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1 Introduction

This is an incomplete first draft. I hope the eventual finished document will
have three parts:

I Construction of vertex algebras and Lie algebras in Algebraic Geometry:
the theory, written in terms of homology of Artin stacks.

II Application of Part I in examples, in both Geometric Representation The-
ory (categories of quiver representations), and Algebraic Geometry (cat-
egories of coherent sheaves). Discussion of virtual classes, enumerative
invariants, and wall-crossing formulae.

III Construction of vertex algebras and Lie algebras in Differential Geometry,
on the homology of moduli spaces of connections. Application to enumer-
ative invariants counting instanton-type moduli spaces, including SU(n)-
Donaldson theory of 4-manifolds for all n > 2, Seiberg–Witten invariants,
Hermitian–Einstein connections on Kähler manifolds, G2-instantons, and
Spin(7)-instantons.
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Despite its length, the present document is only a first draft of Part I and the
first half of Part II.

To explain the basic idea, we first review Ringel–Hall algebras. There are
several versions, beginning with Ringel [135–138]; we discuss the constructible
functions version, following the author [74–79].

Let K be an algebraically closed field of characteristic zero, and write Artlft
K

for the 2-category of Artin K-stacks locally of finite type. For each object S
in Artlft

K we can consider the Q-vector space CF(S) of constructible functions
α : S(K) → Q, as in [74]. If f : S → T is a representable morphism in Artlft

K
we can define the pushforward f∗ : CF(S) → CF(T ), and if g : S → T is a
finite type morphism in Artlft

K we can define the pullback g∗ : CF(T )→ CF(S).
Pushforwards and pullbacks are functorial, and have a commutative property
for 2-Cartesian squares in Artlft

K .
Let A be a K-linear abelian category, satisfying some conditions. Write M

for the moduli stack of objects E in A, and Exact for the moduli stack of short
exact sequences 0 → E1 → E2 → E3 → 0 in A. Then M,Exact are Artin K-
stacks, with morphisms Π1,Π2,Π3 : Exact→M such that Πi maps [0→ E1 →
E2,→ E3 → 0] 7→ [Ei]. The conditions on A imply that M,Exact are locally of
finite type, and Π2 is representable, and (Π1,Π3) : Exact→M×M is of finite
type. We define a Q-bilinear operation ∗ : CF(M)× CF(M)→ CF(M) by

f ∗ g = (Π2)∗ ◦ (Π1,Π3)∗(f � g), (1.1)

as in [77]. Then ∗ is associative, and makes CF(M) into a Q-algebra with unit
δ[0], which we call a Ringel–Hall algebra. Hence CF(M) is also a Lie algebra
over Q, with Lie bracket [f, g] = f ∗ g − g ∗ f .

Now let K(A) be a quotient of the Grothendieck group K0(A) of A such
that M splits as M =

∐
α∈K(A)Mα with Mα ⊂ M the open and closed K-

substack of objects E in A with class JEK = α in K(A), let τ be a stability
condition on A in the sense of [78] factoring via K(A), and suppose that the
open substack Mss

α (τ) ⊆Mα of τ -semistable objects in class α is of finite type
for all α ∈ K(A). Then the characteristic function δMss

α (τ) is an element of the
Ringel–Hall algebra (CF(M), ∗).

Let τ̃ be another stability condition on A, satisfying the same conditions.
In [79] the author proved a universal wall-crossing formula, which writes δMss

α (τ̃)

as a sum of products of δMss
β (τ) in the Ringel–Hall algebra (CF(M), ∗). By

[79, Th. 5.4], an alternative version of the wall-crossing formula, for elements
εα(τ) ∈ CF(M) defined using the δMss

α (τ), makes sense solely in the Lie algebra
(CF(M), [ , ]). All this was applied to wall-crossing for Donaldson–Thomas
invariants of Calabi–Yau 3-folds in [81].

In this book, given a suitable K-linear abelian category A (or K-linear tri-
angulated category T ), writing M for the moduli stack of objects in A (or T ),
we first define the structure of a graded vertex algebra on the homology H∗(M)
of M over a commutative ring R, in the sense of Kac [85] and Frenkel and
Ben-Zvi [46]. Vertex algebras are complicated algebraic structures arising in
Conformal Field Theory in Mathematical Physics.
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Roughly speaking, we will also define a (graded) (super) Lie bracket [ , ] on
H∗(M), making H∗(M) into a (graded) Lie (super)algebra over R. (Actually,
we define [ , ] either on a modification H∗(M)t=0 of H∗(M), or on the homology
H∗(Mpl) of a modificationMpl ofM.) So we replace CF(M) by H∗(M) in the
usual Ringel–Hall (Lie) algebra construction. These Lie algebras (H∗(M), [ , ])
have interesting applications, including wall-crossing formulae under change of
stability condition for virtual cycles in enumerative invariant problems.

In the analogue of (1.1) defining the Lie bracket [ , ] on H∗(M), the pushfor-
ward (Π2)∗ is natural on homology, but the pullback (Π1,Π3)∗ is more complex,
and we need extra data to define it, a perfect complex Θ• on M×M satisfy-
ing some conditions, similar in spirit to an obstruction theory in the sense of
Behrend and Fantechi [15]. In our examples there are natural choices for Θ•.

As above we write M =
∐
α∈K(A)Mα. Part of the data is a symmetric

biadditive map χ : K(A) ×K(A) → Z with rank Θ•|Mα×Mβ
= χ(α, β), called

the Euler form. We define a shifted grading H̃∗(Mα) on H∗(Mα) by

H̃i(Mα) = Hi+2−χ(α,α)(Mα).

We can interpret 2− χ(α, α) as the virtual dimension of the ‘projective linear’
moduli stack Mpl

α below. This induces a shifted grading H̃∗(M) on H∗(M).
Then our Lie brackets [ , ] on H∗(M) are graded with respect to the shifted
grading H̃∗(M), that is, [ , ] maps H̃k(Mα)× H̃l(Mβ)→ H̃k+l(Mα+β).

As for Ringel–Hall algebras, there are actually many versions of this Lie
algebra construction, all variations on the same basic theme. In §3.3–§3.7 we
explain five versions, which admit further modifications as in §3.8:

(i) For the ‘t = 0’ version in §3.3, we define a graded representation � of R[t]
on H∗(M), where t has degree 2, and we define

H∗(M)t=0 = H∗(M)/
(
〈t, t2, . . .〉R �H∗(M)

)
.

Then we define a graded Lie bracket [ , ]t=0 on H̃∗(M)t=0.

(ii) For the ‘projective linear’ version in §3.4, we work with a modified moduli
stack Mpl parametrizing nonzero objects E in A or T up to ‘projec-
tive linear’ isomorphisms, meaning that we quotient out by isomorphisms
λ idE : E → E for λ ∈ Gm. The K-points [E] of Mpl are the same as
those ofM′ =M\{[0]}, but whileM′ has isotropy groups IsoM′([E]) =
Aut(E), Mpl has isotropy groups IsoMpl([E]) = Aut(E)/Gm · idE . There
is a morphism Πpl :M′ →Mpl which is a fibration with fibre [∗/Gm].

Under some assumptions (including R a Q-algebra) we can show that
H∗(M′)t=0 ∼= H∗(Mpl), giving a geometric interpretation of H∗(M′)t=0.
In the general case, depending on some partially conjectural assumptions,
we can define a graded Lie bracket [ , ]pl on H̃∗(Mpl), such that (Πpl)∗ :
H̃∗(M′)t=0 → H̃∗(Mpl) is a Lie algebra morphism.

(iii) For the ‘positive rank’ version in §3.5, we choose a ‘rank’ morphism rk :
K(A) → Z, we set Mrk>0 =

∐
α∈K(A):rkα>0Mα ⊂ M, and we define a

graded Lie bracket [ , ]rk>0 on homology H̃∗(Mrk>0) over a Q-algebra R.
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(iv) For the ‘mixed’ version in §3.6, we again choose rk : K(A)→ Z, we set

H̃∗(M)mix =
(⊕

α∈K(A):rkα=0R[s]⊗R H̃∗(Mα)t=0
)

⊕
(⊕

α∈K(A):rkα 6=0 H̃∗(Mα)
)
,

where s is graded of degree 2, and we define a graded Lie bracket [ , ]mix

on H̃∗(M)mix. This combines the ‘t = 0’ version when rkα = 0 with the
‘positive rank’ version when rkα 6= 0.

(v) For the ‘fixed determinant’ versions in §3.7, we assume we are given a
group stack P called the Picard stack with isotropy groups Gm, and a
‘determinant’ morphism det : M → P satisfying some assumptions. We
show that all of (i)–(iv) still work when we replace M by the substack
Mfpd = M×Ppl ∗ of objects in M with ‘fixed projective determinant’,
and also discuss Mfd =M×P ∗ and Mpfd =Mpl ×Ppl ∗.

The author regards the ‘projective linear’ version as the primary one.
Our definitions of Lie algebras work in great generality. For example, if

X is any smooth projective K-scheme and A = coh(X), or T = Dbcoh(X),
the Lie algebra constructions above apply, though for applications involving
enumerative invariants and virtual classes we need to restrict X to be a curve,
or surface, or Calabi–Yau 3- or 4-fold, or Fano 3-fold. Similarly, the Lie algebras
on moduli spaces of connections we define in part III work on any compact spin
manifold, though in applications we restrict to 4-manifolds, G2-manifolds, etc.

So far as the author can tell, the core idea behind our vertex algebra and
Lie algebra constructions is new. But it is related to, or similar to, work by
other authors. Probably the closest to ours is work by Grojnowski [57] and
Nakajima [118–122] discussed in §6, which defines representations of interesting
Lie algebras on the homology of Hilbert schemes of points on surfaces. We can
explain their results by realizing their Lie algebras in the homology of complexes
of dimension 0 sheaves.

The author envisages four main areas of application of our theory:

(a) In Geometric Representation Theory, as a way of producing examples of
interesting Lie algebras and their representations, starting from abelian or
derived categories such as categories of quiver representations.

(b) In the study of (co)homology of moduli spaces in Algebraic Geometry, for
example by using facts from representation theory of infinite-dimensional
Lie algebras to explain modular properties of generating functions of Betti
numbers of Hilbert schemes, moduli spaces of vector bundles, etc.

(c) In the study of enumerative invariants ‘counting’ coherent sheaves on
projective varieties: Mochizuki’s invariants counting sheaves on surfaces
[115], Donaldson–Thomas invariants of Calabi–Yau 3-folds and Fano 3-
folds [81, 91, 92, 146], and Donaldson–Thomas type invariants counting
sheaves on Calabi–Yau 4-folds [20,30,31].

As we explain in §7, we can write the virtual classes defining invariants as
elements of H∗(Mpl), and then (conjecturally) we can write wall-crossing
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formulae for these virtual classes under change of stability condition using
the Lie bracket [ , ]pl and the universal wall-crossing formula of [79].

(d) There should be a Differential-Geometric version of (c) for enumerative
invariants in gauge theory, such as Donaldson invariants of 4-manifolds.
For example, we hope to define U(n) and SU(n) Donaldson invariants of
oriented Riemannian 4-manifolds (X, g) with b2+(X) > 1, and give wall-
crossing formulae for them when b2+(X) = 1.

In Part I, we begin in §2 with background on Artin stacks and higher stacks,
and discuss homology and cohomology of stacks. Section 3 constructs the vertex
algebra structures and Lie brackets on the homology of moduli spaces that are
our main concern. Proofs of the main results of §3 are postponed to §4. In §2–
§3 we take an axiomatic approach, stating Assumptions on both (co)homology
theories H∗(−), H∗(−) of stacks, and on the abelian category A or triangulated
category T , and then proving theorems about them.

Part II studies examples of the constructions in Part I in detail. The current
incomplete version only covers abelian categories A = mod-CQ and derived
categories T = Db mod-CQ of representations of a quiver Q. In the triangulated
category case, the graded vertex algebras are lattice vertex algebras, and the
graded Lie algebras naturally contain Kac–Moody algebras. Future versions will
discuss quivers with relations, dg-quivers, and (derived) categories A = coh(X),
T = Dbcoh(X) of coherent sheaves on a smooth projective K-scheme X.

Acknowledgements. This research was partly funded by a Simons Collaboration
Grant on ‘Special Holonomy in Geometry, Analysis and Physics’, and by EPSRC
Programme Grant EP/I033343/1. I would like to thank Christopher Beem,
Chris Brav, Tom Bridgeland, Yalong Cao, Andrew Dancer, Simon Donaldson,
Jacob Gross, Kevin McGerty, Balázs Szendrői, Yuuji Tanaka, Bertrand Toën,
and Markus Upmeier for helpful conversations.
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Part I
Vertex and Lie algebras in Algebraic Geometry

2 Background material

2.1 Lie algebras and graded Lie algebras

We discuss Lie algebras and graded Lie algebras. Some good references are
Humphreys [66] and Kac [84]. Note that our graded Lie algebras are examples
of Lie superalgebras; for brevity we usually avoid using the prefix ‘super-’.

2.1.1 Basic definitions

Definition 2.1. Let R be a commutative ring. A Lie algebra over R is a pair
(V, [ , ]), where V is an R-module, and [ , ] : V × V → V is an R-bilinear map
called the Lie bracket, which satisfies the identities for all u, v, w ∈ V :

[v, u] = −[u, v], (2.1)

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0, (2.2)

Here (2.1) is antisymmetry, and (2.2) is the Jacobi identity. If we assume (2.1)
then (2.2) is equivalent to

[[u, v], w]− [u, [v, w]]− [v, [u,w]] = 0, (2.3)

which we will also call the Jacobi identity.
A representation of a Lie algebra (V, [ , ]) is an R-module W and an R-

bilinear map [ , ] : V ×W → W satisfying (2.3) for all u, v ∈ V and w ∈ W .
Note that (2.1)–(2.2) do not make sense for representations.

Here is the graded version of Definition 2.1:

Definition 2.2. Let R be a commutative ring. A graded Lie algebra over R (also
called a graded Lie superalgebra over R) is a pair (V∗, [ , ]), where V∗ =

⊕
a∈Z Va

is a graded R-module, and [ , ] : V∗ × V∗ → V∗ is an R-bilinear map called the
Lie bracket, which is graded (that is, [ , ] maps Va × Vb → Va+b for all a, b ∈ Z),
and satisfies the identities for all a, b, c ∈ Z and u ∈ Va, v ∈ Vb and w ∈ Vc:

[v, u] = (−1)ab+1[u, v], (2.4)

(−1)ca[[u, v], w] + (−1)ab[[v, w], u] + (−1)bc[[w, u], v] = 0. (2.5)

Here (2.4) is graded antisymmetry, and (2.5) is the graded Jacobi identity.
If we assume (2.4) then (2.5) is equivalent to

[[u, v], w]− [u, [v, w]] + (−1)ab[v, [u,w]] = 0, (2.6)

which we will also call the graded Jacobi identity. Note that because of the
signs (−1)ab, (−1)bc, (−1)ca in (2.4)–(2.6), graded Lie algebras are examples of
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Lie superalgebras. The subspaces V0 and Veven =
⊕

k∈Z V2k are ordinary Lie
algebras. Any Lie algebra is a graded Lie algebra concentrated in degree 0.

A representation of a graded Lie algebra (V∗, [ , ]) is a graded R-module
W∗ =

⊕
c∈ZWc and an R-bilinear map [ , ] : V∗ ×W∗ → W∗ which is graded

(that is, [ , ] maps Va × Wb → Wa+b for all a, b ∈ Z), satisfying (2.6) for all
a, b, c ∈ Z and u ∈ Va, v ∈ Vb and w ∈Wc.

2.1.2 Kac–Moody algebras

Kac–Moody algebras are an important class of Lie algebras, as in Kac [84], that
will occur in our examples in §5. We summarize parts of their theory.

Definition 2.3. Let Q0 be a finite set, and A = (avw)v,w∈Q0
be an integer

matrix on Q0. We call A a symmetric generalized Cartan matrix if avv = 2
for all v ∈ Q0, and avw = awv 6 0 for all v 6= w in Q0. Let R be a field of
characteristic zero. As in Kac [84, §0.3], the associated (derived) Kac–Moody
algebra g′(A) over R is the Lie algebra over R with generators ev, fv, hv for
v ∈ Q0, and the relations

[hv, hw] = 0, [ev, fw] = 0 if v 6= w, [ev, fv] = hv,

[hv, ew] = avwew, [hv, fw] = −avwfw,
(ad ev)

1−avw(ew) = 0 if v 6= w, (ad fv)
1−avw(fw) = 0 if v 6= w.

(2.7)

For elements d ∈ ZQ0 , we will use the notation

d > 0 if d ∈ NQ0 , d > 0 if d ∈ NQ0 \ {0},
d 6 0 if −d ∈ NQ0 , d < 0 if −d ∈ NQ0 \ {0}.

(2.8)

Note that if d(v) > 0 and d(w) < 0 for some v, w ∈ Q0 then none of d > 0,
d > 0, d 6 0, d < 0, or d = 0 hold.

The next theorem is taken from Kac [84, §1 & §5], with (e) in [84, Rem. 1.5].

Theorem 2.4. Let A = (avw)v,w∈Q0
and g′(A) be as in Definition 2.3. Then:

(a) There is a unique grading g′(A) =
⊕

d∈ZQ0 gd, such that ev ∈ gδv , fv ∈
g−δv and hv ∈ g0 for all v ∈ Q0 and [gd, ge] ⊆ gd+e for all d, e ∈ ZQ0 ,

where δv ∈ ZQ0 is given by δv(w) = 1 if v = w and δv(w) = 0 otherwise.

(b) Each graded subspace gd for d ∈ ZQ0 is finite-dimensional, and gd = 0
unless either d = 0, or d > 0, or d < 0, in the notation of (2.8). Write
h = g0, n+ =

⊕
d>0 gd, and n− =

⊕
d<0 gd. Then h, n+, n− are Lie

subalgebras of g′(A), with g′(A) = h ⊕ n+ ⊕ n−. We call h the Cartan
subalgebra, n+ the positive part, and n− the negative part of g′(A).

Then h is abelian, and is the R-vector space with basis hv for v ∈ Q0. Also
n+ is the Lie subalgebra of g′(A) generated by the ev for v ∈ Q0, and n−
is the Lie subalgebra of g′(A) generated by the fv for v ∈ Q0.
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(c) We call d ∈ ZQ0 a root of g′(A) if d 6= 0 and gd 6= 0. Then either d > 0,
when d is a positive root, or d < 0, when d is a negative root. Write
∆,∆+,∆− for the sets of roots, positive roots, and negative roots. Then
n+ =

⊕
d∈∆+

gd and n− =
⊕

d∈∆−
gd.

We also divide roots d ∈ ∆ into real roots, with A(d,d) > 0, and imag-
inary roots, with A(d,d) 6 0. If d is a real root then A(d,d) = 2.

(d) There is a unique isomorphism ω : g′(A) → g′(A) satisfying ω2 = id,
and ω(gd) = g−d for all d ∈ ZQ0 , and ω(ev) = −fv, ω(fv) = −ev,
ω(hv) = −hv for all v ∈ Q0.

(e) Suppose t is an ideal in g′(A) which is graded with respect to the grading
in (a), with h ∩ t = 0. Then t = 0.

Remark 2.5. (i) Kac [84, §1] constructs another Lie algebra g(A), also called
a Kac–Moody algebra, such that g′(A) = [g(A), g(A)] ⊆ g(A) is the derived
Lie subalgebra. We call g′(A) the derived Kac–Moody algebra if we want to

stress the difference with g(A). We have g(A) = ĥ⊕ n+⊕ n−, where the Cartan

subalgebra ĥ of g(A) has h ⊆ ĥ, and dim ĥ − dim h = null(A) is the number of
zero eigenvalues of A, so that g(A) = g′(A) if and only if detA 6= 0. We chose
only to define the g′(A), as they occur in our Ringel–Hall Lie algebra examples.

(ii) The definition of Kac–Moody algebra [84, §1] does not require the matrix
A = (avw)v,w∈Q0

to be symmetric, only that avw = 0 implies awv = 0. One can
also relax the condition that avv = 2, giving a generalized Kac–Moody algebra,
or Borcherds–Kac–Moody algebra.

(iii) The Lie algebra g′(A) is finite-dimensional if and only if the matrix A is
positive definite, and then g′(A) is semisimple, a sum of Lie algebras of types A,
D and E. As in Kac [84], much of the representation theory of finite-dimensional
semisimple Lie algebras extends to Kac–Moody algebras in a nice way.

(iv) The theory of quantum groups [71,106] extends to Kac–Moody algebras.

2.1.3 The Virasoro algebra

Definition 2.6. The Virasoro algebra VirR over a Q-algebraR is the Lie algebra
with basis elements Ln, n ∈ Z and c (the central charge), and Lie bracket

[c, Ln] = 0, [Lm, Ln] = (m− n)Lm+n + 1
12 (m3 −m)δm,nc, m, n ∈ Z.

The factor 1
12 is a convention, and can be omitted when defining the Virasoro

algebra over a general commutative ring R.

The quotient VirR /〈c〉 is called the Witt algebra, and may be regarded as
the Lie algebra of vector fields on the circle S1. The Virasoro algebra is the
unique central extension of the Witt algebra. It is very important in Conformal
Field Theory and String Theory.

9



2.2 Vertex algebras

Next we discuss vertex algebras. These were introduced by Borcherds [18],
and some books on them are Kac [85], Frenkel and Ben-Zvi [46], Frenkel, Lep-
owsky and Meurman [48], Frenkel, Huang and Lepowsky [47], and Lepowsky
and Li [99].

2.2.1 (Graded) vertex algebras and vertex operator algebras

Here is Borcherds’ original definition of vertex algebra [18]:

Definition 2.7. Let R be a commutative ring. A vertex algebra over R is an
R-module V equipped with morphisms D(n) : V → V for n = 0, 1, 2, . . . with
D(0) = idV and vn : V → V for all v ∈ V and n ∈ Z, with vn R-linear in v, and
a distinguished element 1 ∈ V called the identity or vacuum vector, satisfying:

(i) For all u, v ∈ V we have un(v) = 0 for n� 0.

(ii) If v ∈ V then 1−1(v) = v and 1n(v) = 0 for −1 6= n ∈ Z.

(iii) If v ∈ V then vn(1) = D(−n−1)(v) for n < 0 and vn(1) = 0 for n > 0.

(iv) un(v) =
∑
k>0(−1)k+n+1D(k)(vn+k(u)) for all u, v ∈ V and n ∈ Z, where

the sum makes sense by (i), as it has only finitely many nonzero terms.

(v) (ul(v))m(w) =
∑
n>0(−1)n

(
l
n

)(
ul−n(vm+n(w))−(−1)lvl+m−n(un(w))

)
for

all u, v, w ∈ V and l,m ∈ Z, where the sum makes sense by (i).

One can show from these axioms that D(m) ◦D(n) =
(
m
n

)
D(m+n), and so by

induction n!D(n) = (D(1))n. If R is a Q-algebra then we write T = D(1) and
call T the translation operator, and D(n) = 1

n!T
n for n = 0, 1, 2, . . . .

As in [85, §1.3], [46, §1.3], it is very common to encode the maps un : V → V
for n ∈ Z in generating function form as R-linear maps for each u ∈ V

Y (u, z) : V −→ V [[z, z−1]], Y (u, z) : v 7−→
∑
n∈Z un(v)z−n−1, (2.9)

where z is a formal variable. The Y (u, z) are called fields, and have a meaning
in Physics. Parts (i)–(v) may be rewritten as properties of the Y (u, z).

There are several alternative definitions of vertex algebra in use in the lit-
erature [46, 48, 85, 99], which generally require R to be a Q-algebra or field of
characteristic zero, and are known to be equivalent to Definition 2.7 when R is
a Q-algebra, [85, §4.8].

Vertex algebras are part of the basic language of Conformal Field Theories
in Mathematical Physics and String Theory, and have important mathematical
applications in the representation theory of infinite-dimensional Lie algebras,
the study of the Monster group, and other areas.

Next we define graded vertex algebras, which are examples of vertex super-
algebras. Inconveniently, the dominant grading convention in the literature for
graded vertex algebras of the type we want is different to that for graded Lie
algebras in §2.1.1, as they are graded over 1

2Z rather than Z.
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Definition 2.8. Let R be a commutative ring. A graded vertex algebra (or
graded vertex superalgebra) over R is an R-module V∗ =

⊕
a∈ 1

2Z
Va graded over

1
2Z, equipped with morphisms D(n) : V∗ → V∗ for n = 0, 1, 2, . . . which are

graded of degree n (i.e. D(n) maps Va → Va+n for a ∈ 1
2Z) with D(0) = idV∗ and

morphisms vn : V∗ → V∗ for all v ∈ V∗ and n ∈ Z which are R-linear in v and
graded of degree a− n− 1 for v ∈ Va (i.e. vn maps Vb → Va+b−n−1 for b ∈ 1

2Z),
and an element 1 ∈ V0 called the identity or vacuum vector, satisfying:

(i) For all u, v ∈ V∗ we have un(v) = 0 for n� 0.

(ii) If v ∈ V∗ then 1−1(v) = v and 1n(v) = 0 for −1 6= n ∈ Z.

(iii) If v ∈ V∗ then vn(1) = D(−n−1)(v) for n < 0 and vn(1) = 0 for n > 0.

(iv) un(v) =
∑
k>0(−1)4ab+k+n+1D(k)(vn+k(u)) for all a, b ∈ 1

2Z, n ∈ Z and
u ∈ Va, v ∈ Vb, where the sum makes sense by (i).

(v) (ul(v))m(w)=
∑
n>0(−1)n

(
l
n

)(
ul−n(vm+n(w))−(−1)4ab+lvl+m−n(un(w))

)
for all a, b, c ∈ 1

2Z, l,m ∈ Z and u ∈ Va, v ∈ Vb, w ∈ Vc, where the sum
makes sense by (i).

Then VZ =
⊕

a∈Z Va is the ‘even’ part of V∗, which is an ordinary vertex
algebra, and V 1

2 +Z =
⊕

a∈ 1
2 +Z Va is the ‘odd’ or ‘super’ part of V∗.

As in [18, 48, 85, 99], vertex operator algebras are a class of vertex algebras
important in Conformal Field Theory:

Definition 2.9. Let R be a field of characteristic zero. A vertex operator algebra
(or vertex operator superalgebra, or conformal vertex algebra [85, §4.10]) over R
is a graded vertex algebra V∗ =

⊕
a∈ 1

2Z
Va over R as in Definition 2.8, with a

distinguished conformal element ω ∈ V2 and a central charge cV ∈ R, such that
writing Ln = ωn+1 : V∗ → V∗, we have

(i) [Lm, Ln] = (m− n)Lm+n + 1
12cV (m3 −m)δm,nidV∗ for m,n ∈ Z. That is,

the Ln define an action of the Viraso algebra on V∗, with central charge
cV , as in §2.1.3.

(ii) L−1 = D(1) = T is the translation operator.

(iii) L0|Va = a · idVa for a ∈ 1
2Z.

A graded vertex algebra V∗ need not admit a conformal element ω, and if
ω exists it may not be unique. The term vertex operator algebra (rather than
superalgebra) is often reserved for the case with odd part V 1

2 +Z = 0, but we do
not do this. Some authors also impose additional conditions such as dimVn <∞
and Vn = 0 for n� 0, but again we do not do this.

2.2.2 Some basic constructions for vertex algebras

Many concepts for ordinary algebras generalize to vertex algebras, graded vertex
algebras, and vertex operator algebras, in an obvious way. We mention some of
these, details can be found in [46,48,85,99].
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• Morphisms of (graded) vertex algebras and vertex operator algebras are
defined in the obvious way, making them into categories.

• A (graded) vertex subalgebra W∗ of a (graded) vertex algebra V∗ is a
(graded) subspace W∗ ⊆ V∗ such that 1 ∈W∗ and w(n)(W∗) ⊆W∗ for all
w ∈W∗ and n ∈ Z.

• An ideal in a (graded) vertex algebra, or vertex operator algebra V∗, is a
(graded) R-submodule I∗ ⊂ V∗ with 1 6= I∗ closed under all operations
D(n) : V∗ → V∗ and un : V∗ → V∗, and such that un(V∗) ⊆ I∗ for u ∈ I∗.
Then the quotient V∗/I∗ is a (graded) vertex algebra, or vertex operator
algebra. We call V∗ simple if it has no nonzero ideals.

• Direct sums V∗⊕W∗ of (graded) vertex algebras V∗,W∗ are (graded) vertex
algebras.

• Tensor products V∗ ⊗RW∗ of (graded) vertex algebras or vertex operator
algebras V∗,W∗ are (graded) vertex algebras or vertex operator algebras.

• Suppose a groupG acts on a (graded) vertex (operator) algebra V∗ preserv-
ing the structures. Then the G-invariant subspace V G∗ is also a (graded)
vertex (operator) algebra, which is called an orbifold vertex algebra.

We define representations of graded vertex algebras, following Lepowsky and
Li [99] and Frenkel and Ben-Zvi [46, §5.1].

Definition 2.10. Let R be a commutative ring, and V∗ be a graded vertex
algebra over R. A representation of V∗, or V∗-module, is an R-module W∗ =⊕

a∈ 1
2Z
Wa graded over 1

2Z, equipped with morphisms vn : W∗ → W∗ for all

v ∈ V∗ and n ∈ Z which are R-linear in v and graded of degree a − n − 1 for
v ∈ Va, satisfying:

(i) For all v ∈ V∗ and w ∈W∗ we have vn(w) = 0 for n� 0.

(ii) If w ∈W∗ then 1−1(w) = w and 1n(w) = 0 for −1 6= n ∈ Z.

(ii) (ul(v))m(w)=
∑
n>0(−1)n

(
l
n

)(
ul−n(vm+n(w))−(−1)4ab+lvl+m−n(un(w))

)
for all a, b, c ∈ 1

2Z, l,m ∈ Z and u ∈ Va, v ∈ Vb, w ∈ Wc, where the sum
makes sense by (i).

One can also take W∗ =
⊕

a∈QWa to be graded over Q rather than 1
2Z.

As in Borcherds [18], we can construct a (graded) Lie algebra from a (graded)
vertex algebra. This will be used in §3.3 to define the ‘t = 0’ Lie algebras.

Definition 2.11. Let V∗ =
⊕

a∈ 1
2Z
Va be a graded vertex algebra over R as in

Definition 2.8. For each n ∈ Z define an R-module

V Lie

n = V 1
2n+1

/∑
k>1D

(k)(V 1
2n−k+1).

For all m,n ∈ Z define an R-bilinear map [ , ] : V Lie
m × V Lie

n → V Lie
m+n by[

u+
∑
k>1D

(k)(V∗), v +
∑
k>1D

(k)(V∗)
]

= u0(v) +
∑
k>1D

(k)(V∗).

12



One can show this is well defined, and makes V Lie
∗ =

⊕
n∈Z V

Lie
n into a graded

Lie algebra over R in the sense of Definition 2.2, so V Lie
0 is a Lie algebra.

As in Borcherds [18] and Prevost [131, Prop.s 4.5.3–4.5.4], if V∗ is a vertex
operator algebra then

V̇ Lie

0 =
{
u+

∑
k>1D

(k)(V∗) ∈ V Lie
0 : u ∈ V1, Ln(u) = 0, n > 1

}
is a Lie subalgebra of V Lie

0 , which is generally rather smaller, and may be closer
to the Lie algebras one wants to construct.

The next definition follows Frenkel and Ben-Zvi [46, §1.4], and provides a
first class of examples of vertex algebras.

Definition 2.12. A (graded) vertex algebra V∗ is called commutative if un(v) =
0 for all u, v ∈ V∗ and n > 0.

This implies that um : V∗ → V∗ and vn : V∗ → V∗ (super)commute for all
u, v ∈ V∗ and m,n ∈ Z. The R-bilinear product u · v := u−1(v) is (graded), as-
sociative and (super)commutative, making V∗ into a ( 1

2Z-graded) commutative
R-algebra with identity 1. The translation operator T : V∗ → V∗ is an (even)
derivation of this algebra (graded of degree 1).

Conversely, if R is a Q-algebra, given a ( 1
2Z-graded) commutative R-algebra

V∗ with a (degree 1, even) derivation T : V∗ → V∗, we can reconstruct the
(graded) vertex algebra structure on V∗, and this gives a 1-1 correspondence
between commutative (graded) vertex algebras over R and commutative ( 1

2Z-
graded) R-algebras with (degree 1) derivation.

If V∗ is a commutative (graded) vertex algebra then the (graded) Lie algebra
V Lie
∗ in Definition 2.11 is abelian (and so boring).

2.2.3 Vertex Lie algebras

We define (graded) vertex Lie algebras, following Kac [85, Def. 2.7b], Primc [133],
and Frenkel and Ben-Zvi [46, §16.1].

Definition 2.13. Let R be a commutative ring. A vertex Lie algebra (or
conformal algebra [85]) over R is an R-module V equipped with morphisms
D(n) : V → V for n = 0, 1, 2, . . . with D(0) = idV and un : V → V for all u ∈ V
and n ∈ N, with un R-linear in u, satisfying:

(i) For all u, v ∈ V we have un(v) = 0 for n� 0.

(ii) If u, v ∈ V then (D(k)(u))n(v) = (−1)k
(
n
k

)
un−k(v) for 0 6 k 6 n, and

(D(k)(u))n(v) = 0 for 0 6 n < k.

(iii) un(v) =
∑
k>0(−1)k+n+1D(k)(vn+k(u)) for all u, v ∈ V and n ∈ N, where

the sum makes sense by (i).

(iv) (ul(v))m(w) =
∑l
n=0(−1)n

(
l
n

)(
ul−n(vm+n(w))−(−1)lvl+m−n(un(w))

)
for

all u, v, w ∈ V and l,m ∈ N.
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Definition 2.14. Let R be a commutative ring. A graded vertex Lie algebra
over R is an R-module V∗ =

⊕
a∈ 1

2Z
Va graded over 1

2Z, equipped with mor-

phisms D(n) : V∗ → V∗ for n = 0, 1, 2, . . . which are graded of degree n (i.e. D(n)

maps Va → Va+n for a ∈ 1
2Z) with D(0) = idV∗ and morphisms un : V∗ → V∗

for all u ∈ V∗ and n ∈ N which are R-linear in u and graded of degree a− n− 1
for u ∈ Va (i.e. un maps Vb → Va+b−n−1 for b ∈ 1

2Z), satisfying:

(i) For all u, v ∈ V∗ we have un(v) = 0 for n� 0.

(ii) If u, v ∈ V∗ then (D(k)(u))n(v) = (−1)k
(
n
k

)
un−k(v) for 0 6 k 6 n, and

(D(k)(u))n(v) = 0 for 0 6 n < k.

(iii) un(v) =
∑
k>0(−1)4ab+k+n+1D(k)(vn+k(u)) for all a, b ∈ 1

2Z, n ∈ N and
u ∈ Va, v ∈ Vb, where the sum makes sense by (i).

(iv) (ul(v))m(w)=
∑l
n=0(−1)n

(
l
n

)(
ul−n(vm+n(w))−(−1)4ab+lvl+m−n(un(w))

)
for all a, b, c ∈ 1

2Z, l,m ∈ N and u ∈ Va, v ∈ Vb, w ∈ Vc.

A (graded) vertex Lie algebra has some of the structures of a (graded) vertex
algebra: it has the operators D(n) and un for n > 0, but omits un for n < 0 and
1. Any (graded) vertex algebra is a (graded) vertex Lie algebra.

If V∗ is a (graded) vertex algebra, a (graded) vertex Lie subalgebra W∗ of V∗
is a (graded) subspace W∗ ⊆ V∗ such that D(n)(W∗) ⊆ W∗ and wn(W∗) ⊆ W∗
for all w ∈W∗ and n > 0. Then W∗ is a (graded) vertex Lie algebra.

As in Primc [133], any (graded) vertex Lie algebra W∗ has a universal en-
veloping vertex algebra V (W∗), which is a (graded) vertex algebra with an inclu-
sion W∗ ⊆ V (W∗) as a vertex Lie subalgebra, with the universal property that
if V∗ is a (graded) vertex algebra and φ : W∗ → V∗ is a morphism of (graded)
vertex Lie algebras, then φ extends to a unique morphism V (φ) : V (W∗)→ V∗
of (graded) vertex algebras.

Often a (graded) vertex Lie algebra W∗ may be much smaller, and easier to
write down, than its associated (graded) vertex algebra V (W∗).

The definition of (graded) Lie algebras V Lie
∗ in Definition 2.11 also works for

(graded) vertex Lie algebras V∗.

2.2.4 Lattice vertex algebras

We discuss lattice vertex algebras, an important class of examples of graded
vertex algebras, following Borcherds [18], Kac [85, §5.4], Frenkel and Ben-Zvi [46,
§5.4], Frenkel et al. [48, Th. 8.10.2], and Lepowsky and Li [99, §6.4–§6.5].

Definition 2.15. Let Q0 be a finite set, so that ZQ0 is a finite rank free abelian
group. Let χ : ZQ0 × ZQ0 → Z be a Z-bilinear symmetric form, with matrix
A = (avw)v,w∈Q0

. Let R be a field of characteristic zero.
As in [85, (5.14)], [46, (5.4)], suppose we are given signs εα,β ∈ {±1} for all
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α, β ∈ ZQ0 satisfying for all α, β, γ ∈ ZQ0

εα,β · εβ,α = (−1)χ(α,β)+χ(α,α)χ(β,β), (2.10)

εα,β · εα+β,γ = εα,β+γ · εβ,γ , (2.11)

εα,0 = ε0,α = 1. (2.12)

Note that these coincide with (3.1)–(3.3) in Assumption 3.1 below. As in
Kac [85, Cor. 5.5], there exist solutions (εα,β)α,β∈ZQ0 to (2.10)–(2.12), which
are unique up to an appropriate notion of equivalence (i.e. all solutions yield
isomorphic lattice vertex algebras).

Define a commutative R-algebra

V = R[ZQ0 ]⊗R R[bv,i : v ∈ Q0, i = 1, 2, . . .].

Here R[ZQ0 ] is the group algebra over R of the abelian group ZQ0 , which has
basis formal symbols eα for α ∈ ZQ0 with multiplication eα · eβ = eα+β , and
R[bv,i : v ∈ Q0, i > 1] is the polynomial algebra over R in formal variables bv,i.
Thus, V is the free R-module with basis{
eα ⊗

∏
v∈Q0, i>1 b

nv,i
v,i : α ∈ Q0, nv,i ∈ N, only finitely many nv,i 6= 0

}
. (2.13)

Define a grading V =
⊕

a∈ 1
2Z
Va of V over 1

2Z such that

eα ⊗
∏
v∈Q0, i>1 b

nv,i
v,i ∈ V− 1

2χ(α,α)+
∑
v,i nv,i

(2.14)

for each basis element in (2.13). (Note that although V is an R-algebra, because
of the − 1

2χ(α, α) term the multiplication in V does not respect the grading.) We
write V = V∗ as a graded vector space, with even part VZ and odd part V 1

2 +Z.

For each α ∈ ZQ0 and n ∈ Z we define R-linear maps αn : V∗ → V∗ which
are graded of degree −n and Z-linear in α, by

(i) If n > 0 then αn : V → V is the derivation of the R-algebra V generated
by αn(bv,i) = 0 for v ∈ Q0, i 6= n, and αn(bv,n) = nα(v), and αn(eβ) = 0

for β ∈ ZQ0 . In effect, αn acts as n
∑
v∈Q0

α(v) d
dbv,n

.

(ii) α0 acts by α0 : eβ ⊗
∏
v∈Q0, i>1 b

nv,i
v,i 7→ χ(α, β) · eβ ⊗

∏
v∈Q0, i>1 b

nv,i
v,i .

(iii) If n < 0 then αn : V → V is multiplication by
∑
v∈Q0

α(v)bv,−n in the
R-algebra V .

Write 1 = e0 ⊗ 1 ∈ V0 for the identity 1 in the R-algebra V .

The next theorem follows from Kac [85, Prop.s 5.4 & 5.5 & Th. 5.5], see also
Lepowsky and Li [99, Th. 6.5.3].

Theorem 2.16. In the situation of Definition 2.15, there is a unique graded
vertex algebra structure over R on V∗ =

⊕
a∈ 1

2Z
Va such that 1 is the identity

vector, and for all α ∈ ZQ0 and n ∈ Z we have(
e0 ⊗

∑
v∈Q0

α(v)bv,1
)
n

= αn : V∗ −→ V∗, (2.15)
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and for all α, β ∈ ZQ0 , in the notation of (2.9) we have

Y (eα ⊗ 1, z)|eβ⊗R[bv,i:v∈Q0, i>1]

= εα,βz
χ(α,β)eα exp

[
−
∑
n<0

1
nz
−nαn

]
◦ exp

[
−
∑
n>0

1
nz
−nαn

]
:

eβ ⊗R[bv,i : v ∈ Q0, i > 1] −→ eα+β ⊗R[bv,i : v ∈ Q0, i > 1].

(2.16)

We call V∗ a lattice vertex algebra.
Now suppose that the inner product χ : ZQ0 ×ZQ0 → Z is nondegenerate, so

that A = (avw)v,w∈Q0
is invertible over Q, and write A−1 = C = (cvw)v,w∈Q0

with cv,w ∈ Q. Then V∗ is a simple graded vertex algebra (it has no nonzero
ideals), and it is a graded vertex operator algebra, with conformal vector

ω = 1
2

∑
v,w∈Q0

cvw e
0 ⊗ bv,1bw,1, (2.17)

and central charge cV = rankZQ0 = |Q0|.

Remark 2.17. (i) We have changed notation compared to [18,46,48,85,99], for
compatibility with §5. In particular, lattice vertex algebras are usually defined
using a finite rank free abelian group Λ with symmetric form χ : Λ × Λ → Z.
We have taken Λ = ZQ0 , and written SymR(Λ⊗Z t

−1R[t−1]) in [85, §5.4] as the
polynomial algebra R[bv,i : v ∈ Q0, i > 1].

(ii) As in Kac [85, Ex. 5.5b], the conformal vector ω in (2.17) may not be unique,
lattice vertex algebras can admit nontrivial families of conformal vectors.

(iii) Parts of Definition 2.15 and Theorem 2.16 also work over more general
commutative rings R. Borcherds [18, §2] initially defines V Q

∗ over R = Q, and
then defines an integral form V Z

∗ to be the smallest subring of V Q
∗ as a Q-

algebra containing eα ⊗ 1 for all α ∈ ZQ0 and closed under all operations D(n).
We can then define the lattice vertex algebra over any commutative ring R to
be V R∗ = V Z

∗ ⊗Z R. Note that ω in (2.17) is not defined over Z.

2.3 Background on stacks

Stacks are a large and difficult subject. Although we give a little introduction
here, it will not be enough to enable readers unfamiliar with stacks to properly
understand our paper. Our discussion is intended for readers who already have
good background knowledge of stacks. On core material we aim to establish
notation, give references, and remind readers of the basic ideas. We also go into
detail on some technical points which will be important later.

For general references on stacks we recommend Gómez [55], Olsson [127],
Laumon and Moret-Bailly [98], and the online Stacks Project [34].

2.3.1 Classes of spaces in algebraic geometry

Throughout §2–§7 we fix a field K, such as K = C, which we sometimes require
to be algebraically closed. Then we can consider the following classes of algebro-
geometric spaces over K:
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(i) K-schemes, as in Hartshorne [62]. These form a category SchK.

We generally restrict attention to schemes S which are locally of finite
type. We write Schlft

K ⊂ SchK for the full subcategory of such schemes.

(ii) Algebraic K-spaces, as in Knutson [89] and Olsson [127]. These form a
category AlgSpK.

(iii) Artin K-stacks, as in Gómez [55], Olsson [127], Laumon and Moret-Bailly
[98], and the ‘Stacks Project’ [34]. These form a 2-category ArtK.

We generally restrict attention to stacks S which are locally of finite type,
and we make the convention that Artin K-stacks in this paper are assumed
to be locally of finite type unless we explicitly say otherwise. We write
Artlft

K ⊂ ArtK for the full 2-subcategory of such stacks.

The typical examples of Artin stacks we will be interested in are moduli
stacks M of objects in a K-linear abelian category A, such as coherent
sheaves A = coh(X) on a smooth projective K-scheme X.

(iv) Higher (Artin) K-stacks, as in Simpson [143], Toën [149], and Pridham
[132]. These are a generalization of Artin stacks which form an∞-category
HStK, including ‘geometric n-stacks’ for n = 1, 2, . . . , where geometric 1-
stacks are Artin stacks. We generally restrict attention to higher stacks S
which are locally of finite type, and higher stacks in this paper are assumed
to be locally of finite type unless we explicitly say otherwise. We write
HStlft

K ⊂ HStK for the full ∞-subcategory of such stacks.

The typical examples of higher stacks we will be interested in are moduli
stacks M of objects in a K-linear triangulated category T , such as the
bounded derived category T = Dbcoh(X) of complexes of coherent sheaves
on a smooth projective K-scheme X.

The reason we need higher stacks to study moduli spaces of complexes
is that if E• is an object in Dbcoh(X) with Exti(E•, E•) 6= 0 for some
i < 0 then the moduli space M of objects in Dbcoh(X) is generally not
represented by an Artin stack near E•, but it is a higher Artin stack.

(v) Derived K-stacks, as in Toën and Vezzosi [149–152]. These form an ∞-
category dStK, including a full ∞-subcategory dArtK of derived Artin
stacks. We generally restrict attention to derived stacks S which are locally
of finite presentation. We write dStlfp

K ⊂ dStK for the full∞-subcategory
of such derived stacks. We usually write derived stacks in bold type.

The typical examples of derived stacks we will be interested in are derived
moduli stacks M of objects in a K-linear abelian category A, such as
A = coh(X) (in this case M is a derived Artin stack) or in a K-linear
triangulated category T , such as T = Dbcoh(X).
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These (higher) categories have the following inclusion relations:

SchK
� �

⊂
// AlgSpK

� �

⊂
// ArtK

� �

⊂
//

_�

⊂
��

HStK
_�

⊂
��

dArtK

t0

OO

� � ⊂ // dStK .

t0

OO

There is also a classical truncation functor t0 : dStK → HStK, which maps
t0 : dArtK → ArtK, is left inverse to the inclusion HStK ↪→ dStK, and takes
derived moduli stacks to the corresponding classical moduli stacks.

It will often not be important to us that ArtK,HStK,dArtK,dStK are 2-
categories or∞-categories. Then we treat them as ordinary categories by work-
ing in the homotopy categories Ho(ArtK), . . . ,Ho(dStK) (see Definition 2.18).

2.3.2 Basics of 2-categories, the 2-category of Artin stacks

We review 2-categories, as in Borceux [17, §7], Kelly and Street [87], and
Behrend et al. [14, App. B]. A (strict) 2-category C has objects X,Y, . . . ,
and two kinds of morphisms, 1-morphisms f : X → Y between objects, and
2-morphisms η : f ⇒ g between 1-morphisms f, g : X → Y . One can also con-
sider weak 2-categories, or bicategories, in which composition of 1-morphisms is
associative only up to 2-isomorphisms, but we will not discuss these.

There are three kinds of composition in a 2-category, satisfying various as-
sociativity relations. If f : X → Y and g : Y → Z are 1-morphisms in C then
g ◦ f : X → Z is the composition of 1-morphisms. If f, g, h : X → Y are
1-morphisms and η : f ⇒ g, ζ : g ⇒ h are 2-morphisms in C then ζ � η : f ⇒ h
is the vertical composition of 2-morphisms, as a diagram

X

f

""�� η
<<

h

�� ζ
g

// Y // X

f
))

h

55�� ζ�η Y.

If f, ḟ : X → Y and g, ġ : Y → Z are 1-morphisms and η : f ⇒ ḟ , ζ : g ⇒ ġ
are 2-morphisms in C then ζ ∗ η : g ◦ f ⇒ ġ ◦ ḟ is the horizontal composition of
2-morphisms, as a diagram

X

f
((

ḟ

66�� η Y

g

((

ġ

66�� ζ Z // X

g◦f
((

ġ◦ḟ

66�� ζ∗η Z.

There are also two kinds of identity: identity 1-morphisms idX : X → X of
objects and identity 2-morphisms idf : f ⇒ f of 1-morphisms. A 2-morphism
η : f ⇒ g is a 2-isomorphism if it is invertible under vertical composition.

Commutative diagrams in 2-categories should in general only commute up
to (specified) 2-isomorphisms, rather than strictly. A simple example of a com-
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mutative diagram in a 2-category C is

Y
g

**
η
��X

f
44

h
// Z,

which means that X,Y, Z are objects of C, f : X → Y , g : Y → Z and
h : X → Z are 1-morphisms in C, and η : g ◦ f ⇒ h is a 2-isomorphism.

In a 2-category C, there are three notions of when objects X,Y in C are
‘the same’: equality X = Y , and 1-isomorphism, that is we have 1-morphisms
f : X → Y , g : Y → X with g ◦ f = idX and f ◦ g = idY , and equivalence,
that is, we have 1-morphisms f : X → Y , g : Y → X and 2-isomorphisms
η : g ◦ f ⇒ idX and ζ : f ◦ g ⇒ idY . Usually equivalence is the correct notion.

Definition 2.18. Let C be a 2-category. The homotopy category Ho(C) of
C is the category whose objects are objects of C, and whose morphisms [f ] :
X → Y are 2-isomorphism classes [f ] of 1-morphisms f : X → Y in C. Then
equivalences in C become isomorphisms in Ho(C), 2-commutative diagrams in
C become commutative diagrams in Ho(C), and so on.

Artin K-stacks ArtK and Artlft
K form strict 2-categories. As in Gómez [55,

§2.2] and Olsson [127, §8], for us an Artin K-stack is defined to be a pair (X, pX)
of a category X and a functor pX : X → SchK, where SchK is the category
of K-schemes, such that X, pX satisfy many complicated conditions which we
will not go into. These are the objects in ArtK. If (X, pX), (Y, pY ) are Artin
K-stacks, a 1-morphism f : (X, pX)→ (Y, pY ) in ArtK is a functor f : X → Y
with pY ◦ f = pX . If f, g : (X, pX) → (Y, pY ) are 1-morphisms, a 2-morphism
η : f ⇒ g in ArtK is a natural transformation of functors η : f ⇒ g such that
idpY ∗ η = idpX . All 2-morphisms in ArtK are 2-isomorphisms.

Definition 2.19. Let (X, pX) be an Artin K-stack. A substack (Y, pY ) of X is
a subcategory Y ⊆ X which is closed under isomorphisms in X, such that the
restriction pY := pX |Y : Y → SchK makes (Y, pY ) into an Artin K-stack. Then
the inclusion functor ι : Y ↪→ X is a representable 1-morphism in ArtK.

2.3.3 Fibre products of stacks

We define fibre products in 2-categories, following [14, Def. B.13], [127, §3.4.9].

Definition 2.20. Let C be a strict 2-category and g : X → Z, h : Y → Z be
1-morphisms in C. A fibre product in C consists of an object W , 1-morphisms
e : W → X and f : W → Y and a 2-isomorphism η : g ◦ e⇒ h ◦ f in C, so that
we have a 2-commutative diagram

W
f

//
e��

GO
η

Y
h ��

X
g // Z,

(2.18)
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with the following universal property: suppose e′ : W ′ → X and f ′ : W ′ → Y
are 1-morphisms and η′ : g ◦ e′ ⇒ h ◦ f ′ is a 2-isomorphism in C. Then there
should exist a 1-morphism b : W ′ → W and 2-isomorphisms ζ : e ◦ b ⇒ e′,
θ : f ◦ b⇒ f ′ such that the following diagram of 2-isomorphisms commutes:

g ◦ e ◦ b
η∗idb

+3

idg∗ζ��

h ◦ f ◦ b
idh∗θ ��

g ◦ e′
η′ +3 h ◦ f ′.

Furthermore, if b̃, ζ̃, θ̃ are alternative choices of b, ζ, θ then there should exist a
unique 2-isomorphism ε : b⇒ b̃ with

ζ = ζ̃ � (ide ∗ ε) and θ = θ̃ � (idf ∗ ε).

We call such a fibre product diagram (2.18) a 2-Cartesian square. We often
write W = X×Z Y or W = X×g,Z,h Y , and call W the fibre product. If a fibre
product X ×Z Y in C exists then it is unique up to canonical equivalence in C.

We can also define the dual notion of pushouts in 2-category, and 2-co-
Cartesian squares, by reversing the directions of all 1-morphisms in the above.

All fibre products exist in ArtK,Artlft
K , [98, Prop. 4.5(i)], [127, Prop. 8.1.16].

For higher stacks, we must use ∞-category fibre products (homotopy fibre
products). All such fibre products exist in HStK,HStlft

K .

2.3.4 K-points and isotropy groups

If S is an Artin K-stack, as in [98, §5] a K-point of S is a morphism s : ∗ → S
in Ho(ArtK), where ∗ = SpecK is the point, as a K-scheme. We write S(K)
for the set of K-points of S. If s ∈ S(K), then lifting s : ∗ → S to a 1-
morphism in ArtK, the isotropy group (or stabilizer group, or automorphism
group [127, Rem. 8.3.4]) IsoS(s) is the group of 2-isomorphisms λ : s ⇒ s in
ArtK under vertical composition. It is the set of K-points of the fibre product
∗ ×s,S,s ∗, which is a K-scheme, and in fact an algebraic K-group.

IfM is a moduli stack of objects in a K-linear abelian category A, and [E] in
M(K) corresponds to E inA, then IsoM([E]) is isomorphic to the automorphism
group Aut(E), the group of invertible elements in HomA(E,E).

If f : S → T is a morphism in Ho(ArtK), we define f(K) : S(K)→ T (K) to
map f(K) : s 7→ f ◦ s. If s ∈ S(K) with f(K)s = t ∈ T (K) there is a morphism
f∗ : IsoS(s) → IsoT (t) of algebraic K-groups given by f∗ : λ 7→ idf ∗ λ. As
this depends on lifting f, s, t from morphisms in Ho(ArtK) to 1-morphisms in
ArtK, f∗ is only canonical up to conjugation in IsoT (t). These f(K) and f∗ are
covariantly functorial in f .

Similar definitions work for K-points and isotropy groups of higher stacks.
There are also higher isotropy groups πn(S, s) for n > 0 with π0(S, s) = IsoS(s),
as in Toën [149, §3.1.6].

If U is a K-scheme and G an algebraic K-group acting on U , we can form
the quotient stack [U/G]. The K-points of [U/G] correspond to G-orbits G · u
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in U(K), with Iso[U/G](G · u) ∼= StabG(u) the stabilizer group of u in G. An

important example is [∗/Gm], where ∗ = SpecK is the point and Gm = A1 \{0}
is the multiplicative group.

2.3.5 Topologies on stacks, and the smooth topology

The appropriate notion of topology on Artin K-stacks is Grothendieck topologies,
as in [127, §2], including the Zariski topology, the étale topology, and the smooth
topology. When we use ‘locally’, ‘locally equivalent’, ‘locally trivial fibration’,
and so on, of stacks and their morphisms, we mean locally in the smooth topology,
unless we say otherwise.

For example, a vector bundle π : E → S on an Artin K-stack S is a locally
trivial fibre bundle in the smooth topology with fibre Kr. Requiring π : E → S
to be locally trivial only in the smooth topology (rather than in the stronger
Zariski or étale topologies) means that the isotropy groups IsoS(s) of K-points
s ∈ S(K) can have nontrivial linear actions on the fibres E|s of E.

2.3.6 Vector bundles, coherent sheaves, and complexes on stacks

If S is one of any of the kinds of spaces in §2.3.1, we can consider vector bun-
dles E → S on S, and (quasi-)coherent sheaves E on S, and complexes of
(quasi-)coherent sheaves E• on S, including perfect complexes. We write hi(E•)
for the ith cohomology sheaf of E•, as an object in coh(S) or qcoh(S). We
usually consider vector bundles to be examples of coherent sheaves. (Quasi-)
coherent sheaves on schemes are discussed by Hartshorne [62, §II.5] and Huy-
brechts and Lehn [68]. Some references on derived categories of complexes of
sheaves Dbcoh(S) on schemes are Gelfand and Manin [53] and Huybrechts [67].
Sheaves and complexes on (derived) (Artin) stacks are covered in Laumon and
Moret-Bailly [98, §15], Olsson [125, §9], [127, §9], and Toën and Vezzosi [151,152].

We will need the following notation:

Definition 2.21. Let S be a K-scheme, or Artin K-stack, or higher Artin K-
stack. An object E• in the unbounded derived category of quasicoherent sheaves
D(qcoh(S)) is called perfect if it is equivalent locally on S to a complex · · · →
Ei → Ei+1 → · · · with Ei a vector bundle in degree i, with Ei = 0 for |i| � 0.
It is called perfect in the interval [a, b] for a 6 b in Z if it is locally equivalent
to such a complex with Ei = 0 for i /∈ [a, b]. Write Perf(S) ⊂ D(qcoh(S)) for
the K-linear triangulated subcategory of perfect complexes.

Write Vect(S) for the exact category of vector bundles on S. Then Vect(S)
embeds as a full subcategory of Perf(S), by regarding a vector bundle E as a
complex · · · → 0→ E → 0→ · · · with E in degree 0.

WriteK0(Perf(S)) for the Grothendieck group of Perf(S), that is, the abelian
group generated by quasi-isomorphism classes [E•] of objects E• in Perf(S),
subject to the relations that [F•] = [E•] + [G•] whenever E• → F• → G• →
E•[+1] is a distinguished triangle in Perf(S).

Note that for direct sums E•⊕F• in Perf(S) we have [E•⊕F•] = [E•]+[F•].
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Write LCon(S,Z) for the abelian group of locally constant functions f :
S(K)→ Z. Then there is a group morphism rank : K0(Perf(S))→ LCon(S,Z)
called the rank, such that if E• ∈ Perf(S), and s ∈ S(K), and E• is quasi-
isomorphic near s to a finite complex of vector bundles · · · F i → F i+1 → · · ·
with F i in degree i, then rank([E•]) : s 7→

∑
i∈Z(−1)i rankF i. If E is a vector

bundle of rank r then rank([E ]) ≡ r.
There is a natural biadditive operation ⊗ : K0(Perf(S)) × K0(Perf(S)) →

K0(Perf(S)), which acts by [E ]⊗[F ] = [E⊗F ] on vector bundles E ,F ∈ Vect(S),
and [E•]⊗ [F•] = [E• ⊗L F•] on perfect complexes E•,F• ∈ Perf(S), where ⊗L
is the left derived tensor product. Then ⊗ is commutative and associative, and
makes K0(Perf(S)) into a commutative ring with identity [OS ], where OS is the
structure sheaf of S, a trivial line bundle of rank 1. We also have rank(α⊗β) =
rankα · rankβ for all α, β ∈ K0(Perf(S)).

There is an additive operation of duality ∨ : K0(Perf(S)) → K0(Perf(S)),
written α 7→ α∨ for α ∈ K0(Perf(S)), which acts by [E ]∨ = [E∗] on vector
bundles E → S, where E∗ is the dual vector bundle, and by [E•]∨ = [(E•)∨] on
perfect complexes E•, where (E•)∨ is the dual complex. We have (α∨)∨ = α, so
duality is an isomorphism. Also rankα∨ = rankα, and (α⊗β)∨ = (α∨)⊗ (β∨).

If f : S → T is a morphism of K-schemes, etc., we have pullback morphisms
K0(f) : K0(Perf(T )) → K0(Perf(S)) acting by K0(f) : [E•] 7→ [f∗(E•)] for
E• ∈ Perf(T ). Pullbacks are contravariantly functorial and commute with all
the structures above.

Example 2.22. Let G be an algebraic K-group, and consider the quotient Artin
K-stack [∗/G], where ∗ = SpecK. Then vector bundles on [∗/G] are equivalent
to finite-dimensional G-representations, that is, we have an equivalence of cat-
egories Vect([∗/G]) ' Repfd(G), and Perf([∗/G]) is equivalent to the bounded
derived category Db Repfd(G).

When G = Gm, the irreducible Gm-representations are Ek for k ∈ Z, where
Ek = K with Gm-action λ : e 7→ λke for λ ∈ Gm and e ∈ K, and finite-
dimensional Gm-representations are isomorphic to finite direct sums of the Ek.
Hence K0(Perf([∗/Gm])) is the free abelian group generated by classes [Ek] for
k ∈ Z. We have rank[Ek] = 1 and [Ek] ⊗ [El] = [Ek+l] for k, l ∈ Z. Thus as a
ring we have K0(Perf([∗/Gm])) ∼= Z[τ, τ−1] with τ = [E1].

If S is a K-scheme, or an Artin K-stack, or a higher or derived K-stack, then
under some assumptions we can define the cotangent complex LS , an object in
D(qcoh(S)). See Illusie [69, 70] for K-schemes, Laumon and Moret-Bailly [98,
§17] and Olsson [125, §8] for Artin K-stacks, and Toën and Vezzosi [151, §1.4],
[149, §4.2.4–§4.2.5] for derived K-stacks. We have hi(LS) = 0 for i > 0 if S is
a K-scheme or Deligne–Mumford K-stack, and hi(LS) = 0 for i > 1 if S is an
Artin K-stack. If S is a smooth K-scheme then LS = T ∗S is the usual cotangent
bundle. If S is a derived stack locally of finite presentation then LS is perfect.
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2.3.7 [∗/Gm]-actions, and principal [∗/Gm]-bundles

Suppose S is a K-scheme, and µ : Gm × S → S an action of the algebraic K-
group Gm = K \ {0} on S. Then µ is a free action if it acts freely on K-points
S(K). If µ is free we can form a quotient K-scheme T = S/Gm with projection
π : S → T , which is a principal Gm-bundle. We will generalize all this to Artin
K-stacks, replacing Gm by the group stack [∗/Gm].

Definition 2.23. Let Ω : [∗/Gm] × [∗/Gm] → [∗/Gm] be the stack morphism
induced by the group morphism Gm × Gm → Gm mapping (λ, µ) 7→ λµ, and
ι : [∗/Gm] → [∗/Gm] be induced by the group morphism Gm → Gm mapping
λ 7→ λ−1, and 1 : ∗ → [∗/Gm] be the unique K-point. Then [∗/Gm] is an
abelian group stack, an abelian group object in Ho(Artlft

K ), with multiplication
Ω, inverse map ι, and identity 1. That is, writing π : [∗/Gm] → ∗ for the
projection and σ : [∗/Gm]2 → [∗/Gm]2 for exchange of factors, we have

Ω = Ω ◦ σ : [∗/Gm]2 −→ [∗/Gm], (commutative),

Ω ◦ (Ω× id) = Ω ◦ (id× Ω) : [∗/Gm]3 −→ [∗/Gm], (associative),

Ω ◦ (1 ◦ π, id) = Ω ◦ (id, 1 ◦ π) = id : [∗/Gm] −→ [∗/Gm], (identity),

Ω ◦ (ι, id) = Ω ◦ (id, ι) = 1 ◦ π : [∗/Gm] −→ [∗/Gm], (inverses). (2.19)

We can then define an action of the group stack [∗/Gm] on an object S in
Ho(Artlft

K ) to be a morphism Ψ : [∗/Gm]× S → S in Ho(Artlft
K ) such that the

following commute in Ho(Artlft
K ):

[∗/Gm]× [∗/Gm]× S
Ω×idS

//

id[∗/Gm]×Ψ
��

[∗/Gm]× S
Ψ
��

[∗/Gm]× S Ψ // S,

(2.20)

[∗/Gm]× S
Ψ

++∗ × S

1×idS
22

πS // S.

(2.21)

We call a [∗/Gm]-action Ψ : [∗/Gm]×S → S free if for all K-points s ∈ S(K),
the induced morphism on isotropy groups as in §2.3.4

Ψ∗ : Iso[∗/Gm]×S((∗, s)) ∼= Gm × IsoS(s) −→ IsoS(s)

has injective restriction Ψ∗|Gm×{1} : Gm × {1} −→ IsoS(s).
(2.22)

A [∗/Gm]-principal bundle is a morphism ρ : S → T in Ho(Artlft
K ) and a

[∗/Gm]-action Ψ : [∗/Gm]× S → S, such that ρ is a locally trivial fibre bundle
in the smooth topology with fibre [∗/Gm], and the following commutes

[∗/Gm]× S
Ψ

//

πS
��

S
ρ
��

S
ρ // T

(2.23)
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in Ho(Artlft
K ), and locally over T equation (2.23) is equivalent to the diagram

[∗/Gm]× [∗/Gm]× T
Ω×idT

//

Π1×Π3��

[∗/Gm]× T
πT
��

[∗/Gm]× T πT // T.

(2.24)

This implies that Ψ is a free [∗/Gm]-action on S.
We can also make the same definition for higher stacks.

We can also generalize Definition 2.23 to actions Ψ : [∗/Gm]k × S → S
of [∗/Gm]k on S for k = 2, 3, . . . , equivalent to k commuting [∗/Gm]-actions
Ψ1, . . . ,Ψk on S, and principal [∗/Gm]k-bundles, in the obvious way.

Remark 2.24. We have written Definition 2.23 solely in the ordinary category
Ho(Artlft

K ). However, sometimes (e.g. in the proof of Proposition 2.29 below)
we need to lift the ideas to the 2-category Artlft

K . To do this, first note that
the morphisms Ω, ι, 1, π, σ,Ψ, ρ, . . . in Ho(Artlft

K ) are 2-isomorphism classes of
1-morphisms in Artlft

K , and choose a 1-morphism in each 2-isomorphism class,
which by abuse of notation we also denote by Ω, ι, . . . .

Then an equation such as Ω = Ω◦σ in Ho(Artlft
K ) in (2.19) means that there

exists a 2-isomorphism η : Ω ⇒ Ω ◦ σ in Artlft
K . We must make a particular

choice of such a 2-isomorphism, for each equation in morphisms in Ho(Artlft
K ) in

Definition 2.23, which become part of the data we work with. These particular
choices of 2-morphisms are then required to satisfy a large number of identities.
We will not write these identities down explicitly, but the general rule is that if
by using vertical and horizontal compositions of our 2-morphism data, we can
make two 2-morphisms η, η′ : f ⇒ g mapping between the same 1-morphisms
f, g, then we require that η = η′.

So, for instance, [∗/Gm] is a 2-group object in the strict 2-category Artlft
K .

The 2-morphisms lifting the equalities (2.19) are part of the data of a 2-group,
and the identities they satisfy follow from the axioms of a 2-group.

Now it turns out that every [∗/Gm]-action Ψ : [∗/Gm]×S → S in Ho(Artlft
K )

can be lifted to a 2-category [∗/Gm]-action in Artlft
K , which is unique up to the

appropriate notion of equivalence. So the distinction will not be important to
us, and we will mostly work with the simpler Ho(Artlft

K ) notion.
To prove this, observe that to lift a [∗/Gm]-action Ψ : [∗/Gm]×S → S from

Ho(Artlft
K ) to Artlft

K , in (2.20)–(2.21) we must choose 2-isomorphisms

ζ : Ψ ◦ (id[∗/Gm] ×Ψ) =⇒ Ψ ◦ (Ω× idS), η : Ψ ◦ (1× idS) =⇒ πS , (2.25)

which must satisfy some identities. Even without imposing identities, ζ, η in
(2.25) are close to being unique: from the definition of 2-morphisms in Artlft

K in
§2.3.2 we can show that if ζ ′, η′ are alternative choices then ζ ′ = α∗ζ, η′ = β ∗η
for unique 2-morphisms α, β : idS ⇒ idS , where ∗ is horizontal composition in
the strict 2-category Artlft

K , and the 2-morphisms α : idS ⇒ idS form an abelian
group under vertical composition.
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One of the identities that ζ, η must satisfy for the 2-category [∗/Gm]-action
is that the following should commute, in 1- and 2-morphisms ∗ × S → S:

Ψ× (id[∗/Gm] ×Ψ) ◦ ((1, 1)× idS)

ζ∗id(1,1)×idS��

idΨ∗(idid[∗/Gm]
×η)

'/
Ψ ◦ (Ω× idS) ◦ ((1, 1)× idS)

idΨ∗(θ×ididS
)

+3 Ψ ◦ (1× idS),

(2.26)

where θ : Ω ◦ (1, 1) ⇒ 1 is the 2-morphism of 1-morphisms ∗ → [∗/Gm] in the
2-group structure on [∗/Gm]. For an arbitrary choice of ζ, η in (2.25), equation
(2.26) need not hold, but as for the almost uniqueness of ζ, η above, there exists
a unique 2-morphism α : idS ⇒ idS such that(

α∗idΨ◦(1×idS)

)
�
(
idΨ∗(θ×ididS )

)
�
(
ζ∗id(1,1)×idS

)
=idΨ∗(idid[∗/Gm]

×η).

Then replacing ζ, η by ζ ′ = α ∗ ζ and η′ = η, we find that (2.26) holds.
We can now show that with these ζ ′, η′, all the other required identities

automatically hold. This can be reduced to considering the following situation:
as in §2.3.2, pS : S → SchK is a category fibred in groupoids. Let s be an
object in S, and write Σs for the group of isomorphisms σ : s → s in S with
pS(σ) = idpS(s), and Gs for the abelian group Gm(pS(s)). Then after making
some simplifying choices, Ψ induces a group morphism Ψs : Gs×Σs → Σs, and
ζ, η induce elements ζs, ηs ∈ Σs satisfying ζsΨs(γ,Ψs(δ, σ))ζ−1

s = Ψs(γδ, σ) and
ηsΨs(1, σ)η−1

s = σ for all γ, δ ∈ Gs and σ ∈ Σs, and (2.26) forces ζs = ηs. By
elementary group theory we see that Ψs(α, σ) = ρs(α) · ζ−1

s σζs for ρs : Gs →
Z(Σs) ⊆ Σs a group morphism to the centre Z(Σs) of Σs. We then use this
formula to check the remaining identities hold.

Proposition 2.25. (a) Suppose Ψ : [∗/Gm]×S → S is a free [∗/Gm]-action in
Ho(Artlft

K ). Then there exists a morphism ρ : S → T in Ho(Artlft
K ) with ρ,Ψ a

principal [∗/Gm]-bundle, and T, ρ are unique up to isomorphism, and equation
(2.23) is both homotopy Cartesian and homotopy co-Cartesian in Artlft

K . We
regard T as the quotient S/[∗/Gm] of S by the free [∗/Gm]-action Ψ. Here T
is known as a rigidification of S, and written T =S( Gm in [3, §A], [139, §5].

(b) The analogue of (a) also holds in Ho(HStlft
K ). More generally, if Ψ :

[∗/Gm] × S → S is a [∗/Gm]-action in HStlft
K which need not be free, there

still exists a morphism ρ : S → T in Ho(HStlft
K ) such that (2.23) is homotopy

co-Cartesian in HStlft
K . We regard T as the quotient S/[∗/Gm].

Proof. Part (a) follows from Abramovich, Corti and Vistoli [2, Th. 5.1.5] (see
also Abramovich, Olsson and Vistoli [3, §A] and Romagny [139, §5]). These
concern ‘rigidification’, in which one modifies an Artin stack S by quotienting
out a subgroup G from all its isotropy groups to get a new Artin stack T = S(G.
It is used, for example, to rigidify the Picard stack Pic(X) of line bundles on a
projective scheme X to get the Picard scheme Pic(X)( Gm.

Part (b) is straightforward because quotienting by a [∗/Gm]-action is an
allowed operation for higher stacks. As in Toën [150, Def. 3.2] (see also Toën
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[149, §3.1.2] and Toën and Vezzosi [151, §1.3.4]), we can define Artin 1-stacks
to be Artin stacks, and then define Artin n-stacks inductively on n by saying
an ∞-stack is an Artin (n + 1)-stack if it is associated to a smooth groupoid
(X1 ⇒ X0) in Artin n-stacks. A [∗/Gm]-action on an Artin n-stack X induces a
smooth groupoid ([∗/Gm]×X ⇒ X), which is associated to the quotient Artin
(n+1)-stack X/[∗/Gm]. For us, a higher stack is an Artin n-stack for any n.

We can pull back principal [∗/Gm]-bundles: if ρ : S → T is a princi-
pal [∗/Gm]-bundle with [∗/Gm]-action Ψ, and f : T ′ → T is a morphism in
Ho(Artlft

K ), then we can form the 2-Cartesian square in Artlft
K :

S′ = S ×ρ,T,f T ′
ρ′

//

f ′

��

T ′

f
��

S
ρ // T,

(2.27)

and there is a natural [∗/Gm]-action Ψ′ : [∗/Gm]×S′ → S′ making ρ′ : S′ → T ′

into a principal [∗/Gm]-bundle. The next definition will be important in §3.4.

Definition 2.26. Let ρ : S → T be a principal [∗/Gm]-bundle with [∗/Gm]-
action Ψ in Ho(Artlft

K ) or Ho(HStlft
K ).

(i) We call ρ trivial if there exists an isomorphism S ∼= [∗/Gm] × T which
identifies ρ : S → T with πT : [∗/Gm]× T → T and Ψ : [∗/Gm]× S → S
with Ω × idT : [∗/Gm] × [∗/Gm] × T → [∗/Gm] × T , for Ω : [∗/Gm] ×
[∗/Gm]→ [∗/Gm] as in Definition 2.23.

(ii) We call ρ rationally trivial if there exists a surjective morphism f : T ′ → T
which over each connected component of T is a locally trivial fibration with
fibre [∗/Zn], where n = 1, 2, . . . may depend on the connected component,
such that the pullback principal [∗/Gm]-bundle ρ′ : S′ = S×ρ,T,f T ′ → T ′

is trivial, as in (i).

Rationally trivial [∗/Gm]-bundles behave like trivial [∗/Gm]-bundles from
the point of view of homology H∗(−) over a Q-algebra R, which will be useful
in §3.4. Proposition 2.29 below gives a criterion for when a principal [∗/Gm]-
bundle is rationally trivial.

2.3.8 [∗/Gm]-actions on coherent sheaves and complexes

Definition 2.27. Let S be an Artin K-stack locally of finite type, and Ψ :
[∗/Gm]×S → S be a [∗/Gm]-action, as in Definition 2.23, and F → S be a vector
bundle, or coherent sheaf, or a complex in Perf(S), Dbcoh(X) or D(qcoh(X)).

An action of [∗/Gm] on F compatible with Ψ, of weight n ∈ Z, is an iso-
morphism of vector bundles, sheaves or complexes on [∗/Gm]× S:

ΨF : Ψ∗(F ) −→ π∗[∗/Gm](En)⊗ π∗S(F ), (2.28)
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where π[∗/Gm] : [∗/Gm]×S → [∗/Gm], πS : [∗/Gm]×S → S are the projections,
and En is as in Example 2.22, regarded as a line bundle on [∗/Gm], such that
the following diagram of isomorphisms over [∗/Gm]× [∗/Gm]× S commutes:

(Ω× idS)∗ ◦Ψ∗(F )
from (2.20)

//

(Ω×idS)∗(ΨF )��

(id[∗/Gm] ×Ψ)∗ ◦Ψ∗(F )

(id[∗/Gm]×Ψ)∗(ΨF )
��

(Ω×idS)∗(π∗[∗/Gm](En)⊗π∗S(F ))

natural isomorphism
��

(id[∗/Gm]×Ψ)∗(π∗[∗/Gm](En)⊗π∗S(F ))

natural isomorphism
��

π∗[∗/Gm]1×[∗/Gm]2
(Ω∗(En))⊗π∗S(F )

π∗[∗/Gm]1×[∗/Gm]2
(θn)⊗idπ∗

S
(F )��

π∗[∗/Gm]1
(En)⊗ π∗[∗/Gm]2×S(Ψ∗(F ))

idπ∗
[∗/Gm]1

(En)⊗π∗[∗/Gm]2×S
(ΨF )

��
π∗[∗/Gm]1

(En)⊗π∗[∗/Gm]2
(En)⊗π∗S(F ) π∗[∗/Gm]1

(En)⊗π∗[∗/Gm]2
(En)⊗π∗S(F ).

(2.29)
Here we write [∗/Gm] × [∗/Gm] × S as [∗/Gm]1 × [∗/Gm]2 × S to distinguish
the factors, and Ω : [∗/Gm]1 × [∗/Gm]2 → [∗/Gm] is as in Definition 2.23, and
θn : Ω∗(En)→ π∗[∗/Gm]1

(En)⊗π∗[∗/Gm]2
(En) is the natural isomorphism.

When n = 0, E0 and π∗[∗/Gm](E0) are trivial line bundles, so we can omit

them from the tensor products, and take ΨF to map ΨF : Ψ∗(F )→ π∗S(F ).

Example 2.28. Let ρ = πT : S = [∗/Gm] × T → T be the trivial principal
[∗/Gm]-bundle over an Artin K-stack T with [∗/Gm]-action Ψ = Ω × idT :
[∗/Gm]2 × T → [∗/Gm] × T . Suppose G → T is a vector bundle, or coherent
sheaf, or complex on T , and n ∈ Z. Then F = π∗[∗/Gm](En) ⊗ π∗T (G) is a

vector bundle, or coherent sheaf, or complex on S = [∗/Gm]× T with a natural
[∗/Gm]-action ΨF compatible with Ψ, of weight n.

Conversely, if F → S has a [∗/Gm]-action ΨF compatible with Ψ of weight
n, set G = (1 ◦ π, idT )∗(F ), where π : T → ∗ and 1 : ∗ → [∗/Gm] are the unique
morphisms. Then we can use (2.29) to show that F ∼= π∗[∗/Gm](En)⊗ π∗T (G).

If F• is a perfect complex on S of rank r, equipped with a [∗/Gm]-action
ΨF• of weight n, it is easy to see that the determinant line bundle det(F•) has
a natural [∗/Gm]-action Ψdet(F•) of weight n · r.

If Ψ is the [∗/Gm]-action of a principal [∗/Gm]-bundle ρ : S → T , one can
show that if G is a vector bundle, sheaf or complex on T then F = ρ∗(G) has a
natural weight zero [∗/Gm]-action ΨF , and conversely, if F → S has a weight
zero [∗/Gm]-action then F ∼= ρ∗(G) for some G→ T .

Proposition 2.29. Suppose the field K is algebraically closed. Let ρ : S → T
be a principal [∗/Gm]-bundle with [∗/Gm]-action Ψ : [∗/Gm]×S → S. Suppose
L → S is a line bundle, with a [∗/Gm]-action of weight n 6= 0 compatible
with Ψ. Then ρ : S → T is rationally trivial, in the sense of Definition 2.26.
For example, if F• is a perfect complex on S of rank r 6= 0, equipped with a
[∗/Gm]-action of weight d 6= 0 compatible with Ψ, we can take L = det(F•)
and n = d · r.
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Proof. Considering L as a coherent sheaf over S, write π : L̄ → S for the
corresponding A1-bundle in Ho(Artlft

K ), and write L̄′ for the complement of the
zero section in L̄, so that π′ = π|L̄′ : L′ → S is a bundle with fibre A1\{0} = Gm.

Consider the diagram, in both Ho(Artlft
K ) and Artlft

K :

[∗/Gm]2×L̄′

id[∗/Gm]2×π
′

��

Ω×idL̄′
// [∗/Gm]× L̄′

id[∗/Gm]×π′��

πL̄′
// L̄′

π′

��
[∗/Gm]2×S Ω×idS //

id[∗/Gm]×Ψ
��

[∗/Gm]× S πS //

Ψ
��

S

ρ
��

[∗/Gm]×S Ψ // S
ρ // T,

(2.30)

where Ω : [∗/Gm]2 → [∗/Gm] is as in Definition 2.23. The top two squares
obviously commute in Ho(Artlft

K ), and are 2-Cartesian in Artlft
K . The bottom

two squares are (2.20) and (2.23), so they commute in Ho(Artlft
K ). When we lift

to 2-categories as in Remark 2.24, they also become 2-Cartesian.
As all the squares in (2.30) are 2-Cartesian, we see that πL̄′ : [∗/Gm]× L̄′ →

L̄′ is the pullback principal [∗/Gm]-bundle of ρ : S → T by ρ ◦ π′ : L̄′ → T .
The left hand side of (2.30) gives the [∗/Gm]-action on this pullback principal
[∗/Gm]-bundle, and shows it is trivial, in the sense of Definition 2.26(i).

Now ρ ◦ π′ : L′ → T is the composition of a [∗/Gm]-fibration and a Gm-
fibration. As L has a [∗/Gm]-action of weight n 6= 0, considering local models
shows that ρ ◦ π′ is a fibration with fibre [Gm/Gm], where Gm acts on Gm by
λ : µ 7→ λnµ. Since K is algebraically closed we see that [Gm/Gm] ∼= [∗/Z|n|],
where Z|n| is the group of |n|th roots of 1 in K, and ρ ◦ π′ is a locally trivial
[∗/Z|n|]-fibration. (See the proof of Theorem 3.47(b) in §4.11 for more details
on this argument.) Hence ρ is rationally trivial by Definition 2.26(ii).

The analogue of Proposition 2.29 also works for higher stacks.

2.4 (Co)homology of (higher) Artin K-stacks

2.4.1 Assumptions on homology and cohomology theories

For a (higher) Artin K-stack S, we will need good notions of homology H∗(S),
cohomology H∗(S), and Chern class maps ci : K0(Perf(S))→ H2i(S), with the
usual structures and properties. The next assumption gives the properties we
will need for all our vertex algebra and Lie algebra constructions in §3.

Assumption 2.30. (a) We fix a commutative ring R, such as R = Z,Q,C or
K, which will be the coefficients for our (co)homology theories. Write R-mod
for the category of R-modules.

(i) We should be given covariant functors Hi : Ho(Artlft
K ) → R-mod for

i = 0, 1, . . . called homology, and contravariant functors Hi : Ho(Artlft
K )→

R-mod for i = 0, 1, . . . called cohomology. We set Hi(S) = Hi(S) = 0
if i < 0.
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That is, whenever S is an Artin K-stack, we are given R-modules Hi(S)
for i = 0, 1, . . . called the homology groups of S, and R-modules Hi(S) for
i = 0, 1, . . . called the cohomology groups of S.

Whenever f : S → T is a morphism of such stacks, we are given functorial
R-module morphisms Hi(f) : Hi(S) → Hi(T ) and Hi(f) : Hi(T ) →
Hi(S) for i = 0, 1, . . . .

For the triangulated category versions of our theory, involving moduli
of complexes, we require these (co)homology theories also to be defined
for higher Artin K-stacks, that is, we should be given covariant functors
Hi : Ho(HStlft

K )→ R-mod and contravariant functors Hi : Ho(HStlft
K )→

R-mod for i = 0, 1, . . . .

When we say ‘for all S’ below, we mean either for all Artin K-stacks S,
or for all higher Artin K-stacks S, depending on the domain Ho(Artlft

K )
or Ho(HStlft

K ) of the Hi, H
i.

If S is a derived Artin stack, or a derived stack, we define the (co)homology
groups Hi(S), Hi(S) to be the (co)homology of the classical truncation
Hi(t0(S)), Hi(t0(S)).

(ii) There are R-bilinear, functorial cup products ∪ : Hi(S) × Hj(S) →
Hi+j(S) and cap products ∩ : Hi(S)×Hj(S)→ Hi−j(S) and an identity
element 1S ∈ H0(S) for all S, with the usual properties of cup and cap
products in classical (co)homology [63,108], so that ∪, 1S make H∗(S) into
a supercommutative, associative, graded, unital R-algebra, and ∩ makes
H∗(S) into a graded module over H∗(S). If f : S → T is a morphism
and α ∈ Hi(S), β ∈ Hj(T ) then Hi−j(f)(α∩Hj(f)(β)) = (Hi(f)(α))∩ β
in Hi−j(T ).

(iii) For all S, T and i, j > 0 there are R-bilinear, functorial external products
� : Hi(S)×Hj(T ) → Hi+j(S × T ), � : Hi(S)×Hj(T ) → Hi+j(S × T ),
with the usual properties of external products in classical (co)homology,
including being associative and supercommutative.

For cohomology we have α � β = π∗S(α) ∪ π∗T (β) when α ∈ Hi(S) and
β ∈ Hj(T ), so � is not extra data in this case.

(iv) When S is the point ∗ = SpecK, there are canonical isomorphisms:

Hi(∗) ∼=

{
R, i = 0,

0, i > 0,
Hi(∗) ∼=

{
R, i = 0,

0, i > 0,

identifying 1∗ ∈ H0(∗) with 1 ∈ R and ∪,∩ with multiplication in R.

These conditions do not determine the isomorphism H0(∗) ∼= R uniquely.
We do this by requiring that for all S and α ∈ Hk(S) we have α� 1 ∼= α
under the isomorphism Hk(S × ∗) ∼= Hk(S) coming from S × ∗ ∼= S.

(v) Let {Sa : a ∈ A} be a family of (higher) Artin K-stacks. Then we can
form the disjoint union

∐
a∈A Sa, with inclusion morphisms ιb : Sb ↪→
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∐
a∈A Sa for b ∈ A, inducing maps Hi(ιb) : Hi(Sb) → Hi(

∐
a∈A Sa),

Hi(ιb) : Hi(
∐
a∈A Sa) → Hi(Sb) for all i = 0, 1, . . . . These Hi(ιb), H

i(ιb)
for all b ∈ A should induce isomorphisms of R-modules:

Hi(
∐
a∈A Sa) ∼=

⊕
a∈AHi(Sa), (2.31)

Hi(
∐
a∈A Sa) ∼=

∏
a∈AH

i(Sa). (2.32)

The difference between
⊕

a∈A and
∏
a∈A is that (λa)a∈A ∈

⊕
a∈AHi(Sa)

has λa 6= 0 in Hi(Sa) for only finitely many a ∈ A, but (µa)a∈A ∈∏
a∈AH

i(Sa) can have µa 6= 0 in Hi(Sa) for arbitrarily many a ∈ A.

(vi) Hi(πS) : Hi(S × A1) → Hi(S) and Hi(πS) : Hi(S) → Hi(S × A1) are
isomorphisms for all S, i, where πS : S × A1 → S is the projection.

(b) Use the notation of Definition 2.21. We should be given Chern class maps
ci : K0(Perf(S)) → H2i(S) for all i = 1, 2, . . . and for all S. We also write
c0(α) = 1S in H0(S) for all α ∈ K0(Perf(S)).

These maps ci have the usual properties of Chern classes in classical algebraic
topology and intersection theory, as in Hirzebruch [64], Milnor and Stasheff [114]
and Hartshorne [62, App. A], for instance. In particular:

(i) If E is a vector bundle of rank r on S then ci([E ]) = 0 for i > r.

(ii) If α, β ∈ K0(Perf(S)) and j > 0 then

cj(α+ β) =

j∑
i=0

ci(α) ∪ cj−i(β). (2.33)

(iii) If α, β ∈ K0(Perf(S)), for all k = 1, 2, . . . we have a formula

ck(α⊗β)=P⊗k
(
rankα, c1(α), . . . , ck(α), rankβ, c1(β), . . . , ck(β)

)
, (2.34)

where P⊗k (a0, . . . , ak, b0, . . . , bk) are universal polynomials with rational
coefficients (though for a0, b0 ∈ Z they have integral coeffcients as poly-
nomials in a1, . . . , ak, b1, . . . , bk), with P⊗k (a0, . . . , ak, b0, . . . , bk) = P⊗k (b0,
. . . , bk, a0, . . . , ak), such that if ai, bi are graded of degree 2i then P⊗k is
graded of degree 2k. The P⊗k may be computed as in Hartshorne [62,
p. 430] and Hirzebruch [64, §4.4], and the first few are

P⊗1 (a0, a1, b0, b1) = a0b1 + a1b0,

P⊗2 (a0, a1, a2, b0, b1, b2) =
(
a0

2

)
b21 + a0b2 +

(
b0
2

)
a2

1 + b0a2

+ (a0b0 − 1)a1b1,

P⊗3 (a0, a1, a2, a3, b0, b1, b2, b3) =
(
a0

3

)
b31 + 2

(
a0

2

)
b1b2 + a0b3

+
(
b0
3

)
a3

1 + 2
(
b0
2

)
a1a2 + b0a3 + (a0 − 1)( 1

2a0b0 − 1)a1b
2
1

+(b0 − 1)( 1
2a0b0 − 1)a2

1b1 + (a0b0 − 2)(a1b2 + a2b1).

(2.35)
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In the special case in which β = [L] for L → S a line bundle, so that
rankβ = 1 and ci(β) = 0 for i > 1, equation (2.34) may be written

cj(α⊗ β) =

j∑
i=0

(
rankα− i
j − i

)
ci(α) ∪ c1(β)j−i

=

j∑
i=0

(−1)j−i
(
j − rankα− 1

j − i

)
ci(α) ∪ c1(β)j−i,

(2.36)

where binomial coefficients
(
m
n

)
for m,n ∈ Z are discussed in Appendix A,

and the two expressions are equal by (A.4). See §2.4.2 for an alternative
approach to Chern classes of tensor products using Chern characters.

(iv) Under duality we have ci(α
∨) = (−1)ici(α) in H2i(S) for all i = 1, 2, . . .

and α ∈ K0(Perf(S)).

(v) If f : S → T is a morphism and α ∈ K0(Perf(T )) then ci(K0(f)(α)) =
H2i(f)(ci(α)) for all i = 1, 2, . . . .

(c) When S is the quotient Artin K-stack [∗/Gm], there are canonical isomor-
phisms of graded R-modules H∗([∗/Gm]) ∼= R[t] and H∗([∗/Gm]) ∼= R[τ ], where
t and τ are formal variables of degree 2. That is, we have H2i([∗/Gm]) = R · ti
and H2i([∗/Gm]) = R · τ i for i = 0, 1, 2, . . . , where ti ∈ H2i([∗/Gm]) and
τ i ∈ H2i([∗/Gm]) are elements which freely generate H2i([∗/Gm]), H2i([∗/Gm])
as R-modules, and Hk([∗/Gm]) = Hk([∗/Gm]) = 0 for k ∈ Z \ 2N.

These canonical isomorphisms are characterized uniquely by the following:

(i) τ0 = 1[∗/Gm] in H0([∗/Gm]).

(ii) τ i ∪ τ j = τ i+j in H2i+2j([∗/Gm]) for all i, j > 0.

(iii) Example 2.22 describes Vect([∗/Gm]), Perf([∗/Gm]), K0(Perf([∗/Gm]))
explicitly. Using the notation of Example 2.22 we have τ = c1([E1]),
where E1 is the standard representation of Gm on K, regarded as a line
bundle on [∗/Gm].

(iv) ti ∩ τ j = ti−j in H2i−2j([∗/Gm]) whenever 0 6 j 6 i.

(v) The projection π : [∗/Gm] → ∗ induces H0(π) : H0([∗/Gm]) → H0(∗).
Under the isomorphisms H0([∗/Gm]) = R · t0 above and H0(∗) ∼= R in
(a)(iv), we have H0(π) : t0 7→ 1.

Here is an extra assumption for when R is a Q-algebra:

Assumption 2.31. Suppose Assumption 2.30 holds for (co)homology theories
H∗(−), H∗(−) over R of Artin K-stacks (or higher Artin K-stacks), where R
must be a Q-algebra. Then

(a) (Homology of [∗/Zn]-fibrations.) Let f : S → T be a locally trivial
fibre bundle in Ho(Artlft

K ) (or Ho(HStlft
K )) with fibres [∗/Zn] for some

n > 1. Then Hk(f) : Hk(S)→ Hk(T ) is an isomorphism for all k.
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(b) (Künneth Theorem.) The exterior product maps � of Assumption
2.30(a)(iii) induce an isomorphism⊕

i,j>0:i+j=k � :
⊕

i,j>0:i+j=kHi(S)⊗R Hj(T ) −→ Hk(S × T ).

Remark 2.32. (Coarse moduli spaces.) As in Olsson [127, §11], under good
conditions a Deligne–Mumford or Artin K-stack S has a coarse moduli space
Scoa, which is a K-scheme or algebraic K-space with a morphism π : S → Scoa

which is universal for morphisms S → T for T an algebraic K-space. The coarse
moduli space Scoa forgets the isotropy groups IsoS(x) of points x in S.

It is important that by the (co)homology groups Hi(S), Hi(S) we do not
mean the (co)homology groups Hi(Scoa), Hi(Scoa) of the coarse moduli space.
Rather, Hi(S), Hi(S) really do depend on the stack structure and the isotropy
groups IsoS(x) in a nontrivial way. For example, [∗/Gm] has coarse moduli
space ∗, but Assumption 2.30(a)(iv) and (c) show that the (co)homologies of
[∗/Gm] and ∗ are different.

When S is a quotient stack [X/G] we should think of H∗(S), H∗(S) as
the equivariant (co)homology HG

∗ (X), H∗G(X). These need not agree with the
(co)homology H∗(X/G), H∗(X/G) of the topological quotient X/G, if G does
not act freely on X.

Remark 2.33. (Different types of (co)homology.) For homology and co-
homology of ordinary topological spaces X, there are four main types of theory:

(i) Homology H∗(X,R), as in [22, 41, 63, 108, 117, 145]. This is covariantly
functorial under all continuous maps f : X → Y . It is homotopy invariant.

(ii) Cohomology H∗(X,R), as in [22, 41, 63, 108, 117, 145]. This is contravari-
antly functorial under all continuous maps f : X → Y . It is homotopy
invariant.

(iii) Compactly-supported cohomology H∗cs(X,R), as in [22, 63, 108, 145]. This
is contravariantly functorial under all proper maps f : X → Y . It is not
homotopy invariant.

(iv) Locally finite homology H lf
∗ (X,R) as in [65], also known as homology

with closed supports [36], or Borel–Moore homology [19]. We recommend
Hughes and Ranicki [65, §3] for an introduction. This is covariantly func-
torial under all proper maps f : X → Y . It is not homotopy invariant.

If R is a field then Hk(X,R) ∼= Hk(X,R)∗ and H lf
k (X,R) ∼= Hk

cs(X,R)∗.
In Assumption 2.30 we need theories with the properties of homology and

cohomology. Some homology theories of stacks in the literature are analogues
of locally finite homology H lf

∗ (−) rather than homology H∗(−), so that pushfor-
ward maps Hi(f) are defined only for proper (or proper and representable, or
projective) morphisms. We will call such theories ‘of type H lf

∗ (−)’. Homology
theories of this type are unsuitable for our purposes, as we need pushforward
maps Hi(f) along non-proper morphisms f : X → Y . However, as in Remark
2.34(a), given a theory of type H lf

∗ (−), we can define another theory of the type
we want by a direct limit.

32



Remark 2.34. (Constructing (co)homology theories from other (co)-
homology theories.) Suppose that we have found some (co)homology theory
of K-schemes or K-stacks in the literature, and we would like to use it in our ver-
tex algebra and Lie algebra constructions, but it does not have all the properties
required in Assumption 2.30. For example, we might have:

(i) We are given a homology theory H∗(−) and a compatible cohomology the-
ory H∗(−), but the homology theory is of type H lf

∗ (−), with pushforwards
defined only for proper morphisms (or proper and representable, etc.).

(ii) We are given (co)homology theories H∗(S), H∗(S) which are not defined
for all (higher) Artin K-stacks S, but only for a subclass, for instance, only
for K-schemes, or Deligne–Mumford K-stacks, or finite type Artin stacks.

(iii) We are given a homology theory H∗(−) (possibly of type H lf
∗ (−)), but no

matching cohomology theory.

In this case Chern classes ci(E) for vector bundles E → X may still be
defined as operations on homology ∩ ci(E) : Hk(X)→ Hk−2i(X).

It is often possible to use the given theories H∗(−), H∗(−) to construct
(co)homology theories Ĥ∗(−), Ĥ∗(−) with all the properties we want in a purely
formal way, by a limiting procedure. This is discussed by Fulton and MacPher-
son [51, §3.3, §8] in the context of bivariant theories. It has the disadvantage
that the new Ĥ∗(−), Ĥ∗(−) may be more difficult to compute in examples.

(a) (Converting locally finite homology to homology.) Suppose we are
given a homology theory H∗(−) of Artin K-stacks which is of type H lf

∗ (−),
with pushforwards defined only for proper morphisms; we may also be given a
compatible cohomology theory H∗(−).

As in [51, §3.3], for each Artin K-stack S define

Ĥk(S) = lim−→ϕ:P→S,
P proper

Hk(P ), (2.37)

where the objects in the direct limit in R-mod are Hk(P ) for all morphisms
ϕ : P → S in Ho(Artlft

K ) with P proper, and the morphisms in the direct limit
are Hk(ψ) : Hk(P1)→ Hk(P2) for all commutative triangles in Ho(Artlft

K ) with
P1, P2 proper (which implies ψ is proper, so Hk(ψ) is well-defined):

P1

ϕ1 **

ψ
// P2

ϕ2��
S.

(2.38)

Then Ĥk(S) is well defined, and has a morphism ΠP,ϕ : Hk(P )→ Ĥk(S) for all
ϕ : P → S with P proper, such that ΠP1,ϕ1

= ΠP2,ϕ2
◦Hk(ψ) for all commutative

diagrams (2.38), and is universal with this property. If f : S → T is any
morphism in Ho(Artlft

K ) (not necessarily proper), there is a unique morphism
Ĥk(f) : Ĥk(S)→ Ĥk(T ) such that Ĥk(f) ◦ΠP,ϕ = ΠP,f◦ϕ for all ϕ : P → S. If

S is proper then ΠS,idS : Hk(S)→ Ĥk(S) is an isomorphism.
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Then Ĥ∗(−) should be a homology theory of the type we need (one should
verify the appropriate parts of Assumption 2.30), and will be compatible with
the cohomology theory H∗(−), if this is given.

If instead H∗(−) has pushforwards H∗(f) defined only for proper and rep-
resentable morphisms, we can define Ĥ∗(−) as in (2.37)–(2.38), but over ϕ :
P → S with P a proper K-scheme or algebraic K-space, so that the morphisms
ψ : P → Q in (2.38) are automatically proper and representable.

(b) (Extending the domains of (co)homology theories.) We can also
use the direct limit trick in (a) to extend the domain of a (co)homology theory.
Suppose, for example, we are given a homology theory H∗(P ) defined for K-
schemes P , with pushforwards H∗(f) for arbitrary K-scheme morphisms f :
P → Q. Then we can define a homology theory Ĥ∗(S) on Artin K-stacks S by
Ĥk(S) = lim−→ϕ:P→SHk(P ), where the direct limit is over morphisms ϕ : P → S

in Ho(Artlft
K ) with P a K-scheme. Then Ĥk(P ) ∼= Hk(P ) if P is a K-scheme.

Similarly, we may extend a cohomology theory H∗(−) on K-schemes to a
cohomology theory Ĥ∗(S) on Artin K-stacks S by Ĥk(S) = lim←−ϕ:P→SH

k(P ),

where the inverse limit is over morphisms ϕ : P → S in Ho(Artlft
K ) with P a

K-scheme. In the same way, we can extend a (co)homology theory from Artin
K-stacks to higher Artin K-stacks, or from finite type Artin K-stacks to locally
of finite type Artin K-stacks, and so on.

(c) (Defining a cohomology theory from a homology theory.) Suppose
we have a homology theory H∗(−) of Artin K-stacks (possibly of type H lf

∗ (−)),
but no matching cohomology theory. Following Fulton and MacPherson [51, §8],
we can construct a compatible cohomology theory Ĥ∗(−). We define elements ε
of Ĥk(S) to be families (εϕ,i)ϕ,i ofR-module morphisms εϕ,i : Hi+k(P )→ Hi(P )

for all morphisms ϕ : P → S in Ho(Artlft
K ) and i = 0, 1, . . . , such that if ϕ = ξ◦ψ

for ψ : P → Q, ξ : Q→ S then Hi(ψ)◦εϕ,i = εξ,i◦Hi+k(ψ) : Hi+k(P )→ Hi(Q).
If there was a compatible cohomology theory H∗(−), then an element ε ∈

Hk(S) would define such a family (εϕ,i)ϕ,i by defining εϕ,i(α) = α ∩Hk(ϕ)(ε)
for all ϕ : P → S, i > 0 and α ∈ Hi+k(P ). It is now straightforward to define
pullback morphisms Ĥk(f) : Ĥk(T ) → Ĥk(S) for morphisms f : S → T in
Ho(Artlft

K ), cup, cap and exterior products, and so on.

(d) (Defining a homology theory from a cohomology theory.) Suppose
we are given a cohomology theory H∗(S) over a field R (such as Ql or K),
defined for finite type Artin K-stacks S, with the property that Hk(S) is finite-
dimensional over R for each k = 0, 1, . . . for finite type S. Then we can just
define homology Hk(S) = Hk(S)∗ to be the dual R-vector spaces. This extends
easily to a homology theory H∗(−) of finite type Artin K-stacks, compatible
with H∗(−). Since Hk(S) is finite-dimensional we have Hk(S) ∼= Hk(S)∗, the
usual duality relation for (co)homology over a field. We can then extend the
domains of H∗(−), H∗(−) to Ho(Artlft

K ) or Ho(HStlft
K ) as in (b).
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2.4.2 Chern classes and Chern characters

Suppose H∗(−), H∗(−) are (co)homology theories of (higher) Artin K-stacks
S satisfying Assumption 2.30 over a commutative ring R. Then as in As-
sumption 2.30(b) we have Chern classes ci(α) ∈ H2i(S) for i = 1, 2, . . . and
α ∈ K0(Perf(S)), such as α = [E] for a vector bundle E → S. There is a
formula (2.34) for Chern classes ck(α ⊗ β) of a tensor product α ⊗ β, but it
involves universal polynomials P⊗k that are inconvenient to work with.

Let R be a Q-algebra. Then as in Milnor and Stasheff [114], Hirzebruch [64,
§4 & §10.1], and Hartshorne [62, App. A], we can rewrite Chern classes ci(α)
in terms of Chern characters chj(α), which have much simpler behaviour under
tensor products. If S is a (higher) Artin K-stack and α ∈ K0(Perf(S)), the
Chern characters chi(α) ∈ H2i(S) for i = 0, 1, 2, . . . , are defined by

ch0(α) = rankα, chi(α) = Chi
(
c1(α), c2(α), . . . , ci(α)

)
, i > 1, (2.39)

where Ch1,Ch2, . . . are a family of universal polynomials over Q given by

Chr(c1, . . . , cr) =
∑

a1,...,ar>0:
a1+2a2+···+rar=r

(−1)r+a1+···+ar (a1+· · ·+ar−1)!

(r−1)!a1! · · · ar!
ca1
1 · · · carr . (2.40)

The first few polynomials Chi are

Ch1(c1) = c1, Ch2(c1, c2) = 1
2 (c21 − 2c2), Ch3(c1, c2, c3) = 1

6 (c31 − 3c1c2 + 3c3),

Ch4(c1, c2, c3, c4) = 1
24 (c41 − 4c21c2 + 4c1c3 + 2c22 − 4c4), . . . . (2.41)

If each cj is graded of degree 2j, then Chi(c1, c2, . . . , ci) is graded of degree 2i.
Note that chi(E) only makes sense in H2i(S) over a Q-algebra R such as R = Q,
R or C, because of the rational factors in (2.40)–(2.41).

We can invert (2.39) and write ci(E) in H2i(S) in terms of the chj(E) by

ci(E) = Ci
(
ch1(E), ch2(E), . . . , chi(E)

)
, i > 1, (2.42)

where C1,C2, . . . are another family of universal polynomials over Q, given by

Cr (b1, . . . , br) =
∑

a1,...,ar>0:
a1+2a2+···+rar=r

(−1)r+a1+···+ar
r∏
i=1

((i− 1)!)ai

ai!
ba1
1 · · · barr . (2.43)

The first few polynomials Ci are

C1 (b1) = b1, C2(b1, b2) = 1
2 (b21 − 2b2), C3(b1, b2, b3) = 1

6 (b31 − 6b1b2 + 12b3),

C4 (b1, b2, b3, b4) = 1
24 (b41 − 12b21b2 + 48b1b3 + 12b22 − 144b4), . . . . (2.44)

We can also relate ci(α) and chj(α) by the generating function formulae in
H∗(S)[[z]], where z is a formal variable, noting that c0(α) = 1:∑

i>0 z
ici(α) = exp

[∑
j>1(−1)j−1(j − 1)!zj chj(α)

]
, (2.45)∑

j>1(−1)j−1(j − 1)!zj chj(α) = log
[∑

i>0 z
ici(α)

]
. (2.46)
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Chern characters have the very useful property that for α, β ∈ K0(Perf(S)),
Chern characters of sums α+ β and tensor products α⊗ β are given by

chi(α+ β) = chi(α) + chi(β), chi(α⊗ β) =
∑

j,k>0:i=j+k

chj(α) ∪ chk(β). (2.47)

2.4.3 Examples of (co)homology theories satisfying the Assumptions

The next example explains how to define data H∗(−), H∗(−), ci satisfying As-
sumptions 2.30 and 2.31 over the field K = C.

Example 2.35. (Homology, cohomology of (higher) Artin C-stacks.)
(a) (Topological stacks and classifying spaces.) There is a notion of
topological stack, a kind of stack in topological spaces, developed by Metzler [113]
and Noohi [123]. They form a 2-category TopSta, which includes topological
spaces as a full discrete (2-)subcategory Top ⊂ TopSta.

Noohi [123, §20] defines a 2-functor FTopSta
ArtC

: Artlft
C → TopSta from the

2-category of Artin C-stacks locally of finite type to topological stacks, which
preserves fibre products. If X is a C-scheme locally of finite type, FTopSta

ArtC
maps

X to the set X(C) of C-points of X with the complex analytic topology.
Noohi [123, 124] shows that topological stacks have a good notion of ho-

motopy theory. He proves [124] that each topological stack X has an atlas
ϕ : Xcla → X in TopSta such that Xcla ∈ Top ⊂ TopSta, and if ψ : T → X
is a morphism in TopSta with T ∈ Top ⊂ TopSta then the projection
Xcla ×X T → T is a weak homotopy equivalence in Top. This topological space
Xcla is unique up to weak homotopy equivalence (and unique up to homotopy
equivalence if X has a paracompact atlas). We call Xcla the classifying space
of X.

If X is a topological space we may choose Xcla = X, and if X is a quotient
stack [T/G] we may choose Xcla = (T ×EG)/G. If f : X→ Y is a morphism in
TopSta, we may lift f to a morphism f cla : Xcla → Ycla, unique up to (weak)
homotopy.

Combining these results allows us to define the homology and cohomol-
ogy of an Artin C-stack X, over a commutative ring R: we set Hi(X) =

Hi(F
TopSta
ArtC

(X)cla, R) and Hi(X) = Hi(FTopSta
ArtC

(X)cla, R). These are well

defined as FTopSta
ArtC

(X)cla is unique up to (weak) homotopy equivalence, and

(co)homology is homotopy invariant. For a morphism f : X → Y in Artlft
C we

set Hi(f) = (FTopSta
ArtC

(f)cla)∗ : Hi(X)→ Hi(Y ) and Hi(f) = (FTopSta
ArtC

(f)cla)∗ :

Hi(Y )→ Hi(X), which are well defined as FTopSta
ArtC

(f)cla is unique up to (weak)
homotopy. This gives (co)homology theories satisfying Assumption 2.30(a),(c).

Note that this approach does not work for H∗cs(−) or H lf
∗ (−), as these are

not homotopy invariant, but Xcla is only unique up to (weak) homotopy.
We can also discuss Chern classes of vector bundles on Artin C-stacks in

this language. Suppose X is an Artin C-stack and E → X is a vector bundle of
rank r. Then E determines a morphism φE : X → [∗/GL(r,C)] in Artlft

C , so in
the above notation we have morphisms Hk(φE) : Hk([∗/GL(r,C)]) → Hk(X)
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on cohomology. As in Milnor and Stasheff [114, §14] and §5.2 below, we have an
isomorphism Hk([∗/GL(r,C)]) ∼= R[γ1, . . . , γr], with γi a generator in degree
2i, and we set ci(E) = H2i(φE)(γi) ∈ H2i(X). These Chern classes factor
through maps ci : K0(Vect(X)) → H2i(X) with ci([E]) = ci(E), which have
the properties required in Assumption 2.30(b),(c).

If R is a Q-algebra then Assumption 2.31 also holds in this case.

(b) (Singular (co)homology of a topological stack.) Behrend [13, §2]
defines the singular homology and cohomology of a topological stack X directly,
without first constructing a classifying space Xcla, using a presentation of X
as a topological groupoid. He also discusses Chern classes of complex vector
bundles. Combining this with FTopSta

ArtC
in (a) yields an alternative definition

of (co)homology of Artin C-stacks. Noohi’s homotopy theory [124] implies that
this is equivalent to the definition in (a).

(c) (Topological realization functors.) As for the classifying space approach
in (a), there is an another way to associate a topological space to a (higher)
Artin C-stack, due to Simpson [142], Morel and Voevodsky [116, §3.3], Dugger

and Isaksen [40], and Blanc [16, §3]. Consider the functor FTop
AffC

: Aff ft
C → Top

taking a finite type affine C-scheme X to its C-points X(C) with the com-
plex analytic topology. By simplicially-enriched left Kan extension, one defines
an ∞-functor SPr(Aff ft

C) → Top∞, the topological realization functor, where
SPr(Aff ft

C) is the ∞-category of simplicial presheaves on Aff ft
C , and Top∞ the

∞-category of topological spaces up to homotopy.
Now SPr(Aff ft

C) includes the 2-category of Artin C-stacks Artlft
C locally of

finite type, and the ∞-subcategory of higher Artin C-stacks HStlft
C locally of

finite type, as full ∞-subcategories. So restriction gives ∞-functors Artlft
C →

Top∞ and F
Top∞
HStC

: HStlft
C → Top∞, where the former is equivalent to the map

X 7→ FTopSta
ArtC

(X)cla in (a).
We then compose with the homology and cohomology functors over a com-

mutative ring R. The compositions factor through the homotopy categories,
yielding covariant functors Hi : Ho(Artlft

C ),Ho(HStlft
C ) → R-mod and con-

travariant functors Hi : Ho(Artlft
C ),Ho(HStlft

C ) → R-mod for i = 0, 1, . . . . The
Artin stack versions are equivalent to those in (a),(b).

We can also use these ideas to define Chern classes of perfect complexes,
as in §5.2 below. As in Toën and Vezzosi [151, Def. 1.3.7.5], there is a higher
Artin C-stack PerfC which classifies perfect complexes, in the same way that
[∗/GL(r,C)] classifies rank r vector bundles in (a) above. Suppose X is a
(higher) Artin C-stack, and E• is a perfect complex on X. Then E• determines
a morphism φE• : X → PerfC in HStlft

C , so we have morphisms Hk(φE•) :
Hk(PerfC)→ Hk(X) on cohomology.

Now PerfC =
∐
r∈Z PerfrC, where PerfrC classifies complexes of rank r,

with [∗/GL(r,C)] ⊂ PerfrC an open substack for r > 0, and H∗(PerfrC) ∼=
R[γ1, γ2, . . .], with γi in degree 2i. The Chern class ci(E•) is H2i(φE•)(γi) in
H2i(X). It factors through a map ci : K0(Perf(X)) → H2i(X) with ci([E•]) =
ci(E•), which has the properties required in Assumption 2.30(b),(c).
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Next we consider (co)homology for stacks over other fields K.

Example 2.36. (a) (Étale and `-adic cohomology of stacks.) Étale co-
homology is a cohomology theory of K-schemes introduced by Grothendieck for
general fields K. It is used to construct `-adic cohomology Hi(S,Z`), Hi(S,Q`)
of K-schemes S, for ` a prime number different to charK. This has many im-
portant applications, including Deligne’s proof of the Weil Conjecture. A good
reference is Freitag and Kiehl [45].

The theory has been extended to Artin stacks, see for example Behrend [12],
Gaitsgory and Lurie [52, §3.2], Laszlo and Olsson [96], Laumon and Moret-
Bailly [98], Olsson [125], and Liu and Zheng [102, 103], who also cover higher
Artin stacks. Chern classes can be constructed in étale and `-adic cohomology.

There are also matching theories of étale homology and `-adic homology, de-
scribed by Laumon [97] and Li [101] for K-schemes, by Olsson [126] for Deligne–
Mumford stacks, and separately by Lurie [104] for Artin K-stacks. The versions
of [97, 101, 126] are of type H lf

∗ (−), with pushforwards Hi(f) defined only for
proper morphisms f , but we can use them to construct homology theories of
(higher) Artin K-stacks of the kind we need as in Remark 2.34(a),(b). Lurie’s
version may work for our theory in its current form.

(b) (Algebraic de Rham cohomology.) Let K be a field of characteristic
zero. Hartshorne [60, 61] develops theories of algebraic de Rham homology and
cohomology H∗(S), H∗(S) for finite type K-schemes S, over R = K. Toën [147,
§3.1.1] extends them to finite type Artin K-stacks. The homology theories are
of type H lf

∗ (−), with pushforwards Hi(f) defined only for proper representable
morphisms f , but we can use them to construct homology theories of the kind
we need as in Remark 2.34(a),(b). Chern classes are defined, [147, §3.1.1].

(c) (Chow groups of schemes and stacks.) Chow homology groups A∗(S)
of K-schemes S are studied in intersection theory, as in Fulton [50]. They have
been extended to Artin stacks by Kresch [94] and Joshua [72,73].

As in [50, p. 370], Chow groups Ak(S) should be understood as a type
of locally finite homology group H lf

2k(S), with pushforwards only defined along
projective morphisms (projective implies proper). Without constructing a coho-
mology theory, Kresch [94, §3.6] defines Chern classes of vector bundles E → S
as maps ∩ ci(E) : Ak+i(S)→ Ai(S).

We can use Remark 2.34(a) to construct a homology theory Ĥ2∗(−) of Artin
K-stacks from A∗(−), with Ĥ2k(S) = lim−→ϕ:P→SAk(P ) a direct limit over ϕ :

P → S in Ho(Artlft
K ) with P projective. We can also use Remark 2.34(c) to

construct a compatible cohomology theory Ĥ2∗(−) from A∗(−). Then Kresch’s
Chern class maps ∩ ci(E) : Ak+i(S)→ Ai(S) induce elements ci(E) in Ĥ2i(S).

We define homotopy equivalences of stacks:

Definition 2.37. A morphism f : S → T in Ho(Artlft
K ) or Ho(HStlft

K ) is called
a homotopy equivalence if there exist morphisms g : T → S, F : S × A1 → S,
G : T × A1 → T , with F |{0}×S = g ◦ f , F |{1}×S = idS , G|{0}×T = f ◦ g, and
G|{1}×T = idT . We say that S, T are homotopic, written S ' T , if there exists
a homotopy equivalence f : S → T .
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Here we use the A1 in S × A1 (rather than a connected algebraic curve, for
example), as we want to use Assumption 2.30(a)(vi) in the next proof.

Lemma 2.38. Let Assumption 2.30 hold for (co)homology theories H∗(−),
H∗(−) of (higher) Artin K-stacks over a commutative ring R, and suppose
f : S → T is a homotopy equivalence of (higher) Artin K-stacks. Then H∗(f) :
H∗(S)→ H∗(T ) and H∗(f) : H∗(T )→ H∗(S) are isomorphisms.

Proof. For g, F,G as in Definition 2.37, we have a commutative diagram

S
(idS ,0)

//

g◦f ..

S × A1

F ��

S,
(idS ,1)

oo

idSppS

so applying functorial homology H∗(−) gives a commutative diagram

H∗(S)
H∗((idS ,0))

//

H∗(g)◦H∗(f) ..

H∗(S × A1)
H∗(πS)oo H∗(πS) //

H∗(F )
��

H∗(S).
H∗((idS ,1))
oo

H∗(idS)=idppH∗(S)

Now Assumption 2.30(a)(vi) implies that the morphisms H∗(πS) indicated ‘99K’
are isomorphisms. Since they are left inverse to H∗((idS , 0)), H∗((idS , 1)), it
follows that H∗((idS , 0)) = H∗(πS)−1 = H∗((idS , 1)), so the diagram implies
that H∗(g) ◦ H∗(f) = id. Similarly H∗(f) ◦ H∗(g) = id, so H∗(f) : H∗(S) →
H∗(T ) is an isomorphism. The argument for H∗(f) is the same.

2.5 Assumptions on the ‘projective Euler class’

For our ‘projective linear’ Lie algebras in §3.4, given a principal [∗/Gm]-bundle
ρ : S → T and a weight one [∗/Gm]-equivariant perfect complex E• on E, we
will need a (new, partially conjectural) kind of characteristic class PE([E•]), as
a map H∗(T )→ H∗(S), which we call the ‘projective Euler class’.

Assumption 2.39. Let ρ : S → T be a principal [∗/Gm]-bundle in Ho(Artlft
K )

with [∗/Gm]-action Ψ : [∗/Gm] × S → S, as in §2.3.7. Then as in §2.3.8 we
can consider perfect complexes E• on S with [∗/Gm]-actions ΨE• compatible
with Ψ of weight 1. These form a triangulated category Perf(S)wt1, with
[∗/Gm]-equivariant morphisms. Thus we can form the Grothendieck group
K0(Perf(S)wt1). There is a morphism rank : K0(Perf(S)wt1) → LCon(S,Z)
mapping [E•] 7→ rank E•.

Suppose Assumption 2.30 holds for (co)homology theories H∗(−), H∗(−) of
Artin K-stacks. Then for all principal [∗/Gm]-bundles ρ : S → T as above and
all θ ∈ K0(Perf(S)wt1) with constant rank on S and all k > 0 we should be
given R-module morphisms

PE(θ) : Hk(T ) −→ Hk−2 rank θ−2(S), (2.48)

which we call the projective Euler class. These should satisfy:
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(a) As in Example 2.28, let ρ = πT : S = [∗/Gm] × T → T be the trivial
principal [∗/Gm]-bundle over an Artin K-stack T with [∗/Gm]-action Ψ =
Ω × idT : [∗/Gm]2 × T → [∗/Gm] × T , let F• ∈ Perf(T ) have constant
rank, and set E• = π∗[∗/Gm](E1)⊗ π∗T (F•) in Perf(S)wt1. Then we have

PE([E•]) : ζ 7−→
∑

i>0: 2i6k,
i>rank θ+1

ti−rankF•−1 � (ζ ∩ ci([F•])), (2.49)

where ζ ∈ Hk(T ), and we use the notation of Assumption 2.30.

(b) Let ρ : S → T be a principal [∗/Gm]-bundle in Ho(Artlft
K ) with [∗/Gm]-

action Ψ : [∗/Gm]×S → S, and f : T ′ → T be a morphism in Ho(Artlft
K ).

Then as in §2.3.7 we may form the pullback principal [∗/Gm]-bundle ρ′ :
S′ = S ×ρ,T,f T ′ → T ′, with [∗/Gm]-action Ψ′, in a commutative square

(2.27) in Ho(Artlft
K ) which is 2-Cartesian in Artlft

K . The projection f ′ =
πS : S′ → S induces a pullback functor f ′∗ : Perf(S)wt1 → Perf(S′)wt1,
and a morphism K0(f ′) : K0(Perf(S)wt1)→ K0(Perf(S′)wt1).

Then for all constant rank θ ∈ K0(Perf(S)wt1) and k > 0, the following
commutes:

Hk(T ′)
PE(K0(f ′)θ)

//

Hk(f)
��

Hk−2 rank θ−2(S′)

Hk−2 rank θ−2(f ′)
��

Hk(T )
PE(θ) // Hk−2 rank θ−2(S).

(2.50)

(c) Let ρ : S → T be a principal [∗/Gm]-bundle in Ho(Artlft
K ) with [∗/Gm]-

action Ψ : [∗/Gm] × S → S. Define Ψ∨ : [∗/Gm] × S → S by Ψ∨ =
Ψ ◦ (ι × idS), where the inverse map ι : [∗/Gm] → [∗/Gm] is induced by
the group morphism Gm → Gm mapping λ 7→ λ−1, as in Definition 2.23.
Then Ψ∨ is also a [∗/Gm]-action on S, and ρ : S → T is also a principal
[∗/Gm]-bundle for the [∗/Gm]-action Ψ∨.

Write Perf(S)wt1
Ψ and Perf(S)wt1

Ψ∨ for the categories of perfect complexes on
S with weight one [∗/Gm]-actions compatible with Ψ and Ψ∨, respectively.
Then the duality E• 7→ (E•)∨ induces a contravariant equivalence of cate-
gories (−)∨ : Perf(S)wt1

Ψ → Perf(S)wt1
Ψ∨ , since if E• has weight 1 for Ψ then

(E•)∨ has weight −1 for Ψ, and thus weight 1 for Ψ∨. This equivalence
descends to an isomorphism (−)∨ : K0(Perf(S)wt1

Ψ ) → K0(Perf(S)wt1
Ψ∨ )

mapping [E•] 7→ [E•]∨ = [(E•)∨].

Then for all constant rank θ ∈ K0(Perf(S)wt1
Ψ ) and k > 0, we require that

PE(θ)Ψ = (−1)rank θ+1 PE(θ∨)Ψ∨ : Hk(T ) −→ Hk−2 rank θ−2(S). (2.51)

(d) Let ρ : S → T be a principal [∗/Gm]-bundle with [∗/Gm]-action Ψ :
[∗/Gm]×S → S, and U be an Artin K-stack. Then ρ×idU : S×U → T×U
is a principal [∗/Gm]-bundle with [∗/Gm]-action Ψ × idU . Pullback by
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πS : S × U → S induces a functor π∗S : Perf(S)wt1 → Perf(S × U)wt1,
and a morphism K0(πS) : K0(Perf(S)wt1) → K0(Perf(S × U)wt1). Then
for all constant rank θ ∈ K0(Perf(S)wt1) and ζ ∈ Hk(T ), η ∈ Hl(U), we
require that in H∗(S × U) we have

(PE(θ)ζ)� η = PE(K0(πS)(θ)(ζ � η).

(e) As in §2.3.7, the material of §2.3.7–§2.3.8 on principal principal [∗/Gm]-
bundles generalizes to [∗/Gm]k-bundles on an obvious way.

Suppose ρ : S → V is a principal [∗/Gm]3-bundle with [∗/Gm]3-action
Ψ : [∗/Gm]3 × S → S. Form the commutative diagram in Ho(Artlft

K ):

U12 υ12

++S
σ // T

τ12 44

τ23 //

τ31
++

U23
υ23 // V,

U31
υ31

33 (2.52)

where T is the quotient of S by the free [∗/Gm]-action Ψ ◦ (∆123 × idS) :
[∗/Gm]×S → S for ∆123 : [∗/Gm]→ [∗/Gm]3 the diagonal morphism, and
Uij is the the quotient of S by the free [∗/Gm]2-action Ψ ◦ (∆ij × idS) :
[∗/Gm]2 × S → S, where ∆ij : [∗/Gm]2 → [∗/Gm]2 is induced by the
morphism δij : G2

m → G3
m given by

δ12 : (λ, µ) 7→ (λ, λ, µ), δ23 : (λ, µ) 7→ (µ, λ, λ), δ31 : (λ, µ) 7→ (λ, µ, λ).

The morphisms σ, τij , υij in (2.52) are the natural projections coming from
compatibility of the quotient [∗/Gm]k-actions. The composition of mor-
phisms S → V in (2.52) is ρ.

Each morphism in (2.52) is a principal [∗/Gm]-bundle for an appropri-
ate [∗/Gm]-action on S, T, U12, U23, U31 descending from Ψ. We write
the [∗/Gm]-actions on T for τ12, τ23, τ31 as Φ12,Φ23,Φ31, and the [∗/Gm]-
actions on U12, U23, U31 for υ12, υ23, υ31 as Ξ12,Ξ23,Ξ31, respectively. We
determine the signs of these [∗/Gm]-actions by taking Φij to be induced
from Ψ by the kth [∗/Gm] factor in [∗/Gm]3 and Ξij to be induced from
Ψ by the jth [∗/Gm] factor, where {i, j, k} = {1, 2, 3}.
Suppose now that E•12, E•23, E•31 are constant rank perfect complexes on
U12, U23, U31 respectively, which have weight one [∗/Gm]-actions compat-
ible with Ξ12,Ξ23,Ξ31. Then we see that:

• τ∗12(E•12) has [∗/Gm]-actions compatible with the [∗/Gm]-actions Φ12,
Φ23,Φ31 on T of weights 0,−1, 1, respectively.

• τ∗23(E•23) has [∗/Gm]-actions compatible with the [∗/Gm]-actions Φ12,
Φ23,Φ31 on T of weights 1, 0,−1, respectively.

• τ∗31(E•31) has [∗/Gm]-actions compatible with the [∗/Gm]-actions Φ12,
Φ23,Φ31 on T of weights −1, 0, 1, respectively.
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Hence τ∗23(E•23) ⊕ τ∗31(E•31)∨ has weight 1 for the [∗/Gm]-action Φ12, and
τ∗31(E•31)⊕τ∗12(E•12)∨ has weight 1 for the [∗/Gm]-action Φ23, and τ∗12(E•12)⊕
τ∗23(E•23)∨ has weight 1 for the [∗/Gm]-action Φ31. We require that

0 = (−1)rank E•31 · PE
(
[τ∗23(E•23)⊕ τ∗31(E•31)∨]

)
◦ PE

(
[E•12]

)
+

(−1)rank E•12 · PE
(
[τ∗31(E•31)⊕ τ∗12(E•12)∨]

)
◦ PE

(
[E•23]

)
+

(−1)rank E•23 · PE
(
[τ∗12(E•12)⊕ τ∗23(E•23)∨]

)
◦ PE

(
[E•31]

)
:

Hk(V ) −→ Hk−2(rank E•12+rank E•23+rank E•31)−4(T ).

(2.53)

So far as the author can tell these ideas are new, and we will not actually
prove Assumption 2.39 in the general case, though we do for rationally trivial
[∗/Gm]-bundles when R is a Q-algebra in the next proposition.

Proposition 2.40. Suppose Assumptions 2.30 and 2.31 hold for (co)homology
theories H∗(−), H∗(−) of Artin K-stacks over a Q-algebra R. Then the re-
striction of Assumption 2.39 to principal [∗/Gm]-bundles ρ : S → T which are
rationally trivial in the sense of Definition 2.26 holds.

Note that Proposition 2.29 implies that if K is algebraically closed and E• is
a perfect complex on S with a weight one [∗/Gm]-action and rank E• 6= 0, then
ρ is rationally trivial.

Proof. Suppose ρ : S → T is a rationally trivial [∗/Gm]-bundle with [∗/Gm]-
action Ψ : [∗/Gm] × S → S. Then by Definition 2.26 there exists a surjective
morphism f : T ′ → T which is a [∗/Zn]-fibration over each connected component
of T , such that the pullback principal [∗/Gm]-bundle ρ′ : S′ = S×ρ,T,f T ′ → T ′

is trivial. Assumption 2.39(b) says that (2.50) should commute.
The columns of (2.50) are isomorphisms by Assumption 2.31(a) as f, f ′ are

[∗/Zn]-fibrations over each connected component. Thus in (2.50), the morphism
PE(θ) is determined uniquely by PE(K0(f ′)θ). Also ρ′ : S′ → T ′ is a trivial
[∗/Gm]-fibration, so S′ ∼= [∗/Gm] × T ′, and writing K0(f ′)θ = [E•] for E• in
Perf(S′)wt1, as in Example 2.28 we can show that E• ∼= π∗[∗/Gm](E1)⊗ π∗T ′(F

•)

for F• ∈ Perf(T ′), and then PE(K0(f ′)θ) in (2.50) is given explicitly by (2.49).
We claim that these morphisms PE(θ) are independent of the choices of local

[∗/Zn]-fibration f : T ′ → T and [∗/Gm]-equivariant trivialization S′ ∼= [∗/Gm]×
T ′. Two such trivializations differ by an isomorphism

(
Ω ◦ (id[∗/Gm], α), πT ′

)
:

[∗/Gm] × T ′ → [∗/Gm] × T ′ for any morphism α : T ′ → [∗/Gm], where Ω :
[∗/Gm]2 → [∗/Gm] is as in Definition 2.23, and one can show by calculation that
(2.49) is invariant under such isomorphisms. Then independence of f : T ′ → T
is easy to show by considering T ′1 ×f1,T,f2

T ′2 for alternative choices f1 : T ′1 → T
and f2 : T ′2 → T .

Thus, Assumption 2.39(a),(b) determine unique morphisms PE(θ) for ratio-
nally trivial [∗/Gm]-bundles ρ : S → T . We can then check that these PE(θ)
satisfy Assumption 2.39(a)–(e). For (b)–(e), we use rational triviality as above
to reduce to the cases when ρ : S → T in (b)–(d) is a trivial [∗/Gm]-bundle and
ρ : S → V in (e) is a trivial [∗/Gm]3-bundle, and then we prove (2.50), (2.51)
and (2.53) in these cases using the formula (2.49).
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Question 2.41. Can we construct morphisms PE(θ) satisfying Assumption
2.39 for general R, and for ρ : S → T which are not rationally trivial?

The author conjectures the answer is yes for K = C and (co)homologyH∗(−),
H∗(−) over any commutative ring R defined as in Example 2.35.

Remark 2.42. (Relation to Fulton–MacPherson’s bivariant theories.)
Fulton and MacPherson [51] introduce bivariant theories, which generalize both
homology and cohomology. Given a category such as Ho(Artlft

K ) and a commu-
tative ring R, a bivariant theory gives an R-module Bk(f : S → T ) for each
morphism f : S → T in Ho(Artlft

K ) and k ∈ Z, which have R-bilinear products

· : Bk(f : S → T )×Bl(g : T → U) −→ Bk+l(g ◦ f : S → U)

and ‘pushforward’ and ‘pullback’ operations, satisfying some axioms. A bivari-
ant theory defines homology and cohomology theories H∗(−), H∗(−) by

Hk(S) = B−k(π : S → ∗) and Hk(S) = Bk(id : S → S).

Bivariant theories in algebraic geometry are discussed by Fulton and MacPher-
son [51, §9], Olsson [126, §1.3], and Li [101, 3.1].

If the (co)homology theories H∗(−), H∗(−) in Assumption 2.39 come from a
bivariant theory B∗(−), it would be natural to define PE(θ) as a bivariant class

PE(θ) ∈ B2 rank θ+2(ρ : S → T ), (2.54)

and then take (2.48) to map ζ 7→ PE(θ) · ζ using the bivariant product

· : B2 rank θ+2(ρ : S → T )×B−k(π : T → ∗)−→B2 rank θ+2−k(π : S → ∗).

The author imagines answering Question 2.41 as follows. We should con-
struct a homotopy Cartesian square in HStK:

E Perfwt1
β

//

α
��

E[∗/Gm]

δ ��
B Perfwt1

γ // B[∗/Gm],

where α, δ are principal [∗/Gm]-bundles. Here B[∗/Gm] should be the classifying
stack for principal [∗/Gm]-bundles, so that if ρ : S → T is a principal [∗/Gm]-
bundle in Artlft

K or HStK then there is a natural morphism ε : T → B[∗/Gm]
with S ∼= E[∗/Gm]×δ,B[∗/Gm],ε T the pullback principal [∗/Gm]-bundle.

Also B Perfwt1 should be the relative classifying stack for weight one perfect
complexes on principal [∗/Gm]-bundles, so that if ρ : S → T , ε are as above
and E• is a weight one [∗/Gm]-equivariant perfect complex on S then there is
a natural morphism ζ : T → B Perfwt1 with ε = γ ◦ ζ such that if η : S →
E Perfwt1 is induced by ζ, ε and the isomorphism S ∼= E[∗/Gm] ×δ,B[∗/Gm],ε T

then E• ∼= η∗(U•) for a ‘universal’ weight one complex U• on E Perfwt1.
Then there should exist a class PE in B∗(α : E Perfwt1 → B Perfwt1), such

that PE([E•]) in (2.54) is obtained by bivariant pullback of PE by (ζ, η).
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3 Vertex algebras and Lie algebras in
Algebraic Geometry

Throughout this section we fix a field K and work with (higher) Artin K-stacks
as discussed in §2.3.

3.1 Assumptions on the abelian or triangulated category

The next assumption sets out the notation, extra data, and properties we need
for the K-linear abelian category A in all the versions of our construction. The
symmetric product χ in (c) and perfect complex Θ• in (i)–(l) will be explained
in Remark 3.3, and the signs εα,β in (d) in Remark 3.4.

Assumption 3.1. (a) We are given a K-linear abelian category A.

(b) The Grothendieck group of A is the abelian group generated by isomorphism
classes [E] of objects E of A, with a relation [F ] = [E] + [G] for each exact
sequence 0 → E → F → G → 0 in A. We are given a quotient group K(A) of
K0(A), with surjective projection K0(A) � K(A). Thus, each object E ∈ A
has a class in K(A), which we will write as JEK.
(c) We are given a biadditive map χ : K(A)×K(A)→ Z, which is symmetric,
that is, χ(α, β) = χ(β, α) for all α, β ∈ K(A).

(d) We are given signs εα,β ∈ {1,−1} for all α, β ∈ K(A), which satisfy

εα,β · εβ,α = (−1)χ(α,β)+χ(α,α)χ(β,β), (3.1)

εα,β · εα+β,γ = εα,β+γ · εβ,γ , (3.2)

εα,0 = ε0,α = 1, (3.3)

for all α, β, γ ∈ K(A). Note that if the map K(A) × K(A) → {±1} taking
(α, β) 7→ εα,β is biadditive (i.e. εα+β,γ = εα,γ · εβ,γ and εα,β+γ = εα,β · εα,γ) then
(3.2) is automatic, as both sides are εα,β · εα,γ · εβ,γ , and so is (3.3).

(e) We can form a moduli stackM of all objects in A, which is an Artin K-stack,
locally of finite type. K-points x ∈M(K) correspond naturally to isomorphism
classes [E] of objects E in A, and we will write points of M(K) as [E]. There
are isomorphisms of algebraic K-groups Aut(E) ∼= IsoM([E]), natural up to
conjugation in Aut(E), between the automorphism group Aut(E) of E in A
and the isotropy group IsoM([E]) of [E] in M.

We also write M′ =M\ {[0]} for the open substack M′ ⊂M which is the
moduli stack of nonzero objects in A.

If S is a K-scheme, a stack morphism E : S → M should be interpreted
as a ‘family of objects E in A over the base K-scheme S’. In our examples,
morphisms S →M will be equivalent to objects of an OS-linear exact category
A(S). That is, in these examples we can enhance the Artin K-stack M to a
stack in exact categories on SchK.

We do not assume this, but we will use these ideas in (g),(h) below to
better explain the stack morphisms Φ,Ψ, using the operations of direct sum ⊕
and tensor product L⊗− by an S-line bundle L in the exact category A(S).
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(f) The map M(K) → K(A) mapping [E] 7→ JEK is locally constant in the
Zariski topology. Thus there is a decomposition M =

∐
α∈K(A)Mα, where

Mα ⊂M is the open and closed K-substack of points [E] ∈M(K) with JEK = α
in K(A). We have Mα = ∅ if there are no objects E ∈ A with JEK = α. We
write M′α =Mα if α 6= 0 and M′0 =M0 \ {[0]}, so that M′ =

∐
α∈K(A)M

′
α.

(g) There is a natural morphism of Artin stacks Φ : M ×M → M which
on K-points acts by Φ(K) : ([E], [F ]) 7→ [E ⊕ F ], for all objects E,F ∈ A,
and on isotropy groups acts by Φ∗ : IsoM×M([E], [F ]) ∼= Aut(E) × Aut(F ) →
IsoM([E⊕F ]) ∼= Aut(E⊕F ) by (λ, µ) 7→

(
λ 0
0 µ

)
for λ ∈ Aut(E) and µ ∈ Aut(F ),

using the obvious matrix notation for Aut(E ⊕ F ). That is, Φ is the morphism
of moduli stacks induced by direct sum in the abelian category A.

As JE ⊕ F K = JEK + JF K, we see that Φ maps Mα ×Mβ → Mα+β for
α, β ∈ K(A), and we write Φα,β := Φ|Mα×Mβ

:Mα ×Mβ →Mα+β .

These morphisms Φα,β satisfy the following identities in Ho(Artlft
K ):

Φβ,α ◦ σα,β = Φα,β :Mα ×Mβ −→Mα+β , (3.4)

Φα+β,γ ◦
(
Φα,β × idMγ

)
= Φα,β+γ ◦

(
idMα

× Φβ,γ
)

:

Mα ×Mβ ×Mγ −→Mα+β+γ ,
(3.5)

where σα,β : Mα ×Mβ → Mβ ×Mα exchanges the factors. That is, Φ is
commutative and associative.

If M comes from a stack in exact categories on SchK, as in (e), we can
provide an explicit description of Φ. ThenM(S) := Hom(S,M) is the groupoid
of objects E in the exact category A(S) and their isomorphisms for S in SchK,
and Φ(S) : (M×M)(S) =M(S)×M(S)→M(S) is the functor of groupoids
mapping Φ(S) : (E ,F) 7→ E ⊕ F , using direct sum in A(S).

(h) There is a natural morphism of Artin stacks Ψ : [∗/Gm]×M→M which on
K-points acts by Ψ(K) : (∗, [E]) 7→ [E], for all objects E in A, and on isotropy
groups acts by Ψ∗ : Iso[∗/Gm]×M(∗, [E]) ∼= Gm×Aut(E)→ IsoM([E]) ∼= Aut(E)
by (λ, µ) 7→ λµ = (λ · idE) ◦ µ for λ ∈ Gm and µ ∈ Aut(E). Note that Ψ is
not the same as the projection πM : [∗/Gm] × M → M from the product
[∗/Gm]×M, which acts on isotropy groups as (πM)∗ : (λ, µ) 7→ µ.

Clearly Ψ maps [∗/Gm] ×Mα → Mα for α ∈ K(A), and we write Ψα :=
Ψ|[∗/Gm]×Mα

: [∗/Gm]×Mα →Mα.

These morphisms Φα,β ,Ψα satisfy the following identities in Ho(Artlft
K ):

Ψα+β◦(id[∗/Gm]×Φα,β)=Φα,β◦
(
(Ψα◦(Π[∗/Gm]×Mα

)), (Ψβ◦(Π[∗/Gm]×Mβ
))
)

:

[∗/Gm]×Mα ×Mβ −→Mα+β , (3.6)

Ψα ◦ (id[∗/Gm] ×Ψα) = Ψα ◦ (Ω× idMα
) :

[∗/Gm]× [∗/Gm]×Mα −→Mα, (3.7)

where Ω : [∗/Gm]× [∗/Gm]→ [∗/Gm] is induced by the group morphism Gm ×
Gm → Gm mapping (λ, µ) 7→ λµ.

Note that (3.7) says Ψα is a [∗/Gm]-action onMα in the sense of Definition
2.23, so Ψ is a [∗/Gm]-action on M. The action of Ψ on isotropy groups above
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implies that Ψ is a free [∗/Gm]-action, as in (2.22), except over [0] ∈M(K), so
Ψ′ := Ψ|[∗/Gm]×M′ : [∗/Gm]×M′ →M′ is a free [∗/Gm]-action on M′.

If M comes from a stack in exact categories on SchK, as in (e), we can
provide an explicit description of Ψ. Then [∗/Gm](S) = Pic(S) is the groupoid
of line bundles L → S and their isomorphisms for S ∈ SchK, and M(S) is the
groupoid of objects E in the exact category A(S) and their isomorphisms, and
Ψ(S) : Pic(S) ×M(S) → M(S) is the functor of groupoids mapping Ψ(S) :
(L, E) 7→ L⊗E , noting that we may tensor by line bundles on S in the OS-linear
exact category A(S).

(i) We are given a perfect complex Θ• on M ×M, as in §2.3.6. We write
Θ•α,β for the restriction of Θ• to Mα ×Mβ ⊂M×M for α, β ∈ K(A). Then
rank Θ•α,β = χ(α, β) for all α, β ∈ K(A).

(j) Write σα,β : Mα × Mβ → Mβ × Mα for the isomorphism exchanging
the factors. Then for some n ∈ Z, and for all α, β ∈ K(A), we are given
isomorphisms in Perf(Mα ×Mβ):

σ∗α,β(Θ•β,α) ∼= (Θ•α,β)∨[2n]. (3.8)

Here (· · · )∨ is duality and [2n] is shift by 2n in Perf(Mα×Mβ). Equation (3.8)
is consistent with χ(α, β) = χ(β, α) in (c) and rank Θ•α,β ≡ χ(α, β) in (i).

(k) For all α, β, γ ∈ K(A), we are given isomorphisms in Perf(Mα×Mβ×Mγ):

(Φα,β × idMγ )∗(Θ•α+β,γ) ∼= Π∗Mα×Mγ
(Θ•α,γ)⊕Π∗Mβ×Mγ

(Θ•β,γ), (3.9)

(idMα
× Φβ,γ)∗(Θ•α,β+γ) ∼= Π∗Mα×Mβ

(Θ•α,β)⊕Π∗Mα×Mγ
(Θ•α,γ). (3.10)

The isomorphisms (3.8) identify (3.9) with the dual of (3.10), and vice versa.

(l) For all α, β ∈ K(A), we are given isomorphisms in Perf([∗/Gm]×Mα×Mβ):

(Ψα × idMβ
)∗(Θ•α,β) ∼=Π∗[∗/Gm](E1)⊗Π∗Mα×Mβ

(Θ•α,β), (3.11)

(ΠMα
, (Ψβ◦Π[∗/Gm]×Mβ

))∗(Θ•α,β) ∼=Π∗[∗/Gm](E−1)⊗Π∗Mα×Mβ
(Θ•α,β). (3.12)

Here E1, E−1 are as in Example 2.22, regarded as line bundles on [∗/Gm]. By
(h), Ψα,Ψβ are [∗/Gm]-actions on Mα,Mβ as in §2.3.7, which lift to two
commuting [∗/Gm]-actions on Mα ×Mβ . We require that (3.11)–(3.12) are
[∗/Gm]-actions on Θ•α,β of weights 1,−1 compatible with these [∗/Gm]-actions
on Mα ×Mβ in the sense of Definition 2.27, that is, the analogues of (2.29)
commute.

The isomorphisms (3.11)–(3.12) should be compatible with each other, that
is, they define a [∗/Gm]2-action on Θ•α,β with multi-weight (1,−1). Also the

isomorphisms (3.8)–(3.10) should be equivariant under these [∗/Gm]2-actions,
in the appropriate sense.

Here is the analogue for triangulated categories T :

Assumption 3.2. Suppose are given a K-linear triangulated category T . As-
sume the analogue of Assumption 3.1(a)–(l), replacing A by T throughout, and
with the following changes:
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(i) To define the Grothendieck group K0(T ) in (a), we impose a relation
[F ] = [E] + [G] for each distinguished triangle E→F→G→E[+1] in T .

(ii) In (d), the moduli stack M of all objects in T is a higher Artin K-stack
locally of finite type.

(iii) In (e), in our examples morphisms S →M are equivalent to objects of an
OS-linear triangulated category T (S). That is, we can enhance the higher
Artin K-stack M to a stack in triangulated categories on SchK.

(iv) For each object E in T , there is a morphism ξE : A1 →M0 in Ho(HStlft
K ),

which on K-points maps x ∈ K to
[
Cone(x · idE : E → E)

]
, taking cones

of morphisms in the triangulated category T . Note that

[
Cone(x · idE : E → E)

]
=

{[
E ⊕ E[1]

]
, x = 0,

[0], x 6= 0.

Remark 3.3. Assumptions 3.1 and 3.2 include a symmetric product χ : K(A)×
K(A) → Z in (c) and a perfect complex Θ• ∈ Perf(M×M) in (i). We now
explain where these come from in the examples of §5–§6.

In the examples of abelian categories A we are interested in, for objects
E,F in A we can define Ext groups Exti(E,F ) for i = 0, 1, . . . , which are finite-
dimensional K-vector spaces with Ext0(E,F ) = HomA(E,F ) and Exti(E,F ) =
0 for i � 0. For example, if A = coh(X) for X a smooth projective K-scheme
then Exti(E,F ) is as in Hartshorne [62, §III.6]. In the triangulated category
case, for E,F ∈ T we define Exti(E,F ) = HomT (E,F [i]) for i ∈ Z.

The Euler form of A is the bilinear map χA : K0(A)×K0(A)→ Z acting by
χA([E], [F ]) =

∑
i(−1)i dimK Exti(E,F ). The numerical Grothendieck group is

Knum(A) = K0(A)/{α ∈ K0(A) : χA(α, β) = 0 for all β ∈ K0(A)}. Then χA
descends to χA : Knum(A) × Knum(A) → Z. In our examples we will often
choose K(A) = Knum(A) in Assumption 3.1(b).

Under good conditions, there should exist a natural perfect complex Ext•

in Perf(M×M), which at each K-point ([E], [F ]) of M×M has cohomology
Hi(Ext• |([E],[F ])) ∼= Exti(E,F ) for all i. Thus rank Ext• |([E],[F ]) = χA([E], [F ]).

We can write Ext• explicitly in terms of cotangent complexes of derived
moduli spaces as follows. Suppose thatM = t0(M) for a derived moduli stack
M, and also that we have a derived moduli stack Exact of exact sequences
0→ E → F → G→ 0 in A (or of distinguished triangles in T ), with M,Exact
locally of finite presentation. Define a morphism Υ : M ×M → Exact to
map (E,F ) to the exact sequence 0 → F → E ⊕ F → E → 0. Then (Ext•)∨

should be the restriction of LM×M/Exact[1] ∈ Perf(M ×M) to the classical
truncationM×M, where LM×M/Exact is the relative cotangent complex of Υ.

Without using derived algebraic geometry, one can define Ext• by the tech-
niques used to construct obstruction theories, as in Behrend and Fantechi [15].

There will be two main versions of our construction, both with interesting
applications, with different definitions of χ,Θ• in each case:
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(A) (The even Calabi–Yau case.) Suppose that A or T is a 2n-Calabi–Yau
category, for instance, A = coh(X) or T = Dbcoh(X) for X a projective
Calabi–Yau 2n-fold over K. Then we have isomorphisms Exti(F,E)∗ ∼=
Ext2n−i(E,F ) for all E,F, i, which should be induced by an isomorphism
σ∗((Ext•)∨) ∼= Ext•[2n] in Perf(M×M), where σ : M×M →M×M
exchanges the two factors of M as in Assumption 3.1(j).

In this case we define χ = χA and Θ• = (Ext•)∨ in Perf(M × M).
Then Exti(F,E)∗ ∼= Ext2n−i(E,F ) implies that χ(α, β) = χ(β, α) in As-
sumption 3.1(c), and σ∗((Ext•)∨) ∼= Ext•[2n] implies that σ∗α,β(Θ•β,α) ∼=
(Θ•α,β)∨[2n] in Assumption 3.1(j).

(B) (The general case.) If A, T are not 2n-Calabi–Yau, then in general
we cannot take χ = χA and Θ• = (Ext•)∨ as in (A), since we might
have χ(α, β) 6= χ(β, α) and σ∗α,β(Θ•β,α) 6∼= (Θ•α,β)∨[2n]. Then we define
χ(α, β) = χA(α, β) +χA(β, α) and Θ• = (Ext•)∨⊕ σ∗(Ext•)[2n], for some
n ∈ Z, so χ(α, β) = χ(β, α) and σ∗α,β(Θ•β,α) ∼= (Θ•α,β)∨[2n] hold trivially.

If A or T is 2n-Calabi–Yau then both (A) and (B) work, but usually yield rather
different Lie algebra structures on H∗(M) under our constructions.

We have justified Assumption 3.1(c),(i),(j) in both cases (A),(B). Part (k)
holds because of the analogue for the complex Ext• of

Exti(E,F ⊕G) ∼= Exti(E,G)⊕ Exti(E,F ) and

Exti(E ⊕ F,G) ∼= Exti(E,G)⊕ Exti(F,G).

Part (l) basically holds because in the action of Aut(E)×Aut(F ) on Exti(E,F )∗,
(λ idE , µ idF ) acts by multiplication by λµ−1, for all λ, µ ∈ Gm.

Remark 3.4. (a) The signs εα,β in Assumption 3.1(d) will be needed in the
definitions of our Lie brackets [ , ] on H∗(M) to make [ , ] graded antisymmetric
for a certain (nonstandard) grading on H∗(M). Lemma 3.5 shows we can always
choose εα,β satisfying (3.1)–(3.3). In Remark 3.3(B), when χ(α, β) = χA(α, β)+
χA(β, α), there is a natural choice εα,β = (−1)χA(α,β).

We will explain in §7 that the εα,β are related to the problem of choosing
‘orientation data’ on the category A, as in Cao and Leung [31] for instance.

(b) Rather than taking εα,β = ±1, it is sometimes natural to define εα,β to be
a locally constant function εα,β :Mα×Mβ → {±1}, and then to require (3.1)–
(3.3) to hold in functions Mα ×Mβ → {±1} and Mα ×Mβ ×Mγ → {±1}.
(c) Very similar signs εα,β occur in the theory of affine Lie algebras, as in
Kac [84, §7.8], where they are called asymmetry functions, and in the theory of
vertex algebras, as in [85, (5.14)], [46, (5.4)] and (2.10)–(2.12) below.

Lemma 3.5. Let K(A) be a finitely generated abelian group, and χ : K(A)×
K(A)→ Z be a symmetric biadditive map. Then we can choose εα,β ∈ {1,−1}
for all α, β ∈ K(A) satisfying (3.1)–(3.3). Furthermore, we can do this so that
(α, β) 7→ εα,β is a biadditive map of abelian groups K(A)×K(A)→ {±1}.
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Proof. Write Z2 = Z/2Z = {0, 1} for the field with two elements, and set
V = K(A)⊗ZZ2 as a Z2-vector space, with surjective projection π : K(A)→ V .
Then V is finite-dimensional, as K(A) is finitely generated, so we can choose
a basis v1, . . . , vn for V . Define Q : V × V → Z2 by Q(v, w) = χ(v′, w′) +
χ(v′, v′)χ(w′, w′) mod 2 for v′, w′ ∈ K(A) with π(v′) = v, π(w′) = w. This is
independent of the choices of v′, w′.

Now the map v 7→ χ(v′, v′) mod 2 is actually an additive, and hence linear,
map V → Z2, since χ(v′1 + v′2, v

′
1 + v′2) ≡ χ(v′1, v

′
1) + χ(v′2, v

′
2) + 2χ(v′1, v

′
2) ≡

χ(v′1, v
′
1)+χ(v′2, v

′
2) mod 2. Hence Q : V ×V → Z2 is bilinear (although it looks

quartic). Also Q(v, v) ≡ χ(v′, v′) + χ(v′, v′)χ(v′, v′) ≡ 0 mod 2 for any v ∈ V .
Write qij = Q(vi, vj) for i, j = 1, . . . , n. Then qii = 0 for i = 1, . . . , n. For

α, β ∈ K(A), write π(α) = a1v1 + · · ·+anvn and π(β) = b1v1 + · · ·+ bnvn using

the basis v1, . . . , vn, for ai, bi ∈ Z2. Then define εα,β = (−1)
∑

16i<j6n aibjqij . It
is easy to check that these εα,β satisfy (3.1), and (α, β) 7→ εα,β is biadditive, so
(3.2)–(3.3) also hold as in Assumption 3.1(d).

The next proposition will be proved in §4.1.

Proposition 3.6. Let Assumption 3.2 hold for T . Then:

(a) If T 6∼= 0 (i.e. T contains nonzero objects) the inclusions M′ ↪→M and
M′0 ↪→M0 are homotopy equivalences, as in Definition 2.37.

(b) For each α ∈ K(T ), choose a K-point [E] ∈ Mα(K) (this is possible as
K0(T )� K(T ) is surjective by Assumption 3.1(b)). Then the morphism
Φ0,α|M0×{[E]} :M0

∼=M0 ×{[E]} →Mα, which maps [F ] 7→ [F ⊕E] on
K-points, is a homotopy equivalence.

Thus, if Assumption 2.30 holds for (co)homology theories H∗(−), H∗(−) of
higher Artin K-stacks, Lemma 2.38 gives isomorphisms for all α ∈ K(T ) :

H∗(M′) ∼= H∗(M), H∗(M′0) ∼= H∗(M0), H∗(M0) ∼= H∗(Mα),

H∗(M′) ∼= H∗(M), H∗(M′0) ∼= H∗(M0), H∗(M0) ∼= H∗(Mα).
(3.13)

3.2 Operations [ , ]n on H∗(M), and vertex algebras

We will work in the situation of Assumption 3.1, and define some algebraic
structures on the homology groups H∗(M) and H∗(Mα) for α ∈ K(A). We
first make H∗([∗/Gm]) into a commutative graded R-algebra:

Definition 3.7. Let Assumption 2.30 hold for (co)homology H∗(−), H∗(−) of
Artin K-stacks over an arbitrary commutative ring R. Then Assumption 2.30(c)
writes H∗([∗/Gm]) = R[t] and H∗([∗/Gm]) = R[τ ].

Define a stack morphism Ω : [∗/Gm] × [∗/Gm] → [∗/Gm] to be induced by
the group morphism Gm ×Gm → Gm mapping (µ, ν) 7→ µν, as in Assumption
3.1(h). Define an R-bilinear operation

? : Ha([∗/Gm])×Hb([∗/Gm]) −→ Ha+b([∗/Gm]) by

κ ? λ = Ha+b(Ω)(κ� λ) for κ ∈ Ha([∗/Gm]) and λ ∈ Hb([∗/Gm]).
(3.14)
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From the definition of Ω we see that H2(Ω)(τ) = τ1 � 1 + 1 � τ2. By
considering (tp1 � t

q
2) ∩ (H2(Ω)(τ))p+q in H∗([∗/Gm]×[∗/Gm]) we find that for

all p, q > 0 we have
tp ? tq =

(
p+q
p

)
tp+q. (3.15)

Hence induction on n = 0, 1, . . . gives

t?
n

=
p n copies q
t ? t ? · · · ? t = n! · tn. (3.16)

Equation (3.15) shows ? is a commutative, associative product on H∗([∗/Gm]),
making H∗([∗/Gm]) = R[t] into a commutative graded R-algebra, with identity
t0 = 1. We can also see this geometrically, e.g. associativity of ? follows from

Ω ◦ (Ω× id[∗/Gm]) = Ω ◦ (id[∗/Gm] × Ω) : [∗/Gm]×[∗/Gm]×[∗/Gm]−→ [∗/Gm].

Remark 3.8. Readers are warned that Definition 3.7 is potentially confusing
for two reasons. Firstly, usually cohomology H∗(S) is an R-algebra, but here we
make the homology H∗([∗/Gm]) into anR-algebra. This works because [∗/Gm] is
a group object in Ho(ArtK), with multiplication Ω : [∗/Gm]×[∗/Gm]→ [∗/Gm].

Secondly, as Assumption 2.30(c) writes H∗([∗/Gm]) = R[t], the obvious
product would be tp ? tq = tp+q and t?

n

= tn, but this is not what (3.15)–(3.16)
give us. Here tn is just notation, a choice of generator of H2n([∗/Gm]), and
should not be thought of as the nth power of t under a product on H∗([∗/Gm]).

Now tn is a free basis element for H2n([∗/Gm]) = R · tn. If R is not a Q-
algebra (e.g. if R = Z) then in general n! is not invertible in R, so t?

n

is not
a basis element for H2n([∗/Gm]). This is why we chose the elements tn, rather
than t?

n

, to describe H2n([∗/Gm]). If R is a Q-algebra then t?
n

is an alternative
basis element for H2n([∗/Gm]), which is more convenient for some formulae.

Then H∗(Mα) and H∗(M) are graded modules over H∗([∗/Gm]):

Definition 3.9. Let Assumption 2.30 hold for (co)homology theories Hi, H
i :

Ho(Artlft
K )→ R-mod of Artin K-stacks, let Assumption 3.1 hold for the abelian

category A, and use the notation of §2 and §3.1.
In a similar way to (3.14), for each α ∈ K(A) and a, b > 0, define an R-

bilinear operation

� : Ha([∗/Gm])×Hb(Mα) −→ Ha+b(Mα) by

κ � ζ = Ha+b(Ψα)(κ� ζ) for κ ∈ Ha([∗/Gm]) and ζ ∈ Hb(Mα),
(3.17)

where Ψα : [∗/Gm]×Mα →Mα is as in Assumption 3.1(h). Then (3.7) implies
that for all κ ∈ Ha([∗/Gm]), λ ∈ Hb([∗/Gm]), and ζ ∈ Hc(Mα) we have

κ � (λ � ζ) = (κ ? λ) � ζ in Ha+b+c(Mα). (3.18)

That is, � makes H∗(Mα) into a graded module over the graded R-algebra(
H∗([∗/Gm]), ?

)
from Definition 3.9.
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We make H∗(M) into a graded H∗([∗/Gm])-module in the same way, by
κ � ζ = Ha+b(Ψ)(κ � ζ) for κ ∈ Ha([∗/Gm]) and ζ ∈ Hb(M). Since M =∐
α∈K(A)Mα by Assumption 3.1(f), equation (2.31) gives an isomorphism

H∗(M) ∼=
⊕

α∈K(A)H∗(Mα), (3.19)

which is an isomorphism of graded H∗([∗/Gm])-modules.

We define a family of R-bilinear operations [ , ]n : H∗(Mα) × H∗(Mβ) →
H∗(Mα+β) for α, β ∈ K(A) and n = 0, 1, . . . . Theorem 3.14 below shows they
are equivalent to the structure of a graded vertex algebra on H∗(M), as in §2.2.1.
Later we will use the [ , ]n to define our Lie brackets on H∗(M).

Definition 3.10. Let Assumption 2.30 hold for (co)homology theories Hi, H
i :

Ho(Artlft
K )→ R-mod of Artin K-stacks, let Assumption 3.1 hold for the abelian

category A, and use the notation of §2 and §3.1.
For α, β ∈ K(A), define Ξα,β : [∗/Gm] ×Mα ×Mβ → Mα+β to be the

composition of morphisms of Artin K-stacks

[∗/Gm]×Mα ×Mβ

Ψα×idMβ //Mα ×Mβ

Φα,β //Mα+β . (3.20)

Here Φα,β ,Ψα,Ψβ are as in Assumption 3.1(g),(h).
With the convention that Hj(· · · ) = 0 if j < 0, for all α, β ∈ K(A), a, b =

0, 1, . . . and n ∈ Z define an R-bilinear map

[ , ]n : Ha(Mα)×Hb(Mβ) −→ Ha+b−2n−2χ(α,β)−2(Mα+β) (3.21)

by, for all ζ ∈ Ha(Mα) and η ∈ Hb(Mβ),

[ζ, η]n =
∑

i>0: 2i6a+b,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β) ·Ha+b−2n−2χ(α,β)−2(Ξα,β)(
ti−n−χ(α,β)−1 �

[
(ζ � η) ∩ ci([Θ•α,β ])

])
.

(3.22)

Here H∗(· · · ),�,∩ are the pushforward maps, external product, and cap
product on (co)homology from Assumption 2.30(a), and ci(· · · ) is the Chern
class map from Assumption 2.30(b), and tk ∈ H2k([∗/Gm]) is as in Assumption
2.30(c), the sign εα,β = ±1 is as in Assumption 3.1(d), and the perfect complex
Θ•α,β is as in Assumption 3.1(i).

With respect to the obvious gradings on H∗(Mα), H∗(Mβ), H∗(Mα+β), the
bracket [ , ]n is graded of degree −2n− 2χ(α, β)− 2. However, we often prefer
to work with an alternative grading. For each i ∈ Z and α ∈ K(A), define

H̃i(Mα) = Hi+2−χ(α,α)(Mα). (3.23)

That is, H̃∗(Mα) is just H∗(Mα) with grading shifted by 2−χ(α, α). Then
as χ is biadditive with χ(α, β) = χ(β, α) by Assumption 3.1(c), we see that
(3.21) is equivalent to

[ , ]n : H̃ã(Mα)× H̃b̃(Mβ) −→ H̃ã+b̃−2n(Mα+β), (3.24)
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where ã = a − 2 + χ(α, α) and b̃ = b − 2 + χ(β, β). Thus, [ , ]n is graded of
degree −2n on H̃∗(Mα), H̃∗(Mβ), H̃∗(Mα+β).

The zero object 0 ∈ A gives a K-point [0] ∈ M0(K) ⊂ M(K), which we
can regard as a morphism [0] : ∗ →M0 in Ho(Artlft

K ), where ∗ = SpecK is the
point. Thus we have the pushforward H0([0]) : H0(∗)→ H0(M0) = H̃−2(M0),
where Assumption 2.30(a)(iv) identifies H0(∗) ∼= R. Write 1 = H0([0])(1) in
H0(M0) = H̃−2(M0) ⊆ H̃−2(M). We call 1 the identity element, or vacuum
element, of H̃∗(M).

We can generalize all the above to the triangulated category case. Sup-
pose instead that Assumption 2.30 holds for (co)homology theories Hi, H

i :
Ho(HStlft

K ) → R-mod of higher Artin K-stacks, and Assumption 3.2 holds for
the K-linear triangulated category T . We replace K(A) by K(T ) throughout,
but otherwise the definition of [ , ]n works without change.

Remark 3.11. The operations [ , ]n are not Lie brackets, though we will use
them to define Lie brackets later. Note that the definition of [ , ]n is not
(anti)symmetric between Mα and Mβ , as it involves Ψα but not Ψβ .

The next theorem, proved in §4.2, gives some identities satisfied by the [ , ]n.

Theorem 3.12. In the situation of Definition 3.10, let α, β, γ ∈ K(A), and
ζ ∈ H̃ã(Mα), η ∈ H̃b̃(Mβ), θ ∈ H̃c̃(Mγ) for ã, b̃, c̃ ∈ Z. Then using the
notation of Definition 3.9, for all n ∈ Z we have

[ζ,1]n =

{
t−n−1 � ζ, n < 0,

0, n > 0,
[1, ζ]n =

{
ζ, n = −1,

0 otherwise.
(3.25)

For all n ∈ Z and p > 0, we have

[tp � ζ, η]n = (−1)p
(
n

p

)
· [ζ, η]n−p, (3.26)

[ζ, tp � η]n =

p∑
k=0

(
n

p− k

)
· tk � [ζ, η]n+k−p. (3.27)

For all n ∈ Z we have

[η, ζ]n =
∑

k>0: 2k6ã+b̃−2n+2−χ(α+β,α+β)

(−1)1+ãb̃+k+n · tk � [ζ, η]k+n. (3.28)

And for all l,m ∈ Z we have

[[ζ, η]l, θ]m −
∑

n>0: 2m+2n6b̃+c̃
+2−χ(β+γ,β+γ)

(−1)n
(
l

n

)
· [ζ, [η, θ]m+n]l−n

+
∑

n>0: 2n6ã+c̃
+2−χ(α+γ,α+γ)

(−1)n+l+ãb̃

(
l

n

)
· [η, [ζ, θ]n]l+m−n = 0.

(3.29)
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The analogue of all the above holds in the triangulated category case, replacing
K(A) by K(T ).

Remark 3.13. (a) We can replace M by M′ = M \ {[0]} throughout §3.2,
which will be useful in §3.4. This works as Φ,Ψ in Assumption 3.1(g),(h) restrict
to Φ′ := Φ|M′×M′ :M′ ×M′ →M′ and Ψ′ := Ψ|[∗/Gm]×M′ : [∗/Gm]×M′ →
M′ with the same properties.

(b) Equation (3.28) will be used to prove graded antisymmetry of our Lie brack-
ets later. The equation looks rather asymmetric, but we have

[η, ζ]n =
∑
k>0

(−1)1+ãb̃+k+n · tk � [ζ, η]k+n

=
∑
k>0

(−1)1+ãb̃+k+n · tk �
[∑
l>0

(−1)1+ãb̃+k+l+ntl � [η, ζ]k+l+n

]

=
∑
k,l>0

(−1)l · tk �
(
tl � [η, ζ]k+l+n

)
=
∑
j>0

j∑
l=0

(−1)l · (tj−l ? tl) � [η, ζ]j+n

=
∑
j>0

[ j∑
l=0

(−1)l
(
l

j

)]
· tj � [η, ζ]j+n =

∑
j>0

(1− 1)j · tj � [η, ζ]j+n = [η, ζ]n,

using (3.28) in the first and second steps, equation (3.18) and changing variables
from k to j = k + l in the fourth, equation (3.15) in the fifth, and the binomial
theorem in the sixth. So in fact (3.28) has a hidden symmetry, and is self-inverse.

(c) When k = l = 0, equation (3.29) becomes

[[ζ, η]0, θ]0 − [ζ, [η, θ]0]0 + (−1)ãb̃[η, [ζ, θ]0]0 = 0. (3.30)

This will give the graded Jacobi identity for the ‘t = 0’ Lie algebra in §3.3.

With a change in notation, Theorem 3.12 says that H∗(M) is a graded vertex
algebra, in the sense of §2.2.1.

Theorem 3.14. In the situation of Definition 3.10, for all a ∈ 1
2Z define

Ȟa(M) = H̃2a−2(M) =
⊕

α∈K(A)H2a−χ(α,α)(Mα), (3.31)

so that Ȟ∗(M) =
⊕

a∈ 1
2Z
Ȟa(M) is just H̃∗(M) or H∗(M) with an alterna-

tive grading over 1
2Z. Define D(n) : Ȟ∗(M) → Ȟ∗(M) for n = 0, 1, 2, . . . by

D(n)(v) = tn � v. Define un : Ȟ∗(M)→ Ȟ∗(M) for all u ∈ Ȟ∗(M) and n ∈ Z
by un(v) = [u, v]n. Let 1 ∈ Ȟ0(M) be as in Definition 3.10. These make
Ȟ∗(M) into a graded vertex algebra over R, in the sense of Definition 2.8.

Proof. Clearly D(n), un,1 have the R-linearity and grading properties required.
For Definition 2.8(i), if u ∈ Ha(Mα) and v ∈ Hb(Mβ) then un(v) = 0 if
n > 1

2 (a+b)−χ(α, β)−1 by (3.21). Definition 2.8(ii)–(v) follow from equations
(3.25), (3.28) and (3.29).
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Remark 3.15. (a) It seems very likely that Theorem 3.14 has an explanation
in Mathematical Physics and String Theory, at least when A or T is of physical
interest, e.g. if T = Dbcoh(X) for X a Calabi–Yau 2n-fold.

(b) As in Definition 2.9, vertex operator (super)algebras are a class of graded
vertex algebras of particular importance in Conformal Field Theory, so it seems
natural to ask whether our examples in Theorem 3.14 have this structure.

For all our examples from abelian categories A with A 6= 0, the answer to
this is no. The conformal vector ω must live in H4(M0), but in the abelian case
M0 = ∗ and H4(M0) = 0, so ω = 0, contradicting Definition 2.9(ii),(iii).

In the triangulated category case, conformal vectors ω ∈ H4(M0) exist in
many of our examples, but the author does not know a good geometric expla-
nation for where they come from in our context.

(c) Because of Theorem 3.14, any standard construction for graded vertex al-
gebras, such as Definition 2.11, can be applied in our situation.

Remark 3.16. In the situation of Definition 3.10, motivated by Theorem 3.14
and the definition of fields Y (u, z) for a vertex algebra in (2.9), for each ζ in
H̃∗(M) we define an R-linear map

Y (ζ, z) : H̃∗(M) −→ H̃∗(M)[[z, z−1]], Y (ζ, z) : η 7−→
∑
n∈Z

[ζ, η]nz
−n−1, (3.32)

where z is a formal variable of degree −2. If ζ ∈ H̃ã(M) then Y (ζ, z) is graded
of degree ã+ 2. From (3.22) we see that if ζ ∈ Ha(Mα) and η ∈ Hb(Mβ) then

Y (ζ, z)η =
∑
n∈Z[ζ, η]nz

−n−1 = εα,β(−1)aχ(β,β)zχ(α,β) ·
H∗(Ξα,β)

{(∑
i>0 z

iti
)
�
[
(ζ � η) ∩

(∑
j>0 z

−jcj([Θ
•
α,β ])

)]}
.

(3.33)

Now suppose R is a Q-algebra. Then as in §2.4.2 we may transform from Chern
classes ci(−) to Chern characters chi(−). Equations (2.45) and (3.33) give

Y (ζ, z)η =
∑
n∈Z[ζ, η]nz

−n−1 = εα,β(−1)aχ(β,β)zχ(α,β) · (3.34)

H∗(Ξα,β)
{(∑
i>0

ziti
)
�
[
(ζ�η)∩exp

(∑
j>1

(−1)j−1(j−1)!z−j chj([Θ
•
α,β ])

)]}
.

Remark 3.17 (Commutative vertex algebras and the odd Calabi–Yau case).
In Definition 3.10 suppose the complex Θ• in Assumption 3.1(i) has [Θ•] = 0 in
K0(Perf(M×M)). For instance we could take Θ• = 0, which trivially satisfies
Assumption 3.1(i)–(l). Then χ(α, β) = 0 and ci([Θ

•
α,β ]) = 0 for all α, β ∈ K(A)

and i > 1, so from (3.22) we see that [ζ, η]n = 0 for all ζ, η ∈ H̃∗(M) and n > 0.
Hence in Theorem 3.14 we have un(v) = 0 for all u, v ∈ Ȟ∗(M) and n > 0.
That is, Ȟ∗(M) is a commutative graded vertex algebra, as in Definition 2.12.

As in Remark 3.3(B), our standard definition of Θ• for categories A, T
which are not 2n-Calabi–Yau is to set Θ• = (Ext•)∨ ⊕ σ∗(Ext•)[2n]. Now if
A, T are (2n + 1)-Calabi–Yau then (Ext•)∨ ∼= σ∗(Ext•)[2n + 1], so [Θ•] = 0 in
K0(Perf(M×M)). Thus, under our standard construction, odd Calabi–Yau
categories A, T yield commutative graded vertex algebras, and abelian graded
Lie algebras in §3.3–§3.8, which are basically trivial and boring.
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The next proposition will be proved in §4.3, and will be used to prove the
graded Jacobi identity in the ‘positive rank’ version of §3.5. The proof uses only
equations (3.15), (3.18), (3.26), (3.28) and (3.29), and so is valid in any graded
vertex (Lie) algebra, with the appropriate notation changes as in Theorem 3.14.

Proposition 3.18. In the situation of Definition 3.10, let α, β, γ ∈ K(A), and
ζ ∈ H̃ã(Mα), η ∈ H̃b̃(Mβ), θ ∈ H̃c̃(Mγ) for ã, b̃, c̃ ∈ Z. Then for all l ∈ Z and
all x, y, z with x+ y + z = 1 we have∑

m,n>0: m+n>l, 2(m+n)6
ã+b̃+c̃+2−χ(α+β+γ,α+β+γ)

(−1)c̃ã+m+n (m+n−l)!
m!n!

xm(x+y)n · tm+n−l � [[ζ, η]m, θ]n +

∑
m,n>0: m+n>l, 2(m+n)6
ã+b̃+c̃+2−χ(α+β+γ,α+β+γ)

(−1)ãb̃+m+n (m+n−l)!
m!n!

ym(y+z)n · tm+n−l � [[η, θ]m, ζ]n + (3.35)

∑
m,n>0: m+n>l, 2(m+n)6
ã+b̃+c̃+2−χ(α+β+γ,α+β+γ)

(−1)b̃c̃+m+n (m+n−l)!
m!n!

zm(z+x)n · tm+n−l � [[θ, ζ]m, η]n = 0.

Here we can interpret (3.35) as an equation in H̃ã+b̃+c̃(Mα+β+γ) which
holds for all x, y, z ∈ R with x+ y + z = 1. Alternatively we can take x, y, z to
be formal variables, and interpret (3.35) as an equation in

H̃ã+b̃+c̃(Mα+β+γ)⊗R
(
R(x, y, z)/(x+ y + z − 1)

)
,

where R(x, y, z) is the ring of polynomials in x, y, z over R, and (x+y+z−1) ⊂
R(x, y, z) is the ideal generated by x + y + z − 1. The analogue holds in the
triangulated category case, replacing K(A) by K(T ).

3.3 The ‘t = 0’ version

Here is the first version of our Lie algebra construction, which we call the ‘t = 0’
version, as it involves quotienting H∗(M) by the action of t in H∗([∗/Gm]) =
R[t], in effect setting t = 0. This is an example of a well known construction
for vertex algebras, given in Definition 2.11, applied to the vertex algebra of
Theorem 3.14. We give a geometric interpretation of H∗(M)t=0 as the homology
H∗(Mpl) of a stack Mpl in the ‘projective linear’ version of §3.4.

Definition 3.19. Let Assumption 2.30 hold for (co)homology theories Hi, H
i :

Ho(Artlft
K ) → R-mod of Artin K-stacks over an arbitrary commutative ring R.

Let Assumption 3.1 hold for the abelian category A, and use the notation of §2
and §3.1–§3.2.

Definition 3.7 makes H∗([∗/Gm]) = R[t] into a commutative R-algebra, with
multiplication ?. Write

It = 〈t, t2, t3, . . .〉R
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for the ideal in H∗([∗/Gm]) spanned over R by all positive powers of t. If R is
a Q-algebra then It is the ideal generated by t. For each α ∈ K(A), define

H∗(Mα)t=0 = H∗(Mα)/(It �H∗(Mα)), (3.36)

as a quotient graded R-module, where � is the H∗([∗/Gm])-action from Defini-
tion 3.9. Equivalently, we have

Ha(Mα)t=0 = Ha(Mα)/
(∑

16i6a/2 t
i �Ha−2i(Mα)

)
.

Similarly set H∗(M)t=0 = H∗(M)/(It �H∗(M)), so that as in (3.19) we have

H∗(M)t=0 ∼=
⊕

α∈K(A)H∗(Mα)t=0. (3.37)

We will write Π : H∗(Mα)→ H∗(Mα)t=0 and Π : H∗(M)→ H∗(M)t=0 for
the projections. We will say that an equation in H∗(Mα) ‘holds modulo It’ if it
holds up to addition of an element of It �H∗(Mα), that is, if the image under
Π of the equation holds in H∗(Mα)t=0.

Reducing equations (3.26)–(3.28) of Theorem 3.12 with n = 0 and p > 0
and (3.30) modulo It shows that for all α, β, γ ∈ K(A) and ζ ∈ H̃ã(Mα),
η ∈ H̃b̃(Mβ), θ ∈ H̃c̃(Mγ) with ã, b̃, c̃ ∈ Z, we have

[tp � ζ, η]0 = 0 mod It if p > 0, (3.38)

[ζ, tp � η]0 = 0 mod It if p > 0, (3.39)

[η, ζ]0 = (−1)1+ãb̃[ζ, η]0 mod It, (3.40)

[[ζ, η]0, θ]0 − [ζ, [η, θ]0]0 + (−1)ãb̃[η, [ζ, θ]0]0 = 0 mod It. (3.41)

For α, β ∈ K(A), define an R-bilinear map

[ , ]t=0 : Ha(Mα)t=0 ×Hb(Mβ)t=0 −→ Ha+b−2−2χ(α,β)(Mα+β)t=0

by
[
ζ + (It �H∗(Mα))a, η + (It �H∗(Mβ))b

]t=0

= Π([ζ, η]0) = [ζ, η]0 + (It �H∗(Mα+β))a+b−2−2χ(α,β),

(3.42)

where (It �H∗(Mα))a means the ath graded piece of It �H∗(Mα) ⊆ H∗(Mα).
Equations (3.38)–(3.39) imply that the last line of (3.42) is independent of the
choices of representatives ζ, η for the equivalence classes ζ+(It �H∗(Mα))a and
η + (It �H∗(Mβ))b, and so [ , ]t=0 is well defined.

As in (3.23), we define an alternative grading on H∗(Mα)t=0 by

H̃i(Mα)t=0 = Hi+2−χ(α,α)(Mα)t=0. (3.43)

Then as in (3.24), we see that [ , ]t=0 in (3.42) maps

[ , ]t=0 : H̃ã(Mα)t=0 × H̃b̃(Mβ)t=0 −→ H̃ã+b̃(Mα+β)t=0, (3.44)

where ã = a − 2 + χ(α, α) and b̃ = b − 2 + χ(β, β). Thus, [ , ]t=0 preserves
gradings on H̃∗(Mα), H̃∗(Mβ), H̃∗(Mα+β).
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Define [ , ]t=0 : H∗(M)t=0 × H∗(M)t=0 → H∗(M)t=0 to be the R-bilinear
map which is identified with [ , ]t=0 in (3.42) on each component Ha(Mα)t=0×
Hb(Mβ)t=0 under the canonical isomorphism (3.37).

Write H̃i(M)t=0 for i ∈ Z for the subspace of
⊕

j>0Hj(M)t=0 correspond-

ing to
⊕

α∈K(A) H̃i(Mα)t=0 =
⊕

α∈K(A)Hi+2−χ(α,α)(Mα)t=0 under the iso-

morphism (3.37), using the alternative gradings (3.43). Then H̃∗(M)t=0 is just
H∗(M)t=0 with a different grading, and (3.44) implies that [ , ]t=0 preserves the
grading on H̃∗(M)t=0.

We can also generalize the above to triangulated categories. Suppose instead
that Assumption 2.30 holds for (co)homology theories Hi, H

i : Ho(HStlft
K ) →

R-mod of higher Artin K-stacks over R, and Assumption 3.2 holds for the
triangulated category T . We replace K(A) by K(T ) throughout, but otherwise
the definition of [ , ]t=0 on H̃∗(M)t=0 works without change.

The next important theorem follows immediately from (3.40)–(3.41), which
came from (3.28)–(3.29) in Theorem 3.12. Equation (3.45) is graded antisym-
metry for the graded Lie bracket [ , ]t=0, and (3.46) is the graded Jacobi identity.

Theorem 3.20. In Definition 3.19, if ζ ∈ H̃ã(M)t=0, η ∈ H̃b̃(M)t=0 and
θ ∈ H̃c̃(M)t=0 then

[η, ζ]t=0 = (−1)ãb̃+1[ζ, η]t=0, (3.45)

[[ζ, η]t=0, θ]t=0 − [ζ, [η, θ]t=0]t=0 + (−1)ãb̃[η, [ζ, θ]t=0]t=0 = 0, (3.46)

in both the abelian category and triangulated category cases. That is, [ , ]t=0 is a
graded (super) Lie bracket on H̃∗(M)t=0, making H̃∗(M)t=0 into a graded
Lie algebra (sometimes called a graded Lie superalgebra).

Hence
(
H̃0(M)t=0, [ , ]t=0

)
is an ordinary Lie algebra over R.

Remark 3.21. (a) As in Remark 3.13(a), we can replaceM byM′ =M\{[0]}
throughout §3.3, and so define a graded Lie bracket [ , ]t=0 on H̃∗(M′)t=0.

(b) Observe that by (3.43) we have

H̃0(M)t=0 =
⊕

α∈K(A):χ(α,α)62H2−χ(α,α)(Mα)t=0.

If K(A) is of finite rank and χ( , ) is positive definite, there will be only finitely
many classes α ∈ K(A) with χ(α, α) 6 2, so the Lie algebra H̃0(M)t=0 may be
finite-dimensional. This happens for representations of ADE quivers.

3.4 The ‘projective linear’ version

The ‘t = 0’ version in §3.3 has the disadvantage that H∗(M)t=0 is not presented
as the homology of an interesting space, but as a quotient of the homology
H∗(M). The ‘projective linear’ version of our construction remedies this, by
interpreting H∗(M′)t=0 as the homology H∗(Mpl) of a modified versionMpl of
the moduli stack M′ of nonzero objects in A or T . We must assume the coef-
ficient ring R is a Q-algebra to prove the isomorphism H∗(M′)t=0 ∼= H∗(Mpl).
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Definition 3.22. Let Assumption 3.1 hold for the abelian category A. Then
Assumption 3.1(h) says that Ψ′ = Ψ|[∗/Gm]×M′ : [∗/Gm] ×M′ →M′ is a free

[∗/Gm]-action onM′ =M\{[0]}, as in Definition 2.23. Write Πpl :M′ →Mpl

for the principal [∗/Gm]-bundle with [∗/Gm]-action Ψ′ given by Proposition
2.25(a). Then Mpl is an Artin K-stack, locally of finite type.

We regard Mpl as the moduli stack of all nonzero objects in A ‘up to pro-
jective linear isomorphisms’. Since Πpl :M′ →Mpl is a [∗/Gm]-bundle it is an
isomorphism on K-points. Thus, K-points x ∈Mpl(K) correspond naturally to
isomorphism classes [E] of nonzero objects E ∈ A, as for M′(K), and we will
write points of Mpl(K) as [E], and then Πpl(K) maps [E] 7→ [E].

The isotropy groups of Mpl satisfy IsoMpl([E]) ∼= IsoM′([E])/Gm, where
the Gm-subgroup of IsoM′([E]) is determined by the action of Ψ′ on isotropy
groups. Thus by Assumption 3.1(e),(h) we see that

IsoMpl([E]) ∼= Aut(E)/(Gm · idE). (3.47)

The action of Πpl on isotropy groups is given by the commutative diagram

IsoM′([E])
Πpl
∗

//

∼=��

IsoMpl([E])

∼=(3.47)
��

Aut(E)
ε 7−→ εGm // Aut(E)/(Gm · idE).

In Assumption 3.1(e) we explained that if S is a K-scheme, a stack morphism
e : S → M should be heuristically interpreted as a ‘family of objects E in
A over the base K-scheme S’. But for an Artin K-stack X, Hom(S,X) is
a groupoid, with objects 1-morphisms e, f : S → X and (iso)morphisms 2-
morphisms λ : f ⇒ g. Thus, to fully describe X we should specify both objects
and morphisms in Hom(S,X). For M′,Mpl we have:

(i) Objects of Hom(S,M′) (that is, 1-morphisms e : S →M′) correspond to
‘families of nonzero objects E in A over the base K-scheme S’. Morphisms
of Hom(S,M′) (that is, 2-morphisms λ : e ⇒ f of 1-morphisms e, f :
S →M′) correspond to isomorphisms Λ : E → F of such families.

(ii) Objects of Hom(S,Mpl) correspond to ‘families of nonzero objects E
in A over the base K-scheme S’, as for Hom(S,M′). But morphisms
of Hom(S,Mpl) correspond to equivalence classes [L,Λ] of pairs (L,Λ),
where L → S is a line bundle and Λ : E → π∗S(L)⊗ F is an isomorphism
of families. Two such pairs (L,Λ), (L′,Λ′) are equivalent if there exists an
isomorphism of line bundles ι : L→ L′ with Λ′ = (π∗S(ι)⊗ idF ) ◦ Λ.

We use ‘projective linear’, and ‘up to projective linear isomorphisms’, to mean
the use of isomorphisms up to Gm rescalings as in (3.47), or up to tensor prod-
uct with a line bundle as in (ii). For example, if IsoM′(E) ∼= GL(n,K) then
IsoMpl(E) ∼= PGL(n,K) is the corresponding projective linear group by (3.47).

As in Assumption 3.1(f), for α ∈ K(A) write Mpl
α ⊂ M

pl for the open
and closed K-substack of points [E] ∈ Mpl(K) with JEK = α in K(A). Then
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Mpl =
∐
α∈K(A)M

pl
α , and we write Πpl

α = Πpl|M′α :M′α →M
pl
α , for M′α as in

Assumption 3.1(f).
Since Πpl and Πpl

α are principal [∗/Gm]-bundles, as in (2.23) and Proposition
2.25(a), we have a diagram which is commutative Ho(Artlft

K ), and 2-Cartesian
and 2-co-Cartesian in Artlft

K :

[∗/Gm]×M′α Ψ′α

//

πM′α��

M′α
Πpl
α ��

M′α
Πpl
α //Mpl

α .

(3.48)

Now suppose also that Assumption 2.30 holds for a homology theory H∗(−)
of Artin K-stacks over a commutative ring R, and use the notation of §3.3. Then
for α ∈ K(A) and a = 0, 1, . . . we can consider the sequence

0 // (It �H∗(M′α))a
� � inc // Ha(M′α)

Ha(Πpl
α ) // Ha(Mpl

α ) // 0. (3.49)

If p > 0 and ζ ∈ Ha−2p(M′α) then

Ha(Πpl
α )(tp�ζ)=Ha(Πpl

α )◦Ha(Ψ′α)(tp�ζ)=Ha(Πpl
α )◦Ha(πM′α)(tp�ζ) = 0,

using (3.17) in the first step, commutativity of (3.48) in Ho(Artlft
K ) and functo-

riality of Ha(−) in the second, and Ha(πM′α)(tp� ζ) = 0 for p > 0 in the third.

Hence Ha(Πpl
α ) ◦ inc = 0 in (3.49), that is, (3.49) is a complex of R-modules.

The analogue of (3.49) with M′,Mpl in place of M′α,M
pl
α is also a complex.

Thus by (3.36) there are unique R-module morphisms

Πpl
t=0 : H∗(M′α)t=0 −→ H∗(Mpl

α ), Πpl
t=0 : H∗(M′)t=0 −→ H∗(Mpl), (3.50)

such that Πpl
t=0 ◦Π = H∗(Π

pl
α ) or Πpl

t=0 ◦Π = H∗(Π
pl). These are isomorphisms

if and only if (3.49) and its analogue for M′ are exact.
We can also extend all the above to triangulated categories, supposing As-

sumption 3.2 instead of Assumption 3.1 and replacing A,K(A) by T ,K(T )
throughout, and taking M,Mpl to be higher K-stacks.

Remark 3.23. We chose to defineMpl as a [∗/Gm]-quotient ofM′ =M\{[0]},
deleting the point [0] in M, as the [∗/Gm]-action Ψ on M is not free over [0],
and we needed a free [∗/Gm]-action to apply Proposition 2.25(a). This seems
to be the most natural thing to do in the abelian category version.

Now for higher stacks, Proposition 2.25(b) gives [∗/Gm]-quotients for non-
free [∗/Gm]-actions. Thus in the triangulated category version, we could instead
define Mpl = M/[∗/Gm] as a higher stack. But as in Proposition 3.6(b), this
would not change the homology H∗(Mpl), so it makes little difference to us.

The next proposition is proved in §4.4. Part (a) gives a sufficient condition
for H∗(M′α)t=0 to be isomorphic to H∗(Mpl

α ), at least when R is a Q-algebra.
Parts (b),(c) show that this condition often holds automatically.
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Proposition 3.24. (a) Let Assumptions 2.30 and 2.31 hold for (co)homology
theories H∗(−), H∗(−) over a Q-algebra R, and Assumption 3.1 hold for the
abelian category A. Suppose that for some α ∈ K(A), the principal [∗/Gm]-
bundle Πpl

α :M′α →M
pl
α in Definition 3.22 is rationally trivial, as in Definition

2.26. Then Πpl
t=0 : H∗(M′α)t=0 → H∗(Mpl

α ) in (3.50) is an isomorphism.

(b) Suppose the field K is algebraically closed, 0 6= α ∈ K(A), and there exists
0 6= β ∈ K(A) such that χ(α, β) 6= 0 and Mβ 6= ∅. Then Πpl

α :M′α →M
pl
α is

rationally trivial.

(c) Suppose K is algebraically closed, K(A) is a free abelian group, χ : K(A)×
K(A) → Z is nondegenerate, and M0(K) = {[0]}. Then Πpl : M′ → Mpl is
rationally trivial. Hence, if Assumptions 2.30 and 2.31 hold over a Q-algebra
R, then Πpl

t=0 : H∗(M′)t=0 −→ H∗(Mpl) in (3.50) is an isomorphism by (a).

Parts (a),(b) extend to the triangulated category case in the obvious way.

Remark 3.25. Proposition 3.24(c) does not work in the triangulated category
case. If Assumption 3.2 holds for the triangulated category T , and E• is any
object in T , then [E• ⊕ E•[1]] lies in M0(K), so we never have M0(K) = {[0]}
unless T = 0. The author expects the principal [∗/Gm]-bundle Πpl

0 :M′0 →M
pl
0

not to be rationally trivial, and Πpl
t=0 : Hk(M′0)t=0 → Hk(Mpl

0 ) not to be an
isomorphism for k > 3, in almost all interesting triangulated category examples,
and we illustrate this when k = 3 in Example 5.23 with T = Db VectC. But
Πpl
t=0 is an isomorphism for K = C when k = 0, 1, 2 by the next result.

The next proposition will be proved in §4.5, using the Leray–Serre spectral
sequence for the homology of fibrations.

Proposition 3.26. Work over the field K = C, with the (co)homology theories
of (higher) Artin C-stacks described in Example 2.35, over any commutative

ring R. Then the morphism Πpl
t=0 : Hk(M′)t=0 → Hk(Mpl) in (3.50) is an

isomorphism when k = 0, 1 or 2, in both abelian and triangulated category cases.

Combining Propositions 3.24 and 3.26 yields:

Corollary 3.27. Work over the field K = C, with the (co)homology theo-
ries of (higher) Artin C-stacks described in Example 2.35, over a Q-algebra
R. Let Assumption 3.1 hold for A, or Assumption 3.2 hold for T . Then
Πpl
t=0 : H̃0(M′)t=0 −→ H̃0(Mpl) in (3.50) is an isomorphism.

Proof. Let α ∈ K(A) or K(T ). Divide into cases (a)Mα = ∅, (b)Mα 6= ∅ and

χ(α, α) 6= 0, and (c) Mα 6= ∅ and χ(α, α) = 0. Then Πpl
t=0 : H̃0(M′α)t=0 −→

H̃0(Mpl
α ) is an isomorphism in case (a) trivially, in case (b) by Proposition

3.24(b) with β = α, and in case (c) by Proposition 3.26 as H̃0(M′α)t=0 =
H2(M′α)t=0 and H̃0(Mpl) = H2(Mpl).

If we have an isomorphism Πpl
t=0 : H∗(M′)t=0 → H∗(Mpl) as in Proposition

3.24(c) (or just on H̃0(Mpl), as in Corollary 3.27), then there is a natural graded
Lie bracket [ , ]pl on H̃∗(Mpl) (or just on H̃0(Mpl)) identified with [ , ]t=0 on
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H̃∗(M′)t=0 in §3.3 by Πpl
t=0. Using the ‘projective Euler class’ in §2.5, we will

define a graded Lie bracket [ , ]pl on H̃∗(Mpl) in the general case.

Definition 3.28. Let Assumptions 2.30, 2.39 and 3.1 hold. For α, β ∈ K(A)
we have a free [∗/Gm]-action on M′α ×M

′
β , as in §2.3.7:(

(Ψ′α ◦Π[∗/Gm]×M′α), (Ψ′β ◦Π[∗/Gm]×M′β )
)

:

[∗/Gm]×M′α ×M
′
β −→M

′
α ×M

′
β ,

(3.51)

the diagonal action of the [∗/Gm]-actions Ψ′α on M′α and Ψ′β on M′β . As for

Mpl
α in Definition 3.22, write Πpl

α,β :M′α×M
′
β → (Mα×Mβ)pl for the principal

[∗/Gm]-bundle with [∗/Gm]-action (3.51) given by Proposition 2.25(a). Then
(Mα×Mβ)pl is an Artin K-stack, locally of finite type. The following commutes

in Ho(Artlft
K ), and is 2-Cartesian and 2-co-Cartesian in Artlft

K :

[∗/Gm]×M′α ×M
′
β

ΠM′α×M
′
β��

((Ψ′α◦Π[∗/Gm]×M′α
),(Ψ′β◦Π[∗/Gm]×M′

β
))

//M′α ×M
′
β

Πpl
α,β ��

M′α ×M
′
β

Πpl
α,β // (Mα ×Mβ)pl.

(3.52)

The morphism Πpl
α,β induces a bijection on K-points. We write elements of

(Mα ×Mβ)pl(K) as ([E], [F ]) for [E] ∈ M′α(K) and [F ] ∈ M′β(K), so that

Πpl
α,β(K) : ([E], [F ]) 7→ ([E], [F ]). As for (3.47), the isotropy groups are given by

Iso(Mα×Mβ)pl([E], [F ]) ∼=
(
Aut(E)×Aut(F )

)
/
(
Gm · (idE , idF )

)
.

By lifting the [∗/Gm]-actions to the 2-category Artlft
K as in Remark 2.24, and

using the 2-co-Cartesian property of (3.52), we can construct natural morphisms:

Π̌pl
α,β : (Mα×Mβ)pl−→Mpl

α ×M
pl
β , Φpl

α,β : (Mα ×Mβ)pl −→Mpl
α+β ,

Ψpl
α,β : [∗/Gm]× (Mα ×Mβ)pl −→ (Mα ×Mβ)pl, (3.53)

which are analogues of Πpl
α in Definition 3.22 and Φα,β ,Ψα in Assumption 3.1,

such that the following diagrams 2-commute in Artlft
K :

M′α ×M
′
βΠpl

α×Πpl
β

tt Πpl
α,β��

Φ′α,β

//M′α+β

Πpl
α+β ��

Mpl
α ×M

pl
β (Mα ×Mβ)pl

Φpl
α,β //

Π̌pl
α,βoo Mpl

α+β ,

[∗/Gm]×M′α ×M
′
β

id[∗/Gm]×Πpl
α,β��

Ψ′α×idM′
β

//M′α ×M
′
β

Πpl
α,β ��

[∗/Gm]× (Mα ×Mβ)pl
Ψpl
α,β // (Mα ×Mβ)pl,
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[∗/Gm]×M′α ×M
′
β

id[∗/Gm]×Πpl
α,β��

(ΠM′α
,Ψ′β◦(Υ−1◦Π[∗/Gm]×M′

β
))

//M′α ×M
′
β

Πpl
α,β ��

[∗/Gm]× (Mα ×Mβ)pl
Ψpl
α,β // (Mα ×Mβ)pl.

Here Υ−1 : [∗/Gm] → [∗/Gm] is induced by υ−1 : Gm → Gm mapping υ−1 :
λ 7→ λ−1.

The morphism Ψpl
α,β is a free [∗/Gm]-action on (Mα ×Mβ)pl, and makes

Π̌pl
α,β : (Mα × Mβ)pl → Mpl

α × M
pl
β into a principal [∗/Gm]-bundle. Here

Πpl
α × Πpl

β : M′α ×M
′
β → M

pl
α ×M

pl
β is a principal [∗/Gm]2-bundle, and we

have factorized it into two principal [∗/Gm]2-bundles Πpl
α,β : M′α × M

′
β →

(Mα ×Mβ)pl and Π̌pl
α,β : (Mα ×Mβ)pl →Mpl

α ×M
pl
β .

The perfect complex Θ•α,β |M′α×M′β on M′α ×M
′
β has a [∗/Gm]2-action of

multi-weight (1,−1) compatible with the [∗/Gm]2-action on M′α × M
′
β , by

Assumption 3.1(l). Hence Θ•α,β |M′α×M′β has weight 0 for the diagonal [∗/Gm]-

action (3.51), so as in §2.3.8 we have Θ•α,β |M′α×M′β
∼= (Πpl

α,β)∗(Θ̌•α,β) for a perfect

complex Θ̌•α,β on (Mα ×Mβ)pl, with rank Θ̌•α,β = rank Θ•α,β = χ(α, β). The

second [∗/Gm]-action on Θ•α,β |M′α×M′β descends to Θ̌•α,β , so Θ̌•α,β has a weight

one [∗/Gm]-action compatible with the [∗/Gm]-action Ψpl
α,β on (Mα ×Mβ)pl.

Since Π̌pl
α,β : (Mα×Mβ)pl →Mpl

α ×M
pl
β is a principal [∗/Gm]-bundle with

[∗/Gm]-action Ψpl
α,β , Assumption 2.39 now gives projective Euler class maps

PE([Θ̌•α,β ]) : Hk

(
Mpl

α ×M
pl
β

)
−→ Hk−2χ(α,β)−2

(
(Mα ×Mβ)pl

)
.

Define an R-bilinear map

[ , ]pl : Ha(Mpl
α )×Hb(Mpl

β ) −→ Ha+b−2χ(α,β)−2(Mpl
α+β) (3.54)

by, for all ζ ∈ Ha(Mpl
α ) and η ∈ Hb(Mpl

β ),

[ζ, η]pl = εα,β(−1)aχ(β,β) ·Ha+b−2χ(α,β)−2(Φpl
α,β) ◦ PE([Θ̌•α,β ])(ζ � η). (3.55)

As in (3.23) and (3.43), we define an alternative grading on H∗(Mpl
α ) by

H̃i(Mpl
α ) = Hi+2−χ(α,α)(Mpl

α ). (3.56)

Then as in (3.44), [ , ]pl in (3.54)–(3.55) maps

[ , ]pl : H̃ã(Mpl
α )× H̃b̃(Mpl

β ) −→ H̃ã+b̃(Mpl
α+β). (3.57)

Define [ , ]pl : H∗(Mpl) × H∗(Mpl) → H∗(M)pl to be the R-bilinear map
which is identified with [ , ]pl in (3.54)–(3.55) on each component Ha(Mpl

α ) ×
Hb(Mpl

β ) under the canonical isomorphism

H∗(Mpl) ∼=
⊕

α∈K(A)H∗(M
pl
α ), (3.58)
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induced by Mpl =
∐
α∈K(A)M

pl
α and (2.31), as in (3.19) and (3.37).

Write H̃i(Mpl) for i ∈ Z for the subspace of
⊕

j>0Hj(Mpl) corresponding

to
⊕

α∈K(A) H̃i(Mpl
α ) =

⊕
α∈K(A)Hi+2−χ(α,α)(Mpl

α ) under the isomorphism

(3.58). Then H̃∗(Mpl) is just H∗(Mpl) with a different grading, and (3.57)
implies that [ , ]pl preserves the grading on H̃∗(Mpl).

We can also generalize all the above to the triangulated category case, in a
straightforward way.

The next theorem will be proved in §4.6.

Theorem 3.29. Work in the situation of Definition 3.28.

(a) The R-bilinear bracket [ , ]pl in (3.54)–(3.55) is a graded Lie bracket on
H̃∗(Mpl), making H̃∗(Mpl) into a graded Lie algebra.

(b) The morphism Πpl
t=0 : H̃∗(M′)t=0 → H̃∗(Mpl) in (3.50) is a morphism of

graded Lie algebras over R, for
(
H̃∗(M′)t=0, [ , ]t=0

)
as in §3.3.

Remark 3.30. (a) As we will explain in §7, the ‘projective linear’ version has
important applications in areas involving virtual classes of moduli spaces.

In areas such as Mochizuki’s invariants counting coherent sheaves on surfaces
[115], or Donaldson–Thomas invariants counting coherent sheaves on Calabi–
Yau 3-folds or Fano 3-folds [81,146], given a suitable abelian categoryA, a stabil-
ity condition τ on A, and α ∈ K(A), one forms moduli schemesMst

α (τ),Mss
α (τ)

of τ -stable and τ -semistable objects E ∈ A with JEK = α.
Under good conditions,Mss

α (τ) is a proper K-scheme, andMst
α (τ) ⊆Mss

α (τ)
an open K-subscheme, and Mst

α (τ) has a natural perfect obstruction theory.
Thus, if Mst

α (τ) = Mss
α (τ) then Mst

α (τ) is proper with a perfect obstruction
theory, so by Behrend and Fantechi [15] it has a virtual class [Mst

α (τ)]virt in a
suitable homology theory H∗(Mst

α (τ)) (e.g. Chow homology A∗(Mst
α (τ))).

Any τ -stable object E ∈ A has Aut(E) = Gm. Thus in the ‘projective linear’
moduli stack Mpl

α , with isotropy groups Aut(E)/Gm, we have IsoMpl
α

([E]) =

{1}. Because of this, the K-scheme Mst
α (τ) should be an open K-substack of

Mpl
α . Hence [Mst

α (τ)]virt pushes forward to [Mst
α (τ)]virt in H∗(Mpl

α ). This does
not work for H∗(Mα). As in §7, we propose to use our Lie bracket [ , ]pl to
express relationships between virtual classes [Mst

α (τ)]virt in H∗(Mpl), including
a wall-crossing formula for change of stability condition τ .

(b) The shift 2−χ(α, α) in the grading H̃i(Mpl
α ) = Hi+2−χ(α,α)(Mpl

α ) in (3.23),
(3.43) and (3.56) may be understood as follows. We define χ(−,−) such that
the moduli stack Mpl

α has (real/homological) virtual dimension vdimMpl
α =

2 − χ(α, α), and therefore virtual classes [Mst
α (τ)]virt lie in H2−χ(α,α)(Mpl

α ) =

H̃0(Mpl
α ). Thus, as [ , ]pl maps H̃0(Mpl

α ) × H̃0(Mpl
β ) → H̃0(Mpl

α+β) we can

express relations between virtual classes on Mpl
α ,M

pl
β ,M

pl
α+β in terms of [ , ]pl.

3.5 The ‘positive rank’ version

The third version of our Lie algebra construction is called the ‘positive rank’
version. We will need an extra piece of data:
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Assumption 3.31. Let Assumption 3.1 hold. We should be given a group
morphism rk : K(A)→ Z that we will call the rank. Write Mrk>0 for the open
substack of M representing objects E ∈ A with rk(JEK) > 0, so that under the
decomposition M =

∐
α∈K(A)Mα we have Mrk>0 =

∐
α∈K(A):rkα>0Mα.

If instead Assumption 3.2 holds, we replace K(A) by K(T ), so we have a
group morphism rk : K(T )→ Z.

Definition 3.32. Suppose Assumption 2.30 holds for (co)homology theories
Hi, H

i : Ho(Artlft
K ) → R-mod of Artin K-stacks over a Q-algebra R, suppose

Assumptions 3.1 and 3.31 hold for the K-linear abelian category A, and use the
notation of §2 and §3.1–§3.2.

For α, β ∈ K(A) with rkα > 0 and rkβ > 0, define an R-bilinear map

[ , ]rk>0 : Ha(Mα)×Hb(Mβ) −→ Ha+b−2χ(α,β)−2(Mα+β)

by [ζ, η]rk>0 =
∑

n>0: 2n6a+b−2χ(α,β)−2

( − rkα

rk(α+ β)

)n
· tn � [ζ, η]n.

(3.59)

We need R to be a Q-algebra because of the rational factors in (3.59). Using
the alternative gradings H̃∗(Mα) of (3.23), this maps

[ , ]rk>0 : H̃ã(Mα)× H̃b̃(Mβ) −→ H̃ã+b̃(Mα+β). (3.60)

Define [ , ]rk>0 : H∗(Mrk>0) × H∗(Mrk>0) → H∗(Mrk>0) to be the R-
bilinear map which is identified with [ , ]rk>0 in (3.59) on each component
Ha(Mα)×Hb(Mβ) under the canonical isomorphism from (2.31)

H∗(Mrk>0) ∼=
⊕∞

a=0

⊕
α∈K(A):rkα>0Ha(Mα). (3.61)

Write H̃i(Mrk>0) for i ∈ Z for the subspace of
⊕

j>0Hj(Mrk>0) corre-

sponding to
⊕

α:rkα>0 H̃i(Mα) =
⊕

α:rkα>0Hi+2−χ(α,α)(Mα) under the iso-

morphism (3.61), using the alternative gradings (3.23). Then H̃i(Mrk>0) ∼=⊕
α:rkα>0 H̃i(Mα), so H̃∗(Mrk>0) is just H∗(Mrk>0) with a different grading,

and (3.60) implies that [ , ]rk>0 preserves the grading on H̃∗(Mrk>0).
We can also generalize all the above to the triangulated category case. Sup-

pose instead that Assumption 2.30 holds for (co)homology theories Hi, H
i :

Ho(HStlft
K ) → R-mod of higher Artin K-stacks over the Q-algebra R, and As-

sumptions 3.2 and 3.31 hold for the K-linear triangulated category T . We
replace K(A) by K(T ) throughout, but otherwise the definition of [ , ]rk>0 on
H̃∗(Mrk>0) works without change.

Here is the analogue of Theorems 3.20 and 3.29(a), proved in §4.7:

Theorem 3.33. In Definition 3.32, the R-bilinear bracket [ , ]rk>0 is a graded
Lie bracket on H̃∗(Mrk>0), making H̃∗(Mrk>0) into a graded Lie algebra.

Remark 3.34. (a) The Lie bracket [ , ]rk>0 in Definition 3.32 is defined only
on the homology H∗(Mrk>0) of the open substackMrk>0 ⊂M of objects with
positive rank, and it does depend on the function rk. We admit this seems
unnatural. Here are the two main examples of rank functions we have in mind:
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(i) Let X be a connected smooth projective K-scheme and A = coh(X) be
the abelian category of coherent sheaves on X, and K(A) = Knum(A) be
the numerical Grothendieck group of A, and rk : K(A) → Z map rk :
JEK 7→ rankE, so that if E is a vector bundle of rank n then rk(JEK) = n.

(ii) Let Q = (Q0, Q1, h, t) be a finite quiver, and A = mod-KQ, and K(A) =
ZQ0 be the lattice of dimension vectors d : Q0 → Z for Q, and rk :
K(A) → Z be the total dimension, so that rk(d) =

∑
v∈Q0

d(v). Note

that if E ∈ A is nonzero then rk(JEK) > 0, so Mrk>0 =M\ {[0]}.

In abelian category problems, restricting to positive rank may not matter
that much, e.g. in (ii) it only excludes the zero object. However, for triangulated
categories, as the shift functor [1] : T → T changes the sign of rk, the substack
Mrk>0 is less than half of M, so we lose a lot.

(b) The definition of ‘positive rank’ Lie algebra also makes sense for any graded
vertex algebra V∗ as in §2.2.1 with an additional grading V∗ =

⊕
α∈L V

α
∗ over an

abelian group L compatible with the vertex algebra structure, and a morphism
rk : L→ Z. But the author has not found this construction in the vertex algebra
literature. The same applies to the ‘mixed’ Lie algebra in §3.6.

The next proposition, proved in §4.8, gives an alternative expression for
[ , ]rk>0 in (3.59) which is more symmetric in Mα,Mβ .

Proposition 3.35. In the situation of Definition 3.32, for α, β ∈ K(A) with
rkα, rkβ > 0, define Xα,β : [∗/Gm] × [∗/Gm] ×Mα ×Mβ →Mα+β to be the
composition of morphisms of Artin K-stacks

[∗/Gm]×[∗/Gm]×Mα×Mβ

(Ψα◦(Π1×Π3))×
(Ψβ◦(Π2×Π4)) //Mα×Mβ

Φα,β //Mα+β . (3.62)

Here Πi is the projection to the ith factor of [∗/Gm]× [∗/Gm]×Mα×Mβ , and
Φα,β ,Ψα,Ψβ are as in Assumption 3.1(g),(h). Then [ , ]rk>0 in (3.59) satisfies

[ζ, η]rk>0 =
∑

i,p,q>0: 2i6a+b,
i=p+q+χ(α,β)+1

εα,β(−1)q+aχ(β,β) (rkβ)p(rkα)q

(rk(α+ β))p+q
·

Ha+b−2χ(α,β)−2(Xα,β)(
tp1 � t

q
2 �

[
(ζ � η) ∩ ci([Θ•α,β ])

])
.

(3.63)

Definition 3.36. Work in the situation of Definition 3.32. Consider the poly-
nomial algebra R[s] for a formal variable s of degree 2. For each α ∈ K(A) with
rkα > 0, define an R-bilinear map ♥ : R[s]×H∗(Mα)→ H∗(Mα) by

sn♥ζ = n!(rkα)−n · tn � ζ (3.64)

in Ha+2n(Mα) for all n > 0 and ζ ∈ Ha(Mα), where tn ∈ H2n([∗/Gm]) and
tn � ζ is defined in (3.17). Then ♥ is graded, and also graded as a R-bilinear

65



map ♥ : R[s]× H̃∗(Mα)→ H̃∗(Mα). We have

sm♥(sn♥ζ) = sn♥
(
n!(rkα)−n · tn � ζ

)
= m!n!(rkα)−m−n · tm � (tn � ζ)

= m!n!(rkα)−m−n · [tm ? tn] � ζ = m!n!(rkα)−m−n ·
[(
m+n
n

)
tm+n

]
� ζ

= (m+ n)!(rkα)−m−n · tm+n � ζ = sm+n♥ζ,

using (3.64) in the first, second and sixth steps, (3.18) in the third, and (3.15) in
the fourth. This implies that ♥makes H∗(Mα), and also H̃∗(Mα), into a graded
R[s]-module. We also write ♥ for the graded R[s]-action on H∗(Mrk>0) =
H̃∗(Mrk>0) which restricts to ♥ in (3.64) on each subspace H∗(Mα) in (3.61).

The next result, proved in §4.9, shows [ , ]rk>0 is R[s]-bilinear for the R[s]-
module action♥ on H̃∗(Mrk>0), so H̃∗(Mrk>0) is a graded Lie algebra over R[s].

Proposition 3.37. In Definition 3.36, if α, β ∈ K(A) with rkα, rkβ > 0, and
ζ ∈ Ha(Mα), η ∈ Hb(Mβ), and m,n > 0, we have

[sm♥ζ, sn♥η]rk>0 = sm+n♥[ζ, η]rk>0. (3.65)

We can relate the ‘positive rank’ and ‘t = 0’ Lie algebras by a morphism:

Definition 3.38. Suppose Assumption 2.30 holds for (co)homology theories
Hi, H

i : Ho(Artlft
K ) → R-mod of Artin K-stacks over a Q-algebra R, suppose

Assumptions 3.1 and 3.31 hold for the K-linear abelian category A, and use
the notation of §2 and §3.1–§3.3. Then Definition 3.19 and Theorem 3.20 give
a graded Lie bracket [ , ]t=0 on H̃∗(M)t=0, and Definition 3.32 and Theorem
3.33 give a graded Lie bracket [ , ]rk>0 on H̃∗(Mrk>0), depending on the rank
function rk : K(A)→ Z (note that [ , ]t=0 is independent of rk).

Define Πt=0
rk>0 : H̃∗(Mrk>0)→ H̃∗(M)t=0 by Πt=0

rk>0(ζ) = ζ+(t�H∗(M)). By
comparing (3.42) with (3.59), and noting that the n > 0 terms in (3.59) map to
zero in H̃∗(M)t=0, we see that Πt=0

rk>0 : H̃∗(Mrk>0)→ H̃∗(M)t=0 is an R-linear
morphism of graded Lie algebras.

From (3.64) we see that the kernel of Πt=0
rk>0 is s♥H̃∗(Mrk>0) ⊂ H̃∗(Mrk>0),

and the image of Πt=0
rk>0 is H̃∗(Mrk>0)t=0 ⊂ H̃∗(M)t=0.

If also Assumption 2.39 holds then §3.4 gives a graded Lie algebra (H̃∗(Mpl),

[ , ]pl) with a morphism Πpl
t=0 : H̃∗(M′) → H̃∗(Mpl), so we obtain a morphism

of graded Lie algebras Πpl
rk>0 = Πpl

t=0 ◦Πt=0
rk>0 : H̃∗(Mrk>0)→ H̃∗(Mpl).

The analogue also works in the triangulated category case.

3.6 The ‘mixed’ version

In the ‘positive rank’ version in §3.5 we restricted to the substack Mrk>0 ⊂M
ofMα with rkα > 0 because equation (3.59) is undefined if rk(α+ β) = 0, and
(3.64) is undefined if rkα = 0. The ‘mixed’ version combines the ‘t = 0’ and
‘positive rank’ versions, by defining H∗(Mα)mix to be H∗(Mα) if rkα 6= 0, and
R[s]⊗RH∗(Mα)t=0 if rkα = 0, so the construction works over the whole ofM.
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Definition 3.39. Suppose Assumption 2.30 holds for (co)homology theories
Hi, H

i : Ho(Artlft
K ) → R-mod of Artin K-stacks over a Q-algebra R, suppose

Assumptions 3.1 and 3.31 hold for the K-linear abelian category A, and use the
notation of §2 and §3.1–§3.5.

For each α ∈ K(A), define a graded R-module H∗(Mα)mix by

H∗(Mα)mix =

{
H∗(Mα), rkα 6= 0,

R[s]⊗R H∗(Mα)t=0, rkα = 0,

where s is a formal variable of degree 2, and H∗(Mα)t=0 is as in (3.36). That
is, Ha(Mα)mix =

⊕
06n6a/2〈sn〉R ⊗R Ha−2n(Mα)t=0 when rkα = 0.

Define an R-bilinear map ♥ : R[s]×H∗(Mα)mix → H∗(Mα)mix by (3.64) if
rkα 6= 0 and sm♥(sn ⊗ ζ̄) = sm+n ⊗ ζ̄ for all m,n > 0 and ζ̄ ∈ H∗(Mα)t=0 if
rkα = 0. By Definition 3.36, ♥ makes H∗(Mα)mix into a graded R[s]-module.

For all α, β ∈ K(A), define an R-bilinear map

[ , ]mix : Ha(Mα)mix ×Hb(Mβ)mix −→ Ha+b−2χ(α,β)−2(Mα+β)mix (3.66)

in cases, according to whether rkα, rkβ, rk(α+ β) are zero or nonzero, by:

(a) If rkα, rkβ, rk(α+β) are all nonzero then [ , ]mix equals [ , ]rk>0 in (3.59).

(b) If rkα = rkβ = rk(α+ β) = 0 then for all m,n > 0 and ζ̄ ∈ H∗(Mα)t=0,
η̄ ∈ H∗(Mβ)t=0 we have

[sm ⊗ ζ̄, sn ⊗ η̄]mix = sm+n ⊗ [ζ̄, η̄]t=0, (3.67)

where [ , ]t=0 is as in (3.42).

(c) If rkα = 0 and rkβ = rk(α+ β) 6= 0 then[
sm ⊗ (ζ + It �H∗(Mα)), η

]mix
= sm♥[ζ, η]0. (3.68)

Equation (3.26) implies that this is independent of the choice of represen-
tative ζ for ζ̄ = ζ + It �H∗(Mα) in H∗(Mα)t=0, so this is well defined.

(d) If rkβ = 0 and rkα = rk(α+ β) 6= 0 then[
ζ, sm ⊗ (η + It �H∗(Mβ))

]
mix = sm♥

( ∑
n>0: 2n6a+b−2χ(α,β)−2

(−1)ntn � [ζ, η]n

)
. (3.69)

To see that this is independent of the choice of representative η for η̄ =
η + It �H∗(Mβ) in H∗(Mβ)t=0, observe that for p > 0 we have∑
n>0: 2n6a+b−2χ(α,β)−2

(−1)ntn � [ζ, tp � η]n =
∑

k,n>0: k6p, 2(k+n)6a+b+2p−2χ(α,β)−2

(−1)n
(
n
p−k
)
· tn �

(
tk � [ζ, η]n+k−p

)
=

∑
k,n>0: k6p, 2(k+n)6a+b+2p−2χ(α,β)−2

(−1)n
(
n
p−k
)(
k+n
k

)
· tk+n � [ζ, η]n+k−p

=
∑

k,m>0: k6p, 2m6a+b+2p−2χ(α,β)−2

(−1)m+k
(
m
p

)(
p
k

)
· tm � [ζ, η]m−p = 0,
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using (3.27) in the first step, (3.15) and (3.18) in the second, changing
variables from n to m = k+n in the third, and

∑p
k=0(−1)k

(
p
k

)
= (1−1)p =

0 as p > 0 in the fourth. Thus (3.69) is well defined.

(e) If rkα = − rkβ 6= 0 and rk(α + β) = 0 then for all ζ ∈ H∗(Mα), η ∈
H∗(Mβ) we have

[ζ, η]mix =
∑
n>0:
2n6a+b−2χ(α,β)−2

(rkβ)n

n!
· sn ⊗

(
[ζ, η]n + It �H∗(M0)

)
, (3.70)

where [ , ]n is as in (3.22).

Define a graded R-module

H∗(M)mix =
⊕

α∈K(A)H∗(Mα)mix. (3.71)

Then ♥ above on each H∗(Mα)mix makes H∗(M)mix into a graded R[s]-module.
Define [ , ]mix : H∗(M)mix ×H∗(M)mix → H∗(M)mix to be the R-bilinear map
identified with [ , ]mix in (3.66) on each component H∗(Mα)mix×H∗(Mβ)mix in
(3.71). As in (3.23) and (3.43), define an alternative grading on H∗(Mα)mix by

H̃i(Mα)mix = Hi+2−χ(α,α)(Mα)mix.

Write H̃i(M)mix for i ∈ Z for the subspace of
⊕

j>0Hj(M)mix corresponding

to
⊕

α∈K(A) H̃i(Mα)mix =
⊕

α∈K(A)Hi+2−χ(α,α)(Mα)mix under (3.71). Then

H̃∗(M)mix is just H∗(M)mix with a different grading, and (3.66) implies that
[ , ]mix preserves the grading on H̃∗(M)mix.

We can also generalize all the above to the triangulated category case. Sup-
pose instead that Assumption 2.30 holds for (co)homology theories Hi, H

i :
Ho(HStlft

K ) → R-mod of higher Artin K-stacks over the Q-algebra R, and As-
sumptions 3.2 and 3.31 hold for the K-linear triangulated category T . We
replace K(A) by K(T ) throughout, but otherwise the definition of [ , ]mix on
H̃∗(M)mix works without change.

The next theorem will be proved in §4.10:

Theorem 3.40. In Definition 3.39, the R-bilinear bracket [ , ]mix is a graded
Lie bracket on H̃∗(M)mix, making H̃∗(M)mix into a graded Lie algebra.
Also, for α, β ∈ K(A), ζ ∈ H̃∗(Mα)mix, η ∈ H̃∗(Mβ)mix and m,n > 0 we have

[sm♥ζ, sn♥η]mix = sm+n♥[ζ, η]mix, (3.72)

so [ , ]mix is R[s]-bilinear, and H̃∗(M)mix is a graded Lie algebra over R[s].

Remark 3.41. (a) As in Remarks 3.13(a) and 3.21(a), we can replace M by
M′ =M\ {[0]} throughout §3.6.

(b) If we also suppose Assumption 2.31 for H∗(−) over a Q-algebra R, and that
if rkα = 0 then the principal [∗/Gm]-bundle Πpl

α : M′α → M
pl
α is rationally
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trivial, as in §2.3.7 (this often holds automatically, by Proposition 3.24(b),(c)),
then H∗(M′α)t=0 ∼= H∗(Mpl

α ) by Proposition 3.24(a), so when rkα = 0 we
could replace H∗(M′α)t=0 by H∗(Mpl

α ) in Definition 3.39, which would be more
natural. Also R[s]⊗R H∗(Mpl

α ) ∼= H∗([∗/Gm]×Mpl
α ). Thus we could write

Mmix =
(∐

α∈K(A):rkα=0[∗/Gm]×Mpl
α

)
q
(∐

α∈K(A):rkα6=0Mα

)
,

and then H∗(M′)mix ∼= H∗(Mmix), so that H∗(M′)mix is the homology of a
geometric space. Actually in the rationally trivial case we have isomorphisms
R[s]⊗R H∗(M′α)t=0 ∼= H∗(M′α), but these are not canonical.

(c) Equations (3.68) and (3.69) are based on (3.59) with rkα = 0, rkβ 6= 0,
and with rkα 6= 0, rkβ = 0, respectively. We can heuristically derive Definition
3.39(a)–(e) from (3.59) by allowing rk to map K(A)→ R rather than K(A)→
Z, and considering what happens as rkα→ 0, or rkβ → 0, or rk(α+ β)→ 0 in
R, as we vary the function rk for fixed α, β, and regard R[s]⊗R H∗(Mα)t=0 as
the associated graded module of the filtration

H∗(Mα) ⊃ t �H∗(Mα) ⊃ t2 �H∗(Mα) ⊃ t3 �H∗(Mα) ⊃ · · · .

We relate the ‘mixed’ Lie algebra to those of §3.3–§3.5 by morphisms:

Definition 3.42. Work in the situation of Definition 3.39. Define an R-linear
map Πmix

rk>0 : H̃∗(Mrk>0)→ H̃∗(M)mix to map Πmix
rk>0 : ζ 7→ ζ for all α ∈ K(A)

with rkα > 0 and ζ ∈ H̃∗(Mα).
Define an R-linear map Πt=0

mix : H̃∗(M)mix → H̃∗(M)t=0 by

Πt=0
mix(ζ) = ζ + It �H∗(Mα) ∀α ∈ K(A) with rkα 6= 0, ζ ∈ H∗(Mα),

Πt=0
mix(sn ⊗ ζ̄) =

{
ζ̄, n = 0

0, n > 0
∀α ∈ K(A) with rkα = 0, ζ̄ ∈ H∗(Mα)t=0.

Then Definition 3.39 implies that Πmix
rk>0 and Πt=0

mix are R-linear morphisms of
graded Lie algebras, and Πmix

rk>0 is R[s]-linear. Also Πt=0
mix ◦ Πmix

rk>0 = Πt=0
rk>0, for

Πt=0
rk>0 as in Definition 3.38. Here Πmix

rk>0 is injective, and Πt=0
mix is surjective, with

kernel s♥H̃∗(M)mix ⊂ H̃∗(M)mix.
If also Assumption 2.39 holds then §3.4 gives a graded Lie algebra (H̃∗(Mpl),

[ , ]pl) with a morphism Πpl
t=0 : H̃∗(M′) → H̃∗(Mpl), so we obtain a morphism

of graded Lie algebras Πpl
mix = Πpl

t=0 ◦Πt=0
mix : H̃∗(M′)mix → H̃∗(Mpl).

The analogue also works in the triangulated category case.

3.7 The ‘fixed determinant’ versions

Let X be a smooth projective K-scheme. Then each coherent sheaf E, or com-
plex E in Dbcoh(X), has a determinant detE, a line bundle on X. It is common
to consider moduli spacesM of sheaves with fixed determinant, that is, moduli
spaces of pairs (E, ι) for E a coherent sheaf and ι : L→ detE an isomorphism,
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for L → X a fixed line bundle. For example, Hilbert schemes of subschemes
of codimension at least 2 are moduli spaces of rank 1 torsion-free sheaves with
fixed determinant OX .

We will show that all the Lie algebra constructions of §3.3–§3.6 also work
for moduli stacks of objects with fixed determinant. The next assumption gives
a notion of determinant for our abelian category A. Example 3.45 explains how
it relates to determinants of coherent sheaves.

Assumption 3.43. Let Assumptions 3.1 and 3.31 hold for the abelian category
A. Then:

(a) We are given an Artin K-stack P locally of finite type, which we will call
the Picard stack. There is a canonical isomorphism IsoP(L) ∼= Gm for every
K-point L ∈ P(K).

(b) We are given a morphism det :M→ P in Ho(Artlft
K ), called the determi-

nant. Write detα = det |Mα :Mα → P.

(c) We are given a morphism Φ̂ : P × P → P in Ho(Artlft
K ). The following

diagram commutes in Ho(Artlft
K ) for all α, β ∈ K(A):

Mα ×Mβ
Φα,β

//

detα× detβ
��

Mα+β

detα+β
��

P × P Φ̂ // P.
(3.73)

(d) We are given a morphism Ψ̂ : [∗/Gm]×P→P in Ho(Artlft
K ). On K-points

L ∈ P(K) it acts by Ψ̂(K) : (∗, L) 7→ L, and on isotropy groups

Ψ̂∗ : Iso[∗/Gm]×P(∗, L) ∼= Gm ×Gm −→ IsoP(L) ∼= Gm
acts by Ψ̂∗ : (λ, µ) 7−→ λµ for λ, µ ∈ Gm.

The analogues of (3.6)–(3.7) hold for Φ̂, Ψ̂. Thus Ψ̂ is a [∗/Gm]-action on P in
the sense of Definition 2.23, so Ψ̂ is a [∗/Gm]-action on P. The action of Ψ̂ on
isotropy groups above implies that Ψ̂ is a free [∗/Gm]-action, as in (2.22). The
following commute in Ho(Artlft

K ) for all α ∈ K(A) and k, l ∈ Z:

[∗/Gm]×Mα
Ψα

//

Υrkα×detα��

Mα

detα ��
[∗/Gm]× P Ψ̂ // P,

(3.74)

[∗/Gm]× P × P
(Ψ̂◦(Υk◦Π1,Π2),Ψ̂◦(Υl◦Π1,Π3))

//

id[∗/Gm]×Φ̂
��

P × P
Φ̂ ��

[∗/Gm]× P
Ψ̂◦(Υk+l×idP) // P,

(3.75)

where Υk : [∗/Gm] → [∗/Gm] is the stack morphism induced by the group
morphism υk : Gm → Gm mapping υrkα : λ 7→ λk.

(e) We are given a K-point O ∈ P(K), which we think of as the identity mor-
phism O : ∗ → P, where ∗ = SpecK, and an inverse morphism ι̂ : P → P,
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which make P into an abelian group stack, with multiplication Φ̂ : P × P → P,
as in Definition 2.23.

(f) For each α ∈ K(A) we are given a K-point Lα ∈ P(K), with L0 = O,
such that Φ̂(K)(Lα, Lβ) = Lα+β and ι̂(K)(Lα) = L−α for all α, β ∈ K(A). We

regard Lα as a morphism Lα : ∗ → P in Ho(Artlft
K ), where ∗ = SpecK.

Here is the analogue for triangulated categories T :

Assumption 3.44. Assume the analogue of Assumption 3.43, but replace As-
sumption 3.1 by Assumption 3.2, and replace A,K(A) by T ,K(T ) throughout.
Then M is a higher stack, but we still suppose P is an ordinary Artin stack.

The next example motivates Assumption 3.43:

Example 3.45. Let X be a smooth, connected, projective K-scheme. Take
A = coh(X) and K(A) = Knum(A). Then:

• Let P be the moduli stack of line bundles L on X, which is an open
substack of M (we do not assume this in Assumption 3.43). Let det :
M→ P map a coherent sheaf E to its determinant line bundle detE.

• The morphism Φ̂ : P × P → P maps (L1, L2) 7→ L1 ⊗ L2, using tensor
product of line bundles. The morphism O : ∗ → P maps ∗ 7→ OX . The
morphism ι̂ : P → P maps L 7→ L∗, using dual line bundles. Then P is
an abelian group stack.

• The morphism Ψ̂ : [∗/Gm] × P → P is defined as for Ψ in Assumption
3.1(h), but restricting to P ⊂M.

• Take Lα = OX for all α ∈ K(A).

Then Assumption 3.43 holds.

Readers are advised to familiarize themselves with §2.3.2–§2.3.3 on Artin
stacks as a 2-category, substacks, and fibre products, before proceeding further.

Definition 3.46. Let Assumptions 3.1, 3.31 and 3.43 hold. Assumption 3.43(d)
says that Ψ̂ is a free [∗/Gm]-action on P. As for Mpl in Definition 3.22, write
Π̂pl : P → Ppl for the principal [∗/Gm]-bundle with [∗/Gm]-action Ψ̂ given by
Proposition 2.25(a). Then Ppl is an Artin K-stack, locally of finite type. As for
(3.48) the following is 2-Cartesian and 2-co-Cartesian in Artlft

K :

[∗/Gm]× P
Ψ̂

//

πP
��

P
Π̂pl

��
P Π̂pl

// Ppl.

(3.76)

Since Π̂pl is a bijection on K-points, we write L for both a point in P(K)
and for its image in Ppl(K), so Assumption 3.43(f) gives K-points Lα ∈ Ppl(K).
We have IsoPpl(L) = {1} for all L ∈ Ppl(K), so Ppl is an algebraic K-space. We
write O = Π̂pl(K)(O) ∈ Ppl(K).
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As for the morphisms (3.53) in Definition 3.28, using the 2-co-Cartesian
property of (3.76), we can construct natural morphisms

detpl :Mpl → Ppl, detpl
α =detpl |Mpl

α
:Mpl

α → P
pl, Φ̂pl : Ppl × Ppl → Ppl,

for α ∈ K(A), which are ‘projective linear’ versions of det,detα, Φ̂ in Assump-
tion 3.43, such that the following commute:

M′α det′α:=detα |M′α

//

Πpl
α��

P
Π̂pl

��
Mpl

α

detpl
α // Ppl,

(3.77)

P × P
Φ̂

//

Π̂pl×Π̂pl

��

P
Π̂pl

��
Ppl × Ppl Φ̂pl

// Ppl.

(3.78)

For each α ∈ K(A), define Artin K-stacks Mfd
α ,M

fpd
α ,Mpfd

α by the 2-
category fibre products in Artlft

K , in the sense of Definition 2.20:

Mfd
α =Mα ×detα,P,Lα ∗, Mfpd

α =Mα ×Π̂pl◦detα,Ppl,Lα
∗,

and Mpfd
α =Mpl

α ×detpl
α ,Ppl,Lα

∗.
(3.79)

These are different moduli stacks of objects in class α in A with fixed determi-
nant Lα. Here ‘fd’, ‘fpd’, ‘pfd’ stand for ‘fixed determinant’, ‘fixed projective
determinant’, and ‘projective fixed determinant’, respectively. They fit into
2-Cartesian squares in Artlft

K , with 2-morphisms ηfd
α , η

fpd
α , ηpfd

α :

Mfd
α GO

ηfd
α

π
//

πMα��

∗
Lα ��

Mα
detα // P,

Mfpd
α GO

ηfpd
α

π
//

πMα
��

∗
Lα ��

Mα
Π̂pl◦detα // Ppl,

Mpfd
α GO

ηpfd
α

π
//

π
Mpl
α��

∗
Lα ��

Mpl
α

detpl
α // Ppl.

(3.80)

When α = 0 we have K-points [0] = [(0, ∗)] in Mfd
0 (K), Mfpd

0 (K), and we write

M′fd0 =Mfd
0 \ [0], M′fpd

0 =Mfpd
0 \ [0], as in Assumption 3.1(e). For α 6= 0 we

write M′fdα =Mfd
α and M′fpd

α =Mfpd
α .

As Ppl is an algebraic K-space by Assumption 3.43(h), Lα : ∗ → Ppl

is a closed immersion, so in the second and third squares in (3.80), πMα
:

Mfpd
α →Mα and πMpl

α
:Mpfd

α →Mpl
α are closed immersions. This means that

Mfpd
α ,Mpfd

α are equivalent to closed substacks of Mα,Mpl
α , where substacks

are defined in Definition 2.19, as subcategories. Since (3.79) only determines
Mfpd

α ,Mpfd
α up to equivalence anyway, we choose Mfpd

α ,Mpfd
α to be substacks
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of Mα,Mpl
α , and πMα , πMpl

α
to be the inclusion morphisms. This determines

Mfpd
α ,Mpfd

α and πMα , πMpl
α

uniquely.
The universal property of 2-category fibre products in Definition 2.20 and

(3.79) gives natural morphisms

Πfpd
α,fd :Mfd

α −→M
fpd
α , Π′fpd

α,fd = Πfpd
α,fd|M′fdα :M′fdα −→M

′fpd
α ,

Πpfd
α,fd :M′fdα −→M

pfd
α , Πpfd

α,fpd :M′fpd
α −→Mpfd

α ,
(3.81)

with Πpfd
α,fd = Πpfd

α,fpd ◦Π′fpd
α,fd in Ho(Artlft

K ). For example, the 2-morphism idΠ̂pl ∗
ηfd
α : (Π̂pl ◦ detα) ◦ πMα

⇒ Lα ◦ π of 1-morphisms Mfd
α ⇒ P

pl and the uni-

versal property of Mfpd
α give a 1-morphism Πfpd

α,fd : Mfd
α → M

fpd
α with a 2-

isomorphism πMα ◦Πfpd
α,fd ⇒ πMα .

Properties of fibre products imply that we have a 2-Cartesian square

M′fpd
α GOπM′α

//

Πpfd
α,fpd��

M′α
Πpl
α ��

Mpfd
α

π
Mpl
α //Mpl

α .

(3.82)

Here Πpl
α : M′α → M

pl
α is a principal [∗/Gm]-fibration by Definition 3.22, so

Πpfd
α,fpd :M′fpd

α →Mpfd
α is also a principal [∗/Gm]-fibration.

Define Artin stacks Mfd,Mfpd,Mpfd,Mfd
rk>0,M

fpd
rk>0,M

pfd
rk>0 by

Mfd =
∐
α∈K(A)

Mfd
α , Mfpd =

∐
α∈K(A)

Mfpd
α , Mpfd =

∐
α∈K(A)

Mpfd
α ,

Mfd
rk>0 =

∐
α∈K(A):
rkα>0

Mfd
α , Mfpd

rk>0 =
∐
α∈K(A):
rkα>0

Mfpd
α , Mpfd

rk>0 =
∐
α∈K(A):
rkα>0

Mpfd
α ,

and set M′fd =Mfd \ {[0]}, M′fpd =Mfpd \ {[0]}. Then Mfpd,M′fpd,Mfpd
rk>0

are substacks of M, and Mpfd,Mpfd
rk>0 are substacks of Mpl. We write Πfpd

fd ,

Πpfd
fd ,Πpfd

fpd,Π
fpd
rk>0,fd,Π

pfd
rk>0,fd,Π

pfd
rk>0,fpd for the morphisms between these induced

by the morphisms (3.81).
We can also generalize all the above to the triangulated category case. We

replace Assumption 3.43 by Assumption 3.44, and A,K(A) by T ,K(T ), and
the 2-category Artlft

K by the ∞-category HStlft
K , so that (3.79)–(3.80) are ∞-

category fibre products. In fact we do not need any ∞-category techniques,
we can treat HStlft

K as a 2-category (i.e. work in the 2-category truncation of
HStlft

K ), as the arguments above and in the proof of Theorem 3.47 involve 2-
morphisms, but no n-morphisms for n > 2.

The next theorem will be proved in §4.11:

Theorem 3.47. Work in the situation of Definition 3.46. Then:
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(a) For all α, β ∈ K(A), the morphism Φα,β : Mα ×Mβ → Mα+β in As-

sumption 3.1(g) maps the substack Mfpd
α ×Mfpd

β ⊂Mα ×Mβ to the substack

Mfpd
α+β ⊂Mα+β , and so restricts to a unique morphism in Ho(Artlft

K ) :

Φfpd
α,β := Φα,β |Mfpd

α ×Mfpd
β

:Mfpd
α ×Mfpd

β −→Mfpd
α+β . (3.83)

Similarly, the morphism Ψα in Assumption 3.1(h) restricts to

Ψfpd
α := Ψα|[∗/Gm]×Mfpd

α
: [∗/Gm]×Mfpd

α −→Mfpd
α . (3.84)

Note that these Φfpd
α,β ,Ψ

fpd
α satisfy the analogues of (3.4)–(3.7), by restriction.

Thus Ψfpd
α is a [∗/Gm]-action on Mfpd

α , which is free on M′fpd
α ⊆ Mfpd

α . Also

Πpfd
α,fpd :M′fpd

α →Mpfd
α is a principal [∗/Gm]-bundle, with [∗/Gm]-action

Ψ′fpd
α = Ψfpd

α |[∗/Gm]×M′fpd
α

: [∗/Gm]×M′fpd
α −→M′fpd

α .

(b) Suppose the field K is algebraically closed, and let α ∈ K(A) with rkα 6= 0.

Then Πpfd
α,fd :Mfd

α =M′fdα −→M
pfd
α in (3.81) is locally trivial with fibre [∗/Zn]

for n = | rkα|. Hence, if H∗(−) is a homology theory over a Q-algebra R

satisfying Assumptions 2.30–2.31 then Assumption 2.31(a) shows H∗(Π
pfd
α,fd) :

H∗(Mfd
α )→ H∗(Mpfd

α ) is an isomorphism. Thus H∗(Π
pfd
rk>0,fd) : H∗(Mfd

rk>0)→
H∗(Mpfd

rk>0) is also an isomorphism.

(c) Suppose that for some α ∈ K(A), in morphisms in Ho(Artlft
K ) we have

detpl
α = Lα ◦ π :Mpl

α −→ P
pl, (3.85)

where π :Mpl
α → ∗ is the projection. Then Mfpd

α =Mα and Mpfd
α =Mpl

α .

The generalizations of (a)–(c) to the triangulated category case also hold.

Definition 3.48. In all of §3.2–§3.6, we can make the following substitutions:

• In Assumption 3.1 we replace M,M′,Mα,M′α,Φα,β ,Ψα,Θ
•
α,β by Mfpd,

M′fpd,Mfpd
α ,M′fpd

α ,Φfpd
α,β ,Ψ

fpd
α ,Θ•α,β |Mfpd

α ×Mfpd
β

, respectively.

• In Definition 3.22 we replace Mpl,Mpl
α ,Π

pl
α by Mpfd,Mpfd

α ,Πpfd
α,fpd.

Then Definition 3.46 and Theorem 3.47(a) imply that all the properties of
M,M′, . . . ,Πpl

α used in §3.2–§3.6 and the proofs in §4.1–§4.10 also hold for

Mfpd,M′fpd, . . . ,Πpfd
α,fpd. Thus, the constructions of graded Lie algebras in §3.3–

§3.6 work with these substitutions. Therefore:

(i) Let Assumption 2.30 hold over a commutative ring R, and Assumptions
3.1 and 3.43 hold. Then as in §3.3, we can define a ‘t = 0’ graded Lie alge-
bra

(
H̃∗(Mfpd)t=0, [ , ]t=0

)
on H̃∗(Mfpd)t=0 = H̃∗(Mfpd)/It � H̃∗(Mfpd).

(ii) Let Assumptions 2.30, 2.39, 3.1 and 3.43 hold. Then as in §3.4, we can
define a ‘projective linear’ graded Lie algebra

(
H̃∗(Mpfd), [ , ]pfd

)
.
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(iii) Let Assumption 2.30 hold over a Q-algebra R, and Assumptions 3.1, 3.31
and 3.43 hold. Then following §3.5 we can define a ‘positive rank’ graded
Lie algebra

(
H̃∗(Mfpd

rk>0), [ , ]fpd
rk>0

)
.

(iv) Let Assumption 2.30 hold for a Q-algebra R, and Assumptions 3.1, 3.31
and 3.43 hold. Then as in §3.6 we can define a ‘mixed’ graded Lie al-
gebra

(
H̃∗(Mfpd)mix, [ , ]mix

)
combining (i)–(iii), where H̃∗(Mfpd)mix is

the direct sum over α ∈ K(A) of H̃∗(Mfpd
α ) for rkα 6= 0 and R[s] ⊗R

H̃∗(Mfpd
α )t=0 (or R[s]⊗R H̃∗(Mpfd

α ) in case (ii)) for rkα = 0.

There are natural morphisms between these Lie algebras as in Definitions 3.38
and 3.42. The analogue of all the above holds in the triangulated category case.

Remark 3.49. (a) In examples we may be more interested in the fixed deter-
minant moduli stack Mfd than in Mfpd,Mpfd. Theorem 3.47(b) allows us to
identify the graded Lie algebra

(
H̃∗(Mpfd), [ , ]pfd

)
in Definition 3.48(ii) with

H̃∗(Mfd), at least on the rk 6= 0 part.

(b) Here is an interesting class of examples in which (3.85) holds. Work in
the situation of Example 3.45 with K = C. If E ∈ coh(X) with JEK = α in
Knum(coh(X)), then rankE ∈ N and ci([E]) ∈ H2i(X,Q) depend only on α.
Choose α ∈ K(A) with rankα = 0 and c1(α) = 0. Then for every [E] ∈Mα(K)
we have rankE = c1([E]) = 0, so E is supported in codimension > 2 in X, and
thus detE = OX . Hence detpl

α ◦Πpl
α :Mα → Ppl factors through O : ∗ → Ppl.

Theorem 3.47(c) will identify sectors of the ‘fixed determinant’ Lie algebras
H∗(Mfpd)t=0, . . . ,H∗(Mfpd)mix in Definition 3.48 with the corresponding sec-
tors of H∗(M)t=0, . . . ,H∗(M)mix in §3.3–§3.6, and so helps us compute them.

3.8 Variations on the constructions

Here are some variations on the constructions of §3.3–§3.7.

3.8.1 Restricting to a substack

In §3.1–§3.7, we suppose we have a moduli stack M of objects in an abelian
category A or triangulated category T , and we define vertex algebras and Lie
brackets on (some modification of) the homology H∗(M).

Suppose we are given a substack N ⊂ M (e.g. an open substack), also a
(higher) Artin K-stack locally of finite type, which could for example be the
moduli stack of objects in a subcategory B ⊂ A or U ⊂ T . Let N satisfy:

(i) If [E], [F ] ∈ N (K) ⊂ M(K) for E,F ∈ A then [E ⊕ F ] ∈ N (K). The
morphism Φ : M×M → M in Assumption 3.1(g), when restricted to
N ×N , factors through the inclusion N ↪→M, so we have a stack mor-
phism Φ|N×N : N ×N → N .

(ii) If [E] ∈ N (K) ⊂ M(K), so that IsoN ([E]) ⊂ IsoM([E]) ∼= Aut(E), then
the subgroup Gm · idE ⊆ IsoM([E]) lies in IsoN ([E]) ⊂ IsoM([E]). The
morphism Ψ : [∗/Gm] ×M → M in Assumption 3.1(h), when restricted
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to [∗/Gm]×N , factors through the inclusion N ↪→M, so we have a stack
morphism Ψ|[∗/Gm]×N : [∗/Gm]×N → N .

Then in all of §3.1–§3.7 we can replaceM by N , and define a graded vertex
algebra structure on Ȟ∗(N ), and graded Lie brackets on H̃∗(N )t=0, H̃∗(N pl),
H̃∗(N rk>0), . . . under appropriate assumptions. The inclusion ι : N ↪→ M
induces vertex algebra and Lie algebra morphisms H∗(ι) : H∗(N )→ H∗(M).

Example 3.50. (a) As in Remarks 3.13(a) and 3.21(a) we can take N =M′ =
M\ {[0]}, and this is natural for the ‘projective linear’ version of §3.4.

(b) The ‘fixed determinant’ versions of §3.7 are an example of this construction,
with N =Mfpd and N pl =Mpfd.

(c) If A = coh(X) is the category of coherent sheaves on a projective K-scheme
X, we could take N ⊂M to be the open substack of vector bundles on X.

(d) Given a stability condition τ on A, such as slope stability or Gieseker
stability, we could take N ⊂M to be the open substack of τ -semistable objects
E in A with fixed ‘slope’ τ(E) = s.

3.8.2 Restricting to the fixed points of a group

In the situation of §3.1–§3.7, suppose G is a group which acts on A or T , and so
acts on K(A) or K(T ) andM preserving all the structures. Then we can form
the substack N = MG of M fixed by G, and then work with N and H∗(N )
instead of M and H∗(M), as in §3.8.1.

Alternatively, we can consider the action of G on the homology H∗(M)
(here we are thinking mostly of G finite or discrete, such as G = Z) and take
the G-invariant subspace H∗(M)G in H∗(M). Then Ȟ∗(M)G is closed under
operations tn � −, [ , ]n and contains 1, so it is a graded vertex subalgebra of
Ȟ∗(M) in §3.2, and similarly we get graded Lie subalgebras (H̃∗(M)G)t=0, . . .
of the graded Lie algebras H̃∗(M)t=0, . . . in §3.2–§3.7.

Example 3.51. (a) The classification of finite-dimensional simple Lie algebras
by Dynkin diagrams [66] is divided into the ‘simply-laced’ cases An, Dn, E6, E7,
E8 and the ‘non-simply-laced’ cases Bn, Cn, F4, G2. As in Lusztig [106, §12],
the non-simply-laced diagrams may be obtained by quotienting simply-laced
diagrams by finite automorphism groups G.

We explain in §5 how to obtain the simply-laced simple Lie algebras g
as ‘t = 0’ Lie algebras H̃0(M)t=0 from T = Db mod-CQ for Q a quiver
whose underlying graph is the corresponding Dynkin diagram. The non-simply-
laced Lie algebras may be constructed as G-invariant ‘t = 0’ Lie subalgebras
(H̃0(M)G)t=0 from T = Db mod-CQ for Q a corresponding simply-laced quiver
with automorphism group G. See Savage [140] for a similar result for quiver
Ringel–Hall algebras and quantum groups.

(b) Let X be a smooth projective K-scheme and L → X a line bundle (such
as the canonical bundle KX). Take A = coh(X) or T = Dbcoh(X). Define an
action of G = Z on A or T by n : E 7→ E ⊗ Ln for n ∈ Z and E ∈ A, T . This
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induces an action of Z onM and on H∗(M), so we can consider the Z-invariant
substackMZ ⊂M, and the Z-invariant subspace H∗(M)Z ⊆ H∗(M). In §3.8.3
we will explain a construction that involves MZ or H∗(M)Z for L = KX .

3.8.3 Relaxing σ∗α,β(Θ•β,α) ∼= (Θ•α,β)∨[2n] in Assumption 3.1(j)

In Remark 3.3 we explained two methods (A),(B) for defining the data Θ•α,β
in Assumption 3.1(i). In the ‘even Calabi–Yau’ method (A), when we take
Θ•α,β = (Ext•α,β)∨, the category A or T must satisfy a 2n-Calabi–Yau condition
for σ∗α,β(Θ•β,α) ∼= (Θ•α,β)∨[2n], equation (3.8) in Assumption 3.1(j), to hold.

As most interesting categories A, T are not 2n-Calabi–Yau, this means there
is a very large supply of natural examples of data A,K(A), . . . ,Θ•α,β satisfying
all of Assumption 3.1 except part (j). So if we can find ways to weaken the con-
dition σ∗α,β(Θ•β,α) ∼= (Θ•α,β)∨[2n], such that our vertex algebra and Lie algebra
constructions still work, we may much increase the supply of examples.

In §3.1–§3.7, equation (3.8) is only used to prove (3.28)–(3.29), and for these
it is enough to replace (3.8) by its consequence in H2i(Mα ×Mβ):

H2i(σβ,α)(ci([Θ
•
α,β ])) = (−1)ici([Θ

•
β,α]), i = 1, 2, . . . . (3.86)

In examples this may hold under numerical conditions on the data used to
build A, without having to construct an isomorphism σ∗α,β(Θ•β,α) ∼= (Θ•α,β)∨[2n].

For instance, for the quiver representations A = mod-CQ, T = Db mod-CQ
discussed in §5.1–§5.4, it is enough for Q to have the same number of edges
w• → v• as edges

v• → w•, for all vertices v, w ∈ Q0.
As in §3.8.1, we may restrict to a substack N ⊂ M. Then it is enough for

the restriction of (3.86) to H2i(N α×N β) to hold. As in §3.8.2, we may restrict
to a G-invariant subspace H∗(M)G of H∗(M). Then it is enough for the cap
product of (3.86) with all elements of H∗(M)G to hold.

Here is an interesting class of examples:

Example 3.52. Let X be a smooth projective K-scheme of even dimension
dimX = 2n, and A = coh(X) be the category of coherent sheaves on X, and
K(A) be the numerical Grothendieck group ofA. As in Remark 3.3(A) we define
Θ• ∈ Perf(M×M) by Θ• = (Ext•)∨, where Ext• is a perfect complex onM×M
with Hi(Ext• |([E],[F ])) ∼= Exti(E,F ) for all i ∈ Z and ([E], [F ]) ∈ (M×M)(K).

Serre duality gives natural isomorphisms

Exti(F,E)∗ ∼= Ext2n−i(E ⊗K−1
X , F ), (3.87)

where KX is the canonical line bundle of X, so that KX
∼= OX if X is Calabi–

Yau. Define Υ : M → M to be the obvious isomorphism of stacks acting by
[E] 7→ [E ⊗K−1

X ] on K-points. Then (3.87) is the cohomology at (E,F ) of an
isomorphism in Perf(M×M):

σ∗((Ext•)∨) ∼= (Υ× id)∗(Ext•[2n]). (3.88)
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Write υ : K(A)→ K(A) for the group isomorphism with JE⊗K−1
X K = υ(α)

if E ∈ A with JEK = α, and Υα = Υ|Mα : Mα → Mυ(α). Then using
Θ• = (Ext•)∨ and restricting (3.88) to Mα ×Mβ gives

σ∗α,β(Θ•β,α) = (Υα × idMβ
)∗(Θ•υ(α),β)∨[2n].

Applying Chern classes ci for i > 1 and using Assumption 2.30(b)(iv),(v) gives

H2i(σα,β)(ci([Θ
•
β,α])) = (−1)iH2i(Υα × idMβ

)(ci([Θ
•
υ(α),β ])). (3.89)

Suppose now that α ∈ K(A) satisfies υ(α) = α, and

H∗(Υα) = idH∗(Mα) : H∗(Mα)→ H∗(Mα). (3.90)

Then (3.89) reduces to (3.86).

(a) Suppose we can choose a subset Λ ⊂ K(A) closed under addition, such
that if α ∈ Λ then υ(α) = α and (3.90) holds. Define N =

∐
α∈ΛMα.

Then the restriction of (3.86) to H2i(N α×N β) holds for all α, β ∈ K(A),
by (3.89) and H∗(Υ)|N = id by (3.90). Thus, we can apply the con-
struction of §3.8.1 to N , and obtain a graded vertex algebra structure on
Ȟ∗(N ), and graded Lie algebra structures on H̃∗(N )t=0, H̃∗(N pl), . . . .

(b) Define an action of G = Z on M such that n ∈ Z acts by Υn :M→M.
Consider the Z-invariant subspace H∗(M)Z in H∗(M). If ζ ∈ H∗(M)Z

and λ ∈ H∗(M) then ζ ∩ λ = ζ ∩ H∗(Υn)(λ) for all n ∈ Z. Hence
(3.89) implies that the cap product of (3.86) with all classes ζ in H∗(M)Z

holds, even though (3.86) itself may not hold. Therefore as in §3.8.2, we
can define a graded vertex algebra structure on Ȟ∗(M)Z, and graded Lie
algebra structures on (H̃∗(M)Z)t=0, . . . .

We will see in §6 that (3.90) always holds if A = coh(X) and α ∈ K(A) is a
class of dimension zero sheaves on X. So we can build vertex algebras and Lie
algebras from dimension zero sheaves on any smooth projective variety X.

Example 3.52 will be important in our discussion of representations of Lie
algebras and vertex algebras in §3.8.4.

3.8.4 Representations of Lie algebras and vertex algebras

Representations of (graded) Lie algebras are defined in §2.1.1, and of graded
vertex algebras in §2.2. There are several ways to use our theory to produce
representations of the graded vertex algebras in §3.2, and the graded Lie algebras
in §3.3–§3.7. Trivially, any Lie algebra or vertex algebra V is a representation
of itself, and of any Lie subalgebra or vertex subalgebra of V . We focus on
representations that arise in more nontrivial ways.

Example 3.53. In the situation of §3.3 over A or T , there is a natural represen-
tation of the graded Lie algebra

(
H̃∗(M)t=0, [ , ]t=0

)
on the graded R-module
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H̃∗(M), defined by [ζ̄, η] = [ζ, η]0 for all ζ̄ = ζ + It � H∗(Mα) in H̃∗(M)t=0

and η in H̃∗(M). To see this is well defined, note that [tp � ε, η]0 = 0 for all
ε, η ∈ H∗(M) and p > 0 by (3.26), so [ζ, η]0 is independent of the choice of
representative ζ for ζ̄ = ζ + It � H∗(Mα). To see it is a graded Lie algebra
representation, compare (2.6) and (3.30).

For the next example we illustrate the ideas using the ‘t = 0’ version of §3.3
on an abelian category A, but the same methods work for vertex algebra rep-
resentations, the other versions of §3.4–§3.7, and for triangulated categories T .

Example 3.54. Let A,K(A),M =
∐
α∈K(A)Mα and the graded Lie algebra

H̃∗(M)t=0 be as in §3.3. Suppose Λ ⊂ K(A) is a subset closed under addition
(e.g. a subgroup). Write N =

∐
α∈ΛMα, as an open substack N ⊂ M. Then

as in §3.8.1 we obtain a graded Lie subalgebra H̃∗(N )t=0 in H̃∗(M)t=0.
For ρ ∈ K(A), write Rρ =

∐
λ∈ΛMρ+λ, as an open substack Rρ ⊂M. By

(3.37) we have canonical isomorphisms

H̃∗(N )t=0 ∼=
⊕

λ∈Λ H̃∗(Mλ)t=0, H̃∗(Rρ)t=0 ∼=
⊕

λ∈Λ H̃∗(Mρ+λ)t=0.

Define a representation of
(
H̃∗(N )t=0, [ , ]t=0

)
on H̃∗(Rρ)t=0 by the restriction

of the Lie bracket [ , ]t=0 : H̃∗(M)t=0 × H̃∗(M)t=0 → H̃∗(M)t=0 from §3.3 to
[ , ]t=0 : H̃∗(N )t=0×H̃∗(Rρ)t=0→ H̃∗(Rρ)t=0, regarding H̃∗(N )t=0, H̃∗(Rρ)t=0

as R-submodules of H̃∗(M)t=0 by (3.37). Then (2.6) for H̃∗(Rρ)t=0 follows

from (3.45)–(3.46) for H̃∗(M)t=0 in Theorem 3.20.
Now consider relaxing σ∗α,β(Θ•β,α) ∼= (Θ•α,β)∨[2n] in Assumption 3.1(j), as in

§3.8.3. The important points are:

(i) To prove
(
H̃∗(N )t=0, [ , ]t=0

)
is a Lie algebra, we only need (3.8) to hold

for all α, β ∈ Λ. Also, (3.8) can be replaced by (3.86).

(ii) To prove H̃∗(Rρ)t=0 is a representation of
(
H̃∗(N )t=0, [ , ]t=0

)
, we again

only need (3.8) to hold for all α, β ∈ Λ: we do not need (3.8) for α or β in
ρ+ Λ. This is because the proof of (2.6) involves (3.29) for ζ ∈ Ha(Mα),
η ∈ Hb(Mβ), θ ∈ Hc(Mγ) with α, β ∈ Λ and γ ∈ ρ+ Λ, but the proof of
(3.29) only uses (3.8) for (α, β), not for (β, γ) or (α, γ).

Also, (3.8) can again be replaced by (3.86) for α, β ∈ Λ.

In §3.8.3 we explained that there are large classes of interesting examples
in which Assumption 3.1(j) does not hold, and so §3.1–§3.7 do not yield vertex
algebra or Lie algebras from H∗(M), but we may still be able to find a substack
N ⊂ M with such that H∗(N ) gives vertex algebras and Lie algebras, or a
G-action on M such that H∗(M)G gives vertex algebras and Lie algebras.

The argument above shows that in these cases, the graded vertex algebra
Ȟ∗(N ) (and similarly Ȟ∗(M)G) has representations on Ȟ∗(Rρ) and Ȟ∗(M),

and the graded Lie algebra H̃∗(N )t=0 (and similarly (H̃∗(M)G)t=0) has repre-
sentations on H̃∗(Rρ)t=0 and H̃∗(M)t=0.

This gives a large source of interesting representations of vertex algebras and
Lie algebras. As in Example 3.52, if X is any smooth projective K-scheme of
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even dimension and A = coh(X) or T = Dbcoh(X), we can build vertex and
Lie algebras from dimension zero sheaves on X, and these have representations
on the homology Ȟ∗(M), H̃∗(M)t=0 of all coherent sheaves and complexes. We
will use this in §6 to explain work of Grojnowski [57] and Nakajima [121,122].

3.8.5 Morphisms of Lie algebras and vertex algebras

Let A1,A2 be K-linear abelian categories satisfying Assumption 3.1 with mod-
uli stacks M1,M2, or T1, T2 be K-linear triangulated categories satisfying As-
sumption 3.2 with moduli stacks M1,M2, and let Assumption 2.30 hold for
(co)homology theories H∗(−), H∗(−) of (higher) Artin K-stacks over R.

Suppose that either F : A1 → A2, or F : T1 → T2, or F : A1 → T2

is a K-linear exact functor, which induces a morphism f : M1 → M2 on
moduli stacks, and suppose that (f × f)∗(Θ•2) ∼= Θ•1 in Perf(M1 ×M1). Then
H∗(f) : H∗(M1) → H∗(M2) respects the important structures discussed in
§3.1–§3.4, so it induces a morphism Ȟ∗(f) : Ȟ∗(M1) → Ȟ∗(M2) of graded
vertex algebras in §3.2, and morphisms H̃∗(f)t=0 : H̃∗(M1)t=0 → H̃∗(M2)t=0

and H̃∗(f
pl) : H̃∗(Mpl

1 )→ H̃∗(Mpl
2 ) of graded Lie algebras in §3.3–§3.4.

If we know Ȟ∗(M1) is a simple vertex algebra, as in §2.2.2 (this happens in
Theorem 5.19 below, for instance), then Ȟ∗(f) is automatically injective.

3.9 Open questions

Finally we give some open questions for future work.

3.9.1 The ‘supported on indecomposables’ version

An object E in the K-linear abelian category A is indecomposable if E 6∼= 0 and
we cannot write E ∼= E1 ⊕ E2 for E1, E2 6∼= 0. Equivalently, the algebraic K-
group Aut(E) = IsoM([E]) has rank 1. WriteMind ⊂M for the open substack
whose K-points are indecomposable objects in A.

In the study of Ringel–Hall type (Lie) algebras, sometimes one associates
a (Lie) algebra H to an abelian category A, which contains a much smaller,
interesting Lie subalgebra L ⊂ H that is in some sense ‘supported on indecom-
posables’, where H may look quite like the universal enveloping algebra U(L).

For Lie algebras actually supported on indecomposables, see Riedtmann
[134] and Ringel [135]. The author [76–79,81] constructed a Ringel–Hall algebra
of ‘stack functions’ SF(M), with a Lie subalgebra SFind(M) of stack functions
‘supported on virtual indecomposables’. Under extra assumptions on A there
is an ‘integration morphism’ from SFind(M) to an explicit Lie algebra, which is
important in wall-crossing formulae for enumerative invariants in A, including
Donaldson–Thomas invariants of Calabi–Yau 3-folds X when A = coh(X).

The author would like to extend this to our vertex algebra and Lie algebras
picture. We illustrate it for the ‘t = 0’ version of §3.3.
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Question 3.55. (a) In the situation of §3.3, consider the graded Lie subalgebra
of
(
H̃∗(M)t=0, [ , ]t=0

)
generated by the image of the homology H∗(Mind) of the

moduli stack of indecomposable objects under the inclusion Mind ↪→M.
In examples, is this Lie subalgebra much smaller than H̃∗(M)t=0, and is it

an interesting graded Lie algebra?

(b) Can you construct a moduli stack Mvi of ‘virtual indecomposables’, with a
morphism π :Mvi →M, which is in some sense a refinement of Mind ↪→M,
an R[t]-action � on H̃∗(Mvi), and a graded Lie bracket [ , ]vi on H̃∗(Mvi)t=0,
such that H̃∗(π)t=0 : H̃∗(Mvi)t=0 → H̃∗(M)t=0 is a Lie algebra morphism,
whose image is roughly the graded Lie subalgebra discussed in (a)?

(c) In the vertex algebras setting of Theorem 3.14, can one define an interesting
vertex Lie subalgebra Ȟ∗(M)ind of the vertex algebra Ȟ∗(M), as in §2.2.3,
which is ‘supported on indecomposables’? For example, in (b) we might hope
H∗(Mvi) is a vertex Lie algebra, and set Ȟ∗(M)ind = H∗(π)(H∗(Mvi)).

In (b), the idea is that K-points of Mvi should parametrize objects of A,
plus some kind of extra data. We mostly care about the homology H∗(Mvi),
not the stack Mvi itself, and we would be happy with a classifying space type
construction which is only natural up to homotopy. So, for example, we want
the fibre of π : Mvi → M over [E] for any indecomposable E ∈ A to be
contractible, so that π−1(Mind) ⊂ Mvi is isomorphic to Mind in homology.
The author has some ideas on this, and hopes to write about it in future.

The author is uncertain what ‘supported on indecomposables’ should mean
in a triangulated category T , although this is an interesting question.

3.9.2 Restricting to a ‘semistable’ open substack Mss ⊂M

The following is closely connected to the ideas of §3.9.1.
In examples, we may wish to study not the homology H∗(M) of the whole

moduli stackM, but the homology H∗(Mss) of an open substackMss ⊂M of
‘semistable’ points (or ‘stable’, or ‘simple’, or ‘torsion-free’), whereMss does not
satisfy the conditions onN in §3.8.1, in particular, if [E], [F ] ∈Mss(K) ⊂M(K)
for E,F ∈ A then we need not have [E⊕F ] ∈Mss(K). In particular, the author
has in mind cases whenH∗(Mss) has been given the structure of a representation
of an interesting Lie algebra, in connection with the ideas of §3.8.4.

In some interesting examples, writing ι : Mss ↪→ M for the inclusion of
substacks, we may be able to show that:

(i) H∗(ι) : H∗(Mss)→ H∗(M) is injective.

(ii) The image of H∗(Mss) in H∗(M) is closed under the Lie brackets from
§3.3–§3.7, or the Lie algebra representations from §3.8.4.

Then we can replace H∗(M) by H∗(Mss) in our Lie algebra or representation.
Of course, this is of no use unless we have effective ways of proving (i),(ii).

Part (i) is actually a well known problem. For homology over a field R, using
the duality between homology and cohomology, (i) is equivalent to asking that
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H∗(ι) : H∗(M) → H∗(Mss) should be surjective. This is known as Kirwan
surjectivity, following work of Atiyah and Bott [5, §9] and Kirwan [88, §14] in
Morse theory, as discussed by McGerty and Nevins [112], Harada and Wilkin
[58], and Fisher [43], for example.

SupposeMα = [Vα/Gα] is a global quotient stack, andMss
α = [V ss

α /Gα] the
the quotient of a G-invariant open subscheme V ss

α ⊂ Vα. IfMα, Vα are smooth,
and Vα admits a G-equivariantly perfect stratification with V ss

α a union of open
strata, then H∗(ι) : H∗(M) → H∗(Mss) is surjective. This often happens if
V ss
α is a semistable subscheme in the sense of Geometric Invariant Theory [44].

We have less justification for (ii), but in the examples the author has in
mind, it seems to be related to the ideas of §3.9.1, and considering H∗(Mss) as
a subspace of H∗(M) ‘supported on indecomposables’.

3.9.3 Other algebraic structures on H̃∗(M)

Question 3.56. In the situation of §3.1, perhaps under additional assumptions,
can we define other interesting algebraic structures on Ȟ∗(M), H̃∗(M)t=0, . . . by
a similar method to the graded Lie brackets of §3.3–§3.7? If so, do they satisfy
interesting compatibility relations with our vertex algebras and Lie brackets?

For example:

(i) Under what conditions, or extra structure, on a triangulated category T ,
can we make the vertex algebra Ȟ∗(M) in §3.2 into a vertex operator
algebra, as in §2.2.1? This involves finding a suitable class ω ∈ H4(M0).

(ii) Ringel [138] shows some Ringel–Hall algebras H defined from an abelian
category A have a compatible cocommutative comultiplication making H
into a bialgebra. The author has some ideas on how to define a comul-
tiplication H̃∗(Mpl) → H̃∗(Mpl ×Mpl) ∼= H̃∗(Mpl) ⊗R H̃∗(Mpl), under
extra assumptions which imply M,Mpl are smooth Artin K-stacks.

(iii) Many Lie algebras such as Kac–Moody algebras have nondegenerate in-
variant inner products ( , ), and it would be interesting to construct these
in our situation, under appropriate assumptions.

3.9.4 Generalizing the (co)homology theories

One could consider replacing ordinary (co)homology H∗(−), H∗(−) in §2.4 by
some kind of generalized (co)homology theories, so that parts of Assumption
2.30 might need modification, and investigate whether our theories (with vari-
ations) can still be made to work. For example:

(i) We could suppose the category A or T , and the moduli stack M, carry
the action of an algebraic K-group G, such as Gm. Then we could try
to replace (co)homology H∗(M), H∗(M) in §3.1–§3.8 by equivariant (co)-
homology HG

∗ (M), H∗G(M), which are modules over the R-algebra H∗G(∗).
We must consider howG acts on the complexes Θ•α,β as well as onA, T ,M.
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For example, we could take A = coh(X) or T = Dbcoh(X) for X a
toric projective K-scheme, and take G to be the algebraic torus acting
on X. Or we could take A = mod-KQ or T = Db mod-KQ for a quiver
Q, as in §5.1–§5.4, and G = Gm acting by rescaling the edge morphisms
ρe : Xt(e) → Xh(e) in each (X, ρ) ∈ mod-KQ by λ : ρe 7→ λρe for λ ∈ Gm.

(ii) When K = R = C, we could consider mixed Hodge structures on H∗(M)
and H∗(M), giving additional structure on our vertex and Lie algebras.

(iii) We could try to replace (co)homology by K-theory K∗(M),K∗(M).

It would be particularly interesting to realize ‘quantum’ versions of vertex
algebras and Lie algebras this way, just as quantum groups Uq(g) generalize
suitable Lie algebras g, as in Jantzen [71] and Lusztig [106].

3.9.5 Physical interpretation of our work

Question 3.57. Do the vertex algebra structures on Ȟ∗(M) in Theorem 3.14
have an interpretation in Conformal Field Theory and String Theory?

Here the author is thinking especially of our theory applied to categories
A, T which are already intensively studied in String Theory, such as derived
categories T = Dbcoh(X) for X a complex Calabi–Yau 2n-fold, which appear
in the Homological Mirror Symmetry story and are interpreted as categories of
boundary conditions for a Super Conformal Field Theory, and T = Db mod-CQ.

3.9.6 Is there a parallel story for the ‘odd Calabi–Yau’ case?

As in Remark 3.3(A), the most natural way to obtain data satisfying Assump-
tions 3.1 or 3.2 is to start with a category A or T which is 2n-Calabi–Yau, and
take Θ• = (Ext•)∨. For more general A, T , as in Remark 3.3(B) we can make
A, T act like a 2n-Calabi–Yau category by taking Θ• = (Ext•)∨⊕ σ∗(Ext•)[2n].
As in Remark 3.17, if A, T are (2n + 1)-Calabi–Yau this gives [Θ•] = 0 in
K0(Perf(M×M)), and then the vertex algebras Ȟ∗(M) in §3.2 are commuta-
tive, and the Lie algebras H̃∗(M)t=0, . . . in §3.3–§3.8 are abelian. Thus, in the
‘odd Calabi–Yau’ case our constructions are basically trivial and boring.

This may be surprising, as there is a lot of very interesting and special
geometry for 3-Calabi–Yau categories, but our picture appears not to see it.

Question 3.58. This whole book is in some sense about the ‘even Calabi–Yau’
case. Is there a related, but different, story about the ‘odd Calabi–Yau’ case?

Kontsevich and Soibelman’s Cohomological Hall algebras of 3-Calabi–Yau
categories [93,144] might be a good starting point for thinking about this. Also,
there are related, but different, notions of ‘orientation data’ for even Calabi–Yau
categories and for odd Calabi–Yau categories [31, §2–§3], where ‘even Calabi–
Yau’ orientation data is related to the choice of εα,β in Assumption 3.1(d); the
‘odd Calabi–Yau’ story should involve ‘odd Calabi–Yau’ orientation data.
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4 Proofs of main results in §3

4.1 Proof of Proposition 3.6

Let Assumption 3.2 hold for T . For (a), suppose T 6∼= 0. Then we can choose
a nonzero object E in T . Assumption 3.2(iv) gives a morphism ξE : A1 →M0

which on K-points maps 0 7→ [E ⊕ E[1]] and x 7→ [0] for 0 6= x ∈ K. Write
f :M′ ↪→M for the inclusion. Define morphisms

g :M−→M′, F :M′ × A1 −→M′, G :M× A1 −→M, by

g = Φ|M×{[E⊕E[1]]}, F = Φ ◦ (f × ξE), G = Φ ◦ (idM × ξE).

Note that on K-points g maps [F ] 7→ [F ⊕E ⊕E[1]], and so maps to M′ ⊂M
as [F ⊕ E ⊕ E[1]] 6= [0] for all [F ].

Then g ◦ f, f ◦ g both map [F ] 7→ [F ⊕E⊕E[1]] on K-points, and F,G both
map ([F ], 0) 7→ [F ⊕ E ⊕ E[1]] and ([F ], 1) 7→ [F ]. Thus F |M′×{0} = g ◦ f ,
F |M′×{1} = idM′ , G|M×{0} = f ◦ g, G|M×{1} = idM, so f is a homotopy
equivalence by Definition 2.37. The same argument works for M′0 ↪→M0.

For (b), by a very similar argument we can show that Φα,−α|Mα×{[E[1]]} :
Mα

∼=Mα × {[E[1]]} → M0 is a homotopy inverse for Φ0,α|M0×{[E]} :M0 →
Mα. Equation (3.13) then follows from Lemma 2.38.

4.2 Proof of Theorem 3.12

We work in the situation of Theorem 3.12, and we also write a = ã+2−χ(α, α),
b = b̃+ 2−χ(β, β), c = c̃+ 2−χ(γ, γ), so that ζ ∈ Ha(Mα), η ∈ Hb(Mβ), and
θ ∈ Hc(Mγ) by (3.23).

4.2.1 Proof of equation (3.25)

Consider the restriction Θ•α,0|Mα×{[0]} of Θ•α,0 toMα×{[0]} ⊆ Mα×M0. Since
0⊕ 0 = 0, so Φ0,0(K) : ([0], [0]) 7→ [0], and restricting (3.10) with β = γ = 0 to
Mα×{[0]} implies that Θ•α,0|Mα×{[0]} ∼= Θ•α,0|Mα×{[0]}⊕Θ•α,0|Mα×{[0]}. Hence
Θ•α,0|Mα×{[0]} = 0, and similarly Θ•0,α|{[0]}×Mα

= 0.
Equation (3.22) defines [ζ,1]n and [1, ζ]n for n ∈ Z. As 1 = H0([0])(1) by

Definition 3.10, the terms (ζ � 1) ∩ ci([Θ•α,0]) and (1� ζ) ∩ ci([Θ•0,α]) in (3.22)
for [ζ,1]n, [1, ζ]n depend on ci(Θ

•
α,0|Mα×{[0]}) and ci(Θ

•
0,α|{[0]}×Mα

), and hence
are 1 if i = 0 and 0 if i > 0. Thus (3.22) gives

[ζ,1]n =

{
εα,0 ·Ha−2n−2(Ξα,0)

(
t−n−1 � ζ � 1

)
, n < 0,

0, n > 0,

[1, ζ]n =

{
ε0,α ·Ha−2n−2(Ξ0,α)

(
t−n−1 � 1� ζ

)
, n < 0,

0, n > 0.
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This proves (3.25) when n > 0, so suppose n < 0. We have εα,0 = ε0,α = 1 by
(3.3), so the definition (3.20) of Ξα,0,Ξ0,α and functoriality of H∗(−) yield

[ζ,1]n = Ha−2n−2(Φα,0)
(
Ha−2n−2(Ψα)(t−n−1 � ζ)� 1

)
= Ha−2n−2(Φα,0)

(
(t−n−1 � ζ)� 1

)
= t−n−1 � ζ,

[1, ζ]n = Ha−2n−2(Φ0,α)
(
H−2n−2(Ψ0)(t−n−1 � 1)� ζ

)
=

{
Ha(Φ0,α)(1� ζ) = ζ, n = −1,

0, n < −1.

Here for the first equation, the second step uses (3.17), and the third that
Φα,0|Mα×{[0]} : Mα × ∗ → Mα is the natural identification, which identifies
ζ � 1 ∼= ζ on homology as in Assumption 2.30(a)(iv). The second equation is
similar, where for n < −1 we note that H−2n−2(Ψ0)(t−n−1�1) factors through
H−2n−2(∗) = 0. This proves (3.25).

4.2.2 Proof of equation (3.26)

For equation (3.26), we have

[tp � ζ, η]n =
[
Ha+2p(Ψα)(tp � ζ), η

]
n

=
∑

i>0: 2i6a+b+2p,
i>n+χ(α,β)+1

εα,β(−1)(a+2p)χ(β,β) ·Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
ti−n−χ(α,β)−1 �

[
(Ha+2p(Ψα)(tp � ζ)� η) ∩ ci([Θ•α,β ])

])
=

∑
i>0: 2i6a+b+2p,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β) ·Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
ti−n−χ(α,β)−1 �

[(
Ha+b+2p

(
(Ψα◦(Π1×Π2))×Π3

)
(tp � ζ � η)

)
∩ ci([Θ•α,β ])

])
=

∑
i>0: 2i6a+b+2p,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β) ·Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
ti−n−χ(α,β)−1 �

[
Ha+b+2p−2i

(
(Ψα◦(Π1×Π2))×Π3

)(
(tp � ζ � η) ∩ ci([((Ψα ◦ (Π1 ×Π2))×Π3)∗(Θ•α,β)])

)])
=

∑
i>0: 2i6a+b+2p,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β) ·Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
ti−n−χ(α,β)−1 �

[
Ha+b+2p−2i

(
(Ψα◦(Π1×Π2))×Π3

)(
(tp � ζ � η) ∩ ci

(
[Π∗1(E1)⊗ (Π2 ×Π3)∗(Θ•α,β)]

))])
=

∑
i>0: 2i6a+b+2p,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β) ·Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
ti−n−χ(α,β)−1�

[
Ha+b+2p−2i

(
(Ψα◦(Π1×Π2))×Π3

)(
(tp�ζ�η)

∩
{∑i

j=0(−1)i−j
(
i−χ(α,β)−1

i−j
)
cj([(Π2×Π3)∗(Θ•α,β)])∪τ i−j

})])
=

∑
i,j>0: 2i6a+b+2p,
i>n+χ(α,β)+1,
j6i, i−j6p

εα,β(−1)i−j+aχ(β,β)
(
i−χ(α,β)−1

i−j
)
·

Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
ti−n−χ(α,β)−1 �

[
Ha+b+2p−2i

(
(Ψα◦(Π1×Π2))×Π3

)(
tp−i+j � ((ζ � η) ∩ cj([Θ•α,β ]))

)])
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=
∑

i,j>0: 2i6a+b+2p,
i>n+χ(α,β)+1,
j6i, i−j6p

εα,β(−1)i−j+aχ(β,β)
(
i−χ(α,β)−1

i−j
)
·

Ha+b−2n+2p−2χ(α,β)−2

(
Ξα,β◦

[
Π1×(Ψα◦(Π2×Π3))×Π4)

])(
t
i−n−χ(α,β)−1
1 � tp−i+j2 � ((ζ � η) ∩ cj([Θ•α,β ]))

)
=

∑
i,j>0: 2i6a+b+2p,
i>n+χ(α,β)+1,
j6i, i−j6p

εα,β(−1)i−j+aχ(β,β)
(
i−χ(α,β)−1

i−j
)
·

Ha+b−2n+2p−2χ(α,β)−2

(
Ξα,β ◦[

(Ω ◦ (Π1 ×Π2))×Π3 ×Π4

])(
t
i−n−χ(α,β)−1
1 � tp−i+j2 � ((ζ � η) ∩ cj([Θ•α,β ]))

)
=

∑
i,j>0: 2i6a+b+2p,
i>n+χ(α,β)+1,
j6i, i−j6p

εα,β(−1)i−j+aχ(β,β)
(
i−χ(α,β)−1

i−j
)(
p+j−n−χ(α,β)−1

p−i+j
)
·

Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
tp+j−n−χ(α,β)−1 � ((ζ � η) ∩ cj([Θ•α,β ]))

)
=

∑
j>0: 2j6a+b+2p,
j>n−p+χ(α,β)+1

εα,β(−1)aχ(β,β) ·Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
tj−(n−p)−χ(α,β)−1 � ((ζ � η) ∩ cj([Θ•α,β ]))

)[ p∑
k=0

(−1)k
(
j+k−χ(α,β)−1

k

)(
p+j−n−χ(α,β)−1

p−k
)]

= (−1)p
(
n

p

)
· [ζ, η]n−p, (4.1)

where the first step uses (3.17) and the second (3.22). In the third we rewrite
using the morphism:

(Ψα ◦ (Π1 ×Π2))×Π3 : [∗/Gm]×Mα ×Mβ −→Mα ×Mβ ,

where Πi means projection to the ith factor of [∗/Gm]×Mα×Mβ . The fourth
step uses Assumption 2.30(a)(ii), (b)(v), the fifth Assumption 3.1(l), the sixth
Assumption 2.30(b)(iii), (c)(iii), and the seventh Assumption 2.30(c)(iv).

The eighth step of (4.1) rewrites the expression in terms of homology on
[∗/Gm]2 ×Mα ×Mβ , where Πi for i = 1, . . . , 4 means projection to the ith

factor, using functoriality of H∗(−) and compatibility with �, and tk1 , t
k
2 mean

the copies of tk ∈ H2k([∗/Gm]) associated with the first and second factors of
[∗/Gm], respectively. In the ninth step we use the equation in Ho(ArtK), which
follows from (3.7) and (3.20):

Ξα,β ◦
[
Π1 × (Ψα◦(Π2×Π3))×Π4)

]
= Ξα,β ◦

[
(Ω ◦ (Π1 ×Π2))×Π3 ×Π4

]
:

[∗/Gm]× [∗/Gm]×Mα ×Mβ −→Mα+β .

The tenth step uses H2(r+s)(Ω)(tr1 � t
s
2) =

(
r+s
r

)
tr+s as in (3.15), functoriality

of H∗(−), and compatibility with �. The eleventh step changes variables in
the sum from i, j to j and j = i − j, and the last step uses (A.8) with m =
p+ j − n− χ(α, β)− 1 and (3.22). This proves (3.26).
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4.2.3 Proof of equation (3.27)

For equation (3.27), we have

[ζ, tp � η]n =
[
ζ,Hb+2p(Ψβ)(tp � η)

]
n

=
∑

i>0: 2i6a+b+2p,
i>n+χ(α,β)+1

εα,β(−1)(a+2p)χ(β,β) ·Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
ti−n−χ(α,β)−1 �

[
(ζ �Hb+2p(Ψβ)(tp � η)) ∩ ci([Θ•α,β ])

])
=

∑
i>0: 2i6a+b+2p,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β) ·Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
ti−n−χ(α,β)−1 �

[(
Ha+b+2p

(
Π2×(Ψβ◦(Π1×Π3))

)
(tp � ζ � η)

)
∩ ci([Θ•α,β ])

])
=

∑
i>0: 2i6a+b+2p,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β) ·Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
ti−n−χ(α,β)−1 �

[
Ha+b+2p−2i

(
Π2×(Ψβ◦(Π1×Π3))

)(
(tp � ζ � η) ∩ ci([(Π2×(Ψβ◦(Π1×Π3)))∗(Θ•α,β)])

)])
=

∑
i>0: 2i6a+b+2p,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β) ·Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
ti−n−χ(α,β)−1 �

[
Ha+b+2p−2i

(
Π2×(Ψβ◦(Π1×Π3)

)(
(tp � ζ � η) ∩ ci

(
[Π∗1(E−1)⊗ (Π2 ×Π3)∗(Θ•α,β)]

))])
=

∑
i>0: 2i6a+b+2p,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β) ·Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(
ti−n−χ(α,β)−1�

[
Ha+b+2p−2i

(
Π2×(Ψβ◦(Π1×Π3)

)(
(tp�ζ�η)

∩
{∑i

j=0

(
i−χ(α,β)−1

i−j
)
cj([(Π2×Π3)∗(Θ•α,β)])∪τ i−j

})])
=

∑
i,j>0: 2j6a+b,
i>n+χ(α,β)+1,
j6i, i−j6p

εα,β(−1)aχ(β,β)
(
i−χ(α,β)−1

i−j
)
·Ha+b−2n+2p−2χ(α,β)−2(Ξα,β)(

ti−n−χ(α,β)−1 �
[
Ha+b+2p−2i

(
Π2×(Ψβ◦(Π1×Π3)

)(
tp−i+j � ((ζ � η) ∩ cj([Θ•α,β ]))

)])
=

∑
i,j>0: 2j6a+b,
i>n+χ(α,β)+1,
j6i, i−j6p

εα,β(−1)aχ(β,β)
(
i−χ(α,β)−1

i−j
)
·

Ha+b−2n+2p−2χ(α,β)−2

(
Ξα,β◦

[
Π1×Π3×(Ψβ◦(Π2×Π4)

])(
t
i−n−χ(α,β)−1
1 � tp−i+j2 � ((ζ � η) ∩ cj([Θ•α,β ]))

)
=

∑
i,j>0: 2j6a+b,
i>n+χ(α,β)+1,
j6i, i−j6p

εα,β(−1)aχ(β,β)
(
i−χ(α,β)−1

i−j
)
·

Ha+b−2n+2p−2χ(α,β)−2

(
Ψα+β◦

[
Π1×

(
Ξα,β◦(Π2×Π3×Π4)

)])
◦Ha+b−2n+2p−2χ(α,β)−2

(
Π2×(Ω̂◦(Π1×Π2))×Π3×Π4

)(
t
i−n−χ(α,β)−1
1 � tp−i+j2 � ((ζ � η) ∩ cj([Θ•α,β ]))

)
=

∑
i,j,k>0: 2j6a+b,
j>k+n−p
+χ(α,β)+1,
j6i, i−j6p,
k6p−i+j

εα,β(−1)i+j+k+p+aχ(β,β)
(
i−χ(α,β)−1

i−j
)(
j−k−n+p−χ(α,β)−1

p−i+j−k
)
·

Ha+b−2n+2p−2χ(α,β)−2

(
Ψα+β◦

[
Π1×

(
Ξα,β◦(Π2×Π3×Π4)

)])(
tk1 � t

j−k−n+p−χ(α,β)−1
2 � ((ζ � η) ∩ cj([Θ•α,β ]))

)
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=
∑

j,k>0:
2j6a+b,
j>k+n−p
+χ(α,β)+1

εα,β(−1)p−k+aχ(β,β) ·[∑p+j−k
i=j (−1)i−j

(
i−χ(α,β)−1

i−j
)(
j−k−n+p−χ(α,β)−1

p−i+j−k
)]
·

Ha+b−2n+2p−2χ(α,β)−2(Ψα+β)[
tk �Ha+b−2k−2n+2p−2χ(α,β)−2(Ξα,β)(
tj−k−n+p−χ(α,β)−1 � ((ζ � η) ∩ cj([Θ•α,β ]))

)]
=

∑
j,k>0:
2j6a+b,
j>k+n−p
+χ(α,β)+1

εα,β(−1)p−k+aχ(β,β)
[
(−1)p−k

(
n
p−k
)]
·

Ha+b−2n+2p−2χ(α,β)−2(Ψα+β)[
tk �Ha+b−2k−2n+2p−2χ(α,β)−2(Ξα,β)(
tj−(n+k−p)−χ(α,β)−1 � ((ζ � η) ∩ cj([Θ•α,β ]))

)]
=

p∑
k=0

(
n

p− k

)
· tk � [ζ, η]n+k−p, (4.2)

where the first eight steps follow the beginning of (4.1). In the ninth step we
use functoriality of H∗(−) and the equation in Ho(ArtK), which follows from
(3.6)–(3.7) and (3.20):

Ξα,β ◦
[
Π1 ×Π3 × (Ψβ ◦ (Π2 ×Π4)

]
= Ψα+β◦

[
Π1×

(
Ξα,β◦(Π2×Π3×Π4)

)]
◦
[
Π2×(Ω̂◦(Π1×Π2))×Π3×Π4

]
:

[∗/Gm]× [∗/Gm]×Mα ×Mβ −→Mα+β , (4.3)

where Ω̂ : [∗/Gm] × [∗/Gm] → [∗/Gm] is the stack morphism induced by the
group morphism G2

m → Gm mapping (λ, µ) 7→ λµ−1.
Here we can explain (4.3) in the language of Assumption 3.1(e),(g),(h), by

fixing a K-scheme S and regarding morphisms S →Mα as families Eα → S of
objects in A in class α ∈ K(A) over the base K-scheme S. Then (4.3) concerns
the map, for line bundles L1, L2 → S (that is, maps S → [∗/Gm]) and families
Eα, Eβ → S in A (that is, morphisms S →Mα, S →Mβ):

(L1, L2, Eα, Eβ) 7−→ (Eα ⊗ L1)⊕ (Eβ ⊗ L2)

∼=L2 ⊗
(
(Eα ⊗(L1 ⊗ L−1

2 ))⊕ Eβ
)
,

(4.4)

where Ω̂ corresponds to the map (L1, L2) 7→ L1 ⊗ L−1
2 .

In the tenth step of (4.2), we use that Π2 × (Ω̂ ◦ (Π1 × Π2)) : [∗/Gm]2 →
[∗/Gm]2 acts on homology by

H2l+2m

(
Π2 × (Ω̂◦(Π1×Π2))

)
: tl1�t

m
2 7−→

m∑
k=0

(−1)k+m

(
l+m−k
m− k

)
tk1 � t

l+m−k
2 ,

which we can prove using Assumption 2.30(c). The eleventh step uses functori-
ality of H∗(−) and compatibility with �, and rearranges the sum. The twelfth
step of (4.2) uses (A.8) with i− j, j− k−n+ p−χ(α, β)− 1, n, p− k in place of
k,m, n, p, and the final step follows from (3.17) and (3.22). This proves (3.27).
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4.2.4 Proof of equation (3.28)

For equation (3.28), we have∑
k>0: 2k6ã+b̃−2n+2−χ(α+β,α+β)

(−1)1+ãb̃+k+n · tk � [ζ, η]k+n

=
∑

i,k>0: 2i6a+b,
i>n+k+χ(α,β)+1

(−1)1+(a−2+χ(α,α))(b−2+χ(β,β))+k+n · εα,β(−1)aχ(β,β)·
Ha+b−2n−2χ(α,β)−2(Ψα+β)(tk�Ha+b−2k−2n−2χ(α,β)−2(Ξα,β)(
ti−k−n−χ(α,β)−1 �

[
(ζ � η) ∩ ci([Θ•α,β ])

])
=

∑
i,k>0: 2i6a+b,
i>n+k+χ(α,β)+1

εα,β(−1)1+ab+bχ(α,α)+χ(α,α)χ(β,β)+k+n·
Ha+b−2n−2χ(α,β)−2

(
Ψα+β ◦ (Π1 × (Ξα,β ◦ (Π2 ×Π3 ×Π4)))

)(
tk1 � t

i−k−n−χ(α,β)−1
2 �

[
(ζ � η) ∩ ci([Θ•α,β ])

])
=

∑
i,k>0: 2i6a+b,
i>n+k+χ(α,β)+1

εβ,α(−1)1+ab+bχ(α,α)+χ(α,β)+k+n·
Ha+b−2n−2χ(α,β)−2

(
Ξβ,α◦

[
Π1×Π4×(Ψα◦(Π2×Π3))

])
◦Ha+b−2n−2χ(α,β)−2

(
Π1×(Ω◦(Π1×Π2))×Π3×Π4

)(
tk1 � t

i−k−n−χ(α,β)−1
2 �

[
(ζ � η) ∩ ci([Θ•α,β ])

])
=

∑
i,j,k>0: 2i6a+b,
i>n+k+χ(α,β)+1,
j6k

εβ,α(−1)1+ab+bχ(α,α)+χ(α,β)+k+n
(
i+j−k−n−χ(α,β)−1

j

)
·

Ha+b−2n−2χ(α,β)−2

(
Ξβ,α◦

[
Π1×Π4×(Ψα◦(Π2×Π3))

])(
tk−j1 � ti+j−k−n−χ(α,β)−1

2 �
[
(ζ � η) ∩ ci([Θ•α,β ])

])
=

∑
i,l>0: 2i6a+b,
i>n+l+χ(α,β)+1

εβ,α(−1)ab+bχ(α,α)+i+l
[∑l

j=0(−1)j
(
l
j

)]
·

Ha+b−2n−2χ(α,β)−2

(
Ξβ,α◦

[
Π1×Π4×(Ψα◦(Π2×Π3))

])(
t
i−l−n−χ(α,β)−1
1 � tl2 �

[
(ζ � η) ∩ ci([Θ•α,β ])

])
=

∑
i>0: 2i6a+b,
i>n+χ(α,β)+1

εβ,α(−1)ab+bχ(α,α)+i ·Ha+b−2n−2χ(α,β)−2(Ξβ,α)

◦Ha+b−2n−2χ(α,β)−2

(
Π1 ×Π4 × (Ψα ◦ (Π2 ×Π3))

)(
t
i−n−χ(α,β)−1
1 � t02 �

[
(ζ � η) ∩ ci([Θ•α,β ])

])
=

∑
i>0: 2i6a+b,
i>n+χ(α,β)+1

εβ,α(−1)bχ(α,α)+i ·Ha+b−2n−2χ(α,β)−2(Ξβ,α)(
ti−n−χ(α,β)−1 �

[
(η � ζ) ∩ ci([σ∗β,α(Θ•α,β)])

])
=

∑
i>0: 2i6a+b,
i>n+χ(α,β)+1

εβ,α(−1)bχ(α,α) ·Hb+a−2n−2χ(β,α)−2(Ξβ,α)(
ti−n−χ(β,α)−1 �

[
(η � ζ) ∩ ci([Θ•β,α])

])
= [η, ζ]n, (4.5)

where in the first step we use ã = a−2+χ(α, α), b̃ = b−2+χ(β, β) and equations
(3.17) and (3.22). In the second we rewrite in homology on [∗/Gm]2×Mα×Mβ ,
where Πi for i = 1, . . . , 4 means projection to the ith factor, using functoriality
of H∗(−) and compatibility with �, and tk1 , t

k
2 mean the tk ∈ H2k([∗/Gm])
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associated with the first and second factors of [∗/Gm], respectively.
In the third step we rewrite the signs by (3.1), and use functoriality of H∗(−)

and the equation in Ho(ArtK), which follows from (3.4), (3.6)–(3.7) and (3.20):

Ψα+β ◦ (Π1 × (Ξα,β ◦ (Π2 ×Π3 ×Π4)))

= Ξβ,α◦
[
Π1×Π4×(Ψα◦(Π2×Π3))

]
◦
[
Π1×(Ω◦(Π1×Π2))×Π3×Π4

]
:

[∗/Gm]× [∗/Gm]×Mα ×Mβ −→Mα+β =Mβ+α, (4.6)

where as usual Ω : [∗/Gm] × [∗/Gm] → [∗/Gm] is the stack morphism induced
by the group morphism G2

m → Gm mapping (λ, µ) 7→ λµ. As for (4.3)–(4.4),
we can understand (4.6) in terms of the map of families

(L1, L2, Eα, Eβ) 7−→ L1 ⊗ ((L2 ⊗ Eα)⊕ Eβ) ∼= (L1 ⊗ Eβ)⊕ ((L1 ⊗ L2)⊗ Eα).

In the fourth step of (4.2), we use that Π1 × (Ω ◦ (Π1 × Π2)) : [∗/Gm]2 →
[∗/Gm]2 acts on homology by

H2k+2l

(
Π1×(Ω◦(Π1×Π2))

)
: tk1�t

l
2 7−→

k∑
j=0

(
j + l

j

)
tk−j1 � tj+l2 ,

which we can prove using Assumption 2.30(c). In the fifth we change variables
from i, j, k to i, j, l with l = i + j − k − n − χ(α, β) − 1. In the sixth we note

that
∑l
j=0(−1)j

(
l
j

)
= (1− 1)l by the binomial theorem, which is 1 if l = 0 and

0 otherwise, and use functoriality of H∗(−).
In the seventh step of (4.5) we note that the morphism

Π1×Π4×(Ψα◦(Π2×Π3)) : [∗/Gm]×[∗/Gm]×Mα×Mβ−→ [∗/Gm]×Mβ×Mα

maps tl1 � t
0
2 �

[
(ζ � η) ∩ ci([Θ•α,β ])

]
7→ (−1)abtl �

[
(η � ζ) ∩ ci([σ∗β,α(Θ•α,β)])

]
on homology, where σβ,α : Mβ × Mα → Mα × Mβ exchanges the factors.
This is because Ha(Ψα)(t0 � ζ) = ζ, and Ha+b(σα,β)(ζ � η) = (−1)abη � ζ.
The eighth step holds as σ∗β,α(Θ•α,β) ∼= (Θ•β,α)∨[2n] by Assumption 3.1(j), and

ci([(Θ
•
β,α)∨[2n]]) = ci([(Θ

•
β,α)∨]) = (−1)ici([Θ

•
β,α]) by Assumption 2.30(b)(iv).

The last step uses (3.22). This proves (3.28).

4.2.5 Proof of equation (3.29)

Expanding out the first term in (3.29) using (3.17) and (3.22) yields

[[ζ, η]l, θ]m =∑
h,k>0:
2h6a+b+c
−2l−2χ(α,β)−2,
h>m+χ(α+β,γ)+1,
2k6a+b,
k>l+χ(α,β)+1

εα,β(−1)aχ(β,β)εα+β,γ(−1)(a+b)χ(γ,γ) ·Hd(Ξα+β,γ){
t
h−m−χ(α+β,γ)−1
1 �

[(
Ha+b−2l−2χ(α,β)−2(Ξα,β)(

t
k−l−χ(α,β)−1
2 �

[
(ζ�η)∩ck([Θ•α,β ])

])
�θ
)
∩ch([Θ•α+β,γ ])

]}
,
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where d = a+b+c−2l−2m−2χ(α, β)−2χ(α, γ)−2χ(β, γ)−4. Here ti1, t
i
2 mean

ti ∈ H2i([∗/Gm]) from Assumption 2.30(c) from the first and second copies of
[∗/Gm] involved in the formula.

From (3.20) and functoriality of Hi(−) we have

Hi(Ξα,β) = Hi(Φα,β) ◦Hi

(
(Ψα ◦ (Π1 ×Π2))×Π3)

)
.

We substitute this into the previous equation, and then rewrite by combining
the pushforwards H···(Ξα+β,γ) and H···(Φα,β) into one pushforward by

Ξα+β,γ ◦ (id[∗/Gm] × Φα,β × idMγ ) : [∗/Gm]×Mα ×Mβ ×Mγ →Mα+β+γ ,

using Assumption 2.30(a)(i)–(iii) and (b)(v), and rearrange signs. This yields

[[ζ, η]l, θ]m =
∑

h,k>0:
2h6a+b+c
−2l−2χ(α,β)−2,
h>m+χ(α+β,γ)+1,
2k6a+b,
k>l+χ(α,β)+1

εα,βεα+β,γ(−1)aχ(β,β)+(a+b)χ(γ,γ) ·Hd

(
Ξα+β,γ◦

(id[∗/Gm] × Φα,β × idMγ
)
){
t
h−m−χ(α+β,γ)−1
1 �[({

Ha+b−2l−2χ(α,β)−2

(
(Ψα ◦ (Π1 ×Π2))×Π3

)(
t
k−l−χ(α,β)−1
2 �

[
(ζ�η)∩ck([Θ•α,β ])

])}
�θ
)

∩ ch
(
[(Φα,β × idMγ

)∗(Θ•α+β,γ)]
)]}

.

We rewrite (Φα,β× idMγ
)∗(Θ•α+β,γ) as a sum of terms in Θ•α,γ ,Θ

•
β,γ by (3.9),

and substitute in ch(A+B) =
∑
h=i+p ci(A) ∪ cp(B) by (2.33), giving

[[ζ, η]l, θ]m =
∑

i,k,p>0:
2k6a+b,
k>l+χ(α,β)+1,
2(i+p)6a+b+c
−2l−2χ(α,β)−2,
i+p>m+χ(α+β,γ)+1

εα,βεα+β,γ(−1)aχ(β,β)+(a+b)χ(γ,γ) ·Hd

(
Ξα+β,γ◦

(id[∗/Gm] × Φα,β × idMγ
)
){
t
i+p−m−χ(α+β,γ)−1
1 �[({

Ha+b−2l−2χ(α,β)−2

(
(Ψα ◦ (Π1 ×Π2))×Π3

)(
t
k−l−χ(α,β)−1
2 �

[
(ζ�η)∩ck([Θ•α,β ])

])}
�θ
)

∩
(
ci([(πMβ×Mγ

)∗(Θ•β,γ)])

∪ cp([(πMα×Mγ )∗(Θ•α,γ)])
)]}

.

We combine the two pushforwards H···(· · · ) into one by

Ξα+β,γ ◦ (Π1 × (Ξα,β ◦ (Π2 ×Π3 ×Π4))×Π5) :

[∗/Gm]× [∗/Gm]×Mα ×Mβ ×Mγ −→Mα+β+γ ,
(4.7)

using Assumption 2.30(a)(i)–(iii) and (b)(v), where Πi means projection to
the ith factor of [∗/Gm] × [∗/Gm] ×Mα ×Mβ ×Mγ . This involves pulling
back ci([(πMβ×Mγ

)∗(Θ•β,γ)])∪ cp([(πMα×Mγ
)∗(Θ•α,γ)]) by a factor coming from

(Ψα ◦ (Π1 × Π2))× Π3, but the pullback does not affect the Θ•β,γ term, as it is
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independent of Mα. We obtain:

[[ζ, η]l, θ]m =
∑

i,k,p>0:
2k6a+b,
k>l+χ(α,β)+1,
2(i+l)6a+b+c
−2l−2χ(α,β)−2,
i+l>m+χ(α+β,γ)+1

εα,βεα+β,γ(−1)aχ(β,β)+(a+b)χ(γ,γ) ·Hd

(
Ξα+β,γ

◦ (Π1 × (Ξα,β ◦ (Π2 ×Π3 ×Π4))×Π5)
){

t
i+p−m−χ(α+β,γ)−1
1 �[(
t
k−l−χ(α,β)−1
2 �

[
(ζ�η)∩ck([Θ•α,β ])

]
�θ
)

∩
(
ci([(Π4 ×Π5)∗(Θ•β,γ)])

∪ cp([((Ψα ◦ (Π2 ×Π3))×Π5)∗(Θ•α,γ)])
)]}

.

Next we use equation (3.11) to substitute for cp([(· · · )∗(Θ•α,γ)]) in the last
line. The result is of the form cp([(line bundle)⊗ (· · · )]), so we can apply (2.36),
which we write using a change of variables from p to j, q with j + q = p. We
use c1([E1]) = τ in H2([∗/Gm]), in the notation of Assumption 2.30(c), but we
write τ2 rather than τ to indicate that it corresponds to t2. We also pull back
the ck([Θ•α,β ]) term from Mα ×Mβ to [∗/Gm]2×Mα×Mβ×Mγ . We find:

[[ζ, η]l, θ]m =
∑

i,j,k,q>0:
2k6a+b,
k>l+χ(α,β)+1,
2(i+j+q)6a+b+c
−2l−2χ(α,β)−2,
i+j+q>m
+χ(α+β,γ)+1

εα,βεα+β,γ(−1)aχ(β,β)+(a+b)χ(γ,γ) ·Hd

(
Ξα+β,γ◦

(Π1 × (Ξα,β ◦ (Π2 ×Π3 ×Π4))×Π5)
){(

t
i+j−m+q−χ(α+β,γ)−1
1 �tk−l−χ(α,β)−1

2 �ζ�η�θ
)

∩
(
H2k(Π3×Π4)(ck([Θ•α,β ])∪H2i(Π4×Π5)(ci([Θ

•
β,γ ]))

∪
[
(−1)q

(
q+j−χ(γ,α)−1

q

)
·

H2j(Π3 ×Π5)(cj([Θ
•
α,γ ])) ∪ τ q2

])])}
. (4.8)

Assumption 2.30(c)(iv) shows that tp2 ∩ τ
q
2 = tp−q2 if p > q and 0 otherwise.

Also the terms in ck([Θ•α,β ]), ci([Θ
•
β,γ ]), cj([Θ

•
α,γ ]) pair only with ζ � η � θ, not

with t···1 � t
···
2 . Thus we see that

[[ζ, η]l, θ]m =
∑

i,j,k,q>0:
2(i+j+k)6a+b+c,
k>l+q+χ(α,β)+1,
i+j+q>m
+χ(α+β,γ)+1

εα,βεα+β,γ(−1)q+aχ(β,β)+(a+b)χ(γ,γ)
(
q+j−χ(γ,α)−1

q

)
·

Hd

(
Ξα+β,γ◦(Π1×(Ξα,β◦(Π2×Π3×Π4)×Π5))

){
t
i+j−m+q−χ(α+β,γ)−1
1 � tk−l−q−χ(α,β)−1

2 �[
(ζ � η � θ) ∩

(
H2i(πMβ×Mγ )(ci([Θ

•
β,γ ]))

∪H2j(πMα×Mγ )(cj([Θ
•
α,γ ]))

∪H2k(πMα×Mβ
)(ck([Θ•α,β ]))

)]}
. (4.9)

Using (3.6)–(3.7), we can show that the morphism (4.7) factors as Kα,β,γ ◦
(Υ× idMα×Mβ×Mγ

), where

Kα,β,γ = Φα+β,γ ◦ (Φα,β × idMγ
) ◦(

(Ψα ◦ (Π1 ×Π3))× (Ψβ ◦ (Π2 ×Π4))×Π5) :

[∗/Gm]× [∗/Gm]×Mα ×Mβ ×Mγ −→Mα+β+γ ,
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and Υ : [∗/Gm]2 → [∗/Gm]2 is induced by the group morphism υ : G2
m →

G2
m mapping υ : (µ, ν) 7−→ (µν, µ). Thus the pushforward H···(· · · ) in (4.9)

factors as H···(Kα,β,γ) ◦H···(Υ× idMα×Mβ×Mγ
), where we may write H···(Υ×

idMα×Mβ×Mγ
) as H···(Υ)� id. Hence, from (4.9) we deduce that

[[ζ, η]l, θ]m =
∑

i,j,k,q>0:
2(i+j+k)6a+b+c,
k>l+q+χ(α,β)+1,
i+j+q>m
+χ(α+β,γ)+1

εα,βεα+β,γ(−1)q+aχ(β,β)+(a+b)χ(γ,γ)
(
q+j−χ(γ,α)−1

q

)
·

Hd(Kα,β,γ){[
H2(i+j+k−l−m−χ(α,β)−χ(β,γ)−χ(γ,α)−2)(Υ)

(t
i+j−m+q−χ(α+β,γ)−1
1 � tk−l−q−χ(α,β)−1

2 )
]
�[

(ζ � η � θ) ∩
(
H2i(πMβ×Mγ )(ci([Θ

•
β,γ ]))

∪H2j(πMα×Mγ
)(cj([Θ

•
α,γ ]))

∪H2k(πMα×Mβ
)(ck([Θ•α,β ]))

)]}
. (4.10)

Now from the definition of Υ and Assumption 2.30(c) we can show that

H···(Υ)(t
i+j−m+q−χ(α+β,γ)−1
1 � tk−l−q−χ(α,β)−1

2 )

=
∑

r,s>0: r>k−l−q−χ(α,β)−1
r+s=i+j+k−l−m−χ(α,β)−χ(β,γ)−χ(γ,α)−2

(
r

k−l−q−χ(α,β)−1

)
· tr1 � ts2.

Substituting this into (4.10) and rearranging into two sums yields

[[ζ, η]l, θ]m =∑
i,j,k,r,s>0:
2(i+j+k)6
a+b+c,
r+s=i+j+k
−l−m−χ(α,β)
−χ(β,γ)
−χ(γ,α)−2

(−1)aχ(β,β)+(a+b)χ(γ,γ)εα,βεα+β,γ ·
Hd(Kα,β,γ)

{
tr1 � t

s
2 �

[
(ζ � η � θ) ∩(

H2i(πMβ×Mγ )(ci([Θ
•
β,γ ]))

∪H2j(πMγ×Mα)(cj([Θ
•
α,γ ]))

∪H2k(πMα×Mβ
)(ck([Θ•α,β ]))

)]}
· ∑

q>0: q6k−l−χ(α,β)−1,
q>k−l−r−χ(α,β)−1

(−1)q
(
q+j−χ(γ,α)−1

q

)(
r

k−l−q−χ(α,β)−1

) .
The last line [· · · ] can be summed explicitly using (A.8) and (A.4), giving

[[ζ, η]l, θ]m =∑
i,j,k,r,s>0:
2(i+j+k)6
a+b+c,
r+s=i+j+k
−l−m−χ(α,β)
−χ(β,γ)
−χ(γ,α)−2

(−1)aχ(β,β)+(a+b)χ(γ,γ)εα,βεα+β,γ ·
Hd(Kα,β,γ)

{
tr1 � t

s
2 �

[
(ζ � η � θ) ∩(

H2i(πMβ×Mγ
)(ci([Θ

•
β,γ ]))

∪H2j(πMγ×Mα
)(cj([Θ

•
α,γ ]))

∪H2k(πMα×Mβ
)(ck([Θ•α,β ]))

)]}
·( −j+r+χ(γ,α)

k−l−χ(α,β)−1

)
.

(4.11)
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By similar proofs we can show that

[ζ, [η, θ]m+n]l−n =∑
i,j,k,r,s>0:
2(i+j+k)6
a+b+c,
r+s=i+j+k
−l−m−χ(α,β)
−χ(β,γ)
−χ(γ,α)−2

(−1)aχ(β,β)+(a+b)χ(γ,γ)εβ,γεα,β+γ ·
Hd(Kα,β,γ)

{
tr1 � t

s
2 �

[
(ζ � η � θ) ∩(

H2i(πMβ×Mγ )(ci([Θ
•
β,γ ]))

∪H2j(πMγ×Mα)(cj([Θ
•
α,γ ]))

∪H2k(πMα×Mβ
)(ck([Θ•α,β ]))

)]}
·( −j+l−n+r+χ(γ,α)

i−m−n−s−χ(β,γ)−1

)
,

(4.12)

(−1)ãb̃ · [η, [ζ, θ]n]l+m−n =∑
i,j,k,r,s>0:
2(i+j+k)6
a+b+c,
r+s=i+j+k
−l−m−χ(α,β)
−χ(β,γ)
−χ(γ,α)−2

(−1)aχ(β,β)+(a+b)χ(γ,γ) ·
(−1)χ(α,β)+χ(α,α)χ(β,β)εα,γεβ,α+γ ·
Hd(Kα,β,γ)

{
tr1 � t

s
2 �

[
(ζ � η � θ) ∩(

H2i(πMβ×Mγ )(ci([Θ
•
β,γ ]))

∪H2j(πMγ×Mα)(cj([Θ
•
α,γ ]))

∪H2k(πMα×Mβ
)(ck([Θ•α,β ]))

)]}
·

(−1)k+χ(α,β)
(−i+l−m−n+s+χ(β,γ)

j−n−r−χ(γ,α)−1

)
.

(4.13)

Here the differences with the proof of (4.11) are that, firstly, for (4.12)–(4.13) we
use (3.12) rather than (3.11), and c1([E−1]) = −τ , so τ q2 in (4.8) is replaced by
(−τ2)q. Secondly, for (4.13), under the isomorphism H∗(Mβ×Mα) ∼= H∗(Mα×
Mβ) we have η � ζ ∼= (−1)abζ � η. Thirdly, for (4.13) we use Assumptions
2.30(b)(iv) and 3.1(j) to convert ck([Θ•β,α]) to (−1)kck([Θ•α,β ]).

Using (A.4), (A.8) and r+s = i+j+k−l−m−χ(α, β)−χ(β, γ)−χ(γ, α)−2,
we find that ∑

n>0: n6i−m−s−χ(β,γ)−1

(−1)n
(
l
n

)
·
( −j+l−n+r+χ(γ,α)
i−m−n−s−χ(β,γ)−1

)
= (−1)i−m−s−χ(β,γ)−1

( −k+l+χ(α,β)
i−m−s−χ(β,γ)−1

)
,

(4.14)

∑
n>0: n6j−r−χ(γ,α)−1

(−1)n+l
(
l
n

)
· (−1)k+χ(α,β)

(−i+l−m−n+s+χ(β,γ)
j−n−r−χ(γ,α)−1

)
= (−1)k−l−χ(α,β)

(−i−m+s+χ(β,γ)
j−r−χ(γ,α)−1

)
.

(4.15)

The next equation follows from (3.1)–(3.2):

εα,βεα+β,γ = εβ,γεα,β+γ = (−1)χ(α,β)+χ(α,α)χ(β,β)εα,γεβ,α+γ . (4.16)
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Combining (4.11)–(4.16) yields

[[ζ, η]l, θ]m −
∑

n>0: 2m+2n6b̃+c̃
+2−χ(β+γ,β+γ)

(−1)n
(
l

n

)
· [ζ, [η, θ]m+n]l−n

+
∑

n>0: 2n6ã+c̃
+2−χ(α+γ,α+γ)

(−1)n+l+ãb̃

(
l

n

)
[η, [ζ, θ]n]l+m−n =

∑
i,j,k,r,s>0:
2(i+j+k)6
a+b+c,
r+s=i+j+k
−l−m−χ(α,β)
−χ(β,γ)
−χ(γ,α)−2

(−1)aχ(β,β)+(a+b)χ(γ,γ)εα,βεα+β,γ ·
Hd(Kα,β,γ)

{
tr1 � t

s
2 �

[
(ζ � η � θ) ∩(

H2i(πMβ×Mγ )(ci([Θ
•
β,γ ]))

∪H2j(πMγ×Mα
)(cj([Θ

•
α,γ ]))

∪H2k(πMα×Mβ
)(ck([Θ•α,β ]))

)]}
·[( −j+r+χ(γ,α)

k−l−χ(α,β)−1

)
− (−1)i−m−s−χ(β,γ)−1

( −k+l+χ(α,β)
i−m−s−χ(β,γ)−1

)
+ (−1)k−l−χ(α,β)

(−i−m+s+χ(β,γ)
j−r−χ(γ,α)−1

)]
= 0,

where the second step follows from (A.9). This proves (3.29).

4.3 Proof of Proposition 3.18

We work in the situation of Proposition 3.18, and write a = ã + 2 − χ(α, α),
b = b̃+ 2−χ(β, β), c = c̃+ 2−χ(γ, γ), and d = ã+ b̃+ c̃+ 2−χ(α+ β+ γ, α+
β + γ), so that ζ ∈ Ha(Mα), η ∈ Hb(Mβ), and θ ∈ Hc(Mγ) by (3.23). Apply
tm+n−l � − to (3.29) with m,n, p in place of l,m, n, multiply by (−1)c̃ã+m+n

(m+n−l)!
m!n! xm(x+ y)n, and sum over m,n > 0 with m+ n > l. This yields

0 =
∑

m,n>0: m+n>l, 2(m+n)6d

(−1)c̃ã+m+n (m+n−l)!
m!n! xm(x+y)n · tm+n−l � [[ζ, η]m, θ]n

−
∑

m,n,p>0: m+n>l, 2(m+n)6d, p6m

(−1)c̃ã+m+n+p (m+n−l)!
m!n!

(
m
p

)
xm(x+y)n · tm+n−l � [ζ, [η, θ]n+p]m−p

+
∑

m,n,p>0: m+n>l, 2(m+n)6d, p6m

(−1)ãb̃+c̃ã+n+p (m+n−l)!
m!n!

(
m
p

)
xm(x+y)n · tm+n−l � [η, [ζ, θ]p]m+n−p.
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We use (3.28) three times to rewrite the second and third terms:

0 =
∑

m,n>0: m+n>l, 2(m+n)6d

(−1)c̃ã+m+n (m+n−l)!
m!n! xm(x+y)n · tm+n−l � [[ζ, η]m, θ]n

−
∑

m,n,p,q>0:
2(m+n+q)6d,
p6m

(−1)c̃ã+m+n+p (m+n−l)!
m!n!

(
m
p

)
xm(x+y)n ·

tm+n−l �
(
(−1)1+ã(b̃+c̃)+m−p+q · tq � [[η, θ]n+p, ζ]m−p+q

)
+

∑
m,n,p,q,r>0:
2(m+n+q)6d,
p6m, 2r6ã+c̃−2p
+2−χ(α+γ,α+γ)

(−1)ãb̃+c̃ã+n+p (m+n−l)!
m!n!

(
m
p

)
xm(x+y)n ·

tm+n−l �
(
(−1)1+b̃(ã+c̃)+m+n−p+q · tq �

[(−1)1+c̃ã+p+r · tr � [θ, ζ]p+r, η]m+n−p+q
)
.

We substitute (3.26) in the third term, use equations (3.15) and (3.18) to
combine terms tr � (ts � −), and simplify signs, giving

0 =
∑

m,n>0: 2(m+n)6d

(−1)c̃ã+m+n (m+n−l)!
m!n! xm(x+y)n · tm+n−l � [[ζ, η]m, θ]n

+
∑

m,n,p,q>0:
2(m+n+q)6d,
p6m

(−1)ãb̃+n+q (m+n−l)!
m!n!

(
m
p

)(
m+n−l+q
m+n−l

)
xm(x+y)n ·

tm+n−l+q � [[η, θ]n+p, ζ]m−p+q

+
∑

m,n,p,q,r>0:
2(m+n+q)6d,
p+r6m+n+q

(−1)b̃c̃+m+p+q (m+n−l)!
m!n!

(
m
p

)(
m+n−p+q

r

)(
m+n−l+q
m+n−l

)
xm(x+y)n ·

tm+n−l+q � [[θ, ζ]p+r, η]m+n−p+q−r.

Next we change variables in the second sum to m′ = n+ p and n′ = m− p+ q,
eliminating m,n, and in the third sum to m′ = p+ r and n′ = m+n−p+ q− r,
eliminating m and p, giving

0 =
∑

m,n>0: m+n>l, 2(m+n)6d

(−1)c̃ã+m+n (m+n−l)!
m!n! xm(x+y)n · tm+n−l � [[ζ, η]m, θ]n (4.17)

+
∑

m′,n′>0:
2(m′+n′)6d

(−1)ãb̃+m
′+n′ (m

′+n′−l)!
m′!n′! · tm′+n′−l � [[η, θ]m′ , ζ]n′ ·[∑

p,q>0: p6m′,q6n′

(−1)n
′+p−q(m′

p

)(
n′

q

)
xn
′+p−q(x+y)m

′−p
]

+
∑

m′,n′>0:
2(m′+n′)6d

(−1)b̃c̃+m
′+n′ (m

′+n′−l)!
m′!n′! · tm′+n′−l � [[θ, ζ]m′ , η]n′ ·[∑

n,q,r>0: r6m′, n+q6n′+r

(−1)m
′+n+r

(
m′

r

) (n′+r)!
(n′+r−n−q)!n!q!x

m′+n′−n−q(x+y)n
]
.

Now by the binomial theorem and x+ y + z = 1 we see that∑
p,q>0: p6m′,q6n′

(−1)n
′+p−q(m′

p

)(
n′

q

)
xn
′+p−q(x+y)m

′−p = (−x+(x+y))m
′
(1−x)n

′

= ym
′
(y + z)n

′
, (4.18)
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∑
n,q,r>0: r6m′, n+q6n′+r

(−1)m
′+n+r

(
m′

r

) (n′+r)!
n!(n′+r−n−q)!q!x

m′+n′−n−q(x+y)n

=

m′∑
r=0

(
m′

r

)
(−x)m

′−r(−(x+ y) + 1 + x)n
′+r

=

m′∑
r=0

(
m′

r

)
(−x)m

′−r(z + x)n
′+r = zm

′
(z + x)n

′
. (4.19)

Combining (4.17)–(4.19) proves (3.35), and Proposition 3.18.

4.4 Proof of Proposition 3.24

For part (a), as Πpl
α :M′α →M

pl
α is rationally trivial, by Definition 2.26 there

exists a morphism f : T →Mpl
α which is surjective and a [∗/Zn]-fibration over

each connected component of Mpl
α , such that the pullback principal [∗/Gm]-

bundle is trivial. Consider the diagram in Ho(Artlft
K ) and Artlft

K :

[∗/Gm]2×T
Ω×idT

//

id[∗/Gm]×f ′��

[∗/Gm]× T
πT

//

f ′ ��

T

f
��

[∗/Gm]×M′α
Ψ′α //M′α

Πpl
α //Mpl

α ,

(4.20)

where Ω : [∗/Gm]2 → [∗/Gm] is as in Assumption 3.1(h). Here the squares are
2-Cartesian in Artlft

K , and so commute in Ho(Artlft
K ), as they give the pullback

principal [∗/Gm]-bundle by f : T →Mpl
α with its [∗/Gm]-action, where we use

the fact that the pullback is trivial to write M′α ×Πpl
α ,Mpl

α ,f
T = [∗/Gm] × T .

Since f is a surjective local [∗/Zn]-fibration, and the squares are 2-Cartesian,
the other vertical morphisms f ′, id[∗/Gm] × f ′ are also local [∗/Zn]-fibrations.

Applying H∗(−) to (4.20) gives a commutative diagram:

R[t]⊗RR[t]⊗RH∗(T )

∼= H∗(id[∗/Gm]×f ′)��

H∗(Ω×idT )
// R[t]⊗RH∗(T )

H∗(f
′)∼= ��

H∗(πT )
// H∗(T )

∼=H∗(f) ��
R[t]⊗R H∗(M′α)

H∗(Ψ
′
α) // H∗(M′α)

H∗(Π
pl
α ) // H∗(Mpl

α ).

(4.21)

Here we have used Assumption 2.31(b) and H∗([∗/Gm]) = R[t] to rewrite the
homology of the [∗/Gm]-factors. The columns in (4.21) are isomorphisms by
Assumption 2.31(a), as the columns in (4.20) are local [∗/Zn]-fibrations.

Three of the horizontal morphisms in (4.21) may be written explicitly as

H∗(Ω× idT ) : tm ⊗ tn ⊗ ζ 7−→ (tm ? tn)⊗ ζ =
(
m+n
n

)
tm+n ⊗ ζ, (4.22)

H∗(Ψ
′
α) : tm ⊗ η 7−→ tm � η, (4.23)

H∗(πT ) : tn ⊗ ζ 7−→

{
ζ, n = 0,

0, n > 0,
(4.24)
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using (3.14)–(3.15) in (4.22), equation (3.17) in (4.23), and that π : [∗/Gm]→ ∗
acts on homology by t0 7→ 1 and tn 7→ 0 for n > 0 in (4.24).

Now the left hand square of (4.21) and (4.22)–(4.23) show that the middle
column of (4.21) identifies the R[t]-actions on R[t] ⊗R H∗(T ) and H∗(M′α).
Therefore the right hand square of (4.21), with columns isomorphisms, and

(4.24), imply that (3.49) is exact, and hence Πpl
t=0 : H∗(M′α)t=0 → H∗(Mpl

α ) in
(3.50) is an isomorphism, as we want.

For (b), let K be algebraically closed, and suppose 0 6= α, β ∈ K(A), with
χ(α, β) 6= 0 andMβ 6= ∅. Choose [E] ∈Mβ(K). Then the restriction (pullback)
of Θ•α,β toM′α ∼=M

′
α×{[E]} ⊂ Mα×Mβ is a perfect complex Θ•α,β |M′α×{[E]}

onM′α, of rank χ(α, β) 6= 0, and Assumption 3.1(l) implies that Θ•α,β |M′α×{[E]}
has a weight one [∗/Gm]-action compatible with the [∗/Gm]-action Ψ′α onM′α,
in the sense of §2.3.8. Thus Proposition 2.29 (which requires K to be alge-
braically closed) says that Πpl

α : M′α →M
pl
α is rationally trivial, as this is the

principal [∗/Gm]-bundle with [∗/Gm]-action Ψ′α by Definition 3.22.
For (c), suppose K(A) is free abelian, and χ : K(A) × K(A) → Z is non-

degenerate, and M0(K) = {[0]}. Let α ∈ K(A) with α 6= 0. Then there exists
β ∈ K(A) with χ(α, β) 6= 0, as χ is nondegenerate. By Assumption 3.1(b) the
projection K0(A) → K(A) is surjective, so K0(A) cannot map into the kernel
of χ(α,−), and thus there exists β̃ ∈ K(A) with χ(α, β̃) 6= 0 and Mβ̃ 6= ∅. So
(b) shows that Πpl

α : M′α → M
pl
α is rationally trivial, whenever α 6= 0. When

α = 0 we have M′0 = Mpl
0 = ∅ as M0(K) = {[0]}. Hence Πpl : M′ → Mpl is

rationally trivial. The rest is immediate.

4.5 Proof of Proposition 3.26

Work in the situation of Definition 3.22, in either the abelian or triangulated cat-
egory case, over K = C, with the homology theories of (higher) Artin C-stacks
over R described in Example 2.35. Then Πpl :M′ →Mpl is a principal [∗/Gm]-
bundle, so passing to classifying spaces or topological realizations as in Exam-

ple 2.35(a),(c) gives a map of topological spaces F
Top∞
HStC

(Πpl) : F
Top∞
HStC

(M′) →
F

Top∞
HStC

(Mpl) which is (at least up to homotopy) a topological fibration with

fibre BGm. Applying homology H∗(−) gives H∗(Π
pl) : H∗(M′)→ H∗(Mpl).

Now as in McCleary [111, §5], given a topological fibration π : E → B
with fibre F , the homology Leray–Serre spectral sequence is a first quadrant
spectral sequence with second page E2

p,q
∼= Hp(B,Hq(F,R)), which converges

to Hp+q(E,R). In our case, as Πpl is a principal bundle, Hq(F,R) is the constant
sheaf with fibre Hq(F,R) for F = BGm, and as Hq(F,R) is finitely generated
and free over R we have Hp(B,Hq(F,R)) ∼= Hp(B,R)⊗R Hq(F,R). Thus

E2
p,q = Hp(Mpl)⊗R Hq([∗/Gm]) ∼=

{
Hp(Mpl), q = 2k, k = 0, 1, 2, . . . ,

0, otherwise.

We can now use the theory of spectral sequences, which involve taking homol-
ogy of complexes to compute the subsequent pages (Erp,q)p,q>0 for r = 3, 4, . . . .
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Here Erp,q becomes independent of r for r > max(p + 1, q), and then we write

E∞p,q = Erp,q. Finally Hp+q(E,R) = Hp+q(M′) has a filtration FqHp+q(M′)
with E∞p,q = FqHp+q(M′)/Fq+1Hp+q(M′). In degrees 0,1 we have

E∞0,0
∼= E2

0,0 = H0(Mpl), E∞1,0
∼= E2

1,0 = H1(Mpl), E∞0,1 = 0,

so that as E∞0,1 = 0 we have

H0(M′) ∼= E∞0,0
∼= H0(Mpl), H1(M′) ∼= E∞1,0

∼= H1(Mpl). (4.25)

As t has degree 2 we haveHk(M′)t=0 = Hk(M′) for k = 0, 1, and the morphisms

Πpl
t=0 : Hk(M′0)t=0 → Hk(Mpl

0 ) for k = 0, 1 are the isomorphisms (4.25), proving
the cases k = 0, 1 of the proposition.

In degree 2 we have d2 : E2
3,0 = H3(Mpl)→ E2

0,2 = H0(Mpl), and then

E∞2,0
∼=E2

2,0 =H2(Mpl), E∞1,1= 0, E∞0,2
∼=H0(Mpl)/ Im d2

∼=H0(M′)/ Im d2.

As E∞1,1 = 0 we have an exact sequence

0 // E∞0,2∼=H0(M′)/ Im d2
ι // H2(M′)

H2(Πpl) // H2(Mpl)∼=E∞2,0 // 0. (4.26)

One can show using [111, §5] that we have a commutative diagram

H0(M′)
projection

//

t�−
--

H0(M′)/ Im d2
ι in (4.26)

// H2(M′). (4.27)

Comparing this with (3.36), (3.49), (3.50) and (4.26) shows Πpl
t=0 : H2(M′)t=0 →

H2(Mpl) is an isomorphism, as we have to prove.

4.6 Proof of Theorem 3.29

Work in the situation of Definition 3.28. For part (a) we must show [ , ]pl satisfies
graded antisymmetry (3.45) and the graded Jacobi identity (3.46).

To prove graded antisymmetry we must introduce some new notation. Let
α, β ∈ K(A). As for Π̌pl

α,β ,Φ
pl
α,β ,Ψ

pl
α,β in (3.53), using the 2-co-Cartesian prop-

erty of (3.52), we can construct a natural morphism σpl
α,β : (Mα ×Mβ)pl →

(Mβ ×Mα)pl, the analogue of σα,β in Assumption 3.1(g), which exchanges the

factors Mα,Mβ . It is an isomorphism in Ho(Artlft
K ) with inverse σpl

β,α. Also

write σpl,pl
α,β : Mpl

α ×M
pl
β → M

pl
β ×M

pl
α for the exchange of factors. Then we

have commutative diagrams in Ho(Artlft
K ):

M′α ×M
′
β

Πpl
α,β��

σ′α,β

//M′β ×M
′
α

Πpl
β,α ��

(Mα ×Mβ)pl

Π̌pl
α,β��

σpl
α,β // (Mβ ×Mα)pl

Π̌pl
β,α ��

Mpl
α ×M

pl
β

σpl,pl
α,β //Mpl

β ×M
pl
α ,

(4.28)
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(Mα ×Mβ)pl

σpl
α,β

//

Φpl
α,β ..

(Mβ ×Mα)pl

Φpl
β,α ��
Mpl

α+β .

(4.29)

As Θ̌•α,β is defined so that Θ•α,β |M′α×M′β
∼= (Πpl

α,β)∗(Θ̌•α,β), we see from As-

sumption 3.1(j) and the top square of (4.28) which is a pullback square of
principal [∗/Gm]-bundles that there is a natural isomorphism

(σpl
α,β)∗(Θ̌•β,α) ∼= (Θ̌•α,β)∨[2n], (4.30)

which is equivariant under the [∗/Gm]-actions.

Let ζ ∈ Ha(Mpl
α ) and η ∈ Hb(Mpl

β ) for a, b > 0, and write ã = a+χ(α, α)−2

and b̃ = b + χ(β, β) − 2, so that ζ ∈ H̃ã(Mpl
α ) and η ∈ H̃b̃(Mpl

β ), and set
d = a+ b− 2χ(α, β)− 2. Then we have

[η, ζ]pl = εβ,α(−1)bχ(α,α) ·Hd(Φ
pl
β,α) ◦ PE([Θ̌•β,α])[η � ζ]

= εβ,α(−1)bχ(α,α) ·Hd(Φ
pl
β,α) ◦ PE([Θ̌•β,α])

[
(−1)abHa+b(σ

pl,pl
α,β )(ζ � η)

]
= εβ,α(−1)ab+bχ(α,α) ·Hd(Φ

pl
β,α) ◦Hd(σ

pl
α,β) ◦ PE

(
[(σpl

α,β)∗(Θ̌•β,α)]
)
[θ � η]

= εβ,α(−1)ab+bχ(α,α) ·Hd(Φ
pl
α,β) ◦ PE

(
[(Θ̌•α,β)∨[2n]]

)
[θ � η]

= εβ,α(−1)ab+bχ(α,α) · (−1)χ(α,β)+1Hd(Φ
pl
α,β) ◦ PE

(
[Θ̌•α,β ]

)
[θ � η]

= εβ,α(−1)ab+bχ(α,α) · (−1)χ(β,α)+1 · εα,β(−1)aχ(β,β) · [ζ, η]pl

= (−1)ãb̃+1[ζ, η]pl.

Here we use (3.55) in the first and fifth steps, supercommutativity of � in
the second, Assumption 2.39(b) applied to the bottom square of (4.28) which
is a pullback square of principal [∗/Gm]-bundles in the third, equation (4.29)
and functoriality of H∗(−) and (4.30) in the fourth, Assumption 2.39(c) and
rank Θ̌•β,α = χ(α, β) in the fifth, and (3.1) and ã = a + χ(α, α) − 2, b̃ = b +

χ(β, β)− 2 in the sixth. Thus [ , ]pl satisfies graded antisymmetry.
To prove the graded Jacobi identity, let α, β, γ ∈ K(A). Then we have a

principal [∗/Gm]3-bundle

Πpl
α ×Πpl

β ×Πpl
γ :M′α ×M

′
β ×M

′
γ −→M

pl
α ×M

pl
β ×M

pl
γ ,

with [∗/Gm]3-action defined using Ψ′α × Ψ′β × Ψ′γ . We will apply Assumption
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2.39(e) to this. In place of (2.52) we have the commutative diagram:

(Mα×Mβ)pl

×Mpl
γ

Πpl
α,β×id

Mpl
γ

##
M′α×M

′
β

×M′γ

Πpl
α,β,γ // (Mα×Mβ

×Mγ)pl

ταβ 33

τβγ
//

τγα ++

(Mβ×Mγ)pl

×Mpl
α Πpl

β,γ×id
Mpl
α

//M
pl
α ×M

pl
β

×Mpl
γ .

(Mγ×Mα)pl

×Mpl
β

Πpl
γ,α×id

Mpl
β

;;

(4.31)

Here and below, for notational simplicity we implicitly identifyM′α×M
′
β×M

′
γ

with its cyclic permutations M′β ×M
′
γ ×M

′
α and M′γ ×M

′
α ×M

′
β , omitting

the permutation isomorphisms from our notation. We do the same for (Mα ×
Mβ ×Mγ)pl and Mpl

α ×M
pl
β ×M

pl
γ .

As for the definition of (Mα ×Mβ)pl in Definition 3.28, we define Πpl
α,β,γ :

M′α ×M
′
β ×M

′
γ → (Mα ×Mβ ×Mγ)pl in (4.31) to be the principal [∗/Gm]-

bundle with [∗/Gm]-action given by Proposition 2.25(a) associated to the free
[∗/Gm]-action on M′α ×M

′
β ×M

′
γ :(

(Ψ′α ◦Π[∗/Gm]×M′α), (Ψ′β ◦Π[∗/Gm]×M′β ), (Ψ′γ ◦Π[∗/Gm]×M′γ )
)

:

[∗/Gm]×M′α ×M
′
β ×M

′
γ −→M

′
α ×M

′
β ×M

′
γ ,

the diagonal action of the [∗/Gm]-actions Ψ′α,Ψ
′
β ,Ψ

′
γ on M′α,M

′
β ,M

′
γ .

As for the morphisms (3.53) we can construct a natural morphism

Φpl
α,β,γ : (Mα ×Mβ ×Mγ)pl −→ (Mα+β ×Mγ)pl

in a commutative diagram

M′α ×M
′
β ×M

′
γ

Πpl
α,β,γ��

Φ′α,β×idM′γ

//M′α+β ×M
′
γ

Πpl
α+β,γ ��

(Mα ×Mβ ×Mγ)pl

ταβ
��

Φpl
α,β,γ // (Mα+β ×Mγ)pl

Πpl
α+β,γ ��

(Mα ×Mβ)pl ×Mpl
γ

Φpl
α,β×id

Mpl
γ //Mpl

α+β ×M
pl
γ .

(4.32)

Using the implicit identifications (Mα×Mβ×Mγ)pl ∼= (Mβ×Mγ×Mα)pl ∼=
(Mγ ×Mα ×Mβ)pl, using (3.4)–(3.5) we can show that

Φpl
α+β,γ ◦ Φpl

α,β,γ = Φpl
β+γ,α ◦ Φpl

β,γ,α = Φpl
γ+α,β ◦ Φpl

γ,α,β :

(Mα ×Mβ ×Mγ)pl −→Mpl
α+β+γ .

(4.33)

Let ζ ∈ Ha(Mpl
α ), η ∈ Hb(Mpl

β ) and θ ∈ Hc(Mpl
γ ), so that ζ � η �

θ ∈ Ha+b+c(Mpl
α × M

pl
β × M

pl
γ ). Apply Assumption 2.39(e) to (4.31) with
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Π∗(Mα×Mβ)pl(Θ̌
•
α,β), Π∗(Mβ×Mγ)pl(Θ̌

•
β,γ), Π∗(Mγ×Mα)pl(Θ̌

•
γ,α) in place of E•12, E

•
23,

E•31, respectively. Evaluating (2.53) on ζ � η � θ shows that

(−1)χ(γ,α) PE
(
[τ∗23 ◦Π∗(Mβ×Mγ)pl(Θ̌

•
β,γ)⊕ τ∗31 ◦Π∗(Mγ×Mα)pl(Θ̌

•
γ,α)∨]

)
◦ PE

(
[Π∗(Mα×Mβ)pl(Θ̌

•
α,β)]

)
(ζ � η � θ)+

(−1)χ(α,β) PE
(
[τ∗31 ◦Π∗(Mγ×Mα)pl(Θ̌

•
γ,α)⊕ τ∗12 ◦Π∗(Mα×Mβ)pl(Θ̌

•
α,β)∨]

)
◦ PE

(
[Π∗(Mβ×Mγ)pl(Θ̌

•
β,γ)]

)
(ζ � η � θ)+

(−1)χ(β,γ) PE
(
[τ∗12 ◦Π∗(Mα×Mβ)pl(Θ̌

•
α,β)⊕ τ∗23 ◦Π∗(Mβ×Mγ)pl(Θ̌

•
β,γ)∨]

)
◦ PE

(
[Π∗(Mγ×Mα)pl(Θ̌

•
γ,α)]

)
(ζ � η � θ) = 0.

(4.34)

By supercommutativity of �, the natural isomorphisms

Mpl
α ×M

pl
β ×M

pl
γ
∼=Mpl

β ×M
pl
γ ×M

pl
α
∼=Mpl

γ ×M
pl
α ×M

pl
β

induce identifications in homology

(−1)caζ � η � θ ∼= (−1)abη � θ � ζ ∼= (−1)bcθ � ζ � η.

Multiplying (4.34) by (−1)ca and using these identifications and (4.30) yields

(−1)ca+χ(γ,α) PE
(
[τ∗23 ◦Π∗(Mβ×Mγ)pl(Θ̌

•
β,γ)⊕ τ∗31 ◦Π∗(Mγ×Mα)pl

◦ (σpl
γ,α)∗(Θ̌•α,γ)[−2n]]

)
◦ PE

(
[Π∗(Mα×Mβ)pl(Θ̌

•
α,β)]

)
(ζ � η � θ)+

(−1)ab+χ(α,β) PE
(
[τ∗31 ◦Π∗(Mγ×Mα)pl(Θ̌

•
γ,α)⊕ τ∗12 ◦Π∗(Mα×Mβ)pl

◦ (σpl
α,β)∗(Θ̌•β,α)[−2n]]

)
◦ PE

(
[Π∗(Mβ×Mγ)pl(Θ̌

•
β,γ)]

)
(η � θ � ζ)+

(−1)bc+χ(β,γ) PE
(
[τ∗12 ◦Π∗(Mα×Mβ)pl(Θ̌

•
α,β)⊕ τ∗23 ◦Π∗(Mβ×Mγ)pl

◦ (σpl
β,γ)∗(Θ̌•γ,β)[−2n]]

)
◦ PE

(
[Π∗(Mγ×Mα)pl(Θ̌

•
γ,α)]

)
(θ � ζ � η) = 0.

Using Assumption 2.39(d), and dropping the shifts [−2n] as they do not
affect K-theory classes, we see that

(−1)ca+χ(γ,α) PE
(
[τ∗23◦Π∗(Mβ×Mγ)pl(Θ̌

•
β,γ)⊕τ∗31◦Π∗(Mγ×Mα)pl ◦(σpl

γ,α)∗(Θ̌•α,γ)]
)

◦
(
(PE([Θ̌•α,β ])(ζ � η))� θ

)
+

(−1)ab+χ(α,β) PE
(
[τ∗31◦Π∗(Mγ×Mα)pl(Θ̌

•
γ,α)⊕τ∗12◦Π∗(Mα×Mβ)pl ◦(σpl

α,β)∗(Θ̌•β,α)]
)

◦
(
(PE([Θ̌•β,γ ])(η � θ))� ζ

)
+

(−1)bc+χ(β,γ) PE
(
[τ∗12◦Π∗(Mα×Mβ)pl(Θ̌

•
α,β)⊕τ∗23◦Π∗(Mβ×Mγ)pl ◦(σpl

β,γ)∗(Θ̌•γ,β)]
)

◦
(
(PE([Θ̌•γ,α])(θ � ζ))� η

)
= 0. (4.35)

By pushing (3.9) down along the [∗/Gm]-bundles Πpl
α,β,γ ,Π

pl
α+β,γ in the top

square of (4.32), we obtain an isomorphism

τ∗23 ◦Π∗(Mβ×Mγ)pl(Θ̌
•
β,γ)⊕ τ∗31 ◦Π∗(Mγ×Mα)pl ◦ (σpl

γ,α)∗(Θ̌•α,γ)

∼= (Φpl
α,β,γ)∗(Θ̌•α+β,γ).
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Substituting this and its cyclic permutations into (4.35), and pushing forward

to H∗(Mpl
α+β+γ) by the morphisms (4.33) using functoriality of H∗(−) yields

(−1)ca+χ(γ,α)Hd(Φ
pl
α+β,γ) ◦Hd(Φ

pl
α,β,γ) ◦ PE

(
[(Φpl

α,β,γ)∗(Θ̌•α+β,γ)]
)

◦
(
(PE([Θ̌•α,β ])(ζ � η))� θ

)
+

(−1)ab+χ(α,β)Hd(Φ
pl
β+γ,α) ◦Hd(Φ

pl
β,γ,α) ◦ PE

(
[(Φpl

β,γ,α)∗(Θ̌•β+γ,α)]
)

◦
(
(PE([Θ̌•β,γ ])(η � θ))� ζ

)
+

(−1)bc+χ(β,γ)Hd(Φ
pl
γ+α,β) ◦Hd(Φ

pl
γ,α,β) ◦ PE

(
[(Φpl

γ,α,β)∗(Θ̌•γ+α,β)]
)

◦
(
(PE([Θ̌•γ,α])(θ � ζ))� η

)
= 0,

(4.36)

where d = a+ b+ c− 2(χ(α, β) + χ(β, γ) + χ(γ, α))− 4.
Applying Assumption 2.39(b) to the bottom square of (4.32), which is a

pullback square of principal [∗/Gm]-bundles, gives

Hd(Φ
pl
α,β,γ) ◦ PE

(
[(Φpl

α,β,γ)∗(Θ̌•α+β,γ)]
)

= PE([Θ̌•α+β,γ ]) ◦Ha+b+c−2χ(α,β)−2(Φpl
α,β × idMpl

γ
).

Substituting this and its cyclic permutations into (4.36) shows that

(−1)ca+χ(γ,α)Hd(Φ
pl
α+β,γ) ◦ PE([Θ̌•α+β,γ ]) ◦Ha+b+c−2χ(α,β)−2(Φpl

α,β × idMpl
γ

)

◦
(
(PE([Θ̌•α,β ])(ζ � η))� θ

)
+

(−1)ab+χ(α,β)Hd(Φ
pl
β+γ,α) ◦ PE([Θ̌•β+γ,α]) ◦Hb+c+a−2χ(β,γ)−2(Φpl

β,γ × idMpl
α

)

◦
(
(PE([Θ̌•β,γ ])(η � θ))� ζ

)
+

(−1)bc+χ(β,γ)Hd(Φ
pl
γ+α,β) ◦ PE([Θ̌•γ+α,β ]) ◦Hc+a+b−2χ(γ,α)−2(Φpl

γ,α × idMpl
β

)

◦
(
(PE([Θ̌•γ,α])(θ � ζ))� η

)
= 0. (4.37)

Using (3.1)–(3.2) we find that:

(−1)χ(γ,α)+χ(γ,γ)χ(α,α)εα,βεα+β,γ

= (−1)χ(α,β)+χ(α,α)χ(β,β)εβ,γεβ+γ,α

= (−1)χ(β,γ)+χ(β,β)χ(γ,γ)εγ,αεγ+α,β .

Multiplying (4.37) by these signs and by (−1)aχ(β,β)+bχ(γ,γ)+cχ(α,α) and using
compatibility of H∗(−) and �, we deduce that

(−1)(c+χ(γ,γ)−2)(a+χ(α,α)−2) · εα+β,γ(−1)(a+b)χ(γ,γ) ·Hd(Φ
pl
α+β,γ)◦PE([Θ̌•α+β,γ ])

◦
{(
εα,β(−1)aχ(β,β) ·Ha+b−2χ(α,β)−2(Φpl

α,β) ◦ PE([Θ̌•α,β ])(ζ � η)
)
� θ
}

+

(−1)(a+χ(α,α)−2)(b+χ(β,β)−2) · εβ+γ,α(−1)(b+c)χ(α,α) ·Hd(Φ
pl
β+γ,α)◦PE([Θ̌•β+γ,α])

◦
{(
εβ,γ(−1)bχ(γ,γ) ·Hb+c−2χ(β,γ)−2(Φpl

β,γ) ◦ PE([Θ̌•β,γ ])(η � θ)
)
� ζ
}

+

(−1)(b+χ(β,β)−2)(c+χ(γ,γ)−2) · εγ+α,β(−1)(c+a)χ(β,β) ·Hd(Φ
pl
γ+α,β)◦PE([Θ̌•γ+α,β ])

◦
{(
εγ,α(−1)cχ(α,α) ·Hc+a−2χ(γ,α)−2(Φpl

γ,α) ◦ PE([Θ̌•γ,α])(θ � ζ)
)
� η
}

= 0.
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By (3.55) and ã = a+ χ(α, α)− 2, b̃ = b+ χ(β, β)− 2 and c̃ = c+ χ(γ, γ)− 2,
this is equivalent to

(−1)c̃ã[[ζ, η]pl, θ]pl + (−1)ãb̃[[η, θ]pl, ζ]pl + (−1)b̃c̃[[θ, ζ]pl, η]pl = 0.

This proves the graded Jacobi identity for [ , ]pl, completing part (a).
For part (b), let α, β ∈ K(A). Consider the diagram

[∗/Gm]×[∗/Gm]
×M′α ×M

′
β

id[∗/Gm]2×Πpl
α,β

��

Ω×idM′α×M
′
β

// [∗/Gm]×
M′α ×M

′
β

id[∗/Gm]×Πpl
α,β

��

ΠM′α×M
′
β

//M′α ×M
′
β

Πpl
α,β

��[∗/Gm]×[∗/Gm]
×(Mα×Mβ)pl

id[∗/Gm]×Ψpl
α,β��

Ω×id
(Mα×Mβ)pl

// [∗/Gm]×
(Mα ×Mβ)pl

Ψpl
α,β

��

Π
(Mα×Mβ)pl

// (Mα ×Mβ)pl

Π̌pl
α,β

��
[∗/Gm]×
(Mα ×Mβ)pl

Ψpl
α,β // (Mα ×Mβ)pl

Π̌pl
α,β //Mpl

α ×M
pl
β .

(4.38)

Here the top squares obviously commute, the bottom left square commutes by
(2.20) for the [∗/Gm]-action Ψpl

α,β , and the bottom right square commutes as

Π̌pl
α,β is a principal [∗/Gm]-bundle with [∗/Gm]-action Ψpl

α,β .
The three right hand horizontal morphisms in (4.38) are principal [∗/Gm]-

bundles, with the top two trivial, and the left hand morphisms are the cor-
responding [∗/Gm]-actions. The right hand squares are pullback squares of
principal [∗/Gm]-bundles, and the left hand squares show these pullbacks are
compatible with the given [∗/Gm]-actions.

We have a perfect complex Θ̌•α,β on (Mα×Mβ)pl, the bottom middle object
in (4.38), which is weight 1 for the [∗/Gm]-action. Pullback by the middle
column in (4.38) yields

(Ψpl
α,β ◦ (id[∗/Gm]2 ×Πpl

α,β))∗(Θ̌•α,β)

∼= (id[∗/Gm]2 ×Πpl
α,β)∗(π∗[∗/Gm](E1)⊗ π∗(Mα×Mβ)pl(Θ̌

•
α,β))

∼= π∗[∗/Gm](E1)⊗ π∗M′α×M′β (Θ•α,β),

(4.39)

where the first step holds by (2.28) as Θ̌•α,β is weight 1 for Ψpl
α,β , and the second

as (Πpl
α,β)∗(Θ̌•α,β) ∼= Θ•α,β |M′α×M′β . Let ζ ∈ Ha(M′α) and η ∈ Hb(M′β), and set
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d = a+ b− 2χ(α, β)− 2. Then we have

Πpl
t=0

(
[Π(ζ),Π(η)]t=0

)
= Πpl

t=0 ◦Π
(
[ζ, η]0

)
= Hd(Π

pl
α+β)

(
[ζ, η]0

)
= Hd(Π

pl
α+β)

[ ∑
i>0: 2i6a+b,
i>χ(α,β)+1

εα,β(−1)aχ(β,β) ·Hd(Ξα,β)(
ti−χ(α,β)−1 �

[
(ζ � η) ∩ ci([Θ•α,β ])

])]
= εα,β(−1)aχ(β,β) ·Hd(Π

pl
α+β ◦ Ξα,β)

◦ PE
(
[π∗[∗/Gm](E1)⊗ π∗M′α×M′β (Θ•α,β)]

)
(ζ � η)

= εα,β(−1)aχ(β,β) ·Hd

(
Φpl
α,β ◦Ψpl

α,β ◦ (id[∗/Gm]2 ×Πpl
α,β)

)
◦ PE

(
[(Ψpl

α,β ◦ (id[∗/Gm]2 ×Πpl
α,β))∗(Θ̌•α,β)]

)
(ζ � η)

= εα,β(−1)aχ(β,β) ·Hd(Φ
pl
α,β) ◦ PE([Θ̌•α,β ]) ◦Ha+b(Π̌

pl
α,β ◦Πpl

α,β)(ζ � η)

= εα,β(−1)aχ(β,β) ·Hd(Φ
pl
α,β) ◦ PE([Θ̌•α,β ])

(
Πpl
α (ζ)�Πpl

β (η)
)

=
[
Ha(Πpl

α )(ζ), Hb(Π
pl
β )(η)

]
pl =

[
Πpl
t=0 ◦Π(ζ),Πpl

t=0 ◦Π(η)
]
pl. (4.40)

Here Π(ζ) involves the projection Π : H∗(M′α) → H∗(M′α)t=0 from Defini-

tion 3.19, and Πpl
t=0 is as in (3.50). The first step of (4.40) uses [Π(ζ),Π(η)]t=0 =

Π([ζ, η]0) by (3.42). The second and ninth steps follow from Πpl
t=0◦Π = H∗(Π

pl
γ )

as in Definition 3.22, for γ = α, β, α+β. We use (3.22) in the third step, Assump-

tion 2.39(a) and functoriality of H∗(−) in the fourth, (4.39) and Πpl
α+β ◦Ξα,β =

Φpl
α,β ◦ Ψpl

α,β ◦ (id[∗/Gm]2 × Πpl
α,β) in the fifth, Assumption 2.39(b) for the right

hand rectangle in (4.38) in the sixth, Π̌pl
α,β ◦Πpl

α,β = Πpl
α ×Πpl

β and compatibility
of � with H∗(−) in the seventh, and (3.55) in the eighth.

Since Π : H∗(M′) → H∗(M′)t=0 is surjective, equation (4.40) implies that

Πpl
t=0 : H∗(M′)t=0 → H∗(Mpl) is a morphism of graded Lie algebras over R.

This completes the proof of Theorem 3.29.

4.7 Proof of Theorem 3.33

Work in the situation of Definition 3.32. We must show [ , ]rk>0 satisfies graded
antisymmetry (3.45) and the graded Jacobi identity (3.46). Let ζ ∈ Ha(Mα),
η ∈ Hb(Mβ), and θ ∈ Hc(Mγ) for α, β, γ ∈ K(A) with rkα, rkβ, rk γ > 0 and

a, b, c > 0, and write a = ã+ 2−χ(α, α), b = b̃+ 2−χ(β, β), c = c̃+ 2−χ(γ, γ),
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so that ζ ∈ H̃ã(Mα), and so on. Then for antisymmetry we have

[η, ζ]rk>0 =
∑

l>0:2l6a+b−2χ(α,β)−2

( − rkβ

rk(α+ β)

)l
· tl � [η, ζ]l

=
∑

l,m>0: 2(l+m)6a+b−2χ(α,β)−2

(−1)1+ãb̃+l+m
( − rkβ

rk(α+ β)

)l
· tl �

(
tm � [ζ, η]l+m

)
=

∑
l,m>0: 2(l+m)6a+b−2χ(α,β)−2

(−1)1+ãb̃+l+m
( − rkβ

rk(α+ β)

)l
·
(
tl ? tm

)
� [ζ, η]l+m

=
∑

l,m>0: 2(l+m)6a+b−2χ(α,β)−2

(−1)1+ãb̃+l+m

(
l +m

l

)( − rkβ

rk(α+ β)

)l
· tl+m � [ζ, η]l+m

=
∑

n>0: 2n6a+b−2χ(α,β)−2

(−1)1+ãb̃+n
(

1 +
− rkβ

rk(α+ β)

)n
· tn � [ζ, η]n

= (−1)ãb̃+1
∑

n>0: 2n6a+b−2χ(α,β)−2

( − rkα

rk(α+ β)

)n
· tn � [ζ, η]n

= (−1)ãb̃+1[ζ, η]rk>0,

using (3.59) in the first and last steps, (3.28) in the second, (3.18) in the third,
(3.15) in the fourth, and changing variables to n = l+m and using the binomial
theorem in the fifth.

For the Jacobi identity, with d = ã+b̃+c̃−χ(α+β+γ, α+β+γ)+2 we have

(−1)c̃ã[[ζ, η]rk>0, θ]rk>0+(−1)ãb̃[[η, θ]rk>0, ζ]rk>0+(−1)b̃c̃[[θ, ζ]rk>0, η]rk>0

=
∑

l,m>0: 2l6d, 2m6a+b−2χ(α,β)−2

(−1)c̃ã
( − rkα

rk(α+β)

)m( − rk(α+β)
rk(α+β+γ)

)l · tl � [tm � [ζ, η]m, θ]l

+
∑

l,m>0: 2l6d, 2m6b+c−2χ(β,γ)−2

(−1)ãb̃
( − rk β

rk(β+γ)

)m( − rk(β+γ)
rk(α+β+γ)

)l · tl � [tm � [η, θ]m, ζ]l

+
∑

l,m>0: 2l6d, 2m6c+a−2χ(γ,α)−2

(−1)b̃c̃
( − rk γ

rk(γ+α)

)m( − rk(γ+α)
rk(α+β+γ)

)l · tl � [tm � [θ, ζ]m, η]l

=
∑

l,m>0: 2l6d, m6l

(−1)c̃ã(−1)l
(
l
m

) (rkα)m(rk(α+β))l−m

(rk(α+β+γ))m+l−m · tl � [[ζ, η]m, θ]l−m

+
∑

l,m>0: 2l6d, m6l

(−1)ãb̃(−1)l
(
l
m

) (rk β)m(rk(β+γ))l−m

(rk(α+β+γ))m+l−m · tl � [[η, θ]m, ζ]l−m
(4.41)

+
∑

l,m>0: 2l6d, m6l

(−1)b̃c̃(−1)l
(
l
m

) (rk γ)m(rk(γ+α))l−m

(rk(α+β+γ))m+l−m · tl � [[θ, ζ]m, η]l−m
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=
∑

m,n>0: 2(m+n)6d

(−1)c̃ã+m+n
(
m+n
n

)
xm(x+ y)n · tm+n � [[ζ, η]m, θ]n

+
∑

m,n>0: 2(m+n)6d

(−1)ãb̃+m+n
(
m+n
n

)
ym(y + z)n · tm+n � [[η, θ]m, ζ]n

+
∑

m,n>0: 2(m+n)6d

(−1)b̃c̃+m+n
(
m+n
n

)
zm(z + x)n · tm+n � [[θ, ζ]m, η]n = 0,

using (3.59) in the first step, (3.26) in the second, changing variables from l to
n = l − m and substituting x = rkα

rk(α+β+γ) , y = rk β
rk(α+β+γ) , z = rk γ

rk(α+β+γ) so

that x+ y + z = 1 in the third, and using (3.35) with l = 0 in the fourth.

4.8 Proof of Proposition 3.35

Let α, β ∈ K(A) with rkα, rkβ > 0 and ζ ∈ Ha(Mα), η ∈ Hb(Mβ) for a, b > 0.
Then setting d = a+ b− 2χ(α, β)− 2, we have

[ζ, η]rk>0 =
∑

i,n>0: 2i6a+b,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β)
( − rkα

rk(α+β)

)n ·Hd(Ψα+β)
(
tn�{

Hd−2n(Ξα,β)
(
ti−n−χ(α,β)−1�

[
(ζ � η)∩ci([Θ•α,β ])

])})
=

∑
i,n>0: 2i6a+b,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β)
( − rkα

rk(α+β)

)n ·Hd

(
Ψα+β ◦ (idGm × Ξα,β)

)
(
tn1 � t

i−n−χ(α,β)−1
2 �

[
(ζ � η) ∩ ci([Θ•α,β ])

])
=

∑
i,n>0: 2i6a+b,
i>n+χ(α,β)+1

εα,β(−1)aχ(β,β)
( − rkα

rk(α+β)

)n ·Hd(Xα,β) ◦Hd(Υ× idMα×Mβ
)(

tn1 � t
i−n−χ(α,β)−1
2 �

[
(ζ � η) ∩ ci([Θ•α,β ])

])
=

∑
i,n,p,q>0: 2i6a+b, n6p,
p+q=i−χ(α,β)−1

εα,β(−1)aχ(β,β)
(
p

n−q
)( − rkα

rk(α+β)

)n−q( − rkα
rk(α+β)

)q·
Hd(Xα,β)

(
tp1 � t

q
2 �

[
(ζ � η) ∩ ci([Θ•α,β ])

])
=

∑
i,p,q>0: 2i6a+b,
i=p+q+χ(α,β)+1

εα,β(−1)q+aχ(β,β) (rk β)p(rkα)q

(rk(α+β))p+q ·

Hd(Xα,β)
(
tp1 � t

q
2 �

[
(ζ � η) ∩ ci([Θ•α,β ])

])
,

(4.42)

using (3.17), (3.22) and (3.59) in the first step, functoriality of H∗(−) and
compatibility with � in the second, and the next equation which follows from
(3.6)–(3.7), (3.20), and (3.62), and functoriality of H∗(−), in the third:

Ψα+β ◦ (idGm × Ξα,β) = Xα,β ◦ (Υ× idMα×Mβ
) :

[∗/Gm]× [∗/Gm]×Mα ×Mβ −→Mα+β ,

where Υ : [∗/Gm]2 → [∗/Gm]2 is the stack morphism induced by the group
morphism υ : G2

m → G2
m mapping υ : (λ, µ) 7→ (λµ, λ)

The fourth step of (4.42) substitutes in the formula for H∗(Υ):

H2n+2m(Υ) : tn1 � t
m
2 7−→

∑
p,q>0: p+q=n+m, q6n

(
p

n−q
)
· tp1 � t

q
2,
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which can be proved from Assumption 2.30(c). The last step uses∑p+q
n=q

(
p

n−q
)( − rkα

rk(α+β)

)n−q
=
(
1− rkα

rk(α+β)

)p
=
(

rk β
rk(α+β)

)p
,

by the binomial theorem. Equation (4.42) proves (3.63), and Proposition 3.35.

4.9 Proof of Proposition 3.37

In the situation of Proposition 3.37, we have

[sm♥ζ, sn♥η]rk>0 = m!n!(rkα)−m(rkβ)−n · [tm � ζ, tn � η]rk>0

= m!n!(rkα)−m(rkβ)−n ·
∑

l>0: 2(l−m−n)6a+b−2χ(α,β)−2

( − rkα
rk(α+β)

)l · tl � [tm � ζ, tn � η]l

=
∑

k,l>0: k6n,
2(k+l−m−n)6
a+b−2χ(α,β)−2

m!n!(rkα)−m(rkβ)−n
( − rkα

rk(α+β)

)l·
(−1)m

(
l
m

)(
l−m
n−k
)
· tl �

(
tk � [ζ, η]k+l−m−n

)
=

∑
k,l>0: k6n,
2(k+l−m−n)6
a+b−2χ(α,β)−2

m!n!(rkα)−m(rkβ)−n
( − rkα

rk(α+β)

)l ·
(−1)m

(
l
m

)(
l−m
n−k
)(
k+l
k

)
· tk+l � [ζ, η]k+l−m−n

=
∑

j,k>0: k6n,
2j6a+b
−2χ(α,β)−2

m!n!(rkα)−m(rkβ)−n
( − rkα

rk(α+β)

)j−k+m+n ·

(−1)m (j−k+m+n)!
m!(j−k+n)!

(j−k+n)!
(n−k)!j!

(j+m+n)!
k!(j−k+m+n)! · t

j+m+n � [ζ, η]j

=
∑

j>0: 2j6a+b
−2χ(α,β)−2

(rkα)−m(rkβ)−n
( − rkα

rk(α+β)

)j+m[∑n
k=0

(
n
k

)( − rkα
rk(α+β)

)n−k] ·
(−1)m(m+ n)! · tm+n �

(
tj � [ζ, η]j

)
= (m+ n)!(rk(α+ β))−m−n · tm+n �

∑
j>0: 2j6a+b−2χ(α,β)−2

( − rkα
rk(α+β)

)j · tj � [ζ, η]j

= sm+n♥[ζ, η]rk>0,

using (3.64) in the first step, (3.59) in the second, (3.26)–(3.27) in the third,
(3.15) and (3.18) in the fourth, changing variables from l to j = k + l −m− n
in the fifth, using (3.26)–(3.27) and rearranging in the sixth, substituting in∑n
k=0

(
n
k

)( − rkα
rk(α+β)

)n−k
=
(

rk β
rk(α+β)

)n
by the binomial theorem in the seventh,

and (3.59) and (3.64) in the eighth. This proves (3.65), and the proposition.

4.10 Proof of Theorem 3.40

We work in the situation of Definition 3.39.

4.10.1 Proof of graded antisymmetry of [ , ]mix

First we prove graded antisymmetry of [ , ]mix, that if α, β ∈ K(A) and ζ̄ ∈
Ha(Mα)mix, η̄ ∈ Hb(Mβ)mix, and ã = a+χ(α, α)− 2, b̃ = b+χ(β, β)− 2, then

[η̄, ζ̄]mix = (−1)ãb̃+1[ζ̄, η̄]mix. (4.43)
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We do this following the cases of Definition 3.39(a)–(e).
In case (a) (rkα, rkβ, rk(α+β) 6= 0), equation (4.43) follows from the proof of

Theorem 3.33 in §4.7, and in case (b) (rkα = rkβ = 0) it follows from Theorem
3.20. For case (c), with rkα = 0 and rkβ 6= 0, let sm ⊗ (ζ + It � H∗(Mα)) ∈
Ha(Mα)mix for ζ ∈ Ha(Mα), and η ∈ Hb(Mβ)mix = Hb(Mβ). Then[

η, sm ⊗ (ζ + It �H∗(Mα))
]mix

= sm♥
( ∑
n>0: 2n6a+b−2χ(α,β)−2

(−1)ntn � [η, ζ]n

)
= sm♥

( ∑
k,n>0: 2(k+n)6a+b−2χ(α,β)−2

(−1)1+ãb̃+k · tn �
(
tk � [ζ, η]k+n

))
= sm♥

( ∑
k,n>0: 2(k+n)6a+b−2χ(α,β)−2

(−1)1+ãb̃+k
(
k+n
k

)
· tk+n � [ζ, η]k+n

)
= sm♥

( ∑
j>0: 2j6a+b−2χ(α,β)−2

(−1)1+ãb̃
[∑j

k=0(−1)k
(
j
k

)]
· tj � [ζ, η]j

)
= (−1)1+ãb̃ · sm♥[ζ, η]0 = (−1)1+ãb̃

[
sm ⊗ (ζ + It �H∗(Mα)), η

]mix
,

using (3.69) in the first step, (3.28) and (3.64) in the second, and (3.15) and
(3.18) in the third, changing variables from n to j = k + n in the fourth,

substituting
∑j
k=0(−1)k

(
j
k

)
= (1 − 1)j by the binomial theorem which is 1 if

j = 0 and 0 otherwise in the fifth, and using (3.68) in the sixth. This proves
(4.43) in case (c). Case (d) follows from case (c) by exchanging ζ, η.

For case (e) (rkα = − rkβ 6= 0), we have

[η, ζ]mix =
∑

n>0: 2n6a+b−2χ(α,β)−2

(rkα)n

n! · sn ⊗
(
[η, ζ]n + It �H∗(M0)

)
=
∑
n>0: 2n6a+b−2χ(α,β)−2

(− rk β)n

n! ·sn⊗
(
(−1)1+ãb̃+n[ζ, η]n+It�H∗(M0)

)
=(−1)ãb̃+1[ζ, η]mix,

using (3.70) in the first and third steps, and (3.28) modulo It and rkα = − rkβ
in the second. This proves (4.43).

4.10.2 Proof of equation (3.72)

Let α, β ∈ K(A), ζ ∈ H∗(Mα)mix, η ∈ H∗(Mβ)mix and m,n > 0. We will prove
(3.72) following the cases of Definition 3.39(a)–(e). Case (a) (rkα, rkβ, rk(α +
β) 6= 0) follows from Proposition 3.37. Case (b) (rkα = rkβ = 0) is obvious
from sm♥(sn ⊗ ζ̄) = sm+n ⊗ ζ̄ and (3.67). For case (c), with rkα = 0 and
rkβ 6= 0, let sp ⊗ (ζ + It � H∗(Mα)) ∈ Ha(Mα)mix for ζ ∈ Ha(Mα), and
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η ∈ Hb(Mβ)mix = Hb(Mβ). Then[
sm♥(sp ⊗ (ζ + It �H∗(Mα))), sn♥η

]
mix

=
[
sm+p ⊗ (ζ + It �H∗(Mα))), n!(rkβ)−n · tn � η

]
mix

= n!(rkβ)−n · sm+p♥[ζ, tn � η]0 = sm+p♥
(
n!(rkβ)−n · tn � [ζ, η]0

)
= sm+p♥

(
sn♥[ζ, η]0

)
= sm+n♥

(
sp♥[ζ, η]0

)
= sm+n♥

[
sp ⊗ (ζ + It �H∗(Mα)), η

]
mix,

using sm♥(sp ⊗ ζ̄) = sm+p ⊗ ζ̄ and (3.64) in the first step, (3.68) in the second,
(3.27) in the third, (3.64) in the fourth, that ♥ is an R[s]-action in the fifth,
and (3.68) in the sixth. Case (d) follows from (c) and (4.43). For case (e)
(rkα = − rkβ 6= 0), if ζ ∈ Ha(Mα), η ∈ Hb(Mβ) and m,n > 0 we have[
sm♥ζ, sn♥η

]
mix

=
∑

p>0: 2p6a+b+2m+2n−2χ(α,β)−2

m!(rkα)−mn!(rkβ)−n
(rkβ)p

p!
· sp ⊗

(
[tm � ζ, tnη]p + It �H∗(M0)

)
=

∑
p>0: 2p6a+b+2m+2n−2χ(α,β)−2

m!n!
p! (rkβ)p−m−n

(
p
m

)(
p−m
n

)
· sp ⊗

(
[ζ, η]p−m−n + It �H∗(M0)

)
=

∑
q>0: 2q6a+b−2χ(α,β)−2

(rk β)q

q! · sm+n+q ⊗
(
[ζ, η]q + It �H∗(M0)

)
= sm+n♥[ζ, η]mix,

using (3.64) and (3.70) in the first step, (3.26)–(3.27) modulo It and rkα =
− rkβ in the second, changing variables to q = p−m−n and rearranging bino-
mial coefficients in the third, and using (3.70) and sm+n♥(sq⊗ θ̄) = sm+n+q⊗ θ̄
in the fourth. This proves (3.72).

4.10.3 Proof of the graded Jacobi identity for [ , ]mix

Finally we prove the graded Jacobi identity, that if α, β, γ ∈ K(A) and ζ̄ ∈
Ha(Mα)mix, η̄ ∈ Hb(Mβ)mix, θ̄ ∈ Hc(Mγ)mix, and ã = a + χ(α, α) − 2, b̃ =
b+ χ(β, β)− 2, c̃ = c+ χ(γ, γ)− 2, then

(−1)c̃ã[[ζ̄, η̄]mix, θ̄]mix+(−1)ãb̃[[η̄, θ̄]mix, ζ̄]mix+(−1)b̃c̃[[θ̄, ζ̄]mix, η̄]mix =0. (4.44)

We must split into cases according to whether each of rkα, rkβ, rk γ, rk(α+ β),
rk(β + γ), rk(γ + α), rk(α + β + γ) are zero or nonzero. This gives 18 possible
cases, but as (4.44) is invariant under cyclic permutations of (α, β, γ), (ã, b̃, c̃),
(ζ̄, η̄, θ̄), up to cyclic permutations we reduce to the following eight cases:

(a) all rkα, . . . , rk(α+β+γ) nonzero; (b) rkα = rkβ = rk γ = 0;

(c) rkα = rkβ = 0, rk γ 6= 0; (d) rkα = 0, all others nonzero;

(e) rkα = rk(β + γ) = 0, rkβ 6= 0; (f) rk(α+β)=0, all others nonzero;

(g) rk(α+β)=rk(α+γ)=0, rkα 6=0; (h) rk(α+β+γ)=0, others nonzero.
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We also make the following simplification: as (3.72) holds (proved in §4.10.2),
if rkα = 0 it is enough to verify (4.44) for elements ζ̄ = s0 ⊗ (ζ + It �H∗(Mα))
in Ha(Mα)mix, as sm♥

(
s0⊗ (ζ+ It �H∗(Mα))

)
= sm⊗ (ζ+ It �H∗(Mα)), and

similarly if rkβ, rk γ = 0. We set d=a+b+c−2χ(α, β)−2χ(α, γ)−2χ(β, γ)−4.
Case (a) follows from Theorem 3.33, and case (b) from (3.67) and Theorem

3.20. For case (c), let rkα = rkβ = 0, rk γ 6= 0 and consider ζ̄ = s0 ⊗ (ζ + It �
H∗(Mα)), η̄ = s0⊗ (η+It �H∗(Mβ)) and θ̄ = θ for ζ ∈ Ha(Mα), η ∈ Hb(Mβ),
and θ ∈ Hc(Mγ). Then

(−1)c̃ã[[ζ̄, η̄]mix, θ̄]mix+(−1)ãb̃[[η̄, θ̄]mix, ζ̄]mix+(−1)b̃c̃[[θ̄, ζ̄]mix, η̄]mix

= (−1)c̃ãs0♥[[ζ, η]0, θ]0 + (−1)ãb̃s0♥
( ∑
m>0: 2m6a+b+c−2χ(β+γ,α)−2

(−1)mtm � [[η, θ]0, ζ]m

)
+ (−1)b̃c̃s0♥

( ∑
m,n>0: 2n6c+a−2χ(γ,α)−2,
2m6a+b+c−2χ(γ+α,β)−2

(−1)m+ntm � [tn � [θ, ζ]n, η]m

)

= s0♥
(

(−1)c̃ã[[ζ, η]0, θ]0 + (−1)ãb̃
∑

m>0: 2m6a+b+c−2χ(β+γ,α)−2

(−1)mtm � [[η, θ]0, ζ]m

+ (−1)b̃c̃
∑

m,n>0: n6m,
2m6a+b+c−2χ(γ+α,β)−2

(−1)m
(
m

n

)
tm � [[θ, ζ]n, η]m−n

)
= 0,

using (3.67)–(3.69) in the first step, (3.26) in the second, and (3.35) with l = 0,
x = y = 0 and z = 1 in the third.

In case (d), if ζ̄ = s0⊗ (ζ + It �H∗(Mα)), η̄ = η and θ̄ = θ for ζ ∈ Ha(Mα),
η ∈ Hb(Mβ), and θ ∈ Hc(Mγ), then (4.44) follows from (4.41) with rkα = 0,
since (3.68)–(3.69) come from (3.59) with rkα = 0, and rkβ = 0, respectively.

In case (e), if ζ̄ = s0⊗ (ζ+ It �H∗(Mα)), η̄ = η, θ̄ = θ for ζ ∈ Ha(Mα),
η∈Hb(Mβ), θ∈Hc(Mγ), then

(−1)c̃ã[[ζ̄, η̄]mix, θ̄]mix+(−1)ãb̃[[η̄, θ̄]mix, ζ̄]mix+(−1)b̃c̃[[θ̄, ζ̄]mix, η̄]mix

=
∑

m>0: 2m6d

(−1)c̃ã (rk γ)m

m! · sm ⊗
(
[[ζ, η]0, θ]m + It �H∗(M0)

)
+

∑
m>0: 2m6b+c−2χ(β,γ)−2

(−1)ãb̃ (rk γ)m

m! · sm ⊗
(
[[η, θ]m, ζ]0 + It �H∗(M0)

)
+

∑
m,n>0: 2m6d, 2n6c+a−2χ(γ,α)−2

(−1)b̃c̃+n (rk β)m

m! · sm ⊗
(
[tn � [θ, ζ]n, η]m + It �H∗(M0)

)
=
∑
m>0:
2m6d

(rk γ)m

m! · sm ⊗
(

(−1)c̃ã [[ζ, η]0, θ]m + (−1)ãb̃ [[η, θ]m, ζ]0

+
∑

n>0: 2n6c+a−2χ(γ,α)−2

(−1)b̃c̃+m
(
m
n

)
[[θ, ζ]n, η]m−n + It �H∗(M0)

)
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=
∑
m>0:
2m6d

(rk γ)m

m! · sm ⊗
(

(−1)c̃ã [[ζ, η]0, θ]m − (−1)c̃ã [ζ, [η, θ]m]0

+
∑

k,n>0: 2k+2n6c+a−2χ(γ,α)−2

(−1)k
(
m
n

)
[η, tk � [ζ, θ]k+n]m−n + It �H∗(M0)

)
=
∑
m>0:
2m6d

(rk γ)m

m! · sm ⊗ (−1)c̃ã
(

[[ζ, η]0, θ]m − [ζ, [η, θ]m]0

+
∑

k,n>0: 2k+2n6c+a−2χ(γ,α)−2

(−1)c̃ã+k
(
m
n

)(
m−n
k

)
[η, [ζ, θ]k+n]m−n−k + It �H∗(M0)

)
=
∑
m>0:
2m6d

(rk γ)m

m! · sm ⊗ (−1)c̃ã
(

[[ζ, η]0, θ]m − [ζ, [η, θ]m]0

+
∑

k,p>0: k6p, 2p6c+a−2χ(γ,α)−2

(−1)c̃ã+k
(
m
p

)(
p
k

)
[η, [ζ, θ]p]m−p + It �H∗(M0)

)
=
∑
m>0:
2m6d

(rk γ)m

m! · sm ⊗ (−1)c̃ã
(

[[ζ, η]0, θ]m − [ζ, [η, θ]m]0

+ (−1)c̃ã[η, [ζ, θ]0]m + It �H∗(M0)
)

= 0,

using (3.68)–(3.70) in the first step, (3.26) and rkβ = − rk γ in the second,
(3.28) in the third, (3.27) in the fourth, changing variables from n to p = k+ n
in the fifth, using

∑p
k=0(−1)k

(
p
k

)
= 1 if p = 0 and 0 if p > 0 in the sixth, and

using (3.29) with l = 0 in the seventh.
In case (f), if ζ̄ = ζ, η̄ = η, θ̄ = θ for ζ ∈ Ha(Mα), η ∈ Hb(Mβ), and

θ ∈ Hc(Mγ), we have

(−1)c̃ã[[ζ̄, η̄]mix, θ̄]mix+(−1)ãb̃[[η̄, θ̄]mix, ζ̄]mix+(−1)b̃c̃[[θ̄, ζ̄]mix, η̄]mix

=
∑

m>0: 2m6a+b−2χ(α,β)−2

(−1)c̃ã (rk β)m

m! · sm♥[[ζ, η]m, θ]0

+
∑

l,m>0: 2l6d, 2m6b+c−2χ(β,γ)−2

(−1)ãb̃
( − rk β

rk(β+γ)

)m(− rk(β+γ)
rk γ

)l · tl � [tm � [η, θ]m, ζ]l

+
∑

l,m>0: 2l6d, 2m6c+a−2χ(γ,α)−2

(−1)b̃c̃
( − rk γ

rk(γ+α)

)m(− rk(γ+α)
rk γ

)l · tl � [tm � [θ, ζ]m, η]l

=
∑

m>0: 2m6a+b−2χ(α,β)−2

(−1)c̃ã
(

rk β
rk γ

)m · tm � [[ζ, η]m, θ]0

+
∑

l,m>0: 2l6d, m6l

(−1)ãb̃(−1)l
(
l
m

) (rk β)m(rk(β+γ))l−m

(rk γ)m+l−m · tl � [[η, θ]m, ζ]l−m

+
∑

l,m>0: 2l6d, m6l

(−1)b̃c̃(−1)l
(
l
m

) (rk γ)m(rk(γ+α))l−m

(rk γ)m+l−m · tl � [[θ, ζ]m, η]l−m
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=
∑

m,n>0: 2(m+n)6d

(−1)c̃ã+m+n
(
m+n
n

)
xm(x+ y)n · tm+n � [[ζ, η]m, θ]n

+
∑

m,n>0: 2(m+n)6d

(−1)ãb̃+m+n
(
m+n
n

)
ym(y + z)n · tm+n � [[η, θ]m, ζ]n

+
∑

m,n>0: 2(m+n)6d

(−1)b̃c̃+m+n
(
m+n
n

)
zm(z + x)n · tm+n � [[θ, ζ]m, η]n = 0,

using (3.59), (3.68) and (3.70) in the first step, (3.26) and (3.64) in the second,
changing variables from l to n = l −m and substituting x = − rk β

rk γ , y = rk β
rk γ ,

z = 1 so that x + y + z = 1 in the third, noting that x + y = 0 so only n = 0
contributes in the first sum, and using (3.35) with l = 0 in the fourth.

Similarly, in case (g), if ζ̄ = ζ, η̄ = η, θ̄ = θ for ζ ∈ Ha(Mα), η ∈ Hb(Mβ),
and θ ∈ Hc(Mγ), we have

(−1)c̃ã[[ζ̄, η̄]mix, θ̄]mix+(−1)ãb̃[[η̄, θ̄]mix, ζ̄]mix+(−1)b̃c̃[[θ̄, ζ̄]mix, η̄]mix

=
∑

m>0: 2m6a+b−2χ(α,β)−2

(−1)c̃ã (rk β)m

m! · sm♥[[ζ, η]m, θ]0

+
∑

l,m>0: 2l6d, 2m6b+c−2χ(β,γ)−2

(−1)ãb̃
( − rk β

rk(β+γ)

)m(− rk(β+γ)
rk γ

)l · tl � [tm � [η, θ]m, ζ]l

+
∑

m>0: 2m6c+a−2χ(γ,α)−2

(−1)b̃c̃ (rkα)m

m! · sm♥[[θ, ζ]m, η]0

=
∑

m>0: 2m6a+b−2χ(α,β)−2

(−1)c̃ã
(

rk β
rk γ

)m · tm � [[ζ, η]m, θ]0

+
∑

l,m>0: 2l6d, m6l

(−1)ãb̃(−1)l
(
l
m

) (rk β)m(rk(β+γ))l−m

(rk γ)m+l−m · tl � [[η, θ]m, ζ]l−m

+
∑

m>0: 2m6c+a−2χ(γ,α)−2

(−1)b̃c̃
(

rkα
rk β

)m · tm � [[θ, ζ]m, η]0

=
∑

m,n>0: 2(m+n)6d

(−1)c̃ã+m+n
(
m+n
n

)
xm(x+ y)n · tm+n � [[ζ, η]m, θ]n

+
∑

m,n>0: 2(m+n)6d

(−1)ãb̃+m+n
(
m+n
n

)
ym(y + z)n · tm+n � [[η, θ]m, ζ]n

+
∑

m,n>0: 2(m+n)6d

(−1)b̃c̃+m+n
(
m+n
n

)
zm(z + x)n · tm+n � [[θ, ζ]m, η]n = 0,

using (3.59), (3.68) and (3.70) in the first step, (3.26) and (3.64) in the second,
changing variables from l to n = l −m and substituting x = −1, y = z = 1 in
the third, noting that x + y = z + x = 0 so only n = 0 contributes in the first
and third sums of the third step, and using (3.35) with l = 0 in the fourth.

In case (h), if ζ̄ = ζ, η̄ = η, θ̄ = θ for ζ ∈ Ha(Mα), η ∈ Hb(Mβ), and
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θ ∈ Hc(Mγ), we have

(−1)c̃ã[[ζ̄, η̄]mix, θ̄]mix+(−1)ãb̃[[η̄, θ̄]mix, ζ̄]mix+(−1)b̃c̃[[θ̄, ζ̄]mix, η̄]mix

=
∑

l,m>0: 2l6d, 2m6a+b−2χ(α,β)−2

(−1)c̃ã
( − rkα

rk(α+β)

)m (rk γ)l

l! · sl ⊗
(
[tm � [ζ, η]m, θ]l + It �H∗(M0)

)
+

∑
l,m>0: 2l6d, 2m6b+c−2χ(β,γ)−2

(−1)ãb̃
( − rk β

rk(β+γ)

)m (rkα)l

l! · sl ⊗
(
[tm � [η, θ]m, ζ]l + It �H∗(M0)

)
+

∑
l,m>0: 2l6d, 2m6c+a−2χ(γ,α)−2

(−1)b̃c̃
( − rk γ

rk(γ+α)

)m (rk β)l

l! · sl ⊗
(
[tm � [θ, ζ]m, η]l + It �H∗(M0)

)
=

∑
l,m>0: 2l6d, m6l

(−1)c̃ã+m
(
l
m

)(
rkα
rk γ

)m (rk γ)l

l! · sl ⊗
(
[[ζ, η]m, θ]l−m + It �H∗(M0)

)
+

∑
l,m>0: 2l6d, m6l

(−1)ãb̃+m
(
l
m

)(
rk β
rkα

)m (rkα)l

l! · sl ⊗
(
[[η, θ]m, ζ]l−m + It �H∗(M0)

)
+

∑
l,m>0: 2l6d, m6l

(−1)b̃c̃+m
(
l
m

)(
rk γ
rk β

)m (rk β)l

l! · sl ⊗
(
[[θ, ζ]m, η]l−m + It �H∗(M0)

)
=

∑
l>0: 2l6d

sl ⊗
( ∑
m,n>0:
m+n=l

(−1)c̃ã+m (rkα)m(rk γ)n

m!n! [[ζ, η]m, θ]n +

(−1)ãb̃+m (rk β)m(rkα)n

m!n! [[η, θ]m, ζ]n +

(−1)b̃c̃+m (rk γ)m(rk β)n

m!n! [[θ, ζ]m, η]n+It�H∗(M0)
)

=0,

(4.45)

using (3.59) and (3.70) in the first step, (3.26) and rk(α + β + γ) = 0 in the
second, setting n = l −m and rewriting in the third.

In the fourth step we note that reducing (3.35) modulo It yields∑
m,n>0: m+n=l

(−1)c̃ã+l 1

m!n!
xm(x+y)n · [[ζ, η]m, θ]n +

∑
m,n>0: m+n=l

(−1)ãb̃+l
1

m!n!
ym(y+z)n · tm+n−l � [[η, θ]m, ζ]n +

∑
m,n>0: m+n=l

(−1)b̃c̃+l
1

m!n!
zm(z+x)n · tm+n−l � [[θ, ζ]m, η]n = 0 mod It.

This holds initially for x, y, z with x + y + z = 1, but as it is homogeneous of
degree l in x, y, z it also holds for x, y, z with x + y + z 6= 0, and then taking
limits shows it holds for all x, y, z. Putting x = rkα, y = rkβ and z = rk γ and
noting that rkα + rkβ + rk γ = 0 gives the fourth step of (4.45). This proves
(4.44), and Theorem 3.40.
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4.11 Proof of Theorem 3.47

Work in the situation of Definition 3.46. For (a), let α, β ∈ K(A), and consider
the diagram in Ho(Artlft

K ):

Mfpd
α ×M

fpd
β π

//

πMα×πMβ��

∗

Lα+β

��

(Lα,Lβ)

tt
Mα ×Mβ

Φα,β��

(Π̂pl◦detα)×(Π̂pl◦detβ) // Ppl×Ppl

Φ̂
**

Mα+β
Π̂pl◦detα+β // Ppl.

(4.46)

Here the top quadrilateral commutes by (3.80), the bottom by (3.73) and (3.78),
and the right hand triangle by Assumption 3.43(f). Thus (4.46) commutes.

Lifting to Artlft
K gives a 2-morphism η′ : (Π̂pl ◦ detα+β) ◦ (Φα,β ◦ (πMα ×

πMβ
))⇒ Lα+β ◦π. By the 2-Cartesian property in Definition 2.20 of the second

diagram in (3.80) for α+ β, there exist a 1-morphism

b :Mfpd
α ×Mfpd

β −→Mfpd
α+β

in Artlft
K and 2-isomorphisms

ζ : πMα+β
◦ b =⇒ Φα,β ◦ (πMα

× πMβ
), θ : π ◦ b⇒ π.

Now as in §2.3.2, Mα,Mβ ,Mα+β are Artin K-stacks, which are categories

with functors pMα : Mα → SchK, . . . , pMα+β
: Mα+β → SchK, and Mfpd

α ⊂
Mα, Mfpd

β ⊂ Mβ , Mfpd
α+β ⊂ Mα+β are substacks, which as in Definition 2.19

are subcategories closed under isomorphisms, and πMα
: Mfpd

α → Mα, . . . ,

πMα+β
:Mfpd

α+β →Mα+β are the inclusions of subcategories.

Let A ∈Mfpd
α , B ∈Mfpd

α be objects in these subcategories. Then (A,B) is

an object in Mfpd
α ×Mfpd

β , and evaluating ζ at (A,B) gives an isomorphism

ζ(A,B) : b(A,B) = πMα+β
◦b(A,B)→ Φα,β ◦(πMα

×πMβ
)(A,B) = Φα,β(A,B)

in the category Mα+β . As b(A,B) is an object in Mfpd
α+β ⊂ Mα+β , which is

closed under isomorphisms in Mα+β , we see that Φα,β(A,B) is an object in

Mfpd
α+β . A similar argument shows Φα,β maps morphisms in Mfpd

α ×Mfpd
β to

Mfpd
α+β . Hence Φα,β restricts to a unique Φfpd

α,β in (3.83), as we have to prove.

For the restriction Ψfpd
α in (3.84), we use a very similar argument, but re-

placing (4.46) by the diagram

[∗/Gm]×Mfpd
α π

//

id×πMα��

∗

Lα

��

[∗/Gm]×Mα

Ψα��

Υrkα×detα // [∗/Gm]×P
Ψ̂��

πP // P
Π̂pl

))
Mα

detα // P Π̂pl
// Ppl.

115



Here the top hexagon commutes by (3.80), the bottom left quadrilateral by
(3.74), and the bottom right by Assumption 3.43(h).

By restricting to substacks, we see that Φfpd
α,β ,Ψ

fpd
α satisfy the analogues of

(3.4)–(3.7). So Ψfpd
α is a [∗/Gm]-action onMfpd

α , and Ψ′fpd
α a free [∗/Gm]-action

onM′fpd
α . We noted in Definition 3.46 that (3.82) is 2-Cartesian, with columns

principal [∗/Gm]-fibrations. The rows of (3.82) are also inclusions of substacks,

so the [∗/Gm]-action for Πpfd
α,fpd must be the restriction of the [∗/Gm]-action Ψ′α

for Πpl
α . That is, Πpfd

α,fpd has [∗/Gm]-action Ψ′fpd
α . This proves (a).

For (b), let K be algebraically closed, and recall from Definition 2.23 that a
[∗/Gm]-principal bundle ρ : S → T lies in a commutative square (2.23) which
locally over T is equivalent to (2.24). Consider the diagram (really two diagrams
A,B combined)

M′fdα ≈
[∗/Zn]×Mpfd

α

πM′α
≈

inc×π
Mpl
α��

π
//

Πpfd
α,fd≈πMpfd

α ((

∗

Lα≈(∗,Lα)

��

id

((Mpfd
α

π
Mpl
α

��

π
// ∗

Lα

��

M′α ≈
[∗/Gm]×Mpl

α det′α≈
Υrkα×detpl

α

//

Πpl
α≈πMpl

α ((

P ≈
[∗/Gm]×Ppl

Π̂pl≈πPpl

((
Mpl

α

detpl
α // Ppl

(4.47)

in Ho(Artlft
K ). Here when we write ‘A ≈ B’ for an object or morphism, we mean

that B is the local approximation of A over Mpl
α and Ppl, as in (2.23)–(2.24).

If we just write a single object or morphism A, then A = B, that is, A is equal
to its local approximation.

For the ‘A’ part of the ‘A ≈ B’ in (4.47), the top left and bottom right
rectangles are the 2-Cartesian squares (3.80) defining Mfd

α and Mpfd
α . The

diagonal morphisms are those used to define Πpfd
α,fd in (3.81), so the ‘A’ diagram

commutes.
For the ‘B’ part of the ‘A ≈ B’ in (4.47), we have M′α ≈ [∗/Gm] ×Mpl

α

locally over Mpl
α and P ≈ [∗/Gm] × Ppl locally over Ppl by applying the local

approximation (2.23)–(2.24) to (3.48) and (3.76), and these local approximations
identify Πpl

α , Π̂
pl with the projections to Mpl

α ,P
pl. We see that det′α ≈ Υrkα ×

detpl
α from (3.48), (3.74), and (3.76).
The approximation Mfd

α ≈ [∗/Zn] ×Mpfd
α now follows by completing the

top left 2-Cartesian square of ‘B’ morphisms, using the 2-Cartesian square

[∗/Zn]
HP

inc
��

π
// ∗
∗
��

[∗/Gm]
Υrkα // [∗/Gm]
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in Artlft
K , where n = | rkα|, and inc : [∗/Zn] → [∗/Gm] is induced by the

inclusion Zn ↪→ Gm as the group of nth roots of unity in Gm ⊂ K, noting that
we assume K is algebraically closed.

This shows thatMfd
α ≈ [∗/Zn]×Mpfd

α locally overMpl
α and Ppl, and Πpfd

α,fd :

Mfd
α → M

pfd
α is locally equivalent to the projection [∗/Zn] ×Mpfd

α → Mpfd
α .

That is, Πpfd
α,fd is a locally trivial [∗/Zn]-fibration, as we have to prove. The rest

of (b) is immediate.
For (c), by (3.85) there exists a 2-morphism η′ : detpl

α ⇒ Lα ◦ π in Artlft
K .

Thus by the universal property in Definition 2.20 of the 2-Cartesian square (3.80)
defining Mpfd

α , there exists a 1-morphism b : Mpl
α → M

pfd
α and a 2-morphism

ζ : πMpl
α
◦ b ⇒ idMpl

α
. As πMpl

α
: Mpfd

α ↪→ Mpl
α is the inclusion of a substack,

this implies that Mpfd
α =Mpl

α . To show that Mfpd
α =Mα, we note that (3.77)

and (3.84) imply that Π̂pl ◦ detα = Lα ◦ π :Mα → Ppl in Ho(Artlft
K ), and then

use the same argument.
Generalizing to the triangulated category case needs only the obvious mod-

ifications. This completes the proof of Theorem 3.47.
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Part II
Applications in Algebraic Geometry

5 Lie algebras from quiver representations

We will now apply the constructions of Part I to the abelian category A =
mod-CQ and the triangulated category T = Db mod-CQ for a quiver Q, and
relate the resulting vertex algebras and Lie algebras to lattice vertex algebras
and Kac–Moody algebras. For simplicity we restrict to the field K = C, and to
(co)homology theories H∗(−), H∗(−) of Artin C-stacks over a field R of charac-
teristic zero, defined using ordinary (co)homology as in Example 2.35. But the
analogues should also work for other fields K for which the results of §5.2 hold.

5.1 Background on quivers and Ringel–Hall algebras

5.1.1 Quivers and quiver representations

Here are the basic definitions in quiver theory, following Assem at al. [4, §II].

Definition 5.1. A quiver Q is a finite directed graph. That is, Q is a quadruple
(Q0, Q1, h, t), where Q0 is a finite set of vertices, Q1 is a finite set of edges, and
h, t : Q1 → Q0 are maps giving the head and tail of each edge.

We call Q acyclic if it contains no directed cycles of edges.
We say that Q has no vertex loops if there are no edges starting and finishing

at the same vertex.
The underlying graph of Q is the undirected graph obtained by forgetting

the orientations of the edges of Q.
The path algebra KQ is an associative algebra over the field K with basis all

paths of length k > 0, that is, sequences of the form

v0
e1−→ v1 → · · · → vk−1

ek−→ vk, (5.1)

where v0, . . . , vk ∈ Q0, e1, . . . , ek ∈ Q1, t(ai) = vi−1 and h(ai) = vi. Multipli-
cation is given by composition of paths in reverse order, or zero if the paths do
not compose. Then KQ is finite-dimensional if and only if Q is acyclic.

We define representations of quivers.

Definition 5.2. Let Q = (Q0, Q1, h, t) be a quiver. A representation of Q
consists of finite-dimensional K-vector spaces Xv for each v ∈ Q0, and linear
maps ρe : Xt(e) → Xh(e) for each e ∈ Q1. Representations of Q are in 1-1
correspondence with finite-dimensional left KQ-modules (X, ρ), as follows.

Given Xv, ρe, define X =
⊕

v∈Q0
Xv, and a linear ρ : KQ→ End(X) taking

(5.1) to the linear map X → X acting as ρek ◦ ρek−1
◦ · · · ◦ ρe1 on Xv0 , and 0 on

Xv for v 6= v0. Then (X, ρ) is a left KQ-module. Conversely, any such (X, ρ)
comes from a unique representation of Q.

118



A morphism of representations φ : (X, ρ)→ (Y, σ) is a linear map φ : X → Y
with φ ◦ ρ(γ) = σ(γ) ◦ φ for all γ ∈ KQ. Equivalently, φ defines linear maps
φv : Xv → Yv for all v ∈ Q0 with φh(e) ◦ ρe = σe ◦ φt(e) for all e ∈ Q1. Write
mod-KQ for the categories of representations of Q. It is a K-linear abelian
category. We will be interested in taking A = mod-KQ and T = Db mod-KQ
in the constructions of Part I.

If (X, ρ) is a representation of Q, define the dimension vector dim(X, ρ) in
NQ0 ⊂ ZQ0 of (X, ρ) by dim(X, ρ) : v 7→ dimKXv. This induces a surjective
morphism dim : K0(mod-KQ)→ ZQ0 , which is an isomorphism if Q is acyclic.
When A = mod-KQ we will always take the quotient group K(A) of K0(A) in
Assumption 3.1(b) to be ZQ0 , using this morphism dim .

If Q is a quiver, the moduli stack MQ of objects (X, ρ) in mod-KQ is a
smooth Artin K-stack, locally of finite type. For d ∈ NQ0 , the open and closed
substack MQ

d of (X, ρ) with dim(X, ρ) = d is of finite type, and has a very
explicit description: as a quotient K-stack we have

MQ
d
∼=
[∏

e∈Q1
Hom(Kd(t(e)),Kd(h(e)))/

∏
v∈Q0

GL(d(v),K)
]
. (5.2)

Let Q = (Q0, Q1, h, t) be a quiver. It is well known that Exti(D,E) = 0 for
all D,E ∈ mod-KQ and i > 1, and

dimK Hom(D,E)− dimK Ext1(D,E) = χQ(dimD,dimE), (5.3)

where χQ : ZQ0 × ZQ0 → Z is the Euler form of mod-KQ, given by

χQ(d, e) =
∑
v∈Q0

d(v)e(v)−
∑
e∈Q1

d(t(e))e(h(e)).

We write χsym
Q : ZQ0 × ZQ0 → Z for the symmetrized Euler form χsym

Q (d, e) =
χQ(d, e) + χQ(e,d). It is independent of the orientation of the edges of Q.

Write nvw for the number of edges
v• → w• in Q, and write avw = 2δvw −

nvw − nwv, for all v, w ∈ Q0. Then for all d, e ∈ ZQ0 we have

χQ(d, e)=
∑

v,w∈Q0

(δvw−nvw)d(v)e(w), χsym
Q (d, e)=

∑
v,w∈Q0

avwd(v)e(w). (5.4)

That is, the matrices of χQ and χsym
Q are (δvw−nvw)v,w∈Q0

and A=(avw)v,w∈Q0
.

If Q has no vertex loops then nvv = 0, so avv = 2, and avw 6 0 for v 6= w.
This condition was important in the theory of Kac–Moody algebras in §2.1.2,
as then (avw)v,w∈Q0 is a generalized Cartan matrix.

5.1.2 Gabriel’s Theorem and Kac’s Theorem

A quiver Q is called of finite type if there are only finitely many isomorphism
classes of indecomposable objects in mod-KQ. Gabriel’s Theorem [4, §VII.5]
classifies quivers of finite type over algebraically closed fields.

Theorem 5.3 (Gabriel’s Theorem). Let K be an algebraically closed field. A
quiver Q is of finite type over K if and only if the underlying graph is a finite
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disjoint union of Dynkin diagrams of type A, D or E. If Q is of finite type
then the map [E] 7→ dim [E] induces a 1-1 correspondence between isomorphism
classes [E] of indecomposable objects E in mod-KQ and the set of positive roots
in ZQ0 of the corresponding Dynkin diagram. Note that these do not depend on
the orientation of the arrows in Q.

Kac [82,83] proves the following generalization:

Theorem 5.4. For any quiver Q without vertex loops and any algebraically
closed field K, the set of dimension vectors d = dim [E] in ZQ0 of indecompos-
able objects E in mod-KQ coincides with the set of positive roots ∆+ in ZQ0 of
the derived Kac–Moody algebra g′(A) from §2.1.2 associated to the generalized
Cartan matrix A = (avw)v,w∈Q0 of Q in Definition 5.2. If d is a real root then
there is a unique isomorphism class [E] of indecomposables E ∈ mod-KQ with
dim [E] = d. If d is an imaginary root there are many such [E].

In fact Kac does not require Q to have no vertex loops, and so works with
generalized Kac–Moody algebras as in Remark 2.5(ii).

5.1.3 Ringel–Hall algebras

Theorems 5.3 and 5.4 suggest that there should be a connection between cate-
gories of quiver representations mod-KQ and the theory of Lie algebras, and that
one might be able to reconstruct the Lie algebra g′(A) corresponding to Q from
the abelian category mod-KQ (or perhaps the derived category Db mod-KQ).

Investigating this connection led to the idea of Ringel–Hall algebra, originally
due to Ringel [136, 137]. Schiffmann [141] gives a good survey. The basic idea
is that given a suitable abelian category A, one defines an associative algebra
HA. Ringel–Hall type algebras are defined in four main contexts:

• Counting subobjects over finite fields Fq, as in Ringel [136,137].

• Constructible functions on moduli spaces are used by Lusztig [105, §10.18–
§10.19], Nakajima [118, §10], Frenkel, Malkin and Vybornov [49], Riedt-
mann [134] and others.

• Perverse sheaves on moduli spaces are used by Lusztig [105].

• Homology of moduli spaces, as in Nakajima [118].

We will explain Ringel’s finite field version [136,137]:

Definition 5.5. Let Fq be a finite field with q elements, and A be a small Fq-
linear abelian category with dimFq HomA(E,F ) < ∞, dimFq Ext1

A(E,F ) < ∞
for all E,F ∈ A. WriteM(Fq) for the set of isomorphism classes [E] of objects
E in A, which is the set of Fq-points of the moduli stack M of objects in A.

Define HA to be the C-vector space of functions f :M(Fq)→ C with finite
support. Then M(Fq) has basis δ[E] for [E] ∈ M(Fq), where δ[E]([F ]) is 1 if
[E] = [F ] and 0 otherwise. For all E,F,G ∈ A, write NE,F,G for the (finite)
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number of subobjects U ⊂ F in A with F/U ∼= E and U ∼= G. Define a
C-bilinear multiplication ∗ : HA ×HA → HA by

δ[E] ∗ δ[G] =
∑

[F ]∈M(K)

NE,F,G · δ[F ].

Then as in [136, Prop. 1], HA is an associative C-algebra with identity δ[0].

Suppose that for all E,F ∈ A we have dimFq ExtiA(E,F ) < ∞ for all

i > 0 with ExtiA(E,F ) = 0 for i � 0, so that the Euler form χA([E], [F ]) =∑
i>0(−1)i dimFq ExtiA(E,F ) is defined. Define the twisted Hall algebra Htw

A to

be Htw
A = HA, but with the twisted multiplication

δ[E] ∗tw δ[G] =
√
q
χ([E],[G])

∑
[F ]∈M(K)

NE,F,G · δ[F ].

Again, Htw
A is an associative C-algebra with identity δ[0].

When A = mod-FqQ for a quiver Q with no oriented cycles, Ringel [136,137]
and Green [56] (see Schiffmann [141, §3.3] for a good explanation) describe the
twisted Hall algebra Htw

mod-FqQ in terms of quantum groups:

Theorem 5.6. Let Q be a quiver with no oriented cycles, and Fq be a finite
field with q elements. Then there is a unique, injective C-algebra morphism
Υ : Uq1/2(n+) ↪→ Htw

mod-FqQ with Υ(Sv) = δ[Ev] for all v ∈ Q0, where Sv is

the vth generator of Uq1/2(n+), and Ev ∈ mod-FqQ has dimEv = δv ∈ ZQ0 .
Here Uq1/2(n+) is the quantum group Uv(n+) of the positive part n+ of the Kac–

Moody algebra g′(A) = h ⊕ n+ ⊕ n− associated to Q, specialized at v = q1/2.
Furthermore, Υ is an isomorphism if and only if Q is of finite type, i.e. its
underlying graph is a disjoint union of Dynkin diagrams of type A, D or E.

Here as in Jantzen [71] and Lusztig [106], the quantum group Uv(g) of g =
g′(A) is a family of associative C-algebras (actually, Hopf algebras) depending
on a parameter v, and equal to the universal enveloping algebra U(g) of g when
v = 1. Quantum groups have many applications in mathematics and physics.

It was a long standing problem [137, p. 583] to reconstruct the full Lie al-
gebra g, or its universal enveloping algebra U(g), or the full quantum group
Uv(g), from some version of the derived category Db mod-FqQ. Progress on
this was made by Peng and Xiao [129, 130], who used a somewhat ad hoc con-
struction to recover g from the 2-periodic derived category (Db mod-FqQ)/T 2

for T : Db mod-FqQ→ Db mod-FqQ the translation functor, by Toën [148] and
Xiao and Fu [154], who defined an associative ‘derived Hall algebra’ for derived
categories over Fq such as Db mod-FqQ (but which does not give Uq1/2(g)), and

by Bridgeland [25], who defined a localization (Htw
CZ2

(mod-FqQ))
loc of a twisted

Hall algebra of 2-periodic complexes in mod-FqQ with an embedding Uq1/2(g) ↪→
(Htw
CZ2

(mod-FqQ))
loc, which is an isomorphism if Q is of finite type.
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5.2 The (co)homology of [∗/GL(r,C)] and Perf rC

For use in §5.3, we now describe the (co)homology of the stacks [∗/GL(r,C)]
and PerfrC, and compute how morphisms Φr,s,Ψr, Φ̄r,s, Ψ̄r act on them.

5.2.1 Cohomology of [∗/GL(r,C)],PerfrC using Chern classes

The next proposition is well known:

Proposition 5.7. Let R be any commutative ring, and let H∗(−), H∗(−) be
the cohomology theories of Artin C-stacks over R described in Example 2.35.
Then for any r > 0 there is a canonical isomorphism of graded R-algebras

H∗([∗/GL(r,C)]) ∼= R[γ1, γ2, . . . , γr], (5.5)

where γi is a formal variable of degree 2i. That is, H2k([∗/GL(r,C)]) is the
free R-module with basis the monomials γa1

1 · · · γarr for all a1, . . . , ar in N with
a1 + 2a2 + · · ·+ rar = k, and H2k+1([∗/GL(r,C)]) = 0.

The γi may be interpreted in terms of Chern classes. Let Er → [∗/GL(r,C)]
be the rank r vector bundle associated to the obvious representation of GL(r,C)
on Cr. Then ci(Er) ∼= γi under (5.5) for i = 1, . . . , r. If S is an Artin
C-stack and E → S is a rank r vector bundle, there is a unique morphism
φ : S → [∗/GL(r,C)] in Ho(ArtC) with E ∼= φ∗(Er), and ci(E) = H2i(φ)(γi)
in H2i(S) under (5.5) for i = 1, . . . , r.

Proof. As in Example 2.35(a), H∗([∗/GL(r,C)]) is the homology of a classifying

space for the topological stack FTopSta
ArtC

([∗/GL(r,C)]). This is a classifying
space BGL(r,C) for GL(r,C) in the usual sense, as in May [109, §16.5, §23],
and is also a classifying space BU(r) for U(r) as the group morphism U(r) ↪→
GL(r,C) is a homotopy equivalence. The proposition then follows from the
computation of H∗(BU(r),Z) by Milnor and Stasheff [114, Th. 14.5], and the
Universal Coefficient Theorem in Spanier [145, Th. 5.5.10].

Definition 5.8. As in Example 2.35(c), write PerfC for the moduli stack of
perfect complexes on the point ∗ = SpecC. Write PerfC =

∐
r∈Z PerfrC, where

PerfrC is the moduli stack of rank r perfect complexes on ∗. Then PerfC,PerfrC
are higher C-stacks. If S is a C-scheme then Hom(S,PerfrC) is the∞-groupoid
of rank r perfect complexes on S, up to quasi-isomorphism.

For r > 0, there is a natural inclusion ιr : [∗/GL(r,C)] ↪→ PerfrC as an
open substack, by regarding [∗/GL(r,C)] as the moduli stack of rank r vector
bundles on ∗, and considering vector bundles as examples of perfect complexes.

The following proposition is also well known, at least to experts.

Proposition 5.9. Let R be any commutative ring, and let H∗(−), H∗(−) be
the cohomology theories of higher Artin C-stacks over R described in Example
2.35. Then for any r ∈ Z there is a canonical isomorphism of graded R-algebras

H∗(PerfrC) ∼= R[γ1, γ2, . . .], (5.6)
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where γi is a formal variable of degree 2i. That is, H2k(PerfrC) is the free R-
module with basis the monomials γa1

1 · · · γ
ak
k for all a1, . . . , ak in N with a1 +

2a2 + · · ·+ kak = k, and H2k+1(PerfrC) = 0.
The γi may be interpreted in terms of Chern classes. Let E•r → PerfrC be

the universal rank r perfect complex on PerfrC. Then ci(E•r) ∼= γi under (5.6)
for all i > 1. If S is an Artin C-stack and E• → S is a rank r perfect complex,
there is a unique morphism φ : S → PerfrC in Ho(HStC) with E• ∼= φ∗(E•r),
and ci(E•) = H2i(φ)(γi) in H2i(S) under (5.6) for all i > 1.

If r > 0, so we have an open inclusion ιr : [∗/GL(r,C)] ↪→ PerfrC, then
under the identifications (5.5)–(5.6) we have

H2i(ιr) : γi 7−→

{
γi, i = 1, . . . , r,

0, i > r.
(5.7)

Proof. As in Example 2.35(c), we define H∗(PerfrC) to be the ordinary cohomol-

ogy H∗
(
F

Top∞
HStC

(PerfrC), R
)
, where F

Top∞
HStC

: HStlft
C → Top∞ is the ‘topological

realization’ ∞-functor. It follows from Blanc [16, Th.s 4.5 & 4.21] that (as a

connective symmetric spectrum) F
Top∞
HStC

(PerfC) is homotopy equivalent to the

spectrum KU = Z× BU of complex topological K-theory, and F
Top∞
HStC

(PerfrC)
is homotopy equivalent to BU = limn→∞BU(n) for each r ∈ Z. So the coho-

mology of F
Top∞
HStC

(PerfrC) is the limit as r →∞ in (5.5), giving (5.6). Equation

(5.7) holds as ι∗r(E
•
r)
∼= Er, so H2i(ιr) maps ci(E•r) 7→ ci(Er), where ci(E•r) ∼= γi

for all i, and ci(Er) ∼= γi for i = 1, . . . , r, and ci(Er) = 0 for i > r.

5.2.2 (Co)homology of [∗/GL(r,C)],PerfrC using Chern characters

As in §2.4.2, we prefer to work with Chern characters rather than Chern classes,
so we can use the formulae (2.47) for direct sums and tensor products. Thus we
will use alternative presentations for H∗([∗/GL(r,C)]) and H∗(PerfrC):

Definition 5.10. Let R be a field of characteristic zero, such as Q,R or C, and
let H∗(−), H∗(−) be the cohomology theories of (higher) Artin C-stacks over R
described in Example 2.35. Propositions 5.7 and 5.9 give descriptions (5.5) for
H∗([∗/GL(r,C)]) when r > 0, and (5.6) for H∗(PerfrC) when r ∈ Z. For all
i = 1, 2, . . . , define βi ∈ H2i([∗/GL(r,C)]) to be identified with Chi(γ1, . . . , γi)
under (5.5), where γj = 0 for j > r, and define βi ∈ H2i(PerfrC) to be iden-
tified with Chi(γ1, . . . , γi) under (5.6), where Ch1,Ch2, . . . are the universal
polynomials defined in (2.48)–(2.49). Also set β0 = r · 1 in H0([∗/GL(r,C)])
and H0(PerfrC).

Then by (2.47) and Propositions 5.7 and 5.9, we have βi = chi(Er) in
H2i([∗/GL(r,C)]) and βi = chi(E•r) in H2i(PerfrC). If S is an Artin C-stack
and E → S is a rank r vector bundle, there is φ : S → [∗/GL(r,C)] with
E ∼= φ∗(Er), and chi(E) = H2i(φ)(βi) in H2i(S) for all i. Similarly if E• → S
is a rank r perfect complex, there is φ : S → PerfrC with E• ∼= φ∗(E•r), and
chi(E•) = H2i(φ)(βi) in H2i(S) for all i.
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As the coefficient of γk in Chk(γ1, . . . , γk) is (−1)k−1/(k − 1)!, which is
nonzero, the elements β1, . . . , βi freely generate R[γ1, . . . , γi], giving an isomor-
phism

H∗([∗/GL(r,C)]) ∼= R[β1, β2, . . . , βr] (5.8)

for r > 0, where βi is a formal variable of degree 2i. Note that (5.5) and (5.8)
are different isomorphisms. Similarly, for r ∈ Z we have

H∗(PerfrC) ∼= R[β1, β2, β3, . . .]. (5.9)

Now we have also defined elements βr+1, βr+2, . . . inH
∗([∗/GL(r,C)]), which

are nonzero, but are not really taken into account by the description (5.8). As
in §2.4.2, under (5.5) we can write γi in terms of the βj by γi = Ci(β1, . . . , βi),
where C1,C2, . . . are the universal polynomials defined in (2.51)–(2.52), since the
Ci’s are the inverse polynomials to the Chi’s. But γi = 0 in H∗([∗/GL(r,C)])
if i > r by definition, so the elements β1, β2, . . . in H∗([∗/GL(r,C)]) satisfy
Ci(β1, . . . , βi) = 0 for all i > r. Therefore we may also write

H∗([∗/GL(r,C)]) ∼= R[β1, β2, β3, . . .]/(Ci(β1, . . . , βi) = 0 ∀i > r)

= R[β1, β2, β3, . . .]/Ir,
(5.10)

where βi is a formal variable of degree 2i, and Ir := (Ci(β1, . . . , βi) = 0 ∀i > r)
is the ideal in R[β1, β2, . . .] generated by Ci(β1, . . . , βi) for i = r + 1, r + 2, . . . .
Under (5.9)–(5.10), the morphism H∗(ιr) : H∗(PerfrC) → H∗([∗/GL(r,C)]) is
identified with the projection R[β1, β2, β3, . . .]→ R[β1, β2, β3, . . .]/Ir.

Consider the graded R-vector space R[b1, b2, . . .], where bi is a formal variable
of degree 2i. Define an R-bilinear pairing · : R[b1, b2, . . .]×R[β1, β2, . . .]→ R by

(
bm1
1 bm2

2 · · · bmNN
)
·
(
βn1

1 βn2
2 · · ·β

nN
N

)
=


∏N
i=1 mi!∏N

i=1((i−1)!)mi
, mi=ni, all i,

0, otherwise.
(5.11)

Here we can write any two monomials in R[b1, b2, . . .] and R[β1, β2, . . .] as
bm1
1 · · · bmNN and βn1

1 · · ·β
nN
N for N � 0 and mi, ni ∈ N, by allowing mi = ni = 0

for i� 0. The peculiar normalization
∏
i[mi!/((i−1)!)mi ] in (5.11) makes The-

orem 5.19 below work. Equation (5.11) induces isomorphisms for each k > 0

R[b1, b2, . . .]k ∼=
(
R[β1, β2, . . .]k

)∗, (5.12)

where R[b1, b2, . . .]k, R[β1, β2, . . .]k are the degree k subspaces of R[b1, b2, . . .]
and R[β1, β2, . . .]. Hence by (5.9), (5.10) and (5.12) we have isomorphisms

Hk(PerfrC) ∼= Hk(PerfrC)∗ ∼=
(
R[β1, β2, β3, . . .]k

)∗ ∼= R[b1, b2, . . .]k, (5.13)

Hk([∗/GL(r,C)]) ∼= Hk([∗/GL(r,C)])∗ ∼=
(
R[β1, β2, β3, . . .]k/Ir,k

)∗
∼= I◦r,k :=

{
b ∈ R[b1, b2, . . .]k : b · β = 0 ∀β ∈ Ir,k

}
,

(5.14)
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where Ir,k = Ir∩R[β1, β2, . . .]k, and I◦r,k is its annihilator in R[b1, b2, . . .]k. Here

the first steps hold as Hk(PerfrC)∗, Hk([∗/GL(r,C)]) are finite-dimensional over
a field R. Thus we have isomorphisms

H∗(PerfrC) ∼= R[b1, b2, . . .], (5.15)

H∗([∗/GL(r,C)]) ∼= I◦r ⊂ R[b1, b2, . . .], (5.16)

where I◦r is the annihilator of the ideal Ir in R[β1, β2, . . .]. Under (5.15)–(5.16),
the morphism H∗(ιr) : H∗([∗/GL(r,C)]) → H∗(PerfrC) is identified with the
inclusion I◦r ↪→ R[b1, b2, . . .].

We can also write the cap products on the (co)homology of PerfrC and
[∗/GL(r,C)] using (5.9)–(5.10) and (5.13)–(5.14). For 0 6 l 6 k, define an
R-bilinear map ∩ : R[b1, b2, . . .]k ×R[β1, β2, . . .]l → R[b1, b2, . . .]k−l by(

bm1
1 · · · bmNN

)
∩
(
βn1

1 · · ·β
nN
N

)
=

{ ∏N
i=1 mi!∏N

i=1(mi−ni)!((i−1)!)ni
bm1−n1
1 · · · bmN−nNN , mi > ni, all i,

0, otherwise.

(5.17)

Then−∩βi acts onR[b1, b2, . . .] as 1
(i−1)!

d
dbi

for each i = 1, 2, . . . . Equation (5.17)

is dual to multiplication R[β1, β2, . . .]l×R[β1, β2, . . .]k−l → R[β1, β2, . . .]k under
(5.11). Since (5.9) identifies the cup product on H∗(PerfrC) with multiplication
in R[β1, β2, . . .], and the cap product is dual to the cup product as R is a field,
we see that (5.17) is identified by (5.9) and (5.13) with the cap product

∩ : Hk(PerfrC)×H l(PerfrC) −→ Hk−l(PerfrC).

Similarly, (5.17) restricts to zero on I◦r,k×Ir,l and maps I◦r,k×R[β1, β2, . . .]l →
I◦r,k−l, and so descends to an R-bilinear map

∩ : I◦r,k ×
(
R[β1, β2, . . .]l/Ir,l

)
−→ I◦r,k−l,

which is identified by (5.10) and (5.14) with the cap product

∩ : Hk([∗/GL(r,C)])×H l([∗/GL(r,C)]) −→ Hk−l([∗/GL(r,C)]).

5.2.3 Morphisms Φr,s,Ψr, Φ̄r,s, Ψ̄r, and their action on (co)homology

We define morphisms Φr,s,Ψr, Φ̄r,s, Ψ̄r related to the morphisms Φ,Ψ in As-
sumption 3.1, and compute their action on (co)homology.

Definition 5.11. For r, s > 0, define morphisms of algebraic C-groups

φr,s : GL(r,C)×GL(s,C) −→ GL(r + s,C), φr,s : (A,B) 7−→
(
A 0
0 B

)
,

ψr : Gm ×GL(r,C) −→ GL(r,C), ψr : (λ,A) 7−→ λA, (5.18)
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where A,B are r × r and s× s complex matrices and λ ∈ Gm, and write

Φr,s : [∗/GL(r,C)]× [∗/GL(s,C)] −→ [∗/GL(r + s,C)],

Ψr : [∗/Gm]× [∗/GL(r,C)] −→ [∗/GL(r,C)],

for the morphisms of Artin C-stacks induced by φr,s, ψr.
Writing Er → [∗/GL(r,C)], Es → [∗/GL(s,C)], Er+s → [∗/GL(r + s,C)]

for the natural vector bundles from Proposition 5.7, and E1 → [∗/Gm] for the
line bundle from Assumption 2.30(c), by (5.18) we have isomorphisms

Φ∗r,s(Er+s)
∼= π∗[∗/GL(r,C)](Er)⊕ π

∗
[∗/GL(s,C)](Es),

Ψ∗r(Er)
∼= π∗[∗/Gm](E1)⊗ π∗[∗/GL(r,C)](Er).

(5.19)

Similarly, for r, s ∈ Z define morphisms of higher Artin C-stacks

Φ̄r,s : PerfrC×PerfsC −→ Perfr+sC by Φ̄r,s(F•r ,F
•
s) = F•r ⊕F

•
s,

Ψ̄r : [∗/Gm]×PerfrC −→ PerfrC by Ψ̄r(L,F•r) = L⊗F•r .
(5.20)

That is, if S is a C-scheme then PerfrC(S) = Hom(S,PerfrC) is the∞-groupoid
of rank r perfect complexes F•r on S, and Φ̄r,s(S) : PerfrC(S) × PerfsC(S) →
Perfr+sC (S) maps (F•r ,F

•
s) 7→ F

•
r ⊕ F

•
s. Similarly, [∗/Gm](S) is the groupoid

of line bundles L → S, and Ψ̄r(S) : [∗/Gm](S) × PerfrC(S) → PerfrC(S) maps
(L,F•r) 7→ L⊗F•r . The analogue of (5.19) is

Φ̄∗r,s(E
•
r+s)

∼= π∗PerfrC
(E•r)⊕ π∗PerfsC

(E•s),

Ψ̄∗r(E
•
r)
∼= π∗[∗/Gm](E1)⊗ π∗PerfrC

(E•r).
(5.21)

The following commute in Ho(HStlft
C ):

[∗/GL(r,C)]× [∗/GL(s,C)]

ιr×ιs��

Φr,s

// [∗/GL(r + s,C)]

ιr+s ��
PerfrC×PerfsC

Φ̄r,s // Perfr+sC ,

(5.22)

[∗/Gm]× [∗/GL(r,C)]

id[∗/Gm]×ιr��

Ψr

// [∗/GL(r,C)]

ιr ��
[∗/Gm]×PerfrC

Ψ̄r // PerfrC .

(5.23)

Applying Chern characters to (5.21) and using (2.47) yields

chi(Φ̄
∗
r,s(E

•
r+s)) = chi(π

∗
PerfrC

(Er)) + chi(π
∗
PerfsC

(E•s)),

chi(Ψ̄
∗
r(E
•
r)) =

∑
j,k>0:i=j+k

chj(π
∗
[∗/Gm](E1)) ∪ chk(π∗PerfrC

(E•r)).

Equation (5.19) implies the analogues for Ψr,s,Ψr. Under the identification (5.9)
we have ch0(E•r) = r ·1 and chi(E•r) = βi for i > 0, and similarly for s, r+s, and
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under the identification H∗([∗/Gm]) ∼= R[τ ] from Assumption 2.30(c) we have
chj(E1) = 1

j!τ
j . This yields

H2i(Φ̄r,s)(βi) = βi � 1 + 1� βi, H2i(Ψ̄r)(βi) =

i∑
j=0

1

j!
τ j � βi−j ,

where β0 = r · 1. As H∗(Φ̄r,s) and H∗(Ψ̄r) are algebra morphisms, we deduce
the action on the full algebras R[β1, β2, β3, . . .]:

H∗(Φ̄r,s)(β
n1
1 · · ·β

nN
N ) (5.24)

=
∑

06mi6ni,
i=1,...,N

N∏
i=1

(
ni
mi

)
· (βm1

1 · · ·βmNN )� (βn1−m1
1 · · ·βnN−mNN ),

H∗(Ψ̄r)(βk1
· · ·βkN )N>0, k1,...,kN>0 (5.25)

=
∑

06ji6ki,
i=1,...,N

1

j1! · · · jN !
τ j1+···+jN � (βk1−j1 · · ·βkN−jN ).

Here H∗(Φ̄r,s) is independent of r, s, but H∗(Ψ̄r) depends on r as it involves
β0 = r · 1. Using the identification (5.10), the actions of H∗(Φr,s), H

∗(Ψr) are
given by the same formulae (5.24)–(5.25), modulo the ideals Ir, Is, Ir+s.

Under the isomorphism (5.15) and H∗([∗/Gm]) ∼= R[t] from Assumption
2.30(c), the homology actions H∗(Φ̄r,s), H∗(Ψ̄r) are the dual R-linear maps to
H∗(Φ̄r,s), H

∗(Ψ̄r) in (5.24)–(5.25) under the dual pairing (5.11), and the dual
pairing between R[τ ] and R[t] in Assumption 2.30(c). Calculation gives

H∗(Φ̄r,s)
[
(bm1

1 · · · bmNN )� (bn1
1 · · · b

nN
N )
]

= bm1+n1
1 · · · bmN+nN

N , (5.26)

H∗(Ψ̄r)
[
tk�(bj1 · · · bjM )

]
M>0, j1,...,jM>0 (5.27)

=
∑

k1,...,kM>0, N>0, l1,...,lN>0:
k=k1+···+kM+l1+···+lN

rN

N !l1···lN

∏N
i=1

(
ji+ki−1
ji−1

)
· (bj1+k1

· · · bjM+kM bl1 · · · blN ).

Here in (5.27), the terms in l1, . . . , lN correspond to those ji in (5.25) with
ji = ki, giving a term βki−ji = β0 = r · 1 in (5.25), and the terms in k1, . . . , kM
correspond to those ji in (5.25) with ji < ki. When k = 1 in (5.27) we get

H∗(Ψ̄r)
[
t�(bj1 · · · bjN )

]
M>0, j1,...,jM>0

= r · (b1bj1 · · · bjM ) +

M∑
i=1

ji · bj1 · · · bji−1bji+1bji+1 · · · bjM .
(5.28)

By (5.22)–(5.23), under the isomorphisms (5.14) and H∗([∗/Gm]) ∼= R[t],
the actions H∗(Φr,s), H∗(Ψr) of Φr,s and Ψr on homology are given by

H∗(Φr,s) ∼= H∗(Φ̄r,s)|I◦r�I◦s : I◦r � I
◦
s −→ I◦r+s,

H∗(Ψr) ∼= H∗(Ψ̄r)|R[t]�I◦r : R[t]� I◦r −→ I◦r .
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5.3 Lie algebras from A = mod-CQ and T = Dbmod-CQ
5.3.1 Set up of the problem

The next definition describes the situation we will study in the rest of §5.3–§5.4.

Definition 5.12. Let Q be a quiver, and use the notation of Definitions 5.1–5.2.
We will apply the constructions of Part I to the abelian category A = mod-CQ,
and to the triangulated category T = Db mod-CQ, over the field K = C. We
cover the abelian and triangulated cases simultaneously. A bar accent ‘¯’ will
denote objects in the triangulated case, so for example we write Md,Φd,e,
Ψd, . . . in the abelian case, but Md, Φ̄d,e, Ψ̄d, . . . in the triangulated case.

We must specify the data in Assumption 3.1 for A = mod-CQ, and in
Assumption 3.2 for T = Db mod-CQ. In Assumption 3.1(b) we take K(A) =
K(T ) = ZQ0 to be the lattice of dimension vectors of Q, and write elements of
ZQ0 as d, e, . . . , regarded as maps d : Q0 → Z. In Assumption 3.1(c) we take χ
to be the symmetrized Euler form χsym

Q from Definition 5.2. As in (5.4) this is

χ(d, e) =
∑

v,w∈Q0

avwd(v)e(w), (5.29)

where A = (avw)v,w∈Q0
with avw = 2δvw − nvw − nwv, for nvw the number of

edges
v• → w• in Q. If Q has no vertex loops then A is a generalized Cartan

matrix, and has an associated Kac–Moody algebra g′(A) as in §2.1.2.
In Assumption 3.1(d) we define signs εd,e for all d, e ∈ ZQ0 by

εd,e = (−1)
∑
v,w∈Q0

nvwd(v)e(w).

Then (5.29) and avw = 2δvw − nvw − nwv imply that (3.1) holds, and the map
(d, e) 7→ εd,e is biadditive, so (3.2)–(3.3) hold.

We writeM for the moduli stack of objects in A = mod-CQ, andM for the
moduli stack of objects in T = Db mod-CQ. ThenM is an Artin C-stack , and
M a higher Artin C-stack, both locally of finite type. We have decompositions
M =

∐
d∈NQ0 Md and M =

∐
d∈ZQ0 Md, for Md,Md the open and closed

substacks of M,M of objects with dimension vector d. As in (5.2) we have

Md
∼=
[∏

e∈Q1
Hom(Cd(t(e)),Cd(h(e)))/

∏
v∈Q0

GL(d(v),C)
]
.

There is a natural morphism ι :M ↪→M restricting to ιd :Md ↪→Md for all
d ∈ NQ0 , from the degree 0 inclusion mod-CQ ↪→ Db mod-CQ.

As in Assumption 3.1(g),(h) we have morphisms Φ :M×M →M, Φd,e :
Md × Me → Md+e, Ψ : [∗/Gm] × M → M, Ψd : [∗/Gm] × Md → Md

in the abelian case, and Φ̄ : M ×M → M, Φ̄d,e : Md × Me → Md+e,
Ψ̄ : [∗/Gm]×M→M, Ψ̄d : [∗/Gm]×Md →Md in the triangulated case.

As in Remark 3.3 there are natural perfect complexes Ext• in Perf(M×M)
and Ēxt• in Perf(M×M) whose cohomology at each C-point in M×M and
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M×M computes the Ext groups in A and T . Writing Ext•d,e, Ēxt•d,e for their
restrictions to Md ×Me, Md ×Me, by (5.3) and (5.4) we have

rank Ext•d,e = rank Ēxt•d,e = χQ(d, e) =
∑

v,w∈Q0

(δvw − nvw)d(v)e(w). (5.30)

As in Remark 3.3(B) and Assumption 3.1(i) we set Θ• = (Ext•)∨ ⊕ σ∗(Ext•)
in Perf(M×M), and Θ̄• = (Ēxt•)∨ ⊕ σ̄∗(Ēxt•) in Perf(M×M), where σ :
M ×M → M ×M and σ̄ : M ×M → M ×M are exchange of factors.
Then (5.30) and χ = χsym

Q imply that rank Θ•d,e = rank Θ̄•d,e = χ(d, e), as
in Assumption 3.1(i). The isomorphisms (3.8)–(3.12) satisfying Assumption
3.1(j)–(l) follow easily from properties of Ext•, Ēxt•.

This defines all the data satisfying Assumption 3.1 for A = mod-CQ, and
Assumption 3.2 for T = Db mod-CQ. Let R be a field of characteristic zero, such
as Q,R or C, and let H∗(−), H∗(−) be the cohomology theories of (higher) Artin
C-stacks over R described in Example 2.35. We can now apply the constructions
of §3.1–§3.8 in these two situations. In particular, we will relate the vertex
algebras Ȟ∗(M) in §3.2 to lattice vertex algebras, and the ‘t = 0’ Lie algebras
H̃0(M)t=0 and H̃0(M)t=0 in §3.3 to Kac–Moody algebras.

In the triangulated case, the shift functor [1] : Db mod-CQ → Db mod-CQ
induces an isomorphism Σ̄ : M →M in Ho(HStlft

C ), restricting to an isomor-
phism Σ̄d : Md → M−d for all d ∈ ZQ0 . This Σ̄ preserves all the structures
above, including (Σ̄×Σ̄)∗(Θ̄•) ∼= Θ̄•. Thus, H∗(Σ̄) : H∗(M)→ H∗(M) descends
to an isomorphism of graded Lie algebras H∗(Σ̄)t=0 : H∗(M)t=0 → H∗(M)t=0.
We will see later that H∗(Σ̄)2 = id and (H∗(Σ̄)t=0)2 = id, although Σ̄2 6= idM.

5.3.2 The (co)homology of Md,Md

Work in the situation of Definition 5.12.

Proposition 5.13. For each v ∈ Q0, define morphisms Π̄v
d :Md → Perf

d(v)
C ,

Πv
d : Md → [∗/GL(d(v),C)], which map a (complex of) Q-representations

(Xv′:v′∈Q0
, ρe:e∈Q1

) to the vector space (or complex) Xv at vertex v. Then the
following are homotopy equivalences of (higher) stacks, as in Definition 2.37:∏

v∈Q0
Π̄v

d :Md −→
∏
v∈Q0

Perf
d(v)
C for all d ∈ ZQ0 ,∏

v∈Q0
Πv

d :Md −→
∏
v∈Q0

[∗/GL(d(v),C)] for all d ∈ NQ0 .
(5.31)

Hence by Lemma 2.38, for all d we have natural isomorphisms

H∗(Md) ∼=
⊗

v∈Q0
H∗(Perf

d(v)
C ),

H∗(Md) ∼=
⊗

v∈Q0
H∗(Perf

d(v)
C ),

H∗(Md) ∼=
⊗

v∈Q0
H∗([∗/GL(d(v),C)]),

H∗(Md) ∼=
⊗

v∈Q0
H∗([∗/GL(d(v),C)]).

(5.32)
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Proof. For all d, define morphisms

ḡd :
∏
v∈Q0

Perf
d(v)
C −→Md, gd :

∏
v∈Q0

[∗/GL(d(v),C)] −→Md,

to map a collection (Xv : v ∈ Q0) of rank d(v) vector spaces or complexes, to
the corresponding (complex of) Q-representations (Xv′:v′∈Q0

, 0e∈Q1
) for which

the edge maps ρe : Xh(e) → Xt(e) are zero for all e ∈ Q1. Then (
∏
v∈Q0

Π̄v
d) ◦ ḡd

and (
∏
v∈Q0

Πv
d) ◦ gd are the identity. The compositions ḡd ◦ (

∏
v∈Q0

Π̄v
d) and

gd ◦ (
∏
v∈Q0

Πv
d) are not the identity. However, there are natural morphisms F̄ :

C×Md −→Md and F : C×Md −→Md mapping
(
t, (Xv:v∈Q0 , ρe:e∈Q1)

)
7→

(Xv:v∈Q0 , tρe:e∈Q1) on C-points, scaling the edge maps ρe by t ∈ C, and

F̄ |{0}×Md
= ḡd ◦ (

∏
v∈Q0

Π̄v
d), F̄ |{1}×Md

= id,

F |{0}×Md
= gd ◦ (

∏
v∈Q0

Πv
d), F |{1}×Md

= id.

Hence (5.31) are homotopy equivalences, and (5.32) follows.

Combining isomorphisms (5.9)–(5.10), (5.13)–(5.14), (5.32) and the Künneth
Theorem gives explicit descriptions of the (co)homology ofMd,Md. Explicitly,
for each d ∈ ZQ0 , by (5.9) and (5.32) we write

H∗(Md) ∼= R[βd,v,i : v ∈ Q0, i = 1, 2, . . .], (5.33)

where βd,v,i is a formal variable of degree 2i, and for each v ∈ Q0, the factor

of H∗(Perf
d(v)
C ) in (5.32) is identified with R[βd,v,i : i > 1] by (5.9). By (5.13)

and (5.32) we write

H∗(Md) ∼= R[bd,v,i : v ∈ Q0, i = 1, 2, . . .], (5.34)

where bd,v,i is a formal variable of degree 2i. Here as in (5.11), the pairing
between R[βd,v,i : v ∈ Q0, i > 1] and R[bd,v,i : v ∈ Q0, i > 1] corresponding to
the R-bilinear dual pairing between H∗(Md) and H∗(Md) is(∏

v∈Q0, i>1 b
mv,i
d,v,i

)
·
(∏

v∈Q0, i>1 β
nv,i
d,v,i

)
=


∏
v∈Q0 , i>1mv,i!∏

v∈Q0, i>1((i− 1)!)mv,i
, mv,i = nv,i, all v, i,

0, otherwise,

(5.35)

where mv,i, nv,i ∈ N with only finitely many mv,i and nv,i nonzero. The pe-
culiar normalization

∏
v,i[mv,i!/((i − 1)!)mv,i ] in (5.35) is chosen to give the

isomorphism we want between Ȟ∗(M) and a lattice vertex algebra from §2.2.4
in Theorem 5.19 below. Also as in (5.17), the R-bilinear cap product ∩ on
H∗(Md) and H∗(Md) is identified by (5.33)–(5.34) with(∏

v∈Q0, i>1 b
mv,i
d,v,i

)
∩
(∏

v∈Q0, i>1 β
nv,i
d,v,i

)
=

∏
v∈Q0, i>1

mv,i!
(mv,i−nv,i)!((i−1)!)nv,i

·
∏
v∈Q0, i>1

b
mv,i−nv,i
d,v,i , mv,i>nv,i, all v, i,

0, otherwise.

(5.36)
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Similarly, for each d ∈ NQ0 , by (5.10) and (5.32) we write

H∗(Md) ∼= R[βd,v,i : v ∈ Q0, i = 1, 2, . . .]/Id, where Id is the ideal

Id =
(
Ci(βd,v,1, . . . , βd,v,i) = 0 for all v ∈ Q0 and i > d(v)

)
,

(5.37)

and by (5.16) and (5.32) we write

H∗(Md) ∼= I◦d ⊂ R[bd,v,i : v ∈ Q0, i = 1, 2, . . .], (5.38)

where I◦d is the annihilator of Id in (5.37) under the dual pairing (5.35). The
dual pairing and cap product for H∗(Md), H∗(Md) are identified with those
induced on I◦d and R[βd,v,i : v ∈ Q0, i > 1]/Id by (5.35)–(5.36).

For the rest of §5.3–§5.4 we make the identifications (5.33)–(5.34) and (5.37)–
(5.38), so we just write H∗(Md) = R[βd,v,i : v ∈ Q0, i > 1], and so on. We
also write R[βd,v,i : v ∈ Q0, i > 1]k, R[bd,v,i : v ∈ Q0, i > 1]k, Id,k, I◦d,k
for the degree k graded subspaces of R[βd,v,i : v ∈ Q0, i > 1], . . . , I◦d. We
write 1d for the identities in R[βd,v,i : v ∈ Q0, i > 1] and R[bd,v,i : v ∈ Q0,
i > 1], the generators of H0(Md), H0(Md), H0(Md) and H0(Md), and we
write βd,v,0 = d(v) · 1d for v ∈ Q0.

We can also use (5.8)–(5.9) and (5.32) to compute Betti numbers ofMd and
Md. In generating function form we have

∑
k>0

dimHk(Md)qk =
∑
k>0

dimHk(Md)qk =

∞∏
i=1

(1− q2i)−|Q0|, (5.39)

∑
k>0

dimHk(Md)qk =
∑
k>0

dimHk(Md)qk =
∏
v∈Q0

d(v)∏
i=1

(1− q2i)−1. (5.40)

As in Definition 5.12, translation [1] : Db mod-CQ → Db mod-CQ induces
an isomorphism Σ̄ : M → M, restricting to Σ̄d : Md → M−d. It fits into a
commutative diagram

Md
Σ̄d

//∏
v∈Q0

Π̄vd��

M−d∏
v∈Q0

Π̄v−d ��∏
v∈Q0

Perf
d(v)
C

∏
v∈Q0

Σd(v) // ∏
v∈Q0

Perf
−d(v)
C ,

(5.41)

where Σr : PerfrC → Perf−rC is induced by [1] : Db VectC → Db VectC.
Now Σ∗r(E

•
−r)
∼= E•r [−1], where E•r is the complex on PerfrC from Proposition

5.9. Thus H2i(Σr)(chi(E•−r)) = − chi(E•r), as chi(F•[−1]) = − chi(F•). Since
H2i(Π̄v

d)(chi(E•d(v))) = βd,v,i, we deduce from (5.41) that

H2i(Σ̄d)(β−d,v,i) = −βd,v,i.

As H∗(Σ̄d) is an algebra morphism, it follows that

H∗(Σ̄d)
(∏

v∈Q0, i>1 β
mv,i
−d,v,i

)
= (−1)

∑
v,imv,i

∏
v∈Q0, i>1 β

mv,i
d,v,i,
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for mv,i ∈ N with only finitely many nonzero. The dual action on homology is

H∗(Σ̄d)
(∏

v∈Q0, i>1 b
mv,i
d,v,i

)
= (−1)

∑
v,imv,i

∏
v∈Q0, i>1 b

mv,i
−d,v,i. (5.42)

Note that H∗(Σ̄)2 and H∗(Σ̄)2 are the identities, although Σ̄2 6= idM.

5.3.3 The actions of Φ̄d,e, Ψ̄d,Φd,e,Ψd on homology

For all d, e ∈ ZQ0 we have a commutative diagram

Md ×Me
Φ̄d,e

//∏
v∈Q0

Π̄vd×
∏
v∈Q0

Π̄ve��

Md+e∏
v∈Q0

Π̄vd+e ��( ∏
v∈Q0

Perf
d(v)
C
)
×
( ∏
v∈Q0

Perf
e(v)
C
) ∏

v∈Q0
Φ̄d(v),e(v) //

∏
v∈Q0

Perf
(d+e)(v)
C ,

(5.43)

where Φ̄d,e is as in Assumption 3.1(g) and Definition 5.12, and
∏
v∈Q0

Π̄v
d is

as in (5.31), and Φ̄d(v),e(v) is as in (5.20). Applying H∗(−) to (5.43) gives a
commutative diagram on homology, where the columns are the isomorphisms
(5.32). Thus by (5.15), (5.26), and (5.34), the action of Φ̄d,e on homology is

H∗(Φ̄d,e)
[( ∏
v∈Q0, i>1

b
mv,i
d,v,i

)
�
( ∏
v∈Q0, i>1

b
nv,i
e,v,i

)]
=

∏
v∈Q0, i>1

b
mv,i+nv,i
d+e,v,i , (5.44)

where mv,i, nv,i ∈ N with only finitely many mv,i and nv,i nonzero. By (5.38),
H∗(Φd,e) is the restriction of (5.44) to a map I◦d � I

◦
e → I◦d+e.

Similarly, for all d ∈ ZQ0 we have a commutative diagram

[∗/Gm]×Md
Ψ̄d

//

id[∗/Gm]×
∏
v∈Q0

Π̄vd��

Md∏
v∈Q0

Π̄vd ��
[∗/Gm]×

( ∏
v∈Q0

Perf
d(v)
C
) ∏

v∈Q0
Ψ̄d(v)◦Π

[∗/Gm]×Perf
d(v)
C //

∏
v∈Q0

Perf
d(v)
C .

(5.45)

We can write the bottom morphism in (5.45) as a composition

[∗/Gm]×
(∏
v∈Q0

Perf
d(v)
C
) ∆Q0

×id
// ∏
v∈Q0

([∗/Gm]×Perf
d(v)
C )

∏
v∈Q0

Ψ̄d(v)// ∏
v∈Q0

Perf
d(v)
C ,

where ∆Q0
: [∗/Gm] →

∏
v∈Q0

[∗/Gm] is the diagonal map. Using the isomor-
phism H∗([∗/Gm]) ∼= R[t] from Assumption 2.30(c), we find H∗(∆Q0

) acts by

H2k(∆Q0
)(tk) =

∑
kv>0, v∈Q0:
k=

∑
v∈Q0

kv

∏
v∈Q0

tkvv ,

writing H∗(
∏
v∈Q0

[∗/Gm]) = R[tv : v ∈ Q0] in the obvious way.
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Combining this with (5.45) and the action (5.27) of H∗(Ψ̄d(v)) shows that
the action of Ψ̄d on homology is

H∗(Ψ̄d)
[
tk�(bd,v1,j1 · · · bd,vM ,jM )

]
M>0, v1,...,vM∈Q0, j1,...,jM>0

=
∑

k1,...,kM>0, N>0,
w1,...,wN∈Q0, l1,...,lN>0:
k=k1+···+kM+l1+···+lN

∏N
i=1 d(wi)

N !l1 · · · lN

M∏
i=1

(
ji + ki − 1

ji − 1

)
·

(bd,v1,j1+k1 · · · bd,vM ,jM+kM bd,w1,l1 · · · bd,wN ,lN ).

(5.46)

By (5.38), H∗(Ψd) is the restriction of (5.46) to a map R[t] � I◦d → I◦d. As for
(5.28), when k = 1, equation (5.46) simplifies to

H∗(Ψ̄d)
[
t�(bd,v1,j1 · · · bd,vM ,jM )

]
M>0, v1,...,vM∈Q0, j1,...,jM>0

=
∑
w∈Q0

d(w) · (bd,w,1bd,v1,j1 · · · bd,vM ,jM )

+

M∑
i=1

ji · bd,v1,j1 · · · bd,vi−1,ji−1
bd,vi,ji+1bd,vi+1,ji+1

· · · bd,vM ,jM .

(5.47)

Now Definition 3.9 defined an action � of R[t] on H∗(Md) using H∗(Ψ̄d), so
(5.47) yields

t � (bd,v1,j1 · · · bd,vM ,jM ) =
∑
w∈Q0

d(w) · (bd,w,1bd,v1,j1 · · · bd,vM ,jM )

+

M∑
i=1

ji · bd,v1,j1 · · · bd,vi−1,ji−1
bd,vi,ji+1bd,vi+1,ji+1

· · · bd,vM ,jM .
(5.48)

Lemma 5.14. The map t � − : Hk(Md) → Hk+2(Md) is injective for all
d ∈ ZQ0 and k ∈ N, except when d = k = 0, when it has kernel H0(M0) = R.
The same holds for the map t � − : Hk(Md)→ Hk+2(Md).

Proof. By (5.34), H∗(Md) has basis the monomials µ =
∏
v∈Q0, j>1 b

mv,j
d,v,j where

mv,j ∈ N with only finitely many mv,j nonzero. To each such monomial µ, let
us associate the number M(µ) := maxv,j:mv,j>0 j which is the largest j with
mv,j > 0 for some v ∈ Q0, and write M(1) = 0 for the monomial µ = 1 for
which this is undefined. Suppose t � (

∑
monomials µ aµ · µ) = 0 in H∗(Md), for

coefficients aµ ∈ R with only finitely many aµ nonzero, but not all aµ zero.
Let M be the maximum of the M(µ) with aµ 6= 0. If M > 0, then by

considering the coefficients of monomials µ′ with M(µ′) = M+1 in the equation
t � (

∑
µ aµ · µ) = 0 we derive a contradiction, as such terms µ′ come only from

those µ with aµ 6= 0 and M(µ) = M , and are injective on such terms µ.
Hence M = 0, and the only possibility with aµ 6= 0 is µ = 1. But t � 1 =∑
w∈Q0

d(w) · bd,w,1 by (5.48), so t � 1 = 0 if and only if d = 0. This proves the
lemma for Md, and the analogue for Md follows by restriction.

In §3.3 we defined the ‘t = 0’ homology H∗(Md)t=0. As R is a field of
characteristic zero, this is Hk(Md)t=0 = Hk(Md)/(t �Hk−2(Md)). By Lemma
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5.14, this has dimension

dimHk(Md)t=0 =

{
dimHk(Md)− dimHk−2(Md), (d, k) 6= (0, 2),

dimH2(M0), (d, k) = (0, 2),

and similarly for dimHk(Md)t=0. Hence by (5.39)–(5.40) we have

∑
k>0

dimHk(Md)t=0qk = q2δd0 + (1− q2)

∞∏
i=1

(1− q2i)−|Q0|,

∑
k>0

dimHk(Md)t=0qk = q2δd0 + (1− q2)
∏
v∈Q0

d(v)∏
i=1

(1− q2i)−1,

where δd0 = 1 if d = 0 and δd0 = 0 otherwise. With the alternative grading
H̃∗(−) in (3.43), this gives

∑
k>χ(d,d)−2

dim H̃k(Md)t=0qk = δd0+qχ(d,d)−2(1−q2)

∞∏
i=1

(1−q2i)−|Q0|, (5.49)

∑
k>χ(d,d)−2

dim H̃k(Md)t=0qk = δd0+qχ(d,d)−2(1−q2)
∏
v∈Q0

d(v)∏
i=1

(1−q2i)−1. (5.50)

5.3.4 The Chern characters and Chern classes of Θ̄•d,e,Θ
•
d,e

Definition 5.12 defined perfect complexes Θ̄•d,e,Θ
•
d,e onMd×Me andMd×Me.

We now compute their Chern characters and Chern classes.

Proposition 5.15. For all d, e ∈ ZQ0 and i > 0, in H2i(Md ×Me) we have

chi([Θ̄
•
d,e]) =

∑
v,w∈Q0

∑
j,k>0:j+k=i

(−1)kavw · βd,v,j � βe,w,k, (5.51)

where A = (avw)v,w∈Q0
is as in Definition 5.12, and βd,v,0 = d(v) · 1d. Hence

as in §2.4.2, using the polynomials Ci in (2.51)–(2.52) we have

ci([Θ̄
•
d,e]) = Ci

(
ch1([Θ̄•d,e]), . . . , chi([Θ̄

•
d,e])

)
. (5.52)

Also chi(Θ
•
d,e), ci(Θ

•
d,e) are the images of (5.51)–(5.52) in H2i(Md ×Me).

Proof. Let ḡd :
∏
v∈Q0

Perf
d(v)
C → Md be as in the proof of Proposition 5.13.

Then on
(∏

v∈Q0
Perf

d(v)
C
)
×
(∏

v∈Q0
Perf

e(v)
C
)

for d, e ∈ ZQ0 we have

(ḡd × ḡe)∗(Ēxt•d,e) ∼=
⊕

v∈Q0
π∗

Perf
d(v)
C

(
(E•d(v))

∨)⊗ π∗
Perf

e(v)
C

(
E•e(v)

)
⊕
⊕

e∈Q1

(
π∗

Perf
d(h(e))
C

(
(E•d(h(e)))

∨)⊗ π∗
Perf

e(t(e))
C

(
E•e(t(e))

))
[−1],

(5.53)
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where Ēxt•d,e is as in Definition 5.12, and the perfect complex E•r on PerfrC is
as in Proposition 5.9.

Equation (5.53) holds as Ēxt•d,e is the derived Hom of complexes of Q-
representations onMd×Me, from the pullback of the universal representation
on Md, to the pullback of the universal representation on Me. When we pull-
back by ḡd× ḡe, we again get a derived Hom of complexes of Q-representations,
but now from

⊕
v∈Q0

π∗
Perf

d(v)
C

(E•d(v)) regarded as a Q-representation with edge

morphisms zero, to
⊕

v∈Q0
π∗

Perf
e(v)
C

(E•e(v)) as a Q-representation with edge mor-

phisms zero, and we can show this is equivalent to (5.53).
Taking K-theory classes of (5.53) gives an equation

K0(ḡd × ḡe)([Ēxt•d,e])

=
∑
v,w∈Q0

(δvw − nvw)K0(π
Perf

d(v)
C

)
(
[E•d(v)]

∨)⊗K0(π
Perf

e(w)
C

)
(
[E•e(w)]

) (5.54)

in K0

(
Perf

(
(
∏
v Perf

d(v)
C )× (

∏
v Perf

e(v)
C )

))
, where nvw is the number of edges

v• → w• in Q, as in Definition 5.12. Now Θ̄•d,e = (Ēxt•d,e)∨ ⊕ σ̄∗d,e(Ēxt•e,d) by
definition, so adding the dual of (5.54) to (5.54) with d, e exchanged yields

K0(ḡd × ḡe)([Θ̄•d,e])

=
∑
v,w∈Q0

avwK0(π
Perf

d(v)
C

)
(
[E•d(v)]

)
⊗K0(π

Perf
e(w)
C

)
(
[E•e(w)]

∨) (5.55)

where avw = 2δvw − nvw − nwv, as in Definition 5.12.
Applying Chern characters chi to (5.55) gives an equation in the cohomology

of (
∏
v Perf

d(v)
C )×(

∏
v Perf

e(v)
C ). But (5.32) identifies this with H∗(Md×Me),

and under this identification H∗(ḡd× ḡe) is the identity, so we can omit it. Thus

chi([Θ̄
•
d,e]) =

∑
v,w∈Q0

avw
∑

j,k>0:j+k=i

chj([E•d(v)])� chk([(E•e(v))
∨])

=
∑

v,w∈Q0

∑
j,k>0:j+k=i

(−1)kavw · βd,v,j � βe,w,k,

where the first step uses (2.47), and the second uses chk((E•)∨) = (−1)k chk(E•)
and chj(E•d(v)) = βd,v,j , chk(E•e(v)) = βe,v,k. This proves (5.51), and the rest of
the proposition is immediate.

Note that (5.51)–(5.52) depend only on the underlying graph of Q.

5.3.5 Explicit computation of [ζ, η]n

Combining (5.51) with the generating function expression (3.34) for [ζ, η]n in
terms of Chern characters chi([Θ̄

•
d,e]) yields:
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Corollary 5.16. For all d, e ∈ ZQ0 and ζ ∈ H̃∗(Md), η ∈ H̃∗(Me), we have

Y (ζ, z)η :=
∑
n∈Z

[ζ, η]nz
−n−1 =εd,ez

χ(d,e) ·H∗(Φ̄d,e)◦H∗(Ψ̄d×idMe) (5.56){(∑
i>0

ziti
)
�
(

(ζ�η)∩exp
[ ∑
v,w∈Q0

avw
∑

j,k>0:
j+k>1

(−1)j−1(j+k−1)!z−j−k ·
βd,v,j � βe,w,k

])}

in H̃∗(Md+e)[[z, z−1]], where z is a formal variable.

Here we omit the factor (−1)aχ(β,β) in (3.34) asMe has only even homology,
and we have used (3.20) to expandH∗(Ξd,e). Note that ∩, H∗(Φ̄d,e) andH∗(Ψ̄d)
in (5.56) are given explicitly by equations (5.36), (5.44) and (5.46).

The next two propositions simplify (5.56) in the case when ζ = 1d, and in
the case when d = 0 and ζ = b0,v,m.

Proposition 5.17. For all d, e ∈ ZQ0 and η ∈ H̃∗(Me), we have

Y (1d, z)η :=
∑
n∈Z

[1d, η]nz
−n−1 =εd,ez

χ(d,e) ·H∗(Φ̄d,e) (5.57){
exp
[ ∑
v∈Q0, j>1

d(v)zj 1
j bd,v,j

]
�
(
η ∩exp

[
−
∑

v,w∈Q0, k>1

avwd(v)(k−1)!z−kβe,w,k

])}
.

Proof. Take ζ = 1d in (5.56). Then in the cap product (1d � η) ∩ exp[· · · ], all
terms in βd,v,j for j > 0 give zero as 1d ∩ βd,v,j = 0, so we can restrict to j = 0,
when βd,v,0 = d(v). Then −∩ exp[· · · ] only affects the factor η in 1d� η, so we
can rewrite it as 1d � (η ∩ exp[· · · ]). But the H∗(Ψ̄d) only affects the ti � 1d
factor, not the (η ∩ exp[· · · ]) factor. Therefore we can simplify the sum as

Y (1d, z)η = εd,ez
χ(d,e) ·H∗(Φ̄d,e) (5.58){

H∗(Ψ̄d)
( ∑
i>0

ziti�1d

)
�
(
η ∩exp

[
−
∑

v,w∈Q0

avwd(v)
∑
k>1

(k−1)!z−kβe,w,k

])}
.

From (5.46) we can show that

H∗(Ψ̄d)
(∑

i>0 z
iti � 1d

)
= exp

[∑
v∈Q0, j>1 d(v)zj 1

j bd,v,j
]
. (5.59)

Substituting this into (5.58) yields (5.57).

Proposition 5.18. For all v ∈ Q0, m > 1, e ∈ ZQ0 and η ∈ H̃∗(Me), we have

Y (b0,v,m, z)η :=
∑
n∈Z

[b0,v,m, η]nz
−n−1 =

∑
i>0

zi
(
m+i−1
m−1

)
· be,v,m+i η +

∑
v,w∈Q0, k>0

avw
(−1)m−1(m+k−1)!

(m−1)! z−m−k · (η ∩ βe,w,k). (5.60)

Here be,v,m+i η means multiplication in the R-algebra R[be,v,i]v,i in (5.34).
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Proof. Take d = 0 and ζ = b0,v,m in (5.56). Then in (b0,v,i � η) ∩ exp[· · · ], all
terms in β0,v,j for j 6= m in exp[· · · ] give zero as b0,v,m ∩ β0,v,j = 0 for j 6= i,
noting that when j = 0 we have β0,v,j = 0(v)10 = 0 as d = 0. Also, although the
exp[· · · ] involves terms of order l in [· · · ], only l = 0 and l = 1 terms contribute,
as b0,v,m ∩ β2

0,v,m = 0. Hence (5.56) becomes

Y (b0,v,m, z)η :=
∑
n∈Z

[b0,v,m, η]nz
−n−1 = H∗(Φ̄0,e) ◦H∗(Ψ̄0 × idMe) (5.61){(∑

i>0

ziti
)
�
(

(b0,v,m�η)∩
[
1 +

∑
v,w∈Q0

avw
∑
k>0

(−1)m−1(m+k−1)!z−m−k ·
β0,v,m � βe,w,k

])}
= H∗(Φ̄0,e) ◦H∗(Ψ̄0 × idMe){(∑
i>0

ziti
)
�
(

(b0,v,m�η) +
∑

v,w∈Q0, k>0

avw
(−1)m−1(m+k−1)!

(m−1)! z−m−k · 10�(η∩βe,w,k)
)}

= H∗(Φ̄0,e)
{
H∗(Ψ̄0)

(∑
i>0

ziti � b0,v,m
)
� η +

H∗(Ψ̄0)
(∑
i>0

ziti�10

)
�
( ∑
v,w∈Q0, k>0

avw
(−1)m−1(m+k−1)!

(m−1)! z−m−k · (η ∩ βe,w,k)
])}

,

where in the first step we use ε0,e = 1 and χ(0, e) = 0, and in the second
b0,v,m ∩ β0,v,m = 1/(m− 1)! by (5.36). Now from (5.46) we can show that

H∗(Ψ̄0)
(∑

i>0 z
iti � b0,v,m

)
=
∑
i>0 z

i
(
m+i−1
m−1

)
b0,v,m+i,

and (5.59) gives H∗(Ψ̄0)
(∑

i>0 z
iti � 10

)
= 10. Substituting into (5.61) yields

Y (b0,v,m, z)η = H∗(Φ̄0,e)
{∑
i>0

zi
(
m+i−1
m−1

)
b0,v,m+i � η +

∑
v,w∈Q0, k>0

avw
(−1)m−1(m+k−1)!

(m−1)! z−m−k · 10 � (η ∩ βe,w,k)
]}
.

Equation (5.60) now follows from (5.44).

5.3.6 Ȟ∗(M) is a lattice vertex algebra

In the first main result of this section, we show that Ȟ∗(M) is isomorphic to a
lattice vertex algebra from §2.2.4.

Theorem 5.19. Let Q be any quiver, and K = C, and R be a field of charac-
teristic zero, and let Ȟ∗(M) be the graded vertex algebra over R constructed in
Theorem 3.14 from the triangulated category T = Db mod-CQ with additional
data as in Definition 5.12. Use the notation of §5.3.1–§5.3.2.

Then there is an isomorphism of graded vertex algebras over R between
Ȟ∗(M) and the lattice vertex algebra V∗ defined in Definition 2.15 and Theorem
2.16 using the lattice ZQ0 and intersection form χ, identifying

∏
v∈Q0, i>1 b

nv,i
d,v,i

in Ȟ∗(Md) with ed ⊗
∏
v∈Q0, i>1 b

nv,i
v,i in V∗ for all d ∈ ZQ0 and nv,i ∈ N with

only finitely many nv,i nonzero.
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Hence by Theorem 2.16, if χ is nondegenerate, then writing C=(cvw)v,w∈Q0

for the inverse matrix of A = (avw)v,w∈Q0 over Q, then Ȟ∗(M) is a simple
graded vertex algebra, and it is a graded vertex operator algebra, with central
charge c = |Q0| and conformal vector

ω = 1
2

∑
v,w∈Q0

cvw b0,v,1b0,w,1 ∈ H4(M0).

Proof. By (3.31) and (5.34), Ȟ∗(M) has a basis of elements
∏
v∈Q0, i>1 b

nv,i
d,v,i

graded of degree − 1
2χ(d,d) +

∑
v,i nv,i for d ∈ ZQ0 and nv,i ∈ N with finitely

many nv,i 6= 0. As in (2.13)–(2.14), V∗ has a basis of elements ed ⊗
∏
v,i b

nv,i
v,i

graded of degree − 1
2χ(d,d) +

∑
v,i nv,i for the same d, nv,i. Thus, there is a

unique isomorphism of 1
2Z-graded R-vector spaces ι : Ȟ∗(M)→ V∗ identifying∏

v∈Q0, i>1 b
nv,i
d,v,i in Ȟ∗(Md) with ed ⊗

∏
v∈Q0, i>1 b

nv,i
v,i in V∗ for all d, nv,i.

We claim that ι identifies the vertex algebra structure on Ȟ∗(M) with the
unique vertex algebra structure on V∗ given by Theorem 2.16. To see this, note
that ι maps 1 = 10 7→ 1 = e0 ⊗ 1.

If α ∈ ZQ0 and n ∈ Z then Definition 2.15 and (2.15) determine (e0 ⊗∑
v∈Q0

α(v)bv,1)n : V∗ → V∗, and Proposition 5.18 with m = 1 determines

(
∑
v∈Q0

α(v) b0,v,1)n : Ȟ∗(M) → Ȟ∗(M). Comparing we see that ι identifies

these two actions, noting that for n > 0, αn : V∗ → V∗ acts as n
∑
v∈Q0

α(v) d
dbv,n

by Definition 2.15(iii), and − ∩ (
∑
v∈Q0

α(v)n!βd,v,n) : Ȟ∗(Md)→ Ȟ∗(Md) is

given by (5.36) and acts by n
∑
v∈Q0

α(v) d
dbd,v,n

.

If α ∈ ZQ0 then (2.16) determines Y (eα ⊗ 1, z) : V∗ → V∗[[z, z
−1]], and

Proposition 5.17 determines Y (1α, z) : Ȟ∗(M) → Ȟ∗(M)[[z, z−1]. Comparing
we see that ι identifies these two actions, as the factors εα,βz

χ(α,β) in (2.16) and
εd,ez

χ(d,e) in (5.57) correspond, and the factors exp
[
−
∑
n<0

1
nz
−nαn

]
in (2.16)

and exp
[∑

v,j d(v)zj 1
j bd,v,j

]
in (5.57) correspond by Definition 2.15(iii), and

the factors exp
[
−
∑
n>0

1
nz
−nαn

]
in (2.16) and − ∩ exp

[
−
∑
v,w,k avwd(v)(k −

1)!z−kβe,w,k
]

correspond by Definition 2.15(i) and (5.36). Thus the first part of

Theorem 2.16 shows that ι identifies the vertex algebra structures on Ȟ∗(M)
and V∗, proving the first part of the theorem. The second part is immediate.

Remark 5.20. (i) In examples, such as the lattice vertex algebras in §2.2.4,
(graded) vertex algebra structures are often constructed on the underlying vec-
tor space V∗ of a (graded) commutative algebra, although the algebra structure
on V∗ is not part of the vertex algebra structure (and the grading is different).

In our situation H∗(M) is naturally a graded commutative algebra, with
multiplication ζ ·η = H∗(Φ)(ζ�η) for Φ :M×M→M as in Assumption 3.1(g),
although H∗(Φ) is not part of the algebraic structures we usually consider on
H∗(M) (e.g. H∗(Φ) does not respect the primary grading H̃∗(M)). Thus, every
graded vertex algebra Ȟ∗(M) arising from Theorem 3.14 is also the underlying
vector space of a graded commutative algebra (though with a different grading).
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Equation (5.44) implies that the isomorphism between Ȟ∗(M) and the lat-
tice vertex algebra in Theorem 5.19 identifies the graded commutative algebra
structure from H∗(Φ) on Ȟ∗(M) with the algebra structure used to build the
lattice vertex algebra. This was not obvious in advance, it is a consequence of
the weird formula (5.35) which determined the isomorphism.

Our construction provides a geometric motivation for the existence of these
underlying (graded) algebra structures on (graded) vertex algebras.

(ii) Theorem 5.4 gives a graded vertex algebra Ȟ∗(M) from T = Db mod-CQ
over any commutative ring R, not just for R a field of characteristic zero, though
the explicit computations in §5.3.2–§5.3.5 need R to be a Q-algebra so we can use
Chern characters. As in Remark 2.17(iii) one can define lattice vertex algebras
over a general commutative ring R, and the author expects the first part of
Theorem 5.19 also holds in this case.

5.3.7 Relating H̃0(M)t=0 and H̃0(M)t=0 to Kac–Moody algebras

When Q has no vertex loops, we now relate the ‘t = 0’ Lie algebras H̃0(M)t=0

and H̃0(M)t=0 to Kac–Moody algebras. Much of the next theorem follows
from Theorem 5.19 and known facts about the relation between lattice vertex
algebras and Kac–Moody algebras, but we provide an independent proof. The
theorem should be compared to Theorem 5.4.

Theorem 5.21. Suppose Q is a quiver without vertex loops. Then:

(a) Define δv ∈ ZQ0 by δv(w) = 1 if v = w and δv(w) = 0 otherwise. Then for
all v ∈ Q0 we have

H̃0(Mδv )t=0 = H̃0(Mδv )t=0 = H0(Mδv ) = 〈1δv 〉R,
H̃0(M−δv )t=0 = H0(M−δv ) = 〈1−δv 〉R,
H̃0(M0)t=0 = H2(M0) = 〈b0,v,1 : v ∈ Q0〉R.

(5.62)

Define Ev = 1δv in H̃0(Mδv )t=0 = H̃0(Mδv )t=0, Fv = −1−δv in H̃0(M−δv )t=0

and Hv = b0,v,1 in H̃0(M0)t=0 for v ∈ Q0. Then as in (2.7) we have

[Hv, Hw]t=0 = 0, [Ev, Fw]t=0 = 0 if v 6= w, [Ev, Fv]
t=0 = Hv,

[Hv, Ew]t=0 = avwEw, [Hv, Fw]t=0 = −avwFw,
(adEv)

1−avw(Ew) = 0 if v 6= w, (adFv)
1−avw(Fw) = 0 if v 6= w.

(5.63)

(b) Write g′(A) = g = h⊕n+⊕n− for the derived Kac–Moody algebra associated
to Q, as in §2.1.2. Then there are unique, injective Lie algebra morphisms
Ῡ : g → H̃0(M)t=0 and Υ : n+ → H̃0(M)t=0 with Ῡ(ev) = Υ(ev) = Ev,
Ῡ(fv) = Fv and Ῡ(hv) = Hv for all v ∈ Q0. These Ῡ,Υ are compatible with
the gradings g =

⊕
d∈ZQ0 gd and H̃0(M)t=0 =

⊕
d∈ZQ0 H̃0(Md)t=0. Also

Ῡ ◦ ω = H̃0(Σ̄)t=0 ◦ Ῡ : g −→ H̃0(M)t=0, (5.64)
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where ω : g → g is the involution in Theorem 2.4(d), and Σ̄ : M → M is
induced by translation [1] : Db mod-CQ→ Db mod-CQ as in Definition 5.12.

(c) Suppose that either Q is of finite type (i.e. its underlying graph is a disjoint
union of Dynkin diagrams of type A, D or E), or Q is connected and of affine
type (i.e. its underlying graph is an affine Dynkin diagram). Then Ῡ and Υ in
part (b) are isomorphisms.

(d) Let Q be nonempty. Then Proposition 3.6 implies that the inclusion M′ =
M\ {0} ↪→M induces an isomorphism H̃∗(M′)t=0 → H̃∗(M)t=0, so (a)–(c)
hold with H̃0(M′)t=0 in place of H̃0(M)t=0. Also Corollary 3.27 says that the

Lie algebra morphism Πpl
t=0 : H̃0(M′)t=0 → H̃0(Mpl) from (3.50) and Theorem

3.29(b) is an isomorphism. Thus (a)–(c) also hold with (H̃0(Mpl), [ , ]pl) in
place of (H̃0(M)t=0, [ , ]t=0).

Proof. For (a), as Q has no vertex loops we have χ(δv, δv) = avv = 2, so

H̃0(Mδv )t=0 = H0(Mδv )t=0 = H0(Mδv ) = 〈1δv 〉R

by (3.36) and (3.43), and the same holds for H̃0(M−δv )t=0. Also

H̃0(M0)t=0 =H2(M0)t=0 =H2(M0)/t�H0(M0)=H2(M0)=〈b0,v,1 : v ∈ Q0〉R

using (3.36), (3.43), (5.34), and t � 10 = 0 by (5.48). This proves (5.62).
The first, third, fourth and fifth equations of (5.63) follow from the coef-

ficients of z−1 in Propositions 5.17 and 5.18. The second, sixth and seventh
equations of (5.63) hold essentially trivially by the same argument, as each
takes values in Hn(Md) = 0 for n < 0. For the second, if v 6= w ∈ Q0 then

[Ev, Fw]t=0 ∈ H̃0(Mδv−δw)t=0 = H−2+2avw(Mδv−δw)t=0 = 0,

using (3.43) and avv = aww = 2, avw 6 0. For the sixth, if v 6= w ∈ Q0 then

(adEv)
1−avw(Ew) ∈ H̃0(M(1−avw)δv+δw)t=0 = H−2(M(1−avw)δv+δw)t=0 = 0,

using (3.43) and 2−χ
(
(1−avw)δv+δw, (1−avw)δv+δw

)
= −2 as avv = aww = 2.

The seventh equation of (5.63) is the same. This proves part (a).
For (b), comparing (2.7) and (5.63) we see that by definition of g′(A) = g in

Definition 2.3, there is a unique Lie algebra morphism Ῡ : g→ H̃0(M)t=0 with
Ῡ(ev) = Ev, Ῡ(fv) = Fv and Ῡ(hv) = Hv for all v ∈ Q0. As Ev ∈ H0(Mδv ) =
H0(Mδv ), this restricts to Υ : n+ → H̃0(M)t=0. These Ῡ,Υ are compatible
with the gradings g =

⊕
d∈ZQ0 gd and H̃0(M)t=0 =

⊕
d∈ZQ0 H̃0(Md)t=0, as

they are compatible on generators ev, fv, hv of g. Thus, Ker Ῡ is a graded ideal
in g. But g0 = h has basis hv, v ∈ Q0, and H̃0(M0)t=0 has basis Hv, v ∈ Q0 by
(5.62), so Υ|h : h → H̃0(M0)t=0 is an isomorphism, and Ker Ῡ ∩ h = 0. Hence
Ker Ῡ = 0 by Theorem 2.4(e), and so Ῡ,Υ are injective.

Theorem 2.4(d) gives ω(ev) = −fv, ω(fv) = −ev, ω(hv) = −hv for v ∈ Q0.
Also H̃0(Σ̄)t=0(Ev) = −Fv, H̃0(Σ̄)t=0(Fv) = −Ev, H̃0(Σ̄)t=0(Hv) = −Hv for
v ∈ Q0 by (5.42) and Ev = 1δv , Fv = −1−δv , Hv = b0,v,1. As Ῡ(ev) = Ev,
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Ῡ(fv) = Fv, Ῡ(hv) = Hv, equation (5.64) holds on generators ev, fv, hv of g,
and so holds on all of g. This proves part (b).

For (c), as Ῡ is injective and graded, we see that Ῡ is an isomorphism if
and only if dim gd = dim H̃0(Md)t=0 for all d ∈ ZQ0 , where dim H̃0(Md)t=0

is given in (5.49). If Q is of finite type and d ∈ ZQ0 , then by the theory of
semisimple Lie algebras, either:

(i) (Cartan subalgebra.) d = 0 and dim g0 = dim h = |Q0|;
(ii) (Roots.) d 6= 0, χ(d,d) = 2 and dim gd = 1; or

(iii) d 6= 0, χ(d,d) > 2 and dim gd = 0.

By (5.49), the dimensions of H̃0(Md)t=0 are the same, so Ῡ is an isomorphism.
Similarly, if Q is connected and of affine type and d ∈ ZQ0 , then by the

theory of affine Lie algebras [84, §6], either:

(i) (Cartan subalgebra.) d = 0 and dim g0 = dim h = |Q0|;
(ii) (Real roots.) d 6= 0, χ(d,d) = 2 and dim gd = 1;

(iii) (Imaginary roots.) d 6= 0, χ(d,d) = 0 and dim gd = |Q0| − 1; or

(iv) d 6= 0, χ(d,d) > 2 and dim gd = 0.

Again, by (5.49), Ῡ is an isomorphism. The analogues for Υ : n+ → H̃0(M)t=0

also hold, using (5.50). Part (d) is immediate. This completes the proof.

Theorem 5.4 provides some evidence for the following conjecture:

Conjecture 5.22. Suppose we can make the ‘supported on indecomposables’
version proposed in §3.9.1 work in the situation of Theorem 5.21. Then the Lie
subalgebra of H̃0(M) ‘supported on indecomposables’ is Υ(n+).

5.4 Examples with A = mod-CQ and T = Dbmod-CQ
We discuss some examples of the situation considered in §5.3. Throughout we
take K = C, and R to be a field of characteristic zero, and H∗(−), H∗(−) to be
the (co)homology theories of (higher) Artin C-stacks over R from Example 2.35.

Example 5.23. Take Q to be the quiver
u• with one vertex u and no edges.

Then mod-CQ = VectC, the abelian category of finite-dimensional vector spaces,
and Db mod-CQ = Db VectC. As in §5.2 the moduli stacks M of objects in
A = VectC and M of objects in T = Db VectC are

M∼=
∐
r∈N[∗/GL(r,C)], M∼= PerfC =

∐
r∈Z PerfrC .

As in §5.2.2 and §5.3.2 we have

H∗(M) ∼=
⊕

r∈ZH∗(Mr) =
⊕

r∈ZR[br,i : i = 1, 2, . . .],

H∗(M) ∼=
⊕

r∈NH∗(Mr) ∼=
⊕

r∈N I
◦
r ⊂ H∗(M),

(5.65)
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where I◦r ⊂ R[br,i, i > 1] is the annihilator of Ir ⊂ H∗(Mr) ∼= R[βr,i, i > 1].
Here we omit u from notation br,u,i, βr,u,i in §5.3.2 as there is only one vertex u.

Thus, H∗(M) has basis the monomials µr,n =
∏
i>1 b

ni
r,i for r ∈ Z and ni ∈ N

with only finitely many ni nonzero, where by (3.23) and (3.31) we have

µr,n ∈ H2
∑
i ini

(M), µr,n ∈ H̃2r2−2+2
∑
i ini

(M), µr,n ∈ Ȟr2+
∑
i ini

(M),

as the Euler form is χ(r, s) = 2rs for r, s ∈ Z, since auu = 2. We have

H̃0(M) = 〈b0,1, 11, 1−1〉R ∼= H̃0(M)t=0 ∼= H̃0(Mpl),

and the Lie brackets [ , ]t=0 ∼= [ , ]pl on H̃0(M)t=0 ∼= H̃0(Mpl) are given by

[b0,1, 11]t=0 = 2 · 11, [b0,1, 1−1]t=0 = −2 · 11, [11, 1−1]t=0 = b0,1.

Thus the Lie algebras H̃0(M)t=0, H̃0(Mpl) are isomorphic to sl(2, R), with Car-
tan subalgebra h = 〈b0,1〉R and root spaces g1 = 〈11〉R and g−1 = 〈1−1〉R.

In §3.4 we discussed the maps Πpl
t=0 : Hk(M′r)t=0 → Hk(Mpl

r ) for r ∈
Z = K(T ). Proposition 3.24(a),(b) proves these are isomorphisms for r 6= 0,

and Proposition 3.26 shows Πpl
t=0 : Hk(M′0)t=0 → Hk(Mpl

0 ) are isomorphisms
for k = 0, 1, 2. The proof in §4.5 using the homology Leray–Serre spectral
sequence involves a map d2 : E2

3,0 = H3(Mpl
0 ) → E2

0,2 = H0(Mpl
0 ). Since

t�− : H0(M′0)→ H2(M′0) is zero by (5.48), equation (4.27) implies that Im d2 =

H0(M′0) ∼= R, and by further computation as in §4.5 we find that H3(Mpl
0 ) ∼= R.

But H3(M′0) = H3(M0) = 0 by (3.13) and (5.65), so H3(M′0)t=0 = 0. Hence

Πpl
t=0 : H3(M′0)t=0 → H3(Mpl

0 ) is not an isomorphism.

Example 5.24. Let Q be the quiver
v• ⇒ w• with two vertices v, w and two

edges from v to w. The underlying graph is the affine Dynkin diagram Ã1.
Thus Theorem 5.21(c),(d) say that the Lie algebras H̃0(M)t=0, H̃0(Mpl) are
isomorphic to the corresponding Kac–Moody algebra, which is the affine Lie
algebra ŝl(2, R), as in Kac [84, §6]. Explicitly, ŝl(2, R) = sl(2, R)[t, t−1]⊕ 〈c〉R,
where sl(2, R)[t, t−1] is the loop algebra of sl(2, R), and 〈c〉R is a central exten-
sion. Identify ZQ0 ∼= Z2 by d ∼= (d(v),d(w)). Then for d ∈ ZQ0 we have

(i) χ(d,d) = 0 if and only if d = (n, n) for n ∈ Z.

(ii) χ(d,d) = 2 if and only if d = (n, n+ 1) or d = (n, n− 1) for n ∈ Z.

(iii) χ(d,d) > 4 except in cases (i),(ii).

Hence from (5.34) we see that

H̃−2(M) =
⊕

n∈ZH0(M(n,n)) =
⊕

n∈Z〈1(n,n)〉R,
H̃0(M) =

⊕
n∈Z
(
H2(M(n,n))⊕H0(M(n,n+1))⊕H0(M(n,n−1))

)
=
⊕

n∈Z〈b(n,n),v,1, b(n,n),w,1, 1(n,n+1), 1(n,n−1)〉R.

By (5.48), t � − : H̃−2(M) → H̃0(M) maps 1(n,n) 7→ n(b(n,n),v,1 + b(n,n),w,1).
Therefore

H̃0(M)t=0∼=〈b(0,0),v,1+b(0,0),w,1〉R⊕
⊕
n∈Z
〈b(n,n),v,1−b(n,n),w,1, 1(n,n+1), 1(n,n−1)〉R,
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as we must quotient H̃0(M) by the vectors b(n,n),v,1 + b(n,n),w,1 for n 6= 0.

The isomorphism sl(2, R)[t, t−1]⊕〈c〉R ∼= H̃0(M)t=0 identifies sl(2, R)⊗ tn with
〈b(n,n),v,1 − b(n,n),w,1, 1(n,n+1), 1(n,n−1)〉R and 〈c〉R with 〈b(0,0),v,1+ b(0,0),w,1〉R.

Example 5.25. Let Q be the quiver
u• v• ⇒ w• with three vertices u, v, w

and two edges from v to w, the disjoint union of quivers in Examples 5.23 and
5.24. The corresponding Kac–Moody algebra is g = sl(2, R) ⊕ ŝl(2, R). As Q
is not connected, Theorem 5.21(c) does not apply, so Ῡ : g → H̃0(M)t=0 and
Υ : n+ → H̃0(M)t=0 are injective, but need not be (and are not) surjective.

Identify ZQ0 ∼= Z3 by d ∼= (d(u),d(v),d(w)). Then d = (1, 1, 1) and
d = (1,−1,−1) both have χ(d,d) = 2, so H0(M(1,1,1)) = 〈1(1,1,1)〉R and

H0(M(1,−1,−1)) = 〈1(1,−1,−1)〉R are both subspaces of H̃0(M)t=0. However,
(1, 1, 1) and (1,−1,−1) are not roots of g, so 〈1(1,1,1)〉R and 〈1(1,−1,−1)〉R are
not in the image of Ῡ. Hence Ῡ is not surjective, and also Υ is not surjective
as 〈1(1,1,1)〉R lies in H̃0(M)t=0 \ Υ(n+). Note too that Kac–Moody algebras
have g = h⊕

∑
α∈∆+∪∆−

gα, where ∆± ⊂ (±N)Q0 . But (1,−1,−1) is a root of

H̃0(M)t=0 which lies in neither NQ0 nor (−N)Q0 .

To be continued.
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A Binomial coefficients

Here we collect some definitions and facts about binomial coefficients
(
m
n

)
for

m,n ∈ Z, since some readers may be unfamiliar with these if m < 0 or n < 0.

Definition A.1. Let m,n ∈ Z. Define the binomial coefficient
(
m
n

)
by

(
m

n

)
=


0, n < 0,

1, n = 0,
m(m−1)(m−2)···(m−n+1)

n! , n > 0.

(A.1)

Binomial coefficients have the following well known properties:(
m

n

)
= 0 if and only if n < 0 or 0 6 m < n, (A.2)(

m

n

)
=

m!

n!(m− n)!
if 0 6 n 6 m, (A.3)(

m

n

)
= (−1)n

(
n−m− 1

n

)
for all m,n ∈ Z, (A.4)(

m

n

)
=

(
m

m− n

)
if m > 0, (A.5)(

m+ 1

n

)
=

(
m

n

)
+

(
m

n− 1

)
for all m,n ∈ Z. (A.6)

The Binomial Theorem says that

(1 + x)m =
∑
n>0

(
m

n

)
xn, (A.7)

which holds in polynomials in x if m > 0, and in power series convergent when
|x| < 1 if m < 0.

We now prove some identities on binomial coefficients which will be used in
the main text. First we show that for all m > 0 and n, p ∈ Z we have∑

k>0: k6p

(−1)k
(
k +m+ n− p

k

)(
m

p− k

)
= (−1)p

(
n

p

)
. (A.8)

We do this by induction on m = 0, 1, . . . . Write Sm,n,p for the left hand side of
(A.8). For the first step m = 0, the only potentially nonzero term in the sum
is k = p, if p > 0, giving S0,n,p = (−1)p

(
n
p

)
, as we want, where if p < 0 this

still holds as both sides are zero. For the inductive step, suppose (A.8) holds
for all m > 0 and n, p ∈ Z with m 6 m′. In the sum for Sm′+1,n,p, rewriting(
m′+1
p−k

)
=
(
m′

p−k
)

+
(

m′

p−k−1

)
by (A.6) and rearranging the sum gives

Sm′+1,n,p=Sm′,n+1,p+Sm′,n,p−1 =(−1)p
(
n+1
p

)
+(−1)p−1

(
n
p−1

)
=(−1)p

(
n
p

)
,
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using the inductive hypothesis in the second step and (A.6) in the third. Hence
by induction (A.8) holds for all m > 0 and n, p ∈ Z.

Next we will show that if l,m, n ∈ Z with l +m+ n = −1 then

(−1)l
(
−l − 1

n

)
+ (−1)m

(
−m− 1

l

)
+ (−1)n

(
−n− 1

m

)
= 0. (A.9)

As l + m + n = −1, one or two of l,m, n must be negative, and the others
nonnegative. This gives six cases, which after cyclic permutations of l,m, n are
equivalent to one of: (A) l < 0 and m,n > 0; and (B) l,m < 0 and n > 0.

In case (A) note that
(−m−1

l

)
= 0 by (A.2) and

(−1)l
(
−l − 1

n

)
= (−1)l

(
−l − 1

−l − 1− n

)
=

(
−l − 1

m

)
= (−1)l+m

(
m+ l

m

)
= (−1)1+n

(
−n− 1

m

)
,

using (A.5) in the first step, l+m+n = −1 in the second and fourth, and (A.4)
in the third. Equation (A.9) follows in case (A). In case (B), all three terms in
(A.9) are zero by (A.2). This proves (A.9).
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son structures and deformation quantization, J. Top. 10 (2017), 483–584.
arXiv:1506.03699.

[29] Y. Cao, Donaldson–Thomas theory for Calabi–Yau four-folds,
arXiv:1309.4230, 2013.

[30] Y. Cao and N.C. Leung, Donaldson–Thomas theory for Calabi–Yau four-
folds, arXiv:1407.7659, 2014.

[31] Y. Cao and N.C. Leung, Orientability for gauge theories on Calabi–Yau
manifolds, Adv. Math. 314 (2017), 48–70. arXiv:1502.01141.

[32] Anneaux de Chow et applications, Séminaire C. Chevalley, 2e année, École
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in Math. 239, Springer-Verlag, Berlin, 1971.

[70] L. Illusie, Cotangent complex and deformations of torsors and group
schemes, pages 159–189 in Springer Lecture Notes in Math. 274, Springer-
Verlag, Berlin, 1972.

[71] J.C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Math. 6,
A.M.S., 1995.

[72] R. Joshua, Higher Intersection Theory on Algebraic Stacks: I, K-Theory
27 (2002), 133–195.

[73] R. Joshua, Higher Intersection Theory on Algebraic Stacks: II, K-Theory
27 (2002), 197–244.

[74] D. Joyce, Constructible functions on Artin stacks, J. L.M.S. 74 (2006),
583–606. math.AG/0403305.

[75] D. Joyce, Motivic invariants of Artin stacks and ‘stack functions’, Quart.
J. Math. 58 (2007), 345–392. math.AG/0509722.

[76] D. Joyce, Configurations in abelian categories. I. Basic properties and mod-
uli stacks, Adv. Math. 203 (2006), 194–255. math.AG/0312190.

[77] D. Joyce, Configurations in abelian categories. II. Ringel–Hall algebras,
Adv. Math. 210 (2007), 635–706. math.AG/0503029.

[78] D. Joyce, Configurations in abelian categories. III. Stability conditions and
identities, Adv. Math. 215 (2007), 153–219. math.AG/0410267.

[79] D. Joyce, Configurations in abelian categories. IV. Invariants and changing
stability conditions, Adv. Math. 217 (2008), 125–204. math.AG/0410268.

[80] D. Joyce and coauthors, in preparation, 2018.

[81] D. Joyce and Y. Song, A theory of generalized Donaldson–Thomas invari-
ants, Mem. Amer. Math. Soc. 217 (2012), no. 1020. arXiv:0810.5645.

[82] V.G. Kac, Infinite root systems, representations of graphs and invariant
theory, Invent. Math. 56 (1980), 57–92.

[83] V.G. Kac, Root systems, representations of quivers and invariant theory,
pages 74–108 in Invariant theory, Springer Lecture Notes in Math. 996,
1983.

151

http://arxiv.org/abs/math/0403305
http://arxiv.org/abs/math/0509722
http://arxiv.org/abs/math/0312190
http://arxiv.org/abs/math/0503029
http://arxiv.org/abs/math/0410267
http://arxiv.org/abs/math/0410268
http://arxiv.org/abs/0810.5645


[84] V.G. Kac, Infinite-dimensional Lie algebras, third edition, Cambridge Uni-
versity Press, 1990.

[85] V.G. Kac, Vertex Algebras for Beginners, Univ. Lecture Series 10, A.M.S.,
Providence, RI, 1997.

[86] B. Keller, Calabi–Yau triangulated categories, pages 467–489 in A. Skow-
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[150] B. Toën, Derived Algebraic Geometry, EMS Surveys in Mathematical Sci-
ences 1 (2014), 153–240. arXiv:1401.1044.

155

http://arxiv.org/abs/math/0406073
http://arxiv.org/abs/math/0611617
http://arxiv.org/abs/alg-geom/9609004
http://arxiv.org/abs/alg-geom/9609004
http://arxiv.org/abs/alg-geom/9609014
http://arxiv.org/abs/1404.1606
http://arxiv.org/abs/math/9806111
http://arxiv.org/abs/math/9908097
http://arxiv.org/abs/math/0501343
http://arxiv.org/abs/math/0604504
http://arxiv.org/abs/1401.1044
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