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Introduction to the series

On the foundations of Symplectic Geometry

Several important areas of Symplectic Geometry involve ‘counting’ moduli
spaces M of J-holomorphic curves in a symplectic manifold (S,w) satisfying
some conditions, where J is an almost complex structure on S compatible with
w, and using the ‘numbers of curves’ to build some interesting theory, which
is then shown to be independent of the choice of J. Areas of this type include
Gromov—Witten theory [12, 39} [52} 168} 73, |79, {102} |104], Quantum Cohomology
[68, |79], Lagrangian Floer cohomology [2} |21} 24} 29, 92, [109], Fukaya categories
[181 ]98], [100], Symplectic Field Theory [9, |15, 16], Contact Homology [14, [94],
and Symplectic Cohomology [99].

Setting up the foundations of these areas, rigorously and in full generality,
is a very long and difficult task, comparable to the work of Grothendieck and
his school on the foundations of Algebraic Geometry, or the work of Lurie and
Toén—Vezzosi on the foundations of Derived Algebraic Geometry. Any such
foundational programme for Symplectic Geometry can be divided into five steps:

(i) We must define a suitable class of geometric structures G to put on the
moduli spaces M of J-holomorphic curves we wish to ‘count’. This must
satisfy both (ii) and (iii) below.

(ii) Given a compact space X with geometric structure G and an ‘orientation’,
we must define a ‘virtual class’ [[X]yirt] in some homology group, or a
‘virtual chain’ [X]yirt in the chains of the homology theory, which ‘counts’ X.

Actually, usually one studies a compact, oriented G-space X with a ‘smooth
map’ f : X — Y to a manifold Y, and defines [[X]virt] or [X]virt in a
suitable (co)homology theory of Y, such as singular homology or de Rham
cohomology. These virtual classes/(co)chains must satisfy a package of
properties, including a deformation-invariance property.

(ili) We must prove that all the moduli spaces M of J-holomorphic curves
that will be used in our theory have geometric structure G, preferably
in a natural way. Note that in order to make the moduli spaces M
compact (necessary for existence of virtual classes/chains), we have to
include singular J-holomorphic curves in M. This makes construction of
the G-structure on M significantly more difficult.



(iv) We combine (i)—(iii) to study the situation in Symplectic Geometry we are
interested in, e.g. to define Lagrangian Floer cohomology HF*(Ly, Ls) for
compact Lagrangians Lj, Ly in a compact symplectic manifold (S,w).

To do this we choose an almost complex structure J on (S, w) and define
a collection of moduli spaces M of J-holomorphic curves relevant to the
problem. By (iii) these have structure G, so by (ii) they have virtual
classes/(co)chains [M]yiy in some (co)homology theory.

There will be geometric relationships between these moduli spaces — for
instance, boundaries of moduli spaces may be written as sums of fibre
products of other moduli spaces. By the package of properties in (ii), these
geometric relationships should translate to algebraic relationships between
the virtual classes/(co)chains, e.g. the boundaries of virtual cochains may
be written as sums of cup products of other virtual cochains.

We use the virtual classes/(co)chains, and the algebraic identities they
satisfy, and homological algebra, to build the theory we want — Quantum
Cohomology, Lagrangian Floer Theory, and so on. We show the result
is independent of the choice of almost complex structure J using the
deformation-invariance properties of virtual classes/(co)chains.

(v) We apply our new machine to do something interesting in Symplectic
Geometry, e.g. prove the Arnold Conjecture.

Many authors have worked on programmes of this type, since the introduction
of J-holomorphic curve techniques into Symplectic Geometry by Gromov [42]
in 1985. Oversimplifying somewhat, we can divide these approaches into three
main groups, according to their answer to (i) above:

(A) (Kuranishi-type spaces.) In the work of Fukaya, Oh, Ohta and Ono
[19H39], moduli spaces are given the structure of Kuranishi spaces (we will
call their definition FOOO Kuranishi spaces).

Several other groups also work with Kuranishi-type spaces, including
McDuff and Wehrheim (77, |78} [80-83], Pardon [94) [95], and the author in
[60, 62] and this series.

(B) (Polyfolds.) In the work of Hofer, Wysocki and Zehnder [46-53|, moduli
spaces are given the structure of polyfolds.

(C) (The rest of the world.) One makes restrictive assumptions on the
symplectic geometry — for instance, consider only noncompact, exact
symplectic manifolds, and exact Lagrangians in them — takes J to be
generic, and arranges that all the moduli spaces M we are interested
in are smooth manifolds (or possibly ‘pseudomanifolds’, manifolds with
singularities in codimension 2). Then we form virtual classes/chains as
for fundamental classes of manifolds. A good example of this approach is
Seidel’s construction [100] of Fukaya categories of Liouville domains.

We have not given complete references here, much important work is omitted.
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Although Kuranishi-type spaces in (A), and polyfolds in (B), do exactly
the same job, there is an important philosophical difference between them.
Kuranishi spaces basically remember the minimal information needed to form
virtual cycles/chains, and no more. Kuranishi spaces contain about the same
amount of data as smooth manifolds, and include manifolds as examples.

In contrast, polyfolds remember the entire functional-analytic moduli problem,
forgetting nothing. Any polyfold curve moduli space, even a moduli space of
constant curves, is a hugely infinite-dimensional object, a vast amount of data.

Approach (C) makes one’s life a lot simpler, but this comes at a cost. Firstly,
one can only work in rather restricted situations, such as exact symplectic
manifolds. And secondly, one must go through various contortions to ensure all
the moduli spaces M are manifolds, such as using domain-dependent almost
complex structures, which are unnecessary in approaches (A),(B).

The aim and scope of the series, and its novel features

The aim of this series of books is to set up the foundations of these areas of
Symplectic Geometry built using J-holomorphic curves following approach (A)
above, using the author’s own definition of Kuranishi space. We will do this
starting from the beginning, rigorously, in detail, and as the author believes the
subject ought to be done. The author hopes that in future, the series will provide
a complete framework which symplectic geometers can refer to for theorems and
proofs, and use large parts as a ‘black box’.
The author currently plans four or more volumes, as follows:

Volume [l Basic theory of (m-)Kuranishi spaces. Definitions of the cat-
egory uKur of p~-Kuranishi spaces, and the 2-categories mKur of
m-Kuranishi spaces and Kur of Kuranishi spaces, over a category
of ‘manifolds’ Man such as classical manifolds Man or manifolds
with corners Man®. Boundaries, corners, and corner (2-)functors
for (m- and p-)Kuranishi spaces with corners. Relation to similar
structures in the literature, including Fukaya—Oh—Ohta—Ono’s Ku-
ranishi spaces, and Hofer—-Wysocki—Zehnder’s polyfolds. ‘Kuranishi
moduli problems’, our approach to putting Kuranishi structures
on moduli spaces, canonical up to equivalence.

Volume [l Differential Geometry of (m-)Kuranishi spaces. Tangent
and obstruction spaces for (m- and u-)Kuranishi spaces. Canonical
bundles and orientations. (W-)transversality, (w-)submersions,
and existence of w-transverse fibre products in mKur and Kur.
M-(co)homology of manifolds and orbifolds |63], virtual (co)chains
and virtual (co)cycles for compact, oriented (m-)Kuranishi spaces
in M-(co)homology. Orbifold strata of Kuranishi spaces. Bordism
and cobordism for (m-)Kuranishi spaces.

Volume [Tl Kuranishi structures on moduli spaces of .J-holomorphic
curves. For very many moduli spaces of J-holomorphic curves
M of interest in Symplectic Geometry, including singular curves,
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curves with Lagrangian boundary conditions, marked points, etc.,
we show that M can be made into a Kuranishi space M, uniquely
up to equivalence in Kur. We do this by a new method using
2-categories, similar to Grothendieck’s representable functor ap-
proach to moduli spaces in Algebraic Geometry. We do the same
for many other classes of moduli problems for nonlinear elliptic
p-d.e.s, including gauge theory moduli spaces. Natural relations
between moduli spaces, such as maps Fj : My, 1 — M, forgetting
a marked point, correspond to relations between the Kuranishi
spaces, such as a l-morphism F; : ./\7lk+1 — M, in Kur. We
discuss orientations on Kuranishi moduli spaces.

Volumes IV— Big theories in Symplectic Geometry. To include Gromov—
Witten invariants, Quantum Cohomology, Lagrangian Floer coho-
mology, and Fukaya categories.

For steps (i)—(v) above, (i)—(iii) will be tackled in volumes I-III respectively, and
(iv)—(v) in volume IV onwards.

Readers familiar with the field will probably have noticed that our series
sounds a lot like the work of Fukaya, Oh, Ohta and Ono [19-39], in particular,
their 2009 two-volume book [24] on Lagrangian Floer cohomology. And it is
very similar. On the large scale, and in a lot of the details, we have taken many
ideas from Fukaya—Oh—Ohta—Ono, which the author acknowledges with thanks.
Actually this is true of most foundational projects in this field: Fukaya, Oh, Ohta
and Ono were the pioneers, and enormously creative, and subsequent authors
have followed in their footsteps to a great extent.

However, there are features of our presentation that are genuinely new, and
here we will highlight three:

(a) The use of Derived Differential Geometry in our Kuranishi space theory.
(b) The use of M-(co)homology to form virtual cycles and chains.

(¢) The use of ‘Kuranishi moduli problems’, similar to Grothendieck’s rep-
resentable functor approach to moduli spaces in Algebraic Geometry, to
prove moduli spaces of J-holomorphic curves have Kuranishi structures.

We discuss these in turn.

(a) Derived Differential Geometry

Derived Algebraic Geometry, developed by Lurie [74] and Toén—Vezzosi [106
107], is the study of ‘derived schemes’ and ‘derived stacks’, enhanced versions
of classical schemes and stacks with a richer geometric structure. They were
introduced to study moduli spaces in Algebraic Geometry. Roughly, a classical
moduli space M of objects E knows about the infinitesimal deformations of E,
but not the obstructions to deformations. The corresponding derived moduli
space M remembers the deformations, obstructions, and higher obstructions.
Derived Algebraic Geometry has a less well-known cousin, Derived Differential
Geometry, the study of ‘derived’ versions of smooth manifolds. Probably the first
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reference to Derived Differential Geometry is a short final paragraph in Lurie
[74, §4.5]. Lurie’s ideas were developed further in 2008 by his student David
Spivak [103], who defined an co-category DerMangp,; of ‘derived manifolds’.
When I read Spivak’s thesis [103], armed with a good knowledge of Fukaya—
Oh-Ohta—Ono’s Kuranishi space theory [24], I had a revelation:

Kuranishi spaces are really derived smooth orbifolds.

This should not be surprising, as derived schemes and Kuranishi spaces are both
geometric structures designed to remember the obstructions in moduli problems.

This has important consequences for Symplectic Geometry: to understand
Kuranishi spaces properly, we should use the insights and methods of Derived
Algebraic Geometry. Fukaya—Oh—Ohta—Ono could not do this, as their Kuranishi
spaces predate Derived Algebraic Geometry by several years. Since they lacked
essential tools, their FOOO Kuranishi spaces are not really satisfactory as
geometric spaces, though they are adequate for their applications. For example,
they give no definition of morphism of FOOO Kuranishi spaces.

A very basic fact about Derived Algebraic Geometry is that it always happens
in higher categories, usually oo-categories. We have written our theory in terms
of 2-categories, which are much simpler than co-categories. There are special
features of our situation which mean that 2-categories are enough for our purposes.
Firstly, the existence of partitions of unity in Differential Geometry means that
structure sheaves are soft, and have no higher cohomology. Secondly, we are
only interested in ‘quasi-smooth’ derived spaces, which have deformations and
obstructions, but no higher obstructions. As we are studying Kuranishi spaces
with deformations and obstructions — two levels of tangent directions — these
spaces need to live in a higher category C with at least two levels of morphism,
1- and 2-morphisms, so C needs to be at least a 2-category.

Our Kuranishi spaces form a weak 2-category Kur. One can take the
homotopy category Ho(Kur) to get an ordinary category, but this loses important
information. For example:

e 1-morphisms f : X — Y in Kur are a 2-sheaf (stack) on X, but morphisms
[f] : X = Y in Ho(Kur) are not a sheaf on X, they are not ‘local’. This
is probably one reason why Fukaya et al. do not define morphisms for
FOOO Kuranishi spaces, as higher category techniques would be needed.

e As in Chapter [L1] of volume [lI} there is a good notion of (w-)transverse
l-morphisms g : X — Z, h: Y — Z in Kur, and (w-)transverse fibre
products X Xg z p Y exist in Kur, characterized by a universal property
involving the 2-morphisms in Kur. In Ho(Kur) this universal property
makes no sense, and (w-)transverse fibre products may not exist.

Derived Differential Geometry will be discussed in of volume [[}

(b) M-(co)homology and virtual cycles

In Fukaya—Oh—Ohta—Ono’s Lagrangian Floer theory [24], a lot of extra complexity
and hard work is due to the fact that their homology theory for forming virtual
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chains (singular homology) does not play nicely with FOOO Kuranishi spaces.
For example, they deal with moduli spaces My () of stable J-holomorphic discs
Y in (S,w) with boundary in a Lagrangian L, with homology class [X] = « in
Hy(S,L;Z), and k boundary marked points. These satisfy boundary equations

6/\7"k(a) = ]_[o[:,@Jr'y7 k=i+j Mi+1(/8) Xevii1,L,ev i1 Mj+1(7)'

One would like to choose virtual chains [Mj(a)]virs in homology satisfying

a[ﬂk (@)]vire = Z(x:ﬂ’-&-’y, k=i+j [MiJrl(ﬂ)]virt °r [Mj+1('7)]virt,

where o7, is a chain-level intersection product/cup product on the (co)homology
of L. But singular homology has no chain-level intersection product.

In their later work [27] §12], [33], Fukaya et al. define virtual cochains in de
Rham cohomology, which does have a cochain-level cup product. But there are
disadvantages to this too, for example, one is forced to work in (co)homology
over R, rather than Z or Q.

As in Chapter [12]of volume[[I] the author [63] defined new (co)homology theo-
ries M H,(X; R), M H*(X; R) of manifolds and orbifolds X, called ‘M-homology’
and ‘M-cohomology’. They satisfy the Eilenberg—Steenrod axioms, and so are
canonically isomorphic to usual (co)homology H.(X; R), H*(X; R), e.g. singular
homology H%(X; R). They are specially designed for forming virtual (co)chains
for (m-)Kuranishi spaces, and have very good (co)chain-level properties.

In Chapter [13| of volume [II| we will explain how to form virtual (co)cycles
and (co)chains for (m-)Kuranishi spaces in M-(co)homology. There is no need
to perturb the (m-)Kuranishi space to do this. Our construction has a number
of technical advantages over competing theories: we can make infinitely many
compatible choices of virtual (co)chains, which can be made strictly compatible
with relations between (m-)Kuranishi spaces, such as boundary formulae.

These technical advantages mean that applying our machinery to define some
theory like Lagrangian Floer cohomology, Fukaya categories, or Symplectic Field
Theory, will be significantly easier. Identities which only hold up to homotopy
in the Fukaya—Oh-Ohta—Ono model, often hold on the nose in our version.

(c¢) Kuranishi moduli problems

The usual approaches to moduli spaces in Differential Geometry, and in Algebraic
Geometry, are very different. In Differential Geometry, one defines a moduli
space (e.g. of J-holomorphic curves, or instantons on a 4-manifold), initially
as a set M of isomorphism classes of the objects of interest, and then adds
extra structure: first a topology, and then an atlas of charts on M making the
moduli space into a manifold or Kuranishi-type space. The individual charts are
defined by writing the p.d.e. as a nonlinear Fredholm operator between Sobolev
or Hélder spaces, and using the Implicit Function Theorem for Banach spaces.

In Algebraic Geometry, following Grothendieck, one begins by defining a
functor F' called the moduli functor, which encodes the behaviour of families of
objects in the moduli problem. This might be of the form F : (Sch2¥)°P — Sets



(to define a moduli C-scheme) or F : (Sch2f)°P — Groupoids (to define a
moduli C-stack), where Schéﬂ,Sets,Groupoids are the categories of affine
C-schemes, and sets, and groupoids, and (Scthf)Op is the opposite category
of Schgﬁ. Here if S is an affine C-scheme then F'(S) is the set or groupoid of
families of objects in the moduli problem over the base C-scheme S.

We say that the moduli functor F' is representable if there exists a C-scheme
M such that F is naturally isomorphic to Hom(—, M) : (Sch3f)op _ Sets,
or an Artin C-stack M such that F' is naturally equivalent to Hom(—, M) :
(Schf‘:ﬁ)Op — Groupoids. Then M is unique up to canonical isomorphism or
canonical equivalence, and is called the moduli scheme or moduli stack.

As in Gomez [41}, §2.1-§2.2], there are two equivalent ways to encode stacks, or
moduli problems, as functors: either as a functor F : (Sch3®)°P — Groupoids
as above, or as a category fibred in groupoids G : C — Schéff, that is, a category
C with a functor G to Schéff satisfying some lifting properties of morphisms in
Sch2® to morphisms in C.

We introduce a new approach to constructing Kuranishi structures on
Differential-Geometric moduli problems, including moduli of J-holomorphic
curves, which is a 2-categorical analogue of the ‘category fibred in groupoids’
version of moduli functors in Algebraic Geometry. Our analogue of SchEfr is
the 2-category GKN of global Kuranishi neighbourhoods (V,E,T, s), which are
basically Kuranishi spaces X covered by a single chart (V, E, T, s, ).

We define a Kuranishi moduli problem (KMP) to be a 2-functor F : C —
GKN satisfying some lifting properties, where C is a 2-category. For example,
if M € Kur is a Kuranishi space we can define a 2-category Caq with objects
(V.E.L,s), f) for (V,E,T,s) € GKN and f : (s71(0)/T, (V, E, T, s,ids-1(0)/r))
— M a l-morphism, and a 2-functor Faq : Caq — GKN acting by Faq :
(V,E,L,s),f) — (V,E,T,s) on objects. A KMP F :C — GKN is called
representable if it is equivalent in a certain sense to Faq : Caq — GKN for some
M in Kur, which is unique up to equivalence. Then Kuranishi moduli problems
form a 2-category KMP, and the full 2-subcategory KMPr® of representable
KMP’s is equivalent to Kur.

To construct a Kuranishi structure on some moduli space M, e.g. a moduli
space of J-holomorphic curves in some (S,w), we carry out three steps:

(1) Define a 2-category C and 2-functor F' : C — GKN, where objects A in C
with F(A) = (V, E,T',s) correspond to families of objects in the moduli
problem over the base Kuranishi neighbourhood (V| E, T, s).

(2) Prove that F : C — GKN is a Kuranishi moduli problem.
(3) Prove that F : C — GKN is representable.

Here step (1) is usually fairly brief — far shorter than constructions of curve
moduli spaces in [24} 39, [52], for instance. Step (2) is also short and uses standard
arguments. The major effort is in (3). Step (3) has two parts: firstly we must
show that a topological space M naturally associated to the KMP is Hausdorff
and second countable (often we can quote this from the literature), and secondly
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we must prove that every point of M admits a Kuranishi neighbourhood with a
certain universal property.

We compare our approach to moduli problems with other current approaches,
such as those of Fukaya—Oh-Ohta—Ono or Hofer-Wysocki-Zehnder:

e Rival approaches are basically very long ad hoc constructions, the effort
is in the definition itself. In our approach we have a short-ish definition,
followed by a theorem (representability of the KMP) with a long proof.

e Rival approaches may involve making many arbitrary choices to construct
the moduli space. In our approach the definition of the KMP is natural,
with no arbitrary choices. If the KMP is representable, the corresponding
Kuranishi space M is unique up to canonical equivalence in Kur.

e In our approach, morphisms between moduli spaces, e.g. forgetting a
marked point, are usually easy and require almost no work to construct.

Kuranishi moduli problems are introduced in Chapter [§ of volume [I, and
volume [[T]] is dedicated to constructing Kuranishi structures on moduli spaces
using the KMP method.
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Chapter 1

Introduction to volume [I

Kuranishi spaces were introduced in the work of Fukaya, Oh, Ohta and Ono [19-
39], as the geometric structure on moduli spaces of J-holomorphic curves, which
was to be used to define virtual cycles and virtual chains for such moduli spaces,
for applications in Symplectic Geometry such as Gromov—Witten invariants,
Lagrangian Floer cohomology, and Symplectic Field Theory.

Something which has consistently been a problem with Kuranishi spaces,
since their introduction by Fukaya and Ono [39, §5] in 1999, has been to find a
satisfactory definition, preferably as a category (or higher category) of geometric
spaces, with a well-behaved notion of morphism, and good functorial properties.
The definition used by Fukaya et al. has changed several times as their work has
evolved [19H39], and others including McDuff and Wehrheim |77, |78, |80H83] have
proposed their own variations.

This first volume will develop a theory of Kuranishi spaces. We use a new,
more complex definition of Kuranishi space, first introduced by the author [60]
in 2014, which form a 2-category Kur. They are not the same as the Kuranishi
spaces of Fukaya—Oh—Ohta—Ono [19-H39] (which we will call FOOO Kuranishi
spaces), but we prove in that any FOOO Kuranishi space X can be made
into a Kuranishi space X’ in our sense, uniquely up to equivalence in Kur.
Therefore their work may be easily translated into our new language.

In fact, we give three variations on the notion of Kuranishi space:

(i) a simple ‘manifold’ version, ‘u-Kuranishi spaces’, with trivial isotropy
groups, which form an ordinary category pKur in Chapter

(ii) a more complicated ‘manifold’ version, ‘m-Kuranishi spaces’, with trivial
isotropy groups, which form a weak 2-category mKur in Chapter 4} and

(iii) the full ‘orbifold’ version, ‘Kuranishi spaces’, with finite isotropy groups,
which form a weak 2-category Kur in Chapter [6]

These are related by an equivalence of categories pKur ~ Ho(mKur), where
Ho(mKur) is the homotopy category of mKur, and by a full and faithful
embedding mKur — Kur. Symplectic geometry will need Kuranishi spaces,



since we allow J-holomorphic curves with finite symmetry groups, which cause
finite isotropy groups at the corresponding point in the moduli space.

Our definitions start with a category of ‘manifolds’ Man satisfying some
assumptions given in Chapter [3] and yield corresponding (2-)categories of ‘(m-
and p-)Kuranishi spaces’ mI'{ur7 uKur, Kur. Here Man can be the category of
classical manifolds Man, but there are many other possibilities, including the cat-
egories Man®, Mang,, Man&®, Man?®®, Man®?¢ of manifolds with corners, and
generalizations, discussed in Chapter [2l This gives many different (2-)categories
mKur®, mKurg,, ..., puKur® pKurg,, ..., Kur®, Kurg,,... of variations on
the theme of (m- and p-)Kuranishi spaces, useful in different problems.

Like manifolds, an (m- or u-)Kuranishi space X = (X,K) is a Hausdorff,
second countable topological space X with an ‘atlas of charts’ K. For m- and
pu-Kuranishi spaces the ‘charts’ are (V;, E;, s;,%;) for V; a manifold, E; — V;
a vector bundle, s; : V; — E; a smooth section, and ; : si_l(()) - X a
homeomorphism with an open set Im; C X. For Kuranishi spaces the charts
are (V;, By, Ty, s4,1;) for Vi, E;, s; as above, I'; a finite group acting on V;, E;
with s; equivariant, and 1; : 3;1(0) /T'i = Im1); a homeomorphism.

As in Chapter [7} this is also true for other definitions of Kuranishi-type
spaces due to Fukaya—Oh—Ohta and Ono [30, §4] and McDuff and Wehrheim
[77, 78, |80H83]. The main technical innovation in our definition is our treatment
of coordinate changes between the (m- or p-)Kuranishi neighbourhoods on X —
the ‘transition functions’ between the charts in the atlas.

For pu-Kuranishi spaces, coordinate changes and more general morphisms
;i : (Vi, Eiysi,vi) — (V, Ej,s5,%,) are germs [Vij, ¢ij, dgij] of equivalence
classes of triples (Vi;, ¢, (ﬁij), where (Vi;, 45, ngSU) is a generalized Fukaya—Oh—
Ohta—Ono-style coordinate change, and the equivalence relation is not obvious.
They have the property that coordinate changes (Vi, E;, s;,v:) — (V, Ej, s5,1;)
form a sheaf on Im1; NIm1);. Also, coordinate changes are exactly the invertible
morphisms between p-Kuranishi neighbourhoods.

For (m-)Kuranishi spaces, we have FOOO-style coordinate changes and
more general 1-morphisms ®;; : (V;, E;, Iy, s5,9;) = (V;, E;, T, s5,1;) between
Kuranishi neighbourhoods, but we also introduce 2-morphisms A;; : ®;; = <I>§j
between 1-morphisms ®;;, @, ;» involving germs of equivalence classes, and making
(m-)Kuranishi neighbourhoods on X into a 2-category. This 2-category has the
property that coordinate changes (V;, E;, T, s;,¢;) = (V;, E;, T, 85,1¢;) form a
2-sheaf (stack) on Imtp; NImep;. Also, coordinate changes are 1-morphisms of
Kuranishi neighbourhoods which are invertible up to 2-isomorphism.

These sheaf/stack properties of (m- and u-)Kuranishi neighbourhoods are
crucial in our theory. For example, they are essential in defining compositions
go f of (1-)morphisms f : X - Y, g:Y — Z between (m- or u-)Kuranishi
spaces X,Y, Z, so that we can make (m- and p-)Kuranishi spaces into well
behaved (2-)categories mKur, uKur, Kur. The lack of such a sheaf property in
the Fukaya—Oh—Ohta—Ono picture is why they have no good notion of morphism
between FOOO Kuranishi spaces X, Y.

An (m- or p-)Kuranishi space X has a virtual dimension vdim X € Z, which



may be negative, where vdim X = dim V; — rank E; for any (m- or p-)Kuranishi
neighbourhood (V;, Ei; Si, ¢Z) or (‘/za Ei, Fi) Si, %) on X.

We begin in Chapter [2] with background material on categories of manifolds
with corners, of which there are several versions Man®, Mang;, Man®&°®, .
Chapter [3] states assumptlons on categories Man, Man® of ‘manifolds’ and
‘manifolds with corners’, and explains how these assumptions allow us to do
differential geometry in Man Man®, defining vector bundles, E — X, tangent
and cotangent bundles (bheaves) TX,T*X, and so on. Detailed deﬁmtlonb and
proofs from Chapter [3| are postponed to Appendix [B

Given a category Man or Man® satisfying the assumptions of Chapter
Chaptersdeﬁne -)categories mKur uKur Kur or mKur® ,p,Kur Kur®
of m-Kuranishi spaces, u-Kuranishi spaces, and Kuranishi spaces, respectively.
Taking Man, Man€ to be different examples yields a large number of interesting
(2-)categories mKur, mKur®, mKurS,, mKursge, .... We also study topics such
as interesting classes of (1 )morphlsms in mKur uKur Kur, and boundaries
and corners in mKur® ,uKur Kure, and isotropy groups in Kur.

Chapter [7] explains the relation of our Kuranishi spaces with other Kuranishi-
type spaces defined by Fukaya, Oh, Ohta and Ono [19-39] and McDuff and
Wehrheim |77, (78, [80-83]. Chapter [8| introduces Kuranishi moduli problems,
which will be our principal tool in volume [[T]] for proving that moduli spaces
of J-holomorphic curves have Kuranishi structures, and proves some theorems
about them. We illustrate their use by defining a truncation functor from the
polyfold theory of Hofer, Wysocki and Zehnder [46-53] to our Kuranishi spaces.

Appendix [A] gives background on categories and 2-categories, and Appendix

gives more detail and proofs on the differential geometry in Man, Man® that
was outlined in Chapter



Chapter 2

Manifolds with corners

We begin with background material about manifolds, manifolds with boundary,
and manifolds with corners. We define the category of ordinary manifolds Man
in as a subcategory of the category of manifolds with corners Man€, and
generally we treat manifolds as special cases of manifolds with corners. Some
references on manifolds are Lee [71] and Lang (70|, and on manifolds with
boundary and corners are Melrose [85| [86] and the author [59, |64].

2.1 The definition of manifolds with corners

Definition 2.1. Use the notation R} = [0,00)% x R™™* for 0 < k < m, and
write points of Ry as u = (21, ...,Tpy) for 1,..., 2% € [0,00), Tgt1,. -, Tm € R.
Let U C R} and V C R} be open, and f = (f1,..., fr) : U = V be a continuous
map, so that f; = f;(z1,...,2p) maps U — [0,00) for j=1,...,land U - R
for j=1+4+1,...,n. Then we say:

gart-tam

(a) f is weakly smooth if all derivatives PR (1, xm) U = R
exist and are continuous for all j =1,...,n and ay,...,a, = 0, including
one-sided derivatives where x; =0 fori=1,... k.

(b) fis smooth if it is weakly smooth and every v = (z1,...,%y,) € U has an

open neighbourhood U in U such that for each 7 =1,...,1, either:

(i) we may uniquely write f;(Z1,...,&m) = Fj(Z1,...,&m) R
for all (%1,...,%m) € U, where F; : U — (0,00) is weakly smooth
and a1 j,...,a5; € N={0,1,2,...}, with a; ; = 0 if z; # 0; or

(i) filo =0
(c) f is interior if it is smooth, and case (b)(ii) does not occur.
(d) fis b-normal if it is interior, and in case (b)(i), for each i = 1,..., k we

have a; ; > 0 for at most one j =1,...,1.

(e) f is strongly smooth if it is smooth, and in case (b)(i), for each j =1,...,1
we have a; ; = 1 for at most one ¢ =1,...,k, and a; ; = 0 otherwise.
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(f) f is simple if it is interior, and in case (b)(i), for each i = 1,...,k with
x; = 0 we have a; ; = 1 for exactly one j =1,...,l and a; ; = 0 otherwise,
and for all j =1,...,] we have a; ; = 1 for at most one i =1,...,k.

(g) fis a diffeomorphism if it is a smooth bijection with smooth inverse.
All the classes (a)—(g) include identities and are closed under composition.

Definition 2.2. Let X be a second countable Hausdorff topological space. An
m-dimensional chart on X is a pair (U, ¢), where U C R}" is open for some
0<k<m,and ¢:U — X is a homeomorphism with an open set ¢(U) C X.

Let (U, ¢), (V,%) be m-dimensional charts on X. We call (U, ¢) and (V, )
compatible if 1y~ togp : 1 (qS(U)ﬁw(V)) —qp ! (¢(U)ﬂ¢(V)) is a diffeomorphism
between open subsets of R}', R}, in the sense of Definition g).

An m-dimensional atlas for X is a system {(Uy, d,) : a € A} of pairwise
compatible m-dimensional charts on X with X = J .4 ¢a(Us). We call such
an atlas mazimal if it is not a proper subset of any other atlas. Any atlas
{(Uq, ¢a) : @ € A} is contained in a unique maximal atlas, the set of all charts
(U, @) of this type on X which are compatible with (U,, ¢,) for all a € A.

An m-dimensional manifold with corners is a second countable Hausdorff
topological space X equipped with a maximal m-dimensional atlas. Usually we
refer to X as the manifold, leaving the atlas implicit, and by a chart (U, ) on
X, we mean an element of the maximal atlas.

Now let X,Y be manifolds with corners of dimensions m,n, and f: X =Y
a continuous map. We call f weakly smooth, or smooth, or interior, or b-normal,
or strongly smooth, or simple, if whenever (U, ¢), (V, ) are charts on X,Y with
U C R, V C R} open, then

vlofod:(fod)TH(W(V)) —V (2.1)

is weakly smooth, or smooth, ..., or simple, respectively, as maps between open
subsets of R}, R} in the sense of Definition

We write Man® for the category with objects manifolds with corners XY,
and morphisms smooth maps f : X — Y in the sense above. We will also write
Mang,, Mang,,, Mang;, Mang, ;. Mang, ,,,, Mang; for the subcategories of
Man€ with morphisms interior maps, and b-normal maps, and strongly smooth
maps, and strongly smooth interior maps, and strongly smooth b-normal maps,
and simple maps, respectively.

We write Man$,, for the category with objects manifolds with corners and
morphisms weakly smooth maps.

Remark 2.3. There are several non-equivalent definitions of categories of
manifolds with corners. Just as objects, without considering morphisms, most
authors define manifolds with corners as in Definition However, Melrose
[84H86] imposes an extra condition: in we will define the boundary X of a
manifold with corners X, with an immersion iy : 9X — X. Melrose requires
that ix|c : C — X should be injective for each connected component C' of 90X
(such X are sometimes called manifolds with faces).
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There is no general agreement in the literature on how to define smooth
maps, or morphisms, of manifolds with corners:

(i) Our smooth maps are due to Melrose [86, §1.12], [84, §1], who calls them
b-maps. Interior and b-normal maps are also due to Melrose.

(ii) The author |59] defined and studied strongly smooth maps above (which
were just called ‘smooth maps’ in [59]).

(iii) Monthubert’s morphisms of manifolds with corners |91, Def. 2.8] coincide
with our strongly smooth b-normal maps.

(iv) Most other authors, such as Cerf |11, §1.1.2], define smooth maps of
manifolds with corners to be weakly smooth maps, in our notation.

2.2 Boundaries and corners of manifolds with corners

The material of this section broadly follows the author [59} |64].

Definition 2.4. Let U C R]" be open. For each v = (21,...,%,,) in U, define
the depth depth; uw of v in U to be the number of z1,..., 2 which are zero.
That is, depthy; v is the number of boundary faces of U containing w.

Let X be an m-manifold with corners. For z € X, choose a chart (U, ¢) on
the manifold X with ¢(u) = z for u € U, and define the depth depthy x of x
in X by depthy o = depthy; w. This is independent of the choice of (U, ¢). For
each [ =0,...,m, define the depth [ stratum of X to be

SHX) ={z € X : depthy z = l}.

Then X = [];%,S'(X) and S!(X) = Uy, S¥(X). The interior of X is X° =
S9(X). Each S'(X) has the structure of an (m — [)-manifold without boundary.

The following lemma is easy to prove from Definition b).

Lemma 2.5. Let f : X — Y be a smooth map of manifolds with corners.
Then [ is compatible with the depth stratifications X = I_[,@O Sk(X),
Y =[5 SUY) in Definition in the sense that if ) # W C S*(X) is a
connected subset for some k > 0, then f(W) C SYY') for some unique | > 0.

The analogue of Lemma 2.5]is false for weakly smooth maps, so the functorial
properties of corners below are false for Mans,,.

Definition 2.6. Let X be an m-manifold with corners, x € X, and k =
0,1,...,m. A local k-corner component v of X at x is a local choice of connected
component of S*(X) near z. That is, for each small open neighbourhood V' of x
in X, v gives a choice of connected component W of V' N S*(X) with € W, and
any two such choices V, W and V', W’ must be compatible in that z € (W N W").
When k =1, we call v a local boundary component.



As sets, define the boundary 0X and k-cornersImanifold with corners'k-
corners Ck(X)@k-corners Cy(X)!definition Cy(X) for £ =0,1,...,m by

0X = {(:c, B):xz € X, 8 is a local boundary component of X at :17},
Cr(X) = {(m, v) iz € X, «v is a local k-corner component of X at 1’}

Define ix : 0X — X and I : Cx(X) = X by ix : (z,8) — x, I : (z,7) — x.
If (U, ) is a chart on X with U C R}" open, then for each i =1,...,k we
can define a chart (U;, ¢;) on 0X by

Ui = {(xlw .. ,lL’m_l) S R;cni_f : (iﬂl,. .. ,lL’i_l,O,Zi, . ,xm_l) cU Q RZL},
d)i . (331, e ,xm—l) L (¢(x17' . 7xi—170axi? s 7xﬁl—1)?¢*({xi = 0}))

The set of all such charts on 0X forms an atlas, making X into a manifold
with corners of dimension m — 1, and ix : 0X — X into a smooth (but not
interior) map. Similarly, we make Cy(X) into an (m — k)-manifold with corners,
and ITj : C(X) — X into a smooth map. We have 0X = C(X).

We call X a manifold without boundary (or just a manifold) if 0X = (), and
a manifold with boundary if X = (). We write Man and Man® for the full
subcategories of Man® with objects manifolds without boundary, and manifolds
with boundary, so that Man C Man® ¢ Man®. This definition of Man is
equivalent to the usual definition of the category of manifolds. We also write
ManP  Man® for the subcategories of ManP with morphisms interior maps,

mn’ S1

and simple maps.
For X a manifold with corners and k& > 0, there are natural identifications
X ={(x,B,...,Bk) 1 €X, Bu,..., Bk are distinct

local boundary components for X at x},
Cr(X) = {(z,{B1,...,Bk}) 1z € X, B1,..., By are distinct

local boundary components for X at x}

(2.2)

(2.3)

There is a natural, free, smooth action of the symmetric group Sy on 0*X, by

permutation of B1,..., B in (2.2), and (2.2))—(2.3) give a natural diffeomorphism
Cr(X) =2 0"X/ 8. (2.4)
Corners commute with boundaries: there are natural isomorphisms

ack(X> = Ck(aX) = {(.’IJ, {ﬁla s aﬁk}76k+1) X e Xa 617 e 7ﬁk+1

2.5
are distinct local boundary components for X at a:} (2:5)
For products of manifolds with corners we have natural diffeomorphisms
X xY)= (00X xY)II (X x9Y), (2.6)
Cr(X xY) =11, j0, i jmr Ci(X) x C5(Y). (2.7)
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Figure 2.1: The teardrop, a 2-manifold with corners

Example 2.7. The teardrop T = {(z,y) € R?:2 >0, <a?— z*}, shown
in Figure [2.1] is a manifold with corners of dimension 2. The boundary 97 is
diffeomorphic to [0,1], and so is connected, but ip : 9T — T is not injective.
Thus T is not a manifold with faces, in the sense of Remark

It is not true that general smooth f: X — Y induce maps 0f : 0X — JY
or C(f): Cx(Y) = Ci(Y), though this is true for simple maps f. For example,
if f: X — Y is the inclusion [0,00) < R then no map 9f : 9X — 9JY exists, as
dX # () and Y = (. However, by working in an enlarged category Man® of
manifolds with corners of mixed dimension and considering C(X) = [[;5, Ck(X),
we can define a functor.

Definition 2.8. Write Man€ for the category whose objects are disjoint unions
11y _o Xm, where X,, is a manifold with corners of dimension m, allowing
X,, = 0, and whose morphisms are continuous maps f : szo X — H:o:o Ya,
such that flx, fr-1(v,) : Xm Nf~YY,) — Y, is a smooth map of manifolds with
corners for all m,n > 0. Objects of Man® will be called manifolds with corners
of mized dimension. We will also write l\v/IaniCn7 Mangt for the subcategories of
Man® with morphisms interior maps, and strongly smooth maps.

Definition 2.9. Define the corners C(X) of a manifold with corners X by

dim X
C(X) = k=0 Cr(X)
= {(x,'y) cx € X, v is alocal k-corner component of X at x, k > O},

considered as an object of Man® in Definition a manifold with corners of
mixed dimension. Define IT: C(X) — X by Il : (z,v) +— z. This is smooth (i.e.
a morphism in Man®) as the maps II;, : Cj,(X) — X are smooth for k > 0.

Let f: X — Y be a smooth map of manifolds with corners, and suppose =y
is a local k-corner component of X at x € X. For each sufficiently small open
neighbourhood V of x in X, v gives a choice of connected component W of
VNSk(X) with x € W, so by Lemmaf(W) C SYY) for some | > 0. As f is
continuous, f(W) is connected, and f(z) € f(W). Thus there is a unique local
l-corner component f.(y) of Y at f(z), such that if V is a sufficiently small open
neighbourhood of f(z) in Y, then the connected component W of V N S'(Y)
given by f.(v) has f(W)NW # (. This f,(7) is independent of the choice of
sufficiently small V,V, so is well-defined.
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Define a map C(f) : C(X) = C(Y) by C(f) s (#,7) = ((2), fu(+)). Then
C(f) is an interior morphism in Man®. If g : Y — Z is another smooth map
of manifolds with corners then C(go f) = C(g) o C(f) : C(X) — C(Z), so
C : Man® — Mang, C Man® is a functor, which we call a corner functor.

From [64, Prop. 2.11] we have:
Proposition 2.10. Let f : X — Y be a morphism in Man®. Then

(a) f is interior if and only if C(f) maps Co(X) — Co(Y).

(b) f is b-normal if and only if C(f) maps Cr(X) — Hf:o Ci(Y) for all k.

(c) If f is simple then C(f) maps Cr(X) — Cy(Y) for all k > 0, and
Cr(f) = C(f)lcy(x) : Cr(X) = Cr(Y) is also a simple map.
Thus we have a boundary functor 0 : Mang;, — Man$;, mapping X —
0X on objects and f +— Of := C(f)|c,(x) : 0X — 9Y on (simple)
morphisms f : X — Y, and for all k > 0 a k-corner functor Cj :

Mang;, — Man$; mapping X — Ci(X) on objects and f — Cy(f) =
C(f)lew(x) : Cr(X) = Cr(Y) on (simple) morphisms.

As in [59, Def. 4.5] there is also a second corner functor on Man®, which we
write as C' : Man® — Man®.

Definition 2.11. Define ¢'(X) = C(X) in Man® for each X in Man®.

Let f: X — Y be a smooth map of manifolds with corners. Define a map
C'(f): C"(X) = C'(Y) by C'(f) : (z,7) = (y,9), where y = f(x) in Y, and §
is the unique maximal local corner component of Y at y with the property that
if V' is an open neighbourhood of y in Y and a : V' — [0, 00) is smooth with
a(y) =ao f(z) =0 and ao f|, = 0 then a|; = 0.

Here ¢ is mazimal means that if § is any other local corner component with
this property then dim ¢ > dim § (so that codim § < codim §) and § is contained
in the closure of . By considering local models in coordinates we can show that
C'(f): C'(X) — C'(Y) is a morphism in Man®, and that this defines a functor
C' : Man® — Man®, which we also call a corner functor.

The next proposition is easy:

Proposition 2.12. Let f: X — Y be a morphism in Man®. Then C'(f) maps
Co(X) = Co(Y), and C'(f) = C(f) if and only if f is interior.

By Proposition c), this implies that if f is simple (hence interior) then
C'(f) = C(f) maps Cp(X) — Cr(Y) for all k =0, and Cr(f) := C'(f)lc,(x) :
Cr(X) = Cr(Y) is also a simple map.

Equations (2.5) and (2.7)) imply that if X, Y are manifolds with corners, we
have natural isomorphisms

0C(X) =2 C(0X), (2.8)

CXxY)=2CX)xC(Y). (2.9)

Nel



The corner functors C,C’ preserve products and direct products. That is, if
fW—=Y g: X =Y h:X — Z are smooth then the following commute

C(W x X) D) C(Y x 2) WC(YXZ)

ig awxem gl CO—_ l%

C(W)xC(X) —=C(Y)xC(2), @@.CM = o(vyx C(2),
CWxX)—=C'(Y x Z) C'(Y x 2)

C'(fxh)

' ((g:h)
J«g C(F)xC’ (h) gl C'(X)\ i%
(C"(9),C7(h)

C'(W)xC'(X) — C"(Y)xC'(2), C'(Y)xC'(Z),

where the columns are the isomorphisms ([2.9).
Example 2.13. (a) Let X = [0,00), Y = [0,00)?, and define f : X — Y by

f(z) = (z,z). We have
Co(X) = [0,00), G (X) = {0}, Co(Y) 2 [0, 00)?,
C1(Y) = ({0} x [0,00)) I ([0, 00) x {0}), Co(Y) ={(0,0)}-
Then C(f) maps Co(X) — Co(Y), z — (z,z), and C1(X) — Co(Y), 0 (0,0).
Also C'(f) = C(f), as f is interior.

(b) Let X =%, Y =[0,00) and define f : X — Y by f(*) = 0. Then Cy(X) = ,
Co(Y) 2 [0,00), C1(Y) = {0}, and C(f) maps Cyo(X) — C1(Y), * — 0, but
C'(f) maps Co(X) — Co(Y), x+— 0, s0 C'(f) # C(f).

Note that C(f),C’(f) need not map Ci(X) — Cr(Y).

2.3 Tangent bundles and b-tangent bundles

Manifolds with corners X have two notions of tangent bundle with functorial
properties, the (ordinary) tangent bundle TX, the obvious generalization of
tangent bundles of manifolds without boundary, and the b-tangent bundle *TX
introduced by Melrose [84, §2], |85, §2.2], [86l §I.10]. Taking duals gives two
notions of cotangent bundle T*X,°T* X . First we discuss vector bundles:

Definition 2.14. Let X be a manifold with corners. A vector bundle E — X
of rank k is a manifold with corners £ and a smooth map 7 : £ — X, such that
each fibre E, := 7~ 1(z) for x € X is given the structure of a real vector space
of dimension k, and X may be covered by open U C X with diffeomorphisms
71 (U) = U x R* identifying T|e—1y : 7 1(U) — U with the projection
U xR¥ — R* and the vector space structure on E, with that on {z} x R* ~ R,
for each x € U. A section of E is a smooth map s: X — F with mos =1idy.

We write I'*° (E) for the vector space of smooth sections of E, and C*°(X) for
the R-algebra of smooth functions X — R. Then I'*°(E) is a C°°(X)-module.

Morphisms of vector bundles, dual vector bundles, tensor products of vector
bundles, exterior products, and so on, all work as usual.
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Definition 2.15. Let X be an m-manifold with corners. The tangent bundle
7 :TX — X and b-tangent bundle 7 : ®TX — X are natural rank m vector
bundles on X, with a vector bundle morphism Ix : *TX — TX. The fibres of
TX,'TX at € X are written T,X,%T, X. We may describe TX,°TX, Iy in
local coordinates as follows.

If (U,¢) is a chart on X, with U C R}" open, and (z1,...,%,,) are the
coordinates on U, then over ¢(U), TX is the trivial vector bundle with basis

of sections —621 ey —af , and *TX is the trivial vector bundle with basis of
m
: F) ) o) o
sections x; Dar Tk By Bapiytcc Do

We have corresponding charts (TU,T¢) on TX and (*TU,°T¢) on °TX,
where TU = "TU = U x R™ C R?™, such that (z1,...,Zm,q1,...,¢m) in
TU represents the vector qla%l + et qm% over ¢(z1,...,o,) € X, and
(L1, oy Ty 71y - - -, T ) in PTU represents rlmla%l —+-- -—H”kacka% —l—rkﬂa%w +
---+Tm% over ¢(z1,...,%m) in X, and Ix maps (T1,...,Zm,71,...,Tm) i
bTU to (3’51, ey Ty ATy e o o s TET R Th415 - - - ,’I“m) in TU.

_ Under change of coordinates (z1,...,%m) ~ (Z1,...,%m,) from (U, ¢) to
(U, ¢), the corresponding change (x1,...,Zm,q1,---,qm) ~ (Z1,.-.,Gm) from

(TU,T¢) to (TU,T¢) is determined by = =Yy gif (X1, T - 6%_77 S0

that g; = >, %(9517 <oy Tm) i, and similarly for (*TU,*T¢), (*TU,"T¢).

Elements of T™°(T'X) are called vector fields, and of ' (*TX) are called
b-vector fields. The map (Ix), : T°(*TX) — I'*(T X) is injective, and identifies
I (*TX) with the vector subspace of v € I°°(T'X) such that v|gr(x) is tangent
to S¥(X) for all k = 1,...,dim X.

Taking duals gives two notions of cotangent bundle 7% X, *T*X. The fibres
of T*X,°T*X at x € X are written T} X, T X.

Now suppose f: X — Y is a smooth map of manifolds with corners. Then
there is a natural smooth map Tf : TX — TY so that the following commutes:

TXTTY

N , g

X Y.

Let (U, ¢) and (V,4) be coordinate charts on X, Y with U C Ry, V C R}, with
coordinates (z1,...,2,) € U and (y1,...,yn) € V, and let (TU,T¢), (TV,Ty)
be the corresponding charts on TX,TY, with coordinates (x1,...,Zm,q1,-- -,
gm) € TU and (y1,...,Yn,"1,...,7) € TV. Equation defines a map
™1 o f o ¢ between open subsets of U, V. Write ¢y"* o fo¢ = (f1,..., fn), for
fi = fj(x1,...,xm). Then the corresponding 7%~ o T'f o T'¢ maps

Twil OTfOT¢ : (xl,-";xm7Q1a-"’Qm) — (fl(l'la"-axm)v"'v
fn(xh' . 71'm)a2?;1 %(,Il,. H 7xm)qi7' . '72?;1 gij (zla e 7$m)%')~

We can also regard T'f as a vector bundle morphism df : TX — f*(TY) on X,
which has dual morphism df : f*(T*Y) - T*X. If x € X with f(z) =y inY
we have linear maps To, f : T, X — T,)Y and T f : T;Y — T; X on the fibres.
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If g:Y — Z is smooth then T'(go f) =TgoTf:TX —TZ, and T(idx) =
idryx : TX — TX. Thus, the assignment X — TX, f — Tf is a functor, the
tangent functor T : Man® — Man®. It restricts to 7' : Man{, — Man{ .

As in [84} §2], the analogue of the morphisms T f : TX — TY for b-tangent
bundles works only for interior maps f: X — Y. Solet f : X — Y be an
interior map of manifolds with corners. If f is interior, there is a unique interior
map *Tf : *TX — *TY so that the following commutes:

X y Ty
\IXA Tf K
TX ikl TY (2.10)
b AN
X Y.

The assignment X — *TX, f +— Tf is a functor, the b-tangent functor *T :
Man§, — Man§,. The maps Ix : *TX — TX give a natural transformation
I:°T — T of functors Mang, — Mang,.

We can also regard *T'f as a vector bundle morphism *df : *TX — f*(*TY)
on X, with dual morphism bdf : f*(*T*Y) — *T*X. If x € X with f(z) =y in
Y we have linear maps *T,, f : *T, X — *T,Y and *T} f : bTy*Y —bTEX.

Note that if f : X — Y is a smooth map in Man® then C(f) : C(X) — C(Y)
is interior, so *T'C(f) : °*TC(X) — *TC(Y) is well defined, and we can use this
as a substitute for *Tf : °TX — *TY when f is not interior.

Let X be a manifold with corners, and & > 0. Then we have an exact
sequence of vector bundles on Ci(X):

0 —= T(Ch(X)) — =

I (T'X)

Neyxy —=0,  (2.11)

where N¢, (x) is the normal bundle of Ci(X) in X, a natural rank k vector
bundle on Cj(X). When k = 1 this becomes

dix

0——=T(0X) i% (TX) Nyx 0. (2.12)
Here the normal line bundle Ngx has a natural orientation on its fibres, by
outward-pointing vectors. Using (2.12)) and the orientation on Ngx, we can show
that an orientation on X induces an orientation on 90X, as in

For b-tangent bundles, as in |64, Prop. 2.22] there is an analogue of (2.11):

<

1 (OTX) — 5 o PT(Ch (X)) —= 0,  (2.13)

oﬁbNCk(X)

where bNCk(X) is the b-normal bundle of Ci(X) in X, a rank k vector bundle
with a natural flat connection. Note that goes in the opposite direction
to . There is no natural map °dIly : *T(Ck(X)) — II;(*TX) for k >
0, as I is not interior. We can define I in by noting that (Ix). :
I~(TX) — I'°(TX) identifies T°°(*TX) with the vector subspace of v in
I'>(TX) with v|gi(x) tangent to S'(X) for all [, as in Deﬁnition and under
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this identification, I is just restriction/pullback of vector fields from X to
Cr(X). When k =1, chl( x) is naturally trivial, giving an exact sequence

<

0 Oax i (PTX) PT(OX) ——=0, (2.14)

where Ogx = 0X x R — 90X is the trivial line bundle on 9X.
Here is some similar notation to N¢, (x), bNCk(X), but working over X rather
than C(X), taken from [64] Def. 2.25).

Definition 2.16. Let X be a manifold with corners. For z € S¥(X) C X, we
have a natural exact sequence of real vector spaces

L X e X ~

T.X N, X 0, (2.15)

0 ——— T (S"(X))

where dim N, X = k. We call N, X the stratum normal space. There is a
unique point ' € Cy(X) with II;(2') = z, and then N, X = Ne, (x)ler, and
T, (S*(X)) 2T (Cr(X))|sr, and (2.15)) is canonically isomorphic to the restric-
tion of to o’

Let f : X — Y be a morphism in Man®, and let 2 € S*(X) C X with
f(@) =y e SY(Y)CY. Then f maps S*(X) —> SH(Y) near x by Lemma.
There is a unique linear map N, f: N, X — N Y, the stratum normal map7
fitting into the following commutative diagram, where the rows are

0 ———Tp(SH(X)) —= T X — N.X 0
iTw(ﬂsk(x)) l/Txf Nef (2.16)
LY Ty =
0 ——T,(S(Y)) ——T,Y — N,Y 0.

These morphisms N, f are functorial in f and z. That is, if g : Y — Z is another
morphism in Man€ then Nm(g of)= Nyg oN,f.

There is also a ‘b-tangent’ version. Let X be a manifold with corners. For
each z € S* (X) C X, we have a natural exact sequence of real vector spaces

00— N, X —=X b x X (S*(X)) ——=0, (2.17)

where dimszX = k. We call bNxX the stratum b—normgl space. There is
a unique point 2’ € Cj(X) with II;(2') = z, and then *N, X = *Ng, (x)]a’,
and T,(S*(X)) = bT(Ck( )|z, and (2.17) is canonically isomorphic to the

restriction of ([2.13] - ) to x’.

Note that the N, X, N X for x € X are not the fibres of vector bundles on
X, as dim N, X, dlmbN X are only upper semicontinuous in z.

If (z1,...,2m) € R} are local coordinates on X near x then we have
b v — d d k _/_0
NIX_<1'167:E17""1’]€6:E;9>]R’ Tm(S (X))—<azk+l,...,3mm>R,
b _ d d ) )
and TzX*<x1871""’xk87k’81k+1""’8mm>]R'
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Using these identifications, define a subset M,X CP°N,X by
M, X = {by 2152 + -+ by Tege 1 by,..., b € N},

so that M, X = N¥. This is independent of the choice of coordinates. We
consider MEX to be a commutative monoid under addition in bNmX , as in
Definition B17 below.

Now let f : X — Y be an interior map in Man®, and let x € S*(X) C X
with f(z) =y € SY(Y) C Y. Then f maps S¥(X) — S/(Y) near by Lemma
There is a unique linear map "N, f : °N, X — bNyY, the stratum b-normal
map, fitting into the following commutative diagram, where the rows are :

0 — "N, X — =T, X — > T,(S¥(X)) —=0
VbNmf \LbTmf \LT$(<f|sk(x)) (218)
0——="°N,Y °T,Y T,(SYY)) —0.

We have bNIf(MIX) - MyY, so we define a monoid morphism sz M, X —
MyY by M, f = bNmf|MzX. These morphisms *N, f, M, f are functorial in f
and z. That is, if ¢ : Y — Z is another interior morphism in Man€ then
bNa:(g of)= bNyg o bNxf and Mw(g o f~) = Myg~o sz
We have canonical isomorphisms f’NIX & M, X @y R for all z, X, which
identify °N, f : * N, X — bNyY with M, f ® idg : M X ®n R — MY @ R.
An interior map f : X — Y is b-normal if °N, f is surjective for all z € X.

In §10.1.5( and §10.3| we will refer to N, X,’N,X, M, X as quasi-tangent
spaces, as they behave quite like tangent spaces.

2.4 Generalizations of manifolds with corners

We briefly discuss the categories Man®&® of manifolds with g-corners from [64]
and Man?¢ of manifolds with a-corners from [66].

2.4.1 Manifolds with generalized corners

In [64] the author introduced an extension of manifolds with corners called
manifolds with generalized corners, or manifolds with g-corners. They are locally
modelled on certain spaces Xp for P a weakly toric monoid.

Definition 2.17. A (commutative) monoid (P,+,0) is a set P with a commu-
tative, associative operation + : P x P — P and an identity element 0 € P.
Monoids are like abelian groups, but without inverses. They form a category
Mon. Some examples of monoids are the natural numbers N = {0,1,2,...}, the
integers Z, any abelian group G, and [0, 00) = ([O, 00), -, 1).

A monoid P is called weakly toric if for some m,k > 0 and CZ € Z for
i=1,....m,j=1,...,k we have

Pl ) €™ i)y 4+l >0, j=1,...,k}.
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The rank of a weakly toric monoid P is rank P = dimg(P ®yR). A weakly toric
monoid P is called toric if 0 € P is the only invertible element.

Let P be a weakly toric monoid. Define Xp to be the set of monoid mor-
phisms z : P — [0, 00), where ([07 00), +, 1) is the monoid [0, c0) with operation
multiplication and identity 1. Define the interior X% C Xp of Xp to be the
subset of x with z(P) C (0,00) C [0, 00).

For each p € P, define a function A\, : Xp — [0,00) by A\p(z) = z(p). Then
Aptq = Ap - Aq for p,q € P, and Ao = 1. Define a topology on Xp to be the
weakest such that A\, : Xp — [0,00) is continuous for all p € P. If U C Xp is
open, define the interior U° of U to be U° =U N X3.

Choose generators p1,...,p, for P, and a generating set of relations for
P1,-- -, Pm of the form

a{p1+---+af,me:b{p1+~~'+bfybpm in Pforj=1,...,k,

where af,bg eNfori=1,...,mand j=1,..., k. Here as P is integral (i.e. a
submonoid of an abelian group) we may suppose that az =0or bz =0 for all
i,7. Then Ay, x --- x A, Xp —[0,00)™ is a homeomorphism from Xp to

’ a’ al I b

Xp = {(:z:l,...,xm) €0,00)™ syt =ayt o xy, = 1,...,/{}7
regarding X% as a closed subset of [0,00)™ with the induced topology.

Let U C Xp beopen, and U" = (A, X---x A\, )(U) be the corresponding open
subset of X},. We say that a continuous function f: U - Ror f: U — [0,00) is
smooth if there exists an open neighbourhood W of U’ in [0,00)™ and a smooth
function g : W — R or g : W — [0, 00) in the sense of manifolds with (ordinary)
corners in such that f = go (Ap, X -+ x Ap,. ). This definition turns
out to be independent of the choice of generators p1, ..., pm.

Now let () be another weakly toric monoid, V' C X be open, and f : U = V
be continuous. We say that f is smooth if A\;o f : U — [0,00) is smooth in
the sense above for all ¢ € Q. We call a smooth map f : U — V interior if
f(U°) CV° and a diffeomorphism if f has a smooth inverse f~1:V — U.

With these definitions, for any weakly toric monoid P, the interior X is
naturally a manifold of dimension rank P, diffeomorphic to R™™ ¥

Example 2.18. Let P be the weakly toric monoid N* x 2™ F for 0 <k<m.
Then points of Xp are monoid morphisms z : N*¥ x z™~% ([O, 00), -, 1), which
may be written uniquely in the form

— ,,P1 Pr : + AP Ym
T(pr,...,pm) =Y yRrePrrER Pmy

for (y1,...,ym) € RJ". This gives a bijection Xp = R} = [0,00)" x R™ . As
in |64}, §3.2], this bijection identifies the topologies on R}", Xp, and identifies
the notions of smooth map between open subsets of R}, R}" and between open
subsets of Xp, X¢ in Definitions 2.1] and Thus, the Xp for general weakly
toric monoids P are a class of smooth spaces generalizing the spaces R]" used as
local models for manifolds with corners in §2.1]
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In [64] §3.3] we use this to define the category Man&® of manifolds with g-
corners, by generalizing Definition[2.2] A manifold with g-corners of dimension m
is a Hausdorff, second countable topological space X equipped with a maximal
atlas {(Py,Uq, @) : a € A} of charts (P,,U,, ¢4), such that P, is a weakly
toric monoid with rank P, = m, and U, C Xp, is open, and ¢, : U, = X
is a homeomorphism with an open set ¢,(U,) € X. Any two such charts
(P, Ua, 4a), (Py, Uy, ¢p) are required to be pairwise compatible, in that the
transition map ¢, ' 0 ¢, : o7 (¢6(Us)) — ¢, ' (#a(U,)) must be a diffeomorphism
between open subsets of Xp, , Xp, in the sense of Definition[2.17] For set-theoretic
reasons we require the P, to be submonoids of some zk.

Morphisms f : X — Y in Man8®, called smooth maps, are continuous maps
f: X — Y such that for all charts (P, U, @), (Qp, Vb, ¥p) on X, Y, the transfer
map zpb_l o fog, is a smooth map between open subsets of Xp, , X¢, in the sense
of Definition We call f interior if the 1, ‘o fody : (foda) *(vp(Vs)) = Vi
are interior maps for all a, b, in the sense of Deﬁnition and we write Man§,
for the subcategory of Mangc with morphisms interior maps.

Generalizing Definition in [64, Def. 3.51], if X € Mang®, for each x €
Sk(X) C X we define a real vector space YN, X with dim*N,X = k in a natural
exact sequence -, and a subset M, X C YN, X which is a commutative
monoid under addition in ®N,X. But now M,X is a toric monoid of rank k,
such that if M, X = P then X near z is locally modelled on X p x REm X~ rank P
near (Jy,0), and X € Man® C Mang& if and only if M, X = N* for all z € X.

If f: X — Y is an interior map in Man&® and z € S*(X) C X with
flx) =y € Sl( ) C Y, there is a unique linear map 'N.f : "N, X — *N,Y
making (2 commute. Then °N, f(M X) - M Y, so we define a monoid
morphism M f:M,X — M Y by M,f ="N, f|M ¥ as in Deﬁmtlonm

We call an interior map f : X — Y simple if M, f is an isomorphism for all
z € X. Write Man® for the subcategory of Man8® with simple morphisms. We
call an interior map f : X — Y b-normal if °N, f is surjective for all z € X. We
write Mang,, for the subcategory of Man8® with morphisms b-normal maps.

Using Example to view R} as a space Xp, we obtain a full embedding
Man® C Man8°, which restricts to a full embedding Man§, C Man§’. By an
abuse of notation we will regard Man€ as a full subcategory of Man®¢, closed
under isomorphisms in Man8°, so that Proposition b) below holds. We
could modify the definitions of Man®, Man8° to make this true.

Example 2.19. The simplest manifold with g-corners which is not a manifold
with corners is X = {(xl,xg,xg, r4) € [0,00)* : w20 = x3x4}. We have
X = Xp, where P is the monoid P = {(a,b,c) € N?:e< a+b}.
Then X is 3-dimensional, and has four 2-dimensional boundary faces
X13={(#1,0,23,0) : z1,23€[0,00)}, X1a={(21,0,0,24) : 1,24 €[0,00)},
Xo3={(0,22,25,0) : 22,23€[0,00)}, Xo4={(0,22,0,24) : 22,24 €[0,00)},

16



and four 1-dimensional edges

Xl = {(xl,0,0,0) 1x1 € [0,00)}, X2 = {(0,1’2,0,0) 1T € [0,00)},
X3 =1{(0,0,23,0) : z3 € [0,00)}, X4 =1{(0,0,0,24): x4 € [0,00)},

all meeting at the vertex (0,0,0,0) € X. In a 3-manifold with (ordinary) corners
such as [0,00)3, three 2-dimensional boundary faces and three 1-dimensional
edges meet at each vertex, so X has an exotic corner structure at (0,0,0,0).

As in 64 §3.4-83.6], the theory of extends to manifolds with
g-corners, but with some important differences:

e Asin boundaries 0X, k-corners Cy(X), and the first corner functor
C : Mang® — Manigrf C Man&° in Definition work for manifolds with
g-corners, where Man$, Man8® are the extensions of Manf?, Man8®
with objects disjoint unions ]_[:jzo X, where X, is a manifold with g-
corners of dimension m. However, equations f and are false
for manifolds with g-corners X: for k > 2 there is no natural Si-action on
0% X, and no natural diffeomorphism Cj,(X) = 0¥ X/S},.

e The second corner functor C’ in Definition does not extend to Man8®,
as the maximal local corner component ¢ there may not be unique.

e B-(co)tangent bundles *TX,°T* X and the functor *T : Manf® — Man$®
work nicely for manifolds with g-corners X. But ordinary (co)tangent
bundles T X, T*X are not well defined. One can define tangent spaces T, X
for x € X, but dim 7T, X is only upper semicontinuous in z, and the T, X
do not form a vector bundle on X.

As discussed in §2.5.3] transverse fibre products exist in Man8® and Manf
under weak conditions, and this is an important reason for working with Man®&°.
We can think of Man8° as a closure of Man® under transverse fibre products.

2.4.2 Manifolds with analytic corners

In [66] the author introduced yet another variation on manifolds with corners,
called manifolds with analytic corners or manifolds with a-corners, which form a
category Man?®¢. They have applications to some classes of analytic problems.

The motivating idea is that a manifold with corners X has two tangent
bundles TX,°T X, as in Now the definition of smooth functions on X in
favours TX, as f : X — R is smooth if V¥ f exists as a continuous section of
Q" T*X forall k =0,1,.... For manifolds with a-corners X we define ‘a-smooth
functions’ and ‘a-smooth maps’ using *7'X, so that roughly speaking f : X — R
is a-smooth if ®V* f exists as a section of ®k bT*X forall k = 0,1,.... This gives
a different smooth structure even for X = [0, 00). For example, % : [0,00) — R
is a-smooth for all real a > 0.

Here are the a-smooth versions of Definition 2.1(b)~(g):
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Definition 2.20. As in write R}Y* = [0, 00)% x R™ % for 0 < k < m, let
U C R} be open, and f : U — R be continuous. We say that f is a-smooth if
for all ay,...,a,, € N and for any compact subset S C U, there exist positive
constants C, « such that

Hart++am

ox{' -+ Oxm

f(:cl,...,xm)' <o [ e

i=1,....,k:a; >0

for all (z1,...,2m,) € S with x; > 0ifi=1,...,k with a; > 0, where continuous
partial derivatives must exist at the required points.

Now let U C R" and V C R} be open, and f = (f1,...,fn): U =V bea
continuous map, so that f; = f;(x1,...,2m) maps U — [0,00) for j =1,...,1
and U = R for j =141,...,n. Then we say that

(a) fis a-smooth if f; : U — R is a-smooth as above for j =1+ 1,...,n, and
every u = (x1,...,Zy,) € U has an open neighbourhood U in U such that
for each j = 1,...,[, either:

(i) we may uniquely write f;(Z1,...,%m) = Fj(@1,...,%m) T
for all (Z1,...,%m,) € U, where F; : U — (0,00) C R is a-smooth as
above, and ay j,...,ax,; € [0,00), with a; ; = 0 if 2; # 0; or

(i) fjlo = 0.

(b) f is interior if it is a-smooth, and case (a)(ii) does not occur.

(¢) fis b-normal if it is interior, and in case (a)(i), for each ¢ = 1,..., k we
have a; ; > 0 for at most one j =1,...,1.

(d) f is strongly a-smooth if it is a-smooth, and in case (a)(i), for each j =
1,...,l we have a; ; > 0 for at most one ¢ =1,... k.

(e) fis simple if it is interior, and in case (a)(i), for each ¢ = 1,...,k with
x; = 0 we have a; ; > 0 for exactly one j =1,...,l,and forall j =1,...,1
we have a; ; > 0 for at most one ¢ =1,..., k.

(f) f is an a-diffeomorphism if it is an a-smooth bijection with a-smooth
inverse.

As in 66| §3.2], we define the category Man®® of manifolds with a-corners
as for Man®® in Definition but replacing Definition [2.1(b)—~(g) by Defini-
tion a)—(f). We define subcategories Mang$, Mang$ , Mangf, Mang;
Mangg,,, and Mangf of Man®® with interior, b-normal, strongly a-smooth,
strongly a-smooth interior, strongly a-smooth b-normal, and simple morphisms,
respectively. As in [66 §3], there is an (obvious) functor Fpfan™ : Man® —
Man?®°, and a (non-obvious and nontrivial) functor F;\A/I:l?:té : Manif — Mang;.

We also define a category Man®?2¢ of manifolds with corners and a-corners,

including Man®, Man?¢ as full subcategories, and subcategories Man;’*¢

in
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c,ac c,ac c,ac c,ac c,ac c.ac ... . .
Many, =, Mang ,Manst’in,Manst_’bn,Mansi of Man®?¢ with interior, b-
normal, strongly a-smooth, strongly a-smooth interior, strongly a-smooth b-

. . . ac
normal, and simple morphisms, respectively. There are functors Fl\l\,f;‘l‘c,ac :

Man¢,
Man®2¢ — Man?° and F,, . s4 : Man$;*¢ — ManS,.
Man st st

As in |66, §4], the theory 0515 extends to manifolds with a-corners
Man?®¢, Man®2¢, including both corner functors C,C’ in Definitions and
with the difference that we do not define ordinary tangent bundles T X for
manifolds with a-corners X, but only b-tangent bundles *T'X.

If X lies in Man?® or Man®?¢, so that we have the k-corners Cx(X) with a
projection IIj : Cx(X) — X, then as in there is a rank k& bundle bNCk(X)
on Cr(X) in an exact sequence . When k£ =1, for Man® and Man®® this
chl( x) was naturally trivial, chl( x) = Opx, giving an exact sequence
on 0X. However, for X in Man®® or Man®?2¢ this bNCl(X) = "Nyx may not
be naturally trivial, so that instead of we have an exact sequence on 0X:

0—>Nox — = % (*"TX) — > = PT(X) —=0. (2.19)
Here *Nyx — 0X is a line bundle which has a natural orientation on its fibres,
by outward-pointing vectors. Also ®Nyx has a natural flat connection.

2.5 Transversality, submersions, and fibre products

Fibre products in categories are defined in Transversality and submersions
are about giving useful criteria for existence of fibre products of manifolds. If we
work in some category of manifolds Man such as Man, Man, , Man§], Mans®,
Mang , Man€®, then we would like the properties:

(i) fg: X — Zand h : Y — Z are ‘transverse’ then a fibre product
W =X x4 7,Y exists in Man, with dim W = dim X + dimY — dim Z.

(ii) If g : X — Z is a ‘submersion’ then g, h are transverse for any h: Y — Z.
We would also like the definitions of ‘transverse’ and ‘submersion’ to be easy to

check, and not to be too restrictive. Chapter in volume [[T] will extend the
results of this section to (m-)Kuranishi spaces.

2.5.1 Transversality and submersions in Man

The next definition and theorem are well known, see for instance Lee |71}, §4, §6]
and Lang |70} §IL.2].

Definition 2.21. Let g: X — Z and h : Y — Z be smooth maps of manifolds.
We call g, h transverse if T,9 ® Tyh : T, X & T,Y — T.Z is surjective for all
x € X and y € Y with g(x) = h(y) = z in Z. We call g a submersion if
T.9: T, X — T.Z is surjective for all z € X with g(z) = z in Z.
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Theorem 2.22. (a) Suppose g: X — Z and h:Y — Z are transverse smooth
maps of manifolds. Then a fibre product W = X x4 7 Y exists in Man, with
dimW =dim X +dimY — dim Z, in a Cartesian square in Man:

W Y
b7 (2.20)

X——7.

We may write

W ={(z,y) € X xY : g(z) =h(y) in Z} (2.21)
as an embedded submanifold of X XY, wheree: W — X and f: W — Y act by
e:(x,y)—xzand [:(x,y)—y. If we W withe(w)=z€ X, flw)=y€Y
and g(x) = h(y) = z € Z then the following sequence is exact:

Tog®—Tyh
0 T, Wl x a1y 1.7 0. (222

(b) Suppose g : X — Z is a submersion in Man. Then g,h are transverse for
any morphism h 1Y — Z in Man.

(c) Let g: X — Z be a morphism in Man. Then g is a submersion if and only
if the following condition holds: for each x € X with g(x) = z, there should
exist open neighbourhoods X', 7' of x,z in X,Z with ¢(X') = Z', a manifold
Y’ with dim X = dimY’ +dim Z, and a diffeomorphism X' =Y’ x Z', such that
glx : X' — Z' is identified with 7z :Y' x Z' — Z'.

Part (c) gives an alternative definition of submersions in Man: submersions
are local projections. Here are some examples of non-transverse fibre products
in Man. They illustrate the facts that: (i) non-transverse fibre products need
not exist; (ii),(iii) a fibre product W = X Xz Y may exist, but have dim W #
dim X +dimY — dim Z; and (iv) a fibre product W = X xz Y may exist, but
may not be homeomorphic to as a topological space.

Example 2.23. (i) Define manifolds X = R* Y = {*}, Z = R, and smooth
maps g : X — Z, h: Y — Z by g(z,y) = ay and h(x) = 0. Then g,h
are not transverse at (0,0) € X and * € Y. In this case no fibre product
X X471 Y exists in Man. Roughly this is because the fibre product ought to
be {(z,y) € R?: 2y = 0}, which is not a manifold near (0,0).

(ii) Set X =Y ={x}, Z=R,and define g: X - Z, h: Y = Z by g(x) =
h(x) = 0. Then g, h are not transverse at x € X and x € Y. A fibre product
W =X X425 Y exists in Man, where W = {*} with projections e : W — X,
f: W =Y given by e(x) = f(*) = x. Note that dim W > dim X +dim Y —dim Z,
so W has larger than the expected dimension.

(iii) Set X = R*, Y = {«}, Z = R, and define g : X — Z, h: Y — Z by
g(z,y) = 2% + y? and h(x) = 0. Then g,h are not transverse at (0,0) € X
and * € Y. A fibre product W = X X, 7, Y exists in Man, where W = {x}
withe: W — X, f: W — Y given by e(x) = (0,0) and f(x) = *. Note that
dimW < dim X +dimY — dim Z, so W has smaller than expected dimension.
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(iv) Set X =R?, Y = {x}, Z =R, and define smooth g: X — Z, h:Y — Z by

—1 CEQ .
o(og) = { /7 (y —sin(1/2)), = TR
0, z =0,
Then g, h are not transverse at (0,y) € X and * € Y for y € R. A fibre product
W = X x4 7Y exists in Man. It is the disjoint union W = (—o0,0)I1(0, 00)IIR,
where e : W = X, f: W — Y act by e(z) = (z,sin(1/x)) for € (—o0,0) II
(0,00) and e(y) = (0,y) for y € R, and f = .
We can also form the fibre product in topological spaces Top, which is

Xiop X Ziop Yiop = {(a:,y) €R?: 2 #0and y =sin(1/x), or z = O}.

Note that the fibre products in Man and Top coincide at the level of sets,
but not at the level of topological spaces, since X Xz Y has three connected
components but Xio, Xz, Yiop has only one.

2.5.2 Transversality and submersions in Mang;, and Man®

The author [59] studied transverse fibre products and submersions in the category
Mang; of manifolds with corners and strongly smooth maps. The next definition
is equivalent to [59) Def.s 3.2, 6.1 & 6.10]:

Definition 2.24. Let g : X — Z and h : Y — Z be morphisms in Mang,.
We call g, h s-transverse if for all x € $7(X) C X and y € S*(Y) C Y with
g(x) = h(y) = z € SY(Z) C Z, the following morphisms are surjective:

Toglr, six) ® Tyhlr,sevy : TS (X) @ T,S°(Y) — T.5'(2),

i R 3 ~ (2.23)
Nyg® Nyh: N X ®N,)Y — N, Z.

This is an open condition on x € X and y € Y. That is, if holds for
some x, ¥, z, then there are open neighbourhoods x € X’ C X and y € Y/ CY
such that also holds for all ' € X" and y’ € Y’ with g(z') = h(y') = 2’ in
Z, even though j, k,l may not be constant.

We call g, h t-transverse if they are s-transverse, and if x € X and y € Y with
g(x) = h(y) = z € Z, then for all x € C;(X) and y € Cy(Y) with II;(x) = z,
Tk (y) =y and C(g)x = C(h)y = z in C1(Z), we have j + k > [, and there is
exactly one triple (x,y, z) with j + k = [. This is an open condition on z € X
andyeY.

We call g an s-submersion if for all x € $7(X) C X with g(z) = 2 € S{(Z) C
Z, the following morphisms are surjective:

Toglr,si(x) : ToSH(X) — T.5(2), N.g:N,X — N.Z. (2.24)
These imply that s-submersions are interior and b-normal. Again, ([2.24]) is an

open condition on x € X.
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Theorem 2.25. (a) Suppose g : X — Z and h :' Y — Z are s-transverse
smooth maps in Mang,. Then a fibre product W = X x4 7Y emsts in Mang,,
with dim W = dim X 4+ dimY — dim Z, in a Cartesian square in Mang;,
which is also a Cartesian square in Man®. We may define W by - as an
embedded submanifold of X XY, wheree : W — X and f: W =Y act by
e:(z,y)—z and f:(z,y) —y.

If we SHW) with e(w) = z € S9(X), f(w) =y € SKY) and g(z) =
h(y) = z € SY(Z) then the following sequences are evact:

) w Tz —Tyh
0— =T, W 2T xery 2 1.7 0, (2.25)
. T e®To f... . Tog®—Tyhl...
0T, 5 (W) I sioy e, s v ST st (2) >0, (2.26)
: VweoNuf < o Rge-Nyh -
0— > NgWw 2l g xa Ny 22N Rz 0. (2.27)

(b) In (a), g, h are t-transverse if and only if the following are s-transverse (and
indeed t-transverse) Cartesian squares in Man$, from Definition

cw) 0 cy)
¢C(e) C(h)i/ (2.28)
o(x) ——=2 c(2),
cw) , cy)
jo@© C,(f) c'm) (2.29)
o(X) ) c(2)

Here in ) if w e C;(W) with C(e)(w) = x in C;(X), C(f)(w) =y in
Cr(Y) and C’( Wx) =C(h)(y) =z in C(Z) then i = j+ k — . Hence we have

W)= I (Ci(X)NCle) H(Cu2))) %cg).cuiz).cm)

FRIZ0: (Ck(Y)nC(h) M (Ci(2)))

(2.30)

for i =2 0. When i =1, this computes the boundary OW . The analogue holds for
the second corner functor C" in Definition using - Also (2.28]) and
are Cartesian in Man®. If g is an s- submerswn then C(g),C(f),C"(9)

and C’(f) are s-submersions in Mang,.

(c) Let g : X — Z be a morphism in Man$,. Then g is an s-submersion if
and only if the following condition holds: for each x € X with g(x) = z, there
should exist open neighbourhoods X', Z' of x,z in X, Z with ¢(X') = Z', a
manifold with corners Y' with dim X = dimY”’ + dim Z, and a diffeomorphism
X' 2Y' x Z', such that g|x : X' — Z' is identified with w7 :Y' x Z' — Z'.

(d) Suppose g : X — Z is an s-submersion, and h:Y — Z is any morphism in
Man®, which need not be strongly smooth. Then a fibre product W = X X4 2z, Y
exists in Man€, in a Cartesian square i Man€, with dim W = dim X +
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(2.29) are Cartesian in Man®, and (2.30) holds. If h is strongly smooth then e

is strongly smooth, and g,h are s- and t-transverse, and (2.20)) is Cartesian in
ManS,, and (2.28)(2.29) are Cartesian in ManS,.

Proof. For (a), [59, Th. 6.4] shows that a fibre product W = X X4 7, Y exists in
Mang,, with dim W = dim X +dimY — dim Z, given by as an embedded
submanifold of X x Y. This embedded submanifold property implies that
is also Cartesian in Man®. Exactness of f may be deduced from
Theorem a) and the proof of [59, Th. 6.4]. Part (b) in Mang, is proved in
[59, Th. 6.11], and in Man® follows from the embedded submanifold property.
Part (c) is proved in [59, Prop. 5.1]. Part (d) follows easily from (a)—(c). O

dimY — dim Z, and is given by (2.21). Also f is an s-submersion, and (2.28])—

Example 2.26. Set X =Y = [0,00) and Z = [0,00)?, and define strongly
smooth g: X — Z, h:Y — Z by g(z) = (z,2z) and h(y) = (2y,y). Then g, h
are s-transverse. However

C’(g)(O,X) = C(h)(O,Y) = ((0,0),2),
where (0, X) € Cy(X), (0,Y) € Co(Y), ((0,0),Z) € Co(Z), and
C(9)(0,{z = 0}) = C(n)(0,{y = 0}) = ((0,0), {z =y = 0}),

with (0,{z = 0}) in C1(X), (0,{y =0}) in C1(Y) and ((0,0),{z =y =0}) in
C5(Z), so there are two triples (x,y, 2) with j+k = [ over (z,y, 2) = (0,0, (0,0)),
and g, h are not t-transverse in Definition [2.24

The fibre product W = X, 7Y in Mang, is a single point . In when
i = 0 the left hand side is one point, and the right hand side is two points, so

(2.30) does not hold. For i # 0, both sides of (2.30)) are empty.

2.5.3 Transversality and submersions in Man{, and Mans®

In [64, §4.3] the author studied transverse fibre products of manifolds with g-
corners Mang,, Man&® in §@ The next definition is equivalent to [64, Def.s
4.3 & 4.24], except for c-fibrations in (e), which are new. The corresponding
names and definitions of b-transverse, b-normal and b-fibrations in Man€® are
due to Melrose [84} §1], [85, §2], |87, §2.4].

Definition 2.27. Let g : X — Z and h : Y — Z be interior morphisms in
Man®¢. Then:

(a) We call g, h b-transverse if *T,g @ T,h : P T, X ©bT,Y — YT, Z is surjective
forallz € X and y € Y with g(z) =h(y) =z € Z.

(b) We call g, h c-transverse if they are b-transverse, and whenever there are
points @, y, z in C;(X), Cx(Y), Ci(Z) with C(g)x = C(h)y = z, we have
either j+k>lor j=k=10=0, for C: Man8® — Man8° asin
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(¢) We call g a b-submersion if ®T,g : *T, X — T, Z is surjective for all z € X
with g(x) =z in Z.

(d) We call g a b-fibration if it is a b-normal b-submersion. Here g is b-normal
if whenever there are x, z in C;(X), C;(Z) with C(g)x = z, we have j > L.

(e) We call g a c-fibration if it is a b-fibration, and if x € X and z € C;(Z)
with g(z) = II;(z) = z € Z, then there is exactly one € C;(X) with
II;(x) =« and C(g)x = =.

Theorem 2.28. (a) Let g: X — Z and h:Y — Z be b-transverse morphisms
in Man$S. Then a fibre product W = X x4 7, Y exists in Man$:, in a Cartesian
square (2.20) in Mang;, with dim W = dim X + dimY — dim Z.

Ezxplicitly, we may write
W ={(z,y) € X° xY°: g(x) =h(y) in Z°}, (2.31)

and take W to be the closure W° of W° in X x Y. Then W is a submanifold
of XxY,ande:W =X, f W =Y actbye: (zv,y) =z, [:(z,y)—y.

If we W with e(w)=z€ X, flw)y=y €Y and g(x) = h(y) =z € Z then
the following sequence is exact:

BT e®P T, T, g®—"Tyh
0— b7, W 2O T _bp x gopy 0T e g 0. (2.32)

(b) In (a), if g,h are c-transverse then W is also a fibre product in Man8°,
and is given by . Furthermore, is Cartesian in Mang°, and
holds. If g is a b-fibration (or c-fibration) then C(g) and C(f) are b-fibrations
(or c-fibrations) in Man®®.

(c) Let g : X — Z be a b-submersion. Then g,h are b-transverse for any
h:Y — Z in Man$®, and in the Cartesian square , f is a b-submersion.

(d) Let g : X — Z be a b-fibration. Then g, h are c-transverse for anyh:Y — Z
in Manfy, and in the Cartesian square (2.20)), f is a b-fibration.

(e) Let g: X — Z be a c-fibration, and h:Y — Z be any morphism in Man8°¢,
which need not be interior. Then a fibre product W = X X4 7, Y exists in Man®&®,
in a Cartesian square i Man8¢, with dimW =dim X +dimY — dim Z,
and is given by . Also f is a c-fibration, and is Cartesian in Man&®,
and holds.

Proof. Part (a) is proved in [64, Th. 4.27], apart from exactness of , which
may be deduced from the proof. Part (b) is [64, Th. 4.28]. The first parts of
(c),(d) are in [64, Def. 4.24 & Prop. 4.25]. That f is a b-submersion in (c¢) follows
from exactness of and g a b-submersion. Then in (d), f is a b-submersion,
and we can show f is b-normal using g b-normal and Cartesian at the
level of sets, so f is a b-fibration.

For part (e), as g is a b-fibration, C(g) : C(X) — C(Z) is a b-fibration, and
C(h): C(Y) — C(2) is interior even if h is not, so C(g), C(h) are b-transverse,
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and a fibre product C(X) X ¢ (y).c(2),cn C(Y) exists in Man$s by the analogue
of (a) in Manf;. Write W for the component of C(X) x¢(z) C(Y) of dimension
dim X 4+ dimY — dim Z. Then using the ideas of [64, §4] and the c-fibration
condition, we can show W satisfies (e). O

This is a strong result, and means that Man®¢ is useful for problems in
‘manifolds with corners’ in which we want transverse fibre products to exist.

In contrast to Theorems c) and c)7 b-submersions and b-fibrations
in Man&® need not be local projections. For example, g : [0,00)? — [0, 0),
g(z,y) = zy, is a b-fibration, but is not a local projection near (0, 0).

Example 2.29. Set X =Y = [0,00)? and Z = [0,00), and define g : X — Z,
h:Y — Z by g(x1,x2) = 122 and h(zs,z4) = x324. Then g, h are interior and
c-transverse, so a fibre product W = X x, 7, Y exists in Man§, by Theorem
2.28(a),(b), and is also a fibre product in Man®®. We may write

W = {(I15I23x37x4) S [0700)4 L X1T2 = I3I4},

which as in Example is a manifold with g-corners, but not a manifold with
corners. Thus, Man® is not closed under c-transverse fibre products in Man8°.

Example 2.30. Define X = [0,00)?, Z = [0,00) and a smooth map g: X — Z
by g(x,y) = xy. Then g is a b-fibration, but not a c-fibration, since over
x = (0,0) € X with g(z) =2 =0in Z and z = (0,{z = 0}) in C1(Z) with
IT; (z) = z, we have two points = ((0,0), {z1 = 0}) and =’ = ((0,0), {z1 = 0})
in C1(X) with IT; () = 1 (2') =« and C(g)x = C(g9)x’ = =.

Set Y = % and define h : Y — Z by h : x — 0, so that h is not interior. No
fibre product W = X X4 75 Y exists in Man8°.

2.5.4 Transversality and submersions in Man;, and Man®

We can also consider fibre products in Mang, and Man®. The appropriate defi-
nition of transversality is rather complicated (in particular, b- or c-transversality
are not sufficient conditions). It is helpful to regard such fibre products as special
cases of fibre products in Manf;, Mans°, as in

Definition 2.31. Let g: X — Z and h: Y — Z be morphisms in Mang,. We
can consider g, h as morphisms in Man$:, so Deﬁnitionmakes sense. We call
g, h strictly b-transverse (sb-transverse) or strictly c-transverse (sc-transverse) if
they are b-transverse or c-transverse, respectively, and for all z € X and y € Y
with g(z) = h(y) = z € Z, the toric monoid

Mo X X 5 MY = {(\ p) € Mo X x MY : Myg(\) = Myh(p)}  (2.33)

is isomorphic to N", for n € N depending on z,v, z.
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Here given morphisms g : X — Z, h: Y — Z in Man{, or Man®, we first
require them to be b- or c-transverse, so that a fibre product W =X x4z, Y
exists in Manf, or Man8® by Theorem (a),(b). We have M, W =
M, X XI\?IzZMyYa so W lies in Mlan® C Man®€ if and only if M, X XMZZMyY o
N for all z,y, z. Since Man§, ¢ Man2¢, Man® ¢ Mang® are full subcategories,

n’

W is then a fibre product in Mang,, or Man®. This proves:

Theorem 2.32. Let g: X — Z and h:Y — Z be sb-transverse morphisms in
Mang, . Then a fibre product W = X X g4 75 Y exists in Mang, , with dimW =
dim X +dimY —dim Z. Ezxplicitly, we may define W° by , and take W
to be the closure W° of W° in X x Y. Also is exact for all w € W.

If g,h are sc-transverse then W is also a fibre product in Man®, and is given

by . Also is Cartesian in Man®, and holds.

Kottke and Melrose [69, §11] study fibre products in Man®, and the sc-
transverse case in Theorem is essentially equivalent to [69, Th. 11.5].
The case when 0Z = () is simpler. The next theorem follows from [59, [64]:

Theorem 2.33. Suppose g: X — Z and h: Y — Z are b-transverse morphisms
in Man® with 0Z = 0. Then a fibre product W = X X475 Y exists in
Man®, with dimW = dim X 4+ dimY — dim Z, and is given by as an
embedded submanifold of X xY . It is also a fibre product in Mang; and Mang,, .
Furthermore, goix,h and g,hoiy are also b-transverse, and there is a natural
diffeomorphism

B(X Xg,Z,h Y) = (8X Xgoix,Z,h Y) I (X X 9,7, hoiy BY) (234)

We would also like classes of ‘submersions’ g : X — Z in Man€®, such that
g, h are sb- or sc-transverse for all (interior) h: Y — Z in Man®. In both cases,
the appropriate notion is s-submersions from Definition

Example 2.34. Let X,Y,Z,g,h be as in Example 2.29] Then g¢,h are c-
transverse, but they are not sc-transverse, as in (2.33) we have

M(o,o)X X 510z M(O,O)Y = {(71177127713,’)14) e N*: ny +ng =ns +n4},

which is not isomorphic to N* for any k > 0. A fibre product W =X x4 2, Y
exists in Man{, and Man®&°, but not in Man§, or Man®.

Example 2.35. Let X = [0,00) xR, Y = [0,00) and Z = [0,00)2. Define
g: X = Z by g(x1,22) = (x1,z1€*2) and h : Y — Z by h(y) = (y,y). Then g is
a b-submersion and h is interior, so g, h are b-transverse by Theorem m(c),
and in fact g, h are sb-transverse. But g, h are not c-transverse, since we have
((0,x2),{z1 = 0}) in C1(X) and (0, {y = 0}) in C1(Y) with C(g)((0, z2), {z1 =
0}) = C(h)(0,{y = 0}) = ((0,0),{z1 = 22 = 0}) in C2(2).

Theorem gives a fibre product W = X X, 75, Y in Mang_ , where

W = {((w,0),w) : w € [0,00)} =[0,00).
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It is also a fibre product in Manf. Note that W is not given by the usual
formula which also contains points ((0,332), 0) for 0 # x9 € R, that is,
W is not a fibre product at the level of topological spaces. In this case no fibre
product X Xz Y exists in Man® or Man&°.

Example 2.36. Let X =Y = [0,00) and Z = [0,00)2, and define g : X — Z,
h:Y — Zbyg(x) = (x,2), h(y) = (y,y?). Then g, h are sb-transverse. However,
they are not c-transverse, since we have (0, {z = 0}) in C1(X) and (0, {y = 0})
in C1(Y) with C(g)(0,{z = 0}) = C(h)(0,{y = 0}) = ((0,0), {z1 = 22 = 0})
in CQ(Z)

The fibre product W = X x, 75, Y in Mang, given by Theorem [2.32] is
W ={(1,1)}, a single point. Although g, h are not c- or sc-transverse, in this
case a fibre product W' = X x4 7, Y exists in Man® with W’ = {(0,0), (1,1)}.
So fibre products X x4 7 Y in Man§, and Man® exist, but do not coincide.

Remark 2.37. Suppose we have some category of ‘manifolds’ Man such as
Man, Man®, Man{ , ..., and morphisms g : X — Z, h: Y — Z in Man for

which a fibre product W = X X, z 5 Y exists in Man. When should we expect
W to be given, either as a set or as a topological space, by the usual formula

W ={(z,y) € X xY :g(z) =h(y) in Z}? (2.35)

From §2.5.1142.5.4| we observe that:

(i) Theorems [2.22(a), [2.25(a), [2.28|(b) and show that holds in
topological spaces for transverse fibre products in Man, and s-transverse
fibre products in Mang,, and c-transverse fibre products in Man®&¢, and
sc-transverse fibre products in Man®€.

(ii) Theorems a) and show that b- and sb-transverse fibre products
in Manf; and Mang, are given by a different formula to (2.35)), and in
Examples and equation ([2.35)) is false at the level of sets.

(iii) Example iv) gives a non-transverse fibre product in Man such that

(2.35) holds at the level of sets, but not at the level of topological spaces.

For some categories Man, there is a 1-1 correspondence between morphisms
f:{x} =X in Man, and points x € X of the underlying topological space,
by f < f(x¥) = 2. This holds when Man = Man, Mang,, Man2®, Man®. For
such Man, the universal property of fibre products in Definition applied
to W’ = {x} shows that holds automatically at the level of sets, though
not necessarily for topological spaces, as Example (iv) shows. In Man§®

and Man§ , morphisms f : {*} — X correspond not to z € X, but to x € X°.

Then (2.35)) can be false even for sets, as Examples and show.

2.6 Orientations

Orientations on manifolds are discussed by Lee |71} §15], and on manifolds with
boundary and corners by the author [59, §7], [57] and Fukaya et al. |24} §8.2].
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Definition 2.38. An orientation ox on a manifold X is an equivalence class [w]
of top-degree forms w € I'°(AY™XT* X) with w|, # 0 for all z € X, where two
such w,w’ are equivalent if ' = K -w for K : X — (0,00) smooth. The opposite
orientation is —ox = [—w]. Then we call (X, 0x) an oriented manifold. Usually
we suppress the orientation oy, and just refer to X as an oriented manifold,
and then we write —X for X with the opposite orientation. A nonvanishing
top-degree form w on X is called positive if [w] = ox, and negative if [w] = —ox.

If x € X and (v1,...,0,) is a basis for T, X, then we call (vy,...,vy)
oriented if w|; - vy A+ Avy, > 0, and anti-oriented otherwise.

We will refer to the real line bundle AY™ XT*X — X as the canonical bundle
Kx of X, following common practice in algebraic geometry. Then an orientation
on X is an orientation on the fibres of Kx.

Let f: X — Y be a smooth map of manifolds. A coorientation c¢ for f is a
an equivalence class [y] of v € T (A XT*X @ f*(AY™YT*Y)*) with 7|, # 0
for all x € X, where v,7 are equivalent if ¥ = K - for K : X — (0, 00) smooth.
The opposite coorientation is —cy = [—v]. If Y is oriented then coorientations
on f are equivalent to orientations on X. Orientations on X are equivalent to
coorientations on 7w : X — *, for * the point.

All the above also works for manifolds with boundary Man® and corners
Man€, their subcategories Mang, , ..., and Man&®, Man?®¢ in For Man¢®
we can define orientations using either AY™ XT* X or AYm X (*T* X)) and they
yield equivalent notions of orientation, since an orientation ox on X is determined
by its restriction to X°|x, and T*X|xo = *T* X|xo.

Operations on manifolds with corners X,Y, Z, ... such as products X x Y,
transverse fibre products X x4 7 » Y, and boundaries 0.X, can be lifted to oriented
manifolds with corners. To do this requires a choice of orientation convention.
Ours are equivalent to those of Fukaya et al. [24] §8.2], see also [59, §7].

Convention 2.39. (a) Let X, Y be oriented manifolds. Then there is a natural
orientation on X x Y, such that if z € X, y € Y and (u1,...,um), (v1,...,0n)

are oriented bases for T, X, T,Y then (u1,...,Um,v1,...,vy,) is an oriented basis
for T3, (X xY) =T,X ®T,Y. This also works for manifolds with boundary,
corners, g-corners, ..., using T, X,T,Y or T, X,*T,Y.

(b) Let X,Y,Z be oriented manifolds, g : X — Z, h: Y — Z be transverse
smooth maps, and W = X x, 7, Y be the fibre product as in with
projections e : W — X, f: W — Y. Then there is a natural orientation on W,
such that if w € W with e(w) =2 € X, f(w) =y €Y and g(z) = h(y) =2z € Z,
so that we have an exact sequence of tangent spaces

we®Tw T,g®&—Tyh
0—=T,W 0l X 6Ty =T, ) (X xY) =2 17—,
then if (uy,...,us) is an oriented basis for T,,W, and

((Twe STwf)(u1), ..., Twe ®Twf)(tm),v1,... ,’Un)
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is an oriented basis for T(, (X x Y) using the orientation from (a), then

z,y)
((_1)dimYdimZ(ng S3) _Tyh)(vl)v (T.g® _Tyh) (v2), ..., (Tog ® _Tyh)(vn))

is an oriented basis for T, Z. This also works for manifolds with corners, etc.

(c) Let X be an oriented manifold with boundary, or corners (etc.). Then
there is a natural orientation on the boundary 0.X, such that if (z1,...,2,,) in

[0,00) x R™ ! are local coordinates on X near z € S*(X) and (8%1, cooy52—) are

an oriented basis of T, X, or equivalently (x18%17 3%27 R %

basis of *T, X, then (32-, ..., 52—) are an anti-oriented basis of T, (4, —0})(0X),

’ ;
m
Oxo oz

or equivalently bT(my{m:o})(aX ). We can also explain this using 1) or |i

If X is an oriented manifold with corners then part (c) gives orientations
on 0X,0%X,...,01™X X Note however that the free Sy-action on 9*X does
not preserve orientations for k > 2, so we cannot define an orientation on
Cr(X) = 0kX/S), in , and Cy(X) can be non-orientable for & > 2.

There are often canonical diffeomorphisms between expressions involving
fibre products and boundaries of manifolds with corners. When we promote
these to oriented manifolds with corners using Convention there will be
some sign relating the orientations on each side.

For example, in Theorem [2.33] if X,Y,Z are oriented then in oriented
manifolds with corners, as in [59, Prop. 7.4], equation becomes

are an oriented

INX XgznY) 2 (0X Xgoiy,z,n Y ) LT (—1) I XHIMZ(X 5 7 hoiy DY), (2.36)
Here |59} Prop. 7.5] are some more identities on orientations:

Proposition 2.40. (a) If g: X = Z, h: Y — Z are transverse smooth maps
of oriented manifolds with corners then in oriented manifolds we have

X Xg.Z.h Y o (_1)(dimX—dim Z)(dimY —dim Z)Y Xh.7.g X. (237)

D) Ife: V=Y f:W=Y, g:W—=Z h:X — Z are smooth maps of
oriented manifolds with corners then in oriented manifolds we have

1% Xe7y7foﬂw (W Xg,Z,h X) = (V ><67y7f W) Xgoﬂ-W7Z7h X, (238)

provided all four fibre products are transverse.

()Ife: V=Y f:V—o>Z g:W=Y, h: X = Z are smooth maps of
oriented manifolds with corners then in oriented manifolds we have

V X(e, ),y xZ,gxh (W x X) =

SR (2.39)
(_l)dlm Z(dim Y +dim W)(V XeY.g W) X fory . Z.h X,

provided all three fibre products are transverse.
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Chapter 3

Assumptions about ‘manifolds’

In Chapters starting from a category Man of ‘manifolds’ satisfying some as-
sumptions, we will construct 2-categories mKur, Kur of ¢ (m—)Kuranlshl spaces’,
and a category uKur of ‘u-Kuranishi spaces’ associated to Man.

When Man is the usual category of smooth manifolds Man, this will yield
our usual (2-)categories of (m- or pu-)Kuranishi spaces mKur, pKur, Kur. But
there are many other possibilities for Man.

Sections set out our basic assumptions and additional structures on
the category Man, give examples of categories Man satisfying these conditions,
explain some consequences of them, and define notation to be used later.

If Man satisfies the assumptions of . much of conventional differential
geometry for classical manifolds Man can be extended to Man — smooth
functions and partitions of unity, vector bundles, tangent and cotangent bundles,
connections, and so on. To streamline our presentation we will do this extension
in detail in Apendlx B, and summarize the results in

Section |3.4 extends. 3| to categories Man® of manlfolds with corners’.
In fact §3.11-93 already ap 1 without change to Man = Man®, as the basic
assumptions on Man in §3.1| are weak enough to include the cate ories of
manifolds with corners Man we are interested in. So the materlal of §
and Chapters [IH6] does not need to be repeated, and our focus in §3.4)is on issues
special to the corners case, such as interior maps, s1mple maps, boundarles 0X,
corners Ci(X), and the corner functor C' : Man® — Mang,

3.1 Core assumptions on ‘manifolds’

This section gives seven assumptions, Assumptions which we will make
on all our categories of ‘manifolds’. They are the minimal assumptions we
will need to define nicely behaved (2-)categories mKur, uI'(ur7 Kur of (m- and
p-)Kuranishi spaces in Chapters

Some assumptions require us to give data, and others require this data to
have certain properties. The essential data we have to provide is:

e A category Man in Assumption
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e A faithful functor FI\T/I P . Man — Top to the category of topological
spaces Top in Assumptlon

e An inclusion Man C Man of the category of classical manifolds Man as
a full subcategory in Assumption

Some examples to have in mind when reading this section, which satisfy all
the assumptions, are the category Man of classical manifolds, and the categories
of mamfolds with corners Manwe, Man®, Man; , Mang , Mang Mang®
Manf?, Man®®, Man?¢, ... from Chapter

st,in? ’

1n7

3.1.1 General properties

Assumption 3.1. (Category-theoretic properties.) (a) We are given a
category Man. For simplicity, from Chapter |4 I onwards, objects X in Man will
be called manifolds (although they may in examples not be manifolds, but some
kind of singular space), and morphisms f : X — Y in Man will be called smooth
maps (although they may in examples be non-smooth).

Isomorphisms in Man are called diffeomorphisms.

(b) There is an object () € Man called the empty set, which is an initial object
in Man (i.e. every X € Man has a unique morphism ) — X ).

(c) There is an object * € Man called the point, which is a terminal object in
Man (i.e. every X € Man has a unique morphism 7 : X — x).

(d) Each object X in Man has a dimension dimX € N = {0,1,...}, except
that dim () is undefined, or allowed to take any value. We have dim * = 0.

(e) Products X x Y of objects X,Y € Man exist in Man, in the sense of
category theory (fibre products over %), with projections 7x : X x ¥ — X and
my : X XY = Y. They have dim(X x Y) = dim X 4+ dimY. Hence products
fxg:WxX =Y xZof morphisms f: W =Y, g: X = Z, and direct
products (f,g): X =Y xZof f: X =Y, g: X — Z, exist in Man.

(f) If X,Y € Man with dim X = dim Y there is a disjoint union X I1Y in Man
with inclusion morphisms tx : X — X IIY, 1y : Y — X II'Y. It is a coproduct
in the sense of category theory, with dim(X 1Y) = dim X = dimY".

Assumptlon 3.2. (Underlying topological spaces. ) (a) There is a faithful
functor F : Man — Top from Man to the category of topological spaces
Top, mapplng objects X € Man to the underlying topological space Xiop =
Fl\.F[‘/I(;II’l(X)7 and morphisms f: X =Y to fiop 1= FI\T/I(::](f) : Xtop = Yiop-

So we can think of objects X of Man as ‘topological spaces Xiop, with

extra structure’. Since FMOI; is faithful (injective on morphisms), so that
ftop Xiop = Yiop determines f X — Y, we can think of morphisms f : X — Y
in Man as ‘continuous maps fiop satisfying conditions’.

(b) Underlying topological spaces Xiop are Hausdorff, locally compact, and
second countable, and FI\T/I';Z(@) = (), and Fl\l;lc;‘:l(*) is a point.
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(c) Fl\q;[c;i takes products and disjoint unions in Man functorially to products
and disjoint unions in Top.

(d) If X € Man and U’ C Xiop is open with inclusion ¢ : U" < Xiop, there
is a natural object U in Man called an open submanifold with Uy, = U’ and
dimU = dim X, and an inclusion morphism i : U — X with itop =¢'. If U =)
then U = (). Inclusion morphisms are functorial under inclusions of open sets
U — V' — Xip. Given a morphism f: X — Y in Man, we often write
flu:U =Y instead of foi:U —Y.

If f: W — X is a morphism in Man with frop(Wiop) € Usop € Xiop then f
factorizes uniquely as f =i o f’ for a morphism f’: W — U in Man. If f is an
open submanifold then so is f.

Inclusions tx : X < X IIY, 1y : Y < X II'Y are open submanifolds.

(e) Suppose X € Man, and Y is a topological space, and v : Xiop > Y is a

homeomorphism. Then there exists an object ¥ € Man and a diffeomorphism
¢ : X — Y such that Yo, =Y’ and ¢eop = 1.

In later chapters we will generally drop the distinction between X and Xiqp,
and write € X rather than « € Xi,,, identify open submanifolds ¢ : U — X
with open sets U C X, and so on, just as one does for ordinary manifolds in
differential geometry.

We suppose morphisms and objects in Man can be glued over open covers.

Assumption 3.3. (Sheaf-theoretic properties.) (a) Let X,Y be objects
in Man, and f'+ Xiop — Yiop be a continuous map, and {U] : a € A} be
an open cover of Xi,,. Write i, : U, < X for the open submanifold with
Uatop = Ul, and suppose there is a morphism f, : U, — Y in Man with
fatop = f' ©datop : Untop — Yiop for each a € A. Then there is a morphism
f:X =Y in Man with fi,p = f" and foi, = f, for all a € A. Note that f,, f
must be unique by faithfulness in Assumption a).
This implies that morphisms f: X — Y in Man form a sheaf on X.

(b) Let X’ be a Hausdorff, second countable topological space, {U. : a € A} an
open cover of X', and {U, : a € A} a family of objects in Man with Ug top = U,
and dim U, = m for all a € A, with m € N. For a,b € A write iy, : Ugpy — U,
for the open submanifold associated to U, N U, C U, = Uq top-

Suppose that there is a (necessarily unique) diffeomorphism jup : Uap — Upa
in Man with Jab,top = idUéng for all a,b € A. Then there exists an object X
in Man with Xiop = X’ and dim X = m, unique up to diffeomorphism, covered
by open submanifolds i, : U, < X for a € A, for U, as above.

3.1.2 Relation with classical manifolds

Assumption 3.4. (Inclusion of ordinary manifolds.) The usual category
Man of smooth manifolds and smooth maps between them is included as a full
subcategory Man C Man.
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Dimensions of objects in Man C Man are as usual in Man. Products and
disjoint unions in Man of XY € Man agree with those in Man. The empty
set @ and point * in Assumption (b),(c) lie in Man C Man.

The underlying topological space functor FI\T/IZZ is as usual on Man C Man.

Open submanifolds in Man, Man agree. We will often use that R" is an object
of Man for n = 0,1,..., since R” € Man C Man. We generally write R"

rather than R{, , and X rather than X, when X € Man C Man.

From Chapter [ onwards, by an abuse of notation we will usually refer to
obJects X of Man as ‘manifolds’, and morphisms f : X — Y in Man as ‘smooth
maps’. When we need to refer to objects X € Man C Man we will call them
‘classical manifolds’, and morphisms f : X — Y in Man C Man ‘classical
smooth maps’.

Assumption 3.5. (Hadamard’s Lemma.) Suppose X is an object in Man,
and i : U — X x R" is an open submanifold with (z,0,...,0) € Uy for all
x € Xiop, and f : U — R is a morphism in Man. Then there exist morphisms
gl,...7gn:U—>RinManWith

ftop(x;tla"'atn) = ftop(ajao )+Zz 1 © g top(x tl,... tn) (31)

for all (z,t1,...,tn) € Uiop, so that x € Xy, and t1,...,t, € R.

Note that this has strong implications for the differentiability of functions in
Man. For example, taking partial derivatives of 1) int,...,tpatt; =--- =

t, = 0 and noting that gi top, - - -, gn,top are continuous implies that
%) o
ter (2,0,...,0) = gitop(2,0,...,0) (3.2)
for all z € Xiop, where the partial derivative exists. A more complicated
argument shows that there exist unique morphisms hq,...,h, : U — R in Man
. __ Oftop
with R top(z,t1,...,tn) = 5 (x,t1,...,tp) for all (z,t1,...,t,) € Ugop.

The next assumption means that for X € Man, the topology on Xiop, is
generated by open subsets ft;é((o, 00)) € Xyop for smooth functions f: X — R.

Assumption 3.6. (Topology is generated by smooth functions to R.)
Let X be an object of Man. As R € Man C Man we can consider morphisms
f:X—=>Rin Man. Suppose U’ C Xyop is open and x € U’. Then there should
exist f: X — R in Man with fiop(z) > 0 and fiop| Xiop\U7 < 0.

3.1.3 Extension properties of smooth maps

Assumptions hold for many categories of manifold-like spaces, including
some which are not suitable for defining Kuranishi spaces. Though its significance
is probably not clear on a first reading, our next assumption makes many features
of ordinary manifolds work in Man, and is vital for much that we do in this
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book. For example, we show in that Assumption a) allows us to define
a ‘tangent sheaf 7 X’ for objects X € Man, a substitute for the tangent bundle
TX — X for X € Man.

Assumption 3.7. (Extension properties of smooth maps.) (a) Let X,V
be objects in Man, and k > 2, n > 0. Suppose

Uy = X x (R")*1

is an open submanifold for ¢ = 1,...,k with Xiop, % {(0,...,0)} C U top, and
f; : Uy — Y is a morphism in Man for i = 1, ...,k such that

Jitop(T,21, -+, Zic1, Zig1s -, Zj—1,0, 2541, .., Zk)

= fj7top($,21, .. -7Zi—1;07Zi+17 . 7zj—17zj+17 e ,Zk)

foralll1 < i< j <k z€ Xop and 2, € R" for a = 1,...,k, a # 1,7,
such that (z,21,...,2i-1,Zi+1,---,2j-1,0,2Zj41,. .., 2k) € Uitop and (z, 21,
o3 2i21,0,Zi41, ., Zj—1, Zj+1, - - -, Zk) € Ujop- Then there should exist an
open submanifold V — X x (R™)* with X, x {(0,...,0)} C Viop, and a
morphism ¢g: V — Y in Man such that

Jitop(T, 21,0, Zic1, Zig 1, -+, Zk) = Grop (T, 21,5+ -+, 2i—1,0, Zig1, ..., Zk)
forall i = 1,...,k, © € Xiop and 2z, € R" for a = 1,...,k, a # i, with
(z,zl,...,zi_l,ziﬂ,...,zk) & Ui,topa ($,Zl,...721_1,07Zi+17...72k) S ‘/top-

(b) In part (a), suppose in addition that s : X — R" and h : X — Y are
morphisms in Man with

fi,tOp(xv ty- Stop(x)a N T Stop(x)a Liy1 - Stop(m)v N T Stop(m)) = htop(x)

foralli =1,...,k = € Xiop and t1,...,ti—1,ti41,...,tx € R with ¢ +--- +
tici+tip1+-+te =1 and (1‘,t1 '8top($), oy tiog 'Stop(x)ati-&-l -stop(m), R 7
Stop()) € Ui top. Then we can choose g to satisty

Grop (T, t1 - Stop(X)s -+ stk Stop (X)) = hiop ()

for all z € Xyop and t1,...,t; € Rwith t;+-- -+t = 1 and (z, t1-Stop(2), - - -, tk-
Stop(2)) € Viop-

(c) In both (a) and (b), suppose the whole situation is invariant/equivariant
under a finite group I', which acts on X,Y by diffeomorphisms in Man, and
acts linearly on R", and may also act on {1,...,k} by permutations, and hence
permute the Uy, f;, z;,t; for i = 1,..., k, in addition to the I'-actions on X, Y, R".
Then we can choose V' to be I'-invariant, and g : V' — Y to be I'-equivariant.

3.2 Examples of categories satisfying the assumptions

Here are some examples of categories Man satisfying Assumptions [3.1
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Example 3.8. (i) The usual category of manifolds Man from Chapter [2]satisfies
all assumptions in

(ii) In Chapter [2] we discussed many categories of manifolds with corners. Of
these, the following satisfy all assumptions in §3.1}
Mang

we’

Man®¢, Mans,, Man{> , Man®®, Mang$, Man{$,, ManZf, (3.3)

i’

ac c,ac c,ac c,ac c,ac c,ac
Mang ;,, Man®®, Man; ™, Man, )", Mang™, Man g, .

C c [ C C
Man®, Mang,,, Many,,, Mang, Mang, ;,,,

Example 3.9. In we will define the 2-category of orbifolds Orb. Define
a 2-subcategory Orbg,. C Orb with objects X effective orbifolds, and with
1-morphisms §: X — ) whose morphisms of isotropy groups Gf: G.X — G,
are surjective for all € X with f(x) = y € 9), and with arbitrary 2-morphisms.
Consider the homotopy category Ho(Orbgg ). The combination of the effective
and surjective conditions means that Orbg,, is a discrete 2-category (i.e. there
is at most one 2-morphism 7 : f = g between any two 1-morphisms f,g: X — %)
in Orb®™ ). So Orbe¥ is equivalent to Ho(OrbeT ) as a 2-category, and passing
to the homotopy category does not lose any important information. _

Any orbifold X has a natural locally closed stratification X = Hzﬁ)x Xk,
where X}, is the disjoint union of the orbifold strata of X with codimension k,
and X}, has the structure of a manifold of dimension dim X — k. Because of the
surjectivity on isotropy groups condition, 1-morphisms f : X — ) are compatible
with these stratifications in the sense of Lemma [2.5] and locally in X}, induce
smooth maps f|x, : X — 2); between manifolds.

One can now show that the category Man = Ho(Orb¢¥ ) satisfies Assump-
tions [3.IH3:7] There are a few subtle points in the proof. For Assumption [3.3]
we use stack-theoretic properties of Orb and the fact that Orbzflfr is a discrete
2-category, so that we get sheaves and not just presheaves when we pass to the
homotopy category.

We can also consider ‘corners’ versions of Ho(OrbgT ) modelled on one of

the categories in (3.3]). These all work without any problems.

Remark 3.10. Here are some categories of manifolds which fail parts of As-
sumptions [3.IH3.7] and so are excluded from our theory:

(a) The category Man,, of real analytic manifolds and real analytic maps fails
Assumption [3:4] as there is no inclusion Man C Man,,.

Partitions of unity will be important in our theory, but they do not exist
in Man,,. So we will not define real analytic Kuranishi spaces.

(b) The category Mang of C*-manifolds for k > 0 fails Assumption since
in general maps g1, ..., g, : U = R satisfying (3.1)) would have to be only
C*=1, and so would not be morphisms in Mangx.

(c) The category ManP of manifolds with boundary is not closed under
products such as [0,1] x [0,1], so Assumption e) fails. To include this
example we should embed Man? ¢ Man® and take Man = Man®.
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(d) Asin Remark Melrose [84H86] works in the full subcategory Man§, C
Man€ of ‘manifolds with faces’ X, for which ix : 9X — X is injective on
each connected component of 9X. Since this is not a local condition on X,
Assumption b) fails for Mang,. Again, we should take Man = Man®.

(e) The categories Mang;, Man®’, Man?®, ManZ;?® in Chapter [2| of various
kinds of manifolds with corners, and simple maps, fail Assumption[3.6] since
if X lies in one of these categories with X # () then no map f: X — R is

simple, so almost all of does not work within Mang;, ....

However, these categories will play an important réle in our treatment of

(m- and p-)Kuranishi spaces with corners in and

3.3 Differential geometry in Man

Suppose Man is a category satisfying Assumptions in Much of
conventional differential geometry for classical manifolds Man can be extended
to Man — smooth functions and partitions of unity, vector bundles, tangent
and cotangent bundles, connections, and so on. To avoid a lengthy diversion in
our narrative, we will explain the extension to Man in detail in Appendix
and summarize it here. Readers primarily interested in the conventional cases
Man = Man or Man = Man® should not need to look at Appendix

Here are two important differences with conventional differential geometry:

e If X € Man is a ‘manifold’, we will define a tangent sheaf TX and
cotangent sheaf T*X, which are our substitutes for the (co)tangent bundles
TX, T*X of a classical manifold. These 7X,7T*X may not be vector
bundles for general Man, but are sheaves of modules over the structure
sheaf Ox of smooth functions X — R. Also 7X,7*X may not be dual
to each other, though there is a natural pairing pux : 7X x T*X — Ox.

o If f: X — Y is a morphism in Man, we will define a relative tangent sheaf
T+Y of Ox-modules on X, with 7;Y = 7X when X =Y and f = idx.
When Man = Man, T7Y is the sheaf of sections of the pullback vector
bundle f*(TY) — X, but in general we may have T;Y 2 f*(TY).

In §3.3.5[ we describe some ‘O(s)’” and ‘O(s?)’ notation, explained in detail in
which will be important in Chapters [0}

3.3.1 Smooth functions and the structure sheaf

We summarize the material of

(a) For each X € Man, write C*°(X) for the set of morphisms a : X — R in
Man. We show that C*° (X) has the structure of a commutative R-algebra,
and also of a C*°-ring, in the sense of C'*°-algebraic geometry as in the
author [56) 65] or Dubuc [13].
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(b) We define a sheaf Ox of commutative R-algebras or C'*°-rings on the
topological space Xiop, called the structure sheaf , with Ox (Uiop) = C°(U)
for all open submanifolds U < X. Sheaves are explained in

(c) We show that (Xiop, Ox) is an affine C*°-scheme in the sense of 13|
56, [65]. If f : X — Y is a morphism in Mam we define a morphism
(frop, [H) ¢+ (Xtops Ox) — (Yiop, Oy ) of affine C-schemes. This defines
a functor FS7Seh . Man — C°°Sch®® to the category of affine C°°-
schemes, which is faithful, but need not be full.

(d) We show that partitions of unity exist in Ox subordinate to any open
cover {U, : a € A} of X. Thus, Ox is a fine sheaf.

When Man = Man all this is standard material.

3.3.2 Vector bundles and sections

In we discuss vector bundles E — X in Man, and (smooth) sections
s: X — E, and we write I'*°(E) for the C°°(X)-module of sections s of E. The
usual definitions and operations on vector bundles and sections in differential
geometry also work for vector bundles in Man, in exactly the same way with no
surprises, so for instance if F, FF — X are vector bundles we can define vector
bundles E* - X, E®F - X, E® F - X, AFE — X, and so on, and if
f:X — Y is a morphism in Man and G — Y is a vector bundle we can define
a pullback vector bundle f*(G) — X.

If E — X is a vector bundle, we write £ for the sheaf of sections of E, as
a sheaf of modules over Ox. Morphisms of vector bundles 6 : E — I are in
natural 1-1 correspondence with morphisms of Ox-modules 6:&— F.

3.3.3 The cotangent sheaf 7*X, and connections V

In for each X € Man we define the cotangent sheaf T*X, a sheaf of
Ox-modules on Xio,. We also define the de Rham differential d : Ox — T*X,
a morphism of sheaves of R-vector spaces which is a universal C*°-derivation.
We do this by noting that (Xiop, Ox) is an affine C*°-scheme in the sense of [13|
506, [65], as in and and then using cotangent sheaves of C'*°-schemes
from the author |65, §5].

Example 3.11. (a) If Man = Man then 7*X is the sheaf of sections of the
usual cotangent bundle 7"X — X in differential geometry. The same holds if
X € Man C Man for general Man.

(b) If Man is one of the following categories from Chapter
Man¢, Man{,, Mang,, Mang, Man¢

in> st st,in> we)

then as in there are two notions of cotangent bundle 7*X,*T* X of X in
Man. It turns out that 7*X is isomorphic to the sheaf of sections of T*X.
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(c) If Man is one of the following categories from

gc gc ac ac ac
Man®°, Man;, ', Man®®, Man{;, Mang;,

ac c,ac c,ac c,ac c,ac
Mang';,, Man®®, Man; ™, Mang™, Man 5, ,

then the cotangent bundle T*X of X € Man may not be defined, though the
b-cotangent bundle *7*X is. It turns out that 7*X need not be isomorphic to
the sheaf of sections of any vector bundle in these cases.

Let E — X be a vector bundle in 1\./[an7 and &£ the Ox-module of sections
of E as in §3.3:2] We define a connection V on E to be a morphism V : & —
€ ®p, T*X of sheaves of R-vector spaces on Xiqp, satisfying the Leibniz rule
V(a-e)=a-(Ve)+e® (da) for all local sections a of Ox and e of £. We show
that connections V on E always exist, and if V,V’ are two connections then
V' =V+TforT': € — E®o, T*X an Ox-module morphism.

3.3.4 Tangent sheaves 7 X, and relative tangent sheaves T;Y
We summarize the material of
(a) For each X € Man we define the tangent sheaf T X, as a sheaf of Ox-
modules on Xiqp.

(b) If f: X — Y is a morphism in Man we define the relative tangent sheaf
T;Y, as an Ox-module on Xiop. There is a natural Ox-module morphism

Feidoy : fH(TY) = ft;é(TY) Ori(oy) Ox — TfY. (3.4)
If g: Y — Z is a morphism in Man we have an O x-module morphism
P @idoy : f'(T,2) = Jib(T,2) €10,y Ox — Tyos 2. (35)

Neither of (3.4) or (3.5) need be isomorphisms.

(0)Iff: X =Y, g:Y — Z are morphisms in Man then we define an
Ox-module morphism Tg: 7Y — TgorZ.

(d) If f: X — Y is a morphism in Man and E, F — X are vector bundles
then we define morphisms 0 : E — T;Y, ¢ : T;Y — F. These are just Ox-

module morphisms 0 : £ — T;Y, ¢ : T;Y — F, for £, F the Ox-modules
of sections of E, F.

We can compose such morphisms by composing O x-module morphisms,
so that o6 : £ — F is a vector bundle morphism £ — F.

(e) We define a natural pairing pux : 7X X T*X — Ox between tangent and
cotangent sheaves.

(f) Let E — X be a vector bundle in Man, V a connection on FE, and
s € I'°(E), so that Vs € I'(€ ®o, T*X) as in §3.3.3] Using the pairing
wx in (e) we can regard Vs as a morphism Vs: TX — E.
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(g) Let f: X =Y, g:Y — Z be morphisms in Man, F — Y be a vector
bundle, and 6 : F' — T7,Z be a morphism on Y, as in (d). We define a
morphism f*(6) : f*(F) — T40rZ by composing with the pullback
of 6 under fio,. This is something of an abuse of notation: we will treat
TgorZ as if it were the pullback f*(7,2), although may not be an
isomorphism. Incorporating in the definition of f*(#) allows us to
omit f°> ® ido, in from our notation.

(h) Let f: X — Y be a morphism in Man, F — Y be a vector bundle, V a
connection on F', and ¢t € I'*°(F), so that Vi € I'(F ®o, T*Y). We define
a morphism f*(Vt) : T;Y — f*(F). This is not done by pulling back the
morphism Vt: TY — F in (f) along f, since the morphism goes the
wrong way, but by a different method.

Example 3.12. Let Man = Man. Then 7X in (a) is the sheaf of sections
of the usual tangent bundle X — X in differential geometry, and 7;Y in
(b) is the sheaf of sections of f*(TY) — X, and (3.4)—(3.5) are isomorphisms.
In (c), Ty is the pullback f*(Tg) : f*(TY) — (go f)*(T'Z) of the derivative
map Tg : TY — ¢*(TZ). In (d), morphisms are vector bundle morphisms
0:FE — f*(TY), ¢ : f*(TY) — F. In (e), ux is the usual dual pairing
TXxT*X — Ox. In (g),(h), f*(0), f*(Vt) are the usual pullbacks in differential
geometry.

The moral is that when Man = Man, we should remember that 7;Y means
fH(TY), all the sheaves Ox, T*X,T X, T;Y are vector bundles, and all of (a)—-(h)
are standard differential geometry of classical manifolds.

Example 3.13. Let Man be one of the following categories from Chapter

Mans,,, Man

c gc ac ac c,ac c,ac
st,in» Manin ’ Manin ’ Manst,in’ Manin ’ Manst,in'

Then 7X in (a) is the sheaf of sections of the b-tangent bundle *TX — X from
and T;Y in (b) is the sheaf of sections of f*(*TY) — X, and (3.4)—(3.5)

are isomorphisms. Note that in these cases 7X and 7*X may not be dual, since
as in Example b),(c) either 7*X is the sheaf of sections of T*X — X (not
®T*X — X), or T*X may not be a vector bundle.

Example 3.14. Let Man be one of the following categories from Chapter

Man®, Man$,, Man®®, Man®®, ManZy, Man®?°, Mang;”°.
Then 7X in (a) is the sheaf of sections of the b-tangent bundle *TX — X,
but 7;Y in (b) is the sheaf of sections of the vector bundle of mixed rank
C(f)*(*TC(Y))|co(x) — X, using the corner functor C(f) : C(X) — C(Y)
and the identification X = Cp(X) from Also (3.4)-(3-5) may not be
isomorphisms, and 7 X and 7*X may not be dual.
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3.3.5 The O(s) and O(s?) notation

Section defines some ‘O(s)’ and ‘O(s?)’ notation, which will be important
in and Here is an informal version of Definition

Definition 3.15. Let X be an object in 1\./Iam7 and 7 : F — X be a vector
bundle, and s € I'*°(E) be a section. Then:

(i)

(vi)

If FF — X is a vector bundle and t1,t2 € I'™°(F), we write {3 = t; + O(s)
if there exists a morphism a : E — F such that to = ¢ + a0 s in T°(F).

Similarly, we write to = t; + O(s?) if there exists 8 : E ® E — F such that
to =11+ B o(s®s)in I'*°(F). This implies that to = t; + O(s).

We can also apply this O(s), O(s?) notation to morphisms of vector bundles
0,,05 : F — G, by regarding 61, 0, as sections of F* ® G.

If F — X is a vector bundle, f : X — Y is a morphism in Man, and
A1, Ay 0 F — T;Y are morphisms as in §3.3.4{d), we define a notion of when
Ay = A1+ 0O(s). Basically this says that locally near OE7t0p(st_oi)(O)) C Fiop,
there should exist M : 7*(F) — TjorY on E with 05(M) = A; and
s*(M) = Ay, where O : X — E is the zero section.

If f,g: X =Y are morphisms, we define a notion of when g = f + O(s).
Basically this says that locally near 0g top (SE)L(O)) C Eiop, there should
exist a morphism v : £ — Y withvoOg = f andvos=g.

Let f,g: X — Y with g = f + O(s) be as in (iii), and FF - X, G = Y be
vector bundles, and 6, : F — f*(G), 03 : F — ¢*(G) be morphisms. We
wish to compare 61,65, though they map to different vector bundles.

We define a notion of when 65 = 61 + O(s). Basically this says that locally
near OE,top(St_o;(O)) C Eiop, there should exist a morphism v : £ — Y with
voOg = fand vo f =g as in (iii), and a morphism ¢ : 7*(F) — v*(G)
on E with 0%,(¢) = 61 and s*(¢) = 5.

Let f,g: X — Y with g = f + O(s) be as in (iii), and F' — X be a vector
bundle, and Ay : F' — T;Y, Ay : F — T,Y be morphisms, as in §3.3.4(d).
We wish to compare A1, Ag, though they map to different sheaves.

We define a notion of when Ay = A; + O(s). Basically this says that locally
near OE,top(S;)L(O)) C Eiop, there should exist a morphism v : £ = Y
withvo0Op = f and vos = g as in (iii), and a morphism M : 7*(F) — T,V
on E with 05,(M) = A; and s*(M) = As.

Suppose f : X — Y is a morphism in Man, and F — X, G — Y are
vector bundles, and ¢t € T'°°(G) with f*(¢t) = O(s) in the sense of (i), and
A: F — T;Y is a morphism, as in §3.3.4(d), and 6 : ' — f*(G) is a vector
bundle morphism. We write § = f*(dt) o A + O(s) if whenever V is a
connection on G we have 8 = f*(Vt) o A+ O(s) in the sense of (i), where
[¥(Vt) : T;Y — f*(G) is as in §3.3.4(h), so that f*(Vt) o A: F — f*(G)
is a vector bundle morphism as in §3.3.4{d).
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(vii)

Here a connection V on G exists as in and the condition 6 =
f*(Vt) o A + O(s) is independent of the choice of connection V. The
notation ‘d¢’ in 8 = f*(dt) o A 4+ O(s) is intended to suggest that the
condition is natural, and independent of the choice of connection.

Let f,g: X = Y with g = f + O(s) be as in (iii), and A : E — T;Y
be a morphism in the sense of §3.3.4(d). We define a notion of when
g = f+Aos+0(s?). Basically this says that locally near OE,top(St:);(o)) C
Eiop, there should exist a morphism v : £ — Y with voOg = f and
vos =g asin (iii), and the normal derivative of v at the zero section
0g(X) C E should be A. Making sense of this formally needs the details
of the definition of 7;Y in which we have not explained.

Here are equivalent but simpler definitions when Man = Man. We combine
Definition [3.15]i),(ii) into Definition [3.16{i), and Definition iv),(v) into
Definition %Eiii), since the sheaf 7;Y = f*(TY) is a vector bundle when
Man = Man, and does not need separate treatment.

Definition 3.16. Let X be a classical manifold, £ — X a vector bundle, and
s € I'°(E) a smooth section.

(i)

If F — X is another vector bundle and t1,ty € I'°°(F) are smooth sections,
we write tg = t1+0(s) if there exists & € I'°(E*®F') such that to = t;4+a-s
in I'*°(F), where the contraction « - s is formed using the natural pairing
of vector bundles (E* ® F) x E — F over X.

Similarly, we write to = t; + O(s?) if there exists a € I*°(E* @ E* ® F)
such that to = t; + a- (s ® s) in T'™°(F).

Suppose f,g: X — Y are smooth maps of classical manifolds. We write
g = f + O(s) if whenever a : ¥ — R is a smooth map, there exists
B € I'>°(E*) such that aocg=ao f+ (- s.

Let f,g: X =Y with g= f + O(s) be as in (ii), and F - X, G — Y be
vector bundles, and 6, : F — f*(G), 02 : F — ¢*(G) be morphisms. We
wish to compare 61,65, though they map to different vector bundles.

We write 62 = 61 + O(s) if for all @ € T'*°(F) and 8 € I'™°(G*) we have
g*(B) - (O20a) = f*(B) - (01 o) + O(s) in C*°(X), in the sense of (i).
Suppose f : X — Y is a smooth map of classical manifolds, FF — X,
G — Y are vector bundles, t € I'™°(G) with f*(¢t) = O(s) in the sense of
(i), and A : F — f*(TY), 0 : F — f*(G) are vector bundle morphisms.
We write 0 = f*(dt) o A + O(s) if 0 = f*(Vt) o A+ O(s) in the sense
of (i) when V is a connection on G, so that Vt € I'*°(T*Y ® G) and
(V) : f*(TY) = f*(G) is a vector bundle morphism. This condition is
independent of the choice of connection V on G.

Let f,g: X =Y with g = f 4+ O(s) be as in (ii), and A : E — f*(TY) be
a vector bundle morphism. We write g = f + A o s + O(s?) if whenever
a:Y — R is a smooth map, there exists § in I'*°(E* @ E*) such that
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aog=aof+A-(s® f*(dh)) + B (s®s). Here s ® f*(dh) lies in
I°(E® f*(T*Y)), and so pairs with A.

When Man = Man we can interpret the O(s) and O(s?) conditions in
Definitions in terms of C*°-algebraic geometry, as in [56, [65]. A
manifold X corresponds to a C'*°-scheme X. Given a vector bundle £ — X and
s € I'°(E), we have closed C'*°-subschemes S1 C Sy C X, where S is defined
by s =0, and S by s ® s = 0. Roughly, an equation on X holds up to O(s) if
when translated into C°°-scheme language, the restriction of the equation to
S1 C X holds, and it holds up to O(s?) if its restriction to S € X holds. For
example, to = t1 + O(S) =4 t2|§1 = t1|§1 and to =t + 0(82) =4 t2|§2 = t1‘§2 in
Definition i), and g = f +O(s) < g|s, = f|s, in Definition iii).

The next theorem gives the properties of this O(s) and O(s?) notation we
will need for our (m- and p-)Kuranishi space theories. It will be proved in

Theorem 3.17. Work in the situation of Definition [3.15. Then:

(a) All the ‘O(s)’” and ‘O(s?)’ conditions above are local on st_o})(()) C Xiop-
That is, each condition holds on all of Xiop if and only if it holds on a

family of open subsets of Xiop covering S,;L(O).

(b) In Definition i),(ii),(iv)—(vi) the conditions are C>°(X)-linear in t,t;,
to,0, 601,02, A, A1, Ay, For example, in (i) if toa =t1 + O(s), th =t} + O(s)
and a,b € C®°(X) then (atz + bth) = (aty + bt}) + O(s).

(c) In Definition [3.15]i)-(iii) the conditions are equivalence relations. For
example, in (iii) of f,g,h : X — Y are morphisms in Man, then f =
f+0(s), and g = f+ O(s) implies that f = g+ O(s), and g = f + O(s),
h =g+ O(s) imply that h = f + O(s).

(d) In Definition iv),(v) the conditions are equivalence relations relative
to the equivalence relation of (iii). For example, if f,g,h : X =Y are
morphisms in Man with g = f+O(s), h=g+0(s), and F - X, G =Y
are vector bundles, and 01 : F — f*(G), 03 : F — g*(G), 03 : F = h*(Q)
with 63 = 61 + O(s) (using g = f+ O(s)) and 03 = 03 + O(s) (using
h=g40(s)) as in (iv), then h = f 4+ O(s) by (c), and 03 = 61 + O(s)
(using h = f + O(s)) as in (iv).

(€) Let X, — X for a € A be open submanifolds with st_OL(O) C Uaca Xa,top-
Write Xqp — X for the open submanifold with Xaptop = Xa,top N Xb,top
for a,b € A. Suppose we are given morphisms f, : X, = Y in Man for
all a € A with folx,, = folx,, + O(s) on Xap for all a,b € A. Then
there exist an open submanifold j : X' — X with sgoi,(O) C X{op and a

morphism g : X' =Y such that g|xnx, = falxnx, + O(s) for all a € A.

Suppose also that a finite group T acts on X,Y by diffeomorphisms in

Man, and that the X, — X are I'-invariant, and the f, : X, — Y are

T-equivariant, for all a € A. Then we can choose X' to be I'-invariant,

and g to be I'-equivariant.
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(f) Let X,E,s, f,g,F, G, 01 be as in Definition B.I5|iv). Then there eists
02 : ' — g*(G) with 02 = 01 4 O(s), as in (iv). If 0 is an alternative
choice for 0y then 05 = 65 4+ O(s), as in (i).

(g) Let X,E,s,f,g,F,G, A1 be as in Definition (v); Then there exists
Ayt F = T,Y with Ay = Ay + O(s) as in (v). If Ay is an alternative
choice for Ay then Ay = Ao + O(s), as in (ii).

(h) Let X, E,s,f,Y,F,G,t,A be as in (vi). Then there exists a vector bundle
morphism 0 : F' — f*(G) on X such that § = f*(dt) o A 4 O(s), in the
sense of (vi). If 0 is an alternative choice for 6 then 0 = 0 + O(s) as in
(i), regarding 6,0 as sections of F* ® f*(G).

(1) Suppose f,g: X =Y are morphisms with g = f + O(s) as in (iil). Then
there exists A : E — T;Y with g = f + Ao s+ O(s?) as in (vii).

(J) Let X, E,s,f,9,Y,\ with g = fH+Aos+0O(s?) be as in (vii), and A:E—
T;Y be a morphism with A=A~+O(s) as in (ii). Then g=f+Aos+0O(s?).

(k) Let X, E,s, f,g9,Y,\ with g = f + Aos+ O(s?) be as in (vii). Part (g)
gives A F — T,Y with A = A+ O(s) as in (v), where A is unique up to
O(s). Then f =g+ (=A) os+O(s?) as in (vii).

(1) Let f,g,h: X =Y be morphisms in Man with g = f+O(s), h = g+0O(s),
so that h = f 4 O(s) by (c), andAle—>7}Y,A2:E—>7;Ybe
morphisms with g = f+A10s+O(s?) and h = g+ Ayos+0O(s?) be as in
(vii). Part (g) gives Ao : E — T;Y with Ay = Ay + O(s) as in (v), unique
up to O(s). Then h = f + (A; + As) o s+ O(s?) as in (vii).

(m) Let f,g: X =Y be morphisms in Man with g= f+0( ), and Ay, ... Ay :
E — T;Y be morphisms with g = f + Aq oerO( )fora—l Kk
as in (vii), and aq,...,0p € CP(X) with a1 + -+ + o = 1. Then
g=[f+(n -A1+---+ak~Ak)os+O(52) as in (vu).

(n) Let f: X — Y be a morphism in Man, and F,G — Y be vector bundles,
t € I (F) with f*(t) = O(s), and uy,ug € I'°(G).

If uz = ug + O(t) as in (i) then f*(u2) = f*(u1) + O(s), and if uz =
up + O(t?) as in (i) then f*(u2) = f*(u1) + O(s?).

(o) Let f: X =Y, g:Y — Z be morphisms in Man, and F,G — Y be
vector bundles, and t € I°(F) with f*(t) = O(s), and A1,Ao : G — TyZ
with Ao = A1+ O(t) be as in (ii). Then f*(Az2) = f*(A1) +O(s) as in (ii),
where f*(A1), f*(A2) : f*(G) = TgorZ are as in §3.3.4g).

(p) Suppose f: X =Y and g,h:Y — Z are morphisms in Man, and F —Y
is a vector bundle, and t € T'°(F) with f*(t) = O(s).

If h=g+O(t) as in (iil) then ho f = go f + O(s).
If h=g+Aot+O(?) asin (vii) for A: F —T,Z, and 0 : E — f*(F)
is a morphism with 0 o s = f*(t) + O(s?) as in (i), then

hof=gof+[f(A)oblos+0(s?,
where f*(A) o0 : E — TyorZ is as in d),(g)
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(a)

(r)

(s)

(t)

)

Let f: X =Y, g,h:Y — Z be morphisms in Man, and F,G =Y, H —
Z be vector bundles, and t € T°°(F) with f*(t) = O(s) and h = g+ O(t),
and 01 : G — g*(H), 03 : G — h*(H) with 03 = 61 + O(t) be as in (iv).
Then f*(02) = f*(61) + O(s) as in (iv).

Let f: X =Y, g,h:Y — Z be morphisms in 1\./Ian7 and F,G =Y be
vector bundles, and t € T°(F) with f*(t) = O(s), h = g + O(t), and
A G = TyZ, Ay : G — TpZ with Ay = Ay + O(t) be as in (v). Then
f*(A2) = f*(A1) + O(s) as in (v), where f*(A1) : f(G) = TgorZ and
[*(A2) 1 f*(G) = ThogZ are as in §3.3.4(g).

Let f: X =Y, g:Y — Z be morphismsinMan, and F,G—Y, H— Z
be vector bundles, and t € T'°(F), u € I'*°(H) with f*(t) = O(s), g*(u) =
O(t) asin (i), and A: G = T4Z,0 : G — g*(H) with 8 = g*(du)o A+ O(t)
be as in (vi). Then f*(0) = (go f)*(du) o f*(A) + O(s) as in (vi), where
J7(8) : [7(G) = Toaq Z is as in §B3A(¢).

Let f: X =Y, g:Y — Z be morphisms in Man, and F — Y be a vector
bundle, and Ay,Ay : F — T¢Y with Ay = Ay + O(s) be as in (ii). Then
TgolAy=TgoA +O(s) as in (i), where Tgo A1, Tgo Ay : F — TgosZ
are as in §3.3.4c),(d).

Let f.g: X =Y, h:Y — Z be morphisms in Man. If g = f + O(s)
as in (iii) then hog = ho f+O(s). If g = f+ Aos+ O(s?) as in
(vii) for A : E — T;Y, then hog = ho f+ [Tho Al os+ O(s?), where
ThoA:E— ThepZ is as in §3.3.4(c),(d).

Let f,g: X =Y, h:Y — Z be morphisms in Man with g = f + O(s)
as in (iii), so that hog = ho f + O(s) by (u). Suppose F — X is a
vector bundle, and Ay : F — T;Y, Ay : F' — TgY are morphisms with
Ao = A1 +0(s) as in (v). Then ThoAy = ThoA;+0(s) as in (v), where
TholAi:E— ThoyZ and ThoAy: E — TrogZ are as in C),(d).

3.3.6 Discrete properties of morphisms in Man

Section defines a condition for classes of morphisms in Man to lift nicely to

classes of (1-)morphisms in mKur, pKur, Kur in Chapters

Definition 3.18. Let P be a property of morphisms in Man, so that for any
morphism f : X — Y in Man, either f is P, or f is not P. For example, if

Man is Man® from then P could be interior, or b-normal.
We call P a discrete property of morphisms in Man if:

(i) All diffeomorphisms f : X — Y in Man are P.
(ii) All open submanifolds 4 : U < X in Man are P.
(iii) If f:X—>Yandg:Y — Zin Man are P then go f : X — Z is P.
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(iv)

(vi)
(vii)

(viii)

For a morphism f : X — Y in Man to be P is a local property on X, in
the sense that if we can cover X by open submanifolds i : U < X such
that foi: U — Y is P, then f is P.

Some notation: if f: X — Y in Man and S C Xitop then we say that
f is P near S if there exists an open submanifold i : U < X such that
S C Uiop € Xiop and foi:U — Y is P. This is a well behaved notion as
P is alocal property, e.g. f is P if and only if f is P near each x € Xiop.

All morphisms in Man C Man are P.

Suppose f: X xR — Y is a morphism in Man. If fis P near Xiop x {0}
in Xiop x R, then f is P.

Suppose E — X is a vector bundle in Man, and s € I'°(E), so that
stop(O) C Xiop, and f,g : X — Y are morphisms in Man with g = f4+0(s)
in the sense of Definition 111) Then f is P near stop( ) if and only if
g is P near .st_oi)(O).

Suppose we are given a diagram in Man:

U/ C - U( . X

7 ' ! '

o . p - (3.6)
Ve V¢ Y,

where 4,4’, j, j' are open submanifolds in Man, and foi = jof : U’ —Y,
ng =iog’: V' — X, and we are given points x € U{,, C Uiop € Xtop and

€ Viop € Viop € Yiop such that fiop(7) =y and giop(y) = . Suppose too
that there are vector bundles E — U’ and F' — V' and sections s € I'™°(E),
t € I'°(F) with s(z) = t(y) = 0, such that go f' =i04 + O(s) on U’ and
fog =joj 4+ O(t) on V' in the sense of Definition iii). Then f, f/
are P near x, and ¢, ¢ are P near y.

Parts (i),(iii) imply that we have a subcategory Manp C Man containing all
objects X,Y in Man, and all morphisms f : X — Y in Man which are P.

Example 3.19. (a) When Man is Man® from the following properties of
morphisms in Man€ are discrete: interior, b-normal, strongly smooth, simple.

(b) When Man is Man$g® from &, the following properties of morphisms in
Man8€ are discrete: interior, b-normal, simple

(c) When Maq is Man?® or Man®?¢ from §2.4.2| the following properties of
morphisms in Man are discrete: interior, b-normal, strongly a-smooth, simple.

3.3.7 Comparing different categories Man

In we discuss how to compare different categories Man, Man satisfying
Assumptions Here is Condition
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Condition 3.20. Suppose Man, Man satisfy Assumptions , and Fl\l\/i[:: :

Man — Man is a functor in a commutative diagram

Man FoP
w> Top, (37)
\C’ Man pTop

Man

where the functors FTOp Fl\l;loi

Man — Man7 Man as in Assumption We require Fl\l\/i[:r‘l‘ to take products,
disjoint unions, and open submanifolds in Man to products, disjoint unions, and
open submanifolds in Man, and to preserve dimensions.

\/ . .. . . T .
Note that FM:: must be faithful (injective on morphisms), as FM(;I:I is.

are as in Assumption and the inclusions

In § we explaln that given a functor FMan satlsfylng Condition all
the geometry"of B.5in Man from § 3.3.5{ maps functorlally to its
analogue in Man. We Chose the deﬁnitlons in Appendix to ensure this. For
example, if X € Man and X = F Ma“( () there are natural sheaf morphisms

Ox — 0%, TX —TX, T'X —TX

on the common topological space Xtop = Xtop.
Proposition discusses inclusions of subcategories Man C Man:

Proposition 3.21. Suppose FM:‘;‘ : Man < Man is an inclusion of subcate-
gories satisfying Condition and either:

(a) All objects of Man are objects of Man, and all morphisms f : X —Run
Man are morphisms in Man and for a morphism f : X — Y in Man to
lie in Man is a discrete condition, as in Definition or

(b) Man is a full subcategory of Man closed under isomorphisms in Man.

Then all the material of § 3.3.5 for Man is exactly the same if
computed in Man or Man, and the functorzal maps from geometry in Man to
geometry in Man discussed above are the identity maps. For example, if f: X —
Y lies in Man C Man then the relative tangent sheaves (T7Y )xrans (T7Y ) stan O
Xiop from computed in Man and Man are not just canonically isomorphic,
but actually the same sheaf.

For example, Figure gives a diagram of functors from Chapter 2] which
satisfy Condition [B:20l Arrows ‘=’ are inclusions of subcategories satisfying

Proposition [3.21)(a) or (b). Arrows marked ‘+’ involve the non-obvious functor
Mang, c,ac
Ftany Man®;

arrows ‘*x’ do not commute.

— Man¢, from §2.4.2f some cycles in Figure including
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Man
> Man?¢

c 7{ c,ac
Manst,bn <y Manst,bn st,bn

Mang? Man§  ————— Man2¢ Z > Man@¢
c e ———— c,ac > ac
Manst’in < Manst’in > Manst’in
gc c c,ac > ac
. —_— . .
Man;, Mang, Man,; ™ <1 Man{y
c > c,ac > ac
Mang, < . Mang; > Man2{
Man8® Man® —— = Man®2¢ > Man?°
\
(&
Man$,

Figure 3.1: Functors satisfying Condition [3.20]
Arrows ‘=’ satisfy Proposition |3.21)(a) or (b).

Chapters will associate (2-)categories mKur, pKur, Kur of (m- or x-)
Kuranishi spaces to each such category Man. When Condition holds, by
mapping geometry in Man to Man as above, we will define natural (2)-functors

- . . K . o ;- s o
F;“II;;‘: : mKur — mKur, F;TK;: : uKur — pKur, FII(<1111: : Kur — Kur
between th_e (2—)Categories mKunp,Kur,Kur and mKunuKur,Kur asso-
ciated to Man and Man. When Proposition [3.21fa) or (b) holds, these are
inclusions of (2)-subcategories.

3.4 Extension to ‘manifolds with corners’

The assumptions of §3.1]include many categories of manifolds with corners, as
in Example ii), giving corresponding (2-)categories of (m- or u-)Kuranishi
spaces in Chapters So to study ‘(m- or u-)Kuranishi spaces with corners’
we do not need to start again. Instead, we give extra assumptions about special
features of manifolds with corners: boundaries 90X, k-corners C(X), and the
corner functor C'. We change notation from Man in to Man®.

3.4.1 Core assumptions on ‘manifolds with corners’

Assurpption 3.22. (a) We are given a category Man®. For simplicity, objects
X in Man® will be called manifolds with corners, and morphisms f: X — Y in
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Man® will be called smooth maps.

(b) The category Man® satisfies Assumptions with Man® in place of
Man. The functor in Assumption H will be written F' ?01; : Man® — Top.

(c) We are given a class of morphisms in Man called simple maps. To be simple
is a discrete property in the sense of § We write Manc C Man® for the
subcategory of Man® with all objects, and simple morphisms.

(d) For each object X in Man® and each k = 0,...,dim X, we are given an
object Cj(X) in Man® called the k-corners of X with dim Cy(X) = dim X — k,
and a morphism ITy : Cp(X) — X in Man®¢, such that 111 top : Cr(X)top = Xtop
is proper, with finite fibres II, top( x), T € Xiop-

We write Cr(X) =0 for k£ > dim X.

When k£ = 0, I : Co(X) — X is a diffeomorphism in Man€, so we can
identify Cp(X) with X. When k = 1 we write 90X = C1(X) and call 90X the
boundary of X. We also write ix : 0X — X for IT; : C1(X) — X.

(e) If X € Man C Man® then Cj(X) = 0 for k > 0, so that X = 0.

(X
(f) For all X in Man® and k.l > 0 with £ + 1 < dim X there is a natural
morphism I ; : Cr(Ci1(X)) — C’kH( ) such that the following commutes:

Cr(Ci1(X)) I,
i/lk,l . \L
Cr1(X) X.

Also I, is étale, that is, a local diffeomorphism in Manc, and surjective.

(g) As for Man® in Definition construct a category Man® from Man®,
such that Man® has objects X = [T _o Xm, for X, an object of Man® with
dim X,, = m, allowing X,,, = 0, and Man® has morphisms

F=1m o foun : X =TIl Xm — Y =112 Yo,

where for each m = 0,1,... we have a disjoint union X,,, = ]_[20:0 Xonn in Manc,
with X, open and closed in X,,, allowing X,,, = 0, and fin : Xpun — Yn is a
morphism in Man®. Composition and identities are defined in the obvious way.
We write ManC for the subcategory of Man¢ in which the fmn are sunple

There is an obvious full and faithful inclusion functor Inc : Man® — Man®,
which maps X to H;OZO X,, with X,,, = X if m = dim X and X,,, = 0 otherwise.

Then we are given a functor C' : Man®¢ — Man® called the corner functor,
which on objects acts as C(X) = [T C(X), for Cx(X) the k-corners of X as
in (d). The morphisms ITj, : C(X ) — X in Man® for k = 0, ...,dim X from (d)
give a morphism IT = [, 5, Iy : C(X) — Inc(X) in Man®, and over all X these
comprise a natural transformation II : C' = Inc of functors Man® — Man®.
That is, we have IIo C(f) = foIl : C(X) — Y for all morphisms f: X — Y
in Man®.
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We may extend C to a functor C' : Man® — Man® in the obvious way. Then
the morphisms I;; in (f) induce a natural transformation I : C'o C' = C of
functors Man® — Man®.

(h) For all X,Y € Man® and k > 0 there are natural diffeomorphisms
Cr(X xY) =11, j0, igj=r Ci(X) x C5(Y).
By part (g) these combine to give a diffeomorphism (isomorphism) in Man®
C(X xY)=C(X)xC(Y). (3.8)

The corner functor C in (g) preserves products and direct products. That is, if
fW—=Y g:X—>Y, h:X — Z are smooth then the following commute

CWxX)—C(Y x Z) CY x Z)

C(fxh) C((g,h))
ig =] C(X) \Lg
C(f)xC(h) J, —
C(W)xC(X) —= C(Y)xC(2), COCED = ciyyxC(2),

where the columns are the isomorphisms (3.8).

(i) Suppose f: X — Y is a simple map in Man®. Then C(f) : C(X) — C(Y)
in (g) lies in Mang; and maps Cy(X) — C,(Y) for all k =0,...,dim X. Hence
we have functors C, : Mang, — ManS, for k = 0,1,..., called the k-corner
functors, which on objects map X to Cx(X), and on morphisms map f: X =Y
to the component Ci(f) of C(f) : C(X) — C(Y) mapping Cx(X) — Ci(Y).
We also write 0 = C : Mang§; — Mang;, and call it the boundary functor.

(J) Let ¢ : U — X be an open submanifold in Man®. Then i is simple by
Definition i), as simple is a discrete property by (c), so we have morphisms
Cr(i) : Cx(U) — Cx(X) in Man® for k =0,...,dim X by (i). We require these
Ci (%) to be open submanifolds in Man®, with topological spaces C(U)top =
Hl;;op(Utop) < Ck(X)top-

(k) Let f: X —Y be a morphism in Man® with 9X =9Y =0. Then f is simple.

Remark 3.23. For the corner functor C' : Man® — Man® in Assumption
g), we shall be interested in cases in which there is a discrete property P
of morphisms in Man® such that C maps to the subcategory lv\/ian‘jD of Man®
whose morphisms are P. For example, for Man® in we have C' : Man® —
I\V/Ian‘i:n C Man®, with P interior morphisms in Man®.

3.4.2 Examples of categories satisfying the assumptions
Here are some examples satisfying Assumption [3.22

Example 3.24. (a) The standard example is to take Man® to be Man® from
§2.1) and to define simple maps as in §2.1} and k-corners Cx(X), projections
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: Cx(X) = X, and the corner functor C' : Man® — Man® from Definition
as in §2.2 Note that C' maps to Mang§, C Man®, as in Remark

(b) We can also take Man® to be Man® and simple maps, Cx(X),1I; as in (a),
but use the second corner functor C’ : Man® — Man® from Definition

(c) We can take Man® to be Man¢, from § with simple maps, C(X), Ilx
as in and either corner functor C': Mang, — Man¢, ;. C Man¢,

!
or C": Manst — Man,.

(d) We can take Man® = Man?®® with simple maps, Cj(X), 1l as in
and either C': Man?® — Man?® ¢ Man?° or C' : Man®® — Man?°.

(e) We can take Man® = Man2¢ with simple maps, Cy(X), Il as in 92.4.2L and
either C': Man2¢ — Man?¢, C Man2¢ or C’ : Man2¢ — Man2S.

st,in

(f) We can take Man® = Man®?2¢ with simple maps, Cj(X),II; as in
and either C': Man®?¢ — Man;"° C Man®2° or C' : Man®?°® — ManC aC.

(g) We can take Man® = = Mang® with simple maps, C¢(X), I, as in §2.4.2)

and either C' : Mang;"® — Mang; C Mang™® or C’ : Mang;™® — Mang;™.

(h) We can take Man® = Mangc Wlth simple maps, Cy(X),II; and C :
Mang¢ — Man - MangC as in The second corner functor C’ does
not work on MangC

(i) A trivial example: if Man satisfies Assumptions |3 7} such as Man =
Man, we can set Man® = Man define all InOI‘phlbInb in Man to be simple,
and for each X in Man® we put Co( )=X,0X =0 and Cr(X) =0 for k > 0.
Then Assumption holds. This allows us for example to take Man® = Man€,
but to have 0X = () and Cy(X) = 0 for k£ > 0, for all X in Man®.

st,in

Note that Example - 3.24] does not include the category Man$,, of manifolds
with corners and weakly smooth maps from This is because Lemma is
false for Mang,,, so the corner functor C' in cannot be defined for ManWe7
and Assumption [3:22] fails.

3.4.3 Pulling back morphisms ¢ : F — 7;Y by II: C(X) — X

Suppose throughout this section that Man® satisfies Assumption in §3.4.1]
In §B.8.1} given a morphism 6 : 2 — T;Y on X we define a ‘pullback’ morphism
e () : I*(E) — Ter)C(Y) on C(X). This does not follow from the material

of §3.3.11-43.3.5] it is a new feature for manifolds with corners Man®.

Definition 3.25. Let f: X — Y be a morphism in Man®, and E — X be a
vector bundle on X, and 6 : £ — T;Y be a morphism on X in the sense of
and Then we have a morphism C(f) : C(X) — C(Y) in Man®, and
pulling back by IT : C(X) — X gives a vector bundle IT*(E) — C(X). Definition
in dieﬁnes a morphism II°(0) : II*(E) — T¢ (5, C(Y) on C(X), in the
sense of §3.5.4] and 4B.4.8]

We think of IT1°(0) as a kind of pullback of § by II : C(X) — X.
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We write the restriction II°(6)|c, (x) for & = 0,1,... as TI3(0). Thus if
f: X =Y is simple, so that C(f) maps C(X) — Ci(Y) by Assumption i),
we have morphisms IT3(0) : I} (E) — T, (nCr(Y) for k=0,1,....

Example 3.26. Take Man® = Man€, and let f : X — Y be an interior map
in Man®, and £ — X be a vector bundle. Then 7;Y is the sheaf of sections of
f*(*TY) — X, as in Example so morphisms 6 : E — T;Y correspond to
vector bundle morphisms 6 : E — f*(*TY) on X. Then II°(f) corresponds to
the composition of vector bundle morphisms on C(X)

1 ()

() —— o Mo p* (0 TY) = C(f) oT1* (P TY) — L

C(H)*(CTCY)),
where I : II*(*TY) — *TC(Y) is as in (2.13).
Here is Theorem [B.47] giving properties of the morphisms I1°(6):

Theorem 3.27. (a) Let f: X — Y be a morphism in Man®, and E — X be
a vector bundle, and 0 : E — T;Y be a morphism, in the sense of §3.3.4(d).
Then the following diagram of sheaves on C(X )iop commutes:

*(E) 0 ToHC(Y)
EO) 7]
TronY Tiec(p)Ys

where TII and 11*(0) are as in §3.3.4(c),(g).
(b) Let f: X — Y be a morphism in Man®, D,E — X be vector bundles,
A: D — E a vector bundle morphism, and 0 : E — T;Y a morphism. Then

T1°(0 0 A) = T1°(0) o IT*(A) : IT*(D) — Te ) C(Y).

(c) Let f: X =Y, g:Y — Z be morphisms in Man®, and E — X be a vector
bundle, and 0 : E — T;Y be a morphism. Then the following diagram of sheaves
on C(X)iop commutes:

IT*(E) =) TonC(Y)
e crgen) TC()|
Te(go)C(Z) === Tc(g)oc()C(Z).

(d) Let f: X =Y, g:Y — Z be morphisms in Man®, and F — 'Y be a vector
bundle, and ¢ : F' — T4Z be a morphism. Then

C(f)*(1°(p)) =T°(f*(¢)) : C(f)* o II*(F) =TI" o f*(F)
— Tegoc(nC(Z) = To(ger) C(Z).
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Here is Theorem which shows that the O(s), O(s?) notation of Definition
i)—(vii) on X pulls back under II : C(X) — X to the corresponding
O(I1(s)), O(II(s)?) notation, using II° to pull back morphisms A : E — T;Y.

Theorem 3.28. Let X be an object in Manc, and E — X be a vector bundle,
and s € I'®°(E) be a section. Then:

(i)

(ii)

(iif)
(iv)

(vi)

(vii)

Suppose F' — X is a vector bundle and t1,ta € T'°(F) with t3 = t1 + O(s)
(or ta = t; + O(s?)) on X as in Definition (1) Then IT*(t3) =
I0*(t1) + O(I1*(s)) (or IT*(t3) = IT*(t1) + O(IT*(s)?)) on C(X).

Suppose F — X is a vector bundle, f: X — Y is a morphism in Man®©,
and A1, Ay 1 F — T;Y are morphisms with Ay = Ay + O(s) on X as in
Definition [3.15|(ii). Then Definition gives morphisms 11°(A1), I1°(A3) :
I*(F) = TonC(Y) on C(X), which satisfy 11°(As) = I1°(A1) + O(I1*(s))
on C(X).

Suppose f,q: X — Y are morphisms in Man® with g = f + O(s) on X
as in Definition iti). Then C(g) = C(f) + O(I1*(s)) on C(X).
Suppose f,g : X = Y with g = f 4 O(s) are in (iii), and F — X,
G — Y are vector bundles, and 0, : F' — f*(G), 62 : F' — ¢*(G) are
morphisms with 02 = 01 + O(s) on X as in Definition iv). Then
IT*(62) = 11*(#1) + O(I1*(s)) on C(X).

Suppose f,g : X — Y with g = f+ O(s) are in (iii), and F — X
is a vector bundle, and Ay : ' — T;Y, Ay : F' — T,Y are morphisms
with A2 = A1 + O(s) on X as in Definition [3.15(v). Then C(g) =
C(f)+00I*(s)) on C(X) by (iii), and Definition gives morphisms
HQ(Al) : H*(F) — Tc(f)O(Y)7 HO(AQ) : H*(F) — TC(Q)C(Y), which
satisfy II°(Ag) = TI°(A1) + O(I1*(s)) on C(X).

Suppose [ : X =Y is a morphism in 1\'/Ian°7 and FF — X, G > Y are
vector bundles, and t € I'°(G) with f*(t) = O(s), and A : F — T;Y
is a morphism, and 0 : F — f*(QG) is a vector bundle morphism with
0 = f*(dt) o A+ O(s) on X as in Definition vi). Then II*(0) =
C(f)*(dII*(t)) o II°(A) + O(II*(s)) on C(X).

Suppose f,g: X =Y with g = f 4+ O(s) are in (iii), and A : E — T;Y is
a morphism with g = f + Ao s+ O(s?) on X as in Definition (Vii).
Then C(g) = C(f) +1°(A) o IT*(s) + O(I1*(s)?) on C(X).

3.4.4 Comparing different categories Man®

Condition in and compared two categories 1\./Ian7 Man satisfying

Assumptions [3.1 Here is Condition in the corners analogue:
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Condition 3.29. Let 1\./Ian°,1\7IanC satisfy Assumption and F&\A/I:;‘C
Man® — Man® be a functor in the commutative diagram, as in (3.7)

oMt mm.
Man iFl\l\f;“f/> Top.
T Man®

FTop
Man€©¢

We also require:

(i) FMa;‘: should take products, disjoint unions, open submanifolds, and
simple maps in Manc to products, disjoint unions, open submanifolds,

and simple maps in Man® , and preserve dimensions.
(ii) There are canonical isomorphisms FMaln (Cr(X)) = Cy (FM“‘nc (X)) for

all X in Man® and k > 0, so k = 1 gives Fll\\/[/I::c (0X) = 8(F1\1\/f:‘:c (X)).

These isomorphisms commute with the projections II : Cr(X) = X and
I : Cu(Ci(X)) = Cr(X) in Man® and Man®, and induce a natural
isomorphism FMam oC=CoF Ma:c of functors Man® — Man®.

As for Figure Figure gives a diagram of functors from Chapter
which satisfy Condition with the first corner functor C' from Definition
With the second corner functor C” from Definition we get the same diagram
omitting Man8®. Arrows ‘—’ satisfy Proposition a) or (b). The arrow

marked ‘x’ is the non-obvious functor Fll\\/I/I:;l : ManZf — Mang, from §

c c,ac > ac
Mang, < - Mang; ManZ{
Mang© Man® ———> Man®?® <= Man?°

Figure 3.2: Functors satisfying Condition [3.29] with the first
corner functor C. Arrows ‘—’ satisfy Proposition a) or (b).

Condition implies that F M::c Man® — Man€ satisfies Condition

Thus § apphes so that all the material of 5:13 3. 1|»§3 3.5/in Man® maps

functorlally to 1ts analogue in Man®. Remark [B.50| explains that the morphisms
I1°(9) in are also compatible with these functorial maps.
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Chapter 4

M-Kuranishi spaces

Throughout this chapter we suppose we are given a category Man satisfying
Assumptions in Examples of such categories are given in The
primary example is the category Man of ordinary manifolds, and the assumptions
are almost all well-known differential-geometric facts in this case. To each such
category Man we will associate a 2-category mKur of ‘m-Kuranishi spaces’.
The possibilities for Man include many categories of manifolds with corners,
such as Man® in §2.1] In §4.6] to discuss the corners case, we switch notation
from Man to a category Man satisfying Assumption |3.22] with a corresponding
2-category mKur® of ‘m-Kuranishi spaces with corners’.

We will use the notation of Appendix . for differential geometry in Man
throughout, which is summarized in §3.3] In partlcular, readers should familiarize
themselves with ‘relative tangent sheaves’ 7;Y in § and § and the ‘O(s)’
and ‘O(s?) notation in §3.3.5 and §B.5] before proceedmg

By an abuse of notatlon we will often refer to objects X of Man as ‘manifolds’
(though they may in examples have singularities, corners, etc.), and morphisms
f: X —=Yin Man as ‘smooth maps’ (though they may in examples be non-
smooth). As in Assumption [3.4) we have an inclusion Man C Man. We will call
objects X € Man C Man ‘classical manifolds’, and call morphisms f: X — Y
in Man C Man ‘classical smooth maps’.

In Chapter [3| we distinguished between objects X, Y and morphisms f : X —
Y in Man, and the corresponding topological spaces Xiop, Yiop and continuous
maps fiop : Xtop — Yiop- We Will now drop this distinction, and just write
X,Y, f in place of Xiop, Yiop; ftop, @s usual in differential geometry. We will
also treat open submanifolds ¢ : U < X in Assumption d) just as open
subsets U C X.

On a first reading it may be helpful to take Man = Man. For an introduction
to 2-categories, see Appendix [A]

4.1 The strict 2-category of m-Kuranishi neighbourhoods

We work throughout in a category Man satisfying Assumptions
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Definition 4.1. Let X be a topological space. An m-Kuranishi neighbourhood
on X is a quadruple (V, E, s,1) such that:

(a) V is a manifold (object in Man). We allow V = §.
(b) m: E — V is a vector bundle over V, called the obstruction bundle.

()

(d) 1 is a homeomorphism from s~1(0) to an open subset Im in X, where

Im® = {¢(z) : & € s71(0)} is the image of 1, and is called the footprint
of (V. E,s,9).

s:V — FE is a section of F, called the Kuranishi section.

If S C X is open, by an m-Kuranishi neighbourhood over S, we mean an
m-Kuranishi neighbourhood (V, E, s,1) on X with S CImvy C X.
We call (V, E, s,9) a global m-Kuranishi neighbourhood if Imy = X.

Definition 4.2. Let X,Y be topological spaces, f : X — Y a continuous
map, (Vi, E;, s:,%:), (V}, Ej,85,%;) be m-Kuranishi neighbourhoods on X,Y
respectively, and S C Im; N f~!(Im1);) C X be an open set. A 1-morphism
;50 (Vi, By, s8i,v0:) — (V, Ej,85,1,) of m-Kuranishi neighbourhoods over (S, f)
is a triple (I)ij = (‘/ij7 (,Zﬁm‘, dgij) satisfying:

(a) V;; is an open neighbourhood of ; *(S) in V;. We do not require that
Vi 0871 (0) = ¢;71(S), only that o; *(S) C Vi; Ns; 1 (0) C Vi

(c dA)ij : Eilv,; — ¢5;(E;) is a morphism of vector bundles on Vj;.
(d g?)ij (silvi,) = ¢5;(s;) + O(s?), in the sense of Definition i).

When X =Y and f = idx we just call ®;; a 1-morphism over S. In this
case, the identity 1-morphism id(v, g, s, .4,)  (Vi, Ei, si,90:) = (Vi, By, 83,1;) over
Sis id(Vi7Ei,Si7¢i) = (V;,ldvz,ldEJ
Definition 4.3. Let f : X — Y be a continuous map of topological spaces,
(Vi, Ei, s5,%4), (Vj, Ej,85,%;) be m-Kuranishi neighbourhoods on X,Y, and
D5, ¢ (Viy Biysiy i) — (V, Ej,s5,¢5) be 1-morphisms of m-Kuranishi
neighbourhoods over (S, f) for S C Im; N f~'(Im+;) C X open, where
@5 = (Vij, dij, ¢ij) and @3 = (Vi ¢;;, ¢};). Consider pairs (Vij, Aij) satisfying:

(a) Vj; is an open neighbourhood of ¥;*(S) in Vi; N Vi
(b) Aij : E1|V” — 7:7)”\/]\‘/” is a morphism in the notation of 3‘. with

¢y = i+ Aijosi+0(s?) and @, = i+ ¢};(ds;) o Ay +O(s;) on Vij, (4.1)
in the sense of Definition [3.15(iv),(vi),(vii).
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Define a binary relation ~ on such pairs by (Vij, Aij) ~ (Vl’]7 5\21) if there
exists an open neighbourhood V;; of ¥, (S) in V;; N VZ’] with

71, = Mijlys, +O(si) on Vi, (4.2)

in the sense of Definition [3.15|ii). We see from Theorem [3.17|(c) that ~ is an
equivalence relation. We also write ~g in place of ~ if we want to emphasize
the open set S C X.

Write [V;j, 5\”] for the ~-equivalence class of (Vij, 5\”) We say that [Vij, /A\”] :
D, = <I>;j is a 2-morphism of 1-morphisms of m-Kuranishi neighbourhoods on
X over (S, f), or just a 2-morphism over (S, ). We often write A;; = [Vij, j‘w]

When X =Y and f =idx we just call A;; a 2-morphism over S.

The identity 2-morphism of ®;; over (S, f) is ide,;, = [Vi;,0] : @5 = Pyj.

Definition 4.4. Let X,Y., Z be topological spaces, f: X =Y, ¢g:Y — Z be
continuous maps, (Vi, E;, si, ¥:), (V;, Ej, S5, %), Vi, Eg, Sk, ¥x) be m-Kuranishi
neighbourhoods on X, Y, Z respectively, and T C Im; N g~ ! (Im,) C Y and
S CImyy; N f~HT) € X be open. Suppose ®;; = (Vij, bij, bij) : (Vi, Ei, 51,1;)
— (V}, Ej, sj,%;) is a 1-morphism of m-Kuranishi neighbourhoods over (S, f),
and @, = (Vik, Ojk, O5k) : (Vj, Ej, 55,¢5) = (Vi, Bk, Sk, ¥x) is a 1-morphism of
m-Kuranishi neighbourhoods over (T, g).

Define the composition of 1-morphisms to be ®;, o ®;; = (V;k7¢ik7(lgik)7
where Vi, = ¢i_j1(‘/jk) CVi; C Vi, and @i = Vig — Vi is ¢ir = @k © ¢4j|v,,, and
bir : Eilvi, = 075, (Ek) is i, = d451v,, (d5x) © Gijlviy-

It is easy to check that @, 0 ®;; : (Vi, Ey, si,¢:) — (Vi, Bk, Sk, Yg) is a 1-
morphism of m-Kuranishi neighbourhoods over (S, g o f), using Theorem n)
to prove that Definition [4.2(d) holds.

An important special case is when X =Y =7, f =g =1idx,and S =T, so
that ®;;, @, and @, o ®;; are all 1-morphisms over S C X.

Clearly, composition of 1-morphisms is strictly associative, that is,

(Pri 0o Pjr) 0 Pij = Ppy o (Pjr 0 Pij) = (Vi, By, s4,003) — (Vi, Eg, s, ).

So we generally leave the brackets out of such compositions. Also,
©ij 0 1d(v;, B0, = 14(v;,85,55,0) © Pig = Pij
for a I-morphism ®;; : (Vi, E;, si,¢:) = (V}, Ej, s5,9;) over (S, f).

Definition 4.5. Let X,Y be topological spaces, f : X — Y be continu-
ous, (Vi, E;, si,%:), (Vj, Ej,sj,%;) be m-Kuranishi neighbourhoods on X,Y,
S Q Imd)l N f’l(Imﬂ}j) Q X be open, and (DZJ,QQJ,(I);,] : (W,El,sl,’(,bl) —
(V;,Ej, s5,%;) be 1-morphisms over (S, f) with ®;; = (Y/ij,¢ij,<£ij), ol =
(V;,/jv(ﬁ;jv, ;‘jzv (I);/J = (Vzglv(b;/w Z]) Suppose Aij = [Vijv>‘ij] : (I)ij = (I);j and
Ay = [V, Ay] - @) = @) are 2-morphisms over (S, f). We will define the
vertical composition of 2-morphisms, written

Ajj © Ay = I\ 5\;]] © [Vij, /A\z]} (D = D over (S, f).

75 1]
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Choose representatives (Vij, Aij), (Vz’], N ;) in the N—equivalence classes A;j,

Aj;. Define V/J/ = Vi]ﬂV’ C V;. Since ¢U|V” ¢U|V”—I—O ) by (4.1)), Theorem
g) shows that there exists )\ij CEily, — 7;5,”‘/ |, unique up to O(s;),
with ng =\ ‘|\'/” + O(s;) in the sense of Definition [3.15(v).

Define 5\" E; |V,, — 7;5”V|V,/ by )\’ = 5\”|V7,J/ + X;j Then Theorem

B17b).(c).().(g ),(3).(1) imply (v;;, A/ satisties Definition [4.3(b) for %@”
Hence A}, = [Vz']’,)\;’]] : ®;; = @7 is a 2-morphism over (S, f). Since )\’
unique up to O(s;) in Theorem [3.17|(f), the equivalence class A}, = [VZ’]’ N ]
independent of choices. We define A OA; = AZ , and call this the vertzcal
composition of 2-morphisms over (S, f) When X =Y and f =idx we call it
vertical composition of 2-morphisms over S.

Let Ajj : ®;; = @}, be a 2-morphism over (S, f), and choose a representative
(Vij, Aij) for Ay = [Vw,)\”] Now ¢7;ly. = dijly;, +O(s:) by (4 , so Theorem
-(f) gives /\Z-j : Eim]_ — 7;52-‘/”\'/”’ unique up to O(s;), with /\’ = —/\” +
O(s;), in the sense of Definition [3.15 v). We can then show that Aj; = [Vij, N} nE
®; = ®;; is a 2-morphism over (S, f), and is a two-sided inverse A ]1 for A”
under vertical composition. Thus, all 2-morphisms over (S, f) are invertible
under vertical composition, that is, they are 2-isomorphisms.

Definition 4.6. Let X,Y, Z be topological spaces, f: X =Y, g:Y — Z be
continuous maps, (Vi, E;, si, ), (V;, Ej, 85,%;), (Vi, Ex, sk, ¥%) be m-Kuranishi
neighbourhoods on X,Y,Z,and T CImv¢; Ng ' (Imep) CY and S C Imep; N
J~HT) C X be open. Suppose D;;, i 0 (Vi, By siy i) — (Vy, By, s5,1;) are
1-morphisms of m-Kuranishi nelghbourhoode over (5, f), and Ay : @;; = @, is
a 2-morphism over (5, f), and @i, P jk :(Vy, Ej,85,¢5) = (Vi, Bk, sk, ¥y) are
1-morphisms of m-Kuranishi neighbourhoods over (T,g), and Aj : @5 = @;k
is a 2-morphism over (7', g).
We will define the horizontal composition of 2-morphisms, written

Aji % Nij = @jp 0 ®jy = @y o i, over (S, go f).

Use our usual notation for ®;;,...,Ajx, and write ( zk7¢zk,¢zk) =@, 0 <I>”,
(Vs &g, i) = k o ®;;, as in Definition Choose representatives (VU, /\”)
(‘/}kv )‘]k) for AZ]vA]k:

Set Vlk = V” N qS ( ]k) C V;. Define a morphism on Vzk

Xk 1 Bily, — To.Vily, by A =Tejno;+ ¢ij|s€;vik(5\jk) o bijly:, -

We can now check using Theorem BT(b).().(d).(s),().().(u).(p):(0)(0),(u
that (Vm, /\m) satisfies Deﬁnltlon b) for <I>JkO<I>”, <I>]k0<I>”, so A, = [V;k, Aik]
is a 2-morphism over (5, g o f), which is independent of choices. We define
horizontal composition of 2-morphisms to be Aji x Ay = Ay

When X =Y =2, f = g = idx and § = T we call this horizontal
composition of 2-morphisms over S.
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We have now defined all the structures of a strict 2-category, as in ob-
jects (m-Kuranishi neighbourhoods on X over open S C X)), 1- and 2-morphisms,
their three kinds of composition, and two kinds of identities. The next theorem
has a long but straightforward proof, using Theorem [3.17] at some points, and
we leave it as an exercise.

Theorem 4.7. The structures in Definitions [4.1H4.6| satisfy the axioms of a
strict 2-category in §A.2.

We define three 2-categories of m-Kuranishi neighbourhoods:

Definition 4.8. Write rr}KN for the strict 2-category of m-Kuranishi neigh-
bourhoods defined using Man, where:

e Objects of mKN are triples (X, S, (V,E,s,1)), where X is a topological
space, S C X is open, and (V, E, s,v) is an m-Kuranishi neighbourhood
over S, as in Definition [£:1}

° 1—morphisms (f, @Z‘j) : (X, S, (‘/Z, Ei, Si, wz)) — (Y, T7 (V}, EJ‘, S5, ’(/}j)) of
mKN are a pair of a continuous map f: X — Y with § C f~1(T) C X
and a 1-morphism ®;; : (Vi, E;, si,¢:) — (V}, Ej, s4,%;) over (S, f), as in
Definition

e For 1-morphisms (f, ®;;), (f, ®};) : (X, 5, (Vi, B, si,)) — (Y, T, (Vy, Ej,
sj,%;)) with the same continuous map f : X — Y, a 2-morphism A;; :
(f, ®i;) = (f,®,;) of mKN is a 2-morphism A;; : ®;; = ®;; over (S, f),
as in Definition

e Identities, and the three kinds of composition of 1- and 2-morphisms, are
defined in the obvious way using Definitions [1.2}{4.6]

Define GmKN to be the full 2-subcategory of mKN with objects (s~1(0),
571(0), (V, B s, ids—l(o))) for which X = § = 571(0) and ¢ = ids—l(o). We call
GmKN the strict 2-category of global m-Kuranishi neighbourhoods. For brevity
we usually write objects of GmKN as (V, E, s) rather than (s71(0),s71(0),
(V,E, s,ids-1(¢y)). For a 1-morphism in GmKN

(f;®ij) : (s;71(0),571(0), (Vi Ei, si,1d -1 gy)) —

197

(551 (0), 551 (0), (Vi By 85,11 )

with ‘I)ij = (Vrl‘j,¢ij,(]§ij) we must have f = ¢ij|s;1(0) : 8;1(0) — 8;1(0) by
Definition (e)7 so f is determined by ®;;, and we write 1-morphisms of
GmKN as @;; : (V;, Ei, s;) — (V}, Ej, s;) rather than as (f, ®;;). Similarly, we
write 2-morphisms of GmKN as Aij: @i = <I>§j.

Let X be a topological space and S C X be open. Write mKNS(X)
for the 2-subcategory of mKN with objects (X,S,(V, E,s,)) for X,S as
given, 1-morphisms (idx, ®;;) : (X, S, (Vi, Es, si,¢i)) — (X, S, (V;, Ej, 55,1;))
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for f = idx, and all 2-morphisms A;; : (idx, ®;;) = (idx,®};). We call
mKNS(X) the strict 2-category of m-Kuranishi neighbourhoods over S C X.

We generally write objects of mKNS(X) as (V, E, s,1), omitting X, S, and
1-morphisms of mKNS(X) as ®;;, omitting idx. That is, objects, 1- and 2-
morphisms of mKNg(X) are just m—Kuranishi neighbourhoods over S and 1-
and 2-morphisms over S as in Definitions 4

The accent **’ in mKN, GmKN, mKNS( ) is because they are con-
structed using Man. For particular Man we modify the notation in the ob-
vious way, e.g. if Man = Man we write mKN, GmKN, mKNg(X), and if
Man = Man® we write mKN°®, GmKN¢, mKNg(X).

If f: X — Y is continuous, (V;, Ey, 8i,¥:), (Vj, Ej, s;,%;) are m-Kuranishi
neighbourhoods on X,Y, and S C Imt; N f~'(Im,;) C X is open, write
Homg f((Vz,Ez,SzJ/%) (Vi, Ej,s5,1;)) for the groupoid with objects 1-mor-
phisms ®;; : (Vi, Ei, s5,¢:) = (V;, Ej,s5,%5) over (S, f), and morphisms 2-
morphisms A;; : ®;; = @}, over (S, f).

If X =Y and f = idx, we write Homg((V;, E;, si,¢i), (V;, Ej, 85,15)) in
place of HOI’IlS’f((VYi7 Ei7 Si, ¢z)7 (‘/J, Ej, S5, ¢]))

Theorem and the last part of Definition imply:

Corollary 4.9. In Definition mKN, GmKN and mKNg(X) are strict
2-categories, and in fact (2,1)-categories, as all 2-morphisms are invertible.

Definition 4.10. Let X be a topological space, and S C X be open, and ®;; :
(Vi, By, si,0:) = (V}, Ej, s5,1;) be a 1-morphism of m-Kuranishi neighbourhoods
on X over S. Then ®;; is a l-morphism in the 2-category mKNS(X) of
Definition We call ®;; a coordinate change over S if it is an equivalence
in mKNS(X ). That is, ®;; is a coordinate change if there exist a 1-morphism
S, 0 (Vi Ej,s5,%5) = (Vi, By, 84,;) and 2-(iso)morphisms 7 @ ®,; o ;5 =
id(‘/'i,Ei7Si,'¢)i) and ¢ : ®;; 0 P;; = id(Vj,E’j,sj',wj) over S. Write

Equs((‘/i; Eia Siy 'l/)z)» (va Eja Sj7 1/’;)) g HOmS((‘/i, Ei7 Siy 7/}2), (ijv Ej, sjv 1/’;))
for the subgroupoid with objects coordinate changes over S.

Theorems [10.57] and [10.58] in §10.5.1] give criteria for when 1-morphisms of
m-Kuranishi neighbourhoods are coordinate changes.

Definition 4.11. Let 7' C S C X be open. Define the restriction 2-functor
T : mKNS(X) — mKNT(X) to map objects (V;, Fy, s;, ;) to exactly the same
objects, and 1-morphisms ®;; to exactly the same 1-morphisms but regarded as 1-
morphisms over T, and 2-morphisms A;; = [Vlj,)\l]] over S to Aj;|r = [V”, /\ngT,
where [V”, )\Z]]|T is the ~p-equivalence class of any representative (V”, )\”) for
the ~g-equivalence class [Vij, Aij].

Then |7 : mKNg(X) - mKNz(X) cornmutes with all the structure, so it
is a strict 2-functor of strict 2- categorleb as in IfUCTCS C X are open
then ‘U o |T = |U mKNS( ) — mKNU( )
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Now let f : X — Y be continuous, (Vi, E;, s;,;), (V}, Ej, sj,1;) be m-
Kuranishi neighbourhoods on X,Y, and 7'C S C Im; N f~!(Im1;) C X be
open. Then as for |7 on 1- and 2-morphisms above, we define a functor

|7 : Homg ¢ ((V;, Ej, si,3), (V;, Ej, s5,05)) —

(4.3)
Homy ; ((V;, E;, si,4), (V}, Ej, s5,05)).

Convention 4.12. So far we have discussed 1- and 2-morphisms of m-Kuranishi
neighbourhoods, and coordinate changes, over a specified open set S C X, or over
(S, f). We now make the convention that when we do not specify a domain S for
a 1-morphism, 2-morphism, or coordinate change, the domain should be as large
as possible. For example, if we say that ®;; : (V;, E;, s;,%;) — (V;, Ej, s5,1;) is
a l-morphism (or a 1-morphism over f: X — Y) without specifying S, we mean
that S =Imv; NImy; (or S =TImey; N 1 (Imepy)).

Similarly, if we write a formula involving several 2-morphisms (possibly
defined on different domains), without specifying the domain S, we make the
convention that the domain where the formula holds should be as large as possible.
That is, the domain S is taken to be the intersection of the domains of each
2-morphism in the formula, and we implicitly restrict each morphism in the
formula to S as in Definition [4.11] so that it makes sense.

4.2 The stack property of m-Kuranishi neighbourhoods

In we define stacks on topological spaces, a 2-category version of sheaves
on topological spaces discussed in §A.5| The next theorem follows from the
orbifold version Theorem proved in by taking I'; = T'; = {1}. It is
very important in our theory. We call it the stack property. We will use it in
to construct compositions of 1- and 2-morphisms of m-Kuranishi spaces.

Theorem 4.13. Let f: X =Y be a continuous map of topological spaces, and
(Vi, Ei, si,3), (Vj, Ej, 55,%;) be m-Kuranishi neighbourhoods on X,Y . For each
open S C Imv; N f~1(Im ;) C X, define a groupoid
Homf((‘/zu Eia Siy wl)7 (‘/]7 Eja Sj, ¢J)) (S)
= Homyg ; ((Vi, Ei, si, i), (Vj, Ej, s5,15)),

as in Definition for all open T C S CImp; N f~1(Imp;) define a functor

pst : Homy((Vi, B, si,14), (Vy, Ej,55,1))(S) —
%Omf((v;aEiashwi)a (‘/vj',EjaSj,wj))(T)
between groupoids by pst = |r, as in (4.3)), and for all open U C T C S C
Im; N f~1(Imp;) take the obvious isomorphism nsru = id,g, : pru © psT =

psu. Then Hom((Vi, E;, s5,%:), (Vy, Ej,85,1;5)) is a stack on the open subset
Im; N f~1(Imp;) in X, as in .
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When X =Y and f =idx we write Hom((V;, E;, si, i), (V;, Ej, 55,%;))
rather than Hom((V;, E;, 8i,v¥:), (V;, Ej, s5,%;)). Then coordinate changes
(I)z] : (‘/727Ei75’i7¢i) — (V]?ijs_]?’l/)]) also form a stack 8qu((‘/27EL7SZ7¢Z)7 (V]a
E;,s;,%;)) onIm,NImp;, a substack of Hom((V;, E;, si, i), (Vj, Ej, 5,%;)).

Here it is clear that Homy(---) is a prestack on Im; N f~!(Im);), but

not at all obvious that it is a stack; the point is that 1- and 2-morphisms of
m-Kuranishi neighbourhoods have important gluing properties over open covers.

4.3 The weak 2-category of m-Kuranishi spaces

We can now at last give one of the main definitions of the book:

Definition 4.14. Let X be a Hausdorff, second countable topological space,
and n € Z. An m-Kuranishi structure IC on X of virtual dimension n is data
K= (I» (Vi, E;, Siawz‘)z‘el» (I)ij, i,j€I Aijk, i,j,kEI)a where:
(a) I is an indexing set (not necessarily finite).
(b) (Vi, E;, 8i,%;) is an m-Kuranishi neighbourhood on X for each i € I,
with dim V; — rank E; = n.
(C) (I%‘j = (Vrl‘j,¢ij,(]§ij) : (‘/“E“SZ,’L/%) — (V}‘,Ej,Sj,’l/Jj) is a coordinate
change for all 4,j € I (over S =Im; NIm;, as in Convention [4.12]).

, ~

iik = [Vijks Niji] + @i 0 ®;; = Pyi is a 2-morphism for all ¢, 5,k € I (over
d) Ay Vijis Nijie] : @i o Py = Py is a 2 hism for all 4, j,k €

S =Imy; NIm; NImy, as in Convention [4.12)).

Uses Tmés = X.

P, = id(VLEi,Sm’L/M) foralli e I.

Aiij = Aijj = idcpjj for all Z,] el.

The following diagram of 2-morphisms over S =Im1; NImy; NImy, N
Im; commutes for all 4, 5, k,[ € I:

(I)kl o (pjk (¢] (Pij - (I)jl o (I)”
Ajkl*ld@ij
\U]idékl*/\i]‘k Aijl\u/ (44)
Akt
Q0 D, Dy

We call X = (X,K) an m-Kuranishi space, of virtual dimension vdim X = n.
When we write x € X, we mean that x € X.

Remark 4.15. Our basic assumption on the topological space X of an m-
Kuranishi space X = (X, K) is that X should be Hausdorff and second countable,
following the usual topological assumptions on manifolds, and the definitions of
d-manifolds in |57, |58, |61]. Here is how this relates to other conditions.

Since X can be covered by open sets Im; = s;1(0)/T), it is automatically
locally compact, locally second countable, and regular. Hausdorff, second countable,
and locally compact imply paracompact. Hausdorff, second countable, and regular
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imply metrizable. Compact and locally second countable, imply second countable.
Metrizable implies Hausdorff.

Thus, if X = (X,K) is an m-Kuranishi space in our sense, then X is
also Hausdorff, second countable, locally compact, regular, paracompact, and
metrizable. Paracompactness is very useful.

The usual topological assumption in previous papers on Kuranishi spaces |24}
30 [39, |77, |78, (8083}, [110H112] is that X is compact and metrizable. Since X
is automatically locally second countable as it can be covered by m-Kuranishi
neighbourhoods, this implies that X is Hausdorff and second countable.

Example 4.16. Let V be a manifold, £ — V a vector bundle, and s : V — F
a smooth section, so that (V, E, s) is an object in GmKN from Definition
Set X = s71(0) C V, as a topological space with the subspace topology. Then
X is Hausdorff and second countable, as V' is.

Define an m-Kuranishi structure £ = ({0}, (Vo,Eo,So,wo),‘I)oo,Aooo) on
X with indexing set I = {0}, one m-Kuranishi neighbourhood (V, Ey, so, %0)
with Vo =V, Ey = F, sg = s and 9y = idy, one coordinate change ®oy =
id(vy, Eo,s0,400), and one 2-morphism Aggo = idg,,. Then X = (X,K) is an
m-Kuranishi space, with vdim X = dim V' — rank &. We write Sy, g, = X.

We will need notation to distinguish m-Kuranishi neighbourhoods, coordinate
changes, and 2-morphisms on different m-Kuranishi spaces. We will often use
the following notation for m-Kuranishi spaces W, XY, Z:

W= (W, H), H = (H,(Th,Ch,qn, on)nem, (4.5)
S = (Thirs Onns s Onn Ve, Lnwny = (Tonrier Eni b Jngh e )

X =(X,7), 7= (I, (Ui, Di, 75y Xi)iel s (4.6)
Tiir = (Ussr, Tisr, Tiar )iyirer, Kigrin = [Uz‘i'i“,/%iz‘/i”]i,i/,z'“el)7

Y=(Y,J) J = (J, (Vi Ej, s5,¢5) et (4.7)
Y5 = (Vigrsvige, 0350 )reds Nygrgn = Vigrms Migrgnligrgner)s

Z =(Z,K), K = (K, (W, Fi, ti, w)kek (4.8)
D = (Wkkﬁ(bkk’aékk’)k,k’eiﬁ My g = [Wkk’k”7ﬂkk'k”]k,k’,k”EK)-

The rest of the section until Theorem [4.28| will make m-Kuranishi spaces into
a weak 2-category, as in We first define 1- and 2-morphisms of m-Kuranishi
spaces. Note a possible confusion: we will be defining 1-morphisms of m-
Kuranishi spaces f,g : X — Y and 2-morphisms of m-Kuranishi spaces n: f =
g, but these will be built out of 1-morphisms of m-Kuranishi neighbourhoods
Fij»9i; © (Ui, Disrisxi) — (Vy, Ej,85,9;) and 2-morphisms of m-Kuranishi
neighbourhoods m;; : f;; = g;; in the sense of §4.1, so ‘l-morphism’ and ‘2-
morphism’ can mean two different things.

Definition 4.17. Let X = (X,Z) and Y = (Y, J) be m-Kuranishi spaces, with
notation (4.6)—(4.7). A 1-morphism of m-Kuranishi spaces f: X — Y is data

_ j, €T i3’ 3. €J
f=fFijier jes FiilTicr Fiic? <), (4.9)
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satisfying the conditions:

(a) f:X — Y is a continuous map.

(b) fzj = (Ulj7flj7flj) : (UiaDiar'hXi) — (‘/j7E]7sj7wj) is a l'morphism of
m-Kuranishi neighbourhoods over f for all ¢« € I, j € J (defined over
S =TImy; N f~'(Im1;), as usual).

(c) Ffl, = [UZ]Z,,FZJZ,] : firjo Tiw = f;; is a 2-morphism over f for all i,i" € I
and j € J (defined over S =Imy; NIm x; N f~1(Im;)).

(d) Ffj, = [Ufj/,ﬁijj/] :Yjj 0 fi; = fi; is a 2-morphism over f for all i € I
and j, j' € J (defined over S = Imx; N f~!(Im; NImap;r)).

() Fl, = F¥ =idy forallicl, jeJ.

(f) The following commutes for all ¢,7',i” € I and j € J:

Jinjo Ty oTiy = JijoTiw
F’, , *idr._, )
\M,idfi”* *K 0500 o ” F],v,\u/ (410)
v Fj 17
T‘. ii//
fi”jo i/’ -fij'

(g) The following commutes for all 4," € I and j,j’ € J:

Yjjro fijo T — SirjroTiw
id Fj FZ/J *idT“/ j/ 4 11
i «F7 ‘v .
[~ > A e
Tjjr o fij .fij"
(h) The following commutes for all ¢ € I and j,5’," € J:
YygroXjyre £ A, prjidy tarredy
[iae, o3 ' P || (4.12)
iz i Fj/j// i
Tj’j” [¢] f,Lj/ fij”'
If x € X (ie. v € X), we will write f(z) = f(z) €Y.
When Y = X, define the identity 1-morphism idx : X — X by
. . el jj' eI
idx = (idx, Ty, ijer, Kiirj, ij,ie’elﬁ K5 i) (4.13)

Then Definition [£.14(h) implies that (f)-(h) above hold.

Definition 4.18. Let X = (X,7) and Y = (Y, J) be m-Kuranishi spaces, with
notation as in 7, and f,g : X — Y be l-morphisms, with notation
(4.9). Suppose the continuous maps f,g : X — Y in f,g satisfy f = g. A
2-morphism of m-Kuranishi spaces n: f = g is data n = (nm iel, jeJ)a where
i = RTE fij = g,; is a 2-morphism of m-Kuranishi neighbourhoods over
f = g (defined over S =Imy; N f~!(Imv;), as usual), satisfying the conditions:
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(a) Gﬁi, ® (m/j *idp,, ) = Ni; © in, : fijo T = g;; for all ,i'el, jel.
(b) GV @ (idy,, *n;;) = niy O FFP :Yyp 0 fi; = gy foralli €1, j,j' € J.

Note that by definition, 2-morphisms 7 : f = g only exist if f = g.
If f = g, the identity 2-morphism is idy = (idfiw i€[7j€J) f=1r

Next we will define composition of 1-morphisms. We must use the stack
property in Theorem to construct compositions of 1-morphisms go f : X —
Z, and g o f is only unique up to 2-isomorphism.

In the next proposition, part (a) constructs candidates h for g o f, part (b)
shows such h are unique up to canonical 2-isomorphism, and part (c¢) that g and
f are allowed candidates for g o idy, idy o f respectively.

Proposition 4.19. (a) Let X = ( I),Y = (Y,7), and Z = (Z,K) be
m-Kuranishi spaces with notatzon 1 -, and f: X =Y, g:Y —> Z
be 1-morphisms, with f = (f, f.;, Fi,. F7 ), g = (g, g]k,ij ,Gfk/). Then

there exists a 1-morphism h : X — Z wzth h = (h hzk,H“/, H-k/), such that
h=gof:X — Z and forall i € I, j € J, k € K we have 2-morphisms of
m-Kuranishi neighbourhoods over h

Qijk “ 9k ° -fij = h;, (414)

where as usual (4.14) holds over S =Tmx; N f~ (Im;) N A~ (Imwy), and for
all i,i' €I, j,57' € J, k, k' € K the following commute:

gjr o fijo T - hij 0 Ty
@i/jk*ldT“,
\U,idgjk*F‘Z'ﬂ Hfz’\u, (4'15)
Oijk
gk © fij h;,
gj’korjj' Ofij — gjk;ofij
i3 Gjyrxidsy
\M]idgj,k*FfJ eijk\u/ (416)
[SH i ke
g o fij = hi,
P ogjr o fij — 9w © fij
) GEF xidy, .
U,d oot ¥Oisk Y ! @ijk’\u/ (4.17)
Dppr 0 By, - by

(b) If h = (h,hy, HY

”,,Hkk/) (:),-jk are alternative choices for h,©;; in (a),
then there is a unique 2-morphism of m-Kuranishi spaces n = (1) : h = h
satisfying Ny, © Oy = GUk gjrofi;= Rk foralliel jeJ keK.
(¢) If X =Y and f =idy in (a), so that I = J, then a possible choice for
h,0;;; in (a) is h =g and O, = GF

Similarly, if Z =Y and g = idy in (a), so that K = J, then a possible
choice for h, 0,1 in (a) is h = f and O, = ka.
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Proof. For (a), define h = go f : X — Z. Let i € I and k € K, and set
S =TImy;Nh~!(Imwy), so that S is open in X. We want to choose a 1-morphism
hy = (Ui, Di,ri,xi) — (Wi, F, tg, wg) of m-Kuranishi neighbourhoods over
(S,h). Since {Ime; : j € J} is an open cover of ¥ and f is continuous,
{SO [t Imyy) 1 j € J} is an open cover of S. For all j,5' € J we have a
2-morphism over SN f~!(Im; NImap;), h

. ii’ k . _
(idg,,, * F7') © (G *idg, ) 7" (4.18)
9k ° fij‘S’ﬁf*l(Im'ijﬁIm V) = 9k © fij’|Sﬂf*1(Im P;NIm /) -

For j,5',j" € J, consider the diagram of 2-morphisms of 1-morphisms (U;, D;,
iy Xi) = (Wi, F, ti,wi) over SN f~1(Imep; N Imapy N Imapjn), he

gjkofij P gj/kOTjj’ofij
G xidg.
JJ ¥
WGL,, *idfij ,H\G?/j// *idrjj, *idfij
id *Ajj/j//*idfi.A
gj”kOTj’j/'OTjj/ofij gj’ko.fij" (4.19)

gj”kOTjj”o.fij
id Fi” id id Fi’
I gj”k* i o B Qj//k*l Tj’j”* Q
id FiI

gj”k'* 2

gj”kto«fij” gj”kOTj’j"ofij’

Here the top left rectangle of (4.19) commutes by Definition [4.17|(f) for
1170

g composed with idy , the bottom left rectangle by Definition for f
composed with idg ,,, , and the right hand quadrilateral commutes by properties
of strict 2-categories. Thus (4.19)) commutes. This implies that

L
)7
i

91y

k .
? g kid
Gjrjn Fijr

((idgj”k: * F‘Z I ) © (G?/j” * idfij/)il) © ((idgj/k * sz ) © (ij/ * idfij)il)
= (idg,,,, * FI7" © (G, +idy, )7L, (4.20)

ik

Now Theorem says that 1- and 2-morphisms from (U;, D;, 14, x;) to
(Wi, Fi, tr,wi) over h form a stack on S, so applying Definition [A.17|(v) to
the open cover {S N f~'(Imv;) : j € J} of S with g, © fi; in place of
A;, (4.18) in place of «jj;7, and (4.20)), shows that there exist a 1-morphism
hii - (Ui, Dy, i, xi) = (Wi, Fr, tr, wg) over (S, h), and 2-morphisms

Oijk 1 Gy © Fijlsnf—1(mw;) = Piklsnf—1(my,)
for all j € J, satisfying for all 5,5 € J
Oijklsns—1(my;ntmy,) = Ok © (idg,,, * FI')o (ij' * idfij)_l- (4.21)

Observe that (4.21)) is equivalent to equation (4.16)) in the proposition.
So far we have chosen the data h, hiy for all 4,k in b = (h, by, HY/, HI),

(AR

where h;j, involved an arbitrary choice. To define HY, for i,i/ € I and k € K,

[
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note that for each j € J, equation (4.15]) of the proposition implies that

H,|
44/ 1Im x;NIm x ;N fF =1 (Im; )NA =1 (Im wy,)

, (4.22)
= G)ijk ® (ldgk * Fj/) O] (ei’jk * idT../)7

Using (4.21) for ¢, and a similar commutatlve diagram to (4.19), we can
show that the prescrlbed values - for 7,7’ € J agree when restricted to
Imy; NIm oy N f~(Imep; NImep; ) N A~ (Imwy). Therefore the stack property
Theorem[4.13|and Definition iii),(iv) show that there is a unique 2-morphism
HZ, : hy, o Tyyr = hyy, over h satisfying for all j € J, or equivalently,
satisfying @ for all j € J. Similarly, there is a unique 2-morphism H fk, :
@ 0 iy = hyp over h satisfying (4.17) for all j € J.

We now claim that k = (h, kg, HZ ,ka') is a l-morphism h: X — Z. Tt
remains to show Deﬁnitionh(f) (h) hold for h. To prove this, we first fix
j € J and prove the restrictions of (f)—(h) to the intersections of their domains
with f~!(Im4;). For instance, for part (f), for 4,i',i” € I and k € K we have

(wa ® (idn,,, * Kisrir)) ltm s nenh—1 (T wg)
= [Oijx © (idg,, * Fl,)® (O, +idr,,, )] @ (idn,,, * Kir)
=0,k @ (idg,, * (Fl, © (idf, , *Kivin))) © (05, *idr,,,,) *idr,, )
=0, O (id (FJ, ® (F g ¥ id, ,))) ® ((@Z,,]k idp, ) *idyp,, )
= [0ijx © (idg,, * F,) © (O +idr,, ) ']

© ([(Bijk © (idg,, * F.)) © (O jr *idr,, ) ~'] *idr,,)

= (H7 © (HY 0 #idr,, ) [ e nmm s nm 0 —1 (Tm ) b= (Tm w)

using in the first and fifth steps, Definition f) for f in the third,
and properties of strict 2-categories. Then we use the stack property Theorem
and Definition [A.T7(iii) to deduce that as Definition [£.17(f)~(h) for h hold
on the sets of an open cover, they hold globally Therefore h: X —-Zisa

1-morphism of m-Kuranishi spaces satisfying (4.15| , proving (a).
For (b), if h @”k are alternatlves then h;, hzk are alternatlve solutions to

the application of Theorem and Deﬁmtlon 7((v) above, for all ¢ € I and
k € K. Thus, the last part of Deﬁnition (v) implies that there is a unique
2-morphism 7, : hir = h;, over h such that for all j € J we have

Mt [t a1 (m 6,) =1 (Im ) = Oijk © Ok (4.23)
This implies that 1;, © ©;jx = Ojjx, as in (b). For each j € J we have

(HE © (Mg #1d,,,)) tm xanm xpr 0~ (Im ;)= (Im )
= [04k © (idg,, * F};)) © (Ouj xidr,, ) 1] © [(Qurji © ©7 ) *id,,]
= [ka © e)ljk] [@Uk © (idgjk * Fzz’) © (Gi'jk * idTW)il]

= (nzk © sz/) |Imx-;ﬂlm X Nf~1(Im;)Nh~= 1 (Imwy)s
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we deduce that H;, © (1, *idr,,) = 1, © HY,, which is Definition [4.18(a)
for n = (n,;,) : h = h. Similarly Definition b) holds, so p : h = h is a
2-morphism of m-Kuranishi spaces. This proves (b). Part (c) is immediate, using

Definition [4.17)(f)—(h) for f, g to prove (4.15)—(4.17) hold for the given choices
of h and ©;j;. This completes the proof of Proposition [4.19} O

using (4.22) and (4.23) in the first and third steps. So by Definition ii)

Proposition a) gives possible values h for the composition go f : X — Z.
Since there is no distinguished choice, we choose g o f arbitrarily.

Definition 4.20. For all pairs of 1-morphisms of m-Kuranishi spaces f : X =Y
and g : Y — Z, use the Axiom of Global Choice (see Remark [4.21)) to choose
possible values of h : X — Z and ©;;, in Proposition and write
gof=h,andforiel, jeJ, ke K write

0%l = Oy gjuofiy = (g0 Par- (4.24)

We call g o f the composition of 1-morphisms of m-Kuranishi spaces.
For general f,g we make these choices arbitrarily. However, if X =Y and

f = idy then we choose g o idy = g and ©%%¥ = G},,, and if Z = Y and

g = idy then we choose idy o f = f and G)i‘;;,"f = ng/. This is allowed by
Proposition c).

The definition of a weak 2-category in Appendix [A] includes 2-isomorphisms
Bg: foidx = fand vy;:idyo f = fin , since one does not require
foidx = f and idy o f = f in a general weak 2-category. We define

By =idy: foidx = f, ~;=idy:idyof= f. (4.25)

Remark 4.21. As in Shulman [101} §7] or Herrlick and Strecker [45| §1.2], the
Aziom of Global Choice, or Aziom of Choice for classes, used in Definition [£:20}
is a strong form of the Axiom of Choice.

As in Jech [54], in Set Theory one distinguishes between sets, and ‘classes’,
which are like sets but may be larger. We are not allowed to consider things like
‘the set of all sets’, or ‘the set of all manifolds’, as this would lead to paradoxes
such as ‘the set of all sets which are not members of themselves’. Instead sets,
manifolds, ... form classes, upon which more restrictive operations are allowed.

The Axiom of Choice says that if {S; : ¢ € I} is a family of nonempty sets,
with I a set, then we can simultaneously choose an element s; € S; for all 7 € I.
The Axiom of Global Choice says the same thing, but allowing I (and possibly
also the S;) to be classes rather than sets. As in [101} §7], the Axiom of Global
Choice follows from the axioms of von Neumann—Bernays—Godel Set Theory.

The Axiom of Global Choice is used, implicitly or explicitly, in the proofs of
important results in category theory in their most general form, for example,
Adjoint Functor Theorems, or that every category has a skeleton, or that every
weak 2-category can be strictified.

We need to use the Axiom of Global Choice above because we make an
arbitrary choice of go f forall f: X - Yandg:Y — Z in mKur, and as we
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have defined things, the collection of all such (f, g) may be a proper class, not a
set. We could avoid this by arranging our foundations differently. For example,
if we required Man and Top to be small categories, then the collection of all
(f,g) would be a set, and the usual Axiom of Choice would suffice.

If we did not make arbitrary choices of compositions g o f at all, then mKur
would not be a weak 2-category in Theorem below, since for 1-morphisms
f:X > Yandg:Y — Z in mKur we would not be given a unique
composition go f : X — Z, but only a nonempty family of possible choices
for g o f, which are all 2-isomorphic. Such structures appear in the theory of
quasi-categories, as in Boardman and Vogt [5] or Joyal [55], which are a form of
oo-category, and mKur would be an example of a 3-coskeletal quasi-category.

Since composition of 1-morphisms g o f is natural only up to canonical
2-isomorphism, as in Proposition b), composition is associative only up to
canonical 2-isomorphism. Note that the 2-isomorphisms oy ¢ . in are part
of the definition of a weak 2-category in as in .

Proposition 4.22. Lete: W > X, f: X —-Y,g:Y — Z be 1-morphisms
of m-Kuranishi spaces, and define composition of 1-morphisms as in Definition
4.20. Then using notation (4.5)—(4.8), there is a unique 2-morphism

Qg fe:(gof)oe=go(foe) (4.26)
with the property that for all h e H,i € 1, j € J and k € K we have

(ag.f.e)nn © OLTC© (O] «ide,,) = 087 0 (idy,, +O]).  (4.27)

Proof. The proof uses similar ideas to that of Proposition so we will be
brief. Note that for h € H,i € I, j € J, k € K, equation (4.27)) implies that

(ag,f,e)hk‘lm erNe=t(Im x;)N(foe) "t (Imp;)N(gofoe)~ (Imwy)

= O 0 lidg,, + OF5) © (6% xide,) " © (OF )7

(4.28)

We show that for ¢/ € I, j° € J, the right hand sides of for h,i,7,k
and for h,i’,j’, k agree on the overlap of their domains, using the properties
@)f of the @igj’,{ . Then we use the stack property Theorem and
Definition [A.17(iii),(iv) to deduce that there is a unique 2-morphism (og £ e)nk
satisfying ([{.28) for all i € I, j € J.

We prove the restrictions of Definition ma),(b) for ag 5. = ((0tg,f.e)nk)
to the intersection of their domains with e~ (Im x;) N (f o )~ !(Im 1)), for all
i€ landj € J, using (@ and properties of the ij’,’: . Since these intersections
form an open cover of the domains, Theorem and Definition iii) imply
that Definition [£.18|(a),(b) for ag ¢ . hold on the correct domains, so ag, ¢ e is
a 2-morphism, as in . Uniqueness follows from uniqueness of (og, . )nk
above. This completes the proof. O

We define vertical and horizontal composition of 2-morphisms:
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Definition 4.23. Let f,g,h: X — Y be 1l-morphisms of m-Kuranishi spaces,
using notation (4.6)-(4.7), and n = (n;;) : f =g, ¢ =(¢;;) : g = h be 2-
morphisms. Define the wertical composition of 2-morphisms (©&n : f=h
by

Con=(¢;0mny i€l jel). (4.29)

To see that ¢ ® n satisfies Definition a),(b), for (a) note that for all ¢,i' € T
and j € J, by Definition a) for n, ¢ we have

Hl, ©((Cyj ©ny;) xidr,,) = Hl, © (¢ *idr,,) © (0;; *idr,,)
= Cij © Gfi/ © (m/j * idTW) = (C” © Th'j) © ng/,

and Definition b) for ¢ ©® m is proved similarly.

Clearly, vertical composition of 2-morphisms of m-Kuranishi spaces is asso-
ciative, (0 © ¢) ©n =6 © (¢ ©®n), since vertical composition of 2-morphisms of
m-Kuranishi neighbourhoods is associative.

If g = h and ¢ = idg4 then idg ©n = (idg,, ©®n;;) = (n,;) = 1, and similarly
¢ ®idg = ¢, so identity 2-morphisms behave as expected under ©.

If n = (n;;): f = gis a 2-morphism of m-Kuranishi spaces, then as 2-
morphisms 7,; of m-Kuranishi neighbourhoods are invertible, we may define
nt = (ni_jl) : g = f. It is easy to check that n—!
n ' ®n=ids, n©n~! =idy. Thus, all 2-morphisms of m-Kuranishi spaces
are 2-isomorphisms.

is a 2-morphism, and

Definition 4.24. Let e,f : X — Y and g,h : Y — Z be l-morphisms
of m-Kuranishi spaces, using notation —, and n = (n;;) : e = f,
¢=1(¢ jk) : g = h be 2-morphisms. We claim there is a unique 2-morphism
0 =(0;x):goe= ho f, such that foralli e I, j € J, k € K, we have

6ik|1m xiNe~1(Im;)N(goe) ' (Imwy) — ezjk © (C]k * T’z]) (619],:) . (430)

To prove this, suppose j,j’ € J, and consider the diagram of 2-morphisms
over Imx; Ne ! (Imv; NIme; ) N (goe) ! (Imwy):

. 0 €55 () h f
”k ggk ¥ Cjk*n” k f’Lj wk
ﬂc%.,*idei, .,,,*1dfijﬂ
C /k*ld‘r /*7]1]

goelk gjlkoTjj’oem:>h’koTjj’of h .fzk 431)

\ Mldgm*EiJ o B ﬂ /
e KM
(@) Sy mt

gj/koeij/ /kOij zg’k

Here the left and right quadrilaterals commute by 7 and the central rectan-
gles commute by Definition a),(b) for ¢,n. Hence commutes.
The two routes round the outside of imply that the prescribed values
(4.30) for 8;; agree on overlaps between open sets for j,j’. As the Imy; N
“1(Im;)N(goe) ! (Imwy) for j € J form an open cover of the correct domain
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a unique 2-morphism ;i : (g o €);x = (h o ) satisfying (4.30) for all j € J.

To show 6 = (8;) : goe = ho f is a 2-morphism, we must verify Definition
[£.18[a),(b) for 6. We do this by first showing that (a),(b) hold on the intersections
of their domains with e~ !(Im;) for j € J using (4.15), (4.17), (4.30), and
Definition for , ¢, and then use Theorem [4.13] and Definition iii) to
deduce that Definition [4.18|(a),(b) for 8 hold on their whole domains. So 8 is a
2-morphism of m-Kuranishi spaces.

Define the horizontal composition of 2-morphisms {*xn:goe = ho f to
be { *xm =6. By ,forallie],jEJ,keKwehave

(¢ =M ©O%F =01 © (¢ +my)), (4.32)

and this characterizes ¢ * i uniquely.

Im y; N (goe) (Imwyg), by Theorem and Definition iii),(iv), there is
(130

We have now defined all the structures of a weak 2-category of m-Kuranishi
spaces mKur, as in Appendix [Af objects X,Y, 1-morphisms f,g: X —» Y, 2-
morphisms 7 : f = g, identity 1- and 2-morphisms, composition of 1-morphisms,
vertical and horizontal composition of 2-morphisms, 2-isomorphisms oy ¢ in
for associativity of l-morphisms, and B¢,v in for identity 1-
morphisms. To show that mKur is a weak 2-category, it remains only to prove
the 2-morphism identities (A.6), (A.8), (A.9), and (A.12). Of these,

(A.11)—(A.12) are easy as B; = v = idy, and we leave them as an exercise.
The next three propositions prove (A.6), (A.8) and (A.9)) hold.

Proposition 4.25. Let f, f,j" : X =Y,9.9,9:Y — Z be 1-morphisms of

.

m-Kuranishi spaces, and n: f = f,n: f=f,¢(:9=6g,(:g =g be
2-morphisms. Then

CoQOxmon=(C*n)oC*n):gof=jof. (4.33)
Proof. Use notation (4.6)—(4.8)) for X, Y, Z. Forie I, j€ J, k€ K we have

(€ Q)+ Om]irly, XiN =1 (Im ;)N (go f)~ (Tm wy.)
= ewkf © ( éjk O Cjg) * (10;; © mj)) © (61'9371{)_1
= @m{@ ( éjk #1:) © ($jr *Mmy5)) © (@%’1{)_1
= [ez]kf © (éjk *1);5) © (9%1{')71] © [@%1{ © (Ck *Mmiy) © (@%’1{)71]
= [(§ ) © (% m)] ikl a1 (1m w0 (go )~ (mn)

using and in the first and fourth steps, and compatibility of vertical
and horizontal composition for 2-morphisms of m-Kuranishi neighbourhoods in
the second. Since the Im x; N f~!(Im ;)N (go )~ (Imwy) for all j € J form an
open cover of the domain Im x; N (g o f)~*(Imwy), Theorem and Definition
(iii) imply that [(C © ¢) * (1) wik = [(€ *1) ® (¢ *m)]ik- As this holds
for all i € I and k € K, equation (4.33) follows. O

— =
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Proposition 4.26. Suppose e,é: W — X, f,f' X =Y, 9,9:Y— Z are
1-morphisms of m-Kuranishi spaces, and € :e = é,n: f=f, (:9= ¢ are
2-morphisms. Then the following diagram of 2-morphisms commutes:

(gof)oe _— go(foe)
J(com=e .. cr(mee)) (4.34)
(gof)oe = go(foe).

Proof. Use notation (4.5)—(4.8) for W, X, Y, Z. Forhe H,ie€l,je J ke K
we have

[(C * (% €) © ag,s.e]nk|imepnne (tmxi)n(Foe) 1 (Im ;) (g0 foe) ~ (Imwy)
=[085 0 [¢ + (02 @ (i x en) © (OF)™)] © (037797

© [091°° @ (idg,, *0f%) © (0% xide,,) ™ © (01

= 0940 (idg,, *OL) O (L, * mij * €ni) ©(O%] xide,,) L 0 (O5]°)

= [093°¢® (idg,, * ©1;5) © (0% xide,,) ™t © (0851 4)71]

© [Gi;{’é © [(@fﬂ{ © (Cjk * nij) © (@?ﬁ{)il) * Ehi] © (Gg?157e)71]

= [ag‘“f‘é © ((C * n) * 6)] hk|Im prNe~1(Im x;)N(foe) =1 (Imp;)N(gofoe) 1 (Imwg )

using (4.27)) and (4.32)) in the first and fourth steps, and properties of strict
2-categories in the second and third. This proves the restriction of the ‘hk’

component of (4.34) to Im ¢y, Ne™ ! (Im ;)N (foe) L (Imp;)N(go foe) ! (Imwy)
commutes. Since these subsets for all ¢, j form an open cover of the domain,

Theorem and Definition iii) imply that the ‘hk’ component of (4.34))
commutes for all h € H, k € K, so (4.34) commutes. O

Proposition 4.27. Letd: V - W, e WX, f: X —>Y,g: Y — Z be
1-morphisms of m-Kuranishi spaces. Then in 2-morphisms we have

Qg f.eod © Ogof.e.d = (idg * Qf ed) © Qg foe,d © (g f,e *idq) :

((gof)oce)od=go(fo(eod)). (4.35)

Proof. Use notation (4.5)—(4.8]) for W, XY, Z, and take G to be the indexing
set for V. Then for g€ G,he H,i€1l,j€ J, k€ K, on Imv,Nd ' (Impy,)
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N(eod)*Imy;)N(foeod) (Ime;)N(go foeod) *(Imwy) we have

[(O‘g freod) © (gof e d) ]gk|

Oeod . o . o o
_{e;’J{ ) ® (idg,, * ©72°" © (O%] *id(eoay,) ! © (75 °%) 1}

o od s o . — of)oe,dy—
{ngkfe (ld(gof )ik G);hz) (6211.: x ldd ) ! © (Gfﬁy,kf) ) }
_ @g]‘ZO(EOd) ® (idgjk " (__)gi,;od) ((9‘:7],{) 6;5)
of.e | . — of)oe,d\ —
© (O3] #ida,,) ' © (O5:7°H)

={0%1CDg (id,  +[0F40(idy, x050) 0(0] xida,, ) @ (0794 71])

gk gtj ghj
(@Z}(kfoe)od 1} ® {ng(kfoe)ocl ®( o, ¥ @;c’jj,d) (@iﬁ;oe « lddgh)fl
© @) e {egi ) o ([0 © (d,,, *e,f;>

© (04 *ide, ) © (OF) ] *ida,,) © (O3 '}

= [(idg * @fc.a) © g foed © (g g *ida)]gr] ..,

using and in the first and fourth steps, and properties of strict
2-categories in the second and third. This proves the restriction of the ‘gk’
component of (4.35) to the subset Imv, Nd~*(Impp) N (eod) ' (Imx;) N (f o
eod) 1 (Im 1/J]) (g ofoeod) ! (Imwyg). Slnce these subsets for all h, 4, j form
an open cover of the domain, Theorem and Definition (iii) imply that
the ‘gk’ component of commutes for all g € G and k € K, so (4.35)
commutes. O

We summarize the work of this section in the following:

Theorem 4.28. The definitions and propositions above define a weak 2-cat-
egory of m-Kuranishi spaces mKur.

Definition 4.29. In Theorem we write mKur for the 2-category of m-
Kuranishi spaces constructed from our chosen category Man satisfying Assump-

tions in By Example the following categories from Chapter
are possible choices for Man:

Man, Man®, Mang _, Man®®, Man®®, Man®?2¢. (4.36)

we)’

We write the corresponding 2-categories of m-Kuranishi spaces as follows:

mKur, mKur®, mKur{, ., mKur®® mKur?®, mKur®2c. (4.37)

we)’

Objects of mKur®, mKurg® mKur?®, mKur®?¢ will be called m-Kuranishi

spaces with corners, and with g-corners, and with a-corners, and with corners
and a-corners, respectively.

Actually, Example gives lots more categories satisfying Assumptions
3.7, such as Man{, C Man®, but we will not define notation for corresponding
2 categories of m—Kuramshl spaces mKurf{ ,... here. Instead, in we will
define the 2-categories mKurf, ,... as 2-subcategories of the 2-categories in
(4.37). The reason for this is explained in Remark
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Example 4.30. We will define a weak 2—functqr Fl\r-;l‘i“r : Man — mKur.
Weak 2-functors are explained in §A-3] Since mKur 1s a weak 2-category, no
other kind of functor to mKur makes sense. )

If X € Man, define an m-Kuranishi space FI{.‘/I‘:;“‘"(X) =X = (X,K) with
topological space X and m-Kuranishi structure

K = ({0}, (Vo, Eo, s0,%0), P00, Aooo),

with indexing set I = {0}, one m-Kuranishi neighbourhood (Vp, Ey, so, 10g) with
Vo = X, Ey — Vy the zero vector bundle, sy = 0, and ¢y = idx, one coordinate
change ®go = id(v;, Ey,s0,10), and one 2-morphism Aooo = ida,, -

On 1-morphisms, if f: X — Y is a morphism in Man and X = F&’gl‘“(X),

p— mKur 3 mKur J— . J—
Y = FMOan (3;), define a 1-morphism FMan (fH=f:X —>Yhby f =
(fs foo, Foo: Fy ), where foq = (Uoo, foo, foo) with Uso = X, foo = f, and fyo is
the zero map on zero vector bundles, and F), = Fp’ = idg,, -

On 2-morphisms, regarding Man as a 2-category, the only 2-morphisms are
identity morphisms idy : f = f for (1-)morphisms f : X — Y in Man. We

mKur : s 3
define FManu (1.df) = ldFI{/In?nur(f). .
_ rmKur _ rmKur v LI

If X = FEow(X) and Y = FE v (Y) .for X,Y € Man, it is easy to‘ check
that the only 1-morphisms f : X — Y in mKur are those of the form FI\‘.“/};“”( )
for morphisms f : X — Y in Man, and the only 2-morphisms n:f=gin
mKur for any 1-morphisms f,g : X — Y are identity 2-morphisms idy : f = f
when f =g. )

Suppose f : X =Y, g:Y — Z are (1-)morphisms in Man, and write
X,Y,Z. f,g for the images of X, Y, Z, f, g under FXu*_ Then Definition
defines the composition g o f : X — Z, by making an arbitrary choice. But the
uniqueness property of 1-morphisms above implies that the only possibility is
gof= Fl\‘.;[‘g“r(g o f). Define

mKur . . rmKur mKur mKur
(FMan )g7f = ldFl\r';I]:_lur(gof) . FMan (g) o FMan (f) —— FMan (g o f)

For any object X in Man with X = FM‘“:(I“F(X), define

(FREW) = idiay : Fae™ (idx) = id i ()

We have defined all the data of a weak 2-functor Fl\‘;l‘il“” : Man — mKur
in Definition It is easy to ch.eck that FI{-/I"EIEI“F is a weak 2—functf)r, which is
full and faithful, and so embeds Man as a full 2-subcategory of mKur.

We say that an m-Kuranishi space X is a manifold if X ~ FI‘\?/I’;“T(X ) in

mKur, for some X’ € Man. Theorem [10.45]in §10.4.2 gives a necessary and

sufficient criterion for when X is a manifold. .
Assumption gives a full subcategory Man C Man. Define a full and
faithful weak 2-functor Fl\“,}gn“r = FI(./I“;“WMM : Man — mKur, which embeds
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Man as a full 2-subcategory of mKur. We say that an m-Kuranishi space X is
a classical manifold if X ~ mefn‘"(X’) in mKur, for some X’ € Man.

In a similar way to Example we can define a weak 2-functor GmKN —
mKur which is an equivalence from the 2- -category GmKN of global m-Kuran-
ishi neighbourhoods in Definition 4.8 [4.8] to the full 2-subcategory of objects (X, K)
in mKur for which K contains only one m-Kuranishi ne1ghbourhood It acts by
(V,E,s) — Sy g s on objects, for Sy g s as in Example

The next example defines products X x Y of m-Kuranishi spaces X,Y. We
discuss products further in as examples of fibre products X x, Y.

Example 4.31. Let X = (X,Z), Y = (Y, J) be m-Kuranishi spaces in mKur,
with notation 7. Define the product to be X x Y = (X x Y, K), where
K= (I %I, (Wi Fagy ) W) et as ®agyri. () iranerxs
M )@ 5y @), (iJ)7(i/7j’),(i”,j”)€1><J)'
j) € I x J weset W, jy =U; x Vj, F; jy = ng7,(Dy) @ miy,, (Ey),
1(“) @y (s;) so that t(”)(O) =r;1(0) x 351(0), and w(; ;) =
) x ( )= X xY. Also

Here for all (i, j
and t(”) = 772‘}
Xi X ;im0

* A * ~
O )i,y = Tar X Ty = (Usir x Vo, i X vggr, 7wy, (Faar) @ 73, (050)),

and M ;) )i 1y = Kiirin X Ajjrjr is defined as a product 2-morphism in
the obvious way. It is easy to check that X x Y is an m-Kuranishi space,
with vdim(X X Y) = vdim X + vdim Y.

We can also define explicit projection 1-morphisms wx : X xY — X,
y: X XY =Y, where

i

VENYYi o
T :(7_r s Ny s , H’L,’LEI i'd" i el )
X Xo W (@,9)¢ s (G)eIXT, Vel 220 5)(i,57), (i,5),(8 3 )V EIXT? (i), (i,5)EIXT )

with 7(; jyr = (Uier X Vjj, Tyar © T, T, (Fiir) 0 Wﬁai(Di)), and IT{; (s ) sz;)
are the basically the compositions of the 2-morphism K;;;» in 7 w1th the
projection U; x V; — U;. We define y in the same way.

We will show in that X x Y, mx,my have the universal property of
products in a 2-category. That is, X x Y is a fibre product X X, Y over the
point (terminal object) * in mKur, as in in a 2-Cartesian square

X XY — Y
¢7rx idﬁ\ \L
X %,

Products are commutative and associative up to canonical equivalence, and
in fact (with the above definition) up to canonical 1-isomorphism. That is, if
X.,Y, Z are m-Kuranishi spaces, we have canonical 1-isomorphisms in mKur

YXxX=XxY and (XxY)xZ=2X x(YxZ). (4.38)
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We can also define products and direct products of 1-morphisms. That is, if
f W—=Y g: X —Y, h:X — Z are l-morphisms in mKur then we have a
product 1-morphism f x h: W x X =Y x Z and a direct product 1-morphism
(g,h): X Y xZin mKur, both easy to write down explicitly. The existence
of f x h,(g,h) is also guaranteed by the universal property of products, uniquely
up to canonical 2-isomorphism.

4.4 Comparing m-Kuranishi spaces from different Man

Using the ideas of € and we explain how to lift a functor Fl\l\/f:: :

Map — Man satisfying Condition to a corresponding weak 2-functor
Fr;“}i{:: : mKur — mKur between the 2-categories of m-Kuranishi spaces
mKur7 mKur associated to Man, Man.

[.)eﬁniti()fl 4.32. Suppose Man, Man satisfy Assumptions and Fl\l\/f :
Man — Man is a functor satisfying Condition Then in §3.3.7/and §
we explain how all the material of §3.3[on dlfferentlal geometry in Man maps
functorially to its analogue in Man under F Ma:

Write mKur, mKur for the 2-categories of m-Kuranishi spaces constructed
from Man, Man in We will define a weak 2-functor F' mK“: mKur —
mKur. The basic idea is obvious: we apply FMa“ to turn the m-Kuranishi
neighbourhoods and their 1- and 2-morphisms over Man used in mKur, into
their analogues over Man used in mKur

As in §B.7 we will use accents ‘"’ and ‘"’ to denote objects associated to
Man and Man, respectively. When something is independent of Man or Man

(such as the underlying topological space X in X ) we omit the accent.
Let X = (X,K) be an object in mKur, where

K= (I,(Vi, B, 85,93 )iers ®ij,ijer, Mgk, ijrer)s
with (i)l] - ( 'Z]a élj P ngg) (‘/;7 Ez, Si, wz) N (‘/;7 Ej? *éjv 1/)4) and Aijk = ["/ijk, )-\ijk]
for all 4,7,k € I. Define FmK“‘”(X) =X = (X,K) in mKur, where

K ( (‘/7,7E747817/(/}Z)’L€I) ij, ,J€1» Aijk, i,j,ke[)a
with ®;; = (Vij, bij, bij) : (%73,52‘,%) (“ 8]7%) and Ajjp =V zjk»Aijk]
for all 7 j,k‘ S I Here VZ,EZ,sz, U,qb”,(é”, zaka)‘uk are the images of VZ,E“

Si, 1]7¢1j3 ¢1j, Z]k, )\”k under F““Kl‘llr respectively, as in

Similarly, if f X >Yisal- morphism in mKur we define a 1- HlOI‘phlSHl
FmK“r(f) f X — Y in mKur, and if 7 : f = ¢ is a 2-morphism in mKur

mKur

we define a 2-morphism FmIIfl‘l‘:(n) Ik f = g in mKur, by applying F'

to all the Man structures in f, 1), in the obvious way.

mK ur
mKur

(0]



Let f : X - Y and g : Y — Z be l-morphisms in mKur, and write
f X o Y, g : Y — Z for their images in mKur under F;‘;é‘;: Then
Definition [4.20 defined go f : X — Z in mKur and §o f : X — Z in mKur,
by making arb1trary choices. Since these choices may not be consistent, we need
not have o f = FmK“r(g o f). However, because FmK“‘"(g o f) is one of the

mKur,

possible choices for g o f Proposition 4.19(b) gives a canonical 2-morphism

(FmKur)g FmKur (g) FmKur(f) g o .f — FmKur(g o f)

mKur mKur mKur mKur

in mKur, using the data 9%’,{ and their images under F:I‘II((S:

For X in mKur with F&“I?E:(X) = X in mKur, we see using 1} that
FmK“’(ld ) =id g. Define

mKur

(FmRuey o — dyg, : PP (d g ) — id

mKur mKur FmK“‘"(X)

mKur

This defines all the data of a weak 2-functor F"‘Iﬂ<ur mKur — mKur as in
gA.3] It is easy to check that the weak 2- functor axioms hold.

Now suppose that Fl\l\/f:: : Man < Man is an inclusion of subcategories
Man C Man satisfying either Proposition ( ) or (b). Then Proposition
3.21| says that the maps F Ma“ in § from geometry in Man to geometry in
Man used above are 1dent1ty maps. Hence mKur is actually a 2—subcateg0ry
of mKur and the 2-functor F mK“: is the inclusion mKur € mKur.

For the case of Proposition [3.21(b), when Man is a full subcategory of Man
then mKur is a full 2- subcategory of mKur. That is, if X,Y are objects of

mKur then all 1- morphisms f,g: X — Y in mKur are 1- morphlsms in mKur,
and all 2-morphisms 1 : f = g in mKur are 2-morphisms in mKur.

mKur
1// \\>

mKurg® <— mKur® ——— > mKur®?® > mKur

\
C
mKurs,,

Figure 4.1: 2-functors between 2-categories of m-Kuranishi spaces
from Definition Arrows ‘=’ are inclusions of 2-subcategories.

Applying Definition [£.32] to the parts of the diagram Figure of functors
F Man " involving the categories (4.36) yields a diagram Figure of 2-functors
mKur

o Arrows ‘—’ are inclusions of 2-subcategories.
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4.5 Discrete properties of 1-morphisms in mKur

In §3.3.6/and .We deﬁned when a propert P of morphisms in Man is discrete.
For example when Man = Man® from § for a morphism f: X — Y in
Man€ to be interior, or simple, are both dlbcrete conditions.

We will now show that a discrete property P of morphisms in Man lifts to
a corresponding property P of 1-morphisms in mKur, in a well behaved way.
We first define P for 1-morphisms of m-Kuranishi neighbourhoods, as in

Definition 4.33. Let P be a discrete property of morphisms in Man. Suppose
f X — Y is a continuous map and ®;; = (Vij,qbij,d;ij) : (Vi, By 85,05) —
(V;, Ej,s4,1;) is a 1-morphism of m-Kuranishi neighbourhoods over (S, f), for
S C X open. We say that ®;; is P if ¢;; : Vi; — V; is P near ¢; '(S) in V;;. That
is, there should exist an open submanifold ¢ : U < V;; with wi_l(S) CUCVy
such that ¢;; o+ : U — V; has property P in Man.

Proposition 4.34. Let P be a discrete property of morphisms in Man. Then:

(a) Let @i : (Vi, By, si,v:) — (V, Ej, 55,1;) be a 1-morphism of m-Kuranishi
neighbourhoods over (S, f) for f: X =Y continuous and S C X open. If
;5 is P and T C S is open then ®;;|r is P. If {T, :a € A} is an open
cover of S and ®;;|r, is P for all a € A then ®;; is P.

(b) Let @5, @ : (Vi, By, si,0:) = (Vj, Ej, 55,%;) be 1-morphisms over (S, f)
and Agj : @Zjéfbgj a 2-morphism. Then ®;; is P if and only if ®;; is P.

(c) Let f: X =Y, g:Y — Z be continuous, T CY, S C f~HT) C X be
open, ®;; : (Vi, By, 84,10:) — (Vj, Ej, s5,%;) be a 1-morphism over (S, f),
and @i 0 (V3,Ej,85,¢;) = (Vi, Ex, sk, Yi) be a 1-morphism over (T, g),
so that ®;; o O, is a 1-morphism over (S,go f). If ®;;, @, are P then
(I)jk o (I)ij is P.

(d) Let ®,; : (Vi, Ei,si,¢:) — (Vy, Ej, 85,%;) be a coordinate change of m-
Kuranishi neighbourhoods over S C X. Then ®;; is P.

Proof. Part (a) follows from Definition iv), and part (b) from Definitions
3.18((vii) and [A.3|(b), and part (c) from Deﬁmtlons [3-18)(iii) and [4.4]

For (d), as ®;; is a coordinate change there exist a 1-morphism ®; : (Vj,
Ej,55,v;) — (Vi, B, 85,%;) and 2-morphisms Ay @ @5 0 @45 = idv; 5, s5,00)
Ajj: @50 @y = idey, By s, 0,)- Write @i = (Vig, dij, dij), Lji = (Viis Gjis 0ji)s
and as in consider the diagram in Man:

o5, (Vi) Vi Vi
bijl S i
Piily— 653 (Vi)
—1
¢ji (Vij)( Vji( V}
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For each = € S let v; = ¢, ' () € ¢fj1(Vji) C Vi CV;and v; = w;l(x) €
(bj_il(Vij) C Vj; CVj, so that ¢;(v;) = v; and ¢;;(v;) = v; by Definition e)
for (I),L'j, (I)JL Definition b) for Aii7 Ajj implies that d)_ﬂ o (bij = ldVl + O(s;) on
¢;;' (Vji) and ¢ij 0 ¢ji = idy, +O(s;) on ¢5;' (Vi;). Therefore Definition [3.18(viii
implies that ¢;; is P near v;. As this holds for all z € S, Definition [3.18(iv)
shows that ¢;; is P near ¢; '(S), so ®;; is P. O

Definition 4.35. Let P be a discrete property of morphisms in Man. Suppose
f: X — Y is a l-morphism in mKur, and use notation , , for
X,Y, f. We say that f is P if f,; is P in the sense of Definition @ for all
i€landjeJ.

Proposition 4.36. Let P be a discrete property of morphisms in Man. Then:

(a) Let f,g: X —'Y be 1-morphisms in mKur and n: f = g a2-morphism.
Then f is P if and only if g is P.

(b) Let f: X Y andg:Y — Z be 1-morphisms in mKur. If f and g
are P thengo f: X — Z is P.

(¢) Identity 1-morphisms idx : X — X in mKur are P. Equivalences
f: X =Y in mKur are P.

Parts (b),(c) imply that we have a 2-subcategory mKurp C mKur containing
all objects in mKur, and all 1-morphisms f in mKur which are P, and all
2-morphisms n : f = g in mKur between 1-morphisms f,g which are P.

Proof. For (a), use notation (L.6), (£.7), for X,Y, f,g. Then we have
2-morphisms of m-Kuranishi neighbourhoods n;; : f,; = g,; for all 4, j, so
Proposition b) implies that f,; is P if and only if g;; is P, and (a) follows.

For (b), use the notation of Definition and suppose f,g are P. Then
foralli € I, j € J, k € K we have 2-morphisms @fj’,{ 1g;pofi = (go f)ir over
(Tj,go f) for Ty = Imy; N f~ (Ime;)N(go f) *(Imwy). As f,g are P, Fijr9jk
are P, so g;; o f;; is P by Proposition (c), and thus (g o f) is P over
(T}, gof) by Proposition b). Since this holds for all j € J, Proposition a)
implies that (go f)ix is P over (S, gof) for S = |J;c; Tj = Tm xiN(gof) ™' (Imwy),
which is the domain we want. As this holds for alli € I and k € K, go f is P.

For (c), that idx is P follows from and Proposition d)7 as the
T;; are coordinate changes. Let f : X — Y be an equivalence in mKur, and
use notation , , . Then there exist a 1-morphism g : Y — X and
2-morphisms n: go f = idx, ¢ : f o g = idy. Using the proof of Proposition
d) with f,:,G;:, M, C;j; in place of ®;;, @i, Ayi, Aj; shows that f,; is P, for
allte I and j € J,so fis P. O

Definition 4.37. (a) Taking Man = Man® from gives the 2-category of
m-Kuranishi spaces mKur® from Definition We write

mKur?

mn’

C C C C
mKurg ,, mKurg,, mKur mKurg ,,,, mKurg

c
st,in»
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for the 2-subcategories of mKur® with 1-morphisms which are interior, and
b-normal, and strongly smooth, and strongly smooth-interior, and strongly smooth-
b-normal, and simple, respectively. These properties of morphisms in Man® are
discrete by Example a), so as in Definition and Proposition we
have corresponding notions of interior, ..., simple 1-morphisms in mKur®.
(b) Taking Man = Man®® from gives the 2-category of m-Kuranishi
spaces with g-corners mKur&® from Definition We write

gc gc gc
mKur;,, mKury , mKurg,

for the 2-subcategories of mKur#® with 1-morphisms which are interior, and
b-normal, and simple, respectively. These properties of morphisms in Man8¢ are
discrete by Example b), so we have corresponding notions for 1-morphisms
in mKurse.

(c) Taking Man = Man?° from gives the 2-category of m-Kuranishi
spaces with a-corners mKur?® from Definition We write

ac

ac ac
mKur{], mKury? , mKurly, mKur

ac

ac ac
St in’ mKurSt’bn, mKurg;

for the 2-subcategories of mKur?® with 1-morphisms which are interior, and
b-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly
a-smooth-b-normal, and simple, respectively. These properties of morphisms in
Man?¢ are discrete by Example ¢), so we have corresponding notions for
1-morphisms in mKur?°.

(d) Taking Man = Man®?¢ from gives the 2-category of m-Kuranishi
spaces with corners and a-corners mKur®#¢ from Definition We write

c,ac
in

c,ac c,ac

ymKurp ™, mKur ™, mKur

c,ac

c,ac c,ac
st.in’ mKur

InI{urst,bn7 si

mKur

for the 2-subcategories of mKur®?¢ with 1-morphisms which are interior, and
b-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly
a-smooth-b-normal, and simple, respectively. These properties of morphisms in
Man®?2¢ are discrete by Example ¢), so we have corresponding notions for
1-morphisms in mKur®2°.

Figure gives inclusions between the 2-categories in (4.37). Combining
this with the inclusions between the 2-subcategories in Definition [4.37] we get a
diagram Figure of inclusions of 2-subcategories of m-Kuranishi spaces.

Remark 4.38. (i) Most of the 2-categories mKurf, ,mKur{ ... in Definition

n’
come from categories Mang,, Mang,_, ... satisfying Assumptions [3.1}[3.7}
so we could have applied §4.3] to construct 2-categories of m-Kuranishi spaces
mKur® directly from Man = Mang, , Mang ,.... But what we actually did
was slightly different. We explain this for Man§, and mKurf, , though it applies
to all the 2-categories above except those with simple 1-morphisms.
If X = (X,Z) lies in mKur®, with notation (4.6)), each T;; in Z includes a

morphism 7;; : Uy — Uy in Man®. Then X lies in mKur{ as defined above
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mKur
— .~ T

c,ac

mKur®’ mKur§ mKurg; mKur?®
mKur¢ — s mKur%?® - mKur2¢
st,bn st,bn st,bn
gc c c,ac ac
mKury | < mKurf , +——— mKur,,” <—— mKurg,,
C c,ac ac
mKurst,in r mKurst,in <~ T mKurst,in
mKurfl < mKur{, — mKur]*® <—— mKur¢
mKur®, ——— > mKur;?¢ - mKur2¢
st st st
mKurs® mKur€ mKur®2¢ mKur?¢

Figure 4.2: Inclusions of 2-categories of m-Kuranishi spaces.

lies in the 2-category mKur associated to Man = Mang, in §4.3|if the 75
are interior on all of U;;y. Similarly, if f: X — Y in (4.9) is a 1-morphism in
mKur® then f lies in mKurf, above if the f;; : Ui; — Vj in f,; are interior

if 754+ is interior near Xi_l(lm xir) for all 4,7" € I, as in Definition But X
4.3

near (f ox;)"'(Ime;), but f lies in mKur if the fij are interior on all of Uj;.

We have mKur C mKur{, € mKur®, where the inclusion mKur -
mKur{, is an equivalence of 2-categories, but mKur is not closed in mKur®
under either equivalences of objects or under 2-isomorphism of 1-morphisms,
but mKur{, is closed in mKur® under both of these. This closure is a useful
property, which is why we prefer this definition of mKur¢ ;.. ..

mn’
(ii) In 31 we mentioned a functor Fl\l\/;[::% : Man2f — Man$, from [66
§3]. Taking this to be Fli\/I/I:: : Man — Man and applying & gives a 2-
functor FmEur . mKur — mKur. This does not map mKur?f — mKurg,,
mKur S s

with the notation above, since mKur C mKur?, mKur C mKurg, are

proper but equivalent 2-subcategories, as in (i). However, we can get a 2-

mKurS
functor F st

. ac c - . . .
mKurse mKur?’ — mKur§, by composing with a quasi-inverse

. . Mang, c,ac
ac t . » (¢
for mKur — mKur2f. The same applies to FManiac : Mang;™ — Mang,

in (213
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4.6 M-Kuranishi spaces with corners.
Boundaries, k-corners, and the corner 2-functor

We now change notation from Man in to Man®, and from mKur
in to mKur®. Suppose throughout this section that Man€ satisfies
Assumption in Then Man® satisfies Assumptions SO
constructs a 2-category mKur® of m-Kuranishi spaces associated to Man®.
For instance, mKur® could be mKur®, mKurg®, mKur?®® or mKur®?¢ from
Definition We will refer to objects of mKur® as m-Kuranishi spaces with
corners. We also write mKur‘S:i for the 2-subcategory of mKur® with simple
1-morphisms in the sense of noting that simple is a discrete property of
morphisms in Man® by Assumption c).

Generalizing for ordinary manifolds with corners Man®, we will define
the boundary X and k-corners Cy(X) for each X in mKur®, and the corner
2-functor C : mKur® — mKur®. The definitions below are rather long,
mechanical, heavy on notation, and boring. Despite this, the underlying ideas
are straightforward, with little subtlety — everything just works, mostly in
the obvious way. The principle is to apply C' : Man®¢ — Man® in Assumption
g) to everything in sight, and use the ideas of on how differential
geometry lifts along I : Cx(X) — X.

4.6.1 Definition of the k-corners Cy(X)

Definition 4.39. Let X = (X, K) in mKur® be an m-Kuranishi space with cor-
ners with vdim X = n, and as in Definition write K = (I, (Vi, Ei, 8i,03)icr,
Dyj ijers Mnij, nijer) with ®;; = (Vij, éij, ¢i5) and Apij = [Viij, Anijl. Let
k € N. We will define an m-Kuranishi space with corners Cy(X) in mKur®
called the k-corners of X, with vdimCi(X) = n — k, and a 1-morphism
IT; : Ck(X) — X in mKur®.
Explicitly we write Cy(X) = (Cr(X), L) with
K = ({E} X I, (Vikiys E(kiys Ski)s Yiksi) il iy, (k)0 Moo (k.0 (k,5),)
ijel hyigel
with  @eykg) = (Viki)(kg)s Pk,i) k.5)> Pki) (k,5)
and A n) (ki) (k,g) = Vikoh) (ki) (k) Atk (k.0 (k)

where Ky, has indexing set {k} x I with elements (k, i) for ¢ € I, for reasons that

will become clear in §4.6.2) and as in (4.9) we write

o
_ j3’s 3.9 €l
I, = (Wg, Xk )5, 5 er, 1T )

j gl
vk, viver ey ier )» where

I 0, = (V(k,i)j7H(k,i)j7ﬂ(k,i)j) C (Viksiys Eiyiys 8(ki)> Y(ki)
— (Vj, Ej, 85, 95),

H{k,i)(k,i’) = [V(jk,i)(k:,i')v Hgk,z‘)(k,i’)] P ginyg © iy (ki) = i

I3 o = Vil Wi ol = @550 0 Mg iy = Thig 0.
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The hardest part is to define the topological space Ci(X) and the continuous
maps Iy : Cp(X) = X, ) : s@ll) (0) = Cr(X), and we do these last.

For each i € I, define Vi ;) = Ci(V;) to be the k-corners of V; from As-
sumption (d) Define E, ;) — V(4 to be the pullback vector bundle
IT;,(E;), where I, : V{3, ;) = Cr(Vi) — V; is as in Assumption d), and let
S(k,i) = 1} (s4) in T*°(E ;) be the pullback section. Using Assumption
we can show these are equivalent to E, ;) = Ci(E;), sk, = Cr(si), where
s; : Vi = E; is simple. Note that

dim V, ;) —rank E, ;) =dim Cy(V;) —rank E; =dim V; —k—rank E; =n—k,
by Assumption (d), as required in Definition b) for Cp(X).

Although we have not yet defined Cy,(X) and ¢ 4) : 55,4 (0) = Ci(X), the
definition we later give will have the property that for i, 7 € I we have

1/1(_;1‘) (Im.)) = (M 0 Yxsy)~ Amep;) = I (1 (Imapy)), (4.39)

where ¢; "(Ime;) C s77(0) € V; and I, : Vg = Ck(Vi) — Vi, and the
definition of s(; ;) implies that s(_kll)(()) =11, ' (5;1(0)).

Let 4,5 € I. Since simple maps are a discrete property in Man® by Assump-
tion c), Definition and Proposition d) imply that ¢;; : Vi; — Vj is
simple near ¢; ! (Im1);) C Vj;. Let V; € Vi; be the maximal open set on which
¢i; is simple, so that ¢; ' (Ime;) C V. Write ;j,q%j for the restrictions of
d)ij; gi;ij to Vz/] Define

Vikiyk.g) = Ce(V)- (4.40)

Then V(i i\(k,j) is open in V{; ;) by Assumption j), as V;’j C V; is open,

and Q/J(_kli) (Im iy N Im P 5y) € Vigiyk,j) as required in Definition a) for

D (4,i)(k.j) follows from (4.39) and ¢; ' (Imy; NImey;) € V/j. As ¢V, = V;

is. simple, Assumption [3.22{(d) gives a morphism Cy(¢};) : Cx(V};) — Cx(V;) in
Man®. Define

Dk,iy(kg) = Cr(9i5) : Viksiyej) — Vik,j)- (4.41)

Assumption [3.22{(g) implies that qS;j oIl =1I; 0 Ck(qﬁgj) : C’k(VZ’J) — V;. Thus
we may define

(lg(k,i)(k,j) = HZ(QAS;]) : E(kvi)h/(k,i)(k,ﬂ = HZ(Ell‘/[J) — HZ © ¢;§ (EJ)
= (¢, 0 k)" (E;) = (Ilg o Ci(¢y;)) " (E;)  (4.42)
= Ci(¢i;)" o L(E)) = Okiy o) Bk g))-

We have ¢;;(s; vi,) = ¢5;(s;) + O(s?) by Definition d) for ®;;, so pulling
back by . : Vigiyk,j) = Ck(Vi;) — V; € Vij using Theorem i) yields

¢(k,z’)(k,j)(S(k,i)|V<k,i><k,j)) = ¢>(kk,i)(k,j)(s(k,j)) + O(S%k:,i))a
giving Definition d) for ®;;.
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For IL( ;;, define
Vik,iy; = Cr(Vij), and
Wikiyj = dij o i : Vikiy; = Ck(Vig) — Vi,
Wiiys = Wi(dig) = By Vi oy = i (B
k0 055 (Ej) = (¢ij o k)" (Ej) = IL{y, 4y; (E5)-
We verify Definition a),(d) for I ;); as for ®;.
We have now completely defined the 1-morphisms ® ;. ;) (x,5), I (x,i);, although
we have not yet defined the data Ci(X) or Il : Cp(X) — X or ¢, in

(Vikiys E(hiys S(kyi)> Y(k,i)), and have not yet verified condition Definition e)
for @1 ) (k,j)> H(k,s); which involves Ci(X), g, ¥ (ki) Yek,j)- The definition

of the 2-morphisms A(k,h)(k,i)(k:,jﬁﬂgk kit Hzi 0 in Definition does not

(4.43)

Vij) —

involve Cy(X), g, ¥(k,i), so we can do these next.
For h,4,5 € I, choose a representative (Vhij7 S\hij) for the ~-equivalence class
Anij. Then Viij C Vi 0y, (Vig) N Vi C Vi is open, and Ay : Eily, =
Ts:;00n: Vilv,,, 15 a morphism. Set V,:Zj = Vi OV, N (b,;l(VZ’j) N Vj ;. Define
V(k,h)(k,z’)(k,j) = Ck(Vi:”) C Ck(vh) = V(k,h)‘ (4-44)
Define a morphism
Aty (ki) (k) = W Aniz) = Eem) v, oo = HZ(E’L"'/AM)

(4.45)
— %(k,i)(k,j)o‘b(k,h)(k,i)‘/(kwj)h’/(k’h)(k’i)(k’j) = TCk(@jO(bhilv}/lU)Ck(vj)’

where T13(Ap;) is as in §3.4.3{and §B.8.1}
Now Definition a) for Ap;; gives

¥y, (Im gy, NImyy; NIm;) € Vi,
Applying IT,.! to this and using (4.39) (which we assume for now) yields
¢(_;§h)(1m Yoy NI iy VIM P ) C Vi) (ki) (ki) (4.46)

which is Definition (a) for (V(k’h)(k’i)(k’j), X(kﬁh)(k,i)(k,j)) for the domain S =
Im w(’“ﬁ) NIm w(’%i) NIm w(k,j) for A(k,h)(k,i)(k,j) in Definition d) for Ck(X)
Definition b) for Ayp;; gives

Ohj = Bij © bni + Mnij 0 s + O(s2),
O = Ohi (i) 0 bni + (i 0 dni)*(ds;) 0 Apij + O(s,).

Pulling both equations back by Il : V(k,h)(k’i)(k)j) = Ck(V,{ij) — VAU and using
Theorem vi),(vil) yields

Blk) (k) = Plki)(k.g) © Pk ) (ki) + M) () (k) © S ) + O35 1y)s
qg(k,h)(k,j) = ¢§Z($(k,i)(k,j)) o (lg(k,h)(k,i) (4.47)
F(D (ki) (k.g) © P,k (i) (AS(k,5)) © Ak, ) (k,6) (i) T O(8(k,1))5
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which is Definition b) for (Vv(k,h)(k,i)(k,j)a S‘(k,h)(k,i)(k,j))-

Write A (k,R) (ki) (k,j) = [V(k R) (k,i) (k.,5) 5 :\(k,h)(k,i)(k,j)] for the ~-equivalence
class of (V(k R (k, Z)(k7])7>\(k R (k, 1)(;67])) as in Definition E Theorem ii)
implies that equivalence ~ on pairs (Vh”,)\hij) lifts to ~ on pairs (Vg n) (ki) (k.j)
Am) (i) (,3))s 50 Ao (i) () depends only on Apij = [Viij, Anig], and (once
we define Ci(X), %, and verify the @ )%, ;) are 1-morphisms), we have a
well defined 2-morphism of m-Kuranishi neighbourhoods

Ahh) (k) (kyg) * o) () © Riogn) (i) == P he,h) ()

Next, for 4,4’,7 € I and 1, 7,5’ € I, choose representatives (V” > 5\“ ;) and
(Vijj”)‘uj ) for Aiirj = [Vn‘ i» i) and Agjje = [Vijje, Aijje], define V(k Dk =
Ck( i) and V(jkjl) C’k( 5357), and define morphisms H(k’i)(k’i,),ﬂ(m) by the

commutative diagrams

Ekiylys G (Eily,, )

(k i) (k,i’)
J
\Ln(k ) (ki) I (A0 J)i/

7h(k i)5OP (ki) (k,i") J|V(7k —

%i’joqﬁii’ OHk ‘/}’

Ewiylyii I (E;

( 1)|V(Jk{i) ( |Vw )
inm ) I (A0 )J/

%jj/ol_[(k,i)jvﬂ‘}'&j'j) 7:j>_jj/o¢ijol'[k‘/j7

where I3 (Asir ) *(A\ijj7) are as in ( ).
o

Definition (b) for (V] ks )ﬁ(k ik, Z,) ) and V” H” ) follow from

Definition ) (b) for (V i Aiir ;) and (Vm , Aijjr), as for 1 . Write
1'1(1c Dbty = [V(k ki) H(ka)( in) and H(i = [ij]l),l'[zi 0 } for the ~- equlval—
ence classes of (V(k (ki) zk,i)(k,i’)) and (V(]ka), Hgi 2) in the sense of Definition
These depend only on A;;r; and A;;;/, and (once we 4deﬁne Cr(X), I,
Y(r,iy and verify the Ty ;y;, P14 (k,;) are 1-morphisms), H?k,z‘)(k,i') M0y 0
D@ (ki) (ki) = M4y, and H{;’i) : @5 0 Iy 5y, = (4, are 2-morphisms of
m-Kuranishi neighbourhoods.

It remains to define the topological space Ci(X) and the continuous maps
Yy - l”)(()) — Cp(X), i : Ck(X) — X. Define a binary relation ~
on [, (k’i)(O) by v; ~ v; if i,j € I and v; € V(g iy,5) N s(_kl,i)(()) with

Ao (vi) = viin st (0). We claim that ~ is an equivalence relation
B,y (k.5) (Vi) j *.9) q
on [[;c; 5@11) (0).

To prove this, suppose h,i,j € I and vy € s(k n) (0), v; € s(_kl’l.)(O), v; €
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s&ij)(O) with v, ~ v; and v; = v;. Then

U € 8y (0) N Vi my (ki = T (5, 1(0) N Vi) = T (4 (Imgp, 0 Ty ),
Vi € 53 (0) N Vik iy ey = I (5771(0) N Vig) = I (7 (Im gy N Im gy,

With (i n) (ki) (Vh) = Vis Gkiy(k,j)(vi) = v;. Hence

Yn o Ui (vn) = i 0 dpi o Ug(vn) = i o Uy © Sk n) (ki) (Vn)
= '(/)i o Hk(’l}i) S Imwi ﬂImlbj,

using Definition [£.2{e) for ®j,;. Thus
o € I (v (Im gy, N Imey)) = T (s37(0) N Viy) = 533 (0) N Vi iy i)

and @i n)(k,;)(vn) is defined. The first equation of (4.47) and s 4y (vn) = 0
imply that ¢ (k) (k,5) (Vh) = G(k.i)(k.5) © Pk, (k,1) (V) = D(kiy(k.g) (vi) = v;. Hence
v, & vj, and vy, & v, v; = v; imply that vy, = v;.

Taking j = h and noting that ¢k nyk,n) = idv, ,,, we see that

Blhe,h) (ki) |-+ S@Th)(o) O Vi) (ki) — S@ll) (0) N Vikiy ()

N h (4.48)
iy (k|- S(k%i) (0) N Vikiy(k,ny — S(k{h) (0) O Vig,n)(k.i)»

are inverse maps. Hence v, =~ v; implies that v; =~ vy. And v, = vy, for any
vp € s(_klh) (0) as A(x,hy(k,n) = idyy, ,,- Therefore ~ is an equivalence relation.
Now define Cj(X) to be the topological space, with the quotient topology,

Cr(X) = [ie; s(—k{i)(())]/ A (4.49)

For each i € I define 14 ;) : s(}li)(O) — Cp(X) by Y : vi = [v5], where [v;] is
the ~-equivalence class of v;. Define Iy, : Ci(X) — X by I ([v;]) = v o Iy (v;)

fori € I and v; € s(_kli)(()), so that TIj(v;) € s;*(0) and v; o TIx(v;) € X. To

show this is well defined, suppose [v;] = [v;], so that 4,5 € I and v; € s(_kli)(O)7
v € Sacld)(()) with v; =~ v;. Then v; € V(k,i)(k,j) with ¢(k7i)(k7j)(vi) = vj, so that

;0 Il (vs) = ;0 Iy © Pk iy(k,5) (Vi) = Vj © Pij o g (i) = i o Ty (vy),

using Definition e) for ®;; in the last step. Hence IIj, is well defined. Observe
that follows easily from the definitions of Cy(X), IIx, v ;) above.

We have now defined all the data in Ci(X) = (Cr(X),Kr). It remains
to verify the conditions of Definition As C;(X) is made by gluing the

topological spaces s(;li)(O) for ¢ € I by an equivalence relation v, = v; for

v, € s&ih) 0), v; € s@lz) (0) which identifies open sets s&%h)(O) O Vi, n) (ki)
in s@%h)(O) and s(_kl’l.)(O) N Viki)k,n) i s(_kl’i)(O) by a homeomorphism (since

Bke,h) (i) |-+ D(re,iy e,k |- in (4.48) are continuous, inverse maps), it follows that
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Y(ki) s@ll)(O) — C(X) is a homeomorphism with an open set Im 1 ;

in Cx(X) for i € I, giving Definition (d) for (Vik,iys Ek,i)> S(hsi)s Yhsi))s SO

(Viksiys E(hiys S(k,i)» Y(k,i)) 18 an m-Kuranishi neighbourhood on Cy(X) for i € I.
Because 91 ;) : 5(761,1,)(0) — Im 4, 5 is a homeomorphism, we see that

I tm gy = Pi 0 0 (Yesy) ' s Im ) — X,

which is clearly continuous. As the Im1 ), @ € I cover Cr(X), this proves that
Iy : Cp(X) — X is continuous. Also Im ;) = IT, ' (Im);), and gl sy
Im s ;) — Imy); is isomorphic to ... : IT; ' (s;*(0)) — s;(0). Since IIj :
Cr(Vi) — V; is proper with finite fibres by Assumption [3.22{(d), we see that
Tg|... : H,;l(Imzbi) — Im4; is proper with finite fibres. As the Im); : i € T
cover X it follows that IIj : Cy(X) — X is proper with finite fibres.

Suppose ) # 25 € Cx(X), and set x; = g (x]), zoa = Ug(zh) in X. If
x1 # o then as X is Hausdorff there exist open 1 € Uy C X, x5 € Uy C X
with Uy N Uy = 0, and then U] := I, '(Uy), U := II.}(Us) are open in X
with x) € Uy, b € U} and U{ NU, = 0. If z1 = x2 then z1,x9 € Im1p; C X
for some i € I, so 27,75 € Ime(, ;) € Cp(X). But Im)y ;) is open in Cy(X)
and is homeomorphic to s(}l’i) (0) € Vik,i), which is Hausdorff by Assumption
b) for Vi ;. Hence there exist open 7 € Uj C Im,; € Cp(X) and
rhy € Uy CIm, ) € Crp(X) with U] NU; = (. Therefore Cy(X) is Hausdorff.

As X is second countable and the Im 1);, i € I cover X, there exists a countable
subset J C I with X = (J,c;Im4;. Therefore Ci(X) = U;c;Im ;). But
each Im 1), ;) is homeomorphic to 353,1') (0) € V(k,s), which is second countable by
Assumption b) for Vi1, ;). So Cr(X) is a countable union of second countable
open subspaces, and is second countable.

For all of Definition a)—(h) for C,(X), either we have proved them
above, or they follow from Definition [4.14|a)-(h) for X by pulling back by IIj,
and using Theorems [3.271{3.28, (In (c), that @ ;)(x,5) is a coordinate change
follows from @4 ;y(x,;) @ I-morphism and (d),(f).) Hence Cy(X) = (Ci(X), Kx)
is an m-Kuranishi space with corners in mKur®, with vdim Cj, (X)=n—k.

Similarly, for Definition a)—(h) for Iy, : Cx(X) — X, either we have
proved them above, or they follow from Definition for X using Theorems
3.27}3-28] where we deduce Definition [£.17(f)-(h) for I1); from Definition [£.14(h)
for X. Thus ITj, : Cx(X) — X is a 1-morphism in mKur®.

When k =1 we also write 0X = C1(X) and call it the boundary of X, and
we write ix : 0X — X in place of IT; : C1(X) — X.

We summarize Definition 439 in:

Theorem 4.40. For each X in mKur® and k = 0,1,... we have defined the
k-corners Cy(X), an object in mKur® with vdim Cj(X) = vdim X — k, and
a 1-morphism Iy, : Cp(X) — X in mKurC, whose underlying continuous map
Iy : Cr(X) — X is proper with finite fibres. We also write 0X = C1(X), called
the boundary of X, and we write ix =II; : 0X — X.
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Remark 4.41. (a) The definitions of Ci(X) and Il : Cx(X) — X in Def-
inition involve the notions of simple maps in 1\'/Ian"7 and the functor
C Man — Man$,, and the projections IIj, : C(V) — V for V € Man®.
Apart from these, they do not involve the corner functor C' : Man®¢ — Man®.
As in Example when Man€ is Man®, Man$,;, Man®¢, ManZ, Man®2¢
or Man$® there are two possibilities C,C’ for C' : Man® — Man®. In each
case, simple maps, the functor Cj, and projections Ilj, are the same for C,C".

Therefore Cx(X) and Iy : C(X) — X in mKur® are the same for C' and C’.

(b) Definition is similar to Fukaya, Oh, Ohta and Ono [24, Def. A1.30] for
FOOO Kuranishi spaces — see {7.1] for more details.

4.6.2 The corner 2-functor C : mKur® — mKur®

Definition 4.42. Define the 2-category mKur® by following the deﬁnition of
mKur® in 3- but with the following modifications. In Definition for
objects X = (X,K) in mKur®, rather than taking vdim X to be an mteger
n, it is a locally constant function vdim : X — Z. In part (b), we omit
dim V; —rank E; = n, but instead we require that vdim |1 4, = dim V; —rank E;,
for all ¢ € I. This determines vdim : X — Z, so it is not extra data. Objects of
mKur® will be called m-Kuranishi spaces with corners of mixed dimension.

Then mKur® embeds as a full 2-subcategory mKur® ¢ mKur® in the
obvious way. Any X in mKur® may be uniquely written as X =[], ., X,
where X,, C X is open and closed with topological space X,, = vdim™*(n), and
X, € mKur® ¢ mKur® with vdim X,=neccz.

If f: X — Y is a l-morphism in mKur® with X = [Locz Xm, Y =
H,cz Yn for X, Y, in mKur® with vdim X,, = m, vdimY,, = n, then
flx,.. + Xmn —> Y, is a l-morphism in mKur® for all m,n € 7Z, where
Xy = XpNf~ ( ) 1s open and closed in X ,,, C X, with X,,, = ]_[neZ X

An alternative way to construct mKur® from mKur® is to say that objects
of mKur® are HnGZ X, for X, in mKur® with vdim X, = n as above, and
a 1-morphism f : [[,,cp Xm — [,z Yn in mKur® assigns a decomposition
Xy = Hnez X.nn in mKur® for m € Z with X.mn € X, open and closed, and
1-morphisms £, : Xy — Y, in mKur® for all m,n € Z, and so on.

We write mKurgi for the 2-subcategory of mKur® with the same objects,
and with simple 1-morphisms, and all 2- morphlsms between 1- morphlsms in
mKur For the examples of mKurC C mKur® in and §4.5( we use the
0bv1ous notation for the corresponding 2- Categorles mKur - rnKur , so for
instance we enlarge mKur® associated to Man® = Man® to mKur®,

Definition 4.43. We will define a weak 2-functor C : mKur® — mKurc7
the corner 2-functor. On objects X in mKur®, define C(X) = [[;—, Ck(X)

in mKur®. Extending the notation of Definition we regard C(X) =
(C(X),Kn) as a single object in mKur®, where Ky has indexing set N x I, and
the part of C'(X) with indexing set {k} x I C N x I for k € N is Cx(X) C
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C(X). Define a 1-morphism IT: C(X) — X in mKur® by IT = 15 I, for
II; : Cx(X) — X as in Definition

Let f: X — Y be a l-morphism in mKur®, and use notation ,
and for X,Y, f. Thus as above we write

C(X) = (C(X),In), In=(NX1,(Upiy, Dik,i)s T(k,i)> X (ki) (ki) €N
Thyiyrriry = (Ulhiy(krir)s Tlhyi) (ki) Tlhyi) (k7,07)) (ky), (ki) ENX T
K iy iy iy = [0y iy (i) By () o) i) (0, (7Y €8T )
C(Y)=(C(Y),Tn), In=NxJ Vuj) Eujy sy as))wiyens
Tapw .59 = Vi) V.5 00 i) @505 eNx T
Najyanargm = Wv(l’j)(l’,j’)(l”’j”%S‘(lJ)(l’vj’)(l”J”)](l,j)x(l’,j')’(l"»j”)ENXJ)'
We will define a 1-morphism C(f) : C(X) — C(Y) in mKur®, where

C(f) = (C(f)v .f(k,i)(l,j), (k,i)ENXI, (1,j)ENX.J>

(L), (Li)ENXT L)), L)1) ENR T
F (i riny, (i), (hrinyenx 1 E (1), (iyenxt )-

First we define the map C(f) : C(X) — C(Y). Suppose 2’ € Cx(X) C C(X)
with Iy (z') = z € X, and let y = f(z) € Y. Choose i € I and j € J with
x € Imy; and y € Im1;, so that 2’ € Im ;). Write u; = x; @) er;t(0) C
Ui, v}, = x(_kl,i)(a:’) € r(_k%i) (0) € Uiy = Cr(U;), so that Iy (u;) = u;, and write
v; = wj_l(y) € sj_l(O) C V;. Then f;;(v;) = v; by Definition (e) for f;.

In f we have .fz] = (U’L]7f1]7f1]) : (Ui7DiariaXi) — (‘/j)E]aSjadjj)a and
u; € Uij C U, so that u; S Ck(Ul) - Ck(Ul) Then fij : Uij — ij is a
morphism in Man®, so C(f;;) : C(Us;) — C(V;) is a morphism in Man® by
Assumption g). Write v} = C(fi;)(u;) € Ci(V;) € C(V;). Then

I, (v}) = 0 0 C(fiy) (u) = fij o Mi(uf) = fij(us) = v; € s51(0),

s0 v € Hfl(sjfl(())) = 3(773)(0). Define C(f)(2") = .5 (vj) € Ci(Y) C C(Y).
To show this well defined, let 7 € I, 7 € J be alternative choices with
x € Im x3, y € Im )3, and write uz, uz, vz, v for the alternative u;, uj, v;, v We

have coordinate changes T3 = (Uy, T, 72i), Y57 = (Vj3,v535,05;) in X, Y. Then
Ya.g)(W) = Yag o C(fij) (i) = Yaz) 0 Clugz) o Cfiz) o Cmai)(uz)
=vYa,j © Cvjzo fij o mii)(uz) = Va3 o Cfiz)(uz) = Pz (v5).
Here in the first and fifth steps we use the definitions of v;-, v%, in the second the
definition of Cy(X), C;(Y) in with Tai, Vjj simple near u;, v5 so that k,{ do
not change, in the third that C': Man® — Man€ is a functor, and in the fourth

Definition g) for f. Hence C(f)(z’) is well defined.
We now have a commutative diagram

(4.50)

uj € 1 (0) N Cr(Uiy) N C(fi3) "1 (Ci(V5)) TR s (0)
\LX(k,i)l«»« 1[’(l,j)\L (4-51)
/ c(f)
' € O(X) o).
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As the top row is continuous, and the columns are homeomorphisms with open
subsets of C'(X), C(Y), we see that C(f) is continuous in an open neighbourhood
of / in C'(X). As this holds for all 2/, C(f) is continuous.

If f: X — Y is simple then f;; : U;; — V; is simple near ri_l(O) for all 4, 7,
so C(fij) maps Cy(U;;) = Cr(V;) near r(fk%i)(O) for all k =0,1,..., and hence
C(f) maps Cix(X) = Cp(Y) for all k =0,1,....

For (k,i) € N x I and (I,§) € N x J, with f,; = (Uy, fij. fij), define

Utkiyt.) = Cr(Uij) N C(fij) "1 (Cu(V;)) € Ugriy = Cu(U3),
feyws = CUidlvg na sy Uk — Vag = ClVy),
f(k,i)(l,j) = Hz(fij)|U(k,i)(l,j) DU iy = H’“'z’(k,i)(w)(Di)
— Welgg, o0 © fi(Ei) = Colfii o o0 @ Te(E5) = flias (Ea)-

Then we have a 1-morphism of m-Kuranishi neighbourhoods

Ty = Uwiyg) feiy @) @)+ Ukiys Dikiys Tik,iys X (ki) (

4.52)
— V) Eagyssa.i) Yag)

over C(f): C(X) — C(Y) and S = Im x (3, NC(f) "' (Im 1, ;)). Here Definition

a)f(c) for f (i) are immediate, (d) follows by applying 1Ty to (d) for f;;
and using Theorem i)7 and (e) holds by ([4.51).

Let 4,4 € I and 7,7’ € J, and choose representatives (Ufz,7ﬁ'fz,)7 (U’fj/,Fijj/)
for FI, = [0, F4,). F9' — [0, F%/ ] in f. For k,1 € N, define

A T

oy L -
U((k,Ji;(k,i/) = Cr(U},) N C(firj o i)~ (Ci(V5)),

S35 i - (4.53)
Uy 77 = CuU} ) N C(ujjr 0 fi) " (Cu(Vyr)).
As for (4.45)), define morphisms
FGD T ) Dyl — TT5(Dy)| - s
(ki) (kst") W )|U((flc’,3i;(k,i/) " )|U<(L’,Jz‘§<k,i’) il )|U((flc:]i;(’€=i’) (4.54)
— 7}(19,1")(1,3’)OT(k,i)(k,i’)‘/v(lvj)|[j((;=-:;(k ) = TC(fi/jorii/ﬂU(l,j) Cl(vj)v
PR (k,i)(k,i’)
A1) (15 i .
F((ki))( 7 =103 (F Ngaaain : Dieiylganasn = (Di)lpanaan
(k,i) (k,i) (k,i) (455)

7;(1J)(Lj’)of(k,i)(z,j)V(lvj’)|U’(<L’{ﬁ;“'j/> = TC(Ujj’ofi_i)‘ﬁ((i,j;(l,j’)Cl(‘/‘vj,)7
o N

where Hz(ﬁ'zjl,),HZ(FZ]/) are as in
Now define 2-morphisms of m-Kuranishi neighbourhoods

G ) AL 1.

Fiowin = Uk Fotymin)  Foinws © Tomiy = Friw)
DT _ ) SN .

Fa =000 s Yapasm © Fanag = Fonan-
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Definition a),(b) for FEZJZ) kil 7F8€j))(l] ) follow from Definition ( ),(b)
for Ffz,,sz , as for |)| . The equivalences ~ on pairs (Ufz,, Aﬁ,),

; ; 7(1,5) (4,9) L) )57
(Ui“ sz'” ) lift to ~ on pairs (U(ka)(k 1/),F(kz)(k i) (U(kjl) -J F(kz) 7Y by
Theorem [3.28(ii), so F':7) F"D03) depend only on F, /,F”

(ki) (k,i7)° = (K, Z)
It k # k" and | # I’ we define

(L.9)
F o ) =[0,0]: foerinag © Ty iy = Fi,
( 9 )
FUAT = 10,01 Y0 © Foenwy = Fwiws)
This makes sense as T4 ;y(x,i7), L (1,5)(17,;) are trivial, since
Imx(k7i) n Imx(k/,i/) = Im¢(l7j) N Ide(l/J/) =0

as C(X)NCp(X) =0, C,(Y)NCp(Y) = 0.
We have now defined all the data in C(f) in (4.50]), and verified Definition

4.17(a)—(d) for C(f). We deduce (e)-(h) from Deﬁnition e)—(h) for f
by pulling back by IIy, : Cy(V;) — V; using Theorems - This proves

C(f): C(X) — C(Y) is a 1-morphism in mKur®.

If f: X — Y is simple (that is, a 1-morphism in mKurgi) then C(f) maps

Cr(X) — C(Y) for k =0,1,.... Also as fi; : U;; — Vj is simple near r; *(0),

C(fi;) : C(U;;) — C(V;) is simple near r(_k}l.) (0) by Assumption (i), S0
feiyag) and f i) in are simple. Therefore C(f) : C(X) — C(Y)
is simple and decomposes as C(f) = [[;—, Ck(f) for Cr(f) : Ci(X) — Cr(Y)
in mKurgi.

Now let f,g : X — Y be l-morphisms and n : f = g a 2-morphism
in mKur®. Use the notation above for X,Y, f,C(X),C(Y),C(f), and the
obvious extensions to g, C(g), and write n = (nij’ iel, jeJ). Forie I and j€ J,
choose a representative (Uzj,ﬁij) for m;; = [Uij,ﬁij] : fi; = g, Let k)l € N

As in - define
U(m)(uj) = C(Ui) N C(fi;)" (Cu(V5)) and
Mok = W Dilo, o - Pralog oo, = Weli, 0, P

Theinan (l*])|U(k D) TC(fij)lU(k,i)(l,j) GV3),

where IIf, (7);;) is as in §3.4.3] The same proof as for FEZ?)(M’)’ FE;”JQ)U’JJ) shows

Niywg) = Utk ) Ny i)+ Fooiyws) = 9k.i)0.5)

is a 2—morphism of m-Kuranishi neighbourhoods, and is independent of the
choice of (U;j,1;j). Define

C) = (Mk,iy1.g), (kiyenxr, @jenxs) : C(F) = C(g).
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We can deduce Definition a),(b) for C(n) from Deﬁnition ( ),(b) for
n, by pulling back by Il : C(V;) — Vi using Theorems |3 Hence
C(n) : C(f) = C(g) is a 2-morphism in mKure.

Let f: X —-Y,qg:Y — Z be l-morphisms in mKurC, with notation
1]1] Deﬁnition defines the composition go f : X — Z in mKur®,
by making an arbitrary choice, with 1-morphisms @f'ﬂ{ gk o fij = (gofi

in 4) making (4 7 commute. The constructions above now give
C(f) C’( ) — O ) and C(g):C(Y)=C(Z)and C(go f) : C(X) = C(Z)
in mKur®. Definition also defines the composition C(g) o C(f) : C(X) —
C(Z) in mKure, by making an arbitrary choice.

Since the choices in g o f and C(g) o C(f) may not be consistent, we need
not have C(g) o C( f) C(g o f). However, by applying the corner functor to
the 2-morphisms @g Ui as for Apgj, FI, ... above, we can show that C(g o f) is
one of the possible ‘choices for C (g) o C(f). Hence Proposition [4.19)(b) gives a
canonical 2-morphism Cy 5 : C(g) o C(f) = C(g o f) in mKur®.

For any X in mKur® we can show from the definitions that C(idx) = ide(x)-
Define a 2-morphism Cx = idia., : C(idx) = idc(x) in mKur®. This
defines all the data of a weak 2-functor C' : mKur® — mi{.urc7 as in E It is
easy to check that the weak 2-functor axioms hold.

As above, if f : X — Y lies in mKur$ then C(f) = [Toeo Cr(f) for
C(f) : Cx(X) — Ci(Y) 1-morphisms in mKur,. Hence C|
as C(|mI'(urc.
Let the boundary 2-functor be 0 = Cy : mKurgi — mKurgi.

If for some discrete property P of morphisms in Man® the corner functor
C : Man® — Man® in Assumption ug) maps to the subcategory lV\/Ian‘jD

of Man® whose morphisms are P, then in the definition of C(f) above the
1-morphisms f(k i)(1.j) are P, so that C : mKur® — mKur® maps to the

miure. decomposes

= ]_[2020 Ck where C}, : mKurg;, — mKurg, is a weak 2-functor.

2-subcategory mKur$ % of mKur® whose 1- morphisms are P.
We summarize Definition [4.43] in:

Theorem 4.44. We have defined a weak 2-functor C' : mKur® — mKur®
called the corner 2-functor. It acts on objects X in mKur® by C(X) =
ot oCu(X). If f: X =Y is simple then C(f) : C(X) — C(Y) is simple
and maps Cip(X) = C(Y) for k = 0,1,.... Thus C| decomposes as
Clipcure. = Lo Ck, where Cy, : mKurg — mKurS is a weak 2-functor
acting on objects by X — Ci(X), for Cx(X) as in . We also write
0=0Cy: mKur ;= mKurSI, and call it the boundary 2-functor.

If for some dzscrete property P of morphisms in Manc the corner functor
C : Man® — Man® maps to the subcategory ManP of Man® whose morphzsms

are P, then C' : mKur® — mKur® maps to the 2-subcategory mKurP of
mKur® whose 1-morphisms are P.

3 c
mKurg;
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4.6.3 Examples, and easy consequences

Example 4.45. Example (a)—(h) give examples of data Man®, simple maps,
corner functors C' : Man® — Manc, etc. satisfying Assumption where the
corner functors are written either C' as in Definition 2.9lor C” as in Definition 2111
Definitions and give our notation for the corresponding 2-categories
of m-Kuranishi spaces mKur®, mKurg,, ... from and Applying the
constructions of to this data Man®, ... gives Cx(X),dX and 1-
morphisms I : Cp(X) - X, ix : 0X — X for X in mKur®, and corner
2-functors C' : mKur® — mKur®.
We write the corner 2-functors coming from Example a)—(h) as:

C : mKur® — mKur{, ¢ mKur®, C" : mKur® — mKur®,

C : mKurg, — mKurg, ;, C mKurg,, C": mKur§, — mKurS,,

C : mKur®*® — mKurf ¢ mKur®®, C" : mKur®® — mKur®®,

C: mKurgy — mKurgy;, € mKurgy, C": mKur?f — mKurdy,

C: mKur®®* — mKur{*° ¢ mKur®®®, C’': mKur®®® — mKur®?,

C: mKurg* — mKurg, ¢ mKurg?™®, ¢ :mKurg® — mKurg™,
:

C : mKur®® — mKur{’ ¢ mKur®°. (4.56)

As in Example [3.24[h) and there is no second corner functor C’ on
Mang¢, and so no 2-functor ¢’ on mKur&®. The functors C' map to interior
morphisms in Man€, ..., where interior is a discrete property as in SO
the last part of Theorem [4.44] implies that the corresponding 2-functors C map
to interior 1-morphisms in mKur®.

Remark [4.41fa) explains that the notions of boundary 0X, k-corners Cj,(X),
and l-morphisms IIj : Cx(X) — X in mKur®, mKur§,, mKur?®, mKur2f,
mKur®?® and mKurg;”® are independent of whether we choose C' or €’ in

Assumption So in each of the first six lines of (4.56)), the 2-functors C' and
C' agree on objects, but differ on 1- and 2-morphisms.

As in Proposition a),(b), all of the functors C' : Man® — Man® in Exam-
ple a)—(h) (though not the functors C’) have the property that a morphism
f: X — Y isinterior if and only if C(f) : C(X) — C(Y) maps Cy(X) — Co(Y),
and f is b-normal if and only if C(f) maps Ci(X) — Hf:o Ci(Y) for all
k=0,...,dim X, where interior and b-normal are discrete properties. Applying
this to the definition of C(f) in Definition we easily deduce:

Proposition 4.46. For all of the 2-functors C in (4.56) (though not the 2-
functors C'), a 1-morphism f : X — Y is interior (or b-normal) if and only

if C(f) maps Co(X) — Co(Y) (or C(f) maps Cr(X) — Hf:o Ci(Y) for all
k=0,1,..., respectively).

The boundary dX and k-corners Cr(X) of X in mf{urc depend, up to
equivalence in mKur®, only on X up to equivalence in mKur®. In applications
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m-Kuranishi spaces with corners X are usually only natural up to equivalence
in mKur®, so this is important for boundaries and corners to be well behaved.

Proposition 4.47. Let f: X — Y be an equivalence in mKur®. Then I is
simple by Proposition c), and Ci(f) : Cp(X) — Ci(Y) for k =0,1,...

and Of : 0X — OY are also equivalences in mKur€.

Proof. As f is an equivalence there exist a 1-morphism g : Y — X and 2-
morphisms n: go f = idx, {: fog = idy in mKur®, where g is also an
equivalence, and so simple. For k > 0 we can apply the 2-functor C}, : mKur;’i —
mKurgi to f,g,m,¢. The compositions of 2-morphisms

(Ck)g

, Cr(n) . .

Ci(g) o Cru(f) —=2L= Cl(g o f) ——2—= C)(idy) —— ide, (x)»
(Ck) g Cﬁ(() . .

Cr.(f) o Cr(g) I Ok(fog)A:>Ck(1dY):1de(Y)a

show Ci(f) is an equivalence, so putting k = 1 shows df is an equivalence. [

Definition 4.48. As in Definition we write mKur® for the 2-category of
m-Kuranishi spaces with corners associated to Man® = Man®. An object X
in mKur® is called an m-Kuranishi space with boundary if 9(0X) = (. Write
mKurP for the full 2-subcategory of m-Kuranishi spaces with boundary in
mKur®, and write mKur:’i - mKur}Dn C mKurP for the 2-subcategories of
mKur? with simple and interior 1-morphisms.

If V € Man€ then 9(0V) = 0 if and only if Cx(V) =0 for all k > 1. (For
any Man® satisfying Assumption surjectivity of Ij; in (f) implies that
the same holds in Manc). Using this we can show that X € mKur® is an
m-Kuranishi space with boundary if and only if C(X) =0 for all £ > 1.

4.7 M-Kuranishi neighbourhoods on m-Kuranishi spaces

At the beginning of differential geometry, one defines manifolds X and smooth
maps f : X — Y in terms of an atlas {(Vi,z/;i) 1i € I} of charts on X, and
transition functions 1;; = wj_l o 1/)i|w;1(1m¢j) between charts (V;,¢s), (V},1;).
However, one quickly comes to regard actually choosing an atlas on X or working
explicitly with atlases as unnatural and inelegant, so we generally suppress them,
working with ‘local coordinates’ on X if we really need to reduce things to R".

We now wish to advocate a similar philosophy for working with m-Kuranishi
spaces X = (X, K), in which, like atlases, actually choosing or working explicitly
with m-Kuranishi structures K = (I, (Vi, Ei, sisi)ier, Pij,ijers Nijk, i,j’kg) is
regarded as inelegant and to be avoided where possible, and X is understood to
exist as a geometric space independently of any choices of I, (V;, E;, si, %), .- ..
Our analogue of ‘local coordinates’ will be ‘m-Kuranishi neighbourhoods on
m-Kuranishi spaces’.
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4.7.1 Defining m-Kuranishi neighbourhoods on m-Kuranishi
spaces

Definition 4.49. Suppose X = (X, K) is an m-Kuranishi space, where K =
(I, (Vi, Ei, sis03)ier, Pij, ijer, Nijk, ,»7]»,;961). An m-Kuranishi neighbourhood on
the m-Kuranishi space X is data (Vy, Eq, Sa, ¥a), Pai, icr and Agij, i jer, where
(Vay Eqy Say%a) is an m-Kuranishi neighbourhood on the topological space X
in the sense of Definition and @u; 1 (Va, By Sa,Va) — (Vi, By, si,) is a
coordinate change for each i € I (over S = Im1,NIm1;, as usual) as in Definition
and Agj : @50 Py = Py is a 2-morphism (over S = Im ¢, NImyy; NIm )y,
as usual) as in Definition for all 4,j € I, such that A,;; = ide,, for all i € I,
and as in Definition h), for all 7,4,k € I we have

Aajk O] (idcpjk_ * Am'j) = Agir ® (Aijk * id.:pai) 1Py 0P, 0 b, — Dur, (4.57)

where holds over S = Im 1), NIm 1; NIm 1; NIm ¢, by our usual convention.

Here the subscript ‘a’ in (V,, Eq, Sq, %) is just a label used to distinguish
m-Kuranishi neighbourhoods, generally not in I. If we omit a we will write ‘*’
in place of ‘a’ in ®4;, Agij, giving @4 : (V, E,s,90) — (Vi, Ei, si,1;) and Ay -
(bij od,; = ‘I)*j.

We will usually just say (Va, Eq, Sa,%a) or (V, E,s,9) is an m-Kuranishi
netghbourhood on X, leaving the data ®4;, Agi; or ®.;, Ay,; implicit. We call
such a (V| E, s,1¢) a global m-Kuranishi neighbourhood on X if Im¢ = X.

Example 4.50. Let X = (X,K) be as in Definition and let ¢ € 1.
Then (V,, E,, Sa, %) is an m-Kuranishi neighbourhood on X, with data ®;, ier,
Aaij, ijer as in K, where follows from Definition h) for X. Thus, all
the m-Kuranishi neighbourhoods in K are m-Kuranishi neighbourhoods on X.

Definition 4.51. Using the same notation, suppose (Va, Eq4, Sa,¥a), Pai, i1,
Agij i jer and (Vo, Ey, sp, %), Pui, ic1, Abvij, i jer are m-Kuranishi neighbourhoods
on X, and S C Imv, NIm1, is open. A coordinate change from (V,, Eq, Sq,%q)
to (Vi, Eyp, sp, %) over S on the m-Kuranishi space X is data @ap, Api, icr,
where @y 0 (Vo, Eo, Saya) = (Vb, Eb, Sp, 1) is a coordinate change over S as
in Definition and Agp; @ Pps 0 Py = Py; is a 2-morphism over S N Imp; as
in Definition [£.3] for each i € I, such that for ¢, € I we have

Aaij ® (id(bi,j * Aabi) = Aabj ® (Abij * idfpab) : q)ij o ®p; 0Dy — q)aja (458)

where holds over S N Ime; NIm;.

We will usually just say that ®up : (Va, Ea, Sa,Va) = (Vb, Eb, b, ¥p) 18 a
coordinate change over S on X, leaving the data Ag;, icr implicit. If we do not
specify S, we mean that S is as large as possible, that is, S = Im vy, N Im ¥y

Suppose @up 1 (Va, Ea, Sa,Va) — Vi, Eb, 5p, ), Aabi7 ier and Py : (V3
Ey, s, ) = (Vo, B¢, e, ¥c), Mpei, icr are such coordinate changes over S C
Im ’(/}a NIm wb NIm 'l/}c~ Define CI)ac = q)bc o (I)ab : (Vaa Eaa Sa; "/}a) — (va Em Sc, wc)
and Agei = Aapi © (Ape; ¥ids,, ) : e 0 Py = Py, for all ¢ € 1. Tt is easy to show
that @4 = Ppe © Pyp, Agei, ier 18 a coordinate change from (Vg, Eq, Sq, %) to
(Ve, Ee, 8¢, %¢) over S on X. We call this composition of coordinate changes.
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Example 4.52. Let X = (X,K) be as in Deﬁnition and let a,b € I. Then
(Va, Eay Saste) and (Vi Eb, Sp, 1) are m-Kuranishi neighbourhoods on X as in
Example [£.50] The coordinate change ®qp : (Va, Eq, Sa; Ya) = (Vo, Ep, Sp, %) in
K is a coordinate change over Im, NIm1;, on X, with data Agp; icr as in .

Example 4.53. Let X, Y be m-Kuranishi spaces in mKur, and (U,D,r, x) and
(V, E, s,1) be m-Kuranishi neighbourhoods on X,Y. Example defined the
product m-Kuranishi space X x Y. It is easy to construct a product m-Kuranishi
neighbourhood (U x V,7f(D) & i (E), nf(r) & 7}, (s),x X ¢) on X x Y.

Definition 4.54. Let f : X — Y be a 1-morphism of m-Kuranishi spaces, and
use notation (4.6)—(4.7) for X,Y, and (4.9) for f. Suppose (Us, Doy Tas Xa)s
Tai, icr, Kaii, i,irer is an m-Kuranishi neighbourhood on X, and (V;, Ey, sp, ),
Yo, jes, Mvjj, j,j2es an m-Kuranishi neighbourhood on Y, as in Definition
Let S C Imy, N f~'(Imy) be open. A 1-morphism from (Ua, Da,7a,Xa) to
(Vi, Ey, sp,1p) over (S, f) on the m-Kuranishi spaces X,Y is data f, FZJZZSI],
where f,, 1 (Ua, Day7a, Xa) = Vb, Eb, Sp,¢p) is a 1-morphism of m-Kuranishi
neighbourhoods over (5, f) in the sense of Definition and FZjl Ypi0fo, =
Jij © Tai is a 2-morphism over S N Imx; N S~ H(Im1;), f as in Definition for
all i € I, j € J, such that for all 7,7’ € I, j,j' € J we have
(F2)™' o (F, xidr,,) = (Fi2,) 7 @ (idy,,, * Kair) -
(FirjoTiw)oTai = Tpj0 o,
Fol © (Mg idyg,,) = (F) *idr,,) © (idy,, * F)) -

(Tjjr 0 Ypj) o fop = fijr o Tas

(4.59)

We will usually just say that f,, : (Ua, Da,7a, Xa) = Vo, Eb, Sp, 1) 1S a
1-morphism of m-Kuranishi neighbourhoods over (S, f) on X,Y, leaving the
data FZJZ Zg{ implicit.

Suppése g 'Y — Z is another 1-morphism of m-Kuranishi spaces, us-
ing notation for Z, and (W, F,,t.,w.) is an m-Kuranishi neighbour-
hood on Z, and T C Im, N g *(Imw,), S C Imx, N f~1(T) are open,
Far i UasDayrayxa) = Vi, By, $p,¥p) is a 1-morphism of m-Kuranishi neigh-
bourhoods over (S, f) on X,Y, and g, : (Vs, Eb, sp,¥p) = (We, Feyte,we) is a
1-morphism of m-Kuranishi neighbourhoods over (T,g) on Y, Z.

Define h = go f : X — Z, so that Definition gives 2-morphisms

9%{ 1g © fij = h;
foralli € I, j € Jand k € K. Set hge = gp. © fup © (UasDayTay Xa) —
(We, Feyte,w.). Using the stack property Theorem one can show that for
all i € I, k € K there is a unique 2-morphism Hfllf @ 0ohye = by 0Ty, over
S NImy; Nk~ (Imwy), h, such that for all j € J we have

Hck
ai |Sﬂ1m xiNf~1(Imy;)Nh~—1 (Im wy)

= (@%’,{ xidr,,) © (idg,, * FY) o (GgF «idy,,).

(4.60)
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It is then easy to prove that hsc = gy, © Fops HZI; fEEIK is a 1-morphism from

(Ua, DayTas Xa) t0 (We, Fe,yte,we) over (S, h) on X, Z. We call this composition
of 1-morphisms.

Example 4.55. Let X = (X,Z),Y = (Y, J), f be as in Definition and
let @ € I and b € J. Then (U,, Do, 74, Xa) in Z and (Vj, Ep, sp, 1) in J are
m-Kuranishi neighbourhoods on X,Y by Example m The 1-morphism f;, :
(Uaa Dg,7q, Xa) - (%7 Ey, sp, 1pb) in f is a 1-morphism over (Im Xamf_l(wb)v f)a
with extra data F IS/ where for F7., F% as in f we have

ai, 1€ ai’ ™ a

FZJ;:(Fii)ilcang:Tbjofab:>fijOTai~

The next theorem can be proved using the stack property Theorem by

very similar methods to Propositions [.19] [£.22] [£.25] [£.26] and [£.27], so we leave

the proof as an exercise for the reader.

Theorem 4.56. (a) Let X = (X,K) be an m-Kuranishi space, where K = (I,
(Vs By, si,0i)ier, ®ijy Nijr)s and (Va, Ea, Say%a), (Vo, By, s, ¥s) be m-Kuranishi
neighbourhoods on X, in the sense of Definition and S C Im, NImapy, be
open. Then there exists a coordinate change ®up : (Vy, Eq, Say¥a) = Vi, Eb, Sp,
W), Nabi, ier over S on X, in the sense of Definition . If ®,p, Dy are two
such coordinate changes, there is a unique 2-morphism Zgap @ ®gp = @ab over S
as in Definition such that for all i € I we have

Aapi = Napi @ (ida,, * Zap) : Ppi 0 Pap = Pay, (4.61)

which holds over S NIm1; by our usual convention.

(b) Let f : X — Y be a 1-morphism of m-Kuranishi spaces, and use no-
tation , , . Let (UayDay7ayXa), Vb, Ep, Sp,¥p) be m-Kuranishi
neighbourhoods on X,Y respectively in the sense of Definition [£.49] and let
S CImx, N f~tImapy) be open. Then there exists a 1-morphism f, @ (Ua, Da,
TayXa) = Vb, Ep, Sb,0s) of m-Kuranishi neighbourhoods over (S, f) on X,Y,
in the sense of Definition [£.54]

(c) Let f,g: X =Y be 1-morphisms of m-Kuranishi spaces and n: f = g a
2-morphism, and use notation 7 1' and n = (nij’ iel, jeJ). Suppose
(Uay, DasTas Xa), (Va, Ep, sp,1p) are m-Kuranishi neighbourhoods on X,Y, and
S CImyx,Nf~rImapy) is open, and f o5 Gap © (Uas DasTas Xa) = Vo, Eb, S, Up)
are 1-morphisms over (S, f),(S,g) respectively. Then there is a unique 2-
morphism Ny @ fap = Gap over (S, f) as in Definition such that the
following commutes over S NImyx; N f~(Im;) for all i € I and j € J:

Tbjofab:>.fijoTai

FY%
. g :
uld% N " myeide,, || (4.62)
J
Tpj 0 gop =———=9i; ° Tas-
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(d) The unique 2-morphisms in (c) are compatible with vertical and horizontal
composition and identities. For example, if f,g,h: X — Y are 1-morphisms in
mKur, andm: f=g,C:g9= h are2-morphisms with@ = (©on : f = h, and
(UasDayrayXa);, Vi, Ep, b, p) are m-Kuranishi neighbourhoods on X,Y, and
FasrGaos et + (Uss DasTar xa) — (Vo By spsihy) are 1-morphisms over (S, £),
(S?g)7 (S7 h)7 and Mab - fab = Gabs Cab “Gap = hab, Oap : fab = hap come fT’O’ITl
1,¢,0 as in (c), then 04 = € © Nop-

Remark 4.57. Note that we make the (potentially confusing) distinction be-
tween m-Kuranishi neighbourhoods (V;, E;, s;,1;) on a topological space X, as
in Definition and m-Kuranishi neighbourhoods (Vy, Eqy, Sq,%,) on an m-
Kuranishi space X = (X, K), which are as in Definition and come equipped
with the extra implicit data ®q;, icr, Aaij, i,jer giving the compatibility with the
m-Kuranishi structure I on X.

We also distinguish between coordinate changes ®;; : (V;, E;, si, ;) — (V;
E;,s;,%;) between m-Kuranishi neighbourhoods on a topological space X, which
are as in Definition [£.10] and for which there may be many choices or none, and
coordinate changes ®ap 1 (Va, Eay Sa, Vo) = Vi, Ep, sp, 10p) between m-Kuranishi
neighbourhoods on an m-Kuranishi space X, which are as in Definition [£.51] and
come equipped with implicit extra data Ags;, icr, and which by Theorem a)
always exist, and are unique up to unique 2-isomorphism.

Similarly, we distinguish between 1-morphisms f,; : (Ui, Di,7i, x:) — (V;
E;,s;,%;) of m-Kuranishi neighbourhoods over a continuous map of topological
spaces f : X — Y, which are as in Definition[£.2|and for which there may be many
choices or none, and 1-morphisms f . : (Uay Da,Tay Xa) = (Vo, Eb, b, 1) of m-
Kuranishi neighbourhoods over a 1-morphism of m-Kuranishi spaces f: X =Y,
which are as Definition , and come equipped with implicit extra data FZJZ Zg}],
and which by Theorem [4.56|(b),(c) always exist, and are unique up to unique
2-isomorphism.

4.7.2 Constructing equivalent m-Kuranishi structures

We can use m-Kuranishi neighbourhoods on X = (X, K) to construct alternative
m-Kuranishi structures £’ on X.

Theorem 4.58. Let X = (X,K) be an m-Kuranishi space, and {(Vy, Eq,
SasWa) 1 a € A} a family of m-Kuranishi neighbourhoods on X with X =
Usea Imepy. For all a,b € A, let @op : (Va, Eay Sa;Va) — (Vo, Eb, 56,%8) be a
coordinate change over S = Imvy,NImy, on X given by Theorem a), which
is unique up to 2-isomorphism; when a = b we choose oo = id(v, B, s0,p.) aNd
Nooi = 1dg,, for i € I, which is allowed by Theorem :4.56 a).

For all a,b,c € A, both ®p. o Papls and Pucls are coordinate changes
(Vas Eay Sasa) — (Ve, Ee, Se,e) over S = Imp, N Imy, N Imep, on X, so
Theorem a) gives a unique 2-morphism Agpe : Ppe © Papls = Pucls. Then
K = (A, (Va, Eas SasVa)acAs Pab, a,pe s Nabe, a,b,ceA) is an m-Kuranishi struc-

ture on X, and X' = (X,K') is canonically equivalent to X in mKur, in the

sense of Definition [A77]
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PT‘OOf. Write K = (I, (‘/“ Ei, Si, ’L/)i)ie[, (I)ij’ i,jE€I» Aijk, i,nge[), and let IC/ be as
in the theorem. We claim that K’ is an m-Kuranishi structure on X. Definition
4.14(a)—(f) are immediate. For (g), if a,b € A then we have a 2-morphism
Aaap : Pap 0 Puy = Pyp, with the defining property, from , that

Aaai [O) (Aabi * id@aa) = Aabi ® (idq;bi * Aaab) Py 0Dy = Dy (463)

Here the left hand side is the 2-morphism Ap; from Definition for the
composition @, = Py 0 Pyg. Since by definition ®,, = id(v, g, s,.) and
Auai = ids,,;, equation (4.63) is satisfied by Agep = ide,, for all ¢ € I, so by
uniqueness in Theorem a) we have Agqp = ido,,. Similarly Ay = idg,,,
proving Definition g) for K.

For (h), let a,b,c,d € A and ¢ € I, and consider the diagram of 2-morphisms

Dy 0Pego Py 0Py Dg; 0 Ppg 0 Dyp

] ) ide,, *Abcd*ldq>ab
Acai*ide,  *ide
Apeixide Apaixide

D0 Py 0 Py =————= Dy 0 Dy

ide 5, *ida , , *Aabe ﬂ/idq’ci*/\abc \H,Aabi ide,, *Aaba

(bci o @ac > (I)ai

Aaci
%d%c Aqdi
idq’di *Nged

(I)di © (I)cd o cDac q)di o (I)ad-

Here each small quadrilateral commutes by definition of Ap.. Thus the outer
quadrilateral commutes. But the outer quadrilateral is ‘@40’ on 1-morphisms
and ‘idg,,*" on 2-morphisms applied to with a,b, ¢, d in place of 4, j, k, I.
As ®4; is a coordinate change, this implies commutes, restricted to the
intersection of its domain with Im4t;. As this holds for all i € I, we deduce
Definition h) for K'. So X’ is an m-Kuranishi space.

To show X', X are equivalent in mKur, we must construct 1-morphisms
f:X'—-X,g: X — X' and 2-morphisms : go f = idx/, ¢ : fog = idx.
As in , define

. .
.f = (idX7 q)ai, a€A, i€l (Aaa’i)ffa{/e,m (Aaii’):{éj[)y

where the Agir, Agar; are from Definitions We can check using 7
that Definition a)—(h) hold, so f: X — X' is a 1-morphism.

For g, as @i : (Va, Eq, Sas¥a) = (Vi, Ei, 8i,1;) is a coordinate change, there
exist a l-morphism ¥;, : (V;, E;, 8i,%;) = (Va, Eq, Sa, ¥a), and 2-morphisms
fia : Wi 0 Oy = id(Va,E,,,,sa,wa) and Xia * Dyi 0 Uy = ld(V,,E“s,,w,) By
Proposition we can choose these to satisfy &, * idy,, = idg,, * Xi, and
Xia *ido,, = ida,, * §q. Define

2
g = (idx, Via, icr, aca, (Mii'a)?,%p (Miaar )i EA),
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where My;q, M;qq are defined by the commutative diagrams

Wirg 0 By 0 By 0 Wiy =——=> Wy, 0 Dyyr 0 Uy == id(v, B, 50,00) © Via
‘M’id%/a *id‘bm *Xia ldq’i’a *Raiarxidug, Siraxidug,
Miirg

Wirg 0 @i 0id(v; B85 0p1) =——= Wyrq 0 Piys Vi,

\I/ia’ o (I)a/i [¢] @aa/ o \I’ia —— \I/ia’ o (I)ai o \IJia _ \Ijia’ o ld(‘/iaEivSi:wi)
\Mﬁia/ sidg  ,*idy,, idy, ,*Agqri¥ide,, idw, ,*Xia

id(Va/,Eu/,sa/,wa/) o ¢aa/ © l:[/’L'a

Miaa’
q)aa’ © \I/ia \I]ia“

Using the various identities we can show that g : X’ — X is a 1-morphism.

Definition [£:20] defines the compositions go f, fog, and some 2-morphisms of
m-Kuranishi neighbourhoods @g;af, and @f 9. For all a,a’ € A, there is a unique
2-morphism 1,/ : (g0 f)aar = (Idx’)ae’ = Pae of m-Kuranishi neighbourhoods
over Im ¢, N Im 1, such that for all ¢ € I, the following commutes:

Wiqr 0 Byrj 0 Py € rida ld(Va/,Ea/,sa/,d)a/) o By
ia Poal
idy, ,*A, 00 (4.64)
1a el °
\U’ (—)g;ﬁ, Naa’ [tm ponim v, NIm v,
Vg 0 Opy ——7nn—— (g o .f)aa’ Dyqr.

To prove this we show that the prescribed values for 4,7’ € I agree on the
intersection Im v, NIm 1, NIm; NIm;/, and use the stack property Theorem
to prove there is a unique 7,  such that commutes for all ¢ € 1. Then
we show that 7 = (0,4/ 4.a7ca) 18 @ 2-morphism n: go f = idx/ in mKur.

Similarly, we construct a 2-morphism ¢ = (s ; ¢r) : f ©g = idx, where
¢, fits into a commuting diagram for all a € A

i 0 Do 0 Wy, — : iy 0 1d(v;, By 55,00
1 @, *Xia
\U/Aa“/ widw,
@fa’?, Cii/ ‘Im Wi NIm ap;y NIm g
Dy 0 Uy (f © g)’ii/ Py

Thus X’ and X are equivalent in mKur. The equivalence f: X — Xis
actually independent of choices, so its quasi-inverse g : X — X' is canonical up
to 2-isomorphism. O

As the m-Kuranishi neighbourhoods (V;, E;, s;,%;) in the m-Kuranishi struc-
ture on X are m-Kuranishi neighbourhoods on X, we deduce:
Corollary 4.59. Let X = (X, K) be an m-Kuranishi space with K = (I, Vi, E,
si, Vi)ier, ®ij, i jer, Nijr, i,j,kel)- Suppose J C I with UjeJInM/)j = X. Then
K' = (J, (Vi, Ei, s5i,%3)icg, ®ij, i e, Nijr, i7j)k;e]> is an m-Kuranishi structure
on X, and X' = (X,K') is canonically equivalent to X in mKur.

Thus, adding or subtracting extra m-Kuranishi neighbourhoods to or from
the m-Kuranishi structure of X leaves X unchanged up to equivalence.
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4.7.3 M-Kuranishi neighbourhoods on boundaries and
corners

Now suppose Man® satisfies Assumption so that as in we have a 2-
category mKur® of m-Kuranishi spaces with corners X, which have boundaries
0X and k-corners Ci(X). We will show that m-Kuranishi neighbourhoods
(Vay, Eq, 8a,%4) on X lift to m-Kuranishi neighbourhoods on 0X and Ci(X).

Definition 4.60. Let X = (X,K) be an m-Kuranishi space with corners in
mKurC with IC i—, (W,Ei,si,¢i)i€[, q)ij, i,7€15 Ahij, h,i,j61)~ Then for each
k € N, Definition defines an object C(X) = (C(X), Ki) and a 1-morphism
I : Cp(X) —» X in mKur®, where

K= ({k} % I, (Vitiys By S0k iys Vi) Jie T Plosi), (k) Moo () (h.9),)

i,j€1 hyi,j€l
= o J, JE€IL 3i's 3.5 el
L, = (Hk’H(’w)J, i,jel H(k,i)(k,i’), i€l H(k,i), icl )

Let (Va, Eq, Sas%a), Pai, ict, Aaij, i,jer be an m-Kuranishi neighbourhood
on X, as in Definition We will define a corresponding m-Kuranishi
neighbourhood (Vix.a), Ek,a)s S(k,a)> V(k.a))s Plr.a), (k,i), i€l> Mka) (ki) (k.j), ijer ON
Ck(X), with V(k,a) = Ck(Va), E(k,a) = Ck(Ea), and S(k,a) = Ck(sa). When
k =1 this is an m-Kuranishi neighbourhood on 0X = C;(X). Almost all the
hard work has been done already in Definition [£.39]

We take (Vix,a)» E(k,a)» 5(k,a)> Y (k,a)) to be the m-Kuranishi neighbourhood on
Cr(X) constructed from (V, Eq, 8a,%4) in the same way that (Viy ), E(k,i)» S(k,i)»
Y(k,i)) is constructed from (V;, Es, s4,1);) in Definition except that ¢y q) is
defined as we explain shortly. Also @ a),(k,i)s A(k,a)(k,i)(k,j) are constructed from
®4i, Agij in exactly the same way that @ i, (k,j)s Ak,h)(k,i)(k,j) are constructed
from ®;;, Ap;; in Definition though we postpone the proof of Definition
e) for @ 0, (ki)

To define ¥ q) : 86617(1)(0) = Cr(X), let v’ € 3@17(1)(0) C Vika) = Cr(Va)
with TI,(v') = v € s;1(0) C V,, where Iy, : Cj(V,) — V,. Then x = 1,(v) €
X, so there exists i € I with x € Im;, and thus v € V,; N s;1(0), which
implies that v’ € ‘/(k,a)(k7i) N S(_kl,a)(()), SO Qb(lc,a)(lc,i)(vl) € S(_klﬂ)(()) - V(;.m), and
(ki) © Plk,a) (i) (V) € C(X). Define ¢g o) (V') = (r,i) © d(r,ay(r,1) (V). If also
x € Im1p; for j € I then the 1- and 2-morphisms

@iy ko) + Vi) Eleyiys S,iys Vi) = Mkeriys Ehgys (ki) Ve,s))
Ak,a) (ki) (kg) * P,y (ko) © Pik,a) (ki) = Pik,a) (k)
imply that
V(1) 0P (he,a) (ki) (V) =Wk, 5) O Do) (e, ) O P (hes) (ki) (V) = V(e ) 0Dk (1) (V1)

Thus 1)(4,q)(v") is independent of the choice of i € I with x € Im;, and is well
defined. We show 1y, 4 is a homeomorphism with its open image as in Definition
Therefore (Vix,a)s E(k,a)» S(k,a)» Y(k,a)) is an m-Kuranishi neighbourhood
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on Ci(X). Definition (e) for @ q), (k) follows from w4 q)(v") = P,y ©
(b(k,a)(k,i)(v’) above. Hence ‘I’(k,a),(k,i)a A(k,a)(k,i)(k,j) are 1- and 2-morphisms
of m-Kuranishi neighbourhoods, as required. The condition (4.57) for the
A (k,a) (ki) (k,;) follows from (4.57) for the Ay;; in the same way that Definition
4.14(h) for the A p)(k,i)k,j) i proved in Definition m This shows that

(Vik.a)s Ek,a)s S(k,a)s Vik,a)) With data @ o) ki), iels Mk,a) (ki) (k). ijer 1S an m-
Kuranishi neighbourhood on Cy(X), as in
Very much like IL(; ;); in Definition [£.39 we can show that that

H(k,a)a = (Wk,a), I, idE(k,a)) : (‘/(k,a)’ E(k,a)a S(k,a)> w(k,a)) — (Vaa Eq, S, Q/Ja)

is a 1-morphism of m-Kuranishi neighbourhoods over IT;, : C;(X) — X, in the
sense of Definition [£.54

Definition 4.61. Let f : X — Y be a 1-morphism in mKurC, with notation

(4.6), (4.7), , suppose we are given m-Kuranishi neighbourhoods (U, D,,
Tas Xa)s Tai, ier, Kaiir, i.iver on X and (Vi, Ep, 85, %), Toj, jes, Mvjjr, jjres on 'Y,

and let f.;, FZJZ ZE}] be a l-morphism f,;, : (Ua, Das7a;s Xa) = Vb, Eb, Sp, ¥p)
of m-Kuranishi neighbourhoods over (Imy, N f~*(Im4y), f) on X,Y, as in

Definition and Theorem b), with £, = (Uab, fab, fab)-
Let k,I € N, so that Definition gives m-Kuranishi neighbourhoods

(Utk,a)s Dik,a)> T(kya)s Xtkoa))s Tha), ki), iels Ke,a) (e,i) ki), i,iver on Cp(X) and

Vi) Eapys $@n): Yany)s Ya) (). jer Ma)@.i)@.i0), jjres on Ci(Y). Then ex-
actly as for (4.52) in Definition from f,, we define a 1-morphism of

m-Kuranishi neighbourhoods

Fearwr) = Umaya) o) Fona) ) © (Ukays Dia)s T(kay X(k,a))
— (V) Eapy» 500), V)
over C(f) : C(X) = C(Y) and S = Im x(x,q) N C(f) " (Imtp(s ), where
Utk,a)(t,0) = Ck(Uas) N C(far) " HC1(Ve)) € Uggyay = Cr(Ua),
fte.ayp) = C(fad) Uy * Utkayap) — Vi) = Ci(Va),
faaasy =i (fa) Vi * Dkl Uomran — Feman Ean)-

. 1,b)(L,j
We also define 2-morphisms ngg)((k])l) s Tapyag) © f(k’a)(l,b) = f(k,i)(l,j) o

T (k,a)(k,i) from the FZZ as for F(Z,]i))(k,i’) in Dgﬁnition Then 1' for

the F&’bg)(é}g)l) follows from (4.59) for the ngl by applying the corner func-

tor. Hence f(k,a)(l,b)’ Fggfg)(é;i)l’)’jfe‘ll is a 1-morphism of m-Kuranishi neighbour-

hoods £ o)1)+ (Utk,a)s Dik,a) T(koa)s Xkia)) = (Vipys Eapys S.b)s Yip)) over
(Im X (g,q) N C(f)_l(Imw(l’b)), C(f)) on C(X),C(Y), as in Deﬁnition

A special case of this construction is when X =Y, f =idx, and k =, and
Far i Ua,Dayra,Xa) = Vi, Ep, Sp,U3) is a coordinate change of m-Kuranishi
neighbourhoods on X. Then f o)x.0) * (Utk,a)s Dik,a)s T(k,a)s X(kia)) = (Vik)s
Ek,b)s S(k,b) V(i) 18 a coordinate change on C(X).
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4.7.4 A philosophical digression

We can now state our:

Philosophy for working with m-Kuranishi spaces. A good way to think
about the ‘real’ geometric structure on m-Kuranishi spaces is as follows:

(i)

(i)

(i)

(iv)

(v)

(vi)

FEvery m-Kuranishi space X has an underlying topological space X, and
a large collection of ‘m-Kuranishi neighbourhoods’ (Vy, Eq, Sa, %) on X,
which are m-Kuranishi neighbourhoods on X in the sense of but with
an additional compatibility with the m-Kuranishi structure on X.

We think of (Va, Eq, Sa,%a) as a choice of ‘local coordinates’ on X .

For any two m-Kuranishi neighbourhoods (Va, Eq, Sa,¥a)s Vb, Ep, Sp, ¥p)
on X, there is a coordinate change ®qp : (Va, Eq, Sa, Va) = Vi, Eb, Sb, ),
natural up to canonical 2-isomorphism.

A 1-morphism of m-Kuranishi spaces f : X — Y has an underlying
continuous map f : X = Y. If (Uy,Da,7a,Xa)s Vo, Eb, Sp,%s) are m-
Kuranishi neighbourhoods on X,Y, there is a 1-morphism f . : (Uq, Da,
Tay Xa) = Vo, Eb, Sp, ¥p) over f, natural up to canonical 2-isomorphism.

The coordinate changes and 1-morphisms in (ii),(iil) behave in the obvious
functorial ways under compositions and identities, up to canonical 2-
isomorphisms.

The family of m-Kuranishi neighbourhoods on X is closed under several
natural constructions. For example:

(a) If (V,E,s,v) is an m-Kuranishi neighbourhood on X and V' CV is
open then (V’,E|V/, $|V/,7/)|V/ms—1(0)) is an m-Kuranishi neighbour-
hood on X.

(b) If (V, E,s,¢) is an m-Kuranishi neighbourhood on X and w: F — V
is a vector bundle then (F,7*(E) @ 7*(F),7*(s) ®idp,o7|...) is an
m-Kuranishi neighbourhood on X .

The collection of all m-Kuranishi neighbourhoods (Vg, Eq, Sa,¥a) on X
will usually be much larger than o particular atlas {(V;, E; si,;) 11 € I}.

There are so many m-Kuranishi neighbourhoods on X that we can often
choose them to satisfy extra conditions. For example, in we discuss
m-Kuranishi neighbourhoods on X which are ‘minimal at © in X .

We will be guided by this philosophy from Chapter [7] onwards, where we
will usually frame our definitions and results in terms of m-Kuranishi neigh-
bourhoods on X = (X, K), rather than in terms of the particular m-Kuranishi
neighbourhoods (V;, E;, s;,%;) in the m-Kuranishi structure IC, which we try not
to use.
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4.8 M-Kuranishi spaces and derived manifolds

We now take Man = Man, and work with the corresponding 2-category of
m-Kuranishi spaces mKur.

Derived Differential Geometry is the study of ‘derived smooth manifolds’,
where ‘derived’ is in the sense of the Derived Algebraic Geometry of Lurie [74]
and Toén—Vezzosi [106| |107]. There are several different models of Derived
Differential Geometry in the literature, all closely related:

e Probably the first reference to Derived Differential Geometry is a short
final paragraph in Lurie |74, §4.5], outlining how to define an oco-category
of ‘derived C'*°-schemes’, and an oo-subcategory of ‘derived manifolds’.

e Lurie’s ideas were developed further by his student David Spivak [103],
who defined an oo-category DerMangp; of ‘derived manifolds’. Spivak’s
construction was rather complicated.

e Borisov and Noel [8] gave a simpler co-category DerMangyn of ‘derived
manifolds’, with an oo-category equivalence DerMangn ~ DerMangp;.

e The author [57] 58, [61] defined a strict 2-category dMan of ‘d-manifolds’,
and studied their differential geometry in detail.

e Borisov [7] relates the derived manifolds of [8} |L03] with the d-manifolds of
[57, 58}, 61]. Borisov constructs a 2-functor

IT: m (DerMangyn) — dMan (4.65)

from the 2-category truncation m;(DerMangy) of DerMangy. This
2-functor II is not an equivalence of 2-categories, but it is fairly close to
being an equivalence. Reducing to homotopy categories, the functor

Ho(II) : Ho(DerMangn) — Ho(dMan) (4.66)

is full but not faithful, and induces a 1-1 correspondence between isomor-
phism classes of objects.

e Wallbridge [108| defines a rather general oo-category of ‘derived manifolds’,
which we prefer to think of as ‘derived C*°-schemes’, and then extends
them to an Artin stack version, ‘derived smooth stacks’.

e Macpherson [76] states a universal property of an ‘co-category of derived
manifolds’, and argues that DerMangy; and DerMangyn satisfy his
universal property. This universal property explains the existence of

Borisov’s 2-functor (4.65)), and of (4.67) below.

The next theorem will be proved in [57]:

Theorem 4.62. There is an equivalence of 2-categories dMan ~ mKur, where
dMan _is the strict 2-category of d-manifolds from [57, 58], |61], and mKur is
as in for Man = Man.
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Combining with Borisov’s 2-functor (4.65) gives a 2-functor
m1(DerMangp;) ~ 7 (DerMangn) — mKur, (4.67)

which is close to being an equivalence.

Remark 4.63. (a) The author carefully designed the definitions of 4.3
using facts about d-manifolds from [57, |58} 61], in order to make Theorem [4.62
hold.

(b) The definitions of m-Kuranishi spaces above, and of (u-)Kuranishi spaces
in Chapters [§] and [6] are also very much inspired by Fukaya-Oh—Ohta—Ono’s
Kuranishi spaces [19439] in Symplectic Geometry (which we call FOOO Kuranishi
spaces), and by related structures such as McDuff-Wehrheim’s Kuranishi atlases
|77, |78, |80H83|, all of which are geometric structures put on moduli spaces of
J-holomorphic curves. From this we can draw an important conclusion:

Fukaya—Oh—Ohta—Ono’s Kuranishi spaces [19-39], and sim-
ilar geometric structures in Symplectic Geometry, are actu-
ally a prototype kind of derived orbifold.

This is not surprising, as FOOO Kuranishi spaces and derived schemes were
invented to do more-or-less the same job, namely to be a geometric structure on
moduli spaces which encodes the obstructions in deformation theory of objects.

(c) We now have two different approaches to derived manifolds:

(i) Spivak [103], Borisov—Noel [7, [§] and the author 57, [58| [61] all define a
derived manifold X = (X, Ox) as a topological space X with a (homotopy)
sheaf of derived C*°-rings O x. The differences between [103], |7} [8], and
[57, 58, 61] are in the notions of sheaf and derived C'*°-ring used.

(ii) M-Kuranishi spaces (X, K) above are a topological space X with an atlas K
of m-Kuranishi neighbourhoods (V;, F;, s;,%;):c1, plus coordinate changes
and 2-morphisms between them.

For comparison, here are two equivalent ways to define classical manifolds:

(i) A manifold (X, Ox) is a Hausdorff, second countable topological space X
with a sheaf Ox of R-algebras or C'*°-rings, such that (X, Ox) is locally
modelled on (R™, Ogn ), for Og» the sheaf of smooth functions R" — R.

(ii) A manifold (X,.A) is a Hausdorff, second countable topological space
X with an atlas A of charts (V;,4¢;)icr, where V; C R" is open and
1; : Vi = X is a homeomorphism with an open set Im; C X, and charts
(Vi i), (Vj,9;) for i,j € I are compatible (i.e. coordinate changes are
smooth).

These two approaches (i) and (ii) to derived differential geometry are broadly
equivalent, but each has advantages for different purposes. In approach (i),
derived manifolds are embedded in a much larger oco- or 2-category of derived

104



C>-schemes (the 2-category of d-spaces dSpa in [57, 58] 61]), which may be
useful.

An advantage of approach (ii) is that we can replace the base category Man
with a variation, such as manifolds with corners Man€, and so define a 2-category
mKur€, or whatever. We have done this already, by defining mKur starting
from a category Man of ‘manifolds’ satisfying some basic assumptions, leading
to many different (2-)categories of ‘derived manifolds’, as in . This would
be much more difficult to do in approach (i).
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Chapter 5

u-Kuranishi spaces

Throughout this chapter we suppose we are given a category Man satisfying
Assumptions in To each such Man we will associate a category

pKur of ‘p-Kuranishi spaces’, a simplified version of the 2-category of m-
Kuranishi spaces mKur from Chapter

We will prove that pKur is equivalent to the homotopy category Ho(mKur).
Given this, the reader may wonder if there is any point in studying ,uKur, as we
could just consider Ho(mKur) instead. Some reasons are that the definition of
uKur is a lot simpler than those of mKur or Ho(mI'(ur)7 involving categories
rather than 2-categories, and sheaves rather than stacks. Also, uKur has
better geometrical properties than one would expect of Ho(mKur): morphisms
f:X—>Yin uKur form a sheaf on X, when one would only expect morphisms
[f] : X — Y in Ho(mKur) to form a presheaf on X.

Nonetheless, the 2-category structure in mKur contains important infor-
mation, which is lost in ;J,Kur7 so that mKur is better than uKur for some
purposes. In particular, the fibre products W = X X4 z 4 Y in mKur discussed
in are characterized by a universal property involving 2-morphisms, which
makes no sense in uKur. As in the corresponding fibre products in uKur
may not exist, or may exist but be the wrong answer for applications.

We begin in by discussing linearity properties of 2-morphisms of m-
Kuranishi neighbourhoods from We can glue such 2-morphisms using a
partition of unity. Because of this, we show in that the homotopy category
of the 2-category of m-Kuranishi neighbourhoods in §4.1] forms a sheaf rather
than just a presheaf, which is what we need to make the definition of y-Kuranishi
spaces work in and in particular to define composition of morphisms of
p-Kuranishi spaces.

For the orbifold analogue, Kuranishi neighbourhoods in the results
of §5.9] would be false, and therefore we will not define an orbifold version of
p-Kuranishi spaces. The good properties of Ho(mKur) mentioned above do
not hold for Ho(Kur) in Chapter in particular, morphisms [f] : X — Y in
Ho(Kur) form a presheaf on X, but generally not a sheaf.
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5.1 Linearity properties of 2-morphisms of m-Kuranishi
neighbourhoods

We explain some linearity properties of 2-morphisms of m-Kuranishi neighbour-
hoods. The set Homs((I)ij,q)gj) of 2-morphisms A;; : ®;; = (I%j over (S, f)
is a real affine space, and a real vector space when ®;; = (ng. We can also
multiply 2-morphisms A;; : ®;; = ®;; by smooth functions on V;;, and combine
2-morphisms A;j : ®;; = <I>;j using a partition of unity.

Definition 5.1. Let f : X — Y be continuous, (V;, E;, s;,%:), (V;, Ej, s5,1;)
be m-Kuranishi neighbourhoods on X,Y, and S C Im1; N f~!(Im1;) C X be
open, and ®;;, ®}. : (Vi, By, si,:) — (Vj, Ej, 55,9;) be 1-morphisms over (S, f),
with @ = (Vij, ¢ij, dij) and @, = (Vi;, ¢, 61;). Write

Homg(q)ij,(b;j) = {Aij: A @y = ‘I);j is a 2-morphism over (S, f)} (5.1)

We will show that Homg(®;;, ®};) naturally has the structure of a real affine
space, and Homg(®;;, ®;;) the structure of a real vector space. Write

Hom(E; (5.2)

Vi]"%ij‘/j

Vi )y ()

for the real vector space of germs at 1, 1(S) C V;; of morphisms Fjl|y,, —
T4:;Vjlv,; in the sense of §3.3.4, That is, an element of (5.3) is an equivalence
class [Vij, Aij] of pairs (Vij, \i;), where Vj; is an open neighbourhood of ; 1(5)
in V;; and A;; ¢ Ei|‘f,” — 7:25UV1|V” is a morphism, and pairs (Vi;, Ai;), (Vi}, Aj;)
are equivalent if there exists an open neighbourhood V7 of v;~ 1(S) in Vij NV
with 5\”"71;’} = 5\;]|V,J, Then by Definition 4.3 we have:

Homs(@ij,q)éj) =
{[Vig, Aij] € Hom(Eilv,,, To,, Vily, ) y—1(s) :
1= %ij t Aijosi + O0(s7), oy = dij + d};(ds;) o Aij + O(si) }

~ [Vvij,j\ij] ~ [V/ /A\{ ] if X;j — S\Z‘j = O(SZ‘)

i) Vg

(5.3)

We claim that the equations on j\ij in the numerator of 1} are linear in
[Vijs /\Aij] if @;j = ®;;, and affine linear for general <I>§j. To prove this, noting

that A;; = 0 is a solution when CIJQJ- = ®&,;, it is enough to show that if [Vij, 5\”}

and [V}, \l;] satisfy the equations and o € R then o+ [Vij, Agj] + (1 — ) [V}, AL ]
also satisfy the equations. For the first equation, as we have
Oy = dij + Mijosi+O(s]) and ¢ =y + Njosi+0(s]),  (54)

so Theorem m) with k£ = 2 gives
¢ty = dij + - Ayj + (1 —a) - N o si + O(s),
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as we want. For the second equation é = (blj + ¢7;(ds;) o 5\” + O(sy), affine
linearity is immediate from Definition Vl) and Theorem ub

The equivalence relation ~ on the denominator of (5.3) is the quotient by
a vector subspace of Hom(E;|v,;, Tg,, V; ) Wi (S) acting by translation. Hence
Homg(®;;, ) ) is the quotient of a real aﬁﬁne space (or a real vector space if
<I>;j = d;;) by a vector subspace acting by translations, and is a real affine space
(or a real vector space if ®}; = ®;;).

This proves the first part of the next result, the second is straightforward:

Proposition 5.2. Let f: X =Y be continuous, (V;, E;, si, i), (V;, Ej, 85,%5)
be m-Kuranishi neighbourhoods on X,Y, and S C Im; N f~'(Imy;) C X
be open, and ®;;, @i, : (V;, Ei,si,9:) — (Vj, Ej,s5,v;) be 1-morphisms over
(S, f). Then the set Homg(®;j, ®;;) of 2-morphisms Ai; : ®;5 = &5, over
(S, f) naturally has the structure of a real affine space, and Homs(fbw,@ /) the
structure of a real vector space.

These vector space and affine space structures are compatible with vertical
and horizontal composition, identities, and inverses, in the obvious ways. Thus,
the strict 2-categories mKN, GmKN,mKNS(X) of have a real linear
structure at the level of 2-morphisms.

In any 2-category C, if ® : A — B is a 1l-morphism in C then the set
Hom(®, ®) of 2-morphisms A : ® — ® is a monoid under vertical composition ®.
For the 2-categories mKN, GmKN, mKN(X) of this monoid is a real
vector space, and in particular an abelian group.

The next lemma holds as is clearly a module over both C*°(V;) and
C(Vi)y-1(s), and the Condltlons in (5.3) for D, = Py are C(V; ) linear, by

Theorem ub) (m), so the actions of C"X’(Vi),CO"( Vi)y-1(s) O descend
to (5.3).

Lemma 5.3. Let f: X = Y be continuous, (V;, E;, si,v;),(V}, Ej, s5,1;) be
m-Kuranishi neighbourhoods on X, Y, and S C Im; N f~1(Imp;) C X be open,
and @;; : (Vi, Ei, si,0;) = (V}, Ej, s4,;) be a 1-morphism over (S, f). Then the
vector space Homg(®;;, ®;;) is naturally a module over C*(V;), and also over

COO<‘/Z')wi—1(S), the R- algebm of germs at w;l(S) of smooth functions V; — R.

That is, if A : ®;; = ®;; is a 2-morphism over (5, f) then we can define
another 2- InOI‘phlSm a-A:®;; = &, for any a € C’oo( ), or more generally
any a € C°°(V;) for V; an open neighbourhood of 17 1(.S) in V;. Next we explain
how to glue 2-morphisms A® : ®;; = ®;; using a partition of unity.

Definition 5.4. Let f : X — Y be continuous, (V;, E;, s;,%:), (V;, Ej, s5,1;)
be m-Kuranishi neighbourhoods on X, Y, and S C Im1; N f~!(Im1;) C X be
open, and ®;;, ®7; : (Vi, By, si,:) — (V;, Ej sj,wj) be 1-morphisms over (S, f),
with ®;; = (Vij, ¢ij, i) and @}, = (V;, ¢35, ¢i;).

Suppose {T* : a € A} is an open cover of S, and A? : &;; = P is a
2-morphism over (T, f). Choose representatives (V®,A\%) for A® = [Ve,\9]
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for a € A, so that V* is an open neighbourhood of 4; 1(T) in V;; N V. Set
V” =Usea V. so that Vlj is an open neighbourhood of w;l(S) in V;; ﬁVl’j Then
{V%:a e A} is an open cover of V;;. Choose a partition of unity {n®:a € A}
on V;j subordinate to {V“ ta € A}, asin % d). Define a morphism on VZ-]-:

Aij - Eily,, — To,Vily,, by Nij = Yaea® - A% (5.5)

Here \® is only defined on Ve C Vij, but as suppn® C V“, we can extend
ne - e by zero on V” \ V“, and so make n? - A defined on all of Vw As
{n® :a € A} is locally finite, the sum ) _,--- in is locally finite, and so
is well defined as we are working with sheaves. Thus );; is well defined.

We now claim that (Vij, ;\ZJ) satisfies Definition so that A;;j = [Vij, 5\”] :
®;; = @, is a 2-morphism over (S, f). To see this, note that as the conditions
on ;\ij in are affine linear, combining a family of solutions using a partition
of unity as in gives another solution. Informally we write

Nij = qcan® - A, in 2-morphisms ®;; = &} .. (5.6)

That is, we can combine 2-morphisms A® : ®;; = ®;; over (T, f) for a € A

using a partition of unity, to get a 2-morphism over (S for S = Te.
gap Ys g p s acA

5.2 The category of ;~-Kuranishi neighbourhoods

Recall from that the homotopy category Ho(C) of a 2-category C is the
category whose objects are objects of C, and whose morphisms [f] : X — Y
are 2-isomorphism classes [f] of 1-morphisms f: X - Y in C. In we
define a simplified version of m-Kuranishi spaces, called u-Kuranishi spaces, in

which we reduce from 2-categories to categories by taking homotopy categories.
Here is the analogue of Definitions [{.IH4.6] and [£.8

Definition 5.5. Define the category of p-Kuranishi neighbourhoods to be the
homotopy category of the 2-category of m-Kuranishi neighbourhoods from
In more detail:

(a) Let X be a topological space, and S C X be open. A u-Kuranishi neighbour-
hood (V,E,s,¢) on X (or over S) is just an m-Kuranishi neighbourhood
on X (or over S), in the sense of Definition

(b) Let f: X =Y be a continuous map, (V;, E;, si,¥5), (Vj, Ej, s5,1;) be pu-
Kuranishi neighbourhoods (hence m-Kuranishi neighbourhoods) on X,Y,
and S C Im; N f~ (Im ;) be open. A morphism [®;;] : (V;, Ey, si,1:) —
(Vi, Ej,55,%;) of p-Kuranishi neighbourhoods over (S, f) is an equivalence
class [®;5] of 1-morphisms ®;;, @}, : (Vi, By, s4,%:) — (Vj, Ej, 85,7;5) of
m-Kuranishi neighbourhoods over (S, f), where 1-morphisms ®;;, @gj are
equivalent (written ®;; ~g <I>§j) if there exists a 2-morphism A;; : ®;; = <I>§j
of m-Kuranishi neighbourhoods over (S, f).

109



When X =Y and f =idx we call [®;;] a morphism over S. In this case,
the identity morphism id(v, g, s, v,) * (Vi Ei, 85,0:) — (Vi, By, s4,9;) over
S is [id(Vi,Ei,SMbi)]’ for id(VuEi,Su%) as in

If ©;; = (Vij, ¢ij, ¢ij), we write [@45] = [Vij, ¢ij, dijl-

(c) Let f: X =Y, g:Y — Z be continuous, (V;, E;, s;,%:), (V;, Ej, s5,%;5),
(Vk, Bk, 8k, ) be p-Kuranishi neighbourhoods on XY, Z respectively,
and T C Ime¢; N g '(Imyy) C Y and S C Imyy; N f~H(T) € X be
open. Suppose [®;;] : (Vi, Ey, si,¢:) — (V;, Ej, s4,%;) is a morphism of
p-Kuranishi neighbourhoods over (S, f), and [®;i] : (V}, Ej,s5,%,) —
(Vi, Ek, sk, ) a morphism of pu-Kuranishi neighbourhoods over (T, g).

Define the composition of morphisms to be
[@ji] o [®ij] = [Pk © ®is] + (Vi, Es, siy¢5) — (Vi, B, 81, Y)

as a morphism of p-Kuranishi neighbourhoods over (S, g o f). Here we
choose representatives ®;;, ® ;i for the equivalence classes [®;;], [®,], and
use the composition of 1-morphisms ®;; o ®;; from §4.1 Properties of
2-categories imply that [®;; o ®;;] is independent of the choice of ®;;, ®jy.

Definition |4.8| defined a strict 2-category mKN and 2-subcategories GmKN
and mKNg(X) for S C X open. In the same way, we define the category of
w-Kuranishi neighbourhoods pIKKIN, where:

e Objects of KN are triples (X,S,(V,E,s,v)), with X a topological space,
S C X open, and (V, E, s,v) a p-Kuranishi neighbourhood over S.

° MOI‘phiSH’lS (f, [(I)”]) : (X, S, (‘/;, Ei7 Si, wl)) — (Y, T‘7 (ij, Ej, Sj, 1&7)) of
pKN are a pair of a continuous map f: X — Y with S C f~1(T) C X
and a morphism [®;;] : (V;, E;, s5,%:) — (Vj,Ej,s5,1¢;) of p-Kuranishi
neighbourhoods over (S, f).

e Identities and composition are defined in the obvious way, using (b),(c).

Define the category of global p-Kuranishi neighbourhoods G/,LKN to be the full
subcategory of pKN with objects (s~1(0), s~1(0), (V, E, s, ids-1(g))) for which
X =5 =510) and ¢ = ids-1(p). We usually write objects of GuKN as
(V, E, s) rather than (s='(0),s7*(0), (V, E, s,ids-1(¢))), and we write morphisms
of GUKN as [®;] : (Vi, Ei,si) — (Vj, Ej,s;) rather than as (f, [®;]), since
f= ¢¢j|5;1(0) is determined by [®;;] as in Definition

Let X be a topological space and S C X be open. Write uKNg(X) for
the subcategory of KN with objects (X, S, (V, E,s,1)) for X,S as given
and morphisms (idx, [®;,]) : (X, S, (Vi, Es, si,¥:)) — (X, S, (V;, Ej, s5,1;)) for
f=idx. We call uKNS (X) the category of u-Kuranishi neighbourhoods over
SCX. We generally write objects of ;LKNS(X) as (V, E,s,1), omitting X, S,
and morphisms of mKNg(X) as [®;;], omitting idy.
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Then we have equalities pKN = Ho(mKN), GuKN = Ho(GrmKN)7
pKNg(X) = Ho(mKNg(X)) with the homotopy categories of the strict 2-
categories mKN, GmKN, mKNg(X) of

The accent "’ in /LKN, G/LKN, uKNS(X) is because they are constructed
using Man. For particular Man we modify the notation in the obvious way, e.g.
if Man = Man we write u KN, GuKN, uKN¢(X), and if Man = Man® we
write uKN®, GuKN®, nKN¢ (X).

If f: X — Y is continuous, (V;, E;, si,¢:), (V}, Ej, s;,%;) are p-Kuranishi
neighbourhoods on X,Y, and S C Im¢; N f~'(Ime;) C X is open, write
Homg r((Vi, B, si,%:), (Vj, Ej, s5,1;)) for the set of morphisms [®;;] : (V;, E;,
si, i) = (Vj, Ej, 55,1;) over (S, f).

If X =Y and f = idx, we write Homg((V;, E, si,¢i), (V;, Ej, s5,%;)) in
place of Homg ¢ ((V;, Ei, 84, %4), (V, Ej, 85, %;5)).

Remark 5.6. (a) In for m-Kuranishi neighbourhoods (V;, E;, s;, ;) over S,
or 1-morphisms ®;; over (5, f), the open set S C X appears only as a condition
on (Vi, B, si,1;) or ®;5, as we need S C Imp; or S C Imep; N f~'(Im1);). Thus
m-Kuranishi neighbourhoods and their 1-morphisms make sense without knowing
S. However, 2-morphisms A;; : ®;; = <I>;j over (5, f) are equivalence classes
under ~g depending on S, so do not make sense without specifying S.
Similarly, p-Kuranishi neighbourhoods (V;, F;, s;,1;) make sense without
knowing S, but their morphisms [®;;] are equivalence classes under ~g depending
on S, so do not make sense without specifying S.
(b) If we define p-Kuranishi neighbourhoods and their morphisms directly,
rather than via m-Kuranishi neighbourhoods and their 1- and 2-morphisms, the
definitions and proofs can be simplified a bit. For example, the equivalence
relation ~g in Definition [4.3|is not needed for the p-Kuranishi case.

Here are the analogues of Definitions and Convention [4.12

Definition 5.7. Let X be a topological space, and S C X be open, and [®;] :
(Vi, Ei, si,%:) = (V;, Ej, 55,;) be a morphism of p-Kuranishi neighbourhoods
on X over S. Then [®;;] is a morphism in the category pKN(X) of Definition
We call [®,;] a coordinate change over S if it is an isomorphism in KN g(X).
This holds if and only if any representative ®;; is an equivalence in mKNg (X),
that is, if and only if ®;; is a coordinate change of m-Kuranishi neighbourhoods
over S, as in Definition Write

Isos ((Vi, Ei, sis i), (Vj, Ej, s5,v5)) € Homg ((V;, By, si,¢:), (Vy, Ej, 55,%;))
for the subset of coordinate changes [®;;] over S.

Definition 5.8. Let T C S C X be open. Define the restriction functor
|7 : uKNg(X) = pKN,(X) to map objects (Vi, E;, s4,%;) to exactly the same
objects, and morphisms [®;;] to [®;;]|7, where [®;;]|7 is the ~p-equivalence
class of any representative ®;; of the ~g-equivalence class [®;;]. Then |7 :
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pKNg(X) — pKN,(X) commutes with all the structure, so it is a functor. If
UCTCS C X are open then |y o|p = | : uKNg(X) — pKN (X).

Now let f : X — Y be continuous, (V;, E;, si,¥i), (V;, Ej, s;,%;) be p-
Kuranishi neighbourhoods on X,Y, and 77 C S C Ime; N f~!(Imy;) € X
be open. Then as for |r on morphisms above, we define a map

|7 : Homg ¢ ((V;, Ei, si,3), (V}, Ej, 85, 05)) — (5.7)

Homr ¢ ((Vi, E;, 5i,%:), (Vj, Ej, 55, 05)).
Convention 5.9. When we do not specify a domain S for a morphism, or
coordinate change, of u-Kuranishi neighbourhoods, the domain should be as large
as possible. For example, if we say that [®;;] : (Vi, E;, si,¢:) = (V;, Ej, s5,%;) is
a morphism (or a morphism over f : X — Y) without specifying S, we mean
that S =Im; NImp; (or S =TIme; N f1(Imp;)).

Similarly, if we write a formula involving several morphisms or coordinate
changes (possibly defined on different domains), without specifying the domain
S, we make the convention that the domain where the formula holds should be
as large as possible. That is, the domain S is taken to be the intersection of
the domains of each morphism in the formula, and we implicitly restrict each
morphism in the formula to S as in Definition to make it make sense.

For example, if we say that [®;;] : (Vi, E;, 55, %) = (V5. Ej, 85,%5), [Pk :
(Vi  Ej,55,05) = (Vi, Eg, s, 0x) and [@4] 0 (Vi, By, s4,9) — (Vie, B, sk, 0n)
are morphisms of y-Kuranishi neighbourhoods on X, and

[@ix] = [®j&] o [Pi], (5.8)

we mean that [®;;] is defined over Im1); NIm1);, and [®,;] over Imvp; NIm ¢y,
and [®;x] over Im; N Im 1)y, and (5.8) holds over Imv; N Imp; N Im )y, that

is, (5.8)) is equivalent to
(@i |1 s nm w;nTm e = [Pk [Tm s nIm g;Tm s, © [P ]| Tm s AIm ;T -

Note in particular the potentially confusing point that (5.8) does not determine
(@] on Imp; NIm by, but only on Imp; N Imep; N Imay.

The next theorem is proved by combining Theorem and the ideas of

Theorem 5.10. Let f: X =Y be a continuous map of topological spaces, and
(Vi, By, 8i,4), (V, Ej, 85,%4) be p-Kuranishi neighbourhoods on X,Y . For each
open S C Ime; N f~1(Imvp;) C X, as in Definition define a set

HOmf((‘/i,Ei,Si,lbi),(‘G,Ej,sj,'ll)j))(s)
- HomS,f((VthEi?sivwi)a(‘/j'?Ejﬂsjaz/}j))v
and for open T C S C Ime; N f~1(Im);) as in Definition define a map
pst : Homy((Vi, Ei, si, i), (Vi By, s5,15)) (S) —
Homy ((Vi, Ei, si, i), (Vi, Ej, s5,15)) (T)
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by psT = |T in . Then Homy((Vi, Ei, si,:), (Vj, Ej, 55,%;)) is a sheaf of
sets on the open subset Im; N f~1(Im;) in X, as in Definition .

When X =Y and f = idx we write Hom((Vi, E;, si,¢:), (V}, Ej, 85,%5))
instead of Homy((Vi, By, si,¥i), (V;, Ej, s5,15)). Then coordinate changes [®;;] :
(Vi, Eiy sisi) — (Vj, Ej, 85,%;) also form a sheaf Zso((Vi, Ei, si,¢i), (Vj, Ej,
55,%;)) on Im1; NImep;, a subsheaf of Hom((Vi, Es, si, i), (Vi, Ej,55,%5)).

Proof. For the first part, we must show Hom((Vi, E;, si,¢:), (V}, Ej, 85,%;))
satisfies the sheaf axioms Definition [A12{i)~(v). Parts (i)-(iii), the presheaf
axioms, are immediate. For (iv)—(v), let S C Imv; N f~*(Imv;) C X be open,
and {T" : a € A} be an open cover of S.

For (iv), suppose [®;5], [®;] : (V;, Ej, si, i) — (V;, Ej, 55,1;) are morphisms
of u-Kuranishi neighbourhoods over (S, f), and [®;;]|7e = [®;]|7« for all a € A.
Choose representatives ®;;, ®;; for [®;;], [®],], so that ®;;, ], are 1-morphisms
of m-Kuranishi neighbourhoods over (S, f). Since [®;]|ra = [®};]|7, there
exists a 2-morphism A% : ®;; = <I>;j of m-Kuranishi neighbourhoods over (7%, f)
for all @ € A. Then Definition constructs a 2-morphism Ag; =, 4 n®* - A :
®;; = ®@;; of m-Kuranishi neighbourhoods over (S, f), using a partition of unity
{n* :a € A}. So A;; implies that [®;;] = [®};] in morphisms of p-Kuranishi
neighbourhoods over (S, f). Hence Definition (iv) holds.

For (v), suppose [®f;] : (V;, Ei, s:,9:) — (V}, Ej, 87,1;) are morphisms of -
Kuranishi neighbourhoods over (7%, f) for a € A, and [q)%HTame = [®%]|7anTe
for all a,b € A. Choose representatives @, = (V/5, ¢{;, ¢7;) for [®f;] for a €
A, so that ®f; is a 1-morphism of m-Kuranishi neighbourhoods over (T, f).
Since [®%]|rangs = [®Y]|7anrs, there exists a 2-morphism A® : ¢, = ®,
of m-Kuranishi neighbourhoods over (T¢ N T?, f) for all a,b € A. Choose
representatives (V% A®) for A® = [V %] for a,b € A, so that V is an
open neighbourhood of ;' (T* N T?) in Visn Vb c V.

Define Vij = U, c VU, so that Vj; is an open neighbourhood of ;" 1(9) in
Vi. Then {V}j : a € A} is an open cover of V;;. Choose a partition of unity
{n* : a € A} on Vj; subordinate to {V;$ : a € A} as in 3 Now for all

a,b,c € A, we have a 2-morphism ( Abc) of m-Kuranishi

Aac
neighbourhoods over (T* NT* NT¢, f). And {T%N Tb N TC e E A} is an open
cover of T NT®. So by Definition [5.4] as in (5.6) we can form a 2-morphism

]\ab — ZceA 7,] ( Abc Aac @a — ‘I)b
over (T*N T, f). We claim that these A® satisfy
]\bc|TamenTc ® Aab|TanTmec = Aac‘TaﬁTmec for all a, b, ce A. (59)

To see this, note that A% = [Vl‘;b7 )\fjb} with )\“b Yoeca’: (=P 4 X% and
thus on \N/ﬁ-b N f/ib? we have

S\bc /\ab (ZdeA n ( 5\cd + j\bd)) + (ZdeA 77d . (_;\bd + ;\ad))
= gean® - (=A 4 dod) = Age,
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Theoresays Homy((Vi, Ei, si,v4), (V}, Ej, s5,1;)) is astack. Applying
Definition v) to the 1-morphisms ®f; : (Vi, By, si,¢:) — (Vj, Ej, 85,1;) over
(T, f) and 2-morphisms A% : %, = &%, over (T*NT", f) satisfying shows
that there exist a 1-morphism ®;; : (Vi, E;, s;,¢:) = (V;, Ej, s5,%;) over (S, f)
and 2-morphisms A® : ¢, = @, over (T, f) for a € A satisfying A% oy =
]\b|Tame ® Aab for all a,b € A. Then [Qlj] . (‘/Z,EZ,S”d)Z) — (‘/j,Ej,Sj,l/)j) is
a morphism of u-Kuranishi neighbourhoods over (S, f), and A% : D = Dy
implies that [®;]|7. = [®f;] for all a € A. Hence Definition v) holds, and
Homy¢((Vi, Es, si,3), (V;, Ej, s5,1;)) is a sheaf. O

We call Theorem the sheaf property. We will use it in to construct
compositions of morphisms of u-Kuranishi spaces.

5.3 The category of y-Kuranishi spaces

5.3.1 The definition of the category uKur

We give the analogue of for p-Kuranishi spaces. This is much simpler, as
we do not have to deal with 2-morphisms.

Definition 5.11. Let X be a Hausdorff, second countable topological space,
and n € Z. A p-Kuranishi structure K on X of virtual dimension n is data
K = (I,(Vi, Ei, si,¥i)icr, [®ij)ijer ), where:

(a) I is an indexing set.

(b) (Vi, E;, si, ;) is a p-Kuranishi neighbourhood on X for each i € I, with
dimV; —rank E; = n.

(©) [®i;] = [Vijs s> bis) = (Vi, By, siyhi) — (Vi Ej,s5,15) is a coordinate
change for all 4, j € I (as in Convention defined on S = Im; NImp;).

(d) UserImep; = X.

(e) [(I)ii] = [ld(V“EHSle)} for all i € I.

(f) [®ji] o [®sj] = [Psr] for all 4,5,k € I (as in Convention this holds on
S =TIm; NImep; NImapy).

We call X = (X,K) a u-Kuranishi space, of virtual dimension vdim X = n.
When we write x € X, we mean that x € X.

Example 5.12. Let V be a manifold (object in Man), E — V a vector bundle,
and s:V — E a smooth section, so that (V, E|s) is an object in GuKN from
Deﬁnition Set X = s71(0), as a closed subset of V with the induced topology.
Then X is Hausdorfl and second countable, as V is. Define a u-Kuranishi
structure K = ({O}, (Vo, Eo, s0, o), <I>00) on X with indexing set I = {0}, one
pu-Kuranishi neighbourhood (Vy, Ey, so,%o) with Vo =V, Ey = E, so = s and
Yo = idx, and one coordinate change ®qo = id(v,, £,s0,10)- Then X = (X, K) is
a p-Kuranishi space, with vdim X = dim V' — rank &. We write Sy, g, = X.
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When we are discussing several p-Kuranishi spaces at once, we need nota-
tion to distinguish p-Kuranishi neighbourhoods and coordinate changes on the
different spaces. As for (4.5)—([4.8), one choice we will often use for y-Kuranishi
spaces W, XY, Z is

W= (W,H), H=(H,(Th,Ch,qn, n)ncu,

. (5.10)
[Enn] = [Thnrs Ohw s Onne b hem)
X =(X,1), T=(I,(Ui, Dy,ri,Xa)ier, [Tivr] = [Usir, Tair, Fiirlisiren), (5.11)
Y =,7), I = (J, (Vi Ej,s,05) e, [Xigr] = Vigr,vjjrs 055:)5.50e5), (5.12)
Z = (Z,K), K = (K, (Wi, F, tk, Wi ) ke ke

A (5.13)

[@hrr] = Wik, Orkr s P b e ) -
Definition 5.13. Let X = (X,Z) and Y = (Y, J) be u-Kuranishi spaces, with
notation 7. A morphism f: X - Yis f = (f, [fij]iE[,jEJ), where
f: X — Y is a continuous map, and [f;;] = [Uij,fij,ﬁj] : (Ui, Diyriy xi) —
(V;, Ej,s5,%;) is a morphism of u-Kuranishi neighbourhoods over f for all i € I,
j € J (defined over S =Imy; N f~*(Im4;), by Convention , satisfying:

(a) If i,i’ € I and j € J then in morphisms over f we have
[.fi’j] o[Tiy] = [.fij]v (5.14)

where (5.14) holds over S = Im x; NIm x N f~!(Im ;) by Convention
5.9) and each term in (5.14]) is implicitly restricted to S. In particular,
(p-14) does not determine f,;, but only its restriction [f,;]|s.

(b) If i € T and j,j' € J then interpreted as for ([5.14)), we have
[Tjj’] o [fij} = [fij']- (5.15)

Ifxe X (ie. z € X), we will write f(z) = f(z) € Y.

When Y = X, so that J = I, define idx = (idx, [Tij]i,jel). Then Definition
[5.11[(f) implies that (a),(b) hold, so idx : X — X is a morphism of y-Kuranishi
spaces, which we call the identity morphism.

In the next theorem, we use the sheaf property of morphisms of p-Kuranishi
neighbourhoods in Theorem to construct compositions go f: X — Z of
morphisms of p-Kuranishi spaces f: X — Y, g:Y — Z, and hence show that
p-Kuranishi spaces form a category uKur.

In §4.3] we made arbitrary choices to define composition of 1-morphisms of
m-Kuranishi spaces. For u-Kuranishi spaces, composition is canonical.

Theorem 5.14. (a) Let X = (X,1),Y = (Y, J),Z = (Z,K) be u-Kuranishi
spaces with notation (5.11)—(5.13), and f: X =Y, g:Y — Z be morphisms,
where f = (f7 [fij]iez,jej , g = (g7 [gjk}jeJ, ke[{). Then there exists a unique
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morphism h : X — Z, where h = (h, [hiklier, keK) such that h =gof : X — Z,
and for all i €1, j € J, k€ K we have

[hik] = [gjk] o [fij]a (5.16)

where by Convention (5.16) holds over Imx; N f~ (Imv;) N A~ (Imwy,),
and so may not determine [h;;,] over Imx; N h~! (Imwy,).

We write go f = h, so that go f: X — Z is a morphism of u-Kuranishi
spaces, and call g o f the composition of f.g.
(b) Composition of morphisms is associative, that is, if e : W — Z is another
morphism of u-Kuranishi spaces then (go f)oe=go (foe).
(c) Composition is compatible with identities, that is, f oidx = idy o f = f
for all morphisms of p-Kuranishi spaces f: X —Y.

Thus p-Kuranishi spaces form a category, which we write as uKur.

Proof. For (a), define h = go f : X — Z. Let i € I and k € K, and set
S =TImy; Nh 1 (Imwg), so that S is open in X. We want to define a morphism
[hir] © (Ui, Diyriyxi) — (Wi, F, tg, wy) of p-Kuranishi neighbourhoods over
(S, h). Equation means that for each j € J we must have

(hik)lsnf—1my,) = [950) © [Fisllsnr—1amy,)- (5.17)

As {Ime); : j € J} is an open cover of Y and f is continuous, {SN f~*(Im¢;) :
jE J} is an open cover of S. For all j,7’ € J we have

[ij] © [fz‘j]\Smffl(lmwj)mffl(lmwj,) = [gj’k] © [Tjj’] o [fz]”
=gl o [figllsnr—1amypns-1ame,) (5.18)

using (5.14)) for g in the first step, and (5.15)) for f in the second.
Now the right hand side of (5.17)) prescribes values for a morphism over h

on the sets of an open cover {S N f~!(Im;) : j € J} of S. Equation
shows that these values agree on overlaps (SN f~1(Im;)) N (SN f=H(Im;)).
Therefore the sheaf property Theorem shows that there is a unique morphism
[hi] over (S, h) satisfying for all j € J.

We have now defined h = (h, [hiklier, keK). To show h : X — Z is a
morphism, we must verify Definition a),(b). For (a), suppose 4,3’ € I, j € J
and k € K. Then we have

[Rirk] © [Tiir]|tm x:ntm x, nf—1 (tm ;) A= (Imw) = [G5x] © [Firj) o [Tiar]l...
= [gjk:] © [fz]]l = [hij]|ImXiﬂImXi/ﬁf_l(lmwj)ﬁh_l(Imwk)7

using (5.17)) with ¢’ in place of 7 in the first step, (5.14) for f in the second,
and (5.17)) in the third. This proves the restriction of (5.14) for h,i,4, k to

Imx; NImxy N f~ (Ime;) N A~ (Imwy), for each j € J.
Since the Im x; NImy; N f~1(Im ;) N A~ (Imwy) for j € J form an open
cover of Im x; NImx; N A~ (Imwy), Theorem implies that (5.14) holds for
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h,i,i', k on the correct domain Im y; N Im y;s N A~ (Imwy), yielding Definition
[.13(a) for h. Definition [5.13(b) follows by a similar argument, involving (5.15)
for g. Hence h : X — Z is a morphism, proving part (a).

For (b), in notation 7, ifheH,iel,jeJ, ke K we find that

[((g o F) o €)nkllim pnne— (Tm x:)N(Ffoe)~1 (Im ;) (go foe) 1 (Im w,)
= [gjk] o [fij} o [eni]
= [(g o (f o €))n.kllimpnne=1 (1m x)N(foe) = (1m ;)N (gofoe) = (Imwy )
where the middle step makes sense without brackets by associativity of composi-
tion of morphisms of y-Kuranishi neighbourhoods. Since Im ¢ Ne™!(Im x;) N

(foe) '(Imey;) N(go foe) '(Imwy) for all i € I, j € J form an open cover
of Imy, N (go foe) H(Imuwy), Theorem implies that [((go f)oe)ni] =
[(go(foe))nx] over the correct domain Im¢j, N (go foe) ' (Imwy), so that
(gof)oe=go(foe), proving (b).

For (c), let i € I and j € J. Then we have

[(fo idX)z’,j] = [fij] o[Tiu] = [fz'j] © [id(Ui7Di7Ti:Xi)] = [fij]’

using (5.16)) and the definition of idx in the first step, and Definition e)
in the second. Thus f oidx = f. We show that idy o f = f in the same way.
This completes the proof. O

5.3.2 Examples of categories uKur
Here are the analogues of Definition and Example [4.30}

Definition 5.15. In Theorem we write uKur for the category of u-
Kuranishi spaces constructed from our chosen category Man satisfying Assump-

tions in By Example the following categories from Chapter

are possible choices for Man:

Man, Man¢,_, Man®, Man®®, Man®®, Man®2°. (5.19)

we)

We write the corresponding categories of pu-Kuranishi spaces as follows:

pKur, pKurg,, pKur®, uKur®®, pKur®®, pKur®2°. (5.20)

Example 5.16. We will define a functor FI(‘/II:;“ : Man — pKur. On objects, if
X € Man define a p-Kuranishi space Fl\’.j[K“r(X) = X = (X, K) with topological

space X and p-Kuranishi structure IC = (a{nO}, (Vo, Eo, s0,%0), [Poo]), with index-
ing set I = {0}, one p-Kuranishi neighbourhood (Vj, Eo, o, %) with V5 = X,
Ey — Vj the zero vector bundle, sg = 0, and g = idx, and one coordinate
change [®oo] = [id(vy, Eo,50,60)]-

On morphisms, if f : X — Y is a morphism in Man and X = F:/f::r (X),

Y = FERU(y) define a morphism FAXU(f) = f: X — Y by f = (£, [foo)).
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where [fq0] = [Voo, foo, foo] with Voo = X, foo = f, and foo is the zero map on
zero vector bundles. .

It is now easy to check that FI(.L/II:ET is a functor, which is full and faithful,
and thus embeds M;.in as a full subcategory of pKur. So we can identify Man
with its image in pKur. We say that a y-Kuranishi space X is a manifold if
X Fl\’;II:::r(X’) in uKur, for some X’ € Man.

Assumption _gives a full subcategory Man C Man. Define a full and
faithful functor Fl\’j[I::r F# Ku'F|Man Man — pKur, which embeds Man as
a full subcategory of uKur. We say that a pu-Kuranishi space X is a classical
manifold if X = FD‘ZI:ST(X’) in pKur, for some X' € Man.

In a similar way to Example u we can define a functor GuKN —
uKur which is an equivalence from the category GMKN of global p-Kuranishi
neighbourhoods in Definition E to the full subcategory of objects (X, K) in
uKur for which K contains only one p-Kuranishi nelghbourhood It acts by
(V,E,s) — Sy g, on objects, where Sy g s is as in Example

Example 5. 17 As in Example 1} if XY are p-Kuranishi spaces in ,uKur
with notation , We can deﬁne an explicit product X x Y in uKur
with vdim(X x Y) = lemX + vdim Y, such that X x Y = (X x Y, K) with

K = (I % J, (Wi j)s Flagys tagy Wiis)) Goyerx s (Rl inerxa)

for (W, 5y, Fla,jy tig)> Wii,5))s @) g7y as in Example There are natural
projection morphisms wx : X XY — X, wy : X XY — Y. These have the
universal property of products in an ordinary category, that is, X x Y is a fibre
product X x, Y over the point (terminal object) % in pKur.

Products are commutative and associative up to canonical isomorphism.
We can also define products and direct products of morphisms. That is, if
f W—=Y g: X —Y, h: X — Z are morphisms in uKur then we have
a product morphism f x h: W x X — Y x Z and a direct product morphism
(g.h) : X = Y x Z in mKur, both easy to write down explicitly.

5.3.3 Comparing p-Kuranishi spaces from different Man

As in §4.4] following Definition we easily prove:

Pr0051t10n 5.18. Suppose Man Man are categories satisfying Assumptzons
and FMan : Man — Man is a functor satisfying Condition . Then

we can define a natuml functor F:II;':: : pKur — pKur.
If Fl\l\/f:r? : Man < Man is an inclusion of subcategom'es Man C Man

satisfying either Proposition- ) or (b), then F“Kur pKur < pKur is
also an inclusion of subcategories uKur C uKur
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As for Figure applying Proposition to the parts of the diagram
Figure of functors FM:: involving the categories ll yields a diagram

of functors F": K:: Arrows ‘=’ are inclusions of subcategories.

pKur
N T

pKurt® <— pKur® ——— pKur®2° > pKur?°©

Figure

\
pKurg,

Figure 5.1: Functors between categories of u-Kuranishi spaces
from Proposition [5.18] Arrows ‘—’ are inclusions of subcategories.

5.3.4 Discrete properties of morphisms in ,uKur

In § and . we defined when a property P of morphisms in Man is
dzscrete Section [4.5] explained how to extend discrete properties of morphisms
in Man to corresponding properties of 1-morphisms in mKur We now do the
same for uKur. Here are the analogues of Definition and Proposition
[4.36{(b),(c), proved in the same way, and Definition [4.37]

Definition 5.19. Let P be a discrete property of morphisms in Man. Suppose
f: X — Y is a morphism in uKur. Use notation d;%b*m for X,Y, and
write f = (f, [fz’j]iEI, je,]) as in Deﬁnitionm We say that f is P if f,; is P
in the sense of Definition for all ¢ € I and 5 € J. This is independent of the
choice of representative f,; for [f,;] in f by Proposition b).

Proposition 5.20. Let P be a discrete property of morphisms in Man. Then:

(@) Let f: X > Y andg:Y — Z be morphisms in pKur. If f and g are
P thengof: X — Z is P.

(b) Identity morphisms idx : X — X in pKur are P. Isomorphisms f :
X —Y in uKur are P.

Parts (a),(b) imply that we have a subcategory uKurP C puKur containing all
objects in uKur, and all morphisms f in pKur which are P.

Definition 5.21. (a) Taking Man = Man® from @ gives the category of
p-Kuranishi spaces with corners pKur® from Definition [5.15] We write

pKurf, pKurg,, pKurs,, pKurg

st,in»

c c
”Kurst,bnv /,LKUI‘Si

in>

for the subcategories of pKur® with morphisms which are interior, and b-normal,
and strongly smooth, and strongly smooth-interior, and strongly smooth-b-normal,
and simple, respectively. These properties of morphisms in Man€ are discrete
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by Example a), so as in Definition and Proposition we have
corresponding notions of interior, ..., simple morphisms in puKur®.

(b) Taking Man = Man&® from §2.4.1| gives the category of u-Kuranishi spaces
with g-corners pKurg® from Definition We write

gc gc gc
pKury ', pKurp , pKurg,

for the subcategories of pKur8® with morphisms which are interior, and b-
normal, and simple, respectively. These properties of morphisms in Man®&¢ are
discrete by Example |3.19|(b), so we have corresponding notions in pKurs®.

(c) Taking Man = Man®° from % gives the category of pu-Kuranishi spaces
with a-corners pKur?® from Definition We write

pKurly, pKurgy, pKurds, pKurgd;,, pKurgey,, pKurg?
for the subcategories of pKur?® with morphisms which are interior, and b-
normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly
a-smooth-b-normal, and simple, respectively. These properties of morphisms in
Man?¢ are discrete by Example ¢), so we have corresponding notions for
morphisms in pKur?c.
(d) Taking Man = Man®2¢ from & gives the category of u-Kuranishi spaces
with corners and a-corners puKur®?¢ from Definition We write

c,a

c,ac c c,ac
pKur, ™, pKury ", pKur™, pKur

c,ac
st,in’

c,ac

uKurSt’bn, pKur

c:ac

S1

for the subcategories of pKur®?¢ with morphisms which are interior, and b-
normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly
a-smooth-b-normal, and simple, respectively. These properties of morphisms in
Man®?2¢ are discrete by Example ¢), so we have corresponding notions for
morphisms in pKur®2°.

Figure gives inclusions between the categories in (5.20). Combining this
with the inclusions between the subcategories in Definition [5.21] we get a diagram
Figure of inclusions of subcategories of pu-Kuranishi spaces, as for Figure [4.2

5.3.5 p-Kuranishi spaces and m-Kuranishi spaces

Next we relate u-Kuranishi spaces to m-Kuranishi spaces in

Definition 5.22. We will define a functor FZIIET; : Ho(mKur) — pKur,

where Ho(mKur) is the homotopy category of the weak 2-category mKur as in
that is, the category with objects X,Y objects of mKur, and morphisms
[f] : X — Y are 2-isomorphism classes [f] of 1-morphisms f : X — Y in mKur.

Let X = (X,K) be an object of mKur, with £ = (I, (Vi, Eiy 84,3 ier,
(I)ij, i,jE€I> Aijk:, Z',jJCeI). Then (‘/;7E“SZ,¢@) is a M—Kuranishi neighbourhood
on X for each ¢ € I, and taking the ~g-equivalence class [®;;] of ®;; over
S = Im; N Ime; as in Definition b) gives a coordinate change [®;;] :
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pKur
N T

pKurs’ pKur, pKurg? pKuraf
pKurg, , ———+ pKurly, - HKurgey
pKurgs <— pKurf —— pKury2® < pKurds
pKurg, ;,, ——— pKurly, <— pKurfy;,
pKurf <— pKurf, — pKur?¢ < pKurde
pKurg >~ pKurg™ — pKurgy
pKurs® pKur® pKur®2¢ pKurac

Figure 5.2: Inclusions of categories of p-Kuranishi spaces.

(%,Ei,Si,T/Ji) — (Vv]?E]asjij) for l)j € I. Write IC/ = (Ia (‘/iaEivSivwi)ielv

[®;;]i,jer) and X' = (X,K’). Then Definition d)—(f) follow from Definition
4.14{(e),(f),(d), so X' is a p-Kuranishi space. Define F:}i‘;i(X) X'

Next let f: X — Y be a 1- morphlsm in mKur, using notation 7 .,
for X,Y, f, and set X' = F“Kui( )and Y/ = F:llézz( Y). Taklng the
ms—equivalence class [f;,] of fijover S =1Imx; N f7'(Im4;) as in Definition

ij
[.5|b) we find that

= (51flier jes) : X' =Y

is a morphism in pKur, as Definition a),(b) for f’ follow from Definition
4.17((c),(d) for f. Define F“K“r([f]) =f.
To show this is well- deﬁned let g: X - Y beal- morphlsm and n: f=g
Gl e GIi) amd
(mj’ ieI’jEJ). Then f=g: X =Y, and n;; : f;; = g;; is a 2- morphlsm
of m-Kuranishi neighbourhoods over (S, f) for S = Imy; N f~!(Im1;), s
[f:;] = [g,;] in morphisms of y-Kuranishi neighbourhoods over (S, f). Therefore
f'in is independent of the choice of representative f for the morphism
[f]: X - Y in Ho(mKur) so F“Kur([f]) is Well defined.

Comparing Proposition and Deﬁmtlon with Theorem [5.14{a) we see

4.17

preserves identities. Hence F* Kl: Ho(mKur) —

(5.21)

a 2-morphism in mKur, where g = (g, 9ij icl, jeJs
’r, =

that F'** (1:; preserves composition of morphlsms and comparing Definitions

5.13

pKur is a functor.

FuKur

and we see that

The next theorem will be proved in §5.6]
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Theorem 5.23. The functor F:;‘:: : Ho(mKur) — pKur in Definition [5.22
is an equivalence of categories.

Section related m-Kuranishi spaces to the derived manifolds of Spivak
[103], Borisov—Noel [7}, 8] and the author |57, |58}, |61]. Theorems and
imply:

Corollary 5.24. There is an equivalence of categories Ho(dMan) ~ pKur,
where dMan s the strict 2-category of d-manifolds from [57, 58l 161], and pKur
s as above for Mlan = Man.

Combining this with Borisov’s functor (4.66) gives a functor
Ho(DerMangy;) ~ Ho(DerMangy) — pKur,

which is close to being an equivalence (it is full but not faithful, and induces a
1-1 correspondence between isomorphism classes of objects).

5.4 p-Kuranishi spaces with corners.
Boundaries, k-corners, and the corner functor

We now change notation from Man in l. 3l to Man , and from pKur in

- 3[to uKurc Suppose throughout this section that Man satlsﬁes Assumption
in Then Man® satisfies Assumptions |3 SO E constructs
a category ;LKurC of p-Kuranishi spaces associated to Man®. For instance
uKurC could be pKur®, pKurg®, uKur?® or uKur®2¢ from Definition
We will refer to objects of uKurC as pu-Kuranishi spaces with corners. We also
write uKurgi for the subcategory of uKurc with simple morphisms in the sense
of §5.3.4) noting that simple is a discrete property of morphisms in Man® by
Assumption [3.22{c).

In ". for each X € mKur® we defined the k-corners Cr(X) in mKur®,
with X = C1(X). We constructed a 2-category mKur® from mKur® Wlth
objects [, o, Xn for X, € mKur® with vdim X,, = n, and defined the corner
2-functor €' : mKur® — mKur®.

We will now extend all this to u-Kuranishi spaces with corners. This is a
simplification of Here is the analogue of Definition [4£.39

Definition 5.25. Let X = (X,K) in uKur® be a p-Kuranishi space with
corners, and write K = (I (Vi, Ei, sis03)icr, [®ijli JGI) as in Definition m
Choose representatives ®;; = (Vi;, ¢, qi)”) for [®;;] for all ¢,j € I, so that ®;; :
(Vi, By, s5,%:) = (V}, Ej, s5,;) is a 1-morphism of m-Kuranishi neighbourhoods.
Since [®;;] o [®p;] = [®4;] for h,i,j € I by Definition [5.11|f), we can choose a
2-morphism Ay;j @ @450 Py = @p;. We are now in the situation of the beginning
of Definition except that the Ay;; need not satisfy Definition [£.14[g),(h).
This will not matter to us.
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Let k € N. We will define a y-Kuranishi space with corners Cj(X) in /,LI:{urc
called the k-corners of X, and a morphism II; : Cx(X) — X in pKur®.
Explicitly we write Ck(X) = (C(X), Ki) with

K= ({k} < I, (Vikiys Eiresiys S(kiys Vi) Viels [P iy, (k) irjer)
with D,y (k) = (Vi) (kg)s Pk (ko) » Pl (k) )
where Ky, has indexing set {k} x I, and as in Definition we write
I, = (g, XXk 5)5)ijer), where

i = Vg Wikyivis Wining) = (Viksiys Eriys Shyiys Ciriy) —+ (Vi Ejys5,905).

We follow Definition [£.39] closely. For all i,j € I, define ® ¢ k) =
(Vi) ()> D) (k) Py (k) DY (4:40)~(4.42), and Ty, 5 by ~ Define
the topological space C(X) by Ci(X) = [[1,e; s(_kll)(O)}/ ~ and the continuous
maps (ki) : s(_kll)(O) — Cp(X), Iy : Cx(X) - X asin Deﬁnition Here the
proof that = is an equivalence relation involves the existence of the 2-morphism
Apij : @45 0 @y = D as above, but not Definition g),(h).

The proofs in Definition show that Cj(X) is Hausdorff and second
countable, and I, : Ci(X) — X is continuous and proper with finite fibres, and
(Vik,iys E(kiys 8(k,i)» Y(k,i)) 1s an m-Kuranishi neighbourhood (hence a p-Kuranishi
neighbourhood) on Cy(X) for ¢ € I, and

@,y (k) * Vi) Btosiys S(hyiys Vi) — Mgys Elrg)s Shg)s Pk
Ik 0y; 0 (Vikiys Eiiys Sy Y(kiy) — (Vi By, 85,45),

are 1-morphisms of m-Kuranishi neighbourhoods (over II;). Thus

[P,y (k)] + Viksiys Ehyiys Shsi)> Vi) — Vieigys Eio,jys Shg) iks) )
M k0)i]  (Viksiys Eriys Shiys Yiey) — (Vy, B, s5,05),

are morphisms of p-Kuranishi neighbourhoods (over IIy).
To see [®(14)(k,j)], [TL(x.);] are independent of the choice of representative ®;;
for [®;;], and so are well defined, note that if <I>§j is an alternative choice giving

Dl iy (kg I1{; ;; then there is a 2-morphism n,; = [Vi;, %] : ®ij = ®j;. As for
Anijy Ak, n) (ki) (k) and sz)i)(k,i,) in Definition [4.39| we define 2-morphisms

[Cr(Vig), T5(5i)] = ki kd) == Plriyig)s
[Ck(Vig), T (7165)) = Tr iy == T

so that [P (ki) (k.5)] = [P{4.0) 5] A0 [Tk, = [Tk 0;5]-

We have now defined all the data in C(X) and IIj : Cr(X) — X. We can
check that Cy(X) and Il satisty the conditions of Definitions and
with vdim C (X)) = vdim X —k, in the same way as in Deﬁnition where for
example to show that [q)(k,i)(k,j)} o [(D(k,h)(k,i)] = [q)(k,h)(k,j)} in Definition f)
for Ck(X) we construct a 2-morphism A(k,h)(lc,i)(k,j) : q)(k,i)(lc,j) o (I)(k,h)(k,i) =
@(kﬁ)(l@,j) from Ahij as in Definition
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This proves the analogue of Theorem

Theorem 5.26. For each X in uKurc and k= 0,1,... we have defined the
k-corners Ci(X), an object in pKur® with vdim C(X) = vdim X — k, and
a morphism Iy, : Cp(X) — X in uKurC, whose underlying continuous map

g Cr(X) — X is proper with finite fibres. We also write 0X = C1(X), called
the boundary of X, and we write ix =II; : 0X — X.

Modifying Definition we construct categories uKurgi C pKur® from
;J,Kurgi - uKurc in the obvious way, with objects [],, ., X, for X, in /,LKurc
with vdim X,, = n, where uKurgi,uKurc embed as full subcategories of
uKurgi, uKurC. For the examples of uKurgi C ;I,KIII‘C in Deﬁnitions
we use the obvious notation for the corresponding categories uKurgi - uKurc,
so for instance we enlarge pKur® associated to Man® = Man® to pKure.

Then following Definition @7 but modlfylng it as in Definition we
define the corner functor C : pKur® — uKur This is stralghtforward and
involves no new ideas, so we leave it as an exercise for the reader. This proves
the analogue of Theorem [4.44

Theorem 5.27. We can define a functor C : uKur® — pKur® called the
corner functor. It acts on objects X in pKur® by C(X) = e o Cu(X). If
f: X =Y is simple then C(f) : C(X) — C(Y) is simple and maps Ci(X) —
Cy(Y) for k = 0,1,.... Thus C|”Kur§i decomposes as C|uKurgi = [Iro Ck
where C, : uKurgi — pKurS, is a functor acting on objects by X — Cp(X),
for Cr(X) as in Definition , We also write 0 = C1 : uKurgi — uKurgi,
and call it the boundary functor.

If for some discrete property P of morphisms in Manc the corner functor
C : Man® — Man® maps to the subcategory ManP of Man® whose morphzsms
are P, then C : uKur — uKur maps to the subcategory uKurP of uKur
whose morphisms are P.

As for Example applying Theorem to the data Man¢,... in
Example a)—(h) gives corner functors:

C: pKur® — pKurf, ¢ pKur®, C': pKur® — pKur®,

C: pKurg, — NKUI‘St in C pKurs,, C’: pKurg, — pKurS,,

C: pKur®® — pKur?® ¢ pKur®® C': pKur®® — puKur?®,

C: pKurf — uKurSt in C uKurSt, C": pKurly — uKurSt,

C : pKur®®*® — pKur{?® C pKur®®®, ' : pKur®?® — pyKur®?®

C: pKurg®® — uKurgtai; C pKur$?e, O pKur$?® — uKurgtaC,
C : uKur®® — pKurf® c pKurs®. (5.22)

As for Propositions [£.:46) and [£.:47 we prove:
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Proposition 5.28. For all of the functors C in (5.22) (though not the functors
C’), a morphism f: X — Y is interior (or b-normal) if and only if C(f) maps
Co(X) = Co(Y) (or C(f) maps Cr(X) — Hf:o C(Y) forall k=0,1,...).

Proposition 5.29. Let f: X — Y be an isomorphism in uKurC. Then f s
simple by Proposition b), and Cx(f) : Ck(X) — Cr(Y) for k =0,1,...
and Of : 0X — Y are also isomorphisms in pKur®.

Here is the analogue of Definition

Definition 5.30. As in Definition [5.15| we write pKur® for the category of
p-Kuranishi spaces with corners associated to Man® = Man®. An object X
in pKur® is called a p-Kuranishi space with boundary if d(0X) = (. Write
pKur? for the full subcategory of p-Kuranishi spaces with boundary in pKur®,
and write p,Kur'S’i C uKur}’n C pKur? for the subcategories of pKurP with
simple and interior morphisms. We can show that X € pKur® is a y-Kuranishi
space with boundary if and only if C(X) =0 for all k¥ > 1.

5.5 p-Kuranishi neighbourhoods on p-Kuranishi spaces

We now give the ‘u-Kuranishi’ analogue of the ideas of §4.7]

Definition 5.31. Suppose X = (X,K) is a p-Kuranishi space, where K =
(I, (Vi, By, i, ¥i)ier, [‘bij]iﬁje[). A p-Kuranishi neighbourhood on X is data
(Vay Eqy Saya) and [®gilicr, where (Vi Eq, Sq,%4) is a p-Kuranishi neighbour-
hood on the topological space X as in Definition [5.5(a), and [®4;] : (Va, B, Sa,
Ya) = (Vi, E;i, 8i,1);) is a coordinate change for each ¢ € I as in Definition
(over S =TIm, NIma;, as usual), such that for all 4,5 € I we have

[®i5] 0 [Pai] = [Payl, (5.23)

where holds over S = Im1, N Im1; NIm1p; by Convention

Here the subscript ‘a’ in (V,, Eq, Sq, %) is just a label used to distinguish
p-Kuranishi neighbourhoods, generally not in I. If we omit a we will write ‘*’ in
place of ‘a’ in [®g], giving [@.] : (V, E,s,v) — (Vi, E;, s, 1;).

We will usually just say (Vy, Fq, Sq,%q) or (V, E, s,1) is a u-Kuranishi neigh-
bourhood on X, leaving the data [®g;];cr or [Py;]ics implicit. We call such a
(V, E,s,9) a global p-Kuranishi neighbourhood on X if Im+¢ = X.

The next theorem can be proved using the sheaf property Theorem by
very similar methods to Theorem noting that (5.24)—(5.25) imply that

[P ab]|tm vuNIm 1y AIm ;= (@]~ 0 [@ai],
[f b 11m v AIm s A~ (Im gy NIm ;) = [®p;] ' o (] 0 [T,

so we leave the proof as an exercise for the reader.
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Theorem 5.32. (a) Let X = (X,K) be a p-Kuranishi space, where K = (I,
(Vi, Eiy 865 %3)icr, [@ij]i’jef), and (Va, Eq, Sa, ¥a), Vs, Ep, Sp, ¥p) be p-Kuranishi
neighbourhoods on X, in the sense of Definition [5.31 Then there is a unique
coordinate change [®ap] : (Vay, Ea, Sa, Vo) = (Vi, Eb, Sb,¥s) in the sense of Defi-
nition [5.7] such that for all i € I we have

[Ppi] © [Pas] = [Pail, (5.24)

which holds on Im1p, NIm, N Im1p; by Convention . We will call [®,p] the
coordinate change between the 1- Kuranishi neighbourhoods (V,, E,, s,
Vo), Vo, By, sp, ) on the p-Kuranishi space X.

(b) Let f: X =Y be a morphism of u-Kuranishi spaces, with notation (5.11)—
(5.12), and let (Ug, Doy Tas Xa), (Vb, Ep, Sp, ¥p) be p-Kuranishi neighbourhoods on
X, Y respectively, in the sense of Definition [5.31] Then there is a unique mor-
phism [f 1] : (Uay Day7ay Xa) = Vi, Eb, Sp,0p) of pu-Kuranishi neighbourhoods
over f as in Definition b), such that for all i € I and j € J we have

(@] © [fap] = [f 151 0 [Thil. (5.25)

We will call [f,,] the morphism of p-Kuranishi neighbourhoods (V,, E,,
Say®a)s Vo, Eb, sp,00p) over f: X =Y.

Remark 5.33. Note that we make the (potentially confusing) distinction be-
tween p-Kuranishi neighbourhoods (V;, E;, s;,1;) on a topological space X, as in
Definition a), and p-Kuranishi neighbourhoods (V,, By, $q,%4) on a u-Kuran-
ishi space X = (X, K), which are as in Definition and come equipped with
the extra implicit data [®4;];c; giving the compatibility with the p-Kuranishi
structure IC on X. Similarly, we distinguish between coordinate changes of p-
Kuranishi neighbourhoods over X or X, and between morphisms of p-Kuranishi
neighbourhoods over f: X =Y or f: X =Y.

Theorem 5.34. Let X = (X, K) be a u-Kuranishi space, and {(Va, E.ySa,%a):
a € A} a family of p-Kuranishi neighbourhoods on X with X = J,c 4, Im),.
For all a,b € A, let [®up] : (Va, Eay Sas¥a) = (Vi, Ep, Sp, 1p) be the coordinate
change from Theorem a). Then K'= (A, (Vay Ea, SasYa)aca, [(bab]u,beA) 18
a p-Kuranishi structure on X, and X' = (X,K") is canonically isomorphic to

X in pKur.
Proof. Write K = (I, (V;, E;, si,¥i)icr, [@ij]i,jel), and let K’ be as in the the-
i

orem. Definition [5.11)(a)—(d) for K’ are immediate. For part (e), note that
[Paals lid(v,, B 50,00)] © Vas Ea, Sa,Ya) = (Va, Eq, 5a,%a) both satisfy the con-
ditions of Theorem a) with @ = b, so by uniqueness we have [®,,] =
(v, B, s0,0))- Similarly, for a,b,c € A we can show that [®.] o [®,5] and
[Poc] are coordinate changes (Vg, Eq, Sa,¥a) — (Vey, Ec, Se, 1) over Imp, N
Im v, N Im 1), satisfying the conditions of Theorem a), so uniqueness gives
[@pe] © [Pap] = [Pac], proving (f). Hence K’ is a p-Kuranishi structure.

To show X, X' are canonically isomorphic, note that each (V,, Eq4, Sa,%4)
comes equipped with implicit extra data [®4;];c;. Define morphisms f : X — X’
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and g : X' — X by f = (idx, [Pailaca, icr) and g = (idx, [‘bai];elf, wea) It
is easy to check that f,g are morphisms in uKur with g o f = idx and

fog=1idx'. So f,g are canonical isomorphisms. O

As the p-Kuranishi neighbourhoods (V;, E;, s;, ;) in the p-Kuranishi struc-
ture on X are p-Kuranishi neighbourhoods on X, we deduce:

Corollary 5.35. Let X = (X,K) be a p-Kuranishi space with K = (I, Vi
Ei, si,0:)icr, [®i5lijer). Suppose J C I with UjesImep; = X. Then K =
(J, (Vi, By, 8i,03)ied, [@ij]i7jej) is a pu-Kuranishi structure on X, and X' =
(X, K') is canonically isomorphic to X in pKur.

Thus, adding or subtracting extra p-Kuranishi neighbourhoods to the u-
Kuranishi structure of X leaves X unchanged up to canonical isomorphism.

As in if Man® satisfies Assumption then we can lift y-Kuranishi
neighbourhoods (V, Eq, 8q,%e) on X in pKur® to p-Kuranishi neighbourhoods
(Vik,a)» Etka)s $(k,a)> Y(k,a)) o0 the k-corners Cx(X) from and we can lift
morphisms [f ;] : (Ua, DasTas Xa) = (Va, Eb, sp, 1p) of p-Kuranishi neighbour-
hoods over f : X — Y in pKur® to morphisms [f k) + Utkia)s Dik,a)s
T(k,a) X(k,a)) = V) Eapys Sa.p): V) over C(f) : C(X) — C(Y). We leave
the details to the reader. As in §4.7.4] we could now state our philosophy for
working with py-Kuranishi spaces, but we will not.

5.6 Proof of Theorem [5.23

Use the notation of Definition [5.22| To show FI’;E:; : Ho(mKur) — pKur is an
equivalence of categories, we have to prove three things: that F' :1 11211:; is faithful
(injective on morphisms), and full (surjective on morphisms), and surjective on
isomorphism classes of objects.

The proofs of these will involve gluing together 2-morphisms of m-Kuranishi
neighbourhoods using families of partitions of unity, so we begin by showing
that partitions of unity with the properties we need exist.

5.6.1 A lemma on partitions of unity on X in uKur

Let X = (X,Z) be a u-Kuranishi space, with Z = (I, (Ui, Di, iy Xi)ier, Tij =
Uij, Tij,’f'ij]iwjej), as in . Then {Imxi NS I} is an open cover of X, with
X : ri_l(O) — Im x; a homeomorphism for each ¢ € I.

Roughly speaking, we want to define a smooth partition of unity {n; : i € I}
on X subordinate to {Imxi NS I}, so that n; : X — R is smooth with
ni(X) € [0,1] and > ,.;m = 1. However, X is not a manifold, so naively
‘n; + X — R is smooth’ does not make sense.

In fact we will not work with ‘smooth functions’ n; on X directly, apart from
in the proof of Lemma Instead, for each i € I we want a partition of unity
{nij : j € I'} on U; in the sense of 3. d), such that nij|r;1(0) =nj o x; for each
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j € I. The fact that 7, : Uy — R and 7 : U; — R both come from the same
N X — R is expressed in the condition n;;, = nj, o 7 + O(r;) on U;; C U; for
all i, j € I. So our result Lemma [5.30] is stated using only smooth functions on
manifolds (objects in Man).

But to prove Lemma [5.36} it is convenient to first choose a ‘smooth partition
of unity’ {n; : i € I'} on X subordinate to {Imx; : i € I'}, so that {n;ox; :j € I}
is a partition of unity on r; '(0) C U;, and then extend this from 7; ' (0) to U;.
To do this we have to interpret X and r; 1(0) as some kind of ‘smooth space’.
We do this using C*°-schemes and C*-algebraic geometry, as in [56} 65], which
are the foundation of the author’s theory of d-manifolds and d-orbifolds in |57,
58, [61].

Lemma 5.36. Let X = (X,Z) be a pu-Kuranishi space, with notation for
I, and let Tij = (Uij,Tij,’lﬁij) represent [T”] fOT Z,j € I, with (U“,T”,’TA'“) =
(Us,idy,,idp,). Then for all i € I we can choose a partition of unity {n;; : j € I'}
on U; subordinate to the open cover {Us; : j € I} of U;, as in §3.3.1(d) and
9B.1.4] such that for all i,j,k € I we have

Niklv,;, = Njk o Tiy + O(rg)  on Uy C Us, (5.26)

in the sense of Definition i).

Proof. We use notation and results on C'°°-schemes and C*°-algebraic geometry
from [65], in which C'*°-schemes are written X = (X, Ox) for X a topological
space and Ox a sheaf of C*-rings on X, satisfying certain conditions.

For each ¢ € I, as in c) and the manifold U; in Man naturally
becomes an affine C*°-scheme U;, and r; "(0) € U; becomes the closed C>°-
subscheme r;l(O) in U; defined by r; = 0. If ¢,j € I and (Uy;, 745, 73;) represents
Tij, then 745(ri|v,;) = 755(r;) + O(r}) on Uj; by Definition ). This implies
that 7;; : U;; — U; restricts to an isomorphism of C'*°-schemes

Tijly, e o) # Ui N1y H(0) = Ui Ny (0). (5.27)

We now have a topological space X, an open cover {Imy; : i € I} on X, C*°-
schemes 1, 1(0) with underlying topological spaces r; *(0) and homeomorphisms
Xi : r;l(O) — Imy; C X for all 4 € I, and isomorphisms of C*-schemes (5.27)
lifting the homeomorphisms Xj_l oxi:UyNrit(0) — Ujn rj_l(O) over double
overlaps Im x; NImx; € X. From Tj; o Ty = Ty, in Definition [5.1T[f), we
deduce that the isomorphisms have the obvious composition property
Tjk|-.. © Tij|... = Tik|... over triple overlaps Im x; N Im x; N Imx; C X.

Standard results on schemes (actually, just the fact that sheaves of C*°-rings
on X form a stack on X) imply that X may be made into a C°°-scheme X,
uniquely up to unique isomorphism, and the homeomorphisms x; : r;° L) —
Imy; € X upgraded to C*°-scheme morphisms y; : ri_l(O) — X which are
isomorphisms with open C'®-subschemes Im y; € X for i € I, such that

Xj © Tij Ui (0) = Xi Uinr;(0) for all i,7€l. (528)
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Since X is Hausdorff, second countable, and regular, as in Remark
|65, Cor. 4.42] implies that X is an affine C*°-scheme, and [65, Th. 4.40] says
that Ox is fine, that is, there exists a locally finite partition of unity in Ox
subordinate to any open cover of X. Thus we can choose a partition of unity
{n; :i € I} on X subordinate to {Im x; : ¢ € I'}.

" Then for each i € I, {njoxi:je I} is a partition of unity on the C'°°-scheme
r; '(0) subordinate to the open cover {U;; Nr; '(0) : j € J}. From the proof of
the existence of partitions of unity on C'°°-schemes in [65| §4.7], we see that a
partition of unity on r; *(0) C U; subordinate to {U;; Nr;*0):j € J} can be
extended to a partition of unity on U; subordinate to {U;; : j € J}, which is
equivalent to a partition of unity on U; in the sense of §B.1.4]

Thus, for all i € I we can choose a partition of unity {n;; : j € I} on U;
subordinate to {U;; : j € I}, such that nij'rfl(O) =mnjox; forall j €I, in the
sense of C'*°-schemes. If ¢, j,k € I then

Uik|yi,-n1~;1(0) =Tk OXi|yijmz-;1(o) =NMkOXjCTij |yijnr;1(0) =Mjk © Tij|yijmr;1(o)a

using 1) But f\yijﬂrfl(o) = glu,me(0) for smooth f,g : Uj; — R is
equivalent to f = g + O(r;) on Ujj, so equation (5.26) follows. O

5.6.2 FHPEY s faithful
mKur

Let f,g : X — Y be l-morphisms in mKur, so that [fl,lg] : X = Y are
morphisms in Ho(mKur). Write X', Y, f',g’ for the images of X,Y,[f], [g]

under F;Ié“r Suppose f' = g’. We must show that [f] = [g], that is, that there

exists a 2-morphism p: f = g in mKur.

Use notation , , for X,Y, f, and write g = (g,gij, iel, jed
Gzl‘:,jf{,el, G’gj;’e];j GJ). Then f' = g’ means that f = g, and [fi;] = [g;] for
all i € 1,je J as morphisms (U;, D;, 74, x:) = (V;, Ej, 85,1¢;) of p-Kuranishi
neighbourhoods over (S, f) in the sense of where S = Im y; N f~1(Im ;).
Hence there exists a 2-morphism A;; : f,; = g,; of m-Kuranishi neighbourhoods
over (S, f) in the sense of

We would like A = ()\ij, iel, jeJ) : f = g to be a 2-morphism of m-Kuranishi
spaces, but there is a problem: as the \;; are chosen arbitrarily, they have no
compatibility with the F{i,, ng/, G{i,, G{j/, so Definition a),(b) may not
hold for A. We will define a modified version p = (uij’ ier, jes) of A which does
have the required compatibility. B

For i,7 € I and j,j € I, define A¥ to be the horizontal composition of
2-morphisms over S =Imx; NImy; N f~*(Ime¢; NIm¢y;) and f: X — Y

(FUOGdF])) ™" Tj0  idsedgrid Yji0 GY o(id*G7;)
—(FLo(FP-d) foTa gi5°Tii gl o(G¥ +id))

fij gi;» (5.29)
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where the alternative expressions for the first and third 2-morphisms come from

Definition [£.17|(g).
Apply Lemma 5.36/to X' = F:liii(X), using (U, Tisr, T4 ) to represent T

34l

This gives a partition of unity {7, : 7 € I} on U; subordinate to {U;; : 7 € I} for
each i € I, such that for all 4,4’,7 € I we have

nilu,,, = Nii © Ty + O(rg)  on Uy C U

Similarly, applying Lemma [5.36{to Y’ = F :. II?:;(Y) gives a partition of unity
{¢j5 : 7 € J} on V; subordinate to {V};: j € J} for each j € J, such that for all
3,7',7 € J we have

Gijlv,, = Girzovsjr +0(s;) on Vi C V.

Now, using the notation of ({5.6)) in Definition for i € I and j € J define
a 2-morphism p;; : f;; = g,; over (S, f) with f,; = (Vij, fij, fij) by

Hi; = Zzez Eje] iz * f;}(ij) : )‘Zi (5-30)

We will show that pu = (uij’ iel, jGJ) . f = g is a 2-morphism in mKur. For
i,i/,7€ I and j,7 € J consider the diagram

fi’j o Ty : ~ .fij
\Fﬁ/z*id Fii Ff;/7
T.roT id* K, /5 T
SfzjoTizoTy fijoTa
A\FZ xid F¥xidf)
id* K/,
TjjofijoTi'iOTii/ > Tjjof{joTli
A7 xid id#Xgy*id idsAgy*id PNz 5.31
i’ ‘U’ J id*K”/i J ‘U’ 47 ( )
Tjj OgijoTi’ioTii’ _ Tjj OgijoTﬂ
|G +id , G¥+id|)
T T id*K;,77 T
g0 LirgoLiy g;;oTi
/G]:,_*id Peld G
gi;© Ty 9ij-

Here the hexagons commute by the definition 1D of )\fg , the top and bot-

tom quadrilaterals by Definition [4.17((f) for f,g, and the central rectangles by
compatibility of horizontal and vertical composition. Thus (5.31)) commutes.
We now have

G © (g xid) = ng'/ O (Cier > 5eq Mia 1i5(G) - Af'ji) *id
= ter Zj‘eJ i (Mirz) + (firj 0 1 )" (Gig) - ng" © ()‘fsz *id)
= Zzez ngJ Niz - (fi’j © Tii’)*(Cji) ) (Afﬁ © ng)

= (Zzel Zjeﬂlii : f;}(ij) : A%) © ng/ =M © Fgw
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where the first and fifth steps use (5.30), and the third uses (5.26]), (5.31]), and
the fact that p;; in (5.30)) only depends on 7;7 up to O(r;). This proves Definition
4.18|(a) for p, and part (b) is similar. Hence p : f = g is a 2-morphism, so

[f] = [g] as morphisms in Ho(mKur), and F:fé‘;’; is faithful, as we want.

5.6.3 FHPEYT il
mKur

Let X,Y be objects in mKur, and write X’ = FFE™ (x| v’ = prRw (y),

mKur mKur

Suppose f': X' — Y’ is a morphism in uKur We must show that there exists
a l-morphism f : X — Y in mKur with F“Kur([f]) =f.

Use notation [4.7) for XY, as in §5.3| write f' = (f,[fi;lict, jes),
and let f,; : (U, Dl, rl, — (V;, Ej, s5,%;) be a 1-morphism of m-Kuranishi
neighbourhoods representing [ fij} for all i € I and j € J. Then Definition
a),(b) for f" imply that [f;;] o [Ti] = [f;;] and [Yj5] o [f;;] = [f;] for all
i, € I and j,j € J, so that [T OfWOT il = [Ty] 0 [f3l e [Ta] = [fi;]. Hence
we may choose 2-morphisms of m- Kuramshl neighbourhoods over f

)‘ﬁ 77of””OTu fij

for all i,7 € I and j,j € J. For 4,7, € I and 7,5',7 € J, define 2-morphisms
FI0) : fujoTur = fj over (S, f) for S = Tm x; NIm xy NIm xz N f~ 1 (Tmep; N

i’ (%)

Im1);) and Fz(]i)(j) : Yjjo fi; = fij over (S, f) for S = Imy; NImy; N

F7HIme; NIm; NImap;) by the commutative diagrams

fi/j © Ti i fij
ﬂ(ﬂ{)*l*idm P Ajfﬂ\
1dT Of”*K i'7
j]of””oTzonu/ TjjofijoTiiv
(5.32)
Tjj/ © .fij fij/
i 73" y—1 Fig >(]) 7’
\U/ld'rjj,*(kn ) A
A /*lderJOT'"

YjjroTz0 f;0Ty Y350 0 fi70 T

Apply Lemma m to X', using T;; = (Ui, Tir, Tiwr) from X to represent
[T;;]. This gives a partition of unity {n;; : 7 € I'} on U, subordinate to {U;; : 7 € I}
for each i € I satisfying (5.26]). Similarly, applying Lemma to Y’ gives a
partition of unity {¢;;:7 € J} on V; subordinate to {Vj;:j € J} for j € J.

As in ((5.30)), using the notation of (5.6 in Definition for i,7/ € I
and j,j' € J define 2-morphisms F7, : f;; 0 Ty = f,; over (S, f) for S =
Imy; NImyxy N f~1(Im;), and sz/ : Yoo fij = fij over (S, f) for S =
Imx; N f~1(Ime; NImpyr) by

Ffz/ = Zzel ZjeJ Niv z‘*j(CjJ) Fff/j()z)
Ffj = ter ZiGJ Miz - (CJ 7 FZJ 2.
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. j, jed i’y 5,3 €T -
We now claim that f = (f, fi icr. jess ng,ff,i,el, FPY Yisa l-
morphism f : X — Y in mKur. We must verify Definition (a)f(h).

Parts (a)—-(d) are immediate. For (e), if i = ¢’ then Fzz((ji)) in (5.32) is idy, , giving

Ffl = idf” in 1) Similarly ng = idf,;ja proving Definition 4.1§(e).
To prove part (1), let 7 € I, j € J and consider the diagram

-fi”j O Ti’i” (@] T’ii’

A7, xid

Jirjo T

3 () :
Firinm*id A7 xid
Tj] of’ijoTi”ioTi/i” OT’Li’ e —— Tj] Of'ijoTi’ioTii’
id*Ki/i//I*id e
1d*K 00 ﬂid*Kii,i,, id*Kii,iﬁ FIG 1 (5.34)

id*K,; ;7
Tjj o fij o Ti”i o Tii” _ Tjj o fij o Tﬂ

AT, xid iG A
% : FI9 \

fiuj o T“‘N

Jij-

Here the top, bottom and right quadrilaterals commute by 7 the central
rectangle by Definition h) for X, and the left quadrilateral by compatibility
of horizontal and vertical composition. Thus commutes.

We now have

F'Zi// ®© (idfi//j * Kii’i") = (2 ;}nﬂ ' f:;(gjj) . le(,J,)(i)> ® (id-fz‘“j * Kii’i”)
ST VIS]

= nii - fi5(Cig) - (Ffz(/j/)(z) ® (idg,,, * Kiirin))

I

=
m
<
m
<

S i £35(Ga) - (i © (FI ) #ide,)) (5.35)

1jeJ
PIPILE ;';<<ﬁ>~Fz§?&))@(z > i ;;-<<jj~>~<FzF£3m*idT,,.,))

<1
m

I
VRS

i€l jeJ
= Fly© (5 X i) - (s 070)*(G) - (FUl gy #1idr,,))
i€l jeJ
= Fzz/ © (( Z Z Niry * f:;](CJj) : FZ’(zj’)’(i)) * idTii’) = Fzz’ © (F{/i” * idTn")'
i€l jeJ

Here we use in the first and seventh steps, and in the third. In
the fourth step, it may be surprising that one sum ) . Zj turns into two sums
composed with ®. This is because ® in Definition is basically an operation
of addition, not multiplication, so sums (5.6) are distributive over ®. In the fifth
step we use @ for the 7;;, and nd firj o = fi; + O(r;), and the
fact that Ffl, in (5.33)) only depends on 7z, f7;(C;5) up to O(r;).

Equation (5.35) proves Definition [l.17(f) for f. Parts (g),(h) are similar.

Hence f : X — Y is a l-morphism in mKur. By construction F;Kzl;([f]) =7,

Kur .
so FP2Y s full, as we have to prove.
mKur
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5.6.4 F“Kur is surjective on isomorphism classes
munur

Let X' = (X,K’) be a p-Kuranishi space, with K' = (I, (V;, E;, si, ¥:)icr,
[®4;]ijer). To show Flf:l Ié‘;'; is surjectiv? on isomorphism classes, we must
construct an object X in mKur with F:li‘:i(X) =~ X' in pKur. Actually we

will arrange that F:IIIEE‘;(X) =X

Then (V;, E;, $;, ;) is an m-Kuranishi neighbourhood on X for ¢ € I. Choose
a representative ®;; for [®;] for i, j € I, where as [®;;] = [id(v; g, s,,0,)] We take
P, = id(VuEi,Siﬂl)i)' As [‘I)jk] o [(I)”] = [(I)zk] for 4, 7,k € I by Definition f)
for X', there exists a 2-morphism of m-Kuranishi neighbourhoods

Kijk : (bjk o (bij — (bik

over S = Imy; NImy; N Ima)y, where as @4, @;; are identities we choose
Kiij = K'L]J = ldq)u for Z,] € I. Therefore Kz]z : (I)ji o] <I>U = id(Vi,Ei,Siﬂbi)?
Kjij : CI),'j o (I)ji = id(‘/j,Ej7Sj7’¢j) lmply that (I)ij is an equivalence in KNs(X)
for S = Im; NIm1);, and so a coordinate change over S, for all i,7 € 1.

Let 7,4,j,k € I. Then Lemma in the 2-category KNS(X) and @z an
equivalence implies that there is a unique 2-morphism

Kg)k (D 0By = Dy

over S = Im1; NIm; NImep; N Im e, making the following diagram commute:

(bjk: o (b” [©] <I>h o ‘I)lk o (Dii
d Ko Kijk*ldq,“ . 5.36
g TN K Kk ( . )
ijk
ijk o Cbgj (I)Zk

Apply Lemmamm X', using ®;; = (Vij, bijs (;AS”) to represent [®;;]. This
gives a partition of unity {n;; : 7 € I} on V; subordinate to {V;; : 7 € I'} for each

i € I, satistying (5.26)). As in (5.30) and (5.33]), using the notation of (5.6]) in
Definition [5.4} for all 4, j, k € I define a 2-morphism Ay, : @), 0 ®;; = @ over
S =Im; NIm; N Imaepy, by

Aijie = 3 zer it - KE;),C (5.37)

Define K = (I, (Vi, By, 85,03 )icr, Pij i jer, Nijr, i’j_’kej). We will show that
X = (X,K) is an m-Kuranishi space with F:IIIEE‘;(X) = X'. Definition [4.14{a)-
(f) for K are immediate. For (g), as Ki;; = Kjj; = ide,;, equation (5.36) implies
that K@ = k™ — idg,;, so gives Aj;j = Ajj; = idg,,, as we want.

2% ijj
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To prove Definition h) for K, let 7,4, 4, k,1 € I, and consider the diagram

q)k:l o (bjk o (bij o (I)ﬁ O (I>jl O cI)ij o q)ii
N‘;Kiij jkl*ld ld*Kj/
(I)kl e} q)jk e} ®Zj K(D » (I)jl e} @zj
T -
ld*KEJL *id M/id*Kijk Ikt K-Zjl\U, KE;’l*id (538)
Kiki
Py 0 Py Py
1Kk o N
K, xid

D0 Py 0 Dy Dy 0 Dy

over S = Imy; NIm; NImp; N Imepy N Imap;. Here the top quadrilateral
commutes by compatibility of horizontal and vertical composition, and the other
four quadrilaterals commute by . Hence commutes.

Applying Lemma to the outer rectangle of and using ®; an
equivalence shows that over S = Im; N Imy; N Im; N Im e, N Imy; we have

Ky © (ide,, + K

zgk:) = K(i)

il ® (K;ik)l * 1dq>”) Py 0 <I)jk o (Dij = Py;. (539)

Now
Ak © (ido,, * Aiji) = (%: Niz KEZ) O] (idqm * (Z Niz ng)k))

= Z Mz - (Kgik)l ©) (id‘t’kl * zgk)) Z iz - ( zgl @ (Kgik)l * ld‘b”))

el el
(;n m) (Z% .( JM ) xidg, . )) (5.40)

= Aijl © ( Z ‘151; (nﬂ) ! ( ]kl * id‘i’w‘))
=Nij1 ® (( Sy - ]kl) * id%) = Niji © (Aj xido,, ).

Here we use in the first and seventh steps, and (5.39)) in the third. In the
second and fourth steps we use the fact that sums (5.6) are distributive over ®,
as in the proof of . In the fifth step we use (5.37)), and for the n;;,
and the fact that Aijk in only depends on 7;; up to O(s;).

Equation (5 proves Definition |4.14] uh ) for K. Hence X = (X,K) is an

m-Kuranishi space. By construction F* i‘;i(X ) = X'. Therefore e Kur g

surjective on isomorphism classes. This completes the proof of Theorem [>.23
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Chapter 6

Kuranishi spaces, and orbifolds

Throughout this chapter we suppose we are given a category Man satisfying
Assumptions in (though defining the 2-category of orbifolds Orb in

only needs Assumptions 3.3)). As in Chapter {4} we will usually refer to
objects X € Man as ‘manifolds’, and morphisms f : X — Y in Man as ‘smooth

maps’. We will call objects X in Man C Man ‘classical manifolds’, and call
morphisms f: X — Y in Man C Man ‘classical smooth maps’.

Classical orbifolds X are generalizations of classical manifolds which are
locally modelled on R" /T for ' a finite group acting linearly on R". Kuranishi
spaces are an orbifold version of m-Kuranishi spaces in Chapter El, and as in
should be regarded as ‘derived orbifolds’. From the category Man we will
construct a weak 2-category of ‘Kuranishi spaces’ Kur, with a full and faithful
embedding mKur — Kur of mKur from

Sections follow closely, but including extra finite groups I';
throughout. Section discusses isotropy groups, and relates orbifolds and
Kuranishi spaces. The proof of Theorem is deferred until

6.1 The weak 2-category of Kuranishi neighbourhoods

The next seven definitions are the orbifold analogues of Definitions [L.1}4.6}

Definition 6.1. Let X be a topological space. A Kuranishi neighbourhood on
X is a quintuple (V, E, T, s,1) such that:

(a) V is a manifold (object in Man). We allow V = 0.

(b) m: E — V is a vector bundle over V, called the obstruction bundle.

(¢) T' is a finite group with a smooth action on V (that is, an action by
isomorphisms in Man), and a compatible action on E preserving the
vector bundle structure. We do not assume the I'-actions are effective.

(d) s:V — E is a I'-equivariant smooth section of E, called the Kuranishi
section.
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(e) ¥ is a homeomorphism from s~!(0)/T to an open subset Im¢) = {4 (T'v) :
vE 8_1(0)} in X, called the footprint of (V, E,T, s,1).

We will write ¢ : s71(0) — Im¢ C X for the composition of 1 with the
projection s~1(0) — s71(0)/T.

Definition 6.2. Let X,Y be topological spaces, f : X — Y a continuous
map, (Vi, E;, T, s:,¢:), (V3,E;,T;, s5,1;) be Kuranishi neighbourhoods on X,Y
respectively, and S C Im; N f~*(Im;) C X be an open set. A 1-morphism
(I)ij = (Pija 7T7;j, ¢ij7 QZB”) : (‘/;7 Ei7 Fi, Siy ’l/)l) — (ij, Ej, Fj, Sj, %) Of K’LLT’(ZTLiShi
neighbourhoods over (S, f) is a quadruple (P;;, m;j, ¢ij, qASZj) satisfying:

(a) P;; is a manifold (object in Man), with commuting smooth actions of
I';,T; (that is, with a smooth action of I'; x T';), with the I';-action free.

(b) mi; : P;; —V; is a smooth map (morphism in Man) which is I';-equivariant,
['j-invariant, and étale (a local diffeomorphism). The image V;;:=m;;(P;;)
is a I';-invariant open neighbourhood of ¢[1(S) in V; (that is, V;; C V; is
an open submanifold in Man), and the fibres 7@1(1}) of m; for v € V;; are
I'j-orbits, so that m;; : P;; — V;; is a principal I'j-bundle.

We do not require ¢; ' (S) = V;; Ns; 1 (0), only that ¢; *(S) C V;; Ns; 1 (0).

(¢c) ¢ij : Pij — Vj is a I';-invariant and I'j-equivariant smooth map, that is,
Gij (Vi - p) = Gij(p), Hij(vj - p) =75 - Pij(p) for all y; €y, v; €L, p € Pij.

(d) (;ASij i (Ey) — ¢ (Ej) is a I'y- and I'j-equivariant morphism of vector
bundles on P;;, where the I';, I'j-actions are induced by the given I';-action
and the trivial I';-action on E;, and vice versa for Ej.

(€) i (mf;(5:)) = 7 (s;) + O(mfj(5:)?), as in Definition [3.15().
(f) fothomj=1p;o0g¢ion 79}1(8[1(0)) C Py.

If X =Y and f =idx then we call ®;; a 1-morphism of Kuranishi neigh-
bourhoods over S, or just a 1-morphism over S.

Definition 6.3. Let (V;, E;,T;, s;, ;) be a Kuranishi neighbourhood on X, and
S C Im1; be open. We will define the identity 1-morphism

id(Vi,Ei,Fi,si,z/Ji):(Pii77Tii7¢iiaéii)3(Vi;Ei;Fi,Siywi)_>(vi>Ei,Fi75ia¢i)- (6.1)

Since P;; must have two different actions of I';, for clarity we write I‘} = I‘? =T,
where I'} and I'? mean the copies of I'; acting on the domain and target of the
1-morphism in , respectively.

Define P;; = V; x I';, and let '} act on P; by v : (v,7) = (3} - v,v(y1)™1)
and T'? act on P; by v : (v,7) — (v,7%y). Define m;;, ¢ : Py — Vi by
7 ¢ (v,7) = v and ¢ ¢ (v,y) = v-v. Then m; is I'l-equivariant and T'?-
invariant, and is a I'?-principal bundle, and ¢;; is '} -invariant and I'?-equivariant.

At (v,7) € Py, the morphism ¢;; : 75 (E;) — ¢ (E;) must map E;|, = Ej|qy..
We have such a map, the lift of the y-action on V; to E;. So we define (,ZASM on
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V; x {7} C P;; to be the lift to F; of the vy-action on V;, for each v € T'. Tt is
now easy to check that (P;;, ms;, ¢, i) satisfies Definition a)—(f), so is
a l-morphism over S.

Definition 6.4. Suppose X, Y are topological spaces, f : X — Y is a contin-
uous map, (V;, E;, Ty, s5,;), (V;, Ej,T';,s5,1;) are Kuranishi neighbourhoods
on X,Y respectively, S C Im; N f~'(Ime;) C X is open, and ®;;, P

(Vi, B, Ty, 85,11) — (V],Ej,I‘j,sj,U)]) are two 1 morphisms over (S, f), with

(I)ij*( 1j,7r237¢1ja¢)1j) and (Ii;]*( i Z],éf)m, )
Consider triples (P”7 Aijs Aij) satisfying:

(a) P” is a I';- and I'j-invariant open neighbourhood of wigl(zzfl(S)) in P;.

1,
i By This implies that A;; is an isomorphism of principal I';-bundles

(b) Ajj : Pz] — P-’j is a I';- and I'j-equivariant smooth map with 71';]- o\ =
over V” = m—j(Pij), 50 \;; is a diffeomorphism with a I';- and T'j-invariant
open set \i;(P;;) in Pl

(¢) A : ij(Ei)\pU — 7;1.],I/j|15” is a morphism in the notation of i, which
is I';- and I'j-equivariant, and satisfies

i © Nij = ¢U|P +>‘w omy;(s i) +O0(r} (s 1)2) and
A;k](¢ ) (bZ] + (bz] (dsj) o )\Z] + O( ( ’L)) on -Pljv

in the sense of Definition [3.15(iv),(vi),(vii).

(6.2)

Define a binary relation ~ on such triples by (Pij, Aij, Aij) ~ ( Z],A;], X, ;) if

there exists an open neighbourhood Pj; of Wi_jl(zbi 1(8)) in Py N leg with

Nijlp, = Nglp, and  Aylp = Njlp, +O(xi;(si)) on By, (6.3)

in the sense of Definition [3.15(ii). We see from Theorem [3.17|(c) that ~ is an
equivalence relation. We also write ~g in place of ~ if we want to emphasize
the open set S C X.

Write [Z%,AU,}\U} for the ~-equivalence class of (P,;j,)\,;j,j\ij). We say
that [P”,)\”,)\ il 0y = <I>/ is a 2-morphism of 1-morphisms of Kuranishi
nezghbourhoods on X over (S f), or just a 2-morphism over (S, f). We often
write A;; = [P”,)\ZJ,)\ i

If X =Y and f =idx then we call A;; a 2-morphism of Kuranishi neigh-
bourhoods over S, or just a 2-morphism over S.

For a 1-morphism ®;; = (Pij, mi;, ¢ij, ¢ij), define the identity 2-morphism

idq;. = [Pija idpij,O] : (I)ij E=4 (I)” (64)

ij
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Definition 6.5. Let X,Y,Z be topological spaces, f : X - Y, g:Y — Z
be continuous maps, (Vi, E;, Ty, si,:), (Vi, Ej, Ty, 85,%5), (Vk,Ek,Fk,sk,wk) be
Kuranishi neighbourhoods on X, Y, Z respectively, and T" C Im; N g~ (Im Pr)
CY and S CImy; N f~Y(T) C X be open. Suppose ®i; = (Pij, mij, Gij, ij) -
(Vi, Ei, Ty, s, 0;) = (V;, E;,T', s5,1;) is a 1-morphism of Kuranishi neighbour-
hOOdS over (S, f), and q)jk = (Pj;c, 7Tjk, (bjk:y (bjk:) : (VJ, Ej,l“j, Sjawj) — (Vk,Ek,
Tk, Sk, 1Y) is a 1-morphism of Kuranishi neighbourhoods over (T, g).
Consider the diagram in Man:

ﬂl"i xT'jxTy

Pij xv; Pjyi

Q / \ Q”Fk (6.5)

/ \O/ \ O

Here as 7j;, is étale one can show that the fibre product P;; Xy, Pj), exists in
Man using Assumptions 3. 2(e) and |3 .(b We have shown the actions of various
combinations of I';,I';,I'y, on each space. In fact I'; x I'; x I';, acts on the whole
diagram, with all maps equivariant, but we have omitted the trivial actions (for
instance, I';, T’y act trivially on V;).

As T'j acts freely on P;j, it also acts freely on P;; xv, Pj. Using Assumption
and the facts that P;; xy, Pj; is Hausdorff and T'; is finite, we can show
that the quotient Py, := (P;; xv, Pj)/I'; exists in Man, with projection
IT: Py xXv; Pjp — Pjx. The commuting actions of I';,I'y, on Py Xy, Pji descend
to commuting actions of I';, Iy, on Pjg, such that II is T';- and I'g-equivariant. As
mij o mp,, : Pij Xv, Pjr — Vi and ¢ omp,, : Pij Xy, Pjr — Vj, are I'j-invariant,
they factor through II, so there are unique smooth maps m;; : Py, — V; and
¢ir » Py, — Vi such that Tjj O Tp,; = Mik O II and ¢jk omp;, = ¢ix o 11.

Consider the diagram of vector bundles on FP;; Xy, Pjy:

II* o ﬂ'g‘k(Ei) G > 11" o ¢, (Ex)
77121((;3”) 7TP (d’gk) H
: 7r1*“—’ij Owj(Ej) — 77}3_“, Oﬂ-;k(E') s 7TP % O(b]k(Ek)

Tp,, o™i (Ei)

There is a unique morphism on the top line making the diagram commute. As
@ij, 951 are I'j-equivariant, this is I'j-equivariant, so it is the pullback under
II* of a unique morphism ¢y, : w5 (E;) = ¢35, (E), as shown. It is now easy to
check that (P, mik, Pik, éik) satisfies Definition a)—(f), and is a 1-morphism
i = (Pig, Tity Gites dite) = (Viy B3, T, 50,05) = (Vio, B, T, s, 91,) over (S, g o f).
We write @, 0 ®;; = @41, and call it the composition of 1-morphisms.

If we have three such 1-morphisms ®;;, ®;i, Py, define

>\ijkl : [-Pzg XVj ((P]k XVk Pkl)/l“k)] /FJ — [((PU ij ij)/I‘j) Xvk Pkl]/l“k (66)
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to be the natural identification. Then we have a 2-isomorphism

Qo 5,05 = [[Pij ¥v; (Pik Xvi Prt)/Tr)l/T 5, Nijit 0] -

(6.7)
((I)kl o q)jk:) o q)ij — (I)k:l o ((I)jk: o (I)z])

That is, composition of 1-morphisms is associative up to canonical 2-isomorphism,
as for weak 2-categories in §A.2]
For @;; : (V;, E;, Ty, s5,¢:) = (V;, E;, T, s5,%;) as above, define

pij : (Vi x Ty) xv, Piy)/Ti — Py,
vij « (Pij xv; (V; x15))/T; — Py,

to be the natural identifications. Then we have 2-isomorphisms

Bs,, = [(Vi x T) xv, Pij)/Ti, p1ij,0] : @45 0id(v, b, 11.50,0) = Pij

7 ) (6.8)
Yo, = [(Pij xv, (V; xT;))/T;,vij,0] 2w, By s 0, © Pig = Pijs

(%) :
so identity 1-morphisms behave as they should up to canonical 2-isomorphism,
as for weak 2-categories in

Definition 6.6. Let X,Y be topological spaces, f : X — Y be continu-
ous, (Vi, B, Ty, SZ, i), (V;, E;,Tj,s5,1;) be Kuranishi neighbourhoods on X, Y,
S ClImy; N f~ (Imwj) C X be open, and &, U,(I>” (Vi By Uiy si,05) —

(V;, E; I‘J,s],w]) be 1-morphisms over (S, f) with ®;; = ( ”,mj,gi)mqbw)
(I);'j :( ijo 1j7¢z_]7 ) (I)H = (Pz/]l’ :37 ;/]’ N) Suppose A;; = [PU7)‘2J7)‘ 1

®;; = @}, and Aj; = [ j,)\;j, /\;j] : @}, = @, are 2-morphisms over (S, f). We

will define the vertical composition of 2-morphisms over (S, f), written

A;j O] A,‘j [ /\/ /\/ ] [Pij, )\i]‘, 5\”'] : q)ij — q);/]

150 Mo Mg
When X =Y and f =idx we call 1t vertical composition over S.
Choose representatives (P”, Aij, i i)s (P'j,)\;j,)\;j) in the ~-equivalence cla-
sses [Py, Nij, Aij], [Pl iy Ajj]. Define Pl = A=Y (Py;) € Py € Py, and \); =
Ao Aij |P,,. Consider the sheaf IIlOI‘phlSHl on P”

A5 (AE)

7Ti]( )|P”_)\ O7T’Lj 7')|le], 7:15’ oN;; V|P1/,

using the notation of § " Since ¢} ; o>‘lj|P” = ¢ZJ|P,, +0(7};(si)) by 1.) The-
orem g) shows that there exists a morphlsm )\U s (Bl pr = T Vilprs
ij ' ij

unique up to O(ﬂj‘j(si)), with
X = X (N) + O (s0)), (6.9)

as in Definition [3.15((v). By averaging over the I'; x I';-action we can suppose
X;j is I';- and T'j-equivariant, as \}; is.
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ij
using TheoremA that (P!, A ;\Q’j) satisfies D?ﬁnition a)f(c) /for ;5 ’A‘I);/j’
using 1D for Aij, Aj; and to prove lj for AY;. Hence A}, = [P}, N}, M) :
®;; = &7 is a 2-morphism over (S, f). It is independent of choices. We define
[Py Xigs Nigl © [Pigs Nig, Aigl = [P, A, ATy, or Ay © Aig = AT .
et Ay 1 @y = <I>;j be a 2-morphism over (S, f), and choose a representative

(PijaAip}\ij) fOI'/Aij :/[pija Aijaj\ij}- Define pzlj = )\ij(lﬁij), SO tl}at pzlj/g Pz/g is
open afld Xij 1 Py — PZ-’j is a diffeomorphism. Set )\;j = )\i_jl : Pi’j — P;; C Pyj.
Then Pj; is I';- and I'j-invariant, and \; is T';- and I';-equivariant.

Now ¢}; = ¢ij 0N +O(m7(si)), so Theorem 3.17(g) gives Aj; : ﬂ;;f(Ei)|Pi/j —
7:25;,"/”?7{].7 unique up to O(mj3(s:)), with A[; = —Al5(Aij) + O(m(3(s:)), as in
Definition (v) Since A;j i? ', T'j-equivariant, by averaging A;; over the
I'; x T'j-action we can suppose A, is I';, I'j~equivariant. We can then show that

(Pj;, Aijs Aij) satisfies Definition (a)f(c), so that A, = [P, N, Aj;] « @ =
®;; is a 2-morphism over (S, f). This A}, is a two-sided inverse Ai_j1 for A;;
under vertical composition. Thus, all 2-morphisms over (S, f) are invertible

under vertical composition, that is, they are 2-isomorphisms.

Define 5\;’] : ﬂfk'(EiNP{} — nij‘/}lpi’]/. by 5\2’3 = /A\ij|pi,; + 5\23 We can prove

Definition 6.7. Let X,Y, Z be topological spaces, f : X =Y, g:Y — Z
be continuous maps, (Vi, E;, Ty, 5i,v5), (V, E;, T, 85,%5), (Vie, Ex, T, S8, ¢1) be
Kuranishi neighbourhoods on X,Y,Z, and T C Im¢; N g~ '(Im¢,) C Y and
S C Imvy; N f~YT) € X be open. Suppose iy, @5 0 (Vi, Biy Ty siy i) —
(V;, E;,T;, s;,;) are 1-morphisms of Kuranishi neighbourhoods over (S, f), and
Ajj : @5 = ®; is a 2-morphism over (S, f), and @y, @y (V}, E;, Ty, 85, ¢5)
— (Vi, B, Tk, Sk, ¥k ) are 1-morphisms of Kuranishi neighbourhoods over (T, g),
and Aji : @;5 = @ is a 2-morphism over (7', g).
We will define the horizontal composition of 2-morphisms, written

Aji % Nij = @jp 0 @y = Py 0 B over (S,go f). (6.10)

Use our usual notation for ®;;,..., Ak, and write (Pig, mik, ik, lek) =D, 0D,
(P{k,wgk,gb;k,qg;k) = @) o &, as in Definition Choose representatives
(Pig, Nijs Nig)s (B Aoy Agie) for Ay = [Py, Nig, Ag] and A = [P, Ajiey A
Then P, = (/Pij ><‘/J.,ij)/1"j7 and P;; C Py,
I'j-invariant, so P;; Xy, Pji is open and T'j-invariant in P;; xv, Pj;. Define

Py, C Pj, are open and

Py = (Pu Xy, ij)/Fj, as an open subset of P;. It is I';- and I'y-invariant, as
P, Pjj, are I';- and/Fk—invariant, re§pectively. )

The maps Aij : Pij — P, Nji © P, — P;k satisfy ¢j; o \ij = qbij|15i]_ o
Vi and 7l 0 \jp, = 7rjk|}5jk : Pj, = V. Hence by properties of fibre products they
induce a unique smooth map A : Pij X i Vi ij — Pi’j Xt Vit P]fk with

TPy, 0Nk = Aij oTp, and TP, oNik = Ajk S As everything is I j-equivariant,
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Air, descends to the quotients by I';. Thus we obtain a unique smooth map
Ni s Py = (B Xy, Pj) /T — (P}; xv; Pj)/T; = Py,

with \;poll = H/O;\ik, for IT : Pij Xy, ij — (1:,)” Xy, ij)/l“j, I . PZ/J Xv; Pj/k —
(P]; xv; Pj;)/T'; the projections.
Define a morphism of sheaves on Pl] Xy, ij

Aig I o (E3) = (mij omp, )" (Ei) — (Ty, Vi) by
ik = (IL) ™ o Tgjn o (Tmjw) ™ oy (Aij)
+(I)omy (k) oy (4)),

where the morphisms are given in the diagram

(ﬂ-ijowpij)*(Ei> . (d; ) ((72514]‘071'15“)*(Ej) _ (ijoﬂpjk)*(Ej)
ﬂ-pi‘ ij
J o
ﬂ;w(}\ij) (T, Vi) (I )-1 Tirort Vi Tr;jk()‘-jk)
(Tre) T\
. ’ bk
%UOWPUV? _ ﬁrjkoﬂpjk‘/j — ﬁ"pjk ij J Ejkowlf,jka.

Here Ty - 7;ij ij — ﬂjkoﬂpﬂVj and I : IT*(74,, Vi) — Tp,onVi are
invertible as 7y, Il are étale. As all the ingredients are I';,I';, I'y-invariant or
equivariant, \; is I'j-invariant, and so descends to Py = (PZJ Xy, ij)/Fj. That
is, there iAs a unifque morvphism ik T (B B T Vil P of sheaves on Py
with IT*(Aik) = Aig. As Ajg is T';- and T'k-equivariant, so is Ay.

One can now check that (P, A\, Aix) satisfies Definition [6.4(a)(c), where
1' for Aix follows from adding the pullbacks to P;; Xy, Pjx of li for Aij, Ajk,
so A = [Pilﬁ Niks 5%] is a 2-morphism as in 1) which is independent of

,

choices of (Hj’ >\ij7 S\ij), (ij, )\jk, 5\jk)- We define Ajk * Aij = Azk n "

We have now defined all the structures of a weak 2-category: objects (Ku-
ranishi neighbourhoods), 1- and 2-morphisms, their three kinds of composition,
two kinds of identities, and the coherence 2-isomorphisms 7 . The next
theorem, the analogue of Theorem [£.7] has a long but straightforward proof
using Theorem [3.17] at some points, and we leave it as an exercise.

Theorem 6.8. The structures in Definitions [6.1H6.7| satisfy the axioms of a
weak 2-category in §A2]

Here are the analogues of Definition [£.8] and Corollary [4.9}

Definition 6.9. Write KN for the weak 2-category of Kuranishi neighbourhoods
defined using Man, where:
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e Objects of KN are triples (X, S, (V, E,T, s,1)), where X is a topological
space, S C X is open, and (V, E,T,s,4) is a Kuranishi neighbourhood
over S, as in Definition [6.1}

L4 l_morphisms (f7 (I)Z]) : (Xa Sa (‘/:m Ei7 Fi; Siy wl)) — (Y7 T7 (‘/ja E]a Fja Sj, ’(/}j))
of KN are a pair of a continuous map f: X — Y with S C f~1(T) C X
and a 1-morphism ®;; : (V;, E;, T, s4,%:) — (V;, E;, T, s5,1;) over (S, f),
as in Definition

e For 1-morphisms (f, ®;;), (f, @gj) (XS, (Vi By Ty, s, ) — (YT, (V5
E;,T;,s;,v;)) with the same continuous map f: X — Y, a 2-morphism
of KN is a 2-morphism A;; : ®;; = ®{; over (S, f), as in Deﬁnition

e Identities, the three kinds of composition of 1- and 2-morphisms, and

the coherence 2-isomorphisms oy, r ., 37,7y are defined in the obvious way
using Definitions [6.3] and

Write GKN for the full 2-subcategory of KN with objects (s~1(0)/T, s~ (0)/T,
(‘/, E,F,S,idsfl(o)/p)) for which X = § = 571(0)/1_‘ and ¢ = ids—l(o)/r. We
call GKN the weak 2-category of global Kuranishi neighbourhoods. We usu-
ally write objects of GKN as (V,E,T,s) rather than (s~'(0)/T,s (0)/T,
(V,E,T,s,ids-1(0y/r)). Similarly, we write 1-morphisms of GKN as D,
(Vi, E;, Ty, s:) — (V}, E;,T';, s5) rather than as (f, ®;;), since f is determined by
®;; as in Definition and we write 2-morphisms of GKN as Aij : @45 = <I>;j.

Let X be a topological space and S C X be open. Write KNg (X) for the
2-subcategory of KN with objects (X,S,(V,E,T,s,¢)) for X,S as given, 1-
morphisms (idx, ®;;) : (X, S, (V;, Ei, Ty, s5,¢:)) = (X, S, (V}, E;, Ty, 85,1;)) for
f =1idx, and all 2-morphisms A;; : (idx, ®;;) = (idX,Cbgj). We call KNS(X)
the weak 2-category of Kuranishi neighbourhoods over S C X.

We generally write objects of KNS(X) as (V, E,T, s,v), omitting X, S, and
1-morphisms of KNS(X) as ®;;, omitting idx. That is, objects, 1- and 2-
morphisms of KNS(X ) are just Kuranishi neighbourhoods over S and 1- and
2-morphisms over S as in Definitions and

The accent ‘"~ in KN, GKN,KNg(X) is because they are constructed
using Man. For particular Man we modify the notation in the obvious way,
e.g. if Man = Man we write KN, GKN, KNg(X), and if Man = Man® we
write KN¢, GKN° KN¢(X).

If f:X — Y is continuous, (V;, E;, T, 85,%;),(V;, E;,T;,s5,1¢;) are Ku-
ranishi neighbourhoods on X,Y, and S C Im; N f_l(lml/)j) C X is open,
write Homg ;((Vi, E;, Ty, i, ¢:), (V;, E;, T, s5,1;)) for the groupoid with ob-
jects 1-morphisms ®;; : (V;, E;, Iy, 85,¢:) — (V;, Ej,T,55,1;) over (S, f), and
morphisms 2-morphisms A;; : ®;; = ®;; over (S, f).

If X=Y and f=idx, we write Homgs((V;, E;, T, s:,v:), (V;, E;, T, 85,%5))
in place of Homg ¢((V;, E;, I's, s, ¢4), (V;, E;, T, 55,%5)).

Corollary 6.10. In Definition KN,GKN and KNg(X) are weak 2-
categories, and in fact (2,1)-categories, as all 2-morphisms are invertible.
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Here are the analogues of Definitions and Convention

Definition 6.11. Let X be a topological space, and S C X be open, and
O, 0 (Vi, B, Ty, si,¢) — (Vy, Ej,T,s5,%,) be a 1-morphism of Kuranishi
neighbourhoods on X over S. Then ®;; is a 1-morphism in the 2-category
KNg(X) of Definition We call ®;; a coordinate change over S if it is an
equivalence in KNg(X). Write

EquS((‘/M Eiaria Siawi)7 (V77E]7 F]a S]ij))
C Homg ((Vi, Ei, Ty, si, 1), (Vi B, Ty, s5,105))

for the subgroupoid with objects coordinate changes over S.

Here is Theorem [10.65{a)—(c) from §10.5.3|in volume [II} which gives criteria

for when a 1-morphism of Kuranishi neighbourhoods on X is a coordinate change
when Man is Man, Man¢, Man®¢, Man®® or Man®?2°.

Theorem 6.12. Working in a category Man which we specify in (a)—(c) below,
let @i = (P, mij, ¢ijy big) + (Vi, Bi, Dissiy i) — (Vi By, Ty, 85,95) be a 1-
morphism of Kuranishi neighbourhoods on a topological space X over an open
subset S C X. Let p € W;l(l/}l_l(S)) C Py, set v; = mi(p) € V; and v; =
¢ij(p) € Vj, and consider the morphism of finite groups

pp: { (Vi) €T X Tyt (i, y5) - p=p} — {7 €T 75 -v; = v},

(6.11)
Py (VisVs) V> V-

Then:

(a) If 1\'/Ian:M7an then ®;; is a coordinate change over S if and only if for
all p € Wigl(wi_l(S)), equation l) is an isomorphism, and the following
18 exact:

do,; 8i@(Tppijo(Tpmij)~

R ~dijlp®dus;
0—T,.V; Ei|y,®T,,V;

Bjly, —0. (6.12)

(b) If Man = Man® then ;5 is a coordinate change over S if and only if
¢ij is simple near 71'1-;1(1/1;1(5')), as in 31, and for all p € ﬂ'i_jl(zbi_l(S)),
equation (6.11)) is an isomorphism and (6.12)) is exact.

(c) If Man is one of Man®, Man2, Man?®® or Man®?° then ®;; is a coor-
dinate change over S if and only if ¢;; is simple near ﬂ'i_jl(dji_l(S)), and
using b-tangent spaces from “., for all p € wgl(&;l(S)), equation 1}
18 an isomorphism and the following is exact:

bdy, si® (" Tpdijo("*Tpmi;) ™) —ijp®°da 5,
0—="°T,.V; s By, Ty, V; ———— Ej|,, — 0.
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Definition 6.13. Let 7' C S C X be open. Define the restriction 2-functor
|7 : KNS(X) — KNT(X) to map objects (V;, E;, T, s;, 1) to exactly the same
objects, and 1-morphisms ®;; to exactly the same 1-morphisms but regarded as
1-morphisms over T, and 2-morphisms A;; over S to A;j|r, where A;;|7 is the
~p-equivalence class of any representative (Pij, Aij 5\”) for the ~g-equivalence
class A;j. We take the 2-morphisms Fy r, F'x in Definition to be identities.
Then |7 : KNg(X) — KNy (X) is a weak 2-functor of weak 2-categories as in
If U CT CSC X are open then |y o|r = |y : KNg(X) — KNy (X).

Now let f : X =Y be Continuous, (‘/Z‘,Ei,ri75i,1/)i), (Vj,Ej,Fj,Sj,l/}j) be
Kuranishi neighbourhoods on X,Y, and T C S C Im; N f~(Im1);) € X be
open. Then as for |p on 1- and 2-morphisms above, we define a functor

‘T : HomS,f((‘/iaEiariasivwi)v (‘/J7E]5F]a517w1)) —
HomT,f((V;laEhFivSiawi)a(ij,EjaFjvsjaqu)j))'

Convention 6.14. When we do not specify a domain S for a morphism, or
coordinate change, of Kuranishi neighbourhoods, the domain should be as large as
possible. For example, if we say that ®;; : (V;, B, Ty, s, ¢:) = (V}, E;, T, 85, 1;)
is a l-morphism (or a l-morphism over f : X — Y) without specifying S, we
mean that S =Im; NIm; (or S =TIme; N f~1(Im;)).

Similarly, if we write a formula involving several 2-morphisms (possibly
defined on different domains), without specifying the domain S, we make the
convention that the domain where the formula holds should be as large as possible.
That is, the domain S is taken to be the intersection of the domains of each
2-morphism in the formula, and we implicitly restrict each morphism in the
formula to S as in Definition [6.13] so that it makes sense.

Remark 6.15. (i) Our coordinate changes in Definition are closely related
to coordinate changes between Kuranishi neighbourhoods in the theory of Fukaya,
Oh, Ohta and Ono [19}39], as described in We explain the connection in
g7.1] One of the most important innovations in our theory is to introduce the
notion of 2-morphism between coordinate changes.

(ii) Our 1-morphisms of Kuranishi neighbourhoods involve V;; &L P;; P, V;
with m;; a I';-equivariant principal I';-bundle, and ¢;; I';-invariant and I';-
equivariant. As in this is a known way of writing 1-morphisms of orbifolds
[Vij/Ti] = [V;/T], called Hilsum~-Skandalis morphisms. So the data P;j, 75, ¢s;
in ®;; = (P, mij, i éij) is very natural from the orbifold point of view.

(iii) In the definition of 2-morphisms A;; = [Pij, Aij, Ai;] in Definition by
restricting to arbitrarily small open neighbourhoods P” of wi_jl(zZ_Ji_l(S)) in P
and then taking equivalence classes, we are in effect taking germs about 1[1; 1(5 )
in V;, or germs about 7@1(@;1(5)) in P;;. Fukaya-Ono’s first definition of
Kuranishi space [39} §5] involved germs of Kuranishi neighbourhoods at points.
We take germs at larger subsets ;- 1(S) in 2-morphisms.
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Here is the analogue of Theorem proved in which is very important
in our theory. We will call Theorem the stack property. We will use it in
§6.2] to construct compositions of 1- and 2-morphisms of Kuranishi spaces.

Theorem 6.16. Let f: X — Y be a continuous map of topological spaces, and
(Vi, Ei, Ty, s5,1), (Vy, Ej, T, 55,1;) be Kuranishi neighbourhoods on X,Y . For
each open S C Im; N f~1(Imv);) C X, define a groupoid

%Omf((‘/iaEithsiad)z) ( Fj78]7¢]))(5>
:Homs,f<(‘/zaElaFl>slawl> ( E]7Fj,8]7w]))a

as in Definition for all open T C S CImp; N f~1(Imp;) define a functor

pst : Homy((Vi, By, Ty, si,104), (Vy, E;, Ty, 85,15)) (S) —
%Omf((‘/iaEiaFiasiawi)ﬂ (‘/3>EjaFjaSjawj))(T)

between groupoids by pst = |1, as in Definition and for all open U C
T C S CImyy;N f~(Imvy;) take the obvious isomorphism nsry = id,g, :
pruopst = psu. Then Homy((Vi, E;, Ty, s5,9:), (Vy, E;,.T;,s5,15)) is a stack
on the open subset ITm1; N f~1(Im);) in X, as in §A.6

When X = K f = idx we write Hom((‘/;’ Ei,ri7 S’hwi); (V}‘,Ej,rj, S, w]))
rather than Hom;((V;, E;, Ty, si,¢:), (V;, E;, T, 85,%;)). Coordinate changes
q)zj : (W,E@,Fi,si,@[}i) — (‘/j,Ej,Fj,Sj,’l/)j) also form a stack Equ((Vz,Ez,Fz,
31’71101')3 (‘/}7 Eja Fja Sjawj)) on IH“/% n Imwh a substack Of %Om((‘/za Eiaria Sy
¥i), (Vs 5, Ty s5,45))-

6.2 The weak 2-category of Kuranishi spaces

6.2.1 The definition of the 2-category Kur

We now define the weak 2-category of Kuranishi spaces Kur. We follow the
definition of mKur in closely, with the difference that m-Kuranishi neigh-
bourhoods in §4.1] are a strict 2-category, but Kuranishi neighbourhoods in
§6.1] are a weak 2-category. So we cannot omit brackets in compositions of
1-morphisms such as fbkl o (D]k o®,;; in , we must write (®y; 0 ®j5) o D;; or
Q0 (Pjp0®;;) asin l 3)), and we have to msert extra coherence 2-morphisms
Oy, @50, Di5 B, Vo, fro 6 - l throughout

For example compare (14.4]), ( , and above with 7
(6.19), (6.20)), and (6.21)) below, notlng the extra 4+, and compare Definitions
g) and [6.17((g), noting the extra 3,,~,.

Since every weak 2-category is equivalent as a weak 2-category to a strict
2-category, we can guarantee that any proof which works in strict 2-categories
can be extended to a proof in weak 2-categories by including extra 2-morphisms
Qs 55 By, Yy although diagrams such as and become rather more
complicated. So we omit proofs in this section, referring to those in

Here is the analogue of Definition [£.14]
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Definition 6.17. Let X be a Hausdorff, second countable topological space,
and n € Z. A Kuranishi structure K on X of virtual dimension n is data
K= (I,(Vi, Ei,Ti, 8i,%)ier, ®ij, ijers Nijk, ijker), where:

(a) I is an indexing set (not necessarily finite).

(b) (Vi, E;, Ty, 84,1;) is a Kuranishi neighbourhood on X for each i € I,
with dim V; — rank F; = n.

(¢) ®ij = (Pyj, mij, bij, 0ij) + (Viy By, Ty, si,005) — (V;, E;, Ty, 85,1;) is a coor-
dinate change for all 4, j € I (as usual, defined over S = Im; N Imq);).

, ~

(d) Aijk = [Pijks Nijk, Aijk] © g 0 @;5 = Py is a 2-morphism for all i, 5,k € I
(as usual, defined over S = Im; NImp; N Imey).

) Uiy Imyy; = X.

) P, = id(V1‘,7E7i,FuSi-¢i) foralliel.

(8) Aisj = Bs,, and Ajj; = v, for all i,j € I, for By, ,ve,, asin .

(h) The following diagram of 2-morphisms over S = Im1; N Im; N Imyy N
Im ), commutes for all 4,5, k,1 € I, for as,; a,,,s,; as in (6.7):

((bkl O(I)Jk) O(I)ij A ieide ‘I)jl O(I)ij
j b i
\U/acbkl,@jk.,@” ! Aijl\u/ (613)
idq>kl *Nijk Aigl
pp 0 (D 0 @ij) =———=> Py 0 iy, ;.

We call X = (X, K) a Kuranishi space, of virtual dimension vdim X = n. When
we write £ € X, we mean that x € X.

Here is the analogue of Example

Example 6.18. Let V be a manifold, ¥ — V a vector bundle, I' a finite
group with a smooth action on V' and a compatible action on E preserving the
vector bundle structure, and s : V — E a I'-equivariant smooth section, so that
(V,E,T,s) is an object in GKN from Deﬁnition Set X = s71(0)/I, with
the quotient topology induced from the closed subset s71(0) C V. Then X is
Hausdorff and second countable, as V' is and I' is finite.

Define a Kuranishi structure IC = ({0}, Vo, Eo,To, 50, %0), Poo, Aooo) on X
with indexing set I = {0}, one Kuranishi neighbourhood (Vj, Ey, 'y, so, %0)
with Vo =V, Eg = E, Ty =T, s = s and ¢y = idx, one coordinate change
oo = id(vy, Eg,To,50,10), and one 2-morphism Aggp = idg,,. Then X = (X, K) is
a Kuranishi space, with vdim X = dim V' —rank F. We write Sy g r = X.

We will need notation to distinguish Kuranishi neighbourhoods, coordinate
changes, and 2-morphisms on different Kuranishi spaces. As for (4.5)—(4.8]), we
will often use the following notation for Kuranishi spaces W, XY, Z:

W=W,H), H=(H, (Th,Ch,Aisqn:en)hctr, Shr = (Onnrs Thirs Ohirs

Ghw JnheHs Tnnne = [Ohh/h”7th/h”yZhh’h//]h,h’,h“EH)7 (6.14)
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X =(X,I), ZI=(I,(U,Di,Bi,ri;xi)iers Tiir = (Piar, Tiir, Tuar,

7A-ii’)i,i’ela Ku’z” - [Pu’z”7 Rig’47 s /’Qn’z”}z i’7i”€I)7 (615)
= (K j)7 J = (']7 (V}a ijj78j7wj)j€J’ TJ]/ = (ij/,ﬂ'jj/,ﬂjj/,
053 )gress Nigrin = 1Qigrins Ngryrs Niginliigrgres) (6.16)

Z=(2,K), K= (K, (Wi, Fr, A, ti,wp)ker, Porr = (Riok, Tokr , Dok
ékk’)k,k’e[ﬁ Mpyprgrr = [Rkk’k”aMkk’k”7ﬂkk’k”]k.k’,k”eK)~ (6.17)
Here are the analogues of Definitions [£.17] and [£:18]

Deﬁnition 6 19 Let X = (X,Z) and Y = (Y, J) be Kuranishi spaces, with
notation - A 1-morphism of Kuranishi spaces f: X — Y is data

,Jj€J ‘eJ
= (f7 fij icr jess F?i’{i,i’elv FZ]zeJIJ )v (6.18)
satisfying the conditions:

(a) f:X — Y is a continuous map.

(b) .fij = ( zg77r2J7f2J7fzJ) : (UivDiaBiariaxi) — (ijan7Fjasj7¢j) is a 1-
morphism of Kuranishi neighbourhoods over f for all i € I, j € J (defined
over S =Imy; N f~1(Im1;), as usual).

(c) Ffl, = [Pfl,, FJ F2 fijoTiw = f,;; is a 2-morphism over f for all

i,i’ € I and j € J (defined over S = Im y; NIm x; N f~1(Im;)).

(d) ng, = [pijj,,Fijj/,ﬁ'ijj | : Xjj 0 f;; = fij is a 2-morphism over f for all
i €I and j,j’ € J (defined over S =TImy; N f~1(Imp; N Im1p;)).

(e) Ffl = 'Bfij and Ff] =77, foralliel, j e J, for ﬂfﬁ,'yfij as in .
(f) The following commutes for all 7,i',i"” € I and j € J:

(firrj o Tirgrr) o Tyir v Firjo T
F, ., ¥idr_, v
Josrsimoiinia . | | (619)
ld_f i *K il il /]‘i” v
f’i”j o (T’L 1511 O T“ ) ﬁ fl”j [} T”// f”
(g) The following commutes for all 4,4’ € I and j,j' € J:
(T]]/ o fz’j) o T“‘/ = f’b'j' o T“
ar 5 T FJJ *idTii/ y 6 20
s T » _
\U/ ” ld'r _F'J jj’ il \U/ ( )

T s 511 O ..
A i35 *idfij 73 f”

\U’a‘rj/j,h.r 034 idy | *FJJ FJ'/J',/ Fjj”ﬂ (621)
i1t
Tj j”o( ]jloflj)ﬁ’r ”Ofl_] ﬁf’””’
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Ifre X (ie. x € X), we will write f(z) = f(z) € Y.
When Y = X, define the identity 1-morphism idx : X — X by

i — (i o Jel g.g'el
idx = (ldXva igel, Kyj iier K ieI)' (6.22)

Then Definition [6.17(h) implies that (f)—(h) above hold.

Definition 6.20. Let X = (X,Z) and Y = (Y, J) be Kuranishi spaces, with

notation as in (6.15)—(6.16)), and f,g : X — Y be l-morphisms. Suppose the
continuous maps f,g: X — Y in f, g satisfy f = g. A 2-morphism of Kuranishi

spaces ) : f = gisdatan = (nij’ iel, jeJ)a where n,;; = [Pij,mj, mij] : fij = 9ij
is a 2-morphism of Kuranishi neighbourhoods over f = g (defined over S =
Imx; N f~'(Im;), as usual), satisfying the conditions:

(a) G © (g, *idr,,) =n,; @ Fl, : fu;0Ty = g,; foralli,i' €I, j € J.
(b) GV @ (idy,, *m;;) =My O FF :Yyj 0 fi; = gy foralli € 1, j,j' € J.

Note that by definition, 2-morphisms 1 : f = g only exist if f = g.
If f = g, the identity 2-morphism is idy = (idfij? iel,jeJ) f=1

As for m-Kuranishi spaces in given 1-morphisms of Kuranishi spaces
f:X —>Y, g:Y — Z, we must use the stack property in Theorem [6.16]
to define the composition go f : X — Z, where g o f is only unique up to
2-isomorphism, so we must make an arbitrary choice.

Here is the analogue of Proposition It is proved in the same way, but
inserting extra 2-morphisms o . «, 3,,7, as we are now working in a weak
2-category.

Proposition 6.21. (a) Let X = (X,7),Y = (Y,J),Z = (Z,K) be Kuranishi
spaces with notation (6.15)—(6.17)), and f: X =Y, g:Y — Z be 1-morphisms,
with f = (f, fij,ng,,F{j ), g = (g,gjk,ij,,Gfkl). Then there exists a 1-
morphism b : X — Z with h = (b, hy, HS, H), such that h=go f: X —

Z, and for all i€ I, j € J, k € K we have 2-morphisms over h
Oijk = gji © Fij = hin, (6.23)

where as usual (6.23)) holds over S =Tmy; N f~(Im;) N A~ (Imwy), and for
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all i,7' €1, 5,7 € J, k, k' € K the following commute:

(gjr o firj) o Tiir o hg 0 Ty
\U/agjk’fi’j”rii’ ; H:cz’ﬂ, (624)
96 F Oijk

gjko(fi/joTii') gjkofij hi,

id

(g0 Xjjr) o fij — 95 © fij
ij/*ldfi].
\U/agj’k"rjj”fij @ijk‘U’ (625)

iy
idg , «FJ7 0.,
i’k K ij'k
gy o (Yjyofi)) =——=gjn0fij hi,
(P Ogjk)ofij = 9k o.fij
GI* xidy,
[y N eijk/ﬂ (6.26)
ide. %O, o
Kk’ J i
Qrrr 0 (g © fij) Dppr o hg hipr.

(b) If h = (h,ﬁik,ﬁﬁ,,ﬁfk'),(:)ijk are alternative choices for h,©;;;, in (a),

then there is a unique 2-morphism of Kuranishi spaces n = (n;,) : h = h

satisfying M, © Oujk = Ojjk 1 gjp 0 fij = hix forall i€ I, j€ J ke K.

(c) If X =Y and f =idy in (a), so that I = J, then a possible choice for

h,0;ji in (a) is h =g and O, = GY;.
Similarly, if Z =Y and g = idy in (a), so that K = J, then a possible

choice for h, 0,1 in (a) is h = f and O, = ka

Here is the analogue of Definition [£:20]

Definition 6.22. For all pairs of 1-morphisms of Kuranishi spaces f: X =Y
and g : Y — Z, use the Axiom of Global Choice (see Remark [4.21)) to choose
possible values of h : X — Z and ©;;, in Proposition @.’%Dand write
gof=h,andforiecl jeJ ke K

@ffl{ = Oijk 1 gjr° Fij = (g Flik.

We call g o f the composition of 1-morphisms of Kuranishi spaces.

For general f,g we make these choices arbitrarily. However, if X =Y and
f = idy then we choose g o idy = g and @?]?3(,:" = G;?j,, and if Z =Y and
g = idy then we choose idy o f = f and @;?;f’f = sz/. This is allowed by
Proposition c).

The definition of a weak 2-category in Appendix [A] includes 2-isomorphisms
Bg: foidx = fand v4 :idyo f = fin , since one does not require
foidx = f and idy o f = f in a general weak 2-category. We define

By =ids: foidx = f, ~;=idys:idyof= f. (6.27)

Here is the analogue of Proposition It is proved in the same way, but

inserting extra 2-morphisms ag_ ¢, e, of Kuranishi neighbourhoods.
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Proposition 6.23. Lete: W= X, f: X —-Y,g:Y — Z be 1-morphisms
of Kuranishi spaces, and define composition of 1-morphisms as in Definition

622l Then using notation (6.14)—(6.17), there is a unique 2-morphism
Qg fe:(gof)oe=go(foe) (6.28)
with the property that for all h € H,i € 1, j € J and k € K we have

(ag,ﬁe)hk@@zjl.cfye@(@zgjl{ * idehi) = Gg}{e%@(idgy‘k * ®££;)®agjkvfijaehi' (6.29)

Here are the analogues of Definitions and

Definition 6.24. Let f,g,h : X — Y be l-morphisms of Kuranishi spaces,
using notation (6.15)—(6.16), and n = (n,;) : f =g, ¢ = ({;;) : g = h be

2-morphisms. Define the vertical composition of 2-morphisms {©n : f=h by
Con=(¢y;ony icl, jel). (6.30)

To see that ¢ ® n satisfies Definition a),(b), for (a) note that for all 4,4’ € I
and j € J, by Definition a) for n, ¢ we have

Hl, © ((Cirj ©®myrj) *idr,, ) = Hl, © (Cirj *idr,,) © (my; *idr,,)
=¢;; © Gi;f © (ny; xidr,, ) = (¢;; ©ny5) © ngu

and Definition b) for ¢ ® 1 is proved in a similar way.

Clearly, vertical composition of 2-morphisms of Kuranishi spaces is associative,
(06¢)On =006 (¢On), since vertical composition of 2-morphisms of Kuranishi
neighbourhoods is associative.

If g = h and ¢ = idg4 then idg ©n = (idg,, ©®n;;) = (n,;) = 1, and similarly
¢ ®idg = ¢, so identity 2-morphisms behave as expected under ©.

If n = (M, ier, jes) * £ = g is a 2-morphism of Kuranishi spaces, then
as 2-morphisms 7;; of Kuranishi neighbourhoods are invertible, we may define
n = (ni_j}jH ser) 9= f. It is easy to check that n~!
n 'on=ids, n©n~! =idg. Thus, all 2-morphisms of Kuranishi spaces are
2-isomorphisms.

is a 2-morphism, and

Definition 6.25. Let e,f : X — Y and g,h : Y — Z be 1l-morphisms
of Kuranishi spaces, using notation 7, and n = (nij) e = f,
¢ = (%) : g = h be 2-morphisms. We claim there is a unique 2-morphism
0 =(0;;):goe= ho f, such that foralli e I, j € J, k € K, we have

h, e\ —
6ik|1mXlﬁe*1(Imw‘,ﬂ)ﬁ(goe)*l(lmwk) = G)ijf © (Cjk: * 771]) © (@19]]‘:) 1' (631)

150



To prove this, suppose j,j’ € J, and consider the diagram of 2-morphisms
over Imx; Ne ! (Imv; NIme; ) N (goe) ! (Imwy):

9k © €ij S hjko fi;
’H‘G s *ide . H’?v,*idf,.’ﬂ\
I W (C ’k*ldT /)*”]z] 7 Y
(g 0 Tjjr) 0 €15 == (hj'k 0o Tjj)ofi;
@ohn  YmnTrts STt e D (632
gk © (Y57 o eij) —_— h 3’k © (Tjj’ o -fij)

L -
idg , =E7’ idp,, *F397 \U/
‘U’ itk ‘ Cj’k*nij’ ik ' e

g . ij'k
gj © €ij’ hji o .fij’

(Criiol

(Gt

Here the left and right polygons commute by , the top and bottom rectangles
commute by Definition a),(b) for ¢, n, and the central rectangle commutes
by properties of weak 2-categories. Hence ((6.32) commutes.

The two routes round the outside of mply that the prescribed values
(6.31) for 8, agree on overlaps between open sets for j,5’. As the Imy; N
e tIme;)N(goe) ' (Imwy) for j € J form an open cover of the correct domain
Im y; N (goe) ! (Imwyg), by Theorem and Definition iii),(iv), there is
a unique 2-morphism 0 : (g o ) = (h o f); satisfying (6.31)) for all j € J.

To show 6 = (0;) : goe = ho f is a 2-morphism, we must verify Definition
[6-20(a),(b) for 8. We do this by first showing that (a),(b) hold on the intersections
of their domains with e~ !(Im;) for j € J using (6.24)), (6.26), (6.31), and
Definition for , ¢, and then use Theorem [6.16| and Definition iii) to
deduce that Definition [6.20)(a),(b) for 8 hold on their whole domains. So 6 is a
2-morphism of Kuranishi spaces.

Define the horizontal composition of 2-morphisms {*m:goe = ho f to
be ( xm = 6. By ,foralliel,jeJ,kEKwehave

(C*m)ir © @”k @Z;f (Cik *M4j), (6.33)

and this characterizes ¢ % i uniquely.

We have now defined all the structures of a weak 2-category of Kuranishi
spaces Kur, as in objects X,Y, 1-morphisms f,g: X — Y, 2-morphisms
n : f = g, identity 1- and 2-morphisms, composition of 1-morphisms, vertical
and horizontal composition of 2-morphisms, 2-isomorphisms o4 ¢ . in for
associativity of 1-morphisms, and B, v in 1) for identity 1-morphisms.
Following the proofs of Propositions in but including extra
2-morphisms . « «,3,,7,, as in Theorem we prove:

Theorem 6.26. The definitions and propositions above define a weak 2-cat-
egory of Kuranishi spaces Kur.

Remark 6.27. (a) We proved in - 6.1) that Kuranishi neighbourhoods over
S C X form a weak 2-category KNS(X ), and now we have shown that Kuranishi
spaces also form a weak 2-category Kur. But morally, KNS( ) is closer to
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being a strict 2-category. In KNS(X ) there is a natural notion of composition of
1-morphisms ®,, o ®;;, but it just fails to be strictly associative, as the canonical
isomorphism of fibre products A;jx; in (6.6]) is not the identity. The analogue
mKN(X) for m-Kuranishi spaces in s a strict 2-category.

In Kur, there is no natural notion of composition of 1-morphisms g o f, so
as in Definition we have to choose g o f using the Axiom of Global Choice,
and composition of 1-morphisms in Kur is far from being strictly associative.

(b) We can define a weak 2-functor GKIN — Kur which is an equivalence from
the 2-category GKN of global Kuranishi neighbourhoods in Definition to
the full 2-subcategory of objects (X, K) in Kur for which K contains only one
Kuranishi neighbourhood. It acts by (V,E,T',s) — Sy gr,s on objects, for
Sv.er,s as in Example @

Here is the analogue of Examples and

Example 6.28. Let X = (X,Z), Y = (Y, J) be Kuranishi spaces in Kur, with
notation (6.15)—(6.16). Define the product to be X x Y = (X x Y, K), where

K= (5 J,(Wigys Figys D) i) W) et ds Rag) @), (). el x

M gy 3y g, (l}j)7(i’7j’)7(2'”71”)GI><J)'
Here for all (i,7) € I x J we set W(; ;) = Ui x Vj, Fi 5y = n(y, (D;) @ my, (Ej),
A, =BixTy, and t(; ;) = 7y, (r;) @7y, (s;) so that t&}j)(O) =7r71(0) x sj*l(O),
and w( j) = xi X ¥; : (r;1(0) x 551(0))/(Bi xTj) = X xY. Also

— _ * ~ * A~
@i 51,31y = Taar X Vgjr = (Piar X Qg Tiar X0, Toie X g0, wp, (Faar )BT, (0557)),

and M ;) oy 1y = Kiirin X Ajjrjr is defined as a product 2-morphism in
the obvious way. Then X x Y is a Kuranishi space, with vdim(X x Y) =
vdim X +vdim Y. As in Example [£:31] we define explicit projection 1-morphisms
x: XXY—>Xandny: X xY—>Y.

Then X XY, wx,wy have the universal property of products in a 2-category,
as in in volume [[Il Products are commutative and associative up to
canonical equivalence. If f: W —>Y,g: X =Y, h: X — Z are 1-morphisms
in Kur then we have a product 1-morphism fxh: Wx X —Y x Z and a
direct product 1-morphism (g,h): X - Y x Z in Kur, both easy to write down
explicitly.

6.2.2 Examples of 2-categories Kur, and 2-functors of them
Here is the analogue of Definition [£:29}

Definition 6.29. In Theorem we write Kur for the 2-category of Kuran-
ishi spaces constructed from a category Man satisfying Assumptions
By Example the following categories from Chapter [2] are possible choices
for Man:

Man, Man§,, Man®, Man®°, Man®®, Man®?2¢. (6.34)

we’
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We write the corresponding 2-categories of Kuranishi spaces as follows:

Kur, KurS , Kur®, Kur®® Kur®®, Kur®?°. (6.35)

we’

Objects of Kur®, Kurg®, Kur?®, Kur®?¢ will be called Kuranishi spaces with
corners, and with g-corners, and with a-corners, and with corners and a-corners,
respectively.

. we showed that any functor For Ma“ : Man — Man satisfying Condi-

tion induces a weak 2-functor FmKur mKur — mKur and under the
hypot eses of Proposition [3.21] this is an inclusion of 2-subcategories. The same
arguments work for Kuranishi spaces, proving:

Pr00s1t10n 6.30. Suppose Man Man are categories satisfying Assumptzons
and FMan : Man — Man is a functor satzsfymg Condition Then

we can define a natuml weak 2-functor FKur : Kur — Kur.
If FMaln : Man — Man is an inclusion of subcategories Man C Man

satzsfymg ezther Proposztwn- r (b), then FII;‘I‘: : Kur < Kur is also an
inclusion of 2-subcategories Kur g Kur

Kur
R

Kurse c,ac > Kurac

\
Kure

we

Figure 6.1: 2-functors between 2-categories of Kuranishi spaces
from Definition Arrows ‘=’ are inclusions of 2-subcategories.

Applying Definition [£.32] to the parts of the diagram Figure of functors
F Man involving the categories (6.34)) yields a diagram Figure of 2-functors
FK‘“ Arrows ‘—’ are inclusions of 2—subcategor1es

6.2.3 Discrete properties of 1-morphisms in Kur

In and we defined when a property P of morphisms in Man is
discrete. Section [4.5] explained how to extend discrete properties of morphisms
in Man to correspondmg properties of 1-morphisms in mKur. We now do the
same for Kur. Here are the analogues of Definitions 14.33] [4.35 and 4.37] and

Propositions [4.34] and [£.36] proved in a very similar way.

Definition 6.31. Let P be a discrete property of morphisms in Man. Suppose
f:X =Y is a continuous map and ®,; = ( Z],le,(b”,qﬁu) : (Vi, By Ty, 80, 05)
— (V;,E;,T;,85,%;) is a 1-morphism of Kuranishi neighbourhoods over (S, f),
for S - X open. We say that (I)ij is P if (]5@‘ : Pij — ‘/j is P near (1/;, Oﬂ'z‘j)il(S)
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in Pj;. That is, there should exist an open submanifold ¢ : U — PZJ with
(¢; o mi;)"1(S) C U C Py; such that ¢;; o¢: U — V; has property P in Man.

Proposition 6.32. Let P be a discrete property of morphisms in Man. Then:

(a) Let ®;5 : (Vi, E;, Ty, 84,0) — (V, Ej, T, s5,1;) be a 1-morphism of Ku-
ranishi neighbourhoods over (S, f) for f : X =Y continuous and S C X
open. If ®;; is P and T C S is open then ®;;|r is P. If {T, :a € A} is
an open cover of S and ®;;|r, is P for all a € A then ®;; is P.

(b) Let @5, @ : (V;, Ei, Ty, si,9:) = (Vy, Ej, T, 85,95) be 1-morphisms over
(S, f) and Aij : ;5= ®;; a 2-morphism. Then ®;; is P if and only if ®;;
s P.

(c) Let f: X =Y, g:Y — Z be continuous, T CY, S C f~4T) C X be
open, ®;; : (Vi, B, Ty, 85,1:) — (Vj, E;, T, 85,1;) be a 1-morphism over
(S,f), and @i : (V;, E;,T,85,%5) = (Vi, Ex, Tk, g, ¥x) be a 1-morphism
over (T, g), so that ®;i o ®;; is a 1-morphism over (S,go f). If ®;;, P
are P then ®;;, 0 ®;; is P.

(d) Let @5 : (Vi, Ei Ty, 85,%:) — (V3, E;, T, 85,%;) be a coordinate change of
Kuranishi neighbourhoods over S C X. Then ®;; is P.

Definition 6.33. Let P be a discrete property of morphisms in Man. Suppose
f: X — Yis a I-morphism in Kur, and use notation (6.15), (6.16)), (6.18) for
X,Y, f. We say that f is P if f,; is P in the sense of Definition for all
i€landjelJ.

Proposition 6.34. Let P be a discrete property of morphisms in Man. Then:

(a) Let f,g: X —'Y be 1-morphisms in Kur and n: f = g a 2-morphism.
Then f is P if and only if g is P.

(b) Let f: X Y and g:Y — Z be 1-morphisms in Kur. If f and g are
P thengof: X — Z is P.

(c) Identity 1-morphisms idx : X — X in Kur are P. Equivalences f :
X =Y in Kur are P.

Parts (b),(c) imply that we have a 2-subcategory Kurp C Kur containing all
objects in Kur and all 1-morphisms f in Kur which are P, and all 2- morphisms
n:f=gin Kur between 1- morphisms f,g which are P.

Definition 6.35. (a) Taking Man = Manc from §2.1| gives the 2-category of
Kuranishi spaces Kur® from Definition [6 We erte

c c
Ku 1n’ Kurbna Kurstv Kurst in> Kurst,bna Kursi

for the 2-subcategories of Kur® with 1-morphisms which are interior, and b-
normal, and strongly smooth, and strongly smooth-interior, and strongly smooth-
b-normal, and simple, respectively. These properties of morphisms in Man€ are
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discrete by Example a), so as in Definition and Proposition we
have corresponding notions of interior, ..., simple 1-morphisms in Kur®.

(b) Taking Man = Man$° from & gives the 2-category of Kuranishi spaces
with g-corners Kur8® from Definition We write

Kur®®

in>

gc g
Kury , Kurg,

for the 2-subcategories of Kur8® with 1-morphisms which are interior, and
b-normal, and simple, respectively. These properties of morphisms in Man8¢ are
discrete by Example b), so we have corresponding notions for 1-morphisms
in Kur8®.

(c) Taking Man = Man?® from §2.4.2| gives the 2-category of Kuranishi spaces
with a-corners Kur2® from Definition [6.29 We write

Kurf?, Kurps , Kurdy, Kur’;‘,f’in7 Kur’;‘f’bn, Kuri’
for the 2-subcategories of Kur?® with l-morphisms which are interior, and
b-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly
a-smooth-b-normal, and simple, respectively. These properties of morphisms in
Man?®€ are discrete by Example ¢), so we have corresponding notions for
1-morphisms in Kur?°.
(d) Taking Man = Man®?° from §2.4.2|gives the 2-category of Kuranishi spaces
with corners and a-corners Kur®?¢ from Definition [6.291 We write

Kuricr’lac, Kurﬁ’sc, Kurgéac, Kur;’fiil, Kurz;fgn, Kurgi’alc
for the 2-subcategories of Kur®?°¢ with 1-morphisms which are interior, and
b-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly
a-smooth-b-normal, and simple, respectively. These properties of morphisms in
Man®2¢ are discrete by Example ¢), so we have corresponding notions for
1-morphisms in Kur®2°.

Figure gives inclusions between the 2-categories in ([6.35). Combining
this with the inclusions between the 2-subcategories in Definition we get a
diagram Figure of inclusions of 2-subcategories of Kuranishi spaces.

6.2.4 Kuranishi spaces and m-Kuranishi spaces
We relate m-Kuranishi spaces in Chapter [4] to Kuranishi spaces above.

Example 6.36. Let mKur and Kur be the weak 2-categories constructed in
and above from the same category of ‘manifolds’ Man. We will define a
full and faithful weak 2-functor Fg;‘;w : mKur — Kur, as in

First we explain how to map m-Kuranishi neighbourhoods and their 1- and
2-morphisms to Kuranishi neighbourhoods and their 1- and 2-morphisms. An m-
Kuranishi neighbourhood (V;, E;, s;,1;) on X maps to the Kuranishi neighbour-
hood (V;, E;, {1}, s;,4;) on X, that is, to (Vi, E;, Ty, s, 1) with group T'; = {1}.
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N T

Kur®f Kur§ Kurg;®® Kur?f
c c,ac ac
Kurst,bn i Kurst,bn [ Kurst,bn
Kurfs Kurf ——— Kurp2® < Kur?¢
c c,ac ac
. . <~ .
Kurst,ln = Kurst,ln Kurst,ln
gC \ C c,ac ac
Kur;, Kur{, — Kur ™ < Kur{$
c c,ac ac
Kurg, — Kurg; — Kuri;
Kurg® Kur€ Kur©2¢ Kur?¢

Figure 6.2: Inclusions of 2-categories of Kuranishi spaces.

A 1-morphism ®;; = (Vij7¢ija¢3ij) : (Vi, By, si,:) — (Vy, Ej, 84,;) of m-
Kuranishi neighbourhoods over (.9, f) maps to the 1-morphism (inj = (Vij,idy;,,
(i)ij,g?)ij) s (Vi, By, {1}, 84,%5) — (V;, Ej, {1}, 55, 1;) of Kuranishi neighbourhoods
over (S, f). That is, in &)ij = (Pl-j,mj,qﬁij,ngij), mij + Pij = Vi; C V; must be a
principal T'j-bundle for I'; = {1}, so we take P;; = V;; and m;; = idy;;.

Given 1-morphisms ®;;, ®;; : (V;, Ei, si,9i) = (Vj, Ej, s5,%;) of m-Kuranishi
neighbourhoods over (S, f) and corresponding 1-morphisms éij, <i>§j : (Vi, Ey,
{1}, 85,¢:) = (V;, Ej, {1}, sj,%;) of Kuranishi neighbourhoods over (S, f), a
2-morphism [Vij, ;\Zj] : @5 = @}, of m-Kuranishi neighbourhoods maps to the
2-morphism [Vij, id\'/ij , ;\Zj] : fi%;j = é;j of Kuranishi neighbourhoods.

To define Fg&‘:ﬂ, we apply this process to all m-Kuranishi neighbourhoods,
1- and 2-morphisms in the structures on mKur. On objects, let X = (X,K)
be an m-Kuranishi space, with K = (I, (Vi, Ei, Siy0i)ier, @i, ijers Nijr, i,j,ke[)a
where ®;; = (Vij, dij, dij) and Ay = [Vijr, Aiji]. Define K = (I, (Vi, By, {1}, 54,
Vi)ier, ®ij.ijers Nij, ijker), where D (Vvijvid‘/ijv(bijaéij) and A;jk = [Vijr,
idy, Aijx]- Then X = (X,K) is a Kuranishi space, and we set Fr{f}‘glr(X) =X.

K}‘é’;lr(f), (n) in Kur for all 1-

FK'I:II‘

Similarly we define 1- and 2-morphisms F' Kur

and 2-morphisms f,n in mKur. )
Let f: X - Y and g : Y — Z be l-morphisms in mKur, and write
X.,Y . Z, f,g for the images of X,Y, Z, f,g under FI‘:lr Then Definition

definesgo f: X — Z in mKur, and Definition defines g o f X 5 Z
in Kur, both by making an arbitrary choice. As these choices may not be
(gof) = §o f. But FR¥ (g0 1) is

compatible, we need not have Fg;‘;r
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a possible choice for g o f, so as in Proposition there is a canonical 2-
isomorphism (FKIIZH)Q £ Fgl‘ar(g) Frljl‘glr(f) = FK‘” (go f). We also

mKur
write (Frllf}lgu) : F,I,ffé’:u(ldx) = idF,I:I‘fur(X) for the obvious 2-morphism.

This defines all the data of a weak 2-functor Fﬁ;‘;r : mKur < Kur, as in
%‘. It is easy to check that FRur gatisfies the conditions for a weak 2-functor,
mKur

and that it is full and faithful, and so embeds mKur as a full 2-subcategory
of Kur. It is an equivalence between mKur and the full 2-subcategory of
objects X = (X,K) in Kur with I'; = {1} for all Kuranishi neighbourhoods
(Vi, Ei, Ui, 54, %) in K.

6.3 Kuranishi spaces with corners.
Boundaries, k-corners, and the corner 2-functor

We now change notation from Man in ﬂ to Man® in and from
Kur in §6.2 to Kur®. Suppose throughout this section that Man satisfies
Assumption m in §3.4.1l Then Man® satisfies Assumptions SO
constructs a 2-category Kur® of Kuranishi spaces associated to Man€. For
instance, Kur® could be Kur®, Kurg®, Kur?® or Kur®?¢ from Definition M
We will refer to objects of Kur® as Kuranishi spaces with corners. We also
write Kurgi for the 2-subcategory of Kur® with simple 1-morphisms in the sense
of §6.2.3) noting that simple is a discrete property of morphisms in Man® by
Assumption c).

In §4.6, for each X € mKur® we defined the k-corners Cj,(X) in mKur®
for k = 0,1,..., with 0X = C1(X). We constructed a 2-category mKur®
from mKur® with objects ez Xn for X, € mKur® with vdim X,, = n, and
defined the corner 2-functor €' : mKur® — mKur®.

We will now extend all this to Kuranishi spaces with corners. We have to
work with the more complicated notions of Kuranishi neighbourhoods and their
1- and 2-morphisms from rather than m-Kuranishi neighbourhoods from
§43] but apart from this the definitions and proofs are essentially the same.
Here is the analogue of Definition [4.39

Definition 6.37. Let X = (X,K) in Kur® be a Kuranishi space with corners
with vdim X = n, and as in Deﬁnitionwrite K= ( Vi, B, Ty 80, 0)icr,
Dj i jers Mnij, nijer) with ®;; = (Pij, Tij, ¢ij, $ij) and Anij = [Prijs Mnijs Mij)-
Let £k € N. We will define a Kuranishi space with corners Cy(X) in Kur®

called the k-corners of X, with vdimCy(X) = n — k, and a l-morphism
IT; : Cp(X) —» X in Kur®.
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Explicitly we write Cy(X) = (Cx(X), Ki) with

K= ({k} X I, (Viiys Bkyiys Thsiys Sthoiys Y(koi) JieTs Rhsiy, (kg Mk (k1) (k5),)
I

1,J]€

h,i,jel
with D (k) (o) = (Pkyi) (o) s T(hsi) (ko) > Pkt (k) > Pk ()
and A (i) (,g) = [Ple,n) () (o) Al (k) () > Ak ) (i) (ko))

where Ky, has indexing set {k} x I, and as in (6.18)) we write

= N J, JEL ji's 3.5’ €l
II;, = (Hk’n(kﬂ)m i€l H(k,i)(k,i'), igtel H(k,i), il )’ where

I (i i); = (Pkivi> Thyi)i> Hiriyis Wensing) © (Vikiys Eriys Tikniys Sksi)» Vi)
— (Vj’Ejvrjij’wj)’

HZk,i)(k,i’) = [P(]k,i)(k,i’)’H%k,i)(k,i/)’HZk,i)(k,z”)] I (i) 0 P ki) (ki) == T (i) 5

i — (i T T

iy = Pl ay Wi iy in ] = @ 0 Ty == gy o

As in Definition |4.39} for each i € I, define V{;, ;) = Cx(V;) to be the k-corners
of V; from Assumption [3.22(d). Define E(; ;) — V(14 to be the pullback vector
bundle I} (E;), where Iy : Vi, 5y = Ci(V;) — V; is as in Assumption d), and
let s,y = 11} (s;) in I'°°(E4)) be the pullback section. These are equivalent to
Es) = Cr(E;i), 5k,i) = Cr(si), where s; : V; — E; is simple. Note that

dim V{3, ;y —rank E(;, ;) =dim Cx (V;) —rank E; =dim V; —k—rank E; =n—k,

by Assumption (d), as required in Definition b) for C(X).

Define a finite group I'; ;) = I';. As in Definition ¢), I'; acts on V; by
diffeomorphisms in Man®, and we write these as p(v):V; = Vi for v € T';. Then
p(7) is simple by Definition i) as simple maps are discrete, so Assumption
3.22|(i) gives morphisms Cy o p(7) : Vigsy = Cr(Vi) — Vi = Cr(Vi) for
v € L'(k,s) = T'i, and these form a smooth action of T, ;) on V(4 ;). Similarly the
I';-action on £ lifts to a ', ;)-action on Ey, ;) = Ck(E;) preserving the vector
bundle structure, and s ;) = Ci(si) : Vig,i) = Eki) is T'(xi)-equivariant as
si : Vi = Ej is T'j-equivariant. This defines the data V{y i), E(k,i), [ (k,i), S(k,5) in
(Viksiys Eryiys Tkiys S(,i)» Y(k,i))» and verifies Definition a)f(d).

Let 4,7 € I. Since simple maps are a discrete property in Man® by Assump-
tion [3.22)(c), Definition and Proposition [6.32f(d) imply that ¢;; : Pij — V;
is simple near (¢; o m;;)~ " (Ime;) C P;;. Note too that m;; : P;; — V; is always
simple, by Definition i),(iv) and discreteness of simple maps, as m;; is étale
by Definition b). Let P/; C Pi; be the maximal open set on which ¢;; is

simple, so that (¥; o m;;) " (Im;) C P/;. Write m;, ¢/, (;ASQJ for the restrictions
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of mi;, ¢ij, (b” to P/}, so m;, ¢}, are simple. Generalizing 1}1) define

Pl iy(g) = Cu(P

( lj))
Tk,i)(kg) = Cr(Ti5) + Pleiy(k,j) = Cr(Piy) — Vik,y) = Cu(Va),
D)) = Cr(D55) « Plsiye) = Cu(Pf) — Vi) = Ci(V)),

Oy = T5(D5) Wiy iy (Biny) = Cr(myy)* o Tj(E;) =TI o 3 ()
— I} 0 ¢75(Ej) = Cr(¢f;)" o I} (E;) = Dk,iy (k) (Ek.))»

Pu,iy; = Ck(Pij),

Tk = Ck(iz) + Py = Cr(Pij) — Vigiy = Cr(Vi),

Wikiy; = dij o i s Vigayy = Ck(Vig) — Vi,

(o005 = Wi (i) 7y (Bryiy) = Cr(mij)* o I (E;) = O o ) ()

I} o (%‘( Ej) = (¢ij o 1) (E;) = ?k,i)j(Ej)'

This defines @y, 5,5y and Il ;. We can verify Definition a)—(e) for
D@ (1) (k.5)> D (k,i); (except for ¥ 1(S) C Vi; in Definition b)7 as Y (x,q) is not
yet defined) by applying C}, to Definition a)-(e) for ®;; and using Theorem

[3.28 as in Definition .39 X

For h,i,j € I, choose a representative (Phrij, Anij, Anij) for the ~-equivalence
class Ahij = [P}”‘j, )\hija )‘hij] in Deﬁnition Here Ahij : q)ij o ®yi = (bhj is a
2-morphism, where ®;; o ®5; is defined in Definition From the definitions,
Prij € (Pri X¢,,vi m; Pig)/Ti is open, and Ani; maps Ppi; — Ppj. Set

Pi,m‘j = th'j n [(P;Lz ><¢;Li,V¢,7r;j Pz'lj)/ri] N /\;ilj(Pi,Lj)'

Let Az )\;”j be the restrictions of Apij, Anij to Ph” Generalizing 1' define

P ,ny iy k) = C’C(Pf/n'j) S (P, ) R b, (ki) s Vi) 7 (k) (k1) P(kvi)(kvj))/r(kﬂ)
= (Cu(Pri) Xy (6y,0.00 Vi), (xty) Cu(Piy)) /T = Cu((Pry X g5, vimt, Pij)/Ti),

where as ¢} ., ” are simple with 7r§j étale, the corner functor Cj commutes with
the fibre products and group quotients. Generalizing (4.45]), define
A (i) () = CrNhig) = Potyeineng) = C(Phig) — Pliwyngy = Cr(Phy),
Ak, h) (ki) (Kj) = HZ()‘;Lij) : Wik/(k,h) (Ek,n) = ﬁ/(k,h) o Iz (En) = Iy o my, (En)
— n(lc,i,)(k,j)oﬂ'P(kYi)(kyj)/F(k,i)‘/(k’j) = TCk(¢§_7~07Tp1{j /Fi)C’f(Vj)'
We check (P(k R) (ki) (k,5) >\(k 1) (ki) (k5) )\(k R)(K.i) (k, ])) satisfies Definition a)*

(c) (except for 7; 1(1/1Z L($)) c P” in (a), as 1k, is not yet defined) by applying

C}. to Definition a)f(c) for (Phij, Ahijs Xhij) and using Theorem as in
Definition A.39
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Write A (ki) (eg) = Pl (i) (k) A (o) () Ak (i) ()| FOT thie ~=
equivalence class of (P(k,h)(k,i)(k,j)7 A(k,h)(k,i)(k}7j)7 /\(k,h)(k,i)(lc,j))a as in Definition
Theorem (ii) implies that equivalence ~ on triples (Phij, /\Mj,}\hij)
Lifts £0 ~ om triples (P, ) (h,i) (k1) Ak ) (5,)(.3)s Mok 00) () SO Ao b (k) (k)
depends only on Ap;; = [Phij, Ahijs j\hij], and (once we define Cr(X), ¢z ;) and
verify the @ ;. ;) are 1-morphisms), we have a well defined 2-morphism of
Kuranishi neighbourhoods

Aio,n) (ki) (R,5) * Pihi)(k,3) © Pikh) (ki) == Pik,h) (ks

We define the 2-morphisms H{k’i)(k’i,), Hzi/l) in Il by generalizing the m-
Kuranishi case in Definition @ as for A p)(k,i)(k,j) above.

It remains to define the topological space C(X) and the continuous maps
Y(kyi) - sacl’i)(O)/F(k,i) — Ci(X), Iy : Cx(X) — X. Define a binary relation ~ on

[Lic: 5(7,61’1.) (0)/T (k5) by vil' 5y = v;T (1 5y if v; € s&cl’i)(O), v € s@l’j)(()) fori,j e

I and there exists pi; € P i) (k,j) With T iy (k,5) (Pij) = vi and @ i) (,5) (Pij) = vj-
We can prove that = is an equivalence relation on [[,.; s(_kl’i) (0)/T (1,5 by gener-
alizing the proof in Definition @ using the 2-morphism A g ) (k,i)(k,j) above
to show that va 'k p) =~ vil'(s) and vl ) =~ v;l(, 5 imply that v, p) =~
Uil (k)

Generalizing , define C(X) to be the topological space

Cr(X) = H—[iel 5(7@171)(0)/F(k,i)]/ ~,

with the quotient topology. For each i € I define 9 ;) : S@I)i)(o)/r(k,i) — Cr(X)
by Y,y ¢ vil'kiy = [vil'(k,)], where [v;T 5] is the ~-equivalence class of
0; L1,y Define I, : Cp(X) — X by Hg([vil'(x,3)]) = 9 o Hg(v;) for i € I and
v; € s(fkl)i)(())7 so that Tl (v;) € s;1(0) and 1; o i (v;) € X.

We can show as in Definition that Cx(X) is Hausdorff and second
countable, and IIj : Ci(X) — X is well defined, continuous and proper with
finite fibres, and (V(x, iy, E(k.i), [ (k,i)s S(k,i)s Y(k,s)) i @ Kuranishi neighbourhood
on Cp(X) foriel.

For all of Definition a)—(h) for C(X), either we have proved them above,
or they follow from Definition [6.17(a)~(h) for X by pulling back by II; and
using Theorems 3:28] as in Definition [4.39} Hence Cy(X) is a Kuranishi
space with corners in Kur®, with vdim Cj(X) = n — k. Similarly, for Definition
[6.19)(a)—(h) for IT) : Cj(X) — X, either we have proved them above, or they
follow from Definition for X using Theorems 3.28] as in Definition
where we deduce Definition [6.19(f)—(h) for II); from Definition [6.17(h) for
X. Thus I : C%(X) — X is a l-morphism in Kur®.

When k = 1 we also write 0X = C1(X) and call it the boundary of X, and
we write ix : X — X in place of IT; : C1(X) — X.

This proves the analogue of Theorem [4.40
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Theorem 6.38. For each X in Kur® and k = 0,1,... we have defined the
k-corners Ci(X), an object in Kur® with vdim Cy(X) = vdim X — k, and
a 1-morphism Il : Cp(X) — X in Kurc, whose underlying continuous map

g Cr(X) — X is proper with finite fibres. We also write 0X = C1(X), called
the boundary of X, and we write ix =1II; : 0X — X.

Definition is similar to Fukaya, Oh, Ohta and Ono |24, Def. A1.30] for
FOOO Kuranishi spaces — see for more details.

Modifying Definition we construct weak 2-categories K'urgi C Kure
from Kur C Kur® in the obvious way, with objects ez Xn for X, € Kur®
with vdim X n = N, where KurSU Kur® embed as full 2- subcategories of K'ur‘s:il
and Kur®. For the examples of KurC C Kur® in Definitions 6.29] and [6.35 we
use the obvious notation for the corresponding 2-categories KurS, C Kur®, so
for instance we enlarge Kur® associated to Man® = Man® to Kur®.

Then following Definition [4.43] -, but modlfymg it as in Definition [6.37] we
define the corner 2-functor C' : Kur® — Kur®. This is straightforward and
involves no new ideas, so we leave it as an exercise for the reader. This proves
the analogue of Theorem [4.44}

Theorem 6.39. We can define a weak 2-functor C : Kur® — Kur® called the
corner 2-functor. It acts on objects X in Kur® by C(X) = e, Cu(X). If
f: X —=>Yis simple then C(f): C(X) — C(Y) is simple and maps Cy(X) —
Cr(Y) for k=0,1,.... Thus C|g,, o decomposes as C|Kurc 1oz Ck, where
Cy : Kurgi — Kurs1 is a weak 2 functor acting on ob]ects by X — Ci(X), for
Cy(X) as in Definition |6.37, We also write d = C, : KurS, — Kur®
it the boundary 2-functor.

If for some discrete property P of morphisms in Man® the corner functor
C : Man® — Man® maps to the subcategory ManP of Man® whose morphzsms
are P, then C : Kur® — Kur® maps to the 2-subcategory KurP of Kur® whose
1-morphisms are P.

As for Example applying Theorem to the data 1\'/Ian"7 ... in
Example a)—(h) gives corner functors:

and call

si’

C: Kur® — Kurf, ¢ Kur®, C": Kur® — Kur®,

C: Kurg, — Kurg, ;,, € Kurg,, C’: KurS, — KurS,,

C : Kur® — Kur® ¢ Kur®, C': Kur®*® —; Kur®®

C: Kurdy — Kur?;, C Kur?f, C': Kur?y — Kur?s,

C: Kur®®® — Kur{;° ¢ Kur®®, C': Kur®®® — Kur®2°,

C: Kurg® — Kur?, C Kurg™, O Kurs?® — Kurd?S,

C : Kurs® — Kurf® c Kurs®. (6.36)

As for Propositions [£.46] and [£.47] we prove:
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Proposition 6.40. For all of the 2-functors C in (6.36) (though not the 2-
functors C'), a 1-morphism f : X — Y is interior (or b-normal) if and only
if C(f) maps Co(X) — Co(Y) (or C(f) maps Cr(X) — Hf:o Ci(Y) for all
k=0,1,..., respectively).

Proposition 6.41. Let f : X — Y be an equivalence in Kur®. Then f is
simple by Proposition c), and Ci(f) : Cp(X) — C(Y) for k =0,1,...
and Of : 0X — JY are also equivalences in Kur®.

6.4 Kuranishi neighbourhoods on Kuranishi spaces

In §4.7) we discussed ‘m-Kuranishi neighbourhoods on m-Kuranishi spaces’,
and in we explained the p-Kuranishi analogue. Now we define ‘Kuranishi
neighbourhoods on Kuranishi spaces’. We follow §4.7] closely, with the difference
that m-Kuranishi neighbourhoods in are a strict 2-category, but Kuranishi
neighbourhoods in are a weak 2-category. So we cannot omit brackets in
compositions of 1-morphisms such as (@i 0 ®;;) 0 g, in (6.37), and we have to
insert extra coherence 2-morphisms o « x, B,,7, from throughout.

Definition 6.42. Suppose X = (X,K) is a Kuranishi space, where K =
(I, (Vio B0, Tiysi, i)ier, @ij,iers Nijk, m,kej). A Kuranishi neighbourhood on
the Kuranishi space X is data (V,, Eq,Tq, Sa,¥a), Pai, icr and Ag;j, i jer where
(Vay Eq, T4, 8q,1%,) is a Kuranishi neighbourhood on the topological space X in
the sense of Deﬁnition and @; 0 (Vo, Eq,Ta, Sa, Vo) = (Vi Ei, Ty, 84,10) is a
coordinate change for each ¢ € T (over S = Im t,NIm ¢);, as usual) as in Definition
and Ag;j @ D;50Pq; = Py  is a 2-morphism (over S = Im ¢, NIm ¢; NIm ;,
as usual) as in Definition for all 4,j € I, such that A, =idg,, for all i € I,
and as in Definition h), for all ¢, j,k € I we have

Aok © (ida;, * Nuij) © @, 0,5 30 = Nair © (Aijr *1ds,, )
(Pjr 0 Djj) 0 oy = Py,

where holds over S = Im v, N Imy; NIm; N Imey, by Convention

Here the subscript ‘a’ in (Vg, Eq, Ty, Sq,%4) 18 just a label used to distinguish
Kuranishi neighbourhoods, generally not in I. If we omit a we will write
“x7 in place of ‘a’ in (I)ai7Aaija glvmg (I)*z : (‘/7 E,F,S,’Lﬂ) — (‘/i,Ei,Fi,Si7¢i)
and A*ij : q)U od,;, = (I)*j.

We will usually just say (Vy, Eq,Ta, Sa,¥a) or (V,E, T, s,4) is a Kuranishi
neighbourhood on X, leaving the data ®g4;, Agij or @y, Ay implicit. We call
such a (V, E,T, s,v) a global Kuranishi neighbourhood on X if Im¢ = X.

(6.37)

Definition 6.43. Using the same notation, suppose (Vy, Eq,Tas Sa, Ya)s Pai, ic1s
Agij, ijer and (Vy, Ep, Ty, b, ¥p), Pui, icr, Apij, i,jer are Kuranishi neighbour-
hoods on X, and S C Im1, N Imay is open. A coordinate change from
(Vay EasTq, Sa,%a) to (Viy, By, Ty, sp,0p) over S on the Kuranishi space X is
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data @y, Agvi, ier, where ®op : (Vy, Eq, T, Sa,%a) = Vi, By, Ty, 80,10) is a
coordinate change over S as in Definition and Agpi : Ppi 0 Py = Py; IS a
2-morphism over S N Im4; as in Definition [6.4] for each i € I, such that for all
i,7 € I we have

Aaij © (ida,; * Aabi) © 0@ 04,00, = Naby © (Apij *ide,,) : (6.38)
(Dij 0 Pp;) 0 Pop = Py, '
where (6.38)) holds over S N Imvy; NIme;.

We will usually just say that ®up : (Va, EqyTa, Sa, Ya) = (Vi Eby T, Sp, U5)
is a coordinate change over S on X, leaving the data Agp;, i1 implicit. If we do
not specify S, we mean that S is as large as possible, that is, S = Im 4, N Im .

Suppose @y : (Vav E., Ty, savwa) — (‘/b; Ey, Iy, sp, Z[}b)a Aabi, ier and Py, :
Vo, Ep, Ty sp,00) = (Vey Ee, Uiy Sy ), Abei, ier are such coordinate changes
over S C Im, NIme, NImep.. Define @y = Ppe 0 Py 2 (Vi Eg, Ty Say Vo) —
(‘/cy Ecy Fc; Ses wc) and Aaci = Aabi © (Abci *id¢>ab) QQ;;,@LC’@M 100Dy = Dy
for all ¢ € I. It is easy to show that ®,c = Py 0 Pap, Agei, icr is a coordinate
change from (V,, Eq, Ty, Sa, ¥a) to (Ve, Ec, T, s, 1) over S on X. We call this
composition of coordinate changes.

Definition 6.44. Let f : X — Y be a 1-morphism of Kuranishi spaces, and use
notation f for X,Y, and for f. Suppose (Uy, Do, Ba,Tay Xa),
Toi, icr, Kaiir, i,iver is a Kuranishi neighbourhood on X, and (V4, Ey, I'y, s, V),
Yuj, jess Mvjjr, jjres a Kuranishi neighbourhood on Y, as in Definition [6.42
Let S C Imy, N f~1(Im,) be open. A 1-morphism from (Uy, Dy, Ba,Ta, Xa)
to (Vu, By, Ty, sp, 1) over (S, f) on the Kuranishi spaces X,Y is data f,
FZJZ: zgl‘], where f,; 2 (U, Doy Ba, 7y Xa) = (Vb, Ep, Ts, S5, ¥p) is & 1-morphism
of Kuranishi neighbourhoods over (S, f) in the sense of Definition and
FZJI : Ty o fap, = fij o Tai is a 2-morphism over S N Imx; N fHImepy), f as
in Definition [6.4) for all i € I, j € J, such that for all i,i’ € I, 5, j' € J we have

(F) ™ (Fly vidr,,) = (F) 7' © (idg,,, * Kair) © ay

at ai’

(.fi’j 0 Tisr) 0 Tai = Ty © f

T, Tai +

i’

FY o (A +idy,,) = (FP7 «idy,,) © (idy,, * FY) O oy, vy, 1.,
(Yjjr 0 Yoj) 0 fap = fijo © Tai-

We will usually just say that f,; : (Us, DayBa, Tas Xa) = (Vi, Eb, T, Sp, Up)
is a 1-morphism of Kuranishi neighbourhoods over (S, f) on X,Y, leaving the
data F% €7 implicit.

Suppése g 'Y — Z is another 1-morphism of Kuranishi spaces, using notation
for Z, and (W, F., A, t.,w,) is a Kuranishi neighbourhood on Z, and T C
Imvy Ng (Imw,.), S C Imy, N f~Y(T) are open, f,; : (U, Do, Ba,7a, Xa) —
(Vo, B, Ty, 8, 1p) is a 1-morphism of Kuranishi neighbourhoods over (S, f) on
XY, and gy : (Vb, Ep, Tby Sp006) — (W, Fey Ag,te,we) is a 1-morphism of
Kuranishi neighbourhoods over (T,g) on Y, Z.
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Define h =go f : X — Z, so that Definition [6.22] gives 2-morphisms
@?j’,{ 1gp © fij = h;
foralli eI, j € Jand k € K. Set hae = gp. © fup : (Ua, DaysBa,Ta, Xa) —
(We, Fe, Ay te,we). Using the stack property Theorem one can show that
for all i € I, k € K there is a unique 2-morphism Hglf D ohge = hy, 0Ty
over S NImy; N A~ (Imwg), h, such that for all j € J we have

ck _ a.f - -1
Hai |Sﬁ1rﬂXiﬂf_l(lml/}j)ﬁh_l(lmwk) = (@ijk * 1dTai) O] agjkvfijaTai

. bj ko -1
© (ldgjk * Fajz) © Qg oisFap © (ng * ldfab) © X1 gpe Fup’

It is then easy to prove that hy. = gp. © Fap, HZ’;’fGGIK is a 1-morphism from

(Uas Doy Ba,ray xa) to (We, Foy Ac,te,we) over (S,h) on X, Z. We call this
composition of 1-morphisms.

As for Theorem [£:56] the next theorem can be proved using the stack property
Theorem [6.16] and we leave the proof as an exercise for the reader.

Theorem 6.45. (a) Let X = (X,K) be a Kuranishi space, where K = (I,
(‘/ia Eia Fi7 Siy ¢i)i€[7 (I)Zja Aijk)a and (Va, Eaa Faa Sas wa)a (%7 Eb7 Fba Sb, wb) be
Kuranishi neighbourhoods on X, in the sense of Definition [6.42] and S C Im 1, N
Im )y be open. Then there exists a coordinate change ®up 1 (Va, Ea, Lo, Sa, ¥a)
— Vo, Eb, T, sv, p), Aavi, icr over S on X, in the sense of Definition m

If ®up, Pap are two such coordinate changes, there is a unique 2-morphism
Zab : Pap = Pyp over S as in Definition such that for all i € I we have

Aabi = Aabi ® (id‘l’bi * Eab) Py 0Dy = (Daiv (639)

which holds over S NIm1; by our usual convention.

(b) Let f : X — Y be a 1-morphism of Kuranishi spaces, and use nota-
tion (6.15), (6.16), (6.18)). Let (Ua, Da,BasTas Xa)s Vi, Eb, T, S, %p) be Ku-
ranishi neighbourhoods on X,Y respectively in the sense of Definition [6.42
and let S C ITmy, N f~*(Im4y) be open. Then there exists a 1-morphism
Fab: UasDayBa,ra, Xa) = Vo, Eb, Lo, sp,¥p) of Kuranishi neighbourhoods over
(S, f) on XY, in the sense of Definition .

(c) Let f,g : X — Y be 1-morphisms of Kuranishi spaces and n : f = g
a 2-morphism, and use notation (]6.15[), 46.16[), (]6.18[) and n = (nm iel, jeJ)'
Suppose (Uy, Do, BayTas Xa);, Vo, Eb, Ly, sp,0p) are Kuranishi neighbourhoods on
X,Y, and S CImy, N f~ Imapy) is open, and fp,9up : (Ua, Doy Ba,Tas Xa)
— (Vb, Ep, T, 8, ¥p) are 1-morphisms over (S, f), (S,g). Then there is a unique
2-morphism My, Fap = g over (S, f) as in Definition such that the
following commutes over S NImx; N f~ (Im);) for all i € I and j € J:

Tbj o fab %J f” ¢} Tai
ﬂidrbi -—_ o mj*idTaiﬂ

: o
Toj 0 Gap 9ij © Tai-
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(d) The unique 2-morphisms in (c) are compatible with vertical and horizontal
composition and identities. For example, if f,g,h: X — Y are 1-morphisms in
Kur, and n: f =g, {:g= h are 2-morphisms with @ = ©n: f = h, and
(Uas Doy Ba,ray Xa), Vo, Ep, Ty, Sp,Up) are Kuranishi neighbourhoods on X,Y,
and fab» Gabs hab : (Uav Daa Ba; Ta, Xa) — (va Eb7 Fb; Sb, 1Z)b) are 1—m07"phisms
over (S7 f)7 (S,g), (S7 h’)7 and Mab - .fab = Gabs Cab “G9ap = hap, Oap fab = hap
come from n,¢,0 as in (c), then Oqp = Cup © Nyp-

Remark 6.46. Note that we make the (potentially confusing) distinction be-
tween Kuranishi neighbourhoods (Vi, E;, T, s:,1;) on a topological space X, as
in Definition and Kuranishi neighbourhoods (Vy, Eq, Ty, Sa, ) on a Ku-
ranishi space X = (X, K), which are as in Definition and come equipped
with the extra implicit data ®u; icr, Aaij, i,jer giving the compatibility with
the Kuranishi structure L on X. Similarly, we distinguish between coordinate
changes of Kuranishi neighbourhoods over X or X, and between 1-morphisms
of Kuranishi neighbourhoods over f: X - Y or f: X — Y.

Here are the analogues of Theorem [£.58 and Corollary [£.59] They are proved
in the same way, but extending from strict to weak 2-categories.

Theorem 6.47. Let X = (X,K) be a Kuranishi space, and {(Va,Ea,Fa,sa,
Ya) :a € A} a family of Kuranishi neighbourhoods on X with X = J,c 4 Im,.
Forall a,b € A, let Oup: (Vo, Ea,Tay Sas®a) = Vo, Ep, T, sp,0p) be a coordinate
change over S = Imy, NImy, on X given by Theorem m(a), which is
unique up to 2-isomorphism; when a = b we choose ®op = id(v, B, T, s.,0.) aNd
Aaai = B, fori € I, which is allowed by Theorem a).

For all a,b,c € A, both ®p. o Pup|s and Puc|s are coordinate changes
(Va; E,Tq, saawa) — (‘/::7 E.T., Scawc) over S = Imu, NImyp N Imp. on
X, so Theorem W(a) gives a unique 2-morphism Agpe @ Ppe © Papls = Pocls.
Then K' = (A7 (Vas Ea, T Sa, Va)aca, Pab, apeas Mabe, a)b7ceA) is a Kuranishi
structure on X, and X' = (X,K') is canonically equivalent to X in Kur.

Corollary 6.48. Let X = (X,K) be a Kuranishi space with K = (I, Vi, B, Ty,
si, Vi)ier, ®ij, i jer, Nijk, i,j,kel)- Suppose J C I with UjeJInM/Jj = X. Then
K = (J7 (Viy B, Ty, 8i,01)ic g, D45 i5e7, Nij, Z"j)keJ> 1s a Kuranishi structure on
X, and X' = (X,K') is canonically equivalent to X in Kur.

As in if Man® satisfies Assumption then we can lift Kuran-
ishi neighbourhoods (V,, Ey,T'a, Sa, %) on X in Kur® to Kuranishi neighbour-
hoods (Vik,a)s Ek,a)> U (k,a) S(k,a)s Yk,a)) 00 Cr(X) from with I'(; o) = Lo,
and we can lift 1-morphisms f,, : (Us, Do, Ba,7as Xa) = Vo, Eb, Tp, Sb, ¥p)
of Kuranishi neighbourhoods over f : X — Y in Kur® to 1-morphisms
Faywp + Uka) Dikiays Bkia)s T(kia)s X(koa)) = (Vipys Eapy Ly S0y Vb))
over C(f): C(X) — C(Y). We leave the details to the reader. As in we
could now state our philosophy for working with Kuranishi spaces, but we will
not.
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6.5 Isotropy groups

Next we discuss isotropy groups of Kuranishi spaces (also called orbifold groups,
or stabilizer groups). They are also studied for orbifolds, as in

Definition 6.49. Let X = (X, K) be a Kuranishi space, with K = (I, (Vi, By,
Ty, Si,wi)iej, ‘I‘ij, ije€ls Aijk, i,j,ke])y and let x € X. Choose an arbitrary 1el
with z € Im);, and choose v; € 5;1(0) C V; with 1;(v;) = x. Define a finite
group G, X called the isotropy group of X at x, as a subgroup of I';, by

G X = {7 el;iy v = vi} = Stabr, (v;). (6.40)

We explain to what extent G, X depends on the arbitrary choice of 4, v;. Let
J,vj be alternative choices, giving another group G/, X = Stabr, (v;). Then we
have a coordinate change ®,; = (P;j, mij, ¢ij, (;AS,J) in IC. Consider the set

Sy = {p € Pij : mij(p) = vi, ¢ij(p) = v;}- (6.41)

In Lemma below we show that G, X and G’ X have natural, commuting,
free, transitive actions on S,. Pick p € S,. Define an isomorphism of finite
groups IS : G, X — G/ X by I¢(y) =+ ifv-p= (v)"!-pin S,, using the
free, transitive actions of G, X,G! X on S,.

Suppose we instead picked p € S, yielding I¢ : G, X — G/ X. Since G/, X
acts freely transitively on S,, there is a unique § € G/ X with § - p = p. Then
we see that I¢(y) = 6I¢(y)6~ " for all y € G, X.

If k, v is a third choice for 4, v;, yielding a finite group G2 X = Stabr, (vg),
then as above by picking points p € S, we can define isomorphisms

9.6, x —a.x, 1¢.¢.xXx —aq'x, 1I¢:6,X — G'X.

We can show that IG oI and IS differ by the action of some canonical § € G”X,
as for IG, IG above. That is, IS o IS is a possible choice for I

To summarize: G, X is independent of the choice of 7, v; up to isomorphism,
but not up to canonical isomorphism. There are isomorphisms IS : G, X — G" X
between any two choices for G, X, which are canonical up to conjugation by an

element of G, X, and behave as expected under composition.

Lemma 6.50. In Definition the subset S, C P;; in (6.41)) is invariant
under the commuting actions of G, X CT; and G, X CT; on P;; induced by
the I';,T'j-actions on P;j, and G, X,Gl X each act freely transitively on S,.

Proof. If v € G, X and p € S, then m;(y-p) = v-m;(p) = v v, = v; (as
mi; is I';-equivariant and v € Stabr, (v;)), and ¢;;(v - p) = ¢4;(p) = v; (as ¢
is T';-invariant). Hence v - p € Sy, so S, is Gy X-invariant. If v/ € G, X and
p € Sy then m;;(7 - p) = m;(p) = v; (as m;; is T'j-invariant), and ¢;; (v - p) =
v dij(p) =" - vj = v (as ¢y is T'j-equivariant and 4" € Stabr; (v;)). Hence
v -p € Sy, so S, is G, X-invariant. This proves the first part.
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Next we prove that S, is nonempty. As m;; : P;; — Vj; C V; is a principal
['j-bundle and v; € ;' (S) C Vi, there exists p € Pi; with m;;(p) = ;.
Then 9, 0 ¢i;(p) = ¢ o mi(p) = i(vi) = =z, so ¢i(p) € ¥y (x). Since
¥ : V;/Tj = Imy; C X is a homeomorphism, 1/7;1(@ is a T'j-orbit in V;, which
contains ¢;;(p) and v;. Hence v; = v, - ¢;;(p) for some v; € I';. But then
mi; (v - p) = mi;(p) = v; (as my; is ['j-invariant) and ¢;;(v; - p) =5 - ¢i;(p) = v;
(as ¢;; is T'j-equivariant). Thus v, -p € Sy, and S, # 0

Suppose p,p’ € S;. Thenp,p’ € ﬂ'i_jl(vi), where I'; acts freely and transitively
on 71'”1(112‘) as m; ¢ Pyj — Vi; C V; is a principal I'j-bundle. Thus there exists a
unique 7’ € I'; with 4/ - p = p’. But then

v vp =" ¢ij(p) = i (V) = ¢ii (D) = vy,
as (],51‘]‘ (p) = ¢ij (p') = vy and qbij is I'j-equivariant. Hence ~ e Stabrj (’Uj) = G;X
Therefore G X acts freely and transitively on S,.

Finally we show G, X acts freely transitively on S,. As ®;; is a coordinate

change over S = Im1; NIm;, there exist a 1-morphism ®;; = (Pj;, 7ji, @ji, qbﬂ) :
(Vy, E;,T;,55,15) — (Vi, Ei, T, 54,;) and 2-morphisms Ay : idey, g, 1, ,s:,0:) =
;0 <I>l], My @ idw; By r;085,0;,) = Pij o ®ji over S. Choose representatives

(P“,)\”, )\”) and (ij,p“,,u“) for Ay, M;;. Consider:

Aii| oy <, 2 {vip <1y = {(p,q) € P;j x Pj; : m;j(p) =i, ¢z; =mji(q)}/T;
=~ {(p,q) € Pyj x Pj; : m;(p) = vi, ¢5i(p) = mjiq) = v;}/GLX
:{(p,q)ESxXPNWJZ(Q)ZUJ}/G;X (642)

Here both id(v; g, 1, s;,4,) and ®;; o ®;; include a principal I';-bundle over
an open nelghbourhood of 1/) ( ) in V;, and \;; is an isomorphism between
them; the top line of (6.42]) is this isomorphism restricted to the fibres over v;.
In the second line we use that ¢ij(p) = mji(q) lies in the I'j-orbit of v; in V; as
mij(p) = v, and 7y : Py — Vj is I'j-equivariant, and G/, X = Stabr, (v;). In
the third line we use . Similarly we show that

:ujjl{vj}XF {UJ}XF —>{ q, p eP d)zj( )_'Uja ¢jz 771] }/F
=~ {(q,p) € Pj; x Py : ¢ij( )=vj7 ¢ji(q) = mij(p :Ui}/GrX
_{qp EPMXS (bjl —'Uz}/G X. (643)

Now the top line of (6.42)) is equivariant under two commuting I';-actions.
On the left hand side these act by left and right T';-multiplication on {v;} x T';,
so are free and transitive. On the right they act by I';-multiplication on P;; > p
and P;; > q. Restricting the free I';-action on Pj; to a free Gy X-action, this
free G, X-action descends to the second and third lines of , so we see that
G, X acts freely on S,.

Similarly, the top line of has two transitive actions of I';. The action
on Pj; 3 q descends to a transitive I';-action on the second and third lines.
Therefore I';\(¢;; H(vi) x S,)/Ge X = ( j_il(vi)/Fj) x (S;/G5X) is a point, so
S:/G X is a pomt and G, X acts transitively on S,. O
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We discuss functoriality of the G, X under 1- and 2-morphisms.

Definition 6.51. Let f: X — Y be a l-morphism of Kuranishi spaces, with
notation (6.15), (6.16), (6.18)), and let 2 € X with f(z) = y in Y. Then
Definition [6.49] gives isotropy groups G, X, defined using ¢ € I and u; € U; with
Xi(u;) =z, and G, Y, defined using j € J and v; € V; with ¥;(v;) = y. In f we
have a 1-morphism f,; = ( ij,m-j,fij,fij) over f. Asin , define

Sep = {p € Py : mi(p) = wi, fi(p) = v;}. (6.44)

Following the first part of the proof of Lemma we find that S, ¢ is in-
variant under the commuting actions of G, X = Stabg, (u;) € B; and G, Y =
Stabr, (vj) € T'; on Pj; induced by the B;, I'j-actions on P;;. But this time, G, Y’
acts freely transitively on S; ¢, but G X need not act freely or transitively.

Pick p € Sy 5. As for If in Definition define a group morphism
Gof : Go X = G,Y by Gof(v) =+ ifv-p= (¥)"! - pin Sy ¢, using the
actions of G, X,G,Y on Sy ¢ with G,Y free and transitive.

If p € Sy 7 is an alternative choice for p, yielding Gof : G, X — G,Y, there
is a unique § € G,Y with § - p = p, and then G,f(7) = §(G.f(7))d~" for
all v € G, X. That is, the morphism G, f : G, X — G,Y is canonical up to
conjugation by an element of G,Y.

Continuing with the same notation, suppose g : X — Y is another 1-
morphism and 7 : f = g a 2-morphism in Kur. Then above we define G.g by
choosing an arbitrary point ¢ € S; 4, where

Sag = {a € Qij : mi(q) = wi, gij(q) =v;},
with g,; = (Qij: Tij» 9ij» i) in . In m we have m,; = [Byj, 0, 7i;] represented
by (pijvnijaﬁij)a where P” C Py and Nij * ]5” — Qij- From the definitions
we find that S, ¢ C Pij, and mj|5m‘f 2 Se.f — Sz,g is a bijection. Since G,Y
acts freely and transitively on S, 4, there is a unique element G,n € G,Y with
G4m - 1;(p) = g. One can now check that

G29(7) = (Gan)(Gof(7))(Gem) ™" for all v € G, X.

That is, G,g is conjugate to G, f under G,n € G,Y, the same indeterminacy
as in the definition of G, f.

Suppose instead that g : Y — Z is another 1-morphism of Kuranishi spaces
and g(y) = z € Z. Then in a similar way we can show there is a canonical
element G g f € G.Z such that for all v € G, X we have

Gu(g0 £)(7) = (Garg,1)((Gyg 0 Guf) (1)) (Gugp) ™"
That is, G(g o f) is conjugate to Gyg o Gy f under G, g5 € G, Z.

Since 2-morphisms n : f = g relate G, f and G.g by isomorphisms, if
f: X — Y is an equivalence in Kur then G f is an isomorphism for all z € X.
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Remark 6.52. The definitions of G, X, G, f above depend on arbitrary choices.
We could use the Axiom of (Global) Choice as in Remark [£.21]to choose particular
values for G, X, G, f for all X, z, f. But this is not really necessary, we can just
bear the non-uniqueness in mind when working with them. All the definitions we
make using G, X, G, f will be independent of the arbitrary choices in Definitions

649 and 6511

Definition 6.53. (a) We call a 1-morphism f: X — Y in Kur representable
it Gof : Go X — Gp)Y is injective for all x € X.

(b) Write Kur,g C Kur for the full 2-subcategory of X in Kur with trivial
isotropy groups, that is, with G, X = {1} for all 2 € X.

In Example we defined a weak 2-functor FEE‘:” : mKur — Kur. If

X ¢ mKur and X' = FIIH(I‘;‘:“(X) then X’ has Kuranishi neighbourhoods
(Vi, Ei, Ty, 85,00;) with T; = {1}, so clearly G, X' = {1} for all 2 € X' as
GyX' C T for some i € I, and thus FEI‘;‘;” maps mKur — Kurtr(;, SO we

I Kuri,g ' '
m rite 1 F0 : mKur Kur¢,c.
ay write 1t as mKor ur — Kuri,.q

Theorem 6.54. The weak 2-functor Fnlf;‘::;c : mKur — Kurg,.g from Ezam-
ple [6.36] is an equivalence of 2-categories.

Proof. By construction, Fgl‘gu . is an equivalence from mKur to the full 2-
subcategory Kur,r C Kuri.g C Kur of Kuranishi spaces X = (X, K) such
that all Kuranishi neighbourhoods (V;, E;, T';, s;, ;) in K have I'; = {1}. Thus,
to show that Fnlf;‘;r : mKur — Kurg,q is an equivalence, it is enough to prove
that the inclusion Kurtrp C KurtrG is an equivalence. That is, if X is an
object of Kur¢,g, we must find X’ in Kurgr with X’ ~ X in Kurg.c.

Write X = (X,K) with K = (I, (Vi, Ei, Ty, 85, ¥i)ier, Pij, ijers Nijk, ijker)-
Let z € X. Then there exists i € I with « € Im¢);. Pick v € s; *(0) C V; with
¥;(v) = z. Then Stabr, (v) = G, X = {1}, so T; acts freely on V; near v. Using
I'; finite and V; Hausdorff, we can choose an open neighbourhood W, of v in V;
such that W, N (y-W,) =0 for all 1 # ~v € T;. Set F, = E;|w,, and A, = {1},
and t, = s;|w,. Define w, : t;1(0) — X to be the composition

bi

£51(0) Vol s 0)/T

K2

X. (6.45)

Since W, N (y-W,) = 0 for all 1 # v € I', the first map in is a
homeomorphism with an open subset, and the second map ; is too by Definition
e). Hence w, is a homeomorphism with an open subset Imw, C X. Thus
(W, Fry Ay, ty,wy) is a Kuranishi neighbourhood on X, with € Imw,.

Now define Q,; = W, x I';, considered as an object in Man which is the
disjoint union of |T';| copies of W,,. Let T'; act on Q; by the trivial action on W,
and left action on T';, and let A, = {1} act trivially on Q,;. Define morphisms
i We XTy = W, and vy : W, x Ty — V; such that 7z : (v,7y) — v € W, and
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Twi : (0,7) — v+ v € V; on points. That is, m,; is the projection W, x T'; — W,
and on W, x {7}, vy is the composition of the inclusion W, < V; and the
group action - : V; — V;, for each v € I';. Define a vector bundle morphism
Ogi : Wi (Fy) — v}, (E;) such that for each v € T'y, Ogi|w, x ) 18 the action of v
on E;, restricted to a map v - : Eilw, = Ei|yw,.

It is now easy to check that Y.; := (Qui, Tais Usi, Upi) 1S & 1-morphism of
Kuranishi neighbourhoods Yy : (Wy, Fyy Ay, te,ws) = (Vi, Ei Ty, 84,10;) over
Imw, C X. Furthermore, T;, := (Qm,vm,wxi,@;il) is a l-morphism Y;, :
(Vi, B, Ty, 8i,105) = (Wy, Fyy Ay, ty, w,) over Imw,. There are obvious 2-morph-
isms Nex * Tm; o sz = id(Wm,Fm,Am,tm,wz) and C” : TI’L o T’LZE = id(VhEmFi,Sm’l/hi)
over Imw,. Hence T,;, Y, are coordinate changes over Im w,,.

Next we use the ideas of For each j € I define a coordinate change
D, =050 0 Wy, Fu, Ap,ty,wy) — (Vi, Ej, Ty, 85,9;) over Imw, NImp; C
X, and for all j,k € I define a 2-morphism Ay, : ®j, 0 @5 = Py by the
commutative diagram

(I)jk: o (I)wj A D
zik

H -1 ‘
a .
Pk PigYai Aijr*idy

Using Definition h) for the A;ji and properties of 2-categories we find that
these @, Ay i1 satisty , so that (Wy, Fiy, Ay, by, wy), Puj, Agjk is a Kuran-
ishi neighbourhood on the Kuranishi space X, in the sense of Definition [6.42}
Thus we have a family (W, F,, A, t,,w,) for € X of Kuranishi neigh-
bourhoods on X which cover X. Hence Theorem [6.47 constructs a Kuranishi
space X' = (X,K') equivalent to X in Kur, such that £’ has Kuranishi neigh-
bourhoods (W, Fy, Ay, ty,w,) for ¥ € X. Since A, = {1} for all x, this X" lies
in Kurg,p C Kurtrg, which proves Theorem O

6.6 Orbifolds and Kuranishi spaces

We have said that Kuranishi spaces are an orbifold version of m-Kuranishi spaces,
and should be regarded as ‘derived orbifolds’; just as m-Kuranishi spaces are a
kind of ‘derived manifold’, as in We now explore the relationship between
orbifolds and Kuranishi spaces in more detail. As we explain in §6.6.1] there are
many different definitions of orbifolds in the literature, most of which are known
to be equivalent at the level of categories or 2-categories.

To relate orbifolds and Kuranishi spaces, we find it convenient to give our own,
new definition of a 2-category of orbifolds Orbg,, in which is basically
the 2-subcategory Orbyk,, C Kur of Kuranishi spaces X all of whose Kuranishi
neighbourhoods (V;, E;,T';, s;,1;) have E; = s; = 0, and then to show Orbgy,
is equivalent to the 2-categories of orbifolds defined by other authors.
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6.6.1 Definitions of orbifolds in the literature

Orbifolds are generalizations of manifolds locally modelled on R"/G, for G a
finite group acting linearly on R™. They were introduced by Satake [97], who
called them ‘V-manifolds’. Later they were studied by Thurston [105, Ch. 13]
who gave them the name ‘orbifold’.

As for Kuranishi spaces, defining orbifolds X,%) and smooth maps f: X — %)
was initially problematic, and early definitions of ordinary categories of orbifolds
197, [105] had some bad differential-geometric behaviour (e.g. for some definitions,
one cannot define pullbacks §*(€&) of orbifold vector bundles & — 9)). It is now
generally agreed that it is best to define orbifolds to be a 2-category. See Lerman
[72] for a good overview of ways to define orbifolds.

There are three main definitions of ordinary categories of orbifolds:

(a)

Satake [97] and Thurston [105] defined an orbifold X to be a Hausdorff
topological space X with an atlas {(V;,T,v;) : i € I} of orbifold charts
(Vi, Ty, v:), where V; is a manifold, T'; a finite group acting smoothly
(and locally effectively) on V;, and ; : V;/T'; - X a homeomorphism
with an open set in X, and pairs of charts (V;,T';, ¢;), (V},T';, ¢;) satisfy
compatibility conditions on their overlaps in X. Smooth maps f: X — 9
between orbifolds are continuous maps f : X — Y of the underlying spaces,
which lift locally to smooth maps on the charts, giving a category Orbgr.

Chen and Ruan [12| §4] defined orbifolds X in a similar way to [97} |L05],
but using germs of orbifold charts (V},, T, %) for p € X. Their morphisms
f: X — 92 are called good maps, giving a category Orbcr.

Moerdijk and Pronk [89) [90] defined a category of orbifolds Orbyp as
proper étale Lie groupoids in Man. Their definition of smooth map
f: X =9, called strong maps [90, §5] is complicated: it is an equivalence
class of diagrams X «+— X' — %), where X’ is a third orbifold, and ¢, ¢ are
morphisms of groupoids with ¢ an equivalence (loosely, a diffeomorphism).

A book on orbifolds in the sense of |12} [89, 90] is Adem, Leida and Ruan [1].
There are four main definitions of 2-categories of orbifolds:

(i)

(i)

(iii)

Pronk [96] defines a strict 2-category LieGpd of Lie groupoids in Man as
in (c), with the obvious 1-morphisms of groupoids, and localizes by a class
of weak equivalences W to get a weak 2-category Orbp, = LieGpd|W ™.

Lerman |72, §3.3] defines a weak 2-category Orby, of Lie groupoids in Man
as in (¢), with a non-obvious notion of 1-morphism called ‘Hilsum—Skandalis
morphisms’ involving ‘bibundles’, and does not need to localize.

Henriques and Metzler [44] also use Hilsum—Skandalis morphisms. We
used Hilsum—Skandalis morphisms in our 1-morphisms of Kuranishi neigh-

bourhoods in as in Remark ii).

Behrend and Xu [4, §2], Lerman [72| §4] and Metzler [88, §3.5] define a
strict 2-category of orbifolds Orbyransta as a class of Deligne-Mumford
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stacks on the site (Man, Jyan) of manifolds with Grothendieck topology
JMan coming from open covers.

(iv) The author [65] defines a strict 2-category of orbifolds Orbgeest, as a class
of Deligne-Mumford stacks on the site (C*°Sch, Joeosen) of C°-schemes.

As in Behrend and Xu [4, §2.6], Lerman [72], Pronk [96], and the author [65]
Th. 7.26], approaches (i)—(iv) give equivalent weak 2-categories Orbp,, Orby,
Orbpansta, Orbeesta. As they are equivalent, the differences between them
are not of mathematical importance, but more a matter of convenience or taste.
Properties of localization also imply that Orbyp ~ Ho(Orbp,). Thus, all of (c)
and (i)—(iv) are equivalent at the level of homotopy categories.

In we give a fifth definition of a weak 2-category of orbifolds, similar
to (i) above, which is a special case of our definition of Kuranishi spaces.

6.6.2 The weak 2-category of orbifolds Orb

In a similar way to (i)—(iv) in we now give a fifth definition of a weak
2-category of orbifolds, ebbentlally as a full 2-subcategory Orbyk,, C Kur, and
we will show that Orbgk,, is equivalent to Orbp,, Orby,., Orbyansta, Orbossia
in §6.6.1)i)—(iv). This provides a convenient way to relate orbifolds and Kuranishi
spaces. Fukaya et al. [30, §9] and McDuff |78] also define (effective) orbifolds as
special examples of their notions of Kuranishi space/Kuranishi atlas.

The basic idea is that orbifolds X in Orbky, are just Kuranishi spaces
X = (X,K) with K = (I, (V;, B, T, si,¢:)icr, iy = (Pij, mij, Gijy Gij)ijer,
Aiji = [Pijk, )\ijk,j\ijk]i,j,kg% for which the obstruction bundles E; — V; are
zero for all ¢ € I, so that the sections sz are also zero. This allows us to
simplify the notation a lot. Equations in involving error terms 0(71'” (sz))
or O(my;(s:)?) become exact, as s; = 0.

As F;, s; are zero we can take ‘orbifold charts’ to be (V;,T';, ;). As (;Abij =0
we can take coordinate changes to be ®;; = (P;;, mij, ¢i;), and we can also take
Vij = mij (Pi;) to be equal to ¢; (), rather than just an open neighbourhood
of ¥ L(S) in V;, since 1/_1;1(5) is open in V; when s; = 0. For 2-morphisms
Ay = [Pwv)‘m’)‘ i@ = <I>2j in we have ;\ij = 0, and we are forced to
take Pu = P;;, and the equivalence relation ~ in Definition becomes trivial,
so we can take 2-morphisms to be just A;;.

Section discussed only orbifolds modelled on classical manifolds, as
almost all the literature on orbifolds concerns only these. However, we will
construct a weak 2-category of ‘orbifolds’ Orb corresponding to any category
of ‘manifolds’ Man satisfying Assumptions When Man = Man this
ives a 2-category Orbxk,, equivalent to the 2-categories of orbifolds discussed in
When Man = Man® we get a 2- cateo ry Orb® of orbifolds with corners,
and so on. From here until Proposition fix a category Man satlsfylng
Assumptions |3 .—. As usual we will call obJects X € Man ‘manifolds’, and
morphisms f : X — Y in Man ‘smooth maps’.
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Definition 6.55. Let X be a topological space. An orbifold chart on X is a
triple (V, T, 1), where V is a manifold (object in Man), T is a finite group with
a smooth action on V (that is, an action by isomorphisms in Man), and v is a
homeomorphism from the topological space V/T' to an open subset Im1 in X.
We write ¢ : V — X for the composition of ¢ with the projection V' — V/I'.

We call an orbifold chart (V,T',v) effective if the action of T on V is locally
effective, that is, no nonempty open set U C V is fixed by 1 # v €T

Definition 6.56. Let X Y be topological spaces, f : X — Y a continuous map,
(Vi,Ti, i), (V5, T, 9;) be orbifold charts on X, Y respectively, and S C Im); N
f7'(Im;) € X be an open set. A 1-morphism ®;; : (V;, Ty, ) — (V5,T5,15)
of orbifold charts over (S, f) is a triple ®;; = (P;;, m;;, ¢;;) satisfying:

(a) P;; is a manifold (object in Man), with commuting smooth actions of
I;,T'; (that is, with a smooth action of I'; x T';), with the I';-action free.

(b) mij : Py —V; is a smooth map (morphism in Man) which is T';-equivariant,
[j-invariant, and étale (a local diffecomorphism), with 7;;(P;;) = 9; *(9).
The fibres Wigl(’l)) of m;; for v € ¢;1(S) are T'j-orbits, so that m;; : P;; —
15[1(5’) is a principal I'j-bundle, with 1/;;1(5) an open submanifold of V;.

(¢c) ¢ij : Pij — Vj is a I';-invariant and I'j-equivariant smooth map, that is,
Gij (i - p) = Gij(p), Gij (7 - ) =5 - Gij(p) for all y; € Ty, v; € T, p € By

(d) fO’(Z)Z-OTrij :@jo@j ZPij —Y.
If X =Y and f =idx then we call ®;; a coordinate change over S if also:

(e) The I';-action on Pj; is free, ¢;; : P;j — V; is étale, and the fibres <Z);j1(v’)
of ¢;; for v/ € 1;;1(5) are I';-orbits, so that ¢;; : P;; — @;1(5) is a
principal I';-bundle, with zﬂj_l(S) an open submanifold of V;.

Then ®;; is a ‘Hilsum—Skandalis morphism’, as in §6.6.1] If (P, mi;, ¢ij) :
(Vi,Ti, ) — (V5,T;,4;) is a coordinate change over S, then (P;;, ¢i;, mij)
(V;,Tj,45) — (Vi, Ty, ¢;) is also a coordinate change over S.

If S CImy; C X is open, we define the identity coordinate change over S

idev, ;00 = (07 () x Ty, mig, i) © (Vi Diy i) — (Vi, Taady),

where 1/7;1(5) C V; is an open submanifold, and m;;, ¢;; : 1/_1,;1(5) x I'; = V; map
it (v,y) = v and @ ¢ (v,7) =y .

Definition 6.57. Let <I>,-j,<I>gj s (Vi, i) — (V;,T5,9;) be 1-morphisms of

orbifold charts over (S, f), where ®;; = (P, mij, ¢ij) and @, = (P}, 71, b7;)-

A 2-morphism Ni; @ @i = @éj is a I';- and I'j-equivariant diffeomorphism

Aij 1 Pij — PZ-’j with ﬂ'gj o \ij = m; and gi);j o A\ij = ¢i;. That is, 2-morphisms

are just isomorphisms preserving all the structure, in the most obvious way.
The identity 2-morphism ide,, : ®;; = @45 is ide,, = idp,; : Pij — .
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Definition 6.58. Let X,Y,Z be topological spaces, f : X =Y, g:Y — Z
be continuous maps, (V;, T, ¢:), (V;, T, %), (Vi, Tk, ¥) be orbifold charts on
X, Y, Z respectively, and T C Im;Ng~ ' (Im 1)) C Y and S C Im ;N f~1(T) C
X be open. Suppose ®;; = (Pij,mij, ¢i5) © (Vi,Ti, ) — (V;,T5,9;) is a 1-
morphism of orbifold charts over (S, f), and @ = (Pj, Tk, ¢j) : (V;, T, ¢5) —
(Vk, Tk, 1) is a 1-morphism of orbifold charts over (7T} g).

Consider the diagram in Man:

Fi XFJ' er

)

Pyj xv, Pj

F,ixrj L“Py \1; ?F X Tk

FQV/ \O/ 7\ Qrk

Here as 7, is étale one can show that the fibre product P;; Xy, Pjj exists in
Man using Assumptions 3.2(e) and b). We have shown the actions of various
combinations of I';,I';, 'y, on each space. In fact I'; x I'; x I';, acts on the whole
diagram, with all maps equivariant, but we have omitted the trivial actions (for
instance, I';, 'y act trivially on V;).

As T'; acts freely on P;j, it also acts freely on P;; xv, Pj. Using Assumption
@ and the facts that P;; xy, P, is Hausdorff and T'; is finite, we can show
that the quotient P := (P Xy, Pj)/T; exists in Man, with projection
Il: P;; xv; Pjp — Pj. The commuting actions of T';, I'y, on Pj; Xy, Pji descend
to commuting actions of I';, Iy, on Pjg, such that II is I';- and I'g-equivariant. As
mijomp, : Pij Xy, Pjr — Vi and ¢j, omp,, @ Pij Xy, Pjr — Vi, are I'j-invariant,
they factor through II, so there are unique smooth maps m;; : P — V; and
Qir + P, — Vi such that mij o mp,; = Mk o Il and @ o wp,, = @i o IL.

It is now easy to check that ‘I%k = (P, mik, ¢ir,) satisfies Definition a)—
(d), and is a l-morphism @, : (V;,Ty,v;) — (Vi, Tg,t0r) over (S,go f). We
write @ o ®;; = &y, and call it the composition of 1-morphisms.

If we have three such 1-morphisms ®;;, ®;1, ®1;, define

Ay, @00, ¢ [P xv; (Pjk Xvi Pra) /Te)] /T
— [((Py xv, Pjk)/T;) xv Pu] /T
to be the natural identification. Then ag,, ¢, &,; is a 2-isomorphism
APy By, Dy - (‘I)kl o (I)jk) ¢} (I)ij — Py 0 ((I)jk o ‘I)ij).

That is, composition of 1—morphisms is associative up to canonical 2-isomorphism,
as for weak 2-categories in §
For ®;; : (Vi, Ty, 4;) — (V I';j,4;) a morphism over (S, f) as above with
S CImy; N f~1(Ime);), and for T C Imp; C Y open with S C f~1(T), define
Ba; + (7 1(8) x Ti) xv, Pij)/Ts — Py,
Yo, : (Pij xv, (;(T) x I;))/T; — Py,
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to be the natural identifications. Then we have 2-isomorphisms

Ba,; : Pij oid(v; 1,9 = Pij)
Ve, i ry ) © iy = Pij)

where id(v; 1, 4,),1d(v; 1, 4,) are the identities over S, T', so identity 1-morphisms
behave as they should up to canonical 2-isomorphism, as in

Definition 6.59. Let f : X — Y be continuous, (V;,T';,;),(V;,T'j,1;) be
orbifold charts on X,Y, and S C Im; N f~*(Im¢;) € X be open. Suppose
D5, 5, @7 (Vi, Tiyapi) = (V;, T, %) are 1-morphisms of orbifold charts over
(S, f) with (Dij = (Pij,mj,gbij), etc., and >\ij : (bij = (I);j, )‘;J : (I);J = ‘b;/j
are 2-morphisms. The vertical composition )\;j O Aij @ Py = <I>;’] is just the
composition Aj; ® Ajj = Aj; o Aij : P;j — P/ of morphisms in Man.

Now let f: X - Y and g : Y — Z be continuous, (V;,I;,¢:), (V;,T;,¢;),
(Vi, Tk, 1) be orbifold charts on X,Y, Z, and T C Im; N g~ (Imepy) C Y and
S CImy; N f~HT) C X be open. Suppose iy, @50 (Vi Ty i) — (V3,T5,45)
are 1-morphisms of orbifold charts over (S, f), and @z, <I>;-k (V5,0 05) — (Vi,
I'i, Y1) are 1-morphisms of orbifold charts over (T, g), with ®;; = (Pi;, mj, ¢i5),
etc., and A;j 0 @5 = O, Aji 1 Py = @;k are 2-morphisms.

Write Ajr. Xv; Aij + Pij Xv, Pjr — Pi’j Xy, ijk for the induced diffeomorphism
of fibre products. It is I'j-equivariant, and so induces a unique diffeomorphism
)‘jk * )‘ij : Py = (P” Xy, ij)/l"j — (Pz/j Xvy; P]Ik)/].—‘] = Pilk. Then )‘jk * )\ij :
Qo = <I>;,C o <I>§j is a 2-morphism, horizontal composition.

As in Theorem [6.8] we have defined a weak 2-category, with objects orbifold

charts. We can now follow from Definition until Theorem [6.26
taking the E;, s;, @ik, Aijr to be zero throughout. This gives:

Theorem 6.60. To any category Man satisfying Assumptions we can
associate a corresponding weak 2-category Orb of Kuranishi orbifolds, or just
orbifolds. Objects of Orb are X = (X,0) for X a Hausdorff, second countable
topological space and O = (I, (Vi, T, i)ier, ®ij,igers Nijk, i,jykg) an orbifold
structure on X of dimension n € N, defined as in but using orbifold
charts, coordinate changes and 2-morphisms as above.

Here is the analogue of Definition [£:29

Definition 6.61. In Theorem we write Orb for the 2-category of orbifolds
constructed from a category Man satisfying Assumptions By Example
the following categories from Chapter [2| are possible choices for Man:

Man, Man$, ,, Man®, Man®¢, Man®®, Man®2¢.

We write the corresponding 2-categories of orbifolds as follows:

Orbky:, Orb$

we’

Orb€, Orb&®, Orb®c, Orb®2°. (6.46)

Here we use ‘Orbgy,’ to distinguish it from the other (2-)categories of orbifolds

discussed in §6.6.1]
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In a similar way to Example it is easy to prove:

Proposition 6.62. There is a full, faithful weak 2-functor Fl\-(?[;b : Man <

n

Orb embedding Man as a full (2-)subcategory of Orb, which on objects maps
Fﬁ‘;’l : X = (X,0), where O = ({O}, (Vo, Lo, 0), @00,/\000), with indezing set
I = {0}, one orbifold chart (Vy,To,%0) with Vo = X, Tg = {1}, and ¢y = idx,
one coordinate change ®oo = id(v; ry,p0), and one 2-morphism Apoo = ida,, -

We say that an orbifold X is a manifold if X ~ FN(?I‘:;(X) in Orb for
some X € Man.

In for a Kuranishi space X, we defined the isotropy group G,X for all
x € X. In the same way, for an orbifold X we have isotropy groups G,X for all
x € X. We use these to give a criterion for when an orbifold is a manifold.

Proposition 6.63. An orbifold X in Orb is a manifold, in the sense of Propo-
sition if and only if G.X = {1} for all x € X.

Proof. The ‘only if’ part is obvious. For the ‘if’ part, suppose X € Orb with
G,X = {1} for all x € X. The proof of Theoremin implies that X ~ X’
in OI’b for %’ == (X, O/) with OI == (I, (‘/;, Fiawi)iela @m‘y i,j€15 )‘ijk, i,]}kGI) an
orbifold structure on X with I'; = {1} for all ¢ € I.

Now X is a Hausdorff, second countable topological space, {Im1); : i € I}
is an open cover of X, and {V; : ¢ € I} is a family of objects in Man with
Vi : Vitop = Vitop/{1} — Im1p; a homeomorphism for ¢ € I. Using Assumption
e), we replace the V; by diffeomorphic objects in Man such that Vi top =
Im;, and ; : Vj top — Im1p; is the identity map for i € 1.

For i,j € I, writing V;; — V; and Vj; — V; for the open submanifolds
with Vijtop = Vjitop = Im; N Im1py, using the coordinate change ®;; with
I' =T = {1} we can show there is a unique diffeomorphism ¢;; : V;; = V}; in
Man with Gijtop = 1dim ¢pIm ;- Therefore Assumption b) makes X into an
object in Man, such that V; < X are open submanifolds for all ¢ € I. It is then
easy to see that X' ~ FI\C-/)IZ‘;’I(X) in Orb, and the proposition follows. O

Now let Man satisfy all of Assumptions not just Assumptions
so that we have both a 2-category of orbifolds Orb above, and a 2-category
of Kuranishi spaces Kur from In a similar way to Example and
Proposition [6.64] it is easy to prove:

Proposition 6.64. There is a full, faithful weak 2-functor Fgr“b‘" : Orb —

Kur embedding Orb as a full 2-subcategory of Kur, which on objects maps
Fg}}]’; : (X,0) = (X,K), where for O as above, K = (I, (Vi, 0,1, 0, )er,
(Pijs Tijs i35 0)ij. i jers [Pijks )\ijk,O]M,keI) 1s the Kuranishi structure obtained
by taking all the obstruction bundle data F;, s;, (/Abijk, ;\ijk to be zero.

We say that a Kuranishi space X is an orbifold if X ~ Fg;g(.’{) in Kur

for some X € Orb.
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Theorem [10.52] in gives a necessary and sufficient criterion for when
a Kuranishi space X in Kur is an orbifold.

6.6.3 Relation to previous definitions of orbifolds

We relate Orbxy,, to previous definitions of (2-)categories of orbifolds.

Theorem 6.65. The 2-category of Kuranishi orbifolds Orbyk.,, defined in Theo-
rem using Man = Man is equivalent as a weak 2-category to the 2-categories
of orbifolds Orbp,, Orbye, Orbyansta, Orboosta in [4h 65, 72, [88)196] described
m . Also there is an equivalence of categories Ho(Orbyky,,) ~ Orbyp, for
Orbyp the category of orbifolds from Moerdijk and Pronk 89} (90].

Proof. Use the notation of We will define a full and faithful weak 2-
functor Fg:é’;:r : Orbky, — Orby,, which is an equivalence of 2-categories.
Given an orbifold X = (X, O) in our sense with O = (I, (Vis Lo, i)ier, iy =
(Pij, mij, ij)isjers Nijk, ijker), we define a natural proper étale Lie groupoid
[V =U]=(U,V,s,t,u,i,m) in Man (that is, a groupoid-orbifold in the sense
of 89} 90} [96] and 72 §3.3], as in §6.6.1)(c),(i),(ii)) with U = [[,c, Vi, and
V=11, er Pij, and s,t : V.= U given by s = [[, ;c;m; and t = []; ;¢; ¢ijs
where the data Ajx, s jker gives the multiplication map m : V xy V — V. We
define Fgrote (X) = [V = U]

By working through the definitions, it turns out that Lerman’s definitions of
1- and 2-morphisms in Orby, in terms of ‘bibundles’, when applied to groupoids
[V = U] of the form Fgﬂ)’;jr (%), reduce exactly to 1- and 2-morphisms in
Orbgy, as above. Thus, the definition of Fg:l')’;fu_ on 1- and 2-morphisms, and
that Fg;ﬁ;jr is full and faithful, are immediate. The rest of the weak 2-functor
data and conditions are straightforward. To show Fg:,‘;lijr is an equivalence,
we need to show that every groupoid-orbifold [V = U] is equivalent in Orby,
to Fg;ﬁ’xr (X) for some X in Orbk,,. This can be done as in Moerdijk and
Pronk [90, Proof of Th. 4.1].

The discussion in §6.6.1] now shows that our Orbx,, is equivalent as a weak 2-
category to Orbp,, Orbre, Orbyansta, Orbossta, and also that Ho(Orbky,) ~
Orbyp as categories. O

Combining Proposition and Theorem shows that the 2-categories of
orbifolds Orbp,, Orby,e, Orbyansta, Orbossta in |4l 65, [72] [88] 196] are equiv-
alent to a full 2-subcategory of the 2-category of Kuranishi spaces Kur. So
(classical) orbifolds can be regarded as examples of Kuranishi spaces.

6.6.4 More about orbifolds, and orbifolds with corners

The material of §6.2.2] §6.2.3] and for Kuranishi spaces (with corners)
specializes easily to orbifolds (with corners). As in §6.6.2) this is a simpli-

fication, obtained by setting E; = s; = 0 in all Kuranishi neighbourhoods
(Vi, Ei, Ty, 8:,1;). Here are some brief comments on this:
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(a) As in Proposmon if Man, Man satisfy Assumptions and
i

F Ma: : Man — Man satisfies Condition [3.20, we can define a natural
weak 2-functor Fo:b Orb — Orb. As in Figure we get a diagram
Figure [6.3] of 2-functors between 2-categories of orb1 olds.

(b) As in if P is a discrete property of morphisms in Man, we can
define When 1-morphisms in Orb are P, and the analogue of Proposition
holds. In the orbifold case, the definition of discrete properties P
of morphisms in Man is unnecessarily strong: we need only Definition
i)f(iv), not (v)—(viii), for a property P to lift nicely from Man to
Orb. For example, submersions in Man = Man satisfy (i)-(iv) but not
(v)—(viii), and lift to a good notion of submersion in Orbgy,.

Thus we can deﬁne many interesting 2-subcategories of the 2-categories of
orbifolds in , as in Figure [6.2] for Kuranishi spaces

(¢) Suppose Man satisfies Assumption u in (Actually, in As—
sumption b it is enough for Man® to satlsfy Assumptions |3

not Assumptlons 3.71) Then as in we have a 2- category

Orb® of orbifolds associated to Man®. For 1nstance Orbe could be
Orb¢, Orbg®, Orb?® or Orb®?2¢ from Definition [6.61] We will refer to
obJects of OI‘bc as orbifolds with corners. We also write Orbc for the
2- subcategory of Orb® with simple 1-morphisms, in the sense of (b).

As in for any X in Orb® and k = 0,...,dim X we can define the
k-corners Ck(%) an object in Orb® with dlm Ck(.’{) =dimX -k, and a
1-morphism IIj, : C(X) — X in Orb®. We also write X = C}(X), the
boundary of X, and we write ix = II; : 90X — X.

We define a 2-category Orb¢ from Orb® with objects [, X, for X,
in Orb® with dim X,, = n, and the corner 2-functor C : Orb® — Orb®.
The restriction C|g 4. decomposes as C|gpe = [reo Ck, where Cj :
(')rb;’i — (')rbgi is a weak 2-functor acting on objects by X — C(X).
Examples of such corner 2-functors are given by the analogue of (6.36)).

OrbKur

///\\

Orb®® <— Orb® ——— = Orb®2¢ > Qrba°

v
Orbg,.

Figure 6.3: 2-functors between 2-categories of orbifolds from
Definition Arrows ‘=’ are inclusions of 2-subcategories.
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6.7 Proof of Theorems [4.13] and [6.16|

Let f: X — Y be a continuous map of topological spaces, and (V;, E;, T';, 85, i),
(V;,E;,T,s5,1%;) be Kuranishi neighbourhoods on X,Y. We must show that
’Homf((Vi,E,-,Fi, si, i), (Vj, E;, T, sj,d)j)) from Theorem is a stack on
Im; N f~1(Imp;), that is, that it satisfies Definition i)f(v). Parts (i),(ii)
are immediate from the definition of restriction |p in Definition When

I'; =T; = {1} this will imply Theorem

6.7.1 Definition [A.17|(iii) for
Hom((Vi, Ei, Li, i, 4i), (Vj, Ej, Ty, 85,15))

For (iii), let S C Imz/h N f~'(Ime;) be open, ®;; = (Pij, mij, pij, ¢ij) and
(P;J = ( ]’ 2]7(7251]3 ) be ]‘ mOI‘phlSmS (m,El)F’LaS’Hw’L) (V7’ ij‘j’sJ?wj)
over (S, f), and A”,A : ®;; = ®;; be 2-morphisms over (S, f). Suppose {7 :
a € A} is an open cover of S such that Ajj|re = Aj;[ra for all @ € A. Choose
representatives (Pijy Mij» Nij), (Pz’j,)\;j,/\;j) for Aij, Aj;. Then Ajjlra = A;j|Ta

means as ’in that there exists an open neighbourhood PZ of 7r*1(1/) (T%))
in PZJ N Pi/j with

)\z‘j|15;j = )\;j|15;3, and /\z'j|i>gj = )‘;'j|15;;. +O(7};(si)) on PZ (6.47)

Set 151] = Uaca PZJ7 an open nelghbourhood of m;; L(71(S)) in Py N PZ’j Then
forallae A 1mphes on P;; by Theorem (a) so Ajj = Aj;. This
(

proves Definition 111) for ’Homf((Vl,El,Fl, 51,1/11) Vi, j,I‘j,sj,wj)).

6.7.2 Definition (iv) for

Homf((‘/ia Ei7 Fi) Si, wz)v (‘/j’ Ej7 Fja Sjs ¢]))
For (iv), suppose S, ®;;, ®;; are as in 1}, {T* : a € A} is an open cover
of S, and A{; : ®jj|7e = q>ij|T“ are 2- morphisms over (T, f) for a € A with
Ay | panrs = Afj\Tame for all a,b € A. Choose representatives (P”,)\l],)\“)

for Af; for a € A, and making P“ smaller if necessary, suppose that P{;

wigl(si L0)) = Ly Y 1 (T)). Then Allpanre = Ai?j|Tme means there exists

an open neighbourhood Pi‘;b of ﬂ%l(z/jjl(Ta NT%)) in Pz(; N PZ with
Milpa = Mjlpa and AGlpor = Ayl par + O(m(s1)) on B (6.48)

Here the second equation of (6.48) holds on Pa N Pf}, as the O(};(s;)) condition
is trivial away from 77”1(1;{ (TeNTY)).
Choose a partition of unity {n®:a € A} on [J,c 4 P C P;; subordinate to

the open cover {F /a ca € A}, as in '1 1{(d). By averaging the n® over the
I'; x I'j-action on PZ]7 we suppose each n® is I';- and I';j-invariant. The open
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support of n is supp® 1% = {p € Upca P{j’ :n®(p) > 0}, an open submanifold in
Uarca Pf;/, and the support suppn® = supp® n% of n® is the closure of supp®n®
inUyca PZ‘;/ Consider the subset P;; C P;; given by

Pij = {p € Uaca P;; :if a,b € A with p € suppn® Nsuppn®

6.49
then A% (p) = A% (p) }- (049

We claim that P” is open in F;;, and so an object in Man. To see this,
note that P” is the complement in the open set (J,. 4 Pf; C Py; of the sets Sab
for all a,b € A, where S%* = {p € suppn® Nsuppn’ : A (p) # )\gj(p)}. Now
A )\i»’j : P{;ﬂPf} — Pj; are smooth with 7}, 0\{; = 7T§jo)\i?j7 where 7}, : P, — V;
is a principal I';-bundle over V; C V;. Thus the condition \{; # /\fj is open and
closed in PZ‘; N PZ, so S®% is open and closed in supp n® fjsupp n®, and closed in
Uaea P+ As {n® : a € A} is locally ﬁnitel we see that P;; is open.

Next we claim that P;; contains wigl(z/)i_l(S)). Let p € w[jl(wi_l(S)). Then
p € w&l(wfl(T“/)) C Pi‘}/ for some o' € A as U, c,T* = S,s0p € P C
Uaea P If p € supp n®Nsupp n® fora,b € Athenp € ﬂfjl(d);l(raﬂTb)) - Pi‘z-b,
and the first equation of |i gives A\, (p) = )\?j (p). Hence p € P;;, proving the
claim.

Define )\ij : Pij — Pilj by

Aij(p) = Ai;(p) if a € A with p € suppn“. (6.50)

This is well-defined by as P” C Uqcasuppn®. As P,J is covered by the
open sets P,J N supp®n® for a € A, and \;; = A{; on P” N supp® 7 with Af;
smooth and étale, \;; is smooth and étale by Assumption a).

Define a morphism S\ij : Trfj(E,-)|15M — %w‘vﬂl% by

Xz‘j = uea 77“|p” '5\?]-7 (6.51)

where 5\;1] is only defined on ]5,-]- N PZ‘;,

but n® - 5\;’] is well-defined and smooth on
/ij, being zero outside PZ‘; )

For each a € A, define Pj; = {p € Py NP Aij(p? = )\%‘j(p)}. As above
this is open and closed in P;; N P and so open in FP;; N P}, and contains
71 (41 (T?)), and by definition

)

Aijlpe = Nl pe - (6.52)

Using 1’ in the first step, the second equation of (6.48)) (which holds on
P{ N P) in the second, and » ;4 m = 1 in the fourth, we have

/\ij|15fj = ZbeA 77b|157.éj : /\?j = EbGA 77b|ﬁ>;j : (/\?j + O(W;j(si)))

R R (6.53)
= (ZbeA nb) 'Agj|ﬁgj + O(W?j(si)) = A?j|15;'j + O(”fj(si))'
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,

We now claim that (P, Aij, Aij) satisfies Definition (a)f(c) over S. The

I';, I'j-equivariance of Pij, Aij, Ai; follows as the ingredients from which they are

defined are I';, I' j-equivariant. Equation li for I%j, Aij, j\ij on Pij ﬂPZ-‘;- follows
from 1) for P%, Al S\‘fj, equation |l and A;; = Af; on Pz‘;, and the rest of

(a)—(c) are already proved. Therefore A;; := [P;;, Aij, 5\”] is a 2-morphism ®;; =

®;; over S. Equations thb imply that (Pij,)\ij,j\ij) ~Ta (Pl‘j, A, 5\%)
in the sense of Definition 50 Ajjlpe = Af;, for all @ € A. This proves

Definition IV) for Homf((V;, Ei7 Fi7 Si, ’L/),L), (ij, Ej, Fj, Sj, w]))

6.7.3 Definition [A.17|(v) for

%Omf((‘/;7 Ei) Fi7 Si, dh): (‘/ja Ej7 Fja Sj, ¢j))
Let S C Imv; N f~'(Im;) be open, and {T* : a € A} be an open cover of
S7 and CI)?] = (Pi(}aﬂgja d);‘ly ?j) : (‘/iaEi,Fia Siawi) — (V]a Ejvrja Sj,wj) be a
1-morphism of Kuranishi neighbourhoods over (7%, f) for a € A, and Afjb :
O | panre = @gj|Tme a 2-morphism over (7% NT?, f) for all a,b € A such that
A’i’; © A?Jb = Agf over (TN TP NTe, f) for all a,b,c € A. Choose representatives

(Iﬁi‘}b, A2, 5\%{’) for A?? for all a,b € A, so that 1' gives

lijj o )\?}7 = ¢?J|P1L;b + S\Zb o (7'(?])*(81) + O((’]‘(’%)*(Sl)z) and

)\ab *( b\ _ Ja|, V¥ (s S\ab 0 a k(.. pab (654)
(AGf) " (d;) = z‘j|piajb+( i) (dsj) o AZY + ((Wij) (si)) on ij -

Write V¢ = 7f,(Pf:), so that V% is an open neighbourhood of ;7 H(T9) in
Vi for a € A, and 7 : Pj; — V}j is a principal I'j-bundle, and similarly write
ng =7 (Pl‘;b) for a,b € A. For simplicity, making Pjj,
suppose that V4 N s71(0) = ;1 (T?).

From Ag’; ® Ag;’ = A{¢ means we can choose an open neighbourhood

pave of ()~ (ih; H(T N TP NT)) in (Af)~1(PPe) N Pae C P2, such that

a .
V5 smaller if necessary,

be ab| . __yac| .
)‘ij o )‘ij |Piajbc = )‘ij |Pir}be and

NG | ave + A5 Tae (A55) = Aif | pase + O ()" (51) - om B

(6.55)

Choose a partition of unity {n®: a € A} on J,c4 V;j C Vi subordinate to
the open cover {V;% :a € A}, as in §3.3.1(d). As in (6.49), define

Vij = {1} € Uaca Viiitabe A with v € suppn?® Nsuppn® then v € Vizb,
and if a,b, ¢ € A with v € suppn® N supp n® N supp n°

then )\2’; o )\?;’ = \j on (7! )"t (v)} (6.56)

ij

As for the argument between (6.49) and (6.50)), V;; is an open neighbourhood of
w;l(S) in V;, and is I';-invariant as all the ingredients in 1D are.

181



Define Pij, initially as a topological space with the quotient topology, by

Pij = (Haea(m) =" (Vig Nsupp® %)) / ~, (6.57)

where (7f;)~"(Vi; Nsupp®n®) C Pf is open, and ~ is the binary relation on
HaeA(ng ~1(V;; N supp® n?) given by p® ~ p® if p® € (71’;1]»)71(‘/1']' N supp® n%)
and p’ € (Wﬁ’j)’l(Vij N supp® n®) for a,b € A with p® = )\?}’(p“). This is an
equivalence relation by (6.56)). Write [p?] for the ~-equivalence class of p®.
Define a map 7;; : P;; — Vi; C V; by 7 @ [p?] — ij(p“) for p* €
(m&) "1 (Viy N supp® n®). This is well-defined as if [p*] = [p’] then p* ~ p”,
so p* = A{P(p*), and wf;(p*) = 7};(p") as wY; o A = 7 by Definition 6.4(b).
’I_‘he [; x Tj-actions on (w;) ="' (Vi; Nsupp®n®) € P induce a I'; x T'j-action on

P;;, and 7;; is I';-equivariant and I';j-invariant.

Then 7;; : P;; — V;; is continuous and is a topological principal I';-bundle,
as it is built by gluing the topological principal I';-bundles 7’ : (ﬂfj)_l(Vij N
supp® n*) — V;; Nsupp® n® by the isomorphisms Ag‘;’ on overlaps V;; Nsupp® 7% N
supp® 1), where the isomorphisms ¢} compose correctly by .

It follows that the natural morphisms (W%)*I(Vij Nsupp® n*) — Pij mapping
p® = [p?] for a € A are homeomorphisms with open subsets P of Pj;, and
that Pij is Hausdorff, and second countable, as V;; € Man is by Assumption
b). Also the (7f;)~"(Vi; Nsupp®n®) for a € A are objects in Man, and the
gluing maps )\?f are diffeomorphisms between open submanifolds of (7f;) =" (Vi; N
supp® n?®) and (ij)*l(Vij N supp® n°). Therefore Assumptions e) and b)
make Pij into an object in Man, with underlying topological space , such
that the inclusion maps (wfj)_l(Vij N supp® n*) — P” are diffeomorphisms with
open submanifolds P of P;; for a € A, with {Pf; : a € A} an open cover of P;;.

Furthermore, Assumption a) now makes 7;; : PU — Vi; into a morphism
in Man, locally modelled on misl s (md) T (Vig Nsupp® ) — Vij, with PZ‘; =
ﬁi;l(Vij Nsupp® n*). The topological I'; x I';-action on Pij also lifts to a I'; x I';-

action by morphisms in Man, where the PZ‘; are I'; x I'j-invariant. As miy s
étale, 7;; is étale, and as 7  : P” — Vi; is a I';-invariant topological principal
I'j-bundle, it is a I';-invariant principal I';-bundle in Man.

Define A{; : P;; — P
PZ‘; = (78;) ' (Vij Nsupp® n®) with the inclusion (7f;)~"(Vi; Nsupp®n®) < Pf.

Then the definition of ~ for P” in li implies that

in Man to be the composition of the isomorphism

b b T 5b b
)\;-lj ¢} >\71|P1“7F]Pf’7 = )\U|Pfjﬁplb7 : PZL_; n Pij — Pij for a, b, S A, (658)

where A (PZ‘; N Pij) C Pi‘}b by 1} so that A¢} o A% PenBh is well defined.
We have smooth maps ¢f; o A{; : P — V; and morphisms (Af;)*(¢f;) :
T35(Ei)|lpa = Tozoxe, V; for a € A, such that for a,b € A, applying oAf; and
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(Ag;)* to the equations of (6.54) gives

(8% 0 Ny) = (6% 0 X5) + (N5)" () o 5 (50) + O (7 (5:)%). (6.59)

) )

(Ab) (9)) = (N5)"(9%) + (655 0 M%) (ds) o (M) " (M) + O (775 (s4)), (6.60)

which hold on PZ‘; N ij as )\?j(Pﬂ N Pf}) - pi‘}b. For all a,b,c € A, applying

,

(A;)* to the second equation of (6.55) and using (6.58) gives
(ML) (X)) + (/\?j)*(j‘?;) = () (AK) + O(7755(s1)) (6.61)

n (A )_1(]5abc). In fact holds on P“ N Pb N P{;, as the O(7};(s:))
condltlon is trivial away from 5 (1/_1;1(T“ N Tb N Tc))

Now (6.59) implies that (¢?;0A%) = (¢f;0A%)+O(7};(s:)) on PENPY, where
the Pa are I'; xI' j-invariant, and the ¢7;0A}; are I'; xI'j-equivariant. Therefore by
Theorem ¢),(e) there exist a T'; x T'j-invariant open neighbourhood P;; < P;;
o'f 7yi(84)” (0) in PU, and a I'; x I'j-equivariant morphism ¢;; : P;; — V; in
Man, such that for all a € A we have

5 0 Nijlp,npa = Gijlp,npe + O(#};(si)) on Py N P (6.62)

Define T = ﬁij‘Pi]‘ : Pij —) V;.

Applying Theorem i) to shows we may choose a morphism /i :

T (Bl pyaps = Tou,Vilp,ape Wlth

b5 0 A PynPs = bijlp, comy (sz) + O( ( i) ) on P;; N Pjj. (6.63)
Since ¢f; o A Py and ¢ij| Py A€ I'; x T'j-equivariant, also holds
with fif; replaced by (7vi,v;)* (fig;) for (vi,75) € Ti x I'j. Averaging (vi,v;)*(45;)
over (7;,7;) € I'; x T'; and using Theorem m), we see that we may take [
to be I'; x I'j-equivariant.

Using the notation of Definition v), and applying Theorem g), we
see that we can choose a morphism )\“ s (B p, jnps = Ts.,V; |P P with

= i +Z7T”( *)

Here ()\?j)*(j\?]b) in is a morphism 77
and Theorem g) there exists (Af;)* (5\ ) s (B = Tg,, V!, unique
up to O(7};(si)), with (/\?j)*(jx?f) ( )*( ) + O(7};(s:)) as in Definition
3.15(v), and we replace ()\‘414)*(5\‘»1{’) in by (M) ()\“b) to define 5\‘»1» By
averaging )\a over the I'; x I'j-action, we can suppose it is I'; x I'j-equivariant.

Combmmg ) with ( - ) for a,b and using Theorem ul to go from
®i; to b ) )\b to ‘1 o Aj; to ¢;; we see that

pnps (B = iy = (A5)7 (M) + O(m(s:)). (6.64)

(Ei)|.. = Tie oxe, V..., but by (6.63)

ij = dij + (ﬂ?j — fij; — ()‘%)*O\Zb)) (Sz) =+ 0( (Sz)2) on P;; N PZ N PZ
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Hence Theorem a),(m) and local finiteness of {x7;(n") : b € A} give

bij = bij + ( > ij(nb) : (ﬂ?j — B = ()‘ij)*(j‘?]b))> o (s:) + O(ﬂ;j(si)Q)

beA
on P;;. Combining this with (6.63), (6.64) and Theorem m) shows that
a. o A” |P”ﬁPa ¢ij|pijnp% + )\?j o 71';} (51) + O(w:‘j(si)Q) on Pij n PZ (665)
For all a,b € A, on P;; N Pz‘z N Pzg we have
)‘li)j - )‘gj = /}’Z - :[j’?j +C§47r;kj (770) ! ([)'Zj N’zj ( ) (>‘
- u“zj + uzj ( )

i)
( C
= ﬂ?j — +X;4ij(nc) (il + i + )‘ab +
ce

QSQ
—
:]
v
~—

= (A" () + Oy (51)). (6.66)

using (6.64) in the first step, (6.61) in the second, and ) _n° =1 in the third.
By Theorem f),(h) we choose ¢;§ : 7 (E;) i (Ei)lp, qpa With
i M5

91 = (M) (9f) — d7(ds;) 0 Afy + Ol (54)), (6.67)

uniquely up to O(m;(s;)). By averaging over the I'; x I'j-action we can suppose

A;;‘ is I';- and I'j-equivariant. Define a I';- and I'j-equivariant morphism qAbij :

ﬂ-;(j(E ) - ¢z]( ) on —PZJ by
Bij = qen Ty () - 412 (6.68)

Then for each a € A, on P;; N P2 we have

NG (08) = Spea mi (1) - [(A5)" (8)
+ (8 0 A%)* (dsy) o [(AG)*(AL) = A% + AG]] + O (s4))
= ZbeA Wi*j(nb) : [()‘Ii)j)*( Agj) - fj(dsj) o 5\%‘ + ¢fj(d5j) o 5‘?3]] + 0(771*3(51))
=Y pea (") - [$5 + 655(dsy) 0 AL]] + O(7y;(s:))
= il pa + 0%5(dsy) 0 M + O(mfj (1)), (6.69)

using and {n®:bc A} a partition of unity in the first step, and
fj @]\PQ +O(r};(si)) from in the second, in the third, and
and {nb: b € A} a partition of umty in the fourth.
We have already proved ®;; := (Pij, Tij, $ij, @i satlsﬁes Definition ( )—
(d). Parts (e),(f) hold on P;; N P“ C P by , ) and Deﬁmtlon
e),(f) for ®¢., for each a € A S0 they hold on UaeA( N P %) = P;j. Thus

i3

D5 (VZ,EZ,Fz,sZ,z/)l) (V;,E;,T,8,%;) is a 1- morphlsm over (S, ).
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Equations and imply that Af; := [P;; N P, Al lp, P AY] s a
2-morphism ®;;|7. = &, over (1, f) for all a € A. Equations and
imply that Agj|Tame = A?f © Afj|pange for all a,b € A. This proves Definition
(V), showing that Homf((‘/;,Ei7Fi,si,1/)i), (V;,E;,Tj,55,%;)) is a stack
on Im¢; N f~*(Im;), and completes the first part of Theorem

6.7.4 Equ(---) is a substack of Hom(---)

Now we take X =Y and f = idx. In this subsection, we will by an abuse of
notation treat the weak 2-category KNg(X) defined in as if it were a strict
2-category. That is, we will pretend the 2-morphisms aq>kl7@jk,¢ij,,6¢ij,'yq,ij
in and are identities or omit them, and we will omit brackets in
compositions of 1-morphisms such as ®3; 0 @ o ®;;. This is permissible as every
weak 2-category can be strictified. We do it because otherwise diagrams such as
Figure [6.4) would become too big.

Definition i)f(iv) for Equ((V;, Ei, T, s, ¢:), (V;, E;, T, s5,1;)) are im-
mediate from (i)—(iv) for Hom((V;, E;, T, s, ¢:), (V;, E;, T, 85,%;)). For (v),
we must show that in the last part of the proof in if the ®f; are coordinate
changes over T (i.e. equivalences in KN7a (X)), then the ®;; we construct with
2-morphisms A{; : ®;;[r« = ®f; for a € A is a coordinate change over S.

Let S,{T% : a € A}, 0%, A% ®;;, A% be as in but with X = Y,
J/ = idx and all the ®{; coordinate changes. Since @, is an equivalence in
KN (X), we may choose a coordinate change @, : (Vj, E;, 1, s5,v;) —
(Vi, Ei, Ty, 8i,4;) over T and 2-morphisms If : @, o @, = id(v; g, 1, s,.4,) and
K§ : @, 0 @Y, = id(v; g, r;,s;4, for all a € A. By Proposition we can
suppose these satisfy

idge +1¢ = K¢ *idge and idgs * K¢ = I¢ xidge . (6.70)

Define 2-morphisms M;lzb 1 9% | peny = <I>;’-i|Tame over T*NT? for all a,b € A
to be the vertical composition

idga, +(K5) ™! id‘P?i*(A;’;’)_l*id(b?i I$xid

i
b b b b
(I’?i|T”'r‘1Tb = J;097; 00}, =——= PJ;09;00};, — (I’ji|T”'ﬁTb' (6.71)

For a,b,c € A, consider the diagram Figure of 2-morphisms over 7% N
T® NT¢. The three outer quadrilaterals commute by the definition of
M?f’ . Eight inner quadrilaterals commute by compatibility of horizontal and
vertical composition, a 2-gon commutes by , and a triangle commutes as
ASJ?@A?}’ = Aj¢. Hence Figurecommutes, which shows that M?EGM%’ = Mj;
over T*NTPN T for all a,b,c € A.

Thus by Definition v) for Hom((V;, E;,T;,s5,%¢;5), (Vi, Ei, T, s:,14)),
proved in there exists a 1-morphism ®;; : (V}, E;, T, s5,%;) = (Vi, E;,
Ty, si,1;) over S and 2-morphisms M3, - D il = %, over T for a € A, such
that M, |l7aqge = M9? © M%|pangs over T* NT? for all a,b € A.
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7, 0P 095, ®j;0P7 0, 19xid
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P40 id*AYxid o b Cid*Agf*id
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—_— I¢ xid
idxAff *id
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c
@S, | ramroare-

i . be ab _ \fac
Figure 6.4: Proof that MJf © M7 = M7

For each a € A, define a 2-morphism N§ : (®;;0®;;)|7« = id(v, £, 1, 51,00

by the vertical composition
((I)ji o (I)ij)|T‘1 Ta. (672)
Then the following diagram commutes by 1) Ab = A?j’ © A, M?i =
M?? © MY;, the definitions of M%¢, N¢ in (6.71) and (6.72)), and compatibility of

horizontal and vertical composition:

Ta

a a
ji* g

1¢
a a ? ;
(I)ji © (I)ij > ld(Vi’EithSz‘swi)

®j; 0 Dyjlpange <

¢
a a i lranTd
NAAbK \
a b a a
i o 2 idw A2 ©ji o 3
id*Kj*id

a b b b
(I>ji o@ij oCI)ji o@ij

id*A;-"jb*id\
I +id

b b a a b b
<I)jio<I>ij (I)jioq)ijoq)jioq)ij

\ N?'TUOTZ’

Idw; B 15000

Mg *id id1? I

ToenT?-

Hence N¢|paqgs = N8| pape for all a,b € A. Therefore by Definition iv) for
Hom((Vi, E;, Ty, 85,4), (Vi, Ei, T, 85,%4)), proved in §6.7.2} there is a unique 2-
morphism N; : ®j; 0 ®;; = id(v, g, 1,,s,,4,) Over S with Ni|pa = N¢ for all a € A.

186



Slmllarly we construct Oj : <D’LJ o (bﬂ = id(vwaj’Fj’sj’d,].). These (I)J“N“Oj
show ®;; is an equivalence in KNS(X ), and so a coordinate change. This gives
Definition V) for gq’ul((‘/“ El', Fi, Si, 1,[}1), (‘/ja Ej, Fj, Sj, ’l/}j)), which is thus
a substack of Hom((V;, E;, T, s:,9:),(V;, E;,T';,s5,%;)), completing the proof
of Theorem [6.16
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Chapter 7

Relation to other Kuranishi-type
spaces (To be rewritten.)

We now compare our Kuranishi spaces in Chapter [6] with Kuranishi-type spaces
developed by other authors. In we discuss various definitions of
Kuranishi space, and of good coordinate system, in the work of Fukaya, Oh,
Ohta and Ono [19-39], McDuff and Wehrheim |77, 78} |80H83], and Dingyu Yang
[110H112]. We use Yang’s work to connect our Kuranishi spaces with the polyfold
theory of Hofer, Wysocki and Zehnder [46-53].

To improve compatibility with Chapter [6] we have made some small changes
in notation compared to our sources, without changing the content. We hope
the authors concerned will not mind this. Examples ... explain the
relationship between the material we explain, and the definitions of Section
will prove that all the structures we discuss can be converted to Kuranishi
spaces in the sense of The proof of Theorem is deferred until

7.1 Fukaya—Oh—Ohta—Ono’s Kuranishi spaces

‘Kuranishi spaces’ are used in the work of Fukaya, Oh, Ohta and Ono [19H39]
as the geometric structure on moduli spaces of J-holomorphic curves. Initially
introduced by Fukaya and Ono [39] §5] in 1999, the definition has changed several
times as their work has evolved.

This section explains their most recent definition of Kuranishi space, taken
from [30, §4]. As in the rest of our book ‘Kuranishi neighbourhood’, ‘coordinate
change’ and ‘Kuranishi space’ have a different meaning, we will use the terms
‘FOOO Kuranishi neighbourhood’, ‘FOOOQO coordinate change’ and ‘FOOO
Kuranishi space’ below to refer to concepts from [30].

For the next definitions, let X be a compact, metrizable topological space.

Definition 7.1. A FOOO Kuranishi neighbourhood on X is a quintuple (V, E,
T, s,1) such that:

(a) V is a classical manifold, or manifold with corners (V € Man or Man®).
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(b) E is a finite-dimensional real vector space.

(¢) T is a finite group with a smooth, effective action on V', and a linear
representation on F.

(d) s:V — Eis a I'-equivariant smooth map.

(e) 1 is a homeomorphism from s~1(0)/T to an open subset Im ) in X, where
Im® = {¢(al) : z € s71(0)} is the image of ¢, and is called the footprint
of (V.E,L,s,¢).

We will write ¢ : s71(0) — Imt C X for the composition of 1) with the
projection s~1(0) — s71(0)/T.

Now let p € X. A FOOO Kuranishi neighbourhood of p in X is a FOOO
Kuranishi neighbourhood (V,,, Ep,T'p, sp, 1) with a distinguished point o, € V,
such that o, is fixed by I, and s,(0,) = 0, and ¥, ([0,]) = p. Then o, is unique.

Example 7.2. For our Kuranishi neighbourhoods (V’, E/, TV, s, 4’) in Definition
7w+ E' — V' is a I'-equivariant vector bundle, and s’ : V/ — E’ a I'-
equivariant smooth section. Also IV is not required to act effectively on V.

To make a FOOO Kuranishi neighbourhood (V| E, T, s,1) into one of our
Kuranishi neighbourhoods (V’, E/, TV, s',¢'), take V' =V, TV =T, ¢’ = 1, let
n' : B/ — V' be the trivial vector bundle 7y : V x E — V with fibre E, and
s'=(d,s) : V =V x E. Thus, FOOO Kuranishi neighbourhoods correspond
to special examples of our Kuranishi neighbourhoods (V', E', T, s’,1’), in which
7w E' — V' is a trivial vector bundle, and T" acts effectively on V’.

By an abuse of notation, we will sometimes identify FOOO Kuranishi neigh-
bourhoods with the corresponding Kuranishi neighbourhoods in That is,
we will use F to denote both a vector space, and the corresponding trivial vector
bundle over V', and s to denote both a map, and a section of a trivial bundle.
Fukaya et al. |30, Def. 4.3(4)] also make the same abuse of notation.

Definition 7.3. Let (‘/“ Ei7 Fi, Siy ’l/)i)7 (‘/ja Ej, Fj, S5, ’l,[}j) be FOOO Kuranishi
neighbourhoods on X. Suppose § C Im; NImy; C X is an open subset
of the intersection of the footprints Ime;,Im1; C X. We say a quadruple
Qi = (Vij, hij, ij, $ij) is a FOOO coordinate change from (Vi, E;, T, s;,1;) to
(V;,E;,T,84,%;) over S if:

(a) Vi, is a I';-invariant open neighbourhood of 1/;;1(5) in V;.

(b) hsj : I'; = T'; is an injective group homomorphism.

(¢) @ij = Vij = V; is an h;j-equivariant smooth embedding, such that the
induced map (¢;;)« : Vi; /Ty = V;/T; is injective.

(d) @ij : Vij x E; = Vj X Ej is an h;j-equivariant embedding of vector bundles
over g;; : Vi — V;, viewing Vi; x E; — Vi, V; x E; — Vj as trivial vector
bundles.

(e) @ij(silvi;) = @fj(sj), in sections of gpjj(Vj x Ej) = Vij.

(f) d)’i = 1/’;‘ © (Qpij)* on (3:1(0) N V;j)/rl
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(g) hyj restricts to an isomorphism Stabr, (v) — Stabr, (¢i;(v)) for all v in Vi,
where Stabr, (v) is the stabilizer subgroup {v € I'; : y(v) = v}.

(h) For each v € s;*(0) N Vi; C V;; C Vi we have a commutative diagram

0 T.Vi o LoV — Nijly —=0
i/dsilv o \Ldsj‘wij(v) Vdfibrcsj"u (71)
Pijlv
0 Ez|v Eijij(,U) 4>Fij‘v4>0

with exact rows, where N;; — Vj; is the normal bundle of Vj; in Vj,
and Fy; = ¢};(E;)/$ij(Eilv;;) the quotient bundle. We require that the
induced morphism dgpres;|, in (7.1) should be an isomorphism.

Note that dabres;lo an isomorphism in (7.1) is equivalent to the following
complex being exact:

dsi|e®de;; |y Bijlo®—dsjle, ()
0—T,V dsilo@deislo Eilo®T,, Vi AR A o () —= 0. (7.2)

This should be compared to Theorem [6.12

Now let (Vy, Ep, Iy, 5p,p), (Vg Eq,Tq, 8¢,¢¢) be FOOO Kuranishi neigh-
bourhoods of p € X and ¢ € Im, C X, respectively. We say a quadruple
Do = (Vap, Pgps ©gps Pgp) is & FOOO coordinate change if it is a FOOO coordi-
nate change from (Vg, Eq, Ty, s¢,%4) to (Vp, Ep, Ty, sp,10p) over Sg,, where Sy,
is any open neighbourhood of ¢ in Im ), N Im),.

Remark 7.4. (a) We have changed notation slightly compared to [30], to
improve compatibility with the rest of the book. Fukaya et al. [30, §4] write
Kuranishi neighbourhoods as (V, E,T', 4, s) rather than (V, E, T, s,4). Also, they
write coordinate changes as ®pq = (Ppgs Ppgs fipq), leaving V,,, implicit, rather
than as @, = (Vop, hgp, Pgp, Pgp) as we do. Note that we have changed the order
of p, ¢ in the subscripts compared to [30].

Fukaya et al. do not require ¢;; : Vi; x E; — goj‘](Vj x Ej) to come from
an injective linear map of vector spaces F; — E;. As in McDuff and
Wehrheim do require this.

Fukaya et al. only impose Definition [7.3(h) for Kuranishi spaces ‘with a
tangent bundle’ in the sense of |24} |30, [39]. As the author knows of no reason
for considering Kuranishi spaces ‘without tangent bundles’, and the notation
appears to be merely historical, we will include ‘with a tangent bundle’ in our
definitions of FOOO coordinate changes and FOOO Kuranishi spaces.

(b) Manifolds with corners were discussed in Chapter |2, When we allow the
V; in Kuranishi neighbourhoods (V;, E;, T, s;, ;) to be manifolds with corners,
it is important that the definition of embedding of manifolds with corners
@ij : Vij = Vj used in Definition c) includes the condition that ¢;; be simple,
in the sense of For comparison, in our theory of Kuranishi spaces with
corners in it is important that coordinate changes ®;; are simple in the
sense of Definition as follows from Proposition [6.32f(d).
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We relate FOOO coordinate changes to coordinate changes in

Example 7.5. Let (I)ij (‘/;J, h” s Spij; 927”) . (V;, Ei7 Fi7 Si, ’L/)z) — (‘/J7 Ej, Fj7 Sj,
;) be a FOOO coordinate change over S, as in Definition As in Example
regard the FOOO Kuranishi neighbourhoods (V;, E;, Ty, s:,4:), (V;, B, T,
sj, ;) as examples of Kuranishi neighbourhoods in the sense of

Set Pj; = V;; xI';. Let T'; act on P;; by v; : (v,7) — (i - v,'yhij(%-)*l). Let
I'; act on P;; by v; : (v,7) = (v,7;7). Define m;; : P;; = V; and ¢;; : P;j =V
by mj : (v,7) = v and ¢;; : (v,7) = 7 - i;(v). Then m;; is I';~equivariant and
I'j-invariant. Since ¢;; is hsj-equivariant, ¢;; is I';-invariant, and I'j-equivariant.

We will define a vector bundle morphism ¢;; : 7 (E;) — ¢5;(E;). At
(v,7) € P,j, this ¢;; must map E;|, — E; ily-i;(0)- We define ¢zj| (v,y) to be the
composition of @;;l, : Eily — Ejle. (v) w1th Yt Eilo, ) = Ejlygs, ) from the
I'j-action on Ej;. That is, (;S”\V x{y} =7 - Pij for each v € T;.

It is now easy to see that q)lj = ( 155 Tigs ¢zga¢u) (‘/Z,Ez; Iy, sszz) ( 7o
E; T, s5,1;)is a 1-morphism over S, in the sense of §6.1] . Using ([7.2)), Theorem
Ma),(b) show that ®;; is a coordinate change over S, as in §6.1} noting that
¢ij s simple in the corners case as in Remark [7.4|(b)

Definition 7.6. A FOOO Kuranishi structure IC on X of virtual dimension
n € Z in the sense of [30, §4], including the ‘with a tangent bundle’ condition,
assigns a FOOO Kuranishi neighbourhood (V,,, E,,T';,, sp, ¥p) for each p € X
and a FOOO coordinate change ®q, = (Vgp, hgp; Pap» goqp) (Vo Eq, Tq, 8¢, %q) —
(Vp, Ep, Ty, 5p, 1) for each ¢ € Im1, such that the following holds:

(a) dimV, —rank B, =n for all p € X.

(b) Ifg e Imypy, r € 1/1q((quﬂs’1( ))/T'q), then for each connected component
(@rg Vap) N Vpp)* of @) (qu) N V,p there exists vy, € I'p with

hqp © th = ’ngp . hrp : (’)/’rqqp)_17 Pap © Prq = ’qup *Prp,

. X o . (7.3)
a’nd Sorq (@qp) © SDTq = ’Y'rqp : SDTP’

where the second and third equations hold on (¢! (Vp) N Vip)®.

If the V, for p € X are classical manifolds, we call X = (X,K) a FOOO
Kuranishi space, of virtual dimension n € Z, written vdim X = n. If the V,, are
manifolds with corners, we call X a FOOO Kuranishi space with corners.

We prove in Theorem below that a FOOO Kuranishi space X (with
corners) can be made into a Kuranishi space X’ (with corners) in the sense of
We will show that the elements vy, € Fp in Definition (b) correspond

in the setting of - to a 2-morphism A,gp : @gp 0 <I>,«q = <I>Tp

Example 7.7. (i) In the Fukaya—Oh—Ohta—Ono theory [19H39], one often relates

two FOOO coordinate changes in the following way. Let ®;; = (Vij, hij, ¢ij,
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@2]) = (V/ hq,]7801,]agoz]) : (‘/;7Ei71—"i>5ia¢i) — (‘/j?EJ7F]aS]7’(/}j) be FOOO

137
coordlnate changes over S. Suppose there exists v € I'; such that

hig=7-hi; v, =70y and ¢y =7 9 (7.4)

where the second and third equations hold on V” =V N Vl’j

Let (I>U, : (Vi, By, Ty, s4,¢:) = (Vy, B, T, s5,1;) be the 1-morphisms in
the sense of § correspondlng to ®;;, <I>§j in Example Set P” = Vu xTI'; C
P” Define )\” : Py = Vw x Ty —= Vi xTj =P by Aij : (v,9") = (v,7"7), and
Aij = 0. Then (P, Aij Aij) satisfies Definltlon a)—(c), so we have defined a
2-morphism A;; = [PZJ, Aijs i il @i = (I)m’ in the sense of §
(ii) This enables us to interpret Definition n(b in terms of a 2-morphism.
In the situation of Definition b), the composition of the FOOO coordinate

changes ®y.q, Dgp is Pgp 0 Pgp = ‘Pr_ql(vqp)v hgp ©hrg, qp© Prq erd (Vap)? Prq(Pap)©
Prq i (Van )) Thus, 1} relates ®,4, 0 @, to ®,, in the same way that 1}
relates ®;; to ‘I’W except for allowing 7,4, to vary on different connected

components Hence, if ®,,, ®,p, ,, are the coordinate changes in the sense of
associated to ®rq, Pgp, Prp in Example[7.5 then the method of (i) defines
a 2—morphlbrn Apgr - <I>qp o @rq = <I>7p, in the sense of §
(iii) In the situation of Definition [7.6(b), suppose v € (cpr_ql(qu) N Vip)® is
generic. Then Stabr,_(v) = {1}, as T, acts (locally) effectively on V. by Definition
c). Hence Stabr, (¢,,(v)) = {1} by Definition g). Therefore the point
Vrap garp( V) = Pgp © Prq(v) in Vj, determines ~; , in I',. So the second equation
of (|7.3]) determines %qp el unlquely, provided it ex1sts Thus the 2-morphism

qur : <I>qp o (I)Tq = <I>rp in (ii) is also determined uniquely.

Definition 7.8. Let X be a FOOO Kuranishi space (possibly with corners).
Then for each p € X, ¢ € Im, and v € s;l(O) N Vyp, we have an exact sequence
(7.2). Taking top exterior powers in ([7.2)) yields an isomorphism

(det 7,,Vg) @ det (B, () = (det Eglo) © (Ty,, ) V),
where det W means AY™ WV, or equivalently, a canonical isomorphism
(det T*V,, @ det Ep) |y, (v) = (det T*V, @ det Ey)|,. (7.5)

Defining the isomorphism (7.5)) requires a suitable sign convention. Sign con-
ventions are discussed in Fukaya et al. |24, §8.2] and McDuff and Wehrheim [82]
§8.1]. An orientation on X is a choice of orientations on the line bundles

det TV, @ det E, | S10) 5 ~1(0)

for all p € X, compatible with the isomorphisms (|7.5)). In §10.7|in volume [ we
will develop the analogue of these ideas for our (m- and p-)Kuranishi spaces.
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Definition 7.9. Let X be a FOOO Kuranishi space (possibly with corners),
and Y a classical manifold. A smooth map f : X — Y is f = (f, : p € X) where
fp:Vp =Y is a I'p-invariant smooth map for all p € X (that is, f, factors via
Vo = Vp/Tp = Y), and f, 004 = f4lv,, : Vgp — Y for all ¢ € Imp,. This
induces a unique continuous map f : X — Y with fp|sg1(0) =fo 1/_),, for all
p € X. We call f weakly submersive if each f, is a submersion.

Suppose X, X’ are FOOO Kuranishi spaces, Y is a classical manifold, and
f: X =Y, f: X =Y are weakly submersive. Then as in [24, §A1.2] one can
define a “fibre product’ Kuranishi space W = X xy X', with topological space
W ={(p,p') € X x X" : f(p) = f'(¢')}, and FOOO Kuranishi neighbourhoods
(Vo' Epp' s ot Spopts Yppr) for (p,p') € W, where V0 =V, Xt Y17, Vg’v
Epp = 7y, (Ep) & 77:/[1, (Ep), Do =Tp X Ty sppr = T, (sp) @ W\*/p/, (sp/), and
Ypp = Pp o (Tv,)s X Py, 0 (WVP/,)*. The weakly submersive condition ensures
Vo =Vp Xy Vp’, is well-defined.

Remark 7.10. (i) Note that Fukaya et al. [19H39] do not define morphisms
between Kuranishi spaces, but only morphisms f : X — Y from Kuranishi spaces
X to classical manifolds Y. Thus, Kuranishi spaces in [19H39] do not form a
category.

Observe however that Fukaya [19, §3, §5] (see also [35, §4.2]) works with a
forgetful morphism forget : M, 1(8) — M, 0(8), which is clearly intended to be
some kind of morphism of Kuranishi spaces, without defining the concept.

(ii) The ‘fibre product’ X xy X' in Definition is not a fibre product in the
sense of category theory, characterized by a universal property, since Fukaya et al.
in [19H39] do not have a category (or higher category) of FOOO Kuranishi spaces
in which to state such a universal property. Their ‘fibre product’ is really just an
ad hoc construction. Chapter [I1]in volume [[] will study w-transverse 2-category
fibre products in our 2-categories of (m-)Kuranishi spaces mKur, Kur.

7.2 Fukaya—Oh—Ohta—Ono’s good coordinate systems

Good coordinate systems on Kuranishi spaces X in the work of Fukaya, Oh,
Ohta and Ono [19, (24, |26, (27, 130, |33, 135H37, |39] are an open cover of X by
FOOO Kuranishi neighbourhoods (V;, E;, T';, s;, ;) for i in a finite set I, with
coordinate changes ®;; for ¢,j € I, satisfying extra conditions. They are a
tool for constructing virtual cycles for Kuranishi spaces using the method of
‘perturbation by multisections’, and the extra conditions are included to make
this virtual cycle construction work.

As with Kuranishi spaces, since its introduction in [39} Def. 6.1] the definition
of good coordinate system has changed several times during the evolution of
[19L 124, |26}, 127, |30, |33}, 35H37}, 139], see in chronological order |39} Def. 6.1], [24]
Lem. A1.11], |26 §15], and [30, §5]. Of these, [30, 39] work with Kuranishi
neighbourhoods (U;, &;, s;, ;) where U, is an orbifold (which we do not want
to do), and |24} 26] with Kuranishi neighbourhoods (V;, E;, T, s;, ;) with V; a
manifold.
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The definition we give below is a hybrid of those in |24} 26, |30, 36]. Essentially
our ‘FOOO weak good coordinate systems’ follow the definitions in [24} |26], and
our ‘FOOO good coordinate systems’ include extra conditions adapted from |30}
36). We show in Theorem below that given a FOOO weak good coordinate
system on X, we can make X into a Kuranishi space X in the sense of

Definition 7.11. Let X be a compact, metrizable topological space. A FOOO
weak good coordinate system G = ((I, <), (Vi, Ei, Ty, 85, %i)ier, ®ij, i < j in 1) on
X of virtual dimension n € Z consists of a finite indexing set I, a partial
order < on I, FOOO Kuranishi neighbourhoods (V;, F;,T';, s;,4;) for i € I
with V; a classical manifold, dim V; — rank E; = n, and X = (J,¢; Im1);, and
FOOO coordinate changes ®;; = (Vij, hij, ij, ¢ij) from (V;, E;, Ty, 55,1;) to
(V;,E;,T,85,%;) over S =Imy; NImp; for all 4,5 € I with ¢ < j and Im); N
Im; # (), satisfying the two conditions:

(a) If i # j € I with Im«); N Im); # O then either i < j or j < i.

(b) Ifi < j < k in I with Im¢; NIm); NIm¢py, # O then there exists ;5 € Ty
such that as in (7.3)) we have

hjk © hij = Yigk - Pk - Vi1 Pjk © Pij = Vijk * Piks

. . . (7.6)
and @7 (Pjk) © Pij = Vijk - Piks

where the second and third equations hold on V;; N Vi, N gofjl(ij). The
7i;jk are uniquely determined by (7.6]) as in Example iii).

If instead the V; for ¢ € I are manifolds with corners, we call G a FOOO
weak good coordinate system with corners.

We call G a FOOO good coordinate system on X (with corners) if it also
satisfies the extra conditions:

(c) Ifi < jin I, Imep; NImp; # O then ¢ ((Vi; Ns; ' (0))/T;) = Imey; NImap;.

(d) Ifi < jin I and Im¢p; NIme); # 0 then inc x¢p;; : Vi; — V; x Vj is proper,
where inc : V;; < V; is the inclusion.

() If i < j, i < kin I for j # k and Im¢; NImep; # 0 # Imep; N Imfy,
Vij N Vik # 0, then Im+; NImpy, # 0, and either j < k and Vj; N Vi, =
o' (Vik), or k < j and Vi; N Vig = 07! (Viy).

(f) If i <k, j < kin I for i # j and Ime); N Imepy, # 0 # Imep; N Im g
and v; € Vig, vj € Vi, 6 € I'y with @jp(vj) = - wix(v;) in Vi, then
Im; NImp; # 0 and either i < j, v; € V;;, and there exists v € I'; with
hik(y) = 67vijk and v; = v - ¢;;(v;); or j < i, v; € Vj;, and there exists
v € Ty with hiy(y) = 6 v and v; = - ¢j;(v;), for Vijk, vjirx as in (b).

As in [36], parts (c)—(f) are equivalent to:

(g) Define a symmetric, reflexive binary relation ~ on [];.; V;/I'; by I'ju ~
Lipij(vi) if i < j, Imep; NImep; # 0 and v € V;;. Then ~ is an equivalence
relation, and (I];c; V;i/T'i)/ ~ with the quotient topology is Hausdorff.
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Now let X, G be as above (either weak or not), and Y be a classical manifold.
As in Definition a smooth map (fi, i € I) from (X,G) to Y is a I';-invariant
smooth map f; : V; = Y fori € I, with f; op;; = fily,, : Vij = Y for alli < j
in I. This induces a unique continuous map f: X — Y with fi|s;1(0) = fouy
foriel.

Using elementary topology, Fukaya, Oh, Ohta and Ono [36] prove:

Theorem 7.12. Suppose G = ((I,<), (Vi, Ei,Ti, si,Vi)ier, ®ij, i<j in1) is @
FOOO weak good coordinate system on X. Then we can construct a FOOO good
coordinate system G' = ((I', <), (VI EL T st i)ien, @ i < i in ;) onX, wh?re
r g I, ‘/i/ g ‘/i, V;/j g ‘/ij are open, F; = Fia h;J = hij, and E{asé,wéa%y@;g
are obtained from E, ..., {;; by restricting from Vi, Vi to V!, VI,

RS

In fact Fukaya et al. [36] work at the level of orbifolds V;/T';, V;;/I'; rather
than manifolds with finite group actions, but their result easily implies Theorem
The next definition is based on Fukaya et al. [30, Def. 7.2], but using (V;,
E;, T, s;,1;) for V; a manifold, rather than (U, €;,s;,;) for U; an orbifold.

Definition 7.13. Let X = (X, K) be a FOOO Kuranishi space. A FOOO (weak)
good coordinate system G = ((I, <), Vi, Ei, Ti, si, 0i)ier, Pij, i < j in 1) on the
topological space X is called compatible with the FOOO Kuranishi structure
K on X if for each i € I and each p € Im1; C X there exists a FOOO
coordinate change ®,; from (V,, E,, T, sp,¥p) to (Vi, By, Ty, 84,1;) on an open
neighbourhood S,; of p in Im, NImp; (where (V,, Ep, Ty, sp, 9p,) comes from
K and (V;, E;, T, s;, ;) from the good coordinate system) such that

(a) If ¢ € Im1p, NIm1p; then there exists v4p; € I'; such that
Ppi © hgp = Yapi - Pgi - ’Y;plia Ppi © Pap = Yapi * Pqis
and ‘P;p(@vi) © Pap = Yapi * Pai>
where the second and third equations hold on ¢! (Vpi) N Vgp N V.
(b) If ¢ < j in I with p € Im¢); NIm1; then there exists v,;; € I'; such that
hij © hpi = Ypij ~ hpj - Vpijs  Pij © Pi = Vi * Ppiy (77)
and (i) © Ppi = Wpij - i

where the second and third equations hold on <p;i1(Vij) N Vi N V5.

Remark 7.14. For the programme of |[19439], one would like to show:

(i) Any (oriented) FOOO Kuranishi space X (perhaps also with a smooth map
f: X — Y to a manifold Y) admits a compatible (oriented) FOOO good
coordinate system ((I, <), (Vi, Ei, 15, 85, 0i)iers Pij, i < j in 1) (perhaps also
with a smooth map (f;, i € I) to Y).
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(ii) Given a compact, metrizable topological space X with an oriented FOOO
good coordinate system ((I7 <), (Vi, Ei,Ti, 80, 0i)iers @ij, i < jin 1) (per-
haps with a smooth map (f;, ¢ € I) to a classical manifold Y), we can
construct a virtual cycle for X (perhaps in the singular homology H.(Y;Q)
or de Rham cohomology Hj (Y;R) of Y).

Producing such virtual cycles is, from the point of view of symplectic geometry,
the sole reason for defining and studying Kuranishi spaces.

Statements (i), for various definitions of ‘Kuranishi space’, ‘good coordinate
system’, and ‘compatible’, can be found in [39, Lem. 6.3] (with short proof), |24}
Lem. A1.11] (with no proof), and [30, §7] (with long proof). Constructions (ii),
again for various definitions, can be found in [39, §6], [24, §A1.1], |27 §12] (using
de Rham cohomology), and |30, §6] (with long proof).

7.3 McDuff-Wehrheim’s Kuranishi atlases

Next we discuss an approach to Kuranishi spaces developed by McDuff and
Wehrheim |77, |78}, |80+83]. Their main definition is that of a (weak) Kuranishi
atlas on a topological space X. Here are [81, Def.s 2.2.2 & 2.2.8].

Definition 7.15. An MW Kuranishi neighbourhood (V, E,T', s, ) on a topolog-
ical space X is the same as a FOOO Kuranishi neighbourhood in Definition 7.1}
with V a classical manifold, except that I" need not act effectively on V.

As in Example by an abuse of notation we will regard MW Kuranishi
neighbourhoods as examples of our Kuranishi neighbourhoods in

Definition 7.16. Suppose (Vg, Eg,I's,s5,v5), Vo, Ec,Tc, sc,¥c) are MW
Kuranishi neighbourhoods on a topological space X, and S C ImypNImypc C X
is open. We say a quadruple ®5c = (Vse, ppo, wBe, Pac) is an MW coordinate
change from (Vg,Ep,T'p,sp,¥p) to Vo,Ec, Lo, sc,e) over S if:
(a) Vg is a To-invariant embedded submanifold of Vi containing g (5).
(b) ppc :Tc — I'p is a surjective group morphism, with kernel Age C Te.

There should exist an isomorphism I'c 2 I'g x A identifying ppc with
the projection I'g X Ape — I'.

(c) wpc Vee — Vg is a ppe-equivariant étale map, with image Vpo =
wpc (Vo) a T'p-invariant open neighbourhood of ¢§1(S) in Vg, such that
wgce : Vee — Ve is a principal Apgc-bundle.

(d) ¢Bc : Ep — E¢ is an injective I'c-equivariant linear map, where the
I'c-action on Ep is induced from the I'g-action by ppc, so in particular
Apc acts trivially on Ep.

(e) SbBC O0SBOowWRBC = Sc|‘"/Bc : VBC — Fe.

(f) ¥Bo(wpc)s =1 on (5(_;1(0) N VB(;')/FC.
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(g) For each v € Ve we have a commutative diagram

0—T,Vsc T, Ve Ngpcly ——0
\Ld(wfsc(SB))\;u \LdSclu ydeibresclo (7.8)
0 EB Ll EC EC/@BC(EB)HO

with exact rows, where Npc is the normal bundle of Vie in Vo. We
require the induced morphism dgpreSc|y in (7.8)) to be an isomorphism.

We relate MW coordinate changes to coordinate changes in

Example 7.17. Let ®pc = (Vpe, pBo, wse, ¢sc) : (VB, EB,I's, s, ¥B) =
Ve, Ec,Te, sc,e) be an MW coordinate change over S, as in Definition
Regard (Vg, Ep, ', sB,¥5), Vo, Ec,Tc, s¢, ¥¢) as Kuranishi neighbourhoods
in the sense of as in Example

Set Pec = Ve x I'p. Let I'p act on Pge by vp : (v,’y) — (U,’YB’Y). Let
I'c act on Pgc by v : (v,7) = (vo - v,vpBc(ve)™h). Define npc : Ppe — Va
and ¢pc @ Ppc — Vo by mpe @ (v,7) = v - wpe(v) and ¢pc @ (v,7) = v.
Then mpe is I'p-equivariant and I'c-invariant, and ¢pc is I' g-invariant and
I'c-equivariant.

Define qASBC :m5c(VBxEB) = ¢5c(Vex Ec), as a morphism of trivial vector
bundles with fibres Ep, Ec on Ppc = Vpe x I'p, by dpcly,, () = ®BC ©

(y~1-—) for each v € T'p. It is easy to see that bpo = (Ppe,mBe, ¢BC, DBC)
(Vs,EB,I'p,sp,¥p) — (Vo,Ec,Tc, sc,¥c) is a 1-morphism over S, in the
sense of Combining Definition g) and Theorem a) shows that
e is a coordinate change over S, in the sense of §6.1}

Definition 7.18. Let X be a compact, metrizable topological space. An MW
weak Kuranishi atlas K = (A,I, (Vs,EB,I'p,sB,¥B)Ber, ®BC, B.CCT, B;c) on
X of virtual dimension n € Z, as in [81] Def. 2.3.1], consists of a finite index-
ing set A, a set I of nonempty subsets of A, MW Kuranishi neighbourhoods
(Vs,EB,I'p,sp,¥p) on X for all B € I with dimVp — rank Eg = n and
X =UperImyp, and MW coordinate changes ®pc = (Vse, pBe, @Be, PBC)
from (Vg,Ep,I'p,sp,¥5) to Vo, Ec,T'c, sc,%c) on S = Imyp NIme for all
B,C € I with B C C, satisfying the four conditions:

(a) We have {a} € [ foralla€ A, and I = {0 # B C A:(,cpImip,y # 0}.
Also Imvpp = (,cp Im ¥,y for all B € I.

(b) We have I'p = [[,cpl'(ay for all B € I. If B,C € I with B C C then
ppc : T'c — I'p is the obvious projection [[,ccT'a} = [locp Ta}, With
kernel Ao = HaeC\B Ly

(c) We have Ep = [[,cp F{qy for all B € I, with the obvious representation
of I'p = HaEB F{a}‘ If BC Cin [ then ¢pe: Eg = HaEB E{a} — Ec =
[l.cc Eqay is idg,,, for a € B, and maps to zero in Ey,) fora € C \ B.
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(d) If B,C,D € I with B C C C D then wpc o wep = wpp on Veop =
Vep N wCD(VBC) One can show using (b),(c) and Definition that
Vep and wg L, (Vpe) are both open subsets in sp' (¢5p(Eg)), which is a
submanifold of Vp, so Vgop is a submanifold of V.

We call K = (A, I, (VB,EB, FB, SB, wB)BEIv (I)BC, BQC) an MW Kuranishi
atlas on X, as in [81), Def. 2.3.1], if it also satisfies:

(e) If B,C,D € I with B C C C D then wgh(Vpe) € Vap.

McDuff and Wehrheim also define orientations on MW weak Kuranishi
atlases, in a very similar way to Definition [7.8

Two MW weak Kuranishi atlases K, K’ on X are called directly commen-
surate if they are both contained in a third MW weak Kuranishi atlas K.
They are called commensurate if there exist MW weak Kuranishi atlases K =
Ko, Ki,...,Km = K with K;_1,K; directly commensurate for i = 1,...,m.
This is an equivalence relation on MW weak Kuranishi atlases on X.

We show in Theorem [7.33] below that given an MW weak Kuranishi atlas on
X, we can make X into a Kuranishi space X in the sense of Chapter [f]

McDuff and Wehrheim argue that their concept of MW weak Kuranishi atlas
is a more natural, or more basic, idea than a FOOO Kuranishi space, since in
analytic moduli problems such as J-holomorphic curve moduli spaces, one has
to construct an MW weak Kuranishi atlas (or something close to it) first, and
then define the FOOO Kuranishi structure using this.

When one constructs an MW weak Kuranishi atlas K on a moduli space of
J-holomorphic curves M, the construction involves many arbitrary choices, but
McDuff and Wehrheim expect different choices IC, K’ to be commensurate. They
prove this [82, Rem. 6.2.2] for their definition of MW weak Kuranishi atlases on
moduli spaces of nonsingular genus zero Gromov-Witten curves in [82, §4.3].

We relate Definition [7.18|(d) to 2-morphisms in

Example 7.19. In the situation of Definition d), let Dpe, Prp, Pop be
the coordinate changes in the sense of § ﬂ 6.1] associated to the MW coordinate
changes P, Pep,Pep in Example The composition coordinate change
bopodpe = (PpepsT™BCD, PBCD quCD) from Deﬁmtlonhas

Pgcp = [(Vae x T'p) xve, (Vep xTo)] /Te

N ’ / (7.9)
= (VBC X Ve VCD) xI'p & wElD(VBC) x I'p.

and Agcp : PBCD — Pgp = VBD xI'p to be the map identified by (7.9) with the
inclusion VBCD xI'p — VBD X FB, and )\BC’D = 0. Then as in Example 1
we can show that (Psep, Asep, Aop) satisfies Definition a)—(c), so we

have defined a 2—morphism ABCD = [PBCD7>\BCD7>\BCD] (I)CD ] (I)BC = (I)BD
on Sgpep = Imyp NImyc NImp, in the sense of §6.1]

Define PBC p to be the open subset of Py p identified with Viop X 3 by l ,
1.
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McDuff and Wehrheim prove [82, Th. B], (81, Th. A]:

Theorem 7.20. Let K = (A, I7 (VB, EB, FB, SB, wB)Bej, (I)BC, B,C€l, Bgc) be
an oriented MW weak Kuranishi atlas of dimension n on a compact, metrizable
topological space X. Then K determines:

(a) A virtual moduli cycle [X|,m. in the cobordism group Q3°-Q of compact,
oriented, n-dimensional ‘Q-weighted manifolds’ in the sense of [81, §A].

(b) A virtual fundamental class [X|vt. in H,(X;Q), where H,(—;Q) is
Cech homology over Q.

Any two commensurate MW weak Kuranishi atlases IC,IC' on X yield the
same virtual moduli cycle and virtual fundamental class.

If K has trivial isotropy (that is, 'y = {1} for all B € I) then we may
instead take [X]vme € Q59 where Q5O is the usual oriented cobordism group,

and [X)yte € H3Y(X;Z), where HSY(—; Z) is Steenrod homology over Z.

In part (a), the author expects that Q502 = 050 @, Q, so that QF°¢ =~
Q[x4, xs, . ..] by results of Thom.

Theorem [.20] is McDuff and Wehrheim’s solution to the issues discussed in
Remark As an intermediate step in the proof of Theorem they pass
to a Kuranishi atlas with better properties (a ‘reduction’ of a ‘tame, metrizable’
Kuranishi atlas), which is similar to a FOOO good coordinate system.

7.4 Dingyu Yang’s Kuranishi structures, and polyfolds

As part of a project to define a truncation functor from polyfolds to Kuranishi
spaces, Dingyu Yang [110-112] writes down his own theory of Kuranishi spaces:

Definition 7.21. Let X be a compact, metrizable topological space. A DY
Kuranishi structure I on X is a FOOO Kuranishi structure in the sense of
Definition satisfying the additional conditions [111, Def. 1.11]:

(a) the mazimality condition, which is essentially Definition e),(f), but
replacing ¢ < j by g € Im,,.

(b) the topological matching condition, which is related to Definition d),
but replacing i < j by ¢ € Im),,.

There are a few other small differences — for instance, Yang does not require
the vector bundles E, in (V,, E,, Ty, sp, 1) to be trivial.

We show in Theorem below that given a DY Kuranishi structure /C on
X, we can make X into a Kuranishi space X in the sense of §6.2]

Yang also defines his own notion of DY good coordinate system [111, Def. 2.4],
which is almost the same as a FOOO good coordinate system in

One reason for these modifications is that it simplifies the passage from
Kuranishi spaces to good coordinate systems, as in Remark i): Yang shows
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[111} Th. 2.10] that given any DY Kuranishi space X, one can construct a DY
good coordinate system ((1, <), (Vs By T 80, ) pels @y 4 < pin ;) in which
I C X is a finite subset, V, C V,, is a I'j-invariant open subset, I';, = I',
and E}, s, 1, are the restrictions of E, s,,1, to V, for each p € I, and the
coordinate changes @;p for ¢ < p are obtained either by restricting ®,, to an
open V:I’p C Vyp if ¢ € Im)y, or in a more complicated way otherwise.

The next definition comes from Yang [110} §1.6], |[111} §5], [112} §2.4].

Definition 7.22. Let K, K’ be DY Kuranishi structures on a compact topological
space X. An embedding € : K — K’ is a choice of FOOO coordinate change
e + (Vp, Bp, Uy, sp,tbp) — (Vy, B, T, 8,,1,) with domain V), for all p € X,
commuting with the FOOO coordinate changes @, @gp in KC, K’ up to elements
of I',. An embedding is a chart refinement if the €, come from inclusions of
I'p-invariant open sets V), — V.

DY Kuranishi structures K, K’ on X are called R-equivalent (or equivalent)
if there is a diagram of DY Kuranishi structures on X

K<——K: Ko Ks ————K',

where arrows = are embeddings, and —— are chart refinements. Using facts
about existence of good coordinate systems, Yang proves [110, Th. 1.6.17], [111}
§11.2] that R-equivalence is an equivalence relation on DY Kuranishi structures.

Yang emphasizes the idea, which he calls choice independence, that when
one constructs a (DY) Kuranishi structure K on a moduli space M, it should
be independent of choices up to R-equivalence.

One major goal of Yang’s work is to relate the Kuranishi space theory of
Fukaya, Oh, Ohta and Ono [19H39] to the polyfold theory of Hofer, Wysocki and
Zehnder [46(53|. Here is a very brief introduction to this:

e An sc-Banach space V is a sequence V = (Vo D V; D Vo D ---), where
the V; are Banach spaces, the inclusions V;;1 < V; are compact, bounded
linear maps, and V,, = ﬂi>0 V; is dense in every V.

The tangent space TV is TV = (V1 ®Vy D Vo @ V4 D -+ ), an sc-Banach
space. An open set Q in V is an open set Q@ C V), and we write Q; = 9NV
for i > 0. Its tangent space is TQ = Q1 &V, as an open set in TV.

An example to bear in mind is if M is a compact manifold, ¥ — M a
smooth vector bundle, a € (0,1), and V = C**(E) for k =0,1,....

o Let V=VoDV1 D), W= (W, DW; D ---) be sc-Banach spaces and
QCV,RCWbeopen. Amap f:Q — R is called sc¥ if f(Q;) C R;
and f|g, : Q; — R, is a continuous map of Banach manifolds for all ¢ > 0.
An sc® map f : @ — R is called sc! if for each ¢ € Q; there exists a
bounded linear map Df, : Vo — W), such that flg, : Q1 = Rp is a ct
map of Banach manifolds with Vf|, = Dfy|y, : Vi = W, for all ¢ € Oy,
and T'f : TQ — TR mapping T'f : (q,v) — (f(q), Dfy(v)) is an sc” map.
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By induction on k, we call f: Q@ — R an sc® map for k =2,3,...if f is
scl and Tf : TQ — TR is an sc* ! map. We call f : @ — R sc-smooth, or
sc>, if it is sc* for all k = 0,1,.... This implies that flo, , : Qi4x — Ry
is a C*-map of Banach manifolds for all i, k > 0.

e Let V= (Vo DVi D ) be an sc-Banach space and Q C V be open.
An sc®-retraction is an sc-smooth map r : @ — Q with ror = r. Set
O =Imr CV. We call (0,V) a local sc-model.

If V is finite-dimensional then O is just a smooth manifold. But in infinite
dimensions, new phenomena occur, and the tangent spaces 71,0 can vary
discontinuously with € 0. This is important for ‘gluing’.

e An M-polyfold chart (O,V,1)) on a topological space Z is a local sc-model
(0,V) and a homeomorphism % : O — Im with an open set Imv¢ C Z.

e M-polyfold charts (O,V,v), (O,V,4) on Z are compatible if &il opor:
Q—Vand ¥ ' oo Q—V are sc-smooth, where Q CV, Q C V are
open and 7 : @ — Q~7 79— Q arqsc—smoothwjthror =r,fTor =7
and Imr = ¢~ 1(Imv) C O, Im7 = ¢~ (Im ) C O.

e An M-polyfold is roughly a metrizable topological space Z with a maximal
atlas of pairwise compatible M-polyfold charts.

e Polyfolds are the orbifold version of M-polyfolds, proper étale groupoids in
M-polyfolds.

o A polyfold Fredholm structure P on a metrizable topological space X writes
X as the zeroes of an sc-Fredholm section s : 0 — € of a strong polyfold
vector bundle € — U over a polyfold .

This is all rather complicated. The motivation for local sc-models (O, V) is that
they can be used to describe functional-analytic problems involving ‘gluing’,
‘bubbling’, and ‘neck-stretching’, including moduli spaces of J-holomorphic
curves with singularities of various kinds.

The polyfold programme [46-53] aims to show that moduli spaces of J-
holomorphic curves in symplectic geometry may be given a polyfold Fredholm
structure, and that compact spaces with oriented polyfold Fredholm struc-
tures have virtual chains and virtual classes. One can then use these virtual
chains/classes to define big theories in symplectic geometry, such as Gromov—
Witten invariants or Symplectic Field Theory. Constructing a polyfold Fredholm
structure on a moduli space of J-holomorphic curves involves far fewer arbitrary
choices than defining a Kuranishi structure. Fabert, Fish, Golovko and Wehrheim
[17] survey the polyfold programme.

Yang proves |[110, Th. 3.1.7] (see also [112} §2.6]):

Theorem 7.23. Suppose we are given a ‘polyfold Fredholm structure’ P on a
compact metrizable topological space X, that is, we write X as the zeroes of an
sc-Fredholm section s : 0 — € of a strong polyfold vector bundle € — U over a
polyfold B, where s has constant Fredholm index n € Z. Then we can construct
a DY Kuranishi structure IC on X, of virtual dimension n, which is independent
of choices up to R-equivalence.
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In the survey [112], Yang announces further results for which the proofs were
not available at the time of writing. These include:

(a) Yang defines ‘R-equivalence’ of polyfold Fredholm structures on X [112}
Def. 2.14], and claims [112, §2.8] that Theorem [7.23| extends to a 1-1 corre-
spondence between R-equivalence classes of polyfold Fredholm structures
on X, and R-equivalence classes of DY Kuranishi structures /C on X.

(b) In [112] §2.4], Yang claims that R-equivalence extends as an equivalence
relation to FOOO Kuranishi structures, and every R-equivalence class of
FOOO Kuranishi structures contains a DY Kuranishi structure. Hence
the 1-1 correspondence in (a) also extends to a 1-1 correspondence with
R-equivalence classes of FOOO Kuranishi structures.

(¢) Yang claims that virtual chains or virtual classes for polyfolds and for
FOOO/DY Kuranishi spaces agree under (a),(b).

(d) Yang says [112 p. 26, p. 46] that in future work he will make spaces with
DY Kuranishi structures into a category Kurpy.

These results would enable a clean translation between the polyfold and
Kuranishi approaches to symplectic geometry. It seems likely that in (d) there
will be an equivalence of categories Kurpy ~ Ho(Kur), for Kur as in

7.5 Relating our Kuranishi spaces to previous definitions

We now show that all of the Kuranishi-type structures discussed in §7.1}-47.3|
can be made into a Kuranishi space X in our sense, uniquely up to equivalence
in Kur or Kur®. We do this by defining a notion of ‘fair coordinate system’ F
on a topological space X in which is so general that it includes all of the
structures of as special cases, and proving that given X, F, we can
construct a Kuranishi structure K on X uniquely up to equivalence.

In §7.5.1) we work over any category of ‘manifolds’ Man satisfying Assump-
tions ', and then in 3‘. we specialize to Man = Man or Man€,
following our references [19H39), |77, |78} 18083}, [110-112].

Theorems [7.29] [7.31], [7.33] [7.35], and [7.36] below are important, as they show
that the geometric structures on moduli spaces considered by Fukaya, Oh, Ohta
and Ono [19-39], McDuff and Wehrheim [77, |78, |80-83], Yang [110-112], and
Hofer, Wysocki and Zehnder [46-53|, can all be transformed to Kuranishi spaces
in our sense. Thus, large parts of the symplectic geometry literature can now be
interpreted in our framework.

7.5.1 Fair coordinate systems and Kuranishi spaces

Our next definition is a kind of ‘least common denominator’ for the Kuranishi-
type structures discussed in The name ‘fair coordinate system’ is
intended to suggest something like the ‘good coordinate systems’ in but
not as strong. We work over a category Man satisfying the assumptions of
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Definition 7.24. Let X be a Hausdorff, second countable topological space.
A fair coordinate system F on X, of virtual dimension n € Z, is data F =
(A7 (Vm Em Faa Sa 77Z1a)aEAa Sab7 (I)ab, a,beA, SabCa Aabc, a,b,ceA)v where:
(a) A is an indexing set (not necessarily finite).
(b) (Va, Ea,Ta, 8a,1s) is a Kuranishi neighbourhood on X for each a € A,
with dim V, — rank F, = n, as in
(¢) Sap C Imep, NIm ey, is an open set for all a,b € A. (We can have Sqp = 0.)
(d) Pab = (Pabs Tab, bavs $ab) = (Vas Eas Tas8asa) = (Voy By, Loy sp,¢) s a
coordinate change over Sy, for all a,b € A, as in
(e) Sabe € Sap N Sae N Spe € Im, N Imep, N Imep,. is an open set for all
a,b,c € A. (We can have Sgpe = 0.)

(f) Awpe = [Pabc, Aabe, Xabc] : Oy 0Py = Dy is a 2-morphism for all a, b,c € A,
defined over Sgpe.

UaEA Imy, = X.

Sae = Im Vq and ®,, = id(Va,Ea,Fa,Sa,wa) for all a € A.

Saab = Savy = Sap and Agap = By, Aavs = v, for all a,b € A.

The following diagram of 2-morphisms over Sgpe N Sapd N Sacd N Shed
commutes for all a,b,c,d € A:

((Dcd o q)bc) o (I)ab - (I)bd o (I)ab
Apcaxids
\U/a@cdvq)bmq)ab Aabd\u/
ide *Aabe Aacd
(I)cd o ((pbc o (Dab) —_— (I)cd o (I)ac (I)ad~

Also, either condition (k) or condition (k)" below hold, or both, where:

(k) Suppose B C A is finite and nonempty, and = € (), 5 Im¢y, € X. Then
there exists a € A such that x € Sy, for all b € B, and if b,¢ € B with
z € Sp. then x € Sgpe.

(k)" Suppose B C A is finite and nonempty, and = € (.5 Ime, € X. Then
there exists d € A such that x € Sy for all b € B, and if b,¢ € B with
T € Spe then x € Speq-

Here (k),(k)" are somewhat arbitrary. What we are trying to achieve by these
conditions on the Sgp, Sqpe is roughly that:

(A) If z € Imyp, N Imep., one can map (Vy, Ep, T, sp, ¥5) = (Ve, Ec, Tey Sey ¥e)
near x by a finite chain of coordinate changes ®;; and their (quasi)inverses
<I>;i1 — for (k) by ®4.0 @}, and for (k)’ by ®_} o Bpq.

(B) Any two such chains of ®;;, <I>j_il near x are canonically 2-isomorphic near
x using combinations of the 2-isomorphisms A;;, and their inverses.
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We chose (k),(k)" as they hold in our examples, and there is a nice method to
prove Theorem using (k) or (k)'.

Example 7.25. Let X = (X, K) be a Kuranishi space in the sense of with
K = (I,(Vi, B, Ty, 55,%5)icrs ®ij,ijers Nijr, ijker). Set Sy = Imp; N Im ),
for all 4,7 € I, and S = Im; N Ime; N Imeyy for all 7,5,k € I. Then
F= ( (‘/;7 E;, s, s, 1/’1)16[7 Sz]v q)zj i,5€1 S’L]k? Azjk 7, kEI) is a fair coordinate
system on X. Here Deﬁnltlon 24|(a)—(j) are immediate from Definition a)—
(h), and both of Definition ( )" hold, where we can take a € B arb1trary
n (k) and d € B arbitrary in (k)’.

The next theorem will be proved in When we say (Va, Eq,La, Sa, ¥a)
may be given the structure of a Kuranishi neighbourhood on the Kuranishi
space X’, we mean that as in we can choose implicit extra data ®q; icr,
Aaij, i jer relating (Vo, Eq, Ty, Sa,1%,) to the Kuranishi structure K on X, and
similarly, by ‘®,, may be given the structure of a coordinate change over Sy
on the Kuranishi space X’, we mean that we can choose implicit extra data
Agpi, icr relating ®qp to K.

4

Theorem 7.26. Suppose F = (A, (Va, E, Ty, sq, 7/)a)aeAa Sab, (bab, a,bEAS Sabe,
Agpe, a,b,ceA) is a fair coordinate system of virtual dimension n € Z on a Haus-
dorff, second countable topological space X, in the sense of Definition [7.24]
Then we may make X into a Kuranishi space X = (X,K) in the sense of
with vdim X = n, such that (V,, Eq,Tq, Sa,%q) may be given the structure of
a Kuranishi neighbourhood on the Kuranishi space X in the sense of §6.4] for
all a € A, and @up : Vo, B, Tay Sa,Va) = Vo, By, T, s, W) may be given the
structure of a coordinate change over Sqp, on the Kuranishi space X in the sense
of for all a,b € A, and Agpe : Ppe 0 Py = Py is the unique 2-morphism
over Sgpe given by Theorem a) for all a,b,c € A. This X _is unique up to
canonical equivalence in the 2-category Kur, as in Definition .

The next proposition follows easily from Corollary and Theorem

Proposition 7.27. Let F = ( (Va, E,, Ty, sq, wa)aeA» Sab, (I)ab a,bEAs Sabe,
Aabe, ap ceA) be a fair coordinate system on X . Suppose A C A with UaeA Im ),
= X, and in Definition |7. ( ),(k)', if B C A C A then we can choose a € A
in (k) and d € A in (k). Then F = ( s (Vay Eay Ty 50, Ya) oc 4> Sab,éab’ abe A
SabmAabq a,b7ceA) is also a fair coordinate system on X. Let X = (X,K) and

X = (X, l?) be the Kuranishi spaces constructed from F,F in_Theorem [7.26]
Then X, X are canonically equivalent in Kur, as in Definition .

7.5.2 Fukaya—Oh—Ohta—Ono’s Kuranishi spaces

Section [7.1] n 1| defined Fukaya—Oh—Ohta—Ono’s ‘FOOO Kuranishi bpaceb (Worklng
over Man = Man) and ‘FOOO Kuranishi spaces with corners’ (over Man =
Man®). We now relate these to our notion of Kuranishi spaces.
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Example 7.28. Let X = (X, K) be a FOOO Kuranishi space with vdim X = n,
in the sense of Definition Then K gives a FOOO Kuranishi neighbourhood
(Vs Ep,Tp, 8p, 1p) for each p € X, and for all p,q € X with ¢ € Im,, it gives
a FOOO coordinate change ®g, = (Vop, hgps Ogps Pqp) © (Vg Eq, Tq, Sq:0q) —
(Vs Ep, Ty, sp,1bp) defined on an open neighbourhood Sy, of ¢ in Im g N Im ey,
and for all p,q,r € X with ¢ € Im, and r € S, Definition (b) gives unique
group elements v, ,, € I', which relate @4, 0 @,y to @,y on Syqp := SgpNSrp N Srg.

We will define a fair coordinate system F on X, over Man = Man. Take the
indexing set A to be A = X, and for each p € A, let the Kuranishi neighbourhood
(Vs Ep, Ty, 8p, 1) be as in K, regarded as a Kuranishi neighbourhood in the
sense of as in Example If p# g € A with ¢ € Im),, define Sy, C
Im 4 NIm1, to be the domain of the FOOO coordinate change ®,, in K. Define
@qp : (Vg Eq,Tq, 8¢,%q) = (Vp, Ep,T'p, sp, 1) to be the coordinate change over
Sg¢p in the sense of associated to the FOOO coordinate change @, in
Example Define Sy, = Im, and @pp =id(y, . E,r,.s,,) foral pe A If
p#q€ Aand g ¢ Im,, define Sy, =0 and @,, = (0,0,0,0).

Ifp#q#reAwithgeImy, and r € Sgp, set Syqp = Sqp N Spp NSy, and
define A,qp : &Jqp oi)rq = i)rp to be the 2-morphism over 5,4, defined in Example
ii) using the group elements v, € I';, in Definition b). fp#qg#reA
with ¢ ¢ Imd, or r ¢ S, define S,,, = 0 and A,y = [0,0,0]. Define
Sapp = Sqqp = Sqp and Aggp = /3<i>qp’ Agpp = Vs, for all p,q € A. This defines
all the data in 7 = (A, (V,, Ep, Ty, $p, ¥p)peas Saps Pap, a.pc 4y Sraps Mrap, rapea)-
We will show F satisfies Definition a)—(k).

Parts (a)—(i) are immediate. For (j), if p # g # r # s € X with ¢ € Im1), and
7 € Sgp and s € S,4 NSy, then Definition [7.6(b) gives elements 7%, W?q/p, ’Y?r/; €
T’y and 7;",:; € I'; satisfying . Using 1} four times we see that

f}/gqp’ygrp *Psp = Pqp O Prq © Psr = hqp('Y?rq )’qup * Pspy (710)
where (7.10)) holds on the domain

‘P;rl ((W;ql (qu) NVegN Vrp)a) N (SD;ql(‘/:zp) NVsg N VsP)a,m

1" 1" (711)
(‘Ps_rl(vrp) NV NVep)® N (()05_7‘1 (Vig) NVer N Vi)™

If |D is nonempty, the argument of Example [7.7(iii) implies that 7fqp7§;;, =
(184 )7 This is the condition required to verify Ay, ® (Argp * idg )=
Asgp © (1d&,?p *Ngrq) © Qg &8, o0 the component of S¢pq N Serp N Ssgp M Srgp
corresponding to the connected components «, o', o, o’”.

This proves Definition j) in this case. If p = ¢ then (j) becomes

Asrq O] (’)’érq * ld‘:i)w) = ’7<i>sq ® (idid(vq=Eq,Fq,Sq,1/1q) * As’l‘q)

. (7.12)

Q. 5 &
1d(Vq,Eq,l"q,sq,'l,bq) 7q>rq;¢’s7‘7

which holds trivially, and the cases ¢ = r, r = s are similar. In the remaining
cases one of Ssyq, Ssrp, Ssqps Srqp 18 empty, so (j) is vacuous. Thus (j) holds.
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For (k), suppose B C A is finite and nonempty, and = € (,cgpIm¢, C X.
Then z € S, for all p € B, since S, is an open neighbourhood of = in
Imy, NIma,, and & € Szqp for all ¢,p € B with & € S, since Syqp =
Sqp N Szp N Szq in this case and x € Syp, € Szg. Thus (k) holds with a = z,
and F is a fair coordinate system on X, over Man = Man.

If instead X is a FOOO Kuranishi space with corners, the same construction
gives a fair coordinate system F on X over Man = Man®.

Combining Example [7.28 and Theorem [7.26] yields:

Theorem 7.29. Suppose X = (X,K) is a FOOO Kuranishi space, as in Def-
inition Then we can construct a Kuranishi space X' = (X,K') over
Man = Man in the sense of § with vdim X' = vdim X, with the same
topological space X, and X' is unique up to canonical equwalence in Kur.

If instead X is a FOOO Kuranishi space with corners, the same holds over
Man = Man®, so that X' is unique up to canonical equivalence in Kur®.

One can also show that geometric data and constructions for FOOO Kuranishi
spaces X such as orientations in Definition smooth maps f: X — Y toa
manifold Y and “fibre products’ X xy X’ in Definition and boundaries 0X
of FOOO Kuranishi spaces with corners X in [24] Def. A1.30], can be mapped
to the corresponding notions in our theory.

7.5.3 Fukaya—Oh—Ohta—Ono’s (weak) good coordinate
systems

Section discussed Fukaya—Oh—Ohta—Ono’s ‘FOOO (weak) good coordinate
systems (with corners)’. We relate these to our Kuranishi spaces.

Example 7.30. Let G = ((I, <), (Vi, Ei, Ty, 8is¥i)ier, Dij, i.<j) be a FOOO weak
good coordinate system of virtual dimension n € Z on a compact, metrizable
topological space X, in the sense of Definition [7.11

We will define a fair coordinate system F on X over Man = Man. Take
the indexing set A to be I, and the Kuranishi neighbourhoods (V;, E;, Ty, s;, 1;)
for i € I to be as given. If ¢ # j € I with ¢ < j, define S;; = Im; NIm1);, and
&Dij : (Vi, B Ty, s5,¢3) — (V}, Ej, T, s5,1;5) to be the coordinate change over S;;
in the sense of associated to the FOOO coordinate change ®;; in Example
Define Sj; = Im; and & = idev, B, T80 forallie I If i # j € I and
i 4 j, define Si; = 0 and ®;; = (0,0,0,0).

Ifi#£j 7é keI withi=<j =<k, set Sijr =Im; NIme; NImay, and define
Aijr <I>jk o <I>” = ®;1. to be the 2- morphism over Sy, deﬁned in Example .(11
using the unique group element ;5 € I'y in Definition b). fi#j#kel
with i A j or j £ k, define S;j, = 0 and A;j, = [@,@,@]. Set Siij = Sij; =
Im; NImep; and Ay = ,6'5)1_],, Nij; = Yo, for all 4,57 € I. This defines all the
data in F = (I, (‘/1, Ei, Fi7 Si, ¢i)ie[, S”, (I)” i,jE€I> Sijk:a Aijk, i,j,kEI)- ‘We shall
show F satisfies Definition [7.24|(a)~(k).
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Parts (a)—(i) are immediate. For (j),if i #j#k#lin I withi <j <k <1
and Im; NIm; N Im e, NImp; # 0 then the argument of 7 shows
that vk Yiji = ha(Vije)yire, and so Agji © (Ajrexidg, ) = Aa © (idg,, * Aijr) ©
G, .,,.5,, 8 We want. The cases i = j, j =k, k = hold as for (7.12), and in
the remaining cases one of Sjji, Siji, Sikt, Sjr is empty, so (j) is vacuous. Thus
(j) holds.

For (k) or (k)’, suppose () # B C I is finite and = € (), g Imy,. Then for
all b # ¢ € B we have x € Im, NIm1). # 0§, so b < ¢ or ¢ < b by Definition
7.11j(a). Thus the partial order < restricted to B is a total order, and we may
uniquely write B = {b1,ba,...,by} with by < by < -+ < by, It is now easy to
check that (k) holds with a = by, and also (k) holds with d = b,,,. Therefore F
is a fair coordinate system on X over Man = Man.

If instead G is a FOOO weak good coordinate system with corners, the same
construction gives a fair coordinate system F on X over Man = Man®.

Combining Example [7.30] and Theorem yields:

Theorem 7.31. Suppose X is a compact, metrizable topological space with a
FOOO weak good coordinate system G = ((I, <), (Vi, B, T, 83, %)ier, @ij, Hj),
of virtual dimension n € Z, in the sense of Definition [T.11} Then we can make
X into a Kuranishi space X = (X,K) over Man = Man in the sense of
with vdim X = n, and X is unique up to canonical equivalence in Kur.

If instead G is a FOOO weak good coordinate system with corners, the same
holds over Man = Man®, so that X is an object in Kur®€.

7.5.4 McDuff-Wehrheim’s (weak) Kuranishi atlases

Section [7.3| discussed McDuff-Wehrheim’s ‘MW (weak) Kuranishi atlases’, work-
ing over Man = Man. We relate these to our Kuranishi spaces.

Example 7.32. Let (A, I, (VB, EB, FB, SB, wB)BGIa q)BC, B,C€el, BQC) be an
MW weak Kuranishi atlas of virtual dimension n € Z on a compact, metrizable
topological space X, in the sense of Definition [7.18]

We will define a fair coordinate system F on X over Man = Man. Take the
indexing set to be I, and the Kuranishi neighbourhoods (Vg, Eg,T's, sp,¥5)
for B € I to be as given. If B,C € I with B C C, define Sgc = Im¢¥g NIm e,
and ®pc : (Ve,EB,I'p,sp,¥p) = (Vo,Ec,Te,s0,%¢) to be the coordinate
change over Sp¢ in the sense of associated to the MW coordinate change
Ppe in Example Define Spp = Im g and dpp = id(vy,Ep.Tp,sp.0p) fOT
al BeI. If BZ C in I, define Spc = 0 and ®pc = (0,0,0,0).

If BC C C D in I then Definition [7.18(b)~(d) say essentially that ®cp o
®pc = Ppp on the intersection of their domains. Example [7.19] defines a
canonical 2-isomorphism Agcp : éCD o &)BC = &pp on Spep = Imypg N
Im e NImp.

IfB#A£C#DelwithB¢ CorC ¢ D, define Sgcp =0 and Agcp =
[@,@,@] Set Sgec = Spcc = Spc and Agpc = B&)Bc’ Apce = Yé 50 for
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all B,C € I. This defines all the data in F = (I,(Vp, Ep,I'p, sp,¥5)Ber,
Sec,®Bc, B,cer, SBep, ABcp, B,C,De]ﬁ(

We will show F satisfies Definition a)—(j),(k)’. Parts (a)—(i) are immedi-
ate. For (j), if BC C C D C E in I then Definition [7.18|b)-(d) basically imply
that

Pppo(PcpoPpc)=Ppe = (PproPcp) o Ppe

holds on the intersection of their domains, and from this we easily see that
ApprE ® (ACDE * id‘ch) = Agprg ® (idi)DE * ABCD) Ooag Bop,bpor AS We
want. The remaining cases follow as in Examples and ﬁ Thus (j) holds.

For (k)’, suppose § # J C I is finite and = € (g, Imyp € X. Then
Definition m(a) says that D = (Jgc,; B lies in I, and = € [z, Imep
C Imvyp. For any B € J we have B C D, so Sgp = ImyYp NIm¢p > x. If
B,C ¢ J with z € Sgc then B C C, as otherwise Spc =0, so BC C C D and
Spep =Imyp NImye NImyp > x. Therefore (k) holds with d = D, and F
is a fair coordinate system on X over Man = Man.

Theorem 7.33. Suppose X is a compact, metrizable topological space with
an MW weak Kuranishi atlas IC, of virtual dimension n € Z, in the sense of
Definition . Then we can make X into a Kuranishi space X' = (X,K')
over Man = Man in the sense of with vdim X' = n, and X' is unique
up to canonical equivalence in the 2-category Kur. Commensurate MW weak
Kuranishi atlases IC, K on X yield equivalent Kuranishi spaces X', X'.

Proof. The first part is immediate from Example and Theorem For
the second part, note that as in Definition if IC, K are commensurate then

they are linked by a diagram of MW weak Kuranishi atlases

K =Ko K K1 Km=K
DN N N N (EE)
K:l K:l ,Cmfl Icm7

where each arrow is an inclusion of MW weak Kuranishi atlases.

By Proposition [7.27, the construction of the first part applied to MW weak
Kuranishi atlases K, K with K C K yields equivalent Kuranishi spaces, so
induces a corresponding diagram of equivalences in Kur, and thus X’, X' are
equivalent in Kur. O

7.5.5 Dingyu Yang’s Kuranishi structures, and polyfolds

Section discussed Dingyu Yang’s ‘DY Kuranishi structures’, working over
Man = Man. We relate these to our Kuranishi spaces.

Example 7.34. Using the notation of §7.4] let X be a compact, metrizable
topological space, and K a DY Kuranishi structure on X with vdim(X, ) = n,
in the sense of Definition[7.21] Then exactly the same construction as in Example
7.28| yields a fair coordinate system F on X.
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Theorem 7.35. Suppose X is a compact, metrizable topological space with a
DY Kuranishi structure IC, of virtual dimension n € Z, in the sense of Definition
. Then we can construct a Kuranishi space X' = (X, K') over Man = Man
in the sense of with vdim X’ = n, with the same topological space X, and
X' is unique up to canonical equivalence in the 2-category Kur. R-equivalent
DY Kuranishi structures IC, K on X yield equivalent Kuranishi spaces X', X'

the second part, note that as in Definition if K, K are R-equivalent then
there is a diagram of embeddings of DY Kuranishi structures on X:

Proof. The first part is immediate from Example [7.34] and Theorem [7.26] For
i

K~——K; Ko Ks ——=—=K. (7.14)

If € : K1 — K5 is an embedding of DY Kuranishi structures, then following
Example @ we can define three fair coordinate systems F1, Fa, F12 on X,
where F1, Fs come from K1, Ko, and F12 contains the Kuranishi neighbourhoods
from K; and K5, and the coordinate changes from K1,/ 2 and €, so that Fio
contains F; and Fa. Theorem then gives Kuranishi structures K/, K5, K/,
on X. Since F; C Fi2, Fo C F1a, by Proposition we have equivalences
(X,K)) = (X,K},), (X,K5) — (X,K},) in Kur, and hence an equivalence
(X,K}) — (X,K5) in Kur. Therefore ~ induces a corresponding diagram
of equivalences in Kur, and thus X’, X’ are equivalent in Kur. O

Combining Theorem with Yang’s Theorem [110, Th. 3.1.7], we
relate Hofer—-Wysocki-Zehnder’s polyfold theory [46H53] to our Kuranishi spaces:

Theorem 7.36. Suppose we are given a ‘polyfold Fredholm structure’ P on a
compact metrizable topological space X, that is, we write X as the zeroes of a
Fredholm section s : 0 — € of a strong polyfold vector bundle & — U over a
polyfold 0, where s has constant Fredholm index n € Z. Then we can make X
into a Kuranishi space X = (X,K) in the sense of with vdim X = n, and
X is unique up to canonical equivalence in the 2-category Kur.

7.6 Proof of Theorem [7.26]

In this section, as in §6.7.4) we will by an abuse of notation treat the weak
2-category KNg (X) defined in 3‘. as if it were a strict 2-category, omitting
2-morphisms a¢kl,¢,jk,¢ij,ﬁ¢ij7'y¢ﬁ in and GW , and omitting brackets
in compositions of 1-morphisms ®; o ®;; 0 ®;;. We do this because otherwise
diagrams such as (7.17)), (7.23), (7.25), ... would become too big.

Let F = (A7 (Vaa Eaa Faa Sas wa)aeAv Saln q)ab, a,beEA; Sabca Aabc7 a,b,ceA) be a
fair coordinate system of virtual dimension n € Z on a Hausdorff, second
countable topological space X, as in 7.5l Then F satisfies either Definition
[7.24/k) or (k). We will suppose F satisfies Definition [7.24[k), and give the proof
in this case. The proof for (k)’ is very similar, but the order of composition of 1-
morphisms is reversed, and the order of horizontal composition of 2-morphisms is
reversed (though vertical composition stays the same), and the order of subscripts
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a,b,c,...1is reversed, so @up, Agpe are replaced by @pq, Acpq, and so on. We leave
the details for case (k)’ to the interested reader.

Throughout the proof, we will use the following notation for multiple inter-
sections of the open sets Sy in X. For ay,...,ar € A, k > 3, write

{11(12 - ﬂl<l<]<k a;aj;-

More generally, if we enclose a group of consecutive indices a;ajy1-- - in
brackets, as in Sy, ...a,_; (a;--am)ams1--ar> W€ omit from the intersection any S,
with both a;, a; belonging to the bracketed group. So, for example

Sa(bc) = Sab N Sac, S(ab)(cd) = Sac N Saa N Spe N Spa,
ga(bc)(de) = Sab N Sac N Sad N Sae N de N Sbe N Scd N Sce~

In Definition [7.:24] the 2-morphisms Ay are defined on open sets Sgpe C
Sap N Sae N Spe € Imp, NImappy N Imep.. We begin by showing that we can
extend the Agpe canonically to Sepe = Sap N Sae N Spe.

Lemma 7.37. There exist unique 2- morphzsms Aabc : By 0 Dy = Dy defined
over Sabc for all a,b,c € A, such that Aabc|5 ve = Nabe, and as in Definition
-(J) we have Aach(ldq)Ld*Aabc) = Aapd ® (Apeq*ida,, ) 1 PegoPpeoPyp = Py
over Sabcd, for all a,b,c,d € A.

Proof. Fix a,b,c € A. We will construct a 2-morphism Agpe s Ppe 0 Pop = Pue
over Sgpe. For each d € A, define

Sgbc = Sdab n Sdac N Sdbc - gabc- (715)

Then S(‘fbp is open in Sape. Definition k) with B = {a,b, c} implies that for
each x € Sabc, there exists d € A Wlth reSd ¢ - Thus, {ggbc :d € A} is an open
cover of Sabc.

Since ®g4, is an equivalence in the weak 2-category KNgdb (X) in Definition

as it is a coordinate change, Lemma implies that for each d € A there is
a unique 2-morphism
]\d Dy 0 Oy — <I>ac over S¢, . such that

aber (7.16)
A o ¥ 1dq>d =A OApe® (ld.:pbc * Adab)-

dac

For d,e € A, we will show that ]\gbc|§gbcn§2bc = Agbc|§2bc”§2bc' Let z €
54, N S¢,.. Then Definition [7.24(k) with B = {a,b,c,d, e} gives f € A with
xr € Sfab n Sfac N Sfbc N Sfda N Sfdb n Sfdc N Sfca n Sfeb n Sfec n Sgbc N S;bc
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Consider the diagram of 2-morphisms on this intersection:

(I)bc [¢] ‘I)ab [¢] q)fa
/ id@bcmﬁaM i]idl?br*A‘fNab*Afea \

(I)bco(babo(bdao(bfd (Ebcoq)fb (I)bco(babo(beaoq)fe

'dq> *Ad b*idq> idq> ‘*A b*id@
\'% ‘ %;C* id,i,kb‘ o /
@bcoq)dbo@fd Agab Ageb (Dbco@ebo@fe
Agpe* . ; Aape*
iy 00, \LAdbc*ldd’fd Acpexide \L ide g0, (7.17)
Afpe
(I)dcoq)fd A fA ecO(I)fe
fde fec
/dc*ldbfd \ / eac*ldk
(I)aco(I)dao(I)fd DueoPeqo®ye
\ Ad, xidg AS, *ide J
abe fa Adb fa
acoq)fa

Here the outer two quadrilaterals commute by (7.16)), and the inner eight
quadrilaterals commute by Definition [7.24)j). So (7.17) commutes.

Thus, for each x € S N Sabc, on an open neighbourhood of z we have
AabC * 1d¢f = A o ¥ 1dq> so that on an open neighbourhood of x we have

Agbc = Aab by Lemma Deﬁmtion (111) and Theorem now imply

that A?¢ Cbe = = A¢ e On SabC N Sabc Since the Sabc for d € A cover Sabc, Definition
iii),(iv) and Theorem show that there exists a unique 2-morphism
Aabc : @y 0 Py = Dy Over Sabc such that

Aaelgs, =Ag,, forallde A. (7.18)
When d = a, we see from (|7.15)— and Definition [7.24[h),(i) that
Se

. = Sapbe and AabC = Agpe. Hence Aabc\s = Aupe, as we have to prove
Suppose b,e,d € A, and = € Sabcd = Sab N Sac N Sad N Soec N Spa N Sea-
Definition [7.24(k) with B = {a, b, ¢,d} gives e € A with z € §¢, N5, NS¢, N

Speq- S0, in an open neighbourhood of  we have o
[Aaca © (ida,, * Aape)] *ida,,, = (Afeq *ida,,) © (ids,, * Ajy, *ida,,)
= (A © Acca © (ida,, * Acac))
® ((ide,, * Asp) © (de,, * Aeve) © (ide,, * ide,, * Acas))
=AL O Ad © (Al © Aeca © (ida,, * Acpe)) © (i 40w, * Acas)
= (Mg © Aeba © (ida,, * Acap))
© ((idg,, * ALY) © (Afey *ids,,) © (ide, 0, * Acab))
= (Aabd xidg,, ) ® (Abcd *ide,, *ide,, ) = [[\abd 0) (Abcd * id%b)] *idg,,,

using (|7 in the first, fourth and sixth steps, and (7.16)) in the second, third and
fifth. Lemma now implies that Aged @ (ids,, * Aabc) = Aabd ® (Abcd xidg,,)
holds near z. Applying Definition iii) and Theorem again shows it
holds on the correct domain S’abcd. This completes the lemma. O

abce
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Next, for all a,b € A we have a coordinate change @, : (Vy,, Eq, Ty, Sa,

Ya) = Vo, Eb, Tp, S, 1¥p) over Sqp € Im ), NImp,. This is an equivalence in the
2-category KNg,, (X) by Definition Thus we may choose a quasi-inverse
DBv 0 (Vi, By, Ty, 5, 10) — (Vi Eq, T, Sa,104), which is also a coordinate change
over Sgp, and 2-morphisms

Tab * éab o éba = id(Va,Ea7Fa,sa71[)a)7 Cab : (iba ° (bab = id(Vb,Eb,Fb,Sb7wb)' (719)

When a = b, so that ®,, =id(v, g, . s.¢.), We choose

Poa = id(v, B, Taysapa) A0 Naa = Caa = idid(y, 5, 1y 00 (7.20)

Now fix a,b € A. For all ¢ € A, we have Sc(ab) = Sca NSy € Imep, N Imapy.
From Definition k) with B = {a, b}, we see that for each x € Im¢), N Im )y
there exists ¢ € A with € S.(up), 50 {Seap) : ¢ € A} is an open cover of
Im ), NImapy,. For each ¢ € A, define a 1-morphism U, : (V,, Eq,Tq, 84, %q) —
(Voy By, I, 8, 106) over Segap) by Vo, = Pep 0 P

Lemma 7.38. For all a,b,c,d € A, there is a unique 2-morphism
Mg(li) : ‘I/Zb — \I/gb over g(cd)(ab) = Sc(ab) n Sd(ab)y (7.21)

such that for all e € A, the following commutes on Se(cd)(ab):

Doy o Do, A Dy i1 Dgp 0 Peg

Jida, #¢tvida,, A idg g, * gt vida,, |

D 0Dy 0Dy 0 D Bgp 0 Dpygo Pyggo Py (7.22)
\U’idq>cho‘i>ac *Aeca M 4idg,, dg 0,4 *A“‘d“‘U’

D0 (i)ac 0P, = \Ilgb 00y =— \I]gb 0P =— Dy 0 (i)ad SR

Proof. Equation determines M;‘g *idg,, over S’e(cd)(ab), and so by Lemma
determines MZ‘Z over Se(cd)(ab), as @, is an equivalence. Write (M%)e for
the value for MZ% on Se(cd)(ab) determined by . Observe that Definition
k) with B = {a,b, c,d} implies that the Se(cd)(ab) for e € A form an open
cover of S(Cd)(ab).

Lete,f e A, and x € S’(ef)(cd)(ab) = S’e(cd)(ab) N Sf(cd)(ab). Applying Defini-
tion [7.24(k) with B = {a,b,¢,d, e, f} and this = gives g € A such that all the 1-
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and 2-morphisms in the following diagram are defined on = € S’g(e F)(cd)(ab):

\IJC b © Pya
f R A D od \
(cho(bavo(ppao(pge gea l/Aqra gfa (bcboq)aco(pfaoégf

- -
l/Aeca A‘?Z_ ¢cbo(baco(1)ca q)gc &f“ Afcal/

@cbo@aco(l)caoq)e_coq)ge i/Cca @Cb?i)acoq)motl)fco@gf
J¢ea P L P Cea
(I)cbo(peco(pge i/]\grb (I)cbo(pfcoq)gf

[Reer é//;,b/ gb \gfb> Rpen)
e Lye Ao ) ooy (7.23)
iArdlb é”ig_;},,/ D g0® g &) A;Jbi
DgpoPegolye W;al PapoPrioPyy
¢<d_al A;L D 4,0 Dy g 0P g 0 Pya ;\;;d CEH
D40 Pa0Pq0PegoPye D0 PagoPaq 0P a0 Py

i/[\gda Agda Afd“l’

deoéado¢eao¢ge Apea Ryta @dbo(i’adoéfao@gy
> yd =
‘I]ab ° (bga'

(MES)*ida (M) ida

Here for clarity we have omitted all ‘id...x’ and ‘xid...” terms. The two outer
nine-gons commute by 7 eight small quadrilaterals commute by Lemma
and four small quadrilaterals commute by compatibility of horizontal and
vertical composition. Thus commutes, and Mg‘l’f)e*id@ga = (M)/ *idg,,
near z, so (M%)¢ = (M¢4)f near x by Lemma

As this holds for all z € Se(cd)(ab ﬁSf cd)(ab)> Deﬁmtlon iii) and Theorem
show that (Mfl‘é) (M<¢4)f on S, cd)(ab) N Sf cd)(ab)- Slnce the S, (cd)(ab)
for e € A cover S (cd)(ab), Definition E 7(iii),(iv) and Theorem imply that
there is a unique 2-morphism M¢{ as in (7.21)) with Mc‘lﬂs e any (Mg‘é)e But
by definition of (M¢%)¢ this holds if and only if (7.22) commutes. This completes
the lemma. O

Lemma 7.39. For all a,b,c,d,e € A, we have
M o M = MSS = U¢, — ¢

b, b , b , (7.24)

over S(cde)(ab) = S(cd)(ab) N S(ce)(ab) N S(de)(ab)-

Proof. Let z € S(Cde)(ab). Definition (k) with B = {a,b,c,d,e} and this x
gives f € A such that all the 1- and 2-morphisms in the following diagram are
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defined on = € Sf(cde)(ab):

1
Afdb
fcb feb

Dopody, DgpoPyqg Dopodye
ﬂid%b*grj*id%c \uidq)db #C o wide, id%b*{;ll*idq)aeﬂ/ (7.25)
q)cboéacoq)cao(bfc (I)dbo(iadoq)daoq)fd q)eboci)aeoq)eaoq)fe .
‘H/idq) bodac *]\fca y \U]id@dboi d*]\zda idy podac *Afea\M,

Mgy *ida ,, Mgp+ide

(I)cboq)acoq)fa :> q)dbo(I)ado(I)fa —_— (I)ebO(I)aeo(I)fa

e
ab*ldcpfa

Here the two inner and the outer septagons commute by (7.22)). Thus ([7.25))
commutes, and compatibility of horizontal and vertical composition gives

(M2 © M) xide,, = (M% xide,,) © (M xide,,) = M *ide,,

near x, so lb holds near x by Lemma As this is true for all x € S(Cde)(ab),
-(l !

the lemma follows from Definition |A.17[iii) and Theorem O
By Lemmas and|7.39] as {Sc(ab) ¢ € A} is an open cover of Im ¢, NIm vy,
-(

we may now apply Definition|A.17|v) and Theorem“to show that for all a, b €
A, there exists a coordinate change W,p, : (V,, Fu, Lo, Sa, ¥a) — g (Vo, B, Tp, S, ¥p)
over Imt, N Im 1)y, and 2-morphisms e, : W5, = Wy, over Se,p) for all ¢ € A,

such that for all ¢,d € A we have
ab ® Mab = \I/cb — U, over S(cd)(ab) = Sc(ab) N Sd(ab)- (726)

Furthermore ¥, is unique up to 2-isomorphism.

In the case when a = b, we have ¥ = ®@,, = b, = id(v,,E..T,s0.00) and
S’a(aa) =Img, so €, 1 id(v, B, I, s0.00) = Yaa 18 @ 2-morphism over Im,. As
we can choose V,, freely in its 2-isomorphism class, we choose

Voo =1d(v, B, .l s0,0.) a0d €5, = id; foralla e A.  (7.27)

1d(Vy,Ba,Ta,5a,%a)?
Lemma 7.40. For all a,b,c € A, there is a unique 2-morphism
Kave : Ype 0o Uyp = ¥,  over Imp, NImhy, NImap,,

such that for all d € A, the following commutes over S’d(abc):

B0 Dpg o By 0 Ppg == Vi, 0 VY, = Upc o Vg
€ *E
\U}d%c *Cap¥idg e e Kabcu (7.28)
o d
> €ac
cI)dc o (I)ad \Ijgc \I/ac-
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Proof. Fix a,b,c € A. If x € Imp, NIm 1h, N Im )., then Definition [7.24{k) with
B = {a,b, c} and this x gives d € A with x € Sd(abc) Hence {Sd(abc) d €A}is
an open cover of Im ¢, N Im ¢, N Im ..

For each d € A, write Kabc for the 2-morphism over S’d(abc) determined by
with K¢, in place of Kup.. We have to show that there is a unique

2—morphism Kape over Imy, N Im e, N Imep, with Kabc|5"d( b = Kgbc.

\I]bco\l’u.boq:'fa
/ (EbW \w 1 \
Mde*Mde

D 0Ppg0PapoPagoPsa BecoPpe0PepoPae0®yy
i’]\;dla 4 Cebl
< idgd «Mde
PacoPpaoPapo e e Decodgeod
10 g,0P 4 ec®FacP = fa
¢Cda Aedlc\L
q)dco‘i)bdo c?dcoq)edo
PapoPra 3 B 0dr 0B _ Paco®ya
AE (I:"gcoq)bd de0PbdPeb S;CPch‘Pde‘I)dbO o
oL fb Oq)an(bfa Acap q)edc‘@aeoq)fa
o g
Afebl/ ’ﬁAfea ,?Afea
-~ -1 . = .
Cao | Cav Bygoobpgo  Sea_ PgeoPpgo®epo Nedv By 0Dy 0Pg,0Peq
Depo®ye Doe0Peqodye 0®ge0Peq0d .
- Cdb*Cea 5
Afeaq Acde
q:'chQfd q’dco‘i’equ)ﬁ q>ecO(Dfe
]\fdc ]\fec
- \ / C;“I‘L
q)dco'i)adoq)daoq)fd q)fc ‘I)echV)anq)eaO‘I)fe
Afda ]\fs:a,l
. Mg .
q)dcoq)adoq)fa CI:'eco(ba,eo‘i)fa

\ cae €he J
Yae Oq)fa

bic*idcpfa

P
Kabc*ldq>fa

Figure 7.1: Proof that K¢, «idg,, = K&, xids,,

Let d,e € A, and = € S(de)(abc) = Sd(abc) N Se(abc)' Definition k) with
B = {a,b,c,d,e} and this = gives f € A with z € Sf(de)(abc). Consider the
diagram of 1- and 2-morphisms Figure [7.1] We have omitted most terms x*id...
and id...x in the 2-morphisms for clarity. The two outer crescent shapes are the
definitions of Kabc’ Zbc in 7 composed with ®;,. The top and bottom
triangles commute by ([7.26)). In the interior of the figure, the three polygons with
sides involving M2, Mde M de commute by . The remaining four polygons

ab’ " aco
commute by Lemmal[7.37] and compatibility of horizontal and vertical composition.
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Thus Figure l commutes, which proves that K%, « idg,, = K§,, *ide,, on
Sf(de)(abc) Lemma now shows that K =K¢,. on S’f(de )(abe) -
As the Sf(de)(abc) for f € A cover Sd(abc) N Se(abc), Definition iii) and

eoremnl imply that = on Sg(abe) NOe(abe 1NCE |\ Od(abe €
Th 6.16/imply that K&, = K¢, on Sy(abe)NSe(abe)- Since { Sy )d A
h(

is an open cover of Im 1, N Im 1y, N Im )., Definition iii),(iv) and Theorem
show that there exists a unique 2-morphism K. over Im 1, NIm ¢, NIm 1),
such that Kabc"éd(abc) = K¢,.. Thus 1' commutes for all d € A, by definition

of Kgbc. This completes the proof. O

Putting a, a, b, a in place of a,b,c,d in (7.28]) and using €?,, (., identities by

(7.20), (7.27), and similarly putting a, b, b, b in place of a,b, ¢, d and using egb, Cop
identities, yields
Kaab = Kapp = id‘llab~ (729)

Lemma 7.41. For all a,b,c,d € A we have Kgeqg © (idy,, * Kape) = Kapa ©
(Kpeq *idw,,) : Weg 0 Wpe 0 Wop = Uyq over Imip, N Imhy, N Imep, N Imthy.

Proof. Let x € Imt, N Imepy N Imep. N Imepg. Definition k) with B =
{a,b,c,d} and this = gives e € A with 2 € S¢(qpcq). Consider the diagram

\Pcd © \Ilbc © \Ijab p \chd o \Ijac
ld\pcd *Kape
€ca*€pc¥€qp) €c xes
Caxeporeny) cd*€ac
id@edoé’ceoq)ec* .
c?edoq)ceo(?eco Cepxida, @edo?Ceo (€Caxeac)
cbbeoq)ebo@ae (I)ecoq)ae
. idcp *Ccc*id@
Kcaridy i ; “ “ Kae 7.30
‘ ot H}d%d *Gee*idg, 0@, 084, a ( )
(I)edO(Pbeo (I)edoqv)ae
fl)eboq)ae id‘I’ed*CEb*idé’ae i
€ba*€ab €,
(efaxeay) ™
Kabd
Wpg 0 Wap Vo

Here the four outer quadrilaterals commute by , and the inner rectangle
commutes by compatibility of horizontal and vertical multiplication. Thus
(7.30) commutes, and the outer rectangle shows that K,cq © (idw,, * Kape) =
Kapd © (Kpea * idy,, ) holds over S’e(abcd). Since the S’e(abcd) for all e € A cover
Im ¥, N Im ) N Im . N Imtpg, the lemma follows from Definition iii) and
Theorem O

The deﬁnitlon of the W, after Lemma- '7.39] Lemmas[7.40 and equations

and (7.29)), now imply that K = (4, (VmEa,I‘a,sa,wa)aeA, Wb, a,beAs

Kabe, a,b,cc4) is a Kuranishi structure on X in the sense of § so X = (X,K)
is a Kuranishi space with vdim X = n, as we have to prove.
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To give (Va, Ea,Ta, Sa, ¥a) the structure of a Kuranishi neighbourhood on
the Kuranishi space X in the sense of for a € A, note that as (V,, E,, Ty,
Sq, ) is already part of the Kuranishi structure IC, we can take ¥,; ;c4 and
Kqij, i,jea to be the implicit extra data @ jer, Aaij, i jer in Definition

To give ®up, : (Va, Ea,Lay Sa, Vo) = (Vi Ep, T, sp,1p) the structure of a
coordinate change over Sy, on the Kuranishi space X as in for a,b € A,
we need to specify implicit extra data Iop;, ica in place of Agpi, e in Definition
[6-43] where Iop; : Up; 0 @op = ¥y is a 2-morphism over Sy, NIm e, for all i € A
satisfying over Sg, NImep; NImep; for all ¢, € A, which becomes

Kaij ® (ld\y“ * Iabi) = Iabj ® (Kbij * id@ab) : \I/ij o \I/bi o (I)ab — \Ilaj- (731)

Since ®,, = idy, g, pméa,%) by we have U%, = &4, so the definition
of U, gives a 2- morphlsm €t Doy :> \Ilab over Sy, € Imep, NImapy. Define
Lovi = Kapi © (idw,, * (¢2,)71). Then ) follows from vertically composing
idy,;ow,, * (€%,)~! with Lemma |7 w1th 1,7 in place of ¢,d. This makes ®,
into a coordinate change over Sab on X, as we want.

Now let a,b,c € A. To show that Agpe : Ppe 0 Pup = Dy is the unique
2-morphism over Sy given by Theorem a), we must prove that as in ,
for all i € A, over Sgpe N Im); we have

Tovi ©® (Ibci * id‘bab) =I4ei ® (ldq;C7 * Aabc) W, 0Py 0P = Yy (732)

To prove ([7.32)), consider the diagram of 2-morphisms over Sgp. N Im ¥;:

Wi 0 Ppe 0 Dy U0 Pge

\ idw,,; *Aape=idw,, *Aabu /
idy,, *MbL *idg 1 ‘I’rzo‘f’ac*cab

ab \I/cz © (Dac © ¢ba o (Dab

idg
id\pci*égc*ﬁab
Mc*i/ ci © \I/ac
1 \Ilci*Kabc
U, 0oWp.0W, Laci (733)
Ibci*id<1>ab Kaci
Kbci*id‘l/ab
. \I/b' oW b
Labi

Wy 0 By o,

Here the bottom and rightmost triangles, and the leftmost quadrilateral, commute
by definition of I;;. The lower central quadrilateral commutes by Lemma [7.41
the upper central quadrilateral by 1) with d = a, the upper left triangle by
, and the topmost triangle by With b,c,b,a,a in place of a,b,c,d, e,
notlng that of the seven morphisms in , four are 1dent1tles in this cabbe7
so we omit them. Also we use Aabc| Supe = Aabc from Lemma |7 Thus
commutes, and the outer rectangle yields ([7.32)). Hence Agp. : CIDbC o Py = <I>aC
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is the unique 2-morphism over Sgp. given by Theorem a). This completes
the proof of the first part of Theorem [7.26]

It remains to show that X = (X,K) is unique up to equivalence in Kur.
To prove this, we have to consider where in the proof above we made arbitrary
choices, and show that if we made different choices yielding X' = (X, K’), then
X and X' are equivalent in Kur. There are two places in the construction of
X where we made arbitrary choices: firstly the choice after Lemma of a
quasi-inverse @y, for @,y and 2-morphisms Nabs Cab 1N (though in fact the
Nap were never used in the definition of X'), and secondly the choice after Lemma
of W,y and 2-morphisms €¢, satisfying (7.26]).

For the first, if @ga, Ny Chp are alternative choices for ébamab, Cap, for all
a,b € A, then there exist unique 2-morphisms gy, : Py = P}, such that

Cab = Clp © (tap *idg,,) for all a,b € A, (7.34)

and age = ididgy, g, 1, 0.0, LThen one can check that for the second choice we
can keep W4, unchanged and replace €, by

€6 = €5, ® (i, * (aqe)™t) for all a,b,c € A. (7.35)

USing "" to compare " for ébum Nab, Calh egb and (b;nw nébv Cclllﬁ 6;(/‘{;7

we find that the two occurrences of oy, and of ag cancel, so Kyp. is unchanged.
Thus, the family of possible outcomes for W,;, K45, and X are independent of
the first choice of ®p,, Nabs Cap for a,b € A.

Next, regard the @y, 1ap, Cap as fixed, and let !, €S be alternative possibil-

ities for Wy, €, in the second choice, and K/, . the corresponding 2-morphisms

in Lemma Then by Theorem and the last part of Definition v),
there are unique 2-morphisms B, : Uyp = U/, for all a,b € A, such that

€S = By @€y foralla,b,ce A (7.36)

Substituting (7.36) into (7.28]) for ¥/, €S K/, and comparing with (7.28) for

U op, €, Kape, we see that

Zzbc = /Bac © Kabc © (ﬂl;l * 5(1_b1)~
Define 1-morphisms f: X — X', g : X’ — X, in the notation of (6.18)), by
: b, bEA 1. bb, b,b' €A
£ = (idx, Yap, aea vea, Kaav)go!uarear Kavtr © (B *idw,, ). aen =)
b, bcA bb’, b,b'cA

g= (ian \I];b, a€A, beAs (K;a’b)aaQ a,a’ €A’ (K;bb’ © (ﬂbb/ * id\I/;b))a, acA )

One can check these satisfy Definition [6.19(a)—(h), and so are 1-morphisms of
Kuranishi spaces. Definition [6.22] now gives a 1-morphism of Kuranishi spaces
gof: X — X, and 2-morphisms of Kuranishi neighbourhoods for all a,b,c € A

0% . Ui oW, = (g0 f)ac

abe
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We claim that there is a unique 2-morphism @ = (@,. 4.cca) : gof = idx of
Kuranishi spaces such that for all a, b, ¢ € A the following diagram of 2-morphisms
of Kuranishi neighbourhoods over Im ¥, N Im ¢, N Im . commutes:

! oW U LY
ubc ) ab () “eidy, be © ¥ab ( |
001 Kbﬂ/ 7.37
Quclim wanim vy NIm e .
(g © .f)ac - -~ Voo = (ldX)ac~

To prove this, note that (7.37) determines g,. on the open subset Im v, N
Im v, N Im v, C Imep, N Imepe. Using (6.24)—(6.26) for the ©%7 and Lemma
for the Kgpe, we prove that these prescribed values for g,. agree on overlaps
between Im 1, N Im Y, NIm ). and Im p, NIm pp NIm 1), for all b, b’ € A. Thus,
as the Imvy, NImv, NIm,. for all b € A form an open cover of the correct
domain Im ), N Im1, for a,c € A, Theorem and Definition iii),(iv)
imply that there is a unique 2-morphism g,, : (g © f)ac = (idx)qc such that
commutes for all b € A.

We can then check that @ = (0, 4.cca) satisfies Definition a),(b), by
proving that they hold on the restriction of their domains with Im ¢, for each
b € A using 47.37I), (]6.24[%(]6.26[) for the @Zéﬁ and Lemma @ for the Kgpe,
and then using Theorem [6.16] and Definition [A.17(iii) to deduce that Definition
a),(b) hold on the correct domains. Therefore g : go f = idx is a 2-
morphism of Kuranishi spaces. Similarly, exchanging X, X’ we construct a
2-morphism o : fog = idxs. Hence f : X — X' is an equivalence, and X, X’
are equivalent in the 2-category Kur. This completes the proof of Theorem

219



Chapter 8

(M-)Kuranishi spaces as stacks
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Appendix A

Categories and 2-categories

We recall background material on categories, 2-categories, and sheaves and stacks
on topological spaces. Some references are MacLane |75] for §A.1} and Borceux
6, §7], Kelly and Street [67], and Behrend et al. |3, App. B] for §A.2] and
Bredon [10], Godement [40], and Hartshorne [43, §IL.1] for

A.1 Basics of category theory

Here are the basic definitions in category theory, as in MacLane |75, §I].

Definition A.1. A category C consists of a class of objects Obj(C), and for all
X,Y € Obj(C) a set Hom(X,Y') of morphisms f from X to Y, written f: X —
Y, and for all X, Y € Obj(C) a composition map o : Hom(X,Y) x Hom(Y, Z) —
Hom(X, Z), written (f,g) — go f. Composition must be associative, that
i, if f: W > X,g: X =Y andh:Y — Z are morphisms in C then
(hog)of =ho(go f). For each X € Obj(C) there must exist an identity
morphism idx : X — X such that foidy = f =idy o f forall f: X — Y in C.

A morphism f : X — Y is an isomorphism if there exists f~!:Y — X with
f~lof=idx and fo f~! =idy. A category C is called a groupoid if every
morphism is an isomorphism. In a groupoid C, for each X € Obj(C) the set
Hom(X, X) of morphisms f: X — X form a group.

A category C is small if Obj(C) is a set, rather than a proper class. It is
essentially small if the isomorphism classes Obj(C)/ = of objects in C form a
set, rather than a proper class.

If C is a category, the opposite category C°P is C with the directions of
all morphisms reversed. That is, we define Obj(C°?) = Obj(C), and for all
X,Y,Z € Obj(C) we define Homeer (X,Y) = Home (Y, X), and for f: X = Y,
g:Y — Z in C we define f ocor g = go¢ f, and ideor X = ide X.

Given categories C, D, the product category C x D has objects (W, X) in
Obj(C) x Obj(D) and morphisms f x g: (W, X) - (Y, Z) when f: W - Y isa
morphism in C and g : X — Z is a morphism in D, in the obvious way.

We call D a subcategory of C if Obj(D) C Obj(C), and Homp(X,Y) C
Home (X,Y) for all X,Y € Obj(D), and compositions and identities in C, D
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agree. We call D a full subcategory if also Homp(X,Y) = Hom¢ (X,Y) for all
X,Y in Obj(D).

Definition A.2. Let C, D be categories. A (covariant) functor F : C — D gives,
for all objects X in C an object F(X) in D, and for all morphisms f: X —Y
in C a morphism F(f) : F(X) — F(Y) in D, such that F(go f) = F(g) o F(f)
forall f: X =Y,g:Y — ZinC, and F(idx) = idp(x) for all X € Obj(C). A
contravariant functor F : C — D is a covariant functor F : C°P — D.

Functors compose in the obvious way. Each category C has an obvious identity
functor ide : C — C with ide(X) = X and ide(f) = f for all X, f. A functor F :
C — D is called full if the maps Home(X,Y) — Homp (F(X), F(Y)), f — F(f)
are surjective for all X, Y € Obj(C), and faithful if the maps Home(X,Y) —
Homp (F(X), F(Y)) are injective for all X,Y € Obj(C).

Let C, D be categories and F,G : C — D be functors. A natural transforma-
tion n: F = G gives, for all objects X in C, a morphism n(X) : F(X) — G(X)
in D such that if f: X — Y is a morphism in C then n(Y") o F(f) = G(f) on(X)
as morphisms F(X) — G(Y) in D. We call n a natural isomorphism if n(X) is
an isomorphism for all X € Obj(C).

A functor F' : C — D is called an equivalence if there exist a functor G : D — C
and natural isomorphisms 7 : Go F = id¢ and ( : F o G = idp. Then we call
C, D equivalent categories.

It is a fundamental principle of category theory that equivalent categories
C, D should be thought of as being ‘the same’, and naturally isomorphic functors
F,G : C — D should be thought of as being ‘the same’. Note that equivalence of
categories C, D is much weaker than strict isomorphism: isomorphism classes of
objects in C are naturally in bijection with isomorphism classes of objects in D,
but there need be no relation between the sizes of the isomorphism classes, so
that C could have many more objects than D, for instance.

Definition A.3. Let C be a category, and g : X — Z, h: Y — Z be morphisms
in C. A fibre product of g,h in C is an object W and morphisms e : W — X
and f: W — Y in C, such that goe = ho f, with the universal property that
ife/ : W — X and f' : W — Y are morphisms in C with goe’ = ho f’ then
there is a unique morphism b : W/ — W with ¢/ =eob and f' = f ob. Then we
write W =X Xg 2z, Y or W =X xzY,and e =7x, f = my. The diagram

W Y
le 74 (A1)
X ! Z

is called a Cartesian square. Fibre products need not exist, but if they do exist
they are unique up to canonical isomorphism in C.
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A.2 Strict and weak 2-categories

Definition A.4. A strict 2-category C consists of a class of objects Obj(C),
for all X,Y € Obj(C) an essentially small category Hom(X,Y), for all X,Y,Z
in Obj(C) a functor px v,z : Hom(X,Y) x Hom(Y, Z) — Hom(X, Z) called
composition, and for all X in Obj(C) an object idx in Hom (X, X) called the
identity 1-morphism. These must satisfy the associativity property, that

pw,y,z © (tw,x,y X idHom(v,2)) = tw,x,z © (ldHom(w,x) X pxv,z) (A.2)

as functors Hom(W, X) x Hom(X,Y) x Hom(Y, Z) — Hom(W, X), and the
identity property, that

px,xy(dx, =) = px,v,y (=, idy) = idaom(x,v) (A.3)

as functors Hom(X,Y) — Hom(X,Y).

Objects f of Hom(X,Y) are called 1-morphisms, written f : X — Y. For
I-morphisms f,g : X — Y, morphisms 7 in Hompgom(x,v)(f, ) are called 2-
morphisms, written n : f = g. Thus, a 2-category has objects X, and two
kinds of morphisms: 1-morphisms f : X — Y between objects, and 2-morphisms
7 : f = g between 1-morphisms.

A weak 2-category, or bicategory, is like a strict 2-category, except that
the equations of functors , are required to hold only up to spec-
ified natural isomorphisms. That is, a weak 2-category C consists of data
Obj(C),Hom(X,Y), ux v,z,idx as above, but in place of , a natural iso-
morphism of functors

a: pw,y,zo(w,x,y XidHom(y,2)) = #w,x,7z° (idHom(w,x) X ix,v,z), (A.4)

and in place of (A.3]), natural isomorphisms

B px x,y(idx, =) =idHom(x,v), 7 :#xy,y(— idy)= idHom(x,v).- (A.5)

These «, 8, must satisfy identities which we give below in (A.9) and (A.12).
A strict 2-category C can be regarded as an example of a weak 2-category, in
which the natural isomorphisms «a, 8,7 in (A.4)—(A.5) are the identities.

We now unpack Definition making it more explicit.

There are three kinds of composition in a 2-category, satisfying various
associativity relations. If f : X — Y and g : Y — Z are 1-morphisms then
wx,v,z(f,g) is the composition of 1-morphisms, written go f : X — Z. If
fy9,h: X — Y are l-morphisms and n: f = ¢, ( : ¢ = h are 2-morphisms then
composition of 7,  in Hom(X,Y') gives the vertical composition of 2-morphisms,
written ( © 7 : f = h, as a diagram

f
f
/U”\* — | .=
— ' .y i X JeonY.
-~ Vs

Nl 7 7
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Vertical composition is associative. '

Iff,f: X —>Yandg,g:Y — Z are l-morphisms and n: f= f,(:9=¢
are 2-morphisms then px y,z (7, ¢) is the horizontal composition of 2-morphisms,
written (xnp:gof = go f, as a diagram

f g gof
X7 In Sy ¢ Nz o X~ Yo Z
f g gof

As uxy,z is a functor, these satisfy compatibility of vertical and horizontal
composition: given a diagram of 1- and 2-morphisms
f g
! y ¢ Z

f g

X

we have

COQ*Mon) =(C*n)o((xn):gof=gof (A.6)
There are also two kinds of identity: identity 1-morphisms idy : X — X and
identity 2-morphisms idy : f = f.

In a strict 2-category C, composition of 1-morphisms is strictly associative,
(go f)oe=go(foe), and horizontal composition of 2-morphisms is strictly
associative, (( *n) * e = ( * (n*¢). In a weak 2-category C, composition of
1-morphisms is associative up to specified 2-isomorphisms. That is, ife : W — X,
f: X =Y, ¢g:Y — Z are l-morphisms in C then the natural isomorphism « in
(A.4)) gives a 2-isomorphism

agfei(gofloe=go(foe). (A.7)

As « is a natural isomorphism, given 1-morphisms e, é: W — X, f,f X =Y,
g9,0:Y — Z and 2-morphisms e: e = é,n: f = f, (: g = ¢ in C, the following
diagram of 2-morphisms must commute:

(9o f)oe go(foe)
Jecemrne o (o)) (A.8)
(§of)oé = go(foe).

The a4, ¢, must satisfy the associativity coherence axiom: if d: V — W is
another 1-morphism, then the following diagram of 2-morphisms must commute:

((gof)oe)od=——=>(go(foe)) od=—=>go((foc)0d)
M/agof,e,d o idg*af,e‘dU/ (Ag)
(go f)o(eod) go(fol(eod).

In a strict 2-category C, given a l-morphism f : X — Y, the identity 1-
morphisms idx,idy satisfy foidx =idy o f = f. In a weak 2-category C, the
natural isomorphisms 3, in (A.5)) give 2-isomorphisms

BflfOidX:>f, ’thidyOfZ}f. (AlO)

Qg, f,doe
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As 3,7 are natural isomorphisms, if 7 : f = f is a 2-morphism we must have
neBs=P;o (nxidiay) : foidx = f,

. . . (A.11)
Oy =7 O (idiay *n) sidy o f = f.

The B¢, vy must satisfy the identity coherence axiom: if g : Y — Z is another
1l-morphism, then the following diagram of 2-morphisms must commute:

(goidy)o f Bg*id g
U%,idy,f gof. (A.12)
go (idy o f) idg*ys

A 2-category C is called a (2, 1)-category if all 2-morphisms in C are invertible
under vertical composition.

A basic example of a strict 2-category is the 2-category of categories €at, with
objects small categories C, 1-morphisms functors F' : C — D, and 2-morphisms
natural transformations n : F = G for functors F,G : C — D. Orbifolds
naturally form a 2-category (strict or weak, depending on the definition), and so
do stacks in algebraic geometry.

In a 2-category C, there are three notions of when objects X,Y in C are
‘the same’: equality X =Y, and 1-isomorphism, that is we have 1-morphisms
f: X =Y ¢g:Y — X withgof=idx and fog = idy, and equivalence, that is,
we have 1-morphisms f: X — Y, ¢g:Y — X and 2-isomorphisms n : go f = idx
and ¢ : f og = idy. Usually equivalence is the correct notion. By [3, Prop. B.8],
we can also choose 7, ¢ to satisfy some extra identities:

Proposition A.5. Let C be a weak 2-category, and f: X — Y be an equivalence
in C. Then there exist a 1-morphism g :Y — X and 2-isomorphisms n: go f =
idx and ¢ : fog = idy with ( *xidy = (idf *n) © as4,f as 2-isomorphisms
(fog)of=f, and nxid, = (idg * () © ag,s,4 as 2-isomorphisms (go f)og = g.

The next elementary lemma about 2-categories is easy to prove.

Lemma A.6. Suppose f : X — Y and g,h :' Y — Z are 1-morphisms in a
(strict or weak) 2-category C, with f an equivalence. Then the map n — nxid; = ¢
induces a 1-1 correspondence between 2-morphisms 1 : g = h and 2-morphisms
(:gof=hofinC.

Definition A.7. Let C be a 2-category. When we say that objects X,Y in C are
canonically equivalent, we mean that there is a nonempty distinguished class £
of equivalences f : X — Y in C, and given any f, g in £ there is a 2-isomorphism
7 : f = g. Often there is a distinguished choice of such 7.

When we say that an object X in C is unique up to canonical equivalence, we
mean that there is a nonempty class O of distinguished choices X, X', X" ... for
X, and given any X, X’ in O there is a nonempty distinguished class £x x of
equivalences f: X — X', and given any f, g in £x, x there is a 2-isomorphism
n: f = g,such that idy : X — X liesin £x x, and if f : X — X' liesin Ex x-
and f/ : X' = X" in EX/,X” then f/ o f : X = X" lies in (c,'X’X//.
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Commutative diagrams in 2-categories should in general only commute up
to (specified) 2-isomorphisms, rather than strictly. A simple example of a
commutative diagram in a 2-category C is

X / j}?&* z,

which means that X, Y, Z are objectsof C, f : X - Y, g:Y - Zandh: X — Z
are 1-morphisms in C, and 7 : g o f = h is a 2-isomorphism.

Let C be a 2-category. The homotopy category Ho(C) of C is the category
whose objects are objects of C, and whose morphisms [f] : X — Y are 2-
isomorphism classes [f] of 1-morphisms f : X — Y in C. The condition in
Deﬁnitionthat Hom(X,Y) is essentially small ensures that Homy, ey (X, Y")
is a set, rather than a proper class. Then equivalences in C become isomorphisms
in Ho(C), 2-commutative diagrams in C become commutative diagrams in Ho(C),
and so on.

A.3 2-functors, 2-natural transformations, modifications

Next we discuss 2-functors between 2-categories, following Borceux [6}, §7.2, §7.5]
and Behrend et al. (3| §B.4].

Definition A.8. Let C, D be strict 2-categories. A strict 2-functor F : C — D
assigns an object F(X) in D for each object X in C, a l-morphism F(f) :
F(X) — F(Y) in D for each 1-morphism f: X — Y in C, and a 2-morphism
F(n) : F(f) = F(g) in D for each 2-morphism n : f = ¢ in C, such that F'
preserves all the structures on C, D, that is,

F(go f)=F(g)o F(f), F(idx)=idpx), F((*n)=F()*F(n), (A.13)
F(C@T])ZF(C)@F(T]), F(idf)ZidF(f). (A.14)

Now let C, D be weak 2-categories. Then strict 2-functors F' : C — D are not
well-behaved. To fix this, we need to relax to hold only up to specified 2-
isomorphisms. A weak 2-functor (or pseudofunctor) F : C — D assigns an object
F(X) in D for each object X in C, a 1-morphism F(f) : F(X) — F(Y) in D for
each 1-morphism f: X — Y in C, a 2-morphism F(n) : F(f) = F(g) in D for
each 2-morphism 1 : f = g in C, a 2-isomorphism F, ;: F'(g) o F(f) = F(go f)
in D for all 1-morphisms f: X — Y, ¢g:Y — Z in C, and a 2-isomorphism
Fx : F(idx) = idp(x) in D for all objects X in C, such that (A.14) holds,
and foralle: W — X, f: X - Y, g:Y — Z in C the following diagram of
2-isomorphisms commutes in D:

(F(g) o F(f)) o F(e) F(go f)oF(e) =F———=="F((go f)oe)

Fy,5xidp(e) Foore
ﬂang),F(n,F(e) . F(D‘g,f,e)ﬂ/
idp(g)*Fy,e Fy. foe
F(g)o(F(f)oF(e)) =———=F(g9)o F(foe)=—————=F(go(foe)),
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and for all 1-morphisms f: X — Y in C, the following commute in D:

F(f)oF(idx)?F(foidx) F(idy)oF(f)F:df>F(idyof)
,id x idy~,

dpn*Fx F(By) Fy xidp(p) F(vs)
ﬂ Brs) ﬂ U YF(f) ﬂ

F(f)oidp(x) F(f), idpryo F(f) F(f),

andiff,f:X%Yandg,g:Y%Zare 1—morphismsandn:féf.,C:g:>g
are 2-morphisms in C then the following commutes in D:

F(g)o F(f) Y F(go f)
[JF@=rm . Fcem)|
F(§) o F(f) Fjo f).

There are obvious notions of composition G o F' of strict and weak 2-functors
F:C—D,G:D— &, identity 2-functors ide, and so on.

If C, D are strict 2-categories, then a strict 2-functor F' : C — D can be
made into a weak 2-functor by taking all F, ¢, F'x to be identity 2-morphisms.

Here is the 2-category analogue of natural transformations of functors:

Definition A.9. Let C,D be weak 2-categories and F,G : C — D be weak
2-functors. A weak 2-natural transformation (or pseudo-natural transformation)
© : F = G assigns a 1-morphism ©(X) : F(X) — G(X) in D for all objects
X in € and a 2-isomorphism O(f) : O(Y) o F(f) = G(f) c ©(X) in D for all
l-morphisms f: X — Y in C, such that if n: f = ¢ is a 2-morphism in C then

(G(n) xide(x)) © O(f) = O(9) © (ide(y) * F(n)) :
O(Y)o F(f) — G(g) 0 O(X),

andif f: X =Y, ¢g:Y — Z are 1-morphisms in C then the following diagram
of 2-isomorphisms commutes in D:

(©(2) 0 F(g)) o F(f) == O(Z) o (F(g) o F(f)) === 0(2) o (F(g o [))

@ id *Fy ¢
ﬂe(g)*idﬂﬂ ©(2).F(g),F(f) o(z2)*Fq,r (—)(gof)ﬂ
(G(g) o O(Y)) o F(f) G(go f)oO(X)
\U/QG(Q),(—)(Y)-,F(f) ide()*©(f) a(_;(lg),G(f),e(X) Gg,f*id(—)(x)ﬂ

G(g) o (B(Y) o F(f)) = G(g) o (G(f) 0 O(X)) = (G(g) o G([)) 0 O(X)),
and if X € C then the following diagram of 2-isomorphisms commutes in D:

@(X) o F(ldx) S G(ldx) o @(X) _
O(idx) Gx xidg(x)
\M]id@(x)*Fx

G(X) o) ldF(X)

idg(X) o @(X)

’Y(—)(x)\u/

Be(x) @(X)
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Just as the ‘category of (small) categories’ is actually a (strict) 2-category, so
the ‘category of (weak) 2-categories’ is actually a 3-category (which we will not
define). The 3-morphisms in this 3-category, morphisms between weak 2-natural
transformations, are called modifications.

Definition A.10. Let C,D be weak 2-categories, F,G : C — D be weak 2-
functors, and ©,® : F' = G be weak 2-natural transformations. A modification
N: F = @ assigns a 2-isomorphism R(X) : ©(X) = ®&(X) in D for all objects
X in C, such that for all 1-morphisms f: X — Y in C we have

(ida(p *R(X)) ©O(f) = (f) © (R(Y) *idp(y)) :
O(Y)o F(f) = ®(X) o G(Y).

There are obvious notions of composition of modifications, identity modifications,
and so on.

A weak 2-natural transformation © : F = G is called an equivalence of
2-functors if there exist a weak 2-natural transformation ® : G = F and
modifications N : 00 = idp and J: © o ® = idg. Equivalence of 2-functors is
a good notion of when weak 2-functors F, G : C — D are ‘the same’.

A weak 2-functor F': C — D is called an equivalence of weak 2-categories
if there exists a weak 2-functor G : D — C and equivalences of 2-functors
©:GoF =ide, ®: FoG = idp. Equivalence of weak 2-categories is a good
notion of when weak 2-categories C, D are ‘the same’.

Here are some well-known facts about 2-categories:

(i) Every weak 2-category C is equivalent as a weak 2-category to a strict
2-category C’, that is, weak 2-categories can always be strictified.

(ii) If C, D are strict 2-categories, and F': C — D is a weak 2-functor, it may
not be true that F' is equivalent to a strict 2-functor F’ : C — D (though
this does hold if D = Cat, the strict 2-category of categories). That is,
weak 2-functors cannot necessarily be strictified.

Even if one is working with strict 2-categories, weak 2-functors are often
the correct notion of functor between them.

(iii) A weak 2-functor F': C — D is an equivalence of weak 2-categories, as in

Definition if and only if for all objects X,Y in C, the functor Fx y :
Hom¢(X,Y) = Homp(F(X), F(Y)) is an equivalence of categories, and
the map induced by F' from equivalence classes of objects in C to equivalence
classes of objects in D is surjective (and hence a bijection).

A.4 Fibre products in 2-categories

Fibre products in ordinary categories were defined in Definition [A73] We now
define fibre products in 2-categories, following Behrend et al. |3, Def. B.13].
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Definition A.11. Let C be a strict 2-category and g : X — Z, h: Y — Z be
1-morphisms in C. A fibre product in C consists of an object W, 1-morphisms
e:W —= X and f: W — Y and a 2-isomorphism n: goe = ho f in C, so that
we have a 2-commutative diagram

Y
be g ny (A.15)
X J A

with the following universal property: suppose ¢/ : W’ — X and f' : W/ — Y are
1-morphisms and 7' : goe’ = ho f’ is a 2-isomorphism in C. Then there should
exist a 1-morphism b : W’ — W and 2-isomorphisms ¢ : eob=-¢€', 0 : fob= f’
such that the following diagram of 2-isomorphisms commutes:

goeob _ hofob

nxidy
\U/idg*q / idh*G\U/ (A.16)
goe ! ho f'.

Furthermore, if b, , 0 are alternative choices of b, ¢, then there should exist a
unique 2-isomorphism € : b = b with

CZE@(ide*e) and 9:§®(idf*e).

We call such a fibre product diagram a 2-Cartesian square. We often
write W =X xzY or W =X x4 z5,Y, and call W the fibre product.

If a fibre product X Xz Y in C exists then it is unique up to canonical
equivalence in C. If C is an ordinary category, that is, all 2-morphisms are
identities ids : f = f, this definition of fibre products in C is equivalent to that
in Definition [A.3]

If instead C is a weak 2-category, we must replace by

(90€) 0 bmmmm> (0 f) 0 b == h0 (f 0 1)

ﬂag,e,b N / idh,*eﬂ (A.17)
go(eob)%goe' !

Orbifolds, and stacks in algebraic geometry, form 2-categories, and Definition
is the right way to define fibre products of orbifolds or stacks.

A.5 Sheaves on topological spaces

Next we discuss sheaves. These are a fundamental tool in Algebraic Geometry,
as in Hartshorne 43| §I1.1], for instance. Although Differential Geometers may
not be familiar with sheaves, nonetheless they are everywhere in Differential
Geometry, and one uses properties of sheaves all the time without noticing.
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For something to be a sheaf on a space X just means that it is defined locally
on X. For example, if X is a manifold then smooth functions f : X — R form a
sheaf Ox of R-algebras on X, since the condition that a function f: X — R is
smooth is a local condition near each x € X. Some good references on sheaves
are Bredon [10], Godement [40], and Hartshorne (43, §II.1].

Definition A.12. Let X be a topological space. A presheaf of sets £ on
X counsists of the data of a set £(5) for every open set S C X, and a map
pst : E(S) = E(T) called the restriction map for every inclusion T'C S C X of
open sets, satisfying the conditions that:

(i) £(P) = = is a point.
(i) pss =idg(g) : E(S) — E(S) for all open S C X; and
(iii) psu = pruopsr : E(S) = EU) for all open U CT C S C X.

A presheaf of sets £ on X is called a sheaf if it also satisfies

(iv) If S € X is open, {T, : a € A} is an open cover of S, and s,t € £(S) have
pst, (s) = pst, (t) in E(T,) for all a € A, then s = ¢ in £(S); and

(v) If S C X is open, {T, : a € A} is an open cover of S, and we are given
elements s, € £(T,) for all a € A such that pr, (1,n1,)(5a) = P1, (T2 NT,) (56)
in E(T, NTp) for all a,b € A, then there exists s € £(S) with pgr, (s) = sq
for all @ € A. This s is unique by (iv).

Suppose &, F are presheaves or sheaves of sets on X. A morphism ¢ : &€ — F
consists of a map ¢(S) : £(S) — F(S) for all open S C X, such that the following
diagram commutes for all open T C S C X

E(8) ———— F(5)
l/PST o) pfS‘T \L
&(T) F(T),

where pgr is the restriction map for £, and pyp the restriction map for F.

We have defined sheaves of sets, but one can also define sheaves of abelian
groups, rings, modules, ..., by replacing sets by abelian groups, ..., throughout.

If € is a sheaf of sets, abelian groups,... on X then we write I'(€) for £(X),
the global sections of £, as a set, abelian group, . ...

Definition A.13. Let £ be a presheaf of sets on X. For each = € X, the stalk
& is the direct limit of the sets £(U) for all x € U C X, via the restriction maps
puv- A morphism ¢ : £ — F induces morphisms ¢, : £, — F, for all x € X. If
&, F are sheaves then ¢ is an isomorphism if and only if ¢, is an isomorphism
for all z € X.
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Definition A.14. Let £ be a presheaf of sets on X. A sheafification of £ is
a sheaf of sets & on X and a morphism of presheaves w : £ — 5 such that
whenever F is a sheaf of sets on X and ¢ : £ — F is a HlOI‘phlSIn there is
a unique morphism ¢ : & — F with ¢ = dom. Asin [43) Prop. 11.1.2], a
sheafification always exists, and is unique up to canonical isomorphism; one can
be constructed explicitly using the stalks £, of £.

Next we discuss pushforwards and pullbacks of sheaves by continuous maps.

Definition A.15. Let f: X — Y be a continuous map of topological spaces,
and & a sheaf of sets on X. Define the pushforward (direct image) sheaf f.(&)
on Y by (f.(€))(U) = E(f71(U)) for all open U C V, with restriction maps
Py = pr-1@y -1 vyt (f«(€))(U) = (f«(€)) (V) for all open V C U C Y. Then
f+(&) is a sheaf of sets on Y.

If ¢ : £ — F is a morphism of sheaves we define a morphism f,(¢) : f.(£) —
f+(F) of sheaves on Y by (f.(¢))(u) = ¢(f~1(U)) for all open U C Y. For
continuous maps f: X =Y, g:Y — Z we have (go f)« = g« © fy.

Definition A.16. Let f: X — Y be a continuous map of topological spaces,
and & a sheaf of sets on Y. Define a presheaf P f~(€) on X by (Pf~(€))(U) =
lim 45 ¢y E(A) for open A C X, where the direct limit is taken over all open
ACY containing f), using the restriction maps pap in €. For open V C
U C X, define pjy, : (Pf7HE))(U) = (Pf7H(E)) (V) as the direct limit of the
morphlsrns pap in € for BC A CY with f(U) C A and f(V) C B. Then
we define the pullback (inverse image) f~1(€) to be the sheafification of the
presheaf Pf~1(£). It is unique up to canonical isomorphism.

If ¢ : &€ — F is a morphism of sheaves on Y, one can define a pullback
morphism f~1(¢) : f71(E) — f~1(F) of sheaves on X. As in |43, Ex. I1.1.18],
pushforward £, is right adjoint to f~'. That is, there are natural bijections

Homy (f~'(€),F) = Homy (€, f.(F)) (A.18)

for all sheaves £ on Y and F on X, with functorial properties.

A.6 Stacks on topological spaces

In §AF| we explained sheaves on topological spaces. We will also need a 2-category
analogue of sheaves, called stacks on a topological space.

Definition A.17. Let X be a topological space. A prestack (or prestack in
groupoids, or 2-presheaf) € on X, consists of the data of a groupoid £(S) for
every open set S C X, and a functor pgp : £(S) — E(T) called the restriction
map for every inclusion T' C S C X of open sets, and a natural isomorphism
of functors sy : pru © psT = psy for all inclusions U CT C S C X of open
sets, satisfying the conditions that:

(i) pss =idggs) : E(S) — E(S) forallopen S C X, and nsst = nsrr = id,psy
for all open T'C S C X; and
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(i)

nsuy © (id,y, * nstv) = Nstv © (Nruv * idPST) S PUVOPTU O PST = PSV
forallopen VCU CT CSC X.

A prestack € on X is called a stack (or stack in groupoids, or 2-sheaf) on X
if whenever S C X is open and {T, : a € A} is an open cover of S, and we write

Tab =

(iii)
(iv)

ToNTy and Tope =T, NIy NT, for a,b,c € A, then:
If ¢, : E — F are morphisms in £(S) and pgr, (€) = pst,(C) : pst, (E) —
pst, (F) in E(T,) for all @ € A, then e = (.

If E, F are objects of £(S) and €, : pst, (F) = psr, (F) are morphisms in
E(T,) for all a € A with

577wy (F) © p1,7,4 (€a) © N57, 1, (B)

= Ns1yTus (F) © p1y 100 (€6) © 57,13, (B)

in &(Ty) for all a,b € A, then there exists € : E — F in £(S) (necessarily
unique by (iii)) with pgr, (€) = ¢, for all a € A.

If E, € E(Ty) for a € A and €y : pr,1,,(Ea) = p1y7,, (Eb) are morphisms
in £(T,p) for all a,b € A satisfying

NTeTycTabe (EC) O PTypcTape (ebc) O NT, Ty Tabe (Eb)_l
ONTyTapTape (Eb) O PTopTabe (Gab) ONToTopTape (Ea)il

= 01T Ture (Be) © PTouTuse (€ac) © NTuTouTope (Ba) ™

for all a,b,c € A, then there exist an object E in £(S) and morphisms
Co: Eq = psT, (E) for a € A such that for all a,b € A we have

NST,Tor, (E) © p1,7,,(Ca) = 51,7, (E) © p13,7,, (Cb) © Earp-

If E,(, are alternative choices then (iii),(iv) imply there is a unique
isomorphism 6 : E — E in £(S) with pgr, (0) = (,0(; ! for all a € A.

Remark A.18. (a) Actually the term ‘stack’ is used in Algebraic Geometry
with a more general meaning, namely ‘stack on a site’, as in Olsson [93] for
instance. Here a ‘site’ S is a generalization of a topological space. When § is
the site of open subsets of a topological space X with the usual open covers, we
recover Definition When S is the site Schi of schemes over a field K with
the étale or smooth topology, we obtain Deligne-Mumford or Artin K-stacks in
Algebraic Geometry. There are several equivalent ways to define stacks; we have
chosen the definition which most obviously generalizes sheaves in

(b) In the examples of stacks on topological spaces that will be important to us,
we will have pry o psT = psy and nery = id,g, for allopen U CT C S C X.
So (ii) is automatic, and all the n...(---) terms in (iv),(v) can be omitted.
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Appendix B

Differential geometry in Man and
Man*

Suppose for the whole of that Man satisfies Assumptions [3.1H3.7
in Using the assumptions, we will define some notation and prove some
results on differential geometry in Man. This is standard material for classical
manifolds Man, the main point is that it also works for any category Man
satisfying Assumptions [3.1}3.7 In §B.7] we explain how to compare differential
geometry in two categories Man, Man satisfying Assumptions related
by a functor F M:: : Man — Man. Sections are summarized in &

Section @l\gxplains how to extend §B.1}-4B.7[to a category of manifolds with
corners Man® satisfying Assumption in 3‘. It is summarized in
Section proves Theorem [3.17]

B.1 Functions on manifolds, and the structure sheaf

B.1.1 The R-algebra C*>(X)

Definition B.1. For each X € Man, write C*°(X) for the set of morphisms
a: X — R in Man. Faithfulness of F;I‘:; in Assumption a) implies that
we may identify C°°(X) with a subset of the set C°(Xi,p,) of continuous maps
Qtop * Xtop — R. We will show that C*°(X) has a natural commutative R-algebra
structure, a subalgebra of the obvious R-algebra structure on C%(Xop).

Given a,b € C*°(X) and A € R we define a +b,a-b, A -a € C*(X) and the
elements 0,1 € C°°(X) by the following commutative diagrams in Man:

X 7 X— >R, X R,
Az

a+b a-b A-a
(‘% RZ %)Hiﬂr@/ (c% R2 %)sz N R /;m_>



Here (x,y) +— = +y and (z,y) — 2y mapping R®> — R are morphisms in
Man C Man, and similarly for z — Az and 0,1 : * — R. The map 7 : X — *
is as in Assumption c).

One can now show that these operations make C'*°(X) into a commutative
R-algebra by straightforward diagram-chasing. For example, to show that
multiplication is associative, consider the commutative diagram:

5 (@y)(ey2)

2
(a,b,c) R/ R (z,y)—zy
X R.
(a,b,c) RS RZ (z,y)—ay

(z,y,2)—~(z,y2)

If f: X — Y is a morphism in Man, define f* : C®°(Y) — C>®(X) by
J*tawrao f. Then f is an R-algebra morphism. If g : ¥ — Z is another
morphism in Man then (go f)* = f* o g* : C®(Z) — C>(X).

B.1.2 Making C*(X) into a C*°-ring

The subject of C*°-algebraic geometry treats differential-geometric problems
using the machinery of algebraic geometry, including sheaves, schemes and stacks.
Some references are the author [56} |65] and Dubuc [13]. A key idea is C'*°-rings,
which are a generalization of R-algebras with a richer algebraic structure, such
that if X is a smooth manifold then C'°*°(X) is naturally a C*°-ring.

Definition B.2. A C*°-ring is a set € together with operations

™ n copies

Pp:C"=Cx--xC—C

for all n > 0 and smooth maps f : R™ — R, where by convention when n = 0 we
define € to be the single point {§#}. These operations must satisfy the following
relations: suppose m,n >0, and f; : R" - Rfori=1,...,mand g: R™ - R
are smooth functions. Define a smooth function i : R™ — R by

h(:rla"'axn) :g(fl(zla"'7xn)7"'7fm(xl'--7xn))7

for all (x1,...,2,) € R". Then for all (ci,...,c,) € €" we have

Dp(cry...,cn) = <I>g(<I>f1(cl7...7cn),...7Q>fm(cl,...,cn)).

We also require that for all 1 < j < n, defining 7; : R — R by 7, :
(x1,...,2y) — x;, we have ®r (c1,...,c,) = ¢; for all (c1,...,¢,) € C".
Usually we refer to € as the C*-ring, leaving the operations O implicit.
A morphism between C°-rings (Q, (D) pre R Coo), (@, (Uf) prr SR Coc)
is a map ¢ : € — D such that Wy (d(c1),...,0(cn)) = ¢ o Py(cy,...,cp) for
all smooth f : R” — R and cy,...,c, € €. We will write C*°Rings for the
category of C*°-rings. As in |65, §2.2], every C'*°-ring € has the structure of a
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commutative R-algebra, in which addition and multiplication are the C'*°-ring
operations @ ¢, @, for f,g: R — R mapping f(z,y) = = +y and g(z,y) = zy.
A module M over a C*°-ring € is a module over € as an R-algebra.

As in |13} 56} |65], in C'*°-algebraic geometry one studies C'*°-schemes and
C*°-stacks, which are versions of schemes and stacks in Algebraic Geometry in
which rings are replaced by C*°-rings. C'°°-algebraic geometry has been used
as the basis for Derived Differential Geometry, the study of ‘derived smooth
manifolds’ and ‘derived smooth orbifolds’, by defining derived manifolds (or
orbifolds) to be special examples of ‘derived C'*°-schemes’ or ‘derived Deligne—
Mumford C*°-stacks’. See Spivak [103], Borisov and Noel |7} [8] and the author
[57, 58, 61] for different notions of derived manifolds and derived orbifolds.

Our Kuranishi spaces are an alternative approach to Derived Differential
Geometry, and the 2-categories mKur, Kur of (m-)Kuranishi spaces defined in
Chapters (4| and |§| using Man = Man are equivalent to the 2-categories dMan,
dOrb of ‘d-manifolds’ and ‘d-orbifolds’ defined in [57, |58} [61] using C'*°-algebraic
geometry.

Definition B.3. Let X € Man, and C*(X) be as in Then we can give
C°(X) the structure of a C*°-ring, such that if f : R™ — R is smooth (and hence
a morphism in Man) and ay, ..., a, € C®(X) then ®f(ay,...,a,) € C°(X) is
defined by the commutative diagram in Man:

X R.

\@f(al,.“,an)/’
(a,..., an) R™ f

The method of proof in §B.1.1|that C*°(X) is an R-algebra now also shows that
C*(X) is a C*-ring. The associated R-algebra structure is that in §B.1.1]

B.1.3 The structure sheaf Ox

Definition B.4. Let X € Man. Then for each open U’ C Xtop, Assumption
d) gives a unique open submanifold i : U < X with é40p(Usop) = U’. Set
Ox(U") = C>(U), where C>(U) is regarded either as an R-algebra as in
or as a C*°-ring as in §B.1.2]

For open V' C U’ C Xy, we have open submanifolds i : U < X, j: V — X
with Ox (U’) = C>®(U) and Ox (V') = C>(V). Since Viop C Usop Assumption
d) gives a unique k : V — U in Man with io k = j:V — X. Define
puv : Ox(U') = Ox (V') by pyrv tar—aok, fora:U — Rin Man.

It is now easy to check that pys v is a morphism of R-algebras, and of C'°°-
rings, and so the data Ox (U’), pyrv+ defines a sheaf of R-algebras or C*°-rings
Ox on Xiop, as in Definition i)=(v), where the sheaf axiom (iv) follows
from faithfulness in Assumptia), and (v) from Assumption [3.3(a). We
call Ox the structure sheaf of X.

If f: X — Y is a morphism in Man, then (fiop)«(Ox) and Oy are sheaves
of R-algebras or C*°-rings on Y. Define a morphism f; : Oy — (fiop)«(Ox) of
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sheaves of R-algebras or C'*°-rings on Y;, as follows. Let j : V <= Y be an open
submanifold, and ¢ : U < X the open submanifold with Usop = ft;;(VtOp) -
Xiop, and f' : U — V the unique morphism with jo f' = foi: U — Y from
Assumption [3.2{(d). Set

fiViop) = [ : Oy (Viop) = C*(V) — C*(U) = Ox (Urop)

B (B.1)
= Ox(ftop(vtop)) = (ftOp)*(OX)(VtOP)'

These f;(Viop) for all open j : V — Y form a sheaf morphism f; : Oy —
(fiop)«(Ox). Let f¥: ftf)é(Oy) — Ox be the adjoint morphism of sheaves of
R-algebras or C*°-rings on X under . Then (ftop,fﬁ) ¢ (Xtop, Ox) —
(Yiop, Oy ) is a morphism of locally ringed spaces, or locally C*°-ringed spaces.

Now results in [65, §4.8] give sufficient criteria for when a locally C*°-ringed
space (X, Oy) is an affine C*-scheme, and Assumptions [3.2b) and imply
that these criteria hold. We then easily deduce:

Proposition B.5. (a) Let X be an object of Man, so that Xiop 15 a topological
space and Ox a sheaf of C™-rings on Xiop. Then (Xiop, Ox) is an affine C°-
scheme in the sense of [13|[56, [65].

(b) Let f: X — Y be a morphism in Man. Then (frop, [*) ¢+ (Xtop, Ox) —
(Yiop, Oy) is a morphism of affine C*°-schemes in the sense of |13} (56] 65].

(¢) Combining (a),(b) we may define a functor Fﬁ:ﬂSCh : Man — C°Sch®®
to the category of affine C°°-schemes, mapping X — (Xiop, Ox) on objects and
f = (frops %) on morphisms. This functor is faithful, but need not be full.

This will help us to relate the (m-)Kuranishi spaces of Chapters |4| and |§| to
the d-manifolds and d-orbifolds of |57, [58, |61].

B.1.4 Partitions of unity

Definition B.6. Let X € Man. Then as in we have an R-algebra
C>(X), which as in is the global sections C*°(X) = Ox (Xiop) of a sheaf
of R-algebras Ox on Xiop. Hence by sheaf theory each n € C°°(X) has a support
suppn C Xiop, a closed subset of X, such that X, \ supp f is the largest
open set U’ C Xyop with 77|yr =0 in Ox (U').

Consider formal sums ) ., 1, with n, € C*(X) for all a in a possibly
infinite indexing set A. Such a sum is called locally finite if we can cover Xiqp
by open U’ C Xiop such that U’ Nsuppn, = 0 for all but finitely many a € A.
By sheaf theory, for a locally finite sum . 4 74 there is a unique n € C*°(X)
with 3, c 4 Malvr = nlur whenever U’ C Xiqp is open with 74|y = 0 for all but
finitely many a € A, so that ) . , 7|y makes sense. We write D . 4 7a = 7.

Let {U, : a € A} be an open cover of Xio,. A partition of unity {n, : a € A}
on X subordinate to {U, : a € A} is n, € C*°(X) with suppn, C U, for all
a € A, with ngop(z) = 0 in R for all © € Xiop, such that > 7, is locally
finite with ) ., 7, = 1 in C(X).

acA
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The next proposition can be proved following the standard method for
constructing partitions of unity on smooth manifolds, as in Lang 70, §I1.3] or
Lee |71, Th. 2.23], or alternatively follows from Proposition and results on
partitions of unity on C'*°-schemes in [65, §4.7]. The important points are:

e By Assumption b), Xtop is Hausdorff, locally compact, and second
countable, which is used in |70, Th. II.1] and |71, Th. 1.15].

e Let U’ C X;op be open and x € U’. Assumption gives a : X — R
in Man with atop(®) > 0 and agop|x,,,\vv < 0. Define b : R — R by
b(x) = e~ Y/® for > 0 and b(x) = 0 for 2 < 0. Then b is a morphism in
Man C Man by Assumption soboa: X — R is a morphism in Man.
We have (b o a)op(x) > 0, and (b o a)iop(z’) = 0 for all 2’ € X, and
supp(boa) C U’. Thus we can construct ‘bump functions’ on X.

This and Proposition are the main places we use Assumption [3.6]

Proposition B.7. Let X be an object of Man, and {U, : a € A} be an
open cover of Xiop. Then there exists a partition of unity {ne, : a € A} on X
subordinate to {U. :a € A}.

Therefore Ox is a fine sheaf, and hence a soft sheaf, as in Godement [40,
§I1.3.7] or Bredon |10, §II.9], and all Ox-modules £ are also fine and soft.

B.2 Vector bundles

B.2.1 Vector bundles and sections

Definition B.8. Let X be an object in Man. A vector bundle E — X of rank
m is a morphism 7 : £ — X in 1\./Ian7 such that for each 2 € X, the topological
fibre Ey top := Wt_();(l‘) C Eiop is given the structure of a real vector space of
dimension m, and X may be covered by open submanifolds ¢ : U — X, such
that if j : Fy <— E is the open submanifold corresponding to W;é(Ump) C Eiop,
and k : By — U is unique with iok =m0 j: Ey — X by Assumption (d)7
then there is an isomorphism [ : U x R™ — Ey in Man making the following
diagram commute:

UxR™ ; Ey ¢ 7 E
\Lﬂ'U l/k Wi/
U Uc : X,

and lop identifies the vector space structure on {x} x R™ = R"™ with that on
E3 top, for each x € Usqp.

The vector space structure on Fy top, may be encoded in morphisms pi4, p., 2
in Man as follows. Addition ‘+’ in E; top corresponds to a morphism py :
Ex . x =E — E, where the fibre product exists in Man, with Ht top (U, W) = v+w
forall x € Xiop and v, w € Ey top. Multiplication by real numbers ‘-’ corresponds
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to a morphism p. : R x E — E, with p. op(A\,v) = A-v for all A € R, z € Xiop
and v € E; top. The zero element 0 € E; ¢, comes from O0g : X — E with
0 top(2) =0 € Ey 10p for all z € Xiqp.

A section of E is a morphism s : X — E in Man with 7o s = idy. Write
I'*°(E) for the set of sections of E. For C*°(X) as in if a € C*°(X) and
s,t € I°(E), we define a - s,s +t € I'°(E) by the commutative diagrams

(@.5) Rx FE

where the morphism u exists by the universal property of £ x x E.
At each point z € Xy, we have

(@ 8)top(T) = @top(T) * Stop(T), (5 + Vtop(®) = Stop(T) + trop(T),

where on the right hand sides we use operations -, + in the R-vector space E top.
Thus for a,b € C*°(X) and s,t,u € I'*°(E) we have

[a-(b-8)]top=1[(a-b) - sltop, [+ tltop=1[t+Sltops [s+ (t+u)ltop=[(s+1) +ultop

in maps Xiop — Eiop, by identities in E (o, for each € Xiop. Faithfulness in
Assumption a) implies the corresponding identities in Man. Therefore ['™® (E)
is a C°°(X)-module, and hence an R-vector space. We will write Og : X — FE
for the zero section, the element 0 € I'°(E).

If E,F — X are vector bundles, a morphism of vector bundles 6 : E — F' is
a morphism 6 : £ — F in Man in a commutative diagram

i g

X X

)

such that Oiople, 0, © Eztop = Fritop 8 a linear map for all z € Xiop. We
write Hom(FE, F) for the set of vector bundle morphisms 6 : E — F. As for
I'*°(E), Hom(E, F') is naturally a C°°(X)-module, and hence an R-vector space.
If 0 : E — F is a vector bundle morphism and s € I'*°(E) then 6 o s € I'*°(F).

The usual operations on vector bundles and sections in differential geometry
also work for vector bundles in Man, so for instance if E, F — X are vector
bundles we can define vector bundles £* — X, E® F — X, EQ F — X,
A*E — X, and so on, and if f : X — Y is a morphism in Man and G — Y is a
vector bundle we can define a pullback vector bundle f*(G) — X. To _construct
E*E®F,... as objects of Man, we build them using Assumptions e) and
[.3(b) over an open cover {U, : a € A} of X with E, F — X trivial over each
U,, by gluing together U, x (R™)*, U, x (R™ @ R"™),... for all a € A.
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B.2.2 The sheaf of sections of a vector bundle

Definition B.9. Let X be an object in Man, and E — X be a vector bundle
of rank r. Then for each open U’ C X, Assumption (d) gives an open
submanifold ¢ : U < X with Uyop = U’. Let E|y = i*(E) as a vector bundle over
U, and write £(U’") = I'*°(E|y), considered as a module over Ox (U’) = C>=(U).
For open V! C U’ C Xy, we have open submanifolds i : U — X, j: V — X
with Ox (U’) = C*(U) and Ox (V') = C*>°(V). Since Viop C Uiop Assumption
d) gives a unique k : V — U in Man with ok = j : V — X. Define
purv  EU) = EV') by purvr @ s — k*(s) = s|y. Then as for Ox in
this defines a sheaf £ of Ox-modules on Xy, which is locally free of rank r.
For brevity, sheaves of Ox-modules will just be called O x-modules.

As for vector bundles in algebraic geometry, working with vector bundles
E,F — X is equivalent to working with the corresponding Ox-modules &, F,
and one can easily translate between the two languages. In particular:

e There is a 1-1 correspondence, up to canonical isomorphism, between
vector bundles £ — X of rank r and locally free O x-modules £ of rank r.

e If £, F — X are vector bundles, and &, F the corresponding O x-modules,
there is a natural identification Hom(E, F') = Homo y-moa (€, F) between
vector bundle morphisms 6 : F— F and Ox-module morphisms 6 : £ — F.
These identifications preserve composition of morphisms.

o If f: X — Y is a morphism in Man and E — Y is a vector bundle,
with £ the corresponding Oy-module, then the vector bundle f*(E) — X
corresponds to the O x-module ft;;(é:) ® =1 (0y) Ox, using the morphism

f: fiop(Oy) — Ox of sheaves of R-algebras on X from §B.1.3

As in (65} §5], a module over a C*°-ring is simply a module over the associated
R-algebra. So for sheaves of Ox-modules, it makes no difference whether we
consider Oy in to be a sheaf of R-algebras or a sheaf of C'*°-rings.

B.3 The cotangent sheaf, and connections

B.3.1 The cotangent sheaf 7*X

In §B.1.21-4B.1.3{ we showed that if X is an object of Man then (Xiop, Ox) is

an affine C'°°-scheme in the sense of |13] |56} |65]. As in |65} §5.6], C'°°-schemes
have a good notion of cotangent sheaf, which we will use as a substitute for the
cotangent bundle T* X of a classical manifold X. The next two definitions are
taken from [65, §5.2 & §5.6].

Definition B.10. Suppose € is a C*-ring, as in Definition [B:2] and M a
¢-module. A C*°-derivation is an R-linear map d : € — M such that whenever
f:R"™ = R is a smooth map and ¢y, ..., ¢, € €, we have

o5 (€1,...,¢p) - de;. (B.2)

oz,

d®s(c1,...,cn)=>. @
i=1
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Note that d is mot a morphism of €-modules. We call such a pair M,d a
cotangent module for € if it has the universal property that for any C'°*°-derivation
d’ : € — M’, there exists a unique morphism of €-modules A\ : M — M’
with d = Aod.

There is a natural construction for a cotangent module: we take M to
be the quotient of the free €-module with basis of symbols dc for ¢ € € by
the €-submodule spanned by all expressions of the form d®y(cq,...,¢,) —
S @ng(cl,...,cn) -dc; for f : R®™ — R smooth and ci,...,c, € €. Thus
Cotangentl modules exist, and are unique up to unique isomorphism. When we
speak of ‘the’ cotangent module, we mean that constructed above. We write
de : € — Q¢ for the cotangent module of €.

Let €, be C*°-rings with cotangent modules Q¢,d¢, Qo,do, and ¢ :
¢ — ® be a morphism of C'*°-rings. Then we may regard Qp as a €-module,
and dp o ¢ : € = Qg as a C°-derivation. Thus by the universal property
of Q¢, there exists a unique morphism of ¢-modules Qg : Q¢ — Qp with
dpo¢p = Qgode. If ¢ : € = D, % : ® = € are morphisms of C'°-rings
then Q¢o¢ = Qﬂl o Q¢ : QQ: — Q@.

Definition B.11. Let X be an object in Man, so that (Xtop, Ox) is an affine
C™>-scheme as in Define PT*X to associate to each open U C Xy, the
cotangent module Qo (7 of Definition regarded as a module over the
C*-ring Ox (U), and to each inclusion of open sets V' C U C X, the morphism
of Ox (U)-modules Q,,, : Qo w) = Qoy(v) associated to the morphism of
C*-rings pyv : Ox(U) = Ox (V). Then the following commutes:

Ox(U) x Qox ) — 55 Qoxw)

\LPUVxQPUV QPUV\L

I
Ox(V) X Qo vy — 5 Qo (v,

where f1o (), oy (vy are the module actions of Ox (U),Ox (V) on Qo (),
Qo (v)- Using this and functoriality of cotangent modules Qyo4 = 2y 0 Q4 in
Definition we see that PT*X is a presheaf of O x-modules on Xi,,. Define
the cotangent sheaf T*X of X to be the sheafification of PT*X.

Define a morphism Pd : Ox — PT*X of presheaves of R-vector spaces by

Pd(U) = dQOX(U) : Ox(U) — PT*X(U) = QOX(U)7

and define the de Rham differential d : Ox — T*X to be the corresponding
morphism of sheaves of R-vector spaces on Xiq,. It satisfies on each open
U C Xiop. Note that although Ox,7*X are Ox-modules, d is not a morphism
of Ox-modules, as is not compatible with O x-linearity.

Example B.12. (a) If Man = Man and X € Man then 7*X is canonically
isomorphic as an Ox-module to the sheaf of sections of the usual cotangent
bundle T* X — X, as in For general Man, if X € Man C Man then

240



as the definition of 7*X happens entirely inside Man C Man, again 7*X is
isomorphic to the sheaf of sections of T*X.

(b) If Man is one of the following categories from Chapter

Man® Mans{,, Mang,, Man

i’

Mang,, (B.3)

c
st,in»

then as in there are two notions of cotangent bundle 7% X,*T*X of X in
Man. It turns out that 7*X is isomorphic to the sheaf of sections of T*X.

(c) If Man is one of the following categories from

Man®®, Man{?, Man®®, Man3$, Man?f,

in?’ in>»

ac c.,ac c,ac c,ac c,ac
Mang ;,,, Man®®, Man; ™, Mang™, Man 5, ,

then the cotangent bundle T*X of X € Man may not be defined, though the
b-cotangent bundle *T*X is. It turns out that 7*X need not be isomorphic to
the sheaf of sections of any vector bundle on X in these cases.

B.3.2 Connections on vector bundles

We can use cotangent sheaves in to define a notion of connection.

Definition B.13. Let X be an object in Man, and £ — X a vector bundle,
and & the Ox-module of sections of E as in §B.2.2] A connection V on E is a
morphism of sheaves of R-vector spaces on Xop:

V:E—ERo, THX,
such that if U C Xy is open and a € Ox (U), e € £(U) then
Via-e)=a-(Ve)+ex (d(U)a) in (€EQo, T"X)(U), (B.4)

where d : Ox — 7*X is the de Rham differential from
Note that although &,€ ®o, T*X are Ox-modules, V is not a morphism of
Ox-modules, as (B.4)) is not Ox (U)-linear.

Proposition B.14. Let X € Man and E — X be a vector bundle. Then:

(a) There exists a connection V on E.

(b) If V,V' are connections on E then V' =V +T, for T: & - ERp, T*X
an Ox-module morphism on Xiop.

(c) If V is a connection on E and T': £ = € ®o, T*X is an Ox-module
morphism then V' =V + 1T is a connection on E.

Proof. For (a), first suppose E is trivial, say F = X x R* — X. Then we can
define a connection V on E by

V(U): (e1,...,ex) — (d(D)ey,...,d(U)ex)
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whenever U C Xip, is open and ey, ..., e, € Ox(U), using the obvious identifi-
cations £(U) = Ox(U)* and (€ @0, T*X)(U) = T*X(U)*.

In the general case, choose an open cover {U, : a € A} of X by open
submanifolds U, < X such that E|y, — U, is trivial for each a € A. Then
there exists a connection V, on El|y,. As in §B.1.4] we can choose a partition of
unity {7, : @ € A} on X subordinate to {U, : a € A}. It is now easy to check
that V=3 474 Va is a well defined connection on E.

For (b), defineI' = V' =V : & - £R®p, T*X, as a sheaf of morphisms of
R-vector spaces. If U C X, is open and a € Ox (U), e € £(U) then subtracting
for V, V' implies that I'(a - ) = a - (Te) in (£ ®o, T*X)(U), as the
e® (d(U)a) terms cancel. Hence I' is O x-linear, and a morphism of O x-modules.
Part (c) follows by the same argument in reverse. O

Example B.15. If Man = Man then connections V on a vector bundle E — X
in the sense of Definition are in canonical 1-1 correspondence with the usual

notion of connections on E in differential geometry, with (B.4)) the usual Leibniz
rule for connections. The same holds if Man lies in 1}

B.4 Tangent sheaves

Let f: X — Y be a morphism in Man, and £ — X a vector bundle. To define
2-morphisms of m-Kuranishi neighbourhoods in Chapter [4] we will (roughly)
need a notion of ‘vector bundle morphism A : E — f*(TY)’, where TY is the
‘tangent bundle’ of Y. For general categories Man, there are two problems
with this. Firstly, objects X in Man may not have tangent vector bundles
TX — X. And secondly, there are examples such as Man = Man€ in which
tangent bundles do exist, but f*(TY") is the wrong thing for our purpose.

Our solution is to define ‘T'X’, and ‘f*(TY)’, and ‘Hom(E, f*(TY)) as
sheaves on X, rather than as vector bundles:

(i) For each X € Man we will define a sheaf TX of Ox-modules on Xtop
called the tangent sheaf of X. Sections of 7 X parametrize infinitesimal
deformations of idx : X — X as a morphism in Man. If Man = Man
then T X is the sheaf of smooth sections of the usual tangent bundle T'X.

(ii) For each morphism f: X — Y in Man we will define a sheaf T;Y of Ox-
modules on X, called the tangent sheaf of f. Sections of T;Y parametrize
infinitesimal deformations of f : X — Y. If Man = Man then TrY is the
sheaf of smooth sections of f*(TY).

(iii) For each morphism f : X — Y in Man and vector bundle E — X we
define morphisms £ — 7;Y as morphisms of sheaves of Ox-modules.

In we defined the cotangent sheaf 7*X. In general TX and T*X
are not dual to each other, though there is a natural pairing TX x T*X — Ox.
We define 7*X using morphisms X — R in Man, and 7 X using morphisms
X xR — X in Man, so TX and 7*X depend on different data in Man.
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B.4.1 Defining the f-vector fields just as a set I'(7;Y)

Definition B.16. Let f : X — Y be a morphism in Man. Consider commuta-
tive diagrams in Man of the form

(idx,0) ¥
2 i’ \
X xR ‘ > 17 u Y,

)

where ¢ : U < X xR is an open submanifold with X, X {0} C Ugep € Xiop X R,
and unique [ : X — U with i ol = (idx,0) exists by Assumption d), and
u: U — Y is a morphism in Man with wol = f. We also require that Uy, can
be written as a union of subsets X{,, x (—¢,€) in Xyop x R for X{,, C Xiop, open
and € > 0 (this condition will only be used in the proof of Proposition .
For brevity we write such a diagram as the pair (U, u).

Define a binary relation = on such pairs (U, u) by (U,u) ~ (U’,«) if for all
Z € Xiop there exists an open submanifold j : V — X x R? and a morphism
v:V =Y satisfying

(5770, 0) c Vtopa Utop(xv S, _5) = ftop(x) v(l'a S, _3) S ‘/topa
Viop (T, $,0) = Ugop(x,8) V(x,s) € Upop with (z,s,0) € Viep, (B.6)
Viop (2, 0,8") = Uiy, (2,8") V(x,s") € U, with (2,0,5") € Vigp.

We will show = is an equivalence relation. Suppose (U, ) is a pair, and let
j:V < X x R? be the open submanifold and v : V — Y the morphism with

Vtop:{(m,s,s’)eXtopxR2 : (2, 545") EUtop b5 Vtop © (2,8, 8") > ugop (@, 5+5).

Then (V,v) implies that (U, u) =~ (U, u), so = is reflexive. By exchanging the two
factors of R in X xR? we see that (U, u) ~ (U’,u’) for pairs (U, u), (U’, ') implies
that (U’,u') = (U, u), so & is symmetric. Suppose (U, u) =~ (U’,v') and (U’,u') =~
(U",u”). Then for each & € X, there exist (V,v) as above for (U, u) = (U’,u/),
and (V',v') for (U',u) =~ (U"”,u"). Apply Assumption a) with £ = 3 and
n = 1 to obtain an open submanifold & : W < X x R” and a morphism
w: W — Y such that (%,0,0,0) € Wiop, and wiop(z, 8, 5',0) = viop(z, s, 8) if
(7,5,8") € Viop with (z,5,5",0) in Wiy, and wiop(2,0,5',5") = vy, (2, 5", 7)
if (z,5',8") € Vii,, with (z,0,5",5") in Wiep, and wiop(z, s, 8", 8") = fiop(w) if
(x,8,8,8") € Wiop with s + 5" + 5" = 0.

Here we change variables in R® from (s, §', ") to (y1, %2, y3) = (s+s'+s", s, 5")
to apply Assumption[3.7|(a), so that wiop(, s, 8', 8”) = fiop(@) when s+s'+s” =0
prescribes wiop when y; = 0, and wiep(w,0,5",5") = vi,,(x,s', ") prescribes
Wiop When yo = 0, and wiep(, s,5',0) = vop(x, s, s’) prescribes wyop, when
y3 = 0. Making W smaller, we suppose that (z,s,s’,0) € Wi, implies that
(z,5,5") € Viop, and (2,0, ", 5"”) € Wiop, implies that (z,s",s") € Vii .

Let j” : V" < X x R? be the open submanifold with

" {(z,s,5") € Xyop x R? : (z,s,0,5") € Wiop }-

top =
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Then Assumption [3.2(d) applied to (idx x idg x 0 x idg) 0 j” : V/ — X x R?
gives a morphism h : V" — W in Man with hiop(x,8,8") = (x,5,0,5"). Define
v =woh : V" =Y. Then such (V"”,v") for all £ € X, establish that
(U,u) = (U",u"), since (£,0,0) € Vig,, and v (7, 8,0) = wiep(7,,0,0) =
Vtop (2, 8,0) = Utop(z, 5), and vy, (2,0, 5") = wiop(2,0,0,5") = vy, (2,0,5") =
ugop (2, 8"). Thus = is transitive, and is an equivalence relation.

Write [U, u] for the ~-equivalence class of pairs (U, u) as above. Write I'(7;Y")
for the set of all such ~-equivalence classes [U,u]. (In we will define a
sheaf of Ox-modules 7T;Y on Xio, whose global sections are this set I'(7;Y),
but for now I'(7;Y’) is just our notation for the set of all [U, u].)

When Y = X and f = idx, we write D(TX) = T'(Tia, X).

Example B.17. Here is how to understand Definition in the case that
Man = Man. Then we can use tangent spaces and derivatives of maps. Consider
a diagram in Man. Write points in U C X x R as (z,s) with z € X and
s € R. Then for each x € X with f(z) =y € Y we have u(z,0) =y € Y and
%(m, 0)eT,Y = f*(TY)|y. The map @0 : z — %(w,()) is a smooth section u of
the vector bundle f*(TY) — X.

Now let (U,u), (U',u') be two such diagrams, and 4,4 € T°(f*(TY)) the
corresponding sections. Suppose (U,u) =~ (U',u’), and let & € X with § = f(&),
so that there exist j : V <> X x R? and v : V — Y satisfying (B.6). Considering
points (Z,s,s’) € V with v(Z,s,s’) € Y, we have %(i,0,0), 5(7,0,0) € TY.
Differentiating in s,s" at (Z,0,0) yields

99(%,0,0) — £5(#,0,0) =0,  2%(z,0,0) = 2“(z,0) = a(z)
and  2%(%,0,0) = 2%(%,0) = @/ (&),

57 s’
so that 4(z) = @' (Z), for all £ € X. Thus (U,u) ~ (U',u) forces & = @' in
T (f*(TY)). Conversely one can show that & = @ implies (U,u) ~ (U’,u’).

Also every & € T°(f*(TY)) comes from some (U,u) in (B.5). Hence ~-
equivalence classes [U,u] are in 1-1 correspondence with @ € I'°(f*(TY)) by
[U,u] — 1. So we can identify I'(7;Y") with I'*°(f*(TY)) when Man = Man.

B.4.2 Making I'(7;Y) into a C*°(X)-module
Section discussed the R-algebra C*°(X). We will give I'(7;Y") in §B.4.1]
the structure of a C°°(X)-module.

Definition B.18. We continue in the situation of Definition [B:16 To make
I'(7;Y) into a C*°(X)-module we must define the product a - o in I'(7;Y") for
alla € C*°(X) and a € I'(7;Y), the sum a+ § in I'(7;Y) for all o, 8 € T(T;Y),
and the zero element 0 € I'(7;Y’), and verify they satisfy

atBf=pF+a, (a+pf)+y=a+(B+9),
Ox -a=0, lx-a=a, a-(b-a)=(a-b)-a (B.7)
(@a+b)-a=(a-a)+(b-a), a-(a+f)=(a-a)+(a-p),
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for all a,b € C>*(X) and «, 8,7 € I'(T3Y), where Ox,1x € C*(X) are the
morphisms 0,1 : X — R.

To define a - a, let a € C*°(X) and « € I'(T;Y), and let (U,u) in
represent o = [U,u]. Write 7: U < X x R for the open submanifold with

Utop = {(m,s) € Xiop X R (2, atop(x)s) € Utop}.

Form the commutative diagram in Man:

(idx,0)
X xR . > d X
? - i (B.8)
\LidxX(add]R) *\L w ! i/f
X xR . U “ Y,

where morphisms labelled ‘x exist by Assumption [B.2(d), and idx x (a - idg)
maps (z,8) = (2, aop(x)s) on Xiop x R. Then U,7,1,u are a diagram of type
(B.5). Define a-a = [U, ] € T(T;Y).

To show this is well defined, we must prove that if (U’,v’) is another rep-
resentative for a, so that (U,u) ~ (U’,«), and (U’,@') is constructed from
a, (U',u') as in , then (U, a) ~ (U, '), so that [U,a] = [U’,@]. We do this
by combining the data j : V < X xR? v:V — Y satisfying showing that
(U,u) =~ (U',u) with , now using idy x (a-idg) x (a-idg) : X xR* = X xR?
in place of the left hand column of , to construct 7,V,? showing that
(U,a) ~ (U, @). So a-«is well defined.

To define v+ 3, let o, f € T'(T;Y'), and let (U, u), (U,ﬂ) in represent
o = [U,u] and 8 = [U,d]. Assumption Ma) with k =2 and my = mg =1
applied to (U1, u1) = (U, u) and (Us,ug) = (U, @) gives an open j : V — X x R?
and v: V — Y such that Xiop X {(0,0)} C Viop and viep(®, s,0) = ugop(x, s) for
all (z,s) in Ugep with (z,s,0) in Viep and viep (2,0, 8) = top(x, s) for all (z, s)
in Ump with (2,0, s) in Viop. Let 7: U — X x R be the open submanifold with

Utop = {(:v,s) € Xiop X R: (2,5,5) € Viop € Xiop X R2}.

Form the commutative diagram in Man:

X xR - >U ’; X
l/idxx(idm,idR) *i u m \Lf
X x R? ! ke v Y,

where morphisms labelled ‘x” exist by Assumption (d), and idx X (idg,idg)
maps (z,) = (r,s,5) on Xiop x R. Then U, 7,1, @ are a diagram . Write
a+ B =[U,a in T(T;Y).

To show this is well defined, suppose (U, ), (U ' i) are alternative rep-
resentatives for «, 8, so that (U,u) = (U’,v’) and (U,a) ~ (U’,ﬂ’), and use
(V' ') to construct (U, ') from (U’, '), (U’, @) as above. We must prove that
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(U’ V’). Let # € Xiop, and let j : V < X x R* v : V — Y satisfy
. ~ (U W), and j: Ve X xR% 6 : V — Y satisfy (B.6) for
,0) & (U / A' ) We will apply Assumption a) ﬁve times to construct an
open submanifold k : W < X x R? with (2,0,0,0,0) € Wiop and a morphism
w: W =Y, such that for all x € X, and ¢, 7,5, € R in the appropriate open
sets we have

Weop (2, ¢,0,0,0) = wgop(, q), Wiop(2,0,7,0,0) = Ggop(z, ),
Wiop(,q,4,0,0) = Uop(,q),  Wiop(x,0,0,5,0) = ug,,(z, ),
Wiop(2,0,0,0,t) = Ui, (,1), Wiop(2,0,0,8,8) = ﬂéop(x, s), (B.9)
Weop (2,¢,7,0,0) = v4op (T, ¢, 7),  Wiop(,0,0,8,t) = Viop(x, 8, 1), ’
Wiop (2, q,0,5,0) = veop(7,q,8),  Wiop(z,0,7,0,t) = é’op(x,r,t ,

Wiop(T, ¢, —=¢, —7) = frop(2)-

We do this in the following steps:

(a) Choose values of wiop(, ¢, 7, —¢,t) to satisfy the second, fifth, tenth, and
eleventh equations of (B.9), using Assumption [3.7(a) with k =2, n =1
and X x R with variables (z,2") € X{,, = Xiop X R in place of X, and
variables (z,q,r,—q,t) = (z, 21,20 + @', —21, —2').

(b) Choose values of wiop(%,q,0,,t) to satisfy the first, fourth, fifth, sixth,
eighth and ninth equations of (B.9), using Assumption [3.7(a) with k = 2,
n =1 and X x R with variables ( r') € X{,, = Xtop X R in place of X,
and variables (z,q,0,s,t) = (x,zhO,x ,22).

(c¢) Choose values of wyop(z,¢,7,0,t) to satisfy the first, second, third, fifth,
seventh and tenth equations of , and with weep(z,¢,0,0,t) as already
determined in (b), using Assumption [3.7(a) with & = 3, n = 1 and variables
(LU, q,7, 07 t) = (1’7 21, %22, 07 23)‘

(d) Choose values of wiop(x, q,T, s,0) to satisfy the first—fourth, seventh and
ninth equations of , and with wiop(2,¢,7,—¢,0) as already deter-
mined in (a), using Assumption [3.7((a) with k = 3, n = 1 and variables
(z,q,7,5,0) = (x, 21 — 23, 22, 23, 0).

(e) Choose values of wiop(z, ¢, 7, s,t) agreeing with the choices made in (a)—(d),
using Assumption (a) with k=4, n=1 and variables (z,q,r,s,t) =
(.’ﬂ, 21 — 23,22, %3, Z4)'

Write j: V — X x R? for the open submanifold with
Vtop = {(1‘7% 8) S Xtop X R2 : (x,q,q,s,s) € Wtop g Xtop X R4}~

Form the commutative diagram in Man:

X x R? - oV
j .
i/idxx(idR,idR)x(idR,idR) *l \
X x R b W © Y,
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where the morphism ‘x’ exists by Assumption [3.2(d), and idx x (idg,idg) x
(idg, idg) maps (x,q,s) — (,¢,¢,8,5) on Xiop X R?. Then j: V < X x R?
and 9 : V — Y satisfy for (U, ) =~ (U’,4') at & € Xiop, for all Z. Hence
[U,4) = [0, 4], and o + S is well defined.

Define 0 € I'(7;Y) to be 0 = [X x R, f o7wx], so that becomes

d)(
i ,0 f

This defines all the data -, +, 0 of the C°°(X)-module structure on I'(7;Y). It is
now a long but straightforward calculation to show that the axioms (B.7)) hold,
and we leave this as an exercise for the reader.

B.4.3 Action of v € I'(7;Y) as an f-derivation

If X is a classical manifold and o € I'*°(T'X) is a vector field then « acts as a
derivation A, : C*(X) — C*°(X) (and in fact as a C°°-derivation, as in the
author [65, §5.2]). We prove a relative version of this for Man.

Definition B.19. Let f : X — Y be a morphism in Man, and « € L(T:Y).
We will define a map A, : C®°(Y) — C*°(X). Write a = [U, u| for (U,u) as in
(B.5). Let a € C*°(Y), so that a : Y — R and aowu: U — R are morphisms in

Man. Apply Assumption' to f=aou:U — R. By 1)1' this gives a
morphism g : U — R in Man such that

t_l[(a 0 U)top(w,t) — (a0 u)top(w,0)], t#0,

B.10
%(aou)top(x,t), t=0, ( )

gtop(xa t) = {

and this determines g uniquely, by faithfulness in Assumption a). Now define
Ay(a) =gol: X — R. Then A,y(a) € C*(X), and (B.10) gives

Agy(a)top(x) = %(a 0 W)top (Z, 1) |t=0 for x € Xiop. (B.11)

Let (U’,u) be an alternative representative for «, and write A/, : C*°(Y) —
C°°(X) for the corresponding map. Then (U, u) ~ (U’,u’), so by Definition [B.16]
for each & € X, there exist open j : V — X x R? and v : V — Y satisfying
(B.6). Then

1é)

Ao (a)top(F) = (a0 u)top (&, 5)|s=0 = £ (a0 V)top(#, 5,0)]s=0
= 2 (a0 0)1op(E,0,5) |50 = 52 (a0 U )op (&, 8')[sr=0 = Al (a)sop(E),

using (B.11) in the first and last steps, and differentiating in s,s" at
s = s’ =0 for the second—fourth. Hence A, = A/, and A,, is well defined.

It is clear from (B.11) that A, : C>®°(Y) — C°°(X) is an R-linear map.
We will show in Proposition that it is both a derivation of C*°(Y) as an
R-algebra, and a C'*°-derivation of C*°(Y") as a C'*°-ring.
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The next proposition follows easily from (B.11)), the product and chain rules
for differentiation, and Definition

Proposition B.20. Work in the situation of Definition [B:19] Then:

(a) Regard f*:C>®(Y)— C*(X) as a morphism of commutative R-algebras
as in §B.1.1} Then the R-linear map A, : C*(Y) — C*(X) satisfies

An(a-b) = f (a)  Ax(d) + f*(b) - Ag(a) for all a,b e C(Y).

That is, A, is a relative derivation for f*:C>®(Y) —» C*(X).

(b) Regard f*:C*>°(Y) — C*(X) as a morphism of C*°-rings as in §B.1.2
and write the C*°-ring operations on C*°(X),C>®(Y) as ®,4, ¥, respectively
for smooth g : R™ — R. Then A, : C*°(Y) — C>®(X) satisfies

I
M=

Aa(\llg(al,...,an)) f*(ﬁ/%(al,...,an)) ~Aa(ai)

<.
Il
_

(B.12)
® oq (f*(a1),..., f"(an)) - Aalas)

ox;

k3

|

©
Il
-

for all ay,...,a, € C°(Y). That is, A, is a relative C*-derivation
for f*:C®(Y) — C™(X).
(c) If a,B € T(T;Y) then Aqyp(a) = Ag(a) + Ag(a) for all a € C(Y).
(d) If aeC>(X) and a€T(T;Y) then Ag.q(b)=a- Ay (D) for all be C=(Y).

When Man = Man, one can show that the map a — A, is a 1-1 correspon-
dence between elements of I'(7;Y") and relative C*°-derivations. But for general

Man, it is not clear that o — A, need be either injective or surjective.

B.4.4 Acting on modules I'(7;Y’) with morphisms in Man

Suppose f: X — Y and ¢ : Y — Z are morphisms in Man. We will define
natural morphisms I'(Tg) : T(7T;Y) = I'(Tgor Z) and f* : T(T4Z) = T'(Tgos Z).

Definition B.21. Let f : X — Y and ¢ : ¥ — Z be morphisms in Man.
Sections define C*°(X)-modules I'(7;Y) and I'(T407Z). Define a
map I'(Tg) : T(T;Y) = T'(TgosZ) by T'(Tg)([U,u]) = [U,g o ul]. It is easy to
check using §B.4.1}-4B.4.2] that if (U, u) ~ (U’,«') then (U,gou) ~ (U’,gou’),

so that I'(Tg) is well-defined, and that it is a C'*°(X)-module morphism.
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For [U,u] € T'(T4Z) defined by a pair (U, u) in a diagram (B.5) with Y, Z, g
in place of X,V f, form the commutative diagram in Man:
X 7 Y

(idx 0) p g
., | o !
X xR : U’ — Z.
m l
u
Jide Y xR<t— D7

Here i’ : U’ — X x R is open with
Utlop = {(l’,t) S Xtop x R : (ftop(x),t) € Utop}a

and unique I, m’ exist making (B.I3) commute by Assumption [3.2(d). Then
Ui U, v in are a diagram (B.5)) for g o f, so that [U’,u'] € T(Tyos Z).
Define f*([U,u]) = [U’,v].

To show that [U’, u'] is independent of the choice of representative (U, u) for
[U,u], so that f* is well defined, given another choice (U, 1) yielding (U, '),
as (U,u) ~ (U, a) there exist V,v for each § € Yiop satisfying at g over
g:Y — Z. Then for ¥ € X, with fiop(Z) = g, we define V', v’ satisfying
for (U',u') ~ (U', ') at_Z over go f : X — Z, by constructing V', v’ from V,v
in the same way that generalizes . Hence [U’,u/] = [U’,4/], and
f*([U,u]) is well defined.

It is easy to check using that f*(a+ B) = f*(a) + f*(8) and
fla-a) = f*(a) f*(a), for all a € C°(Y) and «a, 8 € I'(7T4Z). That is, f* :
I'(T4Z) = I'(Tgo5 Z) is a module morphism relative to f* : C*°(Y) — C>(X).

If e: W — X is another morphism in Man, we see that

D(T(go ) =T(Tg) o I(Tf) : I(TeX) — ITgof0e Z),
(foe)*=e"o f*:I(TyZ) — I'(TgofoeZ), (B.14)
I(Tg)oe*=e*ol(Tg) : T'(TY) — T'(Tgofoc Z).

(B.13)

Example B.22. If f : X — Y is a morphism in Man C 1\./Ian7 we have
[(T;Y) =2 T (f*(TY)) as in Example For morphisms f : X — Y,
g:Y — Zin Man C Man, these isomorphisms identify

L(Tg) : D(TpY) =T (Tgop Z) <> [H(Tg)o : T(f*(TY)) =T ((go f)"(TZ)),

[ i T(T3Z) = T(Tgot Z) < 7T ®(g"(TZ)) = T>((go f)*(TZ)),
where T'g : TY — ¢g*(TZ) is the derivative of g. This justifies the notation I'(T g)
and f* in Definition

Lemma B.23. Suppose f : X — Y and g :Y — Z are morphisms in Man,
with g : Y — Z an open submanifold. Then T'(Tg) : T(T;Y) = T'(Tgos Z) is an
isomorphism of C*(X)-modules.
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Proof. We will define an inverse map I : I'(TgosZ) — I'(T;Y) for I'(Tg). Let
a € I(TyorZ), and pick a representative (U, u) for a = [U, u], in a diagram (B.5]).
Let i’ : U' — X x R be the open submanifold with

Ut/op = {(x,t) € Xiop x R: Utop(xat) € Yiop € Ztop}-
Then (B.5]) extends to a commutative diagram

: X
idx,0 o
% \Ll f !
X xR : U \ = Z, (B.15)
i’ Y
\U// u’ Y/

where j/,I’,u’ exist by Assumption [3.2|d) for the open submanifolds i : U <
XxR,7:U < X xRand g:Y < Z respectively. Then U’,7,l’,u’ are a
diagram for f: X =Y, so[U,u]€T(T;Y). Define I(a) = [U’,/].

A similar argument for V, v satisfying shows I(«) is independent of the
choice of (U, u), and so is well defined. To see that I'(Tg) o I = id, note that

I'(Tg)oI(a) =[U"gou]=[U"uoj],
and use V,v in with veop (2, 8,t) = wsop(x, s + t) to show that (U,u) =
(U',uo3j"), sothat T'(Tg) o I(a) = [U,u] = a. To see that [ oT'(Tg) = id, let
B =[U" ] eT(TY), so that I'(Tg)(B) = [U’, g o v'], and consider (B.15)) with

U=U"i=4,1=1,u=gou toseethat IoT(Tg)(B) = [U,v]| = . Therefore
I'(Tg) is a bijection, and so an isomorphism of C° (X )-modules. O

B.4.5 The sheaves of Ox-modules 7X and 7;Y

Next we define a sheaf of Ox-modules 7;Y on X, with global sections
T+Y (Xtop) = I'(T4Y'). This justifies the notation I'(7;Y") in §B.4.1]

Definition B.24. Let f : X — Y be a morphism in Man. Section defines
a sheaf of R-algebras Ox on Xiop,. For each open submanifold x' : X' — X
in Man, so that X{op € Xiop is an open set and fox': X’ — Y a morphism
in Man, write TrY (X{op) = I(Tjox'Y) from Definition B_16|, considered as
a module over Ox(X{,,) = C*°(X') as in Definition [B.18 Note that when
X' X' = Xisidx : X — X we have T;Y (Xiop) = I'(T5Y).

For each commutative triangle of open submanifolds in Man:

X' :
3
/’ i \ (B.16)
X X X,

using the notation of §B.4.4] define a map

PX! X! = f* : 7}Y(Xt/0p) = F(7dfOX’Y) — 7}Y( t/:)p) = F(7}OX/O§Y)'

top“*top
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From §B.4.4] px; xy intertwines the actions of Ox(X{,,) = C*°(X’) and
Ox(X{op) = C(X") on T;Y(X{,,), T;Y (X{,,) via the morphism px; xu

top top top“*top

Ox(X/yp) = Ox(X{.,) from §B.13

Proposition B.25. In Definition the data T;Y (X{,,) and px; xp -
TrY (Xiop) = TrY (X(op,) for all open X, C X{,, C Xiop form a sheaf of Ox-
modules TpY on Xiop, which we call the tangent sheaf of f. WhenY = X,
f=idx, we write TX = Tia, X, and call it the tangent sheaf of X.

Proof. It is immediate from Definition and (B.14]) that 7;Y is a presheaf
of Ox-modules, that is, it satisfies Definition (iii). Let ¥ : X' — X
and x; : X < X for a € A be open submanifolds with (J,c 4 X4 top = Xiop
so that {X[ ., : @ € A} is an open cover of X{, C Xiop. For each a € A, as
Xi top € Xiop € Xtop, Assumption [3.2(d) implies that there is a unique open
submanifold &, : X < X’ with x/ = x' 0 &, as in (B.16).

For (iv), suppose ay, as € TrY (X{o,) = ['(TroY) with pxy xv, (o1) =

a,top

px: xr. (ag) for all a € A, so that £} (a1) = & (a2) in I'(Tfoyrog,Y ). Write

top“*a,top

ae = [Ug,ue] for ¢ = 1,2, where Ug, u. live in a commutative diagram (B.5):

/

X
[ Ue

X' xR £ o U,

Y.

From the definition of £(a.) in §B.4.4] we see that if we define hg. : Uye <= Ul

to be the open submanifold with Uyc top = Ue top N (X(’LCtop xR) C Xt’op X R, then
& (ae) = [Uae, e © hae). Hence [Ugr,u1 © hg1] = [Uaz, u2 0 hgz], so by Definition
for each & € X[/, there exist j : V — X[ and v : V — Y satisfying
(B.6). Then §,05:V < X' and v:V — Y satisfy for (Uy,u1) = (Us, uz)
at ¥ € X{,,. As this holds for all Z € X7/, and U,e 4 X7 top = Xiop, We see
that oy = U1, u1] = [Usz, ug] = ae. Hence T;Y satisfies Definition iv).

For (v), suppose that o, € TY (X[ 1o,) = T(TfoyrY) for all a € A with

)(O{a) = px (X;.l,tome{)l,tOp)(ab) for all a,b S A. (Bl?)

"
p'X b,top

a,top

(X// nx’’

a,top b,top
Write o, = [Uy, ug] for a € A, where U,, u, live in a diagram (B.5)):

"
a

(idx,0) J/ fox!!
la
X7 xR U, o Y.
Let S4 be the set of all finite, nonempty subsets B C A. For each B € S4 write
Xp : Xp <= X' for the open submanifold with Xz . = ,ep X top- When
B = {a} we have X, = X7, Xx{,; = xq- If C C B lie in S4 then there is a

unique Epe @ X7 — X with x5 = x¢ 0 {gc by Assumption ).
For each B € S4 we will choose an open submanifold kg : W — X} X
HbeB R and a morphism wg : W — Y in Man with the properties:
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(a) XB op X {(0,...,0)} C Whop for all B € Sy.
or a € A we have Wi,y = U, — xR = X R and wyqy = ug.
b) For a € A we have Way = Uy < XJ x R = X7, x R and w,

(c) If C € Bliein Sy and (z, (8a)acc 11 (0)aep\c) € WBitop then (2, (5q)acc)
lies in We top With we top(7, (Sa)aec) = WBtop(T, (Sa)acc I (0)aen\0)-

We do this by induction on |B|. For the first step, Wg,wp are determined by
(b) when |B| =1, and (a) holds by definition of Uy, u,. For the inductive step,
suppose that m > 1 and we have chosen Wg,wp for all B € S4 with |B| < m,
such that (a),(c) hold whenever |B| < m. Let B € S4 with |B| = m+1, and write
B ={ay,...,am+1}. Apply Assumption (a) with k=m+1,n=1, and X}
in place of X, taking f; : U; — Y to be the restriction of wp\ (4,3 : WB\{a;} = Y
to the intersection of Wp\ f4,3 With X3 x R™.

The compatibility condition between f;, f; in Assumption a) follows from
(c) above for B\ {a;,a;} C B\ {a;} and B\ {a;,a;} C B\ {a;}. Therefore
Assumption a) gives Wp,wp satisfying (a), and (¢) when C € B with
|C| = m. Then (c) for |C| < m follows by taking C C B\ {a;} € B. Hence by
induction we can choose Wg, wg satisfying (a)—(c) for all B € Sy4.

Now apply Proposition to choose a partition of unity {5, : a € A}
on X' subordinate to the open cover {X  : a € A}. Choose an open
submanifold i : U < X' x R such that X{,, x {0} C Uiop and if (z,5) € Utop
and B = {a € A:x € supp 77a,t0p} then (z, (e top(2)S)acB) € Wh top- By (a)
above and local finiteness of {n, : a € A}, this holds for any small enough open
neighbourhood of X/ _ x {0} in X' x R.

top
We claim that there is a unique morphism u : U — Y in Man such that for
all (z,s) € Upop with B = {a € A:x € supp namp} in S4 we have

Utop (T, 8) = WE top (T, (Ta,top(T)8)acB)- (B.18)

To see this, note that as n, for a € B and wg are morphisms in Man, for each
B € 54, equation is the underlying continuous map of a morphism in
Man from an open submanifold of U to Y. Part (c) above implies that these
continuous maps for C' C B agree on the overlap of their domains. If a point
lies in the domain of the functions for B, B’ € S, then it lies in the domain
for BN B’ by (c), and considering BN B’ C B and BN B’ C B’ we see that
the continuous maps for B, B’ agree on the overlap of their domains. Hence by
Assumption (a) there is a unique u : U — Y satisfying .

Now put a = [U,u] € T;Y (X{,,) = (TorY). Fixa € A, and let € X/,
Set B = {b € A: % €supp ﬂb,top}- Choose an open neighbourhood R < X!/ of
Z in X/ such that Ry, C Xéftop for all b € B, and Ryop N SUPp 1, top = @ for all
¢ € A\ B. This is possible as supp n top is contained in Xé’,top and closed in
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X!y, and {7, : a € A} is locally finite. We have

top>
DXL o Brop © PX[, X110 (@) = PX[ Reoy (@) = b%: PXY' o Reop (Mol X7 - )
= Z ngopRtop(ﬁb) "PX btopRtop(ab)
= Z PX Lo Reon (1) PO g DXL ) Rion © PXY o (XD X0 (V0)

beB

= ;3 PX oy Ruop (T10) * DXL (o AXE ) Reop © PXY o (XE 00X o) (Ca)
= beZB PXt'OpRmp(nb) : ng,tOpRmp(Oéa) = PX{,pReop ( bgs 77b> : ng’7tDpRtop(Oéa)
= X[y Riop (1) DX Reop (Qa) = PX7 0 Rioy (Qa)- (B.19)

Here the second step follows from comparing the definition of a = [U, u]
with the definitions of addition and multiplication by functions in I'(7,Y")
in the fifth uses , the eighth holds as ), 7 is 1 on R since
{na : @ € A} is a partition of unity with Riop N SUpp e top = 0 for all c € A\ B,
and the other steps come from 7;Y being a presheaf of O x-modules as above.
Since X (., is covered by such open subsets Riop C Xy 4, equation
() = aq,

and Definition |A. 12|( iv) for 7;Y (proved above) 1mply that px; xv
for all a € A. Therefore T;Y satisfies Definition [A.12{(v), and i is a sheaf. O

a,top

Here are some examples:

Example B.26. (a) When Man = Man, we have T'(7;Y) = T(f*(TY)) as
in Example and one can show that 7;Y is canonically isomorphic to the
sheaf of smooth sections of the vector bundle f*(TY) — X, so that TX is
canonically isomorphic to the sheaf of smooth sections of TX — X.

(b) When Man is one of the categories of manifolds with corners from Chapter

ac c,ac
Man; Manst i

Man8¢, Man?¢

1n’ in»

Man{,, Man¢ Man?¢

1n7 st,in> st,in>

as in Example ii), one can show that 7;Y is the sheaf of smooth sections of
the vector bundle f*(*TY) — X, so that 7 X is canonically isomorphic to the
sheaf of smooth sections of the b-tangent bundle *TX — X.

(c) When Man is one of the categories of manifolds with corners from Chapter

Man®, Man$,, Man®®, Man®°, ManZ, Man®?°, Mang;**

st

as in Example ii), it turns out that 7Y is the sheaf of sections of the vector
bundle of mixed rank C(f)*(*TC(Y))|cy(x) — X, using the corner functor
C(f) : C(X) — C(Y) and the identification X = Co(X) from 2.2 If f is
interior this reduces to f*(*TY) — X as in (b).

(d) When Man = ManS,, from § as in Example ii),and f: X =Y in
Man¢,, is weakly smooth but not smooth7 in general TfY is not even locally
the sheaf of sections of a vector bundle on X.

253



B.4.6 Acting on sheaves 7;Y with morphisms in Man
We now lift the material of §B.4.4] from global sections I'(7;Y") to sheaves T;Y.

Definition B.27. Let f: X — Y and g : Y — Z be morphisms in Man. Define
a morphism 7g : TrY — TgorZ of sheaves of Ox-modules on Xiop by, for each
open submanifold ' : X’ < X in Man,

T (thop) (Tg) TfY( top) (nox’y) EOfZ(XtIOp) - F(EOfox’Z)~

Using (B we see that T g is a sheaf morphism.
On Ytop we have T,Z, a sheaf of Oy-modules, and (fiop)«(TgofZ), a sheaf of

(frop)«(Ox)-modules. As in §B.1.3 we have a morphism f; : Oy — (feop)«(Ox)
of sheaves of R-algebras or C’°°—r1ngs on Yiop. We will define a sheaf morphism
fo : TgZ = (frop)«(TgogZ) on Yiop which is a module morphism under f;.

Let £ : Y’ < Y be an open submanifold in Man, and let v’ : X’ < X be
the open submanifold with X{,, = fiol (Vo) € Xiop. Then Assumption (d)
gives a unique f’': X' — Y’ with ¢ o f' = fox'. Define

fo(Yiop) = ™ : TZ(Yt'op) D(Tgoer Z) — (frop)+(Tgor Z)(Yiop)
= Tgor Z(Xiop) = T(Tgosox' Z) = T(Tgogrof: Z).
Using (B.14)) we can prove that f, is a sheaf morphism. The module morphism
property for f, follows from the corresponding property for f'*.
Let f°: foob(TgZ) = Tgor Z on Xiop be adjoint to f, : Ty Z = (fiop)s(Tgor Z)
under (A.18). Then ftop(T Z) is an ftop(Oy)-module and TgorZ an Ox-module,

and f° is a module morphism under f* : ft;;((’)y) — Ox.
If e : W — X is another morphism in Man, using 1| we can prove that

T(gO f) = TgOTf : 7—8X — Eofoeza
(f o e)b = (ftop)*(eb) o fb : 7;]Z — ((f S e)top)*(,];;ofer)7
(6t0p)*(Tg) oe, =e,07g: 7}Y — (6top)*(7;ofoez)-
Using the adjoint property for f,, f” above, the last two equations imply that

(foe) = oep(f): (f0)iop(TyZ) — TyopocZ,
Tgoe =¢ 0y (T9) : eiop(TrY) — TyopocZ.

Lemma, implies:

Lemma B.28. Suppose f : X =Y and g: Y — Z are morphisms in Man, with
g:Y = Z an open submanifold. Then Tg: T;Y — TgoyZ is an isomorphism
of Ox-modules.
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B.4.7 A pairing ux : 7TX xT*X — Ox

Let X € Man. In We defined the cotangent sheaf 7*X, and in the
tangent sheaf 7X, both Ox-modules on X,,. Note that in general neither is
dual to the other. For example, when Man = Man€, as in Example b) T*X
is the sheaf of sections of the cotangent bundle 7*X — X, and as in Example
b),(c) T X is the sheaf of sections of the b-tangent bundle *TX — X,
but 7% X,*T X are not dual vector bundles if X # (. We defined 7*X using
morphisms X — R in 1\‘/Ian7 and 7 X using morphisms X x R — X in Man, SO
TX and 7*X depend on different data in Man.

We will define an Ox-bilinear sheaf pairing ux : TX x T*X — Ox on
Xtop, thought of as the pairing between vector fields and 1-forms on X. More
generally, if f: X — Y is a morphism in Man we will define bilinear pairings
Hf - (ftop)*(,]}Y) X T*Y — (ftop)*(OX) on }/topv and ,uf : 7}Y X ft_olla(T*Y) -
OX on Xtop-

Definition B.29. Let f: X — Y be a morphism in Man. Suppose j: V — Y
is an open submanifold in Man, and let ¢ : U — X be the open submanifold with
Utop = ft;;(vmp) C Xiop. Then Assumption d) gives a unique morphism
ffU—=Vwithjof ' =foi:U—=Y.

From §B.1.3 §B.3.1] and B.4.5] we have

(ftop)*(OX)(mop) - OX(Utop) = COO(U); PT*Y(Wop) = QC""’(V)a
(frop) s (TrY ) (Veop) = T¢Y (Usop) =L'(TsoiYV) =T (Tjop Y ) =L (T4 V),

(B.20)

where for the last part I'(77) : I'(TpV) — I'(TjopY) is an isomorphism by
Lemma [B.23] Identify (fiop)«(77Y)(Viop) = I(T;V) as in (B.20).

If @ € (fiop)«(T3Y)(Viop) = T'(T§/V) then defines a relative C°-
derivation A, : C®(V) — C>(U) over f': U < V, satisfying (B.12). Regard
C>(V) as a module over C*°(U) using f* : C>*°(V) — C*>°(U). Then
implies that A, is a C*-derivation as in , so the universal property
of Qceo(yy in Definition gives a unique C'*°(V)-module morphism T, :
Qcoo(v) — C*®(U) with A, =T, 0 dCoo(V). Define

Pt (Veop) : (frop)s(TrY) Viop) X PT*Y (Viop) = (fiop)«(Ox)(Viop),
Ppg(Usop) : (v, B) = Ta(B).

Then Pps(Usop) is linear over (fiop)«(Ox)(Viop) = C*(U) in «, since A, is
C°°(U)-linear in o by Proposition [B20c),(d), and lincar over Oy (Viop) =
C>®(V) in B, via fz(Viop) in .

It is easy to check that these maps Ppus(Uyop) are compatible with restriction
morphisms pv,, w,,, for all open Wi, € Vigp € Yiep. Thus, they define a
bilinear pairing of presheaves Py : (fiop)«(TfY) X PT*Y — (fiop)«(Ox). So
passing to the sheafification yields a bilinear pairing of sheaves

py: (ftop)*(,]}Y) X T*Y — (ftop)*(OX)~
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Using the adjoint property of (fiop)+ and f(opl, as in || we can show that fif
corresponds to a unique pairing

pl THY x fi ol (T7Y) — Ox.

Here pf (a, B) is Ox-linear in a, but fi;! (Oy)-linear in B, using f* : fio}(Oy)
— Ox from §B.1.3] To make u/ Ox-bilinear, we extend it to

W TRY X (foop(TTY) ®so1(0y) Ox) — Ox,
or equivalently, to a morphism of Ox-modules
ul L TY ®oy (Fob(T"Y) @510, Ox) — Ox. (B.21)
When X =Y and f =idx, both uf, py become an O x-bilinear pairing

p,XrTXXT*X—>OX.

B.4.8 Morphisms E — 7;Y, T;Y — F for vector bundles
EF—X

Definition B.30. Let f : X — Y be a morphism in Man, and F,F — X be
vector bundles on X. Then defines the Ox-modules &, F of sections of
E,F, and defines the Ox-module 7;Y. Define a morphism 6 : E — T;Y
to be an Ox-module morphism 6 : £ = T;Y, and a morphism ¢ : T;Y — F to
be an Ox-module morphism ¢ : ;Y — F. That is, in our notation we will not
distinguish between the vector bundles E, ' and their sheaves of sections &, F.
By composition of such morphisms with each other, with morphisms of vector
bundles, and with the O x-module morphisms in we mean composition
of Ox-module morphisms, but identifying vector bundle morphisms Hom(FE, F')
with Ox-module morphisms Homo mod (€, F) as in For example:

() If : E— T;Y and ¢ : T;Y — F' are as above then ¢ 06 : E — F is the
honest vector bundle morphism corresponding to ¢ o6 : & — F.

(b) If: E — T;Y is as above and A : D — E is a vector bundle morphism as
above we get a morphism o X : D — T;Y.

(c) If  : E — T;Y is as above, g : Y — Z is a morphism in Man, and
Tg:T;Y = TgorZ is as in §B.4.6, we get a morphism Tgo 6 : E — TyorZ.

Example B.31. When Man = Man, morphisms 6 : E — TY,¢:TY = F
above are in natural 1-1 correspondence with vector bundle morphisms 6’ : £ —
fY(TY), ¢ : f*(TY) — F in the usual sense of differential geometry.

In Definition we wrote elements « of I'(7;Y) in terms of diagrams (B.5))

in Man. We will now show that any morphism 6 : E — T+Y may be written in
terms of a similar diagram.
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Definition B.32. Let f: X — Y be a morphism in Man, and 7 : E — X be
a vector bundle. Generalizing (B.5)), consider commutative diagrams in Man:

/ il\ (B.22)
E ! )7 v Y,

where O : X — F is the zero section morphism as in and j: V < E is
an open submanifold with 0g top(Xtop) € Viep € Ftop, and unique [ : X — V
with j ol = 0g exists by Assumption d)7 and v : V — Y is a morphism in
Man with v ol = f. For brevity we write such a diagram as the pair (V,v).
Given such a pair (V,v) we will define a morphism 6y, : E — T;Y, in the
sense of Definition Write £ for the Ox-module of sections of E. Let
X' : X' < X be an open submanifold in Man, and set E' = y'*(E) = E|x/, so
that k : B/ < E is open in Man. We must define a C°°(X’)-module morphism

Ov,o(X{op) : E(X{

top

) =T(E) — TV (X{op) = T(Trox'Y).

Suppose ¢’ € I'°(E’), so that €’ : X" — B’ with 7 o€¢’ =idx/. Then there
is a unique morphism &' : X' xR — E’ in Man with &, (z,t) = t-e{,,(v) € E{,
for all z € X{,, and t € R, where t - e, () multiplies ef, (x) in the vector
space B/, C E|{_ byt e R. Let i : U — X’ x R be the open submanifold with

op
Ulop = ég&(Vtop). Consider the commutative diagram in Man:
I f
X : X Y
e N Y [
* u l v
X' xR U m v,
i *
io B 0m i
& . i
E'C E

where morphisms ‘—’ are open submanifolds, and morphisms ‘x’ exist by Assump-
tion [3.2(d). Then U’,#',I';w = vom’ are a diagram for foxy' : X' =Y,
so [U',u'] € T(TforY') by Deﬁnition Define 0y, (X{,)(e) = [U', ]

It is now straightforward to show using §B.4.2] and §B.4.5| that Oy, (X,,) is
a C*°(X')-module morphism, and that the maps v, (X{,,), fv,.(X{,) for open
Xt’gp C Xt’op C Xiop are compatible with restriction morphisms p X[, X0 SO

that 0y, : € = T¢Y is an Ox-module morphism.

Proposition B.33. Let f: X — Y be a morphism in Man, and m: E — X
be a vector bundle. Then every morphism 6 : E — T;Y in Definition is of

the form 6 = Oy, in Definition for some diagram (B.22).

Proof. Let X,Y, f, E,0 be as in the proposition. Write r for the rank of E and
& for the Ox-module of sections of E, so that 6 : £ — T;Y is an Ox-module
morphism. Choose an open cover {xq : X; < X} such that E, := E|x; = x;(FE)
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is a trivial vector bundle over X! for each a € A, and choose an isomorphism

U, : B, —» X! x R" with the trivial vector bundle X! x R" — X/. Write

el ... e’ for the basis of sections of E, identified by ¥, with the canonical basis

of sections of X/ x R". Then e} € £(X/ ,,) = I(E|x:), so 0(X] ,)(ek) €
TrY (X], 1op) = D(Troy, Y). Choose a representative (UF, uf) for 0(X, ,,)(ek) =
[UF,uk] € T(Tfoy,Y) foralla € Aand k=1,...,7, as in so that UF, uf
fit into a commutative diagram :

/
a

(idxl/l ,0) \le foxa
a

ik

X! xR & > Uk . Y.

Apply Assumption (a) to construct a commutative diagram

X/

y \Li‘nk
Ja Va

E‘X{/ng(/IXRT DVQ

Y,

such that j, : V, < X/ x R" is open, and if (z,(0,...,0,5k,0,...,0)) € Va top
with s, the k™ coordinate in R" then (z,s;) € UF,, and uf (z,s:) =
Va,top (T (0,...,0,5,0,...,0)). Actually we apply Assumption a) 2" —r—1
times to choose vg top(, (51, .., $r)) with subsets of the s1,..., s, zero.

The next part of the proof follows that of part (v) of the sheaf property
of 7Y in Proposition Let S4 be the set of all finite, nonempty subsets
B C A. For each B € S write xp : Xz — X for the open submanifold with
XJ'Rtop = Nuen Xl’mop. When B = {a} we have X"{a} = X0, X{a} = Xa- If
C C B lie in S4 then there is a unique {pc : X — X with xp = xc ©€Bc
by Assumption [3.2f(d).

By the same proof as in the proof of Proposition using induction on
|B| and Assumption a), for each B € S4 we choose an open submanifold

kp:Wp—=@cp E|X;3 = Xp x[[pepR" and a morphism wp : Wp—Y with:

(a) XJ’_Lltop X {(0, .. .,0)} C Whtop for all B € Sy4.
or a € A we have a=Veg = Elx = X and Wiy = Vg
b) Fi A h W{ } V. E A X%a} R" and {a}

(c) If C € Bliein Sy and (, (8a)acc 11 (0)aen\c) € W top then (2, (Sa)acc)
lies in W top With we top (7, (Sa)acc) = WB top(Z; (8a)acc 11 (0)aep\c)-

Now apply Proposition to choose a partition of unity {n, : a € A}
on X' subordinate to the open cover {X; ,, : a € A}. Choose an open
submanifold j : V' — E such that 0g top(Xiop) C Viep and if e € Vi, C
Eiop with mop(e) = ¢ € Xiop and B = {a € A:x € suppna,top} then
(@, (Ma,top(®)TRr 0 Wq top(€))acB) € Whtop- By (a) above and local finiteness of
{n4 : @ € A}, this holds for any small enough open neighbourhood of 0g op(Xtop)
in F.
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As for the construction of u : U — Y satisfying (B.18) in the proof of
Proposition there is a unique morphism v : V — Y such that for all
e € Viop with mop(e) =z € Xiop and B = {a € A:x € supp Ua,top} we have

vt0p<e> = wB7t0p<33a (na,tOp(i’?) * TRT © \I]a,tOP(e))aeB)- (B.23)

Then j : V — E and v : V — Y fit into a diagram 7 and so give a
morphism 6y, : E — T;Y by Definition We will show that 6y, = 6.

Let £ € Xiop, and set B = {b cA:72¢ suppnb7top} in S4. Choose an
open neighbourhood R < X of # in X such that Reop C Xy, for all b € B,
and Riop N SUPP e top = O for all ¢ € A\ B. This is possible as supp m.op 1S
contained in X{)’top and closed in Xiop, and {1, : a € A} is locally finite. Let
e € '°(E|gr). Then

Ov.o(Rrop)(e) = ;B NalR - 0V, 00 (Biop) (Valr(€)) = %Bnalzz -0(Riop)(e)

— 1-0(Riop)(€) = 0(Ruop)(e). (B.24)

Here the first step follows from comparing the definition of 6y ,, equation
(B-23), part (b) above, and the definitions of addition and multiplication by
functions in I'(77,Y) in The second holds by definition of (V,,v,)
above in terms of (UF,uf), where 0(X/ ,,)(ek) = [UF,u}], and el,... e are
mapped by ¥, to the canonical basis of sections of X/ x R” — X/. The third
holds as } . is 1 on R since {1, : a € A} is a partition of unity with
Riop NSUpp e top = 0 for all c € A\ B.

Equation shows that for any € X, and any sufficiently small open
neighbourhood Ryop of & in Xiop we have 8y, (Riop) = 0(Riop) @ E(Riop) —
TY (Riop). Since Oy, 0 are sheaf morphisms, this implies that 6y, = 6. O

B.4.9 Notation for ‘pullbacks’ f* by morphisms f: X — Y
We will use the following notation for ‘pullbacks’ f* by morphisms f: X — Y.

Definition B.34. Let f : X — Y be a morphism in Man, and E — Y be a
vector bundle on Y, and £ the Oy-module of sections of E from Then
we can form the sheaf pullback ftgll)(é’ ) as in which is a sheaf of modules

over ft;é(Oy) on Xiop. In §B.1.3) we defined a morphism f* : ft;é(Oy) — Ox of
sheaves of R-algebras or C'°°-rings on Xo,. Thus we may form the Ox-module

ft:)ll)(g) ®ft;;(oy) Ox using f*.

We can also form the pullback vector bundle f*(E) — X as in The
corresponding Ox-module is canonically isomorphic to ftgpl, &) ® fal(0y) Ox,
and we will identify it with ft;;(é‘) ®o1(0y) Ox, and write it f*(&).

Let F — Y be another vector bundle, and # : F — F a vector bundle
morphism, and :E& — F the corresponding Oy-module morphism. Then we
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may form the Ox-module morphism

F(0) = b0 @ idoy : F(E) = Fub(€) 951 0,) Ox —
f*(]:> = ft?)[l)(]:) ®ft;;(oy) Ox.

This is the O x-module morphism corresponding to the vector bundle morphism
f5(0): f*(E) = f*(F) on X, as in

Now let g : Y — Z be another morphism in Man, so we have an Oy -module
T¢Z and an Ox-module TgorZ. We will often treat TgorZ as if it were the
pullback f*(7,Z). This is an abuse of notation: for f? asin and using
iR ft;;(oy) — Ox, we have an Ox-module morphism

P @idoy : fiop(Ty2) Ds1(0y) Ox = Tgof 2 ®0x Ox = Tgos 2. (B.25)

It would be more consistent to write f*(742) = ft;;(TgZ) D51 0y) Ox (though
we will not), but then f*(7,Z) and T2 would be different, as (B.25) need not
be an isomorphism for general Man.

Suppose E, £ are as above, and 6 : E — T,Z is a morphism (that is, 6 : £ —
T4Z is an Oy-module morphism). Define a morphism f*(0) : f*(E) = TgorZ
by the commutative diagram of O x-modules

—1 -1
Fiop(€) @11 (0y) Ox fal®)®ido Jon(Ta2) @15 3100) Ox

fb®idoxl (B.26)
£7(0)
TgosZ @0y Ox = Tgor Z.

Here ftgll) ) (o) Ox is the Ox-module corresponding to the vector bundle

f*(E) — X, as above. Using this notation f*(#) we will avoid using the
morphisms f” in Chapters

Note that if ¢ : 7,Z — F is a morphism, we cannot define a pullback
[*(®) : TygosZ — f*(F), because the morphism goes the wrong way.

Definition B.35. Let f : X — Y be a morphism in Man, and F — Y be a
vector bundle, and ¢ € T'*°(F"). Suppose V is a connection on F, as in
Writing F for the Oy-module corresponding to F', we have t € I'(F), so that
Vt e I'(F ®o, T*Y). Define a morphism f*(Vt) : T;Y — f*(F), in the sense
of by the commutative diagram of Ox-modules

TY TY ;- on(F @0, TY
d ®ial (V1) Y Egp0n UieplF @0y TTY))

IR

(Vi)

3 i (B.27)
idep! Feop(F)®s1 04
(T7Y ®0x (fiop(T*Y) 210,y Ox);

ft?)ll)(]:) ®ftz;((9y) Ox
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where uf is as in 1) and ft;llj(]:) ®4-10,) Ox is the Ox-module corre-
sponding to f*(F) — X, as in Definition

B.5

The O(s) and O(s?) notation

When X € Man, and E — X is a vector bundle, and s € T (E), we now
define several related uses of the notation ‘O(s)’ and ‘O(s?)’. This will be
important in defining the (2-)categories of (m- and p-)Kuranishi neighbourhoods

in Chapters [4H]

Definition B.36. Let X be an object in Man, and F — X be a vector bundle,
and s € I'°(E) be a section. Then:

(i)

(iii)

If F — X is a vector bundle and t1,t2 € I'™°(F), we write ¢t = t; + O(s)
if there exists a morphism « : F — F such that to =t + @ o s in I'°(F).
Similarly, we write to = t; + O(s?) if there exists 8 : E® E — F such that
to =t1 + B o(s®s)in I'°(F). This implies that to = t; + O(s).

We can also apply this O(s), O(s?) notation to morphisms of vector bundles
0,,05 : F — G, by regarding 61, 65 as sections of F* ® G.

If F — X is a vector bundle, f : X — Y is a morphism in Man, and
A1, Ay : F — T;Y are morphisms as in §B.4.8] we write Ay = Ay + O(s) if
there exist open submanifolds ¢ : U < X and j : V — E with st_oi)(()) -
Utop and 0g top (Utop), Stop (Utop) € Viop, S0 that we have a commutative
diagram in Man:

U v U
k}l k2
: j :
X 0e E : X (B.28)
id x j/ﬂ' idx
X

where the morphisms k1, ko exist by Assumption d). Also there should
exist a morphism M : 7#*(F)|y — TrorY |y with k(M) = Ai|y and
k5(M) = As|y in morphisms F|y — T;Y |y, where

ka
for a = 1,2 are as in
If f,g: X — Y are morphisms in Man, we write g = f + O(s) if there is a
diagram (B.28) as in (ii) with 8195(0) € Uiop, and a morphism v : V — Y

top

(M) : k; o W*(F) = F|U — ﬁoﬂokay = EY‘U

in Man with vok; = flu and v o ke = g|y in morphisms U — Y in Man.
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(iv)

(vii)

Let f,g: X — Y with g = f + O(s) be as in (iii), and F = X, G = Y be
vector bundles, and 6, : F — f*(G), 62 : F — ¢*(G) be morphisms. We
wish to compare 61,65, though they map to different vector bundles.

We write 63 = 61 + O(s) if there is a diagram with 3;0; (0) C Usop
and a morphism v : V — Y with vo k; = f|y and v o ke = g|y as in (iii),
and a morphism ¢ : 7*(F)|y — v*(G) with k] (¢) = 01|y and k3 (¢) = 02|y,
where ki (), k3(¢) are as in

Let f,g: X — Y with g = f + O(s) be as in (iii), and F — X be a vector
bundle, and A; : ' — T;Y, Ay : F = T,Y be morphisms, as in §B.4.8
We wish to compare A, A, though they map to different sheaves.

We write Ag = Ay + O(s) if there is a diagram 1' with s{oi,(O) C Usop
and a morphism v : V. — Y with vok; = f|y and voke = g|y as in (iii), and
a morphism M : 7*(F)|y — T,Y with k(M) = Aq|y and k3(M) = As|y,

where k7 (M), k5 (M) are as in §B.4.8|

Suppose f : X — Y is a morphism in Man, and F — X, G — Y are
vector bundles, and ¢ € I'°(G) with f*(t) = O(s) in the sense of (i),
and A : F' — 7T;Y is a morphism, as in and 6 : F — f*(G) is a
vector bundle morphism, as in We write § = f*(dt) o A + O(s)
if whenever V is a connection on G we have § = f*(Vt) o A+ O(s) in
the sense of (i), where f*(Vt) : T;Y — f*(G) is as in §B.4.9| so that
f*(Vt)oA: F — f*(Q) is a vector bundle morphism as i

Note that there exists a connection V on G by Proposition [B.14(a). If
V, V' are two such connections then V' =V +T forI': § —» G ®p, T*Y
an Oy-module morphism, by Proposition b). Then

Fr(V't) o A= f*(Vt) o A+ [figp (D) 0 A]- £*(1),

where fi}([) o A € I°(F* @ f*(G) ® f*(G*)) is a natural section. Thus
f*(V't)o A = f*(Vt) o A+ O(s), since t = O(s). Hence the condition
0 = f*(Vt) o A+ O(s) is independent of the choice of connection V on G.
Note also that the ‘ f*(dt)” in 8 = f*(dt)oA+O(s) is just notation, intended
to suggest this independence of the choice of V.

Let f,g: X =Y with g = f + O(s) be as in (iii), and A : E — T;Y be a
morphism in the sense of We write g = f + Aos+ O(s?) if there
exists a commutative diagram in Man

f g
/ T \ U (B.29)

O

R
K
<<
&
=
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with sgoi,(O) C Utop, where morphisms ¢, j are open submanifolds, and mor-

phisms k1, ko exist by Assumption [3.2(d), and A|y = 0y, as a morphism
E|y — T;Y |y, in the notation of §B.4.8

Theorem proved in §B.9| gives a long list of properties of the O(s),
O(s?%) notation that we need for our theories of (m- and u-)Kuranishi spaces.

Remark B.37. (a) When Man = Man, and to some extent for general Man,
we can interpret the O(s) and O(s?) conditions in Definition in terms of
C*-algebraic geometry, as in §B.1.2/and [56, |65]. As in Proposition we can
make X € Man into a C®°-scheme X = (Xtop, Ox). Given a vector bundle
E — X and s € I'*°(E), we have closed C*°-subschemes S; C S5 C X, where
S is defined by s =0, and S5 by s ® s = 0.

The rough idea is that an equation on X holds up to O(s) if when translated
into C'"*°-scheme language, the restriction of the equation to S; C X holds
exactly, and it holds up to O(s?) if its restriction to So C X holds exactly. For
example, to = t1 + O(S) =2 t2|§1 = t1|§1 and to = t1 + 0(82) =1 t2|§2 = t1‘§2 in
Definition i), for general Man.

Also morphisms f,¢: X — Y in Man translate to C*°-scheme morphisms
f,g: X =Y. Then g = f + O(s) implies that g|g, = f|s, for general Man,
and when Man = Man the two are equivalent. If we think of the O(s), O(s?)
conditions as restriction to S7,Ss then much of Theorem becomes obvious.

(b) In Definition [B.36]i), we could instead have defined to = t; + O(s) in the
style of (ii), using a diagram . One can prove using Assumption that
this would give an equivalent notion of when to = ¢; + O(s), and we implicitly
show this in the second part of the proof of Theorem (f) in

(c) We explain Definition vii). We have Aos € I'(7T;Y), where as in
elements of I'(7;Y") are defined using infinitesimal deformations of f amongst
morphisms X — Y in Man. The equation ‘g = f + A o 5 + O(s?)’ means that
g = f+ O(s), so that g is a small deformation of f near st_OL(O) C Xiop, and to
leading order near 5&)1)(0) is the infinitesimal deformation A o s of f.

We could have generalized Definition vii) to define ‘g = f + v + O(s?)’
for any v € T'(7;Y) with v = O(s). It is not important that v = A o s for some
A: E — T;Y, but we will only use the case v =Aos.

B.6 Discrete properties of morphisms in Man
Here is a condition for classes of morphisms in Man to lift nicely to classes of
(1-)morphisms in mKur, pKur, Kur in Chapters

Definition B.38. Let P be a property of morphisms in Man, so that for any
morphism f : X — Y in Man, either f is P, or f is not P. For example, if
Man is Man® from then P could be interior, or b-normal.

We call P a discrete property of morphisms in Man if:
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(i)
(i)
(iif)

)

(iv

(viii)

All diffeomorphisms f : X — Y in Man are P.
All open submanifolds ¢ : U < X in Man are P.
Iff:X—>Yandg:Y—>ZinManarePthengof:X—)ZisP.

For a morphism f: X — Y in Man to be P is a local property on X, in
the sense that if we can cover X by open submanifolds i : U < X such
that foi: U — Y is P, then f is P.

Some notation: if f: X — Y in Man and S C Xiop then we say that
f is P near S if there exists an open submanifold ¢ : U < X such that
S C Utop € Xiop and foi:U — Y is P. This is a well behaved notion as
P is a local property, e.g. f is P if and only if f is P near each z € Xiop.
All morphisms in Man C Man are P.

Suppose f : X x R — Y is a morphism in Man. If f is P near Xiop X {0}
in X¢op X R, then f is P.

Suppose E — X is a vector bundle in Man, and s € I'*°(E), so that
st_OL(O) C Xiop, and f, g : X — Y are morphisms in Man with g = f+0O(s)
in the sense of Definition iii). Then f is P near s[oi)(()) if and only if
g is P near st_oi,(O).

Suppose we are given a diagram in Man:
U/ C - U C - X
r ' f
g’ P g ;
V'c Ve Y,

where 4,4’, j, ' are open submanifolds in Man, and foi = jof : U’ — Y,
goj’ =iog : V' — X, and we are given points z € Ut’Op C Uop € Xiop and
y € Vt'Op C Viop C Yiop such that fiop() = y and giop(y) = 2. Suppose too
that there are vector bundles E — U’ and F' — V' and sections s € I'°(E),
t € I'°°(F) with s(z) = t(y) = 0, such that go f' =i04 + O(s) on U’ and
fog =jo0j +0O(t) on V' in the sense of Definition iii). Then f, f’
are P near z, and g, g’ are P near y.

Example B.39. (a) When Man is Man® from the following properties
of morphisms in Man€ are discrete: interior, b-normal, strongly smooth, simple.

(b) When Man is Man®&® from §2.4.1| the following properties of morphisms in
Man8€ are discrete: interior, b-normal, simple.

(c) When Man is Man?®® or Man®2¢ from §2.4.2] the following properties of
morphisms in Man are discrete: interior, b-normal, strongly a-smooth, simple.
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B.7 Comparing different categories Man

To each category Man satisfying Assumptions in Chapters [4H6| we will
associate (2-)categories mKur, pKur, Kur of (m- and p-)Kuranishi spaces. As
in there are many examples of such Man, such as Man = Man or Man€,
and many functors between them, such as the inclusion Man — Man®.

Here is an important condition on functors between such categories Man:

Condition B.40. Let Man, Man satisfy Assumptions 3.7, and Fli\/[/l:: :

Man — Man be a functor in the commutative diagram

/) Man %
Man iFl\l‘f:l‘q‘/> Top,
e Man Flop

Man

(B.30)

T T . . . .
where the functors FM(:;’ FM(:; are as in Assumption and the inclusions

Man < 1\'/Ian7 Man as in Assumption We require Fll\\/[/I:: to take products,
disjoint unions, and open submanifolds in Man to products, disjoint unions, and
open submanifolds in Man, and to preserve dimensions.

op

Man . e .  Top ..
Note that Fr2® must be faithful (injective on morphisms), as FMM1 is.

Figure [3.] on page [[47] gives a diagram of functors from Chapter [2] satisfying
Condition [B:40] In Chapters [AH6} when Condition [B:40] holds, we will define
natural (2)-functors

ur ur

pmKur : pKur — pKur, FII-;{UT

mKur

: KUI‘ — I"{ur

. .o K
:mKur — mKur, F*
pKur

between the (2—)cat.§egories mKur, uKur, Kur and mKur, uf{ur, Kur associ-
ated to Man and Man. To do this, we must relate the material of
on differential geometry and the O(s), O(s?) notation in Man and in Man.

Definition B.41. Let Condition hold. We will use accents * *” and * "’ to
denote objects associated to Man and Man, respectively. When something is
independent of Man or Man we omit the accent, so for instance we write Xiqp
for the underlying topological space of X € Man.

Let X be an object in Man, and set X = Fl\l\/f::(X) Then all the material

of on X in Man maps to corresponding material on X in Man in
a straightforward way. Where relevant we use Fl\l\/f:: to denote the functors

transforming structures on X to structures on X. In more detail:

(a) The commutative R-algebra C’°°(X ) in §B.1.1|is the set of morphisms
a: X — R in Man. Applying Fl\l\/faar? gives a map
pMan oo (X)) _y oo X)), (B.31)

Man
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This is injective, as Fli\/I/Ia“ is faithful, and an R-algebra morphism, and a
C®°-ring morphlsm for the C*°-ring structures in §B.1.2]

(b) Section 3| defines the structure sheaves Ox on Xi,, for X € Man and
Ox on Xtop for X € Man. There is a natural morphism FMa“ Ox —

Ox of sheaves of R-algebras or C*°-rings on Xip, such that 1f iU X
is an open submanifold in Man then

FYR0(Up) - O (Usop) = C%(U) — O3 (Urop) = C=(U)

is the morphism (B.31)) for U.

) In E E Fl\l\/i[:: takes partitions of unity, vector bundles, sections,

and Ox-modules of sections of vector bundles in Man, to their analogues
in Man, in the obvious way.

(d) In § , we define the cotangent sheaf T*X as the sheafification of PT*X
Where 1f i:U < X is open in Man then PT*X (Usop) = Qe (1.
Since Fl\l\/f:;‘ : C®(U) — C°°(U) in (a) is a C*°-ring morphism, Definition
[B10] gives a module morphism

PFI\“/fan(Utop): sttt PT X (Urop) = Q= 17y = PT* X (Usop) = Q= (i)

Man

These define a morphism PEy Ma“ : PT*X — PT*X of presheaves on
Xiop- Sheafifying gives a morphlsm For Ma“ . T*X — T*X of sheaves on

Xtop, which is a module morphism under F Man . () x — Ox from (b).

(e) Let E — X be a vector bundle, and € the OX—module of sections of E
from and V: & = € ®p,; T*X be a connection on E, as in
Then one can show there is a unique connection V on E such that the
following diagram of morphisms on sheaves on X,, commutes:

; - £@oy T°X
[ on @ R o 0@ @)
g v 5 ®O}'€ T*X

(f) Let f:X — Y be a morphism in Man, and f: X — V its image in Man
under FMan. Then §B.4.1 define a C*(X)-module T(7Y"). There

is an obvious map

FMan . D(T3Y) — D(T3V), FMen . (0,4] — [0, (B.32)

To see this is well defined, note that in Definition | if (U, 0) ~ (U4
in Man then (U, i) ~ (U’ i) in Man, as j,V, v in Man satlsfylng (B.6)

map to 7j, V,% in Man satisfying , SO [U ] in 2) depends only
on the equivalence class [U, 4.

Equation (B.32) is a module morphism under (B.31)).
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(2) Sectlonmdeﬁnes the sheaves of O x-modules 7 X and TfY Using (B
we define sheaf morphisms F Man . 7% . TX and For Man 7}Y — TfY

which are module morphisms over F Man :0x = Ox from (b).

F Man jq compatible with the definitions and operations
t e

) v1ous Way

(i) In FMan maps all the O(3) and O($?) conditions in Man from
Qeﬁnltlon i)—(vii) to the corresponding O(3) and O(5?) conditions in
Man, in the obvious way.

Remark B.42. The definitions of §B.1}-4B.5 have been carefully designed so

that material for Man all transforms functorially to Man under FMan without

problems, as in Definition [B:41} It would have been easy, and more obvious, to
write down definitions which lack this functorial behaviour.

Here is an example of this. Let f X Y be a _morphism in Man. In
§B.4.3| we discussed relative (C'>°- )derivations A:C>®(Y) = C°(X). These are
a natural notion of vector field over f, and we could have defined [(7;Y) in

as a C°°(X)-module of such derivations. However, in the diagram

o= (¥) _ 0= (%)
R . R
C>(Y) = C>(X),

it is unclear whether a relative (C°°-)derivation A must exist, or if it is unique.

So defining TfY using (C'°°-)derivations would not be functorial under F M:“

For an inclusion of subcategories Mlan C Man we can say more:

Proposition B.43. Suppose Fam : Man < Man is an inclusion of subcate-

gories satisfying Condition ?zr;Ld either:

(a) All objects of Man are objects of Man, and all morphisms f: X — R in
Man are morphisms in Man, and for a morphism f: X =Y in Man to
lie in Man is a discrete condition, as in Definition or

(b) Man is a full subcategory of Man closed under isomorphisms in Man.

Then all the material of §B .. 5| for Man is exactly the same if com-
puted in Man or Man and all the morphisms FMa: in Definition are the

identity maps. For example, if f: X — Y lies in Man C Man then the relative
tangent sheaves (TrY )xtan, (T5Y )xtan 01 Xiop from “. computed in Man and
Man are not just canonically isomorphic, but actually the same sheaf.

Proof. Suppose we start with an object X in Man, or a morphism f: X — Y
in Man, and then construct differential-geometric data in & such as
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C>®(X),0x,T*X, TX or T;Y, either in Man, or in Man. The point of the
proof is that when we do this in Man, the constructions only ever involve objects
and morphisms in Man C Man, so that the data C* (X),0x,...,T;Y are the
same when computed in Man or Man.

Mostly this is straightforward to check, and we leave this to the reader.
For example, for X € Man the C>-rings C°(X )yran; C°° (X )51an are the sets
of morphisms f : X — R in Man and in Man. In case (a) these coincide
by assumption, and in case (b) they coincide as Man C Man is full. Then
Ox,T*X are the same in Man and Man as they are constructed from C*°-rings
C>°(U) for open i : U < X, which are the same in Man and Man.

We explain one subtle point concerning 7;Y. Let f : X — Y be a morphism
in Man, and consider the definition of T'(7;Y) in Definition in Man
and Man. In case (a), for a diagram in Man, it is clear that the data
X,Y, X xR, f,i, (idx, 0) lie in Man C Man, but it is not obvious that u : U — Y’
lies in Man. However, we can prove this using Definition

Taking £ = U x R — U to be the trivial line bundle and defining s € I'*°(E)
by s(z,t) = ((z,t),t), we see from that u = f omx + O(s) in morphisims
U — Y in Man. But f onx lies in Man, so u lies in Man near Xop, x {0}
in Uyop by Definition m(vii). Then using Definition i)f(iv),(vi) and the
assumption in Definition @ that Uiop can be written as a union of subsets

Xiop X (—€,€) in Xiop X R for X, C Xiop open and € > 0, we can deduce
that u: U — Y lies in Man, SO is a diagram in Man C Man. Similarly,
for j: V< X xR? v:V — Y in Man satisfying used to define the
equivalence relation & on pairs (U, u), making V smaller we can suppose that
Viop = X{op X (—€,€)* for & € X{,, and then V,j,v lie in Man C Man, so

that T(7T7Y )ytan = D(TFY ) stan- J

B.8 Differential geometry in Man®

Suppose Man® satisfies Assumption in Then Man® satisfies Assump-

tions SO applies in Man®. Section introduces new

material for the corners case, such as morphisms I : I, (TX) — TCR(X)

analogous to those in (2.13). Section compares differential geometry in
B.7

two categories Man®, Man®, as in §

B.8.1 Action of the corner functor on tangent sheaves

In 4.6, for an m-Kuranishi space with corners X in mKur® we define the
boundary 90X and k-corners Cy(90X), and we define the corner 2-functor C :
mKur® — mKur®. To do this, for a manifold with corners X in Man® with
k-corner morphism IIj, : Cj,(X) — X as in Assumption [3.22|d), we must lift
differential geometry on X to differential geometry on Cy(X).

Much of this follows by applying pullbacks in §B.1}-B.5] to II;. But we need
one extra structure relating (relative) tangent sheaves on X and Cj(X).
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Definition B.44. Suppose f : X — Y is a morphism in Man®, so that
C(f) :C(X) - C(Y)and IT : C(X) — X are morphisms in Man®. Then
5| defines the relative tangent sheaves T;Y" on Xiop and To(p)C(Y) on

C(X)mp k0 Cr(X)top, extending from Man® to Man® in the obv10us way.
We will define a morphism of sheaves on C'(X)top:

Iji : H,;;(']}Y) — Tc(f)C(Y), (B.33)

which is a module morphism under IT* Htop(OX) — Oc¢(x) from ‘ 3l where

Ot (T;Y ); Te(pnC(Y) are modules over Htop(OX) Ocx) respectlvely, as in
This does not follow from our previous constructions for C(f),II, it is a
new feature for manifolds with corners Man®.

First we define an R-linear map

L(Iyo) : T(T;Y) — T(TenC(Y)). (B.34)

Recall from §B.4.1| that I'(7;Y) is the set of ~-equivalence classes [U,u] of

diagrams (B.5) in Man®, where ~ is defined using j: Ve X xR* 0:V Y
in Man® satisfying . We have canonical isomorphisms

C(X x R) = C(X) x C(R) = C(X) x Co(R) = C(X) x R, (B.35)

where the first step comes from Assumption h), the second from Assumption
3.22((e), and the third from Iy : Cy(R) — R an 1som0rphlsrn in Assumption
3.22(d). Applying the corner functor C' : Man® — Man® to and making
the identification |-) gives a commutative diagram in Man

‘ C(X)
(ido(x),0) \LC(Z) C(f)
C(X) xR © Sy —2W o),

which is a diagram (B.5) for C(f). Hence [C(U),C(u)] € I'(T¢,C(Y)). Simi-
larly, applying C to j: V < X x R? v : V — Y satisfying shows that if
(U,u) = (U',u) then (C(U),C(u)) =~ (C(U"),C(u)), so the ~-equivalence class
[C(U), C(u)] depends only on [U,u]. Define I'(If,) in by

I(Ifo) : [Uu] — [C(U),C(u)].

Now ['(7;Y) is a module over C*(X) as in §B.4.2] and T'(7¢ () C(Y)) a mod-
ule over C*°(C(X)), and §B.1.1| defines a morphlsm 10 - C®(X) = C>®(C(X)).
If a € C*(X), so that a: X — R is a morphism in Man®, then Assumption
3.22|(g) implies that

I*(a) =aoll =1l 0o C(a) : C(X) — R in Man®,

where Il : Co(R ) R) =3 R is used in the identification l) Using this we can
easily show that (B.34) is a module morphism under IT* : C*°(X) — C*(C(X)).
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Suppose f: X — Y and ¢ : Y — Z are morphisms in Man®. Then
defines morphisms I'(Tg) : I'(T;Y) = I'(Tgos Z) and f* : T(T,Z) — T(T4or Z),
and similarly for T'(TII),T(TC(g)) and II*,C(f)*. By applying the corner
functor C to the definitions we see that the following diagrams commute:

L(75Y) S L'(Te)CY))

ln* rmw (B.36)

I'(TonnY) I'(Tnec(nY),

L'(7;Y) T(If0) L(TenC(Y))

lr(m r(TC(g))j{ (B.37)
T'(Igof,0)

NV = L(Te(gor)C(2)) = T(Te(g)ecs) C(2)),

[(7,2) ) (7o) C(2))

\Lf* | B3
T(Igof,o)

F(Eon) ! F(TC(gof)C(Z)) = F(TC(Q)OC(f)C( ))

Let i : X" < X be an open submanifold in Man®, so that C(i) : C(X') <
C(X) is an open submanifold in Man® by Assumption MJ) Define

Ito(Xiop) = TTpoi0) : (TFY)(X{op) = D(TjoiY)
— (Isop)+ (To (1 C(Y)) (X{op) = Ton C(Y) (Mg (X{op))
= Te(nCYNC(X top) = T(Te(5)ocC(Y)) = T(Te (o C(Y)).

We claim that these If,Q(Xt/op) (TrY')( top) (Htop)*(Tc(f)C(Y))(Xt’op) for
all open X{  C X, define a sheaf morphism

It TrY — (Iiop)«(To(nC(Y)) (B.39)

on Xop, asin To prove this let Xtop C X{op € Xiop be open corresponding
to open submani olds i: X' X,j: X" = X' and use with 7, foi in
place of f,g to show that Iy .(X{,,) o px:. x17 = pxi_xp © If7 (X{op). Here

top“*top top“*top

T7Y, (Hiop)« (Te(5)C(Y)) are modules over Ox, (Iop)« (O (x))- As

module morphism under II* : C*(X) — C*°(C(X)), we see that Iy, in (B.39)
is a module morphism under ITy : Ox — (Iliop)«(Oc(x)) from §

erte I° in - ) for the sheaf morphism on C(X)op adjoint to If . under
Slnce It . is a module morphism under Hﬂ OX — (Htop (Oc(x)), and

H‘i tOP(OX) — O¢(x) is adjoint to Iy under as in we see that
I¢ is a module morphmm under IT%.

If f is simple, so that C(f) : C(X) — C(Y) maps Cr(X) = Cr(Y) for k>0
by Assumption i), then I} restricts to I§ : IT, tOp(7}Y) — Tew () Cr(Y) for
each k. When f =1idx, which is simple, with TX = Tiq, X, we write [ as I :

k tOP(TX) — TCk(X). This is an analogue of I : I} (*TX) — bT(Ck( )) in
for ordinary manifolds with corners Man®.

op

270



Suppose f: X — Y and ¢ : Y — Z are morphisms in Man€. Then by using
(B.36])(B.38) for all open subsets X{,, € Xiop, Yiop € Yiop, We can show that

the following diagrams of sheaves on Xy, and Yio, commute:

TrY i (Itop) «(To(s) C(Y
\LH., (Igop )« (T II)
(Htop)*(’]-foHY) (Htop) (7}100 f)Y>7
Y (Miop )« (Ton C(Y))

Iy,

7o

TC(g

Igo ;O
7.:]on d (Htop)*(TC(gof)C(Z)):(Htop) (TC’(g oC(f (

T9Z i (Miop)« (T () C(2))
lfb (Itop)« (C(£)s)
(Ftop)+ (gor.o) (ftOp)* o (HtOP)*(TC(gOf)C( ))
o ofZ
(Jron)«(Toor 2) (Meop)- © (frop ) (Tetaoctn C(2)),

where f,,Tg are as in § Then using the adjoint property of I, f, and
I3, f” we deduce that the following diagrams of sheaves on C'(X )top cOmmute:

iy (77Y) - TonC(Y)
f
\Lnb TH\L
7—foHY 7}[06’(f)Y
I L (T7Y) = TeinC(Y)
f
|mess) T&g)j{
Ija .
oo (Tgor Z) . Te(gor)C(Z) = Te(gyoc(1)C(Z),
Ht_ipoft_%)(TZ) -1
op © Jto C(Hk (TenC(Z
C(f)top o Htop(T Z) C(f)t_o;(lg) (f)t p( co ( ))
l L) (s
I;O
ooy (Tgor Z) d TegonC(Z) = Te(grec(r)C(Z).

(B.40)

(B.41)

We use these I} to pull back morphisms E — T;Y by Il : C(X) — X.

Definition B.45. Let f : X — Y be a morphism in Manc, and F — X be
a vector bundle on X, and § : E — 7;Y be a morphism on X in the sense
of so that 6 : &€ — T;Y is an Ox-module morphism, where £ is the

Ox-module of sections of E as in §B.2.2]
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Then we have a morphism C(f) : C(X) — C(Y)) in Man®, and pulling back
by Il : C(X) — X gives a vector bundle IT*(E) — C(X). Define a morphism
°(0) : I*(E) = Tor)C(Y) on C(X) by the commutative diagram

IT*(£) Miop(€) @21 0x) Ootx)
EN0

TenC(Y) ML (O®idogy, | (B.43)

oo
If®‘doc(x)

TonC(Y) ®ocx, Oc(x) iy (T5Y) ©p1-1 (0) Oc(x)s

1
where IT*(€) is the O¢(x)-module of sections of IT*(£) — C'(X), and the bottom
morphism in (B.43) is formed using the morphism IT* : T71(Ox) — Oc¢(x) from
B.1.3| and is well defined as IS is a module morphism over IT.

n Definition given a diagram involving v : V. — Y for open
V — E with 0g top(Xtop) € Viep € Eiop, we defined a morphism 6y, : E —
T¢Y, and Proposition showed that every morphism 6 : E — T;Y is of
the form 6 = 6y, for some diagram (B.22). We can use this to interpret
I1°(#): applying C : Man® — Man® to li gives a diagram for
C(f):C(X)— C(Y) and II*(E) — C(X) in place of f, E. Hence 0c(v),c(v) is
a morphism IT*(E) — To5)C(Y), and it is easy to see that

I°(Ov.v) = Ocv),c(v)- (B.44)

We think of II°(6) as a kind of pullback of § by I : C(X) — X.

We write the restriction II°(6)|c, (x) for & = 0,1,... as II3(#). Thus if
f X — Y is simple, so that C(f) maps Ci(X) — Ci(Y) by Assumption [3.22]i),
we have morphisms IIf(0) : I} (E) — T, (nCr(Y) for k=0,1,....

Example B.46. Take Man® = Man€, and let f : X — Y be an interior map
in Man®, and £ — X be a vector bundle. Then 7Y is the sheaf of sections
of f*(°TY) — X, as in Example b),(c), so morphisms 6 : E — T;Y
correspond to vector bundle morphisms 6 : E — f*(*TY) on X. Then II°(6)
corresponds to the composition of vector bundle morphisms on C(X):

() —— o o f+(*TY) = C(f) oIl (¢ T) “L 5L oy poro)),

where IS : II*(°TY) — *TC(Y) is as in (2.13).
Here are some properties of the morphisms II°(9):

Theorem B.47. (a) Let f: X — Y be a morphism in Man®, and E — X be
a vector bundle, and 6 : E — T;Y be a morphism, in the sense of §B.4.8 Then
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the following diagram of sheaves on C(X)op commutes:

I*(E) @) TopC(Y)
in*(@ 7]
7}OHY 7}IOC(f)}/a

where TII and I1*(0) are defined in §B.4.6| and §B.4.9]
(b) Let f: X — Y be a morphism in Man®, D,E — X be vector bundles,
A: D — E a vector bundle morphism, and 0 : E — T;Y a morphism. Then

T1°(0 0 A) = T1°(6) o IT*(A) : IT*(D) — Te ) C(Y).

(c) Let f: X =Y, g:Y — Z be morphisms in Man®, and E — X be a vector
bundle, and 0 : E— T;Y be a morphism. Then the following diagram of sheaves
on C(X)iop commutes:

IT*(E) =) TonC(Y)
l/HQ(TgOG) TC(g)\L
Te(go)C(Z) === Tc(g)oc(1)C(Z).

(d) Let f: X =Y, g:Y — Z be morphisms in Man®, and F —Y be a vector
bundle, and ¢ : F' — T4Z be a morphism. Then

C(f)*@1°(p)) =T°(f*(¢)) : C(f)* o II*(F) =1I" o f*(F)
— Tegoc(nC(Z) = Togey) C(Z).

Proof. Part (a) can be proved by combining equations (B.26), (B.40) and (B.43])).
Part (b) follows from the commutative diagram

H*(D) H;);(D) ®n;&)(ox) OC(X)
J/H*(/\) i, (M ®idog ) |
I1°(6oN) H*(g) Ht_oio(g) ®H;OL(OX) OC(X) )
¢n°(9) L (00))
®idOC(X)
TenCY) L (0)®idoy,
H I}>®id00(x) H;);(’]}Y)

TonCY @) -
et ) Boce Oco ®izt 0 Oc):

which combines equation (B.43) for 6 and for 6 o A.
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Part (c) follows from the commutative diagram

* —1
I (5) Htop(g) ®H;O;(OX) OC(X)
° (0) 55 (0)®idog i
I7@idocx) i (T7Y) 11, (T go0)
1 (7g00) | T C(Y X O top top g
(s0) | Ton O Gown ZOX) ®H;L(OX)OC(X) ®idog(x,)
TC(g) I, (Tg)®idog i

o : —
Tgor®idoc ) Mgy (Tgor Z)
B —

onC(Z @)
To(gor)C(2) ®0cix) Oc(x) ®H;OL(OX)OC(X)’

which combines (B.43|) for 8 and 7go 6, and (B.41]) in the bottom square.
Part (d) follows from the commutative diagram

I o f*(F) == Hiop © fiop(F) @n-tof1(0y) Oorx)
ll‘ﬁ(d)) I op 0 frop (9)®idog ) i
. C(HeopI5) o
o @) |CWiop(Te@C(2)) - Focen gy © fiop(TyZ) | gy (s ()
=II (f (¢)) ®C(f);o})(oc(y))oc(x) ®H;01,0f;0}1)(0y)oc(x) ®1dOC(X)
lcu)b@id%(x) ooy (F)®idog « i
To(gor)C(2) Ig05®idoc x, Wiy (7501 2)
R0ex, Oc(x) ®H;;(OX)OC(X)7

which combines (B.43) for ¢ and f*(¢), and (B.26)) for f*(¢) and C(f)*(II°(¢))
in the right and left triangles, and (B.42) in the bottom square. O

We show that all the O(s) and O(s?) notation of Definition i)—(vii) on
X pulls back under II : C(X) — X to the corresponding O(II(s)) and O(II(s)?)
notation on C(X), using II° to pull back morphisms A : E — T;Y.

Theorem B.48. Let X be an object in Manc, and E — X be a vector bundle,
and s € T°(E) be a section. Then:

(i) Suppose F — X is a vector bundle and t1,to € I°°(F') with to =t1 + O(s)
(or ty = t; + O(s?)) on X as in Definition (1) Then IT*(ty) =
IT* (t1) + O(I1*(s)) (or I*(to) = IT*(t1) + O(IT*(s)?)) on C(X).

(ii) Suppose F — X is a vector bundle, f: X — Y is a morphism in Manc,
and Ay, Ay : F — T;Y are morphisms with Ay = A1 +0O(s) on X as in Def-
inition [B.36{(ii). Then Definition gives morphisms I1°(A1),TI°(As) :
II*(F) = TonC(Y) on C(X), which satisfy 11°(Az) = II°(Ay) + O(I1*(s))
on C(X).
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(iii) Suppose f,g: X — Y are morphisms in Man® with g = f 4+ O(s) on X
as in Definition [B.36(iii). Then C(g) = C(f) + O(II*(s)) on C(X).

(iv) Suppose f,g : X — Y with g = f+ O(s) are in (iii), and F — X,
G — Y are vector bundles, and 61 : F — f*(G), 0 : F — ¢*(G) are
morphisms with 03 = 01 + O(s) on X as in Definition [B.36(iv). Then
I1*(03) = I1*(61) + O(IT*(s)) on C(X).

(v) Suppose f,g : X — Y with g = f+ O(s) are in (iii), and F — X
is a vector bundle, and Ay : ' — T;Y, Ay : F' = 1Y are morphisms
with Ay = A1 + O(s) on X as in Definition v). Then C(g) =
C(f)+O(I*(s)) on C(X) by (iii), and Definition gives morphisms
HQ(Al) : H*(F) — Tc(f)C(Y), HQ(AQ) : H*(F) — Tc(g)C(Y), which
satisfy II°(Ag) = II°(A1) + O(II*(s)) on C(X).

(vi) Suppose f: X — 'Y is a morphism in Man®, and F — X, G = Y are
vector bundles, and t € I'°(G) with f*(t) = O(s), and A : F — T;Y
is a morphism, and 0 : F — f*(QG) is a vector bundle morphism with
0 = f*(dt) o A+ O(s) on X as in Definition vi). Then II*(0) =
C(f)*(dIT*(¢)) o II°(A) + O(I1*(s)) on C(X).

(vii) Suppose f,g: X =Y with g = f+ O(s) are in (iii), and A: E — T;Y is
a morphism with g = f + A os+ O(s?) on X as in Definition (Vii).
Then C(g) = C(f) +T°(A) o II*(s) + O(I1*(s)?) on C(X).

Proof. Part (i) is immediate on applying IT* to Definition [B.36{1).

For (ii), Definition ii) gives a diagram with 5{0;(0) € Uyop and
M : m*(F)|v = TjorY with k¥ (M) = Aq|y and k35(M) = As|y. Applying the
corner functor C' to gives a diagram for IT*(F) and C(f) : C(X) —
C(Y), with TI*(s) oL (0) € C(U)op. We have

top
(M) : C(m)" o II*(F) vy — Te(procmC(Y),
and k(M) = A|y, k3(M) = Aoy and Theorem [B.47|(d) imply that
C(k1)" o (M) =II°(A1)|cy and  C(kz)" o II°(M) = II°(A2) [ c(v).-
Thus Definition [B.36[(ii) implies that II°(A2) = II°(A;) + O(IT*(s)).
Parts (iii),(iv) are immediate on applying the corner functor C' to Definition

[B36[(iii), (iv). Part (v) follows by a very similar argument to (ii).
For (vi), choose a connection V on G — Y, so that § = f*(Vt)o A+ O(s) as
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in Definition i),(vi). Consider the diagram of sheaves on C(X):

TonCY) B} (B.45)
11°(A) l C(f)" (VI (1))
TII
I (F) = Tec(n)Y = (foI*(G) =
_ o* (A °C(f) FoIl)* (Wt 1,
I, L (F) D Treny U™ 121 (£+(@))
®H;L(OX)OC(X) ®OC(X)OC(X) ®H§)L(OX)OC(X)

_ ) 1’ ®id
o=t (A \ Ocix T / |
top (M) ®ido g (1) 0 T L (F (V) ®idog

iop(T3Y) @21 (0) Ocx)-

Here the top left triangle commutes by Theorem [B.47|(a), and the bottom left
by . We can show using the ideas of B.4| that there is a natural
pullback connection V! = I1*(V) on II*(G) — C(Y) such that the top right
triangle of commutes, for any t € ['*°(G).

We can prove from the definition of u/ in §B.4.7|that the following commutes,
asII: C(X) = X, f: X — Y are morphisms in Man®:

Moop (T7Y) X Wigp, © fiop(T7Y) —— = iy (Ox)

J/beid . nﬁjl (B.46)
foll

TrontY x (f o M) (T*Y) : Ocx).

Then comparing (B.27) for (f o II)*(V¢) with the pullback of (B.27) for f*(Vt)
by Ht_oi), and using |D we find the bottom right triangle in l) commutes.
Therefore (B.45) commutes, so that

C(f)* (VI (1)) 0 TI°(A) = T, (f*(V1)) @ idog ) © Higp(A) @ ido
=1II"(f*(Vt) o A).
Since 0 = f*(Vt) o A + O(s) we have IT*(0) = IT*(f*(Vt) o A) + O(IT*(s)) by
part (i), so IT*(0) = C(f)*(VHIT*(¢)) o II°(A) + O(II*(s)), proving part (vi).
For (vii), Definition [B.36(vii) gives a diagram 1’ with st_oi)(O) C Ugop and
Aly = 0v,,. Applying the corner functor C to (B.29) gives a diagram (B.29) for
C(f),C(g) : C(X) = C(Y), with II*(s);o(0) € C(U)top, and (B.44) yields

I (Mlew) =T (Alv) =TI°(0v.) = Oc(v).c)-
Thus Definition vii) gives C(g) = C(f) + I°(A) o II*(s) + O(I1*(s)?). O

B.8.2 Comparing different categories Man®

Condition in gave a way to compare two categories 1\'/L'am7 Man
satisfying Assumptions [3.1 Here is the corners analogue. Figure[3.2]on page
[[-53] gives a diagram of functors from Chapter [2 satisfying Condition [B.49]
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Condition B.49. Let Man®, Man® satisfy Assumption and FM::C

c

Man® — Man® be a functor in the commutative diagram, as in (B.30)):

v c Top
e L
Man— M;/ Top.
C \ / c Top
Man FEoP

We also require:

(i)

(i)

F‘K}I‘a‘t’llc should take products, disjoint unions, open submanifolds, and

simple maps in Manc to products, disjoint unions, open submanifolds,
and simple maps in Man® , and preserve dimensions.

There are canonical isomorphisms F > Man ' (Cr(X)) = Cy, (Fl\l\/f::c (X)) for

N — M ~ M
all X in Man® and k£ > 0, so k = 1 gives FM::C (0X) = 8(FM:‘:C (X)).
These isomorphisms commute with the projections II : Cr(X) = X and
I : Cu(Ci(X)) = Cr(X) in Man® and Man®, and induce a natural

isomorphism FMam oC=CoF Ma:c of functors Man® — Man®.

Remark B.50. Condition implies that FMan Man® — Man® aa‘msﬁes
Condition [B Thus §B.7] apphes so that all The material of 4B.1-9B.5]
Man® maps functorially to its analogue in Man®.

Because

F Ma: is compatible with the corner functors for Man®, Man® by

Condition [B.49((ii), these functorial maps from geometry in Man® to geometry
in Man€ are also compatible with the material of 3‘. In more detail:

(a)

Use the notation of Definition so that accents ‘"’ and ‘"’ denote
objects associated to Man® and Man®, respectively.

Suppose f:X = Y is a morphism in Man®, so that C(f) : C(X) —
C(Y) and II : C(X ) — X are morphisms in Man®. We have relative
tangent sheaves 77Y on Xiop and 7o (HCY) on C(X)op, defined using
differential geometry in Man , and Definition E defines a morphism
I; L (T7Y) = TeyC(Y) of sheaves on C(X)op.

Write f : X —>.Y for the image of f : X — Y in Man®. Then we
have sheaves T§Y" on Xiop and 7o (f)C(Y) on C(X)iop and a morphism
I;; : Ht_O}D (TFY) = TepHC(Y), deﬁned using differential geometry in Man®.

Deﬁnitior.l g) gives .s.heaf morphisms Fl\l\f::: : 7}Y — 7}Y and FI\IS/iIan: .
TehHCY) = T C(Y). Applying Fl\l\/f::: throughout Definition [B.44
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and using Condition ii), we see the following commutes:

L (T7) . TepC(¥)
Lt R |
HtOL(Tf"Y) Te;HC(Y).

(b) In a similar way to (a), 1ff c X - Y is a morphism in Man®, and E — X
is a vector bundle on X, and 6 : £ — T;Y is a morphism, then the
following diagram of sheaves on C(X)op commutes:

T({E) @) Teh® (j)
Fgeng Fpens
. 11°(6 .
i+ (&) @ TonC(F).

B.9 Proof of Theorem 3.17]

We now prove Theorem a)—(v). Though the theorem refers to the informal
Definition which summarizes Definition [B:36] we use the precise notions
from Definition m Throughout this section, let X be an object in Man, and
7w : E — X be a vector bundle, and s € I'*°(E) be a section.

Proof of Theorem [3.17|(a), parts (i),(vi)

Let F — X be a vector bundle, ¢;,t; € T'°(F), and {X, : a € A} be a
family of open submanifolds in X with st_oi,(O) C Upea Xatop € Xtop, with
to|lx, = t1]x, + O(s) on X, for a € A. We will show that to =t; + O(s) on X.

Set Xoo = X \ s71(0), so that {X, : a € A} Il {X} is an open cover of
X. Choose a subordinate partition of unity {n, : a € A} I {nw} on X, as
in As to|x, = t1|x, + O(s) there exists a, : E|x, — F|x, such that
ta]x, = t1]x, + @q 0 s|x, in [*°(F|x,) for a € A, by Definition [B.36]i). Since
s#0on Xoo = X \ s71(0) there exists € € I'>°(E*|x_) with € (s|x.) = 1.
Define a: E— Fon X by a =3 c40a- Qa4+ Mo - (t2 — t1) ®e. It is easy to
check that 5 = t; + a0 s, s0 ta = t1 + O(s) on X. Thus the ‘O(s)’ condition in
Definition i) is local on st_oi,(O) C Xiop, as we have to prove.

The same method shows the ‘O(s?)’ condition in Definition M(l) is local
on 3;01,(0). Also Definition vi) is local on 5{013(0), as it is defined using (i).

Proof of Theorem [3.17(a), part (ii)

Let F' — X be a vector bundle, f : X — Y be a morphism in Man, and A, A :
F — T;Y be morphisms. Suppose {X, : a € A} is a family of open submanifolds
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in X with 3;0;(0) C Uaea Xatop € Xtop, With Ao|x, = A1]x, +O(s) on X, for
a € A. We will show that Ay = A; + O(s) on X.
As As|x, = A1|x, + O(s), by Definition ii), for each a € A there exists
B

a commutative diagram (B.28]) in Man, with st_op(()) N Xatop € Ua top € Xa top:

U, Va Us
\L‘\ kl,a, \£\ k2,a, \L‘\
0rlx, 5 x4
Xa \ | / Xa (B47)

where morphisms ‘=’ are open submanifolds, and there is a morphism M, :
7T*(F)|Va — 7—foﬂ—Y|Va with kia(MG) = Alan and k’;’a(Ma) = A2|Ua-

Let U — X and V — E be the open submanifolds with Us,p, = UaeA Uaq top
and Viop = U, Va,top- Then 8;01)(0) C Utop, since s{oi)(O) N Xa.top € Ug top C
Uiop for a € A and st_oi)(()) C Ugea Xatop- By taking the union of
for a € A, we see that U,V fit into a commutative diagram , including
morphisms ki, kg : U — V with k;|y, = ki o fori=1,2 and a € A.

Now {V, : a € A} is an open cover of V. Choose a subordinate partition of
unity {n, : a € A} on V. Define a morphism M : 7*(F)|y — Tjor Y|y on V by
M =3, caMa-Mg. Here ng - M, is initially defined only on V, C V, but extends
smoothly by zero to all of V' as suppn, C V,. For i = 1,2 we have

ki (M) = kf( > Na- Ma) = > ki(na) - k;a(Ma) = > ki(ma) - Nilu, = As,
acA a€A acA
using k7 ,(My) = A4y, in the second step and ) 7, = 1 in the third. Thus
and M imply that A; = A1 + O(s) on X, by Definition [B.36[ii).

Proof of Theorem [3.17(a), parts (iii),(iv),(v),(vii)

Let f,g: X — Y be morphisms in Man, and {X, : a € A} be a family of open
submanifolds in X with 3;0;(0) C Usea Xatop, such that g|x, = flx, + O(s)
on X, for a € A. We will show that g = f + O(s) on X.

By replacing each X, by a subcover {X,;, : b € B,} of X, with E|x,, trivial,
we can suppose that F|x, is trivial for all a € A, and choose a trivialization
E|x, = X, x R", where r = rank E.

Since g|x, = flx, +O(s) on X,, by Definition iii) there exist a commu-
tative diagram and a morphism v, : V, = Y in Man with v,0k1 o = flu,
and v, 0 k2 ¢ = g|y, in morphisms U, — Y, for all a € A.

The next part of the proof follows that of Propositions and [B:33] Let
Sa be the set of all finite, nonempty subsets B C A. For each B € S4 write
Xp — X for the open submanifold with X top =) X top- Let X' — X
be the open submanifold with X{,, = U,c4 Xatop-

As in the proof of Proposition using induction on |B| and Assump-
tion a), for each B € S4 we choose an open submanifold kg : Wp —
Dres Elxs = X x [[,ep R and a morphism vp : Wp — Y such that:

a€B
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(a) 570b(0) x {(0,...,0)} C W top for all B € Sa.
b) For a € A we have Wi » =V, < E|x, = X/ ; x R" and vya1y = v,.
{a} a {a} {a}

(c) If 2 € Xiop and t, € R for b € B with >, zt, = 1 and (z,(ty -
stop(2))beB) € W top then vp sop (2, (b - Stop(2))seB) = Gtop(@)-

(d) If C € Bliein Sy and (z, (€q)acc H(0)aep\c) € WB top then (1, (€q)acc)
lies in W top With ve top(2, (€a)acc) = VB top(T; (€a)acc 11 (0)aep\c)-

Here to prove part (c), which does not occur in the proof of Proposition m
we use vg 0 k2 o = glu, for ko 4 as in in the first step when B = {a}, and
Assumption B.7(b) in the inductive step.

Now apply Proposition to choose a partition of unity {n, : a € A} on X’
subordinate to the open cover {X, 1op : @ € A}. Choose an open submanifold
j : V < E such that OE,top(s{o;(O)) C Viop and if e € Viop C Eiop with myep(e) =
z € Xiop and B = {a € A:x € supp na,top} then (x, (M4,top () €)acB) € WB top-
By (a) above and local finiteness of {n, : a € A}, this holds for any small enough
open neighbourhood of OE’top(s{O;(O)) in E.

As in the proof of Proposition there is a unique morphism v : V — Y
in Man such that for all e € Viop With mop(e) = € Xyop and B = {a cA:
T € supp na,top} we have

Utop(e) = UB,tOp(m, (na,top(x) “€)aen)- (B.48)

Let U < X be the open submanifold with Uiep = Og}top(Vtop)ﬂs;O;(pr). Then
S{OL(O) C Utop, as OE7top(st_O})(())) C Viop. Then by Assumption (d) there are
morphisms ki, ks making a commutative diagram (B.28]). For z € Uy, with

B= {a cA:x¢€ Suppna,top} we have

(U o kl)top(x) = Utop © OE,top(x) = 'UB,top(x’ (Tla,mp(l“) : O)QEB)
= UB,tOD(m (O)GEB) = U{b},tOp(xao) = Ub’tOP(OEchp(x)) = (f‘U)t0p($)>

(v 0 k2)t0p(T) =Vtop © Stop (%) =VB top (T, (Ma,top(T) * Stop(T))aeB) = (9]U)t0p(2),

where for both equations we use (B.28]) and (B.48]), for the first we pick b € B
and use (b),(d) above with C' = {b} and v, 0 k1 ;, = f]|u,, and for the second we
use (c) above. As this holds for all € Uy,p, we have vok; = f|y and voks = g|u.
Thus g = f 4+ O(s) on X by Definition [B.36{iii). Hence the ‘O(s)’ condition in
Definition iii) is local on s{oi)(O) C Xiop-

We prove locality of parts (iv),(v),(vii) by extensions of the proof above. For
(iv),(v) we start with {X, < X : a € A} covering st_oi,(O) in X, a diagram
and a morphism v, : V, — Y in Man with v, o k1o = flu, and vg 0 ko q = glu,
for all a € A, as above, together with morphisms ¢, : 7(F)|y, — vi(G)
with &} ,(¢) = 0i|y, for @ € A and i = 1,2 in case (iv), and morphisms
M, : 7 (F)|v, — T, Y with &} ,(M,) = Aj|y, for a € A and i = 1,2 in case (v).

Then we construct V,v,U, k1, ks in a diagram from the data X,,U,,
Va,v, for a € A by an inductive argument as above. At the same time we
construct a morphism ¢ : 7*(F)|y — v*(G) with k) (¢) = 0;|y for i = 1,2 in case
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(iv), and a morphism M : 7*(F')|y — T,Y with k(M) = A;|y for i = 1,2 in case
(v). We do this by gluing together the ¢, (or the M,) to make ¢ (or M) using
the partition of unity {n, : @« € A}, in a very similar way to the construction of
v above. Therefore (iv),(v) are local on stop(O) C Xtop-

To prove locality of (Vu), given A : E — T;Y and {X, — X : a € A} with
glx, = flx, +Aos|x, +O(s ) on X, for a € A, we follow the proof of (iii) above
constructing V, v, U with stop( ) C Uiop exactly, except that at the beginning
we choose v, : V, = Y with Aly, = 6y, ,, in the notation of §B.4.8] which is
possible by Definition vii). The last part of the proof of Proposmon
then shows that Ay = HVU, sog= f+Aos+0O(s?) on X by Deﬁnition
and (vii) is local on s1(0) € Xiop.

Proof of Theorem [3.17|(b)

We will need the following lemma:

Lemma B.51. In Definition iv),(v), the condition is independent of the
choice of diagram (B.28) and morphism v : V — 'Y satisfying (iii). That is, if
(iv),(v) hold for one choice of (B.28),v, then they hold for all possible choices.

Proof. Let Definition iv) hold for U, V, ky, ks as in with stop(()) -
Usop € Xtop and v : V' — Y withvok; = fly, voky = g|U and o7 (F)|y —
v*(G) with kf(¢) = 9| ii and k3(¢) = 02|y. Suppose that we are given an

alternative diagram ([B.28]) involving U Vv, kl,k‘z with stop( ) C Utop C Xiop

and a morphism ¢ : V — Y with ¥ o k1 flg, vo k2 glo, as in (iii). We must
construct a morphism ¢ : 7 (F)|y — 9*(G) with k7 ( ) = 01|5 and k3 (@) = 057,
so that (iv) also holds for the alternative choices (| and 0.

If we can prove such gi) exist near any point e € f/top, then by taking an
open cover of V on which choices of ¢ exist, and combining them with a
partition of unity, we see that such qb exists globally on V. The conditions
on ¢ are only nontrivial near points e = 0g top(x’) = Stop(x’) in Vtop for
e st_oL(O) C Xiop. We restrict to the preimages U’, V’, V', ...inUV,V,...of
an open neighbourhood X’ of 2’ in X with E|x- trivial, so that we may identify
E|x = X" x R", and regard s|x+ as a morphism s" : X’ — R".

Then we have open V/, V' <+ X’ x R™ with sgoé( ) x {0} C Vi, Viop and

morphisms v’ : V/ — Y, ' : V/ = Y with Viop(2,0) = fiop(T), Viop (T, Stop () =
gmp(x)v 6éop(‘ra0) = ftop(x) and i}éop(xa Si:op(x)) = gtOp( ) for all z € X‘éop
with the left hand sides defined. Assumption B.7(b) now shows that there exist
open W — X' x R" x R" with s{1(0) x {(0,0)} € W{,, and a morphism
w W =Y with wi,, (2, 2,0) = vi,,(z, 2) and wi,, (7,0, 2) = T, (7, z) and
Wiop (T, T+ Stop(2), (1 = 1) - St0p (7)) = Grop () for all x € Xt’op, zeR"and t € R
for which both sides are defined.

We now choose a morphism v : 7%, (F) — w"™(G) with ¢|; 20y = ¢l(z,2)
for all ( ) S thop with (.T,Z,O) S Wwp, and ’(/)|(z’t.stop(z) (1—t)Stop(z)) = 92(3;‘)
for all z € Xiop and t € R with (2, - stop(2), (1 — 1) - st0p(2)) € Wi, These
two conditions are consistent at points (x, syop(x),0) as k3 (¢) = 62]y. They
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prescribe 1 on cleanly-intersecting submanifolds of W', so making W’ smaller if
necessary, we can use Assumption a) to show such ¢ exists.
Let V" < E|xs = X’ x R" be the open submanifold with Vi, = {(z,2) :

top —

(7,0,2) € W{,, and (z,2) € ‘7t’()p}, and U” < X' the open submanifold with
U{{)p ={z ¢ Ut’op : (x,0) € Vt’ép and (7, sg,, (7)) € f/t’ép}. Let [ : V" — W’

be the morphism with l~(@, z) = (2,0, 2) from Assumption d). Define qu” :
T (F)|y = 0[5y (G) by ¢" = 1*(¢). Then 2’ € Ufg,, and e = 0 top(2') € Vigp,
and ki |5 (¢") = 01|~ and ka|E (¢") = 65|57. Hence ¢ satisfying the required
conditions exists near e in f/top as required.

This proves the lemma for case (iv). The proof for (v) is similar, noting that
we can use Assumption a) and Proposition to show that morphisms
M : 7*(F)|y — T,Y have the required extension properties at the point in the
proof where we choose . O

It is now more-or-less immediate from the definitions that the conditions of
Definition [B.36(1),(ii),(iv)—(vi) are C°°(X)-linear. Here for (iv),(v) we must fix
a diagram (B.28) and morphism v : V' — Y satisfying (iii), and use these for all
the different O(s) conditions to be combined. This is possible by Lemma m

For example, in (iv) suppose we have morphisms 61,0] : F' — f*(G) and
02,0, : F — g*(G) with 03 = 61 + O(s) and 05 = 0] + O(s). Fix and
v:V =Y as above, so that (iv) gives ¢, ¢' : 7*(F)|y — v*(G) with k(¢) = 0;|v
and kf(¢') = 0|y for i = 1,2. Then for a,b € C*°(X), considering

7l (a) - d+ 7y () ¢ 7 (F)ly — v*(G)
we see that afy 4+ b0y = af; + b9] + O(s), so (iv) is C°(X)-linear.

Proof of Theorem [3.17|(c)

It is clear from the definitions that the O(s), O(s?) conditions in Definition i)
are equivalence relations. For (ii),(iii), reflexivity A; = A1+ O(s), f = f+O(s) is
easy (take U = X,V =FE, M =0, v = for), and symmetry Ay = A; + O(s) =
A=A+ 0(s),g=f+0(s) = f =g+ O(s) is also easy (apply the involution
of E mapping (x,e) — (, stop(z) — €) on points to V, M, v). It remains to prove
transitivity for (ii),(iii).

For (ii), let F — X be a vector bundle, f : X — Y a morphism, and
A1, A2, Az : F — T;Y morphisms with Ay = Ay + O(s) and Ag = Az + O(s).
Then by Definition ii) there exist a diagram including U, V, k1, ko with
Stop(0) € Utop and a morphism M : 7 (F) |y — TforY |y with k(M) = Ay|y and
k3(M) = As|y. Also, there exist including U, V, k1, ks with 8;0:;(0) C Uiop
and a morphism M : 7 (F)|y — TjorY|¢ with k¥ (M) = Ag|g and k5 (M) = As|g.
Then taking U = UNU, V = VNV, k = kg = l~cl|U for ¢ = 1,2 and
M = M|y + M| — 7*(As)|g we find that k5 (M) = Ay | and k3(M) = As|g, so
A3z = As 4+ O(s), and (ii) is an equivalence relation.

For (iii), suppose f,g,h: X — Y are morphisms in Man with g = f + O(s)
and h = g 4+ O(s). Then there exist a diagram including U, V, k1, ko with
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stop( ) € Utop, and a morphlsm v:V =Y withvok) = fly and vo ka = g|p.
Also, there exist a diagram (B.28]) including U,v, k;l, ko with stop(O) - ﬁtop and
a morphism @ : V — Y with 6o ky = g|g and 9o ky = h|U

We will prove that h = f + O(s). By Theorem a), proved above, it is
enough to show that h = f 4+ O(s) near each point x’ of 3;0;(0) C Xiop- We
restrict to the preimages U’, V/,U’,V',...in U,V,U,V,... of an open neighbour-
hood X’ of ' in X with E|x- trivial, so that we may identify F|xs =2 X’ x R",
and regard s|x+ as a morphism s": X' — R".

Then we have open V/, V' < X’ x R™ with Stop( ) x {0} € Vi, Vi and
morphisms v’ : V/ =Y, ' : V/ = Y with Viop(2,0) = fiop(T), Viop (T, Stop(T)) =
Grop () Vop (2,0) = grop(®) and i, (2, Sty (7)) = hiop(w), for all z € Xiop, with
the left hand sides defined. Assumption a) now gives open W/ — X'xR"xR"
with stop( ) x{(0,0)} € WY{,, and a morphism w’ : W' — Y with

wgop('ra Z, O) = ’Uéop('x’ z+ S{:Op(m)) and wéop('xa 0, Z) = ’Eéop(xv Z)

for all z € Xiop, 2 € R"™ for which both sides are defined. Here the z + s, ()
means both equations prescribe wi,,(x,0,0) = giop(2), so they are consistent.

Now define V — E|x/ = X’ x R" to be the open submanifold with Vo, =
{(z,2) : (2,2 — s{,,(x),2) € W/, }, and U < X' to be the open submanifold
with Uop = {2 : (2,0) € V;qp and (z,st0p(2)) € Viop |, and ki, ks : U — V,
©:V =Y to be the morphisms with &y top () = (2,0), k2 top(z) = (, Stop(T))
and iop (2, 2) = Wio, (T, 2 — {0, (2), 2). Then

{}tOP o kl,top($> = ’Dtop(x’ 0) = wéop(x’ _Séop(x)’ 0) = ’Uéop(m’ 0) = ft0P<x)’

T)tOD ° katOP (l‘) = T}top(z7 S‘/cop (‘T)) :wéop("m 0, Sgop(‘r)) :{)‘Eop (I, Sgop (J})) = htop(z)7

so 9ok = f|g and 9o ky = h|r, and h = f 4+ O(s) on X'. Hence h = f + O(s)
on X by Theorem a), and (iii) is an equivalence relation.

Proof of Theorem [3.17|(d)

This is a straightforward combination of the proofs that (i),(ii) are equivalence
relations and (iii) is an equivalence relation in the proof of Theorem c)
above, and we leave it as an exercise.

Proof of Theorem [3.17|(e), non I'-equivariant case

As in the theorem, let X, — X for a € A be open submanifolds with 8;;;(0) C
Usea Xa,top. Write Xqp < X for the open submanifold with X4 t0p = Xa,top N
X top for a,b € A. Suppose we are given morphisms f, : X, = Y in Man for
all a € A with fu|x,, = folx,, +O(s) on X, for all a,b € A. We must construct
an open submanifold X’ < X with s;,;(0) € X{,, and a morphism g : X' =Y

top
such that g|x/nx, = falx'nx, + O(s) for all a € A.
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Since fo|x,, = folx., + O(s) on Xup, by Definition [B.36[(iii) there exists a
diagram including Uap, Vab k1,06, k2,06 With sion(0) N Xap top € Uabtop C
Xabtop and a morphism vep @ Vo — Y with vep 0 k1,06 = falu,, and vep o
kaap = folu,,, for all a,b € A. Making Vg, smaller, we can suppose that
08 top(x) € Vab top if and only if & € Usp top, and siop(2) € Vap top if and only
if x € Uab,top-

We will divide the proof into three steps:

(A) A={1,2}.

(B) A=N and {X, : a € N} is locally finite, i.e. each z in X, has an open
neighbourhood intersecting only finitely many X top.

(C) The general case.

We use the notation above in each step.

Step (A). Suppose A = {1,2}. Let X < X be the open submanifold with
Xiop = X1,top U Xotop- Then s (0) C Uaeq1,2) Xastop = Xiop. Choose a

partition of unity {ni,72} on X subordinate to the open cover {X;, X»}. Let
X’ < X be the open submanifold with

Xiop = (X1t0p \ supp12) I (X2 0p \ SUPP 1)
IT {2 € supp ;1 Nsupp 72 : (, 72,10p(Z) - Stop(*)) € Viztop }-

Then s;,,(0) € X{,,. By Assumption a) there is a unique g : X’ — Y with

op

fl,top(x)» HARS Xl,top \ supp 72,
Grop(T) = q f2,t0p(), & € X2 top \ SUPP 71,
V12,t0p (T, 12,t0p (T) * Stop (7)), @ € X{op N Ur2,t0p-

This holds as the three possibilities for g are smooth maps on open subsets
of X’ covering X', which agree on the overlaps, since v12 top(%,0) = f1 top(2)
and le,tOp(xa Stop(x)) = f2,t0p(l')~
To show that g|x/nx, = filx'nx, +O(s), define V; — E, U; < X to be the

open submanifolds and vy : Vi =Y, k11,k2,1 : Uy — Vi the morphisms with

Vitop = Toop (X1 t0p \ SUPD72)

inl {(3},6) € Wt?)})(supp N2 N U12,t0p) : (337772,t0p(x) : 6) € V12,top}7
Urtop = {z € Xiop N X1 top 1 (2,0) € Viop and (z, st0p()) € Vi top }»

vy (JL‘ 6) _ fl,top(‘r)a T € Xl,top \ supp 72,
,to ) - —
P U12,top($7 n2,top<$) : 6)7 (xa 6) S Vl,top N 7-‘—toll;)(Uv12,top)7

Frosop(@) = (@,0),  and  kopop(@) = (@ si0p(@)).

Again, the two possibilities for v; are smooth on an open cover of Vi, which
agree on the overlap, since v12 top(2,0) = f1 top(z). Then Uy, Vi, k1 1, k21 form

284



a diagram (B.28]), and this and v; show that g|xnx, = filx'nx, + O(s) by
Definition iif). Similarly g|x/nx, = f2|x/nx, + O(s), proving step (A).
Step (B). Suppose A =N and {X, : a € N} is locally finite. By induction on
m =1,2,... we will construct an open submanifold X/, < X and a morphism
gm : X, — Y satisfying:

() 510p(0) N (UyZs Xatop) = 5t0p(0) N X p-
(11) gm|X{”ﬂXa = fa|X,fnﬂXa + O(S) for a = 1, e, M.

(iii) Ifm > 1and x € Xiop \ X top thenz € X7, 1 ifand only ifz € X], .,
and then g,,—1 top (%) = Gm, top(T).

For the first step m = 1 we put X = X; and g; = fi, and (i)—(iii) hold
trivially. For the inductive step, suppose m > 1 and we have constructed
X, 915+, X}, gm satisfying (i)—(iii). For each a = 1,...,m we have

Iml X! X0 Xmsr = falXx! AXenXpmss +O(8) (B.49)

= fm+1 |X;nﬂXnﬂXm+1 + O(S),

using (ii) for g,, in the first step, and fa|Xa<m+1> = fm+1|Xa<m+1> + O(s) and
Theorem ¢) in the second. Now (i) implies that
Stop(0) N (X7 N X 1)top € Upq (X, N X N Xt )top-

Hence (B.49) and Theorem a) imply that gm|x: nx,.,1 = falx/ X TO(8)
on X;n n Xm+1.

We now apply step (A) to combine g,, : X/, =Y and fit1 1 Xmp1 — Y.
This yields an open X/, ; < X and a morphism g,,41 : X;,,; = Y with

Im+1lx: nx:;, = gm|X7’n+lﬁX,{” + O(s), (B.50)

m—+1 m

Im+1lx7 0 Xys = Smtilxs | nx,, +O(s). (B.51)

Parts (i),(iil) for X, 1, gm+1 are immediate from the construction. For (ii), the
case a =m + 1 for gp41 is (B.51). For a =1,...,m we have

nx: nx, T O(s) = falx

NX! NX. = Im|x: o NXNX, T O(s),

gm+1|x; o

m+41

using (B.50)), part (ii) for g,,, and Theorem ¢) (proved above). Part (i) gives

tor 0)N (X;n+1 N X;n N Xo)top = 8{0;(0) N (X;n+1 N Xa)tops

Stop

so Theorem a) gives 9m+1|X,’n+1ﬂXa = 9m|X,’n+lﬂXa + O(s), proving (ii) for
gm+1- This completes the inductive step, so by induction we can choose X/, gm
satisfying (i)—(iii) for all m =1,2,....

We now claim that there are a unique open submanifold X’ < X and
morphism g : X’ — Y with the property that x € Xy}, lies in X{, if and only if
T E X;n,top for all m > 0 sufficiently large, and then giop () = gm, top(x) for all

m > 0 sufficiently large. To see this, write X{,, for the set of z € Xy, satisfying
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this condition. Fix & € Xop. Then local finiteness of {X, : a € N} means that
Z has an open neighbourhood U < X in X such that Uiep N Xy, top = 0 for all
m > N, for some N > 0.

Part (iii) implies that if m > N and x € Uyop then z € X, (. if and only if
T € X711 topr Thus Usop N Xy iop = Utop N X1 top = Utop N XN y2t0p =
so that Uiop N X{g, = Usop N Xy 1op» Which is open. Hence we can cover Xiop
by open Usop € Xiop With Usep N X{,, open, so X{, is open in Xi,p, and the
open submanifold X’ < X is well defined.

For Z,U, N as above, part (iii) also gives gm top(Z) = gm+1,t0p(x) for any
z € Upop N Xt'Op and m = N, S0 gn top(Z) = gN+1,t0p(Z) = gN+2,top(T) = -+
Hence there is a unique map giop : Xt’Op — Yiop With grop(Z) = gm, top () for all

m > 0 sufficiently large, where in U we have giop|u,,,nx7. = 9N, top|Uepnx!

top top

op

As gn|unx: : UNX' — Y is a morphism in Man, and we can cover X{op by such
open (U N X' )top, Assumption a) implies that there is a unique morphism
g: X' =Y in Man with the prescribed gop.

Let a € N. Then as above we can cover X' N X, by open U — X' N X,

such that Uiop € X, op and glu = gml|v for m > 0, so that m > a. Then
9lv = gmlv = falu + O(s) by (ii), so Theorem a) implies that g|xnx, =
falx'nx, + O(s), as we want. This completes step (B).
Step (C). Now consider the general case, with {X, — X : a € A} any open
cover of X. Since X, is Hausdorff, locally compact, and second countable by
Assumption (b), it is also paracompact (i.e. every open cover has a locally
finite refinement), and Lindeldf (i.e. every open cover has a countable subcover).
So by paracompactness we can choose an open cover {Xb — X : b€ B} of
X which is locally finite, such that for all b € B there exists a, € A with
Xl’utop C X, top € Xtop. And by the Lindelof property we can choose a
countable subset C' C B such that {Xe — X : c€ C} is still an open cover of
X. Thus (adding extra empty X, if Cis finite) we can take C' = N.

For each ¢ € N set f. = fac|f(c : X = Y. Then for all ¢,d € N we have
fC|Xcd = fd|Xcd + O(s) since fac|Xacad = fad|Xacad + O(s). Apply step (B) to
{XC — X : ¢ € N} and the f. : X, — Y. This gives an open submanifold
)f" — X with 5{01)(0) C X{,, and a morphism g : X’ — Y such that g|y, ¢ =
felxing, +O(s) for all c € N. Let a € A and ¢ € N. Then

9|X/mchXa :fC|X/mXCmXQ +0(s) :fac|X/mXCnXa +O(s) :fa|X’m)A(Can,,Jr O(s),

using fo.|x,.. = falx, . + O(s) and Theorem (c) (proved above). As this
holds for all ¢ € N and the X, ¢ € N cover st_oi(O), Theorem a) implies that
9lxnx, = falxnx, + O(s), as we want. This proves the first part of Theorem
3.17(e), without I'-invariance/equivariance.

Proof of Theorem (e), the I'-equivariant case

For the second part, we must show that if the initial data X,Y, X, — X,
fao : Xo — Y is invariant/equivariant under a finite group I', then we can choose
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X', g to be invariant/equivariant under I". To do this we must go through the
whole proof above checking that each step can be done I'-equivariantly. Most
of this is easy or automatic — for example, when we choose the partition of
unity {n1,72} in step (A), we can average 7,72 over the I'-action to make them
I-invariant. But there is one point that needs a nontrivial proof.

Suppose as above we have X, Y, open X, — X for a € A, and morphisms
fa: Xo = Y with fu|x,, = folx,, +O(s), and T acts on X,Y preserving the X,
and the f, are I'-equivariant. Then by Definition iii) there exists a diagram
inClUdng Uab; Vab7 kl,aln kQ,ab with SE)L(O) N Xab,top g Uab,top g Xab,top
and a morphism vgp : Vo = Y with vep 0 k1 a6 = falu,, and vep © k2.ab = folu,,s
and these Ugyp, Vap, vap were used in the proof of step (A).

We can choose Uy, — X and V,, < FE to be I'-invariant by replacing them
by mwer v Y (U,p) and ﬂwer ¥ (Vap), and then ki gp, k2,qp are automatically
I'-equivariant. However, vy : Vo — Y need not be I'-equivariant.

We will show using Assumption c) that given some choice of Ugp, Vap, k1,00,
k2,ab, Vop that may not be I'-invariant/equivariant, we can construct alternative
choices Upy,, Vs K1 aps K5 aps Vap Which are I-invariant /equivariant.

First consider the case in which E|x,, is trivial, with a I'-equivariant trivi-
alization E|x,, = X4 x R", in which T acts linearly on the left on R™. Write
R™)ITT as @D, cr R", and elements of (R as (z,),er for z, € R™. Let T act
linearly on (R™)I'!, such that § € T acts in the given way on each copy of R",
but also d permutes the indexing set I' by right multiplication, so that

d: (Z'y)'yel“ — (0~ z’yé)'yel“v

which gives a left action of I" on (R™)!"1.
We will use Assumption ¢) to choose a I'-invariant open submanifold
Wap = Xap X @wer R™ and a I'-equivariant morphism wgp, : Wy, — Y such that

(i) (S;);(O) N Xab,top) X {(0)yer} € Wap top-
(i) if (x,2) € Vaptop and § € T with (z, (6 - 2)5 11 (0)yer\(s}) € Wab,top then
Wab. top (x, (6-2)s 10 (O)Wer\{g}) =0 - Vab,top (T, 2).
(iii) If € Xaptop and ty € R for v € I' with }° .ty = 1 and (z, (ty -
Stop(m))’yef) € Wap top then wap top (557 (ty - Stop(x))'yel_‘) = fb,top(T)-

In fact we have to apply Assumption ¢) finitely many times to choose
wab,top(x, (z4)yep I (O)VGF\B) for all subsets ) # B C T, by induction on
increasing |B| = 1,2,..., ||, following the proof of Proposition closely.
When B = {6} the values of wgp op are given by (ii). The condition that we; be
I'-equivariant means that the values of wap top for B C I' determine the values
for B for all § € I', so we choose values of wgp top for one set B in each I'-orbit
of subsets B’ C I". The values of wgp op for B must be chosen equivariant
under Stabr(B) = {6 € v : B§ = B}, which is allowed by Assumption [3.7(c).
Condition (iii) above comes from Assumption [3.7(b).
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Now define V), — E, U., — X to be the open submanifolds and v/, : V), —
Y, kY aps Ko 0y : Ul — Vi, the morphisms defined on points by

a/b,top = {(.’L’,Z) € (E|Xa,b)top : (1'7 (ﬁz)’)/EF) S Wab,top}
z/zb,top = {iL’ € Xab,top : (l’, 0) € Va/b,top and (l’, Stop(x)) € Va,b,top}v
Vgb,top (s Z) = Wab,top (, (ﬁz)yer)7

kll,ab,top(l‘) = (l‘, 0)’ and ké,abmop(‘%‘) = (‘/E’ Stop(x))'

-1 4 / /
Then we have s¢,,(0) N Xab,top € Upp sop © Xav,top and vy, o ky o = falyr, and
.y . ; . _
VoK o = foluz, , as required to show that fo|x,, = fo|x,, +O(s). Furthermore,
as Wy is T-invariant and w,y, is T-equivariant, we see that U, , V/, are I'-invariant
and v/, k] ,p. kb o, are T-equivariant, as we want.

Proof of Theorem [3.17|(f)

Let f,¢g: X — Y be morphisms in Man with g = f+0(s),and F - X, G =Y
be vector bundles, and 6, : FF — f*(G) be a morphism. We must show that
there exists a morphism 6 : F' — ¢*(G) with 62 = 01 + O(s) as in Definition
B.36|iv), and that such 6, are unique up to O(s) as in Definition [B.36).

First suppose G — Y is trivial, and choose a trivialization G =2 Y x R*. Then
f*(G) and g*(G) have induced trivializations f*(G) 2 X x R* = ¢*(@G), giving
an isomorphism f*(G) 2 g*(G). Let 63 : F' — ¢g*(G) be the morphism identified
with 01 : F — f*(G) by f*(G) = ¢*(G). We claim that 05 = 01 + O(s). To see
this, let and v : V — Y be as in Definition [B.36(iii) for g = f + O(s), and
let ¢ : 7*(F)|y — v*(G) be the morphism identified with 7*(01)|v : #*(F)|v —
(f o ®)*(G)|v by the isomorphisms v*(G) = V x R* x (f o m)*(G)|y. Then
ki (¢) = 01]u and k3(¢) = 62|u, so 62 = 61 + O(s) by Definition [B.36]iv).

Let z € 8;)}3(0) C Xiop, With fiop(2) = grop(z) = y € Yiop. Choose an open
neighbourhood Y¥ < Y of y in YV with G|y trivial. Let X* < X be the
open submanifold with Xf,, = fiop(Yit,) N grop (Yihp), s0 that @ € X{i,,. Then
we have morphisms f|x=,g|x- : X* = YV with g|x= = f|x= + O(s), and we
have 01| x= : F|x= — f|%<(G) with G|yv trivial. Hence from above there exists
05 : Flxs — g|%<(G) with 05 = 01|x= + O(s). Let X*° — X be the open
submanifold with X7, = Xiop \ 8r0p(0). Set 05° =0 : F|x= — g|%=(G). Then
05° = 61| x= + O(s), as s # 0 on X°.

Now {X7 :z € SQL(O)}H{XW} is an open cover of X. Choose a subordinate
partition of unity {n® : @ € sio,(0)} 11 {n>} as in Define 65 : F — ¢*(G)
by 6y = Zzes; o)1 03 +n> - 6°°. Then using locality and C°°(X)-linearity
in Theorem a),(b) we see that 0, = 0; + O(s) on X, as we have to prove.

Now suppose we have morphisms 5, 6, : ' — ¢*(G) with 6y = 8; + O(s) and
0y = 01 +O(s) as in Definition [B.36(iv). We must show that 6, = 6+ O(s) as in
Definition i). By Theorem [3.17|(a) it is enough to prove this locally near each
x € 5‘;},(0). So choose a small open neighbourhood X’ of . By Lemma we
can use the same diagram involving U, V, k1, k1 and morphism v : V — Y
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for verifying the conditions 6s|x = 61|x/ + O(s) and Os]x: = 01]x + O(s).
Thus by Definition iV) there exist morphisms ¢, ¢ : 7*(F)|y — v*(G) with
ki(¢) = k1 (¢) = b1|u, k3(¢) = b2|u and k3(¢) = b2|u.

Making X', U’, V' smaller we can suppose E|x/, F|x/, f*(G)|x', 9" (G)|x/,
v*(G) are trivial, and choose isomorphisms F|xs = X' x R", F|x =2 X' x R",
1 (G)x =2 X' xR = ¢g*(GQ)|x/, v*(G) 2V x R* which are compatible with
ki (v*(G)) = f*(G)|u, k3 (v*(G)) = g"(G)|v for U € X'. Then we can interpret
s|xs as a morphism s' = (s},...,s,) : X’ = R" in Man, and 6;|x/, 02| x", 0| x
as 0,,00,60 : X' — (R")* @ R®, and , ¢ as &/, &' : V — (R")* @ R,

We then have V — E|x/ = X’ x R" open, so writing points of Vi, as (z, z)
for x € X{,, and z = (21,...,2,) € R", for all z € Uop C X{,, We have

d)gop(m’ O) = ll,top(x)v ¢gop(x7 StOP(x)) = 0l2,top(£)7
&gop(x7 O) = /l,top (l‘), égop(q"? Stop(w)) = éé,top(q’i)‘

Applying Assumption tod —¢' : V — (R")* @ R*, we see that there exist
morphisms gq,...,g, : V = (R")* @ R® with

&éop(xﬂ Z) - d)éop(x? Z) = Z?:l Zg gi,top(x7 Z). (B53)

Define a vector bundle morphism « : E|y — F*|y ® ¢*(G)|y on points by

(B.52)

aly (€1, 6n) = D1 € Gitop(T, Stop(T)),
forx € Utop C X{,,and (eq,...,e,) € E|, 2 R", using the chosen trivializations.

Then —(B. 53 1mply that avo s = Oy)y — 02|y, s0 2|y = 02|y + O(s) on U
as in Deﬁmtlon B.36(i). As @ € Uyop and we can find such U for any z € 5;01)(0),

Theorem [3.17((a) implies that 6, = 65 + O(s), as we have to prove.

Proof of Theorem (g)

Let f,g : X — Y be morphisms with ¢ = f + O(s), and F — X be a vector
bundle, and A : ' — T;Y be a morphism. We want to construct a morphism
Ao F — T,Y with Ay = Ay + O(s) as in Definition v), and show that such
A5 are unique up to O(s) as in Definition [B.36{(ii).

As g = f + O(s), by Definition [B.36[iii) there is a commutative diagram
involving U, V, k1, k2 and a morphism v : V — Y with vo k; = f|y and
v o ky = g|y. By Proposition there exists a diagram

X
F J W w Y,

b

such that A; = Oy, Let x € 5;0;(0) C Uiop € Xiop, and choose an open
neighbourhood X* < U of z in U such that E|x=, F|x= are trivial, and choose
trivializations B|x: = X x R", F|x: = X% x R".
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We now use Assumption a) with & = 2 to construct open Z — X% x
R™ x R" with X7 x {(0,0)} C Zip and a morphism z : Z — Y such that

to
Ziop (2, €,0) = vtOI;(x',e) and ziop(2',0, f) = wiep(z’, f) for all 2" € X{,
e € R" and f € R" for which both sides are defined. (Here to get R" @ R"
rather than R" & R", as in Assumption a), we replace both n,r by max(n,r)
and add an extra trivial factor of R ™"l to E|x. or F|x=.)

Let V' — V and U’ — X7 be the open submanifolds and k},k : U — V’

the morphisms with

tl()p = {(xlve) : (mlaezo) € Ziops (wlve) € Vtop},
Utlop = {x/ : (I/7O) € V;;,opv (IlvstOP(x/)) € ‘/t/op}’

ll,top('rl) = (ml70)7 ké,top(x/) = (JJ/,StOp(Q?/)).

Then z € U{,,. Define M : 7*(F)|y: = T,Y |y by M = 0z ., in the notation

top-
of Deﬁnition Then zop(2',0, f) = wiop(’, f) with Ay = 0w, and
Il,top(x/) = (37/,0) 1mp1y that kll*(M) = A1|U’~ Define Alz : F|UI — 7;Y|U’ by
Af = k5 (M). Then Definition [B.36|(v) says that Ay = A1y + O(s) on U’.
This shows that we can construct Ay : F' — T,Y with Ay = A1 + O(s) locally
near each x in s;,.(0). The proof can now be completed in a similar way to

p
part (f).

Proof of Theorem [3.17|(h)

Let X, E,s, f,Y,F,G,t,A be as in Definition W(w) By Proposition (a)
we may choose a connection V on G. Then 6 = f*(Vt)oA: F — f*(G) is a
vector bundle morphism as in with 8 = f*(dt) o A+ O(s), so such 6 exist
as we want. Uniqueness of § up to O(s) in the sense of Definition [B.36]i) is
immediate from Definition vi) and Theorem a).

Proof of Theorem [3.17(i)

Suppose f,g: X — Y are morphisms with g = f + O(s). Then by Definition
m(iii) there exists a diagram involving U, V, k1, ke with st_oi)(O) C Uop €
Xtop and a morphism v : V — Y with vo ks = f|y and vo ks = g|y. Then
Definition gives Oy, : Ely = T;Y |y with g = f + 6y, 0 s+ O(s?) on U.
Let W < X be the open submanifold with Wiop = Xiop \ ;o (0). Then {U, W}
is an open cover of X. Choose a subordinate partition of unity {ny,nw} as in
and define A=ny -0y, : E— T;Y. Then g= f + Ao s+ O(s?) on X,
since near st_oi)(O) in X, we have A = 6y, with g = f + 6y, 0 s + O(s?), and
the condition is local near s;.%(0) by Theorem a).

P

Proof of Theorem [3.17(j)

Let f,g: X — Y be morphisms in Man with g = f+O(s), and A, A : E — T:Y
be morphisms with g = f-+Aos+O(s?) as in Definition|B.36{vii) and A = A4+O(s)
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as in Definition ii). We must prove that g = f + A os+O(s?). By Theorem
3.17|(a) it is enough to prove this near each & in s71(0) C X.

So fix & € s71(0), and let X be a small open neighbourhood of x in X on
which F = E|x is trivial, and identify £ = X x R™. Write points of Evmp as
(z,z) for x € Xyop and z € R”, and regard 5 = s|x as a morphism §: X — R".
By Definition [B.36{vii) there is a commutative diagram

/ TU\
U' V! U' (B.54)

g id ¢ X0 idy x3 !

X E=XxR" X

)

with ét_oi)(()) C UL, and Aly1 = 6y1 41, with morphisms ‘—’ open submanifolds.
By Definition ii) there is a commutative diagram

U? e V2 e U?
)\E idx x0 E—)i(f n idg x5 VJ
— x R X

)

with ét_O;(O) cuUz, z}nd a morphism M : 7*(E)|y2 — Tor Y |y2 with k3*(M) =
A|U2 and kg*(M) = A|U2.

By Proposition [B.33] there exists a diagram

0 V2 d i’
e Lores (B.55)
™ (E)y2 = V2 x R" O ¥ Y,

with M = 01 1. Define V3, V4 < E = X x R" to be the open submanifolds
and v2: V3 = Y, v*: V* = Y the morphisms with

Vt:f)p ={(z,2) € Xiop X R : (2,0, 2) € thop},
Vt‘ép = {(Jc,z) € Xiop X R"™ : (z, Si0p(), 2) € thop}, (B.56)

U?op(xaz) = wtlop(xv()Vz)’ U;lop(mvz) = wtlop(‘r3§t0p(x)7z)'

Then k%* (M) = [}|U2 and k%* (M) = A|U2 give A‘Uz = 6V3,v3 and A|U2 = 9V4,v4~
Let U? < X be the open submanifold with U3 = U, N UZ . Then

Ov1 p|us = Alys = Oys ys|ys. Therefore, extending Definition and making
X smaller if necessary, we can find an open submanifold W? — X x R" x R"

with U2 x {(0,0)} € W2 and a morphism w? : W? — Y with
w? (z,21,0) = vl ( 2 0 =
top \**s #1, = Utop 1‘,Z1), wtop(xv 7z2) _Utop($’z2)’

; (B.57)
and Wiop (T, 21, —21) = frop(T).
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When n =1 the existence of W2, w? follows from @y1 1|3 = Oys 3|ys and
Definition [B.16, where wi,,(z,21,—21) = fiop(2) in @ corresponds to
vtop(:z:,s,—s = fiop() in (B.6). For n > 1, we split Oy1 ,1[ps, Oys y3]ys into n
components in F(7}Y|U3) each of which admlts an extension to W2 < X x RxR,
w?: W2 —Y asin fori=1,...,n, and then we use Assumptlon 3.7\(a)
repeatedly to construct W27 w? in a similar way to the proof in Definition
choosing w;p to satisfy .

Next we apply Assumption a) with k& = 3 to choose open Z — X x (R")?
with §1,(0) x {(0,0,0)} C Ziop and a morphism z : Z — Y with

Ztop(m,zlaz%o) = ftop(x)a Ztop($7z1707z3) = wtlop(z7z17z3)7 (B 58)
and Ztop (T, 0, 22, 23) = wtzop(sc7 Z9,23 — Z2). '

Here pairs of equations in (B.58) give the same values on intersections
Ztop((E, 21,0, O) :ftop(x)v Ztop(w7 0, 22) = ftop(x)7 Ztop(l'a 0,0, Z3) :’UEOP(CL', Zg),

by - , S0 Assumption a) applies.
DeﬁneU <—>X & <—>X><]R" W3 < X x R" x R" to be the open

submanifolds and v° : V® = Y, w3 : W3 — Y the morphisms with

Ut40p = {13 S Xtop : (xvstop($)7070) S Ztopa (xaoa Stop(:r')astop(x)) S Ztop};
Vvts())p = {(.73,251) € Xtop x R™: (xastop(x) - zlazlazl) S Ztop}a

W, ={(z,21,22) € Xiop X R" X R™ 1 (, $t0p(2) — 21, 21, 21 + 22) € Ziop }
vt?op(xv Zl) = Ztop(xa Stop(m) — 21,21, Z1)7

wf‘op(x, 21, 22) = Ztop (T, Stop(Z) — 21, 21, 21 + 22). (B.59)

Then stop( ) € Uf,p,- From (B.56), (B.58) and (B.59) we see that

wf’op(x, zl):vtsop(xvzl)» w?op(l'v 0, ZQ)Z'UELOP(x,ZQ), w?op(x7 21, _Zl):ftop(l')'

Hence combining Definitions shows that Oys 5 = Oy ya|ya. Now

’Ugop(x7 é‘mp(x)) = Ztop(7, 0, étop(x)’ §t0p(m>) = thOp(x7 Stop(T), 0)
= Viop (€, 310p () = Grop ()
forx € Utop, by (B.54), (B.57), (B.58)), and (B.59). Thus Definition B.36(vii) with
U4, V5, 0% in (B.29) shows that g[ga = fys +0vs 45 0s+O(s?). But from above
A|U2 = 9‘/471}4 and 0\/5 p5 = 9V4,v4|U4- Therefore g|U4 = f|U4 + ]\|U4 oS+ 0(32)
on U*. Since & € Uy, and this holds for all & € s~*(0), Theorem a) implies
that g = f + Ao s+ O(s?) on X, proving part (j).

Proof of Theorem [3.17|(k)

Let f,g: X — Y be morphisms in Man with g = f + O(s),and A : E = T;Y
be a morphism with g = f + Ao s+ O(s?). Theorem g) gives At F — T,V
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with A = A 4+ O(s) as in Definition @ v), where A is unique up to O(s). We
must show that f = g+ (=A) o s + O(s?).

By Definition vii) there is a commutative diagram (B.29) involving
U,V, k1, ks, v, with st_op( ) € Utop and Aly = y,. Define V7, V” — E to be the
open submanifolds and v' : V! — Y, v” : V" — Y the morphisms with

thop {(x €) € Eiop 1 (2, Stop(T) +€) € VtOP};
Vt'ép = {(m,e) € FEiop : (7, Stop(x) —€) € Vmp}, (B.60)
Uéop(x? €) = Viop (T Stop(T) +€),  Viop (T, €) = Viop (T, Stop(2) — €).

Then 9) implies that 0 top(Utop) € Vieps Viep and vy, (w,0) = vig, (,0) =
Grop(T) for 2 € Uiop. Hence Definition |B.32] E 2| defines morphisms

0\//71,/ : E‘U — 7;Y|U, HV”,'UN : E|U — EY‘U

Since (B.60) gives viy,,(z, €) = vi,, (v, —e) for all (z,e) € Vi, we see from §B.4.2)

that GV//,U// = 70\/1 . For x € Utop we have vtop(x Stop( )) = Utop(x,o =
fiop(z) by (B.29) and (B.60). Hence f|y = glu + Ovr v 0 s+ O(s?) on U by
Definition [B.36|(vii).

Writing 7 : V' — X for the projection we have a vector bundle 7*(E) —
V. Write points of 7*(E) as (x,e1,e2) where mop @ T (E)top — Viop maps
(z,e1,e2) — (x,e1). Define W — 7*(FE) to be the open submanifold and
w : W — Y the morphism with

Wiop = {(z,€1,€2) € 7" (E)top : (z, €1 + €2) € Viop |,

Weop (T, €1, €2) = Vgop (T, €1 + €2).

Since 0+ (g) top(Viop) € Wiop With wiep(z,€1,0) = viop(z, 1) for (z,e1) € Vigp,
Definition defines a morphism Oy, : 7*(E) — T,Y. As ki(x) = (2,0) and
Wiop (2,0, €) = viop(x, €) we have kf (Ow,w) = Ov.p|u. Since ko(z) = (2, Stop(2))
and Wiop (T, Stop (), €) = viy,(x, €) we have k3(0w,) = Oy . Thus Oy v =
B[t + O(s) by Definition [I3.36(i).

We now have morphisms A|y, 0v,|v : E|ly = T;Y|v and 1~\|U, Oy Ely —
7;Y|U with A|U = 9V,v|U and AlU = AlU + O(S), HV/,U/ = HV,le + O(S) as
in Definition v). Thus uniqueness up to O(s) in Theorem g) shows

that 1~\|U = Oy + O(s) as in Definition ii). Also Oy iy = =By 41, SO
Oy = —Aly +O(s), and f|y = glv + Ovr v 0 s+ O(s%). Therefore Theorem

3.17(j) shows that f|y = glu+(—Aly)os+0(s?). Since stop( ) € Utop, Theorem
3.17(a) now yields f = g + (—A) o s + O(s?), as we have to prove.

Proof of Theorem [3.17(1)

Let f,g,h : X — Y be morphisms in Man with g = f + O(s), h =g+ O(s)
and Ay : E — T;Y, Ay : E — T,Y be morphisms with g = f 4+ Ay o s + O(s?)
and h = g + As o s + O(s?). Theorem g) gives Ay : E — T;Y with
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Ay = Ay + O(s) as in Definition [B.36{v), unique up to O(s). We must show
that b = f 4+ (A1 + Ay) o s + O(s?).

Suppose first that F — X is trivial, and identify £ = X x R™. Write points
of Eiop as (z, z) for € X, and z € R", and regard s as a morphism X — R".
By Definition [B-36{vii) there are commutative diagrams

/ TU\
Vi Ut (B.61)

Ul
k1 k3
){ ] I

/ ? :\
U? V2 U? (B.62)

] o ]

idx x0 idx xs
X = E=XxR" = X,
with sgoh(0) C Ul U2, and Aqfin = Oy 1, Aslpz = Oy 4.

Apply Assumption [3.7(a) with k = 2 to choose open W! < X x R" x R"
with s, (0) x {(0,0)} € WL and a morphism w' : W' — Y with

wtlop(x, z1,0) = vtlop(sc, 21 + Stop(X)), wtlop(x, 0,29) = Ufop(x,zQ). (B.63)

Both equations have w{,,(,0,0) = giop(2) by (B.61)-(B.62)), so Assumption
a) applies. Define open submanifolds U3 — X, V3, V* V5 — X x R",
W? < X x R" x R" and morphisms v3: V3 =Y, v : V4 5 YV, 05 : V5 5 Y,
w2 W2 =Y, k3 k3 :U? — V5 with

Uf’op = {x S UtlOp N UtzOp : (2,0,0), (z, —Stop(2),0), (2,0, sgop(x)) € thop}

th)p = {(:c,z) € XtOp x R™ : (x’ 75top(x)’z) € thop}7

Viep = {(2,2) € Xiop X R" : (2,2 — stop(x), 2) € Wi, },

Vtip = {(z,2) € Xiop X R" : (x,2 — S10p(2),0) € thop},

Wtzop = {(#,21,22) € Xiop X R" X R" : (7,21 — Stop(2), 22) € thop},

Utgop(aj’ Z) = wgop('x? _Stop(l‘)’ Z), Uzlop(‘r7 Z) = wtlop(m7 z = Stop(‘T)? Z),

'Utsop(xv z) = wt}op(wv z = StOP(x)a 0)» wtzop(x3 21, z2) = wtlop(xv z1 — StOp(w)v z2)7

kY top(®) = (2,0) and k3 o, (2) = (2, s10p(2)). (B.64)

Then (B.61)—(B.64) imply that
v‘?op(x’ 0) - Uélop(xv 0) = wtzop(xﬂ 070) - f'ﬁop(x)ﬂ w‘?op(x’zl’o) - Utlop(xﬂ zl)a
w?op(xv 0, ZQ) = USOp(xv z2)7 wtzop(xv 21, zl) = U?op('x’ zl)'
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The first equation shows there are morphisms 6y s, 0v4 4 : E|lgs — T¢Y |ys,
and the last three equations and the definition of addition in I'(7;Y") in §B.4.2
imply that Oy 1 = Oy1 1 |ys + Oys s Also for z € UR,, we have

Uglop(x’ 3t0p(33)) = wtlop(x7 0, StOP(‘T)) = v*czop($> Stop (7)) = htop(x)

by 7. Thus h|ys = flys 4 Oy 44 0 s+ O(s?) by Definition vii).

Consider W2 as an open set in the vector bundle 7 : 7*(E) — E act-
ing on points by mep : (x,21,22) — (2,21). Then we have a morphism
Ow2w2 : T (E)|ys = TpsY. Since kf  (2) = (2,0) with w (z,0,22) =
03, (2, 22) we have k¥ (B2 p2) = Oys ys|ys, and as k3 (2) = (2, Sop () With
w2 (x, s10p (), 22) = Vi, (2, 22) we have k3* (w2 ,2) = Oy2 2|ys. Therefore
Ovs w3 = Oy 2|ys + O(s) by Definition ii).

We now have ]\2|U3a6V3,v3 : E|U3 — ’TfY|U3 and A2|U3,9V2,U2|U3 : E|U3 —
7;Y|U3 with A2|U3 = 0V2,v2|U3 and ]\2|U3 = A|U3 + O(S), 9‘/3’713 = 9V2,7J2|U3 +
O(s) as in Definition v). Thus uniqueness up to O(s) in Theorem g)
shows that Ay s = Ovs 3+0(s) as in Deﬁnitionii). Also Ai|ys = Oy 1 |ys
and 9\/471,4 = 9\/17711 |U3 + 0\/3,1;3 from above, so 0V4,v4 = A1|U3 + ]\2|U3 + O(S)
But hlys = flus + 0y 0 s+ O(s?), so Theorem (J) shows that h|ys =
flus + (A1 + Ag)|ys o s + O(s?). Since S;O})(O) C U?,,, Theorem (a) now
yields h = f + (A1 + Ag) 05 + O(s?).

This proves Theorem 1) when E — X is trivial. But h = f 4 (A; 4+ Ag)o
s+ O(s?) is a local condition by Theorem a), so by restricting to an open
cover of subsets of X on which E is trivial, part (1) follows.

Proof of Theorem [3.17|(m)

Let f,g : X — Y be morphisms with g = f+O(s), and Ay,..., Ay : E — T¢Y be
morphisms with g = f+A,0s+0(s?) fora =1,...,k, and aq, ..., a; € C°(X)
with ag+- - -+ag = 1. We must show that g = f+(a1-A1+- - +ag-Ag)os+O(s?).

Suppose first that £ — X is trivial, and identify £ = X x R™. Write points
of Eiop as (z, z) for € X, and z € R", and regard s as a morphism X — R".
By Definition m(vii), for i =1,...,k there are commutative diagrams

Y
Ut Vi U (B.65)

] R ]
idx><0 idxxs

X E=XxR"

with st_OL(O) C Ulyp and Aglyi = Oy e for i =1,... k.
Apply Assumption [3.7(b) to choose an open submanifold W < X x (R™)*
and a morphism w : W — Y satisfying:

(i) S10p(0) X {(0,...,0)} € Wigp € Xiop x (R™)".
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(i) if (=, (0,...,0,2;,0,...,0)) € Wiop with 2z; in the i*® copy of R" for i =
.,k then (z, z;) EVtOp and véop(x, z;) =wWiop(x, (0,...,0,2;,0,...,0)).
(i) fx € Xiop and tq,...,t; € R with Zle t; =1 and (, (t1 - Stop(), - - . , Tk -
Stop())) € Wiop then wiop(, (t1 - Stop(), - . - stk - Stop(T))) = Grop ().
Actually we use Assumption (b) inductively 2¥ — k — 1 times to choose
Wiop (2, (21, ..., 21)) with subsets of the z1,..., 2, zero, as for (a)—(d) in the
proof of Theorem a)(iii),(iv),(v),(vil) above.
Define open submanifolds U’ < X, V' — E = X x R" and morphisms
vV =Y kK U — VY owith
Vt'Op {(z,2) € Xiop x R™ : (z, (01,40p(®) 2, - - - , Wk top () 2) € Whop },
top {‘T € X‘EOP (l‘ 0) € Vvtop’ (SC,StOp(l‘)) € Vvtlop}?

vtop(m ) = Wiop (T, (T, (1,t0p(T) 2, - - -, Ak top (7)),
k1 top(2) = (2,0) and K 4o, (2) = (@, St0p(@))- (B.66)
hen v to = wtop ,(0,...,0)) = véop(aj,O) = frop(w) for all x € U{,, by
m and (ii), so Deﬁmtlongivcs Ov: 2 Elyr — TfY |yr. Also
Uéop(a:? Stop (7)) = Wiop (T, (A1 t0p (T) * Stop(T), - - -, Ak top (T) * Stop(T))) = Gtop ()

for all € U{,, by 1) (iii) and Zle a; = 1,50 glur = flur +0v: . 05+0(s?)
by Definition vii). But comparing the definitions of W, w in (i)-(iii) above
and the C* (X)—module structure on I'(7;Y) in §B.4.2{ we see that

k k
GV’,U’ = Zi:l (673 Hviyvi U= Zi:l (673 Ai|U’~

Hence gl = flur + (a1 - Ay + -+ 4+ ag - Ap)|ur os + O(s?), so that g =
f+(ag A+ +ag - Ap) os+ O(s?) by Theorem (a), as st_oi)(O) C Utop-
This proves Theorem m) when F — X is trivial. But g = f + (a1 - A1 +
-+ ap-Ag)os+0(s?) is a local condition by Theorem a), so by restricting
to an open cover of subsets of X on which E is trivial, part (m) follows.

Proofs of Theorem [3.17|(n)—(v)

Theorem n)—(v) all deal with pullbacks or pushforwards of the O(s), O(s?)
conditions in Definition along a morphism f: X - Y or g:Y — Z. Most
of the proofs are pretty straightforward: we take a commutative diagram (etc.)
that demonstrates the initial O(s) or O(s?) condition, and pull back by f or
compose with g, to get the commutative diagram (etc.) that demonstrates the
final O(s) or O(s?) condition. The most complex proof is for the second part of
(p), so we explain this here, and leave the others as an exercise for the reader.

Suppose that f: X — Y and g,h : Y — Z are morphisms in Man, and
F — Y isavector bundle, and ¢t € T*°(F), and 0 : E — f*(F') is a morphism with
Gos= f*(t)+O(s?), and A : F — T,Z is a morphism with h = g+ Aot +O(t?).
We must show that ho f =go f+ [f*(A) o6 os+O(s?).
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As fos = f*(t)+O(s?), by Definition [B.36(i) there exists 3 : EQ E — f*(F)
such that 6 o s = f*(t) + B o (s ®s) in I®(f*(F)). Since h = g + Aot +O(t?),

by Definition vii) there exists a commutative diagram in Man

Z
/ TU\
lf k1 ‘f " VUF (B.67)
Y Or F Y,
with ;oL (0) € Utep, and Aly = Oy,
Define open submanifolds U’ < X, V' < E and morphisms v’ : V' — Z,
ki Ky U — V! with
Vt/op {(ac e) € Eiop : (frop(), Oroplz(€) — Broplz(stop(z) @ €)) € Vt0p}7
Utop - {I € XtOP : (x,O) € Vtop’ (zvstop(x)) € Vt/op}v

’Uéop(x €) = Vsop( fiop (%), Oroplz(€) = Brop |z (Stop(7) ® €)),
k1 top(2) = (2,0) and K o () = (@, s0p(2))- (B.68)

Then stop( ) € Ufop as ftop(stop(())) C ttop(O) and for z € U, we have
Uéop(m7 0) = Vtop(frop(2),0) = Gtop © frop(z) = (90 f)top(T)
by (B.67)—(B.68), so Definition gives Oy o : Elyr — TgofY |ur. Also

Vtop (@, Stop (%)) = Vtop (frop (2), Otopla (Stop (7)) — Bropla (Stop () @ stop(@)))
= Vtop (frop(T), (B 05 = B+ (5 @ 5))toplz) = Viop(frop(®), (f*(£))toplx)
= Vtop (ftop (@) trop (frop(2))) = htop © frop(x) = (R0 frop(T),

for x € U, by 1 8) and fos = f*(t) +Bo(s®s), s0o ho flygr =
go flur+0yiwos —|— by Definition B V11)
Now from the deﬁnltlon of pullbacks f*(6) in we deduce that

Oy v =" (Ovw) o (0=F-(s® =) (Ovw)=F(A) 0 Olo —f*(A) o [B- (s @ —)l|vr,

as Aly = 0y,. Since the final term is linear in s we have f*(A) o8y =
QV’,U/ =+ O(s) SO h o f|U’ =go f|U’ —+ ev/w/ oS+ 0(82) and Theorem J)
imply that ho flgr = go flur + f*(A) 0 0|y 0 s+ O(s?), and then Theorem
3.17(a) and s{oi)(O) C Ul give ho f =go f4 f*(A)ofos+O(s*). This proves
the second part of Theorem p).
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Glossary of notation, all volumes

Page references are in the form volume-page number. So, for example, 1I-57
means page 57 of volume II.
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Ky : f*(Ky) = Kx isomorphism of canonical bundles from étale (1-)morphism
of (m- or p-)Kuranishi spaces f: X — Y, [[I-65
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KN 2-category of Kuranishi neighbourhoods over manifolds Man,
KN 2-category of Kuranishi neighbourhoods over Man, [[-141

KN°¢ 2-category of Kuranishi neighbourhoods over manifolds with corners
Man®,

KNg(X) 2-category of Kuranishi neighbourhoods over S C X in Man,
KNg (X) 2-category of Kuranishi neighbourhoods over S C X in Man,
KN¢g(X) 2-category of Kuranishi neighbourhoods over S C X in Man®,
Kur 2-category of Kuranishi spaces over classical manifolds Man, [[-153]
Kur 2-category of Kuranishi spaces over Man,

Kurp 2-category of Kuranishi spaces over Man, and 1-morphisms with

discrete property P,
Kurg.¢ 2-subcategory of Kuranishi spaces in Kur with all G, X = {1},
Kurtrp 2-subcategory of Kuranishi spaces in Kur with all r; ={1},
Kur?®  2-category of Kuranishi spaces with a-corners, [[153]
Kur® 2-category of Kuranishi spaces with corners,

Kur® 2-category of Kuranishi spaces with corners over Man® of mixed

dimension,

Kur‘j;. 2-category of Kuranishi spaces with corners over Man® of mixed
dimension, and 1-morphisms which are P,

Kurg,, 2-category of Kuranishi spaces with corners, and b-normal 1-morphisms,

154

Kur{, 2-category of Kuranishi spaces with corners, and interior 1-morphisms,
=154

Kurg, 2-category of Kuranishi spaces with corners, and simple 1-morphisms,
[-154]

KurS  2-category of Kuranishi spaces with corners over Man® of mixed
dimension, and simple 1-morphisms,

Kurg, 2-category of Kuranishi spaces with corners, and strongly smooth

1-morphisms,

Kurg, ,,,, 2-category of Kuranishi spaces with corners, and strongly smooth
b-normal 1-morphisms,

2-category of Kuranishi spaces with corners, and strongly smooth
interior 1-morphisms, [[154]

Kur¢

st,in
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Kurt

Se 2-category of Kuranishi spaces with corners and weakly smooth 1-

morphisms,
Kur® 2-category of Kuranishi spaces with corners associated to Man®, [[-157

Kur®. 2-category of Kuranishi spaces with corners associated to Man¢®, and

S1
simple 1-morphisms,
Kur®?2¢ 2-category of Kuranishi spaces with corners and a-corners,

Kury?® 2-category of Kuranishi spaces with corners and a-corners, and b-normal
1-morphisms,

Kur*® 2-category of Kuranishi spaces with corners and a-corners, and interior
1-morphisms,

Kur®® 2-category of Kuranishi spaces with corners and a-corners, and simple
1-morphisms,

Kurg;®® 2-category of Kuranishi spaces with corners and a-corners, and strongly
a-smooth 1-morphisms,

Kurg%  2-category of Kuranishi spaces with corners and a-corners, and strongly

a-smooth b-normal 1-morphisms,

Kurg%, 2-category of Kuranishi spaces with corners and a-corners, and strongly
.

a-smooth interior 1-morphisms,
Kur8® 2-category of Kuranishi spaces with g-corners,

Kurfs  2-category of Kuranishi spaces with g-corners, and b-normal 1-morph-
isms, [F155]

Kurf® 2-category of Kuranishi spaces with g-corners, and interior 1-morph-
isms, [F155]

Kur®® 2-category of Kuranishi spaces with g-corners, and simple 1-morphisms,
-159)

Kx canonical bundle of a ‘manifold’ X in 1\'/Ian7 11-10

Kx canonical bundle of an (m- or pu-)Kuranishi space X, [[1-62} [[I-74

PKx b-canonical bundle of an (m- or p-)Kuranishi space with corners X,

=66l

Man  category of classical manifolds, [[-7]

Man category of ‘manifolds’ satisfying Assumptions
Man another category of ‘manifolds’ satisfying Assumptions 3.7]

Man?® category of manifolds with a-corners, [[-18]
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Man2¢ category of manifolds with a-corners and b-normal maps,
Man2¢ category of manifolds with a-corners and interior maps,

ManZf category of manifolds with a-corners and strongly a-smooth maps,

ManZf,,, category of manifolds with a-corners and strongly a-smooth b-normal

tmaps,
ManZ¢;,, category of manifolds with a-corners and strongly a-smooth interior
tmaps,

ManP  category of manifolds with boundary,

ManP, category of manifolds with boundary and interior maps,

ManP?  category of manifolds with boundary and simple maps,

Man® category of manifolds with corners,

Man® category of ‘manifolds with corners’ satisfying Assumption
Man® category of ‘manifolds with corners’ of mixed dimension, m

Man® category of manifolds with corners of mixed dimension,

Mang , category of manifolds with corners and b-normal maps,

Man{  category of manifolds with corners and interior maps,

Man$  category of manifolds with corners of mixed dimension and interior
maps, [-§|

Man¢, category of manifolds with corners and simple maps,

Mans, category of ‘manifolds with corners’ of mixed dimension, and simple
morphisms,

Mang, category of manifolds with corners and strongly smooth maps,

Mangt category of manifolds with corners of mixed dimension and strongly

smooth maps,

Mang, ;,, category of manifolds with corners and strongly smooth b-normal
maps, [[-5]

Mang, ;,, category of manifolds with corners and strongly smooth interior maps,

Man¢

we

category of manifolds with corners and weakly smooth maps,

Man®?¢ category of manifolds with corners and a-corners,
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Man;2¢ category of manifolds with corners and a-corners, and b-normal maps,

Man{*¢ category of manifolds with corners and a-corners, and interior maps,
[-18]

Mang;* category of manifolds with corners and a-corners, and simple maps,
-19

Man{?¢ category of manifolds with corners and a-corners, and strongly a-
smooth maps,

Man_;°y ~category of manifolds with corners and a-corners, and strongly a-

smooth b-normal maps,

Mang;%, category of manifolds with corners and a-corners, and strongly a-

smooth interior maps,
Man8¢ category of manifolds with g-corners,
Man§] category of manifolds with g-corners and interior maps,
mKN  2-category of m-Kuranishi neighbourhoods over manifolds Man,
mKN 2-category of m-Kuranishi neighbourhoods over Man,

mKN¢ 2-category of m-Kuranishi neighbourhoods over manifolds with corners

Man®,

mKNg(X) 2-category of m-Kuranishi neighbourhoods over S C X in Man,
[-59i

mKN(X) 2-category of m-Kuranishi neighbourhoods over S C X in Man,
-5}

mKN¢g(X) 2-category of m-Kuranishi neighbourhoods over S C X in Man®,
[-59

mKur 2-category of m-Kuranishi spaces over classical manifolds Man,
mKur 2-category of m-Kuranishi spaces over Man,

mKurp 2-category of m-Kuranishi spaces over Man, and 1-morphisms with
discrete property P,

mKur?® 2-category of m-Kuranishi spaces with a-corners,

mKurp? 2-category of m-Kuranishi spaces with a-corners, and b-normal 1-

morphisms,

mKur{$ 2-category of m-Kuranishi spaces with a-corners, and interior 1-mor-

phisms,
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mKur2$ 2-category of m-Kuranishi spaces with a-corners, and simple 1-morph-

isms,

mKur?f 2-category of m-Kuranishi spaces with a-corners, and strongly a-smooth
1-morphisms, [[-79]

mKurff, 2-category of m-Kuranishi spaces with a-corners, and strongly a-

smooth b-normal 1-morphisms, [-79]

stin 2-category of m-Kuranishi spaces with a-corners, and strongly a-

smooth interior 1-morphisms,

mKur

b

mKur® 2-category of m-Kuranishi spaces with boundary, [[-93

mKurﬁ1 2-category of m-Kuranishi spaces with boundary, and interior 1-mor-
phisms,

mKurEi 2-category of m-Kuranishi spaces with boundary, and simple 1-morph-

isms,
mKur® 2-category of m-Kuranishi spaces with corners,

mKur® 2-category of m-Kuranishi spaces with corners over Man® of mixed

dimension,

mKurg 2-category of m-Kuranishi spaces with corners over Man® of mixed
dimension, and 1-morphisms which are P,

mKurg  2-category of m-Kuranishi spaces with corners, and b-normal 1-
morphisms, [-7§]

mKur{, 2-category of m-Kuranishi spaces with corners, and interior 1-morph-
isms, [275)

mKurg, 2-category of m-Kuranishi spaces with corners, and simple 1-morphisms,

mKurg;, 2-category of m-Kuranishi spaces with corners over Man® of mixed
dimension, and simple 1-morphisms,

mKurg, 2-category of m-Kuranishi spaces with corners, and strongly smooth

1-morphisms,

mKurg, ;,, 2-category of m-Kuranishi spaces with corners, and strongly smooth
b-normal 1-morphisms, [-7§]

mKurg, ;, 2-category of m-Kuranishi spaces with corners, and strongly smooth

interior 1-morphisms, [-7§]

mKurS,, 2-category of m-Kuranishi spaces with corners and weakly smooth

1-morphisms,
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mKur® 2-category of m-Kuranishi spaces with corners associated to Man€,

mKur®?2¢ 2-category of m-Kuranishi spaces with corners and a-corners,

mKury2¢ 2-category of m-Kuranishi spaces with corners and a-corners, and

b-normal 1-morphisms,

c,ac
in

mKur 2-category of m-Kuranishi spaces with corners and a-corners, and

interior 1-morphisms,

c,ac
si

mKur 2-category of m-Kuranishi spaces with corners and a-corners, and

simple 1-morphisms,

mKurg*® 2-category of m-Kuranishi spaces with corners and a-corners, and

strongly a-smooth 1-morphisms,

mKur%  2-category of m-Kuranishi spaces with corners and a-corners, and
,

strongly a-smooth b-normal 1-morphisms,

oie 2-category of m-Kuranishi spaces with corners and a-corners, and
;

strongly a-smooth interior 1-morphisms,

mKur

mI'{ur;fi 2-category of m-Kuranishi spaces with corners associated to Man¢,
and simple 1-morphisms,

mKur8® 2-category of m-Kuranishi spaces with g-corners,

mKurfy 2-category of m-Kuranishi spaces with g-corners, and b-normal 1-
morphisms,

mKurf? 2-category of m-Kuranishi spaces with g-corners, and interior 1-mor-
phisms,

mKurg® 2-category of m-Kuranishi spaces with g-corners, and simple 1-morph-

isms, [[-79]

pKN  category of p-Kuranishi neighbourhoods over manifolds Man,
[LKN category of u-Kuranishi neighbourhoods over Man, [[-110

pKN€¢  category of u-Kuranishi neighbourhoods over manifolds with corners

Man¢, [-11]]
pKN(X) category of p-Kuranishi neighbourhoods over S C X in Man,
;LKNS(X ) category of p-Kuranishi neighbourhoods over S C X in Man,
pKNE(X) category of u-Kuranishi neighbourhoods over S C X in Man®,
pKur  category of p-Kuranishi spaces over classical manifolds Man,

uKur category of u-Kuranishi spaces over Man, [[-116
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pKur p category of pu-Kuranishi spaces over Man, and morphisms with discrete

property P,
pKur?® category of y-Kuranishi spaces with a-corners, [[117]

pKurp® category of p-Kuranishi spaces with a-corners, and b-normal mor-

phisms,
pKurfS category of u-Kuranishi spaces with a-corners, and interior morphisms,
=120

pKuri’ category of y-Kuranishi spaces with a-corners, and simple morphisms,
[-120

pKurds category of u-Kuranishi spaces with a-corners, and strongly a-smooth
morphisms,

pKurdd, - category of p-Kuranishi spaces with a-corners, and strongly a-smooth
b-normal morphisms,

stin category of u-Kuranishi spaces with a-corners, and strongly a-smooth

interior morphisms,

pKur

pKur?  category of u-Kuranishi spaces with boundary, [I-125

pKurp category of y-Kuranishi spaces with boundary, and interior morphisms,

[-125

b . . y . . . .
pKury, category of p-Kuranishi spaces with boundary, and simple morphisms,

U-125)
pKur®  category of y-Kuranishi spaces with corners, [[117]

uKurC category of p-Kuranishi spaces with corners over Man® of mixed
dimension,

uKur‘}s category of p-Kuranishi spaces with corners over Man® of mixed
dimension, and morphisms which are P,

pKurg  category of p-Kuranishi spaces with corners, and b-normal morphisms,
[-179

pKurf, category of p-Kuranishi spaces with corners, and interior morphisms,

pKurg, category of pu-Kuranishi spaces with corners, and simple morphisms,
[-179

pKurg;, category of pu-Kuranishi spaces with corners over Man® of mixed
dimension, and simple morphisms, [-124]
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pKurg, category of pu-Kuranishi spaces with corners, and strongly smooth
morphisms,

pKurg, ,, category of p-Kuranishi spaces with corners, and strongly smooth
b-normal morphisms, [-119]

st.in category of p-Kuranishi spaces with corners, and strongly smooth

interior morphisms, [[119]

pKur

pKurg,, category of p-Kuranishi spaces with corners and weakly smooth mor-

phisms,
/,LKUI‘C category of p-Kuranishi spaces with corners associated to Manc, 1-122

pKur®2¢ category of p-Kuranishi spaces with corners and a-corners,

c,ac

pKury© category of p-Kuranishi spaces with corners and a-corners, and b-
normal morphisms,

c,ac
in

pKur category of u-Kuranishi spaces with corners and a-corners, and interior

morphisms,

pKur*® category of p-Kuranishi spaces with corners and a-corners, and simple
morphisms,

pKurg®® category of p-Kuranishi spaces with corners and a-corners, and

strongly a-smooth morphisms, [-120]

c,ac

<t bn category of u-Kuranishi spaces with corners and a-corners, and
strongly a-smooth b-normal morphisms, [[-120]

pKur

c,ac

<t in category of p-Kuranishi spaces with corners and a-corners, and
strongly a-smooth interior morphisms,

pKur

uKurgi category of pu-Kuranishi spaces with corners associated to Manc, and
simple morphisms,

pKurg® category of y-Kuranishi spaces with g-corners, [-117]

pKurfS category of p-Kuranishi spaces with g-corners, and b-normal mor-
phisms,

pKurfS category of y-Kuranishi spaces with g-corners, and interior morphisms,

=120

pKurf’ category of p-Kuranishi spaces with g-corners, and simple morphisms,
[-120

fo c M, X — MyY monoid morphism for morphism f : X — Y in Mang ,

M, X monoid at a point x in a manifold with corners X,
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N¢,(x) normal bundle of k-corners Cy(X) in a manifold with corners X,

bNCk( x) b-normal bundle of k-corners Cy(X) in a manifold with corners X,
-12)

Nox normal line bundle of boundary dX in a manifold with corners X,

Nxf (N, X — NyY stratum normal map for manifolds with corners X, [[-13

PNLf PN, X — bNyY stratum b-normal map for morphism f : X — Y in
Mang,, [-14]

N, X stratum normal space at z in a manifold with corners X,

PN,X  stratum b-normal space at z in a manifold with corners X, [[-13

Orbcr  Chen—Ruan’s category of orbifolds,

Orbcesta 2-category of orbifolds as stacks on site C*°Sch, [-172]

Orbk,: 2-category of orbifolds as examples of Kuranishi spaces,

Orbr. Lerman’s 2-category of orbifolds, [-17]]

Orbyansta 2-category of orbifolds as stacks on site Man,

Orbyp Moerdijk—Pronk’s category of orbifolds,

Orbp, Pronk’s 2-category of orbifolds,

Orbgr Satake—Thurston’s category of orbifolds,

Orb 2-category of Kuranishi orbifolds associated to Man,

Orb2¢  2-category of orbifolds with a-corners,

Orbe 2-category of orbifolds with corners associated to Man®©,

Orb®2¢ 2-category of orbifolds with corners and a-corners,

Orbgi 2-category of orbifolds with corners associated to Man®, and simple

1-morphisms, [[-17§]

Orbs,, 2-category of orbifolds with corners, and weakly smooth 1-morphisms,

173
Orbs,, 2-category of orbifolds with corners,

Orb®®  2-category of effective orbifolds with 1-morphisms surjective on isotropy

groups, [-35]

Orb8¢  2-category of orbifolds with g-corners,

Ox structure sheaf of object X in Man, 1-37 [I-235
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O.f : 0, X — O,Y obstruction map of (m- or u-)Kuranishi spaces, [II-17] [II-21]
=22

%0, f :°0,X — *0,Y b-obstruction map of (m- or y-)Kuranishi spaces with

corners, [[I-19]

O,f :0,X — O,Y stratum obstruction map of (m- or p-)Kuranishi spaces

with corners, [I-19]
0, X obstruction space at x of an (m- or u-)Kuranishi space X, [[I-16] [[I-21]

0:X coobstruction space at  of an (m- or u-)Kuranishi space X, |I[I-16
=21

®0,X  b-obstruction space at x of an (m- or u-)Kuranishi space with corners
X, =19

0, X stratum obstruction space at « of an (m- or p-)Kuranishi space with
corners X,

;i (Vi, Bi, 1y, s5,10:) — (V, E;,T,85,1;) 1-morphism or coordinate change
of Kuranishi neighbourhoods,

;- (Vi, By, si,¢0:) = (Vy, Ej, 84,%;) 1l-morphism or coordinate change of m-
Kuranishi neighbourhoods,

[@4;] : (Vi, By, 8i,¢5) — (V;, Ej, s4,%,) morphism or coordinate change of p-Kur-
anishi neighbourhoods,

Qof 1 QX — QY quasi-tangent map of morphism f: X — Y in 1\./Ian7 11-13

Qzf 1 QX — Q,Y quasi-tangent map of (m- or p-)Kuranishi spaces, [II-24
UI-28

Q. X quasi-tangent space at z of ‘manifold’ X in Man, [[I-13

Q. X quasi-tangent space at x of an (m- or p-)Kuranishi space X, [[I-24
[1-28

SY(X)  depth I stratum of a manifold with corners X, [I-6
Tf:TX — TY derivative of a smooth map f: X — Y,

bTf T X — PTY b-derivative of an interior map f : X — Y of manifolds with

corners, [[-12]
TrY tangent sheaf of morphism f: X — Y in Man, [-251

Tg:TsY — TyorZ morphism of tangent sheaves for f: X =Y, ¢g:Y — Zin
1\'/Ian7 1-254

Top category of topological spaces,
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TX tangent bundle of a manifold X,

X cotangent bundle of a manifold X,

TX tangent sheaf of ‘manifold’ X in Man,

T*X cotangent sheaf of ‘manifold” X in Man,

bTX b-tangent bundle of a manifold with corners X,

bT*X  b-cotangent bundle of a manifold X,

T.f:1T,X —T,Y tangent map of morphism f: X — Y in Man, m

O f T, X — bTyY b-tangent map of interior map f: X — Y in Man€,

T.f T, X — TyY stratum tangent map of morphism f : X — Y of manifolds
with corners, [[I-4]

T.f : T.X — T,Y tangent map of (m- or u-)Kuranishi spaces, [[I-17} [[I-21] [[I-22

T, f : °T. X — °T,Y b-tangent map of (m- or p-)Kuranishi spaces with corners,
LI-19

T.f T, X — TyY stratum tangent map of (m- or p-)Kuranishi spaces with
corners, [[I-19]

T.X tangent space at x of ‘manifold’ X in Man, m

X cotangent space at x of ‘manifold’ X in Man, m

®T,X  b-tangent space at = of a manifold with corners X, [I-11

T,X stratum tangent space at x of a manifold with corners X, [[I-4

T.X tangent space at x of an (m- or p-)Kuranishi space X,

X cotangent space at  of an (m- or p-)Kuranishi space X,

bT, X b-tangent space at  of an (m- or u-)Kuranishi space with corners X,
=191

T,X stratum tangent space at = of an (m- or u-)Kuranishi space with

corners X, [[I-19]

(V,E,T, s) object in 2-category of global Kuranishi neighbourhoods GKN, 1-142
(V, E,T', s,%) Kuranishi neighbourhood on topological space, [I-135

(V,E, s) object in ( categor of global m- or p-Kuranishi neighbourhoods
GmKN or G[,LKN i h

(V, E,s,1) m- or u-Kuranishi neighbourhood on topological space, [[-55| [I-109)|
X° interior of a manifold with corners X, [[-6|

Xiop underlying topological space of object X in Man,
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Index to all volumes

Page references are in the form volume-page number.

(2, 1)-category, [[-59 adjoint functor, [[-:237]
2-Cartesian square, [[-74] [[-229] [[T-90} Axiom of Choice,
[-114} [[-115) [-152] [[-169} [T-23]
2-category, Axiom of Global Choice,
1-isomorphism in, [Z149] =152 [I-169], [[1-23]
1-morphism, [[-223]
2-functor, C>-algebraic geometry,
weak 2-natural transformation, [[-129] [1-234}HI-235]
C*-ring, [[-36} [-128] [-234{[-235]
2-morphism, C°°-derivation, [[:239] [[-245|
horizontal composition, [[-224] cotangent module,
vertical composition, definition, [[-234]
canonical equivalence of objects, derived, [-104]
005 module over,
discrete, [[-35 C*°-scheme, IT—TEIM [-235] [I1-5]
equivalence in, [[-225] affine,
canonical, [F97] derived, -105
equivalence of, =228 C>-stack,
fibre product in, [2228/ 2229} [T} Cartesian square,
category,
homotopy category, coproduct, [I-31]
[[-120] =226}, [[TI-108| definition, [-221]
modification, equivalence of,
strict, [F223] essentially small,
wealk, 72 fibre product, 222
2-functor, [[-103] [-226}{-228 functor, see functor
equivalence of, [-228] groupoid,
strict, [[F226] initial object,
weak, [-75HI-76] [[-87], [[-226] opposite category,
weak 2-natural transformation, product category,
227 small, [22]]
modification, [[-22§] subcategory,
2-sheaf, [[-2] full,
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terminal object, 74 @
oy
class, in Set Theory, [67} [221] [{
classical manifold,
connecting morphism,
[[1-92] MI-116] [T-154]
contact homology,
coorientation, [[-28] [[I-10]
opposite, [[-28] [I-10]
corner functor,

[-48]

cotangent sheaf, [-239HI-242]

d-manifold,
Derived Algebraic Geometry,

s
Derived Differential Geometry,

il

derived manifold, [[=viiH{I=viii}, [[-103}
[[=105], =122, [T=viiHIT-viiy]

derived orbifold,
il

derived scheme,
derived stack,
determinant,

discrete property of morphisms in
Man, [[-44}I-45] [I-77HI-80]
mm [153HI-155] [
[[78} [-263}H-264] [[T-3HI1-14]

[1-79HII-87]

fibre product,
in a 2-category, [-228H[-229] [T}
transverse, [[T9H[-27] [I-78T]
fine sheaf,
FOOO Kuranishi space, [-v] 0
[1-62} [1-97} [[I-107]
Fukaya category, [
I
functor, [-222]
adjoint,

320

contravariant, ([-222

equivalence, [[222]
faithful, [222]
full,

natural isomorphism,
natural transformation, 18]

global Kuranishi neighbourhood, [
w-transverse fibre product, [
TO9HIT-114]
global m-Kuranishi neighbourhood,
[-55)
submersion,
transverse fibre product,
T1-109
w-submersion, [[I-8§|
w-transverse fibre product, [
Gromov—Witten invariant,

M=y
groupoid, [-59] [[-221]

Hadamard’s Lemma,
Hilsum-Skandalis morphism, [[-144]

[LI71) [-173]
homotopy category, 1-106] [
[L09}, [-226} [IT-108]

oo-category, [[568] [F103HI-104]
isotropy group, [F166HI-170] HmHm
23} [0-7) [T [I-119)

J-holomorphic curves

moduli space of,
M=yl

Kuranishi atlas, by McDuff-Wehrheim,

Kuranishi moduli problem,
Kuranishi neighbourhood, s
1-morphism,
2-category of,
2-morphism,



coordinate change, M
definition, [-135]
footprint,

global,

w-transverse fibre product, [[[

[O9HIT-114!
Kuranishi section,
minimal,
obstruction bundle,
on Kuranishi space,
stack property of, 148

strict isomorphism, [[I-3§|

Kuranishi space,

1-morphism, [[-147]
étale, [[I-48
representable,
2-category of, [[-151]
2-morphism,
and m-Kuranishi spaces,
and orbifolds,
boundary, [-160]
canonical bundle, [I-74HII-77]
coobstruction space,
coorientation, [I=75]
opposite,
cotangent space,
definition, [[-146]

discrete property of 1-morphisms,
equivalence,
étale 1-morphism, |[I-48HII-50]
FOOO, see FOOO Kuranishi
space
is an orbifold, 108
isotropy group, [ZI66HI-170], [IT}
definition,
trivial,
k-corner functor,
Kuranishi neighbourhood on, [
162HI-165)

321

1-morphism,
coordinate change,
definition, [[162]
global,
locally orientable, [[I-74HII-77
=118
obstruction space,
7
definition, [I-2THIT-23]
orientation, [I-74HIT=77]
definition, [[I-75]
opposite,
product,
orientation, [I-77]
quasi-tangent space, [[I-28]
submersion,
2]
tangent space, [T=3HIT=77]
definition, [I-2THIT-23]
transverse fibre product, [I-1}-
-2} [T-TO8HIT-127)
virtual dimension,
w-submersion,
w-transverse fibre product,

-2} [-108} [-127

Kuranishi space with a-corners, [[

b-normal 1-morphism,

interior 1-morphism,

simple 1-morphism, [-155]

strongly a-smooth 1-morphism,
[-159)

Kuranishi space with corners, [[-153

[-157H-162} [[T-T20HTT-123]
- 125HI1-127]
b-normal 1-morphism, 1]
boundary
orientation on, [[I-77]
boundary 2-functor, [[-161]
equivalence, [[162]
interior 1-morphism, 18}
102
k-corners Ci(X),
s-submersion, M

[120HII-12'7}




s-transverse fibre product, [
120HIT-123

sb-transverse fibre product, [}

sc-transverse fibre product, [T}
1 20HI1-127]

simple 1-morphism, [[-154

strongly smooth 1-morphism, [

g

t-transverse fibre product, [
1 20HI1-123]

ws-submersion, -

ws-transverse fibre product, [}
1 20HI1-123]

wsb-transverse fibre product, [}

%

wsc-transverse fibre product, [T}
125HIT-127]
wt-transverse fibre product, [}

1 20H1]-123]

Kuranishi space with corners and

a-Corners,
b-normal 1-morphism,
interior 1-morphism, [-155]
simple 1-morphism,
strongly a-smooth 1-morphism,

g

Kuranishi space with g-corners, [[

53] (155, [I-T23, {1125
b-fibration,
b-normal 1-morphism,
b-transverse fibre product, [

123HIT-125

c-fibration, [I-T23 125

c-transverse fibre product, [
interior 1-morphism,
simple 1-morphism,
whb-fibration,
wh-transverse fibre product, [T}
1 23HI1-125]
we-fibration, 11-125
we-transverse fibre product, [}
123HIT-125

Kuranishi structure, [-146]

Lagrangian Floer cohomology,

v} [ [T} [T} [T [
5%

M-cohomology, [FviiHix), [-vilHIT-ix]
and virtual cocycles,
i
M-homology, [-viiH[-ix], [T-viiHIT-i
and virtual cycles, [-viiH[-1x] [[T]
RAHITx]
m-Kuranishi neighbourhood,
0 1]
1-morphism,
2-category of,
2-morphism,
gluing with a partition of unity,
linearity properties of, [[-107}-
[-109]
coordinate change, 108]
ATHIT-48]
definition,
footprint, [[-55]
global,
submersion,
transverse fibre product, [
w-submersion, [[T-8§]

w-transverse fibre product, [

Kuranishi section,
minimal, 1-37]
obstruction bundle,

on m-Kuranishi space, [-93}{[

E

stack property of,

strict isomorphism, [[I-30]
m-Kuranishi space, |[-54]

1-morphism, [-62]

étale, [[T-4211-47], [TT=65)|

2-category of,

2-morphism, [[-63]

and Kuranishi spaces, [ZI55H
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and p-Kuranishi spaces,
[-122)
canonical bundle, [I-62HII-74] [T}
0]
definition,
coobstruction space,
coorientation,
opposite, [[1-66]
corner 2-functor, [[-87H[-93] [[§
cotangent space, [[I-16]
definition, [I-61
discrete property of 1-morphisms,

[77 50, (201
equivalence, I

étale 1-morphism,
=65

fibre product, [74]

is a classical manifold, 108
is a manifold, [[=73] (=37}, [[T-91]
k-corner functor,

m-Kuranishi neighbourhood on,
1-morphism of, [[-95]
coordinate change, [-94]
definition,
global, [[-94]

obstruction space, [[I-1}, [I=3HIM
e

definition,

orientation, [[TI=66|-T1-74], [[T-06]-
11-97]

definition, [[I-66]

opposite, [[1-66]
oriented,
product, [[-74] [T-93HI1-94

orientation, [[I-71HII-74
quasi-tangent space, [[I-23HI1-27]
submersion, [[I-1} [[I-2] [[I-87HIT]

100

tangent space, [T} [E3ETT
definition,
transverse fibre product,

-2} [1-87 [-106]
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virtual dimension,
w-submersion,
w-transverse fibre product, [

11-150

orientation on, [[I-96HI1-97]

m-Kuranishi space with a-corners,

72 79

b-normal 1-morphism, [[-79]

interior 1-morphism,

simple 1-morphism,

strongly a-smooth 1-morphism,
[-79

m-Kuranishi space with boundary,

2

m-Kuranishi space with corners, [

[=78] =8 THI-93], [T-100}-
[[T=102] IT=104}{[T-106]
b-normal 1-morphism, @l, |H
92
boundary,
orientation on, [I=67HII=71]

boundary 2-functor, [[-91
in