

Then X̃Γ,µ, X̃Γ,µ
◦ , X̂Γ,µ, X̂Γ,µ

◦ are oriented for all oriented d-orbifolds X .

If |Γ| is even, then for any λ ∈ ΛΓ, generalizing Example 10.42 we can

construct examples of oriented d-orbifolds X with XΓ,λ,XΓ,λ
◦ non-orientable.
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Similarly, if Γ, µ do not satisfy the conditions of Proposition 10.44, then we can
construct oriented X with X̃Γ,µ, X̃Γ,µ

◦ , X̂Γ,µ, X̂Γ,µ
◦ non-orientable. Hence, the

conditions on Γ, λ, µ in Propositions 10.43 and 10.44 are both necessary and
sufficient to be able to orient XΓ,λ, . . . , X̂Γ,µ

◦ for all oriented d-orbifolds X .

10.8 Kuranishi neighbourhoods, good coordinate systems

The material of this section is modelled on the theory of Kuranishi spaces
of Fukaya, Oh, Ohta and Ono [32, App. A], [34], which will be discussed in
Chapter 14. A Kuranishi structure [32, §A1.1], [34, §5] on a topological space
X comprises a cover of X by Kuranishi neighbourhoods (Vi, Ei,Γi, si, ψi) or
(Vi, E i, si, ψi), which are like charts in the definition of a manifold, together
with coordinate changes (eij , êij , ρij) or (eij , êij) between the Kuranishi neigh-
bourhoods (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj) on their overlaps in X, which
are like transition functions between charts in the definition of a manifold.

There are two versions of the theory, which we will refer to as type A
and type B respectively: in [32] the (type A) Kuranishi neighbourhoods are
(Vi, Ei,Γi, si, ψi) with Vi a manifold, Ei a vector bundle on Vi, si ∈ C∞(Ei),
and Γi a finite group acting effectively on Vi, Ei preserving si, but in [34] the
(type B) Kuranishi neighbourhoods are (Vi, E i, si, ψi) with Vi an effective orb-
ifold, E i a vector bundle on Vi and si ∈ C∞(E i). We can pass from type A to
type B by setting Vi = [V i/Γi].

Fukaya et al. define good coordinate systems on a compact Kuranishi space
X [32, Lem. A1.11], [34, Def. 6.1], which are a cover of X by Kuranishi neigh-
bourhoods and coordinate changes with nice properties, and they claim that
good coordinate systems exist for any Kuranishi space. They use good coor-
dinate systems to show that any compact Kuranishi space has a (multivalued,
Q-weighted) perturbation to a (non-Hausdorff, Q-weighted) compact manifold.

This section will define analogues of these ideas for d-orbifolds, in two ver-
sions ‘type A’ and ‘type B’, and prove in Theorems 10.48 and 10.54 that every d-
orbifold admits good coordinate systems of both types A and B. Theorems 10.48
and 10.54 may be regarded as converses to Theorems 10.19 and 10.21 in §10.2, as
they show that given any d-orbifold X , there exist data I,<, Vi, Ei,Γi, si, ψi, . . .
or I,<,Vi, E i, si, ψi, . . . satisfying the hypotheses of Theorems 10.19 and 10.21,
and yielding the d-orbifold X . We will apply these ideas in two ways:

• In §4.4 we showed that every compact d-manifold X is equivalent to some
SV,E,s. If s̃ ∈ C∞(E) is generic then X̃ = s̃−1(0) is a manifold, which is
compact if s̃− s is sufficiently small in C1. Thus, any compact d-manifold
X can be deformed to a compact manifold X̃ by a small perturbation.
We will use this in §13.2 to show that d-manifold bordism groups dBk(Y )
of a manifold Y are isomorphic to the ordinary bordism groups Bk(Y ).

As in §10.5, the author cannot prove that all compact d-orbifolds X are
equivalent to some SV,E,s. However, by choosing a type B good coordinate
system I,<,Vi, E i, si, ψi, . . . on X and choosing small perturbations s̃i of
si by induction on i ∈ I in a similar way to [32, 34], we will show at the
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end of §10.9 that every semieffective (or effective) d-orbifold X can be
deformed to an (effective) orbifold X̃ . In §13.4 we will use this argument
to prove isomorphisms of orbifold and d-orbifold bordism groups.

Thus, good coordinate systems on d-orbifolds are used as a substitute for
results on embedding d-manifolds in manifolds in §4.4.

• In Chapter 14 we will use good coordinate systems on d-orbifolds to show
that every d-orbifold can be given a Kuranishi structure. We will conclude
that d-orbifolds and Kuranishi spaces are roughly the same thing.

10.8.1 Type A Kuranishi neighbourhoods, good coordinate systems

We now define Kuranishi neighbourhoods, coordinate changes, and good coor-
dinate systems of type A on a d-orbifold X , loosely following Fukaya, Oh, Ohta
and Ono [32, Def.s A1.1, A1.3 & Lem. A1.11].

Definition 10.45. Let X be a d-orbifold. A type A Kuranishi neighbourhood
on X is a quintuple (V,E,Γ, s,ψ) where V is a manifold, E → V a vector
bundle, Γ a finite group acting smoothly and locally effectively on V,E (in the
sense of Definition C.28) preserving the vector bundle structure, and s : V → E
a smooth, Γ-equivariant section of E. Write the Γ-actions on V,E as r(γ) :
V → V and r̂(γ) : E → r(γ)∗(E) for γ ∈ Γ. Then Example 10.11 defines
a principal d-orbifold [SV,E,s/Γ]. We require that ψ : [SV,E,s/Γ] → X is a
1-morphism of d-orbifolds which is an equivalence with a nonempty open d-
suborbifold ψ([SV,E,s/Γ]) ⊆ X . If [x] ∈ Xtop we call (V,E,Γ, s,ψ) a type A
Kuranishi neighbourhood of [x] if [x] ∈ ψ([SV,E,s/Γ])top.

Definition 10.46. Suppose (Vi, Ei,Γi, si,ψi), (Vj , Ej ,Γj , sj ,ψj) are type A
Kuranishi neighbourhoods on a d-orbifold X , with

∅ 6= ψi([SVi,Ei,si/Γi]) ∩ψj([SVj ,Ej ,sj/Γj ]) ⊆ X .

A type A coordinate change from (Vi, Ei,Γi, si,ψi) to (Vj , Ej ,Γj , sj ,ψj) is a
quintuple (Vij , eij , êij , ρij ,ηij), where:

(a) ∅ 6= Vij ⊆ Vi is a Γi-invariant open submanifold, with

ψi
(
[SVij ,Ei|Vij ,si|Vij /Γi]

)
= ψi([SVi,Ei,si/Γi]) ∩ψj([SVj ,Ej ,sj/Γj ]) ⊆ X .

(b) ρij : Γi → Γj is an injective group morphism.

(c) eij : Vij → Vj is an embedding of manifolds with eij ◦ ri(γ) = rj(ρij(γ)) ◦
eij : Vij → Vj for all γ ∈ Γi. If vi, v

′
i ∈ Vij and δ ∈ Γj with rj(δ)◦eij(v′i) =

eij(vi), then there exists γ ∈ Γi with ρij(γ) = δ and ri(γ)(v′i) = vi.

(d) êij : Ei|Vij → e∗ij(Ej) is an embedding of vector bundles (that is, êij has
a left inverse), such that êij ◦ si|Vij = e∗ij(sj) and ri(γ)∗(êij) ◦ r̂i(γ) =
e∗ij(r̂j(ρij(γ))) ◦ êij : Ei|Vij → (eij ◦ ri(γ))∗(Ej) for all γ ∈ Γi. Thus
Example 10.12 defines a quotient 1-morphism

[Seij ,êij , ρij ] : [SVij ,Ei|Vij ,si|Vij /Γi] −→ [SVj ,Ej ,sj/Γj ], (10.19)
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where [SVij ,Ei|Vij ,si|Vij /Γi] is an open d-suborbifold in [SVi,Ei,si/Γi].

(e) If vi ∈ Vij with si(vi) = 0 and vj = eij(vi) ∈ Vj then the following linear
map is an isomorphism, as in (10.4):(

dsj(vj)
)
∗ :
(
TvjVj

)/(
deij(vi)[TviVi]

)
→
(
Ej |vj

)/(
êij(vi)[Ei|vi ]

)
.

Corollary 10.18 then implies that [Seij ,êij , ρij ] in (10.19) is an equivalence
with an open d-suborbifold of [SVj ,Ej ,sj/Γj ].

(f) ηij : ψj ◦ [Seij ,êij , ρij ]⇒ ψi|[SVij,Ei|Vij ,si|Vij /Γi] is a 2-morphism in dOrb.

(g) The quotient topological space Vi qVij Vj = (Vi q Vj)/ ∼ is Hausdorff,
where the equivalence relation ∼ identifies v ∈ Vij ⊆ Vi with eij(v) ∈ Vj .

Definition 10.47. Let X be a d-orbifold. A type A good coordinate system on
X consists of the following data satisfying conditions (a)–(e):

(a) We are given a countable indexing set I, and a total order < on I making
(I,<) into a well-ordered set.

(b) For each i ∈ I we are given a Kuranishi neighbourhood (Vi, Ei,Γi, si,ψi)
of type A on X . Write X i = ψi([SVi,Ei,si/Γi]), so that X i ⊆ X is an
open d-suborbifold, and ψi : [SVi,Ei,si/Γi] → X i is an equivalence. We
require that

⋃
i∈I X i = X , so that {X i : i ∈ I} is an open cover of X .

(c) For all i < j in I with X i ∩ X j 6= ∅ we are given a type A coordinate
change (Vij , eij , êij , ρij ,ηij) from (Vi, Ei,Γi, si,ψi) to (Vj , Ej ,Γj , sj ,ψj).

(d) For all i < j < k in I with X i ∩ X j ∩ X k 6= ∅, we are given γijk ∈ Γk
satisfying ρik(γ) = γijk ρjk(ρij(γ)) γ−1

ijk for all γ ∈ Γi, and

eik|Vik∩e−1
ij (Vjk) = rk(γijk) ◦ ejk ◦ eij |Vik∩e−1

ij (Vjk),

êik|Vik∩e−1
ij (Vjk) =

(
e∗ij(e

∗
jk(r̂k(γijk))) ◦ e∗ij(êjk) ◦ êij

)
|Vik∩e−1

ij (Vjk).
(10.20)

Combining the first equation of (10.20) with Definition 10.46(c) for eik and
Γi acting effectively on Vik ∩ e−1

ij (Vjk) shows that γijk is unique. Example
10.13 with δ = γijk and Λ = 0 then gives a 2-morphism in dOrb:

ηijk=[S0, γijk] : [Sejk,êjk , ρjk]◦[Seij ,êij , ρij ]|[S
Vik∩e

−1
ij

(Vjk),Ei,si
/Γi]

=⇒ [Seik,êik , ρik]|[S
Vik∩e

−1
ij

(Vjk),Ei,si
/Γi].

(10.21)

(e) For all i < j < k in I with X i ∩ X k 6= ∅ and X j ∩ X k 6= ∅, we require
that if vi ∈ Vik, vj ∈ Vjk and δ ∈ Γk with ejk(vj) = rk(δ) ◦ eik(vi) in
Vk, then X i ∩ X j ∩ X k 6= ∅, and vi ∈ Vij , and there exists γ ∈ Γj with
ρjk(γ) = δ γijk and vj = rj(γ) ◦ eij(vi).

Suppose now that Y is a manifold, and h : X → Y is a 1-morphism in
dOrb, where Y = FdOrb

Man (Y ). A type A good coordinate system for h : X → Y
consists of a type A good coordinate system

(
I,<, . . . , γijk

)
for X as in (a)–(e)

above, together with the following data satisfying conditions (f)–(g):
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(f) For each i ∈ I, we are given a smooth map gi : Vi → Y with gi ◦ri(γ) = gi
for all γ ∈ Γi, so that Example 10.12 defines a quotient 1-morphism

[Sgi,0, π] : [SVi,Ei,si/Γi] −→ [SY,0,0/{1}] = Y ,

where π : Γi → {1} is the projection. We are given a 2-morphism ζi :
h ◦ψi ⇒ [Sgi,0, π] in dOrb. Sometimes we require gi to be a submersion.

(g) For all i < j in I with X i ∩X j 6= ∅, we require that gj ◦ eij = gi|Vij . This
implies that

[Sgj ,0, π] ◦ [Seij ,êij , ρij ] = [Sgi,0, π]|[SVij,Ei|Vij ,si|Vij /Γi] :

[SVij ,Ei|Vij ,si|Vij /Γi] −→ [SY,0,0/{1}] = Y .

Here is the main result of this section. It will be proved in Appendix D, along
with the analogue Theorem 12.48 for d-orbifolds with corners. The analogue
for Kuranishi spaces is Fukaya et al. [32, Lem. A1.11], which is stated without
proof; the type B version, with some proof, is [34, Lem. 6.3].

Theorem 10.48. Suppose X is a d-orbifold. Then there exists a type A good
coordinate system

(
I,<, (Vi, Ei,Γi, si,ψi), (Vij , eij , êij , ρij ,ηij), γijk

)
for X . If

X is compact, we may take I to be finite. If {U j : j ∈ J} is an open cover of
X , we may take X i = ψi([SVi,Ei,si/Γi]) ⊆ U ji for each i ∈ I and some ji ∈ J .

Now let Y be a manifold and h : X → Y = FdOrb
Man (Y ) a 1-morphism

in dOrb. Then all the above extends to type A good coordinate systems for
h : X → Y , and we may take the gi in Definition 10.47(f) to be submersions.

Remark 10.49. (i) If
(
I,<, (Vi, Ei,Γi, si,ψi), (Vij , eij , êij , ρij ,ηij), γijk

)
is a

type A good coordinate system on X , then the data n = vdimX , X = Xtop,
I,<, Vi, Ei,Γi, si, ψi = fi,top for i ∈ I and Vij , eij , êij , ρij for i < j in I, γijk
for i < j < k in I satisfy the hypotheses of Theorem 10.21. The theorem then
reconstructs X up to equivalence, and the 1- and 2-morphisms ψi,ηij . Thus,
the data I,<, Vi, Ei,Γi, si, Vij , eij , êij , ρij , γijk determine X up to equivalence.
So we can regard Theorem 10.48 as a kind of converse to Theorem 10.21.

(ii) The conditions Definition 10.46(g), that (I,<) is well-ordered in Defini-
tion 10.47(a), and Definition 10.47(f), do not appear in [32, Lem. A1.11], [34,
Def. 6.1], but are technical conditions that the author has added in order to make
inductive proofs using good coordinate systems work. For example, to perturb
a semieffective d-orbifold X to an orbifold X̃ as in §13.4, we can choose a type
A good coordinate system on X , and then choose small generic Γi-equivariant
perturbations s̃i of si on Vi, by transfinite induction on i ∈ I in the order < on
I. We need (I,<) well-ordered so that transfinite induction is valid.

If i < j in I with X i ∩ X j 6= ∅ then the restriction of s̃j to Γj · eij(Vij)
in Vj is determined by s̃i|Vij . If i < j < k in I with X i ∩ X k 6= ∅ and
X j ∩ X k 6= ∅, this prescribes s̃k on Γk · eik(Vik) and Γk · ejk(Vjk). Part (e)
implies that these conditions are consistent on

(
Γk · eik(Vik)

)
∩
(
Γk · ejk(Vjk)

)
,

so that it is possible to choose s̃k. Definition 10.46(g) ensures the perturbation
X̃ is Hausdorff (separated).
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10.8.2 Type B Kuranishi neighbourhoods, good coordinate systems

Here are the ‘type B’ analogues of Definitions 10.45–10.47, loosely following
Fukaya and Ono [34, Def.s 5.1, 5.3 & 6.1].

Definition 10.50. Let X be a d-orbifold. A type B Kuranishi neighbourhood
on X is a quadruple (V, E , s,ψ) where V is an effective orbifold, E a vector
bundle on V and s ∈ C∞(E), so that Definition 10.5 defines a ‘standard model’
d-orbifold SV,E,s, and ψ : SV,E,s → X is a 1-morphism of d-orbifolds which is
an equivalence with a nonempty open d-suborbifold ψ(SV,E,s) ⊆ X . If [x] ∈
Xtop we say that (V, E , s,ψ) is a type B Kuranishi neighbourhood of [x] if also
[x] ∈ ψ(SV,E,s)top, so that [x] = ftop([v]) for some [v] ∈ Vtop with s(v) = 0.

Definition 10.51. Suppose (Vi, E i, si,ψi), (Vj , Ej , sj ,ψj) are type B Kuranishi
neighbourhoods on a d-orbifold X , with ∅ 6= ψi(SVi,Ei,si)∩ψj(SVj ,Ej ,sj ) ⊆ X .
A type B coordinate change from (Vi, E i, si,ψi) to (Vj , Ej , sj ,ψj) is a quadruple
(Vij , eij , êij ,ηij), where:

(a) ∅ 6= Vij ⊆ Vi is an open suborbifold, with

ψi
(
SVij ,Ei|Vij ,si|Vij

)
= ψi(SVi,Ei,si) ∩ψj(SVj ,Ej ,sj ) ⊆ X .

(b) eij : Vij → Vj is an embedding of orbifolds, in the sense of §8.2.

(c) êij : E i|Vij → e∗ij(Ej) is an embedding of vector bundles (that is, êij has
a left inverse in qcoh(Vij)), such that êij ◦ si|Vij = e∗ij(sj) ◦ ιij , where
ιij : OVij → e∗ij(OVj ) is the natural isomorphism, so that Definition 10.9
gives a ‘standard model’ 1-morphism

Seij ,êij : SVij ,Ei|Vij ,si|Vij −→ SVj ,Ej ,sj . (10.22)

(d) if [vi] ∈ Vij,top with si(vi) = 0 and [vj ] = eij,top([vi]) then the following
linear map is an isomorphism, as in (10.4):(

dsj(vj)
)
∗ :
(
TvjVj

)/(
deij(vi)[TviVi]

)
→
(
Ej |vj

)/(
êij(vi)[E i|vi ]

)
. (10.23)

Corollary 10.18 then implies that Seij ,êij in (10.22) is an equivalence with
an open d-suborbifold of SVj ,Ej ,sj .

(e) ηij : ψj ◦ Seij ,êij ⇒ ψi|SVij ,Ei|Vij ,si|Vij is a 2-morphism in dOrb.

(f) The quotient topological space Vi,topqVij,top
Vj,top = (Vi,topqVj,top)/ ∼ is

Hausdorff, where ∼ identifies [v]∈Vij,top⊆Vi,top with eij,top([v])∈Vj,top.

Note that eij , êij embeddings imply that dimVi 6 dimVj and rank E i 6 rank Ej .
Thus, coordinate changes generally exist only in one direction.

Definition 10.52. Let X be a d-orbifold. A type B good coordinate system on
X consists of the following data satisfying conditions (a)–(e):
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(a) We are given a countable indexing set I, and a total order < on I making
(I,<) into a well-ordered set.

(b) For each i ∈ I we are given a Kuranishi neighbourhood (Vi, E i, si,ψi) of
type B on X . Write X i = ψi(SVi,Ei,si), so that X i ⊆ X is an open
d-suborbifold, and ψi : SVi,Ei,si → X i is an equivalence. We require that⋃
i∈I X i = X , so that {X i : i ∈ I} is an open cover of X .

(c) For all i < j in I with X i ∩ X j 6= ∅ we are given a type B coordinate
change (Vij , eij , êij ,ηij) from (Vi, E i, si,ψi) to (Vj , Ej , sj ,ψj).

(d) For all i < j < k in I with X i ∩X j ∩X k 6= ∅, we are given a 2-morphism
ηijk : ejk ◦ eij |Vik∩e−1

ij (Vjk) ⇒ eik|Vik∩e−1
ij (Vjk) in Orb with

êik|Vik∩e−1
ij (Vjk) = η∗ijk(Ek) ◦ Ieij ,ejk(Ek)−1 ◦ eij |∗Vik∩e−1

ij (Vjk)
(êjk)

◦ êij |Vik∩e−1
ij (Vjk).

This ηijk is unique by Proposition 8.14(i). Proposition 10.10 gives a 2-
morphism in dOrb

ηijk =
(
ηijk|s−1

i (0), 0
)

: Sejk,êjk ◦ Seij ,êij |SVik∩e−1
ij

(Vjk),Ei,si

=⇒ Seik,êik |SVik∩e−1
ij

(Vjk),Ei,si
.

(e) For all i < j < k in I with X i ∩ X k 6= ∅ and X j ∩ X k 6= ∅, we require
that if [vi] ∈ Vik,top ⊆ Vi,top and [vj ] ∈ Vjk,top ⊆ Vj,top with eik,top([vi]) =
ejk,top([vj ]) in Vk,top, then X i∩X j∩X k 6= ∅, and [vi] ∈ Vij,top with [vj ] =
eij,top([vi]).

Suppose now that Y is an effective orbifold, and h : X → Y is a 1-morphism
in dOrb, where Y = FdOrb

Orb (Y). A type B good coordinate system for h :
X → Y consists of a good coordinate system

(
I,<, . . . , ηijk

)
for X as in (a)–(e)

above, together with the data:

(f) For each i ∈ I, a 1-morphism gi : Vi → Y, and a 2-morphism ζi : h◦ψi ⇒
Sgi,0 in dOrb. Sometimes we require gi to be a submersion, as in §8.2.

(g) For all i < j in I with X i ∩X j 6= ∅, a 2-morphism ζij : gj ◦ eij ⇒ gi|Vij
in Orb. When gi is a submersion, ζij is unique by Proposition 8.14(ii).

Remark 10.53. (i) One reason for requiring Vi to be effective in Definition
10.50, and eij an embedding in Definition 10.51(b), and gi a submersion in
Definition 10.52(f), is so that the 2-morphisms ηijk, ζij in Definition 10.52(d),(g)
are unique by Proposition 8.14(i),(ii). Thus, we can regard the ηijk, ζij as not
part of the data of a good coordinate system, but just require them to exist.

This means we can express good coordinate systems for X and h : X → Y
in terms of the homotopy category Ho(Orbeff ), as in §4.7 and Remarks 9.20
and 10.20(b). That is, when working with good coordinate systems we can treat
(effective) orbifolds as forming a category rather than a 2-category.
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(ii) There are natural maps from type A Kuranishi neighbourhoods, coordinate
changes, and good coordinate systems, to type B Kuranishi neighbourhoods,
coordinate changes, and good coordinate systems, defined as follows.

If (V,E,Γ, s,ψ) is a type A Kuranishi neighbourhood on X then Ṽ = [V /Γ]
is an orbifold, where V = FC∞Sch

Man (V ). The Γ-equivariant vector bundle E → V

lifts to a Γ-equivariant vector bundle (E ,Φ) ∈ qcohΓ(V ), and the equivalence
FΠ : qcoh(V) → qcohΓ(V ) from Definition C.34 and Theorem C.35 implies
that we may choose a vector bundle Ẽ on V with an isomorphism FΠ(Ẽ) ∼=
(E,Φ). The Γ-equivariant section s of E lifts to s̃ ∈ C∞(Ẽ). There is a natural
equivalence i : SṼ,Ẽ,s̃ → [SV,E,s/Γ], and we set ψ̃ = ψ ◦ i : SṼ,Ẽ,s̃ → X . Then

(Ṽ, Ẽ , s̃, ψ̃) is a type B Kuranishi neighbourhood on X .
Similarly, type A coordinate changes (Vij , eij , êij , ρij ,ηij) induce type B co-

ordinate changes (Ṽij , ẽij , ˆ̃eij , η̃ij), where Ṽij = [V ij/Γi] and ẽij = [eij , ρij ] in
the notation of Definitions C.17 and C.18. Given a type A good coordinate
system, map (Vi, Ei,Γi, si,ψi) 7→ (Ṽi, Ẽi, s̃i, ψ̃i) and (Vij , eij , êij , ρij ,ηij) 7→
(Ṽij , ẽij , ˆ̃eij , η̃ij) as above, and set

η̃ijk = [γijk] : ẽjk ◦ ẽij |Ṽik∩ẽ−1
ij (Ṽjk) = [ejk ◦ eij , ρjk ◦ ρij ]|[(V ik∩e−1

ij (V jk))/Γi]

=⇒ [eik, ρik]|[(V ik∩e−1
ij (V jk))/Γi]

= ẽik|Ṽik∩ẽ−1
ij (Ṽjk),

with [γijk] as in Definition C.19. Then
(
I,<,(Ṽi,Ẽi,s̃i,ψ̃i),(Ṽij ,ẽij , ˆ̃eij ,η̃ij),η̃ijk

)
is a type B good coordinate system.

Here is the type B analogue of Theorem 10.48, a kind of converse to Theorem
10.19. The analogue for Kuranishi spaces is Fukaya and Ono [34, Lem. 6.3]. The
first part of Theorem 10.54 follows immediately from Theorem 10.48 by Remark
10.53(ii). For the second part, Theorem 10.48 only covers the case when Y is a
manifold, so we need to extend to Y an effective orbifold. This extension is not
difficult, but would take a long time to write out, so we leave it as an exercise.

Theorem 10.54. Suppose X is a d-orbifold. Then there exists a type B good
coordinate system

(
I,<, (Vi, E i, si,ψi), (Vij , eij , êij ,ηij), ηijk

)
for X . If X is

compact, we may take I to be finite. If {U j : j ∈ J} is an open cover of X , we
may take X i = ψi(SVi,Ei,si) ⊆ U ji for each i ∈ I and some ji ∈ J .

Now let Y be an effective orbifold and h : X → Y = FdOrb
Orb (Y) a 1-

morphism. Then the above extends to type B good coordinate systems for h :
X → Y , and we may take the gi in Definition 10.52(f) to be submersions.

We define a special kind of type B good coordinate system.

Definition 10.55. A type B good coordinate system
(
I,<, (Vi, E i, si,ψi), (Vij ,

eij , êij ,ηij), ηijk
)

on a d-orbifold X , or for a 1-morphism h : X → Y to an
orbifold Y, is called a very good coordinate system if I ⊂ N = {0, 1, 2, . . .}, and
the order < on I is the restriction of < on N, and dimVi = i for all i ∈ I.
That is, there is at most one Kuranishi neighbourhood (Vi, E i, si,ψi) of each
dimension dimVi, and we use the dimensions dimVi as the indexing set I.
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Theorem 10.56. For each d-orbifold X , there exists a very good coordinate
system

(
I,<, (Vi, E i, si,ψi), (Vij , eij , êij ,ηij), ηijk

)
. If also h : X → Y is a 1-

morphism to an effective orbifold Y, there exists a very good coordinate system
for h : X → Y , and we may take the gi in Definition 10.52(f) to be submersions.
If X is compact, we may take I to be finite in both cases.

We can deduce this from Theorem 10.54. Let
(
I,<, (Vi, E i, si,ψi), . . . , ηijk

)
be as in Theorem 10.54 for X or h : X → Y . Now the proof of Theorem
10.48 below automatically yields

(
I,<, (Vi, Ei,Γi, si,ψi), . . . , γijk

)
with the ex-

tra property that dimVi < dimVj if i < j and X i∩X j 6= ∅, and the same holds
for Theorem 10.54 which is deduced from it.

So we put İ = {dim Ṽi : i ∈ I} ⊆ N, and for each d ∈ İ we put V̇d =∐
i∈I:dimVi=d Vi, which is an effective orbifold of dimension d, and we define

Ėd, ṡd, ḟd by Ėd|Vi = E i, ṡd|Vi = si, ḟd|SVi,Ei,si = ḟ i for each i ∈ I with

dimVi = d. Similarly, for d < e in İ we put V̇d,e =
∐
i,j∈I:dimVi=d, dimVj=e Vij ,

and so on. Then
(
İ , <, (V̇i, Ė i, ṡi, ḟ i), . . . , η̇ijk

)
is a very good coordinate system

for X or h : X → Y , and Theorem 10.56 follows.

10.9 Semieffective and effective d-orbifolds

In §C.5 we defined effective C∞-stacks, and in §8.4.3 we discussed effective orb-
ifolds. We now define semieffective and effective d-orbifolds. They have the
property that a small, generic perturbation of a semieffective d-orbifold is an
orbifold, and a small, generic perturbation of an effective d-orbifold is an effec-
tive orbifold. This will be important in §13.4, when we show that (semi)effective
d-orbifold bordism is isomorphic to (effective) orbifold bordism.

Definition 10.57. Let X be a d-orbifold. For [x] ∈ Xtop, so that x : ∗̄ → X is a
C∞-stack 1-morphism, apply the right exact operator x∗ to the exact sequence
(9.10) to get an exact sequence in qcoh(∗̄), where K[x] = Ker(x∗(φX )):

0 // K[x] // x∗(EX )
x∗(φX ) // x∗(FX )

x∗(ψX ) // x∗(T ∗X )∼=T ∗xX // 0. (10.24)

We may think of this as an exact sequence of real vector spaces, where K[x], T
∗
xX

are finite-dimensional with dimT ∗xX − dimK[x] = vdimX .
The orbifold group IsoX ([x]) is the group of 2-morphisms η : x ⇒ x.

Definition C.36 defines isomorphisms η∗(EX ) : x∗(EX ) → x∗(EX ) in qcoh(∗̄),
which make x∗(EX ) into a representation of IsoX ([x]). The same holds for
x∗(FX ), x∗(T ∗X ), and x∗(φX ), x∗(ψX ) are equivariant. Hence K[x], T

∗
xX are

also IsoX ([x])-representations.
We call X a semieffective d-orbifold if K[x] is a trivial representation of

IsoX ([x]) for all [x] ∈ Xtop. We call X an effective d-orbifold if it is semieffective,
and T ∗xX is an effective representation of IsoX ([x]) for all [x] ∈ Xtop.

Here is our result that generic perturbations of (semi)effective d-orbifolds
are (effective) orbifolds, stated for ‘standard model’ d-orbifolds SV,E,s. When
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we say ‘s̃− s is sufficiently small in C1 locally in V’, we mean that |s̃− s|([v]) +
|∇(s̃− s)|([v]) 6 C([v]) for all [v] ∈ Vtop, for some choice of connection ∇ on E
and metrics | . | on E , E ⊗ T ∗V, and some continuous C : Vtop → (0,∞).

Proposition 10.58. Let V be an orbifold, E a vector bundle on V, and s ∈
C∞(E), and let SV,E,s be as in Definition 10.5. Suppose SV,E,s is a semieffective
d-orbifold. Then for any generic perturbation s̃ of s in C∞(E) with s̃ − s
sufficiently small in C1 locally on V, the d-orbifold SV,E,s̃ is an orbifold, that

is, it lies in Ôrb ⊂ dOrb. If SV,E,s is an effective d-orbifold, then SV,E,s̃ is
an effective orbifold.

Proof. If X = SV,E,s then points [x] ∈ Xtop correspond to points [v] ∈ Vtop

with s(v) = 0, and then (10.24) for [v] becomes

0 // K[v] // E|∗v
ds|∗v // T ∗v V // T ∗vX // 0, (10.25)

which is an exact sequence of finite-dimensional representations of IsoV([v]). As
SV,E,s is semieffective, the representation of IsoV([v]) on K[v] is trivial.

Choose an open neighbourhood U of [v] in V and a splitting E|U = A ⊕ B,
where A,B are vector subbundles of E|U with B|v = ds|v(TvV), which implies
that A|v ∼= K∗[v] by (10.25). Then IsoV([v]) acts trivially on A|v, so making U
smaller if necessary, we can suppose that IsoV([u]) acts trivially on A|u for all
[u] ∈ Utop. Choose a connection ∇ on E|U , and regard ∇s|U as a morphism
TU → E|U = A⊕B, so we can split ∇s|U = ∇sA⊕∇sB for ∇sA : TU → A and
∇sB : TU → B. Then ∇sB|v : TvU → B|v is surjective, so making U smaller if
necessary, we can suppose ∇sB is surjective on U .

Let s̃ be a locally C1-small generic perturbation of s, and write s|U = sA⊕sB
and s̃|U = s̃A⊕ s̃B for sA, s̃A ∈ C∞(A) and sB, s̃B ∈ C∞(B). As ∇sB : TU → B
is surjective and ∇(s̃ − s) is small, ∇s̃B : TU → B is surjective, so (s̃B)−1(0)
is a suborbifold of U . Since s̃ is generic, s̃A|(s̃B)−1(0) is a transverse section

of A|(s̃B)−1(0), so s̃|−1
U (0) = (s̃A)−1(0) ∩ (s̃B)−1(0) is a suborbifold of U , and

SU,E|U ,s̃|U ' FdOrb
Orb (s̃|−1

U (0)). Thus, SV,E,s̃ is an orbifold near any [v] ∈ Vtop

with s(v) = 0. But s̃−1(0) is empty away from s−1(0), as s̃−s is locally C0-small.
So SV,E,s̃ is an orbifold, proving the first part.

For the second part, if SV,E,s is effective then IsoX ([v]) acts effectively on
T ∗vX in (10.25). Making U smaller if necessary, we can use this to show that
(s̃B)−1(0) and s̃|−1

U (0) above are effective orbifolds, so SV,E,s̃ is effective near
each [v] ∈ s−1(0), and thus is effective.

Using good coordinate systems from §10.8, we now sketch an argument that
if X is a general semieffective (or effective) d-orbifold then a small, generic
perturbation X̃ of X is an (effective) orbifold. Here we are not being precise
about what we mean by a ‘small, generic perturbation’ X̃ of X , though this will
become clearer during the proof. A more rigorous version of the same argument
will be used in §13.4 to prove (semi)effective d-orbifold bordism is isomorphic to
(effective) orbifold bordism. The argument is modelled on that used by Fukaya
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et al. [32, Th. A1.23], [34, Th. 6.4] to construct virtual classes and virtual chains
for Kuranishi spaces using good coordinate systems and multisections.

Let X be a (semi)effective d-orbifold, and
(
I,<, (Vi, E i, si,ψi), (Vij , eij , êij ,

ηij), ηijk
)

be a very good coordinate system for X in the sense of Definition
10.55, which exists by Theorem 10.56. By induction on j ∈ I ⊆ N, we choose
perturbations s̃j of sj in C∞(Ej) satisfying the conditions:

(a) if i < j in I with ψi(SVi,Ei,si) ∩ψj(SVj ,Ej ,sj ) 6= ∅ then e∗ij(s̃j) = êij(s̃i).

(b) s̃j is generic and locally C1-small on Vj away from
⋃
i < j in I eij(Vij).

Here (a) determines s̃j on the suborbifold eij(Vij) in Vj , for all such i < j. Def-
inition 10.55(d),(e) ensure that the conditions on s̃j in (a) imposed by different
i, i′ < j are consistent on eij(Vij) ∩ ei′j(Vi′j) in Vj . Thus the inductive step is
possible, and we can choose s̃j satisfying (a),(b) for all j ∈ I.

We then define a new d-orbifold X̃ by gluing together the d-orbifolds X̃ i =
SVi,Ei,s̃i for i ∈ I using Theorem 9.19, with U ij = SVij ,Ei|Vij ,s̃i|Vij , eij =
Seij ,êij : SVij ,Ei|Vij ,s̃i|Vij → SVj ,Ej ,s̃j , and so on. Since the structures in a type
B good coordinate system are nearly the same as the hypotheses of Theorem
9.19, we have exactly the data we need to do this.

Finally we claim that this perturbation X̃ of X is an orbifold (and an effec-
tive orbifold if X is effective). To see this, we prove by induction on j ∈ I that
each X̃ j = SVj ,Ej ,s̃j is an (effective) orbifold. Proposition 10.58 and (b) above

imply that X̃ j = SVj ,Ej ,s̃j is an (effective) orbifold away from eij(U ij) for all

i < j. But X̃ j is equivalent on eij(U ij) to U ij ⊂ X̃ i, which is an (effective)

orbifold by an earlier inductive step. So X̃ j is an (effective) orbifold for all j,

and thus X̃ is an (effective) orbifold.
Example 10.42 describes a non-semieffective d-orbifold X that cannot be

perturbed to an orbifold by a small perturbation.

Remark 10.59. We have explained that a d-orbifold X being semieffective (or
effective) is a sufficient condition for a small, generic perturbation X̃ of X to
be an (effective) orbifold. However, it is not a necessary condition.

The necessary and sufficient condition can be described as follows. Let
[x] ∈ Xtop, the representations K[x], T

∗
xX of IsoX ([x]), and the splittings K[x] =

K[x],tr⊕K[x],nt and T ∗xX = (T ∗xX )tr⊕ (T ∗xX )nt be as in Definition 10.57. Write
Hom(K[x],nt, (T

∗
xX )nt) for the finite-dimensional vector space of morphisms of

IsoX ([x])-representations λ : K[x],nt → (T ∗xX )nt, and Hom0(K[x],nt, (T
∗
xX )nt) for

the (generally singular) closed subset of such λ which are not injective.
Then small, generic perturbations of X are orbifolds if and only if for all

[x] ∈ Xtop, either K[x],nt = 0, or the codimension of Hom0(K[x],nt, (T
∗
xX )nt) in

Hom(K[x],nt, (T
∗
xX )nt) is strictly greater than dim(T ∗xX )tr − dimK[x],tr. Small,

generic perturbations of X are effective orbifolds if and only if this condition
holds, and also for each [x] ∈ Xtop, either [(T ∗xX )nt] − [K[x],nt] = [R] in ΛΓ for
some effective representation R of IsoX ([x]), or dim(T ∗xX )tr < dimK[x],tr.

We could have adopted these more complicated conditions as our defini-
tion of (semi)effective d-orbifolds, and then a stronger version of Proposition
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10.58 would hold, with SV,E,s̃ an (effective) orbifold if and only if SV,E,s̃ is a
semieffective (effective) d-orbifold. However, Lemmas 10.61–10.63 and Propo-
sitions 10.64 and 10.65 below would be false for this alternative definition of
(semi)effective d-orbifolds.

We now discuss other good properties of (semi)effective d-orbifolds. (Semi)-
effectiveness is preserved by equivalences i : X → Y in dOrb, as these induce
isomorphisms K[x]

∼= K[y], T
∗
xX ∼= T ∗yY when itop([x]) = [y]. If X is an orbifold

and X = FdOrb
Orb (X ) then EX = K[x] = 0 in Definition 10.57. So we deduce:

Lemma 10.60. Let X be an orbifold, and X = FdOrb
Orb (X ). Then X is a

semieffective d-orbifold, and if X is effective then X is effective.

The last part of Definition 10.57 implies:

Lemma 10.61. Let X be an effective d-orbifold. Then the underlying C∞-
stack X is effective, in the sense of §C.5.

The converse is false: if X is a d-orbifold then X effective as a C∞-stack
does not imply X is effective as a d-orbifold. We can combine Lemma 10.61 and
Proposition C.29 to deduce uniqueness results for the C∞-stack components of
2-morphisms of effective d-orbifolds.

Being (semi)effective constrains the orbifold strataXΓ,λ, . . . , X̂Γ,µ
◦ ofX from

§10.7. The next lemma shows that for a semieffective (or effective) d-orbifold
X , the same orbifold strata XΓ,λ vanish as would automatically vanish if X
were an orbifold (or effective orbifold, respectively). It implies vanishing for the

other orbifold strata X̃Γ,µ, X̂Γ,µ,XΓ,λ
◦ , X̃Γ,µ

◦ , X̂Γ,µ
◦ in the obvious way.

Lemma 10.62. Let X be a semieffective d-orbifold, Γ a finite group, and λ ∈
ΛΓ. Then XΓ,λ = ∅ unless λ ∈ ΛΓ

+ ⊂ ΛΓ. If X is effective then XΓ,λ = ∅
unless λ = [R] for R an effective Γ-representation.

Proof. For any d-orbifold X , points of XΓ,λ are isomorphism classes [x, ρ] as in
§C.8, where [x] ∈ Xtop and ρ : Γ→ IsoX ([x]) is injective. Since K[x], T

∗
xX in Def-

inition 10.9 are IsoX ([x]) representations, ρ makes them into Γ-representations.
Thus they split K[x] = K[x],tr⊕K[x],nt and T ∗xX = (T ∗xX )tr⊕(T ∗xX )nt into trivial
and nontrivial Γ-representations. It follows from the definition of XΓ in §10.7
that λ = [(T ∗xX )nt] − [K[x],nt] ∈ ΛΓ. If X is semieffective then K[x] is a trivial
representation, so K[x],nt = 0 and λ = [(T ∗xX )nt] ∈ ΛΓ

+. If X is effective then
T ∗xX is an effective IsoX ([x])- and Γ-representation, so λ = [R] for R = (T ∗xX )nt

an effective Γ-representation. The lemma follows.

Again, the converse is false: XΓ,λ = ∅ for λ ∈ ΛΓ \ ΛΓ
+ does not imply a

d-orbifold X is semieffective, and similarly for effective d-orbifolds. Using the
explicit construction of fibre products in dSta in §9.5 one can prove:

Lemma 10.63. If X ,Y are (semi)effective d-orbifolds, then the product X×Y
is also (semi)effective. More generally, any fibre product X ×ZY in dOrb with
X ,Y (semi)effective and Z a manifold is also (semi)effective.
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In §8.4.2 we proved in Propositions 8.9 and 8.10 that if X is an oriented orb-
ifold, then the orbifold strata XΓ,λ, . . . , X̂Γ,µ

◦ can be oriented under conditions
on Γ, λ, µ, which allow |Γ| even provided λ ∈ ΛΓ

ev,+. But in §10.7 we showed in
Propositions 10.43 and 10.44 that if X is an oriented d-orbifold, then the orb-
ifold strata XΓ,λ, . . . , X̂Γ,µ

◦ can in general be oriented under stronger conditions
on Γ, λ, µ, which require |Γ| odd.

However, if X is a semieffective d-orbifold, it turns out that XΓ,λ, . . . , X̂Γ,µ
◦

can be oriented under the weaker conditions on Γ, λ, µ of Propositions 8.9 and
8.10. The reason for this is that in the proof of Proposition 10.43, the virtual
vector bundle (T ∗X )Γ,λ

nt is a morphism (φX )Γ,λ
nt : (EX )Γ,λ

nt → (FX )Γ,λ
nt , and Defi-

nition 10.57 implies that the kernel of (φX )Γ,λ
nt is zero at each point [x] ∈ XΓ,λ

top .

This is enough to force (T ∗X )Γ,λ
nt to be a vector bundle in vvect(XΓ,λ), in the

sense of Definition 3.8, and Coker(φX )Γ,λ
nt lies in vect(XΓ,λ). Then as in Propo-

sition 8.9, Coker(φX )Γ,λ
nt and (T ∗X )Γ,λ

nt are oriented provided λ ∈ ΛΓ
ev,+. So we

obtain the following analogues of Propositions 8.9 and 8.10:

Proposition 10.64. Let X be an oriented, semieffective d-orbifold, and Γ a
finite group. Then we can define orientations on XΓ,λ,XΓ,λ

◦ for all λ ∈ ΛΓ
ev,+.

These depend on orientations on R1, . . . , Rk for representatives (R1, ρ1), . . . ,
(Rk, ρk) of the nontrivial, irreducible, even-dimensional Γ-representations.

Proposition 10.65. Let Γ be a finite group and λ ∈ ΛΓ
ev,+ with ΦΓ(δ, λ) = 1 for

all δ ∈ Aut(Γ) with λ ·δ = λ. Set µ = λ ·Aut(Γ) in ΛΓ
ev,+/Aut(Γ). Then X̃Γ,µ,

X̃Γ,µ
◦ , X̂Γ,µ, X̂Γ,µ

◦ are oriented for all oriented, semieffective d-orbifolds X .
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11 D-stacks with corners

We now study d-stacks with corners. Most of the chapter works by combining
ideas on d-spaces with corners from Chapter 6, and on orbifolds with corners
from §8.5–§8.9, and on d-stacks from Chapter 9; there are few new issues.

11.1 The definition of d-stacks with corners

Definitions 11.1–11.3 will define objects and 1- and 2-morphisms in the 2-
category of d-stacks with corners dStac. Broadly, we just replace d-spaces and
C∞-schemes in §6.1 by d-stacks and C∞-stacks, but our definition also includes
features of the definition of orbifolds with corners in §8.5.

Definition 11.1. A d-stack with corners is a quadruple X = (X ,∂X , iX, ωX),
where X = (X ,O′X , EX , ıX , X ) and ∂X = (∂X ,O′∂X , E∂X , ı∂X , ∂X ) are d-
stacks, and iX = (iX, i

′
X, i
′′
X) : ∂X → X is a 1-morphism of d-stacks, and

ωX is defined in (c) below, satisfying the following conditions (a)–(d):

(a) iX : ∂X → X is a proper, strongly representable 1-morphism of Deligne–
Mumford C∞-stacks, as in §C.3.

(b) i′′X : i∗X(EX )→ E∂X is an isomorphism in qcoh(∂X ).

(c) Define NX, νX so that νX : NX → i∗X(FX ) is the kernel of i2X in qcoh(∂X ).
We call NX the conormal bundle of ∂X in X . Then we have a complex:

0 // NX

νX // i∗X(FX )
i2X // F∂X // 0. (11.1)

We require that NX is a trivializable line bundle on ∂X , and ωX is an
orientation on NX.

(d) Suppose U is a separated, second countable C∞-scheme, and u : Ū → X
is an étale 1-morphism. For instance, u : Ū → X could be an atlas for
X . Then as iX : ∂X → X is representable by part (a) and Proposition
C.14(a), we can choose a C∞-scheme ∂U unique up to isomorphism, a
morphism iU : ∂U → U, an étale 1-morphism u∂ : ∂̄U → ∂X in a 2-
Cartesian diagram in C∞Sta, as for (8.6):

∂̄U u∂
//

īU�� � �� �
HP

id

∂X
iX ��

Ū
u // X .

(11.2)

Note that as iX is strongly representable, Proposition C.13 allows us to
choose the 2-morphism in (11.2) to be the identity.

Recall the definition of sheaves on X and ∂X in §C.6. We have (U, u) ∈ CX
and (∂U, u∂) ∈ C∂X , with U = (U,OU ). Hence O′U := O′X (U, u) is a sheaf
of C∞-rings on U , and EU := EX (U, u) is a quasicoherent sheaf on U, and
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ıU : O′U = O′X (U, u) → OX (U, u) = OU is a morphism of sheaves of C∞-
rings on U which is a square zero extension with kernel IU := IX (U, u),
and U : EU = EX (U, u)→ IX (U, u) = IU is surjective in qcoh(U).

Comparing the definitions of d-spaces and d-stacks now shows that U =
(U,O′U , EU , ıU , U ) is a d-space; we put the assumptions that U is separated
and second countable in for this reason. Similarly, ∂U = (∂U,O′∂U , E∂U ,
ı∂U , ∂U ) is a d-space, where O′∂U = O′∂X (∂U, u∂), E∂U = E∂X (∂U, u∂),
ı∂U = ı∂X (∂U, u∂), ∂U = ∂X (∂U, u∂).

Using Definitions C.30 and C.36 we can construct a natural isomorphism
αEX ,U : i∗U(EU ) = i∗U(EX (U, u))→ i∗X(EX )(∂U, u∂) in qcoh(∂U). Also i′′X :
i∗X(EX ) → E∂X induces i′′X(∂U, u∂) : i∗X(EX )(∂U, u∂) → E∂X (∂U, u∂) =
E∂U , so composing gives a morphism i′′U := i′′X(∂U, u∂)◦αEX ,U : i∗U(EU )→
E∂U . Similarly we set i′U := i′X(∂U, u∂) ◦ αO′X ,U : i−1

U (O′U )→ O′∂U . Then
iU = (iU, i

′
U, i
′′
U) is a d-space 1-morphism iU : U → ∂U .

We now have a commutative diagram with exact rows in qcoh(∂U):

0 // NX(∂U, u∂)

∼=
��

νX(∂U,u∂)

// i∗X(FX )(∂U, u∂)

∼=��
i2X(∂U,u∂)

// F∂X (∂U, u∂)

∼=
��

// 0

0 // NU
νU // i∗U(FU )

i2U // F∂U // 0,

(11.3)

where the top row is (11.1) evaluated at (∂U, u∂) ∈ C∂X , and NU, νU are
defined to be the kernel of i2U. Part (c) now implies NU is a line bundle
on ∂U , with a unique orientation ωU identified with ωX(∂U, u∂) by (11.3).
We require that U = (U ,∂U , iU, ωU) is a d-space with corners.

We call X a d-stack with boundary if iX : ∂X → X is injective as a representable
1-morphism of C∞-stacks, that is, if iX,top : ∂X top → Xtop is injective, and all
the induced morphisms on orbifold groups (iX)∗ : Iso∂X ([x′]) → IsoX ([x]) are
isomorphisms. We call X a d-stack without boundary if ∂X = ∅.

Properties of d-spaces with corners proved in Chapter 6 now hold for each U
in (d), so provided the properties are étale local we can deduce the corresponding
facts for X, noting that the allowed U, ∂U in (d) form étale open covers of X , ∂X .
For example, as (6.4) for U is split exact, and as in Lemma 2.22 being split exact
is an étale local condition on the separated, paracompact, locally fair Deligne–
Mumford C∞-stack ∂X , so equation (11.1) is split exact. Similarly, (6.5) exact
for each U implies the following sequence in qcoh(∂X ) is exact:

NX

i∗X(ψX)◦νX // i∗X(T ∗X )
ΩiX // T ∗(∂X ) // 0. (11.4)

If part (d) holds for a collection {(Ui, ui) : i ∈ I} of pairs (U, u) forming
an étale open cover of X , then it holds for all such (U, u). This is because the
U constructed from (U, u) is covered by (Zariski) open subsets 1-isomorphic
to open subsets in the d-spaces with corners Ui for i ∈ I, and apart from
the separated, second countable conditions on U that we impose by hand, for
U = (U ,∂U , iU, ωU) to be a d-space with corners is a (Zariski) local condition.
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Let X = (X ,∂X , iX, ωX) be a d-stack with corners. Suppose V ⊆ X is an
open d-substack in dSta. Define ∂V = i−1

X (V), as an open d-substack of ∂X ,
and iV : ∂V → V by iV = iX|∂V . Then ∂V ⊆ ∂X is an open C∞-substack,
and the conormal bundle of ∂V in V is NV = NX|∂V in qcoh(∂V). Define an
orientation ωV on NV by ωV = ωX|∂V . Write V = (V ,∂V , iV, ωV). Then V is
a d-stack with corners. We call V an open d-substack of X. If V is open and
closed in X we call V an open and closed d-substack of X. An open cover of X
is a family {Va : a ∈ A} of open d-substacks Va of X with X =

⋃
a∈A Va.

Definition 11.2. Let X = (X ,∂X , iX, ωX) and Y = (Y ,∂Y , iY, ωY) be d-
stacks with corners. A 1-morphism f : X → Y of d-stacks with corners is a
1-morphism f = (f, f ′, f ′′) : X → Y in dSta satisfying the following condition:

(∗) Suppose we are given a 2-commutative diagram in C∞Sta:

Ū u
//

h̄�� �� ���� η
X
f ��

V̄
v // Y,

(11.5)

as for (8.8), where U, V are separated, second countable C∞-schemes,
h : U → V is a morphism, and u : Ū → X , v : V̄ → Y are étale 1-
morphisms. Then Definition 11.1(d) extends U, V to d-spaces with corners
U,V. As for iU in Definition 11.1(d), using (11.5) we can extend h : U →
V naturally to 1-morphism h = (h, h′, h′′) : U → V in dSpa, using
diagrams (11.2) for U, u with 1-morphism u∂ , and for V , v with v∂ . We
require that h should be a 1-morphism h : U → V in dSpac, that is, it
should satisfy the conditions of Definition 6.2, for all such diagrams (11.5).

If (∗) holds for each of a collection {(Ui, ui, V i, vi, hi) : i ∈ I} such that {(Ui, ui) :
i ∈ I} are an étale open cover of X , then (∗) holds for all such (U, u, V , v, h),
by the same argument as for Definition 11.1(d). Properties of 1-morphisms in
dSpac proved in Chapter 6 now hold for each such h, so provided they are étale
local in X ,Y, we can deduce the corresponding properties for f .

If f : X → Y, g : Y → Z are 1-morphisms of d-stacks with corners then
we define the composition g ◦ f : X → Z to be the composition g ◦ f of 1-
morphisms in dSta. Since f , g satisfy (∗), we see that g ◦ f satisfies (∗), since
g ◦ f is étale locally modelled on compositions of 1-morphisms in dSpac lifting
f , g, and 1-morphisms in dSpac are closed under composition.

If X = (X ,∂X , iX, ωX) is a d-stack with corners, we define the identity 1-
morphism idX : X→ X to be the identity 1-morphism idX : X → X in dSta.

Consider the C∞-stack fibre products ∂X ×f◦iX,Y,iY ∂Y and X ×f,Y,iY ∂Y.
Since iY is strongly representable, we may define these using the explicit con-
struction of Proposition C.15, and then we have 2-Cartesian diagrams

∂X ×f◦iX,Y,iY ∂Y π∂Y
//

π∂X�� ����
CK

id

∂Y
iY ��

X ×f,Y,iY ∂Y π∂Y
//

πX�� ����
CK

id

∂Y
iY ��

∂X
f◦iX // Y, X

f // Y,
(11.6)
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as for (8.10), with π∂X , πX strongly representable.
Following Definition 8.18 we define Πf : ∂X ×Y ∂Y → X ×Y ∂Y strongly

representable with iX ◦ π∂X = πX ◦ Πf , π∂Y = π∂Y ◦ Πf , and unique open
C∞-substacks Sf ⊆ ∂X ×Y ∂Y and T f ⊆ X ×Y ∂Y, which are characterized by
the property that in (∗) we get étale projections a : (∂U ×V ∂V )→ ∂X ×Y ∂Y
and b : (U ×f,V ,iV ∂V )→ X ×f,Y,iY ∂Y with a−1(Sf ) = S̄h and b−1(T f ) = T̄h,
for Sh ⊆ ∂U ×V ∂V and Th ⊆ U ×V ∂V as in Definition 6.2.

As for (8.11)–(8.16) we can describe the sets (∂X ×Y ∂Y)top, (X ×Y ∂Y)top

and subsets Sf ,top ⊆ (∂X ×Y ∂Y)top, T f ,top ⊆ (X ×Y ∂Y)top. We have

(∂X ×Y ∂Y)top
∼=
{

[x′, y′] : x′ : ∗̄ → ∂X and y′ : ∗̄ → ∂Y are

1-morphisms with f ◦iX◦x′= iY◦y′ : ∗̄→Y
}
,

(11.7)

(X ×Y ∂Y)top
∼=
{

[x, y′] : x : ∗̄ → X and y′ : ∗̄ → ∂Y are

1-morphisms with f ◦x= iY◦y′ : ∗̄→Y
}
,

(11.8)

where [x′, y′], [x, y′] are equivalence classes of (x′, y′), (x, y′) as in §8.5. Then

Sf ,top
∼=
{

[x′, y′] : x′ : ∗̄ → ∂X , y′ : ∗̄ → ∂Y with f ◦iX◦x′= iY◦y′,
(iX ◦ x′)∗(f2) ◦ IiX◦x′,f (FY) ◦ Iy′,iY(FY)−1 ◦ (y′)∗(νY) 6= 0,

and (x′)∗(i2X) ◦ Ix′,iX(FX ) ◦ (iX ◦ x′)∗(f2) ◦
IiX◦x′,f (FY) ◦ Iy′,iY(FY)−1 ◦ (y′)∗(νY) = 0

}
, (11.9)

T f ,top
∼=
{

[x, y′] : x : ∗̄ → X , y′ : ∗̄ → ∂Y with f ◦x= iY◦y′, and

x∗(f2) ◦ Ix,f (FY) ◦ Iy′,iY(FY)−1 ◦ (y′)∗(νY) = 0
}
. (11.10)

Here the morphisms in (11.9)–(11.10) are given in

0 // (y′)∗(NY)
(y′)∗(νY) //

∼=
��

(y′)∗◦i∗Y(FY)
(y′)∗(i2Y) //

Ix′,iX
(FX )◦(iX◦x′)∗(f2)◦

IiX◦x′,f
(FY)◦Iy′,iY (FY)−1

��

(y′)∗(F∂Y)

��

// 0

0 // (x′)∗(NX)
(x′)∗(νX)

// (x′)∗◦i∗X(FX )
(x′)∗(i2X)

// (x′)∗(F∂X ) // 0,

(11.11)

0 // (y′)∗(NY)
(y′)∗(νY)

// (y′)∗◦i∗Y(FY)
(y′)∗(i2Y)

//

x∗(f2)◦Ix,f (FY)◦Iy′,iY (FY)−1

��

(y′)∗(F∂Y)

uu

// 0

x∗(FX ).

(11.12)

The conditions in (11.9),(11.10) are equivalent to the existence of morphisms
‘99K’ in (11.11),(11.12) respectively making (11.11)–(11.12) commute.

Define sf = π∂X |Sf : Sf → ∂X , uf = π∂Y |Sf : Sf → ∂Y, tf = πX |Tf :
T f → X and vf = π∂Y |Tf : T f → ∂Y, and jf = Πf |Sf : Sf → X ×Y ∂Y. Then
sf , tf are strongly representable by Proposition C.14(c), as π∂X , πX are. Also
(11.6) and iX ◦π∂X = πX ◦Πf , π∂Y = π∂Y ◦Πf give identities on sf , uf , . . . , jf ,
which are equalities rather than 2-isomorphisms:

f ◦ iX ◦ sf = iY ◦ uf , f ◦ tf = iY ◦ vf , πX ◦ jf = iX ◦ sf , π∂Y ◦ jf = uf .
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In the situation of (∗), sh, uh, . . . , jh are étale lifts of sf , uf , . . . , jf . Thus,
from Proposition 6.7(a)–(e) for h for all U, u, V , v, h we deduce:

(a) Sf , T f are open and closed C∞-substacks in ∂X ×Y ∂Y and X ×Y ∂Y.

(b) jf is an equivalence of C∞-stacks Sf → (X ×Y ∂Y) \ T f .

(c) sf : Sf → ∂X and tf : T f → X are proper étale 1-morphisms.

(d) There are unique λf : u∗f (NY)→ s∗f (NX) and µf : u∗f (F∂Y)→ s∗f (F∂X )
in qcoh(Sf ) such that the following diagrams commute:

0 // u∗f (NY)
u∗f (νY)

//

λf
��

u∗f ◦ i∗Y(FY)
u∗f (i2Y)

//

Isf ,iX (FX )◦(iX◦sf )∗(f2)◦
IiX◦sf ,f (FY)◦Iuf ,iY (FY)−1

��

u∗f (F∂Y)

µf
��

// 0

0 // s∗f (NX)
s∗f (νX)

// s∗f ◦ i∗X(FX )
s∗f (i2X)

// s∗f (F∂X ) // 0,

(11.13)

u∗f (NY)
u∗f (i∗Y(ψY)◦νY)

//

λf
��

u∗f ◦i∗Y(T ∗Y)
u∗f (ΩiY )

//

Isf ,iX (T∗X )◦(iX◦sf )∗(Ωf )◦
IiX◦sf ,f (T∗Y)◦Iuf ,iY (T∗Y)−1

��

u∗f (T ∗(∂Y))

Ω−1
sf
◦

Ωuf��

// 0

s∗f (NX)
s∗f (i∗X(ψX )◦νX)

// s∗f ◦i∗X(T ∗X )
s∗f (ΩiX )

// s∗f (T ∗(∂X )) // 0,

(11.14)

where the rows are exact, and Ωsf : s∗f (T ∗(∂X )) → T ∗Sf is an isomor-
phism as sf is étale by (c). Furthermore, λf is an isomorphism, and
identifies the orientations u∗f (ωY) on u∗f (NY) and s∗f (ωX) on s∗f (NX).

(e) The following diagram commutes in qcoh(T f ), using f ◦ tf = iY ◦ vf :

v∗f (NY)

0��
v∗f (νY)

// v∗f ◦ i∗Y(FY)
Ivf ,iY (FY)−1

// (f ◦ tf )∗(FY)

Itf ,f (FY)
��

t∗f (FX ) t∗f ◦ f∗(FY).
t∗f (f2)

oo
(11.15)

Definition 11.3. Let f , g : X → Y be 1-morphisms of d-stacks with corners.
Then X = (X ,∂X , iX, ωX), Y = (Y ,∂Y , iY, ωY), and f , g : X → Y are 1-
morphisms in dSta satisfying condition (∗) above. Suppose η = (η, η′) : f ⇒ g
is a 2-morphism in dSta. Let ∂X ×f◦iX,Y,iY ∂Y and ∂X ×g◦iX,Y,iY ∂Y be as
in Definition 11.2. Using η : f ⇒ g, properties of fibre products, and π∂X :
∂X ×g◦iX,Y,iY ∂Y → ∂X strongly representable, we find there is a unique 1-
morphism Πη : ∂X ×f◦iX,Y,iY ∂Y → ∂X ×g◦iX,Y,iY ∂Y and 2-morphism θη :
π∂Y ⇒ π∂Y ◦ Πη such that π∂X ◦ Πη = π∂X and idiY ∗ θη = η ∗ idiX◦π∂X . In
fact Πη is a 1-isomorphism, with inverse Πη−1 . Similarly, there is a unique 1-

isomorphism Π̃η : X ×f,Y,iY ∂Y → X ×g,Y,iY ∂Y and 2-morphism θ̃η : π∂Y ⇒
π∂Y ◦ Π̃η such that πX ◦Π′η = πX and idiY ∗ θ̃η = η ∗ idπX .

We call η : f⇒g a 2-morphism of d-stacks with corners if Sg=Πη(Sf ), and

(iX◦sf )∗(η′)◦IiX◦sf ,f (FY)◦Iuf ,iY(FY)−1◦u∗f (νY) = 0 in qcoh(Sf ), (11.16)

t∗f (η′) ◦ Itf ,f (FY) ◦ Ivf ,iY(FY)−1 ◦ v∗f (νY) = 0 in qcoh(T f ), (11.17)
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where the morphisms are given in

u∗f (NY)

0��
u∗f (νY)

// u∗f ◦ i∗Y(FY)
Iuf ,iY (FY)−1

// (iY ◦ uf )∗(FY)

IiX◦sf ,f (FY)
��

(iX ◦ sf )∗(EX ) (iX ◦ sf )∗ ◦ f∗(FY),
(iX◦sf )∗(η′)oo

v∗f (NY)

0��
v∗f (νY)

// v∗f ◦ i∗Y(FY)
Ivf ,iY (FY)−1

// (f ◦ tf )∗(FY)

Itf ,f (FY)
��

t∗f (EX ) t∗f ◦ f∗(FY),
t∗f (η′)

oo

using f ◦ iX ◦sf = iY ◦uf and f ◦ tf = iY ◦vf . Since Sf ,Sg determine T f , T g by

Definition 11.2(b), we see that Sg = Πη(Sf ) implies that T g = Π̃η(T f ). From
π∂X ◦Πη = π∂X , θη : π∂Y ⇒ π∂Y ◦Πη, and so on, we see that

sg ◦Πη|Sf = sf , tg ◦ Π̃η|Tf = tf ,

θη|Sf : uf ⇒ ug ◦Πη|Sf , θ̃η|Tf : vf ⇒ vg ◦ Π̃η|Tf .

We can also express these conditions on η by lifting étale locally to dSpac,
as in Definitions 11.1 and 11.2, in the following way. Suppose we are given a
2-commutative diagram in C∞Sta:

Ū u
//

h̄��
�� ���� ζ

X
g

��
f

��
η

⇐
V̄

v // Y,
(11.18)

where U, V are separated, second countable C∞-schemes, h : U → V is a mor-
phism, u : Ū → X , v : V̄ → Y are étale 1-morphisms, and η : f ⇒ g is from η.
Then condition (∗) of Definition 11.2 applies to f with 2-morphism ζ� (η ∗ idu),
giving a 1-morphism h = (h, h′, h′′) : U → V in dSpac, and also to g with 2-
morphism ζ, giving a 1-morphism h̃ = (h, h̃′, h̃′′) : U→ V. Define a morphism
θ : h∗(FV )→ EU in qcoh(U) to be the composition

h∗(FV )
∼= // h∗(FY(V , v))

∼= // f∗(FY)(U, u)
η′(U,u) // EX (U, u) EU ,

where the first two terms are natural isomorphisms we can construct using
Definitions C.30 and C.36. Then equation (9.13) for η′ implies (2.25) for θ, so
that θ : h→ h̃ is a 2-morphism in dSpa.

One can show that Sg = Πη(Sf ) implies that Sh̃ = Sh, and (11.16)–(11.17)

for η′ imply (6.9)–(6.10) for θ, so θ : h ⇒ h̃ is a 2-morphism in dSpac by
Definition 6.3. Conversely, if η : f ⇒ g is a 2-morphism in dSta, and θ : h⇒ h̃
is a 2-morphism in dSpac for every such diagram (11.18), then Sh̃ = Sh for
all such h, h̃ imply that Sg = Πη(Sf ), and (6.9)–(6.10) for all such θ imply
(11.16)–(11.17) for η, so η : f ⇒ g is a 2-morphism of d-stacks with corners.

As for objects and 1-morphisms in Definitions 11.1 and 11.2, properties of
2-morphisms in dSpac proved in Chapter 6 imply properties of 2-morphisms
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of d-stacks with corners, provided the properties are étale local. In particular,
from Proposition 6.8(a)–(c) we can deduce:

(a) λf , λg in Definition 11.2(d) fit into a commutative diagram in qcoh(Sf ):

u∗f (NY)

λf

��

θη|∗Sf (NY)
// (ug ◦Πη|Sf )∗(NY)

IΠη|Sf ,ug
(NY)

// Πη|∗Sf (u∗g(NY))

Πη|∗Sf (λg)

��
s∗f (NX) (sg ◦Πη|Sf )∗(NX) Πη|∗Sf (s∗g(NX)).

IΠη|Sf ,sg
(NX)−1

oo

(11.19)

(b) There is a unique morphism η′S : u∗f (F∂Y) → s∗f (E∂X ) in qcoh(Sf ) such
that the following commutes:

(iX◦sf )∗◦f∗(FY)

(iX◦sf )∗(η′)

��

Iuf ,iY (FY)◦
IiX◦sf ,f (FY)−1

// u∗f ◦ i∗Y(FY)
u∗f (i2Y)

// u∗f (F∂Y)

η′S
��

(iX ◦ sf )∗(EX )
Isf ,iX (EX )

// s∗f ◦ i∗X(EX )
s∗f (i′′X)

// s∗f (E∂X ).

(11.20)

(c) There is a unique morphism η′T : v∗f (F∂Y) → t∗f (EX ) in qcoh(T f ) such
that the following commutes:

t∗f ◦ f∗(FY)

t∗f (η′)

��

Itf ,f (FY)−1

// (f ◦ tf )∗(FY)
Ivf ,iY (FY)

// v∗f ◦ i∗Y(FY)

v∗f (i2Y)

��
t∗f (EX ) v∗f (F∂Y).

η′Too

(11.21)

We define vertical composition ζ � η and horizontal composition ζ ∗ η of
2-morphisms of d-stacks with corners to be vertical and horizontal composition
of 2-morphisms in dSta. Using the étale local characterization of 2-morphisms
above, as 2-morphisms in dSpac are closed under vertical and horizontal com-
position, we see that such ζ�η and ζ ∗η are also 2-morphisms of d-stacks with
corners. For f : X → Y a 1-morphism of d-stacks with corners, we define the
identity 2-morphism to be the identity 2-morphism idf : f ⇒ f in dSta.

In Definitions 11.1, 11.2 and above we have defined all the structures of
a 2-category, which we call the 2-category of d-stacks with corners, written
dStac. By Theorem 11.4 they satisfy the axioms of a 2-category. Write dStab

for the full 2-subcategory of d-stacks with boundary, and dS̄ta for the full 2-
subcategory of d-stacks without boundary.

Define a 2-functor FdStac

dSta : dSta→ dStac to map X 7→ X = (X , ∅, ∅, ∅) on
objects, f 7→ f on 1-morphisms, and η 7→ η on 2-morphisms, where the data
∂X , iX, ωX is trivial as the d-stacks concerned are empty. Then FdStac

dSta is a
(strict) isomorphism of 2-categories dSta → dS̄ta. So we may as well identify
dSta with its image dS̄ta, and consider d-stacks in Chapter 9 as examples of
d-stacks with corners.
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Define a 2-functor FdStac

dSpac : dSpac → dStac as follows. If X = (X,∂X, iX,

ωX) is an object in dSpac, we define FdStac

dSpac(X) = X = (X ,∂X , iX, ωX), where

X ,∂X , iX = FdSta
dSpa(X,∂X, iX). Note that then iX = FC∞Sta

C∞Sch(iX) = īX,
which is strongly representable by Proposition C.16, as required by Definition
11.1(a). Roughly speaking, the orientation ωX on the line bundle NX on ¯∂X is
given by ωX = I∂X(ωX), where the equivalence of categories I∂X : qcoh(∂X)→
qcoh( ¯∂X) is as in Example C.32. More precisely, if τ : O∂X → NX in qcoh(∂X)
represents ωX, then ωX is the orientation on NX represented by the following
composition, with natural isomorphisms in the first and third morphisms:

O∂X
∼= // I∂X(O∂X)

I∂X(τ) // I∂X(NX)
∼= // NX.

On 1-morphisms f and 2-morphisms η in dSpac, define FdStac

dSpac(f) = FdSta
dSpa(f)

and FdStac

dSpac(η) = FdSta
dSpa(η). Write dŜpac for the full 2-subcategory of objects

X in dStac equivalent to FdStac

dSpac(X) for some d-space with corners X. When

we say that a d-stack with corners X is a d-space, we mean that X ∈ dŜpac.
Define a 2-functor FdStac

Orbc : Orbc → dStac as follows. If X = (X , ∂X , iX) is
an orbifold with corners, as in §8.5, define FdStac

Orbc (X) = X = (X ,∂X , iX, ωX),
where X ,∂X , iX = FdSta

C∞Sta(X , ∂X , iX). Then there are canonical isomor-
phisms FX ∼= T ∗X and F∂X ∼= T ∗∂X , so (11.1) gives an exact sequence

0 // NX
// i∗X(T ∗X )

ΩiX // T ∗(∂X ) // 0.

Thus NX is naturally isomorphic to the conormal line bundle of ∂X in X . Let
ωX be the orientation on NX coming from ‘outward-pointing’ normal vectors on
this conormal line bundle. Then X = (X ,∂X , iX, ωX) is a d-stack with corners.
Define FdStac

Orbc : f 7→ f = FdSta
C∞Sta(f) on 1-morphisms f : X → Y in Orbc, and

FdStac

Orbc : η 7→ η = FdSta
C∞Sta(η) on 2-morphisms η : f ⇒ g in Orbc.

Write Ōrb, Ōrbb, Ōrbc for the full 2-subcategories of objects X in dStac

equivalent to FdStac

Orbc (X) for some orbifold X without boundary, or with bound-
ary, or with corners, respectively. Then Ōrb ⊂ dS̄ta, Ōrbb ⊂ dStab and
Ōrbc ⊂ dStac. When we say that a d-stack with corners X is an orbifold, we
mean that X ∈ Ōrbc.

Since 1- and 2-morphisms in dStac are just special examples of 1- and 2-
morphisms in dSta, the proof in Theorem 9.7 that dSta is a 2-category and
FdSta

dSpa, F
dSta
C∞Sta are full and faithful strict 2-functors implies:

Theorem 11.4. In Definitions 11.1–11.3, dS̄ta,dStab,dStac are strict 2-
categories, in which all 2-morphisms are 2-isomorphisms, and FdStac

dSta , FdStac

dSpac

and FdStac

Orbc are full and faithful strict 2-functors.

Remark 11.5. (a) Definitions 11.1–11.3 combine ideas from the definitions
of dSpac,Orbc,dSta in §6.1, §8.5 and §9.2. Most of the points about these
definitions made in Remarks 6.5, 8.17 and 9.8 are also relevant to dStac.

(b) Just as in §8.5 we defined objects and 1-morphisms in Orbc to be étale
locally modelled on objects and morphisms in Manc, so above we defined ob-
jects, 1- and 2-morphisms in dStac to be étale locally modelled on objects, 1-
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and 2-morphisms in dSpac. Some advantages of this are that, firstly, writing
down more direct definitions is tricky, as to define ‘boundary defining functions’
for d-stacks with corners one is forced to work étale locally rather than Zariski
locally, and secondly, it enables us to easily deduce results in dStac from results
in dSpac, as in Definitions 11.2(a)–(e) and 11.3(a)–(c).

(c) As for iX in Definition 8.15, the condition that iX is strongly representable
in Definition 11.1(a) is there to ensure that 1-morphisms f and 2-morphisms
η lift to boundaries (f−,η− in §11.3) and corners (C(f), C(η), Ĉ(f), Ĉ(η) in
§11.5) uniquely, in a strictly functorial way, rather than merely uniquely up to
2-isomorphism and in a weakly functorial way.

Here is the analogue of Propositions 2.17, 6.9 and 9.9. To prove it we first
apply Proposition 9.9 to show that there exists a unique 1-morphism g : X → Y
in dSta such that η : f ⇒ g is a 2-morphism in dSta. Then we show that g
satisfies Definition 11.2(∗), so it is a 1-morphism in dStac. To do this, we show
that g is étale locally modelled on 1-morphisms in dSpac constructed using
Proposition 6.9, using the method of étale locally modelling 2-morphisms based
on equation (11.18) in Definition 11.3.

Proposition 11.6. Suppose f = (f, f ′, f ′′) : X → Y is a 1-morphism of d-
stacks with corners, g : X → Y a 1-morphism of C∞-stacks, η : f ⇒ g a 2-
morphism of C∞-stacks, and η′ : f∗(FY) → EX a morphism in qcoh(X ) such
that (11.16) and (11.17) hold in qcoh(Sf ) and qcoh(T f ). Then there exists a
unique 1-morphism g = (g, g′, g′′) : X → Y in dStac such that η = (η, η′) :
f ⇒ g is a 2-morphism in dStac.

11.2 D-stacks with corners as quotients of d-spaces

We now give the analogue of §9.3 for d-spaces and d-stacks with corners.

Definition 11.7. Let X = (X,∂X, iX, ωX) be a d-space with corners, G a
finite group, and r : G → Aut(X) an action of G on X by 1-isomorphisms, as
in Definition 6.54. Since 1-isomorphisms are simple, by §6.3 each r(γ) : X→ X
for γ ∈ G has a unique lift r−(γ) : ∂X → ∂X with iX ◦ r−(γ) = r(γ) ◦ iX.
Then r− : G→ Aut(∂X) is an action of G on ∂X by 1-isomorphisms. Hence r :
G→ Aut(X) and r− : G→ Aut(∂X) are actions of G on the d-spaces X,∂X
by 1-isomorphisms, so §9.3 defines quotient d-stacks [X/G], [∂X/G]. Also the
d-space 1-morphism iX : ∂X → X satisfies iX ◦ r−(γ) = r(idG(γ)) ◦ iX for
all γ ∈ G, so §9.3 defines a quotient 1-morphism [iX, idG] : [∂X/G] → [X/G].
The proof in Example 8.16 shows that the underlying C∞-stack 1-morphism
[iX, idG] : [∂X/G]→ [X/G] is strongly representable.

Set X = [X/G], ∂X = [∂X/G], and iX = [iX, idG]. We will verify Defini-
tion 11.1(a)–(d) for X = (X ,∂X , iX, ωX), defining ωX along the way. For (a),
iX = [iX, idG] is strongly representable from above, and iX proper in (a), i′′X an
isomorphism in (b), and NX a line bundle in (c), follow from the corresponding
properties of iX, i

′′
X,NX for the d-space with corners X in Definition 6.1.
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For Definition 11.1(d), writing ι : {1} → G for the inclusion, we now have a
2-Cartesian diagram in C∞Sta:

¯∂X = [∂X/{1}]
[id∂X ,ι]

//

īX�� � �� �
IQ

id

[∂X/G] = ∂X
[iX,idG]=iX ��

X̄ = [X/{1}]
[idX ,ι] // [X/G] = X .

(11.22)

Regard (11.22) as an example of diagram (11.2) for X = (X ,∂X , iX, ωX), where
ωX remains to be constructed. In Definition 11.1(d) we use (11.2) to construct
U ,∂U , iU, ωU from X ,∂X , iX, ωX. In our case, the constructions of U ,∂U , iU
just recover X,∂X, iX (up to canonical isomorphism). So (11.3) gives a unique
isomorphism NX(∂X, [id∂X , ι])

∼= NX in qcoh(∂X).
As the orientation ωX on NX is G-invariant, there is a unique orientation

ωX on NX such that this isomorphism identifies ωX(∂X, [id∂X , ι]) with ωX.
Hence Definition 11.1(c) holds, and (d) holds with (11.22) in place of (11.2).
But as in Definition 11.1, it is sufficient to verify (d) for an étale open cover
{(Ui, ui) : i ∈ I} of X , and

{
(X, [idX , ι])

}
is an étale open cover of X = [X/G].

Therefore X is a d-stack with corners. We shall also write X = [X/G].
Next let X,Y be d-spaces with corners, G,H finite groups, and r : G →

Aut(X), s : H → Aut(Y) be actions of G,H on X,Y, so that we have quotient
d-stacks with corners X = [X/G] and Y = [Y/H]. Suppose f : X → Y
is a 1-morphism in dSpac and ρ : G → H is a group morphism, satisfying
f ◦ r(γ) = s(ρ(γ)) ◦ f for all γ ∈ G. Then Definition 9.15 defines a 1-morphism
[f , ρ] : [X/G] → [Y /H] in dSta. We claim that [f , ρ] : [X/G] → [Y/H] is
also a 1-morphism in dStac. We must verify Definition 11.2(∗). Consider the
2-commutative diagram in C∞Sta:

X̄ = [X/{1}]
[idX ,ι]

//

f̄��
�� �� 	� id

[X/G] = X
[f,ρ]

��
Ȳ = [Y /{1}]

[idY ,ι] // [Y /H] = Y.
(11.23)

Then [idX , ι], [idY , ι] are étale. Applying (∗) with (11.23) in place of (11.5) and
[f , ρ] in place of f reconstructs f : X → Y in place of h : U → V . Since by
assumption f is a 1-morphism in dSpac, condition (∗) holds in this case. As{

(X, [idX , ι])
}

is an étale open cover of X , condition (∗) holds in every case.
Now let [f , ρ], [g, σ] : [X/G] → [Y/H] be two quotient 1-morphisms of the

above form. Suppose δ ∈ H satisfies δ−1 σ(γ) = ρ(γ) δ−1 for all γ ∈ G, and
η : f ⇒ s(δ−1) ◦ g is a 2-morphism in dSpac, such that η ∗ idr(γ) = ids(σ(γ)) ∗ η
for all γ ∈ G. Then Definition 9.15 defines a 2-morphism [η, δ] : [f , ρ] ⇒ [g, σ]
in dSta. By a similar argument using the following in place of (11.18):

X̄ = [X/{1}]
[idX ,ι]

//

f̄
��

�� ��	� id

[X/G] = X
[g,σ]

��
[f,ρ]

��
[δ]
⇐

Ȳ = [Y /{1}]
[idY ,ι] // [Y /H] = Y,

for [δ] as in §C.4, we can prove [η, δ] : [f , ρ]⇒ [g, σ] is a 2-morphism in dStac.
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Generalizing the proof of Theorem 9.16, we can show:

Theorem 11.8. The analogue of Theorem 9.16 holds in dStac.

11.3 Boundaries of d-stacks with corners, and
simple, semisimple and flat 1-morphisms

Next we define boundaries of d-stacks with corners, following §6.2 and §8.6.

Definition 11.9. Let X = (X ,∂X , iX, ωX) be a d-stack with corners. We will
define a d-stack with corners ∂X = (∂X ,∂2X , i∂X, ω∂X), called the boundary
of X, and show that iX : ∂X→ X is a 1-morphism in dStac. Here ∂X and iX
are given in X, so the new data we have to construct is ∂2X , i∂X, ω∂X.

As iX : ∂X → X is strongly representable by Definition 11.1(a), Proposition
C.15 defines an explicit fibre product ∂X×iX,X ,iX∂X with strongly representable
projection morphisms π1, π2 : ∂X ×X ∂X → ∂X such that iX ◦ π1 = iX ◦ π2.
We will use this explicit fibre product throughout. There is a unique diagonal
1-morphism ∆∂X : ∂X → ∂X ×X ∂X with π1 ◦∆∂X = π2 ◦∆∂X = id∂X . Since
∂X is separated and iX is an immersion, ∆∂X is an equivalence with an open
and closed C∞-substack ∆∂X (∂X ) ⊆ ∂X ×X ∂X . Define ∂2X = ∂X ×X ∂X \
∆∂X (∂X ). Then ∂2X is also open and closed in ∂X ×X ∂X . It is separated and
second countable as ∂X is.

Define C∞-stack 1-morphisms i∂X = π1|∂2X : ∂2X → ∂X and j∂X =
π2|∂2X : ∂2X → ∂X . Since iX is proper, π1, π2 are proper, so i∂X, j∂X are
proper as they are the restrictions of π1, π2 to a closed C∞-substack. Also
i∂X, j∂X are strongly representable by Proposition C.14(c), as π1, π2 are strongly
representable and ∂2X is open in ∂X ×X ∂X .

Define the data O′∂2X , E∂2X , ı∂2X , ∂2X and i′∂X, i
′′
∂X, j

′
∂X, j

′′
∂X in ∂2X =

(∂2X ,O′∂2X , E∂2X , ı∂2X , ∂2X ) and i∂X = (i∂X, i
′
∂X, i

′′
∂X), j∂X = (j∂X, j

′
∂X, j

′′
∂X),

and the orientation ω∂X on N ∂X, by lifting the definitions of O′∂2X , E∂2X , . . . ,
j′′∂X, ω∂X in Definition 6.10 from sheaves and morphisms on the C∞-scheme
∂2X to sheaves and morphisms on the Deligne–Mumford C∞-stack ∂2X . The
same or similar proofs then show that ∂2X is a d-stack, and i∂X : ∂2X → ∂X ,
j∂X : ∂2X → ∂X are 1-morphisms in dSta, and NX = Ker(i2X) is a line bundle
on ∂2X with orientation ωX.

We have already proved Definition 11.1(a),(c) for ∂X, and part (b) is im-
mediate from the definition of i′′∂X. For (d), by Definition 11.1(d) for X, given
an étale 1-morphism u : Ū → X with U separated and second countable, we
construct an étale 1-morphism u∂ : ∂̄U → ∂X , and then U, ∂U extend to a
d-space with corners U with X étale locally modelled on U. Comparing the
construction of ∂U from U in §6.2 and the construction of ∂X from X above,
we see that applying Definition 11.1(d) with ∂X = (∂X ,∂2X , i∂X, ω∂X) and
u∂ : ∂̄U → ∂X in place of X and u : Ū → X , reconstructs ∂U in place of U.
Since ∂U is a d-space with corners, this shows that Definition 11.1(d) holds for
∂X and u∂ : ∂̄U → ∂X . As all such u∂ : ∂̄U → ∂X form an étale open cover of
∂X , Definition 11.1(d) holds for ∂X. Hence ∂X is a d-stack with corners.
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Here are the analogues of Definition 6.11 and Theorem 6.12 in §6.3.

Definition 11.10. Let f : X → Y be a 1-morphism of d-stacks with cor-
ners, and ∂X the boundary of X. Then sf : Sf → ∂X is strongly repre-
sentable, and proper and étale by Definition 11.2(c). This and ∂X locally com-

pact imply that sf (Sf ) is open and closed in ∂X . Define ∂f−X = sf (Sf ) and

∂f+X = ∂X \ ∂f−X . Then ∂f±X are open and closed C∞-substacks of ∂X , with

∂X = ∂f+X q ∂
f
−X . Write ∂f+X, ∂

f
−X for the open and closed d-substacks of ∂X

corresponding to ∂f+X , ∂
f
−X , as in Definition 11.1. Then ∂f±X are d-stacks with

corners, with ∂X = ∂f+Xq ∂
f
−X.

We call f simple if sf : Sf → ∂X is an equivalence, and we call f semisimple

if sf : Sf → ∂f−X is an equivalence, and we call f flat if T f = ∅. Simple implies

semisimple. If f is simple then ∂f−X = ∂X and ∂f+X = ∅.
One can show that f : X→ Y is simple, semisimple or flat if and only if the

1-morphisms h : U→ V in Definition 11.2(∗) for f are simple, semisimple or flat
in the sense of §6.3 for all h : U→ V in (∗), or equivalently, for all hi : Ui → Vi

from a collection {(Ui, ui, V i, vi, hi) : i ∈ I} such that {(Ui, ui) : i ∈ I} are
an étale open cover of X . That is, 1-morphisms f : X → Y in dStac are
simple, semisimple or flat if and only if they are étale locally modelled on simple,
semisimple or flat 1-morphisms in dSpac.

The condition that iX is strongly representable in Definition 11.1(a) is essen-
tial in constructing f−,η− in parts (b),(c) of the next theorem, and our main
reason for including this in Definition 11.1 was to make the theorem hold. The
proof of Theorem 11.11 combines those of Theorems 6.12 and 8.22.

Theorem 11.11. Let f : X→ Y be a semisimple 1-morphism of d-stacks with
corners. Then:

(a) Define f+ = f ◦ iX|∂f+X
: ∂f+X→ Y. Then f+ is semisimple. If f is flat

then f+ is also flat.

(b) There exists a unique, semisimple 1-morphism f− : ∂f−X → ∂Y with
f ◦ iX|∂f−X = iY ◦ f−. If f is simple then f− : ∂X→ ∂Y is also simple.

If f is flat then f− is flat.

(c) Let g : X → Y be another 1-morphism and η : f ⇒ g a 2-morphism in

dStac. Then g is also semisimple, with ∂g−X = ∂f−X. If f is simple, or
flat, then g is simple, or flat, respectively. Part (b) defines 1-morphisms

f−, g− : ∂f−X → ∂Y. There is a unique 2-morphism η− : f− ⇒ g− in
dStac such that

idiY ∗ η−=η ∗ idiX|
∂
f
−X

: f ◦iX|∂f−X =iY◦f−=⇒g◦iX|∂f−X =iY◦g−. (11.24)

The analogue of Proposition 6.13 holds in dStac. As for Corollary 6.14, we
deduce:
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Corollary 11.12. Write dStac
si for the 2-subcategory of dStac with arbitrary

objects and 2-morphisms, but only simple 1-morphisms. Then there is a strict
2-functor ∂ : dStac

si → dStac
si mapping X 7→ ∂X on objects, f 7→ f− on

(simple) 1-morphisms, and η 7→ η− on 2-morphisms.

11.4 Equivalences of d-stacks with corners, and gluing

Here are the analogues of Propositions 6.20 and 6.21 for equivalences in dStac.
The proofs follow those in §6.5 very closely, and we leave them as an exercise.
Note that necessary and sufficient conditions for f : X → Y to be an equivalence
in dSta are given in Propositions 9.10 and 9.11.

Proposition 11.13. Suppose f : X→ Y is an equivalence in dStac. Then f is
simple and flat, and f : X → Y is an equivalence in dSta. Also f− : ∂X→ ∂Y
is an equivalence in dStac.

Proposition 11.14. Let f : X → Y be a simple, flat 1-morphism in dStac

with f : X → Y an equivalence in dSta. Then f is an equivalence in dStac.

Here is the analogue of Definitions 2.23, 6.22 and 9.13.

Definition 11.15. Let f : X→ Y be a 1-morphism in dStac. We call f étale
if f : X → Y is representable, and every 1-morphism h : U → V in dSpac

constructed from f in Definition 11.2(∗) is étale in dSpac, as in Definition 6.22.
That is, f is étale if it is étale locally an equivalence in dSpac.

As for Corollary 6.23, we may deduce:

Corollary 11.16. Let f : X→ Y be a 1-morphism in dStac. Then f is étale
if and only if f is simple and flat and f : X → Y is étale in dSta.

In sections 2.4, 6.6 and 9.4 we studied gluing objects and 1-morphisms by
equivalences in dSpa, dSpac and dSta. The results of §6.6 were essentially
identical to those of §2.4, replacing dSpa by dSpac. The results of §9.4 were
more complicated, as we had to impose extra conditions on the C∞-stack 2-
morphism components η in d-stack 2-morphisms η = (η, η′).

For d-stacks with corners, our results are essentially identical to those of
§9.4, replacing dSta by dStac. The proofs combine those of §6.6 and §9.4. We
now give analogues of Proposition 9.17 and Theorems 9.18 and 9.19 for dStac,
and brief explanations of how to prove them.

Proposition 11.17. Suppose X,Y are d-stacks with corners, U,V ⊆ X are open
d-substacks with X = U ∪ V, f : U → Y and g : V → Y are 1-morphisms, and
η : f |U∩V ⇒ g|U∩V is a 2-morphism in dStac. Then there exist a 1-morphism
h : X → Y and 2-morphisms ζ : h|U ⇒ f , θ : h|V ⇒ g in dStac such that
θ|U∩V = η � ζ|U∩V : h|U∩V ⇒ g|U∩V. This h is unique up to 2-isomorphism.

Furthermore, h is independent up to 2-isomorphism of the component η′ in
η = (η, η′), but it may depend on η.
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To prove this, first apply Proposition 9.17 to construct h : X → Y and
ζ,θ as 1- and 2-morphisms in dSta rather than dStac. Then follow the proof
of Proposition 6.24 to show that these particular h, ζ,θ (in which h′, h′′, ζ ′, θ′

are constructed explicitly from f ′, f ′′, g′, g′′, η′ using a partition of unity on
X , as in the proof of Proposition 2.27), are actually 1- and 2-morphisms in
dStac. We explain in Remark C.27 and Example C.33 how to extend partition
of unity arguments on C∞-schemes X to Deligne–Mumford C∞-stacks X , by
using partitions of unity on the coarse moduli C∞-scheme X top.

Theorem 11.18. Suppose X,Y are d-stacks with corners, U ⊆ X, V ⊆ Y are
open d-substacks, and f : U → V is an equivalence in dStac. At the level
of topological spaces, we have open Utop ⊆ Xtop, Vtop ⊆ Ytop with a homeo-
morphism ftop : Utop → Vtop, so we can form the quotient topological space
Ztop := Xtop qftop

Ytop = (Xtop q Ytop)/ ∼, where the equivalence relation ∼
on Xtop q Ytop identifies [u] ∈ Utop ⊆ Xtop with ftop([u]) ∈ Vtop ⊆ Ytop.

Suppose Ztop is Hausdorff. This condition may also equivalently be imposed
at the level of C∞-stacks, that is, we may form a quotient C∞-stack Z = XqfY
by Proposition C.9, and we require Z separated. Then there exist a d-stack with
corners Z, open d-substacks X̂, Ŷ in Z with Z = X̂∪ Ŷ, equivalences g : X→ X̂

and h : Y→ Ŷ such that g|U and h|V are both equivalences with X̂ ∩ Ŷ, and a

2-morphism η : g|U ⇒ h ◦ f : U → X̂ ∩ Ŷ. Furthermore, Z is independent of
choices up to equivalence.

The basic idea of the proof of Theorem 11.18 is to follow the proof of Theorem
6.25 for dSpac, but using Theorem 9.18 rather than Theorem 2.28. To define
Z = (Z,∂Z, iZ, ωZ), we make Z by gluing the d-stacks X ,Y on the open
d-substacks U ⊆ X , V ⊆ Y by the equivalence f : U → V using Theorem 9.18.

Since f : U → V is an equivalence in dStac, it is simple, so Theorem
11.11(b) gives a 1-morphism f− : ∂U → ∂V, which is also an equivalence.
Then ∂X ,∂Y are d-stacks, and ∂U ⊆ ∂X , ∂V ⊆ ∂V are open d-substacks,
and f− : ∂U → ∂V is an equivalence in dSta, so Theorem 9.18 applies to glue

∂X ,∂Y on ∂U ,∂V , yielding a d-stack ∂Z̃. Doing these two constructions
using compatible choices as in the proof of Theorem 6.25, the 1-morphisms
iX : ∂X → X , iY : ∂Y → Y also glue to give a 1-morphism ı̃Z : ∂Z̃ → Z.

The underlying C∞-stack 1-morphism ı̃Z : ∂Z̃ → Z may not be strongly
representable. So we apply Proposition C.14(b) to obtain a C∞-stack ∂Z, a
strongly representable 1-morphism iZ : ∂Z → Z and an equivalence j : ∂Z̃ →
∂Z with iZ ◦ j = ı̃Z. Then we transport the data O′∂Z̃ , E∂Z̃ , ı∂Z̃ , ∂Z̃ and ı̃′Z, ı̃

′′
Z

in ∂Z̃ = (∂Z̃,O′∂Z̃ , E∂Z̃ , ı∂Z̃ , ∂Z̃) and ı̃Z = (̃ıZ, ı̃
′
Z, ı̃
′′
Z) along the equivalence j

to extend ∂Z, iX to a d-stack ∂Z = (∂Z,O′∂Z , E∂Z , ı∂Z , ∂Z) and a 1-morphism
iZ = (iZ, i

′
Z, i
′′
Z) : ∂Z → Z, which are unique up to canonical 1-isomorphism.

That is, we make ∂Z, iZ from ∂Z̃, ı̃Z by replacing ∂Z̃ by an equivalent
C∞-stack ∂Z so as to make iZ strongly representable. The rest of the proof
of Theorem 6.25 extends to dStac by our usual method of deducing results in
dStac from corresponding results in dSpac applied to étale open covers.

Theorem 11.19. Suppose I is an indexing set, and < is a total order on I,
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and Xi for i ∈ I are d-stacks with corners, and for all i < j in I we are given
open d-substacks Uij ⊆ Xi, Uji ⊆ Xj and an equivalence eij : Uij → Uji in
dStac satisfying the following properties:

(a) For all i < j < k in I we have a 2-commutative diagram

Uji ∩Ujk ejk|Uji∩Ujk
,,XXXXXXXXXXXXXXX

ηijk
��

Uij ∩Uik

eij |Uij∩Uik 33fffffffffffffff eik|Uij∩Uik // Uki ∩Ukj

for some ηijk, where all three 1-morphisms are equivalences; and

(b) For all i < j < k < l in I the components ηijk in ηijk = (ηijk, η
′
ijk) satisfy

ηikl � (idfkl ∗ ηijk)|Uij∩Uik∩Uil = ηijl � (ηjkl ∗ idfij )|Uij∩Uik∩Uil . (11.25)

Note that if the C∞-stacks Xi in Xi are effective for all i ∈ I, then
Proposition C.29(ii) implies that (11.25) holds automatically, as there is
only one 2-morphism ekl ◦ ejk ◦ eij |Uij∩Uik∩Uil ⇒ eil|Uij∩Uik∩Uil .

On the level of topological spaces, define the quotient topological space Ytop =
(
∐
i∈I Xi,top)/ ∼, where ∼ is the equivalence relation generated by [xi] ∼ [xj ]

if [xi] ∈ Uij,top ⊆ Xi,top and [xj ] ∈ Uji,top ⊆ Xj,top with eij,top([xi]) = [xj ].
Suppose Ytop is Hausdorff and second countable. Then there exist a d-stack
with corners Y and a 1-morphism f i : Xi → Y which is an equivalence with
an open d-substack X̂i ⊆ Y for all i ∈ I, where Y =

⋃
i∈I X̂i, such that f i|Uij

is an equivalence Uij → X̂i ∩ X̂j for all i < j in I, and there exists a 2-
morphism ηij : f j ◦ eij ⇒ f i|Uij in dStac. The d-stack with corners Y is
unique up to equivalence, and is independent of choices of the components η′ijk
in ηijk = (ηijk, η

′
ijk) in (a). If the C∞-stacks Xi in Xi are effective for all i ∈ I,

then the ηijk are unique by Proposition C.29(ii), so in this case Y is independent
of the choices of ηijk in (a).

Suppose also that Z is a d-stack with corners, and gi : Xi → Z are 1-
morphisms for all i ∈ I, and there exist 2-morphisms ζij : gj ◦ eij ⇒ gi|Uij
in dStac for all i < j in I, such that for all i < j < k in I the components
ζij , ηijk in ζij ,ηijk satisfy(
ζij |Uij∩Uik

)
�
(
ζjk ∗ ideij |Uij∩Uik

)
=
(
ζik|Uij∩Uik

)
�
(
idgk ∗ηijk|Uij∩Uik

)
. (11.26)

Then there exist a 1-morphism h : Y→ Z and 2-morphisms ζi : h ◦ f i ⇒ gi in
dStac for all i ∈ I. The 1-morphism h is unique up to 2-isomorphism, and is
independent of the components ζ ′ij in ζij = (ζij , ζ

′
ij).

Note that Proposition C.29 gives conditions for uniqueness of C∞-stack 2-
morphisms η : f ⇒ g, and if any of these apply to gi : Xi → Z for all i ∈ I,
then (11.26) holds automatically, as there is only one 2-morphism gk ◦ ejk ◦
eij |Uij∩Uik ⇒ gi|Uij∩Uik , and also ζij is unique, so h is independent of the choice
of ζij. In particular, if Z is a d-space with corners, so that Z is a C∞-scheme,
then (11.26) always holds, and h is independent of the choice of ζij.
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Theorem 11.19 is proved using repeated applications of Theorem 11.18 by
an inductive procedure, as for the proofs of Theorem 2.30–2.33 in §2.4, just as
Theorem 9.19 is proved using repeated applications of Theorem 9.18.

11.5 Corners Ck(X), and the corner functors C, Ĉ

In §5.5, for a manifold with corners X we defined the k-corners Ck(X) ∼=
∂kX/Sk, and the corners C(X) =

∐dimX
k=0 Ck(X), and for f : X → Y a smooth

map of manifolds with corners we defined smooth maps C(f), Ĉ(f) : C(X) →
C(Y ), giving the corner functors C, Ĉ : Manc → M̌anc. We extended this to
d-spaces with corners in §6.7, and to orbifolds with corners in §8.7.

Combining the ideas of §6.7 and §8.7, we can define the k-corners Ck(X) '
[∂kX/Sk] of a d-stack with corners, and the corners C(X) =

∐
k>0 Ck(X), and

corner functors C, Ĉ : dStac → dStac. Basically, we follow §8.7 to define the
C∞-stacks Ck(X ), ∂Ck(X ), . . . and 1-morphisms ΠX, iCk(X), C(f), Ĉ(f), . . . and

2-morphisms C(η), Ĉ(η), . . . in Ck(X),ΠX, C(f), Ĉ(f), C(η), Ĉ(η), and then we
follow §6.7 to define the remaining sheaf dataO′Ck(X), E

′
Ck(X), ıCk(X), Ck(X), . . . ,

Π′X,Π
′′
X, . . . , C(η)′, . . . . The ideas are similar to the definitions of ∂X,f−,η− in

§11.3. So for brevity we just state the main result:

Theorem 11.20. (a) Let X be a d-stack with corners. Then for each k > 0 we
can define a d-stack with corners Ck(X) called the k-corners of X, and a 1-
morphism Πk

X : Ck(X)→ X, such that Ck(X) is equivalent to a quotient d-stack
[∂kX/Sk] for a natural action of Sk on ∂kX by 1-isomorphisms. The C∞-stack
1-morphism Πk

X : Ck(X ) → X is strongly representable. The construction of
Ck(X) is unique up to canonical 1-isomorphism.

We can describe the topological space Ck(X )top as follows. Consider pairs
(x, {x′1, . . . , x′k}), where x : ∗̄ → X and x′i : ∗̄ → ∂X for i = 1, . . . , k are
1-morphisms in C∞Sta with x′1, . . . , x

′
k distinct and x = iX ◦ x′1 = · · · =

iX ◦ x′k. Define an equivalence relation ≈ on such pairs by (x, {x′1, . . . , x′k}) ≈
(x̃, {x̃′1, . . . , x̃′k}) if there exist σ ∈ Sk and 2-morphisms η : x⇒ x̃ and η′i : x′i ⇒
x̃′σ(i) for i = 1, . . . , k with η = idiX ∗η′1 = · · · = idiX ∗η′k. Write [x, {x′1, . . . , x′k}]
for the ≈-equivalence class of (x, {x′1, . . . , x′k}). Then

Ck(X )top
∼=
{

[x, {x′1, . . . , x′k}] : x : ∗̄→X , x′i : ∗̄→∂X 1-morphisms

with x′1, . . . , x
′
k distinct and x= iX◦x′1 = · · ·= iX◦x′k

}
.

(11.27)

If X is étale locally modelled on a d-space with corners U, as in Definition
11.1, then Ck(X) is étale locally modelled on Ck(U) from §6.7. We have 1-
isomorphisms C0(X) ∼= X and C1(X) ∼= ∂X. We write C(X) =

∐
k>0 Ck(X),

so that C(X) is also a d-stack with corners, called the corners of X.

(b) Let f : X → Y be a 1-morphism of d-stacks with corners. Then there are
unique 1-morphisms C(f) : C(X)→ C(Y) and Ĉ(f) : C(X)→ C(Y) in dStac

such that ΠY ◦ C(f) = f ◦ΠX = ΠY ◦ Ĉ(f) : C(X)→ Y, and if f : X→ Y is
étale locally modelled on a 1-morphism h : U → V in dSpac, as in Definition
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11.2, then C(f), Ĉ(f) are étale locally modelled on C(h), Ĉ(h) : C(U)→ C(V)
from Theorems 6.29(a), 6.31(a).

We can also characterize the maps C(f)top : C(X )top → C(Y)top, Ĉ(f)top :
C(X )top → C(Y)top. Identify Ck(X )top ⊆ C(X )top with the right hand side
of (11.27), and similarly for Cl(Y)top, and identify Sf ,top, T f ,top with the right

hand sides of (11.9)–(11.10). Then C(f)top and Ĉ(f)top act by

C(f)top :
[
x, {x′1, . . . , x′k}

]
7−→

[
y, {y′1, . . . , y′l}

]
, where y = f ◦ x,

{y′1, . . . , y′l}=
{
y′ : [x′i, y

′] ∈ Sf ,top, some i = 1, . . . , k
}
, and

(11.28)

Ĉ(f)top :
[
x, {x′1, . . . , x′k}

]
7−→

[
y, {y′1, . . . , y′l}

]
, where y = f ◦ x,

{y′1, . . . , y′l}=
{
y′ : [x′i, y

′]∈Sf ,top, i=1, . . . , k
}
∪
{
y′ : [x, y′]∈T f ,top

}
.

(11.29)

For all k, l > 0, write Cf ,lk (X) = Ck(X) ∩ C(f)−1(Cl(Y)), so that Cf ,lk (X)

is an open and closed d-substack of Ck(X) with Ck(X) =
∐∞
l=0 C

f ,l
k (X), and

write Clk(f) = C(f)|Cf,lk (X) : Cf ,lk (X) → Cl(Y). If f is semisimple then C(f)

maps Ck(X) →
∐k
l=0 Cl(Y) for all k > 0. If f is simple then C(f) maps

Ck(X)→ Ck(Y) for all k > 0. If f is flat then C(f) = Ĉ(f).

(c) Let f , g : X → Y be 1-morphisms and η : f ⇒ g a 2-morphism in dStac.
Then there exist unique 2-morphisms C(η) : C(f) ⇒ C(g), Ĉ(η) : Ĉ(f) ⇒
Ĉ(g) in dStac, where C(f), C(g), Ĉ(f), Ĉ(g) are as in (b), such that

idΠY
∗ C(η)=η ∗ idΠX

: ΠY◦C(f)=f ◦ΠX =⇒ ΠY◦C(g)=g◦ΠX,

idΠY
∗ Ĉ(η)=η ∗ idΠX

: ΠY◦Ĉ(f)=f ◦ΠX =⇒ ΠY◦Ĉ(g)=g◦ΠX.

If f , g are flat then C(η) = Ĉ(η).

(d) Define C : dStac → dStac by C : X 7→ C(X), C : f 7→ C(f), C : η 7→ C(η)
on objects, 1- and 2-morphisms, where C(X), C(f), C(η) are as in (a)–(c)
above. Similarly, define Ĉ : dStac → dStac by Ĉ : X 7→ C(X), Ĉ : f 7→ Ĉ(f),
Ĉ : η 7→ Ĉ(η). Then C, Ĉ are strict 2-functors, called corner functors.

11.6 Fibre products in dStac

In §6.8, we defined what it means for 1-morphisms g : X → Z and h : Y → Z
in dSpac to be b-transverse and c-transverse, where c-transverse implies b-
transverse. We showed that if g,h are b-transverse, then a fibre product
X ×g,Z,h Y exists in dSpac. If g,h are c-transverse, we described the bound-
ary ∂(X ×Z Y) and corners Ck(X ×Z Y) of the fibre product in terms of the
boundaries and corners of X,Y,Z. All of this extends to the 2-category dStac

of d-stacks with corners. Here are the analogues of Definitions 6.32 and 6.33.

Definition 11.21. Let g : X→ Z and h : Y→ Z be 1-morphisms in dStac. We
call g,h b-transverse if the following holds. Suppose x : ∗̄ → X and y : ∗̄ → Y
are 1-morphisms in C∞Sta, and η : g ◦ x ⇒ h ◦ y is a 2-morphism. Since
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iX : ∂X → X is finite and strongly representable, there are finitely many 1-
morphisms x′ : ∗̄ → ∂X with x = iX ◦ x′. Write these x′ as x′1, . . . , x

′
j ; they

correspond to the points of ∗̄ ×x,X ,iX ∂X . Similarly, write y′1, . . . , y
′
k for the

1-morphisms y′ : ∗̄ → ∂Y with y = iY ◦y′. Write z = g ◦x and z̃ = h◦y, so that
z, z̃ : ∗̄ → Z and η : z ⇒ z̃. Write z′1, . . . , z

′
l for the 1-morphisms z′ : ∗̄ → ∂Z

with z = iZ ◦ z′. Then by Proposition C.13, for each c = 1, . . . , l there are
unique z̃′c : ∗̄ → ∂Z and η′c : z′c ⇒ z̃′c with iZ ◦ z̃′c = z̃ and idiZ ∗ η′c = η.

Let a = 1, . . . , j and c = 1, . . . , l. Then x′a : ∗̄ → ∂X and z′c : ∗̄ → ∂Z with
g ◦ iX ◦x′a = iZ ◦z′c, so defining ∂X ×g◦iX,Z,iZ ∂Z by the explicit construction of
Proposition C.15, there is a unique 1-morphism (x′a, z

′
c) : ∗̄ → ∂X ×Z ∂Z with

(x′a, z
′
c)◦π∂X = x′a and (x′a, z

′
c)◦π∂Z = z′c. As in (11.9), we write [x′a, z

′
c] ∈ Sg,top

if (x′a, z
′
c) maps to the open C∞-substack Sg in ∂X ×Z ∂Z. Similarly, for

b = 1, . . . , k and c = 1, . . . , l we have unique (y′b, z̃
′
c) : ∗̄ → ∂Y ×Z ∂Z with

(y′b, z̃
′
c)◦π∂Y = y′b and (y′b, z̃

′
c)◦π∂Z = z̃′c, and we may have [y′b, z̃

′
c] ∈ Sh,top. We

require that for all such x, y, η, the following morphism in qcoh(∗̄) is injective:⊕
a=1,...,j, c=1,...,l: [x′a,z

′
c]∈Sg,top

I(x′a,z′c),sg (NX)−1 ◦ (x′a, z
′
c)
∗(λg) ◦ I(x′a,z′c),ug (NZ)⊕

⊕
b=1,...,k, c=1,...,l: [y′b,z̃

′
c]∈Sh,top

I(y′b,z̃′c),sh(NY)−1◦(y′b, z̃′c)∗(λh)◦I(y′b,z̃′c),uh(NZ)◦(η′c)∗(NZ) :

⊕l

c=1
(z′c)

∗(NZ) −→
⊕j

a=1
(x′a)∗(NX)⊕

⊕k

b=1
(y′b)

∗(NY).

(11.30)

Here NX,NY,NZ and λg, λh are as in Definitions 11.1(c) and 11.2(d).
An equivalent definition is the following: suppose we have 2-commutative

diagrams in C∞Sta, as for (11.5):

Ū u
//

ē��
����~�

X
g

��

V̄ v
//

f̄��
����~�

Y
h ��

W̄
w // Z, W̄

w // Z,

where U, V ,W are separated, second countable C∞-schemes, e : U → W , f :
V → W are morphisms, and u, v, w are étale 1-morphisms. As in Definitions
11.1 and 11.2 we can extend U, V ,W to d-spaces with corners U,V,W, and
e, f to 1-morphisms e : U → W, f : V → W. Then g,h are b-transverse in
dStac if and only if e,f are b-transverse in dSpac in the sense of §6.8.1, for
all such U, V ,W, e, f . That is, g,h are b-transverse if and only if they are étale
locally equivalent to b-transverse 1-morphisms in dSpac.

Definition 11.22. Let g : X → Z and h : Y → Z be 1-morphisms in dStac,
and let C(g), C(h), Ĉ(g), Ĉ(h) be as in §11.5. Identify Ck(X )top ⊆ C(X )top

with the right hand of (11.27), and similarly for C(Y)top, C(Z)top. Then

C(g)top, C(h)top, Ĉ(g)top, Ĉ(h)top act as in (11.28)–(11.29). We call g,h c-
transverse if the following two conditions hold:

(a) whenever there are points in Cj(X )top, Ck(Y)top, Cl(Z)top with

C(g)top

(
[x, {x′1, . . . , x′j}]

)
=C(h)top

(
[y, {y′1, . . . , y′k}]

)
=[z, {z′1, . . . , z′l}],
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we have either j + k > l or j = k = l = 0; and

(b) whenever there are points in Cj(X )top, Ck(Y)top, Cl(Z)top with

Ĉ(g)top

(
[x, {x′1, . . . , x′j}]

)
= Ĉ(h)top

(
[y, {y′1, . . . , y′k}]

)
=[z, {z′1, . . . , z′l}],

we have j + k > l.

As in Definition 11.21, g,h are c-transverse if and only if they are étale locally
equivalent to c-transverse 1-morphisms in dSpac. Since c-transverse implies b-
transverse in dSpac by Corollary 6.39, c-transverse also implies b-transverse for
1-morphisms g : X→ Z and h : Y→ Z in dStac.

As for Lemma 6.35, we have:

Lemma 11.23. Let g : X → Z and h : Y → Z be 1-morphisms in dStac.
The following are sufficient conditions for g,h to be c-transverse, and hence
b-transverse:

(i) g or h is semisimple and flat; or

(ii) Z is a d-stack without boundary.

Here is the analogue of Theorem 6.42.

Theorem 11.24. All b-transverse fibre products exist in dStac.

Proof. Let g : X → Z and h : Y → Z be b-transverse 1-morphisms in dStac.
We will show that a fibre product W = X×g,Z,hY exists in dStac. The strategy
is the same as in §6.8: we first show that b-transverse fibre products exist locally
(in the Zariski topology), and then use the results of §11.4 to glue these local
fibre products together by equivalences to get a global fibre product.

For the first part, the analogue of §6.8.3, suppose [x] ∈ Xtop and [y] ∈ Ytop

with gtop([x]) = htop([y]) = [z] ∈ Ztop, we use the method of the proof of
Theorem 10.27. Set G = IsoX ([x]), H = IsoY([y]) and K = IsoZ([z]), and write
ρ : G → K and σ : H → K for g∗ : IsoX ([x]) → IsoZ([z]) and h∗ : IsoY([y]) →
IsoZ([z]). Then by Theorem 11.8 there exist d-spaces with corners T,U,V
with actions p : G→ Aut(T), q : H → Aut(U), r : K → Aut(V), 1-morphisms
i : [T/G] → X, j : [U/K] → Y, k : [V/K] → Z which are equivalences with
open neighbourhoods T,U,V of [x], [y], [z] in X,Y,Z with g(T),h(U) ⊆ V ⊆ Z,
1-morphisms m : T→ V, n : U→ V which are equivariant under ρ, σ, fitting
into 2-commutative diagrams:

[T/G]
[m,ρ]

//

i�� ����
<Dη

[V /K]

k ��

[U/H]
[n,σ]

//

j
�� ����

<Dζ

[V /K]

k ��
X

g // Z, Y
h // Z.

As in the proof of Theorem 10.27, consider the product T × K as a d-
space with corners, and define a 1-morphism l : T × K → V in dSpac by
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l|T×{κ} = r(κ) ◦m : T× {κ} ∼= T→ V. Define actions p′, q′, r′ of G,H,K on
T×K,U,V as in (10.8). Then l : T×K → V and n : U→ V are both G×H
equivariant. Since l,n are étale locally modelled on g,h which are b-transverse,
a fibre product S = (T×K)×l,V,n U exists in dSpac by Theorem 6.42.

We want to choose S so that the G × H-actions on T × K,U,V lift to a
G × H-action on S. To do this, making T,U,V,T,U,V smaller if necessary,
we may take S to be defined by the explicit local construction of fibre products
in dSpac in §6.8.3. This involves an arbitrary choice of subsets I ⊆ i−1

X (x)
and J ⊆ i−1

Y (y) such that I q J contains exactly one vertex from each type

(A) component Γ̂. For the construction of S to be G×H-equivariant, we need
to choose I, J invariant under G × H. This is possible, as if Γ̂ is a type (A)
component of Γx,y and L is the subgroup of G×H fixing Γ̂, then as Γ̂ is simply-

connected L must fix at least one vertex of the form x′ or y′ in Γ̂, and we choose
I or J to contain the G×H-orbit of such a vertex.

The rest of the construction of S in (6.8.3) involves no arbitrary choices, and
so is G×H-equivariant. Hence G×H acts on S by 1-isomorphisms, and as in
§11.2 we have a quotient d-stack with corners [S/(G×H)]. As in (10.8)–(10.9),
it then follows on general grounds that

[S/(G×H)] ' [T/G]×[m,ρ],[V/K],[n,σ] [U/H] ' T ×g|T ,V,h|U U,

so a local fibre product T ×g|T ,V,h|U U exists in dStac.
To prove that a global fibre product W = X ×g,Z,h Y exists in dStac, we

now follow the proof of Theorem 6.42 in §6.8.4, and glue the local fibre products
T ×g|T ,V,h|U U together by equivalences in dStac, using Theorem 11.19 rather
than Theorem 6.26. There is something extra to check, since the hypotheses of
Theorem 11.19 include conditions (11.25)–(11.26) on 2-morphisms in C∞Sta
which have no analogue in Theorem 6.26. In our case, we can choose the ηijk
so that these conditions are automatically satisfied.

The point of (11.25) is to ensure that it is possible to glue the C∞-stacks Xi
on overlaps Uij to make a global C∞-stack X . But we are gluing a family of local
fibre products T i ×g|Ti ,Vi,h|Ui Ui for i ∈ I with T i ⊆ X , Ui ⊆ Y, Vi ⊆ Z. The
glued C∞-stack is just the fibre product X ×g,Z,h Y, which we know exists. We
are free to fix a particular C∞-stack fibre product X ×Z Y, and then take each
local fibre product T i ×g|Ti ,Vi,h|Ui Ui to be an open C∞-substack of X ×Z Y, so
that the eij and ηijk in Theorem 11.19 are identities, and (11.25) holds trivially.

Similarly, when the second part of Theorem 11.19 is applied to show that
we can glue the projection 1-morphisms T i ×Vi Ui → T i for i ∈ I, the result is
the projection 1-morphism X ×Z Y → X , which we know exists. We are free to
take the projections T i ×Vi Ui → T i to be the restriction of X ×Z Y → X to an
open C∞-substack, and the ζij to be identities, and then (11.26) holds trivially.
The rest of the proof is as in §6.8.4.

As for Corollary 6.43 and Theorem 9.21, comparing the constructions of
(b-transverse) fibre products in dSpac,dSta,dStac in §6.8, §9.5 and §11.6, we
deduce:
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Corollary 11.25. The 2-functor FdStac

dSpac : dSpac→dStac takes b- and c-trans-
verse fibre products in dSpac to b- and c-transverse fibre products in dStac. The
2-functor FdSta

dStac : dStac → dSta takes b-transverse fibre products in dStac to
fibre products in dSta.

The analogue of Example 6.44 holds in dStac: products X × Y exist in
dStac, and are given explicitly by

X× Y =
(
X ×Y , (∂X ×Y)q (X × ∂Y), (iX × idY)q (idX × iY), ωX×Y

)
.

Combining the proofs of Theorems 6.45 and 9.23, we may prove:

Theorem 11.26. The 2-functor FdStac

Orbc takes transverse fibre products in Orbc

to b-transverse fibre products in dStac. That is, if

W
f

//
e�� � �� �

HP
η

Y
h ��

X
g // Z

is a 2-Cartesian square in Orbc with g, h transverse, and W,X,Y,Z, e,f , g,
h,η = FdStac

Orbc (W,X, Y, Z, e, f, g, h, η), then

W
f

//
e�� � �� �

HP
η

Y
h ��

X
g // Z

is 2-Cartesian in dStac, with g,h b-transverse. If also g, h are strongly trans-
verse in Orbc, then g,h are c-transverse in dStac.

We can also extend the material of §6.9 to d-stacks with corners, and show
that the analogues of Propositions 6.49 and 6.53, and of Theorems 6.50 and
6.52, hold in dStac. The analogue of Theorem 6.50 gives:

Theorem 11.27. Suppose we are given a 2-Cartesian diagram in dStac:

W
f

//

e
�� � �� �

GO
η

Y

h ��
X

g // Z,

with g,h c-transverse. Then the following are also 2-Cartesian in dStac :

C(W)
C(f)

//

C(e)�� � �� �
HP

C(η)

C(Y)
C(h) ��

C(X)
C(g) // C(Z),

(11.31)

C(W)
Ĉ(f)

//

Ĉ(e)�� � �� �
HP

Ĉ(η)

C(Y)

Ĉ(h) ��
C(X)

Ĉ(g) // C(Z).

(11.32)
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Also (11.31)–(11.32) preserve gradings, in that they relate points in Ci(W),
Cj(X), Ck(Y), Ck(Z) with i = j + k − l. Hence (11.31) implies equivalences
in dStac :

Ci(W) '
∐

j,k,l>0:i=j+k−l

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y),

∂W '
∐

j,k,l>0:j+k=l+1

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y).

11.7 Orbifold strata of d-stacks with corners

In [56, §11] and §C.8–§C.9 we studied orbifold strata XΓ, . . . , X̂Γ
◦ of a Deligne–

Mumford C∞-stack X , and sheaves upon them. Sections 8.4 and 8.9 applied
these ideas to orbifolds and orbifolds with corners, and §9.6 extended them to
d-stacks. The closest d-space analogue of orbifold strata is fixed d-subspaces
XΓ of a finite group Γ acting on a d-space X, and we studied these in §2.7 for
d-spaces, and in §6.10 for d-spaces with corners.

We now consider orbifold strata of d-stacks with corners. This is largely a
matter of combining the material of §6.10, §8.9 and §9.6.

Definition 11.28. Let X = (X ,∂X , iX, ωX) be a d-stack with corners, and Γ
a finite group. We will define a new d-stack with corners XΓ = (XΓ,∂(XΓ),
iXΓ , ωXΓ), called an orbifold stratum of X. Here XΓ is the orbifold stratum
of the d-stack X defined in Definition 9.24, and ∂(XΓ), iXΓ , ωXΓ remain to be
defined. Note that as for XΓ =

(
XΓ, ∂(XΓ), iXΓ

)
in §8.9, ∂(XΓ) is not the

orbifold stratum (∂X )Γ of the d-stack ∂X , but something more complicated.
In §11.5 we described the corners C(X) = (C(X ),∂C(X ), iC(X), ωC(X))

of X, a d-stack with corners, with a 1-morphism ΠX : C(X) → X. Hence
C(X ) is a d-stack, and ΠX : C(X ) → X is a 1-morphism in dSta, whose
underlying C∞-stack 1-morphism ΠX : C(X ) → X is strongly representable.
Thus, by §9.6 we have a d-stack C(X )Γ, an orbifold stratum of C(X ), and a d-
stack 1-morphism ΠΓ

X : C(X )Γ → XΓ, with underlying C∞-stack 1-morphism
ΠΓ

X : C(X )Γ → XΓ defined in §C.8. As ΠX is strongly representable, the
argument of Definition 8.31 shows that ΠΓ

X is strongly representable.
Exactly as in Definition 8.31, equation (8.32) describes the topological space

C(X )Γ
top of C(X ) in terms of equivalence classes [x, {x′1, . . . , x′k}, ρ, σ]. We

define ∂(XΓ)top ⊆ C(X )Γ
top to be the subset of [x, {x′1, . . . , x′k}, ρ, σ] such that

k > 1 and σ(Γ) ⊆ Sk acts transitively on {1, . . . , k}. Then ∂(XΓ)top is open
and closed in C(X )Γ

top, so it defines an open and closed d-substack ∂(XΓ) in

C(X )
Γ
. Set iXΓ = ΠΓ

X|∂(XΓ). Then iXΓ : ∂(XΓ) → XΓ is a 1-morphism in
dSta, whose underlying C∞-stack 1-morphism iXΓ : ∂(XΓ) → XΓ is strongly
representable by Proposition C.14(c), as ΠΓ

X is.
Define νXΓ : NXΓ → i∗XΓ(FXΓ) to be the kernel of i2XΓ , giving a complex

0 // NXΓ
νXΓ // i∗

XΓ(FXΓ)
i2XΓ // F∂XΓ // 0
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in qcoh(∂XΓ). We claim that NXΓ is an orientable line bundle on ∂XΓ, and
that there is a canonical orientation ωXΓ on NXΓ such that XΓ = (XΓ,∂(XΓ),
iXΓ , ωXΓ) is a d-stack with corners. To prove this, we note that if X is étale
locally modelled on a d-space with corners X, then XΓ is étale locally modelled
on the fixed d-subspace XΓ of a Γ-action on X, so the proof in Definition 6.54
that XΓ is a d-space with corners implies XΓ is a d-stack with corners. As in
§C.8, we have an open C∞-substack XΓ

◦ ⊆ XΓ. Define XΓ
◦ ⊆ XΓ to be the

corresponding open d-substack with corners.
In a similar way, using the other classes of orbifold strata X̃Γ, X̃Γ

◦ , X̂Γ, X̂Γ
◦

in §C.8, combining Definitions 8.31 and 9.24 we may define d-stacks with cor-

ners X̃Γ, X̃Γ
◦ , X̂, X̂

Γ
◦ . As in Definition 8.31 Π̃Γ

X : ˜C(X )Γ → X̃Γ is strongly repre-

sentable, so for X̃Γ, X̃Γ
◦ we can follow the definitions of XΓ,XΓ

◦ exactly. However,

Π̂Γ
X : ̂C(X )Γ → X̃Γ is representable, but not necessarily strongly representable.

Thus, to ensure that iX̂Γ is strongly representable in the definition of X̂Γ, X̂Γ
◦ ,

we have to use Proposition C.14(b) to replace the C∞-stack in the boundary

d-stack ∂(X̂Γ) in X̂Γ by an equivalent C∞-stack.

The d-stack with corners X̂Γ
◦ has trivial orbifold groups, so it is a d-space

with corners, that is, there exists X̂Γ
◦ in dSpac with X̂Γ

◦ ' FdStac

dSpac(X̂Γ
◦ ), and in

fact X̂Γ
◦ is natural up to 1-isomorphism in dSpac, not just up to equivalence.

Definition 9.25 defined 1-morphisms OΓ(X ), Π̃Γ(X ), . . . ,LΓ
◦ (Λ,X ) in dSta

between the d-stacks XΓ, . . . , X̂Γ
◦ ,X , in a diagram (9.23). These are all also

1-morphisms in dStac between the d-stacks with corners XΓ, . . . , X̂Γ
◦ ,X, so we

write them OΓ(X), Π̃Γ(X), . . . ,LΓ
◦ (Λ,X). To see this, note that Π̃Γ(X), Π̂Γ(X),

LΓ(Λ,X), Π̃Γ
◦ (X), Π̂Γ

◦ (X),LΓ
◦ (Λ,X) are all étale locally modelled on identities

idXΓ : XΓ → XΓ in dSpac in the sense of Definition 11.2, and OΓ(X), ÕΓ(X),
OΓ
◦ (X), ÕΓ

◦ (X) are all étale locally modelled on jX,Γ : XΓ → X in dSpac from
Definition 6.54. This gives a strictly commutative diagram in dStac:

XΓ
◦

Π̃Γ
◦ (X) //

OΓ
◦ (X) **TTTTTTTTTTT

⊂

��

Aut(Γ)
,, X̃Γ

◦
Π̂Γ
◦ (X) //

ÕΓ
◦ (X)ttjjjjjjjjjjj

⊂

��

X̂Γ
◦ ' FdSta

dSpa(X̂Γ
◦ )

⊂

��
X

XΓ

Π̃Γ(X)

//
OΓ(X)

44iiiiiiiiiiiAut(Γ) 22 X̃Γ
Π̂Γ(X)

//
Õ

Γ
(X)

jjUUUUUUUUUUU
X̂Γ.

(11.33)

The 2-morphisms EΓ(γ,X ),EΓ
◦ (γ,X ) in Definition 9.25 are also 2-morphisms

in dStac, since (11.16)–(11.17) hold automatically with η′ = 0.
Now let X,Y be d-stacks with corners, Γ a finite group, and f : X → Y

a representable 1-morphism in dStac. Then f : X → Y is a representable 1-
morphism in dSta, so Definition 9.26 defines 1-morphisms fΓ, f̃Γ, f̂Γ in dSta
with fΓ : XΓ → YΓ, and so on. These are all also 1-morphisms fΓ : XΓ → YΓ,
. . . in dStac. To see this, note that fΓ, f̃Γ, f̂Γ are étale locally modelled in the
sense of Definition 11.2 on the 1-morphisms fΓ : XΓ → YΓ in dSpac on fixed
d-subspaces from Proposition 6.56.

Similarly, if f , g : X → Y are representable 1-morphisms in dStac and
η : f ⇒ g is a 2-morphism, then Definition 9.26 defines 2-morphisms ηΓ, η̃Γ,
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η̂Γ in dSta with ηΓ : fΓ ⇒ gΓ, and so on. These are all also 2-morphisms in
dStac, as they are étale locally modelled in the sense of Definition 11.3 on the
1-morphisms ηΓ : XΓ → YΓ in dSpac from Proposition 6.56.

The analogue of Corollary 9.27 now holds in dStac:

Corollary 11.29. Suppose X,Y are equivalent d-stacks with corners, and Γ is
a finite group. Then XΓ,YΓ are equivalent in dStac, and similarly for X̃Γ, X̂Γ,
XΓ
◦ , X̃

Γ
◦ , X̂

Γ
◦ and ỸΓ, ŶΓ,YΓ

◦ , Ỹ
Γ
◦ , Ŷ

Γ
◦ . Also X̂Γ

◦ , Ŷ
Γ
◦ are equivalent in dSpac.

Here is the analogue of Theorems 9.28 and C.53, proved in the same way as
Theorem 9.28, but using §6.10 and §11.2 rather than §2.7 and §9.3.

Theorem 11.30. Let X be a d-space with corners and G a finite group act-
ing on X by 1-isomorphisms, and write X = [X/G] for the quotient d-stack
with corners, from Definition 11.7. Let Γ be a finite group. Then there are
equivalences of d-stacks with corners

XΓ '
∐

conjugacy classes [ρ] of injective
group morphisms ρ : Γ→ G

[
Xρ(Γ)/

{
g ∈ G : gρ(γ) = ρ(γ)g ∀γ ∈ Γ

}]
, (11.34)

XΓ
◦ '

∐
conjugacy classes [ρ] of injective
group morphisms ρ : Γ→ G

[
Xρ(Γ)
◦ /

{
g ∈ G : gρ(γ) = ρ(γ)g ∀γ ∈ Γ

}]
, (11.35)

X̃Γ '
∐

conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆/

{
g ∈ G : ∆ = g∆g−1

}]
, (11.36)

X̃Γ
◦ '

∐
conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆
◦ /
{
g ∈ G : ∆ = g∆g−1

}]
, (11.37)

X̂Γ '
∐

conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆
/(
{g ∈ G : ∆ = g∆g−1}/∆

)]
, (11.38)

X̂Γ
◦ '

∐
conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆
◦
/(
{g ∈ G : ∆ = g∆g−1}/∆

)]
. (11.39)

Here morphisms ρ, ρ′ : Γ → G are conjugate if ρ′ = Ad(g) ◦ ρ for some
g ∈ G, and subgroups ∆,∆′ ⊆ G are conjugate if ∆ = g∆′g−1 for some g ∈ G.
In (11.34)–(11.39) we sum over one representative ρ or ∆ for each conjugacy
class. For each subgroup ∆ ⊆ G, allowing ∆ = ρ(Γ), we write X∆ for the
closed d-subspace in X fixed by ∆ in G, as in Definition 6.54, and X∆

◦ for the
open d-subspace in X∆ of points in X whose stabilizer group in G is exactly ∆.
The groups acting on X∆ in (11.34)–(11.39) have natural actions induced by the
G-action on X, such that jX,∆ : X∆ ↪→ X is equivariant.

Under the equivalences (11.34)–(11.39), the 1-morphisms in (11.33) are iden-
tified up to 2-isomorphism with 1-morphisms between quotient d-stacks with cor-
ners induced by natural 1-morphisms in dSpac between Xρ(Γ),X, . . . .

Theorem 9.29 also holds for d-stacks with corners X and XΓ, X̃Γ, . . . , X̃Γ
◦ ,

by applying it to the underlying d-stacks X and XΓ, X̃Γ, . . . , X̂Γ
◦ . Here is the
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analogue of Theorem 8.32. It is proved using essentially the same method,
but using Proposition 6.57 and Theorem 11.30 in place of Proposition 5.18 and
Theorem C.53, respectively.

Theorem 11.31. Let X be a d-stack with corners, and Γ a finite group. The
corners C(X) from §11.5 is also a d-stack with corners, so we have orbifold strata
XΓ, C(X)Γ and 1-morphisms OΓ(X) : XΓ → X, OΓ(C(X)) : C(X)Γ → C(X).
Applying the corner functor C from §11.5 gives a 1-morphism C(OΓ(X)) :
C(XΓ) → C(X). There exists a unique equivalence KΓ(X) : C(XΓ) → C(X)Γ

in dStac with OΓ(C(X)) ◦KΓ(X) = C(OΓ(X)) : C(XΓ) → C(X). It restricts
to an equivalence KΓ

◦ (X) := KΓ(X)|C(XΓ
◦ ) : C(XΓ

◦ )→ C(X)Γ
◦ .

Similarly, there is a unique equivalence K̃Γ(X) : C(X̃Γ) → ˜C(X)Γ with
ÕΓ(C(X))◦K̃Γ(X)=C(ÕΓ(X)) and Π̃Γ(C(X))◦KΓ(X)=K̃Γ(X)◦C(Π̃Γ(X)).

There is an equivalence K̂Γ(X) : C(X̂Γ)→ ̂C(X)Γ, unique up to 2-isomorphism,
with a 2-morphism Π̂Γ(C(X)) ◦ K̃Γ(X) ⇒ K̂Γ(X) ◦ C(Π̂Γ(X)). They restrict

to equivalences K̃Γ
◦ (X) : C(X̃Γ

◦ )→ ˜C(X)Γ
◦ and K̂Γ

◦ (X) : C(X̂Γ
◦ )→ ̂C(X)Γ

◦ .

Here are the analogues of Corollaries 8.34 and 8.36 and Definition 8.35.

Corollary 11.32. Let X be a d-stack with corners, and Γ a finite group. Then

there exist 1-morphisms JΓ(X) : (∂X)Γ → ∂(XΓ), J̃Γ(X) : ˜(∂X)Γ → ∂(X̃Γ),

ĴΓ(X) : ̂(∂X)Γ → ∂(X̂Γ) in dStac, natural up to 2-isomorphism, such that
JΓ(X) is an equivalence from (∂X)Γ to an open and closed d-substack of ∂(XΓ),
and similarly for J̃Γ(X), ĴΓ(X).

Definition 11.33. A d-stack with corners X is called straight if the morphisms
(iX)∗ : Iso∂X ([x′]) → IsoX ([x]) on orbifold groups are isomorphisms for all
[x′] ∈ ∂X top with iX,top([x′]) = [x]. D-stacks with boundary are automatically
straight. If X is straight one can show using §11.3 that ∂X is straight, so by
induction ∂kX is also straight for all k > 0.

Corollary 11.34. Let X be a straight d-stack with corners, and Γ a finite
group. Then we have an equivalence ∂(XΓ) ' (∂X)Γ in dStac. The analogue

holds for the other orbifold strata X̃Γ, X̂Γ,XΓ
◦ , X̃

Γ
◦ ,X

Γ
◦ .
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12 D-orbifolds with corners

We now define and study the 2-category dOrbc of d-orbifolds with corners,
as a full 2-subcategory of the 2-category dStac of d-stacks with corners from
Chapter 11. Most of the chapter works by combining ideas on d-manifolds with
corners from Chapter 7, and on orbifolds with corners from §8.5–§8.9, and on
d-orbifolds from Chapter 10, so we often omit proofs.

12.1 The definition of d-orbifolds with corners

Here are the d-orbifold analogues of Definitions 7.1, 7.2 and 7.5 and Lemmas
7.3 and 7.4, proved in the same way.

Definition 12.1. A d-stack with corners W is called a principal d-orbifold with
corners if is equivalent in dStac to a fibre product V ×s,E,0 V, where V is an
orbifold with corners, E is a vector bundle on V, s ∈ C∞(E) is a smooth section
of E , 0 ∈ C∞(E) is the zero section, so that Definition 8.19 defines an orbifold
with corners Totc(E), the ‘total space’ of E , and 1-morphisms Totc(s),Totc(0) :
X→ Totc(E), and we set V,E, s,0 = FdStac

Orbc

(
V,Totc(E),Totc(s),Totc(0)

)
.

Note that Totc(s),Totc(0) : V → Totc(E) are simple, flat 1-morphisms in
Orbc, so s,0 : V → E are simple, flat 1-morphisms in dStac. Thus s,0 are
b-transverse by Lemma 11.23(i), and a fibre product V×s,E,0 V exists in dStac

by Theorem 11.24(a).

Definition 12.2. Let V = (V, ∂V, iV) be an orbifold with corners, E ∈ vect(V)
a vector bundle on V as in Definition 8.19, and s ∈ C∞(E), that is, s : OV → E
is a morphism in vect(V). We will define an explicit principal d-orbifold with
corners S = (S,∂S, iS, ωS) equivalent in dStac to V×s,E,0V in Definition 12.1.
We call S a standard model d-orbifold with corners, and also write it SV,E,s.

Define the d-stack S = (S,O′S, ES, ıS, S) exactly as in Definition 10.5, using
the Deligne–Mumford C∞-stack V, vector bundle E and section s ∈ C∞(E).
This time V is not an orbifold, but the definition still makes sense. Simi-
larly, define the d-stack ∂S = (∂S,O′∂S , E∂S , ı∂S , ∂S) as in Definition 10.5,
but using ∂V, i∗V(E), i∗V(s) in place of V, E , s. Define the d-stack 1-morphism
iS = (iS, i

′
S, i
′′
S) : ∂S → S as for Sf,f̂ in Definition 10.9, with ∂V,V, i∗V(E), E ,

i∗V(s), s, iV, idi∗
V

(E) in place of V,W, E ,F , s, t, f, f̂ , respectively.
Then by definition the C∞-stack S, as a category, is the full subcategory of

objects u in V with pV(u) = U in C∞Sch such that 0 = ũ∗(s) : ũ∗(OV)→ ũ∗(E)
in qcoh(Ū), and pS = pV |S : S → C∞Sch. Similarly ∂S is the full subcategory
of u in ∂V with pV(u) = U and 0 = ũ∗◦i∗V(s) : ũ∗(O∂V)→ ũ∗◦i∗V(E) in qcoh(Ū),
and iS : ∂S → S is iS = iV|∂S . As ∂S,S are full subcategories and iV is strongly
representable, this implies that iS is strongly representable.

Suppose W is a manifold with corners, W = FC∞Sch
Manc (W ) and w : W̄ → V

is étale. Then there exist a vector bundle F → W and t ∈ C∞(F ) whose lifts
to W̄ are isomorphic to w∗(E) and w∗(s). Definition 7.2 defines a d-manifold
with corners SW,F,t = S̃ = (S̃,∂S̃, iS̃, ωS̃). Comparing the definitions shows

that S,∂S, iS are étale locally modelled on S̃,∂S̃, iS̃. Hence the conormal
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bundle NS for S,∂S, iS in qcoh(∂S) from (11.1) is étale locally modelled on
the conormal bundle N S̃ for S̃,∂S̃, iS̃ from (6.4).

Definition 7.2 shows N S̃ is a line bundle isomorphic to the lift to ∂S̃ of the
conormal bundle ν̃∗ of ∂W in W . Therefore NS is a line bundle isomorphic
to the lift to ∂S of the conormal bundle ν∗ of ∂V in V. Define ωS to be the
orientation on NS induced by the orientation on ν∗ by outward-pointing normal
vectors. Then S,∂S, iS, ωS are étale locally modelled on S̃,∂S̃, iS̃, ωS̃. Hence
S is étale locally modelled on the d-manifold with corners SW,F,t = S̃ in the
sense of Definition 11.1(d). As such w : W̄ → V form an étale open cover of V,
this implies that S is a d-stack with corners.

As in Definitions 7.2 and 10.5, we can show that SV,E,s = S is equivalent in
dStac to V×s,E,0V in Definition 12.1. Thus SV,E,s is a principal d-orbifold with
corners, and every principal d-orbifold with corners W is equivalent in dStac

to some SV,E,s. Sometimes it is useful to take V to be an effective orbifold with
corners, as in §8.9.

Lemma 12.3. Let V be an orbifold with corners, E a vector bundle on V, and
s ∈ C∞(E). Write E∂ = i∗V(E), a vector bundle on ∂V, and s∂ = i∗V(s) in
C∞(E∂). Define SV,E,s,S∂V,E∂ ,s∂ as in Definition 12.2. Then there is a natural
1-isomorphism ∂SV,E,s ∼= S∂V,E∂ ,s∂ in dStac, where ∂SV,E,s is as in §11.3.

Similarly, for k > 0 define a vector bundle Ek = Π∗k(E) on the k-corners
Ck(V) and a section sk = Π∗k(s) ∈ C∞(Ek), where Πk : Ck(V)→ V is the natural
projection. Then there is a natural 1-isomorphism Ck(SV,E,s) ∼= SCk(V),Ek,sk in
dStac, where Ck(SV,E,s) is as in §11.5.

Lemma 12.4. Suppose W = (W ,∂W , iW, ωW) is a principal d-orbifold with
corners, so that W ' V ×s,E,0 V as in Definition 12.1 for V an orbifold with
corners, E a vector bundle on V, and s ∈ C∞(E). Then the virtual cotangent
sheaf T ∗W is a virtual vector bundle on W, with rankT ∗W=dimV−rank E.

Definition 12.5. If W is a nonempty principal d-orbifold with corners, then
T ∗W is a virtual vector bundle by Lemma 12.2. We define the virtual dimension
of W to be vdimW = rankT ∗W ∈ Z.

A d-stack with corners X is called a d-orbifold with corners of virtual dimen-
sion n ∈ Z, written vdimX = n, if X can be covered by open d-substacks W

which are principal d-orbifolds with corners with vdimW = n. A d-orbifold with
corners X is called a d-orbifold with boundary if it is a d-stack with boundary,
and a d-orbifold without boundary if it is a d-stack without boundary.

If X = (X ,∂X , iX, ωX) is a d-orbifold with corners, then the underlying
C∞-stacks X , ∂X in X ,∂X are separated, second countable, locally compact,
paracompact, and locally fair. The virtual cotangent sheaf T ∗X = T ∗X =
(EX ,FX , φX ) of X is a virtual vector bundle of rank vdimX = n, so we call it
the virtual cotangent bundle of X. We consider the empty d-stack with corners
∅ to be a d-orbifold with corners of any virtual dimension n ∈ Z, so we leave
vdim∅ undefined.

Write dŌrb,dOrbb,dOrbc for the full 2-subcategories of d-orbifolds with-
out boundary, and with boundary, and with corners, in dStac, respectively.
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Then Ōrb, Ōrbb, Ōrbc in Definition 11.3 are full 2-subcategories of dŌrb,
dOrbb,dOrbc. When we say that a d-orbifold with corners X is an orbifold,
we mean that X lies in Ōrbc. Define full and faithful strict 2-functors

FdOrbc

dOrb : dOrb→ dŌrb ⊂ dOrbc, FdOrbc

Orbc : Orbc → dOrbc,

FdOrbc

Orbb : Orbb → dOrbb⊂dOrbc, FdOrbc

Orb : Orb→ dŌrb ⊂ dOrbc,

FdOrbc

dManc : dManc → dOrbc, FdOrbc

dManb : dManb → dOrbb⊂dOrbc,

and FdOrbc

dMan : dMan→ dŌrb ⊂ dOrbc, by

FdOrbc

dOrb = FdStac

dSta |dOrb, FdOrbc

Orbc = FdStac

Orbc , FdOrbc

Orbb = FdStac

Orbc |Orbb ,

FOrbc

Orb =FdStac

dSta ◦FdSta
Orb , FdOrbc

dManc =FdStac

dSpac |dManc , FdOrbc

dManb =FdStac

dSpac |dManb ,

and FdOrbc

dMan = FdStac

dSpac ◦ FdManc

dMan = FdOrbc

dOrb ◦ FdOrb
dMan,

where FOrbc

Orb , FdSta
Orb , FdStac

dSta , FdStac

dSpac , FdManc

dMan , FdOrb
dMan, F

dStac

Orbc are as in Defini-

tions 7.5, 8.15, 10.1 and 11.3. Here FdOrbc

dOrb : dOrb→ dŌrb is an isomorphism
of 2-categories. So we may as well identify dOrb with its image dŌrb, and
consider d-orbifolds without boundary in Chapter 10 as examples of d-orbifolds
with corners.

Write dM̂anc for the full 2-subcategory of objects X in dOrbc equivalent to
FdOrbc

dManc(X) for some d-manifold with corners X. When we say that a d-orbifold

with corners X is a d-manifold, we mean that X ∈ dM̂anc.
These 2-categories lie in a commutative diagram:

dSpa

FdSta
dSpa

		

Man

wwooooooooooo
FdManc

Man
��

FdMan
Man

wwooooooooooo ⊂
//

FOrb
Man

		

Manb

FdManc

Manb

��

⊂
//

FOrbc

Manb

		

Manc

FOrbc

Manc

		

FdManc

Manc

��

FdSpac

Manc

''OOOOOOOOOOO

dMan

⊂

OO

FdManc

dMan

∼=
//

FdOrb
dMan

��

dM̄an
⊂ //

��

dManb
⊂ //

FdOrbc

dManb ��

dManc

FdOrbc

dManc ��

⊂ // dSpac

FdStac

dSpac ��
dOrb

⊂
��

FdOrbc

dOrb

∼= // dŌrb ⊂
// dOrbb

⊂
//

��

dOrbc
⊂

// dStac

dSta Orb

FdOrbc

Orb

OO

FdOrb
Orb

ggOOOOOOOOOOO
FOrbc

Orb // Orbb

FdOrbc

Orbb

OO

⊂ // Orbc.

FdOrbc

Orbc

OO

FdStac

Orbc

77nnnnnnnnnnn

Here are analogues of Lemmas 10.3 and 10.4, with the same proofs, and of
Proposition 7.7, which follows from Lemma 12.3.

Lemma 12.6. Let W be a d-orbifold with corners, and U an open d-substack
of W. Then U is also a d-orbifold with corners, with vdimU = vdimW.

Lemma 12.7. Let X be a d-orbifold with corners. Then X is a d-manifold,
that is, X ' FdOrbc

dManc(X) for some d-manifold with corners X, if and only if
IsoX ([x]) ∼= {1} for all [x] in Xtop.

Proposition 12.8. Suppose X is a d-orbifold with corners. Then ∂X in §11.3
and Ck(X) in §11.5 are d-orbifolds with corners, with vdim ∂X = vdimX − 1
and vdimCk(X) = vdimX− k for all k > 0.
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Here is the analogue of Definition 7.8.

Definition 12.9. Define dǑrbc to be the full 2-subcategory of X in dStac

which may be written as a disjoint union X =
∐
n∈Z Xn for Xn ∈ dOrbc with

vdimXn = n, where we allow Xn = ∅. We call such X a d-orbifold with corners
of mixed dimension. Then dOrbc ⊂ dǑrbc ⊂ dStac, and Proposition 12.8
implies that the corner functors C, Ĉ : dStac → dStac in §11.5 restrict to
strict 2-functors C, Ĉ : dOrbc → dǑrbc.

12.2 Local properties of d-orbifolds with corners

Section 10.1.3 explained how to generalize the material of §3.3 from d-manifolds
to d-orbifolds. In the same way, we can generalize the material of §7.2 from d-
manifolds with corners to d-orbifolds with corners. We will leave the details to
the reader, and just state analogues of Corollaries 7.11 and 7.12 and Proposition
7.13 (see also Propositions 10.6–10.8).

Proposition 12.10. Let X be a d-orbifold with corners, and [x] ∈ Xtop. Then
there exists an open neighbourhood U of [x] in X and an equivalence U ' SV,E,s
in dOrbc for some orbifold with corners V, vector bundle E over V and s ∈
C∞(E) which identifies [x] ∈ Utop with a point [v] ∈ Sk(V)top ⊆ Vtop such that
s(v) = ds|Sk(V)(v) = 0, where Sk(V) ⊆ V is the locally closed C∞-substack of
[v] ∈ Vtop such that ∗̄ ×v,V,iV ∂V is k points, for k > 0. Furthermore, V, E , s, k
are determined up to non-canonical equivalence near [v] by X near [x].

Proposition 12.11. Let X be a d-orbifold with corners. Then X is determined
up to non-canonical equivalence near each point [x] ∈ Xtop by the ‘classical’ data
X , ∂X , iX,NX, %X, ωX in X, the integer vdimX, and a choice of representation
of IsoX ([x]) on the obstruction space x∗(KerφX ) ∈ qcoh(∗̄) at [x].

Proposition 12.12. Let X be a d-orbifold with corners. Then X is an orbifold
(that is, X ∈ Ōrbc) if and only if φC(X ) : EC(X ) → FC(X ) has a left inverse,
or equivalently, if the virtual cotangent bundle T ∗(C(X)) of the corners C(X)
of X is a vector bundle of mixed rank on C(X ).

We define ‘standard model’ 1-morphisms in dOrbc, following Definitions
3.30, 7.15 and 10.9.

Definition 12.13. Let V,W be orbifolds with corners, E ,F vector bundles on
V,W, and s ∈ C∞(E), t ∈ C∞(F), so that Definition 12.2 defines d-orbifolds
with corners SV,E,s,SW,F,t. Suppose f : V→W is a 1-morphism in Orbc, and

f̂ : E → f∗(F) a morphism in vect(V) satisfying f̂ ◦ s = f∗(t), as in (10.1).
The d-stacks SV,E,s,SW,F,t in SV,E,s,SW,F,t are defined as for ‘standard

model’ d-orbifolds SV,E,s in Definition 10.5. Thus we can follow Definition 10.9
to define a 1-morphism Sf,f̂ : SV,E,s → SW,F,t in dSta. Now in Definition 7.15
we defined ‘standard model’ 1-morphisms Sf,f̂ in dManc by following Definition
3.30 for 1-morphisms Sf,f̂ in dMan, and showing that this 1-morphism in dSpa
is also a 1-morphism in dSpac. Since Sf,f̂ in Definition 10.9 is étale locally
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modelled on Sf,f̂ in Definition 3.30, we see that Sf,f̂ above is étale locally
modelled (in the sense of Definition 11.2(∗)) on the 1-morphism Sf,f̂ in dSpac

in Definition 7.15. Therefore Sf,f̂ : SV,E,s → SW,F,t is a 1-morphism in dStac,
and hence in dOrbc. We call it a standard model 1-morphism in dOrbc.

Suppose now that Ṽ ⊆ V is open, with inclusion 1-morphism iṼ : Ṽ → V.
Write Ẽ = E|Ṽ = i∗̃V(E) and s̃ = s|Ṽ = i∗̃V(s). Then we have a 1-morphism
iṼ,V = SiṼ,idẼ : SṼ,Ẽ,s̃ → SV,E,s. If s−1(0) ⊆ Ṽ then iṼ,V is a 1-isomorphism.

As for Lemma 7.18 and Proposition 10.10, we have:

Lemma 12.14. In Definition 12.13, the 1-morphism Sf,f̂ : SV,E,s → SW,F,t,
is simple, semisimple, or flat, if and only if f is simple, semisimple, or flat
respectively near s−1(0) in V.

Proposition 12.15. Let Sf,f̂ ,Sg,ĝ : SV,E,s → SW,F,t be ‘standard model’ 1-
morphisms of d-orbifolds with corners, in the notation of Definitions 12.2 and
12.13. Suppose η : f ⇒ g is a 2-morphism in Orbc which satisfies ĝ = η∗(F)◦f̂ :
E → g∗(F). Then η = (η|SV,E,s , 0) is a 2-morphism η : Sf,f̂ ⇒ Sg,ĝ in dOrbc.

As in §10.1.4 for 1-morphisms in dOrb, we can write down an analogue
of Theorems 3.34 and 7.19 for the standard model 1-morphisms of Definition
12.13, but it is weaker, saying only that any 1-morphism g : SV,E,s → SW,F,t is
2-isomorphic in dStac to some Sf,f̂ ◦ i−1

Ṽ,V
.

The material of §10.1.5 also extends to d-orbifolds with corners. Here are
the analogues of Examples 10.11 and 10.12 and Propositions 10.14 and 10.15,
with similar proofs.

Example 12.16. Let V be a manifold with corners, E → V a vector bundle, Γ
a finite group acting smoothly on V,E preserving the vector bundle structure,
and s : V → E a smooth, Γ-equivariant section of E. Write the Γ-actions on
V,E as r(γ) : V → V and r̂(γ) : E → r(γ)∗(E) for γ ∈ Γ. Then Definitions
7.2 and 7.15 give an explicit principal d-manifold with corners SV,E,s, and 1-
morphisms Sr(γ),r̂(γ) : SV,E,s → SV,E,s for γ ∈ Γ which are an action of Γ on
SV,E,s. Hence Definition 11.7 defines a quotient d-stack with corners [SV,E,s/Γ].

Example 8.16 defines an orbifold with corners Ṽ = [V/Γ], and by Definition
C.34 and Theorem C.35 E, s induce a vector bundle Ẽ on Ṽ = [V /Γ] and section
s̃ ∈ C∞(Ẽ), so that Definition 12.2 gives a ‘standard model’ principal d-orbifold
with corners SṼ,Ẽ,s̃. One can show that [SV,E,s/Γ] ' SṼ,Ẽ,s̃, so [SV,E,s/Γ] is a
principal d-orbifold with corners.

Example 12.17. Let [SV,E,s/Γ], [SW,F,t/∆] be quotient d-orbifolds with cor-
ners as in Example 12.16, where Γ acts on V,E by q(γ) : V → V and q̂(γ) :
E → q(γ)∗(E) for γ ∈ Γ, and ∆ acts on W,F by r(δ) : W → W and
r̂(δ) : F → r(δ)∗(F ) for δ ∈ ∆. Suppose f : V → W is a smooth map

in Manc, and f̂ : E → f∗(F ) is a morphism of vector bundles on V satis-

fying f̂ ◦ s = f∗(t) + O(s2), and ρ : Γ → ∆ is a group morphism satisfy-

ing f ◦ q(γ) = r(ρ(γ)) ◦ f : V → W and q(γ)∗(f̂) ◦ q̂(γ) = f∗(r̂(ρ(γ))) ◦ f̂ :
E → (f ◦ q(γ))∗(F ) for all γ ∈ Γ. Then Definition 7.15 defines a 1-morphism
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Sf,f̂ : SV,E,s → SW,F,t in dManc. The equivariance conditions on f, f̂ imply
that Sf,f̂ ◦ Sq(γ),q̂(γ) = Sr(ρ(γ)),r̂(ρ(γ)) ◦ Sf,f̂ for γ ∈ Γ. Hence Definition 11.7
defines a quotient 1-morphism [Sf,f̂ , ρ] : [SV,E,s/Γ]→ [SW,F,t/∆] in dOrbc.

Proposition 12.18. A d-stack with corners X is a d-orbifold with corners of
virtual dimension n ∈ Z if and only if each [x] ∈ Xtop has an open neighbourhood
U equivalent to some [SV,E,s/Γ] in Example 12.16 with dimV − rankE = n,
where Γ = IsoX ([x]) and [x] ∈ Xtop is identified with a fixed point v ∈ Sk(V ) ⊆
V of Γ with s(v) = 0 and ds|Sk(V )(v) = 0. Furthermore, V,E, s,Γ are deter-
mined up to non-canonical isomorphism near v by X near [x].

Proposition 12.19. A quotient d-stack with corners [U/G] is a d-orbifold with
corners if and only if the d-space with corners U is a d-manifold with corners,
and then vdim[U/G] = vdim U.

12.3 Equivalences and gluing

Sections 7.4 and 10.2 discussed equivalences and gluing for d-manifolds with
corners, and for d-orbifolds. Combining the two yields analogous results for
d-orbifolds with corners. The proofs in this section combine those of §7.4 and
§10.2 in a straightforward way, using results from §11.4, so we leave them as an
exercise. Here is the analogue of Theorems 7.20 and 10.16.

Theorem 12.20. Suppose f : X → Y is a 1-morphism of d-orbifolds with
corners, and f : X → Y is representable. Then the following are equivalent:

(i) f is étale;

(ii) f is simple and flat, in the sense of Definition 11.10, and Ωf : f∗(T ∗Y)→
T ∗X is an equivalence in vqcoh(X ); and

(iii) f is simple and flat, and (9.14) is a split short exact sequence in qcoh(X ).

If in addition f∗ : IsoX ([x]) → IsoY(ftop([x])) is an isomorphism for all [x] ∈
Xtop, and ftop : Xtop → Ytop is a bijection, then f is an equivalence in dOrbc.

Here is the analogue of Theorems 7.21 and 10.17.

Theorem 12.21. Suppose Sf,f̂ : SV,E,s → SW,F,t is a ‘standard model’ 1-
morphism in dOrbc, in the notation of Definitions 12.2 and 12.13, with f :
V → W representable. Then Sf,f̂ is étale if and only if f is simple and flat
near s−1(0) ⊆ V, in the sense of Definition 8.21, and for each [v] ∈ Vtop with
s(v) = 0 and [w] = ftop([v]) ∈ Wtop, the following sequence is exact:

0 // TvV
ds(v)⊕ df(v) // Ev ⊕ TwW

f̂(v)⊕−dt(w) // Fw // 0.

Also Sf,f̂ is an equivalence if and only if in addition ftop|s−1(0) : s−1(0)→ t−1(0)
is a bijection, where s−1(0) = {[v] ∈ Vtop : s(v) = 0}, t−1(0) = {[w] ∈ Wtop :
t(w) = 0}, and f∗ : IsoV([v]) → IsoW(ftop([v])) is an isomorphism for all [v] ∈
s−1(0) ⊆ Vtop.
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As for Corollary 10.18, we deduce:

Corollary 12.22. Let V,W be orbifolds with corners, E ,F vector bundles over
V,W, s ∈ C∞(E), t ∈ C∞(F) smooth sections, f : V → W an sf-embedding

of orbifolds with corners, and f̂ : E → f∗(F) an injective morphism of vector

bundles (that is, f̂ has a left inverse) satisfying f̂ ◦s = f∗(t). For each [v] ∈ Vtop

with s(v) = 0 and ftop([v]) = [w] ∈ Wtop, we have a linear map

dt(w)∗ : TwW
/

df(v)[TvV] −→ Fw
/
f̂(v)[Ev]. (12.1)

Suppose (12.1) is an isomorphism for all [v] ∈ s−1(0) ⊆ Vtop, and ftop|s−1(0) :
s−1(0)→ t−1(0) is a bijection. Then Sf,f̂ : SV,E,s→SW,F,t is an equivalence.

Here are analogues of Theorems 10.19 and 10.21, extending Theorem 7.23.

Theorem 12.23. Suppose we are given the following data:

(a) an integer n;

(b) a Hausdorff, second countable topological space X;

(c) an indexing set I, and a total order < on I;

(d) for each i in I, an effective orbifold with corners Vi, a vector bundle E i
on Vi with dimVi − rank E i = n, a section si ∈ C∞(E i), and a homeo-
morphism ψi : s−1

i (0) → X̂i, where s−1
i (0) = {[vi] ∈ Vi,top : si(vi) = 0}

and X̂i ⊆ X is open; and

(e) for all i < j in I, an open suborbifold Vij ⊆ Vi, a simple, flat 1-morphism
eij : Vij → Vj , and a morphism of vector bundles êij : E i|Vij → e∗ij(Ej).

Let this data satisfy the conditions:

(i) X =
⋃
i∈I X̂i;

(ii) if i < j in I then (eij)∗ : IsoVij ([v]) → IsoVj (eij,top([v])) is an isomor-
phism for all [v] ∈ Vij,top, and êij ◦si|Vij = e∗ij(sj)◦ ιij where ιij : OVij →
e∗ij(OVj ) is the natural isomorphism, and ψi(si|−1

Vij
(0)) = X̂i ∩ X̂j , and

ψi|si|−1
Vij

(0) = ψj ◦ eij,top|si|−1
Vij

(0), and if [vi] ∈ Vij,top with si(vi) = 0 and

[vj ] = eij,top([vi]) then the following sequence is exact:

0 // TviVi
dsi(vi)⊕ deij(vi) // E i|vi⊕TvjVj

êij(vi)⊕−dsj(vj)// Ej |vj // 0;

(iii) if i < j < k in I then there exists a 2-morphism ηijk : ejk ◦eij |Vik∩e−1
ij (Vjk)

⇒ eik|Vik∩e−1
ij (Vjk) in Orbc with

êik|Vik∩e−1
ij (Vjk) =η∗ijk(Ek)◦Ieij ,ejk(Ek)−1◦eij |∗Vik∩e−1

ij (Vjk)
(êjk)◦êij |Vik∩e−1

ij (Vjk).

Note that ηijk is unique by Proposition 8.14.
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Then there exist a d-orbifold with corners X with vdimX = n and underlying
topological space Xtop

∼= X, and a 1-morphism ψi : SVi,Ei,si → X in dOrbc

with underlying continuous map ψi which is an equivalence with the open d-
suborbifold X̂i ⊆ X corresponding to X̂i ⊆ X for all i ∈ I, such that for all
i < j in I there exists a 2-morphism ηij : ψj ◦ Seij ,êij ⇒ ψi ◦ iVij ,Vi , where
Seij ,êij : SVij ,Ei|Vij ,si|Vij → SVj ,Ej ,sj and iVij ,Vi : SVij ,Ei|Vij ,si|Vij → SVi,Ei,si .

This X is unique up to equivalence in dOrbc.
Suppose also that Y is an effective orbifold with corners, and gi : Vi → Y are

1-morphisms in Orbc for all i ∈ I satisfying any of Proposition 8.14(i)–(v), and
there are 2-morphisms ζij : gj ◦ eij ⇒ gi|Vij in Orbc for all i < j in I. Then
there exist a 1-morphism h : X → Y in dOrbc unique up to 2-isomorphism,
where Y = FdOrbc

Orbc (Y) = SY,0,0, and 2-morphisms ζi : h ◦ ψi ⇒ Sgi,0 for
all i ∈ I.

Theorem 12.24. Suppose we are given the following data:

(a) an integer n;

(b) a Hausdorff, second countable topological space X;

(c) an indexing set I, and a total order < on I;

(d) for each i in I, a manifold with corners Vi, a vector bundle Ei → Vi with
dimVi − rankEi = n, a finite group Γi, smooth, locally effective actions
ri(γ) : Vi → Vi, r̂i(γ) : Ei → r(γ)∗(Ei) of Γi on Vi, Ei for γ ∈ Γi,
a smooth, Γi-equivariant section si : Vi → Ei, and a homeomorphism
ψi : Xi → X̂i, where Xi = {vi ∈ Vi : si(vi) = 0}/Γi and X̂i ⊆ X is an
open set; and

(e) for all i < j in I, an open submanifold Vij ⊆ Vi, invariant under Γi, a
group morphism ρij : Γi → Γj, a simple, flat, smooth map eij : Vij → Vj ,
and a morphism of vector bundles êij : Ei|Vij → e∗ij(Ej).

Let this data satisfy the conditions:

(i) X =
⋃
i∈I X̂i;

(ii) if i < j in I then êij ◦ si|Vij = e∗ij(sj) +O(s2
i ), and for all γ ∈ Γ we have

eij ◦ ri(γ) = rj(ρij(γ)) ◦ eij : Vij −→ Vj ,

ri(γ)∗(êij) ◦ r̂i(γ) = e∗ij(r̂j(ρij(γ))) ◦ êij : Ei|Vij −→ (eij ◦ ri(γ))∗(Ej),

and ψi(Xi∩ (Vij/Γi)) = X̂i∩ X̂j , and ψi|Xi∩Vij/Γi = ψj ◦ (eij)∗|Xi∩Vij/Γj ,
and if vi ∈ Vij with si(vi) = 0 and vj = eij(vi) then ρ|StabΓi

(vi) :
StabΓi(vi) → StabΓj (vj) is an isomorphism, and the following sequence
of vector spaces is exact:

0 // TviVi
dsi(vi)⊕ deij(vi) // Ei|vi⊕TvjVj

êij(vi)⊕−dsj(vj) // Ej |vj // 0;
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(iii) if i < j < k in I then there exists γijk ∈ Γk satisfying

ρik(γ) = γijk ρjk(ρij(γ)) γ−1
ijk for all γ ∈ Γi,

eik|Vik∩e−1
ij (Vjk) = rk(γijk) ◦ ejk ◦ eij |Vik∩e−1

ij (Vjk), and

êik|Vik∩e−1
ij (Vjk) =

(
e∗ij(e

∗
jk(r̂k(γijk))) ◦ e∗ij(êjk) ◦ êij

)
|Vik∩e−1

ij (Vjk).

Then there exist a d-orbifold with corners X with vdimX = n and underlying
topological space Xtop

∼= X, and a 1-morphism ψi : [SVi,Ei,si/Γi]→ X in dOrbc

with underlying continuous map ψi which is an equivalence with the open d-
suborbifold X̂i ⊆ X corresponding to X̂i ⊆ X for all i ∈ I, such that for all
i < j in I there exists a 2-morphism ηij : ψj ◦ [Seij ,êij , ρij ]⇒ ψi ◦ [iVij ,Vi , idΓi ],
where [Seij ,êij , ρij ] : [SVij ,Ei|Vij ,si|Vij /Γi] → [SVj ,Ej ,sj/Γj ] and [iVij ,Vi , idΓi ] :

[SVij ,Ei|Vij ,si|Vij /Γi]→ [SVi,Ei,si/Γj ] are as in Example 12.17. This X is unique

up to equivalence in dOrbc.
Suppose also that Y is a manifold with corners, and gi : Vi → Y are smooth

maps for all i ∈ I with gi ◦ ri(γ) = gi for all γ ∈ Γi, and gj ◦ eij = gi|Vij for
all i < j in I. Then there exist a 1-morphism h : X→ Y in dOrbc unique up
to 2-isomorphism, where Y = FdOrbc

Manc (Y ) = [SY,0,0/{1}], and 2-morphisms ζi :
h◦ψi ⇒ [Sgi,0, π{1}] for all i ∈ I. Here [SY,0,0/{1}] is from Example 12.16 with
E, s both zero and Γ = {1}, and [Sgi,0, π{1}] : [SVi,Ei,si/Γi]→ [SY,0,0/{1}] = Y

is from Example 12.17 with ĝi = 0 and ρ = π{1} : Γi → {1}.

The effectiveness assumptions in Theorems 12.23 and 12.24 ensure the over-
lap conditions (11.25)–(11.26) on 2-morphisms in Theorem 11.19 hold automat-
ically. The importance of Theorems 12.23 and 12.24 is that all the ingredients
are described wholly in differential-geometric or topological terms, so we can
use them to prove the existence of d-orbifold structures on spaces coming from
other areas of geometry, such as moduli spaces of J-holomorphic curves.

In §12.9 we will prove that every d-orbifold with corners X admits good
coordinate systems, collections of data satisfying the hypotheses of Theorems
12.23 and 12.24. This shows these hypotheses are not unrealistically strong.

12.4 Submersions, immersions and embeddings

Sections 4.1–4.2 studied submersions, immersions and embeddings in dMan.
This was extended to d-manifolds with corners in §7.5, and to d-orbifolds
in §10.3. Also Definition 8.28 defined submersions, s-submersions, . . . , sf-
embeddings in Orbc. For d-orbifolds with corners, we combine the modifications
of §7.5 and §10.3. Here is the analogue of Definitions 7.24 and 10.22.

Definition 12.25. Let f : X → Y be a 1-morphism in dOrbc. Then T ∗X =
(EX ,FX , φX ) and f∗(T ∗Y) =

(
f∗(EY), f∗(FY), f∗(φY)

)
are virtual vector bun-

dles on X of ranks vdimX, vdimY, and Ωf = (f ′′, f2) : f∗(T ∗Y) → T ∗X is a
1-morphism in vvect(X ).

(a) We call f a w-submersion if f is semisimple and flat and Ωf is weakly
injective. We call f an sw-submersion if it is also simple.
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(b) We call f a submersion if f is semisimple and flat and ΩC(f) is injective,
for C(f) as in §11.5. We call f an s-submersion if it is also simple.

(c) We call f a w-immersion if f : X →Y is representable and Ωf is weakly
surjective. We call f an sw-immersion, or sfw-immersion, if f is also
simple, or simple and flat.

(d) We call f an immersion if f : X → Y is representable and ΩĈ(f) is
surjective, for Ĉ(f) as in §11.5. We call f an s-immersion if f is also
simple, and an sf-immersion if f is also simple and flat.

(e) We call f a w-embedding, sw-embedding, sfw-embedding, embedding, s-
embedding, or sf-embedding, if f is a w-immersion, . . . , sf-immersion, re-
spectively, and f∗ : IsoX ([x]) → IsoY(ftop([x])) is an isomorphism for all
[x] ∈ Xtop, and ftop : Xtop → Ytop is a homeomorphism with its image, so
in particular ftop is injective.

More generally, we make the same definitions for f : X → Y a 1-morphism in
dǑrbc from Definition 12.9.

Parts (c)–(e) enable us to define d-suborbifolds X of a d-orbifold with corners
Y. Open d-suborbifolds are open d-substacks X in Y. For more general d-
suborbifolds, we call f : X → Y a w-immersed, sw-immersed, sfw-immersed,
immersed, s-immersed, sf-immersed, w-embedded, sw-embedded, sfw-embedded,
embedded, s-embedded, or sf-embedded d-suborbifold of Y if X,Y are d-orbifolds
with corners and f is a w-immersion, . . . , sf-embedding, respectively.

The 1-morphisms OΓ,λ(X) : XΓ,λ → X and ÕΓ,λ(X) : X̃Γ,λ → X of §12.8
are examples of w-immersions. Here is the analogue of Proposition 7.26. To
prove it, note by comparing Definitions 7.24 and 12.25 that a 1-morphism
f : X → Y in dOrbc is a w-submersion, sw-submersion, . . . , s-immersion
or sf-immersion if and only if it is étale locally modelled in the sense of Defini-
tion 11.2(∗) on 1-morphisms h : U → V in dManc which are w-submersions,
. . . , sf-immersions, plus we must require f : X → Y representable for w-
immersions, . . . , sf-immersions. But if f is étale locally modelled on h then
C(f), Ĉ(f),f± are étale locally modelled on C(h), Ĉ(h),h±, and if f is rep-

resentable then C(f), Ĉ(f), f± are representable. Therefore Proposition 12.26
follows from Proposition 7.26.

Proposition 12.26. Suppose f : X → Y is a w-submersion, sw-submersion,
. . . , s-immersion or sf-immersion in dOrbc. Then C(f) and Ĉ(f) : C(X) →
C(Y) from §11.5 are also w-submersions, . . . , sf-immersions in dǑrbc. If f

is semisimple then f+ : ∂f+X → Y and f− : ∂f−X → ∂Y from §11.3 are also
w-submersions, . . . , sf-immersions in dOrbc.

Propositions 7.27, 7.28 and 7.29 then hold for d-orbifolds with corners and
orbifolds with corners, except that in the d-orbifold analogue of Proposition
7.28(a) we also have to assume f : X → Y is representable to deduce f is étale.
The next two theorems are the analogues of Theorems 7.30, 7.31(a)–(d) and
10.23, 10.24, proved by the same methods.
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Theorem 12.27. Suppose Sf,f̂ : SV,E,s → SW,F,t is a ‘standard model’ 1-
morphism in dOrbc, as in Definition 12.9. For each [v] ∈ Vtop with s(v) = 0
and [w] = ftop([v]) ∈ Wtop, we have a complex

0 // TvV
ds|v⊕ df |v // Ev ⊕ TwW

f̂ |v⊕−dt|w // Fw // 0. (12.2)

If also [v′] lies in (Πk
V,top)−1([v]) ⊆ Ck(V)top with Ĉ(f)top([v′]) = [w′] in

(Πl
W,top)−1([w]) ⊆ Cl(W)top, we have a complex

0 // Tv′Ck(V)
d(ΠkV)∗(s)|v′⊕ dĈ(f)|v′

// Ev⊕Tw′Cl(W)
f̂ |v⊕−d(ΠkW)∗(t)|w′

// Fw // 0. (12.3)

(a) Sf,f̂ is a w-submersion if and only if f : V → W is semisimple and flat
near s−1(0) in V, and for all [v], [w], [v′], [w′] as above, equations (12.2)–
(12.3) are exact at the fourth terms. Sf,f̂ is an sw-submersion if and only
if also f is simple near s−1(0) = {[v] ∈ Vtop : s(v) = 0}.

(b) Sf,f̂ is a submersion if and only if for all [v], [w], [v′], [w′] as above, equa-
tions (12.2)–(12.3) are exact at the third and fourth terms. These imply
that f is semisimple and flat near s−1(0). Sf,f̂ is an s-submersion if and
only if also f is simple near s−1(0).

(c) Sf,f̂ is a w-immersion if and only if for all [v], [w], [v′], [w′] as above,
equations (12.2)–(12.3) are exact at the second term, and f∗ : IsoV([v])→
IsoW([w]) is injective. Sf,f̂ is an sw-immersion (or sfw-immersion) if and
only if also f is simple (or simple and flat) near s−1(0).

(d) Sf,f̂ is an immersion if and only if for all [v], [w], [v′], [w′] as above,
equations (12.2)–(12.3) are exact at the second and fourth terms, and
f∗ : IsoV([v]) → IsoW([w]) is injective. Sf,f̂ is an s-immersion (or sf-
immersion) if and only if also f is simple (or simple and flat) near s−1(0).

The conditions in (a)–(d) are open conditions on [v] in s−1(0).

Theorem 12.28. Suppose g : X → Y is a 1-morphism of d-orbifolds with
corners, and [x] ∈ Xtop with gtop([x]) = [y] ∈ Ytop. Then there exist open
d-suborbifolds T ⊆ X and U ⊆ Y with [x] ∈ T top, [y] ∈ Utop and g(T) ⊆ U, a
‘standard model’ 1-morphism Sf,f̂ : SV,E,s → SW,F,t in dOrbc as in Definition
12.13, equivalences i : T → SV,E,s, j : SW,F,t → U, and a 2-morphism η :
j ◦ Sf,f̂ ◦ i⇒ g|T in dOrbc. Furthermore:

(a) If g is a w-submersion then we can choose the data T,U, . . . , j above

such that f : V → W is a submersion in Orbc, and f̂ : E → f∗(F) is a
surjective morphism of vector bundles (i.e. has a right inverse). If g is
an sw-submersion in dOrbc, then f is an s-submersion in Orbc.

(b) If g is a submersion we can choose T, . . . , j such that f : V → W

is a submersion and f̂ : E → f∗(F) is an isomorphism. If g is an s-
submersion then f is an s-submersion.
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(c) If g is a w-immersion we can choose T, . . . , j such that f : V → W

is an immersion in Orbc, and f̂ : E → f∗(F) is an injective morphism
of vector bundles (i.e. has a left inverse). If g is an sw-immersion or
sfw-immersion then f is an s-immersion or sf-immersion.

(d) If g is an immersion we can choose T, . . . , j such that f : V → W
is an immersion and f̂ : E → f∗(F) is an isomorphism. If g is an s-
immersion or sf-immersion then f is an s-immersion or sf-immersion.

As for Corollaries 7.34 and 10.25, Theorem 12.28(b) implies:

Corollary 12.29. Let f : X→ Y be a submersion of d-orbifolds with corners,
with Y an orbifold with corners. Then X is an orbifold with corners.

12.5 Bd-transversality and fibre products

In §4.3 we studied fibre products in dMan, and showed that such fibre prod-
ucts exist under the assumption of d-transversality. This was extended to d-
manifolds with corners in §7.6, and to d-orbifolds in §10.4. We now discuss fibre
products in dOrbc. Here is the analogue of Definition 7.36.

Definition 12.30. Let X,Y,Z be d-orbifolds with corners and g : X → Z,
h : Y → Z be 1-morphisms. We call g,h bd-transverse if they are both b-
transverse in dStac in the sense of Definition 11.21, and d-transverse in the
sense of Definition 10.26. We call g,h cd-transverse if they are both c-transverse
in dStac in the sense of Definition 11.22, and d-transverse. As in §11.6, c-
transverse implies b-transverse, so cd-transverse implies bd-transverse.

Here is the analogue of Theorems 4.21, 7.37 and 10.27. It may be deduced
from Theorem 7.37 using the same method by which Theorem 10.27 was deduced
from Theorem 4.21.

Theorem 12.31. Suppose X,Y,Z are d-orbifolds with corners and g : X→ Z,
h : Y→ Z are bd-transverse 1-morphisms, and let W = X×g,Z,h Y be the fibre
product in dStac, which exists by Theorem 11.24 as g,h are b-transverse. Then
W is a d-orbifold with corners, with

vdimW = vdimX + vdimY− vdimZ. (12.4)

Hence, all bd-transverse fibre products exist in dOrbc.

Here are analogues of Theorems 7.38, 7.39 and Propositions 7.40, 7.41, see
also Theorems 10.28, 10.29 and Propositions 10.30, 10.31. They are proved
using the same methods.

Theorem 12.32. Suppose g : X → Z and h : Y → Z are 1-morphisms in
dOrbc. The following are sufficient conditions for g,h to be cd-transverse, and
hence bd-transverse, so that W = X ×g,Z,h Y is a d-orbifold with corners of
virtual dimension (12.4):
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(a) Z is an orbifold without boundary, that is, Z ∈ Ōrb; or

(b) g or h is a w-submersion.

Theorem 12.33. Let X,Y,Z be d-orbifolds with corners with Y an orbifold,
and g : X → Z, h : Y → Z be 1-morphisms with g a submersion. Then
W = X×g,Z,h Y is an orbifold, with dimW = vdimX + dimY− vdimZ.

Proposition 12.34. Let ρ : G→ H be an injective morphism of finite groups,
and H act linearly on Rn preserving the subset Rnk ⊆ Rn for 0 6 k 6 n.
Then as in §11.2 we have quotient d-orbifolds with corners [∗/G], [RRRnk/H] and
a quotient 1-morphism [0, ρ] : [∗/G]→ [RRRnk/H]. Suppose X is a d-orbifold with
corners and g : X→ [RRRnk/H] is a semisimple, flat 1-morphism in dOrbc. Then
the fibre product W = X ×g,[RRRnk /H],[0,ρ] [∗/G] exists in dOrbc. The projection
πX : W→ X is an s-immersion, and an s-embedding if ρ is an isomorphism.

When k = 0, any 1-morphism g : X→ [RRRn/H] is semisimple and flat, and
πX : W→X is an sf-immersion, and an sf-embedding if ρ is an isomorphism.

Proposition 12.35. Suppose f : X → Y is an s-immersion of d-orbifolds
with corners, and [x] ∈ Xtop with ftop([x]) = [y] ∈ Ytop. Write ρ : G →
H for f∗ : IsoX ([x]) → IsoY([y]). Then ρ is injective, and there exist open
neighbourhoods U ⊆ X and V ⊆ Y of [x], [y] with f(U) ⊆ V, a linear action of
H on Rn preserving the subset Rnk ⊆ Rn where n = vdimY − vdimX > 0 and
0 6 k 6 n, and a 1-morphism g : V→ [RRRnk/H] with gtop([y]) = [0], fitting into
a 2-Cartesian square in dOrbc :

U
f |U��

//

� �� �
GO

[∗/G]
[0,ρ] ��

V
g // [RRRnk/H].

If f is an sf-immersion then k = 0. If f is an s- or sf-embedding then ρ is an
isomorphism, and we may take U = f−1(V).

Since the material of §6.9 extends to d-stacks with corners, as for Corollary
7.42 we may deduce:

Corollary 12.36. Suppose g : X → Z and h : Y → Z are cd-transverse 1-
morphisms in dOrbc, and let W = X×g,Z,h Y be the fibre product in dOrbc,
which exists by Theorem 12.31. Then we have equivalences in dOrbc for all
i > 0, where each fibre product is cd-transverse and so exists in dOrbc :

Ci(W) '
∐

j,k,l>0:i=j+k−l

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y), (12.5)

∂W '
∐

j,k,l>0:j+k=l+1

Cg,lj (X)×Clj(g),Cl(Z),Clk(h) C
h,l
k (Y). (12.6)
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12.6 Embedding d-orbifolds with corners into orbifolds

Section 4.4 studied embeddings of d-manifolds into manifolds. There were two
main classes of results: firstly, given a d-manifold X satisfying an extra condi-
tion such as X compact, we proved the existence of embeddings f : X → RRRn
in dMan for n� 0. Secondly, given an embedding f : X → Y in dMan with
X a d-manifold and Y a manifold, we showed that X ' SV,E,s for V open in
Y . Combining the two gave strong results on when d-manifolds are principal.

We generalized this to d-manifolds with corners in §7.7. The main new
issue was that for the first class, one can construct embeddings f : X → RRRn
in dManc, but for the second class, to show that X ' SV,E,s one needs an
sf-embedding f : X→ Y in dManc with X a d-manifold with corners and Y a
manifold with corners. So we need to bridge the gap between embeddings and
sf-embeddings. This was done in the proof of Theorem 7.47, in which given an
embedding f : X → RRRn for n large enough, we constructed an sf-embedding
g : X→ Z for Z a submanifold of Rn, with corners, with dimZ = n.

In §10.5 we considered generalizations of §4.4 to d-orbifolds. We found that
the second class of results extends nicely to d-orbifolds, but we were unable to
extend the first class in a satisfactory way, that is, we do not have useful criteria
guaranteeing the existence of embeddings of d-orbifolds into orbifolds (though
see Proposition 10.34). Since much of the interest in §4.4 came from combining
the two classes, this meant the results of §10.5 were somewhat disappointing.

For d-orbifolds with corners, the situation is similar. For the first class of
results, we still lack useful criteria guaranteeing the existence of embeddings of
d-orbifolds with corners into orbifolds. For the second class, here is the analogue
of Theorems 4.34, 7.48 and 10.32, proved in the same way.

Theorem 12.37. Suppose X is a d-orbifold with corners, Y an orbifold with
corners, and f : X → Y an sf-embedding, in the sense of Definition 12.25.
Then there exist an open suborbifold V ⊆ Y with f(X) ⊆ V, a vector bundle E
on V, and a section s ∈ C∞(E) fitting into a 2-Cartesian diagram in dOrbc :

X
f

//

f�� � �� �
FN V

0 ��
V

s // E,

where Y,V,E, s,0 = FdOrbc

Orbc

(
Y,V,Totc(E),Totc(s),Totc(0)

)
, in the notation of

Definition 8.19. Thus X is equivalent to the ‘standard model’ SV,E,s of Defini-
tion 12.2, and is a principal d-orbifold with corners.

Here is one possibly useful criterion for the existence of sf-embeddings into
orbifolds with corners. To prove it, follow the proof of Proposition 10.34 to
construct an embedding of X into the total space Totc(E) of a vector bundle E
on Y. Then adapt the proof of Theorem 7.47 to promote this to an sf-embedding
g : X→ Z for Z an embedded suborbifold of Totc(E) with dimZ = dim Totc(E).
We can increase the rank of E if necessary to ensure an orbifold analogue of the
condition n > 2

(
dimT ∗xX + |i−1

X (x)|
)

+ 1 for x ∈ X in Theorem 7.47 holds.
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Proposition 12.38. Suppose X is a compact d-orbifold with corners, Y an
effective orbifold with corners, and f : X→ Y a 1-morphism in dOrbc with f :
X → Y representable, where Y = FdOrbc

Orbc (Y). Then there exists an sf-embedding
g : X → Z in dOrbc, where Z = FdOrbc

Orbc (Z) for an orbifold with corners Z.
Hence X ' SV,E,s is a principal d-orbifold with corners by Theorem 12.37.

12.7 Orientations on d-orbifolds with corners

Section 4.6 discussed orientations on d-manifolds. This was extended to d-
manifolds with corners in §7.8, and to d-orbifolds in §10.6. We combine all
these ideas to study orientations on d-orbifolds with corners. There are no
significant new issues; everything important has already been said in §4.6, §7.8
and §10.6. Here is the analogue of Definitions 4.44, 7.51 and 10.36.

Definition 12.39. Let X be a d-orbifold with corners. Then the virtual cotan-
gent bundle T ∗X = (EX ,FX , φX ) is a virtual vector bundle on X as in Definition
12.5, so Definition 10.35 constructs a line bundle LT∗X on the Deligne–Mumford
C∞-stack X . We call LT∗X the orientation line bundle of X. An orientation
ω on X is an orientation on LT∗X. An oriented d-orbifold with corners is a
pair (X, ω) where X is a d-orbifold with corners and ω an orientation on X. If
ω = [τ ] is an orientation on X, the opposite orientation is −ω = [−τ ]. Usually
we will refer to X as an oriented d-orbifold with corners, leaving ω implicit, and
then −X will mean X with the opposite orientation.

All of the results of §4.6, §7.8 and §10.6 now extend to d-orbifolds in the
obvious way. Here is the analogue of Theorems 4.50, 7.52 and 10.37, proved in
the same way as Theorem 10.37.

Theorem 12.40. Work in the situation of Theorem 12.31, so that W,X,Y,Z
are d-orbifolds with corners with W = X×g,Z,h Y for g,h bd-transverse, where
e : W → X, f : W → Y are the projections. Then we have orientation
line bundles LT∗W, . . . ,LT∗Z on W, . . . ,Z, so LT∗W, e∗(LT∗X), f∗(LT∗Y), (g ◦
e)∗(LT∗Z) are line bundles on W. With a suitable choice of orientation conven-
tion, there is a canonical isomorphism

Φ : LT∗W −→ e∗(LT∗X)⊗OW f∗(LT∗Y)⊗OW (g ◦ e)∗(LT∗Z)∗.

Hence, if X,Y,Z are oriented d-orbifolds with corners, then W has a natural
orientation.

Here is the analogue of Propositions 4.52 and 7.53, with the same proof.

Proposition 12.41. Suppose V, . . . ,Z are oriented d-orbifolds with corners,
e, . . . ,h are 1-morphisms, and all fibre products below are bd-transverse. Then
the following hold, in oriented d-orbifolds with corners:

(a) For g : X→ Z and h : Y→ Z we have

X×g,Z,h Y ' (−1)(vdimX−vdimZ)(vdimY−vdimZ)Y×h,Z,g X.
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In particular, when Z = ∗ so that X×Z Y = X× Y we have

X× Y ' (−1)vdimX vdimYY×X.

(b) For e : V→ Y, f : W→ Y, g : W→ Z, and h : X→ Z we have

V×e,Y,f◦πW

(
W×g,Z,h X

)
'
(
V×e,Y,f W

)
×g◦πW,Z,h X.

(c) For e : V→ Y, f : V→ Z, g : W→ Y, and h : X→ Z we have

V×(e,f),Y×Z,g×h (W×X) '
(−1)vdimZ(vdimY+vdimW)(V×e,Y,g W)×f◦πV,Z,h X.

Here are the analogues of Theorems 7.54 and 7.56, proved in the same way.

Theorem 12.42. Let X be a d-orbifold with corners. Then ∂X is also a d-
orbifold with corners, so we have orientation line bundles LT∗X on X and
LT∗(∂X) on ∂X . With a suitable choice of orientation convention, there is a
canonical isomorphism

Ψ : LT∗(∂X) −→ i∗X(LT∗X)⊗N ∗X (12.7)

of line bundles on ∂X , where NX is the conormal bundle of ∂X in X from
Definition 11.1, and N ∗X its dual line bundle.

Now NX comes with an orientation ωX in X = (X ,∂X , iX, ωX). Hence, if
X is an oriented d-orbifold with corners, then ∂X also has a natural orienta-
tion, by combining the orientations on LT∗X and N ∗X to get an orientation on
LT∗(∂X) using (12.7).

Theorem 12.43. Let g : X → Z and h : Y → Z be 1-morphisms of oriented
d-orbifolds with corners. Then the following hold in oriented d-orbifolds with
corners, where by Theorem 12.32 all fibre products in (12.8)–(12.14) are cd-
transverse, and so exist, and the orientations on cd-transverse fibre products
and boundaries are determined by Theorems 12.40 and 12.42:

(a) If Z is an orbifold without boundary then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂X×g◦iX,Z,h Y

)
q (−1)vdimX+dimZ

(
X×g,Z,h◦iY ∂Y

)
.

(12.8)

(b) If g is a w-submersion then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂g+X×g+,Z,h Y

)
q (−1)vdimX+vdimZ

(
X×g,Z,h◦iY ∂Y

)
.

(12.9)

(c) If g is an sw-submersion then there is an equivalence

∂
(
X×g,Z,h Y

)
' (−1)vdimX+vdimZX×g,Z,h◦iY ∂Y. (12.10)
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(d) If h is a w-submersion then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂X×g◦iX,Z,h Y

)
q (−1)vdimX+vdimZ

(
X×g,Z,h+

∂h+Y
)
.

(12.11)

(e) If h is an sw-submersion then there is an equivalence

∂
(
X×g,Z,h Y

)
' ∂X×g◦iX,Z,h Y. (12.12)

(f) If both g and h are w-submersions then there is an equivalence

∂
(
X×g,Z,h Y

)
'
(
∂g+X×g+,Z,h Y

)
q (−1)vdimX+vdimZ

(
X×g,Z,h+

∂h+Y
)
q
(
∂g−X×g−,∂Z,h− ∂

h
−Y
)
.

(12.13)

(g) If both g and h are sw-submersions then there is an equivalence

∂
(
X×g,Z,h Y

)
' ∂X×g−,∂Z,h− ∂Y. (12.14)

12.8 Orbifold strata of d-orbifolds with corners

We studied orbifold strata of orbifolds in §8.4, of orbifolds with corners in
§8.9, of d-stacks in §9.6, of d-orbifolds in §10.7, and of d-stacks with corners
in §11.7. We now discuss orbifold strata of d-orbifolds with corners. We will
see that when X is a d-orbifold with corners and Γ a finite group, then the
orbifold strata XΓ, X̃Γ, . . . , X̂Γ

◦ are objects in dǑrbc, and decompose naturally

as XΓ =
∐
λ∈ΛΓ XΓ,λ into d-orbifolds with corners XΓ,λ, X̃Γ,µ, . . . , X̂Γ,µ

◦ . Here
is the analogue of Definitions 8.5 and 10.38.

Definition 12.44. Let Γ be a finite group, and use the notation Repnt(Γ),
ΛΓ = K0

(
Repnt(Γ)

)
, ΛΓ

+ ⊆ ΛΓ and dim : ΛΓ → Z of Definition 8.5. Let
R0, R1, . . . , Rk be representatives for the isomorphism classes of irreducible Γ-
representations, with R0 = R the trivial irreducible representation, so that
R1, . . . , Rk are nontrivial. Then ΛΓ is freely generated over Z by [R1], . . . , [Rk],
so that (8.1) gives isomorphisms ΛΓ ∼= Zk, ΛΓ

+
∼= Nk.

Let X be a d-orbifold with corners. Then Definition 11.28 defines a d-
stack with corners XΓ and a 1-morphism OΓ(X) : XΓ → X. As in Definition
10.38, OΓ(X )∗(T ∗X ) has a natural Γ-action, and splits as OΓ(X )∗(T ∗X ) ∼=⊕k

i=0(T ∗X )Γ
i ⊗ Ri, where (T ∗X )Γ

i are virtual vector bundles of mixed rank

on XΓ. For each λ ∈ ΛΓ, define XΓ,λ to be the open and closed d-substack
in XΓ with rank

(
(T ∗X )Γ

1

)
[R1] + · · · + rank

(
(T ∗X )Γ

k

)
[Rk] = λ in ΛΓ. Then

XΓ =
∐
λ∈ΛΓ XΓ,λ, as for (10.14). We will see in Proposition 12.45 that XΓ,λ is

a d-orbifold with corners, with vdimXΓ,λ = vdimX− dimλ.
Write OΓ,λ(X) = OΓ(X)|XΓ,λ : XΓ,λ → X. Then OΓ,λ(X) is a proper w-

immersion of d-orbifolds with corners, in the sense of §12.4. Define XΓ,λ
◦ =
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XΓ
◦ ∩XΓ,λ, and OΓ,λ

◦ (X) = OΓ
◦ (X)|XΓ,λ

◦
: XΓ,λ
◦ → X. Then XΓ,λ

◦ is a d-orbifold
with corners with vdimXΓ,λ

◦ = vdimX − dimλ, and XΓ
◦ =

∐
λ∈ΛΓ XΓ,λ

◦ , and

OΓ,λ
◦ (X) is a w-immersion, but need not be proper.

As for X̃Γ,µ in Definition 10.38, for each µ ∈ ΛΓ/Aut(Γ) we may de-

fine X̃Γ,µ =
[(∐

λ∈µX
Γ,λ
)/

Aut(Γ)
]
, an open and closed d-substack of X̃Γ =

[XΓ/Aut(Γ)], and X̃
Γ,µ
◦ = X̃Γ

◦ ∩ X̃Γ,µ. Then X̃Γ,µ, X̃Γ,µ
◦ are d-orbifolds with

corners with vdim X̃Γ,µ = vdim X̃
Γ,µ
◦ = vdimX− dimµ, with

X̃Γ =
∐
µ∈ΛΓ/Aut(Γ) X̃

Γ,µ and X̃Γ
◦ =

∐
µ∈ΛΓ/Aut(Γ) X̃

Γ,µ
◦ .

Set ÕΓ,µ(X) = ÕΓ(X)|X̃Γ,µ : X̃Γ,µ → X, ÕΓ,µ
◦ (X) = ÕΓ

◦ (X)|X̃Γ,µ
◦

: X̃
Γ,µ
◦ → X.

Then ÕΓ,µ(X), ÕΓ,µ
◦ (X) are w-immersions, with ÕΓ,µ(X) proper.

The 1-morphism Π̂Γ(X) : X̃Γ → X̂Γ induces a homeomorphism of topo-
logical spaces by Theorem C.49(e), so it maps open and closed d-substacks of

X̃Γ to open and closed d-substacks of X̂Γ. Let X̂Γ,µ = Π̂Γ(X)(X̃Γ,µ) for each

µ ∈ ΛΓ/Aut(Λ), and write X̂
Γ,µ
◦ = X̂Γ

◦ ∩ X̂Γ,µ. Then X̂Γ,µ, X̂Γ,µ
◦ are d-orbifolds

with corners of virtual dimension vdimX − dimµ, with

X̂Γ =
∐
µ∈ΛΓ/Aut(Γ) X̂

Γ,µ and X̂Γ
◦ =

∐
µ∈ΛΓ/Aut(Γ) X̂

Γ,µ
◦ .

Also X̂
Γ,µ
◦ is a d-manifold, that is, it lies in dM̂anc.

We can generalize Example 10.39 to the corners case, to describe the orbifold
strata (SV,E,s)

Γ of the ‘standard model’ d-orbifold with corners SV,E,s of Defi-
nition 10.5 as a disjoint union of standard models SVΓ,λ1,λ2 ,EΓ,λ1,λ2 ,sΓ,λ1,λ2 , and

similarly for ( ˜SV,E,s)
Γ, . . . , ( ̂SV,E,s)

Γ
◦ . Thus as for Corollary 10.40 we deduce:

Proposition 12.45. In Definition 12.44, XΓ,λ,XΓ,λ
◦ , X̃Γ,µ, X̃Γ,µ

◦ , X̂Γ,µ, X̂Γ,µ
◦ are

d-orbifolds with corners of virtual dimensions vdimX− dimλ, vdimX− dimµ.
Hence XΓ, X̃Γ, X̂Γ are objects in dǑrbc.

Applying Corollaries 11.32 and 11.34 to a d-orbifold with corners X, by con-
sidering local models we see that JΓ(X) : (∂X)Γ → ∂(XΓ) maps (∂X)Γ,λ →
∂(XΓ,λ) for each λ ∈ ΛΓ, and similarly for J̃Γ(X), ĴΓ(X). Thus as for Corollar-
ies 8.34 and 8.36, we deduce:

Proposition 12.46. Let X be a d-orbifold with corners, and Γ a finite group.
Then Corollary 11.32 gives 1-morphisms JΓ(X) : (∂X)Γ → ∂(XΓ), J̃Γ(X) :˜(∂X)Γ → ∂(X̃Γ), ĴΓ(X) : ̂(∂X)Γ → ∂(X̂Γ) in dǑrbc, which are equivalences

with open and closed subobjects in ∂(XΓ), ∂(X̃Γ), ∂(X̂Γ).
These restrict to 1-morphisms JΓ,λ(X) : (∂X)Γ,λ → ∂(XΓ,λ) in dOrbc for

λ ∈ ΛΓ and J̃Γ,µ(X) : ˜(∂X)Γ,µ → ∂(X̃Γ,µ), ĴΓ,µ(X) : ̂(∂X)Γ,µ → ∂(X̂Γ,µ) for
µ ∈ ΛΓ/Aut(Λ), which are equivalences with open and closed d-suborbifolds.

Hence, if XΓ,λ = ∅ then (∂X)Γ,λ = ∅, and similarly for X̃Γ,µ, X̂Γ,µ.
Now suppose X is straight, in the sense of Definition 11.33, for instance X

could be a d-orbifold with boundary. Then JΓ(X), . . . , ĴΓ,µ(X) are equivalences,
so that (∂X)Γ ' ∂(XΓ), (∂X)Γ,λ ' ∂(XΓ,λ), and so on.
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Lemma 10.41 and Propositions 10.43 and 10.44 on orbifold strata of d-
orbifolds and orientations extend to d-orbifolds with corners without change.

12.9 Kuranishi neighbourhoods, good coordinate systems

In §10.8 we defined type A and type B Kuranishi neighbourhoods, coordinate
changes, and good coordinate systems, on d-orbifolds. We now generalize these
to d-orbifolds with corners. This will be important in Chapters 13 and 14.

The definitions in the corners case are obtained by replacing Man,Orb,
dMan,dOrb by Manc,Orbc,dManc,dOrbc throughout, and making a few
other easy changes such as taking the eij to be sf-embeddings in Definitions
10.46(c) and 10.51(b). For brevity we will not write the definitions out again,
but just indicate the differences. We begin with the ‘type A’ material of §10.8.1.

Definition 12.47. Let X be a d-orbifold with corners. Define a type A Kuran-
ishi neighbourhood (V,E,Γ, s,ψ) on X following Definition 10.45, but taking V
to be a manifold with corners, and using Example 12.16 to define the principal
d-orbifold with corners [SV,E,s/Γ], rather than Example 10.11.

If (Vi, Ei,Γi, si,ψi), (Vj , Ej ,Γj , sj ,ψj) are type A Kuranishi neighbourhoods
on X with ∅ 6= ψi([SVi,Ei,si/Γi])∩ψj([SVj ,Ej ,sj/Γj ]) ⊆ X, define a type A coor-
dinate change (Vij , eij , êij , ρij ,ηij) from (Vi, Ei,Γi, si,ψi) to (Vj , Ej ,Γj , sj ,ψj)
following Definition 10.46, but taking eij : Vij → Vj to be an sf-embedding
of manifolds with corners, and using Example 12.17 to define the quotient 1-
morphism [Seij ,êij , ρij ] in (10.19) rather than Example 10.12, and using Corol-
lary 12.22 rather than Corollary 10.18 in (e).

Define a type A good coordinate system on X following Definition 10.47,
but using Definition 11.7 rather than Example 10.13 to define the 2-morphism
ηijk = [0, γijk] in dOrbc in (10.21). Let Y be a manifold with corners, and

h : X → Y a 1-morphism in dOrbc, where Y = FdOrbc

Manc (Y ). Define a type A
good coordinate system for h : X→ Y following Definition 10.47, using Example
12.17 rather than Example 10.12 in (f).

Here is the analogue of Theorem 10.48. It will be proved in Appendix D.

Theorem 12.48. Suppose X is a d-orbifold with corners. Then there exists a
type A good coordinate system

(
I,<,(Vi,Ei,Γi,si,ψi),(Vij ,eij ,êij ,ρij ,ηij),γijk

)
for X, in the sense of Definition 12.47. If X is compact, we may take I
to be finite. If {Uj : j ∈ J} is an open cover of X, we may take Xi =
ψi([SVi,Ei,si/Γi]) ⊆ Uji for each i ∈ I and some ji ∈ J . If X is a d-orbifold
with boundary, we may take the Vi to be manifolds with boundary.

Now let Y be a manifold with corners and h : X → Y = FdOrbc

Manc (Y ) a
semisimple, flat 1-morphism in dOrbc. Then all the above extends to type A
good coordinate systems for h : X→ Y, and we may take the gi : Vi → Y to be
submersions in Manc.

Note that we make the extra assumption that h is semisimple and flat in
the last part. This happens automatically if Y is without boundary. Since
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submersions in Manc are automatically semisimple and flat, h being semisimple
and flat is a necessary condition for the gi : Vi → Y to be submersions.

Next we extend the ‘type B’ material of §10.8.2.

Definition 12.49. Let X be a d-orbifold with corners. Define a type B Ku-
ranishi neighbourhood (V, E , s,ψ) on X following Definition 10.50, but taking V

to be an effective orbifold with corners, and using Definition 12.2 to define the
principal d-orbifold with corners SV,E,s, rather than Definition 10.5.

If (Vi, E i, si,ψi), (Vj , Ej , sj ,ψj) are type B Kuranishi neighbourhoods on
X with ∅ 6= ψi(SVi,Ei,si) ∩ ψj(SVj ,Ej ,sj ) ⊆ X, define a type B coordinate
change (Vij , eij , êij ,ηij) from (Vi, E i, si,ψi) to (Vj , Ej , sj ,ψj) following Defi-
nition 10.51, but taking eij : Vij → Vj to be an sf-embedding of orbifolds with
corners, in the sense of Definition 8.28, and using Definition 12.13 to define the
1-morphism Seij ,êij in (10.22) rather than Definition 10.9, and using Corollary
12.22 rather than Corollary 10.18 in (e).

Define a type B good coordinate system on X following Definition 10.52, but
using Proposition 12.15 rather than Proposition 10.10 to define the 2-morphism
ηijk in dOrbc in (d). Let Y be an effective orbifold with corners, and h : X→ Y

a 1-morphism in dOrbc, where Y = FdOrbc

Orbc (Y). Define a type B good coordinate
system for h : X→ Y following Definition 10.52.

As in Definition 10.55, a type B good coordinate system
(
I,<, (Vi, E i, si,

ψi), . . . , ηijk
)

on X or for h : X → Y is called a very good coordinate system if
I ⊂ N = {0, 1, 2, . . .}, and the order < on I is the restriction of < on N, and
dimVi = i for all i ∈ I.

Here is the analogue of Theorems 10.54 and 10.56. It follows from Theorem
12.48 as Theorems 10.54 and 10.56 follow from Theorem 10.48.

Theorem 12.50. Suppose X is a d-orbifold with corners. Then there exists
a type B good coordinate system

(
I,<, (Vi, E i, si,ψi), (Vij , eij , êij ,ηij), ηijk

)
for

X. If X is compact, we may take I to be finite. If {Uj : j ∈ J} is an open
cover of X, we may take Xi = ψi(SVi,Ei,si) ⊆ Uji for each i ∈ I and some
ji ∈ J . If X is a d-orbifold with boundary, we may take the Vi to be orbifolds
with boundary.

Now let Y be an effective orbifold with corners and h : X→ Y = FdOrbc

Orbc (Y)
a semisimple, flat 1-morphism in dOrbc. Then all the above extends to type B
good coordinate systems for h : X → Y, and we may take the gi : Vi → Y to be
submersions in Orbc.

We may also take
(
I,<, . . . , ηijk

)
to be a very good coordinate system in both

cases (though not requiring Xi ⊆ Uji as above), with I finite if X is compact.

12.10 Semieffective and effective d-orbifolds with corners

In §10.9 we discussed effective and semieffective d-orbifolds. All this material
extends to d-orbifolds with corners essentially unchanged, so we will not write
it out again. We define semieffective and effective d-orbifolds with corners X

following Definition 10.57. The analogues of Propositions 10.58, 10.64 and 10.65
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and Lemmas 10.60–10.63 then hold, with (d-)orbifolds replaced by (d-)orbifolds
with corners throughout. Here is a new result in the corners case.

Proposition 12.51. Let X be a effective (or semieffective) d-orbifold with cor-
ners. Then ∂kX is also effective (or semieffective), for all k > 0.

Proof. It is enough to prove ∂X is (semi)effective. Let [x′] ∈ ∂X top with
iX([x′]) = [x] ∈ Xtop, so that x = iX ◦ x′ : ∗̄ → ∂X . Consider the commutative
diagram in qcoh(∗̄), where the (exact) rows are (10.24) for [x],X and [x′], ∂X:

0 // K[x]

α

��

// x∗(EX )
x∗(φX )

//

x∗(i′′X)◦Ix,iX (EX )∼=
��

x∗(FX )
x∗(ψX )

//

x∗(i2X)◦Ix,iX (FX )

��

T ∗xX //

x∗(ΩiX )◦
Ix,iX

(T∗X )��

0

0 // K[x′] // (x′)∗(E∂X )
(x′)∗(φ∂X )// (x′)∗(F∂X )

(x′)∗(ψ∂X )// T ∗x′(∂X ) // 0.

(12.15)

Exactness implies that there is a unique morphism α : K[x′] → K[x] making
the diagram commute. The second column is an isomorphism by Definition
11.1(b), and as (11.1) is split exact, the third column is surjective with kernel
R. Therefore there are two possibilities:

(a) K[x′]
∼= K[x] and T ∗xX ∼= T ∗x′(∂X )⊕ R; or

(b) K[x′]
∼= K[x] ⊕ R and T ∗xX ∼= T ∗x′(∂X ).

As in Definition 10.57, the top line of (12.15) is in IsoX ([x])-representations,
with K[x] a trivial representation as X is semieffective, and T ∗xX effective if X is
effective. Also the bottom line of (12.15) is in Iso∂X ([x′])-representations. The
morphism (iX)∗ : Iso∂X ([x′])→ IsoX ([x]) is injective, as iX is representable, so
we can use it to make (12.15) into a commutative diagram of representations
of Iso∂X ([x′]), where again K[x] is trivial, and T ∗xX is an effective Iso∂X ([x′])-
representation if X is effective.

Parts (a) or (b) now hold in Iso∂X ([x′])-representations, with R the trivial
representation. So K[x′] is a trivial representation, and T ∗x′(∂X ) is effective if X
is effective. The proposition follows from Definition 10.57.

However, X (semi)effective does not imply Ck(X) (semi)effective, as for orb-
ifolds with corners in Definition 8.37.
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13 Bordism for d-manifolds and d-orbifolds

As a sample application of the results of Chapters 2–12, we now study bor-
dism groups for d-manifolds and d-orbifolds. In the d-manifold case, for a fixed
manifold Y , the d-manifold bordism group dBk(Y ) whose elements are bordism
classes [X,f ] of pairs (X,f), where X is a compact, oriented d-manifold, and
f : X → Y = FdMan

Man (Y ) a 1-morphism, and pairs (X,f), (X ′,f ′) are bor-
dant if there exists a compact, oriented d-manifold with boundary W and a
1-morphism e : W→ Y with ∂W ' −X qX ′ and e ◦ iW ∼= f q f ′.

Our main result is that the natural projection Πdbo
bo : Bk(Y )→ dBk(Y ) from

classical bordism B∗(Y ) is an isomorphism. This holds as every d-manifold
can be perturbed to a manifold. One consequence is that compact oriented
d-manifolds have virtual classes, that is, there is a natural virtual class map
Πhom

dbo : dBk(Y )→ Hk(Y ;Z). So d-manifolds and d-orbifolds are suitable for use
in enumerative invariant problems involving virtual cycles on moduli spaces.

In the d-orbifold case things are more complicated, since not every d-orbifold
can be perturbed to an orbifold. For an orbifold Y we define d-orbifold bordism
groups dBorb

∗ (Y), dBsef
∗ (Y), dBeff

∗ (Y) with elements [X ,f ] for X a compact, ori-
ented d-orbifold which is arbitrary, or semieffective, or effective, respectively.
Then dBsef

k (Y), dBeff
k (Y) are isomorphic to ‘classical’ orbifold bordism groups

Borb
k (Y), Beff

k (Y), but dBorb
k (Y) is not, and generally has infinite rank even for

k < 0. We define Gromov–Witten type invariants in dBorb
∗ (Mg,m × Xm) for

(X,ω) a compact symplectic manifold, and we anticipate these ideas will be
useful in Gromov–Witten theory, in particular for integrality questions.

13.1 Classical bordism groups for manifolds

Bordism is an invariant of topological spaces, which shares many features with
homology. The subject began with the work of Thom [97]. Bordism groups
were introduced by Atiyah [6], and Conner [24, §I] gives a good introduction.
Other useful references are Stong [96] and Conner and Floyd [25, 26]. We will
define bordism only for manifolds, and in a not quite standard way.

Definition 13.1. Let Y be a manifold, and k ∈ Z. Consider pairs (X, f),
where X is a compact, oriented manifold without boundary with dimX = k,
and f : X → Y is a smooth map. We make the convention that the empty set ∅
is an oriented manifold of any dimension k ∈ Z, including k < 0, and the trivial
map ∅ : ∅ → Y is smooth, so (∅, ∅) is allowed as a pair (X, f), and is the only
such pair when k < 0.

Define a binary relation ∼ between such pairs by (X, f) ∼ (X ′, f ′) if there
exists a compact, oriented (k+1)-manifold with boundary W , a smooth map
e : W → Y , and a diffeomorphism of oriented manifolds j : −X q X ′ → ∂W ,
such that f q f ′ = e ◦ iW ◦ j, where −X is X with the opposite orientation, and
the orientation of ∂W is induced from that of W . Proposition 13.3 shows ∼ is
an equivalence relation, which is called bordism.

Write [X, f ] for the ∼-equivalence class (bordism class) of a pair (X, f). For
each k ∈ Z, define the kth bordism group Bk(Y ) of Y to be the set of all such
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bordism classes [X, f ] with dimX = k. We give Bk(Y ) the structure of an
abelian group, with zero element 0Y = [∅, ∅], and addition given by [X, f ] +
[X ′, f ′] = [X qX ′, f q f ′], and additive inverses −[X, f ] = [−X, f ]. It is easy
to show that these operations are well defined and satisfy the group axioms. If
k < 0 then Bk(Y ) = 0, as the only element is 0Y = [∅, ∅].

Remark 13.2. Let Y be a topological space. Then Atiyah [6, §2] and Conner
[24, §I.4] define bordism groups MSOk(Y ) as in Definition 13.1, with X,W
manifolds, but with f : X → Y and e : W → Y continuous maps of topological
spaces, rather than smooth maps of manifolds. When Y is a manifold, Conner
[24, §I.9] defines differential bordism groups Bk(Y ) as in Definition 13.1, and
then proves [24, Th. I.9.1] that the natural projection Bk(Y ) → MSOk(Y ) is
an isomorphism. Hence our groups Bk(Y ) are isomorphic to the usual definition
of bordism groups MSOk(Y ).

The next proof follows Conner [24, Th. I.2.1].

Proposition 13.3. In Definition 13.1, ∼ is an equivalence relation.

Proof. We must show ∼ in is reflexive, symmetric, and transitive. If (X, f) is a
pair as above then considering W = X × [0, 1] and e = f ◦ πX : W → Y shows
that (X, f) ∼ (X, f), and ∼ is reflexive. Suppose (X, f) ∼ (X ′, f ′). Then there
exist e : W → Y and j : −X q X ′ → ∂W as above with f q f ′ = e ◦ iW ◦ j.
Replacing W by −W gives (X ′, f ′) ∼ (X, f), so ∼ is symmetric.

Suppose (X, f) ∼ (X ′, f ′) and (X ′, f ′) ∼ (X ′′, f ′′). Then there exist smooth
e : W → Y , e′ : W ′ → Y , and oriented diffeomorphisms j : −X q X ′ → ∂W ,
j′ : −X ′qX ′′ → ∂W ′ with f q f ′ = e◦ iW ◦ j and f ′q f ′′ = e′ ◦ iW ′ ◦ j′. By the
Differentiable Collaring Theorem [24, Th. I.1.2], there are open sets U ⊂W and
U ′ ⊂ W ′ with oriented diffeomorphisms (−ε, 0] ×X ′ ∼= U and [0, ε) ×X ′ ∼= U ′

for small ε > 0, such that the induced oriented diffeomorphisms X ′ ∼= ∂U ⊂ ∂W
and −X ′ ∼= ∂U ′ ⊂ ∂W ′ are j|X′ and j′|−X′ .

We may therefore glue W,W ′ along X ′ to get a new compact manifold
with boundary W ′′ = W qj(X′)=j′(−X′) W ′, in which the subsets (−ε, 0] ×
X ′ ∼= U ⊂ W and [0, ε) × X ′ ∼= U ′ ⊂ W ′ are joined to give an open subset
of W ′′ diffeomorphic to (−ε, ε) × X ′. We have an oriented diffeomorphism
j′′ : −X q X ′′ → ∂W ′′ induced by j on −X and j′ on X ′′. Choose smooth
perturbations ẽ : W → Y , ẽ′ : W ′ → Y of e, e′ such that ẽ = e on W \ U and
ẽ′ = e′ on W ′ \U ′, and on the subsets of U,U ′ identified with (− 1

2ε, 0]×X ′ and
[0,− 1

2ε)×X
′ we have ẽ, ẽ′ ∼= f ′ ◦ πX′ .

Define e′′ : W ′′ → Y by e′′|W = ẽ and e′′|W ′ = ẽ′. Then e′′ is smooth.
Also e′′ = ẽ = e near j′′(−X) in W ′′, so e′′ ◦ iW ′′ ◦ j′′|−X = f , and similarly
e′′ ◦ iW ′′ ◦ j′′|X′′ = f ′′, so f q f ′′ = e′′ ◦ iW ′′ ◦ j′′. Therefore e′′,W ′′, j′′ imply
that (X, f) ∼ (X ′′, f ′′), and ∼ is transitive.

We define intersection products •, fundamental classes [Y ], pushforwards g∗,
and projections to homology, for bordism B∗(Y ).
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Definition 13.4. Suppose Y is an oriented manifold of dimension n. Define the
intersection product • : Bk(Y )×Bl(Y )→ Bk+l−n(Y ) as follows. Given classes
[X, f ], [X ′, f ′], we perturb f, f ′ in their bordism classes to make f : X → Y and
f ′ : X ′ → Y transverse smooth maps, and then

[X, f ] • [X ′, f ′] = [X ×f,Y,f ′ X ′, f ◦ πX ]. (13.1)

Here the fibre product X ×f,Y,f ′ X ′ exists in Man as f, f ′ are transverse. The
orientations on X,X ′, Y combine to give an orientation on X ×f,Y,f ′ X ′. The
associativity and commutativity properties of oriented fibre products, imply
that • is biadditive, associative and supercommutative.

If Y is compact and oriented, we define the fundamental class [Y ] ∈ Bn(Y )
by [Y ] = [Y, idY ]. It is the identity for • on B∗(Y ).

Let g : Y → Z be a smooth map of manifolds. Define the pushforward
g∗ : Bk(Y )→ Bk(Z) by g∗ : [X, f ] 7→ [X, g ◦ f ].

Define morphisms Πhom
bo : Bk(Y ) → Hk(Y ;Z) by Πhom

bo : [X, f ] 7→ f∗([X]),
where [X] ∈ Hk(X;Z) is the fundamental class of X in homology.

When Y is a point ∗, B∗(∗) is known as the bordism ring. It has been
completely computed. In the first major work on bordism, Thom [97] proved:

Theorem 13.5 (Thom [97]). B∗(∗) ⊗Z Q is the free commutative Q-algebra
generated by ζ4k = [CP2k, π] ∈ B4k(∗) ⊗Z Q for k > 1. Hence Bn(∗) ⊗Z Q 6= 0
if and only if n = 4k for k = 0, 1, 2, . . . .

Work of Milnor, Wall and others describes the full ring B∗(∗), as in [24, §I.2].

Remark 13.6. (a) As in [24, §I.5 & §I.13], bordism is a generalized homology
theory, that is, it satisfies all the Eilenberg–Steenrod axioms for homology except
the dimension axiom. (The dimension axiom would say that Bk(∗) = 0 for
k 6= 0, which is false by Theorem 13.5.) This gives some information on bordism
groups of general spaces Y : for any generalized homology theory GH∗(Y ), there
is a spectral sequence from Hk

(
Y ;GHl(∗)

)
converging to GHk+l(Y ), so for

instance we may deduce that Bm(Sn) ∼=
⊕

k+l=mHk

(
Sn;Bl(∗)

)
.

(b) There is also a generalized cohomology theory dual to bordism, called cobor-
dism, as in Atiyah [6] and Conner [24, §13]. For general (sufficiently nice) topo-
logical spaces Y , the cobordism groups MSOk(Y ) for k ∈ Z have a complicated
definition involving homotopy theory, direct limits of k-fold suspensions, and
classifying spaces, very unlike the elementary definition of MSOk(Y ).

If Y is a compact oriented n-manifold, there are Poincaré duality isomor-
phisms MSOk(Y ) ∼= MSOn−k(Y ) for k ∈ Z, [6, Th. 3.6], [24, Th. 13.4]. Thus,
cobordism is essentially the same as bordism for (compact, oriented) manifolds.

We can use this to give a definition of cobordism parallel to Definition 13.1.
Suppose for simplicity that Y is a compact manifold, not necessarily oriented,
with dimY = n. Define the kth cobordism group Bk(Y ) to be the set of ∼-
equivalence classes [X, f ] of pairs (X, f), where now X is a compact manifold
with dimX = n − k, and f : X → Y is a cooriented smooth map, that is, we
are given an orientation on the line bundle Λn−kT ∗X ⊗ f∗(ΛnT ∗Y )∗ over X.
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There is a cup product ∪ : Bk(Y ) × Bl(Y ) → Bk+l(Y ) defined as for • in
(13.1). The identity element is 1Y = [Y, idY ] ∈ B0(Y ), where idY : Y → Y has
the natural coorientation. These make B∗(Y ) into an associative, supercommu-
tative ring. There is a cap product ∩ : Bk(Y ) × Bl(Y ) → Bl−k(Y ), defined as
in (13.1), making B∗(Y ) into a module over B∗(Y ). If g : Y → Z is smooth we
define pullbacks g∗ : Bk(Z)→ Bk(Y ) by g∗([X, f ]) = [X×f,Z,g Y, πY ], provided
f, g are transverse, which can be achieved by perturbing f in its cobordism class.

If Y is compact and oriented then we have a fundamental class [Y ] ∈ Bn(Y ),
and so α 7→ α ∩ [Y ] gives an isomorphism ∩ [Y ] : Bk(Y ) → Bn−k(Y ). This is
Poincaré duality for (co)bordism of compact oriented manifolds.

In a similar way, all the material on bordism and d-bordism of manifolds and
orbifolds below has easy analogues for cobordism and d-cobordism of manifolds
and orbifolds. For brevity we will discuss only bordism and d-bordism.

(c) For (nice) noncompact topological spaces, there are actually two versions of
homology: homology H∗(Y ;Z) and homology with arbitrary support H∞∗ (Y ;Z),
where H∞∗ (Y ;Z) is the relative homology H∗(Y q{∞}, {∞};Z), with Y q{∞}
the one-point compactification of Y . There are also two versions of cohomology,
cohomology H∗(Y ;Z) and compactly-supported cohomology H∗cs(Y ;Z), where
H∗cs(Y ;Z) ∼= H∗(Y q{∞}, {∞};Z). If Y is compact then H∗(Y ;Z) ∼= H∞∗ (Y ;Z)
and H∗(Y ;Z) ∼= H∗cs(Y ;Z). If Y is an oriented n-manifold, Poincaré duality
gives Hk(Y ;Z) ∼= H∞n−k(Y ;Z) and Hk

cs(Y ;Z) ∼= Hn−k(Y ;Z).
Motivated by this, if Y is a noncompact manifold we define can two kinds

of bordism B∗(Y ), B∞∗ (Y ) and cobordism B∗(Y ), B∗cs(Y ), following Definition
13.1 and (b) above. For B∗(Y ), B∗cs(Y ) we take X,W compact, as in Definition
13.1, but for B∞∗ (Y ), B∗(Y ) we do not require W,X compact, but instead take
f : X → Y and e : W → Y proper. The material below has easy generalizations
to (d-)(co)bordism with arbitrary support, but for brevity we omit them.

(d) Bordism groups are written MSOk(Y ), as for [X, f ] in MSOk(Y ) we
may take X to be an oriented Riemannian k-manifold, so that TX has struc-
ture group SO(k). In fact there are bordism theories MSO∗(Y ),MO∗(Y ),
MU∗(Y ),MSU∗(Y ),MSp∗(Y ) for each series of classical groups SO(k),O(k),
U(k),SU(k),Sp(k), in which TX is given a (stable) SO(k), . . . ,Sp(k)-structure.
There are also cobordism theories MSO∗(Y ),MO∗(Y ),MU∗(Y ),MSU∗(Y ),
MSp∗(Y ). For more details see Conner and Floyd [25,26] and Stong [96].

The simplest of these other bordism theories is unoriented bordism MO∗(Y ),
defined as in Definition 13.1, but without taking X,W oriented. Unoriented
bordism groups have been completely determined: as in [24, §I.8], [96, §VI],
for the point MO∗(∗) is the free commutative Z2-algebra with generators in
dimension i = 2, 4, 5, . . . for all i not of the form 2k − 1, and MO∗(Y ) ∼=
H∗(Y ;Z2)⊗Z2

MO∗(∗) for any CW-complex Y .
Unitary bordism MU∗(Y ) [25, §III], [96, §VII] is defined using pairs (X, f)

in which X has a stable almost complex structure, that is, a complex vector
bundle structure on TX ⊕ Rk over X for k � 0. For a point, MU∗(∗) is the
free commutative ring with generators in dimension 2k for all k > 0.
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13.2 D-manifold bordism groups

We define d-bordism by replacing manifolds X in [X, f ] by d-manifolds X
throughout §13.1. This section is based on Spivak [94, §6.2] and [95, §3.1]
on (unoriented) ‘derived cobordism’ for his derived manifolds. As in §7.1, we
have isomorphic 2-categories dMan, with objects X, and dM̄an, with objects
X = (X, ∅, ∅, ∅), with isomorphism dMan→ dM̄an mappingX 7→ (X, ∅, ∅, ∅),
where dM̄an ⊂ dManb ⊂ dManc. For simplicity we identify dMan and
dM̄an, writing objects of both as X.

Definition 13.7. Let Y be a manifold, and k ∈ Z. Consider pairs (X,f),
where X ∈ dMan is a compact, oriented d-manifold without boundary with
vdimX = k, and f : X → Y is a 1-morphism in dMan, where Y = FdMan

Man (Y ).
Define a binary relation ∼ between such pairs by (X,f) ∼ (X ′,f ′) if there

exists a compact, oriented d-manifold with boundary W with vdim W = k+ 1,
a 1-morphism e : W → Y in dManb, an equivalence of oriented d-manifolds
j : −X qX ′ → ∂W, and a 2-morphism η : f q f ′ ⇒ e ◦ iW ◦ j. Proposition
13.8 shows ∼ is an equivalence relation, which we call d-bordism.

Write [X,f ] for the ∼-equivalence class (d-bordism class) of a pair (X,f).
For each k ∈ Z, define the kth d-manifold bordism group, or d-bordism group,
dBk(Y ) of Y to be the set of all such d-bordism classes [X,f ] with vdimX = k.
As for Bk(Y ), we give dBk(Y ) the structure of an abelian group, with zero
element 0Y = [∅,∅], addition [X,f ] + [X ′,f ′] = [X qX ′,f q f ′], and additive
inverses −[X,f ] = [−X,f ].

Here is the analogue of Proposition 13.3, similar to Spivak [94, Prop. 6.2.12].

Proposition 13.8. In Definition 13.7, ∼ is an equivalence relation.

Proof. Let X,X ′,X ′′ be compact oriented d-manifolds of dimension k ∈ Z,
and f : X → Y , f ′ : X ′ → Y and f ′′ : X ′′ → Y be 1-morphisms for
Y = FdMan

Man (Y ), and ∼ be as in Definition 13.7. The proofs that ∼ is reflexive
and symmetric are as in Proposition 13.3: to show that (X,f) ∼ (X,f) we
consider W = [0, 1] ×X and e = f ◦ πX , and if (X,f) ∼ (X ′,f ′), so that
there exist W, e, j, η, then using −W, e, j, η we see that (X ′,f ′) ∼ (X,f).

Suppose that (X,f) ∼ (X ′,f ′) and (X ′,f ′) ∼ (X ′′,f ′′). Then there exist
compact, oriented d-manifolds with boundary W,W′ of dimension k + 1, 1-
morphisms e : W → Y , e′ : W′ → Y , oriented equivalences j : −X qX ′ →
∂W, j′ : −X ′ qX ′′ → ∂W′, and 2-morphisms η : f q f ′ ⇒ e ◦ iW ◦ j and
η′ : f ′qf ′′ ⇒ e′ ◦ iW′ ◦j′. The new issue in this proof is that the Differentiable
Collaring Theorem [24, Th. I.1.2] is false for d-manifolds with boundary. That
is, in general W and W′ are not equivalent to (−ε, 0] ×X ′ and [0, ε) ×X ′
near j(X ′) and j′(X ′), so we cannot simply glue W,W′ along their common
boundary components X ′ to make a new d-manifold with boundary W′′, as we
did for manifolds in the proof of Proposition 13.3.

Generalizing the proof of Proposition 7.45, we may construct simple, flat
1-morphisms g : W→ [0, 1], g′ : W′ → [1, 2] in dManb, where [0, 1], [1, 2] =
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FdManc

Manb ([0, 1], [1, 2]), fitting into 2-Cartesian diagrams in dManb:

X
iW◦j|X��

π
//

����
EM

id0◦π

∗
0 ��

X ′

iW◦j|X′��
π

//

����
EM

id1◦π

∗
1 ��

W
g // [0, 1], W

g // [0, 1],

X ′

iW′◦j
′|X′��

π
//

����
EM

id1◦π

∗
1 ��

X ′′

iW′◦j′|X′′��
π

//

����
EM

id2◦π

∗
2 ��

W′ g′ // [1, 2], W′ g′ // [1, 2].

(13.2)

Choose a smooth function h : [0, 4
3 ) → [0, 4

3 ) satisfying h(x) = x for x ∈
[0, 1

3 ], h(x) ∈ ( 1
3 , 1) and dh

dx (x) > 0 for x ∈ ( 1
3 ,

2
3 ), and h(x) = 1 for x ∈ [ 2

3 ,
4
3 ).

Choose another smooth function h′ : ( 2
3 , 2] → ( 2

3 , 2] satisfying h′(x) = 1 for

x ∈ ( 2
3 ,

4
3 ], h′(x) ∈ (1, 5

3 ) and dh′

dx (x) > 0 for x ∈ ( 4
3 ,

5
3 ), and h′(x) = x for

x ∈ [ 5
3 , 2]. Note that although h actually maps h : [0, 4

3 ) → [0, 1], it is not
a smooth map of manifolds with boundary into [0, 1], as neither of Definition
5.5(i),(ii) holds at x = 2

3 . Similarly, h′ maps h′ : ( 2
3 , 2] → [1, 2], but is not a

smooth map into [1, 2] near x = 4
3 .

Roughly speaking, the idea of the next part of the proof is to replace W and
W′ by W̃ = W×g,[0,1],h [0, 4

3
) and W̃′ = W′ ×g′,[1,2],h′ (

2
3
, 2], and then note

that W̃ and W̃′ both contain an open d-submanifold equivalent to (2
3
, 4

3
)×X ′

as h(x) = h′(x) = 1 for x ∈ ( 2
3 ,

4
3 ), so we can glue W̃,W̃′ on these equivalent

open d-submanifolds to obtain a d-manifold with corners W′′.
However, the fibre products W×g,[0,1],h [0, 4

3
) and W′ ×g′,[1,2],h′ (

2
3
, 2] do

not make sense in dManb, since h : [0, 4
3
)→ [0, 1] and h′ : (2

3
, 2]→ [1, 2] are

not 1-morphisms in dManb for the same reason that h, h′ are not smooth as
maps into [0, 1] and [1, 2]. So we will construct W̃,W̃′ in a more ad hoc way.

In the d-manifold with boundary W̃ = (W̃ ,∂W̃ , iW̃, ωW̃), we define the d-
space W̃ to be a d-space fibre product W×g,[0,1],h [0, 4

3
) in dSpa, which exists

as in §2.5, with projections ẽ : W̃ → W and f̃ : W̃ → [0, 4
3
). Note however

that this specifies W̃ only up to equivalence in dSpa, and the conditions on
W̃ ,∂W̃ , iW̃ for W̃ to be a d-space with boundary depend on W̃ up to 1-
isomorphism, not just up to equivalence.

Since h(x) = x for x ∈ [0, 1
3 ), over [0, 1

3
) the fibre product is the same as

W ×g,[0,1],id[0,1]
[0, 1] ' W. Using Theorem 2.28, we can show that we can

take W̃ to be actually equal to W over the smaller open subset [0, 1
4
). That is,

the open d-spaces (g ◦ ẽ)−1([0, 1
4
)) ⊆ W̃ and g−1([0, 1

4
)) ⊆ W are the same,

and ẽ|(g◦ẽ)−1([0, 14 )) = idg−1([0, 14 )).

As j : −X qX ′ → ∂W is an equivalence, we have ∂W = j(X) q j(X ′),
where j(X), j(X ′) are open and closed d-subspaces of ∂W . Define ∂W̃ =
j(X), and iW̃ = iW|j(X), and ωW̃ = ωW|j(X). Since g ◦ iW ◦ j|X = 0 ◦ π by

(13.2), we see that iW|j(X) maps j(X) to g−1(0) ⊆ g−1([0, 1
4
) ⊆ W. Since

idg−1([0, 14 )) = (g ◦ ẽ)−1([0, 1
4
)) ⊆ W̃ , we may regard iW̃ = iW|j(X) as a 1-

morphism j(X)→ W̃ in dSpa. Similarly, ωW̃ makes sense.
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Because W̃ ,∂W̃ , iW̃, ωW̃ are equal to W,∂W , iW, ωW over [0, 1
4
), and all

of ∂W̃ lies over 0 ∈ [0, 1
4
), Definition 6.1 holds for W̃ as it does for W, so W̃

is a d-space with boundary. We claim it is a d-manifold with boundary, with
vdim W̃ = k + 1. Near ∂W̃ this is immediate, as W̃ coincides with W there.

Away from ∂W̃, note that g and h are d-transverse, since g simple and
flat implies that g is a submersion near g−1(1), and h−1

(
[0, 1)

)
= [0, 2

3 ) and
dh
dx (x) > 0 for x ∈ [0, 2

3 ) imply that h is a submersion on h−1
(
[0, 1)

)
, so one of g

or h is a submersion over every point of [0, 1]. Thus, it more-or-less follows from
Theorem 4.21 that W̃ is a d-manifold with vdim W̃ = k + 1 away from ∂W̃.
This is not quite true as W and [0, 1] are not d-manifolds without boundary
near iW ◦j(X ′) and 1 respectively, but considering local models shows that the
boundaries do not affect W̃ being a d-manifold.

Thus, W̃ is a d-manifold with boundary. Since h(x) = 1 for x ∈ ( 2
3 ,

4
3 ), and

W ×g,[0,1],1 ∗ 'X ′ by (13.2), and W̃ = W ×g,[0,1],h [0, 4
3
), we see there is an

equivalence W̃ ⊇ f̃−1
(
(2

3
, 4

3
)
)
' (2

3
, 4

3
)×X ′ in dMan. Similarly, we define a d-

manifold with boundary W̃′ with vdim W̃ ′ = k+ 1, with projections ẽ′ : W̃′ →
W′ and f̃ ′ : W̃′ → (2

3
, 1], and an equivalence W̃ ′ ⊇ (f̃ ′)−1

(
(2

3
, 4

3
)
)
' (2

3
, 4

3
)×

X ′. We then apply Theorem 6.25 to glue W̃ and W̃′ on their equivalent open
d-subspaces f̃−1

(
(2

3
, 4

3
)
)
, (f̃ ′)−1

(
(2

3
, 4

3
)
)

to obtain a d-manifold with boundary

W′′, with vdim W′′ = k + 1.
We also have 1-morphisms e ◦ ẽ : W̃ → Y and e′ ◦ ẽ′ : W̃′ → Y , which on

the d-subspaces f̃−1
(
(2

3
, 4

3
)
)
, (f̃ ′)−1

(
(2

3
, 4

3
)
)

are identified up to 2-isomorphism

with f ′ ◦ πX′ : (2
3
, 4

3
)×X ′ → Y by the equivalences f̃−1

(
(2

3
, 4

3
)
)
' (2

3
, 4

3
)×

X ′ ' (f̃ ′)−1
(
(2

3
, 4

3
)
)
. Thus, the second part of Theorem 6.25 gives a 1-

morphism e′′ : W′′ → Y identified up to 2-isomorphism and equivalences on
open d-subspaces with e ◦ ẽ and e′ ◦ ẽ′.

The orientations on W,W′ and induce orientations on W̃,W̃′ which are
compatible on f̃−1

(
(2

3
, 4

3
)
)
, (f̃ ′)−1

(
(2

3
, 4

3
)
)
, and so descend to an orientation on

W′′. The boundary ∂W′′ is equivalent to the disjoint union of the boundaries
j(−X) of W̃ and j′(X′′) of W̃′, so there is an orientation-preserving equivalence
j′′ : −X qX ′′ → ∂W′′. Using the 2-morphisms η|X and η′|X′′ we see there is
a 2-morphism η′′ : f q f ′′ ⇒ e′′ ◦ iW′′ ◦ j′′. Hence (X,f) ∼ (X ′′,f ′′) in the
sense of Definition 13.7, so ∼ is an equivalence relation.

Here is the analogue of Definition 13.4.

Definition 13.9. Suppose Y is an oriented manifold of dimension n. As in
(13.1), define the intersection product • : dBk(Y )× dBl(Y )→ dBk+l−n(Y ) by

[X,f ] • [X ′,f ′] = [X ×f ,Y ,f ′ X ′,f ◦ πX ]. (13.3)

Here the fibre product X ×f ,Y ,f ′ X ′ exists in dMan by Theorem 4.22(a), and
is oriented by Theorem 4.50. Using Proposition 4.52, one can show that • is
biadditive, supercommutative and associative.

If Y is compact and oriented, we define the fundamental class [Y ] ∈ dBn(Y )
by [Y ] = [Y , idY ]. It is the identity for • on dB∗(Y ).
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Let g : Y → Z be a smooth map of manifolds. Define the pushforward
g∗ : dBk(Y )→ dBk(Z) by g∗ : [X,f ] 7→ [X, g ◦ f ], where g = FdMan

Man (g).
Define a projection Πdbo

bo : Bk(Y ) → dBk(Y ) by Πdbo
bo : [X, f ] 7→ [X,f ],

where X,f = FdMan
Man (X, f). As in Example 4.45, orientations on X correspond

to orientations on X. Then Πdbo
bo takes •, [Y ] in B∗(Y ) to •, [Y ] in dB∗(Y ), and

commutes with pushforwards g∗ : B∗(Y )→ B∗(Z), g∗ : dB∗(Y )→ dB∗(Z).

Remark 13.10. (a) In §13.1, to define [X, f ]• [X ′, f ′], it was necessary to first
perturb f, f ′ to make f : X → Y , f ′ : X ′ → Y transverse. In contrast, the
definition of [X,f ]• [X ′,f ′] in d-bordism works for all (X,f), (X ′,f ′) without
perturbation, since f ,f ′ are automatically d-transverse as Y is a manifold.

(b) Since there exist nontrivial d-manifolds X with vdimX < 0, it is not
obvious that dBk(Y ) = 0 for k < 0. But we will prove this in Theorem 13.11.

(c) As in Remark 13.6(d), there are other classical bordism theories MO∗(Y ),
MU∗(Y ),MSU∗(Y ),MSp∗(Y ), and we can try to define d-manifold versions of
these. Generalizing unoriented bordism MO∗(Y ) is easy: we just omit orienta-
tions on X,W in Definition 13.7, and then the proof of Theorem 13.11 shows
that unoriented d-manifold bordism dBunor

∗ (Y ) is isomorphic to classical un-
oriented bordism MO∗(Y ). To define unitary d-manifold bordism generalizing
MU∗(Y ) will require a suitable notion of stable almost complex structure on a
d-manifold X. We return to this in Remark 13.28.

The next theorem is the main result of this section. Spivak [94, Th. 6.2.24]
and [95, Th. 2.6] gives similar results for his derived manifolds. The theorem
implies that we may define projections

Πhom
dbo : dBk(Y ) −→ Hk(Y ;Z) by Πhom

dbo = Πhom
bo ◦ (Πdbo

bo )−1. (13.4)

We think of these Πhom
dbo as virtual class maps. Virtual classes (or virtual cycles,

or virtual chains) are used in several areas of geometry to construct enumerative
invariants using moduli spaces. Our main point is that compact oriented d-
manifolds admit virtual classes.

Theorem 13.11. For any manifold Y, the morphisms Πdbo
bo : Bk(Y )→ dBk(Y )

above are isomorphisms for all k ∈ Z, and preserve the structures •, [Y ], g∗.

Proof. Suppose [X,f ] ∈ dBk(Y ). Then Theorem 4.29 gives an embedding g :
X → RRRn for n� 0, as X is compact. The direct product (f , g) : X → Y ×RRRn
is also an embedding. Theorem 4.34 thus gives an open set V ⊆ Y ×Rn, a vector
bundle E → V , a smooth section s ∈ C∞(E), an equivalence i : X → SV,E,s,
and a 2-morphism η : SπY ,0 ◦ i⇒ f , where πY : V → Y is the restriction to V
of πY : Y × Rn → Y , and SπY ,0 : SV,E,s → SY,0,0 = Y is as in Definition 3.30.

There is a unique orientation on SV,E,s such that i : X → SV,E,s is
orientation-preserving. As in Definition 4.48, orientations on SV,E,s correspond
to orientations on the line bundle ΛrankE ⊗ ΛdimV T ∗V over V near s−1(0).
Making V smaller, we can suppose ΛrankE ⊗ ΛdimV T ∗V is oriented on V .

Now X is compact, so s−1(0) ⊆ V is compact, but V may be noncompact.
Choose an open neighbourhood U of s−1(0) in V whose closure Ū in V is
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compact. Let s̃ : V → E be a generic smooth section of E such that |s̃−s| 6 1
2 |s|

on V \U , where | . | is computed using some choice of metric on the fibres of E.
Then s̃−1(0) is closed in V and contained in the compact subset Ū , so s̃−1(0)
is compact. Hence SV,E,s̃ is a compact d-manifold, which is oriented using the
orientation on the fibres of ΛrankE ⊗ ΛdimV T ∗V , as in Definition 4.48.

Since s̃ is generic, it is transverse, so X̃ = s̃−1(0) is a compact submanifold
of V of dimension k = dimV − rankE, and f̃ = πY |X̃ : X̃ → Y is a smooth

map. We have an equivalence ı̃ : X̃ → SV,E,s̃ in dMan and a 2-morphism

η̃ : SπY ,0 ◦ ı̃⇒ f̃ , where X̃, f̃ = FdMan
Man (X̃, f̃). Also the orientation on SV,E,s̃

is identified with an orientation on X̃ by ı̃, which in turn is identified with a
unique orientation on X̃ by Example 4.45. Hence [X̃, f̃ ] ∈ Bk(Y ).

Define W = V × [0, 1], as a manifold with boundary, and F = π∗V (E) as a
vector bundle F →W , and a smooth section t : W → F by t = (1− z)π∗V (s) +
zπ∗V (s̃), where z is the coordinate on [0, 1]. Then ∂W ∼= (V ×{0})q (V ×{1}),
the disjoint union of two copies of V , and F |∂W ∼= E on each copy of V ,
and t|∂W ∼= s ∈ C∞(E) on V × {0}, and t|∂W ∼= s̃ ∈ C∞(E) on V × {1}.
Using the orientations on the fibres of ΛrankE ⊗ ΛdimV T ∗V and on [0, 1], as in
Definition 4.48 we obtain orientations on SW,F,t and SV,E,s̃, and then ∂SW,F,t '
−SV,E,s q SV,E,s̃ in oriented d-manifolds. Since |s̃− s| 6 1

2 |s| on V \ U we see
that t−1(0) ⊆ U × [0, 1], so t−1(0) is closed in V × [0, 1] and contained in the
compact subset Ū × [0, 1], and is compact. Thus SW,F,t is compact.

We now have a compact, oriented d-manifold with boundary SW,F,t, and a
1-morphism SπY ,0 : SW,F,t → Y . We have equivalences of oriented d-manifolds

X ' SV,E,s, X̃ ' SV,E,s̃ and ∂SW,F,t ' −SV,E,s q SV,E,s̃, so putting these

together gives an equivalence j : −X q X̃ → ∂SW,F,t. The 2-morphism η :

SπY ,0 ◦ i ⇒ f and definition f̃ = πY |X̃ imply that there exists a 2-morphism

η̃ : f q f̃ ⇒ SπY ,0 ◦ iSW,F,t ◦ j. Hence (X,f) ' (X̃, f̃) by Definition 13.7, so

[X,f ] = [X̃, f̃ ] = Πdbo
bo

(
[X̃, f̃ ]

)
. Thus Πdbo

bo : Bk(Y )→ dBk(Y ) is surjective.

Next, suppose [X, f ], [X ′, f ′] ∈ Bk(Y ) with Πdbo
bo

(
[X, f ]

)
= Πdbo

bo

(
[X ′, f ′]

)
.

Then (X,f) ∼ (X ′,f ′), so there exist a compact, oriented d-manifold with
boundary W with vdim W = k + 1, a 1-morphism e : W → Y , an equivalence
of oriented d-manifolds j : −X qX ′ → ∂W, and a 2-morphism η : f q f ′ ⇒
e ◦ iW ◦ j, where X,f ,X ′,f ′,Y = FdMan

Man (X, f,X ′, f ′, Y ).
By Corollary 7.46 there exists an sf-embedding g : W → RRRn1 for n � 0,

as W is compact with boundary. The direct product (e, g) : W → Y × RRRn1
is also an sf-embedding, as ∂Y = ∅. Theorem 7.48 thus gives an open set
V ⊆ Y × Rn1 , a vector bundle E → V , a smooth section s ∈ C∞(E), an
equivalence i : W → SV,E,s, and a 2-morphism ζ : SπY ,0 ◦ i ⇒ e, where
πY : V → Y is the restriction to V of πY : Y × Rn1 → Y . As in the first
part, making V smaller we can suppose ΛrankE ⊗ ΛdimV T ∗V is oriented, so
that SV,E,s is oriented, and i : W→ SV,E,s is orientation-preserving.

Now X,X ′ are manifolds, and j : −X qX ′ → ∂W, i− : ∂W→ ∂SV,E,s '
S∂V,E|∂V ,s|∂V are equivalences. So S∂V,E|∂V ,s|∂V is a manifold, which implies
that s|∂V is a transverse section of E|∂V , and hence s is transverse near ∂V .
As above, choose open s−1(0) ⊆ U ⊆ V with Ū compact. Let s̃ be a transverse
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perturbation of s in C∞(E) such that s̃ = s near ∂V where s is transverse, and
|s̃− s| 6 1

2 |s| on V \ U . Let W̃ = s̃−1(0). Then W̃ is a (k + 1)-submanifold of
V as s̃ is transverse, and is compact as it is a closed subset of Ū .

Define a smooth map ẽ : W̃ → Y by ẽ = πY |W̃ . The orientation on the

fibres of ΛrankE ⊗ ΛdimV T ∗V induces an orientation on W̃ . As s̃ = s near ∂V ,
we have ∂W̃ = s|−1

∂V (0), so FdMan
Man (∂W̃ ) ∼= S∂V,E|∂V ,s|∂V ' −X qX

′. Thus,

i−◦j induces an orientation-preserving diffeomorphism ̃ : −XqX ′ → ∂W̃ , and
η : f qf ′ ⇒ e ◦ iW ◦ j implies that f q f ′ = ẽ ◦ iW ◦ ̃. Hence W̃ , ẽ, ̃ imply that
(X, f) ∼ (X ′, f ′) in the notation of Definition 13.1, so [X, f ] = [X ′, f ′] ∈ Bk(Y ),
and Πdbo

bo is injective. Therefore Πdbo
bo : Bk(Y ) → dBk(Y ) is an isomorphism.

The last part is immediate from the definitions.

13.3 Classical bordism for orbifolds

We generalize Definitions 13.1 and 13.4 to orbifolds Y.

Definition 13.12. The 2-categories of orbifolds Orb, written W,X ,Y, . . . and
orbifolds with boundary Orbb, written W,X,Y, . . . , were defined in §8.2 and

§8.5. As in Definition 8.15, the 2-functor FOrbb

Orb : Orb → Orbb mapping

X 7→ X = (X , ∅, ∅) is a strict isomorphism from Orb to the 2-subcategory Ȯrb

of Orbb. For brevity we will identify the 2-categories Orb and Ȯrb by FOrbb

Orb .
Let Y be an orbifold, and k ∈ Z. Consider pairs (X , f), where X is a

compact, oriented orbifold (without boundary) with dimX = k, and f : X → Y
is a 1-morphism in Orb. We allow ∅ as an oriented orbifold of any dimension
k ∈ Z, so (∅, ∅) is allowed as a pair (X , f), and is the only such pair when k < 0.

Define a binary relation ∼ between such pairs by (X , f) ∼ (X ′, f ′) if there
exists a compact, oriented (k+ 1)-orbifold with boundary W, a 1-morphism
e : W→ Y in Orbb, an orientation-preserving equivalence j : −X q X ′ → ∂W,
and a 2-morphism η : f q f ′ ⇒ e ◦ iW ◦ j in Orbb, where −X is X with the
opposite orientation, and the orientation of ∂W is induced from that of W. Then
∼ is an equivalence relation, which is called orbifold bordism.

Write [X , f ] for the ∼-equivalence class (bordism class) of a pair (X , f). For
each k ∈ Z, define the kth orbifold bordism group Borb

k (Y) of Y to be the set of
all such bordism classes [X , f ] with dimX = k. It is an abelian group, with zero
0Y = [∅, ∅], addition [X , f ] + [X ′, f ′] = [X q X ′, f q f ′], and additive inverses
−[X , f ] = [−X , f ]. If k < 0 then Borb

k (Y) = 0.
Define effective orbifold bordism Beff

k (Y) in the same way, but requiring both
orbifolds X and orbifolds with boundary W to be effective (as in §8.4 and §8.9)
in pairs (X , f) and the definition of ∼.

Definition 13.13. Suppose Y is an oriented orbifold of dimension n which
is a manifold, that is, the orbifold groups IsoY([y]) are trivial for all [y] ∈
Ytop. Define intersection products • : Borb

k (Y) × Borb
l (Y) → Borb

k+l−n(Y) and

• : Beff
k (Y)×Beff

l (Y)→ Beff
k+l−n(Y) as follows. Given classes [X , f ], [X ′, f ′], we

perturb f, f ′ in their bordism classes to make f : X → Y and f ′ : X ′ → Y
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transverse 1-morphisms, and then as in (13.1) we set

[X , f ] • [X ′, f ′] = [X ×f,Y,f ′ X ′, f ◦ πX ]. (13.5)

The associativity and commutativity properties of oriented fibre products imply
that • is biadditive, associative and supercommutative on Borb

∗ (Y) and Beff
∗ (Y).

The reason we suppose Y is a manifold is that otherwise it may not be
possible to perturb f, f ′ to be transverse. For example, consider the orbifold
1-morphisms f, f ′ : [R/{±1}] → [R3/{±1}] acting by f : ±x 7→ ±(x, 0, 0) and
f ′ : ±x 7→ ±(0, x, 0). All perturbations of f, f ′ must map 0 7→ 0, and so are
non-transverse over 0 ∈ [R3/± 1]. Also, for • on Beff

∗ (Y), if X ,X ′ are effective,
f, f ′ are transverse, but Y is not a manifold, then X ×f,Y,f ′ X ′ need not be an
effective orbifold, so (13.5) might not define a class in Beff

∗ (Y).
If Y is a compact, oriented orbifold of dimension n, we define the fundamental

class [Y] ∈ Borb
n (Y) by [Y] = [Y, idY ]. If Y is also effective we define [Y] =

[Y, idY ] ∈ Beff
n (Y). If Y is a manifold then [Y] is the identity for • on Borb

∗ (Y)
and Beff

∗ (Y). Let g : Y → Z be a 1-morphism of orbifolds. Define pushforwards
g∗ : Borb

k (Y)→ Borb
k (Z), g∗ : Beff

k (Y)→ Beff
k (Z) by g∗ : [X , f ] 7→ [X , g ◦ f ].

If Y is an orbifold, define group morphisms

Πorb
eff : Beff

k (Y) −→ Borb
k (Y), Πhom

orb : Borb
k (Y) −→ Hk(Ytop;Q)

and Πhom
eff : Beff

k (Y) −→ Hk(Ytop;Z)
(13.6)

by Πorb
eff : [X , f ] 7→ [X , f ] and Πhom

orb ,Π
hom
eff : [X , f ] 7→ (ftop)∗([X ]), where [X ]

is the fundamental class of the compact, oriented k-orbifold X , which lies
in Hk(Xtop;Q) for general X , and in Hk(Xtop;Z) for effective X . The 1-
morphism f : X → Y gives a continuous map ftop : Xtop → Ytop, and so
induces morphisms of homology groups (ftop)∗ : Hk(Xtop;Q) → Hk(Ytop;Q)
and (ftop)∗ : Hk(Xtop;Z)→ Hk(Ytop;Z).

If Y is a manifold and Y = FOrb
Man(Y ), define a morphism

Πeff
bo : Bk(Y ) −→ Beff

k (Y) by Πeff
bo : [X, f ] 7−→

[
FOrb

Man(X), FOrb
Man(f)

]
. (13.7)

The morphisms (13.6)–(13.7) commute with pushforwards g∗, and preserve in-
tersection products • and fundamental classes [Y] when these are defined.

Remark 13.14. (a) In Remark 13.6(b), we defined cobordism groups B∗(Y )
for a compact manifold Y , and explained that cobordism is a generalized co-
homology theory, with cup product ∪ : Bk(Y ) × Bl(Y ) → Bk+l(Y ), identity
1Y = [Y, idY ] ∈ B0(Y ), cap product ∩ : Bk(Y ) × Bl(Y ) → Bl−k(Y ), and
pullbacks g∗ : Bk(Z)→ Bk(Y ). We now generalize this to orbifolds.

Consider the following condition on 1-morphisms f : X → Y in Orb:

(†) As in §C.6 we have a morphism Ωf : f∗(T ∗Y) → T ∗X in vect(X ). Let Γ
be a finite group and λ ∈ ΛΓ

+, so that we have an orbifold stratum XΓ,λ

and 1-morphism OΓ,λ(X ) : XΓ,λ → X . Thus we may form the pullback
OΓ,λ(X )∗(Ωf ) : OΓ,λ(X )∗(f∗(T ∗Y)) → OΓ,λ(X )∗(T ∗X ). As in §C.9, Γ
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acts on OΓ,λ(X )∗(f∗(T ∗Y)) and OΓ,λ(X )∗(T ∗X ), decomposing them into
trivial and nontrivial parts, and OΓ,λ(X )∗(Ωf ) is Γ-equivariant, so it has a
nontrivial part OΓ,λ(X )∗(Ωf )nt : f∗(T ∗Y)nt → (T ∗X )nt. We require that
OΓ,λ(X )∗(Ωf )nt should be injective, for all such Γ, λ.

Roughly speaking, condition (†) says that if f maps an orbifold stratum XΓ,λ

to YΓ,λ′ locally, then f(X ) intersects YΓ,λ′ transversely in Y.
The following properties are easy to verify:

(i) If f, g : X → Y are 1-morphisms and η : f ⇒ g a 2-morphism in Orb,
then f satisfies (†) if and only if g does.

(ii) If f : X → Y and g : Y → Z satisfy (†) then g ◦ f : X → Z satisfies (†).
(iii) If X or Y is a manifold then any f : X → Y satisfies (†).
(iv) Suppose g : X → Z and h : Y → Z are transverse 1-morphisms in Orb, so

that a fibre product W = X ×g,Z,h Y exists with projections e :W → X ,
f :W → Y. If g satisfies (†) then f does, and if h satisfies (†) then e does.

(v) If f : X → Y satisfies (†), then any small perturbation f̃ : X → Y of f also
satisfies (†). That is, (†) is an open condition on 1-morphisms f : X → Y.

(vi) Suppose g : X → Z and h : Y → Z are 1-morphisms in Orb and g satisfies
(†). If g̃ : X → Z is a small generic perturbation of g, then g̃ and h are
transverse, so that the fibre product X ×g̃,Z,h Y exists in Orb.

Let Y be a compact orbifold of dimension n, not necessarily oriented. Con-
sider pairs (X , f), where X is a compact orbifold with dimX = n − k, and
f : X → Y is a 1-morphism satisfying (†) which is cooriented, that is, we are
given an orientation on the line bundle Λn−kT ∗X ⊗f∗(ΛnT ∗Y)∗ over X . Define
an equivalence relation ∼ on such pairs by (X , f) ∼ (X ′, f ′) if there exists an
orbifold with corners W and a cooriented 1-morphism e : W→ Y satisfying (†)
such that e ◦ iW : ∂W → Y is equivalent to −(f : X → Y) q (f ′ : X ′ → Y) in
cooriented 1-morphisms. Define the orbifold cobordism group Bkorb(Y) to be the
set of ∼-equivalence classes [X , f ] of such pairs (X , f).

Call a 1-morphism f : X → Y in Orb coeffective if whenever [x] ∈ Xtop

with ftop([x]) = [y], so that we have morphisms f∗ : IsoX ([x]) → IsoY([y]) and
df |x : TxX → TyY, then Ker

(
f∗ : IsoX ([x]) → IsoY([y])

)
acts effectively on

Ker
(
df |x : TxX → TyY

)
. Define effective orbifold cobordism B∗eff(Y) as for

B∗orb(Y), but requiring f : X → Y and e : W→ Y to be coeffective.
We can now define cup products ∪ : Bkorb(Y) × Blorb(Y) → Bk+l

orb (Y) and

∪ : Bkeff(Y)×Bleff(Y)→ Bk+l
eff (Y) as for • in (13.5), without requiring Y oriented.

The important point in defining [X , f ] ∪ [X ′, f ′] is that by (vi) above, as f, f ′

satisfy (†), we can perturb them in their cobordism classes so that they are
transverse, and (13.5) makes sense. Also πX and f ◦ πX satisfy (†) by (ii),(iv).

We define identity elements 1Y = [Y, idY ] in B0
orb(Y), B0

eff(Y). Then ∪, 1Y
make B∗orb(Y), B∗eff(Y) into associative, supercommutative rings. We define cap
products ∩ : Bkorb(Y)×Borb

l (Y)→ Borb
l−k(Y) and ∩ : Bkeff(Y)×Beff

l (Y)→ Beff
l−k(Y)

582



mixing bordism and cobordism as for ∪. These make Borb
∗ (Y), Beff

∗ (Y) into
modules over B∗orb(Y), B∗eff(Y).

If g : Y → Z is a 1-morphism compact of orbifolds, we define pullbacks
g∗ : Bkorb(Z) → Bkorb(Y) and g∗ : Bkeff(Z) → Bkeff(Y) by g∗([X , f ]) = [X ×f,Z,g
Y, πY ], provided f, g are transverse. This can be achieved by perturbing f in
its cobordism class, by (vi) above.

Note that the condition (†) on f in classes [X , f ] ∈ B∗orb(Y), B∗eff(Y) is es-
sential in defining ∪,∩ and g∗, since otherwise we would not be able to perturb
f in its cobordism class so that f, f ′ or f, g are transverse.

(b) If Y is a noncompact orbifold, then as in Remark 13.6(c) we can define
compactly-supported and non-compactly-supported versions of all four (effec-
tive) orbifold (co)bordism theories.

(c) Let Y be a compact, oriented orbifold of dimension n, so that we have
fundamental classes [Y] ∈ Borb

n (Y), Beff
n (Y). Thus we have morphisms ∩ [Y] :

Bkorb(Y) → Borb
n−k(Y) and ∩ [Y] : Bkeff(Y) → Beff

n−k(Y) mapping α 7→ α ∩ [Y].
Essentially these map [X , f ] 7→ [X , f ], using the orientation on Y to convert the
coorientation on f for Bkorb(Y) to an orientation on X for Borb

n−k(Y).
In Remark 13.6(b) we saw that for Y a compact oriented manifold, ∩ [Y ] :

Bk(Y )→ Bn−k(Y ) is an isomorphism, giving Poincaré duality for (co)bordism
of manifolds. In the orbifold case, ∩ [Y] : Bkorb(Y) → Borb

n−k(Y) and ∩ [Y] :

Bkeff(Y)→ Beff
n−k(Y) may not be isomorphisms, since f must satisfy (†) for [X , f ]

in Bkorb(Y), Bkeff(Y), but need not satisfy (†) for [X , f ] in Borb
n−k(Y), Beff

n−k(Y).
Thus, Poincaré duality fails for (effective) orbifold (co)bordism for general com-
pact oriented orbifolds Y. We could have corrected this by including condi-
tion (†) on f in the definition of [X , f ] ∈ Borb

∗ (Y), but then pushforwards
g∗ : Borb

∗ (Y)→ Borb
∗ (Z) would be defined only for g : Y → Z satisfying (†).

If the orbifold Y is a manifold, then the condition (†) for f : X → Y is
trivial, so ∩ [Y] : Bkorb(Y) → Borb

n−k(Y) and ∩ [Y] : Bkeff(Y) → Beff
n−k(Y) are

isomorphisms in this case. So Poincaré duality does hold for (effective) orbifold
(co)bordism for general compact oriented manifolds Y.

This gives a perspective on why we could define • on Borb
∗ (Y), Beff

∗ (Y) in
Definition 13.13 only when Y is a manifold. For manifolds Y , the intersection
product • on B∗(Y ) is the image of the cup product ∪ on B∗(Y ) under the
Poincaré duality isomorphism Bk(Y ) ∼= Bn−k(Y ). Thus we should only expect
to define • when Poincaré duality holds.

(d) The projections Πhom
orb ,Π

hom
eff in (13.6) map to the homology of the underlying

topological space Ytop of Y. There is also an alternative notion of homology of an
orbifold. Given an orbifold Y, as in [2, §1.4], [84, §4] one can define a topological
space Ycla called the classifying space of Y, with a projection π : Ycla → Ytop.
This has the following properties:

(i) Ycla is canonical only up to homotopy. Hence the homology H∗(Ycla;R)
over any commutative ring R is canonical up to isomorphism. The pro-
jection π∗ : H∗(Ycla;R)→ H∗(Ytop;R) is also canonical.
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(ii) The fibre of π : Ycla → Ytop over [y] ∈ Ytop is a classifying spaceB IsoY([y])
for IsoY([y]). Since H∗(BG;Q) ∼= H∗(∗;Q) for any finite group G, this
implies that π∗ : H∗(Ycla;Q) → H∗(Ytop;Q) is an isomorphism. But
π∗ : H∗(Ycla;Z)→ H∗(Ytop;Z) is not an isomorphism in general.

(iii) If Y is a manifold then π : Ycla → Ytop is a homotopy equivalence, so
π∗ : H∗(Ycla;R)→ H∗(Ytop;R) is an isomorphism.

(iv) If Y is a compact, oriented, effective orbifold of dimension n then it has a
fundamental class [Y] in Hn(Ycla;Z), which projects to the fundamental
class [Y] ∈ Hn(Ytop;Z) used in Definition 13.13.

(v) If f : X → Y is a 1-morphism in Orb then there is a continuous map fcla :
Xcla → Ycla, canonical only up to homotopy. So (fcla)∗ : H∗(Xcla;R) →
H∗(Ycla;R) is canonical.

Thus, as for Πhom
eff in (13.6), we can define Πcla

eff : Beff
k (Y) → Hk(Ycla;Z) by

Πcla
eff : [X , f ] 7→ (fcla)∗([X ]), and then Πhom

eff = π∗ ◦ Πcla
eff . There is no benefit in

using Ycla rather than Ytop for Πhom
orb , since H∗(Ycla;Q) ∼= H∗(Ytop;Q).

Suppose X is a compact, effective orbifold, and W a compact orbifold with
boundary, not necessarily effective, with ∂W ' X . Let W′ be the maximal
effective open suborbifold in W. Then W′ is a compact, effective orbifold with
boundary, open and closed in W, with ∂W′ = ∂W ' X . Using this we deduce:

Lemma 13.15. Πorb
eff : Beff

∗ (Y)→ Borb
∗ (Y) is injective for any orbifold Y.

Example 13.16. We will compute Borb
0 (∗), Beff

0 (∗) when Y is the point ∗. One
can show that compact, oriented orbifolds X of dimension 0 are equivalent to
finite disjoint unions of orbifolds ±[∗/Γ] for Γ a finite group, where Γ = {1}
if X is effective. Similarly, compact, oriented orbifolds with boundary W of
dimension 1 are equivalent to finite disjoint unions of components [0, 1]× [∗/Γ]
and S1 × [∗/Γ] for Γ a finite group, with Γ = {1} for W effective. Therefore

Borb
0 (∗) =

⊕
iso. classes of finite groups Γ

Z ·
[
[∗/Γ], π

]
, Beff

0 (∗) = Z · [∗, π], (13.8)

writing π : X → ∗ for the unique 1-morphism for any orbifold X .

Thus Borb
0 (∗) is of infinite rank. This illustrates the principle that orbifold

bordism groups B∗orb(Y), B∗eff(Y) tend to be larger than bordism groups B∗(Y ),
because of the extra information stored in the orbifold strata XΓ,λ for classes
[X , f ]. We define functors ΠΓ,λ

orb , Π̃
Γ,µ
orb that extract some of this information.

Definition 13.17. Let Γ be a finite group, use the notation of Definitions 8.5
and 8.8, and choose orientations on R1, . . . , Rk for representatives (R1, ρ1), . . . ,
(Rk, ρk) of the nontrivial, irreducible, even-dimensional Γ-representations as in
§8.4.2. For each orbifold Y, finite group Γ, and λ ∈ ΛΓ

ev,+, define a morphism

ΠΓ,λ
orb : Borb

k (Y)→ Borb
k−dimλ(Y) by ΠΓ,λ

orb : [X , f ] 7→ [XΓ,λ, f ◦OΓ,λ(X )],
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where XΓ,λ has the orientation given by Proposition 8.9. Note that XΓ,λ is
compact as X is and OΓ,λ(X ) : XΓ,λ → X is proper. If (X , f) ∼ (X ′, f ′) using
W, e, j as in Definition 13.12, then using WΓ,λ, e ◦ OΓ,λ(W), jΓ,λ we see that(
XΓ,λ, f ◦OΓ,λ(X )

)
∼
(
X ′Γ,λ, f ′ ◦OΓ,λ(X ′)

)
, so ΠΓ,λ

orb is well defined.
Now suppose λ ∈ ΛΓ

ev,+ with ΦΓ(δ, λ) = 1 for all δ ∈ Aut(Γ) with λ · δ = λ.

Set µ = λ ·Aut(Γ) ∈ ΛΓ
ev,+/Aut(Γ), and define a morphism

Π̃Γ,µ
orb : Borb

k (Y)→ Borb
k−dimµ(Y) by Π̃Γ,µ

orb : [X , f ] 7→ [X̃Γ,µ, f ◦ ÕΓ,µ(X )],

where X̃Γ,µ has the orientation given by Proposition 8.10. The ΠΓ,λ
orb , Π̃

Γ,µ
orb com-

mute with pushforwards g∗ : Borb
∗ (Y)→ Borb

∗ (Z).

Remark 13.18. (a) We do not define functors ΠΓ,λ
eff , Π̃Γ,µ

eff : Beff
∗ (Y)→ Beff

∗ (Y),

since X effective does not imply XΓ,λ, X̃Γ,µ effective. But we can consider
ΠΓ,λ

orb ◦Πorb
eff and Π̃Γ,µ

orb ◦Πorb
eff : Beff

∗ (Y)→ Borb
∗ (Y).

(b) Suppose λ ∈ ΛΓ
ev,+ with ΦΓ(δ, λ) = −1 for some δ ∈ Aut(Γ) with λ · δ = λ,

and µ = λ · Aut(Λ). Then we have defined ΠΓ,λ
orb , but not Π̃Γ,µ

orb . In this case,
for [X , f ] ∈ Borb

∗ (Y), from §C.8 we see that LΓ(δ,X )|XΓ,λ : XΓ,λ → XΓ,λ is an
orientation-reversing 1-isomorphism with OΓ,λ(X )◦LΓ(δ,X )|XΓ,λ = OΓ,λ(X ). It

follows that ΠΓ,λ
orb([X , f ]) = −ΠΓ,λ

orb([X , f ]), so ΠΓ,λ
orb maps only to torsion elements

of order 2 in Borb
∗ (Y).

(c) In Definition 13.17, we can consider the functors

Πhom
orb ◦ΠΓ,λ

orb : Borb
k (Y) −→ Hk−dimλ(Ytop;Q),

Πhom
orb ◦ Π̃Γ,µ

orb : Borb
k (Y) −→ Hk−dimµ(Ytop;Q).

(13.9)

Let λ ∈ ΛΓ
ev,+. If ΦΓ(δ, λ) = −1 for some δ ∈ Aut(Γ) with λ · δ = λ then (b)

implies that Πhom
orb ◦ ΠΓ,λ

orb = 0. Otherwise, setting µ = λ · Aut(Λ), as X̃Γ,µ '
[XΓ,λ/∆] for ∆ = {δ ∈ Aut(Λ) : λ · δ = λ}, we see that

Πhom
orb ◦ Π̃Γ,µ

orb =
1

|{δ ∈ Aut(Λ) : λ · δ = λ}|
·Πhom

orb ◦ΠΓ,λ
orb .

Thus the Πhom
orb ◦ Π̃Γ,µ

orb contain the same information as the Πhom
orb ◦ ΠΓ,λ

orb . By

showing that Πhom
orb ◦ΠΓ,λ

orb and Πhom
orb ◦ΠΓ,λ

orb ◦Πorb
eff are nonzero for many Γ, λ, we

can show that Borb
∗ (Y), Beff

∗ (Y) are large.

In §13.1 we discussed the determination of the bordism ring B∗(∗) of the
point ∗ by Thom, Milnor, Wall and others. Druschel [28, 29] and Angel [3–5]
study the effective orbifold bordism ring Beff

∗ (∗). We summarize their results:

Theorem 13.19. (a) (Druschel [28]). The morphism Πeff
bo : B∗(∗)→ Beff

∗ (∗)
from (13.7) induces a Q-algebra morphism B∗(∗) ⊗Z Q → Beff

∗ (∗) ⊗Z Q, where
B∗(∗)⊗Z Q is described in Theorem 13.5. As a B∗(∗)⊗Z Q-module we have

Beff
∗ (∗)⊗Z Q ∼=

(
B∗(∗)⊗Z Q

)
⊗Q

⊕
Γ⊂SO(n)H∗

(
B(NO(n)(Γ)/Γ); Q̂

)∗. (13.10)
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Here the sum is over conjugacy classes of finite subgroups Γ ⊂ SO(n) for
n > 0 with (Rn)Γ = {0}, and NO(n)(Γ) is the normalizer of Γ in O(n), and
B(NO(n)(Γ)/Γ) is the classifying space of the quotient subgroup NO(n)(Γ)/Γ,

and Q̂ is a local system on B(NO(n)(Γ)/Γ) with fibre Q induced by orientations
on the fibres of the universal Rn/Γ-bundle over B(NO(n)(Γ)/Γ).

Furthermore, Beff
∗ (∗) ⊗Z Q is a free commutative algebra over B∗(∗) ⊗Z Q,

generated by bases for H∗
(
B(NO(n)(Γ)/Γ); Q̂

)
for those Γ ⊂ SO(n) which do

not split as Γ1 × Γ2 for {1} 6= Γ1 ⊂ SO(k) and {1} 6= Γ2 ⊂ SO(n− k).

(b) (Druschel [28]). Beff
2k+1(∗) ⊗Z Q = 0 for all k > 0. In contrast to the

manifold case, Beff
4k+2(∗)⊗ZQ is not always zero, for example Beff

70 (∗)⊗ZQ 6= 0.

(c) (Druschel [29]). Beff
k (∗) = {0} for k = 1, 2, 3.

(d) (Angel [5]). The kernel of Πeff
bo : B∗(∗) → Beff

∗ (∗) is exactly the torsion
(elements of finite order) in B∗(∗).

Here is how part (a) is proved. Druschel [28, §2] defines Γ-characteristic
numbers. These are additive maps B∗(∗) → Q which (loosely) map [X , π] to
the integral over an orbifold stratum X̃Γ,µ of a product of Pontryagin classes of

T X̃Γ,µ, and characteristic classes of the normal bundle ˜(TX )Γ,µ
nt of X̃Γ,µ in X .

These characteristic classes of ˜(TX )Γ,µ
nt are classified by H∗

(
B(NO(n)(Γ)/Γ); Q̂

)
in (13.10). A simple example of a Γ-characteristic number is the projection

Πhom
orb ◦ Π̃Γ,µ

orb : Borb
dimµ(∗)→ H0(∗;Q) ∼= Q from (13.9).

Druschel then shows that a certain set On of n-dimensional Γ-characteristic
numbers are linearly independent on Beff

n (∗) ⊗Z Q, and the vanishing of these
on [X , π] ∈ Beff

n (∗) is a necessary and sufficient condition for [X , π] to be torsion
in Beff

n (∗). Hence On is a basis for (Beff
n (∗)⊗Z Q)∗, and (13.10) follows.

The last part of (b) is proved by producing an explicit class [X , π] ∈ B70(∗)
with Πhom

orb ◦ Π̃S8,µ
orb ([X , π]) 6= 0 in H0(∗;Q), where µ is the class of the S8-

representation (R70, ρ) in Example 8.12.

Remark 13.20. We can also consider orbifold versions of the other bordism
theories MO∗(Y ),MU∗(Y ),MSU∗(Y ),MSp∗(Y ) of Remark 13.6(d). For unori-
ented bordism MO∗(Y ), note that any compact orbifold X is the boundary of
the compact orbifold with boundary X×([−1, 1]/Z2). Thus, unoriented orbifold
bordism of arbitrary compact (effective) orbifolds is zero. So to get a nontriv-
ial theory, we should impose extra conditions. Angel [3, 4] studies the bordism
rings of unoriented but locally orientable effective orbifolds, and of unoriented
effective orbifolds with orbifold groups of odd order.

There are also orbifold generalizations MUorb
∗ (Y),MSUorb

∗ (Y),MSporb
∗ (Y).

In §8.4.2 we saw that the orbifold strata XΓ,λ, X̃Γ,µ of an oriented orbifold
X are oriented only under conditions on Γ, λ, µ, so the operators ΠΓ,λ

orb , Π̃
Γ,µ
orb

in Definition 13.17 are defined only under these conditions. For MUorb
∗ (Y),

in which the orbifold X in [X , f ] has a stable almost complex structure J in
End(TX ⊕ Rk), we can use J to orient all orbifold strata XΓ,λ, X̃Γ,µ. Thus

ΠΓ,λ
orb , Π̃

Γ,µ
orb are defined on MUorb

∗ (Y) for all Γ, λ, µ.
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13.4 Bordism for d-orbifolds

We combine the ideas of §13.2 and §13.3 to define bordism for d-orbifolds.

Definition 13.21. As in §12.1, we have isomorphic 2-categories dOrb, with
objects X , and dŌrb, with objects X = (X , ∅, ∅, ∅), with isomorphism dOrb→
dŌrb mapping X 7→ (X , ∅, ∅, ∅), where dŌrb ⊂ dOrbb ⊂ dOrbc. For sim-
plicity we identify dOrb and dŌrb, writing objects of both as X .

Let Y be an orbifold, and k ∈ Z. Consider pairs (X ,f), where X ∈ dOrb
is a compact, oriented d-orbifold without boundary with vdimX = k, and
f : X → Y is a 1-morphism in dOrb, where Y = FdOrb

Orb (Y).
Define a binary relation ∼ between such pairs by (X ,f) ∼ (X ′,f ′) if there

exists a compact, oriented d-orbifold with boundary W with vdimW = k + 1,
a 1-morphism e : W → Y in dOrbb, an equivalence of oriented d-orbifolds
j : −XqX ′ → ∂W, and a 2-morphism η : fqf ′ ⇒ e◦iW◦j. As in Proposition
13.8 we can show ∼ is an equivalence relation, which we call d-bordism.

Write [X ,f ] for the ∼-equivalence class (d-bordism class) of a pair (X ,f).
For each k ∈ Z, define the kth d-orbifold bordism group dBorb

k (Y) of Y to be the
set of all such d-bordism classes [X ,f ] with vdimX = k. We give dBorb

k (Y) the
structure of an abelian group, with zero element 0Y = [∅,∅], addition [X ,f ] +
[X ′,f ′] = [X qX ′,f q f ′], and additive inverses −[X ,f ] = [−X ,f ].

Similarly, define the semieffective d-orbifold bordism group dBsef
k (Y) and the

effective d-orbifold bordism group dBeff
k (Y) as above, but taking X and W to

be semieffective, or effective, respectively, in the sense of §10.9 and §12.10.

Definition 13.22. Let Y be an oriented orbifold of dimension n. As in (13.3),
define the intersection product • : dBorb

k (Y)× dBorb
l (Y)→ dBorb

k+l−n(Y) by

[X ,f ] • [X ′,f ′] = [X ×f ,Y,f ′ X ′,f ◦ πX ]. (13.11)

Here X ×f ,Y,f ′ X ′ exists in dOrb by Theorem 10.28(a), and is oriented by
Theorem 10.37. Then • is biadditive, supercommutative and associative.

Now X ,X ′ (semi)effective do not imply X ×Y X ′ is (semi)effective unless
Y is a manifold. So, as for • on Borb

∗ (Y), Beff
∗ (Y) in Definition 13.13, suppose

Y is a manifold, and define intersection products • : dBsef
k (Y) × dBsef

l (Y) →
dBsef

k+l−n(Y) and • : dBeff
k (Y)× dBeff

l (Y)→ dBeff
k+l−n(Y) by (13.11).

If Y is compact and oriented, define the fundamental class [Y] in dBorb
n (Y)

and dBsef
n (Y) by [Y] = [Y , idY ]. If Y is also effective, define [Y] = [Y , idY ] ∈

dBeff
n (Y). Then [Y] is the identity for •, when this is defined.
Let g : Y → Z be a 1-morphism of orbifolds. Define pushforwards g∗ :

dBorb
k (Y)→ dBorb

k (Z), g∗ : dBsef
k (Y)→ dBsef

k (Z) and g∗ : dBeff
k (Y)→ dBeff

k (Z)
by g∗ : [X ,f ] 7→ [X , g ◦ f ], where g = FdOrb

Orb (g).
If Y is an orbifold, define group morphisms

Πsef
orb : Borb

k (Y) −→ dBsef
k (Y), Πdeff

eff : Beff
k (Y) −→ dBeff

k (Y),

Πsef
deff : dBeff

k (Y) −→ dBsef
k (Y), Πdorb

deff : dBeff
k (Y) −→ dBorb

k (Y),

and Πdorb
sef : dBsef

k (Y) −→ dBorb
k (Y)

(13.12)
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by Πsef
orb,Π

deff
eff : [X , f ] 7→ [X ,f ], where X ,f = FdOrb

Orb (X , f), and Πsef
deff ,Π

dorb
deff ,

Πdorb
sef : [X ,f ] 7→ [X ,f ]. The morphisms (13.12) commute with pushforwards

g∗ and preserve •, [Y] when these are defined.

Here is the main result of this section, an orbifold analogue of Theorem
13.11. It will be proved in §13.5. The key idea is that semieffective (or effective)
d-orbifolds can be perturbed to (effective) orbifolds, as in §10.9; to make this
rigorous, we use good coordinate systems on X ,W, as in §10.8 and §12.9.

Theorem 13.23. For any orbifold Y, the maps Πsef
orb : Borb

k (Y) → dBsef
k (Y)

and Πdeff
eff : Beff

k (Y)→ dBeff
k (Y) in (13.12) are isomorphisms for all k ∈ Z.

Combined with §13.3, this gives us some understanding of (semi)effective d-
orbifold bordism dBsef

∗ (Y), dBeff
∗ (Y), and complete descriptions of dBsef

0 (∗) and
dBeff
∗ (∗). As for (13.4), the theorem implies that we may define projections

Πhom
sef : dBsef

k (Y)→ Hk(Ytop;Q), Πhom
deff : dBeff

k (Y)→ Hk(Ytop;Z)

by Πhom
sef = Πhom

orb ◦ (Πsef
orb)−1 and Πhom

deff = Πhom
eff ◦ (Πdeff

eff )−1.
(13.13)

We think of these Πhom
sef ,Πhom

deff as virtual class maps on dBsef
∗ (Y), dBeff

∗ (Y). In
fact, with more work, one can also define virtual class maps on dBorb

∗ (Y):

Πhom
dorb : dBorb

k (Y) −→ Hk(Ytop;Q), (13.14)

satisfying Πhom
dorb ◦Πdorb

sef = Πhom
sef , for instance following the method of Fukaya et

al. [34, §6], [32, §A1] for virtual cycles of Kuranishi spaces using ‘multisections’.
Virtual classes (or virtual cycles, or virtual chains) are used in many areas of

geometry to construct enumerative invariants using moduli spaces. In algebraic
geometry, Behrend and Fantechi [12] construct virtual classes for schemes with
obstruction theories. In symplectic geometry, there are many versions — see for
example Fukaya et al. [34, §6], [32, §A1], Hofer et al. [46], and McDuff [77].

The main message we want to draw from this is that compact oriented d-
orbifolds admit virtual classes. Thus, we can use d-manifolds and d-orbifolds
as the geometric structure on moduli spaces in enumerative invariant problems
such as Gromov–Witten invariants, Lagrangian Floer cohomology, Donaldson–
Thomas invariants, . . . , as this structure is strong enough to contain all the
‘counting’ information.

In future work the author intends to define a virtual chain construction for
d-manifolds and d-orbifolds, expressed in terms of new (co)homology theories
whose (co)chains are built from d-manifolds or d-orbifolds, as for the ‘Kuranishi
(co)homology’ described in [53,54].

Here is the analogue of Definition 13.17 for d-orbifold bordism.

Definition 13.24. Let Γ be a finite group, use the notation of §8.4.1–§8.4.2,
and choose orientations on R1, . . . , Rk for (R1, ρ1), . . . , (Rk, ρk) the nontrivial,
irreducible, even-dimensional Γ-representations. Let Y be an orbifold.

For each finite group Γ with |Γ| odd and each λ ∈ ΛΓ, define a morphism

ΠΓ,λ
dorb : dBorb

k (Y)→ dBorb
k−dimλ(Y) by ΠΓ,λ

dorb : [X ,f ] 7→ [XΓ,λ,f ◦OΓ,λ(X )],
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where XΓ,λ has the orientation given by Proposition 10.43. Suppose also that
ΦΓ(δ, λ) = 1 for all δ ∈ Aut(Γ) with λ · δ = λ. Set µ = λ ·Aut(Γ) ∈ ΛΓ/Aut(Γ),
and define a morphism

Π̃Γ,µ
dorb : dBorb

k (Y)→ dBorb
k−dimµ(Y) by Π̃Γ,µ

dorb : [X ,f ] 7→ [X̃Γ,µ,f ◦ ÕΓ,µ(X )],

where X̃Γ,µ has the orientation given by Proposition 10.44.
For each finite group Γ (allowing |Γ| even) and each λ ∈ ΛΓ

ev,+, define

ΠΓ,λ
sef : dBsef

k (Y)→ dBsef
k−dimλ(Y) by ΠΓ,λ

sef : [X ,f ] 7→ [XΓ,λ,f ◦OΓ,λ(X )],

where XΓ,λ has the orientation given by Proposition 10.64, noting that X is
semieffective. Suppose also that ΦΓ(δ, λ) = 1 for all δ ∈ Aut(Γ) with λ · δ = λ.
Set µ = λ ·Aut(Γ) ∈ ΛΓ

ev,+/Aut(Γ), and define a morphism

Π̃Γ,µ
sef : dBsef

k (Y)→ dBsef
k−dimµ(Y) by Π̃Γ,µ

sef : [X ,f ] 7→ [X̃Γ,µ,f ◦ ÕΓ,µ(X )],

where X̃Γ,µ has the orientation given by Proposition 10.65.
These ΠΓ,λ

dorb, Π̃
Γ,µ
dorb,Π

Γ,λ
sef , Π̃

Γ,µ
sef commute with pushforwards g∗.

As in Remark 13.18(a), we do not define ΠΓ,λ
deff , Π̃

Γ,µ
deff : dBeff

∗ (Y)→ dBeff
∗ (Y),

since X effective does not imply XΓ,λ, X̃Γ,µ effective.

Example 13.25. Let Γ be a finite group with |Γ| odd, and choose λ ∈ ΛΓ
+ with

ΦΓ(δ, λ) = 1 for all δ ∈ Aut(Γ) with λ · δ = λ, for instance, λ = 2λ′ for any
λ′ ∈ ΛΓ

+ will do. Set µ = λ · Aut(Γ) ∈ ΛΓ/Aut(Γ). Let (R, ρ) be a nontrivial
Γ-representation with [(R, ρ)] = λ, and choose an orientation on R.

Form the fibre product ∗×0,R,0 ∗ in dMan, 0 : ∗ → R maps 0 : ∗ → 0 and
∗,0,R = FdMan

Man (∗, 0, R). This is a single point with obstruction space R, and
is a compact oriented d-manifold with virtual dimension −dimµ. The Γ-action
ρ on R and the trivial action of Γ on 0 induce Γ-action on ∗×0,R,0 ∗ preserving
orientations, so XΓ,µ := [∗ ×0,R,0 ∗/Γ] is a compact oriented d-orbifold, with
vdimXΓ,µ = −dimλ. Hence [XΓ,µ,π] ∈ dBorb

− dimµ(∗), where π : XΓ,µ → ∗.
The orbifold stratum ˜(XΓ,µ)Γ,µ is [∗/Γ], so Π̃Γ,µ

dorb : dBorb
∗ (∗) → dBorb

∗ (∗) in

Definition 13.24 maps Π̃Γ,µ
dorb : [XΓ,µ,π] 7→

[
[∗/Γ],π

]
∈ dBorb

0 (∗).
We now assume there is a virtual class map Πhom

dorb : dBorb
0 (∗)→ H0(∗;Q) ∼=

Q as in (13.14) satisfying Πhom
dorb ◦Πdorb

sef = Πhom
sef : dBsef

0 (∗)→ H0(∗;Q), although
we have not proved this. It then follows that

Πhom
dorb ◦ Π̃Γ,µ

dorb

(
[XΓ,µ,π]

)
= |Γ|−1 ∈ Q ∼= H0(∗;Q). (13.15)

Hence [XΓ,µ,π] is nonzero in dBorb
− dimµ(∗), and also in dBorb

− dimµ(∗)⊗Z Q.
Let Γ′, λ′, µ′ be alternative choices for Γ, λ, µ with dimµ′ = dimµ. Then

Πhom
dorb ◦ Π̃Γ′,µ′

dorb

(
[XΓ,µ,π]

)
= 0 unless |Γ′| < |Γ| or (Γ, µ) ∼= (Γ′, µ′), (13.16)

since if |Γ′| > |Γ| or |Γ′| = |Γ| and (Γ, µ) 6∼= (Γ′, µ′) then ˜(XΓ,µ)Γ′,µ′ = ∅.
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Equations (13.15)–(13.16) imply:

Corollary 13.26. Taken over all isomorphism classes of finite groups Γ with |Γ|
odd, and all µ = λ ·Aut(Γ) ∈ ΛΓ

+/Aut(Γ) with ΦΓ(δ, λ) = 1 for all δ ∈ Aut(Γ)
with λ · δ = λ, the elements [XΓ,µ,π] ∈ dBorb

− dimµ(∗) are linearly independent

over Z in dBorb
∗ (∗). When µ = 0, we have [XΓ,0,π] = [∗/Γ,π] ∈ dBorb

0 (∗).

This implies that dBorb
4k (∗) and dBorb

4k (∗)⊗ZQ have infinite rank for all k 6 0.
In contrast, dBsef

k (∗) = dBeff
k (∗) = 0 for all k < 0 by Theorem 13.23.

Example 13.27. Let V =
{

(x1, x2) ∈ R2 : x2
1 + x2

2 6 1
}

, as a manifold with
boundary, let E = R × V → V , and define s ∈ C∞(E) by s(x1, x2) = x1x2.
Define actions r, r̂ of Z2 = {1, σ} on V and E = R× V by

r(σ) : (x1, x2) 7−→ (x1,−x2), r̂(σ) : (e, x1, x2) 7−→ (−e, x1,−x2).

Then SV,E,s is a compact oriented d-manifold with boundary of virtual dimen-
sion 1. The Z2-actions r, r̂ induce a Z2-action on SV,E,s preserving the orienta-
tion, so W = [SV,E,s/Z2] is a compact oriented d-orbifold with boundary.

The boundary ∂SV,E,s has underlying topological space{
(x1, x2) ∈ R2 : x2

1 + x2
2 = 1, x1x2 = 0

}
=
{

(1, 0), (−1, 0), (0, 1), (0,−1)
}
,

and as ds 6= 0 at these four points, ∂SV,E,s is equivalent in dMan to four points
∗, where (±1, 0) are positively oriented, and (0,±1) are negatively oriented. The
Z2-action fixes (±1, 0) and swaps (0, 1) and (0,−1). Hence in compact oriented
d-orbifolds we have ∂W ' [∗/Z2] q [∗/Z2] q −∗. Therefore, using this W and
e = π : W→ ∗ in the definition of ∼ in Definition 13.21, we see that

2
[
[∗/Z2],π

]
= [∗,π] ∈ dBorb

0 (∗).

From (13.8) and Theorem 13.23 we see that

dBsef
0 (∗) =

⊕
iso. classes of finite groups Γ

Z ·
[
[∗/Γ],π

]
, dBeff

0 (∗) = Z · [∗,π].

In particular, [[∗/Z2],π] and [∗,π] are linearly independent over Z in dBsef
0 (∗).

Therefore 2[[∗/Z2],π] − [∗,π] ∈ dBsef
0 (∗) is a nonzero element of the kernel of

Πdorb
sef : dBsef

0 (∗) → dBorb
0 (∗) in (13.12). Thus Πdorb

sef need not be injective, in
contrast to Lemma 13.15. This example works as W is not semieffective.

Remark 13.28. We can also consider d-orbifold versions of the other bor-
dism theories MO∗(Y ),MU∗(Y ),MSU∗(Y ),MSp∗(Y ), as in Remarks 13.6(d),
13.10(c) and 13.20. For unoriented bordism MO∗(Y ), we saw in Remark 13.20
that bordism using arbitrary compact, unoriented orbifolds is zero, but bordism
using locally orientable compact, unoriented orbifolds is nontrivial.

Example 13.27 implies that the bordism ring of compact, locally orientable
d-orbifolds is zero, as the identity in this ring is [∗,π] = 2

[
[∗/Z2],π

]
= 0.
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Restricting to semieffective (or effective) locally oriented d-orbifolds will give
the same bordism rings as for (effective) orbifolds, as in Theorem 13.23.

The author hopes in future work to define and study unitary d-orbifold bor-
dism groups dBUorb

∗ (Y) of orbifolds Y. Elements of dBUorb
k (Y) should be

equivalence classes [X ,J ,f ], where X is a compact oriented d-orbifold with
vdimX = k, and f : X → Y = FdOrb

Orb (Y) is a 1-morphism, and J is some
suitable notion of ‘stable almost complex structure’ on T ∗X .

This may be a useful tool for studying Gromov–Witten invariants of sym-
plectic and complex manifolds. Let (X,ω) be a compact symplectic manifold, J
a compatible almost complex structure on X, β ∈ H2(X;Z) and g,m > 0. Then
one can define compact moduli spaces Mg,m(X, J, β) of stable J-holomorphic
curves in X with class β, genus g and m marked points, with ‘evaluation maps’
ev :Mg,m(X, J, β)→Mg,m ×Xm. These are oriented Kuranishi spaces in the
work of [34], or polyfolds in the framework of Hofer et al. [43–46].

As in Chapter 14, we can make Mg,m(X, J, β) into a compact oriented d-
orbifold, with a 1-morphism ev : Mg,m(X, J, β) → Mg,m × Xm in dOrb.
Fukaya and Ono define ‘stably almost complex’ Kuranishi spaces [34, Def. 5.17],
and prove Mg,m(X, J, β) is stably almost complex [34, Prop. 16.5]. By gener-
alizing this to d-orbifolds, it should be possible to define Gromov–Witten type
invariants

[
Mg,m(X,J, β),K, ev

]
in dBUorb

∗ (Mg,m×Xm), which are indepen-
dent of the choice of J , and lift the conventional Gromov–Witten invariants[
Mg,m(X, J, β), ev

]
virt in H∗(Mg,m ×Xm;Q).

Since dBUorb
∗ (Mg,m ×Xm) will be much larger than H∗(Mg,m ×Xm;Q),

these new invariants will contain more information than conventional Gromov–
Witten invariants, and may be helpful for studying integrality properties of
Gromov–Witten invariants.

13.5 The proof of Theorem 13.23

Let Y be an orbifold. We first show that Πsef
orb : Borb

k (Y) → dBsef
k (Y) is surjec-

tive. Suppose [X ,f ] ∈ dBsef
k (Y), so that X is a compact, oriented, semieffective

d-orbifold with vdimX = k, and f : X → Y = FdOrb
Orb (Y) is a 1-morphism. By

Theorem 10.56, we can choose a very good coordinate system
(
I,<, (Vi, E i, si,

ψi), (Vij , eij , êij ,ηij), ηijk, gi, ζi, ζij
)

for f : X → Y , with I ⊂ N finite.
For each i ∈ I, there is a unique orientation on SVi,Ei,si such that ψi :

SVi,Ei,si → X i ⊆ X is orientation-preserving. As in Definition 4.48, this means
that the line bundle Λrank EiE i ⊗ ΛdimViT ∗Vi on Vi is oriented near s−1

i (0) ⊆
Vi. Making the Vi,Vij smaller if necessary, we can suppose that Λrank EiE i ⊗
ΛdimViT ∗Vi is oriented on all of Vi for each i ∈ I.

Choose open suborbifolds Ui in Vi for each i ∈ I such that the closure U i,top

of Ui,top in Vi,top is compact, and Xtop =
⋃
i∈I ψi,top

(
s−1
i (0) ∩ Ui,top

)
. This is

possible as Xtop is compact and each Vi,top is locally compact. If i < j in I with
X i ∩X j 6= ∅, set Uij = Vij ∩ Ui ∩ e−1

ij (Uj). We claim that the closure U ij,top of
Uij,top in Vij,top is compact. To see this, note that the quotient topological space
Vi,topqVij,topVj,top is Hausdorff by Definition 10.51(f). The images of U i,top and

U j,top in this topological space are compact. Their intersection is homeomorphic
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to Vij ∩ U i ∩ e−1
ij (U j), and is compact as the intersection of compact subsets of

a Hausdorff topological space is compact. Therefore U ij,top is compact, as it is
a closed subset of the compact space Vij ∩ U i ∩ e−1

ij (U j).
By induction on increasing k ∈ I, we will choose N � 0 and sections ṡak ∈

C∞(Ek) for a = 1, . . . , N with the following properties:

(a) Let [v] ∈ Vk,top with sk|v = 0, and regard dsk|v as a linear map TvVk →
Ek|v. Then Ek|v = dsk|v(TvVk) + 〈ṡ1

k|v, . . . , ṡNk |v〉.
(b) For all i < k in I with X i ∩X k 6= ∅ we have êik ◦ ṡai |Vik = e∗ik(ṡak) on U ik

in Vik for all a = 1, . . . , N .

Choose N > 0 such that N > rank Ek+dimVk for all k ∈ I, which is possible
as I is finite. We first show that if ṡ1

k, . . . , ṡ
N
k are generic elements of C∞(Ek)

for k ∈ I, then (a) holds. As ψk : SVk,Ek,sk → X k ⊆ X is an equivalence
and X is semieffective, SVk,Ek,sk is semieffective. Let [v] ∈ Vk with sk|v = 0.
Then dsk|v : TvVk → Ek|v is a morphism of IsoVk([v])-representations. Equation
(10.24) for SVk,Ek,sk at [v] is

0 // K[v] // Ek|∗v
dsk|∗v // T ∗v Vk // T ∗v SVk,Ek,sk // 0. (13.17)

As SVk,Ek,sk is semieffective, the representation of IsoVk([v]) on K[v] is trivial.
That is, the IsoVk([v])-representation on the cokernel of dsk|v : TvVk → Ek|v

is trivial. But s|v takes values in the trivial IsoVk([v])-subrepresentation of Ek|v
for any s ∈ C∞(Ek), and such s|v span the whole of this trivial representation.
Therefore at any point [v] ∈ Vk,top with sk|v = 0, as N > rank Ek, we can
choose ṡ1

k, . . . , ṡ
N
k ∈ C∞(Ek) with Ek|v = dsk|v(TvVk) + 〈ṡ1

k|v, . . . , ṡNk |v〉. A
dimension-counting argument now shows that as N > rank Ek +dimVk, generic
choices of ṡ1

k, . . . , ṡ
N
k in C∞(Ek) satisfy (a).

For the inductive step, let k ∈ I, and suppose we have chosen ṡai ∈ C∞(E i)
satisfying (a),(b) for all i ∈ I with i < k. We will choose ṡak satisfying (a),(b).
Note that if i < k with X i ∩ X k 6= ∅, then ṡai has been chosen in a previous
inductive step, so (b) determines ṡak on eik(U ik) ⊆ eik(Vik) for a = 1, . . . , N .

There are two issues in choosing ṡak ∈ C∞(Ek) with these prescribed values
on eik(U ik) for all i < k in I with X i ∩X k 6= ∅. Firstly, for just one such i, we
must show that the prescribed values of ṡak on eik(U ik) admit a smooth extension
to Vk. Secondly, given two (or more) such i, j, we must show that the prescribed
values of ṡak on eik(U ik) and ejk(U jk) are consistent on eik(U ik) ∩ ejk(U jk).

For the first issue, consider the following analogy. Let X = (0,∞), Y = R2

and i : X → Y maps i : x 7→ (x, 0), so that i(X) is an embedded submanifold
in Y . Given a smooth function f : X → R, when can we choose a smooth
function g : Y → R with g ◦ i = f? This is not always possible, for example,
if f(x) = x−1 then no continuous g exists near (0, 0) ∈ Y with g ◦ i = f . Here
i(X) is not closed in Y , and problems occur at points of i(X) \ i(X).

However, if we only require g ◦ i = f to hold on some compact subset
W ⊂ X, then for any smooth f : X → R there exists a smooth g : Y → R
with g ◦ i|W = f |W . This is because i(W ) is closed in Y , as it is compact, so
there are no points of i(W ) \ i(W ) to cause problems. In a similar way, since in
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(b) above we require êik ◦ ṡai |Vik = e∗ik(ṡak) to hold only on the compact subset
U ik in Vik, where eik : Vik ↪→ Vk is an embedding, one can show that for any
smooth choice of ṡai , there exists a smooth ṡak for which (b) holds.

For the second issue, suppose i < j < k in I and [vi] ∈ U ik,top ⊆ Vik,top,
[vj ] ∈ U jk,top ⊆ Vjk,top with eik,top([vi]) = ejk,top([vj ]) = [vk] ∈ Vk,top. Then
Definition 10.52(e) implies that [vi] ∈ Vij,top with [vj ] = eij,top([vi]). Also
[vi] ∈ U i,top, [vj ] ∈ U j,top imply that [vi] ∈ U ij,top. Hence the previous inductive
step implies that êij ◦ ṡai |Vij = e∗ij(ṡ

a
j ) at [vi]. Suppose that some choice of ṡak

satisfies êjk ◦ ṡaj |Vjk = e∗jk(ṡak) at [vj ]. Then

êik ◦ ṡai |[vi] ∼= e∗ij(êjk) ◦ êij ◦ ṡai |[vi] = e∗ij(êjk) ◦ e∗ij(ṡaj )|[vi] = e∗ij(êjk ◦ ṡaj |Vjk)|[vi]
= e∗ij ◦ e∗jk(ṡak)|[vi] ∼= (ejk ◦ eij)∗(ṡak)|[vi] ∼= e∗ik(ṡak)|[vi],

where ‘∼=’ denotes that we have omitted canonical isomorphisms I∗,∗(∗), η∗ijk(Ek)
for simplicity. Therefore (b) for j, k at [vj ] implies (b) for i, k at [vi].

Therefore for any [v] ∈ Vk,top, if j ∈ I is largest in the order < such that
j < k and [v] ∈ ejk,top(U jk,top), then (b) for these j, k near [v] implies (b)
for all other i, k near [v]. That is, the prescribed values of ṡak on eik(U ik) and
ejk(U jk) are automatically consistent on eik(U ik)∩ejk(U jk), and near any point
[v] ∈ Vk,top, it is enough to check (b) for just one i < k in I.

We can now complete the inductive step. Given k ∈ I and ṡai ∈ C∞(E i)
satisfying (a),(b) for all i ∈ I with i < k, we first choose ṡak ∈ C∞(Ek) satisfying
(b) for all i < k in I. The argument above shows this is possible near any point
[v] ∈ Vk,top, so joining local choices by a partition of unity using the ideas of
Remark C.27 and Example C.33, it is possible globally.

Next, we claim that if i < k and [vi] ∈ U ik,top with [vk] = eik,top([vk]),
then (a) for ṡai at [vi], which holds by assumption, implies (a) for ṡak at [vk].
This is because it follows from the definition of type B coordinate change
(Vik, eik, êik,ηik) in Definition 10.51 that the cokernels of dsi|vi : TviVi → E i|vi
and dsk|vk : TvkVk → Ek|vk are isomorphic.

Now (a) is an open condition on [v] ∈ Vk,top. Therefore (a) holds for ṡak ∈
C∞(Ek) for all [v] in an open neighbourhood of

⋃
i<k eik,top(U ik,top) in Vk,top.

By making a generic perturbation of ṡak away from the compact (hence closed)
set
⋃
i<k eik,top(U ik,top), we can make (a) hold in all of Vk, while (b) still holds.

Hence by induction, we can choose ṡak for all a, k satisfying (a),(b).

Now fix (ε1, . . . , εN ) ∈ RN to be chosen later, and define:

(i) For each i ∈ I, define Wi = Ui × [0, 1], as an effective orbifold with
boundary. Define a vector bundle F i on Wi by F i = π∗Ui(E i), where
πUi : Wi = Ui × [0, 1] → Ui is the projection. Define ti ∈ C∞(F i) by

ti = π∗Ui(si) +
∑N
a=1 x ε

a · π∗Ui(ṡ
a
i ), where x is the coordinate on [0, 1].

Then Definition 12.2 defines a d-orbifold with boundary SWi,Fi,ti .

From above, the line bundle Λrank EiE i⊗ΛdimViT ∗Vi is oriented. Together
with the orientation on [0, 1], this induces an orientation on ΛrankFiF i ⊗
ΛdimWiT ∗Wi. Hence SWi,Fi,ti is an oriented d-orbifold. Define s̃i =
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si +
∑N
a=1 ε

aṡai in C∞(E i). Then in oriented d-orbifolds we have

∂SWi,Fi,ti ' −SVi,Ei,si q SVi,Ei,s̃i , (13.18)

since ∂Wi ' Vi × {0} q Vi × {1} with ti|Vi×{0} ∼= si and ti|Vi×{1} ∼= s̃i.

(ii) For all i < j in I with X i ∩X j 6= ∅ and Uij 6= ∅, define Wij = Uij × [0, 1],
an open suborbifold in Wi, and define a simple, flat 1-morphism fij :
Wij → Wj by fij = eij |Uij × id[0,1] and a morphism of vector bundles

f̂ij : F i|Wij
→ f∗ij(F j) by f̂ij = IπUij ,eij (Ej)

−1 ◦ π∗Uij (êij). Then êij ◦
si|Vij = e∗ij(sj) and êij ◦ ṡai |Vij = e∗ij(ṡ

a
j ) imply that f̂ij ◦ ti|Wij

= f∗ij(tj),

so as in Definition 12.13 we have a 1-morphism in dOrbb:

Sfij ,f̂ij : SWij ,Fi|Wij
,ti|Wij

−→ SWj ,Fj ,tj , (13.19)

where SWij ,Fi|Wij
,ti|Wij

is an open d-suborbifold in SWi,Fi,ti .

(iii) Define a quotient topological space Z by Z =
⋃
i∈I t

−1
i (0)/ ∼, where

t−1
i (0) =

{
[w] ∈ Wi,top : ti(w) = 0

}
⊆ Wi,top, and ∼ is the equivalence

relation generated by [wi] ∼ [wj ] if [wi] = [vi, x] and [wj ] = [vj , x] for
[vi] ∈ Uij,top ⊆ Ui,top, [vj ] = eij,top([vi]) ∈ Uj,top, and x ∈ [0, 1]. Write

ψi : (SWi,Fi,ti)top = t−1
i (0)→ Z for the inclusion, and Ẑi = ψi(t

−1
i (0)).

We now claim:

(A) If ε1, . . . , εN are sufficiently small, then the topological space Z is compact.

(B) If ε1, . . . , εN are sufficiently small, then (13.19) are equivalences from
SWij ,Fi|Wij

,ti|Wij
to an open d-suborbifold in SWj ,Fj ,tj for all i, j.

(C) If ε1, . . . , εN are sufficiently small and generic, then the sections s̃i in
C∞(E i) are transverse, and the d-orbifolds SVi,Ei,s̃i in (13.18) are orb-
ifolds, for all i ∈ I.

(D) If ε1, . . . , εN are sufficiently small then SWi,Fi,ti is semieffective for i ∈ I.

To prove (A), identifyWi,top
∼= Ui,top×[0, 1], and consider the inclusions Z ⊆⋃

i∈I Ui,top× [0, 1]/ ∼⊆
⋃
i∈I U i,top× [0, 1]/ ∼. Here Z is closed in

⋃
i∈I Ui,top×

[0, 1]/ ∼, as t−1
i (0) is closed in Ui,top × [0, 1], and

⋃
i∈I U i,top × [0, 1]/ ∼ is

compact as U i,top is compact and I is finite. Therefore Z is compact if it has
no limit points in

(⋃
i∈I U i,top × [0, 1]/ ∼

)
\
(⋃

i∈I Ui,top × [0, 1]/ ∼
)
.

Suppose j ∈ I and [vj ] ∈ U i,top \ Ui,top. Since X is compact and Xtop =⋃
i∈I ψi,top

(
s−1
i (0) ∩ Ui,top

)
, there are three possibilities: (∗) sj(vj) 6= 0; (∗∗)

sj(vj) = 0 and [vj ] ∈ Vjk,top for j < k in I with ejk,top([vj ]) = [vk] ∈ Uk,top

with sk(vk) = 0; and (∗∗∗) sj(vj) = 0 and [vj ] = eij,top([vi]) for i < j in I and
[vi] ∈ Ui,top ∩ Vij,top with si(vi) = 0.

In case (∗), there exists an open neighbourhood N[vj ] of [vj ] in U j,top \Uj,top

and δ[vj ] > 0 such that if [v′] ∈ N[vj ], x ∈ [0, 1] and (ε1, . . . , εN ) ∈ RN with∣∣(ε1, . . . , εN )
∣∣ < δ[vj ], then (sj +

∑N
a=1 x ε

aṡaj )|v′ 6= 0. Hence tj is nonzero on
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N[vj ] × [0, 1]. In case (∗∗), there exists an open neighbourhood N[vj ] of [vj ] in

U j,top \ Uj,top with N[vj ] ⊆ Vjk,top and ejk,top(N[vj ]) ⊆ Uk,top.
In case (∗∗∗), equation (10.23) is an isomorphism at [vi], [vj ] by Definition

10.51(d). This is an open condition in si, sj . Hence there exists δ[vj ] > 0 such

that for all x ∈ [0, 1] and (ε1, . . . , εN ) ∈ RN with
∣∣(ε1, . . . , εN )

∣∣ < δ[vj ], equation

(10.23) is an isomorphism with (si +
∑N
a=1 x ε

aṡai ), (sj +
∑N
a=1 x ε

aṡaj ) in place

of si, sj . It follows that (sj +
∑N
a=1 x ε

aṡaj )−1(0) coincides with eij,top

(
(si +∑N

a=1 x ε
aṡai )−1(0)

)
close to [vj ]. Thus there exists an open neighbourhood

N[vj ] of [vj ] in U j,top \Uj,top and δ[vj ] > 0 such that if [v′] ∈ N[vj ], x ∈ [0, 1] and

(ε1, . . . , εN ) ∈ RN with
∣∣(ε1, . . . , εN )

∣∣ < δ[vj ] and (sj +
∑N
a=1 x ε

aṡaj )(v′) = 0,
then [v′] = eij,top([v]) for some [v] ∈ Ui,top ∩ Vij,top.

For each [vj ] in U j,top \ Uj,top we get an open neighbourhood N[vj ]. As

U j,top \Uj,top is compact, we can choose a finite number of such neighbourhoods
N[vj ] to cover U j,top \Uj,top. Do this for each j in I, which is finite. This gives a

finite set of bounds δ[vj ] > 0 for
∣∣(ε1, . . . , εN )

∣∣ corresponding to the finite covers
N[vj ] chosen in cases (∗), (∗∗∗). Let δ > 0 be the minimum of these finite set

of δ[vj ]. Following the definitions, we see that if
∣∣(ε1, . . . , εN )

∣∣ < δ then Z has

no limit points in
(⋃

i∈I U i,top × [0, 1]/ ∼
)
\
(⋃

i∈I Ui,top × [0, 1]/ ∼
)
, so Z is

compact. This proves (A).
For (B), we use a similar argument. For each [vi] ∈ U ij,top, we can choose an

open neighbourhood N[vi] of [vi] in U ij,top and δ[vi] > 0 such that either si(vi) 6=
0, and if [v] ∈ N[vi], x ∈ [0, 1] and (ε1, . . . , εN ) ∈ RN with

∣∣(ε1, . . . , εN )
∣∣ < δ[vi],

then (si +
∑N
a=1 x ε

aṡai )|v 6= 0; or si(vi) = 0, and if [v] ∈ N[vi], x ∈ [0, 1] and

(ε1, . . . , εN ) ∈ RN with
∣∣(ε1, . . . , εN )

∣∣ < δ[vi], then (10.23) is an isomorphism

with [v], eij,top([v]), si+
∑N
a=1 x ε

aṡai , sj +
∑N
a=1 x ε

aṡaj in place of [vi], [vi], si, sj .

Thus as U ij,top is compact, we can choose a finite open cover of such N[vi],
and define δ > 0 to be the minimum of the corresponding δ[vi]. Then for all

[vi] ∈ Uij,top, x ∈ [0, 1] and (ε1, . . . , εN ) ∈ RN with
∣∣(ε1, . . . , εN )

∣∣ < δ, either
ti(v, x) 6= 0, or ti(v, x) = 0 and (12.1) for (13.19) is an isomorphism at ([v], x).
Therefore (13.19) is a local equivalence by Corollary 12.22, proving (B).

For (C), note that (a) above implies that for each [v] ∈ Vi,top with si|v = 0

and all generic (ε1, . . . , εN ), the section s̃i = si +
∑N
a=1 ε

aṡai is transverse near
[v], so that s̃−1

i (0) is an orbifold near [v]. Using a similar argument covering
U i,top by finitely many open N[vi] in which s̃i is transverse provided (ε1, . . . , εN )

lies in a dense open subset of
{

(ε1, . . . , εN ) ∈ RN :
∣∣(ε1, . . . , εN )

∣∣ < δ[vi]
}

for
some small δ[vi] > 0, part (C) follows.

For (D), from above the representation of IsoVk([v]) on K[v] in (13.17) is
trivial for each [v] ∈ Vk,top with sk(v) = 0. This is an open condition for small
perturbations of [v] and sk. So by a similar argument covering the compact
Uk,top by open N[vk] with corresponding δ[vk], we can find δ > 0 such that for

each [v] ∈ Uk,top, x ∈ [0, 1] and (ε1, . . . , εN ) ∈ RN with
∣∣(ε1, . . . , εN )

∣∣ < δ with(
sk +

∑N
a=1 x ε

aṡak
)
|v = 0, the representation of IsoVk([v]) on K[v] is trivial in
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(13.17) with d(sk +
∑N
a=1 x ε

aṡak) in place of dsk. This implies SWk,Fk,tk is
semieffective, proving (D).

Now let (ε1, . . . , εN ) ∈ RN be chosen to satisfy (A)–(D) above. We will
apply Theorem 12.23 to glue the d-orbifolds with boundary SWi,Fi,ti by the
local equivalences (13.19) to make a d-orbifold with boundary Z with underlying
topological space Z as above, with vdimZ = vdimX + 1 = k+ 1. For Theorem
12.23(b), Z Hausdorff follows from Definition 10.51(f) and I finite, and Z second
countable from Z =

⋃
i∈I Ẑi with Ẑi ∼= t−1

i (0) second countable and I finite,
and the rest of (a)–(e) are clear. Also Theorem 12.23(i) is obvious, (ii) follows
from (B) above, and (iii) follows from Definition 10.52(d). Thus Theorem 12.23
gives a d-orbifold with boundary Z. Also, the second part with gi ◦ πUi : Wi =
Ui × [0, 1]→ Y in place of gi gives a 1-morphism h : Z→ Y in dOrbb.

As the SWi,Fi,ti are oriented, and (13.19) are orientation-preserving, Z is
an oriented d-orbifold with boundary, and is compact by (A), and semieffective
by (D). The boundary ∂Z is the result of gluing the ∂SWi,Fi,ti by equivalences.
From (13.18) we may write ∂Z = ∂0Zq ∂1Z, where ∂0Z comes from gluing the
−SVi,Ei,s̃i by equivalences at x = 0 in [0, 1], and ∂1Z from gluing the SVi,Ei,si
by equivalences at x = 1 in [0, 1]. But SVi,Ei,s̃i is an orbifold by (C) for each

i ∈ I, so ∂0Z ' −FdOrb
Orb (X̃) for some oriented orbifold X̃ with dim X̃ = k.

Since the SVi,Ei,si are part of a very good coordinate system for X , and
∂1Z is made by gluing the SVi,Ei,si by equivalences, Seij ,êij , uniqueness up
to equivalence in Theorem 12.23 implies that ∂1Z ' X . Thus we have an
equivalence ∂Z ' −FdOrb

Orb (X̃)qX of oriented d-orbifolds. Also, as the gi used
to define h : Z→ Y are part of a very good coordinate system for f : X → Y ,
the 1-morphism h : Z→ Y yields h ◦ iZ : ∂Z→ Y , which is identified up to 2-
isomorphism by the equivalence ∂Z ' −FdOrb

Orb (X̃)qX with the disjoint union

of 1-morphisms FdOrb
Orb (f̃) : FdOrb

Orb (X̃) → Y , for some 1-morphism f̃ : X̃ → Y
in Orb, and f : X → Y .

Then [X̃, f̃ ] lies in Borb
k (Y), so Πsef

orb

(
[X̃, f̃ ]

)
=
[
FdOrb

Orb (X̃), FdOrb
Orb (f̃)

]
in

dBsef
k (Y). The definition of ∼ for dBsef

k (Y) in Definition 13.21 with Z,h in place

of W, e implies that
(
FdOrb

Orb (X̃), FdOrb
Orb (f̃)

)
∼ (X ,f), so Πsef

orb

(
[X̃, f̃ ]

)
= [X ,f ].

This proves that Πsef
orb : Borb

k (Y)→ dBsef
k (Y) is surjective, as we want.

Next we prove Πsef
orb : Borb

k (Y) → dBsef
k (Y) is injective. Suppose [X , f ] ∈

Borb
k (Y) with Πsef

orb

(
[X , f ]

)
= 0. Then by Definitions 13.21 and 13.22 there exists

a compact, oriented, semieffective d-orbifold with boundary W with vdimW =
k+1, a 1-morphism e : W→ Y in dOrbb, an equivalence of oriented d-orbifolds
j : X → ∂W, and a 2-morphism η : f ⇒ e◦ iW ◦j, where X ,f = FdOrb

Orb (X, f).
Theorem 12.27 yields a very good coordinate system

(
I,<,(Vi, E i, si,ψi),

(Vij , eij , êij ,ηij), ηijk, gi, ζi, ζij
)

for e : W→ Y , with I ⊂ N finite. Here Vi are
orbifolds with boundary, and as ∂W ' X is an orbifold, si is transverse on ∂Vi,
and so near ∂Vi, for each i ∈ I.

We now use a similar argument to the above to choose transverse perturba-
tions s̃i of si for i ∈ I, with s̃i = si near ∂Vi, such that the SVi,Ei,s̃i may be glued
using Theorem 12.23 to get a compact, oriented d-orbifold with boundary Z with
a 1-morphism h : Z→ Y , such that Z ' FdOrb

Orb (W) and h ∼= FdOrb
Orb (e) for some
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oriented orbifold W̃ and 1-morphism ẽ : W̃ → Y with ∂W̃ ' X and ẽ ◦ iW̃ ∼= f .
Then [X , f ] = 0 in Borb

k (Y) by Definition 13.12, so Πsef
orb : Borb

k (Y) → dBsef
k (Y)

is injective, and thus an isomorphism, proving the first part of Theorem 13.23.
For Πdeff

eff : Beff
k (Y) → dBeff

k (Y), we modify the above arguments as follows.
For the first part of the proof, we take [X ,f ] ∈ dBeff

k (Y), so that X is effective,

and show that SVi,Ei,s̃i ,SWi,Fi,ti are effective in (C),(D), and Z, X̃ are both
effective. Hence Πdeff

eff : Beff
k (Y) → dBeff

k (Y) is surjective. For the second part,
we suppose [X , f ] ∈ Beff

k (Y) with Πdeff
eff

(
[X , f ]

)
= 0, so that X ,W are both

effective, and then we show we can take Z, W̃ to be effective, so that [X , f ] = 0
in Beff

k (Y), and Πdeff
eff is injective, giving the second part of Theorem 13.23.
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14 Relating d-manifolds and d-orbifolds to
other classes of spaces in mathematics

We now explain the relationships between d-manifolds and d-orbifolds, and sev-
eral other classes of geometric spaces in mathematics: zero sets of Fredholm
sections of Banach vector bundles over Banach manifolds or Banach orbifolds,
the polyfolds of Hofer, Wysocki and Zehnder [41–48], the Kuranishi spaces of
Fukaya, Oh, Ohta and Ono [32,34], C-schemes and Deligne–Mumford C-stacks
with obstruction theories as in Behrend and Fantechi [12], quasi-smooth de-
rived C-schemes and derived Deligne–Mumford C-stacks as in Toën and Vez-
zosi [100–102], and Spivak’s derived manifolds [94, 95]. These include all the
major structures used in differential geometry and algebraic geometry to define
virtual classes and virtual chains in enumerative invariant problems over R or C.

In each case (except for Kuranishi spaces, for which morphisms are not
defined), we will define truncation functors from categories of these geometric
spaces to the homotopy categories Ho(dMan), . . . ,Ho(dOrbc) of d-manifolds
and d-orbifolds, possibly with corners. Therefore, by quoting theorems from
the literature on existence of one these geometric structures on moduli spaces,
we deduce that many important classes of moduli spaces in differential and
algebraic geometry may be given the structure of d-manifolds or d-orbifolds.

Since truncation functors forget information, one moral is that d-manifolds
and d-orbifolds are actually simpler, more basic objects than the other geometric
spaces we discuss. For example, compared to d-orbifolds, polyfolds contain a
huge amount of extra information, which for the purposes of defining virtual
classes and virtual chains is redundant, and actually makes the problem rather
more difficult: there are subtle analytic issues about abstract perturbations of
polyfolds which disappear at the level of d-orbifolds.

14.1 Fredholm sections on Banach manifolds and
solution spaces of nonlinear elliptic equations

Definition 14.1. The theory of manifolds and differential geometry can be de-
veloped, with little extra effort, using open sets in (possibly infinite-dimensional)
Banach spaces as local models. This yields the theory of Banach manifolds. A
good reference is Lang [65]. We require Banach manifolds to be Hausdorff and
second countable. Ordinary manifolds are examples of Banach manifolds.

We will use the ideas of smooth maps between Banach manifolds, Banach
vector bundles E over Banach manifolds V , which are fibre bundles E → V
whose fibres Ex are Banach spaces, and smooth sections s : V → E. Let s be a
smooth section of a Banach vector bundle E over a Banach manifold V . We call
s Fredholm if for each x ∈ V with s(v) = 0, the derivative ds|x : TxV → E|x,
which is a continuous linear map between Banach spaces, is Fredholm. Note
that ds|x has an index ind(ds|x) = dim Ker(ds|x)− dim Coker(ds|x) in Z.

If V is a Banach manifold, E,F → V are Banach vector bundles, and s ∈
C∞(E), t1, t2 ∈ C∞(F ) are smooth sections, then the notation t1 = t2 + O(s)
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and t1 = t2 + O(s2) in Definition 3.29 makes sense in this infinite-dimensional
setting. Similarly, if W is another Banach manifold and f, g : V → W are
smooth maps then the notation f = g + O(s) and f = g + O(s2) in Definition
3.29 also makes sense in this infinite-dimensional setting.

In Definitions 3.13 and 3.30 we defined ‘standard model’ d-manifolds SV,E,s
and 1-morphisms Sf,f̂ . The next theorem generalizes these to Banach mani-
folds. Part (a) is related to Fukaya et al. [32, Ex. A1.7] for Kuranishi spaces.
We will prove (a),(b) in §14.1.1. In (b), we interpret Υ as follows: ignoring the

fact that V2, E2, s2 may be infinite-dimensional, think of (f |W1 , f̂ |W1), (g, ĝ) :
(W1, F1, t1)→ (V2, E2, s2) as defining ‘standard model’ 1-morphisms as in Def-

inition 3.30, and Υ : (f |W1
, f̂ |W1

) ⇒ (g, ĝ) as defining a ‘standard model’ 2-
morphism as in Definition 3.35, where (14.2)–(14.3) correspond to (3.30).

Part (c) is easy: we must show ΠdMan
BManFS(idV , idE) = [idX ] and ΠdMan

BManFS

preserves composition, but these follow from the characterization of the 1-
morphism h in part (b). We leave (d) as an exercise for the reader.

Theorem 14.2. (a) Let V be a Banach manifold, E → V a Banach vector
bundle, and s : V → E a Fredholm section. Set X = s−1(0) ⊆ V, and suppose
ds|x : TxV → E|x has Fredholm index n ∈ Z for all x ∈ X. Then we may
construct a d-manifold X, natural up to equivalence in dMan, with underlying
topological space X and virtual dimension n.

The d-manifold structure on X may be characterized as follows: suppose W
is a finite-dimensional embedded submanifold of V, and F → W a finite rank
vector subbundle of E|W , such that t := s|W lies in C∞(F ) ⊆ C∞(E|W ), and
for every x ∈ X̂ := W ∩X, the map (ds|x)∗ in the commutative diagram

0 // TxW
dt|x ��

inc
// TxV

ds|x ��

// TxV/TxW
(ds|x)∗ ��

// 0

0 // F |x
inc // E|x // E|x/F |x // 0

(14.1)

is an isomorphism. Then X̂ := W ∩X = t−1(0) is open in X, and there is an
equivalence ψ : SW,F,t → X̂ ⊆ X in dMan, which acts as the identity map

t−1(0)→ X̂ on topological spaces, where SW,F,t is given in Definition 3.13.

(b) Let Va, Ea, sa, Xa, na and Xa be as in (a) for a = 1, 2. Suppose f : V1 → V2

is a smooth map of Banach manifolds, and f̂ : E1 → f∗(E2) is a morphism of

Banach vector bundles on V1 satisfying f̂ ◦ s1 = f∗(s2) +O(s2
1) in C∞(f∗(E2)),

as in (3.22). Then we may construct a 1-morphism h : X1 → X2 in dMan,
natural up to 2-isomorphism, with continuous map h = f |X1

: X1 → X2.
This 1-morphism h may be characterized as follows: for a = 1, 2 suppose

Wa ⊆ Va is a finite-dimensional embedded submanifold and Fa → Wa a finite
rank vector subbundle of Ea|Wa

with ta := sa|Wa
∈ C∞(Fa) ⊆ C∞(Ea|Wa

)
and (dsa|x)∗ in (14.1) an isomorphism for all x ∈ Wa ∩Xa. Then (a) defines
equivalences ψa : SWa,Fa,ta → X̂a ⊆Xa for a = 1, 2.
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Suppose g : W1 → W2 is smooth and ĝ : F1 → g∗(F2), Υ : F1 → f |∗W1
(TV2)

are morphisms of vector bundles on W1 satisfying, as in (3.30):

g = f |W1
+ Υ ◦ t1 +O(t21), (14.2)

ĝ = f̂ |F1
+ f |∗W1

(ds2) ◦Υ +O(t1), (14.3)

where (14.2) holds in smooth maps W1 → V2, and (14.3) in vector bundle mor-
phisms F1 → f |∗W1

(E2) or F1 → g∗(E2). Then ĝ ◦ t1 = g∗(t2) + O(t21) in
C∞(g∗(F2)), so that Definition 3.30 gives a 1-morphism Sg,ĝ : SW1,F1,t1 →
SW2,F2,t2 , and we have a 2-commutative diagram in dMan :

SW1,F1,t1

ψ1��
Sg,ĝ

// SW2,F2,t2

ψ2 ��
X1

h // X2.
� �� �
IQ

(14.4)

(c) Define a category BManFS of ‘Banach manifolds with Fredholm sections’
to have objects (V,E, s) as in (a), and morphisms (V1, E1, s1) → (V2, E2, s2)

pairs (f, f̂) as in (b), with composition (g, ĝ)◦ (f, f̂) =
(
g ◦f, f̂ ◦f∗(ĝ)

)
. Define

a functor ΠdMan
BManFS : BManFS→ Ho(dMan) as follows, where Ho(dMan) is

the homotopy category of the 2-category dMan.
For each (V,E, s) in BManFS, choose a d-manifold X in the equiva-

lence class in dMan given by (a), and set ΠdMan
BManFS(V,E, s) = X. For each

morphism (f, f̂) : (V1, E1, s1) → (V2, E2, s2), part (b) defines a 1-morphism
h : ΠdMan

BManFS(V1, E1, s1) = X1 →X2 = ΠdMan
BManFS(V2, E2, s2) in dMan unique

up to 2-isomorphism, so the morphism [h] : X1 →X2 in Ho(dMan) is uniquely

defined. Set ΠdMan
BManFS(f, f̂) = [h]. Then ΠdMan

BManFS is a functor.

(d) Analogues of (a)–(c) also hold with Banach orbifolds, orbifolds, and d-
orbifolds in place of Banach manifolds, manifolds, and d-manifolds, yielding a
functor ΠdOrb

BOrbFS : Ho(BOrbFS)→ Ho(dOrb).
Similarly, analogues of all the above hold involving Banach manifolds (or

orbifolds) with corners, manifolds (or orbifolds) with corners, and d-manifolds
(or d-orbifolds) with corners, yielding functors ΠdManc

BMancFS : BMancFS →
Ho(dManc) and ΠdOrbc

BOrbcFS : Ho(BOrbcFS)→ Ho(dOrbc).

In (b), a useful case is when W is a finite-dimensional manifold and F = t =
0, so that h : X →W = FdMan

Man (W ). We write Ho(BOrbFS) in (d) as triples
(V, E , s) of a Banach orbifold V, Banach vector bundle E over V, and Fredholm
section s ∈ C∞(E), naturally form a 2-category, since Banach orbifolds are.

It is well known that smooth nonlinear elliptic equations on compact mani-
folds, when written in Hölder spaces Ck,α or Sobolev spaces Lpk for sufficiently
large k, yield Fredholm sections of Banach vector bundles over Banach mani-
folds. So we may deduce the following (somewhat informal) corollary. In it, by
‘smooth nonlinear elliptic equation’ we exclude problems which involve dividing
out by a group of symmetries, and moduli spaces which are compactified by
including singular solutions. Both require more sophisticated techniques.
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By ‘with fixed topological invariants’, we mean that at each point x of the
solution set s−1(0), the index of the linear elliptic operator ds|x may be com-
puted using the Atiyah–Singer Index Theorem in terms of certain characteristic
classes on the compact manifold. We require that these characteristic classes
are fixed, so that the virtual dimension is constant on the solution set.

Corollary 14.3. Any solution set of a smooth nonlinear elliptic equation with
fixed topological invariants on a compact manifold naturally has the structure of
a d-manifold, uniquely up to equivalence in dMan.

Here are two examples. The first is generalized in Corollary 14.7 below.

Example 14.4. Let (Σ, j) be a compact Riemann surface of genus g, X a
2n-manifold, and J an almost complex structure on X. Let β ∈ H2(X;Z),
and consider the family MΣ(X, J, β) of J-holomorphic maps u : Σ → X with
u∗([Σ]) = β in H2(X;Z), where u J-holomorphic means that J ◦ du = du ◦ j :
TΣ→ u∗(TX). This is a smooth, nonlinear first-order elliptic equation.

We write this in terms of Banach manifolds as follows: for k > 1 and α ∈
(0, 1) we write V = Ck,α(Σ, X)β for the Banach manifold of Hölder Ck,α maps
u : Σ → X with u∗([Σ]) = β ∈ H2(X;Z). We define E → V to be the Banach
vector bundle with fibre Ck−1,α

(
u∗(TX)⊗C Λ0,1T ∗Σ

)
at each u ∈ V . We define

s : V → E to map u 7→ ∂̄u = 1
2 (du + J ◦ du ◦ j). Then s(u) = 0 if and

only if u is J-holomorphic. If u ∈ V with ∂̄u = 0, then the linearization dus :
Ck,α

(
u∗(TX)

)
→ Ck−1,α

(
u∗(TX) ⊗C Λ0,1T ∗Σ

)
is a ∂̄-operator, whose index,

computed using the Atiyah–Singer Index Theorem, is 2
(
c1(X) · β + n(1 − g)

)
,

where c1(X) ∈ H2(X;Z) is the first Chern class of (X, J).
Thus Theorem 14.2(a) gives MΣ(X, J, β) = s−1(0) the structure of a d-

manifold MΣ(X, J, β), with virtual dimension 2
(
c1(X) · β + n(1 − g)

)
. Note

that elliptic regularity implies that if u ∈ Ck,α(Σ, X)β with s(u) = 0 then
u ∈ C∞(Σ, X)β , so s−1(0) is independent of the choice of k, α, and in fact
MΣ(X, J, β) is also independent of k, α up to equivalence in dMan.

Let p ∈ Σ. Then evaluation at p gives a smooth map of Banach manifolds
evp : V → X mapping evp : u 7→ u(p). So Theorem 14.2(b) with W = X and
F = t = 0 gives a 1-morphism evp :MΣ(X, J, β)→X = FdMan

Man (X).

Example 14.5. Let (M, g) and (N,h) be Riemannian manifolds, with M com-
pact. Consider the family HM,N of harmonic maps f : M → N . This is a
nonlinear second-order elliptic equation on f . Its linearizations are self-adjoint
operators of Laplacian type, with index zero. Hence Corollary 14.3 makes HM,N

into a d-manifold HM,N with vdimHM,N = 0. If M = S1, then HM,N is the
moduli space of parametrized closed geodesics in (N,h).

14.1.1 The proof of Theorem 14.2(a),(b)

In the proof below we have many equations such as (14.5)–(14.6) involving
error terms O(t1) and O(t21), using the notation of Definition 3.29. To interpret
these, one should first choose local trivializations (coordinates) of the Banach
manifolds V, V1, V2 or Banach vector bundles E,E1, E2 involved, so that each
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term in the equation takes values in the same Banach space, and it makes sense
to add and subtract them. Choosing different local trivializations gives different
equations, but the differences are absorbed in the O(t1) or O(t21) error terms,
so whether the equation holds or not is independent of the choice.

For example, (14.5) at w ∈W12 gives e12(w) = f(w) + Υ|w ◦ t1|w +O(t1|2w).
Here e12(w), f(w) are points in V2, and Υ|w ◦ t1|w ∈ Tf(w)V2. If we identify the
Banach manifold V2 and its tangent space Tf(w)V2 locally with a Banach space
B, then the equation makes sense in B. Similarly, (14.6) at w ∈W12 applied to

α ∈ F1|w gives ê12|w(α) = f̂ |w(α) + ds2|f(w) ◦Υ|w(α) +O(t1|w). Here ê12|w(α)

lies in F2|e12(w) ⊆ E2|e12(w), and f̂ |w(α),ds2|f(w) ◦ Υ|w(α) in E2|f(w). If we
trivialize the Banach vector bundle E2 locally then E2|e12(w) and E2|f(w) are
identified, and the equation makes sense.

We will prove Theorem 14.2(a),(b) in the following four steps:

Step 1. Let V,E, s,X = s−1(0) and n ∈ Z be as in Theorem 14.2(a). We say
that a triple (W,F, t) satisfies condition (∗) if:

(∗) W is a finite-dimensional embedded submanifold of V , so that we may
regard W as a subset of V , and F →W is a finite rank vector subbundle
of E|W , and t := s|W lies in C∞(F ) ⊆ C∞(E|W ), and W ∩X 6= ∅, and
for all x ∈W ∩X, the map (ds|x)∗ in (14.1) is an isomorphism.

We show that if (W,F, t) satisfies (∗) then dimW − rankF = n, and W ∩X is
open in X. Hence the ‘standard model’ d-manifold SW,F,t from Definition 3.13
has virtual dimension n, and its topological space t−1(0) = W ∩X is open in X.
We prove that for all x ∈ X, there exists (W,F, t) satisfying (∗) with x ∈W .

Step 2. Let V1, E1, s1, X1, V2, E2, s2, X2, f : V1 → V2 and f̂ : E1 → f∗(E2)

with f̂ ◦ s1 = f∗(s2) + O(s2
1) be as in Theorem 14.2(b). Let (W1, F1, s1) sat-

isfy (∗) in (V1, E1, s1) and (W2, F2, s2) satisfy (∗) in (V2, E2, s2). We say that
(W12, e12, ê12) : (W1, F1, s1)→ (W2, F2, s2) satisfies condition (+) if:

(+) W12 ⊆ W1 is open with W12 ∩ X1 = W1 ∩ f−1(W2) ∩ X1, and e12 :
W12 →W2 is smooth, and ê12 : F1|W12

→ e∗12(F2) is a morphism of vector
bundles on W12, and there exists a morphism of Banach vector bundles
Υ : F1|W12 → f∗(TV2)|W12 on W12 satisfying

e12 = f |W12 + Υ ◦ t1|W12 +O(t21), (14.5)

ê12 = f̂ |F1|W12
+ f∗(ds2)|W12

◦Υ +O(t1), (14.6)

where (14.5) holds in smooth maps W12 → V2, and (14.6) in vector
bundle morphisms F1|W12

→ f∗(E2)|W12
, and f∗(ds2)|W12

in (14.6) lies
in Hom

(
f∗(TV2)|W12

, f∗(E2)|W12

)
.

We will prove:

(a) Suppose that, as well as the data above, we are given V3, E3, s3, X3, g :
V2 → V3 and ĝ : E2 → g∗(E3) with ĝ ◦ s2 = g∗(s3) +O(s2

2) as in Theorem
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14.2(b). Then h := g ◦ f : V1 → V2 and ĥ := f∗(ĝ) ◦ f̂ : E1 → h∗(E3)

satisfy ĥ ◦ s1 = h∗(s3) +O(s2
1), as in Theorem 14.2(b).

If (W12, e12, ê12) : (W1, F1, s1) → (W2, F2, s2) satisfies (+) for (f, f̂) :
(V1, E1, s1)→ (V2, E2, s2), and (W23, e23, ê23) : (W2, F2, s2)→ (W3, F3, s3)
satisfies (+) for (g, ĝ) : (V2, E2, s2)→(V3, E3, s3), then(

e−1
12 (W23), e23 ◦ e12|e−1

12 (W23), e12|∗e−1
12 (W23)

(ê23) ◦ ê12|e−1
12 (W23)

)
(14.7)

satisfies (+) for (h, ĥ) : (V1, E1, s1)→ (V3, E3, s3). That is, condition (+)
is closed under composition in a suitable sense.

(b) If (W12, e12, ê12) : (W1, F1, s1)→ (W2, F2, s2) satisfies (+) then

ê12 ◦ t1|W12
= e∗12(t2) +O(t21). (14.8)

Hence Definition 3.30 defines a ‘standard model’ 1-morphism in dMan:

Se12,ê12
: SW12,F1|W12

,t1|W12
−→ SW2,F2,t2 . (14.9)

(c) If (W12, e12, ê12), (W ′12, e
′
12, ê

′
12) : (W1, F1, s1) → (W2, F2, s2) both satisfy

(+) then there exists a morphism Λ : F1|W12∩W ′12
→ e12|∗W12∩W ′12

(TW2) of

vector bundles on W12 ∩W ′12 satisfying

e′12|W12∩W ′12
= e12|W12∩W ′12

+ Λ ◦ t1|W12∩W ′12
+O(t21), (14.10)

ê′12|W12∩W ′12
= ê12|W12∩W ′12

+ (e12|∗W12∩W ′12
(dt2)) ◦ Λ +O(t1). (14.11)

As W12∩t−1
1 (0) = W ′12∩t−1

1 (0) = W1∩f−1(W2)∩X1, we can replace W12,
W ′12 by W12 ∩W ′12 without changing the 1-morphisms (14.8) for e12, ê12

and e′12, ê
′
12. Thus Definition 3.35 gives a ‘standard model’ 2-morphism

SΛ : Se12,ê12
=⇒ Se′12,ê

′
12
. (14.12)

(d) If (W1, F1, s1) satisfies (∗) in (V1, E1, s1) and (W2, F2, s2) satisfies (∗) in
(V2, E2, s2), then there exists (W12, e12, ê12) satisfying (+).

Step 3. Using Step 1, we choose an indexing set I, and for each i ∈ I a triple
(Wi, Fi, ti) satisfying (∗), such that {Wi∩X : i ∈ I} is an open cover of X. Using

Step 2(d) with (V1, E1, s1) = (V2, E2, s2) = (V,E, s), f = idV and f̂ = idE for
all i, j ∈ I, we choose (Wij , eij , êij) : (Wi, Fi, ti) → (Wj , Fj , tj) satisfying (+).
We then use Theorem 3.42 to construct a d-manifold X with topological space
X and vdimX = n by gluing the d-manifolds SWi,Fi,ti for i ∈ I on overlaps
using Seij ,êij for i, j ∈ I, which are equivalences of open d-submanifolds. We
show that X is independent of choices up to equivalence in dMan, and satisfies
the condition in the second part of Theorem 14.2(a) for any such (W,F, t).

Step 4. Using Step 3, we construct a d-manifold X1 using triples (Wi, Fi, ti)
satisfying (∗) for i ∈ I with {Wi ∩ X1 : i ∈ I} an open cover of X1, with
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equivalences ψi : SWi,Fi,ti → X̂1,i ⊆ X1, and a d-manifold X2 using triples
(W ′k, F

′
k, t
′
k) satisfying (∗) for k ∈ K with {Wk ∩X2 : k ∈ K} an open cover of

X2, with equivalences ψ′k : SW ′k,F
′
k,t
′
k
→ X̂2,k ⊆X2.

We choose these so that for each i ∈ I there exists ki ∈ K with f(Wi ∩
X1) ⊆ W ′ki ∩ X2, and Step 2(d) gives a triple (Wi, giki , ĝiki) : (Wi, Fi, ti) →
(W ′ki , F

′
ki
, t′ki) satisfying (+). Then ĝiki ◦ ti = g∗iki(t

′
ki

) +O(t2i ) by Step 2(b), so
Definition 3.30 gives a 1-morphism

Sgiki ,ĝiki : SWi,Fi,ti −→ SW ′ki ,F
′
ki
,t′ki

. (14.13)

Composing with ψ′ki gives a 1-morphism

ψ′ki ◦ Sgiki ,ĝiki : SWi,Fi,ti −→X2. (14.14)

Now X1 is constructed, as a d-space, by gluing the d-spaces SWi,Fi,ti for i in
I by equivalences on overlaps, using the first part of Theorem 2.33. We show that
the 1-morphisms (14.14) satisfy the conditions on the gi in the second part of
Theorem 2.33, so we can glue them to give a 1-morphism h : X1 →X2, unique
up to 2-isomorphism, such that h◦ψi ∼= ψ′k◦Sgiki ,ĝiki for all i ∈ I. We show that
h is independent of choices up to 2-isomorphism, and satisfies the conditions in
the second part of Theorem 14.2(b) for all such W1, F1, t1,W2, F2, t2, g, ĝ. This
then completes the proof.

For Step 1, let (W,F, t) satisfy (∗), and let x ∈W ∩X 6= ∅. Then as (ds|x)∗
in (14.1) is an isomorphism, we have an exact sequence

Ker(ds|x) // TxW
dt|x // F |x // Coker(ds|x)

of finite-dimensional vector spaces. Therefore, as we have to prove,

dimW − rankF = dimTxW − dimF |x
= dim Ker(ds|x)− dim Coker(ds|x) = ind(ds|x) = n.

On an open neighbourhood U of x in V we can choose a decomposition E|U ∼=
F |U⊕G where G is a Banach vector subbundle of E|U , and G|x ∼= Ex/Fx. Then
s|U = p⊕q for p ∈ C∞(F |U ) and p ∈ C∞(G), and dq|x : TxV → G|x ∼= Ex/Fx is
surjective with kernel TxW , since in (14.1) the top row is exact and (ds|x)∗ is an
isomorphism. We have p|U∩W = t|U∩W and q|U∩W = 0. Hence U∩W ⊆ q−1(0).

Using dq|x : TxV → G|x ∼= Ex/Fx surjective with kernel TxW and the
Implicit Function Theorem for Banach spaces, we can show that U∩W coincides
with q−1(0) near x. Hence U ∩ W ∩ X = t|−1

U∩W (0) coincides with p−1(0) ∩
q−1(0) = s|−1

U (0) = U ∩X near x. Thus W ∩X is open in X.
Now let x ∈ X. We will construct (W,F, t) satisfying (∗) with x ∈ W . By

assumption ds|x : TxV → E|x is Fredholm. Choose an open neighbourhood U of
x in V and e1, . . . , ek ∈ C∞(E|U ) such that e1, . . . , ek are linearly independent
on U and e1|x, . . . , ek|x generate Coker(ds|x). Then 〈e1, . . . , ek〉 is a rank k vec-
tor subbundle of E|U . The quotient E|U/〈e1, . . . , ek〉 is a Banach vector bundle
over U , and s induces s∗ ∈ C∞(E|U/〈e1, . . . , ek〉), which is also Fredholm.
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The linearization ds∗|x : TxV → E|x/〈e1, . . . , ek〉|x at x is surjective by
choice of e1, . . . , ek, and has kernel of dimension k+ind(ds|x) = k+n. This is an
open condition, so making U smaller we can suppose that ds∗|w is surjective with
kernel of dimension k+n for all w ∈W := (s∗)

−1(0) ⊆ U . The Implicit Function
Theorem for Banach spaces now implies that W is a nonsingular embedded
submanifold of U ⊆ V , with finite dimension k + n. Set F = 〈e1, . . . , ek〉|W , as
a rank k vector subbundle of E|W . Then t := s|W ∈ C∞(F ) ⊆ C∞(E|W ), as
s∗|W = 0. Also ds∗|w and TwW = Ker(ds∗) implies that (ds|w)∗ in (14.1) is an
isomorphism for each w ∈W . So (W,F, t) satisfies (∗). This completes Step 1.

For Step 2(a), if e12, ê12 satisfy (14.5)–(14.6) with Υ : F1|W12
→ f∗(TV2)|W12

,
and e23, ê23 satisfy (14.5)–(14.6) with Υ : F2|W23 → g∗(TV3)|W23 , then it
is not difficult to show that (14.7) satisfies (+) using Υ′′ : F1|e−1

12 (W23) →
(g ◦ f)∗(TV3)|e−1

12 (W23) in (14.5)–(14.6), where

Υ′′ = (f∗(dg) ◦Υ)|e−1
12 (W23) + e12|∗e−1

12 (W23)
(Υ′) ◦ ê12|e−1

12 (W23) +O(t1).

For Step 2(b), work near a point w ∈W12 close to X1, so that t1(w) is small
and f(w) and e12(w) are close in V2 by (14.5), and choose local trivializations
of V2 and E2 near f(w) ≈ e12(w), so that locally V2

∼= Tf(w)V2, and E2|f(w)
∼=

E2|e12(w). Then using (14.5)–(14.6) and f̂ ◦ s1 = f∗(s2) +O(s2
1) we have

e∗12(t2)|w = t2|e12(w) = s2|e12(w) = s2|f(w)+(Υ◦t1)|w+O(t1|2w)

= s2|f(w) + ds2|f(w) ◦ (Υ ◦ t1)|w +O(t1|2w)

= f̂1|w ◦ s1|w +O(s1|2w) + (f∗(ds2) ◦Υ ◦ t1)|w +O(t1|2w)

= f̂1|w ◦ t1|w + (f∗(ds2) ◦Υ ◦ t1)|w +O(t1|2w),

ê12 ◦ t1|w =
(
f̂ |w + (f∗(ds2) ◦Υ)|w +O(t1|w)

)
◦ t1|w

= f̂1|w ◦ t1|w + (f∗(ds2) ◦Υ ◦ t1)|w +O(t1|2w).

Comparing the two equations proves (14.8).
For Step 2(c), let (14.5)–(14.6) hold for e12, ê12 with Υ and for e′12, ê

′
12 with

Υ′. Then restricting (14.5)–(14.6) for e12, ê12 and e′12, ê
′
12 to W12 ∩ W ′12 and

subtracting them yields

e′12|W12∩W ′12
− e12|W12∩W ′12

= (Υ′ −Υ)|W12∩W ′12
◦ t1|W12∩W ′12

+O(t21), (14.15)

ê′12|W12∩W ′12
− ê12|W12∩W ′12

= f∗(ds2) ◦ (Υ′ −Υ)|W12∩W ′12
+O(t1). (14.16)

Since f |W12 = e12 +O(t1) by (14.5) we have f∗(ds2)|W12 = e∗12(ds2)+O(t1). We
also identify f∗(TV2)|W12

∼= e∗12(TV2) using our local trivialization of V2, and
thus regard (Υ′ −Υ)|W12∩W ′12

as a morphism F1|W12∩W ′12
→ e∗12(TV2)|W12∩W ′12

.
Thus (14.16) becomes

ê′12|W12∩W ′12
− ê12|W12∩W ′12

= e∗12(ds2) ◦ (Υ′ −Υ)|W12∩W ′12
+O(t1). (14.17)

Using (ds2|x)∗ an isomorphism in (14.1), near t−1
1 (0) in W12 ∩W ′12 we may

605



choose a Banach vector bundle G→W12 ∩W ′12 and decompositions

e12|∗W12∩W ′12
(TV2) = e12|∗W12∩W ′12

(TW2)⊕G,

e12|∗W12∩W ′12
(E2) = e12|∗W12∩W ′12

(F2)⊕G,

such that e12|∗W12∩W ′12
(ds2) =

(
e∗12(dt2) 0

0 idG

)
. Write (Υ′ −Υ)|W12∩W ′12

= Λ⊕M
for Λ : F1|W12∩W ′12

→ e12|∗W12∩W ′12
(TW2) and M : F1|W12∩W ′12

→ G. Then

(14.15), (14.17) become

e′12|W12∩W ′12
− e12|W12∩W ′12

= Λ◦t1|W12∩W ′12
+M ◦t1|W12∩W ′12

+O(t21), (14.18)

ê′12|W12∩W ′12
− ê12|W12∩W ′12

= e∗12(dt2)|W12∩W ′12
◦ Λ +M +O(t1). (14.19)

Now in (14.19), ê′12|···, ê12|···, e∗12(dt2)|··· are morphisms F1 → TW2 and M a
morphism F1 → G. Thus taking components of (14.19) in G gives M = O(t1),
so M ◦ t1|··· = O(t21). Substituting these into equations (14.18)–(14.19) proves
(14.10)–(14.11), and Step 2(c).

For Step 2(d), choose an open neighbourhood U of X2 ∩ W2 in V2, with
U ∩W2 closed in U , and a smooth map π : U → U ∩W2 with π|U∩W2 = idU∩W2 .
For instance, U could be a tubular neighbourhood of W2 in V2. Then dπ :
TU → π∗(TW2) is surjective on U ∩W2, so making U smaller we can take dπ
surjective on U , and Ker dπ a vector subbundle of TU .

Making U smaller, we can choose a splitting E2|U ∼= G ⊕ H, where G has
finite rank rankF2 with G|U∩W2 = F2|U∩W2 , and H is a Banach vector subbun-
dle. Write s2|U = p ⊕ q for p ∈ C∞(G) and q ∈ C∞(H). Then q|U∩W2 = 0,
since s|U∩W2

= t2|U∩W2
∈ C∞(F2|U∩W2

) = C∞(G|U∩W2
). The vector bundles

G and π∗(F2) are isomorphic to F2|U∩W2
on U ∩W2 ⊆ U , so making U smaller

we can choose an isomorphism i : π∗(F2)→ G with i|U∩W2
= idF2|U∩W2

.

Choose connections∇G,∇H on the vector bundles G,H. At x ∈ U∩X2∩W2,
as (ds2|x)∗ is an isomorphism in (14.1), we see that ∇Hq|x : TxU → H|x is
surjective with kernel TxW2. But TxU = TxW2 ⊕Ker dπ|x, so (∇Hq|Ker dπ)|x :
Ker dπ|x → H|x is an isomorphism. This is an open condition, so making U
smaller, we can suppose that ∇Hq|Ker dπ : Ker dπ → H is an isomorphism of
Banach vector bundles on U , and also that q−1(0) = U ∩W2.

Let γ ∈ C∞(H,G), so that γ ⊕ idH : H → G⊕H = E2|U is a vector bundle
embedding, and replace H by the vector subbundle H ′ = (γ ⊕ idH)(H). This
fixes q, and replaces p by p′ = p− γ ◦ q. So

∇Gp′|Ker dπ = ∇Gp|Ker dπ − (∇G,Hγ|Ker dπ) ◦ q − γ ◦ ∇Hq|Ker dπ.

Thus, taking γ = ∇Gp|Ker dπ ◦ (∇Hq|Ker dπ)−1 we have ∇Gp|Ker dπ = O(q).
Define W12 = W1 ∩ f−1(U), and set e12 = π ◦ f |W12

: W12 → W2. Define
ê12 : F1|W12

→ e∗12(F2) by the commutative diagram

F1|W12

ê12��
inc

// E1|W12
f̂ |W12

// f |∗W12
(E2) f |∗W12

(G)⊕ f |∗W12
(H)

πf∗(G) ��
e∗12(F2) f |∗W12

(π∗(F2)) f |∗W12
(G).

f |∗W12
(i|−1
W12

)
oo

(14.20)
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Define Υ : F1|W12
→ f∗(TV2) by the commutative diagram

F1|W12

Υ��
inc

// E1|W12
f̂ |W12

// f |∗W12
(E2) f |∗W12

(G)⊕ f |∗W12
(H)

πf∗(H) ��
f∗(TV2) f∗(Ker dπ)

incoo f |∗W12
(H).

−∇Hq|−1
Ker dπoo

(14.21)

We will show these W12, e12, ê12,Υ satisfy (14.5)–(14.6).
Let w ∈W12 be close to X1. Then f(w) and e12(w) are close together in the

same fibre of π : U → U ∩W2, so we can choose a smooth path γ : [0, 1] → U
with γ(0) = f(w), γ(1) = e12(w) and π ◦ γ = e12(w). We can also make γ
approximate a straight line segment in a local trivialization of U . Then we have

Υ ◦ t1|w = −∇Hq|Ker dπ|−1
f(w) ◦ πH |f(w) ◦ f̂(t1)|w

= −∇Hq|Ker dπ|−1
f(w) ◦ πH |f(w) ◦ s2|f(w) +O(t1|2w)

= ∇Hq|Ker dπ|−1
e12(w) ◦ q|e12(w) −∇Hq|Ker dπ|−1

f(w) ◦ q|f(w) +O(t1|2w)

=

∫ 1

0

d

dy

(
∇Hq|Ker dπ|−1

γ(y) ◦ q|γ(y)

)
dy +O(t1|2w) (14.22)

=

∫ 1

0

∇Hq|Ker dπ|−1
γ(y) ◦ ∇

Hq|Ker dπ|γ(y) ◦ γ̇(y) dy +O(t1|2w)

=

∫ 1

0

γ̇(y) dy+O(t1|2w)=γ(1)−γ(0)+O(t1|2w)=e12(w)−f(w)+O(t1|2w).

Here in the first step we use (14.21), in the second f̂ ◦ s1 = f∗(s2) + O(s2
1), in

the third s2|U = p ⊕ q, πH(p ⊕ q) = q, and q|e12(w) = 0 as q|U∩W2 = 0, and
in the fourth γ(0) = f(w) and γ(1) = e12(w). In the fifth we neglect terms in
∇H

(
∇Hq|Ker dπ|−1

γ(y)

)
, as these are O(t1|2w). Rearranging (14.22) proves (14.5).

Similarly, if α ∈ F1|w then

ê12|w(α)− f̂ |w(α) = i|−1
f(w) ◦ πG|f(w) ◦ f̂ |w(α)− f̂ |w(α)

= πG|f(w) ◦ f̂ |w(α)− f̂ |w(α) +O(t1|w) = −πH |f(w) ◦ f̂ |w(α) +O(t1|w)

= (∇Hq|Ker dπ)|f(w) ◦ (−∇Hq|Ker dπ)|−1
f(w) ◦ πH |f(w) ◦ f̂ |w(α) +O(t1|w)

= (∇Hq|Ker dπ)|f(w) ◦Υ|w(α) +O(t1|w) = ∇Hq|f(w) ◦Υ|w(α) +O(t1|w)

= (∇Gp⊕∇Hq)|w ◦Υ|w(α) +O(t1|w) = (f∗(ds2) ◦Υ)|w(α) +O(t1|w),

using (14.20) in the first step, i = id + O(s2) so that f∗(i) = id + O(t1) in the
second, πG + πH = id in the third, (14.21) in the fifth, Υ|w(α) ∈ Ker dπ in the
sixth, and ∇Gp|Ker dπ = O(q) = O(s2) so that f∗(∇Gp|Ker dπ) = O(t1) in the
seventh. This proves (14.6) at w,α, and completes Step 2.

For Step 3, we first choose an indexing set I, and for each i ∈ I a triple
(Wi, Fi, ti) satisfying (∗), with dimWi− rankFi = n, such that {Wi∩X : i ∈ I}
is an open cover of X. This is possible by Step 1, since Wi ∩ X is open in
X, and for any x ∈ X there exists (Wi, Fi, ti) with x ∈ Wi ∩ X. We define
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ψi : t−1
i (0)→ X to be the inclusion Wi ∩X ↪→ X. Next, we apply Step 2 with

(V1, E1, s1) = (V2, E2, s2) = (V,E, s), f = idV and f̂ = idE . For all i, j ∈ I with
Wi ∩Wj ∩X 6= ∅, we choose (Wij , eij , êij) : (Wi, Fi, ti)→ (Wj , Fj , tj) satisfying
(+). This is possible by Step 2(d). We also choose a total order < on I.

We claim that all this data satisfies the hypotheses of the first part of The-
orem 3.42. As the Banach manifold V is Hausdorff and second countable, so is
the subspace X. For (iii), let i, j, k ∈ I. Then the following satisfy (+) with

(V1, E1, s1) = (V2, E2, s2) = (V,E, s), f = idV and f̂ = idE :(
Wij ∩Wik ∩ e−1

ij (Wjk), ejk ◦ eij |···, eij |∗···(êjk) ◦ êij |···
)

:(
Wij ∩Wik ∩ e−1

ij (Wjk), Fi|···, ti|···
)
−→ (Wk, Fk, tk),(

Wij ∩Wik ∩ e−1
ij (Wjk), eik|···, êik|···

)
:(

Wij ∩Wik ∩ e−1
ij (Wjk), Fi|···, ti|···

)
−→ (Wk, Fk, tk),

the first by Step 2(a), the second by choice of (Wik, eik, êik). Therefore Step 2(c)
gives Λijk such that (3.34)–(3.35) hold. When i < j < k this proves Theorem
3.42(iii). Also, when k = i we may take Wii = Wi, eii = idWi

and êii = idFi ,
and (14.12) gives a 2-morphism

SΛiji : Seji,êji ◦ Seij ,êij |X∩Wi∩Wj =⇒ idSWi,Fi,ti |X∩Wi∩Wj .

Exchanging i, j shows that Seij ,êij and Seji,êji are quasi-inverse on X∩Wi∩Wj ,
so both are equivalences. This implies Theorem 3.42(ii), by Theorem 3.39.

Theorem 3.42 now constructs a d-manifold X with topological space X
and vdimX = n. The theorem shows that having chosen I,<, (Wi, Fi, ti), . . . ,
then X is unique up to equivalence. We claim that X is also independent
of the choices of I,<, (Wi, Fi, ti), . . . up to equivalence. To see this, note that
if Ĩ , <̃, (W̃i, F̃i, t̃i), . . . are alternative choices yielding X̃, we can also do the
construction starting with the indexing set Ǐ = Iq Ĩ and data (Wi, Fi, ti) : i ∈ I,
(W̃i, F̃i, t̃i) : i ∈ Ĩ, yielding X̌. Then on X ∩Wi, both X and X̌ are equivalent
to SWi,Fi,ti , so X, X̌ are locally equivalent. These local equivalences can be
glued using a partition of unity to get a global equivalence X ' X̌. Similarly
locally X̃ ' SW̃i,F̃i,t̃i ' X̌, so X̃ ' X̌, and thus X ' X̃.

Thus,X is independent of all choices up to equivalence in dMan. To see that
the second part of Theorem 14.2(a) holds, note that given any (W,F, t) satisfying
(∗), we can include (W,F, t) as one of the (Wi, Fi, ti) for i ∈ I above, and then
Theorem 3.42 gives a 1-morphism ψ : SW,F,t →X which is an equivalence with

the d-submanifold X̂ ⊆ X with subspace X̂ = W ∩ X. This completes the
proof of Step 3, and Theorem 14.2(a).

For Step 4, let V1, E1, s1, X1, n1, V2, E2, s2, X2, n2, f : V1 → V2 and f̂ : E1 →
f∗(E2) satisfying f̂ ◦ s1 = f∗(s2) +O(s2

1) be as in Theorem 14.2(b).
First we apply Step 3 to construct a d-manifold X2 from V2, E2, s2, X2, n2,

using an ordered indexing set (K,<), and triples (W ′k, F
′
k, t
′
k) for each k ∈ K

satisfying (∗), such that {W ′k ∩ X2 : k ∈ K} is an open cover of X2, and
triples (W ′kl, e

′
kl, ê

′
kl) : (W ′k, F

′
k, t
′
k) → (W ′l , F

′
l , t
′
l) satisfying (+) for all k, l ∈
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K. The application of Theorem 3.42 in Step 3 also yields 1-morphisms ψ′k :
SW ′k,F

′
k,t
′
k
→ X2 for all k ∈ K which are equivalences with open X̂2,k ⊆ X2,

and 2-morphisms η′kl : ψ′l ◦ Se′kl,ê′kl ⇒ ψ′k ◦ iW ′kl,W ′k for k < l in K.
Now f |X1

: X1 → X2 is continuous, and {W ′k ∩ X2 : k ∈ K} is an open
cover of X2, so {f−1(W ′k) ∩X1 : k ∈ K} is an open cover of X1. We choose an
indexing set I, and for each i ∈ I a triple (Wi, Fi, ti) satisfying (∗) for V1, E1, s1,
with dimWi− rankFi = n1, such that {Wi ∩X1 : i ∈ I} is an open cover of X1

subordinate to {f−1(W ′k) ∩ X1 : k ∈ K}. That is, for each i ∈ I there exists
ki ∈ K such that Wi∩X1 ⊆ f−1(W ′ki)∩X1, or equivalently, f(Wi∩X1) ⊆W ′ki .
We also choose a total order < on I such that i 6 j in I implies ki 6 kj in K.

For each i ∈ I, (Wi, Fi, ti) satisfies (∗) in (V1, E1, s1), and (W ′ki , F
′
ki
, t′ki)

satisfies (∗) in (V2, E2, s2), and f(Wi∩X1) ⊆W ′ki . Thus Step 2(d) gives a triple

(W̃iki , giki , ĝiki) satisfying (+), where W̃iki ⊆ Wi is open with W̃iki ∩ X1 =
Wi ∩ f−1(Wki) ∩ X1 = Wi ∩ X1. Replacing Wi, Fi, ti by W̃iki , Fi|W̃iki

, ti|W̃iki
,

noting that this does not change Wi ∩ X1, we may assume that W̃iki = Wi.
Thus, giki : Wi → W ′ki is smooth, and ĝiki : Fi → g∗iki(F

′
ki

) is a morphism of
vector bundles on Wi. Step 2(b) implies that ĝiki ◦ ti = g∗iki(t

′
ki

) + O(t2i ), so
Definition 3.30 gives a 1-morphism Sgiki ,ĝiki as in (14.13).

Next, as in Step 3, we choose (Wij , eij , êij) : (Wi, Fi, ti) → (Wj , Fj , tj)
satisfying (+) for all i, j ∈ I. Then Wij ⊆Wi is open with Wij∩X1 = Wi∩Wj∩
X1. Now g−1

iki
(W ′kikj ) ⊆Wi is open with g−1

iki
(W ′kikj )∩X1 = g−1

iki
(W ′kikj ∩X2) =

f(W ′ki ∩Wk′j
∩ X2) ⊇ Wi ∩Wj ∩ X1. Thus, making Wij smaller if necessary,

we can suppose that Wij ⊆ g−1
iki

(W ′kikj ), and so giki |Wij
maps Wij → W ′kikj .

With these choices of I,<, (Wi, Fi, ti) and (Wij , eij , êij), we now complete Step
3 to construct a d-manifold X1 from V1, E1, s1, X1, n1, with equivalences ψi :
SWi,Fi,ti → X̂1,i ⊆ X1 for all i ∈ I and 2-morphisms ηij : ψj ◦ Seij ,êij ⇒
ψi ◦ iWij ,Wi

for i < j in I.
Now let i < j ∈ I. Then we have diagrams of triples satisfying (∗) and (+):

(Wij , Fi|Wij
, ti|Wij

)
(Wij ,eij ,êij) // (Wj , Fj , tj)

(Wij ,gjkj ,ĝjkj )
// (W ′kj , F

′
kj
, t′kj ),

(Wij , Fi|Wij
, ti|Wij

)

(Wij ,giki |Wij ,ĝiki |Wij )

// (W ′kikj , F
′
i |W ′kikj , t

′
i|W ′kikj )

(W ′kikj
,e′kikj

,ê′kikj
)

// (W ′kj , F
′
kj
, t′kj ).

Step 2(a) shows the compositions of both lines are triples (Wij , Fi|Wij
, ti|Wij

)→
(W ′kj , F

′
kj
, t′kj ) satisfying (+). Thus Step 2(c) for these compositions gives Λij

satisfying analogues of (14.10)–(14.11), and yielding a 2-morphism SΛij as in
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(14.12). Consider the 2-commutative diagram in dMan:

SWi,Fi,ti Sgiki
,ĝiki

//

⇑ id

SW ′
ki
,F ′
ki
,t′
ki

ψ′ki

''OOOOOOOOOOOOO

SWij ,Fi|Wij ,ti|Wij

iWij,Wi

77ooooooooooooo

Seij ,êij
''OOOOOOOOOOOOO

Sgiki
|Wij ,ĝiki |Wij // SW ′

kikj
,F ′i |···,t

′
i|···

iW ′
kikj

,W ′
ki

77oooooooooo

Se′
kikj

,ê′
kikj ''OOOOOOOOOO

⇑ SΛij

⇑ η′kikj X2.

SWj ,Fj ,tj

Sgjkj
,ĝjkj // SW ′

kj
,F ′
kj
,t′
kj

ψ′kj

77ooooooooooooo

Composing 2-morphisms across this diagram yields a 2-morphism

ζij :
(
ψ′kj ◦ Sgjkj ,ĝjkj

)
◦ Seij ,êij =⇒

(
ψ′ki ◦ Sgiki ,ĝiki

)
◦ iWij ,Wi

. (14.23)

The d-manifold X1 was constructed in Theorem 3.42, which was proved
by using Theorem 2.33 to glue the d-manifolds SWi,Fi,ti for i in I by equiva-
lences Seij ,êij on overlaps. We have constructed 1-morphisms ψ′ki ◦ Sgiki ,ĝiki :
SWi,Fi,ti → X2 in (3.14) for each i ∈ I, and 2-morphisms ζij in (14.23)
for all i < j in I. Thus, the last part of Theorem 2.33 gives a 1-morphism
h : X1 → X2, with 2-morphisms ζi : h ◦ ψi ⇒ ψ′k ◦ Sgiki ,ĝiki for all i ∈ I. We
use Theorem 2.33 rather than Theorem 3.42 as Theorem 3.42 only allows the
target X2 to be a manifold, not a d-manifold or a d-space.

Theorem 2.33 says that having chosen I,<, (Wi, Fi, ti), . . . , then h is unique
up to 2-isomorphism. The method of Step 3, involving taking alternative choices
Ĩ , <, (W̃j , F̃j , t̃j), . . . and doing the construction using Iq Ĩ and both (Wi, Fi, ti)

for i ∈ I and (W̃j , F̃j , t̃j) for j ∈ Ĩ shows that h is also independent up to 2-
isomorphism of the choices of I,<, (Wi, Fi, ti), . . . .

To prove the last part of Theorem 14.2(b), if (W1, F1, t1), (W2, F2, t2), g, ĝ are
as in Theorem 14.2(b), then we can choose the I, (Wi, Fi, ti) and K, (W ′k, F

′
k, t
′
k)

above such that (Wi0 , Fi0 , ti0) = (W1, F1, t1) for i0 ∈ I, and (W ′ki0
, F ′ki0

, t′ki0
) =

(W2, F2, t2), and (gi0ki0 , ĝi0ki0 ) = (g, ĝ). The construction yields ψ1 := ψi0 :

SW1,F1,t1 → X̂1 ⊆X1 and ψ2 := ψ′ki0 : SW2,F2,t2 → X̂2 ⊆X2 as we want, and

then ζi0 : h ◦ψ1 ⇒ ψ2 ◦Sg,ĝ above is a 2-morphism making (14.4) 2-commute.
This completes Step 4, and Theorem 14.2(b).

14.2 Hofer–Wysocki–Zehnder’s polyfolds

The polyfold programme of Hofer, Wysocki and Zehnder [41–48] is a functional-
analytic framework for describing the structure of (compactified) moduli spaces
in differential geometry, especially moduli spaces of J-holomorphic curves in
symplectic geometry. The objects in this programme related to d-manifolds
with corners are triples (V,E, s), where V is an M-polyfold, E a strong M-
polyfold bundle over V , and s : V → E a Fredholm section of E. The objects
related to d-orbifolds with corners are triples (V, E , s), where V is a polyfold, E
a strong polyfold bundle over V, and s : V → E a Fredholm section of E . Here
polyfolds are orbifold versions of M-polyfolds, where ‘M’ stands for ‘manifold’.

610



The set-up is really very complex, and to give proper definitions of these
concepts and an outline of the basic ideas would take many pages. So for
brevity we will try only to give a flavour of the theory and its motivations, and
refer interested readers to the survey [42] as a good starting point. Consider
the following ‘classical’ problem. Let (X,ω) be a compact symplectic manifold,
and J an almost complex structure on X compatible with ω. We wish to study
the moduli space M of all J-holomorphic maps u : CP1 → X.

One way to do this is to consider the Banach manifold V = L2
k(CP1, X) of all

maps u : CP1 → X that are Sobolev L2
k in local coordinates on CP1, X for some

k > 1, and the Banach vector bundle E → V whose fibre over u ∈ L2
k(CP1, X)

is the Banach space L2
k−1(u∗(TX) ⊗C Λ0,1T ∗CP1) of Sobolev L2

k−1 sections of

the complex vector bundle u∗(TX) ⊗C Λ0,1T ∗CP1 over Σ, and the Fredholm
section s : V → E mapping s : u 7→ ∂Ju. Thus, M is the zeroes of a Fredholm
section s of a Banach vector bundle E over a Banach manifold V , as in §14.1.

Now consider two generalizations of this situation. Each causes a problem,
and the solutions to these problems are the two main innovations in the polyfold
theory. Both problems are strictly infinite-dimensional issues.

(A) The automorphism group Aut(CP1) ∼= PSL(2,C) of CP1 acts onM, V, E,
so we can study the quotient moduli space M/Aut(CP1). This is the
zeros of a section s∗ of a bundle E/Aut(CP1) over V/Aut(CP1).

However, the action of Aut(CP1) on the Banach manifold V = L2
k(CP1, X)

is not smooth, but only continuous. This is because if u ∈ V and w ∈
aut(CP1) then the Lie derivative Lwu lies in L2

k−1(u∗(TX)), rather than

in TuV = L2
k(u∗(TX)). So V/Aut(CP1) is not a Banach manifold.

(B) Consider the family of Riemann surfaces Σt =
{

[x, y, z] ∈ CP2 : xy = tz2
}

for t ∈ C. Then Σt is nonsingular CP1 for t 6= 0, and Σ0 is two CP1’s
meeting in a node at [0, 0, 1]. For each t ∈ C we have a moduli space Mt

of J-holomorphic maps ut : Σt → X, the zeroes of a Fredholm section st
of a Banach vector bundle Et over the Banach manifold Vt = L2

k(Σt, X).

We would like to combine these moduli spaces Mt into a big moduli
space M =

∐
t∈CMt, with a global geometric structure. The obvious way

to do this is to try and make V =
∐
t∈C Vt into a Banach manifold, and

E =
∐
t∈CEt into a Banach vector bundle over V with section s =

∐
t∈C st.

However, although the Banach manifolds Vt for t 6= 0 form a smooth
family, because of the topology change of Σt at t = 0, the Banach manifold
V0 looks different to Vt for t 6= 0, and the Vt for t ∈ C are not a smooth
family. So we cannot make V into a Banach manifold.

To deal with problem (A), Hofer at al. introduce the notion of an sc-structure
on V , which is a sequence V = V0 ⊃ V1 ⊃ V2 ⊃ · · · , where each Vi is a Banach
manifold, with its own Banach topology (not that induced from V ), such that
the inclusion Vi ↪→ Vi+1 is compact, and V∞ =

⋂∞
i=0 Vi is dense in each Vi. In

our example V = L2
1(CP1, X), and Vi = L2

i+1(CP1, X) for all i > 0. They then
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define sc-smooth maps f : V →W between spaces V,W with sc-structures. The
basic idea is that the kth derivative ∇kf maps ⊗kTVi+k → TWi for i > 0.

To deal with problem (B), Hofer at al. introduce splicing cores, or (more
generally) sc∞-retracts. The basic idea is this: given a Banach space B, one
can consider families of projections πt : B → B for t ∈ Rn, with π2

t = πt,
which depend smoothly on t ∈ Rn in a weak sense. Then the image Imπt is
a Banach subspace of B, but can vary discontinuously with t ∈ Rn. (This is
possible only in infinite dimensions.) In our example, one can find πt : B → B
for t ∈ C such that L2

k(Σt, X) is locally modelled on Imπt for all t ∈ C, and the
discontinuous change in L2

k(Σt, X) between t = 0 and t 6= 0 can be understood
as the discontinuous change in Imπt.

They then define M-polyfolds, which may be thought of as generalizations of
Banach manifolds with corners – generally infinite-dimensional, though finite-
dimensional manifolds with corners are examples. Local models for M-polyfolds
are

∐
t∈[0,∞)k×Rn−k Imπt with πt : B → B a smooth family of projections for t ∈

[0,∞)k×Rn−k, where B is a Banach space with sc-smooth structure. Polyfolds
are orbifold versions of M-polyfolds, generalizations of Banach orbifolds with
corners. There are also generalizations of Banach vector bundles over Banach
manifolds, called strong (M-)polyfold bundles, and of Fredholm sections, called
Fredholm sections.

Perhaps the most compelling reason to be interested in polyfolds is:

Claim (Hofer at al. [43, §1]). Basically every moduli space of
stable J-holomorphic curves, with or without boundary, of interest
in symplectic geometry, has the structure of the zeroes of a Fredholm
section of a strong polyfold bundle over a polyfold.

The same should also hopefully be true of other nonlinear, ellip-
tic, compactified moduli space problems in differential geometry, for
instance, instanton or monopole-type equations from gauge theory.

This claim has so far been proved and published only for moduli of stable,
closed J-holomorphic curves with marked points in symplectic manifolds [48],
as in Gromov–Witten theory, though proofs have been announced for other
classes of curves. Much effort has first been expended in developing polyfolds
as an abstract theory, prior to constructing such structures on moduli spaces.

The next theorem defines truncation functors from (M-)polyfolds with Fred-
holm sections to d-orbifolds (or d-manifolds) with corners. It is closely mod-
elled on Theorem 14.2. We will prove (a),(b) in §14.2.1. Part (c) is easy: we
must show ΠdMan

MPolFS(idV , idE) = [idX ] and ΠdMan
MPolFS preserves composition,

but these follow from the characterization of the 1-morphism h in (b). We leave
(d) as an exercise for the reader. The author also expects that the truncation
functors will commute with fibre products over manifolds or orbifolds, and with
boundaries (V,E, s) 7→ (∂V,E|∂V , s|∂V ), X 7→ ∂X in the corners case, but these
constructions were not yet available for polyfolds at the time of writing.

Theorem 14.6. (a) Let V be an M-polyfold without boundary [43, §3.3], E a
fillable strong M-polyfold bundle over V [43, §4.3], and s : V → E an sc-smooth
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Fredholm section of E [43, §4.4], [44, §3]. Set X = s−1(0) ⊆ V, and suppose
the linearization ds|x : TxV → E|x [43, §4.4] has Fredholm index n ∈ Z for all
x ∈ X. Then we may construct a d-manifold X, natural up to equivalence in
dMan, with underlying topological space X and virtual dimension n.

The d-manifold structure on X may be characterized as follows: let W be a
manifold, F → W a vector bundle, and t : W → F a smooth section. Regard
W as an M-polyfold, and F → W as a strong M-polyfold bundle. Suppose
i : W → V is an sc-smooth embedding [43, §3.3], so that the pullback i∗(E) is
a strong M-polyfold bundle over W [43, Prop. 4.11] and i∗(s) is an sc-smooth
section of i∗(E), and ı̂ : F → i∗(E) is an sc/-smooth embedding of strong M-
polyfold bundles [43, §4.1–§4.3], such that ı̂ ◦ t = i∗(s), and for every w ∈ W
with t(w) = 0 and x = i(w) ∈ V, the map (ds|x)∗ in the commutative diagram

0 // TwW
dt|w ��

di|w
// TxV

ds|x ��

// TxV/di|w(TwW )

(ds|x)∗ ��

// 0

0 // F |w
ı̂|w // E|x // E|x/ı̂|w(F |w) // 0

(14.24)

is an isomorphism. Then X̂ := i(W ) ∩X is open in X, and there is an equiv-
alence ψ : SW,F,t → X̂ ⊆ X in dMan, which acts as i|t−1(0) : t−1(0) → X̂ on
topological spaces, where SW,F,t is given in Definition 3.13.

Suppose that the Fredholm section s is oriented in the sense of [44, §6.4].
Then one can construct a natural orientation on X.

(b) Let Va, Ea, sa, Xa, na and Xa be as in (a) for a = 1, 2. Suppose f : V1 → V2

is an sc-smooth map of M-polyfolds, and f̂ : E1 → f∗(E2) is an sc/-smooth

morphism of strong M-polyfold bundles on V1 satisfying f̂ ◦s1 = f∗(s2)+O(s2
1).

Then we may construct a 1-morphism h : X1 → X2 in dMan, natural up to
2-isomorphism, with continuous map h = f |X1 : X1 → X2.

This 1-morphism h may be characterized as follows: let Wa, Fa, ta, ia :
Wa → Va, ı̂a : Fa → i∗a(Ea) be as in (a) for a = 1, 2, so that (a) defines
equivalences ψa : SWa,Fa,ta → X̂a ⊆ Xa. Suppose g : W1 → W2 is smooth,
ĝ : F1 → g∗(F2) is a vector bundle morphism and Υ : F1 → (f ◦ i1)∗(TV2) an
sc/-smooth strong M-polyfold bundle morphism on W1 satisfying

i2 ◦ g = f ◦ i1 + Υ ◦ t1 +O(t21), (14.25)

ı̂2 ◦ ĝ = f̂ ◦ ı̂1 + (f ◦ i1)∗(ds2) ◦Υ +O(t1), (14.26)

where (14.25) holds in sc-smooth maps W1 → V2, and (14.26) in strong M-
polyfold bundle morphisms F1 → (f ◦ i1)∗(E2) or F1 → (i2 ◦ g)∗(E2). Then
ĝ◦t1 = g∗(t2)+O(t21) in C∞(g∗(F2)), so that Definition 3.30 gives a 1-morphism
Sg,ĝ : SW1,F1,t1 → SW2,F2,t2 , and we have a 2-commutative diagram in dMan :

SW1,F1,t1

ψ1��
Sg,ĝ

// SW2,F2,t2

ψ2 ��
X1

h // X2.
� �� �
IQ

(14.27)
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(c) Define a category MPolFS of ‘M-polyfolds without boundary with Fred-
holm sections’ to have objects (V,E, s) as in (a), and morphisms (V1, E1, s1)→
(V2, E2, s2) pairs (f, f̂) as in (b), with composition (g, ĝ) ◦ (f, f̂) =

(
g ◦ f, f̂ ◦

f∗(ĝ)
)
. Define a functor ΠdMan

MPolFS : MPolFS → Ho(dMan) as follows, where
Ho(dMan) is the homotopy category of the 2-category dMan.

For each (V,E, s) in MPolFS, choose a d-manifold X in the equivalence
class in dMan given by (a), and set ΠdMan

MPolFS(V,E, s) = X. For each mor-

phism (f, f̂) : (V1, E1, s1) → (V2, E2, s2), part (b) defines a 1-morphism h :
ΠdMan

MPolFS(V1, E1, s1) = X1 → X2 = ΠdMan
MPolFS(V2, E2, s2) in dMan unique up

to 2-isomorphism, so the morphism [h] : X1 → X2 in Ho(dMan) is uniquely

defined. Set ΠdMan
MPolFS(f, f̂) = [h]. Then ΠdMan

MPolFS is a functor.

(d) Analogues of (a)–(c) also hold with polyfolds without boundary, orbifolds,
and d-orbifolds in place of M-polyfolds without boundary, manifolds, and d-
manifolds, yielding a functor ΠdOrb

PolFS : Ho(PolFS)→ Ho(dOrb).
Similarly, analogues of all the above hold involving M-polyfolds (or poly-

folds) with corners, manifolds (or orbifolds) with corners, and d-manifolds (or d-
orbifolds) with corners, yielding functors ΠdManc

MPolcFS : MPolcFS→ Ho(dManc)
and ΠdOrbc

PolcFS : Ho(PolcFS)→ Ho(dOrbc).

Now we give some applications of these ideas to symplectic geometry. In [48],
Hofer, Wysocki and Zehnder prove that Gromov–Witten moduli spaces of J-
holomorphic stable maps of Riemann surfaces with marked points are zeros of
a Fredholm section of a strong polyfold bundle over a polyfold. Combining
Theorem 14.6 with [48, Th.s 1.7–1.11] yields the following corollary.

The first two paragraphs recall standard ideas in Gromov–Witten theory,
which can be found in [34] or [48]. For the last part, Hofer et al. [48] define a
polyfold without boundary V and fillable strong polyfold bundle E → V indepen-
dent of J , and for each complex structure Jt they define an oriented Fredholm
section st : V → E . As the Jt depend smoothly on t ∈ [0, 1], so do the st. So
the st for t ∈ [0, 1] combine to give an oriented Fredholm section s of the strong
polyfold bundle E × [0, 1] over the polyfold with boundary V × [0, 1]. We then
apply Theorem 14.6(d) to V × [0, 1], E × [0, 1], s.

Corollary 14.7. Let (X,ω) be a compact symplectic manifold of dimension 2n,
and J an almost complex structure on X compatible with ω. For β ∈ H2(X,Z)
and g,m > 0, writeMg,m(X,J, β) for the moduli space of J-holomorphic stable
maps (Σ, ~z, u) to X from a prestable Riemann surface Σ with genus g and m
marked points ~z = (z1, . . . , zm), with [u(Σ)] = β in H2(X,Z). It is a compact
topological space, with Gromov’s C∞-topology.

Define evaluation maps evj :Mg,m(X, J, β) → X for j = 1, . . . ,m by evj :
[Σ, ~z, u] 7→ u(zj). When 2g+m > 3, writeMg,m for the moduli space of Deligne–
Mumford stable Riemann surfaces of genus g with m marked points, which is a
compact orbifold of real dimension 2(m+3g−3). Define πg,m :Mg,m(X, J, β)→
Mg,m by evj : [Σ, ~z, w] 7→ [Σ̃, ~̃z ], where (Σ̃, ~̃z ) is the stabilization of (Σ, ~z).

Then Mg,m(X, J, β) may be given the structure of a compact, oriented d-
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orbifold without boundary Mg,m(X, J, β), with

vdimMg,m(X, J, β) = 2
(
c1(X) · β + (n− 3)(1− g) +m

)
. (14.28)

This depends on the choice of ‘gluing profile’ ϕ(r) = e1/r − e, and sequence
0 < δ0 < δ1 < · · · < 2π, used to define the smooth structure on Mg,m(X, J, β)
near singular curves. With these choices made, Mg,m(X, J, β) is unique up to
equivalence in dOrb.

Also the evj extend to 1-morphisms evj : Mg,m(X, J, β) → FdOrb
Man (X) in

dOrb, and πg,m extends to a 1-morphism πg,m : Mg,m(X, J, β) →Mg,m =
FdOrb

Orb (Mg,m) in dOrb, both natural up to 2-isomorphism.
Now let Jt : t ∈ [0, 1] be a smooth family of almost complex structures on

X compatible with ω. Then we may define a compact, oriented d-orbifold with
boundary Mg,m(X, Jt : t ∈ [0, 1], β), with virtual dimension

vdimMg,m(X, Jt : t ∈ [0, 1], β) = 2
(
c1(X) · β + (n− 3)(1− g) +m

)
+ 1,

underlying topological space
∐
t∈[0,1]Mg,m(X, Jt, β), and boundary

∂Mg,m(X,Jt : t ∈ [0, 1], β) ' −Mg,m(X, J0, β)qMg,m(X,J1, β) (14.29)

as an oriented d-orbifold. The 1-morphisms evj for j = 1, . . . ,m and πg,m for
2g +m > 3 are also defined for Mg,m(X, Jt : t ∈ [0, 1], β), and restrict to evj ,
πg,m on Mg,m(X,J0, β),Mg,m(X, J1, β) under (14.29).

We use Corollary 14.7 to define new Gromov–Witten type invariants in the
d-orbifold bordism groups of §13.4:

Definition 14.8. Let (X,ω) be a compact symplectic manifold, and g,m be
nonnegative integers, and β ∈ H2(X;Z). Define the Gromov–Witten d-orbifold
bordism invariant GW dorb

g,m (X,ω, β) by

GW dorb
g,m (X,ω, β) ={[
Mg,m(X, J, β), ev1×· · ·×evm

]
∈dBorb

2k (Xm), 2g+m<3,[
Mg,m(X, J, β), ev1×· · ·×evm×πg,m

]
∈dBorb

2k (Xm×Mg,m), 2g+m>3.

Here J is an almost complex structure on X compatible with ω,Mg,m(X, J, β),
evj ,πg,m are as in Corollary 14.7, and k = c1(X) · β + (n − 3)(1 − g) + m as
in (14.28). The second part of Corollary 14.7 and the definition of d-orbifold
bordism in §13.4 imply that GW dorb

g,m (X,ω, β) is independent of the choice of
almost complex structure J .

Remark 14.9. (a) As in (13.14), there are virtual class maps Πhom
dorb mapping

dBorb
2k (Xm) and dBorb

2k (Xm×Mg,m) to H2k(Xm;Q) and H2k(Xm×Mg,m;Q).
Applying these to the new invariants GW dorb

g,m (X,ω, β) will recover the conven-
tional symplectic Gromov–Witten invariants of [34] or [48, Th. 1.12].
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As in §13.4, d-orbifold bordism groups are far larger than homology groups,
and can have infinite rank even in negative degrees. Therefore the new invari-
ants GW dorb

g,m (X,ω, β) contain more information than conventional Gromov–
Witten invariants, in particular, on the orbifold strata of the moduli spaces
Mg,m(X, J, β), which can be recovered by applying the functors ΠΓ,λ

dorb of §13.4.
Since the dBorb

∗ (−) are defined over Z rather than Q, these new invariants may
be good tools for studying integrality properties of Gromov–Witten invariants.

As in Remark 13.28, it may be a useful idea to define a theory of unitary d-
orbifold bordism dBUorb

∗ (Y) for orbifolds Y, and define similar Gromov–Witten
type invariants in dBUorb

2k (Xm) and dBUorb
2k (Xm ×Mg,m).

(b) Polyfolds are a tool designed by functional analysts, and they abstract the
overall analytic structure of compactified J-holomorphic curve moduli problems.
In the author’s view, their principal value is as a framework for proving the
existence of geometric structures on such moduli spaces.

After the existence of the structure on moduli spaces is proved, it may be
preferable not to use polyfolds in subsequent geometric applications to Gromov–
Witten Theory, Lagrangian Floer Theory, Symplectic Field Theory, . . . . In-
stead, one should truncate to some simpler and more friendly structure, such as
d-orbifolds, to do the geometry, virtual chain computations, and so on.

Polyfolds comprise a huge amount of information even in the simplest cases,
and so may be impractical to work with. For example, consider the case g = 0,
m = 3 and β = 0 in Corollary 14.7, the moduli space of constant rational
curves in X with 3 marked points. The d-orbifold M0,3(X, J, 0) is just the
manifold X, that is, M0,3(X, J, 0) ' FdOrb

Man (X) in dOrb, and the evaluation
maps ev1, ev2, ev3 are all idM . But the corresponding polyfold V still contains
infinitely many nested infinite-dimensional Banach manifolds.

14.2.1 The proof of Theorem 14.6(a),(b)

The proof is modelled closely on that of Theorem 14.2(a),(b) in §14.1.1. So
rather than giving the proof in full, we will just explain the modifications to
the proof in §14.1.1 required to replace Banach manifolds and Banach vector
bundles by M-polyfolds without boundary and strong M-polyfold bundles. Here
are some introductory remarks on M-polyfolds, to establish notation:

(a) An sc-Banach space B [43, §2] is a sequence B = B0 ⊇ B1 ⊇ · · · , where
Bm is a Banach space with Banach norm ‖ . ‖m for m = 0, 1, . . . , and if
m < n then the inclusion Bn ↪→ Bm is a compact linear operator, and
B∞ :=

⋂∞
m=0Bm is dense in Bm for all m > 0. Subsets of B are called

open if they are open in the Banach topology on B0.

(b) Let B,C be sc-Banach spaces, and T ⊆ B, U ⊆ C be open, and write
Tm = T∩Bm, Um = U∩Cm. A map ϕ : T → U is called sc0 if ϕ(Tm) ⊆ Um
and ϕm := ϕ|Tm : Tm → Um is continuous in the Banach norms ‖ . ‖m on
Bm, Cm for all m > 0. Hofer et al. [43, §2.3] define notions of derivatives of
ϕ, and when ϕ is sc-smooth. If ϕ is sc-smooth, then ϕm+k : Tm+k → Um
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is a Ck map of Banach manifolds for all m, k > 0. But note that ϕ sc-
smooth does not imply that ϕ : Tm → Um is a smooth map of Banach
manifolds for any m > 0.

(c) Let B,C be sc-Banach spaces, T ⊆ B an open set, and πt : C → C for
t ∈ T be a family of linear projections on C, with πt ◦ πt = πt, such that
Π : T×C → T×C mapping (t, c) 7→ (t, πt(c)) is sc-smooth. The associated
splicing core (without boundary) is K =

{
(t, c) ∈ T × C : πt(c) = c

}
=

Im Π. We write Km = K ∩ (Tm × Cm) for m = 0, 1, . . . ,∞.

M-polyfolds (without boundary) in [43–46] are locally modelled on open
subsets of splicing cores (without boundary). In [47] Hofer et al. intro-
duce more general local models called sc-retracts, but this will make little
difference to our proof.

Note in particular that the splicing core K is embedded in the Banach
space B0×C0. Thus, M-polyfolds are locally subsets of Banach manifolds.
Similarly, strong M-polyfold bundles over M-polyfolds are locally subsets
of Banach vector bundles over Banach manifolds.

(d) We introduced notation O(s), O(s2) for manifolds and vector bundles in
Definition 3.29, and noted in Definition 14.1 that it also works for Ba-
nach manifolds and Banach vector bundles. Since M-polyfolds and strong
M-polyfold bundles are locally subsets of Banach manifolds and Banach
vector bundles, as in (c), the notation O(s), O(s2) also makes sense for
M-polyfolds, as used in (14.25)–(14.26) in Theorem 14.6(b), for instance.

(e) A finite-dimensional sc-Banach space B has B = B0 = B1 = · · · = B∞.
Thus, if B,C, T, U, ϕ are as in (b) with B finite-dimensional, then ϕ(T ) ⊆
U∞ ⊆ U , and as ϕ : T = Tm+k → Um is Ck for all k > 0, we see that
ϕ : T → Um is a smooth map of Banach manifolds for all m > 0.

Hence, if W is a (finite-dimensional) manifold, regarded as an M-polyfold,
V is an M-polyfold, f : W → V is sc-smooth, and V is locally modelled
on a splicing core K ⊆ B × C as in (c), then locally f(W ) ⊆ K∞ and
f : W → Bm × Cm is a smooth map of Banach manifolds for all m > 0.

One moral is that for sc-smooth maps f : W → V from manifolds W into
M-polyfolds V , on which our proof is based, the subtleties of sc-smoothness
become irrelevant, and we can treat V like a Banach manifold.

We now describe the modifications to the proof in §14.1.1 to replace Banach
manifolds by M-polyfolds. Here is the analogue of Step 1 in §14.1.1:

Step 1′. Let V,E, s,X = s−1(0) and n ∈ Z be as in Theorem 14.6(a). We say
that a triple (W,F, t, i, ı̂) satisfies condition (∗′) if:

(∗′) W is a manifold, F → W a vector bundle, t : W → F a smooth section,
i : W → V is an sc-smooth embedding of M-polyfolds, and ı̂ : F →
i∗(E) an sc/-smooth embedding of strong M-polyfold bundles, such that
ı̂ ◦ t = i∗(s), and i(W ) ∩X 6= ∅, and for every w ∈ W with t(w) = 0 and
x = i(w) ∈ V , the map (ds|x)∗ in (14.24) is an isomorphism.
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We show that if (W,F, t, i, ı̂) satisfies (∗′) then dimW−rankF = n, and i(W )∩X
is open in X. Hence the ‘standard model’ d-manifold SW,F,t from Definition
3.13 has virtual dimension n, and its topological space t−1(0) is homeomorphic
to the open set X̂ = i(W ) ∩X in X. We prove that for all x ∈ X, there exists
(W,F, t, i, ı̂) satisfying (∗′) with x ∈ i(W ).

To prove Step 1′, showing dimW − rankF = n is the same as in §14.5.1.
For the rest, if x ∈ X ⊆ V then V is modelled near x on an open subset O in a
splicing core K ⊂ B×C as in (c) above, so we can regard V near x as a subset
of the Banach manifold V̄ = B0 × C0. Also E is modelled near x on a subset
of a Banach vector bundle Ē over V̄ , and s is modelled near x on a Fredholm
section s̄ of Ē → V̄ called a filled version of s [43, Def. 4.16]. In a similar way
to (14.24) we have a commutative diagram

0 // TxV
ds|x ��

inc
// TxV̄

ds̄|x ��

// TxV̄ /TxV
(ds̄|x)∗ ∼=��

// 0

0 // E|x
inc // Ē|x // Ē|x/E|x // 0,

with (ds̄|x)∗ an isomorphism, and s−1(0) = s̄−1(0) near x.
The proof in §14.5.1 shows that i(W )∩ s̄−1(0) is open in s̄−1(0), so i(W )∩X

is open in X as s−1(0) = s̄−1(0) near x. To construct (W,F, t, i, ı̂) satisfying
(∗′) with x ∈ i(W ), we follow the proof in §14.5.1 for V̄ , Ē, s̄, choosing an open
x ∈ Ū ⊆ V̄ and ē1, . . . , ēk ∈ C∞(Ē|Ū ), with the additional requirements that
ēi is sc-smooth and ēi|Ū∩V ∈ C∞(E|Ū∩V ) ⊆ C∞(ĒŪ∩V ) for i = 1, . . . , k. It is
easy to produce such sections. Then the construction of §14.5.1 yields a finite-
dimensional submanifold W ⊆ V̄ , where in fact W ⊆ V∞ ⊆ V ⊆ V̄ , and we
take i : W → V to be the inclusion. Similarly, §14.5.1 yields a vector subbundle
F ⊆ Ē|W with s|W = s̄|W = t ∈ C∞(F ) ⊆ C∞(Ē|W ), where F ⊆ E|W , and we
take ı̂ : F → E|W = i∗(E) to be the inclusion. This completes Step 1′.

The analogue of the first part of Step 2 is:

Step 2′. Let V1, E1, s1, X1, V2, E2, s2, X2, f, f̂ be as in Theorem 14.6(b). Sup-
pose (Wa, Fa, sa, ia, ı̂a) satisfies (∗′) in (Va, Ea, sa) for a = 1, 2. We say that
(W12, e12, ê12) : (W1, F1, s1, i1, ı̂1)→(W2, F2, s2, i2, ı̂2) satisfies condition (+′) if:

(+′) W12 ⊆ W1 is open with i1(W12) ∩X1 = i1(W1) ∩ f−1(i2(W2)) ∩X1, and
e12 : W12 → W2 is smooth, and ê12 : F1|W12 → e∗12(F2) is a morphism of
vector bundles on W12, and there exists a morphism of strong M-polyfold
bundles Υ : F1|W12

→ (f ◦ i1)∗(TV2)|W12
on W12 satisfying

i2 ◦ e12 = f ◦ i1|W12
+ Υ ◦ t1|W12

+O(t21), (14.30)

e∗12(̂ı2)|W12
◦ê12 = i∗1(f̂)◦ ı̂1|W12

+(f ◦i1)∗(ds2)|W12
◦Υ+O(t1), (14.31)

where (14.30) holds in smooth maps W12 → V2, and (14.31) in vector bun-
dle morphisms F1|W12

→ (f ◦i1)∗(E2)|W12
or F1|W12

→ (i2◦e12)∗(E2)|W12
.

Then parts (a)–(d) of Step 2 in §14.1.1 transfer essentially without change.
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For the proof of Step 2′(a)–(d), note as above that locally near a point
x ∈ Xa ⊆ Va for a = 1, 2 we have inclusions Va ⊆ V̄a, Ea ⊆ Ēa|Va ⊆ Ēa and
sa = s̄a|Va , where V̄a is a Banach manifold, Ēa → V̄a a Banach vector bundle,
and s̄a : V̄a → Ēa a Fredholm section. Then (∗′) above in (Va, Ea, sa) implies

(∗) in §14.5.1 in (V̄a, Ēa, s̄a) near x. Also (f, f̂) : (V1, E1, s1) → (V2, E2, s2) as

in Theorem 14.6(b) extends locally near x to (f̄ , ˆ̄f) : (V̄1, Ē1, s̄1)→ (V̄2, Ē2, s̄2),

and (+′) above for (f, f̂) implies (+) in §14.5.1 for (f̄ , ˆ̄f).
Thus, in the situation of Step 2′(a)–(d), we deduce that Step 2(a)–(d) in

§14.1.1 hold for (f̄ , ˆ̄f) : (V̄1, Ē1, s̄1) → (V̄2, Ē2, s̄2). These immediately imply
Step 2′(a)–(d), except for one issue: in (d), the construction in §14.5.1 yields
a morphism of Banach vector bundles Υ : F1|W12

→ (f ◦ i1)∗(T V̄2)|W12
rather

than a morphism of strong M-polyfold bundles Υ : F1|W12
→ (f ◦ i1)∗(TV2)|W12

.
Recall that V̄2 is an sc-Banach manifold, so that V̄2 = V̄2,0 ⊇ V̄2,1 ⊇ · · · ,

where V̄2,m are Banach manifold for m = 0, 1, . . . , and in applying Step 2(a)–
(d) we are using only the Banach manifold V̄2,0. Now Π2 : V̄2 → V̄2 is sc-
smooth. So Π2 : V̄2,0 → V̄2,0 is a continuous map of Banach manifolds, but need
not be differentiable. However, on restricting to V̄2,1 we do have a derivative
dΠ2 : Π∗2(T V̄2,0)|V̄2,1

→ T V̄2,0|V̄2,1
. Since f ◦ i1 : W1 → V2 maps to V2,∞ ⊆

V̄2,∞ ⊆ V̄2,1, the pullback (f ◦ i1)∗(dΠ2) : (f ◦ i1)∗ ◦ Π∗2(T V̄2)→ (f ◦ i1)∗(T V̄2)
exists as a morphism of Banach vector bundles on W1. Also (f ◦i1)∗◦Π∗2(T V̄2) =
(f ◦ i1)∗(T V̄2) as Π2 ◦ f ◦ i1 = f ◦ i1 since f ◦ i1(W1) ⊆ V2 and Π2|V2

= idV2
.

Thus, (f ◦i1)∗(dΠ2) : (f ◦i1)∗(T V̄2)→ (f ◦i1)∗(T V̄2) is a projection as Π2 is,
and maps to (f ◦i1)∗(TV2) as Π2 maps to V2. Hence Υ′ := (f ◦i1)∗(dΠ2)|W12 ◦Υ
is a morphism Υ′ : F1|W12

→ (f ◦ i1)∗(TV2)|W12
as required, and composing

(14.5)–(14.6) for Υ with the given projections Π2 : V̄2 → V2, Π̃2 : Ē2 → E2

implies (14.30)–(14.31) for Υ′. This proves Step 2′(d), and completes Step 2′.
Steps 3 and 4 and their proofs in §14.1.1 now extend to M-polyfolds with

only cosmetic changes, replacing Steps 1,2, (∗), (+) by Steps 1′, 2′, (∗′), (+′),
and inserting inclusions i : W ↪→ V and î : F ↪→ i∗(E). These proofs use only
the results of Steps 1,2, plus the fact that Banach manifolds are Hausdorff and
second countable, which is also true of M-polyfolds.

This proves Theorem 14.6(a),(b), except for the last part of Theorem 14.6(a)
on orientations of s,X, which has no analogue in Theorem 14.6(a). In [44,
§6.4], Hofer et al. explain that for V,E, s,X as in Theorem 14.6(a), so that s
is a Fredholm section and X = s−1(0), then one can define a topological line
bundle Ldet over X called the determinant line bundle, whose fibre at x ∈ X is
Ldet|x = Λtop(Ker ds|x) ⊗ Λtop(Coker ds|x)∗. In fact they construct L not just
over X = s−1(0) ⊆ V∞ ⊆ V , but also over V∞, even though ds|x : TxV → E|x
is not canonically defined at x ∈ V∞ \X. But we need Ldet only over X.

Let W,F, t, i, ı̂ and ψ : SW,F,t →X as in the second part of Theorem 14.6(a),
and let w ∈W with t(w) = 0 and x = i(w) ∈ X. Then (ds|x)∗ an isomorphism
in (14.24) implies that we have an exact sequence

0 // Ker(ds|x) // TwW // E|w // Coker(ds|x) // 0. (14.32)
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We now have isomorphisms

Ldet|x = Λtop(Ker ds|x)⊗ Λtop(Coker ds|x)∗

∼= ΛtopTwW ⊗ Λtop(E|w)∗ ∼= LT∗SW,F,t |w ∼= LT∗X |x,
(14.33)

where LT∗SW,F,t and LT∗X are the orientation line bundles of the d-manifolds
SW,F,t,X, as in §4.6, and in the second step of (14.33) we use (14.32), in
the third Definition 4.48, and in the fourth we use the restriction to w of the
isomorphism Lψ : ψ∗(LT∗X)→ LT∗SW,F,t from Definition 4.46, as ψ is étale.

Thus, on X we have two topological real line bundles: the determinant line
bundle Ldet from the M-polyfold set-up in [44, §6.4], and the orientation line
bundle LT∗X on the d-manifold X from §4.6. At each point x ∈ X we have
constructed an isomorphism Ldet|x ∼= LT∗X |x in (14.33). One can show this is
independent of choices, and over all x ∈ X gives an isomorphism of topological
line bundles Ldet|X ∼= LT∗X . An orientation for s is an orientation on Ldet,
which gives an orientation on Ldet|X , and thus on LT∗X , and so on X.

14.3 Fukaya–Oh–Ohta–Ono’s Kuranishi spaces

Kuranishi spaces are used in Fukaya and Ono [34] and Fukaya, Oh, Ohta and
Ono [32] as the geometric structure on moduli spaces of J-holomorphic curves,
to develop theories of Gromov–Witten invariants and Lagrangian Floer coho-
mology in symplectic geometry. We begin with some words of warning:

Remark 14.10. In the opinion of the author (and some of his friends), there
are some problems with the theories of Kuranishi spaces in [32,34], and the con-
structions of virtual cycles and chains, and the proofs of existence of Kuranishi
structures on moduli spaces of J-holomorphic curves. Recently, McDuff and
Wehrheim [78] and Fukaya et al. [33] have addressed some of these issues.

Probably most of these problems can be fixed by changing definitions in [32],
and giving more detailed proofs, as in [33,78]. But this is not our purpose. We
argue that instead of repairing the theory of Kuranishi spaces, one should replace
it with the theory of d-orbifolds with corners. Providing a good substitute for
Kuranishi spaces was one of the main reasons the author wrote this book.

Our aim here is to explain the relations between Kuranishi spaces and d-
orbifolds, without getting bogged down in correcting or rewriting [32]. We take
the following approach. The definitions we give are essentially those in [32, §A1],
but with minor changes of notation to improve compatibility with our d-orbifolds
material. In this section only, we will assume results stated in [32], and use them
to prove Theorem 14.17 and Corollary 14.18. So these two results are only as
trustworthy as their source [32]. They will not be used elsewhere in the book.

Our definition of Kuranishi space follows that of ‘Kuranishi space with a
tangent bundle’ in [32, §A1.1].

Definition 14.11. Let X be a topological space, and p ∈ X. A Kuranishi
neighbourhood of p in X is a quintuple (Vp, Ep,Γp, sp, ψp) where Vp is a manifold
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(possibly with boundary, or with corners), Ep → Vp a vector bundle, Γp a
finite group acting smoothly and locally effectively on Vp, Ep preserving the
vector bundle structure, sp : Vp → Ep a smooth, Γp-equivariant section of Ep,
and ψp : s−1

p (0)/Γp → X is a homeomorphism from s−1
p (0)/Γp to an open

neighbourhood of p in X. We write the Γp-actions on Vp, Ep as rp(γ) : Vp → Vp
and r̂p(γ) : Ep → rp(γ)∗(Ep) for γ ∈ Γp.

Definition 14.12. Let X be a topological space, and (Vp, Ep,Γp, sp, ψp), (Vq,
Eq,Γq, sq, ψq) be Kuranishi neighbourhoods of p, q ∈ X with p ∈ ψq(s−1

q (0)/Γq).
A coordinate change from (Vp, Ep,Γp, sp, ψp) to (Vq, Eq,Γq, sq, ψq) is a quadruple
(Vpq, epq, êpq, ρpq) satisfying:

(a) ∅ 6= Vpq ⊆ Vp is a Γp-invariant open submanifold, with

p ∈ ψp
(
sp|−1

Vpq
(0)/Γp

)
⊆ ψq(s−1

q (0)/Γq) ⊆ X.

(b) ρpq : Γp → Γq is an injective group morphism.

(c) epq : Vpq → Vq is an embedding of manifolds with epq ◦rp(γ) = rq(ρpq(γ))◦
epq : Vpq → Vq for all γ ∈ Γp. If vp, v

′
p ∈ Vpq and δ ∈ Γq with rq(δ) ◦

epq(v
′
p) = epq(vp), there exists γ ∈ Γp with ρpq(γ) = δ and rp(γ)(v′p) = vp.

(d) êpq : Ep|Vpq → e∗pq(Eq) is an embedding of vector bundles, such that
êpq ◦ sp|Vpq = e∗pq(sq) and rp(γ)∗(êpq) ◦ r̂p(γ) = e∗pq(r̂q(ρpq(γ))) ◦ êpq :
Ep|Vpq → (epq ◦ rp(γ))∗(Eq) for all γ ∈ Γp.

(e) If vp ∈ Vpq with sp(vp) = 0 and vq = epq(vp) ∈ Vq then the following linear
map is an isomorphism:(

dsq(vq)
)
∗ :
(
TvqVq

)/(
depq(vp)[TvpVp]

)
→
(
Eq|vq

)/(
êpq(vp)[Ep|vp ]

)
.

(f) ψq ◦ (epq)∗|sp|−1
Vpq

(0)/Γp
= ψp|sp|−1

Vpq
(0)/Γp

: sp|−1
Vpq

(0)/Γp → X, where (epq)∗ :

Vpq/Γp → Vq/Γq is induced by epq : Vpq → Vq by equivariance in (c).

Definition 14.13. Let X be a Hausdorff, second countable topological space.
A Kuranishi structure κ on X of dimension n ∈ Z assigns a Kuranishi neighbour-
hood (Vp, Ep,Γp, sp, ψp) for each p ∈ X with dimVp−rankEp = n, and a coordi-
nate change (Vpq, epq, êpq, ρpq) for all p, q ∈ X with p ∈ ψq(s−1

q (0)/Γq), such that
if p, q, r ∈ X with p ∈ ψq(s−1

q (0)/Γq) and p, q ∈ ψr(s−1
r (0)/Γr), so that we have

coordinate changes (Vpq, epq, êpq, ρpq), (Vqr, eqr, êqr, ρqr) and (Vpr, epr, êpr, ρpr),
then there exists a unique γpqr ∈ Γr satisfying ρpr(γ) = γpqr ρqr(ρpq(γ)) γ−1

pqr for
all γ ∈ Γp, and as for (10.20) we have

epr|Vpr∩e−1
pq (Vqr) = rr(γpqr) ◦ eqr ◦ epq|Vpr∩e−1

pq (Vqr),

êpr|Vpr∩e−1
pq (Vqr) =

(
e∗pq(e

∗
qr(r̂r(γpqr))) ◦ e∗pq(êqr) ◦ êpq

)
|Vpr∩e−1

pq (Vqr).
(14.34)

A Kuranishi space (X,κ) of virtual dimension n is a Hausdorff, second count-
able topological space X with a Kuranishi structure κ of dimension n. We call
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(X,κ) a Kuranishi space without boundary, or with boundary, or with corners, if
the manifolds Vp in the Kuranishi neighbourhoods (Vp, Ep,Γp, sp, ψp) in κ are
without boundary, or with boundary, or with corners, respectively.

Fukaya et al. do not define morphisms between Kuranishi spaces (though
see [32, Rem. A1.44(2)]), so Kuranishi spaces are not (presently) a category. But
they do define morphisms from a Kuranishi space to a manifold [32, Def. A1.13]:

Definition 14.14. Let (X,κ) be a Kuranishi space, and Y a manifold. A
strongly smooth map (f, λ) : (X,κ) → Y is a continuous map f : X → Y
of topological spaces, together with extra data λ which assigns a Γp-invariant
smooth map fp : Vp → Y for each Kuranishi neighbourhood (Vp, Ep,Γp, sp, ψp)
in κ for p ∈ X, such that f◦ψp = (fp)∗ : s−1

p (0)/Γp → Y , and fq◦epq = fp|Vpq for
all coordinate changes (Vpq, epq, êpq, ρpq) in κ. We call (f, λ) weakly submersive
if fp : Vp → Y is a submersion for each p ∈ X.

The next remark outlines the main elements of the theory of Kuranishi spaces
in Fukaya et al. [32], and compares them to d-orbifolds with corners.

Remark 14.15. (i) Let (X,κ) be a Kuranishi space. An orientation on (X,κ)
[32, Def. A1.17] assigns an orientation of the line bundle ΛtopEp⊗ΛtopT ∗Vp on
Vp for each p ∈ X, compatible under coordinate changes (Vpq, epq, êpq, ρpq).

This corresponds to orientations on SV,E,s in Definition 4.48.

(ii) If (X,κ) is a Kuranishi space, then as in [32, Def. A1.30] one can define the
boundary (∂X, κ∂), a Kuranishi space with vdim(∂X, κ∂) = vdim(X,κ)−1. The
Kuranishi neighbourhoods in κ∂ are (∂Vp, Ep|∂Vp ,Γp, sp|∂Vp , ψp|∂Vp) for p ∈ X.
This is analogous to boundaries of d-orbifolds with corners in §11.3.

(iii) Fukaya et al. [32, Lem. A1.11] define good coordinate systems on Kuranishi
spaces, and claim (without proof) that they exist on every (compact) Kuranishi
space. They are very close to our type A good coordinate systems on d-orbifolds
and d-orbifolds with corners in §10.8.1 and §12.9.

(iv) Suppose (X,κ), (X,κ′) are Kuranishi spaces, Y is a manifold, and (f, λ) :
(X,κ) → Y , (f ′, λ′) : (X ′, κ′) → Y are weakly submersive, strongly smooth
maps. Then Fukaya et al. [32, §A1.2] define a ‘fibre product’ Kuranishi space
(X,κ) ×Y (X ′, κ′). It has topological space X ×f,Y,f ′ X ′ and Kuranishi neigh-
bourhoods

(
Vp×fp,Y,f ′q V

′
q , π
∗
Vp

(Ep)⊕π∗V ′q (E′q),Γp×Γ′q, π
∗
Vp

(sp)⊕π∗V ′q (s′q), ψ(p,q)

)
for (p, q) ∈ X ×Y X ′. Note that this not a fibre product in the sense of being
characterized by a universal property in a (higher) category of Kuranishi spaces.

Orientations on (X,κ), (X,κ′), Y induce orientations on (X,κ)×Y (X ′, κ′).
When (X,κ), (X ′, κ′) (but not Y ) have corners, Fukaya et al. observe that

∂
[
(X,κ)×Y (X ′, κ′)

] ∼= [
(∂(X,κ))×Y (X ′, κ′)

]
q
[
(X,κ)×Y (∂(X ′, κ′))

]
, as for

(6.132). In [32, §8.2] they give results on orientations of ‘fibre products’ of
Kuranishi spaces, and their boundaries, analogous to Proposition 12.41 and
Theorem 12.43 for d-orbifolds with corners.

(v) Let (X,κ) be a compact, oriented Kuranishi space of virtual dimension n, Y
a manifold, and (f, λ) : (X,κ)→ Y a strongly smooth map. Then after choosing
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some extra data, Fukaya et al. [32, Th. A1.23] define a virtual chain [(X,κ)]virt

for (X,κ) in the singular chains Csi
n (Y ;Q). If ∂(X,κ) = ∅ then ∂[(X,κ)]virt = 0,

and
[
[(X,κ)]virt

]
∈ Hsi

n (Y ;Q) is a virtual class for (X,κ). The proof uses good
coordinate systems, and is similar to the proof of Theorem 13.23 in §13.5.

This should be compared with our explanation in §13.2 and §13.4 that com-
pact, oriented d-manifolds and d-orbifolds admit virtual classes.

(vi) Let (X,ω) be a compact symplectic manifold, and J an almost complex
structure on X compatible with ω. Then Fukaya and Ono [34, §12-§16] construct
oriented Kuranishi structures (but with a different definition of Kuranishi space)
on moduli spacesMg,h(X, J, β) of stable J-holomorphic curves in X with genus
g and h marked points.

Now let Y be a compact embedded Lagrangian in X. In [32, §7] Fukaya
et al. construct Kuranishi structures on moduli spaces Mk(X,Y, J, β) of stable
J-holomorphic discs in X with k boundary marked points, with boundary in Y .
In [32, §8], given a ‘relative spin structure’ for (X,Y ), they define orientations
on these Kuranishi spaces. They define strongly smooth ‘evaluation maps’ evi :
Mk(X,Y, J, β)→ Y for i = 1, . . . , k.

From the point of view of applications to symplectic geometry, the most
important point is the combination of (v) and (vi), to show that moduli spaces
of J-holomorphic curves have virtual chains or virtual classes.

Here are some more technical remarks about the definitions:

Remark 14.16. (a) We have changed notation from [32, §A]. In particular,
in Definition 14.12 we have reversed the order of p, q compared to [32], so that
Fukaya et al. would write (êqp, eqp, ρqp) rather than (Vpq, epq, êpq, ρpq).

(b) Definition 14.12(e) is not part of the definition of coordinate change in [32,
Def. A1.3], but is given separately in the definition of ‘Kuranishi space with a
tangent bundle’ in [32, Def. A1.14]. The author knows of no applications for
Kuranishi spaces without tangent bundles, so we have combined the two.

(c) Fukaya et al. [32,34] require their topological spaces X in Kuranishi spaces
to be compact and metrizable, rather than Hausdorff and second countable, as
we have assumed in Definition 14.13. A compact topological space is metrizable
if and only if it is Hausdorff and second countable. So our condition is equivalent
to theirs in the compact case, but also allows X noncompact.

(d) Note the close correspondence between Definitions 10.45, 10.46(a)–(f), and
10.47(d), and Definitions 14.11, 14.12(a)–(f), and 14.13, respectively. Also note
the similarity of Definitions 14.11–14.13 with the hypotheses of Theorem 10.21.
This is because the author based the material of §10.2 and §10.8 on Kuranishi
spaces, partly to make the proof of Theorem 14.17 easy.

(e) The definition of Kuranishi space in Fukaya and Ono [34, §5] is not equiv-
alent to that in [32, §A]. In particular, in [34] the sections sp in Kuranishi
neighbourhoods are only continuous, not smooth. This is not compatible with
our use of C∞-schemes and C∞-stacks, which needs smooth sections.

Here is the main result of this section. It will be proved, assuming material
from Fukaya et al. [32], in §14.3.1.
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Theorem 14.17. (a) Let (X,κ) be a Kuranishi space. Then we can construct
a d-orbifold with corners X from (X,κ), with the same underlying topological
space and virtual dimension, which is unique up to equivalence in dOrbc.

Suppose (f, λ) : (X,κ) → Y is a strongly smooth map, for Y a manifold.
Then we can construct a 1-morphism f : X→ Y = FdOrbc

Man (Y ) in dOrbc, with
the same continuous map f : X → Y, uniquely up to 2-isomorphism in dOrbc.

Orientations on (X,κ) correspond naturally to orientations on X.
The construction commutes with boundaries, up to equivalence in dOrbc.
Suppose (f, λ) : (X,κ) → Y and (f ′, λ′) : (X ′, κ′) → Y are weakly submer-

sive, strongly smooth maps, and (X ′′, κ′′) be the ‘fibre product’ (X,κ)×Y (X ′, κ′)
of [32, §A1.2]. Let f : X→ Y, f ′ : X′ → Y and X′′ be the corresponding objects
and 1-morphisms in dOrbc. Then X′′ ' X×f ,Y,f ′X′. That is, the construction
commutes with fibre products, up to equivalence in dOrbc.

(b) Let X be a d-orbifold with corners. Then we can construct a Kuranishi space
(X,κ) from X, with the same topological space X = Xtop and virtual dimension.
The Kuranishi structure κ depends on many arbitrary choices.

Let f : X → Y = FdOrbc

Man (Y ) be a 1-morphism in dOrbc. Then we can
construct a strongly smooth map (f, λ) : (X,κ) → Y, with the same underlying
continuous map f = ftop : Xtop → Y, where λ depends on many choices.

(c) The construction of (a) is left inverse to that of (b), up to equivalence in
dOrbc. That is, if X is a d-orbifold with corners, applying (b) gives (X,κ), and
applying (a) gives X′, then there exists an equivalence j : X → X′ in dOrbc,
which is natural up to 2-isomorphism. Similarly, if f : X → Y = FdOrbc

Man (Y )
maps to (f, λ) : (X,κ) → Y under (b), which maps to f ′ : X′ → Y under (a),
then there is a 2-isomorphism f ′ ◦ j ⇒ f .

Assuming both Theorem 14.17, and the construction of Kuranishi structures
on moduli spaces of J-holomorphic discs in Fukaya et al. [32, §7–§8], we deduce:

Corollary 14.18. Suppose (X,ω) is a compact symplectic manifold, J an al-
most complex structure on X compatible with ω, and Y a compact, embed-
ded Lagrangian submanifold in X. For β ∈ H2(X,Y ;Z) and k > 0, write
Mk(X,Y, J, β) for the moduli space of J-holomorphic stable maps (Σ, ~z, u) to
X from a prestable holomorphic disc Σ with k boundary marked points ~z =
(z1, . . . , zk), with u(∂Σ) ⊆ Y and [u(Σ)] = β in H2(X,Y ;Z). Define evaluation
maps evi :Mk(X,Y, J, β)→ Y for i = 1, . . . , k by evi : [Σ, ~z, u] 7→ u(zi).

ThenMk(X,Y, J, β) may be given the structure of a compact d-orbifold with
corners Mk(X,Y, J, β), with vdimMk(X,Y, J, β) = µY (β) + k + n− 3, where
dimX = 2n and µY : H2(X,Y ;Z)→ Z is the Maslov index. The maps evi ex-
tend to 1-morphisms evi :Mk(X,Y, J, β)→ Y = FdOrbc

Man (Y ). Given a relative
spin structure for (X,Y ), we can define an orientation on Mk(X,Y, J, β).

We draw some conclusions:

Remark 14.19. (i) It should by now be clear that Kuranishi spaces, and
polyfolds in §14.2, do exactly the same job. Both are intended primarily as
geometric structures on moduli spaces of J-holomorphic curves, for applications
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in symplectic geometry. There are virtual chain constructions for Kuranishi
spaces [32, §A1.1] and polyfolds [46] providing the bridge to homological algebra,
based on the same idea of multi-valued transverse perturbations.

The philosophical difference between the two is that in a moduli problem,
Kuranishi spaces (and even more so, d-orbifolds) remember essentially only
the minimal amount of information needed to form virtual cycles. Polyfolds
remember very much more information — arguably, an excessive amount.

Hofer, Wysocki and Zehnder in [41–48], and the author in this book, have
similar relationships with the work of Fukaya et al. [32,34]: we are both inspired
by it, and reacting against it. The polyfold programme originated, in part, as an
attempt to replace unsatisfactory proofs in [32,34] of the existence of Kuranishi
structures on moduli spaces of J-holomorphic curves. This book originated, in
part, as an attempt to find a better theory of Kuranishi spaces.

Fukaya, Oh, Ohta and Ono are pioneers in their field, and had the courage
and tenacity to attack some devastatingly difficult geometric and analytic prob-
lems. We should honour their contributions and their overall vision, which have
been pivotal to the area, even if we criticize some of the details of their work.

(ii) In the author’s view, Kuranishi spaces should be regarded as an incomplete
theory. Definitions 14.11–14.14, and the material of Remark 14.15(i)–(v), are
sufficient for the applications in [32]. But for a proper understanding of Kuran-
ishi spaces as geometric spaces in their own right, one wants good notions of
morphisms between Kuranishi spaces making them into a (higher) category, and
theorems on existence of fibre products, gluing by equivalences, etc., involving
this categorical structure, and all this is lacking.

We claim that our theory of d-manifolds and d-orbifolds with corners reme-
dies these deficiencies. In brief, as a slogan, we assert that:

The ‘right’ way to define Kuranishi spaces is as d-orbifolds with corners.

Theorem 14.17 justifies the idea that the theories of Kuranishi spaces and d-
orbifolds with corners are roughly equivalent to the extent that the theory of
Kuranishi spaces has been developed, that is, on the level of objects, and mor-
phisms to manifolds. In the work of Fukaya, Oh, Ohta and Ono [32], one
can essentially replace Kuranishi spaces by d-orbifolds with corners throughout.
This book can thus be regarded as a prequel to [32].

14.3.1 The proof of Theorem 14.17, assuming results from [32]

For (a), given a Kuranishi space (X,κ), by [32, Lem. A1.11] we can choose a
good coordinate system on (X,κ). The data of this good coordinate system
satisfies the hypotheses of the first part of Theorem 12.24. So Theorem 12.24
constructs a d-orbifold with corners X, uniquely up to equivalence in dOrbc.

Similarly, given a strongly smooth map (f, λ) : (X,κ) → Y , we choose a
good coordinate system for it, and the data satisfies the hypotheses of both
parts of Theorem 12.24. So Theorem 12.24 constructs a d-orbifold with corners
X, uniquely up to equivalence in dOrbc, and a 1-morphism f : X → Y =
FdOrbc

Man (Y ), unique up to 2-isomorphism and equivalences of X. The claims
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about orientations, boundaries, and fibre products follow by comparing the
definitions for Kuranishi spaces and d-orbifolds with corners.

For (b), let X be a d-orbifold with corners. Theorem 12.48 gives a type A
good coordinate system

(
I,<, (Vi, Ei,Γi, si,ψi), (Vij , eij , êij , ρij ,ηij), γijk

)
for

X. We define a Kuranishi structure κ on the topological space X = Xtop

as follows. We have Xtop =
⋃
i∈I X̂ i,top, where ψi : [SVi,Ei,si/Γi] → X is

an equivalence with the open C∞-substack X̂ i ⊆ X . Let p ∈ Xtop. Then

{i ∈ I : p ∈ X̂ i,top} is a nonempty subset of I, where (I,<) is a well-ordered

set. Hence there is a unique least element ip in {i ∈ I : p ∈ X̂ i,top} in the order
<. Define a Kuranishi neighbourhood (Vp, Ep,Γp, sp, ψp) of p in Xtop, in the
sense of Definition 14.11, by (Vp, Ep,Γp, sp, ψp) = (Vip , Eip ,Γip , sip , ψip,top).

Suppose p, q ∈ Xtop with p ∈ ψq(s−1
q (0)/Γq). As ψq(s

−1
q (0)/Γq) = X̂ iq,top

we have p ∈ X̂ iq,top, so iq lies in {i ∈ I : p ∈ X̂ i,top}, of which ip is the
least element. Hence ip 6 iq in I. If ip = iq we set (Vpq, epq, êpq, ρpq) =
(Vp, idVp , idEp , idΓp). If ip < iq the good coordinate system includes a type
A coordinate change (Vipiq , eipiq , êipiq , ρipiq ,ηipiq ) from (Vip , Eip ,Γip , sip ,ψip)
to (Viq , Eiq ,Γiq , siq ,ψiq ). Define (Vpq, epq, êpq, ρpq) = (Vipiq , eipiq , êipiq , ρipiq ).
Then (Vpq, epq, êpq, ρpq) is a coordinate change from (Vp, Ep,Γp, sp, ψp) to (Vq,
Eq,Γq, sq, ψq), in the sense of Definition 14.12.

The associativity property (14.34) of coordinate changes follows from Def-
inition 10.47(d), with γpqr = γipiqir . Therefore this data (Vp, Ep,Γp, sp, ψp),
(Vpq, epq, êpq, ρpq) for all p, q comprises a Kuranishi structure κ on X = Xtop,
and (X,κ) is a Kuranishi space, of virtual dimension vdimX.

Similarly, if f : X → Y = FdOrbc

Man (Y ) is a 1-morphism in dOrbc, then f is
semisimple and flat as ∂Y = ∅, so Theorem 12.48 gives a type A good coordinate
system

(
I,<, (Vi, Ei,Γi, si,ψi), (Vij , eij , êij , ρij ,ηij), γijk, gi, ζi

)
for f : X→ Y.

We construct the Kuranishi space (X,κ) as above. Define a continuous map
f = ftop : Xtop → Ytop

∼= Y . For each p ∈ X = Xtop, define a smooth map
fp : Vp → Y by fp = gip . Then Definition 10.47(f),(g) imply that this data f, fp
for p ∈ X comprise a strongly smooth map (f, λ) : (X,κ)→ Y .

Part (c) can be deduced from the constructions above. Roughly, it just says
that given a d-orbifold with corners X, if we use Theorem 12.48 to choose a
type A good coordinate system

(
I,<,(Vi,Ei,Γi,si,ψi),(Vij ,eij ,êij ,ρij ,ηij), γijk

)
for X, and then apply Theorem 12.24 to construct a d-orbifold with corners X′

from the data
(
I,<, (Vi, Ei,Γi, si, ψi,top), (Vij , eij , êij , ρij), γijk

)
, then X′ ' X.

This is true as X is a possible choice for X′ in Theorem 12.24, and Theorem
12.24 gives uniqueness of X′ up to equivalence.

14.4 Derived algebraic geometry and derived schemes

Derived algebraic geometry is a generalization of conventional algebraic geom-
etry. It studies new classes of geometric objects, derived schemes and derived
stacks, which are enriched versions of classical schemes and stacks, with more
structure. The foundational ideas were introduced by Deligne, Drinfel’d, and
Kontsevich. Systematic treatments are provided by Toën and Vezzosi [101,102]

626



and Lurie [70–72]. It is a difficult, technical area, requiring extensive background
— even more so than polyfolds. Toën [100] gives a good introduction.

One major motivation for introducing derived algebraic geometry was to
study moduli spaces, and deformation/obstruction theory. For example, let
X be a smooth projective scheme, and M a moduli scheme of stable coher-
ent sheaves on X. Then for each point [E] ∈ M representing E ∈ coh(X),
we have T ∗[E]M ∼= Ext1(E,E)∗. As in §3.3 one can define an ‘obstruction

space’ O[E]M measuring how singular M is at [E], and there is a surjective

map Ext2(E,E)∗ → O[E]M. But M encodes essentially no information on

Exti(E,E) for i > 2. The idea was to form a ‘derived moduli scheme’ Mder

whose ‘cotangent space’ T ∗[E]M
der encodes Exti(E,E)∗ for all i > 0.

Such derived moduli schemes are useful in enumerative invariant problems
such as Gromov–Witten or Donaldson–Thomas theory. Here one has to define
‘virtual classes’ of moduli schemes. Classical moduli schemes and stacks contain
insufficient information for this, as one needs to know Exti(E,E) for all i. But
one can define virtual classes for ‘quasi-smooth’ derived moduli schemes.

A characteristic feature of derived algebraic geometry is that it involves
∞-categories. There are several theories of ∞-categories which are roughly
equivalent: simplicial categories, quasicategories, model categories, Segal cate-
gories, dg-categories, and A∞-categories. In examples, ∞-categories are often
constructed from an ordinary category C by inverting a class of morphisms W
in C, called quasi-isomorphisms or weak equivalences. This is called localization.
One can localize to get a category C[W−1], but this may lose too much infor-
mation, and an∞-category localization C[W−1]∞ may be better behaved — for
instance, may have the ‘correct’ (homotopy) fibre products.

Our theory of d-manifolds and d-orbifolds is a theory of ‘derived differential
geometry’. It differs from derived algebraic geometry in two major respects:

(A) We use C∞-rings, C∞-schemes and C∞-stacks in place of rings, schemes
and stacks, as for Spivak’s derived manifolds [94,95] in §14.6.

(B) Our d-spaces, d-manifolds, d-stacks, and d-orbifolds form 2-categories,
not ∞-categories. Our 2-categories are defined very explicitly, and not by
localization. Our kind of ‘derived’ geometry is really very much simpler
than that of Toën and Vezzosi [101,102], Lurie [70–72], or Spivak [94,95].

We will discuss connections between derived algebraic geometry and d-
manifolds or d-orbifolds further in §14.5.4–§14.5.5 and §14.6. In the rest of
this section we will discuss (B), considering the questions:

(i) How can our ‘2-category style derived geometry’ be expressed, in its sim-
plest form, in the language of conventional derived algebraic geometry?

(ii) Why is it that we can develop a successful ‘derived differential geometry’
in a simple 2-category framework, whereas ‘derived algebraic geometry’
requires a much more complex ∞-category set-up?

(iii) Do we lose anything by working in 2-categories instead of ∞-categories?
Supposing our theory is a 2-category truncation of an ∞-category version
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of ‘derived differential geometry’, what is forgotten by this truncation?

For Question (i), recall our definition of d-spaces X = (X,O′X , EX , ıX , X)
in §2.2, where X = (X,OX). Forgetting about C∞-rings, regard OX and O′X as
sheaves of R-algebras on X. Define A0 = O′X , as a sheaf of R-algebras on X,
and A−1 = EX , as a sheaf of A0-modules on X, and define a sheaf morphism
d : A−1 → A0 by d = κX ◦ X . Then A−1

d−→A0 is a sheaf of commutative
differential graded algebras (dg-algebras) on X. Roughly speaking, this makes(
X,A−1

d−→A0

)
into a derived scheme. Note that as (2.18) is exact, the data

OX , ıX in X is the cokernel of d : A−1 → A0, that is, OX ∼= h0(A−1
d−→A0),

and X is the classical scheme underlying the derived scheme
(
X,A−1

d−→A0

)
.

The dg-algebras here are of a simple kind:

Definition 14.20. A (nonpositively graded) commutative differential graded
algebra (dg-algebra) (A∗,d) over a field K is a K-algebra

⊕
k60Ak graded in

degrees k = 0,−1,−2, . . . , with K-linear differentials d : Ak → Ak+1 satisfying
d2 = 0 and ab = (−1)klba, d(ab) = (da)b+(−1)ka(db) for all a ∈ Ak and b ∈ Al.

We call (A∗,d) square zero if Ak = 0 for k 6= 0,−1 and A−1 · d(A−1) = 0.
This implies that d(A−1) is a square zero ideal in A0.

Thus, the analogue of our ‘2-category derived geometry’ in derived alge-
braic geometry would be to study square zero derived schemes, that is, derived
schemes in which the dg-algebras in the structure sheaf are all square zero.

There is a natural truncation functor from commutative dg-algebras to
square zero dg-algebras, which maps a dg-algebra (A∗,d) to the square zero
dg-algebra

A−1/
(
dA−2 +A−1 · d(A−1)

) d∗ // A0/
(
d(A−1)

)
2.

Applying this after a suitable fibrant replacement, one could try to define a
truncation functor from derived schemes to square zero derived schemes.

For example, let V be a manifold, E → V a vector bundle of rank k, and
s : V → E a smooth section. In conventional derived algebraic geometry, one
would model the ‘derived manifold’ V ×s,E,0 V by the dg-algebra:

C∞(ΛkE∗)
s · // C∞(Λk−1E∗)

s · // · · · s · // C∞(Λ1E∗)
s · // C∞(V ).

In our 2-category version, we model V ×s,E,0 V by the square zero dg-algebra:

C∞(E∗)/(C∞(E∗) · Is)
s · // C∞(V )/I2

s ,

where Is = s · C∞(E∗) is the ideal in C∞(V ) generated by s.

Remark 14.21. We have been using the term ‘derived scheme’ above rather
loosely. Early work in derived algebraic geometry involved the dg-schemes of
Ciocan-Fontanine and Kapranov [23]. These have largely been superseded by
the derived stacks of Toen and Vezzosi [100–102], which include derived schemes
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[100, §4.2]. Both dg-schemes and derived schemes X may be covered by Zariski
open subschemes of the form Spec(A∗,d) for a dg-algebra (A∗,d). One difference
between the two theories is that for dg-schemes the underlying classical scheme
and topological space is SpecA0, but for derived schemes the underlying classical
scheme and topological space is Spech0(A∗,d).

For the case of a dg-scheme or a derived scheme defined as the zeroes of a
section s of a vector bundle E over a smooth scheme V , similar to the ‘standard
model’ d-manifold SV,E,s of Definition 3.13, the dg-scheme would have classical
scheme V , and the derived scheme would have classical scheme s−1(0) ⊂ V .
Thus, Toën–Vezzosi’s derived schemes [100, §4.2] are a better analogue for d-
manifolds than Ciocan-Fontanine–Kapranov’s dg-schemes [23].

For Question (ii), note that our ‘2-category derived geometry’ is not in-
tended as a substitute for derived algebraic geometry in full generality, but only
for quasi-smooth derived schemes (which correspond to d-manifolds) and quasi-
smooth derived Deligne–Mumford stacks (which correspond to d-orbifolds). If a
derived scheme M is quasi-smooth then its cotangent complex LM is concen-
trated in degrees −1, 0, as for square zero dg-algebras. But the structure sheaf
OM may be nonzero in many negative degrees. As in Toën [100, §4.4.3], virtual
classes are only expected to exist for proper, quasi-smooth derived schemes and
Deligne–Mumford stacks.

Behrend [8, 9] studied a version of derived algebraic geometry involving a
2-category of differential graded schemes, rather than an ∞-category. He did
not restrict to the quasi-smooth case, and his ‘2-category geometry’ is different
from ours. Behrend’s 2-category does not have all the good properties one might
hope for. In particular, his results [9, §2.3] on gluing by equivalences are quite
weak, as they work only over an affine open cover of an affine base.

One nice feature of C∞-algebraic geometry, that does not hold in conven-
tional algebraic geometry, is the existence of partitions of unity on suitable
C∞-schemes X. This implies that quasicoherent sheaves E on X, are fine, or
soft sheaves, which have good properties, as in Proposition B.37 for instance.

In the author’s view, the main reason why ‘2-category derived geometry’
works well for d-manifolds and d-orbifolds, is this existence of partitions of unity,
and consequent softness of sheaves. In particular, the proofs of Proposition 2.27
and Theorems 2.28–2.33 on gluing d-spaces by equivalences in §2.4 use partitions
of unity in an essential way. Note that gluing by equivalences was problematic
in Behrend’s proposal [8, 9] for 2-categorical derived algebraic geometry.

For Question (iii), for the applications the author has in mind (principally
to do with moduli spaces, enumerative invariants, Floer theory, etc.), as far as
the author can see nothing important is lost by working in a 2-category rather
than an∞-category, and there are some significant benefits. But there are some
constructions in derived algebraic geometry which should work in a suitable∞-
category DerMan of derived manifolds, such as Spivak’s derived manifolds in
§14.6, but will fail in our 2-category dMan.

Here is an example. De Rham theory on a smooth manifold X has the
following nice interpretation in derived algebraic geometry. The ‘loop space’
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LX of X in derived algebraic geometry is the fibre product X ×∆X ,X×X,∆X
X

in DerMan, where ∆X : X → X×X is the diagonal map. Then the dg-algebra
of functions on the derived manifold LX is the algebra Ω∗(X) of exterior forms
on X. The exterior derivative d : Ω∗(X) → Ω∗+1(X) is interpreted as the
Lie derivative of functions on LX by rotation around the loop, and de Rham
cohomology H∗(X;R) is interpreted as the S1-invariant functions on LX.

In dMan, the ‘functions’ on the fibre product X×∆X ,X×X,∆X
X are Ω0(X)⊕

Ω1(X), so the effect of truncating to 2-categories is to forget about k-forms on
X for k > 2. In general, exterior forms on d-manifolds do not work that well.

14.5 C-schemes and C-stacks with obstruction theories,
and quasi-smooth derived C-schemes and C-stacks

In enumerative problems in algebraic geometry, such as Gromov–Witten [7],
Donaldson–Thomas [59, 97], or Pandharipande–Thomas invariants [88], a stan-
dard method is to show that the moduli space of interest is a scheme or Deligne–
Mumford stack equipped with a perfect obstruction theory in the sense of [12].
It then has a virtual class in Chow homology [12], which ‘counts’ the points in
the moduli space, and is used to define the enumerative invariants.

The main result of this section, Theorem 14.27, defines truncation functors
from C-schemes and Deligne–Mumford C-stacks with perfect obstruction the-
ories to d-manifolds and d-orbifolds. Thus, many interesting moduli spaces in
complex algebraic geometry have natural d-manifold or d-orbifold structures.

In the derived algebraic geometry of Toën and Vezzosi [100–102] there are
notions of quasi-smooth derived schemes and stacks, whose classical truncations
are schemes and stacks with perfect obstruction theories. So we obtain trun-
cation functors from quasi-smooth derived C-schemes and Deligne–Mumford
C-stacks to d-manifolds and d-orbifolds.

We begin in §14.5.1–§14.5.4 by summarizing some background material on
cotangent complexes, perfect obstruction theories, and quasi-smooth derived
schemes and stacks. The new results are stated in §14.5.5 and proved in §14.5.6.

14.5.1 Introduction to cotangent complexes

Suppose f : X → Y is a morphism of C-schemes. Then one can define the
cotangent sheaf (or sheaf of relative differentials) ΩX/Y in the abelian category
coh(X) of coherent sheaves on X, as in Hartshorne [38, §II.8]. When Y =
SpecC and f : X → SpecC is the unique projection, we write ΩX rather than
ΩX/ SpecC. If X is a smooth C-scheme then ΩX is the cotangent bundle T ∗X,
a vector bundle (locally free sheaf) of rank dimX on X.

IfX
f−→Y

g−→Z are morphisms of C-schemes then there is an exact sequence

f∗(ΩY/Z)
Ωf // ΩX/Z // ΩX/Y // 0 (14.35)

in coh(X). Note that the morphism f∗(ΩY/Z) → ΩX/Z need not be injective,
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that is, (14.35) may not be a short exact sequence. Morally speaking, this says
that f 7→ ΩX/Y is a right exact functor, but may not be left exact.

Cotangent complexes are derived versions of cotangent sheaves, for which
(14.35) is replaced by a distinguished triangle (14.36), making it fully exact.
The cotangent complex LX/Y of a morphism f : X → Y is an object in
the (unbounded) derived category D(qcoh(X)) of quasicoherent sheaves on X,
constructed by Illusie [50]; a helpful review is given in Illusie [51, §1]. When
Y = SpecC and φ : X → SpecC is the projection, we write LX rather than
LX/ SpecC. Here are some properties of cotangent complexes:

(a) hi(LX/Y ) = 0 for i > 0, and h0(LX/Y ) ∼= ΩX/Y . If f : X → Y is smooth
then LX/Y ∼= ΩX/Y .

(b) Suppose X
f−→Y

g−→Z are morphisms of C-schemes. Then there is a
distinguished triangle in D(qcoh(X)), [50, §2.1], [51, §1.2]:

f∗(LY/Z)
Lf // LX/Z // LX/Y // f∗(LY/Z)[1]. (14.36)

Here f∗ : D(qcoh(Y ))→ D(qcoh(X)) is the left derived pullback functor.

(c) Suppose we have a commutative diagram of morphisms of C-schemes:

U e
//

f��

V //

��

W

��
X

g // Y // Z.

Then we get a commutative diagram in D(qcoh(U)), [50, §2.1]:

e∗(LV/W ) // LU/W // LU/V // e∗(LV/W )[1]

f∗
(
g∗(LY/Z)

)
//

OO

f∗(LX/Z) //

OO

f∗(LX/Z) //

OO

f∗
(
g∗(LY/Z)[1]

)
,

OO

where the rows come from (14.36) for U → V →W and X → Y → Z.

(d) Suppose we have a Cartesian diagram of C-schemes:

W
f

//

e ��

Y
h��

X
g // Z.

If g or h is flat then we have base change isomorphisms [50, §2.2], [51, §1.3]:

LW/Y ∼= e∗(LX/Z), LW/X ∼= f∗(LY/Z), LW/Z ∼= e∗(LX/Z)⊕ f∗(LY/Z).

(e) There are truncation functors τ<k, τ>k : D(qcoh(X)) → D(qcoh(X)) for
each k ∈ Z. For any E• in D(qcoh(X)) and i, k ∈ Z, these satisfy

hi(τ<k(E•)) ∼=

{
hi(E•), i < k,

0, i > k,
, hi(τ>k(E•)) ∼=

{
0, i < k,

hi(E•), i > k,
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and there is a distinguished triangle

τ<kE•
τ<k // E•

τ>k
// τ>kE• // (τ<kE•)[1].

For some problems involving cotangent complexes LX , it is sufficient
to consider the truncation τ>−1(LX). Although cotangent complexes
LX ,LX/Y are generally difficult to compute unless X or f : X → Y
is smooth, there is a useful explicit expression for τ>−1(LX). Suppose
j : X ↪→ W is an embedding of X as a C-subscheme in a smooth C-
scheme W . Then we have an exact sequence of sheaves on X

0 // I // j−1(OW )
j] // OX // 0, (14.37)

where I is a sheaf of ideals in j−1(OW ). There is an isomorphism

τ>−1(LX) ∼=
[
I/I2 α // j∗(T ∗W )

]
(14.38)

in D(qcoh(X)), where I/I2 is in degree −1 and j∗(T ∗W ) in degree 0, and
the morphism α maps α : f + I2 7→ j∗(df).

All the above also holds with Deligne–Mumford C-stacks in place of C-schemes.

14.5.2 Perfect obstruction theories

We now define (perfect) obstruction theories. These are tools used in algebraic
geometry to construct virtual cycles on moduli spaces, and hence to define enu-
merative invariants such as Gromov–Witten and Donaldson–Thomas invariants.
Obstruction theories were introduced by Behrend and Fantechi [12]. They de-
fined obstruction theories as morphisms φ : E• → LX . However, we follow Huy-
brechts and Thomas [49] weaker definition of a morphism φ : E• → τ>−1(LX).

If φ : E• → LX is an obstruction theory in the sense of [12] then τ>−1 ◦ φ :
E• → τ>−1(LX) is an obstruction theory in the sense of [49]. Behrend and
Fantechi’s proof of Theorem 14.23 below uses only properties of the truncation
τ>−1(LX), rather than the full cotangent complex LX , and so also works for
Huybrechts and Thomas’ definition. Obstruction theories in Huybrechts and
Thomas’ sense are sometimes easier to construct. We follow Huybrechts and
Thomas because as their definition is weaker, it makes our Theorem 14.27 below
stronger.

Definition 14.22. Let X be a C-scheme or Deligne–Mumford C-stack.

(a) A complex E• ∈ D(qcoh(X)) is perfect of amplitude contained in [a, b], if
locally on X (Zariski locally if X is a C-scheme, and étale locally if X is
a Deligne–Mumford C-stack), E• is quasi-isomorphic to a complex F • of
vector bundles (locally free sheaves) of finite rank in degrees a, a+1, . . . , b.

The virtual rank of E• is a locally constant function rankE• : X → Z
defined (Zariski or étale) locally by rankE• =

∑b
k=a(−1)k rankF k, for

F • as above. We say that E• has constant rank n ∈ Z if rankE• = n.
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(b) An obstruction theory for X is a morphism φ : E• → τ>−1(LX) in
D(qcoh(X)), where LX is the cotangent complex of X, and τ>−1(LX)
its truncation, as in §14.5.1, and E satisfies:

(i) hi(E•) = 0 for all i > 0;

(ii) hi(E•) is coherent for i = 0,−1;

(iii) h0(φ) : h0(E•)→ h0(τ>−1(LX)) ∼= h0(LX) is an isomorphism; and

(iv) h−1(φ) : h−1(E•)→ h−1(τ>−1(LX)) ∼= h−1(LX) is surjective.

(c) An obstruction theory φ : E• → τ>−1(LX) is called perfect if E• is perfect
of amplitude contained in [−1, 0].

If instead f : X → Y is a morphism of C-schemes, we define relative (perfect)
obstruction theories φ : E• → τ>−1(LX/Y ) in the same way.

Theorem 14.23 (Behrend and Fantechi [12, §5]). Suppose X is a proper C-
scheme or Deligne–Mumford C-stack, and φ : E• → τ>−1(LX) is a perfect
obstruction theory on X, where E• has constant rank n ∈ Z. Then one can
construct a virtual fundamental class, or virtual class, [X]virt in the Chow
homology group An(X). If X is smooth of dimension n and φ is idT∗X : T ∗X →
τ>−1(LX) ∼= T ∗X, then [X]virt is the usual fundamental class of X.

Behrend and Fantechi’s virtual classes have other important properties,
which we will not state formally. In particular, they are invariant under contin-
uous deformations of X,E•, φ. Thus, for instance, Gromov–Witten invariants
defined using Behrend and Fantechi’s virtual classes are unchanged under de-
formations of the underlying projective complex manifold.

Theorem 14.24. Many interesting and important moduli schemes or moduli
stacks in algebraic geometry have natural obstruction theories. Some of these
are perfect, and so have virtual fundamental classes. In particular, the following
moduli problems have been proved to carry perfect obstruction theories:

(a) Deligne–Mumford moduli C-stacks of stable morphisms from curves with
marked points to smooth complex projective varieties, as in Behrend [7].

(b) Deligne–Mumford moduli C-stacks of stable morphisms from curves to
complex projective K3 surfaces, with ‘reduced’ obstruction theories, as in
Maulik, Thomas and Pandharipande [81].

(c) Stable moduli C-schemes of vector bundles and coherent sheaves E over
complex algebraic surfaces X, as in Mochizuki [83]. Also stable moduli
C-schemes of ‘L-Bradlow pairs’ φ : L → E on X, for L a line bundle on
X, [83].

(d) Stable moduli C-schemes of coherent sheaves E on a complex Calabi–Yau
3-fold or smooth Fano 3-fold X, as in Thomas [98]. Also stable moduli
C-schemes of morphisms φ : O(−n)→ E on a complex Calabi–Yau 3-fold
X for n� 0, as in Joyce and Song [59].
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(e) Moduli C-schemes of ‘stable PT pairs’ (C,D) in a smooth complex pro-
jective 3-fold X, where C ⊂ X is a curve and D ⊂ C is a divisor, as in
Pandharipande and Thomas [88].

(f) Separated moduli C-schemes of simple perfect complexes in the derived
category Db coh(X) for X a complex Calabi–Yau 3-fold, as in Huybrechts
and Thomas [49].

The combination of Theorems 14.23 and 14.24 means perfect obstruction
theories are the standard tool in enumerative problems in algebraic geometry.

14.5.3 C-schemes with perfect obstruction theories as a category

We make C-schemes X with perfect obstruction theories φ : E• → τ>−1(LX)
into a category, and Deligne–Mumford C-stacks with perfect obstruction theo-
ries into a 2-category. We impose the extra conditions that X is separated and
second countable and E• has constant virtual rank in order to have functors
from these categories to d-manifolds and d-orbifolds in §14.5.5.

Definition 14.25. Define a category SchCObs to have objects (X,E•, φ),
where X is a separated, second countable C-scheme and φ : E• → τ>−1(LX) is
a perfect obstruction theory on X with constant rank. Given objects (X,E•, φ),

(Y, F •, ψ), define morphisms (f, f̂) : (X,E•, φ)→ (Y, F •, ψ) to be a pair (f, f̂)

of a morphism f : X → Y of C-schemes, and a morphism f̂ : f∗(F •) → E• in
D(qcoh(X)) that makes the following diagram commute:

f∗(F •)

f∗(ψ)��
f̂

// E•

φ ��
f∗(τ>−1(LY ))

τ>−1(Lf ) // τ>−1(LX).

(14.39)

If (f, f̂) : (X,E•, φ) → (Y, F •, ψ) and (g, ĝ) : (Y, F •, ψ) → (Z,G•, χ) are
morphisms, in a similar way to (2.23) the composition is

(g, ĝ) ◦ (f, f̂) =
(
g ◦ f, f̂ ◦ f∗(ĝ) ◦ If,g(G•)

)
,

where If,g(G
•) : (g ◦ f)∗(G•)→ f∗(g∗(G•)) is the canonical isomorphism. The

identity morphism for (X,E•, φ) is (idX , δE•), where δEX : id∗X(E•) → E• is
the natural isomorphism. It is easy to check that SchCObs is a category.

Similarly, we define a 2-category StaCObs to have objects (X,E•, φ), where
X is a separated, second countable Deligne–Mumford C-stack and φ : E• →
τ>−1(LX) a perfect obstruction theory on X with constant rank. Define 1-
morphisms, composition, and identities in StaCObs as for SchCObs.

Let (f, f̂), (g, ĝ) : (X,E•, φ)→(Y, F •, ψ) be 1-morphisms in StaCObs. Then
f, g : X → Y are 1-morphisms in the 2-category DMStaC of Deligne–Mumford
C-stacks. A 2-morphism η : (f, f̂)⇒ (g, ĝ) in StaCObs is a 2-morphism η : f ⇒
g in DMStaC such that ĝ ◦η∗(F •) = f̂ , where η∗(F •) : f∗(F •)→ g∗(F •) is the
natural isomorphism in D(qcoh(X)). Horizontal and vertical composition, and
identity 2-morphisms, are as in DMStaC. Then StaCObs is a 2-category.
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Although we will not use it in the sequel, we briefly describe related results
of Manolache [74], in which schemes and stacks with obstruction theories are
treated as a category. See the references in [74] for similar work. Suppose X,Y
are C-schemes, and φ : E• → LX , ψ : F • → LY are obstruction theories in
the sense of [12] with virtual ranks m,n, and f : X → Y is a morphism, and

f̂ : f∗(F •) → E• is a morphism in D(qcoh(X)) such that φ ◦ f̂ = Lf ◦ ψ, that
is, the analogue of (14.39) without truncations commutes.

Consider the commutative diagram in D(qcoh(X)):

f∗(F •)

f∗(ψ)
��

f̂

// E•

φ
��

// G•

χ
��

// f∗(F •)[1]

f∗(ψ)[1]
��

f∗(LY )
Lf // LX // LX/Y // f∗(LY )[1],

where the rows are distinguished triangles, with G• being the cone of f̂ . As
in [74, §3.2], χ : G• → LX/Y is a relative obstruction theory.

Suppose G• is perfect. Then Behrend and Fantechi [12] define the virtual
class [X/Y ]virt of χ in the relative Chow group Am−n(X/Y ). Manolache [74]
regards [X/Y ]virt as a ‘virtual pull-back map’ f !

virt : A∗(Y )→ A∗+m−n(X). She
proves various functoriality properties, including f !

virt([Y ]virt) = [X]virt, where
[X]virt, [Y ]virt are the virtual classes of X,Y defined using φ, ψ.

14.5.4 Quasi-smooth derived schemes and stacks

We now explain the relation of §14.5.1–§14.5.3 to derived algebraic geometry,
which was discussed in §14.4. We use the framework of Toën and Vezzosi [100–
102], though a similar story should hold in that of Lurie [70–72].

Toën and Vezzosi define notions of derived C-schemes and derived C-stacks
X, including derived Deligne–Mumford C-stacks. Derived C-schemes and C-
stacks X have cotangent complexes LX [101, §1.4], with properties as in §14.5.1.
Each such X has a classical truncation X0 = t0(X), which is a classical scheme
or stack, forgetting the derived structure. There is an inclusion morphism i :
X0 → X. Thus as in §14.5.1 we obtain a morphism Li : i∗(LX) → LX0

, which
is an obstruction theory on X0 in the sense of [12]. So τ>−1 ◦ Li : i∗(LX) →
τ>−1(LX0) is an obstruction theory on X0 in the sense of §14.5.2.

As in Toën [100, §4.4.3] or Schürg et al. [92, §1], a derived C-scheme or
Deligne–Mumford C-stack X is called quasi-smooth if LX is perfect of amplitude
contained in [−1, 0]. Then Li : i∗(LX) → LX0

is a perfect obstruction theory
on X0, so if X0 is proper then Theorem 14.23 gives a virtual class in A∗(X0).

For many interesting moduli problems in which one can construct a classical
moduli scheme or stack M0, one can also construct a derived moduli scheme
or derived moduli stack M, of which M0 = t0(M) is the classical truncation.
Furthermore, the cotangent complex LM of the derived moduli scheme or stack
M is usually simply related to the obstruction theory of the moduli problem,
and may be perfect of amplitude contained in [a, b] for a, b depending on the
dimension of the moduli problem.
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In ‘classical’ situations in which one constructs an obstruction theory on
a moduli scheme or stack M0, such as those in Theorem 14.24, very often
there also exists a natural derived moduli scheme or moduli stack M, and the
obstruction theory is Li : i∗(LM)→ LM0

. So we can think of these obstruction
theories as a ‘classical shadow’ of the derived moduli spaces. Perfect obstruction
theories generally come from quasi-smooth moduli schemes or stacks.

Using these ideas and material from Toën and Vezzosi [100–102], we deduce,
in a similar way to Schürg [91, Prop. 3.70] and Schürg, Toën and Vezzosi [92, §1]:

Theorem 14.26. Write QsDSchC for the Segal category of separated, sec-
ond countable, quasi-smooth derived C-schemes of constant dimension, in the
sense of Toën and Vezzosi [100–102], and Ho(QsDSchC) for its homotopy cat-
egory, and let SchCObs,StaCObs be as in §14.5.3. There is a natural functor
ΠSchObs

QsDSch : Ho(QsDSchC) → SchCObs mapping X 7→
(
X0, i

∗(LX), τ>−1 ◦ Li
)

on objects X, where X0 = t0(X) is the classical truncation of X and i : X0 → X
the inclusion, and mapping f 7→

(
f0, τ>−1(i∗(Lf ))

)
on morphisms f : X → Y,

where f0 = t0(f) : X0 → Y0 is the classical truncation of f .
Similarly, writing QsDStaC for the Segal category of separated, second

countable, quasi-smooth derived Deligne–Mumford C-stacks of constant dimen-
sion, there is a functor ΠStaObs

QsDSta : Ho(QsDStaC)→ Ho(StaCObs).

Again, the assumptions that X is separated, second countable and of con-
stant virtual dimension are imposed so that we will get functors from these
categories to d-manifolds and d-orbifolds in §14.5.5. Schürg [91] gives partial
results on the construction of an inverse functor StaCObs→ QsDStaC.

14.5.5 Truncation functors from schemes and stacks with perfect
obstruction theories to d-manifolds and d-orbifolds

We can now state our main result, which roughly says that C-schemes and
Deligne–Mumford C-stacks with perfect obstruction theories may be given the
structure of d-manifolds and d-orbifolds. It is modelled on Theorems 14.2 and
14.6. We will prove parts (a),(b) in §14.5.6, using ideas from Behrend [10] and
Schürg [91]. Part (c) is easy: as for Theorems 14.2(c) and 14.6(c), we must
show ΠdMan

SchObs preserves identities and composition, and this follows from the
construction. We leave (d) as an exercise for the reader.

In (a), we suppose X is separated and second countable so that X(C) is
Hausdorff and second countable, which are required for X to be a d-manifold.
Note too that if X is a complex manifold of (complex) dimension n, then X is
also an oriented real manifold of (real) dimension 2n. This is why we pass from
virtual rank n to virtual dimension 2n, and include an orientation on X.

Theorem 14.27. (a) Suppose X is a separated, second countable C-scheme
and φ : E• → τ>−1(LX) is a perfect obstruction theory on X, with virtual rank
n ∈ Z. Then we may construct an oriented d-manifold X with vdimX = 2n,
natural up to oriented equivalence in dMan, whose underlying topological space
is the set X(C) of C-points of X, with the complex analytic topology.
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(b) Let (f, f̂) : (X1, E
•
1 , φ1) → (X2, E

•
2 , φ2) be a morphism in SchCObs from

§14.5.3, and X1,X2 be (choices of) the d-manifolds constructed from X1, E
•
1 , φ1

and X2, E
•
2 , φ2 in (a). Then we may construct a 1-morphism f : X1 →X2 in

dMan, natural up to 2-isomorphism, whose underlying continuous map is the
map f(C) : X1(C)→ X2(C) induced by f on the sets of C-points of X1, X2.

(c) Using (a),(b) we define a functor ΠdMan
SchObs : SchCObs → Ho(dMan),

where Ho(dMan) is the homotopy category of the 2-category dMan. For each
(X,E•, φ) in SchCObs, choose a d-manifold X in the equivalence class in
dMan given by (a), using the Axiom of Choice, and set ΠdMan

SchObs(X,E
•, φ) =

X. For each morphism (f, f̂) : (X1, E
•
1 , φ1) → (X2, E

•
2 , φ2) in SchCObs, part

(b) defines a 1-morphism f : X1 →X2 in dMan unique up to 2-isomorphism,
so the morphism [f ] : X1 → X2 in Ho(dMan) is uniquely defined. Set

ΠdMan
SchObs(f, f̂) = [f ]. Then ΠdMan

SchObs is a functor.

(d) Analogues of (a)–(c) also hold for separated, second countable Deligne–
Mumford C-stacks X with perfect obstruction theories φ : E• → τ>−1(LX) of
virtual rank n ∈ Z, and oriented d-orbifolds X with vdimX = 2n, yielding a
functor ΠdOrb

StaObs : Ho(StaCObs)→ Ho(dOrb).

Combining Theorems 14.24 and 14.27 yields existence of d-manifold and
d-orbifold structures on many important moduli spaces in complex algebraic
geometry. By ‘with fixed topological invariants’ below we mean, for example,
that the genus, number of marked points and homology class of the curve should
be fixed in Theorem 14.24(a), and the Chern character of E be fixed in Theorem
14.24(c). This implies that the obstruction theories have constant rank, as
required by Theorem 14.27(a). The separated and second countable conditions
are automatic in Theorem 14.24(a)–(f), noting that (f) assumes separated.

Corollary 14.28. The moduli spaces described in Theorem 14.24(a)–(f), with
fixed topological invariants, all have the structure of oriented d-orbifolds (for
(a),(b)) or oriented d-manifolds (for (c)–(f)), naturally up to equivalence.

Composing the truncation functors in Theorems 14.26 and 14.27 gives:

Corollary 14.29. There are natural truncation functors

ΠdMan
QsDSch = ΠdMan

SchObs ◦ΠSchObs
QsDSch : Ho(QsDSchC) −→ Ho(dMan),

ΠdOrb
QsDSta = ΠdOrb

StaObs ◦ΠStaObs
QsDSta : Ho(QsDStaC) −→ Ho(dOrb)

(14.40)

from separated, second countable, quasi-smooth derived C-schemes and Deligne–
Mumford C-stacks of constant dimension to d-manifolds and d-orbifolds.

Remark 14.30. (a) In the proof of Theorem 14.27(a), it is striking how close
the correspondence is between the data provided by the C-scheme with perfect
obstruction theory, and the data required to define a d-manifold, as in the
definition of SV,E,s in Definition 3.13, for instance. The mathematics of perfect
obstruction theories, and their connection with square zero extensions as in [12,
Th. 4.5], was part of the author’s motivation in inventing d-manifolds.
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(b) Combining Corollary 14.28 with the material on virtual classes for compact,
oriented d-manifolds and d-orbifolds in §13.2 and §13.4 allows us to define virtual
classes for the moduli schemes and stacks in Theorem 14.24(a)–(f). The author
expects that these will yield the same values for the invariants as if we used
Behrend and Fantechi’s virtual cycles [12].

As discussed in Remarks 13.28 and 14.9(a), we can also use the d-manifold
and d-orbifold structures on moduli spaces in Corollary 3.22 to define classes in
d-manifold and d-orbifold bordism groups. It seems plausible that these may
contain more information than the ‘classical’ enumerative invariants.

(c) Let X be a projective complex manifold. Embedding X in some CPn, it
becomes a compact Kähler manifold (X, J, ω), and hence a compact symplectic
manifold, with an integrable almost complex structure J . Consider the moduli
spaces Mg,m(X, J, β) of stable J-holomorphic curves in X with genus g, m
marked points, and homology class β ∈ H2(X;Z), which are used to define
Gromov–Witten invariants, as in [7, 34,48].

In symplectic geometry, Hofer et al. [48] realizeMg,m(X, J, β) as the zeroes
of a Fredholm section over a polyfold, so Corollary 14.7 makes Mg,m(X, J, β)
into a compact, oriented d-orbifold Mg,m(X, J, β)sym. In algebraic geometry,
Behrend [7] makes Mg,m(X, J, β) into a Deligne–Mumford C-stack with a per-
fect obstruction theory, as in Theorem 14.24(a), so Corollary 14.28 again makes
Mg,m(X,J, β) into a compact, oriented d-orbifoldMg,m(X, J, β)alg.

We can ask: what is the relation between these two d-orbifold structures
Mg,m(X, J, β)sym,Mg,m(X, J, β)alg on the same moduli spaceMg,m(X, J, β)?
Are the Gromov–Witten invariants of X defined using the symplectic and alge-
braic theories the same? For related work see Li and Tian [68] and Siebert [93],
who both show that a symplectic and an algebraic definition of Gromov–Witten
invariants coincide, though not the definitions we have discussed.

The author expects that the open d-suborbifolds of Mg,m(X,J, β)sym and
Mg,m(X, J, β)alg parametrizing nonsingular curves will be equivalent in dOrb,
butMg,m(X, J, β)sym,Mg,m(X, J, β)alg will in general not be equivalent near
singular curves. This is because the smooth structure of the moduli spaces near
singular curves depends on a choice of gluing profile ϕ : (0, 1] → [0,∞), in the
language of Hofer et al. [41, Def. 1.19], [47, §4.2], [48, §2.1]. As in [48, §2.1], the
gluing profiles used to construct Mg,m(X,J, β)sym and Mg,m(X, J, β)alg are
ϕ(r) = e1/r − e and ϕ(r) = − 1

2π ln r, respectively.
The author expects there to be a 1-morphism i : Mg,m(X, J, β)sym →

Mg,m(X, J, β)alg, natural up to 2-isomorphism in dOrb, which is the iden-
tity on the topological spaceMg,m(X, J, β), but need not be étale near singular
curves. Also, Mg,m(X, J, β)× [0, 1] should become an oriented d-orbifold with
boundary −Mg,m(X,J, β)sym qMg,m(X, J, β)alg. Thus d-orbifold bordism
classes defined using Mg,m(X, J, β)sym and Mg,m(X, J, β)alg as in Remark
14.9(a) are the same, and the Gromov–Witten invariants coincide.

(d) Corollary 14.29 defines functors (14.40) from Ho(QsDSchC),Ho(QsDStaC)
to Ho(dMan),Ho(dOrb). Using homotopy categories forgets information in
the 2-morphisms of dMan,dOrb. It seems likely that (14.40) are truncations
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of (higher) functors QsDSchC → dMan and QsDStaC → dOrb. But it would
take more work to prove this.

14.5.6 The proof of Theorem 14.27(a),(b)

The proof is modelled on that of Theorem 14.2(a),(b) in §14.5.1. Note that Step
2′′(a),(b),(c) below are analogous to Step 2(a),(c),(d) in §14.5.1, and Step 2(b)
in §14.5.1 is incorporated into (+′′) below. We will prove Theorem 14.27(a),(b)
in the following four steps. The proofs of the last part of Step 1′′ and of Step
2′′(c) are modelled on Behrend [10, Prop. 3.13] and Schürg [91, Prop. 5.20].

As we are working with C-schemes, we can use the Zariski topology. To prove
the analogous result for Deligne–Mumford C-stacks, as for Theorem 14.27(d),
one should use the étale topology. Note that the notation t1 = t2 + O(s) and
t1 = t2 + O(s2) in Definition 3.29 also makes sense for smooth C-schemes and
vector bundles, as used in (14.43), (14.46) and (14.47) below.

Step 1′′. Let X, φ : E• → τ>−1(LX) and n ∈ Z be as in Theorem 14.27(a).
We say that a sextuple (U,W, j, F, t, χ) satisfies condition (∗′′) if:

(∗′′) U ⊆ X is a nonempty affine (Zariski) open C-subscheme of X, and W is
a smooth affine C-scheme with dimCW = k, and j : U ↪→ W is a closed
embedding of U in W , and F is a trivializable vector bundle (locally
free sheaf) on W with rankC F = l, and t ∈ H0(F ) with t−1(0) = j(U)
as C-subschemes of W . Let I be the sheaf of ideals in j−1(OW ) from
the embedding j : U ↪→ W , as in (14.37), so that (14.38) gives an iso-
morphism from the complex

[
I/I2 → j∗(T ∗W )

]
in degrees [−1, 0] in

D(qcoh(U)) to τ>−1(LU ) = τ>−1(LX)|U . Then χ should be an isomor-

phism in D(qcoh(U)) from the complex
[
j∗(F ∗)

j∗(dt)−→ j∗(T ∗W )
]

in degrees
[−1, 0] to E•|U such that the following diagram in D(qcoh(U)) commutes:

[
j∗(F ∗)
j∗(t)·

��

j∗(dt) // j∗(T ∗W )
]

id
��

χ

∼=
// E•|U
φ|U ��[

I/I2
f+I2 7→j∗(df) // j∗(T ∗W )

] (14.38)

∼=
// τ>−1(LX)|U .

(14.41)

We show that if (U,W, j, F, t, χ) satisfies (∗′′) then k − l = n, and that for all
x ∈ X(C), there exists (U,W, j, F, t, χ) satisfying (∗′′) with x ∈ U(C).

Step 2′′. Let (f, f̂) : (X1, E
•
1 , φ1)→ (X2, E

•
2 , φ2) be a morphism in SchCObs,

as in §14.5.3, and (Ua,Wa, ja, Fa, ta, χa) satisfy (∗′′) in (Xa, E
•
a , φa) for a = 1, 2.

We say that (U12,W12, e12, ê12) : (U1,W1, j1, F1, t1, χ1)→ (U2,W2, j2, F2, t2, χ2)
satisfies condition (+′′) if:

(+′′) U12 ⊆ U1 ⊆ X1 and W12 ⊆ W1 are open C-subschemes with U12 =
U1 ∩ f−1(U2) = j−1

1 (W12), and e12 : W12 → W2 is a morphism of C-
schemes and ê12 : F1|W12

→ e∗12(F2) a morphism of vector bundles on
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W12, satisfying

e12 ◦ j1|U12
= j2 ◦ f |U12

: U12 −→W2, (14.42)

ê12 ◦ t1|W12
= e∗12(t2) +O(t21), (14.43)

such that the following diagram in D(qcoh(U12)) commutes:

f |∗U12

([
j∗2 (F ∗2 )

j1|∗U12
(ê∗12)◦

Ij1|U12
,e12

(F∗2 )◦
If|U12

,j2
(F∗2 )−1

��

j∗2 (dt2)// j∗2 (T ∗W2)
])

j1|∗U12
(de∗12)◦

Ij1|U12
,e12

(T∗W2)◦
If|U12

,j2
(T∗W2)−1

��

f |∗U12
(χ2)

∼=
// f |∗U12

(
E•2
)

f̂ |U12

��[
j∗1 (F ∗1 )

j∗1 (dt1)// j∗1 (T ∗W1)
]∣∣
U12

χ1|U12

∼=
// E•1 |U12 .

(14.44)

Here the two left hand columns are well defined and form a commutative
square, and thus a morphism in D(qcoh(U12)), by (14.42)–(14.43).

We will prove:

(a) Suppose that, as well as the data above, we are given a morphism (g, ĝ) :
(X2, E

•
2 , φ2)→ (X3, E

•
3 , φ3) in SchCObs, and (U3,W3, j3, F3, t3, χ3) satis-

fying (∗′′) in (X3, E
•
3 , φ3), and (U23,W23, e23, ê23) : (U2,W2, j2, F2, t2, χ2)

→ (U3,W3, j3, F3, t3, χ3) satisfying (+′′) for (g, ĝ). Then(
U12 ∩ f−1(U23), e−1

12 (W23), e23 ◦ e12|e−1
12 (W23),

e12|∗e−1
12 (W23)

(ê23) ◦ ê12|e−1
12 (W23)

) (14.45)

satisfies (+′′) for (g, ĝ) ◦ (f, f̂) : (X1, E
•
1 , φ1) → (X3, E

•
3 , φ3). That is,

condition (+′′) is closed under composition in a suitable sense.

(b) If (U12,W12, e12, ê12), (U ′12,W
′
12, e

′
12, ê

′
12) : (U1,W1, j1, F1, t1, χ1) → (U2,

W2, j2, F2, t2, χ2) both satisfy (+′′), then there exists a (Zariski) open
neighbourhood W ′′12 of j1(U12 ∩ U ′12) in W12 ∩W ′12 and a vector bundle
morphism Λ : F1|W ′′12

→ e12|∗W ′′12
(TW2) on W ′′12 satisfying

e′12|W ′′12
= e12|W ′′12

+ Λ ◦ t1|W ′′12
+O(t21), (14.46)

ê′12|W ′′12
= ê12|W ′′12

+ (e12|∗W ′′12
(dt2)) ◦ Λ +O(t1). (14.47)

(c) If (U1,W1, j1, F1, t1, χ1) satisfies (∗′′) in (X1, E
•
1 , φ1) and (U2,W2, j2, F2,

t2, χ2) satisfies (∗′′) in (X2, E
•
2 , φ2), then there exists (U12,W12, e12, ê12) :

(U1,W1, j1, F1, t1, χ1)→ (U2,W2, j2, F2, t2, χ2) satisfying (+′′).

Step 3′′. Using Step 1′′, we choose an indexing set I, and (Ui,Wi, ji, Fi, ti, χi)
satisfying (∗′′), with dimCWi = ki and rankC Fi = li for each i ∈ I, such that
{Ui : i ∈ I} is an open cover of X. Using Step 2′′(c) with (X1, E

•
1 , φ1) =

(X2, E
•
2 , φ2) = (X,E•, φ), f = idX and f̂ = idE• , we choose (Uij ,Wij , eij , êij) :

(Ui,Wi, ji, Fi, ti, χi)→ (Uj ,Wj , jj , Fj , tj , χj) satisfying (+′′) for all i, j ∈ I.
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So far we have been working in the algebraic geometry world of C-schemes
and locally free sheaves. We now transfer to the differential geometry world of
smooth manifolds and smooth vector bundles. For each i ∈ I, Wi is a smooth
affine C-scheme with dimCWi = ki, so its set of C-points Wi(C), with the
complex analytic topology, has the structure of a complex manifold of complex
dimension ki, and thus of a real manifold of real dimension 2ki.

Similarly, Fi is an algebraic vector bundle (locally free sheaf) on Wi with
rankC Fi = li, so the set of C-points Fi(C) of its total space, with the complex
analytic topology, is a holomorphic vector bundle over the complex manifold
Wi(C) with complex rank li, and thus a real vector bundle over the real manifold
Wi(C) with real rank 2li. Also ti is a section of Fi over Wi, so ti(C) is a
holomorphic section of Fi(C) as a holomorphic vector bundle, and thus a smooth
section of Fi(C) as a real vector bundle.

From now on, regard Wi(C) as a real manifold, Fi(C) → Wi(C) as a real
vector bundle, and ti(C) : Wi(C) → Fi(C) as a smooth section. Then Defi-
nition 3.13 defines a ‘standard model’ d-manifold SWi(C),Fi(C),ti(C), which has
virtual dimension 2ki − 2li = 2n by Step 1′′. Its underlying topological space is
ti(C)−1(0). As ji : Ui → t−1(0) is a C-scheme isomorphism by (∗′′), it follows
that ji(C) : Ui(C) → ti(C)−1(0) is a homeomorphism, where Ui(C) ⊆ X(C)
is open, and X(C) has the complex analytic topology. Define a homeomor-
phism ψi = ji(C)−1 : ti(C)−1(0)→ Ui(C) ⊆ X(C).

Definition 4.48 shows that an orientation on the line bundle ΛtopFi(C) ⊗
ΛtopT ∗Wi(C) induces an orientation on the d-manifold SWi(C),Fi(C),ti(C). But
the complex structures on Wi(C), Fi(C) induce orientations on ΛtopT ∗Wi(C)
and ΛtopFi(C), using the convention that if V is a finite-dimensional complex
vector space and v1, . . . , vk a basis for V over C, then v1, Jv1, v2, Jv2, . . . , vk, Jvk
is an oriented basis for V over R, where J is the complex structure on V . Hence
SWi(C),Fi(C),ti(C) has a natural orientation.

If i, j ∈ I then Wij(C) ⊆ Wi(C) is open, and eij(C) : Wij(C) → Wj(C)
is a holomorphic map of complex manifolds, and hence a smooth map of real
manifolds, and êij(C) : Fi(C)|Wij(C) → eij(C)∗(Fj(C)) a morphism of holomor-
phic and hence of smooth vector bundles on W12(C), and (14.43) implies that
êij(C) ◦ ti(C)|Wij(C) = eij(C)∗

(
tj(C)

)
+ O

(
ti(C)2

)
, in the sense of Definition

3.29. Therefore Definition 3.30 defines a ‘standard model’ 1-morphism

Seij(C),êij(C) : SWij(C),Fi(C)|Wij(C),ti(C)|Wij(C)
−→ SWj(C),Fj(C),tj(C). (14.48)

We show that (14.48) is an equivalence with its image, and identifies the orien-
tations on SWi(C),Fi(C),ti(C), SWj(C),Fj(C),tj(C).

We then use Theorem 3.42 to construct a d-manifold X with topological
space X(C) and vdimX = 2n by gluing the d-manifolds SWi(C),Fi(C),ti(C)

for i ∈ I on overlaps using the equivalences (14.48) for i, j ∈ I. As the
SWi(C),Fi(C),ti(C) are oriented and the equivalences (14.48) preserve orientations,
X is an oriented d-manifold. We show that X is independent of choices up to
oriented equivalence in dMan. This proves Theorem 14.27(a).

Step 4′′. By Step 3′′, we construct a d-manifold X1 using (Ui,Wi, ji, Fi, ti, χi)
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satisfying (∗′′) for i ∈ I with {Ui : i ∈ I} an open cover of X1, with equiv-
alences ψi : SWi(C),Fi(C),ti(C) → X̂1,i ⊆ X1, and a d-manifold X2 using
(U ′k,W

′
k, j
′
k, F

′
k, t
′
k, χ
′
k) satisfying (∗′′) for k ∈ K with {U ′k : k ∈ K} an open

cover of X2, with equivalences ψ′k : SW ′k(C),F ′k(C),t′k(C) → X̂2,k ⊆X2.
We choose these so that for each i ∈ I there exists ki ∈ K with f(Ui) ⊆

U ′ki ⊆ X2, and Step 2′′(c) gives (Ui,Wi, giki , ĝiki) : (Ui,Wi, ji, Fi, ti, χi) →
(U ′ki ,W

′
ki
, j′ki , F

′
ki
, t′ki , χ

′
ki

) satisfying (+′′). Then ĝiki ◦ ti = g∗iki(t
′
ki

) + O(t2i )
by (14.43), so Definition 3.30 gives a 1-morphism

Sgiki (C),ĝiki (C) : SWi(C),Fi(C),ti(C) −→ SW ′ki (C),F ′ki
(C),t′ki

(C). (14.49)

Composing with ψ′ki gives a 1-morphism

ψ′ki ◦ Sgiki (C),ĝiki (C) : SWi(C),Fi(C),ti(C) −→X2. (14.50)

NowX1 is constructed, as a d-space, by gluing the d-spaces SWi(C),Fi(C),ti(C)

for i in I by equivalences (14.48) on overlaps, using the first part of Theorem
2.33. We show that the 1-morphisms (14.50) satisfy the conditions on the gi in
the second part of Theorem 2.33, so we can glue them to give a 1-morphism f :
X1 →X2, unique up to 2-isomorphism, such that f ◦ψi ∼= ψ′k ◦Sgiki (C),ĝiki (C)

for all i ∈ I. We show that f is independent of choices up to 2-isomorphism,
and satisfies Theorem 14.27(b). This then completes the proof.

For Step 1′′, suppose (U,W, j, F, t, χ) satisfies (∗′′). Then U 6= ∅ and E•|U is
quasi-isomorphic to the complex

[
j∗(F ∗)→ j∗(T ∗W )

]
in degrees [−1, 0], where

j∗(F ∗), j∗(T ∗W ) are vector bundles on U . Hence

n = rankE•|U = rankC j
∗(TW )− rankC j

∗(F ∗) = dimCW − rankC F = k − l,

by definition of rankE• in Definition 14.22(a). So k − l = n, as we want.
Let x ∈ X(C). We will construct (U,W, j, F, t, χ) satisfying (∗′′) with x ∈

U(C) ⊆ X(C), loosely following Behrend’s proof of [10, Prop. 3.13]. Choose an
affine, (Zariski) open neighbourhood U of x in X, and a closed embedding j :
U ↪→W , where W is a smooth C-scheme of dimension dimC T

∗
xX. By Definition

14.22(a),(c), E• is (Zariski) locally quasi-isomorphic to a complex of vector
bundles in degrees −1, 0. So making U,W smaller, we have an isomorphism

[
G−1 β // G0

] χ // E•|U (14.51)

in D(qcoh(U)), where G−1, G0 are vector bundles on U .
Definition 14.22(b)(iii) gives Cokerβ|x ∼= T ∗xX. Thus, (Zariski) locally near

x ∈ U we can find splittings G−1 = G̃−1⊕H, G0 = G̃0⊕H, such that rank G̃0 =
dimT ∗xX, and β =

(
β̃ 0
0 id

)
with β̃|x = 0. So making U,W smaller and replacing

G−1, G0, β by G̃−1, G̃0, β̃, we can suppose rankG0 = dimT ∗xX = dimCW , and
β|x = 0, and also that G−1, G0 are trivializable.
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Consider the commutative diagram of morphisms in D(qcoh(U)):

[
G−1 β−→G0

]
θ��

χ

∼=
// E•|U
φ|U ��[

I/I2 α−→ j∗(T ∗W )
]

τ>−1(LX)|U ,
(14.38)

∼=
oo

(14.52)

where I is the sheaf of ideals in j−1(OW ) defining j(U) as a subscheme in W ,
and θ is the composition of the other morphisms. Since G−1, G0 are vector
bundles and U is affine, we may represent θ by a morphism of complexes[

G−1

β
//

θ−1

��

G0
]

θ0

��[
I/I2 α // j∗(T ∗W )

]
.

(14.53)

Now h0(φ) is an isomorphism and h−1(φ) is surjective by Definition 14.22(b),
so h0(θ) is an isomorphism and h−1(θ) is surjective as the other morphisms in
(14.52) are isomorphisms. As β|x = 0 and rankG0 = dimW = rank j∗(T ∗W ),
h0(θ) an isomorphism implies that θ0|x is an isomorphism, so θ0 is an isomor-
phism of vector bundles near x. Making U,W smaller we can suppose θ0 is an
isomorphism on U , and identify G0 ∼= j∗(T ∗W ) and θ0 = idj∗(T∗W ).

Since G−1 is trivializable we may identify it with j∗(F ∗), for F a (trivial)
vector bundle over W . Thus (14.53) becomes[

j∗(F ∗)
β

//

θ−1��

j∗(T ∗V )
]

idj∗(T∗W ) ��[
I/I2 α // j∗(T ∗W )

]
.

(14.54)

Making U,W smaller, we can lift θ−1 : j∗(F ∗) → I/I2 to a morphism θ̂−1 :
j∗(F ∗)→ I. But I ⊂ j−1(OW ) is an ideal of germs at j(U) of functions on W ,

so we may regard θ̂−1 as a germ at j(U) of sections of F on W . Thus, making

W smaller, we can choose t ∈ H0(F ) whose germ at j(U) is θ̂−1. As h−1(θ) is

surjective, θ̂−1 generates the ideal I, so t−1(0) is the closed subscheme j(U) in
W near j(U). Making W smaller gives t−1(0) = j(U). Then (14.54) becomes[

j∗(F ∗)
j∗(dt)

//

j−1(t)·��

j∗(T ∗W )
]

idj∗(T∗W ) ��[
I/I2 α // j∗(T ∗W )

]
,

(14.55)

where β = j∗(dt) follows from (14.55) commutative and α : f + I2 7→ i∗(df).
From (14.51)–(14.55) we see that (14.41) commutes in D(qcoh(U)). Hence
(U,W, j, F, t, χ) satisfies (∗′′), proving Step 1′′.
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Step 2′′(a) follows by the commutative diagram in D(qcoh(U12 ∩ f−1(U23)))

(g ◦ f)|∗···
([
j∗3 (F ∗3 )

If|···,g(j∗3 (F∗3 ))

��

j∗3 (dt3)// j∗3 (T ∗W3)
])

If|···,g(j∗3 (T∗W3))

��

(g◦f)|∗···(χ3)

∼=
// (g ◦ f)|∗U12∩f−1(U23)

(
E•3
)

If|···,g(E•3 )

��
f |∗··· ◦ g|∗···

([
j∗3 (F ∗3 )

j2|∗···(ê
∗
23)◦

Ij2|···,e23
(F∗3 )◦

Ig|···,j3 (F∗3 )−1

��

j∗3 (dt3)// j∗3 (T ∗W3)
])

j2|∗···(de
∗
23)◦

Ij2|···,e23
(T∗W3)◦

Ig|···,j3 (T∗W3)−1

��

f |∗···◦g|
∗
···(χ3)

∼=
// f |∗U12∩f−1(U23)

(
g|∗···
(
E•3
))

f |∗···(ĝ)

��
f |∗···

([
j∗2 (F ∗2 )

j1|∗···(ê
∗
12)◦

Ij1|···,e12
(F∗2 )◦

If|···,j2 (F∗2 )−1

��

j∗2 (dt2)// j∗2 (T ∗W2)
])

j1|∗···(de
∗
12)◦

Ij1|···,e12
(T∗W2)◦

If|···,j2 (T∗W2)−1

��

f |∗···(χ2)

∼=
// f |∗U12∩f−1(U23)

(
E•2
)

f̂ |···

��[
j∗1 (F ∗1 )

j∗1 (dt1)// j∗1 (T ∗W1)
]∣∣
···

χ1|···
∼=

// E•1 |U12∩f−1(U23),

where the second–to–fourth rows commute by (14.44) for (U12,W12, e12, ê12)
and (U23,W23, e23, ê23), and the vertical composition of the whole diagram is
equation (14.44) for the data (14.45).

For Step 2′′(b), suppose (U12,W12, e12, ê12) and (U ′12,W
′
12, e

′
12, ê

′
12) both

satisfy (+′′). Then (14.44) commutes for (U12,W12, e12, ê12) on U12, and for
(U ′12,W

′
12, e

′
12, ê

′
12) on U ′12. Restrict both of these to U12 ∩ U ′12. As the right

hand side of (14.44) for both is the same, and χ1 is an isomorphism, it follows
that the left hand column for both is the same. That is, the left and right hand
sides below are equal, as morphisms in D(qcoh(U12 ∩ U ′12)):

f |∗U12∩U′12

([
j∗2 (F ∗2 )

j1|∗···(ê
∗
12)◦

Ij1|···,e12
(F∗2 )◦

If|···,j2 (F∗2 )−1

��

j∗2 (dt2)// j∗2 (T ∗W2)
])

j1|∗···(de
∗
12)◦

Ij1|···,e12
(T∗W2)◦

If|···,j2 (T∗W2)−1

��

f |∗U12∩U′12

([
j∗2 (F ∗2 )

j1|∗···(ê
′∗
12)◦

Ij1|···,e′12
(F∗2 )◦

If|···,j2 (F∗2 )−1

��

j∗2 (dt2)// j∗2 (T ∗W2)
])

j1|∗···(de
′∗
12)◦

Ij1|···,e′12
(T∗W2)◦

If|···,j2 (T∗W2)−1

��[
j∗1 (F ∗1 )

j∗1 (dt1)// j∗1 (T ∗W1)
]∣∣
U12∩U′12

,
[
j∗1 (F ∗1 )

j∗1 (dt1)// j∗1 (T ∗W1)
]∣∣
U12∩U′12

.

(14.56)

The derived category D(qcoh(U12 ∩ U ′12)) is constructed as in Weibel [104,
§10]. Write C(qcoh(U12 ∩ U ′12)) for the dg-category of (unbounded) cochain
complexes in qcoh(U12 ∩ U ′12). Define K(qcoh(U12 ∩ U ′12)) to be the category
whose objects are objects of C(qcoh(U12∩U ′12)), and whose morphisms are chain
homotopy equivalence classes of morphisms in C(qcoh(U12 ∩U ′12)). Finally one
defines D(qcoh(U12 ∩ U ′12)) by localizing quasi-isomorphisms in K(qcoh(U12 ∩
U ′12)).

The columns in (14.56) are written as morphisms in C(qcoh(U12 ∩ U ′12)).
Now U12 ∩U ′12 is affine, and f |∗U12∩U ′12

◦ j∗2 (F ∗2 ), f |∗U12∩U ′12
◦ j∗2 (T ∗W2) are vector

bundles on U12 ∩ U ′12, so they are projective objects in qcoh(U12 ∩ U ′12). Hence
Weibel [104, Cor. 10.4.7] implies that morphism groups in D(qcoh(U12 ∩ U ′12))
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and K(qcoh(U12 ∩ U ′12)) for the objects in (14.56) coincide. Therefore the left
and right hand sides of (14.56) agree as morphisms in K(qcoh(U12∩U ′12)). Thus,
as morphisms in C(qcoh(U12 ∩U ′12)), they differ by a chain homotopy. That is,
there exists a morphism λ : f |∗U12∩U ′12

◦ j∗2 (T ∗W2)→ j∗1 (F ∗1 )|U12∩U ′12
satisfying

j1|∗U12∩U ′12
(de′∗12) ◦ Ij1|U12∩U′12

,e′12
(T ∗W2) ◦ If |U12∩U′12

,j2(T ∗W2)−1

= j1|∗···(de∗12) ◦ Ij1|···,e12
(T ∗W2) ◦ If |···,j2(T ∗W2)−1 + j∗1 (dt1)|··· ◦ λ,

(14.57)

j1|∗U12∩U ′12
(ê′∗12) ◦ Ij1|U12∩U′12

,e′12
(F ∗2 ) ◦ If |U12∩U′12

,j2(F ∗2 )−1

= j1|∗···(ê∗12) ◦ Ij1|···,e12
(F ∗2 ) ◦ If |···,j2(F ∗2 )−1 + λ ◦ f |∗··· ◦ j∗2 (dt2).

(14.58)

Now j1|U12∩U ′12
: U12 ∩ U ′12 → W12 ∩W ′12 is an embedding with U12 ∩ U ′12

affine, and λ is a morphism of pullbacks by j1|U12∩U ′12
of trivializable vector

bundles on W12 ∩W ′12, so λ is (Zariski) locally the pullback of a vector bundle
morphism on W12 ∩W ′12. Hence we can choose a (Zariski) open neighbourhood
W ′′12 of j1(U12 ∩U ′12) in W12 ∩W ′12 and a vector bundle morphism Λ : F1|W ′′12

→
e12|∗W ′′12

(TW2) such that the following commutes, using (14.42):

j1|∗U12∩U ′12
◦ e∗12(T ∗W2)

j1|∗···(Λ
∗)

��

Ij1|···,e12
(T∗W2)

// (e12 ◦ j1)|∗U12∩U ′12
(T ∗W2)

If|···,j2 (T∗W2)
��

j1|∗U12∩U ′12
(F1) f |∗U12∩U ′12

◦ j∗2 (T ∗W2).λoo

Then (14.46)–(14.47) follow from (14.57)–(14.58). This proves Step 2′′(b).

For Step 2′′(c), let (f, f̂) : (X1, E
•
1 , φ1) → (X2, E

•
2 , φ2) be a morphism in

SchCObs, and (Ua,Wa, ja, Fa, ta, χa) satisfy (∗′′) in (Xa, E
•
a , φa) for a = 1, 2.

We will construct (U12,W12, e12, ê12) satisfying (+′′). Set U12 = U1 ∩ f−1(U2).
Then j1(U12) is an affine, locally closed C-subscheme of X1, with isomorphism
j1|U12

: U12 → j1(U12), and j2 ◦ f ◦ j1|−1
U12

: j1(U12)→ W2 is a morphism into a
smooth C-scheme W12, so it extends Zariski locally to a morphism W1 → W2.
That is, there exists an open W12 ⊆ W1 with j1(U12) ⊆ W12 and j1(U12)
closed in W12, and a C-scheme morphism e12 : W12 → W2 with e12|j1(U12) =

j2 ◦ f ◦ j1|−1
U12

, or equivalently e12 ◦ j1|U12
= j2 ◦ f |U12

, so that (14.42) holds.
The next part is based on Schürg [91, Lem. 5.18 & Prop. 5.20]. Consider the
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commutative diagram in D(qcoh(U12)) (or K(qcoh(U12)), or C(qcoh(U12))):

f |∗U12

([
j∗2 (F ∗2 )

θ−1

��

j∗2 (dt2) //

f |∗U12
◦j−1

2 (t2· )

��

j∗2 (T ∗W2)
])

θ0

��

f |∗U12
(χ2)

∼=
//

idf|∗
U12
◦j∗2 (T∗W2)

��

f |∗U12

(
E•2
)

f̂ |U12

��
f |∗U12

(φ2)

��77777777777777777777

[
j∗1 (F ∗1 )

j∗1 (dt1) //

j−1
1 (t1· )|U12

��

j∗1 (T ∗W1)
]∣∣
U12

idj∗1 (T∗W1)|U12

��

χ1|U12

∼=
// E•1 |U12

φ1|U12

��77777777777777777777

f |∗U12

([
I2/I

2
2

j1|−1
··· (e]12)◦

Ij1|···,e12
(OW2

)∗◦
If|···,j2 (OW2

)−1
∗��

α2 // j∗2 (T ∗W2)
])

j1|∗···(de
∗
12)◦

Ij1|···,e12
(T∗W2)◦

If|···,j2 (T∗W2)−1

��

f |∗U12
(14.38)

∼=
// f |∗U12

(
τ>−1(LX2

)
)

τ>−1(Lf )|U12

��[
I1/I

2
1

α1 // j∗1 (T ∗W1)
]∣∣
U12

(14.38)

∼=
// τ>−1(LX1)|U12 .

(14.59)

Here [∗ → ∗] are complexes in degrees [−1, 0], objects in the derived category.
Other arrows ‘→’ are morphisms in D(qcoh(U12)). Parallel pairs of arrows
‘99K’ are morphisms of complexes, so morphisms in C(qcoh(U12)), which induce
morphisms in K(qcoh(U12)) and D(qcoh(U12)). All morphisms in (14.59) are
known except θ−1, θ0, which remain to be determined. Our goal is to choose
θ−1, θ0 so that the entire diagram commutes in D(qcoh(U12)), and also the
subdiagram of morphisms ‘99K’ commutes in C(qcoh(U12)).

There is a unique morphism θ = χ1|−1
U12
◦ f̂ |U12

◦ f |∗U12
(χ2) in D(qcoh(U12))

making the upper rectangle in (14.59) commute in D(qcoh(U12)). The argument
in Step 2′′(b) using Weibel [104, Cor. 10.4.7] shows that θ lifts to a unique mor-
phism in K(qcoh(U12)), and thus lifts to a morphism in C(qcoh(U12)), uniquely
up to chain homotopy. Hence we can choose morphisms θ−1, θ0 as shown in
(14.59) such that the upper left hand side is a morphism in C(qcoh(U12)), induc-
ing the morphism θ in D(qcoh(U12)) making the upper rectangle in (14.59) com-
mute in D(qcoh(U12)). The two diamonds in (14.59) commute in D(qcoh(U12))
by (14.41), and the lower rectangle in (14.59) commutes in D(qcoh(U12)) by
functoriality of (14.38). As the lower horizontal morphisms are isomorphisms,
it now follows that the whole of (14.59) commutes in D(qcoh(U12)).

The argument using [104, Cor. 10.4.7] above shows that morphisms from
the top left hand corner in (14.59) in D(qcoh(U12)) and K(qcoh(U12)) agree.
Hence the subdiagram of morphisms ‘99K’ in (14.59) commutes in K(qcoh(U12)).
Thus, it commutes in C(qcoh(U12)) up to chain homotopy. That is, there exists
η : f |∗U12

◦ j∗2 (T ∗W2)→ I1/I
2
1 |U12 such that

j1|−1
U12

(e]12) ◦ Ij1|U12
,e12

(OW2
)∗ ◦ If |U12

,j2(OW2
)−1
∗ ◦ f |∗U12

◦ j−1
2 (t2· )

= j−1
1 (t1· )|U12

◦ θ−1 + η ◦ f |∗U12
◦ j∗2 (dt2),

j1|∗U12
(de∗12) ◦ Ij1|U12

,e12
(T ∗W2) ◦ If |U12

,j2(T ∗W2)−1 ◦ idf |∗U12
◦j∗2 (T∗W2)

= idj∗1 (T∗W1)|U12
◦ θ0 + α1|U12 ◦ η.
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Following Schürg [91, Lem. 5.18], as j−1
1 (t1· )|U12

: j∗1 (F ∗1 )|U12
→ I1/I

2
1 |U12

is
surjective and f |∗U12

◦j∗2 (T ∗W2) is projective in qcoh(U12), there exists ζ : f |∗U12
◦

j∗2 (T ∗W2) → j∗1 (F ∗1 )|U12
with η = j−1

1 (t1· )|U12
◦ ζ. Set θ̃−1 = θ−1 + ζ ◦ f |∗U12

◦
j∗2 (dt2) and θ̃0 = θ0 + j∗1 (dt1)|U12 ◦ ζ. Replacing θ−1, θ0 by θ̃−1, θ̃0, we find that
(14.59) commutes in D(qcoh(U12)), and the subdiagram of morphisms ‘99K’
commutes in C(qcoh(U12)). Note too that

θ0 = j1|∗U12
(de∗12) ◦ Ij1|U12

,e12
(T ∗W2) ◦ If |U12

,j2(T ∗W2)−1. (14.60)

Now consider the morphism

θ−1◦If |U12
,j2(F ∗2 )◦Ij1|U12

,e12
(F ∗2 )−1 :j1|∗U12

(e∗12(F ∗2 ))−→j1|∗U12
(F ∗1 ). (14.61)

We may regard this as a morphism e∗12(F ∗2 )|j1(U12) → F ∗1 |j1(U12) of trivializable
vector bundles on the closed affine subscheme j1(U12) in W12, or dually as a mor-
phism F1|j1(U12) → e∗12(F2)|j1(U12). This extends Zariski locally to a morphism
on W12. Thus, making W12 smaller if necessary, we may choose a morphism
ê12 : F1|W12

→ e∗12(F2) of vector bundles on W12 such that j1|∗U12
(ê∗12) is (14.61),

or equivalently

θ−1 = j1|∗U12
(ê∗12) ◦ Ij1|U12

,e12
(F ∗2 ) ◦ If |U12

,j2(F ∗2 )−1. (14.62)

We already chose e12 to satisfy (14.42). Equation (14.43) holds as the left
hand diamond of morphisms ‘99K’ in (14.59) commutes in qcoh(U12), noting
that elements of I2

1 are O(t21). Equation (14.44) commutes in D(qcoh(U12))
by the top rectangle of (14.59) and equations (14.60) and (14.62). Therefore
(U12,W12, e12, ê12) satisfies (+′′), proving Step 2′′(c).

Steps 3′′ and 4′′ are either self-explanatory, or follow the proofs of Steps 3
and 4 of the proof of Theorem 14.2(a),(b) in §14.1.1 closely, so we leave these
as an exercise. This completes the proof of Theorem 14.27(a),(b).

14.6 The derived manifolds of Spivak and Borisov–Noel

The fifth volume of Jacob Lurie’s mammoth work on derived algebraic geometry
concludes with a few lines on ‘derived differential geometry’ [72, §4.5], explaining
how Lurie’s abstract framework can be used to define an ∞-category of objects
one might call ‘derived C∞-stacks’, including manifolds, orbifolds, C∞-schemes,
C∞-stacks, and derived versions of all four.

These ideas were taken forward by Lurie’s student David Spivak [94,95], who
defined and studied an∞-category of ‘derived manifolds’. Spivak’s construction
is very complicated, using the full weight of Lurie’s machinery. Borisov and
Noel [17] showed that an equivalent ∞-category of derived manifolds can be
defined in a much simpler way. Borisov [16] defined a truncation functor from
Spivak’s derived manifolds to our d-manifolds, and considered what information
this functor forgets. Sections 14.6.1–14.6.3 will review [94,95], [17], and [16].
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14.6.1 Spivak’s derived manifolds

In his thesis [94] and a subsequent journal paper [95], David Spivak gave two
different constructions of an ∞-category (simplicial category) of derived man-
ifolds, which we will write as DerMan. Primarily we will follow [95], but we
will also discuss some material appearing in [94] but not in [95].

Spivak’s construction of DerMan in [95] is complicated and uses a lot of
sophisticated mathematical technology, but has the same basic outline as our
construction of dMan in Chapters 2 and 3, since the author followed Spivak
in this. Spivak begins by defining an ∞-category LC∞RS of local C∞-ringed
spaces, essentially an ∞-categorical version of our d-spaces in Chapter 2.

A local C∞-ringed space X = (X,OX) is a compactly generated Hausdorff
topological space X equipped with a homotopy sheaf OX of homotopy simplicial
C∞-rings satisfying a locality condition on stalks. Here the ∞-category of ho-
motopy simplicial C∞-rings (lax simplicial C∞-rings) is obtained by localizing
the∞-category of simplicial C∞-rings at a suitable class of quasi-isomorphisms.
The homotopy sheaf OX on X assigns a homotopy simplicial C∞-ring OX(U)
for each open U ⊆ X, with restriction morphisms ρUV : OX(U) → OX(V )
for V ⊆ U ⊆ X which satisfy the sheaf axioms not strictly, but only up to
(specified) homotopies. Thus, Spivak works up to homotopy twice.

In the analogue of Theorem 2.36 for d-spaces, Spivak shows [95, Prop. 8.14]

that all (homotopy) fibre products in LC∞RS. As for FdSpa
Man : Man → dSpa

in §2.2, Spivak [95, Prop. 6.11] constructs a full and faithful functor i : Man→
LC∞RS. He defines [95, Def. 6.15] an affine derived manifold U to be a ho-
motopy fibre product i(Rn) ×i(f),i(Rm),i(0) i(∗) in LC∞RS. He then defines
DerMan to be the full ∞-subcategory of objects X in LC∞RS which can be
covered by open subspaces U ⊆X which are affine derived manifolds.

Spivak does not require these open U to have a fixed virtual dimension,
as we do, so his derived manifolds can have connected components of different
dimensions. We will write DerManpd for the full ∞-subcategory of derived
manifolds X of pure dimension in DerMan, that is, those X with open covers
by affine derived manifolds U with vdimU = n for some fixed n ∈ Z.

Let f : X → Y be a morphism in DerMan, with Y a manifold. Spivak [95,
Def. 2.1] defines f to be an embedding if f is locally modelled on a projection

Y ×g,RRRk,0 ∗ → Y for some morphisms g : Y → RRRk. (This should be compared
with Proposition 4.27 for embeddings of d-manifolds.)

The next theorem summarizes some of Spivak’s results [95]:

Theorem 14.31. There is an ∞-category DerMan of derived manifolds, and
a full and faithful functor i : Man→ DerMan, with the following properties:

(a) Let X,Y be derived manifolds, U ⊆X, V ⊆ Y be open, and f : U → Y
an equivalence in DerMan. Suppose the topological space Z = X qf Y
obtained by gluing X,Y along U, V using f is Hausdorff. Then there
exists a derived manifold Z obtained by gluing X,Y along U ,V by the
equivalence f , which is a homotopy pushout X qidU ,U ,f Y in DerMan.

(b) i : Man→ DerMan preserves transverse fibre products in Man.
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(c) Let f : X → Z and g : Y → Z be morphisms in DerMan, where Z is a
manifold. Then a homotopy fibre product X×f ,Z,g Y exists in DerMan.

(d) Suppose X is a compact derived manifold. Then there exists an embedding
f : X → RRRn for some n� 0.

(e) Suppose f : X → Y is an embedding in DerMan, with Y = i(Y ) a
manifold. Then there exist an open neighbourhood V of f(X) in Y, a
vector bundle E → V, and a smooth section s : V → E of E fitting into
a homotopy Cartesian diagram in DerMan, where 0 : V → E is the zero
section and V ,E, s,0 = i(V,E, s, 0) :

X
f

//
f�� � �� �

FN V
0 ��

V
s // E.

(f) Let Y be a manifold, Bun
∗ (Y ) the unoriented bordism ring of Y, and

Bun
∗ (Y )der the unoriented bordism ring of Y defined using derived mani-

folds, in a similar way to §13.1–§13.2. Then i : Man→ DerMan induces
a morphism i∗ : Bun

∗ (Y )→ Bun
∗ (Y )der, which is an isomorphism.

Here part (a) should be compared with Theorems 2.29 and 3.41, (b) with
Theorem 2.42, (c) with Theorem 4.22(a), (d) with Theorem 4.29, (e) with The-
orem 4.34, and (f) with Theorem 13.11. Thus, many of our important results
on d-manifolds are modelled on Spivak’s results for his derived manifolds.

In [94, §6.2], Spivak defines an ∞-category DerManb of derived manifolds
with boundary. Like our d-manifolds with boundary X = (X,∂X, iX, ωX) in
Chapter 7, Spivak’s derived manifolds with boundary are triples (X,∂X, iX),
where X = (X,OX) is a local C∞-ringed space, ∂X a derived manifold, and
iX : ∂X → X a morphism in LC∞RS. He requires that there should exist a
derived manifold without boundary X̃ = (X̃,OX̃) and a morphism b : X̃ → RRR
similar to our boundary defining functions, such that X = b−1([0,∞)) ⊆ X̃ and
OX = OX̃ |X , and there is a homotopy Cartesian diagram in DerMan

∂X π
//

j◦iX�� � �� �
HP ∗

0 ��
X̃

b // RRR,

where j : X ↪→ X̃ is the inclusion. Note that X̃, b must exist globally, not
just locally on ∂X,X. Morphisms (f ,∂f) : (X,∂X, iX) → (Y ,∂Y , iY ) are
morphisms f : X → Y and ∂f : ∂X → ∂Y in LC∞RS with f ◦ iX ∼= iY ◦∂f .

Spivak’s approach to boundaries is different to ours (and somewhat cruder).
He does not include orientations ωX as we do, as he does not define orientations,
and studies unoriented bordism. Defining OX = OX̃ |X for X̃ = (X̃,OX̃) a
derived manifold without boundary means that the morphisms in DerManb

are not quite what you expect even for classical manifolds with boundary. For
example, morphisms (f ,∂f) : [0, 1] → RRR in DerManb correspond not to
smooth maps f : [0, 1]→ R in our sense, but to germs at [0, 1] of smooth maps
f : R→ R. Roughly, (f ,∂f) is a smooth map (−ε, 1 + ε)→ R for small ε > 0.
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14.6.2 Borisov and Noel’s simplified version

Borisov and Noel [17] showed that Spivak’s construction of DerMan can be sig-
nificantly simplified, that is, one can define an equivalent∞-category D̂erMan
in a much less painful way. Their simplification works because of the existence
of partitions of unity in C∞-geometry, which implies that the structure sheaves
OX are soft sheaves. In §14.4 we suggested that our 2-category style ‘derived
geometry’ works for the same reason. Borisov and Noel prove:

(a) Spivak’s ∞-category LC∞RS of local C∞-ringed spaces X = (X,OX)
have OX a homotopy sheaf of homotopy simplicial C∞-rings on X.

Borisov and Noel define an ∞-category L̂C∞RS of spaces X = (X,OX)
withOX a (strict) sheaf of (strict) simplicial C∞-rings onX, and show that
the natural inclusion functor I : L̂C∞RS ↪→ LC∞RS is an equivalence
of ∞-categories.

(b) Write sC∞Rings for the ∞-category of simplicial C∞-rings. There is a
spectrum functor Spec : sC∞Ringsop → L̂C∞RS. Borisov and Noel
define a notion of finite type for objects in L̂C∞RS, sC∞Rings, which
essentially means that the underlying C∞-scheme X is a fair affine C∞-
scheme. Write L̂C∞RSft, sC

∞Ringsft for the full ∞-subcategories of
finite type objects in L̂C∞RS, sC∞Rings. Then Spec : sC∞Ringsop

ft →
L̂C∞RSft is an equivalence of ∞-categories.

Thus, Borisov and Noel eliminate both of Spivak’s uses of homotopy, and also
his use of sheaves. Their simplification has the advantage that one can write
down examples of simplicial C∞-rings explicitly, and do computations with
them, which would be difficult in Spivak’s set-up.

Combining (a) and (b) yields Borisov and Noel’s main result [17, Th. 1]:

Theorem 14.32. Write D̂erManft for the full ∞-subcategory of the oppo-
site ∞-category sC∞Ringsop of simplicial C∞-rings whose objects are finite
type simplicial C∞-rings which are locally equivalent to homotopy fibre products
C∞(Rm) ×C∞(Rn) R. Then I ◦ Spec : D̂erManft → DerManft is an equiva-
lence of ∞-categories, where DerManft is the full ∞-subcategory of finite type
objects in Spivak’s ∞-category DerMan.

A derived manifold X is of finite type if and only if it admits an embedding
f : X ↪→ RRRn for some n. For d-manifolds, we gave a necessary and sufficient
condition for the existence of embeddings f : X ↪→ RRRn in Theorem 4.33, and an
example of a d-manifold X with no embedding f : X ↪→ RRRn in Example 4.31.

14.6.3 A truncation functor from derived manifolds to d-manifolds

Let C be a simplicial model category. Then one can define a natural 2-category
truncation π1(C) of C, such that objects X,Y of π1(C) are fibrant-cofibrant
objects X,Y of C, and the category of 1- and 2-morphisms Homπ1(C)(X,Y ) is

the fundamental groupoid π1

(
HomC(X,Y )

)
of the simplicial set HomC(X,Y ).

This π1(C) is a strict 2-category, with all 2-morphisms invertible.
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Using this notation and the material of §14.6.2, Borisov [16] proves:

Theorem 14.33. There is a strict 2-functor ΠdMan
DerMan : π1

(
DerManpd

ft

)
→

dManft from the 2-category truncation π1

(
DerManpd

ft

)
of the full ∞-subcat-

egory DerManpd
ft of finite type derived manifolds X of pure dimension in Spi-

vak’s ∞-category DerMan, to the full 2-subcategory dManpr of principal d-
manifolds in dMan, with the following properties:

(a) ΠdMan
DerMan induces a bijection between equivalence classes of objects in the

2-categories π1(DerManpd
ft ) and dManpr.

(b) For all objects X,Y in π1

(
DerManpd

ft

)
, ΠdMan

DerMan induces a surjective
map between 2-isomorphism classes of 1-morphisms f : X → Y in
π1

(
DerManpd

ft

)
and f ′ : ΠdMan

DerMan(X)→ ΠdMan
DerMan(Y ) in dManpr, but

this map may not be injective.

(c) ΠdMan
DerMan recognizes equivalences, that is, f : X → Y in π1(DerManpd

ft )
is an equivalence if and only if ΠdMan

DerMan(f) is an equivalence.

(d) If f , g : X → Y are 1-morphisms in π1(DerManpd
ft ), the induced map

on 2-morphisms ΠdMan
DerMan :Hom(f , g)→Hom

(
ΠdMan

DerMan(f),ΠdMan
DerMan(g)

)
need not be either injective or surjective.

(e) The 2-functors FdMan
Man and ΠdMan

DerMan ◦ FDerMan
Man : Man → dMan are

naturally isomorphic.

Parts (a)–(c) imply the induced functor Ho(ΠdMan
DerMan) : Ho(DerManpd

ft ) →
Ho(dManpr) on homotopy categories is essentially surjective, full but not faith-
ful, and recognizes isomorphisms.

In fact Borisov defines the target 2-category dManpr to consist of finite type
d-manifolds X = (X,O′X , EX , ıX , X), by which he means that X is a fair affine
C∞-scheme. But one can use Corollary 4.35 to show that X is of finite type if
and only if it is principal.

To prove ΠdMan
DerMan is not injective on 2-isomorphism classes of 1-morphisms

in part (b), Borisov [16, §3.3] considers the following example:

Example 14.34. Let g : R2 → R3 map g : (x, y) 7→ (x2, y2, xy), and define
derived manifolds X,Y in π1

(
DerManpd

ft

)
by the 2-Cartesian diagrams

X //

�� � �� �
GO ∗

0 ��
Y //

�� � �� �
FN ∗

0 ��
RRR2

g // RRR3, ∗ 0 // RRR,

where ∗,RRR,RRR2,RRR3, g,0 = FDerMan
Man (∗,R,R2,R3, g, 0). Define h1, h2 : R3 → R

by h1(u, v, w) = 0 and h2(u, v, w) = uv−w2. Then h1◦g = h2◦g = 0. Properties
of fibre products now give 1-morphisms f1,f2 : X → Y in π1

(
DerManpd

ft

)
,

unique up to 2-isomorphism, such that the following diagram 2-commutes for
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f1,h1 and for f2,h2:

X //

��

f1
,,XXXXXXXXXXXXXXXXXXXXXXXX

f2

,,XXXXXXXXXXXXXXXXXXXXXXXX ∗

0

��

,,XXXXXXXXXXXXXXXXXXXXXXXX

Y //

��

∗

0

��

RRR2
g //

++XXXXXXXXXXXXXXXXXXXXXXXX RRR3

h1 ++XXXXXXXXXXXXXXXXXXXXXXX
h2

++XXXXXXXXXXXXXXXXXXXXXXX

∗
0

// RRR.

By calculations of homotopy groups of simplicial C∞-rings, Borisov shows
that f1 and f2 are not 2-isomorphic in π1

(
DerManpd

ft

)
, but ΠdMan

DerMan(f1) and
ΠdMan

DerMan(f2) are 2-isomorphic in dManft.

Remark 14.35. We have two different higher categories of ‘derived manifolds’:
Spivak’s ∞-category DerMan, and our 2-category of d-manifolds dMan.

The functor ΠdMan
DerMan from DerManpd

ft to dMan may be regarded as
truncating in two different ways, forgetting two different kinds of informa-
tion. Firstly, in passing from DerManpd

ft to π1

(
DerManpd

ft

)
we truncate

from ∞-categories to 2-categories, and so forget information in n-morphisms
in DerManpd

ft for n > 2.
Secondly, as our definition of d-spaces in §2.1–§2.2 involves square zero ideals,

working up to ideals, or squares of ideals, is built into our theory. For the
‘standard model’ d-manifolds SV,E,s, 1-morphisms Sf,f̂ : SV,E,s → SW,F,t and
2-morphisms SΛ : Sf,f̂ ⇒ Sg,ĝ of §3.2 and §3.4, this manifests itself as follows:

• Two d-manifolds SV,E,s1 ,SV,E,s2 are equal if s1 − s2 = O(s2
1) = O(s2

2).

• Two 1-morphisms Sf1,f̂1
,Sf2,f̂2

: SV,E,s → SW,F,t are equal if f1 = f2 +

O(s2) and f̂1 = f̂2 +O(s).

• Two 2-morphisms SΛ1 ,SΛ2 : Sf,f̂ ⇒ Sg,ĝ are equal if Λ1 = Λ2 +O(s).

Thus, for the ‘standard model’ d-manifold SV,E,s, ΠdMan
DerMan forgets all infor-

mation on V which is O(s2), that is, which is zero modulo the square I2
s of the

ideal Is in C∞(V ) defined by s ∈ C∞(E). This second kind of truncation is the
reason why ΠdMan

DerMan is not an equivalence of 2-categories in Theorem 14.33.
Consider the question: do there also exist other higher categories of ‘derived

manifolds’ D̃erMan different from both DerMan and dMan? For such a
category D̃erMan to be reasonable, we should require that it satisfies a list
of properties similar to Spivak’s ‘axioms for derived manifolds’ [95, §2], for
instance: D̃erMan should contain Man as a full subcategory, derived manifolds
should have (Hausdorff, second countable) underlying topological spaces and
have sheaf-like properties over open covers, all d-transverse fibre products should
exist, there should be a good notion of bordism in D̃erMan yielding isomorphic
groups to bordism in Man — basically, most of the main theorems for dMan
above and for DerMan in Spivak [95] should also hold in D̃erMan.
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It seems likely that there are many such ‘reasonable’ higher categories of
derived manifolds D̃erMan. For example, in terms of the two kinds of trun-
cation above, for any m,n = 2, 3, . . . ,∞ we could try to define an m-category
DerManm,n by truncating DerMan to an m-category, and forgetting all in-
formation which is O(sn) on V in ‘standard models’ SV,E,s.

Out of all such ‘reasonable’ higher categories D̃erMan, the author expects
that Spivak’s ∞-category DerMan should be (heuristically at least) in some
sense the ‘largest’ or ‘most complex’, and our 2-category dMan the ‘smallest’
or ‘simplest’. Since Spivak’s DerMan is essentially built by a universal con-

struction, there should exist a truncation functor DerMan→ D̃erMan for any

D̃erMan satisfying appropriate axioms. And the author expects that any suf-

ficiently well-behaved D̃erMan should have a truncation functor D̃erMan →
dMan, or at least a truncation functor D̃erMan→ Ho(dMan).
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A Categories and 2-categories

We now explain the background in category theory we need. Some good refer-
ences are Behrend et al. [11, App. B], and MacLane [73] for §A.1–§A.2.

A.1 Basics of category theory

For completeness, here are the basic definitions in category theory, as in [73, §I].

Definition A.1. A category (or 1-category) C consists of a proper class of
objects Obj(C), and for all X,Y ∈ Obj(C) a set Hom(X,Y ) of morphisms f
from X to Y , written f : X → Y , and for all X,Y ∈ Obj(C) a composition map
◦ : Hom(X,Y )×Hom(Y,Z)→ Hom(X,Z), written (f, g) 7→ g ◦f . Composition
must be associative, that is, if f : W → X, g : X → Y and h : Y → Z are
morphisms in C then (h ◦ g) ◦ f = h ◦ (g ◦ f). For each X ∈ Obj(C) there must
exist an identity morphism idX : X → X such that f ◦ idX = f = idY ◦ f for
all f : X → Y in C.

A morphism f : X → Y is an isomorphism if there exists f−1 : Y → X with
f−1 ◦ f = idX and f ◦ f−1 = idY . A category C is called a groupoid if every
morphism is an isomorphism. In a (small) groupoid C, for each X ∈ Obj(C) the
set Hom(X,X) of morphisms f : X → X form a group.

If C is a category, the opposite category Cop is C with the directions of all
morphisms reversed. That is, we define Obj(Cop) = Obj(C), and for all X,Y, Z ∈
Obj(C) we define HomCop(X,Y ) = HomC(Y,X), and for f : X → Y , g : Y → Z
in C we define f ◦Cop g = g ◦C f , and idCopX = idCX.

Given categories C,D, the product category C × D has objects (W,X) in
Obj(C) × Obj(D) and morphisms f × g : (W,X) → (Y,Z) when f : W → Y is
a morphism in C and g : X → Z is a morphism in D, in the obvious way.

We call D a subcategory of C if Obj(D) ⊆ Obj(C), and HomD(X,Y ) ⊆
HomC(X,Y ) for all X,Y ∈ Obj(D). We call D a full subcategory if also
HomD(X,Y ) = HomC(X,Y ) for all X,Y .

Definition A.2. Let C,D be categories. A (covariant) functor F : C → D gives,
for all objects X in C an object F (X) in D, and for all morphisms f : X → Y
in C a morphism F (f) : F (X) → F (Y ), such that F (g ◦ f) = F (g) ◦ F (f) for
all f : X → Y , g : Y → Z in C, and F (idX) = idF (X) for all X ∈ Obj(C). A
contravariant functor F : C → D is a covariant functor F : Cop → D.

Functors compose in the obvious way. Each category C has an obvious iden-
tity functor idC : C → C with idC(X) = X and idC(f) = f for all X, f . A functor
F : C → D is called full if the maps HomC(X,Y ) → HomD(F (X), F (Y )),
f 7→ F (f) are surjective for all X,Y ∈ Obj(C), and faithful if the maps
HomC(X,Y )→ HomD(F (X), F (Y )) are injective for all X,Y ∈ Obj(C).

Let C,D be categories and F,G : C → D be functors. A natural transforma-
tion η : F ⇒ G gives, for all objects X in C, a morphism η(X) : F (X)→ G(X)
such that if f : X → Y is a morphism in C then η(Y ) ◦ F (f) = G(f) ◦ η(X) as
a morphism F (X) → G(Y ) in D. We call η a natural isomorphism if η(X) is
an isomorphism for all X ∈ Obj(C).
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An equivalence between categories C,D consists of functors F : C → D and
G : D → C with natural isomorphisms η : G ◦ F ⇒ idC , ζ : F ◦G⇒ idD.

It is a fundamental principle of category theory that equivalent categories
C,D should be thought of as being ‘the same’, and naturally isomorphic functors
F,G : C → D should be thought of as being ‘the same’. Note that equivalence
of categories C,D is much weaker than strict isomorphism: isomorphism classes
of objects in C are naturally in bijection with isomorphism classes of objects in
D, but there is no relation between the sizes of the isomorphism classes, so that
C could have many more objects than D, for instance.

A.2 Limits, colimits and fibre products in categories

We shall be interested in various kinds of limits and colimits in our categories
of spaces. These are objects in the category with a universal property with
respect to some class of diagrams. For an introduction to limits and colimits in
category theory, see MacLane [73, §III]. Here are the basic definitions:

Definition A.3. Let C be a category. A diagram ∆ in C is a class of objects Si
in C for i ∈ I, and a class of morphisms ρj : Sb(j) → Se(j) in C for j ∈ J , where
b, e : J → I. The diagram is called small if I, J are sets (rather than something
too large to be a set), and finite if I, J are finite sets.

A limit of the diagram ∆ is an object L in C and morphisms πi : L→ Si for
i ∈ I such that ρj ◦ πb(j) = πe(j) for all j ∈ J , which has the universal property
that given L′ ∈ C and π′i : L′ → Si for i ∈ I with ρj ◦ π′b(j) = π′e(j) for all j ∈ J ,

there is a unique morphism λ : L′ → L with π′i = πi ◦ λ for all i ∈ I.

A fibre product is a limit of a diagram X
g−→Z

h←−Y . The limit object W
is often written X ×g,Z,h Y or X ×Z Y , and the diagram

W πY
//

πX��
Y
h ��

X
g // Z

is called a Cartesian square in the category C. A terminal object is a limit of
the empty diagram.

A colimit of the diagram ∆ is an object L in C and morphisms λi : Si → L
for i ∈ I such that λb(j) = λe(j) ◦ ρj for all j ∈ J , which has the universal
property that given L′ ∈ C and λ′i : Si → L′ for i ∈ I with λ′b(j) = λ′e(j) ◦ ρj for

all j ∈ J , there is a unique morphism π : L→ L′ with λ′i = π ◦ λi for all i ∈ I.

A pushout is a colimit of a diagram X
e←−W f−→Y . An initial object is a

colimit of the empty diagram.
If a limit or colimit exists, it is unique up to unique isomorphism in C. We

say that all limits, or all small limits, or all finite limits, or all fibre products exist
in C, if limits exist for all diagrams, or all small diagrams, or all finite diagrams,

or all diagrams X
g−→Z

h←−Y respectively; and similarly for colimits.

By category theory general nonsense, one can prove:
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Proposition A.4. Suppose a category C has a terminal object, and all fibre
products exist in C. Then all finite limits exist in C.

Our categories of spaces (manifolds, C∞-schemes, . . . ) will always have a
terminal object, the point ∗. So we will generally concentrate on the existence
or not of fibre products.

A.3 2-categories

Next we discuss 2-categories. A good reference for our purposes is Behrend et
al. [11, App. B], and Kelly and Street [61] is also helpful.

Definition A.5. A 2-category C (also called a strict 2-category) consists of a
proper class of objects Obj(C), for all X,Y ∈ Obj(C) a category Hom(X,Y ),
for all X ∈ Obj(C) an object idX in Hom(X,X) called the identity 1-morphism,
and for all X,Y, Z ∈ Obj(C) a functor µX,Y,Z : Hom(X,Y ) × Hom(Y, Z) →
Hom(X,Z). These must satisfy the identity property, that µX,X,Y (idX ,−) =
µX,Y,Y (−, idY )=idHom(X,Y ) as functors Hom(X,Y )→ Hom(X,Y ), and the as-
sociativity property, that µW,Y,Z ◦ (µW,X,Y × idHom(Y,Z)) = µW,X,Z ◦ (idHom(W,X)

× µX,Y,Z) as functors Hom(W,X) × Hom(X,Y ) × Hom(Y,Z) → Hom(W,X),
for all W,X, Y, Z.

Objects f of Hom(X,Y ) are called 1-morphisms, written f : X → Y . For
1-morphisms f, g : X → Y , morphisms η ∈ HomHom(X,Y )(f, g) are called 2-
morphisms, written η : f ⇒ g. Thus, a 2-category has objects X, and two kinds
of morphisms, 1-morphisms f : X → Y between objects, and 2-morphisms
η : f ⇒ g between 1-morphisms. In many examples, all 2-morphisms are
2-isomorphisms (i.e. have an inverse), so that the categories Hom(X,Y ) are
groupoids. Such 2-categories are called (2,1)-categories.

This is quite a complicated structure. There are three kinds of composition
in a 2-category, satisfying various associativity relations. If f : X → Y and g :
Y → Z are 1-morphisms then µX,Y,Z(f, g) is the composition of 1-morphisms,
written g ◦ f : X → Z. If f, g, h : X → Y are 1-morphisms and η : f ⇒ g,
ζ : g ⇒ h are 2-morphisms then composition of η, ζ in the category Hom(X,Y )
gives the vertical composition of 2-morphisms of η, ζ, written ζ � η : f ⇒ h, as
a diagram

X

f

""
�� ��
�� η

<<

h

�� ��
�� ζ

g
// Y ///o/o/o X

f
))

h

55
�� ��
�� ζ�η Y. (A.1)

And if f, f̃ : X → Y and g, g̃ : Y → Z are 1-morphisms and η : f ⇒ f̃ ,
ζ : g ⇒ g̃ are 2-morphisms then µX,Y,Z(η, ζ) is the horizontal composition of
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2-morphisms, written ζ ∗ η : g ◦ f ⇒ g̃ ◦ f̃ , as a diagram

X

f
((

f̃

66
�� ��
�� η Y

g

((

g̃

66
�� ��
�� ζ Z ///o/o X

g◦f
((

g̃◦f̃

66
�� ��
�� ζ∗η Z. (A.2)

There are also two kinds of identity: identity 1-morphisms idX : X → X and
identity 2-morphisms idf : f ⇒ f .

A basic example is the 2-category of categories Cat, with objects categories
C, 1-morphisms functors F : C → D, and 2-morphisms natural transformations
η : F ⇒ G for functors F,G : C → D. Orbifolds naturally form a 2-category, as
do Deligne–Mumford stacks and Artin stacks in algebraic geometry.

In a 2-category C, there are three notions of when objects X,Y in C are
‘the same’: equality X = Y , and isomorphism, that is we have 1-morphisms
f : X → Y , g : Y → X with g ◦ f = idX and f ◦ g = idY , and equivalence,
that is we have 1-morphisms f : X → Y , g : Y → X and 2-isomorphisms
η : g ◦ f ⇒ idX and ζ : f ◦ g ⇒ idY . Usually equivalence is the most useful
notion. By [11, Prop. B.8], we can also choose η, ζ to satisfy the extra identities
idf ∗ η = ζ ∗ idf and idg ∗ ζ = η ∗ idg:

Proposition A.6. Let C be a 2-category, and f : X → Y be an equivalence in
C. Then there exist a 1-morphism g : Y → X and 2-isomorphisms η : g ◦ f ⇒
idX and ζ : f ◦ g ⇒ idY with idf ∗ η = ζ ∗ idf as 2-isomorphisms f ◦ g ◦ f ⇒ f,
and idg ∗ ζ = η ∗ idg as 2-isomorphisms g ◦ f ◦ g ⇒ g.

Let C be a 2-category. The homotopy category Ho(C) of C is the category
whose objects are objects of C, and whose morphisms [f ] : X → Y are 2-
isomorphism classes [f ] of 1-morphisms f : X → Y in C. Then equivalences
in C become isomorphisms in Ho(C), 2-commutative diagrams in C become
commutative diagrams in Ho(C), and so on.

As in Borceux [15, §7.7], there is also a second kind of 2-category, called
a weak 2-category (or bicategory), which we will not define in detail. In a
weak 2-category, compositions of 1-morphisms need only be associative up to
(specified) 2-isomorphisms. That is, part of the data of a weak 2-category C is a
2-isomorphism α(f, g, h) : (h◦g)◦f ⇒ h◦(g◦f) for all 1-morphisms f : W → X,
g : X → Y , h : Y → Z in C. A strict 2-category C can be made into a weak
2-category by putting α(f, g, h) = idh◦g◦f for all f, g, h.

Some categorical constructions naturally yield weak 2-categories rather than
strict 2-categories, e.g. the weak 2-categories of orbifolds defined by Pronk [89]
and Lerman [67, §3.3] mentioned in §9.1. Every weak 2-category is equivalent
as a weak 2-category to a strict 2-category (that is, weak 2-categories can be
strictified), so we lose little by working only with strict 2-categories.

A.4 Fibre products in 2-categories

Commutative diagrams in 2-categories should in general only commute up to
(specified) 2-isomorphisms, rather than strictly. Then we say the diagram 2-
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commutes. A simple example of a commutative diagram in a 2-category C is

Y g

**TTTTTTTTTTT
η

��
X

f
44jjjjjjjjjjj
h

// Z,

which means that X,Y, Z are objects of C, f : X → Y , g : Y → Z and
h : X → Z are 1-morphisms in C, and η : g ◦ f ⇒ h is a 2-isomorphism.

The generalizations of limit and colimit to 2-categories turn out to be rather
complicated. As in [15, §7] there are many different kinds — 2-limits, bilimits,
pseudolimits, lax limits, and weighted limits (or indexed limits), depending on
whether one considers diagrams to commute on the nose, up to 2-isomorphism,
or up to 2-morphisms, and what kind of universal property one requires. Our
definition of fibre product, following Behrend et al. [11, Def. B.13], is actually
an example of a pseudolimit.

Definition A.7. Let C be a 2-category and g : X → Z, h : Y → Z be
1-morphisms in C. A fibre product X ×Z Y in C consists of an object W , 1-
morphisms e : W → X and f : W → Y and a 2-isomorphism η : g ◦ e ⇒ h ◦ f
in C, so that we have a 2-commutative diagram

W
f

//
e�� � �� �

GO
η

Y
h ��

X
g // Z

(A.3)

with the following universal property: suppose e′ : W ′ → X and f ′ : W ′ → Y
are 1-morphisms and η′ : g ◦ e′ ⇒ h ◦ f ′ is a 2-isomorphism in C. Then there
should exist a 1-morphism b : W ′ → W and 2-isomorphisms ζ : e ◦ b ⇒ e′,
θ : f ◦ b⇒ f ′ such that the following diagram of 2-isomorphisms commutes:

g ◦ e ◦ b
η∗idb

+3

idg∗ζ ��

h ◦ f ◦ b
idh∗θ��

g ◦ e′
η′ +3 h ◦ f ′.

(A.4)

Furthermore, if b̃, ζ̃, θ̃ are alternative choices of b, ζ, θ then there should exist a
unique 2-isomorphism ε : b̃⇒ b with

ζ̃ = ζ � (ide ∗ ε) and θ̃ = θ � (idf ∗ ε). (A.5)

We call such a fibre product diagram (A.3) a 2-Cartesian square.
If a fibre product X ×Z Y in C exists then it is unique up to equivalence in

C. If C is a category, that is, all 2-morphisms are identities idf : f ⇒ f , this
definition of fibre products in C coincides with that in §A.2.

Orbifolds, and stacks in algebraic geometry, form 2-categories, and Definition
A.7 is the right way to define fibre products of orbifolds or stacks, as in [11].
One can also define pushouts in a 2-category C in a dual way to Definition A.7,
reversing directions of morphisms.
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B Algebraic Geometry over C∞-rings

If X is a manifold then the R-algebra C∞(X) of smooth functions c : X → R
is a C∞-ring. That is, for each smooth function f : Rn → R there is an n-fold
operation Φf : C∞(X)n → C∞(X) acting by Φf : c1, . . . , cn 7→ f(c1, . . . , cn),
and these operations Φf satisfy many natural identities. Thus, C∞(X) actually
has a far richer algebraic structure than the obvious R-algebra structure.

In [56] the author set out the foundations of a version of algebraic geometry
in which rings or algebras are replaced by C∞-rings. We now summarize ma-
terial from [56, §1–§6] on C∞-schemes, a category of geometric objects which
generalize manifolds, and whose morphisms generalize smooth maps, and qua-
sicoherent sheaves on C∞-schemes. Most of the material on C∞-schemes was
already known in synthetic differential geometry, see in particular Dubuc [30]
and Moerdijk and Reyes [86]. Appendix C will discuss Deligne–Mumford C∞-
stacks, a 2-category of geometric objects which generalize orbifolds.

B.1 C∞-rings

Definition B.1. A C∞-ring is a set C together with operations Φf : Cn → C
for all n > 0 and smooth maps f : Rn → R, where by convention when n = 0 we
define C0 to be the single point {∅}. These operations must satisfy the following
relations: suppose m,n > 0, and fi : Rn → R for i = 1, . . . ,m and g : Rm → R
are smooth functions. Define a smooth function h : Rn → R by

h(x1, . . . , xn) = g
(
f1(x1, . . . , xn), . . . , fm(x1 . . . , xn)

)
,

for all (x1, . . . , xn) ∈ Rn. Then for all (c1, . . . , cn) ∈ Cn we have

Φh(c1, . . . , cn) = Φg
(
Φf1(c1, . . . , cn), . . . ,Φfm(c1, . . . , cn)

)
.

We also require that for all 1 6 j 6 n, defining πj : Rn → R by πj :
(x1, . . . , xn) 7→ xj , we have Φπj (c1, . . . , cn) = cj for all (c1, . . . , cn) ∈ Cn.

Usually we refer to C as the C∞-ring, leaving the operations Φf implicit.
A morphism between C∞-rings

(
C, (Φf )f :Rn→R C∞

)
,
(
D, (Ψf )f :Rn→R C∞

)
is a map φ : C → D such that Ψf

(
φ(c1), . . . , φ(cn)

)
= φ ◦ Φf (c1, . . . , cn) for

all smooth f : Rn → R and c1, . . . , cn ∈ C. We will write C∞Rings for the
category of C∞-rings.

Here is the motivating example:

Example B.2. Let X be a manifold, which may have boundary or corners.
Write C∞(X) for the set of smooth functions c : X → R. For n > 0 and
f : Rn → R smooth, define Φf : C∞(X)n → C∞(X) by(

Φf (c1, . . . , cn)
)
(x) = f

(
c1(x), . . . , cn(x)

)
, (B.1)

for all c1, . . . , cn ∈ C∞(X) and x ∈ X. It is easy to see that C∞(X) and the
operations Φf form a C∞-ring.
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Example B.3. Take X = {0} in Example B.2. Then C∞({0}) = R, with
operations Φf : Rn → R given by Φf (x1, . . . , xn) = f(x1, . . . , xn). This makes
R into the simplest nonzero example of a C∞-ring.

Note that C∞-rings are far more general than those coming from manifolds.
For example, if X is any topological space we could define a C∞-ring C0(X) to
be the set of continuous c : X → R with operations Φf defined as in (B.1). For
X a manifold with dimX > 0, the C∞-rings C∞(X) and C0(X) are different.
We will introduce colimits in §A.2. We have:

Proposition B.4. In the category C∞Rings of C∞-rings, all small colimits
exist, and so in particular pushouts and all finite colimits exist.

We will write Dqφ,C,ψ E or DqC E for the pushout of morphisms φ : C→D,
ψ : C→E in C∞Rings. When C=R, the initial object in C∞Rings, pushouts
D qR E are called coproducts and are written D⊗̂E, as they are a kind of
completed tensor product. (For R-algebras A,B the coproduct is A⊗B.)

Definition B.5. Let C be a C∞-ring. Then we may give C the structure of
a commutative R-algebra. Define addition ‘+’ on C by c + c′ = Φf (c, c′) for
c, c′ ∈ C, where f : R2 → R is f(x, y) = x+ y. Define multiplication ‘ · ’ on C by
c · c′ = Φg(c, c

′), where g : R2 → R is g(x, y) = xy. Define scalar multiplication
by λ ∈ R by λc = Φλ′(c), where λ′ : R→ R is λ′(x) = λx. Define elements 0 and
1 in C by 0 = Φ0′(∅) and 1 = Φ1′(∅), where 0′ : R0 → R and 1′ : R0 → R are the
maps 0′ : ∅ 7→ 0 and 1′ : ∅ 7→ 1. One can then show using the relations on the Φf
that all the axioms of a commutative R-algebra are satisfied. In Example B.2,
this yields the obvious R-algebra structure on the smooth functions c : X → R.

An ideal I in C is an ideal I ⊂ C in C regarded as a commutative R-algebra.
Then we make the quotient C/I into a C∞-ring as follows. If f : Rn → R is
smooth, define ΦIf : (C/I)n → C/I by(

ΦIf (c1 + I, . . . , cn + I)
)
(x) = f

(
c1(x), . . . , cn(x)

)
+ I.

To show this is well-defined, we must show it is independent of the choice of
representatives c1, . . . , cn in C for c1 + I, . . . , cn + I in C/I. By Hadamard’s
Lemma there exist smooth functions gi : R2n → R for i = 1, . . . , n with

f(y1, . . . , yn)− f(x1, . . . , xn) =
∑n
i=1(yi − xi)gi(x1, . . . , xn, y1, . . . , yn)

for all x1, . . . , xn, y1, . . . , yn ∈ R. If c′1, . . . , c
′
n are alternative choices for c1, . . . ,

cn, so that c′i + I = ci + I for i = 1, . . . , n and c′i − ci ∈ I, we have

f
(
c′1(x), . . . , c′n(x)

)
− f

(
c1(x), . . . , cn(x)

)
=
∑n
i=1(c′i − ci)gi

(
c′1(x), . . . , c′n(x), c1(x), . . . , cn(x)

)
.

The second line lies in I as c′i − ci ∈ I and I is an ideal, so ΦIf is well-defined,

and clearly
(
C/I, (ΦIf )f :Rn→R C∞

)
is a C∞-ring.
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We will use the notation (fa : a ∈ A) to denote the ideal in a C∞-ring C
generated by a collection of elements fa ∈ C, a ∈ A. That is,

(fa : a ∈ A) =
{∑n

i=1 fai · ci : n > 0, a1, . . . , an ∈ A, c1, . . . , cn ∈ C
}
.

B.2 Special classes of C∞-ring

We define finitely generated, finitely presented, local, and fair C∞-rings.

Definition B.6. A C∞-ring C is called finitely generated if there exist c1, . . . , cn
in C which generate C over all C∞-operations. That is, for each c ∈ C there
exists smooth f : Rn → R with c = Φf (c1, . . . , cn). Given such C, c1, . . . , cn,
define φ : C∞(Rn)→ C by φ(f) = Φf (c1, . . . , cn) for smooth f : Rn → R, where
C∞(Rn) is as in Example B.2 with X = Rn. Then φ is a surjective morphism
of C∞-rings, so I = Kerφ is an ideal in C∞(Rn), and C ∼= C∞(Rn)/I as a
C∞-ring. Thus, C is finitely generated if and only if C ∼= C∞(Rn)/I for some
n > 0 and ideal I in C∞(Rn).

An ideal I in C∞(Rn) is called finitely generated if I = (f1, . . . , fk) for some
f1, . . . , fk ∈ C∞(Rn). A C∞-ring C is called finitely presented if C ∼= C∞(Rn)/I
for some n > 0, where I is a finitely generated ideal in C∞(Rn).

A difference with conventional algebraic geometry is that C∞(Rn) is not
noetherian, so ideals in C∞(Rn) may not be finitely generated, and C finitely
generated does not imply C finitely presented.

Definition B.7. A C∞-ring C is called a C∞-local ring if regarded as an R-
algebra, as in Definition B.5, C is a local R-algebra with residue field R. That
is, C has a unique maximal ideal mC with C/mC

∼= R.
If C,D are C∞-local rings with maximal ideals mC ,mD, and φ : C → D is

a morphism of C∞ rings, then using the fact that C/mC
∼= R ∼= D/mD we see

that φ−1(mD) = mC , that is, φ is a local morphism of C∞-local rings. Thus,
there is no difference between morphisms and local morphisms.

Example B.8. For n > 0 and p ∈ Rn, define C∞p (Rn) to be the set of germs
of smooth functions c : Rn → R at p ∈ Rn. That is, C∞p (Rn) is the quotient
of the set of pairs (U, c) with p ∈ U ⊂ Rn open and c : U → R smooth
by the equivalence relation (U, c) ∼ (U ′, c′) if there exists p ∈ V ⊆ U ∩ U ′
open with c|V = c′|V . Define operations Φf : (C∞p (Rn))m → C∞p (Rn) for
f : Rm → R smooth by (B.1). Then C∞p (Rn) is a C∞-local ring, with maximal

ideal m =
{

[(U, c)] : c(p) = 0
}

.

Definition B.9. An ideal I in C∞(Rn) is called fair if for each f ∈ C∞(Rn),
f lies in I if and only if πp(f) lies in πp(I) ⊆ C∞p (Rn) for all p ∈ Rn, where
C∞p (Rn) is as in Example B.8 and πp : C∞(Rn) → C∞p (Rn) is the natural
projection πp : c 7→ [(Rn, c)]. A C∞-ring C is called fair if it is isomorphic to
C∞(Rn)/I, where I is a fair ideal.
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As in [56, §2.4], if C∞(Rm)/I ∼= C∞(Rn)/J then I is finitely generated,
or fair, if and only if J is. Thus, to decide whether a C∞-ring C is finitely
presented, or fair, it is enough to test one presentation C ∼= C∞(Rn)/I. Also, C
finitely presented implies C fair implies C finitely generated. Write C∞Ringsfp,
C∞Ringsfa and C∞Ringsfg for the full subcategories of finitely presented,
fair, and finitely generated C∞-rings in C∞Rings, respectively. Then

C∞Ringsfp ⊂ C∞Ringsfa ⊂ C∞Ringsfg ⊂ C∞Rings.

From [56, Prop.s 2.23 & 2.25] we have:

Proposition B.10. The subcategories C∞Ringsfg,C∞Ringsfp are closed un-
der pushouts and all finite colimits in C∞Rings, but C∞Ringsfa is not.
Nonetheless, pushouts and finite colimits exist in C∞Ringsfa, though they may
not coincide with pushouts and finite colimits in C∞Rings.

B.3 Sheaves on topological spaces

Sheaves are a fundamental concept in algebraic geometry. They are necessary
even to define schemes, since a scheme is a topological space X equipped with a
sheaf of rings OX . In this book, sheaves of abelian groups, sheaves of C∞-rings,
and sheaves of modules over a sheaf of C∞-rings, all play a fundamental rôle.

We now summarize some basics of sheaf theory, following Hartshorne [38,
§II.1]. A more detailed reference is Godement [35]. We concentrate on sheaves of
abelian groups; to define sheaves of C∞-rings, etc., one replaces abelian groups
with C∞-rings, etc., throughout.

Definition B.11. Let X be a topological space. A presheaf of abelian groups
E on X consists of the data of an abelian group E(U) for every open set U ⊆ X,
and a morphism of abelian groups ρUV : E(U) → E(V ) called the restriction
map for every inclusion V ⊆ U ⊆ X of open sets, satisfying the conditions that

(i) E(∅) = 0;

(ii) ρUU = idE(U) : E(U)→ E(U) for all open U ⊆ X; and

(iii) ρUW = ρVW ◦ ρUV : E(U)→ E(W ) for all open W ⊆ V ⊆ U ⊆ X.

A presheaf of abelian groups E on X is called a sheaf if it also satisfies

(iv) If U ⊆ X is open, {Vi : i ∈ I} is an open cover of U , and s ∈ E(U) has
ρUVi(s) = 0 in E(Vi) for all i ∈ I, then s = 0 in E(U); and

(v) If U ⊆ X is open, {Vi : i ∈ I} is an open cover of U , and we are given
elements si ∈ E(Vi) for all i ∈ I such that ρVi(Vi∩Vj)(si) = ρVj(Vi∩Vj)(sj)
in E(Vi ∩ Vj) for all i, j ∈ I, then there exists s ∈ E(U) with ρUVi(s) = si
for all i ∈ I. This s is unique by (iv).

Suppose E ,F are presheaves or sheaves of abelian groups on X. A morphism
φ : E → F consists of a morphism of abelian groups φ(U) : E(U)→ F(U) for all
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open U ⊆ X, such that the following diagram commutes for all open V ⊆ U ⊆ X

E(U)
φ(U)

//

ρUV ��

F(U)

ρ′UV ��
E(V )

φ(V ) // F(V ).

where ρUV is the restriction map for E , and ρ′UV the restriction map for F .

Definition B.12. Let E be a presheaf of abelian groups on X. For each x ∈ X,
the stalk Ex is the direct limit of the groups E(U) for all x ∈ U ⊆ X, via the
restriction maps ρUV . It is an abelian group. A morphism φ : E → F induces
morphisms φx : Ex → Fx for all x ∈ X. If E ,F are sheaves then φ is an
isomorphism if and only if φx is an isomorphism for all x ∈ X.

Sheaves of abelian groups on X form an abelian category Sh(X). Thus we
have (category-theoretic) notions of when a morphism φ : E → F in Sh(X) is
injective or surjective, and when a sequence E → F → G in Sh(X) is exact. It
turns out that φ : E → F is injective if and only if φ(U) : E(U) → F(U) is
injective for all open U ⊆ X. However φ : E → F surjective does not imply that
φ(U) : E(U) → F(U) is surjective for all open U ⊆ X. Instead, φ is surjective
if and only if φx : Ex → Fx is surjective for all x ∈ X.

Definition B.13. Let E be a presheaf of abelian groups on X. A sheafification
of E is a sheaf of abelian groups Ê on X and a morphism π : E → Ê , such that
whenever F is a sheaf of abelian groups on X and φ : E → F is a morphism,
there is a unique morphism φ̂ : Ê → F with φ = φ̂ ◦ π. As in [38, Prop. II.1.2],
a sheafification always exists, and is unique up to canonical isomorphism; one
can be constructed explicitly using the stalks Ex of E .

Next we discuss pushforwards and pullbacks of sheaves by continuous maps.

Definition B.14. Let f : X → Y be a continuous map of topological spaces,
and E a sheaf of abelian groups on X. Define the pushforward (direct image)
sheaf f∗(E) on Y by

(
f∗(E)

)
(U) = E

(
f−1(U)

)
for all open U ⊆ V , with re-

striction maps ρ′UV = ρf−1(U)f−1(V ) :
(
f∗(E)

)
(U) →

(
f∗(E)

)
(V ) for all open

V ⊆ U ⊆ Y . Then f∗(E) is a sheaf of abelian groups on Y .
If φ : E → F is a morphism in Sh(X) we define f∗(φ) : f∗(E) → f∗(F) by(

f∗(φ)
)
(u) = φ

(
f−1(U)

)
for all open U ⊆ Y . Then f∗(φ) is a morphism in

Sh(Y ), and f∗ is a functor Sh(X) → Sh(Y ). It is a left exact functor between
abelian categories, but in general is not exact. For continuous maps f : X → Y ,
g : Y → Z we have (g ◦ f)∗ = g∗ ◦ f∗.

Definition B.15. Let f : X → Y be a continuous map of topological spaces,
and E a sheaf of abelian groups on Y . Define a presheaf Pf−1(E) on X by(
Pf−1(E)

)
(U) = limA⊇f(U) E(A) for open A ⊆ X, where the direct limit is

taken over all open A ⊆ Y containing f(U), using the restriction maps ρAB
in E . For open V ⊆ U ⊆ X, define ρ′UV :

(
Pf−1(E)

)
(U) →

(
Pf−1(E)

)
(V ) as

the direct limit of the morphisms ρAB in E for B ⊆ A ⊆ Y with f(U) ⊆ A
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and f(V ) ⊆ B. Then we define the pullback (inverse image) f−1(E) to be the
sheafification of the presheaf Pf−1(E).

Pullbacks f−1(E) are only unique up to canonical isomorphism, rather than
unique. By convention we choose once and for all a pullback f−1(E) for all
X,Y, f, E , using the Axiom of Choice if necessary. If φ : E → F is a morphism
in Sh(Y ), one can define a pullback morphism f−1(φ) : f−1(E) → f−1(F).
Then f−1 : Sh(Y )→ Sh(X) is an exact functor between abelian categories.

We compare pushforwards and pullbacks:

Remark B.16. (a) There are two kinds of pullback, with slightly different
notation. The first kind, written f−1(E) as in Definition B.15, is used for sheaves
of abelian groups or C∞-rings. The second kind, written f∗(E) or f∗(E) and
discussed in §B.7, is used for sheaves of OY -modules E .

(b) The definition of pushforward sheaves f∗(E) is wholly elementary. In con-
trast, the definition of pullbacks f−1(E) is complex, involving a direct limit
followed by a sheafification, and includes arbitrary choices.

Pushforwards f∗ are strictly functorial in the continuous map f : X → Y ,
that is, for continuous f : X → Y , g : Y → Z we have (g◦f)∗ = g∗◦f∗ : Sh(X)→
Sh(Z). However, pullbacks f−1 are only weakly functorial in f : if E ∈ Sh(Z)
then we need not have (g ◦ f)−1(E) = f−1(g−1(E)). This is because pullbacks
are only natural up to canonical isomorphism, and we make an arbitrary choice
for each pullback. So although f−1(g−1(E)) is a possible pullback for E by g ◦f ,
it may not be the one we chose.

Thus, there is a canonical isomorphism (g ◦ f)−1(E) ∼= f−1(g−1(E)), which
we will write as If,g(E) : (g ◦ f)−1(E) → f−1(g−1(E)). The If,g(E) for all E ∈
Sh(Z) comprise a natural isomorphism of functors If,g : (g ◦ f)−1 ⇒ f−1 ◦ g−1.
Similarly, for E ∈ Sh(X) we may not have id−1

X (E) = E , but instead there
are canonical isomorphisms δX(E) : id−1

X (E) → E , which make up a natural
isomorphism δX : id−1

X ⇒ idSh(X).
Many authors ignore the natural isomorphisms If,g, δX entirely. We are care-

ful to keep track of them, in part because by including them in our constructions
we can make d-manifolds and d-orbifolds into strict 2-categories, rather than
some weaker structure.

(c) Let f : X → Y be a continuous map of topological spaces. Then we have
functors f∗ : Sh(X)→ Sh(Y ), and f−1 : Sh(Y )→ Sh(X). As in [38, Ex. II.1.18],
f∗ is right adjoint to f−1. That is, there is a natural bijection

HomX

(
f−1(E),F

)
= HomY

(
E , f∗(F)

)
(B.2)

for all E ∈ Sh(Y ) and F ∈ Sh(X), with functorial properties.
Because of the adjoint property (B.2), statements can often be formulated

equivalently using either pushforwards or pullbacks. Our policy is always to
express things in terms of pullbacks, despite the disadvantages noted in (b).
One reason is that when working with quasicoherent sheaves, coherent sheaves
and vector bundles are preserved by pullbacks, but not by pushforwards.
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B.4 C∞-schemes

Next we summarize material in [56, §4] on C∞-schemes.

Definition B.17. A C∞-ringed space X = (X,OX) is a topological space X
with a sheaf OX of C∞-rings on X, as in Definition B.11.

A morphism f = (f, f ]) : (X,OX) → (Y,OY ) of C∞ ringed spaces is a

continuous map f : X → Y and a morphism f ] : f−1(OY ) → OX of sheaves
of C∞-rings on X, for f−1(OY ) as in Definition B.15. There is another way to
write the data f ]: since as in Remark B.16(c) pushforward f∗ is right adjoint
to pullback f−1, as in (B.2) there is a natural bijection

HomX

(
f−1(OY ),OX

) ∼= HomY

(
OY , f∗(OX)

)
. (B.3)

Write f] : OY → f∗(OX) for the morphism of sheaves of C∞-rings on Y corre-
sponding to f ] under (B.3), so that

f ] : f−1(OY ) −→ OX ! f] : OY −→ f∗(OX). (B.4)

Depending on the application, either f ] or f] may be more useful. We choose
to regard f ] as primary and write morphisms as f = (f, f ]) rather than (f, f]),
because we find it convenient to work uniformly using pullbacks, rather than
mixing pullbacks and pushforwards.

If f : X → Y and g : Y → Z are C∞-scheme morphisms, the composition is

g ◦ f =
(
g ◦ f, (g ◦ f)]

)
=
(
g ◦ f, f ] ◦ f−1(g]) ◦ If,g(OZ)

)
, (B.5)

where If,g(OZ) : (g ◦ f)−1(OZ)→ f−1(g−1(OZ)) is the canonical isomorphism.
In terms of f] : OY → f∗(OX), composition is

(g ◦ f)] = g∗(f]) ◦ g] : OZ −→ (g ◦ f)∗(OX) = g∗ ◦ f∗(OX). (B.6)

A local C∞-ringed space X = (X,OX) is a C∞-ringed space for which the
stalksOX,x ofOX at x are C∞-local rings for all x ∈ X. Since morphisms of C∞-
local rings are automatically local morphisms, morphisms of local C∞-ringed
spaces (X,OX), (Y,OY ) are just morphisms of C∞-ringed spaces, without any
additional locality condition.

Write C∞RS for the category of C∞-ringed spaces, and LC∞RS for the
full subcategory of local C∞-ringed spaces.

For brevity, we will use the notation that underlined upper case letters
X,Y , Z, . . . represent C∞-ringed spaces (X,OX), (Y,OY ), (Z,OZ), . . . , and un-
derlined lower case letters f, g, . . . represent morphisms of C∞-ringed spaces

(f, f ]), (g, g]), . . . . When we write ‘x ∈ X’ we mean that X = (X,OX) and
x ∈ X. When we write ‘U is open in X’ we mean that U = (U,OU ) and
X = (X,OX) with U ⊆ X an open set and OU = OX |U .

Definition B.18. Write C∞Ringsop for the opposite category of C∞Rings.
The global sections functor Γ : LC∞RS→C∞Ringsop acts on objects (X,OX)
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in LC∞RS by Γ : (X,OX) 7→ OX(X) and on morphisms (f, f ]) : (X,OX) →
(Y,OY ) by Γ : (f, f ]) 7→ f](Y ), for f] : OX → f∗(OY ) as in (B.4). As in [30,
Th. 8] there is a spectrum functor Spec : C∞Ringsop → LC∞RS, defined
explicitly in [56, Def. 4.12], which is a right adjoint to Γ, that is, for all C ∈
C∞Rings and X ∈ LC∞RS there are functorial isomorphisms

HomC∞Rings(C,Γ(X)) ∼= HomLC∞RS(X,SpecC). (B.7)

For any C∞-ring C there is a natural morphism of C∞-rings ΦC : C → Γ(SpecC)
corresponding to idX in (B.7) with X = SpecC. By [30, Th. 13], the restriction

of Spec to (C∞Ringsfa)op is full and faithful.
A local C∞-ringed space X is called an affine C∞-scheme if it is isomorphic

in LC∞RS to SpecC for some C∞-ring C. We call X a finitely presented, or
fair, affine C∞-scheme if X ∼= SpecC for C that kind of C∞-ring.

Let X = (X,OX) be a local C∞-ringed space. We call X a C∞-scheme if
X can be covered by open sets U ⊆ X such that (U,OX |U ) is an affine C∞-
scheme. We call a C∞-scheme X locally fair, or locally finitely presented, if X
can be covered by open U ⊆ X with (U,OX |U ) a fair, or finitely presented,
affine C∞-scheme, respectively.

Write C∞Schlf ,C∞Schlfp,C∞Sch for the full subcategories of locally fair,
and locally finitely presented, and all, C∞-schemes in LC∞RS, respectively.

We call a C∞-scheme X separated, second countable, compact, locally com-
pact, or paracompact, if the underlying topological space X is Hausdorff, sec-
ond countable, compact, locally compact, or paracompact, respectively. Write
C∞Schlf

ssc for the full subcategory of separated, second countable, locally fair
C∞-schemes in LC∞RS.

By [56, Prop.s 4.10, 4.11, 4.32, Cor. 4.18 & Th. 4.33], and deducing the
C∞Schlf

ssc case in (b) from the C∞Schlf case, we have:

Theorem B.19. (a) All finite limits exist in the category C∞RS.

(b) The full subcategories C∞Sch,C∞Schlfp,C∞Schlf ,C∞Schlf
ssc,LC∞RS

in C∞RS are closed under all finite limits in C∞RS. Hence, fibre products
and all finite limits exist in each of these subcategories.

(c) If C is a finitely generated C∞-ring then SpecC is a fair affine C∞-scheme.

(d) Let (X,OX) be a locally finitely presented, locally fair, or general, C∞-
scheme, and U ⊆ X be open. Then (U,OX |U ) is also a locally finitely presented,
or locally fair, or general, C∞-scheme, respectively.

In [56, Def. 4.34 & Prop. 4.35] we discuss partitions of unity on C∞-schemes.

Definition B.20. Let X = (X,OX) be a C∞-scheme. Consider a formal sum∑
a∈A ca, where A is an indexing set and ca ∈ OX(X) for a ∈ A. We say∑
a∈A ca is a locally finite sum on X if X can be covered by open U ⊆ X such

that for all but finitely many a ∈ A we have ρXU (ca) = 0 in OX(U).
By the sheaf axioms for OX , if

∑
a∈A ca is a locally finite sum there exists

a unique c ∈ OX(X) such that for all open U ⊆ X such that ρXU (ca) = 0
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in OX(U) for all but finitely many a ∈ A, we have ρXU (c) =
∑
a∈A ρXU (ca)

in OX(U), where the sum makes sense as there are only finitely many nonzero
terms. We call c the limit of

∑
a∈A ca, written

∑
a∈A ca = c.

Let c ∈ OX(X). Suppose Vi ⊆ X is open and ρXVi(c) = 0 ∈ OX(Vi) for
i ∈ I, and let V =

⋃
i∈I Vi. Then V ⊆ X is open, and ρXV (c) = 0 ∈ OX(V ) as

OX is a sheaf. Thus taking the union of all open V ⊆ X with ρXV (c) = 0 gives
a unique maximal open set Vc ⊆ X such that ρXVc(c) = 0 ∈ OX(Vc). Define
the support supp c of c to be X \ Vc, so that supp c is closed in X. If U ⊆ X is
open, we say that c is supported in U if supp c ⊆ U .

Let {Ua : a ∈ A} be an open cover of X. A partition of unity on X
subordinate to {Ua : a ∈ A} is {ηa : a ∈ A} with ηa ∈ OX(X) supported in Ua
for a ∈ A, such that

∑
a∈A ηa is a locally finite sum on X with

∑
a∈A ηa = 1.

Proposition B.21. Suppose X is a separated, paracompact, locally fair C∞-
scheme, and {Ua : a ∈ A} an open cover of X. Then there exists a partition of
unity {ηa : a ∈ A} on X subordinate to {Ua : a ∈ A}.

Here are some differences between ordinary schemes and C∞-schemes:

Remark B.22. (i) If A is a ring or algebra, then points of the corresponding
scheme SpecA are prime ideals in A. However, if C is a C∞-ring then (by
definition) points of SpecC are maximal ideals in C with residue field R, or
equivalently, R-algebra morphisms x : C → R. This has the effect that if X is a
manifold then points of SpecC∞(X) are just points of X.

(ii) In conventional algebraic geometry, affine schemes are a restrictive class.
Central examples such as CPn are not affine, and affine schemes are not closed
under open subsets, so that C2 is affine but C2 \ {0} is not. In contrast, affine
C∞-schemes are already general enough for many purposes. For example:

• All manifolds are affine C∞-schemes.

• Open C∞-subschemes of fair affine C∞-schemes are fair and affine.

• Separated, second countable, locally fair C∞-schemes are affine.

Affine C∞-schemes are always separated (Hausdorff), so we need general C∞-
schemes to include non-Hausdorff behaviour.

(iii) In conventional algebraic geometry the Zariski topology is too coarse for
many purposes, so one has to introduce the étale topology. In C∞-algebraic
geometry there is no need for this, as affine C∞-schemes are Hausdorff.

(iv) Even very basic C∞-rings such as C∞(Rn) for n > 0 are not noetherian as
R-algebras. So C∞-schemes should be compared to non-noetherian schemes in
conventional algebraic geometry.

B.5 Manifolds as C∞-rings and C∞-schemes

Here is [56, Prop. 3.1]:
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Proposition B.23. (a) If X is a manifold without boundary then the C∞-ring
C∞(X) of Example B.2 is finitely presented.

(b) If X is a manifold with boundary, or with corners, and ∂X 6= ∅, then the
C∞-ring C∞(X) of Example B.2 is fair, but is not finitely presented.

Definition B.24. Define functors

FC∞Rings
Man : Man −→ (C∞Ringsfp)op ⊂ (C∞Rings)op,

FC∞Rings
Manb : Manb −→ (C∞Ringsfa)op ⊂ (C∞Rings)op,

FC∞Rings
Manc : Manc −→ (C∞Ringsfa)op ⊂ (C∞Rings)op,

as follows. On objects FC∞Rings
Man∗ map X 7→ C∞(X), for C∞(X) as in Example

B.2. On morphisms, if f : X → Y is smooth then f∗ : C∞(Y ) → C∞(X)
mapping c 7→ c ◦ f is a morphism of C∞-rings, so that f∗ : C∞(X) → C∞(Y )

is a morphism in (C∞Rings)op, and FC∞Rings
Man∗ map f 7→ f∗. Define functors

FC∞Sch
Man : Man −→ C∞Schlfp ⊂ C∞Sch,

FC∞Sch
Manb : Manb −→ C∞Schlf ⊂ C∞Sch,

FC∞Sch
Manc : Manc −→ C∞Schlf ⊂ C∞Sch,

by FC∞Sch
Man∗ = Spec ◦FC∞Rings

Man∗ .
If X,Y, . . . are manifolds, or f, g, . . . are (weakly) smooth maps, we will often

use X,Y , . . . , f , g, . . . to denote FC∞Sch
Manc (X,Y, . . . , f, g, . . .). So for instance we

will write Rn and [0,∞) for FC∞Sch
Man (Rn) and FC∞Sch

Manb

(
[0,∞)

)
.

We can describe the C∞-ringed space X = FC∞Sch
Manc (X) for a manifold X.

Example B.25. Let X be a manifold, which may have boundary or corners.
Define a C∞-ringed space X = (X,OX) to have topological space X and
OX(U) = C∞(U) for each open U ⊆ X, where C∞(U) is the C∞-ring of smooth
maps c : U → R, and if V ⊆ U ⊆ X are open define ρUV : C∞(U)→ C∞(V ) by
ρUV : c 7→ c|V . Then X = (X,OX) is a local C∞-ringed space. It is canonically
isomorphic to SpecC∞(X) = FC∞Sch

Manc (X), and so is an affine C∞-scheme.

As in §5.2, for manifolds with boundary or corners X,Y we have two classes
of morphisms f : X → Y , called weakly smooth and smooth maps. If f is
only weakly smooth then f∗ : C∞(Y ) → C∞(X) in Definition B.24 is still a
morphism of C∞-rings, so Spec f∗ : X → Y is a morphism of C∞-schemes.
By [56, Prop. 3.3 & Th. 4.16] we have:

Proposition B.26. Let X,Y be manifolds with corners, and X,Y the associ-
ated C∞-schemes. Then the map f 7→ f = Spec(f∗) from weakly smooth maps
f : X → Y to morphisms of C∞-schemes f : X → Y is a 1-1 correspondence.

As for manifolds with boundary or corners the smooth maps are a proper
subset of the weakly smooth maps, we deduce [56, Cor. 4.21]:
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Corollary B.27. The functor FC∞Sch
Man : Man → C∞Sch is full and faithful.

However, the functors FC∞Sch
Manb : Manb → C∞Sch and FC∞Sch

Manc : Manc →
C∞Sch are faithful, but not full.

From [56, Cor. 4.21] we have:

Theorem B.28. The functors FC∞Sch
Man , FC∞Sch

Manc take transverse fibre products
in Man,Manc, in the sense of §5.6, to fibre products in C∞Sch.

B.6 Modules over C∞-rings, and cotangent modules

In [56, §5] we discuss modules over C∞-rings.

Definition B.29. Let C be a C∞-ring. A module (M,µ) over C, or C-module, is
a module over C regarded as a commutative R-algebra as in Definition B.5. That
is, M is a vector space over R equipped with a bilinear map µ : C ×M → M ,
satisfying µ(c1 · c2,m) = µ

(
c1, µ(c2,m)

)
and µ(1,m) = m for all c1, c2 ∈ C and

m ∈ M . A morphism α : (M,µ) → (M ′, µ′) of C-modules (M,µ), (M ′, µ′) is a
linear map α : M →M ′ such that α ◦ µ = µ′ ◦ (idC × α) : C ×M →M ′. Then
C-modules form an abelian category, which we write as C-mod. Often we write
M for the C-module, leaving µ implicit.

Now C ⊗R V is a C-module for any real vector space V . A C-module (M,µ)
is called finitely presented if there is an exact sequence (C ⊗R Rm, µRm) →
(C ⊗R Rn, µRn) → (M,µ) → 0 in C-mod for some m,n > 0. We write C-modfp

for the full subcategory of finitely presented C-modules in C-mod. Then C-modfp

is closed under cokernels and extensions in C-mod. But it may not be closed
under kernels, so C-modfp may not be an abelian category.

Let φ : C → D be a morphism of C∞-rings. If (M,µ) is a C-module then
φ∗(M,µ) =

(
M⊗CD, µD

)
is a D-module, where µD = µC×idD : D×M⊗CD ∼=

C⊗C D×M⊗C D→M⊗C D, and this induces a functor φ∗ : C-mod→ D-mod,
which maps C-modfp → D-modfp.

Vector bundles E over manifolds X give examples of modules over C∞(X).

Example B.30. Let X be a manifold, which may have boundary or corners.
Let E → X be a vector bundle, and C∞(E) the vector space of smooth sections
e of E. Define µE : C∞(X) × C∞(E) → C∞(E) by µE(c, e) = c · e. Then(
C∞(E), µE

)
is a C∞(X)-module. One can show it is finitely presented.

Let E,F → X be vector bundles over X and λ : E → F a morphism of
vector bundles. Then λ∗ : C∞(E) → C∞(F ) defined by λ∗ : e 7→ λ ◦ e is a
morphism of C∞(X)-modules.

Now let X,Y be manifolds and f : X → Y a (weakly) smooth map. Then
f∗ : C∞(Y ) → C∞(X) is a morphism of C∞-rings. If E → Y is a vector
bundle over Y , then f∗(E) is a vector bundle over X. Under the functor (f∗)∗ :
C∞(Y )-mod→ C∞(X)-mod of Definition B.29, we see that (f∗)∗

(
C∞(E)

)
=

C∞(E)⊗C∞(Y ) C
∞(X) is isomorphic as a C∞(X)-module to C∞

(
f∗(E)

)
.

In [56, §5.3] we define the cotangent module (ΩC , µC) of a C∞-ring C.
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Definition B.31. Suppose C is a C∞-ring, and (M,µ) a C-module. A C∞-
derivation is an R-linear map d : C → M such that whenever f : Rn → R is a
smooth map and c1, . . . , cn ∈ C, we have

dΦf (c1, . . . , cn) =
∑n
i=1 µ

(
Φ ∂f
∂xi

(c1, . . . , cn),dci
)
. (B.8)

Note that d is not a morphism of C-modules. We call such a pair (M,µ),d a
cotangent module for C if it has the universal property that for any C-module
(M ′, µ′) and C∞-derivation d′ : C → M ′, there exists a unique morphism of
C-modules φ : (M,µ)→ (M ′, µ′) with d′ = φ ◦ d.

There is a natural construction for a cotangent module: we take (M,µ)
to be the quotient of the free C-module with basis of symbols dc for c ∈ C
by the C-submodule spanned by all expressions of the form dΦf (c1, . . . , cn) −∑n
i=1 µ

(
Φ ∂f
∂xi

(c1, . . . , cn),dci
)

for f : Rn → R smooth and c1, . . . , cn ∈ C. Thus

cotangent modules exist, and are unique up to unique isomorphism. When we
speak of ‘the’ cotangent module, we mean that constructed above. We will write
(ΩC , µC), dC : C → ΩC for this cotangent module for C.

Let C,D be C∞-rings with cotangent modules (ΩC , µC),dC , (ΩD, µD),dD,
and φ : C → D be a morphism of C∞-rings. Then the action µC ◦ (φ × idΩD

)
makes ΩD into a C-module, and dD ◦ φ : C → ΩD is a C∞-derivation. Thus
by the universal property of ΩC , there exists a unique morphism of C-modules
Ωφ : ΩC → ΩD with dD ◦ φ = Ωφ ◦ dC . This then induces a morphism of D-
modules (Ωφ)∗ : ΩC ⊗C D→ ΩD with (Ωφ)∗ ◦ (dC ⊗ idD) = dD as a composition
D = C ⊗C D → ΩC ⊗C D → ΩD. If φ : C → D, ψ : D → E are morphisms of
C∞-rings then Ωψ◦φ = Ωψ ◦ Ωφ : ΩC → ΩE.

Example B.32. Let X be a manifold. Then the cotangent bundle T ∗X is
a vector bundle over X, so as in Example B.30 it yields a C∞(X)-module
C∞(T ∗X). The exterior derivative d : C∞(X)→ C∞(T ∗X), d : c 7→ dc is then
a C∞-derivation, since equation (B.8) follows from

d
(
f(c1, . . . , cn)

)
=
∑n
i=1

∂f
∂xi

(c1, . . . , cn) dcn

for f : Rn → R smooth and c1, . . . , cn ∈ C∞(X), which holds by the chain
rule. It is easy to show that

(
C∞(T ∗X), µT∗X

)
,d have the universal property

in Definition B.31, and so form a cotangent module for C∞(X).
Now let X,Y be manifolds, and f : X → Y a (weakly) smooth map. Then

f∗(TY ), TX are vector bundles over X, and the derivative of f is a vector
bundle morphism df : TX → f∗(TY ). The dual of this morphism is (df)∗ :
f∗(T ∗Y ) → T ∗X. This induces a morphism of C∞(X)-modules ((df)∗)∗ :
C∞

(
f∗(T ∗Y )

)
→ C∞(T ∗X). This ((df)∗)∗ is identified with (Ωf∗)∗ under the

natural isomorphism C∞
(
f∗(T ∗Y )

) ∼= C∞(T ∗Y ) ⊗C∞(Y ) C
∞(X), where we

identify C∞(Y ), C∞(X), f∗ with C,D, φ in Definition B.31.

Definition B.31 abstracts the notion of cotangent bundle of a manifold in a
way that makes sense for any C∞-ring. From [56, Th.s 5.13 & 5.16] we have:
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Theorem B.33. (a) Suppose C is a finitely presented C∞-ring. Then ΩC is a
finitely presented C-module.

(b) Suppose we are given a pushout diagram of finitely generated C∞-rings:

C
β

//

α��

E
δ ��

D
γ // F,

so that F = DqC E. Then the following sequence of F-modules is exact:

ΩC ⊗µC ,C,γ◦α F

(Ωα)∗⊕
−(Ωβ)∗ // ΩD ⊗µD,D,γ F ⊕

ΩE ⊗µE,E,δ F
(Ωγ)∗⊕(Ωδ)∗ // ΩF

// 0.

Here (Ωα)∗ : ΩC ⊗µC ,C,γ◦α F → ΩD ⊗µD,D,γ F is induced by Ωα : ΩC → ΩD,
and so on.

B.7 Quasicoherent sheaves on C∞-schemes

In [56, §6] we discuss sheaves of modules on C∞-schemes.

Definition B.34. Let (X,OX) be a C∞-ringed space. A sheaf of OX-modules,
or simply an OX -module, E on X assigns a module E(U) = (MU , µU ) over the
C∞-ring OX(U) for each open set U ⊆ X, and a linear map EUV : MU → MV

for each inclusion of open sets V ⊆ U ⊆ X, such that the following commutes

OX(U)×MU

ρUV ×EUV��
µU

// MU

EUV ��
OX(V )×MV

µV // MV ,

(B.9)

and all this data E(U), EUV satisfies the sheaf axioms in Definition B.11.
A morphism of sheaves of OX-modules φ : E → F assigns a morphism of

OX(U)-modules φ(U) : E(U) → F(U) for each open set U ⊆ X, such that
φ(V ) ◦ EUV = FUV ◦ φ(U) for each inclusion of open sets V ⊆ U ⊆ X. Then
OX -modules form an abelian category, which we write as OX -mod.

Let f = (f, f ]) : (X,OX) → (Y,OY ) be a morphism of C∞-ringed spaces,

and E be an OY -module. Define the pullback f∗(E) by f∗(E) = f−1(E)⊗f−1(OY )

OX , where f−1(E) is as in Definition B.15, a sheaf of modules over the sheaf
of C∞-rings f−1(OY ) on X, and the tensor product uses the morphism f ] :
f−1(OY )→ OX . If φ : E → F is a morphism of OY -modules we have an induced
morphism of OX -modules f∗(φ) = f−1(φ) ⊗ idOX : f∗(E) → f∗(F). Then
f∗ : OY -mod→ OX -mod is a right exact functor between abelian categories.

Pullbacks f∗(E) are a kind of fibre product, and may be characterized by a
universal property. So they should be regarded as being unique up to canonical
isomorphism, rather than unique. We choose f∗(E) for all f, E , and so speak
of ‘the’ pullback f∗(E). However, it may not be possible to make these choices
functorial in f . That is, if f : X → Y , g : Y → Z are morphisms and E ∈
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OZ-mod then (g ◦f)∗(E), f∗(g∗(E)) are canonically isomorphic in OX -mod, but
may not be equal. As in Remark B.16(b), we will write If,g(E) : (g ◦ f)∗(E)→
f∗(g∗(E)) for these canonical isomorphisms. Then If,g : (g ◦ f)∗ ⇒ f∗ ◦ g∗ is a
natural isomorphism of functors.

When f is the identity idX : X → X and E ∈ OX -mod we do not require
id∗X(E) = E , but as E is a possible pullback for id∗X(E) there is a canonical
isomorphism δX(E) : id∗X(E) → E , and then δX : id∗X ⇒ idOX -mod is a natural
isomorphism of functors.

Definition B.35. Definition B.18 discussed the spectrum Spec : C∞Ringsop

→ LC∞RS. As in [56, §6.2] this has a counterpart for modules: if C is a C∞-
ring and (X,OX) = SpecC we can define a functor MSpec : C-mod→ OX -mod.

Suppose now that C is a fair C∞-ring. As Spec is full and faithful on fair
C∞-rings, the morphism of C∞-rings ΦC : C → Γ(SpecC) in Definition B.18 is
an isomorphism. Define the global sections functor Γ : OX -mod → C-mod on
objects by Γ : E 7→ E(X), where the OX(X)-module E(X) is regarded as a C-
module using Φ−1

C , and on morphisms α : E → F in OX -mod by Γ : α 7→ α(X).
Then Γ is a right adjoint to MSpec, that is, as in (B.7) for all M ∈ C-mod and
E ∈ OX -mod there are functorial isomorphisms

HomC-mod(M,Γ(E)) ∼= HomOX -mod(MSpecM, E). (B.10)

Taking E = MSpecM , we obtain a natural morphism of C-modules ΦM : M →
Γ(MSpecM) corresponding to idMSpecM in (B.10). A C-module M is called
complete if ΦM is an isomorphism. Write C-modco for the full abelian sub-
category of complete C-modules in C-mod. Then MSpec |C-modco : C-modco →
OX -mod is an equivalence of categories.

Let X = (X,OX) be a C∞-scheme, and E a sheaf of OX -modules. We call E
quasicoherent if X can be covered by open subsets U with (U,OX |U ) ∼= SpecC
for some C∞-ring C, and under this identification E|U ∼= MSpecM for some C-
module M . We call E coherent if we can take these C-modules M to be finitely
presented. We call E a vector bundle of rank n > 0 if X may be covered by
open U such that E|U ∼= OX |U ⊗R Rn. Vector bundles are coherent sheaves.
Write qcoh(X), coh(X), and vect(X) for the full subcategories of quasicoherent
sheaves, coherent sheaves, and vector bundles in OX -mod, respectively.

The next theorem comes from [56, Cor. 6.11 & Prop. 6.12]. In part (a),
the reason coh(X) is not closed under kernels is that the C∞-rings we are
interested in are generally not noetherian as commutative R-algebras, and this
causes problems with coherence; in conventional algebraic geometry, one usually
only considers coherent sheaves over noetherian schemes.

Theorem B.36. (a) Let X be a C∞-scheme. Then qcoh(X) is closed under
kernels, cokernels and extensions in OX -mod, so it is an abelian category. Also
coh(X) is closed under cokernels and extensions in OX -mod, but may not be
closed under kernels in OX -mod, so coh(X) may not be an abelian category.
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(b) Suppose f : X → Y is a morphism of C∞-schemes. Then pullback f∗ :
OY -mod → OX -mod maps qcoh(Y ) → qcoh(X) and coh(Y ) → coh(X) and
vect(Y )→ vect(X). Also f∗ : qcoh(Y )→ qcoh(X) is a right exact functor.

(c) Let X be a locally fair C∞-scheme. Then every OX-module E on X is
quasicoherent, that is, qcoh(X) = OX -mod.

Let X be a separated, paracompact, locally fair C∞-scheme. Then partitions
of unity exist on X subordinate to any open cover by Proposition B.21. As
in [56, §6.3], this shows that quasicoherent sheaves E on X are fine, in the sense
of Godement [35, §II.3.7], which implies that their cohomology groups Hi(E)
are zero for all i > 0. In [56, Prop. 6.13] we deduce an exactness property for
sections of quasicoherent sheaves on X:

Proposition B.37. Suppose X = (X,OX) is a separated, paracompact, locally

fair C∞-scheme, and · · · → E i φi−→E i+1 φ
i+1

−→E i+2 → · · · an exact sequence in

qcoh(X). Then · · · → E i(U)
φi(U)−→ E i+1(U)

φi+1(U)−→ E i+2(U) → · · · is an exact
sequence of OX(U)-modules for each open U ⊆ X.

We define cotangent sheaves, the sheaf version of cotangent modules in §B.6.

Definition B.38. Let X = (X,OX) be a C∞-ringed space. Define PT ∗X
to associate to each open U ⊆ X the cotangent module (ΩOX(U), µOX(U)) of
Definition B.31, regarded as a module over the C∞-ring OX(U), and to each
inclusion of open sets V ⊆ U ⊆ X the morphism of OX(U)-modules ΩρUV :
ΩOX(U) → ΩOX(V ) associated to the morphism of C∞-rings ρUV : OX(U) →
OX(V ). Then PT ∗X is a presheaf of OX -modules on X. Define the cotangent
sheaf T ∗X of X to be the sheaf of OX -modules associated to PT ∗X.

If U ⊆ X is open then we have an equality of sheaves of OX |U -modules

T ∗(U,OX |U ) = T ∗X|U .

Let f : X → Y be a morphism of C∞-schemes. Then by Definition

B.34, f∗
(
T ∗Y

)
= f−1(T ∗Y ) ⊗f−1(OY ) OX , where T ∗Y is the sheafification of

the presheaf V 7→ ΩOY (V ), and f−1(T ∗Y ) the sheafification of the presheaf
U 7→ limV⊇f(U)(T

∗Y )(V ), and f−1(OY ) the sheafification of the presheaf U 7→
limV⊇f(U)OY (V ). The three sheafifications combine into one, so that f∗

(
T ∗Y

)
is the sheafification of the presheaf P(f∗(T ∗Y )) acting by

U 7−→ P(f∗(T ∗Y ))(U) = limV⊇f(U) ΩOY (V ) ⊗OY (V ) OX(U).

Define a morphism of presheaves PΩf : P(f∗(T ∗Y ))→ PT ∗X on X by

(PΩf )(U) = limV⊇f(U)(Ωρf−1(V )U◦f](V ))∗,

where (Ωρf−1(V )U◦f](V ))∗ : ΩOY (V ) ⊗OY (V ) OX(U) → ΩOX(U) = (PT ∗X)(U) is

constructed as in Definition B.31 from the C∞-ring morphisms f](V ) : OY (V )→
OX(f−1(V )) from f] : OY → f∗(OX) corresponding to f ] in f as in (B.4), and

ρf−1(V )U : OX(f−1(V ))→ OX(U) in OX . Define Ωf : f∗
(
T ∗Y

)
→ T ∗X to be

the induced morphism of the associated sheaves.
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Here [56, Th.s 6.16 & 6.17] are some properties of cotangent sheaves.

Theorem B.39. (a) Suppose X is an n-manifold, which may have boundary
or corners, and X = FC∞Sch

Manc (X) in the notation of §B.5. Then T ∗X is a rank
n vector bundle on X, with (T ∗X)(U) ∼= C∞(T ∗X|U ) for all open U ⊆ X.

(b) Let f : X → Y and g : Y → Z be morphisms of C∞-schemes. Then

Ωg◦f = Ωf ◦ f∗(Ωg) ◦ If,g(T ∗Z)

as morphisms (g ◦f)∗(T ∗Z)→ T ∗X in OX -mod. Here Ωg : g∗(T ∗Z)→ T ∗Y in

OY -mod, so applying f∗ gives f∗(Ωg) : f∗(g∗(T ∗Z)) → f∗(T ∗Y ) in OX -mod,

and If,g(T
∗Z) : (g ◦ f)∗(T ∗Z)→ f∗(g∗(T ∗Z)) is as in Definition B.34.

(c) Suppose W,X, Y , Z are locally fair C∞-schemes with a Cartesian square

W
f

//

e
��

Y

h ��
X

g
// Z

in C∞Schlf , so that W = X ×Z Y . Then the following is exact in qcoh(W ) :

(g ◦ e)∗(T ∗Z)

e∗(Ωg)◦Ie,g(T∗Z)⊕
−f∗(Ωh)◦If,h(T∗Z)

// e∗(T ∗X)⊕f∗(T ∗Y )
Ωe⊕Ωf // T ∗W // 0. (B.11)

Definition B.40. Let X be a C∞-scheme. A quasicoherent sheaf L on X is
called a line bundle if it is a vector bundle of rank 1. The structure sheafOX is an
example of a line bundle, which we call the trivial line bundle. A trivialization
of a line bundle L is an isomorphism τ : OX → L. A line bundle is called
trivializable if it admits a trivialization. If τ, τ ′ : OX → L are trivializations
then τ ′ = c·τ for some unique invertible function c ∈ OX(X), where c ∈ OX(X)
is invertible if and only if c(x) 6= 0 ∈ R for all x ∈ X.

Call a function c ∈ OX(X) positive if c(x) > 0 for all x ∈ X. Positive func-
tions are invertible. An orientation ω on a line bundle L on X is an equivalence
class [τ ] of isomorphisms τ : OX → L, where τ, τ ′ are equivalent if τ ′ = c · τ for
some positive function c ∈ OX(X).

Let X,Y be C∞-schemes, f : X → Y a morphism, and L ∈ qcoh(Y )
a line bundle on Y . Then f∗(L) is a line bundle on X. Suppose ω is an
orientation on L. Then we can define the pullback orientation f∗(ω) on f∗(L) by
f∗(ω) = [f∗(τ)◦ιf ], where τ : OY → L is an isomorphism representing ω, so that

f∗(τ) : f∗(OY )→ f∗(L) is an isomorphism in qcoh(X), and ιf : OX → f∗(OY )

is the canonical isomorphism. This f∗(ω) is independent of the choice of τ .
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C Deligne–Mumford C∞-stacks

We now explain the theory of C∞-stacks (the analogues of Artin stacks in
algebraic geometry), focussing mainly on Deligne–Mumford C∞-stacks (the
analogues of Deligne–Mumford stacks in algebraic geometry, and of orbifolds
in differential geometry). Deligne–Mumford C∞-stacks are the foundation of
Chapters 8–12. C∞-stacks were developed by the author in [56, §7–§11].

Some important points needed to understand Chapters 8–12 are these:

• Deligne–Mumford C∞-stacks form a 2-category DMC∞Sta. That is, we
have objects X ,Y, 1-morphisms f, g : X → Y, and 2-morphisms η : f ⇒ g.
All 2-morphisms are invertible, that is, they are 2-isomorphisms.

• There is a full and faithful functor FC∞Sta
C∞Sch : C∞Sch → DMC∞Sta

which embeds C∞-schemes as a 2-subcategory of Deligne–Mumford C∞-
stacks. Thus, we regard C∞-schemes as examples of C∞-stacks.

If X,Y , . . . are C∞-schemes and f, g, . . . are morphisms of C∞-schemes,

as a shorthand we will write X̄, Ȳ , . . . , f̄ , ḡ, . . . for the corresponding C∞-

stacks and 1-morphisms, so that X̄, Ȳ , f̄ , ḡ = FC∞Sta
C∞Sch(X,Y , f, g).

• If U is a C∞-scheme and G a finite group acting on U by isomorphisms,
we may form a quotient C∞-stack [U/G], as in Definition C.17 below.
Deligne–Mumford C∞-stacks X are locally modelled on such [U/G]. That
is, we may cover X by Zariski open C∞-substacks U equivalent in C∞Sta
to [U/G], for U an affine C∞-scheme and G a finite group.

• All fibre products exist in DMC∞Sta.

• Each C∞-stack X has an associated topological space Xtop, where points
of Xtop are 2-isomorphism classes [x] of 1-morphisms x : ∗̄ → X , with ∗̄
the point in DMC∞Sta. Each point [x] ∈ Xtop has an orbifold group
IsoX ([x]), a finite group.

• 1-morphisms f : X → Y induce continuous maps ftop : Xtop → Ytop,
with ftop = gtop if f, g are 2-isomorphic. They also induce morphisms of
orbifold groups f∗ : IsoX ([x])→ IsoY(ftop([x])) for each [x] ∈ Xtop.

The author knows of no other work on C∞-stacks in the sense of [56, 57],
which are stacks on the site (C∞Sch,J ), where J is the Grothendieck topology
of open covers in C∞Sch. The closest are the ‘differentiable stacks’ of Behrend
and Xu [13] and the ‘smooth stacks’ of Metzler [82], which are both stacks on the
site (Man,JMan). Some useful references on various kinds of stack are Behrend
et al. [11], Gomez [36], Laumon and Moret-Bailly [64], and Metzler [82].

C.1 C∞-stacks

Stacks are a rather technical subject which take a lot of work and many pages
to set up properly, so for brevity we will give less detail than in Appendix B.
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Definition C.1. Define a Grothendieck topology J on the category C∞Sch of
C∞-schemes to have coverings {ia : Ua → U}a∈A where Va = ia(Ua) is open in
U with ia : Ua → (Va,OU |Va) an isomorphism for all a ∈ A, and U =

⋃
a∈A Va.

Up to isomorphisms of the Ua, the coverings {ia : Ua → U}a∈A of U correspond
exactly to open covers {Va : a ∈ A} of U . Then (C∞Sch,J ) is a site.

The stacks on (C∞Sch,J ) form a 2-category Sta(C∞Sch,J ), with all 2-
morphisms invertible. As the site (C∞Sch,J ) is subcanonical, there is a nat-
ural, fully faithful functor C∞Sch → Sta(C∞Sch,J ), defined explicitly below,
which we write as X 7→ X̄ on objects and f 7→ f̄ on morphisms. A C∞-stack is
a stack X on (C∞Sch,J ) such that the diagonal 1-morphism ∆X : X → X ×X
is representable, and there exists a surjective 1-morphism Π : Ū → X called an
atlas for some C∞-scheme U. Write C∞Sta for the full 2-subcategory of C∞-
stacks in Sta(C∞Sch,J ). The functor C∞Sch → Sta(C∞Sch,J ) above maps

into C∞Sta, so we also write it as FC∞Sta
C∞Sch : C∞Sch→ C∞Sta.

Formally, a C∞-stack is a category X with a functor pX : X → C∞Sch,
where X , pX must satisfy many complicated conditions, including sheaf-like con-
ditions for all open covers in C∞Sch. A 1-morphism f : X → Y of C∞-stacks
is a functor f : X → Y with pY ◦ f = pX : X → C∞Sch. Given 1-morphisms
f, g : X → Y, a 2-morphism η : f ⇒ g is an isomorphism of functors η : f ⇒ g
with idpY ∗ η = idpX : pY ◦ f ⇒ pY ◦ g.

If X is a C∞-scheme, the corresponding C∞-stack X̄ = FC∞Sta
C∞Sch(X) is

the category with objects (U, u) for u : U → X a morphism in C∞Sch, and
morphisms h : (U, u) → (V , v) for h : U → V a morphism in C∞Sch with
v◦h = u. The functor pX̄ : X̄ → C∞Sch maps pX̄ : (U, u) 7→ U and pX̄ : h 7→ h.
When we say that a C∞-stack X is a C∞-scheme, we mean that X ' X̄ in
C∞Sta for some C∞-scheme X.

If f : X → Y is a morphism of C∞-schemes, the corresponding 1-morphism

f̄ = FC∞Sta
C∞Sch(f) : X̄ → Ȳ maps f̄ : (U, u) 7→ (U, f ◦ u) on objects (U, u) and

f̄ : h 7→ h on morphisms h in X̄. This defines a functor f̄ : X̄ → Ȳ with

pȲ ◦ f̄ = pX̄ : X → C∞Sch, so f̄ is a 1-morphism f̄ : X̄ → Ȳ in C∞Sta.

Definition C.2. A groupoid object (U, V , s, t, u, i,m) in C∞Sch, or simply
groupoid in C∞Sch, consists of objects U, V in C∞Sch and morphisms s, t :
V → U, u : U → V , i : V → V and m : V ×s,U,t V → V satisfying the identities

s ◦ u = t ◦ u = idU, s ◦ i = t, t ◦ i = s, s ◦m = s ◦ π2, t ◦m = t ◦ π1,

m ◦ (i× idV ) = u ◦ s, m ◦ (idV × i) = u ◦ t,
m ◦ (m× idV ) = m ◦ (idV ×m) : V ×U V ×U V −→ V ,

m ◦ (idV × u) = m ◦ (u× idV ) : V = V ×U U −→ V .

We write groupoids in C∞Sch as V ⇒ U for short, to emphasize the mor-
phisms s, t : V → U. To any such groupoid we can associate a groupoid stack
[V ⇒ U], which is a C∞-stack. Conversely, if X is a C∞-stack and Π : Ū → X
is an atlas one can construct a groupoid V ⇒ U in C∞Sch, and X is equiva-
lent (in the 2-category sense, as in §A.3) to [V ⇒ U]. Thus, every C∞-stack is
equivalent to a groupoid stack.
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From [56, Th. 8.5] we have:

Theorem C.3. All fibre products exist in the 2-category C∞Sta.

Here fibre products in a 2-category are defined in §A.4. We define some
classes of morphisms of C∞-schemes, following [56, §8.2].

Definition C.4. Let f = (f, f ]) : X = (X,OX)→ Y = (Y,OY ) be a morphism
in C∞Sch. Then:

• We call f an open embedding if V = f(X) is an open subset in Y and

(f, f ]) : (X,OX)→ (V,OY |V ) is an isomorphism.

• We call f a closed embedding if f : X → Y is a homeomorphism with a

closed subset of Y , and f ] : f−1(OY ) → OX is a surjective morphism of
sheaves of C∞-rings.

• We call f an embedding if we may write f = g ◦ h where h is an open
embedding and g is a closed embedding.

• We call f étale if each x ∈ X has an open neighbourhood U in X such

that V = f(U) is open in Y and (f |U , f ]|U ) : (U,OX |U ) → (V,OY |V ) is
an isomorphism. That is, f is a local isomorphism.

• We call f proper if f : X → Y is a proper map of topological spaces, that

is, if S ⊆ Y is compact then f−1(S) ⊆ X is compact.

• We call f separated if f : X → Y is a separated map of topological spaces,

that is, ∆X =
{

(x, x) : x ∈ X
}

is a closed subset of the topological fibre

product X ×f,Y,f X =
{

(x, x′) ∈ X ×X : f(x) = f(x′)
}

.

• We call f universally closed if whenever g : W → Y is a morphism then
πW : X ×f,Y ,gW →W is a closed morphism, that is, πW is a closed map
of topological spaces.

• We call f a submersion if for all x ∈ X with f(x) = y, there exists an open

neighbourhood U of y in Y and a morphism g = (g, g]) : (U,OY |U ) →
(X,OX) with g(y) = x and f ◦ g = id(U,OY |U ).

Each one is invariant under base change and local in the target in (C∞Sch,J ).
Thus, they are also defined for representable 1-morphisms of C∞-stacks.

Definition C.5. Let X be a C∞-stack. We say that X is separated if the
diagonal 1-morphism ∆X : X → X ×X is universally closed. If X = X̄ for some
C∞-scheme X = (X,OX) then X is separated if and only if ∆X : X → X ×X
is closed, that is, if and only if X is Hausdorff, so X is separated.

Definition C.6. Let X be a C∞-stack. A C∞-substack Y in X is a strictly
full subcategory Y in X such that pY := pX |Y : Y → C∞Sch is also a C∞-
stack. It has a natural inclusion 1-morphism iY : Y ↪→ X . We call Y an open
C∞-substack of X if iY is a representable open embedding.

An open cover {Ua : a ∈ A} of X is a family of open C∞-substacks Ua in X
with

∐
a∈A iUa :

∐
a∈A Ua → X surjective. We write U ⊆ X when U is an open

C∞-substack of X , and
⋃
a∈A U = X to mean that

∐
a∈A iUa is surjective.
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A C∞-stack X has an underlying topological space Xtop, [56, §8.4].

Definition C.7. Let X be a C∞-stack. Write ∗ for the point SpecR in C∞Sch,
and ∗̄ for the associated point in C∞Sta. Define Xtop to be the set of 2-
isomorphism classes [x] of 1-morphisms x : ∗̄ → X . If U ⊆ X is an open
C∞-substack then any 1-morphism x : ∗̄ → U is also a 1-morphism x : ∗̄ → X ,
and Utop is a subset of Xtop. Define TXtop =

{
Utop : U ⊆ X is an open C∞-

substack in X
}

. Then TXtop
is a set of subsets of Xtop which is a topology

on Xtop, so (Xtop, TXtop) is a topological space, which we call the underlying
topological space of X , and usually write as Xtop.

If f : X → Y is a 1-morphism of C∞-stacks then there is a natural continuous
map ftop : Xtop → Ytop defined by ftop([x]) = [f ◦ x]. If f, g : X → Y are 1-
morphisms and η : f ⇒ g is a 2-isomorphism then ftop = gtop. Mapping

X 7→ Xtop, f 7→ ftop and 2-morphisms to identities defines a 2-functor FTop
C∞Sta :

C∞Sta→ Top, where the category of topological spaces Top is regarded as a
2-category with only identity 2-morphisms.

If X = (X,OX) is a C∞-scheme, so that X̄ is a C∞-stack, then X̄top is
naturally homeomorphic to X, and we will identify X̄top with X. If f = (f, f ]) :

X = (X,OX)→ Y = (Y,OY ) is a morphism of C∞-schemes, so that f̄ : X̄ → Ȳ

is a 1-morphism of C∞-stacks, then f̄ top : X̄top → Ȳtop is f : X → Y .

Definition C.8. Let X be a C∞-stack, and [x] ∈ Xtop. Pick a representative
x for [x], so that x : ∗̄ → X is a 1-morphism. Let G be the group of 2-
morphisms η : x ⇒ x. There is a natural C∞-scheme G = (G,OG) with
Ḡ ∼= ∗̄ ×x,X ,x ∗̄, which makes G into a C∞-group (a group object in C∞Sch,
just as a Lie group is a group object in Man). With [x] fixed, this C∞-group
G is independent of choices up to noncanonical isomorphism; roughly, G is
canonical up to conjugation in G. We define the orbifold group (or isotropy
group, or stabilizer group) IsoX ([x]) of [x] to be this C∞-group G, regarded as
a C∞-group up to noncanonical isomorphism.

If f : X → Y is a 1-morphism of C∞-stacks and [x] ∈ Xtop with ftop([x]) =
[y] ∈ Ytop, for y = f ◦ x, then we define f∗ : IsoX ([x]) → IsoY([y]) by f∗(η) =
idf ∗ η. Then f∗ is a group morphism, and extends to a C∞-group morphism.
It is independent of the choice of x ∈ [x] up to conjugation in IsoY([y]).

C.2 Gluing C∞-stacks by equivalences

Here are some results on gluing C∞-stacks by equivalences, taken from [56, §8.5].
They are used in §9.4 to glue d-stacks by equivalences.

Proposition C.9. Suppose X ,Y are C∞-stacks, U ⊆ X , V ⊆ Y are open
C∞-substacks, and f : U → V is an equivalence in C∞Sta. Then there exist
a C∞-stack Z, open C∞-substacks X̂ , Ŷ in Z with Z = X̂ ∪ Ŷ, equivalences
g : X → X̂ and h : Y → Ŷ such that g|U and h|V are both equivalences with
X̂ ∩Ŷ, and a 2-morphism η : g|U ⇒ h◦f : U → X̂ ∩Ŷ in C∞Sta. Furthermore,
Z is independent of choices up to equivalence.
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Proposition C.10. Suppose X ,Y are C∞-stacks, U ,V ⊆ X are open C∞-
substacks with X = U ∪ V, f : U → Y and g : V → Y are 1-morphisms,
and η : f |U∩V ⇒ g|U∩V is a 2-morphism in C∞Sta. Then there exists a 1-
morphism h : X → Y and 2-morphisms ζ : h|U ⇒ f, θ : h|V ⇒ g such that
θ|U∩V = η � ζ|U∩V : h|U∩V ⇒ g|U∩V . This h is unique up to 2-isomorphism.

In general, h is not independent up to 2-isomorphism of the choice of η.

Here is an example in which h is not independent of η up to 2-isomorphism
in the last part of Proposition C.10.

Example C.11. Let X be the C∞-stack associated to the circle X =
{

(x, y) ∈
R2 : x2 + y2 = 1

}
, and U ,V ⊆ X the substacks associated to the open sets

U =
{

(x, y) ∈ X : x > − 1
2

}
and V =

{
(x, y) ∈ X : x < 1

2

}
. Let Y be the

quotient C∞-stack [∗/Z2], as in §C.4. Then 1-morphisms f : X → Y correspond
to principal Z2-bundles Pf → X, and for 1-morphisms f, g : X → Y with
principal Z2-bundles Pf , Pg → X, a 2-morphism η : f ⇒ g corresponds to an
isomorphism of principal Z2-bundles Pf ∼= Pg. The same holds for 1-morphisms
U ,V,U ∪ V → Y and their 2-morphisms.

Let f : U → Y and g : V → Y be the 1-morphisms corresponding to
the trivial Z2-bundles Pf = Z2 × U → U , Pg = Z2 × V → V . Then 2-
morphisms η : f |U∩V ⇒ g|U∩V correspond to automorphisms of the trivial
Z2-bundle Z2 × (U ∩ V ) → U ∩ V , that is, to continuous maps U ∩ V → Z2.
Note that U ∩ V has two connected components

{
(x, y) ∈ X : − 1

2 < x < 1
2 ,

y > 0
}

and
{

(x, y) ∈ X : − 1
2 < x < 1

2 , y < 0
}

.
Define 2-morphisms η1, η2 : f |U∩V ⇒ g|U∩V such that η1 corresponds to

the map 1 : (U ∩ V ) → Z2 = {±1}, and η1 corresponds to the map sign(y) :
(U ∩ V ) → Z2 = {±1}. Then Proposition C.10 gives 1-morphisms h1, h2 :
X → Y from η1, η2. The associated principal Z2-bundles Ph1

, Ph2
over X come

from gluing Pf , Pg over U, V using the transition functions 1, sign(y). Therefore
Ph1

is the trivial Z2-bundle over X = S1, and Ph2
the nontrivial Z2-bundle.

Hence Ph1 , Ph2 are not isomorphic as principal Z2-bundles, and h1, h2 are not
2-isomorphic. Hence in this example, h is not independent up to 2-isomorphism
of the choice of η.

C.3 Strongly representable 1-morphisms of C∞-stacks

Strongly representable 1-morphisms, discussed in [56, §8.6], will be important in
the definitions of orbifolds with corners, d-stacks with corners, and d-orbifolds
with corners in Chapters 8, 11 and 12.

Definition C.12. Let Y,Z be C∞-stacks, and g : Y → Z a 1-morphism. Then
Y,Z are categories with functors pY : Y → C∞Sch, pZ : Z → C∞Sch, and
g : Y → Z is a functor with pZ ◦ g = pY .

We call g strongly representable if whenever A ∈ Y with pY(A) = U ∈
C∞Sch, so that B = g(A) ∈ Z with pZ(B) = U, and b : B → B′ is an
isomorphism in Z with pZ(B′) = U and pZ(b) = idU, then there exist a unique
object A′ and isomorphism a : A→ A′ in Y with g(A′) = B′ and g(a) = b.
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Note that this definition is purely category-theoretic, with nothing to do with
C∞-geometry, and also makes sense for other kinds of stacks. It is related to
the notion of isofibration in category theory. The next four propositions are [56,
Prop.s 8.25–8.28]. The first is the important property of strongly representable
1-morphisms, which will sometimes allow us to work with 1-morphisms up to
equality, rather than just up to 2-isomorphism.

Proposition C.13. Suppose X ,Y,Z are C∞-stacks, f : X → Y, g : Y → Z,
h : X → Z are 1-morphisms with g strongly representable, and η : g◦f ⇒ h is a
2-morphism in C∞Sta. Then as in the diagram below there exist a 1-morphism
f ′ : X → Y with g ◦ f ′ = h, and a 2-morphism ζ : f ⇒ f ′ with idg ∗ ζ = η, and
f ′, ζ are unique under these conditions.

Y
g

**UUUUUUUUUUUUUUUUU

η ⇓
X

f ′
..

f

88
ζ ⇑

h // Z.

Parts (a),(b) of the next proposition justify the term ‘strongly representable’.
For (a) we include the assumption that Y,Z are Deligne–Mumford.

Proposition C.14. (a) Let g : Y → Z be a strongly representable 1-morphism
of Deligne–Mumford C∞-stacks. Then g is representable.

(b) Suppose g : Y → Z is a representable 1-morphism of C∞-stacks. Then there
exist a C∞-stack Y ′, an equivalence i : Y → Y ′, and a strongly representable
1-morphism g′ : Y ′ → Z with g = g′ ◦ i. Also Y ′ is unique up to canonical
1-isomorphism in C∞Sta.

Here is an explicit construction of fibre products X ×g,Z,hY in C∞Sta when
g is strongly representable, yielding a strictly commutative 2-Cartesian square.

Proposition C.15. Let g : X → Z and h : Y → Z be 1-morphisms of C∞-
stacks with g strongly representable. Define a category W to have objects pairs
(A,B) for A ∈ X , B ∈ Y with g(A) = h(B) in Z, so that pX (A) = pY(B)
in C∞Sch, and morphisms pairs (a, b) : (A,B) → (A′, B′) with a : A → A′,
b : B → B′ morphisms in X ,Y with pX (a) = pY(b) in C∞Sch.

Define functors pW : W → C∞Sch, e : W → X , f : W → Y by pW :
(A,B) 7→ pX (A) = pY(B), e : (A,B) 7→ A, f : (A,B) 7→ B on objects and
pW : (a, b) 7→ pX (a) = pY(b), e : (a, b) 7→ a, f : (a, b) 7→ b on morphisms. Then
W is a C∞-stack and e :W → X , f :W → Y are 1-morphisms, with f strongly
representable, and g ◦ e = h ◦ f . Furthermore, the following diagram in C∞Sta
is 2-Cartesian:

W
f

//

e�� � �� �
IQ

idg◦e

Y
h ��

X
g // Z.

If also h is strongly representable, then e is strongly representable.
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Propositions C.13–C.15 show that when working with strongly representable
1-morphisms, we can often take 2-morphisms to be identities. Morphisms of C∞-
schemes naturally map to strongly representable 1-morphisms of C∞-stacks.

Proposition C.16. Suppose g : Y → Z is a morphism in C∞Sch. Then the

corresponding C∞-stack 1-morphism ḡ : Ȳ → Z̄ is strongly representable.

C.4 Quotient C∞-stacks

We now define quotient C∞-stacks [X/G], and their 1- and 2-morphisms, fol-
lowing [56, §9.1]. The definitions are discussed in Remark C.20.

Definition C.17. Let X be a C∞-scheme, G a finite group, and r : G →
Aut(X) an action of G on X by isomorphisms. We will define the quotient
C∞-stack X = [X/G]. Define a category X to have objects septuples (A,µ,
T , U, t, u, v), where A is a finite group, µ : A → G is a group morphism, T ,U
are C∞-schemes, t : A → Aut(T ) is a free action of A on T by isomorphisms,
u : T → X is a morphism with u ◦ t(α) = r(µ(α)) ◦ u : T → X for all α ∈ A,
and v : T → U is a morphism which makes T into a principal A-bundle over U,
that is, v is proper, étale and surjective, and its fibres are A-orbits in T .

Given such (A,µ, T , U, t, u, v), define commuting, free actions µ̂ : A →
Aut(G), ν : G → Aut(G) of A,G on G as a set by µ̂(α) : γ 7→ γµ(α−1)
and ν(γ) : δ 7→ γδ for α ∈ A and γ, δ ∈ G. Regard T × G as a C∞-scheme.
Then t × µ̂ : A → Aut(T × G) and idT × ν : G → Aut(T × G) are commut-
ing, free actions of A,G on T × G. So we can define the quotient C∞-scheme
T ×t,A,µ̂ G or T ×A G := (T × G)/A, and idT × ν descends to a free G-action

t̃ : G→ Aut(T ×AG). The morphism T ×G→ X acting as r(γ) ◦u on T ×{γ}
is A-invariant and G-equivariant, so it descends to a G-equivariant morphism
ũ : T ×A G → X. Also v ◦ πT : T × G → U is A-invariant, and descends to

ṽ : T ×AG→ U. Then t̃, ṽ make T ×AG into a principal G-bundle over U, and
(G, idG, T ×AG,U, t̃, ũ, ṽ) is an object in X . Write p̃ : T → T ×AG for the com-
position of idT ×1 : T → T ×{1} ⊆ T ×G with the projection T ×G→ T ×AG.

Then t̃(γ) ◦ p̃ = p̃ ◦ t(γ) for γ ∈ G, and u = ũ ◦ p̃, and v = ṽ ◦ p̃.
Let (A,µ, T , U, t, u, v) and (A′, µ′, T ′, U′, t′, u′, v′) be objects in X , and define

T ×A G, t̃, ũ, ṽ and T ′ ×A′ G, t̃′, ũ′, ṽ′ as above. A morphism (a, ã) : (A,µ, T ,
U, t, u, v) → (A′, µ′, T ′, U′, t′, u′, v′) is a pair of morphisms a : U → U′ and
ã : T ×A G→ T ′ ×A′ G such that ã ◦ t̃(γ) = t̃′(γ) ◦ ã for γ ∈ G, and ũ = ũ′ ◦ ã,
and a ◦ ṽ = ṽ′ ◦ ã. Composition is (b, b̃) ◦ (a, ã) = (b ◦ a, b̃ ◦ ã), and identities
are id(A,...,v) = (idU, idT×AG).

This defines the category X . The functor pX : X → C∞Sch acts by pX :
(A,µ, T , U, t, u, v) 7→ U on objects, and pX : (a, ã) 7→ a on morphisms. Then X
is a C∞-stack, which we also write as [X/G].

From Definition C.1, the C∞-stack X̄ has objects (U, f) for f : U → X

a morphism in C∞Sch, and morphisms g : (U, f) → (U′, f ′) for g : U → U′

with f ′ ◦ g = f . Define a functor π[X/G] : X̄ → [X/G] by π[X/G] : (U, f) 7→
({1}, µ, U, U, idU, f , idU) on objects, where µ : {1} → G maps µ : 1 7→ 1, and
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π[X/G] : g 7→ (g, g × idG). Then π[X/G] : X̄ → [X/G] is a representable 1-

morphism, and makes X̄ into a principal G-bundle over [X/G].

Definition C.18. Let X,Y be C∞-schemes acted on by finite groups G,H with
actions r : G→ Aut(X), s : H → Aut(Y ), so that we have quotient C∞-stacks
X = [X/G] and Y = [Y /H] as in Definition C.17. Suppose we have morphisms
f : X → Y of C∞-schemes and ρ : G→ H of groups, with f ◦ r(γ) = s(ρ(γ))◦f
for all γ ∈ G. We will define a quotient 1-morphism [f, ρ] : X → Y.

Define a functor [f, ρ] : X → Y by [f, ρ] : (A,µ, T , U, t, u, v) 7→ (A, ρ ◦
µ, T , U, t, f ◦ u, v) on objects. For a morphism (a, ã) : (A,µ, T , U, t, u, v) →
(A′, µ′, T ′, U′, t′, u′, v′) in X , let T ×A G, t̃, ũ, ṽ, T ×A′ G, t̃′, ũ′, ṽ′ be as in Defi-
nition C.17, and similarly T ×A H, ṫ, u̇, v̇ and T ×A′ H, ṫ′, u̇′, v̇′ for the objects
(A, ρ ◦ µ, T , U, t, f ◦ u, v), (A′, ρ ◦ µ′, T ′, U′, t′, f ◦ u′, v′) in Y. Then T ×A H ∼=
(T ×AG)×GH and T ×A′H ∼= (T ×A′G)×GH, so the morphism ã : T ×AG→
T ′×A′ G and idH : H → H induce a morphism ȧ : T ×AH → T ′×A′ H. Define
[f, ρ] : (a, ã) 7→ (a, ȧ) on morphisms. Then [f, ρ] : X → Y is a 1-morphism of
C∞-stacks, which we write as [f, ρ] : [X/G]→ [Y /H].

We have [f, ρ] ◦ π[X/G] = π[Y /H] ◦ f̄ , and if [f, ρ] : [X/G] → [Y /H], [g, σ] :
[Y /H]→ [Z/I] are 1-morphisms then [g, σ]◦[f, ρ]=[g◦f, σ◦ρ].

Definition C.19. Let [f, ρ] : [X/G] → [Y /H] and [g, σ] : [X/G] → [Y /H] be
quotient 1-morphisms, so that f, g : X → Y and ρ, σ : G → H are morphisms.

Suppose δ ∈ H satisfies σ(γ) = δ ρ(γ) δ−1 for all γ ∈ G, and g = s(δ)◦f . We will
define a 2-morphism [δ] : [f, ρ] ⇒ [g, σ], which we call a quotient 2-morphism.
Let (A,µ, T , U, t, u, v) be an object in [X/G]. Define an isomorphism in [Y /H]:

[δ]
(
(A,µ, T , U, t, u, v)

)
= (idU, iδ) : [f, ρ]

(
(A,µ, T , U, t, u, v)

)
=

(A, ρ◦µ, T , U, t, f ◦u, v)→ [g, σ]
(
(A,µ, T , U, t, u, v)

)
=(A, σ◦µ, T , U, t, g◦u, v),

where the isomorphism iδ : T ×t,A,ρ̂◦µ H → T ×t,A,σ̂◦µ H is induced by the
isomorphism T ×H → T ×H acting as idT on T and as ζ 7→ ζ δ−1 on H, for
ζ ∈ H. Then [δ] : [f, ρ]⇒ [g, σ] is a 2-morphism in C∞Sta.

Quotient 2-morphisms have the obvious, strongly functorial properties under
vertical and horizontal composition of 2-morphisms. For instance, if [f, ρ], [g, σ],
[h, τ ] : [X/G] → [Y /H] are quotient 1-morphisms and [δ] : [f, ρ] ⇒ [g, σ],
[ε] : [g, σ]⇒ [h, τ ] are quotient 2-morphisms then [ε]� [δ] = [εδ] : [f, ρ]⇒ [h, τ ].

Remark C.20. (a) Quotient C∞-stacks [X/G] in Definition C.19 are special
examples of groupoid stacks [V ⇒ U] in Definition C.2, with U = X and
V = X × G. However, Definition C.19 specifies the C∞-stack [X/G] uniquely,
whereas the definition of [V ⇒ U] involves stackification, and so is unique only
up to equivalence in C∞Sta.

(b) There are several different ways to define [X/G], which yield equivalent
C∞-stacks. Definition C.17 is more complicated than it need be. In particular,
the category X = [X/G] is equivalent to the full subcategory X ′ of objects
(G, idG, T , U, t, u, v), in which A = G and µ = idG : G → G. So objects in
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X ′ can just be written (T ,U, t, u, v). For morphisms (a, ã) : (T ,U, t, u, v) →
(T ′, U′, t′, u′, v′) in X ′, the morphism ã : T ×G G → T ′ ×G G is effectively a
morphism ã : T → T ′ with a ◦ t(γ) = t′(γ) ◦ ã for γ ∈ G, and u = u′ ◦ ã, and
a ◦ v = v′ ◦ ã. This gives a simpler definition of an equivalent C∞-stack X ′.

Our more complicated definition has the advantage that quotient 1- and 2-
morphisms in Definitions C.18 and C.19 are strictly functorial. In particular,
for quotient 1-morphisms [f, ρ] : [X/G] → [Y /H], [g, σ] : [Y /H] → [Z/I] we
have an equality of 1-morphisms [g, σ] ◦ [f, ρ] = [g ◦ f, σ ◦ ρ] : [X/G] → [Z/I],

not just a 2-isomorphism. Also, we have an equality [f, ρ] ◦π[X/G] = π[Y /H] ◦ f̄ .

(c) Studying quotient C∞-stacks [X/G] and their 1- and 2-morphisms is a
good way to develop geometric intuition about Deligne–Mumford C∞-stacks
(including orbifolds) and their 1- and 2-morphisms.

(d) If [X/G], [Y /H] are quotient C∞-stacks, then general 1-morphisms f :
[X/G]→ [Y /H] in C∞Sta need not be quotient 1-morphisms [f, ρ], or even 2-
isomorphic to [f, ρ]. But Theorem C.25(b) says that f ∼= [f, ρ] locally in [X/G].

(e) If [f, ρ], [g, σ] : [X/G] → [Y /H] are quotient 1-morphisms, and [X/G] is
connected, then Theorem C.25(d) says that all 2-morphisms η : [f, ρ] ⇒ [g, σ]
are quotient 2-morphisms [δ] : [f, ρ]⇒ [g, σ].

(f) Quotient 1-morphisms [f, ρ] : [X/G] → [Y /H] with ρ : G → H an isomor-
phism are strongly representable, in the sense of §C.3.

C.5 Deligne–Mumford C∞-stacks

Deligne–Mumford stacks in algebraic geometry are locally modelled on quotient
stacks [X/G] for X an affine scheme and G a finite group. This motivates:

Definition C.21. A Deligne–Mumford C∞-stack is a C∞-stack X which ad-
mits an open cover {Ya : a ∈ A} with each Ya equivalent to a quotient stack
[Ua/Ga] in §C.4 for Ua an affine C∞-scheme and Ga a finite group. We call
X a locally fair, or locally finitely presented, Deligne–Mumford C∞-stack if it
has such an open cover with each Ua a fair, or finitely presented, affine C∞-
scheme, respectively. We call X second countable, compact, locally compact, or
paracompact, if the underlying topological space Xtop of Definition C.7 is second
countable, compact, locally compact, or paracompact, respectively.

A Deligne–Mumford C∞-stack X is separated, in the sense of Definition C.5,
if and only if the topological space Xtop of Definition C.7 is Hausdorff.

Write DMC∞Sta for the full 2-subcategory of Deligne–Mumford C∞-stacks
in C∞Sta. Write DMC∞Stalfp,DMC∞Stalf , and DMC∞Stalf

ssc for the full
2-subcategories of locally finitely presented Deligne–Mumford C∞-stacks, and
of locally fair Deligne–Mumford C∞-stacks, and of separated, second countable,
locally fair Deligne–Mumford C∞-stacks, respectively.

The next theorem comes from [56, Th.s 9.10, 9.17 & Prop. 9.6], except for
the parts about DMC∞Stalf

ssc, which follow from the case of DMC∞Stalf .
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Theorem C.22.(a)DMC∞Sta,DMC∞Stalfp,DMC∞Stalf,DMC∞Stalf
ssc

are closed under fibre products in C∞Sta.

(b) DMC∞Sta,DMC∞Stalfp,DMC∞Stalf and DMC∞Stalf
ssc are closed

under taking open C∞-substacks in C∞Sta.

(c) A C∞-stack X is separated and Deligne–Mumford if and only if it is equiv-
alent to a groupoid stack [V ⇒ U] where U, V are separated C∞-schemes,
s : V → U is étale, and s× t : V → U × U is universally closed.

(d) A C∞-stack X is separated, Deligne–Mumford and locally fair (or locally
finitely presented) if and only if it is equivalent to a groupoid stack [V ⇒ U] with
U, V separated, locally fair (or locally finitely presented) C∞-schemes, s : V → U
étale, and s× t : V → U × U proper.

If X is a Deligne–Mumford C∞-stack then the orbifold group IsoX ([x]) in
Definition C.8 is a finite group for all [x] in Xtop. Here is [56, Th. 9.20]:

Theorem C.23. Suppose X is a Deligne–Mumford C∞-stack with IsoX ([x]) ∼=
{1} for all [x] ∈ Xtop. Then X is equivalent to X̄ for some C∞-scheme X.

Recall that a 1-morphism of C∞-stacks f : X → Y is representable if when-
ever U is a C∞-scheme and g : Ū → Y is a 1-morphism then the fibre product
W = X ×f,Y,g Ū in C∞Sta is equivalent to a C∞-scheme V̄ . Using Theorem
C.23 we may deduce, as in [56, Cor. 9.21]:

Corollary C.24. Let f : X → Y be a 1-morphism of Deligne–Mumford C∞-
stacks. Then f is representable if and only if f∗ : IsoX ([x]) → IsoY([y]) in
Definition C.8 is injective for all [x] ∈ Xtop with ftop([x]) = [y] ∈ Ytop.

In [56, Th. 9.18 & Prop. 9.19] we show that Deligne–Mumford C∞-stacks and
their 1- and 2-morphisms are locally modelled on quotient C∞-stacks, quotient
1-morphisms and quotient 2-morphisms from §C.4.

Theorem C.25. (a) Let X be a Deligne–Mumford C∞-stack and [x] ∈ Xtop,
and write G = IsoX ([x]). Then there exists a quotient C∞-stack [U/G] for U
an affine C∞-scheme, and a 1-morphism i : [U/G]→ X which is an equivalence
with an open C∞-substack U in X , such that itop : [u] 7→ [x] ∈ Utop ⊆ Xtop for
some fixed point u of G in U.

(b) Let f : X → Y be a 1-morphism of Deligne–Mumford C∞-stacks, and
[x] ∈ Xtop with ftop : [x] 7→ [y] ∈ Ytop, and write G = IsoX ([x]) and H =
IsoY([y]). Part (a) gives 1-morphisms i : [U/G]→ X , j : [V /H]→ Y which are
equivalences with open U ⊆ X , V ⊆ Y, such that itop : [u] 7→ [x] ∈ Utop ⊆ Xtop,
jtop : [v] 7→ [y] ∈ Vtop ⊆ Ytop for u, v fixed points of G,H in U, V .

Then there exists a G-invariant open neighbourhood U′ of u in U and a
quotient 1-morphism [f, ρ] : [U′/G]→ [V /H] such that f(u) = v, and ρ : G→
H is f∗ : IsoX ([x])→ IsoY([y]), fitting into a 2-commutative diagram:

[U′/G]
[f,ρ]

//

i|[U′/G]�� � �� �
HP

ζ

[V /H]

j
��

X
f // Y.
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(c) Let f, g : X → Y be 1-morphisms of Deligne–Mumford C∞-stacks and
η : f ⇒ g a 2-morphism, let [x] ∈ Xtop with ftop : [x] 7→ [y] ∈ Ytop, and write
G = IsoX ([x]) and H = IsoY([y]). Part (a) gives i : [U/G]→ X , j : [V /H]→ Y
which are equivalences with open U ⊆ X , V ⊆ Y and map itop : [u] 7→ [x],
jtop : [v] 7→ [y] for u, v fixed points of G,H.

By making U′ smaller, we can take the same U′ in (b) for both f, g. Thus
part (b) gives a G-invariant open U′ ⊆ U, quotient morphisms [f, ρ] : [U′/G]→
[V /H] and [g, σ] : [U′/G] → [V /H] with f(u) = g(u) = v and ρ = f∗ :
IsoX ([x]) → IsoY([y]), σ = g∗ : IsoX ([x]) → IsoY([y]), and 2-morphisms ζ :
f ◦ i|[U′/G] ⇒ j ◦ [f, ρ], θ : g ◦ i|[U′/G] ⇒ j ◦ [g, σ].

Then there exists a G-invariant open neighbourhood U′′ of u in U′ and
δ ∈ H such that σ(γ) = δ ρ(γ) ◦ δ−1 for all γ ∈ G and g|U′′ = s(δ) ◦ f |U′′ ,
so that [δ] : [f |U′′ , ρ] ⇒ [g|U′′ , σ] is a quotient 2-morphism, and the following
diagram of 2-morphisms in C∞Sta commutes:

f ◦ i|[U′′/G]
η∗idi|

[U′′/G]

+3

ζ|[U′′/G]��

g ◦ i|[U′′/G]

θ|[U′′/G] ��
j ◦ [f |U′′ , ρ]

idj∗[δ] +3 j ◦ [g|U′′ , σ].

(d) Let [f, ρ], [g, σ] : [X/G]→ [Y /H] be quotient 1-morphisms of quotient C∞-
stacks, and suppose [X/G] is connected, that is, X/G is connected as a topolog-
ical space. Then every 2-morphism η : [f, ρ] ⇒ [g, σ] in C∞Sta is a quotient
2-morphism [δ] : [f, ρ]⇒ [g, σ] from Definition C.19, for some unique δ ∈ H.

In [56, Def. 8.17 & Th. 9.11] we define the coarse moduli C∞-scheme of a
locally fair Deligne–Mumford C∞-stack.

Theorem C.26. Let X be a locally fair Deligne–Mumford C∞-stack. Then
the topological space Xtop of Definition C.7 may in a unique way be given the
structure of a locally fair C∞-scheme X top = (Xtop,OXtop

) called the coarse

moduli C∞-scheme, with a 1-morphism π : X → X̄ top called the structural

1-morphism, with the universal property that if f : X → Ȳ is a 1-morphism
in C∞Sta for any C∞-scheme Y then f ∼= ḡ ◦ π for some unique C∞-scheme
morphism g : X top → Y .

If X is locally finitely presented, or separated, or paracompact, or second
countable, then X top is also locally finitely presented, or separated, or paracom-
pact, or second countable, respectively.

Remark C.27. In §B.4 we discussed partitions of unity on C∞-schemes. We
can use Theorem C.26 to extend these ideas to Deligne–Mumford C∞-stacks.

Let X be a separated, paracompact, locally fair Deligne–Mumford C∞-stack,
and {Va : a ∈ A} an open cover of X . Then Theorem C.26 gives a coarse
moduli C∞-scheme X top, which is separated, paracompact, and locally fair,

with structural 1-morphism π : X → X̄ top, and
{
Va,top : a ∈ A

}
is an open

cover of X top. Thus Proposition B.21 gives a partition of unity {ηa : a ∈ A} on

X top subordinate to
{
Va,top : a ∈ A

}
.
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Then {π∗(ηa) : a ∈ A} is (in a suitable sense) a partition of unity on X
subordinate to {Va : a ∈ A}, where we may interpret π∗(ηa) as a global section
of the structure sheaf OX of Example C.42 supported on Va. We will return to
these ideas in Example C.33.

In [56, §9.5] we discuss effective Deligne–Mumford C∞-stacks.

Definition C.28. A Deligne–Mumford C∞-stack X is called effective if when-
ever [x] ∈ Xtop and X near [x] is locally modelled near [x] on a quotient C∞-stack
[U/G] near [u], where G = IsoX ([x]) and u ∈ U is fixed by G, as in Theorem
C.25(a), then G acts effectively on U near u. That is, for each 1 6= γ ∈ G, we
have r(γ) 6≡ idU near u in U, where r : G→ Aut(U) is the G-action.

Here the C∞-scheme U in Theorem C.25(a) is determined by X , [x] up to
G-equivariant isomorphism locally near u. Hence to test whether X is effective,
it is enough to consider one choice of [U/G] for each [x] ∈ Xtop.

A quotient C∞-stack [X/G] is effective if and only if the action r : G →
Aut(X) of G on X is locally effective, that is, if for each 1 6= γ ∈ G we have
r(γ)|U 6≡ idU for every nonempty open C∞-subscheme U ⊆ X. If a Deligne–
Mumford C∞-stack X is a C∞-scheme, it is automatically effective. Quotients
[∗/G] for G 6= {1} are not effective.

Effective orbifolds are important in Chapters 8–13. Here [56, Prop. 9.24] is a
uniqueness property of 2-morphisms of effective Deligne–Mumford C∞-stacks.
It will be useful in §9.4, when we show that gluing effective d-stacks by equiva-
lences is simpler than gluing general d-stacks by equivalences. Embeddings and
submersions of C∞-stacks are defined in §C.1.

Proposition C.29. Let f, g : X → Y be 1-morphisms of Deligne–Mumford
C∞-stacks. Suppose any one of the following conditions hold:

(i) X is effective and f is an embedding of C∞-stacks (this implies f∗ :
IsoX ([x])→ IsoY(ftop([x])) is an isomorphism for each [x] ∈ Xtop);

(ii) Y is effective and f is a submersion; or

(iii) Y is a C∞-scheme.

Then there exists at most one 2-morphism η : f ⇒ g.

A similar proof shows that if f, g : X → Y are arbitrary 1-morphisms of
Deligne–Mumford C∞-stacks with X connected, then there are at most finitely
many 2-morphisms η : f ⇒ g.

C.6 Quasicoherent sheaves on C∞-stacks

In [56, §10] the author studied sheaves on Deligne–Mumford C∞-stacks. We
begin by discussing sheaves of OX -modules, and quasicoherent sheaves.

Definition C.30. Let X be a Deligne–Mumford C∞-stack. Define a category
CX to have objects pairs (U, u) where U is a C∞-scheme and u : Ū → X is an
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étale 1-morphism, and morphisms (f, η) : (U, u) → (V , v) where f : U → V is

an étale morphism of C∞-schemes, and η : u ⇒ v ◦ f̄ is a 2-isomorphism. If
(f, η) : (U, u) → (V , v) and (g, ζ) : (V , v) → (W,w) are morphisms in CX then
we define the composition (g, ζ) ◦ (f, η) to be (g ◦ f, θ) : (U, u)→ (W,w), where
θ is the composition of 2-morphisms across the diagram:

Ū
f̄

&&LLLLLLLL u

))
g◦f

��

____ks
id

V̄
v //

ḡxxrrrrrrr





�	 η
X .

W̄
w

55




�	 ζ

Define a sheaf of OX -modules E , or just an OX -module E , to assign a sheaf
of OU -modules E(U, u) on U = (U,OU ) for all objects (U, u) in CX , and an
isomorphism of OU -modules E(f,η) : f∗(E(V , v)) → E(U, u) for all morphisms

(f, η) : (U, u) → (V , v) in CX , such that for all (f, η), (g, ζ), (g ◦ f, θ) as above
the following diagram of isomorphisms of sheaves of OU -modules commutes:

(g ◦ f)∗
(
E(W,w)

)
E(g◦f,θ)

//

If,g(E(W,w)) **UUUUUUU
E(U, u),

f∗
(
g∗(E(W,w)

) f∗(E(g,ζ))// f∗
(
E(V , v)

) E(f,η)

77ooooo (C.1)

for If,g(E(W,w)) as in Definition B.34.
A morphism of sheaves of OX -modules φ : E → F assigns a morphism of

OU -modules φ(U, u) : E(U, u)→ F(U, u) for each object (U, u) in CX , such that
for all morphisms (f, η) : (U, u)→ (V , v) in CX the following commutes:

f∗
(
E(V , v)

)
f∗(φ(V ,v)) ��

E(f,η)

// E(U, u)

φ(U,u)
��

f∗
(
F(V , v)

) F(f,η) // F(U, u).

(C.2)

We call E quasicoherent, or coherent, or a vector bundle of rank n, if E(U, u)
is quasicoherent, or coherent, or a vector bundle of rank n, respectively, for all
(U, u) ∈ CX . Write OX -mod for the category of OX -modules, and qcoh(X ),
coh(X ), vect(X ) for the full subcategories of quasicoherent sheaves, coherent
sheaves, and vector bundles, respectively.

Here are [56, Prop. 10.3 & Ex. 10.4].

Proposition C.31. Let X be a Deligne–Mumford C∞-stack. Then OX -mod is
an abelian category, and qcoh(X ) is closed under kernels, cokernels and exten-
sions in OX -mod, so it is also an abelian category. Also coh(X ) is closed under
cokernels and extensions in OX -mod, but it may not be closed under kernels in
OX -mod, so may not be abelian. If X is locally fair then qcoh(X )=OX -mod.
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Example C.32. Let X be a C∞-scheme. Then X = X̄ is a Deligne–Mumford
C∞-stack. We will define an inclusion functor IX : OX -mod → OX -mod. Let
E be an object in OX -mod. If (U, u) is an object in CX then u : Ū → X = X̄
is 2-isomorphic to ū : Ū → X̄ for some unique morphism u : U → X. Define
E ′(U, u) = u∗(E). If (f, η) : (U, u) → (V , v) is a morphism in CX and u, v are
associated to u, v as above, so that u = v ◦ f , then define

E ′(f,η) = If,v(E)−1 : f∗(E ′(V , v)) = f∗
(
v∗(E)

)
−→ (v ◦ f)∗(E) = E ′(U, u).

Then (C.1) commutes for all (f, η), (g, ζ), so E ′ is an OX -module.
If φ : E → F is a morphism of OX -modules then we define a morphism

φ′ : E ′ → F ′ in OX -mod by φ′(U, u) = u∗(φ) for u associated to u as above.
Then defining IX : E 7→ E ′, IX : φ 7→ φ′ gives a functor OX -mod → OX -mod,
which induces equivalences between the categories OX -mod, qcoh(X), coh(X)
defined in §B.7 and OX -mod, qcoh(X ), coh(X ) above.

We explain how to use partitions of unity to join morphisms of quasicoherent
sheaves E ,F defined on an open cover of X , using the ideas of Remark C.27.
This is used in proofs about gluing d-orbifolds by equivalences in §9.4 and §11.4.

Example C.33. Let X be a separated, paracompact, locally fair Deligne–
Mumford C∞-stack, and {Va : a ∈ A} an open cover of X . Then as in Remark
C.27 we have a coarse moduli C∞-scheme X top, with structural 1-morphism

π : X → X̄ top, and an open cover
{
Va,top : a ∈ A

}
of X top, and we may choose

a partition of unity {ηa : a ∈ A} on X top subordinate to
{
Va,top : a ∈ A

}
.

Suppose E ,F ∈ qcoh(X ), and αa : E|Va → F|Va is a morphism in qcoh(Va)
for each a ∈ A. We will construct a morphism β : E → F in qcoh(X ) which is
morally given by the locally finite sum

β =
∑
a∈A π

∗(ηa) · αa, (C.3)

where the morphism π∗(ηa) · αa : E → F in qcoh(X ) is supported on Va.
Use the notation of Definition C.30. For each (U, u) ∈ CX , there is a

unique C∞-scheme morphism v : U → X top with v̄ ∼= π ◦ u : Ū → X̄ top.

Then
{
v−1(Va,top) : a ∈ A

}
is an open cover of U. We have a morphism

v] : OXtop
→ v∗(OU ) of sheaves of C∞-rings related to v] in v = (v, v]) as

in (B.4), so v](Xtop) : OXtop
(Xtop) → OU (U) is a morphism of C∞-rings.

As ηa ∈ OXtop
(Xtop) for a ∈ A, we see that v](Xtop)(ηa) ∈ OU (U), and{

v](Xtop)(ηa) : a ∈ A
}

is a partition of unity on U subordinate to the open

cover
{
v−1(Va,top) : a ∈ A

}
.

Now
(
v−1(Va,top), u|v−1(Va,top)

)
lies in CVa for each a ∈ A, with

E
(
v−1(Va,top), u|v−1(Va,top)

)
= E(U, u)|v−1(Va,top),

F
(
v−1(Va,top), u|v−1(Va,top)

)
= F(U, u)|v−1(Va,top).

Hence αa : E|Va → F|Va induces a morphism in qcoh
(
v−1(Va,top)

)
:

αa
(
v−1(Va,top), u|v−1(Va,top)

)
: E(U, u)|v−1(Va,top) −→ F(U, u)|v−1(Va,top).
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Define a morphism β(U, u) : E(U, u)→ F(U, u) in qcoh(U) by

β(U, u) =
∑
a∈A v](Xtop)(ηa) · αa

(
v−1(Va,top), u|v−1(Va,top)

)
. (C.4)

Here v](Xtop)(ηa) is defined on U but supported on v−1(Va,top), and αa(· · · ) is

defined on v−1(Va,top), so the product makes sense as a morphism E(U, u) →
F(U, u) on U supported on v−1(Va,top). The sum

∑
a∈A · · · in (C.4) is locally

finite, and so has a unique limit in the sheaf of morphisms E → F . Thus β(U, u)
in (C.4) is well defined. These β(U, u) for all (U, u) ∈ CX form a morphism
β : E → F in qcoh(X ), and (C.3) holds as (C.4) is (C.3) at (U, u) ∈ CX .

In [56, §10.2] we explain how to describe sheaves ofOX -modules on a Deligne–
Mumford C∞-stack X in terms of sheaves on U for an étale atlas Π : Ū → X
for X . Here are [56, Def. 10.5 & Th. 10.6].

Definition C.34. Let X be a Deligne–Mumford C∞-stack. Then X admits
an étale atlas Π : Ū → X , and as in Definition C.2 from Π we can construct a
groupoid (U, V , s, t, u, i,m) in C∞Sch, with s, t : V → U étale, such that X is
equivalent to the groupoid stack [V ⇒ U]. Define a (V ⇒ U)-module to be a
pair (E,Φ) where E is an OU -module and Φ : s∗(E)→ t∗(E) is an isomorphism
of OV -modules, such that

Im,t(E)−1 ◦m∗(Φ) ◦ Im,s(E) =
(
Iπ1,t

(E)−1 ◦ π∗1(Φ) ◦ Iπ1,s
(E)
)
◦(

Iπ2,t
(E)−1 ◦ π∗2(Φ) ◦ Iπ2,s

(E)
) (C.5)

in morphisms of OW -modules (s◦m)∗(E)→ (t◦m)∗(E), where W = V ×s,U,tV
and π1, π2 : W → V are the projections. Define a morphism of (V ⇒ U)-
modules φ : (E,Φ) → (F,Ψ) to be a morphism of OU -modules φ : E → F
such that Ψ ◦ s∗(φ) = t∗(φ) ◦ Φ : s∗(E) → t∗(F ). Then (V ⇒ U)-modules
form an abelian category (V ⇒ U)-mod. Write qcoh(V ⇒ U) and coh(V ⇒ U)
for the full subcategories of (E,Φ) in (V ⇒ U)-mod with E quasicoherent,
or coherent, respectively. Then qcoh(V ⇒ U) is abelian. Define a functor
FΠ : OX -mod → (V ⇒ U)-mod by FΠ : E 7→

(
E(U,Π), E−1

(t,η) ◦ E(s,idΠ◦s)

)
and

FΠ : φ 7→ φ(U,Π). As in [56, §10.2], FΠ(E) does satisfy (C.5) and so lies in
(V ⇒ U)-mod, and it also maps qcoh, coh(X ) to qcoh, coh(V ⇒ U).

Theorem C.35. The functor FΠ above induces equivalences between OX -mod,
qcoh(X ), coh(X ) and (V ⇒ U)-mod, qcoh(V ⇒ U), coh(V ⇒ U), respectively.

In §B.7, for a morphism of C∞-schemes f : X → Y we defined a right
exact pullback functor f∗ : OY -mod→ OX -mod. Pullbacks may not be strictly
functorial in f , that is, we do not have f∗(g∗(E)) = (g◦f)∗(E) for all f : X → Y ,
g : Y → Z and E ∈ OZ-mod, but instead we have canonical isomorphisms
If,g(E) : (g ◦ f)∗(E)→ f∗(g∗(E)). We now generalize this to Deligne–Mumford
C∞-stacks. We must interpret pullback for 2-morphisms as well as 1-morphisms.

Definition C.36. Let f : X → Y be a 1-morphism of Deligne–Mumford C∞-
stacks, and F be an OY -module. A pullback of F to X is an OX -module E ,
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together with the following data: if U, V are C∞-schemes and u : Ū → X and
v : V̄ → Y are étale 1-morphisms, then there is a C∞-scheme W and morphisms
πU : W → U, πV : W → V giving a 2-Cartesian diagram:

W̄
π̄V

//

π̄U �� � �� �
FN

ζ

V̄
v��

Ū
f◦u // Y.

(C.6)

Then an isomorphism i(F , f, u, v, ζ) : π∗U
(
E(U, u)

)
→ π∗V

(
F(V , v)

)
of OW -

modules should be given, which is functorial in (U, u) in CX and (V , v) in CY
and the 2-isomorphism ζ in (C.6). We usually write pullbacks E as f∗(F).
By [56, Prop. 10.9], pullbacks f∗(F) exist, and are unique up to unique isomor-
phism. Using the Axiom of Choice, we choose a pullback f∗(F) for all such
f : X → Y and F .

Let f : X → Y be such a 1-morphism, and φ : E → F be a morphism in
OY -mod. Then f∗(E), f∗(F) ∈ OX -mod. Define the pullback morphism f∗(φ) :
f∗(E) → f∗(F) to be the unique morphism in OX -mod such that whenever
u : Ū → X , v : V̄ → Y, W,πU, πV are as above, the following diagram of
morphisms of OW -modules commutes:

π∗U
(
f∗(E)(U, u)

)
i(E,f,u,v,ζ)

//

π∗U(f∗(φ)(U,u))
��

π∗V
(
E(V , v)

)
π∗V (φ(V ,v))

��
π∗U
(
f∗(F)(U, u)

) i(F,f,u,v,ζ) // π∗V
(
F(V , v)

)
.

This defines a functor f∗ : OY -mod → OX -mod, which also maps qcoh(Y) →
qcoh(X ) and coh(Y)→ coh(X ). It is right exact by [56, Prop. 10.12].

Let f : X → Y and g : Y → Z be 1-morphisms of Deligne–Mumford C∞-
stacks, and E ∈ OZ -mod. Then (g ◦ f)∗(E) and f∗(g∗(E)) both lie in OX -mod.
One can show that f∗(g∗(E)) is a possible pullback of E by g ◦ f . Thus as
in Definition B.34, we have a canonical isomorphism If,g(E) : (g ◦ f)∗(E) →
f∗(g∗(E)). This defines a natural isomorphism of functors If,g : (g◦f)∗ ⇒ f∗◦g∗.

Let f, g : X → Y be 1-morphisms of Deligne–Mumford C∞-stacks, η : f ⇒ g
a 2-morphism, and E ∈ OY -mod. Then we have OX -modules f∗(E), g∗(E).
Define η∗(E) : f∗(E)→ g∗(E) to be the unique isomorphism such that whenever
U, V ,W, u, v, πU, πV are as above, so that we have 2-Cartesian diagrams

W̄
π̄V

//

π̄U �� ����
EMζ�(η∗idu◦π̄U )

V̄

v��

W̄
π̄V

//

π̄U �� ����
?Gζ

V̄

v��
Ū

f◦u // Y, Ū
g◦u // Y,

as in (C.6), where in ζ�(η∗idu◦π̄U) ‘∗’ is horizontal and ‘�’ vertical composition
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of 2-morphisms, then we have commuting isomorphisms of OW -modules:

π∗U
(
f∗(E)(U, u)

)
i(E,f,u,v,ζ�(η∗idu◦π̄U ))

--[[[[[[[[[[[[[[[[[[[[[

π∗U((η∗(E))(U,u))
��

π∗V
(
E(V , v)

)
.

π∗U
(
g∗(E)(U, u)

)
i(E,g,u,v,ζ)

11ccccccccccccccccccccc

This defines a natural isomorphism η∗ : f∗ ⇒ g∗.
If X is a Deligne–Mumford C∞-stack with identity 1-morphism idX : X → X

then for each E ∈ OX -mod, E is a possible pullback id∗X (E), so we have a
canonical isomorphism δX (E) : id∗X (E) → E . These define a natural isomor-
phism δX : id∗X ⇒ idOX -mod.

Here is [56, Th. 10.11]. For pseudofunctors see [15, §7.5] or [11, §B.4].

Theorem C.37. Mapping X to OX -mod for objects X in DMC∞Sta, and
mapping 1-morphisms f : X → Y to f∗ : OY -mod → OX -mod, and mapping
2-morphisms η : f ⇒ g to η∗ : f∗ ⇒ g∗ for 1-morphisms f, g : X → Y, and the
natural isomorphisms If,g : (g ◦ f)∗ ⇒ f∗ ◦ g∗ for all 1-morphisms f : X → Y
and g : Y → Z in DMC∞Sta, and δX for all X ∈ DMC∞Sta, together make
up a weak 2-functor or pseudofunctor (DMC∞Sta)op → AbCat, where
AbCat is the 2-category of abelian categories. That is, they satisfy:

(a) If f : W → X , g : X → Y, h : Y → Z are 1-morphisms in DMC∞Sta
and E ∈ OZ -mod then the following diagram commutes in OX -mod :

(h ◦ g ◦ f)∗(E)
If,h◦g(E)

//

Ig◦f,h(E) ��

f∗
(
(h ◦ g)∗(E)

)
f∗(Ig,h(E))��

(g ◦ f)∗
(
h∗(E)

) If,g(h∗(E)) // f∗
(
g∗(h∗(E))

)
.

(b) If f : X → Y is a 1-morphism in DMC∞Sta and E ∈ OY -mod then the
following pairs of morphisms in OX -mod are inverse:

f∗(E) =
(f ◦idX )∗(E)

IidX ,f (E)
--
id∗X (f∗(E)),

δX (f∗(E))

nn
f∗(E) =
(idY ◦f)∗(E)

If,idY (E)
--
f∗(id∗Y(E)).

f∗(δY(E))

nn

Also (idf )∗(idE) = idf∗(E) : f∗(E)→ f∗(E).

(c) If f, g, h : X → Y are 1-morphisms and η : f ⇒ g, ζ : g ⇒ h are
2-morphisms in DMC∞Sta, so that ζ � η : f ⇒ h is the vertical compo-
sition, and E ∈ OY -mod, then

ζ∗(F) ◦ η∗(E) = (ζ � η)∗(E) : f∗(E)→ h∗(E) in OX -mod.

(d) If f, f̃ : X → Y, g, g̃ : Y → Z are 1-morphisms and η : f ⇒ f ′, ζ : g ⇒ g′

2-morphisms in DMC∞Sta, so that ζ ∗ η : g ◦ f ⇒ g̃ ◦ f̃ is the horizontal
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composition, and E ∈ OZ -mod, then the following commutes in OX -mod :

(g ◦ f)∗(E)
(ζ∗η)∗(E)

//

If,g(E) ��

(g̃ ◦ f̃)∗(E)
If̃,g̃(E)��

f∗(g∗(E))
f∗(ζ∗(E)) // f∗(g̃∗(E))

η∗(g̃∗(E)) // f̃∗(g̃∗(E)).

Definition C.38. Let X be a Deligne–Mumford C∞-stack. Define an OX -
module T ∗X called the cotangent sheaf of X by (T ∗X )(U, u) = T ∗U for all
objects (U, u) in CX and (T ∗X )(f,η) = Ωf : f∗(T ∗V )→ T ∗U for all morphisms

(f, η) : (U, u)→ (V , v) in CX , where T ∗U and Ωf are as in §B.7.
Let f : X → Y be a 1-morphism of Deligne–Mumford C∞-stacks. Then

f∗(T ∗Y), T ∗X are OX -modules. Define Ωf : f∗(T ∗Y)→ T ∗X to be the unique
morphism characterized as follows. Let u : Ū → X , v : V̄ → Y, W,πU, πV be
as in Definition C.36, with (C.6) 2-Cartesian. Then the following diagram of
morphisms of OW -modules commutes:

π∗U
(
f∗(T ∗Y)(U, u)

)
π∗U(Ωf (U,u))

��

i(T∗Y,f,u,v,ζ)
// π∗V
(
(T ∗Y)(V , v)

)
π∗V (T ∗V )

ΩπV
��

π∗U
(
(T ∗X )(U, u)

) (T∗X )(πU,idu◦πU )

// (T ∗X )(W,u ◦ πU) T ∗W.

If Π : Ū → X , (U, V , s, t, u, i,m) and FΠ : OX -mod → (V ⇒ U)-mod are as
in Definition C.34 then by definition FΠ(T ∗X ) = (T ∗U,Ωt

−1 ◦ Ωs), and so we
write T ∗(V ⇒ U) = (T ∗U,Ωt

−1 ◦ Ωs) in (V ⇒ U)-mod.

Here [56, Th. 10.15] is the analogue of Theorem B.39.

Theorem C.39. (a) Let f : X → Y and g : Y → Z be 1-morphisms of
Deligne–Mumford C∞-stacks. Then in morphisms (g ◦ f)∗(T ∗Z) → T ∗X in
OX -mod, we have

Ωg◦f = Ωf ◦ f∗(Ωg) ◦ If,g(T ∗Z).

(b) Let f, g : X → Y be 1-morphisms of Deligne–Mumford C∞-stacks and
η : f ⇒ g a 2-morphism. Then Ωf = Ωg ◦ η∗(T ∗Y) : f∗(T ∗Y)→ T ∗X .

(c) Suppose W,X ,Y,Z are locally fair Deligne–Mumford C∞-stacks with a
2-Cartesian square

W
f

//

e�� � �� �
GO

η

Y
h ��

X
g // Z

in DMC∞Stalf , so that W ' X×ZY. Then the following is exact in qcoh(W) :

(g ◦ e)∗(T ∗Z)

e∗(Ωg)◦Ie,g(T∗Z)⊕
−f∗(Ωh)◦If,h(T∗Z)◦η∗(T∗Z) //

e∗(T ∗X )⊕
f∗(T ∗Y)

Ωe⊕Ωf // T ∗W // 0.

As in Definition B.40, we can define line bundles on C∞-stacks, orientations
on line bundles, and pullback orientations, in the obvious way.
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C.7 Sheaves of abelian groups and C∞-rings on C∞-stacks

In [56, §10.5] we generalize §C.6 to sheaves of abelian groups and sheaves of
C∞-rings on Deligne–Mumford C∞-stacks, as these will be needed in Chapters
9–12. Here is the analogue of Definition C.30. We use the same notation of the
category CX with objects (U, u) and morphisms (f, η) : (U, u)→ (V , v).

Definition C.40. Let X be a Deligne–Mumford C∞-stack. Following Defi-
nition C.30, we define a sheaf of abelian groups E on X to assign a sheaf of
abelian groups E(U, u) on U for all objects (U, u) in CX with U = (U,OU ), and
an isomorphism of sheaves of abelian groups E(f,η) : f−1(E(V , v))→ E(U, u) for

all morphisms (f, η) : (U, u) → (V , v) in CX with f = (f, f ]), such that for all
(f, η), (g, ζ), (g ◦ f, θ) the analogue of (C.1) commutes:

(g ◦ f)−1
(
E(W,w)

)
E(g◦f,θ)

//

If,g(E(W,w)) **VVVVVVVV
E(U, u).

f−1
(
g−1(E(W,w)

)f−1(E(g,ζ))// f−1
(
E(V , v)

)E(f,η)

77nnnnnn

Here If,g(E(W,w)) is the natural isomorphism, as for the isomorphisms If,g(E)

in Definition B.34. Note that we use pullbacks f−1 for sheaves of abelian groups,
as in Definition B.15, rather than pullbacks f∗ or f∗ for sheaves of modules as
in Definitions B.34 and C.36.

A morphism of sheaves of abelian groups φ : E → F assigns a morphism
of sheaves of abelian groups φ(U, u) : E(U, u) → F(U, u) on U for each (U, u)
in CX with U = (U,OU ), such that for all (f, η) : (U, u) → (V , v) in CX the
analogue of (C.2) commutes:

f−1
(
E(V , v)

)
f−1(φ(V ,v)) ��

E(f,η)

// E(U, u)

φ(U,u)��
f−1

(
F(V , v)

) F(f,η) // F(U, u).

Sheaves of C∞-rings on X , and their morphisms, are defined in the same way,
replacing sheaves of abelian groups by sheaves of C∞-rings throughout.

Remark C.41. On a C∞-scheme X, a quasicoherent sheaf E has an underlying
sheaf of abelian groups, which we also write as E , by regarding E(U) as an abelian
group for open U ⊆ X and forgetting about its OX(U)-module structure. In the
same way, a quasicoherent sheaf E on a Deligne–Mumford C∞-stack X has an
underlying sheaf of abelian groups, which we also write as E . There is a minor
difference in the morphisms E(f,η): for E to be a quasicoherent sheaf we need

E(f,η) : f∗(E(V , v))→ E(U, u) Definition C.30, but for E to be a sheaf of abelian

groups we need E(f,η) : f−1(E(V , v))→ E(U, u) in Definition C.40. The two are
related by the morphism

(id⊗ f ]) : f−1(E(V , v)) = f−1(E(V , v))⊗f−1(OV ) f
−1(OV )

−→ f−1(E(V , v))⊗f−1(OV ) OU = f∗(E(V , v)),
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where the tensor products use the OV -module structure on E(V , v) ∈ qcoh(V ).

Example C.42. Let X be a Deligne–Mumford C∞-stack. The structure sheaf
OX is a sheaf of C∞-rings on X defined by OX (U, u) = OU for (U, u) in CX
with U = (U,OU ), and (OX )(f,η) = f ] : f−1(OV )→ OU for all (f, η) : (U, u)→
(V , v) in CX with f = (f, f ]). We may also regard OX as a quasicoherent sheaf
on X , using the ideas of Remark C.41.

Here is the analogue of Definition C.36:

Definition C.43. Let f : X → Y be a 1-morphism of Deligne–Mumford C∞-
stacks, and F be a sheaf of abelian groups or C∞-rings on Y. We define a
pullback f−1(F) of F to X to be a sheaf E of abelian groups or C∞-rings on X ,
together with the following data: if U, V are C∞-schemes and u : Ū → X and
v : V̄ → Y are étale 1-morphisms, then there is a C∞-scheme W and morphisms
πU : W → U, πV : W → V giving a 2-Cartesian diagram (C.6) in C∞Sta.

Then an isomorphism i(F , f, u, v, ζ) : π−1
U

(
E(U, u)

)
→ π−1

V

(
F(V , v)

)
of sheaves

of abelian groups or C∞-rings on W should be given, which is functorial in
(U, u) ∈ CX , (V , v) ∈ CY and ζ. As for sheaves of OX -modules, pullbacks
f−1(F) always exist, and are unique up to unique isomorphism. From now on
we suppose we have chosen a pullback f−1(F) for all such f : X → Y and F .

Given 1-morphisms f : X → Y, g : Y → Z and a sheaf E of abelian groups
or C∞-rings on Z we have a canonical isomorphism If,g(E) : (g ◦ f)−1(E) →
f−1 ◦ g−1(E). For 1-morphisms f, g : X → Y, a 2-morphism η : f ⇒ g and a
sheaf E of abelian groups or C∞-rings on Y we have a canonical isomorphism
η−1(E) : f−1(E) → g−1(E). For a sheaf E of abelian groups or C∞-rings on X
we have a canonical isomorphism δX (E) : id−1

X (E) → E . These all satisfy some
natural identities.

If f : X → Y is a morphism of C∞-schemes then f = (f, f ]), X = (X,OX)

and Y = (Y,OY ) with f ] : f−1(OY )→ OX a morphism of sheaves of C∞-rings
on X. Here is an analogue of this for C∞-stacks.

Example C.44. Let f : X → Y be a 1-morphism of Deligne–Mumford C∞-
stacks. Then f−1(OY) and OX are sheaves of C∞-rings on X , by Example
C.42. There is a unique morphism f ] : f−1(OY) → OX of sheaves of C∞-rings
on X , characterized by the following property: for all (U, u), (V , v),W , ζ as in
Definition C.43, the following diagram of sheaves of C∞-rings on W commutes:

π−1
U

(
f−1(OY)(U, u)

)
i(OY ,f,u,v,ζ)∼=

��

π−1
U (f](U,u))

// π−1
U

(
(OX )(U, u)

)
π−1
U (OU )

∼=π]U
��

π−1
V

(
OY(V , v)

)
π−1
V (OV

) π]V // OW ,

where πU = (πU , π
]
U ) and πV = (πV , π

]
V ).
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C.8 Orbifold strata of C∞-stacks

In [56, §11] we study orbifold strata of Deligne–Mumford C∞-stacks. Let X be
a Deligne–Mumford C∞-stack, with topological space Xtop. Then each point [x]
in Xtop has an orbifold group IsoX ([x]), a finite group defined up to isomorphism.

For each finite group Γ we write X̃Γ
◦,top =

{
[x] ∈ Xtop : IsoX ([x]) ∼= Γ

}
. This is

a locally closed subset of Xtop, coming from a locally closed C∞-substack X̃Γ
◦

of X with inclusion ÕΓ
◦ (X ) : X̃Γ

◦ → X , with

Xtop =
∐

isomorphism classes
of finite groups Γ

X̃Γ
◦,top. (C.7)

One can show that for each Γ, the closure X̃ Γ
◦,top of X̃Γ

◦,top in Xtop satisfies

X̃ Γ
◦,top ⊆

∐
isomorphism classes of finite groups ∆:

Γ is isomorphic to a subgroup of ∆

X̃∆
◦,top.

Thus (C.7) is a stratification of Xtop, and the X̃Γ
◦ are called orbifold strata of X .

In fact we will define six variations of this idea, Deligne–Mumford C∞-stacks
written XΓ, X̃Γ, X̂Γ, and open C∞-substacks XΓ

◦ ⊆ XΓ, X̃Γ
◦ ⊆ X̃Γ, X̂Γ

◦ ⊆ X̂Γ.
The geometric points and orbifold groups of XΓ, . . . , X̂Γ

◦ are given by:

(i) Points of XΓ are isomorphism classes [x, ρ], where [x] ∈ Xtop and ρ : Γ→
IsoX ([x]) is an injective morphism, and IsoXΓ([x, ρ]) is the centralizer of
ρ(Γ) in IsoX ([x]). Points of XΓ

◦ ⊆ XΓ are [x, ρ] with ρ an isomorphism,
and IsoXΓ

◦
([x, ρ]) ∼= C(Γ), the centre of Γ.

(ii) Points of X̃Γ are pairs [x,∆], where [x] ∈ Xtop and ∆ ⊆ IsoX ([x]) is
isomorphic to Γ, and IsoX̃Γ([x,∆]) is the normalizer of ∆ in IsoX ([x]).
Points of X̃Γ

◦ ⊆ X̃Γ are [x,∆] with ∆ = IsoX ([x]), and IsoX̃Γ
◦
([x,∆]) ∼= Γ.

(iii) Points [x,∆] of X̂Γ, X̂Γ
◦ are the same as for X̃Γ, X̃Γ

◦ , but with orbifold
groups IsoX̂Γ([x,∆]) ∼= IsoX̃Γ([x,∆])/∆ and IsoX̂Γ

◦
([x,∆]) ∼= {1}.

There are 1-morphisms OΓ(X ), . . . , Π̂Γ
◦ (X ) forming a strictly commutative dia-

gram, where the columns are inclusions of open C∞-substacks:

XΓ
◦

Π̃Γ
◦ (X ) //

OΓ
◦ (X ) ++WWWWWWWWWWWW

⊂
��

Aut(Γ)
,, X̃Γ

◦
Π̂Γ
◦ (X ) //

ÕΓ
◦ (X )ssgggggggggggg

⊂
��

X̂Γ
◦ '

¯̂
XΓ
◦

⊂
��

X

XΓ

Π̃Γ(X )

//
OΓ(X )

33ggggggggggggAut(Γ) 22 X̃Γ
Π̂Γ(X )

//
ÕΓ(X )

kkWWWWWWWWWWWW
X̂Γ.

(C.8)

Also Aut(Γ) acts on XΓ,XΓ
◦ , with X̃Γ ' [XΓ/Aut(Γ)], X̃Γ

◦ ' [XΓ
◦ /Aut(Γ)].

Note that there are in general no natural 1-morphisms from X̂Γ, X̂Γ
◦ to any

of X ,XΓ,XΓ
◦ , X̃Γ, X̃Γ

◦ . Although X̃Γ
◦ or X̂Γ

◦ correspond most closely to the
usual idea of orbifold stratum, we will find that XΓ and X̃Γ are most useful
in applications to d-orbifold bordism in Chapter 13, in which it is vital that
OΓ(X ) : XΓ → X and ÕΓ(X̃ ) : X̃Γ → X̃ are proper.

We now define XΓ, . . . , X̂Γ
◦ and study their properties, following [56, §11.1].

695



Definition C.45. Let X be a Deligne–Mumford C∞-stack, and Γ a finite group.
We will explicitly define another Deligne–Mumford C∞-stack XΓ. Since X is a
stack on the site (C∞Sch,J ), X is a category with a functor pX : X → C∞Sch
satisfying many conditions. To define XΓ we must define another category XΓ

and a functor pXΓ : XΓ → C∞Sch.
Define objects of the category XΓ to be pairs (A, ρ) satisfying:

(a) A is an object in X , with pX (A) = U for some object U ∈ C∞Sch;

(b) ρ : Γ → Aut(A) is a group morphism, where Aut(A) is the group of
isomorphisms a : A→ A in X , and pX ◦ ρ(γ) = idU for all γ ∈ Γ; and

(c) Let u be a point in U, and u : ∗ → U the corresponding morphism in
C∞Sch. Since pX : X → C∞Sch is a category fibred in groupoids [56,
Def. 7.4], there exists a morphism au : Au → A in X with pX (Au) = ∗
and pX (au) = u, where Au is unique up to isomorphism in X .

Having fixed Au, au, [56, Def. 7.4] also implies that for each γ ∈ Γ there is
a unique isomorphism ρu(γ) : Au → Au such that au ◦ ρu(γ) = ρ(γ) ◦ au :
Au → A, and pX (ρu(γ)) = id∗. Then ρu : Γ → Aut(Au) is a group
morphism. We require that ρu : Γ → Aut(Au) should be injective for all
u ∈ U. This condition is independent of the choice of Au, au.

Define morphisms c : (A, ρ) → (B, σ) of the category XΓ to be morphisms
c : A→ B in X satisfying σ(γ) ◦ c = c ◦ ρ(γ) : A→ B in X for all γ ∈ Γ. Given
morphisms c : (A, ρ) → (B, σ), d : (B, σ) → (C, τ) in XΓ, define composition
d ◦ c : (A, ρ) → (C, τ) in XΓ to be the composition d ◦ c : A → C in X . For
each object (A, ρ) in XΓ, define the identity morphism id(A,ρ) : (A, ρ)→ (A, ρ)
in XΓ to be idA : A → A in X . Define a functor pXΓ : XΓ → C∞Sch by
pXΓ : (A, ρ) 7→ U = pX (A) on objects and pXΓ : c 7→ pX (c) on morphisms.

Define XΓ
◦ to be the full subcategory of objects (A, ρ) in XΓ such that

ρu : Γ → Aut(Au) in (c) above is an isomorphism for all u ∈ U. Define a
functor pXΓ

◦
= pX |XΓ

◦
: XΓ
◦ → C∞Sch. By Theorem C.49(a) below, XΓ is a

Deligne–Mumford C∞-stack, and XΓ
◦ is an open C∞-substack in XΓ.

Definition C.46. Let X be a Deligne–Mumford C∞-stack, and Γ a finite group.
Define a category PX̃Γ to have objects pairs (A,∆) satisfying:

(a) A is an object in X , with pX (A) = U for some object U ∈ C∞Sch;

(b) ∆ ⊆ Aut(A) is a subgroup isomorphic to Γ, where Aut(A) is the group of
isomorphisms a : A→ A in X , and pX (δ) = idU for all δ ∈ ∆; and

(c) Let u be a point in U, and u : ∗ → U the corresponding morphism in
C∞Sch. Since pX : X → C∞Sch is a category fibred in groupoids, there
exists a morphism au : Au → A in X with pX (Au) = ∗ and pX (au) = u,
where Au is unique up to isomorphism in X . For each δ ∈ ∆ there is a
unique isomorphism δu : Au → Au such that au ◦ δu = δ ◦ au : Au → A,
and pX (δu) = id∗. Then {δu : δ ∈ ∆} is a subgroup of Aut(Au), and
δ 7→ δu is a group morphism. We require that the map δ 7→ δu should be
injective for all u ∈ U.
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Define morphisms (A,∆) → (A′,∆′) of PX̃Γ to be pairs (c, ι), where c :
A→ A′ is a morphism in X and ι : ∆→ ∆′ is a group isomorphism, satisfying
ι(δ)◦c = c◦δ : A→ A′ for all δ ∈ ∆. Given morphisms (c, ι) : (A,∆)→ (A′,∆′),
(c′, ι′) : (A′,∆′) → (A′′,∆′′) in PXΓ, define composition (c′, ι′) ◦ (c, ι) = (c′ ◦
c, ι′ ◦ ι). Define identities id(A,∆) = (idA, id∆) : (A,∆)→ (A,∆).

Define a functor pPX̃Γ : PX̃Γ → C∞Sch by pPX̃Γ : (A,∆) 7→ U = pX (A)
on objects and pPX̃Γ : (c, ι) 7→ pX (c) on morphisms. Define PX̃Γ

◦ to be the
full subcategory of objects (A,∆) in PX̃Γ with {δu : δ ∈ ∆} = Aut(Au) in (c)
above for all u ∈ U. Define a functor pPX̃Γ

◦
= pPX̃Γ |PX̃Γ

◦
: PX̃Γ

◦ → C∞Sch.
Although PX̃Γ,PX̃Γ

◦ are in general not C∞-stacks, they are prestacks on the
site (C∞Sch,J ) in the sense of [56, Def. 7.5] (that is, morphisms in PX̃Γ,PX̃Γ

◦
satisfy a sheaf-like condition over (C∞Sch,J ), but objects may not). Thus,
PX̃Γ,PX̃Γ

◦ have stackifications X̃Γ, X̃Γ
◦ , defined up to equivalence, which are

stacks on the site (C∞Sch,J ). By Theorem C.49(a) below, X̃Γ is a Deligne–
Mumford C∞-stack, and X̃Γ

◦ is an open C∞-substack in X̃Γ.
This specifies X̃Γ, X̃Γ

◦ only up to equivalence. In Definition C.47 we will
explain how to choose X̃Γ, X̃Γ

◦ within their equivalence classes in order to make
(C.8) strictly commute, and to make the 1-morphisms ÕΓ(X ), Π̃Γ(X ), ÕΓ

◦ (X ),
Π̃Γ
◦ (X ) below strongly representable.

Let (A,∆), (A′,∆′) be objects in PX̃Γ. Define a right action of ∆ on
morphisms (c, ι) : (A,∆) → (A′,∆′) in PX̃Γ by (c, ι) · δ = (c ◦ δ, ιδ), where
ιδ : ∆ → ∆′ maps ιδ : ε 7→ ι(δ ◦ ε ◦ δ−1). If (c′, ι′) : (A′,∆′) → (A′′,∆′′) is
another morphism and δ′ ∈ ∆′, it is easy to show that(

(c′, ι′) · δ′
)
◦
(
(c, ι) · δ

)
=
(
(c′, ι′) ◦ (c, ι)

)
· (ι−1(δ′) ◦ δ). (C.9)

Define a category PX̂Γ to have objects (A,∆) as in PX̃Γ, and to have
morphisms (c, ι)∆ : (A,∆) → (A′,∆′) for morphisms (c, ι) : (A,∆) → (A′,∆′)
in PX̃Γ, where (c, ι)∆ = {(c, ι) · δ : δ ∈ ∆} is the ∆-orbit of (c, ι). Define
composition of morphisms in PX̂Γ by

(
(c′, ι′)∆′

)
◦
(
(c, ι)∆

)
=
(
(c′, ι′)◦ (c, ι)

)
∆,

where (c′, ι′)◦ (c, ι) is composition of morphisms in PX̃Γ. Equation (C.9) shows
this is well-defined. Define identity morphisms id(A,∆) = (idA, id∆)∆ : (A,∆)→
(A,∆) in PX̂Γ. Define a functor pPX̂Γ : PX̂Γ → C∞Sch to map (A,∆) 7→
pX (A) on objects and (c, ι)∆ 7→ pX (c) on morphisms.

Define PX̂Γ
◦ to be the full subcategory of PX̂Γ whose objects are objects of

PX̃Γ
◦ , and define pPX̂Γ

◦
= pPX̂Γ |PX̂Γ

◦
: PX̂Γ

◦ → C∞Sch. Then as for PX̂Γ,PX̂Γ
◦

are prestacks on (C∞Sch,J ), and by Theorem C.49(a) their stackifications
X̂Γ, X̂Γ

◦ are Deligne–Mumford C∞-stacks. Furthermore, by Theorem C.49(g)
below X̂Γ

◦ has trivial orbifold groups, so by Theorem C.23 there is a C∞-scheme

X̂Γ
◦ , unique up to isomorphism, such that X̂Γ

◦ '
¯̂
XΓ
◦ .

Next, we define all the 1-morphisms in (C.8).

Definition C.47. In Definitions C.45 and C.46, for Λ ∈ Aut(Γ) define functors

LΓ(Λ,X ) : XΓ −→ XΓ, OΓ(X ) : XΓ −→ X , PÕΓ(X ) : PX̃Γ −→ X ,
PΠ̃Γ(X ) : XΓ −→ PX̃Γ and PΠ̂Γ(X ) : PX̃Γ −→ PX̂Γ
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on objects by

LΓ(Λ,X ) : (A, ρ) 7→ (A, ρ ◦ Λ−1), OΓ(X ) : (A, ρ) 7→ A, PÕΓ(X ) : (A,∆) 7→ A,

PΠ̃Γ(X ) : (A, ρ) 7−→
(
A, ρ(Γ)

)
and PΠ̂Γ(X ) : (A,∆) 7−→ (A,∆),

and on morphisms by

LΓ(Λ,X ) : c 7−→ c, OΓ(X ) : c 7−→ c, PÕΓ(X ) : (c, ι) 7−→ c,

PΠ̃Γ(X ) : c 7→ (c, σ ◦ ρ−1) on c : (A, ρ)→ (B, σ), and

PΠ̂Γ(X ) : (c, ι) 7→ (c, ι)∆ on (c, ι) : (A,∆)→ (A′,∆′).

It is trivial to check that these are all functors, and commute with the projec-
tions pX , pXΓ , pX̃Γ , pX̂Γ to C∞Sch. Hence LΓ(Λ,X ), OΓ(X ) are 1-morphisms of
C∞-stacks. Note that LΓ(Λ,X ) ◦LΓ(Λ′,X ) = LΓ(Λ ◦Λ′,X ) and LΓ(Λ−1,X ) =
LΓ(Λ,X )−1 for Λ,Λ′ ∈ Aut(Γ), so LΓ(−,X ) is an action of Aut(Γ) on XΓ by
1-isomorphisms.

Now PÕΓ(X ),PΠ̃Γ(X ),PΠ̂Γ(X ) are 1-morphisms of prestacks, so stackify-
ing gives 1-morphisms of C∞-stacks ÕΓ(X ) : X̃Γ → X , Π̃Γ(X ) : XΓ → X̃Γ,
Π̂Γ(X ) : X̃Γ → X̂Γ. Define 1-morphisms of C∞-stacks

LΓ
◦ (Λ,X ) : XΓ

◦ −→ XΓ
◦ , OΓ

◦ (X ) : XΓ
◦ −→ X , ÕΓ

◦ (X ) : X̃Γ
◦ −→ X ,

Π̃Γ
◦ (X ) : XΓ

◦ −→ X̃Γ
◦ and Π̂Γ

◦ (X ) : X̃Γ
◦ −→ X̂Γ

◦ ,

to be the restrictions of LΓ(Λ,X ), . . . , Π̂Γ(X ) to the open C∞-substacks XΓ
◦ , X̃Γ

◦ .
Then LΓ

◦ (−,X ) is an action of Aut(Γ) on XΓ
◦ by 1-isomorphisms.

It is easy to see that the analogue of (C.8) with prestacks PX̃Γ, . . . ,PX̂Γ
◦

and prestack 1-morphisms PÕΓ(X ), . . . ,PΠ̂Γ
◦ (X ) is strictly commutative, i.e. 2-

commutative with identity 2-morphisms. Thus on stackifying, (C.8) commutes
weakly up to 2-isomorphisms, with some choice of 2-morphisms.

Theorem C.49(f) shows that ÕΓ(X ) : X̃Γ → X is representable. Thus by
Proposition C.14(b), we can replace X̃Γ by an equivalent C∞-stack to make
ÕΓ(X ) strongly representable. Since X̃Γ was only defined up to equivalence
in Definition C.46 anyway, we may take this replacement to be X̃Γ, and then
ÕΓ(X ) : X̃Γ → X is strongly representable, and this determines X̃Γ uniquely
up to 1-isomorphism.

Similarly, the 1-morphism Π̃Γ(X ) : XΓ → X̃Γ is defined by stackification,
and so is unique up to 2-isomorphism, and we have a 2-isomorphism ÕΓ(X ) ◦
Π̃Γ(X ) ⇒ OΓ(X ). Proposition C.13 now shows that we can choose Π̃Γ(X )
uniquely within its 2-isomorphism class so that ÕΓ(X )◦ Π̃Γ(X ) = OΓ(X ). Thus
the lower triangle in (C.8) strictly commutes. The rest of (C.8) then strictly
commutes, since OΓ

◦ (X ), . . . , Π̂Γ
◦ (X ) are the restrictions of OΓ(X ), . . . , Π̂Γ(X ) to

open C∞-substacks.

Definition C.48. Let the 1-morphisms OΓ(X ) : XΓ → X , OΓ
◦ (X ) : XΓ

◦ →
X be as in Definition C.47. We will define actions of Γ on OΓ(X ), OΓ

◦ (X )
by 2-morphisms. For each γ ∈ Γ and (A, ρ) ∈ XΓ, define an isomorphism
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EΓ(γ,X )(A, ρ) : OΓ(X )(A, ρ) → OΓ(X )(A, ρ) in X by EΓ(γ,X ) = ρ(γ) : A →
A. If c : (A, ρ)→ (B, σ) is a morphism in XΓ then

OΓ(X )(c) ◦ EΓ(γ,X )(A, ρ)=c ◦ ρ(γ)=σ(γ) ◦ ρ=EΓ(γ,X )(B, σ) ◦OΓ(X )(c).

Hence EΓ(γ,X ) : OΓ(X )⇒ OΓ(X ) is a natural isomorphism of functors. Since
pX (EΓ(γ,X )(A, ρ)) = pX (ρ(γ)) = idpX (A) for all (A, ρ), we have pX ∗EΓ(γ,X ) =

pXΓ , so EΓ(γ,X ) : OΓ(X ) ⇒ OΓ(X ) is a 2-morphism of C∞-stacks. Clearly
EΓ(1,X ) = idOΓ(X ) and EΓ(γ,X ) � EΓ(δ,X ) = EΓ(γδ,X ) for all γ, δ ∈ Γ, so
EΓ(−,X ) : Γ → Aut

(
OΓ(X )

)
is a group morphism. We define 2-morphisms

EΓ
◦ (γ,X ) : OΓ

◦ (X )⇒ OΓ
◦ (X ) for γ ∈ Γ in the same way.

Here are some basic properties of these definitions, [56, Th. 11.5].

Theorem C.49. (a) XΓ, X̃Γ, X̂Γ are Deligne–Mumford C∞-stacks, and XΓ
◦ ⊆

XΓ, X̃Γ
◦ ⊆ X̃Γ, X̂Γ

◦ ⊆ X̂Γ are open C∞-substacks. Also X̃Γ ' [XΓ/Aut(Γ)] and
X̃Γ
◦ ' [XΓ

◦ /Aut(Γ)], where the Aut(Γ)-actions are LΓ(−,X ) and LΓ
◦ (−,X )..

(b) If X is separated, locally fair, locally finitely presented, or second count-
able, then XΓ,XΓ

◦ , X̃Γ, X̃Γ
◦ , X̂Γ, X̂Γ

◦ are separated, locally fair, locally finitely
presented, or second countable respectively.

If X is compact then XΓ, X̃Γ, X̂Γ are compact.

(c) Points of XΓ
top are equivalence classes [x, ρ] of pairs (x, ρ), where x : ∗̄ → X

is a 1-morphism and ρ : Γ → Aut(x) is an injective group morphism into
the group Aut(x) of 2-isomorphisms η : x ⇒ x, and pairs (x, ρ), (x′, ρ′) are
equivalent if there exists ζ : x ⇒ x′ with ζ � ρ(γ) = ρ′(γ) � ζ : x ⇒ x′ for all
γ ∈ Γ. They have orbifold groups

IsoXΓ([x, ρ]) =
{
η ∈ Aut(x) : ρ(γ) = ηρ(γ)η−1 ∀γ ∈ Γ

}
.

Points of XΓ
◦,top are [x, ρ] with ρ : Γ → Aut(x) an isomorphism, and have

canonical isomorphisms IsoXΓ
◦

([x, ρ]) ∼= C(Γ), where C(Γ) is the centre of Γ.

(d) Points of X̃Γ
top are equivalence classes [x,∆] of pairs (x,∆), where x : ∗̄ →

X is a 1-morphism and ∆ ⊆ Aut(x) is a subgroup isomorphic to Γ, and pairs
(x,∆), (x′,∆′) are equivalent if there exists a 2-isomorphism ζ : x ⇒ x′ with
∆′ = ζ �∆� ζ−1. They have orbifold groups

IsoX̃Γ([x,∆]) ∼=
{
η ∈ Aut(x) : ∆ = η∆η−1

}
.

Points of X̃Γ
◦,top are [x,∆] with ∆ = Aut(x), and have non-canonical isomor-

phisms IsoX̃Γ
◦
([x,∆]) ∼= Γ.

(e) As topological spaces X̂Γ
top = X̃Γ

top and X̂Γ
◦,top = X̃Γ

◦,top, and Π̂Γ(X )top,

Π̂Γ
◦ (X )top are the identity maps. For [x,∆] ∈ X̂Γ

top we have

IsoX̂Γ([x,∆]) ∼=
{
η ∈ Aut(x) : ∆ = η∆η−1

}
/∆.

Also IsoX̂Γ
◦
([x,∆]) = {1} for all [x,∆] ∈ X̂Γ

◦,top, so X̂Γ
◦ is a C∞-scheme.
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(f) LΓ(Λ,X ), LΓ
◦ (Λ,X ), OΓ(X ), OΓ

◦ (X ), ÕΓ(X ), ÕΓ
◦ (X ), Π̃Γ(X ), Π̃Γ

◦ (X ) are all
strongly representable, but Π̂Γ(X ), Π̂Γ

◦ (X ) in general are not representable.

(g) LΓ(Λ,X ), LΓ
◦ (Λ,X ), OΓ(X ), ÕΓ(X ), Π̃Γ(X ), Π̃Γ

◦ (X ), Π̂Γ(X ), Π̂Γ
◦ (X ) are all

proper, but OΓ
◦ (X ), ÕΓ

◦ (X ) in general are not.

(h) OΓ
◦ (X )top : XΓ

◦,top → Xtop takes |Aut(Γ)| · |C(Γ)|/|Γ| points [x, ρ] of XΓ
◦,top

to each point [x] ∈ Xtop with IsoX ([x]) ∼= Γ. Also ÕΓ
◦ (X )top : X̃Γ

◦,top → Xtop is
a bijection with the subset of [x] ∈ Xtop with IsoX ([x]) ∼= Γ.

Example C.50. Let X be a Deligne–Mumford C∞-stack. The inertia stack
IX of X is the fibre product X ×∆X ,X×X ,∆X X , where ∆X : X → X ×X is the
diagonal 1-morphism. There is a natural equivalence

IX = X ×∆X ,X×X ,∆X X '
∐
k>1 X Zk .

To see this, note that points of IX are equivalence classes [x, η], where [x] ∈ Xtop

and η ∈ IsoX ([x]). Since X is Deligne–Mumford, IsoX ([x]) is a finite group, so
each η ∈ IsoX ([x]) has some finite order k > 1, and generates an injective
morphism ρ : Zk → IsoX ([x]) mapping ρ : a 7→ ηa. We may identify X Zk with
the open and closed C∞-substack of [x, η] in IX for which η has order k.

As in [56, §11.2], the construction of XΓ, X̃Γ, X̂Γ extends functorially to 1-
and 2-morphisms.

Definition C.51. Let X ,Y be Deligne–Mumford C∞-stacks, Γ a finite group,
and f : X → Y a representable 1-morphism, so that f : X → Y is a functor
with pY ◦ f = pX . We will define a representable 1-morphism fΓ : XΓ → YΓ.

On objects (A, ρ) in XΓ, define fΓ(A, ρ) = (f(A), f ◦ ρ), and on morphisms
c : (A, ρ)→ (B, σ) in XΓ, define fΓ(c) : fΓ(A, ρ)→ fΓ(B, σ) by fΓ(c) = f(c) :
f(A) → f(B). Then fΓ : XΓ → YΓ is a 1-morphism of C∞-stacks. It is the
unique such 1-morphism with OΓ(Y) ◦ fΓ = f ◦ OΓ(X ) : XΓ → Y. Also, fΓ is
injective on morphisms, as f is, so fΓ is representable.

Now let f, g : X → Y be representable, and η : f ⇒ g be a 2-morphism.
Then f, g : X → Y are functors, and η : f ⇒ g is a natural isomorphism. Define
ηΓ : fΓ ⇒ gΓ by taking the isomorphism ηΓ(A, ρ) : fΓ(A, ρ) → gΓ(A, ρ) in YΓ

for each object (A, ρ) in XΓ to be the isomorphism ηΓ(A, ρ) = η(A) : f(A) →
g(A) in Y. Then ηΓ : fΓ ⇒ gΓ is a 2-morphism in DMC∞Sta. It is the unique
such 2-morphism with idOΓ(Y) ∗ ηΓ = η ∗ idOΓ(X ).

Similarly, if f : X → Y is representable we define functors P f̃Γ : PX̃Γ →
PỸΓ mapping (A,∆) 7→ (f(A), f(∆)) on objects and (c, ι) 7→ (f(c), f ◦ ι ◦ f |−1

∆ )

on morphisms, and P f̂Γ : PX̂Γ → PŶΓ mapping (A,∆) 7→ (f(A), f(∆)) and

(c, ι)∆ 7→ (f(c), f ◦ι◦f |−1
∆ )f(∆). Then P f̃Γ,P f̂Γ are 1-morphisms of prestacks,

so stackifying gives 1-morphisms f̃Γ : X̃Γ → ỸΓ and f̂Γ : X̂Γ → ŶΓ.
Stackifications of 1-morphisms of prestacks involve arbitrary choices, and are

unique only up to 2-isomorphism. One consequence of this is that strict equali-
ties of 1-morphisms of prestacks translate, on stackification, to 2-isomorphisms
of their stackifications, rather than strict equalities. In prestack 1-morphisms
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we have PÕΓ(Y) ◦ P f̃Γ = f ◦ PÕΓ(X ) : PX̃Γ → Y. Thus, stackification gives
a 2-morphism ζ : ÕΓ(Y) ◦ f̃Γ ⇒ f ◦ ÕΓ(X ) : X̃Γ → Y, which need not be the
identity. Since ÕΓ(Y) is strongly representable by Theorem C.49(f), Proposi-
tion C.13 shows that we may choose f̃Γ uniquely within its 2-isomorphism class
so that ÕΓ(Y) ◦ f̃Γ = f ◦ ÕΓ(X ), and we do this.

We cannot fix f̂Γ uniquely in a similar way, it is natural up to 2-isomorphism.
If f, g : X → Y are representable, and η : f ⇒ g is a 2-morphism, we define

P η̃Γ : P f̃Γ ⇒ P g̃Γ and P η̂Γ : P f̂Γ ⇒ P ĝΓ by P η̃Γ : (A,∆) 7→ (η(A), ιη), where
ιη : f(∆)→ g(∆) maps ιη : f(δ) 7→ g(δ) = η(A) ◦ f(δ) ◦ η(A)−1 for δ ∈ ∆, and
P η̂Γ : (A,∆) 7→ (η(A), ιη)f(∆). Then P η̃Γ,P η̂Γ are 2-morphisms of prestacks,

so stackifying gives 2-morphisms η̃Γ : f̃Γ ⇒ g̃Γ and η̂Γ : f̂Γ ⇒ ĝΓ.
The 1-morphisms in (C.8) are compatible with fΓ, f̃Γ, f̂Γ by

OΓ(Y) ◦ fΓ = f ◦OΓ(X ), ÕΓ(Y) ◦ f̃Γ = f ◦ ÕΓ(X ), Π̃Γ(Y) ◦ fΓ = f̃Γ ◦ Π̃Γ(X ).

We have PΠ̂Γ(Y)◦P f̃Γ = P f̂Γ ◦PΠ̂Γ(X ), so stackifying gives a 2-morphism ζ :

Π̂Γ(Y) ◦ f̃Γ ⇒ f̂Γ ◦ Π̂Γ(X ).
We can express all this in terms of (strict or weak) 2-functors. Write

DMC∞Stare for the 2-subcategory of DMC∞Sta with only representable
1-morphisms. Define FΓ, F̃Γ : DMC∞Stare → DMC∞Stare by FΓ : X 7→
FΓ(X ) = XΓ on objects, FΓ : f 7→ FΓ(f) = fΓ on representable 1-morphisms,
and FΓ : η 7→ FΓ(η) = ηΓ on 2-morphisms, and similarly for F̃Γ. Then FΓ, F̃Γ

are strict 2-functors, so that for example FΓ(g ◦ f) = FΓ(g) ◦ FΓ(f) for repre-
sentable f : X → Y, g : Y → Z.

For the orbifold strata X̂Γ, the situation is more complicated. For example,
if f : X → Y, g : Y → Z are representable then the prestack 1-morphisms

P f̂Γ : PX̂Γ → PŶΓ, P ĝΓ : PX̂Γ → PŶΓ, P ̂(g ◦ f)Γ : PX̂Γ → PŶΓ sat-

isfy P ̂(g ◦ f)Γ = P ĝΓ ◦ P f̂Γ. However, stackifying involves arbitrary choices,

so we need not have ̂(g ◦ f)Γ = ĝΓ ◦ f̂Γ, but instead there is a natural 2-

isomorphism F̂Γ(f, g) : ̂(g ◦ f)Γ ⇒ ĝΓ ◦ f̂Γ.
The correct structure here is a weak 2-functor or pseudofunctor [15, §7.5],

[11, §B.4], as in Theorem C.37, a class of 2-functors preserving composition of
1-morphisms up to (specified) 2-isomorphisms. Defining F̂Γ : DMC∞Stare →
DMC∞Stare by F̂Γ : X 7→ F̂Γ(X ) = X̂Γ on objects, F̂Γ : f 7→ F̂Γ(f) = f̃Γ

on representable 1-morphisms, F̃Γ : η 7→ F̂Γ(η) = η̂Γ on 2-morphisms, and
F̂Γ(f, g) : F̂Γ(g ◦ f) ⇒ F̂Γ(g) ◦ F̂Γ(f) on composable 1-morphisms, one can
show that F̂Γ : DMC∞Stare → DMC∞Stare is a weak 2-functor.

Remark C.52. For f : X → Y and Γ as above, the restriction fΓ|XΓ
◦

need not
map XΓ

◦ → YΓ
◦ , but only XΓ

◦ → YΓ, unless f induces isomorphisms on orbifold
groups. Thus we do not define a 1-morphism fΓ

◦ : XΓ
◦ → YΓ

◦ , or a 2-functor
FΓ
◦ : DMC∞Stare → DMC∞Stare. The same applies for the actions of f on

orbifold strata X̃Γ
◦ , X̂Γ

◦ .

The next theorem [56, Th. 11.9] describes XΓ, . . . , X̂Γ
◦ explicitly when X is

a quotient stack [X/G], as in §C.4.
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Theorem C.53. Let X be a separated C∞-scheme and G a finite group acting
on X by isomorphisms, and write X = [X/G] for the quotient C∞-stack, which
is a Deligne–Mumford C∞-stack. Let Γ be a finite group. Then there are
equivalences of C∞-stacks

XΓ '
[(∐

injective group morphisms ρ : Γ→ GX
ρ(Γ)

)
/G
]
, (C.10)

XΓ
◦ '

[(∐
injective group morphisms ρ : Γ→ GX

ρ(Γ)
◦

)
/G
]
, (C.11)

X̃Γ '
[(∐

subgroups ∆ ⊆ G: ∆ ∼= ΓX
∆
)
/G
]
, (C.12)

X̃Γ
◦ '

[(∐
subgroups ∆ ⊆ G: ∆ ∼= ΓX

∆
◦
)
/G
]
, (C.13)

where for each subgroup ∆ ⊆ G, we write X∆ for the closed C∞-subscheme in
X fixed by ∆ in G, and X∆

◦ for the open C∞-subscheme in X∆ of points in X
whose stabilizer group in G is exactly ∆.

Here the action of G on
∐
ρX

ρ(Γ) in (C.10) is defined as follows. Let g ∈ G
and ρ : Γ → G be an injective morphism. Define another injective morphism
ρg : Γ→ G by ρg : γ 7→ gρ(γ)g−1. Then g(Xρ(Γ)) = Xρg(Γ), as C∞-subschemes

of X, and the action of g on
∐
ρX

ρ(Γ) maps Xρ(Γ) → Xρg(Γ) by the restriction

of g : X → X to Xρ(Γ). The G-actions for (C.11)–(C.13) are similar.
We can also rewrite equations (C.10)–(C.13) as

XΓ '
∐

conjugacy classes [ρ] of injective
group morphisms ρ : Γ→ G

[
Xρ(Γ)/

{
g ∈ G : gρ(γ) = ρ(γ)g ∀γ ∈ Γ

}]
, (C.14)

XΓ
◦ '

∐
conjugacy classes [ρ] of injective
group morphisms ρ : Γ→ G

[
Xρ(Γ)
◦ /

{
g ∈ G : gρ(γ) = ρ(γ)g ∀γ ∈ Γ

}]
, (C.15)

X̃Γ '
∐

conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆/

{
g ∈ G : ∆ = g∆g−1

}]
, (C.16)

X̃Γ
◦ '

∐
conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆
◦ /
{
g ∈ G : ∆ = g∆g−1

}]
. (C.17)

Here morphisms ρ, ρ′ : Γ → G are conjugate if ρ′ = ρg for some g ∈ G, and
subgroups ∆,∆′ ⊆ G are conjugate if ∆ = g∆′g−1 for some g ∈ G. In (C.14)–
(C.17) we sum over one representative ρ or ∆ for each conjugacy class.

In the notation of (C.16)–(C.17), there are equivalences of C∞-stacks

X̂Γ '
∐

conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆

/(
{g ∈ G : ∆ = g∆g−1}/∆

)]
, (C.18)

X̂Γ
◦ '

∐
conjugacy classes [∆] of subgroups ∆ ⊆ G with ∆ ∼= Γ

[
X∆
◦
/(
{g ∈ G : ∆ = g∆g−1}/∆

)]
. (C.19)

Under the equivalences (C.10)–(C.19), the 1-morphisms in (C.8) are identi-
fied up to 2-isomorphism with 1-morphisms between quotient C∞-stacks induced
by natural C∞-scheme morphisms between

∐
ρX

ρ(Γ), X, . . . . For example, the
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disjoint union over ρ of the inclusion Xρ(Γ) ↪→ X is a G-equivariant morphism∐
ρX

ρ(Γ) → X, inducing a 1-morphism [
∐
ρX

ρ(Γ)/G]→ [X/G]. This is iden-

tified with OΓ(X ) : XΓ → X by (C.10). Similarly, Π̃Γ(X ) : XΓ → X̃Γ is
identified by (C.10), (C.12) with the 1-morphism [

∐
ρX

ρ(Γ)/G]→ [
∐

∆X∆/G]

induced by the C∞-scheme morphism
∐
ρX

ρ(Γ) →
∐

∆X∆ mapping morphisms

ρ to subgroups ∆ = ρ(Γ), and acting by idX∆ : Xρ(Γ) → X∆ for ∆ = ρ(Γ).

C.9 Sheaves on orbifold strata

Let X be a Deligne–Mumford C∞-stack, Γ a finite group, and E ∈ qcoh(X ),
so that EΓ := OΓ(X )∗(E) ∈ qcoh(XΓ). In [56, §11.4] we show that there is a
natural representation of Γ on EΓ, and also the action of Aut(Γ) on XΓ lifts to
EΓ, so that Aut(Γ) n Γ acts equivariantly on EΓ.

Definition C.54. Let X be a Deligne–Mumford C∞-stack, and Γ a finite group,
so that §C.8 defines the orbifold stratum XΓ, a 1-morphism OΓ(X ) : XΓ→X ,
an action of Aut(Γ) on OΓ(X ) by 2-isomorphisms EΓ(γ,X ) : OΓ(X )⇒OΓ(X ),
and an action of Aut(Γ) on XΓ by 1-isomorphisms LΓ(Λ,X ) : XΓ→XΓ.

Suppose E is a quasicoherent sheaf on X , and write EΓ for the pullback
sheaf OΓ(X )∗(E) in qcoh(XΓ). Using the notation of Definition C.36, for each
γ ∈ Γ and Λ ∈ Aut(Γ) define morphisms RΓ(γ, E) : EΓ → EΓ and SΓ(Λ, E) :
LΓ(Λ,X )∗(EΓ)→ EΓ in qcoh(XΓ) by

RΓ(γ, E) = EΓ(γ,X )∗(E) : OΓ(X )∗(E) −→ OΓ(X )∗(E) and

SΓ(Λ, E) = ILΓ(Λ,X ),OΓ(X )(E)−1 : LΓ(Λ,X )∗ ◦OΓ(X )∗(E) −→ OΓ(X )∗(E),

where the definition of SΓ(Λ, E) uses OΓ(X ) ◦ LΓ(Λ,X ) = OΓ(X ).
In [56, §11.4] we prove that RΓ(−, E) is an action of Γ on EΓ by isomorphisms,

and the SΓ(Λ, E) define a lift of the action of Aut(Γ) on XΓ to EΓ, that is, EΓ

is an Aut(Γ)-equivariant sheaf on XΓ, and these Γ- and Aut(Γ)-actions are
compatible for all γ ∈ Γ and Λ ∈ Aut(Γ) by

RΓ(γ, E) ◦ SΓ(Λ, E) = SΓ(Λ, E) ◦ LΓ(Λ,X )∗(RΓ(Λ(γ), E)). (C.20)

Let α : E1 → E2 be a morphism in qcoh(X ). Then αΓ := OΓ(X )∗(α) : EΓ
1 → E

Γ
2

is a morphism in qcoh(XΓ). We have

αΓ ◦RΓ(γ, E1) = RΓ(γ, E2) ◦ αΓ for γ ∈ Γ,

αΓ ◦ SΓ(Λ, E1) = SΓ(Λ, E2) ◦ LΓ(Λ,X )∗(αΓ) for Λ ∈ Aut(Γ).

Thus R(γ,−) and S(Λ,−) are natural isomorphisms of functors.
Now let f : X → Y be a representable 1-morphism of C∞-stacks, so that

as in §C.8 we have fΓ : XΓ → YΓ. Let F ∈ qcoh(Y). Then we may form
f∗(F) ∈ qcoh(X ) and hence f∗(F)Γ = OΓ(X )∗(f∗(F)) ∈ qcoh(XΓ), or we may
form FΓ = OΓ(Y)∗(F) ∈ qcoh(YΓ) and hence (fΓ)∗(FΓ) ∈ qcoh(XΓ). Since
OΓ(Y) ◦ fΓ = f ◦OΓ(X ), these are related by the canonical isomorphism

TΓ(f,F) := IfΓ,OΓ(Y)(F) ◦ IOΓ(X ),f (F)−1 : f∗(F)Γ −→ (fΓ)∗(FΓ). (C.21)
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These TΓ(f,F) identify the (Aut(Γ) n Γ)-actions on f∗(F)Γ and (fΓ)∗(FΓ).
Now let X ,Γ,XΓ, E and EΓ be as above, and write R0, . . . , Rk for the irre-

ducible representations of Γ over R (that is, we choose one representative Ri in
each isomorphism class of irreducible representations), with R0 = R the trivial
representation. Then since RΓ(−, E) is an action of Γ on EΓ by isomorphisms,
by elementary representation theory we have a canonical decomposition

EΓ ∼=
⊕k

i=0 E
Γ
i ⊗Ri for EΓ

0 , . . . , E
Γ
k ∈ qcoh(XΓ). (C.22)

We will be interested in splitting EΓ into trivial and nontrivial representations
of Γ, denoted by subscripts ‘tr’ and ‘nt’. So we write

EΓ = EΓ
tr ⊕ E

Γ
nt, (C.23)

where EΓ
tr, E

Γ
nt are the subsheaves of EΓ corresponding to the factors EΓ

0 ⊗ R0

and
⊕k

i=1 E
Γ
i ⊗Ri respectively.

If Γ acts on Ri by ρi : Γ → Aut(Ri), and Λ ∈ Aut(Γ), then ρi ◦ Λ−1 : Γ →
Aut(Ri) is also an irreducible representation of Γ, and so is isomorphic to RΛ(i)

for some unique Λ(i) = 0, . . . , k. This defines an action of Aut(Γ) on {0, . . . , k}
by permutations. One can show using (C.20) that SΓ(Λ, E) acts on the splitting
(C.22) by mapping LΓ(Λ,X )∗(EΓ

i ⊗ Ri) → E
Γ
Λ−1(i) ⊗ RΛ−1(i). Since Λ(0) = 0,

it follows that SΓ(Λ, E) maps LΓ(Λ,X )∗(EΓ
tr)→ E

Γ
tr and LΓ(Λ,X )∗(EΓ

nt)→ E
Γ
nt,

that is, SΓ(Λ, E) preserves the splitting (C.23). Also TΓ(f,F) maps f∗(F)Γ
tr →

(fΓ)∗(FΓ
tr) and f∗(F)Γ

nt → (fΓ)∗(FΓ
nt) in (C.23).

The next two definitions explain to what extent this generalizes to X̃Γ, X̂Γ.

Definition C.55. Let X be a Deligne–Mumford C∞-stack, and Γ a finite group,
so that §C.8 defines the orbifold strata XΓ, X̃Γ with X̃Γ ' [XΓ/Aut(Γ)], and
1-morphisms OΓ(X ) : XΓ → X , ÕΓ(X ) : X̃Γ → X and Π̃Γ(X ) : XΓ → X̃Γ with
ÕΓ(X ) ◦ Π̃Γ(X ) = OΓ(X ).

How much of the structure on EΓ in Definition C.54 descends to ẼΓ? It
turns out that ẼΓ does not have natural representations of Γ or Aut(Γ), since
we do not have actions of Γ on ÕΓ(X ) by 2-isomorphisms or of Aut(Γ) on X̃Γ by
1-isomorphisms. In effect, taking the quotient by Aut(Γ) in X̃Γ ' [XΓ/Aut(Γ)]
destroys both these actions.

However, at least part of the natural decompositions (C.22)–(C.23) descends
to ẼΓ. As in Definition C.54, write R0, . . . , Rk for the irreducible representations
of Γ, so that Aut(Γ) acts on the indexing set {0, . . . , k}. Form the quotient set
{0, . . . , k}/Aut(Γ), so that points of {0, . . . , k}/Aut(Γ) are orbits O of Aut(Γ)
in {0, . . . , k}. Then we may rewrite (C.22) as

EΓ ∼=
⊕

O∈{0,...,k}/Aut(Γ)

[⊕
i∈O E

Γ
i ⊗Ri

]
.

Since SΓ(Λ, E) maps LΓ(Λ,X )∗(EΓ
i ⊗Ri)→ E

Γ
Λ−1(i) ⊗RΛ−1(i), we see that

SΓ(Λ, E) : LΓ(Λ,X )∗
(⊕

i∈O E
Γ
i ⊗Ri

)
−→

⊕
i∈O E

Γ
i ⊗Ri
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for each O ∈ {0, . . . , k}/Aut(Γ). Now the SΓ(Λ, E) lift the action of Aut(Γ)
on XΓ to EΓ, and ẼΓ is essentially the quotient of EΓ by this lifted action of
Aut(Γ) under the equivalence X̃Γ ' [XΓ/Aut(Γ)]. Therefore any decomposition
of EΓ which is invariant under SΓ(Λ, E) for all Λ ∈ Aut(Γ) corresponds to a
decomposition of ẼΓ. Hence there is a canonical splitting

ẼΓ =
⊕

O∈{0,...,k}/Aut(Γ) ẼΓ
O, where

IΠ̃Γ(X ),ÕΓ(X )(E)−1
[
Π̃Γ(X )∗(ẼΓ

O)
] ∼= ⊕i∈O E

Γ
i ⊗Ri under (C.22).

(C.24)

As for (C.23) we define the trivial and nontrivial parts of ẼΓ by ẼΓ
tr = ẼΓ

{0} and

ẼΓ
nt =

⊕
O∈{1,...,k}/Aut(Γ) ẼΓ

O. Then

ẼΓ = ẼΓ
tr ⊕ ẼΓ

nt, where IΠ̃Γ(X ),ÕΓ(X )(E)−1
[
Π̃Γ(X )∗(ẼΓ

tr)
]

= EΓ
tr

and IΠ̃Γ(X ),ÕΓ(X )(E)−1
[
Π̃Γ(X )∗(ẼΓ

nt)
]

= EΓ
nt.

(C.25)

Each point [x,∆] of X̃Γ
top has orbifold group IsoX̃Γ([x,∆]) with a distin-

guished subgroup ∆ with a noncanonical isomorphism ∆ ∼= Γ. The fibre of ẼΓ

at [x,∆] is a representation of IsoX̃Γ([x,∆]), and hence a representation of ∆.
Equation (C.25) corresponds to splitting the fibre of ẼΓ at [x,∆] into trivial and
nontrivial representations of ∆. Equation (C.24) corresponds to decomposing
the fibre of ẼΓ at [x,∆] into families of irreducible representations of ∆ ∼= Γ
that are independent of the choice of isomorphism ∆ ∼= Γ.

Now let f : X → Y be a representable 1-morphism of C∞-stacks, so that as
in §C.8 we have a representable 1-morphism f̃Γ : X̃Γ → ỸΓ with f ◦ ÕΓ(X ) =
ÕΓ(Y) ◦ f̃Γ. Let F ∈ qcoh(Y), so that F̃Γ ∈ qcoh(ỸΓ), f∗(F) ∈ qcoh(X ), and˜f∗(F)Γ ∈ qcoh(X̃Γ). As for (C.21), we have a canonical isomorphism

T̃Γ(f,F) := If̃Γ,ÕΓ(Y)(F) ◦ IÕΓ(X ),f (F)−1 : ˜f∗(F)Γ −→ (f̃Γ)∗(F̃Γ).

It maps ˜f∗(F)Γ
tr → (f̃Γ)∗(F̃Γ

tr) and ˜f∗(F)Γ
nt → (f̃Γ)∗(F̃Γ

nt) in (C.25).

Definition C.56. Let X be a Deligne–Mumford C∞-stack, and Γ a finite group,
so that §C.8 defines the orbifold strata X̃Γ, X̂Γ and 1-morphisms ÕΓ(X ) : X̃Γ →
X and Π̂Γ : X̃Γ → X̂Γ, where Π̂Γ is non-representable, with fibre [∗̄/Γ].

Suppose E is a quasicoherent sheaf on X . Since we have no 1-morphism
X̂Γ → X , we cannot pull E back to X̂Γ to define ÊΓ in qcoh(X̂Γ). But we do
have ẼΓ = ÕΓ(X )∗(E) in qcoh(X̃Γ), with splitting ẼΓ = ẼΓ

tr ⊕ ẼΓ
nt as in (C.25),

so we can form the pushforward Π̂Γ
∗ (ẼΓ) in qcoh(X̂Γ). Now pushforwards take

global sections of a sheaf on the fibres of the 1-morphism. The fibres of Π̂Γ are
[∗̄/Γ]. Quasicoherent sheaves on [∗̄/Γ] correspond to Γ-representations, and the
global sections correspond to the trivial (Γ-invariant) part.

As the Γ-invariant part of ẼΓ is ẼΓ
tr, we see that Π̂Γ

∗ (ẼΓ
nt) = 0, that is, EΓ

nt

and ẼΓ
nt do not descend to X̂Γ. Define ÊΓ

tr = Π̂Γ
∗ (ẼΓ

tr) in qcoh(X̂Γ). This is the
natural analogue of EΓ

tr, ẼΓ
tr on X̂Γ, and has a canonical isomorphism

(Π̂Γ)∗(ÊΓ
tr)
∼= ẼΓ

tr. (C.26)
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Now let f : X → Y be a representable 1-morphism of C∞-stacks, so that as
in §C.8 we have a representable 1-morphism f̃Γ : X̃Γ → ỸΓ. Then there is a
canonical isomorphism

T̂Γ
tr(f,F) : ̂f∗(F)Γ

tr −→ (f̂Γ)∗(F̂Γ
tr),

the composition of the natural isomorphism Π̂Γ
∗ ◦ (f̃Γ)∗(F̃Γ

tr)→ (f̂Γ)∗ ◦ Π̂Γ
∗ (F̃Γ

tr)
with Π̂Γ

∗ (T̃
Γ(f,F)| ˜f∗(F)Γ

tr

)
.

In the next theorem [56, Th. 11.13] we take X = [X/G], and use the explicit
description of XΓ in Theorem C.53 to give an alternative formula for the action
RΓ(−, E) of Γ on EΓ in Definition C.54. This then allows us to understand the
splittings (C.22)–(C.26) in terms of sheaves on X.

Theorem C.57. Let X be a separated C∞-scheme, G a finite group, r : G→
Aut(X) an action of G on X, and X = [X/G] the quotient Deligne–Mumford

C∞-stack. Then (C.10) gives an equivalence XΓ ' [
∐

injective ρ : Γ→ GX
ρ(Γ)/G].

Write qcohG(X) for the abelian category of G-equivariant quasicoherent
sheaves on X, with objects pairs (E ,Φ) for E ∈ qcoh(X) and Φ(g) : r(g)∗(E)→ E
is an isomorphism in qcoh(X) for all g ∈ G satisfying Φ(1) = δX(E) and

Φ(gh) = Φ(h) ◦ r(h)∗(Φ(g)) ◦ Ir(h),r(g)(E) for all g, h ∈ G,

and morphisms α : (E ,Φ) → (F ,Ψ) in qcohG(X) are morphisms α : E → F in
qcoh(X) with α ◦ Φ(g) = Ψ(g) ◦ r(g)∗(α) for all g ∈ G.

Then qcohG(X) is isomorphic to qcoh(G×X ⇒ X) in Definition C.34, so
Theorem C.35 gives an equivalence of categories FΠ : qcoh(X ) → qcohG(X).

Using (C.10) we also get an equivalence FΓ
Π : qcoh(XΓ) → qcohG(

∐
ρX

ρ(Γ)).
These categories and functors fit into a 2-commutative diagram:

qcoh(X )
FΠ

//

OΓ(X )∗�� � �� �
HP
NΓ(X )

qcohG(X)

i∗X ��
qcoh(XΓ)

FΓ
Π // qcohG(

∐
ρX

ρ(Γ)),

(C.27)

where iX :
∐
ρX

ρ(Γ) → X is the union over ρ of the inclusion morphisms

Xρ(Γ) → X, which is G-equivariant and so induces a pullback functor i∗X as

shown, and NΓ(X ) is a natural isomorphism of functors.

Let (E,Φ) ∈ qcohG(X), so that i∗X(E,Φ) ∈ qcohG(
∐
ρX

ρ(Γ)). Define

R̄Γ
(
γ, (E,Φ)

)
: i∗X(E,Φ)→ i∗X(E,Φ) in qcohG(

∐
ρX

ρ(Γ)) for γ ∈ Γ such that

R̄Γ
(
γ, (E,Φ)

)
|Xρ(Γ) : iX |∗Xρ(Γ)(E) −→ iX |∗Xρ(Γ)(E) is given by

R̄Γ
(
γ, (E,Φ)

)
|Xρ(Γ) = iX |∗Xρ(Γ)(Φ(ρ(γ−1))) ◦ IiX |Xρ(Γ) ,r(ρ(γ−1))(E)

for each ρ, noting that r(ρ(γ−1)) ◦ iX |Xρ(Γ) = iX |Xρ(Γ) . Then R̄Γ
(
−, (E,Φ)

)
is

an action of Γ on iX |∗Xρ(Γ)(E) by isomorphisms. Furthermore, for each E in
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qcoh(X ) and γ in Γ, the following diagram in qcohG(
∐
ρX

ρ(Γ)) commutes:

FΓ
Π(EΓ)

FΓ
Π(RΓ(γ,E))

//

NΓ(X )(E)��

FΓ
Π(EΓ)

NΓ(X )(E) ��
i∗X ◦ FΠ(E)

R̄Γ(γ,FΠ(E)) // i∗X ◦ FΠ(E).

That is, the equivalences of categories FΠ, F
Γ
Π in (C.27) identify the Γ-actions

RΓ(−,−) on OΓ(X )∗ and R̄Γ(−,−) on i∗X by natural isomorphisms.

In [56, Th. 11.14] we apply these ideas to write the cotangent sheaves of
XΓ, X̃Γ, X̂Γ in terms of the pullbacks of T ∗X . The theorem illustrates the
principle that when passing to orbifold strata, it is often natural to restrict
to the trivial parts EΓ

tr, ẼΓ
tr, ÊΓ

tr of the pullbacks of E . The nontrivial parts

(T ∗X )Γ
nt,

˜(T ∗X )Γ
nt should be interpreted as the conormal sheaves of XΓ, X̃Γ in X .

Theorem C.58. Let X be a locally fair Deligne–Mumford C∞-stack and Γ a
finite group, so that §C.8 defines OΓ(X ) : XΓ → X . As in Definition C.38 we
have cotangent sheaves T ∗X , T ∗(XΓ) and a morphism ΩOΓ(X ) : OΓ(X )∗(T ∗X )
→ T ∗(XΓ) in qcoh(XΓ). But OΓ(X )∗(T ∗X ) = (T ∗X )Γ, so by (C.23) we have
a splitting (T ∗X )Γ = (T ∗X )Γ

tr ⊕ (T ∗X )Γ
nt. Then ΩOΓ(X )|(T∗X )Γ

tr
: (T ∗X )Γ

tr →
T ∗(XΓ) is an isomorphism, and ΩOΓ(X )|(T∗X )Γ

nt
= 0.

Similarly, using the 1-morphism ÕΓ(X ) : X̃Γ → X and the splitting (C.25)

for ˜(T ∗X )Γ we find that ΩÕΓ(X )| ˜(T∗X )Γ
tr

: ˜(T ∗X )Γ
tr → T ∗(X̃Γ) is an isomorphism,

and ΩÕΓ(X )| ˜(T∗X )Γ
nt

= 0.
Also, there is a natural isomorphism ̂(T ∗X )Γ

tr
∼= T ∗(X̂Γ) in qcoh(X̂Γ).

707



D Existence of good coordinate systems

We now prove Theorem 10.48 in §10.8 and Theorem 12.48 in §12.9 on the
existence of type A good coordinate systems on d-orbifolds and d-orbifolds with
corners. It is enough to prove Theorem 12.48, as Theorem 10.48 follows by
omitting boundaries and corners throughout.

D.1 Outline of the proof of Theorem 12.48

We will prove Theorem 12.48 in five steps, outlined here and carried out in detail
in §D.2–§D.5. Let X be a d-orbifold with corners. Steps 1–4 prove the first part
of Theorem 12.48, constructing a type A good coordinate system for X. Step 5
extends this to a type A good coordinate system for h : X→ Y = FdOrbc

Manc (Y ).

Step 1. We choose the following data satisfying conditions:

(i) A countable indexing set J , and a total order ≺ on J such that (J,≺) is
well-ordered. If X is compact, we may choose J finite.

(ii) For each a ∈ J , open d-suborbifolds Xa ⊆ X̂a ⊆ X satisfying:

(a) The closure of Xa in X̂a is compact.

(b) {Xa : a ∈ J} is an open cover of X (and hence so is {X̂a : a ∈ J}).
(c) For each a ∈ J , there are only finitely many b ∈ J with X̂a ∩ X̂b 6= ∅.

If {Uk : k ∈ K} is an open cover of X, we may take Xa ⊆ Uka for each
a ∈ J and some ka ∈ K.

(iii) For each a ∈ J , a principal d-manifold with corners Ẑa, a finite indexing
set Ca, a decomposition ∂Ẑa =

∐
c∈Ca ∂

cẐa, a finite group Γa, an action

ta : Γa → Aut(Ẑa) of Γa on Ẑa by 1-isomorphisms, an equivalence ia :

[Ẑa/Γa]→ X̂a ⊆ X in dOrbc for [Ẑa/Γa] as in §11.2, an action pa : Γa →
Aut(Ca) of Γa on Ca, and 1-morphism bac : Ẑa → [0,∞) in dSpa for
each c ∈ Ca. These satisfy:

(a) ∅ 6= ∂cẐa ⊆ ∂Ẑa is open and closed for each c ∈ Ca.

(b) For each γ ∈ Γa, the 1-isomorphism ta(γ) : Ẑa → Ẑa is simple, and
so induces a 1-isomorphism ta(γ)− : ∂Ẑa → ∂Ẑa as in §6.3. We
require that ta(γ)−(∂cẐa) = ∂p

a(γ)(c)Ẑa for all c ∈ Ca.

(c) (Ẑa, bac) is a boundary defining function for Ẑa at z′ ∈ ∂Ẑa in the
sense of §6.1 if and only if z′ ∈ ∂cẐa, for each c ∈ Ca.

(d) bac = bap
a(γ)(c) ◦ ta(γ) for all c ∈ Ca and γ ∈ Γa.

Note that (b) determines pa uniquely, as ∂cẐa 6= ∅. Write Za ⊆ Ẑa for

the Γa-invariant open d-submanifold with ia([Za/Γa]) = Xa ⊆ X̂a.

(iv) Suppose a, b ∈ J with a ≺ b and X̂a ∩ X̂b 6= ∅. Then we are given a
subgroup Γab ⊆ Γa and an open d-submanifold Ẑab ⊆ Ẑa satisfying:

(a) Ẑab is invariant under Γab.
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(b) if γ ∈ Γa \ Γab then Ẑab ∩ ta(γ)(Ẑab) = ∅.
(c) parts (a),(b) imply that

∐
γΓab∈Γa/Γab t

a(γ)(Ẑab) is a Γa-invariant

open d-submanifold of Ẑa, so that
[∐

γΓab∈Γa/Γab t
a(γ)(Ẑab)

/
Γa] is

an open d-suborbifold of [Ẑa/Γa]. We require that ia identifies this

open d-suborbifold with the open d-suborbifold X̂a ∩ X̂b in X̂a.

Also we are given a subgroup Γba ⊆ Γb and an open Ẑba ⊆ Ẑb satisfying
the analogues of (a)–(c).

We should be given an isomorphism ρab : Γab → Γba and an equivalence
jab : Ẑab → Ẑba satisfying jab ◦ ta(γ)|Ẑab = tb(ρab(γ))◦jab for all γ ∈ Γab.
Using quotient d-orbifolds with corners and 1-morphisms as in §11.2, we
should be given a 2-morphism ζab in dOrbc to make the following diagram
2-commute:

[Ẑab/Γab]

[inc,inc]
��

[jab,ρab]

//

�� ��	� ζab
[Ẑba/Γba]

[inc,inc]
��

[Ẑa/Γa]
ia // X [Ẑb/Γb],

iboo

(D.1)

where for example [inc, inc] : [Ẑab/Γab] → [Ẑa/Γa] is the quotient 1-
morphism induced by the inclusions inc : Ẑab → Ẑa and inc : Γab → Γa.

Write Cab = {c ∈ Ca : ∂Ẑab ∩ ∂cẐa 6= ∅} and Cba = {c′ ∈ Cb : ∂Ẑba ∩
∂c
′
Ẑb 6= ∅}. Then we should be given a bijection qab : Cab → Cba such

that jab− : ∂Ẑab → ∂Ẑba satisfies jab−
(
∂Ẑab ∩ ∂cẐa

)
= ∂Ẑba ∩ ∂qab(c)Ẑb for

all c ∈ Cab. This determines qab uniquely. It is automatic that Cab, Cba

are invariant under Γab,Γba, and qab is equivariant under ρab : Γab → Γba.

(v) Suppose a, b, c ∈ C with a ≺ b ≺ c and α ∈ Γa, β ∈ Γb with

Ẑabcαβ := Ẑab ∩ [ta(α)]−1(Ẑac) ∩ [tb(β) ◦ jab]−1(Ẑbc) 6= ∅. (D.2)

Then we should be given γabcαβ ∈ Γc and a 2-morphism λabcαβ in dManc:

λabcαβ : jbc ◦ tb(β) ◦ jab|Ẑabcαβ
=⇒tc((γabcαβ )−1) ◦ jac ◦ ta(α)|Ẑabcαβ

, (D.3)

such that the compositions of 2-morphisms across the following two dia-
grams are equal:

[Ẑabcαβ /{1}]

[jac◦ta(β)|
Ẑabc
αβ

,ι]
++WWWWWWWWWWWWWWWWWWWW [inc,inc]
//

[tb(β)◦jab◦|
Ẑabc
αβ

,ι]

��

[Ẑa/Γa]
ia

((
ζac∗id[inc,inc] ⇑

[λabcαβ ,γ
abc
αβ ]⇑ [Ẑc/Γc]

ic // X,

[Ẑbc/Γbc]

[jbc,ρbc]

33ggggggggggggggggggggg
[inc,inc] // [Ẑb/Γb]

ib

66

ζbc ⇓

(D.4)
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[Ẑabcαβ /{1}]

[inc,inc] ++WWWWWWWWWWWWWWWWWWWW [inc,inc]
//

[tb(β)◦jab|
Ẑabc
αβ

,ι]

��

[Ẑa/Γa]
ia

((

id ⇓

[id,β]⇐
[Ẑab/Γab]

[inc,inc]

OO

[jab,ρab]
��

ζab ⇑
X.

[Ẑbc/Γbc]
[inc,inc] // [Ẑb/Γb]

ib

66

(D.5)

Here ι : {1} → G maps 1 7→ 1 for any group G. Since ic is a local
equivalence, this determines [λabcαβ , γ

abc
αβ ] and hence γabcαβ , λ

abc
αβ uniquely.

Step 2. We choose a continuous partition of unity {θa : a ∈ J} on Xtop

subordinate to {X atop : a ∈ J}, so that θa : Xtop → [0, 1] is continuous and
supported in X atop ⊆ Xtop, and

∑
a∈J θ

a = 1. For each finite set ∅ 6= A ⊆ J ,
define XA ⊆ X to be the open d-suborbifold with underlying topological space

XA,top =
{

[x] ∈ Xtop :
∑
a∈A θ

a([x]) > 1− 2
4|A|

, and

for all B ⊂ A, ∅ 6= B 6= A,
∑
b∈B θ

b([x]) < 1− 1
4|B|

}
.

(D.6)

Define I to be the set of finite subsets A ⊆ J with XA 6= ∅. We show that:

(A) {XA : A ∈ I} is an open cover of X;

(B) XA ⊆
⋂
a∈AXa ⊆

⋂
a∈A X̂a for each A ∈ I; and

(C) if A,B ∈ I then XA ∩XB 6= ∅ only if A ⊆ B or B ⊆ A.

Since J is countable, I is countable. If X is compact we can choose J finite,
and then I is finite. We also construct a total order < on I such that (I,<) is
well-ordered, and if A,B ∈ I with A < B and XA ∩XB 6= ∅ then B ( A.

Next, we choose the following data satisfying conditions:

(i) For each A ∈ I, a principal d-manifold with corners ZA, a finite indexing
set CA, a decomposition ∂ZA =

∐
c∈CA ∂cZA, a finite group ΓA, an action

tA : ΓA → Aut(ZA) of ΓA on ZA by 1-isomorphisms, an equivalence
iA : [ZA/ΓA] → Xa ⊆ X in dOrbc, an action pA : ΓA → Aut(CA) of ΓA
on CA, and 1-morphism bAc : ZA → [0,∞) in dSpa for each c ∈ CA.
These satisfy:

(a) ∂cZA ⊆ ∂ZA is open and closed for each c ∈ CA.

(b) tA(γ)−(∂cZA) = ∂pA(γ)(c)ZA for all c ∈ CA and γ ∈ ΓA.

(c) (ZA, bAc) is a boundary defining function for ZA at z′ ∈ ∂ZA if and
only if z′ ∈ ∂cZA, for each c ∈ CA.

(d) bAc = bApA(γ)(c) ◦ tA(γ) for all c ∈ CA and γ ∈ ΓA.

Note that in contrast to Step 1(iii)(a) we allow ∂cZA = ∅ for c ∈ CA. So
(b) may not determine pA.
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(ii) For all A,B ∈ I with A < B and XA ∩ XB 6= ∅, a ΓA-invariant open
d-submanifold ZAB ⊆ ZA, an injective group morphism ρAB : ΓA →
ΓB , and a 1-morphism jAB : ZAB → ZB satisfying jAB ◦ tA(γ) =
tB(ρAB(γ)) ◦ jAB for all γ ∈ ΓAB . As in §11.2 this induces a quo-
tient 1-morphism [jAB , ρAB ] : [ZAB/ΓA]→ [ZB/ΓB ], where [ZAB/ΓA] ⊆
[ZA/ΓA] is an open d-suborbifold. We should be given a 2-morphism
ζAB : iB ◦ [jAB , ρAB ]⇒ iA|[ZAB/ΓA] in dOrbc.

We are given an injective map qAB : CA → CB with qAB ◦ pA(γ) =
pB(ρAB(γ)) ◦ qAB : CA → CB for all γ ∈ ΓA, such that (jAB)−

(
∂ZAB ∩

∂cZA
)

= (jAB)−
(
∂ZAB

)
∩ ∂qAB(c)ZB for all c ∈ CA.

(iii) For all A,B,C ∈ I with A < B < C and XA∩XB ∩XC 6= ∅, we are given
γABC ∈ ΓC satisfying ρAC(γ) = γABC ρBC(ρAB(γ)) γ−1

ABC for γ ∈ ΓA, and

jAC |ZAB∩ZAC = tC(γABC) ◦ jBC ◦ jAB |ZAB∩ZAC . (D.7)

Note that these 1-morphisms should be equal, not just 2-isomorphic. Thus
as in §11.2 we have a quotient 2-morphism[

id, γABC
]

:
[
jBC , ρBC

]
◦
[
jAB |ZAB∩ZAC , ρAB

]
=⇒

[
jAC |ZAB∩ZAC , ρAC

]
.

(D.8)

The following diagram of 2-morphisms in dOrbc should commute:

iC ◦ [jBC , ρBC ]◦
[jAB |ZAB∩ZAC , ρAB ]

idiC ∗[id,γABC ]

+3

ζBC∗id[jAB |···,ρAB ]��

iC ◦ [jAC |ZAB∩ZAC , ρAC ]

ζAC |···
��

iB ◦ [jAB |ZAB∩ZAC , ρAB ]
ζAB |··· +3 iA|[(ZAB∩ZAC)/ΓA].

(D.9)

In a condition similar to (D.7), we also require that

qAC = pC(γABC) ◦ qBC ◦ qAB : CA −→ CC . (D.10)

(iv) If A,B,C,D ∈ I with A < B < C < D and XA ∩ XB ∩ XC ∩ XD 6= ∅,
then γACD ρCD(γABC) = γABD γBCD.

Note that all this data XA,ZA,ΓA, . . . is similar to the data Xa,Za,Γa, . . . of
Step 1, but has some better properties. In particular, in Step 1(iv) Ẑab is
invariant under a subgroup Γab ⊆ Γa and jab is Γab-equivariant, but in Step
2(ii) ZAB is invariant under the full group ΓA, and jAB is ΓA-equivariant. Also,
in Step 1 we have a 2-morphism (D.3) relating jab, jac, jbc, but in Step 2 we
have an equality (D.7) relating jAB , jAC , jBC .

Here is how the new data relates to the data of Step 1. We may write each
A ∈ I as {a1, . . . , an} with a1, . . . , an ∈ J and a1 ≺ a2 ≺ · · · ≺ an. Then in (i),
ΓA is a subgroup of Γa1 , and ZA an open d-submanifold of Za1 invariant under
ta1(ΓA), and tA = ta1 |ΓA , and iA = ia1 ◦ [inc, inc], and CA is a ΓA-invariant
subset of Ca1 with pA = (pa1 |ΓA)|CA , and bAc = ba1c|ZA .

711



In (ii), if A,B ∈ I with A < B and XA ∩ XB 6= ∅ then B ( A as above.
So we write B = {ab1 , . . . , abk} for {b1, . . . , bk} ( {1, . . . , n} with b1 < b2 <
· · · < bk. Then ρAB : ΓA ↪→ ΓB is of the form γ 7→ βρa1ab1 (αγα−1)β−1 for
some α ∈ Γa1 and β ∈ Γab1 with αΓAα

−1 ⊆ Γa1ab1 , and qAB = pab1 (β) ◦
qa1ab1 ◦ pa1(α)|CA , and jAB : ZAB → ZB is defined by a 2-morphism εAB :
tab1 (β)◦ja1ab1 ◦ta1(α)|ZAB ⇒ jAB . The 2-morphisms εAB are chosen to ensure
equality in (D.7).

Note that in Step 1(ii), the closure of Xa in X̂a is compact, so the closure of
Za in Ẑa is compact. Since ZA ⊆ Za1 , the closure of ZA in Ẑa1 is compact for
each A in I. Also the closure of ZAB in Ẑa1ab1 is compact.

Step 3. We choose the following data satisfying conditions:

(i) For each A ∈ I, a finite-dimensional real vector space TA, an effective
representation rA : ΓA → Aut(TA) of ΓA on TA, and linear maps τAc :
TA → R for c ∈ CA, satisfying:

(a) τAc for c ∈ CA are linearly independent in T ∗A.

(b) τAc = τApA(γ)(c) ◦ rA(γ) for all c ∈ CA and γ ∈ ΓA.

(ii) For each A ∈ I, define UA =
{
t ∈ TA : τAc(t) > −1 for all c ∈ CA

}
.

Then part (i)(a) implies that TA is a manifold with corners, isomorphic
to Rnk for n = dimTA and k = |CA|. Also part (i)(b) implies that UA is
a ΓA-invariant subset of TA, so r̃A := rA|UA : ΓA → Aut(UA) is an action
of ΓA on UA by diffeomorphisms.

We have a natural decomposition ∂UA =
∐
c∈CA ∂cUA, where ∂cUA ⊆ ∂UA

is open and closed with τAc ◦ iUA |∂cUA = 0, and υAc := (τAc + 1)|UA :
UA → [0,∞) is a boundary defining function for UA at each u′ ∈ ∂cUA.
Write UA, r̃A,υAc = FdManc

Manc (UA, r̃A, υAc).

We should be given an embedding fA : ZA → UA in dManc, satisfying:

(a) r̃A(γ) ◦ fA = fA ◦ tA(γ) for all γ ∈ ΓA.

(b) (ZA,υAc ◦ fA) is a boundary defining function for ZA at z′ ∈ ∂ZA
if and only if z′ ∈ ∂cZA, for each c ∈ CA.

Part (a) implies that fA induces a quotient 1-morphism

[fA, idΓA ] : [ZA/ΓA] −→ [UA/ΓA].

Part (b) and ∂ZA =
∐
c∈CA ∂cZA imply that fA is simple and flat. Thus

fA is an sf-embedding, in the sense of §7.5.

(iii) For all A,B ∈ I with A < B and XA ∩ XB 6= ∅, an injective linear map
lAB : TA → TB satisfying:

(a) lAB ◦ rA(γ) = rB(ρAB(γ)) ◦ lAB for all γ ∈ ΓA.

(b) τAc = τBqAB(c) ◦ lAB for all c ∈ CA.

(c) τBc′ ◦ lAB = 0 for all c ∈ CB \ qAB(CA).
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(d) Parts (b),(c) imply that lAB(UA) ⊆ UB , and l̃AB := lAB |UA : UA →
UB is a smooth map in Manc, which is an sf-embedding, and is
ρAB-equivariant by (a). Write l̃AB = FdManc

Manc (l̃AB) : UA → UB . We

require that fB ◦jAB = l̃AB ◦fA|ZAB : ZAB → UB . Note that these
1-morphisms are equal, not just 2-isomorphic. Thus

[fB , idΓB ] ◦ [jAB , ρAB ] = [l̃AB , ρAB ] ◦ [fA|ZAB , idΓA ].

(iv) Let A,B,C ∈ I with A < B < C and XA∩XB∩XC 6= ∅. Then Step 2(iii)
gives γABC ∈ ΓC . We require that lAC = rC(γABC)◦lBC ◦lAB : TA → TC .
Hence we have a commutative diagram of 2-morphisms:

[l̃BC , ρBC ] ◦ [l̃AB , ρAB ]
◦ [fA|ZAB∩ZAC , idΓA ]

[id,γABC ]∗id[fA|···,idΓA
]��

[l̃BC , ρBC ] ◦ [fB , idΓB ]
◦ [jAB |ZAB∩ZAC , ρAB ]

[fC , idΓC ] ◦ [jBC , ρBC ]
◦ [jAB |ZAB∩ZAC , ρAB ]

id[fC,idΓC
]∗[id,γABC ]

��
[l̃AC , ρAC ] ◦ [fA|ZAB∩ZAC , idΓA ] [fC , idΓC ] ◦ [jAC |ZAB∩ZAC , ρAC ].

Note that in part (ii) we define UA by the inequalities τAc(t) > −1 in TA,
rather than τAc(t) > 0. This is to ensure the maps l̃AB : UA → UB in part
(iii)(d) have the correct behaviour. In particular, if c′ ∈ CB \ qAB(CA) then
τBc′ > −1 is one of the defining inequalities of UB , and lAB maps UA to the
hyperplane τBc′ = 0 in UB by (iii)(c). Defining UB using τBc′ > −1 means that
lAB(UA) does not intersect the boundary component τBc′ = −1 in UB . If we
had defined UA by τAc(t) > 0, then lAB would map UA to the boundary of UB ,
and l̃AB would not be flat.

Using Step 2(i)(c) and the material of §4.4 and §7.7, it is not difficult to
construct sf-embeddings fA : ZA → UA

∼= RRRnk for k = |CA| and n � 0
satisfying parts (i) and (ii), with υAc ◦ fA = bAc : ZA → [0,∞). We can
also easily make fA equivariant with respect to an effective representation of
ΓA on Rn = TA. The problem is to choose such TA, UA,fA with the required
compatibilities over double and triple overlaps XA ∩XB and XA ∩XB ∩XC .

Step 4. We choose the following data satisfying conditions:

(i) For each A ∈ I, we are given:

(a) a ΓA-invariant open neighbourhood VA of fA(ZA) in UA;

(b) a vector bundle EA on VA;

(c) a lift r̂A : ΓA → Aut(EA) of the ΓA-action r̃A|VA on VA to EA, so
that r̂A(γ) : EA → r̃A(γ)|∗VA(EA) is a isomorphism of vector bundles
on VA for each γ ∈ ΓA, and r̂A(γδ) = r̃A(δ)|∗VA(r̂A(γ)) ◦ r̂A(δ) for all
γ, δ ∈ ΓA. We may equivalently think of r̂A as an action of ΓA on
the total space of EA by diffeomorphisms.

(d) a smooth section sA : VA → EA which is ΓA-equivariant, that is,
r̃A(γ)|∗VA(sA) = r̂A(γ)(sA) for all γ ∈ ΓA; and
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(e) a 2-morphism θA fitting into a 2-Cartesian diagram in dManc:

ZA
fA

//

fA�� � �� �
GO

θA

VA

0 ��
VA

sA // EA.

(D.11)

This θA should be equivariant under the ΓA-actions tA, r̃A|VA
, r̂A on

ZA,VA,EA, that is, idr̂A(γ) ∗ θA = θA ∗ idtA(γ) for all γ ∈ ΓA.

As (D.11) is 2-Cartesian we have equivalences ZA ' VA ×sA,EA,0 VA '
SVA,EA,sA , so we may choose an equivalence kA : SVA,EA,sA → ZA. Since
θA is ΓA-equivariant we may choose kA to be ΓA-equivariant. Thus we
have a quotient 1-morphism in dOrbc

[kA, idΓA ] : [SVA,EA,sA/ΓA] −→ [ZA/ΓA], (D.12)

which is an equivalence. Define an equivalence in dOrbc:

ψA = iA ◦ [kA, idΓA ] : [SVA,EA,sA/ΓA] −→ XA ⊆ X. (D.13)

Then (VA, EA,ΓA, sA,ψA) is a type A Kuranishi neighbourhood on X.

(ii) For all A,B ∈ I with A < B and XA ∩XB 6= ∅, set VAB = VA ∩ l̃−1
AB(VB),

where the intersection is in UA, and define eAB = l̃AB |VAB . Then VAB
is a ΓA-invariant open submanifold of VA, and eAB : VAB → VB is an
sf-embedding (as l̃AB is) with eAB ◦ rA(γ)|VAB = rB(ρAB(γ)) ◦ eAB for all
γ ∈ ΓA (by Step 3(iii)).

We should be given an embedding of vector bundles êAB : EA|VAB →
e∗AB(EB) on VAB and a 2-morphism

ηAB : ψB ◦ [SeAB ,êAB , ρAB ]⇒ ψA|[SVAB,EA|VAB ,sA|VAB /ΓA]

such that (VAB , eAB , êAB , ρAB ,ηAB) is a type A coordinate change from
(VA, EA,ΓA, sA,ψA) to (VB , EB ,ΓB , sB ,ψB), as in Definition 12.47.

(iii) For all A,B,C ∈ I with A < B < C and XA ∩ XB ∩ XC 6= ∅, Step
2(iii) gives γABC ∈ ΓC satisfying ρAC(γ) = γABC ρBC(ρAB(γ)) γ−1

ABC for
γ ∈ ΓA. Step 3(iv) implies that eAC |VAC∩e−1

AB(VBC) = rC(γABC) ◦ eBC ◦
eAB |VAC∩e−1

AB(VBC), which is the first equation of (10.20). We require that

êAC |VAC∩e−1
AB(VBC) =(

e∗AB(e∗BC(r̂C(γABC))) ◦ e∗AB(êBC) ◦ êAB
)
|VAC∩e−1

AB(VBC),
(D.14)

which is the second equation of (10.20).

Note that much of part (i) follows almost immediately from Theorem 7.48.
We have now constructed data

(
I,<, (VA, EA,ΓA, sA,ψA), (VAB , eAB , êAB ,

ρAB ,ηAB), γABC
)

satisfying the corners analogues of Definition 10.47(a)–(d).
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We show that it also satisfies part (e), and so is a type A good coordinate
system for X. This proves the first part of Theorem 12.48.

Step 5. For the second part of Theorem 12.48, let Y be a manifold with corners,
Y = FdOrbc

Manc (Y ), and h : X → Y be a semisimple, flat 1-morphism. Then we
modify the proof in Steps 1–4 above as follows. Since h is semisimple, we have
a decomposition ∂X = ∂h+X q ∂h−X as in §11.3. For Ẑa, ia and ZA, iA as in

Steps 1(iii) and 2(i), we also have semisimple, flat 1-morphisms ha : Ẑa → Y =
FdManc

Manc (Y ) and hA : ZA → Y in dManc which are the unique lifts to dManc

of the compositions

FdOrbc

dManc(Ẑa) = [Ẑa/{1}]
[idẐa ,ι]

// [Ẑa/Γa]
ia

// X
h

// Y = FdOrbc

Manc (Y ),

FdOrbc

dManc(ZA) = [ZA/{1}]
[idZA

,ι]
// [ZA/ΓA]

iA // X
h // Y = FdOrbc

Manc (Y ).

So as in §6.3 we have ∂Ẑa = ∂h
a

+ Ẑa q ∂ha− Ẑa and ∂ZA = ∂hA+ ZA q ∂hA− ZA.

We modify Steps 1–3 above by replacing ∂Ẑa and ∂ZA with ∂h
a

+ Ẑa and

∂hA+ ZA throughout. That is, in Step 1(iii) we should be given a decomposition

∂h
a

+ Ẑa =
∐
c∈Ca ∂

cẐa with ∂cẐa open and closed in ∂h
a

+ Ẑa, and in Step 2(i) we

should similarly be given a decomposition ∂hA+ ZA =
∐
c∈CA ∂cZA. In Step 3(ii)

we still take fA : ZA → UA to be an embedding, and in 3(ii)(b) we still require
(ZA,υAc ◦ fA) to be a boundary defining function for ZA at z′ ∈ ∂ZA if and
only if z′ ∈ ∂cZA, for each c ∈ CA.

Since we now have ∂hA+ ZA =
∐
c∈CA ∂cZA rather than ∂ZA =

∐
c∈CA ∂cZA,

the final deduction in Step 3(ii) that fA is an sf-embedding no longer holds. In
fact fA is semisimple and flat, but the morphism sfA : SfA → ∂ZA from §6.1

has image ∂hA+ ZA ⊆ ∂ZA, so sfA need not be surjective, and fA need not be
simple, in the sense of §6.3.

Consider the direct product 1-morphism (fA,hA) : ZA → UA ×Y. This is
an embedding as fA is, and it is flat as fA and hA are. We claim that (fA,hA) is
also simple. To see this, note that fA,hA are semisimple, so sfA : SfA → ∂ZA
and shA : ShA → ∂ZA are injective, and we have sfA(SfA) = ∂hA+ ZA from

above, and shA(ShA) = ∂hA− ZA by definition of ∂hA− ZA.
By properties of products we have ∂(UA×Y) ∼= ((∂UA)×Y)q(UA×(∂Y)).

Using this we can show that for the direct product (fA,hA) we have a canonical
isomorphism S(fA,hA)

∼= SfA q ShA , which identifies the projection s(fA,hA) :
S(fA,hA) → ∂ZA with the disjoint unions of the projections sfA : SfA → ∂ZA
and shA : ShA → ∂ZA. Since sfA is injective with image ∂hA+ ZA, and shA
is injective with image ∂hA− ZA, and ∂ZA = ∂hA+ ZA q ∂

hA
− ZA, it follows that

s(fA,hA) is a bijection, and (fA,hA) is simple. Hence (fA,hA) : ZA → UA×Y
is an sf-embedding.

We now modify Step 4 by replacing fA : ZA → UA by the sf-embedding
(fA,hA) : ZA → UA×Y throughout. We also replace UA, r̃A : ΓA → Aut(UA),
and l̃AB : UA → UB by UA×Y , r̃A× idY : ΓA → Aut(UA×Y ), and l̃AB × idY :
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UA× Y → UB × Y , respectively. Thus we take VA to be open in UA× Y rather
than in UA, and set VAB = VA∩ (l̃AB× idY )−1(VB) and eAB = (l̃AB× idY )|VAB .

The maps gA : VA → Y in Definition 10.47(f) are defined by gA = πY |VA ,
where πY : UA × Y → Y is the projection. Then gA is a submersion, as πY
is, and the conditions gA ◦ (r̃A × idY )|VA(γ) = gA in Definition 10.47(f) and
gB ◦ eAB = gA|VAB in Definition 10.47(g) are immediate. The 2-morphism
ζA : h ◦ψi ⇒ [SgA,0, π] in Definition 10.47(f) exists as we have 2-isomorphisms
h ◦ ψi ∼= [hA ◦ kA, π] in dOrbc by definition of hA, and SgA,0

∼= hA ◦ kA in
dManc by construction, so h ◦ψi ∼= [hA ◦ kA, π] ∼= [SgA,0, π] in dOrbc. Hence(
I,<, (VA, EA,ΓA, sA,ψA), gA, (VAB , eAB , êAB , ρAB ,ηAB), γABC

)
is a type A

good coordinate system for h : X→ Y, as we want.

In the rest of the section we explain Steps 1–4 in more detail. Step 5 needs
no further explanation.

D.2 Step 1: Choose an open cover of X by Xa ' [Za/Γa]

Let X be a d-orbifold with corners. Several times in what follows here and in
Step 2 we will choose an open cover {Xa : a ∈ J} for X, and then replace
{Xa : a ∈ J} by a refinement {Xa?

? : a? ∈ J?} with better properties. Here
{Xa?

? : a? ∈ J?} is a refinement of {Xa : a ∈ J} if {Xa?
? : a? ∈ J?} is also an

open cover of X, and for each a? ∈ J? we have Xa?
? ⊆ Xaa? for some aa? ∈ J .

Generally we will be working not just with one open cover, {Xa : a ∈ J}, but

with two compatible open covers {Xa : a ∈ J}, {X̂a : a ∈ J} and extra data such

as equivalences ia : [Ẑa/Γa] → X̂a, and a total order ≺ on J . In this case, we

choose simultaneous, compatible refinements {Xa?
? : a? ∈ J?}, {X̂a?

? : a? ∈ J?}
of {Xa : a ∈ J}, {X̂a : a ∈ J}, and we induce extra data on the refinements

in the obvious way, so that ia?? : [Ẑa?? /Γ
a?
? ] → X̂a?

? is iaa? |··· : [Ẑ
aa?
? /Γaa? ] →

X̂a?
? ⊆ X̂aa? , where Ẑ

aa?
? is the Γaa? -invariant open d-submanifold of Ẑaa? with

iaa?
(
[Ẑa?? /Γ

a?
? ]
)

= X̂a?
? , and we choose the new total order ≺? on J? such that

aa? ≺ ab? implies a? ≺? b?.
We first show that for each point [x] ∈ Xtop we can choose an open neigh-

bourhood X̂[x] of [x] in X and data Ẑ[x], C [x], ∂Ẑ[x] =
∐
c∈C[x] ∂cẐ[x], Γ[x], t[x],

i[x], p[x], b[x]c satisfying the analogue of Step 1(iii) in §D.1. Since X is a d-
orbifold with corners, by Theorems 9.16(a) and 11.8 every point [x] in Xtop has

an open neighbourhood X̂[x] ⊆X with an equivalence i[x] : [Ẑ[x]/Γ[x]] → X̂[x],
where Ẑ[x] is a principal d-manifold with corners and Γ[x] = IsoX ([x]) acts on
Ẑ[x] with action t[x] : Γ[x] → Aut(Ẑ[x]).

We may take Ẑ[x] = SV [x],E[x],s[x] from Definition 7.2, where Γ acts on
V [x], E[x] with s[x], and [x] ∈ Xtop is identified with a Γ[x]-invariant point

v[x] ∈ V [x] with s[x](v[x]) = 0. Making X̂[x], Ẑ[x], V [x] smaller if necessary,
we can take Γ[x] to act linearly on Rn preserving the subset Rnk ⊆ Rn, and
V [x] ∈Manc to be a Γ[x]-invariant open neighbourhood of v[x] = 0 in Rnk .

Writing (x1, . . . , xn) for the coordinates in Rnk ⊇ V [x], so that x1, . . . , xk ∈
[0,∞), we see that ∂V [x] =

∐k
c=1 ∂

cV [x], where ∂cV [x] ⊆ ∂V [x] ⊆ ∂(Rnk ) is the
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open and closed subset of ∂V [x] coming from the boundary component xc = 0.
This induces a decomposition Ẑ[x] =

∐
c∈C[x] ∂cẐ[x], for ∅ 6= ∂cẐ[x] ⊆ ∂cẐ[x]

open and closed in ∂cẐ[x] as in (iii)(a), where C [x] = {1, . . . , k}. The linear
action of Γ[x] on Rn preserving Rnk must permute the coordinates x1, . . . , xk, so
as C [x] = {1, . . . , k}, this induces the action p[x] : Γ[x] → Aut(C [x]) required.

For each c ∈ C [x] = {1, . . . , k}, the coordinate xc : V [x] → [0,∞) is a bound-
ary defining function for V [x] at each point v′ ∈ ∂cV [x]. As Ẑ[x] = SV [x],E[x],s[x] ,
the function xc : V [x] → [0,∞) induces a 1-morphism b[x]c : Ẑ [x] → [0,∞) in

dSpa such that (Ẑ [x], b[x]c) is a boundary defining function for Ẑ[x] at every
point z′ in ∂cẐ[x], as in (iii)(c). Also (iii)(b),(d) are immediate.

As Xtop is locally compact, we can choose an open neighbourhood X[x]

of [x] in X̂[x] such that the closure of X[x] in X̂[x] is compact. Choose such

X̂[x],X[x], Ẑ[x], C [x], ∂Ẑ[x] =
∐
c∈C[x] ∂cẐ[x], Γ[x], t[x], i[x], p[x], b[x]c for each [x] ∈

Xtop. Then {X[x] : [x] ∈ Xtop} and {X̂[x] : [x] ∈ Xtop} are open covers of X.
Recall that an open cover {Ui : i ∈ I} of a topological space Y is called

star-finite if for all i ∈ I, there are only finitely many j ∈ I with Ui ∩ Uj = ∅.
A topological space Y is called strongly paracompact if every open cover of
Y has a star-finite refinement. If Y is Hausdorff, paracompact, and locally
compact, then it is strongly paracompact. In our case, as X is a d-stack with
corners, X is separated, second countable, and locally fair, so the underlying
topological space Xtop is Hausdorff, paracompact, and locally compact. Thus
Xtop is strongly paracompact.

Therefore we can choose simultaneous refinements {Xa : a ∈ J}, {X̂a : a ∈
J} of {X[x] : [x] ∈ Xtop} and {X̂[x] : [x] ∈ Xtop} satisfying Step 1(ii)(a)–(c)
in §D.1, where (c) follows from strong paracompactness. As Xtop is second
countable, Step 1(ii)(c) implies that J is countable. If X is compact, we may
also choose J finite. If {Uk : k ∈ K} is an open cover of X, we may take
Xa ⊆ Uka for each a ∈ J and some ka ∈ K.

By construction X̂a ' [Ẑa/Γa] for each a ∈ J , with Ẑa a principal d-manifold

with corners. Choose equivalences ia : [Ẑa/Γa] → X̂a and ka : X̂a → [Ẑa/Γa]
and a 2-morphism ηa : ka ◦ ia ⇒ id[Ẑa/Γa]. Write ta : Γa → Aut(Ẑa) for
the action of Γa on Ẑa by 1-isomorphisms, and Za ⊆ Ẑa for the Γa-invariant
open d-submanifold with ia([Za/Γa]) = Xa ⊆ X̂a. Choose data Ca, ∂Ẑa =∐
c∈Ca ∂

cẐa, pa, bac satisfying Step 1(iii) as above. Choose an arbitrary total
order ≺ on J such that (J,≺) is well-ordered. We have now completed parts
(i)–(iii) of Step 1. But we will have to modify these choices to satisfy (iv).

Suppose now that a, b ∈ J with a ≺ b and X̂a ∩ X̂b 6= ∅. Write Ẑaab ⊆ Ẑa for

the Γa-invariant open d-submanifold with ia([Ẑaab/Γ
a]) = X̂a ∩ X̂b ⊆ X̂a, and

similarly for Ẑbab ⊆ Ẑb. Consider the 2-Cartesian square:

FdOrbc

dManc(Wab)
FdOrbc

dManc (fab)

//

FdOrbc

dManc (eab)��
�� �� 	� ωab

FdOrbc

dManc(Ẑbab)

ib◦π
[Ẑb
ab
/Γb]

��
FdOrbc

dManc(Ẑaab)
ia◦π[Ẑa

ab
/Γa]

//
X̂a ∩ X̂b.

(D.15)
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Here π[Ẑaab/Γ
a] : FdOrbc

dManc(Ẑaab) → [Ẑaab/Γ
a] is the natural projection, and

similarly for π[Ẑbab/Γ
b]. As ia ◦ π[Ẑaab/Γ

a] is étale it is a submersion, so a fibre

product W = FdOrbc

dManc(Ẑaab)×X̂a∩X̂b F
dOrbc

dManc(Ẑbab) exists in dOrbc by Theorem

12.32(b), with projections e : W → FdOrbc

dManc(Ẑaab), f : W → FdOrbc

dManc(Ẑbab).

As FdOrbc

dManc(Ẑaab), F
dOrbc

dManc(Ẑbab) are d-manifolds with corners, W is a d-manifold

in dOrbc, so changing it up to equivalence we can take W = FdOrbc

dManc(Wab)

for some d-manifold with corners Wab in dManc, and changing e,f up to 2-
isomorphism we can take e = FdOrbc

dManc(eab), f = FdOrbc

dManc(fab) for 1-morphisms

eab : Wab → Ẑaab, f
ab : Wab → Ẑbab in dManc.

Now Γa acts by 2-morphisms π[Ẑaab/Γ
a] ⇒ π[Ẑaab/Γ

a], and similarly for Γb.

Using these and the 2-Cartesian property of (D.15) we can construct a natural
action of Γa × Γb on Wab by 1-isomorphisms, such that eab : Wab → Ẑaab
is Γa-equivariant and Γb-invariant, and fab : Wab → Ẑbab is Γa-invariant and

Γb-equivariant. These make eab : Wab → Ẑaab into a principal Γb-bundle, and

fab : Wab → Ẑbab into a principal Γa-bundle.

Since eab,fab are principal, they are trivializable over sufficiently small open
d-submanifolds in Ẑaab, Ẑ

b
ab, and more generally, trivializable over the preimages

in Ẑaab, Ẑ
b
ab of sufficiently small open d-suborbifolds in X̂a. Regarding a ∈ J as

fixed and b as varying, using Step 1(ii)(c) we see that X̂a can be covered by
small open U such that eab : Wab → Ẑaab and fab : Wab → Ẑbab are trivializable

over the preimage of U ∩ X̂a ∩ X̂b for all a ≺ b ∈ J with U ∩ X̂a ∩ X̂b 6= ∅.
Replace {Xa : a ∈ J}, {X̂a : a ∈ J} by refinements {Xa?

? : a? ∈ J?},
{X̂a?

? : a? ∈ J?} which still satisfy Step 1(i)–(iii) in §D.1, but such that X̂a?
? ⊆

U ⊆ X̂aa? for each a? ∈ J?, for some small open U ⊆ X̂aa? as above. Then the
new versions of Xa, X̂a,Za,Γa, . . . have the extra property that eab : Wab → Ẑaab
and fab : Wab → Ẑbab are trivializable principal Γb- and Γa-bundles for all

a ≺ b ∈ J with X̂a ∩ X̂b 6= ∅. Choosing such trivializations gives Γa × Γb-
equivariant equivalences Ẑaab × Γb 'Wab ' Γa × Ẑbab, which we combine into a

Γa × Γb-equivariant equivalence pab : Ẑaab × Γb → Γa × Ẑbab.

Write the Γa × Γb-actions on Ẑaab × Γb and Γa × Ẑbab as σab : Γa × Γb →
Aut(Ẑaab × Γb) and τab : Γa × Γb → Aut(Γa × Ẑbab). On points these act by

σab(γ, δ) : (z, ε) 7→
(
ta(γ)z, δεαab(z, γ)

)
, z∈ Ẑaab, γ∈Γa, δ, ε∈Γb,

τab(γ, δ) : (ε, z̃) 7→
(
γεβab(z̃, δ), tb(γ)z̃

)
, z̃∈ Ẑbab, γ, ε∈Γa, δ∈Γb,

(D.16)

for some αab(z, γ) ∈ Γb and βab(z̃, δ) ∈ Γa. To see this, note that as Wab '
Ẑaab × Γb trivializes Wab as a principal Γb-bundle, σab(1, δ) acts by σab(1, δ) :

(z, ε) 7→ (z, δε). Also the projection Ẑaab × Γb → Ẑaab is Γa-equivariant, so
σab(γ, δ) must act on the first term z in (z, γ) by z 7→ ta(γ)z. Define αab(z, γ)
by σab(γ, 1) : (z, 1) 7→

(
ta(γ)z, αab(z, γ)

)
. As σab(γ, 1) commutes with σab(1, δ),

σab(1, ε) the first line of (D.16) follows, and the second is similar.
As σab, τab are continuous, the maps z 7→ αab(z, γ) and z̃ 7→ βab(z̃, δ) are

locally constant on Ẑaab and Ẑbab, but need not be globally constant. The condi-
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tions that σab, τab are group actions are

αab(z, γδ) = αab(z, δ)αab
(
ta(δ)(z), γ

)
, all z ∈ Ẑaab and γ, δ ∈ Γa,

βab(z̃, γδ) = βab(z̃, δ)βab
(
tb(δ)(z̃), γ

)
, all z̃ ∈ Ẑbab and γ, δ ∈ Γb.

(D.17)

Write Map1(Γa,Γb) for the set of maps φ : Γa → Γb with φ(1) = 1 (we do not
require φ to be a group morphism), and Map1(Γb,Γa) for the set of φ : Γb → Γa

with φ(1) = 1. Define a map

Φab : Ẑaab × Γb −→ Γa × Γb ×Map1(Γa,Γb)×Map1(Γb,Γa) by

Φab : (z, δ) 7−→
(
γ, δ, ε 7→ αab(z, ε), ζ 7→ βab(z̃, ζ)

)
if pab(z, δ) = (γ, z̃).

(D.18)

Define an action υab of Γa×Γb on Γa×Γb×Map1(Γa,Γb)×Map1(Γb,Γa) by

υab(γ, δ) : (ε, ζ, φ, ψ) 7−→(
γ ε ψ(δ), δ ζ φ(γ), θ 7→ φ(γ)−1φ(θγ), θ 7→ ψ(δ)−1ψ(θδ)

)
.

(D.19)

Then combining (D.16)–(D.19) and the Γa × Γb-equivariance of pab shows that
υab(γ, δ) ◦ Φab = Φab ◦ σab(γ, δ), that is, Φab is Γa × Γb-equivariant.

Given any point [x] in X̂a ∩ X̂b, the preimages (z, δ) of [x] in Ẑaab × Γb are a

Γa × Γb-orbit in Ẑaab × Γb, and so their images Φab(z, δ) are a Γa × Γb-orbit in
Γa × Γb ×Map1(Γa,Γb) ×Map1(Γb,Γa). Since Φab is locally constant, for any

[x′] close to [x] in X̂a ∩ X̂b the preimages (z′, γ′) of [x′] in Ẑaab have Φab(z′, γ′)

in the same Γa × Γb-orbit. Thus, we can cover X̂a ∩ X̂b by open U such that if
(z, γ) ∈ Ẑaab × Γb has image in U, then Φab(z, γ) lies in a fixed Γa × Γb-orbit.

So by the argument above, replacing {Xa : a ∈ J}, {X̂a : a ∈ J} by refinements

{Xa?
? : a? ∈ J?}, {X̂a?

? : a? ∈ J?}, we can suppose that Φab has image a single

Γa × Γb-orbit for all a, b ∈ J with a ≺ b and X̂a ∩ X̂b 6= ∅.
For all such a, b, choose (γab, δab, φab, ψab) ∈ Γa × Γb × Map1(Γa,Γb) ×

Map1(Γb,Γa) in the image of Φab. Consider the subgroup of Γa × Γb fixing
(γab, δab, φab, ψab) under the action υab. From the first two terms of (D.19) we
see that υab(Γa×{1}) and υab({1}×Γb) act freely on Γa×Γb×Map1(Γa,Γb)×
Map1(Γb,Γa), so the stabilizer subgroup contains no elements (γ, 1) or (1, δ) for
γ 6= 1 6= δ, and the projections from the stabilizer subgroup to Γa and Γb are
injective. Therefore there exist unique subgroups Γab ⊆ Γa and Γba ⊆ Γb

and an isomorphism ρab : Γab → Γba such that the stabilizer subgroup of
(γab, δab, φab, ψab) in Γa × Γb is

{
(γ, ρab(γ)) : γ ∈ Γab

}
= (id× ρab)(Γab).

Define Ẑab to be the open and closed d-submanifold in Ẑaab such that Φab =

(γab, δab, φab, ψab) on Ẑab×{δab} ⊆ Ẑaab×Γb, and Ẑba to be the open and closed

d-submanifold in Ẑbab such that pab
(
Ẑab × {δab}

)
= {γab} × Ẑba, and define

jab : Ẑab → Ẑba to be the unique equivalence which lifts to pab|Ẑab×{δab} :

Ẑab×{δab} → {γab}×Ẑba. Then the open and closed d-submanifold Ẑab×{δab}
in Ẑaab × Γb is invariant under the subgroup (id× ρab)(Γab) in Γa × Γb, with

Ẑaab × Γb =
∐

(γ,δ)(id×ρab)(Γab)∈(Γa×Γb)/(id×ρab)(Γab) σ
ab(γ, δ)(Ẑab × {δab}),
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where the sum is over a choice of representative (γ, δ) for each coset (γ, δ)(id×
ρab)(Γab) in (Γa × Γb)/(id × ρab)(Γab). Projecting to Ẑaab, on which Γb acts

trivially, this implies that Ẑab is invariant under ta(Γab), and

Ẑaab =
∐
γΓab∈Γa/Γab t

a(γ)(Ẑab).

It follows that
[Ẑab/Γab] ∼= [Ẑaab/Γ

a] ' X̂a ∩ X̂b.

This proves Step 1(iv)(a)–(c) in §D.1 for Zab,Γab, and the proof for Zba,Γba

is the same. To construct the 2-morphism ζab in (D.1), note that in (D.15)
we have a 2-morphism ωab, which is equivariant under the action of Γa × Γb

on Wab. Under the equivalence Wab ' Ẑaab × Γb we may restrict ωab to the

open d-submanifold of Wab corresponding to Ẑab × {δab} ∼= Ẑab, and this is
Γab-equivariant, and so descends to the quotient [Ẑab/Γab] to give ζab in (D.1).

For the last part of Step 1(iv), involving the bijection qab : Cab → Cba, note
that if z ∈ Ẑab then the set of c ∈ Ca with ∂cẐa nonempty near z is in bijection
with i−1

Ẑa (z). Similarly, the set of c′ ∈ Cb with ∂c
′
Ẑb nonempty near jab(z) is in

bijection with i−1
Ẑb (jab(z)). But jab− induces a bijection i−1

Ẑa (z)→ i−1
Ẑb (jab(z)). If

we were to replace Ẑa, Ẑb by sufficiently small neighbourhoods of the Γa- and Γb-
orbits of z, jab(z), then we would have Cab ∼= i−1

Ẑa (z) and Cba ∼= i−1
Ẑb (jab(z)), so

the bijection jab− |··· : i−1
Ẑa (z)→ i−1

Ẑb (jab(z)) induces the bijection qab : Cab → Cba

that we want. From this we see that replacing {Xa : a ∈ J}, {X̂a : a ∈ J} by

refinements {Xa?
? : a? ∈ J?}, {X̂a?

? : a? ∈ J?}, we can make the last part of Step
1(iv) hold. This completes part (iv) of Step 1.

For part (v), suppose Ẑabcαβ 6= ∅ in (D.2), and consider the diagrams (D.4)–

(D.5), where [λabcαβ , γ
abc
αβ ] in (D.4) has yet to be defined. As ic is an equivalence

with an open d-suborbifold of X, there exists a unique 2-morphism in dOrbc

η : [jbc, ρbc] ◦ [tb(β) ◦ jab ◦ |Ẑabcαβ
, ι] =⇒ [jac ◦ ta(β)|Ẑabcαβ

, ι],

such that (D.4) with η in place of [λabcαβ , γ
abc
αβ ], and (D.5), have the same compo-

sition.
Applying Theorems 9.16(c) and 11.8 with X = [X/G], Y = [Y /G], f̃ =

[f , ρ], g̃ = [g, σ] and i, j, ζ,θ identities shows that if [f , ρ], [g, σ] : [X/G] →
[Y /H] are quotient 1-morphisms and η : [f , ρ] ⇒ [g, σ] is a 2-morphism in
dSta then η is of the form [λ, γ] from Definition 11.7 locally in [X/G], that
is, we can cover X by open G-invariant U ⊆ X such that η|[U/G] = [λ, γ] :
[f |U, ρ] ⇒ [g|U, σ], and η|[U/G] determines λ, γ uniquely provided U 6= ∅.
Thus we can cover Ẑabcαβ by open U such that η|[U/{1}] = [λabcαβ , γ

abc
αβ ] for some

unique λabcαβ , γ
abc
αβ .

Replacing {Xa : a ∈ J}, {X̂a : a ∈ J} by refinements {Xa?
? : a? ∈ J?},

{X̂a?
? : a? ∈ J?}, we can suppose that just one U is sufficient to cover all of

Ẑabcαβ , for all such a, b, c, α, β. So there exist unique γabcαβ ∈ Γc and γabcαβ in (D.3)
such that (D.4) and (D.5) have the same composition. This completes Step 1.
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D.3 Step 2: Modify to a better open cover

The Deligne–Mumford C∞-stack X is separated, paracompact, and locally fair.
So by Theorem C.26, X has a coarse moduli C∞-scheme X top, with underlying
topological space Xtop, and X top is also separated, paracompact, and locally
fair. By Proposition B.21, any open cover of X top admits a subordinate smooth
partition of unity, as in Remark C.27. Thus we can choose a continuous partition
of unity {θa : a ∈ J} on Xtop subordinate to {X atop : a ∈ J}, and in fact we
can take the θa to be smooth on X top, though we do not need this. For each
finite A ⊆ J , define XA ⊆ X by (D.6), and let I be the set of finite A ⊆ J with
XA 6= ∅. We will prove {XA : A ∈ I} satisfy Step 2(A)–(C) in §D.1.

For (A), let [x] ∈ Xtop, and set A′ = {a ∈ J : [x] ∈ X atop}. Then A′ is finite
and nonempty by Step 1(ii). Since {θa : a ∈ J} is subordinate to {X atop : a ∈ J},
we see that

∑
a∈A′ θ

a([x]) = 1. Choose ∅ 6= A ⊆ J finite with |A| least such
that

∑
a∈A θ

a([x]) > 1 − 2
4|A|

. Since A′ satisfies this condition, such A exist,
and we can choose A with |A| least. If [x] /∈ XA,top then by (D.6) there exists
∅ 6= B ( A with

∑
b∈B θ

b([x]) > 1 − 1
4|B|

, so
∑
b∈B θ

b([x]) > 1 − 2
4|B|

, and
|B| < |A|, contradicting the choice of A with |A| least. Hence [x] ∈ XA,top, and
A ∈ I as XA 6= ∅. Therefore X =

⋃
A∈I XA, and {XA : A ∈ I} is an open cover

of X, proving part (A).
For (B), suppose A ∈ I and [x] ∈ XA,top. Then θa([x]) > 0 for each a ∈ A, as

otherwise putting B = A \ {a} in (D.6) gives a contradiction. Hence [x] ∈ X atop

as θa is supported on X atop. Thus [x] ∈
⋂
a∈A X atop, so XA ⊆

⋂
a∈AXa.

For (C), suppose A 6= B ∈ I with XA ∩XB 6= ∅, and write C = A ∩B. Let
[x] ∈ XA,top ∩ XB,top. Then (D.6) implies that

1− 2
4|A|

+ 1− 2
4|B|

<
∑
a∈A θ

a([x]) +
∑
b∈B θ

b([x])

=
∑
a∈A∪B θ

a([x]) +
∑
c∈C θ

c([x]) 6 1 +
∑
c∈C θ

c([x]) < 1− 1
4|C|

,

where in the last step we note that A 6= C or B 6= C as A 6= B. Hence
1

4|C|
< 2

4|A|
+ 2

4|B|
. If |C| < |A|, |B| this is a contradiction. Hence either

|C| = |A|, giving A ⊆ B, or |C| = |B|, giving B ⊆ A.
Next we construct the total order < on I. For each A ∈ I, define the depth

depth(A) > 0 to be the maximum number n of distinct elements c1, . . . , cn in
J \A such that

⋂
a∈AXa∩

⋂n
i=1 X

ci 6= ∅. Step 1(ii)(c) implies that this number
n is bounded, so depth(A) is well-defined. Observe that if A,B ∈ I with A ( B
then depth(A) > depth(B), since if depth(B) = n there exist c1, . . . , cn ∈ J \B
with

⋂
b∈B Xb ∩

⋂n
i=1 X

ci 6= ∅, so writing B \ A = {cn+1, . . . , cn+k} we have⋂
a∈AXa ∩

⋂n+k
i=1 Xci 6= ∅, and thus depth(A) > n+ k > depth(B).

Define a total order < on I by A < B if either depth(A) < depth(B), or
depth(A) = depth(B) and A precedes B in the lexicographic order on subsets
of J induced by the total order ≺. Since N and (J,≺) are well-ordered, (I,<) is
well-ordered. Suppose A,B ∈ I with A < B and XA ∩XB 6= ∅. Then A 6= B,
so A ( B or B ( A by Step 2(C). But A ( B implies depth(A) > depth(B),
contradicting A < B. Hence B ( A.

Now let A ∈ I. We can write A uniquely as {a1, a2, . . . , an} for a1, . . . , an ∈ J
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with a1 ≺ a2 ≺ · · · ≺ an. Suppose [x] ∈
⋂n
i=1 X̂

ai . Then [x] ∈ X̂a1 ' [Ẑa1/Γa1 ],

so we can choose a lift z ∈ Ẑa1 for [x]. For each i = 2, . . . , n, as [x] ∈ X̂a1 ∩ X̂ai ,
[x] has a lift to Ẑa1ai , which lies in the Γa1 -orbit of z. Therefore we can choose
αa1ai
A ∈ Γa1 with ta1(αa1ai

A )(z) ∈ Ẑa1ai . Hence ja1ai ◦ ta1(αa1ai
A )(z) ∈ Ẑaia1 ⊆

Ẑai is a lift of [x] to Ẑai .

Let 1 < i < j 6 n. Then [x] ∈ X̂ai ∩ X̂aj , so [x] has a lift to Ẑaiaj ⊆
Ẑai , which lies in the Γai-orbit of ja1ai ◦ ta1(αa1ai

A )(z). Hence we can choose

α
aiaj
A ∈ Γai with tai(α

aiaj
A ) ◦ ja1ai ◦ ta1(αa1ai

A )(z) ∈ Ẑaiaj . This shows that we

can choose α
aiaj
A ∈ Γai for 1 6 i < j 6 n such that the lift z of [x] to Ẑa1 lies in

ẐA =
⋂

1<i6n[ta1(αa1ai
A )]−1(Ẑa1ai)

∩
⋂

1<i<j6n[tai(α
aiaj
A ) ◦ ja1ai ◦ ta1(αa1ai

A )]−1(Ẑaiaj ).
(D.20)

Define a subgroup ΓA ⊆ Γa1 by

ΓA = Γa1 ∩
⋂

1<i6n(αa1ai
A )−1Γa1aiαa1ai

A

∩
⋂

1<i<j6n(αa1ai
A )−1 (ρa1ai)−1[Γa1ai ∩ (α

aiaj
A )−1Γaiajα

aiaj
A ]αa1ai

A .

Since Γaiaj preserves Ẑaiaj , we see that ẐA is invariant under ta1(ΓA). So we
may define an action tA : ΓA → Aut(ẐA) by tA(γ) = ta1(γ)|ẐA for γ ∈ ΓA, and

we have a quotient d-orbifold with corners [ẐA/ΓA].
As tai(γ)[Ẑaiaj ]∩ Ẑaiaj = ∅ for all γ ∈ Γai \ Γaiaj , we see that ta1(γ)[ẐA]∩

ẐA = ∅ for all γ ∈ Γa1 \ ΓA. Hence [ZA/ΓA] '
[
ta1(Γa1)[ZA]/Γa1

]
. But

ta1(Γa1)[ZA] is Γa1-invariant and open in Ẑa1 , so
[
ta1(Γa1)[ZA]/Γa1

]
is an

open d-suborbifold of [Ẑa1/Γa1 ], which is equivalent under ia1 to an open d-

suborbifold of X̂a1 . Define ı̂A : [ẐA/ΓA]→ X to be the composition

[ẐA/ΓA]
[inc,inc] // [Ẑa1/Γa1 ]

ia1 // X̂a1 ⊆ X.

Then ı̂A is an equivalence with an open d-suborbifold ı̂A([ẐA/ΓA]) in
⋂n
i=1 X̂

ai .

We have shown that for each [x] ∈
⋂n
i=1 X̂

ai we can choose α
aiaj
A ∈ Γai for

1 6 i < j 6 n such that an open neighbourhood of [x] in
⋂n
i=1 X̂

ai is equivalent

to [ẐA/ΓA] for ẐA,ΓA constructed using the α
aiaj
A . Using the argument of

Step 1 in §D.2, we may replace {Xa : a ∈ J}, {X̂a : a ∈ J} by refinements

{Xa?
? : a? ∈ J?}, {X̂a?

? : a? ∈ J?} to ensure that one choice of data α
aiaj
A ∈ Γai

for 1 6 i < j 6 n works for all [x] ∈
⋂n
i=1 X̂

ai . Then ı̂A([ẐA/ΓA]) =
⋂n
i=1 X̂

ai ,

so ı̂A : [ẐA/ΓA]→
⋂n
i=1 X̂

ai is an equivalence.

Define ZA ⊆ ẐA to be the unique ΓA-invariant open d-submanifold with
ı̂A([ZA/ΓA]) = XA ⊆

⋂n
i=1 X̂

ai , and define iA = ı̂A|[ZA/ΓA]. Then iA :
[ZA/ΓA]→ XA is an equivalence, as we want. Define

CA = {c ∈ Ca1 : ∂ẐA ∩ ∂cẐa1 6= ∅}, (D.21)
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and define ∂cZA = ∂ZA ∩ ∂cẐa1 . As we used ẐA rather than ZA in (D.21)
we may have ∂cZA = ∅ for c ∈ CA. Since ẐA is invariant under ΓA ⊆ Γa1 ,
it follows from Step 1(iii)(a),(b) that the subset CA in Ca1 is invariant under
pa1 |ΓA : ΓA → Aut(Ca1). Define pA : ΓA → Aut(CA) by pA =

(
pa1 |ΓA

)
|CA . Set

bAc = ba1c|ZA : ZA → [0,∞) for each c ∈ CA. Part (i) of Step 2 now follows
easily from Step 1(iii).

For part (ii), suppose A,B ∈ I with A < B and XA ∩ XB 6= ∅. The end
of Step 1 shows that B ( A. Write A = {a1, . . . , an} with a1 ≺ · · · ≺ an as
above. Then B = {ab1 , . . . , abk} for {b1, . . . , bk} ( {1, . . . , n} with b1 < b2 <
· · · < bk. Write ZAB ⊆ ZA for the ΓA-invariant open d-submanifold in ZA with
iA([ZAB/ΓA]) = XA ∩XB . We divide into two cases (a) b1 = 1 and (b) b1 > 1.

In case (a), let [x] ∈
⋂n
i=1 X̂

ai ⊆
⋂k
j=1 X̂

abj , and pick lifts zA ∈ ẐA ⊆ Ẑa1 ,

zB ∈ ẐB ⊆ Ẑa1 for [x]. Then zA, zB lie in the same Γa1-orbit in Ẑa1 , so
zB = ta1(βAB)(zA) for some βAB ∈ Γa1 . We claim that

ẐA ⊆ (ta1(βAB))−1[ẐB ] and ZAB ⊆ (ta1(βAB))−1[ZB ]. (D.22)

The second equation follows from the first, as ZAB is the subset of ẐA mapping
to XA ∩ XB , and ZB the subset of ẐB mapping to XB . To prove the first
equation of (D.22), use (D.20) to write each side as a multiple intersection, and
show that each term in the right hand intersection also occurs in the left. For
example, let 1 < i 6 k. Then both ta1(α

a1abi
A )(zA) and

ta1(α
a1abi
B )(zB) = ta1(α

a1abi
B βAB)(zA)

= ta1(α
a1abi
B βAB(α

a1abi
A )−1) ◦ ta1(α

a1abi
A )(zA)

lie in Ẑa1abi . Therefore α
a1abi
B βAB(α

a1abi
A )−1 ∈ Γa1abi , so it fixes Ẑa1abi , giving

(ta1(α
a1abi
A ))−1[Ẑa1abi ] = (ta1(βAB))−1

[
(ta1(α

a1abi
B ))−1[Ẑa1abi ]

]
.

Here the left hand set is in the intersection for ẐA, and the right hand in the
intersection for (ta1(βAB))−1[ẐB ]. A parallel proof for groups shows that

βABΓAβ
−1
AB ⊆ ΓB . (D.23)

Define jAB : ZAB → ZB by jAB = ta1(βAB)|ZAB and ρAB : ΓA → ΓB by
ρAB : γ 7→ βABγβ

−1
AB . These are well-defined by (D.22)–(D.23), and induce

a quotient 1-morphism [jAB , ρAB ] : [ZAB/ΓA] → [ZB/ΓB ]. We define ζAB :
iB ◦ [jAB , ρAB ]⇒ iA|[ZAB/ΓA] to be the composition of 2-morphisms in:

[ZAB/ΓA]

[inc,inc] ,,XXXXXXXXXXXXXX
iA|[ZAB/ΓA]

id⇓
,,[jAB ,ρAB ]

��

[id,βAB ]⇐ [Ẑa1/Γa1 ]
ia1 // X.

[ZB/ΓB ]

[inc,inc]
22fffffffffffffff

iB

id⇑
22
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Step 1(iii)(b), equation (D.21), and the first equation of (D.22) imply that
the subsets CA, CB ⊆ Ca1 satisfy pa1(βAB)(CA) ⊆ CB . Define an injective map
qAB : CA → CB by qAB = pa1(βAB)|CA . Then qAB ◦ pA(γ) = pB(ρAB(γ)) ◦ qAB
for γ ∈ ΓA ⊆ Γa1 and (jAB)−

(
∂ZAB ∩ ∂cZA

)
= (jAB)−

(
∂ZAB

)
∩ ∂qAB(c)ẐB

for c ∈ CA are immediate from the definitions.
In case (b), let [x] ∈

⋂n
i=1 X̂

ai ⊆
⋂k
j=1 X̂

abj , and pick lifts zA ∈ ẐA ⊆ Ẑa1 ,

zB ∈ ẐB ⊆ Ẑab1 for [x]. Then ja1ab1 ◦ ta1(α
a1ab1
A )(zA), zB lie in the same Γab1 -

orbit in X̂ab1 , so zB = tab1 (βAB) ◦ ja1ab1 ◦ ta1(α
a1ab1
A )(zA) for some βAB ∈ Γab1 .

Similar proofs to (D.22)–(D.23), but also using Step 1(v) to relate ja1abi to
jab1abi ◦ tab1 (α

ab1abi
A ) ◦ ja1ab1 , imply that

ẐA ⊆
(
tab1 (βAB) ◦ ja1ab1 ◦ ta1(α

a1ab1
A )

)−1
[ẐB ],

ZAB ⊆
(
tab1 (βAB) ◦ ja1ab1 ◦ ta1(α

a1ab1
A )

)−1
[ZB ],

and βABρ
a1ab1

(
α
a1ab1
A ΓA (α

a1ab1
A )−1

)
β−1
AB ⊆ ΓB .

(D.24)

Define ̃AB : ZAB → ZB and ρAB : ΓA → ΓB by

̃AB = tab1 (βAB) ◦ ja1ab1 ◦ ta1(α
a1ab1
A )|ZAB ,

ρAB : γ 7→ βABρ
a1ab1

(
α
a1ab1
A γ (α

a1ab1
A )−1

)
β−1
AB .

These are well-defined by (D.24). Let εAB : ̃∗
AB

(FZB )→ EZAB be a morphism
in qcoh(ZAB) which we will choose shortly, during the proof of (iii). By Propo-
sition 2.17 there is a unique 1-morphism jAB : ZAB → ZB in dManc such that
εAB : ̃AB ⇒ jAB is a 2-morphism.

Now ̃AB is equivariant under ρAB : ΓA → ΓB , and we choose εAB to be
equivariant, so that jAB is also equivariant. So we have quotient 1-morphisms
[̃AB , ρAB ], [jAB , ρAB ] : [ZAB/ΓA] → [ZB/ΓB ], and a 2-morphism [εAB , 1] :
[̃AB , ρAB ]⇒ [jAB , ρAB ]. We define ζAB : iB ◦ [jAB , ρAB ]⇒ iA|[ZAB/ΓA] to be
the composition of 2-morphisms in:

[ZAB/ΓA]

++WWWWWWWWWWWWWWWWW

[ta1 (α
a1ab1
A )|···,

Ad(α
a1ab1
A )]

[inc,inc]
//

[jAB ,
ρAB ] ��

[̃AB ,
ρAB ]��

[Ẑa1/Γa1 ]
ia1

((

[id,α
a1ab1
A ] ⇓

[εAB ,1]⇐
[id,βAB ]⇐

[Ẑa1ab1 /Γa1ab1 ]

[inc,inc]

OO

[j
a1ab1 ,ρ

a1ab1 ]
��

ζ
a1ab1 ⇑

X.

[ZB/ΓB ]
[inc,inc] // [Ẑab1 /Γab1 ]

i
ab1

66

(D.25)

Step 1(iii)(b),(iv), equation (D.21), and the first equation of (D.24) imply
that CA ⊆ Ca1 , CB ⊆ Cab1 satisfy pab1 (βAB) ◦ qa1ab1 ◦ pa1(α

a1ab1
A )[CA] ⊆

CB , where pa1(α
a1ab1
A )[CA] ⊆ Ca1ab1 ⊆ Ca1 . Define an injective map qAB :

CA → CB by qAB = pab1 (βAB) ◦ qa1ab1 ◦ pa1(α
a1ab1
A )|CA . Then qAB ◦ pA(γ) =

pB(ρAB(γ)) ◦ qAB and (jAB)−
(
∂ZAB ∩ ∂cZA

)
= (jAB)−

(
∂ZAB

)
∩ ∂qAB(c)ẐB

follow from the definitions. This completes part (ii) of Step 2.
For part (iii), suppose A,B,C ∈ I with A < B < C and XA ∩XB ∩XC 6=

∅. Then C ( B ( A. Write A = {a1, . . . , an} with a1 ≺ · · · ≺ an, B =
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{ab1 , . . . , abk} and C = {ac1 , . . . , acl} for {c1, . . . , cl} ( {b1, . . . , bk} ( {1, . . . , n}
with b1 < · · · < bk and c1 < · · · < cl. As for cases (a),(b) in part (ii), divide into
cases (a) c1 = b1 = 1, (b) c1 = b1 > 1, (c) c1 > b1 = 1 and (d) c1 > b1 > 1. In
case (a), define γABC = βACβ

−1
ABβ

−1
BC . In case (b), define γABC = βACβ

−1
ABβ

−1
BC ,

and also require that εAB , εAC in Step (ii) satisfy

εAC |ZAB∩ZAC = idtab1 (βACβ
−1
AB) ∗ εAB |ZAB∩ZAC when c1 = b1 > 1. (D.26)

In case (c), define γABC = βACρ
a1ac1

(
α
a1ac1
A β−1

AB(α
a1ac1
B )−1

)
β−1
BC , and also re-

quire that εAC , εBC in Step (ii) satisfy

εAC |ZAB∩ZAC = idtac1 (βACβ
−1
BC) ∗ εBC

∗ id
ta1 ((α

a1ac1
B )−1α

a1ac1
A )|ZAB∩ZAC

when c1 > b1 = 1.
(D.27)

For these three cases, it is easy to check from the definitions that ρAC(γ) =
γABC ρBC(ρAB(γ)) γ−1

ABC for γ ∈ ΓA, and (D.7) and (D.10) hold, and (D.9)
commutes, as we have to prove.

In case (d), we have to do more work. Apply Step 1(v) with a = a1, b = b1,
c = c1, α = α

a1ac1
A (α

a1ab1
A )−1 and β = α

ab1ac1
B βAB . Then ta1(α

a1ab1
A )(ZAB ∩

ZAC) 6= ∅ is contained in Ẑ
a1ab1ac1
αβ in (D.2) for these α, β, so Step 1(v) gives

γ
a1ab1ac1
αβ ∈ Γac1 and a 2-morphism

λ
a1ab1ac1
αβ : jab1ac1 ◦ tab1 (α

ab1ac1
B ) ◦ tab1 (βAB) ◦ ja1ab1 |

Ẑ
a1ab1

ac1
αβ

=⇒ tac1 ((γ
a1ab1ac1
αβ )−1) ◦ ja1ac1 ◦ ta1(α

a1ac1
A ) ◦ ta1((α

a1ab1
A )−1)|

Ẑ
a1ab1

ac1
αβ

.

Consider the 2-commutative diagram:

[(ZAB ∩ ZAC)/ΓA]

[jAC |···,ρAC ]

��

$$IIIIIIIIIIIIIIIIIIII

[ta1 (α
a1ab1
A

)|···,

Ad(α
a1ab1
A

)]

[jAB |···,ρAB ]

))[id
ta1 (β

−1
AC

)

∗εAC ,βAC ]
⇐

[ta1 (α
a1ab1
A )(ZAB ∩ ZAC)/

α
a1ab1
A ΓA(α

a1ab1
A )−1]

zzuuuuuuuuuuuuuuuuuuu
[j
a1ac1 ◦ta1 (α

a1ac1
A

(α
a1ab1
A

)−1),

ρ
a1ac1 ◦Ad(α

a1ac1
A

(α
a1ab1
A

)−1)]

[t
ab1 (βAB)◦ja1ab1 |···,

Ad(βAB)◦ρa1ab1 ] //

[εAB ,1]⇑

[λ
a1ab1

ac1
αβ

,

γ
a1ab1

ac1
αβ

]
⇐

[ZBC/ΓB ].

ssfffffffffffffffffffffffffffffffffffffffffffffffffffffff
[j
ab1

ac1 ◦tab1 (α
ab1

ac1
B

)|···,

ρ
ab1

ac1 ◦Ad(α
ab1

ac1
B

)]

[jBC ,ρBC ]

nn

[id
t
ac1 (β

−1
BC

)
∗εBC ,βBC ]⇓

[Ẑac1 /Γac1 ]
(D.28)

Here uniqueness of γ
a1ab1ac1
αβ , λ

a1ab1ac1
αβ in Step 1(v) implies that they are equiv-

ariant under α
a1ab1
A ΓA(α

a1ab1
A )−1, and so descend to a quotient 1-morphism

[λ
a1ab1ac1
αβ , γ

a1ab1ac1
αβ ] as shown.
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The composition of 2-morphisms across (D.28) gives a quotient 2-morphism

[λABC , γABC ] : [jBC , ρBC ] ◦ [jAB |ZAB∩ZAC , ρAB ] =⇒ [jAC |ZAB∩ZAC , ρAC ],

where γABC = βACγ
a1ab1ac1
αβ β−1

BC and λABC = id··· if and only if

εAC |ZAB∩ZAC = id
tac1 (γABCβBC)◦jab1ac1 ◦tab1 (α

ab1
ac1

B )
∗ εAB |···

+ idtac1 (γABC) ∗ εBC ∗ id
t
ab1 (βAB)◦ja1ab1 ◦ta1 (α

a1ab1
A )|···

(D.29)

−idtac1 (γABCβBC)∗λ
a1ab1ac1
αβ ∗id

ta1 (α
a1ab1
A )|···

when c1 > b1 > 1.

Supposing (D.29) holds, we have a quotient 1-morphism (D.8), which implies
that ρAC(γ) = γABC ρBC(ρAB(γ)) γ−1

ABC for γ ∈ ΓA and (D.7) holds. Com-
posing (D.28) with the projection to X and using Step 1(v) and the definitions
of ζAB , ζAC , ζBC in (D.25), we find that (D.9) commutes. One can also prove
(D.10) for this γABC using the definitions and equations (D.3), (D.21).

This proves part (iii), provided we can choose the ρAB-equivariant mor-
phisms εAB in part (ii) to satisfy (D.26), (D.27) and (D.29). We do this by
choosing εAB by induction on |A| − |B|, that is, at the kth inductive step we
choose εAB for all B ( A with XA ∩ XB 6= ∅ and |A| − |B| = k. For the first
step when k = 1, we define εAB = 0 for all A,B with |A| − |B| = 1.

For the inductive step, let k > 1, suppose we have chosen ρAB-equivariant
εAB satisfying (D.26), (D.27) and (D.29) for all A,B ∈ I with |A| − |B| < k,
and let C ( A with XA ∩ XC 6= ∅ and |A| − |C| = k. Suppose B ∈ I with
C ( B ( A. Then |A| − |B| < k and |B| − |C| < k, so εAB , εBC have already
been chosen if XA ∩ XB 6= ∅, XB ∩ XC 6= ∅. Thus in (D.26), (D.27), (D.29)
the right hand sides are already determined. So our problem is to choose εAC
on ZAC which is ρAC-equivariant, and takes prescribed values on the open d-
submanifolds ZAB ∩ ZAC ⊆ ZAC for all B ∈ I with C ( B ( A.

First we show that these prescribed values on ZAB ∩ ZAC are consistent
on overlaps. Suppose B 6= B′ ∈ I with C ( B ( A and C ( B′ ( A.
Then either (A) XB ∩ XB′ = ∅, (B) B ( B′, or (C) B′ ( B. In case (A)
(ZAB∩ZAC)∩(ZAB′∩ZAC) = ∅, so the prescribed values for εAC |ZAB∩ZAC and
εAC |ZAB′∩ZAC are trivially consistent. In case (B) we have C ( B ( B′, so the
previous inductive steps give conditions on εB′C , εBC , εB′B , and B ( B′ ( A, so
the previous inductive steps give conditions on εAB , εB′B , εAB . Combining these
implies that the prescribed values for εAC from B,B′ on ZAB ∩ZAB′ ∩ZAC are
equal. Case (C) is similar.

Thus, the problem is to choose ρAC-equivariant εAC taking a prescribed
value on the open d-submanifold ZAC∩

⋃
B:C(B(A ZAB in ZAC . This prescribed

value is automatically ρAC-equivariant, because of the equivariance of all the
ingredients. Using partitions of unity, one can show that a (ρAC-equivariant)
extension εAC of this prescribed value exists if and only if an extension exists
to some open neighbourhood of the closure of ZAC ∩

⋃
B:C(B(A ZAB in ZAC .

Now εAC is defined using ̃AC = tac1 (βAC) ◦ ja1ac1 ◦ ta1(α
a1ac1
A )|ZAC , which

is defined not just on ZAC but on ta1(α
a1ac1
A )−1[Ẑ

a1ac1 ] ⊆ Ẑa1 . Make the con-
vention that we always choose εAC so that it extends smoothly to an open
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neighbourhood of the closure of ZAC in ta1(α
a1ac1
A )−1[Ẑa1ac1 ] ⊆ Ẑa1 . We claim

that with this convention, the convention for εAB , εBC imply that the prescribed
values (D.26), (D.27), (D.29) for εAC automatically extend to an open neigh-
bourhood of the closure of ZAB ∩ZAC in ZAC , so that choosing εAC is possible
in the inductive step, and the induction works.

We prove this claim using the fact in Step 1(ii)(a) that the closure of Xa in X̂a

is compact for a ∈ J . Since X is separated, this also implies that the closures of
Xa in X̂a and in X are equal. One can use this and the properness of the projec-
tions Ẑa → X̂a to prove many other statements on equality of closures of subsets
in different spaces. For example, in (D.26), by induction εAB extends to a neigh-
bourhood of the closure of ZAB in ta1(α

a1ab1
A )−1[Ẑa1ab1 ]. But the (compact)

closures of ZAB ∩ZAC in ta1(α
a1ab1
A )−1[Ẑa1ab1 ] and in ta1(α

a1ac1
A )−1[Ẑa1ac1 ] are

the same. So the r.h.s. of (D.26) extends to a neighbourhood of the closure of
ZAB ∩ ZAC in ta1(α

a1ac1
A )−1[Ẑa1ac1 ], as we need. This completes the inductive

step, and the proof of part (iii) of Step 2.
For part (iv), suppose A,B,C,D ∈ I with A < B < C < D and XA ∩XB ∩

XC ∩XD 6= ∅. Consider the diagram of 2-morphisms in dOrbc:

iD ◦ [jCD, ρCD] ◦ [jBC , ρBC ]
◦[jAB |..., ρAB ] id∗[id,γABC ]

+3

id∗[id,γBCD ]∗id

��

ζCD∗id &.VVVVVV
VVVVVV

iD ◦ [jCD, ρCD]
◦[jAC |..., ρAC ]

id∗[id,γACD ]

��

ζCD∗idpx hhhhhhh
hhhhhhh

iC ◦ [jBC , ρBC ]
◦[jAB |..., ρAB ]

id∗[id,γABC ]

+3

ζBC∗id��

iC ◦ [jAC |..., ρAC ]

ζAC |··· ��
iB ◦ [jAB |..., ρAB ]

ζAB |···
+3 iA|...

iD ◦ [jBD, ρBD]
◦[jAB |..., ρAB ]

id∗[id,γABD|···] +3

ζBD∗id
08hhhhhhh

hhhhhhh

iD ◦ [jAD|···, ρAD].

ζAD|···
fn VVVVVVVVVVVVVV

VVVVVVVVVVVVVV

Here the domain of every 1-morphism is [ZAB ∩ ZAC ∩ ZAD/ΓA]. The top
quadrilateral commutes by compatibility of horizontal and vertical composition.
The other four small quadrilaterals commute by (D.9). Hence the whole diagram
commutes. Since iD is an equivalence with an open d-suborbifold, we can omit
‘iD◦’ from the outer rectangle, so that the following commutes

[jCD, ρCD] ◦ [jBC , ρBC ] ◦ [jAB |..., ρAB ]
id[jCD,ρCD ]∗[id,γABC ]

+3

[id,γBCD]∗id[jAB |···,ρAB ]��

[jCD, ρCD] ◦ [jAC |..., ρAC ]

[id,γACD] ��
[jBD, ρBD] ◦ [jAB |..., ρAB ]

[id,γABD] +3 [jAD|..., ρAD].

Therefore γACD ρCD(γABC) = γABD γBCD. This completes Step 2.

Remark D.1. In part (ii) we defined ρAB , jAB , ζAB , qAB on a region ZAB in
Ẑa1 lying over XA ∩ XB , so we assumed XA ∩ XB 6= ∅. Similarly, in (iii) we
defined γABC and proved (D.7)–(D.10) on a region ZAB ∩ ZAC in Ẑa1 lying
over XA ∩XB ∩XC , so we assumed XA ∩XB ∩XC 6= ∅, and in (iv) we proved
γACD ρCD(γABC) = γABD γBCD assuming XA ∩XB ∩XC ∩XD 6= ∅.
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In fact in part (ii) the only place the assumption XA ∩XB 6= ∅ is used is to

deduce that B ( A. We do pick points [x] ∈
⋂n
i=1 X̂

ai , zA ∈ ẐA, zB ∈ ẐB , but⋂n
i=1 X̂

ai , ẐA, ẐB are automatically nonempty as A,B ∈ I. Thus, in (ii) we
can take ρAB : ΓA → ΓB and qAB : CA → CB to be defined whenever A,B ∈ I
with B ( A, without assuming XA ∩XB 6= ∅.

Similarly, in (iii) we can take γABC ∈ ΓC with qAC = pC(γABC) ◦ qBC ◦ qAB
and ρAC(γ) = γABC ρBC(ρAB(γ)) γ−1

ABC for γ ∈ ΓA to be defined whenever
A,B,C ∈ I with C ( B ( A, without assuming XA∩XB ∩XC 6= ∅, and in (iv)
we can suppose γACD ρCD(γABC) = γABD γBCD whenever A,B,C,D ∈ I with
D ( C ( B ( A, without assuming XA ∩XB ∩XC ∩XD 6= ∅. We will need all
this in Step 3.

D.4 Step 3: Choose sf-embeddings fA : ZA → UA, A ∈ I

As in Remark D.1 we will suppose ρAB , qAB in Step 2(ii) are defined whenever
A,B ∈ I with B ( A, and similarly for γABC in Step 2(iii),(iv). Let A ∈ I,
and write A = {a1, . . . , an} with a1 ≺ · · · ≺ an. Then ZA ⊆ Ẑa1 , and Ẑa1 is a
principal d-manifold with corners. So by Corollary 7.49, dimT ∗z Z

a1 is bounded
above for z ∈ Za1 . Choose an integer nA > 0 such that nA > 2 dimT ∗z Z

a1 + 1
for z ∈ Za1 . Then there exist embeddings Ẑa1 ↪→ RRRnA and ZA ↪→ RRRnA by
Theorem 7.44.

For each B ∈ I, write RB for the real vector space with basis of symbols
|γ〉 for γ ∈ ΓB , and SB for the real vector space with basis of symbols |c〉 for
c ∈ CB . Define a finite-dimensional real vector space TB by

TB =
(⊕

A∈I:B⊆A RnA
)
⊗RB ⊕ SB . (D.30)

Step 1(ii)(c) implies that this direct sum is finite. Write elements of TB as∑
B⊆A∈I, γ∈ΓB

tγA ⊗ |γ〉 +
∑
c∈CB u

c
B |c〉, for tγA ∈ RnA and ucB ∈ R. Define an

effective representation rB of ΓB on TB by

rB(γ) :
∑
B⊆A∈I, δ∈ΓB

tδA ⊗ |δ〉+
∑
c∈CB u

c
B |c〉

7−→
∑
B⊆A∈I, δ∈ΓB

tδA ⊗ |γδ〉+
∑
c∈CB u

c
B |pB(γ)(c)〉.

(D.31)

For c ∈ CB , define a linear map τBc : TB → R by

τBc :
∑
B⊆A∈I, γ∈ΓB

tγA ⊗ |γ〉+
∑
c∈CB u

c
B |c〉 7−→ ucB . (D.32)

Then UB =
{∑

B⊆A∈I, γ∈ΓB
tγA⊗|γ〉+

∑
c∈CB u

c
B |c〉 ∈ TB : ucB > −1 ∀c ∈ CB

}
.

Suppose B,C ∈ I with B < C and XB ∩XC 6= ∅. Then C ( B, as in Step
2. Define a linear map lBC : TB → TC by

lBC :
∑

B⊆A∈I, γ∈ΓB

tγA ⊗ |γ〉+
∑
c∈CB

ucB |c〉 7−→
∑
γ∈ΓB

tγB ⊗ |ρBC(γ)〉

+
∑

B(A∈I, γ∈ΓB

tγA ⊗ |ρBC(γ) γ−1
ABC〉+

∑
c∈CB

ucB |qBC(c)〉.
(D.33)
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In (D.33) we use γABC assuming only that C ( B ( A, rather than XA ∩XB ∩
XC 6= ∅, as in Remark D.1. Step 3(i)(a),(b) and Step 3(iii)(a)–(c) now follow
easily from (D.30)–(D.33).

Suppose B,C,D ∈ I with B < C < D and XB ∩ XC ∩ XD 6= ∅. Then
D ( C ( B. Let

∑
B⊆A∈I, γ∈ΓB

tγA ⊗ |γ〉+
∑
c∈CB u

c
B |c〉 lie in TB . Then

rD(γBCD) ◦ lCD ◦ lBC
(∑

B⊆A∈I, γ∈ΓB
tγA ⊗ |γ〉+

∑
c∈CB u

c
B |c〉

)
= rD(γBCD) ◦ lCD

(∑
γ∈ΓB

tγB ⊗ |ρBC(γ)〉

+
∑
B(A∈I, γ∈ΓB

tγA ⊗ |ρBC(γ) γ−1
ABC〉+

∑
c∈CB u

c
B |qBC(c)〉

)
= rD(γBCD)

(∑
γ∈ΓB

tγB ⊗ |ρCD(ρBC(γ)) γ−1
BCD〉

+
∑

B(A∈I, γ∈ΓB

tγA ⊗ |ρCD(ρBC(γ) γ−1
ABC) γ−1

ACD〉+
∑
c∈CB

ucB |qCD ◦ qBC(c)〉
)

=
∑
γ∈ΓB

tγB ⊗ |γBCD ρCD(ρBC(γ)) γ−1
BCD〉

+
∑
B(A∈I, γ∈ΓB

tγA ⊗ |γBCD ρCD(ρBC(γ) γ−1
ABC) γ−1

ACD〉
)

+
∑
c∈CB u

c
B

∣∣pD(γBCD)(qCD ◦ qBC(c))
〉

=
∑
γ∈ΓB

tγB ⊗ |ρBD(γ)〉+
∑
B(A∈I, γ∈ΓB

tγA ⊗ |ρBD(γ) γ−1
ABD〉

+
∑
c∈CB u

c
B |qBD(c)〉

= lBD
(∑

B⊆A∈I, γ∈ΓB
tγA ⊗ |γ〉+

∑
c∈CB u

c
B |c〉

)
.

Here we use (D.33) in the first, second and fifth steps, (D.31) in the third,
and ρBD(γ) = γBCD ρCD(ρBC(γ)) γ−1

BCD, γACD ρCD(γABC) = γABD γBCD and
(D.10) in the fourth, which hold by Step 2(iii),(iv) extended as in Remark D.1.
This proves that lBD = rD(γBCD) ◦ lCD ◦ lBC : TA → TC , as in Step 3(iv).

We have now constructed the data TA, rA, τAc, lAB in Step 3(i),(iii) and
shown it satisfies Steps 3(i)(a),(b), 3(iii)(a)–(c) and 3(iv). The beginning of
Steps 3(ii) and 3(iii)(d) now construct manifolds with corners UA, actions r̃A :
ΓA → Aut(UA), boundary defining functions υAc : UA → [0,∞), and sf-
embeddings l̃AB : UA → UB , and write UA, r̃A,υAc, l̃AB = FdManc

Manc (UA, r̃A,

υAc, l̃AB). Next we construct the sf-embeddings fB : ZB → UB for each B ∈ I.
Let gAB : ZB → RRRnA for each A ∈ I with B ⊆ A and dBc : ZB → (0,∞)

for each c ∈ CB be 1-morphisms in dManc satisfying conditions we will explain
later. Define fB : ZB → UB by

fB =
(∏

A∈I:B⊆A
∏
γ∈ΓB

(gAB ◦ tB(γ−1))⊗ |γ〉
)

×
(∏

c∈CB (dBc · bBc − 1) · |c〉
)
,

(D.34)

where bBc : ZA → [0,∞) is as in Step 2(i). That is, the component of fB
mapping into the factor RRRnA ⊗ |γ〉 in UB is gAB ◦ tB(γ−1), and the component
mapping into [−1,∞) · |c〉 is dBc · bBc − 1.

For these fB to satisfy Step 3(ii)(a), they must be equivariant under the
ΓB-actions on ZB ,UB . The first line of (D.34) is already ΓB-equivariant, so
3(ii)(b) imposes no conditions on the gAB . Also the bBc are ΓB-equivariant by
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Step 2(i)(d), so the dBc · bBc − 1 terms are ΓB-equivariant provided the dBc
terms are. Hence Step 3(ii)(a) follows from

dBc = bBpB(γ)(c) ◦ tA(γ) for all c ∈ CB and γ ∈ ΓB . (D.35)

For Step 3(ii)(b), equations (D.32), (D.34) and υBc = τBc + 1 imply that υBc ◦
fB = dBc · bBc for c ∈ CB . So Step 2(i)(c), Proposition 6.6(d) and dBc : ZB →
(0,∞) show that Step 3(ii)(b) holds.

Let B,C ∈ I with B < C and XB ∩XC 6= ∅. Then by (D.33) and (D.34),
the condition fC ◦ jBC = l̃BC ◦ fB |ZBC in Step 3(iii)(d) is equivalent to:

gBC ◦ jBC = gBB |ZBC , (D.36)

gAC ◦ tC(γABC) ◦ jBC = gAB |ZBC for all A ∈ I with B ( A, (D.37)

gBC |(tC(γ)◦jBC)(ZBC) = 0 for all γ ∈ ΓC \ ρBC(ΓB), (D.38)

gAC |(tC(γ)◦jBC)(ZBC) = 0 for all A ∈ I with B ( A

and γ ∈ ΓC \ [γABC · ρBC(ΓB)],
(D.39)

gAC |(tC(γ)◦jBC)(ZBC) = 0 for all A ∈ I with C ⊆ A, B 6⊆ A
and γ ∈ ΓC ,

(D.40)

dBc|ZBC · bBc|ZBC =
(
dCqBC(c) · bCqBC(c)

)
◦ jBC for all c ∈ CB , (D.41)

dCc|jBC(ZBC) = bCc|−1
jBC(ZBC) for all c ∈ CC \ qBC(CB). (D.42)

Here (D.42) is equivalent to (dCc · bCc − 1) ◦ jBC = 0.
Fix A ∈ I, and write A = {a1, . . . , an} with a1 ≺ · · · ≺ an as usual. Define

an open d-submanifold WA ⊆ ZA ⊆ Ẑa1 by

WA =
⋃
E∈I:A(E, XA∩XE 6=∅ rA(ΓA)[jEA(ZEA)].

Choose a 1-morphism hA : Ẑa1 → RRRnA such that hA|WA
= 0, and hA|Ẑa1\WA

is an embedding Ẑa1 \WA ↪→ RRRnA \ {0}, where WA is the closure of WA in
Ẑa1 . This is possible by a modification of Theorem 7.44, and the choice of nA.

We will choose the morphisms gAC : ZC → RRRnA for C ∈ I with C ( A and
XA∩XC 6= ∅ by induction on increasing |C|, where we write C = {ac1 , . . . , acl}
with c1 < · · · < cl. Each such choice gAC must satisfy the following conditions:

(a) When C = A we have gAA|ZAB = gAB ◦ jAB whenever B ∈ I with B ( A
and XA ∩XB 6= ∅. This ensures (D.36) holds.

(b) When C 6= A we have gAC |ZCD = gAD ◦ tD(γACD)◦ jCD whenever D ∈ I
with D ( C and XC ∩XD 6= ∅. This ensures (D.37) holds.

(c) When C 6= A we have gAC |(tC(γ)◦jAC)(ZAC) = 0 for all γ ∈ ΓC \ ρAC(ΓA).
This ensures (D.38) holds.

(d) When C 6= A we have gAC |(tC(γ)◦jBC)(ZBC) = 0 whenever B ∈ I with
C ( B ( A, XB ∩XC 6= ∅ and γ ∈ ΓC \ [γABC · ρBC(ΓB)]. This ensures
(D.39) holds.
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(e) In both cases C = A and C 6= A, we have gAC |(tC(γ)◦jBC)(ZBC) = 0
whenever B ∈ I with C ( B, B 6⊆ A, XB ∩ XC 6= ∅ and γ ∈ ΓC . This
ensures (D.40) holds.

(f) gAC extends to a 1-morphism U→ RRRnA for some open neighbourhood U
of the closure of ZC in Ẑac1 .

(g) When C 6= A, gAC ◦jAC is 2-isomorphic to hA|ZAC , and this also holds in
a neighbourhood of the closure of ZAC in Ẑac1 , noting that jAC extends
to such a neighbourhood. Since jAC : ZAC → jAC(ZAC) ⊆ ZC is an
equivalence, this determines gAC |jAC(ZAC) uniquely up to 2-isomorphism.

(h) When C = A, gAA is 2-isomorphic to hA|ZA .

In a similar way to the choice of the εAC in the proof of Step 2(iii), one can show
using previous inductive steps that these conditions on gAC are consistent on
overlaps, so at each inductive step we can choose gAC satisfying (a)–(h). Hence
by induction we can choose gAC for all A,C such that (D.36)–(D.40) hold.

By a similar argument we can choose the dBc : ZB → (0,∞) for all B, c
by induction on increasing |B| such that (D.35), (D.41) and (D.42) hold. Let
B ∈ I, and suppose we have chosen dCc′ for all C ∈ I with |C|2 < |B| and
c′ ∈ CC . Then in the inductive step we must choose dBc for c ∈ CB . Equation
(D.42) implies that we must have

dBc|WBc
= bBc|−1

WBc
, where WBc =

⋃
A∈I:A<B, XA∩XB 6=∅, c∈CB\qAB(CA)

jAB(ZAB).

Here WBc is open in ZB . If c ∈ CB \ qAB(CA) then ∂(jAB(ZAB))∩ ∂cZB = ∅,
so ∂WBc ∩ ∂cZB = ∅. But bBc : ZB → [0,∞) is zero exactly on iZB (∂cZB).
Hence bBc > 0 on WBc, and bBc|−1

WBc
is well-defined.

Let C ∈ I with B < C and XB ∩ XC 6= ∅, and let c ∈ CB . Then (D.41)
essentially determines dBc|ZBC , noting that dCqBC(c) is already chosen in a
previous inductive step. Write ZcBC for the open d-submanifold in ZBC where
bBc > 0. Then (D.41) forces

dBc|ZcBC = bBc|−1
ZcBC
·
(
dCqBC(c) · bCqBC(c)

)
◦ jBC |ZcBC .

It is not immediately obvious whether (D.41) can be solved for dBc|ZBC near
points z ∈ ZBC with bBc(z) = 0, since bBc|−1

ZBC
does not make sense at such z.

To prove that it can be solved, note that z = iZB (z′) for a unique z′ ∈ ∂cZB ,
and jBC(z) = iZC (z′′) for a unique z′′ ∈ ∂qBC(c)ZC , and (z′, z′′) lies in SjBC .
As (ZC , bCqBC(c)) is a boundary defining function for ZC at z′′ and dCqBC(c) :
ZC → (0,∞), Proposition 6.6(d) implies that (ZC ,dCqBC(c) · bCqBC(c)) is a
boundary defining function for ZC at z′′. As (z′, z′′) ∈ SjBC , Definition 6.2(i)

implies that (W,
(
dCqBC(c) ·bCqBC(c)

)
◦ jBC |W) is a boundary defining function

for ZB at z′ for some open neighbourhood W of z in ZBC ⊆ Z.
Now (ZB , bBc) is also a boundary defining function for ZB at z′. Therefore

Proposition 6.6(c) shows that there exists an open neighbourhood W′ of z in W
and a 1-morphism e : W′ → (0,∞) such that e·bBc|W′ =

(
dCqBC(c) ·bCqBC(c)

)
◦
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jBC |W′ . This e is a possible choice for dBc near z in ZBC satisfying (D.41).
Thus, (D.41) is solvable for dBc near each z ∈ ZBC , and the solution is unique
on the open subset ZcBC ⊆ ZBC . By combining local choices for dBc with a
partition of unity, we can find a global choice for dBc on ZBC satisfying (D.41).

We have shown that in the inductive step when we choose dBc : ZB →
(0,∞), to satisfy (D.42) we must have dBc|WBc

= bBc|−1
WBc

for WBc ⊆ ZB
open, and to satisfy (D.41) we must prescribe dBc|ZBC for each C ∈ I with
B < C and XB ∩ XC 6= ∅, uniquely on ZcBC ⊆ ZBC . As in the induction
for gAC , previous steps imply these conditions are consistent on overlaps, so
we can choose dBc globally on ZB satisfying (D.41) and (D.42). Do this for
all c ∈ CB . If the resulting family of dBc do not satisfy the ΓB-equivariance
condition (D.35), then average them over the ΓB-action, and they will. Hence
by induction we can choose dBc for all B, c to satisfy (D.35), (D.41) and (D.42).

We have now proved that we can choose fB to satisfy Steps 3(ii)(a),(b) and
3(iii)(d) in §D.1. Furthermore part (h) and the definition of hC implies that gCC
is an embedding on ZC \WC , and part (g) implies that gAC is an embedding
on jAC(ZAC \WA), and furthermore jAC extends to ̃AC : UAC → ZC for
some open neighbourhood UAC of the closure of ZAC in ZA, and gAC is an
embedding on ̃AC(UAC \WA).

Now ZC \WC together with tC(γ)
[
̃AC(UAC \WA)

]
for all A ∈ I with

C ( A and XA ∩XC 6= ∅ and γ ∈ ΓC form an open cover of ZC . Hence ZC is
covered by open d-submanifolds on which one of the terms (gAC ◦tC(γ−1))⊗|γ〉
in the definition (D.34) of fC is an embedding. Therefore fC is an immersion.
But using the condition that hA|Ẑa1\WA

maps to RRRnA \ {0} above we can show
that fC is injective, so fC is an embedding. This completes Step 3.

D.5 Step 4: Construct the good coordinate system

For part (i), let A ∈ I, so that Step 3(ii) gives a manifold with corners UA and
an sf-embedding fA : ZA → UA, which is equivariant under the actions tA, r̃A
of ΓA on ZA,UA. Furthermore, writing A = {a1, . . . , an} with a1 ≺ · · · ≺ an,
so that ZA ⊆ Ẑa1 is open with compact closure ZA in Ẑa1 , the embedding fA
extends to an open neighbourhood of ZA in Ẑa1 .

Apply Theorem 7.48 to the sf-embedding fA : ZA → UA. This implies
that there exist an open subset VA in UA with fA(ZA) ⊆ VA, a vector bundle
EA → VA, a smooth section sA : VA → EA of E, and a 2-morphism θA fitting
into a 2-Cartesian diagram (D.11) in dManc. The proof of Theorem 7.48 is
easily extended to work equivariantly under the ΓA-actions on ZA, UA, as fA is
ΓA-equivariant. Thus we may choose VA, EA, sA, θA to that VA is ΓA-invariant,
and there is a lift r̂A : ΓA → Aut(EA) of the ΓA-action on VA to EA, so that
sA, θA are ΓA-equivariant. Since fA extends to an open neighbourhood of ZA
in Ẑa1 , we can also choose EA, sA, θA, r̂A to extend to a ΓA-invariant open
neighbourhood of ZA in Ẑa1 . This proves Step 4(i)(a)–(e).

Now both ZA and SVA,EA,sA are fibre products VA×sA,EA,0 VA, where the
projections to the first factor are fA : ZA → VA and SidVA ,0

: SVA,EA,sA →
SVA,0,0 = VA. Hence we can choose an equivalence kA : SVA,EA,sA → ZA
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and a 2-morphism ξA : fB ◦ kA ⇒ SidVA ,0
. We can also choose kA, ξA to be

ΓA-equivariant. Then kA descends to [kA, idΓA ] as in (D.12), and we define
ψA : [SVA,EA,sA/ΓA]→ XA by (D.13).

Then (VA, EA,ΓA, sA,ψA) is a type A Kuranishi neighbourhood on X, by
Definition 12.47. This completes part (i) of Step 4. During the next steps
we may need to make VA smaller, that is, we replace VA by a ΓA-invariant
open neighbourhood V ′A of fA(ZA) in VA, and replace EA, sA, θA by E′A =
EA|V ′A , s′A = sA|V ′A , θ′A = θA|V ′A . Although this take places during an induction
argument with infinitely many steps, because of the finiteness condition Step
1(ii)(c) for each A ∈ I we will need to make VA smaller only finitely many times,
so the final answer for VA is well-defined.

For part (ii), let A,B ∈ I with A < B and XA∩XB 6= ∅, and set VAB = VA∩
l−1
AB(VB). Then VAB is ΓA-invariant, and ψA|... : [SVAB ,EA|VAB ,sA|VAB /ΓA] →
XA ∩ XB and kA|... : SVAB ,EA|VAB ,sA|VAB → ZAB are equivalences. Consider
the 2-commutative diagram in dManc:

SVAB ,EA|VAB ,sA|VAB
hAB��

kA|...
//

SidVAB
,0

**
ξA|... ⇑

� �� �
HP

χAB

ZAB

jAB��

fA|ZAB
//

� �� �
GO

id

VA

l̃AB ��
SVB ,EB ,sB

kB //

SidVB
,0

33
ξB ⇓

ZB
fB // VB .

(D.43)

The right hand square 2-commutes by Step 3(iii), and the upper and lower
semicircles by the definition of kA, ξA above. Since kB is an equivalence we can
choose a 1-morphism hAB and 2-morphism χAB to make the left hand square 2-
commute, where hAB is unique up to 2-isomorphism, and as kA|···,kB , jAB are
equivariant under ΓA,ΓB , ρAB we can also choose hAB , χAB to be equivariant.

Composing 2-morphisms across (D.43) gives a 2-morphism η : l̃AB ◦SidVAB ,0

⇒ SidVB ,0
◦ hAB , so as in §2.2, η is a morphism (SidVB ,0

◦ hAB)∗(FVB ) →
ESVAB,EAB |···,sAB |··· in qcoh(SVAB ,EAB |···,sAB |···). There are natural isomorphisms

(SidVB ,0
◦ hAB)∗(FVB ) ∼= (SidVB ,0

◦ hAB)∗(T ∗VB) ∼= h∗AB(FSVB,EB,sB ).

Let η′ : h∗AB(FSVB,EB,sB ) → ESVAB,EAB |···,sAB |··· correspond to −η under this

isomorphism. Since η is a 2-morphism in dManc, η′ satisfies (6.9) and (6.10), so
by Proposition 6.9 there is a unique 1-morphism h′AB : SVAB ,EA|VAB ,sA|VAB →
SVB ,EB ,sB in dManc such that η′ : hAB ⇒ h′AB is a 2-morphism. Then (D.43)
with h′AB and χ′AB = χAB � (idkB ∗ (−η′)) in place of hAB , χAB 2-commutes,
and has composition (idSidVB

,0
∗η′)�η = 0 = id. This shows that we can choose

hAB , χAB so that the composition of 2-morphisms (D.43) is the identity, so that
SidVB ,0

◦ hAB = l̃AB ◦ SidVAB ,0
, and this in fact determines hAB uniquely. We

choose hAB , χAB in this way.
Next we apply Theorem 7.19 to hAB : SVAB ,EA|VAB ,sA|VAB → SVB ,EB ,sB .

This shows that we may choose an open neighbourhood ṼAB of sA|−1
VAB

(0) in
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VAB , a smooth map eAB : ṼAB → VB , and a morphism of vector bundles
êAB : EA|ṼAB → e∗AB(EB) with êAB ◦ sA|ṼAB = e∗AB(sB), such that hAB =
SeAB ,êAB ◦ i

−1

ṼAB ,VAB
. We want ṼAB , eAB , êAB to satisfy some extra conditions:

(a) We should have eAB = lAB |ṼAB .

(b) ṼAB should be ΓA-invariant, and êAB should be ρAB-equivariant, that is,
r̃A(γ)|∗

ṼAB
(êAB) ◦ r̂A(γ)|ṼAB = e∗AB(r̂B(ρAB(γ))) ◦ êAB for all γ ∈ ΓA.

(c) êAB should be an embedding of vector bundles, that is, it has a left inverse.

(d) If v, v′ ∈ ṼAB and δ ∈ ΓB with r̃B(δ)◦eAB(v′) = eAB(v), then there exists
γ ∈ ΓA with ρAB(γ) = δ and r̃A(γ)(v′) = v.

(e) We should have ṼAB = VAB , so that hAB = SeAB ,êAB .

Here is how to modify the construction to achieve this. For (a), the proof of
Theorem 7.19 following that of Theorem 3.34 first chooses Ṽ = ṼAB and f =
eAB such that (3.23) commutes. Since SidVB ,0

◦hAB = l̃AB ◦SidVAB ,0
, equation

(3.23) commutes with f = lAB |ṼAB , so lAB |ṼAB is a possible choice for eAB . For

(b), we can make ṼAB ΓA-invariant by replacing it by Ṽ ′AB =
⋂
γ∈ΓA

r̃A(γ)[ṼAB ],

and restricting êAB to Ṽ ′AB . Having done this, we can make êAB equivari-
ant under ρAB by replacing it by ê′AB = 1

|ΓA|
∑
γ∈ΓA

e∗AB(r̂B(ρAB(γ)))−1 ◦
r̃A(γ)∗(êAB) ◦ r̂A(γ). Then ê′AB is ρAB-equivariant, satisfies ê′AB ◦ sA|ṼAB =
e∗AB(sB), and is a possible choice in the proof of Theorem 7.19.

For (c), since jAB is an equivalence with an open d-submanifold, so are
hAB and SeAB ,êAB . Therefore Theorem 7.21 shows that for all v ∈ ṼAB with
sAB(v) = 0 and w = eAB(v), the following sequence is exact:

0 // TvVA
dsA(v)⊕ deAB(v)// EA|v ⊕ TwVB

êAB(v)⊕−dsB(w)// EB |vB // 0. (D.44)

As eAB = lAB |ṼAB and lAB is injective, deAB(v) is injective, so exactness implies
that êAB(v) : EA|v → EB |w is injective. This is an open condition, so êAB
is injective (has a left inverse) on an open neighbourhood Ṽ ′AB of sA|−1

ṼAB
(0).

Replacing ṼAB by a ΓA-invariant choice of Ṽ ′AB proves (c).
For (d), note that using Step 1(iv)(b) and the definition of ZAB in Step 2 we

can show that jAB(ZAB)∩r̃B(δ)[jAB(ZAB)] = ∅ for all δ ∈ ΓB\ρAB(ΓA), where
the intersection is in ZB . Since fB identifies ZB with {w ∈ VB : sB(w) = 0}
and jAB(ZAB) with {eAB(v) : v ∈ ṼAB , sA(v) = 0}, we see that if v, v′ ∈ ṼAB
with sA(v) = sA(v′) = 0 and δ ∈ ΓB with r̃B(δ) ◦ eAB(v′) = eAB(v), then there
exists γ ∈ ΓA with ρAB(γ) = δ and r̃A(γ)(v′) = v. This is an open condition, so
it also holds in an open neighbourhood of sA|−1

ṼAB (0) in ṼAB . Thus by making
ṼAB smaller, we can make (d) hold.

For (e), the idea is to replace VB by a ΓB-invariant open neighbourhood V ′B
of s−1

B (0) in VB with the property that VA ∩ l−1
AB(V ′B) ⊆ ṼAB . Then we can

replace EB by E′B = EB |V ′B , sB by s′B = sB |V ′B , ṼAB by V ′AB = VA ∩ l−1
AB(V ′B),

eAB by e′AB = eAB |V ′AB , and êAB by ê′AB = êAB |V ′AB , and these new choices
satisfy (a)–(e), as we want.

To show that such a V ′B exists, let w ∈ s−1
B (0), and consider the three cases:
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(A) w ∈ eAB(sA|−1

ṼAB
(0)),

(B) w ∈ s−1
B (0) \ eAB(sA|−1

ṼAB
(0)), and

(C) w ∈ eAB(sA|−1

ṼAB
(0)) \ eAB(sA|−1

ṼAB
(0)),

where eAB(sA|−1

ṼAB
(0)) is the closure of eAB(sA|−1

ṼAB
(0)) in s−1

B (0) ⊆ VB .

In case (A), as lAB is an embedding, there is an open neighbourhood U of
w in VB such that VA ∩ l−1

AB(U) ⊆ ṼAB . In case (B), as lAB is continuous,
there is an open neighbourhood U of w in VB such that VA ∩ l−1

AB(U) = ∅ ⊆
ṼAB . In case (C), the fact that ṼAB is an open neighbourhood of sA|−1

VAB
(0)

in VAB does not guarantee that w has an open neighbourhood U in VB with
VA∩l−1

AB(U) ⊆ ṼAB . However, as above fA extends to an open neighbourhood of

ZA in Ẑa1 , and similarly fB , jAB extend to open neighbourhoods of ZA,ZAB .

So we can suppose VA, . . . , ṼAB , eAB have extensions V̇A, . . . ,
˜̇VAB , ėAB with

eAB(sA|−1

ṼAB
(0)) ⊆ ėAB(ṡA|−1˜̇VAB (0)). Then (C) follows from (A). We can now

take V ′B to be the union of such a neighbourhood U for each w ∈ s−1
B (0).

Our construction of VAB , eAB , êAB involves making VB smaller, so we should
check that this can be done consistently with all other choices. We do this by an
inductive procedure, working by transfinite induction on A ∈ I in the order <,
which is valid as (I,<) is a well-ordered set. At the inductive step A we choose
VAB , eAB , êAB for all B ∈ I with A < B and XA∩XB 6= ∅, as above, and making
VB smaller if necessary. Making VB smaller also modifies VA′B , eA′B , êA′B for
A′ < A with XA′∩XB 6= ∅, but this is not a problem. At step A we only modify
VB for B > A, so at step A, VA′ is in its final form for all A′ 6 A. Step 1(ii)(c)
implies that for any B ∈ I there are only finitely many A ∈ I with A < B and
XA ∩ XB 6= ∅. Hence for any B ∈ I, we only make VB smaller finitely many
times during the induction. Thus the process works, and by induction we can
choose VA, EA, sA, r̂A, VAB , eAB , êAB satisfying Step 4(i), the first part of Step
4(ii), and (a)–(e) above.

Suppose êAB and ê′AB are two possible choices for êAB . Then SeAB ,ê′AB =
hAB = SeAB ,êAB , so Lemma 7.16 gives ê′AB = êAB +O(sA). Conversely, if êAB
is as above and ê′AB satisfies ê′AB = êAB + O(sA) and is ρAB-equivariant and
injective, then ê′AB is an alternative choice for êAB . We will use the freedom to
change êAB by an O(sA) term in the proof of part (iii).

For all such A,B, define a 2-morphism ηAB : ψB ◦ [SeAB ,êAB , ρAB ] ⇒
ψA|[SVAB,EA|VAB ,sA|VAB /ΓA] to be the composition across the diagram

[SVAB ,EA|VAB ,sA|VAB /ΓA]
[kA|···,idΓA

]
//

[SeAB,êAB ,ρAB ]
��

[ZAB/ΓA]

[jAB ,ρAB ]
��

iA|···
--[[[[[[[[[[[[[[[[[[[[

[χAB ,1]⇑ ζAB ⇑ X,

[SVB ,EB ,sB/ΓB ]
[kB ,idΓB

]
// [ZB/ΓB ] iB

11ccccccccccccccccccccc

where χAB comes from (D.43), and ζAB from Step 2(ii).
The material so far now shows (VAB , eAB , êAB , ρAB ,ηAB) satisfies the cor-

ners analogues of Definition 10.46(a)–(g), where the second part of Definition
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10.46(c) is (d) above, and Definition 10.46(e) follows from (D.44) exact and
deAB(v), êAB(v) injective, and Definition 10.46(g) from VAB = VA ∩ l−1

AB(VB),
as then VAqVAB VB is homeomorphic to lAB(VA)∪VB , where the union is in UB ,
and so is Hausdorff. Therefore (VAB , eAB , êAB , ρAB ,ηAB) is a type A coordi-
nate change from (VA, EA,ΓA, sA,ψA) to (VB , EB ,ΓB , sB ,ψB). This completes
Step 4(ii).

For part (iii), let A,B,C ∈ I with A < B < C and XA∩XB∩XC 6= ∅. Then
using (D.7) and the 2-morphisms χAB , χAC , χBC from (D.44) for AB, AC, BC
we can write down a 2-morphism

ωABC : Sr̃C(γABC),r̂C(γABC) ◦ hBC ◦ hAB |S
VAC∩e

−1
AB

(VBC ),EA|···,sA|···

=⇒ hAC |S
VAC∩e

−1
AB

(VBC ),EA|···,sA|···
.

(D.45)

Using the identities SidVB ,0
◦ hAB = l̃AB ◦ SidVAB ,0

from above and lAC =
rC(γABC) ◦ lBC ◦ lAB from Step 3(iv) we find that

SidVC ,0
◦ Sr̃C(γABC),r̂C(γABC) ◦ hBC ◦ hAB |S

VAC∩e
−1
AB

(VBC ),EA|···,sA|···

= r̃C(γABC) ◦ SidVC ,0
◦ hBC ◦ hAB |S

VAC∩e
−1
AB

(VBC ),EA|···,sA|···

= r̃C(γABC) ◦ l̃BC ◦ SidVB ,0
◦ hAB |S

VAC∩e
−1
AB

(VBC ),EA|···,sA|···
(D.46)

= r̃C(γABC) ◦ l̃BC ◦ l̃AB ◦ Sid
VAC∩e

−1
AB

(VBC )
,0

= l̃AC ◦ Sid
VAC∩e

−1
AB

(VBC )
,0 = SidVC ,0

◦ hAC |S
VAC∩e

−1
AB

(VBC ),EA|···,sA|···
.

In (D.43) we chose hAC to be the unique 1-morphism in its 2-isomorphism
class with SidVC ,0

◦ hAC = l̃AC ◦ SidVAC ,0
. Thus (D.45)–(D.46) imply that

hAC |S
VAC∩e

−1
AB

(VBC ),EA|···,sA|···
=

Sr̃C(γABC),r̂C(γABC) ◦ hBC ◦ hAB |S
VAC∩e

−1
AB

(VBC ),EA|···,sA|···
,

an analogue of (D.7). Substituting hAB = SeAB ,êAB , etc., gives

SeAC |VAC∩e−1
AB

(VBC )
,êAC |... = Sr̃C(γABC)◦eBC◦eAB |VAC∩e−1

AB
(VBC )

,

(e∗AB(e∗BC(r̂C(γABC)))◦e∗AB(êBC)◦êAB)|...

.

Thus Lemma 7.16 implies that

êAC |VAC∩e−1
AB(VBC) =(

e∗AB(e∗BC(r̂C(γABC))) ◦ e∗AB(êBC) ◦ êAB
)
|VAC∩e−1

AB(VBC) +O(sA),

which apart from the error term O(sA) is equation (D.14).
In the proof of Step 2(iii), our definition of jAB involved a 2-morphism

εAB : ̃AB ⇒ jAB , and we chose the εAB by induction on |A|−|B| to satisfy some
conditions which ensured that (D.7) holds exactly, not just up to 2-isomorphism.
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In a very similar way, we can arrange to modify the êAB by induction on |A|−|B|
so that (D.14) holds exactly, not just up to errors O(sA).

In the inductive step when we modify êAC , if B ∈ I with A < B < C and
XA ∩ XB ∩ XC 6= ∅ then |A| − |B|, |B| − |C| < |A| − |C|, so we have already
chosen the final values of êAB , êBC in previous inductive steps. We choose a new
value of êAC such that (D.14) holds exactly for each such B. This prescribes
êAC on VAC ∩ e−1

AB(VBC). From above, the new and old values of êAC differ by
O(sA), so the new value of êAC is also an allowed choice. In a similar way to
Step 2(iii), the prescribed values agree on overlaps between VAC ∩ e−1

AB(VBC)
and VAC ∩ e−1

AB′(VB′C) for different B,B′. Using ideas above on extensions to
closures, and making the VA smaller if necessary, we can show the induction
works. This completes part (iii).

We have now constructed data
(
I,<, (VA, EA,ΓA, sA,ψA), (VAB , eAB , êAB ,

ρAB ,ηAB), γABC
)

satisfying the corners analogues of Definition 10.47(a)–(d).
To make it satisfy (e), note that it follows from Step 2 that if A < B < C in
I with XA ∩XC 6= ∅ and XB ∩XC 6= ∅ and z ∈ ZAC , z′ ∈ ZBC , δ ∈ ΓC with
jBC(v′) = tC(δ) ◦ jAC(v) in ZC , then XA ∩XB ∩XC 6= ∅, and v ∈ ZAB , and
there exists γ ∈ ΓB with ρBC(γ) = δ γABC and v′ = tB(γ) ◦ jAB(v).

Since fB identifies ZB with {w ∈ VB : sB(w) = 0} and jAB(ZAB) with
{eAB(v) : v ∈ ṼAB , sA(v) = 0}, and so on, this implies that if A < B < C
in I with XA ∩ XC 6= ∅ and XB ∩ XC 6= ∅ and v ∈ VAC , v′ ∈ VBC with
sA(v) = sB(v′) = 0 and δ ∈ ΓC with eBC(v′) = r̃C(δ) ◦ eAC(v) in VC , then
XA∩XB∩XC 6= ∅, and v ∈ VAB , and there exists γ ∈ ΓB with ρBC(γ) = δ γABC
and v′ = r̃B(γ)◦eAB(v). That is, Definition 10.47(e) holds provided v, v′ satisfy
the extra conditions sA(v) = sB(v′) = 0. As this is an open condition, replacing
VA, VB by open neighbourhoods V ′A, V

′
B of s−1

A (0), s−1
B (0) in VA, VB , we can make

Definition 10.47(e) hold. Thus
(
I,<, . . . , γABC

)
is a type A good coordinate

system, proving the first part of Theorem 12.48.

737



References

[1] M. Adachi, Embeddings and immersions, Translations of mathematical
monographs 124, A.M.S., Providence, RI, 1993.

[2] A. Adem, J. Leida and Y. Ruan, Orbifolds and Stringy Topology, Cambridge
Tracts in Math. 171, Cambridge University Press, Cambridge, 2007.

[3] A. Angel, Orbifold cobordism, preprint, 2009.

[4] A. Angel, A spectral sequence for orbifold cobordism, pages 141–154 in M.
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Introduction to stacks, book in preparation, 2010.

[12] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128
(1997), 45–88.

[13] K. Behrend and P. Xu, Differentiable stacks and gerbes, J. Symplectic
Geom. 9 (2011), 285–341. math.DG/0605694.

[14] J.E. Bergner, A survey of (∞, 1)-categories, math.AT/0610239.

[15] F. Borceux, Handbook of categorical algebra 1. Basic category theory, En-
cyclopedia of Mathematics and its Applications 50, Cambridge University
Press, 1994.

[16] D. Borisov, Derived manifolds and d-manifolds, arXiv:1212.1153, 2012.

738



[17] D. Borisov and J. Noel, Simplicial approach to derived differential mani-
folds, arXiv:1112.0033, 2011.

[18] G.E. Bredon, Topology and Geometry, Graduate Texts in Math. 139,
Springer-Verlag, New York, 1993.

[19] A.S. Cattaneo and F. Schätz, Introduction to supergeometry, Rev. Math.
Phys. 23 (2011), 669–690. arXiv:1011.3401.

[20] J. Cerf, Topologies de certains espaces de plongements, Bull. Soc. Math.
France 89 (1961), 227–380.

[21] W. Chen and Y. Ruan, Orbifold Gromov–Witten theory, pages 25–86
in A. Adem, J. Morava and Y. Ruan, editors, Orbifolds in mathe-
matics and physics, Cont. Math. 310, A.M.S., Providence, RI, 2002.
math.AG/0103156.

[22] W. Chen and Y. Ruan, A new cohomology theory of orbifold, Commun.
Math. Phys. 248 (2004), 1–31. math.AG/0004129.

[23] I. Ciocan-Fontanine and M.M. Kapranov, Derived Quot schemes, Ann. Sci.
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Glossary of Notation

Generally we give two page references, the first in Chapter 1, and the second in
the remainder of the book.

Bk(Y ) classical bordism group of manifold Y , 142, 571

Borb
k (Y) orbifold bordism group of orbifold Y, 144, 580

Beff
k (Y) effective orbifold bordism group of orbifold Y, 144, 580

C, Ĉ : Manc → M̌anc ‘corner functors’ for manifolds with corners, 44, 287, 288

C, Ĉ : dSpac → dSpac ‘corner functors’ for d-spaces with corners, 53, 343, 345

C, Ĉ : Orbc → Ǒrbc ‘corner functors’ for orbifolds with corners, 118, 452

C, Ĉ : dStac → dStac ‘corner functors’ for d-stacks with corners, 127, 541

C,D,E, . . . C∞-rings, 9, 659

C qD E pushout of C∞-rings C,D,E, 660

C ⊗̂D coproduct of C∞-rings C,D, 660

C-mod abelian category of modules over a C∞-ring C, 13, 669

C-modco abelian subcategory of complete modules in C-mod for C fair, 14, 672

C-modfp subcategory of finitely presented modules in C-mod, 669

coh(X) category of coherent sheaves on C∞-scheme X, 672

coh(X ) category of coherent sheaves on Deligne–Mumford C∞-stack X , 687

coh(V ⇒ U) category of coherent modules on a groupoid V ⇒ U, 689

C∞Rings category of C∞-rings, 9, 659

C∞Ringsfa category of fair C∞-rings, 662

C∞Ringsfg category of finitely generated C∞-rings, 662

C∞Ringsfp category of finitely presented C∞-rings, 662

C∞RS category of C∞-ringed spaces, 11, 665

C∞Sch category of C∞-schemes, 11, 666

C∞Schlf category of locally fair C∞-schemes, 11, 666

C∞Schlfp category of locally finitely presented C∞-schemes, 666

C∞Schlf
ssc category of separated, second countable, locally fair C∞-schemes,

19, 666

C∞Sta 2-category of C∞-stacks, 69, 676

dBk(Y ) d-manifold bordism group of manifold Y , 142, 575

dBorb
k (Y) d-orbifold bordism group of orbifold Y, 145, 587

dBsef
k (Y) semieffective d-orbifold bordism group of orbifold Y, 145, 587

dBeff
k (Y) effective d-orbifold bordism group of orbifold Y, 145, 587
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[δ] : [f, ρ]⇒ [g, σ] quotient 2-morphism of quotient 1-morphisms, 73, 682

DerMan Spivak’s ∞-category of derived manifolds, 148, 648

δX(E) : id−1
X (E)→ E canonical isomorphism of pullback sheaves, 664

δX(E) : id∗X(E)→ E canonical isomorphism of pullbacks in OX -mod, 15, 672

∂f±X sets of decomposition ∂X = ∂f+X q ∂
f
−X of boundary ∂X induced by

f : X → Y in Manc, 43, 285

∂f±X sets of decomposition ∂X = ∂f+Xq ∂f−X of boundary ∂X induced by
1-morphism f : X→ Y in dSpac, 50, 321

∂f±X sets of decomposition ∂X = ∂f+X q ∂
f
−X of boundary ∂X induced by

1-morphism f : X→ Y in Orbc, 116, 447

∂f±X sets of decomposition ∂X = ∂f+X q ∂
f
−X of boundary ∂X induced by

1-morphism f : X→ Y in dStac, 125, 536

dMan 2-category of d-manifolds, 24, 214

dM̄an 2-subcategory of d-manifolds with corners equivalent to d-manifolds,
58, 388

dM̂an 2-subcategory of d-orbifolds equivalent to d-manifolds, 97, 489

dManb 2-category of d-manifolds with boundary, 58, 388

dManc 2-category of d-manifolds with corners, 58, 388

dM̌anc 2-category of disjoint unions of d-manifolds with corners of different
dimensions, 59, 389

dM̂anc 2-subcategory of d-orbifolds with corners equivalent to d-manifolds
with corners, 131, 552

DMC∞Sta 2-category of Deligne–Mumford C∞-stacks, 73, 683

DMC∞Stalf 2-category of locally fair Deligne–Mumford C∞-stacks, 73, 683

DMC∞Stalfp 2-category of locally finitely presented Deligne–Mumford C∞-
stacks, 683

DMC∞Stalf
ssc 2-category of separated, second countable, locally fair Deligne–

Mumford C∞-stacks, 73, 683

DMC∞Stare 2-category of Deligne–Mumford C∞-stacks with representable
1-morphisms, 701

dOrb 2-category of d-orbifolds, 97, 489

dŌrb 2-subcategory of d-orbifolds with corners equivalent to d-orbifolds,
131, 551

dOrbb 2-category of d-orbifolds with boundary, 131, 551

dOrbc 2-category of d-orbifolds with corners, 131, 551

dǑrbc 2-category of disjoint unions of d-orbifolds with corners of different
dimensions, 132, 553
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dSpa 2-category of d-spaces, 19, 161

dS̄pa 2-subcategory of d-spaces with corners equivalent to d-spaces, 49, 302

dŜpa 2-subcategory of d-stacks equivalent to d-spaces, 90, 470

dSpab 2-category of d-spaces with boundary, 49, 302

dSpac 2-category of d-spaces with corners, 48, 302

dŜpac 2-subcategory of d-stacks with corners equivalent to d-spaces with
corners, 123, 532

dS̃pac alternative 2-category of d-spaces with corners, 304

dSta 2-category of d-stacks, 89, 470

dS̄ta 2-subcategory of d-stacks with corners equivalent to d-stacks, 122, 531

dStab 2-category of d-stacks with boundary, 122, 531

dStac 2-category of d-stacks with corners, 122, 531

∂X boundary of a manifold with corners X, 40, 282

∂X boundary of a d-space with corners X, 49, 314

∂X boundary of an orbifold with corners X, 115, 446

∂X boundary of a d-stack with corners X, 123, 535

(E•, φ) virtual quasicoherent sheaf, or virtual vector bundle, 28, 205

FC∞Sta
C∞Sch : C∞Sch→ C∞Sta inclusion from C∞-schemes to C∞-stacks, 69,

676

f∗(E) pushforward (direct image) sheaf, 663

f∗(E) pullback (inverse image) sheaf, 664

f∗(E) pullback of sheaf of OY -modules under f : X → Y , 15, 671

f∗(E) pullback of sheaf of OY -modules under f : X → Y, 76, 690

[f, ρ] : [X/G]→ [Y /H] quotient 1-morphism of quotient C∞-stacks, 73, 682

f ] : f−1(OY )→ OX morphism of sheaves of C∞-rings in f : X → Y , 11, 665

f] : OY → f∗(OX) morphism of sheaves of C∞-rings in f : X → Y , 11, 665

f ] : f−1(OY)→ OX morphism of sheaves of C∞-rings on X from a 1-morphism
f : X → Y of Deligne–Mumford C∞-stacks X ,Y, 77, 694

Γ : LC∞RS→ C∞Ringsop global sections functor on C∞-ringed spaces, 665

Γ : OX -mod→ C-mod global sections functor on OX -modules, X = SpecC, 672

Ho(Orb) homotopy category of the 2-category of orbifolds Orb, 83, 427

If,g(E) : (g ◦ f)−1(E)→ f−1(g−1(E)) isomorphism of pullback sheaves, 664

If,g(E) : (g ◦ f)∗(E)→ f−1(g−1(E)) isomorphism of pullbacks in OX -mod, 15,
672

iṼ ,V : SṼ ,Ẽ,s̃ → SV,E,s inclusion of open set in ‘standard model’ d-manifold,
26, 223
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iṼ ,V : SṼ ,Ẽ,s̃ → SV,E,s inclusion of open set in ‘standard model’ d-manifold
with corners, 60, 395

iṼ,V : SṼ,Ẽ,s̃ → SV,E,s inclusion of open set in ‘standard model’ d-orbifold, 98,
493

iṼ,V : SṼ,Ẽ,s̃ → SV,E,s inclusion of open set in ‘standard model’ d-orbifold with
corners, 133, 554

IX : OX -mod→ OX -mod inclusion functor from sheaves on a C∞-scheme X
to sheaves on the associated Deligne–Mumford C∞-stack X = X̄, 75,
688

iX : ∂X → X inclusion of boundary ∂X into a manifold with corners X, 40,
282

iX : ∂X→ X inclusion of boundary ∂X into a d-space with corners X, 48, 320

iX : ∂X→ X inclusion of boundary ∂X into an orbifold with corners X, 112, 446

iX : ∂X→ X inclusion of boundary ∂X into a d-stack with corners X, 122, 535

jX,Γ : XΓ ↪→X inclusion of Γ-fixed d-subspace XΓ in a d-space X, 23, 200

jX,Γ : XΓ ↪→ X inclusion of Γ-fixed subset XΓ in a manifold with corners X,
47, 289

jX,Γ : XΓ ↪→ X inclusion of Γ-fixed d-subspace XΓ in a d-space with corners
X, 57, 379

λf : u∗f (NY)→ s∗f (NX) morphism of conormal line bundles from 1-morphism
of d-spaces with corners f : X→ Y, 307

λf : u∗f (NY)→ s∗f (NX) morphism of conormal line bundles from 1-morphism
of d-stacks with corners f : X→ Y, 529

ΛΓ lattice generated by nontrivial representations of a finite group Γ, 85,
432

ΛΓ
+ ‘positive cone’ of classes of Γ-representations in lattice ΛΓ, 85, 432

LC∞RS category of local C∞-ringed spaces, 665

L(E•,φ) orientation line bundle of a virtual vector bundle (E•, φ), 38, 269, 506

LT∗X orientation line bundle of a d-manifold X, 38, 272

LT∗X orientation line bundle of a d-manifold with corners X, 67, 420

LT∗X orientation line bundle of a d-orbifold X , 106, 506

LT∗X orientation line bundle of a d-orbifold with corners X, 139, 564

LX ,LX/Y cotangent complexes of a scheme X and a morphism f : X → Y ,
631

Man category of manifolds, 10, 283

M̂an 2-subcategory of d-spaces equivalent to manifolds, 19, 161

M̄an 2-subcategory of d-spaces with corners equivalent to manifolds without
boundary, 329
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Manb category of manifolds with boundary, 41, 283

M̄anb 2-subcategory of d-spaces with corners equivalent to manifolds with
boundary, 329

Manc category of manifolds with corners, 41, 283

M̌anc category of disjoint unions of manifolds with corners of different di-
mensions, 44, 287

M̄anc 2-subcategory of d-spaces with corners equivalent to manifolds with
corners, 52, 329

MSpec : C-mod→ OX -mod spectrum functor on C-modules, X = SpecC, 14,
672

µf : u∗f (F∂Y )→ s∗f (F∂X) morphism of boundary cotangent sheaves from 1-
morphism of d-spaces with corners f : X→ Y, 307

µf : u∗f (F∂Y)→ s∗f (F∂X ) morphism of boundary cotangent sheaves from 1-
morphism of d-stacks with corners f : X→ Y, 529

NX conormal line bundle of ∂X in X for a d-space with corners X, 48, 299

NX conormal line bundle of ∂X in X for a d-stack with corners X, 122,
525

O(s) an error term in the ideal generated by a section s ∈ C∞(E), 25, 222

O(s2) an error term in the ideal generated by s⊗ s for s ∈ C∞(E), 25, 222

OΓ(X ), ÕΓ(X ), OΓ
◦ (X ), ÕΓ

◦ (X ) 1-morphisms of orbifold strata XΓ, . . . , X̂Γ
◦ of a

Deligne–Mumford C∞-stack X , 78, 695

OΓ(X ), ÕΓ(X ),OΓ
◦ (X ), ÕΓ

◦ (X ) 1-morphisms of orbifold strata XΓ, . . . , X̂Γ
◦ of

a d-stack X , 94, 480

OΓ(X), ÕΓ(X), OΓ
◦ (X), ÕΓ

◦ (X) 1-morphisms of orbifold strata XΓ, . . . , X̂Γ
◦ of an

orbifold with corners X, 120, 458

OΓ(X), ÕΓ(X),OΓ
◦ (X), ÕΓ

◦ (X) 1-morphisms of orbifold strata XΓ, . . . , X̂Γ
◦ of a

d-stack with corners X, 129, 547

ωX orientation on line bundle NX for a d-space with corners X, 48, 300

ωX orientation on line bundle NX for a d-stack with corners X, 122, 525

Orb 2-category of orbifolds, 82, 427

Ôrb 2-subcategory of d-stacks equivalent to orbifolds, 90, 470

Ǒrb 2-category of disjoint unions of orbifolds of different dimensions, 431

Ȯrb 2-subcategory of orbifolds with corners equivalent to orbifolds, 113,
440

Orbb 2-category of orbifolds with boundary, 113, 440

Orbc 2-category of orbifolds with corners, 113, 440

Ōrbc 2-subcategory of d-stacks with corners equivalent to orbifolds with
corners, 123, 532
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Ǒrbc 2-category of disjoint unions of orbifolds with corners of different di-
mensions, 117, 451

OX -mod abelian category of OX -modules on C∞-scheme X, 14, 671

OX -mod abelian category of OX -modules on Deligne–Mumford C∞-stack X ,
75, 687

Φf : Cn → C operations on C∞-ring C, for smooth f : Rn → R, 9, 659

Π̃Γ(X ), Π̂Γ(X ), Π̃Γ
◦ (X ), Π̂Γ

◦ (X ) 1-morphisms of orbifold strata XΓ, . . . , X̂Γ
◦ of a

Deligne–Mumford C∞-stack X , 78, 695

Π̃Γ(X ), Π̂Γ(X ), Π̃Γ
◦ (X ), Π̂Γ

◦ (X ) 1-morphisms of orbifold strata XΓ, . . . , X̂Γ
◦ of

a d-stack X , 94, 480

Π̃Γ(X), Π̂Γ(X), Π̃Γ
◦ (X), Π̂Γ

◦ (X) 1-morphisms of orbifold strata XΓ, . . . , X̂Γ
◦ of an

orbifold with corners X, 120, 458

Π̃Γ(X), Π̂Γ(X), Π̃Γ
◦ (X), Π̂Γ

◦ (X) 1-morphisms of orbifold strata XΓ, . . . , X̂Γ
◦ of a

d-stack with corners X, 129, 547

qcoh(X) abelian category of quasicoherent sheaves on C∞-scheme X, 14, 672

qcoh(X ) abelian category of quasicoherent sheaves on Deligne–Mumford C∞-
stack X , 75, 687

qcohG(X) abelian category of G-equivariant quasicoherent sheaves on a C∞-
scheme X acted on by a finite group G, 706

qcoh(V ⇒ U) category of quasicoherent modules on a groupoid V ⇒ U, 689

Sf ⊆ ∂X ×Y ∂Y set associated to smooth map f : X → Y in Manc, 41, 284

Sf ⊆ ∂X ×Y ∂Y C∞-scheme associated to 1-morphism f : X → Y in dSpac,
49, 301

Sf ⊆ ∂X ×Y ∂Y C∞-stack associated to 1-morphism f : X → Y in Orbc, 115,
444

Sf ⊆ ∂X ×Y ∂Y C∞-stack associated to 1-morphism f : X→ Y in dStac, 124,
528

Sf,f̂ : SV,E,s → SW,F,t ‘standard model’ 1-morphism in dMan, 26, 223

Sf,f̂ : SV,E,s → SW,F,t ‘standard model’ 1-morphism in dManc, 60, 395

Sf,f̂ : SV,E,s → SW,F,t ‘standard model’ 1-morphism in dOrb, 98, 492

Sf,f̂ : SV,E,s → SW,F,t ‘standard model’ 1-morphism in dOrbc, 133, 554

[Sf,f̂ , ρ] : [SV,E,s/Γ]→ [SW,F,t/∆] ‘standard model’ 1-morphism in dOrb, 100,
494

[Sf,f̂ , ρ] : [SV,E,s/Γ]→ [SW,F,t/∆] ‘standard model’ 1-morphism in dOrbc, 133,
555

Sh(X) category of sheaves of abelian groups on topological space X, 663

Sk(X) depth k stratum of a manifold with corners X, 40, 282

SΛ : Sf,f̂ ⇒ Sg,ĝ ‘standard model’ 2-morphism in dMan, 27, 229
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[SΛ, δ] : [Sf,f̂ , ρ]⇒ [Sg,ĝ, σ] ‘standard model’ 2-morphism in dOrb, 100, 494

Spec : C∞Ringsop → LC∞RS spectrum functor on C∞-rings, 11, 666

Sta(C,J ) 2-category of stacks on a site (C,J ), 69, 676

SV,E,s ‘standard model’ d-manifold, 24, 211

SV,E,s ‘standard model’ d-manifold with corners, 60, 385

SV,E,s ‘standard model’ d-orbifold, 98, 490

SV,E,s ‘standard model’ d-orbifold with corners, 133, 550

[SV,E,s/Γ] alternative ‘standard model’ d-orbifold, 99, 494

[SV,E,s/Γ] alternative ‘standard model’ d-orbifold with corners, 133, 554

T ∗X virtual cotangent sheaf of a d-space X, 29, 206

T ∗X virtual cotangent sheaf of a d-space with corners X, 58, 388

T ∗X virtual cotangent sheaf of a d-stack X , 96, 488

T ∗X virtual cotangent sheaf of a d-stack with corners X, 132, 551

Tf ⊆ X ×Y ∂Y set associated to smooth map f : X → Y in Manc, 41, 284

T f ⊆ X ×Y ∂Y C∞-scheme associated to 1-morphism f : X → Y in dSpac,
49, 301

T f ⊆ X ×Y ∂Y C∞-stack associated to 1-morphism f : X → Y in Orbc, 116,
444

T f ⊆ X ×Y ∂Y C∞-stack associated to 1-morphism f : X→ Y in dStac, 125,
528

vect(X) category of vector bundles on C∞-scheme X, 14, 672

vect(X ) category of vector bundles on Deligne–Mumford C∞-stack X , 75, 687

vqcoh(X) 2-category of virtual quasicoherent sheaves on a C∞-scheme X, 28,
205

vqcoh(X ) 2-category of virtual quasicoherent sheaves on a Deligne–Mumford
C∞-stack X , 96, 488

(V ⇒ U)-mod category of modules on a groupoid V ⇒ U in C∞Sch, 689

vvect(X) 2-category of virtual vector bundles on a C∞-scheme X, 29, 206

vvect(X ) 2-category of virtual vector bundles on a Deligne–Mumford C∞-stack
X , 96, 488

W,X, Y , Z, . . . C∞-schemes, 11, 666

W,X,Y ,Z, . . . d-spaces, including d-manifolds, 17, 158

W,X ,Y,Z, . . . Deligne–Mumford C∞-stacks, including orbifolds, 69, 683

W ,X ,Y ,Z, . . . d-stacks, including d-orbifolds, 87, 467

W,X,Y,Z, . . . orbifolds with corners, 113, 439

W,X,Y,Z, . . . d-stacks with corners, including d-orbifolds with corners, 122,
525
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X̄ C∞-stack associated to a C∞-scheme X, 69, 675

[X/G] quotient C∞-stack, 72, 681

XΓ fixed d-subspace of group Γ acting on a d-space X, 23, 200

XΓ fixed subset of a group Γ acting on a manifold with corners X, 47, 288

XΓ fixed d-subspace of group Γ acting on a d-space with corners X, 57,
379

XΓ, X̃Γ, X̂Γ,XΓ
◦ , X̃Γ

◦ , X̂Γ
◦ orbifold strata of a Deligne–Mumford C∞-stack X , 78,

695

XΓ,λ, X̃Γ,µ, X̂Γ,µ,XΓ,λ
◦ , X̃Γ,µ

◦ , X̂Γ,µ
◦ orbifold strata of an orbifold X , 85, 432

XΓ, X̃Γ, X̂Γ,XΓ
◦ , X̃Γ

◦ , X̂Γ
◦ orbifold strata of a d-stack X , 94, 480

XΓ,λ, X̃Γ,µ, X̂Γ,µ,XΓ,λ
◦ , X̃Γ,µ

◦ , X̂Γ,µ
◦ orbifold strata of a d-orbifold X , 107, 509

XΓ,λ, X̃Γ,µ, X̂Γ,µ,XΓ,λ
◦ , X̃Γ,µ

◦ , X̂Γ,µ
◦ orbifold strata of an orbifold with corners X,

120, 457

XΓ, X̃Γ, X̂Γ,XΓ
◦ , X̃

Γ
◦ , X̂

Γ
◦ orbifold strata of a d-stack with corners X, 129, 546

XΓ,λ, X̃Γ,µ, X̂Γ,µ,XΓ,λ
◦ , X̃Γ,µ

◦ , X̂Γ,µ
◦ orbifold strata of a d-orbifold with corners

X, 139, 566

Xtop underlying topological space of a C∞-stack X , 70, 678

X top coarse moduli C∞-scheme of a Deligne–Mumford C∞-stack X , 685
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Index

∞-category, 6–8, 20, 22, 36, 147, 186,
210, 258, 626–629, 647–653

2-category, 17–19, 28, 48–49, 69, 73,
82, 87–89, 112–113, 122, 158–
163, 205, 298–302, 426, 439–
440, 467–470, 525–531, 627,
656–658, 675

1-morphism, 18, 69, 88, 113, 159,
468, 656, 675, 676

composition, 18, 89, 159, 468,
656

2-Cartesian square, 22, 351–366,
372–378, 658, 680

locally 2-Cartesian, 314, 319
2-commutative diagram, 71, 113,

658
2-morphism, 18, 69, 89, 113, 160,

469, 656, 675, 676
horizontal composition, 19, 89,

161, 302, 470, 531, 657, 690
vertical composition, 19, 89, 160,

302, 470, 531, 656, 679, 682,
690, 699

colimit, 658
equivalence in, 20, 30, 50, 148, 164,

206, 657
fibre products in, 22, 54–56, 74,

82, 94, 119, 127–129, 137, 186,
426, 455, 479, 543–546, 561,
657–658

homotopy category, 82–84, 147–148,
186, 278–280, 426, 427, 439,
478, 498, 518, 598, 600, 614,
636–638, 657

limit, 658
pseudofunctor, 691–692, 701
pushout, 21, 178–179, 658
strict, 15, 656
strict 2-functor, 29, 52, 59, 89, 90,

96, 113, 122, 131, 132, 206
weak, 15, 82, 83, 426, 427, 657
weak 2-functor, 95, 458, 485, 691,

701

abelian category, 13–15, 75, 85, 205,
663, 672, 687, 689, 706

split short exact sequence, 30, 32,
61, 100, 134, 166–170, 197,
237, 398, 496, 555

adjoint functor, 664–666, 672
algebraic space, 74
Atiyah–Singer Index Theorem, 434, 601
atlas, 69, 676
Axiom of Choice, 76, 637, 664, 690

b-transversality, 54–56, 127–129, 345–
366, 541–543

Banach manifold, 147, 598–610, 616–
617

Banach vector bundle, 598–600, 616–
617

Fredholm section, 598–600
Implicit Function Theorem, 604–

605
smooth map, 598–600

Banach orbifold, 600
bd-transversality, 64, 137, 409–414, 561–

562
bordism, 141–146, 571–597

classical bordism, 141–142, 571–
574

fundamental class, 573
intersection product, 142, 573
pushforward, 573
unitary, 574
unoriented, 574, 578, 649

cobordism, see cobordism
d-manifold bordism, 142–143, 575–

580, 638
fundamental class, 577
intersection product, 143, 577
pushforward, 578
unitary, 578
unoriented, 578

d-orbifold bordism, 111, 112, 145–
146, 521, 587–591, 638
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and orbifold strata, 146, 588–
589

effective, 145–146, 587–588
fundamental class, 587
intersection product, 145, 587
pushforward, 587
semieffective, 145–146, 587–588
unitary, 591, 616
unoriented, 590

for Spivak’s derived manifolds, 143,
575, 578, 649

orbifold bordism, 143–145, 580–586
and orbifold strata, 144–145, 584–

586
effective, 144, 580
fundamental class, 581
intersection product, 144, 580
Poincaré duality fails, 583
pushforward, 581
unitary, 586
unoriented, 586
with arbitrary support, 583

Poincaré duality, 573, 574, 583
projection to homology, 142–144,

146, 573, 578, 581, 588
with arbitrary support, 574

bordism ring, 573
boundary

of a d-space with corners, 49, 314–
321

of a d-stack with corners, 123, 535–
537

of a manifold with corners, 40, 282
of an orbifold with corners, 115,

446

C∞-algebraic geometry, 9–17, 69–81
C∞-group, 678
C∞-ring, 9–10, 659–662

as commutative R-algebra, 660, 669
C∞-derivation, 670
C∞-local ring, 306, 661, 665
colimit, 660
coproduct, 660
cotangent module ΩC , 13–14, 151–

155, 669–671

definition, 659
fair, 661–662, 668
finitely generated, 10, 661–662, 666,

671
finitely presented, 661–662, 668, 671
ideal, see ideal in C∞-ring
module, see module over C∞-ring
not noetherian, 661, 667, 672
of a manifold X, 667
simplicial, 648, 650, 652
square zero extension, 150–155, 212

C∞-ringed space, 10, 665–666
cotangent sheaf, 673
local, 665, 666
morphism, 665
sheaves of OX -modules on, 671–

674
pullback, 671

C∞-scheme, 9–13, 665–669
affine, 11, 666
C∞-group, 678
closed embedding, 677
coherent sheaves on, 15, 672
compact, 666
cotangent sheaf, 16–17, 673–674
cotangent space T ∗xX, 214–216
definition, 666
embedding, 677
étale morphism, 69, 677
fair affine, 666
fibre products, 11–12, 666
finitely presented affine, 210, 666
is a manifold, 216
line bundle on, 674

orientation, 674
locally compact, 666
locally fair, 11, 666, 667, 673, 674
locally finitely presented, 213–216,

666
morphism, 665
obstruction space OxX, 214–216
open embedding, 69, 677
paracompact, 666, 667, 673
proper morphism, 70, 677
quasicoherent sheaves on, 14–17,

671–674
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fine, 673
pullback, 15, 155

second countable, 666
separated, 666, 667, 673, 706
separated morphism, 677
sheaves of OX -modules on, 671–

674
spectrum functor, 11, 14, 59, 155,

650, 666, 672
square zero extension, 155–158, 164,

317
submersion, 677
universally closed morphism, 70,

677
vector bundles on, 14, 672

C∞-stack, 69–74, 675–683
1-morphism, 69, 676
2-morphism, 69, 676
associated to a groupoid, 676, 682,

684, 689
C∞-substack, 70, 677

open, 70, 677, 684, 695–697, 699
closed embedding, 677
definition, 676
Deligne–Mumford, see Deligne–

Mumford C∞-stack
embedding, 677, 686
étale 1-morphism, 70, 677
fibre products, 71, 74, 677, 680,

684
gluing by equivalences, 678–679
is a C∞-scheme, 676, 686, 699
isotropy group IsoX ([x]), see orb-

ifold group IsoX ([x])
open cover, 70, 677, 688
open embedding, 70, 677
orbifold group IsoX ([x]), 70, 74,

78, 97, 99, 111, 114, 490, 494,
520, 678, 684, 686, 695, 699,
705

proper 1-morphism, 70, 677, 695,
700

quotients [X/G], 72–73, 79, 449,
675, 679, 681–685

definition, 72, 681
orbifold strata, 706–707

quotient 1-morphism, 73, 682–
685

quotient 2-morphism, 73, 682–
685

strictly functorial, 683
representable 1-morphism, 677, 680,

682, 684, 700–701
separated, 70, 677, 684, 699
separated 1-morphism, 677
stabilizer group IsoX ([x]), see orb-

ifold group IsoX ([x])
strongly representable 1-morphism,

71–72, 112, 114–116, 122, 123,
439, 442–444, 447, 450, 456,
525, 528, 533, 535, 536, 538,
547, 679–681, 683, 697, 700,
701

submersion, 677, 686
underlying topological space Xtop,

70, 78, 675, 678, 683
universally closed 1-morphism, 70,

677, 684
C∞-substack, 677

open, 677, 684, 695–697, 699
c-transversality, 54–56, 127–129, 345–

351, 541–543
Calabi–Yau 3-fold, 149, 633
Cantor set, 24
Cartesian square, 291, 367, 655, 674
category, 654–656

2-category, see 2-category
abelian, see abelian category
Cartesian square, 55, 655
colimit, 655–656, 660
equivalence of, 475, 655, 689, 706
fibre product, 655, 666, 671
functor, 69, 654

faithful, 654
full, 654
natural isomorphism, 69, 654
natural transformation, 654

groupoid, 654, 656
isofibration, 680
limit, 655–656, 666
morphism, 654
opposite, 654

755



pushout, 177–178, 215, 278, 655,
660, 662, 671

subcategory, 654
full, 654

terminal object, 655, 656
universal property, 655

cd-transversality, 64, 137, 409–414, 561–
562

cobordism
classical cobordism, 573–574, 581

cap product, 574
cup product, 574
pullback, 574

compactly-supported, 574
orbifold cobordism, 581–583

cap product, 582
compactly-supported, 583
cup product, 582
effective, 582
Poincaré duality fails, 583
pullback, 583

Poincaré duality, 573, 574, 583
cohomology, 574

compactly-supported, 574
colimit, 660
contact homology, 6
coproduct, 660
cotangent complex, 7, 29, 88, 150, 206,

214, 629–633

d-manifold, 23–40, 205–280
and Banach manifolds with

Fredholm sections, 147, 598–
610

and dg-manifolds, 149
and M-polyfolds, 147, 612–614
and quasi-smooth derived schemes,

147, 636–639
and schemes with obstruction

theories, 147, 636–647
and solutions of elliptic equations,

148, 600–601
and Spivak’s derived manifolds, 148,

650–653
as d-manifold with corners, 58, 388

bordism, 142–143, 513, 575–580,
638

fundamental class, 577
intersection product, 143, 577
pushforward, 578
unitary, 578
unoriented, 578

d-submanifold, 33, 240
d-transverse 1-morphisms, 34–36,

247–259, 274, 277, 279, 409,
507

definition, 24, 213
embedding, 33–34, 36, 240–247, 258–

259, 279, 401
into manifolds, 36–37, 138, 259–

266, 563
equivalence, 30–33, 229–235, 241
étale 1-morphism, 30, 229–232, 241,

273, 279
example which is not principal, 37,

266
fibre products, 34–36, 247–259, 274,

277, 279
d-transverse, 35
orientations on, 39–40

fixed point loci, 246–247
gluing by equivalences, 31–32, 233–

235
homotopy category, 278–280
immersion, 33–34, 36, 37, 240–247,

259, 262, 279, 401
is a manifold, 24, 29, 35, 214, 221,

246, 257, 279
local properties, 214–221
open d-submanifold, 33, 214, 240
orientation line bundle, 38, 272,

274
orientations, 38–40, 147, 149, 272–

278, 636
principal, 23–24, 36–37, 58, 210–

213, 265–266, 385, 563, 651
standard model, 24–28, 30–32, 37,

149, 211–212, 221–229, 234,
259, 385, 392, 599–600, 602–
610, 629, 652
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1-morphism, 26, 223–229, 232–
234, 242, 599–600, 652

2-morphism, 27, 228–229, 234,
652

orientations on, 39, 273–274
submersion, 33–35, 240–247, 257,

279, 401
virtual class, 143, 578, 638
virtual cotangent bundle, 29, 213,

214, 221, 266
virtual dimension, 24, 35, 213, 250,

256, 601
w-embedding, 33–34, 240–247, 279,

401
w-immersion, 33–34, 240–247, 279,

401
w-submersion, 33–35, 240–247, 257,

279, 401
why dMan is a 2-category, 36, 258

d-manifold with boundary, 58, 66, 142,
388, 571, 575–577, 590, 649

embedding
into manifolds, 415–416

d-manifold with corners, 58–68, 385–
424

and Banach manifolds with
Fredholm sections, 147, 600

and M-polyfolds, 147, 612–614
bd-transverse 1-morphisms, 64, 409–

414, 420
boundary, 59, 388

conormal bundle NX, 59, 60,
68, 387, 389, 390, 393, 421

orientation on, 68, 303, 421
cd-transverse 1-morphisms, 64, 68,

409–414
corner functors, 59, 389, 402
d-submanifold, 63, 401
definition, 58–59, 385–388
embedding, 62–65, 401–409, 414

into manifolds, 65–67, 414–419
equivalence, 61–62, 398–401, 414
étale 1-morphism, 61, 398–399, 403
fibre products, 59, 64–65, 409–414

bd-transverse, 64, 420
boundary of, 423

cd-transverse, 423, 424
not bd-transverse, 369
orientations on, 68

fixed point loci, 409
flat 1-morphism, 65, 398, 413, 415,

424
gluing by equivalences, 61–62, 399–

401
group action on, 409
immersion, 62–65, 401–409, 414
include d-manifolds, 58, 388
is a manifold, 59, 64, 388, 393,

413, 423
k-corners Ck(X), 388

not orientable, 422–423
local properties, 389–394
of mixed dimension, 59, 389
open d-submanifold, 63, 388, 401,

413
orientation line bundle, 67, 420
orientations, 67–68, 376, 419–424
principal, 58, 65–67, 385, 388, 419
s-embedding, 62–65, 401–409, 413
s-immersion, 62–65, 401–409, 413
s-submersion, 62–64, 401–409
semisimple 1-morphism, 65, 402,

413, 424
sf-embedding, 62–67, 401–409, 413,

416–419
sf-immersion, 62–65, 401–409, 413,

416
sfw-embedding, 62–64, 401–409
sfw-immersion, 62–64, 401–409
simple 1-morphism, 398, 415, 424
standard model, 60–61, 65–67, 385–

387, 390–393, 399, 400, 419
1-morphism, 60–61, 394–400, 553
boundary of, 60, 387
corners of, 387

submersion, 62–64, 401–409
sw-embedding, 62–64, 401–409
sw-immersion, 62–64, 401–409
sw-submersion, 62–64, 401–409, 423–

424
virtual cotangent bundle, 58, 388
virtual dimension, 58, 64, 388
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w-embedding, 62–64, 401–409
w-immersion, 62–64, 401–409
w-submersion, 62–64, 401–409, 413,

423
d-orbifold, 96–112, 488–524

and Banach orbifolds with
Fredholm sections, 147, 600

and Deligne–Mumford stacks with
obstruction theories, 147, 636–
647

and Kuranishi spaces, 111, 147, 622–
626

and polyfolds, 147, 612–614
and quasi-smooth derived Deligne–

Mumford stacks, 147, 636–639
as d-orbifold with corners, 131, 552
bordism, 111, 112, 145–146, 521,

587–591, 638
and orbifold strata, 146, 588–

589
effective, 145–146, 587–588
fundamental class, 587
intersection product, 145, 587
pushforward, 587
semieffective, 145–146, 587–588
unitary, 591, 616
unoriented, 590

d-suborbifold, 104, 500
d-transverse 1-morphisms, 104–105,

501–504
definition, 96–97, 489
effective, 111–112, 146, 511, 520–

524, 571, 588, 589
orbifold strata of, 112, 523–524

embedding, 103–105, 500–501, 504
into orbifolds, 105–106, 504–505

equivalence, 99–101, 491, 495–496
étale 1-morphism, 100–101, 104,

495–496, 500, 507
fibre products, 104–105, 501–504
gluing by equivalences, 100–103,

496–499
good coordinate system, 32, 108–

112, 146, 235, 498, 513–522,
588, 591–597, 708–737

type A, 514–516

type B, 517–520
immersion, 103–105, 500–501, 504
is a d-manifold, 97, 107, 489, 490,

509
is an orbifold, 97, 104, 105, 489,

492, 501, 503, 504
Kuranishi neighbourhood, 108–111,

513–520
coordinate change, 108–109, 233,

514–518
local properties, 97–100, 490–492
locally orientable, 511
open d-suborbifold, 104, 490, 500
orbifold group IsoX ([x]), 99, 111,

490, 494, 520
orbifold strata, 106–108, 146, 247,

508–513, 588–589
orientations on, 107–108, 112,

511–513, 524
orientation line bundle, 106, 506
orientations, 106–108, 148, 149, 506–

508, 511–513
perturbing to orbifolds, 111–112,

146, 520–523, 588, 591–597
principal, 97, 105–106, 111, 489–

490, 494, 504–505
quotients [X/G], 105, 493–495, 504
semieffective, 111–112, 146, 511,

520–524, 571, 588, 590
orbifold strata of, 112, 523–524

standard model SV,E,s, 97–99, 101–
102, 105, 110, 490–492, 505,
517–520

1-morphism, 98, 101, 492–493,
496–498, 500–501

orbifold strata, 509–510
standard model [SV,E,s/Γ], 99–100,

102–103, 108–110, 493–495, 498–
499, 511, 514–516

1-morphism, 100, 494, 498–499
2-morphism, 100, 494

submersion, 103–105, 500–501, 504
very good coordinate system, 519–

520, 522, 591
virtual class, 146, 588, 589, 615,

638
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virtual cotangent bundle, 97, 106,
489, 492, 506

virtual dimension, 97, 104, 105,
489, 502, 504

w-embedding, 103–104, 500–501
w-immersion, 103–104, 500–501
w-submersion, 103–104, 500–501,

504
d-orbifold with boundary, 131, 140, 145,

551, 567–569, 587, 590, 615,
638

d-orbifold with corners, 130–141, 550–
570

and Banach orbifolds with
Fredholm sections, 147, 600

and Kuranishi spaces, 147, 622–
626

and polyfolds, 147, 612–614
bd-transverse 1-morphisms, 137, 561–

562, 564
boundary, 71, 132, 552, 570

conormal bundle NX, 133, 551,
553, 565

orientation on, 565
cd-transverse 1-morphisms, 137, 561–

562
corner functors, 132, 553
d-suborbifold, 137, 559
definition, 131–132, 551
effective, 141, 569–570
embedding, 136–137, 558–561

into manifolds, 728–732
into orbifolds, 138–139, 563–564

equivalence, 133–136, 555–558, 567
étale 1-morphism, 133–134, 137,

555, 559
fibre products, 137–138, 561–562,

564
bd-transverse, 137, 561
boundary of, 562, 565
cd-transverse, 137, 562, 565
corners, 562

flat 1-morphism, 133, 138, 141, 554,
555, 562, 568

gluing by equivalences, 134–136,
556–558

good coordinate system, 140–141,
558, 568–569, 626, 708–737

type A, 568–569
type B, 569

immersion, 136–137, 558–561
include d-orbifolds, 131, 552
is a d-manifold, 131, 132, 552
is an orbifold, 131, 137, 138, 552,

553, 561, 562, 565
k-corners Ck(X), 132, 141, 552, 570
Kuranishi neighbourhood, 140–141,

568–569
coordinate change, 140, 568, 569

local properties, 132–133, 553–555
of mixed dimension, 132, 553, 567
open cover, 716–728
open d-suborbifold, 137, 552, 559
orbifold group IsoX ([x]), 555
orbifold strata, 139–140, 566–568

boundaries of, 139, 567
orientations on, 139, 568

orientation line bundle, 139
orientations, 139, 564–566
principal, 131, 133, 138–139, 550–

551, 554, 563–564
quotients [X/G], 555
representable 1-morphism, 555, 559,

564
s-embedding, 136–138, 558–562
s-immersion, 136–138, 558–562
s-submersion, 136–137, 558–561
semieffective, 141, 569–570
semisimple 1-morphism, 138, 141,

554, 562, 568
sf-embedding, 136–139, 558–564,

728–732
sf-immersion, 136–138, 558–562
sfw-embedding, 136–137, 558–561
sfw-immersion, 136–137, 558–561
simple 1-morphism, 133, 554, 555
standard model SV,E,s, 132–133,

135, 138–139, 141, 550–551,
557, 563–564, 567, 569

1-morphism, 133, 134, 553–556,
560–561

boundary, 133, 551
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corners, 551
standard model [SV,E,s/Γ], 133, 136,

140–141, 554–555, 558, 568
1-morphism, 133, 554–555

straight, 140, 567
submersion, 136–138, 558–562
sw-embedding, 136–137, 558–561
sw-immersion, 136–137, 558–561
sw-submersion, 136–137, 558–561,

565–566
very good coordinate system, 569,

596
virtual cotangent bundle, 132, 139,

551, 553, 564
virtual dimension, 131, 137, 139,

551, 552, 561, 566, 567
w-embedding, 136–137, 558–561
w-immersion, 136–137, 558–561, 566–

567
w-submersion, 136–137, 558–562,

565–566
d-space, 17–23, 150–204

1-morphism, 18, 159
2-morphism, 18, 160–161
as d-space with corners, 49, 302
definition, 17, 158–161
equivalence, 20, 164–171
étale 1-morphism, 170, 337
fibre products, 22, 186–198, 279
fibre products of manifolds, 198–

199
fixed point loci, 23, 200–204, 246–

247, 485–486, 546
gluing by equivalences, 20–22, 171–

186
is a C∞-scheme, 19, 161, 170, 209
is a manifold, 19, 161
open cover, 20, 170
open d-subspace, 20, 170, 214
products, 196–197
virtual cotangent sheaf, 18, 29, 158,

206–207, 209
d-space with boundary, 49, 300
d-space with corners, 48–57, 298–384

1-morphism
definition, 300–301

2-morphism
definition, 301–302

alternative definitions, 304–305, 321,
371

b-transverse 1-morphisms, 54–56,
345–366, 376, 385, 409

boundary, 49, 314–321
conormal bundle NX, 48, 49,

51, 52, 54, 299–300, 302, 303,
307, 311, 319, 320, 329, 345,
351, 379

strictly functorial, 51, 303, 321
boundary defining function, 300,

305–306, 308, 323, 331, 370,
381–382

c-transverse 1-morphisms, 54–56,
345–351, 367, 376, 409

corner functors, 52–54, 56, 59, 339–
345, 371–376, 383

definition, 48–49, 298–302
equivalence, 52, 332–339
étale 1-morphism, 336–337, 383
fibre products, 54–56, 345–378

b-transverse, 55, 303, 304, 361
boundary, 56, 371–378
c-transverse, 371–378
corners, 56, 371–376
may not exist, 54, 369–370
not b-transverse, 368–371

fixed point loci, 57, 378–384, 409,
546

flat 1-morphism, 49–52, 55, 321–
328, 332–337, 347, 376–378

gluing by equivalences, 52, 337–
339

group action on, 378, 409
include d-spaces, 49, 302
include manifolds with corners, 51–

52, 329–332
is a manifold, 52, 329
k-corners Ck(X), 52–54, 339–345
open cover, 52, 300
open d-subspace, 52, 300, 337
products, 366
semisimple 1-morphism, 49–52, 55,

321–328, 332, 343, 347, 376–
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378
simple 1-morphism, 49–52, 303, 321–

328, 332–337, 376–378
weak 2-morphism, 304, 321

d-stack, 87–96, 463–487
1-morphism, 88, 468
2-morphism, 89, 469
definition, 87–90, 467–470
equivalence, 92–95, 471–472, 476–

478, 485
étale 1-morphism, 92, 472
fibre products, 94, 479–480, 502
gluing by equivalences, 22, 92–94,

476–478
conditions on overlaps, 93, 476–

478, 498
is a C∞-stack, 89, 470, 479
is an orbifold, 90, 470
open cover, 92, 472
open d-substack, 92, 472, 482
orbifold strata, 23, 94–96, 200, 480–

487
lifting 1- and 2-morphisms to,

95, 483–485
quotients [X/G], 23, 90–92, 95,

105, 200, 472–476, 485–486,
493–495, 504

quotient 1-morphism, 90, 473–
476

quotient 2-morphism, 91, 474–
476

representable 1-morphism, 95, 483
virtual cotangent sheaf, 88, 96, 468,

488
of orbifold strata, 96, 486

with boundary, see d-stack with
boundary

with corners, see d-stack with
corners

d-stack with boundary, 122, 130, 526,
549, 551

d-stack with corners, 122–130, 525–549
1-morphism, 527–529
2-morphism, 529–531
b-transverse 1-morphisms, 127–129,

131, 541–543, 550

boundary, 71, 123, 535–537
conormal bundle NX, 122, 124,

126, 127, 525–527, 529, 531–
533, 542

strictly functorial, 123, 533, 536–
537

boundary defining function, 533
c-transverse 1-morphisms, 127–129,

541–543
corner functors, 126–127, 129, 132,

540–541, 545, 549, 553
definition, 122–123, 525–531
equivalence, 125–126, 537–540, 548,

549
étale 1-morphism, 124, 537
étale locally modelled on d-spaces

with corners, 122, 526, 527,
532, 533, 535, 536, 538, 540,
547, 554

fibre products, 127–129, 541–546
b-transverse, 128, 543
boundary, 129, 545–546
corners, 129, 545–546

flat 1-morphism, 125, 127, 128, 131,
536–537, 541, 543, 550

gluing by equivalences, 125–126,
537–540

conditions on overlaps, 539
include d-stacks, 122, 531
is a d-space, 123, 532, 547
is an orbifold, 123, 532
k-corners Ck(X), 126–127, 540–541
open cover, 126, 527
open d-substack, 126, 527, 537
orbifold strata, 129–130, 546–549
products, 545
quotients [X/G], 57, 123–124, 133,

533–535, 548, 555
representable 1-morphism, 537, 547
semisimple 1-morphism, 125, 127,

128, 536–537, 541, 543
simple 1-morphism, 125, 127, 131,

536–537, 541, 550
straight, 130, 140, 549, 567
virtual cotangent sheaf, 551
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d-transversality, 34–36, 104–105, 247–
259, 501–504

Deligne–Mumford C∞-stack, 69–81, 675–
707

coarse moduli C∞-scheme X top, 477,
538, 685, 688, 721

coherent sheaves on, 687
compact, 683
cotangent sheaf, 75, 77–78, 81, 692
definition, 73, 683
effective, 523, 539, 686
fibre products, 74
inertia stack, 79
line bundle on, 692

orientation, 692
locally compact, 683
locally fair, 73, 463, 683–685, 687,

688, 692, 699, 707
locally finitely presented, 489, 491,

683–685, 699
orbifold strata, 78–81, 430, 546,

695–707
cotangent sheaves, 707
functoriality, 79
lifting 1- and 2-morphisms to,

700–701
of quotient C∞-stacks, 706–707
sheaves on, 431, 703–707

paracompact, 683, 685, 688
partition of unity on, 477, 538, 593,

685–686, 688–689, 721
quasicoherent sheaves on, 74–78,

428, 463–467, 686–692, 703–
707

pullbacks, 76–77
restriction to orbifold strata, 80

representable 1-morphism, 95, 104,
137, 458, 483, 500, 559

second countable, 427, 683, 685,
699

separated, 427, 683, 685, 688
sheaves of OX -modules on, 686–

692
pullback, 689–692

sheaves of abelian groups on, 75,
693–694

pullback, 694
sheaves of C∞-rings on, 75, 693–

694
pullback, 694

square zero extension, 88, 463–467,
481, 491

morphism, 464
structure sheaf OX , 75, 694
vector bundles on, 75, 428, 687

of mixed rank, 432
Deligne–Mumford stack with

obstruction theory, 149, 630,
638

and d-orbifolds, 147, 636–647
derived algebraic geometry, 6–8, 19–

20, 626–630, 635–639
derived category, 7, 149, 631, 634, 644,

646
derived Deligne–Mumford stack

quasi-smooth, 629
and d-orbifolds, 147, 636–639

derived manifold, see Spivak’s derived
manifolds

derived scheme, 19–20, 626–630
cotangent complex, 629
quasi-smooth, 8, 627, 629

and d-manifolds, 147, 636–639
square zero, 628

derived stack, 626–630
dg-algebra, 20, 628, 629

square zero, 20, 628, 629
dg-manifold, 149
dg-scheme, 6, 8, 149, 628–629
Differentiable Collaring Theorem, 572,

575
Donaldson–Thomas invariants, 143, 588,

627, 630, 632

elliptic equations, 148, 600–601
étale topology, 13, 74, 92, 106, 472,

500, 667

Fano 3-fold, 149, 633
fibre product, 666, 671

definition, 655
in 2-category, 657–658
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of C∞-schemes, 11
of C∞-stacks, 74
of d-manifolds, 35, 247–259
of d-manifolds with corners, 64, 409–

414
of d-orbifolds, 104, 502
of d-orbifolds with corners, 137,

561
of d-spaces, 22, 186–198
of d-spaces with corners, 55, 345–

378
of d-stacks, 94, 479
of d-stacks with corners, 128, 543
of orbifolds with corners, 119, 455

fine sheaf, 8, 629, 673
fractal, 24
Fukaya categories, 6
functor, 654

adjoint, 664–666, 672
exact, 663, 664
faithful, 10, 11, 19, 52, 69, 82, 90,

113, 131, 161, 163, 302, 329,
330, 427, 441, 471, 532, 552,
654, 666, 669

full, 10, 11, 19, 52, 69, 82, 90, 113,
131, 161, 163, 302, 329, 330,
427, 441, 471, 532, 552, 654,
666, 669

left exact, 663
natural isomorphism, 654
natural transformation, 654
right exact, 689
truncation, 6, 146–148, 598–653

generalized cohomology theory, 573, 581
generalized homology theory, 142, 144,

573
global sections functor Γ, 665, 672
good coordinate system, 32, 108–112,

140–141, 146, 235, 498, 513–
520, 558, 568–569, 588, 591–
597, 622, 623, 708–737

type A, 514–516, 568–569
type B, 517–520, 569
very good, 519–520, 522, 569, 591,

596

Gromov–Witten invariants, 6, 143, 588,
591, 616, 620, 627, 630, 632,
633, 638

in d-orbifold bordism, 571, 591, 615–
616

integrality properties, 591, 616
Grothendieck topology, 69, 82, 426, 675,

676
groupoid, 654

Hadamard’s Lemma, 10, 153, 218, 244,
249, 660

harmonic maps, 148, 601
homology, 142–144, 146, 573, 574, 578,

581, 588
with arbitrary support, 574

homotopy category, 82–84, 147–148, 186,
278–280, 426, 427, 439, 478,
498, 518, 598, 600, 614, 636–
638, 651, 657

ideal in C∞-ring, 660–661
fair, 661
finitely generated, 661

inertia stack, 700

Kuranishi (co)homology, 146, 588
Kuranishi space, 6, 110–111, 148, 297,

591, 599, 620–626
and d-orbifolds, 111, 147, 514, 622–

626
and polyfolds, 624–625
boundary, 622, 624
coordinate change, 233, 621
‘fibre products’ over manifolds, 39,

256, 276, 277, 423, 622
good coordinate system, 32, 108,

110, 513, 516, 519, 522, 622,
623, 625

Kuranishi neighbourhood, 111, 211,
620

orientation, 39, 274, 277, 421, 423,
622, 624

stably almost complex, 591
strongly smooth map, 622, 624, 625

weakly submersive, 622, 624
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virtual chain, 522, 623
virtual class, 146, 522, 588, 623
virtual dimension, 621, 624
with a tangent bundle, 620, 623

Lagrangian Floer cohomology, 6, 143,
588, 616, 620, 629

Lagrangian submanifold, 7, 148, 624
locally 2-Cartesian, 314, 319
locally effective group action, 462, 557,

686

manifold
as C∞-scheme, 11, 667–669
as d-space, 19, 161
C∞-ring of, 659
cotangent bundle, 282, 670, 674
definition, 281
embedding, 36, 241, 259
immersion, 36, 236, 241, 259
orientation, 38, 273
submersion, 236, 241
tangent space, 282
transverse fibre products, 12, 22,

34, 198, 247, 255, 257, 276–
277, 669

vector bundles on, 669
with boundary, see manifold with

boundary
with corners, see manifold with

corners
manifold with boundary, 40–48, 140,

142, 231, 281–297, 568, 571
definition, 281

manifold with corners, 40–48, 281–297
as C∞-scheme, 667–669
as d-space with corners, 51–52, 329–

332
boundary, 40, 282
boundary defining function, 41, 282,

331
C∞-ring of, 659
corner functors, 44–46, 287–289,

291, 371
cotangent bundle, 282, 674
definition, 281

diffeomorphism, 42
embedding, 42–43, 292–294, 401,

414
fixed point loci, 47–48
flat map, 42–43, 52, 284–286, 290,

332, 399
immersion, 42–43, 292–294, 401
k-corners Ck(X), 43, 286–289

not orientable, 422–423
local boundary component, 40, 282
orientations, 46–47, 294–297
s-embedding, 42–43, 292–294, 401,

414
s-immersion, 42–43, 292–294, 401
s-submersion, 42–43, 284–286
semisimple map, 42–43, 46, 52, 284–

286, 290–291, 332
sf-embedding, 42–43, 140, 292–294,

401, 414, 568
sf-immersion, 42–43, 292–294, 401
simple map, 42–43, 52, 284–286,

290, 332, 399
smooth map, 41, 282–284

action on corners, 283–284
definition, 283

strongly transverse maps, 45–46,
291–292, 345, 367, 371

submanifold, 42, 292
submersion, 42–43, 141, 284–286,

289–290, 424, 568–569
tangent space, 282
transverse fibre products, 45–46,

289–292, 345, 366–368, 669
boundaries of, 45, 290–291
orientations on, 46, 296–297

vector bundles on, 669
weakly smooth map, 41, 48, 49,

282, 294, 331, 398, 668–670
module over C∞-ring, 13–14, 151–155,

669–671
C∞-derivation, 670
complete, 14, 672
cotangent module ΩC , 669–671
finitely presented, 669, 671, 672

moduli space, 32, 143, 148–149, 235,
588, 598, 627, 629
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of algebraic curves, 149
of coherent sheaves on a 3-fold, 149
of coherent sheaves on a surface,

149
of harmonic maps, 148, 601
of J-holomorphic curves, 103, 110,

136, 148, 401, 498, 558, 591,
601, 610, 612, 614–616, 620,
623–624, 638

of perfect complexes on a 3-fold,
149

of PT pairs on a 3-fold, 149, 634
of solutions of nonlinear elliptic

equations, 148, 600–601

orbifold, 81–87, 425–439, 683
a category or a 2-category?, 82,

426, 439
as Deligne–Mumford C∞-stack, 82,

427–428
as groupoid in Man, 81–83, 426–

427, 443
as orbifold with corners, 113, 440,

441
as stack on Man, 82, 426–427
classifying space Xcla, 583–584
cotangent bundle, 84, 428
different definitions, 81–83, 425–

427
effective, 83–84, 86, 98, 101–102,

112, 434, 438–439, 491, 497–
498, 505, 519–523

embedding, 83, 428, 439
étale 1-morphism, 83, 428
immersion, 83, 428, 433
is a manifold, 144, 427, 433, 439,

580
locally orientable, 86, 434, 590
orbifold bordism, 143–145, 580–586

and orbifold strata, 144–145, 584–
586

effective, 144, 580
fundamental class, 581
intersection product, 144, 580
Poincaré duality fails, 583
pushforward, 581

unitary, 586
unoriented, 586
with arbitrary support, 583

orbifold cobordism, 581–583
cap product, 582
compactly-supported, 583
cup product, 582
effective, 582
Poincaré duality fails, 583
pullback, 583

orbifold group IsoX ([x]), 428–431,
439

orbifold strata, 84–87, 144, 430–
439, 584–586

orientations on, 86–87, 434–438
orientations, 84, 86, 434–438
our definition, 82, 427
representable 1-morphism, 83, 428,

433, 505
smooth map, 427
submersion, 83, 428, 439
suborbifolds, 84
tangent bundle, 428
transverse fibre products, 82–84,

94, 426, 427, 480, 658
vector bundles on, 84, 428–430

pullback, 428
smooth section, 428
total space functor Tot, 84, 105,

429–430, 490, 505
with boundary, see orbifold with

boundary
with corners, see orbifold with

corners
orbifold strata

of d-orbifolds, 106–108, 146, 247,
508–513, 588–589

of d-orbifolds with corners, 139–
140, 566–568

of d-stacks, 23, 94–96, 200, 480–
487

of d-stacks with corners, 129–130,
546–549

of Deligne–Mumford C∞-stacks, 78–
81
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of orbifolds, 84–87, 144–145, 430–
439, 584–586

of orbifolds with corners, 119–121,
455–462

orbifold with boundary, 112–121, 144,
439–462, 580, 584, 586, 596

definition, 440
orbifold with corners, 112–121, 439–

462
boundary, 71, 115, 446

conormal line bundle NX, 116,
440, 445

strictly functorial, 114, 442
corner functors, 117–118, 451–454
definition, 112–113, 439
effective, 115, 133, 462, 551, 556–

558, 564
embedding, 118, 454
flat 1-morphism, 115–116, 118, 131,

446–448, 454, 550, 554, 555
immersion, 118, 454
is a manifold, 441, 457
k-corners Ck(X), 117–118, 448–454
open cover, 113, 441
open suborbifold, 113, 441, 447
orbifold group IsoX ([x]), 442, 454,

457, 461
orbifold strata, 119–121, 455–462
quotients [X/G], 113, 118
representable 1-morphism, 555
s-embedding, 118, 454
s-immersion, 118, 454
s-submersion, 118, 454
semisimple 1-morphism, 115–116,

118, 446–448, 454, 554
sf-embedding, 118, 454, 556
sf-immersion, 118, 454
simple 1-morphism, 115–116, 118,

131, 441, 446–448, 454, 550,
554, 555

straight, 114, 121, 443, 455, 461–
462

strongly transverse 1-morphisms,
119, 129, 454–455, 545

submersion, 118, 454

transverse fibre products, 119, 128,
454–455, 545

vector bundles on, 114, 445–446,
553, 556

smooth section, 445
total space functor Totc, 114,

131, 139, 445–446, 550, 563
orientation convention, 39, 46, 68, 272,

274, 276, 295–296, 303, 420,
421, 507, 564, 565

orientation line bundle, 38, 39, 67, 68,
106, 139, 266–272, 420, 506,
564

Pandharipande–Thomas invariants, 149,
630, 634

partition of unity, 8, 12–13, 21, 34, 170–
172, 174, 178, 181, 226, 228,
248, 264, 294, 336, 337, 363,
365, 397, 415, 417–419, 476–
477, 538, 593, 608, 629, 650,
666–667, 673, 685–686, 688–
689, 710, 721, 726, 732

polyfold, 6, 148, 591, 598, 610–620, 624–
625, 627, 638

and d-manifolds, 147, 612–614
and d-orbifolds, 147, 612, 614
and Kuranishi spaces, 624–625
gluing profile, 615, 638
M-polyfold, 610–614, 616–620
sc-Banach space, 616–617
sc∞-retract, 612
sc-smooth map, 612, 616
sc-structure, 611
splicing core, 612, 617
strong M-polyfold bundle, 610–614,

616–620
Fredholm section, 610–614, 616–

620
strong polyfold bundle, 610–614

Fredholm section, 610–614
Pontryagin class, 221
presheaf, 662, 673

sheafification, 663, 664, 673
prestack

stackification, 697–698, 700–701
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principal d-manifold, 23–24, 36–37, 210–
213, 265–266, 563, 651

principal d-manifold with corners, 58,
65–67, 385, 388, 419

principal d-orbifold, 97, 105–106, 111,
489–490, 494, 504–505

principal d-orbifold with corners, 131,
133, 138–139, 550–551, 554,
563–564

pseudofunctor, 691–692, 701
pushout, 21, 177–179, 215, 648, 655,

658, 660, 662, 671

quasi-smooth, 8, 147, 635–636
quotient C∞-stack, 72–73, 449, 675, 679,

681–685
1-morphism, 682–685
2-morphism, 682–685
definition, 72, 681
orbifold strata

sheaves on, 706–707
strictly functorial, 683

quotient d-orbifold, 493–495
quotient d-stack, 23, 200, 493–495

scheme with obstruction theory, 143,
149–150, 588, 630

and d-manifolds, 147, 636–647
as a category, 147, 634–637

Schur’s Lemma, 435
sheaf, 662–664

definition, 662–663
direct image, 663
fine, 8, 629, 673
inverse image, 664
of abelian groups, 662, 693–694
of C∞-rings, 665–666, 693–694
on topological space, 662–664
presheaf, 662
pullback, 664
pushforward, 663
soft, 8, 629, 650
stalk, 663, 665

site, 82, 426, 675, 676, 696, 697
subcanonical, 676

soft sheaf, 8, 629, 650

spectral sequence, 142, 573
Spivak’s derived manifolds, 6, 7, 22, 36,

173, 186, 210, 233, 258, 627,
629, 647–653

affine, 648
and d-manifolds, 148, 650–653
derived cobordism, 143, 575, 578,

649
embedding into manifolds, 37, 259,

648, 649
homotopy fibre products, 35, 198,

256, 649
of finite type, 650, 651
of pure dimension, 648, 651
with boundary, 649

split short exact sequence, 30, 32, 61,
100, 134, 166–170, 197, 208,
230, 237, 299, 398, 496, 555

square zero extension, 88, 150–158, 164,
463–467, 637

square zero ideal, 17, 20, 25, 88, 150,
317, 652

stack, 6, 69, 73, 74, 82, 147, 148, 426,
626–630, 635–639

String Theory, 434
String Topology, 7
Symplectic Field Theory, 6, 616
symplectic geometry, 6–7, 110, 143, 148,

588, 591, 610, 620, 623, 625
synthetic differential geometry, 9, 659

topological space, 19–21, 24, 53, 70, 78,
79, 110, 115, 117, 126, 141,
574

closed map, 70
fibre product, 41, 45, 284
Hausdorff, 11, 17, 31, 61, 101, 102,

134, 135, 158, 173, 666
locally compact, 11, 17, 158, 666
normal, 173
paracompact, 11, 17, 158, 173, 666
proper map, 70
second countable, 11, 17, 31, 61,

101, 102, 134, 135, 158, 181,
182, 666
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truncation functor, 6, 146–148, 598–
653

virtual chain, 6, 110, 143, 146, 149,
522, 578, 588, 598, 616, 625

virtual class, 110, 143, 149, 150, 598,
627, 629, 630

for d-manifolds, 143, 571, 578, 638
for d-orbifolds, 111, 146, 588, 589,

615, 638
for Kuranishi spaces, 146, 522, 588
for quasi-smooth derived schemes,

627
for schemes with obstruction

theory, 143, 588, 633
virtual cotangent bundle, 29, 38, 58,

67, 97, 106, 132, 139, 213, 214,
266, 388, 420, 489, 506, 508,
564

virtual quasicoherent sheaf, 28–29, 96–
97, 205–210

is a quasicoherent sheaf, 209
is a vector bundle, 209
on C∞-scheme, 28, 205
on Deligne–Mumford C∞-stack, 96,

488
virtual vector bundle, 28–29, 58, 67,

96–97, 131, 136, 139, 205–210,
236–240, 387, 420, 551, 558,
564

injective 1-morphism, 32, 103, 237–
240, 500

is a vector bundle, 29, 221, 492
of mixed rank, 107, 389, 393, 508,

566
on a C∞-scheme, 28, 206
on a Deligne–Mumford C∞-stack,

96, 103, 488, 500
orientation generator, 267
orientation line bundle of, 38, 106,

266–272, 389, 506
surjective 1-morphism, 32, 103, 237–

240, 500
weakly injective 1-morphism, 32,

103, 237–240, 248, 500

weakly surjective 1-morphism, 32,
103, 237–240, 500

well-ordered set (I,<), 515, 516, 518

Zariski topology, 13, 74, 92, 104, 106,
137, 429, 472, 500, 667
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