A quick introduction to stack functions

Dominic Joyce

for HORSE seminar, December 2008

I aim to explain parts of my papers [4,5] on 'stack functions', which are central to the sequels [6–9] and my work with Yinan Song [10–12], and are basically the same as the 'Hall algebras' used by Kontsevich and Soibelman [13].

1 Introduction to Artin \mathbb{K} -stacks

Fix an algebraically closed field \mathbb{K} throughout. There are four main classes of 'spaces' over \mathbb{K} used in algebraic geometry, in increasing order of generality:

 $\mathbb{K}\text{-varieties} \subset \mathbb{K}\text{-schemes} \subset \text{algebraic } \mathbb{K}\text{-spaces} \subset \text{algebraic } \mathbb{K}\text{-stacks}.$

Algebraic stacks (also known as Artin stacks) were introduced by Artin, generalizing *Deligne-Mumford stacks*. For a good introduction to algebraic stacks see Gómez [3], and for a thorough treatment see Laumon and Moret-Bailly [14]. We make the convention that all algebraic K-stacks in this paper are *locally of finite type*, and K-substacks are *locally closed*.

Algebraic K-stacks form a 2-category. That is, we have objects which are K-stacks $\mathfrak{F}, \mathfrak{G}$, and also two kinds of morphisms, 1-morphisms $\phi, \psi : \mathfrak{F} \to \mathfrak{G}$ between K-stacks, and 2-morphisms $A : \phi \to \psi$ between 1-morphisms. An analogy to keep in mind is a 2-category of categories, where objects are categories, 1-morphisms are functors between the categories, and 2-morphisms are isomorphisms (natural transformations) between functors.

We define the set of \mathbb{K} -points of a stack.

Definition 1.1. Let \mathfrak{F} be a \mathbb{K} -stack. Write $\mathfrak{F}(\mathbb{K})$ for the set of 2-isomorphisms classes [x] of 1-morphisms x : Spec $\mathbb{K} \to \mathfrak{F}$. Elements of $\mathfrak{F}(\mathbb{K})$ are called \mathbb{K} -*points*, or *geometric points*, of \mathfrak{F} . If $\phi : \mathfrak{F} \to \mathfrak{G}$ is a 1-morphism then composition
with ϕ induces a map of sets $\phi_* : \mathfrak{F}(\mathbb{K}) \to \mathfrak{G}(\mathbb{K})$.

For a 1-morphism $x : \operatorname{Spec} \mathbb{K} \to \mathfrak{F}$, the stabilizer group $\operatorname{Iso}_{\mathbb{K}}(x)$ is the group of 2-morphisms $x \to x$. When \mathfrak{F} is an algebraic \mathbb{K} -stack, $\operatorname{Iso}_{\mathbb{K}}(x)$ is an algebraic \mathbb{K} -group. We say that \mathfrak{F} has affine geometric stabilizers if $\operatorname{Iso}_{\mathbb{K}}(x)$ is an affine algebraic \mathbb{K} -group for all 1-morphisms $x : \operatorname{Spec} \mathbb{K} \to \mathfrak{F}$.

As an algebraic \mathbb{K} -group up to isomorphism, $\operatorname{Iso}_{\mathbb{K}}(x)$ depends only on the isomorphism class $[x] \in \mathfrak{F}(\mathbb{K})$ of x in $\operatorname{Hom}(\operatorname{Spec} \mathbb{K}, \mathfrak{F})$. If $\phi : \mathfrak{F} \to \mathfrak{G}$ is a 1-morphism, composition induces a morphism of algebraic \mathbb{K} -groups $\phi_* :$ $\operatorname{Iso}_{\mathbb{K}}([x]) \to \operatorname{Iso}_{\mathbb{K}}(\phi_*([x]))$, for $[x] \in \mathfrak{F}(\mathbb{K})$. One important difference in working with 2-categories rather than ordinary categories is that in diagram-chasing one only requires 1-morphisms to be 2isomorphic rather than equal. The simplest kind of commutative diagram is:

by which we mean that $\mathfrak{F}, \mathfrak{G}, \mathfrak{H}$ are \mathbb{K} -stacks, ϕ, ψ, χ are 1-morphisms, and $F : \psi \circ \phi \to \chi$ is a 2-isomorphism. Usually we omit F, and mean that $\psi \circ \phi \cong \chi$.

Definition 1.2. Let $\phi : \mathfrak{F} \to \mathfrak{H}, \psi : \mathfrak{G} \to \mathfrak{H}$ be 1-morphisms of K-stacks. Then one can define the *fibre product stack* $\mathfrak{F} \times_{\phi,\mathfrak{H},\psi} \mathfrak{G}$, or $\mathfrak{F} \times_{\mathfrak{H}} \mathfrak{G}$ for short, with 1-morphisms $\pi_{\mathfrak{F}}, \pi_{\mathfrak{G}}$ fitting into a commutative diagram:

$$\mathfrak{F} \times_{\mathfrak{H}} \mathfrak{G} \underbrace{\overset{\pi_{\mathfrak{F}}}{\overset{\pi_{\mathfrak{F}}}{\longrightarrow}} \mathfrak{F}}_{\pi_{\mathfrak{G}} \overset{\Psi}{\longrightarrow} \mathfrak{G}} \mathfrak{H}.$$
(1)

A commutative diagram

$$\mathfrak{E} \underbrace{\overset{\theta}{\overbrace{\eta}}}_{\eta} \mathfrak{F} \underbrace{\mathfrak{F}}_{\mathfrak{G}} \underbrace{\overset{\phi}{\overbrace{\psi}}}_{\psi} \mathfrak{F}$$

is a *Cartesian square* if it is isomorphic to (1), so there is a 1-isomorphism $\mathfrak{E} \cong \mathfrak{F} \times_{\mathfrak{H}} \mathfrak{G}$. Cartesian squares may also be characterized by a universal property.

2 Constructible functions on stacks

Next we discuss *constructible functions* on \mathbb{K} -stacks, following [4]. For this section we need \mathbb{K} to have *characteristic zero*.

Definition 2.1. Let \mathfrak{F} be an algebraic \mathbb{K} -stack. We call $C \subseteq \mathfrak{F}(\mathbb{K})$ constructible if $C = \bigcup_{i \in I} \mathfrak{F}_i(\mathbb{K})$, where $\{\mathfrak{F}_i : i \in I\}$ is a finite collection of finite type algebraic \mathbb{K} -substacks \mathfrak{F}_i of \mathfrak{F} . We call $S \subseteq \mathfrak{F}(\mathbb{K})$ locally constructible if $S \cap C$ is constructible for all constructible $C \subseteq \mathfrak{F}(\mathbb{K})$.

A function $f : \mathfrak{F}(\mathbb{K}) \to \mathbb{Q}$ is called *constructible* if $f(\mathfrak{F}(\mathbb{K}))$ is finite and $f^{-1}(c)$ is a constructible set in $\mathfrak{F}(\mathbb{K})$ for each $c \in f(\mathfrak{F}(\mathbb{K})) \setminus \{0\}$. A function $f : \mathfrak{F}(\mathbb{K}) \to \mathbb{Q}$ is called *locally constructible* if $f \cdot \delta_C$ is constructible for all constructible $C \subseteq \mathfrak{F}(\mathbb{K})$, where δ_C is the characteristic function of C. Write $CF(\mathfrak{F})$ and $LCF(\mathfrak{F})$ for the \mathbb{Q} -vector spaces of \mathbb{Q} -valued constructible and locally constructible functions on \mathfrak{F} .

Following [4, Def.s 4.8, 5.1 & 5.5] we define *pushforwards* and *pullbacks* of constructible functions along 1-morphisms.

Definition 2.2. Let \mathfrak{F} be an algebraic K-stack with affine geometric stabilizers and $C \subseteq \mathfrak{F}(\mathbb{K})$ be constructible. Then [4, Def. 4.8] defines the *naïve Euler* characteristic $\chi^{\mathrm{na}}(C)$ of C. It is called *naïve* as it takes no account of stabilizer groups. For $f \in \mathrm{CF}(\mathfrak{F})$, define $\chi^{\mathrm{na}}(\mathfrak{F}, f)$ in \mathbb{Q} by

$$\chi^{\mathrm{na}}(\mathfrak{F},f) = \sum_{c \in f(\mathfrak{F}(\mathbb{K})) \setminus \{0\}} c \,\chi^{\mathrm{na}}(f^{-1}(c)).$$

Let $\mathfrak{F}, \mathfrak{G}$ be algebraic \mathbb{K} -stacks with affine geometric stabilizers, and $\phi : \mathfrak{F} \to \mathfrak{G}$ a representable 1-morphism. Then for any $x \in \mathfrak{F}(\mathbb{K})$ we have an injective morphism $\phi_* : \operatorname{Iso}_{\mathbb{K}}(x) \to \operatorname{Iso}_{\mathbb{K}}(\phi_*(x))$ of affine algebraic \mathbb{K} -groups. The image $\phi_*(\operatorname{Iso}_{\mathbb{K}}(x))$ is an affine algebraic \mathbb{K} -group closed in $\operatorname{Iso}_{\mathbb{K}}(\phi_*(x))$, so the quotient $\operatorname{Iso}_{\mathbb{K}}(\phi_*(x))/\phi_*(\operatorname{Iso}_{\mathbb{K}}(x))$ exists as a quasiprojective \mathbb{K} -variety. Define a function $m_{\phi} : \mathfrak{F}(\mathbb{K}) \to \mathbb{Z}$ by $m_{\phi}(x) = \chi(\operatorname{Iso}_{\mathbb{K}}(\phi_*(x))/\phi_*(\operatorname{Iso}_{\mathbb{K}}(x)))$ for $x \in \mathfrak{F}(\mathbb{K})$.

For $f \in \mathrm{CF}(\mathfrak{F})$, define $\mathrm{CF}^{\mathrm{stk}}(\phi)f : \mathfrak{G}(\mathbb{K}) \to \mathbb{Q}$ by

$$\mathrm{CF}^{\mathrm{stk}}(\phi)f(y) = \chi^{\mathrm{na}}\big(\mathfrak{F}, m_{\phi} \cdot f \cdot \delta_{\phi_*^{-1}(y)}\big) \quad \text{for } y \in \mathfrak{G}(\mathbb{K}),$$

where $\delta_{\phi_*^{-1}(y)}$ is the characteristic function of $\phi_*^{-1}(\{y\}) \subseteq \mathfrak{G}(\mathbb{K})$ on $\mathfrak{G}(\mathbb{K})$. Then $\mathrm{CF}^{\mathrm{stk}}(\phi) : \mathrm{CF}(\mathfrak{F}) \to \mathrm{CF}(\mathfrak{G})$ is a \mathbb{Q} -linear map called the *stack pushforward*.

Let $\theta : \mathfrak{F} \to \mathfrak{G}$ be a finite type 1-morphism. If $C \subseteq \mathfrak{G}(\mathbb{K})$ is constructible then so is $\theta_*^{-1}(C) \subseteq \mathfrak{F}(\mathbb{K})$. It follows that if $f \in \mathrm{CF}(\mathfrak{G})$ then $f \circ \theta_*$ lies in $\mathrm{CF}(\mathfrak{F})$. Define the *pullback* $\theta^* : \mathrm{CF}(\mathfrak{G}) \to \mathrm{CF}(\mathfrak{F})$ by $\theta^*(f) = f \circ \theta_*$. It is a linear map.

Here [4, Th.s 5.4, 5.6 & Def. 5.5] are some properties of these.

Theorem 2.3. Let $\mathfrak{E}, \mathfrak{F}, \mathfrak{G}, \mathfrak{H}$ be algebraic \mathbb{K} -stacks with affine geometric stabilizers, and $\beta : \mathfrak{F} \to \mathfrak{G}, \gamma : \mathfrak{G} \to \mathfrak{H}$ be 1-morphisms. Then

$$CF^{stk}(\gamma \circ \beta) = CF^{stk}(\gamma) \circ CF^{stk}(\beta) : CF(\mathfrak{F}) \to CF(\mathfrak{H}),$$
(2)

$$(\gamma \circ \beta)^* = \beta^* \circ \gamma^* : \mathrm{CF}(\mathfrak{H}) \to \mathrm{CF}(\mathfrak{F}), \tag{3}$$

supposing β, γ representable in (2), and of finite type in (3). If

$$\begin{array}{cccc} \mathfrak{E} & \xrightarrow{\eta} \mathfrak{G} & is \ a \ Cartesian \ square \ with \\ & \downarrow_{\theta} & \psi_{\psi} \\ \mathfrak{F} & \xrightarrow{\phi} \mathfrak{H} \\ \mathfrak{F} & \xrightarrow{\phi} \mathfrak{H} \end{array} \xrightarrow{(s \ a \ Cartesian \ square \ with \\ & \eta, \phi \ representable \ and \\ & \theta, \psi \ of \ finite \ type, \ then \\ & \uparrow_{\theta^*} & \psi^* \\ & for \ CF(\mathfrak{F}) \\ & \overset{(4)}{\longrightarrow} \\ & \mathsf{CF}(\mathfrak{F}) \\ \end{array}$$

As discussed in [4, §3.3] for the K-scheme case, equation (2) is *false* for algebraically closed fields K of characteristic p > 0. This is my reason for restricting to K of characteristic zero in those parts of my papers dealing with constructible functions. In [4, §5.3] we extend Definition 2.2 and Theorem 2.3 to *locally constructible functions*.

3 Stack functions

Stack functions are a universal generalization of constructible functions introduced in [5, §3]. Here [5, Def. 3.1] is the basic definition. Throughout \mathbb{K} is algebraically closed of arbitrary characteristic, except when we specify char $\mathbb{K} = 0$. **Definition 3.1.** Let \mathfrak{F} be an algebraic \mathbb{K} -stack with affine geometric stabilizers. Consider pairs (\mathfrak{R}, ρ) , where \mathfrak{R} is a finite type algebraic \mathbb{K} -stack with affine geometric stabilizers and $\rho : \mathfrak{R} \to \mathfrak{F}$ is a 1-morphism. We call two pairs (\mathfrak{R}, ρ) , (\mathfrak{R}', ρ') equivalent if there exists a 1-isomorphism $\iota : \mathfrak{R} \to \mathfrak{R}'$ such that $\rho' \circ \iota$ and ρ are 2-isomorphic 1-morphisms $\mathfrak{R} \to \mathfrak{F}$. Write $[(\mathfrak{R}, \rho)]$ for the equivalence class of (\mathfrak{R}, ρ) . If (\mathfrak{R}, ρ) is such a pair and \mathfrak{S} is a closed \mathbb{K} -substack of \mathfrak{R} then $(\mathfrak{S}, \rho|_{\mathfrak{S}}), (\mathfrak{R} \setminus \mathfrak{S}, \rho|_{\mathfrak{R} \setminus \mathfrak{S}})$ are pairs of the same kind.

Define $\underline{SF}(\mathfrak{F})$ to be the \mathbb{Q} -vector space generated by equivalence classes $[(\mathfrak{R}, \rho)]$ as above, with for each closed \mathbb{K} -substack \mathfrak{S} of \mathfrak{R} a relation

$$[(\mathfrak{R},\rho)] = [(\mathfrak{S},\rho|_{\mathfrak{S}})] + [(\mathfrak{R}\setminus\mathfrak{S},\rho|_{\mathfrak{R}\setminus\mathfrak{S}})].$$
(5)

Define $SF(\mathfrak{F})$ to be the Q-vector space generated by $[(\mathfrak{R}, \rho)]$ with ρ representable, with the same relations (5). Then $SF(\mathfrak{F}) \subseteq \underline{SF}(\mathfrak{F})$.

Elements of $\underline{SF}(\mathfrak{F})$ will be called *stack functions*. In [5, Def. 3.2] we relate $CF(\mathfrak{F})$ and $SF(\mathfrak{F})$.

Definition 3.2. Let \mathfrak{F} be an algebraic \mathbb{K} -stack with affine geometric stabilizers, and $C \subseteq \mathfrak{F}(\mathbb{K})$ be constructible. Then $C = \coprod_{i=1}^{n} \mathfrak{R}_{i}(\mathbb{K})$, for $\mathfrak{R}_{1}, \ldots, \mathfrak{R}_{n}$ finite type \mathbb{K} -substacks of \mathfrak{F} . Let $\rho_{i} : \mathfrak{R}_{i} \to \mathfrak{F}$ be the inclusion 1-morphism. Then $[(\mathfrak{R}_{i}, \rho_{i})] \in \mathrm{SF}(\mathfrak{F})$. Define $\overline{\delta}_{C} = \sum_{i=1}^{n} [(\mathfrak{R}_{i}, \rho_{i})] \in \mathrm{SF}(\mathfrak{F})$. We think of this stack function as the analogue of the characteristic function $\delta_{C} \in \mathrm{CF}(\mathfrak{F})$ of C. Define a \mathbb{Q} -linear map $\iota_{\mathfrak{F}} : \mathrm{CF}(\mathfrak{F}) \to \mathrm{SF}(\mathfrak{F})$ by $\iota_{\mathfrak{F}}(f) = \sum_{0 \neq c \in f(\mathfrak{F}(\mathfrak{K}))} c \cdot \overline{\delta}_{f^{-1}(c)}$. For \mathbb{K} of characteristic zero, define a \mathbb{Q} -linear map $\pi_{\mathfrak{F}}^{\mathrm{stk}} : \mathrm{SF}(\mathfrak{F}) \to \mathrm{CF}(\mathfrak{F})$ by

$$\pi_{\mathfrak{F}}^{\mathrm{stk}}\left(\sum_{i=1}^{n} c_{i}[(\mathfrak{R}_{i},\rho_{i})]\right) = \sum_{i=1}^{n} c_{i} \operatorname{CF}^{\mathrm{stk}}(\rho_{i}) \mathbf{1}_{\mathfrak{R}_{i}},$$

where $1_{\mathfrak{R}_i}$ is the function 1 in $CF(\mathfrak{R}_i)$. Then [5, Prop. 3.3] shows $\pi_{\mathfrak{F}}^{\mathrm{stk}} \circ \iota_{\mathfrak{F}}$ is the identity on $CF(\mathfrak{F})$. Thus, $\iota_{\mathfrak{F}}$ is injective and $\pi_{\mathfrak{F}}^{\mathrm{stk}}$ is surjective. In general $\iota_{\mathfrak{F}}$ is far from surjective, and $\underline{SF}, SF(\mathfrak{F})$ are much larger than $CF(\mathfrak{F})$.

All the operations of constructible functions in §2 extend to stack functions.

Definition 3.3. Define *multiplication* ' \cdot ' on <u>SF</u>(\mathfrak{F}) by

$$[(\mathfrak{R},\rho)] \cdot [(\mathfrak{S},\sigma)] = [(\mathfrak{R} \times_{\rho,\mathfrak{F},\sigma} \mathfrak{S},\rho \circ \pi_{\mathfrak{R}})].$$
(6)

This extends to a \mathbb{Q} -bilinear product $\underline{SF}(\mathfrak{F}) \times \underline{SF}(\mathfrak{F}) \to \underline{SF}(\mathfrak{F})$ which is commutative and associative, and $SF(\mathfrak{F})$ is closed under ' \cdot '. Let $\phi : \mathfrak{F} \to \mathfrak{G}$ be a 1-morphism of algebraic \mathbb{K} -stacks with affine geometric stabilizers. Define the pushforward $\phi_* : \underline{SF}(\mathfrak{F}) \to \underline{SF}(\mathfrak{G})$ by

$$\phi_*: \sum_{i=1}^m c_i[(\mathfrak{R}_i, \rho_i)] \longmapsto \sum_{i=1}^m c_i[(\mathfrak{R}_i, \phi \circ \rho_i)].$$
(7)

If ϕ is representable then $\phi_* \text{ maps } \operatorname{SF}(\mathfrak{F}) \to \operatorname{SF}(\mathfrak{G})$. For ϕ of finite type, define pullbacks $\phi^* : \underline{\operatorname{SF}}(\mathfrak{G}) \to \underline{\operatorname{SF}}(\mathfrak{F}), \ \phi^* : \operatorname{SF}(\mathfrak{G}) \to \operatorname{SF}(\mathfrak{F})$ by

$$\phi^*: \sum_{i=1}^m c_i[(\mathfrak{R}_i, \rho_i)] \longmapsto \sum_{i=1}^m c_i[(\mathfrak{R}_i \times_{\rho_i, \mathfrak{G}, \phi} \mathfrak{F}, \pi_{\mathfrak{F}})].$$
(8)

The tensor product $\otimes : \underline{SF}(\mathfrak{F}) \times \underline{SF}(\mathfrak{G}) \to \underline{SF}(\mathfrak{F} \times \mathfrak{G})$ or $SF(\mathfrak{F}) \times SF(\mathfrak{G}) \to SF(\mathfrak{F} \times \mathfrak{G})$ is

$$\left(\sum_{i=1}^{m} c_i[(\mathfrak{R}_i,\rho_i)]\right) \otimes \left(\sum_{j=1}^{n} d_j[(\mathfrak{S}_j,\sigma_j)]\right) = \sum_{i,j} c_i d_j[(\mathfrak{R}_i \times \mathfrak{S}_j,\rho_i \times \sigma_j)].$$
(9)

Here [5, Th. 3.5] is the analogue of Theorem 2.3.

Theorem 3.4. Let $\mathfrak{E}, \mathfrak{F}, \mathfrak{G}, \mathfrak{H}$ be algebraic \mathbb{K} -stacks with affine geometric stabilizers, and $\beta : \mathfrak{F} \to \mathfrak{G}, \gamma : \mathfrak{G} \to \mathfrak{H}$ be 1-morphisms. Then

$$\begin{aligned} &(\gamma \circ \beta)_* = \gamma_* \circ \beta_* : \underline{\mathrm{SF}}(\mathfrak{F}) \to \underline{\mathrm{SF}}(\mathfrak{H}), \qquad (\gamma \circ \beta)_* = \gamma_* \circ \beta_* : \mathrm{SF}(\mathfrak{F}) \to \mathrm{SF}(\mathfrak{H}), \\ &(\gamma \circ \beta)^* = \beta^* \circ \gamma^* : \underline{\mathrm{SF}}(\mathfrak{H}) \to \underline{\mathrm{SF}}(\mathfrak{F}), \qquad (\gamma \circ \beta)^* = \beta^* \circ \gamma^* : \mathrm{SF}(\mathfrak{H}) \to \mathrm{SF}(\mathfrak{F}), \end{aligned}$$

for β, γ representable in the second equation, and of finite type in the third and fourth. If $f, g \in \underline{SF}(\mathfrak{G})$ and β is finite type then $\beta^*(f \cdot g) = \beta^*(f) \cdot \beta^*(g)$. If

$\mathfrak{K} \longrightarrow \mathfrak{K}$	is a Cartesian square with	$SF(\mathfrak{E})$ –	$\xrightarrow{n} \underline{SF}(\mathfrak{G})$
$ \begin{array}{ccc} $	-	` /	$\eta_* \xrightarrow{\mathbf{DI}} (\mathbf{C})$
$\psi \theta \psi \psi$	$ heta, \psi$ of finite type, then	$\uparrow \theta^*$	ψ^*
$\dot{z} \xrightarrow{\phi} \dot{s}$	the following commutes:	$SF(\mathfrak{F}) -$	$\xrightarrow{\phi_*} > SF(\mathfrak{H}).$
v — 3)	the following commutes:	$\underline{\nabla \mathbf{I}}(0)$	$\underline{\mathbf{DI}}(\mathbf{v})$

The same applies for $SF(\mathfrak{E}), \ldots, SF(\mathfrak{H})$ if η, ϕ are representable.

In [5, Prop. 3.7 & Th. 3.8] we relate pushforwards and pullbacks of stack and constructible functions using $\iota_{\mathfrak{F}}, \pi_{\mathfrak{F}}^{\mathrm{stk}}$.

Theorem 3.5. Let \mathbb{K} have characteristic zero, $\mathfrak{F}, \mathfrak{G}$ be algebraic \mathbb{K} -stacks with affine geometric stabilizers, and $\phi : \mathfrak{F} \to \mathfrak{G}$ be a 1-morphism. Then

- (a) $\phi^* \circ \iota_{\mathfrak{G}} = \iota_{\mathfrak{F}} \circ \phi^* : CF(\mathfrak{G}) \to SF(\mathfrak{F})$ if ϕ is of finite type;
- (b) $\pi^{stk}_{\mathfrak{G}} \circ \phi_* = CF^{stk}(\phi) \circ \pi^{stk}_{\mathfrak{F}} : SF(\mathfrak{F}) \to CF(\mathfrak{G}) \text{ if } \phi \text{ is representable; and}$
- (c) $\pi^{\mathrm{stk}}_{\mathfrak{F}} \circ \phi^* = \phi^* \circ \pi^{\mathrm{stk}}_{\mathfrak{G}} : \mathrm{SF}(\mathfrak{G}) \to \mathrm{CF}(\mathfrak{F}) \text{ if } \phi \text{ is of finite type.}$

In [5, §3] we extend all the material on \underline{SF} , $SF(\mathfrak{F})$ to *local stack functions* \underline{LSF} , $LSF(\mathfrak{F})$, the analogues of locally constructible functions. The main differences are in which 1-morphisms must be of finite type.

4 Motivic invariants of Artin stacks

In [5, §4] we extend *motivic* invariants of quasiprojective \mathbb{K} -varieties to Artin stacks. We need the following data, [5, Assumptions 4.1 & 6.1].

Assumption 4.1. Suppose Λ is a commutative \mathbb{Q} -algebra with identity 1, and

 Υ : {isomorphism classes [X] of quasiprojective K-varieties X} $\longrightarrow \Lambda$

a map for \mathbb{K} an algebraically closed field, satisfying the following conditions:

- (i) If $Y \subseteq X$ is a closed subvariety then $\Upsilon([X]) = \Upsilon([X \setminus Y]) + \Upsilon([Y])$;
- (ii) If X, Y are quasiprojective \mathbb{K} -varieties then $\Upsilon([X \times Y]) = \Upsilon([X])\Upsilon([Y]);$
- (iii) Write $\ell = \Upsilon([\mathbb{K}])$ in Λ , regarding \mathbb{K} as a \mathbb{K} -variety, the affine line (not the point Spec \mathbb{K}). Then ℓ and $\ell^k 1$ for k = 1, 2, ... are invertible in Λ .

Suppose Λ° is a Q-subalgebra of Λ containing the image of Υ and the elements ℓ^{-1} and $(\ell^k + \ell^{k-1} + \cdots + 1)^{-1}$ for $k = 1, 2, \ldots$, but not containing $(\ell - 1)^{-1}$. Let Ω be a commutative Q-algebra, and $\pi : \Lambda^{\circ} \to \Omega$ a surjective Q-algebra morphism, such that $\pi(\ell) = 1$. Define

 $\Theta: \{\text{isomorphism classes } [X] \text{ of quasiprojective } \mathbb{K}\text{-varieties } X\} \longrightarrow \Omega$

by $\Theta = \pi \circ \Upsilon$. Then $\Theta([\mathbb{K}]) = 1$.

We chose the notation ' ℓ ' as in motivic integration $[\mathbb{K}]$ is called the *Tate* motive and written \mathbb{L} . We have $\Upsilon([\operatorname{GL}(m,\mathbb{K})]) = \ell^{m(m-1)/2} \prod_{k=1}^{m} (\ell^k - 1)$, so (iii) ensures $\Upsilon([\operatorname{GL}(m,\mathbb{K})])$ is invertible in Λ for all $m \ge 1$. Here [5, Ex.s 4.3 & 6.3] is an example of suitable $\Lambda, \Upsilon, \ldots$; more are given in [5, §4.1 & §6.1].

Example 4.2. Let \mathbb{K} be an algebraically closed field. Define $\Lambda = \mathbb{Q}(z)$, the algebra of rational functions in z with coefficients in \mathbb{Q} . For any quasiprojective \mathbb{K} -variety X, let $\Upsilon([X]) = P(X; z)$ be the virtual Poincaré polynomial of X. This has a complicated definition in [5, Ex. 4.3] which we do not repeat, involving Deligne's weight filtration when char $\mathbb{K} = 0$ and the action of the Frobenius on l-adic cohomology when char $\mathbb{K} > 0$. If X is smooth and projective then P(X; z) is the ordinary Poincaré polynomial $\sum_{k=0}^{2 \dim X} b^k(X) z^k$, where $b^k(X)$ is the kth Betti number in l-adic cohomology, for l coprime to char \mathbb{K} . Also $\ell = P(\mathbb{K}; z) = z^2$.

Let Λ° be the subalgebra of P(z)/Q(z) in Λ for which $z \pm 1$ do not divide Q(z). Here are two possibilities for Ω, π . Assumption 4.1 holds in each case.

- (a) Set $\Omega = \mathbb{Q}$ and $\pi : f(z) \mapsto f(-1)$. Then $\Theta([X]) = \pi \circ \Upsilon([X])$ is the Euler characteristic of X.
- (b) Set $\Omega = \mathbb{Q}$ and $\pi : f(z) \mapsto f(1)$. Then $\Theta([X]) = \pi \circ \Upsilon([X])$ is the sum of the virtual Betti numbers of X.

We need a few facts about algebraic \mathbb{K} -groups. A good reference is Borel [1]. Following Borel, we define a \mathbb{K} -variety to be a \mathbb{K} -scheme which is reduced, separated, and of finite type, but not necessarily irreducible. An algebraic \mathbb{K} group is then a \mathbb{K} -variety G with identity $1 \in G$, multiplication $\mu : G \times G \to G$ and inverse $i : G \to G$ (as morphisms of \mathbb{K} -varieties) satisfying the usual group axioms. We call G affine if it is an affine \mathbb{K} -variety. Special \mathbb{K} -groups are studied by Serre and Grothendieck in [2, §§1, 5].

Definition 4.3. An algebraic \mathbb{K} -group G is called *special* if every principal G-bundle is Zariski locally trivial. Properties of special \mathbb{K} -groups can be found in [2, §§1.4, 1.5 & 5.5] and [5, §2.1]. In [5, Lem. 4.6] we show that if Assumption 4.1 holds and G is special then $\Upsilon([G])$ is invertible in Λ .

In [5, Th. 4.9] we extend Υ to Artin stacks, using Definition 4.3.

Theorem 4.4. Let Assumption 4.1 hold. Then there exists a unique morphism of \mathbb{Q} -algebras $\Upsilon' : \underline{SF}(\operatorname{Spec} \mathbb{K}) \to \Lambda$ such that if G is a special algebraic \mathbb{K} -group acting on a quasiprojective \mathbb{K} -variety X then $\Upsilon'([[X/G]]) = \Upsilon([X])/\Upsilon([G])$.

Thus, if \mathfrak{R} is a finite type algebraic \mathbb{K} -stack with affine geometric stabilizers the theorem defines $\Upsilon'([\mathfrak{R}]) \in \Lambda$. Taking Λ, Υ as in Example 4.2 yields the *virtual Poincaré function* $P(\mathfrak{R}; z) = \Upsilon'([\mathfrak{R}])$ of \mathfrak{R} , a natural extension of virtual Poincaré polynomials to stacks. Clearly, Theorem 4.4 only makes sense if $\Upsilon([G])^{-1}$ exists for all special \mathbb{K} -groups G. This excludes the Euler characteristic $\Upsilon = \chi$, for instance, since $\chi([\mathbb{K}^{\times}]) = 0$ is not invertible. We overcome this in [5, §6] by defining a finer extension of Υ to stacks that keeps track of maximal tori of stabilizer groups, and allows $\Upsilon = \chi$. This can then be used with Θ, Ω in Assumption 4.1.

5 Stack functions over motivic invariants

In $[5, \S4-\S6]$ we integrate the stack functions of $\S3$ with the motivic invariant ideas of $\S4$ to define more stack function spaces.

Definition 5.1. Let Assumption 4.1 hold, and \mathfrak{F} be an algebraic K-stack with affine geometric stabilizers. Consider pairs (\mathfrak{R}, ρ) , with equivalence, as in Definition 3.1. Define $\underline{SF}(\mathfrak{F}, \Upsilon, \Lambda)$ to be the Λ -module generated by equivalence classes $[(\mathfrak{R}, \rho)]$, with the following relations:

- (i) Given $[(\mathfrak{R}, \rho)]$ as above and \mathfrak{S} a closed \mathbb{K} -substack of \mathfrak{R} we have $[(\mathfrak{R}, \rho)] = [(\mathfrak{S}, \rho|_{\mathfrak{S}})] + [(\mathfrak{R} \setminus \mathfrak{S}, \rho|_{\mathfrak{R} \setminus \mathfrak{S}})]$, as in (5).
- (ii) Let \mathfrak{R} be a finite type algebraic \mathbb{K} -stack with affine geometric stabilizers, U a quasiprojective \mathbb{K} -variety, $\pi_{\mathfrak{R}} : \mathfrak{R} \times U \to \mathfrak{R}$ the natural projection, and $\rho : \mathfrak{R} \to \mathfrak{F}$ a 1-morphism. Then $[(\mathfrak{R} \times U, \rho \circ \pi_{\mathfrak{R}})] = \Upsilon([U])[(\mathfrak{R}, \rho)].$
- (iii) Given $[(\mathfrak{R}, \rho)]$ as above and a 1-isomorphism $\mathfrak{R} \cong [X/G]$ for X a quasiprojective \mathbb{K} -variety and G a special algebraic \mathbb{K} -group acting on X, we have $[(\mathfrak{R}, \rho)] = \Upsilon([G])^{-1}[(X, \rho \circ \pi)]$, where $\pi : X \to \mathfrak{R} \cong [X/G]$ is the natural projection 1-morphism.

Define a \mathbb{Q} -linear projection $\Pi^{\Upsilon,\Lambda}_{\mathfrak{F}}: \underline{\mathrm{SF}}(\mathfrak{F}) \to \underline{\mathrm{SF}}(\mathfrak{F},\Upsilon,\Lambda)$ by

$$\Pi_{\mathfrak{F}}^{\Upsilon,\Lambda}:\sum_{i\in I}c_i[(\mathfrak{R}_i,\rho_i)]\longmapsto \sum_{i\in I}c_i[(\mathfrak{R}_i,\rho_i)],$$

using the embedding $\mathbb{Q} \subseteq \Lambda$ to regard $c_i \in \mathbb{Q}$ as an element of Λ .

We also define variants of these: spaces \underline{SF} , $\overline{SF}(\mathfrak{F}, \Upsilon, \Lambda)$, \underline{SF} , $\overline{SF}(\mathfrak{F}, \Upsilon, \Lambda^{\circ})$ and \underline{SF} , $\overline{SF}(\mathfrak{F}, \Theta, \Omega)$, which are the Λ, Λ° - and Ω -modules respectively generated by $[(\mathfrak{R}, \rho)]$ as above, with ρ representable for $\overline{SF}(\mathfrak{F}, *, *)$, and with relations (i),(ii) above but (iii) replaced by a finer, more comflicated relation [5, Def. 5.17(iii)]. There are natural projections $\Pi_{\mathfrak{F}}^{\Upsilon,\Lambda}, \overline{\Pi}_{\mathfrak{F}}^{\Upsilon,\Lambda^{\circ}}, \overline{\Pi}_{\mathfrak{F}}^{\Theta,\Omega}$ between various of the spaces. We can also define *local stack function* spaces $\underline{LSF}, \underline{LSF}, \underline{LSF}(\mathfrak{F}, *, *)$.

In [5] we give analogues of Definitions 3.2 and 3.3 and Theorems 3.4 and 3.5 for these spaces. For the analogue of $\pi_{\mathfrak{F}}^{\mathrm{stk}}$, suppose $X : \Lambda^{\circ} \to \mathbb{Q}$ or $X : \Omega \to \mathbb{Q}$ is an algebra morphism with $X \circ \Upsilon([U]) = \chi([U])$ or $X \circ \Theta([U]) = \chi([U])$ for varieties U, where χ is the Euler characteristic. Define $\bar{\pi}_{\mathfrak{F}}^{\mathrm{stk}} : SF(\mathfrak{F}, \Upsilon, \Lambda^{\circ}) \to CF(\mathfrak{F})$ or $\bar{\pi}_{\mathfrak{F}}^{\mathrm{stk}} : SF(\mathfrak{F}, \Theta, \Omega) \to CF(\mathfrak{F})$ by

$$\bar{\pi}_{\mathfrak{F}}^{\mathrm{stk}}\left(\sum_{i=1}^{n} c_{i}[(\mathfrak{R}_{i},\rho_{i})]\right) = \sum_{i=1}^{n} \mathbf{X}(c_{i}) \operatorname{CF}^{\mathrm{stk}}(\rho_{i}) \mathbf{1}_{\mathfrak{R}_{i}}.$$

The operations '·', ϕ_*, ϕ^*, \otimes on $\underline{SF}(*, \Upsilon, \Lambda), \ldots, \overline{SF}(*, \Theta, \Omega)$ are given by the same formulae. The important point is that (6)–(9) are compatible with the relations defining $\underline{SF}(*, \Upsilon, \Lambda), \ldots, \overline{SF}(*, \Theta, \Omega)$, or they would not be well-defined.

In [5, Prop. 4.14] we identify $\underline{SF}(\operatorname{Spec} \mathbb{K}, \Upsilon, \Lambda)$. The proof involves showing that Υ' in Theorem 4.4 is compatible with Definition 5.1(i)–(iii) and so descends to $\Upsilon': \underline{SF}(\operatorname{Spec} \mathbb{K}, \Upsilon, \Lambda) \to \Lambda$, which is the inverse of i_{Λ} .

Proposition 5.2. The map $i_{\Lambda} : \Lambda \to \underline{SF}(\operatorname{Spec} \mathbb{K}, \Upsilon, \Lambda)$ taking $i_{\Lambda} : c \mapsto c[\operatorname{Spec} \mathbb{K}]$ is an isomorphism of algebras.

Here [5, Prop.s 5.21 & 5.22] is a useful way of representing these spaces.

Proposition 5.3. $\underline{SF}(\mathfrak{F}, \mathfrak{T}, \Lambda)$, $\underline{SF}(\mathfrak{F}, \mathfrak{T}, \Lambda^{\circ})$ and $\underline{SF}, \overline{SF}(\mathfrak{F}, \Theta, \Omega)$ are generated over Λ, Λ° and Ω respectively by elements $[(U \times [\operatorname{Spec} \mathbb{K}/T], \rho)]$, for Ua quasiprojective \mathbb{K} -variety and T an algebraic \mathbb{K} -group isomorphic to $(\mathbb{K}^{\times})^k \times K$ for $k \ge 0$ and K finite abelian.

Suppose $\sum_{i \in I} c_i[(U_i \times [\operatorname{Spec} \mathbb{K}/T_i], \rho_i)] = 0$ in one of these spaces, where *I* is finite set, $c_i \in \Lambda, \Lambda^\circ$ or Ω, U_i is a quasiprojective \mathbb{K} -variety and T_i an algebraic \mathbb{K} -group isomorphic to $(\mathbb{K}^{\times})^{k_i} \times K_i$ for $k_i \ge 0$ and K_i finite abelian, with $T_i \not\cong T_j$ for $i \ne j$. Then $c_j[(U_j \times [\operatorname{Spec} \mathbb{K}/T_j], \rho_j)] = 0$ for all $j \in I$.

In [5, §5.2] we define operators $\Pi^{\mu}, \Pi_{n}^{\text{vi}}, \Pi_{\mathfrak{F}}^{\nu}$ on $\underline{\mathrm{SF}}(\mathfrak{F}), \underline{\mathrm{SF}}(\mathfrak{F}, *, *)$ (but not on $\underline{\mathrm{SF}}(\mathfrak{F}, \Upsilon, \Lambda)$). Very roughly speaking, Π_{n}^{vi} projects $[(\mathfrak{R}, \rho)] \in \underline{\mathrm{SF}}(\mathfrak{F})$ to $[(\mathfrak{R}_{n}, \rho)]$, where \mathfrak{R}_{n} is the \mathbb{K} -substack of points $r \in \mathfrak{R}(\mathbb{K})$ whose stabilizer groups $\mathrm{Iso}_{\mathbb{K}}(r)$ have rank n, that is, maximal torus $(\mathbb{K}^{\times})^{n}$.

Unfortunately, it is more complicated than this. The right notion is not the actual rank of stabilizer groups, but the *virtual rank*. This is a difficult idea which treats $r \in \mathfrak{R}(\mathbb{K})$ with nonabelian stabilizer group $G = \operatorname{Iso}_{\mathbb{K}}(r)$ as a linear combination of points with 'virtual ranks' in the range rk $C(G) \leq n \leq \operatorname{rk} G$. Effectively this *abelianizes stabilizer groups*, that is, using virtual rank we can treat \mathfrak{R} as though its stabilizer groups were all abelian, essentially tori $(\mathbb{K}^{\times})^n$.

Here is a way to interpret the spaces of Definition 5.1, explained in [5]. In §2, pushforwards $CF^{\text{stk}}(\phi) : CF(\mathfrak{F}) \to CF(\mathfrak{G})$ are defined by 'integration' over the fibres of ϕ , using the Euler characteristic χ as measure. In the same way, given Λ, Υ as in Assumption 4.1 we could consider Λ -valued constructible functions $CF(\mathfrak{F})_{\Lambda}$, and define a pushforward $\phi_* : CF(\mathfrak{F})_{\Lambda} \to CF(\mathfrak{G})_{\Lambda}$ by 'integration' using Υ as measure, instead of χ . But then $(\psi \circ \phi)_* = \psi_* \circ \phi_*$ may no longer hold, as this depends on properties of χ on non-Zariski-locally-trivial fibrations which are false for other Υ such as virtual Poincaré polynomials. The space $\underline{SF}(\mathfrak{F}, \Upsilon, \Lambda)$ is very like $CF(\mathfrak{F})_{\Lambda}$ with pushforwards ϕ_* defined using Υ , but satisfies $(\psi \circ \phi)_* = \psi_* \circ \phi_*$ and other useful functoriality properties. So we can use it as a substitute for $CF(\mathfrak{F})$. The spaces $\underline{SF}, \overline{SF}(\mathfrak{F}, *, *)$ are similar but also keep track of information on the maximal tori of stabilizer groups.

6 'Virtual rank' and projections Π_n^{vi} on $\underline{SF}(\mathfrak{F})$

The most difficult part of [5] is [5, §5–§6], which discusses 'virtual rank' of stack functions, and defines projections Π_n^{vi} on $\underline{SF}(\mathfrak{F})$ to stack functions of 'virtual rank n'. These are important in [4,6,6,7] to define a *Lie subalgebra* $SF_{\text{al}}^{\text{ind}}(\mathfrak{Obj}_{\mathcal{A}})$ of the Ringel–Hall algebra $SF_{\text{al}}(\mathfrak{Obj}_{\mathcal{A}})$, of stack functions with 'virtual rank 1', that is, stack functions 'supported on virtual indecomposables'.

The reason the Π_n^{vi} are important in Ringel-Hall algebra questions is that they have a deep, nontrivial compatibility with multiplication * in $\text{SF}_{al}(\mathfrak{Obj}_{\mathcal{A}})$. This is difficult to state, but is (partially) explained in [7, §5.2–§5.3]. The simplest instance of it is that $\text{SF}_{al}^{\text{ind}}(\mathfrak{Obj}_{\mathcal{A}})$, which is just $\Pi_1^{\text{vi}}(\text{SF}_{al}(\mathfrak{Obj}_{\mathcal{A}}))$, is closed under the Lie bracket [f, g] = f * g - g * f. The action of Π_n^{vi} on a stack function $[(\mathfrak{R}, \rho)]$ depends on the *stabilizer groups*

The action of $\Pi_n^{v_1}$ on a stack function $[(\mathfrak{R}, \rho)]$ depends on the *stabilizer groups* of \mathfrak{R} . Thus, they are truly a phenomenon to do with Artin stacks, and have no analogue in the world of schemes.

As motivation we first introduce 'real rank' projections $\Pi_n^{\rm re}$, which project $[(\mathfrak{R}, \rho)]$ to $[(\mathfrak{R}_n, \rho)]$, where \mathfrak{R}_n is the substack of \mathfrak{R} whose stabilizer groups have rank n (that is, the maximal torus of the stabilizer groups has dimension n). If all stabilizer groups of \mathfrak{R} are abelian, then $\Pi_n^{\rm vi}$ coincides with $\Pi_n^{\rm re}$ on $[(\mathfrak{R}, \rho)]$. But if \mathfrak{R} has nonabelian stabilizer groups, then the $\Pi_n^{\rm vi}$ treat points of \mathfrak{R} as if they were \mathbb{Q} -linear combinations of points with ranks.

6.1 Real rank and projections Π_n^{re}

We define a family of commuting projections $\Pi_n^{\text{re}} : \underline{SF}(\mathfrak{F}) \to \underline{SF}(\mathfrak{F})$ for $n = 0, 1, \ldots$ which project to the part of $\underline{SF}(\mathfrak{F})$ spanned by $[(\mathfrak{R}, \rho)]$ such that the stabilizer group $\operatorname{Aut}_{\mathbb{K}}(r)$ has rank n for all $r \in \mathfrak{R}(\mathbb{K})$. The superscript 're' is short for 'real', meaning that the Π_n^{re} decompose $\underline{SF}(\mathfrak{F})$ by the real (actual) rank of stabilizer groups.

Definition 6.1. If \mathfrak{R} is an algebraic \mathbb{K} -stack and $r \in \mathfrak{R}(\mathbb{K})$ then $\operatorname{Aut}_{\mathbb{K}}(r)$ is an algebraic \mathbb{K} -group, so the rank $\operatorname{rk}(\operatorname{Aut}_{\mathbb{K}}(r))$ is well-defined. There is a natural topology on $\mathfrak{R}(\mathbb{K})$, in which the open sets are $\mathfrak{U}(\mathbb{K})$ for open \mathbb{K} -substacks $\mathfrak{U} \subseteq \mathfrak{R}$. In this topology the function $r \mapsto \operatorname{rk}(\operatorname{Aut}_{\mathbb{K}}(r))$ is upper semicontinuous. Thus, there exist locally closed \mathbb{K} -substacks \mathfrak{R}_n in \mathfrak{R} for $n = 0, 1, \ldots$, such that $\mathfrak{R}(\mathbb{K}) = \coprod_{n \geq 0} \mathfrak{R}_n(\mathbb{K})$, and $r \in \mathfrak{R}(\mathbb{K})$ has $\operatorname{rk}(\operatorname{Aut}_{\mathbb{K}}(r)) = n$ if and only if $r \in \mathfrak{R}_n(\mathbb{K})$. If \mathfrak{R} is of finite type then $\mathfrak{R}_n = \emptyset$ for $n \gg 0$.

Now let \mathfrak{F} be an algebraic \mathbb{K} -stack with affine geometric stabilizers, and $\underline{SF}(\mathfrak{F})$ be as in §3. Define \mathbb{Q} -linear maps $\Pi_n^{\mathrm{re}} : \underline{SF}(\mathfrak{F}) \to \underline{SF}(\mathfrak{F})$ for $n = 0, 1, \ldots$ on the generators $[(\mathfrak{R}, \rho)]$ of $\underline{SF}(\mathfrak{F})$ by $\Pi_n^{\mathrm{re}} : [(\mathfrak{R}, \rho)] \mapsto [(\mathfrak{R}_n, \rho|_{\mathfrak{R}_n})]$, for \mathfrak{R}_n defined as above. If \mathfrak{S} is a closed substack of \mathfrak{R} it is easy to see that \mathfrak{S}_n is a closed substack of \mathfrak{R}_n and $(\mathfrak{R} \setminus \mathfrak{S})_n = \mathfrak{R}_n \setminus \mathfrak{S}_n$. Thus, Π_n^{re} is compatible with the relations (5) in $\underline{\mathrm{SF}}(\mathfrak{F})$, and is well-defined. If $\rho : \mathfrak{R} \to \mathfrak{F}$ is representable then so is $\rho|_{\mathfrak{R}_n}$, so the restriction to $\mathrm{SF}(\mathfrak{F})$ maps $\Pi_n^{\mathrm{re}} : \mathrm{SF}(\mathfrak{F}) \to \mathrm{SF}(\mathfrak{F})$.

Here are some easy properties of the $\Pi_n^{\rm re}$:

Proposition 6.2. In the situation above, we have:

- (i) $(\Pi_n^{\text{re}})^2 = \Pi_n^{\text{re}}$, so that Π_n^{re} is a projection, and $\Pi_m^{\text{re}} \circ \Pi_n^{\text{re}} = 0$ for $m \neq n$.
- (ii) For all $f \in \underline{SF}(\mathfrak{F})$ we have $f = \sum_{n \ge 0} \prod_{n=1}^{re} f$, where the sum makes sense as $\prod_{n=1}^{re} f = 0$ for $n \gg 0$.
- (iii) If $\phi : \mathfrak{F} \to \mathfrak{G}$ is a 1-morphism of algebraic \mathbb{K} -stacks with affine geometric stabilizers then $\Pi_n^{\mathrm{re}} \circ \phi_* = \phi_* \circ \Pi_n^{\mathrm{re}} : \underline{\mathrm{SF}}(\mathfrak{F}) \to \underline{\mathrm{SF}}(\mathfrak{G}).$
- (iv) If $f \in \underline{SF}(\mathfrak{F}), g \in \underline{SF}(\mathfrak{G})$ then $\prod_{n=0}^{\mathrm{re}} (f \otimes g) = \sum_{m=0}^{n} \prod_{m=0}^{\mathrm{re}} (f) \otimes \prod_{n=m}^{\mathrm{re}} (g)$.

6.2 Operators Π^{μ} and projections Π_n^{vi}

Now we define some linear maps $\Pi^{\mu} : \underline{SF}(\mathfrak{F}) \to \underline{SF}(\mathfrak{F})$.

Definition 6.3. A weight function μ is a map

 $\mu: \{ \mathbb{K} \text{-groups } (\mathbb{K}^{\times})^k \times K, k \ge 0, K \text{ finite abelian, up to isomorphism} \} \to \mathbb{Q}.$

For any algebraic K-stack \mathfrak{F} with affine geometric stabilizers, we will define a linear map $\Pi^{\mu} : \underline{SF}(\mathfrak{F}) \to \underline{SF}(\mathfrak{F})$. Now $\underline{SF}(\mathfrak{F})$ is generated by elements $[(\mathfrak{R}, \rho)]$ with \mathfrak{R} 1-isomorphic to a global quotient [X/G], for X a quasiprojective Kvariety and G a special algebraic K-group, with maximal torus T^G . Define $C_G(T^G) = \{\gamma \in G : \gamma \delta = \delta \gamma \ \forall \delta \in T^G\}$ to be the *centralizer* of T^G in G, and $N_G(T^G) = \{\gamma \in G : \gamma T^G = T^G \gamma\}$ to be the *normalizer* of T^G in G, and $W(G, T^G) = N_G(T^G)/C_G(T^G)$ to be the Weyl group of G. Then $W(G, T^G)$ acts on T^G by conjugation: if $w = \gamma C_G(T^G)$ for $\gamma \in N_G(T^G)$ then we define $w \cdot \delta = \gamma \delta \gamma^{-1}$ in T^G for all $\delta \in T^G$.

Every algebraic \mathbb{K} -subgroup L of T^G is of the form $(\mathbb{K}^{\times})^k \times K$ for $k \ge 0$, K a finite abelian group. Let $\mathcal{S}(T^G)$ be the set of subsets of T^G defined by Boolean operations upon subgroups L of T^G . Given a weight function μ as above, define a *measure* $d\mu : \mathcal{S}(T^G) \to \mathbb{Q}$ to be additive upon disjoint unions of sets in $\mathcal{S}(T^G)$, and to satisfy $d\mu(L) = \mu(L)$ for all algebraic \mathbb{K} -subgroups L of T^G . Now define

$$\Pi^{\mu}([(\mathfrak{R},\rho)]) = \int_{t\in T^{G}} \frac{|\{w\in W(G,T^{G}): w\cdot t=t\}|}{|W(G,T^{G})|} \left[\left([X^{\{t\}}/C_{G}(\{t\})], \rho\circ\iota^{\{t\}}\right)\right] \mathrm{d}\mu.$$
(10)

Here $X^{\{t\}}$ is the subvariety of X fixed by t, and $\iota^{\{t\}} : [X^{\{t\}}/C_G(\{t\})] \to [X/G]$ is the obvious 1-morphism of Artin stacks.

The point of this is that the integrand in (10), regarded as a function of $t \in T^G$, is a constructible function taking only finitely many values, and the level sets of the function lie in $\mathcal{S}(T^G)$, so they are measurable with respect to $d\mu$, and the integral is well-defined.

As the integrand in (10) is invariant under the action of $W(G, T^G)$, we can simplify (10) by pushing the integration down to $T^G/W(G, T^G)$:

$$\Pi^{\mu}\big([(\mathfrak{R},\rho)]\big) = \int_{tW(G,T^G)\in T^G/W(G,T^G)} \big[\big([X^{\{t\}}/C_G(\{t\})],\rho\circ\iota^{\{t\}}\big)\big]\mathrm{d}\mu.$$
(11)

If \mathfrak{R} has abelian stabilizer groups, then $\Pi^{\mu}([(\mathfrak{R}, \rho)])$ simply weights each point r of \mathfrak{R} by $\mu(\operatorname{Stab}_{\mathfrak{R}}(r))$. However, if \mathfrak{R} has nonabelian stabilizer groups, then $\Pi^{\mu}([(\mathfrak{R}, \rho)])$ replaces each point r with stabilizer group G by a \mathbb{Q} -linear combination of points with stabilizer groups $C_G(\{t\})$ for $t \in T^G$, where the \mathbb{Q} -coefficients depend on the values of μ on subgroups of T^G .

Then [5, Th.s 5.11 & 5.12] shows:

Theorem 6.4. In the situation above, $\Pi^{\mu}([(\mathfrak{R}, \rho)])$ is independent of the choices of X, G, T^{G} and 1-isomorphism $\mathfrak{R} \cong [X/G]$, and Π^{μ} extends to unique linear maps $\Pi^{\mu} : \underline{\mathrm{SF}}(\mathfrak{F}) \to \underline{\mathrm{SF}}(\mathfrak{F})$ and $\Pi^{\mu} : \mathrm{SF}(\mathfrak{F}) \to \mathrm{SF}(\mathfrak{F})$.

Theorem 6.5. (a) Π^1 defined using $\mu \equiv 1$ is the identity on <u>SF</u>(\mathfrak{F}).

- (b) If $\phi : \mathfrak{F} \to \mathfrak{G}$ is a 1-morphism of algebraic \mathbb{K} -stacks with affine geometric stabilizers then $\Pi^{\mu} \circ \phi_* = \phi_* \circ \Pi^{\mu} : \underline{\mathrm{SF}}(\mathfrak{F}) \to \underline{\mathrm{SF}}(\mathfrak{G}).$
- (c) If μ_1, μ_2 are weight functions as in Definition 6.3 then $\mu_1\mu_2$ is also a weight function and $\Pi^{\mu_2} \circ \Pi^{\mu_1} = \Pi^{\mu_1} \circ \Pi^{\mu_2} = \Pi^{\mu_1\mu_2}$.

Definition 6.6. For $n \ge 0$, define Π_n^{vi} to be the operator Π^{μ_n} defined with weight μ_n given by $\mu_n([H]) = 1$ if dim H = n and $\mu_n([H]) = 0$ otherwise, for all K-groups $H \cong (\mathbb{K}^{\times})^k \times K$ with K a finite abelian group.

The analogue of Proposition 6.2 holds for the Π_n^{vi} . Note that (i) follows from Theorem 6.5(c), (ii) from Theorem 6.5(a), and (iii) from Theorem 6.5(b).

Proposition 6.7. In the situation above, we have:

- (i) $(\Pi_n^{\text{vi}})^2 = \Pi_n^{\text{vi}}$, so that Π_n^{vi} is a projection, and $\Pi_m^{\text{vi}} \circ \Pi_n^{\text{vi}} = 0$ for $m \neq n$.
- (ii) For all $f \in \underline{SF}(\mathfrak{F})$ we have $f = \sum_{n \ge 0} \prod_{n=1}^{\text{vi}} (f)$, where the sum makes sense as $\prod_{n=1}^{\text{vi}} (f) = 0$ for $n \gg 0$.
- (iii) If $\phi : \mathfrak{F} \to \mathfrak{G}$ is a 1-morphism of algebraic \mathbb{K} -stacks with affine geometric stabilizers then $\Pi_n^{\mathrm{vi}} \circ \phi_* = \phi_* \circ \Pi_n^{\mathrm{vi}} : \underline{\mathrm{SF}}(\mathfrak{F}) \to \underline{\mathrm{SF}}(\mathfrak{G}).$
- (iv) If $f \in \underline{SF}(\mathfrak{F}), g \in \underline{SF}(\mathfrak{G})$ then $\Pi_n^{\mathrm{vi}}(f \otimes g) = \sum_{m=0}^n \Pi_m^{\mathrm{vi}}(f) \otimes \Pi_{n-m}^{\mathrm{vi}}(g)$.

Now the operators Π_n^{vi} do not make sense on the spaces $\underline{SF}(\mathfrak{F}, \Upsilon, \Lambda)$ of §5, because they are not compatible with the relation Definition 5.1(iii). So in [5, §5.3] we define stack function spaces $\underline{SF}, \overline{SF}(\mathfrak{F}, \Upsilon, \Lambda)$ in which Definition 5.1(iii) is replaced by a finer, more complicated relation compatible with the Π_n^{vi} , so that Π_n^{vi} is well-defined on $\underline{SF}(\mathfrak{F}, \Upsilon, \Lambda)$. These have a nice way of representing elements of $\underline{SF}, \overline{SF}(\mathfrak{F}, \Upsilon, \Lambda)$: **Proposition 6.8.** $\underline{SF}(\mathfrak{F}, \Upsilon, \Lambda)$ and $SF(\mathfrak{F}, \Upsilon, \Lambda)$ are generated over Λ by elements $[(U \times [\operatorname{Spec} \mathbb{K}/T], \rho)]$, for U a quasiprojective \mathbb{K} -variety and T an algebraic \mathbb{K} -group isomorphic to $(\mathbb{K}^{\times})^k \times K$ for $k \ge 0$ and K finite abelian.

We can do Ringel-Hall algebras using the spaces $SF(\mathfrak{F}, \Upsilon, \Lambda)$. They should be useful for studying algebra morphisms of Kontsevich–Soibelman type, and more generally, because Proposition 6.8 will allow us to assume that our stack functions all have stabilizer groups $(\mathbb{K}^{\times})^k$. In effect, this is like being able to assume that all the sheaves on the Calabi–Yau 3-fold that you ever have to deal with are of the form $E_1 \oplus \cdots \oplus E_k$ with E_i simple and $\operatorname{Hom}(E_i, E_j) = 0$ for $i \neq j$, so that $\operatorname{Aut}(E_1 \oplus \cdots \oplus E_k) = (\mathbb{K}^{\times})^k$. So, we eliminate questions of how to deal with more complicated stabilizer groups of sheaves.

References

- A. Borel, *Linear Algebraic Groups*, second edition, Graduate Texts in Math. 126, Springer-Verlag, New York, 1991.
- [2] Anneaux de Chow et applications, Séminaire C. Chevalley, 2e année, École Normale Supérieure, Secrétariat mathématique, Paris, 1958.
- [3] T.L. Gómez, Algebraic stacks, Proc. Indian Acad. Sci. Math. Sci. 111 (2001), 1–31. math.AG/9911199.
- [4] D.D. Joyce, Constructible functions on Artin stacks, J. London Math. Soc. 74 (2006), 583–606. math.AG/0403305.
- [5] D.D. Joyce, Motivic invariants of Artin stacks and 'stack functions', Quarterly Journal of Mathematics 58 (2007), 345-392. math.AG/0509722.
- [6] D.D. Joyce, Configurations in abelian categories. I. Basic properties and moduli stacks, Advances in Mathematics 203 (2006), 194–255. math.AG/0312190.
- [7] D.D. Joyce, Configurations in abelian categories. II. Ringel-Hall algebras, Advances in Math, 210 (2007), 635–706. math.AG/0503029.
- [8] D.D. Joyce, Configurations in abelian categories. III. Stability conditions and invariants, math.AG/0410267, version 4, 2006.
- [9] D.D. Joyce, Configurations in abelian categories. IV. Invariants and changing stability conditions, math.AG/0410268, version 4, 2006.
- [10] D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants. I. An invariant counting stable pairs, arXiv:0810.5645, 2008.
- [11] D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants. II. Multiplicative identities for Behrend functions, in preparation, 2008.

- [12] D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants. III. Invariants and transformation formulae, in preparation, 2008.
- [13] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435, 2008.
- [14] G. Laumon and L. Moret-Bailly, *Champs algébriques*, Ergeb. der Math. und ihrer Grenzgebiete 39, Springer-Verlag, Berlin, 2000.

THE MATHEMATICAL INSTITUTE, 24-29 ST. GILES, OXFORD, OX1 3LB, U.K. E-MAIL: joyce@maths.ox.ac.uk