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I aim to explain parts of my papers [4, 5] on ‘stack functions’, which are
central to the sequels [6–9] and my work with Yinan Song [10–12], and are
basically the same as the ‘Hall algebras’ used by Kontsevich and Soibelman [13].

1 Introduction to Artin K-stacks

Fix an algebraically closed field K throughout. There are four main classes of
‘spaces’ over K used in algebraic geometry, in increasing order of generality:

K-varieties ⊂ K-schemes ⊂ algebraic K-spaces ⊂ algebraic K-stacks.

Algebraic stacks (also known as Artin stacks) were introduced by Artin, gen-
eralizing Deligne–Mumford stacks. For a good introduction to algebraic stacks
see Gómez [3], and for a thorough treatment see Laumon and Moret-Bailly [14].
We make the convention that all algebraic K-stacks in this paper are locally of
finite type, and K-substacks are locally closed.

Algebraic K-stacks form a 2-category. That is, we have objects which are
K-stacks F,G, and also two kinds of morphisms, 1-morphisms φ, ψ : F → G
between K-stacks, and 2-morphisms A : φ → ψ between 1-morphisms. An
analogy to keep in mind is a 2-category of categories, where objects are cate-
gories, 1-morphisms are functors between the categories, and 2-morphisms are
isomorphisms (natural transformations) between functors.

We define the set of K-points of a stack.

Definition 1.1. Let F be a K-stack. Write F(K) for the set of 2-isomorphism
classes [x] of 1-morphisms x : SpecK → F. Elements of F(K) are called K-
points, or geometric points, of F. If φ : F → G is a 1-morphism then composition
with φ induces a map of sets φ∗ : F(K) → G(K).

For a 1-morphism x : SpecK → F, the stabilizer group IsoK(x) is the group
of 2-morphisms x → x. When F is an algebraic K-stack, IsoK(x) is an algebraic
K-group. We say that F has affine geometric stabilizers if IsoK(x) is an affine
algebraic K-group for all 1-morphisms x : SpecK → F.

As an algebraic K-group up to isomorphism, IsoK(x) depends only on the
isomorphism class [x] ∈ F(K) of x in Hom(SpecK, F). If φ : F → G is
a 1-morphism, composition induces a morphism of algebraic K-groups φ∗ :
IsoK([x]) → IsoK

(
φ∗([x])

)
, for [x] ∈ F(K).
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One important difference in working with 2-categories rather than ordinary
categories is that in diagram-chasing one only requires 1-morphisms to be 2-
isomorphic rather than equal. The simplest kind of commutative diagram is:

G
F®¶

ψ

''OOOOOO

F

φ 88pppppp
χ

// H,

by which we mean that F, G, H are K-stacks, φ, ψ, χ are 1-morphisms, and F :
ψ ◦ φ → χ is a 2-isomorphism. Usually we omit F , and mean that ψ ◦ φ ∼= χ.

Definition 1.2. Let φ : F → H, ψ : G → H be 1-morphisms of K-stacks. Then
one can define the fibre product stack F ×φ,H,ψ G, or F ×H G for short, with
1-morphisms πF, πG fitting into a commutative diagram:

F φ
++VVVVVV

®¶F×H G
πG

,,YYYYY

πF 22ffffff
H.

G ψ

33ggggg
(1)

A commutative diagram
F φ

++WWWWWW
®¶E

η ++WWWWW
θ 33gggggg H

G ψ

33ggggg

is a Cartesian square if it is isomorphic to (1), so there is a 1-isomorphism E ∼=
F×H G. Cartesian squares may also be characterized by a universal property.

2 Constructible functions on stacks

Next we discuss constructible functions on K-stacks, following [4]. For this
section we need K to have characteristic zero.

Definition 2.1. Let F be an algebraic K-stack. We call C ⊆ F(K) constructible
if C =

⋃
i∈I Fi(K), where {Fi : i ∈ I} is a finite collection of finite type alge-

braic K-substacks Fi of F. We call S ⊆ F(K) locally constructible if S ∩ C is
constructible for all constructible C ⊆ F(K).

A function f : F(K) → Q is called constructible if f(F(K)) is finite and
f−1(c) is a constructible set in F(K) for each c ∈ f(F(K)) \ {0}. A function
f : F(K) → Q is called locally constructible if f · δC is constructible for all
constructible C ⊆ F(K), where δC is the characteristic function of C. Write
CF(F) and LCF(F) for the Q-vector spaces of Q-valued constructible and locally
constructible functions on F.

Following [4, Def.s 4.8, 5.1 & 5.5] we define pushforwards and pullbacks of
constructible functions along 1-morphisms.

Definition 2.2. Let F be an algebraic K-stack with affine geometric stabilizers
and C ⊆ F(K) be constructible. Then [4, Def. 4.8] defines the näıve Euler
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characteristic χna(C) of C. It is called näıve as it takes no account of stabilizer
groups. For f ∈ CF(F), define χna(F, f) in Q by

χna(F, f) =
∑

c∈f(F(K))\{0} c χna
(
f−1(c)

)
.

Let F, G be algebraic K-stacks with affine geometric stabilizers, and φ : F →
G a representable 1-morphism. Then for any x ∈ F(K) we have an injective
morphism φ∗ : IsoK(x) → IsoK

(
φ∗(x)

)
of affine algebraic K-groups. The image

φ∗
(
IsoK(x)

)
is an affine algebraic K-group closed in IsoK

(
φ∗(x)

)
, so the quotient

IsoK
(
φ∗(x)

)
/φ∗

(
IsoK(x)

)
exists as a quasiprojectiveK-variety. Define a function

mφ : F(K) → Z by mφ(x) = χ
(
IsoK(φ∗(x))/φ∗(IsoK(x))

)
for x ∈ F(K).

For f ∈ CF(F), define CFstk(φ)f : G(K) → Q by

CFstk(φ)f(y) = χna
(
F,mφ · f · δφ−1

∗ (y)

)
for y ∈ G(K),

where δφ−1
∗ (y) is the characteristic function of φ−1

∗ ({y}) ⊆ G(K) on G(K). Then
CFstk(φ) : CF(F) → CF(G) is a Q-linear map called the stack pushforward.

Let θ : F → G be a finite type 1-morphism. If C ⊆ G(K) is constructible
then so is θ−1

∗ (C) ⊆ F(K). It follows that if f ∈ CF(G) then f ◦θ∗ lies in CF(F).
Define the pullback θ∗ : CF(G) → CF(F) by θ∗(f) = f ◦ θ∗. It is a linear map.

Here [4, Th.s 5.4, 5.6 & Def. 5.5] are some properties of these.

Theorem 2.3. Let E,F, G, H be algebraic K-stacks with affine geometric sta-
bilizers, and β : F → G, γ : G → H be 1-morphisms. Then

CFstk(γ ◦ β) = CFstk(γ) ◦ CFstk(β) : CF(F) → CF(H), (2)
(γ ◦ β)∗ = β∗ ◦ γ∗ : CF(H) → CF(F), (3)

supposing β, γ representable in (2), and of finite type in (3). If

E η
//

θ

²²

G

ψ

²²
F

φ // H

is a Cartesian square with
η, φ representable and
θ, ψ of finite type, then
the following commutes:

CF(E)
CFstk(η)

// CF(G)

CF(F)
CFstk(φ) //

θ∗

OO

CF(H).

ψ∗

OO

(4)

As discussed in [4, §3.3] for the K-scheme case, equation (2) is false for
algebraically closed fields K of characteristic p > 0. This is my reason for
restricting to K of characteristic zero in those parts of my papers dealing with
constructible functions. In [4, §5.3] we extend Definition 2.2 and Theorem 2.3
to locally constructible functions.

3 Stack functions

Stack functions are a universal generalization of constructible functions intro-
duced in [5, §3]. Here [5, Def. 3.1] is the basic definition. Throughout K is alge-
braically closed of arbitrary characteristic, except when we specify charK = 0.
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Definition 3.1. Let F be an algebraic K-stack with affine geometric stabilizers.
Consider pairs (R, ρ), where R is a finite type algebraic K-stack with affine
geometric stabilizers and ρ : R → F is a 1-morphism. We call two pairs (R, ρ),
(R′, ρ′) equivalent if there exists a 1-isomorphism ι : R → R′ such that ρ′ ◦ ι
and ρ are 2-isomorphic 1-morphisms R → F. Write [(R, ρ)] for the equivalence
class of (R, ρ). If (R, ρ) is such a pair and S is a closed K-substack of R then
(S, ρ|S), (R \S, ρ|R\S) are pairs of the same kind.

Define SF(F) to be the Q-vector space generated by equivalence classes
[(R, ρ)] as above, with for each closed K-substack S of R a relation

[(R, ρ)] = [(S, ρ|S)] + [(R \S, ρ|R\S)]. (5)

Define SF(F) to be the Q-vector space generated by [(R, ρ)] with ρ representable,
with the same relations (5). Then SF(F) ⊆ SF(F).

Elements of SF(F) will be called stack functions. In [5, Def. 3.2] we relate
CF(F) and SF(F).

Definition 3.2. Let F be an algebraic K-stack with affine geometric stabilizers,
and C ⊆ F(K) be constructible. Then C =

∐n
i=1 Ri(K), for R1, . . . , Rn finite

type K-substacks of F. Let ρi : Ri → F be the inclusion 1-morphism. Then
[(Ri, ρi)] ∈ SF(F). Define δ̄C =

∑n
i=1[(Ri, ρi)] ∈ SF(F). We think of this stack

function as the analogue of the characteristic function δC ∈ CF(F) of C. Define
a Q-linear map ιF : CF(F) → SF(F) by ιF(f) =

∑
0 6=c∈f(F(K)) c · δ̄f−1(c). For K

of characteristic zero, define a Q-linear map πstk
F : SF(F) → CF(F) by

πstk
F

(∑n
i=1 ci[(Ri, ρi)]

)
=

∑n
i=1 ci CFstk(ρi)1Ri ,

where 1Ri is the function 1 in CF(Ri). Then [5, Prop. 3.3] shows πstk
F ◦ ιF is the

identity on CF(F). Thus, ιF is injective and πstk
F is surjective. In general ιF is

far from surjective, and SF, SF(F) are much larger than CF(F).

All the operations of constructible functions in §2 extend to stack functions.

Definition 3.3. Define multiplication ‘ · ’ on SF(F) by

[(R, ρ)] · [(S, σ)] = [(R×ρ,F,σ S, ρ ◦ πR)]. (6)

This extends to a Q-bilinear product SF(F) × SF(F) → SF(F) which is com-
mutative and associative, and SF(F) is closed under ‘ · ’. Let φ : F→G be a
1-morphism of algebraic K-stacks with affine geometric stabilizers. Define the
pushforward φ∗ : SF(F)→SF(G) by

φ∗ :
∑m

i=1 ci[(Ri, ρi)] 7−→
∑m

i=1 ci[(Ri, φ ◦ ρi)]. (7)

If φ is representable then φ∗ maps SF(F)→SF(G). For φ of finite type, define
pullbacks φ∗ : SF(G)→SF(F), φ∗ : SF(G)→SF(F) by

φ∗ :
∑m

i=1 ci[(Ri, ρi)] 7−→
∑m

i=1 ci[(Ri ×ρi,G,φ F, πF)]. (8)
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The tensor product ⊗ :SF(F)×SF(G)→SF(F×G) or SF(F)×SF(G)→SF(F×G) is
(∑m

i=1 ci[(Ri, ρi)]
)⊗(∑n

j=1 dj [(Sj , σj)]
)
=

∑
i,j cidj [(Ri×Sj , ρi×σj)]. (9)

Here [5, Th. 3.5] is the analogue of Theorem 2.3.

Theorem 3.4. Let E,F, G, H be algebraic K-stacks with affine geometric sta-
bilizers, and β : F → G, γ : G → H be 1-morphisms. Then

(γ◦β)∗=γ∗◦β∗ : SF(F)→SF(H), (γ◦β)∗=γ∗◦β∗ : SF(F)→SF(H),
(γ◦β)∗=β∗◦γ∗ : SF(H)→SF(F), (γ◦β)∗=β∗◦γ∗ : SF(H)→SF(F),

for β, γ representable in the second equation, and of finite type in the third and
fourth. If f, g ∈ SF(G) and β is finite type then β∗(f · g) = β∗(f) · β∗(g). If

E η
//

θ²²

G

ψ
²²

F
φ // H

is a Cartesian square with
θ, ψ of finite type, then
the following commutes:

SF(E)
η∗

// SF(G)

SF(F)
φ∗ //

θ∗
OO

SF(H).
ψ∗

OO

The same applies for SF(E), . . . , SF(H) if η, φ are representable.

In [5, Prop. 3.7 & Th. 3.8] we relate pushforwards and pullbacks of stack
and constructible functions using ιF, πstk

F .

Theorem 3.5. Let K have characteristic zero, F, G be algebraic K-stacks with
affine geometric stabilizers, and φ : F → G be a 1-morphism. Then

(a) φ∗◦ιG = ιF◦φ∗ : CF(G)→SF(F) if φ is of finite type;

(b) πstk
G ◦ φ∗ = CFstk(φ) ◦ πstk

F : SF(F) → CF(G) if φ is representable; and

(c) πstk
F ◦ φ∗ = φ∗ ◦ πstk

G : SF(G) → CF(F) if φ is of finite type.

In [5, §3] we extend all the material on SF, SF(F) to local stack functions
LSF, LSF(F), the analogues of locally constructible functions. The main differ-
ences are in which 1-morphisms must be of finite type.

4 Motivic invariants of Artin stacks

In [5, §4] we extend motivic invariants of quasiprojective K-varieties to Artin
stacks. We need the following data, [5, Assumptions 4.1 & 6.1].

Assumption 4.1. Suppose Λ is a commutative Q-algebra with identity 1, and

Υ : {isomorphism classes [X] of quasiprojective K-varieties X} −→ Λ

a map for K an algebraically closed field, satisfying the following conditions:
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(i) If Y ⊆ X is a closed subvariety then Υ([X]) = Υ([X \ Y ]) + Υ([Y ]);

(ii) If X,Y are quasiprojective K-varieties then Υ([X×Y ])=Υ([X])Υ([Y ]);

(iii) Write ` = Υ([K]) in Λ, regarding K as a K-variety, the affine line (not the
point SpecK). Then ` and `k − 1 for k = 1, 2, . . . are invertible in Λ.

Suppose Λ◦ is a Q-subalgebra of Λ containing the image of Υ and the elements
`−1 and (`k + `k−1 + · · ·+ 1)−1 for k = 1, 2, . . ., but not containing (` − 1)−1.
Let Ω be a commutative Q-algebra, and π : Λ◦ → Ω a surjective Q-algebra
morphism, such that π(`) = 1. Define

Θ : {isomorphism classes [X] of quasiprojective K-varieties X} −→ Ω

by Θ = π ◦Υ. Then Θ([K]) = 1.

We chose the notation ‘`’ as in motivic integration [K] is called the Tate
motive and written L. We have Υ

(
[GL(m,K)]

)
= `m(m−1)/2 ∏m

k=1(`
k − 1), so

(iii) ensures Υ([GL(m,K)]) is invertible in Λ for all m > 1. Here [5, Ex.s 4.3 &
6.3] is an example of suitable Λ, Υ, . . .; more are given in [5, §4.1 & §6.1].

Example 4.2. Let K be an algebraically closed field. Define Λ = Q(z), the
algebra of rational functions in z with coefficients in Q. For any quasiprojective
K-variety X, let Υ([X]) = P (X; z) be the virtual Poincaré polynomial of X.
This has a complicated definition in [5, Ex. 4.3] which we do not repeat, involving
Deligne’s weight filtration when charK = 0 and the action of the Frobenius on
l-adic cohomology when charK > 0. If X is smooth and projective then P (X; z)
is the ordinary Poincaré polynomial

∑2 dim X
k=0 bk(X)zk, where bk(X) is the kth

Betti number in l-adic cohomology, for l coprime to charK. Also ` = P (K; z) =
z2.

Let Λ◦ be the subalgebra of P (z)/Q(z) in Λ for which z ± 1 do not divide
Q(z). Here are two possibilities for Ω, π. Assumption 4.1 holds in each case.

(a) Set Ω = Q and π : f(z) 7→ f(−1). Then Θ([X]) = π ◦Υ([X]) is the Euler
characteristic of X.

(b) Set Ω = Q and π : f(z) 7→ f(1). Then Θ([X]) = π ◦Υ([X]) is the sum of
the virtual Betti numbers of X.

We need a few facts about algebraic K-groups. A good reference is Borel [1].
Following Borel, we define a K-variety to be a K-scheme which is reduced,
separated, and of finite type, but not necessarily irreducible. An algebraic K-
group is then a K-variety G with identity 1 ∈ G, multiplication µ : G×G → G
and inverse i : G → G (as morphisms of K-varieties) satisfying the usual group
axioms. We call G affine if it is an affine K-variety. Special K-groups are studied
by Serre and Grothendieck in [2, §§1, 5].

Definition 4.3. An algebraic K-group G is called special if every principal
G-bundle is Zariski locally trivial. Properties of special K-groups can be found
in [2, §§1.4, 1.5 & 5.5] and [5, §2.1]. In [5, Lem. 4.6] we show that if Assumption
4.1 holds and G is special then Υ([G]) is invertible in Λ.
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In [5, Th. 4.9] we extend Υ to Artin stacks, using Definition 4.3.

Theorem 4.4. Let Assumption 4.1 hold. Then there exists a unique morphism
of Q-algebras Υ′ : SF(SpecK) → Λ such that if G is a special algebraic K-group
acting on a quasiprojective K-variety X then Υ′

([
[X/G]

])
= Υ([X])/Υ([G]).

Thus, if R is a finite type algebraic K-stack with affine geometric stabilizers
the theorem defines Υ′([R]) ∈ Λ. Taking Λ, Υ as in Example 4.2 yields the
virtual Poincaré function P (R; z) = Υ′([R]) of R, a natural extension of vir-
tual Poincaré polynomials to stacks. Clearly, Theorem 4.4 only makes sense if
Υ([G])−1 exists for all special K-groups G. This excludes the Euler character-
istic Υ = χ, for instance, since χ([K×]) = 0 is not invertible. We overcome this
in [5, §6] by defining a finer extension of Υ to stacks that keeps track of maximal
tori of stabilizer groups, and allows Υ = χ. This can then be used with Θ, Ω in
Assumption 4.1.

5 Stack functions over motivic invariants

In [5, §4–§6] we integrate the stack functions of §3 with the motivic invariant
ideas of §4 to define more stack function spaces.

Definition 5.1. Let Assumption 4.1 hold, and F be an algebraic K-stack with
affine geometric stabilizers. Consider pairs (R, ρ), with equivalence, as in Def-
inition 3.1. Define SF(F, Υ, Λ) to be the Λ-module generated by equivalence
classes [(R, ρ)], with the following relations:

(i) Given [(R, ρ)] as above and S a closed K-substack of R we have [(R, ρ)] =
[(S, ρ|S)] + [(R \S, ρ|R\S)], as in (5).

(ii) Let R be a finite type algebraic K-stack with affine geometric stabilizers,
U a quasiprojective K-variety, πR : R × U → R the natural projection,
and ρ : R → F a 1-morphism. Then [(R× U, ρ ◦ πR)] = Υ([U ])[(R, ρ)].

(iii) Given [(R, ρ)] as above and a 1-isomorphism R ∼= [X/G] for X a quasipro-
jective K-variety and G a special algebraic K-group acting on X, we have
[(R, ρ)] = Υ([G])−1[(X, ρ ◦ π)], where π : X → R ∼= [X/G] is the natural
projection 1-morphism.

Define a Q-linear projection ΠΥ,Λ
F : SF(F) → SF(F, Υ,Λ) by

ΠΥ,Λ
F :

∑
i∈I ci[(Ri, ρi)] 7−→

∑
i∈I ci[(Ri, ρi)],

using the embedding Q ⊆ Λ to regard ci ∈ Q as an element of Λ.
We also define variants of these: spaces S̄F, S̄F(F, Υ, Λ), S̄F, S̄F(F,Υ, Λ◦) and

S̄F, S̄F(F,Θ, Ω), which are the Λ,Λ◦- and Ω-modules respectively generated by
[(R, ρ)] as above, with ρ representable for S̄F(F, ∗, ∗), and with relations (i),(ii)
above but (iii) replaced by a finer, more complicated relation [5, Def. 5.17(iii)].
There are natural projections ΠΥ,Λ

F , Π̄Υ,Λ
F , Π̄Υ,Λ◦

F , Π̄Θ,Ω
F between various of the

spaces. We can also define local stack function spaces LSF, ¯LSF, ¯LSF(F, ∗, ∗).
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In [5] we give analogues of Definitions 3.2 and 3.3 and Theorems 3.4 and 3.5
for these spaces. For the analogue of πstk

F , suppose X : Λ◦ → Q or X : Ω → Q is
an algebra morphism with X◦Υ([U ]) = χ([U ]) or X◦Θ([U ]) = χ([U ]) for varieties
U , where χ is the Euler characteristic. Define π̄stk

F : S̄F(F,Υ,Λ◦) → CF(F) or
π̄stk

F : S̄F(F, Θ, Ω) → CF(F) by

π̄stk
F

(∑n
i=1 ci[(Ri, ρi)]

)
=

∑n
i=1 X(ci) CFstk(ρi)1Ri .

The operations ‘ · ’, φ∗, φ∗,⊗ on SF(∗, Υ,Λ), . . . , S̄F(∗, Θ,Ω) are given by the
same formulae. The important point is that (6)–(9) are compatible with the
relations defining SF(∗,Υ,Λ), . . . , S̄F(∗,Θ, Ω), or they would not be well-defined.

In [5, Prop. 4.14] we identify SF(SpecK,Υ, Λ). The proof involves showing
that Υ′ in Theorem 4.4 is compatible with Definition 5.1(i)–(iii) and so descends
to Υ′ : SF(SpecK, Υ,Λ) → Λ, which is the inverse of iΛ.

Proposition 5.2. The map iΛ : Λ → SF(SpecK, Υ,Λ) taking iΛ : c 7→
c[SpecK] is an isomorphism of algebras.

Here [5, Prop.s 5.21 & 5.22] is a useful way of representing these spaces.

Proposition 5.3. S̄F, S̄F(F, Υ, Λ), S̄F, S̄F(F,Υ,Λ◦) and S̄F, S̄F(F, Θ, Ω) are
generated over Λ,Λ◦ and Ω respectively by elements [(U× [SpecK/T ], ρ)], for U
a quasiprojective K-variety and T an algebraic K-group isomorphic to (K×)k×
K for k > 0 and K finite abelian.

Suppose
∑

i∈I ci[(Ui × [SpecK/Ti], ρi)] = 0 in one of these spaces, where
I is finite set, ci ∈ Λ,Λ◦ or Ω, Ui is a quasiprojective K-variety and Ti an
algebraic K-group isomorphic to (K×)ki ×Ki for ki > 0 and Ki finite abelian,
with Ti 6∼= Tj for i 6= j. Then cj [(Uj × [SpecK/Tj ], ρj)] = 0 for all j ∈ I.

In [5, §5.2] we define operators Πµ, Πvi
n , Π̂ν

F on SF(F), S̄F(F, ∗, ∗) (but not on
SF(F,Υ, Λ)). Very roughly speaking, Πvi

n projects [(R, ρ)] ∈ SF(F) to [(Rn, ρ)],
where Rn is the K-substack of points r ∈ R(K) whose stabilizer groups IsoK(r)
have rank n, that is, maximal torus (K×)n.

Unfortunately, it is more complicated than this. The right notion is not
the actual rank of stabilizer groups, but the virtual rank. This is a difficult
idea which treats r ∈ R(K) with nonabelian stabilizer group G = IsoK(r) as a
linear combination of points with ‘virtual ranks’ in the range rkC(G)6n6rk G.
Effectively this abelianizes stabilizer groups, that is, using virtual rank we can
treat R as though its stabilizer groups were all abelian, essentially tori (K×)n.

Here is a way to interpret the spaces of Definition 5.1, explained in [5]. In §2,
pushforwards CFstk(φ) : CF(F) → CF(G) are defined by ‘integration’ over the
fibres of φ, using the Euler characteristic χ as measure. In the same way, given
Λ,Υ as in Assumption 4.1 we could consider Λ-valued constructible functions
CF(F)Λ, and define a pushforward φ∗ : CF(F)Λ → CF(G)Λ by ‘integration’
using Υ as measure, instead of χ. But then (ψ ◦ φ)∗ = ψ∗ ◦ φ∗ may no longer
hold, as this depends on properties of χ on non-Zariski-locally-trivial fibrations
which are false for other Υ such as virtual Poincaré polynomials.
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The space SF(F, Υ,Λ) is very like CF(F)Λ with pushforwards φ∗ defined
using Υ, but satisfies (ψ◦φ)∗ = ψ∗◦φ∗ and other useful functoriality properties.
So we can use it as a substitute for CF(F). The spaces S̄F, S̄F(F, ∗, ∗) are similar
but also keep track of information on the maximal tori of stabilizer groups.

6 ‘Virtual rank’ and projections Πvi
n on SF(F)

The most difficult part of [5] is [5, §5–§6], which discusses ‘virtual rank’ of stack
functions, and defines projections Πvi

n on SF(F) to stack functions of ‘virtual
rank n’. These are important in [4,6,6,7] to define a Lie subalgebra SFind

al (ObjA)
of the Ringel–Hall algebra SFal(ObjA), of stack functions with ‘virtual rank 1’,
that is, stack functions ‘supported on virtual indecomposables’.

The reason the Πvi
n are important in Ringel–Hall algebra questions is that

they have a deep, nontrivial compatibility with multiplication ∗ in SFal(ObjA).
This is difficult to state, but is (partially) explained in [7, §5.2–§5.3]. The
simplest instance of it is that SFind

al (ObjA), which is just Πvi
1

(
SFal(ObjA)

)
, is

closed under the Lie bracket [f, g] = f ∗ g − g ∗ f .
The action of Πvi

n on a stack function [(R, ρ)] depends on the stabilizer groups
of R. Thus, they are truly a phenomenon to do with Artin stacks, and have no
analogue in the world of schemes.

As motivation we first introduce ‘real rank’ projections Πre
n , which project

[(R, ρ)] to [(Rn, ρ)], where Rn is the substack of R whose stabilizer groups have
rank n (that is, the maximal torus of the stabilizer groups has dimension n). If
all stabilizer groups of R are abelian, then Πvi

n coincides with Πre
n on [(R, ρ)].

But if R has nonabelian stabilizer groups, then the Πvi
n treat points of R as if

they were Q-linear combinations of points with ranks.

6.1 Real rank and projections Πre
n

We define a family of commuting projections Πre
n : SF(F) → SF(F) for n =

0, 1, . . . which project to the part of SF(F) spanned by [(R, ρ)] such that the
stabilizer group AutK(r) has rank n for all r ∈ R(K). The superscript ‘re’ is
short for ‘real’, meaning that the Πre

n decompose SF(F) by the real (actual) rank
of stabilizer groups.

Definition 6.1. If R is an algebraic K-stack and r ∈ R(K) then AutK(r)
is an algebraic K-group, so the rank rk(AutK(r)) is well-defined. There is a
natural topology on R(K), in which the open sets are U(K) for open K-substacks
U ⊆ R. In this topology the function r 7→ rk(AutK(r)) is upper semicontinuous.
Thus, there exist locally closed K-substacks Rn in R for n = 0, 1, . . ., such
that R(K) =

∐
n>0 Rn(K), and r ∈ R(K) has rk(AutK(r)) = n if and only if

r ∈ Rn(K). If R is of finite type then Rn = ∅ for n À 0.
Now let F be an algebraic K-stack with affine geometric stabilizers, and

SF(F) be as in §3. Define Q-linear maps Πre
n : SF(F) → SF(F) for n = 0, 1, . . .

on the generators [(R, ρ)] of SF(F) by Πre
n : [(R, ρ)] 7→ [(Rn, ρ|Rn)], for Rn

defined as above. If S is a closed substack of R it is easy to see that Sn is a
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closed substack of Rn and (R \S)n = Rn \Sn. Thus, Πre
n is compatible with

the relations (5) in SF(F), and is well-defined. If ρ : R → F is representable
then so is ρ|Rn

, so the restriction to SF(F) maps Πre
n : SF(F) → SF(F).

Here are some easy properties of the Πre
n :

Proposition 6.2. In the situation above, we have:

(i) (Πre
n )2 = Πre

n , so that Πre
n is a projection, and Πre

m ◦Πre
n = 0 for m 6= n.

(ii) For all f ∈ SF(F) we have f =
∑

n>0 Πre
n (f), where the sum makes sense

as Πre
n (f) = 0 for n À 0.

(iii) If φ : F → G is a 1-morphism of algebraic K-stacks with affine geometric
stabilizers then Πre

n ◦ φ∗ = φ∗ ◦Πre
n : SF(F) → SF(G).

(iv) If f ∈ SF(F), g ∈ SF(G) then Πre
n (f ⊗ g) =

∑n
m=0 Πre

m(f)⊗Πre
n−m(g).

6.2 Operators Πµ and projections Πvi
n

Now we define some linear maps Πµ : SF(F) → SF(F).

Definition 6.3. A weight function µ is a map

µ :
{
K-groups (K×)k×K, k>0, K finite abelian, up to isomorphism

}→Q.

For any algebraic K-stack F with affine geometric stabilizers, we will define a
linear map Πµ : SF(F) → SF(F). Now SF(F) is generated by elements [(R, ρ)]
with R 1-isomorphic to a global quotient [X/G], for X a quasiprojective K-
variety and G a special algebraic K-group, with maximal torus TG. Define
CG(TG) =

{
γ ∈ G : γδ = δγ ∀δ ∈ TG} to be the centralizer of TG in G,

and NG(TG) =
{
γ ∈ G : γTG = TGγ} to be the normalizer of TG in G, and

W (G, TG) = NG(TG)/CG(TG) to be the Weyl group of G. Then W (G, TG)
acts on TG by conjugation: if w = γCG(TG) for γ ∈ NG(TG) then we define
w · δ = γδγ−1 in TG for all δ ∈ TG.

Every algebraic K-subgroup L of TG is of the form (K×)k×K for k>0, K a
finite abelian group. Let S(TG) be the set of subsets of TG defined by Boolean
operations upon subgroups L of TG. Given a weight function µ as above, define
a measure dµ : S(TG) → Q to be additive upon disjoint unions of sets in S(TG),
and to satisfy dµ(L) = µ(L) for all algebraic K-subgroups L of TG. Now define

Πµ
(
[(R, ρ)]

)
=

∫

t∈T G

|{w ∈ W (G, TG) : w · t = t}|
|W (G,TG)|

[(
[X{t}/CG({t})], ρ ◦ ι{t}

)]
dµ.

(10)

Here X{t} is the subvariety of X fixed by t, and ι{t} : [X{t}/CG({t})] → [X/G]
is the obvious 1-morphism of Artin stacks.

The point of this is that the integrand in (10), regarded as a function of
t ∈ TG, is a constructible function taking only finitely many values, and the
level sets of the function lie in S(TG), so they are measurable with respect to
dµ, and the integral is well-defined.
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As the integrand in (10) is invariant under the action of W (G,TG), we can
simplify (10) by pushing the integration down to TG/W (G,TG):

Πµ
(
[(R, ρ)]

)
=

∫

tW (G,T G)∈T G/W (G,T G)

[(
[X{t}/CG({t})], ρ ◦ ι{t}

)]
dµ. (11)

If R has abelian stabilizer groups, then Πµ
(
[(R, ρ)]

)
simply weights each

point r of R by µ(StabR(r)). However, if R has nonabelian stabilizer groups,
then Πµ

(
[(R, ρ)]

)
replaces each point r with stabilizer group G by a Q-linear

combination of points with stabilizer groups CG({t}) for t ∈ TG, where the
Q-coefficients depend on the values of µ on subgroups of TG.

Then [5, Th.s 5.11 & 5.12] shows:

Theorem 6.4. In the situation above, Πµ
(
[(R, ρ)]

)
is independent of the choices

of X, G, TG and 1-isomorphism R ∼= [X/G], and Πµ extends to unique linear
maps Πµ : SF(F) → SF(F) and Πµ : SF(F) → SF(F).

Theorem 6.5. (a) Π1 defined using µ ≡ 1 is the identity on SF(F).

(b) If φ : F → G is a 1-morphism of algebraic K-stacks with affine geometric
stabilizers then Πµ ◦ φ∗ = φ∗ ◦Πµ : SF(F) → SF(G).

(c) If µ1, µ2 are weight functions as in Definition 6.3 then µ1µ2 is also a
weight function and Πµ2 ◦Πµ1 = Πµ1 ◦Πµ2 = Πµ1µ2 .

Definition 6.6. For n > 0, define Πvi
n to be the operator Πµn defined with

weight µn given by µn([H]) = 1 if dim H = n and µn([H]) = 0 otherwise, for
all K-groups H ∼= (K×)k ×K with K a finite abelian group.

The analogue of Proposition 6.2 holds for the Πvi
n . Note that (i) follows from

Theorem 6.5(c), (ii) from Theorem 6.5(a), and (iii) from Theorem 6.5(b).

Proposition 6.7. In the situation above, we have:

(i) (Πvi
n )2 = Πvi

n , so that Πvi
n is a projection, and Πvi

m ◦Πvi
n = 0 for m 6= n.

(ii) For all f ∈ SF(F) we have f =
∑

n>0 Πvi
n (f), where the sum makes sense

as Πvi
n (f) = 0 for n À 0.

(iii) If φ : F → G is a 1-morphism of algebraic K-stacks with affine geometric
stabilizers then Πvi

n ◦ φ∗ = φ∗ ◦Πvi
n : SF(F) → SF(G).

(iv) If f ∈ SF(F), g ∈ SF(G) then Πvi
n (f ⊗ g) =

∑n
m=0 Πvi

m(f)⊗Πvi
n−m(g).

Now the operators Πvi
n do not make sense on the spaces SF(F,Υ, Λ) of §5,

because they are not compatible with the relation Definition 5.1(iii). So in [5,
§5.3] we define stack function spaces S̄F, S̄F(F, Υ,Λ) in which Definition 5.1(iii)
is replaced by a finer, more complicated relation compatible with the Πvi

n , so
that Πvi

n is well-defined on SF(F, Υ, Λ). These have a nice way of representing
elements of S̄F, S̄F(F,Υ, Λ):
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Proposition 6.8. S̄F(F, Υ, Λ) and S̄F(F, Υ,Λ) are generated over Λ by ele-
ments [(U × [SpecK/T ], ρ)], for U a quasiprojective K-variety and T an alge-
braic K-group isomorphic to (K×)k ×K for k > 0 and K finite abelian.

We can do Ringel–Hall algebras using the spaces S̄F(F, Υ, Λ). They should
be useful for studying algebra morphisms of Kontsevich–Soibelman type, and
more generally, because Proposition 6.8 will allow us to assume that our stack
functions all have stabilizer groups (K×)k. In effect, this is like being able to
assume that all the sheaves on the Calabi–Yau 3-fold that you ever have to deal
with are of the form E1 ⊕ · · · ⊕ Ek with Ei simple and Hom(Ei, Ej) = 0 for
i 6= j, so that Aut(E1 ⊕ · · · ⊕ Ek) = (K×)k. So, we eliminate questions of how
to deal with more complicated stabilizer groups of sheaves.
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