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This is an incomplete first draft. I hope the eventual finished document will

have three parts:

M Construction of vertex algebras and Lie algebras in Algebraic Geometry:

the theory, written in terms of homology of Artin stacks.

[ Application of Part [[]in examples, in both Geometric Representation The-
ory (categories of quiver representations), and Algebraic Geometry (cat-
egories of coherent sheaves). Discussion of virtual classes, enumerative

invariants, and wall-crossing formulae.

TN Construction of vertex algebras and Lie algebras in Differential Geometry,
on the homology of moduli spaces of connections. Application to enumer-
ative invariants counting instanton-type moduli spaces, including SU(n)-
Donaldson theory of 4-manifolds for all n > 2, Seiberg—Witten invariants,

Hermitian—Einstein connections on Kéhler manifolds, Ga-instantons,

Spin(7)-instantons.

and



Despite its length, the present document is only a first draft of Part[[] and the
first half of Part [l

To explain the basic idea, we first review Ringel-Hall algebras. There are
several versions, beginning with Ringel [135H138|; we discuss the constructible
functions version, following the author [74H79).

Let K be an algebraically closed field of characteristic zero, and write Art]lét
for the 2-category of Artin K-stacks locally of finite type. For each object S
in Artllét we can consider the Q-vector space CF(S) of constructible functions
a:S(K)— Q,asin [74]. If f: S — T is a representable morphism in Art}’
we can define the pushforward f. : CF(S) — CF(T), andif g : S — T is a
finite type morphism in Art}l’ we can define the pullback g* : CF(T) — CF(S).
Pushforwards and pullbacks are functorial, and have a commutative property
for 2-Cartesian squares in Artp'.

Let A be a K-linear abelian category, satisfying some conditions. Write M
for the moduli stack of objects F in A, and &gact for the moduli stack of short
exact sequences 0 — Fy — Fy — E3 — 0 in A. Then M, €ract are Artin K-
stacks, with morphisms IT;, Iy, IT3 : Eract — M such that II; maps [0 — E; —
E5,— E5 — 0] — [E;]. The conditions on A imply that M, €ract are locally of
finite type, and Il is representable, and (IT;, II3) : €ract — M x M is of finite
type. We define a Q-bilinear operation * : CF(M) x CF(M) — CF(M) by

fxg= (). o (I, I3)"(f M g), (L.1)

as in [77]. Then = is associative, and makes CF(M) into a Q-algebra with unit
dj0], which we call a Ringel-Hall algebra. Hence CF(M) is also a Lie algebra
over Q, with Lie bracket [f,g] = fxg—gx* f.

Now let K(A) be a quotient of the Grothendieck group Ko(.A) of A such
that M splits as M = HaeK(A) M, with M, C M the open and closed K-
substack of objects F in A with class [E] = « in K(A), let T be a stability
condition on A in the sense of [78] factoring via K(A), and suppose that the
open substack M?¥ (1) C M,, of T-semistable objects in class « is of finite type
for all a € K(A). Then the characteristic function s (7 is an element of the
Ringel-Hall algebra (CF(M), ).

Let 7 be another stability condition on A, satisfying the same conditions.
In [79] the author proved a universal wall-crossing formula, which writes & M:=(7)
as a sum of products of 5M§5(T) in the Ringel-Hall algebra (CF(M),*). By
[79, Th. 5.4], an alternative version of the wall-crossing formula, for elements
€a(T) € CF(M) defined using the d s (), makes sense solely in the Lie algebra
(CF(M),[,]). All this was applied to wall-crossing for Donaldson-Thomas
invariants of Calabi-Yau 3-folds in [81].

In this book, given a suitable K-linear abelian category A (or K-linear tri-
angulated category T), writing M for the moduli stack of objects in A (or T),
we first define the structure of a graded vertex algebra on the homology H,(M)
of M over a commutative ring R, in the sense of Kac [85] and Frenkel and
Ben-Zvi [46]. Vertex algebras are complicated algebraic structures arising in
Conformal Field Theory in Mathematical Physics.



Roughly speaking, we will also define a (graded) (super) Lie bracket [, | on
H,(M), making H.(M) into a (graded) Lie (super)algebra over R. (Actually,
we define [, ] either on a modification H,(M)!=% of H,(M), or on the homology
H,(MP) of a modification MP! of M.) So we replace CF(M) by H,(M) in the
usual Ringel-Hall (Lie) algebra construction. These Lie algebras (H.(M),[,])
have interesting applications, including wall-crossing formulae under change of
stability condition for virtual cycles in enumerative invariant problems.

In the analogue of defining the Lie bracket [, | on H,.(M), the pushfor-
ward (II3), is natural on homology, but the pullback (IT;, II3)* is more complex,
and we need extra data to define it, a perfect complex ©°® on M x M satisfy-
ing some conditions, similar in spirit to an obstruction theory in the sense of
Behrend and Fantechi [15]. In our examples there are natural choices for ©°.

As above we write M = HaeK(A) M,. Part of the data is a symmetric
biadditive map x : K(A) x K(A) — Z with rank ©°*| s, xam, = x(a, (), called
the Euler form. We define a shifted grading H,(Mg) on H,(M,) by

ﬁi(Ma) = Hi+2—x(oc,a) (Ma)~

We can interpret 2 — x(a, ) as the virtual dimension of the ‘projective linear’
moduli stack MP' below. This induces a shifted grading H,(M) on H,(M).
Then our Lie brackets [, ] on H.(M) are graded with respect to the shifted
grading H, (M), that is, [, | maps Hy(Mgy) x H(Mg) = Hppi(Ma+g)-

As for Ringel-Hall algebras, there are actually many versions of this Lie
algebra construction, all variations on the same basic theme. In §3.31-43.7 we
explain five versions, which admit further modifications as in

(i) For the ‘t = 0’ version in we define a graded representation ¢ of R][t]
on H, (M), where ¢ has degree 2, and we define

H (M)'= = H. (M)/({t,£?,.. )r o H (M)).

Then we define a graded Lie bracket [, |*=° on H,(M)*=0.

(ii) For the ‘projective linear’ version in we work with a modified moduli
stack MP! parametrizing nonzero objects E in A or T up to ‘projec-
tive linear’ isomorphisms, meaning that we quotient out by isomorphisms
Nidg : E — E for A € G,,. The K-points [E] of MP' are the same as
those of M’ = M\ {[0]}, but while M has isotropy groups Isors ([E]) =
Aut(E), MP' has isotropy groups Iso i ([E]) = Aut(E)/G,, - idg. There
is a morphism ITP' : M’ — MP' which is a fibration with fibre [*/G,y,].
Under some assumptions (including R a Q-algebra) we can show that
H,(M')=0 = H, (MP), giving a geometric interpretation of H,(M’)*=0.
In the general case, depending on some partially conjectural assumptions,
we can define a graded Lie bracket [, P! on H,(MP!), such that (II?), :
H, (M= = H,(MP') is a Lie algebra morphism.

(iii) For the ‘positive rank’ version in §3.5] we choose a ‘rank’ morphism rk :
K(A) = Z, we set M™>0 = Hoera)yrkaso Ma C M, and we define a

graded Lie bracket [, ]"*>° on homology H,(M™>%) over a Q-algebra R.



(iv) For the ‘mixed’ version in we again choose rk : K(A) — Z, we set
‘g* (M)mix = (@aEK(.A):rka:O R[S} QR ‘g* (Ma)t:0>
® (®a€K(A):rk a#0 H, (Ma))7

where s is graded of degree 2, and we define a graded Lie bracket [, mix
on H,(M)™*_ This combines the ‘¢ = 0’ version when rka = 0 with the
‘positive rank’ version when rk a # 0.

(v) For the ‘fixed determinant’ versions in we assume we are given a
group stack P called the Picard stack with isotropy groups G,,, and a
‘determinant’ morphism det : M — P satisfying some assumptions. We
show that all of (i)—(iv) still work when we replace M by the substack
MPD = A X ppt * of objects in M with ‘fixed projective determinant’,
and also discuss M™ = M xp % and MP = MP! X ppl *.

The author regards the ‘projective linear’ version as the primary one.

Our definitions of Lie algebras work in great generality. For example, if
X is any smooth projective K-scheme and A = coh(X), or 7 = D’coh(X),
the Lie algebra constructions above apply, though for applications involving
enumerative invariants and virtual classes we need to restrict X to be a curve,
or surface, or Calabi—Yau 3- or 4-fold, or Fano 3-fold. Similarly, the Lie algebras
on moduli spaces of connections we define in part [[TI] work on any compact spin
manifold, though in applications we restrict to 4-manifolds, Go-manifolds, etc.

So far as the author can tell, the core idea behind our vertex algebra and
Lie algebra constructions is new. But it is related to, or similar to, work by
other authors. Probably the closest to ours is work by Grojnowski [57] and
Nakajima [118H122] discussed in §6} which defines representations of interesting
Lie algebras on the homology of Hilbert schemes of points on surfaces. We can
explain their results by realizing their Lie algebras in the homology of complexes
of dimension 0 sheaves.

The author envisages four main areas of application of our theory:

(a) In Geometric Representation Theory, as a way of producing examples of
interesting Lie algebras and their representations, starting from abelian or
derived categories such as categories of quiver representations.

(b) In the study of (co)homology of moduli spaces in Algebraic Geometry, for
example by using facts from representation theory of infinite-dimensional
Lie algebras to explain modular properties of generating functions of Betti
numbers of Hilbert schemes, moduli spaces of vector bundles, etc.

(¢) In the study of enumerative invariants ‘counting’ coherent sheaves on
projective varieties: Mochizuki’s invariants counting sheaves on surfaces
[115], Donaldson—Thomas invariants of Calabi—Yau 3-folds and Fano 3-
folds [81}/91,/92,/146], and Donaldson-Thomas type invariants counting
sheaves on Calabi-Yau 4-folds [20,30431].

As we explain in §7] we can write the virtual classes defining invariants as
elements of H,(MP'), and then (conjecturally) we can write wall-crossing



formulae for these virtual classes under change of stability condition using
the Lie bracket [, |P! and the universal wall-crossing formula of [79).

(d) There should be a Differential-Geometric version of (c) for enumerative
invariants in gauge theory, such as Donaldson invariants of 4-manifolds.
For example, we hope to define U(n) and SU(n) Donaldson invariants of
oriented Riemannian 4-manifolds (X, g) with b3 (X) > 1, and give wall-
crossing formulae for them when b3 (X) = 1.

In Part[[, we begin in §2| with background on Artin stacks and higher stacks,
and discuss homology and cohomology of stacks. Section [3|constructs the vertex
algebra structures and Lie brackets on the homology of moduli spaces that are
our main concern. Proofs of the main results of §3] are postponed to §4 In
we take an axiomatic approach, stating Assumptions on both (co)homology
theories H,(—), H*(—) of stacks, and on the abelian category A or triangulated
category T, and then proving theorems about them.

Part [T studies examples of the constructions in Part [[lin detail. The current
incomplete version only covers abelian categories A = mod-CQ and derived
categories 7 = D’ mod-CQ of representations of a quiver Q. In the triangulated
category case, the graded vertex algebras are lattice vertex algebras, and the
graded Lie algebras naturally contain Kac-Moody algebras. Future versions will
discuss quivers with relations, dg-quivers, and (derived) categories A = coh(X),
T = Dbcoh(X) of coherent sheaves on a smooth projective K-scheme X.

Acknowledgements. This research was partly funded by a Simons Collaboration
Grant on ‘Special Holonomy in Geometry, Analysis and Physics’, and by EPSRC
Programme Grant EP/1033343/1. I would like to thank Christopher Beem,
Chris Brav, Tom Bridgeland, Yalong Cao, Andrew Dancer, Simon Donaldson,
Jacob Gross, Kevin McGerty, Baldzs Szendrdi, Yuuji Tanaka, Bertrand Toén,
and Markus Upmeier for helpful conversations.



Part I
Vertex and Lie algebras in Algebraic Geometry

2 Background material

2.1 Lie algebras and graded Lie algebras

We discuss Lie algebras and graded Lie algebras. Some good references are
Humphreys [66] and Kac [84]. Note that our graded Lie algebras are examples
of Lie superalgebras; for brevity we usually avoid using the prefix ‘super-’.

2.1.1 Basic definitions

Definition 2.1. Let R be a commutative ring. A Lie algebra over R is a pair

(V,[,]), where V is an R-module, and [,]: V x V — V is an R-bilinear map
called the Lie bracket, which satisfies the identities for all u,v,w € V:

[v,u] = 7[“3”]7 (21)

[[u’ U]v ’LU] + [[U’ w]? u} + [[’LU, u]’ U] =0, (2'2)

Here (2.1) is antisymmetry, and (2.2) is the Jacobi identity. If we assume ([2.1)

then ([2.2) is equivalent to
[[’LL, U]v ’LU] - [u7 [Ua wH - [v7 [’LL, wH = 07 (23)

which we will also call the Jacobi identity.

A representation of a Lie algebra (V,[,]) is an R-module W and an R-
bilinear map [,]: V x W — W satisfying for all u,v € V and w € W.
Note that 7 do not make sense for representations.

Here is the graded version of Definition 2.1}

Definition 2.2. Let R be a commutative ring. A graded Lie algebra over R (also
called a graded Lie superalgebra over R) is a pair (Vi, [, ]), where Vi = @, Va
is a graded R-module, and [, ] : Vi x Vi, — Vi is an R-bilinear map called the
Lie bracket, which is graded (that is, [, | maps V, x Vi, = Vo for all a,b € Z),
and satisfies the identities for all a,b,c € Z and u € V,, v € V}, and w € V.:

[v,u] = (=1)**[u, v], (2.4)
(=) [[u, 0], w] + (=1)*[[o, w], u] + (=1)*[[w, u],v] = 0. (2.5)

Here (2.4) is graded antisymmetry, and (2.5)) is the graded Jacobi identity.
If we assume (2.4)) then (2.5)) is equivalent to

[[ua ”U], U)} - [U, [va wH + (71)ab[v, [ua wH = 0’ (26)

which we will also call the graded Jacobi identity. Note that because of the
signs (—1)2, (=1)%¢, (=1)°® in (2.4)—(2.6)), graded Lie algebras are examples of



Lie superalgebras. The subspaces Vy and Viyen = @kez Vo are ordinary Lie
algebras. Any Lie algebra is a graded Lie algebra concentrated in degree 0.

A representation of a graded Lie algebra (V,,[,]) is a graded R-module
Wi = @,.cz We and an R-bilinear map [, | : Vi x W, — W, which is graded
(that is, [, ] maps V, x W, — Wy, for all a,b € Z), satisfying for all
a,b,ceZ and u € V,, v € Vy and w € W.,.

2.1.2 Kac—Moody algebras

Kac-Moody algebras are an important class of Lie algebras, as in Kac [84], that
will occur in our examples in §5] We summarize parts of their theory.

Definition 2.3. Let Qy be a finite set, and A = (Gyw)v,weq, be an integer
matrix on Qp. We call A a symmetric generalized Cartan matriz if a,, = 2
for all v € Qq, and Gy = awy < 0 for all v # w in Qy. Let R be a field of
characteristic zero. As in Kac [84] §0.3], the associated (derived) Kac—Moody
algebra g'(A) over R is the Lie algebra over R with generators e,, fy, h, for
v € Qg, and the relations

[hmhw] =0, [emfw] =0 ifv;éw7 [evafv] = hy,
[hva 6w] = QywCuw, [hv; fw} = —Oyw fuw, (2.7)
(ade,) ™ (ey) =0 ifv#w, (adf,)' "% (f,) =0 ifv#w.

For elements d € ZQO, we will use the notation

d>0 ifdeN?, d>0 ifdeN?%\{0},
4o (2.8)

0 if —deN?, d<0 if-deN%\{0}.

Note that if d(v) > 0 and d(w) < 0 for some v,w € Qo then none of d > 0,
d>0,d<0,d<0,ord=0 hold.

The next theorem is taken from Kac [84} §1 & §5], with (e) in [84] Rem. 1.5].
Theorem 2.4. Let A = (ayw)v,weq, and §'(A) be as in Definition . Then:

(a) There is a unique grading g'(A) = @gczeo 84, such that e, € g5, fu €
g_5, and hy € gy for all v € Qo and [g4, 98] C g1 for all d,e € 79,
where &, € Z9° is given by 6,(w) =1 if v=w and &,(w) = 0 otherwise.

(b) Each graded subspace g4 for d € 790 is finite-dimensional, and g4 = 0
unless either d =0, or d > 0, or d < 0, in the notation of (2.8). Write

bh =90, 04 = Pguobar and n_ = Py_q08q. Then hny,n_ are Lie
subalgebras of ¢'(A), with ¢'(A) = bh@dny dn_. We call h the Cartan

subalgebra, n, the positive part, and n_ the negative part of g'(A).

Then b is abelian, and is the R-vector space with basis h, forv € Qq. Also
ny is the Lie subalgebra of g’ (A) generated by the e, for v € Qq, and n_
is the Lie subalgebra of g'(A) generated by the f, for v € Qq.



(c) We call d € Z?° a root of g'(A) if d# 0 and gy # 0. Then either d > 0,
when d is a positive root, or d < 0, when d is a negative root. Write
A AL A for the sets of roots, positive roots, and negative roots. Then

= @aen, 9a and n- =Dyen 9a-

We also divide roots d € A into real roots, with A(d,d) > 0, and imag-
inary roots, with A(d,d) < 0. If d is a real root then A(d,d) = 2.

(d) There is a unique isomorphism w : g'(A) — ¢'(A) satisfying w? = id,
and w(gy) = g_g for all d € Z2°, and w(e,) = —f,, w(fo) = —eu,
w(hy) = —hy for all v € Q.

(e) Suppose t is an ideal in g'(A) which is graded with respect to the grading
in (a), with hNt=0. Then t=0.

Remark 2.5. (i) Kac [84, §1] constructs another Lie algebra g(A), also called
a Kac-Moody algebra, such that g’(4) = [g(A),g(A)] C g(A) is the derived
Lie subalgebra. We call g'(A) the derived Kac—Moody algebra if we want to
stress the difference with g(A). We have g(A) = h @ n, @ n_, where the Cartan
subalgebra h of g(A) has h C b, and dimbh — dim b = null(A) is the number of
zero eigenvalues of A, so that g(A4) = ¢g'(A) if and only if det A # 0. We chose

only to define the g'(A), as they occur in our Ringel-Hall Lie algebra examples.

(ii) The definition of Kac-Moody algebra [84) §1] does not require the matrix
A = (@yw)v,weq, to be symmetric, only that a,, = 0 implies a,, = 0. One can
also relax the condition that a,, = 2, giving a generalized Kac—Moody algebra,
or Borcherds—Kac—Moody algebra.

(iii) The Lie algebra g/(A) is finite-dimensional if and only if the matrix A is
positive definite, and then g'(A) is semisimple, a sum of Lie algebras of types A,
D and E. As in Kac [84], much of the representation theory of finite-dimensional
semisimple Lie algebras extends to Kac-Moody algebras in a nice way.

(iv) The theory of quantum groups [71,/106] extends to Kac—Moody algebras.

2.1.3 The Virasoro algebra

Definition 2.6. The Virasoro algebra Virg over a Q-algebra R is the Lie algebra
with basis elements L,,, n € Z and ¢ (the central charge), and Lie bracket

[e, Ln] =0, [Lim, Lyn] = (m —n) Ly + %(m3 —m)dmnc, m,n € ZL.

The factor % is a convention, and can be omitted when defining the Virasoro

algebra over a general commutative ring R.

The quotient Virg /{c) is called the Witt algebra, and may be regarded as
the Lie algebra of vector fields on the circle S*. The Virasoro algebra is the
unique central extension of the Witt algebra. It is very important in Conformal
Field Theory and String Theory.



2.2 Vertex algebras

Next we discuss vertex algebras. These were introduced by Borcherds [18],
and some books on them are Kac [85], Frenkel and Ben-Zvi [46], Frenkel, Lep-
owsky and Meurman [48], Frenkel, Huang and Lepowsky [47], and Lepowsky
and Li [99].

2.2.1 (Graded) vertex algebras and vertex operator algebras
Here is Borcherds’ original definition of vertex algebra [1§]:

Definition 2.7. Let R be a commutative ring. A vertex algebra over R is an
R-module V equipped with morphisms D™ : V — V for n = 0,1,2,... with
DO =idy and v, : V — Vforallv e Vand n € Z, with v,, R-linear in v, and
a distinguished element 1 € V called the identity or vacuum vector, satisfying:

(i) For all u,v € V we have u,(v) =0 for n > 0.

(ii) f v € V then 1_4(v) =v and 1,(v) =0 for —1 #n € Z.

(iii) If v € V then v, (1) = D"~V (v) for n < 0 and v, (1) = 0 for n > 0.
)

U (0) = Y50 (=1 TEDW) (v, 4 (u)) for all u,v € V and n € Z, where
the sum makes sense by (i), as it has only finitely many nonzero terms.

(v) (w(v))m(w) = ano(_l)n(i) (ulfn(vm+n(w))_(_1)lvl+mfn(“n(w))) for

all u,v,w € V and I, m € Z, where the sum makes sense by (i).

(iv

One can show from these axioms that D("™) o D(") = (T;Z)D(m‘*‘"), and so by
induction n!D™ = (DM)™. If R is a Q-algebra then we write T = D) and
call T the translation operator, and D(") = %T" forn=0,1,2,....

As in [85] §1.3], |46}, §1.3], it is very common to encode the maps u, : V — V
for n € Z in generating function form as R-linear maps for each v € V

Y(u,z): V—V[zz2"], Y(uz):v— Y, pun(v)z7""", (2.9)

where z is a formal variable. The Y (u, z) are called fields, and have a meaning
in Physics. Parts (i)—(v) may be rewritten as properties of the Y (u, z).

There are several alternative definitions of vertex algebra in use in the lit-
erature [46,[48,/85/99], which generally require R to be a Q-algebra or field of
characteristic zero, and are known to be equivalent to Definition when R is
a Q-algebra, [85] §4.8].

Vertex algebras are part of the basic language of Conformal Field Theories
in Mathematical Physics and String Theory, and have important mathematical
applications in the representation theory of infinite-dimensional Lie algebras,
the study of the Monster group, and other areas.

Next we define graded vertex algebras, which are examples of vertexr super-
algebras. Inconveniently, the dominant grading convention in the literature for
graded vertex algebras of the type we want is different to that for graded Lie
algebras in as they are graded over %Z rather than Z.

10



Definition 2.8. Let R be a commutative ring. A graded vertex algebra (or
graded vertex superalgebra) over R is an R-module V. = @ 1z V, graded over
%Z, equipped with morphisms D™ : V, — V, for n = 0,1,2,... which are
graded of degree n (i.e. D™ maps V,, — V4, for a € $Z) with D(©) = idy, and
morphisms v, : V, — V, for all v € V, and n € Z which are R-linear in v and
graded of degree a —n —1 for v € V, (i.e. v,, maps Vj, = Vyyp_p—1 for b € %Z),
and an element 1 € Vj called the identity or vacuum vector, satisfying:

(i) For all u,v € V, we have u,(v) =0 for n > 0.
(ii) If v € V, then 1_;(v) =v and 1,,(v) =0 for —1 #n € Z.
(iii) If v € Vi then v, (1) = DD (v) for n < 0 and v,,(1) = 0 for n > 0.
) up(v) = Zk20(—1)4“b+k+”+1D(k)(U,H_k(u)) for all a,b € 37Z, n € Z and
u € Vg, v € V4, where the sum makes sense by (i).
(V) (ul(v))m(w) :Zn>o(_1)n (,ll) (ulfn(varn(w))_(_1)4ab+lvl+mfn(un(w)))
for all a,b,c € %Z, ImeZandueV,velV, we V., where the sum
makes sense by (i).

Then Vz = @,z Va is the ‘even’ part of V., which is an ordinary vertex
algebra, and V% 2=D V, is the ‘odd’ or ‘super’ part of V.

(iv

a€3+Z

As in [18,[48,/85199], vertex operator algebras are a class of vertex algebras
important in Conformal Field Theory:

Definition 2.9. Let R be a field of characteristic zero. A vertezx operator algebra
(or vertex operator superalgebra, or conformal vertex algebra [85), §4.10]) over R
is a graded vertex algebra V, = @ aclz V, over R as in Definition [2.8] with a
distinguished conformal element w € V5 and a central charge cy € R, such that
writing L, = wp41 : Vi = Vi, we have

(i) [Lim, Ln] = (m = 1) Liyp + t50v(m® — m)dy, nidy, for m,n € Z. That is,
the L,, define an action of the Viraso algebra on V,, with central charge
cy, as in §2.1.3|

(ii) L_; = DM = T is the translation operator.

(iii) Lo|v, = a-idy, for a € 1Z.

A graded vertex algebra V, need not admit a conformal element w, and if
w exists it may not be unique. The term wvertex operator algebra (rather than
superalgebra) is often reserved for the case with odd part Vi, = 0, but we do
not do this. Some authors also impose additional conditions such as dim V,, < oo
and V,, = 0 for n < 0, but again we do not do this.

2.2.2 Some basic constructions for vertex algebras

Many concepts for ordinary algebras generalize to vertex algebras, graded vertex
algebras, and vertex operator algebras, in an obvious way. We mention some of
these, details can be found in [46,/48,/85.(99].
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e Morphisms of (graded) vertex algebras and vertex operator algebras are
defined in the obvious way, making them into categories.

o A (graded) vertex subalgebra W, of a (graded) vertex algebra V; is a
(graded) subspace W, C Vi such that 1 € W, and w,)(W.) € W, for all
we W, and n € Z.

e An ideal in a (graded) vertex algebra, or vertex operator algebra V., is a
(graded) R-submodule I, C V, with 1 # I, closed under all operations
D™ .V, -V, and u, : V. — Vi, and such that un (Vi) C I, for u € I..
Then the quotient V. /I, is a (graded) vertex algebra, or vertex operator
algebra. We call V, simple if it has no nonzero ideals.

e Direct sums V,®W, of (graded) vertex algebras V., W, are (graded) vertex
algebras.

e Tensor products Vi, @ p W, of (graded) vertex algebras or vertex operator
algebras V., W, are (graded) vertex algebras or vertex operator algebras.

e Suppose a group G acts on a (graded) vertex (operator) algebra V, preserv-
ing the structures. Then the G-invariant subspace V.¢ is also a (graded)
vertex (operator) algebra, which is called an orbifold vertex algebra.

We define representations of graded vertex algebras, following Lepowsky and
Li [99] and Frenkel and Ben-Zvi [46] §5.1].

Definition 2.10. Let R be a commutative ring, and V, be a graded vertex
algebra over R. A representation of V., or V.-module, is an R-module W, =
@ae%l W, graded over %Z, equipped with morphisms v, : W, — W, for all
v € Vi, and n € Z which are R-linear in v and graded of degree a —n — 1 for
v € V,, satisfying:
(i) For all v € V, and w € W, we have v,(w) = 0 for n > 0.
(i) If w € W, then 1_;(w) =w and 1,(w) =0 for —1 #n € Z.
(ii) (ul(v))m(w) :Zn>o(_1)n (,ll) (ulfn(Uern(w))_(_1)4ab+lvl+mfn(un(w)))
for all a,b,c € %Z, IllmeZ and u € V,, v € V3, w € W,, where the sum
makes sense by (i).

One can also take W, = @ W, to be graded over Q rather than %Z.

acQ

As in Borcherds [18], we can construct a (graded) Lie algebra from a (graded)
vertex algebra. This will be used in to define the ‘¢ = 0’ Lie algebras.

Definition 2.11. Let Vi, = @15 Va be a graded vertex algebra over R as in
Definition For each n € Z define an R-module

Vi = Vi1 / Yt DY (Vi pga)-
For all m,n € Z define an R-bilinear map [, | : Vie x Ve — Ve by

m—+n

[“ + Ek;1 D(k)(V*)a v+ Zk21 D(k)(V*)] = uo(v) + Zk;l D" (V3).

12



One can show this is well defined, and makes V)" = @, ., V,'* into a graded
Lie algebra over R in the sense of Definition so Vj#° is a Lie algebra.
As in Borcherds [18] and Prevost [131, Prop.s 4.5.3-4.5.4], if V, is a vertex

operator algebra then
Voo ={u+ Y5, DW(Vi) € VP tu € Wi, Ly(u) =0, n > 1}

is a Lie subalgebra of Vjj“°, which is generally rather smaller, and may be closer
to the Lie algebras one wants to construct.

The next definition follows Frenkel and Ben-Zvi [46, §1.4], and provides a
first class of examples of vertex algebras.

Definition 2.12. A (graded) vertex algebra V; is called commutative if u, (v) =
0 for all u,v € V,, and n > 0.

This implies that wu,, : V. — Vi and v, : Vi — V. (super)commute for all
u,v € Vi and m,n € Z. The R-bilinear product u - v := u_1(v) is (graded), as-
sociative and (super)commutative, making Vi into a (3Z-graded) commutative
R-algebra with identity 1. The translation operator T : V, — V, is an (even)
derivation of this algebra (graded of degree 1).

Conversely, if R is a Q-algebra, given a (3Z-graded) commutative R-algebra
Vi with a (degree 1, even) derivation T : Vi, — Vi, we can reconstruct the
(graded) vertex algebra structure on V., and this gives a 1-1 correspondence
between commutative (graded) vertex algebras over R and commutative (%Z—
graded) R-algebras with (degree 1) derivation.

If V, is a commutative (graded) vertex algebra then the (graded) Lie algebra
Ve in Definition is abelian (and so boring).

2.2.3 Vertex Lie algebras

We define (graded) vertex Lie algebras, following Kac [85), Def. 2.7b], Prime [133],
and Frenkel and Ben-Zvi |46} §16.1].

Definition 2.13. Let R be a commutative ring. A vertex Lie algebra (or
conformal algebra [85]) over R is an R-module V equipped with morphisms
D™ .V 5 Viforn=0,1,2,... with DO =idy and u,, : V = V forallu € V
and n € N, with u,, R-linear in u, satisfying:

(i) For all u,v € V we have u,(v) =0 for n > 0.
(ii) If w,v € V then (DM (u)),(v) = (=1)*(})un—k(v) for 0 < k < n, and
(D®) (1)), (v) =0 for 0 < n < k.
(iii) up(v) = Z,@O(—l)k*”HD(k)(vn+k(u)) for all u,v € V and n € N, where

the sum makes sense by (i).

(iv) (@ (©))m(w) = 32 —o(=1)" (1) (-n (Wmn () = (1) 01 m—n (tn (w))) for

all u,v,w €V and I,m € N.
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Definition 2.14. Let R be a commutative ring. A graded vertex Lie algebra
over R is an R-module V, = @ae% 2 Va graded over %Z, equipped with mor-

phisms D™ : V, — V, for n = 0,1,2,... which are graded of degree n (i.e. D)
maps V, — Vyy, for a € %Z) with D = idy, and morphisms u, : Vi, — Vi
for all uw € V,, and n € N which are R-linear in v and graded of degree a —n — 1
for u € V,, (i.e. up, maps Vy, = Vyap_pn_1 for b € %Z)7 satisfying:

(i) For all u,v € V, we have u,(v) =0 for n > 0.
(ii) If u,v € Vi then (D™ (u)),(v) = (—1)*(})un—r(v) for 0 < k < n, and
(D" (1)), (v) =0 for 0 < n < k.

(iil) w,(v) = Zk>0(—1)4ab+k+"“D(k) (Un4k(u)) for all a,b € 1Z, n € N and
u € Vg, v € Vp, where the sum makes sense by (i).

(iv) (w(v))m(w)= 22:0(_1)n (i) (ulfn(vmen (w))_(_1)4ab+l”l+mfn(un(w)))

for all a,b,c € %Z, ImeNandueV,,veV, wel.

A (graded) vertex Lie algebra has some of the structures of a (graded) vertex
algebra: it has the operators D™ and u,, for n > 0, but omits u,, for n < 0 and
1. Any (graded) vertex algebra is a (graded) vertex Lie algebra.

If V, is a (graded) vertex algebra, a (graded) vertex Lie subalgebra W, of V,
is a (graded) subspace W, C V, such that D(")(W*) C W, and w,(W,) C W,
for all w € W, and n > 0. Then W, is a (graded) vertex Lie algebra.

As in Primec [133], any (graded) vertex Lie algebra W, has a universal en-
veloping vertex algebra ¥ (W, ), which is a (graded) vertex algebra with an inclu-
sion W, C ¥ (W,) as a vertex Lie subalgebra, with the universal property that
if Vi is a (graded) vertex algebra and ¢ : W, — V. is a morphism of (graded)
vertex Lie algebras, then ¢ extends to a unique morphism ¥ (¢) : ¥ (W.) — Vi
of (graded) vertex algebras.

Often a (graded) vertex Lie algebra W, may be much smaller, and easier to
write down, than its associated (graded) vertex algebra ¥ (W.,).

The definition of (graded) Lie algebras V"¢ in Definition also works for
(graded) vertex Lie algebras V.

2.2.4 Lattice vertex algebras

We discuss lattice vertex algebras, an important class of examples of graded
vertex algebras, following Borcherds 18], Kac [85] §5.4], Frenkel and Ben-Zvi |46]
85.4], Frenkel et al. [48, Th. 8.10.2], and Lepowsky and Li [99, §6.4-§6.5].

Definition 2.15. Let Qg be a finite set, so that Z?° is a finite rank free abelian
group. Let x : 720 x 79 — 7 be a Z-bilinear symmetric form, with matrix
A = (Gyw)v,weq,- Let R be a field of characteristic zero.

As in [85] (5.14)], [46} (5.4)], suppose we are given signs €, g € {£1} for all
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a,B ez satisfying for all o, 8,y € 70

€ B = (_1)X(047,3)-i-X(OévOt)X(ﬂJf‘)7 (2.10)
€a,8 " CatB,y = €a,B4y T €8,y (2.11)
Ea,o = 6070‘ = 1 (212)

Note that these coincide with (3.I)-(3.3) in Assumption below As in
Kac [85 Cor. 5.5, there exist solutlons (ea 8)a,pezeo to (2.10] -7 which
are unique up to an appropriate notion of equivalence (i.e. all solutions yield
isomorphic lattice vertex algebras).

Define a commutative R-algebra

V = R[Z°| ®r R[byi:v € Qo, i=1,2,...].

Here R[ZQO] is the group algebra over R of the abelian group ZQO, which has
basis formal symbols e¢® for a € Z?° with multiplication e® - ¢® = ¢*#, and
R[by,; 1 v € Qo, ¢ > 1] is the polynomial algebra over R in formal variables b, ;.
Thus, V is the free R-module with basis

{e* ® [loeq,, i>1 2“1’ :a € Qo, ny,; €N, only finitely many n,; #0}. (2.13)

Define a grading V = V, of V over 1Z such that

aE%Z
Ny, i
e ® HvEQO, i>1 bv,z’ € Vf%x(a,a)JrZUJ Noy,i (2'14)

for each basis element in . (Note that although V' is an R-algebra, because
of the —= X(a a) term the multlphcatlon in V does not respect the grading.) We
write V =V, as a graded vector space, with even part Vz and odd part V% 1z

For each o € Z9° and n € Z we define R-linear maps a,, : Vi, — V. which
are graded of degree —n and Z-linear in «, by

(i) If n > 0 then a, : V' — V is the derivation of the R-algebra V' generated
by an(b,:) =0 for v € Qo, i # n, and (b, ) = na(v), and a,(e?) =0
for B € Z9. In effect, o, acts as nY e a(v)ﬁ.

Ny, i

(i) ap acts by ag: e’ ® HUEQU, >0, x(a, B) - e# @ HUEQO i>1 Z”Zl
(iii) If » < 0 then oy, : V' — V is multiplication by > a(v)by,—p, in the
R-algebra V.

vEQo

Write 1 = € ® 1 € Vj for the identity 1 in the R-algebra V.

The next theorem follows from Kac [85, Prop.s 5.4 & 5.5 & Th. 5.5], see also
Lepowsky and Li [99, Th. 6.5.3].

Theorem 2.16. In the situation of Definition there is a unique graded
vertex algebra structure over R on V, = @aG%Z V. such that 1 is the identity

vector, and for all a € 720 and n € Z we have

(60 ® ZveQO a(v)bv,l)n = Qp : Vi — ‘/*, (215)
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and for all a, B € 70 in the notation of 1D we have

Y(e* ®1,2)|e80Rb, . veQo, i21]
= €q 52X @ e exp (=Y co sz o] oexp[— 00 22 "] (2.16)
e? ® Rlby; v € Qo, i = 1] — et Rby; v € Qo, t > 1].

We call V, a lattice vertex algebra.

Now suppose that the inner product x : 790 x 790 — 7, is nondegenerate, so
that A = (ayw)v,weq, i invertible over Q, and write A" = C = (cyw)v,we,
with ¢y € Q. Then Vi is a simple graded vertex algebra (it has no nonzero
ideals), and it is a graded vertex operator algebra, with conformal vector

w=3% > cowe @byibui, (2.17)

v, WEQo

and central charge ¢y = rank Z9° = |Qo|.

Remark 2.17. (i) We have changed notation compared to [18146148[85./99], for
compatibility with In particular, lattice vertex algebras are usually defined
using a finite rank free abelian group A with symmetric form x : A x A — Z.
We have taken A = Z9°, and written Sym (A ®z ¢~ ' R[t™']) in [85] §5.4] as the
polynomial algebra R[b,; : v € Qo, ¢ > 1].

(ii) As in Kac [85] Ex. 5.5b], the conformal vector w in may not be unique,
lattice vertex algebras can admit nontrivial families of conformal vectors.

(iii) Parts of Definition and Theorem also work over more general
commutative rings R. Borcherds [18, §2] initially defines V.2 over R = Q, and
then defines an integral form VZ to be the smallest subring of VO as a Q-
algebra containing e® ® 1 for all a € 79" and closed under all operations D),
We can then define the lattice vertex algebra over any commutative ring R to
be V! = VZ @z R. Note that w in @ is not defined over Z.

2.3 Background on stacks

Stacks are a large and difficult subject. Although we give a little introduction
here, it will not be enough to enable readers unfamiliar with stacks to properly
understand our paper. Our discussion is intended for readers who already have
good background knowledge of stacks. On core material we aim to establish
notation, give references, and remind readers of the basic ideas. We also go into
detail on some technical points which will be important later.

For general references on stacks we recommend Goémez [55], Olsson [127],
Laumon and Moret-Bailly [98], and the online Stacks Project [34].

2.3.1 Classes of spaces in algebraic geometry

Throughout we fix a field K, such as K = C, which we sometimes require
to be algebraically closed. Then we can consider the following classes of algebro-
geometric spaces over K:
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(i)

(i)
(iii)

(iv)

K-schemes, as in Hartshorne [62]. These form a category Schg.

We generally restrict attention to schemes S which are locally of finite
type. We write Sch]lét C Schg for the full subcategory of such schemes.

Algebraic K-spaces, as in Knutson [89] and Olsson [127]. These form a
category AlgSpy.

Artin K-stacks, as in Gémez [55], Olsson [127], Laumon and Moret-Bailly
[98], and the ‘Stacks Project’ [34]. These form a 2-category Artg.

We generally restrict attention to stacks S which are locally of finite type,
and we make the convention that Artin K-stacks in this paper are assumed
to be locally of finite type unless we explicitly say otherwise. We write
Art]lét C Artg for the full 2-subcategory of such stacks.

The typical examples of Artin stacks we will be interested in are moduli
stacks M of objects in a K-linear abelian category A, such as coherent
sheaves A = coh(X) on a smooth projective K-scheme X.

Higher (Artin) K-stacks, as in Simpson [|143], Toén [149], and Pridham
[132]. These are a generalization of Artin stacks which form an oo-category
HStg, including ‘geometric n-stacks’ for n = 1,2,..., where geometric 1-
stacks are Artin stacks. We generally restrict attention to higher stacks S
which are locally of finite type, and higher stacks in this paper are assumed
to be locally of finite type unless we explicitly say otherwise. We write
HSt]lét C HStg for the full co-subcategory of such stacks.

The typical examples of higher stacks we will be interested in are moduli
stacks M of objects in a K-linear triangulated category 7, such as the
bounded derived category 7 = DPcoh(X) of complexes of coherent sheaves
on a smooth projective K-scheme X.

The reason we need higher stacks to study moduli spaces of complexes
is that if £° is an object in D’coh(X) with Ext‘(£®,£®) # 0 for some
i < 0 then the moduli space M of objects in D’coh(X) is generally not
represented by an Artin stack near £°, but it is a higher Artin stack.

Derived K-stacks, as in Toén and Vezzosi |149H152]. These form an oo-
category dStg, including a full co-subcategory dArtkx of derived Artin
stacks. We generally restrict attention to derived stacks S which are locally
of finite presentation. We write dSt]lép C dStk for the full co-subcategory
of such derived stacks. We usually write derived stacks in bold type.

The typical examples of derived stacks we will be interested in are derived
moduli stacks M of objects in a K-linear abelian category A, such as
A = coh(X) (in this case M is a derived Artin stack) or in a K-linear
triangulated category 7T, such as 7 = D’coh(X).
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These (higher) categories have the following inclusion relations:

Schy «——— AlgSpy > Arty <> HStx

CrlA to CilA to

dArtgC— S - dStg.

There is also a classical truncation functor tg : dStx — HStk, which maps
to : dArtg — Artg, is left inverse to the inclusion HStg — dStk, and takes
derived moduli stacks to the corresponding classical moduli stacks.

It will often not be important to us that Artx, HStx, dArtkx,dStkx are 2-
categories or oo-categories. Then we treat them as ordinary categories by work-
ing in the homotopy categories Ho(Artx), ..., Ho(dStk) (see Definition [2.18)).

2.3.2 Basics of 2-categories, the 2-category of Artin stacks

We review 2-categories, as in Borceux [17, §7], Kelly and Street [87], and
Behrend et al. [14, App. B]. A (strict) 2-category C has objects X,Y,...,
and two kinds of morphisms, 1-morphisms f : X — Y between objects, and
2-morphisms 7 : f = ¢ between 1-morphisms f,g: X — Y. One can also con-
sider weak 2-categories, or bicategories, in which composition of 1-morphisms is
associative only up to 2-isomorphisms, but we will not discuss these.

There are three kinds of composition in a 2-category, satisfying various as-
sociativity relations. If f: X — Y and g : Y — Z are 1-morphisms in C then
go f: X — Z is the composition of 1-morphisms. If f,g,h : X — Y are
1-morphisms and 7 : f = g, ( : ¢ = h are 2-morphisms in C then (®n: f = h
is the vertical composition of 2-morphisms, as a diagram

f

7 N f

— | .
X——— Y s X JeonY.
W \7/

h

Iff,f:X—)Yandg,g:Y—>Zare1-m01.rphismsand77:f$f,(::gég'

are 2-morphisms in C then ( xn: go f = go f is the horizontal composition of
2-morphisms, as a diagram

f 9 gof
X7 n Sy ¢ >z s X7 Yo Z
7 i 47

There are also two kinds of identity: identity 1-morphisms idx : X — X of
objects and identity 2-morphisms idy : f = f of l-morphisms. A 2-morphism
n: f = g is a 2-isomorphism if it is invertible under vertical composition.
Commutative diagrams in 2-categories should in general only commute up
to (specified) 2-isomorphisms, rather than strictly. A simple example of a com-
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mutative diagram in a 2-category C is
f/ Y g
\U]n\
X Z,
h

which means that X,Y,Z are objects of C, f : X — Y, g : Y — Z and
h: X — Z are l-morphisms in C, and 1 : go f = h is a 2-isomorphism.

In a 2-category C, there are three notions of when objects X,Y in C are
‘the same’: equality X =Y, and 1-isomorphism, that is we have 1-morphisms
f:X—=>Y ¢g:Y = X withgof =1idx and f o g = idy, and equivalence,
that is, we have l-morphisms f : X — Y, g : Y — X and 2-isomorphisms
n:gof=1idx and {: f o g = idy. Usually equivalence is the correct notion.

Definition 2.18. Let C be a 2-category. The homotopy category Ho(C) of
C is the category whose objects are objects of C, and whose morphisms [f] :
X — Y are 2-isomorphism classes [f] of 1-morphisms f : X — Y in C. Then
equivalences in C become isomorphisms in Ho(C), 2-commutative diagrams in
C become commutative diagrams in Ho(C), and so on.

Artin K-stacks Artg and Art form strict 2-categories. As in Gémez [55,
§2.2] and Olsson [127] §8], for us an Artin K-stack is defined to be a pair (X, px)
of a category X and a functor px : X — Schg, where Schy is the category
of K-schemes, such that X, px satisfy many complicated conditions which we
will not go into. These are the objects in Artk. If (X,px), (Y,py) are Artin
K-stacks, a 1-morphism f:(X,px) — (Y,py) in Artg is a functor f: X - Y
with py o f =px. If f,g: (X,px) — (Y,py) are l-morphisms, a 2-morphism
n: f = ¢ in Artg is a natural transformation of functors n : f = ¢ such that
idp, *n =1idp,. All 2-morphisms in Artk are 2-isomorphisms.

Definition 2.19. Let (X, px) be an Artin K-stack. A substack (Y,py) of X is
a subcategory Y C X which is closed under isomorphisms in X, such that the
restriction py := px|y : Y — Schg makes (Y, py) into an Artin K-stack. Then
the inclusion functor ¢ : Y < X is a representable 1-morphism in Artg.

2.3.3 Fibre products of stacks
We define fibre products in 2-categories, following [14, Def. B.13], |[127} §3.4.9].

Definition 2.20. Let C be a strict 2-category and g : X — Z, h: Y — Z be
1-morphisms in C. A fibre product in C consists of an object W, 1-morphisms
e:W —= X and f: W — Y and a 2-isomorphism n: goe = ho f in C, so that
we have a 2-commutative diagram

w Y
e 7o n (2.18)
X g VA
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with the following universal property: suppose ¢ : W/ — X and f': W/ — Y
are l-morphisms and 1’ : go e’ = ho f’ is a 2-isomorphism in C. Then there
should exist a 1-morphism b : W’ — W and 2-isomorphisms ¢ : eob = ¢/,
0 : fob= f such that the following diagram of 2-isomorphisms commutes:

goeob - hofob
nxidp

ﬂidg*g y idh*QM/

goe ho f'

Furthermore, if b, (, 0 are alternative choices of b, (, 6 then there should exist a
unique 2-isomorphism € : b = b with

(=CO(dexe) and =006 (ids *e).

We call such a fibre product diagram a 2-Cartesian square. We often
write W =X xzY or W = X x4 7Y, and call W the fibre product. If a fibre
product X Xz Y in C exists then it is unique up to canonical equivalence in C.

We can also define the dual notion of pushouts in 2-category, and 2-co-
Cartesian squares, by reversing the directions of all 1-morphisms in the above.

All fibre products exist in Artg, Arti', [98, Prop. 4.5(i)], [127, Prop. 8.1.16].
For higher stacks, we must use oo-category fibre products (homotopy fibre
products). All such fibre products exist in HStg, HSt]II?.

2.3.4 K-points and isotropy groups

If S is an Artin K-stack, as in [98, §5] a K-point of S is a morphism s : x — S
in Ho(Artgk), where * = SpecK is the point, as a K-scheme. We write S(K)
for the set of K-points of S. If s € S(K), then lifting s : + — S to a 1-
morphism in Artg, the isotropy group (or stabilizer group, or automorphism
group [127, Rem. 8.3.4]) Isog(s) is the group of 2-isomorphisms A : s = s in
Artg under vertical composition. It is the set of K-points of the fibre product
* X5 g5 %, which is a K-scheme, and in fact an algebraic K-group.

If M is a moduli stack of objects in a K-linear abelian category A, and [E] in
M(K) corresponds to F in A, then Iso([E]) is isomorphic to the automorphism
group Aut(E), the group of invertible elements in Hom 4(F, E).

If f: S — T is a morphism in Ho(Artg), we define f(K) : S(K) — T(K) to
map f(K):s— fos. If s € S(K) with f(K)s =t € T(K) there is a morphism
f« + Isog(s) — Isor(t) of algebraic K-groups given by f. : A — idy * A. As
this depends on lifting f, s,¢ from morphisms in Ho(Artgk) to 1-morphisms in
Artg, f. is only canonical up to conjugation in Isor(¢). These f(K) and f, are
covariantly functorial in f.

Similar definitions work for K-points and isotropy groups of higher stacks.
There are also higher isotropy groups m, (.5, s) for n > 0 with 7 (S, s) = Isog(s),
as in Toén [149, §3.1.6].

If U is a K-scheme and G an algebraic K-group acting on U, we can form
the quotient stack [U/G]. The K-points of [U/G] correspond to G-orbits G - u
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in U(K), with Isojy/q)(G - u) = Stabg(u) the stabilizer group of u in G. An
important example is [*/G,,], where ¥ = SpecK is the point and G,,, = A"\ {0}
is the multiplicative group.

2.3.5 Topologies on stacks, and the smooth topology

The appropriate notion of topology on Artin K-stacks is Grothendieck topologies,
as in [127], §2], including the Zariski topology, the étale topology, and the smooth
topology. When we use ‘locally’, ‘locally equivalent’, ‘locally trivial fibration’,
and so on, of stacks and their morphisms, we mean locally in the smooth topology,
unless we say otherwise.

For example, a vector bundle 7w : E — S on an Artin K-stack S is a locally
trivial fibre bundle in the smooth topology with fibre K". Requiring 7 : £ — S
to be locally trivial only in the smooth topology (rather than in the stronger
Zariski or étale topologies) means that the isotropy groups Isog(s) of K-points
s € S(K) can have nontrivial linear actions on the fibres E|; of E.

2.3.6 Vector bundles, coherent sheaves, and complexes on stacks

If S is one of any of the kinds of spaces in we can consider vector bun-
dles E. — S on S, and (quasi-)coherent sheaves £ on S, and complexes of
(quasi-) coherent sheaves £* on S, including perfect complexes. We write h'(E*)
for the i*" cohomology sheaf of £°, as an object in coh(S) or gcoh(S). We
usually consider vector bundles to be examples of coherent sheaves. (Quasi-)
coherent sheaves on schemes are discussed by Hartshorne [62, §I1.5] and Huy-
brechts and Lehn [68]. Some references on derived categories of complexes of
sheaves D’coh(S) on schemes are Gelfand and Manin [53] and Huybrechts [67].
Sheaves and complexes on (derived) (Artin) stacks are covered in Laumon and
Moret-Bailly |98, §15], Olsson |125| §9], [127, §9], and Toén and Vezzosi [151}[152].
We will need the following notation:

Definition 2.21. Let S be a K-scheme, or Artin K-stack, or higher Artin K-
stack. An object £* in the unbounded derived category of quasicoherent sheaves
D(qcoh(S)) is called perfect if it is equivalent locally on S to a complex --- —
E; — E;y1 — -+ with E; a vector bundle in degree 4, with E; = 0 for |i| > 0.
It is called perfect in the interval [a,b] for a < b in Z if it is locally equivalent
to such a complex with E; = 0 for ¢ ¢ [a,b]. Write Perf(S) C D(qcoh(S)) for
the K-linear triangulated subcategory of perfect complexes.

Write Vect(S) for the exact category of vector bundles on S. Then Vect(.S)
embeds as a full subcategory of Perf(S), by regarding a vector bundle £ as a
complex -+ -0 — & — 0 — - with £ in degree 0.

Write Ko(Perf(S)) for the Grothendieck group of Perf(.S), that is, the abelian
group generated by quasi-isomorphism classes [£°] of objects £° in Perf(S),
subject to the relations that [F°] = [£°] + [G°] whenever £* — F* — G* —
E°[+1] is a distinguished triangle in Perf(S).

Note that for direct sums £* @ F* in Perf(S) we have [E®*®F°] = [E°]+[F°].
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Write LCon(S,Z) for the abelian group of locally constant functions f :
S(K) — Z. Then there is a group morphism rank : Kg(Perf(S)) — LCon(S,Z)
called the rank, such that if £* € Perf(S), and s € S(K), and £° is quasi-
isomorphic near s to a finite complex of vector bundles ---F; — F;11 — - --
with F; in degree i, then rank([€°]) : s — Y, o, (—1)"rank F;. If £ is a vector
bundle of rank r then rank([€]) = r.

There is a natural biadditive operation ® : Ky(Perf(S)) x Ko(Perf(S)) —
Ko (Perf(S)), which acts by [E]®[F] = [E®F] on vector bundles £, F € Vect(S),
and [£°] ® [F*] = [£° @ F°] on perfect complexes £°, F* € Perf(S), where @
is the left derived tensor product. Then ® is commutative and associative, and
makes Ko (Perf(S)) into a commutative ring with identity [Og], where Og is the
structure sheaf of S, a trivial line bundle of rank 1. We also have rank(a® ) =
rank « - rank S for all a, § € Ky(Perf(S5)).

There is an additive operation of duality v : Ko(Perf(S)) — Ko(Perf(5)),
written a +— aV for a € Ko(Perf(S)), which acts by [£]Y = [£*] on vector
bundles &€ — S, where £* is the dual vector bundle, and by [£°]Y = [(£°)Y] on
perfect complexes £°, where (£°)V is the dual complex. We have (a¥)Y = «, so
duality is an isomorphism. Also rank a¥ = rank o, and (a® 8)¥ = (o) ® (8Y).

If f:S — T is a morphism of K-schemes, etc., we have pullback morphisms
Ko(f) : Ko(Perf(T)) — Ko(Perf(S)) acting by Ko(f) : [E°] — [f*(E°)] for
E® € Perf(T). Pullbacks are contravariantly functorial and commute with all
the structures above.

Example 2.22. Let G be an algebraic K-group, and consider the quotient Artin
K-stack [*/G], where * = SpecK. Then vector bundles on [*/G] are equivalent
to finite-dimensional G-representations, that is, we have an equivalence of cat-
egories Vect([*/G]) ~ Rep(@), and Perf([*/G]) is equivalent to the bounded
derived category D? Rep™ (G).

When G = G,,, the irreducible G,,-representations are Ej for k € Z, where
E, = K with G,,-action X\ : e — Me for A € G,, and ¢ € K, and finite-
dimensional G,,,-representations are isomorphic to finite direct sums of the Fy.
Hence Ky (Perf([*/G,,])) is the free abelian group generated by classes [Ej] for
k € Z. We have rank[Ey] = 1 and [Ej] ® [Ej] = [Eky] for k,l € Z. Thus as a
ring we have Ko(Perf([x/G,,])) = Z[r, 77! with 7 = [E}].

If S is a K-scheme, or an Artin K-stack, or a higher or derived K-stack, then
under some assumptions we can define the cotangent complexr LLg, an object in
D(qcoh(S)). See Illusie [691(70] for K-schemes, Laumon and Moret-Bailly [98]
§17] and Olsson [125, §8] for Artin K-stacks, and Toén and Vezzosi [151} §1.4],
[149] §4.2.4-§4.2.5] for derived K-stacks. We have h'(Lg) = 0 for i > 0 if S is
a K-scheme or Deligne-Mumford K-stack, and h*(Lg) = 0 for i > 1 if S is an
Artin K-stack. If S is a smooth K-scheme then Lg = T*S is the usual cotangent
bundle. If S is a derived stack locally of finite presentation then Lg is perfect.
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2.3.7 [x/G,,]-actions, and principal [*/G,,]-bundles

Suppose S is a K-scheme, and p : G, X S — S an action of the algebraic K-
group G,,, = K\ {0} on S. Then p is a free action if it acts freely on K-points
S(K). If p is free we can form a quotient K-scheme T = S/G,,, with projection
m: S — T, which is a principal G,,-bundle. We will generalize all this to Artin
K-stacks, replacing G,,, by the group stack [x/G,,].

Definition 2.23. Let Q : [+/G,,] x [*/G,,] = [¥/Gyy,] be the stack morphism
induced by the group morphism G, X G,, — G,, mapping (A, u) — Ay, and
t: [*/Gy] — [*/Gy] be induced by the group morphism G,, — G,, mapping
A Al and 1 : % — [¥/G,,] be the unique K-point. Then [*/G,,] is an
abelian group stack, an abelian group object in Ho(Art]lIg)7 with multiplication
Q, inverse map ¢, and identity 1. That is, writing 7 : [*/G,,] — * for the
projection and o : [¥/G,,]* — [x/G,,]? for exchange of factors, we have

Q=Qoo0:[x/G,]? — [¥/G,], (commutative),
Qo (2 xid) = Qo (id x Q) : [*/G]* — [*/Gul, (associative),
Qo(lom,id) =Qo(id,1om) =id: [*/G;] — [*/Gy], (identity),
Qo (1,id) =00 (id,t) =1om: [%/G] — [*/Gy,], (inverses). (2.19)
We can then define an action of the group stack [x/G,,] on an object S in

Ho(Art)") to be a morphism ¥ : [/G,,] x S — S in Ho(Artj) such that the
following commute in Ho(Artp'):

[¥/Gm] x [*/Gm] x S e /Gy x S
[\Li/d(g/sr] XZ . \Ifiv (2.20)
% /Gy ¥ 7

[*/Gp] x S

e \ (2.21)
«x S ik S.

We call a [x/G,,]-action U : [x/G,,] xS — S free if for all K-points s € S(K),
the induced morphism on isotropy groups as in

W, : 150 /g, x5 ((*,8)) = Gy X Isog(s) — Isos(s) (2.22)
has injective restriction V.lg, x{1} : Gm x {1} — Isos(s). '

A [*/G,,]-principal bundle is a morphism p : S — T in Ho(Artk') and a
[*/Gp]-action ¥ : [x/G,,] x S — S, such that p is a locally trivial fibre bundle
in the smooth topology with fibre [*/G,,], and the following commutes

[%/Gm] x S - S
| ”J« (2.23)
S £ T

23



in Ho(Artlft) and locally over T equation {i is equivalent to the diagram

[¥/Gm] X [¥/Gp] x T o [%/Gpm] x T
\Llh x 113 . WTi/ (2.24)
[¥/Gm] x T T

This implies that ¥ is a free [*/G,,]-action on S.
We can also make the same definition for higher stacks.

We can also generalize Definition m to actions ¥ : [*/G,,)F x S — S
of [¥/G]¥ on S for k = 2,3,..., equivalent to k commuting [x/G,,]-actions
Uy, ..., ¥, on S, and principal [*/G,,]*-bundles, in the obvious way.

Remark 2.24. We have written Definition 2:23]solely in the ordinar; category
Ho(Artl"). However, sometimes (e.g. in the proof of Proposition [2.29| below)
we need to lift the ideas to the 2-category Art . To do this, ﬁrst note that
the morphisms Q,¢,1,7,0,¥,p,... in Ho(Artlft) are 2-isomorphism classes of
1-morphisms in Art , and choose a 1-morphism in each 2-isomorphism class,
which by abuse of notation we also denote by ,¢,....

Then an equation such as 2 = Qoo in Ho(Artlft) in means that there
exists a 2-isomorphism 7 : Q@ = Qoo in Artlft We must make a particular
choice of such a 2-isomorphism, for each equation in morphisms in Ho(Artlft)
Definition [2.23] which become part of the data we work with. These particular
choices of 2—m0rphisms are then required to satisfy a large number of identities.
We will not write these identities down explicitly, but the general rule is that if
by using vertical and horizontal compositions of our 2-morphism data, we can
make two 2-morphisms 7,7 : f = ¢ mapping between the same 1-morphisms
f, g, then we require that n =7’

So, for instance, [*/G,,] is a 2- group object in the strict 2-category Ar
The 2-morphisms lifting the equalities (2 are part of the data of a 2-group,
and the identities they satisfy follow from the axioms of a 2-group.

Now it turns out that every [*/G,,]-action U : [%/G,,] x S — S in Ho(Arti")
can be lifted to a 2-category [*/G,,]-action in Arti', which is unique up to the
appropriate notion of equivalence. So the distinction will not be important to
us, and we will mostly work with the sunpler Ho(Art}) notion.

To prove this, observe that to hft a [x/G,y,]-action ¥ : [x/Gp,] X S — S from
Ho(Art!") to Art]lét, in - we must choose 2-isomorphisms

tlft

C:\I’O(id[*/@,m] X\I’):>\IJO(QXid5), T]Z\I/O(lxids):>ﬂ'5, (225)

which must satisfy some identities. Even without imposing identities, {,7 in
[2.25)) are close to being unique: from the definition of 2-morphisms in Art]lét in
§2.3.2we can show that if (', are alternative choices then (' = ax(,n' = Bxn
for unique 2-morphisms «, 8 : idg = idg, where * is horizontal composition in
the strict 2-category Artﬁg, and the 2-morphisms « : idg = idg form an abelian

group under vertical composition.
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One of the identities that ¢,n must satisfy for the 2-category [*/G,,]-action
is that the following should commute, in 1- and 2-morphisms * x .S — S:

U x (id[*/Gm] X \I/) o ((17 1) X ids) id\p*(idid[*/ﬂm xn)

]
‘U’C*id(l’l)xms \ (2.26)
idg*(0xidia )

Vo (Q xidg) o ((1,1) x idg) Vo (lxids),

where 6 : Q0 (1,1) = 1 is the 2-morphism of 1-morphisms * — [*/G,,] in the
2-group structure on [x/G,,]. For an arbitrary choice of ¢, 7 in , equation
need not hold, but as for the almost uniqueness of {,7n above, there exists
a unique 2-morphism « : idg = idg such that

(axidgo(1xids)) @ (idw (0 xidias)) © (C*id(1,1)xids ) =idw* (idia, o, X7)-

Then replacing ¢,n by ¢’ = ax( and ' = 1, we find that holds.

We can now show that with these ¢’,7n’, all the other required identities
automatically hold. This can be reduced to considering the following situation:
as in ps : S — Schg is a category fibred in groupoids. Let s be an
object in S, and write X for the group of isomorphisms o : s — s in S with
ps(o) = idpg(s), and G for the abelian group G,,(ps(s)). Then after making
some simplifying choices, ¥ induces a group morphism ¥, : Gg X X3 — X, and
¢,n induce elements (s, 715 € X, satisfying (V4 (7, U4(5,0))(;! = ¥4 (vd,0) and
nsWs(1,0)n; ! = o for all 4,8 € G, and o € X, and forces (s = ns. By
elementary group theory we see that Wy(a,0) = ps(a) - (7 lo(s for ps : Gy —
Z(3s) C 3 a group morphism to the centre Z(X;) of 3;. We then use this
formula to check the remaining identities hold.

Proposition 2.25. (a) Suppose U : [%/G,,] x S — S is a free [x/G,]-action in
Ho(Art}"). Then there exists a morphism p: S — T in Ho(Artl") with p, ¥ a
principal [x/G,,]-bundle, and T, p are unique up to isomorphism, and equation
is both homotopy Cartesian and homotopy co-Cartesian in Artﬁ?, We
regard T as the quotient S/[x/Gy,] of S by the free [x/Gp,)-action U. Here T
is known as a rigidification of S, and written T=25 /] G, in 3 §A], [139] §5].
(b) The analogue of (a) also holds in Ho(HStL'). More generally, if ¥ :
[%/Gp] x S = S is a [¥/Gy]-action in HStL' which need not be free, there
still exists a morphism p : S — T in Ho(HStg“) such that is homotopy
co-Cartesian in HSt) . We regard T as the quotient S/[x/G,,].

Proof. Part (a) follows from Abramovich, Corti and Vistoli |2, Th. 5.1.5] (see
also Abramovich, Olsson and Vistoli [3, §A] and Romagny [139, §5]). These
concern ‘rigidification’, in which one modifies an Artin stack S by quotienting
out a subgroup G from all its isotropy groups to get a new Artin stack T = S//G.
Tt is used, for example, to rigidify the Picard stack Pic(X) of line bundles on a
projective scheme X to get the Picard scheme Pic(X) J G,,.

Part (b) is straightforward because quotienting by a [*/G,,]-action is an
allowed operation for higher stacks. As in Toén [150, Def. 3.2] (see also Toén
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[149, §3.1.2] and Toén and Vezzosi 151, §1.3.4]), we can define Artin 1-stacks
to be Artin stacks, and then define Artin n-stacks inductively on n by saying
an oo-stack is an Artin (n + 1)-stack if it is associated to a smooth groupoid
(X1 = Xo) in Artin n-stacks. A [x/G,,]-action on an Artin n-stack X induces a
smooth groupoid ([*/G,,] x X = X)), which is associated to the quotient Artin
(n+1)-stack X/[*/G,,]. For us, a higher stack is an Artin n-stack for any n. 0O

We can pull back principal [x/G,]-bundles: if p : S — T is a princi-
pal [#/G,,]-bundle with [x/G,,]-action ¥, and f : T — T is a morphism in

Ho(Art}"), then we can form the 2-Cartesian square in Artp':

§'=8xpr g TN —— T

p
| fj/ (2.27)
S s T,

and there is a natural [x/G,,]-action ¥’ : [x/G,,] x S — S’ making p’ : S’ — T’
into a principal [#/G,,]-bundle. The next definition will be important in

Definition 2.26. Let p : S — T be a principal [*/G,,]-bundle with [*/G,,]-
action ¥ in Ho(Art;') or Ho(HSt;").

(i) We call p trivial if there exists an isomorphism S 2 [x/G,,] x T which
identifies p: S — T with mp : [*/G,,] x T — T and ¥ : [%/G,,] x S — S
with Q X idy : [%/Gn] X [¥/Gp] X T — [%/Gy,] x T, for Q : [x/G,] x
[#/Gm] = [*/Gm] as in Definition [2.23]

(ii) We call p rationally trivial if there exists a surjective morphism f : T/ — T
which over each connected component of T is a locally trivial fibration with
fibre [x/Z,], where n = 1,2,... may depend on the connected component,
such that the pullback principal [*/Gy,]-bundle p’ : §" = S x, 7 ;T — T’
is trivial, as in (i).

Rationally trivial [*/G,,]-bundles behave like trivial [x/G,,]-bundles from
the point of view of homology H.(—) over a Q-algebra R, which will be useful
in §3.4] Proposition below gives a criterion for when a principal [*/G,,]-
bundle is rationally trivial.

2.3.8 [%/G,,]-actions on coherent sheaves and complexes

Definition 2.27. Let S be an Artin K-stack locally of finite type, and ¥ :
[%/Gp] xS — S bea [%/G,,]-action, as in Deﬁnition and F' — S be a vector
bundle, or coherent sheaf, or a complex in Perf(S), D°coh(X) or D(qcoh(X)).

An action of [x/G.,] on F compatible with U, of weight n € 7Z, is an iso-
morphism of vector bundles, sheaves or complexes on [x/G,,] X S:

Up: UH(F) — 7}, 6. (En) © 5(F), (2.28)
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where /G * [¥/Gpm] x S —> [¥/Gum], Ts : [%#/Gy] X S — S are the projections,
and FE, is as in Example [2 regarded as a line bundle on [¥/G,,], such that
the following diagram of lbOInOI‘phlbmb over [x/G,,] X [*/G,,] X S commutes:

(Q x idg)* o U*(F)

(id[*/G IR U)* o U*(F)

frorn
| @xias) ) (e o <0)" (W)
(xids)* (xf. g, | (En) @5 (F)) (/6,1 % 0)* (21, (B) @7 5(F))
i/natural isomorphism natural 1somorphlsm\L
T /G x [ /G SV (En)) @75 (F) T /Gy (En) @ T 6 1,55 (U7 (F))
i/'“' /Gml1 X [*/Gm]2 (0n)®id, () idﬂ[* /Cm ]I(En)®7r*/ zxs(\I’F)\L
T 1G]y (En) @, g 1, (En) OTG(F) =7, ;¢ 1, (En)OT], g 1, (En)@m5(F).

2.29
Here we write [%/Gy,] X [%/Gp] X S as [%/Gpl1 X [*/Gpl2 X S to distin(guisl)l
the factors, and Q : [*/G,,]1 X [*/G]2 = [%/Gyy] is as in Definition and
On = Q*(En) = 7,1, (En)®7, g, 1,(En) is the natural isomorphism.
When n = 0, Ey and [, ¢ ,(Eo) are trivial line bundles, so we can omit
them from the tensor products, and take ¥y to map ¥p : U*(F) — 7§ (F).

Example 2.28. Let p = 7y : S = [x/G,,] Xx T — T be the trivial principal
[¥/G,]-bundle over an Artin K-stack T with [x/G,,]-action ¥ = Q X idr :
(/G2 x T — [%/G,,] x T. Suppose G — T is a vector bundle, or coherent
sheaf, or complex on T, and n € Z. Then F = ’/TE;/GM](EH) ® mH(G) is a
vector bundle, or coherent sheaf, or complex on S = [*/G,,| x T with a natural
[¥/G]-action ¥ r compatible with U, of weight n.

Conversely, if F — S has a [*/G,,]-action ¥ compatible with ¥ of weight
n, set G = (lom,idy)*(F), where w : T — * and 1: x — [¥/G,,] are the unique
morphisms. Then we can use to show that I = ¢ 1(En) @ m7(G).

If F* is a perfect complex on S of rank r, equipped with a [x/G,,]-action
U e of weight n, it is easy to see that the determinant line bundle det(F*) has
a natural [/G,,]-action Wqe(rey of weight n - r.

If U is the [*/G,,]-action of a principal [*/G,]-bundle p : S — T, one can
show that if G is a vector bundle, sheaf or complex on T then F' = p*(G) has a
natural weight zero [*/G,,]-action ¥, and conversely, if F — S has a weight
zero [x/G,y,]-action then F 2 p*(G) for some G — T.

Proposition 2.29. Suppose the field K is algebraically closed. Let p: S — T
be a principal [x/Gp,]-bundle with [x/Gy,)-action U : [%/G,,] x S — S. Suppose
L — S is a line bundle, with a [x/Gy,)-action of weight n # 0 compatible
with ©. Then p : S — T is rationally trivial, in the sense of Definition [2.26]
For example, if F* is a perfect complex on S of rank r # 0, equipped with a
[*/Gy]-action of weight d # 0 compatible with ¥, we can take L = det(F*)
and n=d-r.
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Proof. Considering L as a coherent sheaf over S, write 7 : L — S for the
corresponding i&l—bundle in Ho(Artj'), and write L’ for the complement of the
zero section in I, so that ©' = 7|z, : L' — S is a bundle with fibre A'\ {0} = G,,,.

Consider the diagram, in both Ho(Art") and Art]::

[+/Gm]? x L' Qxidy, [/ Grm] x L/ T .
iid[*mm? xx’ _ J/id[*/Gm]X“/ w’i
(/G2 x S DS 4 /Gon] X S s 5 (2.30)
J/id[* Gm]X\P v \L\P ) pi/
[+/Gm] xS S T,

where Q : [x/G,,]? — [¥/G,,] is as in Definition m The top two squares
obviously commute in Ho(Artlft), and are 2-Cartesian in Art]lét. The bottom
two squares are and (@, so they commute in Ho(Art]lét). When we lift
to 2-categories as in Remark [2.24] they also become 2-Cartesian.

As all the squares in @ are 2-Cartesian, we see that 77, : [*/G,,] x L' —
L' is the pullback principal [*/G,,]-bundle of p: S — T by pon’ : L' — T.
The left hand side of gives the [x/G,,]-action on this pullback principal
[#/Gyn)-bundle, and shows it is trivial, in the sense of Definition [2.26{i).

Now pon' : L' — T is the composition of a [*/G,,]|-fibration and a G,,-
fibration. As L has a [*/G,,]-action of weight n # 0, considering local models
shows that p o7’ is a fibration with fibre [G,,,/G,,], where G, acts on G, by
At = A", Since K is algebraically closed we see that [G,, /G| = [+/Z),],
where Z,, is the group of |n|* roots of 1 in K, and p o7’ is a locally trivial

[*/Z)n|]-fibration. (See the proof of Theorem b) in §4.11f for more details

on this argument.) Hence p is rationally trivial by Definition (ii). O

The analogue of Proposition [2.29] also works for higher stacks.

2.4 (Co)homology of (higher) Artin K-stacks
2.4.1 Assumptions on homology and cohomology theories

For a (higher) Artin K-stack S, we will need good notions of homology H.(S),
cohomology H*(S), and Chern class maps c; : Ko(Perf(S)) — H?(S), with the
usual structures and properties. The next assumption gives the properties we
will need for all our vertex algebra and Lie algebra constructions in

Assumption 2.30. (a) We fix a commutative ring R, such as R = Z,Q, C or
K, which will be the coefficients for our (co)homology theories. Write R-mod
for the category of R-modules.

(i) We should be given covariant functors H; : Ho(Artj') — R-mod for

i=0,1,... called homology, and contravariant functors H* : Ho(Artlﬂg) —
R-mod for i = 0,1,... called cohomology. We set H;(S) = H(S) = 0

if 1 <0.
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(i)

(iii)

That is, whenever S is an Artin K-stack, we are given R-modules H;(S)
for i =0,1,... called the homology groups of S, and R-modules H*(S) for
i=20,1,... called the cohomology groups of S.

Whenever f: S — T is a morphism of such stacks, we are given functorial
R-module morphisms H;(f) : H;(S) — H;(T) and H'(f) : H(T) —
Hi(S) for i =0,1,....

For the triangulated category versions of our theory, involving moduli
of complexes, we require these (co)homology theories also to be defined
for higher Artin K-stacks, that is, we should be given covariant functors
H; : Ho(HSt}!") = R-mod and contravariant functors H' : Ho(HSt}') —
R-mod for ¢ =0,1,....

When we say ‘for all S’ below, we mean either for all Artin K-stacks S,
or for all higher Artin K-stacks S, depending on the domain Ho(Art})
or Ho(HSt.Y) of the H;, H'.

If S is a derived Artin stack, or a derived stack, we define the (co)homology
groups H;(S), H(S) to be the (co)homology of the classical truncation
H;i(to(S)), H' (to(S)).

There are R-bilinear, functorial cup products U : H'(S) x HI(S) —
H™I(S) and cap products N : H;(S) x H(S) — H;_;(S) and an identity
element 15 € H°(S) for all S, with the usual properties of cup and cap
products in classical (co)homology [63l{108], so that U, 15 make H*(.S) into
a supercommutative, associative, graded, unital R-algebra, and N makes
H,(S) into a graded module over H*(S). If f : S — T is a morphism
and o € H;(S), B € H'(T) then H;_;(f)(a N HI(f)(8)) = (H;(f)(@)) N B
in Hi—j (T)

For all S,T and ¢,j > 0 there are R-bilinear, functorial external products
M : Hy(S) x Hy(T) — Hyy (S x T), R : HI(S) x HI(T) — H*+i(S x T),
with the usual properties of external products in classical (co)homology,
including being associative and supercommutative.

For cohomology we have a X 3 = 7§(a) U m5(8) when o € HY(S) and
B € HI(T), so X is not extra data in this case.

When S is the point * = SpecK, there are canonical isomorphisms:

R, i=0, (R i=o,
Hi(*)g{o i>0 H(*):{o i>0

identifying 1, € H°(*) with 1 € R and U, N with multiplication in R.

These conditions do not determine the isomorphism Hp(*) & R uniquely.
We do this by requiring that for all S and « € Hy(S) we have a X1 & «
under the isomorphism H(S X *) 2 Hy(S) coming from S x x = S.

Let {S, : a € A} be a family of (higher) Artin K-stacks. Then we can

form the disjoint union [],. 4 Sa, with inclusion morphisms ¢, : Sy —

29



(vi)

[l,caSa for b € A, inducing maps H;(ty) : Hi(Sp) — Hi(JI,c4 Sa);
H'(1p) : H (11,4 Sa) = H'(Sp) for all i = 0,1,.... These H;(ts), H*(t5)
for all b € A should induce isomorphisms of R—moduleb.

Hi(HaGA Sa) = @aGA Hi(Sa)7 (231)

H'(J],e4Sq) = 1aca H (Sa)- (2.32)
The difference between @, 4 and [],c 4 is that (Aa)aca € @ ca Hi(Sa)
has A\, # 0 in H;(S,) for only finitely many a € A, but (ta)eca €
[Toca H'(Sa) can have pq # 0 in H'(S,) for arbitrarily many a € A.
H;(rs) : Hi(S x A') — H;(S) and Hi(rg) : H(S) — H'(S x A') are
isomorphisms for all S, i, where 7g : S x A’ — S is the projection.

(b) Use the notation of Definition We should be given Chern class maps
c; @ Ko(Perf(S)) — H?(S) for all i = 1,2,... and for all S. We also write

Co (a

) =1g in HO(S) for all o € Ko(Perf(9)).

These maps ¢; have the usual properties of Chern classes in classical algebraic
topology and intersection theory, as in Hirzebruch [64], Milnor and Stasheff [114]

and
(i)
(i)

(iid)

Hartshorne [62, App. A], for instance. In particular:

If € is a vector bundle of rank r on S then ¢;([€]) = 0 for ¢ > 7.
If a, f € Ko(Perf(S)) and j > 0 then
J
cila+B) = ci(a)Uc;_i(B). (2.33)
i=0
If o, B € Ko(Perf(S)), for all k =1,2,... we have a formula
cr(a®B)=P¢ (rank a, c1 (), ..., e (@), rank B, ¢1(B), ..., cx(B)), (2.34)
where P (ag,...,ax,bo,...,by) are universal polynomials with rational
coefficients (though for ag,by € Z they have integral coeflcients as poly-
nomials in ay,...,ax, by,...,bx), with PZ(ao,...,ax,bo,...,bx) = P (bo,

.y bi,ao, ..., ay), such that if a;,b; are graded of degree 2i then P? is
graded of degree 2k. The P may be computed as in Hartshorne [62,
p. 430] and Hirzebruch [64, §4.4], and the first few are

P{&(aOaalabOvbl) = bl +a1b07
( )b2 + aobz + ( )CLl + b0a2
(aobo — 1)ayby,
( 0)[)3 + Z(ao)[hbg + agbs
—|—( )@1 + 2( )a1a2 + boas + (ao — 1)( agbg — 1)a1b1
(bo — 1)( aobo )a161 (aobo — 2)(a1b2 + a2b1).

®
P2 (aOa ai, az, bOa bla b2

+

(2.35)

®
P3(ag, a1, az, a3, by, b1, b, b3)



In the special case in which 8 = [L] for L — S a line bundle, so that
rank f =1 and ¢;(8) = 0 for ¢ > 1, equation (2.34) may be written

cila®p) = zj: <Tar;kixi— l) cil@)Uey ()1
ijo : (2.36)
- izo(—l)j—i (J - I?IE{? - 1) ci(@) Uer (8)7,

where binomial coefficients (’:) for m,n € Z are discussed in Appendix
and the two expressions are equal by (A.4]). See §2.4.2| for an alternative
approach to Chern classes of tensor products using Chern characters.

(iv) Under duality we have ¢;(a") = (—1)%c;(a) in H*(S) for all i = 1,2,...
and a € Ko(Perf(5)).

(v) If f:S — T is a morphism and « € Ky(Perf(T)) then ¢;(Ko(f)(a)) =
H%(f)(ci(a)) for all i = 1,2,....

(c) When S is the quotient Artin K-stack [*/G,,], there are canonical isomor-
phisms of graded R-modules H, ([x/G,,]) = R[t] and H*([x/G,,]) = R[r], where
t and 7 are formal variables of degree 2. That is, we have Ho;([x/G,,]) = R - t!
and H%([x/G,,)) = R- 7% for i = 0,1,2,..., where t* € Hy;([x/G,,]) and
7 € H?([*/G,,]) are elements which freely generate Ho;([*/G,,]), H* ([*/G])
as R-modules, and Hy([*/G,,]) = H*([*/G,,]) = 0 for k € Z \ 2N.

These canonical isomorphisms are characterized uniquely by the following:

(i) 7‘0 = 1[*/Gm] n HO([*/Gm])

(i) 7PU ) =77 in H?*21([/G,,]) for all i,j > 0.

(iii) Example describes Vect([*/G,,]), Perf([x/G,,]), Ko(Perf([*/G,,]))
explicitly. Using the notation of Example we have 7 = ¢;([F4]),
where F; is the standard representation of G,, on K, regarded as a line
bundle on [x/G,].

(iv) t'N 719 =77 in Ho;_9;([*/G,,]) whenever 0 < j <

(v) The projection 7 : [x/G,,] — * induces Ho(7) :
Under the isomorphisms Hy([x/G,,]) = R - Y
(a)(iv), we have Hy(m) : t% +— 1.

above and Hp(x) = R in

Here is an extra assumption for when R is a QQ-algebra:

Assumption 2.31. Suppose Assumption holds for (co)homology theories
H.(—),H*(—) over R of Artin K-stacks (or higher Artin K-stacks), where R
must be a Q-algebra. Then

(a) (Homology of [«/Z,]-fibrations.) Let f : S — T be a locally trivial
fibre bundle in Ho(Artj') (or Ho(HSt')) with fibres [+/Z,] for some
n > 1. Then Hi(f) : Hi(S) — Hy(T) is an isomorphism for all k.
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(b) (Kiinneth Theorem.) The exterior product maps X of Assumption
a)(iii) induce an isomorphism

eai,j}O:i—i-j:k X : ®i,j20:i+j=k Hl(S) KRR HJ(T) — Hk(S X T)

Remark 2.32. (Coarse moduli spaces.) As in Olsson [127, §11], under good
conditions a Deligne-Mumford or Artin K-stack S has a coarse moduli space
Scoa, Which is a K-scheme or algebraic K-space with a morphism 7 : S — Scoa
which is universal for morphisms S — T for T" an algebraic K-space. The coarse
moduli space Scoa forgets the isotropy groups Isog(z) of points z in S.

It is important that by the (co)homology groups H;(S), H'(S) we do not
mean the (co)homology groups H;(Scoa), H(Scoa) of the coarse moduli space.
Rather, H;(S), H(S) really do depend on the stack structure and the isotropy
groups Isog(x) in a nontrivial way. For example, [*/Gy,] has coarse moduli
space *, but Assumption a)(iv) and (c) show that the (co)homologies of
[*/G,] and * are different.

When S is a quotient stack [X/G] we should think of H.(S), H*(S) as
the equivariant (co)homology HE(X), H%(X). These need not agree with the
(co)homology H.(X/G), H*(X/G) of the topological quotient X/G, if G does
not act freely on X.

Remark 2.33. (Different types of (co)homology.) For homology and co-
homology of ordinary topological spaces X, there are four main types of theory:

(i) Homology H.(X,R), as in [22,[41}/63,/108,[117,[145]. This is covariantly
functorial under all continuous maps f : X — Y. It is homotopy invariant.

(ii) Cohomology H*(X, R), as in [22}[41]/63,{108},/117}{145]. This is contravari-
antly functorial under all continuous maps f : X — Y. It is homotopy
invariant.

(iii) Compactly-supported cohomology HX (X, R), as in [22/63,(108L|145]. This
is contravariantly functorial under all proper maps f : X — Y. It is not
homotopy invariant.

(iv) Locally finite homology HY(X,R) as in [65], also known as homology
with closed supports |36], or Borel-Moore homology [19]. We recommend
Hughes and Ranicki [65, §3] for an introduction. This is covariantly func-
torial under all proper maps f : X — Y. It is not homotopy invariant.

If R is a field then H*(X, R) = Hy,(X,R)* and H(X,R) = HE (X, R)*.

In Assumption we need theories with the properties of homology and
cohomology. Some homology theories of stacks in the literature are analogues
of locally finite homology HY(—) rather than homology H.(—), so that pushfor-
ward maps H;(f) are defined only for proper (or proper and representable, or
projective) morphisms. We will call such theories ‘of type HY(—)". Homology
theories of this type are unsuitable for our purposes, as we need pushforward
maps H;(f) along non-proper morphisms f : X — Y. However, as in Remark
a), given a theory of type HY(—), we can define another theory of the type
we want by a direct limit.
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Remark 2.34. (Constructing (co)homology theories from other (co)-
homology theories.) Suppose that we have found some (co)homology theory
of K-schemes or K-stacks in the literature, and we would like to use it in our ver-
tex algebra and Lie algebra constructions, but it does not have all the properties
required in Assumption [2.30] For example, we might have:

(i) We are given a homology theory H,.(—) and a compatible cohomology the-
ory H*(—), but the homology theory is of type HY(—), with pushforwards
defined only for proper morphisms (or proper and representable, etc.).

(ii) We are given (co)homology theories H,(S), H*(S) which are not defined
for all (higher) Artin K-stacks S, but only for a subclass, for instance, only
for K-schemes, or Deligne-Mumford K-stacks, or finite type Artin stacks.

(iii) We are given a homology theory H,(—) (possibly of type H(—)), but no
matching cohomology theory.

In this case Chern classes ¢;(€) for vector bundles &€ — X may still be
defined as operations on homology N¢;(E) : Hp(X) = Hi—2,(X).

It is often possible to use the given theories H,(—), H*(—) to construct
(co)homology theories H,(—), H*(—) with all the properties we want in a purely
formal way, by a limiting procedure. This is discussed by Fulton and MacPher-
son [51}, §3.3, §8] in the context of bivariant theories. It has the disadvantage
that the new H,(—), H*(—) may be more difficult to compute in examples.

(a) (Converting locally finite homology to homology.) Suppose we are
given a homology theory H.(—) of Artin K-stacks which is of type H(-),
with pushforwards defined only for proper morphisms; we may also be given a
compatible cohomology theory H*(—).

As in [51} §3.3], for each Artin K-stack S define

Hi,(8) =l o.p s, Hi(P), (2:37)

P proper

where the objects in the direct limit in R-mod are Hj(P) for all morphisms
p:P—Sin Ho(Art]lét) with P proper, and the morphisms in the direct limit
are Hy, (1) : Hy(Py) — Hy(Py) for all commutative triangles in Ho(Art}") with
Py, P, proper (which implies ¢ is proper, so Hy(v) is well-defined):

P1 P2

= | (2.38)
S.

Then Hy(S) is well defined, and has a morphism Ip, : Hy(P) — Hy(S) for all
¢ : P — S with P proper, such that Ip, ,, =IIp, ,,0H(¢) for all commutative
diagrams (2.38), and is universal with this property. If f : S — T is any

morphism in Ho(Art]lét) (not necessarily proper), there is a unique morphism

Hy,(f) : Hi(S) — Hy(T) such that Hy(f)oTlp, = [p fo, for all o : P — S. If
S is proper then Ig 4, : Hi(S) — H,(S) is an isomorphism.
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Then ﬁ*(—) should be a homology theory of the type we need (one should
verify the appropriate parts of Assumption , and will be compatible with
the cohomology theory H*(—), if this is given.

If instead H,.(—) has pushforwards H, ( f ) defined only for roper and rep-
resentable morphisms, we can define H as in - , but over ¢ :
P — S with P a proper K-scheme or algebralc K-space, so that the morphisms
Y: P —Qin are automatically proper and representable.

(b) (Extending the domains of (co)homology theories.) We can also
use the direct limit trick in (a) to extend the domain of a (co)homology theory.
Suppose, for example, we are given a homology theory H,(P) defined for K-
schemes P, with pushforwards H,(f) for arbitrary K-scheme morphisms f :
P — Q. Then we can define a homology theory H, (S) on Artin K-stacks S by
Hi(S) = lim. py.5 Hy (P), where the direct limit is over morphisms ¢ : P — S

in Ho(Artl') with P a K-scheme. Then Hj,(P) = Hy(P) if P is a K-scheme.
Similarly, we may extend a cohomology theory H *(—) on K-schemes to a
cohomology theory H*(S) on Artin K-stacks S by H*(S) = Hm,, psHF(P)

where the inverse limit is over morphisms ¢ : P — S in Ho(Artlft) with P a
K-scheme. In the same way, we can extend a (co)homology theory from Artin
K-stacks to higher Artin K-stacks, or from finite type Artin K-stacks to locally
of finite type Artin K-stacks, and so on.

(c) (Defining a cohomology theory from a homology theory.) Suppose
we have a homology theory H,(—) of Artin K-stacks (possibly of type H(—)),
but no matching cohomology theory. Following Fulton and MacPherson [51] §8],
we can construct a compatible cohomology theory H *(—). We define elements ¢
of H*(S) to be families (e, ;) ; of R-module morphisms e, ; : H;yx(P) — H;(P)
for all morphisms ¢ : P — S in Ho(Artlft) andi=0,1,...,such that if p = £ov)
fory: P—Q,&§:Q — Sthen Hi(y)oey; = €c; 0Hipk (V) 1 Hiyn(P) = Hi(Q).
If there was a compatible cohomology theory H*(—), then an element € €
H*(S) would define such a family (e, ;),,; by defining €, () = a N H*(¢)(e)
forall o : P — S, i >0 and o € Hi;(P). It is now straightforward to define
pullback morphisms H*(f) : H*(T) — H*(S) for morphisms f : S — T in
Ho(Artlft) cup, cap and exterior products, and so on.
(d) (Defining a homology theory from a cohomology theory.) Suppose
we are given a cohomology theory H*(S) over a field R (such as Q; or K),
defined for finite type Artin K-stacks S, with the property that H*(S) is finite-
dimensional over R for each k = 0,1,... for finite type S. Then we can just
define homology H},(S) = H*(S)* to be the dual R-vector spaces. This extends
easily to a homology theory H.(—) of finite type Artin K-stacks, compatible
with H*(—). Since H¥(S) is finite-dimensional we have H*(S) = H}(S)*, the
usual duality relation for (co)homology over a field. We can then extend the
domains of H*(—), H,(—) to Ho(Art}') or Ho(HStL') as in (b).
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2.4.2 Chern classes and Chern characters

Suppose H,.(—), H*(—) are (co)homology theories of (higher) Artin K-stacks
S satisfying Assumption [2.30] over a commutative ring R. Then as in As-
sumption b) we have Chern classes ¢;(a) € H?(S) for i = 1,2,... and
a € Ko(Perf(S)), such as o = [E] for a vector bundle E — S. There is a
formula for Chern classes c;(a ® ) of a tensor product a ® S, but it
involves universal polynomials P that are inconvenient to work with.

Let R be a Q-algebra. Then as in Milnor and Stasheff |[114], Hirzebruch |64}
84 & §10.1], and Hartshorne |62, App. A], we can rewrite Chern classes ¢;(«)
in terms of Chern characters ch;(«), which have much simpler behaviour under
tensor products. If S is a (higher) Artin K-stack and a € Ky(Perf(S)), the
Chern characters ch;(a) € H*(S) for i = 0,1,2,..., are defined by

cho(a) =ranka, ch;(a) = Chi(ci(a),c2(a),...,ci(a)), i>1, (2.39)

where Chy, Chsy, ... are a family of universal polynomials over Q given by

tq. (@1 + - Fap—1)!
Ch,(c1,...,¢.) = E (—1)rtarttar (r—l)!all-f-ar! it et (2.40)
----- r=0:
Zi+2£2+-~-+mrzr

The first few polynomials Ch; are
Chl(Cl) = (1, Ch2(01,02) = %(C% — 202), Chg(cl,CQ,Cg) = é( — 30162 + 363)
Chy(cy, c2,¢3,¢1) = 57(ct — Actca + deres + 263 — dey), ... (2.41)

If each ¢; is graded of degree 2j, then Ch;(ci,ca,...,¢;) is graded of degree 2i.
Note that ch;(E) only makes sense in H%(S) over a Q-algebra R such as R = Q,
R or C, because of the rational factors in 72.41.

We can invert and write ¢;(E) in HQZ( ) in terms of the ch;(E) by

¢i(E) = Ci(chy(E),chy(E),... ,chi(E)), i=>1, (2.42)
where Cq, Cy, ... are another family of universal polynomials over Q, given by
— _q\rtai+-+ar - (= DH™ o co o
Cp(br,....b) = > (=1) HTbll bar.  (2.43)
ai,...,ar20: i=1
ai1+2az+---+ra,.=r
The first few polynomials C; are
C1 (b1) = b, Ca(b1,ba) = (b7 —2b3), Cs(by,ba,bg) = (b3 — 6by1by + 12b3),
Cy (bl, ba, b3, b4) = i(b% — 12b%b2 + 48b1b3 + 12b% — 144b4), ce (244)

We can also relate ¢;(a) and ch;(a) by the generating function formulae in
H*(S)[[2]], where z is a formal variable, noting that co(«) = 1:

Z@() Ziei(a) = exp [Zj>1(—1)j’1(j —1)!27 chj(a)], (2.45)
Zj%(—l)j*l(j — 1)129 chj(a) = log[zgo Zici(a)]. (2.46)
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Chern characters have the very useful property that for «, 8 € Ko(Perf(S5)),
Chern characters of sums « + 3 and tensor products a ® 8 are given by

ch;(a+ ) = ch;(a) 4 ch;(B), chi(a® p) = Z chj(a) Uchg(B). (2.47)
Jk20:i=j+k

2.4.3 Examples of (co)homology theories satisfying the Assumptions

The next example explains how to define data H.(—), H*(—), ¢; satisfying As-
sumptions and over the field K = C.

Example 2.35. (Homology, cohomology of (higher) Artin C-stacks.)
(a) (Topological stacks and classifying spaces.) There is a notion of
topological stack, a kind of stack in topological spaces, developed by Metzler [113]
and Noohi [123]. They form a 2-category TopSta, which includes topological
spaces as a full discrete (2-)subcategory Top C TopSta.

Noohi [123, §20] defines a 2-functor FgftpCSta : Art{l" — TopSta from the
2-category of Artin C-stacks locally of finite type to topological stacks, which
preserves fibre products. If X is a C-scheme locally of finite type, Fgffc Sta aps
X to the set X(C) of C-points of X with the complex analytic topology.

Noohi [123]124] shows that topological stacks have a good notion of ho-
motopy theory. He proves [124] that each topological stack X has an atlas
@ X — ¥ in TopSta such that ¥°'* ¢ Top C TopSta, and if ¢ : T — X
is a morphism in TopSta with 7' € Top C TopSta then the projection
X2 x » T — T is a weak homotopy equivalence in Top. This topological space
X% is unique up to weak homotopy equivalence (and unique up to homotopy
equivalence if X has a paracompact atlas). We call X the classifying space
of X.

If X is a topological space we may choose ¥°* = X, and if X is a quotient
stack [T/G] we may choose X°* = (T'x EG)/G. If f : X — %) is a morphism in
TopSta, we may lift f to a morphism fc : X°2 — 9)°12 unique up to (weak)
homotopy.

Combining these results allows us to define the homology and cohomol-
ogy of an Artin C-stack X, over a commutative ring R: we set H;(X) =
Hy(FAeP$*™(X)9* R) and H'(X) = H!(FpePS**(X)9, R). These are well
defined as Fgfti St x)ela is unique up to (weak) homotopy equivalence, and

(co)homology is homotopy invariant. For a morphism f: X — Y in Artf' we

set Hi(f) = (Fapee = (£)™) : Hi(X) = Hi(Y) and H'(f) = (Fppbe ™ ()7)" -
HY(Y) — H*(X), which are well defined as Fgl?t’icsw(f)da is unique up to (weak)
homotopy. This gives (co)homology theories satisfying Assumption a),(c).

Note that this approach does not work for H*(—) or H(—), as these are
not homotopy invariant, but X is only unique up to (weak) homotopy.

We can also discuss Chern classes of vector bundles on Artin C-stacks in
this language. Suppose X is an Artin C-stack and £ — X is a vector bundle of
rank 7. Then E determines a morphism ¢g : X — [/ GL(r,C)] in Art(lcft, so in
the above notation we have morphisms H*(¢g) : H*([*/ GL(r,C)]) — H*(X)
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on cohomology. As in Milnor and Stasheff [114, §14] and below, we have an
isomorphism H*([x/ GL(r,C)]) = R[vi,...,7,], with 7; a generator in degree
2i, and we set ¢;(E) = H*(¢g)(v;) € H*(X). These Chern classes factor
through maps ¢; : Ko(Vect(X)) — H?*(X) with ¢;([E]) = ¢;(E), which have
the properties required in Assumption b),(c).

If R is a Q-algebra then Assumption [2.31] also holds in this case.

(b) (Singular (co)homology of a topological stack.) Behrend [13| §2]
defines the singular homology and cohomology of a topological stack X directly,
without first constructing a classifying space X', using a presentation of X
as a topological groupoid. He also discusses Chern classes of complex vector
bundles. Combining this with Fgftpc %2 in (a) yields an alternative definition
of (co)homology of Artin C-stacks. Noohi’s homotopy theory [124] implies that

this is equivalent to the definition in (a).

(c) (Topological realization functors.) As for the classifying space approach
in (a), there is an another way to associate a topological space to a (higher)
Artin C-stack, due to Simpson [142], Morel and Voevodsky [116, §3.3], Dugger
and Isaksen [40], and Blanc |16, §3]. Consider the functor Fgﬁ’ﬂ.‘; : A — Top
taking a finite type affine C-scheme X to its C-points X (C) with the com-
plex analytic topology. By simplicially-enriched left Kan extension, one defines
an oo-functor SPr(Affl) — Top,_, the topological realization functor, where
SPr(Aﬂ'%) is the co-category of simplicial presheaves on Aﬁ'g, and Top,, the
oo-category of topological spaces up to homotopy.

Now SPr(AffY) includes the 2-category of Artin C-stacks Art.' locally of
finite type, and the oo-subcategory of higher Artin C-stacks HSt(lct locally of
finite type, as full co-subcategories. So restriction gives oco-functors Art}ét —
Top,, and Fg;f? : HSt}ét — Top,,, where the former is equivalent to the map
X 5 FAoPS® (X)) in (a).

We then compose with the homology and cohomology functors over a com-
mutative ring R. The compositions factor through the homotopy categories,
yielding covariant functors H; : Ho(Art{'), Ho(HStL') — R-mod and con-
travariant functors H' : Ho(Artl'), Ho(HSt") — R-mod for i = 0,1,.... The
Artin stack versions are equivalent to those in (a),(b).

We can also use these ideas to define Chern classes of perfect complexes,
as in below. As in Toén and Vezzosi [151] Def. 1.3.7.5], there is a higher
Artin C-stack Perfc which classifies perfect complexes, in the same way that
[*/ GL(r,C)] classifies rank r vector bundles in (a) above. Suppose X is a
(higher) Artin C-stack, and £° is a perfect complex on X. Then £° determines
a morphism ¢ge : X — Perf¢ in HStgt, so we have morphisms H*(¢gs) :
H*(Perfc) — H*(X) on cohomology.

Now Perfc = [], ., Perfc, where Perf¢ classifies complexes of rank
with [*/ GL(r,C)] C Perf{ an open substack for r > 0, and H*(Perf¢)
R[y1,72,...], with ; in degree 2i. The Chern class ¢;(£°) is H?(¢gs)(7;) i
H?(X). Tt factors through a map ¢; : Ko(Perf(X)) — H?(X) with ¢;([€°])
¢i(€*), which has the properties required in Assumption b),(c).

IR =

=
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Next we consider (co)homology for stacks over other fields K.

Example 2.36. (a) (Etale and f(-adic cohomology of stacks.) Etale co-
homology is a cohomology theory of K-schemes introduced by Grothendieck for
general fields K. It is used to construct f-adic cohomology H(S,Zs), H'(S, Q)
of K-schemes S, for ¢ a prime number different to char K. This has many im-
portant applications, including Deligne’s proof of the Weil Conjecture. A good
reference is Freitag and Kiehl [45].

The theory has been extended to Artin stacks, see for example Behrend [12],
Gaitsgory and Lurie [52, §3.2], Laszlo and Olsson [96], Laumon and Moret-
Bailly [98], Olsson [125], and Liu and Zheng [102}/103], who also cover higher
Artin stacks. Chern classes can be constructed in étale and ¢-adic cohomology.

There are also matching theories of étale homology and ¢-adic homology, de-
scribed by Laumon [97] and Li [101] for K-schemes, by Olsson [126] for Deligne—
Mumford stacks, and separately by Lurie [104] for Artin K-stacks. The versions
of [97,101,/126] are of type H(—), with pushforwards H;(f) defined only for
proper morphisms f, but we can use them to construct homology theories of
(higher) Artin K-stacks of the kind we need as in Remark [2.34(a),(b). Lurie’s
version may work for our theory in its current form.

(b) (Algebraic de Rham cohomology.) Let K be a field of characteristic
zero. Hartshorne [60L/61] develops theories of algebraic de Rham homology and
cohomology H,(S), H*(S) for finite type K-schemes S, over R = K. Toén [147]
§3.1.1] extends them to finite type Artin K-stacks. The homology theories are
of type H(—), with pushforwards H;(f) defined only for proper representable
morphisms f, but we can use them to construct homology theories of the kind
we need as in Remark [2.34(a),(b). Chern classes are defined, [147} §3.1.1].

(c) (Chow groups of schemes and stacks.) Chow homology groups A.(S)
of K-schemes S are studied in intersection theory, as in Fulton [50]. They have
been extended to Artin stacks by Kresch [94] and Joshua [72}(73].

As in [50, p. 370], Chow groups Ag(S) should be understood as a type
of locally finite homology group H. %fk(S ), with pushforwards only defined along
projective morphisms (projective implies proper). Without constructing a coho-
mology theory, Kresch |94} §3.6] defines Chern classes of vector bundles E — S
as maps N¢(E): Agi(S) — Ai(S).

We can use Remark a) to construct a homology theory Ha, (—) of Artin
K-stacks from A, (=), with Hy(S) = liglwp%sAk(P) a direct limit over ¢ :
P — S in Ho(Artl!') with P projective. We can also use Remark (c) to
construct a compatible cohomology theory H2*(—) from A, (—). Then Kresch’s
Chern class maps N¢;(E) : Apyi(S) — A;(S) induce elements ¢;(E) in H?(S).

We define homotopy equivalences of stacks:

Definition 2.37. A morphism f : S — T in Ho(ArtL') or Ho(HSt}") is called
a homotopy equivalence if there exist morphisms g : T — S, F: S x A' — S,
G :T x A" = T, with Flioyxs = g0 f, Flpyxs = ids, Glioyxr = f 0 g, and
Gl{iyxr = idp. We say that S, T are homotopic, written S ~ T', if there exists
a homotopy equivalence f: S — T.
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Here we use the A' in S x A’ (rather than a connected algebraic curve, for
example), as we want to use Assumption a)(vi) in the next proof.

Lemma 2.38. Let Assumption hold for (co)homology theories H,.(—),
H*(—) of (higher) Artin K-stacks over a commutative ring R, and suppose
f:8 =T is a homotopy equivalence of (higher) Artin K-stacks. Then H.(f) :
H.(S) = H.T) and H*(f) : H*(T) — H*(S) are isomorphisms.

Proof. For g, F,G as in Definition 2.37] we have a commutative diagram

1

S x
(ids,O) (idg,l)
|
gOf S /

so applying functorial homology H.(—) gives a commutative diagram

)

H.(7s) 1 H.(ms)
H(S) = HL (8 X AT) o> (S,

H,((ids,0)) " (F)\L H,((ids,1))
H*(Q)OH*(f) H (51)%1

Now Assumption a)(vi) implies that the morphisms H,(7g) indicated ‘--+’
are isomorphisms. Since they are left inverse to H,((idg,0)), H.((idg, 1)), it
follows that H,((ids,0)) = H.(rs)"! = H.((idg,1)), so the diagram implies
that H.(g) o H.(f) = id. Similarly H.(f) o H.(g) = id, so H.(f) : H«(S) —
H,(T) is an isomorphism. The argument for H*(f) is the same. O

2.5 Assumptions on the ‘projective Euler class’

For our ‘projective linear’ Lie algebras in given a principal [*/G,,]-bundle
p: S — T and a weight one [*/G,,]-equivariant perfect complex £° on E, we
will need a (new, partially conjectural) kind of characteristic class PE([£°]), as
a map H,(T) — H.(S), which we call the ‘projective Euler class’.

Assumption 2.39. Let p: S — T be a principal [#/G,,]-bundle in Ho(Arti)
with [#/G,,]-action U : [x/G,,] x S — S, as in §2.3.7 Then as in we
can consider perfect complexes £° on S with [*/G,,]-actions Wge compatible
with ¥ of weight 1. These form a triangulated category Perf(S)"*! with
[¥/G,]-equivariant morphisms. Thus we can form the Grothendieck group
Ko(Perf(S)"*). There is a morphism rank : Ko(Perf(S)"*) — LCon(S,Z)
mapping [£°] — rank E°.

Suppose Assumption holds for (co)homology theories H.(—), H*(—) of
Artin K-stacks. Then for all principal [#/G,,]-bundles p : S — T as above and
all 0 € Ko(Perf(S)"") with constant rank on S and all ¥ > 0 we should be
given R-module morphisms

PE(9) : Hi(T) — Hi—2ranko—2(5), (2.48)

which we call the projective Fuler class. These should satisfy:
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(a)

(b)

(c)

(d)

As in Example let p=7p : S = [x/Gy] x T — T be the trivial
principal [¥/G,,]-bundle over an Artin K-stack T with [x/G,,]-action ¥ =
Q xidy : [x/Gp)? x T — [x/Gy,] x T, let F* € Perf(T) have constant
rank, and set £° =7, ¢ (E1) @ 7(F*) in Perf(S)™*!. Then we have

PE([E?]): (r— Y 7T IR (N e ([F))), (2.49)

1>0: 2i<k,
i>rank 6+1

where ¢ € H,(T), and we use the notation of Assumption m

Let p: S — T be a principal [x/G,,]-bundle in Ho(Artl') with [*/G,,]-
action W : [x/G,,] x S — S, and f : T — T be a morphism in Ho(Arti').
Then as in we may form the pullback principal [*/G,,]-bundle p’ :
S"'=8Sx,7 5T — T, with [*/Gy,]-action ¥’, in a commutative square
in Ho(Art}') which is 2-Cartesian in Artj'. The projection f’ =
ms : S’ — S induces a pullback functor f’* : Perf(S)Vtt — Perf(S")Vt
and a morphism Ko(f’) : Ko(Perf(S)V*) — Ko(Perf(S’)wt).

Then for all constant rank 8 € Ko(Perf(S)¥*) and k > 0, the following
commutes:

’ ’
Hk(T ) PE(Ko(f/)G) Hk72rank672(s )
‘LHk(f) ch—2ranké'—2(f’)\L (250)

PE(0)
Hk(T) Hk72rank972(s)-

Let p: S — T be a principal [¥/G,,]-bundle in Ho(Artl) with [x/G,,]-
action ¥ : [x/G,,] x S — S. Define ¥V : [x/G,,] x S — S by ¥V =
U o (1 x idg), where the inverse map ¢ : [*/G,,] — [*/G,,] is induced by
the group morphism G,, = G,, mapping A — A~', as in Definition m
Then ¥V is also a [*/Gy,]-action on S, and p : S — T is also a principal
[*/Gy,]-bundle for the [x/G,y,]-action ¥V.

Write Perf(S)}*! and Perf(S)¥i! for the categories of perfect complexes on
S with weight one [*/G,,]-actions compatible with ¥ and ¥V, respectively.
Then the duality £° — (£°)Y induces a contravariant equivalence of cate-
gories (—)V : Perf(S)¥t — Perf(S)Wt!, since if £* has weight 1 for ¥ then
(£%)Y has weight —1 for ¥, and thus weight 1 for V. This equivalence
descends to an isomorphism (—)¥ : Ko(Perf(S)¥t) — Ko(Perf(S)%)
mapping [£°] = [E°]Y = [(£°)"].

Then for all constant rank 6 € Ko(Perf(S)%!) and k > 0, we require that

PE(0)y = (—1)"™™ T PE(6")gv : Hi(T) — Hi—2ranko—2(S). (2.51)
Let p : S — T be a principal [x/G,,]-bundle with [x/G,,]-action ¥ :

[%*/Gp] xS — S, and U be an Artin K-stack. Then pxidy : SxU — T'xU
is a principal [*/G,,]-bundle with [*/G,,]-action ¥ x idy. Pullback by
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(e)

mg + S x U — S induces a functor % : Perf(S)"¥" — Perf(S x U)"",
and a morphism Ky(7rg) : Ko(Perf(S)¥") — Ko(Perf(S x U)"*!). Then
for all constant rank 6 € Ko(Perf(S)¥*) and ¢ € H,(T), n € H;(U), we
require that in H,(S x U) we have

(PE(0)¢) Wn = PE(Ko(ms)(0)(C K n).

As in §2.3.7] the material of §2.3.7-42.3.8| on principal principal [*/G,,]-
bundles generahzes to [/Gp]"- undles on an obvious way.

Suppose p : S — V is a principal [x/G,,]?-bundle with [*/G,,]3-action
U : [x/Gp)® x S — S. Form the commutative diagram in Ho(Arti'):

T12 U12 V12

S g T T23 Uss Uu/ ‘/’ (252)
\7—31 U31 1)31

where T is the quotient of S by the free [*/G,,]-action ¥ o (A1a3 X idg) :
[¥/Gp] xS — S for Aoz : [¥/G,,] — [%/Gyn]? the diagonal morphism, and
Ui; is the the quotient of S by the free [*/Gm]Q—action Vo (A;; xidg) :
[%/Gp)? x S — S, where Aj; : [%/G,,]? — [%/Gy,)? is induced by the
morphism §;; : an — Gi’n given by

012 (/\,H) = ()‘7>\7,u)v 523 : ()‘mu) = (Ha)‘7>\)7 531 : (A,H) = (/\hua A)

The morphisms o, 735, v;; in are the natural projections coming from
compatibility of the quotient [*/G,,]*-actions. The composition of mor-
phisms S — V in is p.

Each morphism in is a principal [x/G,,]-bundle for an appropri-
ate [x/Gy,]-action on S, T, Ui, Usg,Us; descending from . We write
the [x/G,,]-actions on T for 719, To3, 731 as P12, Pa3, P31, and the [x/G,y,]-
actions on U12, U23, U31 for V12, VU23,VU31 as 512, 523, Egl, respectively. ‘We
determine the signs of these [+/G,,]-actions by taking ®;; to be induced
from W by the k' [x/G,,] factor in [*/G,,]* and Z;; to be induced from
U by the j* [x/G,,] factor, where {i,j, k} = {1,2,3}.

Suppose now that £, £33, £3; are constant rank perfect complexes on

Uiz, Uss, Usy respectively, which have weight one [*/G,,]-actions compat-
ible with =12, Z23,Z31. Then we see that:

o 7/5(EY5) has [x/G,y,]-actions compatible with the [*/G,,]-actions @2,
Doz, P31 on T of weights 0, —1, 1, respectively.

o 755(£35) has [x/G,,]-actions compatible with the [x/G,,]-actions P2,
Doz, P31 on T of weights 1,0, —1, respectively.

o 75 (£%1) has [x/G,,]-actions compatible with the [x/G,,]-actions P2,
Doz, P31 on T of weights —1,0, 1, respectively.
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Hence 755(€33) ® 75, (€31)Y has weight 1 for the [*/G,,]-action @12, and
T3 (E5) DT (ET,)Y has weight 1 for the [*/G,y,]-action Pag, and 715 (E75) D
Ta5(E55)Y has weight 1 for the [*/G,,|-action ®3;. We require that

0= (‘Urankg‘:’l ) PE([T§3(553) ® 731 ( §1)v]) o PE([£I2])
(—1)rankeiz -PE([731(£31) ® 112(E32)"]) o PE([€33])
(—1)rankEls -PE([112(E%2) ® 153(£33)"]) o PE([€34])
(

Hk(v) ? Hk—2(rank€;2+rank5;3+rank€§1)—4 T)

+
T 253

So far as the author can tell these ideas are new, and we will not actually
prove Assumption [2.39]in the general case, though we do for rationally trivial
[¥/G,,]-bundles when R is a Q-algebra in the next proposition.

Proposition 2.40. Suppose Assumptions and hold for (co)homology
theories H.(—), H*(—) of Artin K-stacks over a Q-algebra R. Then the re-
striction of Assumption to principal [x/G,]-bundles p : S — T which are
rationally trivial in the sense of Definition [2.20] holds.

Note that Proposition implies that if K is algebraically closed and E° is
a perfect complex on S with a weight one [*/Gy,]-action and rank E® # 0, then
p is rationally trivial.

Proof. Suppose p : S — T is a rationally trivial [*/G,,]-bundle with [x/G,,]-

action ¥ : [%/G,,] x S — S. Then by Definition there exists a surjective

morphism f : 7" — T which is a [x/Z,]-fibration over each connected component

of T', such that the pullback principal [*/G,,]-bundle p' : S" = S %, 7 ¢ T — T’
is trivial. Assumption [2.39b) says that should commute.

The columns of QTJ_|WLre isomorphisms by Assumptioa) as f, f’ are
2.50)

[*/Z]-fibrations over each connected component. Thus in (| , the morphism
PE(0) is determined uniquely by PE(Ky(f")0). Also p' : S’ — T is a trivial
[¥/Gyy,]-fibration, so S" 2 [x/G,,] x T, and writing Ko(f")0 = [£°] for £° in
Perf(S")"' | as in Example we can show that £ = i 1(E1) ® 77, (F*)
for F* € Perf(71"), and then PE(Ky(f’)0) in is given explicitly by (2-49).

We claim that these morphisms PE(#) are independent of the choices of local
[*/Zy)-fibration f : T" — T and [*/G,,]-equivariant trivialization S" = [x/G,,] X
T’. Two such trivializations differ by an isomorphism (Q o (idg,.1, ), 7TT/) :
[%/Gp] x T" — [/Gyy] x T for any morphism o« : 77 — [%/G,,], where § :
[¥/Gn]? = [¥/G,y,] is as in Deﬁnition and one can show by calculation that
is invariant under such isomorphisms. Then independence of f : T/ — T
is easy to show by considering T x f, 7 ¢, T5 for alternative choices fi : 77 — T
and fo : T5 — T.

Thus, Assumption [2.39(a),(b) determine unique morphisms PE() for ratio-
nally trivial [*/G,,]-bundles p : S — T. We can then check that these PE()
satisfy Assumption a)—(e). For (b)—(e), we use rational triviality as above
to reduce to the cases when p: S — T in (b)—(d) is a trivial [*/G,,]-bundle and
p:S — Vin (e) is a trivial [x/G,,]*>-bundle, and then we prove ,
and in these cases using the formula (2.49). O
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Question 2.41. Can we construct morphisms PE(6) satisfying Assumption
for general R, and for p: S — T which are not rationally trivial?

The author conjectures the answer is yes for K = C and (co)homology H.(—),
H*(—) over any commutative ring R defined as in Example [2.35

Remark 2.42. (Relation to Fulton—MacPherson’s bivariant theories.)

Fulton and MacPherson [51] introduce bivariant theories, which generalize both

homology and cohomology. Given a category such as Ho(Artﬁg) and a commu-

tative ring R, a bivariant theory gives an R-module B*(f : S — T) for each
morphism f : $ — T in Ho(Art") and k € Z, which have R-bilinear products

:B¥(f:S—=T)xBl(g: T -U) — B*(go f:5 =)

and ‘pushforward’ and ‘pullback’ operations, satisfying some axioms. A bivari-
ant theory defines homology and cohomology theories H,(—), H*(—) by

Hi(S)=B7*xn:8—>%) and  H*S)=B*Gid:S = 9).

Bivariant theories in algebraic geometry are discussed by Fulton and MacPher-
son [51} §9], Olsson [126] §1.3], and Li [101} 3.1].

If the (co)homology theories H,(—), H*(—) in Assumption come from a
bivariant theory B*(—), it would be natural to define PE(6) as a bivariant class

PE(A) € B>**k0+2(p . § - T), (2.54)
and then take (2.48) to map ¢ — PE(#) - ¢ using the bivariant product
coBPrankOt2(, . 6 L TYx BTF(m i T — %) — B2rank0+2=kr gy 4,

The author imagines answering Question as follows. We should con-
struct a homotopy Cartesian square in HStg:

E Perf™*! 3 Ex/Gp)
o 5
B Perf™t! ! B[*/G,,],

where a, § are principal [x/G,,]-bundles. Here B[x/G,,] should be the classifying
stack for principal [x/G,,]-bundles, so that if p : S — T is a principal [*/G,,]-
bundle in Art]lét or HStg then there is a natural morphism € : T — B[x/G,,]
with S = E[*/G,,] X5,B[+/G,.],e T the pullback principal [x/G,]-bundle.

Also B Perf™™ should be the relative classifying stack for weight one perfect
complezes on principal [x/G,,]-bundles, so that if p : S — T, € are as above
and £°* is a weight one [x/G,,]-equivariant perfect complex on S then there is
a natural morphism ¢ : T — BPerf""! with ¢ = v o ¢ such that if n : S —
EPerf™™ is induced by ¢, e and the isomorphism S 2 Elx/Gm] X5,B1x/Gmle T
then £° 2 n*(U°*) for a ‘universal’ weight one complex U* on E Perf"'!,

Then there should exist a class PE in B*(« : E Perf""! — BPerf"™), such
that PE([E®]) in is obtained by bivariant pullback of PE by (¢, 7).
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3 Vertex algebras and Lie algebras in
Algebraic Geometry

Throughout this section we fix a field K and work with (higher) Artin K-stacks
as discussed in §2.3]

3.1 Assumptions on the abelian or triangulated category

The next assumption sets out the notation, extra data, and properties we need
for the K-linear abelian category A in all the versions of our construction. The
symmetric product x in (c¢) and perfect complex ©° in (i)—(1) will be explained
in Remark and the signs €, g in (d) in Remark

Assumption 3.1. (a) We are given a K-linear abelian category .A.

(b) The Grothendieck group of A is the abelian group generated by isomorphism
classes [E] of objects E of A, with a relation [F] = [E] + [G] for each exact
sequence 0 - E — F — G — 0 in .A. We are given a quotient group K (.A) of
Ky(A), with surjective projection Ky(A) — K(A). Thus, each object E € A
has a class in K(A), which we will write as [E].

(c) We are given a biadditive map x : K(A) x K(A) — Z, which is symmetric,
that is, x(a, 8) = x(8, «) for all o, B € K(A).

(d) We are given signs €, 5 € {1, —1} for all a, 8 € K(A), which satisfy

€ €hia = (—1)x(@B)Fx(e0)x(8.8) (3.1)
€a,8 " CatByy = €a,B4+y " €87 (3.2)
€a,0 = €0, = 1, (33)

for all a, 8,7 € K(A). Note that if the map K(A) x K(A) — {£1} taking
(v, B) = €q,p is biadditive (i.e. €qypy = €a~ €8,y aNd €4 g1y = €q,3 " €q,~) then
is automatic, as both sides are €, g - €q,y - €3,y, and so is .

(e) We can form a moduli stack M of all objects in A, which is an Artin K-stack,
locally of finite type. K-points z € M(K) correspond naturally to isomorphism
classes [E] of objects E in A, and we will write points of M(K) as [E]. There
are isomorphisms of algebraic K-groups Aut(F) 2= Isor(([E]), natural up to
conjugation in Aut(FE), between the automorphism group Aut(E) of E in A
and the isotropy group Iso([E]) of [E] in M.

We also write M’ = M\ {[0]} for the open substack M’ C M which is the
moduli stack of nonzero objects in A.

If S is a K-scheme, a stack morphism £ : S — M should be interpreted
as a ‘family of objects £ in A over the base K-scheme S’. In our examples,
morphisms S — M will be equivalent to objects of an Og-linear exact category
A(S). That is, in these examples we can enhance the Artin K-stack M to a
stack in exact categories on Schy.

We do not assume this, but we will use these ideas in (g),(h) below to
better explain the stack morphisms ®, ¥, using the operations of direct sum @
and tensor product L ® — by an S-line bundle L in the exact category A(S).
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(f) The map M(K) — K(A) mapping [E] — [E] is locally constant in the
Zariski topology. Thus there is a decomposition M = Hae K(A) My, where
M, C M is the open and closed K-substack of points [E] € M(K) with [E] = «
in K(A). We have M,, = () if there are no objects F € A with [F] = a. We
write M, = M, if a # 0 and My = Mo \ {[0]}, so that M’ = [],c (1) Ma-

(g) There is a natural morphism of Artin stacks ® : M x M — M which
on K-points acts by ®(K) : ([E],[F]) — [E @ F], for all objects E,F € A,
and on isotropy groups acts by ®. : Isopmxm([E], [F]) = Aut(E) x Aut(F) —
Isopm([EDF])) =2 Aut(E®F) by (A, 1) — (3 9) for X € Aut(E) and p € Aut(F),
using the obvious matrix notation for Aut(E @ F'). That is, ® is the morphism
of moduli stacks induced by direct sum in the abelian category A.

As [E @ F] = [E] + [F], we see that ® maps M, X Mg — M,4p for
o, € K(A), and we write ®4 5 := ®| . x My 1 Ma X Mg — Mays.

These morphisms ®,, 3 satisfy the following identities in Ho(Arti):

Pgq0048=Pap: My X Mg — Mysg, (3.4)

Dot pry 0 (Pap X idm,) = Pagry 0 (I, X Bpy)
Ma X Mg x My — Maypiy,

where 04,5 : Mo X Mg — Mg x M, exchanges the factors. That is, ® is
commutative and associative.

If M comes from a stack in exact categories on Schg, as in (e), we can

provide an explicit description of ®. Then M(S) := Hom(S, M) is the groupoid
of objects £ in the exact category A(S) and their isomorphisms for S in Schy,
and ®(S) : (M x M)(S) = M(S) x M(S) = M(S) is the functor of groupoids
mapping ®(95) : (£, F) — £ ® F, using direct sum in A(S).
(h) There is a natural morphism of Artin stacks ¥ : [x/G,,] x M — M which on
K-points acts by U(K) : (x, [E]) — [E], for all objects F in A, and on isotropy
groups acts by W, : I50(./c., jx (%, [E]) = Gy x Aut(E) — Ison([E) = Aut(E)
by (A, ) = Ap = (A-idg) o for A € G,, and p € Aut(E). Note that U is
not the same as the projection maq : [¥/Gp] X M — M from the product
[¥/G,] x M, which acts on isotropy groups as (maq)« : (A, 1) — p.

Clearly ¥ maps [/G,] x My = M, for a € K(A), and we write ¥, :=
\Ij‘[*/Gm]xMa : [*/Gm} X My = M.

These morphisms &, g, ¥,, satisfy the following identities in Ho(Arti"):

(3.5)

Vot 50(idpyc,, ) X Pas) = Pa,s0 (Yoo (Mg, x Mo ))s (Y0 (i /6ixms)))

[*/Gm] X Ma X Mﬂ — Ma+5a (36)
\I/a o (id[*/@,m] X \I/a) = \I/a o (Q X idMQ) :
[#/Gm] x [*/Gm] x Mo — Ma, (3.7)

where Q : [%/Gy,] X [*/G,,] — [%/Gyy] is induced by the group morphism G,, x
G — Gy, mapping (A, p) — Ap.

Note that says U, is a [*/G,,]-action on M, in the sense of Definition
so U is a [*/G,,]-action on M. The action of ¥ on isotropy groups above
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implies that W is a free [*/Gyy,]-action, as in (2.22), except over [0] € M(K), so
U= Ul g, 1xmr ¢ /G x M" — M is a free [x/Gp,]-action on M.

If M comes from a stack in exact categories on Schg, as in (e), we can
provide an explicit description of ¥. Then [*/G,,](S) = Pic(S) is the groupoid
of line bundles L — S and their isomorphisms for S € Schg, and M(S) is the
groupoid of objects £ in the exact category A(S) and their isomorphisms, and
U(S) : Pic(S) x M(S) — M(S) is the functor of groupoids mapping ¥(S) :
(L,&) — L®E, noting that we may tensor by line bundles on S in the Og-linear
exact category A(S).

(i) We are given a perfect complex ©® on M x M, as in We write
O3, 5 for the restriction of ©° to My x Mg C M x M for a, 8 € K(A). Then
rank ©F, 5 = x(a, ) for all o, 8 € K(A).

(§) Write oa3 1 Mo x Mg — Mg x M, for the isomorphism exchanging
the factors. Then for some n € Z, and for all o, € K(A), we are given
isomorphisms in Perf(M, x Mg):

00,8(05.0) = (67 5)" [2n]. (3.8)
Here (---)" is duality and [2n] is shift by 2n in Perf(M,, x Mg). Equation (3.8
is consistent with x(a, 8) = x(8, @) in (c) and rank ©, 5 = x(«, 8) in (i).
(k) For all o, B,y € K(A), we are given isomorphisms in Perf(Mg, x Mg x M,):

(Pa,p X idat, )" (O845,4) = v, xm, (O4,5) © Ty wan, (OF ), (3.9)
(idamy X Pp4)" (05 51q) = v xm, (08,6) © v, (O5,5)-  (3.10)

The isomorphisms (3.8]) identify (3.9) with the dual of (3.10)), and vice versa.
(1) For all o, 5 € K(A), we are given isomorphisms in Perf([x/G,,,] x M4 X Mp):

(W x idaty )" (O%,5) 2T o (Fr) © o ong, (Op) (3:11)
(M, (Ygolln g, x ) (08, 5) ZI g, 1 (E-1) @Iy o, (O2 ) (3.12)

Here E41, E_q are as in Example regarded as line bundles on [x/G,,]. By
(h), ¥,, Vs are [x/G,,]-actions on M,, Mg as in §2.3.7, which lift to two
commuting [+/Gp]-actions on M, x Mg. We require that (3.11)—(3.12) are
[*/Gy]-actions on ©F, 5 of weights 1, —1 compatible with these [*/G,;,]-actions
on M, X Mg in the sense of Definition that is, the analogues of
commute.

The isomorphisms (3.11)—(3.12)) should be compatible with each other, that
is, they define a [*/G,,]*-action on 03, 5 with multi-weight (1,—1). Also the
isomorphisms (3.8)-(3.10) should be equivariant under these [*/G,,]>-actions,
in the appropriate sense.

Here is the analogue for triangulated categories 7T :

Assumption 3.2. Suppose are given a K-linear triangulated category 7. As-
sume the analogue of Assumption a)—(1), replacing A by T throughout, and
with the following changes:
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(i) To define the Grothendieck group Ko(7) in (a), we impose a relation
[F] = [E] + [G] for each distinguished triangle E—F —G— E[+1] in T .

(ii) In (d), the moduli stack M of all objects in T is a higher Artin K-stack
locally of finite type.

(iii) In (e), in our examples morphisms S — M are equivalent to objects of an
Og-linear triangulated category T (S). That is, we can enhance the higher
Artin K-stack M to a stack in triangulated categories on Schy.

(iv) For each object E in T, there is a morphism &5 : A' — M, in Ho(HStE),
which on K-points maps = € K to [Cone(x ‘idg : B — E)], taking cones
of morphisms in the triangulated category 7. Note that

[E® E[l]], z=0,

[Cone(z -idg : E — E)| = {[0]7 z #0.

Remark 3.3. Assumptionsandinclude a symmetric product y : K (A)x
K(A) — Z in (c) and a perfect complex ©° € Perf(M x M) in (i). We now
explain where these come from in the examples of §5-46]

In the examples of abelian categories A we are interested in, for objects
E, F in A we can define Ext groups Ext’(E, F) for i = 0,1,..., which are finite-
dimensional K-vector spaces with Ext’(E, F) = Homy (E, F) and Ext'(E, F) =
0 for ¢ > 0. For example, if A = coh(X) for X a smooth projective K-scheme
then Ext’(E, F) is as in Hartshorne |62, §II1.6]. In the triangulated category
case, for E,F € T we define Ext’(E, F) = Hom(FE, F[i]) for i € Z.

The Euler form of A is the bilinear map x4 : Ko(A) X Ko(A) — Z acting by
YA(E], [F]) = 32,(=1)" dimg Ext*(E, F). The numerical Grothendieck group is
K (A) = Ko(A)/{a € Ko(A) : xa(o,8) =0 for all 8 € Ko(A)}. Then xa
descends to x4 : K™™(A) x K™™(A) — Z. In our examples we will often
choose K(A) = K™™(A) in Assumption [3.1|b).

Under good conditions, there should exist a natural perfect complex Ext®
in Perf(M x M), which at each K-point ([E], [F]) of M x M has cohomology
Hi((’i'xt' ‘([E]y[F])) >~ Ext'(F, F) for all . Thus rank £xt* |([E],[F]) = xa([E], [F])-

We can write £xt® explicitly in terms of cotangent complexes of derived
moduli spaces as follows. Suppose that M = ty(M) for a derived moduli stack
M, and also that we have a derived moduli stack Eract of exact sequences
0—FE— F— G—0in A (or of distinguished triangles in 7"), with M, Eract
locally of finite presentation. Define a morphism T : M x M — &ract to
map (E, F') to the exact sequence 0 - F — E® F — E — 0. Then (Ext®)Y
should be the restriction of Lagxat/eract[l] € Perf(M x M) to the classical
truncation M x M, where Laqx am1/eract is the relative cotangent complex of T.

Without using derived algebraic geometry, one can define £2t°® by the tech-
niques used to construct obstruction theories, as in Behrend and Fantechi [15].

There will be two main versions of our construction, both with interesting
applications, with different definitions of y, ©® in each case:
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(A) (The even Calabi—Yau case.) Suppose that A or T is a 2n-Calabi—Yau
category, for instance, A = coh(X) or 7 = Dbcoh(X) for X a projective
Calabi-Yau 2n-fold over K. Then we have isomorphisms Ext’(F, E)* =
Ext?"~*(E, F) for all E, F,4, which should be induced by an isomorphism
o*((Ext®)V) = Ext®[2n] in Perf(M x M), where 0 : M x M — M x M
exchanges the two factors of M as in Assumption (J)

In this case we define x = x4 and ©° = (&xt*)Y in Perf(M x M).
Then Ext'(F, E)* = Ext*"~*(E, F) implies that x(c, 8) = x(8,a) in As-
sumption c), and o*((Ext®)Y) = Ext®[2n] implies that o}, 5(0F ) =
(02, 5)V[2n] In Assumption j).

(B) (The general case.) If A, 7 are not 2n-Calabi-Yau, then in general
we cannot take x = x4 and ©° = (&xt®)Y as in (A), since we might
have x(a, 8) # x(B, ) and o}, 5(03 ) # (@;vﬂ)v[2n] Then we define
x(a, B) = xala, B) + xa(B,a) and ©° = (Ext®)Y @ o*(Ext®)[2n], for some
n € Z,so x(a, B) = x(8,) and o}, 5(©F ) = (65, 5)"[2n] hold trivially.

If Aor T is 2n-Calabi—Yau then both (A) and (B) work, but usually yield rather
different Lie algebra structures on H.(M) under our constructions.

We have justified Assumption ¢),(i),(j) in both cases (A),(B). Part (k)
holds because of the analogue for the complex Ext® of

Ext'(E,F ® G) 2 Ext'(F,G) ® Ext'(E, F) and
Ext'(E @ F,G) = Ext'(E,G) ® Ext'(F, G).

Part (1) basically holds because in the action of Aut(E)xAut(F) on Ext’(E, F)*,
(Nidg, pidF) acts by multiplication by A\u~!, for all A\, u € G,,.

Remark 3.4. (a) The signs €, in Assumption d) will be needed in the
definitions of our Lie brackets [, ] on H,.(M) to make [, ] graded antisymmetric
for a certain (nonbtandard) grading on H,(M). Lemmashows we can always
choose €, g satisfying (3.1} . In Remark- ), when x(a, 8) = xa(a, 8)+
xA(8, ), there is a natural choice €4 8 = (—1)X4 O"ﬁ)

We will explain in ’ 7| that the €, g are related to the problem of choosing
‘orientation data’ on the category A, as in Cao and Leung [31] for instance.

(b) Rather than taking e, g = %1, it is sometimes natural to define €, g to be
a locally constant function €y p : Mo x Mg — {£1}, and then to require (3.1))—
to hold in functions M, x Mg — {£1} and M, x Mg x M, — {£1}.
(c) Very similar signs €, 3 occur in the theory of affine Lie algebras, as in
Kac (84} §7.8], where they are called asymmetry functions, and in the theory of
vertex algebras, as in [85, (5.14)], [46] (5.4)] and (2-10)-(2.12) below.

Lemma 3.5. Let K(A) be a finitely generated abelian group, and x : K(A) x
K(A) = Z be o symmetric biadditive map. Then we can choose €, g € {1, -1}
for all a, p € K(A) satisfying 7. Furthermore, we can do this so that
(v, B) > €q.p is a biadditive map of abelian groups K(A) x K(A) — {£1}.
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Proof. Write Zy = Z/27Z = {0,1} for the field with two elements, and set
V = K(A)®z7Zs as a Zs-vector space, with surjective projection 7 : K(A) — V.
Then V is finite-dimensional, as K (.A) is finitely generated, so we can choose
a basis v1,...,v, for V. Define Q : V x V — Zs by Q(v,w) = x(v',w') +
X', v )x(w',w') mod 2 for v',w' € K(A) with 7(v') = v, w(w') = w. This is
independent of the choices of v/, w’.

Now the map v — x(v',v") mod 2 is actually an additive, and hence linear,
map V — Zs, since x(v] + vh,v] + vh) = x(vi,v]) + x(vh,v4) + 2x(vi,vh) =
x(v],v])+x(vh,vs) mod 2. Hence Q : V XV — Zs is bilinear (although it looks
quartic). Also Q(v,v) = x(v/,v") + x(v',v")x(v',v') =0 mod 2 for any v € V.

Write ¢;; = Q(v;,v;) for 4,5 =1,...,n. Then ¢;; =0 for ¢ =1,...,n. For
a,f € K(A), write () = ajv1 + - -+ anv, and 7(8) = byvy + - - - + byvy, using
the basis v1,...,vp, for a;,b; € Zy. Then define €, 3 = (—1)Zl<i<j<"“iqu”. It
is easy to check that these e, g satisfy (3.1), and («, B) + €4, is biadditive, so
7 also hold as in Assumption d). O

The next proposition will be proved in
Proposition 3.6. Let Assumption [3.2] hold for T. Then:
(a) If T 20 (i.e. T contains nonzero objects) the inclusions M’ — M and
Mgy — Mg are homotopy equivalences, as in Definition m

(b) For each o € K(T), choose a K-point [E] € My (K) (this is possible as
Ko(T) - K(T) is surjective by Assumption [3.1(b)). Then the morphism
Qo0 Mo x{[E]} : Mo = Mo x {[E]} = Mq, which maps [F] — [F @ E] on
K-points, is a homotopy equivalence.

Thus, if Assumption holds for (co)homology theories H,(—), H*(—) of
higher Artin K-stacks, Lemma gives isomorphisms for all « € K(T):

H,(M') = H,(M), H.(Mj) = H (My), Hi(My) = H,(Ma),

HA (M) = B (M), (M) = H* (M), H*(Mo) = H*(M,). )

3.2 Operations [, |, on H.(M), and vertex algebras

We will work in the situation of Assumption 3.1} and define some algebraic
structures on the homology groups H,(M) and H,(M,) for a € K(A). We
first make H,([*/G,,]) into a commutative graded R-algebra:

Definition 3.7. Let Assumption hold for (co)homology H.(—), H*(—) of
Artin K-stacks over an arbitrary commutative ring R. Then Assumption c)
writes H,([¥/Gy,]) = R[t] and H*([*/G,,]) = R[7].

Define a stack morphism  : [x/G,,] X [*/G,,] — [*/G,,] to be induced by
the group morphism G,, x G,, = G,,, mapping (u,v) — pv, as in Assumption
h). Define an R-bilinear operation

* 2 Ho([x/Gm)) X Hy([+/Gm]) — Haqn([x/Gm]) by

Kx A= Happ(Q)(kRN) for k € Hy([*/Gp]) and A € Hy([%/Gon)). (3.14)
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From the definition of Q we see that H*(Q)(7) = 1 X1+ 1K 7. By
considering (t§ ®td) N (H%(Q)(7))PT? in H.([*/G,,] x [*/G,,]) we find that for
all p, g > 0 we have

P xtd = (PI9)epte, (3.15)
Hence induction on n = 0,1, ... gives
o ™ n copies 7 n
t =txtx---xt=nl-t" (3.16)

Equation ([3.15)) shows « is a commutative, associative product on H*([x/G,,]),
making H*([*/G,,]) = R|[t] into a commutative graded R-algebra, with identity
t9 = 1. We can also see this geometrically, e.g. associativity of % follows from

Qo (Q X id[*/Gm]) =Qo (ld[*/G ] X Q) : [*/Gm] X[*/Gm]x[*/Gm]—)[*/Gm}

m

Remark 3.8. Readers are warned that Definition is potentially confusing
for two reasons. Firstly, usually cohomology H*(S) is an R-algebra, but here we
make the homology H.,([*/G,,]) into an R-algebra. This works because [*/G,,] is
a group object in Ho(Arty), with multiplication Q : [*/G,,] X [*/G,] = [*/G,y].
Secondly, as Assumption [2.30(c) writes H.([*/G,,]) = Rl[t], the obvious
product would be t? xt? = t**9 and t*" = t", but this is not what 7
give us. Here t™ is just notation, a choice of generator of Ha,([*/G,,]), and
should not be thought of as the n'® power of ¢ under a product on H.,([*/G,,]).
Now " is a free basis element for Hs,([*/G,,]) = R-t". If R is not a Q-
algebra (e.g. if R = Z) then in general n! is not invertible in R, so t*" is not
a basis element for Ho, ([*/G,,]). This is why we chose the elements ¢", rather
than t*", to describe Ha, ([*/G,,]). If R is a Q-algebra then t*" is an alternative
basis element for Ha, ([*/G,,]), which is more convenient for some formulae.

Then H,(M,) and H,(M) are graded modules over H,([*/G,,]):

Definition 3.9. Let Assumption hold for (co)homology theories H;, H' :
Ho(Art}') — R-mod of Artin K-stacks, let Assumption hold for the abelian
category A, and use the notation of §2) and §3.1}

In a similar way to , for each o € K(A) and a,b > 0, define an R-
bilinear operation

O Ha([*/Gm]) X Hb(./\/la) — Ha+b(Ma) by

KoC=Hap(Vo) (kXK () for k € Hy([*/Gy]) and ¢ € Hy(M,,), (3.17)

where Uy, : [¥/G,] X My — M, is as in Assumption h). Then (3.7)) implies
that for all k € H,([*/Gp]), A € Hy([*/Gy]), and ¢ € He.(M,) we have

ko(Ao()=(k*xA)o( in Hyypre(My). (3.18)
That is, ¢ makes H,(M,) into a graded module over the graded R-algebra
(H.([*/Gm]),*) from Definition
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We make H,(M) into a graded H.([*/G,,])-module in the same way, by
ko = Hopy(U)(k ¥Q) for K € Hy([+/Gy]) and ¢ € Hp(M). Since M =
[ae K(A) M, by Assumption f), equation l| gives an isomorphism

H (M) = Baer(a) He(Ma), (3.19)
which is an isomorphism of graded H.,([*/G,,])-modules.

We define a family of R-bilinear operations [, |, : H.(My) X Ho(Mpg) —
H,(Muqp) for a,8 € K(A) and n =0,1,.... Theorem below shows they
are equivalent to the structure of a graded vertex algebra on H,(M), as in §2.2.1
Later we will use the [, |, to define our Lie brackets on H,(M).

Definition 3.10. Let Assumption hold for (co)homology theories H;, H® :
Ho(Artl') — R-mod of Artin K-stacks, let Assumption hold for the abelian
category A, and use the notation of §2) and §3.1]

For o, 8 € K(A), define 2o 5 : [*/Gp] X Mo x Mg — Mqyp to be the
composition of morphisms of Artin K-stacks

W xid g

[#/Gon] X Mo x Mg Mo X M —22 o Mg (3.20)

Here @, g, ¥,, ¥ are as in Assumption g),(h).
With the convention that H;(---) = 01if j <0, for all o, 8 € K(A), a,b =
0,1,... and n € Z define an R-bilinear map

[a ]n : Ha(Ma) X Hb(Mﬁ) — Ha+b—2n—2x(a,ﬁ)—2(M&+5) (321)
by, for all ( € H,(M,) and n € Hy(Mpg),
[C? n]n = Z 604,6(_1)@((676) : Ha+b72n72x(oz,ﬁ)f2(5a7ﬂ> (3'22)

i>0: 20 b, i—n—x(a,B)— °
i gyer (DT R(CRY) Nei([03 1))

Here H,.(---),X,N are the pushforward maps, external product, and cap
product on (co)homology from Assumption a), and ¢;(---) is the Chern
class map from Assumption b), and t* € Hop([*/Gyy)) is as in Assumption
C), the sign €4 3 = £1 is as in Assumption d), and the perfect complex
O3, 5 s as in Assumption i).

With respect to the obvious gradings on H, (M), H.(Mg), H.(My+s), the
bracket [, |, is graded of degree —2n — 2x(«, 8) — 2. However, we often prefer
to work with an alternative grading. For each ¢ € Z and o € K(A), define

gi(MOC) = Hi+27x(a,a) (Ma)- (323)

with grading shifted by 2 — x(«, ). Then

That is, H,(M,) is just H,(My)
= x(B8,a) by Assumption c¢), we see that

as x is biadditive with x(«, )

(3.21)) is equivalent to

[ In : Ha(Ma) x Hy(Mp) — Hayi—2n(Mayp), (3.24)
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where @ = a — 2 4 x(o,a) and b = = b — 2+ x(B,8). Thus, [, ], is graded of
degree —2n on H.(My), H.(Mg), H.(Mays)-

The zero object 0 € A gives a K-point [0] € My(K) € M(K), which we
can regard as a morphism [0] : ¥ — M, in Ho(ArtL), where * = SpecK is the
point. Thus we have the pushforward Ho([0]) : Ho(*) — Ho(Mo) = H_3(My),
where Assumption a)(iv) identifies Hy(x) = R. Write 1 = Hy([0])(1) in
Ho(Mo) = H_5(Mo) € H_(M). We call 1 the identity element, or vacuum
element, of H,(M).

We can generalize all the above to the triangulated category case. Sup-
pose instead that Assumption holds for (co)homology theories H;, H' :
Ho(HSt}!") — R-mod of higher Artin K-stacks, and Assumption holds for
the K-linear triangulated category 7. We replace K(A) by K(T) throughout,
but otherwise the definition of [, ],, works without change.

Remark 3.11. The operations [, ], are not Lie brackets, though we will use
them to define Lie brackets later. Note that the definition of [, ], is not
(anti)symmetric between M, and Mg, as it involves ¥, but not ¥g.

The next theorem, proved in §4.2| gives some identities satisfied by the [, |,.

Theorem 3.12. In the situation of Definition B.10] let o, B,y € K(A), and
¢ € Hi(My), n € Hy(Mp), 0 € Hz(M.) for a,b,é € Z. Then using the
notation of Definition [3.9] for all n € Z we have

e {000 nsh wa={S ne

For all n € Z and p > 0, we have
oGl = (17 (%) Koy (3.26)
(G o g;( )~#wwann+bm. (3.2)

For all n € Z we have
[, ¢ln = DR G ) R AT AR Y (O] P (3.28)
k>0: 2k<a+b—2n+2—x(a+8,a+8)

And for all I,m € Z we have

G~ S (C1 ()-meﬂm+Aln

n>0: 2m+2n< +
+2=x(B+7.8+7)

b () i =

n>0: 2n<a+c
+2—x(aty,a+7)

(3.29)
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The analogue of all the above holds in the triangulated category case, replacing

K(A) by K(T).

Remark 3.13. (a) We can replace M by M’ = M\ {[0]} throughout
which will be useful in This works as @, ¥ in Assumption|3.1[g),(h) restrict
to @ = Pl ppspr : M x M = M and V= U g 1 o /G x M —
M’ with the same properties.

(b) Equation will be used to prove graded antisymmetry of our Lie brack-
ets later. The equation looks rather asymmetric, but we have

[777 C]n = Z(_1>1+&E+k+n : tk < [C7 n]kJrn

k>0
_ Z(_1)1+a5+k+n LI {Z(_l)l-‘r&f)-&-k—&-l-&-ntl o [n’dkﬂw]
k>0 >0
J
= Z (71)l : tk ¢ (tl o [Tla C k+l+n = Z Z t] l ) Y [777 C]]-‘rn
k,1>0 §>0 1=

>0 >0

using (3.28) in the first and second steps, equation (3.18]) and changing variables
from k to j = k + [ in the fourth, equation (3.15]) in the fifth, and the binomial

theorem in the sixth. So in fact (3.28]) has a hidden symmetry, and is self-inverse.
(c) When k =1 = 0, equation (3.29) becomes

[1¢, 1o, 0o — €, [, 0JoJo + (—1)7 [, [¢, BloJo = O (3.30)

This will give the graded Jacobi identity for the ‘¢ = 0’ Lie algebra in §3.3]

With a change in notation, Theorem says that H,(M) is a graded vertex
algebra, in the sense of §2.2.1|

Theorem 3.14. In the situation of Definition for all a € %Z define
Ha(M) = f{2a—2(M) = @O(EK(A) H2afx(a,a)(Mo¢)v (331)

so that H. (M) = @, iz H,(M) is just H.(M) or H.(M) with an alterna-
tive grading over 3Z. Deﬁne D™ : H (M) — H, (M) for n=20,1,2,... by
DM (v) =t ov. Deﬁne Up H,i(/\/l) — H.(M) for all u € H. M) and n €7
by un(v) = [u,v]n. Let 1 € Ho(M) be as in Definition 3.10, These make
H,(M) into a graded vertex algebra over R, in the sense of Definition .

Proof. Clearly D™ u,, 1 have the R-linearity and grading properties required.
For Deﬁnltlon 2-8(i), if u € H (/\/la) and v € Hy(Mpg) then u,(v) = 0 if

a+b x(a, 8)—1 by (3 . Definition ii)f(v) follow from equations
B, 628 oot D) 0

]



Remark 3.15. (a) It seems very likely that Theorem has an explanation
in Mathematical Physics and String Theory, at least when A or 7 is of physical
interest, e.g. if 7 = Dcoh(X) for X a Calabi-Yau 2n-fold.

(b) As in Definition vertex operator (super)algebras are a class of graded
vertex algebras of particular importance in Conformal Field Theory, so it seems
natural to ask whether our examples in Theorem have this structure.

For all our examples from abelian categories A with A # 0, the answer to
this is no. The conformal vector w must live in Hy (M), but in the abelian case
My = and Hy(Mp) =0, so w = 0, contradicting Definition ii), (iii).

In the triangulated category case, conformal vectors w € Hy(M) exist in
many of our examples, but the author does not know a good geometric expla-
nation for where they come from in our context.

(c) Because of Theorem any standard construction for graded vertex al-
gebras, such as Definition [2.11] can be applied in our situation.

Remark 3.16. In the situation of Definition [3.10} motivated by Theorem [3.14
and the definition of fields Y (u, z) for a vertex algebra in (2.9), for each ¢ in
H,(M) we define an R-linear map

Y(¢2) s Hi(M) — Hi(M)[z,27 1], Y(C2) e T [Colnz "7, (3.32)

neZ

where z is a formal variable of degree —2. If ¢ € H;(M) then Y (¢, z) is graded

of degree @+ 2. From (3.22)) we see that if { € H,(M,) and n € Hy(Mp) then
Y(<7Z)77 = Znez[CW]nZ_"_l = ea,ﬁ(_l)aX(B’B)ZX(a”B) .

H*Ga,ﬁ){ (Zi>(} Ziti) X [(C X 77) N (Zj}(] z_jcj([G);ﬁ]))] }

Now suppose R is a Q-algebra. Then as in §2.4.2] we may transform from Chern
classes ¢;(—) to Chern characters ch;(—). Equatlons and (3.33)) give
(=

(3.33)

Y (¢, 2)0 = Y ezlCorlnz ™" = €ap(—1) XD (@) (3.34)
H*(Ea,ﬁ){(gzitz) [(C@n)ﬂexp(gl( 1771 (G =1t chy([07 4])] }-

Remark 3.17 (Commutative vertex algebras and the odd Calabi—Yau case).
In Definition suppose the complex ©° in Assumption [3.1](i) has [©°] = 0 in
Koy(Perf(M x ./\/l)) For instance we could take ©® = 0, which trivially satisfies
Assumption (3. ')7(1) Then x(a, B) = 0 and ¢;([©3, 4]) = 0 for all a, 8 € K(A)
and i > 1, so from (3.22) we see that [, 7], = 0 for all ¢,n € Ho(M) and n > 0.
Hence in Theorem [3.14] we have u,(v) = 0 for all u,v € H,(M) and n > 0.
That is, H,(M) is a commutative graded vertex algebra, as in Definition m

As in Remark [3.3[B), our standard definition of ©° for categories A, T
which are not 2n-Calabi-Yau is to set ©° = (Et*)Y @& o*(Ext®)[2n]. Now if
A, T are (2n + 1)-Calabi-Yau then (Ext*)Y = o*(Ext®)[2n + 1], so [©°] = 0 in
Ko(Perf(M x M)). Thus, under our standard construction, odd Calabi-Yau
categories A, T yield commutative graded vertex algebras, and abelian graded
Lie algebras in §3.31-43.8] which are basically trivial and boring.
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The next proposition will be proved in and will be used to prove the
graded Jacobi identity in the ‘positive rank’ version of The proof uses only
equations (3.15)), (3.18)), (3.26)), (3.28) and (3.29), and so is valid in any graded
vertex (Lie) algebra, with the appropriate notation changes as in Theorem

Proposition 3.18. In the situation of Definition [3.10} let o, 8,7 € K(A), and
¢ € Hi(My), n € Hy(Mp), 6 € Hi(M,) for a,b,é € Z. Then for all | € Z and
all x,y,z with x +y+ z = 1 we have

o m-+n—I)! _
S (a1
m,n=20: m+n=l, 2(m+n)< men:
atb+e+2—x(atp+y,a+B+7)
" m+n—I1)! _
Sy D oy oy o g, 6, (3.35)
m,n20: m+n=l, 2(m+n)< o
a+b+e+2—x(a+B+7,a+8+7)
Bé+m+n(m+n_l)! m n  ym4n—I _
Z (—1) Ry (z+a)" -t o ([0, Clm, n]n = 0.
m,n=0: m+n=l, 2(m+n)< o
atb+e+2—x(atp+y,at+B+7)

Here we can interpret 1) as an equation in ﬁa+g+5(/\/la+5+7) which
holds for all x,y,z € R with x +y+ z = 1. Alternatively we can take x,y, z to
be formal variables, and interpret (3.35) as an equation in

Hiipre(Matpir) @r (R(z,y,2)/(x +y + 2 — 1)),

where R(x,y, z) is the ring of polynomials in x,y, z over R, and (x+y+z—1) C
R(x,y,z) is the ideal generated by x + y + 2z — 1. The analogue holds in the
triangulated category case, replacing K(A) by K(T).

3.3 The ‘¢ =0’ version

Here is the first version of our Lie algebra construction, which we call the ‘t = 0’
version, as it involves quotienting H, (M) by the action of ¢ in H,([*x/G,,]) =
RJ[t], in effect setting ¢ = 0. This is an example of a well known construction
for vertex algebras, given in Definition [2.11] applied to the vertex algebra of
Theorem We give a geometric interpretation of H, (M)!=° as the homology
H,(MP) of a stack MP! in the ‘projective linear’ version of

Definition 3.19. Let Assumption hold for (co)homology theories H;, H' :
Ho(Art]lét) — R-mod of Artin K-stacks over an arbitrary commutative ring R.
Let Assumption hold for the abelian category A, and use the notation of
and
Definition [3.7 makes H,([*/G,,]) = R[t] into a commutative R-algebra, with
multiplication *. Write
I = (t, 213, )g
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for the ideal in H,([*/G,,]) spanned over R by all positive powers of ¢. If R is
a Q-algebra then I; is the ideal generated by t. For each a € K(A), define

H,(Ma)'™" = Hi(Ma)/ (It © Hi(Ma)), (3.36)

as a quotient graded R-module, where ¢ is the H,([*/G,,])-action from Defini-
tion [3:9] Equivalently, we have

Hay(Mo)=" = Ha(Ma)/(Zlgiga/z t <>Ha—2i(Ma))-
Similarly set H.(M)*=° = H,(M)/(I; o H.(M)), so that as in we have
Ho (M) 2 @) He(Ma) =0 (3.37)

We will write IT : Ho(M,) = Ho(My)=0 and I : Ho (M) — H, (M)'=° for
the projections. We will say that an equation in H,(M,) ‘holds modulo I’ if it
holds up to addition of an element of I ¢ H.(M,), that is, if the image under
IT of the equation holds in H (/\/l )t_o

Reducmg equations (3.20] of Theorem [3.12) m with n = 0 and p > 0
and modulo I; shows that for all o, 8,7 € K(A) and ¢ € Hz(M,),
nEH(Mg) 0 € Hz(M,) with a,b,& € Z, we have

[tPo(,nlo=0 mod I; if p >0, (3.38)
[C,tPonlp=0 mod I; ifp> 0, (3.39)

i, ¢lo = (=1, nly  mod I, (3.40)
[[C:m()’ 9]0 - [Cv [n’ 0}0]0 + (_1)&b[777 K’ 9}0]0 =0 mod I. (341)

For a, 8 € K(A), define an R-bilinear map

[7 ]t:O : Ha(Ma)t:O X Hb(MB)t:O — Ha+b—2—2x(a,ﬁ) (MaJrﬁ)t:O
by [C+ (I o Hi(Ma))arn + (It o Ho(Mp))s] ™" (3.42)
= TI([¢, o) = [, Mo + (1t © Hi(Marg))atrb—2—2x(a.5)>

where (I; ¢ H,(Mg)), means the a'" graded piece of I; o H,(My) C H.(My).
Equations 7 imply that the last line of is independent of the
choices of representatives ¢, n for the equivalence classes ¢ + (I; ¢ H, (M), and
n+ (I o H,(Mp))p, and so [, |70 is well defined.

As in , we define an alternative grading on H,(M,)*=° by

Hi(Mo)'=" = Hi 5 y(a,a)(Ma)=". (3.43)
Then as in (3.24)), we see that [, ]*=° in (3.42) maps
[ 1770 Ha(Ma)'=" x Hy(Mp)'=" — Harj(Mass)' ™, (3.44)

=b—2+ x(B,B). Thus, [,]=" preserves

where @ = a — 2 + x(a,a) an f;
)s He(Maryp)-

gradings on H,(M,), H.(Mg
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Define [, ]'=% : H, (M)'=% x H,(M)'=° — H,(M)*=° to be the R-bilinear
map which is identified with [, ]*=% in on each component H,(M,)=% x
Hyp(M)'=" under the canonical isomorphism .

Write H;(M)*=0 for i € Z for the subspace of D ;>0 Hi(M =0 correspond-
ing to @ e ) HilMa)'=" = @pereiay Hita—x(aa)(Ma)'=" under the iso-
morphism (3.37)), using the alternative gradings . Then H,(M)*=0 is just
H,(M)*=0 with a different grading, and (3.44)) implies that [, |*=° preserves the
grading on H, (M)*=0.

We can also generalize the above to triangulated categories. Suppose instead
that Assumption holds for (co)homology theories H;, H' : Ho(HSt') —
R-mod of higher Artin K-stacks over R, and Assumption [3:2] holds for the
triangulated category 7. We replace K (A) by K (7 ) throughout, but otherwise
the definition of [, ]*=° on H,(M)"=° works without change.

The next important theorem follows immediately from (3.40)—(3.41f), which

came from (3.28)—(3.29) in Theorem [3.12} Equation (3.45)) is graded antisym-
metry for the graded Lie bracket [, ]=9, and (3.46)) is the graded Jacobi identity.

Theorem 3.20. In Definition if ¢ € Hy(M)™=°, n € Hy(M)™=° and
0 € H:(M)'=0 then

n,]"=0 = <71>‘”‘5“[<~, =", (3.45)
[[Ca n]t:()v 6]1&:0 - K? [777 9]t:0]t:0 + (71)61)[777 [Cv 9]15:0]15:0 = Ov (346)

in both the abelian category and triangulated category cases. That is, [, ]'=" is a
graded (super) Lie bracket on H,(M)'™=°, making H,(M)'=° into a graded
Lie algebra (sometimes called a graded Lie superalgebra).

Hence (f[o(/\/l)tzo, [, 1'=0) is an ordinary Lie algebra over R.

Remark 3.21. (a) As in Remark a), we can replace M by M’ = M\ {[0]}
throughout and so define a graded Lie bracket [, ]*=° on H,(M')!=0.

(b) Observe that by (3.43) we have

ﬁO(M)t:O = @aEK(.A):X(a,a)<2 H2—x(a,o¢) (Mo‘)tzo'

If K(A) is of finite rank and x(, ) is positive definite, there will be only finitely
many classes a € K(A) with x(a, ) < 2, so the Lie algebra Hy(M)!=° may be
finite-dimensional. This happens for representations of ADE quivers.

3.4 The ‘projective linear’ version

The ‘¢ = 0’ version in has the disadvantage that H,(M)!=0 is not presented
as the homology of an interesting space, but as a quotient of the homology
H,(M). The ‘projective linear’ version of our construction remedies this, by
interpreting H.,(M')*=0 as the homology H.(MP®) of a modified version MP' of
the moduli stack M’ of nonzero objects in A or 7. We must assume the coef-
ficient ring R is a Q-algebra to prove the isomorphism H,(M')*=9 2= H, (MP}).
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Definition 3.22. Let Assumption hold for the abelian category .A. Then
Assumption [3.1((h) says that ¥' = V|, g, jxav : [¥/Gm] x M — M’ is a free
[*/Gy]-action on M" = M\ {[0]}, as in Deﬁnition Write TIP! : M/ — MP!
for the principal [*/G,,]-bundle with [*/G,,]-action ¥’ given by Proposition
a). Then MP! is an Artin K-stack, locally of finite type.

We regard MP' as the moduli stack of all nonzero objects in A ‘up to pro-
jective linear isomorphisms’. Since IIP' : M’ — MP!is a [/G,,]-bundle it is an
isomorphism on K-points. Thus, K-points z € MP! (K) correspond naturally to
isomorphism classes [E] of nonzero objects E € A, as for M'(K), and we will
write points of MP/(K) as [E], and then IT°(K) maps [E] — [E].

The isotropy groups of MP' satisfy Iso v ([E]) = Isore ([E])/Gm, where
the G,,-subgroup of Isor ([E]) is determined by the action of ¥’ on isotropy
groups. Thus by Assumption e),(h) we see that

150 0 o1 ([E]) 2 Aut(E) /(G - id). (3.47)

The action of IIP! on isotropy groups is given by the commutative diagram

IIOM, (IE) — Iso et ([E]J
o~ i BA7) | =~
Aut(E) B AW(E)/(Gyy, - idp).

In Assumption e) we explained that if S is a K-scheme, a stack morphism
e : S — M should be heuristically interpreted as a ‘family of objects £ in
A over the base K-scheme S’. But for an Artin K-stack X, Hom(S, X) is
a groupoid, with objects l-morphisms e, f : S — X and (iso)morphisms 2-
morphisms A : f = g. Thus, to fully describe X we should specify both objects
and morphisms in Hom(S, X). For M/, MP! we have:

(i) Objects of Hom(S, M") (that is, 1-morphisms e : S — M) correspond to
‘families of nonzero objects £ in A over the base K-scheme S’. Morphisms
of Hom(S, M’) (that is, 2-morphisms A : e = f of l-morphisms e, f :
S — M) correspond to isomorphisms A : & — F of such families.

(ii) Objects of Hom(S, MP) correspond to ‘families of nonzero objects &
in A over the base K-scheme S’, as for Hom(S, M’). But morphisms
of Hom(S, MP') correspond to equivalence classes [L, A] of pairs (L, A),
where L — S is a line bundle and A : € — 75(L) ® F is an isomorphism
of families. Two such pairs (L, A), (L', A’) are equivalent if there exists an
isomorphism of line bundles ¢ : L — L’ with A’ = (75(:) ® idx) o A.

We use ‘projective linear’, and ‘up to projective linear isomorphisms’, to mean
the use of isomorphisms up to G,, rescalings as in , or up to tensor prod-
uct with a line bundle as in (ii). For example, if Isopy (E) = GL(n,K) then
Iso \ (E) =2 PGL(n,K) is the corresponding projective linear group by .

As in Assumption f)7 for a € K(A) write MP' © MP' for the open
and closed K-substack of points [E] € MP(K) with [E] = a in K(A). Then
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MP = Hoera MP! and we write T2 = P g 2 M, — MP for M/, as in
Assumption f).

Since ITP! and TI®! are principal [*/G,,]-bundles, as in and Proposition
a), we have a diagram which is commutative Ho(Artg'), and 2-Cartesian

and 2-co-Cartesian in Art]lét:

[¢/Gm] x My, o M,

[ } | (3.48)
P!

M., . MPL

Now suppose also that Assumption holds for a homology theory H,(—)
of Artin K-stacks over a commutative ring R, and use the notation of Then
for « € K(A) and a =0, 1, ... we can consider the sequence

Ho (IR

0—> (I 0 H (M) g &2 > H, (M) Hy(MPY) —=0. (3.49)

If p>0and ¢ € H,_2,(M.) then
H, (IR (tP o) = Ho (I8 o Ho (W, ) (P BIC) = Ho (118 o Ha (m gy, ) (17C) = 0,

using (3.17) in the first step, commutativity of (3.48) in Ho(Arti') and functo-
riality of H,(—) in the second, and H, (7, )(t? K () = 0 for p > 0 in the third.

Hence H,(II2!) oinc = 0 in (3.49), that is, (3.49) is a complex of R-modules.
The analogue of (3.49) with M’, MP! in place of M., Mg} is also a complex.
Thus by (3.36) there are unique R-module morphisms

I, HL (M) — H(ME), T, Ho (M) — H.(MM), (3.50)

such that TP, o IT = H, (I8 or TIPL o IT = H,(II*"). These are isomorphisms
if and only if and its analogue for M’ are exact.

We can also extend all the above to triangulated categories, supposing As-
sumption instead of Assumption and replacing A, K(A) by T,K(T)
throughout, and taking M, MP' to be higher K-stacks.

Remark 3.23. We chose to define MP' as a [*/G,,]-quotient of M' = M\ {[0]},
deleting the point [0] in M, as the [x/G,,]-action ¥ on M is not free over [0],
and we needed a free [x/G,,]-action to apply Proposition ). This seems
to be the most natural thing to do in the abelian category version.

Now for higher stacks, Proposition b) gives [x/G,,]-quotients for non-
free [*/G,,]-actions. Thus in the triangulated category version, we could instead
define MP' = M/[x/G,,] as a higher stack. But as in Proposition (b), this
would not change the homology H,(MP!), so it makes little difference to us.

The next proposition is proved in Part (a) gives a sufficient condition
for H,(M.)*=° to be isomorphic to H,(MP"), at least when R is a Q-algebra.
Parts (b),(c) show that this condition often holds automatically.
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Proposition 3.24. (a) Let Assumptions and hold for (co)homology
theories H,(—), H*(—) over a Q-algebra R, and Assumption hold for the
abelian category A. Suppose that for some o € K(A), the principal [*/Gy,]-
bundle TIB! : M/, — le in Definition is rationally trivial, as in Definition
2.26 Then TP, : H,(M.)=0 — H,(MPY) in is an isomorphism.

(b) Suppose the field K is algebraically closed, 0 # a € K(A), and there exists
0# B € K(A) such that x(o, 8) # 0 and Mg # 0. Then TI%' : M/, — MP' is
rationally trivial.

(c) Suppose K is algebraically closed, K(A) is a free abelian group, x : K(A) x
K(A) = Z is nondegenerate, and Mo(K) = {[0]}. Then IT?' : M’ — MP' is
rationally trivial. Hence, if Assumptions and hold over a Q-algebra
R, then I« H,(M')'=0 —s H,(MP!) z' is an isomorphism by (a).

Parts (a),(b) extend to the triangulated category case in the obvious way.

Remark 3.25. Proposition (c) does not work in the triangulated category
case. If Assumption holds for the triangulated category 7T, and £° is any
object in T, then [£* @ £°[1]] lies in M(K), so we never have Mo (K) = {[0]}
unless 7 = 0. The author expects the principal [#/G,,]-bundle TIE' : M} — MP!
not to be rationally trivial, and TIPL, : Hy(Mp)'=" — Hy(MP') not to be an
isomorphism for k > 3, in almost all interesting triangulated category examples,
and we illustrate this when & = 3 in Example @ with 7 = DP Vectc. But
Htpio is an isomorphism for K = C when k£ = 0,1, 2 by the next result.

The next proposition will be proved in using the Leray—Serre spectral
sequence for the homology of fibrations.

Proposition 3.26. Work over the field K = C, with the (co)homology theories
of (higher) Artin C-stacks described in Example over any commutative
ring R. Then the morphism TP, : Hy(M')=0 — H,(MPY) in is an
isomorphism when k = 0,1 or 2, in both abelian and triangulated category cases.

Combining Propositions and yields:

Corollary 3.27. Work over the field K = C, with the (co)homology theo-
ries of (higher) Artin C-stacks described in Example over a Q-algebra
R. Let Assumption hold for A, or Assumption hold for T. Then

L, Ho(M')'=0 — Ho(MPY) in (3.50) is an isomorphism.
Proof. Let a € K(A) or K(T). Divide into cases (a) M, =0, (b) M, # 0 and

X(o, @) # 0, and (c) M, # 0 and x(a,«) = 0. Then L, Ho(M,)=0 —
Ho(MP!) is an isomorphism in case (a) trivially, in case (b) by Proposition
3.24(b) with 8 = «, and in case (¢) by Proposition as Ho(M.)=0 =

Ha(M)'=0 and Ho(MPY) = Hy(MPY). O

If we have an isomorphism e, - H,(M)=9 — H,(MP") as in Proposition
¢) (or just on Hy(MP"), as in Corollary[3.27), then there is a natural graded

Lie bracket [, JP' on H.(MP') (or just on Ho(MP)) identified with [, = on
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H,(M')*=0 in by IIPL,. Using the ‘projective Euler class’ in we will
define a graded Lie bracket [, ]P' on H,(MP!) in the general case.

Definition 3.28. Let Assumptions and hold. For «, 8 € K(A)
we have a free [/G,y,]-action on M, x Mj, as in §2.3.7

(W4 0 T, e, )s (% 0 Ty puany) (3.51)
[#/Gom] x M x Ml —> My x M, |

the diagonal action of the [x/G,,]-actions ¥/, on M, and ¥} on Mj. As for
MPin Definition write HZI,B : M, x Mg — (Mg x Mg)P! for the principal
[¥/G,,]-bundle with [x/G,,]-action (3.51]) given by Proposition ). Then
(Mg x Mp)Plis an Artin K-stack, locally of finite type. The following commutes

in Ho(Art"), and is 2-Cartesian and 2-co-Cartesian in Artj:

[%/Gm] x My, x Mz — - M, x M

. ((‘I’aon[*/sm]x/vt;l)’(‘I’ﬁon[*/ﬁm]x/\/t%)) )
i Ml XM, - Hi-ﬁi (3.52)
M, x M Sl (Mg x Mpg)PL.

The morphism HZ{ 3 induces a bijection on K-points. We write elements of
(Mo x Mg)P(K) as ([E],[F]) for [E] € M, (K) and [F] € M}(K), so that
Hglﬁ (K) : ([E],[F]) = ([E],[F]). As for 1) the isotropy groups are given by

Ts0(ut, x et ([E), [F]) 2 (Aut(E) x Aut(F))/ (G, - (idp, idp)).

By lifting the [*/G,,]-actions to the 2-category Artllét as in Remark [2.24] and
using the 2-co-Cartesian property of (3.52)), we can construct natural morphisms:
= pl 1 1 1 1
M2 s (Mo x Mg)P — MBI MBL, @2 (Mo x Mg)Ph — ME,
1
WP [#/Gn] X (Mo X Mp)P' — (Mg x Mp)P!, (3.53)

which are analogues of IIE' in Definition and @, 5, ¥, in Assumption

such that the following diagrams 2-commute in Art}':

/ ! !
2! 115! Mo x Mg o, a+B
1 1
‘/ﬁplﬁ J/HZ’B o Hi*‘;i’
ME! 5 ME 5 (M x M)P! : ME s,
(/G x M0, x M oy M, x M
J/id[*/‘Gm] XTI% 5 ’ Hzlxs\L
, - :
a,B
[#/Gm] X (Ma x Mg)P! (Ma x Mp)?!,
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/ li / /

[+/Gm] x MG, x My , M, x M
. " (M pqz,  Wigo (Y —qolly, Gm]XMb)) .

J/ld[*/‘Gm,]XHa,ﬁ ool Ha,ﬂ\L

[5/Gom] X (Mg x Mg)P! xr (Mg x Mg)PL.

Here Y_; : [¥/G,,] — [*/G,,] is induced by v_; : G, = G,, mapping v_1 :
A= AT

The morphism \I/glﬁ is a free [*/G,,]-action on (M, x Mpg)P!, and makes
f[glﬁ : (Mg x Mg)Pt — MP! x ./\/lg1 into a principal [x/G,,]-bundle. Here
IR x Hgl P M, X My — M x Mgl is a principal [*/G,,]>-bundle, and we
have factorized it into two principal [*/G,,]?-bundles Hglﬁ P M, x Mg —
(Mo x Mp)Pland TIP!; + (Mo x Mp)Pt — ME! x MY

The perfect complex O3, 5|mz, xa, on M, x M has a [x/Gy,]*-action of
multi-weight (1,—1) compatible with the [*/G,,]*-action on M, x Mj, by
Assumption 1) Hence @; sl xm, has weight 0 for the diagonal [/G-

action , so as in § we have ©, 5|, x My, = (le ) (e p) for a perfect
complex @;)5 on (./\/l X /\/lg)Pl, with rank@& rank@aﬂ = x(a, ). The

second [*/G,,]-action on 8;,B|M&XM% descends to @a’ﬁ, S0 @aﬁ has a weight

one [x/Gy,]-action compatible with the [*/G,,]-action \Ilglﬁ on (M, x Mg)PL.
Since ﬁilﬁ D (Mg x Mg)Pt— MP! Mgl is a principal [*/G,,]-bundle with

[¥/G,]-action \Ilgl 5, Assumption now gives projective Euler class maps

PE([02, 5]) : He(ME x MB) — Hy,_sy(a,p)-2((Ma x Mp)P).
Define an R-bilinear map
[P Hy(MBY) x Hy(MB') — Hogp—ay(,8)-2(ME, ) (3.54)
by, for all ¢ € H,(MP') and n € Hb(/\/lgl),
(G )" = aa (1) Ho i ay(a,p)-2(@F 5) © PE(IOF ) (X ). (3.55)

As in (3.23) and (3.43), we define an alternative grading on H,(ME') by

(Mpl) - 1+2 x(a, ) (Mp1)~ (356)
Then as in Uin - maps
[, ]pl L Ha(MPY) x HB(MEI) — Harp (M2 ). (3.57)

Define [, P! : H,(MP") x H,(MP) = H,(M)P' to be the R-bilinear map
which is identified with [, |P! in - - on each component H,(MP!) x

H b(/\/lg ) under the canonlcal isomorphism

H (MP) 2= @, ¢ g a) He (ME), (3.58)
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induced by MP' = Hoexa MP and , as in and E)

Write H;(MP') for i € Z for the subspace of @D ;>0 H;j(M?) corresponding
to Doera Hy(MP) = Docra Hi+2,x(a’a)(./\/lgl) under the isomorphism
. Then H,(MP) is just H,(MP") with a different grading, and
implies that [, ]P! preserves the grading on H, (MPh.

We can also generalize all the above to the triangulated category case, in a
straightforward way.

The next theorem will be proved in

Theorem 3.29. Work in the situation of Definition [3.28]
(a) The R-bilinear bracket [, ]P' in (3.54)—(3.55) is a graded Lie bracket on
H,(MP)), making H,(MP) into a graded Lie algebra.

(b) The morphism TIP., : H, (M)=0 — H,(MPY) in (3.50) is a morphism of
graded Lie algebras over R, for (H,(M')=% [, ]'=°) as in §3.3|

Remark 3.30. (a) As we will explain in Qﬂ, the ‘projective linear’ version has
important applications in areas involving virtual classes of moduli spaces.

In areas such as Mochizuki’s invariants counting coherent sheaves on surfaces
[115], or Donaldson-Thomas invariants counting coherent sheaves on Calabi—
Yau 3-folds or Fano 3-folds [81})146], given a suitable abelian category A, a stabil-
ity condition 7 on A, and a € K (A), one forms moduli schemes M5 (1), M (1)
of T-stable and T-semistable objects F € A with [E] = a.

Under good conditions, M*(7) is a proper K-scheme, and M*'(7) C M*(7)
an open K-subscheme, and M (7) has a natural perfect obstruction theory.
Thus, if M3 (1) = M®(7) then M?'(7) is proper with a perfect obstruction
theory, so by Behrend and Fantechi [15] it has a virtual class [M® (7)]yir in a
suitable homology theory H, (M3 (7)) (e.g. Chow homology A, (M3 (7))).

Any 7-stable object F € A has Aut(F) = G,,. Thus in the ‘projective linear’
moduli stack MP', with isotropy groups Aut(E)/G,,, we have Iso i ([E]) =
{1}. Because of this, the K-scheme MZ'(7) should be an open K-substack of
MP! Hence [M5(7)]virt pushes forward to [ME*(7)]yire in H,(ME'). This does
not work for H,.(M,). Asin we propose to use our Lie bracket [, |P! to
express relationships between virtual classes [M5'(7)]virt in H, (MP'), including
a wall-crossing formula for change of stability condition 7.

(b) The shift 2— x(a, a) in the grading H; (M) = H 1oy (a.0)(MY) in ,
(13.43) and may be understood as follows. We define x(—, —) such that
the moduli stack MP' has (real/homological) virtual dimension vdim MP' =
2 — (e, @), and therefore virtual classes [MS(7)]yire lie in Hy_y(q,0)(ME) =
Hy(MPY. Thus, as [, ]! maps Hy(MP') x HO(M?) — ﬁo(/\/lg:_ﬂ) we can

. . 1 1.
express relations between virtual classes on MEH, MB MP 4 in terms of [, JPL

3.5 The ‘positive rank’ version

The third version of our Lie algebra construction is called the ‘positive rank’
version. We will need an extra piece of data:
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Assumption 3.31. Let Assumption hold. We should be given a group
morphism rk : K(A) — Z that we will call the rank. Write M™> for the open
substack of M representing objects E € A with rk([E]) > 0, so that under the
decomposition M = ][, (1) Ma we have M™0 = Hoexayrkaso0 Ma-

If instead Assumption holds, we replace K(A) by K(T), so we have a
group morphism rk : K(7) — Z.

Definition 3.32. Suppose Assumption holds for (co)homology theories
H;, H : Ho(Art]llg) — R-mod of Artin K-stacks over a Q-algebra R, suppose
Assumptions [3.1] and hold for the K-linear abelian category A, and use the
notation of §2 and

For «, 8 € K(A) with rka > 0 and rk 8 > 0, define an R-bilinear map

[’ ]rk>0 : Ha(Ma) X Hb(M,B) — Ha+b,2X(a,5)72(Ma+B)
D Y - R

n>0: 2n<a+b—2x(a,8)—2 I‘k(O[ + 6

We need R to be a Q-algebra because of the rational factors in (3.59). Using
the alternative gradings H.(M,) of (3.23), this maps

[, ]rk>0 . E[a(Ma) X IN{B(Mﬁ> — [{Ia+5(/\/ta+/3). (360)

Define [, ]**>0 : H, (M™% x H (M™% — H, (M™% to be the R-
bilinear map which is identified with [, ]™>° in (3.59) on each component
H, (M) x Hy(Mp) under the canonical isomorphism from ([2.31))

H, (Mrk>0) = @ZOZO @aéK(.A):rka>0 HG(MOC)' (361)

Write H;(M™>°) for i € 7Z for the subspace of D0 Hj(M™>%) corre-

sponding t0 @,k a0 HilMa) = Dok aso Hit2—x(a,a)(Ma) under the iso-
morphism , using the alternative gradings Then ﬁi(/\/lrbo) =]

arkaso Hi(My), so Hy (M™% is just H,(M™ ) with a different grading,
and (3.60) implies that [, ]"*>° preserves the grading on H,(M™>?).

We can also generalize all the above to the triangulated category case. Sup-
pose instead that Assumption holds for (co)homology theories H;, H' :
Ho(HSt!") — R-mod of higher Artin K-stacks over the Q-algebra R, and As-
sumptions and hold for the K-linear triangulated category 7. We
replace K (A) by K(T) throughout, but otherwise the definition of [, ]'*>© on
H, (M™>%) works without change.

Here is the analogue of Theorems and a), proved in

Theorem 3.33. In Definition the R-bilinear bracket [, "0 is a graded
Lie bracket on H, (M™%, making H,(M™>°) into a graded Lie algebra.

Remark 3.34. (a) The Lie bracket [, ]"*>9 in Definition is defined only
on the homology H,(M™>%) of the open substack M™>® € M of objects with
positive rank, and it does depend on the function rk. We admit this seems
unnatural. Here are the two main examples of rank functions we have in mind:
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(i) Let X be a connected smooth projective K-scheme and A = coh(X) be
the abelian category of coherent sheaves on X, and K(A) = K™ (A) be
the numerical Grothendieck group of A, and rk : K(A) — Z map rk :
[E] > rank E, so that if E is a vector bundle of rank n then rk([E]) = n.

(ii) Let Q = (Qo, Q1, h,t) be a finite quiver, and A = mod-K@Q, and K(A) =
Z2° be the lattice of dimension vectors d : Qo — 7Z for @, and rk :
K(A) — Z be the total dimension, so that tk(d) = >, o d(v). Note

that if £ € A is nonzero then rk([E]) > 0, so M™% = M\ {[0]}.

In abelian category problems, restricting to positive rank may not matter
that much, e.g. in (ii) it only excludes the zero object. However, for triangulated
categories, as the shift functor [1] : 7 — T changes the sign of rk, the substack
M™>0 is less than half of M, so we lose a lot.

(b) The definition of ‘positive rank’ Lie algebra also makes sense for any graded
vertex algebra V.. as in §2.2.1| with an additional grading V.. = @, V.* over an
abelian group L compatible with the vertex algebra structure, and a morphism
rk : L — Z. But the author has not found this construction in the vertex algebra

literature. The same applies to the ‘mixed’ Lie algebra in

The next proposition, proved in §4.8] gives an alternative expression for

[, ]™>0 in (3.59) which is more symmetric in M, Mg.

Proposition 3.35. In the situation of Definition for a, B € K(A) with
tka,rk 8 > 0, define X : [*/Gp] X [%/Gp] X Mg X Mpg — Myip to be the
composition of morphisms of Artin K-stacks

(Pqo(Ily xII3)) x

(Tpo(Ilz xI1y))
_— >

/G X [/ Gom] X Mo X M35 MaxMs 222 Mars. (3.62)

Here 11; is the projection to the i*™ factor of [%/G] X [x/Gp] X Mo x Mg, and
D, 5, V,, Vs are as in Assumption g),(h). Then [, >0 in (3.59)) satisfies

k>0 _ wsl(—1 q+ax(ﬁ,ﬁ)w . 563
(¢, ] mq}g%;gﬁh €a,8(—1) (tk(a + B))Pta (3.63)

i=p+q+x(a,B)+1 Ha+b_2x(aﬁ)_2(xa_ﬂ)
(7 R t3 R [(CBn) Nes((08 4])])-

Definition 3.36. Work in the situation of Definition [3.32] Consider the poly-
nomial algebra R[s] for a formal variable s of degree 2. For each o € K(.A) with
rka > 0, define an R-bilinear map © : R[s] x H,(My) — H.(M,,) by

s"OC=nltka)™ - t"o( (3.64)
in Hyion(M,) for all n > 0 and ¢ € H,(M,,), where t" € Ha,([+/Gp]) and
t" o ( is defined in (3.17). Then © is graded, and also graded as a R-bilinear
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map O : R[s] x H.(M,) — H,(M,). We have

s"Q(s"V¢) = s"V(nl(tka) ™" - t" o () = minl(tka) " ™ o (1" 0 ()
=mlnl(tka) """ [t t"] o ¢ = minl(tka) T [(TIM) ] o ¢

= (m+n)(tka) " M o (= MO,

using in the first, second and sixth steps, in the third, and in
the fourth. This implies that © makes H,(M,), and also H,(M,,), into a graded
Rl[s]-module. We also write © for the graded R[s]-action on H,(M™>°) =
H, (M™% which restricts to  in on each subspace H,(M,) in

The next result, proved in shows [, "0 is R[s]-bilinear for the R[s]-
module action © on H, (M™%, so H,(M™>%)is a graded Lie algebra over R]s|.

Proposition 3.37. In Definition 3.36} if «, 8 € K(A) with rka,rk 8 > 0, and
¢ € Hy(My), n € Hy(Mg), and m,n > 0, we have

[5G, 50 = sG], (3.65)

We can relate the ‘positive rank’ and ‘¢ = (0’ Lie algebras by a morphism:

Definition 3.38. Suppose Assumption holds for (co)homology theories
H; H : Ho(Artlﬂg) — R-mod of Artin K-stacks over a Q-algebra R, suppose
Assumptions and hold for the K-linear abelian category .A, and use
the notation of §2] and §3.1}-43-3] Then Definition [3.19] and Theorem [3.20] give
a graded Lie bracket [, ]*=0 on H,(M)*=°, and Definition [3.32] and Theorem
give a graded Lie bracket [, ]"*>° on H,(M™>?), depending on the rank
function tk : K(A) — Z (note that [, ]*= is independent of rk).

Define IT50, H, (M™% - H,(M)*=° by I52,(¢) = ¢+ (to H (M)). By
comparing with (3.59), and noting that the n > 0 terms in map to

zero in H, (M), we see that IT%-0, : H, (M™°) — H,(M)*= is an R-linear

morphism_of graded Lie algebras.

From we see that the kernel of TI5-0 is sOH, (M™>0) ¢ H,(M™>9),
and the image of II50, is H.(M™%)=0 ¢ H,(M)*=0.

If also Assumption holds then gives a graded Lie algebra, (H, (MP'),
[, ]°") with a morphism TIP., : H,(M’) — H,(MP'), so we obtain a morphism
of graded Lie algebras IT5, ) = TIPL | o TI520, + HL (M™0) — H,(MP).

The analogue also works in the triangulated category case.

3.6 The ‘mixed’ version

In the ‘positive rank’ version in we restricted to the substack M™% ¢ M
of M, with rka > 0 because equation is undefined if rk(a + ) = 0, and
is undefined if rka = 0. The ‘mixed’ version combines the ‘¢ = 0’ and
‘positive rank’ versions, by defining H, (M, )™ to be H,(M,) if tka # 0, and
R[s]®r H.(My)=0 if rka = 0, so the construction works over the whole of M.
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Definition 3.39. Suppose Assumption n 2.30| holds for (co)homology theories
H; H' Ho(Artlft) — R-mod of Artin K-stacks over a Q-algebra R, suppose
Assumptions [3.1] and [3:31] hold for the K-linear abelian category A, and use the

notation of §2) and §3.1}-43.5]
For each a € K(A), define a graded R-module H,(M,)™* by
H,(M,), rka # 0,

H* o mix _ 3
(Ma) {R[s] Qr Hi(My)=0 tka =0,

where s is a formal variable of degree 2, and H,(M,)!=Y is as in . That
is, Ho(Ma)™ = @ocpcasa(s")r @R ltla_gn(./\/la)t:O When rka = 0.

Define an R-bilinear map © : R[s| x H,(Mq)™> = H,(M,)™> by | - if
tka # 0 and s™Q(s" ® () = s™T" @ ( for all m,n > 0 and ( G H,(M,)=0 if
rka =0. By Deﬁmtlonu 3.36, O makes H, (M, )m“‘ into a graded R[s]-module.

For all a, 8 € K(A), define an R-bilinear map

[, 175 Hoy(Ma)™ x Hy(Mg)™™ — Hyypooy(a.p)—2(Mats)™™  (3.66)
in cases, according to whether rk o, rk 8, rk(c + ) are zero or nonzero, by:

(a) If ko, 1k 3, k( + 3) are all nonzero then [, |™* equals [, ]"*>° in .
(b) If rkaw = 1k 8 = rk(a + B) = 0 then for all m,n > 0 and ¢ € H,(M, )t o

i1 € Ho(Mp)'=° we have
[s" @ (s @ = s e (A (3.67)

where [, *=0 is as in (3.42).
(¢) frkao =0 and rk 8 = rk(a + 8) # 0 then

} mix

[s" @ (C+ 1o Hi(My)),n] " = ™[, nlo. (3.68)
Equation ([3.26)) implies that this is independent of the choice of represen-
tative ¢ for ¢ = ¢ + I; © Hy.(M,) in H,(M,)'=0, so this is well defined.
(d) If vk =0 and rk o = rk(a + 5) # 0 then
[C5™ @ (n+ Lo Ho(Ma)]™™ =50 (3" (~1)"" o [Cnla). (3.69)
n>0: 2n<a+b—2x(a,B)—2

To see that this is independent of the choice of representative n for 7 =
n+1; 0 Hi(Mg) in H,(Mg)'=° observe that for p > 0 we have

Yo oGt only = > (=)™, ) -t o (1 o (¢ nlnsryp)

n20: 2n<a+b—2x(o,8)—2 k,n>0: k<p, 2(k+n)<a+b+2p—2x(a,B)—2

- Z (_1)" (pﬁk) (kzn) ’ tk+n < [Ca n]n-l—k—p

k,n>0: k<p, 2(k+n)<a+b+2p—2x(a,5)—2

= Z (_1)m+k (7;) (Z) "o ¢, n]m—p =0,

k,m>0: k<p, 2m<a+b+2p—2x(a,3)—2
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using (3.27) in the first step, (3.15) and (3.18)) in the second, changing
variables from n to m = k-n in the third, and Y 7 _,(—1)*(}) = (1-1)? =
0 as p > 0 in the fourth. Thus (3.69) is well defined.

(e) If rkaw = —rk 8 # 0 and rk(a + ) = 0 then for all ( € H,(M,), n €
H,(Mp) we have

o = SO o (G + Lo HaMG)), (3.70)

n!
n2=0:
2n<a+b—2x(a,8)—2

where [, ], is as in ([3.22]).
Define a graded R-module

H*(M)mix = @aeK(A) H*(Ma)mix' (3.71)

Then © above on each H, (M, )™* makes H,(M)™* into a graded R[s]-module.
Define [, | : H,(M)™> x H,(M)™* — H,(M)™X to be the R-bilinear map
identified with [, ]™* in (3.66]) on each component H,(M,)™* x H,(Mg)™* in
. As in and ([3.43)), define an alternative grading on H, (M, )™ by

H; (Ma)mix = Hi+2—x(a,a) (Ma)mix.

Write H;(M)™* for i € Z for the subspace of D=0 H;j(M)™X corresponding

t0 Bocr(a) HiMa)™™ = B e () Hit2—y(aa) (Ma)™> under . Then
H,(M)™ is just H,(M)™* with a different grading, and (3.66) implies that
[, |™* preserves the grading on H, (M )™,

We can also generalize all the above to the triangulated category case. Sup-
pose instead that Assumption holds for (co)homology theories H;, H' :
Ho(HSt}!") — R-mod of higher Artin K-stacks over the Q-algebra R, and As-
sumptions and hold for the K-linear triangulated category 7. We
replace K(A) by K(T) throughout, but otherwise the definition of [, |™* on
H, (M)™* works without change.

The next theorem will be proved in

Theorem 3.40. In Definition the R-bilinear bracket [, |mix 4s a graded
Lie bracket on H,(M)™, making H.(M)™* into a graded Lie algebra.
Also, for o, B € K(A), ¢ € Hy(My)™>, n € H,(Mpg)™> and m,n > 0 we have

[s"QC, 8" Oy = smTQLC, 7)™, (3.72)
so [, |™* is R[s]-bilinear, and H, (M)™* s q graded Lie algebra over R|s].

Remark 3.41. (a) As in Remarks a) and a), we can replace M by
M’ = M\ {[0]} throughout

(b) If we also suppose Assumption for H.(—) over a Q-algebra R, and that
if rka = 0 then the principal [¥/G,,]-bundle TI?' : M/ — M?E! is rationally
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trivial, as in (this often holds automatically, by Proposition [3.24|b),(c)),
then H,(M.)=0 = H,(MP') by Proposition sz'Z a), so when rka = 0 we
could replace H,(M.,)*=° by H,(MP") in Definition [3.39, which would be more
natural. Also R[s] @ g H.(ME) 2 H,([*/G,,] x ME)). Thus we could write

M = (e x ayakamo*/Cm] X ME) I (Iae s (a):xk azo Ma)

and then H,(M')™* = H (M™) so that H,(M')™* is the homology of a
geometric space. Actually in the rationally trivial case we have isomorphisms
R[s| ®@r H (M0 = H,(M.), but these are not canonical.

(c) Equations and are based on with tka = 0, tk 8 # 0,
and with rka # 0, rk 8 = 0, respectively. We can heuristically derive Definition
[3-3%(a)-(e) from by allowing rk to map K(A) — R rather than K(A) —
Z, and considering what happens as rka — 0, or rtk § — 0, or rk(a + 8) — 0 in
R, as we vary the function rk for fixed a, 3, and regard R[s] @ g H.(M,)!=0 as
the associated graded module of the filtration

H,(My) DtoH,(My) Dt2 o H,(My) Dt3 o Hy (My) D --- .

We relate the ‘mixed’ Lie algebra to those of §3.3}-43.5 by morphisms:

Definition 3.42. Work in the situation of Definition .39 Define an R-linear
map I3« H, (M™% = H,(M)™* to map IT9X, : ¢ = ¢ for all a € K(A)
with tka > 0 and ¢ € H.(M,). ) )
Define an R-linear map III20 : H, (M)™* — H,(M)*=0 by
M=0¢) = ¢+ I 0 Ho(M,) Va € K(A) with tka # 0, ¢ € H (M),
(, n=

Va € K(A) with tka =0, { € H,(M,)=°.
0, n>0

Mx(s" ® () = {

X

graded Lie algebras, and II"X is R[s]-linear. Also IT'50 o ITNX, = 10, for

1149, as in Definition 3.38] Here IT}, is injective, and 1152 is surjective, with
kernel sQH, (M)™>* c H,(M)™x,

If also Assumption holds then gives a graded Lie algebra (H, (M),
[, ]°") with a morphism TIPL, : H,(M’) — H,(MP'), so we obtain a morphism

of graded Lie algebras IT°. = TIPL o IT50 : H, (M)™* — H,(MPY).

mix mix

The analogue also works in the triangulated category case.

Then Definition implies that I and II!50 are R-linear morphisms of

3.7 The ‘fixed determinant’ versions

Let X be a smooth projective K-scheme. Then each coherent sheaf E, or com-
plex F in D’coh(X), has a determinant det F, a line bundle on X. It is common
to consider moduli spaces M of sheaves with fized determinant, that is, moduli
spaces of pairs (E,¢) for E a coherent sheaf and ¢ : L — det F an isomorphism,
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for L — X a fixed line bundle. For example, Hilbert schemes of subschemes
of codimension at least 2 are moduli spaces of rank 1 torsion-free sheaves with
fixed determinant Ox.

We will show that all the Lie algebra constructions of §3.3}-43.6] also work
for moduli stacks of objects with fixed determinant. The next assumption gives
a notion of determinant for our abelian category A. Example [3.45|explains how
it relates to determinants of coherent sheaves.

Assumption 3.43. Let Assumptions[3.1]and hold for the abelian category
A. Then:

(a) We are given an Artin K-stack P locally of finite type, which we will call
the Picard stack. There is a canonical isomorphism Isop(L) = G, for every
K-point L € P(K).

(b) We are given a morphism det : M — P in Ho(Art}'), called the determi-
nant. Write det,, = det |rq, : My — P.

(c) We are given a morphism ® : P x P — P in Ho(Arty').
diagram commutes in Ho(Art') for all a, 3 € K(A):

The following

./\/la X Mg o M(H_g
i/det,1 x detg A) deta+B\L (373)
PxP 2 P.

(d) We are given a morphism U : [#/G,,] x P —P in Ho(Art}). On K-points
L € P(K) it acts by ¥(K) : (x, L) — L, and on isotropy groups

W, : Isop g, xp (%, L) = Gy X Gy — Isop(L) =2 G,y
acts by U, (N ) — A\ for \, u € Gy,

The analogues of 1] hold for ®, . Thus V¥ is a [*/G,,]-action on P in
the sense of Definition so W is a [#/G,y,]-action on P. The action of ¥ on
isotropy groups above implies that ¥ is a free [*/G,y,]-action, as in . The
following commute in Ho(Artl) for all o € K(A) and k,l € Z:

[#/Gn] X Mo . M,
i/Trkaxdeta ) detaJ/ (3.74)
[#/Gum] X P L P,

[*/Gp] X P x P - - PxP

J{id[*/am] b (\Ilo(Tkol:Il,Hg),\IJo(TlloHs)) &)\L (375)

4/G] X P Bo(Thyxidp) P,

where Ty : [%/G,,] — [*/G,,] is the stack morphism induced by the group
morphism vy, : G, — Gy, Mapping vyka : A — AF.

(e) We are given a K-point O € P(K), which we think of as the identity mor-
phism O : x — P, where x = SpecK, and an inverse morphism ¢t : P — P,
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which make P into an abelian group stack, with multiplication P:PxP P,
as in Definition 2.23

(f) For each a € K(A) we are given a K-point L, € P(K), with Lo = O,
such that ®(K)(Lq,Lg) = Lo+s and i(K)(Ly) = L_,, for all o, 8 € K(A). We

regard L, as a morphism L, : * — P in Ho(ArtIH?)7 where * = SpecK.

Here is the analogue for triangulated categories 7T :

Assumption 3.44. Assume the analogue of Assumption but replace As-
sumption [3.1| by Assumption and replace A, K(A) by T, K(T) throughout.
Then M is a higher stack, but we still suppose P is an ordinary Artin stack.

The next example motivates Assumption

Example 3.45. Let X be a smooth, connected, projective K-scheme. Take
A = coh(X) and K(A) = K™™(A). Then:

e Let P be the moduli stack of line bundles L on X, which is an open
substack of M (we do not assume this in Assumption [3.43)). Let det :
M — P map a coherent sheaf F to its determinant line bundle det E.

e The morphism ® : P x P — P maps (L1, Ls) — Ly ® Lo, using tensor
product of line bundles. The morphism O : * — P maps * — Ox. The

morphism ¢ : P — P maps L — L*, using dual line bundles. Then P is
an abelian group stack.

e The morphism ¥ : [#/G,,] x P — P is defined as for ¥ in Assumption
3-1(h), but restricting to P C M.
e Take L, = Ox for all a« € K(A).

Then Assumption holds.

Readers are advised to familiarize themselves with §2.3.21-42.3.3] on Artin
stacks as a 2-category, substacks, and fibre products, before proceeding further.

Definition 3.46. Let Assumptions[3.1] 3.31)and [3.43|hold. Assumption d)
says that U is a free [#/G,y,]-action on P. As for MP! in Definition write
II°' : P — PP for the principal [x/G,,]-bundle with [x/G,,]-action ¥ given by
Sition M(a). Then PP is an Artin K-stack, locally of finite type. As for
13

48)) the following is 2-Cartesian and 2-co-Cartesian in Artj:

[%/Gp] x P - P

v
| A ﬁpl\L (3.76)
P i o,

Since IIP! is a bijection on K-points, we write L for both a point in P(K)
and for its image in PP!(K), so Assumption f) gives K-points L, € PP(K).
We have Isopp (L) = {1} for all L € PP/(K), so PP is an algebraic K-space. We
write O = IIP(K)(O) € PP (K).
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As for the morphisms (3.53)) in Definition using the 2-co-Cartesian
property of (3.76)), we can construct natural morphisms

det? : MP' — PP detP! =det | o s ME — PP P PP PP PPl

for a € K(A), which are ‘projective linear’ versions of det, det,, ® in Assump-
tion [3:43] such that the following commute:

/
Ma det! :=detq ‘Mfm P
e nl (3.77)
detP!

M - PP
P xP 3 P

e N i) (3.78)
Pol Pl - o,

For each o € K(A), define Artin K-stacks M MP4 AP by the 2-
category fibre products in Artllét, in the sense of Deﬁnitionm

fd fpd
MOL = MO‘ Xdetavvaﬂ *7 MOIL) = MO‘ Xﬁplodetayppl»La *

(3.79)

and MBS = ME X por g
These are different moduli stacks of objects in class « in A with fixed determi-
nant L,. Here ‘fd’, ‘fpd’, ‘pfd’ stand for ‘fixed determinant’, ‘fixed projective
determinant’, and ‘projective fixed determinant’, respectively. They fit into

2-Cartesian squares in Artﬁ?, with 2-morphisms nfd, nfpd ypfd:
My — £ MPI— *
f™ma Lq i iﬂMa i La i
rpl
Ma dety 7)7 Ma I odeto ,Ppl7
bfd (3.80)
M, p- *
\LWMEI nRM L, l/
ol detP! 1
Mg PPl

When o = 0 we have K-points [0] = [(0, )] in MI(K), MPY(K), and we write
MIE = pld [Ol, M= MP9\ [0], as in Assumption e). For a # 0 we
write MM = M and m/Pd = Aqfpd

As PPl is an algebraic K-space by Assumption ), Lo : % — PP
is a closed immersion, so in the second and third squares in (3.80), maq, :

MPY 5 M, and © IV MPI AP are closed immersions. This means that
Mffd,/\/lgfd are equivalent to closed substacks of MQ,MEI, where substacks

are defined in Definition as subcategories. Since (3.79)) only determines
Mffd, Mffd up to equivalence anyway, we choose Mffd, Mzd to be substacks
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of ./\/la,/\/lgl, and maq,, T et to be the inclusion morphisms. This determines
MPA AP and TMas Tt uniquely.

The universal property of 2-category fibre products in Definition and
(13.79) gives natural morphisms

fpd fd fpd /fpd fpd /fd /fpd
TPd s M MY TR P | M AP

pfd /fd fd pfd ] d fd
5 g s Mo — MES, P o s MOPd — MB',

(3.81)

with prd = Hgf(flp q° ngf(é in Ho(Arty'). For example, the 2-morphism idp, *
nid (le o dety) 0 Trr, = Lo o of 1-morphisms M = PP and the uni-
versal property of prd give a l-morphism Hip?d : ./\/lfld — Mf}j‘d with a 2-
isomorphism 7, © H d = TMm,-

Properties of fibre products imply that we have a 2-Cartesian square

M/fpd Y M:l
T ) (3.82)
MP e Mme

Here II2! : M/ — MP is a principal [*/G,,]-fibration by Definition S0
Py ./\/l’tpd MPE™ s also a principal [*/G,,]-fibration.
Define Artin stacks M M4 AqPfd Mrk>0,prd MPH

rk>0" rk>0
fd fd f d _ fpd fd fd
M= T ME, pd= T M, MP:]_[Mg,
acK(A) a€K(A) a€K(A)
fd _ fd fpd fpd pfd pfd
Mrk>0_ H Mom Mrk>0 H Ma ’ rk>0 H M
a€EK(A): a€K(A): a€K(A):
rk a>0 rk a>0 rk a>0

and set M"™ = MM\ {[0]}, MP? = MPD\ {[0]}. Then MPI AP MDY
are substacks of M, and MP™, MP | are substacks of MPL. We write I3,

fd rpfd Tyipd fd fd . .
TIE, S, TR G TTRS 0 g IO 7 for the morphisms between these induced

s rk>0,fd’> *rk>0,fpd
by the morphisms (3.81)).

We can also generalize all the above to the triangulated category Case We

replace Assumptlon 3[ by Assumption and A, K(A ), and
the 2-category ArtK by the oco-category HStlft, so that l - are oo-

category fibre products. In fact we do not need any oo- category techniques,
we can treat HStlft as a 2-category (i.e. work in the 2-category truncation of
HStlft), as the arguments above and in the proof of Theorem involve 2-
morphisms, but no n-morphisms for n > 2.

The next theorem will be proved in
Theorem 3.47. Work in the situation of Definition [3.46] Then:
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(a) For all a,B € K(A), the morphism ®o 5 : My X Mg — Myip in As-
sumption g) maps the substack prd X /\/lfpd C My x Mg to the substack

Mg’+5 C Ma+ﬁ, and so restricts to a unique morph@sm in Ho(Artl):

@iﬁ% = q)a7ﬁ|M2>dXM2pd : MPd 5 Mfﬁpd — Mip_fﬁ. (3.83)

Similarly, the morphism W, in Assumption h) restricts to

fpd fpd
gird .= \Ila|[*/Gm]X/\Agpd D [x/Gp) x MPC — MPC. (3.84)
Note that these ¢ip%, Uird satisfy the analogues of . ), by restriction.

Thus U is a [x/G,]-action on MP which is free on ./\/l’ Pd . MmPd o Aiso
pr(fipd M/fpd — MP s o principal [x/G,y,]-bundle, with [*/G,,]-action

fpd __ \pfpd . fpd /fpd
\I/oc - qja |[*/G7,L]><M§pd . [*/Gm] X Ma — Ma .

(b) Suppose the field K is algebraically closed, and let o € K(A) with rk o # 0.
Then Hszfid s M = M PR G l} is locally trivial with fibre [x/Z,)
for n = |rka|. Hence, if H* —) is a homology theory over a Q-algebra R
satisfying Assumptions [2.30 then Assumption [2.31(a) shows H*(Hzfcfld) :

H, (MY - H, (MP) is an zsomorphzsm Thus H, (Hrkio ta) © Hi (M) —

[e%

H., (Mflfio) is also an isomorphism.

(c) Suppose that for some a € K(A), in morphisms in Ho(Arti') we have
det?! = Ly o : MP — PP, (3.85)

where © : MP' — x is the projection. Then MPY = M, and ME™ = MPL,

The generalizations of (a)—(c) to the triangulated category case also hold.
Definition 3.48. In all of we can make the following substitutions:

e In Assumptionwe replace M, M', My, M., @, 5, ¥, 02, 5 by Mipd,

f f T fpd
MPd ] pqipd A gfpd P vird o0 B|prdXprd respectively.

e In Definition we replace MP', MP! TIP! by AP AR TpPid

a,fpd”
Then Definition and Theorem a) imply that all the properties of

MM ... ,le used in l 3.6| and the proofs in § 4.10| also hold for
Mipd, M/fpd prdp Thus, the constructions of graded Lle algebras in §
3.6 work Wlth these substitutions. Therefore:

(i) Let Assumption hold over a commutative ring R, and Assumptions
B-I]and hold. Then as in §3.3} we can deﬁne~a ‘t = 0’ graded Lie alge-
bra (H.(MPI)=0 [ 1t=0) on A, (MP)=0 = A (M) /I, o A, (MPY).

(ii) Let Assumptions [2.30} 2.39] [3.1] and [3.43] hold. _Then as in 3 we can
JPe

define a ‘projective linear’ graded Lie algebra ( L(MPEY T
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(iii) Let Assumption hold over a Q-algebra R, and Assumptions
and hold. Then following we can define a ‘positive rank’ graded

Lie algebra (H.(M20), [ [i20)-

(iv) Let Assumption hold for a Q-algebra R, and Assumptions
and hold. Then as in we can define a ‘mixed’ graded Lie al-
gebra (H*(prd)mix,[, ]™*) combining (i)—(iii), where H, (MPdymix i
the direct sum over a € K(A) of H,(M™P%) for rka # 0 and R[s] ®g
H, (MPH=0 (or R[s] @ H,(MPM) in case (ii)) for rka = 0.

There are natural morphisms between these Lie algebras as in Definitions [3:38]
and The analogue of all the above holds in the triangulated category case.

Remark 3.49. (a) In examples we may be more interested in the fixed deter-
minant moduli stack M™ than in M®™I MP Theorem b) allows us to
identify the graded Lie algebra (H,(MP),[, ]Pd) in Definition (ii) with
H,(M™), at least on the rk # 0 part.

(b) Here is an interesting class of examples in which holds. Work in
the situation of Example with K = C. If £ € coh(X) with [E] = a in
K™ (coh(X)), then rank £ € N and ¢;([E]) € H*(X,Q) depend only on .
Choose a € K(A) with ranka = 0 and ¢; () = 0. Then for every [E] € M, (K)
we have rank E = ¢ ([E]) = 0, so E is supported in codimension > 2 in X, and
thus det £ = Ox. Hence det?! oII2! : M,, — PP! factors through O : x — PPL,
Theorem c¢) will identify sectors of the ‘fixed determinant’ Lie algebras
H,(MP)=0"""""H, (MPmix ip Definition @l with the corresponding sec-
tors of H,(M)!=°, ... H.(M)™* in @ and so helps us compute them.

3.8 Variations on the constructions

Here are some variations on the constructions of §3.31-43.7

3.8.1 Restricting to a substack

In we suppose we have a moduli stack M of objects in an abelian
category A or triangulated category 7, and we define vertex algebras and Lie
brackets on (some modification of) the homology H.(M).

Suppose we are given a substack N' C M (e.g. an open substack), also a
(higher) Artin K-stack locally of finite type, which could for example be the
moduli stack of objects in a subcategory B C A or i/ C T. Let N satisfy:

(i) If [E],[F] € N(K) € M(K) for E,F € A then [E ® F] € N(K). The
morphism ¢ : M x M — M in Assumption g), when restricted to
N x N, factors through the inclusion N' < M, so we have a stack mor-
phism ®|prxn : N XN — N

(i) If [E] € N(K) € M(K), so that Ison ([E]) C Isom([E]) & Aut(E), then
the subgroup G, - idg C Isoam([E]) lies in Isonr([E]) C Isoam([E]). The
morphism ¥ : [%/G,,] x M — M in Assumption [3.1(h), when restricted
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to [*/G,] x N, factors through the inclusion N < M, so we have a stack
morphism Y|, /g, 1xn : [¥/Gm] X N = N

Then in all of we can replace M by N, and define a graded vertex
algebra structure on H,(N), and graded Lie brackets on H,(N)'=0, H, (NP},
H,(N™>% . under appropriate assumptions. The inclusion ¢ : N — M
induces vertex algebra and Lie algebra morphisms H,(¢) : Hy(N) — H.(M).

Example 3.50. (a) As in Remarks a) and a) we can take N' = M’ =
M\ {[0]}, and this is natural for the ‘projective linear’ version of

(b) The ‘fixed determinant’ versions of are an example of this construction,
with N = M™Pd and AP = pPld,

(c) If A = coh(X) is the category of coherent sheaves on a projective K-scheme
X, we could take N' C M to be the open substack of vector bundles on X.

(d) Given a stability condition 7 on A, such as slope stability or Gieseker
stability, we could take A/ C M to be the open substack of T-semistable objects
E in A with fixed ‘slope’ 7(E) = s.

3.8.2 Restricting to the fixed points of a group

In the situation of suppose G is a group which acts on A or 7, and so
acts on K(A) or K(T) and M preserving all the structures. Then we can form
the substack A" = M% of M fixed by G, and then work with A" and H,(N)
instead of M and H,(M), as in

Alternatively, we can consider the action of G on the homology H,(M)
(here we are thinking mostly of G finite or discrete, such as G = Z) and take
the G-invariant subspace H,(M)% in H,(M). Then H,(M)% is closed under
operations t" o —, [, ], and contains 1, so it is a graded vertex subalgebra of

H,(M) in and similarly we get graded Lie subalgebras (H (M)G)=0 ..
of the graded Lie algebras H,(M)*=° ... in

Example 3.51. (a) The classification of finite-dimensional simple Lie algebras
by Dynkin diagrams [66] is divided into the ‘simply-laced’ cases A,,, D,,, Eg, E7,
Es and the ‘non-simply-laced’ cases B, Cy, Fy,G2. As in Lusztig [106, §12],
the non-simply-laced diagrams may be obtained by quotienting simply-laced
diagrams by finite automorphism groups G.

We explain in how to obtain the simply-laced simple Lie algebras g
as ‘t = 0’ Lie algebras Ho(M)*=° from 7 = D’mod-CQ for Q a quiver
whose underlying graph is the corresponding Dynkin diagram. The non-simply-
laced Lie algebras may be constructed as G-invariant ‘¢ = 0’ Lie subalgebras
(Ho(M)E)=0 from T = D’ mod-CQ for Q a corresponding simply-laced quiver
with automorphism group G. See Savage [140] for a similar result for quiver
Ringel-Hall algebras and quantum groups.

(b) Let X be a smooth projective K-scheme and L — X a line bundle (such
as the canonical bundle Ky). Take A = coh(X) or T = D’coh(X). Define an
action of G=Zon Aor 7T byn: E+— EQ L™ forn € Z and E € A,T. This
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induces an action of Z on M and on H, (M), so we can consider the Z-invariant
substack M”% c M, and the Z-invariant subspace H,(M)% C H,(M). In §3.8.3]
we will explain a construction that involves M” or H,(M)Z for L = Kx.

3.8.3 Relaxing o}, ;(0% ) = (02 5)"[2n] in Assumption (_])

In Remark we explained two methods (A),(B) for defining the data ©3, 4
in Assumption [3.1[i). In the ‘even Calabi-Yau’ method (A), when we take
03, 5 = (Exty, )Y, the category A or T must satisfy a 2n- Calabi Yau condition
for aa’ﬁ(@é’a) = (02, 5)"[2n], equation (3.8) in Assumption [3. ) to hold.

As most interesting categories A, T are not 2n-Calabi-Yau, this means there
is a very large supply of natural examples of data A, K(A),...,0? p satistying
all of Assumption |3.1|except part (j). So if we can find ways to weaken the con-
dition o, 5(©% ) = (03, 3)"[2n], such that our vertex algebra and Lie algebra
constructions still work, we may much increase the supply of examples.

In equation (3.8 is only used to prove (3.28)—(3.29)), and for these
3.8)

it is enough to replace (3.8) by its consequence in H* (M, x Mpz):

H*(05,0)(ci([058]) = (-1)'ci([OF.]),  i=1.2,.... (3.86)

In examples this may hold under numerical conditions on the data used to
build A, without having to construct an isomorphism o7, 5(©% ,) = (02, 5)"[2n].
For instance, for the quiver representations A = mod-CQ, 7 = DY rnod CQ
dlscussed in . it is enough for ) to have the same number of edges
e as edges e — o, for all vertices v, w € Qo-

As in we may restrict to a substack N C M. Then it is enough for
the rebtrlctlon of (3.86) to H?*(N o x N 5) to hold. As in | we may restrict
to a G-invariant subspace H,(M)% of H,(M). Then it is enough for the cap
product of with all elements of H,(M)% to hold.

Here is an interesting class of examples:

Example 3.52. Let X be a smooth projective K-scheme of even dimension

dim X = 2n, and A = coh(X) be the category of coherent sheaves on X, and

K (A) be the numerical Grothendieck group of A. As in Remark[3.3[A) we define

©°* € Perf(MxM) by ©°® = (Ext*)Y, where Ext* is a perfect complex on M x M

with H'(Ext® |(1g),r))) = Ext'(E, F) for all i € Z and ([E], [F]) € (M x M)(K).
Serre duality gives natural isomorphisms

Ext'(F,E)* 2 Ext* (E® Ky', F), (3.87)

where K x is the canonical line bundle of X, so that Kx = Ox if X is Calabi-
Yau. Define T : M — M to be the obvious isomorphism of stacks acting by
[E] = [E ® Ky'] on K-points. Then is the cohomology at (E, F') of an
isomorphism in Perf(M x M):

o ((Ext*)Y) = (T x id)* (Ext*[2n)). (3.88)
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Write v : K(A) — K(A) for the group isomorphism with [F® K5'] = v(a)
if £ € A with [E] = o, and Yo = T|pm, @ Mo — My, Then using
©° = (Ext*)Y and restricting (3.88) to M, x Mg gives

02,5(@é,a) = (To x idMﬂ)*(@:j(a),ﬁ)v[2n]‘
Applying Chern classes ¢; for i > 1 and using Assumption m(b)(iv),(v) gives

H*(00,8)(ci([05 )

Suppose now that o € K(A) satisfies v(a) = a, and

(1) H* (Yo x idat, ) (€i([03(a) 5]))- (3.89)

H* (o) = idge ) : H (Ma) = H* (Ma). (3.90)
Then (3.89)) reduces to ([3.86]).

(a) Suppose we can choose a subset A C K(A) closed under addition, such
that if @ € A then v(a) = a and holds. Define N' = [],cp Ma-
Then the restriction of to H?'(N o x N ) holds for all o, 3 € K(A),
by and H*(T)|y = id by . Thus, we can apply the con-
struction of to NV, and obtain a graded vertex algebra structure on
H,(N), and graded Lie algebra structures on H,(N)'=%, H, (NP}, .. ..

(b) Define an action of G = Z on M such that n € Z acts by Y™ : M — M.
Consider the Z-invariant subspace H,(M)% in H.(M). If ¢ € H,(M)?
and A € H*(M) then (N A = ¢nN H*(Y™)(A) for all n € Z. Hence
implies that the cap product of with all classes ¢ in H,(M)?
holds, even though itself may not hold. Therefore as in §3.8.2] we
can define a graded vertex algebra structure on H, (M)Z, and graded Lie
algebra structures on (H,(M)%)=0, ...

We will see in §6| that (3.90) always holds if A = coh(X) and a € K(A) is a
class of dimension zero sheaves on X. So we can build vertex algebras and Lie
algebras from dimension zero sheaves on any smooth projective variety X.

Example will be important in our discussion of representations of Lie
algebras and vertex algebras in §3.8:4

3.8.4 Representations of Lie algebras and vertex algebras

Representations of (graded) Lie algebras are defined in and of graded
vertex algebras in §2.2] There are several ways to use our theory to produce
representations of the graded vertex algebras in §3.2] and the graded Lie algebras
in §3:31-43.7 Trivially, any Lie algebra or vertex algebra V' is a representation
of itself, and of any Lie subalgebra or vertex subalgebra of V. We focus on
representations that arise in more nontrivial ways.

Example 3.53. In the situation of over Aor T, there is a natural represen-
tation of the graded Lie algebra (H,(M)™=% [, ]=%) on the graded R-module
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H,(M), defined by [¢,n] = [¢,n]o for all { = ¢ + I, o H.(M,) in H,(M)=°
and n in H,(M). To see this is well defined, note that [t ¢ €,n]p = 0 for all
e,n € H, (M) and p > 0 by , so [¢,n]o is independent of the choice of
representative ¢ for ¢ = ¢ + I; o H,(M,). To see it is a graded Lie algebra

representation, compare (2.6) and (3.30]).

For the next example we illustrate the ideas using the ‘¢ = 0’ version of §3.3|
on an abelian category A, but the same methods work for vertex algebra rep-
resentations, the other versions of and for triangulated categories T .

Example 3.54. Let A, K(A), M =[] ¢4y Ma and the graded Lie algebra

H,(M)*=° be as in Suppose A C K (A) is a subset closed under addition
(e.g. a subgroup). Write N' =[] ., Ma, as an open substack N” C M. Then
as in we obtain a graded Lie subalgebra H,(N)*=° in H,(M)*=0,

For p € K(A), write R, = [[,ca Mp+r, as an open substack R, C M. By
we have canonical isomorphisms

ﬁ* (N)tzo = @AGA ﬁ*(M/\)tzov ﬁ*(Rp)tZO = @)\EA I:I*(Mp+>\)t:0~

Define a representation of (H.(N)'=0,[,]=%) on H.(R,)*=° by the restriction
of the Lie bracket [, |*=9 : f{*(/\/l)tfo X H (M)=0 — fl*~(/\/l)t:0 from to
[,]=0: H.(N)=Y% H,(R,)"="—= H,(R,)"™", regarding H.(N)"=° H,(R,)"=°
as R-submodules of H,(M)'=" by . Then (2.6) for H.(R,)=° follows
from 7 for H,(M)*=0 in Theorem

Now consider relaxing o7, 5(0% ,) = (0%, 5)"[2n] in Assumption (j)7 as in
83.8.3] The important points are:

(i) To prove (H,(N)=0,[, *=°) is a Lie algebra, we only need to hold
for all o, 8 € A. Also, can be replaced by .

(i) To prove H,(R,)!=" is a representation of (H.(N)*=0,[,]*=0), we again
only need to hold for all o, 8 € A: we do not need for a or  in
p+ A. This is because the proof of involves for ¢ € Hy(Ma),
n € Hy(Mp), 0 € H.(M,) with o, 5 € A and v € p+ A, but the proof of
only uses for (o, 8), not for (8,7v) or («,7).

Also, (3.8) can again be replaced by (3.86) for o, 8 € A.

In we explained that there are large classes of interesting examples
in which Assumption j) does not hold, and so do not yield vertex
algebra or Lie algebras from H, (M), but we may still be able to find a substack
N C M with such that H,(N') gives vertex algebras and Lie algebras, or a
G-action on M such that H,(M)% gives vertex algebras and Lie algebras.

The argument above shows that in these cases, the graded vertex algebra
H.(N) (and similarly H,(M)%) has representations on H,.(R,) and H.(M),
and the graded Lie algebra H,(N)'=° (and similarly (H,(M)%)*=°) has repre-
sentations on H,(R,)*=° and H,(M)*=0.

This gives a large source of interesting representations of verter algebras and
Lie algebras. As in Example 352} if X is any smooth projective K-scheme of
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even dimension and A = coh(X) or 7 = D’coh(X), we can build vertex and
Lie algebras from dimension zero sheaves on X, and these have representations
on the homology H,(M), H,(M)'=° of all coherent sheaves and complexes. We
will use this in §6|to explain work of Grojnowski [57] and Nakajima [121}/122].

3.8.5 Morphisms of Lie algebras and vertex algebras

Let Ay, A> be K-linear abelian categories satisfying Assumption [3.1] with mod-
uli stacks My, Mo, or T1,7T5 be K-linear triangulated categories satisfying As-
sumption [3.2] with moduli stacks M, M, and let Assumption [2.30] hold for
(co)homology theories H,(—), H*(—) of (higher) Artin K-stacks over R.

Suppose that either F' : Ay — Ay, or F : T = To, or F': A, — Ta
is a K-linear exact functor, which induces a morphism f : M; — My on
moduli stacks, and suppose that (f x f)*(©3) = ©% in Perf(M; x M;). Then
H,(f) : H (M) — H.(Ms) respects the important structures discussed in
43.1] so it induces a morphism H,(f) : H.(M;) — H.(My) of graded
vertex algebras in §3.2) and morphisms H, ()= : H,(M;)=0 — H,(My)=°
and H,(fP!) : H,(M?) — H,(MBE") of graded Lie algebras in E

If we know H, (M) is a simple vertex algebra, as in (this happens in
Theorem below, for instance), then H,(f) is automatically injective.

3.9 Open questions

Finally we give some open questions for future work.

3.9.1 The ‘supported on indecomposables’ version

An object F in the K-linear abelian category A is indecomposable if E 22 0 and
we cannot write £ = FE; @ Es for Fq, Es 2 0. Equivalently, the algebraic K-
group Aut(E) = Isor([E]) has rank 1. Write M™ C M for the open substack
whose K-points are indecomposable objects in A.

In the study of Ringel-Hall type (Lie) algebras, sometimes one associates
a (Lie) algebra H to an abelian category A, which contains a much smaller,
interesting Lie subalgebra £ C #H that is in some sense ‘supported on indecom-
posables’, where H may look quite like the universal enveloping algebra U(L).

For Lie algebras actually supported on indecomposables, see Riedtmann
[134] and Ringel [135]. The author [76H79,81] constructed a Ringel-Hall algebra
of ‘stack functions’ SF(M), with a Lie subalgebra SF™%(M) of stack functions
‘supported on virtual indecomposables’. Under extra assumptions on A there
is an ‘integration morphism’ from SF™4(M) to an explicit Lie algebra, which is
important in wall-crossing formulae for enumerative invariants in A, including
Donaldson-Thomas invariants of Calabi-Yau 3-folds X when A = coh(X).

The author would like to extend this to our vertex algebra and Lie algebras
picture. We illustrate it for the ‘¢ = 0’ version of
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Question 3.55. (a) In the situation of consider the graded Lie subalgebra
of (I;T*(./\/l)‘fzo7 [, ]'=°) generated by the image of the homology H, (M™% of the
moduli stack of indecomposable objects under the inclusion MM < M.

In examples, is this Lie subalgebra much smaller than f{*(./\/l)tzo, and s it
an interesting graded Lie algebra?

(b) Can you construct a moduli stack MY of “virtual indecomposables’, with a
morphism 7 : M¥' — M, which is in some sense a refinement of MY — M,
an Rl[t]-action o on H,(M™), and a graded Lie bracket [, ]V on H,(M*)*=0,
such that H,(m)'=° : H,(M")=0 - H,(M)'=° is a Lie algebra morphism,
whose image is roughly the graded Lie subalgebra discussed in (a)?

(c) In the vertez algebras setting of Theorem can one define an interesting
vertex Lie subalgebra H,(M)™ of the vertex algebra H.(M), as in
which is ‘supported on indecomposables’? For example, in (b) we might hope
H, (M) is a vertex Lie algebra, and set H, (M) = H,(7)(H,(M")).

In (b), the idea is that K-points of MY should parametrize objects of A,
plus some kind of extra data. We mostly care about the homology H, (M),
not the stack MY itself, and we would be happy with a classifying space type
construction which is only natural up to homotopy. So, for example, we want
the fibre of 7 : MY — M over [E] for any indecomposable E € A to be
contractible, so that 7= 1(M™) ¢ M" is isomorphic to M™ in homology.
The author has some ideas on this, and hopes to write about it in future.

The author is uncertain what ‘supported on indecomposables’ should mean
in a triangulated category 7T, although this is an interesting question.

3.9.2 Restricting to a ‘semistable’ open substack M* c M

The following is closely connected to the ideas of

In examples, we may wish to study not the homology H,(M) of the whole
moduli stack M, but the homology H,(M?®>) of an open substack M* C M of
‘semistable’ points (or ‘stable’, or ‘simple’, or ‘torsion-free’), where M*> does not
satisfy the conditions on N in in particular, if [E], [F] € M*(K) ¢ M(K)
for E, F € A then we need not have [E® F] € M*(K). In particular, the author
has in mind cases when H, (M) has been given the structure of a representation
of an interesting Lie algebra, in connection with the ideas of

In some interesting examples, writing ¢ : M>»® < M for the inclusion of
substacks, we may be able to show that:

(i) Hi(e): H (M*) — H,(M) is injective.
(ii) The image of H,(M?™>) in H,(M) is closed under the Lie brackets from
or the Lie algebra representations from §3.8.4]

Then we can replace H,(M) by H, (M) in our Lie algebra or representation.

Of course, this is of no use unless we have effective ways of proving (i),(ii).
Part (i) is actually a well known problem. For homology over a field R, using
the duality between homology and cohomology, (i) is equivalent to asking that
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H*(1) : H*(M) — H*(M®) should be surjective. This is known as Kirwan
surjectivity, following work of Atiyah and Bott |5, §9] and Kirwan [88, §14] in
Morse theory, as discussed by McGerty and Nevins [112], Harada and Wilkin
[58], and Fisher [43], for example.

Suppose M, = [V, /G4] is a global quotient stack, and M = [V*/G,] the
the quotient of a G-invariant open subscheme V3° C V,,. If M, V,, are smooth,
and V,, admits a G-equivariantly perfect stratification with V3;® a union of open
strata, then H*(v) : H*(M) — H*(M®™) is surjective. This often happens if
V3 is a semistable subscheme in the sense of Geometric Invariant Theory [44].

We have less justification for (ii), but in the examples the author has in
mind, it seems to be related to the ideas of and considering H, (M) as
a subspace of H,(M) ‘supported on indecomposables’.

3.9.3 Other algebraic structures on H,(M)

Question 3.56. In the situation of §3.1] perhaps under additional assumptions,
can we define other interesting algebraic structures on H, (M), H,(M)*=0°, ... by
a similar method to the graded Lie brackets of §3.31-43.7? If so, do they satisfy
interesting compatibility relations with our vertex algebras and Lie brackets?

For example:

(i) Under what conditions, or extra structure, on a triangulated category T,
can we make the vertex algebra H.(M) in §3.2] into a wvertex operator
algebra, as in §2.2.1 This involves finding a suitable class w € Hy(My).

(ii) Ringel [138] shows some Ringel-Hall algebras H defined from an abelian
category A have a compatible cocommutative comultiplication making H
into a bialgebra. The author has some ideas on how to define a comul-
tiplication H,(MP) — H.(MP' x M) = H,(MP) @ p H, (M), under
extra assumptions which imply M, MP! are smooth Artin K-stacks.

(iii) Many Lie algebras such as Kac-Moody algebras have nondegenerate in-

variant inner products (, ), and it would be interesting to construct these
in our situation, under appropriate assumptions.

3.9.4 Generalizing the (co)homology theories

One could consider replacing ordinary (co)homology H.(—), H*(—) in by
some kind of generalized (co)homology theories, so that parts of Assumption
might need modification, and investigate whether our theories (with vari-
ations) can still be made to work. For example:

(i) We could suppose the category A or 7, and the moduli stack M, carry
the action of an algebraic K-group G, such as G,,. Then we could try

to replace (co)homology H,.(M), H*(M) in by equivariant (co)-
homology HE (M), HY, (M), which are modules over the R-algebra HZ ().

We must consider how G acts on the complexes O3, ;5 as wellason A, T, M.
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For example, we could take A = coh(X) or T = Dbcoh(X) for X a
toric projective K-scheme, and take G to be the algebraic torus acting
on X. Or we could take A = mod-KQ or 7 = D’ mod-KQ for a quiver
Q, as in §5.1}-45.4] and G = G,, acting by rescaling the edge morphisms
pe : Xie) = Xp(e) in each (X, p) € mod-KQ by A : p. — Ape for A € Gp,.

(i) When K = R = C, we could consider mized Hodge structures on H*(M)
and H,.(M), giving additional structure on our vertex and Lie algebras.

(iii) We could try to replace (co)homology by K-theory K*(M), K.(M).

It would be particularly interesting to realize ‘quantum’ versions of vertex
algebras and Lie algebras this way, just as quantum groups U,(g) generalize
suitable Lie algebras g, as in Jantzen [71] and Lusztig [106].

3.9.5 Physical interpretation of our work

Question 3.57. Do the vertex algebra structures on H,(M) in Theorem
have an interpretation in Conformal Field Theory and String Theory?

Here the author is thinking especially of our theory applied to categories
A, T which are already intensively studied in String Theory, such as derived
categories 7 = D’coh(X) for X a complex Calabi-Yau 2n-fold, which appear
in the Homological Mirror Symmetry story and are interpreted as categories of
boundary conditions for a Super Conformal Field Theory, and 7 = D® mod-CQ.

3.9.6 Is there a parallel story for the ‘odd Calabi—Yau’ case?

As in Remark (A), the most natural way to obtain data satisfying Assump-
tions B3] or [3:2]is to start with a category A or 7 which is 2n-Calabi-Yau, and
take ©°* = (€xt*)¥. For more general A, T, as in Remark [3.3(B) we can make
A, T act like a 2n-Calabi—Yau category by taking ©°® = (Ext*)Y @ o*(Ext®)[2n].
As in Remark if A,7T are (2n + 1)-Calabi-Yau this gives [©°] = 0 in
Ko(Perf(M x M)), and then the vertex algebras H, (M) in are commuta-
tive, and the Lie algebras H,(M)*=0, ... in & are abelian. Thus, in the
‘odd Calabi—Yau’ case our constructions are basically trivial and boring.

This may be surprising, as there is a lot of very interesting and special

geometry for 3-Calabi—Yau categories, but our picture appears not to see it.

7

Question 3.58. This whole book is in some sense about the ‘even Calabi—Yau
case. Is there a related, but different, story about the ‘odd Calabi—Yau’ case?

Kontsevich and Soibelman’s Cohomological Hall algebras of 3-Calabi—Yau
categories |93}/144] might be a good starting point for thinking about this. Also,
there are related, but different, notions of ‘orientation data’ for even Calabi—Yau
categories and for odd Calabi-Yau categories |31, §2-§3], where ‘even Calabi—
Yau’ orientation data is related to the choice of €, 5 in Assumption (d); the
‘odd Calabi—Yau’ story should involve ‘odd Calabi—Yau’ orientation data.
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4 Proofs of main results in §3]

4.1 Proof of Proposition [3.6

Let Assumption hold for 7. For (a), suppose 7 % 0. Then we can choose
a nonzero object E in 7. Assumption iv) gives a morphism &g : A1 — M,
which on K-points maps 0 — [E @ E[1]] and = +— [0] for 0 # = € K. Write
f: M' < M for the inclusion. Define morphisms

g: M — M, F:M xA' — M, G:MxA"— M, by
9 =P mx{peeny, F=%o(fxEgp), G = o (idy x &p).

Note that on K-points g maps [F] + [F @ E @ E[1]], and so maps to M C M
as [F @& E @ E[1]] # (0] for all [F].

Then go f, f o g both map [F] — [F & E & E[1]] on K-points, and F, G both
map ([F],0) — [FF® E @ E[1]] and ([F],1) — [F]. Thus F|y/xgoy = go f,
Flpexqy = idar, Glmxgoy = fo 9, Glmxqy = idum, so f is a homotopy
equivalence by Definition The same argument works for M{, < M.

For (b), by a very similar argument we can show that ®o _a|a, x{[E1]]} *
My = M, x {[E[1]]} = My is a homotopy inverse for ®¢ o |, x{(E]} : Mo —
M. Equation then follows from Lemma m

4.2 Proof of Theorem [3.12

We work in the situation of Theorem and we also write a = a+2— (o, o),
b = b+2 - X(ﬂaﬂ)v cC= 6+2 *X(’Ya '7)7 50 that C S Ha(Ma)a n € Hb(Mﬁ)a and
0 € H.(M,) by (3.23).

4.2.1 Proof of equation (3.25)

Consider the restriction ©9, |1, x{[o]} of ©8,9 to Mo x{[0]} € M4 x My. Since
0@ 0=0,so ®g,0(K) : ([0], [0]) — [0], and restricting with 8 =~ =0 to
M x {[0]} implies that ©F, o[, x (0]} = O 0l M. x (0]} B Of 0l M. x ([0} Hence
@;,O‘MQX{[O]} = 0, and similarly 65,a|{[0]}></\/la =0.

Equation (3.22)) defines [(, 1],, and [1,(],, for n € Z. As 1 = Hy([0])(1) by

Definition the terms (¢ X 1) N¢;([©F o)) and (1 X () Nei([6F ,]) in (3.22)
for [C, 1], [T, (]» depend on ¢;(©3, |, x([0}) and ¢;(OF ,[{0]} xMm. ), and hence
are 1if ¢ =0 and 0 if 4 > 0. Thus (3.22)) gives

[C 1] _J€a0- Ha_gn_g(Eap)(t_n_l X(X ]1), n <0,
o, n >0,

[I]. C] o €0,a Ha72n72(50,a)(t_n_1 X1KX C)a n < 07
o 0, n > 0.
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This proves When n = 0, so suppose n < 0. We have €,,0 = €9, = 1 by
(3-3]), so the deﬁnltlon of 240, Z0,o and functoriality of H.(—) yield
[Cu ]]-]n = a72n72( )( a—2n— 2(\11 )(t_n_l X C) X ]]-)
— Ha—-2n— 2( )((t " 100®1)*tin710<a
[1,{)n = Ha2n—2(Po,0) (H-2n—2(Vo) (7" 'K 1) K ()
[ H®0) AR =¢ n= -1,
0, n < —1.
Here for the first equation, the second step uses (3.17)), and the third that
Qoo Mo x{0)} * Ma X ¥ = M, is the natural identification, which identifies

(X1 = ¢ on homology as in Assumption M(a)(iv). The second equation is
similar, where for n < —1 we note that H_5, o(¥o)(t " ! K1) factors through

H_5,_2(x) = 0. This proves (3.25).
4.2.2 Proof of equation (3.26)

For equation ([3.26)), we have
[tp oG, 77]71 = [Ha+2p(\11a)(tp X ¢), "7] n

= Z €a7ﬁ(_1)(a+2p)X(ﬁ7ﬁ) : Ha+b72n+2p72x(a,5)72(Ea,ﬁ)
120: 2i<a+b , (4i—n—x(a,8)— °
Eniniayin (¢ DTN R [(Ho oy (Vo) (1P B Q) B ) N 5((03, 5))])

= Z 5= )ax(ﬁ,ﬂ) -H

€a a+b— 2n+2p72x(a,5)72(5a,[3)
ii%ﬁfﬁ}ﬁ’ﬁp’ (XD R [(Hyyprzp (Poo (T x ) x TT3)
("R C®n)) Ne([O3 5)])

Z 60475(71)00((5’5) : Ha+b—2n+2p—2x(a,,6’)—2(Ea,ﬁ)
120: 2i<a+b+2p, (,i—n— B)—
i2n+x(a”3)+1p (ti n X(@ B) 1 & [Ha+b+2p72i ((WQO(H]_ X HQ)) X H3)

("B CRn) Nei([(To o (T x I2)) x I5)" (07, 5)]))])

= Z Gaﬁ(_l)aX(ﬁ’B) H a+b—2n+2p—2x(a,B)— (Ha ,3)
i20: 2i<a+b+2p, (yi—n—x(a,8)—
20 B (1 XD R [(Hy gy i((Vao (T X)) xTI)

(" R ¢R®n) N ([IT5(E1) @ (M x T3)*(02, 5)]))])

= Z ea,ﬁ(—l)ax(ﬁ,ﬂ) “Hotp—ont2p—2x(a,8)—2(Ea,8)

g%f;(ii;g?ifp’ (ti—n—x(aﬁ)—HZ [Ha+b+2p—2i ((\I/ao(ﬂl x115)) ><H3) <(tp®C®n)
MY (1) (XD ey (1 < TT3) (O, )] UT =7 })])

= Z €x ﬂ(—l)ifjﬂzx(ﬁ,ﬁ) (ifx(‘a,[‘-}),1> .

=7
1,j20: 2i<atb+2p, pp =
i)+, Hatb—2n+2p-2x(a,8)-2(Ea,8)

J<i, i—j<p (tifnfx(aﬁ)*l %4 [Ha+b+2p—2i((\lla°(nl x1I5)) XHS)
(P~ R ((CRn) Ne([08.4)])
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= Z €ag(—1)F I Tax(5:5) (i—x(ioi,f)—1> .
1,7>0: 2i<a+b+2p, —
i;n+x(0¢7ﬁ)+1, i Ha+b72n+2p72x(a,ﬁ)72 (:a,ﬁo [Hl X (\IIQO(HQ XH3)) X H4)]>
VSRV AN 2 i—n—x(a,B)—1 —itj .
("I R R (CR) N ey ([08, 4))))
_ Z € ﬁ(_l)i—jmx(ﬂ,ﬂ)(i—x(‘a»ﬁ)—1>.
@, 1=

1,j20: 2i<a+b+2p, H -
izn+x(a,B)+1, a+b—2n+2p—2x(a,B)—2 (—*a,ﬂ o

ISt imIsp [(Q o (H1 X Hg)) X H3 X H4])
(7P R BT R ((CRp) N e ([084)

- Z €a,ﬂ(—1)i_ﬂ'+ax(5,ﬁ) (ifx(ifff)ﬂ) (P+j*nfx(qc,6)fl) )

p—i+j
4,5 20: 2i<a+b+2p, H =
Sntx(ap) 1, Hatb—2n+2p—2x(a,8)~2(Ea,s)

J<i, i—j<p i—n—x(a,B)— .

(pHi=nx@B-T R (CRp) N ey ((055))))
= Z €a ,3( 1)aX(ﬁﬁ) H+b 2n+2p72x(a,ﬂ)72(5a75)
S (8 (@A-1 & ((¢Rn) N e;([00.4]))

P

lz J+k x(a,ﬁ) 1) (P+J n— x(aﬂ) 1)

X
k=0
n

—-17(2) - e ()

where the first step uses (3.17) and the second (3.22)). In the third we rewrite
using the morphism:

(Tq o (Il x IIy)) x I3 : [#/Gp] X Mg x Mg —> My x Mg,

where I1; means projection to the i*! factor of [x/G,,] x M, x Mg. The fourth
step uses Assumption a)(ii), (b)(v), the fifth Assumption [3.1[1), the sixth
Assumption [2.30[b) (iii), (c)(iii), and the seventh Assumption &(c)(lv)

The eighth step of rewrites the expression in terms of homology on
[%/Gn]? x My x Mg, where II; for i = 1,...,4 means projection to the i‘h
factor, using functoriality of H,(—) and compatibility with X, and ¥, % mean
the copies of t* € Hoy([*/G,,]) associated with the first and second factors of
[%/Gpl, respectively In the ninth step we use the equation in Ho(Artg), which

follows from (3.7) and (3.20):
ang o} [Hl X (\I/aO(HQXH3)) XH4)] = ang o [(Q o (H1 X Hg)) X H3 X H4] :
[*/Gm] X [*/Gm} X Mg X M,B — Ma+5.

The tenth step uses Ha(,4q) () (] K t5) = ("1°)t"+* as in (3.15), functoriality
of H.(—), and compatibility with K. The eleventh step changes variables in
the sum from 4,5 to j and j = ¢ — j, and the last step uses (A.8) with m =

p+3j—n—x(a,f)—1and (3.22). This proves ([3.26].
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4.2.3 Proof of equation (3.27)
For equation ([3.27)), we have

[Ca tp < n]’ﬂ = [C7 Hb+2p<\11,3)(tp IZ' 77)] n

= Z GQ,ﬁ(_l)(a+2p)X(ﬂ’5) . Ha+b—2n+2p—2x(o¢,ﬁ)—2(Ea,ﬁ)

i20: 2i<a+b+2p, (Li—n—x(o,8)— .
vy T (X @A R [(C R Hyyop (W) (82 R 1)) N ([0, 5])])
= Z Ga,ﬁ(il)axw’ﬁ) : Ha+b—2n+2p—2x(a,,6)—2(Ea,ﬁ)

o g (X R [(H g (T x (g0 (11 x IT3)))
(P R¢Rn)) Nei([©25)])

= Z Ea,B(—l)GX(ﬁ’ﬁ) “Hoyb—2nt2p—2x(a,8)—2(Ea,)

o (DTN R [Hy g a0 (Mo x (Yo (I x113)))
(P R CBIn) Nes([(Tax (W0 (1 x113))) (O 5)]))])

= Z eaﬁ(_l)ax(ﬂ,ﬂ) : Ha+b—2n+2p—zx(a,5)—2(Ea,ﬁ)

by (XD R [He gy g9 (T X (W o (T x113))
(PR CRn) Ne([M(E-1) @ (T2 x IT3)*(65, 5)]))])

= Z GO(,B(_I)GX(ﬁ’ﬁ) : Ha+b72n+2p72x( ,B)— 2(5(1,,8)
Zigf;fﬁfﬁp (ti_n_X(a’B)_lg [Hatvr2p—2i (M2 x (¥g0 H1 ><H3 )((tp®g“®n
N {320 (XD e (T x 1) (O, =i1)])

- Z ea,ﬁ(—l)“X(B”B)(i_xgoi’f)_l) Hoyb—ontop—2v(a,8)—2(Ea,p)
ot (67 XD TR [0 Iz x (W0(IL xT15))
ISRTISE (e R ((8n) N ey (O0,4)])

_ Z eaﬂ(—l)“"(ﬁ’ﬂ) (i*x(ioif)*l) .

.7 30: 25 <a+b, _
Ertxtood) 1, Hath—2nt2p-2x(,8)-2 (Za,p0 [T x5 x (P g0 (I x I14)])

TSPTISE (e @d) 1 g pt g (CBn) s (05, 51)))

= Z €a.p(—1)XBA) (i—x(ioif)—l) .

TS Havoanvap-ax(e) -2 (Varso [l X (Ba g0 (Tl x s x111))])

JShimIsE a+b—2n+2p—2x(a,B)—2 (H2 X (QO(HI X HZ)) x 113 x H4)
(7T R BT R (CRY) N[00 4)))

_ Z 6Oéﬁ(_1)i-irj+k—~-p+a><(67ﬁ) (i_X(ﬁ’jﬁ)_l) (] k—n+p—x(a,8)— 1)

p—it+j—k
i,J,k>0: 2j<a+b, —
;’ékﬂrnfp] o a+b—2n+2p—2x(a,B)—2 (\I]aJr,Bo [Hl X (:a,ﬁ (HQ X H3 XH4))])
+x(a,8)+1,

j—k—n+p—x(a,8)—1 °
jShiose (FRATTTEODTR(CR) N e ([0, 4)))
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3,k20: pri—k i—j (i—x(a,8)—1Y (j—k—n+p—x(a,8)—1
?J;kitllip {Zz‘:j (=1 ( i—j )( p—itj—k )] ’
+x(a,8)+1

Ha+b72n+2pf2x(aﬁ)*2OIJQW)
[tk X Ha+b72k72n+2p*2X(aaﬁ)*2(Ea’ﬁ)
(tj—k—n-ﬁ-;D—X(awB)_l X ((CXn)Ne;(] ;,g])))}

_ | Z eavﬁ(fl)p7k+ax(ﬁ,3) {(,1)17*16(1:0} .

2jsa+b, Ha+b72n+2p72x(o¢,ﬁ)72(\Da+,8)

(=P X@BT & (¢ R ) 1 5 (054])))]

= Z (p " k) A [C ks (4.2)

where the first eight steps follow the beginning of (4.1). In the ninth step we
use functoriality of H.(—) and the equation in Ho(Artg), which follows from
(3.6)—-(3.7) and (3.20):

Ea,ﬁ o [Hl X H3 X (\Ifﬁ o (HQ X H4)]

= \IIOH-BO [Hl X (EQ,BO(HQ XHg XH4))} (o} [HQ X (QO(Hl XHQ)) XH3 XH4] :

[*/Gp] X [#/Gp] X My x Mg — Mayg, (4.3)

where Q : [¥/Gp] X [¥/Gm] — [¥/Gm] is the stack morphism induced by the
group morphism G2, — G,, mapping (X, p) — Ap~L.

Here we can explain (4.3)) in the language of Assumption e),(g),(h), by
fixing a K-scheme S and regarding morphisms S — M, as families E, — S of
objects in A in class a € K(.A) over the base K-scheme S. Then (4.3]) concerns
the map, for line bundles L1, Ly — S (that is, maps S — [*/G,,]) and families
E,,Ez — S in A (that is, morphisms S — M,, S — Mpg):

(L17L23 E(X?Eﬁ) — (Ea ® Ll) S (E/j{ ® L2)

2Ly @ ((Ba ©(L1 @ Ly ') @ Ep), .

where ) corresponds to the map (Ly,Lo) — L1 ® Lgl.
In the tenth step of (4.2), we use that Iy x (Q o (I} x IIy)) : [*/G,,]? —
[*/G,,]? acts on homology by

. " i m (1+m—Fk .
H21+2m(H2 X (QO(Hl XHQ))) : tll gtz — kzo(—l)k+ ( m—k )t’f X tlg+ k7
which we can prove using Assumption c¢). The eleventh step uses functori-
ality of H,.(—) and compatibility with X, and rearranges the sum. The twelfth
step of (4.2]) uses (A.8) withi—j,j—k—n+p—x(a, ) —1,n,p—k in place of
k,m,n,p, and the final step follows from (3.17) and (3.22)). This proves (3.27).
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4.2.4 Proof of equation (3.28)
For equation ([3.28)), we have

D G R AR (S0P
k>0: 2k<&+572n+27x(a+ﬂ,a+5)
= Z (—1)H(e=24x(@a)(b=24+x(8,5)) +h+n

1)11)((,5’,5).

“€ap(—
i,k>0: 2i<a+b, k =
;>n+k+lx(?lﬂ)+1 Ha+b72n72x(a,ﬁ)72(qja+5)(t IZlHa+b72k72n72x(a,B)72 (*—a,ﬂ)

(ti*kfnfx(a,ﬁ)*l X [(CXn)Ne([086])])
= Z €o ﬁ(_1)1+ab+bx(a,a)+x(a7a)x(ﬁ’ﬁ)+k+n'

giﬂkifgrg)ﬂ Heyipon—2y(a,8)-2(Pats o (I X (Ea,5 0 (g x I3 x I14))))
i—k—n— ,B)—1 °
(e IR () N e((034))])
Z €s a(71)1+ab+bx(o¢,a)+x(a,6)+k+n.

oSS 11 Harb—2n-2x(a,8)~2 (2,0 [T X Ty X (P 0 (T X I13)) )

atb—2n—2x (o, 8)—2 (1 X (o (Ty X M) x IT3 x T4 )
i—k—n—x(a,5)—1 °
(e O R [(CRy) N (08 5)])
_ Z €s a(_1)1+ab+bx(a,a)+x(a,,@)+k+n (i-‘rj—k—n—_x(a,ﬂ)—l) .

- J
i,7,k>0: 2i<a+b, —_
En kb (o8t Hatb—2n-2x ()2 (Zp,00 [l XTIy x (Po 0 (12 xI13)) )

izn () R e g [( Nnei([©2,40)])

n)
= Z B (— 1)ab+bx(a a)+z+l[ )}

1,0>0: 2i<a+b,
z>n+l+x(o¢,5)+1 Ha+b 2n—2x(e,B)— (Hﬁ,ao [Hl x Iy X ( aO(HQ X H?)))])
(

(I R ® [(CRy) N e(O84)])
- Z eﬁ’a(—l)ab's'b"(a’a)ﬂ “Hoyp—2n—2x(a,8)—2(E8,a)
T B a2l X T x (0 o (I x T1))
(T KR [(CRp) N e((O8 4))])
= Z €p,a(—1)bX()ti, Hotb—2n—2v(a,8)-2(E8,a)
Znioy (XD TR [ RO N eil[of,4(08,5)])])
= Y eal D)X Hy oy ay(pa)-2(Esa)
A (OO R (R 0) N ei([0,4))])
= [, (In. (4.5)

Where in the first step we use @ = a—2+x(a, @), b=0b— 24+x(8, B) and equations
7) and - In the second we rewrite in homology on [*/G,]* x My X Mg,

Where II; for i = 1,...,4 means projection to the i*" factor, using functoriality
of H,(—) and compatlblhty with X, and t¥,t5 mean the t* € Hay([x/G,,])
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associated with the first and second factors of [x/G,,], respectively.
In the third step we rewrite the signs by (3.1]), and use functoriality of H,(—)

and the equation in Ho(Arty), which follows from (3.4)), (3.6)—(3.7)) and (3.20):

Varpo (Il X (Eq,p 0 (Il2 x 3 x 11y)))
= EBJNO [Hl XH4 X (\I/aO(HQ XHg))] ] [Hl X (QO(Hl XHQ)) XH3 XH4] :
[6/Gn] X [#/Gm] X Ma X Mg — Mars = Mpia, (4.6)

where as usual Q : [%/G,,] x [*/G,,] = [*/G,,] is the stack morphism induced

by the group morphism G2, — G,, mapping (A, u) — Au. As for (4.3)(4.4),
we can understand (4.6) in terms of the map of families

(Ll,LQ,Ea,Eg) — Ll [029] ((LQ X Ea) &b Eﬁ) =~ (L1 X Eﬁ) &b ((Ll X LQ) X Ea).

In the fourth step of (4.2)), we use that I} x (Qo (Il x IIp)) : [*/G]? —
[*/G]? acts on homology by

k .
FIN s o
H2k+21(H1X(QO(H1 XHQ))) t’f@té — E (j J )tlf J @t;—i_l,
Jj=0

which we can prove using Assumption ¢). In the fifth we change variables
from 4,4,k to 4,4, withl =i+ j —k —n — x(a, ) — 1. In the sixth we note
that 22:0(—1)j (]l) = (1 —1)! by the binomial theorem, which is 1 if [ = 0 and
0 otherwise, and use functoriality of H,(—).

In the seventh step of we note that the morphism

Iy x Iy X (U0 (TIa X II3)) : [# /Gy ] X [/ Gy | X Mg X Mg — [/ Gy | X Mg x M,

maps £} K38 [(CE ) N (03 )] = (—) 8 [(18¢) N el (0, 5))]
on homology, where og : Mg x M, — M, x Mg exchanges the factors.
This is because H,(¥,)(t° K () = ¢, and Hoyp(0ap)(( K n) = (—1)%n K (.
The eighth step holds as o (03, 5) = (03 ,)"[2n] by Assumption [3.1{j), and
ci([(©F4)"[2n]]) = ci(((©F ,)Y]) = (=1)'ci([0f ,]) by Assumption [2.30(b)(iv).
The last step uses (3.22). This proves (3.28).

4.2.5 Proof of equation (3.29)
Expanding out the first term in (3.29)) using (3.17) and (3.22)) yields

[[Can]la H}m =

Z eaﬂ(‘UaX(ﬁ’ﬂ)eaHiry(_1)(a+b)X(%W “Ha(ZEatp,)
h,k>0: e _ _
tha%rb;rcm {t? moxletf =l g [(Ha+b—2l—2x(ouﬂ)—2(:0175)
—21-2x(a,)—2, k—l—x(a,8)—1 . .
h>2m+x(« s 1, ’
N (- 2 [(¢Fn)Nex((0%, 2] R0) Nen (O, )]
k2l4x(o,8)+1
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where d = a+b+c—21—2m—2x(a, B) —2x(a, ) —2x(8,7) —4. Here i, t} mean
t € Hyi([*/G,,]) from Assumption c) from the first and second copies of
[¥/G,,] involved in the formula.

From and functoriality of H;(—) we have

Hi(Zap) = Hi(Pa ) 0 Hi (Vo 0 (T x TI)) x T13)).

We substitute this into the previous equation, and then rewrite by combining
the pushforwards H...(Eq48,y) and H...(®4 ) into one pushforward by

Eat8,y © (dpu/G,) X Pa,p X ida, ) [#/Gn] X Mo X Mg X My = Maygiy,

using Assumption a)(i)—(iii) and (b)(v), and rearrange signs. This yields

[Ka n]la g]m _ Z ea,ﬂeaJrB,'y(_1)GX(5’B)+(a+b)X(’Y’7) . Hd(EOL+,B,’)/O

h,k>0: 3 . (o B

2h<atb+c (idp/g,,) X Pa,p X lde)){t}f x(a+B,7)—1g

—2l—2x(,8) -2,

n>max(atB8)+L [({Harb-21-2x(a.8)—2((Pa o (T x Tlp)) x TI3)
xaTbo,

k>l+x(c,B8)+1 (5 DT R (¢RI New (] a.))]) 1 0)
Nen([(Pa,p x ida,) (©815)])] }-

We rewrite (®q,5 xida, )" (05, 5 ) as a sum of terms in O, |, 0% _ by (3.9),
and substitute in ¢, (A + B) = >3, _,;., ¢i(A) Ucy(B) by (2.33), giving

s, Ulm = €q,B€atB~(— ) ) Hy Ea+,8,'yo
(1S, )i, 6] > (D)X B Har0xX)
Skt (idp /G, X Pa,p X idMW)){tf”p_m_"("‘w”)_lx
k2l+x(a,B)+1,
2(i+p)Satbte [({Hatp—21—-2x(a,p)—2 ((¥a o (I} x II5)) x II5)

—20-2x(,B) -2,
rpzmixtats 1 (8B TIR[ (R Ney (108, 51)]) }R6)

A (e ([Tt (©3)])
Uep([(mam, XMW)*(@;J)]))] }

We combine the two pushforwards H...(---) into one by

Ea+ﬁ,»y o (H1 X (EQ,B ] (HQ X H3 X H4)) X H5) :

4.7
/G X [#/Gp] X Mg X Mg x My — Maygiq, (4.7

using Assumption [2.30(a)(i)-(iii) and (b)(v), where II; means projection to
the ith factor of [*/Gp,] x [x/Gy,] x My x Mg x M.,. This involves pulling
back ¢;([(Ta1,xm,)* (05 ) Uep((Tmaxm, ) * (O3, 4)]) by a factor coming from
(U, o (I} x II3)) x II3, but the pullback does not affect the GZM term, as it is
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independent of M,. We obtain:

[[¢, )1, 0lm = E ea,geawﬁ(_1)ax(ﬂ,6)+(a+b)x(%7) ) Hd(EaJrgﬂ
ihpo: o (I % (Za g 0 (I x I3 x T1)) x IT;))
k21+x(o,8)+1, i (o B
2(i+l)X<Z+b+c tlﬂ’ x(a+8,7) I

—21—2x(,8)—2,
itizmx(ats 1 [(th XD TTRI(CRN)Ne (083, 4])] K6)

N (es([(Ma x I5)" (05 )])
Uep([((Ta o (T2 x T13)) x IT5)"(OF ,)]))] }-
Next we use equation (3.11) to substitute for c,([(---)*(©§,_,)]) in the last
line. The result is of the form ¢, ([(line bundle) ® (- - - )]), so we can apply (2.36]),
which we write using a change of variables from p to j,q with j + ¢ = p. We
use c1([F1]) = 7 in H?([*/G,,]), in the notation of Assumption ¢), but we

write 7 rather than 7 to indicate that it corresponds to t;. We also pull back
the ¢cx([©2, 5]) term from My x Mg to [#/Gpm]* x Mo x Mg x M., We find:

1Sl Om = > €a,8€atpy(—1) AT EOXON Hy (2,5 0
;’Igg&%?: (Hl X (Ea,ﬁ @) (HQ X H3 X H4)) X H5))
k>l a, ’ i+j—m+q—x(a — —l—x(a,B)—
2l+x(a,8)+1 {(tl-l-] +q—x(a+B,7y) 1&#29 l—x(a,8) 1&(&77&9)

2(i+j+q)<a+b+c
—21-2x(af)-2,

ey ) (P T (08, DU (I ) (5.
U [(_1)q(q+37x((1%a)*1) .
H? (I3 x 5)(¢;([03, ,1) Us])]) }- (4.8)

Assumption ¢)(iv) shows that th N7y =57 if p > ¢ and 0 otherwise.
Also the terms in cx([©F, 5]),ci([0F 1), ¢; ([©F ,]) pair only with ¢ X 7n X 6, not
with ¢7" X ¢5. Thus we see that

[1C, 00, O] = Z Ea,ﬁeaﬂa,y(—1)q+“X(B’ﬂ)+(a+b)X(%7) (q+j—xé%a)—1) .
i.4,k,q>0: = =
2{i+jg+k)<a+b+c, Hd (:aJ’,B’;\/o(Hl X (:a,BO(H2 X H3 X H4) X H5)>)
k}}l (e 1, i i—m — o — —]—g— o —
et (it mrax(@tba)—1 g holmax(@f) 1
+x(a+8,7)+1 2 .

[(CRnBO) N (H* (mrtyxm, ) (€i([0F )
U H? (T a1, ) (65 ([08, 1))

U HM (7t ) (en (02, 61)))] }- (4.9)

Using (3.6)—(3.7)), we can show that the morphism (4.7) factors as K4 g~ ©
(T X idMQXMﬁXMW)a where

Koy =Patsy © (Pap X ida,) o
((\Ila o (H1 X Hg)) X (\IJB [¢] (H2 X H4)) X H5) :
/G X [#/Gp] X Mg X Mg x My — Maygiq,
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and T : [%/Gp)> = [¥/G,)? is induced by the group morphism v : G2
G2, mapping v : (u,v) — (uv,p). Thus the pushforward H..(---) in (4.
factors as H...(Kq, 5 v)oH..(T x idMaxMﬂxM ) where we may write H...(T
ida, xMmpxm,) as H (T) X id. Hence, from we deduce that

[1¢, )1, 0] = Z €a pE +BV(_1)q+ax(ﬁﬁ)+(a+b)x(%v) (q+jfx(%a)*1),
) yVim «, & 5 q
i,7,k,q=0:
2(J7L+Jg+k)§a+b+c, Hd(Ka B, w)
k2l4+q+x(a,B)+1,
i+jt+gzm {[H2(1+J+k I=m—x(a,8)—x(B,7)—x(7,a) 2)(T)

+x(a+B7)+1 (tz+J m+q—x(a+58,7)—1 X tk l—q—x(c,8)— Ng
[(CRnRO) N (H (71, x0,)(ci([054]))
UH (ta,x0m,) (5 (03 4])
U H (M m,) (e (102, 51)))] }- (4.10)
Now from the definition of T and Assumption ¢) we can show that

x kel ]

. (T)(t§+j*m+q*x(a+ﬁﬁ)*1 X t’;*l*qfx(a,ﬁ)*l)

s
= Z (kfl*qfx(ayﬁ)*l) R
r,620: r>2k—l—q—x(,8)—1
r4s=itj+k—l—m—x(c,8)—x(8,7)—x(v,a)—2

Substituting this into (4.10) and rearranging into two sums yields

(¢, 1, O]im =

Z (71)ax(6,ﬁ)+(a+b)x(%v)eaﬁeaﬂgﬁ .
retivive (H* (mamgxm, ) (€([054]))
Egé’;ﬁ:@ U H (a0 ) (€5(105)

UH (T, xms) (e (05 6])))] } -
+5— ,a)—1 T
Z (_l)q(q ! x[(l'y ) )(k*l*q*x(aﬁ)*l)
q20: q<k—l—x(a,8)—1,
qzk—l—r—x(a,8)—1
The last line [- - -] can be summed explicitly using ) and (| , giving
[[Ca n]lv 9]m =

Z (—1) XA+t e, ey -
STRY Ha(Kap) (i REBE[(CKnKE) N

a+b+c, i .

ris;ﬂ'-(i-kﬁ) (H2 (ﬂ-MﬁXMry)(ci([GB,"/D) (4.11)
—l-m—x(a, . °

—x(8,7) UHY (7"Mw XMQ)(Cj([@a,'y]))

—x(v,0)—2

U H* (a0 ems) (cr (02 61))) ] } -

(kijzt?(z (g) Ci)l) :
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By similar proofs we can show that

[Cv [77’ 9]m+n]l—n =

Z (_1)ax(ﬁ,5)+(a+b)x(’y,’v)66 H€a Bt
L0 Hy(Kap ) {t B3 R [(CRnRO) N

2(i;rj+k)< .

?ISL%(M ) (H? (7 pt o, ) (€i(105,)))
—l-m—x(a,B ; .
() U HY (o, x . ) (5(105,)))
—x(v,0)—2

U H? (7ot xom) (e (©0.5)))] -

( —jHl—n+r+x(v,) )
i—m—n—s—x(8,7)—1/’

(_1)ab . [77’ [C7 e]n]l-i-m—n =
Z (_1)ax(ﬂ7ﬁ)+(a+b)x(%w) .

iv‘vkarv ZU: «, a,x s

2(Ji+j+3k>)i (71)x( B)+x(e,e)x (8 B)ea,'yeﬁ,(x—&-'y .
a+b+c, r s

%sim?kﬂ Ha(Kap){tT M58 [((KnK6)N
—t=m—xl(a, i o

—x(B:7) (H2 (WM;s XMA,)(Ci([ g,y}))
—x(v,a)—2

U H? (a4, x M0 ) (€5([02,,]))

U H* (7t ) (cr([05,50))] -

(—1)kt+x(eB) (*ijtlln;f;gz(ﬁv)) )

(4.12)

(4.13)

Here the differences with the proof of (4.11)) are that, firstly, for (4.12)—(4.13]) we

(—72)%. Secondly, for (4.13)), under the isomorphism H,(MgxM,) = H, (M, %

use (3.12) rather than (3.11)), and ¢ ([E_1]) = —7, so 74 in (4.8) is replaced by

M) we have n X ¢ = (—1)®°¢ K 5. Thirdly, for (4.13) we use Assumptions

2.30((b)(iv) and [3.1(j) to convert ¢x([0% ,]) to (—=1)*cx([O%, 4]).

Using (A.4), (A.8) and r+s = i+j+k—I—m—x(a, B)—x(B,7) —x(v,a) =2,

we find that

SO )
n>0: ngi_m_s_x(ﬁﬁ)_"l x(B.y)-1
=TT NEG)

Z (_1)n+l ( l) . (_1)k+x(a,5) (7i+lfmfn+s+x(ﬂﬁ))

j—n—r—x(y,a)—-1
n20: n<j—r—x(v,a)—1

— (_1)k—l=x(,B) (—i—m+s+x(B,7)
_( 1) X (j—r—x(’y,a)—l )

The next equation follows from ([3.1)—(3.2]):

€ BCatfry = €BrCafiy = (_1)x(a76)+x(a7a)x(ﬁ75)
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Combining (4.11)—(4.16)) yields

l
(TP DENC () N
n>0: 2m+2n<b+é
+2—x(8+7,8+7)

+ Z (—1)"“”5(2)[7]7[C79]n]l+mn:

n>=0: 2n<a+¢é
+2-x(at+y,a+7)

Z (_1>ax(l3,/3)+(a+b)x(%7)eaﬁewrﬁﬁ .
éégﬁ)g Hdg(aﬁﬂ){t{ X ¢5 X .[(g XnXe)N
rtosiier (H (g, )(ci([05,]))
;ggﬁ’” U H () (e (105,])

’ U HM (mpt, x0m) (er (108 5)))] } -

—Jj+r+ Pred i—m—s— Y)— —k+i+x(a,B8
[(k—jux(fi(g)—)l) = (=1) XENT( )

E—=l—x(a,B) (—i—m+s+x(8,7)) | —
+ (_1) x(e 6)( j—r—x('y,)(;()—’ly ):| - 07

where the second step follows from (A.9)). This proves ([3.29).

4.3 Proof of Proposition [3.18

We work in the situation of Proposition and write a = a + 2 — x(a, @),
b=b+2—x(8,8),c=¢+2—x(v,7),andd=a+b+¢é¢+2—x(a+ 8+, a+
B+ 1), so that ¢ € Hy(Ma), n € Hy(Mp), and 6 € H.(M,) by (3:23). Apply
tmtn=l o — to with m,n,p in place of I,m,n, multiply by (—1)¢+tm+n

%xm(x + )", and sum over m,n > 0 with m + n > [. This yields

éa n (m4+n=0! m n ygm4n—
0= 3 (F)TEmEn e (ay) " o (G, B
m,n=0: m+n=l, 2(m+n)<d

ca —1)! _
LR (P (o o G .
m,n,p>0: m+n>l, 2(m+n)<d, p<m

oy Py e (e (ay)" 7 o [, (G Ol

mlin! p
m,n,p>0: m+n>=l, 2(m+n)<d, p<m
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We use (3.28]) three times to rewrite the second and third terms:

0= Z (_I)E&+m+nwxm(x+y)n Lgmn—l [[Ca 77]m7 e]n

mln!
m,n20: m+n=l, 2(m+n)<d

_ Z (_1)Efl+m+n+p (m+n=0! (Z%)mm(x_i_y)n .

m!n!
»1,p,q20: .
a(ndna)<, (7o (<) HCHIITIR 40 (19, By, )
psm
D DI G e o (O F CE L
mln! P
gmthjrrsgd’ gmAn—l o ((71)1+5(a+5)+m+n7p+q YIS

p<m, 2r<a+é—2p .
+2ox(etyot) (=)Ao [0, Cppr Mlimtn-pa)-

We substitute (3.26) in the third term, use equations (3.15) and (3.18]) to

combine terms ¢" ¢ (t°* o —), and simplify signs, giving

0= 3 (- L @ y) 47 o ([l B
m,n>0: 2(m+n)<d

+ Z (_1)&E+n+q (m+n—10)! (m) (m+nfl+q)xm(m+y)n .

mln! p m4+n—I

,n,p,q=0: —
gznrmlfanrq)gd, tm+n e ¢ [[nya]n-l-padm—])-i-q

psm
be —)! - 1
+ Z (71)bc+m+p+q (m;;?n! ) (717)1) (m+nr p+q) (m;rin:qu)xm(x+y)n .
M,p,q,720: _
men-fnqﬁ:]jgd, g Hrao [[07 dp-‘r?“? 77]m+n—p+q—7’-
ptr<m+n+gq

Next we change variables in the second sum to m’ =n+pand n’ =m —p+q,
eliminating m, n, and in the third sum tom’ = p+randn’ =m+n—p+q—r,
eliminating m and p, giving

0= Y (—pferminlmtneDlipm gy S [, O, (4.17)

mlin!
m,n=0: m+n=l, 2(m+n)<d
+ Z (_1)d5+7n’+n/% . tm’+n’_l o [[777 e]m,7 C]n’ .
’ ’ . r ’ !
;rznﬁ-‘?nq.)gd Z (_1)n/+p*Q(";/) (T;I)xn TP (g y)™ P
P,q20: pSm/,q<n’

Y (e I e = (1, (]

m/’In’!

m’,n'>0: E m'+n+r (m’ (n'+r)! m'+n'—n—gq n
2(m’+n")<d (_1) ( r ) (n’Jrrfnfq)Ian!x (x+y) .
| 1,q,720: r<m/, ntq<n’+r

Now by the binomial theorem and x + y + z = 1 we see that

S (=) (1) g P (wy) P = (—at ()™ (1)

p,q=0: pSm/,q<n’ / ,
=y" (y+2)", (4.18)
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D2 () s e T )"

r /) nl(n’+r—n—q)!
n,q,r20: r<m’, ntq<n’+r

- m (") a1y
= i (m) ()™ (4 2) T =2 () (4.19)

Combining (4.17)—(4.19) proves (3.35)), and Proposition

4.4 Proof of Proposition |3.24

For part (a), as TI2' : M/ — MP' is rationally trivial, by Definition there
exists a morphism f : T — MP' which is surjective and a [*/Z,]-fibration over
each connected component of MP! such that the pullback principal [/ G-

« )
bundle is trivial. Consider the diagram in Ho(Artl') and Arth':

[*/G ]2 xT o [%/Gpm] x T p— T

iid[*/am]xf' f’\L fl (4.20)
, v , P! )

[¢/Gm] x M, M, MY,

where Q : [¥/G,,]? — [¥/G,,] is as in Assumption ). Here the squares are

2-Cartesian in Artllét, and so commute in Ho(Art%K ), as they give the pullback

principal [¥/G,,]-bundle by f : T — MP! with its [/G,,]-action, where we use

the fact that the pullback is trivial to write M., Xt et p T = [%/G] x T.

Since f is a surjective local [x/Z,]-fibration, and the squares are 2-Cartesian,

the other vertical morphisms f’,id,g,,] X f’ are also local [*/Z,]-fibrations.
Applying H.(—) to gives a commutative diagram:

| H. e, %) = | () m(p) = (4.21)
, H.(V,) ;. Hm |
R[t] @r Hi (M) H (M) H (M)

Here we have used Assumption b) and H.([*/G,,]) = R[t] to rewrite the
homology of the [*/G,,]-factors. The columns in (4.21]) are isomorphisms by

Assumption a), as the columns in (4.20) are local [*/Z,]-fibrations.

Three of the horizontal morphisms in (4.21)) may be written explicitly as

H (Qxidp) i t" @t" @ — (" *t") @ ( = ("Mt g (, (4.22)
H (V) :t" @nr—t™on, (4.23)

C, n= O,
H, "R — 4.24
(rr) s 1" ¢ {07 "y (129
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using (3.14)-(3.15) in (#.22)), equation (3.17)) in (4.23), and that 7 : [x/G,,] — *
acts on homology by tV — 1 and " + 0 for n > 0 in (4.24).

Now the left hand square of (4.21)) and (4.22)—(4.23]) show that the middle
column of (4.21)) identifies the R[t]-actions on R[t] @ g H.(T) and H.(M.).
Therefore the right hand square of , with columns isomorphisms, and
4.24), imply that is exact, and hence ITPL : H,(M.)"=0 — H,(ME!) in
3.50|) is an isomorphism, as we want.

For (b), let K be algebraically closed, and suppose 0 # «, 8 € K(A), with
x(a, B) # 0 and Mg # (. Choose [E] € Mg(K). Then the restriction (pullback)
of O, 5 to M, = M, x {[E]} C M x Mg is a perfect complex ©2, 5] r1r. x (2]}
on M., of rank x(a, 3) # 0, and Assumption 1) implies that 6;”3|M;><{[E]}
has a weight one [*/G,,]-action compatible with the [*/G,,]-action ¥/, on M/,
in the sense of Thus Proposition (which requires K to be alge-
braically closed) says that IIP' : M/ — MP" is rationally trivial, as this is the
principal [x/Gy,]-bundle with [x/G,,]-action ¥/, by Definition [3.22]

For (c), suppose K(A) is free abelian, and x : K(A) x K(A) — Z is non-
degenerate, and My(K) = {[0]}. Let oo € K(A) with e # 0. Then there exists
B € K(A) with x(a, ) # 0, as x is nondegenerate. By Assumption [3.1(b) the
projection Ko(A) — K(A) is surjective, so Ky(A) cannot map into the kernel
of x(a, —), and thus there exists 5 € K(A) with x(a,3) # 0 and Mz # 0. So
(b) shows that IT2! : M/, — MP! is rationally trivial, whenever o # 0. When
o =0 we have M) = MY = () as Mo(K) = {[0]}. Hence IIP' : M’ — MP is
rationally trivial. The rest is immediate.

4.5 Proof of Proposition [3.26

Work in the situation of Definition|3.22] in either the abelian or triangulated cat-
egory case, over K = C, with the homology theories of (higher) Artin C-stacks
over R described in Example Then IIP! : M — MP!is a principal [%/G,,]-
bundle, so passing to classifying spaces or topological realizations as in Exam-
ple (a),(c) gives a map of topological spaces Fgg‘,:go (1Pt - Fgg},z;" (M) —
Fgglt)cm (MPY) which is (at least up to homotopy) a topological fibration with
fibre BG,,. Applying homology H,(—) gives H,(II?") : H,(M') — H,(MPY).

Now as in McCleary [111} §5], given a topological fibration 7 : E — B
with fibre F', the homology Leray—Serre spectral sequence is a first quadrant
spectral sequence with second page E2 = H,(B,H,(F,R)), which converges
to Hyyq(E, R). In our case, as IIP! is a principal bundle, H,(F, R) is the constant
sheaf with fibre H,(F, R) for F' = BG,,, and as H,(F, R) is finitely generated
and free over R we have H,(B,H,(F,R)) = H,(B,R) ®r Hy(F, R). Thus

H,(MP), ¢=2k k=0,1,2,...,

E?2 = H (M H Gp)) =
p.a »( ) @r Hy([+/Gm]) {07 otherwise.

We can now use the theory of spectral sequences, which involve taking homol-
ogy of complexes to compute the subsequent pages (E}, ,)pq>0 for r =3,4,....
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Here E} , becomes independent of r for r > max(p + 1,¢), and then we write
Ex, = E} .. Finally H, ((E,R) = Hyy4(M’) has a filtration FyH,,(M’)
with E>% = FyHpyyq(M')/Fyp1Hpiq(M'). In degrees 0,1 we have

Eg,oo = Eg,o = HO(Mpl)v Ef?o = E12,0 = Hl(Mpl)a Eg,o1 =0,
so that as Eg5 = 0 we have

Ho(M') = Eg5 = Ho(MP),  Hi(M') = By = Hi(MP). (4.25)

As t has degree 2 we have Hy(M')!=% = H,(M’) for k = 0,1, and the morphisms
P« Hy (M))1=0 — Hy(MP) for k = 0,1 are the isomorphisms (4.25)), proving
the cases k = 0,1 of the proposition.
In degree 2 we have d : B3, = H3(MP') — E2 , = Ho(M™), and then
ESQ2E3 g =Hy(MP), E{S=0, Eg,=Ho(MP)/Imdy=Ho(M')/Imdo.

As EP9 = 0 we have an exact sequence

Ho (11P!
R ——

0 — Eg3= Ho(M')/Imdy = Hy(M') L Hy (MY >~ pgs — 0. (4.26)

One can show using [111} §5] that we have a commutative diagram

to—

Ho(./\/ll) Ho(./\/l/)/lmdg HQ(M/). (4.27)

projection

L in (@20)

Comparing this with (3.36)), (3.49), (3.50) and (4.26) shows ITPL, : Hy(M')=0 —
Hy(MP') is an isomorphism, as we have to prove.

4.6 Proof of Theorem [3.29

Work in the situation of Definition For part (a) we must show [, |P! satisfies
graded antisymmetry (3.45)) and the graded Jacobi identity (3.46]).
To prove graded antisymmetry we must introduce some new notation. Let

a,f € K(A). As for f[glﬁ, @Z{B, \IIE{B in lj using the 2-co-Cartesian prop-

erty of 1) we can construct a natural morphism ag{ﬁ : (Mo x Mg)Pt —

(Mg x M,)P!, the analogue of Oa,s in Assumption g), which exchanges the

factors M,, Mg. It is an isomorphism in Ho(Art]llg) with inverse ag{ o Also

write ag{’};l C MP ./\/lg1 — ./\/lg1 x MP! for the exchange of factors. Then we

have commutative diagrams in Ho(Arti):

M., x M - Mg x M.,
Ua,ﬁ
i/HPlB le \L
«, pl B,a
(Mg x Mg)P! xe (Mg x My)P! (4.28)
= pl = pl
llng’ﬁ o_pl,é)l Hg,a\L
ME X MY MB X ME,
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(Mg x Mp)P! = (Mg x My)P!
T el uw
s ML

As é;ﬁ is defined so that ©%, 5|1, x a1, = (Hglﬂ)*(@;ﬁ), we see from As-
sumption j) and the top square of (4.28) which is a pullback square of
principal [x/G,,]-bundles that there is a natural isomorphism

(05 5)"(05,0) = (65,5) " [2n], (4.30)
which is equivariant under the [x/G,,]-actions.

Let ¢ € Hy(MP) and n € Hb(/\/lgl) for a,b > 0, and write @ = a+ x (o, o) —2
and b = b+ x(8,8) — 2, so that ¢ € Hz(MP') and 7 € f{g(./\/lgl), and set
d=a+b—2x(a,B) —2. Then we have

[, (P! = €g,0(—1)X() - Hy (D) 0 PE([O3 ,])n ¥ (]
= ea.a(~1)XO - Hy(@f ) 0 PE((0], ) [(-1) Hays (08 5') (¢ K1)

(—1)errox(ee) . Hy(@F ) o Hy(oF ) o PE([(0%5)*(05,,)]) [0 K 1)
= €g (=)D [0 ) o PE([(O8,5)"[2n]]) [0 B 1)
= eﬁ7a(71)ab+bx(a,a) . (71)X(a,ﬁ)+lHd(<I)zlﬁ) o PE([ A ;,[3}) [9 X ,,7]
a(_l)ab+bx(a7a) . (_1))((3701)4‘1 C€n 5(—1)“X(5’5) . [Cﬂ?]pl

) 1

Here we use in the first and fifth steps, supercommutativity of X in
the second, Assumption b) applied to the bottom square of which
is a pullback square of principal [*/G,,]-bundles in the third, equation
and functoriality of H,(—) and in the fourth, Assumption c¢) and
rank ©% , = x(a, 8) in the fifth, and and @ = a+ x(o,a) — 2, b= b+
x(B, B) — 2 in the sixth. Thus [, |P! satisfies graded antisymmetry.

To prove the graded Jacobi identity, let «, 8,7 € K(A). Then we have a
principal [x/G,,]*-bundle

1 1 1 1 1 1
B x IO x TIBY s MY, x Mg x ML — ME x MY x MY,

with [*/G,,]3-action defined using ¥/, x \If% x W’ . We will apply Assumption
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2.39(e) to this. In place of (2.52)) we have the commutative diagram:

pl
Tap (Ma X;}/lﬁ) Hﬂl,ﬁ Xidel
/ XM’Y \ v
Mox My T, (Mo x M (Mg x M, )P ME XM
ol P e e p o
x M., XM PL T T MP 5 xid xME.

S MMt

xid 1
Yo 1 ¥, MP
x M s

(4.31)

Here and below, for notational simplicity we implicitly identify My, x M x M.
with its cyclic permutations M'ﬁ X /\/l'7 x M., and M; x M., x M/B, omitting
the permutation isomorphisms from our notation. We do the same for (M, x
Mg x M.,)P! and MP! x Mgl x M2

As for the definition of (M, x Mg)P! in Definition we define Hzlﬁ,v :
M, x Mg x ML — (Mg x Mg x M,)Phin (4.31) to be the principal [+/G,,]-
bundle with [*/G,,]-action given by Proposition [2.25(a) associated to the free

[/G]-action on M, x Mj x M.:

(W4 0 MGy xay ) (U 0 i/ yxats,)s (U5 0 s, oany,))
[%/Gm] x Mg, x Mjg x ML, — M, x Mjg x M.,
the diagonal action of the [*/Gp,]-actions Wy, U, ¥/ on M, Mg, M.,
As for the morphisms (3.53) we can construct a natural morphism

P (M X Mg x M)PL— (Mg X M)P!

a,Byy

in a commutative diagram

!/ !/ !/ / /

Mo x Mg x M, PRI Maotp x My
a,B M

i/nplﬂ ¥ ! Hp1+5 ’Y\L

[e Y= @F)l [e3 >

o, B,
(Ma x Mg x M.,)P! - (Matg x M,)P! (4.32)
pl

imﬁ 1 @25 xid 1 Ha-f—ﬁ,'v\Ll
(Ma x Mg)Ptx MP ME, 5 x MEL

Using the implicit identifications (M x Mg x M P! 22 (Mg x M., x M, )Pt =
(Mo x My x Mg)P! using (3.4)—(3.5) we can show that

pl pl _ &pl pl _ &bl pl .
(I)Ot'i'ﬁﬁ © (I)Oéﬁ,’y - (I)B—s-%a © q’ﬁma - q)'H-aﬁ © (I)’y,aﬁ : (4 33)
(Ma x Mg x M)P— MEL 5

Let ¢ € Ho(MP), 5 € Hb(/\/lgl) and 6 € HC(/\/IEI)7 so that ( K7 X
0 € Hyyproe(MP x ./\/lgl X Mgl). Apply Assumption @(e) to 1D with
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I, pt ot (é;ﬂ), ESVINY )pl(é;m), H;‘waMQ)pl(ég’Q) in place of £3,, £33,

&3, respectively. Evaluating (2.53) on ¢ X 7 X 6 shows that

(—1)x(v-e) PE([r33 o HE(ME XMW)PI( B4) © T30 HE(MW XMQ)pl(é'.y,a)v])
0 PE([{ 01, a0 (O%,5)) (( K0 B 0)+
(_1)x(a,5) PE([T§1 © HE(MA,XMQ)N(@;@) ® 70 H?Mang)pl(é;,B)v]) (4.34)
0 PE([I{pq, x p, ot (O5,5)]) (¢ B K6)+
(‘DXUM) PE([7'1*2 © HE(MQ X Mg)P! (é;ﬁ) B 793 0 H?MB xMw)pl(éﬁﬁ)vD
o PE([HZ‘waMa)pI((:);@)])(Q XnXo)=0.
By supercommutativity of X, the natural isomorphisms
MBS MBE X MEBE 2 MB 5 MBE x MB! 2= ME! x MB! x ME!
induce identifications in homology
(1) RyRO = (-1 RIN¢ = (-1)*IR K.
Multiplying by (—1)°® and using these identifications and yields
(—1)tXOO PE([r35 0 I, va)Pl(éfﬁ,v) ® 731 0 Ipg, e Mo pt
0 (08.4)7(0%.,)[=2n]]) 0 PE([M{p  pgy e (92,6)]) (C B K 0)+
(—1) X PE([r3; 0 VRV (65,0) &1z 0 0t sy
0 (085" (08.0)[=21]) 0 PE([Mpy,  0q, y (03,,)]) (1O )
(—1) B PE ([t 0 T ot (O85) © 730 Wiy pg e

0 (75.,)"(03 p)[=2nl]) 0 PE([I{5y y pg, 01 (©5,0)]) (0B ¢ Bm) = 0.

Using Assumption d), and dropping the shifts [-2n] as they do not
affect K-theory classes, we see that

(=1) XD PE (155000 vy an ot (OF.1) B30 g gy ©(0510) (02, 5)])
o ((PE([0% 5)) (¢ Kn)) K 6)+

(=) XD PE ([ 0T0] g s pg,yo1 (03,0) BT20 T g, )10 (05 5)*(05.)])
o ((PE([05,])(nX6)) K )+

(—1)betxEm PE([TEOH?MQ X M g)p! (9;,6)@72*301_[?/\45 X M. )P! O(Ugfvy( : ;,/3)])

o ((PE([©3 ) (0 K ¢)) W n) = 0. (4.35)
By pushing 1} down along the [*/G,,]-bundles Hzlﬁﬁ, HZIJFB’7 in the top

square of (4.32)), we obtain an isomorphism
* * oL * * 1 \x/e
723 0 Lintg st yr1 (O5,) @ 751 0 Uiy sennym © (07,0)7(05,5)

~ 1 * (e
= (q)zwﬁgy) ( a+ﬁ,’y)'
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Substituting this and its cyclic permutations into (4.35)), and pushing forward

to H, (MQJFBJW) by the morphisms 1’ using functoriality of H,(—) yields

(_1)etxa )Hd(@al+[3 o Hd P ﬁ’y OPE([(Q)ZIB'Y “(0%:54)])
o ((PE([0%, 5))(¢ B 7)) K o)+

(—1)ab+x(a,5)H (@I[)il—l-'y o) © Hd(cbgl'y o) © PE([((I)SI'Y o)’ ((L)Z?Ha)]) (4.36)
o ((PE(03,))(186) B () +

( 1)bc+x(5 V)Hd(q)p_m ﬁ) o Hy(® ’y N 6 )o PE([ (I)gla 6 “( v+a76)])
o (PE([62,,]))(0 K () Kn) =0,

where d = a+b+c—2(x(a, 8) + x(8,7) + x(7, @) — 4.
Applying Assumption [2.39(b) to the bottom square of (4.32), which is a
pullback square of principal [x/G,,]-bundles, gives

Ha(®5.,) o PE([(®75.,)" (O%45,,)])

= PE([ o) © Havpromy(a,s)—2(®0 5 X id 1)

Substituting this and its cyclic permutations into shows that
(1) X Hy (B, ) o PE([0%, 54]) © Hagbre2x(as)—2(25 4 X id 1)

o ((PE([0%,4])(¢ 7)) K 6)+

(—) D HG (B, L) 0 PE(10511,0)) © Hitera—ax(sm—2(Ph, X id )
o ((PE(105,])(n®6)) B ¢)+
)
)

(—1)P D Hy (@), 5) 0 PE(10%0,5]) © Hetart-2x(r)-2(PBle X id 1)
o ((PE(62,.))(6 () B ) =0. (4.37)
Using (3.1)—(3.2) we find that:
(_ )X(’Y’C“)‘*‘X(%"’)X(“’O‘)ea,geaJrgﬁ

= (,1)X(a,5)+x(a»a)x(ﬁ,ﬁ)eﬁ,7€ﬁ+7,a

- (—1>X(’6’7)+X(ﬁ”6)X(’Y’7)67,a67+aﬁ.

Multiplying (4.37) by these signs and by (—1)®X(#:8)+bx(y:7)+ex(@e) and using
compatibility of H,(—) and X, we deduce that

(,1)(c+x(%“/)*2)(a+x(a’a)*2) ot gy (—1)@TOXC L (P 5.,)°PE([0%,5.])
o { (eas (1) - Hopy oy 0)-2(PE 5) o PE((O3 5])(C K m)) K O}+

(_1)(a+x(a,a) DOxBA=2) ey, (—1)bFIx(@a) Hd(‘I’ZL a)OPE([(L)EJr’Y,a])
o {(eaA (1) Hyy o ny(5)-2(@F) o PE([O5 1) (n R 0)) K (}+

(—1) BB =DeAxmM=2) ¢ | g(—1)(cTOXEB) . Hd(q)pl—l-a,ﬁ)oPE([é’.y+a,ﬁ])
o {(67,a(=1)X @ - Heyy oy (y.a)-2(@8 o) 0 PE([03 ) (0 R () Ry} = 0.
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By (3.55) and @ = a + x(a, ) =2, b=b+ x(8,8) —2 and & = c+ x(7,7) — 2,
this is equivalent to

(=1 [[¢, ], 67! + (—1)™ ([, 017", (P + (—1)"[[6, 7, )™ = 0.

This proves the graded Jacobi identity for [, JP!, completing part (a).
For part (b), let o, 8 € K(A). Consider the diagram

[/ Gn] X [%/ G [/ Gm]
XMy, x Mj xid ey o, M., x My Moty et
iid[*/GmP X1 J{id[* SmI XI5 HZI,BL

[*/Gm] X [*/Gm] Pxidma X Mg)P! [*/Gm] X H<M"XMI3)p1
X (Mg x Mg)P! (Mo x Mg)P!

M, x Mj

(Mg x Mg)P (4.38)

\Lid[*/fnm] X ‘I’Zl,ﬂ \L‘I’ZI,B ﬁgl,ﬂ \L
[¥/G] X v, ) 7, pl pl
(Mo x My)P! (Ma x Mg)P M x M.

Here the top squares obviously commute, the bottom left square commutes by
for the [x/G,,]-action \Ilzl 5> and the bottom right square commutes as
1Y is a principal [#/G,]-bundle with [x/G,,]-action \I/g{ﬁ.

The three right hand horizontal morphisms in are principal [x/Gy,]-
bundles, with the top two trivial, and the left hand morphisms are the cor-
responding [*/G,]-actions. The right hand squares are pullback squares of
principal [*/G,,]-bundles, and the left hand squares show these pullbacks are
compatible with the given [*/G,,]-actions.

We have a perfect complex é;ﬂ on (M, x Mg)PL, the bottom middle object
in (4.38), which is weight 1 for the [x/G,,]-action. Pullback by the middle

column in (4.38]) yields
(W25 0 (idp /e, 2 x 115 5))" (02 )
= (idpy/g,.)2 X HE{B)*(WE‘*/GM](EQ ® ﬂ-z/\/l(,x/\/lﬁ)m(é);,ﬁ)) (4.39)

=6, (B1) @ Ty, ng( 0.5)s

where 1the ﬁI:st step holds by 1} as (:); 5 1s weight 1 for \Ilzl 8 and the second
as (II7, 5)* (08, 5) = O%,slmz xay, - Let ¢ € Hy,(M,,) and 1 € Hy(M}), and set

[e%
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d=a+b-2x(a,B) —2. Then we have

P50 ([T1(Q), T(m)=°) = T1PLy o (¢, mlo) = Ha(TI8, 5)([€, o)
= Hy(II?, ) > eap(=)™PD . Hy (24 )
xR (R ) N (07 4)])
= cap(=1)™XPP - Hy (I, 5 0Za )
o PE([r],/q,, (B @y ><M’( B (CRn)
a5 (= 1)“"(" D Ha(®F 50 Wh 5 0 (idpsc, )2 X 117 5))
o PE([(¥2); o (id}s /.2 x TIE.5))* (2, 4)]) (¢ ®n)
ws(—1)x5 5. Hy(®F ) 0 PE(O7, 5]) 0 Hayp(TTE 5 o T 1) (¢ K )
€a,8(— 1)“"‘5 B Hy (98 5) 0 PE([6, 5]) (TIR'(Q) K IT (1))
= [Ho(TI)(Q), Hy () ()P = [TEL, o T(C), TIEL, o TH(m)] ™. (4.40)
Here II(¢) involves the projection II : H, (M) = H.(M.)*=° from Defini-

tion and TP, is as in . The first step of uses [[1(¢), II(n)]*=Y =
II([¢, n]o) by The second and ninth steps follow from IT?L oIl = H, (1121
as in Definition|3.22] for v = «, 8, a+5. We use in the third step, Assump-
tion @(a) and functoriality of H,(—) in the fourth, 1D and Hgl_s_ﬁ 0E43 =
@g{ o \Ilpl o (idp/g,,)2 X le ) in the fifth, Assumption [2.39(b) for the right
hand rectangle in in the sixth, le o le =TIIP! x le and compatibility
of X with H,(—) in t e seventh, and in the eighth.

Since IT : H, (M) — H*(/\/l')t=O is surJectlve, equation implies that
) - H (M')'=% — H,(MP) is a morphism of graded Lie algebras over R.
This completes the proof of Theorem |3.29

4.7 Proof of Theorem [3.33

Work in the situation of Definition We must show [, |'*>0 satisfies graded
antisymmetry and the graded Jacobi identity . Let ¢ € Hy(M,),
n € Hy(Mp), and 6 € H.(M,) for o, 8,7 € K(A) with rka,rk 3,1k > 0 and
a,b,c >0, and write a = a+2— x(o, @), b= l~)—|—2—x(ﬂ,6), c=c¢+2—x(v,7),
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so that ¢ € Hz(M,), and so on. Then for antisymmetry we have

[, ()"0 = > (ﬂ{z;iﬁm)l -t' o [n, ¢l

1>20:2l<a+b—2x(a,8)—2
—rk

= X <—1)1+d5+l+m(rk(a+5))l -t (£ 0 [Cmliem)

1,m>0: 2(I+m)<a+b—2x(a,8)—2

_ Z (_1)1+aé+l+m(ﬂ<zarlj_ﬁﬂ))l (X ™) 0 [Cnim

1,m>0: 2(I+m)<a+b—2x(a,B)—2

_ Z (_1)1+a5+l+m (l "‘lm> (ﬂ)l A G 1C M

1,m>0: 2(I4+m)<a+b—2x(a,8)—2 I‘k(a + ﬂ)

ab+n 7I'kﬂ " n
= (—1)ttart (1+ m) " o [¢,n]n
n>0: 2n<a+b—2x(a,B)—2

ab —1ka \7
= (_1)ab+1 Z _—tka .tno[c,mn
n=0: 2n<a+b2x(a’5)2(rk(a + ﬂ))
= (=1)*HH¢ ",

using (3.59)) in the first and last steps, (3.28)) in the second, (3.18)) in the third,
(3.15)) in the fourth, and changing variables to n = [ +m and using the binomial

theorem in the fifth. R
For the Jacobi identity, with d = a+b+c—x(a+B+7, a+B-+7v)+2 we have
(_1)éa“ ,,,ﬂrk>076]rk>0+<_1)dl~)[[n70]rk>07C]rk>0+(_1)56[[97drk>07n}rk>0

(_1)5&( —rka )m< —rk(a+p) )l . tl o [tm o [Can]mae}l

I

rk(a+p) rk(a+B8+7)
1,m>0: 21<d, 2m<a+b—2x(a,B)—2
ab(_—rkB \m( —rk(B4+y) \! 1 m
+ (-1 (rk(6+»y)) (rk(awﬁw)) o [t o [0, 0]m, Cli

1,m>0: 21<d, 2m<b+ce—2x(8,v)—2
be( —rk m . —rk(y+a) l 1 m
+ Z (D" (trey)” (Rarrsy) 1o ™ o [0, Cms il
1,m>0: 21<d, 2m<cta—2x(v,0)—2
pos rk ™k l—m
= > (D= () S SR t o [[C s, O
1,m>0: 21<d, m<l
ab rk 8)™ (rk t-m
+ Z (_1) b(_l)l(ra) ((rk€t1+,(3+€7’ﬁ);rgpl—m ! tl < [[77, a]m, dlfm
1,m>0: 21<d, m<l
bé rk )" (rk a))l—m
+ Z (_1)b (_1)l(7£71) ((rk’(y,l+l(3+(f;{)—)~_m4)r)l—m : tl ¢ [[07 C]my n}l—m
1,m>0: 21<d, m<I

(4.41)
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_ Z (_1)éa+m+n (m:n)xm(x + y)n L pmEn [[Q n]m’ 9]n
m,n>0: 2(m+n)<d
D (G () ([0, 6,
m,n>0: 2(m+n)<d
DD (DR ) 0 ([0, Clan, ) = O,
m,n>0: 2(m+n)<d
using (3.59) in the first step, (3.26) in the second, changing variables from [ to
_ : : _ rk o _ rk 8 _ rk
n = | —m and substituting x = ot Y T wari) 2T rk(aJrng) SO
that £ + y 4+ z = 1 in the third, and using (3.35)) with = 0 in the fourth.

4.8 Proof of Proposition |3.35

Let o, f € K(A) withrka,rk 8 > 0 and ( € Hy,(M,,), n € H,(Mg) for a,b > 0.
Then setting d = a + b — 2x(«, §) — 2, we have

™0 = Y eap(—1)ED (Ee)" . Hy(Uayp) ("R
ot {Hizon(Eap) (XD IR(C RN ([05.5)]) })

= Y s ()" Hy(Vasp o (idg,, X Zays))

1,n>0: 2i<a+b, i—n—vy(a.B)— .
Snx(es) 1 (7RO R [(CR ) Ne([054))])

= Y ap(-) O ()" Hy(Xap) 0 Ha(Y X idat, x )

i,n>0: 2i<a+b, i—n—y(a.B8)— .
Snx(en 1 (7 Ry "D TR [(CR ) Ne([054))])

= > ca (=)L) ()" ()"

i,n,p,q=20: 2i<a+b, n<p, .
p+qp:%7)((a,ﬁ)fl b Hd(Xa,B)(tzlj X tg X [(C X n) N Cl([ Q,B])])

rk B)P (rk )?
= > cap(-)rrxBA OGRS (4.42)

i,p,q=0: 2i<a+b, °
;i)p({kq+xza?ﬂ)+1 Hd(Xa,ﬁ) (tf X tg X [(C X 77) n Ci([@a,ﬁ])] )7

using (3.17), (3.22) and (3.59) in the first step, functoriality of H,(—) and

compatibility with X in the second, and the next equation which follows from

(13.6)—(3.7), (3.20), and (3.62)), and functoriality of H.(—), in the third:

Voo (idg,, X Eap) = Xa,p 0 (T X ida, xamp,)
[*/Gp] X [#/Gp] X My x Mg — Mayg,

where T : [*/G,,]?> — [¥/G,,]? is the stack morphism induced by the group
morphism v : G2, — G2, mapping v : (A, 1) — (A, \)
The fourth step of (4.42)) substitutes in the formula for H,(T):

Hopyom(T) : t0 R —s > (,7,) - Rt

p,q20: p+g=n+m, g<n
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which can be proved from Assumption c¢). The last step uses
+ —rk n—=q __ rk P _ rk3  \P
Z:(tlz (n]iq) (rk(aJroé)) - (1 - rk(aiﬁ)) - (rk(a+ﬁ)) ’

by the binomial theorem. Equation ({.42) proves (3.63)), and Proposition [3.35]

4.9 Proof of Proposition

In the situation of Proposition we have
[s"QC, O™ >0 = min!(rka) "™ (k B) " - [t™ o ¢, t" o n]E>0

—m —n —r l m n
=m!n!(tka) " (rk 3) " - Z (ﬁ) totmoth o)
1>20: 2(I-m—n)<a+b—2x(,3)—2
— — —rka \!
= Z mlnl(rk o)™ (rk 8) n(rk(aiﬁ))'
k,1>0: k<n, .
2(k+l—m—n)< (_1) (’rf’b)(n k:) tl (kOKan]k-i-l—m—n)
a+b—2x(c,8)—2

= Z mlnl(r

ka) =" (k B) " ()
b ken (L) () () - 5 o [l
a+b—2x(a,)—2
= Z mn!(rka)™"(rk 5)~ (rk—éljr%))jfk+m+n_

$k20: ks, (—ktmtn)! (j—ktn)! _ (j+mtn)! j+m+
Q_JQSX‘E;’?B)_Q (=™ T G—F )T (n=k)T B —kfmtmy P "o [l

= X k)T RA) T (ra) T [T () ()]
@R (C)™Mm )l o (0 [C )

—m— —rka \J j
(m+n)lk(a+8)) "t e N () - o (Gl
J20: 2j<a+b—2x(a,B)—2

using (3.64]) in the first step, (3.59) in the second, (3.26)—(3.27) in the third,

(3.15) and (3.18]) in the fourth changing variables from [ to j =k +1—m —n
in the fifth, using (3.26)— and rearranging in the sixth, substltutlng in
S 0 ( )( —tka )"TF = rkﬁ )" by the b1nom1al theorem in the seventh,

rk(a+ rk(a+[3)
and ( and in the eighth. This proves , and the proposition.

4.10 Proof of Theorem [3.40]
We work in the situation of Definition [3.39]

mix

4.10.1 Proof of graded antisymmetry of [, |

First we prove graded antisymmetry of [, ™ that if o, € K(A) and ¢ €
Ho(Mo)™>, i1 € Hy(Mpg)™, and @ = a+ x(o, ) — 2, b= b+ x(8, 8) — 2, then

[7, {7 = (— 1)@+ [, i, (4.43)
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We do this following the cases of Definition a)—(e).

In case (a ) (rka rk 8, rk(a+p) # 0), equation follows from the proof of
Theorem [3.33|in §4.7] and in case (b) (rka = rk 8 = 0) it follows from Theorem
3.200 For case (c ), w1th rka = 0 and tk 8 # 0, let s @ (C + I, o H,(My)) €
H,(My)™> for ¢ € Hy(M,), and n € Hy(Mg)™* = H,(Mpg). Then

[, 8™ @ (C+ I 0 Ho(Mg))] ™™ = Sm@( > (=)Mo, Gn)

n>0: 2n<a+b—2x(a,8)—2

— Sm@( Z (_1)1+&5+k Ao (tk o [Ca n]kJrn))

k,n>0: 2(k+n)<a+b—2x(c,B)—2

=sm0( 3 )T o [C )
k,n>0: 2(k+n)<a+b—2x(a,B8)—2

=m0 3 (DML (-1 ()] ¢ o o)

7=0: 2j<a+b 2x(a,8)—2

= (1) gmQ¢, o = (—1)'H [sm ® (C+ I 0 Ho(Ma)),n] ™™,

using (|3 in the first step, ) and ( in the second, and ( - ) and

(13.18]) in the third, changing Varlables from n to j = k4 n in the fourth,
substituting Y7 _,(—=1)*(}) = (1 — 1) by the binomial theorem which is 1 if
j = 0 and 0 otherwise in the fifth, and using (3.68) in the sixth. This proves

(4.43) in case (c). Case (d) follows from case (c¢) by exchanging (, 7.
For case (e) (tka = —rk 8 # 0), we have

¢ = " B s @ ([, + Lo Ha (M)

n>0: 2n<a+b 2x(a,8)—2

=Y BB @ ((—1) ¢ ), + Lo Ho (Mo)) = (—1) 3 1[C, ],
n>0: 2n<a+b 2x( ,B)—2

using (3.70)) in the first and third steps, and (3.28) modulo I; and tka = —rk 8
in the second. This proves (4.43).

4.10.2 Proof of equation (3.72)

Let a, 8 € K(A), ¢ € H.(My)™*, n € H.(Mp)™* and m,n > 0. We will prove
following the cases of Definition a)—(e). Case (a) (rka,rk g, rk(a +
B) # 0) follows from Proposition [3.37] Case (b) (tka = rk 8 = 0) is obvious
from s"Q(s" ® () = s™" ® ( and (3.67). For case (c), with tka = 0 and
tk 3 # 0, let s? @ (¢ + Iy o Ho(My)) € Ho(My)™> for ¢ € H,(M,), and
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n e Hb(./\/lg)mix = Hb(Mﬁ). Then

[s"Q(s? @ (¢ + It 0 Hi (M), s On] ™

= [smﬂo QR (C+ Lo Hi(My))),nlck 8)™" - t" o 77] mix

=nl(tk B)7" - sMTPOIC " o nlo = s"TPO(nl(tk B) 7" - " o [¢,nlo)

= s"PO(s"V[¢, mlo) = s"TO(sPQ¢, 1)o)

= sm+”©[s” ® (C+ I 0 Hi(My,)), 77} mix
using s Q(sP ® () = s™P ® ¢ and in the first step, in the second,
in the third, in the fourth, that © is an R[s]-action in the fifth,

and (3.68) in the sixth. Case (d) follows from (c) and ([£.43). For case e)
(tkaw=—1k 8 #0),if ¢ € Hy(My), n € Hy(Mp) and m,n = 0 we have

[Sm@<7 Sn@n] mix
= Z m!(rkOz)*”””n!(rkﬁ)*”(rkpéy7

p=0: 2p<La+b+2m+2n—2x(a,8)—2

= 3D R () () 0 (Gl + Lo (M)

p=0: 2p<a+b+2m+2n—2x(a,B)—2

r a m4n m4+n mix
= 3 D gminta g (¢, + I o Ha(Mo)) = s O, ],
4>0: 2q<a+b—2x(a,B)—2

using and in the first step, modulo I; and rka =

—rk ﬁ in the second changmg variables to q = p m —n and rearranging bino-
mial coefficients in the third, and using (3.70)) and s™™"Q(s?®0) = sm "1 ®0
in the fourth. This proves (3.72)).

2@ ([t™ o (,t" ], + I o H (M)

4.10.3 Proof of the graded Jacobi identity for [, |™*

Finally we prove the graded Jacobi identity, that if «, 8,7 € K (A) and g_ €
Ho(Mo)™>, i1 € Hy(Mp)™™, § € H(M,)™*, and @ = a + x(a, ) — 2, b =
b+X(ﬁ7ﬂ) _27 c= C+X(’777) _27 then

(—1)E[[C, )™, 6™ 4 (— 1) ([, 6™, ™ 4 (—1)PF[[G, CJ™, g™ =0, (4.44)

We must split into cases according to whether each of rk o, vk 8, rk~, rk(a + ),
rk(B8 + ), rk(y + a),rk(a + 5 + ) are zero or nonzero. This gives 18 possible
cases, but as (4.44) is invariant under cyclic permutations of (o, 3,7), (&,l;, é),
(¢,7,0), up to cyclic permutations we reduce to the following eight cases:

a) all tk v, . .., tk(a+B+7) nonzero; (
c) rka = rkﬁ =0, rkvy # 0; (d) rk oo = 0, all others nonzero;

e)tka=rk(8+7v)=0,1k3 #£0; (f) rk(a+3) =0, all others nonzero;
g) rk(a+pB)=rk(a+7)=0, tka#0; (h) rk(a+B+~)=0, others nonzero.

b) tka =tk =rkvy = 0;

(
(
(
(
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We also make the following simpliﬁcation as - holds (proved in §4.10.2)),
if rka = 0 it is enough to verify (4 for elements ¢ = s° ® (¢ + I; o H*(./\/la)
in Hy(Mqg)™>, as smQ(s° ®(§—|—It<>H (Ma))) =" @ (C+ I o Ho(M,)), and
similarly if rk 8,tky = 0. We set d=a+b+c—2x(c, 8)—2x(a,v)—2x(8,v)—

Case (a) follows from Theorem [3.33] and case (b) from and Theorem
For case (c), let tka =tk 3 = 0, tky # 0 and consider ( = s° ® (¢ + I; ¢
H.(My)), n=38"®(n+1T;0H.( Mpg))and § = 0 for ¢ € H,(M,), n € Hy(Mp),
and 0 € H.(M,). Then

(= 1)P G, ™, 014 (= 1) [[7, 6™, ™ (—1)P°[[8, ™, 7™

= ()DL, 0o+ ()P0 ()7 o [, 6o, L)

m>0: 2m<a+b+c—2x(B+v,a)—2

(RO () o [ 0 [0, sl )
m,n>0: 2n<et+a—2x(y,a)—2,
2m<a+b+c—2x(v+a,8)—2

= PO ()@ nlo, 6o + (-1 D0 (=)™t o [, 6o,

m>0: 2m<a+b+c—2x(B+v,a)—2

L S (M) e [0.Clatlnen) =0,

m,n>0: n<m,
2m<at+b+c—2x(v+a,8)—2

using (3.67)—(3.69) in the first step, (3.26) in the second, and (3.35) with I =0,

x =9y =0 and z =1 in the third.
In case (d), if { = s*® (C—i—[toH*(./\/la)), f=mnand 0 =0 for ( € H,(M,),
n € Hy(Mp), and 0 € H.(M.) then follows from with rka = 0,
since (3.68)(3.69) come from with rk oo = 0, and rk = 0, respectively.
In case (e), if { = s ®(C—|—It<>H (M), 1=mn, 0 =0 for ( € Hy(M,),
ne Hy(Mg), 0€ H.(M.,,), then

(—1)P ¢, )™, ] 4 (— 1) (77, ], ™ 4 (—1)P[[9, ¢ ™, 7]
= Z (1) (rknzu) 5™ @ ([[¢, o, Om + I © Hi (M)

m>0: 2m<d
- > (1)@ DT @ ([, 0)m, Clo + I © Ho(Mo)

m>0: 2m<b+c—2x(8,7)—2

+ Y (ke BT g g ([t 0 [0, (s M + T 0 Hi (M)

m,n>0: 2m<d, 2n<ct+a—2x(y,a)—2

= > R 5 (<1 (€1l B+ (<1 [ Bl o
B N Z DR () 110, Clas M- + T © Ha(Mo) )

n>0: 2n<c+a 2)(("/ a) 2
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= ) Emg ((—1>5a (6,700l = (=1)% [C, 1, ]l
m2>=0:
2msd + Z TI, tk [Cv o]k-l—n]m—n + It < H* (MO))
k,n>0: 2k+2n<c+a 2x(v,)—2

- %-sméé(—l)éa([[@ﬁ]o,e]m ~ (6961l

Im<d + Z ca+k )(m n) 7, [¢, 0kan]mon—k + It © Hy (Mo))

k,n>0: 2k+2n<c+a 2x(y,00)—2

-y %.sw(—l)éa(uc,mo,ﬂm = [¢ [, lmlo
m20:

B S COEE) ) 1 G by + T 0 Ha(Mo) )

k,p>0: k<p, 2p<c+a 2x('y,a)72

= > EA @ (1) (¢ Mo, Ol — €, 11, Ol
m2>0:

2ri<d + (= 1), [C, Blolm + I o Hu(Mo)) =0,

using ([3.68)(3.70) in the first step, and tk 5 = —rk+y in the second,
(3.28) in the third, in the fourth, changing variables from n to p =k +n
in the fifth, using ZZ:O(_l)k(z) =1if p =0 and 0 if p > 0 in the sixth, and
using with [ = 0 in the seventh.

In case (f), if ( = ¢, 7=mn,0 =0 for ( € Hy(M,), n € Hy(Mp), and
6 € H.(M,), we have

(= 1)P (¢, 7)™, )™ 4 (—1) ([, )™, €™ - (—1) ([, ™, 7)™
= > (=TT [, Olo

m>=0: 2m<a+b—2x(a,8)—2

a —r m —rk l m
Y )P () " (FEEE) o [t o [, O, €
1,m>0: 2I<d, 2m<b+c—2x(8,v)—2

bé( —r —rk l
+ Z (_1)bc(rk('yi:;))m( rl((’y'y+a)) ’ tl < [tmo [eadmvn]l
Lm 21<d, 2m<eta—2x(v,a)—2

rk tm
( rkg 0[[4-777]777,76]0
<a +b 2x(O< B)—2

;
s
L

T m T l—m
(—1)3 (1)t (1) SEEEEI " 4l o ([, O, Clim
21<d, m<l

rk )™ (rk a))l—m
(—1)Pe(—1)! (1) A o ([0, o, i
21<d, m<l
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= > YT () o ([l B
m,n>0: 2(m+n)<d

Y (YR Ty y o 2) o ([, 6],
m,n>0: 2(m+n)<d

+ DT (LR () (g ) o ([0, (= 0,

m,n20: 2(m+n)<d

using (3.59 - and (| in the first step, (3 and | 1lr{1ﬂthe second

Changlng Varlables from l to n =1—m and Substltutmg T= g5 Y= rk'y’
z =1 so that x + y + z = 1 in the third, noting that x +y = 0 so onlyn:O
contributes in the first sum, and using with [ = 0 in the fourth.

Similarly, in case (g), if { =¢, 7 =1, 0 =0 for ( € Hy(M,), n € Hy(Mp),
and 6 € H.(M,), we have

(=) 1C, 7], B4 (=1)™ [, 0], (™4 (=) [ [9, ¢, )
Z (—1)ea L smO[C, nlm, Blo

m> 2m§a+b 2x(a,,8) 2

a —r m —rk l m
- (—1)% ()™ (22 - tho [t [, O], €l
1,m>0: 2I1<d, 2m<b+c—2x(B,v)—2
- (—1)be KT 5[0, (o, )0

m>=0: 2m<ct+a—2x(y,a)—2

= ()P (5L)™ - 4™ o [[Cnlm, 6o
m>=0: 2m<a+b—2x(a,8)—2

a rk ™k l—m
(—1)3 (1)t (L) HEELE 4l s ([, O], Clim
,m=0: 2l<d, m<l

+ ( 1)bc<£i§g)m'tmo[[evdm?n]o

m20: 2m<ct+a—2x(y,a)—2

— Z (_1)6&+m+n (m;l—n)mm(‘,lj + y)n . tm+n o [[C7 77]m7 H]n
m,n>0: 2(m+n)<d

+DD (I (T g (y g2y o [, 6],
m,n>0: 2(m+n)<d

D PR ) 47 0 ([0, sl = 0,

m,n20: 2(m+n)<d

using (3.59)), (3.68)) and (3.70]) in the first step, (3.26) and (3.64) in the second,

changing variables from [ to n = [ — m and substituting z = -1,y =2 =1 in
the third, noting that z + y = z + = 0 so only n = 0 contributes in the first
and third sums of the third step, and using (3.35)) with [ = 0 in the fourth.

In case (h), if ( = ¢, f=mn, 0 =0 for ( € Hy(M,), n € Hy(Mp), and
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0 € H.(M,), we have

(1)1, a™™, 0™+ (= 1) [, 1™, ™4 (= 1)*[[0, ™, 7™
= > CD%(aasm)” “kl.” 5L @ ([t 0 [, nlm, 01 + I © Ho(M))

1,m>0: 2I1<d, 2m<a+b—2x(,B)—

m (rk o)t m
+ Y ()P () “‘u) L@ ([t o [, O], i + I o H.(Mo))
1,m>0: 2l<d 2m<b+(' 2x(B,v)—2

n Z (_1)55( —rky )m(rkﬂ) st @ ([t™ o [0, ()i + It © Hi (M)

rk(y+a)
1,m>0: 21<d, 2m<eta—2x(v,a)—2
s m (rk )}
= Y (-l ()™ Sk L ([0l O + L o Ho(Mo))
I,m>0: 2I<d, m<l
rk a)!
Y () () st @ ([0, Oms Climm + L 0 Hi (M)
1,m>0: 21<d, m<l
C m r rk 8)!
+ >0 (P () st @ ([0, Clans i + Lo Ho(M))
l,m>0: 2l<d m<l
Z 5 ®( Yo (e B¢ ], 0] + (4.45)
BRSSO [, 0], +

(1)t SERED (g, ¢ )Ty H (M) ) =

using (3.59) and (3.70) in the first step, (3.26) and rk(a + 8 + ) = 0 in the

second, setting n =1 —m and rewriting in the third.
In the fourth step we note that reducing (3.35) modulo I; yields

S )T ) [l Ol +

m,n20: m+n=I

Z (—l)dgﬂﬁym(y-i-z)” cgmAn—l Hna e]m»dn +

m,n=>0: m4+n=I

Z (—1)55-"—[%27”(2-"-1')” Ao 6, C ] =0 mod I

m,n>0: m4+n=I

This holds initially for z,y, z with x +y + z = 1, but as it is homogeneous of
degree [ in x,y, z it also holds for z,y, z with = + y + 2z # 0, and then taking
limits shows it holds for all z,y, z. Putting x =rka, y =rk g and z = rky and
noting that rka + rk 8 + rky = 0 gives the fourth step of . This proves

(4.44), and Theorem
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4.11 Proof of Theorem [3.47]

Work in the situation of Definition For (a), let «, 8 € K(A), and consider
the diagram in Ho(Art"):

fpd fpd
MFX M = ”
i/ﬂMa XM (L(X7LB)
IIP'odet ) x (TP odet
Ma « Mﬁ ( odetq ) X ( odetg) Pplepl Lois (446)
Py, R N
\L leodeta+5
Ma+,8 PPl

Here the top quadrilateral commutes by (3.80)), the bottom by (3.73) and (3.78)),
and the right hand triangle by Assumption [3.43(f). Thus (4.46|) commutes.

Lifting to Artl' gives a 2-morphism 7/ : (IIP! o dety ) 0 (®a.p 0 (Tpq, X
Tmy)) = Lagpom. By the 2-Cartesian property in Definition of the second
diagram in (3.80)) for « + 3, there exist a 1-morphism

. fpd fpd fpd
b MPd s P

in Art]llg and 2-isomorphisms
CiTMays 0b = Pag o (Tam, X Tay), f:mob=m.

Now as in My, Mg, Moy are Artin K-stacks, which are categories
with functors py, : Mo — Schg, ..., pm,,, : Mags — Schg, and Mfolfd C
M, M%pd C Mg, Mg)_fﬁ C M4 p are substacks, which as in Definition m
are subcategories closed under isomorphisms, and maq, : Mg’d - M, ...,
TMaris MZ‘?_‘:B — M+ are the inclusions of subcategories.

Let A€ MP4 B e MP? be objects in these subcategories. Then (A, B) is
an object in M™P? x ./\/lgpd7 and evaluating ¢ at (A, B) gives an isomorphism

C(A,B):b(A,B) = ﬂMuﬂsob(A,B) — ®q go(Tam, XM, ) (A, B) = ®45(A, B)

in the category Mq4g. As b(4, B) is an object in ./\/lflpfﬁ C Mg+, which is
closed under isomorphisms in My4g, we see that ®, (A, B) is an object in
./\/lipfﬁ. A similar argument shows @, 3 maps morphisms in MP? x Mfﬁpd to
Mfapfﬁ. Hence &, g restricts to a unique @fﬁ% in {i as we have to prove.
For the restriction WP in (3.84), we use a very similar argument, but re-

placing (4.46) by the diagram

[#/Gon) x M4 o *
i,idXﬂ'Mu
[*/Gm] % Ma Tk o Xdetq [*/Gm] % P P 7) A La
R !
ilq}a det i/‘l’ P!
M, - P prl.

115



Here the top hexagon commutes by (3.80]), the bottom left quadrilateral by
(3.74), and the bottom right by Assumption h).
By restricting to substacks, we see that ® p, UfPd satisfy the analogues of

. So UiPd is a [x/G,,]-action on M pdand U'fed 3 free [x/G,,]-action
on /\/l We noted in Deﬁnition “ that l 82)) is 2-Cartesian, with columns
pr1n01pal [ /G, ]-fibrations. The rows of (3.82)) are also inclusions of substacks,
so the [*/G,,]-action for Hp tpa Must be the restriction of the [x/Gy,]-action W,

for IIP!. That is, Hgﬁfi d has [*/G,,]-action WP, This proves (a).

For (b), let K be algebraically closed, and recall from Deﬁnltion that a
[¥/G,,]-principal bundle p : S — T lies in a commutative square which
locally over T is equivalent to . Consider the diagram (really two diagrams
A, B combined)

/\/lgd ~ .
[/ Zn] x ME N
ar(*,La)
fd
ngwfﬁm N id
P
T{'M&% Ma s *
inc Xm 51 WMEI (447)
./\/l'a = P 1 .
[%/G ] x ME! det!,~ [%/Gy] X PP @
TrkaXdetzl -
Pl
HSNM L ¥~ ppl
Me 1 detz
Mg, pr!

in Ho(Art;"). Here when we write ‘A ~ B’ for an object or morphism, we mean
that B is the local approximation of A over MP' and P!, as in —2.24.
If we just write a single object or morphism A, then A = B, that is, A is equal
to its local approximation.

For the ‘A’ part of the ‘A ~ B’ in 1) the top left and bottom right
rectangles are the 2-Cartesian squares deﬁning ./\/l " and Mpfd. The
diagonal morphisms are those used to deﬁne H fd in , so the ‘A’ diagram
commutes.

For the ‘B’ part of the ‘A ~ B’ in , we have M/, = [¢/G,,] x MF!
locally over MP' and P ~ [*/G,,] x P! locally over PP! by applying the local
approximation (2.23)([2.24)) to (3.48) and (3.76)), ?nd these local approximations
identify TIP! le with the projections to MP', PP'. We see that det!, ~ Y,x o X
detP! frorn -, and - :

The approx1mat10n M ~2 [x/Zn] X Mgfd now follows by completing the
top left 2-Cartesian square of ‘B’ morphisms, using the 2-Cartesian square

[I/Zni . i
inc ﬁ\ *
[4/Go] LT
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in Art;l, where n = |rka|, and inc : [x/Z,] — [*/G,,] is induced by the
inclusion Z,, < G,, as the group of n'® roots of unity in G,, C K, noting that
we assume K is algebraically closed.

This shows that M™ ~ [x/Z,] x MP™ locally over M®' and PP!, and Hifffid :
M MPI s Tocally equivalent to the projection [#/Z,] x MPM — AP,
That is, Hl;f?d is a locally trivial [*/Z,]-fibration, as we have to prove. The rest
of (b) is immediate.

For (c), by there exists a 2-morphism 7’ : det? = L, o7 in Artj'.
Thus by the universal property in Deﬁnitionof the 2-Cartesian square
defining MP™ | there exists a 1-morphism b : ME! — MPM and a 2-morphism
Cimpymob=idym. Asm pm: MPIy AMPU s the inclusion of a substack,
this implies that MP™ = MP!. To show that MP4 = M,,, we note that
and imply that ITP! o dety, = Ly o7 : Mo — PPl in Ho(Art]lét)7 and then
use the same argument.

Generalizing to the triangulated category case needs only the obvious mod-
ifications. This completes the proof of Theorem [3.4
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Part 11
Applications in Algebraic Geometry

5 Lie algebras from quiver representations

We will now apply the constructions of Part [[] to the abelian category A =
mod-CQ and the triangulated category 7 = D’ mod-CQ for a quiver @, and
relate the resulting vertex algebras and Lie algebras to lattice vertex algebras
and Kac-Moody algebras. For simplicity we restrict to the field K = C, and to
(co)homology theories H,(—), H*(—) of Artin C-stacks over a field R of charac-
teristic zero, defined using ordinary (co)homology as in Example But the
analogues should also work for other fields K for which the results of hold.

5.1 Background on quivers and Ringel-Hall algebras
5.1.1 Quivers and quiver representations

Here are the basic definitions in quiver theory, following Assem at al. |4} §II].

Definition 5.1. A gquiver Q) is a finite directed graph. That is, ) is a quadruple
(Qo, Q1, h,t), where Qg is a finite set of vertices, Q1 is a finite set of edges, and
h,t: Q1 — Qo are maps giving the head and tail of each edge.

We call @ acyclic if it contains no directed cycles of edges.

We say that @ has no vertex loops if there are no edges starting and finishing
at the same vertex.

The underlying graph of @ is the undirected graph obtained by forgetting
the orientations of the edges of Q.

The path algebra KQ is an associative algebra over the field K with basis all
paths of length k > 0, that is, sequences of the form

’U()e%liﬂ — s = Vg1 i)vk, (51)

where vg, ..., v € Qo, €1,...,e € Q1, t(a;) = v;—1 and h(a;) = v;. Multipli-
cation is given by composition of paths in reverse order, or zero if the paths do
not compose. Then K@ is finite-dimensional if and only if @) is acyclic.

We define representations of quivers.

Definition 5.2. Let Q = (Qo,Q1,h,t) be a quiver. A representation of Q
consists of finite-dimensional K-vector spaces X, for each v € @Qq, and linear
maps pe : Xye) — Xpe) for each e € Q1. Representations of @ are in 1-1
correspondence with finite-dimensional left KQ-modules (X, p), as follows.

Given Xy, p, define X = @, ¢, Xv, and a linear p : KQ — End(X) taking
(5.1)) to the linear map X — X acting as pe, © pe,_, © -0 pe, on Xy, and 0 on
X, for v # vg. Then (X, p) is a left KQ-module. Conversely, any such (X, p)
comes from a unique representation of Q.
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A morphism of representations ¢ : (X, p) — (Y,0) isalinearmap ¢ : X — Y
with ¢ o p(y) = o(y) o ¢ for all v € KQ. Equivalently, ¢ defines linear maps
¢y 1 Xy = Y, for all v € Qo with ¢y 0 pe = 0c 0 @y(e) for all e € Q1. Write
mod-K@ for the categories of representations of ). It is a K-linear abelian
category. We will be interested in taking A = mod-KQ and 7 = D® mod-KQ
in the constructions of Part [l

If (X, p) is a representation of @, define the dimension vector dim (X, p) in
N@ < 7% of (X, p) by dim (X, p) : v — dimg X,. This induces a surjective
morphism dim : Ky(mod-K@Q) — 720, which is an isomorphism if Q is acyclic.
When A = mod-KQ we will always take the quotient group K(A) of Ky(A) in
Assumption b) to be ZQO, using this morphism dim.

If Q is a quiver, the moduli stack M© of objects (X, p) in mod-K@ is a
smooth Artin K-stack, locally of finite type. For d € NQO, the open and closed
substack ./\/ldQ of (X, p) with dim (X, p) = d is of finite type, and has a very
explicit description: as a quotient K-stack we have

MG = [[1,cq, Hom(K* ) KU/ TT o GL(d(v), K)]. (5.2)

Let Q = (Qo, Q1, h,t) be a quiver. It is well known that Ext’(D, E) = 0 for
all D, F € mod-K@ and ¢ > 1, and

dimg Hom(D, F) — dimg Ext' (D, E) = xo(dim D, dim E), (5.3)
where xq : Z20 x 79° — 7 is the Euler form of mod-K@Q), given by
xq(d,e) =3 cq, dv)e(v) = X .cq, dli(e))e(h(e)).

We write x5 790 x 720 — 7 for the symmetrized Euler form X (d,e) =
xo(d,e) + xg(e,d). It is independent of the orientation of the edges of Q.

Write n.,, for the number of edges e > ein Q, and write ayy = 2040w —
Nyw — Naww, Tor all v,w € Qg. Then for all d, e € 7% we have

xold.e)= 3 Gru—nu)dw)ew), x3™(d e)= 3 audv)ew). (5.4

v, wEQo v, WEQQ

That is, the matrices of y and Xgm are (Gpw —Now)v,weQ, and A= (Ayw)v,weQ, -
If @ has no vertex loops then n,, = 0, S0 a4y, = 2, and a,, < 0 for v # w.
This condition was important in the theory of Kac—-Moody algebras in §2.1.2]
as then (ayy)v,weq, is a generalized Cartan matrix.

5.1.2 Gabriel’s Theorem and Kac’s Theorem

A quiver @ is called of finite type if there are only finitely many isomorphism
classes of indecomposable objects in mod-K@. Gabriel’s Theorem [4, §VIL.5]
classifies quivers of finite type over algebraically closed fields.

Theorem 5.3 (Gabriel’s Theorem). Let K be an algebraically closed field. A
quiver @ is of finite type over K if and only if the underlying graph is a finite
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disjoint union of Dynkin diagrams of type A, D or E. If Q is of finite type
then the map [E] — dim[E] induces a 1-1 correspondence between isomorphism
classes [E] of indecomposable objects E in mod-KQ and the set of positive roots
in Z2° of the corresponding Dynkin diagram. Note that these do not depend on
the orientation of the arrows in Q.

Kac [82,/83] proves the following generalization:

Theorem 5.4. For any quiver ) without vertex loops and any algebraically
closed field K, the set of dimension vectors d = dim|[E] in Z2° of indecompos-
able objects E in mod-KQ coincides with the set of positive roots AL in 70 of
the derived Kac—Moody algebra g’'(A) from §2.1.2| associated to the generalized
Cartan matriz A = (Gyw)v.weq, of Q in Definition . If d is a real root then
there is a unique isomorphism class [E] of indecomposables E € mod-KQ with
dim[E] =d. If d is an imaginary root there are many such [E].

In fact Kac does not require @ to have no vertex loops, and so works with
generalized Kac-Moody algebras as in Remark [2.5[(ii).

5.1.3 Ringel-Hall algebras

Theorems [5.3] and [5.4] suggest that there should be a connection between cate-
gories of quiver representations mod-K@ and the theory of Lie algebras, and that
one might be able to reconstruct the Lie algebra g'(A) corresponding to @ from
the abelian category mod-K@ (or perhaps the derived category D’ mod-KQ).

Investigating this connection led to the idea of Ringel-Hall algebra, originally
due to Ringel [136},/137]. Schiffmann [141] gives a good survey. The basic idea
is that given a suitable abelian category A, one defines an associative algebra
H 4. Ringel-Hall type algebras are defined in four main contexts:

o Counting subobjects over finite fields Fy, as in Ringel [136,/137].

o Constructible functions on moduli spaces are used by Lusztig [105| §10.18—
§10.19], Nakajima [118] §10], Frenkel, Malkin and Vybornov [49], Riedt-
mann [134] and others.

Perverse sheaves on moduli spaces are used by Lusztig [105].

Homology of moduli spaces, as in Nakajima [118].
We will explain Ringel’s finite field version [136}137]:

Definition 5.5. Let [y be a finite field with ¢ elements, and A be a small -
linear abelian category with dimg, Hom4(E, F) < oo, dimy, Ext'y(E, F) < oo
for all E, F € A. Write M(IF,) for the set of isomorphism classes [E] of objects
E in A, which is the set of F,-points of the moduli stack M of objects in A.
Define H4 to be the C-vector space of functions f : M(F,) — C with finite
support. Then M(F,) has basis o) for [E] € M(F,), where §;g([F]) is 1 if
[E] = [F] and 0 otherwise. For all E, F,G € A, write Ng g ¢ for the (finite)
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number of subobjects U C F in A with F/U = E and U = G. Define a
C-bilinear multiplication % : H4 x H4 — H4 by

dp*dey= Y, Nerc: O
[FleM(K)

Then as in [136, Prop. 1], H 4 is an associative C-algebra with identity djo;.

Suppose that for all E,F € A we have dimp, Exty(E,F) < oo for all
i > 0 with Ext’(E,F) = 0 for i > 0, so that the Euler form y([E],[F]) =
Zi>0(—1)i dimp, Exty (E, F) is defined. Define the twisted Hall algebra HY to
be HY = H 4, but with the twisted multiplication

5[E] *tw 6[G] — \/‘}X([EL[G]) Z NE,F,G . 5[F]
[Fle M(K)

Again, HYY is an associative C-algebra with identity djq).

When A = mod-F,Q for a quiver () with no oriented cycles, Ringel [136,137]
and Green [56| (see Schiffmann [141}, §3.3] for a good explanation) describe the
twisted Hall algebra anV(V)d_Fq o 1n terms of quantum groups:

Theorem 5.6. Let Q) be a quiver with no oriented cycles, and F, be a finite
field with q elements. Then there is a unique, injective C-algebra morphism
T :Upp(ng) < Hrtnwd_FqQ with Y(S,) = 0jg,] for all v € Qo, where S, is

(o]
the v** generator of Upsz(ny), and E, € mod-F,Q has dimE, = §, € 790
Here Ugi/2(ny) is the quantum group U, (ny.) of the positive part ny of the Kac~
Moody algebra g'(A) = b ® ny @ n_ associated to Q, specialized at v = ¢'/2.
Furthermore, Y is an isomorphism if and only if @ is of finite type, i.e. its
underlying graph is a disjoint union of Dynkin diagrams of type A, D or E.

Here as in Jantzen |71] and Lusztig [106], the quantum group U,(g) of g =
g'(A) is a family of associative C-algebras (actually, Hopf algebras) depending
on a parameter v, and equal to the universal enveloping algebra U(g) of g when
v = 1. Quantum groups have many applications in mathematics and physics.

It was a long standing problem [137), p. 583] to reconstruct the full Lie al-
gebra g, or its universal enveloping algebra U(g), or the full quantum group
U,(g), from some version of the derived category D? mod-IF,@Q. Progress on
this was made by Peng and Xiao [129,/130], who used a somewhat ad hoc con-
struction to recover g from the 2-periodic derived category (D®mod-F,Q)/T?
for T : D’ mod-F,Q — D’ mod-F,Q the translation functor, by Toén [148] and
Xiao and Fu [154], who defined an associative ‘derived Hall algebra’ for derived
categories over F, such as D’ mod-F,Q (but which does not give U,1/2(g)), and
by Bridgeland [25], who defined a localization <H2Vz:(mod-IFqQ))loc of a twisted
Hall algebra of 2-periodic complexes in mod-F,Q with an embedding U,1/2(g) <
(Hé;VQ(mod_FqQ))loc, which is an isomorphism if @ is of finite type.
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5.2 The (co)homology of [/ GL(r,C)] and Perf.

For use in we now describe the (co)homology of the stacks [/ GL(r, C)]
and Perf(, and compute how morphisms ®, 5, ¥,., ®, 5, ¥, act on them.

5.2.1 Cohomology of [x/ GL(r,C)], Perf. using Chern classes
The next proposition is well known:

Proposition 5.7. Let R be any commutative ring, and let H.(=), H*(=) be
the cohomology theories of Artin C-stacks over R described in Ezample [2.35]
Then for any r > 0 there is a canonical isomorphism of graded R-algebras

H*([*/ GL(T’ C)]) = R[’Yl,’)/27.-.,’}/7-], (55)

where 7y; is a formal variable of degree 2i. That is, H**([x/ GL(r,C)]) is the
free R-module with basis the monomials vi* - --~v% for all ay,...,a, in N with
a; +2as +---+ra, =k, and H***1([x/ GL(r,C)]) = 0.

The 7y; may be interpreted in terms of Chern classes. Let E, — [x/ GL(r, C)]
be the rank r vector bundle associated to the obvious representation of GL(r,C)
on C". Then ¢;(E,) = ~; under for i = 1,...,r. If S is an Artin
C-stack and E — S is a rank r vector bundle, there is a unique morphism
¢ : S — [x/GL(r,C)] in Ho(Artc) with E = ¢*(E,.), and ¢;(E) = H*(¢)(vi)
in H?'(S) under fori=1,... r.

Proof. As in Example[2.35(a), H*([x/ GL(r, C)]) is the homology of a classifying
space for the topological stack Fg:,’,ffta([*/ GL(r,C)]). This is a classifying
space B GL(r,C) for GL(r,C) in the usual sense, as in May [109, §16.5, §23],
and is also a classifying space BU(r) for U(r) as the group morphism U(r) —
GL(r,C) is a homotopy equivalence. The proposition then follows from the
computation of H*(BU(r),Z) by Milnor and Stasheff |[114, Th. 14.5], and the

Universal Coefficient Theorem in Spanier [145, Th. 5.5.10]. O

Definition 5.8. As in Example c), write Perfc for the moduli stack of
perfect complexes on the point * = Spec C. Write Perfc = [], ., Perfe, where
Perf( is the moduli stack of rank r perfect complexes on *. Then Perfc, Perfg
are higher C-stacks. If S is a C-scheme then Hom/(S, Perf() is the co-groupoid
of rank r perfect complexes on S, up to quasi-isomorphism.

For r > 0, there is a natural inclusion ¢, : [x/GL(r,C)] < Perf( as an
open substack, by regarding [*/ GL(r, C)] as the moduli stack of rank r vector
bundles on *, and considering vector bundles as examples of perfect complexes.

The following proposition is also well known, at least to experts.

Proposition 5.9. Let R be any commutative ring, and let H,(—), H*(—) be
the cohomology theories of higher Artin C-stacks over R described in Example
235 Then for any r € Z there is a canonical isomorphism of graded R-algebras

H*(Perf{) & Rlvi, 72, - -, (5.6)
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where v; is a formal variable of degree 2i. That is, H**(Perf{.) is the free R-
module with basis the monomials A7 ---~.* for all ai,...,a, in N with a; +
2ag + - - + kay = k, and H*+1(Perfy) = 0.

The ~; may be interpreted in terms of Chern classes. Let £) — Perf( be
the universal rank r perfect complex on Perfi. Then ¢;(Ey) = +; under
foralli> 1. If S is an Artin C-stack and E* — S is a rank r perfect complez,
there is a unique morphism ¢ : S — Perfr in Ho(HStc) with £° =2 ¢*(E7),
and ¢;(E*) = H?(¢)(vi) in H*(S) under forall i > 1.

If r 2 0, so we have an open inclusion ¢, : [x/ GL(r,C)] — Perfg, then

under the identifications (5.5)—(5.6) we have

t=1,...,7

H(1) 1 i — {7”’ (5.7)

0, >

Proof. As in Example[2.35c), we define H*(Perf{.) to be the ordinary cohomol-
ogy H* (Fggfaf (Perfy), R), where F}'];;f? : HSt(ICft — Top,,, is the ‘topological
realization’ co-functor. It follows from Blanc [16, Th.s 4.5 & 4.21] that (as a
connective symmetric spectrum) Fgglt)f (Perfc) is homotopy equivalent to the

spectrum KU = Z x BU of complex topological K-theory, and Fg;fg (Perf()
is homotopy equivalent to BU = lim,,_,o, BU(n) for each r € Z. So the coho-
mology of Fg;i’g" (Perf) is the limit as 7 — oo in , giving . Equation
holds as ¢*(€?) = E,., so H?(1,) maps ¢;(Er) — c¢;(E,), where ¢;(E7) = v;
for all 4, and ¢;(E,) 2 ~; fori =1,...,r, and ¢;(E,) =0 for i > r. O

5.2.2 (Co)homology of [/ GL(r,C)], Perf¢ using Chern characters

Asin we prefer to work with Chern characters rather than Chern classes,
so we can use the formulae (2.47)) for direct sums and tensor products. Thus we
will use alternative presentations for H*([*/ GL(r, C)]) and H*(Perf¢):

Definition 5.10. Let R be a field of characteristic zero, such as Q,R or C, and
let H.(—), H*(—) be the cohomology theories of (higher) Artin C-stacks over R
described in Example m Propositions and give descriptions for
H*([«*/ GL(r,C)]) when r > 0, and for H*(Perfy) when r € Z. For all
i=1,2,..., define 3; € H*([*/ GL(r,C)]) to be identified with Ch;(y1,...,7:)
under (5.5), where v; = 0 for j > r, and define 8; € H*(Perf{) to be iden-
tified with Ch;(vy1,...,7v;) under (5.6), where Chy, Chg,... are the universal
polynomials defined in Also set By = r -1 in H([x/ GL(r,C)])
and H°(Perf(.).

Then by and Propositions and we have 3; = ch;(E,) in
H?([x/ GL(r,C)]) and 8; = ch;(€r) in H*(Perfy). If S is an Artin C-stack
and F — S is a rank r vector bundle, there is ¢ : S — [*/GL(r,C)] with
E = ¢*(E,), and ch;(E) = H?(¢)(5;) in H*(S) for all i. Similarly if £* — S
is a rank r perfect complex, there is ¢ : S — Perfy with £° = ¢*(£7), and
ch; (%) = H*(¢)(3;) in H*(S) for all i.
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As the coefficient of 7 in Chyg(7y1,...,v) is (—=1)*71/(k — 1)!, which is
nonzero, the elements /3, ..., 5; freely generate R[v1,...,7;], giving an isomor-
phism

H*([+/ GL(r,C)]) = R[B1, B2, .., Br] (5.8)
for r > 0, where (; is a formal variable of degree 2i. Note that and
are different isomorphisms. Similarly, for r» € Z we have

H*(Pel‘f&) = R[ﬂl,ﬂg,ﬂg,...]. (59)

Now we have also defined elements 5,41, Byr42, . . . in H*([*/ GL(r, C)]), which
are nonzero, but are not really taken into account by the description . As
in under we can write y; in terms of the §; by v, = C;(b1,. .., 58:),
where Cq, Csy, ... are the universal polynomials defined in 7, since the
C,;’s are the inverse polynomials to the Ch;’s. But +; = 0 in H*([*/ GL(r,C)])
if ¢ > r by definition, so the elements (1, fs,... in H*([*/ GL(r,C)]) satisty
Ci(B1,-..,08:;) =0 for all ¢ > r. Therefore we may also write

H*([x/ GL(r,C)]) = RI[p1, B2, B3,...]/(Ci(B1,...,B:) =0 Vi >r)
= R[B1, B2, B3, ...}/ I,

where (; is a formal variable of degree 2¢, and I,. := (C;(81,...,8;) =0 Vi > r)
is the ideal in R[f1, B2, .. .| generated by C;(f1,...,0;) fori=r+1,r+2,....
Under (5.9)-(5.10)), the morphism H*(:,) : H*(Perfy) — H*([x/ GL(r,C)]) is
identified with the projection R[B1, B2, B3, ... = R|[B1, B2, B3, - . .|/ Iy

Consider the graded R-vector space R[by,ba, .. .|, where b; is a formal variable
of degree 2i. Define an R-bilinear pairing - : R[b1, ba,...] X R[81,52,...] = R by

(5.10)

Herl m! .
—— m;=n,, all i,
(b5 - bR ) - (81852 -+ BRY) = (=1 (5.11)
0, otherwise.
Here we can write any two monomials in R[by,be,...] and R[B1, Ba,...] as

byt -+ byY and Byt - - - RN for N > 0 and m;, n; € N, by allowing m; =n; =0
for i > 0. The peculiar normalization ], [m;!/((i —1)!)™] in (5.11)) makes The-
orem below work. Equation (5.11)) induces isomorphisms for each k£ > 0

Rlby,ba, .. Jx = (RIB, Bas - k)" (5.12)

where R[by,ba,.. ]k, R[B1,P2,...]r are the degree k subspaces of R[by,ba,...]
and R[f1, B2,...]. Hence by (5.9), (5.10) and (5.12)) we have isomorphisms
Hy,(Perfy) = H*(Perf()* = (R[S, B2, B3, &) =2 Rlb1,ba, .. Jr,  (5.13)

H([+/ GL(r,C)]) = H*([*/ GL(r, O)])" 2 (R[B1, B2, Bs, - - Ju/Irk)

(5.14)
= Iy i={b€ R[bi1,ba,.. ] :b- =0V € L1},
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where I, = I, N R[4, B, - . .|k, and I3 is its annihilator in R[by,bs, .. .|x. Here
the first steps hold as H* (Perf.)*, H*([*/ GL(r, C)]) are finite-dimensional over
a field R. Thus we have isomorphisms

H*(Perf&}) = R[bl, b2, . .], (515)
H,([*/GL(r,C)]) 2 I C R[by,bs,.. ], (5.16)

where I? is the annihilator of the ideal I, in R[5, B2, ...]. Under —,
the morphism H, () : H.([*/ GL(r,C)]) — H.(Perf() is identified with the
inclusion I? < R[b1,ba,...].

We can also write the cap products on the (co)homology of Perfi and
[*/ GL(r,C)] using (5.9)-(5.10) and (5.13)-(5.14). For 0 < I < k, define an
R-bilinear map N : R[bl, ba, ..k X R[,Bl,ﬁg, .. -}l — R[bl, ba, .. ~]k—l by

(bam---bﬁl\’)ﬂ( (L wa)

- { [T, ma! b T PRUNTIN oy > ny, all 4, (5.17)
0,

2y (mi—na)!((i—1)H)m

otherwise.

Then —Np; acts on R[by, by, ...] as ﬁdibi for eachi = 1,2, .... Equation
is dual to multiplication R[S, B2, .. .Ji X R[51, B2, - - Jk—1 — R[B1, P2, .. .]r under
(5.11)). Since identifies the cup product on H*(Perf() with multiplication
in R[B1, 2, . ..], and the cap product is dual to the cup product as R is a field,

we see that (5.17)) is identified by (5.9) and (5.13]) with the cap product
N : Hy(Perfl) x H' (Perfy.) — Hy_;(Perfy).

Similarly, (5.17) restricts to zero on I, x I;; and maps I, X R[B1, B2, .. .Ji —
I7 ), and so descends to an R-bilinear map

N 12 x (RIBy, Bas - Ji/Tet) — I2hy,

which is identified by (5.10]) and (5.14)) with the cap product

N : Hy([*/ GL(r,C)]) x H'([*/ GL(r,C)]) — Hy_;([*/ GL(r,C)]).

5.2.3 Morphisms @, ;, ¥,,®, ;, ¥,, and their action on (co)homology

We define morphisms <I>T75,\I!T,<T>m, VU, related to the morphisms ®, ¥ in As-
sumption and compute their action on (co)homology.

Definition 5.11. For r, s > 0, define morphisms of algebraic C-groups

0 B
¥y : Gy x GL(r, C) — GL(r,C), brt (N A) — A4, (5.18)

Grs : GL(r,C) x GL(s,C) —> GL(r + 5,C), érs : (A, B) — (A 0) ,

125



where A, B are r X r and s X s complex matrices and A\ € G,,, and write

D, s : [*/ GL(r,C)] x [*/ GL(s,C)] — [*/ GL(r + s,C)],
U, : [%*/Gy,] x [*/ GL(r,C)] — [*/ GL(r,C)],
for the morphisms of Artin C-stacks induced by ¢, s, ;.
Writing E,. — [/ GL(r,C)], Es — [/ GL(s,C)], Erys — [¥*/GL(r + s,C)]
for the natural vector bundles from Proposition and F1 — [x/G,,] for the
line bundle from Assumption ¢), by (.18) we have isomorphisms

7 (Erts) = 7y ariro) (Br) @ Ty ars,o)) (Es),

. o . (5.19)
Ui (Er) = w6, (B1) © T qreney (Br)-
Similarly, for r, s € Z define morphisms of higher Artin C-stacks
®,  : Perf(. x Perfl, — Perf.™* by &, (F5,F2)=FroFe, (5.20)

U, : [%/G,,] x Perf. — Perf{. by V,.(L,Fy)=L®Fr.

That is, if S is a C-scheme then Perf{(S) = Hom(S, Perf() is the co-groupoid
of rank r perfect complexes Fp on S, and @, 4(S) : Perf{(S) x Perfg(S) —
Perf(."*(S) maps (F?, F?) = Fr @ F*. Similarly, [/G,,](S) is the groupoid
of line bundles L — S, and ¥,.(5) : [x/G,,](S) x Perf.(S) — Perf(S) maps
(L,F;)— L® F,. The analogue of is

(i);k‘,s(g;+s) = 71—1>k3erf6 (5;) 2] ﬂ—l*’erf(il (g;)7

ey o ) R (5.21)
\Ilr(gr) = 7-‘-[>s</([}‘,,,n](E‘l) ® TPerfy, (gr)
The following commute in Ho(HSt1):
[¥/ GL(r,C)] x [/ GL(s, C)] —————— [*/ GL(r + 5,C)]
Jerxas . ’ irte ) (5.22)
Perf( x Perfg = Perf[",
[¥/Gp] x [*/ GL(r,C)] v [*/ GL(r, C)]

¢id[*/Gm] Xl B LT‘\L (523)
[*/G,] x Perfg Perf( .

Applying Chern characters to (5.21]) and using (2.47)) yields
Chi(&)j‘,s(gz—i-s)) = ch; (ﬂ-lx;erfg (ET)) + ch; (7T-l*3erffJ (5;))7

chi(TrEN) = D (g, (B1)) Uchy(Tpers (E7)).
G, k>0:i=5+k

Equation (5.19)) implies the analogues for ¥, ;, ¥,.. Under the identification (5.9)
we have cho(E7) = r-1 and ch;(Er) = B; for ¢ > 0, and similarly for s,r+ s, and
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under the identification H*([*/G,,]) = R[r] from Assumption ¢) we have
ch;(Ep) = %Tj. This yields
i
HY(®,)(8;) =B W1 +1Rp;,  H(8,.)(8) =Y 7 BBy,

7=0

where By = r-1. As H*(®, 5) and H*(\,) are algebra morphisms, we deduce
the action on the full algebras R[f1, B2, O3, - . .J:

H*(D,5) (B -+ BrY) (5.24)
- H ("’) ™ BTN [ (BT L BN TN,
0<m; <ns
i=1,...,
H* (W) (Bky -+ Brn IN30, k... kn >0 (5.25)
1 N
= Z ileo.g IT]1+ N K (ﬁklfjl "'BkN*jN)'
0<jrk;, 1IN
i=i,...,

Here H*(®, ) is independent of r,s, but H*(¥,) depends on r as it involves
Bo = r - 1. Using the identification (5.10), the actions of H*(®, ), H*(V,) are
given by the same formulae |l 5.25)), modulo the ideals I,., I, I, 1.

Under the isomorphism and H,([*/G,,]) =& R[t] from Assumption
C) the homology actlons H (®5), Hi(¥,) are the dual R linear maps to

H*(®, ), H*(¥,) in - under the dual pairing , and the dual

pairing between R[r] and R[ ] in Assumptlon 0f(c). Calculation gives

Ho (@) [(B7" - D) B (BT -+ D3] = bl’““” bR (5.26)
H*(\i/r) [tkg(bjl T bjM)} M20, j1,....im>0 (527)
= > itz Ll (PR h) - (g - by kb - bry).

k1,...,kp 20, N20, l4,..., In>0:
k=ki+-+kn+li+-+in

Here in (5.27)), the terms in ly,...,Ixy correspond to those j; in (5.25)) with

Ji = k;, giving a term By, _;, = Bo =7 -1 in (5.25)), and the terms in kq,..., kum

correspond to those j; in (5.25) with j; < k;. When k£ =1 in (5.27)) we get
H.(T,)[t®(b), - b )]M>o Jroeendnr >0

(5.28)
=r: (blbjl ’ ]M + Z]Z U5t jl 1bJ1+1sz+1 o 'bjM'

By (5.22)—(5.23)), under the isomorphisms and H.([*/Gy]) & R[t],
the actions H,(®P, ,H*( r) of @, and U, on homology are given by

H* qj)rs) =2 H ( rs)|[°|Z|I° : I: IZ"[; _>I7(’)+s7
H*(\I/T) ~ (\I/ )|R[t]|Z|[o R[t] &Iﬁ — Is.
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5.3 Lie algebras from A = mod-CQ and 7 = D’mod-CQ
5.3.1 Set up of the problem
The next definition describes the situation we will study in the rest of

Definition 5.12. Let Q) be a quiver, and use the notation of Definitions
We will apply the constructions of Part [[| to the abelian category A = mod-CQ,
and to the triangulated category 7 = D’ mod-CQ, over the field K = C. We

cover the abelian and triangulated cases simultaneously. A bar accent ‘=’ will
denote objects in the triangulated case, so for example we write Mg, Pge,
Ug,...in the abelian case, but Mg, ®g.e, Vg, ... in the triangulated case.

We must specify the data in Assumption for A = mod-CQ, and in
Assumption for T = D’ mod-CQ. In Assumption b) we take K(A) =
K(T) = Z° to be the lattice of dimension vectors of @, and write elements of
Z9 as d,e, ..., regarded as maps d : Qo — Z. In Assumption (c) we take y
to be the symmetrized Euler form xg™ from Definition As in this is

x(d,e)= > awwdv)e(w), (5.29)

v, WEQo

where A = (@yw)v,we@, With ayy = 20w — Nyw — Ny, fOr Ny, the number of
edges e ein Q. If @ has no vertex loops then A is a generalized Cartan
matrix, and has an associated Kac-Moody algebra g'(A) as in

In Assumption (d) we define signs €q, for all d,e € 79 by

€. = (—1)Zrweay o del),
Then and Gy = 20y — Nyw — Ny IMply that holds, and the map
(d,e) — €q.e is biadditive, so f hold.

We write M for the moduli stack of objects in A = mod-CQ, and M for the
moduli stack of objects in 7= D? mod-CQ. Then M is an Artin C-stack , and
M a higher Artin C-stack, both locally of finite type. We have decompositions
M = T eneo Ma and M = [14cz00 Ma, for Mg, Mg the open and closed
substacks of M, M of objects with dimension vector d. As in we have

Ma = [[Leo, Hom(CHH) c¥D)/TT _ GL(d(v),C)].

There is a natural morphism ¢ : M < M restricting to tq : Mg — My for all
d € N9, from the degree 0 inclusion mod-CQ — D mod-CQ.

As in Assumption g),(h) we have morphisms & : M x M — M, ®g, :
Md X Me — Md—i—ea v [*/Gm] XM — M» \Ild : [*/Gm] X Md — Md
in the abelian case, and ® : M x M — M, @d’e Mg X Mo — /VldJre,
U [4/Gp) x M — M, Vg : [%/Gy) x Mg — Mg in the triangulated case.

Asin Remark there are natural perfect complexes Ext® in Perf(M x M)
and Ext® in Perf(M x M) whose cohomology at each C-point in M x M and
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M x M computes the Ext groups in A and T ertlng Exly o &Utd o for their
restrictions to Mg x Mg, Mg x Me, by (5.3)) and ( we have

rank Exty , = rank Exty . = xq(d,€) = Y (Svuw — nww)d(v)e(w).  (5.30)

v, WEQo

As in Remark [3.3(B) and Assumption B.1i) we set ©° = (Ext*)Y & o*(Ext®)
in Perf(M x M), and ©° = (Ext*)V & (&ct') in Perf(M x M), where o :
M x M —>M><./\/landa:./\/l><./\/l —>./\/l><./\/lareexchangeoffactors
Then @ and X = X 7" imply that rank ©F , = rank@‘ = x(d,e), a

in Assumption [3.1fi). The isomorphisms (3.8 . satlsfylng Assumptlon
E(j) (1) follow easily from properties of Ext* Sxt'

This defines all the data satisfying Assumptlon B.] for A = mod-CQ, and
Assumptlonmfor T = D’ mod-CQ. Let R be a field of characteristic zero, such
as Q,Ror C, and let H.(—), H*(—) be the cohomology theories of (higher) Artin
C-stacks over R described in Example[2:35] We can now apply the constructions
of §3.1-43.8] in these two situations. In particular, we will relate the vertex
algebras H, (M) in to lattice vertex algebras, and the ‘¢ = 0’ Lie algebras
Ho(M)*=° and HO(M)tzo in to Kac-Moody algebras.

In the triangulated case, the shift functor [1] : D* mod-CQ — D®mod-CQ
induces an isomorphism ¥ : M — M in Ho(HStlft), restricting to an isomor-
phism £g4 : Mg — M_gq for all d € Z%0. This © preserves all the structures
above, including (X x£)*(0°*) =2 ©°. Thus, H,(X) : H.(M) — H,(M) descends
to an isomorphism of graded Lie algebras H,(%)=° : H,(M)'=° — H,(M)*=0.
We will see later that H,(X)? = id and (H,(X)*=°)2 = id, although X2 # id 5.

5.3.2 The (co)homology of Mg, My
Work in the situation of Definition [5.121

Proposition 5.13. For each v € Qq, define morphisms f[g Mg — Perfg(v),
Iy : Mg — [*/GL(d(v),C)|, which map a (complex of) Q-representations
(XvveQos Pececq,) to the vector space (or complex) X, at vertex v. Then the
following are homotopy equivalences of (higher) stacks, as in Definition m

Toco, 1y : Ma — T1,cq, Perfe” for all d € 29,

5.31
HUGQO H’& Mg — H'L}GQO [*/ GL( (U), C)] fOT’ all d € NQO' ( )

Hence by Lemma 2.38] for all d we have natural isomorphisms

= ®v€Q0 H* (Perfd(v )’
(v)
H (Perfd ), (532)
= ®,cq, ' ([+/ GL(d(v),C)),
([+/ GL(d(v), C))).



Proof. For all d, define morphisms

da: [lyeq, Perfe” — Ma,  ga: [l eq,*/ GL(d(v),C)] — Mgy

to map a collection (X, : v € Qq) of rank d(v) vector spaces or complexes, to
the corresponding (complex of) Q-representations (Xyr..reqy,0ceq,) for which
the edge maps p. : Xp(e) — Xy(e) are zero for all e € Q1. Then (Hver 1’[3) 0G4
and ([],cq, Hg) © ga are the identity. The compositions gq o ([[,cq, Ilg) and

gao([L,e Qo ITy) are not the identity. However, there are natural morphisms F :

CxMg— Mgand F:Cx Mg — Mg mapping (t, (XU:UEQmpe:eEQl)) —
(XvweQo: tPeec, ) on C-points, scaling the edge maps p. by t € C, and

F|{O}X/ﬂd :gdo(HUEQO ﬁz)a F|{1}X/\7[d :ld,
F|{0}XM¢1 =4gdo° (HveQO Ig), F|{1}><Md =id.
Hence ([5.31]) are homotopy equivalences, and ({5.32)) follows. O

Combining isomorphisms ((5.9)—(5.10)), (5.13)—(5.14]), (5.32) and the Kiinneth
Theorem gives explicit descriptions of the (co)homology of Mg, Mg. Explicitly,

for each d € Z9°, by and we write

H*(Ma) = R[Bawi:v € Qo, i=1,2,...], (5.33)

where B4, is a formal variable of degree 2i, and for each v € @)y, the factor

of H*(Perf®™) in (5.32) is identified with R[B4...; : i > 1] by (5.9). By (5.13)
and ([5.32) we write

H.(Ma) = Rbgyi:v€Qo, i=12,..1], (5.34)

where bg,; is a formal variable of degree 2i. Here as in (5.11), the pairing
between R[Ba,vi:v € Qo, i = 1] and R[bg.i : v € Qo, i > 1] corresponding to
the R-bilinear dual pairing between H,(Mg) and H*(Mg) is
My, Ty i
(Huer, i>1 bd,v,i) ’ (Hver, i>1 Bd,v,i)
Hver, i>1 My ;!

= Hver, i>1((i — 1))’
0, otherwise,

M i = Mgy all 0,4, (5.35)

where my ;,n,; € N with only finitely many m, ; and n,; nonzero. The pe-
culiar normalization [[, ;[m.:!/((i — 1)1)™] in is chosen to give the
isomorphism we want between H, (M) and a lattice vertex algebra from
in Theorem below. Also as in (5.17), the R-bilinear cap product N on
H,(Mg) and H*(Mg) is identified by (5.33)—(5.34) with

(Hver, i>1 bgff},i) n (Huer, i>1 B;vaz) =

m,,,,i! My,i =N, i .
(M1 —me (=D ) 07 H bdﬂ,’i My =Ny, all v, 1, (5.36)
vEQo, i=1 ’ ’ vEQo, i=1

0, otherwise.
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Similarly, for each d € N9°, by (5.10) and (5.32) we write

H*(Ma) = R[Bap,i:v € Qo, i =1,2,...]/14, where Iq is the ideal

] (5.37)
Iz = (Ci(ﬁd,v,h ooy Bdwi) =0 forall v € Qp and 7 > d(v)),
and by (5.16) and (5.32) we write
H,(Mgq) =15 C Rlbgy,i:veQo, i=1,2,..], (5.38)

where I3 is the annihilator of I in under the dual pairing . The
dual pairing and cap product for H.(Mgq), H*(Mg4) are identified with those
induced on I and R[Bq4,,; : v € Qo, i = 1]/I4 by (5.35)—(5.36]).

For the rest of we make the identifications (5.33)—(5.34) and (5.37))—
, so we just write H*(Mg) = R[Bdv,i : v € Qo, ¢ = 1], and so on. We
also write R[ﬁd,v,i TV € 6207 i > 1]k, R[bd,v,i TV € Qo, 1> 1]k7 Id,k:a I;,k
for the degree k graded subspaces of R[Bgv: : v € Qo, @ = 1],...,I5. We
write 14 for the identities in R[Bqv; : v € Qo, @ = 1] and R[bav,: : v € Qo,
i > 1], the generators of HY(Myg), H*(Mg), Hy(Mg) and Hy(Myg), and we
write Bq.,,0 = d(v) - 14 for v € Qp.

We can also use f and to compute Betti numbers of Mg and

Mg. In generating function form we have

> dim H¥(Ma)¢" = dim Hy(Ma)q* = [](1 - ¢*)719], (5.39)
k>0 k>0 i=1

d(v)
> dim H¥(Ma)g" = > dim Hy(Ma)d* = [ J[J-¢*)""  (5.40)
k=0 k>0 VEQq i=1

As in Definition translation [1] : D* mod-CQ — D’mod-CQ induces
an isomorphism ¥ : M — M, restricting to Xq : Mg — M_g4. It fits into a
commutative diagram

Mg _ M_a
— Zd —
Ty s Moca, 17| (5.41)
d(v) [Toeqy Zaw) —d(v)
[Loeq, Perfc [lieq, Perfc™

where ¥, : Perfi — Perf;" is induced by [1] : D’ Vecte — DP Vecte.
Now X*(€°,) =2 £2]—1], where £ is the complex on Perf(. from Proposition
Thus H?*(%,)(ch;(£%,)) = —ch;(Er), as ch;(F*[-1]) = —ch;(F*). Since

T

H? (1) (chi (E%(y))) = Ba,v.i» we deduce from (5.41) that

H*(£4)(B-dvi) = —Bdvi-

As H*(Xq) is an algebra morphism, it follows that
H*(Sa)([oeqy, 51 87a0:) = (ZD> " Teqy, is1 Bams
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for m, ; € N with only finitely many nonzero. The dual action on homology is
H.(Za)(ITueqq, i1 0ai) = (= 1) et [Tocqy, iz1 070 (5.42)
Note that H*(3)? and H.(X)? are the identities, although Y2 # id 4.

5.3.3 The actions of i)d,e, \ildﬁI)d’e, VU4 on homology

For all d, e € Z%° we have a commutative diagram

Mg x Me Maye
iHUEQO ﬁSXHvEQ ﬁu HWEQO ﬁg‘#ei/

Perf2™) x ([] Perfe™) _1lveen Taere Perfl o),
C
VEQR VEQRo vEQo

¢)d,e

(5.43)

where @4 is as in Assumption (g) and Definition and [, cq, Iy is

as in (5.31), and ®g(,) e(v) is as in (5.20). Applying H.(—) to (5.43) gives a

commutatlve dlagram on homology, Where the columns are the isomorphisms

(5.32). Thus by (5.15) -, and (5.34)), the action of ®4 . on homology is
T v, v,i v,iF Ny
H*((bd,e) [( H byd”,v@‘) & ( H b:,v,i)] = H bZ:-e,UZ ’ (544)
vEQy, i>1 veQo, i>1 vEQo, i>1

where m, ;,n,; € N with only finitely many m, ; and n, ; nonzero. By (5.38]),
H,(®g.) is the restriction of (5.44)) to a map IgKRIg — I, .
Similarly, for all d € Z9° we have a commutative diagram

[*/Gm] X Md 7 ./Vld
_ d _
it om ¥ Tueq 1 - e Hvl (5.45)
d(v) [Toeqq Yaewoll [*/Gm] x Perfd d(v) .
[%/Gm] x (] Perfz ") i H Perf .
vEQo vEQo
We can write the bottom morphism in (5.45)) as a composition
A id HU v
/G o] x (IT Perfd™) 22 T1([#/G] x Perfd™) LoeagPa) [ Perfd®
vEQo vE€EQo vEQo

where Ag, @ [*/Gm] = [[,cq,[*/Gm] is the diagonal map. Using the isomor-
phism H,([x/G,,]) = R[t] from Assumption c), we find H,(Ag,) acts by

Hor(Bg) () = > T .

ky 20, vEQo: vEQo
k:ZUEQO kv

writing Hy([[,cq, [¥/Gm]) = Rt : v € Qo] in the obvious way.
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Combining this with (5.45) and the action (5.27) of H.(Vgq(,) shows that
the action of ¥4 on homology is

H, (Ua) [t* R (ba,v, gy - bedyorsjng )] M0, v, 0as €Q0, G1svvesing >0

M .

[T, d(w;) Jit+ki—1
- Z Nl -y H ji—1 ' (5.46)
k1,...,kar =0, N0, i=1 v

wi,...,wNEQo, l1,...,IN>0: b b b b
k=ki+-+kpm+li+---+In ( d,vi,j1tk1 " Vdonim e Vdwal T da'LUNJN)'

By (5.38)), H.(¥q4) is the restriction of (5.46|) to a map R[t] K I3 — I3. As for
(5.28)), when k = 1, equation ({5.46]) simplifies to

H.(Wa) [t8(bav, jy - Ddorr,jnr )| M0, 01,000 €Q0s 1sevesing >0

= Y dw) - (ba.wibdw g Ddwsjar)
wWEQRo (547)

M
+ E Jit bdy'Ul’jl T bd’vi—lyjiﬂbd,vi’ji+1bd,vi+1,ji+1 T bd,vM,jM .
=1

Now Definition [3.9] defined an action ¢ of R[t] on H,(Mg) using H,(¥4), so
(p.47) yields

to (bd,v17j1 T bd,vM,jM) = Z d(w) - (bdﬂl}vlbdvvl»jl T bd,UMij)

e (5.48)

M
+ § :]i : bd7U1>j1 T bdﬂ)i—l7ji—1bdvvivji+1bdvvi+1vj7‘,+1 o bdﬂ)M,jM'
1=1

Lemma 5.14. The map t o — : Hy(Myg) — Hypi2(Myg) is injective for all
d € Z% and k € N, except when d = k = 0, when it has kernel Hy(Mp) = R.
The same holds for the map t o — : Hy(Mg) = Hpi2(Maq).

Proof. By , H.(Mg) has basis the monomials p = [T, 0, i1 bg;; where
my,; € N with only finitely many m, ; nonzero. To each such monomial p, let
us associate the number M (u) := max, j.m, >0j which is the largest j with
My,; > 0 for some v € Qp, and write M (1) = 0 for the monomial p = 1 for
which this is undefined. Suppose t o (3 nomials o @ - 1) = 0 in H, (Mg), for
coeflicients a,, € R with only finitely many @, nonzero, but not all a, zero.
Let M be the maximum of the M(u) with a, # 0. If M > 0, then by
considering the coefficients of monomials ' with M (') = M +1 in the equation
to (Zu a, - 1) = 0 we derive a contradiction, as such terms g’ come only from
those p with a, # 0 and M(p) = M, and are injective on such terms pu.
Hence M = 0, and the only possibility with a, # 0is u = 1. But tol =
Zwer d(w) - bg w1 by , so to1 =0 if and only if d = 0. This proves the
lemma for Mg, and the analogue for My follows by restriction. O

In we defined the ‘¢ = 0" homology H,.(Mg4)'=". As R is a field of
characteristic zero, this is Hy(Mg)=° = H.(Mgq)/(to Hy_2(Myg)). By Lemma
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this has dimension

dim Hk(./r/ld) — dim kag(./\jld), (d, k’) 75 (0, 2),

dimHk(Md)t:O = {dim H2(M0)’ (d,k) =(0,2),

and similarly for dim Hy(Mg4)'=°. Hence by (5.39)—(5.40) we have

> dim Hy(Ma)'=%" = ¢°da0 + (1 — ¢*) [[(1 — ¢*) 71!,

k>0 i=1

d(v) 4
Zdim Hi(Ma)'="¢" = ¢*6a0 + (1 — ¢°) H H(l —-¢*),
k>0 veQo i=1

where dgo0 = 1 if d = 0 and dq9 = 0 otherwise. With the alternative grading

H,(—) in (3.43), this gives

Z dim Hy.(Ma)'=¢" = 6a0+¢¥*¥2(1—¢ )H(1*q2i)7@°|a (5.49)
k>x(d,d)—2 i=1

d(v)
> dim Hy(Ma)'=¢" = bap+* 4D 2(1-¢*) [ [J(1-¢*)". (5.50)
k>2x(d,d)—2 vEQRQ =1

5.3.4 The Chern characters and Chern classes of é(.i,e7 @:i,e

Definition defined perfect complexes (:)(‘i,e, 03, on Magx M, and Mgx Me,.
We now compute their Chern characters and Chern classes.

Proposition 5.15. For all d,e € Z% and i >0, in H*(Mg x M) we have

(0= > > (“Dfavw - Baw; B Bewk; (5.51)

v, WEQo j,k=>0:7+k=1

where A = (aw)v weQ, 1S as in Deﬁnition and Bdw0 = d(v) - 1q. Hence
as in using the polynomials C; in (2.51] we have

ci([0F.e]) = Ci(chi ([0F c]), - ,Chi([@?i,e}))- (5.52)
Also chi(03 ), ci(© ) are the images of 7 in H* (Mg x Me).

Proof. Let gq : Huer Perfg(”) — Mg be as in the proof of Proposition
Then on ([T,eq, Perfg(v)) X (ITyeq, Perfé(v)) for d, e € Z9° we have

(Ga % ge)"(Etge) = D, eq, T Perfd(®) ((Eqw)Y) @™ Perfe<v> (E2w)

\ (5.53)
D G%e@l (”Perfguwe)) ((5d(h(e))) ) ® WPerfeu(e)) (5e(t(e)))) [-1],

134



where E’xt:l, ¢ is as in Definition and the perfect complex £ on Perf( is
as in Proposition [5.9|

Equation l-i holds as Ext’ 4. is the derived Hom of complexes of Q-
representations on Mg x M., from the pullback of the universal representation
on My, to the pullback of the universal representation on M,. When we pull-
back by gq X ge, we again get a derived Hom of complexes of Q-representations,
but now from P, cq, T pgd®) (£3(v)) regarded as a Q-representation with edge

morphisms zero, to P, ¢, ;rl*jerfﬁ(v) (Ee(v)) as a Q-representation with edge mor-

phisms zero, and we can show this is equivalent to (5.53]).
Taking K-theory classes of (5.53) gives an equation

Ko(ga % ge)([Extg c])
= Z (51)11; - nvw)KO( perfd(“>)([S:i(v)]v)®K0(7rperf;(“’))([5;(111)}) (554)

v, wEQo

in Ky (Perf((H Perfl )y x x ([T, Perfe( )))) where n,,, is the number of edges
e — e in Q, as in Definition [5.12, Now @' (Eact' o)V @ Ude(é'xt; 4) by

definition, so adding the dual o 1-) to (5.54) with d, e exchanged yields
Ko(9a x 9e)([0.))
Y wuwKo(Tp i) ((Ea)]) @ Ko(Tpgpeen) ([E2(w)]) (5.55)

v, WEQo

where ayyp = 20p0w — Now — N, as in Definition

Applying Chern characters ch; to (5.55)) gives an equation in the cohomology
of (I, Perfd(ﬂ)) x(I1, Perfe(v)) But l5 32) identifies this with H*(Mgax M),
and under this identification H* (g X Je) is the identity, so we can omit it. Thus

hi(O%el) = D aww D, (€] Be((E2)"])

v, WEQo 7,k=20:5+k=1

- Z Z (=1)*ay, “Baw,; X Bew,k

v,WEQo j,k>0:57+k=1

where the first step uses (2.47)), and the second uses chy((£*)Y) = (—1)* chi(€*)
and ch;(£g.)) = Bav,j» hi(Ee(y)) = Be,v k- This proves (5.51), and the rest of

the proposition is immediate. O

Note that (5.51)—(5.52)) depend only on the underlying graph of Q.

5.3.5 Explicit computation of [(, 7],

Combining (5 with the generating function expression (3.34) for [¢,n], in
terms of Chern characters ch;([0©F .]) yields:
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Corollary 5.16. For all d,e € Z°° and ¢ € H.(Mg), n € H.(M.,), we have

Y (¢ 2= (¢l " =eq ez ) H, (Pge)o H (Vg xidig,) (5.56)

nez
{ (%:0 ziti) X ((Cﬁn)ﬂexp [lei%Qo Ay j,go: (71)J’*1(j+k71)!zﬂ;k ) ] ) }
j+k=>1 /Bdﬂ%j |X|/8e,w,k

in H,(Maye)[[z, 27 Y]], where z is a formal variable.

Here we omit the factor (—1)*X(%:#) in as M has only even homology,
and we have used (3.20) to expand H,(Z4.¢). Note that N, H.(®4.¢) and H,(¥4)
in are given explicitly by equations (5.306)), and .

The next two propositions simplify (5.56)) in the case when ¢ = 14, and in
the case when d = 0 and ¢ = by, v, m-

Proposition 5.17. For all d,e € Z°° and n € H.(M,), we have

Y(1g,2)n:= > [1g,n]nz" """ :edyer(d’e) H,(®ge) (5.57)
nez

{exp[ > d(v)zj%bd’w}ﬁ(nﬂexp[— > avwd(v)(k—l)!z*kﬁe,wyk])}.

vE€Qo, j=1 v,WEQQ, k=1

Proof. Take ( = 14 in (5.56)). Then in the cap product (1g X n) N exp[---], all
terms in Bgq,,,; for j > 0 give zero as 14N fq,,; = 0, so we can restrict to j = 0,
when B4.4,0 = d(v). Then —Nexp[-- -] only affects the factor  in 14 X7, so we
can rewrite it as 14 X (n Nexp|---]). But the H,(¥4) only affects the t* X 14

factor, not the (n Nexpl---]) factor. Therefore we can simplify the sum as
Y(1g,2)n = €q,e2X4®) . H (Dg.) (5.58)
(B0 (T 2R10) R (nNexp|~ T apd(®) T (k=1)%" o] ) }-
i>0 v, WEQo k>1

From ([5.46)) we can show that

Ho(Pa) (X502t Rla) = exp[Y,cq, j1 40)2 Tbau,;]- (5.59)
Substituting this into (5.58) yields (5.57)). O

Proposition 5.18. For all v € Qo, m > 1, e € Z°° and n € H,(M.), we have

Y(bO,vm"m 2)77 = Z [bO,v,ma n]nz_n_l = Z zi (m,:izl) : be,v7m+i n +
ne”Z 120

_qym—1 _
ZQ k>a'uw W'Z—m_k ' (77 N Be,w,k)- (560)
v, wWEeRp, k=0

Here be .y m+im means multiplication in the R-algebra Rlbe v ilv,: in (5.34]).
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Proof. Take d = 0 and ¢ = by y,m in (5.56). Then in (b ¥ n) Nexp[---], all

terms in fy, ; for j # m in expl-- -] give zero as boum N Bow,; = 0 for j # 1,
noting that when j = 0 we have fy,, ; = 0(v)1p = 0 as d = 0. Also, although the
exp|- - - ] involves terms of order [ in [- -], only I = 0 and [ = 1 terms contribute,

as bo,u,m N B3 4 m = 0. Hence (5.56) becomes

Y (bo,v.m> 2)0 5= 3 [bo.w.m Mnz """ = Ha(®o,e) o H. (Vo x id1,) (5.61)
neZ
{(Z 2R ((bopmEN[14 5 aw £ (1" mtrh-1)z77 - ]) ]
i>0 v, wEQo k>0
/BO,U,m X /Be,w,k

= H.(®o,e) oH.(¥o x idj1,)
{(Z 248 (oo ®0) + 3 @y EL O =k 1R (0B ) ) }

i>0 v,WEQo, k=0

— H*(éo,e){H*(@o) (z it X bo,v,m) X7+

i>0

_ o 1) Y mtk=1)!
H. (Do) (L 248108 ( 3 ay SUGEEL R (0 )]
=0 V,WEQRQ, k=0

where in the first step we use ¢ge = 1 and x(0,e) = 0, and in the second

b0,v,m N Bo,u,m = 1/(m —1)! by (5.36). Now from (5.46]) we can show that
H*(‘I/o) (ZiZO Ziti X bO,v,m) = Zi}O Zi (m,j;izl) bO,v,m-‘ri;
and 1} gives H*(@O)(Zigo PaA 10) = 1. Substituting into 1} yields
Y(bO,v,ma 2)77 = H*((i)o,e){ Z Zi (7T2Ii_11)b0,v,m+i X n +
i>0

avwwz—m—k 1o B (10 Bewp)] }
v, wEQo, k=0

Equation (5.60) now follows from ([5.44)). O

5.3.6 H.(M) is a lattice vertex algebra

In the first main result of this section, we show that H, (M) is isomorphic to a
lattice vertex algebra from

Theorem 5.19. Let Q be any quiver, and K = C, and R be a field of charac-
teristic zero, and let H, (M) be the graded vertex algebra over R constructed in
Theorem from the triangulated category T = D®mod-CQ with additional
data as in Definition [5.12] Use the notation of §5.3.1}-45.3.2

Then there is an isomorphism of graded vertex algebras over R between
H, (M) and the lattice vertex algebra V, defined in Definition and Theorem

using the lattice Z2° and intersection form x, identifying HUEQO i>1 b;“ji
in H,(Mg) with e* ® Hver, i>1 b:’; in V, for all d € Z9° and Ny, € N with

only finitely many n, ; nonzero.
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Hence by Theorem if x is nondegenerate, then writing C'=(Cyw)v.weq,
for the inverse matriz of A = (Gyw)vweq, over Q, then H,(M) is a simple
graded vertex algebra, and it is a graded verter operator algebra, with central
charge ¢ = |Qo| and conformal vector

w =

1 Z Cow bo.w100.w1 € Hi(Mo).

v, WEQo

Proof. By and , H.(M) has a basis of elements | . bgm
graded of degree féx(d, d)+>, ,m,; forde Z?° and Nn,,; € N with finitely
many n,; # 0. As in 7, V. has a basis of elements e? ® [ b:f”l
graded of degree féx(d, d) + Zv,i ny,; for the same d, n, ;. Thus, there is a
unique isomorphism of %Z—graded R-vector spaces ¢ : H, (M) — V. identifying
| b;:’b’;i in H,(Mg) with e? ® [loegy. i>1 bZ”Z‘ in V, for all d,n, ;.

We claim that ¢ identifies the vertex algebra structure on H,(M) with the
unique vertex algebra structure on V, given by Theorem To see this, note
that tmaps 1 =19 — 1 =€ ®1.

If « € Z% and n € Z then Definition and determine (¢ ®
> veqo @(V)by1)n + Vi — Vi, and Proposition with m = 1 determines
(X veqo (V) bow,1)n ¢ H,(M) — H,(M). Comparing we see that ¢ identifies
these two actions, noting that forn > 0, a, : Vi — Viactsasny_ o a(v)ﬁ
by Definition iii), and — N (32, cq, @(v) nlBd,vn) : H,(Mg) — H.(Myg) is
given by 1) and acts by n ), .o a(v) ﬁ.

If @ € Z% then (2.16) determines Y(e® @ 1,2) : Vi — Vi[[z,27]], and
Proposition determines Y (14, 2) : Ho(M) — H.(M)[[z,27!]. Comparing
we see that ¢ identifies these two actions, as the factors eaﬁzX(a’B) in (2.16)) and
€d7ezx(d,e) in correspond, and the factors exp[f > L,~"q,] in @)

. n<0 n
and exp [Zv,j d(v)zJ%bdﬂ,,j] in |) correspond by Definition iil), and
the factors exp[— Y, .o 227 "a,] in (2.16) and — Nexp[— > vk Gwwd (V) (k —

1)1z Be k| correspond by Definition [2.15(i) and (5.36)). Thus the first part of
i

Theorem [2.16| shows that ¢ identifies the vertex algebra structures on H, (M)
and Vj, proving the first part of the theorem. The second part is immediate. [

Remark 5.20. (i) In examples, such as the lattice vertex algebras in
(graded) vertex algebra structures are often constructed on the underlying vec-
tor space V; of a (graded) commutative algebra, although the algebra structure
on V, is not part of the vertex algebra structure (and the grading is different).

In our situation H,(M) is naturally a graded commutative algebra, with
multiplication (- = H,(®)({Kn) for & : Mx M — M asin Assumption(g),
although H,.(®) is not part of the algebraic structures we usually consider on
H,(M) (e.g. H,(®) does not respect the primary grading H,(M)). Thus, every
graded vertex algebra H, (M) arising from Theorem is also the underlying
vector space of a graded commutative algebra (though with a different grading).
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Equation implies that the isomorphism between H*(M) and the lat-
tice vertex algebra in Theorem identifies the graded commutative algebra
structure from H,(®) on H,(M) with the algebra structure used to build the
lattice vertex algebra. This was not obvious in advance, it is a consequence of
the weird formula which determined the isomorphism.

Our construction provides a geometric motivation for the existence of these

underlying (graded) algebra structures on (graded) vertex algebras.
(ii) Theorem gives a graded vertex algebra H,(M) from T = D’ mod-CQ
over any commutative ring R, not just for R a field of characteristic zero, though
the explicit computations in need R to be a Q-algebra so we can use
Chern characters. As in Remark [2.17|(iii) one can define lattice vertex algebras
over a general commutative ring R, and the author expects the first part of
Theorem [5.19] also holds in this case.

5.3.7 Relating lff()(ﬂ)tzo and lffo(-/\/l)t:o to Kac—Moody algebras

When @ has no vertex loops, we now relate the ‘¢t = 0’ Lie algebras ﬁo(/ﬁ)tzo
and Hy(M)'=° to Kac Moody algebras. Much of the next theorem follows
from Theorem [5.19 and known facts about the relation between lattice vertex
algebras and Kac-Moody algebras, but we provide an independent proof. The
theorem should be compared to Theorem

Theorem 5.21. Suppose Q is a quiver without vertex loops. Then:

(a) Define 6, € Z9° by 6,(w) =1 if v=w and 6,(w) = 0 otherwise. Then for
all v € Qo we have

(M;,)=° = Ho(Ms,) = (15,) R,

—5,) = (1-5,) R, (5.62)
0) = (bow1:v € Qo)r.

Define E, = 15, in ffo(./\/l(sv)tzo = gg(ﬂgv)tzo, F,=—-1_5, in HO(M_51,)t:0

and H, = bg 1 in Hy(Mg)'=0 for v € Q. Then as in 1) we have

[Ho, Ho]' ™" =0, [E,, F,)'™" =0 if v#w, [By,F]™"=H,
[HvaEw]t:O = avwEwu [Hvaw}tZO = _avwa, (563)
(ad E,)' "% (E,) =0 if v#w, (adF,)' "% (F,) =0 if v#uw.

(b) Write g'(A) = g = hdny dn_ for the derived Kac—Moody algebra associated

to Q, as in §2.1.2, Then there are unique, injective Lie algebra morphisms

T:g— Ho(M)™ and T : ny — Ho(M)=0 with Y(e,) = Y(e,) = B,

Y(fy) = Fy and Y(h,) = H, for all v € Qo. These Y, T are compatible with

the gradings § = @ gez00 8a and Ho(M)'=" = @ 400 Ho(Ma)'=°. Also

Yow=Hy(X) 0 :g— Hy(M)=°, (5.64)
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where w : g — g s the involution in Theorem (d), and ¥ : M — M is
induced by translation [1] : D®* mod-CQ — D”mod-CQ as in Definition .
(c) Suppose that either Q is of finite type (i.e. its underlying graph is a disjoint
union of Dynkin diagrams of type A, D or E), or Q is connected and of affine
type (i.e. its underlying graph is an affine Dynkin diagram). Then Y and Y in
part (b) are isomorphisms.

(d) Let Q be nonempty. Then Proposition ﬂzmplzes that the inclusion M’ =
M\ {0} = M mduces an isomorphism H, (M= — H,(M)*=°, so (a)-(c)
hold with Ho(M')=° in place of Ho(M)'=C. Also Corollary [3.27 says that the
Lie_algebra morphism T - Ho(M')=0 — Ho(/\/lpl) from (3.50) and Theorem
-(b) is an isomorphism. Thus (a)—(c) also hold with (Ho(MP),[, ]P!) in
place of (Ho(M)=0,[,]'=0).

Proof. For (a), as @ has no vertex loops we have x(0,,0,) = @y, = 2, S0
Ho(Ms,)'=" = Ho(M;,)'=° = Ho(Ms,) = (15,)r

by (3.36) and (3.43), and the same holds for Hy(M_s,)*=°. Also
HQ(MO)tZO :HQ(M())t:O :HQ(MO)/tQHO(MO) :HQ(MO) = <b07y71 v E Q0>R

using (3.36]), (3.43), (5.34), and t o 1o = 0 by (5.48]). This proves (5.62).
The first, third, fourth and fifth equations of (5.63) follow from the coef-

ficients of z~! in Propositions [5.17| and 5.18] The second, sixth and seventh
equations of ([5.63) hold essentially trivially by the same argument, as each
takes values in H,(Mg) =0 for n < 0. For the second, if v # w € Qo then

[Ey, F)'=" € Ho(Ms,—s5,)=" = H_343a4,,(Ms,—s5,) =" =0,

using (3.43)) and @y, = @ww = 2, apw < 0. For the sixth, if v # w € Qo then

(ad E,)' = (Ey) € HO(M(l Avw)du+ow )7 =H_, (M(1—auw)6v+5w)t70 =0,

using (3.43)) and 2— X((l Gy ) Oy F 0y (1= Qo )0y 00 ) = —2as Ayy = Ay = 2.
The seventh equation of (5.63)) is the same. This proves part (a).

For (b), comparing (2.7) and (5.63|) we see that by definition of g’(A) = g in
Deﬁnition there is a unique Lle algebra morphism T : g — Ho(M)*=° with
Y(e,) = Ey, Y(f,) = F, and Y(h,) = H, for all v € Qy. As E, € Hy(M;,) =
Ho(Ms,), this restricts to T : ny — ffq(./\/l)tzo. These T, Y are compatible
with the gradings g = @ yez00 9¢ and Ho(M)=" = @dezflo Hy(Mgq)'=0, as
they are compatible on generators e, fy,, hy, of g. Thus, Ker T is a graded ideal

But go = b has basis h,,v € Qo, and Hy(Mg)*=° has basis H,,v € Qg by
, so Y|y :h— HO(MO)t 0 is an isomorphism, and Ker Y Nh = 0. Hence
Ker T = 0 by Theorem [2 , and so T, T are injective.

Theorem (2.4} -(d ) gives w(ey) = fv7 w(fy) = =€y, w(hy) = —h, for v € Qo.
Also Hy(2)'= (Ev) —F,, Hy(2)=(F,) = —E,, Hy(X)*=°(H,) = —H, for
v € Qo by (542) and E, = 15,, F, = —1_5,, H, = byo1. As T(e,) = E,,
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Y(f,) = F,, Y(h,) = H,, equation holds on generators e, f,, h, of g,
and so holds on all of g. This proves part (b).

For (c), as T is injective and graded, we see that Y is an isomorphism if
and only if dim g, = dim Ho(Mg)'=° for all d € Z%°, where dim Hy(Mgq)'="
is given in @ . If Q is of finite type and d € Z%°, then by the theory of
semisimple Lie algebras, either:

(i) (Cartan subalgebra.) d =0 and dim gy, = dimbh = |Qo|;
(ii) (Roots.) d # 0, x(d,d) =2 and dimgyg = 1; or
(ii) d # 0, x(d,d) > 2 and dim g4 = 0.
By (5.49), the dimensions of Hy(M4)"=" are the same, so T is an isomorphism.
Slmllarly7 if @ is connected and of affine type and d € 70, then by the
theory of affine Lie algebras [84} §6], either:
(i) (Cartan subalgebra.) d =0 and dim g, = dimbh = |Qo|;
(ii) (Real roots.) d # 0, x(d,d) = 2 and dim gy = 1;
(iii) (Imaginary roots.) d # 0, x(d,d) = 0 and dim g4 = |Qo| — 1; or
(iv) d #0, x(d,d) > 2 and dim g, = 0.

Again, by (5.49), T is an isomorphism. The analogues for T : n, — ﬁo(M)t=0
also hold, using (5.50)). Part (d) is immediate. This completes the proof. O

Theorem provides some evidence for the following conjecture:

Conjecture 5.22. Suppose we can make the ‘supported on indecomposables’
version proposed in §3.9.1] work in the situation of Theorem [5.21} Then the Lie
subalgebra of Ho(M) ‘supported on indecomposables’ is T(n+)

5.4 Examples with A4 = mod-CQ and 7 = D’mod-CQ

We discuss some examples of the situation considered in §5.3] Throughout we
take K = C, and R to be a field of characteristic zero, and H,(—), H*(—) to be
the (co)homology theories of (higher) Artin C-stacks over R from Example[2.35]

Example 5.23. Take @ to be the quiver e with one vertex u and no edges.
Then mod-CQ = Vectc, the abelian category of finite-dimensional vector spaces,
and D mod-CQ = DP Vectc. As in the moduli stacks M of objects in
A = Vectc and M of objects in 7 = D? Vectc are

M= T], yl*/ GL(r, C)], M = Perfc =[], ., Perfs.
As in §5.2.2]and §5.3.2] we have

Ho (M) = @,y Ho(M,) = @,y Rlbri i =1,2,.. ],

M (5.65)
H (M) =D, ey Hi(M,) 2D, o I} C Hi (M), '

141



where I? C R[b,;, ¢ > 1] is the annihilator of I, C H*(M,) = R[B,,, i > 1].
Here we omit u from notation b,y i, By v, in §5.3.2 as there is only one vertex u.

Thus, H.(M) has basis the monomials p, n = [[;5, b, forr € Zand n; € N
with only finitely many n; nonzero, where by (3.23]) and (3.31)) we have

Prn € Has in, (M), prm € -H2r2—2+22i ini(M), prm € Hr2+zi ini (M),
as the Euler form is x(r, s) = 2rs for r, s € Z, since a,, = 2. We have
Ho(M) = (bo.1, 11,1 1) g = Ho(M)'=° = Hy(MP),
and the Lie brackets [, ]*=0 2 [, P! on Hy(M)'=0 = Hy(MP') are given by
bo1,11)=0 =211, [bo1,1-4]7" =215, [11,1-4]7"=bg;.

Thus the Lie algebras Ho(M)'=0, Hy(MP!) are isomorphic to sl(2, R), with Car-
tan subalgebra h = (bg,1)r and root spaces g; = (11)r and g_; = (1_1)pr.

In we discussed the maps IIPL, : Hy(ML)=0 — Hy(MP) for r €
7 = K(T). Proposition a),(b) proves these are isomorphisms for r # 0,
and Proposition @l shows ITPL = Hj(M})=0 — Hy(MB') are isomorphisms
for K = 0,1,2. The proof in §4.5| using the homology Leray—Serre spectral
sequence involves a map dy : E3, = Hs(MP') — E2, = Ho(ME'). Since
to— : Ho(M) — Ha(My) is zero by (5.48), equation implies that Im dy =
Ho(Mj) = R, and by further computation as in we find that Hs(Mb') = R.
But H3(Mj) = H3(Mo) = 0 by (3.13) and (5.65)), so Hz(M)*=" = 0. Hence
P H3(M})=0 — Hs(MB') is not an isomorphism.

Example 5.24. Let @) be the quiver e — o with two vertices v,w and two
edges from v to w. The underlying graph is the affine Dynkin diagram Aj.
Thus Theorem (c),(d) say that the Lie algebras Ho(M)'=0, Ho(MP) are
isomorphic to the corresponding Kac-Moody algebra, which is the affine Lie
algebra sl(2, R), as in Kac [84, §6]. Explicitly, sl(2, R) = sl(2, R)[t,t"!] & (¢)r,
where s(2, R)[t,t™!] is the loop algebra of s[(2, R), and (c)p is a central exten-
sion. Identify Z9° = 72 by d = (d(v), d(w)). Then for d € Z?° we have

(i) x(d,d) =0 if and only if d = (n,n) for n € Z.
(ii) x(d,d) =2 if and only if d = (n,n+ 1) or d = (n,n — 1) for n € Z.
(iii) x(d,d) > 4 except in cases (i),(ii).
Hence from we see that
H_5(M) = @,,ez Ho(Mn,n) = Brczllinm) rs
Ho(M) = @ ez (H2(Mn,n)) © Ho(M 1)) © Ho(M(,n-1y))
= @nezben) v b w1 Loty Lonn-1) -

By " to—: E[,Q(./Vl) — I:IO(M) maps 1(n,n) —> n(b(n7n)7v71 + b(n,n),w,1)~
Therefore

HO (M))&:O = <b(0,0),v,1+b(0,0),w,l>R@@Z<b(n,n),v,1_b(n,n),w,1a 1(n,n+1)a 1(n,n71)>Ra
ne
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as we must quotient ﬁo(/ﬂ) by the vectors b, n) w1 + bnn)w,1 for n # 0.
The isomorphism sl(2, R)[t,t 1] @ (¢) g = Ho(M)'=0 identifies s[(2, R) ® t" with
<b(n,n),v,1 - b(n,n),w,h 1(n,n+1)a 1(n,n71)>R and <C>R with <b(070),v,1+ b(0,0),w,1>R-

Example 5.25. Let Q be the quiver e ¢ — e with three vertices U, V, W
and two edges from v to w, the disjoint union of quivers in Examples [5.23] and
The corresponding Kac—-Moody algebra is g = sl(2, R) ® sl(2, R). As @
is not connected, Theorem c) does not apply, so T : g — ﬁo(/ﬂ)tzo and
T :n, — Hy(M)*=0 are injective, but need not be (and are not) surjective.
Identify Z%° = 7° by d = (d(u),d(v),d(w)). Then d = (1,1,1) and
d = (1,—1,—-1) both have x(d,d) = 2, so Ho(M@1,11)) = (La,1,1))r and
HO(M(L—I,—I)) = (1(1,—1,—1))r are both subspaces of Hy(M)*=9. However,
(1,1,1) and (1,—1,—1) are not roots of g, so (1(1,1,1))r and (11, _1,-1))r are
not in the image of T. Hence T is not surjective, and also T is not surjective
as (1(1,11))r lies in Ho(M)*=°\ T(n;). Note too that Kac-Moody algebras
have g =h® > ca, ua_ Gar Where Ay C (£N)@°. But (1,—1,—1) is a root of

Hy(M)'=° which lies in neither N®° nor (—N)@o,

To be continued.

143



A Binomial coefficients

Here we collect some definitions and facts about binomial coefficients (7:) for
m,n € Z, since some readers may be unfamiliar with these if m < 0 or n < 0.

Definition A.1. Let m,n € Z. Define the binomial coefficient () by

0, n <0,

(m> ={1, n=0, (A1)
n m(m—1)(m—2)---(m—n+1) n>o0.

n! ’

Binomial coeflicients have the following well known properties:

(:) =0 ifand only if n <Oor 0 <m<mn, (A.2)
m m!
=—— if 0 <n<m, .
(n) lim — )1 fo<n<m (A.3)
(m> = (-1)" (” e 1) for all m, n € Z, (A4)
n n

<:>CnTJ) it m >0, (A.5)
m—+1 m m
) -() () e o

The Binomial Theorem says that

(L+a)" =3 (Z‘) ", (A7)

n=0

which holds in polynomials in x if m > 0, and in power series convergent when
|z] < 1if m <O0.

We now prove some identities on binomial coefficients which will be used in
the main text. First we show that for all m > 0 and n,p € Z we have

s () ) s

E>0: k<p

We do this by induction on m =0, 1,.... Write Sy, 5, ,, for the left hand side of
(A.8)). For the first step m = 0, the only potentially nonzero term in the sum
is k =p, if p > 0, giving Sonp = (—1)? (;), as we want, where if p < 0 this
still holds as both sides are zero. For the inductive step, suppose holds
for all m > 0 and n,p € Z with m < m/. In the sum for S,,/11 , p, rewriting

(7;,:;:1) _ (p@’k) + (pfmk/fl) by and rearranging the sum gives

Sm’+1,n,p = Sm’,n+1,p+8m/,n,p—1 = (_l)p (n;l) + (_l)p_l (pz1> = (_l)p (Z)’
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using the inductive hypothesis in the second step and (A.6) in the third. Hence
by induction (|A.8)) holds for all m > 0 and n,p € Z.
Next we will show that if I,m,n € Z with [ +m + n = —1 then

(—1)! (_ln_ 1) + (-1 (_ml_ 1) + (=1 (_”m_ 1) = 0. (A.9)

Asl+m+mn = —1, one or two of I,m,n must be negative, and the others
nonnegative. This gives six cases, which after cyclic permutations of [, m,n are
equivalent to one of: (A) !l < 0 and m,n > 0; and (B) I,m <0 and n > 0.

In case (A) note that (7"7') =0 by and
) )= 00)
=) < e (T,

using (|A.5]) in the first step, [ +m+n = —1 in the second and fourth, and (A.4))
in the third. Equation (A.9) follows in case (A). In case (B), all three terms in

(A.9) are zero by (A.2). This proves (A.9).
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