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4.5 Discrete properties of 1-morphisms in mK̇ur . . . . . . . . . . 76
4.6 M-Kuranishi spaces with corners.

Boundaries, k-corners, and the corner 2-functor . . . . . . . . 80
4.7 M-Kuranishi neighbourhoods on m-Kuranishi spaces . . . . . 93
4.8 M-Kuranishi spaces and derived manifolds . . . . . . . . . . . 102

5 µ-Kuranishi spaces 106
5.1 Linearity of 2-morphisms of m-Kuranishi neighbourhoods . . . 106
5.2 The category of µ-Kuranishi neighbourhoods . . . . . . . . . . 109
5.3 The category of µ-Kuranishi spaces . . . . . . . . . . . . . . . 114
5.4 µ-Kuranishi spaces with corners.

Boundaries, k-corners, and the corner functor . . . . . . . . . 122
5.5 µ-Kuranishi neighbourhoods on µ-Kuranishi spaces . . . . . . 125
5.6 Proof of Theorem 5.23 . . . . . . . . . . . . . . . . . . . . . . 127

i



6 Kuranishi spaces, and orbifolds 135
6.1 The weak 2-category of Kuranishi neighbourhoods . . . . . . . 135
6.2 The weak 2-category of Kuranishi spaces . . . . . . . . . . . . 145
6.3 Kuranishi spaces with corners.

Boundaries, k-corners, and the corner 2-functor . . . . . . . . 157
6.4 Kuranishi neighbourhoods on Kuranishi spaces . . . . . . . . 162
6.5 Isotropy groups . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.6 Orbifolds and Kuranishi spaces . . . . . . . . . . . . . . . . . 170
6.7 Proof of Theorems 4.13 and 6.16 . . . . . . . . . . . . . . . . . 178

7 Relation to other Kuranishi-type spaces (To be rewritten.) 188
7.1 Fukaya–Oh–Ohta–Ono’s Kuranishi spaces . . . . . . . . . . . 188
7.2 Fukaya–Oh–Ohta–Ono’s good coordinate systems . . . . . . . 193
7.3 McDuff–Wehrheim’s Kuranishi atlases . . . . . . . . . . . . . 196
7.4 Dingyu Yang’s Kuranishi structures, and polyfolds . . . . . . 199
7.5 Relating our Kuranishi spaces to previous definitions . . . . . 202
7.6 Proof of Theorem 7.26 . . . . . . . . . . . . . . . . . . . . . . 209

8 (M-)Kuranishi spaces as stacks 220

A Categories and 2-categories 221
A.1 Basics of category theory . . . . . . . . . . . . . . . . . . . . . 221
A.2 Strict and weak 2-categories . . . . . . . . . . . . . . . . . . . 222
A.3 2-functors, 2-natural transformations, and modifications . . . 226
A.4 Fibre products in 2-categories . . . . . . . . . . . . . . . . . . 228
A.5 Sheaves on topological spaces . . . . . . . . . . . . . . . . . . 229
A.6 Stacks on topological spaces . . . . . . . . . . . . . . . . . . . 231

B Differential geometry in Ṁan and Ṁanc 233
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Introduction to the series

On the foundations of Symplectic Geometry

Several important areas of Symplectic Geometry involve ‘counting’ moduli
spaces M of J-holomorphic curves in a symplectic manifold (S, ω) satisfying
some conditions, where J is an almost complex structure on S compatible with
ω, and using the ‘numbers of curves’ to build some interesting theory, which
is then shown to be independent of the choice of J . Areas of this type include
Gromov–Witten theory [12, 39, 52, 68, 73, 79, 102, 104], Quantum Cohomology
[68, 79], Lagrangian Floer cohomology [2, 21, 24, 29, 92, 109], Fukaya categories
[18, 98, 100], Symplectic Field Theory [9, 15, 16], Contact Homology [14, 94],
and Symplectic Cohomology [99].

Setting up the foundations of these areas, rigorously and in full generality,
is a very long and difficult task, comparable to the work of Grothendieck and
his school on the foundations of Algebraic Geometry, or the work of Lurie and
Toën–Vezzosi on the foundations of Derived Algebraic Geometry. Any such
foundational programme for Symplectic Geometry can be divided into five steps:

(i) We must define a suitable class of geometric structures G to put on the
moduli spaces M of J-holomorphic curves we wish to ‘count’. This must
satisfy both (ii) and (iii) below.

(ii) Given a compact space X with geometric structure G and an ‘orientation’,
we must define a ‘virtual class’ [[X]virt] in some homology group, or a
‘virtual chain’ [X]virt in the chains of the homology theory, which ‘counts’ X.

Actually, usually one studies a compact, oriented G-space X with a ‘smooth
map’ f : X → Y to a manifold Y , and defines [[X]virt] or [X]virt in a
suitable (co)homology theory of Y , such as singular homology or de Rham
cohomology. These virtual classes/(co)chains must satisfy a package of
properties, including a deformation-invariance property.

(iii) We must prove that all the moduli spaces M of J-holomorphic curves
that will be used in our theory have geometric structure G, preferably
in a natural way. Note that in order to make the moduli spaces M
compact (necessary for existence of virtual classes/chains), we have to
include singular J-holomorphic curves in M. This makes construction of
the G-structure on M significantly more difficult.
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(iv) We combine (i)–(iii) to study the situation in Symplectic Geometry we are
interested in, e.g. to define Lagrangian Floer cohomology HF ∗(L1, L2) for
compact Lagrangians L1, L2 in a compact symplectic manifold (S, ω).

To do this we choose an almost complex structure J on (S, ω) and define
a collection of moduli spaces M of J-holomorphic curves relevant to the
problem. By (iii) these have structure G, so by (ii) they have virtual
classes/(co)chains [M]virt in some (co)homology theory.

There will be geometric relationships between these moduli spaces – for
instance, boundaries of moduli spaces may be written as sums of fibre
products of other moduli spaces. By the package of properties in (ii), these
geometric relationships should translate to algebraic relationships between
the virtual classes/(co)chains, e.g. the boundaries of virtual cochains may
be written as sums of cup products of other virtual cochains.

We use the virtual classes/(co)chains, and the algebraic identities they
satisfy, and homological algebra, to build the theory we want – Quantum
Cohomology, Lagrangian Floer Theory, and so on. We show the result
is independent of the choice of almost complex structure J using the
deformation-invariance properties of virtual classes/(co)chains.

(v) We apply our new machine to do something interesting in Symplectic
Geometry, e.g. prove the Arnold Conjecture.

Many authors have worked on programmes of this type, since the introduction
of J-holomorphic curve techniques into Symplectic Geometry by Gromov [42]
in 1985. Oversimplifying somewhat, we can divide these approaches into three
main groups, according to their answer to (i) above:

(A) (Kuranishi-type spaces.) In the work of Fukaya, Oh, Ohta and Ono
[19–39], moduli spaces are given the structure of Kuranishi spaces (we will
call their definition FOOO Kuranishi spaces).

Several other groups also work with Kuranishi-type spaces, including
McDuff and Wehrheim [77, 78, 80–83], Pardon [94, 95], and the author in
[60, 62] and this series.

(B) (Polyfolds.) In the work of Hofer, Wysocki and Zehnder [46–53], moduli
spaces are given the structure of polyfolds.

(C) (The rest of the world.) One makes restrictive assumptions on the
symplectic geometry – for instance, consider only noncompact, exact
symplectic manifolds, and exact Lagrangians in them – takes J to be
generic, and arranges that all the moduli spaces M we are interested
in are smooth manifolds (or possibly ‘pseudomanifolds’, manifolds with
singularities in codimension 2). Then we form virtual classes/chains as
for fundamental classes of manifolds. A good example of this approach is
Seidel’s construction [100] of Fukaya categories of Liouville domains.

We have not given complete references here, much important work is omitted.
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Although Kuranishi-type spaces in (A), and polyfolds in (B), do exactly
the same job, there is an important philosophical difference between them.
Kuranishi spaces basically remember the minimal information needed to form
virtual cycles/chains, and no more. Kuranishi spaces contain about the same
amount of data as smooth manifolds, and include manifolds as examples.

In contrast, polyfolds remember the entire functional-analytic moduli problem,
forgetting nothing. Any polyfold curve moduli space, even a moduli space of
constant curves, is a hugely infinite-dimensional object, a vast amount of data.

Approach (C) makes one’s life a lot simpler, but this comes at a cost. Firstly,
one can only work in rather restricted situations, such as exact symplectic
manifolds. And secondly, one must go through various contortions to ensure all
the moduli spaces M are manifolds, such as using domain-dependent almost
complex structures, which are unnecessary in approaches (A),(B).

The aim and scope of the series, and its novel features

The aim of this series of books is to set up the foundations of these areas of
Symplectic Geometry built using J-holomorphic curves following approach (A)
above, using the author’s own definition of Kuranishi space. We will do this
starting from the beginning, rigorously, in detail, and as the author believes the
subject ought to be done. The author hopes that in future, the series will provide
a complete framework which symplectic geometers can refer to for theorems and
proofs, and use large parts as a ‘black box’.

The author currently plans four or more volumes, as follows:

Volume I. Basic theory of (m-)Kuranishi spaces. Definitions of the cat-
egory µK̇ur of µ-Kuranishi spaces, and the 2-categories mK̇ur of
m-Kuranishi spaces and K̇ur of Kuranishi spaces, over a category
of ‘manifolds’ Ṁan such as classical manifolds Man or manifolds
with corners Manc. Boundaries, corners, and corner (2-)functors
for (m- and µ-)Kuranishi spaces with corners. Relation to similar
structures in the literature, including Fukaya–Oh–Ohta–Ono’s Ku-
ranishi spaces, and Hofer–Wysocki–Zehnder’s polyfolds. ‘Kuranishi
moduli problems’, our approach to putting Kuranishi structures
on moduli spaces, canonical up to equivalence.

Volume II. Differential Geometry of (m-)Kuranishi spaces. Tangent
and obstruction spaces for (m- and µ-)Kuranishi spaces. Canonical
bundles and orientations. (W-)transversality, (w-)submersions,
and existence of w-transverse fibre products in mK̇ur and K̇ur.
M-(co)homology of manifolds and orbifolds [63], virtual (co)chains
and virtual (co)cycles for compact, oriented (m-)Kuranishi spaces
in M-(co)homology. Orbifold strata of Kuranishi spaces. Bordism
and cobordism for (m-)Kuranishi spaces.

Volume III. Kuranishi structures on moduli spaces of J-holomorphic
curves. For very many moduli spaces of J-holomorphic curves
M of interest in Symplectic Geometry, including singular curves,
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curves with Lagrangian boundary conditions, marked points, etc.,
we show thatM can be made into a Kuranishi spaceM, uniquely
up to equivalence in K̇ur. We do this by a new method using
2-categories, similar to Grothendieck’s representable functor ap-
proach to moduli spaces in Algebraic Geometry. We do the same
for many other classes of moduli problems for nonlinear elliptic
p.d.e.s, including gauge theory moduli spaces. Natural relations
between moduli spaces, such as maps Fi :Mk+1 →Mk forgetting
a marked point, correspond to relations between the Kuranishi
spaces, such as a 1-morphism F i : Mk+1 →Mk in K̇ur. We
discuss orientations on Kuranishi moduli spaces.

Volumes IV– Big theories in Symplectic Geometry. To include Gromov–
Witten invariants, Quantum Cohomology, Lagrangian Floer coho-
mology, and Fukaya categories.

For steps (i)–(v) above, (i)–(iii) will be tackled in volumes I–III respectively, and
(iv)–(v) in volume IV onwards.

Readers familiar with the field will probably have noticed that our series
sounds a lot like the work of Fukaya, Oh, Ohta and Ono [19–39], in particular,
their 2009 two-volume book [24] on Lagrangian Floer cohomology. And it is
very similar. On the large scale, and in a lot of the details, we have taken many
ideas from Fukaya–Oh–Ohta–Ono, which the author acknowledges with thanks.
Actually this is true of most foundational projects in this field: Fukaya, Oh, Ohta
and Ono were the pioneers, and enormously creative, and subsequent authors
have followed in their footsteps to a great extent.

However, there are features of our presentation that are genuinely new, and
here we will highlight three:

(a) The use of Derived Differential Geometry in our Kuranishi space theory.

(b) The use of M-(co)homology to form virtual cycles and chains.

(c) The use of ‘Kuranishi moduli problems’, similar to Grothendieck’s rep-
resentable functor approach to moduli spaces in Algebraic Geometry, to
prove moduli spaces of J-holomorphic curves have Kuranishi structures.

We discuss these in turn.

(a) Derived Differential Geometry

Derived Algebraic Geometry, developed by Lurie [74] and Toën–Vezzosi [106,
107], is the study of ‘derived schemes’ and ‘derived stacks’, enhanced versions
of classical schemes and stacks with a richer geometric structure. They were
introduced to study moduli spaces in Algebraic Geometry. Roughly, a classical
moduli space M of objects E knows about the infinitesimal deformations of E,
but not the obstructions to deformations. The corresponding derived moduli
spaceM remembers the deformations, obstructions, and higher obstructions.

Derived Algebraic Geometry has a less well-known cousin, Derived Differential
Geometry, the study of ‘derived’ versions of smooth manifolds. Probably the first
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reference to Derived Differential Geometry is a short final paragraph in Lurie
[74, §4.5]. Lurie’s ideas were developed further in 2008 by his student David
Spivak [103], who defined an ∞-category DerManSpi of ‘derived manifolds’.

When I read Spivak’s thesis [103], armed with a good knowledge of Fukaya–
Oh–Ohta–Ono’s Kuranishi space theory [24], I had a revelation:

Kuranishi spaces are really derived smooth orbifolds.

This should not be surprising, as derived schemes and Kuranishi spaces are both
geometric structures designed to remember the obstructions in moduli problems.

This has important consequences for Symplectic Geometry: to understand
Kuranishi spaces properly, we should use the insights and methods of Derived
Algebraic Geometry. Fukaya–Oh–Ohta–Ono could not do this, as their Kuranishi
spaces predate Derived Algebraic Geometry by several years. Since they lacked
essential tools, their FOOO Kuranishi spaces are not really satisfactory as
geometric spaces, though they are adequate for their applications. For example,
they give no definition of morphism of FOOO Kuranishi spaces.

A very basic fact about Derived Algebraic Geometry is that it always happens
in higher categories, usually ∞-categories. We have written our theory in terms
of 2-categories, which are much simpler than ∞-categories. There are special
features of our situation which mean that 2-categories are enough for our purposes.
Firstly, the existence of partitions of unity in Differential Geometry means that
structure sheaves are soft, and have no higher cohomology. Secondly, we are
only interested in ‘quasi-smooth’ derived spaces, which have deformations and
obstructions, but no higher obstructions. As we are studying Kuranishi spaces
with deformations and obstructions – two levels of tangent directions – these
spaces need to live in a higher category C with at least two levels of morphism,
1- and 2-morphisms, so C needs to be at least a 2-category.

Our Kuranishi spaces form a weak 2-category K̇ur. One can take the
homotopy category Ho(K̇ur) to get an ordinary category, but this loses important
information. For example:

• 1-morphisms f : X → Y in K̇ur are a 2-sheaf (stack) onX, but morphisms
[f ] : X → Y in Ho(K̇ur) are not a sheaf on X, they are not ‘local’. This
is probably one reason why Fukaya et al. do not define morphisms for
FOOO Kuranishi spaces, as higher category techniques would be needed.

• As in Chapter 11 of volume II, there is a good notion of (w-)transverse
1-morphisms g : X → Z, h : Y → Z in K̇ur, and (w-)transverse fibre
products X ×g,Z,h Y exist in K̇ur, characterized by a universal property

involving the 2-morphisms in K̇ur. In Ho(K̇ur) this universal property
makes no sense, and (w-)transverse fibre products may not exist.

Derived Differential Geometry will be discussed in §4.8 of volume I.

(b) M-(co)homology and virtual cycles

In Fukaya–Oh–Ohta–Ono’s Lagrangian Floer theory [24], a lot of extra complexity
and hard work is due to the fact that their homology theory for forming virtual
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chains (singular homology) does not play nicely with FOOO Kuranishi spaces.
For example, they deal with moduli spacesMk(α) of stable J-holomorphic discs
Σ in (S, ω) with boundary in a Lagrangian L, with homology class [Σ] = α in
H2(S,L;Z), and k boundary marked points. These satisfy boundary equations

∂Mk(α) '
∐
α=β+γ, k=i+jMi+1(β)×evi+1,L,evj+1

Mj+1(γ).

One would like to choose virtual chains [Mk(α)]virt in homology satisfying

∂[Mk(α)]virt =
∑
α=β+γ, k=i+j [Mi+1(β)]virt •L [Mj+1(γ)]virt,

where •L is a chain-level intersection product/cup product on the (co)homology
of L. But singular homology has no chain-level intersection product.

In their later work [27, §12], [33], Fukaya et al. define virtual cochains in de
Rham cohomology, which does have a cochain-level cup product. But there are
disadvantages to this too, for example, one is forced to work in (co)homology
over R, rather than Z or Q.

As in Chapter 12 of volume II, the author [63] defined new (co)homology theo-
ries MH∗(X;R),MH∗(X;R) of manifolds and orbifolds X, called ‘M-homology’
and ‘M-cohomology’. They satisfy the Eilenberg–Steenrod axioms, and so are
canonically isomorphic to usual (co)homology H∗(X;R), H∗(X;R), e.g. singular
homology Hsi

∗ (X;R). They are specially designed for forming virtual (co)chains
for (m-)Kuranishi spaces, and have very good (co)chain-level properties.

In Chapter 13 of volume II we will explain how to form virtual (co)cycles
and (co)chains for (m-)Kuranishi spaces in M-(co)homology. There is no need
to perturb the (m-)Kuranishi space to do this. Our construction has a number
of technical advantages over competing theories: we can make infinitely many
compatible choices of virtual (co)chains, which can be made strictly compatible
with relations between (m-)Kuranishi spaces, such as boundary formulae.

These technical advantages mean that applying our machinery to define some
theory like Lagrangian Floer cohomology, Fukaya categories, or Symplectic Field
Theory, will be significantly easier. Identities which only hold up to homotopy
in the Fukaya–Oh–Ohta–Ono model, often hold on the nose in our version.

(c) Kuranishi moduli problems

The usual approaches to moduli spaces in Differential Geometry, and in Algebraic
Geometry, are very different. In Differential Geometry, one defines a moduli
space (e.g. of J-holomorphic curves, or instantons on a 4-manifold), initially
as a set M of isomorphism classes of the objects of interest, and then adds
extra structure: first a topology, and then an atlas of charts on M making the
moduli space into a manifold or Kuranishi-type space. The individual charts are
defined by writing the p.d.e. as a nonlinear Fredholm operator between Sobolev
or Hölder spaces, and using the Implicit Function Theorem for Banach spaces.

In Algebraic Geometry, following Grothendieck, one begins by defining a
functor F called the moduli functor, which encodes the behaviour of families of
objects in the moduli problem. This might be of the form F : (Schaff

C )op → Sets
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(to define a moduli C-scheme) or F : (Schaff
C )op → Groupoids (to define a

moduli C-stack), where Schaff
C ,Sets,Groupoids are the categories of affine

C-schemes, and sets, and groupoids, and (Schaff
C )op is the opposite category

of Schaff
C . Here if S is an affine C-scheme then F (S) is the set or groupoid of

families of objects in the moduli problem over the base C-scheme S.
We say that the moduli functor F is representable if there exists a C-scheme

M such that F is naturally isomorphic to Hom(−,M) : (Schaff
C )op → Sets,

or an Artin C-stack M such that F is naturally equivalent to Hom(−,M) :
(Schaff

C )op → Groupoids. Then M is unique up to canonical isomorphism or
canonical equivalence, and is called the moduli scheme or moduli stack.

As in Gomez [41, §2.1–§2.2], there are two equivalent ways to encode stacks, or
moduli problems, as functors: either as a functor F : (Schaff

C )op → Groupoids
as above, or as a category fibred in groupoids G : C → Schaff

C , that is, a category
C with a functor G to Schaff

C satisfying some lifting properties of morphisms in
Schaff

C to morphisms in C.
We introduce a new approach to constructing Kuranishi structures on

Differential-Geometric moduli problems, including moduli of J-holomorphic
curves, which is a 2-categorical analogue of the ‘category fibred in groupoids’
version of moduli functors in Algebraic Geometry. Our analogue of Schaff

C is
the 2-category GK̇N of global Kuranishi neighbourhoods (V,E,Γ, s), which are
basically Kuranishi spaces X covered by a single chart (V,E,Γ, s, ψ).

We define a Kuranishi moduli problem (KMP) to be a 2-functor F : C →
GK̇N satisfying some lifting properties, where C is a 2-category. For example,
ifM ∈ K̇ur is a Kuranishi space we can define a 2-category CM with objects
((V,E,Γ, s),f

)
for (V,E,Γ, s) ∈ GK̇N and f : (s−1(0)/Γ, (V,E,Γ, s, ids−1(0)/Γ))

→ M a 1-morphism, and a 2-functor FM : CM → GK̇N acting by FM :
((V,E,Γ, s),f) 7→ (V,E,Γ, s) on objects. A KMP F : C → GK̇N is called
representable if it is equivalent in a certain sense to FM : CM → GK̇N for some
M in K̇ur, which is unique up to equivalence. Then Kuranishi moduli problems
form a 2-category K̇MP, and the full 2-subcategory K̇MPre of representable
KMP’s is equivalent to K̇ur.

To construct a Kuranishi structure on some moduli space M, e.g. a moduli
space of J-holomorphic curves in some (S, ω), we carry out three steps:

(1) Define a 2-category C and 2-functor F : C → GK̇N, where objects A in C
with F (A) = (V,E,Γ, s) correspond to families of objects in the moduli
problem over the base Kuranishi neighbourhood (V,E,Γ, s).

(2) Prove that F : C → GK̇N is a Kuranishi moduli problem.

(3) Prove that F : C → GK̇N is representable.

Here step (1) is usually fairly brief — far shorter than constructions of curve
moduli spaces in [24, 39, 52], for instance. Step (2) is also short and uses standard
arguments. The major effort is in (3). Step (3) has two parts: firstly we must
show that a topological space M naturally associated to the KMP is Hausdorff
and second countable (often we can quote this from the literature), and secondly
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we must prove that every point of M admits a Kuranishi neighbourhood with a
certain universal property.

We compare our approach to moduli problems with other current approaches,
such as those of Fukaya–Oh–Ohta–Ono or Hofer–Wysocki–Zehnder:

• Rival approaches are basically very long ad hoc constructions, the effort
is in the definition itself. In our approach we have a short-ish definition,
followed by a theorem (representability of the KMP) with a long proof.

• Rival approaches may involve making many arbitrary choices to construct
the moduli space. In our approach the definition of the KMP is natural,
with no arbitrary choices. If the KMP is representable, the corresponding
Kuranishi spaceM is unique up to canonical equivalence in K̇ur.

• In our approach, morphisms between moduli spaces, e.g. forgetting a
marked point, are usually easy and require almost no work to construct.

Kuranishi moduli problems are introduced in Chapter 8 of volume I, and
volume III is dedicated to constructing Kuranishi structures on moduli spaces
using the KMP method.

Acknowledgements

I would like to acknowledge, with thanks, the profound influence of the work of
Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, throughout this
series. I was introduced to the Fukaya–Oh–Ohta–Ono Lagrangian Floer theory by
Paul Seidel in 2001, and have been thinking about how to do it differently off-and-
on ever since. I have had helpful conversations with many people, but I would
particularly like to thank Mohammed Abouzaid, Lino Amorim, Jonny Evans,
Kenji Fukaya, Helmut Hofer, Jacob Lurie, Dusa McDuff, Alexander Ritter, Paul
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Chapter 1

Introduction to volume I

Kuranishi spaces were introduced in the work of Fukaya, Oh, Ohta and Ono [19–
39], as the geometric structure on moduli spaces of J-holomorphic curves, which
was to be used to define virtual cycles and virtual chains for such moduli spaces,
for applications in Symplectic Geometry such as Gromov–Witten invariants,
Lagrangian Floer cohomology, and Symplectic Field Theory.

Something which has consistently been a problem with Kuranishi spaces,
since their introduction by Fukaya and Ono [39, §5] in 1999, has been to find a
satisfactory definition, preferably as a category (or higher category) of geometric
spaces, with a well-behaved notion of morphism, and good functorial properties.
The definition used by Fukaya et al. has changed several times as their work has
evolved [19–39], and others including McDuff and Wehrheim [77, 78, 80–83] have
proposed their own variations.

This first volume will develop a theory of Kuranishi spaces. We use a new,
more complex definition of Kuranishi space, first introduced by the author [60]
in 2014, which form a 2-category Kur. They are not the same as the Kuranishi
spaces of Fukaya–Oh–Ohta–Ono [19–39] (which we will call FOOO Kuranishi
spaces), but we prove in §7.5 that any FOOO Kuranishi space X can be made
into a Kuranishi space X ′ in our sense, uniquely up to equivalence in Kur.
Therefore their work may be easily translated into our new language.

In fact, we give three variations on the notion of Kuranishi space:

(i) a simple ‘manifold’ version, ‘µ-Kuranishi spaces’, with trivial isotropy
groups, which form an ordinary category µKur in Chapter 5;

(ii) a more complicated ‘manifold’ version, ‘m-Kuranishi spaces’, with trivial
isotropy groups, which form a weak 2-category mKur in Chapter 4; and

(iii) the full ‘orbifold’ version, ‘Kuranishi spaces’, with finite isotropy groups,
which form a weak 2-category Kur in Chapter 6.

These are related by an equivalence of categories µKur ' Ho(mKur), where
Ho(mKur) is the homotopy category of mKur, and by a full and faithful
embedding mKur ↪→ Kur. Symplectic geometry will need Kuranishi spaces,
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since we allow J-holomorphic curves with finite symmetry groups, which cause
finite isotropy groups at the corresponding point in the moduli space.

Our definitions start with a category of ‘manifolds’ Ṁan satisfying some
assumptions given in Chapter 3, and yield corresponding (2-)categories of ‘(m-
and µ-)Kuranishi spaces’ mK̇ur,µK̇ur, K̇ur. Here Ṁan can be the category of
classical manifolds Man, but there are many other possibilities, including the cat-
egories Manc,Manc

st,Mangc,Manac,Manc,ac of manifolds with corners, and
generalizations, discussed in Chapter 2. This gives many different (2-)categories
mKurc,mKurc

st, . . . , µKurc,µKurc
st, . . . , Kurc,Kurc

st, . . . of variations on
the theme of (m- and µ-)Kuranishi spaces, useful in different problems.

Like manifolds, an (m- or µ-)Kuranishi space X = (X,K) is a Hausdorff,
second countable topological space X with an ‘atlas of charts’ K. For m- and
µ-Kuranishi spaces the ‘charts’ are (Vi, Ei, si, ψi) for Vi a manifold, Ei → Vi
a vector bundle, si : Vi → Ei a smooth section, and ψi : s−1

i (0) → X a
homeomorphism with an open set Imψi ⊆ X. For Kuranishi spaces the charts
are (Vi, Ei,Γi, si, ψi) for Vi, Ei, si as above, Γi a finite group acting on Vi, Ei
with si equivariant, and ψi : s−1

i (0)/Γi → Imψi a homeomorphism.
As in Chapter 7, this is also true for other definitions of Kuranishi-type

spaces due to Fukaya–Oh–Ohta and Ono [30, §4] and McDuff and Wehrheim
[77, 78, 80–83]. The main technical innovation in our definition is our treatment
of coordinate changes between the (m- or µ-)Kuranishi neighbourhoods on X —
the ‘transition functions’ between the charts in the atlas.

For µ-Kuranishi spaces, coordinate changes and more general morphisms
Φij : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) are germs [Vij , φij , φ̂ij ] of equivalence

classes of triples (Vij , φij , φ̂ij), where (Vij , φij , φ̂ij) is a generalized Fukaya–Oh–
Ohta–Ono-style coordinate change, and the equivalence relation is not obvious.
They have the property that coordinate changes (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj)
form a sheaf on Imψi∩ Imψj . Also, coordinate changes are exactly the invertible
morphisms between µ-Kuranishi neighbourhoods.

For (m-)Kuranishi spaces, we have FOOO-style coordinate changes and
more general 1-morphisms Φij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) between
Kuranishi neighbourhoods, but we also introduce 2-morphisms Λij : Φij ⇒ Φ′ij
between 1-morphisms Φij ,Φ

′
ij , involving germs of equivalence classes, and making

(m-)Kuranishi neighbourhoods on X into a 2-category. This 2-category has the
property that coordinate changes (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) form a
2-sheaf (stack) on Imψi ∩ Imψj . Also, coordinate changes are 1-morphisms of
Kuranishi neighbourhoods which are invertible up to 2-isomorphism.

These sheaf/stack properties of (m- and µ-)Kuranishi neighbourhoods are
crucial in our theory. For example, they are essential in defining compositions
g ◦ f of (1-)morphisms f : X → Y , g : Y → Z between (m- or µ-)Kuranishi
spaces X,Y ,Z, so that we can make (m- and µ-)Kuranishi spaces into well
behaved (2-)categories mKur,µKur,Kur. The lack of such a sheaf property in
the Fukaya–Oh–Ohta–Ono picture is why they have no good notion of morphism
between FOOO Kuranishi spaces X,Y .

An (m- or µ-)Kuranishi space X has a virtual dimension vdimX ∈ Z, which
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may be negative, where vdimX = dimVi − rankEi for any (m- or µ-)Kuranishi
neighbourhood (Vi, Ei, si, ψi) or (Vi, Ei,Γi, si, ψi) on X.

We begin in Chapter 2 with background material on categories of manifolds
with corners, of which there are several versions Manc,Manc

st,Mangc, . . . .
Chapter 3 states assumptions on categories Ṁan, Ṁanc of ‘manifolds’ and
‘manifolds with corners’, and explains how these assumptions allow us to do
differential geometry in Ṁan, Ṁanc, defining vector bundles, E → X, tangent
and cotangent bundles (sheaves) T X, T ∗X, and so on. Detailed definitions and
proofs from Chapter 3 are postponed to Appendix B.

Given a category Ṁan or Ṁanc satisfying the assumptions of Chapter 3,
Chapters 4–6 define (2-)categories mK̇ur,µK̇ur, K̇ur or mK̇urc,µK̇urc, K̇urc

of m-Kuranishi spaces, µ-Kuranishi spaces, and Kuranishi spaces, respectively.
Taking Ṁan, Ṁanc to be different examples yields a large number of interesting
(2-)categories mKur,mKurc,mKurc

st,mKurgc, . . . . We also study topics such
as interesting classes of (1-)morphisms in mK̇ur,µK̇ur, K̇ur, and boundaries
and corners in mK̇urc,µK̇urc, K̇urc, and isotropy groups in K̇ur.

Chapter 7 explains the relation of our Kuranishi spaces with other Kuranishi-
type spaces defined by Fukaya, Oh, Ohta and Ono [19–39] and McDuff and
Wehrheim [77, 78, 80–83]. Chapter 8 introduces Kuranishi moduli problems,
which will be our principal tool in volume III for proving that moduli spaces
of J-holomorphic curves have Kuranishi structures, and proves some theorems
about them. We illustrate their use by defining a truncation functor from the
polyfold theory of Hofer, Wysocki and Zehnder [46–53] to our Kuranishi spaces.

Appendix A gives background on categories and 2-categories, and Appendix
B gives more detail and proofs on the differential geometry in Ṁan, Ṁanc that
was outlined in Chapter 3.
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Chapter 2

Manifolds with corners

We begin with background material about manifolds, manifolds with boundary,
and manifolds with corners. We define the category of ordinary manifolds Man
in §2.2 as a subcategory of the category of manifolds with corners Manc, and
generally we treat manifolds as special cases of manifolds with corners. Some
references on manifolds are Lee [71] and Lang [70], and on manifolds with
boundary and corners are Melrose [85, 86] and the author [59, 64].

2.1 The definition of manifolds with corners

Definition 2.1. Use the notation Rmk = [0,∞)k × Rm−k for 0 6 k 6 m, and
write points of Rmk as u = (x1, . . . , xm) for x1, . . . , xk ∈ [0,∞), xk+1, . . . , xm ∈ R.
Let U ⊆ Rmk and V ⊆ Rnl be open, and f = (f1, . . . , fn) : U → V be a continuous
map, so that fj = fj(x1, . . . , xm) maps U → [0,∞) for j = 1, . . . , l and U → R
for j = l + 1, . . . , n. Then we say:

(a) f is weakly smooth if all derivatives ∂a1+···+am

∂x
a1
1 ···∂x

am
m
fj(x1, . . . , xm) : U → R

exist and are continuous for all j = 1, . . . , n and a1, . . . , am > 0, including
one-sided derivatives where xi = 0 for i = 1, . . . , k.

(b) f is smooth if it is weakly smooth and every u = (x1, . . . , xm) ∈ U has an
open neighbourhood Ũ in U such that for each j = 1, . . . , l, either:

(i) we may uniquely write fj(x̃1, . . . , x̃m) = Fj(x̃1, . . . , x̃m) · x̃a1,j

1 · · · x̃ak,jk

for all (x̃1, . . . , x̃m) ∈ Ũ , where Fj : Ũ → (0,∞) is weakly smooth
and a1,j , . . . , ak,j ∈ N = {0, 1, 2, . . .}, with ai,j = 0 if xi 6= 0; or

(ii) fj |Ũ = 0.

(c) f is interior if it is smooth, and case (b)(ii) does not occur.

(d) f is b-normal if it is interior, and in case (b)(i), for each i = 1, . . . , k we
have ai,j > 0 for at most one j = 1, . . . , l.

(e) f is strongly smooth if it is smooth, and in case (b)(i), for each j = 1, . . . , l
we have ai,j = 1 for at most one i = 1, . . . , k, and ai,j = 0 otherwise.
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(f) f is simple if it is interior, and in case (b)(i), for each i = 1, . . . , k with
xi = 0 we have ai,j = 1 for exactly one j = 1, . . . , l and ai,j = 0 otherwise,
and for all j = 1, . . . , l we have ai,j = 1 for at most one i = 1, . . . , k.

(g) f is a diffeomorphism if it is a smooth bijection with smooth inverse.

All the classes (a)–(g) include identities and are closed under composition.

Definition 2.2. Let X be a second countable Hausdorff topological space. An
m-dimensional chart on X is a pair (U, φ), where U ⊆ Rmk is open for some
0 6 k 6 m, and φ : U → X is a homeomorphism with an open set φ(U) ⊆ X.

Let (U, φ), (V, ψ) be m-dimensional charts on X. We call (U, φ) and (V, ψ)
compatible if ψ−1◦φ : φ−1

(
φ(U)∩ψ(V )

)
→ ψ−1

(
φ(U)∩ψ(V )

)
is a diffeomorphism

between open subsets of Rmk ,R
m
l , in the sense of Definition 2.1(g).

An m-dimensional atlas for X is a system {(Ua, φa) : a ∈ A} of pairwise
compatible m-dimensional charts on X with X =

⋃
a∈A φa(Ua). We call such

an atlas maximal if it is not a proper subset of any other atlas. Any atlas
{(Ua, φa) : a ∈ A} is contained in a unique maximal atlas, the set of all charts
(U, φ) of this type on X which are compatible with (Ua, φa) for all a ∈ A.

An m-dimensional manifold with corners is a second countable Hausdorff
topological space X equipped with a maximal m-dimensional atlas. Usually we
refer to X as the manifold, leaving the atlas implicit, and by a chart (U, φ) on
X, we mean an element of the maximal atlas.

Now let X,Y be manifolds with corners of dimensions m,n, and f : X → Y
a continuous map. We call f weakly smooth, or smooth, or interior, or b-normal,
or strongly smooth, or simple, if whenever (U, φ), (V, ψ) are charts on X,Y with
U ⊆ Rmk , V ⊆ Rnl open, then

ψ−1 ◦ f ◦ φ : (f ◦ φ)−1(ψ(V )) −→ V (2.1)

is weakly smooth, or smooth, . . . , or simple, respectively, as maps between open
subsets of Rmk ,R

n
l in the sense of Definition 2.1.

We write Manc for the category with objects manifolds with corners X,Y,
and morphisms smooth maps f : X → Y in the sense above. We will also write
Manc

in, Manc
bn, Manc

st, Manc
st,in, Manc

st,bn, Manc
si for the subcategories of

Manc with morphisms interior maps, and b-normal maps, and strongly smooth
maps, and strongly smooth interior maps, and strongly smooth b-normal maps,
and simple maps, respectively.

We write Manc
we for the category with objects manifolds with corners and

morphisms weakly smooth maps.

Remark 2.3. There are several non-equivalent definitions of categories of
manifolds with corners. Just as objects, without considering morphisms, most
authors define manifolds with corners as in Definition 2.2. However, Melrose
[84–86] imposes an extra condition: in §2.2 we will define the boundary ∂X of a
manifold with corners X, with an immersion iX : ∂X → X. Melrose requires
that iX |C : C → X should be injective for each connected component C of ∂X
(such X are sometimes called manifolds with faces).
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There is no general agreement in the literature on how to define smooth
maps, or morphisms, of manifolds with corners:

(i) Our smooth maps are due to Melrose [86, §1.12], [84, §1], who calls them
b-maps. Interior and b-normal maps are also due to Melrose.

(ii) The author [59] defined and studied strongly smooth maps above (which
were just called ‘smooth maps’ in [59]).

(iii) Monthubert’s morphisms of manifolds with corners [91, Def. 2.8] coincide
with our strongly smooth b-normal maps.

(iv) Most other authors, such as Cerf [11, §I.1.2], define smooth maps of
manifolds with corners to be weakly smooth maps, in our notation.

2.2 Boundaries and corners of manifolds with corners

The material of this section broadly follows the author [59, 64].

Definition 2.4. Let U ⊆ Rmk be open. For each u = (x1, . . . , xm) in U , define
the depth depthU u of u in U to be the number of x1, . . . , xk which are zero.
That is, depthU u is the number of boundary faces of U containing u.

Let X be an m-manifold with corners. For x ∈ X, choose a chart (U, φ) on
the manifold X with φ(u) = x for u ∈ U , and define the depth depthX x of x
in X by depthX x = depthU u. This is independent of the choice of (U, φ). For
each l = 0, . . . ,m, define the depth l stratum of X to be

Sl(X) =
{
x ∈ X : depthX x = l

}
.

Then X =
∐m
l=0 S

l(X) and Sl(X) =
⋃m
k=l S

k(X). The interior of X is X◦ =
S0(X). Each Sl(X) has the structure of an (m− l)-manifold without boundary.

The following lemma is easy to prove from Definition 2.1(b).

Lemma 2.5. Let f : X → Y be a smooth map of manifolds with corners.
Then f is compatible with the depth stratifications X =

∐
k>0 S

k(X),

Y =
∐
l>0 S

l(Y ) in Definition 2.4, in the sense that if ∅ 6= W ⊆ Sk(X) is a

connected subset for some k > 0, then f(W ) ⊆ Sl(Y ) for some unique l > 0.

The analogue of Lemma 2.5 is false for weakly smooth maps, so the functorial
properties of corners below are false for Manc

we.

Definition 2.6. Let X be an m-manifold with corners, x ∈ X, and k =
0, 1, . . . ,m. A local k-corner component γ of X at x is a local choice of connected
component of Sk(X) near x. That is, for each small open neighbourhood V of x
in X, γ gives a choice of connected component W of V ∩Sk(X) with x ∈W , and
any two such choices V,W and V ′,W ′ must be compatible in that x ∈ (W ∩W ′).
When k = 1, we call γ a local boundary component.
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As sets, define the boundary ∂X and k-cornersImanifold with corners!k-
corners Ck(X)@k-corners Ck(X)!definition Ck(X) for k = 0, 1, . . . ,m by

∂X =
{

(x, β) : x ∈ X, β is a local boundary component of X at x
}
,

Ck(X) =
{

(x, γ) : x ∈ X, γ is a local k-corner component of X at x
}
.

Define iX : ∂X → X and Πk : Ck(X)→ X by iX : (x, β) 7→ x, Πk : (x, γ) 7→ x.
If (U, φ) is a chart on X with U ⊆ Rmk open, then for each i = 1, . . . , k we

can define a chart (Ui, φi) on ∂X by

Ui =
{

(x1, . . . , xm−1) ∈ Rm−1
k−1 : (x1, . . . , xi−1, 0, xi, . . . , xm−1) ∈ U ⊆ Rmk

}
,

φi : (x1, . . . , xm−1) 7−→
(
φ(x1, . . . , xi−1, 0, xi, . . . , xm−1), φ∗({xi = 0})

)
.

The set of all such charts on ∂X forms an atlas, making ∂X into a manifold
with corners of dimension m − 1, and iX : ∂X → X into a smooth (but not
interior) map. Similarly, we make Ck(X) into an (m− k)-manifold with corners,
and Πk : Ck(X)→ X into a smooth map. We have ∂X = C1(X).

We call X a manifold without boundary (or just a manifold) if ∂X = ∅, and
a manifold with boundary if ∂2X = ∅. We write Man and Manb for the full
subcategories of Manc with objects manifolds without boundary, and manifolds
with boundary, so that Man ⊂ Manb ⊂ Manc. This definition of Man is
equivalent to the usual definition of the category of manifolds. We also write
Manb

in,Manb
si for the subcategories of Manb with morphisms interior maps,

and simple maps.

For X a manifold with corners and k > 0, there are natural identifications

∂kX ∼=
{

(x, β1, . . . , βk) : x ∈ X, β1, . . . , βk are distinct

local boundary components for X at x
}
,

(2.2)

Ck(X) ∼=
{

(x, {β1, . . . , βk}) : x ∈ X, β1, . . . , βk are distinct

local boundary components for X at x
}
.

(2.3)

There is a natural, free, smooth action of the symmetric group Sk on ∂kX, by
permutation of β1, . . . , βk in (2.2), and (2.2)–(2.3) give a natural diffeomorphism

Ck(X) ∼= ∂kX/Sk. (2.4)

Corners commute with boundaries: there are natural isomorphisms

∂Ck(X) ∼= Ck(∂X) ∼=
{

(x, {β1, . . . , βk}, βk+1) : x ∈ X, β1, . . . , βk+1

are distinct local boundary components for X at x
}
.

(2.5)

For products of manifolds with corners we have natural diffeomorphisms

∂(X × Y ) ∼= (∂X × Y )q (X × ∂Y ), (2.6)

Ck(X × Y ) ∼=
∐
i,j>0, i+j=k Ci(X)× Cj(Y ). (2.7)
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Figure 2.1: The teardrop, a 2-manifold with corners

Example 2.7. The teardrop T =
{

(x, y) ∈ R2 : x > 0, y2 6 x2 − x4
}

, shown
in Figure 2.1, is a manifold with corners of dimension 2. The boundary ∂T is
diffeomorphic to [0, 1], and so is connected, but iT : ∂T → T is not injective.
Thus T is not a manifold with faces, in the sense of Remark 2.3.

It is not true that general smooth f : X → Y induce maps ∂f : ∂X → ∂Y
or Ck(f) : Ck(Y )→ Ck(Y ), though this is true for simple maps f . For example,
if f : X → Y is the inclusion [0,∞) ↪→ R then no map ∂f : ∂X → ∂Y exists, as
∂X 6= ∅ and ∂Y = ∅. However, by working in an enlarged category M̌anc of
manifolds with corners of mixed dimension and considering C(X) =

∐
k>0 Ck(X),

we can define a functor.

Definition 2.8. Write M̌anc for the category whose objects are disjoint unions∐∞
m=0Xm, where Xm is a manifold with corners of dimension m, allowing

Xm = ∅, and whose morphisms are continuous maps f :
∐∞
m=0Xm →

∐∞
n=0 Yn,

such that f |Xm∩f−1(Yn) : Xm∩f−1(Yn)→ Yn is a smooth map of manifolds with

corners for all m,n > 0. Objects of M̌anc will be called manifolds with corners
of mixed dimension. We will also write M̌anc

in, M̌anc
st for the subcategories of

M̌anc with morphisms interior maps, and strongly smooth maps.

Definition 2.9. Define the corners C(X) of a manifold with corners X by

C(X) =
∐dimX
k=0 Ck(X)

=
{

(x, γ) : x ∈ X, γ is a local k-corner component of X at x, k > 0
}
,

considered as an object of M̌anc in Definition 2.8, a manifold with corners of
mixed dimension. Define Π : C(X)→ X by Π : (x, γ) 7→ x. This is smooth (i.e.
a morphism in M̌anc) as the maps Πk : Ck(X)→ X are smooth for k > 0.

Let f : X → Y be a smooth map of manifolds with corners, and suppose γ
is a local k-corner component of X at x ∈ X. For each sufficiently small open
neighbourhood V of x in X, γ gives a choice of connected component W of
V ∩Sk(X) with x ∈W , so by Lemma 2.5 f(W ) ⊆ Sl(Y ) for some l > 0. As f is
continuous, f(W ) is connected, and f(x) ∈ f(W ). Thus there is a unique local
l-corner component f∗(γ) of Y at f(x), such that if Ṽ is a sufficiently small open
neighbourhood of f(x) in Y , then the connected component W̃ of Ṽ ∩ Sl(Y )
given by f∗(γ) has f(W ) ∩ W̃ 6= ∅. This f∗(γ) is independent of the choice of
sufficiently small V, Ṽ , so is well-defined.
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Define a map C(f) : C(X)→ C(Y ) by C(f) : (x, γ) 7→ (f(x), f∗(γ)). Then
C(f) is an interior morphism in M̌anc. If g : Y → Z is another smooth map
of manifolds with corners then C(g ◦ f) = C(g) ◦ C(f) : C(X) → C(Z), so
C : Manc → M̌anc

in ⊂ M̌anc is a functor, which we call a corner functor.

From [64, Prop. 2.11] we have:

Proposition 2.10. Let f : X → Y be a morphism in Manc. Then

(a) f is interior if and only if C(f) maps C0(X)→ C0(Y ).

(b) f is b-normal if and only if C(f) maps Ck(X)→
∐k
l=0 Cl(Y ) for all k.

(c) If f is simple then C(f) maps Ck(X) → Ck(Y ) for all k > 0, and
Ck(f) := C(f)|Ck(X) : Ck(X)→ Ck(Y ) is also a simple map.

Thus we have a boundary functor ∂ : Manc
si →Manc

si mapping X 7→
∂X on objects and f 7→ ∂f := C(f)|C1(X) : ∂X → ∂Y on (simple)
morphisms f : X → Y, and for all k > 0 a k-corner functor Ck :
Manc

si → Manc
si mapping X 7→ Ck(X) on objects and f 7→ Ck(f) :=

C(f)|Ck(X) : Ck(X)→ Ck(Y ) on (simple) morphisms.

As in [59, Def. 4.5] there is also a second corner functor on Manc, which we
write as C ′ : Manc → M̌anc.

Definition 2.11. Define C ′(X) = C(X) in M̌anc for each X in Manc.
Let f : X → Y be a smooth map of manifolds with corners. Define a map

C ′(f) : C ′(X)→ C ′(Y ) by C ′(f) : (x, γ) 7→ (y, δ), where y = f(x) in Y , and δ
is the unique maximal local corner component of Y at y with the property that
if V is an open neighbourhood of y in Y and a : V → [0,∞) is smooth with
a(y) = a ◦ f(x) = 0 and a ◦ f |γ = 0 then a|δ = 0.

Here δ is maximal means that if δ̃ is any other local corner component with
this property then dim δ > dim δ̃ (so that codim δ 6 codim δ̃) and δ̃ is contained
in the closure of δ. By considering local models in coordinates we can show that
C ′(f) : C ′(X)→ C ′(Y ) is a morphism in M̌anc, and that this defines a functor
C ′ : Manc → M̌anc, which we also call a corner functor.

The next proposition is easy:

Proposition 2.12. Let f : X → Y be a morphism in Manc. Then C ′(f) maps
C0(X)→ C0(Y ), and C ′(f) = C(f) if and only if f is interior.

By Proposition 2.10(c), this implies that if f is simple (hence interior) then
C ′(f) = C(f) maps Ck(X)→ Ck(Y ) for all k > 0, and Ck(f) := C ′(f)|Ck(X) :
Ck(X)→ Ck(Y ) is also a simple map.

Equations (2.5) and (2.7) imply that if X,Y are manifolds with corners, we
have natural isomorphisms

∂C(X) ∼= C(∂X), (2.8)

C(X × Y ) ∼= C(X)× C(Y ). (2.9)
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The corner functors C,C ′ preserve products and direct products. That is, if
f : W → Y, g : X → Y, h : X → Z are smooth then the following commute

C(W ×X)

∼=
��

C(f×h)
// C(Y × Z)

∼=
��

C(W )×C(X)

C(f)×C(h)

// C(Y )×C(Z),

C(Y × Z)

∼=
��

C(X)

C((g,h)) 22

(C(g),C(h)) ,,
C(Y )×C(Z),

C ′(W ×X)

∼=
��

C′(f×h)

// C ′(Y × Z)

∼=
��

C ′(W )×C ′(X)

C′(f)×C′(h)

// C ′(Y )×C ′(Z),

C ′(Y × Z)

∼=
��

C ′(X)

C′((g,h)) 22

(C′(g),C′(h)) ,,
C ′(Y )×C ′(Z),

where the columns are the isomorphisms (2.9).

Example 2.13. (a) Let X = [0,∞), Y = [0,∞)2, and define f : X → Y by
f(x) = (x, x). We have

C0(X) ∼= [0,∞), C1(X) ∼= {0}, C0(Y ) ∼= [0,∞)2,

C1(Y ) ∼=
(
{0} × [0,∞)

)
q
(
[0,∞)× {0}

)
, C2(Y ) ∼= {(0, 0)}.

Then C(f) maps C0(X)→ C0(Y ), x 7→ (x, x), and C1(X)→ C2(Y ), 0 7→ (0, 0).
Also C ′(f) = C(f), as f is interior.

(b) Let X = ∗, Y = [0,∞) and define f : X → Y by f(∗) = 0. Then C0(X) ∼= ∗,
C0(Y ) ∼= [0,∞), C1(Y ) ∼= {0}, and C(f) maps C0(X) → C1(Y ), ∗ 7→ 0, but
C ′(f) maps C0(X)→ C0(Y ), ∗ 7→ 0, so C ′(f) 6= C(f).

Note that C(f), C ′(f) need not map Ck(X)→ Ck(Y ).

2.3 Tangent bundles and b-tangent bundles

Manifolds with corners X have two notions of tangent bundle with functorial
properties, the (ordinary) tangent bundle TX, the obvious generalization of
tangent bundles of manifolds without boundary, and the b-tangent bundle bTX
introduced by Melrose [84, §2], [85, §2.2], [86, §I.10]. Taking duals gives two
notions of cotangent bundle T ∗X, bT ∗X. First we discuss vector bundles:

Definition 2.14. Let X be a manifold with corners. A vector bundle E → X
of rank k is a manifold with corners E and a smooth map π : E → X, such that
each fibre Ex := π−1(x) for x ∈ X is given the structure of a real vector space
of dimension k, and X may be covered by open U ⊆ X with diffeomorphisms
π−1(U) ∼= U × Rk identifying π|π−1(U) : π−1(U) → U with the projection

U ×Rk → Rk, and the vector space structure on Ex with that on {x}×Rk ∼= Rk,
for each x ∈ U . A section of E is a smooth map s : X → E with π ◦ s = idX .

We write Γ∞(E) for the vector space of smooth sections of E, and C∞(X) for
the R-algebra of smooth functions X → R. Then Γ∞(E) is a C∞(X)-module.

Morphisms of vector bundles, dual vector bundles, tensor products of vector
bundles, exterior products, and so on, all work as usual.
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Definition 2.15. Let X be an m-manifold with corners. The tangent bundle
π : TX → X and b-tangent bundle π : bTX → X are natural rank m vector
bundles on X, with a vector bundle morphism IX : bTX → TX. The fibres of
TX, bTX at x ∈ X are written TxX,

bTxX. We may describe TX, bTX, IX in
local coordinates as follows.

If (U, φ) is a chart on X, with U ⊆ Rmk open, and (x1, . . . , xm) are the
coordinates on U , then over φ(U), TX is the trivial vector bundle with basis
of sections ∂

∂x1
, . . . , ∂

∂xm
, and bTX is the trivial vector bundle with basis of

sections x1
∂
∂x1

, . . . , xk
∂
∂xk

, ∂
∂xk+1

, . . . , ∂
∂xm

.

We have corresponding charts (TU, Tφ) on TX and (bTU, bTφ) on bTX,
where TU = bTU = U × Rm ⊆ R2m

k , such that (x1, . . . , xm, q1, . . . , qm) in
TU represents the vector q1

∂
∂x1

+ · · · + qm
∂

∂xm
over φ(x1, . . . , xm) ∈ X, and

(x1, . . . , xm, r1, . . . , rm) in bTU represents r1x1
∂
∂x1

+ · · ·+rkxk ∂
∂xk

+rk+1
∂

∂xk+1
+

· · ·+ rm
∂

∂xm
over φ(x1, . . . , xm) in X, and IX maps (x1, . . . , xm, r1, . . . , rm) in

bTU to (x1, . . . , xm, x1r1, . . . , xkrk, rk+1, . . . , rm) in TU .
Under change of coordinates (x1, . . . , xm)  (x̃1, . . . , x̃m) from (U, φ) to

(Ũ , φ̃), the corresponding change (x1, . . . , xm, q1, . . . , qm)  (x̃1, . . . , q̃m) from

(TU, Tφ) to (T Ũ, T φ̃) is determined by ∂
∂xi

=
∑m
j=1

∂x̃j
∂xi

(x1, . . . , xm) · ∂
∂x̃j

, so

that q̃j =
∑m
i=1

∂x̃j
∂xi

(x1, . . . , xm)qi, and similarly for (bTU, bTφ), (bT Ũ, bT φ̃).

Elements of Γ∞(TX) are called vector fields, and of Γ∞(bTX) are called
b-vector fields. The map (IX)∗ : Γ∞(bTX)→ Γ∞(TX) is injective, and identifies
Γ∞(bTX) with the vector subspace of v ∈ Γ∞(TX) such that v|Sk(X) is tangent

to Sk(X) for all k = 1, . . . ,dimX.
Taking duals gives two notions of cotangent bundle T ∗X, bT ∗X. The fibres

of T ∗X, bT ∗X at x ∈ X are written T ∗xX,
bT ∗xX.

Now suppose f : X → Y is a smooth map of manifolds with corners. Then
there is a natural smooth map Tf : TX → TY so that the following commutes:

TX
π
��

Tf
// TY
π
��

X
f // Y.

Let (U, φ) and (V, ψ) be coordinate charts on X,Y with U ⊆ Rmk , V ⊆ Rnl , with
coordinates (x1, . . . , xm) ∈ U and (y1, . . . , yn) ∈ V , and let (TU, Tφ), (TV, Tψ)
be the corresponding charts on TX, TY , with coordinates (x1, . . . , xm, q1, . . . ,
qm) ∈ TU and (y1, . . . , yn, r1, . . . , rn) ∈ TV . Equation (2.1) defines a map
ψ−1 ◦ f ◦ φ between open subsets of U, V . Write ψ−1 ◦ f ◦ φ = (f1, . . . , fn), for
fj = fj(x1, . . . , xm). Then the corresponding Tψ−1 ◦ Tf ◦ Tφ maps

Tψ−1 ◦ Tf ◦ Tφ : (x1, . . . , xm, q1, . . . , qm) 7−→
(
f1(x1, . . . , xm), . . . ,

fn(x1, . . . , xm),
∑m
i=1

∂f1

∂xi
(x1, . . . , xm)qi, . . . ,

∑m
i=1

∂fn
∂xi

(x1, . . . , xm)qi
)
.

We can also regard Tf as a vector bundle morphism df : TX → f∗(TY ) on X,
which has dual morphism df : f∗(T ∗Y )→ T ∗X. If x ∈ X with f(x) = y in Y
we have linear maps Txf : TxX → TyY and T ∗xf : T ∗y Y → T ∗xX on the fibres.
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If g : Y → Z is smooth then T (g ◦ f) = Tg ◦ Tf : TX → TZ, and T (idX) =
idTX : TX → TX. Thus, the assignment X 7→ TX, f 7→ Tf is a functor, the
tangent functor T : Manc →Manc. It restricts to T : Manc

in →Manc
in.

As in [84, §2], the analogue of the morphisms Tf : TX → TY for b-tangent
bundles works only for interior maps f : X → Y . So let f : X → Y be an
interior map of manifolds with corners. If f is interior, there is a unique interior
map bTf : bTX → bTY so that the following commutes:

bTX

π

��

IX

''

bTf

// bTY
IY

&&

π

��

TX

π��

Tf // TY
π��

X
f // Y.

(2.10)

The assignment X 7→ bTX, f 7→ bTf is a functor, the b-tangent functor bT :
Manc

in → Manc
in. The maps IX : bTX → TX give a natural transformation

I : bT → T of functors Manc
in →Manc

in.
We can also regard bTf as a vector bundle morphism bdf : bTX → f∗(bTY )

on X, with dual morphism bdf : f∗(bT ∗Y )→ bT ∗X. If x ∈ X with f(x) = y in
Y we have linear maps bTxf : bTxX → bTyY and bT ∗xf : bT ∗y Y → bT ∗xX.

Note that if f : X → Y is a smooth map in Manc then C(f) : C(X)→ C(Y )
is interior, so bTC(f) : bTC(X)→ bTC(Y ) is well defined, and we can use this
as a substitute for bTf : bTX → bTY when f is not interior.

Let X be a manifold with corners, and k > 0. Then we have an exact
sequence of vector bundles on Ck(X):

0 // T (Ck(X))
dΠk // Π∗k(TX) // NCk(X)

// 0, (2.11)

where NCk(X) is the normal bundle of Ck(X) in X, a natural rank k vector
bundle on Ck(X). When k = 1 this becomes

0 // T (∂X)
diX // i∗X(TX) // N∂X // 0. (2.12)

Here the normal line bundle N∂X has a natural orientation on its fibres, by
outward-pointing vectors. Using (2.12) and the orientation on N∂X , we can show
that an orientation on X induces an orientation on ∂X, as in §2.6.

For b-tangent bundles, as in [64, Prop. 2.22] there is an analogue of (2.11):

0 // bNCk(X)
// Π∗k(bTX)

I�X // bT (Ck(X)) // 0, (2.13)

where bNCk(X) is the b-normal bundle of Ck(X) in X, a rank k vector bundle
with a natural flat connection. Note that (2.13) goes in the opposite direction
to (2.11). There is no natural map bdΠk : bT (Ck(X)) → Π∗k(bTX) for k >
0, as Πk is not interior. We can define I�X in (2.13) by noting that (IX)∗ :
Γ∞(bTX) → Γ∞(TX) identifies Γ∞(bTX) with the vector subspace of v in
Γ∞(TX) with v|Sl(X) tangent to Sl(X) for all l, as in Definition 2.15, and under
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this identification, I�X is just restriction/pullback of vector fields from X to
Ck(X). When k = 1, bNC1(X) is naturally trivial, giving an exact sequence

0 // O∂X // i∗X(bTX)
I�X // bT (∂X) // 0, (2.14)

where O∂X = ∂X × R→ ∂X is the trivial line bundle on ∂X.
Here is some similar notation to NCk(X),

bNCk(X), but working over X rather
than C(X), taken from [64, Def. 2.25].

Definition 2.16. Let X be a manifold with corners. For x ∈ Sk(X) ⊆ X, we
have a natural exact sequence of real vector spaces

0 // Tx(Sk(X))
ιxX // TxX

πxX // ÑxX // 0, (2.15)

where dim ÑxX = k. We call ÑxX the stratum normal space. There is a
unique point x′ ∈ Ck(X) with Πk(x′) = x, and then ÑxX ∼= NCk(X)|x′ , and

Tx(Sk(X)) ∼= bT (Ck(X))|x′ , and (2.15) is canonically isomorphic to the restric-
tion of (2.11) to x′.

Let f : X → Y be a morphism in Manc, and let x ∈ Sk(X) ⊆ X with
f(x) = y ∈ Sl(Y ) ⊆ Y . Then f maps Sk(X) → Sl(Y ) near x by Lemma 2.5.
There is a unique linear map Ñxf : ÑxX → ÑyY , the stratum normal map,
fitting into the following commutative diagram, where the rows are (2.15):

0 // Tx(Sk(X))

Tx(f |
Sk(X)

)
��

ιxX
// TxX

Txf
��

πxX
// ÑxX

Ñxf��

// 0

0 // Ty(Sl(Y ))
ιyY // TyY

πyY // ÑyY // 0.

(2.16)

These morphisms Ñxf are functorial in f and x. That is, if g : Y → Z is another
morphism in Manc then Ñx(g ◦ f) = Ñyg ◦ Ñxf .

There is also a ‘b-tangent’ version. Let X be a manifold with corners. For
each x ∈ Sk(X) ⊆ X, we have a natural exact sequence of real vector spaces

0 // bÑxX
bιxX // bTxX

ΠxX // Tx(Sk(X)) // 0, (2.17)

where dim bÑxX = k. We call bÑxX the stratum b-normal space. There is
a unique point x′ ∈ Ck(X) with Πk(x′) = x, and then bÑxX ∼= bNCk(X)|x′ ,
and Tx(Sk(X)) ∼= bT (Ck(X))|x′ , and (2.17) is canonically isomorphic to the
restriction of (2.13) to x′.

Note that the ÑxX,
bÑxX for x ∈ X are not the fibres of vector bundles on

X, as dim ÑxX,dim bÑxX are only upper semicontinuous in x.
If (x1, . . . , xm) ∈ Rmk are local coordinates on X near x then we have

bÑxX =
〈
x1

∂
∂x1

, . . . , xk
∂
∂xk

〉
R, Tx(Sk(X)) =

〈
∂

∂xk+1
, . . . , ∂

∂xm

〉
R,

and bTxX =
〈
x1

∂
∂x1

, . . . , xk
∂
∂xk

, ∂
∂xk+1

, . . . , ∂
∂xm

〉
R.
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Using these identifications, define a subset M̃xX ⊆ bÑxX by

M̃xX =
{
b1 · x1

∂
∂x1

+ · · ·+ bk · xk ∂
∂xk

: b1, . . . , bk ∈ N
}
,

so that M̃xX ∼= Nk. This is independent of the choice of coordinates. We
consider M̃xX to be a commutative monoid under addition in bÑxX, as in
Definition 2.17 below.

Now let f : X → Y be an interior map in Manc, and let x ∈ Sk(X) ⊆ X
with f(x) = y ∈ Sl(Y ) ⊆ Y . Then f maps Sk(X)→ Sl(Y ) near x by Lemma
2.5. There is a unique linear map bÑxf : bÑxX → bÑyY , the stratum b-normal
map, fitting into the following commutative diagram, where the rows are (2.17):

0 // bÑxX

bÑxf��

// bTxX

bTxf��

// Tx(Sk(X))

Tx(f |
Sk(X)

)
��

// 0

0 // bÑyY // bTyY // Ty(Sl(Y )) // 0.

(2.18)

We have bÑxf(M̃xX) ⊆ M̃yY , so we define a monoid morphism M̃xf : M̃xX →
M̃yY by M̃xf = bÑxf |M̃xX

. These morphisms bÑxf, M̃xf are functorial in f
and x. That is, if g : Y → Z is another interior morphism in Manc then
bÑx(g ◦ f) = bÑyg ◦ bÑxf and M̃x(g ◦ f) = M̃yg ◦ M̃xf .

We have canonical isomorphisms bÑxX ∼= M̃xX ⊗N R for all x,X, which
identify bÑxf : bÑxX → bÑyY with M̃xf ⊗ idR : M̃xX ⊗N R→ M̃yY ⊗N R.

An interior map f : X → Y is b-normal if bÑxf is surjective for all x ∈ X.

In §10.1.5 and §10.3 we will refer to ÑxX,
bÑxX, M̃xX as quasi-tangent

spaces, as they behave quite like tangent spaces.

2.4 Generalizations of manifolds with corners

We briefly discuss the categories Mangc of manifolds with g-corners from [64]
and Manac of manifolds with a-corners from [66].

2.4.1 Manifolds with generalized corners

In [64] the author introduced an extension of manifolds with corners called
manifolds with generalized corners, or manifolds with g-corners. They are locally
modelled on certain spaces XP for P a weakly toric monoid.

Definition 2.17. A (commutative) monoid (P,+, 0) is a set P with a commu-
tative, associative operation + : P × P → P and an identity element 0 ∈ P .
Monoids are like abelian groups, but without inverses. They form a category
Mon. Some examples of monoids are the natural numbers N = {0, 1, 2, . . .}, the
integers Z, any abelian group G, and [0,∞) =

(
[0,∞), ·, 1

)
.

A monoid P is called weakly toric if for some m, k > 0 and cji ∈ Z for
i = 1, . . . ,m, j = 1, . . . , k we have

P ∼=
{

(l1, . . . , lm) ∈ Zm : cj1l1 + · · ·+ cjmlm > 0, j = 1, . . . , k
}
.
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The rank of a weakly toric monoid P is rankP = dimR(P ⊗N R). A weakly toric
monoid P is called toric if 0 ∈ P is the only invertible element.

Let P be a weakly toric monoid. Define XP to be the set of monoid mor-
phisms x : P → [0,∞), where

(
[0,∞), ·, 1

)
is the monoid [0,∞) with operation

multiplication and identity 1. Define the interior X◦P ⊂ XP of XP to be the
subset of x with x(P ) ⊆ (0,∞) ⊂ [0,∞).

For each p ∈ P , define a function λp : XP → [0,∞) by λp(x) = x(p). Then
λp+q = λp · λq for p, q ∈ P , and λ0 = 1. Define a topology on XP to be the
weakest such that λp : XP → [0,∞) is continuous for all p ∈ P . If U ⊆ XP is
open, define the interior U◦ of U to be U◦ = U ∩X◦P .

Choose generators p1, . . . , pm for P, and a generating set of relations for
p1, . . . , pm of the form

aj1p1 + · · ·+ ajmpm = bj1p1 + · · ·+ bjmpm in P for j = 1, . . . , k,

where aji , b
j
i ∈ N for i = 1, . . . ,m and j = 1, . . . , k. Here as P is integral (i.e. a

submonoid of an abelian group) we may suppose that aji = 0 or bji = 0 for all
i, j. Then λp1

× · · · × λpm : XP → [0,∞)m is a homeomorphism from XP to

X ′P =
{

(x1, . . . , xm) ∈ [0,∞)m : x
aj1
1 · · ·x

ajm
m = x

bj1
1 · · ·x

bjm
m , j = 1, . . . , k

}
,

regarding X ′P as a closed subset of [0,∞)m with the induced topology.
Let U ⊆ XP be open, and U ′ = (λp1

×· · ·×λpm)(U) be the corresponding open
subset of X ′P . We say that a continuous function f : U → R or f : U → [0,∞) is
smooth if there exists an open neighbourhood W of U ′ in [0,∞)m and a smooth
function g : W → R or g : W → [0,∞) in the sense of manifolds with (ordinary)
corners in §2.1–§2.3, such that f = g ◦ (λp1

× · · · × λpm). This definition turns
out to be independent of the choice of generators p1, . . . , pm.

Now let Q be another weakly toric monoid, V ⊆ XQ be open, and f : U → V
be continuous. We say that f is smooth if λq ◦ f : U → [0,∞) is smooth in
the sense above for all q ∈ Q. We call a smooth map f : U → V interior if
f(U◦) ⊆ V ◦, and a diffeomorphism if f has a smooth inverse f−1 : V → U .

With these definitions, for any weakly toric monoid P , the interior X◦P is

naturally a manifold of dimension rankP , diffeomorphic to RrankP .

Example 2.18. Let P be the weakly toric monoid Nk × Zm−k for 0 6 k 6 m.
Then points of XP are monoid morphisms x : Nk ×Zm−k →

(
[0,∞), ·, 1

)
, which

may be written uniquely in the form

x(p1, . . . , pm) = yp1

1 · · · y
pk
k e

pk+1yk+1+···+pmym

for (y1, . . . , ym) ∈ Rmk . This gives a bijection XP
∼= Rmk = [0,∞)k × Rm−k. As

in [64, §3.2], this bijection identifies the topologies on Rmk , XP , and identifies
the notions of smooth map between open subsets of Rmk ,R

n
l and between open

subsets of XP , XQ in Definitions 2.1 and 2.17. Thus, the XP for general weakly
toric monoids P are a class of smooth spaces generalizing the spaces Rmk used as
local models for manifolds with corners in §2.1.
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In [64, §3.3] we use this to define the category Mangc of manifolds with g-
corners, by generalizing Definition 2.2. A manifold with g-corners of dimension m
is a Hausdorff, second countable topological space X equipped with a maximal
atlas {(Pa, Ua, φa) : a ∈ A} of charts (Pa, Ua, φa), such that Pa is a weakly
toric monoid with rankPa = m, and Ua ⊆ XPa is open, and φa : Ua → X
is a homeomorphism with an open set φa(Ua) ⊆ X. Any two such charts
(Pa, Ua, φa), (Pb, Ub, φb) are required to be pairwise compatible, in that the
transition map φ−1

b ◦φa : φ−1
a (φb(Ub))→ φ−1

b (φa(Ua)) must be a diffeomorphism
between open subsets of XPa , XPb in the sense of Definition 2.17. For set-theoretic
reasons we require the Pa to be submonoids of some Zk.

Morphisms f : X → Y in Mangc, called smooth maps, are continuous maps
f : X → Y such that for all charts (Pa, Ua, φa), (Qb, Vb, ψb) on X,Y , the transfer
map ψ−1

b ◦f ◦φa is a smooth map between open subsets of XPa , XQb in the sense
of Definition 2.17. We call f interior if the ψ−1

b ◦f ◦φa : (f ◦φa)−1(ψb(Vb))→ Vb
are interior maps for all a, b, in the sense of Definition 2.17, and we write Mangc

in

for the subcategory of Mangc with morphisms interior maps.
Generalizing Definition 2.16, in [64, Def. 3.51], if X ∈Mangc, for each x ∈

Sk(X) ⊆ X we define a real vector space bÑxX with dim bÑxX = k in a natural
exact sequence (2.17), and a subset M̃xX ⊆ bÑxX which is a commutative
monoid under addition in bÑxX. But now M̃xX is a toric monoid of rank k,
such that if M̃xX = P then X near x is locally modelled on XP ×RdimX−rankP

near (δ0, 0), and X ∈Manc ⊂Mangc if and only if M̃xX ∼= Nk for all x ∈ X.
If f : X → Y is an interior map in Mangc and x ∈ Sk(X) ⊆ X with

f(x) = y ∈ Sl(Y ) ⊆ Y , there is a unique linear map bÑxf : bÑxX → bÑyY

making (2.18) commute. Then bÑxf(M̃xX) ⊆ M̃yY , so we define a monoid

morphism M̃xf : M̃xX → M̃yY by M̃xf = bÑxf |M̃xX
, as in Definition 2.16.

We call an interior map f : X → Y simple if M̃xf is an isomorphism for all
x ∈ X. Write Mangc

si for the subcategory of Mangc with simple morphisms. We

call an interior map f : X → Y b-normal if bÑxf is surjective for all x ∈ X. We
write Mangc

bn for the subcategory of Mangc with morphisms b-normal maps.
Using Example 2.18 to view Rmk as a space XP , we obtain a full embedding

Manc ⊂Mangc, which restricts to a full embedding Manc
in ⊂Mangc

in . By an
abuse of notation we will regard Manc as a full subcategory of Mangc, closed
under isomorphisms in Mangc, so that Proposition 3.21(b) below holds. We
could modify the definitions of Manc,Mangc to make this true.

Example 2.19. The simplest manifold with g-corners which is not a manifold
with corners is X =

{
(x1, x2, x3, x4) ∈ [0,∞)4 : x1x2 = x3x4

}
. We have

X ∼= XP , where P is the monoid P =
{

(a, b, c) ∈ N3 : c 6 a+ b
}

.
Then X is 3-dimensional, and has four 2-dimensional boundary faces

X13 =
{

(x1, 0, x3, 0) : x1, x3∈ [0,∞)
}
, X14 =

{
(x1, 0, 0, x4) : x1, x4∈ [0,∞)

}
,

X23 =
{

(0, x2, x3, 0) : x2, x3∈ [0,∞)
}
, X24 =

{
(0, x2, 0, x4) : x2, x4∈ [0,∞)

}
,

16



and four 1-dimensional edges

X1 =
{

(x1, 0, 0, 0) : x1 ∈ [0,∞)
}
, X2 =

{
(0, x2, 0, 0) : x2 ∈ [0,∞)

}
,

X3 =
{

(0, 0, x3, 0) : x3 ∈ [0,∞)
}
, X4 =

{
(0, 0, 0, x4) : x4 ∈ [0,∞)

}
,

all meeting at the vertex (0, 0, 0, 0) ∈ X. In a 3-manifold with (ordinary) corners
such as [0,∞)3, three 2-dimensional boundary faces and three 1-dimensional
edges meet at each vertex, so X has an exotic corner structure at (0, 0, 0, 0).

As in [64, §3.4–§3.6], the theory of §2.2–§2.3 extends to manifolds with
g-corners, but with some important differences:

• As in §2.2, boundaries ∂X, k-corners Ck(X), and the first corner functor
C : Mangc → M̌angc

in ⊂ M̌angc in Definition 2.9 work for manifolds with
g-corners, where M̌angc

in , M̌angc are the extensions of Mangc
in ,Mangc

with objects disjoint unions
∐∞
m=0Xm, where Xm is a manifold with g-

corners of dimension m. However, equations (2.2)–(2.5) and (2.8) are false
for manifolds with g-corners X: for k > 2 there is no natural Sk-action on
∂kX, and no natural diffeomorphism Ck(X) ∼= ∂kX/Sk.

• The second corner functor C ′ in Definition 2.11 does not extend to Mangc,
as the maximal local corner component δ there may not be unique.

• B-(co)tangent bundles bTX, bT ∗X and the functor bT : Mangc
in →Mangc

in

work nicely for manifolds with g-corners X. But ordinary (co)tangent
bundles TX, T ∗X are not well defined. One can define tangent spaces TxX
for x ∈ X, but dimTxX is only upper semicontinuous in x, and the TxX
do not form a vector bundle on X.

As discussed in §2.5.3, transverse fibre products exist in Mangc and Mangc
in

under weak conditions, and this is an important reason for working with Mangc.
We can think of Mangc as a closure of Manc under transverse fibre products.

2.4.2 Manifolds with analytic corners

In [66] the author introduced yet another variation on manifolds with corners,
called manifolds with analytic corners or manifolds with a-corners, which form a
category Manac. They have applications to some classes of analytic problems.

The motivating idea is that a manifold with corners X has two tangent
bundles TX, bTX, as in §2.3. Now the definition of smooth functions on X in
§2.1 favours TX, as f : X → R is smooth if ∇kf exists as a continuous section of⊗k

T ∗X for all k = 0, 1, . . . . For manifolds with a-corners X we define ‘a-smooth
functions’ and ‘a-smooth maps’ using bTX, so that roughly speaking f : X → R
is a-smooth if b∇kf exists as a section of

⊗k bT ∗X for all k = 0, 1, . . . . This gives
a different smooth structure even for X = [0,∞). For example, xα : [0,∞)→ R
is a-smooth for all real α > 0.

Here are the a-smooth versions of Definition 2.1(b)–(g):
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Definition 2.20. As in §2.1 write Rmk = [0,∞)k × Rm−k for 0 6 k 6 m, let
U ⊆ Rmk be open, and f : U → R be continuous. We say that f is a-smooth if
for all a1, . . . , am ∈ N and for any compact subset S ⊆ U , there exist positive
constants C,α such that∣∣∣∣ ∂a1+···+am

∂xa1
1 · · · ∂x

am
m
f(x1, . . . , xm)

∣∣∣∣ 6 C ∏
i=1,...,k: ai>0

xα−aii

for all (x1, . . . , xm) ∈ S with xi > 0 if i = 1, . . . , k with ai > 0, where continuous
partial derivatives must exist at the required points.

Now let U ⊆ Rmk and V ⊆ Rnl be open, and f = (f1, . . . , fn) : U → V be a
continuous map, so that fj = fj(x1, . . . , xm) maps U → [0,∞) for j = 1, . . . , l
and U → R for j = l + 1, . . . , n. Then we say that

(a) f is a-smooth if fj : U → R is a-smooth as above for j = l + 1, . . . , n, and

every u = (x1, . . . , xm) ∈ U has an open neighbourhood Ũ in U such that
for each j = 1, . . . , l, either:

(i) we may uniquely write fj(x̃1, . . . , x̃m) = Fj(x̃1, . . . , x̃m) · x̃a1,j

1 · · · x̃ak,jk

for all (x̃1, . . . , x̃m) ∈ Ũ , where Fj : Ũ → (0,∞) ⊂ R is a-smooth as
above, and a1,j , . . . , ak,j ∈ [0,∞), with ai,j = 0 if xi 6= 0; or

(ii) fj |Ũ = 0.

(b) f is interior if it is a-smooth, and case (a)(ii) does not occur.

(c) f is b-normal if it is interior, and in case (a)(i), for each i = 1, . . . , k we
have ai,j > 0 for at most one j = 1, . . . , l.

(d) f is strongly a-smooth if it is a-smooth, and in case (a)(i), for each j =
1, . . . , l we have ai,j > 0 for at most one i = 1, . . . , k.

(e) f is simple if it is interior, and in case (a)(i), for each i = 1, . . . , k with
xi = 0 we have ai,j > 0 for exactly one j = 1, . . . , l, and for all j = 1, . . . , l
we have ai,j > 0 for at most one i = 1, . . . , k.

(f) f is an a-diffeomorphism if it is an a-smooth bijection with a-smooth
inverse.

As in [66, §3.2], we define the category Manac of manifolds with a-corners
as for Manac in Definition 2.2, but replacing Definition 2.1(b)–(g) by Defini-
tion 2.17(a)–(f). We define subcategories Manac

in ,Manac
bn,Manac

st ,Manac
st,in,

Manac
st,bn and Manac

si of Manac with interior, b-normal, strongly a-smooth,
strongly a-smooth interior, strongly a-smooth b-normal, and simple morphisms,
respectively. As in [66, §3], there is an (obvious) functor FManac

Manc : Manc →
Manac, and a (non-obvious and nontrivial) functor F

Manc
st

Manac
st

: Manac
st →Manc

st.

We also define a category Manc,ac of manifolds with corners and a-corners,
including Manc, Manac as full subcategories, and subcategories Manc,ac

in ,
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Manc,ac
bn ,Manc,ac

st ,Manc,ac
st,in,Manc,ac

st,bn,Manc,ac
si of Manc,ac with interior, b-

normal, strongly a-smooth, strongly a-smooth interior, strongly a-smooth b-
normal, and simple morphisms, respectively. There are functors FManac

Manc,ac :

Manc,ac →Manac and F
Manc

st

Manc,ac
st

: Manc,ac
st →Manc

st.

As in [66, §4], the theory of §2.2–§2.3 extends to manifolds with a-corners
Manac,Manc,ac, including both corner functors C,C ′ in Definitions 2.9 and
2.11, with the difference that we do not define ordinary tangent bundles TX for
manifolds with a-corners X, but only b-tangent bundles bTX.

If X lies in Manac or Manc,ac, so that we have the k-corners Ck(X) with a
projection Πk : Ck(X)→ X, then as in (2.13) there is a rank k bundle bNCk(X)

on Ck(X) in an exact sequence (2.13). When k = 1, for Manc and Mangc this
bNC1(X) was naturally trivial, bNC1(X) = O∂X , giving an exact sequence (2.14)

on ∂X. However, for X in Manac or Manc,ac this bNC1(X) = bN∂X may not
be naturally trivial, so that instead of (2.14) we have an exact sequence on ∂X:

0 // bN∂X // i∗X(bTX)
I�X // bT (∂X) // 0. (2.19)

Here bN∂X → ∂X is a line bundle which has a natural orientation on its fibres,
by outward-pointing vectors. Also bN∂X has a natural flat connection.

2.5 Transversality, submersions, and fibre products

Fibre products in categories are defined in §A.1. Transversality and submersions
are about giving useful criteria for existence of fibre products of manifolds. If we
work in some category of manifolds Ṁan such as Man,Manc

st,Mangc
in ,Mangc,

Manc
in,Manc, then we would like the properties:

(i) If g : X → Z and h : Y → Z are ‘transverse’ then a fibre product
W = X ×g,Z,h Y exists in Ṁan, with dimW = dimX + dimY − dimZ.

(ii) If g : X → Z is a ‘submersion’ then g, h are transverse for any h : Y → Z.

We would also like the definitions of ‘transverse’ and ‘submersion’ to be easy to
check, and not to be too restrictive. Chapter 11 in volume II will extend the
results of this section to (m-)Kuranishi spaces.

2.5.1 Transversality and submersions in Man

The next definition and theorem are well known, see for instance Lee [71, §4, §6]
and Lang [70, §II.2].

Definition 2.21. Let g : X → Z and h : Y → Z be smooth maps of manifolds.
We call g, h transverse if Txg ⊕ Tyh : TxX ⊕ TyY → TzZ is surjective for all
x ∈ X and y ∈ Y with g(x) = h(y) = z in Z. We call g a submersion if
Txg : TxX → TzZ is surjective for all x ∈ X with g(x) = z in Z.
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Theorem 2.22. (a) Suppose g : X → Z and h : Y → Z are transverse smooth
maps of manifolds. Then a fibre product W = X ×g,Z,h Y exists in Man, with
dimW = dimX + dimY − dimZ, in a Cartesian square in Man :

W
f

//

e��

Y

h ��
X

g // Z.

(2.20)

We may write
W =

{
(x, y) ∈ X × Y : g(x) = h(y) in Z

}
(2.21)

as an embedded submanifold of X ×Y, where e : W → X and f : W → Y act by
e : (x, y) 7→ x and f : (x, y) 7→ y. If w ∈W with e(w) = x ∈ X, f(w) = y ∈ Y
and g(x) = h(y) = z ∈ Z then the following sequence is exact:

0 // TwW
Twe⊕Twf // TxX ⊕ TyY

Txg⊕−Tyh // TzZ // 0. (2.22)

(b) Suppose g : X → Z is a submersion in Man. Then g, h are transverse for
any morphism h : Y → Z in Man.

(c) Let g : X → Z be a morphism in Man. Then g is a submersion if and only
if the following condition holds: for each x ∈ X with g(x) = z, there should
exist open neighbourhoods X ′, Z ′ of x, z in X,Z with g(X ′) = Z ′, a manifold
Y ′ with dimX = dimY ′+ dimZ, and a diffeomorphism X ′ ∼= Y ′×Z ′, such that
g|X′ : X ′ → Z ′ is identified with πZ′ : Y ′ × Z ′ → Z ′.

Part (c) gives an alternative definition of submersions in Man: submersions
are local projections. Here are some examples of non-transverse fibre products
in Man. They illustrate the facts that: (i) non-transverse fibre products need
not exist; (ii),(iii) a fibre product W = X ×Z Y may exist, but have dimW 6=
dimX + dimY − dimZ; and (iv) a fibre product W = X ×Z Y may exist, but
may not be homeomorphic to (2.21) as a topological space.

Example 2.23. (i) Define manifolds X = R2, Y = {∗}, Z = R, and smooth
maps g : X → Z, h : Y → Z by g(x, y) = xy and h(∗) = 0. Then g, h
are not transverse at (0, 0) ∈ X and ∗ ∈ Y . In this case no fibre product
X ×g,Z,h Y exists in Man. Roughly this is because the fibre product ought to
be
{

(x, y) ∈ R2 : xy = 0
}

, which is not a manifold near (0, 0).

(ii) Set X = Y = {∗}, Z = R, and define g : X → Z, h : Y → Z by g(∗) =
h(∗) = 0. Then g, h are not transverse at ∗ ∈ X and ∗ ∈ Y . A fibre product
W = X ×g,Z,h Y exists in Man, where W = {∗} with projections e : W → X,
f : W → Y given by e(∗) = f(∗) = ∗. Note that dimW > dimX+dimY −dimZ,
so W has larger than the expected dimension.

(iii) Set X = R2, Y = {∗}, Z = R, and define g : X → Z, h : Y → Z by
g(x, y) = x2 + y2 and h(∗) = 0. Then g, h are not transverse at (0, 0) ∈ X
and ∗ ∈ Y . A fibre product W = X ×g,Z,h Y exists in Man, where W = {∗}
with e : W → X, f : W → Y given by e(∗) = (0, 0) and f(∗) = ∗. Note that
dimW < dimX + dimY − dimZ, so W has smaller than expected dimension.
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(iv) Set X = R2, Y = {∗}, Z = R, and define smooth g : X → Z, h : Y → Z by

g(x, y) =

{
e−1/x2

(y − sin(1/x)), x 6= 0,

0, x = 0,
h(∗) = 0.

Then g, h are not transverse at (0, y) ∈ X and ∗ ∈ Y for y ∈ R. A fibre product
W = X×g,Z,hY exists in Man. It is the disjoint union W = (−∞, 0)q(0,∞)qR,
where e : W → X, f : W → Y act by e(x) = (x, sin(1/x)) for x ∈ (−∞, 0) q
(0,∞) and e(y) = (0, y) for y ∈ R, and f ≡ ∗.

We can also form the fibre product in topological spaces Top, which is

Xtop ×Ztop
Ytop

∼=
{

(x, y) ∈ R2 : x 6= 0 and y = sin(1/x), or x = 0
}
.

Note that the fibre products in Man and Top coincide at the level of sets,
but not at the level of topological spaces, since X ×Z Y has three connected
components but Xtop ×Ztop

Ytop has only one.

2.5.2 Transversality and submersions in Manc
st and Manc

The author [59] studied transverse fibre products and submersions in the category
Manc

st of manifolds with corners and strongly smooth maps. The next definition
is equivalent to [59, Def.s 3.2, 6.1 & 6.10]:

Definition 2.24. Let g : X → Z and h : Y → Z be morphisms in Manc
st.

We call g, h s-transverse if for all x ∈ Sj(X) ⊆ X and y ∈ Sk(Y ) ⊆ Y with
g(x) = h(y) = z ∈ Sl(Z) ⊆ Z, the following morphisms are surjective:

Txg|TxSj(X) ⊕ Tyh|TySk(Y ) : TxS
j(X)⊕ TySk(Y ) −→ TzS

l(Z),

Ñxg ⊕ Ñyh : ÑxX ⊕ ÑyY −→ ÑzZ.
(2.23)

This is an open condition on x ∈ X and y ∈ Y . That is, if (2.23) holds for
some x, y, z, then there are open neighbourhoods x ∈ X ′ ⊆ X and y ∈ Y ′ ⊆ Y
such that (2.23) also holds for all x′ ∈ X ′ and y′ ∈ Y ′ with g(x′) = h(y′) = z′ in
Z, even though j, k, l may not be constant.

We call g, h t-transverse if they are s-transverse, and if x ∈ X and y ∈ Y with
g(x) = h(y) = z ∈ Z, then for all x ∈ Cj(X) and y ∈ Ck(Y ) with Πj(x) = x,
Πk(y) = y and C(g)x = C(h)y = z in Cl(Z), we have j + k > l, and there is
exactly one triple (x,y, z) with j + k = l. This is an open condition on x ∈ X
and y ∈ Y .

We call g an s-submersion if for all x ∈ Sj(X) ⊆ X with g(x) = z ∈ Sl(Z) ⊆
Z, the following morphisms are surjective:

Txg|TxSj(X) : TxS
j(X) −→ TzS

l(Z), Ñxg : ÑxX −→ ÑzZ. (2.24)

These imply that s-submersions are interior and b-normal. Again, (2.24) is an
open condition on x ∈ X.
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Theorem 2.25. (a) Suppose g : X → Z and h : Y → Z are s-transverse
smooth maps in Manc

st. Then a fibre product W = X ×g,Z,h Y exists in Manc
st,

with dimW = dimX + dimY − dimZ, in a Cartesian square (2.20) in Manc
st,

which is also a Cartesian square in Manc. We may define W by (2.21) as an
embedded submanifold of X × Y, where e : W → X and f : W → Y act by
e : (x, y) 7→ x and f : (x, y) 7→ y.

If w ∈ Si(W ) with e(w) = x ∈ Sj(X), f(w) = y ∈ Sk(Y ) and g(x) =
h(y) = z ∈ Sl(Z) then the following sequences are exact:

0 // TwW
Twe⊕Twf // TxX ⊕ TyY

Txg⊕−Tyh // TzZ // 0, (2.25)

0 // TwSi(W )
Twe⊕Twf |···// TxSj(X)⊕TySk(Y )

Txg⊕−Tyh|···// TzSl(Z) // 0, (2.26)

0 // ÑwW
Ñwe⊕Ñwf // ÑxX ⊕ ÑyY

Ñxg⊕−Ñyh // ÑzZ // 0. (2.27)

(b) In (a), g, h are t-transverse if and only if the following are s-transverse (and
indeed t-transverse) Cartesian squares in M̌anc

st from Definition 2.8:

C(W )
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z),

(2.28)

C(W )
C′(f)

//

C′(e)��

C(Y )

C′(h) ��
C(X)

C′(g) // C(Z).

(2.29)

Here in (2.28) if w ∈ Ci(W ) with C(e)(w) = x in Cj(X), C(f)(w) = y in
Ck(Y ) and C(g)(x) = C(h)(y) = z in Cl(Z) then i = j + k − l. Hence we have

Ci(W ) ∼=
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
) (2.30)

for i > 0. When i = 1, this computes the boundary ∂W . The analogue holds for
the second corner functor C ′ in Definition 2.11, using (2.29). Also (2.28) and
(2.29) are Cartesian in M̌anc. If g is an s-submersion then C(g), C(f), C ′(g)
and C ′(f) are s-submersions in M̌anc

st.

(c) Let g : X → Z be a morphism in Manc
st. Then g is an s-submersion if

and only if the following condition holds: for each x ∈ X with g(x) = z, there
should exist open neighbourhoods X ′, Z ′ of x, z in X,Z with g(X ′) = Z ′, a
manifold with corners Y ′ with dimX = dimY ′ + dimZ, and a diffeomorphism
X ′ ∼= Y ′ × Z ′, such that g|X′ : X ′ → Z ′ is identified with πZ′ : Y ′ × Z ′ → Z ′.

(d) Suppose g : X → Z is an s-submersion, and h : Y → Z is any morphism in
Manc, which need not be strongly smooth. Then a fibre product W = X×g,Z,h Y
exists in Manc, in a Cartesian square (2.20) in Manc, with dimW = dimX +
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dimY − dimZ, and is given by (2.21). Also f is an s-submersion, and (2.28)–
(2.29) are Cartesian in M̌anc, and (2.30) holds. If h is strongly smooth then e
is strongly smooth, and g, h are s- and t-transverse, and (2.20) is Cartesian in
Manc

st, and (2.28)–(2.29) are Cartesian in M̌anc
st.

Proof. For (a), [59, Th. 6.4] shows that a fibre product W = X×g,Z,h Y exists in
Manc

st, with dimW = dimX + dimY − dimZ, given by (2.21) as an embedded
submanifold of X × Y . This embedded submanifold property implies that (2.20)
is also Cartesian in Manc. Exactness of (2.25)–(2.27) may be deduced from
Theorem 2.22(a) and the proof of [59, Th. 6.4]. Part (b) in M̌anc

st is proved in
[59, Th. 6.11], and in M̌anc follows from the embedded submanifold property.
Part (c) is proved in [59, Prop. 5.1]. Part (d) follows easily from (a)–(c).

Example 2.26. Set X = Y = [0,∞) and Z = [0,∞)2, and define strongly
smooth g : X → Z, h : Y → Z by g(x) = (x, 2x) and h(y) = (2y, y). Then g, h
are s-transverse. However

C(g)
(
0, X

)
= C(h)

(
0, Y

)
=
(
(0, 0), Z

)
,

where (0, X) ∈ C0(X), (0, Y ) ∈ C0(Y ), ((0, 0), Z) ∈ C0(Z), and

C(g)
(
0, {x = 0}

)
= C(h)

(
0, {y = 0}

)
=
(
(0, 0), {x = y = 0}

)
,

with
(
0, {x = 0}

)
in C1(X),

(
0, {y = 0}

)
in C1(Y ) and

(
(0, 0), {x = y = 0}

)
in

C2(Z), so there are two triples (x,y, z) with j+k = l over (x, y, z) = (0, 0, (0, 0)),
and g, h are not t-transverse in Definition 2.24.

The fibre product W = Xg,Z,hY in Manc
st is a single point ∗. In (2.30) when

i = 0 the left hand side is one point, and the right hand side is two points, so
(2.30) does not hold. For i 6= 0, both sides of (2.30) are empty.

2.5.3 Transversality and submersions in Mangc
in and Mangc

In [64, §4.3] the author studied transverse fibre products of manifolds with g-
corners Mangc

in ,Mangc in §2.4.1. The next definition is equivalent to [64, Def.s
4.3 & 4.24], except for c-fibrations in (e), which are new. The corresponding
names and definitions of b-transverse, b-normal and b-fibrations in Manc are
due to Melrose [84, §I], [85, §2], [87, §2.4].

Definition 2.27. Let g : X → Z and h : Y → Z be interior morphisms in
Mangc. Then:

(a) We call g, h b-transverse if bTxg⊕bTyh : bTxX⊕bTyY → bTzZ is surjective
for all x ∈ X and y ∈ Y with g(x) = h(y) = z ∈ Z.

(b) We call g, h c-transverse if they are b-transverse, and whenever there are
points x,y, z in Cj(X), Ck(Y ), Cl(Z) with C(g)x = C(h)y = z, we have
either j + k > l or j = k = l = 0, for C : Mangc → M̌angc as in §2.4.1.
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(c) We call g a b-submersion if bTxg : bTxX → bTzZ is surjective for all x ∈ X
with g(x) = z in Z.

(d) We call g a b-fibration if it is a b-normal b-submersion. Here g is b-normal
if whenever there are x, z in Cj(X), Cl(Z) with C(g)x = z, we have j > l.

(e) We call g a c-fibration if it is a b-fibration, and if x ∈ X and z ∈ Cl(Z)
with g(x) = Πl(z) = z ∈ Z, then there is exactly one x ∈ Cl(X) with
Πl(x) = x and C(g)x = z.

Theorem 2.28. (a) Let g : X → Z and h : Y → Z be b-transverse morphisms
in Mangc

in . Then a fibre product W = X×g,Z,hY exists in Mangc
in , in a Cartesian

square (2.20) in Mangc
in , with dimW = dimX + dimY − dimZ.

Explicitly, we may write

W ◦ =
{

(x, y) ∈ X◦ × Y ◦ : g(x) = h(y) in Z◦
}
, (2.31)

and take W to be the closure W ◦ of W ◦ in X × Y . Then W is a submanifold
of X × Y, and e : W → X, f : W → Y act by e : (x, y) 7→ x, f : (x, y) 7→ y.

If w ∈W with e(w) = x ∈ X, f(w) = y ∈ Y and g(x) = h(y) = z ∈ Z then
the following sequence is exact:

0 // bTwW
bTwe⊕bTwf // bTxX ⊕ bTyY

bTxg⊕−bTyh // bTzZ // 0. (2.32)

(b) In (a), if g, h are c-transverse then W is also a fibre product in Mangc,
and is given by (2.21). Furthermore, (2.28) is Cartesian in M̌angc, and (2.30)
holds. If g is a b-fibration (or c-fibration) then C(g) and C(f) are b-fibrations
(or c-fibrations) in M̌angc.

(c) Let g : X → Z be a b-submersion. Then g, h are b-transverse for any
h : Y → Z in Mangc

in , and in the Cartesian square (2.20), f is a b-submersion.

(d) Let g : X → Z be a b-fibration. Then g, h are c-transverse for any h : Y → Z
in Mangc

in , and in the Cartesian square (2.20), f is a b-fibration.

(e) Let g : X → Z be a c-fibration, and h : Y → Z be any morphism in Mangc,
which need not be interior. Then a fibre product W = X×g,Z,hY exists in Mangc,
in a Cartesian square (2.20) in Mangc, with dimW = dimX + dimY − dimZ,
and is given by (2.21). Also f is a c-fibration, and (2.28) is Cartesian in M̌angc,
and (2.30) holds.

Proof. Part (a) is proved in [64, Th. 4.27], apart from exactness of (2.32), which
may be deduced from the proof. Part (b) is [64, Th. 4.28]. The first parts of
(c),(d) are in [64, Def. 4.24 & Prop. 4.25]. That f is a b-submersion in (c) follows
from exactness of (2.32) and g a b-submersion. Then in (d), f is a b-submersion,
and we can show f is b-normal using g b-normal and (2.28) Cartesian at the
level of sets, so f is a b-fibration.

For part (e), as g is a b-fibration, C(g) : C(X)→ C(Z) is a b-fibration, and
C(h) : C(Y )→ C(Z) is interior even if h is not, so C(g), C(h) are b-transverse,
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and a fibre product C(X)×C(g),C(Z),C(h)C(Y ) exists in M̌angc
in by the analogue

of (a) in M̌angc
in . Write W for the component of C(X)×C(Z) C(Y ) of dimension

dimX + dimY − dimZ. Then using the ideas of [64, §4] and the c-fibration
condition, we can show W satisfies (e).

This is a strong result, and means that Mangc is useful for problems in
‘manifolds with corners’ in which we want transverse fibre products to exist.

In contrast to Theorems 2.22(c) and 2.25(c), b-submersions and b-fibrations
in Mangc need not be local projections. For example, g : [0,∞)2 → [0,∞),
g(x, y) = xy, is a b-fibration, but is not a local projection near (0, 0).

Example 2.29. Set X = Y = [0,∞)2 and Z = [0,∞), and define g : X → Z,
h : Y → Z by g(x1, x2) = x1x2 and h(x3, x4) = x3x4. Then g, h are interior and
c-transverse, so a fibre product W = X ×g,Z,h Y exists in Mangc

in by Theorem
2.28(a),(b), and is also a fibre product in Mangc. We may write

W =
{

(x1, x2, x3, x4) ∈ [0,∞)4 : x1x2 = x3x4

}
,

which as in Example 2.19 is a manifold with g-corners, but not a manifold with
corners. Thus, Manc is not closed under c-transverse fibre products in Mangc.

Example 2.30. Define X = [0,∞)2, Z = [0,∞) and a smooth map g : X → Z
by g(x, y) = xy. Then g is a b-fibration, but not a c-fibration, since over
x = (0, 0) ∈ X with g(x) = z = 0 in Z and z = (0, {z = 0}) in C1(Z) with
Π1(z) = z, we have two points x =

(
(0, 0), {x1 = 0}

)
and x′ =

(
(0, 0), {x1 = 0}

)
in C1(X) with Π1(x) = Π1(x′) = x and C(g)x = C(g)x′ = z.

Set Y = ∗ and define h : Y → Z by h : ∗ 7→ 0, so that h is not interior. No
fibre product W = X ×g,Z,h Y exists in Mangc.

2.5.4 Transversality and submersions in Manc
in and Manc

We can also consider fibre products in Manc
in and Manc. The appropriate defi-

nition of transversality is rather complicated (in particular, b- or c-transversality
are not sufficient conditions). It is helpful to regard such fibre products as special
cases of fibre products in Mangc

in ,Mangc, as in §2.5.3.

Definition 2.31. Let g : X → Z and h : Y → Z be morphisms in Manc
in. We

can consider g, h as morphisms in Mangc
in , so Definition 2.27 makes sense. We call

g, h strictly b-transverse (sb-transverse) or strictly c-transverse (sc-transverse) if
they are b-transverse or c-transverse, respectively, and for all x ∈ X and y ∈ Y
with g(x) = h(y) = z ∈ Z, the toric monoid

M̃xX ×M̃zZ
M̃yY =

{
(λ, µ) ∈ M̃xX × M̃yY : M̃xg(λ) = M̃yh(µ)

}
(2.33)

is isomorphic to Nn, for n ∈ N depending on x, y, z.
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Here given morphisms g : X → Z, h : Y → Z in Manc
in or Manc, we first

require them to be b- or c-transverse, so that a fibre product W = X ×g,Z,h Y
exists in Mangc

in or Mangc by Theorem 2.28(a),(b). We have M̃(x,y)W ∼=
M̃xX×M̃zZ

M̃yY , so W lies in Manc ⊂Mangc if and only if M̃xX×M̃zZ
M̃yY ∼=

Nk for all x, y, z. Since Manc
in ⊂Mangc

in , Manc ⊂Mangc are full subcategories,
W is then a fibre product in Manc

in or Manc. This proves:

Theorem 2.32. Let g : X → Z and h : Y → Z be sb-transverse morphisms in
Manc

in. Then a fibre product W = X ×g,Z,h Y exists in Manc
in, with dimW =

dimX + dimY − dimZ. Explicitly, we may define W ◦ by (2.31), and take W
to be the closure W ◦ of W ◦ in X × Y . Also (2.32) is exact for all w ∈W .

If g, h are sc-transverse then W is also a fibre product in Manc, and is given
by (2.21). Also (2.28) is Cartesian in M̌anc, and (2.30) holds.

Kottke and Melrose [69, §11] study fibre products in Manc, and the sc-
transverse case in Theorem 2.32 is essentially equivalent to [69, Th. 11.5].

The case when ∂Z = ∅ is simpler. The next theorem follows from [59, 64]:

Theorem 2.33. Suppose g : X → Z and h : Y → Z are b-transverse morphisms
in Manc with ∂Z = ∅. Then a fibre product W = X ×g,Z,h Y exists in
Manc, with dimW = dimX + dimY − dimZ, and is given by (2.21) as an
embedded submanifold of X×Y . It is also a fibre product in Manc

st and Manc
in.

Furthermore, g ◦ iX , h and g, h ◦ iY are also b-transverse, and there is a natural
diffeomorphism

∂(X ×g,Z,h Y ) ∼=
(
∂X ×g◦iX ,Z,h Y

)
q
(
X ×g,Z,h◦iY ∂Y

)
. (2.34)

We would also like classes of ‘submersions’ g : X → Z in Manc, such that
g, h are sb- or sc-transverse for all (interior) h : Y → Z in Manc. In both cases,
the appropriate notion is s-submersions from Definition 2.24.

Example 2.34. Let X,Y, Z, g, h be as in Example 2.29. Then g, h are c-
transverse, but they are not sc-transverse, as in (2.33) we have

M̃(0,0)X ×M̃0Z
M̃(0,0)Y ∼=

{
(n1, n2, n3, n4) ∈ N4 : n1 + n2 = n3 + n4

}
,

which is not isomorphic to Nk for any k > 0. A fibre product W = X ×g,Z,h Y
exists in Mangc

in and Mangc, but not in Manc
in or Manc.

Example 2.35. Let X = [0,∞) × R, Y = [0,∞) and Z = [0,∞)2. Define
g : X → Z by g(x1, x2) = (x1, x1e

x2) and h : Y → Z by h(y) = (y, y). Then g is
a b-submersion and h is interior, so g, h are b-transverse by Theorem 2.28(c),
and in fact g, h are sb-transverse. But g, h are not c-transverse, since we have(
(0, x2), {x1 = 0}

)
in C1(X) and

(
0, {y = 0}

)
in C1(Y ) with C(g)

(
(0, x2), {x1 =

0}
)

= C(h)
(
0, {y = 0}

)
=
(
(0, 0), {z1 = z2 = 0}

)
in C2(Z).

Theorem 2.32 gives a fibre product W = X ×g,Z,h Y in Manc
in, where

W =
{(

(w, 0), w
)

: w ∈ [0,∞)
} ∼= [0,∞).
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It is also a fibre product in Mangc
in . Note that W is not given by the usual

formula (2.21) which also contains points
(
(0, x2), 0

)
for 0 6= x2 ∈ R, that is,

W is not a fibre product at the level of topological spaces. In this case no fibre
product X ×Z Y exists in Manc or Mangc.

Example 2.36. Let X = Y = [0,∞) and Z = [0,∞)2, and define g : X → Z,
h : Y → Z by g(x) = (x, x), h(y) = (y, y2). Then g, h are sb-transverse. However,
they are not c-transverse, since we have

(
0, {x = 0}

)
in C1(X) and

(
0, {y = 0}

)
in C1(Y ) with C(g)

(
0, {x = 0}

)
= C(h)

(
0, {y = 0}

)
=
(
(0, 0), {z1 = z2 = 0}

)
in C2(Z).

The fibre product W = X ×g,Z,h Y in Manc
in given by Theorem 2.32 is

W = {(1, 1)}, a single point. Although g, h are not c- or sc-transverse, in this
case a fibre product W ′ = X ×g,Z,h Y exists in Manc with W ′ = {(0, 0), (1, 1)}.
So fibre products X ×g,Z,h Y in Manc

in and Manc exist, but do not coincide.

Remark 2.37. Suppose we have some category of ‘manifolds’ Ṁan such as
Man,Manc,Manc

in, . . . , and morphisms g : X → Z, h : Y → Z in Ṁan for

which a fibre product W = X ×g,Z,h Y exists in Ṁan. When should we expect
W to be given, either as a set or as a topological space, by the usual formula

W =
{

(x, y) ∈ X × Y : g(x) = h(y) in Z
}

? (2.35)

From §2.5.1–§2.5.4 we observe that:

(i) Theorems 2.22(a), 2.25(a), 2.28(b) and 2.32 show that (2.35) holds in
topological spaces for transverse fibre products in Man, and s-transverse
fibre products in Manc

st, and c-transverse fibre products in Mangc, and
sc-transverse fibre products in Manc.

(ii) Theorems 2.28(a) and 2.32 show that b- and sb-transverse fibre products
in Mangc

in and Manc
in are given by a different formula to (2.35), and in

Examples 2.35 and 2.36 equation (2.35) is false at the level of sets.

(iii) Example 2.23(iv) gives a non-transverse fibre product in Man such that
(2.35) holds at the level of sets, but not at the level of topological spaces.

For some categories Ṁan, there is a 1-1 correspondence between morphisms
f : {∗} → X in Ṁan, and points x ∈ X of the underlying topological space,
by f ↔ f(∗) = x. This holds when Ṁan = Man,Manc

st,Mangc,Manc. For
such Ṁan, the universal property of fibre products in Definition A.3 applied
to W ′ = {∗} shows that (2.35) holds automatically at the level of sets, though
not necessarily for topological spaces, as Example 2.23(iv) shows. In Mangc

in

and Manc
in, morphisms f : {∗} → X correspond not to x ∈ X, but to x ∈ X◦.

Then (2.35) can be false even for sets, as Examples 2.35 and 2.36 show.

2.6 Orientations

Orientations on manifolds are discussed by Lee [71, §15], and on manifolds with
boundary and corners by the author [59, §7], [57] and Fukaya et al. [24, §8.2].
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Definition 2.38. An orientation oX on a manifold X is an equivalence class [ω]
of top-degree forms ω ∈ Γ∞(ΛdimXT ∗X) with ω|x 6= 0 for all x ∈ X, where two
such ω, ω′ are equivalent if ω′ = K ·ω for K : X → (0,∞) smooth. The opposite
orientation is −oX = [−ω]. Then we call (X, oX) an oriented manifold. Usually
we suppress the orientation oX , and just refer to X as an oriented manifold,
and then we write −X for X with the opposite orientation. A nonvanishing
top-degree form ω on X is called positive if [ω] = oX , and negative if [ω] = −oX .

If x ∈ X and (v1, . . . , vm) is a basis for TxX, then we call (v1, . . . , vm)
oriented if ω|x · v1 ∧ · · · ∧ vm > 0, and anti-oriented otherwise.

We will refer to the real line bundle ΛdimXT ∗X → X as the canonical bundle
KX of X, following common practice in algebraic geometry. Then an orientation
on X is an orientation on the fibres of KX .

Let f : X → Y be a smooth map of manifolds. A coorientation cf for f is a
an equivalence class [γ] of γ ∈ Γ∞

(
ΛdimXT ∗X ⊗ f∗(ΛdimY T ∗Y )∗

)
with γ|x 6= 0

for all x ∈ X, where γ, γ′ are equivalent if γ′ = K ·γ for K : X → (0,∞) smooth.
The opposite coorientation is −cf = [−γ]. If Y is oriented then coorientations
on f are equivalent to orientations on X. Orientations on X are equivalent to
coorientations on π : X → ∗, for ∗ the point.

All the above also works for manifolds with boundary Manb and corners
Manc, their subcategories Manc

in, . . . , and Mangc,Manac in §2.4. For Manc

we can define orientations using either ΛdimXT ∗X or ΛdimX(bT ∗X), and they
yield equivalent notions of orientation, since an orientation oX on X is determined
by its restriction to X◦|X , and T ∗X|X◦ = bT ∗X|X◦ .

Operations on manifolds with corners X,Y, Z, . . . such as products X × Y ,
transverse fibre products X×g,Z,hY , and boundaries ∂X, can be lifted to oriented
manifolds with corners. To do this requires a choice of orientation convention.
Ours are equivalent to those of Fukaya et al. [24, §8.2], see also [59, §7].

Convention 2.39. (a) Let X,Y be oriented manifolds. Then there is a natural
orientation on X × Y , such that if x ∈ X, y ∈ Y and (u1, . . . , um), (v1, . . . , vn)
are oriented bases for TxX,TyY then (u1, . . . , um, v1, . . . , vn) is an oriented basis
for T(x,y)(X × Y ) = TxX ⊕ TyY . This also works for manifolds with boundary,

corners, g-corners, . . . , using TxX,TxY or bTxX,
bTxY .

(b) Let X,Y, Z be oriented manifolds, g : X → Z, h : Y → Z be transverse
smooth maps, and W = X ×g,Z,h Y be the fibre product as in §2.5.1, with
projections e : W → X, f : W → Y . Then there is a natural orientation on W ,
such that if w ∈W with e(w) = x ∈ X, f(w) = y ∈ Y and g(x) = h(y) = z ∈ Z,
so that we have an exact sequence of tangent spaces

0 // TwW
Twe⊕Twf // TxX ⊕ TyY =T(x,y)(X×Y )

Txg⊕−Tyh // TzZ // 0,

then if (u1, . . . , um) is an oriented basis for TwW , and(
(Twe⊕ Twf)(u1), . . . , (Twe⊕ Twf)(um), v1, . . . , vn

)
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is an oriented basis for T(x,y)(X × Y ) using the orientation from (a), then(
(−1)dimY dimZ(Txg ⊕−Tyh)(v1), (Txg ⊕−Tyh)(v2), . . . , (Txg ⊕−Tyh)(vn)

)
is an oriented basis for TzZ. This also works for manifolds with corners, etc.

(c) Let X be an oriented manifold with boundary, or corners (etc.). Then
there is a natural orientation on the boundary ∂X, such that if (x1, . . . , xm) in
[0,∞)×Rm−1 are local coordinates on X near x ∈ S1(X) and ( ∂

∂x1
, . . . , ∂

∂xm
) are

an oriented basis of TxX, or equivalently (x1
∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xm

) are an oriented

basis of bTxX, then ( ∂
∂x2

, . . . , ∂
∂xm

) are an anti-oriented basis of T(x,{x1=0})(∂X),

or equivalently bT(x,{x1=0})(∂X). We can also explain this using (2.12) or (2.14).

If X is an oriented manifold with corners then part (c) gives orientations
on ∂X, ∂2X, . . . , ∂dimXX. Note however that the free Sk-action on ∂kX does
not preserve orientations for k > 2, so we cannot define an orientation on
Ck(X) ∼= ∂kX/Sk in (2.4), and Ck(X) can be non-orientable for k > 2.

There are often canonical diffeomorphisms between expressions involving
fibre products and boundaries of manifolds with corners. When we promote
these to oriented manifolds with corners using Convention 2.39, there will be
some sign relating the orientations on each side.

For example, in Theorem 2.33, if X,Y, Z are oriented then in oriented
manifolds with corners, as in [59, Prop. 7.4], equation (2.34) becomes

∂(X ×g,Z,h Y ) ∼=
(
∂X ×g◦iX ,Z,h Y

)
q (−1)dimX+dimZ

(
X ×g,Z,h◦iY ∂Y

)
. (2.36)

Here [59, Prop. 7.5] are some more identities on orientations:

Proposition 2.40. (a) If g : X → Z, h : Y → Z are transverse smooth maps
of oriented manifolds with corners then in oriented manifolds we have

X ×g,Z,h Y ∼= (−1)(dimX−dimZ)(dimY−dimZ)Y ×h,Z,g X. (2.37)

(b) If e : V → Y, f : W → Y, g : W → Z, h : X → Z are smooth maps of
oriented manifolds with corners then in oriented manifolds we have

V ×e,Y,f◦πW
(
W ×g,Z,h X

) ∼= (V ×e,Y,f W )×g◦πW ,Z,h X, (2.38)

provided all four fibre products are transverse.

(c) If e : V → Y, f : V → Z, g : W → Y, h : X → Z are smooth maps of
oriented manifolds with corners then in oriented manifolds we have

V ×(e,f),Y×Z,g×h (W ×X) ∼=
(−1)dimZ(dimY+dimW )(V ×e,Y,g W )×f◦πV ,Z,h X,

(2.39)

provided all three fibre products are transverse.
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Chapter 3

Assumptions about ‘manifolds’

In Chapters 4–6, starting from a category Ṁan of ‘manifolds’ satisfying some as-
sumptions, we will construct 2-categories mK̇ur, K̇ur of ‘(m-)Kuranishi spaces’,
and a category µK̇ur of ‘µ-Kuranishi spaces’ associated to Ṁan.

When Ṁan is the usual category of smooth manifolds Man, this will yield
our usual (2-)categories of (m- or µ-)Kuranishi spaces mKur,µKur,Kur. But
there are many other possibilities for Ṁan.

Sections 3.1–3.3 set out our basic assumptions and additional structures on
the category Ṁan, give examples of categories Ṁan satisfying these conditions,
explain some consequences of them, and define notation to be used later.

If Ṁan satisfies the assumptions of §3.1, much of conventional differential
geometry for classical manifolds Man can be extended to Ṁan — smooth
functions and partitions of unity, vector bundles, tangent and cotangent bundles,
connections, and so on. To streamline our presentation, we will do this extension
in detail in Appendix B, and summarize the results in §3.3.

Section 3.4 extends §3.1–§3.3 to categories Ṁanc of ‘manifolds with corners’.
In fact §3.1–§3.3 already apply without change to Ṁan = Ṁanc, as the basic
assumptions on Ṁan in §3.1 are weak enough to include the categories of
manifolds with corners Ṁanc we are interested in. So the material of §3.1–§3.3
and Chapters 4–6 does not need to be repeated, and our focus in §3.4 is on issues
special to the corners case, such as interior maps, simple maps, boundaries ∂X,
corners Ck(X), and the corner functor C : Ṁanc → Ṁ̌anc

in.

3.1 Core assumptions on ‘manifolds’

This section gives seven assumptions, Assumptions 3.1–3.7, which we will make
on all our categories of ‘manifolds’. They are the minimal assumptions we
will need to define nicely behaved (2-)categories mK̇ur,µK̇ur, K̇ur of (m- and
µ-)Kuranishi spaces in Chapters 4–6.

Some assumptions require us to give data, and others require this data to
have certain properties. The essential data we have to provide is:

• A category Ṁan in Assumption 3.1.
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• A faithful functor FTop

Ṁan
: Ṁan → Top to the category of topological

spaces Top in Assumption 3.2.

• An inclusion Man ⊆ Ṁan of the category of classical manifolds Man as
a full subcategory in Assumption 3.4.

Some examples to have in mind when reading this section, which satisfy all
the assumptions, are the category Man of classical manifolds, and the categories
of manifolds with corners Manc

we, Manc, Manc
in, Manc

st, Manc
st,in, Mangc,

Mangc
in , Manac, Manac

in , . . . from Chapter 2.

3.1.1 General properties

Assumption 3.1. (Category-theoretic properties.) (a) We are given a
category Ṁan. For simplicity, from Chapter 4 onwards, objects X in Ṁan will
be called manifolds (although they may in examples not be manifolds, but some
kind of singular space), and morphisms f : X → Y in Ṁan will be called smooth
maps (although they may in examples be non-smooth).

Isomorphisms in Ṁan are called diffeomorphisms.

(b) There is an object ∅ ∈ Ṁan called the empty set, which is an initial object
in Ṁan (i.e. every X ∈ Ṁan has a unique morphism ∅ → X).

(c) There is an object ∗ ∈ Ṁan called the point, which is a terminal object in
Ṁan (i.e. every X ∈ Ṁan has a unique morphism π : X → ∗).
(d) Each object X in Ṁan has a dimension dimX ∈ N = {0, 1, . . .}, except
that dim ∅ is undefined, or allowed to take any value. We have dim ∗ = 0.

(e) Products X × Y of objects X,Y ∈ Ṁan exist in Ṁan, in the sense of
category theory (fibre products over ∗), with projections πX : X × Y → X and
πY : X × Y → Y . They have dim(X × Y ) = dimX + dimY . Hence products
f × g : W × X → Y × Z of morphisms f : W → Y , g : X → Z, and direct
products (f, g) : X → Y × Z of f : X → Y , g : X → Z, exist in Ṁan.

(f) If X,Y ∈ Ṁan with dimX = dimY there is a disjoint union XqY in Ṁan
with inclusion morphisms ιX : X ↪→ X q Y , ιY : Y ↪→ X q Y . It is a coproduct
in the sense of category theory, with dim(X q Y ) = dimX = dimY .

Assumption 3.2. (Underlying topological spaces.) (a) There is a faithful

functor FTop

Ṁan
: Ṁan → Top from Ṁan to the category of topological spaces

Top, mapping objects X ∈ Ṁan to the underlying topological space Xtop :=

FTop

Ṁan
(X), and morphisms f : X → Y to ftop := FTop

Ṁan
(f) : Xtop → Ytop.

So we can think of objects X of Ṁan as ‘topological spaces Xtop with

extra structure’. Since FTop

Ṁan
is faithful (injective on morphisms), so that

ftop : Xtop → Ytop determines f : X → Y , we can think of morphisms f : X → Y

in Ṁan as ‘continuous maps ftop satisfying conditions’.

(b) Underlying topological spaces Xtop are Hausdorff, locally compact, and

second countable, and FTop

Ṁan
(∅) = ∅, and FTop

Ṁan
(∗) is a point.
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(c) FTop

Ṁan
takes products and disjoint unions in Ṁan functorially to products

and disjoint unions in Top.

(d) If X ∈ Ṁan and U ′ ⊆ Xtop is open with inclusion i′ : U ′ ↪→ Xtop, there

is a natural object U in Ṁan called an open submanifold with Utop = U ′ and
dimU = dimX, and an inclusion morphism i : U ↪→ X with itop = i′. If U ′ = ∅
then U = ∅. Inclusion morphisms are functorial under inclusions of open sets
U ′ ↪→ V ′ ↪→ Xtop. Given a morphism f : X → Y in Ṁan, we often write
f |U : U → Y instead of f ◦ i : U → Y .

If f : W → X is a morphism in Ṁan with ftop(Wtop) ⊆ Utop ⊆ Xtop then f

factorizes uniquely as f = i ◦ f ′ for a morphism f ′ : W → U in Ṁan. If f is an
open submanifold then so is f ′.

Inclusions ιX : X ↪→ X q Y , ιY : Y ↪→ X q Y are open submanifolds.

(e) Suppose X ∈ Ṁan, and Y ′ is a topological space, and ψ : Xtop → Y ′ is a

homeomorphism. Then there exists an object Y ∈ Ṁan and a diffeomorphism
φ : X → Y such that Ytop = Y ′ and φtop = ψ.

In later chapters we will generally drop the distinction between X and Xtop,
and write x ∈ X rather than x ∈ Xtop, identify open submanifolds i : U ↪→ X
with open sets U ⊆ X, and so on, just as one does for ordinary manifolds in
differential geometry.

We suppose morphisms and objects in Ṁan can be glued over open covers.

Assumption 3.3. (Sheaf-theoretic properties.) (a) Let X,Y be objects
in Ṁan, and f ′ : Xtop → Ytop be a continuous map, and {U ′a : a ∈ A} be
an open cover of Xtop. Write ia : Ua ↪→ X for the open submanifold with

Ua,top = U ′a, and suppose there is a morphism fa : Ua → Y in Ṁan with
fa,top = f ′ ◦ ia,top : Ua,top → Ytop for each a ∈ A. Then there is a morphism

f : X → Y in Ṁan with ftop = f ′ and f ◦ ia = fa for all a ∈ A. Note that fa, f
must be unique by faithfulness in Assumption 3.2(a).

This implies that morphisms f : X → Y in Ṁan form a sheaf on X.

(b) Let X ′ be a Hausdorff, second countable topological space, {U ′a : a ∈ A} an
open cover of X ′, and {Ua : a ∈ A} a family of objects in Ṁan with Ua,top = U ′a
and dimUa = m for all a ∈ A, with m ∈ N. For a, b ∈ A write iab : Uab ↪→ Ua
for the open submanifold associated to U ′a ∩ U ′b ⊂ U ′a = Ua,top.

Suppose that there is a (necessarily unique) diffeomorphism jab : Uab → Uba
in Ṁan with jab,top = idU ′a∩U ′b for all a, b ∈ A. Then there exists an object X

in Ṁan with Xtop = X ′ and dimX = m, unique up to diffeomorphism, covered
by open submanifolds ia : Ua ↪→ X for a ∈ A, for Ua as above.

3.1.2 Relation with classical manifolds

Assumption 3.4. (Inclusion of ordinary manifolds.) The usual category
Man of smooth manifolds and smooth maps between them is included as a full
subcategory Man ⊆ Ṁan.
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Dimensions of objects in Man ⊆ Ṁan are as usual in Man. Products and
disjoint unions in Ṁan of X,Y ∈Man agree with those in Man. The empty
set ∅ and point ∗ in Assumption 3.1(b),(c) lie in Man ⊆ Ṁan.

The underlying topological space functor FTop

Ṁan
is as usual on Man ⊆ Ṁan.

Open submanifolds in Man, Ṁan agree. We will often use that Rn is an object
of Ṁan for n = 0, 1, . . . , since Rn ∈ Man ⊆ Ṁan. We generally write Rn
rather than Rntop, and X rather than Xtop when X ∈Man ⊆ Ṁan.

From Chapter 4 onwards, by an abuse of notation we will usually refer to
objects X of Ṁan as ‘manifolds’, and morphisms f : X → Y in Ṁan as ‘smooth
maps’. When we need to refer to objects X ∈Man ⊆ Ṁan we will call them
‘classical manifolds’, and morphisms f : X → Y in Man ⊆ Ṁan ‘classical
smooth maps’.

Assumption 3.5. (Hadamard’s Lemma.) Suppose X is an object in Ṁan,
and i : U ↪→ X × Rn is an open submanifold with (x, 0, . . . , 0) ∈ Utop for all

x ∈ Xtop, and f : U → R is a morphism in Ṁan. Then there exist morphisms

g1, . . . , gn : U → R in Ṁan with

ftop(x, t1, . . . , tn) = ftop(x, 0, . . . , 0) +
∑n
i=1 ti · gi,top(x, t1, . . . , tn) (3.1)

for all (x, t1, . . . , tn) ∈ Utop, so that x ∈ Xtop and t1, . . . , tn ∈ R.

Note that this has strong implications for the differentiability of functions in
Ṁan. For example, taking partial derivatives of (3.1) in t1, . . . , tn at t1 = · · · =
tn = 0 and noting that g1,top, . . . , gn,top are continuous implies that

∂ftop

∂ti
(x, 0, . . . , 0) = gi,top(x, 0, . . . , 0) (3.2)

for all x ∈ Xtop, where the partial derivative exists. A more complicated

argument shows that there exist unique morphisms h1, . . . , hn : U → R in Ṁan
with hi,top(x, t1, . . . , tn) =

∂ftop

∂ti
(x, t1, . . . , tn) for all (x, t1, . . . , tn) ∈ Utop.

The next assumption means that for X ∈ Ṁan, the topology on Xtop is
generated by open subsets f−1

top((0,∞)) ⊆ Xtop for smooth functions f : X → R.

Assumption 3.6. (Topology is generated by smooth functions to R.)
Let X be an object of Ṁan. As R ∈Man ⊆ Ṁan, we can consider morphisms
f : X → R in Ṁan. Suppose U ′ ⊆ Xtop is open and x ∈ U ′. Then there should

exist f : X → R in Ṁan with ftop(x) > 0 and ftop|Xtop\U ′ 6 0.

3.1.3 Extension properties of smooth maps

Assumptions 3.1–3.6 hold for many categories of manifold-like spaces, including
some which are not suitable for defining Kuranishi spaces. Though its significance
is probably not clear on a first reading, our next assumption makes many features
of ordinary manifolds work in Ṁan, and is vital for much that we do in this
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book. For example, we show in §B.4 that Assumption 3.7(a) allows us to define
a ‘tangent sheaf T X’ for objects X ∈ Ṁan, a substitute for the tangent bundle
TX → X for X ∈Man.

Assumption 3.7. (Extension properties of smooth maps.) (a) Let X,Y
be objects in Ṁan, and k > 2, n > 0. Suppose

Ui ↪→ X × (Rn)k−1

is an open submanifold for i = 1, . . . , k with Xtop × {(0, . . . , 0)} ⊂ Ui,top, and

fi : Ui → Y is a morphism in Ṁan for i = 1, . . . , k such that

fi,top(x,z1, . . . ,zi−1, zi+1, . . . ,zj−1, 0, zj+1, . . . ,zk)

= fj,top(x, z1, . . . ,zi−1, 0, zi+1, . . . ,zj−1, zj+1, . . . ,zk)

for all 1 6 i < j 6 k, x ∈ Xtop and za ∈ Rn for a = 1, . . . , k, a 6= i, j,
such that (x, z1, . . . ,zi−1, zi+1, . . . ,zj−1, 0, zj+1, . . . ,zk) ∈ Ui,top and (x, z1,
. . . , zi−1, 0, zi+1, . . . ,zj−1, zj+1, . . . ,zk) ∈ Uj,top. Then there should exist an
open submanifold V ↪→ X × (Rn)k with Xtop × {(0, . . . , 0)} ⊂ Vtop, and a

morphism g : V → Y in Ṁan such that

fi,top(x, z1, . . . ,zi−1, zi+1, . . . ,zk) = gtop(x, z1, . . . ,zi−1, 0, zi+1, . . . ,zk)

for all i = 1, . . . , k, x ∈ Xtop and za ∈ Rn for a = 1, . . . , k, a 6= i, with
(x, z1, . . . ,zi−1, zi+1, . . . ,zk) ∈ Ui,top, (x, z1, . . . ,zi−1, 0, zi+1, . . . ,zk) ∈ Vtop.

(b) In part (a), suppose in addition that s : X → Rn and h : X → Y are
morphisms in Ṁan with

fi,top(x, t1 · stop(x), . . . , ti−1 · stop(x), ti+1 · stop(x), . . . , tk · stop(x)) = htop(x)

for all i = 1, . . . , k, x ∈ Xtop and t1, . . . , ti−1, ti+1, . . . , tk ∈ R with t1 + · · · +
ti−1 +ti+1 + · · ·+tk = 1 and (x, t1 ·stop(x), . . . , ti−1 ·stop(x), ti+1 ·stop(x), . . . , tk ·
stop(x)) ∈ Ui,top. Then we can choose g to satisfy

gtop(x, t1 · stop(x), . . . , tk · stop(x)) = htop(x)

for all x ∈ Xtop and t1, . . . , tk ∈ R with t1+· · ·+tk = 1 and (x, t1 ·stop(x), . . . , tk ·
stop(x)) ∈ Vtop.

(c) In both (a) and (b), suppose the whole situation is invariant/equivariant
under a finite group Γ, which acts on X,Y by diffeomorphisms in Ṁan, and
acts linearly on Rn, and may also act on {1, . . . , k} by permutations, and hence
permute the Ui, fi, zi, ti for i = 1, . . . , k, in addition to the Γ-actions on X,Y,Rn.
Then we can choose V to be Γ-invariant, and g : V → Y to be Γ-equivariant.

3.2 Examples of categories satisfying the assumptions

Here are some examples of categories Ṁan satisfying Assumptions 3.1–3.7.
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Example 3.8. (i) The usual category of manifolds Man from Chapter 2 satisfies
all assumptions in §3.1.

(ii) In Chapter 2 we discussed many categories of manifolds with corners. Of
these, the following satisfy all assumptions in §3.1:

Manc
we,Manc,Manc

in,Manc
bn,Manc

st,Manc
st,in,

Mangc,Mangc
in ,Mangc

bn,Manac,Manac
in ,Manac

bn,Manac
st ,

Manac
st,in,Manc,ac,Manc,ac

in ,Manc,ac
bn ,Manc,ac

st ,Manc,ac
st,in.

(3.3)

Example 3.9. In §6.6 we will define the 2-category of orbifolds Orb. Define
a 2-subcategory Orbeff

sur ⊂ Orb with objects X effective orbifolds, and with
1-morphisms f : X→ Y whose morphisms of isotropy groups Gxf : GxX→ GyY
are surjective for all x ∈ X with f(x) = y ∈ Y, and with arbitrary 2-morphisms.
Consider the homotopy category Ho(Orbeff

sur). The combination of the effective
and surjective conditions means that Orbeff

sur is a discrete 2-category (i.e. there
is at most one 2-morphism η : f⇒ g between any two 1-morphisms f, g : X→ Y
in Orbeff

sur). So Orbeff
sur is equivalent to Ho(Orbeff

sur) as a 2-category, and passing
to the homotopy category does not lose any important information.

Any orbifold X has a natural locally closed stratification X =
∐dimX
k=0 Xk,

where Xk is the disjoint union of the orbifold strata of X with codimension k,
and Xk has the structure of a manifold of dimension dimX− k. Because of the
surjectivity on isotropy groups condition, 1-morphisms f : X→ Y are compatible
with these stratifications in the sense of Lemma 2.5, and locally in Xk induce
smooth maps f|Xk : Xk → Yl between manifolds.

One can now show that the category Ṁan = Ho(Orbeff
sur) satisfies Assump-

tions 3.1–3.7. There are a few subtle points in the proof. For Assumption 3.3
we use stack-theoretic properties of Orb and the fact that Orbeff

sur is a discrete
2-category, so that we get sheaves and not just presheaves when we pass to the
homotopy category.

We can also consider ‘corners’ versions of Ho(Orbeff
sur) modelled on one of

the categories in (3.3). These all work without any problems.

Remark 3.10. Here are some categories of manifolds which fail parts of As-
sumptions 3.1–3.7, and so are excluded from our theory:

(a) The category Manra of real analytic manifolds and real analytic maps fails
Assumption 3.4, as there is no inclusion Man ⊆Manra.

Partitions of unity will be important in our theory, but they do not exist
in Manra. So we will not define real analytic Kuranishi spaces.

(b) The category ManCk of Ck-manifolds for k > 0 fails Assumption 3.5, since
in general maps g1, . . . , gn : U → R satisfying (3.1) would have to be only
Ck−1, and so would not be morphisms in ManCk .

(c) The category Manb of manifolds with boundary is not closed under
products such as [0, 1]× [0, 1], so Assumption 3.1(e) fails. To include this
example we should embed Manb ⊂Manc and take Ṁan = Manc.
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(d) As in Remark 2.3, Melrose [84–86] works in the full subcategory Manc
fa ⊂

Manc of ‘manifolds with faces’ X, for which iX : ∂X → X is injective on
each connected component of ∂X. Since this is not a local condition on X,
Assumption 3.3(b) fails for Manc

fa. Again, we should take Ṁan = Manc.

(e) The categories Manc
si,Mangc

si ,Manac
si ,Manc,ac

si in Chapter 2 of various
kinds of manifolds with corners, and simple maps, fail Assumption 3.6, since
if X lies in one of these categories with ∂X 6= ∅ then no map f : X → R is
simple, so almost all of §3.3 does not work within Manc

si, . . . .

However, these categories will play an important rôle in our treatment of
(m- and µ-)Kuranishi spaces with corners in §3.4, §4.6, §5.4 and §6.3.

3.3 Differential geometry in Ṁan

Suppose Ṁan is a category satisfying Assumptions 3.1–3.7 in §3.1. Much of
conventional differential geometry for classical manifolds Man can be extended
to Ṁan — smooth functions and partitions of unity, vector bundles, tangent
and cotangent bundles, connections, and so on. To avoid a lengthy diversion in
our narrative, we will explain the extension to Ṁan in detail in Appendix B,
and summarize it here. Readers primarily interested in the conventional cases
Ṁan = Man or Ṁan = Manc should not need to look at Appendix B.

Here are two important differences with conventional differential geometry:

• If X ∈ Ṁan is a ‘manifold’, we will define a tangent sheaf T X and
cotangent sheaf T ∗X, which are our substitutes for the (co)tangent bundles
TX, T ∗X of a classical manifold. These T X, T ∗X may not be vector
bundles for general Ṁan, but are sheaves of modules over the structure
sheaf OX of smooth functions X → R. Also T X, T ∗X may not be dual
to each other, though there is a natural pairing µX : T X × T ∗X → OX .

• If f : X → Y is a morphism in Ṁan, we will define a relative tangent sheaf
TfY of OX -modules on X, with TfY = T X when X = Y and f = idX .

When Ṁan = Man, TfY is the sheaf of sections of the pullback vector
bundle f∗(TY )→ X, but in general we may have TfY 6∼= f∗(T Y ).

In §3.3.5 we describe some ‘O(s)’ and ‘O(s2)’ notation, explained in detail in
§B.5, which will be important in Chapters 4–6.

3.3.1 Smooth functions and the structure sheaf

We summarize the material of §B.1:

(a) For each X ∈ Ṁan, write C∞(X) for the set of morphisms a : X → R in
Ṁan. We show that C∞(X) has the structure of a commutative R-algebra,
and also of a C∞-ring, in the sense of C∞-algebraic geometry as in the
author [56, 65] or Dubuc [13].
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(b) We define a sheaf OX of commutative R-algebras or C∞-rings on the
topological space Xtop, called the structure sheaf , with OX(Utop) = C∞(U)
for all open submanifolds U ↪→ X. Sheaves are explained in §A.5.

(c) We show that (Xtop,OX) is an affine C∞-scheme in the sense of [13,

56, 65]. If f : X → Y is a morphism in Ṁan, we define a morphism
(ftop, f

]) : (Xtop,OX) → (Ytop,OY ) of affine C∞-schemes. This defines

a functor FC∞Sch
Ṁan

: Ṁan → C∞Schaff to the category of affine C∞-
schemes, which is faithful, but need not be full.

(d) We show that partitions of unity exist in OX subordinate to any open
cover {Ua : a ∈ A} of X. Thus, OX is a fine sheaf.

When Ṁan = Man all this is standard material.

3.3.2 Vector bundles and sections

In §B.2 we discuss vector bundles E → X in Ṁan, and (smooth) sections
s : X → E, and we write Γ∞(E) for the C∞(X)-module of sections s of E. The
usual definitions and operations on vector bundles and sections in differential
geometry also work for vector bundles in Ṁan, in exactly the same way with no
surprises, so for instance if E,F → X are vector bundles we can define vector
bundles E∗ → X, E ⊕ F → X, E ⊗ F → X, ΛkE → X, and so on, and if
f : X → Y is a morphism in Ṁan and G→ Y is a vector bundle we can define
a pullback vector bundle f∗(G)→ X.

If E → X is a vector bundle, we write E for the sheaf of sections of E, as
a sheaf of modules over OX . Morphisms of vector bundles θ : E → F are in
natural 1-1 correspondence with morphisms of OX -modules θ̃ : E → F .

3.3.3 The cotangent sheaf T ∗X, and connections ∇
In §B.3, for each X ∈ Ṁan we define the cotangent sheaf T ∗X, a sheaf of
OX -modules on Xtop. We also define the de Rham differential d : OX → T ∗X,
a morphism of sheaves of R-vector spaces which is a universal C∞-derivation.
We do this by noting that (Xtop,OX) is an affine C∞-scheme in the sense of [13,
56, 65], as in §3.3.1 and §B.1, and then using cotangent sheaves of C∞-schemes
from the author [65, §5].

Example 3.11. (a) If Ṁan = Man then T ∗X is the sheaf of sections of the
usual cotangent bundle T ∗X → X in differential geometry. The same holds if
X ∈Man ⊆ Ṁan for general Ṁan.

(b) If Ṁan is one of the following categories from Chapter 2:

Manc,Manc
in,Manc

st,Manc
st,in,Manc

we,

then as in §2.3 there are two notions of cotangent bundle T ∗X, bT ∗X of X in
Ṁan. It turns out that T ∗X is isomorphic to the sheaf of sections of T ∗X.
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(c) If Ṁan is one of the following categories from §2.4:

Mangc,Mangc
in ,Manac,Manac

in ,Manac
st ,

Manac
st,in,Manc,ac,Manc,ac

in ,Manc,ac
st ,Manc,ac

st,in,

then the cotangent bundle T ∗X of X ∈ Ṁan may not be defined, though the
b-cotangent bundle bT ∗X is. It turns out that T ∗X need not be isomorphic to
the sheaf of sections of any vector bundle in these cases.

Let E → X be a vector bundle in Ṁan, and E the OX -module of sections
of E as in §3.3.2. We define a connection ∇ on E to be a morphism ∇ : E →
E ⊗OX T ∗X of sheaves of R-vector spaces on Xtop, satisfying the Leibniz rule
∇(a · e) = a · (∇e) + e⊗ (da) for all local sections a of OX and e of E . We show
that connections ∇ on E always exist, and if ∇,∇′ are two connections then
∇′ = ∇+ Γ for Γ : E → E ⊗OX T ∗X an OX -module morphism.

3.3.4 Tangent sheaves T X, and relative tangent sheaves TfY
We summarize the material of §B.4:

(a) For each X ∈ Ṁan we define the tangent sheaf T X, as a sheaf of OX -
modules on Xtop.

(b) If f : X → Y is a morphism in Ṁan we define the relative tangent sheaf
TfY , as an OX -module on Xtop. There is a natural OX -module morphism

f [ ⊗ idOX : f∗(T Y ) = f−1
top(T Y )⊗f−1

top(OY ) OX −→ TfY. (3.4)

If g : Y → Z is a morphism in Ṁan we have an OX -module morphism

f [ ⊗ idOX : f∗(TgZ) = f−1
top(TgZ)⊗f−1

top(OY ) OX −→ Tg◦fZ. (3.5)

Neither of (3.4) or (3.5) need be isomorphisms.

(c) If f : X → Y , g : Y → Z are morphisms in Ṁan then we define an
OX -module morphism T g : TfY → Tg◦fZ.

(d) If f : X → Y is a morphism in Ṁan and E,F → X are vector bundles
then we define morphisms θ : E → TfY, φ : TfY → F . These are just OX -
module morphisms θ : E → TfY, φ : TfY → F , for E ,F the OX -modules
of sections of E,F .

We can compose such morphisms by composing OX -module morphisms,
so that φ ◦ θ : E → F is a vector bundle morphism E → F .

(e) We define a natural pairing µX : T X × T ∗X → OX between tangent and
cotangent sheaves.

(f) Let E → X be a vector bundle in Ṁan, ∇ a connection on E, and
s ∈ Γ∞(E), so that ∇s ∈ Γ(E ⊗OX T ∗X) as in §3.3.3. Using the pairing
µX in (e) we can regard ∇s as a morphism ∇s : T X → E.

38



(g) Let f : X → Y , g : Y → Z be morphisms in Ṁan, F → Y be a vector
bundle, and θ : F → TgZ be a morphism on Y , as in (d). We define a
morphism f∗(θ) : f∗(F ) → Tg◦fZ by composing (3.5) with the pullback
of θ under ftop. This is something of an abuse of notation: we will treat
Tg◦fZ as if it were the pullback f∗(TgZ), although (3.5) may not be an
isomorphism. Incorporating (3.5) in the definition of f∗(θ) allows us to
omit f [ ⊗ idOX in (3.5) from our notation.

(h) Let f : X → Y be a morphism in Ṁan, F → Y be a vector bundle, ∇ a
connection on F , and t ∈ Γ∞(F ), so that ∇t ∈ Γ(F ⊗OY T ∗Y ). We define
a morphism f∗(∇t) : TfY → f∗(F ). This is not done by pulling back the
morphism ∇t : T Y → F in (f) along f , since the morphism (3.4) goes the
wrong way, but by a different method.

Example 3.12. Let Ṁan = Man. Then T X in (a) is the sheaf of sections
of the usual tangent bundle TX → X in differential geometry, and TfY in
(b) is the sheaf of sections of f∗(TY )→ X, and (3.4)–(3.5) are isomorphisms.
In (c), T g is the pullback f∗(Tg) : f∗(TY ) → (g ◦ f)∗(TZ) of the derivative
map Tg : TY → g∗(TZ). In (d), morphisms are vector bundle morphisms
θ : E → f∗(TY ), φ : f∗(TY ) → F . In (e), µX is the usual dual pairing
TX×T ∗X → OX . In (g),(h), f∗(θ), f∗(∇t) are the usual pullbacks in differential
geometry.

The moral is that when Ṁan = Man, we should remember that TfY means
f∗(TY ), all the sheaves OX , T ∗X, T X, TfY are vector bundles, and all of (a)–(h)
are standard differential geometry of classical manifolds.

Example 3.13. Let Ṁan be one of the following categories from Chapter 2:

Manc
in,Manc

st,in,Mangc
in ,Manac

in ,Manac
st,in,Manc,ac

in ,Manc,ac
st,in.

Then T X in (a) is the sheaf of sections of the b-tangent bundle bTX → X from
§2.3, and TfY in (b) is the sheaf of sections of f∗(bTY )→ X, and (3.4)–(3.5)
are isomorphisms. Note that in these cases T X and T ∗X may not be dual, since
as in Example 3.11(b),(c) either T ∗X is the sheaf of sections of T ∗X → X (not
bT ∗X → X), or T ∗X may not be a vector bundle.

Example 3.14. Let Ṁan be one of the following categories from Chapter 2:

Manc,Manc
st,Mangc,Manac,Manac

st ,Manc,ac,Manc,ac
st .

Then T X in (a) is the sheaf of sections of the b-tangent bundle bTX → X,
but TfY in (b) is the sheaf of sections of the vector bundle of mixed rank
C(f)∗(bTC(Y ))|C0(X) → X, using the corner functor C(f) : C(X) → C(Y )
and the identification X ∼= C0(X) from §2.2. Also (3.4)–(3.5) may not be
isomorphisms, and T X and T ∗X may not be dual.
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3.3.5 The O(s) and O(s2) notation

Section B.5 defines some ‘O(s)’ and ‘O(s2)’ notation, which will be important
in §4.1, §5.1 and §6.1. Here is an informal version of Definition B.36:

Definition 3.15. Let X be an object in Ṁan, and π : E → X be a vector
bundle, and s ∈ Γ∞(E) be a section. Then:

(i) If F → X is a vector bundle and t1, t2 ∈ Γ∞(F ), we write t2 = t1 +O(s)
if there exists a morphism α : E → F such that t2 = t1 + α ◦ s in Γ∞(F ).

Similarly, we write t2 = t1 +O(s2) if there exists β : E ⊗E → F such that
t2 = t1 + β ◦ (s⊗ s) in Γ∞(F ). This implies that t2 = t1 +O(s).

We can also apply this O(s), O(s2) notation to morphisms of vector bundles
θ1, θ2 : F → G, by regarding θ1, θ2 as sections of F ∗ ⊗G.

(ii) If F → X is a vector bundle, f : X → Y is a morphism in Ṁan, and
Λ1,Λ2 : F → TfY are morphisms as in §3.3.4(d), we define a notion of when
Λ2 = Λ1 +O(s). Basically this says that locally near 0E,top(s−1

top(0)) ⊆ Etop,
there should exist M : π∗(F ) → Tf◦πY on E with 0∗E(M) = Λ1 and
s∗(M) = Λ2, where 0E : X → E is the zero section.

(iii) If f, g : X → Y are morphisms, we define a notion of when g = f +O(s).
Basically this says that locally near 0E,top(s−1

top(0)) ⊆ Etop, there should
exist a morphism v : E → Y with v ◦ 0E = f and v ◦ s = g.

(iv) Let f, g : X → Y with g = f +O(s) be as in (iii), and F → X, G→ Y be
vector bundles, and θ1 : F → f∗(G), θ2 : F → g∗(G) be morphisms. We
wish to compare θ1, θ2, though they map to different vector bundles.

We define a notion of when θ2 = θ1 +O(s). Basically this says that locally
near 0E,top(s−1

top(0)) ⊆ Etop, there should exist a morphism v : E → Y with
v ◦ 0E = f and v ◦ f = g as in (iii), and a morphism φ : π∗(F ) → v∗(G)
on E with 0∗E(φ) = θ1 and s∗(φ) = θ2.

(v) Let f, g : X → Y with g = f +O(s) be as in (iii), and F → X be a vector
bundle, and Λ1 : F → TfY , Λ2 : F → TgY be morphisms, as in §3.3.4(d).
We wish to compare Λ1,Λ2, though they map to different sheaves.

We define a notion of when Λ2 = Λ1 +O(s). Basically this says that locally
near 0E,top(s−1

top(0)) ⊆ Etop, there should exist a morphism v : E → Y
with v ◦0E = f and v ◦ s = g as in (iii), and a morphism M : π∗(F )→ TvY
on E with 0∗E(M) = Λ1 and s∗(M) = Λ2.

(vi) Suppose f : X → Y is a morphism in Ṁan, and F → X, G → Y are
vector bundles, and t ∈ Γ∞(G) with f∗(t) = O(s) in the sense of (i), and
Λ : F → TfY is a morphism, as in §3.3.4(d), and θ : F → f∗(G) is a vector
bundle morphism. We write θ = f∗(dt) ◦ Λ + O(s) if whenever ∇ is a
connection on G we have θ = f∗(∇t) ◦ Λ +O(s) in the sense of (i), where
f∗(∇t) : TfY → f∗(G) is as in §3.3.4(h), so that f∗(∇t) ◦ Λ : F → f∗(G)
is a vector bundle morphism as in §3.3.4(d).
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Here a connection ∇ on G exists as in §3.3.4, and the condition θ =
f∗(∇t) ◦ Λ + O(s) is independent of the choice of connection ∇. The
notation ‘dt’ in θ = f∗(dt) ◦ Λ + O(s) is intended to suggest that the
condition is natural, and independent of the choice of connection.

(vii) Let f, g : X → Y with g = f + O(s) be as in (iii), and Λ : E → TfY
be a morphism in the sense of §3.3.4(d). We define a notion of when
g = f+Λ◦s+O(s2). Basically this says that locally near 0E,top(s−1

top(0)) ⊆
Etop, there should exist a morphism v : E → Y with v ◦ 0E = f and
v ◦ s = g as in (iii), and the normal derivative of v at the zero section
0E(X) ⊆ E should be Λ. Making sense of this formally needs the details
of the definition of TfY in §B.4, which we have not explained.

Here are equivalent but simpler definitions when Ṁan = Man. We combine
Definition 3.15(i),(ii) into Definition 3.16(i), and Definition 3.15(iv),(v) into
Definition 3.16(iii), since the sheaf TfY = f∗(TY ) is a vector bundle when
Ṁan = Man, and does not need separate treatment.

Definition 3.16. Let X be a classical manifold, E → X a vector bundle, and
s ∈ Γ∞(E) a smooth section.

(i) If F → X is another vector bundle and t1, t2 ∈ Γ∞(F ) are smooth sections,
we write t2 = t1+O(s) if there exists α ∈ Γ∞(E∗⊗F ) such that t2 = t1+α·s
in Γ∞(F ), where the contraction α · s is formed using the natural pairing
of vector bundles (E∗ ⊗ F )× E → F over X.

Similarly, we write t2 = t1 + O(s2) if there exists α ∈ Γ∞(E∗ ⊗ E∗ ⊗ F )
such that t2 = t1 + α · (s⊗ s) in Γ∞(F ).

(ii) Suppose f, g : X → Y are smooth maps of classical manifolds. We write
g = f + O(s) if whenever a : Y → R is a smooth map, there exists
β ∈ Γ∞(E∗) such that a ◦ g = a ◦ f + β · s.

(iii) Let f, g : X → Y with g = f +O(s) be as in (ii), and F → X, G→ Y be
vector bundles, and θ1 : F → f∗(G), θ2 : F → g∗(G) be morphisms. We
wish to compare θ1, θ2, though they map to different vector bundles.

We write θ2 = θ1 + O(s) if for all α ∈ Γ∞(F ) and β ∈ Γ∞(G∗) we have
g∗(β) · (θ2 ◦ α) = f∗(β) · (θ1 ◦ α) +O(s) in C∞(X), in the sense of (i).

(iv) Suppose f : X → Y is a smooth map of classical manifolds, F → X,
G→ Y are vector bundles, t ∈ Γ∞(G) with f∗(t) = O(s) in the sense of
(i), and Λ : F → f∗(TY ), θ : F → f∗(G) are vector bundle morphisms.
We write θ = f∗(dt) ◦ Λ + O(s) if θ = f∗(∇t) ◦ Λ + O(s) in the sense
of (i) when ∇ is a connection on G, so that ∇t ∈ Γ∞(T ∗Y ⊗ G) and
f∗(∇t) : f∗(TY )→ f∗(G) is a vector bundle morphism. This condition is
independent of the choice of connection ∇ on G.

(v) Let f, g : X → Y with g = f +O(s) be as in (ii), and Λ : E → f∗(TY ) be
a vector bundle morphism. We write g = f + Λ ◦ s + O(s2) if whenever
a : Y → R is a smooth map, there exists β in Γ∞(E∗ ⊗ E∗) such that
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a ◦ g = a ◦ f + Λ · (s ⊗ f∗(dh)) + β · (s ⊗ s). Here s ⊗ f∗(dh) lies in
Γ∞
(
E ⊗ f∗(T ∗Y )

)
, and so pairs with Λ.

When Ṁan = Man we can interpret the O(s) and O(s2) conditions in
Definitions 3.15–3.16 in terms of C∞-algebraic geometry, as in [56, 65]. A
manifold X corresponds to a C∞-scheme X. Given a vector bundle E → X and
s ∈ Γ∞(E), we have closed C∞-subschemes S1 ⊆ S2 ⊆ X, where S1 is defined
by s = 0, and S2 by s⊗ s = 0. Roughly, an equation on X holds up to O(s) if
when translated into C∞-scheme language, the restriction of the equation to
S1 ⊆ X holds, and it holds up to O(s2) if its restriction to S2 ⊆ X holds. For
example, t2 = t1 +O(s) ⇔ t2|S1 = t1|S1 and t2 = t1 +O(s2) ⇔ t2|S2 = t1|S2 in
Definition 3.15(i), and g = f +O(s) ⇔ g|S1 = f |S1 in Definition 3.15(iii).

The next theorem gives the properties of this O(s) and O(s2) notation we
will need for our (m- and µ-)Kuranishi space theories. It will be proved in §B.9.

Theorem 3.17. Work in the situation of Definition 3.15. Then:

(a) All the ‘O(s)’ and ‘O(s2)’ conditions above are local on s−1
top(0) ⊆ Xtop.

That is, each condition holds on all of Xtop if and only if it holds on a
family of open subsets of Xtop covering s−1

top(0).

(b) In Definition 3.15(i),(ii),(iv)–(vi) the conditions are C∞(X)-linear in t, t1,
t2, θ, θ1, θ2,Λ,Λ1,Λ2. For example, in (i) if t2 = t1 +O(s), t′2 = t′1 +O(s)
and a, b ∈ C∞(X) then (at2 + bt′2) = (at1 + bt′1) +O(s).

(c) In Definition 3.15(i)–(iii) the conditions are equivalence relations. For
example, in (iii) if f, g, h : X → Y are morphisms in Ṁan, then f =
f +O(s), and g = f +O(s) implies that f = g +O(s), and g = f +O(s),
h = g +O(s) imply that h = f +O(s).

(d) In Definition 3.15(iv),(v) the conditions are equivalence relations relative
to the equivalence relation of (iii). For example, if f, g, h : X → Y are
morphisms in Ṁan with g = f +O(s), h = g+O(s), and F → X, G→ Y
are vector bundles, and θ1 : F → f∗(G), θ2 : F → g∗(G), θ3 : F → h∗(G)
with θ2 = θ1 + O(s) (using g = f + O(s)) and θ3 = θ2 + O(s) (using
h = g + O(s)) as in (iv), then h = f + O(s) by (c), and θ3 = θ1 + O(s)
(using h = f +O(s)) as in (iv).

(e) Let Xa ↪→ X for a ∈ A be open submanifolds with s−1
top(0) ⊆

⋃
a∈AXa,top.

Write Xab ↪→ X for the open submanifold with Xab,top = Xa,top ∩Xb,top

for a, b ∈ A. Suppose we are given morphisms fa : Xa → Y in Ṁan for
all a ∈ A with fa|Xab = fb|Xab + O(s) on Xab for all a, b ∈ A. Then
there exist an open submanifold j : X ′ ↪→ X with s−1

top(0) ⊆ X ′top and a
morphism g : X ′ → Y such that g|X′∩Xa = fa|X′∩Xa +O(s) for all a ∈ A.

Suppose also that a finite group Γ acts on X,Y by diffeomorphisms in
Ṁan, and that the Xa ↪→ X are Γ-invariant, and the fa : Xa → Y are
Γ-equivariant, for all a ∈ A. Then we can choose X ′ to be Γ-invariant,
and g to be Γ-equivariant.

42



(f) Let X,E, s, f, g, F,G, θ1 be as in Definition 3.15(iv). Then there exists
θ2 : F → g∗(G) with θ2 = θ1 + O(s), as in (iv). If θ̃2 is an alternative
choice for θ2 then θ̃2 = θ2 +O(s), as in (i).

(g) Let X,E, s, f, g, F,G,Λ1 be as in Definition 3.15(v). Then there exists
Λ2 : F → TgY with Λ2 = Λ1 + O(s) as in (v). If Λ̃2 is an alternative

choice for Λ2 then Λ̃2 = Λ2 +O(s), as in (ii).

(h) Let X,E, s, f, Y, F,G, t,Λ be as in (vi). Then there exists a vector bundle
morphism θ : F → f∗(G) on X such that θ = f∗(dt) ◦ Λ + O(s), in the
sense of (vi). If θ̃ is an alternative choice for θ then θ̃ = θ +O(s) as in
(i), regarding θ, θ̃ as sections of F ∗ ⊗ f∗(G).

(i) Suppose f, g : X → Y are morphisms with g = f +O(s) as in (iii). Then
there exists Λ : E → TfY with g = f + Λ ◦ s+O(s2) as in (vii).

(j) Let X,E, s, f, g, Y,Λ with g = f +Λ◦s+O(s2) be as in (vii), and Λ̃ : E→
TfY be a morphism with Λ̃=Λ+O(s) as in (ii). Then g=f+Λ̃◦s+O(s2).

(k) Let X,E, s, f, g, Y,Λ with g = f + Λ ◦ s+O(s2) be as in (vii). Part (g)
gives Λ̃ : F → TgY with Λ̃ = Λ +O(s) as in (v), where Λ̃ is unique up to

O(s). Then f = g + (−Λ̃) ◦ s+O(s2) as in (vii).

(l) Let f, g, h : X → Y be morphisms in Ṁan with g = f+O(s), h = g+O(s),
so that h = f + O(s) by (c), and Λ1 : E → TfY, Λ2 : E → TgY be
morphisms with g = f + Λ1 ◦ s+O(s2) and h = g+ Λ2 ◦ s+O(s2) be as in
(vii). Part (g) gives Λ̃2 : E → TfY with Λ̃2 = Λ2 +O(s) as in (v), unique

up to O(s). Then h = f + (Λ1 + Λ̃2) ◦ s+O(s2) as in (vii).

(m) Let f, g : X → Y be morphisms in Ṁan with g = f+O(s), and Λ1, . . . ,Λk :
E → TfY be morphisms with g = f + Λa ◦ s + O(s2) for a = 1, . . . , k
as in (vii), and α1, . . . , αk ∈ C∞(X) with α1 + · · · + αk = 1. Then
g = f + (α1 · Λ1 + · · ·+ αk · Λk) ◦ s+O(s2) as in (vii).

(n) Let f : X → Y be a morphism in Ṁan, and F,G→ Y be vector bundles,
t ∈ Γ∞(F ) with f∗(t) = O(s), and u1, u2 ∈ Γ∞(G).

If u2 = u1 + O(t) as in (i) then f∗(u2) = f∗(u1) + O(s), and if u2 =
u1 +O(t2) as in (i) then f∗(u2) = f∗(u1) +O(s2).

(o) Let f : X → Y, g : Y → Z be morphisms in Ṁan, and F,G → Y be
vector bundles, and t ∈ Γ∞(F ) with f∗(t) = O(s), and Λ1,Λ2 : G→ TgZ
with Λ2 = Λ1 +O(t) be as in (ii). Then f∗(Λ2) = f∗(Λ1) +O(s) as in (ii),
where f∗(Λ1), f∗(Λ2) : f∗(G)→ Tg◦fZ are as in §3.3.4(g).

(p) Suppose f : X → Y and g, h : Y → Z are morphisms in Ṁan, and F → Y
is a vector bundle, and t ∈ Γ∞(F ) with f∗(t) = O(s).

If h = g +O(t) as in (iii) then h ◦ f = g ◦ f +O(s).

If h = g + Λ ◦ t+O(t2) as in (vii) for Λ : F → TgZ, and θ : E → f∗(F )
is a morphism with θ ◦ s = f∗(t) +O(s2) as in (i), then

h ◦ f = g ◦ f + [f∗(Λ) ◦ θ] ◦ s+O(s2),

where f∗(Λ) ◦ θ : E → Tg◦fZ is as in §3.3.4(d),(g).
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(q) Let f : X → Y, g, h : Y → Z be morphisms in Ṁan, and F,G→ Y, H →
Z be vector bundles, and t ∈ Γ∞(F ) with f∗(t) = O(s) and h = g +O(t),
and θ1 : G → g∗(H), θ2 : G → h∗(H) with θ2 = θ1 + O(t) be as in (iv).
Then f∗(θ2) = f∗(θ1) +O(s) as in (iv).

(r) Let f : X → Y, g, h : Y → Z be morphisms in Ṁan, and F,G → Y be
vector bundles, and t ∈ Γ∞(F ) with f∗(t) = O(s), h = g + O(t), and
Λ1 : G → TgZ, Λ2 : G → ThZ with Λ2 = Λ1 + O(t) be as in (v). Then
f∗(Λ2) = f∗(Λ1) + O(s) as in (v), where f∗(Λ1) : f∗(G) → Tg◦fZ and
f∗(Λ2) : f∗(G)→ Th◦fZ are as in §3.3.4(g).

(s) Let f : X → Y, g : Y → Z be morphisms in Ṁan, and F,G→ Y, H → Z
be vector bundles, and t ∈ Γ∞(F ), u ∈ Γ∞(H) with f∗(t) = O(s), g∗(u) =
O(t) as in (i), and Λ : G→ TgZ, θ : G→ g∗(H) with θ = g∗(du)◦Λ+O(t)
be as in (vi). Then f∗(θ) = (g ◦ f)∗(du) ◦ f∗(Λ) +O(s) as in (vi), where
f∗(Λ) : f∗(G)→ Tg◦fZ is as in §3.3.4(g).

(t) Let f : X → Y, g : Y → Z be morphisms in Ṁan, and F → Y be a vector
bundle, and Λ1,Λ2 : F → TfY with Λ2 = Λ1 + O(s) be as in (ii). Then
T g ◦ Λ2 = T g ◦ Λ1 +O(s) as in (ii), where T g ◦ Λ1, T g ◦ Λ2 : F → Tg◦fZ
are as in §3.3.4(c),(d).

(u) Let f, g : X → Y, h : Y → Z be morphisms in Ṁan. If g = f + O(s)
as in (iii) then h ◦ g = h ◦ f + O(s). If g = f + Λ ◦ s + O(s2) as in
(vii) for Λ : E → TfY, then h ◦ g = h ◦ f + [T h ◦ Λ] ◦ s + O(s2), where
T h ◦ Λ : E → Th◦fZ is as in §3.3.4(c),(d).

(v) Let f, g : X → Y, h : Y → Z be morphisms in Ṁan with g = f + O(s)
as in (iii), so that h ◦ g = h ◦ f + O(s) by (u). Suppose F → X is a
vector bundle, and Λ1 : F → TfY, Λ2 : F → TgY are morphisms with
Λ2 = Λ1 +O(s) as in (v). Then T h◦Λ2 = T h◦Λ1 +O(s) as in (v), where
T h ◦ Λ1 : E → Th◦fZ and T h ◦ Λ2 : E → Th◦gZ are as in §3.3.4(c),(d).

3.3.6 Discrete properties of morphisms in Ṁan

Section B.6 defines a condition for classes of morphisms in Ṁan to lift nicely to
classes of (1-)morphisms in mK̇ur,µK̇ur, K̇ur in Chapters 4–6.

Definition 3.18. Let P be a property of morphisms in Ṁan, so that for any
morphism f : X → Y in Ṁan, either f is P , or f is not P . For example, if
Ṁan is Manc from §2.1, then P could be interior, or b-normal.

We call P a discrete property of morphisms in Ṁan if:

(i) All diffeomorphisms f : X → Y in Ṁan are P .

(ii) All open submanifolds i : U ↪→ X in Ṁan are P .

(iii) If f : X → Y and g : Y → Z in Ṁan are P then g ◦ f : X → Z is P .
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(iv) For a morphism f : X → Y in Ṁan to be P is a local property on X, in
the sense that if we can cover X by open submanifolds i : U ↪→ X such
that f ◦ i : U → Y is P , then f is P .

Some notation: if f : X → Y in Ṁan and S ⊆ Xtop then we say that
f is P near S if there exists an open submanifold i : U ↪→ X such that
S ⊆ Utop ⊆ Xtop and f ◦ i : U → Y is P . This is a well behaved notion as
P is a local property, e.g. f is P if and only if f is P near each x ∈ Xtop.

(v) All morphisms in Man ⊆ Ṁan are P .

(vi) Suppose f : X ×R→ Y is a morphism in Ṁan. If f is P near Xtop×{0}
in Xtop × R, then f is P .

(vii) Suppose E → X is a vector bundle in Ṁan, and s ∈ Γ∞(E), so that
s−1

top(0) ⊆ Xtop, and f, g : X → Y are morphisms in Ṁan with g = f+O(s)

in the sense of Definition 3.15(iii). Then f is P near s−1
top(0) if and only if

g is P near s−1
top(0).

(viii) Suppose we are given a diagram in Ṁan:

U ′
� �

i′
//

f ′

**

U
� �

i
//

f

**

X

V ′ ��
j′ //

g′

44

V ��
j //

g

44

Y,

(3.6)

where i, i′, j, j′ are open submanifolds in Ṁan, and f ◦ i′ = j ◦f ′ : U ′ → Y ,
g◦j′ = i◦g′ : V ′ → X, and we are given points x ∈ U ′top ⊆ Utop ⊆ Xtop and
y ∈ V ′top ⊆ Vtop ⊆ Ytop such that ftop(x) = y and gtop(y) = x. Suppose too
that there are vector bundles E → U ′ and F → V ′ and sections s ∈ Γ∞(E),
t ∈ Γ∞(F ) with s(x) = t(y) = 0, such that g ◦ f ′ = i ◦ i′ +O(s) on U ′ and
f ◦ g′ = j ◦ j′ +O(t) on V ′ in the sense of Definition 3.15(iii). Then f, f ′

are P near x, and g, g′ are P near y.

Parts (i),(iii) imply that we have a subcategory ṀanP ⊆ Ṁan containing all
objects X,Y in Ṁan, and all morphisms f : X → Y in Ṁan which are P .

Example 3.19. (a) When Ṁan is Manc from §2.1, the following properties of
morphisms in Manc are discrete: interior, b-normal, strongly smooth, simple.

(b) When Ṁan is Mangc from §2.4.1, the following properties of morphisms in
Mangc are discrete: interior, b-normal, simple.

(c) When Ṁan is Manac or Manc,ac from §2.4.2, the following properties of
morphisms in Ṁan are discrete: interior, b-normal, strongly a-smooth, simple.

3.3.7 Comparing different categories Ṁan

In §B.7 we discuss how to compare different categories Ṁan, M̈an satisfying
Assumptions 3.1–3.7. Here is Condition B.40:
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Condition 3.20. Suppose Ṁan, M̈an satisfy Assumptions 3.1–3.7, and F M̈an
Ṁan

:

Ṁan→ M̈an is a functor in a commutative diagram

Ṁan

F M̈an
Ṁan��

FTop

Ṁan

--Man

⊂ 11

⊂ --
Top,

M̈an FTop

M̈an

11 (3.7)

where the functors FTop

Ṁan
, FTop

M̈an
are as in Assumption 3.2, and the inclusions

Man ↪→ Ṁan, M̈an as in Assumption 3.4. We require F M̈an
Ṁan

to take products,

disjoint unions, and open submanifolds in Ṁan to products, disjoint unions, and
open submanifolds in M̈an, and to preserve dimensions.

Note that F M̈an
Ṁan

must be faithful (injective on morphisms), as FTop

Ṁan
is.

In §B.7 we explain that given a functor F M̈an
Ṁan

satisfying Condition 3.20, all

the geometry of §B.1–§B.5 in Ṁan from §3.3.1–§3.3.5 maps functorially to its
analogue in M̈an. We chose the definitions in Appendix B to ensure this. For

example, if Ẋ ∈ Ṁan and Ẍ = F M̈an
Ṁan

(Ẋ) there are natural sheaf morphisms

OẊ −→ OẌ , T Ẋ −→ T Ẍ, T ∗Ẋ −→ T ∗Ẍ

on the common topological space Ẋtop = Ẍtop.

Proposition B.43 discusses inclusions of subcategories Ṁan ⊆ M̈an:

Proposition 3.21. Suppose F M̈an
Ṁan

: Ṁan ↪→ M̈an is an inclusion of subcate-
gories satisfying Condition 3.20, and either:

(a) All objects of M̈an are objects of Ṁan, and all morphisms f : X → R in
M̈an are morphisms in Ṁan, and for a morphism f : X → Y in M̈an to
lie in Ṁan is a discrete condition, as in Definition 3.18; or

(b) Ṁan is a full subcategory of M̈an closed under isomorphisms in M̈an.

Then all the material of §3.3.1–§3.3.5 for Ṁan is exactly the same if
computed in Ṁan or M̈an, and the functorial maps from geometry in Ṁan to
geometry in M̈an discussed above are the identity maps. For example, if f : X →
Y lies in Ṁan ⊆ M̈an then the relative tangent sheaves (TfY )Ṁan, (TfY )M̈an on

Xtop from §3.3.4 computed in Ṁan and M̈an are not just canonically isomorphic,
but actually the same sheaf.

For example, Figure 3.1 gives a diagram of functors from Chapter 2 which
satisfy Condition 3.20. Arrows ‘→’ are inclusions of subcategories satisfying
Proposition 3.21(a) or (b). Arrows marked ‘?’ involve the non-obvious functor

F
Manc

st

Manc,ac
st

: Manc,ac
st →Manc

st from §2.4.2; some cycles in Figure 3.1 including

arrows ‘?’ do not commute.
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vv �� **

�� �� !! !!

Manc
st,bn
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yy ((

��

Manc,ac
st,bn

//
?

oo

((

��

Manac
st,bnoo

((

��

Mangc
bn

��

Manc
bn

oo //

��

Manc,ac
bn

//

��

Manac
bnoo

��

Manc
st,in

//

yy ((

��

Manc,ac
st,in

//
?

oo

((

��

Manac
st,inoo

((

��

Mangc
in

��

Manc
in

oo //

��

Manc,ac
in

//

��

Manac
inoo

��

Manc
st

//

((yy

Manc,ac
st

//

((

?
oo Manac

stoo

((
Mangc Mancoo

��

//Manc,ac //Manacoo

Manc
we

Figure 3.1: Functors satisfying Condition 3.20.
Arrows ‘→’ satisfy Proposition 3.21(a) or (b).

Chapters 4–6 will associate (2-)categories mK̇ur,µK̇ur, K̇ur of (m- or µ-)
Kuranishi spaces to each such category Ṁan. When Condition 3.20 holds, by
mapping geometry in Ṁan to M̈an as above, we will define natural (2)-functors

FmK̈ur
mK̇ur

: mK̇ur −→mK̈ur, FµK̈ur

µK̇ur
: µK̇ur −→ µK̈ur, F K̈ur

K̇ur
: K̇ur −→ K̈ur

between the (2-)categories mK̇ur,µK̇ur, K̇ur and mK̈ur,µK̈ur, K̈ur asso-
ciated to Ṁan and M̈an. When Proposition 3.21(a) or (b) holds, these are
inclusions of (2)-subcategories.

3.4 Extension to ‘manifolds with corners’

The assumptions of §3.1 include many categories of manifolds with corners, as
in Example 3.8(ii), giving corresponding (2-)categories of (m- or µ-)Kuranishi
spaces in Chapters 4–6. So to study ‘(m- or µ-)Kuranishi spaces with corners’
we do not need to start again. Instead, we give extra assumptions about special
features of manifolds with corners: boundaries ∂X, k-corners Ck(X), and the
corner functor C. We change notation from Ṁan in §3.1–§3.3 to Ṁanc.

3.4.1 Core assumptions on ‘manifolds with corners’

Assumption 3.22. (a) We are given a category Ṁanc. For simplicity, objects
X in Ṁanc will be called manifolds with corners, and morphisms f : X → Y in
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Ṁanc will be called smooth maps.

(b) The category Ṁanc satisfies Assumptions 3.1–3.7 with Ṁanc in place of

Ṁan. The functor in Assumption 3.2 will be written FTop

Ṁanc
: Ṁanc → Top.

(c) We are given a class of morphisms in Ṁanc called simple maps. To be simple
is a discrete property in the sense of §3.3.6. We write Ṁanc

si ⊆ Ṁanc for the

subcategory of Ṁanc with all objects, and simple morphisms.

(d) For each object X in Ṁanc and each k = 0, . . . ,dimX, we are given an
object Ck(X) in Ṁanc called the k-corners of X with dimCk(X) = dimX − k,
and a morphism Πk : Ck(X)→ X in Ṁanc, such that Πk,top : Ck(X)top → Xtop

is proper, with finite fibres Π−1
k,top(x), x ∈ Xtop.

We write Ck(X) = ∅ for k > dimX.
When k = 0, Π0 : C0(X) → X is a diffeomorphism in Ṁanc, so we can

identify C0(X) with X. When k = 1 we write ∂X = C1(X) and call ∂X the
boundary of X. We also write iX : ∂X → X for Π1 : C1(X)→ X.

(e) If X ∈Man ⊆ Ṁanc then Ck(X) = ∅ for k > 0, so that ∂X = ∅.
(f) For all X in Ṁanc and k, l > 0 with k + l 6 dimX there is a natural
morphism Ik,l : Ck(Cl(X))→ Ck+l(X) such that the following commutes:

Ck(Cl(X))
Πk

//

Ik,l��

Cl(X)

Πl
��

Ck+l(X)
Πk+l // X.

Also Ik,l is étale, that is, a local diffeomorphism in Ṁanc, and surjective.

(g) As for M̌anc in Definition 2.8, construct a category Ṁ̌anc from Ṁanc,

such that Ṁ̌anc has objects ~X =
∐∞
m=0Xm, for Xm an object of Ṁanc with

dimXm = m, allowing Xm = ∅, and Ṁ̌anc has morphisms

~f =
∐∞
m,n=0 fmn : ~X =

∐∞
m=0Xm −→ ~Y =

∐∞
n=0 Yn,

where for each m = 0, 1, . . . we have a disjoint union Xm =
∐∞
n=0Xmn in Ṁanc,

with Xmn open and closed in Xm, allowing Xmn = ∅, and fmn : Xmn → Yn is a
morphism in Ṁanc. Composition and identities are defined in the obvious way.
We write Ṁ̌anc

si for the subcategory of Ṁ̌anc in which the fmn are simple.

There is an obvious full and faithful inclusion functor Inc : Ṁanc → Ṁ̌anc,
which maps X to

∐∞
m=0Xm with Xm = X if m = dimX and Xm = ∅ otherwise.

Then we are given a functor C : Ṁanc → Ṁ̌anc called the corner functor,
which on objects acts as C(X) =

∐dimX
k=0 Ck(X), for Ck(X) the k-corners of X as

in (d). The morphisms Πk : Ck(X)→ X in Ṁanc for k = 0, . . . ,dimX from (d)
give a morphism Π =

∐
k>0 Πk : C(X)→ Inc(X) in Ṁ̌anc, and over all X these

comprise a natural transformation Π : C ⇒ Inc of functors Ṁanc → Ṁ̌anc.
That is, we have Π ◦ C(f) = f ◦ Π : C(X) → Y for all morphisms f : X → Y
in Ṁanc.
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We may extend C to a functor Č : Ṁ̌anc → Ṁ̌anc in the obvious way. Then
the morphisms Ik,l in (f) induce a natural transformation I : Č ◦ C ⇒ C of

functors Ṁanc → Ṁ̌anc.

(h) For all X,Y ∈ Ṁanc and k > 0 there are natural diffeomorphisms

Ck(X × Y ) ∼=
∐
i,j>0, i+j=k Ci(X)× Cj(Y ).

By part (g) these combine to give a diffeomorphism (isomorphism) in Ṁ̌anc

C(X × Y ) ∼= C(X)× C(Y ). (3.8)

The corner functor C in (g) preserves products and direct products. That is, if
f : W → Y, g : X → Y, h : X → Z are smooth then the following commute

C(W ×X)

∼=
��

C(f×h)
// C(Y × Z)

∼=
��

C(W )×C(X)

C(f)×C(h)

// C(Y )×C(Z),

C(Y × Z)

∼=
��

C(X)

C((g,h)) 22

(C(g),C(h)) ,,
C(Y )×C(Z),

where the columns are the isomorphisms (3.8).

(i) Suppose f : X → Y is a simple map in Ṁanc. Then C(f) : C(X)→ C(Y )
in (g) lies in Ṁ̌anc

si and maps Ck(X)→ Ck(Y ) for all k = 0, . . . ,dimX. Hence

we have functors Ck : Ṁanc
si → Ṁanc

si for k = 0, 1, . . . , called the k-corner
functors, which on objects map X to Ck(X), and on morphisms map f : X → Y
to the component Ck(f) of C(f) : C(X) → C(Y ) mapping Ck(X) → Ck(Y ).
We also write ∂ = C1 : Ṁanc

si → Ṁanc
si, and call it the boundary functor.

(j) Let i : U ↪→ X be an open submanifold in Ṁanc. Then i is simple by
Definition 3.18(ii), as simple is a discrete property by (c), so we have morphisms
Ck(i) : Ck(U)→ Ck(X) in Ṁanc for k = 0, . . . ,dimX by (i). We require these
Ck(i) to be open submanifolds in Ṁanc, with topological spaces Ck(U)top =
Π−1
k,top(Utop) ⊆ Ck(X)top.

(k) Let f : X→Y be a morphism in Ṁanc with ∂X=∂Y =∅. Then f is simple.

Remark 3.23. For the corner functor C : Ṁanc → Ṁ̌anc in Assumption
3.22(g), we shall be interested in cases in which there is a discrete property P
of morphisms in Ṁanc such that C maps to the subcategory Ṁ̌anc

P of Ṁ̌anc

whose morphisms are P . For example, for Manc in §2.2 we have C : Manc →
M̌anc

in ⊂ M̌anc, with P interior morphisms in Manc.

3.4.2 Examples of categories satisfying the assumptions

Here are some examples satisfying Assumption 3.22:

Example 3.24. (a) The standard example is to take Ṁanc to be Manc from
§2.1, and to define simple maps as in §2.1, and k-corners Ck(X), projections
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Πk : Ck(X)→ X, and the corner functor C : Manc → M̌anc from Definition
2.9 as in §2.2. Note that C maps to M̌anc

in ⊂ M̌anc, as in Remark 3.23.

(b) We can also take Ṁanc to be Manc and simple maps, Ck(X),Πk as in (a),
but use the second corner functor C ′ : Manc → M̌anc from Definition 2.11.

(c) We can take Ṁanc to be Manc
st from §2.1, with simple maps, Ck(X),Πk

as in §2.1–§2.2, and either corner functor C : Manc
st → M̌anc

st,in ⊂ M̌anc
st

or C ′ : Manc
st → M̌anc

st.

(d) We can take Ṁanc = Manac with simple maps, Ck(X),Πk as in §2.4.2,
and either C : Manac → M̌anac

in ⊂ M̌anac or C ′ : Manac → M̌anac.

(e) We can take Ṁanc = Manac
st with simple maps, Ck(X),Πk as in §2.4.2, and

either C : Manac
st → M̌anac

st,in ⊂ M̌anac
st or C ′ : Manac

st → M̌anac
st .

(f) We can take Ṁanc = Manc,ac with simple maps, Ck(X),Πk as in §2.4.2,
and either C : Manc,ac → M̌anc,ac

in ⊂ M̌anc,ac or C ′ : Manc,ac → M̌anc,ac.

(g) We can take Ṁanc = Manc,ac
st with simple maps, Ck(X),Πk as in §2.4.2,

and either C : Manc,ac
st → M̌anc,ac

st,in ⊂ M̌anc,ac
st or C ′ : Manc,ac

st → M̌anc,ac
st .

(h) We can take Ṁanc = Mangc with simple maps, Ck(X),Πk and C :
Mangc → M̌angc

in ⊂ M̌angc as in §2.4.1. The second corner functor C ′ does
not work on Mangc.

(i) A trivial example: if Ṁan satisfies Assumptions 3.1–3.7, such as Ṁan =
Man, we can set Ṁanc = Ṁan, define all morphisms in Ṁanc to be simple,
and for each X in Ṁanc we put C0(X) = X, ∂X = ∅ and Ck(X) = ∅ for k > 0.
Then Assumption 3.22 holds. This allows us for example to take Ṁanc = Manc,
but to have ∂X = ∅ and Ck(X) = ∅ for k > 0, for all X in Manc.

Note that Example 3.24 does not include the category Manc
we of manifolds

with corners and weakly smooth maps from §2.1. This is because Lemma 2.5 is
false for Manc

we, so the corner functor C in §2.2 cannot be defined for Manc
we,

and Assumption 3.22 fails.

3.4.3 Pulling back morphisms θ : E → TfY by Π : C(X)→ X

Suppose throughout this section that Ṁanc satisfies Assumption 3.22 in §3.4.1.
In §B.8.1, given a morphism θ : E → TfY on X we define a ‘pullback’ morphism
Π�(θ) : Π∗(E)→ TC(f)C(Y ) on C(X). This does not follow from the material

of §3.3.1–§3.3.5, it is a new feature for manifolds with corners Ṁanc.

Definition 3.25. Let f : X → Y be a morphism in Ṁanc, and E → X be a
vector bundle on X, and θ : E → TfY be a morphism on X in the sense of §3.3.4

and §B.4.8. Then we have a morphism C(f) : C(X) → C(Y ) in Ṁ̌anc, and
pulling back by Π : C(X)→ X gives a vector bundle Π∗(E)→ C(X). Definition
B.45 in §B.8.1 defines a morphism Π�(θ) : Π∗(E)→ TC(f)C(Y ) on C(X), in the
sense of §3.3.4 and §B.4.8.

We think of Π�(θ) as a kind of pullback of θ by Π : C(X)→ X.
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We write the restriction Π�(θ)|Ck(X) for k = 0, 1, . . . as Π�k(θ). Thus if
f : X → Y is simple, so that C(f) maps Ck(X)→ Ck(Y ) by Assumption 3.22(i),
we have morphisms Π�k(θ) : Π∗k(E)→ TCk(f)Ck(Y ) for k = 0, 1, . . . .

Example 3.26. Take Ṁanc = Manc, and let f : X → Y be an interior map
in Manc, and E → X be a vector bundle. Then TfY is the sheaf of sections of
f∗(bTY )→ X, as in Example 3.13, so morphisms θ : E → TfY correspond to

vector bundle morphisms θ̃ : E → f∗(bTY ) on X. Then Π�(θ) corresponds to
the composition of vector bundle morphisms on C(X)

Π∗(E)
Π∗(θ̃) // Π∗◦f∗(bTY )=C(f)∗◦Π∗(bTY )

C(f)∗(I�Y ) // C(f)∗(bTC(Y )),

where I�Y : Π∗(bTY )→ bTC(Y ) is as in (2.13).

Here is Theorem B.47, giving properties of the morphisms Π�(θ):

Theorem 3.27. (a) Let f : X → Y be a morphism in Ṁanc, and E → X be
a vector bundle, and θ : E → TfY be a morphism, in the sense of §3.3.4(d).
Then the following diagram of sheaves on C(X)top commutes:

Π∗(E)
Π�(θ)

//

Π∗(θ)
��

TC(f)C(Y )

T Π ��
Tf◦ΠY TΠ◦C(f)Y,

where T Π and Π∗(θ) are as in §3.3.4(c),(g).

(b) Let f : X → Y be a morphism in Ṁanc, D,E → X be vector bundles,
λ : D → E a vector bundle morphism, and θ : E → TfY a morphism. Then

Π�(θ ◦ λ) = Π�(θ) ◦Π∗(λ) : Π∗(D) −→ TC(f)C(Y ).

(c) Let f : X → Y, g : Y → Z be morphisms in Ṁanc, and E → X be a vector
bundle, and θ : E → TfY be a morphism. Then the following diagram of sheaves
on C(X)top commutes:

Π∗(E)
Π�(θ)

//

Π�(T g◦θ)
��

TC(f)C(Y )

T C(g)
��

TC(g◦f)C(Z) TC(g)◦C(f)C(Z).

(d) Let f : X → Y, g : Y → Z be morphisms in Ṁanc, and F → Y be a vector
bundle, and φ : F → TgZ be a morphism. Then

C(f)∗(Π�(φ)) = Π�(f∗(φ)) : C(f)∗ ◦Π∗(F ) = Π∗ ◦ f∗(F )

−→ TC(g)◦C(f)C(Z) = TC(g◦f)C(Z).
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Here is Theorem B.48, which shows that the O(s), O(s2) notation of Definition
3.15(i)–(vii) on X pulls back under Π : C(X) → X to the corresponding
O(Π(s)), O(Π(s)2) notation, using Π� to pull back morphisms Λ : E → TfY .

Theorem 3.28. Let X be an object in Ṁanc, and E → X be a vector bundle,
and s ∈ Γ∞(E) be a section. Then:

(i) Suppose F → X is a vector bundle and t1, t2 ∈ Γ∞(F ) with t2 = t1 +O(s)
(or t2 = t1 + O(s2)) on X as in Definition 3.15(i). Then Π∗(t2) =
Π∗(t1) +O(Π∗(s)) (or Π∗(t2) = Π∗(t1) +O(Π∗(s)2)) on C(X).

(ii) Suppose F → X is a vector bundle, f : X → Y is a morphism in Ṁanc,
and Λ1,Λ2 : F → TfY are morphisms with Λ2 = Λ1 + O(s) on X as in
Definition 3.15(ii). Then Definition 3.25 gives morphisms Π�(Λ1),Π�(Λ2) :
Π∗(F )→ TC(f)C(Y ) on C(X), which satisfy Π�(Λ2) = Π�(Λ1) +O(Π∗(s))
on C(X).

(iii) Suppose f, g : X → Y are morphisms in Ṁanc with g = f +O(s) on X
as in Definition 3.15(iii). Then C(g) = C(f) +O(Π∗(s)) on C(X).

(iv) Suppose f, g : X → Y with g = f + O(s) are in (iii), and F → X,
G → Y are vector bundles, and θ1 : F → f∗(G), θ2 : F → g∗(G) are
morphisms with θ2 = θ1 + O(s) on X as in Definition 3.15(iv). Then
Π∗(θ2) = Π∗(θ1) +O(Π∗(s)) on C(X).

(v) Suppose f, g : X → Y with g = f + O(s) are in (iii), and F → X
is a vector bundle, and Λ1 : F → TfY, Λ2 : F → TgY are morphisms
with Λ2 = Λ1 + O(s) on X as in Definition 3.15(v). Then C(g) =
C(f) +O(Π∗(s)) on C(X) by (iii), and Definition 3.25 gives morphisms
Π�(Λ1) : Π∗(F ) → TC(f)C(Y ), Π�(Λ2) : Π∗(F ) → TC(g)C(Y ), which
satisfy Π�(Λ2) = Π�(Λ1) +O(Π∗(s)) on C(X).

(vi) Suppose f : X → Y is a morphism in Ṁanc, and F → X, G → Y are
vector bundles, and t ∈ Γ∞(G) with f∗(t) = O(s), and Λ : F → TfY
is a morphism, and θ : F → f∗(G) is a vector bundle morphism with
θ = f∗(dt) ◦ Λ + O(s) on X as in Definition 3.15(vi). Then Π∗(θ) =
C(f)∗(dΠ∗(t)) ◦Π�(Λ) +O(Π∗(s)) on C(X).

(vii) Suppose f, g : X → Y with g = f +O(s) are in (iii), and Λ : E → TfY is
a morphism with g = f + Λ ◦ s+ O(s2) on X as in Definition 3.15(vii).
Then C(g) = C(f) + Π�(Λ) ◦Π∗(s) +O(Π∗(s)2) on C(X).

3.4.4 Comparing different categories Ṁanc

Condition 3.20 in §3.3.7 and §B.7 compared two categories Ṁan, M̈an satisfying
Assumptions 3.1–3.7. Here is Condition B.49 in §B.8.2, the corners analogue:
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Condition 3.29. Let Ṁanc, M̈anc satisfy Assumption 3.22, and F M̈anc

Ṁanc
:

Ṁanc → M̈anc be a functor in the commutative diagram, as in (3.7)

Ṁanc

F M̈anc

Ṁanc��

FTop

Ṁanc

--Man

⊂ 11

⊂ --
Top.

M̈anc FTop

M̈anc

11

We also require:

(i) F M̈anc

Ṁanc
should take products, disjoint unions, open submanifolds, and

simple maps in Ṁanc to products, disjoint unions, open submanifolds,
and simple maps in M̈anc, and preserve dimensions.

(ii) There are canonical isomorphisms F M̈anc

Ṁanc
(Ck(X)) ∼= Ck(F M̈anc

Ṁanc
(X)) for

all X in Ṁanc and k > 0, so k = 1 gives F M̈anc

Ṁanc
(∂X) ∼= ∂(F M̈anc

Ṁanc
(X)).

These isomorphisms commute with the projections Π : Ck(X)→ X and
Ik,l : Ck(Cl(X)) → Ck+l(X) in Ṁanc and M̈anc, and induce a natural

isomorphism F M̌̈anc

Ṁ̌anc ◦ C ⇒ C ◦ F M̈anc

Ṁanc
of functors Ṁanc → M̌̈anc.

As for Figure 3.1, Figure 3.2 gives a diagram of functors from Chapter 2
which satisfy Condition 3.29, with the first corner functor C from Definition 2.9.
With the second corner functor C ′ from Definition 2.9 we get the same diagram
omitting Mangc. Arrows ‘→’ satisfy Proposition 3.21(a) or (b). The arrow

marked ‘?’ is the non-obvious functor F
Manc

st

Manac
st

: Manac
st →Manc

st from §2.4.2.

Manc
st

//

((yy

Manc,ac
st

//

((

?
oo Manac

stoo

((
Mangc Mancoo //Manc,ac //Manacoo

Figure 3.2: Functors satisfying Condition 3.29, with the first
corner functor C. Arrows ‘→’ satisfy Proposition 3.21(a) or (b).

Condition 3.29 implies that F M̈anc

Ṁanc
: Ṁanc → M̈anc satisfies Condition

3.20. Thus §3.3.7 applies, so that all the material of §3.3.1–§3.3.5 in Ṁanc maps
functorially to its analogue in M̈anc. Remark B.50 explains that the morphisms
Π�(θ) in §3.4.3 are also compatible with these functorial maps.

53



Chapter 4

M-Kuranishi spaces

Throughout this chapter we suppose we are given a category Ṁan satisfying
Assumptions 3.1–3.7 in §3.1. Examples of such categories are given in §3.2. The
primary example is the category Man of ordinary manifolds, and the assumptions
are almost all well-known differential-geometric facts in this case. To each such
category Ṁan we will associate a 2-category mK̇ur of ‘m-Kuranishi spaces’.
The possibilities for Ṁan include many categories of manifolds with corners,
such as Manc in §2.1. In §4.6, to discuss the corners case, we switch notation
from Ṁan to a category Ṁanc satisfying Assumption 3.22, with a corresponding
2-category mK̇urc of ‘m-Kuranishi spaces with corners’.

We will use the notation of Appendix B for differential geometry in Ṁan
throughout, which is summarized in §3.3. In particular, readers should familiarize
themselves with ‘relative tangent sheaves’ TfY in §3.3.4 and §B.4, and the ‘O(s)’
and ‘O(s2)’ notation in §3.3.5 and §B.5, before proceeding.

By an abuse of notation we will often refer to objects X of Ṁan as ‘manifolds’
(though they may in examples have singularities, corners, etc.), and morphisms
f : X → Y in Ṁan as ‘smooth maps’ (though they may in examples be non-
smooth). As in Assumption 3.4 we have an inclusion Man ⊆ Ṁan. We will call
objects X ∈Man ⊆ Ṁan ‘classical manifolds’, and call morphisms f : X → Y
in Man ⊆ Ṁan ‘classical smooth maps’.

In Chapter 3 we distinguished between objects X,Y and morphisms f : X →
Y in Ṁan, and the corresponding topological spaces Xtop, Ytop and continuous
maps ftop : Xtop → Ytop. We will now drop this distinction, and just write
X,Y, f in place of Xtop, Ytop, ftop, as usual in differential geometry. We will
also treat open submanifolds i : U ↪→ X in Assumption 3.2(d) just as open
subsets U ⊆ X.

On a first reading it may be helpful to take Ṁan = Man. For an introduction
to 2-categories, see Appendix A.

4.1 The strict 2-category of m-Kuranishi neighbourhoods

We work throughout in a category Ṁan satisfying Assumptions 3.1–3.7.
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Definition 4.1. Let X be a topological space. An m-Kuranishi neighbourhood
on X is a quadruple (V,E, s, ψ) such that:

(a) V is a manifold (object in Ṁan). We allow V = ∅.
(b) π : E → V is a vector bundle over V , called the obstruction bundle.

(c) s : V → E is a section of E, called the Kuranishi section.

(d) ψ is a homeomorphism from s−1(0) to an open subset Imψ in X, where
Imψ =

{
ψ(x) : x ∈ s−1(0)

}
is the image of ψ, and is called the footprint

of (V,E, s, ψ).

If S ⊆ X is open, by an m-Kuranishi neighbourhood over S, we mean an
m-Kuranishi neighbourhood (V,E, s, ψ) on X with S ⊆ Imψ ⊆ X.

We call (V,E, s, ψ) a global m-Kuranishi neighbourhood if Imψ = X.

Definition 4.2. Let X,Y be topological spaces, f : X → Y a continuous
map, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be m-Kuranishi neighbourhoods on X,Y
respectively, and S ⊆ Imψi ∩ f−1(Imψj) ⊆ X be an open set. A 1-morphism
Φij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) of m-Kuranishi neighbourhoods over (S, f)

is a triple Φij = (Vij , φij , φ̂ij) satisfying:

(a) Vij is an open neighbourhood of ψ−1
i (S) in Vi. We do not require that

Vij ∩ s−1
i (0) = ψ−1

i (S), only that ψ−1
i (S) ⊆ Vij ∩ s−1

i (0) ⊆ Vij .
(b) φij : Vij → Vj is a smooth map.

(c) φ̂ij : Ei|Vij → φ∗ij(Ej) is a morphism of vector bundles on Vij .

(d) φ̂ij(si|Vij ) = φ∗ij(sj) +O(s2
i ), in the sense of Definition 3.15(i).

(e) f ◦ ψi = ψj ◦ φij on s−1
i (0) ∩ Vij .

When X = Y and f = idX we just call Φij a 1-morphism over S. In this
case, the identity 1-morphism id(Vi,Ei,si,ψi) : (Vi, Ei, si, ψi)→ (Vi, Ei, si, ψi) over
S is id(Vi,Ei,si,ψi) = (Vi, idVi , idEi).

Definition 4.3. Let f : X → Y be a continuous map of topological spaces,
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be m-Kuranishi neighbourhoods on X,Y , and
Φij ,Φ

′
ij : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) be 1-morphisms of m-Kuranishi

neighbourhoods over (S, f) for S ⊆ Imψi ∩ f−1(Imψj) ⊆ X open, where

Φij = (Vij , φij , φ̂ij) and Φ′ij = (V ′ij , φ
′
ij , φ̂

′
ij). Consider pairs (V́ij , λ̂ij) satisfying:

(a) V́ij is an open neighbourhood of ψ−1
i (S) in Vij ∩ V ′ij .

(b) λ̂ij : Ei|V́ij → TφijVj |V́ij is a morphism in the notation of §3.3.4, with

φ′ij = φij + λ̂ij ◦ si +O(s2
i ) and φ̂′ij = φ̂ij +φ∗ij(dsj) ◦ λ̂ij +O(si) on V́ij , (4.1)

in the sense of Definition 3.15(iv),(vi),(vii).
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Define a binary relation ∼ on such pairs by (V́ij , λ̂ij) ∼ (V́ ′ij , λ̂
′
ij) if there

exists an open neighbourhood V̈ij of ψ−1
i (S) in V́ij ∩ V́ ′ij with

λ̂ij |V̈ij = λ̂′ij |V̈ij +O(si) on V̈ij , (4.2)

in the sense of Definition 3.15(ii). We see from Theorem 3.17(c) that ∼ is an
equivalence relation. We also write ∼S in place of ∼ if we want to emphasize
the open set S ⊆ X.

Write [V́ij , λ̂ij ] for the ∼-equivalence class of (V́ij , λ̂ij). We say that [V́ij , λ̂ij ] :
Φij ⇒ Φ′ij is a 2-morphism of 1-morphisms of m-Kuranishi neighbourhoods on

X over (S, f), or just a 2-morphism over (S, f). We often write Λij = [V́ij , λ̂ij ].
When X = Y and f = idX we just call Λij a 2-morphism over S.
The identity 2-morphism of Φij over (S, f) is idΦij = [Vij , 0] : Φij ⇒ Φij .

Definition 4.4. Let X,Y, Z be topological spaces, f : X → Y , g : Y → Z be
continuous maps, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj), (Vk, Ek, sk, ψk) be m-Kuranishi
neighbourhoods on X,Y, Z respectively, and T ⊆ Imψj ∩ g−1(Imψk) ⊆ Y and

S ⊆ Imψi ∩ f−1(T ) ⊆ X be open. Suppose Φij = (Vij , φij , φ̂ij) : (Vi, Ei, si, ψi)
→ (Vj , Ej , sj , ψj) is a 1-morphism of m-Kuranishi neighbourhoods over (S, f),

and Φjk = (Vjk, φjk, φ̂jk) : (Vj , Ej , sj , ψj)→ (Vk, Ek, sk, ψk) is a 1-morphism of
m-Kuranishi neighbourhoods over (T, g).

Define the composition of 1-morphisms to be Φjk ◦ Φij = (Vik, φik, φ̂ik),
where Vik = φ−1

ij (Vjk) ⊆ Vij ⊆ Vi, and φik : Vik → Vk is φik = φjk ◦ φij |Vik , and

φ̂ik : Ei|Vik → φ∗ik(Ek) is φ̂ik = φij |∗Vik(φ̂jk) ◦ φ̂ij |Vik .
It is easy to check that Φjk ◦ Φij : (Vi, Ei, si, ψi) → (Vk, Ek, sk, ψk) is a 1-

morphism of m-Kuranishi neighbourhoods over (S, g ◦ f), using Theorem 3.17(n)
to prove that Definition 4.2(d) holds.

An important special case is when X = Y = Z, f = g = idX , and S = T , so
that Φij ,Φjk and Φjk ◦ Φij are all 1-morphisms over S ⊆ X.

Clearly, composition of 1-morphisms is strictly associative, that is,

(Φkl ◦ Φjk) ◦ Φij = Φkl ◦ (Φjk ◦ Φij) : (Vi, Ei, si, ψi) −→ (Vl, Ek, sl, ψl).

So we generally leave the brackets out of such compositions. Also,

Φij ◦ id(Vi,Ei,si,ψi) = id(Vj ,Ej ,sj ,ψj) ◦ Φij = Φij

for a 1-morphism Φij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) over (S, f).

Definition 4.5. Let X,Y be topological spaces, f : X → Y be continu-
ous, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be m-Kuranishi neighbourhoods on X,Y ,
S ⊆ Imψi ∩ f−1(Imψj) ⊆ X be open, and Φij ,Φ

′
ij ,Φ

′′
ij : (Vi, Ei, si, ψi) →

(Vj , Ej , sj , ψj) be 1-morphisms over (S, f) with Φij = (Vij , φij , φ̂ij), Φ′ij =

(V ′ij , φ
′
ij , φ̂

′
ij), Φ′′ij = (V ′′ij , φ

′′
ij , φ̂

′′
ij). Suppose Λij = [V́ij , λ̂ij ] : Φij ⇒ Φ′ij and

Λ′ij = [V́ ′ij , λ̂
′
ij ] : Φ′ij ⇒ Φ′′ij are 2-morphisms over (S, f). We will define the

vertical composition of 2-morphisms, written

Λ′ij � Λij = [V́ ′ij , λ̂
′
ij ]� [V́ij , λ̂ij ] : Φij =⇒ Φ′′ij over (S, f).
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Choose representatives (V́ij , λ̂ij), (V́
′
ij , λ̂

′
ij) in the ∼-equivalence classes Λij ,

Λ′ij . Define V́ ′′ij = V́ij∩V́ ′ij ⊆ Vi. Since φ′ij |V́ ′′ij = φij |V́ ′′ij +O(si) by (4.1), Theorem

3.17(g) shows that there exists λ̌′ij : Ei|V́ ′′ij → TφijVj |V́ ′′ij , unique up to O(si),

with λ̌′ij = λ̂′ij |V́ ′′ij +O(si) in the sense of Definition 3.15(v).

Define λ̂′′ij : Ei|V́ ′′ij → TφijVj |V́ ′′ij by λ̂′′ij = λ̂ij |V́ ′′ij + λ̌′ij . Then Theorem

3.17(b),(c),(d),(g),(j),(l) imply (V́ ′′ij , λ̂
′′
ij) satisfies Definition 4.3(b) for Φij ,Φ

′′
ij .

Hence Λ′′ij = [V́ ′′ij , λ̂
′′
ij ] : Φij ⇒ Φ′′ij is a 2-morphism over (S, f). Since λ̌′ij is

unique up to O(si) in Theorem 3.17(f), the equivalence class Λ′′ij = [V́ ′′ij , λ̂
′′
ij ] is

independent of choices. We define Λ′ij � Λij = Λ′′ij , and call this the vertical
composition of 2-morphisms over (S, f). When X = Y and f = idX we call it
vertical composition of 2-morphisms over S.

Let Λij : Φij ⇒ Φ′ij be a 2-morphism over (S, f), and choose a representative

(V́ij , λ̂ij) for Λij = [V́ij , λ̂ij ]. Now φ′ij |V́ij = φij |V́ij +O(si) by (4.1), so Theorem

3.17(f) gives λ̂′ij : Ei|V́ij → Tφ′ijVj |V́ij , unique up to O(si), with λ̂′ij = −λ̂ij +

O(si), in the sense of Definition 3.15(v). We can then show that Λ′ij = [V́ij , λ̂
′
ij ] :

Φ′ij ⇒ Φij is a 2-morphism over (S, f), and is a two-sided inverse Λ−1
ij for Λij

under vertical composition. Thus, all 2-morphisms over (S, f) are invertible
under vertical composition, that is, they are 2-isomorphisms.

Definition 4.6. Let X,Y, Z be topological spaces, f : X → Y , g : Y → Z be
continuous maps, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj), (Vk, Ek, sk, ψk) be m-Kuranishi
neighbourhoods on X,Y, Z, and T ⊆ Imψj ∩ g−1(Imψk) ⊆ Y and S ⊆ Imψi ∩
f−1(T ) ⊆ X be open. Suppose Φij ,Φ

′
ij : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) are

1-morphisms of m-Kuranishi neighbourhoods over (S, f), and Λij : Φij ⇒ Φ′ij is
a 2-morphism over (S, f), and Φjk,Φ

′
jk : (Vj , Ej , sj , ψj) → (Vk, Ek, sk, ψk) are

1-morphisms of m-Kuranishi neighbourhoods over (T, g), and Λjk : Φjk ⇒ Φ′jk
is a 2-morphism over (T, g).

We will define the horizontal composition of 2-morphisms, written

Λjk ∗ Λij : Φjk ◦ Φij =⇒ Φ′jk ◦ Φ′ij over (S, g ◦ f).

Use our usual notation for Φij , . . . ,Λjk, and write (Vik, φik, φ̂ik) = Φjk ◦ Φij ,

(V ′ik, φ
′
ik, φ̂

′
ik) = Φ′jk ◦ Φ′ij , as in Definition 4.4. Choose representatives (V́ij , λ̂ij),

(V́jk, λ̂jk) for Λij ,Λjk.

Set V́ik = V́ij ∩ φ−1
ij (V́jk) ⊆ Vi. Define a morphism on V́ik

λ̂ik : Ei|V́ik −→ TφikVk|V́ik by λ̂ik = T φjk ◦ λ̂ij + φij |∗V́ik(λ̂jk) ◦ φ̂ij |V́ik .

We can now check using Theorem 3.17(b),(c),(d),(g),(j),(l),(n),(p),(q),(t),(u)

that (V́ik, λ̂ik) satisfies Definition 4.3(b) for Φjk ◦Φij ,Φ′jk ◦Φ′ij , so Λik = [V́ik, λ̂ik]
is a 2-morphism over (S, g ◦ f), which is independent of choices. We define
horizontal composition of 2-morphisms to be Λjk ∗ Λij = Λik.

When X = Y = Z, f = g = idX and S = T we call this horizontal
composition of 2-morphisms over S.
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We have now defined all the structures of a strict 2-category, as in §A.2: ob-
jects (m-Kuranishi neighbourhoods on X over open S ⊆ X), 1- and 2-morphisms,
their three kinds of composition, and two kinds of identities. The next theorem
has a long but straightforward proof, using Theorem 3.17 at some points, and
we leave it as an exercise.

Theorem 4.7. The structures in Definitions 4.1–4.6 satisfy the axioms of a
strict 2-category in §A.2.

We define three 2-categories of m-Kuranishi neighbourhoods:

Definition 4.8. Write mK̇N for the strict 2-category of m-Kuranishi neigh-
bourhoods defined using Ṁan, where:

• Objects of mK̇N are triples (X,S, (V,E, s, ψ)), where X is a topological
space, S ⊆ X is open, and (V,E, s, ψ) is an m-Kuranishi neighbourhood
over S, as in Definition 4.1.

• 1-morphisms (f,Φij) : (X,S, (Vi, Ei, si, ψi)) → (Y, T, (Vj , Ej , sj , ψj)) of

mK̇N are a pair of a continuous map f : X → Y with S ⊆ f−1(T ) ⊆ X
and a 1-morphism Φij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) over (S, f), as in
Definition 4.2.

• For 1-morphisms (f,Φij), (f,Φ
′
ij) : (X,S, (Vi, Ei, si, ψi))→ (Y, T, (Vj , Ej ,

sj , ψj)) with the same continuous map f : X → Y , a 2-morphism Λij :

(f,Φij) ⇒ (f,Φ′ij) of mK̇N is a 2-morphism Λij : Φij ⇒ Φ′ij over (S, f),
as in Definition 4.3.

• Identities, and the three kinds of composition of 1- and 2-morphisms, are
defined in the obvious way using Definitions 4.2–4.6.

Define GmK̇N to be the full 2-subcategory of mK̇N with objects (s−1(0),
s−1(0), (V,E, s, ids−1(0))) for which X = S = s−1(0) and ψ = ids−1(0). We call

GmK̇N the strict 2-category of global m-Kuranishi neighbourhoods. For brevity
we usually write objects of GmK̇N as (V,E, s) rather than (s−1(0), s−1(0),
(V,E, s, ids−1(0))). For a 1-morphism in GmK̇N

(f,Φij) : (s−1
i (0), s−1

i (0), (Vi, Ei, si, ids−1
i (0))) −→

(s−1
j (0), s−1

j (0), (Vj , Ej , sj , ids−1
j (0)))

with Φij = (Vij , φij , φ̂ij) we must have f = φij |s−1
i (0) : s−1

i (0) → s−1
j (0) by

Definition 4.2(e), so f is determined by Φij , and we write 1-morphisms of

GmK̇N as Φij : (Vi, Ei, si)→ (Vj , Ej , sj) rather than as (f,Φij). Similarly, we

write 2-morphisms of GmK̇N as Λij : Φij ⇒ Φ′ij .

Let X be a topological space and S ⊆ X be open. Write mK̇NS(X)
for the 2-subcategory of mK̇N with objects (X,S, (V,E, s, ψ)) for X,S as
given, 1-morphisms (idX ,Φij) : (X,S, (Vi, Ei, si, ψi)) → (X,S, (Vj , Ej , sj , ψj))
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for f = idX , and all 2-morphisms Λij : (idX ,Φij) ⇒ (idX ,Φ
′
ij). We call

mK̇NS(X) the strict 2-category of m-Kuranishi neighbourhoods over S ⊆ X.
We generally write objects of mK̇NS(X) as (V,E, s, ψ), omitting X,S, and

1-morphisms of mK̇NS(X) as Φij , omitting idX . That is, objects, 1- and 2-

morphisms of mK̇NS(X) are just m-Kuranishi neighbourhoods over S and 1-
and 2-morphisms over S as in Definitions 4.2–4.4.

The accent ‘ ˙ ’ in mK̇N,GmK̇N,mK̇NS(X) is because they are con-
structed using Ṁan. For particular Ṁan we modify the notation in the ob-
vious way, e.g. if Ṁan = Man we write mKN,GmKN,mKNS(X), and if
Ṁan = Manc we write mKNc,GmKNc,mKNc

S(X).
If f : X → Y is continuous, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) are m-Kuranishi

neighbourhoods on X,Y , and S ⊆ Imψi ∩ f−1(Imψj) ⊆ X is open, write
HomS,f ((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)) for the groupoid with objects 1-mor-
phisms Φij : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) over (S, f), and morphisms 2-
morphisms Λij : Φij ⇒ Φ′ij over (S, f).

If X = Y and f = idX , we write HomS((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)) in
place of HomS,f ((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)).

Theorem 4.7 and the last part of Definition 4.5 imply:

Corollary 4.9. In Definition 4.8, mK̇N,GmK̇N and mK̇NS(X) are strict
2-categories, and in fact (2, 1)-categories, as all 2-morphisms are invertible.

Definition 4.10. Let X be a topological space, and S ⊆ X be open, and Φij :
(Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) be a 1-morphism of m-Kuranishi neighbourhoods

on X over S. Then Φij is a 1-morphism in the 2-category mK̇NS(X) of
Definition 4.8. We call Φij a coordinate change over S if it is an equivalence

in mK̇NS(X). That is, Φij is a coordinate change if there exist a 1-morphism
Φji : (Vj , Ej , sj , ψj) → (Vi, Ei, si, ψi) and 2-(iso)morphisms η : Φji ◦ Φij ⇒
id(Vi,Ei,si,ψi) and ζ : Φij ◦ Φji ⇒ id(Vj ,Ej ,sj ,ψj) over S. Write

EquS
(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
⊆ HomS

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
for the subgroupoid with objects coordinate changes over S.

Theorems 10.57 and 10.58 in §10.5.1 give criteria for when 1-morphisms of
m-Kuranishi neighbourhoods are coordinate changes.

Definition 4.11. Let T ⊆ S ⊆ X be open. Define the restriction 2-functor
|T : mK̇NS(X)→mK̇NT (X) to map objects (Vi, Ei, si, ψi) to exactly the same
objects, and 1-morphisms Φij to exactly the same 1-morphisms but regarded as 1-

morphisms over T , and 2-morphisms Λij = [V́ij , λ̂ij ] over S to Λij |T = [V́ij , λ̂ij ]|T ,

where [V́ij , λ̂ij ]|T is the ∼T -equivalence class of any representative (V́ij , λ̂ij) for

the ∼S-equivalence class [V́ij , λ̂ij ].

Then |T : mK̇NS(X)→mK̇NT (X) commutes with all the structure, so it
is a strict 2-functor of strict 2-categories as in §A.3. If U ⊆ T ⊆ S ⊆ X are open
then |U ◦ |T = |U : mK̇NS(X)→mK̇NU (X).
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Now let f : X → Y be continuous, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be m-
Kuranishi neighbourhoods on X,Y , and T ⊆ S ⊆ Imψi ∩ f−1(Imψj) ⊆ X be
open. Then as for |T on 1- and 2-morphisms above, we define a functor

|T : HomS,f

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
−→

HomT,f

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
.

(4.3)

Convention 4.12. So far we have discussed 1- and 2-morphisms of m-Kuranishi
neighbourhoods, and coordinate changes, over a specified open set S ⊆ X, or over
(S, f). We now make the convention that when we do not specify a domain S for
a 1-morphism, 2-morphism, or coordinate change, the domain should be as large
as possible. For example, if we say that Φij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) is
a 1-morphism (or a 1-morphism over f : X → Y ) without specifying S, we mean
that S = Imψi ∩ Imψj (or S = Imψi ∩ f−1(Imψj)).

Similarly, if we write a formula involving several 2-morphisms (possibly
defined on different domains), without specifying the domain S, we make the
convention that the domain where the formula holds should be as large as possible.
That is, the domain S is taken to be the intersection of the domains of each
2-morphism in the formula, and we implicitly restrict each morphism in the
formula to S as in Definition 4.11, so that it makes sense.

4.2 The stack property of m-Kuranishi neighbourhoods

In §A.6 we define stacks on topological spaces, a 2-category version of sheaves
on topological spaces discussed in §A.5. The next theorem follows from the
orbifold version Theorem 6.16, proved in §6.7, by taking Γi = Γj = {1}. It is
very important in our theory. We call it the stack property. We will use it in
§4.3 to construct compositions of 1- and 2-morphisms of m-Kuranishi spaces.

Theorem 4.13. Let f : X → Y be a continuous map of topological spaces, and
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be m-Kuranishi neighbourhoods on X,Y . For each
open S ⊆ Imψi ∩ f−1(Imψj) ⊆ X, define a groupoid

Homf

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
(S)

= HomS,f

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
,

as in Definition 4.8, for all open T ⊆ S ⊆ Imψi ∩ f−1(Imψj) define a functor

ρST : Homf

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
(S) −→

Homf

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
(T )

between groupoids by ρST = |T , as in (4.3), and for all open U ⊆ T ⊆ S ⊆
Imψi ∩ f−1(Imψj) take the obvious isomorphism ηSTU = idρSU : ρTU ◦ ρST ⇒
ρSU . Then Homf ((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)) is a stack on the open subset
Imψi ∩ f−1(Imψj) in X, as in §A.6.
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When X = Y and f = idX we write Hom((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj))
rather than Homf ((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)). Then coordinate changes
Φij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) also form a stack Equ((Vi, Ei, si, ψi), (Vj ,
Ej , sj , ψj)) on Imψi∩Imψj , a substack of Hom((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)).

Here it is clear that Homf (· · · ) is a prestack on Imψi ∩ f−1(Imψj), but
not at all obvious that it is a stack; the point is that 1- and 2-morphisms of
m-Kuranishi neighbourhoods have important gluing properties over open covers.

4.3 The weak 2-category of m-Kuranishi spaces

We can now at last give one of the main definitions of the book:

Definition 4.14. Let X be a Hausdorff, second countable topological space,
and n ∈ Z. An m-Kuranishi structure K on X of virtual dimension n is data
K =

(
I, (Vi, Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
, where:

(a) I is an indexing set (not necessarily finite).

(b) (Vi, Ei, si, ψi) is an m-Kuranishi neighbourhood on X for each i ∈ I,
with dimVi − rankEi = n.

(c) Φij = (Vij , φij , φ̂ij) : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) is a coordinate
change for all i, j ∈ I (over S = Imψi ∩ Imψj , as in Convention 4.12).

(d) Λijk = [V́ijk, λ̂ijk] : Φjk ◦Φij ⇒ Φik is a 2-morphism for all i, j, k ∈ I (over
S = Imψi ∩ Imψj ∩ Imψk, as in Convention 4.12).

(e)
⋃
i∈I Imψi = X.

(f) Φii = id(Vi,Ei,si,ψi) for all i ∈ I.

(g) Λiij = Λijj = idΦij for all i, j ∈ I.

(h) The following diagram of 2-morphisms over S = Imψi ∩ Imψj ∩ Imψk ∩
Imψl commutes for all i, j, k, l ∈ I:

Φkl ◦ Φjk ◦ Φij

idΦkl
∗Λijk

��

Λjkl∗idΦij

+3 Φjl ◦ Φij

Λijl ��
Φkl ◦ Φik

Λikl +3 Φil.

(4.4)

We call X = (X,K) an m-Kuranishi space, of virtual dimension vdimX = n.
When we write x ∈X, we mean that x ∈ X.

Remark 4.15. Our basic assumption on the topological space X of an m-
Kuranishi space X = (X,K) is that X should be Hausdorff and second countable,
following the usual topological assumptions on manifolds, and the definitions of
d-manifolds in [57, 58, 61]. Here is how this relates to other conditions.

Since X can be covered by open sets Imψi ∼= s−1
i (0)/Γ, it is automatically

locally compact, locally second countable, and regular. Hausdorff, second countable,
and locally compact imply paracompact. Hausdorff, second countable, and regular
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imply metrizable. Compact and locally second countable, imply second countable.
Metrizable implies Hausdorff.

Thus, if X = (X,K) is an m-Kuranishi space in our sense, then X is
also Hausdorff, second countable, locally compact, regular, paracompact, and
metrizable. Paracompactness is very useful.

The usual topological assumption in previous papers on Kuranishi spaces [24,
30, 39, 77, 78, 80–83, 110–112] is that X is compact and metrizable. Since X
is automatically locally second countable as it can be covered by m-Kuranishi
neighbourhoods, this implies that X is Hausdorff and second countable.

Example 4.16. Let V be a manifold, E → V a vector bundle, and s : V → E
a smooth section, so that (V,E, s) is an object in GmK̇N from Definition 4.8.
Set X = s−1(0) ⊆ V , as a topological space with the subspace topology. Then
X is Hausdorff and second countable, as V is.

Define an m-Kuranishi structure K =
(
{0}, (V0, E0, s0, ψ0),Φ00,Λ000

)
on

X with indexing set I = {0}, one m-Kuranishi neighbourhood (V0, E0, s0, ψ0)
with V0 = V , E0 = E, s0 = s and ψ0 = idX , one coordinate change Φ00 =
id(V0,E0,s0,ψ0), and one 2-morphism Λ000 = idΦ00

. Then X = (X,K) is an
m-Kuranishi space, with vdimX = dimV − rankE. We write SV,E,s = X.

We will need notation to distinguish m-Kuranishi neighbourhoods, coordinate
changes, and 2-morphisms on different m-Kuranishi spaces. We will often use
the following notation for m-Kuranishi spaces W,X,Y ,Z:

W = (W,H), H =
(
H, (Th, Ch, qh, ϕh)h∈H , (4.5)

Σhh′ = (Thh′ , σhh′ , σ̂hh′)h,h′∈H , Ihh′h′′ = [T́hh′h′′ , ι̂hh′h′′ ]h,h′,h′′∈H
)
,

X = (X, I), I =
(
I, (Ui, Di, ri, χi)i∈I , (4.6)

Tii′ = (Uii′ , τii′ , τ̂ii′)i,i′∈I , Kii′i′′ = [Úii′i′′ , κ̂ii′i′′ ]i,i′,i′′∈I
)
,

Y = (Y,J ), J =
(
J, (Vj , Ej , sj , ψj)j∈J , (4.7)

Υjj′ = (Vjj′ , υjj′ , υ̂jj′)j,j′∈J , Λjj′j′′ = [V́jj′j′′ , λ̂jj′j′′ ]j,j′,j′′∈J
)
,

Z = (Z,K), K =
(
K, (Wk, Fk, tk, ωk)k∈K , (4.8)

Φkk′ = (Wkk′ , φkk′ , φ̂kk′)k,k′∈K , Mkk′k′′ = [Ẃkk′k′′ , µ̂kk′k′′ ]k,k′,k′′∈K
)
.

The rest of the section until Theorem 4.28 will make m-Kuranishi spaces into
a weak 2-category, as in §A.2. We first define 1- and 2-morphisms of m-Kuranishi
spaces. Note a possible confusion: we will be defining 1-morphisms of m-
Kuranishi spaces f , g : X → Y and 2-morphisms of m-Kuranishi spaces η : f ⇒
g, but these will be built out of 1-morphisms of m-Kuranishi neighbourhoods
f ij , gij : (Ui, Di, ri, χi) → (Vj , Ej , sj , ψj) and 2-morphisms of m-Kuranishi
neighbourhoods ηij : f ij ⇒ gij in the sense of §4.1, so ‘1-morphism’ and ‘2-
morphism’ can mean two different things.

Definition 4.17. Let X = (X, I) and Y = (Y,J ) be m-Kuranishi spaces, with
notation (4.6)–(4.7). A 1-morphism of m-Kuranishi spaces f : X → Y is data

f =
(
f,f ij, i∈I, j∈J , F

j, j∈J
ii′, i,i′∈I , F

jj′, j,j′∈J
i, i∈I

)
, (4.9)
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satisfying the conditions:

(a) f : X → Y is a continuous map.

(b) f ij = (Uij , fij , f̂ij) : (Ui, Di, ri, χi) → (Vj , Ej , sj , ψj) is a 1-morphism of
m-Kuranishi neighbourhoods over f for all i ∈ I, j ∈ J (defined over
S = Imχi ∩ f−1(Imψj), as usual).

(c) F jii′ = [Ú jii′ , F̂
j
ii′ ] : f i′j ◦ Tii′ ⇒ f ij is a 2-morphism over f for all i, i′ ∈ I

and j ∈ J (defined over S = Imχi ∩ Imχi′ ∩ f−1(Imψj)).

(d) F jj
′

i = [Ú jj
′

i , F̂ jj
′

i ] : Υjj′ ◦ f ij ⇒ f ij′ is a 2-morphism over f for all i ∈ I
and j, j′ ∈ J (defined over S = Imχi ∩ f−1(Imψj ∩ Imψj′)).

(e) F jii = F jji = idf ij for all i ∈ I, j ∈ J .

(f) The following commutes for all i, i′, i′′ ∈ I and j ∈ J :

f i′′j ◦ Ti′i′′ ◦ Tii′

idf
i′′j
∗Kii′i′′

��

F j
i′i′′∗idT

ii′

+3 f i′j ◦ Tii′

F j
ii′ ��

f i′′j ◦ Tii′′
F j
ii′′ +3 f ij .

(4.10)

(g) The following commutes for all i, i′ ∈ I and j, j′ ∈ J :

Υjj′ ◦ f i′j ◦ Tii′

idΥ
jj′
∗F j

ii′��
F jj
′

i′ ∗idT
ii′

+3 f i′j′ ◦ Tii′

F j
′

ii′ ��
Υjj′ ◦ f ij

F jj
′

i +3 f ij′ .

(4.11)

(h) The following commutes for all i ∈ I and j, j′, j′′ ∈ J :

Υj′j′′ ◦Υjj′ ◦ f ij
idΥ

j′j′′
∗F jj

′
i��

Λjj′j′′∗idfij

+3 Υjj′′ ◦ f ij
F jj
′′

i ��
Υj′j′′ ◦ f ij′

F j
′j′′
i +3 f ij′′ .

(4.12)

If x ∈X (i.e. x ∈ X), we will write f(x) = f(x) ∈ Y .
When Y = X, define the identity 1-morphism idX : X →X by

idX =
(
idX ,Tij, i,j∈I , K j∈I

ii′j, i,i′∈I , K j,j′∈I
ijj′, i∈I

)
. (4.13)

Then Definition 4.14(h) implies that (f)–(h) above hold.

Definition 4.18. Let X = (X, I) and Y = (Y,J ) be m-Kuranishi spaces, with
notation as in (4.6)–(4.7), and f , g : X → Y be 1-morphisms, with notation
(4.9). Suppose the continuous maps f, g : X → Y in f , g satisfy f = g. A
2-morphism of m-Kuranishi spaces η : f ⇒ g is data η =

(
ηij, i∈I, j∈J

)
, where

ηij = [Úij , η̂ij ] : f ij ⇒ gij is a 2-morphism of m-Kuranishi neighbourhoods over
f = g (defined over S = Imχi ∩ f−1(Imψj), as usual), satisfying the conditions:
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(a) Gj
ii′ � (ηi′j ∗ idTii′ ) = ηij � F

j
ii′ : f i′j ◦ Tii′ ⇒ gij for all i, i′ ∈ I, j ∈ J .

(b) Gjj′

i � (idΥjj′ ∗ ηij) = ηij′ �F
jj′

i : Υjj′ ◦ f ij ⇒ gij′ for all i ∈ I, j, j′ ∈ J .

Note that by definition, 2-morphisms η : f ⇒ g only exist if f = g.
If f = g, the identity 2-morphism is idf =

(
idf ij , i∈I, j∈J

)
: f ⇒ f .

Next we will define composition of 1-morphisms. We must use the stack
property in Theorem 4.13 to construct compositions of 1-morphisms g ◦f : X →
Z, and g ◦ f is only unique up to 2-isomorphism.

In the next proposition, part (a) constructs candidates h for g ◦ f , part (b)
shows such h are unique up to canonical 2-isomorphism, and part (c) that g and
f are allowed candidates for g ◦ idY , idY ◦ f respectively.

Proposition 4.19. (a) Let X = (X, I), Y = (Y,J ), and Z = (Z,K) be
m-Kuranishi spaces with notation (4.6)–(4.8), and f : X → Y , g : Y → Z

be 1-morphisms, with f =
(
f,f ij ,F

j
ii′ ,F

jj′

i

)
, g =

(
g, gjk,G

k
jj′ ,G

kk′

j

)
. Then

there exists a 1-morphism h : X → Z with h =
(
h,hik,H

k
ii′ ,H

kk′

i

)
, such that

h = g ◦ f : X → Z, and for all i ∈ I, j ∈ J, k ∈ K we have 2-morphisms of
m-Kuranishi neighbourhoods over h

Θijk : gjk ◦ f ij =⇒ hik, (4.14)

where as usual (4.14) holds over S = Imχi ∩ f−1(Imψj) ∩ h−1(Imωk), and for
all i, i′ ∈ I, j, j′ ∈ J, k, k′ ∈ K the following commute:

gjk ◦ f i′j ◦ Tii′

idgjk
∗F j

ii′��

Θi′jk∗idT
ii′

+3 hi′k ◦ Tii′

Hk
ii′ ��

gjk ◦ f ij
Θijk +3 hik,

(4.15)

gj′k ◦Υjj′ ◦ f ij
idg

j′k
∗F jj

′
i��

Gk
jj′∗idfij

+3 gjk ◦ f ij
Θijk
��

gj′k ◦ f ij′
Θij′k +3 hik,

(4.16)

Φkk′ ◦ gjk ◦ f ij
idΦ

kk′
∗Θijk

��
Gkk

′
j ∗idfij

+3 gjk′ ◦ f ij
Θijk′ ��

Φkk′ ◦ hik
Hkk′
i +3 hik′ .

(4.17)

(b) If h̃ =
(
h, h̃ik, H̃

k
ii′ , H̃

kk′

i

)
, Θ̃ijk are alternative choices for h,Θijk in (a),

then there is a unique 2-morphism of m-Kuranishi spaces η = (ηik) : h ⇒ h̃
satisfying ηik �Θijk = Θ̃ijk : gjk ◦ f ij ⇒ h̃ik for all i ∈ I, j ∈ J, k ∈ K.

(c) If X = Y and f = idY in (a), so that I = J, then a possible choice for
h,Θijk in (a) is h = g and Θijk = Gk

ij.
Similarly, if Z = Y and g = idY in (a), so that K = J, then a possible

choice for h,Θijk in (a) is h = f and Θijk = F jki .
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Proof. For (a), define h = g ◦ f : X → Z. Let i ∈ I and k ∈ K, and set
S = Imχi∩h−1(Imωk), so that S is open in X. We want to choose a 1-morphism
hik : (Ui, Di, ri, χi) → (Wk, Fk, tk, ωk) of m-Kuranishi neighbourhoods over
(S, h). Since {Imψj : j ∈ J} is an open cover of Y and f is continuous,{
S ∩ f−1(Imψj) : j ∈ J

}
is an open cover of S. For all j, j′ ∈ J we have a

2-morphism over S ∩ f−1(Imψj ∩ Imψj′), h

(idgj′k ∗ F
jj′

i )� (Gk
jj′ ∗ idf ij )

−1 :

gjk ◦ f ij |S∩f−1(Imψj∩Imψj′ )
=⇒ gj′k ◦ f ij′ |S∩f−1(Imψj∩Imψj′ )

.
(4.18)

For j, j′, j′′ ∈ J , consider the diagram of 2-morphisms of 1-morphisms (Ui, Di,
ri, χi)→ (Wk, Fk, tk, ωk) over S ∩ f−1(Imψj ∩ Imψj′ ∩ Imψj′′), h:

gjk◦f ij gj′k◦Υjj′ ◦f ij
Gk
jj′∗idfij

ks
idg

j′k
∗F jj

′
i

� 
gj′′k◦Υjj′′ ◦f ij

Gk
jj′′∗idfij

KS

idg
j′′k
∗F jj

′′
i

��

gj′′k◦Υj′j′′ ◦Υjj′ ◦f ij

Gk
j′j′′∗idΥ

jj′
∗idfij

KS

idg
j′′k
∗Λjj′j′′∗idfijks

idg
j′′k
∗idΥ

j′j′′
∗F jj

′
i

��

gj′k◦f ij′ .

gj′′k◦f ij′′ gj′′k◦Υj′j′′ ◦f ij′
Gk
j′j′′∗idf

ij′

>F

idg
j′′k
∗F j

′j′′
iks

(4.19)

Here the top left rectangle of (4.19) commutes by Definition 4.17(f) for
g composed with idf ij , the bottom left rectangle by Definition 4.17(h) for f
composed with idgj′′k , and the right hand quadrilateral commutes by properties
of strict 2-categories. Thus (4.19) commutes. This implies that(

(idgj′′k ∗ F
j′j′′

i )� (Gk
j′j′′ ∗ idf ij′ )

−1
)
�
(
(idgj′k ∗ F

jj′

i )� (Gk
jj′ ∗ idf ij )

−1
)

= (idgj′′k ∗ F
jj′′

i � (Gk
jj′′ ∗ idf ij )

−1. (4.20)

Now Theorem 4.13 says that 1- and 2-morphisms from (Ui, Di, ri, χi) to
(Wk, Fk, tk, ωk) over h form a stack on S, so applying Definition A.17(v) to
the open cover

{
S ∩ f−1(Imψj) : j ∈ J

}
of S with gjk ◦ f ij in place of

Aj , (4.18) in place of αjj′ , and (4.20), shows that there exist a 1-morphism
hik : (Ui, Di, ri, χi)→ (Wk, Fk, tk, ωk) over (S, h), and 2-morphisms

Θijk : gjk ◦ f ij |S∩f−1(Imψj) =⇒ hik|S∩f−1(Imψj)

for all j ∈ J , satisfying for all j, j′ ∈ J

Θijk|S∩f−1(Imψj∩Imψj′ )
= Θij′k � (idgj′k ∗ F

jj′

i )� (Gk
jj′ ∗ idf ij )

−1. (4.21)

Observe that (4.21) is equivalent to equation (4.16) in the proposition.

So far we have chosen the data h,hik for all i, k in h =
(
h,hik,H

k
ii′ ,H

kk′

i

)
,

where hik involved an arbitrary choice. To define Hk
ii′ for i, i′ ∈ I and k ∈ K,
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note that for each j ∈ J , equation (4.15) of the proposition implies that

Hk
ii′ |Imχi∩Imχi′∩f−1(Imψj)∩h−1(Imωk)

= Θijk � (idgjk ∗ F
j
ii′)�

(
Θi′jk ∗ idTii′

)−1.
(4.22)

Using (4.21) for i, i′ and a similar commutative diagram to (4.19), we can
show that the prescribed values (4.22) for j, j′ ∈ J agree when restricted to
Imχi ∩ Imχi′ ∩ f−1(Imψj ∩ Imψj′)∩ h−1(Imωk). Therefore the stack property
Theorem 4.13 and Definition A.17(iii),(iv) show that there is a unique 2-morphism
Hk

ii′ : hi′k ◦ Tii′ ⇒ hik over h satisfying (4.22) for all j ∈ J , or equivalently,

satisfying (4.15) for all j ∈ J . Similarly, there is a unique 2-morphism Hkk′

i :
Φkk′ ◦ hik ⇒ hik′ over h satisfying (4.17) for all j ∈ J .

We now claim that h =
(
h,hik,H

k
ii′ ,H

kk′

i

)
is a 1-morphism h : X → Z. It

remains to show Definition 4.17(f)–(h) hold for h. To prove this, we first fix
j ∈ J and prove the restrictions of (f)–(h) to the intersections of their domains
with f−1(Imψj). For instance, for part (f), for i, i′, i′′ ∈ I and k ∈ K we have(

Hk
ii′′ � (idhi′′k ∗Kii′i′′)

)
|Imχi∩···∩h−1(Imωk)

=
[
Θijk � (idgjk ∗ F

j
ii′′)�

(
Θi′′jk ∗ idTii′′

)−1
]
� (idhi′′k ∗Kii′i′′)

= Θijk �
(
idgjk ∗ (F jii′′ � (idf ij′′ ∗Kii′i′′))

)
�
(
(Θ−1

i′′jk ∗ idTi′i′′ ) ∗ idTii′

)
= Θijk �

(
idgjk ∗ (F jii′ � (F ji′i′′ ∗ idTii′ ))

)
�
(
(Θ−1

i′′jk ∗ idTi′i′′ ) ∗ idTii′

)
=
[
Θijk � (idgjk ∗ F

j
ii′)�

(
Θi′jk ∗ idTii′

)−1
]

�
([(

Θi′jk � (idgjk ∗ F
j
i′i′′)

)
�
(
Θi′′jk ∗ idTi′i′′

)−1
]
∗ idTii′

)
=
(
Hk

ii′ � (Hk
i′i′′ ∗ idTii′ )

)
|Imχi∩Imχi′∩Imχi′′∩f−1(Imψj)∩h−1(Imωk),

using (4.22) in the first and fifth steps, Definition 4.17(f) for f in the third,
and properties of strict 2-categories. Then we use the stack property Theorem
4.13 and Definition A.17(iii) to deduce that as Definition 4.17(f)–(h) for h hold
on the sets of an open cover, they hold globally. Therefore h : X → Z is a
1-morphism of m-Kuranishi spaces satisfying (4.15)–(4.17), proving (a).

For (b), if h̃, Θ̃ijk are alternatives, then hik, h̃ik are alternative solutions to
the application of Theorem 4.13 and Definition A.17(v) above, for all i ∈ I and
k ∈ K. Thus, the last part of Definition A.17(v) implies that there is a unique
2-morphism ηik : hik ⇒ h̃ik over h such that for all j ∈ J we have

ηik|Imχi∩f−1(Imψj)∩h−1(Imωk) = Θ̃ijk �Θ−1
ijk. (4.23)

This implies that ηik �Θijk = Θ̃ijk, as in (b). For each j ∈ J we have(
H̃k

ii′ � (ηi′k ∗ idTii′ )
)
|Imχi∩Imχi′∩f−1(Imψj)∩h−1(Imωk)

=
[
Θ̃ijk � (idgjk ∗ F

j
ii′)�

(
Θ̃i′jk ∗ idTii′

)−1
]
�
[(

Θ̃i′jk �Θ−1
i′jk

)
∗ idTii′

]
=
[
Θ̃ijk �Θ−1

ijk

]
�
[
Θijk � (idgjk ∗ F

j
ii′)�

(
Θi′jk ∗ idTii′

)−1
]

=
(
ηik �H

k
ii′
)
|Imχi∩Imχi′∩f−1(Imψj)∩h−1(Imωk),
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using (4.22) and (4.23) in the first and third steps. So by Definition A.17(iii)
we deduce that H̃k

ii′ � (ηi′k ∗ idTii′ ) = ηik �H
k
ii′ , which is Definition 4.18(a)

for η = (ηik) : h ⇒ h̃. Similarly Definition 4.18(b) holds, so η : h ⇒ h̃ is a
2-morphism of m-Kuranishi spaces. This proves (b). Part (c) is immediate, using
Definition 4.17(f)–(h) for f , g to prove (4.15)–(4.17) hold for the given choices
of h and Θijk. This completes the proof of Proposition 4.19.

Proposition 4.19(a) gives possible values h for the composition g◦f : X → Z.
Since there is no distinguished choice, we choose g ◦ f arbitrarily.

Definition 4.20. For all pairs of 1-morphisms of m-Kuranishi spaces f : X → Y
and g : Y → Z, use the Axiom of Global Choice (see Remark 4.21) to choose
possible values of h : X → Z and Θijk in Proposition 4.19(a), and write
g ◦ f = h, and for i ∈ I, j ∈ J , k ∈ K write

Θg,fijk = Θijk : gjk ◦ f ij =⇒ (g ◦ f)ik. (4.24)

We call g ◦ f the composition of 1-morphisms of m-Kuranishi spaces.
For general f , g we make these choices arbitrarily. However, if X = Y and

f = idY then we choose g ◦ idY = g and Θg,idY

jj′k = Gk
jj′ , and if Z = Y and

g = idY then we choose idY ◦ f = f and ΘidY ,f
ijj′ = F jj

′

i . This is allowed by
Proposition 4.19(c).

The definition of a weak 2-category in Appendix A includes 2-isomorphisms
βf : f ◦ idX ⇒ f and γf : idY ◦ f ⇒ f in (A.10), since one does not require
f ◦ idX = f and idY ◦ f = f in a general weak 2-category. We define

βf = idf : f ◦ idX =⇒ f , γf = idf : idY ◦ f =⇒ f . (4.25)

Remark 4.21. As in Shulman [101, §7] or Herrlick and Strecker [45, §1.2], the
Axiom of Global Choice, or Axiom of Choice for classes, used in Definition 4.20,
is a strong form of the Axiom of Choice.

As in Jech [54], in Set Theory one distinguishes between sets, and ‘classes’,
which are like sets but may be larger. We are not allowed to consider things like
‘the set of all sets’, or ‘the set of all manifolds’, as this would lead to paradoxes
such as ‘the set of all sets which are not members of themselves’. Instead sets,
manifolds, . . . form classes, upon which more restrictive operations are allowed.

The Axiom of Choice says that if {Si : i ∈ I} is a family of nonempty sets,
with I a set, then we can simultaneously choose an element si ∈ Si for all i ∈ I.
The Axiom of Global Choice says the same thing, but allowing I (and possibly
also the Si) to be classes rather than sets. As in [101, §7], the Axiom of Global
Choice follows from the axioms of von Neumann–Bernays–Gödel Set Theory.

The Axiom of Global Choice is used, implicitly or explicitly, in the proofs of
important results in category theory in their most general form, for example,
Adjoint Functor Theorems, or that every category has a skeleton, or that every
weak 2-category can be strictified.

We need to use the Axiom of Global Choice above because we make an
arbitrary choice of g ◦ f for all f : X → Y and g : Y → Z in mK̇ur, and as we
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have defined things, the collection of all such (f , g) may be a proper class, not a
set. We could avoid this by arranging our foundations differently. For example,
if we required Ṁan and Top to be small categories, then the collection of all
(f , g) would be a set, and the usual Axiom of Choice would suffice.

If we did not make arbitrary choices of compositions g ◦f at all, then mK̇ur
would not be a weak 2-category in Theorem 4.28 below, since for 1-morphisms
f : X → Y and g : Y → Z in mK̇ur we would not be given a unique
composition g ◦ f : X → Z, but only a nonempty family of possible choices
for g ◦ f , which are all 2-isomorphic. Such structures appear in the theory of
quasi-categories, as in Boardman and Vogt [5] or Joyal [55], which are a form of
∞-category, and mK̇ur would be an example of a 3-coskeletal quasi-category.

Since composition of 1-morphisms g ◦ f is natural only up to canonical
2-isomorphism, as in Proposition 4.19(b), composition is associative only up to
canonical 2-isomorphism. Note that the 2-isomorphisms αg,f ,e in (4.26) are part
of the definition of a weak 2-category in §A.2, as in (A.7).

Proposition 4.22. Let e : W → X, f : X → Y , g : Y → Z be 1-morphisms
of m-Kuranishi spaces, and define composition of 1-morphisms as in Definition
4.20. Then using notation (4.5)–(4.8), there is a unique 2-morphism

αg,f ,e : (g ◦ f) ◦ e =⇒ g ◦ (f ◦ e) (4.26)

with the property that for all h ∈ H, i ∈ I, j ∈ J and k ∈ K we have

(αg,f ,e)hk �Θg◦f ,ehik � (Θg,fijk ∗ idehi) = Θg,f◦ehjk � (idgjk ∗Θf ,ehij ). (4.27)

Proof. The proof uses similar ideas to that of Proposition 4.19, so we will be
brief. Note that for h ∈ H, i ∈ I, j ∈ J, k ∈ K, equation (4.27) implies that

(αg,f ,e)hk|Imϕh∩e−1(Imχi)∩(f◦e)−1(Imψj)∩(g◦f◦e)−1(Imωk)

= Θg,f◦ehjk �(idgjk ∗Θf ,ehij )� (Θg,fijk ∗ idehi)
−1 � (Θg◦f ,ehik )−1.

(4.28)

We show that for i′ ∈ I, j′ ∈ J , the right hand sides of (4.28) for h, i, j, k
and for h, i′, j′, k agree on the overlap of their domains, using the properties
(4.15)–(4.17) of the Θg,fijk . Then we use the stack property Theorem 4.13 and
Definition A.17(iii),(iv) to deduce that there is a unique 2-morphism (αg,f ,e)hk
satisfying (4.28) for all i ∈ I, j ∈ J .

We prove the restrictions of Definition 4.18(a),(b) for αg,f ,e = ((αg,f ,e)hk)
to the intersection of their domains with e−1(Imχi) ∩ (f ◦ e)−1(Imψj), for all

i ∈ I and j ∈ J , using (4.28) and properties of the Θg,fijk . Since these intersections
form an open cover of the domains, Theorem 4.13 and Definition A.17(iii) imply
that Definition 4.18(a),(b) for αg,f ,e hold on the correct domains, so αg,f ,e is
a 2-morphism, as in (4.26). Uniqueness follows from uniqueness of (αg,f ,e)hk
above. This completes the proof.

We define vertical and horizontal composition of 2-morphisms:
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Definition 4.23. Let f , g,h : X → Y be 1-morphisms of m-Kuranishi spaces,
using notation (4.6)–(4.7), and η = (ηij) : f ⇒ g, ζ = (ζij) : g ⇒ h be 2-
morphisms. Define the vertical composition of 2-morphisms ζ�η : f ⇒ h
by

ζ � η =
(
ζij � ηij , i ∈ I, j ∈ J

)
. (4.29)

To see that ζ � η satisfies Definition 4.18(a),(b), for (a) note that for all i, i′ ∈ I
and j ∈ J , by Definition 4.18(a) for η, ζ we have

Hj
ii′ � ((ζi′j � ηi′j) ∗ idTii′ ) = Hj

ii′ � (ζi′j ∗ idTii′ )� (ηi′j ∗ idTii′ )

= ζij �G
j
ii′ � (ηi′j ∗ idTii′ ) = (ζij � ηij)� F

j
ii′ ,

and Definition 4.18(b) for ζ � η is proved similarly.
Clearly, vertical composition of 2-morphisms of m-Kuranishi spaces is asso-

ciative, (θ � ζ)� η = θ � (ζ � η), since vertical composition of 2-morphisms of
m-Kuranishi neighbourhoods is associative.

If g = h and ζ = idg then idg � η = (idgij � ηij) = (ηij) = η, and similarly
ζ � idg = ζ, so identity 2-morphisms behave as expected under �.

If η = (ηij) : f ⇒ g is a 2-morphism of m-Kuranishi spaces, then as 2-
morphisms ηij of m-Kuranishi neighbourhoods are invertible, we may define

η−1 = (η−1
ij ) : g ⇒ f . It is easy to check that η−1 is a 2-morphism, and

η−1 � η = idf , η � η−1 = idg. Thus, all 2-morphisms of m-Kuranishi spaces
are 2-isomorphisms.

Definition 4.24. Let e,f : X → Y and g,h : Y → Z be 1-morphisms
of m-Kuranishi spaces, using notation (4.6)–(4.8), and η = (ηij) : e ⇒ f ,
ζ = (ζjk) : g ⇒ h be 2-morphisms. We claim there is a unique 2-morphism
θ = (θik) : g ◦ e⇒ h ◦ f , such that for all i ∈ I, j ∈ J , k ∈ K, we have

θik|Imχi∩e−1(Imψj)∩(g◦e)−1(Imωk) = Θh,fijk � (ζjk ∗ ηij)� (Θg,eijk)−1. (4.30)

To prove this, suppose j, j′ ∈ J , and consider the diagram of 2-morphisms
over Imχi ∩ e−1(Imψj ∩ Imψj′) ∩ (g ◦ e)−1(Imωk):

gjk ◦ eij ζjk∗ηij
+3 hjk ◦ f ij Θh,f

ijk

� 
(g ◦ e)ik

(Θg,e
ijk)−1 .6

(Θg,e

ij′k)−1 (0

gj′k ◦Υjj′ ◦ eij
ζj′k∗idΥ

jj′
∗ηij
+3

Gk
jj′∗ideij

KS

idg
j′k
∗Ejj

′
i

��

hj′k ◦Υjj′ ◦ f ij

Hk
jj′∗idfij

KS

idg
j′k
∗Ejj

′
i
��

(h ◦ f)ik.

gj′k ◦ eij′
ζj′k∗ηij′ +3 hj′k ◦ f ij′ Θh,f

ij′k

>F (4.31)

Here the left and right quadrilaterals commute by (4.16), and the central rectan-
gles commute by Definition 4.18(a),(b) for ζ,η. Hence (4.31) commutes.

The two routes round the outside of (4.31) imply that the prescribed values
(4.30) for θik agree on overlaps between open sets for j, j′. As the Imχi ∩
e−1(Imψj)∩ (g ◦ e)−1(Imωk) for j ∈ J form an open cover of the correct domain
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Imχi ∩ (g ◦ e)−1(Imωk), by Theorem 4.13 and Definition A.17(iii),(iv), there is
a unique 2-morphism θik : (g ◦ e)ik ⇒ (h ◦ f)ik satisfying (4.30) for all j ∈ J .

To show θ = (θik) : g ◦ e⇒ h ◦ f is a 2-morphism, we must verify Definition
4.18(a),(b) for θ. We do this by first showing that (a),(b) hold on the intersections
of their domains with e−1(Imψj) for j ∈ J using (4.15), (4.17), (4.30), and
Definition 4.18 for η, ζ, and then use Theorem 4.13 and Definition A.17(iii) to
deduce that Definition 4.18(a),(b) for θ hold on their whole domains. So θ is a
2-morphism of m-Kuranishi spaces.

Define the horizontal composition of 2-morphisms ζ ∗ η : g ◦ e⇒ h ◦ f to
be ζ ∗ η = θ. By (4.30), for all i ∈ I, j ∈ J , k ∈ K we have

(ζ ∗ η)ik �Θg,eijk = Θh,fijk � (ζjk ∗ ηij), (4.32)

and this characterizes ζ ∗ η uniquely.

We have now defined all the structures of a weak 2-category of m-Kuranishi
spaces mK̇ur, as in Appendix A: objects X,Y , 1-morphisms f , g : X → Y , 2-
morphisms η : f ⇒ g, identity 1- and 2-morphisms, composition of 1-morphisms,
vertical and horizontal composition of 2-morphisms, 2-isomorphisms αg,f ,e in
(4.26) for associativity of 1-morphisms, and βf ,γf in (4.25) for identity 1-

morphisms. To show that mK̇ur is a weak 2-category, it remains only to prove
the 2-morphism identities (A.6), (A.8), (A.9), (A.11) and (A.12). Of these,
(A.11)–(A.12) are easy as βf = γf = idf , and we leave them as an exercise.
The next three propositions prove (A.6), (A.8) and (A.9) hold.

Proposition 4.25. Let f , ḟ , f̈ : X → Y , g, ġ, g̈ : Y → Z be 1-morphisms of
m-Kuranishi spaces, and η : f ⇒ ḟ , η̇ : ḟ ⇒ f̈ , ζ : g ⇒ ġ, ζ̇ : ġ ⇒ g̈ be
2-morphisms. Then

(ζ̇ � ζ) ∗ (η̇ � η) = (ζ̇ ∗ η̇)� (ζ ∗ η) : g ◦ f =⇒ g̈ ◦ f̈ . (4.33)

Proof. Use notation (4.6)–(4.8) for X,Y ,Z. For i ∈ I, j ∈ J , k ∈ K we have[
(ζ̇ � ζ) ∗ (η̇ � η)

]
ik

∣∣
Imχi∩f−1(Imψj)∩(g◦f)−1(Imωk)

= Θg̈,f̈ijk �
(
(ζ̇jk � ζjk) ∗ (η̇ij � ηij)

)
� (Θg,fijk )−1

= Θg̈,f̈ijk �
(
(ζ̇jk ∗ η̇ij)� (ζjk ∗ ηij)

)
� (Θg,fijk )−1

=
[
Θg̈,f̈ijk � (ζ̇jk ∗ η̇ij)� (Θġ,ḟijk )−1

]
�
[
Θġ,ḟijk � (ζjk ∗ ηij)� (Θg,fijk )−1

]
=
[
(ζ̇ ∗ η̇)� (ζ ∗ η)

]
ik|Imχi∩f−1(Imψj)∩(g◦f)−1(Imωk),

using (4.29) and (4.32) in the first and fourth steps, and compatibility of vertical
and horizontal composition for 2-morphisms of m-Kuranishi neighbourhoods in
the second. Since the Imχi∩f−1(Imψj)∩ (g ◦f)−1(Imωk) for all j ∈ J form an
open cover of the domain Imχi ∩ (g ◦ f)−1(Imωk), Theorem 4.13 and Definition
A.17(iii) imply that

[
(ζ̇ � ζ) ∗ (η̇ � η)

]
ik =

[
(ζ̇ ∗ η̇)� (ζ ∗ η)

]
ik. As this holds

for all i ∈ I and k ∈ K, equation (4.33) follows.
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Proposition 4.26. Suppose e, ė : W → X, f , ḟ : X → Y , g, ġ : Y → Z are
1-morphisms of m-Kuranishi spaces, and ε : e ⇒ ė, η : f ⇒ ḟ , ζ : g ⇒ ġ are
2-morphisms. Then the following diagram of 2-morphisms commutes:

(g ◦ f) ◦ e
αg,f,e

+3

(ζ∗η)∗ε��

g ◦ (f ◦ e)

ζ∗(η∗ε) ��
(ġ ◦ ḟ) ◦ ė

αġ,ḟ,ė +3 ġ ◦ (ḟ ◦ ė).

(4.34)

Proof. Use notation (4.5)–(4.8) for W,X,Y ,Z. For h ∈ H, i ∈ I, j ∈ J , k ∈ K
we have[

(ζ ∗ (η ∗ ε))�αg,f ,e
]
hk

∣∣
Imϕh∩e−1(Imχi)∩(f◦e)−1(Imψj)∩(g◦f◦e)−1(Imωk)

=
[
Θġ,ḟ◦ėhjk �

[
ζjk ∗

(
Θḟ ,ėhij � (ηij ∗ εhi)� (Θf ,ehij )−1

)]
� (Θg,f◦ehjk )−1

]
�
[
Θg,f◦ehjk � (idgjk ∗Θf ,ehij )� (Θg,fijk ∗ idehi)

−1 � (Θg◦f ,ehik )−1
]

= Θġ,ḟ◦ėhjk �(idġjk ∗Θ
ḟ ,ė
hij )�(ζjk ∗ ηij ∗ εhi)�(Θg,fijk ∗ idehi)

−1 � (Θg◦f ,ehik )−1

=
[
Θġ,ḟ◦ėhjk � (idġjk ∗Θḟ ,ėhij )� (Θġ,ḟijk ∗ idėhi)

−1 � (Θġ◦ḟ ,ėhik )−1
]

�
[
Θġ◦ḟ ,ėhik �

[(
Θġ,ḟijk � (ζjk ∗ ηij)� (Θg,fijk )−1

)
∗ εhi

]
� (Θg◦f ,ehik )−1

]
=
[
αġ,ḟ ,ė � ((ζ ∗ η) ∗ ε)

]
hk

∣∣
Imϕh∩e−1(Imχi)∩(f◦e)−1(Imψj)∩(g◦f◦e)−1(Imωk),

using (4.27) and (4.32) in the first and fourth steps, and properties of strict
2-categories in the second and third. This proves the restriction of the ‘hk’
component of (4.34) to Imϕh∩e−1(Imχi)∩(f ◦e)−1(Imψj)∩(g◦f ◦e)−1(Imωk)
commutes. Since these subsets for all i, j form an open cover of the domain,
Theorem 4.13 and Definition A.17(iii) imply that the ‘hk’ component of (4.34)
commutes for all h ∈ H, k ∈ K, so (4.34) commutes.

Proposition 4.27. Let d : V →W, e : W → X, f : X → Y , g : Y → Z be
1-morphisms of m-Kuranishi spaces. Then in 2-morphisms we have

αg,f ,e◦d �αg◦f ,e,d = (idg ∗αf ,e,d)�αg,f◦e,d � (αg,f ,e ∗ idd) :

((g ◦ f) ◦ e) ◦ d =⇒ g ◦ (f ◦ (e ◦ d)).
(4.35)

Proof. Use notation (4.5)–(4.8) for W,X,Y ,Z, and take G to be the indexing
set for V . Then for g ∈ G, h ∈ H, i ∈ I, j ∈ J , k ∈ K, on Im υg ∩ d−1(Imϕh)
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∩ (e ◦ d)−1(Imχi) ∩ (f ◦ e ◦ d)−1(Imψj) ∩ (g ◦ f ◦ e ◦ d)−1(Imωk) we have[
(αg,f ,e◦d)� (αg◦f ,e,d)

]
gk

∣∣
...

=
{

Θ
g,f◦(e◦d)
gjk � (idgjk ∗Θf ,e◦dgij )� (Θg,fijk ∗ id(e◦d)gi)

−1 � (Θg◦f ,e◦dgik )−1
}

�
{

Θg◦f ,e◦dgik � (id(g◦f)ik ∗Θe,dghi)� (Θg◦f ,ehik ∗ iddgh)−1 � (Θ
(g◦f)◦e,d
ghk )−1

}
= Θ

g,f◦(e◦d)
gjk � (idgjk ∗Θf ,e◦dgij )� ((Θg,fijk )−1 ∗Θe,dghi)

� (Θg◦f ,ehik ∗ iddgh)−1 � (Θ
(g◦f)◦e,d
ghk )−1

=
{

Θ
g,f◦(e◦d)
gjk �

(
idgjk ∗

[
Θf ,e◦dgij �(idf ij ∗Θ

e,d
ghi)�(Θf ,ehij ∗iddgh)−1�(Θf◦e,dghj )−1

])
� (Θ

g,(f◦e)◦d
gjk )−1

}
�
{

Θ
g,(f◦e)◦d
gjk � (idgjk ∗Θf◦e,dghj )� (Θg,f◦ehjk ∗ iddgh)−1

� (Θ
g◦(f◦e),d
ghk )−1

}
�
{

Θ
g◦(f◦e),d
ghk )�

([
Θg,f◦ehjk � (idgjk ∗Θf ,ehij )

� (Θg,fijk ∗ idehi)
−1 � (Θg◦f ,ehik )−1

]
∗ iddgh

)
� (Θ

(g◦f)◦e,d
ghk )−1

}
=
[
(idg ∗αf ,e,d)�αg,f◦e,d � (αg,f ,e ∗ idd)

]
gk

∣∣
...,

using (4.27) and (4.32) in the first and fourth steps, and properties of strict
2-categories in the second and third. This proves the restriction of the ‘gk’
component of (4.35) to the subset Im υg ∩ d−1(Imϕh) ∩ (e ◦ d)−1(Imχi) ∩ (f ◦
e ◦ d)−1(Imψj) ∩ (g ◦ f ◦ e ◦ d)−1(Imωk). Since these subsets for all h, i, j form
an open cover of the domain, Theorem 4.13 and Definition A.17(iii) imply that
the ‘gk’ component of (4.35) commutes for all g ∈ G and k ∈ K, so (4.35)
commutes.

We summarize the work of this section in the following:

Theorem 4.28. The definitions and propositions above define a weak 2-cat-
egory of m-Kuranishi spaces mK̇ur.

Definition 4.29. In Theorem 4.28 we write mK̇ur for the 2-category of m-
Kuranishi spaces constructed from our chosen category Ṁan satisfying Assump-
tions 3.1–3.7 in §3.1. By Example 3.8, the following categories from Chapter 2
are possible choices for Ṁan:

Man,Manc,Manc
we,Mangc,Manac,Manc,ac. (4.36)

We write the corresponding 2-categories of m-Kuranishi spaces as follows:

mKur,mKurc,mKurc
we,mKurgc,mKurac,mKurc,ac. (4.37)

Objects of mKurc,mKurgc,mKurac,mKurc,ac will be called m-Kuranishi
spaces with corners, and with g-corners, and with a-corners, and with corners
and a-corners, respectively.

Actually, Example 3.8 gives lots more categories satisfying Assumptions 3.1–
3.7, such as Manc

in ⊂Manc, but we will not define notation for corresponding
2-categories of m-Kuranishi spaces mKurc

in, . . . here. Instead, in §4.5 we will
define the 2-categories mKurc

in, . . . as 2-subcategories of the 2-categories in
(4.37). The reason for this is explained in Remark 4.38.
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Example 4.30. We will define a weak 2-functor FmK̇ur
Ṁan

: Ṁan → mK̇ur.
Weak 2-functors are explained in §A.3. Since mK̇ur is a weak 2-category, no
other kind of functor to mK̇ur makes sense.

If X ∈ Ṁan, define an m-Kuranishi space FmK̇ur
Ṁan

(X) = X = (X,K) with
topological space X and m-Kuranishi structure

K =
(
{0}, (V0, E0, s0, ψ0),Φ00,Λ000

)
,

with indexing set I = {0}, one m-Kuranishi neighbourhood (V0, E0, s0, ψ0) with
V0 = X, E0 → V0 the zero vector bundle, s0 = 0, and ψ0 = idX , one coordinate
change Φ00 = id(V0,E0,s0,ψ0), and one 2-morphism Λ000 = idΦ00 .

On 1-morphisms, if f : X → Y is a morphism in Ṁan and X = FmK̇ur
Ṁan

(X),

Y = FmK̇ur
Ṁan

(Y ), define a 1-morphism FmK̇ur
Ṁan

(f) = f : X → Y by f =

(f,f00,F
0
00,F

00
0 ), where f00 = (U00, f00, f̂00) with U00 = X, f00 = f , and f̂00 is

the zero map on zero vector bundles, and F 0
00 = F 00

0 = idf00
.

On 2-morphisms, regarding Ṁan as a 2-category, the only 2-morphisms are
identity morphisms idf : f ⇒ f for (1-)morphisms f : X → Y in Ṁan. We

define FmK̇ur
Ṁan

(idf ) = id
FmK̇ur

Man (f)
.

If X = FmK̇ur
Ṁan

(X) and Y = FmK̇ur
Ṁan

(Y ) for X,Y ∈ Ṁan, it is easy to check

that the only 1-morphisms f : X → Y in mK̇ur are those of the form FmK̇ur
Ṁan

(f)

for morphisms f : X → Y in Ṁan, and the only 2-morphisms η : f ⇒ g in
mK̇ur for any 1-morphisms f , g : X → Y are identity 2-morphisms idf : f ⇒ f
when f = g.

Suppose f : X → Y , g : Y → Z are (1-)morphisms in Ṁan, and write

X,Y ,Z,f , g for the images of X,Y, Z, f, g under FmK̇ur
Ṁan

. Then Definition 4.20
defines the composition g ◦ f : X → Z, by making an arbitrary choice. But the
uniqueness property of 1-morphisms above implies that the only possibility is

g ◦ f = FmK̇ur
Ṁan

(g ◦ f). Define

(FmK̇ur
Ṁan

)g,f := id
FmK̇ur

Ṁan
(g◦f)

: FmK̇ur
Ṁan

(g) ◦ FmK̇ur
Ṁan

(f) =⇒ FmK̇ur
Ṁan

(g ◦ f).

For any object X in Ṁan with X = FmK̇ur
Ṁan

(X), define

(FmK̇ur
Ṁan

)X := ididX
: FmK̇ur

Ṁan
(idX) =⇒ id

FmK̇ur
Ṁan

(X)
.

We have defined all the data of a weak 2-functor FmK̇ur
Ṁan

: Ṁan→ mK̇ur

in Definition A.8. It is easy to check that FmK̇ur
Ṁan

is a weak 2-functor, which is

full and faithful, and so embeds Ṁan as a full 2-subcategory of mK̇ur.

We say that an m-Kuranishi space X is a manifold if X ' FmK̇ur
Ṁan

(X ′) in

mK̇ur, for some X ′ ∈ Ṁan. Theorem 10.45 in §10.4.2 gives a necessary and
sufficient criterion for when X is a manifold.

Assumption 3.4 gives a full subcategory Man ⊆ Ṁan. Define a full and

faithful weak 2-functor FmK̇ur
Man = FmK̇ur

Ṁan
|Man : Man→mK̇ur, which embeds
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Man as a full 2-subcategory of mK̇ur. We say that an m-Kuranishi space X is

a classical manifold if X ' FmK̇ur
Man (X ′) in mK̇ur, for some X ′ ∈Man.

In a similar way to Example 4.30, we can define a weak 2-functor GmK̇N→
mK̇ur which is an equivalence from the 2-category GmK̇N of global m-Kuran-
ishi neighbourhoods in Definition 4.8 to the full 2-subcategory of objects (X,K)
in mK̇ur for which K contains only one m-Kuranishi neighbourhood. It acts by
(V,E, s) 7→ SV,E,s on objects, for SV,E,s as in Example 4.16.

The next example defines products X × Y of m-Kuranishi spaces X,Y . We
discuss products further in §11.2.3, as examples of fibre products X ×∗ Y .

Example 4.31. Let X = (X, I), Y = (Y,J ) be m-Kuranishi spaces in mK̇ur,
with notation (4.6)–(4.7). Define the product to be X × Y = (X × Y,K), where

K =
(
I × J, (W(i,j), F(i,j), t(i,j), ω(i,j))(i,j)∈I×J , Φ(i,j)(i′,j′), (i,j),(i′,j′)∈I×J ,

M(i,j)(i′,j′)(i′′,j′′), (i,j),(i′,j′),(i′′,j′′)∈I×J
)
.

Here for all (i, j) ∈ I × J we set W(i,j) = Ui × Vj , F(i,j) = π∗Ui(Di) ⊕ π∗Vj (Ej),
and t(i,j) = π∗Ui(ri) ⊕ π

∗
Vj

(sj) so that t−1
(i,j)(0) = r−1

i (0) × s−1
j (0), and ω(i,j) =

χi × ψj : r−1
i (0)× s−1

j (0)→ X × Y . Also

Φ(i,j)(i′,j′) = Tii′ ×Υjj′ =
(
Uii′ × Vjj′ , τii′ × υjj′ , π∗Uii′ (τ̂ii′)⊕ π

∗
Vjj′

(υ̂jj′)
)
,

and M(i,j)(i′,j′)(i′′,j′′) = Kii′i′′ × Λjj′j′′ is defined as a product 2-morphism in
the obvious way. It is easy to check that X × Y is an m-Kuranishi space,
with vdim(X × Y ) = vdimX + vdimY .

We can also define explicit projection 1-morphisms πX : X × Y → X,
πY : X × Y → Y , where

πX =
(
πX ,π(i,j)i′, (i,j)∈I×J, i′∈I , Πi′′, i′′∈I

(i,j)(i′,j′), (i,j),(i′,j′)∈I×J , Πi′,i′′, i′,i′′∈I
(i,j), (i,j)∈I×J

)
,

with π(i,j)i′ = (Uii′ × Vj , τii′ ◦ πUii′ , π
∗
Uii′

(τ̂ii′) ◦ ππ∗Ui (Di)), and Πi′′

(i,j)(i′,j′),Π
i′,i′′

(i,j)

are the basically the compositions of the 2-morphism Kii′i′′ in I with the
projection Ui × Vj → Ui. We define πY in the same way.

We will show in §11.2.3 that X × Y ,πX ,πY have the universal property of
products in a 2-category. That is, X × Y is a fibre product X ×∗ Y over the
point (terminal object) ∗ in mK̇ur, as in §A.4, in a 2-Cartesian square

X × Y IQ
id

πY

//

πX��

Y

��
X // ∗.

Products are commutative and associative up to canonical equivalence, and
in fact (with the above definition) up to canonical 1-isomorphism. That is, if
X,Y ,Z are m-Kuranishi spaces, we have canonical 1-isomorphisms in mK̇ur

Y ×X ∼= X × Y and (X × Y )×Z ∼= X × (Y ×Z). (4.38)
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We can also define products and direct products of 1-morphisms. That is, if
f : W → Y , g : X → Y , h : X → Z are 1-morphisms in mK̇ur then we have a
product 1-morphism f × h : W ×X → Y ×Z and a direct product 1-morphism
(g,h) : X → Y ×Z in mK̇ur, both easy to write down explicitly. The existence
of f×h, (g,h) is also guaranteed by the universal property of products, uniquely
up to canonical 2-isomorphism.

4.4 Comparing m-Kuranishi spaces from different Ṁan

Using the ideas of §3.3.7 and §B.7, we explain how to lift a functor F M̈an
Ṁan

:

Ṁan → M̈an satisfying Condition 3.20 to a corresponding weak 2-functor

FmK̈ur
mK̇ur

: mK̇ur → mK̈ur between the 2-categories of m-Kuranishi spaces

mK̇ur,mK̈ur associated to Ṁan, M̈an.

Definition 4.32. Suppose Ṁan, M̈an satisfy Assumptions 3.1–3.7, and F M̈an
Ṁan

:

Ṁan→ M̈an is a functor satisfying Condition 3.20. Then in §3.3.7 and §B.7
we explain how all the material of §3.3 on differential geometry in Ṁan maps

functorially to its analogue in M̈an under F M̈an
Ṁan

.

Write mK̇ur,mK̈ur for the 2-categories of m-Kuranishi spaces constructed

from Ṁan, M̈an in §4.3. We will define a weak 2-functor FmK̈ur
mK̇ur

: mK̇ur →
mK̈ur. The basic idea is obvious: we apply F M̈an

Ṁan
to turn the m-Kuranishi

neighbourhoods and their 1- and 2-morphisms over Ṁan used in mK̇ur, into
their analogues over M̈an used in mK̈ur.

As in §B.7, we will use accents ‘ ˙ ’ and ‘ ¨ ’ to denote objects associated to
Ṁan and M̈an, respectively. When something is independent of Ṁan or M̈an
(such as the underlying topological space X in Ẋ) we omit the accent.

Let Ẋ = (X, K̇) be an object in mK̇ur, where

K̇ =
(
I, (V̇i, Ėi, ṡi, ψi)i∈I , Φ̇ij, i,j∈I , Λ̇ijk, i,j,k∈I

)
,

with Φ̇ij = (V̇ij , φ̇ij ,
ˆ̇
φij) : (V̇i, Ėi, ṡi, ψi)→ (V̇j , Ėj , ṡj , ψj) and Λijk = [ ´̇Vijk,

ˆ̇
λijk]

for all i, j, k ∈ I. Define FmK̈ur
mK̇ur

(Ẋ) = Ẍ = (X, K̈) in mK̈ur, where

K̈ =
(
I, (V̈i, Ëi, s̈i, ψi)i∈I , Φ̈ij, i,j∈I , Λ̈ijk, i,j,k∈I

)
,

with Φ̈ij = (V̈ij , φ̈ij ,
ˆ̈
φij) : (V̈i, Ëi, s̈i, ψi)→ (V̈j , Ëj , s̈j , ψj) and Λijk = [ ´̈Vijk,

ˆ̈
λijk]

for all i, j, k ∈ I. Here V̈i, Ëi, s̈i, V̈ij , φ̈ij ,
ˆ̈
φij ,

´̈Vijk,
ˆ̈
λijk are the images of V̇i, Ėi,

ṡi, V̇ij , φ̇ij ,
ˆ̇
φij ,

´̇Vijk,
ˆ̇
λijk under FmK̈ur

mK̇ur
, respectively, as in §B.7.

Similarly, if ḟ : Ẋ → Ẏ is a 1-morphism in mK̇ur we define a 1-morphism

FmK̈ur
mK̇ur

(ḟ) = f̈ : Ẍ → Ÿ in mK̈ur, and if η̇ : ḟ ⇒ ġ is a 2-morphism in mK̇ur

we define a 2-morphism FmK̈ur
mK̇ur

(η̇) = η̈ : f̈ ⇒ g̈ in mK̈ur, by applying FmK̈ur
mK̇ur

to all the Ṁan structures in ḟ , η̇, in the obvious way.
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Let ḟ : Ẋ → Ẏ and ġ : Ẏ → Ż be 1-morphisms in mK̇ur, and write

f̈ : Ẍ → Ÿ , g̈ : Ÿ → Z̈ for their images in mK̈ur under FmK̈ur
mK̇ur

. Then

Definition 4.20 defined ġ ◦ ḟ : Ẋ → Ż in mK̇ur and g̈ ◦ f̈ : Ẍ → Z̈ in mK̈ur,
by making arbitrary choices. Since these choices may not be consistent, we need

not have g̈ ◦ f̈ = FmK̈ur
mK̇ur

(ġ ◦ ḟ). However, because FmK̈ur
mK̇ur

(ġ ◦ ḟ) is one of the

possible choices for g̈ ◦ f̈ , Proposition 4.19(b) gives a canonical 2-morphism

(FmK̈ur
mK̇ur

)ġ,ḟ : FmK̈ur
mK̇ur

(ġ) ◦ FmK̈ur
mK̇ur

(ḟ) = g̈ ◦ f̈ =⇒ FmK̈ur
mK̇ur

(ġ ◦ ḟ)

in mK̈ur, using the data Θġ,ḟijk and their images under FmK̈ur
mK̇ur

.

For Ẋ in mK̇ur with FmK̈ur
mK̇ur

(Ẋ) = Ẍ in mK̈ur, we see using (4.13) that

FmK̈ur
mK̇ur

(idẊ) = idẌ . Define

(FmK̈ur
mK̇ur

)Ẋ = ididẌ
: FmK̈ur

mK̇ur
(idẊ) =⇒ id

FmK̈ur
mK̇ur

(Ẋ)
.

This defines all the data of a weak 2-functor FmK̈ur
mK̇ur

: mK̇ur → mK̈ur, as in
§A.3. It is easy to check that the weak 2-functor axioms hold.

Now suppose that F M̈an
Ṁan

: Ṁan ↪→ M̈an is an inclusion of subcategories

Ṁan ⊆ M̈an satisfying either Proposition 3.21(a) or (b). Then Proposition

3.21 says that the maps F M̈an
Ṁan

in §3.3.7 from geometry in Ṁan to geometry in

M̈an used above are identity maps. Hence mK̇ur is actually a 2-subcategory

of mK̈ur, and the 2-functor FmK̈ur
mK̇ur

is the inclusion mK̇ur ⊆mK̈ur.

For the case of Proposition 3.21(b), when Ṁan is a full subcategory of M̈an,
then mK̇ur is a full 2-subcategory of mK̈ur. That is, if X,Y are objects of
mK̇ur then all 1-morphisms f , g : X → Y in mK̈ur are 1-morphisms in mK̇ur,
and all 2-morphisms η : f ⇒ g in mK̈ur are 2-morphisms in mK̇ur.

mKur

tt yy %% **
mKurgc mKurcoo

��

// mKurc,ac // mKuracoo

mKurc
we

Figure 4.1: 2-functors between 2-categories of m-Kuranishi spaces
from Definition 4.32. Arrows ‘→’ are inclusions of 2-subcategories.

Applying Definition 4.32 to the parts of the diagram Figure 3.1 of functors

F M̈an
Ṁan

involving the categories (4.36) yields a diagram Figure 4.1 of 2-functors

FmK̈ur
mK̇ur

. Arrows ‘→’ are inclusions of 2-subcategories.
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4.5 Discrete properties of 1-morphisms in mK̇ur

In §3.3.6 and §B.6 we defined when a property P of morphisms in Ṁan is discrete.
For example, when Ṁan = Manc from §2.1, for a morphism f : X → Y in
Manc to be interior, or simple, are both discrete conditions.

We will now show that a discrete property P of morphisms in Ṁan lifts to
a corresponding property P of 1-morphisms in mK̇ur, in a well behaved way.
We first define P for 1-morphisms of m-Kuranishi neighbourhoods, as in §4.1.

Definition 4.33. Let P be a discrete property of morphisms in Ṁan. Suppose
f : X → Y is a continuous map and Φij = (Vij , φij , φ̂ij) : (Vi, Ei, si, ψi) →
(Vj , Ej , sj , ψj) is a 1-morphism of m-Kuranishi neighbourhoods over (S, f), for
S ⊆ X open. We say that Φij is P if φij : Vij → Vj is P near ψ−1

i (S) in Vij . That
is, there should exist an open submanifold ι : U ↪→ Vij with ψ−1

i (S) ⊆ U ⊆ Vij
such that φij ◦ ι : U → Vj has property P in Ṁan.

Proposition 4.34. Let P be a discrete property of morphisms in Ṁan. Then:

(a) Let Φij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) be a 1-morphism of m-Kuranishi
neighbourhoods over (S, f) for f : X → Y continuous and S ⊆ X open. If
Φij is P and T ⊆ S is open then Φij |T is P . If {Ta : a ∈ A} is an open
cover of S and Φij |Ta is P for all a ∈ A then Φij is P .

(b) Let Φij ,Φ
′
ij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) be 1-morphisms over (S, f)

and Λij : Φij⇒Φ′ij a 2-morphism. Then Φij is P if and only if Φ′ij is P .

(c) Let f : X → Y, g : Y → Z be continuous, T ⊆ Y, S ⊆ f−1(T ) ⊆ X be
open, Φij : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) be a 1-morphism over (S, f),
and Φjk : (Vj , Ej , sj , ψj) → (Vk, Ek, sk, ψk) be a 1-morphism over (T, g),
so that Φjk ◦ Φij is a 1-morphism over (S, g ◦ f). If Φij ,Φjk are P then
Φjk ◦ Φij is P .

(d) Let Φij : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) be a coordinate change of m-
Kuranishi neighbourhoods over S ⊆ X. Then Φij is P .

Proof. Part (a) follows from Definition 3.18(iv), and part (b) from Definitions
3.18(vii) and 4.3(b), and part (c) from Definitions 3.18(iii) and 4.4.

For (d), as Φij is a coordinate change there exist a 1-morphism Φji : (Vj ,
Ej , sj , ψj) → (Vi, Ei, si, ψi) and 2-morphisms Λii : Φji ◦ Φij ⇒ id(Vi,Ei,si,ψi),

Λjj : Φij ◦ Φji ⇒ id(Vj ,Ej ,sj ,ψj). Write Φij = (Vij , φij , φ̂ij), Φji = (Vji, φji, φ̂ji),

and as in (3.8) consider the diagram in Ṁan:

φ−1
ij (Vji)

� � //

φij |φ−1
ij

(Vji)

))

Vij
� � //

φij

))

Vi

φ−1
ji (Vij) �� //

φji|φ−1
ji

(Vij)

55

Vji �� //
φji

55

Vj .
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For each x ∈ S let vi = ψ−1
i (x) ∈ φ−1

ij (Vji) ⊆ Vij ⊆ Vi and vj = ψ−1
j (x) ∈

φ−1
ji (Vij) ⊆ Vji ⊆ Vj , so that φij(vi) = vj and φji(vj) = vi by Definition 4.2(e)

for Φij ,Φji. Definition 4.3(b) for Λii,Λjj implies that φji ◦φij = idVi +O(si) on
φ−1
ij (Vji) and φij ◦φji = idVj +O(sj) on φ−1

ji (Vij). Therefore Definition 3.18(viii)
implies that φij is P near vi. As this holds for all x ∈ S, Definition 3.18(iv)
shows that φij is P near ψ−1

i (S), so Φij is P .

Definition 4.35. Let P be a discrete property of morphisms in Ṁan. Suppose
f : X → Y is a 1-morphism in mK̇ur, and use notation (4.6), (4.7), (4.9) for
X,Y ,f . We say that f is P if f ij is P in the sense of Definition 4.33 for all
i ∈ I and j ∈ J .

Proposition 4.36. Let P be a discrete property of morphisms in Ṁan. Then:

(a) Let f , g : X → Y be 1-morphisms in mK̇ur and η : f ⇒ g a 2-morphism.
Then f is P if and only if g is P .

(b) Let f : X → Y and g : Y → Z be 1-morphisms in mK̇ur. If f and g
are P then g ◦ f : X → Z is P .

(c) Identity 1-morphisms idX : X → X in mK̇ur are P . Equivalences
f : X → Y in mK̇ur are P .

Parts (b),(c) imply that we have a 2-subcategory mK̇urP ⊆mK̇ur containing
all objects in mK̇ur, and all 1-morphisms f in mK̇ur which are P , and all
2-morphisms η : f ⇒ g in mK̇ur between 1-morphisms f , g which are P .

Proof. For (a), use notation (4.6), (4.7), (4.9) for X,Y ,f , g. Then we have
2-morphisms of m-Kuranishi neighbourhoods ηij : f ij ⇒ gij for all i, j, so
Proposition 4.34(b) implies that f ij is P if and only if gij is P , and (a) follows.

For (b), use the notation of Definition 4.20, and suppose f , g are P . Then

for all i ∈ I, j ∈ J , k ∈ K we have 2-morphisms Θg,fijk : gjk ◦f ij ⇒ (g ◦f)ik over

(Tj , g ◦f) for Tj = Imχi∩f−1(Imψj)∩ (g ◦f)−1(Imωk). As f , g are P , f ij , gjk
are P , so gjk ◦ f ij is P by Proposition 4.34(c), and thus (g ◦ f)ik is P over
(Tj , g◦f) by Proposition 4.34(b). Since this holds for all j ∈ J , Proposition 4.34(a)
implies that (g◦f)ik is P over (S, g◦f) for S =

⋃
j∈J Tj = Imχi∩(g◦f)−1(Imωk),

which is the domain we want. As this holds for all i ∈ I and k ∈ K, g ◦ f is P .
For (c), that idX is P follows from (4.13) and Proposition 4.34(d), as the

Tij are coordinate changes. Let f : X → Y be an equivalence in mK̇ur, and
use notation (4.6), (4.7), (4.9). Then there exist a 1-morphism g : Y →X and
2-morphisms η : g ◦ f ⇒ idX , ζ : f ◦ g ⇒ idY . Using the proof of Proposition
4.34(d) with f ij , gji,ηii, ζjj in place of Φij ,Φji,Λii,Λjj shows that f ij is P , for
all i ∈ I and j ∈ J , so f is P .

Definition 4.37. (a) Taking Ṁan = Manc from §2.1 gives the 2-category of
m-Kuranishi spaces mKurc from Definition 4.29. We write

mKurc
in,mKurc

bn,mKurc
st,mKurc

st,in,mKurc
st,bn,mKurc

si
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for the 2-subcategories of mKurc with 1-morphisms which are interior, and
b-normal, and strongly smooth, and strongly smooth-interior, and strongly smooth-
b-normal, and simple, respectively. These properties of morphisms in Manc are
discrete by Example 3.19(a), so as in Definition 4.35 and Proposition 4.36 we
have corresponding notions of interior, . . . , simple 1-morphisms in mKurc.

(b) Taking Ṁan = Mangc from §2.4.1 gives the 2-category of m-Kuranishi
spaces with g-corners mKurgc from Definition 4.29. We write

mKurgc
in ,mKurgc

bn,mKurgc
si

for the 2-subcategories of mKurgc with 1-morphisms which are interior, and
b-normal, and simple, respectively. These properties of morphisms in Mangc are
discrete by Example 3.19(b), so we have corresponding notions for 1-morphisms
in mKurgc.

(c) Taking Ṁan = Manac from §2.4.2 gives the 2-category of m-Kuranishi
spaces with a-corners mKurac from Definition 4.29. We write

mKurac
in ,mKurac

bn,mKurac
st ,mKurac

st,in,mKurac
st,bn,mKurac

si

for the 2-subcategories of mKurac with 1-morphisms which are interior, and
b-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly
a-smooth-b-normal, and simple, respectively. These properties of morphisms in
Manac are discrete by Example 3.19(c), so we have corresponding notions for
1-morphisms in mKurac.

(d) Taking Ṁan = Manc,ac from §2.4.2 gives the 2-category of m-Kuranishi
spaces with corners and a-corners mKurc,ac from Definition 4.29. We write

mKurc,ac
in ,mKurc,ac

bn ,mKurc,ac
st ,mKurc,ac

st,in,mKurc,ac
st,bn,mKurc,ac

si

for the 2-subcategories of mKurc,ac with 1-morphisms which are interior, and
b-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly
a-smooth-b-normal, and simple, respectively. These properties of morphisms in
Manc,ac are discrete by Example 3.19(c), so we have corresponding notions for
1-morphisms in mKurc,ac.

Figure 4.1 gives inclusions between the 2-categories in (4.37). Combining
this with the inclusions between the 2-subcategories in Definition 4.37 we get a
diagram Figure 4.2 of inclusions of 2-subcategories of m-Kuranishi spaces.

Remark 4.38. (i) Most of the 2-categories mKurc
in,mKurc

bn, . . . in Definition
4.37 come from categories Manc

in,Manc
bn, . . . satisfying Assumptions 3.1–3.7,

so we could have applied §4.3 to construct 2-categories of m-Kuranishi spaces
mK̇urc directly from Ṁan = Manc

in,Manc
bn, . . . . But what we actually did

was slightly different. We explain this for Manc
in and mKurc

in, though it applies
to all the 2-categories above except those with simple 1-morphisms.

If X = (X, I) lies in mKurc, with notation (4.6), each Tii′ in I includes a
morphism τii′ : Uii′ → Ui′ in Manc. Then X lies in mKurc

in as defined above
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mKur

uu zz %% ))
mKurgc

si

��

mKurc
si

uu

oo //

��

mKurc,ac
si

uu

��

mKurac
si

uu

oo

��

mKurc
st,bn

//

xx ))

��

mKurc,ac
st,bn

))

��

mKurac
st,bn

oo

))

��

mKurgc
bn

��

mKurc
bn

oo //

��

mKurc,ac
bn

��

mKurac
bn

oo

��

mKurc
st,in

//

xx ))

��

mKurc,ac
st,in

))

��

mKurac
st,in

oo

))

��

mKurgc
in

��

mKurc
in

oo //

��

mKurc,ac
in

��

mKurac
in

oo

��

mKurc
st

//

))xx

mKurc,ac
st

))

mKurac
st

oo

))
mKurgc mKurcoo // mKurc,ac mKuracoo

Figure 4.2: Inclusions of 2-categories of m-Kuranishi spaces.

if τii′ is interior near χ−1
i (Imχi′) for all i, i′ ∈ I, as in Definition 4.33. But X

lies in the 2-category mK̇ur associated to Ṁan = Manc
in in §4.3 if the τii′

are interior on all of Uii′ . Similarly, if f : X → Y in (4.9) is a 1-morphism in
mKurc then f lies in mKurc

in above if the fij : Uij → Vj in f ij are interior

near (f ◦ χi)−1(Imψj), but f lies in mK̇ur if the fij are interior on all of Uij .

We have mK̇ur ⊆ mKurc
in ⊆ mKurc, where the inclusion mK̇ur ⊆

mKurc
in is an equivalence of 2-categories, but mK̇ur is not closed in mKurc

under either equivalences of objects or under 2-isomorphism of 1-morphisms,
but mKurc

in is closed in mKurc under both of these. This closure is a useful
property, which is why we prefer this definition of mKurc

in, . . . .

(ii) In §2.4.2 we mentioned a functor F
Manc

st

Manac
st

: Manac
st → Manc

st from [66,

§3]. Taking this to be F M̈an
Ṁan

: Ṁan → M̈an and applying §4.4 gives a 2-

functor FmK̈ur
mK̇ur

: mK̇ur → mK̈ur. This does not map mKurac
st → mKurc

st,

with the notation above, since mK̇ur ⊂ mKurac
st , mK̈ur ⊂ mKurc

st are
proper but equivalent 2-subcategories, as in (i). However, we can get a 2-

functor F
mKurcst
mKuracst

: mKurac
st → mKurc

st by composing with a quasi-inverse

for mK̇ur ↪→ mKurac
st . The same applies to F

Manc
st

Manc,ac
st

: Manc,ac
st → Manc

st

in §2.4.2.
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4.6 M-Kuranishi spaces with corners.
Boundaries, k-corners, and the corner 2-functor

We now change notation from Ṁan in §3.1–§3.3 to Ṁanc, and from mK̇ur
in §4.3–§4.5 to mK̇urc. Suppose throughout this section that Ṁanc satisfies
Assumption 3.22 in §3.4.1. Then Ṁanc satisfies Assumptions 3.1–3.7, so §4.3
constructs a 2-category mK̇urc of m-Kuranishi spaces associated to Ṁanc.
For instance, mK̇urc could be mKurc,mKurgc,mKurac or mKurc,ac from
Definition 4.29. We will refer to objects of mK̇urc as m-Kuranishi spaces with
corners. We also write mK̇urc

si for the 2-subcategory of mK̇urc with simple
1-morphisms in the sense of §4.5, noting that simple is a discrete property of
morphisms in Ṁanc by Assumption 3.22(c).

Generalizing §2.2 for ordinary manifolds with corners Manc, we will define
the boundary ∂X and k-corners Ck(X) for each X in mK̇urc, and the corner
2-functor C : mK̇urc → mK̇̌urc. The definitions below are rather long,
mechanical, heavy on notation, and boring. Despite this, the underlying ideas
are straightforward, with little subtlety — everything just works, mostly in
the obvious way. The principle is to apply C : Ṁanc → Ṁ̌anc in Assumption
3.22(g) to everything in sight, and use the ideas of §3.4.3 on how differential
geometry lifts along Πk : Ck(X)→ X.

4.6.1 Definition of the k-corners Ck(X)

Definition 4.39. Let X = (X,K) in mK̇urc be an m-Kuranishi space with cor-
ners with vdimX = n, and as in Definition 4.14 write K =

(
I, (Vi, Ei, si, ψi)i∈I ,

Φij, i,j∈I , Λhij, h,i,j∈I
)

with Φij = (Vij , φij , φ̂ij) and Λhij = [V́hij , λ̂hij ]. Let

k ∈ N. We will define an m-Kuranishi space with corners Ck(X) in mK̇urc

called the k-corners of X, with vdimCk(X) = n − k, and a 1-morphism
Πk : Ck(X)→X in mK̇urc.

Explicitly we write Ck(X) = (Ck(X),Kk) with

Kk =
(
{k} × I, (V(k,i), E(k,i), s(k,i), ψ(k,i))i∈I ,Φ(k,i),(k,j),

i,j∈I
,Λ(k,h)(k,i)(k,j),

h,i,j∈I

)
with Φ(k,i)(k,j) = (V(k,i)(k,j), φ(k,i)(k,j), φ̂(k,i)(k,j))

and Λ(k,h)(k,i)(k,j) = [V́(k,h)(k,i)(k,j), λ̂(k,h)(k,i)(k,j)],

where Kk has indexing set {k}× I with elements (k, i) for i ∈ I, for reasons that
will become clear in §4.6.2, and as in (4.9) we write

Πk =
(
Πk,Π(k,i)j, i,j∈I , Πj, j∈I

(k,i)(k,i′), i,i′∈I , Πjj′, j,j′∈I
(k,i), i∈I

)
, where

Π(k,i)j = (V(k,i)j ,Π(k,i)j , Π̂(k,i)j) : (V(k,i), E(k,i), s(k,i), ψ(k,i))

−→ (Vj , Ej , sj , ψj),

Πj
(k,i)(k,i′) = [V́ j(k,i)(k,i′), Π̂

j
(k,i)(k,i′)] : Π(k,i′)j ◦ Φ(k,i)(k,i′) =⇒ Π(k,i)j ,

Πjj′

(k,i) = [V́ jj
′

(k,i), Π̂
jj′

(k,i)] : Φjj′ ◦Π(k,i)j =⇒ Π(k,i)j′ .
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The hardest part is to define the topological space Ck(X) and the continuous
maps Πk : Ck(X)→ X, ψ(k,i) : s−1

(k,i)(0)→ Ck(X), and we do these last.

For each i ∈ I, define V(k,i) = Ck(Vi) to be the k-corners of Vi from As-
sumption 3.22(d). Define E(k,i) → V(k,i) to be the pullback vector bundle
Π∗k(Ei), where Πk : V(k,i) = Ck(Vi) → Vi is as in Assumption 3.22(d), and let
s(k,i) = Π∗k(si) in Γ∞(E(k,i)) be the pullback section. Using Assumption 3.22
we can show these are equivalent to E(k,i) = Ck(Ei), s(k,i) = Ck(si), where
si : Vi → Ei is simple. Note that

dimV(k,i)−rankE(k,i) =dimCk(Vi)−rankEi=dimVi−k−rankEi=n−k,

by Assumption 3.22(d), as required in Definition 4.14(b) for Ck(X).
Although we have not yet defined Ck(X) and ψ(k,i) : s−1

(k,i)(0)→ Ck(X), the

definition we later give will have the property that for i, j ∈ I we have

ψ−1
(k,i)(Imψ(k,j)) = (Πk ◦ ψ(k,i))

−1(Imψj) = Π−1
k (ψ−1

i (Imψj)), (4.39)

where ψ−1
i (Imψj) ⊆ s−1

i (0) ⊆ Vi and Πk : V(k,i) = Ck(Vi) → Vi, and the

definition of s(k,i) implies that s−1
(k,i)(0) = Π−1

k (s−1
i (0)).

Let i, j ∈ I. Since simple maps are a discrete property in Ṁanc by Assump-
tion 3.22(c), Definition 4.33 and Proposition 4.34(d) imply that φij : Vij → Vj is
simple near ψ−1

i (Imψj) ⊆ Vij . Let V ′ij ⊆ Vij be the maximal open set on which

φij is simple, so that ψ−1
i (Imψj) ⊆ V ′ij . Write φ′ij , φ̂

′
ij for the restrictions of

φij , φ̂ij to V ′ij . Define
V(k,i)(k,j) = Ck(V ′ij). (4.40)

Then V(k,i)(k,j) is open in V(k,i) by Assumption 3.22(j), as V ′ij ⊆ Vi is open,

and ψ−1
(k,i)(Imψ(k,i) ∩ Imψ(k,j)) ⊆ V(k,i)(k,j) as required in Definition 4.2(a) for

Φ(k,i)(k,j) follows from (4.39) and ψ−1
i (Imψi ∩ Imψj) ⊆ V ′ij . As φ′ij : V ′ij → Vj

is simple, Assumption 3.22(d) gives a morphism Ck(φ′ij) : Ck(V ′ij)→ Ck(Vj) in

Ṁanc. Define
φ(k,i)(k,j) = Ck(φ′ij) : V(k,i)(k,j) −→ V(k,j). (4.41)

Assumption 3.22(g) implies that φ′ij ◦Πk = Πk ◦ Ck(φ′ij) : Ck(V ′ij)→ Vj . Thus
we may define

φ̂(k,i)(k,j) = Π∗k(φ̂′ij) : E(k,i)|V(k,i)(k,j)
= Π∗k(Ei|V ′ij ) −→ Π∗k ◦ φ′∗ij(Ej)

= (φ′ij ◦Πk)∗(Ej) = (Πk ◦ Ck(φ′ij))
∗(Ej)

= Ck(φ′ij)
∗ ◦Π∗k(Ej) = φ∗(k,i)(k,j)(E(k,j)).

(4.42)

We have φ̂ij(si|Vij ) = φ∗ij(sj) + O(s2
i ) by Definition 4.2(d) for Φij , so pulling

back by Πk : V(k,i)(k,j) = Ck(V ′ij)→ V ′ij ⊆ Vij using Theorem 3.28(i) yields

φ̂(k,i)(k,j)(s(k,i)|V(k,i)(k,j)
) = φ∗(k,i)(k,j)(s(k,j)) +O(s2

(k,i)),

giving Definition 4.2(d) for Φij .
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For Π(k,i)j , define

V(k,i)j = Ck(Vij), and

Π(k,i)j = φij ◦Πk : V(k,i)j = Ck(Vij) −→ Vj ,

Π̂(k,i)j = Π∗k(φ̂ij) : E(k,i)|V(k,i)j
= Π∗k(Ei|Vij ) −→

Π∗k ◦ φ∗ij(Ej) = (φij ◦Πk)∗(Ej) = Π∗(k,i)j(Ej).

(4.43)

We verify Definition 4.2(a),(d) for Π(k,i)j as for Φij .
We have now completely defined the 1-morphisms Φ(k,i)(k,j),Π(k,i)j , although

we have not yet defined the data Ck(X) or Πk : Ck(X) → X or ψ(k,i) in
(V(k,i), E(k,i), s(k,i), ψ(k,i)), and have not yet verified condition Definition 4.2(e)
for Φ(k,i)(k,j),Π(k,i)j which involves Ck(X),Πk, ψ(k,i), ψ(k,j). The definition

of the 2-morphisms Λ(k,h)(k,i)(k,j),Π
j
(k,i)(k,i′),Π

jj′

(k,i) in Definition 4.3 does not

involve Ck(X),Πk, ψ(k,i), so we can do these next.

For h, i, j ∈ I, choose a representative (V́hij , λ̂hij) for the ∼-equivalence class

Λhij . Then V́hij ⊆ Vhi ∩ φ−1
hi (Vij) ∩ Vhj ⊆ Vh is open, and λ̂hij : Eh|V́hij →

Tφij◦φhiVj |V́hij is a morphism. Set V́ ′hij = V́hij ∩ V ′hi ∩ φ
−1
hi (V ′ij) ∩ V ′hj . Define

V́(k,h)(k,i)(k,j) = Ck(V́ ′hij) ⊆ Ck(Vh) = V(k,h). (4.44)

Define a morphism

λ̂(k,h)(k,i)(k,j) = Π�k(λ̂hij) : E(k,h)|V́(k,h)(k,i)(k,j)
= Π∗k(Eh|V́ ′hij )

−→ Tφ(k,i)(k,j)◦φ(k,h)(k,i)
V(k,j)|V́(k,h)(k,i)(k,j)

= TCk(φij◦φhi|V́ ′
hij

)Ck(Vj),
(4.45)

where Π�k(λ̂hij) is as in §3.4.3 and §B.8.1.
Now Definition 4.3(a) for Λhij gives

ψ−1
h (Imψh ∩ Imψi ∩ Imψj) ⊆ V́ ′hij .

Applying Π−1
k to this and using (4.39) (which we assume for now) yields

ψ−1
(k,h)(Imψ(k,h) ∩ Imψ(k,i) ∩ Imψ(k,j)) ⊆ V́(k,h)(k,i)(k,j), (4.46)

which is Definition 4.3(a) for (V́(k,h)(k,i)(k,j), λ̂(k,h)(k,i)(k,j)) for the domain S =
Imψ(k,h)∩ Imψ(k,i)∩ Imψ(k,j) for Λ(k,h)(k,i)(k,j) in Definition 4.14(d) for Ck(X).
Definition 4.3(b) for Λhij gives

φhj = φij ◦ φhi + λ̂hij ◦ sh +O(s2
h),

φ̂hj = φ∗hi(φ̂ij) ◦ φ̂hi + (φij ◦ φhi)∗(dsj) ◦ λ̂hij +O(sh).

Pulling both equations back by Πk : V́(k,h)(k,i)(k,j) = Ck(V́ ′hij)→ V́ ′hij and using
Theorem 3.28(vi),(vii) yields

φ(k,h)(k,j) = φ(k,i)(k,j) ◦ φ(k,h)(k,i) + λ̂(k,h)(k,i)(k,j) ◦ s(k,h) +O(s2
(k,h)),

φ̂(k,h)(k,j) = φ′∗hi(φ̂(k,i)(k,j)) ◦ φ̂(k,h)(k,i)

+(φ(k,i)(k,j) ◦ φ(k,h)(k,i))
∗(ds(k,j)) ◦ λ̂(k,h)(k,i)(k,j) +O(s(k,h)),

(4.47)
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which is Definition 4.3(b) for (V́(k,h)(k,i)(k,j), λ̂(k,h)(k,i)(k,j)).

Write Λ(k,h)(k,i)(k,j) = [V́(k,h)(k,i)(k,j), λ̂(k,h)(k,i)(k,j)] for the ∼-equivalence

class of (V́(k,h)(k,i)(k,j), λ̂(k,h)(k,i)(k,j)), as in Definition 4.3. Theorem 3.28(ii)

implies that equivalence ∼ on pairs (V́hij , λ̂hij) lifts to ∼ on pairs (V́(k,h)(k,i)(k,j),

λ̂(k,h)(k,i)(k,j)), so Λ(k,h)(k,i)(k,j) depends only on Λhij = [V́hij , λ̂hij ], and (once
we define Ck(X), ψ(k,i) and verify the Φ(k,i)(k,j) are 1-morphisms), we have a
well defined 2-morphism of m-Kuranishi neighbourhoods

Λ(k,h)(k,i)(k,j) : Φ(k,i)(k,j) ◦ Φ(k,h)(k,i) =⇒ Φ(k,h)(k,j).

Next, for i, i′, j ∈ I and i, j, j′ ∈ I, choose representatives (V́ii′j , λ̂ii′j) and

(V́ijj′ , λ̂ijj′) for Λii′j = [V́ii′j , λ̂ii′j ] and Λijj′ = [V́ijj′ , λ̂ijj′ ], define V́ j(k,i)(k,i′) =

Ck(V́ii′j) and V́ jj
′

(k,i) = Ck(V́ijj′), and define morphisms Π̂j
(k,i)(k,i′), Π̂

jj′

(k,i) by the

commutative diagrams

E(k,i)|V́ j
(k,i)(k,i′)

Π̂j
(k,i)(k,i′)��

Π∗k(Ei|V́ii′j )

Π∗k(λ̂ii′j) ��
TΠ(k,i′)j◦φ(k,i)(k,i′)Vj |V́ j

(k,i)(k,i′)
Tφi′j◦φii′◦ΠkVj ,

E(k,i)|V́ jj′
(k,i)

Π̂jj
′

(k,i)��

Π∗k(Ei|V́ijj′ )

Π∗k(λ̂ijj′ ) ��
Tφjj′◦Π(k,i)j

Vj |V́ jj′
(k,i)

Tφjj′◦φij◦ΠkVj ,

where Π∗k(λ̂ii′j),Π
∗
k(λ̂ijj′) are as in §3.3.4(g).

Definition 4.3(a),(b) for (V́ j(k,i)(k,i′), Π̂
j
(k,i)(k,i′)) and (V́ jj

′

(k,i), Π̂
jj′

(k,i)) follow from

Definition 4.3(a),(b) for (V́ii′j , λ̂ii′j) and (V́ijj′ , λ̂ijj′), as for (4.46)–(4.47). Write

Πj
(k,i)(k,i′) = [V́ j(k,i)(k,i′), Π̂

j
(k,i)(k,i′)] and Πjj′

(k,i) = [V́ jj
′

(k,i), Π̂
jj′

(k,i)] for the ∼-equival-

ence classes of (V́ j(k,i)(k,i′), Π̂
j
(k,i)(k,i′)) and (V́ jj

′

(k,i), Π̂
jj′

(k,i)), in the sense of Definition

4.3. These depend only on Λii′j and Λijj′ , and (once we define Ck(X),Πk,

ψ(k,i) and verify the Π(k,i)j ,Φ(k,i)(k,j) are 1-morphisms), Πj
(k,i)(k,i′) : Π(k,i′)j ◦

Φ(k,i)(k,i′) ⇒ Π(k,i)j and Πjj′

(k,i) : Φjj′ ◦Π(k,i)j ⇒ Π(k,i)j′ are 2-morphisms of

m-Kuranishi neighbourhoods.
It remains to define the topological space Ck(X) and the continuous maps

ψ(k,i) : s−1
(k,i)(0) → Ck(X), Πk : Ck(X) → X. Define a binary relation ≈

on
∐
i∈I s

−1
(k,i)(0) by vi ≈ vj if i, j ∈ I and vi ∈ V(k,i)(k,j) ∩ s−1

(k,i)(0) with

φ(k,i)(k,j)(vi) = vj in s−1
(k,j)(0). We claim that ≈ is an equivalence relation

on
∐
i∈I s

−1
(k,i)(0).

To prove this, suppose h, i, j ∈ I and vh ∈ s−1
(k,h)(0), vi ∈ s−1

(k,i)(0), vj ∈
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s−1
(k,j)(0) with vh ≈ vi and vi ≈ vj . Then

vh ∈ s−1
(k,h)(0) ∩ V(k,h)(k,i) = Π−1

k (s−1
h (0) ∩ Vhi) = Π−1

k (ψ−1
h (Imψh ∩ Imψi)),

vi ∈ s−1
(k,i)(0) ∩ V(k,i)(k,j) = Π−1

k (s−1
i (0) ∩ Vij) = Π−1

k (ψ−1
i (Imψi ∩ Imψj)),

with φ(k,h)(k,i)(vh) = vi, φ(k,i)(k,j)(vi) = vj . Hence

ψh ◦Πk(vh) = ψi ◦ φhi ◦Πk(vh) = ψi ◦Πk ◦ φ(k,h)(k,i)(vh)

= ψi ◦Πk(vi) ∈ Imψi ∩ Imψj ,

using Definition 4.2(e) for Φhi. Thus

vh ∈ Π−1
k (ψ−1

h (Imψh ∩ Imψj)) = Π−1
k (s−1

h (0) ∩ V ′hj) = s−1
(k,h)(0) ∩ V(k,h)(k,j),

and φ(k,h)(k,j)(vh) is defined. The first equation of (4.47) and s(k,h)(vh) = 0
imply that φ(k,h)(k,j)(vh) = φ(k,i)(k,j)◦φ(k,h)(k,i)(vh) = φ(k,i)(k,j)(vi) = vj . Hence
vh ≈ vj , and vh ≈ vi, vi ≈ vj imply that vh ≈ vj .

Taking j = h and noting that φ(k,h)(k,h) = idV(k,h)
, we see that

φ(k,h)(k,i)|··· : s−1
(k,h)(0) ∩ V(k,h)(k,i) −→ s−1

(k,i)(0) ∩ V(k,i)(k,h),

φ(k,i)(k,h)|··· : s−1
(k,i)(0) ∩ V(k,i)(k,h) −→ s−1

(k,h)(0) ∩ V(k,h)(k,i),
(4.48)

are inverse maps. Hence vh ≈ vi implies that vi ≈ vh. And vh ≈ vh for any
vh ∈ s−1

(k,h)(0) as φ(k,h)(k,h) = idV(k,h)
. Therefore ≈ is an equivalence relation.

Now define Ck(X) to be the topological space, with the quotient topology,

Ck(X) =
[∐

i∈I s
−1
(k,i)(0)

]/
≈ . (4.49)

For each i ∈ I define ψ(k,i) : s−1
(k,i)(0)→ Ck(X) by ψ(k,i) : vi 7→ [vi], where [vi] is

the ≈-equivalence class of vi. Define Πk : Ck(X)→ X by Πk([vi]) = ψi ◦ Πk(vi)
for i ∈ I and vi ∈ s−1

(k,i)(0), so that Πk(vi) ∈ s−1
i (0) and ψi ◦ Πk(vi) ∈ X. To

show this is well defined, suppose [vi] = [vj ], so that i, j ∈ I and vi ∈ s−1
(k,i)(0),

vj ∈ s−1
(k,j)(0) with vi ≈ vj . Then vi ∈ V(k,i)(k,j) with φ(k,i)(k,j)(vi) = vj , so that

ψj ◦Πk(vj) = ψj ◦Πk ◦ φ(k,i)(k,j)(vi) = ψj ◦ φij ◦Πk(vi) = ψi ◦Πk(vi),

using Definition 4.2(e) for Φij in the last step. Hence Πk is well defined. Observe
that (4.39) follows easily from the definitions of Ck(X),Πk, ψ(k,i) above.

We have now defined all the data in Ck(X) = (Ck(X),Kk). It remains
to verify the conditions of Definition 4.14. As Ck(X) is made by gluing the
topological spaces s−1

(k,i)(0) for i ∈ I by an equivalence relation vh ≈ vi for

vh ∈ s−1
(k,h)(0), vi ∈ s−1

(k,i)(0) which identifies open sets s−1
(k,h)(0) ∩ V(k,h)(k,i)

in s−1
(k,h)(0) and s−1

(k,i)(0) ∩ V(k,i)(k,h) in s−1
(k,i)(0) by a homeomorphism (since

φ(k,h)(k,i)|···, φ(k,i)(k,h)|··· in (4.48) are continuous, inverse maps), it follows that
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ψ(k,i) : s−1
(k,i)(0) → Ck(X) is a homeomorphism with an open set Imψ(k,i)

in Ck(X) for i ∈ I, giving Definition 4.1(d) for (V(k,i), E(k,i), s(k,i), ψ(k,i)), so
(V(k,i), E(k,i), s(k,i), ψ(k,i)) is an m-Kuranishi neighbourhood on Ck(X) for i ∈ I.

Because ψ(k,i) : s−1
(k,i)(0)→ Imψ(k,i) is a homeomorphism, we see that

Πk|Imψ(k,i)
= ψi ◦Πk ◦ (ψ(k,i))

−1 : Imψ(k,i) −→ X,

which is clearly continuous. As the Imψ(k,i), i ∈ I cover Ck(X), this proves that

Πk : Ck(X)→ X is continuous. Also Imψ(k,i) = Π−1
k (Imψi), and Πk|Imψ(k,i)

:

Imψ(k,i) → Imψi is isomorphic to Πk|··· : Π−1
k (s−1

i (0)) → s−1
i (0). Since Πk :

Ck(Vi) → Vi is proper with finite fibres by Assumption 3.22(d), we see that
Πk|··· : Π−1

k (Imψi) → Imψi is proper with finite fibres. As the Imψi : i ∈ I
cover X, it follows that Πk : Ck(X)→ X is proper with finite fibres.

Suppose x′1 6= x′2 ∈ Ck(X), and set x1 = Πk(x′1), x2 = Πk(x′2) in X. If
x1 6= x2 then as X is Hausdorff there exist open x1 ∈ U1 ⊆ X, x2 ∈ U2 ⊆ X
with U1 ∩ U2 = ∅, and then U ′1 := Π−1

k (U1), U ′2 := Π−1
k (U2) are open in X

with x′1 ∈ U ′1, x′2 ∈ U ′2 and U ′1 ∩ U ′2 = ∅. If x1 = x2 then x1, x2 ∈ Imψi ⊆ X
for some i ∈ I, so x′1, x

′
2 ∈ Imψ(k,i) ⊆ Ck(X). But Imψ(k,i) is open in Ck(X)

and is homeomorphic to s−1
(k,i)(0) ⊆ V(k,i), which is Hausdorff by Assumption

3.2(b) for V(k,i). Hence there exist open x′1 ∈ U ′1 ⊆ Imψ(k,i) ⊆ Ck(X) and
x′2 ∈ U ′2 ⊆ Imψ(k,i) ⊆ Ck(X) with U ′1 ∩ U ′2 = ∅. Therefore Ck(X) is Hausdorff.

AsX is second countable and the Imψi, i ∈ I coverX, there exists a countable
subset J ⊆ I with X =

⋃
i∈J Imψi. Therefore Ck(X) =

⋃
i∈J Imψ(k,i). But

each Imψ(k,i) is homeomorphic to s−1
(k,i)(0) ⊆ V(k,i), which is second countable by

Assumption 3.2(b) for V(k,i). So Ck(X) is a countable union of second countable
open subspaces, and is second countable.

For all of Definition 4.14(a)–(h) for Ck(X), either we have proved them
above, or they follow from Definition 4.14(a)–(h) for X by pulling back by Πk

and using Theorems 3.27–3.28. (In (c), that Φ(k,i)(k,j) is a coordinate change
follows from Φ(k,i)(k,j) a 1-morphism and (d),(f).) Hence Ck(X) = (Ck(X),Kk)

is an m-Kuranishi space with corners in mK̇urc, with vdimCk(X) = n− k.
Similarly, for Definition 4.17(a)–(h) for Πk : Ck(X) → X, either we have

proved them above, or they follow from Definition 4.14 for X using Theorems
3.27–3.28, where we deduce Definition 4.17(f)–(h) for Πk from Definition 4.14(h)
for X. Thus Πk : Ck(X)→X is a 1-morphism in mK̇urc.

When k = 1 we also write ∂X = C1(X) and call it the boundary of X, and
we write iX : ∂X →X in place of Π1 : C1(X)→X.

We summarize Definition 4.39 in:

Theorem 4.40. For each X in mK̇urc and k = 0, 1, . . . we have defined the
k-corners Ck(X), an object in mK̇urc with vdimCk(X) = vdimX − k, and
a 1-morphism Πk : Ck(X)→X in mK̇urc, whose underlying continuous map
Πk : Ck(X)→ X is proper with finite fibres. We also write ∂X = C1(X), called
the boundary of X, and we write iX = Π1 : ∂X →X.
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Remark 4.41. (a) The definitions of Ck(X) and Πk : Ck(X) → X in Def-
inition 4.39 involve the notions of simple maps in Ṁanc, and the functor
Ck : Manc

si → Manc
si, and the projections Πk : Ck(V ) → V for V ∈ Ṁanc.

Apart from these, they do not involve the corner functor C : Ṁanc → Ṁ̌anc.
As in Example 3.24, when Ṁanc is Manc,Manc

st,Manac,Manac
st ,Manc,ac

or Manc,ac
st there are two possibilities C,C ′ for C : Ṁanc → Ṁ̌anc. In each

case, simple maps, the functor Ck, and projections Πk, are the same for C,C ′.
Therefore Ck(X) and Πk : Ck(X)→X in mK̇urc are the same for C and C ′.

(b) Definition 4.39 is similar to Fukaya, Oh, Ohta and Ono [24, Def. A1.30] for
FOOO Kuranishi spaces — see §7.1 for more details.

4.6.2 The corner 2-functor C : mK̇urc →mK̇̌urc

Definition 4.42. Define the 2-category mK̇̌urc by following the definition of
mK̇urc in §4.3, but with the following modifications. In Definition 4.14, for
objects X = (X,K) in mK̇̌urc, rather than taking vdimX to be an integer
n, it is a locally constant function vdim : X → Z. In part (b), we omit
dimVi− rankEi = n, but instead we require that vdim |Imψi = dimVi− rankEi,
for all i ∈ I. This determines vdim : X → Z, so it is not extra data. Objects of
mK̇̌urc will be called m-Kuranishi spaces with corners of mixed dimension.

Then mK̇urc embeds as a full 2-subcategory mK̇urc ⊂ mK̇̌urc in the
obvious way. Any X in mK̇̌urc may be uniquely written as X =

∐
n∈ZXn,

where Xn ⊆X is open and closed with topological space Xn = vdim−1(n), and
Xn ∈mK̇urc ⊂mK̇̌urc with vdimXn = n ∈ Z.

If f : X → Y is a 1-morphism in mK̇̌urc with X =
∐
m∈ZXm, Y =∐

n∈Z Y n for Xm,Y n in mK̇urc with vdimXm = m, vdimY n = n, then

f |Xmn
: Xmn → Y n is a 1-morphism in mK̇urc for all m,n ∈ Z, where

Xmn := Xm∩f−1(Y n) is open and closed inXm ⊆X, withXm =
∐
n∈ZXmn.

An alternative way to construct mK̇̌urc from mK̇urc is to say that objects
of mK̇̌urc are

∐
n∈ZXn for Xn in mK̇urc with vdimXn = n as above, and

a 1-morphism f :
∐
m∈ZXm →

∐
n∈Z Y n in mK̇̌urc assigns a decomposition

Xm =
∐
n∈ZXmn in mK̇urc for m ∈ Z with Xmn ⊆Xm open and closed, and

1-morphisms fmn : Xmn → Y n in mK̇urc for all m,n ∈ Z, and so on.
We write mK̇̌urc

si for the 2-subcategory of mK̇̌urc with the same objects,
and with simple 1-morphisms, and all 2-morphisms between 1-morphisms in
mK̇̌urc

si. For the examples of mK̇urc
si ⊆ mK̇urc in §4.3 and §4.5 we use the

obvious notation for the corresponding 2-categories mK̇̌urc
si ⊆mK̇̌urc, so for

instance we enlarge mKurc associated to Ṁanc = Manc to mǨurc.

Definition 4.43. We will define a weak 2-functor C : mK̇urc → mK̇̌urc,
the corner 2-functor. On objects X in mK̇urc, define C(X) =

∐∞
k=0 Ck(X)

in mK̇̌urc. Extending the notation of Definition 4.39, we regard C(X) =
(C(X),KN) as a single object in mK̇̌urc, where KN has indexing set N× I, and
the part of C(X) with indexing set {k} × I ⊂ N × I for k ∈ N is Ck(X) ⊂
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C(X). Define a 1-morphism Π : C(X)→X in mK̇̌urc by Π =
∐∞
k=0 Πk, for

Πk : Ck(X)→X as in Definition 4.39.
Let f : X → Y be a 1-morphism in mK̇urc, and use notation (4.6), (4.7)

and (4.9) for X,Y ,f . Thus as above we write

C(X) = (C(X), IN), IN =
(
N× I, (U(k,i), D(k,i), r(k,i), χ(k,i))(k,i)∈N×I ,

T(k,i)(k′,i′) = (U(k,i)(k′,i′), τ(k,i)(k′,i′), τ̂(k,i)(k′,i′))(k,i),(k′,i′)∈N×I ,

K(k,i)(k′,i′)(k′′,i′′) = [Ú(k,i)(k′,i′)(k′′,i′′), κ̂(k,i)(k′,i′)(k′′,i′′)](k,i),(k′,i′),(k′′,i′′)∈N×I
)
,

C(Y ) = (C(Y ),J N), J N =
(
N× J, (V(l,j), E(l,j), s(l,j), ψ(l,j))(l,j)∈N×J ,

Υ(l,j)(l′,j′) = (V(l,j)(l′,j′), υ(l,j)(l′,j′), υ̂(l,j)(l′,j′))(l,j),(l′,j′)∈N×J ,

Λ(l,j)(l′,j′)(l′′,j′′) = [V́(l,j)(l′,j′)(l′′,j′′), λ̂(l,j)(l′,j′)(l′′,j′′)](l,j),(l′,j′),(l′′,j′′)∈N×J
)
.

We will define a 1-morphism C(f) : C(X)→ C(Y ) in mK̇̌urc, where

C(f) =
(
C(f),f (k,i)(l,j), (k,i)∈N×I, (l,j)∈N×J ,

F
(l,j), (l,j)∈N×J
(k,i)(k′,i′), (k,i),(k′,i′)∈N×I ,F

(l,j)(l′,j′), (l,j),(l′,j′)∈N×J
(k,i), (k,i)∈N×I

)
.

(4.50)

First we define the map C(f) : C(X) → C(Y ). Suppose x′ ∈ Ck(X) ⊆ C(X)
with Πk(x′) = x ∈ X, and let y = f(x) ∈ Y . Choose i ∈ I and j ∈ J with
x ∈ Imχi and y ∈ Imψj , so that x′ ∈ Imχ(k,i). Write ui = χ−1

i (x) ∈ r−1
i (0) ⊆

Ui, u
′
i = χ−1

(k,i)(x
′) ∈ r−1

(k,i)(0) ⊆ U(k,i) = Ck(Ui), so that Πk(u′i) = ui, and write

vj = ψ−1
j (y) ∈ s−1

j (0) ⊆ Vj . Then fij(vi) = vj by Definition 4.2(e) for f ij .

In f we have f ij = (Uij , fij , f̂ij) : (Ui, Di, ri, χi) → (Vj , Ej , sj , ψj), and
ui ∈ Uij ⊆ Ui, so that u′i ∈ Ck(Uij) ⊆ Ck(Ui). Then fij : Uij → Vj is a

morphism in Ṁanc, so C(fij) : C(Uij) → C(Vj) is a morphism in Ṁ̌anc by
Assumption 3.22(g). Write v′j = C(fij)(u

′
i) ∈ Cl(Vj) ⊆ C(Vj). Then

Πl(v
′
j) = Πl ◦ C(fij)(u

′
i) = fij ◦Πk(u′i) = fij(ui) = vj ∈ s−1

j (0),

so v′j ∈ Π−1
l (s−1

j (0)) = s−1
(l,j)(0). Define C(f)(x′) = ψ(l,j)(v

′
j) ∈ Cl(Y ) ⊆ C(Y ).

To show this well defined, let ı̃ ∈ I, ̃ ∈ J be alternative choices with
x ∈ Imχı̃, y ∈ Imψ̃, and write uı̃, u

′
ı̃, v̃, v

′
̃ for the alternative ui, u

′
i, vj , v

′
j . We

have coordinate changes Tı̃i = (Uı̃i, τı̃i, τ̂ı̃i), Υj̃ = (Vj̃, υj̃, υ̂j̃) in X,Y . Then

ψ(l,j)(v
′
j) = ψ(l,j) ◦ C(fij)(u

′
i) = ψ(l,̃) ◦ C(υj̃) ◦ C(fij) ◦ C(τı̃i)(u

′
ı̃)

= ψ(l,̃) ◦ C(υj̃ ◦ fij ◦ τı̃i)(u′ı̃) = ψ(l,̃) ◦ C(fı̃̃)(u
′
ı̃) = ψ(l,̃)(v

′
̃).

Here in the first and fifth steps we use the definitions of v′j , v
′
̃, in the second the

definition of Ck(X), Cl(Y ) in (4.49) with τı̃i, υj̃ simple near uı̃, v̃ so that k, l do

not change, in the third that C : Ṁanc → Ṁ̌anc is a functor, and in the fourth
Definition 4.17(g) for f . Hence C(f)(x′) is well defined.

We now have a commutative diagram

u′i ∈ r
−1
(k,i)(0) ∩ Ck(Uij) ∩ C(fij)

−1(Cl(Vj))

χ(k,i)|···
��

C(fij)|···
// s−1

(l,j)(0)

ψ(l,j)
��

x′ ∈ C(X)
C(f) // C(Y ).

(4.51)
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As the top row is continuous, and the columns are homeomorphisms with open
subsets of C(X), C(Y ), we see that C(f) is continuous in an open neighbourhood
of x′ in C(X). As this holds for all x′, C(f) is continuous.

If f : X → Y is simple then fij : Uij → Vj is simple near r−1
i (0) for all i, j,

so C(fij) maps Ck(Uij)→ Ck(Vj) near r−1
(k,i)(0) for all k = 0, 1, . . . , and hence

C(f) maps Ck(X)→ Ck(Y ) for all k = 0, 1, . . . .

For (k, i) ∈ N× I and (l, j) ∈ N× J , with f ij = (Uij , fij , f̂ij), define

U(k,i)(l,j) = Ck(Uij) ∩ C(fij)
−1(Cl(Vj)) ⊆ U(k,i) = Ck(Ui),

f(k,i)(l,j) = C(fij)|U(k,i)(l,j)
: U(k,i)(l,j) −→ V(l,j) = Cl(Vj),

f̂(k,i)(l,j) = Π∗k(f̂ij)|U(k,i)(l,j)
: D(k,i)|U(k,i)(l,j)

= Πk|∗U(k,i)(l,j)
(Di)

−→ Πk|∗U(k,i)(l,j)
◦ f∗ij(Ej) = Ck(fij)|∗U(k,i)(l,j)

◦Π∗k(Ej) = f∗(k,i)(l,j)(E(l,j)).

Then we have a 1-morphism of m-Kuranishi neighbourhoods

f (k,i)(l,j) = (U(k,i)(l,j), f(k,i)(l,j), f̂(k,i)(l,j)) : (U(k,i), D(k,i), r(k,i), χ(k,i))

−→ (V(l,j), E(l,j), s(l,j), ψ(l,j))
(4.52)

over C(f) : C(X)→ C(Y ) and S = Imχ(k,i)∩C(f)−1(Imψ(l,j)). Here Definition
4.2(a)–(c) for f (k,i)(l,j) are immediate, (d) follows by applying Π∗k to (d) for f ij
and using Theorem 3.28(i), and (e) holds by (4.51).

Let i, i′ ∈ I and j, j′ ∈ J , and choose representatives (Ú jii′ , F̂
j
ii′), (Ú jj

′

i , F̂ jj
′

i )

for F jii′ = [Ú jii′ , F̂
j
ii′ ], F

jj′

i = [Ú jj
′

i , F̂ jj
′

i ] in f . For k, l ∈ N, define

Ú
(l,j)
(k,i)(k,i′) = Ck(Ú jii′) ∩ C(fi′j ◦ τii′)−1(Cl(Vj)),

Ú
(l,j)(l,j′)
(k,i) = Ck(Ú jj

′

i ) ∩ C(υjj′ ◦ fij)−1(Cl(Vj′)).
(4.53)

As for (4.45), define morphisms

F̂
(l,j)
(k,i)(k,i′) = Π�k(F̂ jii′)|Ú(l,j)

(k,i)(k,i′)
: D(k,i)|Ú(l,j)

(k,i)(k,i′)
= Π∗k(Di)|Ú(l,j)

(k,i)(k,i′)

−→ Tf(k,i′)(l,j)◦τ(k,i)(k,i′)V(l,j)|Ú(l,j)

(k,i)(k,i′)
= TC(fi′j◦τii′ )|Ú(l,j)

(k,i)(k,i′)

Cl(Vj),
(4.54)

F̂
(l,j)(l,j′)
(k,i) = Π�k(F̂ jj

′

i )|
Ú

(l,j)(l,j′)
(k,i)

: D(k,i)|Ú(l,j)(l,j′)
(k,i)

= Π∗k(Di)|Ú(l,j)(l,j′)
(k,i)

−→ Tυ(l,j)(l,j′)◦f(k,i)(l,j)
V(l,j′)|Ú(l,j)(l,j′)

(k,i)

= TC(υjj′◦fij)|
Ú

(l,j)(l,j′)
(k,i)

Cl(Vj′),
(4.55)

where Π�k(F̂ jii′),Π
�
k(F̂ jj

′

i ) are as in §3.4.3.
Now define 2-morphisms of m-Kuranishi neighbourhoods

F
(l,j)
(k,i)(k,i′) =

[
Ú

(l,j)
(k,i)(k,i′), F̂

(l,j)
(k,i)(k,i′)

]
: f (k,i′)(l,j) ◦ T(k,i)(k,i′) =⇒ f (k,i)(l,j),

F
(l,j)(l,j′)
(k,i) =

[
Ú

(l,j)(l,j′)
(k,i) , F̂

(l,j)(l,j′)
(k,i)

]
: Υ(l,j)(l,j′) ◦ f (k,i)(l,j) =⇒ f (k,i)(l,j′).
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Definition 4.3(a),(b) for F
(l,j)
(k,i)(k,i′),F

(l,j)(l,j′)
(k,i) follow from Definition 4.3(a),(b)

for F jii′ ,F
jj′

i , as for (4.46)–(4.47). The equivalences ∼ on pairs (Ú jii′ , F̂
j
ii′),

(Ú jj
′

i , F̂ jj
′

i ) lift to ∼ on pairs (Ú
(l,j)
(k,i)(k,i′), F̂

(l,j)
(k,i)(k,i′)), (Ú

(l,j)(l,j′)
(k,i) , F̂

(l,j)(l,j′)
(k,i) ) by

Theorem 3.28(ii), so F
(l,j)
(k,i)(k,i′),F

(l,j)(l,j′)
(k,i) depend only on F jii′ ,F

jj′

i .

If k 6= k′ and l 6= l′ we define

F
(l,j)
(k,i)(k′,i′) = [∅, 0] : f (k′,i′)(l,j) ◦ T(k,i)(k′,i′) =⇒ f (k,i)(l,j),

F
(l,j)(l′,j′)
(k,i) = [∅, 0] : Υ(l,j)(l′,j′) ◦ f (k,i)(l,j) =⇒ f (k,i)(l′,j′).

This makes sense as T(k,i)(k′,i′),Υ(l,j)(l′,j′) are trivial, since

Imχ(k,i) ∩ Imχ(k′,i′) = Imψ(l,j) ∩ Imψ(l′,j′) = ∅

as Ck(X) ∩ Ck′(X) = ∅, Cl(Y ) ∩ Cl′(Y ) = ∅.
We have now defined all the data in C(f) in (4.50), and verified Definition

4.17(a)–(d) for C(f). We deduce (e)–(h) from Definition 4.17(e)–(h) for f
by pulling back by Πk : Ck(Vi) → Vi using Theorems 3.27–3.28. This proves
C(f) : C(X)→ C(Y ) is a 1-morphism in mK̇̌urc.

If f : X → Y is simple (that is, a 1-morphism in mK̇urc
si) then C(f) maps

Ck(X)→ Ck(Y ) for k = 0, 1, . . . . Also as fij : Uij → Vj is simple near r−1
i (0),

C(fij) : C(Uij) → C(Vj) is simple near r−1
(k,i)(0) by Assumption 3.22(i), so

f(k,i)(l,j) and f (k,i)(l,j) in (4.52) are simple. Therefore C(f) : C(X) → C(Y )

is simple and decomposes as C(f) =
∐∞
k=0 Ck(f) for Ck(f) : Ck(X)→ Ck(Y )

in mK̇urc
si.

Now let f , g : X → Y be 1-morphisms and η : f ⇒ g a 2-morphism
in mK̇urc. Use the notation above for X,Y ,f , C(X), C(Y ), C(f), and the
obvious extensions to g, C(g), and write η =

(
ηij, i∈I, j∈J

)
. For i ∈ I and j ∈ J ,

choose a representative (Úij , η̂ij) for ηij = [Úij , η̂ij ] : f ij ⇒ gij . Let k, l ∈ N.
As in (4.53)–(4.55), define

Ú(k,i)(l,j) = Ck(Úij) ∩ C(fij)
−1(Cl(Vj)) and

η̂(k,i)(l,j) = Π�k(η̂ij)|Ú(k,i)(l,j)
: D(k,i)|Ú(k,i)(l,j)

= Πk|∗Ú(k,i)(l,j)
(Di)

−→ Tf(k,i′)(l,j)V(l,j)|Ú(k,i)(l,j)
= TC(fij)|Ú(k,i)(l,j)

Cl(Vj),

where Π�k(η̂ij) is as in §3.4.3. The same proof as for F
(l,j)
(k,i)(k,i′),F

(l,j)(l,j′)
(k,i) shows

η(k,i)(l,j) = [Ú(k,i)(l,j), η̂(k,i)(l,j)] : f (k,i)(l,j) =⇒ g(k,i)(l,j)

is a 2-morphism of m-Kuranishi neighbourhoods, and is independent of the
choice of (Úij , η̂ij). Define

C(η) =
(
η(k,i)(l,j), (k,i)∈N×I, (l,j)∈N×J

)
: C(f) =⇒ C(g).
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We can deduce Definition 4.18(a),(b) for C(η) from Definition 4.18(a),(b) for
η, by pulling back by Πk : Ck(Vi) → Vi using Theorems 3.27–3.28. Hence
C(η) : C(f)⇒ C(g) is a 2-morphism in mK̇̌urc.

Let f : X → Y , g : Y → Z be 1-morphisms in mK̇urc, with notation
(4.6)–(4.9). Definition 4.20 defines the composition g ◦ f : X → Z in mK̇urc,

by making an arbitrary choice, with 1-morphisms Θg,fijk : gjk ◦ f ij ⇒ (g ◦ f)ik
in (4.24) making (4.15)–(4.17) commute. The constructions above now give
C(f) : C(X)→ C(Y ) and C(g) : C(Y )→ C(Z) and C(g ◦ f) : C(X)→ C(Z)
in mK̇̌urc. Definition 4.20 also defines the composition C(g) ◦ C(f) : C(X)→
C(Z) in mK̇̌urc, by making an arbitrary choice.

Since the choices in g ◦ f and C(g) ◦ C(f) may not be consistent, we need
not have C(g) ◦ C(f) = C(g ◦ f). However, by applying the corner functor to

the 2-morphisms Θg,fijk as for Λhij ,F
j
ii′ , . . . above, we can show that C(g ◦ f) is

one of the possible choices for C(g) ◦ C(f). Hence Proposition 4.19(b) gives a
canonical 2-morphism Cg,f : C(g) ◦ C(f)⇒ C(g ◦ f) in mK̇̌urc.

For anyX in mK̇urc we can show from the definitions that C(idX) = idC(X).

Define a 2-morphism CX = ididC(X)
: C(idX) ⇒ idC(X) in mK̇̌urc. This

defines all the data of a weak 2-functor C : mK̇urc →mK̇̌urc, as in §A.3. It is
easy to check that the weak 2-functor axioms hold.

As above, if f : X → Y lies in mK̇urc
si then C(f) =

∐∞
k=0 Ck(f) for

Ck(f) : Ck(X)→ Ck(Y ) 1-morphisms in mK̇urc
si. Hence C|mK̇urcsi

decomposes

as C|mK̇urcsi
=
∐∞
k=0 Ck where Ck : mK̇urc

si → mK̇urc
si is a weak 2-functor.

Let the boundary 2-functor be ∂ = C1 : mK̇urc
si →mK̇urc

si.

If for some discrete property P of morphisms in Ṁanc the corner functor
C : Ṁanc → Ṁ̌anc in Assumption 3.22(g) maps to the subcategory Ṁ̌anc

P

of Ṁ̌anc whose morphisms are P , then in the definition of C(f) above the
1-morphisms f (k,i)(l,j) are P , so that C : mK̇urc → mK̇̌urc maps to the

2-subcategory mK̇̌urc
P of mK̇̌urc whose 1-morphisms are P .

We summarize Definition 4.43 in:

Theorem 4.44. We have defined a weak 2-functor C : mK̇urc → mK̇̌urc

called the corner 2-functor. It acts on objects X in mK̇urc by C(X) =∐∞
k=0 Ck(X). If f : X → Y is simple then C(f) : C(X) → C(Y ) is simple

and maps Ck(X) → Ck(Y ) for k = 0, 1, . . . . Thus C|mK̇urcsi
decomposes as

C|mK̇urcsi
=
∐∞
k=0 Ck, where Ck : mK̇urc

si → mK̇urc
si is a weak 2-functor

acting on objects by X 7→ Ck(X), for Ck(X) as in §4.6.1. We also write
∂ = C1 : mK̇urc

si →mK̇urc
si, and call it the boundary 2-functor.

If for some discrete property P of morphisms in Ṁanc the corner functor
C : Ṁanc → Ṁ̌anc maps to the subcategory Ṁ̌anc

P of Ṁ̌anc whose morphisms

are P , then C : mK̇urc → mK̇̌urc maps to the 2-subcategory mK̇̌urc
P of

mK̇̌urc whose 1-morphisms are P .
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4.6.3 Examples, and easy consequences

Example 4.45. Example 3.24(a)–(h) give examples of data Ṁanc, simple maps,
corner functors C : Ṁanc → Ṁ̌anc, etc. satisfying Assumption 3.22, where the
corner functors are written either C as in Definition 2.9 or C ′ as in Definition 2.11.
Definitions 4.29 and 4.37 give our notation for the corresponding 2-categories
of m-Kuranishi spaces mKurc,mKurc

st, . . . from §4.3 and §4.5. Applying the
constructions of §4.6.1–§4.6.2 to this data Ṁanc, . . . gives Ck(X), ∂X and 1-
morphisms Πk : Ck(X) → X, iX : ∂X → X for X in mK̇urc, and corner
2-functors C : mK̇urc →mK̇̌urc.

We write the corner 2-functors coming from Example 3.24(a)–(h) as:

C : mKurc −→mǨurc
in ⊂mǨurc, C ′ : mKurc −→mǨurc,

C : mKurc
st −→mǨurc

st,in ⊂mǨurc
st, C ′ : mKurc

st −→mǨurc
st,

C : mKurac −→mǨurac
in ⊂mǨurac, C ′ : mKurac −→mǨurac,

C : mKurac
st −→mǨurac

st,in ⊂mǨurac
st , C ′ : mKurac

st −→mǨurac
st ,

C : mKurc,ac −→mǨurc,ac
in ⊂mǨurc,ac, C ′ : mKurc,ac −→mǨurc,ac,

C : mKurc,ac
st −→mǨurc,ac

st,in ⊂mǨurc,ac
st , C ′ : mKurc,ac

st −→mǨurc,ac
st ,

C : mKurgc −→mǨurgc
in ⊂mǨurgc. (4.56)

As in Example 3.24(h) and §2.4.1, there is no second corner functor C ′ on
Mangc, and so no 2-functor C ′ on mKurgc. The functors C map to interior
morphisms in M̌anc, . . . , where interior is a discrete property as in §3.3.6, so
the last part of Theorem 4.44 implies that the corresponding 2-functors C map
to interior 1-morphisms in mǨurc.

Remark 4.41(a) explains that the notions of boundary ∂X, k-corners Ck(X),
and 1-morphisms Πk : Ck(X) → X in mKurc,mKurc

st,mKurac,mKurac
st ,

mKurc,ac and mKurc,ac
st are independent of whether we choose C or C ′ in

Assumption 3.22. So in each of the first six lines of (4.56), the 2-functors C and
C ′ agree on objects, but differ on 1- and 2-morphisms.

As in Proposition 2.10(a),(b), all of the functors C : Ṁanc → Ṁ̌anc in Exam-
ple 3.24(a)–(h) (though not the functors C ′) have the property that a morphism
f : X → Y is interior if and only if C(f) : C(X)→ C(Y ) maps C0(X)→ C0(Y ),

and f is b-normal if and only if C(f) maps Ck(X) →
∐k
l=0 Cl(Y ) for all

k = 0, . . . ,dimX, where interior and b-normal are discrete properties. Applying
this to the definition of C(f) in Definition 4.43, we easily deduce:

Proposition 4.46. For all of the 2-functors C in (4.56) (though not the 2-
functors C ′), a 1-morphism f : X → Y is interior (or b-normal) if and only

if C(f) maps C0(X) → C0(Y ) (or C(f) maps Ck(X) →
∐k
l=0 Cl(Y ) for all

k = 0, 1, . . . , respectively).

The boundary ∂X and k-corners Ck(X) of X in mK̇urc depend, up to
equivalence in mK̇urc, only on X up to equivalence in mK̇urc. In applications
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m-Kuranishi spaces with corners X are usually only natural up to equivalence
in mK̇urc, so this is important for boundaries and corners to be well behaved.

Proposition 4.47. Let f : X → Y be an equivalence in mK̇urc. Then f is
simple by Proposition 4.36(c), and Ck(f) : Ck(X) → Ck(Y ) for k = 0, 1, . . .
and ∂f : ∂X → ∂Y are also equivalences in mK̇urc.

Proof. As f is an equivalence there exist a 1-morphism g : Y → X and 2-
morphisms η : g ◦ f ⇒ idX , ζ : f ◦ g ⇒ idY in mK̇urc, where g is also an
equivalence, and so simple. For k > 0 we can apply the 2-functor Ck : mK̇urc

si →
mK̇urc

si to f , g,η, ζ. The compositions of 2-morphisms

Ck(g) ◦ Ck(f)
(Ck)g,f +3 Ck(g ◦ f)

Ck(η) +3 Ck(idX) idCk(X),

Ck(f) ◦ Ck(g)
(Ck)f,g +3 Ck(f ◦ g)

Ck(ζ) +3 Ck(idY ) idCk(Y ),

show Ck(f) is an equivalence, so putting k = 1 shows ∂f is an equivalence.

Definition 4.48. As in Definition 4.29 we write mKurc for the 2-category of
m-Kuranishi spaces with corners associated to Ṁanc = Manc. An object X
in mKurc is called an m-Kuranishi space with boundary if ∂(∂X) = ∅. Write
mKurb for the full 2-subcategory of m-Kuranishi spaces with boundary in
mKurc, and write mKurb

si ⊆ mKurb
in ⊆ mKurb for the 2-subcategories of

mKurb with simple and interior 1-morphisms.
If V ∈Manc then ∂(∂V ) = ∅ if and only if Ck(V ) = ∅ for all k > 1. (For

any Ṁanc satisfying Assumption 3.22, surjectivity of Ik,l in (f) implies that

the same holds in Ṁanc). Using this we can show that X ∈ mKurc is an
m-Kuranishi space with boundary if and only if Ck(X) = ∅ for all k > 1.

4.7 M-Kuranishi neighbourhoods on m-Kuranishi spaces

At the beginning of differential geometry, one defines manifolds X and smooth
maps f : X → Y in terms of an atlas

{
(Vi, ψi) : i ∈ I

}
of charts on X, and

transition functions ψij = ψ−1
j ◦ ψi|ψ−1

i (Imψj)
between charts (Vi, ψi), (Vj , ψj).

However, one quickly comes to regard actually choosing an atlas on X or working
explicitly with atlases as unnatural and inelegant, so we generally suppress them,
working with ‘local coordinates’ on X if we really need to reduce things to Rn.

We now wish to advocate a similar philosophy for working with m-Kuranishi
spaces X = (X,K), in which, like atlases, actually choosing or working explicitly
with m-Kuranishi structures K =

(
I, (Vi, Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
is

regarded as inelegant and to be avoided where possible, and X is understood to
exist as a geometric space independently of any choices of I, (Vi, Ei, si, ψi), . . . .
Our analogue of ‘local coordinates’ will be ‘m-Kuranishi neighbourhoods on
m-Kuranishi spaces’.
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4.7.1 Defining m-Kuranishi neighbourhoods on m-Kuranishi
spaces

Definition 4.49. Suppose X = (X,K) is an m-Kuranishi space, where K =(
I, (Vi, Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
. An m-Kuranishi neighbourhood on

the m-Kuranishi space X is data (Va, Ea, sa, ψa), Φai, i∈I and Λaij, i,j∈I , where
(Va, Ea, sa, ψa) is an m-Kuranishi neighbourhood on the topological space X
in the sense of Definition 4.1, and Φai : (Va, Ea, sa, ψa) → (Vi, Ei, si, ψi) is a
coordinate change for each i ∈ I (over S = Imψa∩Imψi, as usual) as in Definition
4.10, and Λaij : Φij ◦Φai ⇒ Φaj is a 2-morphism (over S = Imψa∩ Imψi∩ Imψj ,
as usual) as in Definition 4.3 for all i, j ∈ I, such that Λaii = idΦai for all i ∈ I,
and as in Definition 4.14(h), for all i, j, k ∈ I we have

Λajk � (idΦjk ∗ Λaij) = Λaik � (Λijk ∗ idΦai) : Φjk ◦ Φij ◦ Φai =⇒ Φak, (4.57)

where (4.57) holds over S = Imψa∩Imψi∩Imψj∩Imψk by our usual convention.
Here the subscript ‘a’ in (Va, Ea, sa, ψa) is just a label used to distinguish

m-Kuranishi neighbourhoods, generally not in I. If we omit a we will write ‘∗’
in place of ‘a’ in Φai,Λaij , giving Φ∗i : (V,E, s, ψ) → (Vi, Ei, si, ψi) and Λ∗ij :
Φij ◦ Φ∗i ⇒ Φ∗j .

We will usually just say (Va, Ea, sa, ψa) or (V,E, s, ψ) is an m-Kuranishi
neighbourhood on X, leaving the data Φai,Λaij or Φ∗i,Λ∗ij implicit. We call
such a (V,E, s, ψ) a global m-Kuranishi neighbourhood on X if Imψ = X.

Example 4.50. Let X = (X,K) be as in Definition 4.49, and let a ∈ I.
Then (Va, Ea, sa, ψa) is an m-Kuranishi neighbourhood on X, with data Φai, i∈I ,
Λaij, i,j∈I as in K, where (4.57) follows from Definition 4.14(h) for X. Thus, all
the m-Kuranishi neighbourhoods in K are m-Kuranishi neighbourhoods on X.

Definition 4.51. Using the same notation, suppose (Va, Ea, sa, ψa),Φai, i∈I ,
Λaij, i,j∈I and (Vb, Eb, sb, ψb), Φbi, i∈I , Λbij, i,j∈I are m-Kuranishi neighbourhoods
on X, and S ⊆ Imψa ∩ Imψb is open. A coordinate change from (Va, Ea, sa, ψa)
to (Vb, Eb, sb, ψb) over S on the m-Kuranishi space X is data Φab, Λabi, i∈I ,
where Φab : (Va, Ea, sa, ψa) → (Vb, Eb, sb, ψb) is a coordinate change over S as
in Definition 4.10, and Λabi : Φbi ◦ Φab ⇒ Φai is a 2-morphism over S ∩ Imψi as
in Definition 4.3 for each i ∈ I, such that for i, j ∈ I we have

Λaij � (idΦij ∗ Λabi) = Λabj � (Λbij ∗ idΦab) : Φij ◦ Φbi ◦ Φab =⇒ Φaj , (4.58)

where (4.58) holds over S ∩ Imψi ∩ Imψj .
We will usually just say that Φab : (Va, Ea, sa, ψa) → (Vb, Eb, sb, ψb) is a

coordinate change over S on X, leaving the data Λabi, i∈I implicit. If we do not
specify S, we mean that S is as large as possible, that is, S = Imψa ∩ Imψb.

Suppose Φab : (Va, Ea, sa, ψa) → (Vb, Eb, sb, ψb), Λabi, i∈I and Φbc : (Vb,
Eb, sb, ψb) → (Vc, Ec, sc, ψc), Λbci, i∈I are such coordinate changes over S ⊆
Imψa∩ Imψb∩ Imψc. Define Φac = Φbc ◦Φab : (Va, Ea, sa, ψa)→ (Vc, Ec, sc, ψc)
and Λaci = Λabi� (Λbci ∗ idΦab) : Φci ◦Φac ⇒ Φai for all i ∈ I. It is easy to show
that Φac = Φbc ◦ Φab, Λaci, i∈I is a coordinate change from (Va, Ea, sa, ψa) to
(Vc, Ec, sc, ψc) over S on X. We call this composition of coordinate changes.
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Example 4.52. Let X = (X,K) be as in Definition 4.49, and let a, b ∈ I. Then
(Va, Ea, sa, ψa) and (Vb, Eb, sb, ψb) are m-Kuranishi neighbourhoods on X as in
Example 4.50. The coordinate change Φab : (Va, Ea, sa, ψa)→ (Vb, Eb, sb, ψb) in
K is a coordinate change over Imψa ∩ Imψb on X, with data Λabi, i∈I as in K.

Example 4.53. Let X,Y be m-Kuranishi spaces in mK̇ur, and (U,D, r, χ) and
(V,E, s, ψ) be m-Kuranishi neighbourhoods on X,Y . Example 4.31 defined the
product m-Kuranishi space X×Y . It is easy to construct a product m-Kuranishi
neighbourhood (U × V, π∗U (D)⊕ π∗V (E), π∗U (r)⊕ π∗V (s), χ× ψ) on X × Y .

Definition 4.54. Let f : X → Y be a 1-morphism of m-Kuranishi spaces, and
use notation (4.6)–(4.7) for X,Y , and (4.9) for f . Suppose (Ua, Da, ra, χa),
Tai, i∈I , Kaii′, i,i′∈I is an m-Kuranishi neighbourhood on X, and (Vb, Eb, sb, ψb),
Υbj, j∈J , Λbjj′, j,j′∈J an m-Kuranishi neighbourhood on Y , as in Definition 4.49.
Let S ⊆ Imχa ∩ f−1(Imψb) be open. A 1-morphism from (Ua, Da, ra, χa) to

(Vb, Eb, sb, ψb) over (S,f) on the m-Kuranishi spaces X,Y is data fab, F
bj, j∈J
ai, i∈I ,

where fab : (Ua, Da, ra, χa) → (Vb, Eb, sb, ψb) is a 1-morphism of m-Kuranishi

neighbourhoods over (S, f) in the sense of Definition 4.2, and F bjai : Υbj ◦ fab ⇒
f ij ◦ Tai is a 2-morphism over S ∩ Imχi ∩ f−1(Imψj), f as in Definition 4.3 for
all i ∈ I, j ∈ J , such that for all i, i′ ∈ I, j, j′ ∈ J we have

(F bjai)
−1 � (F jii′ ∗ idTai) = (F bjai′)

−1 � (idf i′j ∗Kaii′) :

(f i′j ◦ Tii′) ◦ Tai =⇒ Υbj ◦ fab,

F bj
′

ai � (Λbjj′ ∗ idfab) = (F jj
′

i ∗ idTai)� (idΥjj′ ∗ F
bj
ai) :

(Υjj′ ◦Υbj) ◦ fab =⇒ f ij′ ◦ Tai.

(4.59)

We will usually just say that fab : (Ua, Da, ra, χa) → (Vb, Eb, sb, ψb) is a
1-morphism of m-Kuranishi neighbourhoods over (S,f) on X,Y , leaving the

data F bj, j∈Jai, i∈I implicit.
Suppose g : Y → Z is another 1-morphism of m-Kuranishi spaces, us-

ing notation (4.8) for Z, and (Wc, Fc, tc, ωc) is an m-Kuranishi neighbour-
hood on Z, and T ⊆ Imψb ∩ g−1(Imωc), S ⊆ Imχa ∩ f−1(T ) are open,
fab : (Ua, Da, ra, χa) → (Vb, Eb, sb, ψb) is a 1-morphism of m-Kuranishi neigh-
bourhoods over (S,f) on X,Y , and gbc : (Vb, Eb, sb, ψb)→ (Wc, Fc, tc, ωc) is a
1-morphism of m-Kuranishi neighbourhoods over (T, g) on Y ,Z.

Define h = g ◦ f : X → Z, so that Definition 4.20 gives 2-morphisms

Θg,fijk : gjk ◦ f ij =⇒ hik

for all i ∈ I, j ∈ J and k ∈ K. Set hac = gbc ◦ fab : (Ua, Da, ra, χa) →
(Wc, Fc, tc, ωc). Using the stack property Theorem 4.13, one can show that for
all i ∈ I, k ∈ K there is a unique 2-morphism Hck

ai : Φck ◦ hac ⇒ hik ◦ Tai over
S ∩ Imχi ∩ h−1(Imωk), h, such that for all j ∈ J we have

Hck
ai |S∩Imχi∩f−1(Imψj)∩h−1(Imωk)

= (Θg,fijk ∗ idTai)� (idgjk ∗ F
bj
ai)� (Gck

bj ∗ idfab).
(4.60)
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It is then easy to prove that hac = gbc ◦ fab, H
ck, k∈K
ai, i∈I is a 1-morphism from

(Ua, Da, ra, χa) to (Wc, Fc, tc, ωc) over (S,h) on X,Z. We call this composition
of 1-morphisms.

Example 4.55. Let X = (X, I),Y = (Y,J ),f be as in Definition 4.54, and
let a ∈ I and b ∈ J . Then (Ua, Da, ra, χa) in I and (Vb, Eb, sb, ψb) in J are
m-Kuranishi neighbourhoods on X,Y by Example 4.50. The 1-morphism fab :
(Ua, Da, ra, χa)→ (Vb, Eb, sb, ψb) in f is a 1-morphism over (Imχa∩f−1(ψb),f),

with extra data F bj, j∈Jai, i∈I , where for F jai,F
bj
a as in f we have

F bjai = (F jai)
−1 � F bja : Υbj ◦ fab =⇒ f ij ◦ Tai.

The next theorem can be proved using the stack property Theorem 4.13 by
very similar methods to Propositions 4.19, 4.22, 4.25, 4.26 and 4.27, so we leave
the proof as an exercise for the reader.

Theorem 4.56. (a) Let X = (X,K) be an m-Kuranishi space, where K =
(
I,

(Vi, Ei, si, ψi)i∈I , Φij , Λijk
)
, and (Va, Ea, sa, ψa), (Vb, Eb, sb, ψb) be m-Kuranishi

neighbourhoods on X, in the sense of Definition 4.49, and S ⊆ Imψa ∩ Imψb be
open. Then there exists a coordinate change Φab : (Va, Ea, sa, ψa)→ (Vb, Eb, sb,
ψb),Λabi, i∈I over S on X, in the sense of Definition 4.51. If Φab, Φ̃ab are two

such coordinate changes, there is a unique 2-morphism Ξab : Φab ⇒ Φ̃ab over S
as in Definition 4.3, such that for all i ∈ I we have

Λabi = Λ̃abi � (idΦbi ∗ Ξab) : Φbi ◦ Φab =⇒ Φai, (4.61)

which holds over S ∩ Imψi by our usual convention.

(b) Let f : X → Y be a 1-morphism of m-Kuranishi spaces, and use no-
tation (4.6), (4.7), (4.9). Let (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) be m-Kuranishi
neighbourhoods on X,Y respectively in the sense of Definition 4.49, and let
S ⊆ Imχa ∩ f−1(Imψb) be open. Then there exists a 1-morphism fab : (Ua, Da,
ra, χa)→ (Vb, Eb, sb, ψb) of m-Kuranishi neighbourhoods over (S,f) on X,Y ,
in the sense of Definition 4.54.

(c) Let f , g : X → Y be 1-morphisms of m-Kuranishi spaces and η : f ⇒ g a
2-morphism, and use notation (4.6), (4.7), (4.9) and η =

(
ηij, i∈I, j∈J

)
. Suppose

(Ua, Da, ra, χa), (Vb, Eb, sb, ψb) are m-Kuranishi neighbourhoods on X,Y , and
S ⊆ Imχa∩f−1(Imψb) is open, and fab, gab : (Ua, Da, ra, χa)→ (Vb, Eb, sb, ψb)
are 1-morphisms over (S,f), (S, g) respectively. Then there is a unique 2-
morphism ηab : fab ⇒ gab over (S, f) as in Definition 4.3, such that the
following commutes over S ∩ Imχi ∩ f−1(Imψj) for all i ∈ I and j ∈ J :

Υbj ◦ fab
F bjai

+3

idΥbj
∗ηab

��

f ij ◦ Tai

ηij∗idTai ��
Υbj ◦ gab

Gbjai +3 gij ◦ Tai.

(4.62)
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(d) The unique 2-morphisms in (c) are compatible with vertical and horizontal
composition and identities. For example, if f , g,h : X → Y are 1-morphisms in
mK̇ur, and η : f ⇒ g, ζ : g ⇒ h are 2-morphisms with θ = ζ�η : f ⇒ h, and
(Ua, Da, ra, χa), (Vb, Eb, sb, ψb) are m-Kuranishi neighbourhoods on X,Y , and
fab, gab,hab : (Ua, Da, ra, χa) → (Vb, Eb, sb, ψb) are 1-morphisms over (S,f),
(S, g), (S,h), and ηab : fab ⇒ gab, ζab : gab ⇒ hab, θab : fab ⇒ hab come from
η, ζ,θ as in (c), then θab = ζab � ηab.

Remark 4.57. Note that we make the (potentially confusing) distinction be-
tween m-Kuranishi neighbourhoods (Vi, Ei, si, ψi) on a topological space X, as
in Definition 4.1, and m-Kuranishi neighbourhoods (Va, Ea, sa, ψa) on an m-
Kuranishi space X = (X,K), which are as in Definition 4.49, and come equipped
with the extra implicit data Φai, i∈I , Λaij, i,j∈I giving the compatibility with the
m-Kuranishi structure K on X.

We also distinguish between coordinate changes Φij : (Vi, Ei, si, ψi)→ (Vj ,
Ej , sj , ψj) between m-Kuranishi neighbourhoods on a topological space X, which
are as in Definition 4.10 and for which there may be many choices or none, and
coordinate changes Φab : (Va, Ea, sa, ψa)→ (Vb, Eb, sb, ψb) between m-Kuranishi
neighbourhoods on an m-Kuranishi space X, which are as in Definition 4.51, and
come equipped with implicit extra data Λabi, i∈I , and which by Theorem 4.56(a)
always exist, and are unique up to unique 2-isomorphism.

Similarly, we distinguish between 1-morphisms f ij : (Ui, Di, ri, χi) → (Vj ,
Ej , sj , ψj) of m-Kuranishi neighbourhoods over a continuous map of topological
spaces f : X → Y , which are as in Definition 4.2 and for which there may be many
choices or none, and 1-morphisms fab : (Ua, Da, ra, χa)→ (Vb, Eb, sb, ψb) of m-
Kuranishi neighbourhoods over a 1-morphism of m-Kuranishi spaces f : X → Y ,
which are as Definition 4.54, and come equipped with implicit extra data F bj, j∈Jai, i∈I ,
and which by Theorem 4.56(b),(c) always exist, and are unique up to unique
2-isomorphism.

4.7.2 Constructing equivalent m-Kuranishi structures

We can use m-Kuranishi neighbourhoods on X = (X,K) to construct alternative
m-Kuranishi structures K′ on X.

Theorem 4.58. Let X = (X,K) be an m-Kuranishi space, and {(Va, Ea,
sa, ψa) : a ∈ A} a family of m-Kuranishi neighbourhoods on X with X =⋃
a∈A Imψa. For all a, b ∈ A, let Φab : (Va, Ea, sa, ψa) → (Vb, Eb, sb, ψb) be a

coordinate change over S = Imψa∩Imψb on X given by Theorem 4.56(a), which
is unique up to 2-isomorphism; when a = b we choose Φaa = id(Va,Ea,sa,ψa) and
Λaai = idΦai for i ∈ I, which is allowed by Theorem 4.56(a).

For all a, b, c ∈ A, both Φbc ◦ Φab|S and Φac|S are coordinate changes
(Va, Ea, sa, ψa) → (Vc, Ec, sc, ψc) over S = Imψa ∩ Imψb ∩ Imψc on X, so
Theorem 4.56(a) gives a unique 2-morphism Λabc : Φbc ◦ Φab|S ⇒ Φac|S. Then
K′ =

(
A, (Va, Ea, sa, ψa)a∈A,Φab, a,b∈A,Λabc, a,b,c∈A

)
is an m-Kuranishi struc-

ture on X, and X ′ = (X,K′) is canonically equivalent to X in mK̇ur, in the
sense of Definition A.7.
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Proof. Write K =
(
I, (Vi, Ei, si, ψi)i∈I ,Φij, i,j∈I ,Λijk, i,j,k∈I

)
, and let K′ be as

in the theorem. We claim that K′ is an m-Kuranishi structure on X. Definition
4.14(a)–(f) are immediate. For (g), if a, b ∈ A then we have a 2-morphism
Λaab : Φab ◦ Φaa ⇒ Φab, with the defining property, from (4.61), that

Λaai � (Λabi ∗ idΦaa) = Λabi � (idΦbi ∗ Λaab) : Φbi ◦ Φab =⇒ Φai. (4.63)

Here the left hand side is the 2-morphism Λ̃abi from Definition 4.51 for the
composition Φ̃ab = Φab ◦ Φaa. Since by definition Φaa = id(Va,Ea,sa,ψa) and
Λaai = idΦai , equation (4.63) is satisfied by Λaab = idΦab for all i ∈ I, so by
uniqueness in Theorem 4.56(a) we have Λaab = idΦab . Similarly Λabb = idΦab ,
proving Definition 4.14(g) for K′.

For (h), let a, b, c, d ∈ A and i ∈ I, and consider the diagram of 2-morphisms

Φdi ◦ Φcd ◦ Φbc ◦ Φab

idΦdi
∗idΦcd

∗Λabc

��

idΦdi
∗Λbcd∗idΦab

+3

Λcdi∗idΦbc
∗idΦab

%-

Φdi ◦ Φbd ◦ Φab

idΦdi
∗Λabd

��

Λbdi∗idΦabqy
Φci ◦ Φbc ◦ Φab

idΦci
∗Λabc

��

Λbci∗idΦab +3 Φbi ◦ Φab

Λabi
��

Φci ◦ Φac
Λaci

+3 Φai

Φdi ◦ Φcd ◦ Φac

Λcdi∗idΦac

19

idΦdi
∗Λacd +3 Φdi ◦ Φad.

Λadi

em

Here each small quadrilateral commutes by definition of Λabc. Thus the outer
quadrilateral commutes. But the outer quadrilateral is ‘Φdi◦’ on 1-morphisms
and ‘idΦdi∗’ on 2-morphisms applied to (4.4) with a, b, c, d in place of i, j, k, l.
As Φdi is a coordinate change, this implies (4.4) commutes, restricted to the
intersection of its domain with Imψi. As this holds for all i ∈ I, we deduce
Definition 4.14(h) for K′. So X ′ is an m-Kuranishi space.

To show X ′,X are equivalent in mK̇ur, we must construct 1-morphisms
f : X ′ →X, g : X →X ′ and 2-morphisms η : g ◦ f ⇒ idX′ , ζ : f ◦ g ⇒ idX .
As in (4.9), define

f =
(
idX ,Φai, a∈A, i∈I , (Λaa′i)

i∈I
a,a′∈A, (Λaii′)

i,i′∈I
a∈A

)
,

where the Λaii′ ,Λaa′i are from Definitions 4.49–4.51. We can check using (4.57)–
(4.61) that Definition 4.17(a)–(h) hold, so f : X →X ′ is a 1-morphism.

For g, as Φai : (Va, Ea, sa, ψa)→ (Vi, Ei, si, ψi) is a coordinate change, there
exist a 1-morphism Ψia : (Vi, Ei, si, ψi) → (Va, Ea, sa, ψa), and 2-morphisms
ξia : Ψia ◦ Φai ⇒ id(Va,Ea,sa,ψa) and χia : Φai ◦ Ψia ⇒ id(Vi,Ei,si,ψi). By
Proposition A.5, we can choose these to satisfy ξia ∗ idΨia = idΨia ∗ χia and
χia ∗ idΦai = idΦai ∗ ξia. Define

g =
(
idX ,Ψia, i∈I, a∈A, (Mii′a)a∈Ai,i′∈I , (Miaa′)

a,a′∈A
i∈I

)
,
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where Mii′a,Miaa′ are defined by the commutative diagrams

Ψi′a ◦ Φii′ ◦ Φai ◦Ψia

idΨ
i′a
∗idΦ

ii′
∗χia

��
idΨ

i′a
∗Λaii′∗idΨia

+3 Ψi′a ◦ Φai′ ◦Ψia
ξi′a∗idΨia

+3 id(Va,Ea,sa,ψa) ◦Ψia

Ψi′a ◦ Φii′ ◦ id(Vi,Ei,si,ψi) Ψi′a ◦ Φii′
Mii′a +3 Ψia,

Ψia′ ◦ Φa′i ◦ Φaa′ ◦Ψia

ξia′∗idΦ
aa′
∗idΨia��

idΨ
ia′
∗Λaa′i∗idΨia

+3 Ψia′ ◦ Φai ◦Ψia
idΨ

ia′
∗χia

+3 Ψia′ ◦ id(Vi,Ei,si,ψi)

id(Va′ ,Ea′ ,sa′ ,ψa′ )
◦ Φaa′ ◦Ψia Φaa′ ◦Ψia

Miaa′ +3 Ψia′ .

Using the various identities we can show that g : X ′ →X is a 1-morphism.
Definition 4.20 defines the compositions g◦f , f ◦g, and some 2-morphisms of

m-Kuranishi neighbourhoods Θg,faia′ and Θf ,giai′ . For all a, a′ ∈ A, there is a unique
2-morphism ηaa′ : (g ◦f)aa′ ⇒ (idX′)aa′ = Φaa′ of m-Kuranishi neighbourhoods
over Imψa ∩ Imψa′ such that for all i ∈ I, the following commutes:

Ψia′ ◦ Φa′i ◦ Φaa′

idΨ
ia′
∗Λaa′i

��

ξia′∗idΦ
aa′

+3 id(Va′ ,Ea′ ,sa′ ,ψa′ )
◦ Φaa′

Ψia′ ◦ Φai
Θg,f

aia′ +3 (g ◦ f)aa′
ηaa′ |Imψa∩Imψ

a′∩Imψi +3 Φaa′ .

(4.64)

To prove this we show that the prescribed values for i, i′ ∈ I agree on the
intersection Imψa ∩ Imψa′ ∩ Imψi ∩ Imψi′ , and use the stack property Theorem
4.13 to prove there is a unique ηaa′ such that (4.64) commutes for all i ∈ I. Then
we show that η = (ηaa′, a,a′∈A) is a 2-morphism η : g ◦ f ⇒ idX′ in mK̇ur.

Similarly, we construct a 2-morphism ζ = (ζii′, i,i′∈I) : f ◦ g ⇒ idX , where
ζii′ fits into a commuting diagram for all a ∈ A

Φii′ ◦ Φai ◦Ψia

Λaii′∗idΨia��

idΦ
ii′
∗χia

+3 Φii′ ◦ id(Vi,Ei,si,ψi)

Φai′ ◦Ψia

Θf,g

iai′ +3 (f ◦ g)ii′
ζii′ |Imψi∩Imψ

i′∩Imψa +3 Φii′ .

Thus X ′ and X are equivalent in mK̇ur. The equivalence f : X ′ → X is
actually independent of choices, so its quasi-inverse g : X →X ′ is canonical up
to 2-isomorphism.

As the m-Kuranishi neighbourhoods (Vi, Ei, si, ψi) in the m-Kuranishi struc-
ture on X are m-Kuranishi neighbourhoods on X, we deduce:

Corollary 4.59. Let X = (X,K) be an m-Kuranishi space with K =
(
I, (Vi, Ei,

si, ψi)i∈I ,Φij, i,j∈I ,Λijk, i,j,k∈I
)
. Suppose J ⊆ I with

⋃
j∈J Imψj = X. Then

K′ =
(
J, (Vi, Ei, si, ψi)i∈J ,Φij, i,j∈J ,Λijk, i,j,k∈J

)
is an m-Kuranishi structure

on X, and X ′ = (X,K′) is canonically equivalent to X in mK̇ur.

Thus, adding or subtracting extra m-Kuranishi neighbourhoods to or from
the m-Kuranishi structure of X leaves X unchanged up to equivalence.
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4.7.3 M-Kuranishi neighbourhoods on boundaries and
corners

Now suppose Ṁanc satisfies Assumption 3.22, so that as in §4.6 we have a 2-
category mK̇urc of m-Kuranishi spaces with corners X, which have boundaries
∂X and k-corners Ck(X). We will show that m-Kuranishi neighbourhoods
(Va, Ea, sa, ψa) on X lift to m-Kuranishi neighbourhoods on ∂X and Ck(X).

Definition 4.60. Let X = (X,K) be an m-Kuranishi space with corners in
mK̇urc with K =

(
I, (Vi, Ei, si, ψi)i∈I , Φij, i,j∈I , Λhij, h,i,j∈I

)
. Then for each

k ∈ N, Definition 4.39 defines an object Ck(X) = (Ck(X),Kk) and a 1-morphism
Πk : Ck(X)→X in mK̇urc, where

Kk =
(
{k} × I, (V(k,i), E(k,i), s(k,i), ψ(k,i))i∈I ,Φ(k,i),(k,j),

i,j∈I
,Λ(k,h)(k,i)(k,j),

h,i,j∈I

)
,

Πk =
(
Πk,Π(k,i)j, i,j∈I , Πj, j∈I

(k,i)(k,i′), i,i′∈I , Πjj′, j,j′∈I
(k,i), i∈I

)
.

Let (Va, Ea, sa, ψa), Φai, i∈I , Λaij, i,j∈I be an m-Kuranishi neighbourhood
on X, as in Definition 4.49. We will define a corresponding m-Kuranishi
neighbourhood (V(k,a), E(k,a), s(k,a), ψ(k,a)),Φ(k,a),(k,i), i∈I ,Λ(k,a)(k,i)(k,j), i,j∈I on
Ck(X), with V(k,a) = Ck(Va), E(k,a) = Ck(Ea), and s(k,a) = Ck(sa). When
k = 1 this is an m-Kuranishi neighbourhood on ∂X = C1(X). Almost all the
hard work has been done already in Definition 4.39.

We take (V(k,a), E(k,a), s(k,a), ψ(k,a)) to be the m-Kuranishi neighbourhood on
Ck(X) constructed from (Va, Ea, sa, ψa) in the same way that (V(k,i), E(k,i), s(k,i),
ψ(k,i)) is constructed from (Vi, Ei, si, ψi) in Definition 4.39, except that ψ(k,a) is
defined as we explain shortly. Also Φ(k,a),(k,i), Λ(k,a)(k,i)(k,j) are constructed from
Φai, Λaij in exactly the same way that Φ(k,i),(k,j), Λ(k,h)(k,i)(k,j) are constructed
from Φij , Λhij in Definition 4.39, though we postpone the proof of Definition
4.2(e) for Φ(k,a),(k,i).

To define ψ(k,a) : s−1
(k,a)(0) → Ck(X), let v′ ∈ s−1

(k,a)(0) ⊆ V(k,a) = Ck(Va)

with Πk(v′) = v ∈ s−1
a (0) ⊆ Va, where Πk : Ck(Va) → Va. Then x = ψa(v) ∈

X, so there exists i ∈ I with x ∈ Imψi, and thus v ∈ Vai ∩ s−1
a (0), which

implies that v′ ∈ V(k,a)(k,i) ∩ s−1
(k,a)(0), so φ(k,a)(k,i)(v

′) ∈ s−1
(k,i)(0) ⊆ V(k,i), and

ψ(k,i) ◦ φ(k,a)(k,i)(v
′) ∈ Ck(X). Define ψ(k,a)(v

′) = ψ(k,i) ◦ φ(k,a)(k,i)(v
′). If also

x ∈ Imψj for j ∈ I then the 1- and 2-morphisms

Φ(k,i)(k,j) : (V(k,i), E(k,i), s(k,i), ψ(k,i)) −→ (V(k,j), E(k,j), s(k,j), ψ(k,j))

Λ(k,a)(k,i)(k,j) : Φ(k,i)(k,j) ◦ Φ(k,a)(k,i) =⇒ Φ(k,a)(k,j)

imply that

ψ(k,i)◦φ(k,a)(k,i)(v
′)=ψ(k,j)◦φ(k,i)(k,j)◦φ(k,a)(k,i)(v

′)=ψ(k,k)◦φ(k,a)(k,k)(v
′).

Thus ψ(k,a)(v
′) is independent of the choice of i ∈ I with x ∈ Imψi, and is well

defined. We show ψ(k,a) is a homeomorphism with its open image as in Definition
4.39. Therefore (V(k,a), E(k,a), s(k,a), ψ(k,a)) is an m-Kuranishi neighbourhood
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on Ck(X). Definition 4.2(e) for Φ(k,a),(k,i) follows from ψ(k,a)(v
′) = ψ(k,i) ◦

φ(k,a)(k,i)(v
′) above. Hence Φ(k,a),(k,i), Λ(k,a)(k,i)(k,j) are 1- and 2-morphisms

of m-Kuranishi neighbourhoods, as required. The condition (4.57) for the
Λ(k,a)(k,i)(k,j) follows from (4.57) for the Λaij in the same way that Definition
4.14(h) for the Λ(k,h)(k,i)(k,j) is proved in Definition 4.39. This shows that
(V(k,a), E(k,a), s(k,a), ψ(k,a)) with data Φ(k,a),(k,i), i∈I ,Λ(k,a)(k,i)(k,j), i,j∈I is an m-
Kuranishi neighbourhood on Ck(X), as in §4.6.

Very much like Π(k,i)i in Definition 4.39, we can show that that

Π(k,a)a = (V(k,a),Πk, idE(k,a)
) : (V(k,a), E(k,a), s(k,a), ψ(k,a)) −→ (Va, Ea, sa, ψa)

is a 1-morphism of m-Kuranishi neighbourhoods over Πk : Ck(X)→X, in the
sense of Definition 4.54.

Definition 4.61. Let f : X → Y be a 1-morphism in mK̇urc, with notation
(4.6), (4.7), (4.9), suppose we are given m-Kuranishi neighbourhoods (Ua, Da,
ra, χa),Tai, i∈I ,Kaii′, i,i′∈I on X and (Vb, Eb, sb, ψb),Υbj, j∈J ,Λbjj′, j,j′∈J on Y ,

and let fab, F
bj, j∈J
ai, i∈I be a 1-morphism fab : (Ua, Da, ra, χa) → (Vb, Eb, sb, ψb)

of m-Kuranishi neighbourhoods over (Imχa ∩ f−1(Imψb),f) on X,Y , as in

Definition 4.54 and Theorem 4.56(b), with fab = (Uab, fab, f̂ab).
Let k, l ∈ N, so that Definition 4.60 gives m-Kuranishi neighbourhoods

(U(k,a), D(k,a), r(k,a), χ(k,a)), T(k,a),(k,i), i∈I ,K(k,a)(k,i)(k,i′), i,i′∈I on Ck(X) and
(V(l,b), E(l,b), s(l,b), ψ(l,b)), Υ(l,a),(l,j), j∈J ,Λ(l,a)(l,j)(l,j′), j,j′∈J on Cl(Y ). Then ex-
actly as for (4.52) in Definition 4.43, from fab we define a 1-morphism of
m-Kuranishi neighbourhoods

f (k,a)(l,b) = (U(k,a)(l,b), f(k,a)(l,b), f̂(k,a)(l,b)) : (U(k,a), D(k,a), r(k,a), χ(k,a))

−→ (V(l,b), E(l,b), s(l,b), ψ(l,b))

over C(f) : C(X)→ C(Y ) and S = Imχ(k,a) ∩ C(f)−1(Imψ(l,b)), where

U(k,a)(l,b) = Ck(Uab) ∩ C(fab)
−1(Cl(Vb)) ⊆ U(k,a) = Ck(Ua),

f(k,a)(l,b) = C(fab)|U(k,a)(l,b)
: U(k,a)(l,b) −→ V(l,b) = Cl(Vb),

f̂(k,a)(l,b) = Π∗k(f̂ab)|U(k,a)(l,b)
: D(k,a)|U(k,a)(l,b)

−→ f∗(k,a)(l,b)(E(l,b)).

We also define 2-morphisms F
(l,b)(l,j)
(k,a)(k,i) : Υ(l,b)(l,j) ◦ f (k,a)(l,b) ⇒ f (k,i)(l,j) ◦

T(k,a)(k,i) from the F bjai as for F
(l,j)
(k,i)(k,i′) in Definition 4.43. Then (4.59) for

the F
(l,b)(l,j)
(k,a)(k,i) follows from (4.59) for the F bjai by applying the corner func-

tor. Hence f (k,a)(l,b), F
(l,b)(l,j), j∈J
(k,a)(k,i), i∈I is a 1-morphism of m-Kuranishi neighbour-

hoods f (k,a)(l,b) : (U(k,a), D(k,a), r(k,a), χ(k,a)) → (V(l,b), E(l,b), s(l,b), ψ(l,b)) over

(Imχ(k,a) ∩ C(f)−1(Imψ(l,b)), C(f)) on C(X), C(Y ), as in Definition 4.54.
A special case of this construction is when X = Y , f = idX , and k = l, and

fab : (Ua, Da, ra, χa) → (Vb, Eb, sb, ψb) is a coordinate change of m-Kuranishi
neighbourhoods on X. Then f (k,a)(k,b) : (U(k,a), D(k,a), r(k,a), χ(k,a))→ (V(k,b),
E(k,b), s(k,b), ψ(k,b)) is a coordinate change on Ck(X).
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4.7.4 A philosophical digression

We can now state our:

Philosophy for working with m-Kuranishi spaces. A good way to think
about the ‘real’ geometric structure on m-Kuranishi spaces is as follows:

(i) Every m-Kuranishi space X has an underlying topological space X, and
a large collection of ‘m-Kuranishi neighbourhoods’ (Va, Ea, sa, ψa) on X,
which are m-Kuranishi neighbourhoods on X in the sense of §4.1, but with
an additional compatibility with the m-Kuranishi structure on X.

We think of (Va, Ea, sa, ψa) as a choice of ‘local coordinates’ on X.

(ii) For any two m-Kuranishi neighbourhoods (Va, Ea, sa, ψa), (Vb, Eb, sb, ψb)
on X, there is a coordinate change Φab : (Va, Ea, sa, ψa)→ (Vb, Eb, sb, ψb),
natural up to canonical 2-isomorphism.

(iii) A 1-morphism of m-Kuranishi spaces f : X → Y has an underlying
continuous map f : X → Y . If (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) are m-
Kuranishi neighbourhoods on X,Y , there is a 1-morphism fab : (Ua, Da,
ra, χa)→ (Vb, Eb, sb, ψb) over f, natural up to canonical 2-isomorphism.

(iv) The coordinate changes and 1-morphisms in (ii),(iii) behave in the obvious
functorial ways under compositions and identities, up to canonical 2-
isomorphisms.

(v) The family of m-Kuranishi neighbourhoods on X is closed under several
natural constructions. For example:

(a) If (V,E, s, ψ) is an m-Kuranishi neighbourhood on X and V ′ ⊆ V is
open then

(
V ′, E|V ′ , s|V ′ , ψ|V ′∩s−1(0)

)
is an m-Kuranishi neighbour-

hood on X.

(b) If (V,E, s, ψ) is an m-Kuranishi neighbourhood on X and π : F → V
is a vector bundle then

(
F, π∗(E)⊕ π∗(F ), π∗(s)⊕ idF , ψ ◦ π|···

)
is an

m-Kuranishi neighbourhood on X.

(vi) The collection of all m-Kuranishi neighbourhoods (Va, Ea, sa, ψa) on X
will usually be much larger than a particular atlas

{
(Vi, Ei, si, ψi) : i ∈ I

}
.

There are so many m-Kuranishi neighbourhoods on X that we can often
choose them to satisfy extra conditions. For example, in §10.4 we discuss
m-Kuranishi neighbourhoods on X which are ‘minimal at x in X’.

We will be guided by this philosophy from Chapter 7 onwards, where we
will usually frame our definitions and results in terms of m-Kuranishi neigh-
bourhoods on X = (X,K), rather than in terms of the particular m-Kuranishi
neighbourhoods (Vi, Ei, si, ψi) in the m-Kuranishi structure K, which we try not
to use.
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4.8 M-Kuranishi spaces and derived manifolds

We now take Ṁan = Man, and work with the corresponding 2-category of
m-Kuranishi spaces mKur.

Derived Differential Geometry is the study of ‘derived smooth manifolds’,
where ‘derived’ is in the sense of the Derived Algebraic Geometry of Lurie [74]
and Toën–Vezzosi [106, 107]. There are several different models of Derived
Differential Geometry in the literature, all closely related:

• Probably the first reference to Derived Differential Geometry is a short
final paragraph in Lurie [74, §4.5], outlining how to define an ∞-category
of ‘derived C∞-schemes’, and an ∞-subcategory of ‘derived manifolds’.

• Lurie’s ideas were developed further by his student David Spivak [103],
who defined an ∞-category DerManSpi of ‘derived manifolds’. Spivak’s
construction was rather complicated.

• Borisov and Noel [8] gave a simpler ∞-category DerManBN of ‘derived
manifolds’, with an ∞-category equivalence DerManBN ' DerManSpi.

• The author [57, 58, 61] defined a strict 2-category dMan of ‘d-manifolds’,
and studied their differential geometry in detail.

• Borisov [7] relates the derived manifolds of [8, 103] with the d-manifolds of
[57, 58, 61]. Borisov constructs a 2-functor

Π : π1(DerManBN) −→ dMan (4.65)

from the 2-category truncation π1(DerManBN) of DerManBN. This
2-functor Π is not an equivalence of 2-categories, but it is fairly close to
being an equivalence. Reducing to homotopy categories, the functor

Ho(Π) : Ho(DerManBN) −→ Ho(dMan) (4.66)

is full but not faithful, and induces a 1-1 correspondence between isomor-
phism classes of objects.

• Wallbridge [108] defines a rather general∞-category of ‘derived manifolds’,
which we prefer to think of as ‘derived C∞-schemes’, and then extends
them to an Artin stack version, ‘derived smooth stacks’.

• Macpherson [76] states a universal property of an ‘∞-category of derived
manifolds’, and argues that DerManSpi and DerManBN satisfy his
universal property. This universal property explains the existence of
Borisov’s 2-functor (4.65), and of (4.67) below.

The next theorem will be proved in [57]:

Theorem 4.62. There is an equivalence of 2-categories dMan 'mKur, where
dMan is the strict 2-category of d-manifolds from [57, 58, 61], and mKur is
as in §4.3 for Ṁan = Man.
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Combining with Borisov’s 2-functor (4.65) gives a 2-functor

π1(DerManSpi) ' π1(DerManBN) −→mKur, (4.67)

which is close to being an equivalence.

Remark 4.63. (a) The author carefully designed the definitions of §4.1–§4.3
using facts about d-manifolds from [57, 58, 61], in order to make Theorem 4.62
hold.

(b) The definitions of m-Kuranishi spaces above, and of (µ-)Kuranishi spaces
in Chapters 5 and 6, are also very much inspired by Fukaya–Oh–Ohta–Ono’s
Kuranishi spaces [19–39] in Symplectic Geometry (which we call FOOO Kuranishi
spaces), and by related structures such as McDuff–Wehrheim’s Kuranishi atlases
[77, 78, 80–83], all of which are geometric structures put on moduli spaces of
J-holomorphic curves. From this we can draw an important conclusion:

Fukaya–Oh–Ohta–Ono’s Kuranishi spaces [19–39], and sim-
ilar geometric structures in Symplectic Geometry, are actu-
ally a prototype kind of derived orbifold.

This is not surprising, as FOOO Kuranishi spaces and derived schemes were
invented to do more-or-less the same job, namely to be a geometric structure on
moduli spaces which encodes the obstructions in deformation theory of objects.

(c) We now have two different approaches to derived manifolds:

(i) Spivak [103], Borisov–Noel [7, 8] and the author [57, 58, 61] all define a
derived manifoldX = (X,OX) as a topological space X with a (homotopy)
sheaf of derived C∞-rings OX . The differences between [103], [7, 8], and
[57, 58, 61] are in the notions of sheaf and derived C∞-ring used.

(ii) M-Kuranishi spaces (X,K) above are a topological space X with an atlas K
of m-Kuranishi neighbourhoods (Vi, Ei, si, ψi)i∈I , plus coordinate changes
and 2-morphisms between them.

For comparison, here are two equivalent ways to define classical manifolds:

(i) A manifold (X,OX) is a Hausdorff, second countable topological space X
with a sheaf OX of R-algebras or C∞-rings, such that (X,OX) is locally
modelled on (Rn,ORn), for ORn the sheaf of smooth functions Rn → R.

(ii) A manifold (X,A) is a Hausdorff, second countable topological space
X with an atlas A of charts (Vi, ψi)i∈I , where Vi ⊆ Rn is open and
ψi : Vi → X is a homeomorphism with an open set Imψi ⊆ X, and charts
(Vi, ψi), (Vj , ψj) for i, j ∈ I are compatible (i.e. coordinate changes are
smooth).

These two approaches (i) and (ii) to derived differential geometry are broadly
equivalent, but each has advantages for different purposes. In approach (i),
derived manifolds are embedded in a much larger ∞- or 2-category of derived
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C∞-schemes (the 2-category of d-spaces dSpa in [57, 58, 61]), which may be
useful.

An advantage of approach (ii) is that we can replace the base category Man
with a variation, such as manifolds with corners Manc, and so define a 2-category
mKurc, or whatever. We have done this already, by defining mK̇ur starting
from a category Ṁan of ‘manifolds’ satisfying some basic assumptions, leading
to many different (2-)categories of ‘derived manifolds’, as in (4.37). This would
be much more difficult to do in approach (i).
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Chapter 5

µ-Kuranishi spaces

Throughout this chapter we suppose we are given a category Ṁan satisfying
Assumptions 3.1–3.7 in §3.1. To each such Ṁan we will associate a category
µK̇ur of ‘µ-Kuranishi spaces’, a simplified version of the 2-category of m-
Kuranishi spaces mK̇ur from Chapter 4.

We will prove that µK̇ur is equivalent to the homotopy category Ho(mK̇ur).
Given this, the reader may wonder if there is any point in studying µK̇ur, as we
could just consider Ho(mK̇ur) instead. Some reasons are that the definition of
µK̇ur is a lot simpler than those of mK̇ur or Ho(mK̇ur), involving categories
rather than 2-categories, and sheaves rather than stacks. Also, µK̇ur has
better geometrical properties than one would expect of Ho(mK̇ur): morphisms
f : X → Y in µK̇ur form a sheaf on X, when one would only expect morphisms
[f ] : X → Y in Ho(mK̇ur) to form a presheaf on X.

Nonetheless, the 2-category structure in mK̇ur contains important infor-
mation, which is lost in µK̇ur, so that mK̇ur is better than µK̇ur for some
purposes. In particular, the fibre products W = X×g,Z,hY in mK̇ur discussed
in §11.2 are characterized by a universal property involving 2-morphisms, which
makes no sense in µK̇ur. As in §11.4, the corresponding fibre products in µK̇ur
may not exist, or may exist but be the wrong answer for applications.

We begin in §5.1 by discussing linearity properties of 2-morphisms of m-
Kuranishi neighbourhoods from §4.1. We can glue such 2-morphisms using a
partition of unity. Because of this, we show in §5.2 that the homotopy category
of the 2-category of m-Kuranishi neighbourhoods in §4.1 forms a sheaf rather
than just a presheaf, which is what we need to make the definition of µ-Kuranishi
spaces work in §5.3, and in particular to define composition of morphisms of
µ-Kuranishi spaces.

For the orbifold analogue, Kuranishi neighbourhoods in §6.1, the results
of §5.1 would be false, and therefore we will not define an orbifold version of
µ-Kuranishi spaces. The good properties of Ho(mK̇ur) mentioned above do
not hold for Ho(K̇ur) in Chapter 5, in particular, morphisms [f ] : X → Y in
Ho(K̇ur) form a presheaf on X, but generally not a sheaf.
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5.1 Linearity properties of 2-morphisms of m-Kuranishi
neighbourhoods

We explain some linearity properties of 2-morphisms of m-Kuranishi neighbour-
hoods. The set HomS(Φij ,Φ

′
ij) of 2-morphisms Λij : Φij ⇒ Φ′ij over (S, f)

is a real affine space, and a real vector space when Φij = Φ′ij . We can also
multiply 2-morphisms Λij : Φij ⇒ Φij by smooth functions on Vij , and combine
2-morphisms Λij : Φij ⇒ Φ′ij using a partition of unity.

Definition 5.1. Let f : X → Y be continuous, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)
be m-Kuranishi neighbourhoods on X,Y , and S ⊆ Imψi ∩ f−1(Imψj) ⊆ X be
open, and Φij ,Φ

′
ij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) be 1-morphisms over (S, f),

with Φij = (Vij , φij , φ̂ij) and Φ′ij = (V ′ij , φ
′
ij , φ̂

′
ij). Write

HomS(Φij ,Φ
′
ij) =

{
Λij : Λij : Φij ⇒ Φ′ij is a 2-morphism over (S, f)

}
. (5.1)

We will show that HomS(Φij ,Φ
′
ij) naturally has the structure of a real affine

space, and HomS(Φij ,Φij) the structure of a real vector space. Write

Hom(Ei|Vij , TφijVj |V́ij )ψ−1
i (S) (5.2)

for the real vector space of germs at ψ−1
i (S) ⊆ Vij of morphisms Ei|Vij →

TφijVj |Vij in the sense of §3.3.4. That is, an element of (5.3) is an equivalence

class [V́ij , λ̂ij ] of pairs (V́ij , λ̂ij), where V́ij is an open neighbourhood of ψ−1
i (S)

in Vij and λ̂ij : Ei|V́ij → TφijVj |V́ij is a morphism, and pairs (V́ij , λ̂ij), (V́
′
ij , λ̂

′
ij)

are equivalent if there exists an open neighbourhood V́ ′′ij of ψ−1
i (S) in V́ij ∩ V́ ′ij

with λ̂ij |V́ ′′ij = λ̂′ij |V́ ′′ij . Then by Definition 4.3 we have:

HomS(Φij ,Φ
′
ij)
∼={

[V́ij , λ̂ij ] ∈ Hom(Ei|Vij , TφijVj |V́ij )ψ−1
i (S) :

φ′ij = φij + λ̂ij ◦ si +O(s2
i ), φ̂

′
ij = φ̂ij + φ∗ij(dsj) ◦ λ̂ij +O(si)

}
∼ : [V́ij , λ̂ij ] ∼ [V́ ′ij , λ̂

′
ij ] if λ̂′ij − λ̂ij = O(si)

.

(5.3)

We claim that the equations on λ̂ij in the numerator of (5.3) are linear in

[V́ij , λ̂ij ] if Φ′ij = Φij , and affine linear for general Φ′ij . To prove this, noting

that λ̂ij = 0 is a solution when Φ′ij = Φij , it is enough to show that if [V́ij , λ̂ij ]

and [V́ ′ij , λ̂
′
ij ] satisfy the equations and α ∈ R then α · [V́ij , λ̂ij ] + (1−α)[V́ ′ij , λ̂

′
ij ]

also satisfy the equations. For the first equation, as we have

φ′ij = φij + λ̂ij ◦ si +O(s2
i ) and φ′ij = φij + λ̂′ij ◦ si +O(s2

i ), (5.4)

so Theorem 3.17(m) with k = 2 gives

φ′ij = φij + [α · λ̂ij + (1− α) · λ̂′ij ] ◦ si +O(s2
i ),
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as we want. For the second equation φ̂′ij = φ̂ij + φ∗ij(dsj) ◦ λ̂ij + O(si), affine
linearity is immediate from Definition 3.15(vi) and Theorem 3.17(b).

The equivalence relation ∼ on the denominator of (5.3) is the quotient by
a vector subspace of Hom(Ei|Vij , TφijVj |V́ij )ψ−1

i (S) acting by translation. Hence

HomS(Φij ,Φ
′
ij) is the quotient of a real affine space (or a real vector space if

Φ′ij = Φij) by a vector subspace acting by translations, and is a real affine space
(or a real vector space if Φ′ij = Φij).

This proves the first part of the next result, the second is straightforward:

Proposition 5.2. Let f : X → Y be continuous, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)
be m-Kuranishi neighbourhoods on X,Y, and S ⊆ Imψi ∩ f−1(Imψj) ⊆ X
be open, and Φij ,Φ

′
ij : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) be 1-morphisms over

(S, f). Then the set HomS(Φij ,Φ
′
ij) of 2-morphisms Λij : Φij ⇒ Φ′ij over

(S, f) naturally has the structure of a real affine space, and HomS(Φij ,Φij) the
structure of a real vector space.

These vector space and affine space structures are compatible with vertical
and horizontal composition, identities, and inverses, in the obvious ways. Thus,
the strict 2-categories mK̇N,GmK̇N,mK̇NS(X) of §4.1 have a real linear
structure at the level of 2-morphisms.

In any 2-category C, if Φ : A → B is a 1-morphism in C then the set
Hom(Φ,Φ) of 2-morphisms Λ : Φ→ Φ is a monoid under vertical composition �.
For the 2-categories mK̇N,GmK̇N,mK̇NS(X) of §4.1, this monoid is a real
vector space, and in particular an abelian group.

The next lemma holds as (5.2) is clearly a module over both C∞(Vi) and
C∞(Vi)ψ−1

i (S), and the conditions in (5.3) for Φ′ij = Φij are C∞(Vi)-linear, by

Theorem 3.17(b),(m), so the actions of C∞(Vi), C
∞(Vi)ψ−1

i (S) on (5.2) descend

to (5.3).

Lemma 5.3. Let f : X → Y be continuous, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be
m-Kuranishi neighbourhoods on X,Y, and S ⊆ Imψi ∩ f−1(Imψj) ⊆ X be open,
and Φij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) be a 1-morphism over (S, f). Then the
vector space HomS(Φij ,Φij) is naturally a module over C∞(Vi), and also over
C∞(Vi)ψ−1

i (S), the R-algebra of germs at ψ−1
i (S) of smooth functions Vi → R.

That is, if Λ : Φij ⇒ Φij is a 2-morphism over (S, f) then we can define
another 2-morphism α · Λ : Φij ⇒ Φij for any α ∈ C∞(Vi), or more generally

any α ∈ C∞(V́i) for V́i an open neighbourhood of ψ−1
i (S) in Vi. Next we explain

how to glue 2-morphisms Λa : Φij ⇒ Φ′ij using a partition of unity.

Definition 5.4. Let f : X → Y be continuous, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)
be m-Kuranishi neighbourhoods on X,Y , and S ⊆ Imψi ∩ f−1(Imψj) ⊆ X be
open, and Φij ,Φ

′
ij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) be 1-morphisms over (S, f),

with Φij = (Vij , φij , φ̂ij) and Φ′ij = (V ′ij , φ
′
ij , φ̂

′
ij).

Suppose {T a : a ∈ A} is an open cover of S, and Λa : Φij ⇒ Φ′ij is a

2-morphism over (T a, f). Choose representatives (V́ a, λ̂a) for Λa = [V́ a, λ̂a]
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for a ∈ A, so that V́ a is an open neighbourhood of ψ−1
i (T a) in Vij ∩ V ′ij . Set

V́ij =
⋃
a∈A V́

a, so that V́ij is an open neighbourhood of ψ−1
i (S) in Vij∩V ′ij . Then

{V́ a : a ∈ A} is an open cover of V́ij . Choose a partition of unity {ηa : a ∈ A}
on V́ij subordinate to {V́ a : a ∈ A}, as in §3.3.1(d). Define a morphism on V́ij :

λ̂ij : Ei|V́ij −→ TφijVj |V́ij by λ̂ij =
∑
a∈A η

a · λ̂a. (5.5)

Here λ̂a is only defined on V́ a ⊆ V́ij , but as supp ηa ⊆ V́ a, we can extend

ηa · λ̂a by zero on V́ij \ V́ a, and so make ηa · λ̂a defined on all of V́ij . As
{ηa : a ∈ A} is locally finite, the sum

∑
a∈A · · · in (5.5) is locally finite, and so

is well defined as we are working with sheaves. Thus λ̂ij is well defined.

We now claim that (V́ij , λ̂ij) satisfies Definition 4.3, so that Λij := [V́ij , λ̂ij ] :
Φij ⇒ Φ′ij is a 2-morphism over (S, f). To see this, note that as the conditions

on λ̂ij in (5.3) are affine linear, combining a family of solutions using a partition
of unity as in (5.5) gives another solution. Informally we write

Λij =
∑
a∈A η

a · Λa, in 2-morphisms Φij =⇒ Φ′ij . (5.6)

That is, we can combine 2-morphisms Λa : Φij ⇒ Φ′ij over (T a, f) for a ∈ A
using a partition of unity, to get a 2-morphism over (S, f) for S =

⋃
a∈A T

a.

5.2 The category of µ-Kuranishi neighbourhoods

Recall from §A.2 that the homotopy category Ho(C) of a 2-category C is the
category whose objects are objects of C, and whose morphisms [f ] : X → Y
are 2-isomorphism classes [f ] of 1-morphisms f : X → Y in C. In §5.2–§5.3 we
define a simplified version of m-Kuranishi spaces, called µ-Kuranishi spaces, in
which we reduce from 2-categories to categories by taking homotopy categories.

Here is the analogue of Definitions 4.1–4.6 and 4.8.

Definition 5.5. Define the category of µ-Kuranishi neighbourhoods to be the
homotopy category of the 2-category of m-Kuranishi neighbourhoods from §4.1.
In more detail:

(a) LetX be a topological space, and S ⊆ X be open. A µ-Kuranishi neighbour-
hood (V,E, s, ψ) on X (or over S) is just an m-Kuranishi neighbourhood
on X (or over S), in the sense of Definition 4.1.

(b) Let f : X → Y be a continuous map, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be µ-
Kuranishi neighbourhoods (hence m-Kuranishi neighbourhoods) on X,Y ,
and S ⊆ Imψi ∩ f−1(Imψj) be open. A morphism [Φij ] : (Vi, Ei, si, ψi)→
(Vj , Ej , sj , ψj) of µ-Kuranishi neighbourhoods over (S, f) is an equivalence
class [Φij ] of 1-morphisms Φij ,Φ

′
ij : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) of

m-Kuranishi neighbourhoods over (S, f), where 1-morphisms Φij ,Φ
′
ij are

equivalent (written Φij ≈S Φ′ij) if there exists a 2-morphism Λij : Φij ⇒ Φ′ij
of m-Kuranishi neighbourhoods over (S, f).
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When X = Y and f = idX we call [Φij ] a morphism over S. In this case,
the identity morphism id(Vi,Ei,si,ψi) : (Vi, Ei, si, ψi)→ (Vi, Ei, si, ψi) over
S is [id(Vi,Ei,si,ψi)], for id(Vi,Ei,si,ψi) as in §4.1.

If Φij = (Vij , φij , φ̂ij), we write [Φij ] = [Vij , φij , φ̂ij ].

(c) Let f : X → Y , g : Y → Z be continuous, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj),
(Vk, Ek, sk, ψk) be µ-Kuranishi neighbourhoods on X,Y, Z respectively,
and T ⊆ Imψj ∩ g−1(Imψk) ⊆ Y and S ⊆ Imψi ∩ f−1(T ) ⊆ X be
open. Suppose [Φij ] : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) is a morphism of
µ-Kuranishi neighbourhoods over (S, f), and [Φjk] : (Vj , Ej , sj , ψj) →
(Vk, Ek, sk, ψk) a morphism of µ-Kuranishi neighbourhoods over (T, g).

Define the composition of morphisms to be

[Φjk] ◦ [Φij ] = [Φjk ◦ Φij ] : (Vi, Ei, si, ψi) −→ (Vk, Ek, sk, ψk),

as a morphism of µ-Kuranishi neighbourhoods over (S, g ◦ f). Here we
choose representatives Φij ,Φjk for the equivalence classes [Φij ], [Φjk], and
use the composition of 1-morphisms Φjk ◦ Φij from §4.1. Properties of
2-categories imply that [Φjk ◦ Φij ] is independent of the choice of Φij ,Φjk.

Definition 4.8 defined a strict 2-category mK̇N and 2-subcategories GmK̇N
and mK̇NS(X) for S ⊆ X open. In the same way, we define the category of
µ-Kuranishi neighbourhoods µK̇N, where:

• Objects of µK̇N are triples (X,S, (V,E, s, ψ)), with X a topological space,
S ⊆ X open, and (V,E, s, ψ) a µ-Kuranishi neighbourhood over S.

• Morphisms (f, [Φij ]) : (X,S, (Vi, Ei, si, ψi)) → (Y, T, (Vj , Ej , sj , ψj)) of

µK̇N are a pair of a continuous map f : X → Y with S ⊆ f−1(T ) ⊆ X
and a morphism [Φij ] : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) of µ-Kuranishi
neighbourhoods over (S, f).

• Identities and composition are defined in the obvious way, using (b),(c).

Define the category of global µ-Kuranishi neighbourhoods GµK̇N to be the full
subcategory of µK̇N with objects (s−1(0), s−1(0), (V,E, s, ids−1(0))) for which

X = S = s−1(0) and ψ = ids−1(0). We usually write objects of GµK̇N as
(V,E, s) rather than (s−1(0), s−1(0), (V,E, s, ids−1(0))), and we write morphisms

of GµK̇N as [Φij ] : (Vi, Ei, si) → (Vj , Ej , sj) rather than as (f, [Φij ]), since
f = φij |s−1

i (0) is determined by [Φij ] as in Definition 4.8.

Let X be a topological space and S ⊆ X be open. Write µK̇NS(X) for
the subcategory of µK̇N with objects (X,S, (V,E, s, ψ)) for X,S as given
and morphisms (idX , [Φij ]) : (X,S, (Vi, Ei, si, ψi))→ (X,S, (Vj , Ej , sj , ψj)) for

f = idX . We call µK̇NS(X) the category of µ-Kuranishi neighbourhoods over
S⊆X. We generally write objects of µK̇NS(X) as (V,E, s, ψ), omitting X,S,
and morphisms of mK̇NS(X) as [Φij ], omitting idX .
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Then we have equalities µK̇N = Ho(mK̇N), GµK̇N = Ho(GmK̇N),
µK̇NS(X) = Ho(mK̇NS(X)) with the homotopy categories of the strict 2-
categories mK̇N,GmK̇N,mK̇NS(X) of §4.1.

The accent ‘ ˙ ’ in µK̇N,GµK̇N,µK̇NS(X) is because they are constructed
using Ṁan. For particular Ṁan we modify the notation in the obvious way, e.g.
if Ṁan = Man we write µKN,GµKN,µKNS(X), and if Ṁan = Manc we
write µKNc,GµKNc,µKNc

S(X).
If f : X → Y is continuous, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) are µ-Kuranishi

neighbourhoods on X,Y , and S ⊆ Imψi ∩ f−1(Imψj) ⊆ X is open, write
HomS,f ((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)) for the set of morphisms [Φij ] : (Vi, Ei,
si, ψi)→ (Vj , Ej , sj , ψj) over (S, f).

If X = Y and f = idX , we write HomS((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)) in
place of HomS,f ((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)).

Remark 5.6. (a) In §4.1, for m-Kuranishi neighbourhoods (Vi, Ei, si, ψi) over S,
or 1-morphisms Φij over (S, f), the open set S ⊆ X appears only as a condition
on (Vi, Ei, si, ψi) or Φij , as we need S ⊆ Imψi or S ⊆ Imψi ∩ f−1(Imψj). Thus
m-Kuranishi neighbourhoods and their 1-morphisms make sense without knowing
S. However, 2-morphisms Λij : Φij ⇒ Φ′ij over (S, f) are equivalence classes
under ∼S depending on S, so do not make sense without specifying S.

Similarly, µ-Kuranishi neighbourhoods (Vi, Ei, si, ψi) make sense without
knowing S, but their morphisms [Φij ] are equivalence classes under ≈S depending
on S, so do not make sense without specifying S.

(b) If we define µ-Kuranishi neighbourhoods and their morphisms directly,
rather than via m-Kuranishi neighbourhoods and their 1- and 2-morphisms, the
definitions and proofs can be simplified a bit. For example, the equivalence
relation ∼S in Definition 4.3 is not needed for the µ-Kuranishi case.

Here are the analogues of Definitions 4.10, 4.11 and Convention 4.12:

Definition 5.7. Let X be a topological space, and S ⊆ X be open, and [Φij ] :
(Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) be a morphism of µ-Kuranishi neighbourhoods

on X over S. Then [Φij ] is a morphism in the category µK̇NS(X) of Definition

5.5. We call [Φij ] a coordinate change over S if it is an isomorphism in µK̇NS(X).

This holds if and only if any representative Φij is an equivalence in mK̇NS(X),
that is, if and only if Φij is a coordinate change of m-Kuranishi neighbourhoods
over S, as in Definition 4.10. Write

IsoS
(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
⊆ HomS

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
for the subset of coordinate changes [Φij ] over S.

Definition 5.8. Let T ⊆ S ⊆ X be open. Define the restriction functor
|T : µK̇NS(X)→ µK̇NT (X) to map objects (Vi, Ei, si, ψi) to exactly the same
objects, and morphisms [Φij ] to [Φij ]|T , where [Φij ]|T is the ≈T -equivalence
class of any representative Φij of the ≈S-equivalence class [Φij ]. Then |T :
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µK̇NS(X)→ µK̇NT (X) commutes with all the structure, so it is a functor. If
U ⊆ T ⊆ S ⊆ X are open then |U ◦ |T = |U : µK̇NS(X)→ µK̇NU (X).

Now let f : X → Y be continuous, (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be µ-
Kuranishi neighbourhoods on X,Y , and T ⊆ S ⊆ Imψi ∩ f−1(Imψj) ⊆ X
be open. Then as for |T on morphisms above, we define a map

|T : HomS,f

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
−→

HomT,f

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
.

(5.7)

Convention 5.9. When we do not specify a domain S for a morphism, or
coordinate change, of µ-Kuranishi neighbourhoods, the domain should be as large
as possible. For example, if we say that [Φij ] : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) is
a morphism (or a morphism over f : X → Y ) without specifying S, we mean
that S = Imψi ∩ Imψj (or S = Imψi ∩ f−1(Imψj)).

Similarly, if we write a formula involving several morphisms or coordinate
changes (possibly defined on different domains), without specifying the domain
S, we make the convention that the domain where the formula holds should be
as large as possible. That is, the domain S is taken to be the intersection of
the domains of each morphism in the formula, and we implicitly restrict each
morphism in the formula to S as in Definition 5.8, to make it make sense.

For example, if we say that [Φij ] : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj), [Φjk] :
(Vj , Ej , sj , ψj) → (Vk, Ek, sk, ψk) and [Φik] : (Vi, Ei, si, ψi) → (Vk, Ek, sk, ψk)
are morphisms of µ-Kuranishi neighbourhoods on X, and

[Φik] = [Φjk] ◦ [Φij ], (5.8)

we mean that [Φij ] is defined over Imψi ∩ Imψj , and [Φjk] over Imψj ∩ Imψk,
and [Φik] over Imψi ∩ Imψk, and (5.8) holds over Imψi ∩ Imψj ∩ Imψk, that
is, (5.8) is equivalent to

[Φik]|Imψi∩Imψj∩Imψk = [Φjk]|Imψi∩Imψj∩Imψk ◦ [Φij ]|Imψi∩Imψj∩Imψk .

Note in particular the potentially confusing point that (5.8) does not determine
[Φik] on Imψi ∩ Imψk, but only on Imψi ∩ Imψj ∩ Imψk.

The next theorem is proved by combining Theorem 4.13 and the ideas of §5.1.

Theorem 5.10. Let f : X → Y be a continuous map of topological spaces, and
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be µ-Kuranishi neighbourhoods on X,Y . For each
open S ⊆ Imψi ∩ f−1(Imψj) ⊆ X, as in Definition 5.5 define a set

Homf

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
(S)

= HomS,f

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
,

and for open T ⊆ S ⊆ Imψi ∩ f−1(Imψj) as in Definition 5.8 define a map

ρST : Homf

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
(S) −→

Homf

(
(Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)

)
(T )
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by ρST = |T in (5.7). Then Homf ((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)) is a sheaf of
sets on the open subset Imψi ∩ f−1(Imψj) in X, as in Definition A.12.

When X = Y and f = idX we write Hom((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj))
instead of Homf ((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)). Then coordinate changes [Φij ] :
(Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) also form a sheaf Iso((Vi, Ei, si, ψi), (Vj , Ej ,
sj , ψj)) on Imψi ∩ Imψj , a subsheaf of Hom((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)).

Proof. For the first part, we must show Homf ((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj))
satisfies the sheaf axioms Definition A.12(i)–(v). Parts (i)–(iii), the presheaf
axioms, are immediate. For (iv)–(v), let S ⊆ Imψi ∩ f−1(Imψj) ⊆ X be open,
and {T a : a ∈ A} be an open cover of S.

For (iv), suppose [Φij ], [Φ
′
ij ] : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) are morphisms

of µ-Kuranishi neighbourhoods over (S, f), and [Φij ]|Ta = [Φ′ij ]|Ta for all a ∈ A.
Choose representatives Φij ,Φ

′
ij for [Φij ], [Φ

′
ij ], so that Φij ,Φ

′
ij are 1-morphisms

of m-Kuranishi neighbourhoods over (S, f). Since [Φij ]|Ta = [Φ′ij ]|Ta , there
exists a 2-morphism Λa : Φij ⇒ Φ′ij of m-Kuranishi neighbourhoods over (T a, f)
for all a ∈ A. Then Definition 5.4 constructs a 2-morphism Λij =

∑
a∈A η

a · Λa :
Φij ⇒ Φ′ij of m-Kuranishi neighbourhoods over (S, f), using a partition of unity
{ηa : a ∈ A}. So Λij implies that [Φij ] = [Φ′ij ] in morphisms of µ-Kuranishi
neighbourhoods over (S, f). Hence Definition A.12(iv) holds.

For (v), suppose [Φaij ] : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) are morphisms of µ-

Kuranishi neighbourhoods over (T a, f) for a ∈ A, and [Φaij ]|Ta∩T b = [Φbij ]|Ta∩T b
for all a, b ∈ A. Choose representatives Φa

ij = (V aij , φ
a
ij , φ̂

a
ij) for [Φa

ij ] for a ∈
A, so that Φa

ij is a 1-morphism of m-Kuranishi neighbourhoods over (T a, f).

Since [Φa
ij ]|Ta∩T b = [Φb

ij ]|Ta∩T b , there exists a 2-morphism Λab : Φa
ij ⇒ Φb

ij

of m-Kuranishi neighbourhoods over (T a ∩ T b, f) for all a, b ∈ A. Choose

representatives (V́ ab, λ̂ab) for Λab = [V́ ab, λ̂ab] for a, b ∈ A, so that V́ ab is an
open neighbourhood of ψ−1

i (T a ∩ T b) in V aij ∩ V bij ⊆ Vi.
Define Vij =

⋃
a∈A V

a
ij , so that Vij is an open neighbourhood of ψ−1

i (S) in
Vi. Then {V aij : a ∈ A} is an open cover of Vij . Choose a partition of unity
{ηa : a ∈ A} on Vij subordinate to {V aij : a ∈ A}, as in §B.1.4. Now for all

a, b, c ∈ A, we have a 2-morphism (Λbc)−1 � Λac : Φa
ij ⇒ Φb

ij of m-Kuranishi

neighbourhoods over (T a ∩ T b ∩ T c, f). And {T a ∩ T b ∩ T c : c ∈ A} is an open
cover of T a ∩ T b. So by Definition 5.4, as in (5.6) we can form a 2-morphism

Λ̃ab =
∑
c∈A η

c · ((Λbc)−1 � Λac) : Φaij =⇒ Φbij

over (T a ∩ T b, f). We claim that these Λ̃ab satisfy

Λ̃bc|Ta∩T b∩T c � Λ̃ab|Ta∩T b∩T c = Λ̃ac|Ta∩T b∩T c for all a, b, c ∈ A. (5.9)

To see this, note that Λ̃ab = [Ṽ abij , λ̃
ab
ij ] with λ̃abij =

∑
c∈A η

c · (−λ̂bc + λ̂ac), and

thus on Ṽ abij ∩ Ṽ bcij we have

λ̃bcij + λ̃abij =
(∑

d∈A η
d · (−λ̂cd + λ̂bd)

)
+
(∑

d∈A η
d · (−λ̂bd + λ̂ad)

)
=
∑
d∈A η

d · (−λ̂cd + λ̂ad) = λ̃acij .
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Theorem 4.13 saysHomf ((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)) is a stack. Applying
Definition A.17(v) to the 1-morphisms Φaij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) over

(T a, f) and 2-morphisms Λ̃ab : Φaij ⇒ Φbij over (T a ∩T b, f) satisfying (5.9) shows
that there exist a 1-morphism Φij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) over (S, f)

and 2-morphisms Λ̃a : Φa
ij ⇒ Φij over (T a, f) for a ∈ A satisfying Λ̃a|Ta∩T b =

Λ̃b|Ta∩T b � Λ̃ab for all a, b ∈ A. Then [Φij ] : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) is

a morphism of µ-Kuranishi neighbourhoods over (S, f), and Λ̃a : Φa
ij ⇒ Φij

implies that [Φij ]|Ta = [Φaij ] for all a ∈ A. Hence Definition A.12(v) holds, and
Homf ((Vi, Ei, si, ψi), (Vj , Ej , sj , ψj)) is a sheaf.

We call Theorem 5.10 the sheaf property. We will use it in §5.3 to construct
compositions of morphisms of µ-Kuranishi spaces.

5.3 The category of µ-Kuranishi spaces

5.3.1 The definition of the category µK̇ur

We give the analogue of §4.3 for µ-Kuranishi spaces. This is much simpler, as
we do not have to deal with 2-morphisms.

Definition 5.11. Let X be a Hausdorff, second countable topological space,
and n ∈ Z. A µ-Kuranishi structure K on X of virtual dimension n is data
K =

(
I, (Vi, Ei, si, ψi)i∈I , [Φij ]i,j∈I

)
, where:

(a) I is an indexing set.

(b) (Vi, Ei, si, ψi) is a µ-Kuranishi neighbourhood on X for each i ∈ I, with
dimVi − rankEi = n.

(c) [Φij ] = [Vij , φij , φ̂ij ] : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) is a coordinate
change for all i, j ∈ I (as in Convention 5.9, defined on S = Imψi ∩ Imψj).

(d)
⋃
i∈I Imψi = X.

(e) [Φii] = [id(Vi,Ei,si,ψi)] for all i ∈ I.

(f) [Φjk] ◦ [Φij ] = [Φik] for all i, j, k ∈ I (as in Convention 5.9, this holds on
S = Imψi ∩ Imψj ∩ Imψk).

We call X = (X,K) a µ-Kuranishi space, of virtual dimension vdimX = n.
When we write x ∈X, we mean that x ∈ X.

Example 5.12. Let V be a manifold (object in Ṁan), E → V a vector bundle,
and s : V → E a smooth section, so that (V,E, s) is an object in GµK̇N from
Definition 5.5. Set X = s−1(0), as a closed subset of V with the induced topology.
Then X is Hausdorff and second countable, as V is. Define a µ-Kuranishi
structure K =

(
{0}, (V0, E0, s0, ψ0),Φ00

)
on X with indexing set I = {0}, one

µ-Kuranishi neighbourhood (V0, E0, s0, ψ0) with V0 = V , E0 = E, s0 = s and
ψ0 = idX , and one coordinate change Φ00 = id(V0,E0,s0,ψ0). Then X = (X,K) is
a µ-Kuranishi space, with vdimX = dimV − rankE. We write SV,E,s = X.
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When we are discussing several µ-Kuranishi spaces at once, we need nota-
tion to distinguish µ-Kuranishi neighbourhoods and coordinate changes on the
different spaces. As for (4.5)–(4.8), one choice we will often use for µ-Kuranishi
spaces W,X,Y ,Z is

W = (W,H), H =
(
H, (Th, Ch, qh, ϕh)h∈H ,

[Σhh′ ] = [Thh′ , σhh′ , σ̂hh′ ]h,h′∈H
)
,

(5.10)

X = (X, I), I =
(
I, (Ui, Di, ri, χi)i∈I , [Tii′ ] = [Uii′ , τii′ , τ̂ii′ ]i,i′∈I

)
, (5.11)

Y = (Y,J ), J =
(
J, (Vj , Ej , sj , ψj)j∈J , [Υjj′ ] = [Vjj′ , υjj′ , υ̂jj′ ]j,j′∈J

)
, (5.12)

Z = (Z,K), K =
(
K, (Wk, Fk, tk, ωk)k∈K ,

[Φkk′ ] = [Wkk′ , φkk′ , φ̂kk′ ]k,k′∈K
)
.

(5.13)

Definition 5.13. Let X = (X, I) and Y = (Y,J ) be µ-Kuranishi spaces, with
notation (5.11)–(5.12). A morphism f : X → Y is f =

(
f, [f ij ]i∈I, j∈J

)
, where

f : X → Y is a continuous map, and [f ij ] = [Uij , fij , f̂ij ] : (Ui, Di, ri, χi) →
(Vj , Ej , sj , ψj) is a morphism of µ-Kuranishi neighbourhoods over f for all i ∈ I,
j ∈ J (defined over S = Imχi ∩ f−1(Imψj), by Convention 5.9), satisfying:

(a) If i, i′ ∈ I and j ∈ J then in morphisms over f we have

[f i′j ] ◦ [Tii′ ] = [f ij ], (5.14)

where (5.14) holds over S = Imχi ∩ Imχi′ ∩ f−1(Imψj) by Convention
5.9, and each term in (5.14) is implicitly restricted to S. In particular,
(5.14) does not determine f ij , but only its restriction [f ij ]|S .

(b) If i ∈ I and j, j′ ∈ J then interpreted as for (5.14), we have

[Υjj′ ] ◦ [f ij ] = [f ij′ ]. (5.15)

If x ∈X (i.e. x ∈ X), we will write f(x) = f(x) ∈ Y .
When Y = X, so that J = I, define idX =

(
idX , [Tij ]i,j∈I

)
. Then Definition

5.11(f) implies that (a),(b) hold, so idX : X →X is a morphism of µ-Kuranishi
spaces, which we call the identity morphism.

In the next theorem, we use the sheaf property of morphisms of µ-Kuranishi
neighbourhoods in Theorem 5.10 to construct compositions g ◦ f : X → Z of
morphisms of µ-Kuranishi spaces f : X → Y , g : Y → Z, and hence show that
µ-Kuranishi spaces form a category µK̇ur.

In §4.3 we made arbitrary choices to define composition of 1-morphisms of
m-Kuranishi spaces. For µ-Kuranishi spaces, composition is canonical.

Theorem 5.14. (a) Let X = (X, I),Y = (Y,J ),Z = (Z,K) be µ-Kuranishi
spaces with notation (5.11)–(5.13), and f : X → Y , g : Y → Z be morphisms,
where f =

(
f, [f ij ]i∈I, j∈J

)
, g =

(
g, [gjk]j∈J, k∈K

)
. Then there exists a unique
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morphism h : X → Z, where h =
(
h, [hik]i∈I, k∈K

)
such that h = g◦f : X → Z,

and for all i ∈ I, j ∈ J, k ∈ K we have

[hik] = [gjk] ◦ [f ij ], (5.16)

where by Convention 5.9, (5.16) holds over Imχi ∩ f−1(Imψj) ∩ h−1(Imωk),
and so may not determine [hik] over Imχi ∩ h−1(Imωk).

We write g ◦ f = h, so that g ◦ f : X → Z is a morphism of µ-Kuranishi
spaces, and call g ◦ f the composition of f , g.

(b) Composition of morphisms is associative, that is, if e : W → Z is another
morphism of µ-Kuranishi spaces then (g ◦ f) ◦ e = g ◦ (f ◦ e).

(c) Composition is compatible with identities, that is, f ◦ idX = idY ◦ f = f
for all morphisms of µ-Kuranishi spaces f : X → Y .

Thus µ-Kuranishi spaces form a category, which we write as µK̇ur.

Proof. For (a), define h = g ◦ f : X → Z. Let i ∈ I and k ∈ K, and set
S = Imχi ∩ h−1(Imωk), so that S is open in X. We want to define a morphism
[hik] : (Ui, Di, ri, χi) → (Wk, Fk, tk, ωk) of µ-Kuranishi neighbourhoods over
(S, h). Equation (5.16) means that for each j ∈ J we must have

[hik]|S∩f−1(Imψj) = [gjk] ◦ [f ij ]|S∩f−1(Imψj). (5.17)

As {Imψj : j ∈ J} is an open cover of Y and f is continuous,
{
S ∩ f−1(Imψj) :

j ∈ J
}

is an open cover of S. For all j, j′ ∈ J we have

[gjk] ◦ [f ij ]|S∩f−1(Imψj)∩f−1(Imψj′ )
= [gj′k] ◦ [Υjj′ ] ◦ [f ij ]|···

= [gj′k] ◦ [f ij′ ]|S∩f−1(Imψj)∩f−1(Imψj′ )
, (5.18)

using (5.14) for g in the first step, and (5.15) for f in the second.
Now the right hand side of (5.17) prescribes values for a morphism over h

on the sets of an open cover {S ∩ f−1(Imψj) : j ∈ J} of S. Equation (5.18)
shows that these values agree on overlaps (S ∩ f−1(Imψj)) ∩ (S ∩ f−1(Imψj′)).
Therefore the sheaf property Theorem 5.10 shows that there is a unique morphism
[hik] over (S, h) satisfying (5.17) for all j ∈ J .

We have now defined h =
(
h, [hik]i∈I, k∈K

)
. To show h : X → Z is a

morphism, we must verify Definition 5.13(a),(b). For (a), suppose i, i′ ∈ I, j ∈ J
and k ∈ K. Then we have

[hi′k] ◦ [Tii′ ]|Imχi∩Imχi′∩f−1(Imψj)∩h−1(Imωk) = [gjk] ◦ [f i′j ] ◦ [Tii′ ]|···
= [gjk] ◦ [f ij ]|··· = [hij ]|Imχi∩Imχi′∩f−1(Imψj)∩h−1(Imωk),

using (5.17) with i′ in place of i in the first step, (5.14) for f in the second,
and (5.17) in the third. This proves the restriction of (5.14) for h, i, i′, k to
Imχi ∩ Imχi′ ∩ f−1(Imψj) ∩ h−1(Imωk), for each j ∈ J .

Since the Imχi ∩ Imχi′ ∩ f−1(Imψj) ∩ h−1(Imωk) for j ∈ J form an open
cover of Imχi ∩ Imχi′ ∩ h−1(Imωk), Theorem 5.10 implies that (5.14) holds for
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h, i, i′, k on the correct domain Imχi ∩ Imχi′ ∩ h−1(Imωk), yielding Definition
5.13(a) for h. Definition 5.13(b) follows by a similar argument, involving (5.15)
for g. Hence h : X → Z is a morphism, proving part (a).

For (b), in notation (5.10)–(5.13), if h ∈ H, i ∈ I, j ∈ J , k ∈ K we find that

[((g ◦ f) ◦ e)h,k]|Imϕh∩e−1(Imχi)∩(f◦e)−1(Imψj)∩(g◦f◦e)−1(Imωk)

= [gjk] ◦ [f ij ] ◦ [ehi]

= [(g ◦ (f ◦ e))h,k]|Imϕh∩e−1(Imχi)∩(f◦e)−1(Imψj)∩(g◦f◦e)−1(Imωk),

where the middle step makes sense without brackets by associativity of composi-
tion of morphisms of µ-Kuranishi neighbourhoods. Since Imϕh ∩ e−1(Imχi) ∩
(f ◦ e)−1(Imψj) ∩ (g ◦ f ◦ e)−1(Imωk) for all i ∈ I, j ∈ J form an open cover
of Imϕh ∩ (g ◦ f ◦ e)−1(Imωk), Theorem 5.10 implies that

[(
(g ◦ f) ◦ e

)
h,k

]
=[(

g ◦ (f ◦ e)
)
h,k

]
over the correct domain Imϕh ∩ (g ◦ f ◦ e)−1(Imωk), so that

(g ◦ f) ◦ e = g ◦ (f ◦ e), proving (b).
For (c), let i ∈ I and j ∈ J . Then we have

[(f ◦ idX)i,j ] = [f ij ] ◦ [Tii] = [f ij ] ◦ [id(Ui,Di,ri,χi)] = [f ij ],

using (5.16) and the definition of idX in the first step, and Definition 5.11(e)
in the second. Thus f ◦ idX = f . We show that idY ◦ f = f in the same way.
This completes the proof.

5.3.2 Examples of categories µK̇ur

Here are the analogues of Definition 4.29 and Example 4.30:

Definition 5.15. In Theorem 5.14 we write µK̇ur for the category of µ-
Kuranishi spaces constructed from our chosen category Ṁan satisfying Assump-
tions 3.1–3.7 in §3.1. By Example 3.8, the following categories from Chapter 2
are possible choices for Ṁan:

Man,Manc
we,Manc,Mangc,Manac,Manc,ac. (5.19)

We write the corresponding categories of µ-Kuranishi spaces as follows:

µKur,µKurc
we,µKurc,µKurgc,µKurac,µKurc,ac. (5.20)

Example 5.16. We will define a functor FµK̇ur

Ṁan
: Ṁan→ µK̇ur. On objects, if

X ∈ Ṁan define a µ-Kuranishi space FµK̇ur

Ṁan
(X) = X = (X,K) with topological

space X and µ-Kuranishi structure K = ({0}, (V0, E0, s0, ψ0), [Φ00]), with index-
ing set I = {0}, one µ-Kuranishi neighbourhood (V0, E0, s0, ψ0) with V0 = X,
E0 → V0 the zero vector bundle, s0 = 0, and ψ0 = idX , and one coordinate
change [Φ00] = [id(V0,E0,s0,ψ0)].

On morphisms, if f : X → Y is a morphism in Ṁan and X = FµK̇ur

Ṁan
(X),

Y = FµK̇ur

Ṁan
(Y ), define a morphism FµK̇ur

Ṁan
(f) = f : X → Y by f = (f, [f00]),
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where [f00] = [V00, f00, f̂00] with V00 = X, f00 = f , and f̂00 is the zero map on
zero vector bundles.

It is now easy to check that FµK̇ur

Ṁan
is a functor, which is full and faithful,

and thus embeds Ṁan as a full subcategory of µK̇ur. So we can identify Ṁan
with its image in µK̇ur. We say that a µ-Kuranishi space X is a manifold if

X ∼= FµK̇ur

Ṁan
(X ′) in µK̇ur, for some X ′ ∈ Ṁan.

Assumption 3.4 gives a full subcategory Man ⊆ Ṁan. Define a full and

faithful functor FµK̇ur
Man = FµK̇ur

Ṁan
|Man : Man→ µK̇ur, which embeds Man as

a full subcategory of µK̇ur. We say that a µ-Kuranishi space X is a classical

manifold if X ∼= FµK̇ur
Man (X ′) in µK̇ur, for some X ′ ∈Man.

In a similar way to Example 5.16, we can define a functor GµK̇N →
µK̇ur which is an equivalence from the category GµK̇N of global µ-Kuranishi
neighbourhoods in Definition 5.5 to the full subcategory of objects (X,K) in
µK̇ur for which K contains only one µ-Kuranishi neighbourhood. It acts by
(V,E, s) 7→ SV,E,s on objects, where SV,E,s is as in Example 5.12.

Example 5.17. As in Example 4.31, if X,Y are µ-Kuranishi spaces in µK̇ur
with notation (5.11)–(5.12), we can define an explicit product X × Y in µK̇ur
with vdim(X × Y ) = vdimX + vdimY , such that X × Y = (X × Y,K) with

K =
(
I × J, (W(i,j), F(i,j), t(i,j), ω(i,j))(i,j)∈I×J , [Φ(i,j)(i′,j′)](i,j),(i′,j′)∈I×J

)
for (W(i,j), F(i,j), t(i,j), ω(i,j)),Φ(i,j)(i′,j′) as in Example 4.31. There are natural
projection morphisms πX : X × Y → X, πY : X × Y → Y . These have the
universal property of products in an ordinary category, that is, X × Y is a fibre
product X ×∗ Y over the point (terminal object) ∗ in µK̇ur.

Products are commutative and associative up to canonical isomorphism.
We can also define products and direct products of morphisms. That is, if
f : W → Y , g : X → Y , h : X → Z are morphisms in µK̇ur then we have
a product morphism f × h : W ×X → Y ×Z and a direct product morphism
(g,h) : X → Y ×Z in mK̇ur, both easy to write down explicitly.

5.3.3 Comparing µ-Kuranishi spaces from different Ṁan

As in §4.4, following Definition 4.32, we easily prove:

Proposition 5.18. Suppose Ṁan, M̈an are categories satisfying Assumptions
3.1–3.7, and F M̈an

Ṁan
: Ṁan→ M̈an is a functor satisfying Condition 3.20. Then

we can define a natural functor FµK̈ur

µK̇ur
: µK̇ur→ µK̈ur.

If F M̈an
Ṁan

: Ṁan ↪→ M̈an is an inclusion of subcategories Ṁan ⊆ M̈an

satisfying either Proposition 3.21(a) or (b), then FµK̈ur

µK̇ur
: µK̇ur ↪→ µK̈ur is

also an inclusion of subcategories µK̇ur ⊆ µK̈ur.
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As for Figure 4.1, applying Proposition 5.18 to the parts of the diagram

Figure 3.1 of functors F M̈an
Ṁan

involving the categories (5.19) yields a diagram

Figure 5.1 of functors FµK̈ur

µK̇ur
. Arrows ‘→’ are inclusions of subcategories.

µKur

tt yy %% **
µKurgc µKurcoo

��

// µKurc,ac // µKuracoo

µKurc
we

Figure 5.1: Functors between categories of µ-Kuranishi spaces
from Proposition 5.18. Arrows ‘→’ are inclusions of subcategories.

5.3.4 Discrete properties of morphisms in µK̇ur

In §3.3.6 and §B.6 we defined when a property P of morphisms in Ṁan is
discrete. Section 4.5 explained how to extend discrete properties of morphisms
in Ṁan to corresponding properties of 1-morphisms in mK̇ur. We now do the
same for µK̇ur. Here are the analogues of Definition 4.35, and Proposition
4.36(b),(c), proved in the same way, and Definition 4.37.

Definition 5.19. Let P be a discrete property of morphisms in Ṁan. Suppose
f : X → Y is a morphism in µK̇ur. Use notation (5.11)–(5.12) for X,Y , and
write f =

(
f, [f ij ]i∈I, j∈J

)
as in Definition 5.13. We say that f is P if f ij is P

in the sense of Definition 4.33 for all i ∈ I and j ∈ J . This is independent of the
choice of representative f ij for [f ij ] in f by Proposition 4.34(b).

Proposition 5.20. Let P be a discrete property of morphisms in Ṁan. Then:

(a) Let f : X → Y and g : Y → Z be morphisms in µK̇ur. If f and g are
P then g ◦ f : X → Z is P .

(b) Identity morphisms idX : X → X in µK̇ur are P . Isomorphisms f :
X → Y in µK̇ur are P .

Parts (a),(b) imply that we have a subcategory µK̇urP ⊆ µK̇ur containing all
objects in µK̇ur, and all morphisms f in µK̇ur which are P .

Definition 5.21. (a) Taking Ṁan = Manc from §2.1 gives the category of
µ-Kuranishi spaces with corners µKurc from Definition 5.15. We write

µKurc
in,µKurc

bn,µKurc
st,µKurc

st,in,µKurc
st,bn,µKurc

si

for the subcategories of µKurc with morphisms which are interior, and b-normal,
and strongly smooth, and strongly smooth-interior, and strongly smooth-b-normal,
and simple, respectively. These properties of morphisms in Manc are discrete
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by Example 3.19(a), so as in Definition 5.19 and Proposition 5.20 we have
corresponding notions of interior, . . . , simple morphisms in µKurc.

(b) Taking Ṁan = Mangc from §2.4.1 gives the category of µ-Kuranishi spaces
with g-corners µKurgc from Definition 5.15. We write

µKurgc
in ,µKurgc

bn,µKurgc
si

for the subcategories of µKurgc with morphisms which are interior, and b-
normal, and simple, respectively. These properties of morphisms in Mangc are
discrete by Example 3.19(b), so we have corresponding notions in µKurgc.

(c) Taking Ṁan = Manac from §2.4.2 gives the category of µ-Kuranishi spaces
with a-corners µKurac from Definition 5.15. We write

µKurac
in ,µKurac

bn,µKurac
st ,µKurac

st,in,µKurac
st,bn,µKurac

si

for the subcategories of µKurac with morphisms which are interior, and b-
normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly
a-smooth-b-normal, and simple, respectively. These properties of morphisms in
Manac are discrete by Example 3.19(c), so we have corresponding notions for
morphisms in µKurac.

(d) Taking Ṁan = Manc,ac from §2.4.2 gives the category of µ-Kuranishi spaces
with corners and a-corners µKurc,ac from Definition 5.15. We write

µKurc,ac
in ,µKurc,ac

bn ,µKurc,ac
st ,µKurc,ac

st,in,µKurc,ac
st,bn,µKurc,ac

si

for the subcategories of µKurc,ac with morphisms which are interior, and b-
normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly
a-smooth-b-normal, and simple, respectively. These properties of morphisms in
Manc,ac are discrete by Example 3.19(c), so we have corresponding notions for
morphisms in µKurc,ac.

Figure 5.1 gives inclusions between the categories in (5.20). Combining this
with the inclusions between the subcategories in Definition 5.21 we get a diagram
Figure 5.2 of inclusions of subcategories of µ-Kuranishi spaces, as for Figure 4.2.

5.3.5 µ-Kuranishi spaces and m-Kuranishi spaces

Next we relate µ-Kuranishi spaces to m-Kuranishi spaces in §4.3.

Definition 5.22. We will define a functor FµK̇ur

mK̇ur
: Ho(mK̇ur) → µK̇ur,

where Ho(mK̇ur) is the homotopy category of the weak 2-category mK̇ur as in
§A.2, that is, the category with objects X,Y objects of mK̇ur, and morphisms
[f ] : X → Y are 2-isomorphism classes [f ] of 1-morphisms f : X → Y in mK̇ur.

Let X = (X,K) be an object of mK̇ur, with K =
(
I, (Vi, Ei, si, ψi)i∈I ,

Φij, i,j∈I , Λijk, i,j,k∈I
)
. Then (Vi, Ei, si, ψi) is a µ-Kuranishi neighbourhood

on X for each i ∈ I, and taking the ≈S-equivalence class [Φij ] of Φij over
S = Imψi ∩ Imψj as in Definition 5.5(b) gives a coordinate change [Φij ] :
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Figure 5.2: Inclusions of categories of µ-Kuranishi spaces.

(Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) for i, j ∈ I. Write K′ =
(
I, (Vi, Ei, si, ψi)i∈I ,

[Φij ]i,j∈I
)

and X ′ = (X,K′). Then Definition 5.11(d)–(f) follow from Definition

4.14(e),(f),(d), so X ′ is a µ-Kuranishi space. Define FµK̇ur

mK̇ur
(X) = X ′.

Next let f : X → Y be a 1-morphism in mK̇ur, using notation (4.6), (4.7),

(4.9) for X,Y ,f , and set X ′ = FµK̇ur

mK̇ur
(X) and Y ′ = FµK̇ur

mK̇ur
(Y ). Taking the

≈S-equivalence class [f ij ] of f ij over S = Imχi ∩ f−1(Imψj) as in Definition
5.5(b) we find that

f ′ =
(
f, [f ij ]i∈I, j∈J

)
: X ′ → Y ′ (5.21)

is a morphism in µK̇ur, as Definition 5.13(a),(b) for f ′ follow from Definition

4.17(c),(d) for f . Define FµK̇ur

mK̇ur
([f ]) = f ′.

To show this is well-defined, let g : X → Y be a 1-morphism and η : f ⇒ g

a 2-morphism in mK̇ur, where g =
(
g, gij, i∈I, j∈J , G

j, j∈J
ii′, i,i′∈I , G

jj′, j,j′∈J
i, i∈I

)
and

η =
(
ηij, i∈I, j∈J

)
. Then f = g : X → Y , and ηij : f ij ⇒ gij is a 2-morphism

of m-Kuranishi neighbourhoods over (S, f) for S = Imχi ∩ f−1(Imψj), so
[f ij ] = [gij ] in morphisms of µ-Kuranishi neighbourhoods over (S, f). Therefore

f ′ in (5.21) is independent of the choice of representative f for the morphism

[f ] : X → Y in Ho(mK̇ur), so FµK̇ur

mK̇ur
([f ]) is well defined.

Comparing Proposition 4.19 and Definition 4.20 with Theorem 5.14(a) we see

that FµK̇ur

mK̇ur
preserves composition of morphisms, and comparing Definitions 4.17

and 5.13 we see that FµK̇ur

mK̇ur
preserves identities. Hence FµK̇ur

mK̇ur
: Ho(mK̇ur)→

µK̇ur is a functor.

The next theorem will be proved in §5.6.

121



Theorem 5.23. The functor FµK̇ur

mK̇ur
: Ho(mK̇ur)→ µK̇ur in Definition 5.22

is an equivalence of categories.

Section 4.8 related m-Kuranishi spaces to the derived manifolds of Spivak
[103], Borisov–Noel [7, 8] and the author [57, 58, 61]. Theorems 4.62 and 5.23
imply:

Corollary 5.24. There is an equivalence of categories Ho(dMan) ' µKur,
where dMan is the strict 2-category of d-manifolds from [57, 58, 61], and µKur
is as above for Ṁan = Man.

Combining this with Borisov’s functor (4.66) gives a functor

Ho(DerManSpi) ' Ho(DerManBN) −→ µKur,

which is close to being an equivalence (it is full but not faithful, and induces a
1-1 correspondence between isomorphism classes of objects).

5.4 µ-Kuranishi spaces with corners.
Boundaries, k-corners, and the corner functor

We now change notation from Ṁan in §3.1–§3.3 to Ṁanc, and from µK̇ur in
§5.3 to µK̇urc. Suppose throughout this section that Ṁanc satisfies Assumption
3.22 in §3.4.1. Then Ṁanc satisfies Assumptions 3.1–3.7, so §5.3 constructs
a category µK̇urc of µ-Kuranishi spaces associated to Ṁanc. For instance,
µK̇urc could be µKurc,µKurgc,µKurac or µKurc,ac from Definition 5.15.
We will refer to objects of µK̇urc as µ-Kuranishi spaces with corners. We also
write µK̇urc

si for the subcategory of µK̇urc with simple morphisms in the sense

of §5.3.4, noting that simple is a discrete property of morphisms in Ṁanc by
Assumption 3.22(c).

In §4.6, for each X ∈ mK̇urc we defined the k-corners Ck(X) in mK̇urc,
with ∂X = C1(X). We constructed a 2-category mK̇̌urc from mK̇urc with
objects

∐
n∈ZXn for Xn ∈mK̇urc with vdimXn = n, and defined the corner

2-functor C : mK̇urc →mK̇̌urc.
We will now extend all this to µ-Kuranishi spaces with corners. This is a

simplification of §4.6. Here is the analogue of Definition 4.39:

Definition 5.25. Let X = (X,K) in µK̇urc be a µ-Kuranishi space with
corners, and write K =

(
I, (Vi, Ei, si, ψi)i∈I , [Φij ]i,j∈I

)
as in Definition 5.11.

Choose representatives Φij = (Vij , φij , φ̂ij) for [Φij ] for all i, j ∈ I, so that Φij :
(Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) is a 1-morphism of m-Kuranishi neighbourhoods.
Since [Φij ] ◦ [Φhi] = [Φhj ] for h, i, j ∈ I by Definition 5.11(f), we can choose a
2-morphism Λhij : Φij ◦Φhi ⇒ Φhj . We are now in the situation of the beginning
of Definition 4.39, except that the Λhij need not satisfy Definition 4.14(g),(h).
This will not matter to us.
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Let k ∈ N. We will define a µ-Kuranishi space with corners Ck(X) in µK̇urc

called the k-corners of X, and a morphism Πk : Ck(X) → X in µK̇urc.
Explicitly we write Ck(X) = (Ck(X),Kk) with

Kk =
(
{k} × I, (V(k,i), E(k,i), s(k,i), ψ(k,i))i∈I , [Φ(k,i),(k,j)]i,j∈I

)
with Φ(k,i)(k,j) = (V(k,i)(k,j), φ(k,i)(k,j), φ̂(k,i)(k,j)),

where Kk has indexing set {k} × I, and as in Definition 5.13 we write

Πk =
(
Πk, [Π(k,i)j ]i,j∈I

)
, where

Π(k,i)j = (V(k,i)j ,Π(k,i)j , Π̂(k,i)j) : (V(k,i), E(k,i), s(k,i), ψ(k,i))→ (Vj , Ej , sj , ψj).

We follow Definition 4.39 closely. For all i, j ∈ I, define Φ(k,i)(k,j) =

(V(k,i)(k,j), φ(k,i)(k,j), φ̂(k,i)(k,j)) by (4.40)–(4.42), and Π(k,i)j by (4.43). Define

the topological space Ck(X) by Ck(X) =
[∐

i∈I s
−1
(k,i)(0)

]/
≈ and the continuous

maps ψ(k,i) : s−1
(k,i)(0)→ Ck(X), Πk : Ck(X)→ X as in Definition 4.39. Here the

proof that ≈ is an equivalence relation involves the existence of the 2-morphism
Λhij : Φij ◦ Φhi ⇒ Φhj as above, but not Definition 4.14(g),(h).

The proofs in Definition 4.39 show that Ck(X) is Hausdorff and second
countable, and Πk : Ck(X)→ X is continuous and proper with finite fibres, and
(V(k,i), E(k,i), s(k,i), ψ(k,i)) is an m-Kuranishi neighbourhood (hence a µ-Kuranishi
neighbourhood) on Ck(X) for i ∈ I, and

Φ(k,i)(k,j) : (V(k,i), E(k,i), s(k,i), ψ(k,i)) −→ (V(k,j), E(k,j), s(k,j), ψ(k,j)),

Π(k,i)j : (V(k,i), E(k,i), s(k,i), ψ(k,i)) −→ (Vj , Ej , sj , ψj),

are 1-morphisms of m-Kuranishi neighbourhoods (over Πk). Thus

[Φ(k,i)(k,j)] : (V(k,i), E(k,i), s(k,i), ψ(k,i)) −→ (V(k,j), E(k,j), s(k,j), ψ(k,j)),

[Π(k,i)j ] : (V(k,i), E(k,i), s(k,i), ψ(k,i)) −→ (Vj , Ej , sj , ψj),

are morphisms of µ-Kuranishi neighbourhoods (over Πk).
To see [Φ(k,i)(k,j)], [Π(k,i)j ] are independent of the choice of representative Φij

for [Φij ], and so are well defined, note that if Φ′ij is an alternative choice giving

Φ′(k,i)(k,j),Π
′
(k,i)j then there is a 2-morphism ηij = [V̇ij , η̂ij ] : Φij ⇒ Φ′ij . As for

Λhij ,Λ(k,h)(k,i)(k,j) and Πj
(k,i)(k,i′) in Definition 4.39 we define 2-morphisms

[Ck(V̇ij),Π
�
k(η̂ij)] : Φ(k,i)(k,j) =⇒ Φ′(k,i)(k,j),

[Ck(V̇ij),Π
∗
k(η̂ij)] : Π(k,i)j =⇒ Π′(k,i)j ,

so that [Φ(k,i)(k,j)] = [Φ′(k,i)(k,j)] and [Π(k,i)j ] = [Π′(k,i)j ].

We have now defined all the data in Ck(X) and Πk : Ck(X)→X. We can
check that Ck(X) and Πk satisfy the conditions of Definitions 5.11 and 5.13,
with vdimCk(X) = vdimX−k, in the same way as in Definition 4.39, where for
example to show that [Φ(k,i)(k,j)] ◦ [Φ(k,h)(k,i)] = [Φ(k,h)(k,j)] in Definition 5.11(f)
for Ck(X) we construct a 2-morphism Λ(k,h)(k,i)(k,j) : Φ(k,i)(k,j) ◦ Φ(k,h)(k,i) ⇒
Φ(k,h)(k,j) from Λhij as in Definition 4.39.
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This proves the analogue of Theorem 4.40:

Theorem 5.26. For each X in µK̇urc and k = 0, 1, . . . we have defined the
k-corners Ck(X), an object in µK̇urc with vdimCk(X) = vdimX − k, and
a morphism Πk : Ck(X) → X in µK̇urc, whose underlying continuous map
Πk : Ck(X)→ X is proper with finite fibres. We also write ∂X = C1(X), called
the boundary of X, and we write iX = Π1 : ∂X →X.

Modifying Definition 4.42 we construct categories µK̇̌urc
si ⊆ µK̇̌urc from

µK̇urc
si ⊆ µK̇urc in the obvious way, with objects

∐
n∈ZXn for Xn in µK̇urc

with vdimXn = n, where µK̇urc
si,µK̇urc embed as full subcategories of

µK̇̌urc
si,µK̇̌urc. For the examples of µK̇urc

si ⊆ µK̇urc in Definitions 5.15, 5.21

we use the obvious notation for the corresponding categories µK̇̌urc
si ⊆ µK̇̌urc,

so for instance we enlarge µKurc associated to Ṁanc = Manc to µǨurc.
Then following Definition 4.43, but modifying it as in Definition 5.25, we

define the corner functor C : µK̇urc → µK̇̌urc. This is straightforward and
involves no new ideas, so we leave it as an exercise for the reader. This proves
the analogue of Theorem 4.44:

Theorem 5.27. We can define a functor C : µK̇urc → µK̇̌urc called the
corner functor. It acts on objects X in µK̇urc by C(X) =

∐∞
k=0 Ck(X). If

f : X → Y is simple then C(f) : C(X)→ C(Y ) is simple and maps Ck(X)→
Ck(Y ) for k = 0, 1, . . . . Thus C|µK̇urcsi

decomposes as C|µK̇urcsi
=
∐∞
k=0 Ck,

where Ck : µK̇urc
si → µK̇urc

si is a functor acting on objects by X 7→ Ck(X),

for Ck(X) as in Definition 5.25. We also write ∂ = C1 : µK̇urc
si → µK̇urc

si,
and call it the boundary functor.

If for some discrete property P of morphisms in Ṁanc the corner functor
C : Ṁanc → Ṁ̌anc maps to the subcategory Ṁ̌anc

P of Ṁ̌anc whose morphisms

are P , then C : µK̇urc → µK̇̌urc maps to the subcategory µK̇̌urc
P of µK̇̌urc

whose morphisms are P .

As for Example 4.45, applying Theorem 5.27 to the data Ṁanc, . . . in
Example 3.24(a)–(h) gives corner functors:

C : µKurc −→ µǨurc
in ⊂ µǨurc, C ′ : µKurc −→ µǨurc,

C : µKurc
st −→ µǨurc

st,in ⊂ µǨurc
st, C ′ : µKurc

st −→ µǨurc
st,

C : µKurac −→ µǨurac
in ⊂ µǨurac, C ′ : µKurac −→ µǨurac,

C : µKurac
st −→ µǨurac

st,in ⊂ µǨurac
st , C ′ : µKurac

st −→ µǨurac
st ,

C : µKurc,ac −→ µǨurc,ac
in ⊂ µǨurc,ac, C ′ : µKurc,ac −→ µǨurc,ac,

C : µKurc,ac
st −→ µǨurc,ac

st,in ⊂ µǨurc,ac
st , C ′ : µKurc,ac

st −→ µǨurc,ac
st ,

C : µKurgc −→ µǨurgc
in ⊂ µǨurgc. (5.22)

As for Propositions 4.46 and 4.47, we prove:
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Proposition 5.28. For all of the functors C in (5.22) (though not the functors
C ′), a morphism f : X → Y is interior (or b-normal) if and only if C(f) maps

C0(X)→ C0(Y ) (or C(f) maps Ck(X)→
∐k
l=0 Cl(Y ) for all k = 0, 1, . . .).

Proposition 5.29. Let f : X → Y be an isomorphism in µK̇urc. Then f is
simple by Proposition 5.20(b), and Ck(f) : Ck(X) → Ck(Y ) for k = 0, 1, . . .
and ∂f : ∂X → ∂Y are also isomorphisms in µK̇urc.

Here is the analogue of Definition 4.48:

Definition 5.30. As in Definition 5.15 we write µKurc for the category of
µ-Kuranishi spaces with corners associated to Ṁanc = Manc. An object X
in µKurc is called a µ-Kuranishi space with boundary if ∂(∂X) = ∅. Write
µKurb for the full subcategory of µ-Kuranishi spaces with boundary in µKurc,
and write µKurb

si ⊆ µKurb
in ⊆ µKurb for the subcategories of µKurb with

simple and interior morphisms. We can show that X ∈ µKurc is a µ-Kuranishi
space with boundary if and only if Ck(X) = ∅ for all k > 1.

5.5 µ-Kuranishi neighbourhoods on µ-Kuranishi spaces

We now give the ‘µ-Kuranishi’ analogue of the ideas of §4.7.

Definition 5.31. Suppose X = (X,K) is a µ-Kuranishi space, where K =(
I, (Vi, Ei, si, ψi)i∈I , [Φij ]i,j∈I

)
. A µ-Kuranishi neighbourhood on X is data

(Va, Ea, sa, ψa) and [Φai]i∈I , where (Va, Ea, sa, ψa) is a µ-Kuranishi neighbour-
hood on the topological space X as in Definition 5.5(a), and [Φai] : (Va, Ea, sa,
ψa) → (Vi, Ei, si, ψi) is a coordinate change for each i ∈ I as in Definition 5.7
(over S = Imψa ∩ Imψi, as usual), such that for all i, j ∈ I we have

[Φij ] ◦ [Φai] = [Φaj ], (5.23)

where (5.23) holds over S = Imψa ∩ Imψi ∩ Imψj by Convention 5.9.
Here the subscript ‘a’ in (Va, Ea, sa, ψa) is just a label used to distinguish

µ-Kuranishi neighbourhoods, generally not in I. If we omit a we will write ‘∗’ in
place of ‘a’ in [Φai], giving [Φ∗i] : (V,E, s, ψ)→ (Vi, Ei, si, ψi).

We will usually just say (Va, Ea, sa, ψa) or (V,E, s, ψ) is a µ-Kuranishi neigh-
bourhood on X, leaving the data [Φai]i∈I or [Φ∗i]i∈I implicit. We call such a
(V,E, s, ψ) a global µ-Kuranishi neighbourhood on X if Imψ = X.

The next theorem can be proved using the sheaf property Theorem 5.10 by
very similar methods to Theorem 5.14, noting that (5.24)–(5.25) imply that

[Φab]|Imψa∩Imψb∩Imψi = [Φbi]
−1 ◦ [Φai],

[fab]|Imψa∩Imψi∩f−1(Imψb∩Imψj) = [Φbj ]
−1 ◦ [f ij ] ◦ [Tbi],

so we leave the proof as an exercise for the reader.
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Theorem 5.32. (a) Let X = (X,K) be a µ-Kuranishi space, where K =
(
I,

(Vi, Ei, si, ψi)i∈I , [Φij ]i,j∈I
)
, and (Va, Ea, sa, ψa), (Vb, Eb, sb, ψb) be µ-Kuranishi

neighbourhoods on X, in the sense of Definition 5.31. Then there is a unique
coordinate change [Φab] : (Va, Ea, sa, ψa)→ (Vb, Eb, sb, ψb) in the sense of Defi-
nition 5.7 such that for all i ∈ I we have

[Φbi] ◦ [Φab] = [Φai], (5.24)

which holds on Imψa ∩ Imψb ∩ Imψi by Convention 5.9. We will call [Φab] the
coordinate change between the µ-Kuranishi neighbourhoods (Va, Ea, sa,
ψa), (Vb, Eb, sb, ψb) on the µ-Kuranishi space X.

(b) Let f : X → Y be a morphism of µ-Kuranishi spaces, with notation (5.11)–
(5.12), and let (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) be µ-Kuranishi neighbourhoods on
X,Y respectively, in the sense of Definition 5.31. Then there is a unique mor-
phism [fab] : (Ua, Da, ra, χa) → (Vb, Eb, sb, ψb) of µ-Kuranishi neighbourhoods
over f as in Definition 5.5(b), such that for all i ∈ I and j ∈ J we have

[Φbj ] ◦ [fab] = [f ij ] ◦ [Tbi]. (5.25)

We will call [fab] the morphism of µ-Kuranishi neighbourhoods (Va, Ea,
sa, ψa), (Vb, Eb, sb, ψb) over f : X → Y .

Remark 5.33. Note that we make the (potentially confusing) distinction be-
tween µ-Kuranishi neighbourhoods (Vi, Ei, si, ψi) on a topological space X, as in
Definition 5.5(a), and µ-Kuranishi neighbourhoods (Va, Ea, sa, ψa) on a µ-Kuran-
ishi space X = (X,K), which are as in Definition 5.31, and come equipped with
the extra implicit data [Φai]i∈I giving the compatibility with the µ-Kuranishi
structure K on X. Similarly, we distinguish between coordinate changes of µ-
Kuranishi neighbourhoods over X or X, and between morphisms of µ-Kuranishi
neighbourhoods over f : X → Y or f : X → Y .

Theorem 5.34. Let X = (X,K) be a µ-Kuranishi space, and
{

(Va, Ea, sa, ψa) :

a ∈ A
}

a family of µ-Kuranishi neighbourhoods on X with X =
⋃
a∈A Imψa.

For all a, b ∈ A, let [Φab] : (Va, Ea, sa, ψa) → (Vb, Eb, sb, ψb) be the coordinate
change from Theorem 5.32(a). Then K′=

(
A, (Va, Ea, sa, ψa)a∈A, [Φab]a,b∈A

)
is

a µ-Kuranishi structure on X, and X ′ = (X,K′) is canonically isomorphic to
X in µK̇ur.

Proof. Write K =
(
I, (Vi, Ei, si, ψi)i∈I , [Φij ]i,j∈I

)
, and let K′ be as in the the-

orem. Definition 5.11(a)–(d) for K′ are immediate. For part (e), note that
[Φaa], [id(Va,Ea,sa,ψa)] : (Va, Ea, sa, ψa) → (Va, Ea, sa, ψa) both satisfy the con-
ditions of Theorem 5.32(a) with a = b, so by uniqueness we have [Φaa] =
[id(Va,Ea,sa,ψa)]. Similarly, for a, b, c ∈ A we can show that [Φbc] ◦ [Φab] and
[Φac] are coordinate changes (Va, Ea, sa, ψa) → (Vc, Ec, sc, ψc) over Imψa ∩
Imψb ∩ Imψc satisfying the conditions of Theorem 5.32(a), so uniqueness gives
[Φbc] ◦ [Φab] = [Φac], proving (f). Hence K′ is a µ-Kuranishi structure.

To show X,X ′ are canonically isomorphic, note that each (Va, Ea, sa, ψa)
comes equipped with implicit extra data [Φai]i∈I . Define morphisms f : X →X ′
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and g : X ′ → X by f =
(
idX , [Φai]a∈A, i∈I

)
and g =

(
idX , [Φai]

−1
i∈I, a∈A

)
. It

is easy to check that f , g are morphisms in µK̇ur with g ◦ f = idX and
f ◦ g = idX′ . So f , g are canonical isomorphisms.

As the µ-Kuranishi neighbourhoods (Vi, Ei, si, ψi) in the µ-Kuranishi struc-
ture on X are µ-Kuranishi neighbourhoods on X, we deduce:

Corollary 5.35. Let X = (X,K) be a µ-Kuranishi space with K =
(
I, (Vi,

Ei, si, ψi)i∈I , [Φij ]i,j∈I
)
. Suppose J ⊆ I with

⋃
j∈J Imψj = X. Then K′ =(

J, (Vi, Ei, si, ψi)i∈J , [Φij ]i,j∈J
)

is a µ-Kuranishi structure on X, and X ′ =

(X,K′) is canonically isomorphic to X in µK̇ur.

Thus, adding or subtracting extra µ-Kuranishi neighbourhoods to the µ-
Kuranishi structure of X leaves X unchanged up to canonical isomorphism.

As in §4.7.3, if Ṁanc satisfies Assumption 3.22 then we can lift µ-Kuranishi
neighbourhoods (Va, Ea, sa, ψa) on X in µK̇urc to µ-Kuranishi neighbourhoods
(V(k,a), E(k,a), s(k,a), ψ(k,a)) on the k-corners Ck(X) from §5.4, and we can lift
morphisms [fab] : (Ua, Da, ra, χa) → (Vb, Eb, sb, ψb) of µ-Kuranishi neighbour-
hoods over f : X → Y in µK̇urc to morphisms [f (k,a)(l,b)] : (U(k,a), D(k,a),
r(k,a), χ(k,a))→ (V(l,b), E(l,b), s(l,b), ψ(l,b)) over C(f) : C(X)→ C(Y ). We leave
the details to the reader. As in §4.7.4, we could now state our philosophy for
working with µ-Kuranishi spaces, but we will not.

5.6 Proof of Theorem 5.23

Use the notation of Definition 5.22. To show FµK̇ur

mK̇ur
: Ho(mK̇ur)→ µK̇ur is an

equivalence of categories, we have to prove three things: that FµK̇ur

mK̇ur
is faithful

(injective on morphisms), and full (surjective on morphisms), and surjective on
isomorphism classes of objects.

The proofs of these will involve gluing together 2-morphisms of m-Kuranishi
neighbourhoods using families of partitions of unity, so we begin by showing
that partitions of unity with the properties we need exist.

5.6.1 A lemma on partitions of unity on X in µK̇ur

Let X = (X, I) be a µ-Kuranishi space, with I =
(
I, (Ui, Di, ri, χi)i∈I , Tij =

[Uij , τij , τ̂ij ]i,j∈I
)
, as in (5.11). Then

{
Imχi : i ∈ I

}
is an open cover of X, with

χi : r−1
i (0)→ Imχi a homeomorphism for each i ∈ I.

Roughly speaking, we want to define a smooth partition of unity {ηi : i ∈ I}
on X subordinate to

{
Imχi : i ∈ I

}
, so that ηi : X → R is smooth with

ηi(X) ⊆ [0, 1] and
∑
i∈I ηi = 1. However, X is not a manifold, so näıvely

‘ηi : X → R is smooth’ does not make sense.
In fact we will not work with ‘smooth functions’ ηi on X directly, apart from

in the proof of Lemma 5.36. Instead, for each i ∈ I we want a partition of unity
{ηij : j ∈ I} on Ui in the sense of §3.3.1(d), such that ηij |r−1

i (0) = ηj ◦χi for each
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j ∈ I. The fact that ηik : Ui → R and ηjk : Uj → R both come from the same
ηk : X → R is expressed in the condition ηik = ηjk ◦ τij +O(ri) on Uij ⊆ Ui for
all i, j ∈ I. So our result Lemma 5.36 is stated using only smooth functions on
manifolds (objects in Ṁan).

But to prove Lemma 5.36, it is convenient to first choose a ‘smooth partition
of unity’ {ηi : i ∈ I} on X subordinate to

{
Imχi : i ∈ I

}
, so that {ηj ◦χi : j ∈ I}

is a partition of unity on r−1
i (0) ⊆ Ui, and then extend this from r−1

i (0) to Ui.
To do this we have to interpret X and r−1

i (0) as some kind of ‘smooth space’.
We do this using C∞-schemes and C∞-algebraic geometry, as in [56, 65], which
are the foundation of the author’s theory of d-manifolds and d-orbifolds in [57,
58, 61].

Lemma 5.36. Let X = (X, I) be a µ-Kuranishi space, with notation (5.11) for
I, and let Tij = (Uij , τij , τ̂ij) represent [Tij ] for i, j ∈ I, with (Uii, τii, τ̂ii) =
(Ui, idUi , idDi). Then for all i ∈ I we can choose a partition of unity {ηij : j ∈ I}
on Ui subordinate to the open cover {Uij : j ∈ I} of Ui, as in §3.3.1(d) and
§B.1.4, such that for all i, j, k ∈ I we have

ηik|Uij = ηjk ◦ τij +O(ri) on Uij ⊆ Ui, (5.26)

in the sense of Definition 3.15(i).

Proof. We use notation and results on C∞-schemes and C∞-algebraic geometry
from [65], in which C∞-schemes are written X = (X,OX) for X a topological
space and OX a sheaf of C∞-rings on X, satisfying certain conditions.

For each i ∈ I, as in §3.3.1(c) and §B.1.3 the manifold Ui in Ṁan naturally
becomes an affine C∞-scheme Ui, and r−1

i (0) ⊆ Ui becomes the closed C∞-
subscheme r−1

i (0) in Ui defined by ri = 0. If i, j ∈ I and (Uij , τij , τ̂ij) represents
Tij , then τ̂ij(ri|Uij ) = τ∗ij(rj) +O(r2

i ) on Uij by Definition 4.2(d). This implies
that τ ij : Uij → Uj restricts to an isomorphism of C∞-schemes

τ ij |Uij∩r−1
i (0) : Uij ∩ r−1

i (0)→ Uji ∩ r−1
j (0). (5.27)

We now have a topological space X, an open cover {Imχi : i ∈ I} on X, C∞-
schemes r−1

i (0) with underlying topological spaces r−1
i (0) and homeomorphisms

χi : r−1
i (0)→ Imχi ⊆ X for all i ∈ I, and isomorphisms of C∞-schemes (5.27)

lifting the homeomorphisms χ−1
j ◦ χi : Uij ∩ r−1

i (0)→ Uji ∩ r−1
j (0) over double

overlaps Imχi ∩ Imχj ⊆ X. From Tjk ◦ Tij = Tik in Definition 5.11(f), we
deduce that the isomorphisms (5.27) have the obvious composition property
τ jk|··· ◦ τ ij |··· = τ ik|··· over triple overlaps Imχi ∩ Imχj ∩ Imχk ⊆ X.

Standard results on schemes (actually, just the fact that sheaves of C∞-rings
on X form a stack on X) imply that X may be made into a C∞-scheme X,
uniquely up to unique isomorphism, and the homeomorphisms χi : r−1

i (0) →
Imχi ⊆ X upgraded to C∞-scheme morphisms χi : r−1

i (0) → X which are
isomorphisms with open C∞-subschemes Imχi ⊆ X for i ∈ I, such that

χj ◦ τ ij |Uij∩r−1
i (0) = χi|Uij∩r−1

i (0) for all i, j ∈ I. (5.28)
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Since X is Hausdorff, second countable, and regular, as in Remark 4.15,
[65, Cor. 4.42] implies that X is an affine C∞-scheme, and [65, Th. 4.40] says
that OX is fine, that is, there exists a locally finite partition of unity in OX
subordinate to any open cover of X. Thus we can choose a partition of unity
{ηi : i ∈ I} on X subordinate to {Imχi : i ∈ I}.

Then for each i ∈ I, {ηj ◦χi : j ∈ I} is a partition of unity on the C∞-scheme

r−1
i (0) subordinate to the open cover

{
Uij ∩ r−1

i (0) : j ∈ J
}

. From the proof of
the existence of partitions of unity on C∞-schemes in [65, §4.7], we see that a
partition of unity on r−1

i (0) ⊆ Ui subordinate to
{
Uij ∩ r−1

i (0) : j ∈ J
}

can be

extended to a partition of unity on Ui subordinate to
{
Uij : j ∈ J

}
, which is

equivalent to a partition of unity on Ui in the sense of §B.1.4.
Thus, for all i ∈ I we can choose a partition of unity {ηij : j ∈ I} on Ui

subordinate to {Uij : j ∈ I}, such that ηij |r−1
i (0) = ηj ◦ χi for all j ∈ I, in the

sense of C∞-schemes. If i, j, k ∈ I then

ηik|Uij∩r−1
i (0) =ηk ◦ χi|Uij∩r−1

i (0) =ηk ◦ χj ◦ τ ij |Uij∩r−1
i (0) =ηjk ◦ τij |Uij∩r−1

i (0),

using (5.28). But f |Uij∩r−1
i (0) = g|Uij∩r−1

i (0) for smooth f, g : Uij → R is

equivalent to f = g +O(ri) on Uij , so equation (5.26) follows.

5.6.2 FµK̇ur

mK̇ur
is faithful

Let f , g : X → Y be 1-morphisms in mK̇ur, so that [f ], [g] : X → Y are
morphisms in Ho(mK̇ur). Write X ′,Y ′,f ′, g′ for the images of X,Y , [f ], [g]

under FµK̇ur

mK̇ur
. Suppose f ′ = g′. We must show that [f ] = [g], that is, that there

exists a 2-morphism µ : f ⇒ g in mK̇ur.
Use notation (4.6), (4.7), (4.9) for X,Y ,f , and write g =

(
g, gij, i∈I, j∈J ,

Gj, j∈J
ii′, i,i′∈I , G

jj′, j,j′∈J
i, i∈I

)
. Then f ′ = g′ means that f = g, and [f ij ] = [gij ] for

all i ∈ I, j ∈ J as morphisms (Ui, Di, ri, χi) → (Vj , Ej , sj , ψj) of µ-Kuranishi
neighbourhoods over (S, f) in the sense of §5.2, where S = Imχi ∩ f−1(Imψj).
Hence there exists a 2-morphism λij : f ij ⇒ gij of m-Kuranishi neighbourhoods
over (S, f) in the sense of §4.1.

We would like λ =
(
λij, i∈I, j∈J

)
: f ⇒ g to be a 2-morphism of m-Kuranishi

spaces, but there is a problem: as the λij are chosen arbitrarily, they have no

compatibility with the F jii′ ,F
jj′

i ,Gj
ii′ ,G

jj′

i , so Definition 4.18(a),(b) may not
hold for λ. We will define a modified version µ =

(
µij, i∈I, j∈J

)
of λ which does

have the required compatibility.
For i, ı̃ ∈ I and j, ̃ ∈ I, define λ̃jiı̃ to be the horizontal composition of

2-morphisms over S = Imχi ∩ Imχı̃ ∩ f−1(Imψj ∩ Imψ̃) and f : X → Y

f ij
(F ̃ji �(id∗F ̃iı̃))

−1

=(F jiı̃�(F ̃jı̃ ∗id)−1

+3 Υ̃j◦
f ı̃̃◦Tiı̃

id∗λı̃̃∗id +3 Υ̃j◦
gı̃̃◦Tiı̃

G̃ji �(id∗G̃iı̃)

=Gjiı̃�(G̃jı̃ ∗id))

+3 gij , (5.29)
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where the alternative expressions for the first and third 2-morphisms come from
Definition 4.17(g).

Apply Lemma 5.36 to X ′ = FµK̇ur

mK̇ur
(X), using (Uii′ , τii′ , τ̂ii′) to represent T′ii′ .

This gives a partition of unity {ηiı̃ : ı̃ ∈ I} on Ui subordinate to {Uiı̃ : ı̃ ∈ I} for
each i ∈ I, such that for all i, i′, ı̃ ∈ I we have

ηiı̃|Uii′ = ηi′ ı̃ ◦ τii′ +O(ri) on Uii′ ⊆ Ui.

Similarly, applying Lemma 5.36 to Y ′ = FµK̇ur

mK̇ur
(Y ) gives a partition of unity

{ζj̃ : ̃ ∈ J} on Vj subordinate to {Vj̃ : ̃ ∈ J} for each j ∈ J , such that for all
j, j′, ̃ ∈ J we have

ζj̃|Vjj′ = ζj′ ̃ ◦ υjj′ +O(sj) on Vjj′ ⊆ Vj .

Now, using the notation of (5.6) in Definition 5.4, for i ∈ I and j ∈ J define

a 2-morphism µij : f ij ⇒ gij over (S, f) with f ij = (Vij , fij , f̂ij) by

µij =
∑
ı̃∈I
∑
̃∈J ηiı̃ · f∗ij(ζj̃) · λ

̃j
iı̃ . (5.30)

We will show that µ =
(
µij, i∈I, j∈J

)
: f ⇒ g is a 2-morphism in mK̇ur. For

i, i′, ı̃ ∈ I and j, ̃ ∈ J consider the diagram

f i′j ◦ Tii′
F j
ii′

+3

λ̃j
i′ ı̃∗id

��

f ij

λ̃jiı̃

��

f ı̃j◦Ti′ ı̃◦Tii′
F j
i′ ı̃∗id

em
id∗Kii′ ı̃ +3 f ı̃j◦Tiı̃

F jiı̃

19

Υ̃j◦f ı̃̃◦Ti′ ı̃◦Tii′
F ̃jı̃ ∗id
KS

id∗λı̃̃∗id��

id∗Kii′ ı̃ +3 Υ̃j◦f ı̃̃◦Tiı̃
id∗λı̃̃∗id ��

F ̃jı̃ ∗id
KS

Υ̃j◦gı̃̃◦Ti′ ı̃◦Tii′
G̃jı̃ ∗id��

id∗Kii′ ı̃ +3 Υ̃j◦gı̃̃◦Tiı̃
G̃jı̃ ∗id ��

gı̃j◦Ti′ ı̃◦Tii′
Gj
i′ ı̃∗idqy

id∗Kii′ ı̃ +3 gı̃j◦Tiı̃
Gjiı̃ %-

gi′j ◦ Tii′
Gj
ii′ +3 gij .

(5.31)

Here the hexagons commute by the definition (5.29) of λ̃jiı̃ , the top and bot-
tom quadrilaterals by Definition 4.17(f) for f , g, and the central rectangles by
compatibility of horizontal and vertical composition. Thus (5.31) commutes.

We now have

Gj
ii′ � (µi′j ∗ id) = Gj

ii′ �
(∑

ı̃∈I
∑
̃∈J ηi′ ı̃ · f∗i′j(ζj̃) · λ

̃j
i′ ı̃

)
∗ id

=
∑
ı̃∈I
∑
̃∈J τ

∗
ii′(ηi′ ı̃) · (fi′j ◦ τii′)∗(ζj̃) ·G

j
ii′ � (λ̃ji′ ı̃ ∗ id)

=
∑
ı̃∈I
∑
̃∈J ηiı̃ · (fi′j ◦ τii′)∗(ζj̃) · (λ

̃j
iı̃ � F

j
ii′)

=
(∑

ı̃∈I
∑
̃∈J ηiı̃ · f∗ij(ζj̃) · λ

̃j
iı̃

)
� F jii′ = µij � F

j
ii′ ,
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where the first and fifth steps use (5.30), and the third uses (5.26), (5.31), and
the fact that µij in (5.30) only depends on ηiı̃ up to O(ri). This proves Definition
4.18(a) for µ, and part (b) is similar. Hence µ : f ⇒ g is a 2-morphism, so

[f ] = [g] as morphisms in Ho(mK̇ur), and FµK̇ur

mK̇ur
is faithful, as we want.

5.6.3 FµK̇ur

mK̇ur
is full

Let X,Y be objects in mK̇ur, and write X ′ = FµK̇ur

mK̇ur
(X), Y ′ = FµK̇ur

mK̇ur
(Y ).

Suppose f ′ : X ′ → Y ′ is a morphism in µK̇ur. We must show that there exists

a 1-morphism f : X → Y in mK̇ur with FµK̇ur

mK̇ur
([f ]) = f ′.

Use notation (4.6)–(4.7) for X,Y , as in §5.3 write f ′ =
(
f, [f ij ]i∈I, j∈J

)
,

and let f ij : (Ui, Di, ri, χi)→ (Vj , Ej , sj , ψj) be a 1-morphism of m-Kuranishi
neighbourhoods representing [f ij ] for all i ∈ I and j ∈ J . Then Definition

5.13(a),(b) for f ′ imply that [f ı̃j ] ◦ [Tiı̃] = [f ij ] and [Υj̃] ◦ [f ij ] = [f i̃] for all
i, ı̃ ∈ I and j, ̃ ∈ J , so that [Υ̃j ◦ f ı̃̃ ◦ Tiı̃] = [Υ̃j ] ◦ [f ı̃̃] ◦ [Tiı̃] = [f ij ]. Hence
we may choose 2-morphisms of m-Kuranishi neighbourhoods over f

λ̃jiı̃ : Υ̃j ◦ f ı̃̃ ◦ Tiı̃ =⇒ f ij

for all i, ı̃ ∈ I and j, ̃ ∈ J . For i, i′, ı̃ ∈ I and j, j′, ̃ ∈ J , define 2-morphisms

F
j(̃)
ii′(ı̃) : f i′j ◦Tii′ ⇒ f ij over (S, f) for S = Imχi ∩ Imχi′ ∩ Imχı̃ ∩ f−1(Imψj ∩

Imψ̃) and F
jj′(̃)
i(ı̃) : Υjj′ ◦ f ij ⇒ f ij′ over (S, f) for S = Imχi ∩ Imχı̃ ∩

f−1(Imψj ∩ Imψj′ ∩ Imψ̃) by the commutative diagrams

f i′j ◦ Tii′
F
j(̃)

ii′(ı̃)

+3

(λ̃j
i′ ı̃)
−1∗idT

ii′��

f ij

Υ̃j ◦ f ı̃̃ ◦ Ti′ ı̃ ◦ Tii′
idΥ̃j◦f ı̃̃∗Kii′ ı̃ +3 Υ̃j ◦ f ı̃̃ ◦ Tiı̃,

λ̃jiı̃

KS

Υjj′ ◦ f ij
F
jj′(̃)
i(ı̃)

+3

idΥ
jj′
∗(λ̃j

′
iı̃ )−1

��

f ij′

Υjj′ ◦Υ̃j ◦ f ı̃̃ ◦ Tiı̃
Λ̃jj′∗idf ı̃̃◦Tiı̃ +3 Υ̃j′ ◦ f ı̃̃ ◦ Tiı̃.

λ̃j
′

iı̃

KS

(5.32)

Apply Lemma 5.36 to X ′, using Tij = (Uii′ , τii′ , τ̂ii′) from X to represent
[Tij ]. This gives a partition of unity {ηiı̃ : ı̃ ∈ I} on Ui subordinate to {Uiı̃ : ı̃ ∈ I}
for each i ∈ I satisfying (5.26). Similarly, applying Lemma 5.36 to Y ′ gives a
partition of unity {ζj̃ : ̃ ∈ J} on Vj subordinate to {Vj̃ : ̃ ∈ J} for j ∈ J .

As in (5.30), using the notation of (5.6) in Definition 5.4, for i, i′ ∈ I
and j, j′ ∈ J define 2-morphisms F jii′ : f i′j ◦ Tii′ ⇒ f ij over (S, f) for S =

Imχi ∩ Imχi′ ∩ f−1(Imψj), and F jj
′

i : Υjj′ ◦ f ij ⇒ f ij′ over (S, f) for S =
Imχi ∩ f−1(Imψj ∩ Imψj′) by

F jii′ =
∑
ı̃∈I
∑
̃∈J ηiı̃ · f∗ij(ζj̃) · F

j(̃)
ii′(ı̃),

F jj
′

i =
∑
ı̃∈I
∑
̃∈J ηiı̃ · f∗ij′(ζj′ ̃) · F

jj′(̃)
i(ı̃) .

(5.33)
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We now claim that f =
(
f,f ij, i∈I, j∈J , F j, j∈Jii′, i,i′∈I , F

jj′, j,j′∈J
i, i∈I

)
is a 1-

morphism f : X → Y in mK̇ur. We must verify Definition 4.17(a)–(h).

Parts (a)–(d) are immediate. For (e), if i = i′ then F
j(̃)
ii(ı̃) in (5.32) is idf ij , giving

F jii = idf ij in (5.33). Similarly F jji = idf ij , proving Definition 4.17(e).
To prove part (f), let ı̃ ∈ I, ̃ ∈ J and consider the diagram

f i′′j ◦ Ti′i′′ ◦ Tii′
F
j(̃)

i′i′′(ı̃)∗id
+3

id∗Kii′i′′

��

f i′j ◦ Tii′

F
j(̃)

ii′(ı̃)

��

Υ̃j◦f ı̃̃◦Ti′′ ı̃◦Ti′i′′ ◦Tii′

λ̃j
i′′ ı̃∗id

ck

id∗Ki′i′′ ı̃∗id

+3

id∗Kii′i′′
��

Υ̃j◦f ı̃̃◦Ti′ ı̃◦Tii′

λ̃j
i′ ı̃∗id

3;

id∗Kii′ ı̃
��

Υ̃j ◦ f ı̃̃ ◦ Ti′′ ı̃ ◦ Tii′′

λ̃j
i′′ ı̃∗ids{

id∗Kii′′ ı̃ +3 Υ̃j ◦ f ı̃̃ ◦ Tiı̃

λ̃jiı̃ #+
f i′′j ◦ Tii′′

F
j(̃)

ii′′(ı̃) +3 f ij .

(5.34)

Here the top, bottom and right quadrilaterals commute by (5.32), the central
rectangle by Definition 4.14(h) for X, and the left quadrilateral by compatibility
of horizontal and vertical composition. Thus (5.34) commutes.

We now have

F jii′′ � (idf i′′j ∗Kii′i′′) =
( ∑̃
ı∈I

∑̃
∈J

ηiı̃ · f∗ij(ζj̃) · F
j(̃)
ii′′(ı̃)

)
� (idf i′′j ∗Kii′i′′)

=
∑̃
ı∈I

∑̃
∈J

ηiı̃ · f∗ij(ζj̃) ·
(
F
j(̃)
ii′′(ı̃) � (idf i′′j ∗Kii′i′′)

)
=
∑̃
ı∈I

∑̃
∈J

ηiı̃ · f∗ij(ζj̃) ·
(
F
j(̃)
ii′(ı̃) � (F

j(̃)
i′i′′(ı̃) ∗ idTii′ )

)
(5.35)

=
( ∑̃
ı∈I

∑̃
∈J

ηiı̃ · f∗ij(ζj̃) · F
j(̃)
ii′(ı̃)

)
�
( ∑̃
ı∈I

∑̃
∈J

ηiı̃ · f∗ij(ζj̃) · (F
j(̃)
i′i′′(ı̃) ∗ idTii′ )

)
= F jii′ �

( ∑̃
ı∈I

∑̃
∈J

τ∗ii′(ηi′ ı̃) · (fi′j ◦ τii′)∗(ζj̃) · (F
j(̃)
i′i′′(ı̃) ∗ idTii′ )

)
= F jii′ �

(( ∑̃
ı∈I

∑̃
∈J

ηi′ ı̃ · f∗i′j(ζj̃) · F
j(̃)
i′i′′(ı̃)

)
∗ idTii′

)
= F jii′ � (F ji′i′′ ∗ idTii′ ).

Here we use (5.33) in the first and seventh steps, and (5.34) in the third. In
the fourth step, it may be surprising that one sum

∑
ı̃

∑
̃ turns into two sums

composed with �. This is because � in Definition 4.5 is basically an operation
of addition, not multiplication, so sums (5.6) are distributive over �. In the fifth
step we use (5.26) for the ηiı̃, and (5.33), and fi′j ◦ τii′ = fij +O(ri), and the

fact that F jii′ in (5.33) only depends on ηiı̃, f
∗
ij(ζj̃) up to O(ri).

Equation (5.35) proves Definition 4.17(f) for f . Parts (g),(h) are similar.

Hence f : X → Y is a 1-morphism in mK̇ur. By construction FµK̇ur

mK̇ur
([f ]) = f ′,

so FµK̇ur

mK̇ur
is full, as we have to prove.
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5.6.4 FµK̇ur

mK̇ur
is surjective on isomorphism classes

Let X ′ = (X,K′) be a µ-Kuranishi space, with K′ =
(
I, (Vi, Ei, si, ψi)i∈I ,

[Φij ]i,j∈I
)
. To show FµK̇ur

mK̇ur
is surjective on isomorphism classes, we must

construct an object X in mK̇ur with FµK̇ur

mK̇ur
(X) ∼= X ′ in µK̇ur. Actually we

will arrange that FµK̇ur

mK̇ur
(X) = X ′.

Then (Vi, Ei, si, ψi) is an m-Kuranishi neighbourhood on X for i ∈ I. Choose
a representative Φij for [Φij ] for i, j ∈ I, where as [Φii] = [id(Vi,Ei,si,ψi)] we take
Φii = id(Vi,Ei,si,ψi). As [Φjk] ◦ [Φij ] = [Φik] for i, j, k ∈ I by Definition 5.11(f)
for X ′, there exists a 2-morphism of m-Kuranishi neighbourhoods

Kijk : Φjk ◦ Φij =⇒ Φik

over S = Imψi ∩ Imψj ∩ Imψk, where as Φii,Φjj are identities we choose
Kiij = Kijj = idΦij for i, j ∈ I. Therefore Kiji : Φji ◦ Φij ⇒ id(Vi,Ei,si,ψi),

Kjij : Φij ◦ Φji ⇒ id(Vj ,Ej ,sj ,ψj) imply that Φij is an equivalence in K̇NS(X)
for S = Imψi ∩ Imψj , and so a coordinate change over S, for all i, j ∈ I.

Let ı̃, i, j, k ∈ I. Then Lemma A.6 in the 2-category K̇NS(X) and Φı̃i an
equivalence implies that there is a unique 2-morphism

K
(ı̃)
ijk : Φjk ◦ Φij =⇒ Φik

over S = Imψı̃ ∩ Imψi ∩ Imψj ∩ Imψk making the following diagram commute:

Φjk ◦ Φij ◦ Φı̃i
K

(ı̃)
ijk∗idΦı̃i

+3

idΦjk
∗Kı̃ij

��

Φik ◦ Φı̃i

Φjk ◦ Φı̃j
Kı̃jk +3 Φı̃k.

K−1
ı̃ik

KS
(5.36)

Apply Lemma 5.36 to X ′, using Φij = (Vij , φij , φ̂ij) to represent [Φij ]. This
gives a partition of unity {ηiı̃ : ı̃ ∈ I} on Vi subordinate to {Viı̃ : ı̃ ∈ I} for each
i ∈ I, satisfying (5.26). As in (5.30) and (5.33), using the notation of (5.6) in
Definition 5.4, for all i, j, k ∈ I define a 2-morphism Λijk : Φjk ◦ Φij ⇒ Φik over
S = Imψi ∩ Imψj ∩ Imψk by

Λijk =
∑
ı̃∈I ηiı̃ ·K

(ı̃)
ijk. (5.37)

Define K =
(
I, (Vi, Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
. We will show that

X = (X,K) is an m-Kuranishi space with FµK̇ur

mK̇ur
(X) = X ′. Definition 4.14(a)–

(f) for K are immediate. For (g), as Kiij = Kijj = idΦij , equation (5.36) implies

that K
(ı̃)
iij = K

(ı̃)
ijj = idΦij , so (5.37) gives Λiij = Λijj = idΦij , as we want.
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To prove Definition 4.14(h) for K, let ı̃, i, j, k, l ∈ I, and consider the diagram

Φkl ◦ Φjk ◦ Φij ◦ Φı̃i
id∗Kı̃ij
$,

K
(ı̃)
jkl∗id

+3

id∗K(ı̃)
ijk∗id

��

Φjl ◦ Φij ◦ Φı̃i

K
(ı̃)
ijl∗id

��

id∗Kı̃ij
rz

Φkl ◦ Φjk ◦ Φı̃j
K

(ı̃)
jkl∗id

+3

id∗Kı̃jk��

Φjl ◦ Φı̃j
Kı̃jl ��

Φkl ◦ Φı̃k
Kı̃kl +3 Φı̃l

Φkl ◦ Φik ◦ Φı̃i

id∗Kı̃ik

2:

K
(ı̃)
ikl∗id +3 Φil ◦ Φı̃i

Kı̃il

dl

(5.38)

over S = Imψı̃ ∩ Imψi ∩ Imψj ∩ Imψk ∩ Imψl. Here the top quadrilateral
commutes by compatibility of horizontal and vertical composition, and the other
four quadrilaterals commute by (5.36). Hence (5.38) commutes.

Applying Lemma A.6 to the outer rectangle of (5.38) and using Φı̃i an
equivalence shows that over S = Imψı̃ ∩ Imψi ∩ Imψj ∩ Imψk ∩ Imψl we have

K
(ı̃)
ikl �

(
idΦkl ∗K

(ı̃)
ijk

)
= K

(ı̃)
ijl �

(
K

(ı̃)
jkl ∗ idΦij

)
: Φkl ◦ Φjk ◦ Φij =⇒ Φil. (5.39)

Now

Λikl � (idΦkl ∗ Λijk) =
( ∑̃
ı∈I

ηiı̃ ·K(ı̃)
ikl

)
�
(

idΦkl ∗
( ∑̃
ı∈I

ηiı̃ ·K(ı̃)
ijk

))
=
∑̃
ı∈I

ηiı̃ ·
(
K

(ı̃)
ikl �

(
idΦkl ∗K

(ı̃)
ijk

))
=
∑̃
ı∈I

ηiı̃ ·
(
K

(ı̃)
ijl �

(
K

(ı̃)
jkl ∗ idΦij

))
=
( ∑̃
ı∈I

ηiı̃ ·K(ı̃)
ijl

)
�
( ∑̃
ı∈I

ηiı̃ ·
(
K

(ı̃)
jkl ∗ idΦij

))
(5.40)

= Λijl �
( ∑̃
ı∈I

φ∗ij(ηjı̃) ·
(
K

(ı̃)
jkl ∗ idΦij

))
= Λijl �

(( ∑̃
ı∈I

ηjı̃ ·K(ı̃)
jkl

)
∗ idΦij

)
= Λijl � (Λjkl ∗ idΦij ).

Here we use (5.37) in the first and seventh steps, and (5.39) in the third. In the
second and fourth steps we use the fact that sums (5.6) are distributive over �,
as in the proof of (5.35). In the fifth step we use (5.37), and (5.26) for the ηiı̃,
and the fact that Λijk in (5.37) only depends on ηiı̃ up to O(si).

Equation (5.40) proves Definition 4.14(h) for K. Hence X = (X,K) is an

m-Kuranishi space. By construction FµK̇ur

mK̇ur
(X) = X ′. Therefore FµK̇ur

mK̇ur
is

surjective on isomorphism classes. This completes the proof of Theorem 5.23.
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Chapter 6

Kuranishi spaces, and orbifolds

Throughout this chapter we suppose we are given a category Ṁan satisfying
Assumptions 3.1–3.7 in §3.1 (though defining the 2-category of orbifolds Ȯrb in
§6.6 only needs Assumptions 3.1–3.3). As in Chapter 4, we will usually refer to
objects X ∈ Ṁan as ‘manifolds’, and morphisms f : X → Y in Ṁan as ‘smooth
maps’. We will call objects X in Man ⊆ Ṁan ‘classical manifolds’, and call
morphisms f : X → Y in Man ⊆ Ṁan ‘classical smooth maps’.

Classical orbifolds X are generalizations of classical manifolds which are
locally modelled on Rn/Γ for Γ a finite group acting linearly on Rn. Kuranishi
spaces are an orbifold version of m-Kuranishi spaces in Chapter 4, and as in
§4.8 should be regarded as ‘derived orbifolds’. From the category Ṁan we will
construct a weak 2-category of ‘Kuranishi spaces’ K̇ur, with a full and faithful
embedding mK̇ur ↪→ K̇ur of mK̇ur from §4.3.

Sections 6.1–6.4 follow §4.1–§4.7 closely, but including extra finite groups Γi
throughout. Section 6.5 discusses isotropy groups, and §6.6 relates orbifolds and
Kuranishi spaces. The proof of Theorem 6.16 is deferred until §6.7.

6.1 The weak 2-category of Kuranishi neighbourhoods

The next seven definitions are the orbifold analogues of Definitions 4.1–4.6:

Definition 6.1. Let X be a topological space. A Kuranishi neighbourhood on
X is a quintuple (V,E,Γ, s, ψ) such that:

(a) V is a manifold (object in Ṁan). We allow V = ∅.
(b) π : E → V is a vector bundle over V , called the obstruction bundle.

(c) Γ is a finite group with a smooth action on V (that is, an action by
isomorphisms in Ṁan), and a compatible action on E preserving the
vector bundle structure. We do not assume the Γ-actions are effective.

(d) s : V → E is a Γ-equivariant smooth section of E, called the Kuranishi
section.
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(e) ψ is a homeomorphism from s−1(0)/Γ to an open subset Imψ =
{
ψ(Γv) :

v ∈ s−1(0)
}

in X, called the footprint of (V,E,Γ, s, ψ).

We will write ψ̄ : s−1(0) → Imψ ⊆ X for the composition of ψ with the
projection s−1(0)→ s−1(0)/Γ.

Definition 6.2. Let X,Y be topological spaces, f : X → Y a continuous
map, (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj) be Kuranishi neighbourhoods on X,Y
respectively, and S ⊆ Imψi ∩ f−1(Imψj) ⊆ X be an open set. A 1-morphism

Φij = (Pij , πij , φij , φ̂ij) : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) of Kuranishi

neighbourhoods over (S, f) is a quadruple (Pij , πij , φij , φ̂ij) satisfying:

(a) Pij is a manifold (object in Ṁan), with commuting smooth actions of
Γi,Γj (that is, with a smooth action of Γi × Γj), with the Γj-action free.

(b) πij : Pij→Vi is a smooth map (morphism in Ṁan) which is Γi-equivariant,
Γj-invariant, and étale (a local diffeomorphism). The image Vij :=πij(Pij)
is a Γi-invariant open neighbourhood of ψ̄−1

i (S) in Vi (that is, Vij ⊆ Vi is

an open submanifold in Ṁan), and the fibres π−1
ij (v) of πij for v ∈ Vij are

Γj-orbits, so that πij : Pij → Vij is a principal Γj-bundle.

We do not require ψ̄−1
i (S) = Vij ∩ s−1

i (0), only that ψ̄−1
i (S) ⊆ Vij ∩ s−1

i (0).

(c) φij : Pij → Vj is a Γi-invariant and Γj-equivariant smooth map, that is,
φij(γi · p) = φij(p), φij(γj · p) = γj · φij(p) for all γi ∈ Γi, γj ∈ Γj , p ∈ Pij .

(d) φ̂ij : π∗ij(Ei) → φ∗ij(Ej) is a Γi- and Γj-equivariant morphism of vector
bundles on Pij , where the Γi,Γj-actions are induced by the given Γi-action
and the trivial Γj-action on Ei, and vice versa for Ej .

(e) φ̂ij(π
∗
ij(si)) = φ∗ij(sj) +O(π∗ij(si)

2), as in Definition 3.15(i).

(f) f ◦ ψ̄i ◦ πij = ψ̄j ◦ φij on π−1
ij (s−1

i (0)) ⊆ Pij .

If X = Y and f = idX then we call Φij a 1-morphism of Kuranishi neigh-
bourhoods over S, or just a 1-morphism over S.

Definition 6.3. Let (Vi, Ei,Γi, si, ψi) be a Kuranishi neighbourhood on X, and
S ⊆ Imψi be open. We will define the identity 1-morphism

id(Vi,Ei,Γi,si,ψi) =(Pii, πii, φii, φ̂ii) : (Vi, Ei,Γi, si, ψi)→(Vi, Ei,Γi, si, ψi). (6.1)

Since Pii must have two different actions of Γi, for clarity we write Γ1
i = Γ2

i = Γi,
where Γ1

i and Γ2
i mean the copies of Γi acting on the domain and target of the

1-morphism in (6.1), respectively.
Define Pii = Vi × Γi, and let Γ1

i act on Pii by γ1 : (v, γ) 7→ (γ1 · v, γ(γ1)−1)
and Γ2

i act on Pii by γ2 : (v, γ) 7→ (v, γ2γ). Define πii, φii : Pii → Vi by
πii : (v, γ) 7→ v and φii : (v, γ) 7→ γ · v. Then πii is Γ1

i -equivariant and Γ2
i -

invariant, and is a Γ2
i -principal bundle, and φii is Γ1

i -invariant and Γ2
i -equivariant.

At (v, γ) ∈ Pii, the morphism φ̂ii : π∗ii(Ei)→ φ∗ii(Ei) must map Ei|v → Ei|γ·v.

We have such a map, the lift of the γ-action on Vi to Ei. So we define φ̂ii on
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Vi × {γ} ⊆ Pii to be the lift to Ei of the γ-action on Vi, for each γ ∈ Γ. It is

now easy to check that (Pii, πii, φii, φ̂ii) satisfies Definition 6.2(a)–(f), so (6.1) is
a 1-morphism over S.

Definition 6.4. Suppose X,Y are topological spaces, f : X → Y is a contin-
uous map, (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj) are Kuranishi neighbourhoods
on X,Y respectively, S ⊆ Imψi ∩ f−1(Imψj) ⊆ X is open, and Φij ,Φ

′
ij :

(Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) are two 1-morphisms over (S, f), with

Φij = (Pij , πij , φij , φ̂ij) and Φ′ij = (P ′ij , π
′
ij , φ

′
ij , φ̂

′
ij).

Consider triples (Ṕij , λij , λ̂ij) satisfying:

(a) Ṕij is a Γi- and Γj-invariant open neighbourhood of π−1
ij (ψ̄−1

i (S)) in Pij .

(b) λij : Ṕij → P ′ij is a Γi- and Γj-equivariant smooth map with π′ij ◦ λij =
πij |Ṕij . This implies that λij is an isomorphism of principal Γj-bundles

over V́ij := πij(Ṕij), so λij is a diffeomorphism with a Γi- and Γj-invariant

open set λij(Ṕij) in P ′ij .

(c) λ̂ij : π∗ij(Ei)|Ṕij → TφijVj |Ṕij is a morphism in the notation of §3.3.4, which

is Γi- and Γj-equivariant, and satisfies

φ′ij ◦ λij = φij |Ṕij + λ̂ij ◦ π∗ij(si) +O
(
π∗ij(si)

2
)

and

λ∗ij(φ̂
′
ij) = φ̂ij |Ṕij + φ∗ij(dsj) ◦ λ̂ij +O

(
π∗ij(si)

)
on Ṕij ,

(6.2)

in the sense of Definition 3.15(iv),(vi),(vii).

Define a binary relation ∼ on such triples by (Ṕij , λij , λ̂ij) ∼ (Ṕ ′ij , λ
′
ij , λ̂

′
ij) if

there exists an open neighbourhood P̈ij of π−1
ij (ψ̄−1

i (S)) in Ṕij ∩ Ṕ ′ij with

λij |P̈ij = λ′ij |P̈ij and λ̂ij |P̈ij = λ̂′ij |P̈ij +O
(
π∗ij(si)

)
on P̈ij , (6.3)

in the sense of Definition 3.15(ii). We see from Theorem 3.17(c) that ∼ is an
equivalence relation. We also write ∼S in place of ∼ if we want to emphasize
the open set S ⊆ X.

Write [Ṕij , λij , λ̂ij ] for the ∼-equivalence class of (Ṕij , λij , λ̂ij). We say

that [Ṕij , λij , λ̂ij ] : Φij ⇒ Φ′ij is a 2-morphism of 1-morphisms of Kuranishi
neighbourhoods on X over (S, f), or just a 2-morphism over (S, f). We often

write Λij = [Ṕij , λij , λ̂ij ].
If X = Y and f = idX then we call Λij a 2-morphism of Kuranishi neigh-

bourhoods over S, or just a 2-morphism over S.
For a 1-morphism Φij = (Pij , πij , φij , φ̂ij), define the identity 2-morphism

idΦij = [Pij , idPij , 0] : Φij =⇒ Φij . (6.4)
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Definition 6.5. Let X,Y, Z be topological spaces, f : X → Y , g : Y → Z
be continuous maps, (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj), (Vk, Ek,Γk, sk, ψk) be
Kuranishi neighbourhoods on X,Y, Z respectively, and T ⊆ Imψj ∩ g−1(Imψk)

⊆ Y and S ⊆ Imψi ∩ f−1(T ) ⊆ X be open. Suppose Φij = (Pij , πij , φij , φ̂ij) :
(Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) is a 1-morphism of Kuranishi neighbour-

hoods over (S, f), and Φjk = (Pjk, πjk, φjk, φ̂jk) : (Vj , Ej ,Γj , sj , ψj)→ (Vk, Ek,
Γk, sk, ψk) is a 1-morphism of Kuranishi neighbourhoods over (T, g).

Consider the diagram in Ṁan:

Pij ×Vj Pjk

Γi×Γj×Γk

��

πPij
tt

πPjk
**

Pij

Γi×Γj

,,

πijvv φij **

Pjk

Γj×Γk

rr

πjktt φjk ((
Vi

Γi -- Vj

Γj

��
Vk.

Γkrr

(6.5)

Here as πjk is étale one can show that the fibre product Pij ×Vj Pjk exists in

Ṁan using Assumptions 3.2(e) and 3.3(b). We have shown the actions of various
combinations of Γi,Γj ,Γk on each space. In fact Γi × Γj × Γk acts on the whole
diagram, with all maps equivariant, but we have omitted the trivial actions (for
instance, Γj ,Γk act trivially on Vi).

As Γj acts freely on Pij , it also acts freely on Pij ×Vj Pjk. Using Assumption
3.3 and the facts that Pij ×Vj Pjk is Hausdorff and Γj is finite, we can show

that the quotient Pik := (Pij ×Vj Pjk)/Γj exists in Ṁan, with projection
Π : Pij ×Vj Pjk → Pik. The commuting actions of Γi,Γk on Pij ×Vj Pjk descend
to commuting actions of Γi,Γk on Pik, such that Π is Γi- and Γk-equivariant. As
πij ◦ πPij : Pij ×Vj Pjk → Vi and φjk ◦ πPjk : Pij ×Vj Pjk → Vk are Γj-invariant,
they factor through Π, so there are unique smooth maps πik : Pik → Vi and
φik : Pik → Vk such that πij ◦ πPij = πik ◦Π and φjk ◦ πPjk = φik ◦Π.

Consider the diagram of vector bundles on Pij ×Vj Pjk:

Π∗ ◦ π∗ik(Ei)
Π∗(φ̂ik)

// Π∗ ◦ φ∗ik(Ek)

π∗Pij ◦π
∗
ij(Ei)

π∗Pij
(φ̂ij)
// π∗Pij ◦φ

∗
ij(Ej) π∗Pjk ◦π

∗
jk(Ej)

π∗Pjk
(φ̂jk)
// π∗Pjk ◦φ

∗
jk(Ek).

There is a unique morphism on the top line making the diagram commute. As
φ̂ij , φ̂jk are Γj-equivariant, this is Γj-equivariant, so it is the pullback under

Π∗ of a unique morphism φ̂ik : π∗ik(Ei)→ φ∗ik(Ek), as shown. It is now easy to

check that (Pik, πik, φik, φ̂ik) satisfies Definition 6.2(a)–(f), and is a 1-morphism

Φik = (Pik, πik, φik, φ̂ik) : (Vi, Ei,Γi, si, ψi)→ (Vk, Ek,Γk, sk, ψk) over (S, g ◦ f).
We write Φjk ◦ Φij = Φik, and call it the composition of 1-morphisms.

If we have three such 1-morphisms Φij ,Φjk,Φkl, define

λijkl :
[
Pij×Vj

(
(Pjk×VkPkl)/Γk

)]
/Γj →

[(
(Pij×VjPjk)/Γj

)
×VkPkl

]
/Γk (6.6)
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to be the natural identification. Then we have a 2-isomorphism

αΦkl,Φjk,Φij :=
[
[Pij ×Vj ((Pjk ×Vk Pkl)/Γk)]/Γj , λijkl, 0

]
:

(Φkl ◦ Φjk) ◦ Φij =⇒ Φkl ◦ (Φjk ◦ Φij).
(6.7)

That is, composition of 1-morphisms is associative up to canonical 2-isomorphism,
as for weak 2-categories in §A.2.

For Φij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) as above, define

µij : ((Vi × Γi)×Vi Pij)/Γi −→ Pij ,

νij : (Pij ×Vj (Vj × Γj))/Γj −→ Pij ,

to be the natural identifications. Then we have 2-isomorphisms

βΦij :=
[
((Vi × Γi)×Vi Pij)/Γi, µij , 0

]
: Φij ◦ id(Vi,Ei,Γi,si,ψi) =⇒ Φij ,

γΦij :=
[
(Pij ×Vj (Vj × Γj))/Γj , νij , 0

]
: id(Vj ,Ej ,Γj ,sj ,ψj) ◦ Φij =⇒ Φij ,

(6.8)

so identity 1-morphisms behave as they should up to canonical 2-isomorphism,
as for weak 2-categories in §A.2.

Definition 6.6. Let X,Y be topological spaces, f : X → Y be continu-
ous, (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj) be Kuranishi neighbourhoods on X,Y ,
S ⊆ Imψi ∩ f−1(Imψj) ⊆ X be open, and Φij ,Φ

′
ij ,Φ

′′
ij : (Vi, Ei,Γi, si, ψi) →

(Vj , Ej ,Γj , sj , ψj) be 1-morphisms over (S, f) with Φij = (Pij , πij , φij , φ̂ij),

Φ′ij = (P ′ij , π
′
ij , φ

′
ij , φ̂

′
ij), Φ′′ij = (P ′′ij , π

′′
ij , φ

′′
ij , φ̂

′′
ij). Suppose Λij = [Ṕij , λij , λ̂ij ] :

Φij ⇒ Φ′ij and Λ′ij = [Ṕ ′ij , λ
′
ij , λ̂

′
ij ] : Φ′ij ⇒ Φ′′ij are 2-morphisms over (S, f). We

will define the vertical composition of 2-morphisms over (S, f), written

Λ′ij � Λij = [Ṕ ′ij , λ
′
ij , λ̂

′
ij ]� [Ṕij , λij , λ̂ij ] : Φij =⇒ Φ′′ij .

When X = Y and f = idX we call it vertical composition over S.
Choose representatives (Ṕij , λij , λ̂ij), (Ṕ

′
ij , λ

′
ij , λ̂

′
ij) in the ∼-equivalence cla-

sses [Ṕij , λij , λ̂ij ], [Ṕ
′
ij , λ

′
ij , λ̂

′
ij ]. Define Ṕ ′′ij = λ−1

ij (Ṕij) ⊆ Ṕij ⊆ Pij , and λ′′ij =

λ′ij ◦ λij |Ṕ ′′ij . Consider the sheaf morphism on Ṕ ′′ij :

π∗ij(Ei)|Ṕ ′′ij =λ∗ij ◦ π′∗ij(Ei)|Ṕ ′′ij
λ∗ij(λ̂

′
ij) // Tφ′ij◦λijVj |Ṕ ′′ij ,

using the notation of §3.3.4. Since φ′ij◦λij |Ṕ ′′ij = φij |Ṕ ′′ij+O(π∗ij(si)) by (6.2), The-

orem 3.17(g) shows that there exists a morphism λ̌′ij : π∗ij(Ei)|Ṕ ′′ij → TφijVj |Ṕ ′′ij ,
unique up to O(π∗ij(si)), with

λ̌′ij = λ∗ij(λ̂
′
ij) +O(π∗ij(si)), (6.9)

as in Definition 3.15(v). By averaging over the Γi × Γj-action we can suppose

λ̌′ij is Γi- and Γj-equivariant, as λ̂′ij is.
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Define λ̂′′ij : π∗ij(Ei)|Ṕ ′′ij → TφijVj |Ṕ ′′ij by λ̂′′ij = λ̂ij |Ṕ ′′ij + λ̌′ij . We can prove

using Theorem 3.17 that (Ṕ ′′ij , λ
′′
ij , λ̂

′′
ij) satisfies Definition 6.4(a)–(c) for Φij ,Φ

′′
ij ,

using (6.2) for λ̂ij , λ̂
′
ij and (6.9) to prove (6.2) for λ̂′′ij . Hence Λ′′ij = [Ṕ ′′ij , λ

′′
ij , λ̂

′′
ij ] :

Φij ⇒ Φ′′ij is a 2-morphism over (S, f). It is independent of choices. We define

[Ṕ ′ij , λ
′
ij , λ̂

′
ij ]� [Ṕij , λij , λ̂ij ] = [Ṕ ′′ij , λ

′′
ij , λ̂

′′
ij ], or Λ′ij � Λij = Λ′′ij .

Let Λij : Φij ⇒ Φ′ij be a 2-morphism over (S, f), and choose a representative

(Ṕij , λij , λ̂ij) for Λij = [Ṕij , λij , λ̂ij ]. Define Ṕ ′ij = λij(Ṕij), so that Ṕ ′ij ⊆ P ′ij is

open and λij : Ṕij → Ṕ ′ij is a diffeomorphism. Set λ′ij = λ−1
ij : Ṕ ′ij → Ṕij ⊆ Pij .

Then Ṕ ′ij is Γi- and Γj-invariant, and λ′ij is Γi- and Γj-equivariant.

Now φ′ij = φij ◦λ′ij +O(π′∗ij(si)), so Theorem 3.17(g) gives λ̂′ij : π′∗ij(Ei)|Ṕ ′ij →
Tφ′ijVj |Ṕ ′ij , unique up to O(π′∗ij(si)), with λ̂′ij = −λ′∗ij(λ̂ij) + O(π′∗ij(si)), as in

Definition 3.15(v). Since λ̂ij is Γi,Γj-equivariant, by averaging λ̂′ij over the

Γi × Γj-action we can suppose λ̂′ij is Γi,Γj-equivariant. We can then show that

(Ṕ ′ij , λ
′
ij , λ̂

′
ij) satisfies Definition 6.4(a)–(c), so that Λ′ij = [Ṕ ′ij , λ

′
ij , λ̂

′
ij ] : Φ′ij ⇒

Φij is a 2-morphism over (S, f). This Λ′ij is a two-sided inverse Λ−1
ij for Λij

under vertical composition. Thus, all 2-morphisms over (S, f) are invertible
under vertical composition, that is, they are 2-isomorphisms.

Definition 6.7. Let X,Y, Z be topological spaces, f : X → Y , g : Y → Z
be continuous maps, (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj), (Vk, Ek,Γk, sk, ψk) be
Kuranishi neighbourhoods on X,Y, Z, and T ⊆ Imψj ∩ g−1(Imψk) ⊆ Y and
S ⊆ Imψi ∩ f−1(T ) ⊆ X be open. Suppose Φij ,Φ

′
ij : (Vi, Ei,Γi, si, ψi) →

(Vj , Ej ,Γj , sj , ψj) are 1-morphisms of Kuranishi neighbourhoods over (S, f), and
Λij : Φij ⇒ Φ′ij is a 2-morphism over (S, f), and Φjk,Φ

′
jk : (Vj , Ej ,Γj , sj , ψj)

→ (Vk, Ek,Γk, sk, ψk) are 1-morphisms of Kuranishi neighbourhoods over (T, g),
and Λjk : Φjk ⇒ Φ′jk is a 2-morphism over (T, g).

We will define the horizontal composition of 2-morphisms, written

Λjk ∗ Λij : Φjk ◦ Φij =⇒ Φ′jk ◦ Φ′ij over (S, g ◦ f). (6.10)

Use our usual notation for Φij , . . . ,Λjk, and write (Pik, πik, φik, φ̂ik) = Φjk ◦Φij ,

(P ′ik, π
′
ik, φ

′
ik, φ̂

′
ik) = Φ′jk ◦ Φ′ij , as in Definition 6.5. Choose representatives

(Ṕij , λij , λ̂ij), (Ṕjk, λjk, λ̂jk) for Λij = [Ṕij , λij , λ̂ij ] and Λjk = [Ṕjk, λjk, λ̂jk].

Then Pik = (Pij ×Vj Pjk)/Γj , and Ṕij ⊆ Pij , Ṕjk ⊆ Pjk are open and

Γj-invariant, so Ṕij ×Vj Ṕjk is open and Γj-invariant in Pij ×Vj Pjk. Define

Ṕik = (Ṕij ×Vj Ṕjk)/Γj , as an open subset of Pik. It is Γi- and Γk-invariant, as

Ṕij , Ṕjk are Γi- and Γk-invariant, respectively.

The maps λij : Ṕij → P ′ij , λjk : Ṕjk → P ′jk satisfy φ′ij ◦ λij = φij |Ṕij : Ṕij →
Vj and π′jk ◦λjk = πjk|Ṕjk : Ṕjk → Vj . Hence by properties of fibre products they

induce a unique smooth map λ̃ik : Ṕij ×φij ,Vj ,πjk Ṕjk → P ′ij ×φ′ij ,Vj ,π′jk P
′
jk with

πP ′ij ◦ λ̃ik = λij ◦πṔij and πP ′jk ◦ λ̃ik = λjk ◦πṔjk . As everything is Γj-equivariant,
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λ̃ik descends to the quotients by Γj . Thus we obtain a unique smooth map

λik : Ṕik = (Ṕij ×Vj Ṕjk)/Γj −→ (P ′ij ×Vj P ′jk)/Γj = P ′ik

with λik ◦Π = Π′◦ λ̃ik, for Π : Ṕij×Vj Ṕjk → (Ṕij×Vj Ṕjk)/Γj , Π′ : P ′ij×Vj P ′jk →
(P ′ij ×Vj P ′jk)/Γj the projections.

Define a morphism of sheaves on Ṕij ×Vj Ṕjk

λ̌ik : Π∗ ◦ π∗ik(Ei) = (πij ◦ πṔij )
∗(Ei) −→ Π∗(TφikVk) by

λ̌ik = (Π[
∗)
−1 ◦ T φjk ◦ (T πjk)−1 ◦ π∗

Ṕij
(λ̂ij)

+ (Π[
∗)
−1 ◦ π∗

Ṕjk
(λ̂jk) ◦ π∗

Ṕij
(φ̂ij),

where the morphisms are given in the diagram

(πij◦πṔij )
∗(Ei)

π∗
Ṕij

(λ̂ij)

��

π∗
Ṕij

(φ̂ij)

// (φij◦πṔij )
∗(Ej) (πjk◦πṔjk)∗(Ej)

π∗
Ṕjk

(λ̂jk)

��

Π∗(TφikVk)
Π[∗ // Tφik◦ΠVk

(Π[∗)
−1

oo

Tφij◦πṔij Vj Tπjk◦πṔjkVj
(T πjk)−1

// TπṔjk Ṕjk
T φjk //

T πjk
oo Tφjk◦πṔjkVk.

Here T πjk : TπṔjk Ṕjk → Tπjk◦πṔjkVj and Π[
∗ : Π∗(TφikVk) → Tφik◦ΠVk are

invertible as πjk,Π are étale. As all the ingredients are Γi,Γj ,Γk-invariant or

equivariant, λ̌ik is Γj-invariant, and so descends to Ṕik = (Ṕij×Vj Ṕjk)/Γj . That

is, there is a unique morphism λ̂ik : π∗ik(Ei)|Ṕik → TφikVk|Ṕik of sheaves on Ṕik

with Π∗(λ̂ik) = λ̌ik. As λ̌ik is Γi- and Γk-equivariant, so is λ̂ik.

One can now check that (Ṕik, λik, λ̂ik) satisfies Definition 6.4(a)–(c), where

(6.2) for λ̂ik follows from adding the pullbacks to Ṕij ×Vj Ṕjk of (6.2) for λ̂ij , λ̂jk,

so Λik = [Ṕik, λik, λ̂ik] is a 2-morphism as in (6.10), which is independent of

choices of (Ṕij , λij , λ̂ij), (Ṕjk, λjk, λ̂jk). We define Λjk ∗ Λij = Λik in (6.10).

We have now defined all the structures of a weak 2-category: objects (Ku-
ranishi neighbourhoods), 1- and 2-morphisms, their three kinds of composition,
two kinds of identities, and the coherence 2-isomorphisms (6.7), (6.8). The next
theorem, the analogue of Theorem 4.7, has a long but straightforward proof
using Theorem 3.17 at some points, and we leave it as an exercise.

Theorem 6.8. The structures in Definitions 6.1–6.7 satisfy the axioms of a
weak 2-category in §A.2.

Here are the analogues of Definition 4.8 and Corollary 4.9:

Definition 6.9. Write K̇N for the weak 2-category of Kuranishi neighbourhoods
defined using Ṁan, where:
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• Objects of K̇N are triples (X,S, (V,E,Γ, s, ψ)), where X is a topological
space, S ⊆ X is open, and (V,E,Γ, s, ψ) is a Kuranishi neighbourhood
over S, as in Definition 6.1.

• 1-morphisms (f,Φij) : (X,S, (Vi, Ei,Γi, si, ψi))→(Y, T, (Vj , Ej ,Γj , sj , ψj))

of K̇N are a pair of a continuous map f : X → Y with S ⊆ f−1(T ) ⊆ X
and a 1-morphism Φij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) over (S, f),
as in Definition 6.2.

• For 1-morphisms (f,Φij), (f,Φ
′
ij) : (X,S, (Vi, Ei,Γi, si, ψi)) → (Y, T, (Vj ,

Ej ,Γj , sj , ψj)) with the same continuous map f : X → Y , a 2-morphism

of K̇N is a 2-morphism Λij : Φij ⇒ Φ′ij over (S, f), as in Definition 6.4.

• Identities, the three kinds of composition of 1- and 2-morphisms, and
the coherence 2-isomorphisms αg,f,e, βf , γf are defined in the obvious way
using Definitions 6.3 and 6.5–6.7.

Write GK̇N for the full 2-subcategory of K̇N with objects (s−1(0)/Γ, s−1(0)/Γ,
(V,E,Γ, s, ids−1(0)/Γ)) for which X = S = s−1(0)/Γ and ψ = ids−1(0)/Γ. We

call GK̇N the weak 2-category of global Kuranishi neighbourhoods. We usu-
ally write objects of GK̇N as (V,E,Γ, s) rather than (s−1(0)/Γ, s−1(0)/Γ,
(V,E,Γ, s, ids−1(0)/Γ)). Similarly, we write 1-morphisms of GK̇N as Φij :
(Vi, Ei,Γi, si)→ (Vj , Ej ,Γj , sj) rather than as (f,Φij), since f is determined by

Φij as in Definition 4.8, and we write 2-morphisms of GK̇N as Λij : Φij ⇒ Φ′ij .

Let X be a topological space and S ⊆ X be open. Write K̇NS(X) for the
2-subcategory of K̇N with objects (X,S, (V,E,Γ, s, ψ)) for X,S as given, 1-
morphisms (idX ,Φij) : (X,S, (Vi, Ei,Γi, si, ψi))→ (X,S, (Vj , Ej ,Γj , sj , ψj)) for

f = idX , and all 2-morphisms Λij : (idX ,Φij) ⇒ (idX ,Φ
′
ij). We call K̇NS(X)

the weak 2-category of Kuranishi neighbourhoods over S ⊆ X.
We generally write objects of K̇NS(X) as (V,E,Γ, s, ψ), omitting X,S, and

1-morphisms of K̇NS(X) as Φij , omitting idX . That is, objects, 1- and 2-

morphisms of K̇NS(X) are just Kuranishi neighbourhoods over S and 1- and
2-morphisms over S as in Definitions 6.1, 6.2 and 6.4.

The accent ‘ ˙ ’ in K̇N,GK̇N, K̇NS(X) is because they are constructed
using Ṁan. For particular Ṁan we modify the notation in the obvious way,
e.g. if Ṁan = Man we write KN,GKN,KNS(X), and if Ṁan = Manc we
write KNc,GKNc,KNc

S(X).
If f : X → Y is continuous, (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj) are Ku-

ranishi neighbourhoods on X,Y , and S ⊆ Imψi ∩ f−1(Imψj) ⊆ X is open,
write HomS,f ((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)) for the groupoid with ob-
jects 1-morphisms Φij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) over (S, f), and
morphisms 2-morphisms Λij : Φij ⇒ Φ′ij over (S, f).

If X=Y and f=idX , we write HomS((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj))
in place of HomS,f ((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)).

Corollary 6.10. In Definition 6.9, K̇N,GK̇N and K̇NS(X) are weak 2-
categories, and in fact (2, 1)-categories, as all 2-morphisms are invertible.
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Here are the analogues of Definitions 4.10–4.11 and Convention 4.12:

Definition 6.11. Let X be a topological space, and S ⊆ X be open, and
Φij : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) be a 1-morphism of Kuranishi
neighbourhoods on X over S. Then Φij is a 1-morphism in the 2-category

K̇NS(X) of Definition 6.9. We call Φij a coordinate change over S if it is an

equivalence in K̇NS(X). Write

EquS
(
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)

)
⊆ HomS

(
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)

)
for the subgroupoid with objects coordinate changes over S.

Here is Theorem 10.65(a)–(c) from §10.5.3 in volume II, which gives criteria
for when a 1-morphism of Kuranishi neighbourhoods on X is a coordinate change
when Ṁan is Man,Manc,Mangc,Manac or Manc,ac.

Theorem 6.12. Working in a category Ṁan which we specify in (a)–(c) below,

let Φij = (Pij , πij , φij , φ̂ij) : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) be a 1-
morphism of Kuranishi neighbourhoods on a topological space X over an open
subset S ⊆ X. Let p ∈ π−1

ij (ψ̄−1
i (S)) ⊆ Pij , set vi = πij(p) ∈ Vi and vj =

φij(p) ∈ Vj , and consider the morphism of finite groups

ρp :
{

(γi, γj) ∈ Γi × Γj : (γi, γj) · p = p
}
−→

{
γj ∈ Γj : γj · vj = vj

}
,

ρp : (γi, γj) 7−→ γj .
(6.11)

Then:

(a) If Ṁan=Man then Φij is a coordinate change over S if and only if for
all p ∈ π−1

ij (ψ̄−1
i (S)), equation (6.11) is an isomorphism, and the following

is exact:

0 // TviVi
dvisi⊕(Tpφij◦(Tpπij)−1)

// Ei|vi⊕TvjVj
−φ̂ij |p⊕dvj sj // Ej |vj // 0. (6.12)

(b) If Ṁan = Manc then Φij is a coordinate change over S if and only if
φij is simple near π−1

ij (ψ̄−1
i (S)), as in §2.1, and for all p ∈ π−1

ij (ψ̄−1
i (S)),

equation (6.11) is an isomorphism and (6.12) is exact.

(c) If Ṁan is one of Manc,Mangc,Manac or Manc,ac then Φij is a coor-
dinate change over S if and only if φij is simple near π−1

ij (ψ̄−1
i (S)), and

using b-tangent spaces from §2.3, for all p ∈ π−1
ij (ψ̄−1

i (S)), equation (6.11)
is an isomorphism and the following is exact:

0 // bTviVi
bdvisi⊕(bTpφij◦(bTpπij)−1)

// Ei|vi⊕bTvjVj
−φ̂ij |p⊕bdvj sj // Ej |vj // 0.
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Definition 6.13. Let T ⊆ S ⊆ X be open. Define the restriction 2-functor
|T : K̇NS(X)→ K̇NT (X) to map objects (Vi, Ei,Γi, si, ψi) to exactly the same
objects, and 1-morphisms Φij to exactly the same 1-morphisms but regarded as
1-morphisms over T , and 2-morphisms Λij over S to Λij |T , where Λij |T is the

∼T -equivalence class of any representative (Ṕij , λij , λ̂ij) for the ∼S-equivalence
class Λij . We take the 2-morphisms Fg,f , FX in Definition A.8 to be identities.

Then |T : K̇NS(X)→ K̇NT (X) is a weak 2-functor of weak 2-categories as in
§A.3. If U ⊆ T ⊆ S ⊆ X are open then |U ◦ |T = |U : K̇NS(X)→ K̇NU (X).

Now let f : X → Y be continuous, (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj) be
Kuranishi neighbourhoods on X,Y , and T ⊆ S ⊆ Imψi ∩ f−1(Imψj) ⊆ X be
open. Then as for |T on 1- and 2-morphisms above, we define a functor

|T : HomS,f

(
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)

)
−→

HomT,f

(
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)

)
.

Convention 6.14. When we do not specify a domain S for a morphism, or
coordinate change, of Kuranishi neighbourhoods, the domain should be as large as
possible. For example, if we say that Φij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj)
is a 1-morphism (or a 1-morphism over f : X → Y ) without specifying S, we
mean that S = Imψi ∩ Imψj (or S = Imψi ∩ f−1(Imψj)).

Similarly, if we write a formula involving several 2-morphisms (possibly
defined on different domains), without specifying the domain S, we make the
convention that the domain where the formula holds should be as large as possible.
That is, the domain S is taken to be the intersection of the domains of each
2-morphism in the formula, and we implicitly restrict each morphism in the
formula to S as in Definition 6.13, so that it makes sense.

Remark 6.15. (i) Our coordinate changes in Definition 6.11 are closely related
to coordinate changes between Kuranishi neighbourhoods in the theory of Fukaya,
Oh, Ohta and Ono [19–39], as described in §7.1. We explain the connection in
§7.1. One of the most important innovations in our theory is to introduce the
notion of 2-morphism between coordinate changes.

(ii) Our 1-morphisms of Kuranishi neighbourhoods involve Vij
πij←−Pij

φij−→Vj
with πij a Γi-equivariant principal Γj-bundle, and φij Γi-invariant and Γj-
equivariant. As in §6.6, this is a known way of writing 1-morphisms of orbifolds
[Vij/Γi]→ [Vj/Γj ], called Hilsum–Skandalis morphisms. So the data Pij , πij , φij
in Φij = (Pij , πij , φij , φ̂ij) is very natural from the orbifold point of view.

(iii) In the definition of 2-morphisms Λij = [Ṕij , λij , λ̂ij ] in Definition 6.4, by

restricting to arbitrarily small open neighbourhoods Ṕij of π−1
ij (ψ̄−1

i (S)) in Pij
and then taking equivalence classes, we are in effect taking germs about ψ̄−1

i (S)
in Vi, or germs about π−1

ij (ψ̄−1
i (S)) in Pij . Fukaya–Ono’s first definition of

Kuranishi space [39, §5] involved germs of Kuranishi neighbourhoods at points.
We take germs at larger subsets ψ̄−1

i (S) in 2-morphisms.
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Here is the analogue of Theorem 4.13, proved in §6.7, which is very important
in our theory. We will call Theorem 6.16 the stack property. We will use it in
§6.2 to construct compositions of 1- and 2-morphisms of Kuranishi spaces.

Theorem 6.16. Let f : X → Y be a continuous map of topological spaces, and
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj) be Kuranishi neighbourhoods on X,Y . For
each open S ⊆ Imψi ∩ f−1(Imψj) ⊆ X, define a groupoid

Homf

(
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)

)
(S)

= HomS,f

(
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)

)
,

as in Definition 6.9, for all open T ⊆ S ⊆ Imψi ∩ f−1(Imψj) define a functor

ρST : Homf

(
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)

)
(S) −→

Homf

(
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)

)
(T )

between groupoids by ρST = |T , as in Definition 6.13, and for all open U ⊆
T ⊆ S ⊆ Imψi ∩ f−1(Imψj) take the obvious isomorphism ηSTU = idρSU :
ρTU ◦ρST ⇒ ρSU . ThenHomf ((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)) is a stack
on the open subset Imψi ∩ f−1(Imψj) in X, as in §A.6.

When X = Y, f = idX we write Hom((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj))
rather than Homf ((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)). Coordinate changes
Φij : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) also form a stack Equ((Vi, Ei,Γi,
si, ψi), (Vj , Ej ,Γj , sj , ψj)) on Imψi ∩ Imψj , a substack of Hom((Vi, Ei,Γi, si,
ψi), (Vj , Ej ,Γj , sj , ψj)).

6.2 The weak 2-category of Kuranishi spaces

6.2.1 The definition of the 2-category K̇ur

We now define the weak 2-category of Kuranishi spaces K̇ur. We follow the
definition of mK̇ur in §4.3 closely, with the difference that m-Kuranishi neigh-
bourhoods in §4.1 are a strict 2-category, but Kuranishi neighbourhoods in
§6.1 are a weak 2-category. So we cannot omit brackets in compositions of
1-morphisms such as Φkl ◦ Φjk ◦ Φij in (4.4), we must write (Φkl ◦ Φjk) ◦ Φij or
Φkl ◦ (Φjk ◦Φij) as in (6.13), and we have to insert extra coherence 2-morphisms
αΦkl,Φjk,Φij ,βΦij ,γΦij from (6.7)–(6.8) throughout.

For example, compare (4.4), (4.10), (4.11), and (4.12) above with (6.13),
(6.19), (6.20), and (6.21) below, noting the extra α∗,∗,∗, and compare Definitions
4.14(g) and 6.17(g), noting the extra β∗,γ∗.

Since every weak 2-category is equivalent as a weak 2-category to a strict
2-category, we can guarantee that any proof which works in strict 2-categories
can be extended to a proof in weak 2-categories by including extra 2-morphisms
α∗,∗,∗,β∗,γ∗, although diagrams such as (4.19) and (4.31) become rather more
complicated. So we omit proofs in this section, referring to those in §4.3.

Here is the analogue of Definition 4.14.
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Definition 6.17. Let X be a Hausdorff, second countable topological space,
and n ∈ Z. A Kuranishi structure K on X of virtual dimension n is data
K =

(
I, (Vi, Ei,Γi, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
, where:

(a) I is an indexing set (not necessarily finite).

(b) (Vi, Ei,Γi, si, ψi) is a Kuranishi neighbourhood on X for each i ∈ I,
with dimVi − rankEi = n.

(c) Φij = (Pij , πij , φij , φ̂ij) : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) is a coor-
dinate change for all i, j ∈ I (as usual, defined over S = Imψi ∩ Imψj).

(d) Λijk = [Ṕijk, λijk, λ̂ijk] : Φjk ◦ Φij ⇒ Φik is a 2-morphism for all i, j, k ∈ I
(as usual, defined over S = Imψi ∩ Imψj ∩ Imψk).

(e)
⋃
i∈I Imψi = X.

(f) Φii = id(Vi,Ei,Γi,si,ψi) for all i ∈ I.

(g) Λiij = βΦij and Λijj = γΦij for all i, j ∈ I, for βΦij ,γΦij as in (6.8).

(h) The following diagram of 2-morphisms over S = Imψi ∩ Imψj ∩ Imψk ∩
Imψl commutes for all i, j, k, l ∈ I, for αΦkl,Φjk,Φij as in (6.7):

(Φkl ◦ Φjk) ◦ Φij
αΦkl,Φjk,Φij��

Λjkl∗idΦij

+3 Φjl ◦ Φij

Λijl
��

Φkl ◦ (Φjk ◦ Φij)
idΦkl

∗Λijk +3 Φkl ◦ Φik
Λikl +3 Φil.

(6.13)

We call X = (X,K) a Kuranishi space, of virtual dimension vdimX = n. When
we write x ∈X, we mean that x ∈ X.

Here is the analogue of Example 4.16.

Example 6.18. Let V be a manifold, E → V a vector bundle, Γ a finite
group with a smooth action on V and a compatible action on E preserving the
vector bundle structure, and s : V → E a Γ-equivariant smooth section, so that
(V,E,Γ, s) is an object in GK̇N from Definition 6.9. Set X = s−1(0)/Γ, with
the quotient topology induced from the closed subset s−1(0) ⊆ V . Then X is
Hausdorff and second countable, as V is and Γ is finite.

Define a Kuranishi structure K =
(
{0}, (V0, E0,Γ0, s0, ψ0),Φ00,Λ000

)
on X

with indexing set I = {0}, one Kuranishi neighbourhood (V0, E0,Γ0, s0, ψ0)
with V0 = V , E0 = E, Γ0 = Γ, s0 = s and ψ0 = idX , one coordinate change
Φ00 = id(V0,E0,Γ0,s0,ψ0), and one 2-morphism Λ000 = idΦ00 . Then X = (X,K) is
a Kuranishi space, with vdimX = dimV − rankE. We write SV,E,Γ,s = X.

We will need notation to distinguish Kuranishi neighbourhoods, coordinate
changes, and 2-morphisms on different Kuranishi spaces. As for (4.5)–(4.8), we
will often use the following notation for Kuranishi spaces W,X,Y ,Z:

W = (W,H), H =
(
H, (Th, Ch,Ai, qh, ϕh)h∈H , Σhh′ = (Ohh′ , πhh′ , σhh′ ,

σ̂hh′)h,h′∈H , Ihh′h′′ = [Óhh′h′′ , ιhh′h′′ , ι̂hh′h′′ ]h,h′,h′′∈H
)
, (6.14)
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X = (X, I), I =
(
I, (Ui, Di,Bi, ri, χi)i∈I , Tii′ = (Pii′ , πii′ , τii′ ,

τ̂ii′)i,i′∈I , Kii′i′′ = [Ṕii′i′′ , κii′i′′ , κ̂ii′i′′ ]i,i′,i′′∈I
)
, (6.15)

Y = (Y,J ), J =
(
J, (Vj , Ej ,Γj , sj , ψj)j∈J , Υjj′ = (Qjj′ , πjj′ , υjj′ ,

υ̂jj′)j,j′∈J , Λjj′j′′ = [Q́jj′j′′ , λjj′j′′ , λ̂jj′j′′ ]j,j′,j′′∈J
)
, (6.16)

Z = (Z,K), K =
(
K, (Wk, Fk,∆k, tk, ωk)k∈K , Φkk′ = (Rkk′ , πkk′ , φkk′ ,

φ̂kk′)k,k′∈K , Mkk′k′′ = [Ŕkk′k′′ , µkk′k′′ , µ̂kk′k′′ ]k,k′,k′′∈K
)
. (6.17)

Here are the analogues of Definitions 4.17 and 4.18.

Definition 6.19. Let X = (X, I) and Y = (Y,J ) be Kuranishi spaces, with
notation (6.15)–(6.16). A 1-morphism of Kuranishi spaces f : X → Y is data

f =
(
f,f ij, i∈I, j∈J , F

j, j∈J
ii′, i,i′∈I , F

jj′, j,j′∈J
i, i∈I

)
, (6.18)

satisfying the conditions:

(a) f : X → Y is a continuous map.

(b) f ij = (Pij , πij , fij , f̂ij) : (Ui, Di,Bi, ri, χi) → (Vj , Ej ,Γj , sj , ψj) is a 1-
morphism of Kuranishi neighbourhoods over f for all i ∈ I, j ∈ J (defined
over S = Imχi ∩ f−1(Imψj), as usual).

(c) F jii′ = [Ṕ jii′ , F
j
ii′ , F̂

j
ii′ ] : f i′j ◦ Tii′ ⇒ f ij is a 2-morphism over f for all

i, i′ ∈ I and j ∈ J (defined over S = Imχi ∩ Imχi′ ∩ f−1(Imψj)).

(d) F jj
′

i = [Ṕ jj
′

i , F jj
′

i , F̂ jj
′

i ] : Υjj′ ◦ f ij ⇒ f ij′ is a 2-morphism over f for all
i ∈ I and j, j′ ∈ J (defined over S = Imχi ∩ f−1(Imψj ∩ Imψj′)).

(e) F jii = βf ij and F jji = γf ij for all i ∈ I, j ∈ J , for βf ij ,γf ij as in (6.8).

(f) The following commutes for all i, i′, i′′ ∈ I and j ∈ J :

(f i′′j ◦ Ti′i′′) ◦ Tii′

αf
i′′j ,Ti′i′′ ,Tii′��

F j
i′i′′∗idT

ii′

+3 f i′j ◦ Tii′

F j
ii′ ��

f i′′j ◦ (Ti′i′′ ◦ Tii′)
idf

i′′j
∗Kii′i′′

+3 f i′′j ◦ Tii′′
F j
ii′′ +3 f ij .

(6.19)

(g) The following commutes for all i, i′ ∈ I and j, j′ ∈ J :

(Υjj′ ◦ f i′j) ◦ Tii′

αΥ
jj′ ,fi′j ,Tii′��

F jj
′

i′ ∗idT
ii′

+3 f i′j′ ◦ Tii′

F j
′

ii′ ��
Υjj′ ◦ (f i′j ◦ Tii′)

idΥ
jj′
∗F j

ii′ +3 Υjj′ ◦ f ij
F jj
′

i +3 f ij′ .

(6.20)

(h) The following commutes for all i ∈ I and j, j′, j′′ ∈ J :

(Υj′j′′ ◦Υjj′) ◦ f ij
αΥ

j′j′′ ,Υjj′ ,fij��

Λjj′j′′∗idfij

+3 Υjj′′ ◦ f ij
F jj
′′

i ��
Υj′j′′ ◦ (Υjj′ ◦ f ij)

idΥ
j′j′′
∗F jj

′
i +3 Υj′j′′ ◦ f ij′

F j
′j′′
i +3 f ij′′ .

(6.21)
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If x ∈X (i.e. x ∈ X), we will write f(x) = f(x) ∈ Y .
When Y = X, define the identity 1-morphism idX : X →X by

idX =
(
idX ,Tij, i,j∈I , K j∈I

ii′j, i,i′∈I , K j,j′∈I
ijj′, i∈I

)
. (6.22)

Then Definition 6.17(h) implies that (f)–(h) above hold.

Definition 6.20. Let X = (X, I) and Y = (Y,J ) be Kuranishi spaces, with
notation as in (6.15)–(6.16), and f , g : X → Y be 1-morphisms. Suppose the
continuous maps f, g : X → Y in f , g satisfy f = g. A 2-morphism of Kuranishi
spaces η : f ⇒ g is data η =

(
ηij, i∈I, j∈J

)
, where ηij = [Ṕij , ηij , η̂ij ] : f ij ⇒ gij

is a 2-morphism of Kuranishi neighbourhoods over f = g (defined over S =
Imχi ∩ f−1(Imψj), as usual), satisfying the conditions:

(a) Gj
ii′ � (ηi′j ∗ idTii′ ) = ηij � F

j
ii′ : f i′j ◦ Tii′ ⇒ gij for all i, i′ ∈ I, j ∈ J .

(b) Gjj′

i � (idΥjj′ ∗ ηij) = ηij′ �F
jj′

i : Υjj′ ◦ f ij ⇒ gij′ for all i ∈ I, j, j′ ∈ J .

Note that by definition, 2-morphisms η : f ⇒ g only exist if f = g.
If f = g, the identity 2-morphism is idf =

(
idf ij , i∈I, j∈J

)
: f ⇒ f .

As for m-Kuranishi spaces in §4.3, given 1-morphisms of Kuranishi spaces
f : X → Y , g : Y → Z, we must use the stack property in Theorem 6.16
to define the composition g ◦ f : X → Z, where g ◦ f is only unique up to
2-isomorphism, so we must make an arbitrary choice.

Here is the analogue of Proposition 4.19. It is proved in the same way, but
inserting extra 2-morphisms α∗,∗,∗,β∗,γ∗ as we are now working in a weak
2-category.

Proposition 6.21. (a) Let X = (X, I),Y = (Y,J ),Z = (Z,K) be Kuranishi
spaces with notation (6.15)–(6.17), and f : X → Y , g : Y → Z be 1-morphisms,

with f =
(
f,f ij ,F

j
ii′ ,F

jj′

i

)
, g =

(
g, gjk,G

k
jj′ ,G

kk′

j

)
. Then there exists a 1-

morphism h : X → Z with h =
(
h,hik,H

k
ii′ ,H

kk′

i

)
, such that h = g ◦ f : X →

Z, and for all i ∈ I, j ∈ J, k ∈ K we have 2-morphisms over h

Θijk : gjk ◦ f ij =⇒ hik, (6.23)

where as usual (6.23) holds over S = Imχi ∩ f−1(Imψj) ∩ h−1(Imωk), and for
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all i, i′ ∈ I, j, j′ ∈ J, k, k′ ∈ K the following commute:

(gjk ◦ f i′j) ◦ Tii′

αgjk,fi′j ,Tii′��

Θi′jk∗idT
ii′

+3 hi′k ◦ Tii′

Hk
ii′ ��

gjk ◦ (f i′j ◦ Tii′)
idgjk

∗F j
ii′ +3 gjk ◦ f ij

Θijk +3 hik,

(6.24)

(gj′k ◦Υjj′) ◦ f ij
αg

j′k,Υjj′ ,fij��

Gk
jj′∗idfij

+3 gjk ◦ f ij
Θijk
��

gj′k ◦ (Υjj′ ◦ f ij)
idg

j′k
∗F jj

′
i +3 gj′k ◦ f ij′

Θij′k +3 hik,

(6.25)

(Φkk′ ◦ gjk) ◦ f ij
αΦ

kk′ ,gjk,fij��
Gkk

′
j ∗idfij

+3 gjk′ ◦ f ij
Θijk′

��
Φkk′ ◦ (gjk ◦ f ij)

idΦ
kk′
∗Θijk

+3 Φkk′ ◦ hik
Hkk′
i +3 hik′ .

(6.26)

(b) If h̃ =
(
h, h̃ik, H̃

k
ii′ , H̃

kk′

i

)
, Θ̃ijk are alternative choices for h,Θijk in (a),

then there is a unique 2-morphism of Kuranishi spaces η = (ηik) : h ⇒ h̃
satisfying ηik �Θijk = Θ̃ijk : gjk ◦ f ij ⇒ h̃ik for all i ∈ I, j ∈ J, k ∈ K.

(c) If X = Y and f = idY in (a), so that I = J, then a possible choice for
h,Θijk in (a) is h = g and Θijk = Gk

ij.
Similarly, if Z = Y and g = idY in (a), so that K = J, then a possible

choice for h,Θijk in (a) is h = f and Θijk = F jki .

Here is the analogue of Definition 4.20.

Definition 6.22. For all pairs of 1-morphisms of Kuranishi spaces f : X → Y
and g : Y → Z, use the Axiom of Global Choice (see Remark 4.21) to choose
possible values of h : X → Z and Θijk in Proposition 6.21(a), and write
g ◦ f = h, and for i ∈ I, j ∈ J , k ∈ K

Θg,fijk = Θijk : gjk ◦ f ij =⇒ (g ◦ f)ik.

We call g ◦ f the composition of 1-morphisms of Kuranishi spaces.
For general f , g we make these choices arbitrarily. However, if X = Y and

f = idY then we choose g ◦ idY = g and Θg,idY

jj′k = Gk
jj′ , and if Z = Y and

g = idY then we choose idY ◦ f = f and ΘidY ,f
ijj′ = F jj

′

i . This is allowed by
Proposition 6.21(c).

The definition of a weak 2-category in Appendix A includes 2-isomorphisms
βf : f ◦ idX ⇒ f and γf : idY ◦ f ⇒ f in (A.10), since one does not require
f ◦ idX = f and idY ◦ f = f in a general weak 2-category. We define

βf = idf : f ◦ idX =⇒ f , γf = idf : idY ◦ f =⇒ f . (6.27)

Here is the analogue of Proposition 4.22. It is proved in the same way, but
inserting extra 2-morphisms αgjk,f ij ,ehi of Kuranishi neighbourhoods.
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Proposition 6.23. Let e : W → X, f : X → Y , g : Y → Z be 1-morphisms
of Kuranishi spaces, and define composition of 1-morphisms as in Definition
6.22. Then using notation (6.14)–(6.17), there is a unique 2-morphism

αg,f ,e : (g ◦ f) ◦ e =⇒ g ◦ (f ◦ e) (6.28)

with the property that for all h ∈ H, i ∈ I, j ∈ J and k ∈ K we have

(αg,f ,e)hk�Θg◦f ,ehik �(Θg,fijk ∗ idehi)=Θg,f◦ehjk �(idgjk ∗Θf ,ehij )�αgjk,f ij ,ehi . (6.29)

Here are the analogues of Definitions 4.23 and 4.24.

Definition 6.24. Let f , g,h : X → Y be 1-morphisms of Kuranishi spaces,
using notation (6.15)–(6.16), and η = (ηij) : f ⇒ g, ζ = (ζij) : g ⇒ h be
2-morphisms. Define the vertical composition of 2-morphisms ζ�η : f⇒h by

ζ � η =
(
ζij � ηij , i ∈ I, j ∈ J

)
. (6.30)

To see that ζ � η satisfies Definition 6.20(a),(b), for (a) note that for all i, i′ ∈ I
and j ∈ J , by Definition 6.20(a) for η, ζ we have

Hj
ii′ � ((ζi′j � ηi′j) ∗ idTii′ ) = Hj

ii′ � (ζi′j ∗ idTii′ )� (ηi′j ∗ idTii′ )

= ζij �G
j
ii′ � (ηi′j ∗ idTii′ ) = (ζij � ηij)� F

j
ii′ ,

and Definition 6.20(b) for ζ � η is proved in a similar way.
Clearly, vertical composition of 2-morphisms of Kuranishi spaces is associative,

(θ�ζ)�η = θ� (ζ�η), since vertical composition of 2-morphisms of Kuranishi
neighbourhoods is associative.

If g = h and ζ = idg then idg � η = (idgij � ηij) = (ηij) = η, and similarly
ζ � idg = ζ, so identity 2-morphisms behave as expected under �.

If η = (ηij, i∈I, j∈J) : f ⇒ g is a 2-morphism of Kuranishi spaces, then
as 2-morphisms ηij of Kuranishi neighbourhoods are invertible, we may define

η−1 = (η−1
ij, j∈J, i∈I) : g ⇒ f . It is easy to check that η−1 is a 2-morphism, and

η−1 � η = idf , η � η−1 = idg. Thus, all 2-morphisms of Kuranishi spaces are
2-isomorphisms.

Definition 6.25. Let e,f : X → Y and g,h : Y → Z be 1-morphisms
of Kuranishi spaces, using notation (6.15)–(6.17), and η = (ηij) : e ⇒ f ,
ζ = (ζjk) : g ⇒ h be 2-morphisms. We claim there is a unique 2-morphism
θ = (θik) : g ◦ e⇒ h ◦ f , such that for all i ∈ I, j ∈ J , k ∈ K, we have

θik|Imχi∩e−1(Imψj)∩(g◦e)−1(Imωk) = Θh,fijk � (ζjk ∗ ηij)� (Θg,eijk)−1. (6.31)
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To prove this, suppose j, j′ ∈ J , and consider the diagram of 2-morphisms
over Imχi ∩ e−1(Imψj ∩ Imψj′) ∩ (g ◦ e)−1(Imωk):

gjk ◦ eij ζjk∗ηij
+3 hjk ◦ f ij Θh,f

ijk

��(gj′k ◦Υjj′) ◦ eij
(ζj′k∗idΥ

jj′
)∗ηij
+3

Gk
jj′∗ideij

KS

αg
j′k,Υjj′ ,eij��

(hj′k ◦Υjj′) ◦ f ij

Hk
jj′∗idfij

KS

αh
j′k,Υjj′ ,fij ��(g ◦ e)ik

(Θg,e
ijk)−1 08

(Θg,e

ij′k)−1 &.

(h ◦ f)ik.

gj′k ◦ (Υjj′ ◦ eij)
ζj′k∗(idΥ

jj′
∗ηij)
+3

idg
j′k
∗Ejj

′
i

��

hj′k ◦ (Υjj′ ◦ f ij)
idh

j′k
∗F jj

′
i ��

gj′k ◦ eij′
ζj′k∗ηij′ +3 hj′k ◦ f ij′

Θh,f

ij′k

AI (6.32)

Here the left and right polygons commute by (6.25), the top and bottom rectangles
commute by Definition 6.20(a),(b) for ζ,η, and the central rectangle commutes
by properties of weak 2-categories. Hence (6.32) commutes.

The two routes round the outside of (6.32) imply that the prescribed values
(6.31) for θik agree on overlaps between open sets for j, j′. As the Imχi ∩
e−1(Imψj)∩ (g ◦ e)−1(Imωk) for j ∈ J form an open cover of the correct domain
Imχi ∩ (g ◦ e)−1(Imωk), by Theorem 6.16 and Definition A.17(iii),(iv), there is
a unique 2-morphism θik : (g ◦ e)ik ⇒ (h ◦ f)ik satisfying (6.31) for all j ∈ J .

To show θ = (θik) : g ◦ e⇒ h ◦ f is a 2-morphism, we must verify Definition
6.20(a),(b) for θ. We do this by first showing that (a),(b) hold on the intersections
of their domains with e−1(Imψj) for j ∈ J using (6.24), (6.26), (6.31), and
Definition 6.20 for η, ζ, and then use Theorem 6.16 and Definition A.17(iii) to
deduce that Definition 6.20(a),(b) for θ hold on their whole domains. So θ is a
2-morphism of Kuranishi spaces.

Define the horizontal composition of 2-morphisms ζ ∗ η : g ◦ e⇒ h ◦ f to
be ζ ∗ η = θ. By (6.31), for all i ∈ I, j ∈ J , k ∈ K we have

(ζ ∗ η)ik �Θg,eijk = Θh,fijk � (ζjk ∗ ηij), (6.33)

and this characterizes ζ ∗ η uniquely.

We have now defined all the structures of a weak 2-category of Kuranishi
spaces K̇ur, as in §A.2: objects X,Y , 1-morphisms f , g : X → Y , 2-morphisms
η : f ⇒ g, identity 1- and 2-morphisms, composition of 1-morphisms, vertical
and horizontal composition of 2-morphisms, 2-isomorphisms αg,f ,e in (6.28) for
associativity of 1-morphisms, and βf ,γf in (6.27) for identity 1-morphisms.
Following the proofs of Propositions 4.25–4.27 in §4.3, but including extra
2-morphisms α∗,∗,∗,β∗,γ∗, as in Theorem 4.28 we prove:

Theorem 6.26. The definitions and propositions above define a weak 2-cat-
egory of Kuranishi spaces K̇ur.

Remark 6.27. (a) We proved in §6.1 that Kuranishi neighbourhoods over
S ⊆ X form a weak 2-category K̇NS(X), and now we have shown that Kuranishi
spaces also form a weak 2-category K̇ur. But morally, K̇NS(X) is closer to
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being a strict 2-category. In K̇NS(X) there is a natural notion of composition of
1-morphisms Φjk ◦Φij , but it just fails to be strictly associative, as the canonical
isomorphism of fibre products λijkl in (6.6) is not the identity. The analogue

mK̇NS(X) for m-Kuranishi spaces in §4.1 is a strict 2-category.
In K̇ur, there is no natural notion of composition of 1-morphisms g ◦ f , so

as in Definition 6.22 we have to choose g ◦ f using the Axiom of Global Choice,
and composition of 1-morphisms in K̇ur is far from being strictly associative.

(b) We can define a weak 2-functor GK̇N→ K̇ur which is an equivalence from
the 2-category GK̇N of global Kuranishi neighbourhoods in Definition 6.9 to
the full 2-subcategory of objects (X,K) in K̇ur for which K contains only one
Kuranishi neighbourhood. It acts by (V,E,Γ, s) 7→ SV,E,Γ,s on objects, for
SV,E,Γ,s as in Example 6.18.

Here is the analogue of Examples 4.31 and 5.17:

Example 6.28. Let X = (X, I), Y = (Y,J ) be Kuranishi spaces in K̇ur, with
notation (6.15)–(6.16). Define the product to be X × Y = (X × Y,K), where

K=
(
I × J, (W(i,j), F(i,j),∆(i,j), t(i,j), ω(i,j))(i,j)∈I×J , Φ(i,j)(i′,j′), (i,j),(i′,j′)∈I×J ,

M(i,j)(i′,j′)(i′′,j′′), (i,j),(i′,j′),(i′′,j′′)∈I×J
)
.

Here for all (i, j) ∈ I × J we set W(i,j) = Ui × Vj , F(i,j) = π∗Ui(Di) ⊕ π∗Vj (Ej),
∆(i,j) = Bi×Γj , and t(i,j) = π∗Ui(ri)⊕π

∗
Vj

(sj) so that t−1
(i,j)(0) = r−1

i (0)× s−1
j (0),

and ω(i,j) = χi × ψj : (r−1
i (0)× s−1

j (0))/(Bi × Γj)→ X × Y . Also

Φ(i,j)(i′,j′) =Tii′×Υjj′=
(
Pii′×Qjj′ , πii′×πjj′ , τii′×υjj′ , π∗Pii′ (τ̂ii′)⊕π

∗
Qjj′

(υ̂jj′)
)
,

and M(i,j)(i′,j′)(i′′,j′′) = Kii′i′′ × Λjj′j′′ is defined as a product 2-morphism in
the obvious way. Then X × Y is a Kuranishi space, with vdim(X × Y ) =
vdimX+vdimY . As in Example 4.31 we define explicit projection 1-morphisms
πX : X × Y →X and πY : X × Y → Y .

Then X×Y ,πX ,πY have the universal property of products in a 2-category,
as in §11.5 in volume II. Products are commutative and associative up to
canonical equivalence. If f : W → Y , g : X → Y , h : X → Z are 1-morphisms
in K̇ur then we have a product 1-morphism f × h : W ×X → Y × Z and a
direct product 1-morphism (g,h) : X → Y ×Z in K̇ur, both easy to write down
explicitly.

6.2.2 Examples of 2-categories K̇ur, and 2-functors of them

Here is the analogue of Definition 4.29:

Definition 6.29. In Theorem 6.26 we write K̇ur for the 2-category of Kuran-
ishi spaces constructed from a category Ṁan satisfying Assumptions 3.1–3.7.
By Example 3.8, the following categories from Chapter 2 are possible choices
for Ṁan:

Man,Manc
we,Manc,Mangc,Manac,Manc,ac. (6.34)
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We write the corresponding 2-categories of Kuranishi spaces as follows:

Kur,Kurc
we,Kurc,Kurgc,Kurac,Kurc,ac. (6.35)

Objects of Kurc,Kurgc,Kurac,Kurc,ac will be called Kuranishi spaces with
corners, and with g-corners, and with a-corners, and with corners and a-corners,
respectively.

In §4.4 we showed that any functor F M̈an
Ṁan

: Ṁan→ M̈an satisfying Condi-

tion 3.20 induces a weak 2-functor FmK̈ur
mK̇ur

: mK̇ur → mK̈ur, and under the
hypotheses of Proposition 3.21 this is an inclusion of 2-subcategories. The same
arguments work for Kuranishi spaces, proving:

Proposition 6.30. Suppose Ṁan, M̈an are categories satisfying Assumptions
3.1–3.7, and F M̈an

Ṁan
: Ṁan→ M̈an is a functor satisfying Condition 3.20. Then

we can define a natural weak 2-functor F K̈ur
K̇ur

: K̇ur→ K̈ur.

If F M̈an
Ṁan

: Ṁan ↪→ M̈an is an inclusion of subcategories Ṁan ⊆ M̈an

satisfying either Proposition 3.21(a) or (b), then F K̈ur
K̇ur

: K̇ur ↪→ K̈ur is also an
inclusion of 2-subcategories K̇ur ⊆ K̈ur.

Kur

tt yy %% **
Kurgc Kurcoo

��

// Kurc,ac // Kuracoo

Kurc
we

Figure 6.1: 2-functors between 2-categories of Kuranishi spaces
from Definition 6.29. Arrows ‘→’ are inclusions of 2-subcategories.

Applying Definition 4.32 to the parts of the diagram Figure 3.1 of functors

F M̈an
Ṁan

involving the categories (6.34) yields a diagram Figure 6.1 of 2-functors

F K̈ur
K̇ur

. Arrows ‘→’ are inclusions of 2-subcategories.

6.2.3 Discrete properties of 1-morphisms in K̇ur

In §3.3.6 and §B.6 we defined when a property P of morphisms in Ṁan is
discrete. Section 4.5 explained how to extend discrete properties of morphisms
in Ṁan to corresponding properties of 1-morphisms in mK̇ur. We now do the
same for K̇ur. Here are the analogues of Definitions 4.33, 4.35, and 4.37 and
Propositions 4.34 and 4.36, proved in a very similar way.

Definition 6.31. Let P be a discrete property of morphisms in Ṁan. Suppose
f : X → Y is a continuous map and Φij = (Pij , πij , φij , φ̂ij) : (Vi, Ei,Γi, si, ψi)
→ (Vj , Ej ,Γj , sj , ψj) is a 1-morphism of Kuranishi neighbourhoods over (S, f),
for S ⊆ X open. We say that Φij is P if φij : Pij → Vj is P near (ψ̄i ◦πij)−1(S)
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in Pij . That is, there should exist an open submanifold ι : U ↪→ Pij with

(ψ̄i ◦ πij)−1(S) ⊆ U ⊆ Pij such that φij ◦ ι : U → Vj has property P in Ṁan.

Proposition 6.32. Let P be a discrete property of morphisms in Ṁan. Then:

(a) Let Φij : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) be a 1-morphism of Ku-
ranishi neighbourhoods over (S, f) for f : X → Y continuous and S ⊆ X
open. If Φij is P and T ⊆ S is open then Φij |T is P . If {Ta : a ∈ A} is
an open cover of S and Φij |Ta is P for all a ∈ A then Φij is P .

(b) Let Φij ,Φ
′
ij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) be 1-morphisms over

(S, f) and Λij : Φij⇒Φ′ij a 2-morphism. Then Φij is P if and only if Φ′ij
is P .

(c) Let f : X → Y, g : Y → Z be continuous, T ⊆ Y, S ⊆ f−1(T ) ⊆ X be
open, Φij : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) be a 1-morphism over
(S, f), and Φjk : (Vj , Ej ,Γj , sj , ψj)→ (Vk, Ek,Γk, sk, ψk) be a 1-morphism
over (T, g), so that Φjk ◦ Φij is a 1-morphism over (S, g ◦ f). If Φij ,Φjk
are P then Φjk ◦ Φij is P .

(d) Let Φij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) be a coordinate change of
Kuranishi neighbourhoods over S ⊆ X. Then Φij is P .

Definition 6.33. Let P be a discrete property of morphisms in Ṁan. Suppose
f : X → Y is a 1-morphism in K̇ur, and use notation (6.15), (6.16), (6.18) for
X,Y ,f . We say that f is P if f ij is P in the sense of Definition 6.31 for all
i ∈ I and j ∈ J .

Proposition 6.34. Let P be a discrete property of morphisms in Ṁan. Then:

(a) Let f , g : X → Y be 1-morphisms in K̇ur and η : f ⇒ g a 2-morphism.
Then f is P if and only if g is P .

(b) Let f : X → Y and g : Y → Z be 1-morphisms in K̇ur. If f and g are
P then g ◦ f : X → Z is P .

(c) Identity 1-morphisms idX : X → X in K̇ur are P . Equivalences f :
X → Y in K̇ur are P .

Parts (b),(c) imply that we have a 2-subcategory K̇urP ⊆ K̇ur containing all
objects in K̇ur, and all 1-morphisms f in K̇ur which are P , and all 2-morphisms
η : f ⇒ g in K̇ur between 1-morphisms f , g which are P .

Definition 6.35. (a) Taking Ṁan = Manc from §2.1 gives the 2-category of
Kuranishi spaces Kurc from Definition 6.29. We write

Kurc
in,Kurc

bn,Kurc
st,Kurc

st,in,Kurc
st,bn,Kurc

si

for the 2-subcategories of Kurc with 1-morphisms which are interior, and b-
normal, and strongly smooth, and strongly smooth-interior, and strongly smooth-
b-normal, and simple, respectively. These properties of morphisms in Manc are
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discrete by Example 3.19(a), so as in Definition 6.33 and Proposition 6.34 we
have corresponding notions of interior, . . . , simple 1-morphisms in Kurc.

(b) Taking Ṁan = Mangc from §2.4.1 gives the 2-category of Kuranishi spaces
with g-corners Kurgc from Definition 6.29. We write

Kurgc
in ,Kurgc

bn,Kurgc
si

for the 2-subcategories of Kurgc with 1-morphisms which are interior, and
b-normal, and simple, respectively. These properties of morphisms in Mangc are
discrete by Example 3.19(b), so we have corresponding notions for 1-morphisms
in Kurgc.

(c) Taking Ṁan = Manac from §2.4.2 gives the 2-category of Kuranishi spaces
with a-corners Kurac from Definition 6.29. We write

Kurac
in ,Kurac

bn,Kurac
st ,Kurac

st,in,Kurac
st,bn,Kurac

si

for the 2-subcategories of Kurac with 1-morphisms which are interior, and
b-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly
a-smooth-b-normal, and simple, respectively. These properties of morphisms in
Manac are discrete by Example 3.19(c), so we have corresponding notions for
1-morphisms in Kurac.

(d) Taking Ṁan = Manc,ac from §2.4.2 gives the 2-category of Kuranishi spaces
with corners and a-corners Kurc,ac from Definition 6.29. We write

Kurc,ac
in ,Kurc,ac

bn ,Kurc,ac
st ,Kurc,ac

st,in,Kurc,ac
st,bn,Kurc,ac

si

for the 2-subcategories of Kurc,ac with 1-morphisms which are interior, and
b-normal, and strongly a-smooth, and strongly a-smooth-interior, and strongly
a-smooth-b-normal, and simple, respectively. These properties of morphisms in
Manc,ac are discrete by Example 3.19(c), so we have corresponding notions for
1-morphisms in Kurc,ac.

Figure 6.1 gives inclusions between the 2-categories in (6.35). Combining
this with the inclusions between the 2-subcategories in Definition 6.35 we get a
diagram Figure 6.2 of inclusions of 2-subcategories of Kuranishi spaces.

6.2.4 Kuranishi spaces and m-Kuranishi spaces

We relate m-Kuranishi spaces in Chapter 4 to Kuranishi spaces above.

Example 6.36. Let mK̇ur and K̇ur be the weak 2-categories constructed in
§4.3 and above from the same category of ‘manifolds’ Ṁan. We will define a

full and faithful weak 2-functor F K̇ur
mK̇ur

: mK̇ur ↪→ K̇ur, as in §A.3.
First we explain how to map m-Kuranishi neighbourhoods and their 1- and

2-morphisms to Kuranishi neighbourhoods and their 1- and 2-morphisms. An m-
Kuranishi neighbourhood (Vi, Ei, si, ψi) on X maps to the Kuranishi neighbour-
hood (Vi, Ei, {1}, si, ψi) on X, that is, to (Vi, Ei,Γi, si, ψi) with group Γi = {1}.
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Figure 6.2: Inclusions of 2-categories of Kuranishi spaces.

A 1-morphism Φij = (Vij , φij , φ̂ij) : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) of m-

Kuranishi neighbourhoods over (S, f) maps to the 1-morphism Φ̃ij = (Vij , idVij ,

φij , φ̂ij) : (Vi, Ei, {1}, si, ψi)→ (Vj , Ej , {1}, sj , ψj) of Kuranishi neighbourhoods

over (S, f). That is, in Φ̃ij = (Pij , πij , φij , φ̂ij), πij : Pij → Vij ⊆ Vi must be a
principal Γj-bundle for Γj = {1}, so we take Pij = Vij and πij = idVij .

Given 1-morphisms Φij ,Φ
′
ij : (Vi, Ei, si, ψi)→(Vj , Ej , sj , ψj) of m-Kuranishi

neighbourhoods over (S, f) and corresponding 1-morphisms Φ̃ij , Φ̃
′
ij : (Vi, Ei,

{1}, si, ψi) → (Vj , Ej , {1}, sj , ψj) of Kuranishi neighbourhoods over (S, f), a

2-morphism [V́ij , λ̂ij ] : Φij ⇒ Φ′ij of m-Kuranishi neighbourhoods maps to the

2-morphism [V́ij , idV́ij , λ̂ij ] : Φ̃ij ⇒ Φ̃′ij of Kuranishi neighbourhoods.

To define F K̇ur
mK̇ur

, we apply this process to all m-Kuranishi neighbourhoods,

1- and 2-morphisms in the structures on mK̇ur. On objects, let X = (X,K)
be an m-Kuranishi space, with K =

(
I, (Vi, Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
,

where Φij = (Vij , φij , φ̂ij) and Λijk = [V́ijk, λ̂ijk]. Define K̃ =
(
I, (Vi, Ei, {1}, si,

ψi)i∈I , Φ̃ij, i,j∈I , Λ̃ijk, i,j,k∈I
)
, where Φ̃ij = (Vij , idVij , φij , φ̂ij) and Λ̃′ijk = [V́ijk,

idV́ijk , λ̂ijk]. Then X̃ = (X, K̃) is a Kuranishi space, and we set F K̇ur
mK̇ur

(X) = X̃.

Similarly we define 1- and 2-morphisms F K̇ur
mK̇ur

(f), F K̇ur
mK̇ur

(η) in K̇ur for all 1-

and 2-morphisms f ,η in mK̇ur.
Let f : X → Y and g : Y → Z be 1-morphisms in mK̇ur, and write

X̃, Ỹ , Z̃, f̃ , g̃ for the images of X,Y ,Z,f , g under F K̇ur
mK̇ur

. Then Definition

4.20 defines g ◦f : X → Z in mK̇ur, and Definition 6.22 defines g̃ ◦ f̃ : X̃ → Z̃
in K̇ur, both by making an arbitrary choice. As these choices may not be

compatible, we need not have F K̇ur
mK̇ur

(g ◦ f) = g̃ ◦ f̃ . But F K̇ur
mK̇ur

(g ◦ f) is
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a possible choice for g̃ ◦ f̃ , so as in Proposition 6.23 there is a canonical 2-

isomorphism (F K̇ur
mK̇ur

)g,f : F K̇ur
mK̇ur

(g) ◦ F K̇ur
mK̇ur

(f) ⇒ F K̇ur
mK̇ur

(g ◦ f). We also

write (F K̇ur
mK̇ur

)X : F K̇ur
mK̇ur

(idX)⇒ id
F K̇ur

mK̇ur
(X)

for the obvious 2-morphism.

This defines all the data of a weak 2-functor F K̇ur
mK̇ur

: mK̇ur ↪→ K̇ur, as in

§A.3. It is easy to check that F K̇ur
mK̇ur

satisfies the conditions for a weak 2-functor,

and that it is full and faithful, and so embeds mK̇ur as a full 2-subcategory
of K̇ur. It is an equivalence between mK̇ur and the full 2-subcategory of
objects X = (X,K) in K̇ur with Γi = {1} for all Kuranishi neighbourhoods
(Vi, Ei,Γi, si, ψi) in K.

6.3 Kuranishi spaces with corners.
Boundaries, k-corners, and the corner 2-functor

We now change notation from Ṁan in §3.1–§3.3 to Ṁanc in §3.4, and from
K̇ur in §6.2 to K̇urc. Suppose throughout this section that Ṁanc satisfies
Assumption 3.22 in §3.4.1. Then Ṁanc satisfies Assumptions 3.1–3.7, so §6.2
constructs a 2-category K̇urc of Kuranishi spaces associated to Ṁanc. For
instance, K̇urc could be Kurc,Kurgc,Kurac or Kurc,ac from Definition 6.29.
We will refer to objects of K̇urc as Kuranishi spaces with corners. We also
write K̇urc

si for the 2-subcategory of K̇urc with simple 1-morphisms in the sense

of §6.2.3, noting that simple is a discrete property of morphisms in Ṁanc by
Assumption 3.22(c).

In §4.6, for each X ∈ mK̇urc we defined the k-corners Ck(X) in mK̇urc

for k = 0, 1, . . . , with ∂X = C1(X). We constructed a 2-category mK̇̌urc

from mK̇urc with objects
∐
n∈ZXn for Xn ∈mK̇urc with vdimXn = n, and

defined the corner 2-functor C : mK̇urc →mK̇̌urc.
We will now extend all this to Kuranishi spaces with corners. We have to

work with the more complicated notions of Kuranishi neighbourhoods and their
1- and 2-morphisms from §6.1, rather than m-Kuranishi neighbourhoods from
§4.1, but apart from this the definitions and proofs are essentially the same.
Here is the analogue of Definition 4.39:

Definition 6.37. Let X = (X,K) in K̇urc be a Kuranishi space with corners
with vdimX = n, and as in Definition 6.17 write K =

(
I, (Vi, Ei,Γi, si, ψi)i∈I ,

Φij, i,j∈I , Λhij, h,i,j∈I
)

with Φij = (Pij , πij , φij , φ̂ij) and Λhij = [Ṕhij , λhij , λ̂hij ].

Let k ∈ N. We will define a Kuranishi space with corners Ck(X) in K̇urc

called the k-corners of X, with vdimCk(X) = n − k, and a 1-morphism
Πk : Ck(X)→X in K̇urc.
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Explicitly we write Ck(X) = (Ck(X),Kk) with

Kk =
(
{k} × I, (V(k,i), E(k,i),Γ(k,i), s(k,i), ψ(k,i))i∈I ,Φ(k,i),(k,j),

i,j∈I
,Λ(k,h)(k,i)(k,j),

h,i,j∈I

)
with Φ(k,i)(k,j) = (P(k,i)(k,j), π(k,i)(k,j), φ(k,i)(k,j), φ̂(k,i)(k,j))

and Λ(k,h)(k,i)(k,j) = [Ṕ(k,h)(k,i)(k,j), λ(k,h)(k,i)(k,j), λ̂(k,h)(k,i)(k,j)],

where Kk has indexing set {k} × I, and as in (6.18) we write

Πk =
(
Πk,Π(k,i)j, i,j∈I , Πj, j∈I

(k,i)(k,i′), i,i′∈I , Πjj′, j,j′∈I
(k,i), i∈I

)
, where

Π(k,i)j = (P(k,i)j , π(k,i)j ,Π(k,i)j , Π̂(k,i)j) : (V(k,i), E(k,i),Γ(k,i), s(k,i), ψ(k,i))

−→ (Vj , Ej ,Γj , sj , ψj),

Πj
(k,i)(k,i′) = [Ṕ j(k,i)(k,i′),Π

j
(k,i)(k,i′), Π̂

j
(k,i)(k,i′)] : Π(k,i′)j◦Φ(k,i)(k,i′) =⇒Π(k,i)j ,

Πjj′

(k,i) = [Ṕ jj
′

(k,i),Π
jj′

(k,i), Π̂
jj′

(k,i)] : Φjj′ ◦Π(k,i)j =⇒ Π(k,i)j′ .

As in Definition 4.39, for each i ∈ I, define V(k,i) = Ck(Vi) to be the k-corners
of Vi from Assumption 3.22(d). Define E(k,i) → V(k,i) to be the pullback vector
bundle Π∗k(Ei), where Πk : V(k,i) = Ck(Vi)→ Vi is as in Assumption 3.22(d), and
let s(k,i) = Π∗k(si) in Γ∞(E(k,i)) be the pullback section. These are equivalent to
E(k,i) = Ck(Ei), s(k,i) = Ck(si), where si : Vi → Ei is simple. Note that

dimV(k,i)−rankE(k,i) =dimCk(Vi)−rankEi=dimVi−k−rankEi=n−k,

by Assumption 3.22(d), as required in Definition 6.17(b) for Ck(X).
Define a finite group Γ(k,i) = Γi. As in Definition 6.1(c), Γi acts on Vi by

diffeomorphisms in Ṁanc, and we write these as ρ(γ) : Vi → Vi for γ ∈ Γi. Then
ρ(γ) is simple by Definition 3.18(i) as simple maps are discrete, so Assumption
3.22(i) gives morphisms Ck ◦ ρ(γ) : V(k,i) = Ck(Vi) → V(k,i) = Ck(Vi) for
γ ∈ Γ(k,i) = Γi, and these form a smooth action of Γ(k,i) on V(k,i). Similarly the
Γi-action on Ei lifts to a Γ(k,i)-action on E(k,i) = Ck(Ei) preserving the vector
bundle structure, and s(k,i) = Ck(si) : V(k,i) → E(k,i) is Γ(k,i)-equivariant as
si : Vi → Ei is Γi-equivariant. This defines the data V(k,i), E(k,i),Γ(k,i), s(k,i) in
(V(k,i), E(k,i),Γ(k,i), s(k,i), ψ(k,i)), and verifies Definition 6.1(a)–(d).

Let i, j ∈ I. Since simple maps are a discrete property in Ṁanc by Assump-
tion 3.22(c), Definition 6.31 and Proposition 6.32(d) imply that φij : Pij → Vj
is simple near (ψ̄i ◦ πij)−1(Imψj) ⊆ Pij . Note too that πij : Pij → Vi is always
simple, by Definition 3.18(i),(iv) and discreteness of simple maps, as πij is étale
by Definition 6.2(b). Let P ′ij ⊆ Pij be the maximal open set on which φij is

simple, so that (ψ̄i ◦ πij)−1(Imψj) ⊆ P ′ij . Write π′ij , φ
′
ij , φ̂

′
ij for the restrictions
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of πij , φij , φ̂ij to P ′ij , so π′ij , φ
′
ij are simple. Generalizing (4.40)–(4.43), define

P(k,i)(k,j) = Ck(P ′ij),

π(k,i)(k,j) = Ck(π′ij) : P(k,i)(k,j) = Ck(P ′ij) −→ V(k,i) = Ck(Vi),

φ(k,i)(k,j) = Ck(φ′ij) : P(k,i)(k,j) = Ck(P ′ij) −→ V(k,j) = Ck(Vj),

φ̂(k,i)(k,j) = Π∗k(φ̂′ij) : π∗(k,i)(k,j)(E(k,i)) = Ck(π′ij)
∗ ◦Π∗k(Ei) = Π∗k ◦ π′∗ij(Ei)

−→ Π∗k ◦ φ′∗ij(Ej) = Ck(φ′ij)
∗ ◦Π∗k(Ej) = φ∗(k,i)(k,j)(E(k,j)),

P(k,i)j = Ck(Pij),

π(k,i)j = Ck(πij) : P(k,i)j = Ck(Pij) −→ V(k,i) = Ck(Vi),

Π(k,i)j = φij ◦Πk : V(k,i)j = Ck(Vij) −→ Vj ,

Π̂(k,i)j = Π∗k(φ̂ij) : π∗(k,i)j(E(k,i)) = Ck(πij)
∗ ◦Π∗k(Ei) = Π∗k ◦ π∗ij(Ei)

−→ Π∗k ◦ φ∗ij(Ej) = (φij ◦Πk)∗(Ej) = Π∗(k,i)j(Ej).

This defines Φ(k,i)(k,j) and Π(k,i)j . We can verify Definition 6.2(a)–(e) for

Φ(k,i)(k,j),Π(k,i)j (except for ψ̄−1
i (S) ⊆ Vij in Definition 6.2(b), as ψ(k,i) is not

yet defined) by applying Ck to Definition 6.2(a)–(e) for Φij and using Theorem
3.28 as in Definition 4.39.

For h, i, j ∈ I, choose a representative (Ṕhij , λhij , λ̂hij) for the ∼-equivalence

class Λhij = [Ṕhij , λhij , λ̂hij ] in Definition 6.4. Here Λhij : Φij ◦ Φhi ⇒ Φhj is a
2-morphism, where Φij ◦ Φhi is defined in Definition 6.5. From the definitions,

Ṕhij ⊆ (Phi ×φhi,Vi,πij Pij)/Γi is open, and λhij maps Ṕhij → Phj . Set

Ṕ ′hij = Ṕhij ∩
[
(P ′hi ×φ′hi,Vi,π′ij P

′
ij)/Γi

]
∩ λ−1

hij(P
′
hj).

Let λ′hij , λ̂
′
hij be the restrictions of λhij , λ̂hij to Ṕ ′hij . Generalizing (4.44), define

Ṕ(k,h)(k,i)(k,j) = Ck(Ṕ ′hij) ⊆ (P(k,h)(k,i) ×φ(k,h)(k,i),V(k,i),π(k,i)(k,j)
P(k,i)(k,j))/Γ(k,i)

= (Ck(P ′hi)×Ck(φ′hi),Ck(Vi),Ck(π′ij)
Ck(P ′ij))/Γi = Ck

(
(P ′hi ×φ′hi,Vi,π′ij P

′
ij)/Γi

)
,

where as φ′ij , π
′
ij are simple with π′ij étale, the corner functor Ck commutes with

the fibre products and group quotients. Generalizing (4.45), define

λ(k,h)(k,i)(k,j) = Ck(λ′hij) : Ṕ(k,h)(k,i)(k,j) = Ck(Ṕ ′hij) −→ P(k,h)(k,j) = Ck(P ′hj),

λ̂(k,h)(k,i)(k,j) = Π�k(λ̂′hij) : π∗V(k,h)
(E(k,h)) = π∗V(k,h)

◦Π∗k(Eh) = Π∗k ◦ π∗Vh(Eh)

−→ Tφ(k,i)(k,j)◦πP(k,i)(k,j)
/Γ(k,i)

V(k,j) = TCk(φ′ij◦πP ′ij /Γi)
Ck(Vj).

We check (Ṕ(k,h)(k,i)(k,j), λ(k,h)(k,i)(k,j), λ̂(k,h)(k,i)(k,j)) satisfies Definition 6.4(a)–

(c) (except for π−1
ij (ψ̄−1

i (S)) ⊆ Ṕij in (a), as ψ(k,i) is not yet defined) by applying

Ck to Definition 6.4(a)–(c) for (Ṕhij , λhij , λ̂hij) and using Theorem 3.28 as in
Definition 4.39.
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Write Λ(k,h)(k,i)(k,j) = [Ṕ(k,h)(k,i)(k,j), λ(k,h)(k,i)(k,j), λ̂(k,h)(k,i)(k,j)] for the ∼-

equivalence class of (Ṕ(k,h)(k,i)(k,j), λ(k,h)(k,i)(k,j), λ̂(k,h)(k,i)(k,j)), as in Definition

6.4. Theorem 3.28(ii) implies that equivalence ∼ on triples (Ṕhij , λhij , λ̂hij)

lifts to ∼ on triples (Ṕ(k,h)(k,i)(k,j), λ(k,h)(k,i)(k,j), λ̂(k,h)(k,i)(k,j)), so Λ(k,h)(k,i)(k,j)

depends only on Λhij = [Ṕhij , λhij , λ̂hij ], and (once we define Ck(X), ψ(k,i) and
verify the Φ(k,i)(k,j) are 1-morphisms), we have a well defined 2-morphism of
Kuranishi neighbourhoods

Λ(k,h)(k,i)(k,j) : Φ(k,i)(k,j) ◦ Φ(k,h)(k,i) =⇒ Φ(k,h)(k,j).

We define the 2-morphisms Πj
(k,i)(k,i′),Π

jj′

(k,i) in Πk by generalizing the m-

Kuranishi case in Definition 4.39 as for Λ(k,h)(k,i)(k,j) above.
It remains to define the topological space Ck(X) and the continuous maps

ψ(k,i) : s−1
(k,i)(0)/Γ(k,i) → Ck(X), Πk : Ck(X)→ X. Define a binary relation ≈ on∐

i∈I s
−1
(k,i)(0)/Γ(k,i) by viΓ(k,i) ≈ vjΓ(k,j) if vi ∈ s−1

(k,i)(0), vj ∈ s−1
(k,j)(0) for i, j ∈

I and there exists pij ∈ P(k,i)(k,j) with π(k,i)(k,j)(pij) = vi and φ(k,i)(k,j)(pij) = vj .

We can prove that ≈ is an equivalence relation on
∐
i∈I s

−1
(k,i)(0)/Γ(k,i) by gener-

alizing the proof in Definition 4.39, using the 2-morphism Λ(k,h)(k,i)(k,j) above
to show that vhΓ(k,h) ≈ viΓ(k,i) and viΓ(k,i) ≈ vjΓ(k,j) imply that vhΓ(k,h) ≈
vjΓ(k,j).

Generalizing (4.49), define Ck(X) to be the topological space

Ck(X) =
[∐

i∈I s
−1
(k,i)(0)/Γ(k,i)

]/
≈ ,

with the quotient topology. For each i ∈ I define ψ(k,i) : s−1
(k,i)(0)/Γ(k,i) → Ck(X)

by ψ(k,i) : viΓ(k,i) 7→ [viΓ(k,i)], where [viΓ(k,i)] is the ≈-equivalence class of
viΓ(k,i). Define Πk : Ck(X) → X by Πk([viΓ(k,i)]) = ψ̄i ◦ Πk(vi) for i ∈ I and

vi ∈ s−1
(k,i)(0), so that Πk(vi) ∈ s−1

i (0) and ψ̄i ◦Πk(vi) ∈ X.

We can show as in Definition 4.39 that Ck(X) is Hausdorff and second
countable, and Πk : Ck(X) → X is well defined, continuous and proper with
finite fibres, and (V(k,i), E(k,i),Γ(k,i), s(k,i), ψ(k,i)) is a Kuranishi neighbourhood
on Ck(X) for i ∈ I.

For all of Definition 6.17(a)–(h) for Ck(X), either we have proved them above,
or they follow from Definition 6.17(a)–(h) for X by pulling back by Πk and
using Theorems 3.27–3.28, as in Definition 4.39. Hence Ck(X) is a Kuranishi
space with corners in K̇urc, with vdimCk(X) = n− k. Similarly, for Definition
6.19(a)–(h) for Πk : Ck(X)→ X, either we have proved them above, or they
follow from Definition 6.17 for X using Theorems 3.27–3.28, as in Definition
4.39, where we deduce Definition 6.19(f)–(h) for Πk from Definition 6.17(h) for
X. Thus Πk : Ck(X)→X is a 1-morphism in K̇urc.

When k = 1 we also write ∂X = C1(X) and call it the boundary of X, and
we write iX : ∂X →X in place of Π1 : C1(X)→X.

This proves the analogue of Theorem 4.40:
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Theorem 6.38. For each X in K̇urc and k = 0, 1, . . . we have defined the
k-corners Ck(X), an object in K̇urc with vdimCk(X) = vdimX − k, and
a 1-morphism Πk : Ck(X) → X in K̇urc, whose underlying continuous map
Πk : Ck(X)→ X is proper with finite fibres. We also write ∂X = C1(X), called
the boundary of X, and we write iX = Π1 : ∂X →X.

Definition 6.37 is similar to Fukaya, Oh, Ohta and Ono [24, Def. A1.30] for
FOOO Kuranishi spaces — see §7.1 for more details.

Modifying Definition 4.42 we construct weak 2-categories K̇̌urc
si ⊆ K̇̌urc

from K̇urc
si ⊆ K̇urc in the obvious way, with objects

∐
n∈ZXn for Xn ∈ K̇urc

with vdimXn = n, where K̇urc
si, K̇urc embed as full 2-subcategories of K̇̌urc

si

and K̇̌urc. For the examples of K̇urc
si ⊆ K̇urc in Definitions 6.29 and 6.35 we

use the obvious notation for the corresponding 2-categories K̇̌urc
si ⊆ K̇̌urc, so

for instance we enlarge Kurc associated to Ṁanc = Manc to Ǩurc.
Then following Definition 4.43, but modifying it as in Definition 6.37, we

define the corner 2-functor C : K̇urc → K̇̌urc. This is straightforward and
involves no new ideas, so we leave it as an exercise for the reader. This proves
the analogue of Theorem 4.44:

Theorem 6.39. We can define a weak 2-functor C : K̇urc → K̇̌urc called the
corner 2-functor. It acts on objects X in K̇urc by C(X) =

∐∞
k=0 Ck(X). If

f : X → Y is simple then C(f) : C(X)→ C(Y ) is simple and maps Ck(X)→
Ck(Y ) for k = 0, 1, . . . . Thus C|K̇urcsi

decomposes as C|K̇urcsi
=
∐∞
k=0 Ck, where

Ck : K̇urc
si → K̇urc

si is a weak 2-functor acting on objects by X 7→ Ck(X), for

Ck(X) as in Definition 6.37. We also write ∂ = C1 : K̇urc
si → K̇urc

si, and call
it the boundary 2-functor.

If for some discrete property P of morphisms in Ṁanc the corner functor
C : Ṁanc → Ṁ̌anc maps to the subcategory Ṁ̌anc

P of Ṁ̌anc whose morphisms

are P , then C : K̇urc → K̇̌urc maps to the 2-subcategory K̇̌urc
P of K̇̌urc whose

1-morphisms are P .

As for Example 4.45, applying Theorem 6.39 to the data Ṁanc, . . . in
Example 3.24(a)–(h) gives corner functors:

C : Kurc −→ Ǩurc
in ⊂ Ǩurc, C ′ : Kurc −→ Ǩurc,

C : Kurc
st −→ Ǩurc

st,in ⊂ Ǩurc
st, C ′ : Kurc

st −→ Ǩurc
st,

C : Kurac −→ Ǩurac
in ⊂ Ǩurac, C ′ : Kurac −→ Ǩurac,

C : Kurac
st −→ Ǩurac

st,in ⊂ Ǩurac
st , C ′ : Kurac

st −→ Ǩurac
st ,

C : Kurc,ac −→ Ǩurc,ac
in ⊂ Ǩurc,ac, C ′ : Kurc,ac −→ Ǩurc,ac,

C : Kurc,ac
st −→ Ǩurc,ac

st,in ⊂ Ǩurc,ac
st , C ′ : Kurc,ac

st −→ Ǩurc,ac
st ,

C : Kurgc −→ Ǩurgc
in ⊂ Ǩurgc. (6.36)

As for Propositions 4.46 and 4.47, we prove:
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Proposition 6.40. For all of the 2-functors C in (6.36) (though not the 2-
functors C ′), a 1-morphism f : X → Y is interior (or b-normal) if and only

if C(f) maps C0(X) → C0(Y ) (or C(f) maps Ck(X) →
∐k
l=0 Cl(Y ) for all

k = 0, 1, . . . , respectively).

Proposition 6.41. Let f : X → Y be an equivalence in K̇urc. Then f is
simple by Proposition 6.34(c), and Ck(f) : Ck(X) → Ck(Y ) for k = 0, 1, . . .
and ∂f : ∂X → ∂Y are also equivalences in K̇urc.

6.4 Kuranishi neighbourhoods on Kuranishi spaces

In §4.7 we discussed ‘m-Kuranishi neighbourhoods on m-Kuranishi spaces’,
and in §5.5 we explained the µ-Kuranishi analogue. Now we define ‘Kuranishi
neighbourhoods on Kuranishi spaces’. We follow §4.7 closely, with the difference
that m-Kuranishi neighbourhoods in §4.1 are a strict 2-category, but Kuranishi
neighbourhoods in §6.1 are a weak 2-category. So we cannot omit brackets in
compositions of 1-morphisms such as (Φjk ◦ Φij) ◦ Φai in (6.37), and we have to
insert extra coherence 2-morphisms α∗,∗,∗,β∗,γ∗ from (6.7)–(6.8) throughout.

Definition 6.42. Suppose X = (X,K) is a Kuranishi space, where K =(
I, (Vi, Ei,Γi, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
. A Kuranishi neighbourhood on

the Kuranishi space X is data (Va, Ea,Γa, sa, ψa), Φai, i∈I and Λaij, i,j∈I where
(Va, Ea,Γa, sa, ψa) is a Kuranishi neighbourhood on the topological space X in
the sense of Definition 6.1, and Φai : (Va, Ea,Γa, sa, ψa)→ (Vi, Ei,Γi, si, ψi) is a
coordinate change for each i ∈ I (over S = Imψa∩Imψi, as usual) as in Definition
6.11, and Λaij : Φij ◦Φai ⇒ Φaj is a 2-morphism (over S = Imψa∩ Imψi∩ Imψj ,
as usual) as in Definition 6.4 for all i, j ∈ I, such that Λaii = idΦai for all i ∈ I,
and as in Definition 6.17(h), for all i, j, k ∈ I we have

Λajk � (idΦjk ∗ Λaij)�αΦjk,Φij ,Φai = Λaik � (Λijk ∗ idΦai) :

(Φjk ◦ Φij) ◦ Φai =⇒ Φak,
(6.37)

where (6.37) holds over S = Imψa ∩ Imψi ∩ Imψj ∩ Imψk by Convention 6.14.
Here the subscript ‘a’ in (Va, Ea,Γa, sa, ψa) is just a label used to distinguish

Kuranishi neighbourhoods, generally not in I. If we omit a we will write
‘∗’ in place of ‘a’ in Φai,Λaij , giving Φ∗i : (V,E,Γ, s, ψ) → (Vi, Ei,Γi, si, ψi)
and Λ∗ij : Φij ◦ Φ∗i ⇒ Φ∗j .

We will usually just say (Va, Ea,Γa, sa, ψa) or (V,E,Γ, s, ψ) is a Kuranishi
neighbourhood on X, leaving the data Φai,Λaij or Φ∗i,Λ∗ij implicit. We call
such a (V,E,Γ, s, ψ) a global Kuranishi neighbourhood on X if Imψ = X.

Definition 6.43. Using the same notation, suppose (Va, Ea,Γa, sa, ψa),Φai, i∈I ,
Λaij, i,j∈I and (Vb, Eb,Γb, sb, ψb), Φbi, i∈I , Λbij, i,j∈I are Kuranishi neighbour-
hoods on X, and S ⊆ Imψa ∩ Imψb is open. A coordinate change from
(Va, Ea,Γa, sa, ψa) to (Vb, Eb,Γb, sb, ψb) over S on the Kuranishi space X is
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data Φab, Λabi, i∈I , where Φab : (Va, Ea,Γa, sa, ψa) → (Vb, Eb,Γb, sb, ψb) is a
coordinate change over S as in Definition 6.11, and Λabi : Φbi ◦ Φab ⇒ Φai is a
2-morphism over S ∩ Imψi as in Definition 6.4 for each i ∈ I, such that for all
i, j ∈ I we have

Λaij � (idΦij ∗ Λabi)�αΦij ,Φbi,Φab = Λabj � (Λbij ∗ idΦab) :

(Φij ◦ Φbi) ◦ Φab =⇒ Φaj ,
(6.38)

where (6.38) holds over S ∩ Imψi ∩ Imψj .
We will usually just say that Φab : (Va, Ea,Γa, sa, ψa) → (Vb, Eb,Γb, sb, ψb)

is a coordinate change over S on X, leaving the data Λabi, i∈I implicit. If we do
not specify S, we mean that S is as large as possible, that is, S = Imψa ∩ Imψb.

Suppose Φab : (Va, Ea,Γa, sa, ψa) → (Vb, Eb,Γb, sb, ψb), Λabi, i∈I and Φbc :
(Vb, Eb,Γb, sb, ψb) → (Vc, Ec,Γc, sc, ψc), Λbci, i∈I are such coordinate changes
over S ⊆ Imψa ∩ Imψb ∩ Imψc. Define Φac = Φbc ◦ Φab : (Va, Ea,Γa, sa, ψa)→
(Vc, Ec,Γc, sc, ψc) and Λaci = Λabi�(Λbci ∗ idΦab)�α

−1
Φci,Φbc,Φab

: Φci ◦Φac ⇒ Φai
for all i ∈ I. It is easy to show that Φac = Φbc ◦ Φab, Λaci, i∈I is a coordinate
change from (Va, Ea,Γa, sa, ψa) to (Vc, Ec,Γc, sc, ψc) over S on X. We call this
composition of coordinate changes.

Definition 6.44. Let f : X → Y be a 1-morphism of Kuranishi spaces, and use
notation (6.15)–(6.16) for X,Y , and (6.18) for f . Suppose (Ua, Da,Ba, ra, χa),
Tai, i∈I , Kaii′, i,i′∈I is a Kuranishi neighbourhood on X, and (Vb, Eb,Γb, sb, ψb),
Υbj, j∈J , Λbjj′, j,j′∈J a Kuranishi neighbourhood on Y , as in Definition 6.42.
Let S ⊆ Imχa ∩ f−1(Imψb) be open. A 1-morphism from (Ua, Da,Ba, ra, χa)
to (Vb, Eb,Γb, sb, ψb) over (S,f) on the Kuranishi spaces X,Y is data fab,

F bj, j∈Jai, i∈I , where fab : (Ua, Da,Ba, ra, χa)→ (Vb, Eb,Γb, sb, ψb) is a 1-morphism
of Kuranishi neighbourhoods over (S, f) in the sense of Definition 6.2, and

F bjai : Υbj ◦ fab ⇒ f ij ◦ Tai is a 2-morphism over S ∩ Imχi ∩ f−1(Imψj), f as
in Definition 6.4 for all i ∈ I, j ∈ J , such that for all i, i′ ∈ I, j, j′ ∈ J we have

(F bjai)
−1 � (F jii′ ∗ idTai) = (F bjai′)

−1 � (idf i′j ∗Kaii′)�αf i′j ,Tii′ ,Tai :

(f i′j ◦ Tii′) ◦ Tai =⇒ Υbj ◦ fab,

F bj
′

ai � (Λbjj′ ∗ idfab) = (F jj
′

i ∗ idTai)� (idΥjj′ ∗ F
bj
ai)�αΥjj′ ,Υbj ,fab :

(Υjj′ ◦Υbj) ◦ fab =⇒ f ij′ ◦ Tai.

We will usually just say that fab : (Ua, Da,Ba, ra, χa)→ (Vb, Eb,Γb, sb, ψb)
is a 1-morphism of Kuranishi neighbourhoods over (S,f) on X,Y , leaving the

data F bj, j∈Jai, i∈I implicit.
Suppose g : Y → Z is another 1-morphism of Kuranishi spaces, using notation

(6.17) for Z, and (Wc, Fc,∆c, tc, ωc) is a Kuranishi neighbourhood on Z, and T ⊆
Imψb ∩ g−1(Imωc), S ⊆ Imχa ∩ f−1(T ) are open, fab : (Ua, Da,Ba, ra, χa)→
(Vb, Eb,Γb, sb, ψb) is a 1-morphism of Kuranishi neighbourhoods over (S,f) on
X,Y , and gbc : (Vb, Eb,Γb, sb, ψb) → (Wc, Fc,∆c, tc, ωc) is a 1-morphism of
Kuranishi neighbourhoods over (T, g) on Y ,Z.
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Define h = g ◦ f : X → Z, so that Definition 6.22 gives 2-morphisms

Θg,fijk : gjk ◦ f ij =⇒ hik

for all i ∈ I, j ∈ J and k ∈ K. Set hac = gbc ◦ fab : (Ua, Da,Ba, ra, χa) →
(Wc, Fc,∆c, tc, ωc). Using the stack property Theorem 6.16, one can show that
for all i ∈ I, k ∈ K there is a unique 2-morphism Hck

ai : Φck ◦ hac ⇒ hik ◦ Tai

over S ∩ Imχi ∩ h−1(Imωk), h, such that for all j ∈ J we have

Hck
ai |S∩Imχi∩f−1(Imψj)∩h−1(Imωk) = (Θg,fijk ∗ idTai)�α−1

gjk,f ij ,Tai

� (idgjk ∗ F
bj
ai)�αgjk,Υbj ,fab � (Gck

bj ∗ idfab)�α
−1
Φck,gbc,fab

.

It is then easy to prove that hac = gbc ◦ fab, H
ck, k∈K
ai, i∈I is a 1-morphism from

(Ua, Da,Ba, ra, χa) to (Wc, Fc,∆c, tc, ωc) over (S,h) on X,Z. We call this
composition of 1-morphisms.

As for Theorem 4.56, the next theorem can be proved using the stack property
Theorem 6.16, and we leave the proof as an exercise for the reader.

Theorem 6.45. (a) Let X = (X,K) be a Kuranishi space, where K =
(
I,

(Vi, Ei,Γi, si, ψi)i∈I , Φij , Λijk
)
, and (Va, Ea,Γa, sa, ψa), (Vb, Eb,Γb, sb, ψb) be

Kuranishi neighbourhoods on X, in the sense of Definition 6.42, and S ⊆ Imψa∩
Imψb be open. Then there exists a coordinate change Φab : (Va, Ea,Γa, sa, ψa)
→ (Vb, Eb,Γb, sb, ψb),Λabi, i∈I over S on X, in the sense of Definition 6.43.

If Φab, Φ̃ab are two such coordinate changes, there is a unique 2-morphism
Ξab : Φab ⇒ Φ̃ab over S as in Definition 6.4, such that for all i ∈ I we have

Λabi = Λ̃abi � (idΦbi ∗ Ξab) : Φbi ◦ Φab =⇒ Φai, (6.39)

which holds over S ∩ Imψi by our usual convention.

(b) Let f : X → Y be a 1-morphism of Kuranishi spaces, and use nota-
tion (6.15), (6.16), (6.18). Let (Ua, Da,Ba, ra, χa), (Vb, Eb,Γb, sb, ψb) be Ku-
ranishi neighbourhoods on X,Y respectively in the sense of Definition 6.42,
and let S ⊆ Imχa ∩ f−1(Imψb) be open. Then there exists a 1-morphism
fab : (Ua, Da,Ba, ra, χa)→ (Vb, Eb,Γb, sb, ψb) of Kuranishi neighbourhoods over
(S,f) on X,Y , in the sense of Definition 6.44.

(c) Let f , g : X → Y be 1-morphisms of Kuranishi spaces and η : f ⇒ g
a 2-morphism, and use notation (6.15), (6.16), (6.18) and η =

(
ηij, i∈I, j∈J

)
.

Suppose (Ua, Da,Ba, ra, χa), (Vb, Eb,Γb, sb, ψb) are Kuranishi neighbourhoods on
X,Y , and S ⊆ Imχa ∩ f−1(Imψb) is open, and fab, gab : (Ua, Da,Ba, ra, χa)
→ (Vb, Eb,Γb, sb, ψb) are 1-morphisms over (S,f), (S, g). Then there is a unique
2-morphism ηab : fab ⇒ gab over (S, f) as in Definition 6.4, such that the
following commutes over S ∩ Imχi ∩ f−1(Imψj) for all i ∈ I and j ∈ J :

Υbj ◦ fab
F bjai

+3

idΥbj
∗ηab

��

f ij ◦ Tai

ηij∗idTai ��
Υbj ◦ gab

Gbjai +3 gij ◦ Tai.

164



(d) The unique 2-morphisms in (c) are compatible with vertical and horizontal
composition and identities. For example, if f , g,h : X → Y are 1-morphisms in
K̇ur, and η : f ⇒ g, ζ : g ⇒ h are 2-morphisms with θ = ζ � η : f ⇒ h, and
(Ua, Da,Ba, ra, χa), (Vb, Eb,Γb, sb, ψb) are Kuranishi neighbourhoods on X,Y ,
and fab, gab,hab : (Ua, Da,Ba, ra, χa) → (Vb, Eb,Γb, sb, ψb) are 1-morphisms
over (S,f), (S, g), (S,h), and ηab : fab ⇒ gab, ζab : gab ⇒ hab, θab : fab ⇒ hab
come from η, ζ,θ as in (c), then θab = ζab � ηab.

Remark 6.46. Note that we make the (potentially confusing) distinction be-
tween Kuranishi neighbourhoods (Vi, Ei,Γi, si, ψi) on a topological space X, as
in Definition 6.1, and Kuranishi neighbourhoods (Va, Ea,Γa, sa, ψa) on a Ku-
ranishi space X = (X,K), which are as in Definition 6.42, and come equipped
with the extra implicit data Φai, i∈I , Λaij, i,j∈I giving the compatibility with
the Kuranishi structure K on X. Similarly, we distinguish between coordinate
changes of Kuranishi neighbourhoods over X or X, and between 1-morphisms
of Kuranishi neighbourhoods over f : X → Y or f : X → Y .

Here are the analogues of Theorem 4.58 and Corollary 4.59. They are proved
in the same way, but extending from strict to weak 2-categories.

Theorem 6.47. Let X = (X,K) be a Kuranishi space, and
{

(Va, Ea,Γa, sa,

ψa) : a ∈ A
}

a family of Kuranishi neighbourhoods on X with X =
⋃
a∈A Imψa.

For all a, b ∈ A, let Φab : (Va, Ea,Γa, sa, ψa)→ (Vb, Eb,Γb, sb, ψb) be a coordinate
change over S = Imψa ∩ Imψb on X given by Theorem 6.45(a), which is
unique up to 2-isomorphism; when a = b we choose Φab = id(Va,Ea,Γa,sa,ψa) and
Λaai = βΦai for i ∈ I, which is allowed by Theorem 6.45(a).

For all a, b, c ∈ A, both Φbc ◦ Φab|S and Φac|S are coordinate changes
(Va, Ea,Γa, sa, ψa) → (Vc, Ec,Γc, sc, ψc) over S = Imψa ∩ Imψb ∩ Imψc on
X, so Theorem 6.45(a) gives a unique 2-morphism Λabc : Φbc ◦ Φab|S ⇒ Φac|S.
Then K′ =

(
A, (Va, Ea,Γa, sa, ψa)a∈A,Φab, a,b∈A,Λabc, a,b,c∈A

)
is a Kuranishi

structure on X, and X ′ = (X,K′) is canonically equivalent to X in K̇ur.

Corollary 6.48. Let X = (X,K) be a Kuranishi space with K =
(
I, (Vi, Ei,Γi,

si, ψi)i∈I ,Φij, i,j∈I ,Λijk, i,j,k∈I
)
. Suppose J ⊆ I with

⋃
j∈J Imψj = X. Then

K′ =
(
J, (Vi, Ei,Γi, si, ψi)i∈J ,Φij, i,j∈J ,Λijk, i,j,k∈J

)
is a Kuranishi structure on

X, and X ′ = (X,K′) is canonically equivalent to X in K̇ur.

As in §4.7.3, if Ṁanc satisfies Assumption 3.22 then we can lift Kuran-
ishi neighbourhoods (Va, Ea,Γa, sa, ψa) on X in K̇urc to Kuranishi neighbour-
hoods (V(k,a), E(k,a),Γ(k,a), s(k,a), ψ(k,a)) on Ck(X) from §6.3, with Γ(k,a) = Γa,
and we can lift 1-morphisms fab : (Ua, Da,Ba, ra, χa) → (Vb, Eb,Γb, sb, ψb)
of Kuranishi neighbourhoods over f : X → Y in K̇urc to 1-morphisms
f (k,a)(l,b) : (U(k,a), D(k,a),B(k,a), r(k,a), χ(k,a))→ (V(l,b), E(l,b),Γ(l,b), s(l,b), ψ(l,b))
over C(f) : C(X)→ C(Y ). We leave the details to the reader. As in §4.7.4, we
could now state our philosophy for working with Kuranishi spaces, but we will
not.

165



6.5 Isotropy groups

Next we discuss isotropy groups of Kuranishi spaces (also called orbifold groups,
or stabilizer groups). They are also studied for orbifolds, as in §6.6.

Definition 6.49. Let X = (X,K) be a Kuranishi space, with K =
(
I, (Vi, Ei,

Γi, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I
)
, and let x ∈X. Choose an arbitrary i ∈ I

with x ∈ Imψi, and choose vi ∈ s−1
i (0) ⊆ Vi with ψ̄i(vi) = x. Define a finite

group GxX called the isotropy group of X at x, as a subgroup of Γi, by

GxX =
{
γ ∈ Γi : γ · vi = vi

}
= StabΓi(vi). (6.40)

We explain to what extent GxX depends on the arbitrary choice of i, vi. Let
j, vj be alternative choices, giving another group G′xX = StabΓj (vj). Then we

have a coordinate change Φij = (Pij , πij , φij , φ̂ij) in K. Consider the set

Sx =
{
p ∈ Pij : πij(p) = vi, φij(p) = vj

}
. (6.41)

In Lemma 6.50 below we show that GxX and G′xX have natural, commuting,
free, transitive actions on Sx. Pick p ∈ Sx. Define an isomorphism of finite
groups IGx : GxX → G′xX by IGx (γ) = γ′ if γ · p = (γ′)−1 · p in Sx, using the
free, transitive actions of GxX, G′xX on Sx.

Suppose we instead picked p̃ ∈ Sx, yielding ĨGx : GxX → G′xX. Since G′xX
acts freely transitively on Sx, there is a unique δ ∈ G′xX with δ · p = p̃. Then
we see that ĨGx (γ) = δIGx (γ)δ−1 for all γ ∈ GxX.

If k, vk is a third choice for i, vi, yielding a finite group G′′xX = StabΓk(vk),
then as above by picking points p ∈ Sx we can define isomorphisms

IGx : GxX −→ G′xX, İGx : G′xX −→ G′′xX, ÏGx : GxX −→ G′′xX.

We can show that İGx ◦IGx and ÏGx differ by the action of some canonical δ ∈ G′′xX,
as for IGx , Ĩ

G
x above. That is, İGx ◦ IGx is a possible choice for ÏGx .

To summarize: GxX is independent of the choice of i, vi up to isomorphism,
but not up to canonical isomorphism. There are isomorphisms IGx : GxX → G′xX
between any two choices for GxX, which are canonical up to conjugation by an
element of G′xX, and behave as expected under composition.

Lemma 6.50. In Definition 6.49, the subset Sx ⊆ Pij in (6.41) is invariant
under the commuting actions of GxX ⊆ Γi and G′xX ⊆ Γj on Pij induced by
the Γi,Γj-actions on Pij, and GxX, G′xX each act freely transitively on Sx.

Proof. If γ ∈ GxX and p ∈ Sx then πij(γ · p) = γ · πij(p) = γ · vi = vi (as
πij is Γi-equivariant and γ ∈ StabΓi(vi)), and φij(γ · p) = φij(p) = vj (as φij
is Γi-invariant). Hence γ · p ∈ Sx, so Sx is GxX-invariant. If γ′ ∈ G′xX and
p ∈ Sx then πij(γ

′ · p) = πij(p) = vi (as πij is Γj-invariant), and φij(γ
′ · p) =

γ′ · φij(p) = γ′ · vj = vj (as φij is Γj-equivariant and γ′ ∈ StabΓj (vj)). Hence
γ′ · p ∈ Sx, so Sx is G′xX-invariant. This proves the first part.
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Next we prove that Sx is nonempty. As πij : Pij → Vij ⊆ Vi is a principal
Γj-bundle and vi ∈ ψ̄−1

i (S) ⊆ Vij , there exists p ∈ Pij with πij(p) = vi.
Then ψ̄j ◦ φij(p) = ψ̄i ◦ πij(p) = ψ̄i(vi) = x, so φij(p) ∈ ψ̄−1

j (x). Since

ψj : Vj/Γj → Imψj ⊆ X is a homeomorphism, ψ̄−1
j (x) is a Γj-orbit in Vj , which

contains φij(p) and vj . Hence vj = γj · φij(p) for some γj ∈ Γj . But then
πij(γj · p) = πij(p) = vi (as πij is Γj-invariant) and φij(γj · p) = γj · φij(p) = vj
(as φij is Γj-equivariant). Thus γj · p ∈ Sx, and Sx 6= ∅.

Suppose p, p′ ∈ Sx. Then p, p′ ∈ π−1
ij (vi), where Γj acts freely and transitively

on π−1
ij (vi) as πij : Pij → Vij ⊆ Vi is a principal Γj-bundle. Thus there exists a

unique γ′ ∈ Γj with γ′ · p = p′. But then

γ′ · vj = γ′ · φij(p) = φij(γ
′ · p) = φij(p

′) = vj ,

as φij(p) = φij(p
′) = vj and φij is Γj-equivariant. Hence γ′ ∈ StabΓj (vj) = G′xX.

Therefore G′xX acts freely and transitively on Sx.
Finally we show GxX acts freely transitively on Sx. As Φij is a coordinate

change over S = Imψi∩ Imψj , there exist a 1-morphism Φji=(Pji, πji, φji, φ̂ji) :
(Vj , Ej ,Γj , sj , ψj)→ (Vi, Ei,Γi, si, ψi) and 2-morphisms Λii : id(Vi,Ei,Γi,si,ψi) ⇒
Φji ◦ Φij , Mjj : id(Vj ,Ej ,Γj ,sj ,ψj) ⇒ Φij ◦ Φji over S. Choose representatives

(Ṕii, λii, λ̂ii) and (Ṕjj , µjj , µ̂jj) for Λii,Mjj . Consider:

λii|{vi}×Γi : {vi}×Γi
∼=−→
{

(p, q)∈Pij×Pji : πij(p)=vi, φij(p)=πji(q)
}/

Γj
∼=
{

(p, q) ∈ Pij × Pji : πij(p) = vi, φji(p) = πji(q) = vj
}/
G′xX

=
{

(p, q) ∈ Sx × Pji : πji(q) = vj
}/
G′xX. (6.42)

Here both id(Vi,Ei,Γi,si,ψi) and Φji ◦ Φij include a principal Γi-bundle over

an open neighbourhood of ψ̄−1
i (S) in Vi, and λii is an isomorphism between

them; the top line of (6.42) is this isomorphism restricted to the fibres over vi.
In the second line we use that φij(p) = πji(q) lies in the Γj-orbit of vj in Vj as
πij(p) = vi, and πji : Pji → Vj is Γj-equivariant, and G′xX = StabΓj (vj). In
the third line we use (6.41). Similarly we show that

µjj |{vj}×Γj : {vj}×Γj
∼=−→
{

(q, p)∈Pji×Pij : φij(p)=vj , φji(q)=πij(p)
}/

Γi
∼=
{

(q, p) ∈ Pji × Pij : φij(p) = vj , φji(q) = πij(p) = vi
}/
GxX

=
{

(q, p) ∈ Pji × Sx : φji(q) = vi
}/
GxX. (6.43)

Now the top line of (6.42) is equivariant under two commuting Γi-actions.
On the left hand side these act by left and right Γi-multiplication on {vi} × Γi,
so are free and transitive. On the right they act by Γi-multiplication on Pij 3 p
and Pji 3 q. Restricting the free Γi-action on Pij to a free GxX-action, this
free GxX-action descends to the second and third lines of (6.42), so we see that
GxX acts freely on Sx.

Similarly, the top line of (6.43) has two transitive actions of Γj . The action
on Pji 3 q descends to a transitive Γj-action on the second and third lines.
Therefore Γj\(φ−1

ji (vi)× Sx)/GxX ∼= (φ−1
ji (vi)/Γj)× (Sx/GxX) is a point, so

Sx/GxX is a point, and GxX acts transitively on Sx.
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We discuss functoriality of the GxX under 1- and 2-morphisms.

Definition 6.51. Let f : X → Y be a 1-morphism of Kuranishi spaces, with
notation (6.15), (6.16), (6.18), and let x ∈ X with f(x) = y in Y . Then
Definition 6.49 gives isotropy groups GxX, defined using i ∈ I and ui ∈ Ui with
χ̄i(ui) = x, and GyY , defined using j ∈ J and vj ∈ Vj with ψ̄j(vj) = y. In f we

have a 1-morphism f ij = (Pij , πij , fij , f̂ij) over f . As in (6.41), define

Sx,f =
{
p ∈ Pij : πij(p) = ui, fij(p) = vj

}
. (6.44)

Following the first part of the proof of Lemma 6.50, we find that Sx,f is in-
variant under the commuting actions of GxX = StabBi(ui) ⊆ Bi and GyY =
StabΓj (vj) ⊆ Γj on Pij induced by the Bi,Γj-actions on Pij . But this time, GyY
acts freely transitively on Sx,f , but GxX need not act freely or transitively.

Pick p ∈ Sx,f . As for IGx in Definition 6.49, define a group morphism
Gxf : GxX → GyY by Gxf(γ) = γ′ if γ · p = (γ′)−1 · p in Sx,f , using the
actions of GxX, GyY on Sx,f with GyY free and transitive.

If p̃ ∈ Sx,f is an alternative choice for p, yielding G̃xf : GxX → GyY , there

is a unique δ ∈ GyY with δ · p = p̃, and then G̃xf(γ) = δ(Gxf(γ))δ−1 for
all γ ∈ GxX. That is, the morphism Gxf : GxX → GyY is canonical up to
conjugation by an element of GyY .

Continuing with the same notation, suppose g : X → Y is another 1-
morphism and η : f ⇒ g a 2-morphism in K̇ur. Then above we define Gxg by
choosing an arbitrary point q ∈ Sx,g, where

Sx,g =
{
q ∈ Qij : πij(q) = ui, gij(q) = vj

}
,

with gij = (Qij , πij , gij , ĝij) in g. In η we have ηij = [Ṕij , ηij , η̂ij ] represented

by (Ṕij , ηij , η̂ij), where Ṕij ⊆ Pij and ηij : Ṕij → Qij . From the definitions

we find that Sx,f ⊆ Ṕij , and ηij |Sx,f : Sx,f → Sx,g is a bijection. Since GyY
acts freely and transitively on Sx,g, there is a unique element Gxη ∈ GyY with
Gxη · ηij(p) = q. One can now check that

Gxg(γ) = (Gxη)(Gxf(γ))(Gxη)−1 for all γ ∈ GxX.

That is, Gxg is conjugate to Gxf under Gxη ∈ GyY , the same indeterminacy
as in the definition of Gxf .

Suppose instead that g : Y → Z is another 1-morphism of Kuranishi spaces
and g(y) = z ∈ Z. Then in a similar way we can show there is a canonical
element Gx,g,f ∈ GzZ such that for all γ ∈ GxX we have

Gx(g ◦ f)(γ) = (Gx,g,f )((Gyg ◦Gxf)(γ))(Gx,g,f )−1.

That is, Gx(g ◦ f) is conjugate to Gyg ◦Gxf under Gx,g,f ∈ GzZ.
Since 2-morphisms η : f ⇒ g relate Gxf and Gxg by isomorphisms, if

f : X → Y is an equivalence in K̇ur then Gxf is an isomorphism for all x ∈X.
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Remark 6.52. The definitions of GxX, Gxf above depend on arbitrary choices.
We could use the Axiom of (Global) Choice as in Remark 4.21 to choose particular
values for GxX, Gxf for all X, x,f . But this is not really necessary, we can just
bear the non-uniqueness in mind when working with them. All the definitions we
make using GxX, Gxf will be independent of the arbitrary choices in Definitions
6.49 and 6.51.

Definition 6.53. (a) We call a 1-morphism f : X → Y in K̇ur representable
if Gxf : GxX → Gf(x)Y is injective for all x ∈X.

(b) Write K̇urtrG ⊂ K̇ur for the full 2-subcategory of X in K̇ur with trivial
isotropy groups, that is, with GxX = {1} for all x ∈X.

In Example 6.36 we defined a weak 2-functor F K̇ur
mK̇ur

: mK̇ur → K̇ur. If

X ∈ mK̇ur and X ′ = F K̇ur
mK̇ur

(X) then X ′ has Kuranishi neighbourhoods

(Vi, Ei,Γi, si, ψi) with Γi = {1}, so clearly GxX
′ = {1} for all x ∈ X ′ as

GxX
′ ⊆ Γi for some i ∈ I, and thus F K̇ur

mK̇ur
maps mK̇ur → K̇urtrG, so we

may write it as F K̇urtrG
mK̇ur

: mK̇ur→ K̇urtrG.

Theorem 6.54. The weak 2-functor F K̇urtrG
mK̇ur

: mK̇ur→ K̇urtrG from Exam-
ple 6.36 is an equivalence of 2-categories.

Proof. By construction, F K̇ur
mK̇ur

is an equivalence from mK̇ur to the full 2-

subcategory K̇urtrΓ ⊂ K̇urtrG ⊂ K̇ur of Kuranishi spaces X = (X,K) such
that all Kuranishi neighbourhoods (Vi, Ei,Γi, si, ψi) in K have Γi = {1}. Thus,

to show that F K̇ur
mK̇ur

: mK̇ur→ K̇urtrG is an equivalence, it is enough to prove

that the inclusion K̇urtrΓ ⊂ K̇urtrG is an equivalence. That is, if X is an
object of K̇urtrG, we must find X ′ in K̇urtrΓ with X ′ 'X in K̇urtrG.

Write X = (X,K) with K =
(
I, (Vi, Ei,Γi, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
.

Let x ∈ X. Then there exists i ∈ I with x ∈ Im ψ̄i. Pick v ∈ s−1
i (0) ⊆ Vi with

ψ̄i(v) = x. Then StabΓi(v) ∼= GxX = {1}, so Γi acts freely on Vi near v. Using
Γi finite and Vi Hausdorff, we can choose an open neighbourhood Wx of v in Vi
such that Wx ∩ (γ ·Wx) = ∅ for all 1 6= γ ∈ Γi. Set Fx = Ei|Wx , and ∆x = {1},
and tx = si|Wx . Define ωx : t−1

x (0)→ X to be the composition

t−1
x (0)

v′ 7→v′Γ // s−1
i (0)/Γi

ψi // X. (6.45)

Since Wx ∩ (γ · Wx) = ∅ for all 1 6= γ ∈ Γ, the first map in (6.45) is a
homeomorphism with an open subset, and the second map ψi is too by Definition
6.1(e). Hence ωx is a homeomorphism with an open subset Imωx ⊆ X. Thus
(Wx, Fx,∆x, tx, ωx) is a Kuranishi neighbourhood on X, with x ∈ Imωx.

Now define Qxi = Wx × Γi, considered as an object in Ṁan which is the
disjoint union of |Γi| copies of Wx. Let Γi act on Qxi by the trivial action on Wx

and left action on Γi, and let ∆x = {1} act trivially on Qxi. Define morphisms
πxi : Wx×Γi →Wx and υxi : Wx×Γi → Vi such that πxi : (v, γ) 7→ v ∈Wx and
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πxi : (v, γ) 7→ γ · v ∈ Vi on points. That is, πxi is the projection Wx × Γi →Wx,
and on Wx × {γ}, υxi is the composition of the inclusion Wx ↪→ Vi and the
group action γ · : Vi → Vi, for each γ ∈ Γi. Define a vector bundle morphism
υ̂xi : π∗xi(Fx)→ υ∗xi(Ei) such that for each γ ∈ Γi, υ̂xi|Wx×{γ} is the action of γ
on Ei, restricted to a map γ · : Ei|Wx

→ Ei|γ·Wx
.

It is now easy to check that Υxi := (Qxi, πxi, υxi, υ̂xi) is a 1-morphism of
Kuranishi neighbourhoods Υxi : (Wx, Fx,∆x, tx, ωx) → (Vi, Ei,Γi, si, ψi) over
Imωx ⊆ X. Furthermore, Υix := (Qxi, υxi, πxi, υ̂

−1
xi ) is a 1-morphism Υix :

(Vi, Ei,Γi, si, ψi)→ (Wx, Fx,∆x, tx, ωx) over Imωx. There are obvious 2-morph-
isms ηxx : Υix ◦ Υxi ⇒ id(Wx,Fx,∆x,tx,ωx) and ζii : Υxi ◦ Υix ⇒ id(Vi,Ei,Γi,si,ψi)

over Imωx. Hence Υxi,Υix are coordinate changes over Imωx.
Next we use the ideas of §6.4. For each j ∈ I define a coordinate change

Φxj := Φij ◦Υxi : (Wx, Fx,∆x, tx, ωx)→ (Vj , Ej ,Γj , sj , ψj) over Imωx∩Imψj ⊆
X, and for all j, k ∈ I define a 2-morphism Λxjk : Φjk ◦ Φxj ⇒ Φxk by the
commutative diagram

Φjk ◦ Φxj
Λxjk

+3 Φxk

Φjk ◦ (Φij ◦Υxi)
α−1

Φjk,Φij ,Υxi +3 (Φjk ◦ Φij) ◦Υxi

Λijk∗idΥxi +3 Φik ◦Υxi.

Using Definition 6.17(h) for the Λijk and properties of 2-categories we find that
these Φxj ,Λxjk satisfy (6.37), so that (Wx, Fx,∆x, tx, ωx),Φxj ,Λxjk is a Kuran-
ishi neighbourhood on the Kuranishi space X, in the sense of Definition 6.42.

Thus we have a family (Wx, Fx,∆x, tx, ωx) for x ∈ X of Kuranishi neigh-
bourhoods on X which cover X. Hence Theorem 6.47 constructs a Kuranishi
space X ′ = (X,K′) equivalent to X in K̇ur, such that K′ has Kuranishi neigh-
bourhoods (Wx, Fx,∆x, tx, ωx) for x ∈ X. Since ∆x = {1} for all x, this X ′ lies
in K̇urtrΓ ⊂ K̇urtrG, which proves Theorem 6.54.

6.6 Orbifolds and Kuranishi spaces

We have said that Kuranishi spaces are an orbifold version of m-Kuranishi spaces,
and should be regarded as ‘derived orbifolds’, just as m-Kuranishi spaces are a
kind of ‘derived manifold’, as in §4.8. We now explore the relationship between
orbifolds and Kuranishi spaces in more detail. As we explain in §6.6.1, there are
many different definitions of orbifolds in the literature, most of which are known
to be equivalent at the level of categories or 2-categories.

To relate orbifolds and Kuranishi spaces, we find it convenient to give our own,
new definition of a 2-category of orbifolds OrbKur in §6.6.2, which is basically
the 2-subcategory OrbKur ⊂ Kur of Kuranishi spaces X all of whose Kuranishi
neighbourhoods (Vi, Ei,Γi, si, ψi) have Ei = si = 0, and then to show OrbKur

is equivalent to the 2-categories of orbifolds defined by other authors.
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6.6.1 Definitions of orbifolds in the literature

Orbifolds are generalizations of manifolds locally modelled on Rn/G, for G a
finite group acting linearly on Rn. They were introduced by Satake [97], who
called them ‘V-manifolds’. Later they were studied by Thurston [105, Ch. 13]
who gave them the name ‘orbifold’.

As for Kuranishi spaces, defining orbifolds X,Y and smooth maps f : X→ Y
was initially problematic, and early definitions of ordinary categories of orbifolds
[97, 105] had some bad differential-geometric behaviour (e.g. for some definitions,
one cannot define pullbacks f∗(E) of orbifold vector bundles E→ Y). It is now
generally agreed that it is best to define orbifolds to be a 2-category. See Lerman
[72] for a good overview of ways to define orbifolds.

There are three main definitions of ordinary categories of orbifolds:

(a) Satake [97] and Thurston [105] defined an orbifold X to be a Hausdorff
topological space X with an atlas

{
(Vi,Γi, ψi) : i ∈ I

}
of orbifold charts

(Vi,Γi, ψi), where Vi is a manifold, Γi a finite group acting smoothly
(and locally effectively) on Vi, and ψi : Vi/Γi → X a homeomorphism
with an open set in X, and pairs of charts (Vi,Γi, φi), (Vj ,Γj , φj) satisfy
compatibility conditions on their overlaps in X. Smooth maps f : X→ Y
between orbifolds are continuous maps f : X → Y of the underlying spaces,
which lift locally to smooth maps on the charts, giving a category OrbST.

(b) Chen and Ruan [12, §4] defined orbifolds X in a similar way to [97, 105],
but using germs of orbifold charts (Vp,Γp, ψp) for p ∈ X. Their morphisms
f : X→ Y are called good maps, giving a category OrbCR.

(c) Moerdijk and Pronk [89, 90] defined a category of orbifolds OrbMP as
proper étale Lie groupoids in Man. Their definition of smooth map
f : X→ Y, called strong maps [90, §5] is complicated: it is an equivalence
class of diagrams X

φ←−X′
ψ−→Y, where X′ is a third orbifold, and φ, ψ are

morphisms of groupoids with φ an equivalence (loosely, a diffeomorphism).

A book on orbifolds in the sense of [12, 89, 90] is Adem, Leida and Ruan [1].
There are four main definitions of 2-categories of orbifolds:

(i) Pronk [96] defines a strict 2-category LieGpd of Lie groupoids in Man as
in (c), with the obvious 1-morphisms of groupoids, and localizes by a class
of weak equivalences W to get a weak 2-category OrbPr = LieGpd[W−1].

(ii) Lerman [72, §3.3] defines a weak 2-category OrbLe of Lie groupoids in Man
as in (c), with a non-obvious notion of 1-morphism called ‘Hilsum–Skandalis
morphisms’ involving ‘bibundles’, and does not need to localize.

Henriques and Metzler [44] also use Hilsum–Skandalis morphisms. We
used Hilsum–Skandalis morphisms in our 1-morphisms of Kuranishi neigh-
bourhoods in §6.1, as in Remark 6.15(ii).

(iii) Behrend and Xu [4, §2], Lerman [72, §4] and Metzler [88, §3.5] define a
strict 2-category of orbifolds OrbManSta as a class of Deligne–Mumford
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stacks on the site (Man,JMan) of manifolds with Grothendieck topology
JMan coming from open covers.

(iv) The author [65] defines a strict 2-category of orbifolds OrbC∞Sta as a class
of Deligne–Mumford stacks on the site (C∞Sch,JC∞Sch) of C∞-schemes.

As in Behrend and Xu [4, §2.6], Lerman [72], Pronk [96], and the author [65,
Th. 7.26], approaches (i)–(iv) give equivalent weak 2-categories OrbPr,OrbLe,
OrbManSta,OrbC∞Sta. As they are equivalent, the differences between them
are not of mathematical importance, but more a matter of convenience or taste.
Properties of localization also imply that OrbMP ' Ho(OrbPr). Thus, all of (c)
and (i)–(iv) are equivalent at the level of homotopy categories.

In §6.6.2 we give a fifth definition of a weak 2-category of orbifolds, similar
to (ii) above, which is a special case of our definition of Kuranishi spaces.

6.6.2 The weak 2-category of orbifolds Ȯrb

In a similar way to (i)–(iv) in §6.6.1, we now give a fifth definition of a weak
2-category of orbifolds, essentially as a full 2-subcategory OrbKur ⊂ Kur, and
we will show that OrbKur is equivalent to OrbPr,OrbLe,OrbManSta,OrbC∞Sta

in §6.6.1(i)–(iv). This provides a convenient way to relate orbifolds and Kuranishi
spaces. Fukaya et al. [30, §9] and McDuff [78] also define (effective) orbifolds as
special examples of their notions of Kuranishi space/Kuranishi atlas.

The basic idea is that orbifolds X in OrbKur are just Kuranishi spaces
X = (X,K) with K =

(
I, (Vi, Ei,Γi, si, ψi)i∈I , Φij = (Pij , πij , φij , φ̂ij)i,j∈I ,

Λijk = [Ṕijk, λijk, λ̂ijk]i,j,k∈I
)
, for which the obstruction bundles Ei → Vi are

zero for all i ∈ I, so that the sections si are also zero. This allows us to
simplify the notation a lot. Equations in §6.1 involving error terms O

(
π∗ij(si)

)
or O

(
π∗ij(si)

2
)

become exact, as si = 0.

As Ei, si are zero we can take ‘orbifold charts’ to be (Vi,Γi, ψi). As φ̂ij = 0
we can take coordinate changes to be Φij = (Pij , πij , φij), and we can also take
Vij = πij(Pij) to be equal to ψ̄−1

i (S), rather than just an open neighbourhood
of ψ̄−1

i (S) in Vi, since ψ̄−1
i (S) is open in Vi when si = 0. For 2-morphisms

Λij = [Ṕij , λij , λ̂ij ] : Φij ⇒ Φ′ij in §6.1, we have λ̂ij = 0, and we are forced to

take Ṕij = Pij , and the equivalence relation ∼ in Definition 6.4 becomes trivial,
so we can take 2-morphisms to be just λij .

Section 6.6.1 discussed only orbifolds modelled on classical manifolds, as
almost all the literature on orbifolds concerns only these. However, we will
construct a weak 2-category of ‘orbifolds’ Ȯrb corresponding to any category
of ‘manifolds’ Ṁan satisfying Assumptions 3.1–3.3. When Ṁan = Man this
gives a 2-category OrbKur equivalent to the 2-categories of orbifolds discussed in
§6.6.1. When Ṁan = Manc we get a 2-category Orbc of orbifolds with corners,
and so on. From here until Proposition 6.62, fix a category Ṁan satisfying
Assumptions 3.1–3.3. As usual we will call objects X ∈ Ṁan ‘manifolds’, and
morphisms f : X → Y in Ṁan ‘smooth maps’.
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Definition 6.55. Let X be a topological space. An orbifold chart on X is a
triple (V,Γ, ψ), where V is a manifold (object in Ṁan), Γ is a finite group with
a smooth action on V (that is, an action by isomorphisms in Ṁan), and ψ is a
homeomorphism from the topological space V/Γ to an open subset Imψ in X.
We write ψ̄ : V → X for the composition of ψ with the projection V → V/Γ.

We call an orbifold chart (V,Γ, ψ) effective if the action of Γ on V is locally
effective, that is, no nonempty open set U ⊆ V is fixed by 1 6= γ ∈ Γ.

Definition 6.56. Let X,Y be topological spaces, f : X → Y a continuous map,
(Vi,Γi, ψi), (Vj ,Γj , ψj) be orbifold charts on X,Y respectively, and S ⊆ Imψi ∩
f−1(Imψj) ⊆ X be an open set. A 1-morphism Φij : (Vi,Γi, ψi)→ (Vj ,Γj , ψj)
of orbifold charts over (S, f) is a triple Φij = (Pij , πij , φij) satisfying:

(a) Pij is a manifold (object in Ṁan), with commuting smooth actions of
Γi,Γj (that is, with a smooth action of Γi × Γj), with the Γj-action free.

(b) πij : Pij→Vi is a smooth map (morphism in Ṁan) which is Γi-equivariant,
Γj-invariant, and étale (a local diffeomorphism), with πij(Pij) = ψ̄−1

i (S).
The fibres π−1

ij (v) of πij for v ∈ ψ̄−1
i (S) are Γj-orbits, so that πij : Pij →

ψ̄−1
i (S) is a principal Γj-bundle, with ψ̄−1

i (S) an open submanifold of Vi.

(c) φij : Pij → Vj is a Γi-invariant and Γj-equivariant smooth map, that is,
φij(γi · p) = φij(p), φij(γj · p) = γj · φij(p) for all γi ∈ Γi, γj ∈ Γj , p ∈ Pij .

(d) f ◦ ψ̄i ◦ πij = ψ̄j ◦ φij : Pij → Y .

If X = Y and f = idX then we call Φij a coordinate change over S if also:

(e) The Γi-action on Pij is free, φij : Pij → Vj is étale, and the fibres φ−1
ij (v′)

of φij for v′ ∈ ψ̄−1
j (S) are Γi-orbits, so that φij : Pij → ψ̄−1

j (S) is a

principal Γi-bundle, with ψ̄−1
j (S) an open submanifold of Vj .

Then Φij is a ‘Hilsum–Skandalis morphism’, as in §6.6.1. If (Pij , πij , φij) :
(Vi,Γi, ψi) → (Vj ,Γj , ψj) is a coordinate change over S, then (Pij , φij , πij) :
(Vj ,Γj , ψj)→ (Vi,Γi, ψi) is also a coordinate change over S.

If S ⊆ Imψi ⊆ X is open, we define the identity coordinate change over S

id(Vi,Γi,ψi) = (ψ̄−1
i (S)× Γi, πii, φii) : (Vi,Γi, ψi) −→ (Vi,Γi, ψi),

where ψ̄−1
i (S) ⊆ Vi is an open submanifold, and πii, φii : ψ̄−1

i (S)× Γi → Vi map
πii : (v, γ) 7→ v and φii : (v, γ) 7→ γ · v.

Definition 6.57. Let Φij ,Φ
′
ij : (Vi,Γi, ψi) → (Vj ,Γj , ψj) be 1-morphisms of

orbifold charts over (S, f), where Φij = (Pij , πij , φij) and Φ′ij = (P ′ij , π
′
ij , φ

′
ij).

A 2-morphism λij : Φij ⇒ Φ′ij is a Γi- and Γj-equivariant diffeomorphism
λij : Pij → P ′ij with π′ij ◦ λij = πij and φ′ij ◦ λij = φij . That is, 2-morphisms
are just isomorphisms preserving all the structure, in the most obvious way.

The identity 2-morphism idΦij : Φij ⇒ Φij is idΦij = idPij : Pij → Pij .
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Definition 6.58. Let X,Y, Z be topological spaces, f : X → Y , g : Y → Z
be continuous maps, (Vi,Γi, ψi), (Vj ,Γj , ψj), (Vk,Γk, ψk) be orbifold charts on
X,Y, Z respectively, and T ⊆ Imψj∩g−1(Imψk) ⊆ Y and S ⊆ Imψi∩f−1(T ) ⊆
X be open. Suppose Φij = (Pij , πij , φij) : (Vi,Γi, ψi) → (Vj ,Γj , ψj) is a 1-
morphism of orbifold charts over (S, f), and Φjk = (Pjk, πjk, φjk) : (Vj ,Γj , ψj)→
(Vk,Γk, ψk) is a 1-morphism of orbifold charts over (T, g).

Consider the diagram in Ṁan:

Pij ×Vj Pjk

Γi×Γj×Γk

��

πPij
tt

πPjk
**

Pij

Γi×Γj

,,

πijvv φij **

Pjk

Γj×Γk

rr

πjktt φjk ((
Vi

Γi -- Vj

Γj

��
Vk.

Γkrr

Here as πjk is étale one can show that the fibre product Pij ×Vj Pjk exists in

Ṁan using Assumptions 3.2(e) and 3.3(b). We have shown the actions of various
combinations of Γi,Γj ,Γk on each space. In fact Γi × Γj × Γk acts on the whole
diagram, with all maps equivariant, but we have omitted the trivial actions (for
instance, Γj ,Γk act trivially on Vi).

As Γj acts freely on Pij , it also acts freely on Pij ×Vj Pjk. Using Assumption
3.3 and the facts that Pij ×Vj Pjk is Hausdorff and Γj is finite, we can show

that the quotient Pik := (Pij ×Vj Pjk)/Γj exists in Ṁan, with projection
Π : Pij ×Vj Pjk → Pik. The commuting actions of Γi,Γk on Pij ×Vj Pjk descend
to commuting actions of Γi,Γk on Pik, such that Π is Γi- and Γk-equivariant. As
πij ◦ πPij : Pij ×Vj Pjk → Vi and φjk ◦ πPjk : Pij ×Vj Pjk → Vk are Γj-invariant,
they factor through Π, so there are unique smooth maps πik : Pik → Vi and
φik : Pik → Vk such that πij ◦ πPij = πik ◦Π and φjk ◦ πPjk = φik ◦Π.

It is now easy to check that Φik = (Pik, πik, φik) satisfies Definition 6.56(a)–
(d), and is a 1-morphism Φik : (Vi,Γi, ψi) → (Vk,Γk, ψk) over (S, g ◦ f). We
write Φjk ◦ Φij = Φik, and call it the composition of 1-morphisms.

If we have three such 1-morphisms Φij ,Φjk,Φkl, define

αΦkl,Φjk,Φij :
[
Pij×Vj

(
(Pjk ×Vk Pkl)/Γk

)]
/Γj

−→
[(

(Pij ×Vj Pjk)/Γj
)
×Vk Pkl

]
/Γk

to be the natural identification. Then αΦkl,Φjk,Φij is a 2-isomorphism

αΦkl,Φjk,Φij : (Φkl ◦ Φjk) ◦ Φij =⇒ Φkl ◦ (Φjk ◦ Φij).

That is, composition of 1-morphisms is associative up to canonical 2-isomorphism,
as for weak 2-categories in §A.2.

For Φij : (Vi,Γi, ψi) → (Vj ,Γj , ψj) a morphism over (S, f) as above with
S ⊆ Imψi ∩ f−1(Imψj), and for T ⊆ Imψj ⊆ Y open with S ⊆ f−1(T ), define

βΦij : ((ψ̄−1
i (S)× Γi)×Vi Pij)/Γi −→ Pij ,

γΦij : (Pij ×Vj (ψ̄−1
j (T )× Γj))/Γj −→ Pij ,
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to be the natural identifications. Then we have 2-isomorphisms

βΦij : Φij ◦ id(Vi,Γi,ψi) =⇒ Φij ,

γΦij : id(Vj ,Γj ,ψj) ◦ Φij =⇒ Φij ,

where id(Vi,Γi,ψi), id(Vj ,Γj ,ψj) are the identities over S, T , so identity 1-morphisms
behave as they should up to canonical 2-isomorphism, as in §A.2.

Definition 6.59. Let f : X → Y be continuous, (Vi,Γi, ψi), (Vj ,Γj , ψj) be
orbifold charts on X,Y , and S ⊆ Imψi ∩ f−1(Imψj) ⊆ X be open. Suppose
Φij ,Φ

′
ij ,Φ

′′
ij : (Vi,Γi, ψi)→ (Vj ,Γj , ψj) are 1-morphisms of orbifold charts over

(S, f) with Φij = (Pij , πij , φij), etc., and λij : Φij ⇒ Φ′ij , λ
′
ij : Φ′ij ⇒ Φ′′ij

are 2-morphisms. The vertical composition λ′ij � λij : Φij ⇒ Φ′′ij is just the

composition λ′ij � λij = λ′ij ◦ λij : Pij → P ′′ij of morphisms in Ṁan.
Now let f : X → Y and g : Y → Z be continuous, (Vi,Γi, ψi), (Vj ,Γj , ψj),

(Vk,Γk, ψk) be orbifold charts on X,Y, Z, and T ⊆ Imψj ∩ g−1(Imψk) ⊆ Y and
S ⊆ Imψi ∩ f−1(T ) ⊆ X be open. Suppose Φij ,Φ

′
ij : (Vi,Γi, ψi)→ (Vj ,Γj , ψj)

are 1-morphisms of orbifold charts over (S, f), and Φjk,Φ
′
jk : (Vj ,Γj , ψj)→ (Vk,

Γk, ψk) are 1-morphisms of orbifold charts over (T, g), with Φij = (Pij , πij , φij),
etc., and λij : Φij ⇒ Φ′ij , λjk : Φjk ⇒ Φ′jk are 2-morphisms.

Write λjk×Vj λij : Pij ×Vj Pjk → P ′ij ×Vj P ′jk for the induced diffeomorphism
of fibre products. It is Γj-equivariant, and so induces a unique diffeomorphism
λjk ∗ λij : Pik = (Pij ×Vj Pjk)/Γj → (P ′ij ×Vj P ′jk)/Γj = P ′ik. Then λjk ∗ λij :
Φjk ◦ Φij ⇒ Φ′jk ◦ Φ′ij is a 2-morphism, horizontal composition.

As in Theorem 6.8, we have defined a weak 2-category, with objects orbifold
charts. We can now follow §6.1–§6.2 from Definition 6.13 until Theorem 6.26,
taking the Ei, si, φ̂ijk, λ̂ijk to be zero throughout. This gives:

Theorem 6.60. To any category Ṁan satisfying Assumptions 3.1–3.3, we can
associate a corresponding weak 2-category Ȯrb of Kuranishi orbifolds, or just
orbifolds. Objects of Ȯrb are X = (X,O) for X a Hausdorff, second countable
topological space and O =

(
I, (Vi,Γi, ψi)i∈I , Φij, i,j∈I , λijk, i,j,k∈I

)
an orbifold

structure on X of dimension n ∈ N, defined as in §6.2 but using orbifold
charts, coordinate changes and 2-morphisms as above.

Here is the analogue of Definition 4.29:

Definition 6.61. In Theorem 6.60 we write Ȯrb for the 2-category of orbifolds
constructed from a category Ṁan satisfying Assumptions 3.1–3.3. By Example
3.8, the following categories from Chapter 2 are possible choices for Ṁan:

Man,Manc
we,Manc,Mangc,Manac,Manc,ac.

We write the corresponding 2-categories of orbifolds as follows:

OrbKur,Orbc
we,Orbc,Orbgc,Orbac,Orbc,ac. (6.46)

Here we use ‘OrbKur’ to distinguish it from the other (2-)categories of orbifolds
discussed in §6.6.1.
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In a similar way to Example 4.30, it is easy to prove:

Proposition 6.62. There is a full, faithful weak 2-functor F Ȯrb
Ṁan

: Ṁan ↪→
Ȯrb embedding Ṁan as a full (2-)subcategory of Ȯrb, which on objects maps

F Ȯrb
Ṁan

: X 7→ (X,O), where O =
(
{0}, (V0,Γ0, ψ0),Φ00,Λ000

)
, with indexing set

I = {0}, one orbifold chart (V0,Γ0, ψ0) with V0 = X, Γ0 = {1}, and ψ0 = idX ,
one coordinate change Φ00 = id(V0,Γ0,ψ0), and one 2-morphism Λ000 = idΦ00

.

We say that an orbifold X is a manifold if X ' F Ȯrb
Ṁan

(X) in Ȯrb for

some X ∈ Ṁan.

In §6.5, for a Kuranishi space X, we defined the isotropy group GxX for all
x ∈X. In the same way, for an orbifold X we have isotropy groups GxX for all
x ∈ X. We use these to give a criterion for when an orbifold is a manifold.

Proposition 6.63. An orbifold X in Ȯrb is a manifold, in the sense of Propo-
sition 6.62, if and only if GxX = {1} for all x ∈ X.

Proof. The ‘only if’ part is obvious. For the ‘if’ part, suppose X ∈ Ȯrb with
GxX = {1} for all x ∈ X. The proof of Theorem 6.54 in §6.5 implies that X ' X′

in Ȯrb for X′ = (X,O′) with O′ =
(
I, (Vi,Γi, ψi)i∈I , Φij, i,j∈I , λijk, i,j,k∈I

)
an

orbifold structure on X with Γi = {1} for all i ∈ I.
Now X is a Hausdorff, second countable topological space, {Imψi : i ∈ I}

is an open cover of X, and {Vi : i ∈ I} is a family of objects in Ṁan with
ψi : Vi,top = Vi,top/{1} → Imψi a homeomorphism for i ∈ I. Using Assumption

3.2(e), we replace the Vi by diffeomorphic objects in Ṁan such that Vi,top =
Imψi, and ψi : Vi,top → Imψi is the identity map for i ∈ I.

For i, j ∈ I, writing Vij ↪→ Vi and Vji ↪→ Vi for the open submanifolds
with Vij,top = Vji,top = Imψi ∩ Imψj , using the coordinate change Φij with
Γi = Γj = {1} we can show there is a unique diffeomorphism φij : Vij → Vji in

Ṁan with φij,top = idImψ∩Imψj . Therefore Assumption 3.3(b) makes X into an

object in Ṁan, such that Vi ↪→ X are open submanifolds for all i ∈ I. It is then

easy to see that X′ ' F Ȯrb
Ṁan

(X) in Ȯrb, and the proposition follows.

Now let Ṁan satisfy all of Assumptions 3.1–3.7, not just Assumptions 3.1–
3.3, so that we have both a 2-category of orbifolds Ȯrb above, and a 2-category
of Kuranishi spaces K̇ur from §6.2. In a similar way to Example 6.36 and
Proposition 6.64, it is easy to prove:

Proposition 6.64. There is a full, faithful weak 2-functor F K̇ur
Ȯrb

: Ȯrb ↪→
K̇ur embedding Ȯrb as a full 2-subcategory of K̇ur, which on objects maps

F K̇ur
Ȯrb

: (X,O) 7→ (X,K), where for O as above, K =
(
I, (Vi, 0,Γi, 0, ψi)i∈I ,

(Pij , πij , φij , 0)ij, i,j∈I , [Pijk, λijk, 0]i,j,k∈I
)

is the Kuranishi structure obtained

by taking all the obstruction bundle data Ei, si, φ̂ijk, λ̂ijk to be zero.

We say that a Kuranishi space X is an orbifold if X ' F K̇ur
Ȯrb

(X) in K̇ur

for some X ∈ Ȯrb.
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Theorem 10.52 in §10.4.4 gives a necessary and sufficient criterion for when
a Kuranishi space X in K̇ur is an orbifold.

6.6.3 Relation to previous definitions of orbifolds

We relate OrbKur to previous definitions of (2-)categories of orbifolds.

Theorem 6.65. The 2-category of Kuranishi orbifolds OrbKur defined in Theo-
rem 6.60 using Ṁan = Man is equivalent as a weak 2-category to the 2-categories
of orbifolds OrbPr, OrbLe, OrbManSta, OrbC∞Sta in [4, 65, 72, 88, 96] described
in §6.6.1. Also there is an equivalence of categories Ho(OrbKur) ' OrbMP, for
OrbMP the category of orbifolds from Moerdijk and Pronk [89, 90].

Proof. Use the notation of §6.6.1. We will define a full and faithful weak 2-
functor FOrbLe

OrbKur
: OrbKur → OrbLe, which is an equivalence of 2-categories.

Given an orbifold X = (X,O) in our sense with O =
(
I, (Vi,Γi, ψi)i∈I , Φij =

(Pij , πij , φij)i,j∈I , λijk, i,j,k∈I
)
, we define a natural proper étale Lie groupoid

[V ⇒ U ] = (U, V, s, t, u, i,m) in Man (that is, a groupoid-orbifold in the sense
of [89, 90, 96] and [72, §3.3], as in §6.6.1(c),(i),(ii)) with U =

∐
i∈I Vi, and

V =
∐
i,j∈I Pij , and s, t : V → U given by s =

∐
i,j∈I πij and t =

∐
i,j∈I φij ,

where the data λijk, i,j,k∈I gives the multiplication map m : V ×U V → V . We

define FOrbLe

OrbKur
(X) = [V ⇒ U ].

By working through the definitions, it turns out that Lerman’s definitions of
1- and 2-morphisms in OrbLe in terms of ‘bibundles’, when applied to groupoids
[V ⇒ U ] of the form FOrbLe

OrbKur
(X), reduce exactly to 1- and 2-morphisms in

OrbKur as above. Thus, the definition of FOrbLe

OrbKur
on 1- and 2-morphisms, and

that FOrbLe

OrbKur
is full and faithful, are immediate. The rest of the weak 2-functor

data and conditions are straightforward. To show FOrbLe

OrbKur
is an equivalence,

we need to show that every groupoid-orbifold [V ⇒ U ] is equivalent in OrbLe

to FOrbLe

OrbKur
(X) for some X in OrbKur. This can be done as in Moerdijk and

Pronk [90, Proof of Th. 4.1].
The discussion in §6.6.1 now shows that our OrbKur is equivalent as a weak 2-

category to OrbPr,OrbLe,OrbManSta,OrbC∞Sta, and also that Ho(OrbKur) '
OrbMP as categories.

Combining Proposition 6.64 and Theorem 6.65 shows that the 2-categories of
orbifolds OrbPr,OrbLe,OrbManSta,OrbC∞Sta in [4, 65, 72, 88, 96] are equiv-
alent to a full 2-subcategory of the 2-category of Kuranishi spaces Kur. So
(classical) orbifolds can be regarded as examples of Kuranishi spaces.

6.6.4 More about orbifolds, and orbifolds with corners

The material of §6.2.2, §6.2.3 and §6.3 for Kuranishi spaces (with corners)
specializes easily to orbifolds (with corners). As in §6.6.2, this is a simpli-
fication, obtained by setting Ei = si = 0 in all Kuranishi neighbourhoods
(Vi, Ei,Γi, si, ψi). Here are some brief comments on this:
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(a) As in Proposition 6.30, if Ṁan, M̈an satisfy Assumptions 3.1–3.3 and
F M̈an

Ṁan
: Ṁan → M̈an satisfies Condition 3.20, we can define a natural

weak 2-functor F Örb
Ȯrb

: Ȯrb→ Örb. As in Figure 6.1, we get a diagram
Figure 6.3 of 2-functors between 2-categories of orbifolds.

(b) As in §6.2.3, if P is a discrete property of morphisms in Ṁan, we can
define when 1-morphisms in Ȯrb are P , and the analogue of Proposition
6.34 holds. In the orbifold case, the definition of discrete properties P
of morphisms in Ṁan is unnecessarily strong: we need only Definition
3.18(i)–(iv), not (v)–(viii), for a property P to lift nicely from Ṁan to
Ȯrb. For example, submersions in Ṁan = Man satisfy (i)–(iv) but not
(v)–(viii), and lift to a good notion of submersion in OrbKur.

Thus we can define many interesting 2-subcategories of the 2-categories of
orbifolds in (6.46), as in Figure 6.2 for Kuranishi spaces.

(c) Suppose Ṁanc satisfies Assumption 3.22 in §3.4.1. (Actually, in As-
sumption 3.22(b) it is enough for Ṁanc to satisfy Assumptions 3.1–
3.3, not Assumptions 3.1–3.7.) Then as in §6.6.2 we have a 2-category
Ȯrbc of orbifolds associated to Ṁanc. For instance, Ȯrbc could be
Orbc,Orbgc,Orbac or Orbc,ac from Definition 6.61. We will refer to
objects of Ȯrbc as orbifolds with corners. We also write Ȯrbc

si for the

2-subcategory of Ȯrbc with simple 1-morphisms, in the sense of (b).

As in §6.3, for any X in Ȯrbc and k = 0, . . . ,dimX we can define the
k-corners Ck(X), an object in Ȯrbc with dimCk(X) = dimX− k, and a
1-morphism Πk : Ck(X) → X in Ȯrbc. We also write ∂X = C1(X), the
boundary of X, and we write iX = Π1 : ∂X→ X.

We define a 2-category Ȯ̌rbc from Ȯrbc with objects
∐∞
n=0 Xn for Xn

in Ȯrbc with dimXn = n, and the corner 2-functor C : Ȯrbc → Ȯ̌rbc.
The restriction C|Ȯrbc

si
decomposes as C|Ȯrbc

si
=
∐∞
k=0 Ck, where Ck :

Ȯrbc
si → Ȯrbc

si is a weak 2-functor acting on objects by X 7→ Ck(X).
Examples of such corner 2-functors are given by the analogue of (6.36).

OrbKur

tt yy %% **
Orbgc Orbcoo

��

// Orbc,ac // Orbacoo

Orbc
we

Figure 6.3: 2-functors between 2-categories of orbifolds from
Definition 6.61. Arrows ‘→’ are inclusions of 2-subcategories.
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6.7 Proof of Theorems 4.13 and 6.16

Let f : X → Y be a continuous map of topological spaces, and (Vi, Ei,Γi, si, ψi),
(Vj , Ej ,Γj , sj , ψj) be Kuranishi neighbourhoods on X,Y . We must show that
Homf

(
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)

)
from Theorem 6.16 is a stack on

Imψi ∩ f−1(Imψj), that is, that it satisfies Definition A.17(i)–(v). Parts (i),(ii)
are immediate from the definition of restriction |T in Definition 6.13. When
Γi = Γj = {1} this will imply Theorem 4.13.

6.7.1 Definition A.17(iii) for
Homf ((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj))

For (iii), let S ⊆ Imψi ∩ f−1(Imψj) be open, Φij = (Pij , πij , φij , φ̂ij) and

Φ′ij = (P ′ij , π
′
ij , φ

′
ij , φ̂

′
ij) be 1-morphisms (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj)

over (S, f), and Λij ,Λ
′
ij : Φij ⇒ Φ′ij be 2-morphisms over (S, f). Suppose {T a :

a ∈ A} is an open cover of S, such that Λij |Ta = Λ′ij |Ta for all a ∈ A. Choose

representatives (Ṕij , λij , λ̂ij), (Ṕ
′
ij , λ

′
ij , λ̂

′
ij) for Λij ,Λ

′
ij . Then Λij |Ta = Λ′ij |Ta

means as in (6.3) that there exists an open neighbourhood P̈ aij of π−1
ij (ψ̄−1

i (T a))

in Ṕij ∩ Ṕ ′ij with

λij |P̈aij = λ′ij |P̈aij and λ̂ij |P̈aij = λ̂′ij |P̈aij +O
(
π∗ij(si)

)
on P̈ aij . (6.47)

Set P̈ij =
⋃
a∈A P̈

a
ij , an open neighbourhood of π−1

ij (ψ̄−1
i (S)) in Ṕij ∩ Ṕ ′ij . Then

(6.47) for all a ∈ A implies (6.3) on P̈ij by Theorem 3.17(a), so Λij = Λ′ij . This

proves Definition A.17(iii) for Homf

(
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)

)
.

6.7.2 Definition A.17(iv) for
Homf ((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj))

For (iv), suppose S,Φij ,Φ
′
ij are as in §6.7.1, {T a : a ∈ A} is an open cover

of S, and Λaij : Φij |Ta ⇒ Φ′ij |Ta are 2-morphisms over (T a, f) for a ∈ A with

Λaij |Ta∩T b = Λbij |Ta∩T b for all a, b ∈ A. Choose representatives (Ṕ aij , λ
a
ij , λ̂

a
ij)

for Λaij for a ∈ A, and making Ṕ aij smaller if necessary, suppose that Ṕ aij ∩
π−1
ij (s−1

i (0)) = π−1
ij (ψ̄−1

i (T a)). Then Λaij |Ta∩T b = Λbij |Ta∩T b means there exists

an open neighbourhood P̈ abij of π−1
ij (ψ̄−1

i (T a ∩ T b)) in Ṕ aij ∩ Ṕ bij with

λaij |P̈abij = λbij |P̈abij and λ̂aij |P̈abij = λ̂bij |P̈abij +O
(
π∗ij(si)

)
on P̈ abij . (6.48)

Here the second equation of (6.48) holds on Ṕ aij ∩ Ṕ bij , as the O(π∗ij(si)) condition

is trivial away from π−1
ij (ψ̄−1

i (T a ∩ T b)).
Choose a partition of unity {ηa : a ∈ A} on

⋃
a∈A Ṕ

a
ij ⊆ Pij subordinate to

the open cover {Ṕ aij : a ∈ A}, as in §3.3.1(d). By averaging the ηa over the
Γi × Γj-action on Pij , we suppose each ηa is Γi- and Γj-invariant. The open
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support of ηa is supp◦ ηa =
{
p ∈

⋃
a′∈A Ṕ

a′

ij : ηa(p) > 0
}

, an open submanifold in⋃
a′∈A Ṕ

a′

ij , and the support supp ηa = supp◦ ηa of ηa is the closure of supp◦ ηa

in
⋃
a′∈A Ṕ

a′

ij . Consider the subset Ṕij ⊆ Pij given by

Ṕij =
{
p ∈

⋃
a∈A Ṕ

a
ij : if a, b ∈ A with p ∈ supp ηa ∩ supp ηb

then λaij(p) = λbij(p)
}
.

(6.49)

We claim that Ṕij is open in Pij , and so an object in Ṁan. To see this,

note that Ṕij is the complement in the open set
⋃
a∈A Ṕ

a
ij ⊆ Pij of the sets Sa,b

for all a, b ∈ A, where Sa,b =
{
p ∈ supp ηa ∩ supp ηb : λaij(p) 6= λbij(p)

}
. Now

λaij , λ
b
ij : Ṕ aij∩Ṕ bij → P ′ij are smooth with π′ij ◦λaij = π′ij ◦λbij , where π′ij : P ′ij → Vi

is a principal Γj-bundle over V ′ij ⊆ Vi. Thus the condition λaij 6= λbij is open and

closed in Ṕ aij ∩ Ṕ bij , so Sa,b is open and closed in supp ηa ∩ supp ηb, and closed in⋃
a∈A Ṕ

a
ij . As {ηa : a ∈ A} is locally finite, we see that Ṕij is open.

Next we claim that Ṕij contains π−1
ij (ψ̄−1

i (S)). Let p ∈ π−1
ij (ψ̄−1

i (S)). Then

p ∈ π−1
ij (ψ̄−1

i (T a
′
)) ⊆ Ṕ a

′

ij for some a′ ∈ A as
⋃
a′∈A T

a′ = S, so p ∈ Ṕ a
′

ij ⊆⋃
a∈A Ṕ

a
ij . If p ∈ supp ηa∩supp ηb for a, b ∈ A then p ∈ π−1

ij (ψ̄−1
i (T a∩T b)) ⊆ P̈ abij ,

and the first equation of (6.48) gives λaij(p) = λbij(p). Hence p ∈ Ṕij , proving the
claim.

Define λij : Ṕij → P ′ij by

λij(p) = λaij(p) if a ∈ A with p ∈ supp ηa. (6.50)

This is well-defined by (6.49) as Ṕij ⊆
⋃
a∈A supp ηa. As Ṕij is covered by the

open sets Ṕij ∩ supp◦ ηa for a ∈ A, and λij = λaij on Ṕij ∩ supp◦ ηa with λaij
smooth and étale, λij is smooth and étale by Assumption 3.3(a).

Define a morphism λ̂ij : π∗ij(Ei)|Ṕij → TφijVj |Ṕij by

λ̂ij =
∑
a∈A η

a|Ṕij · λ̂
a
ij , (6.51)

where λ̂aij is only defined on Ṕij ∩ Ṕ aij , but ηa · λ̂aij is well-defined and smooth on

Ṕij , being zero outside Ṕ aij .

For each a ∈ A, define P̈ aij =
{
p ∈ Ṕij ∩ Ṕ aij : λij(p) = λaij(p)

}
. As above

this is open and closed in Ṕij ∩ Ṕ aij and so open in Ṕij ∩ Ṕ aij , and contains

π−1
ij (ψ̄−1

i (T a)), and by definition

λij |P̈aij = λaij |P̈aij . (6.52)

Using (6.51) in the first step, the second equation of (6.48) (which holds on
Ṕ aij ∩ Ṕ bij) in the second, and

∑
b∈A ηb = 1 in the fourth, we have

λ̂ij |P̈aij =
∑
b∈A η

b|P̈aij · λ̂
b
ij =

∑
b∈A η

b|P̈aij ·
(
λ̂aij +O(π∗ij(si))

)
=
(∑

b∈A η
b
)
· λ̂aij |P̈aij +O(π∗ij(si)) = λ̂aij |P̈aij +O(π∗ij(si)).

(6.53)
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We now claim that (Ṕij , λij , λ̂ij) satisfies Definition 6.4(a)–(c) over S. The

Γi,Γj-equivariance of Ṕij , λij , λ̂ij follows as the ingredients from which they are

defined are Γi,Γj-equivariant. Equation (6.2) for Ṕij , λij , λ̂ij on Ṕij ∩ Ṕ aij follows

from (6.2) for Ṕ aij , λ
a
ij , λ̂

a
ij , equation (6.53), and λij = λaij on P̈ aij , and the rest of

(a)–(c) are already proved. Therefore Λij := [Ṕij , λij , λ̂ij ] is a 2-morphism Φij ⇒
Φ′ij over S. Equations (6.52)–(6.53) imply that (Ṕij , λij , λ̂ij) ∼Ta (Ṕ aij , λ

a
ij , λ̂

a
ij)

in the sense of Definition 6.4, so Λij |Ta = Λaij , for all a ∈ A. This proves

Definition A.17(iv) for Homf

(
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)

)
.

6.7.3 Definition A.17(v) for
Homf ((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj))

Let S ⊆ Imψi ∩ f−1(Imψj) be open, and {T a : a ∈ A} be an open cover of

S, and Φa
ij = (P aij , π

a
ij , φ

a
ij , φ̂

a
ij) : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) be a

1-morphism of Kuranishi neighbourhoods over (T a, f) for a ∈ A, and Λabij :

Φaij |Ta∩T b ⇒ Φbij |Ta∩T b a 2-morphism over (T a ∩T b, f) for all a, b ∈ A such that

Λbcij �Λabij = Λacij over (T a ∩ T b ∩ T c, f) for all a, b, c ∈ A. Choose representatives

(Ṕ abij , λ
ab
ij , λ̂

ab
ij ) for Λabij for all a, b ∈ A, so that (6.2) gives

φbij ◦ λabij = φaij |Ṕabij + λ̂abij ◦ (πaij)
∗(si) +O

(
(πaij)

∗(si)
2
)

and

(λabij )∗(φ̂bij) = φ̂aij |Ṕabij + (φaij)
∗(dsj) ◦ λ̂abij +O

(
(πaij)

∗(si)
)

on Ṕ abij .
(6.54)

Write V aij = πaij(P
a
ij), so that V aij is an open neighbourhood of ψ̄−1

i (T a) in
Vi for a ∈ A, and πaij : P aij → V aij is a principal Γj-bundle, and similarly write

V́ abij = πaij(Ṕ
ab
ij ) for a, b ∈ A. For simplicity, making P aij , V

a
ij smaller if necessary,

suppose that V aij ∩ s
−1
i (0) = ψ̄−1

i (T a).

From §6.1, Λbcij � Λabij = Λacij means we can choose an open neighbourhood

P̈ abcij of (πaij)
−1(ψ̄−1

i (T a ∩ T b ∩ T c)) in (λabij )−1(Ṕ bcij ) ∩ Ṕ acij ⊆ P aij , such that

λbcij ◦ λabij |P̈abcij
= λacij |P̈abcij

and

λ̂abij |P̈abcij
+ λabij |∗P̈abcij

(λ̂bcij ) = λ̂acij |P̈abcij
+O

(
(πaij)

∗(si)
)

on P̈ abcij .
(6.55)

Choose a partition of unity {ηa : a ∈ A} on
⋃
a∈A V

a
ij ⊆ Vi subordinate to

the open cover {V aij : a ∈ A}, as in §3.3.1(d). As in (6.49), define

Vij =
{
v ∈

⋃
a∈A V

a
ij : if a, b ∈ A with v ∈ supp ηa ∩ supp ηb then v ∈ V́ abij ,

and if a, b, c ∈ A with v ∈ supp ηa ∩ supp ηb ∩ supp ηc

then λbcij ◦ λabij = λacij on (πaij)
−1(v)

}
. (6.56)

As for the argument between (6.49) and (6.50), Vij is an open neighbourhood of
ψ̄−1
i (S) in Vi, and is Γi-invariant as all the ingredients in (6.56) are.
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Define Ṗij , initially as a topological space with the quotient topology, by

Ṗij =
(∐

a∈A(πaij)
−1(Vij ∩ supp◦ ηa)

)/
∼, (6.57)

where (πaij)
−1(Vij ∩ supp◦ ηa) ⊆ P aij is open, and ∼ is the binary relation on∐

a∈A(πaij)
−1(Vij ∩ supp◦ ηa) given by pa ∼ pb if pa ∈ (πaij)

−1(Vij ∩ supp◦ ηa)

and pb ∈ (πbij)
−1(Vij ∩ supp◦ ηb) for a, b ∈ A with pb = λabij (pa). This is an

equivalence relation by (6.56). Write [pa] for the ∼-equivalence class of pa.
Define a map π̇ij : Ṗij → Vij ⊆ Vi by π̇ij : [pa] 7→ πaij(p

a) for pa ∈
(πaij)

−1(Vij ∩ supp◦ ηa). This is well-defined as if [pa] = [pb] then pa ∼ pb,

so pb = λabij (pa), and πaij(p
a) = πbij(p

b) as πbij ◦ λabij = πaij by Definition 6.4(b).

The Γi × Γj-actions on (πaij)
−1(Vij ∩ supp◦ ηa) ⊆ P aij induce a Γi × Γj-action on

Ṗij , and π̇ij is Γi-equivariant and Γj-invariant.

Then π̇ij : Ṗij → Vij is continuous and is a topological principal Γj-bundle,
as it is built by gluing the topological principal Γj-bundles πaij : (πaij)

−1(Vij ∩
supp◦ ηa)→ Vij ∩ supp◦ ηa by the isomorphisms λabij on overlaps Vij ∩ supp◦ ηa∩
supp◦ ηb, where the isomorphisms λabij compose correctly by (6.56).

It follows that the natural morphisms (πaij)
−1(Vij ∩ supp◦ ηa)→ Ṗij mapping

pa 7→ [pa] for a ∈ A are homeomorphisms with open subsets Ṗ aij of Ṗij , and

that Ṗij is Hausdorff, and second countable, as Vij ∈ Ṁan is by Assumption

3.2(b). Also the (πaij)
−1(Vij ∩ supp◦ ηa) for a ∈ A are objects in Ṁan, and the

gluing maps λabij are diffeomorphisms between open submanifolds of (πaij)
−1(Vij ∩

supp◦ ηa) and (πbij)
−1(Vij ∩ supp◦ ηb). Therefore Assumptions 3.2(e) and 3.3(b)

make Ṗij into an object in Ṁan, with underlying topological space (6.57), such

that the inclusion maps (πaij)
−1(Vij ∩ supp◦ ηa)→ Ṗij are diffeomorphisms with

open submanifolds Ṗ aij of Ṗij for a ∈ A, with {Ṗ aij : a ∈ A} an open cover of Ṗij .

Furthermore, Assumption 3.3(a) now makes π̇ij : Ṗij → Vij into a morphism

in Ṁan, locally modelled on πaij |··· : (πaij)
−1(Vij ∩ supp◦ ηa)→ Vij , with Ṗ aij =

π̇−1
ij (Vij ∩ supp◦ ηa). The topological Γi×Γj-action on Ṗij also lifts to a Γi×Γj-

action by morphisms in Ṁan, where the Ṗ aij are Γi × Γj-invariant. As πaij is

étale, π̇ij is étale, and as π̇ij : Ṗij → Vij is a Γi-invariant topological principal

Γj-bundle, it is a Γi-invariant principal Γj-bundle in Ṁan.

Define λaij : Ṗ aij → P aij in Ṁan to be the composition of the isomorphism

Ṗ aij
∼= (πaij)

−1(Vij ∩ supp◦ ηa) with the inclusion (πaij)
−1(Vij ∩ supp◦ ηa) ↪→ P aij .

Then the definition of ∼ for Ṗij in (6.57) implies that

λabij ◦ λaij |Ṗaij∩Ṗ bij = λbij |Ṗaij∩Ṗ bij : Ṗ aij ∩ Ṗ bij −→ P bij for a, b,∈ A, (6.58)

where λaij(Ṗ
a
ij ∩ Ṗ bij) ⊆ Ṕ abij by (6.56), so that λabij ◦ λaij |Ṗaij∩Ṗ bij is well defined.

We have smooth maps φaij ◦ λaij : Ṗ aij → Vj and morphisms (λaij)
∗(φ̂aij) :

π̇∗ij(Ei)|Ṗaij → Tφaij◦λaijVj for a ∈ A, such that for a, b ∈ A, applying ◦λaij and
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(λaij)
∗ to the equations of (6.54) gives

(φbij ◦ λbij) = (φaij ◦ λaij) + (λaij)
∗(λ̂abij ) ◦ π̇∗ij(si) +O

(
π̇∗ij(si)

2
)
, (6.59)

(λbij)
∗(φ̂bij) = (λaij)

∗(φ̂aij) + (φaij ◦ λaij)∗(dsj) ◦ (λaij)
∗(λ̂abij ) +O

(
π̇∗ij(si)

)
, (6.60)

which hold on Ṗ aij ∩ Ṗ bij as λaij(Ṗ
a
ij ∩ Ṗ bij) ⊆ Ṕ abij . For all a, b, c ∈ A, applying

(λaij)
∗ to the second equation of (6.55) and using (6.58) gives

(λaij)
∗(λ̂abij ) + (λbij)

∗(λ̂bcij ) = (λaij)
∗(λ̂acij ) +O

(
π̇∗ij(si)

)
(6.61)

on (λaij)
−1(P̈ abcij ). In fact (6.61) holds on Ṗ aij ∩ Ṗ bij ∩ Ṗ cij , as the O

(
π̇∗ij(si)

)
condition is trivial away from π̇−1

ij (ψ̄−1
i (T a ∩ T b ∩ T c)).

Now (6.59) implies that (φbij ◦λbij) = (φaij ◦λaij)+O(π̇∗ij(si)) on Ṗ aij∩Ṗ bij , where

the Ṗ aij are Γi×Γj-invariant, and the φaij◦λaij are Γi×Γj-equivariant. Therefore by

Theorem 3.17(c),(e) there exist a Γi×Γj-invariant open neighbourhood Pij ↪→ Ṗij
of π̇∗ij(si)

−1(0) in Ṗij , and a Γi × Γj-equivariant morphism φij : Pij → Vj in

Ṁan, such that for all a ∈ A we have

φaij ◦ λaij |Pij∩Ṗaij = φij |Pij∩Ṗaij +O
(
π̇∗ij(si)

)
on Pij ∩ Ṗ aij . (6.62)

Define πij = π̇ij |Pij : Pij → Vi.
Applying Theorem 3.17(i) to (6.62) shows we may choose a morphism µ̂aij :

π∗ij(Ei)|Pij∩Ṗaij → TφijVj |Pij∩Ṗaij with

φaij ◦ λaij |Pij∩Ṗaij = φij |Pij∩Ṗaij + µ̂aij ◦ π∗ij(si) +O
(
π∗ij(si)

2
)

on Pij ∩ Ṗ aij . (6.63)

Since φaij ◦ λaij |Pij∩Ṗaij and φij |Pij∩Ṗaij are Γi × Γj-equivariant, (6.63) also holds

with µ̂aij replaced by (γi, γj)
∗(µ̂aij) for (γi, γj) ∈ Γi × Γj . Averaging (γi, γj)

∗(µ̂aij)
over (γi, γj) ∈ Γi × Γj and using Theorem 3.17(m), we see that we may take µ̂aij
to be Γi × Γj-equivariant.

Using the notation of Definition 3.15(v), and applying Theorem 3.17(g), we

see that we can choose a morphism λ̂aij : π∗ij(Ei)|Pij∩Ṗaij → TφijVj |Pij∩Ṗaij with

λ̂aij = µ̂aij +
∑
b∈A

π∗ij(η
b)|Pij∩Ṗaij ·

(
µ̂bij − µ̂aij − (λaij)

∗(λ̂abij )
)

+O
(
π∗ij(si)

)
. (6.64)

Here (λaij)
∗(λ̂abij ) in (6.64) is a morphism π∗ij(Ei)|··· → Tφaij◦λaijVj |···, but by (6.63)

and Theorem 3.17(g) there exists (λaij)
∗(λ̂abij )′ : π∗ij(Ei)|··· → TφijVj |···, unique

up to O(π∗ij(si)), with (λaij)
∗(λ̂abij )′ = (λaij)

∗(λ̂abij ) + O(π∗ij(si)) as in Definition

3.15(v), and we replace (λaij)
∗(λ̂abij ) in (6.64) by (λaij)

∗(λ̂abij )′ to define λ̂aij . By

averaging λ̂aij over the Γi × Γj-action, we can suppose it is Γi × Γj-equivariant.
Combining (6.59) with (6.63) for a, b and using Theorem 3.17(l) to go from

φij to φbij ◦ λbij to φaij ◦ λaij to φij we see that

φij = φij +
(
µ̂bij − µ̂aij − (λaij)

∗(λ̂abij )
)
◦ π∗ij(si) +O

(
π∗ij(si)

2
)

on Pij ∩ Ṗ aij ∩ Ṗ bij .
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Hence Theorem 3.17(a),(m) and local finiteness of {π∗ij(ηb) : b ∈ A} give

φij = φij +
( ∑
b∈A

π∗ij(η
b) ·
(
µ̂bij − µ̂aij − (λaij)

∗(λ̂abij )
))
◦ π∗ij(si) +O

(
π∗ij(si)

2
)

on Pij . Combining this with (6.63), (6.64) and Theorem 3.17(m) shows that

φaij ◦ λaij |Pij∩Ṗaij = φij |Pij∩Ṗaij + λ̂aij ◦ π∗ij(si) +O
(
π∗ij(si)

2
)

on Pij ∩ Ṗ aij . (6.65)

For all a, b ∈ A, on Pij ∩ Ṗ aij ∩ Ṗ bij we have

λ̂bij − λ̂aij = µ̂bij − µ̂aij +
∑
c∈A

π∗ij(η
c) ·
(
µ̂cij − µ̂bij − (λbij)

∗(λ̂bcij )

− µ̂cij + µ̂aij + (λaij)
∗(λ̂acij )

)
+O

(
π∗ij(si)

)
= µ̂bij − µ̂aij +

∑
c∈A

π∗ij(η
c) ·
(
−µ̂bij + µ̂aij + (λaij)

∗(λ̂abij )
)

+O
(
π∗ij(si)

)
= (λaij)

∗(λ̂abij ) +O(π∗ij(si)), (6.66)

using (6.64) in the first step, (6.61) in the second, and
∑
c η

c = 1 in the third.

By Theorem 3.17(f),(h) we choose φ̂′aij : π∗ij(Ei)|Pij∩Ṗaij→φ∗ij(Ej)|Pij∩Ṗaij with

φ̂′aij = (λaij)
∗(φ̂aij)− φ∗ij(dsj) ◦ λ̂aij +O(π∗ij(si)), (6.67)

uniquely up to O(π∗ij(si)). By averaging over the Γi × Γj-action we can suppose

φ̂′aij is Γi- and Γj-equivariant. Define a Γi- and Γj-equivariant morphism φ̂ij :
π∗ij(Ei)→ φ∗ij(Ej) on Pij by

φ̂ij =
∑
a∈A π

∗
ij(η

a) · φ̂′aij . (6.68)

Then for each a ∈ A, on Pij ∩ Ṗ aij we have

(λaij)
∗(φ̂aij) =

∑
b∈A π

∗
ij(η

b) ·
[
(λaij)

∗(φ̂aij)

+ (φaij ◦ λaij)∗(dsj) ◦ [(λaij)
∗(λ̂abij )− λ̂bij + λ̂aij ]

]
+O(π∗ij(si))

=
∑
b∈A π

∗
ij(η

b) ·
[
(λbij)

∗(φ̂bij)− φ∗ij(dsj) ◦ λ̂bij + φ∗ij(dsj) ◦ λ̂aij ]
]

+O(π∗ij(si))

=
∑
b∈A π

∗
ij(η

b) ·
[
φ̂′bij + φ∗ij(dsj) ◦ λ̂aij ]

]
+O(π∗ij(si))

= φ̂ij |Ṗaij + φ∗ij(dsj) ◦ λ̂aij +O(π∗ij(si)), (6.69)

using (6.66) and {ηb : b ∈ A} a partition of unity in the first step, (6.60) and
φaij ◦λaij = φij |Ṗaij +O(π∗ij(si)) from (6.65) in the second, (6.67) in the third, and

(6.68) and {ηb : b ∈ A} a partition of unity in the fourth.

We have already proved Φij := (Pij , πij , φij , φ̂ij) satisfies Definition 6.2(a)–

(d). Parts (e),(f) hold on Pij ∩ Ṗ aij ⊆ Pij by (6.65), (6.69) and Definition

6.2(e),(f) for Φaij , for each a ∈ A, so they hold on
⋃
a∈A(Pij ∩ Ṗ aij) = Pij . Thus

Φij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) is a 1-morphism over (S, f).
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Equations (6.65) and (6.69) imply that Λaij := [Pij ∩ Ṗ aij , λaij |Pij∩Ṗaij , λ̂
a
ij ] is a

2-morphism Φij |Ta ⇒ Φaij over (T a, f) for all a ∈ A. Equations (6.58) and (6.66)

imply that Λbij |Ta∩T b = Λabij � Λaij |Ta∩T b for all a, b ∈ A. This proves Definition

A.17(v), showing that Homf

(
(Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)

)
is a stack

on Imψi ∩ f−1(Imψj), and completes the first part of Theorem 6.16.

6.7.4 Equ(· · · ) is a substack of Hom(· · · )
Now we take X = Y and f = idX . In this subsection, we will by an abuse of
notation treat the weak 2-category K̇NS(X) defined in §6.1 as if it were a strict
2-category. That is, we will pretend the 2-morphisms αΦkl,Φjk,Φij ,βΦij ,γΦij
in (6.7) and (6.8) are identities or omit them, and we will omit brackets in
compositions of 1-morphisms such as Φkl ◦Φjk ◦Φij . This is permissible as every
weak 2-category can be strictified. We do it because otherwise diagrams such as
Figure 6.4 would become too big.

Definition A.17(i)–(iv) for Equ((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)) are im-
mediate from (i)–(iv) for Hom((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)). For (v),
we must show that in the last part of the proof in §6.7.3, if the Φaij are coordinate

changes over T a (i.e. equivalences in K̇NTa(X)), then the Φij we construct with
2-morphisms Λaij : Φij |Ta ⇒ Φaij for a ∈ A is a coordinate change over S.

Let S, {T a : a ∈ A},Φa
ij ,Λ

ab
ij ,Φij ,Λ

a
ij be as in §6.7.3, but with X = Y ,

f = idX and all the Φa
ij coordinate changes. Since Φa

ij is an equivalence in

K̇NTa(X), we may choose a coordinate change Φa
ji : (Vj , Ej ,Γj , sj , ψj) →

(Vi, Ei,Γi, si, ψi) over T a and 2-morphisms Iai : Φaji ◦ Φaij ⇒ id(Vi,Ei,Γi,si,ψi) and
Ka
j : Φa

ij ◦ Φa
ji ⇒ id(Vj ,Ej ,Γj ,sj ,ψj) for all a ∈ A. By Proposition A.5 we can

suppose these satisfy

idΦaij
∗ Iai = Ka

j ∗ idΦaij
and idΦaji

∗Ka
j = Iai ∗ idΦaji

. (6.70)

Define 2-morphisms Mab
ji : Φaji|Ta∩T b ⇒ Φbji|Ta∩T b over T a∩T b for all a, b ∈ A

to be the vertical composition

Φaji|Ta∩T b
idΦa

ji
∗(Kbj)

−1

+3 Φaji◦Φbij◦Φbji

idΦa
ji
∗(Λabij )−1∗id

Φb
ji

+3 Φaji◦Φaij◦Φbji

Iai ∗idΦb
ji

+3 Φbji|Ta∩T b . (6.71)

For a, b, c ∈ A, consider the diagram Figure 6.4 of 2-morphisms over T a ∩
T b ∩ T c. The three outer quadrilaterals commute by the definition (6.71) of
Mab
ji . Eight inner quadrilaterals commute by compatibility of horizontal and

vertical composition, a 2-gon commutes by (6.70), and a triangle commutes as
Λbcij�Λabij = Λacij . Hence Figure 6.4 commutes, which shows that Mbc

ji�Mab
ji = Mac

ji

over T a ∩ T b ∩ T c for all a, b, c ∈ A.
Thus by Definition A.17(v) for Hom((Vj , Ej ,Γj , sj , ψj), (Vi, Ei,Γi, si, ψi)),

proved in §6.7.3, there exists a 1-morphism Φji : (Vj , Ej ,Γj , sj , ψj) → (Vi, Ei,
Γi, si, ψi) over S and 2-morphisms Ma

ji : Φji|Ta ⇒ Φa
ji over T a for a ∈ A, such

that Mb
ji|Ta∩T b = Mab

ji �Ma
ji|Ta∩T b over T a ∩ T b for all a, b ∈ A.
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Φaji|Ta∩T b∩T c
Mab
ji

//

Mac
ji //

Φbji|Ta∩T b∩T c

Mbc
ji

��

Φaji◦Φbij◦Φbji

id∗Kbj

cc

Φaji◦Φaij◦Φbji
id∗Λabij ∗idoo

Iai ∗id
55

Φaji◦Φbij◦
Φbji◦Φcij◦Φcji

id∗Kbj∗id

��

id∗Kcj

OO

Φaji◦Φaij◦
Φbji◦Φcij◦Φcji

id∗Λabij ∗idoo Iai ∗id //

id∗Kcj
;;

Φbji◦Φcij◦Φcji

id∗Kcj

DD

Φaji◦Φbij◦
Φbji◦Φbij◦Φcji

id∗Λbcij ∗id
cc

id∗Kbj∗id
��

id∗Iai ∗id




Φaji◦Φaij◦
Φbji◦Φbij◦Φcji

id∗Λabij ∗idoo
Iai ∗id

//

id∗Ibi∗id��

id∗Λbcij ∗id
cc

Φbji◦Φbij◦Φcji

id∗Λbcij ∗id

OO

Ibi∗id

��

Φaji◦
Φcij◦Φcji

id∗Kcj

TT

Φaji◦Φbij◦Φcji
id∗Λbcij ∗idoo Φaji◦Φaij◦Φcji

id∗Λabij ∗idoo

id∗Λacij ∗id

kk
Iai ∗id

))
Φcji|Ta∩T b∩T c .

Figure 6.4: Proof that Mbc
ji �Mab

ji = Mac
ji

For each a ∈ A, define a 2-morphism Na
i : (Φji ◦Φij)|Ta ⇒ id(Vi,Ei,Γi,si,ψi)|Ta

by the vertical composition

(Φji ◦ Φij)|Ta
Ma
ji∗Λ

a
ij +3 Φaji ◦ Φaij

Iai +3 id(Vi,Ei,Γi,si,ψi)|Ta . (6.72)

Then the following diagram commutes by (6.70), Λbij = Λabij � Λaij , Mb
ji =

Mab
ji �Ma

ji, the definitions of Mab
ji ,N

a
i in (6.71) and (6.72), and compatibility of

horizontal and vertical composition:

Φji ◦ Φij |Ta∩T b

Nbi |Ta∩Tb //

Nai |Ta∩Tb

��

Ma
ji∗Λ

a
ij

--

Mb
ji∗Λ

b
ji ��

Ma
ji∗Λ

b
ij%%

Φaji ◦ Φbij

Mab
ji ∗id

��

Φaji ◦ Φaij

Iai

��

id∗Λabij
oo

Φaji ◦ Φbij ◦ Φbji ◦ Φbij

id∗Ibi

ll

id∗Kbj∗id

jj

Φbji ◦ Φbij

Ibi --

Φaji ◦ Φaij ◦ Φbji ◦ Φbij
Iai ∗idoo

id∗Ibi

CC

id∗Λabij ∗id
ee

id(Vi,Ei,Γi,si,ψi)|Ta∩T b .

Hence Na
i |Ta∩T b = Nb

i |Ta∩T b for all a, b ∈ A. Therefore by Definition A.17(iv) for
Hom((Vi, Ei,Γi, si, ψi), (Vi, Ei,Γi, si, ψi)), proved in §6.7.2, there is a unique 2-
morphism Ni : Φji ◦Φij ⇒ id(Vi,Ei,Γi,si,ψi) over S with Ni|Ta = Na

i for all a ∈ A.
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Similarly we construct Oj : Φij ◦ Φji ⇒ id(Vj ,Ej ,Γj ,sj ,ψj). These Φji,Ni,Oj

show Φij is an equivalence in K̇NS(X), and so a coordinate change. This gives
Definition A.17(v) for Equ((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)), which is thus
a substack of Hom((Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj)), completing the proof
of Theorem 6.16.
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Chapter 7

Relation to other Kuranishi-type
spaces (To be rewritten.)

We now compare our Kuranishi spaces in Chapter 6 with Kuranishi-type spaces
developed by other authors. In §7.1–§7.4 we discuss various definitions of
Kuranishi space, and of good coordinate system, in the work of Fukaya, Oh,
Ohta and Ono [19–39], McDuff and Wehrheim [77, 78, 80–83], and Dingyu Yang
[110–112]. We use Yang’s work to connect our Kuranishi spaces with the polyfold
theory of Hofer, Wysocki and Zehnder [46–53].

To improve compatibility with Chapter 6, we have made some small changes
in notation compared to our sources, without changing the content. We hope
the authors concerned will not mind this. Examples 7.2, 7.5, . . . explain the
relationship between the material we explain, and the definitions of §6.1. Section
7.5 will prove that all the structures we discuss can be converted to Kuranishi
spaces in the sense of §6.2. The proof of Theorem 7.26 is deferred until §7.6.

7.1 Fukaya–Oh–Ohta–Ono’s Kuranishi spaces

‘Kuranishi spaces’ are used in the work of Fukaya, Oh, Ohta and Ono [19–39]
as the geometric structure on moduli spaces of J-holomorphic curves. Initially
introduced by Fukaya and Ono [39, §5] in 1999, the definition has changed several
times as their work has evolved.

This section explains their most recent definition of Kuranishi space, taken
from [30, §4]. As in the rest of our book ‘Kuranishi neighbourhood’, ‘coordinate
change’ and ‘Kuranishi space’ have a different meaning, we will use the terms
‘FOOO Kuranishi neighbourhood’, ‘FOOO coordinate change’ and ‘FOOO
Kuranishi space’ below to refer to concepts from [30].

For the next definitions, let X be a compact, metrizable topological space.

Definition 7.1. A FOOO Kuranishi neighbourhood on X is a quintuple (V,E,
Γ, s, ψ) such that:

(a) V is a classical manifold, or manifold with corners (V ∈Man or Manc).
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(b) E is a finite-dimensional real vector space.

(c) Γ is a finite group with a smooth, effective action on V , and a linear
representation on E.

(d) s : V → E is a Γ-equivariant smooth map.

(e) ψ is a homeomorphism from s−1(0)/Γ to an open subset Imψ in X, where
Imψ =

{
ψ(xΓ) : x ∈ s−1(0)

}
is the image of ψ, and is called the footprint

of (V,E,Γ, s, ψ).

We will write ψ̄ : s−1(0) → Imψ ⊆ X for the composition of ψ with the
projection s−1(0)→ s−1(0)/Γ.

Now let p ∈ X. A FOOO Kuranishi neighbourhood of p in X is a FOOO
Kuranishi neighbourhood (Vp, Ep,Γp, sp, ψp) with a distinguished point op ∈ Vp
such that op is fixed by Γp, and sp(op) = 0, and ψp([op]) = p. Then op is unique.

Example 7.2. For our Kuranishi neighbourhoods (V ′, E′,Γ′, s′, ψ′) in Definition
6.1, π′ : E′ → V ′ is a Γ′-equivariant vector bundle, and s′ : V ′ → E′ a Γ′-
equivariant smooth section. Also Γ′ is not required to act effectively on V ′.

To make a FOOO Kuranishi neighbourhood (V,E,Γ, s, ψ) into one of our
Kuranishi neighbourhoods (V ′, E′,Γ′, s′, ψ′), take V ′ = V , Γ′ = Γ, ψ′ = ψ, let
π′ : E′ → V ′ be the trivial vector bundle πV : V × E → V with fibre E, and
s′ = (id, s) : V → V ×E. Thus, FOOO Kuranishi neighbourhoods correspond
to special examples of our Kuranishi neighbourhoods (V ′, E′,Γ′, s′, ψ′), in which
π′ : E′ → V ′ is a trivial vector bundle, and Γ′ acts effectively on V ′.

By an abuse of notation, we will sometimes identify FOOO Kuranishi neigh-
bourhoods with the corresponding Kuranishi neighbourhoods in §6.1. That is,
we will use E to denote both a vector space, and the corresponding trivial vector
bundle over V , and s to denote both a map, and a section of a trivial bundle.
Fukaya et al. [30, Def. 4.3(4)] also make the same abuse of notation.

Definition 7.3. Let (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj) be FOOO Kuranishi
neighbourhoods on X. Suppose S ⊆ Imψi ∩ Imψj ⊆ X is an open subset
of the intersection of the footprints Imψi, Imψj ⊆ X. We say a quadruple
Φij = (Vij , hij , ϕij , ϕ̂ij) is a FOOO coordinate change from (Vi, Ei,Γi, si, ψi) to
(Vj , Ej ,Γj , sj , ψj) over S if:

(a) Vij is a Γi-invariant open neighbourhood of ψ̄−1
i (S) in Vi.

(b) hij : Γi → Γj is an injective group homomorphism.

(c) ϕij : Vij ↪→ Vj is an hij-equivariant smooth embedding, such that the
induced map (ϕij)∗ : Vij/Γi → Vj/Γj is injective.

(d) ϕ̂ij : Vij ×Ei ↪→ Vj ×Ej is an hij-equivariant embedding of vector bundles
over ϕij : Vij ↪→ Vj , viewing Vij ×Ei → Vij , Vj ×Ej → Vj as trivial vector
bundles.

(e) ϕ̂ij(si|Vij ) = ϕ∗ij(sj), in sections of ϕ∗ij(Vj × Ej)→ Vij .

(f) ψi = ψj ◦ (ϕij)∗ on (s−1
i (0) ∩ Vij)/Γi.
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(g) hij restricts to an isomorphism StabΓi(v)→ StabΓj (ϕij(v)) for all v in Vij ,
where StabΓi(v) is the stabilizer subgroup

{
γ ∈ Γi : γ(v) = v

}
.

(h) For each v ∈ s−1
i (0) ∩ Vij ⊆ Vij ⊆ Vi we have a commutative diagram

0 // TvVi
dϕij |v

//

dsi|v��

Tϕij(v)Vj //

dsj |ϕij(v)��

Nij |v //

dfibresj |v��

0

0 // Ei|v
ϕ̂ij |v // Ej |ϕij(v)

// Fij |v // 0

(7.1)

with exact rows, where Nij → Vij is the normal bundle of Vij in Vj ,
and Fij = ϕ∗ij(Ej)/ϕ̂ij(Ei|Vij ) the quotient bundle. We require that the
induced morphism dfibresj |v in (7.1) should be an isomorphism.

Note that dfibresj |v an isomorphism in (7.1) is equivalent to the following
complex being exact:

0 // TvVi
dsi|v⊕dϕij |v // Ei|v⊕Tϕij(v)Vj

ϕ̂ij |v⊕−dsj |ϕij(v)
// Ej |ϕij(v)

// 0. (7.2)

This should be compared to Theorem 6.12.
Now let (Vp, Ep,Γp, sp, ψp), (Vq, Eq,Γq, sq, ψq) be FOOO Kuranishi neigh-

bourhoods of p ∈ X and q ∈ Imψp ⊆ X, respectively. We say a quadruple
Φqp = (Vqp, hqp, ϕqp, ϕ̂qp) is a FOOO coordinate change if it is a FOOO coordi-
nate change from (Vq, Eq,Γq, sq, ψq) to (Vp, Ep,Γp, sp, ψp) over Sqp, where Sqp
is any open neighbourhood of q in Imψq ∩ Imψp.

Remark 7.4. (a) We have changed notation slightly compared to [30], to
improve compatibility with the rest of the book. Fukaya et al. [30, §4] write
Kuranishi neighbourhoods as (V,E,Γ, ψ, s) rather than (V,E,Γ, s, ψ). Also, they
write coordinate changes as Φpq = (ϕ̂pq, ϕpq, hpq), leaving Vpq implicit, rather
than as Φqp = (Vqp, hqp, ϕqp, ϕ̂qp) as we do. Note that we have changed the order
of p, q in the subscripts compared to [30].

Fukaya et al. do not require ϕ̂ij : Vij × Ei ↪→ ϕ∗ij(Vj × Ej) to come from
an injective linear map of vector spaces Ei ↪→ Ej . As in §7.3, McDuff and
Wehrheim do require this.

Fukaya et al. only impose Definition 7.3(h) for Kuranishi spaces ‘with a
tangent bundle’ in the sense of [24, 30, 39]. As the author knows of no reason
for considering Kuranishi spaces ‘without tangent bundles’, and the notation
appears to be merely historical, we will include ‘with a tangent bundle’ in our
definitions of FOOO coordinate changes and FOOO Kuranishi spaces.

(b) Manifolds with corners were discussed in Chapter 2. When we allow the
Vi in Kuranishi neighbourhoods (Vi, Ei,Γi, si, ψi) to be manifolds with corners,
it is important that the definition of embedding of manifolds with corners
ϕij : Vij ↪→ Vj used in Definition 7.3(c) includes the condition that ϕij be simple,
in the sense of §2.1. For comparison, in our theory of Kuranishi spaces with
corners in §6.3, it is important that coordinate changes Φij are simple in the
sense of Definition 6.31, as follows from Proposition 6.32(d).
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We relate FOOO coordinate changes to coordinate changes in §6.1:

Example 7.5. Let Φij = (Vij , hij , ϕij , ϕ̂ij) : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj ,
ψj) be a FOOO coordinate change over S, as in Definition 7.3. As in Example
7.2, regard the FOOO Kuranishi neighbourhoods (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj ,
sj , ψj) as examples of Kuranishi neighbourhoods in the sense of §6.1.

Set Pij = Vij × Γj . Let Γi act on Pij by γi : (v, γ) 7→ (γi · v, γhij(γi)−1). Let
Γj act on Pij by γj : (v, γ) 7→ (v, γjγ). Define πij : Pij → Vi and φij : Pij → Vj
by πij : (v, γ) 7→ v and φij : (v, γ) 7→ γ · ϕij(v). Then πij is Γi-equivariant and
Γj-invariant. Since ϕij is hij-equivariant, φij is Γi-invariant, and Γj-equivariant.

We will define a vector bundle morphism φ̂ij : π∗ij(Ei) → φ∗ij(Ej). At

(v, γ) ∈ Pij , this φ̂ij must map Ei|v → Ej |γ·ϕij(v). We define φ̂ij |(v,γ) to be the
composition of ϕ̂ij |v : Ei|v → Ej |ϕij(v) with γ· : Ej |ϕij(v) → Ej |γ·ϕij(v) from the

Γj-action on Ej . That is, φ̂ij |Vij×{γ} = γ · ϕ̂ij for each γ ∈ Γj .

It is now easy to see that Φ̃ij = (Pij , πij , φij , φ̂ij) : (Vi, Ei,Γi, si, ψi)→ (Vj ,
Ej ,Γj , sj , ψj) is a 1-morphism over S, in the sense of §6.1. Using (7.2), Theorem

6.12(a),(b) show that Φ̃ij is a coordinate change over S, as in §6.1, noting that
ϕij is simple in the corners case as in Remark 7.4(b).

Definition 7.6. A FOOO Kuranishi structure K on X of virtual dimension
n ∈ Z in the sense of [30, §4], including the ‘with a tangent bundle’ condition,
assigns a FOOO Kuranishi neighbourhood (Vp, Ep,Γp, sp, ψp) for each p ∈ X
and a FOOO coordinate change Φqp = (Vqp, hqp, ϕqp, ϕ̂qp) : (Vq, Eq,Γq, sq, ψq)→
(Vp, Ep,Γp, sp, ψp) for each q ∈ Imψp such that the following holds:

(a) dimVp − rankEp = n for all p ∈ X.

(b) If q ∈ Imψp, r ∈ ψq((Vqp∩s−1
q (0))/Γq), then for each connected component

(ϕ−1
rq (Vqp) ∩ Vrp)α of ϕ−1

rq (Vqp) ∩ Vrp there exists γαrqp ∈ Γp with

hqp ◦ hrq = γαrqp · hrp · (γαrqp)−1, ϕqp ◦ ϕrq = γαrqp · ϕrp,
and ϕ∗rq(ϕ̂qp) ◦ ϕ̂rq = γαrqp · ϕ̂rp,

(7.3)

where the second and third equations hold on (ϕ−1
rq (Vqp) ∩ Vrp)α.

If the Vp for p ∈ X are classical manifolds, we call X = (X,K) a FOOO
Kuranishi space, of virtual dimension n ∈ Z, written vdimX = n. If the Vp are
manifolds with corners, we call X a FOOO Kuranishi space with corners.

We prove in Theorem 7.29 below that a FOOO Kuranishi space X (with
corners) can be made into a Kuranishi space X ′ (with corners) in the sense of
§6.2. We will show that the elements γαrqp ∈ Γp in Definition 7.6(b) correspond

in the setting of §6.1 to a 2-morphism Λrqp : Φ̃qp ◦ Φ̃rq ⇒ Φ̃rp.

Example 7.7. (i) In the Fukaya–Oh–Ohta–Ono theory [19–39], one often relates
two FOOO coordinate changes in the following way. Let Φij = (Vij , hij , ϕij ,

191



ϕ̂ij),Φ
′
ij = (V ′ij , h

′
ij , ϕ

′
ij , ϕ̂

′
ij) : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) be FOOO

coordinate changes over S. Suppose there exists γ ∈ Γj such that

hij = γ · h′ij · γ−1, φij = γ · φ′ij , and φ̂ij = γ · φ̂′ij , (7.4)

where the second and third equations hold on V́ij := Vij ∩ V ′ij .
Let Φ̃ij , Φ̃

′
ij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) be the 1-morphisms in

the sense of §6.1 corresponding to Φij ,Φ
′
ij in Example 7.5. Set Ṕij = V́ij × Γj ⊆

Pij . Define λij : Ṕij = V́ij × Γj → V ′ij × Γj = P ′ij by λij : (v, γ′) 7→ (v, γ′γ), and

λ̂ij = 0. Then (Ṕij , λij , λ̂ij) satisfies Definition 6.4(a)–(c), so we have defined a

2-morphism Λij = [Ṕij , λij , λ̂ij ] : Φ̃ij ⇒ Φ̃′ij , in the sense of §6.1.

(ii) This enables us to interpret Definition 7.6(b) in terms of a 2-morphism.
In the situation of Definition 7.6(b), the composition of the FOOO coordinate
changes Φrq,Φqp is Φqp ◦Φqp =

(
ϕ−1
rq (Vqp), hqp ◦hrq, ϕqp ◦ϕrq|ϕ−1

rq (Vqp), ϕ
∗
rq(ϕ̂qp)◦

ϕ̂rq|ϕ−1
rq (Vqp)

)
. Thus, (7.3) relates Φqp ◦ Φrq to Φrp in the same way that (7.4)

relates Φij to Φ′ij , except for allowing γrqp to vary on different connected

components. Hence, if Φ̃rq, Φ̃qp, Φ̃rp are the coordinate changes in the sense of
§6.1 associated to Φrq,Φqp,Φrp in Example 7.5, then the method of (i) defines

a 2-morphism Λpqr : Φ̃qp ◦ Φ̃rq ⇒ Φ̃rp, in the sense of §6.1.

(iii) In the situation of Definition 7.6(b), suppose v ∈ (ϕ−1
rq (Vqp) ∩ Vrp)α is

generic. Then StabΓr (v) = {1}, as Γr acts (locally) effectively on Vr by Definition
7.1(c). Hence StabΓp(ϕrp(v)) = {1} by Definition 7.3(g). Therefore the point
γαrqp · ϕrp(v) = ϕqp ◦ ϕrq(v) in Vp determines γαrqp in Γp. So the second equation
of (7.3) determines γαrqp ∈ Γp uniquely, provided it exists. Thus the 2-morphism

Λpqr : Φ̃qp ◦ Φ̃rq ⇒ Φ̃rp in (ii) is also determined uniquely.

Definition 7.8. Let X be a FOOO Kuranishi space (possibly with corners).
Then for each p ∈ X, q ∈ Imψp and v ∈ s−1

q (0)∩Vqp, we have an exact sequence
(7.2). Taking top exterior powers in (7.2) yields an isomorphism(

detTvVq
)
⊗ det

(
Ep|ϕqp(v)

) ∼= (detEq|v
)
⊗
(
Tϕqp(v)Vp

)
,

where detW means ΛdimWW , or equivalently, a canonical isomorphism(
detT ∗Vp ⊗ detEp

)
|ϕqp(v)

∼=
(
detT ∗Vq ⊗ detEq

)
|v. (7.5)

Defining the isomorphism (7.5) requires a suitable sign convention. Sign con-
ventions are discussed in Fukaya et al. [24, §8.2] and McDuff and Wehrheim [82,
§8.1]. An orientation on X is a choice of orientations on the line bundles

detT ∗Vp ⊗ detEp
∣∣
s−1
p (0)

−→ s−1
p (0)

for all p ∈ X, compatible with the isomorphisms (7.5). In §10.7 in volume II we
will develop the analogue of these ideas for our (m- and µ-)Kuranishi spaces.
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Definition 7.9. Let X be a FOOO Kuranishi space (possibly with corners),
and Y a classical manifold. A smooth map f : X → Y is f = (fp : p ∈ X) where
fp : Vp → Y is a Γp-invariant smooth map for all p ∈ X (that is, fp factors via
Vp → Vp/Γp → Y ), and fp ◦ ϕqp = fq|Vqp : Vqp → Y for all q ∈ Imψp. This
induces a unique continuous map f : X → Y with fp|s−1

p (0) = f ◦ ψ̄p for all

p ∈ X. We call f weakly submersive if each fp is a submersion.
Suppose X,X ′ are FOOO Kuranishi spaces, Y is a classical manifold, and

f : X → Y , f ′ : X ′ → Y are weakly submersive. Then as in [24, §A1.2] one can
define a ‘fibre product’ Kuranishi space W = X ×Y X ′, with topological space
W =

{
(p, p′) ∈ X ×X ′ : f(p) = f ′(p′)

}
, and FOOO Kuranishi neighbourhoods

(Vp,p′ , Ep,p′ ,Γp,p′ , sp,p′ , ψp,p′) for (p, p′) ∈ W , where Vp,p′ = Vp ×fp,Y,f ′p′ V
′
p′ ,

Ep,p′ = π∗Vp(Ep)⊕ π
∗
V ′
p′

(E′p′), Γp,p′ = Γp × Γ′p′ , sp,p′ = π∗Vp(sp)⊕ π
∗
V ′
p′

(s′p′), and

ψp,p′ = ψp ◦ (πVp)∗ × ψ′p′ ◦ (πV ′
p′

)∗. The weakly submersive condition ensures

Vp,p′ = Vp ×Y V ′p′ is well-defined.

Remark 7.10. (i) Note that Fukaya et al. [19–39] do not define morphisms
between Kuranishi spaces, but only morphisms f : X → Y from Kuranishi spaces
X to classical manifolds Y . Thus, Kuranishi spaces in [19–39] do not form a
category.

Observe however that Fukaya [19, §3, §5] (see also [35, §4.2]) works with a
forgetful morphism forget :Ml,1(β)→Ml,0(β), which is clearly intended to be
some kind of morphism of Kuranishi spaces, without defining the concept.

(ii) The ‘fibre product’ X ×Y X ′ in Definition 7.9 is not a fibre product in the
sense of category theory, characterized by a universal property, since Fukaya et al.
in [19–39] do not have a category (or higher category) of FOOO Kuranishi spaces
in which to state such a universal property. Their ‘fibre product’ is really just an
ad hoc construction. Chapter 11 in volume II will study w-transverse 2-category
fibre products in our 2-categories of (m-)Kuranishi spaces mK̇ur, K̇ur.

7.2 Fukaya–Oh–Ohta–Ono’s good coordinate systems

Good coordinate systems on Kuranishi spaces X in the work of Fukaya, Oh,
Ohta and Ono [19, 24, 26, 27, 30, 33, 35–37, 39] are an open cover of X by
FOOO Kuranishi neighbourhoods (Vi, Ei,Γi, si, ψi) for i in a finite set I, with
coordinate changes Φij for i, j ∈ I, satisfying extra conditions. They are a
tool for constructing virtual cycles for Kuranishi spaces using the method of
‘perturbation by multisections’, and the extra conditions are included to make
this virtual cycle construction work.

As with Kuranishi spaces, since its introduction in [39, Def. 6.1] the definition
of good coordinate system has changed several times during the evolution of
[19, 24, 26, 27, 30, 33, 35–37, 39], see in chronological order [39, Def. 6.1], [24,
Lem. A1.11], [26, §15], and [30, §5]. Of these, [30, 39] work with Kuranishi
neighbourhoods (Vi,Ei, si, ψi) where Vi is an orbifold (which we do not want
to do), and [24, 26] with Kuranishi neighbourhoods (Vi, Ei,Γi, si, ψi) with Vi a
manifold.
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The definition we give below is a hybrid of those in [24, 26, 30, 36]. Essentially
our ‘FOOO weak good coordinate systems’ follow the definitions in [24, 26], and
our ‘FOOO good coordinate systems’ include extra conditions adapted from [30,
36]. We show in Theorem 7.31 below that given a FOOO weak good coordinate
system on X, we can make X into a Kuranishi space X in the sense of §6.2.

Definition 7.11. Let X be a compact, metrizable topological space. A FOOO
weak good coordinate system G =

(
(I,≺), (Vi, Ei,Γi, si, ψi)i∈I ,Φij, i ≺ j in I

)
on

X of virtual dimension n ∈ Z consists of a finite indexing set I, a partial
order ≺ on I, FOOO Kuranishi neighbourhoods (Vi, Ei,Γi, si, ψi) for i ∈ I
with Vi a classical manifold, dimVi − rankEi = n, and X =

⋃
i∈I Imψi, and

FOOO coordinate changes Φij = (Vij , hij , ϕij , ϕ̂ij) from (Vi, Ei,Γi, si, ψi) to
(Vj , Ej ,Γj , sj , ψj) over S = Imψi ∩ Imψj for all i, j ∈ I with i ≺ j and Imψi ∩
Imψj 6= ∅, satisfying the two conditions:

(a) If i 6= j ∈ I with Imψi ∩ Imψj 6= ∅ then either i ≺ j or j ≺ i.
(b) If i ≺ j ≺ k in I with Imψi∩ Imψj ∩ Imψk 6= ∅ then there exists γijk ∈ Γk

such that as in (7.3) we have

hjk ◦ hij = γijk · hik · γ−1
ijk, ϕjk ◦ ϕij = γijk · ϕik,

and ϕ∗ij(ϕ̂jk) ◦ ϕ̂ij = γijk · ϕ̂ik,
(7.6)

where the second and third equations hold on Vij ∩ Vik ∩ ϕ−1
ij (Vjk). The

γijk are uniquely determined by (7.6) as in Example 7.7(iii).

If instead the Vi for i ∈ I are manifolds with corners, we call G a FOOO
weak good coordinate system with corners.

We call G a FOOO good coordinate system on X (with corners) if it also
satisfies the extra conditions:

(c) If i ≺ j in I, Imψi ∩ Imψj 6= ∅ then ψi
(
(Vij ∩ s−1

i (0))/Γi
)

= Imψi ∩ Imψj .

(d) If i ≺ j in I and Imψi ∩ Imψj 6= ∅ then inc×ϕij : Vij → Vi × Vj is proper,
where inc : Vij ↪→ Vi is the inclusion.

(e) If i ≺ j, i ≺ k in I for j 6= k and Imψi ∩ Imψj 6= ∅ 6= Imψi ∩ Imψk,
Vij ∩ Vik 6= ∅, then Imψj ∩ Imψk 6= ∅, and either j ≺ k and Vij ∩ Vik =
ϕ−1
ij (Vjk), or k ≺ j and Vij ∩ Vik = ϕ−1

ik (Vkj).

(f) If i ≺ k, j ≺ k in I for i 6= j and Imψi ∩ Imψk 6= ∅ 6= Imψj ∩ Imψk
and vi ∈ Vik, vj ∈ Vjk, δ ∈ Γk with ϕjk(vj) = δ · ϕik(vi) in Vk, then
Imψi ∩ Imψj 6= ∅ and either i ≺ j, vi ∈ Vij , and there exists γ ∈ Γj with
hjk(γ) = δ γijk and vj = γ · ϕij(vi); or j ≺ i, vj ∈ Vji, and there exists
γ ∈ Γi with hik(γ) = δ−1 γjik and vi = γ · ϕji(vj), for γijk, γjik as in (b).

As in [36], parts (c)–(f) are equivalent to:

(g) Define a symmetric, reflexive binary relation ∼ on
∐
i∈I Vi/Γi by Γiv ∼

Γjϕij(vi) if i ≺ j, Imψi∩ Imψj 6= ∅ and v ∈ Vij . Then ∼ is an equivalence
relation, and

(∐
i∈I Vi/Γi

)
/ ∼ with the quotient topology is Hausdorff.
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Now let X,G be as above (either weak or not), and Y be a classical manifold.
As in Definition 7.9, a smooth map (fi, i ∈ I) from (X,G) to Y is a Γi-invariant
smooth map fi : Vi → Y for i ∈ I, with fj ◦ ϕij = fi|Vij : Vij → Y for all i ≺ j
in I. This induces a unique continuous map f : X → Y with fi|s−1

i (0) = f ◦ ψ̄i
for i ∈ I.

Using elementary topology, Fukaya, Oh, Ohta and Ono [36] prove:

Theorem 7.12. Suppose G =
(
(I,≺), (Vi, Ei,Γi, si, ψi)i∈I ,Φij, i≺j in I

)
is a

FOOO weak good coordinate system on X. Then we can construct a FOOO good
coordinate system G′ =

(
(I ′,≺), (V ′i , E

′
i,Γ
′
i, s
′
i, ψ
′
i)i∈I ,Φ

′
ij, i ≺ j in I

)
on X, where

I ′ ⊆ I, V ′i ⊆ Vi, V
′
ij ⊆ Vij are open, Γ′i = Γi, h

′
ij = hij , and E′i, s

′
i, ψ
′
i, ϕ
′
ij , ϕ̂

′
ij

are obtained from Ei, . . . , ϕ̂ij by restricting from Vi, Vij to V ′i , V
′
ij.

In fact Fukaya et al. [36] work at the level of orbifolds Vi/Γi, Vij/Γi rather
than manifolds with finite group actions, but their result easily implies Theorem
7.12. The next definition is based on Fukaya et al. [30, Def. 7.2], but using (Vi,
Ei,Γi, si, ψi) for Vi a manifold, rather than (Vi,Ei, si, ψi) for Vi an orbifold.

Definition 7.13. LetX = (X,K) be a FOOO Kuranishi space. A FOOO (weak)
good coordinate system G =

(
(I,≺), (Vi, Ei,Γi, si, ψi)i∈I ,Φij, i ≺ j in I

)
on the

topological space X is called compatible with the FOOO Kuranishi structure
K on X if for each i ∈ I and each p ∈ Imψi ⊆ X there exists a FOOO
coordinate change Φpi from (Vp, Ep,Γp, sp, ψp) to (Vi, Ei,Γi, si, ψi) on an open
neighbourhood Spi of p in Imψp ∩ Imψi (where (Vp, Ep,Γp, sp, ψp) comes from
K and (Vi, Ei,Γi, si, ψi) from the good coordinate system) such that

(a) If q ∈ Imψp ∩ Imψi then there exists γqpi ∈ Γi such that

hpi ◦ hqp = γqpi · hqi · γ−1
qpi, ϕpi ◦ ϕqp = γqpi · ϕqi,

and ϕ∗qp(ϕ̂pi) ◦ ϕ̂qp = γqpi · ϕ̂qi,

where the second and third equations hold on ϕ−1
qp (Vpi) ∩ Vqp ∩ Vqi.

(b) If i ≺ j in I with p ∈ Imψi ∩ Imψj then there exists γpij ∈ Γj such that

hij ◦ hpi = γpij · hpj · γ−1
pij , ϕij ◦ ϕpi = γpij · ϕpj ,

and ϕ∗pi(ϕ̂ij) ◦ ϕ̂pi = γpij · ϕ̂pj ,
(7.7)

where the second and third equations hold on ϕ−1
pi (Vij) ∩ Vpi ∩ Vpj .

Remark 7.14. For the programme of [19–39], one would like to show:

(i) Any (oriented) FOOO Kuranishi spaceX (perhaps also with a smooth map
f : X → Y to a manifold Y ) admits a compatible (oriented) FOOO good
coordinate system

(
(I,≺), (Vi, Ei,Γi, si, ψi)i∈I ,Φij, i ≺ j in I

)
(perhaps also

with a smooth map (fi, i ∈ I) to Y ).
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(ii) Given a compact, metrizable topological space X with an oriented FOOO
good coordinate system

(
(I,≺), (Vi, Ei,Γi, si, ψi)i∈I ,Φij, i ≺ j in I

)
(per-

haps with a smooth map (fi, i ∈ I) to a classical manifold Y ), we can
construct a virtual cycle for X (perhaps in the singular homology H∗(Y ;Q)
or de Rham cohomology H∗dR(Y ;R) of Y ).

Producing such virtual cycles is, from the point of view of symplectic geometry,
the sole reason for defining and studying Kuranishi spaces.

Statements (i), for various definitions of ‘Kuranishi space’, ‘good coordinate
system’, and ‘compatible’, can be found in [39, Lem. 6.3] (with short proof), [24,
Lem. A1.11] (with no proof), and [30, §7] (with long proof). Constructions (ii),
again for various definitions, can be found in [39, §6], [24, §A1.1], [27, §12] (using
de Rham cohomology), and [30, §6] (with long proof).

7.3 McDuff–Wehrheim’s Kuranishi atlases

Next we discuss an approach to Kuranishi spaces developed by McDuff and
Wehrheim [77, 78, 80–83]. Their main definition is that of a (weak) Kuranishi
atlas on a topological space X. Here are [81, Def.s 2.2.2 & 2.2.8].

Definition 7.15. An MW Kuranishi neighbourhood (V,E,Γ, s, ψ) on a topolog-
ical space X is the same as a FOOO Kuranishi neighbourhood in Definition 7.1,
with V a classical manifold, except that Γ need not act effectively on V .

As in Example 7.2, by an abuse of notation we will regard MW Kuranishi
neighbourhoods as examples of our Kuranishi neighbourhoods in §6.1.

Definition 7.16. Suppose (VB , EB ,ΓB , sB , ψB), (VC , EC ,ΓC , sC , ψC) are MW
Kuranishi neighbourhoods on a topological space X, and S ⊆ ImψB∩ImψC ⊆ X
is open. We say a quadruple ΦBC = (ṼBC , ρBC , $BC , ϕ̂BC) is an MW coordinate
change from (VB , EB ,ΓB , sB , ψB) to (VC , EC ,ΓC , sC , ψC) over S if:

(a) ṼBC is a ΓC-invariant embedded submanifold of VC containing ψ̄−1
C (S).

(b) ρBC : ΓC → ΓB is a surjective group morphism, with kernel ∆BC ⊆ ΓC .

There should exist an isomorphism ΓC ∼= ΓB ×∆BC identifying ρBC with
the projection ΓB ×∆BC → ΓB .

(c) $BC : ṼBC → VB is a ρBC-equivariant étale map, with image VBC =
$BC(ṼBC) a ΓB-invariant open neighbourhood of ψ̄−1

B (S) in VB , such that

$BC : ṼBC → VBC is a principal ∆BC-bundle.

(d) ϕ̂BC : EB → EC is an injective ΓC-equivariant linear map, where the
ΓC-action on EB is induced from the ΓB-action by ρBC , so in particular
∆BC acts trivially on EB .

(e) ϕ̂BC ◦ sB ◦$BC = sC |ṼBC : ṼBC → EC .

(f) ψB ◦ ($BC)∗ = ψC on (s−1
C (0) ∩ ṼBC)/ΓC .
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(g) For each v ∈ ṼBC we have a commutative diagram

0 // TvṼBC ⊂
//

d($∗BC(sB))|v��

TvVC //

dsC |v��

NBC |v //

dfibresC |v��

0

0 // EB
ϕ̂BC // EC // EC/ϕ̂BC(EB) // 0

(7.8)

with exact rows, where NBC is the normal bundle of ṼBC in VC . We
require the induced morphism dfibresC |v in (7.8) to be an isomorphism.

We relate MW coordinate changes to coordinate changes in §6.1:

Example 7.17. Let ΦBC = (ṼBC , ρBC , $BC , ϕ̂BC) : (VB , EB ,ΓB , sB , ψB) →
(VC , EC ,ΓC , sC , ψC) be an MW coordinate change over S, as in Definition 7.16.
Regard (VB , EB ,ΓB , sB , ψB), (VC , EC ,ΓC , sC , ψC) as Kuranishi neighbourhoods
in the sense of §6.1, as in Example 7.2.

Set PBC = ṼBC × ΓB. Let ΓB act on PBC by γB : (v, γ) 7→ (v, γBγ). Let
ΓC act on PBC by γC : (v, γ) 7→ (γC · v, γρBC(γC)−1). Define πBC : PBC → VB
and φBC : PBC → VC by πBC : (v, γ) 7→ γ · $BC(v) and φBC : (v, γ) 7→ v.
Then πBC is ΓB-equivariant and ΓC-invariant, and φBC is ΓB-invariant and
ΓC-equivariant.

Define φ̂BC : π∗BC(VB×EB)→ φ∗BC(VC×EC), as a morphism of trivial vector

bundles with fibres EB , EC on PBC = ṼBC × ΓB, by φ̂BC |ṼBC×{γ} = ϕ̂BC ◦
(γ−1 · −) for each γ ∈ ΓB . It is easy to see that Φ̃BC = (PBC , πBC , φBC , φ̂BC) :
(VB , EB ,ΓB , sB , ψB) → (VC , EC ,ΓC , sC , ψC) is a 1-morphism over S, in the
sense of §6.1. Combining Definition 7.16(g) and Theorem 6.12(a) shows that
Φ̃BC is a coordinate change over S, in the sense of §6.1.

Definition 7.18. Let X be a compact, metrizable topological space. An MW
weak Kuranishi atlas K =

(
A, I, (VB , EB ,ΓB , sB , ψB)B∈I ,ΦBC, B,C∈I, B(C

)
on

X of virtual dimension n ∈ Z, as in [81, Def. 2.3.1], consists of a finite index-
ing set A, a set I of nonempty subsets of A, MW Kuranishi neighbourhoods
(VB , EB ,ΓB , sB , ψB) on X for all B ∈ I with dimVB − rankEB = n and
X =

⋃
B∈I ImψB, and MW coordinate changes ΦBC = (ṼBC , ρBC , $BC , ϕ̂BC)

from (VB , EB ,ΓB , sB , ψB) to (VC , EC ,ΓC , sC , ψC) on S = ImψB ∩ ImψC for all
B,C ∈ I with B ( C, satisfying the four conditions:

(a) We have {a} ∈ I for all a ∈ A, and I =
{
∅ 6= B ⊆ A :

⋂
a∈B Imψ{a} 6= ∅

}
.

Also ImψB =
⋂
a∈B Imψ{a} for all B ∈ I.

(b) We have ΓB =
∏
a∈B Γ{a} for all B ∈ I. If B,C ∈ I with B ( C then

ρBC : ΓC → ΓB is the obvious projection
∏
a∈C Γ{a} →

∏
a∈B Γ{a}, with

kernel ∆BC
∼=
∏
a∈C\B Γ{a}.

(c) We have EB =
∏
a∈B E{a} for all B ∈ I, with the obvious representation

of ΓB =
∏
a∈B Γ{a}. If B ( C in I then ϕ̂BC : EB =

∏
a∈B E{a} → EC =∏

a∈C E{a} is idE{a} for a ∈ B, and maps to zero in E{a} for a ∈ C \B.
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(d) If B,C,D ∈ I with B ( C ( D then $BC ◦ $CD = $BD on ṼBCD :=
ṼBD ∩$−1

CD(ṼBC). One can show using (b),(c) and Definition 7.16 that

ṼBD and $−1
CD(ṼBC) are both open subsets in s−1

D (ϕ̂BD(EB)), which is a

submanifold of VD, so ṼBCD is a submanifold of VD.

We call K =
(
A, I, (VB , EB ,ΓB , sB , ψB)B∈I ,ΦBC, B(C

)
an MW Kuranishi

atlas on X, as in [81, Def. 2.3.1], if it also satisfies:

(e) If B,C,D ∈ I with B ( C ( D then $−1
CD(ṼBC) ⊆ ṼBD.

McDuff and Wehrheim also define orientations on MW weak Kuranishi
atlases, in a very similar way to Definition 7.8.

Two MW weak Kuranishi atlases K,K′ on X are called directly commen-
surate if they are both contained in a third MW weak Kuranishi atlas K′′.
They are called commensurate if there exist MW weak Kuranishi atlases K =
K0,K1, . . . ,Km = K′ with Ki−1,Ki directly commensurate for i = 1, . . . ,m.
This is an equivalence relation on MW weak Kuranishi atlases on X.

We show in Theorem 7.33 below that given an MW weak Kuranishi atlas on
X, we can make X into a Kuranishi space X in the sense of Chapter 6.

McDuff and Wehrheim argue that their concept of MW weak Kuranishi atlas
is a more natural, or more basic, idea than a FOOO Kuranishi space, since in
analytic moduli problems such as J-holomorphic curve moduli spaces, one has
to construct an MW weak Kuranishi atlas (or something close to it) first, and
then define the FOOO Kuranishi structure using this.

When one constructs an MW weak Kuranishi atlas K on a moduli space of
J-holomorphic curves M, the construction involves many arbitrary choices, but
McDuff and Wehrheim expect different choices K,K′ to be commensurate. They
prove this [82, Rem. 6.2.2] for their definition of MW weak Kuranishi atlases on
moduli spaces of nonsingular genus zero Gromov–Witten curves in [82, §4.3].

We relate Definition 7.18(d) to 2-morphisms in §6.1:

Example 7.19. In the situation of Definition 7.18(d), let Φ̃BC , Φ̃BD, Φ̃CD be
the coordinate changes in the sense of §6.1 associated to the MW coordinate
changes ΦBC ,ΦBD,ΦCD in Example 7.17. The composition coordinate change
Φ̃CD ◦ Φ̃BC = (PBCD, πBCD, φBCD, φ̂BCD) from Definition 6.5 has

PBCD =
[
(ṼBC × ΓB)×VC (ṼCD × ΓC)

]/
ΓC

∼= (ṼBC ×VC ṼCD)× ΓB ∼= $−1
CD(ṼBC)× ΓB .

(7.9)

Define ṔBCD to be the open subset of PBCD identified with ṼBCD×ΓB by (7.9),
and λBCD : ṔBCD → PBD = ṼBD×ΓB to be the map identified by (7.9) with the

inclusion ṼBCD × ΓB ↪→ ṼBD × ΓB , and λ̂BCD = 0. Then as in Example 7.7(i),

we can show that (ṔBCD, λBCD, λ̂BCD) satisfies Definition 6.4(a)–(c), so we

have defined a 2-morphism ΛBCD = [ṔBCD, λBCD, λ̂BCD] : Φ̃CD ◦ Φ̃BC ⇒ Φ̃BD
on SBCD = ImψB ∩ ImψC ∩ ImψD, in the sense of §6.1.
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McDuff and Wehrheim prove [82, Th. B], [81, Th. A]:

Theorem 7.20. Let K =
(
A, I, (VB , EB ,ΓB , sB , ψB)B∈I ,ΦBC, B,C∈I, B(C

)
be

an oriented MW weak Kuranishi atlas of dimension n on a compact, metrizable
topological space X. Then K determines:

(a) A virtual moduli cycle [X]vmc in the cobordism group ΩSO,Q
n of compact,

oriented, n-dimensional ‘Q-weighted manifolds’ in the sense of [81, §A].

(b) A virtual fundamental class [X]vfc in Ȟn(X;Q), where Ȟ∗(−;Q) is
Čech homology over Q.

Any two commensurate MW weak Kuranishi atlases K,K′ on X yield the
same virtual moduli cycle and virtual fundamental class.

If K has trivial isotropy (that is, ΓB = {1} for all B ∈ I) then we may
instead take [X]vmc ∈ ΩSO

n , where ΩSO
∗ is the usual oriented cobordism group,

and [X]vfc ∈ HSt
n (X;Z), where HSt

∗ (−;Z) is Steenrod homology over Z.

In part (a), the author expects that ΩSO,Q
n

∼= ΩSO
n ⊗Z Q, so that ΩSO,Q

∗ ∼=
Q[x4, x8, . . .] by results of Thom.

Theorem 7.20 is McDuff and Wehrheim’s solution to the issues discussed in
Remark 7.14. As an intermediate step in the proof of Theorem 7.20, they pass
to a Kuranishi atlas with better properties (a ‘reduction’ of a ‘tame, metrizable’
Kuranishi atlas), which is similar to a FOOO good coordinate system.

7.4 Dingyu Yang’s Kuranishi structures, and polyfolds

As part of a project to define a truncation functor from polyfolds to Kuranishi
spaces, Dingyu Yang [110–112] writes down his own theory of Kuranishi spaces:

Definition 7.21. Let X be a compact, metrizable topological space. A DY
Kuranishi structure K on X is a FOOO Kuranishi structure in the sense of
Definition 7.6, satisfying the additional conditions [111, Def. 1.11]:

(a) the maximality condition, which is essentially Definition 7.11(e),(f), but
replacing i ≺ j by q ∈ Imψp.

(b) the topological matching condition, which is related to Definition 7.11(d),
but replacing i ≺ j by q ∈ Imψp.

There are a few other small differences — for instance, Yang does not require
the vector bundles Ep in (Vp, Ep,Γp, sp, ψp) to be trivial.

We show in Theorem 7.35 below that given a DY Kuranishi structure K on
X, we can make X into a Kuranishi space X in the sense of §6.2.

Yang also defines his own notion of DY good coordinate system [111, Def. 2.4],
which is almost the same as a FOOO good coordinate system in §7.2.

One reason for these modifications is that it simplifies the passage from
Kuranishi spaces to good coordinate systems, as in Remark 7.14(i): Yang shows
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[111, Th. 2.10] that given any DY Kuranishi space X, one can construct a DY
good coordinate system

(
(I,≺), (V ′p , E

′
p,Γ
′
p, s
′
p, ψ
′
p)p∈I ,Φ

′
qp, q ≺ p in I

)
in which

I ⊆ X is a finite subset, V ′p ⊆ Vp is a Γp-invariant open subset, Γ′p = Γp,
and E′p, s

′
p, ψ
′
p are the restrictions of Ep, sp, ψp to V ′p for each p ∈ I, and the

coordinate changes Φ′qp for q ≺ p are obtained either by restricting Φqp to an
open V ′qp ⊆ Vqp if q ∈ Imψp, or in a more complicated way otherwise.

The next definition comes from Yang [110, §1.6], [111, §5], [112, §2.4].

Definition 7.22. Let K,K′ be DY Kuranishi structures on a compact topological
space X. An embedding ε : K ↪→ K′ is a choice of FOOO coordinate change
εp : (Vp, Ep,Γp, sp, ψp) → (V ′p , E

′
p,Γ
′
p, s
′
p, ψ
′
p) with domain Vp for all p ∈ X,

commuting with the FOOO coordinate changes Φqp,Φ
′
qp in K,K′ up to elements

of Γ′p. An embedding is a chart refinement if the εp come from inclusions of
Γp-invariant open sets Vp ↪→ V ′p .

DY Kuranishi structures K,K′ on X are called R-equivalent (or equivalent)
if there is a diagram of DY Kuranishi structures on X

K K1
∼oo +3 K2 K3

ks ∼ // K′,

where arrows =⇒ are embeddings, and
∼−→ are chart refinements. Using facts

about existence of good coordinate systems, Yang proves [110, Th. 1.6.17], [111,
§11.2] that R-equivalence is an equivalence relation on DY Kuranishi structures.

Yang emphasizes the idea, which he calls choice independence, that when
one constructs a (DY) Kuranishi structure K on a moduli space M, it should
be independent of choices up to R-equivalence.

One major goal of Yang’s work is to relate the Kuranishi space theory of
Fukaya, Oh, Ohta and Ono [19–39] to the polyfold theory of Hofer, Wysocki and
Zehnder [46–53]. Here is a very brief introduction to this:

• An sc-Banach space V is a sequence V = (V0 ⊃ V1 ⊃ V2 ⊃ · · · ), where
the Vi are Banach spaces, the inclusions Vi+1 ↪→ Vi are compact, bounded
linear maps, and V∞ =

⋂
i>0 Vi is dense in every Vi.

The tangent space TV is TV = (V1 ⊕ V0 ⊃ V2 ⊕ V1 ⊃ · · · ), an sc-Banach
space. An open set Q in V is an open set Q ⊂ V0, and we write Qi = Q∩Vi
for i > 0. Its tangent space is TQ = Q1 ⊕ V0, as an open set in TV.

An example to bear in mind is if M is a compact manifold, E → M a
smooth vector bundle, α ∈ (0, 1), and Vk = Ck,α(E) for k = 0, 1, . . . .

• Let V = (V0 ⊃ V1 ⊃ · · · ), W = (W0 ⊃ W1 ⊃ · · · ) be sc-Banach spaces and
Q ⊆ V, R ⊆ W be open. A map f : Q → R is called sc0 if f(Qi) ⊆ Ri
and f |Qi : Qi → Ri is a continuous map of Banach manifolds for all i > 0.

An sc0 map f : Q → R is called sc1 if for each q ∈ Q1 there exists a
bounded linear map Dfq : V0 → W0, such that f |Q1

: Q1 → R0 is a C1

map of Banach manifolds with ∇f |q = Dfq|V1 : V1 →W0 for all q ∈ Q1,
and Tf : TQ → TR mapping Tf : (q, v) 7→ (f(q), Dfq(v)) is an sc0 map.
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By induction on k, we call f : Q → R an sck map for k = 2, 3, . . . if f is
sc1 and Tf : TQ → TR is an sck−1 map. We call f : Q → R sc-smooth, or
sc∞, if it is sck for all k = 0, 1, . . . . This implies that f |Qi+k : Qi+k → Ri
is a Ck-map of Banach manifolds for all i, k > 0.

• Let V = (V0 ⊃ V1 ⊃ · · · ) be an sc-Banach space and Q ⊆ V be open.
An sc∞-retraction is an sc-smooth map r : Q → Q with r ◦ r = r. Set
O = Im r ⊂ V. We call (O,V) a local sc-model.

If V is finite-dimensional then O is just a smooth manifold. But in infinite
dimensions, new phenomena occur, and the tangent spaces TxO can vary
discontinuously with x ∈ O. This is important for ‘gluing’.

• An M-polyfold chart (O,V, ψ) on a topological space Z is a local sc-model
(O,V) and a homeomorphism ψ : O → Imψ with an open set Imψ ⊂ Z.

• M-polyfold charts (O,V, ψ), (Õ, Ṽ, ψ̃) on Z are compatible if ψ̃−1 ◦ ψ ◦ r :
Q → Ṽ and ψ−1 ◦ ψ̃ ◦ r̃ : Q̃ → V are sc-smooth, where Q ⊂ V, Q̃ ⊂ Ṽ are
open and r : Q → Q, r̃ : Q̃ → Q̃ are sc-smooth with r ◦ r = r, r̃ ◦ r̃ = r̃
and Im r = ψ−1(Im ψ̃) ⊆ O, Im r̃ = ψ̃−1(Imψ) ⊆ Õ.

• An M-polyfold is roughly a metrizable topological space Z with a maximal
atlas of pairwise compatible M-polyfold charts.

• Polyfolds are the orbifold version of M-polyfolds, proper étale groupoids in
M-polyfolds.

• A polyfold Fredholm structure P on a metrizable topological space X writes
X as the zeroes of an sc-Fredholm section s : V→ E of a strong polyfold
vector bundle E→ V over a polyfold V.

This is all rather complicated. The motivation for local sc-models (O,V) is that
they can be used to describe functional-analytic problems involving ‘gluing’,
‘bubbling’, and ‘neck-stretching’, including moduli spaces of J-holomorphic
curves with singularities of various kinds.

The polyfold programme [46–53] aims to show that moduli spaces of J-
holomorphic curves in symplectic geometry may be given a polyfold Fredholm
structure, and that compact spaces with oriented polyfold Fredholm struc-
tures have virtual chains and virtual classes. One can then use these virtual
chains/classes to define big theories in symplectic geometry, such as Gromov–
Witten invariants or Symplectic Field Theory. Constructing a polyfold Fredholm
structure on a moduli space of J-holomorphic curves involves far fewer arbitrary
choices than defining a Kuranishi structure. Fabert, Fish, Golovko and Wehrheim
[17] survey the polyfold programme.

Yang proves [110, Th. 3.1.7] (see also [112, §2.6]):

Theorem 7.23. Suppose we are given a ‘polyfold Fredholm structure’ P on a
compact metrizable topological space X, that is, we write X as the zeroes of an
sc-Fredholm section s : V→ E of a strong polyfold vector bundle E→ V over a
polyfold V, where s has constant Fredholm index n ∈ Z. Then we can construct
a DY Kuranishi structure K on X, of virtual dimension n, which is independent
of choices up to R-equivalence.
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In the survey [112], Yang announces further results for which the proofs were
not available at the time of writing. These include:

(a) Yang defines ‘R-equivalence’ of polyfold Fredholm structures on X [112,
Def. 2.14], and claims [112, §2.8] that Theorem 7.23 extends to a 1-1 corre-
spondence between R-equivalence classes of polyfold Fredholm structures
on X, and R-equivalence classes of DY Kuranishi structures K on X.

(b) In [112, §2.4], Yang claims that R-equivalence extends as an equivalence
relation to FOOO Kuranishi structures, and every R-equivalence class of
FOOO Kuranishi structures contains a DY Kuranishi structure. Hence
the 1-1 correspondence in (a) also extends to a 1-1 correspondence with
R-equivalence classes of FOOO Kuranishi structures.

(c) Yang claims that virtual chains or virtual classes for polyfolds and for
FOOO/DY Kuranishi spaces agree under (a),(b).

(d) Yang says [112, p. 26, p. 46] that in future work he will make spaces with
DY Kuranishi structures into a category KurDY.

These results would enable a clean translation between the polyfold and
Kuranishi approaches to symplectic geometry. It seems likely that in (d) there
will be an equivalence of categories KurDY ' Ho(Kur), for Kur as in §6.2.

7.5 Relating our Kuranishi spaces to previous definitions

We now show that all of the Kuranishi-type structures discussed in §7.1–§7.3
can be made into a Kuranishi space X in our sense, uniquely up to equivalence
in Kur or Kurc. We do this by defining a notion of ‘fair coordinate system’ F
on a topological space X in §7.5.1 which is so general that it includes all of the
structures of §7.1–§7.3 as special cases, and proving that given X,F , we can
construct a Kuranishi structure K on X uniquely up to equivalence.

In §7.5.1 we work over any category of ‘manifolds’ Ṁan satisfying Assump-
tions 3.1–3.7, and then in §7.5.2–§7.5.5 we specialize to Ṁan = Man or Manc,
following our references [19–39, 77, 78, 80–83, 110–112].

Theorems 7.29, 7.31, 7.33, 7.35, and 7.36 below are important, as they show
that the geometric structures on moduli spaces considered by Fukaya, Oh, Ohta
and Ono [19–39], McDuff and Wehrheim [77, 78, 80–83], Yang [110–112], and
Hofer, Wysocki and Zehnder [46–53], can all be transformed to Kuranishi spaces
in our sense. Thus, large parts of the symplectic geometry literature can now be
interpreted in our framework.

7.5.1 Fair coordinate systems and Kuranishi spaces

Our next definition is a kind of ‘least common denominator’ for the Kuranishi-
type structures discussed in §7.1–§7.3. The name ‘fair coordinate system’ is
intended to suggest something like the ‘good coordinate systems’ in §7.2, but
not as strong. We work over a category Ṁan satisfying the assumptions of §3.1.

202



Definition 7.24. Let X be a Hausdorff, second countable topological space.
A fair coordinate system F on X, of virtual dimension n ∈ Z, is data F =(
A, (Va, Ea,Γa, sa, ψa)a∈A, Sab,Φab, a,b∈A, Sabc,Λabc, a,b,c∈A

)
, where:

(a) A is an indexing set (not necessarily finite).

(b) (Va, Ea,Γa, sa, ψa) is a Kuranishi neighbourhood on X for each a ∈ A,
with dimVa − rankEa = n, as in §6.1.

(c) Sab ⊆ Imψa ∩ Imψb is an open set for all a, b ∈ A. (We can have Sab = ∅.)

(d) Φab = (Pab, πab, φab, φ̂ab) : (Va, Ea,Γa, sa, ψa) → (Vb, Eb,Γb, sb, ψb) is a
coordinate change over Sab, for all a, b ∈ A, as in §6.1.

(e) Sabc ⊆ Sab ∩ Sac ∩ Sbc ⊆ Imψa ∩ Imψb ∩ Imψc is an open set for all
a, b, c ∈ A. (We can have Sabc = ∅.)

(f) Λabc = [Ṕabc, λabc, λ̂abc] : Φbc◦Φab ⇒ Φac is a 2-morphism for all a, b, c ∈ A,
defined over Sabc.

(g)
⋃
a∈A Imψa = X.

(h) Saa = Imψa and Φaa = id(Va,Ea,Γa,sa,ψa) for all a ∈ A.

(i) Saab = Sabb = Sab and Λaab = βΦab
, Λabb = γΦab

for all a, b ∈ A.

(j) The following diagram of 2-morphisms over Sabc ∩ Sabd ∩ Sacd ∩ Sbcd
commutes for all a, b, c, d ∈ A:

(Φcd ◦ Φbc) ◦ Φab
αΦcd,Φbc,Φab��

Λbcd∗idΦab

+3 Φbd ◦ Φab

Λabd ��
Φcd ◦ (Φbc ◦ Φab)

idΦcd
∗Λabc +3 Φcd ◦ Φac

Λacd +3 Φad.

Also, either condition (k) or condition (k)′ below hold, or both, where:

(k) Suppose B ⊆ A is finite and nonempty, and x ∈
⋂
b∈B Imψb ⊆ X. Then

there exists a ∈ A such that x ∈ Sab for all b ∈ B, and if b, c ∈ B with
x ∈ Sbc then x ∈ Sabc.

(k)′ Suppose B ⊆ A is finite and nonempty, and x ∈
⋂
b∈B Imψb ⊆ X. Then

there exists d ∈ A such that x ∈ Sbd for all b ∈ B, and if b, c ∈ B with
x ∈ Sbc then x ∈ Sbcd.

Here (k),(k)′ are somewhat arbitrary. What we are trying to achieve by these
conditions on the Sab, Sabc is roughly that:

(A) If x ∈ Imψb ∩ Imψc, one can map (Vb, Eb,Γb, sb, ψb)→ (Vc, Ec,Γc, sc, ψc)
near x by a finite chain of coordinate changes Φij and their (quasi)inverses
Φ−1
ji — for (k) by Φac ◦ Φ−1

ab , and for (k)′ by Φ−1
cd ◦ Φbd.

(B) Any two such chains of Φij ,Φ
−1
ji near x are canonically 2-isomorphic near

x using combinations of the 2-isomorphisms Λijk and their inverses.
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We chose (k),(k)′ as they hold in our examples, and there is a nice method to
prove Theorem 7.26 using (k) or (k)′.

Example 7.25. Let X = (X,K) be a Kuranishi space in the sense of §6.2, with
K =

(
I, (Vi, Ei,Γi, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
. Set Sij = Imψi ∩ Imψj

for all i, j ∈ I, and Sijk = Imψi ∩ Imψj ∩ Imψk for all i, j, k ∈ I. Then
F =

(
I, (Vi, Ei,Γi, si, ψi)i∈I , Sij ,Φij, i,j∈I , Sijk,Λijk, i,j,k∈I

)
is a fair coordinate

system on X. Here Definition 7.24(a)–(j) are immediate from Definition 6.17(a)–
(h), and both of Definition 7.24(k),(k)′ hold, where we can take a ∈ B arbitrary
in (k) and d ∈ B arbitrary in (k)′.

The next theorem will be proved in §7.6. When we say (Va, Ea,Γa, sa, ψa)
‘may be given the structure of a Kuranishi neighbourhood on the Kuranishi
space X’, we mean that as in §6.4, we can choose implicit extra data Φai, i∈I ,
Λaij, i,j∈I relating (Va, Ea,Γa, sa, ψa) to the Kuranishi structure K on X, and
similarly, by ‘Φab may be given the structure of a coordinate change over Sab
on the Kuranishi space X’, we mean that we can choose implicit extra data
Λabi, i∈I relating Φab to K.

Theorem 7.26. Suppose F =
(
A, (Va, Ea,Γa, sa, ψa)a∈A, Sab,Φab, a,b∈A, Sabc,

Λabc, a,b,c∈A
)

is a fair coordinate system of virtual dimension n ∈ Z on a Haus-
dorff, second countable topological space X, in the sense of Definition 7.24.
Then we may make X into a Kuranishi space X = (X,K) in the sense of §6.2
with vdimX = n, such that (Va, Ea,Γa, sa, ψa) may be given the structure of
a Kuranishi neighbourhood on the Kuranishi space X in the sense of §6.4 for
all a ∈ A, and Φab : (Va, Ea,Γa, sa, ψa) → (Vb, Eb,Γb, sb, ψb) may be given the
structure of a coordinate change over Sab on the Kuranishi space X in the sense
of §6.4 for all a, b ∈ A, and Λabc : Φbc ◦ Φab ⇒ Φac is the unique 2-morphism
over Sabc given by Theorem 6.45(a) for all a, b, c ∈ A. This X is unique up to
canonical equivalence in the 2-category K̇ur, as in Definition A.7.

The next proposition follows easily from Corollary 6.48 and Theorem 7.26.

Proposition 7.27. Let F =
(
A, (Va, Ea,Γa, sa, ψa)a∈A, Sab,Φab, a,b∈A, Sabc,

Λabc, a,b,c∈A
)

be a fair coordinate system on X. Suppose Ã ⊆ A with
⋃
a∈Ã Imψa

= X, and in Definition 7.24(k),(k)′, if B ⊆ Ã ⊆ A then we can choose a ∈ Ã
in (k) and d ∈ Ã in (k)′. Then F̃ =

(
Ã, (Va, Ea,Γa, sa, ψa)a∈Ã, Sab,Φab, a,b∈Ã,

Sabc,Λabc, a,b,c∈Ã
)

is also a fair coordinate system on X. Let X = (X,K) and

X̃ = (X, K̃) be the Kuranishi spaces constructed from F , F̃ in Theorem 7.26.
Then X, X̃ are canonically equivalent in K̇ur, as in Definition A.7.

7.5.2 Fukaya–Oh–Ohta–Ono’s Kuranishi spaces

Section 7.1 defined Fukaya–Oh–Ohta–Ono’s ‘FOOO Kuranishi spaces’ (working
over Ṁan = Man) and ‘FOOO Kuranishi spaces with corners’ (over Ṁan =
Manc). We now relate these to our notion of Kuranishi spaces.
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Example 7.28. Let X = (X,K) be a FOOO Kuranishi space with vdimX = n,
in the sense of Definition 7.6. Then K gives a FOOO Kuranishi neighbourhood
(Vp, Ep,Γp, sp, ψp) for each p ∈ X, and for all p, q ∈ X with q ∈ Imψp it gives
a FOOO coordinate change Φqp = (Vqp, hqp, ϕqp, ϕ̂qp) : (Vq, Eq,Γq, sq, ψq) →
(Vp, Ep,Γp, sp, ψp) defined on an open neighbourhood Sqp of q in Imψq ∩ Imψp,
and for all p, q, r ∈ X with q ∈ Imψp and r ∈ Sqp, Definition 7.6(b) gives unique
group elements γαrqp ∈ Γp which relate Φqp ◦Φrq to Φrp on Srqp := Sqp∩Srp∩Srq.

We will define a fair coordinate system F on X, over Ṁan = Man. Take the
indexing set A to be A = X, and for each p ∈ A, let the Kuranishi neighbourhood
(Vp, Ep,Γp, sp, ψp) be as in K, regarded as a Kuranishi neighbourhood in the
sense of §6.1 as in Example 7.2. If p 6= q ∈ A with q ∈ Imψp, define Sqp ⊆
Imψq∩Imψp to be the domain of the FOOO coordinate change Φqp in K. Define

Φ̃qp : (Vq, Eq,Γq, sq, ψq)→ (Vp, Ep,Γp, sp, ψp) to be the coordinate change over
Sqp in the sense of §6.1 associated to the FOOO coordinate change Φqp in

Example 7.5. Define Spp = Imψp and Φ̃pp = id(Vp,Ep,Γp,sp,ψp) for all p ∈ A. If

p 6= q ∈ A and q /∈ Imψp, define Sqp = ∅ and Φ̃qp = (∅, ∅, ∅, ∅).
If p 6= q 6= r ∈ A with q ∈ Imψp and r ∈ Sqp, set Srqp = Sqp ∩Srp ∩Srq, and

define Λrqp : Φ̃qp ◦Φ̃rq ⇒ Φ̃rp to be the 2-morphism over Srqp defined in Example
7.7(ii) using the group elements γαrqp ∈ Γp in Definition 7.6(b). If p 6= q 6= r ∈ A
with q /∈ Imψp or r /∈ Sqp, define Srqp = ∅ and Λrqp = [∅, ∅, ∅]. Define
Sqpp = Sqqp = Sqp and Λqqp = βΦ̃qp

, Λqpp = γΦ̃qp
for all p, q ∈ A. This defines

all the data in F =
(
A, (Vp, Ep,Γp, sp, ψp)p∈A, Sqp, Φ̃qp, q,p∈A, Srqp,Λrqp, r,q,p∈A

)
.

We will show F satisfies Definition 7.24(a)–(k).
Parts (a)–(i) are immediate. For (j), if p 6= q 6= r 6= s ∈ X with q ∈ Imψp and

r ∈ Sqp and s ∈ Srq ∩ Srp then Definition 7.6(b) gives elements γαrqp, γ
α′

sqp, γ
α′′

srp ∈
Γp and γα

′′′

srq ∈ Γq satisfying (7.3). Using (7.3) four times we see that

γαrqpγ
α′′

srp · ϕsp = ϕqp ◦ ϕrq ◦ ϕsr = hqp(γ
α′′′

srq )γα
′′

sqp · ϕsp, (7.10)

where (7.10) holds on the domain

ϕ−1
sr

(
(ϕ−1
rq (Vqp) ∩ Vrq ∩ Vrp)α

)
∩ (ϕ−1

sq (Vqp) ∩ Vsq ∩ Vsp)α
′
∩

(ϕ−1
sr (Vrp) ∩ Vsr ∩ Vsp)α

′′
∩ (ϕ−1

sr (Vrq) ∩ Vsr ∩ Vsq)α
′′′
.

(7.11)

If (7.11) is nonempty, the argument of Example 7.7(iii) implies that γαrqpγ
α′′

srp =

hqp(γ
α′′′

srq )γα
′′

sqp. This is the condition required to verify Λsrp � (Λrqp ∗ idΦ̃sr
) =

Λsqp� (idΦ̃qp
∗Λsrq)�αΦ̃qp,Φ̃rq,Φ̃sr

on the component of Ssrq ∩Ssrp∩Ssqp∩Srqp
corresponding to the connected components α, α′, α′′, α′′′.

This proves Definition 7.24(j) in this case. If p = q then (j) becomes

Λsrq � (γΦ̃rq
∗ idΦ̃sr

) = γΦ̃sq
� (idid(Vq,Eq,Γq,sq,ψq)

∗ Λsrq)

�αid(Vq,Eq,Γq,sq,ψq),Φ̃rq,Φ̃sr
,

(7.12)

which holds trivially, and the cases q = r, r = s are similar. In the remaining
cases one of Ssrq, Ssrp, Ssqp, Srqp is empty, so (j) is vacuous. Thus (j) holds.
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For (k), suppose B ⊆ A is finite and nonempty, and x ∈
⋂
p∈B Imψp ⊆ X.

Then x ∈ Sxp for all p ∈ B, since Sxp is an open neighbourhood of x in
Imψx ∩ Imψp, and x ∈ Sxqp for all q, p ∈ B with x ∈ Sqp, since Sxqp =
Sqp ∩ Sxp ∩ Sxq in this case and x ∈ Sxp, x ∈ Sxq. Thus (k) holds with a = x,

and F is a fair coordinate system on X, over Ṁan = Man.
If instead X is a FOOO Kuranishi space with corners, the same construction

gives a fair coordinate system F on X over Ṁan = Manc.

Combining Example 7.28 and Theorem 7.26 yields:

Theorem 7.29. Suppose X = (X,K) is a FOOO Kuranishi space, as in Def-
inition 7.6. Then we can construct a Kuranishi space X ′ = (X,K′) over
Ṁan = Man in the sense of §6.2 with vdimX ′ = vdimX, with the same
topological space X, and X ′ is unique up to canonical equivalence in Kur.

If instead X is a FOOO Kuranishi space with corners, the same holds over
Ṁan = Manc, so that X ′ is unique up to canonical equivalence in Kurc.

One can also show that geometric data and constructions for FOOO Kuranishi
spaces X such as orientations in Definition 7.8, smooth maps f : X → Y to a
manifold Y and ‘fibre products’ X ×Y X ′ in Definition 7.9, and boundaries ∂X
of FOOO Kuranishi spaces with corners X in [24, Def. A1.30], can be mapped
to the corresponding notions in our theory.

7.5.3 Fukaya–Oh–Ohta–Ono’s (weak) good coordinate
systems

Section 7.2 discussed Fukaya–Oh–Ohta–Ono’s ‘FOOO (weak) good coordinate
systems (with corners)’. We relate these to our Kuranishi spaces.

Example 7.30. Let G =
(
(I,≺), (Vi, Ei,Γi, si, ψi)i∈I ,Φij, i≺j

)
be a FOOO weak

good coordinate system of virtual dimension n ∈ Z on a compact, metrizable
topological space X, in the sense of Definition 7.11.

We will define a fair coordinate system F on X over Ṁan = Man. Take
the indexing set A to be I, and the Kuranishi neighbourhoods (Vi, Ei,Γi, si, ψi)
for i ∈ I to be as given. If i 6= j ∈ I with i ≺ j, define Sij = Imψi ∩ Imψj , and

Φ̃ij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) to be the coordinate change over Sij
in the sense of §6.1 associated to the FOOO coordinate change Φij in Example

7.5. Define Sii = Imψi and Φ̃ii = id(Vi,Ei,Γi,si,ψi) for all i ∈ I. If i 6= j ∈ I and

i 6≺ j, define Sij = ∅ and Φ̃ij = (∅, ∅, ∅, ∅).
If i 6= j 6= k ∈ I with i ≺ j ≺ k, set Sijk = Imψi ∩ Imψj ∩ Imψk, and define

Λijk : Φ̃jk ◦ Φ̃ij ⇒ Φ̃ik to be the 2-morphism over Sijk defined in Example 7.7(ii)
using the unique group element γijk ∈ Γk in Definition 7.11(b). If i 6= j 6= k ∈ I
with i 6≺ j or j 6≺ k, define Sijk = ∅ and Λijk = [∅, ∅, ∅]. Set Siij = Sijj =
Imψi ∩ Imψj and Λiij = βΦ̃ij

, Λijj = γΦ̃ij
for all i, j ∈ I. This defines all the

data in F =
(
I, (Vi, Ei,Γi, si, ψi)i∈I , Sij , Φ̃ij, i,j∈I , Sijk,Λijk, i,j,k∈I

)
. We shall

show F satisfies Definition 7.24(a)–(k).
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Parts (a)–(i) are immediate. For (j), if i 6= j 6= k 6= l in I with i ≺ j ≺ k ≺ l
and Imψi ∩ Imψj ∩ Imψk ∩ Imψl 6= ∅ then the argument of (7.10)–(7.11) shows
that γjklγijl = hkl(γijk)γikl, and so Λijl� (Λjkl ∗ idΦ̃ij

) = Λikl� (idΦ̃kl
∗Λijk)�

αΦ̃kl,Φ̃jk,Φ̃ij
as we want. The cases i = j, j = k, k = l hold as for (7.12), and in

the remaining cases one of Sijk, Sijl, Sikl, Sjkl is empty, so (j) is vacuous. Thus
(j) holds.

For (k) or (k)′, suppose ∅ 6= B ⊆ I is finite and x ∈
⋂
b∈B Imψb. Then for

all b 6= c ∈ B we have x ∈ Imψb ∩ Imψc 6= ∅, so b ≺ c or c ≺ b by Definition
7.11(a). Thus the partial order ≺ restricted to B is a total order, and we may
uniquely write B = {b1, b2, . . . , bm} with b1 ≺ b2 ≺ · · · ≺ bm. It is now easy to
check that (k) holds with a = b1, and also (k)′ holds with d = bm. Therefore F
is a fair coordinate system on X over Ṁan = Man.

If instead G is a FOOO weak good coordinate system with corners, the same
construction gives a fair coordinate system F on X over Ṁan = Manc.

Combining Example 7.30 and Theorem 7.26 yields:

Theorem 7.31. Suppose X is a compact, metrizable topological space with a
FOOO weak good coordinate system G =

(
(I,≺), (Vi, Ei,Γi, si, ψi)i∈I ,Φij, i≺j

)
,

of virtual dimension n ∈ Z, in the sense of Definition 7.11. Then we can make
X into a Kuranishi space X = (X,K) over Ṁan = Man in the sense of §6.2
with vdimX = n, and X is unique up to canonical equivalence in Kur.

If instead G is a FOOO weak good coordinate system with corners, the same
holds over Ṁan = Manc, so that X is an object in Kurc.

7.5.4 McDuff–Wehrheim’s (weak) Kuranishi atlases

Section 7.3 discussed McDuff–Wehrheim’s ‘MW (weak) Kuranishi atlases’, work-
ing over Ṁan = Man. We relate these to our Kuranishi spaces.

Example 7.32. Let
(
A, I, (VB , EB ,ΓB , sB , ψB)B∈I ,ΦBC, B,C∈I, B(C

)
be an

MW weak Kuranishi atlas of virtual dimension n ∈ Z on a compact, metrizable
topological space X, in the sense of Definition 7.18.

We will define a fair coordinate system F on X over Ṁan = Man. Take the
indexing set to be I, and the Kuranishi neighbourhoods (VB , EB ,ΓB , sB , ψB)
for B ∈ I to be as given. If B,C ∈ I with B ( C, define SBC = ImψB ∩ ImψC ,
and Φ̃BC : (VB , EB ,ΓB , sB , ψB) → (VC , EC ,ΓC , sC , ψC) to be the coordinate
change over SBC in the sense of §6.1 associated to the MW coordinate change
ΦBC in Example 7.17. Define SBB = ImψB and Φ̃BB = id(VB ,EB ,ΓB ,sB ,ψB) for

all B ∈ I. If B 6⊆ C in I, define SBC = ∅ and Φ̃BC = (∅, ∅, ∅, ∅).
If B ( C ( D in I then Definition 7.18(b)–(d) say essentially that ΦCD ◦

ΦBC = ΦBD on the intersection of their domains. Example 7.19 defines a
canonical 2-isomorphism ΛBCD : Φ̃CD ◦ Φ̃BC ⇒ Φ̃BD on SBCD := ImψB ∩
ImψC ∩ ImψD.

If B 6= C 6= D ∈ I with B 6⊂ C or C 6⊂ D, define SBCD = ∅ and ΛBCD =
[∅, ∅, ∅]. Set SBBC = SBCC = SBC and ΛBBC = βΦ̃BC

, ΛBCC = γΦ̃BC
for
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all B,C ∈ I. This defines all the data in F =
(
I, (VB , EB ,ΓB , sB , ψB)B∈I ,

SBC , Φ̃BC, B,C∈I , SBCD,ΛBCD, B,C,D∈I
)
.

We will show F satisfies Definition 7.24(a)–(j),(k)′. Parts (a)–(i) are immedi-
ate. For (j), if B ( C ( D ( E in I then Definition 7.18(b)–(d) basically imply
that

ΦDE ◦ (ΦCD ◦ ΦBC) = ΦBE = (ΦDE ◦ ΦCD) ◦ ΦBC

holds on the intersection of their domains, and from this we easily see that
ΛBDE � (ΛCDE ∗ idΦ̃BC

) = ΛBDE � (idΦ̃DE
∗ ΛBCD) � αΦ̃DE ,Φ̃CD,Φ̃BC

, as we
want. The remaining cases follow as in Examples 7.28 and 7.30. Thus (j) holds.

For (k)′, suppose ∅ 6= J ⊆ I is finite and x ∈
⋂
B∈J ImψB ⊆ X. Then

Definition 7.18(a) says that D =
⋃
B∈J B lies in I, and x ∈

⋂
B∈J ImψB

⊆ ImψD. For any B ∈ J we have B ⊆ D, so SBD = ImψB ∩ ImψD 3 x. If
B,C ∈ J with x ∈ SBC then B ⊆ C, as otherwise SBC = ∅, so B ⊆ C ⊆ D and
SBCD = ImψB ∩ ImψC ∩ ImψD 3 x. Therefore (k)′ holds with d = D, and F
is a fair coordinate system on X over Ṁan = Man.

Theorem 7.33. Suppose X is a compact, metrizable topological space with
an MW weak Kuranishi atlas K, of virtual dimension n ∈ Z, in the sense of
Definition 7.18. Then we can make X into a Kuranishi space X ′ = (X,K′)
over Ṁan = Man in the sense of §6.2 with vdimX ′ = n, and X ′ is unique
up to canonical equivalence in the 2-category Kur. Commensurate MW weak
Kuranishi atlases K, K̃ on X yield equivalent Kuranishi spaces X ′, X̃ ′.

Proof. The first part is immediate from Example 7.32 and Theorem 7.26. For
the second part, note that as in Definition 7.18, if K, K̃ are commensurate then
they are linked by a diagram of MW weak Kuranishi atlases

K = K0

!!

K1

}} !!

· · ·

}} !!

Km−1

}} !!

Km = K̃
}}

K̂1 K̂1 · · · K̂m−1 K̂m,
(7.13)

where each arrow is an inclusion of MW weak Kuranishi atlases.
By Proposition 7.27, the construction of the first part applied to MW weak

Kuranishi atlases K, K̂ with K ⊆ K̂ yields equivalent Kuranishi spaces, so (7.13)
induces a corresponding diagram of equivalences in Kur, and thus X ′, X̃ ′ are
equivalent in Kur.

7.5.5 Dingyu Yang’s Kuranishi structures, and polyfolds

Section 7.4 discussed Dingyu Yang’s ‘DY Kuranishi structures’, working over
Ṁan = Man. We relate these to our Kuranishi spaces.

Example 7.34. Using the notation of §7.4, let X be a compact, metrizable
topological space, and K a DY Kuranishi structure on X with vdim(X,K) = n,
in the sense of Definition 7.21. Then exactly the same construction as in Example
7.28 yields a fair coordinate system F on X.
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Theorem 7.35. Suppose X is a compact, metrizable topological space with a
DY Kuranishi structure K, of virtual dimension n ∈ Z, in the sense of Definition
7.21. Then we can construct a Kuranishi space X ′ = (X,K′) over Ṁan = Man
in the sense of §6.2 with vdimX ′ = n, with the same topological space X, and
X ′ is unique up to canonical equivalence in the 2-category Kur. R-equivalent
DY Kuranishi structures K, K̃ on X yield equivalent Kuranishi spaces X ′, X̃ ′.

Proof. The first part is immediate from Example 7.34 and Theorem 7.26. For
the second part, note that as in Definition 7.22, if K, K̃ are R-equivalent then
there is a diagram of embeddings of DY Kuranishi structures on X:

K K1
∼oo +3 K2 K3

ks ∼ // K̃. (7.14)

If ε : K1 → K2 is an embedding of DY Kuranishi structures, then following
Example 7.28 we can define three fair coordinate systems F1,F2,F12 on X,
where F1,F2 come from K1,K2, and F12 contains the Kuranishi neighbourhoods
from K1 and K2, and the coordinate changes from K1,K2 and ε, so that F12

contains F1 and F2. Theorem 7.26 then gives Kuranishi structures K′1,K
′
2,K

′
12

on X. Since F1 ⊂ F12, F2 ⊂ F12, by Proposition 7.27 we have equivalences
(X,K′1) → (X,K′12), (X,K′2) → (X,K′12) in Kur, and hence an equivalence
(X,K′1)→ (X,K′2) in Kur. Therefore (7.14) induces a corresponding diagram
of equivalences in Kur, and thus X ′, X̃ ′ are equivalent in Kur.

Combining Theorem 7.35 with Yang’s Theorem 7.23, [110, Th. 3.1.7], we
relate Hofer–Wysocki–Zehnder’s polyfold theory [46–53] to our Kuranishi spaces:

Theorem 7.36. Suppose we are given a ‘polyfold Fredholm structure’ P on a
compact metrizable topological space X, that is, we write X as the zeroes of a
Fredholm section s : V → E of a strong polyfold vector bundle E → V over a
polyfold V, where s has constant Fredholm index n ∈ Z. Then we can make X
into a Kuranishi space X = (X,K) in the sense of §6.2 with vdimX = n, and
X is unique up to canonical equivalence in the 2-category Kur.

7.6 Proof of Theorem 7.26

In this section, as in §6.7.4 we will by an abuse of notation treat the weak
2-category K̇NS(X) defined in §6.1 as if it were a strict 2-category, omitting
2-morphisms αΦkl,Φjk,Φij ,βΦij ,γΦij in (6.7) and (6.8), and omitting brackets
in compositions of 1-morphisms Φkl ◦ Φjk ◦ Φij . We do this because otherwise
diagrams such as (7.17), (7.23), (7.25), . . . would become too big.

Let F =
(
A, (Va, Ea,Γa, sa, ψa)a∈A, Sab,Φab, a,b∈A, Sabc,Λabc, a,b,c∈A

)
be a

fair coordinate system of virtual dimension n ∈ Z on a Hausdorff, second
countable topological space X, as in §7.5. Then F satisfies either Definition
7.24(k) or (k)′. We will suppose F satisfies Definition 7.24(k), and give the proof
in this case. The proof for (k)′ is very similar, but the order of composition of 1-
morphisms is reversed, and the order of horizontal composition of 2-morphisms is
reversed (though vertical composition stays the same), and the order of subscripts
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a, b, c, . . . is reversed, so Φab,Λabc are replaced by Φba,Λcba, and so on. We leave
the details for case (k)′ to the interested reader.

Throughout the proof, we will use the following notation for multiple inter-
sections of the open sets Sab in X. For a1, . . . , ak ∈ A, k > 3, write

Śa1a2···ak =
⋂

16i<j6k
Saiaj .

More generally, if we enclose a group of consecutive indices alal+1 · · · am in
brackets, as in Śa1···al−1(al···am)am+1···ak , we omit from the intersection any Saiaj
with both ai, aj belonging to the bracketed group. So, for example

Śa(bc) = Sab ∩ Sac, Ś(ab)(cd) = Sac ∩ Sad ∩ Sbc ∩ Sbd,
Śa(bc)(de) = Sab ∩ Sac ∩ Sad ∩ Sae ∩ Sbd ∩ Sbe ∩ Scd ∩ Sce.

In Definition 7.24, the 2-morphisms Λabc are defined on open sets Sabc ⊆
Sab ∩ Sac ∩ Sbc ⊆ Imψa ∩ Imψb ∩ Imψc. We begin by showing that we can
extend the Λabc canonically to Śabc = Sab ∩ Sac ∩ Sbc.

Lemma 7.37. There exist unique 2-morphisms Λ̃abc : Φbc ◦ Φab ⇒ Φac defined
over Śabc for all a, b, c ∈ A, such that Λ̃abc|Sabc = Λabc, and as in Definition
7.24(j) we have Λ̃acd�(idΦcd ∗Λ̃abc) = Λ̃abd�(Λ̃bcd∗idΦab) : Φcd◦Φbc◦Φab ⇒ Φad
over Śabcd, for all a, b, c, d ∈ A.

Proof. Fix a, b, c ∈ A. We will construct a 2-morphism Λ̃abc : Φbc ◦ Φab ⇒ Φac

over Śabc. For each d ∈ A, define

S̃dabc = Sdab ∩ Sdac ∩ Sdbc ⊆ Śabc. (7.15)

Then S̃dabc is open in Śabc. Definition 7.24(k) with B = {a, b, c} implies that for

each x ∈ Śabc, there exists d ∈ A with x ∈ S̃dabc. Thus, {S̃dabc : d ∈ A} is an open

cover of Śabc.
Since Φda is an equivalence in the weak 2-category K̇NS̃dabc

(X) in Definition

6.9, as it is a coordinate change, Lemma A.6 implies that for each d ∈ A there is
a unique 2-morphism

Λ̃dabc : Φbc ◦ Φab =⇒ Φac over S̃dabc, such that

Λ̃dabc ∗ idΦda = Λ−1
dac � Λdbc � (idΦbc ∗ Λdab).

(7.16)

For d, e ∈ A, we will show that Λ̃dabc|S̃dabc∩S̃eabc = Λ̃eabc|S̃dabc∩S̃eabc . Let x ∈
S̃dabc ∩ S̃eabc. Then Definition 7.24(k) with B = {a, b, c, d, e} gives f ∈ A with

x ∈ Sfab ∩ Sfac ∩ Sfbc ∩ Sfda ∩ Sfdb ∩ Sfdc ∩ Sfea ∩ Sfeb ∩ Sfec ∩ S̃dabc ∩ S̃eabc.
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Consider the diagram of 2-morphisms on this intersection:

Φbc ◦ Φab ◦ Φfa

Λ̃dabc∗idΦfa //
Λ̃eabc∗idΦfaoo

idΦbc
∗Λfab��

Φbc◦Φab◦Φda◦Φfd

idΦbc◦Φab∗Λfda
33

idΦbc
∗Λdab∗idΦfd

''

Λabc∗
idΦda◦Φfd

��

Φbc◦Φfb

Λfbc

��

Φbc◦Φab◦Φea◦Φfe
idΦbc

∗Λeab∗idΦfe

ww

Λabc∗
idΦea◦Φfe

��

idΦbc◦Φab∗Λfea
kk

Φbc◦Φdb◦Φfd
Λdbc∗idΦfd��

idΦbc
∗

Λfdb

77

Φbc◦Φeb◦Φfe
Λebc∗idΦfe ��

idΦbc
∗

Λfeb

gg

Φdc◦Φfd
Λfdc

''

Φec◦Φfe
Λfec

ww
Φac◦Φda◦Φfd

idΦac∗Λfda
++

Λdac∗idΦfd

77

Φfc Φac◦Φea◦Φfe
idΦac∗Λfea
ss

Λeac∗idΦfe

gg

Φac ◦ Φfa.

Λfac

OO

(7.17)

Here the outer two quadrilaterals commute by (7.16), and the inner eight
quadrilaterals commute by Definition 7.24(j). So (7.17) commutes.

Thus, for each x ∈ S̃dabc ∩ S̃eabc, on an open neighbourhood of x we have

Λ̃dabc ∗ idΦfa = Λ̃eabc ∗ idΦfa , so that on an open neighbourhood of x we have

Λ̃dabc = Λ̃eabc by Lemma A.6. Definition A.17(iii) and Theorem 6.16 now imply

that Λ̃dabc = Λ̃eabc on S̃dabc ∩ S̃eabc. Since the S̃dabc for d ∈ A cover Śabc, Definition
A.17(iii),(iv) and Theorem 6.16 show that there exists a unique 2-morphism
Λ̃abc : Φbc ◦ Φab ⇒ Φac over Śabc such that

Λ̃abc|S̃dabc = Λ̃dabc for all d ∈ A. (7.18)

When d = a, we see from (7.15)–(7.16) and Definition 7.24(h),(i) that
S̃aabc = Sabc and Λ̃aabc = Λabc. Hence Λ̃abc|Sabc = Λabc, as we have to prove.

Suppose a, b, c, d ∈ A, and x ∈ Śabcd = Sab ∩ Sac ∩ Sad ∩ Sbc ∩ Sbd ∩ Scd.
Definition 7.24(k) with B = {a, b, c, d} gives e ∈ A with x ∈ S̃eabc ∩ S̃eabd ∩ S̃eacd ∩
S̃ebcd. So, in an open neighbourhood of x we have[

Λ̃acd � (idΦcd ∗ Λ̃abc)
]
∗ idΦea = (Λ̃eacd ∗ idΦea)� (idΦcd ∗ Λ̃eabc ∗ idΦea)

=
(
Λ−1
ead � Λecd � (idΦcd ∗ Λeac)

)
�
(
(idΦcd ∗ Λ−1

eac)� (idΦcd ∗ Λebc)� (idΦcd ∗ idΦbc ∗ Λeab)
)

= Λ−1
ead � Λebd �

(
Λ−1
ebd � Λecd � (idΦcd ∗ Λebc)

)
� (idΦcd◦Φbc ∗ Λeab)

=
(
Λ−1
ead � Λebd � (idΦbd ∗ Λeab)

)
�
(
(idΦbd ∗ Λ−1

eab)� (Λ̃ebcd ∗ idΦeb)� (idΦcd◦Φbc ∗ Λeab)
)

= (Λ̃eabd ∗ idΦea)� (Λ̃ebcd ∗ idΦab ∗ idΦea) =
[
Λ̃abd � (Λ̃bcd ∗ idΦab)

]
∗ idΦea ,

using (7.18) in the first, fourth and sixth steps, and (7.16) in the second, third and
fifth. Lemma A.6 now implies that Λ̃acd � (idΦcd ∗ Λ̃abc) = Λ̃abd � (Λ̃bcd ∗ idΦab)
holds near x. Applying Definition A.17(iii) and Theorem 6.16 again shows it
holds on the correct domain Śabcd. This completes the lemma.
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Next, for all a, b ∈ A we have a coordinate change Φab : (Va, Ea,Γa, sa,
ψa)→ (Vb, Eb,Γb, sb, ψb) over Sab ⊆ Imψa∩ Imψb. This is an equivalence in the
2-category K̇NSab(X) by Definition 6.11. Thus we may choose a quasi-inverse
Φ̌ba : (Vb, Eb,Γb, sb, ψb)→ (Va, Ea,Γa, sa, ψa), which is also a coordinate change
over Sab, and 2-morphisms

ηab : Φab ◦ Φ̌ba ⇒ id(Va,Ea,Γa,sa,ψa), ζab : Φ̌ba ◦Φab ⇒ id(Vb,Eb,Γb,sb,ψb). (7.19)

When a = b, so that Φaa = id(Va,Ea,Γa,sa,ψa), we choose

Φ̌aa = id(Va,Ea,Γa,sa,ψa) and ηaa = ζaa = idid(Va,Ea,Γa,sa,ψa)
. (7.20)

Now fix a, b ∈ A. For all c ∈ A, we have Śc(ab) = Sca ∩ Scb ⊆ Imψa ∩ Imψb.
From Definition 7.24(k) with B = {a, b}, we see that for each x ∈ Imψa ∩ Imψb
there exists c ∈ A with x ∈ Śc(ab), so {Śc(ab) : c ∈ A} is an open cover of
Imψa ∩ Imψb. For each c ∈ A, define a 1-morphism Ψc

ab : (Va, Ea,Γa, sa, ψa)→
(Vb, Eb,Γb, sb, ψb) over Śc(ab) by Ψc

ab = Φcb ◦ Φ̌ac.

Lemma 7.38. For all a, b, c, d ∈ A, there is a unique 2-morphism

Mcd
ab : Ψc

ab =⇒ Ψd
ab over Ś(cd)(ab) = Śc(ab) ∩ Śd(ab), (7.21)

such that for all e ∈ A, the following commutes on Śe(cd)(ab) :

Φcb ◦ Φec
Λ̃ecb

+3

idΦcb
∗ζ−1
ca ∗idΦac��

Φeb
Λ̃−1
edb

+3 Φdb ◦ Φed
idΦdb

∗ζ−1
da ∗idΦad ��

Φcb ◦ Φ̌ac ◦ Φca ◦ Φec
idΦcb◦Φ̌ac

∗Λ̃eca��

Φdb ◦ Φ̌ad ◦ Φda ◦ Φed
idΦdb◦Φ̌ad

∗Λ̃eda ��
Φcb ◦ Φ̌ac ◦ Φea Ψc

ab ◦ Φea

Mcd
ab∗idΦea

+3 Ψd
ab ◦ Φea Φdb ◦ Φ̌ad ◦ Φea.

(7.22)

Proof. Equation (7.22) determines Mcd
ab ∗ idΦea over Śe(cd)(ab), and so by Lemma

A.6, determines Mcd
ab over Śe(cd)(ab), as Φea is an equivalence. Write (Mcd

ab)
e for

the value for Mcd
ab on Śe(cd)(ab) determined by (7.22). Observe that Definition

7.24(k) with B = {a, b, c, d} implies that the Śe(cd)(ab) for e ∈ A form an open

cover of Ś(cd)(ab).

Let e, f ∈ A, and x ∈ Ś(ef)(cd)(ab) = Śe(cd)(ab) ∩ Śf(cd)(ab). Applying Defini-
tion 7.24(k) with B = {a, b, c, d, e, f} and this x gives g ∈ A such that all the 1-
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and 2-morphisms in the following diagram are defined on x ∈ Śg(ef)(cd)(ab):

Ψc
ab ◦ Φga

Λ̃−1
gea

qq
Λ̃−1
gfa

--
Λ̃−1
gca��

(Mcd
ab)

e∗idΦga

//
(Mcd

ab)
f∗idΦga

oo

Φcb◦Φ̌ac◦Φea◦Φge
Λ̃−1
eca��

Φcb◦Φ̌ac◦Φfa◦Φgf
Λ̃−1
fca ��Φcb◦Φ̌ac◦Φca◦ΦgcΛ̃−1

gecqq
Λ̃−1
gfc--

ζca��Φcb◦Φ̌ac◦Φca◦Φec◦Φge
ζca��

Φcb◦Φ̌ac◦Φca◦Φfc◦Φgf
ζca ��Φcb◦ΦgcΛ̃−1

gec

qq
Λ̃−1
gfc
--

Λ̃gcb��
Φcb◦Φec◦Φge

Λ̃ecb��

Φcb◦Φfc◦Φgf
Λ̃fcb ��ΦgbΛ̃−1

geb

qq
Λ̃−1
gfb

--
Λ̃−1
gdb��

Φeb◦Φge
Λ̃−1
edb��

Φfb◦Φgf
Λ̃−1
fdb ��Φdb◦ΦgdΛ̃−1

ged
qq

Λ̃−1
gfd
--

ζ−1
da��Φdb◦Φed◦Φge

ζ−1
da��

Φdb◦Φfd◦Φgf
ζ−1
da ��Φdb◦Φ̌ad◦Φda◦ΦgdΛ̃−1

gedqq
Λ̃−1
gfd--

Λ̃gda

��

Φdb◦Φ̌ad◦Φda◦Φed◦Φge
Λ̃eda��

Φdb◦Φ̌ad◦Φda◦Φfd◦Φgf
Λ̃fda ��

Φdb◦Φ̌ad◦Φea◦Φge Λ̃gea
--

Φdb◦Φ̌ad◦Φfa◦ΦgfΛ̃gfa
qq

Ψd
ab ◦ Φga.

(7.23)

Here for clarity we have omitted all ‘id···∗’ and ‘∗id···’ terms. The two outer
nine-gons commute by (7.22), eight small quadrilaterals commute by Lemma
7.37, and four small quadrilaterals commute by compatibility of horizontal and
vertical composition. Thus (7.23) commutes, and (Mcd

ab)
e ∗ idΦga = (Mcd

ab)
f ∗ idΦga

near x, so (Mcd
ab)

e = (Mcd
ab)

f near x by Lemma A.6.

As this holds for all x ∈ Śe(cd)(ab)∩Śf(cd)(ab), Definition A.17(iii) and Theorem

6.16 show that (Mcd
ab)

e = (Mcd
ab)

f on Śe(cd)(ab) ∩ Śf(cd)(ab). Since the Śe(cd)(ab)

for e ∈ A cover Ś(cd)(ab), Definition A.17(iii),(iv) and Theorem 6.16 imply that

there is a unique 2-morphism Mcd
ab as in (7.21) with Mcd

ab|Śe(cd)(ab)
= (Mcd

ab)
e. But

by definition of (Mcd
ab)

e this holds if and only if (7.22) commutes. This completes
the lemma.

Lemma 7.39. For all a, b, c, d, e ∈ A, we have

Mde
ab �Mcd

ab = Mce
ab : Ψc

ab =⇒ Ψe
ab

over Ś(cde)(ab) = Ś(cd)(ab) ∩ Ś(ce)(ab) ∩ Ś(de)(ab).
(7.24)

Proof. Let x ∈ Ś(cde)(ab). Definition 7.24(k) with B = {a, b, c, d, e} and this x
gives f ∈ A such that all the 1- and 2-morphisms in the following diagram are
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defined on x ∈ Śf(cde)(ab):

Φfb

Λ̃−1
fcbow

Λ̃−1
fdb

�� Λ̃−1
feb '/

Φcb◦Φfc
idΦcb

∗ζ−1
ca ∗idΦac��

Φdb◦Φfd
idΦdb

∗ζ−1
da ∗idΦad��

Φeb◦Φfe
idΦeb

∗ζ−1
ea ∗idΦae ��

Φcb◦Φ̌ac◦Φca◦Φfc
idΦcb◦Φ̌ac

∗Λ̃fca
��

Φdb◦Φ̌ad◦Φda◦Φfd
idΦdb◦Φ̌ad

∗Λ̃fda
��

Φeb◦Φ̌ae◦Φea◦Φfe
idΦeb◦Φ̌ae

∗Λ̃fea
��

Φcb◦Φ̌ac◦Φfa
Mcd
ab∗idΦfa +3

Mce
ab∗idΦfa

,4Φdb◦Φ̌ad◦Φfa
Mde
ab∗idΦfa +3 Φeb◦Φ̌ae◦Φfa.

(7.25)

Here the two inner and the outer septagons commute by (7.22). Thus (7.25)
commutes, and compatibility of horizontal and vertical composition gives

(Mde
ab �Mcd

ab) ∗ idΦfa = (Mde
ab ∗ idΦfa)� (Mde

ab ∗ idΦfa) = Mce
ab ∗ idΦfa

near x, so (7.24) holds near x by Lemma A.6. As this is true for all x ∈ Ś(cde)(ab),
the lemma follows from Definition A.17(iii) and Theorem 6.16.

By Lemmas 7.38 and 7.39, as {Śc(ab) : c ∈ A} is an open cover of Imψa∩Imψb,
we may now apply Definition A.17(v) and Theorem 6.16 to show that for all a, b ∈
A, there exists a coordinate change Ψab : (Va, Ea,Γa, sa, ψa)→ (Vb, Eb,Γb, sb, ψb)
over Imψa ∩ Imψb, and 2-morphisms εcab : Ψc

ab ⇒ Ψab over Śc(ab) for all c ∈ A,
such that for all c, d ∈ A we have

εdab �Mcd
ab = εcab : Ψc

ab =⇒ Ψab over Ś(cd)(ab) = Śc(ab) ∩ Śd(ab). (7.26)

Furthermore Ψab is unique up to 2-isomorphism.
In the case when a = b, we have Ψa

aa = Φaa = Φ̌aa = id(Va,Ea,Γa,sa,ψa) and

Śa(aa) = Imψa, so εaaa : id(Va,Ea,Γa,sa,ψa) ⇒ Ψaa is a 2-morphism over Imψa. As
we can choose Ψaa freely in its 2-isomorphism class, we choose

Ψaa = id(Va,Ea,Γa,sa,ψa) and εaaa = idid(Va,Ea,Γa,sa,ψa)
, for all a ∈ A. (7.27)

Lemma 7.40. For all a, b, c ∈ A, there is a unique 2-morphism

Kabc : Ψbc ◦Ψab =⇒ Ψac over Imψa ∩ Imψb ∩ Imψc,

such that for all d ∈ A, the following commutes over Śd(abc) :

Φdc ◦ Φ̌bd ◦ Φdb ◦ Φ̌ad
idΦdc

∗ζdb∗idΦ̌ad��

Ψd
bc ◦Ψd

ab
εdbc∗ε

d
ab

+3 Ψbc ◦Ψab

Kabc
��

Φdc ◦ Φ̌ad Ψd
ac

εdac +3 Ψac.

(7.28)
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Proof. Fix a, b, c ∈ A. If x ∈ Imψa ∩ Imψb ∩ Imψc, then Definition 7.24(k) with
B = {a, b, c} and this x gives d ∈ A with x ∈ Śd(abc). Hence

{
Śd(abc) : d ∈ A

}
is

an open cover of Imψa ∩ Imψb ∩ Imψc.
For each d ∈ A, write Kd

abc for the 2-morphism over Śd(abc) determined by

(7.28) with Kd
abc in place of Kabc. We have to show that there is a unique

2-morphism Kabc over Imψa ∩ Imψb ∩ Imψc with Kabc|Śd(abc)
= Kd

abc.

Ψbc◦Ψab◦Φfa
(εdbc)

−1∗(εdab)
−1

ss
(εebc)

−1∗(εeab)
−1

++

Kdabc∗idΦfa

//
Keabc∗idΦfa

oo

Φdc◦Φ̌bd◦Φdb◦Φ̌ad◦Φfa

ζdb

��

Mde
bc ∗M

de
ab //

Λ̃−1
fda��

idΨdbc
∗Mde

ab

��

Φec◦Φ̌be◦Φeb◦Φ̌ae◦Φfa

ζeb
��

Φdc◦Φ̌bd◦Φdb◦
Φ̌ad◦Φda◦Φfd
ζda��

Φec◦Φ̌ae◦Φfa

Λ̃−1
edc ��

Φdc◦Φ̌bd◦
Φdb◦Φfd

ζdb

��

Λ̃fdb

++

Φdc◦Φed◦
Φ̌ae◦Φfa

ζ−1
db

ss
Φdc◦Φ̌bd
◦Φfb

Λ̃−1
feb ��

Φdc◦Φ̌bd◦Φeb
◦Φ̌ae◦Φfa

Φdc◦Φ̌bd◦Φdb◦
Φed◦Φ̌ae◦ΦfaΛ̃edb

oo

Φdc◦Φ̌bd◦
Φeb◦Φfe

ζ−1
ea // Φdc◦Φ̌bd◦Φeb◦

Φ̌ae◦Φea◦Φfe

Λ̃fea
OO

Φdc◦Φ̌bd◦Φdb◦Φed
◦Φ̌ae◦Φea◦Φfe

Λ̃edboo

Λ̃fea

OO

ζdb∗ζeaww
Φdc◦Φfd

Λ̃fdc

++

ζ−1
da
��

Φdc◦Φed◦Φfe
Λ̃fedoo Λ̃edc // Φec◦Φfe

Λ̃fec

ss
ζ−1
ea

��
Φdc◦Φ̌ad◦Φda◦Φfd

Λ̃fda
��

Φfc Φec◦Φ̌ae◦Φea◦Φfe

Λ̃fea
��

Φdc◦Φ̌ad◦Φfa

εdac

++

Mde
ac // Φec◦Φ̌ae◦Φfa

εeac

ss
Ψac◦Φfa

Figure 7.1: Proof that Kd
abc ∗ idΦfa = Ke

abc ∗ idΦfa

Let d, e ∈ A, and x ∈ Ś(de)(abc) = Śd(abc) ∩ Śe(abc). Definition 7.24(k) with

B = {a, b, c, d, e} and this x gives f ∈ A with x ∈ Śf(de)(abc). Consider the
diagram of 1- and 2-morphisms Figure 7.1. We have omitted most terms ∗id···
and id···∗ in the 2-morphisms for clarity. The two outer crescent shapes are the
definitions of Kd

abc,K
e
abc in (7.28), composed with Φfa. The top and bottom

triangles commute by (7.26). In the interior of the figure, the three polygons with
sides involving Mde

ab ,M
de
ac ,M

de
bc commute by (7.22). The remaining four polygons

commute by Lemma 7.37 and compatibility of horizontal and vertical composition.
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Thus Figure 7.1 commutes, which proves that Kd
abc ∗ idΦfa = Ke

abc ∗ idΦfa on

Śf(de)(abc). Lemma A.6 now shows that Kd
abc = Ke

abc on Śf(de)(abc).

As the Śf(de)(abc) for f ∈ A cover Śd(abc) ∩ Śe(abc), Definition A.17(iii) and

Theorem 6.16 imply that Kd
abc = Ke

abc on Śd(abc)∩Śe(abc). Since
{
Śd(abc) : d ∈ A

}
is an open cover of Imψa ∩ Imψb ∩ Imψc, Definition A.17(iii),(iv) and Theorem
6.16 show that there exists a unique 2-morphism Kabc over Imψa∩ Imψb∩ Imψc
such that Kabc|Śd(abc)

= Kd
abc. Thus (7.28) commutes for all d ∈ A, by definition

of Kd
abc. This completes the proof.

Putting a, a, b, a in place of a, b, c, d in (7.28) and using εaaa, ζaa identities by
(7.20), (7.27), and similarly putting a, b, b, b in place of a, b, c, d and using εbbb, ζbb
identities, yields

Kaab = Kabb = idΨab . (7.29)

Lemma 7.41. For all a, b, c, d ∈ A we have Kacd � (idΨcd ∗ Kabc) = Kabd �
(Kbcd ∗ idΨab) : Ψcd ◦Ψbc ◦Ψab =⇒ Ψad over Imψa ∩ Imψb ∩ Imψc ∩ Imψd.

Proof. Let x ∈ Imψa ∩ Imψb ∩ Imψc ∩ Imψd. Definition 7.24(k) with B =
{a, b, c, d} and this x gives e ∈ A with x ∈ Śe(abcd). Consider the diagram

Ψcd ◦Ψbc ◦Ψab

(εecd∗ε
e
bc∗ε

e
ab)
−1

 (

idΨcd
∗Kabc

+3

Kbcd∗idΨab

��

Ψcd ◦Ψac

Kacd

��

(εecd∗ε
e
ac)
−1

v~
Φed◦Φ̌ce◦Φec◦
Φ̌be◦Φeb◦Φ̌ae

idΦed
∗ζec∗idΦ̌be◦Φeb◦Φ̌ae��

idΦed◦Φ̌ce◦Φec
∗

ζeb∗idΦ̌ae +3 Φed◦Φ̌ce◦
Φec◦Φ̌ae

idΦed
∗ζec∗idΦ̌ae

��

εecd∗ε
e
ac

6>

Φed◦Φ̌be◦
Φeb◦Φ̌ae

εebd∗ε
e
ab

v~

idΦed
∗ζeb∗idΦ̌ae

+3 Φed◦Φ̌ae
εead

 (
Ψbd ◦Ψab

(εebd∗ε
e
ab)
−1

6>

Kabd +3 Ψad.

(7.30)

Here the four outer quadrilaterals commute by (7.28), and the inner rectangle
commutes by compatibility of horizontal and vertical multiplication. Thus
(7.30) commutes, and the outer rectangle shows that Kacd � (idΨcd ∗ Kabc) =

Kabd � (Kbcd ∗ idΨab) holds over Śe(abcd). Since the Śe(abcd) for all e ∈ A cover
Imψa ∩ Imψb ∩ Imψc ∩ Imψd, the lemma follows from Definition A.17(iii) and
Theorem 6.16.

The definition of the Ψab after Lemma 7.39, Lemmas 7.40–7.41, and equations
(7.27) and (7.29), now imply that K =

(
A, (Va, Ea,Γa, sa, ψa)a∈A, Ψab, a,b∈A,

Kabc, a,b,c∈A
)

is a Kuranishi structure on X in the sense of §6.2, so X = (X,K)
is a Kuranishi space with vdimX = n, as we have to prove.
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To give (Va, Ea,Γa, sa, ψa) the structure of a Kuranishi neighbourhood on
the Kuranishi space X in the sense of §6.4 for a ∈ A, note that as (Va, Ea,Γa,
sa, ψa) is already part of the Kuranishi structure K, we can take Ψai, i∈A and
Kaij, i,j∈A to be the implicit extra data Φai, i∈I , Λaij, i,j∈I in Definition 6.42.

To give Φab : (Va, Ea,Γa, sa, ψa) → (Vb, Eb,Γb, sb, ψb) the structure of a
coordinate change over Sab on the Kuranishi space X as in §6.4 for a, b ∈ A,
we need to specify implicit extra data Iabi, i∈A in place of Λabi, i∈A in Definition
6.43, where Iabi : Ψbi ◦Φab ⇒ Ψai is a 2-morphism over Sab ∩ Imψi for all i ∈ A
satisfying (6.38) over Sab ∩ Imψi ∩ Imψj for all i, j ∈ A, which becomes

Kaij � (idΨij ∗ Iabi) = Iabj � (Kbij ∗ idΦab) : Ψij ◦Ψbi ◦ Φab =⇒ Ψaj . (7.31)

Since Φ̌aa = idVa,Ea,Γa,sa,ψa) by (7.20) we have Ψa
ab = Φab, so the definition

of Ψab gives a 2-morphism εaab : Φab ⇒ Ψab over Sab ⊆ Imψa ∩ Imψb. Define
Iabi = Kabi � (idΨbi ∗ (εaab)

−1). Then (7.31) follows from vertically composing
idΨij◦Ψbi ∗ (εaab)

−1 with Lemma 7.41 with i, j in place of c, d. This makes Φab

into a coordinate change over Sab on X, as we want.
Now let a, b, c ∈ A. To show that Λabc : Φbc ◦ Φab ⇒ Φac is the unique

2-morphism over Sabc given by Theorem 6.45(a), we must prove that as in (6.39),
for all i ∈ A, over Sabc ∩ Imψi we have

Iabi � (Ibci ∗ idΦab) = Iaci � (idΨci ∗ Λabc) : Ψci ◦ Φbc ◦ Φab =⇒ Ψai. (7.32)

To prove (7.32), consider the diagram of 2-morphisms over Sabc ∩ Imψi:

Ψci ◦ Φbc ◦ Φab

idΨci
∗εbbc∗ε

a
ab

�"

idΨci
∗Λabc=idΨci

∗Λ̃abc
+3

Ibci∗idΦab

��

idΨci
∗Mba

bc ∗idΦab

(0

Ψci ◦ Φac

Iaci

��

idΨci
∗εaac
��

Ψci ◦ Φac ◦ Φ̌ba ◦ Φab

idΨci
∗εabc∗ε

a
ab

v~

idΨci◦Φac∗ζab

.6

Ψci ◦Ψac

Kaci

��

Ψci ◦Ψbc ◦Ψab

Kbci∗idΨab

��

idΨci
∗Kabc

-5

Ψbi ◦Ψab
Kabi

)1Ψbi ◦ Φab

idΨbi
∗εaab 19

Iabi +3 Ψai.

(7.33)

Here the bottom and rightmost triangles, and the leftmost quadrilateral, commute
by definition of Iabi. The lower central quadrilateral commutes by Lemma 7.41,
the upper central quadrilateral by (7.28) with d = a, the upper left triangle by
(7.26), and the topmost triangle by (7.22) with b, c, b, a, a in place of a, b, c, d, e,
noting that of the seven morphisms in (7.22), four are identities in this case,
so we omit them. Also we use Λ̃abc|Sabc = Λabc from Lemma 7.37. Thus (7.33)
commutes, and the outer rectangle yields (7.32). Hence Λabc : Φbc ◦ Φab ⇒ Φac
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is the unique 2-morphism over Sabc given by Theorem 6.45(a). This completes
the proof of the first part of Theorem 7.26.

It remains to show that X = (X,K) is unique up to equivalence in K̇ur.
To prove this, we have to consider where in the proof above we made arbitrary
choices, and show that if we made different choices yielding X ′ = (X,K′), then
X and X ′ are equivalent in K̇ur. There are two places in the construction of
X where we made arbitrary choices: firstly the choice after Lemma 7.37 of a
quasi-inverse Φ̌ba for Φab and 2-morphisms ηab, ζab in (7.19) (though in fact the
ηab were never used in the definition of X), and secondly the choice after Lemma
7.39 of Ψab and 2-morphisms εcab satisfying (7.26).

For the first, if Φ̌′ba, η
′
ab, ζ

′
ab are alternative choices for Φ̌ba, ηab, ζab, for all

a, b ∈ A, then there exist unique 2-morphisms αab : Φ̌ba ⇒ Φ̌′ba such that

ζab = ζ ′ab � (αab ∗ idΦab) for all a, b ∈ A, (7.34)

and αaa = idid(Va,Ea,Γa,sa,ψa)
. Then one can check that for the second choice we

can keep Ψab unchanged and replace εcab by

ε′cab = εcab � (idΦcb ∗ (αac)
−1) for all a, b, c ∈ A. (7.35)

Using (7.34)–(7.35) to compare (7.28) for Φ̌ba, ηab, ζab, ε
c
ab and Φ̌′ba, η

′
ab, ζ

′
ab, ε

′c
ab,

we find that the two occurrences of αda and of αdb cancel, so Kabc is unchanged.
Thus, the family of possible outcomes for Ψab,Kabc and X are independent of
the first choice of Φ̌ba, ηab, ζab for a, b ∈ A.

Next, regard the Φ̌ba, ηab, ζab as fixed, and let Ψ′ab, ε
′c
ab be alternative possibil-

ities for Ψab, ε
c
ab in the second choice, and K′abc the corresponding 2-morphisms

in Lemma 7.40. Then by Theorem 6.16 and the last part of Definition A.17(v),
there are unique 2-morphisms βab : Ψab ⇒ Ψ′ab for all a, b ∈ A, such that

ε′cab = βab � εcab for all a, b, c ∈ A. (7.36)

Substituting (7.36) into (7.28) for Ψ′ab, ε
′c
ab,K

′
abc and comparing with (7.28) for

Ψab, ε
c
ab,Kabc, we see that

K′abc = βac �Kabc � (β−1
bc ∗ β

−1
ab ).

Define 1-morphisms f : X →X ′, g : X ′ →X, in the notation of (6.18), by

f =
(
idX ,Ψab, a∈A, b∈A, (Kaa′b)

b, b∈A
aa′, a,a′∈A, (Kabb′ � (β−1

bb′ ∗ idΨab))
bb′, b,b′∈A
a, a∈A

)
,

g =
(
idX ,Ψ

′
ab, a∈A, b∈A, (K′aa′b)

b, b∈A
aa′, a,a′∈A, (K′abb′ � (βbb′ ∗ idΨ′ab

))bb
′, b,b′∈A

a, a∈A
)
.

One can check these satisfy Definition 6.19(a)–(h), and so are 1-morphisms of
Kuranishi spaces. Definition 6.22 now gives a 1-morphism of Kuranishi spaces
g ◦f : X →X, and 2-morphisms of Kuranishi neighbourhoods for all a, b, c ∈ A

Θg,fabc : Ψ′bc ◦Ψab =⇒ (g ◦ f)ac.
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We claim that there is a unique 2-morphism % = (%ac, a,c∈A) : g ◦f ⇒ idX of
Kuranishi spaces such that for all a, b, c ∈ A the following diagram of 2-morphisms
of Kuranishi neighbourhoods over Imψa ∩ Imψb ∩ Imψc commutes:

Ψ′bc ◦Ψab
(β′bc)

−1∗idΨab

+3

Θg,f
abc��

Ψbc ◦Ψab

Kabc ��
(g ◦ f)ac

%ac|Imψa∩Imψb∩Imψc +3 Ψac = (idX)ac.

(7.37)

To prove this, note that (7.37) determines %ac on the open subset Imψa ∩
Imψb ∩ Imψc ⊆ Imψa ∩ Imψc. Using (6.24)–(6.26) for the Θg,fabc and Lemma
7.41 for the Kabc, we prove that these prescribed values for %ac agree on overlaps
between Imψa∩ Imψb∩ Imψc and Imψa∩ Imψb′ ∩ Imψc, for all b, b′ ∈ A. Thus,
as the Imψa ∩ Imψb ∩ Imψc for all b ∈ A form an open cover of the correct
domain Imψa ∩ Imψc for a, c ∈ A, Theorem 6.16 and Definition A.17(iii),(iv)
imply that there is a unique 2-morphism %ac : (g ◦ f)ac ⇒ (idX)ac such that
(7.37) commutes for all b ∈ A.

We can then check that % = (%ac, a,c∈A) satisfies Definition 6.20(a),(b), by
proving that they hold on the restriction of their domains with Imψb for each
b ∈ A using (7.37), (6.24)–(6.26) for the Θg,fabc and Lemma 7.41 for the Kabc,
and then using Theorem 6.16 and Definition A.17(iii) to deduce that Definition
6.20(a),(b) hold on the correct domains. Therefore % : g ◦ f ⇒ idX is a 2-
morphism of Kuranishi spaces. Similarly, exchanging X,X ′ we construct a
2-morphism σ : f ◦ g ⇒ idX′ . Hence f : X →X ′ is an equivalence, and X,X ′

are equivalent in the 2-category K̇ur. This completes the proof of Theorem 7.26.
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Appendix A

Categories and 2-categories

We recall background material on categories, 2-categories, and sheaves and stacks
on topological spaces. Some references are MacLane [75] for §A.1, and Borceux
[6, §7], Kelly and Street [67], and Behrend et al. [3, App. B] for §A.2–§A.4, and
Bredon [10], Godement [40], and Hartshorne [43, §II.1] for §A.5.

A.1 Basics of category theory

Here are the basic definitions in category theory, as in MacLane [75, §I].

Definition A.1. A category C consists of a class of objects Obj(C), and for all
X,Y ∈ Obj(C) a set Hom(X,Y ) of morphisms f from X to Y , written f : X →
Y , and for all X,Y ∈ Obj(C) a composition map ◦ : Hom(X,Y )×Hom(Y, Z)→
Hom(X,Z), written (f, g) 7→ g ◦ f . Composition must be associative, that
is, if f : W → X, g : X → Y and h : Y → Z are morphisms in C then
(h ◦ g) ◦ f = h ◦ (g ◦ f). For each X ∈ Obj(C) there must exist an identity
morphism idX : X → X such that f ◦ idX = f = idY ◦ f for all f : X → Y in C.

A morphism f : X → Y is an isomorphism if there exists f−1 : Y → X with
f−1 ◦ f = idX and f ◦ f−1 = idY . A category C is called a groupoid if every
morphism is an isomorphism. In a groupoid C, for each X ∈ Obj(C) the set
Hom(X,X) of morphisms f : X → X form a group.

A category C is small if Obj(C) is a set, rather than a proper class. It is
essentially small if the isomorphism classes Obj(C)/ ∼= of objects in C form a
set, rather than a proper class.

If C is a category, the opposite category Cop is C with the directions of
all morphisms reversed. That is, we define Obj(Cop) = Obj(C), and for all
X,Y, Z ∈ Obj(C) we define HomCop(X,Y ) = HomC(Y,X), and for f : X → Y ,
g : Y → Z in C we define f ◦Cop g = g ◦C f , and idCopX = idCX.

Given categories C,D, the product category C × D has objects (W,X) in
Obj(C)×Obj(D) and morphisms f × g : (W,X)→ (Y, Z) when f : W → Y is a
morphism in C and g : X → Z is a morphism in D, in the obvious way.

We call D a subcategory of C if Obj(D) ⊆ Obj(C), and HomD(X,Y ) ⊆
HomC(X,Y ) for all X,Y ∈ Obj(D), and compositions and identities in C,D
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agree. We call D a full subcategory if also HomD(X,Y ) = HomC(X,Y ) for all
X,Y in Obj(D).

Definition A.2. Let C,D be categories. A (covariant) functor F : C → D gives,
for all objects X in C an object F (X) in D, and for all morphisms f : X → Y
in C a morphism F (f) : F (X)→ F (Y ) in D, such that F (g ◦ f) = F (g) ◦ F (f)
for all f : X → Y , g : Y → Z in C, and F (idX) = idF (X) for all X ∈ Obj(C). A
contravariant functor F : C → D is a covariant functor F : Cop → D.

Functors compose in the obvious way. Each category C has an obvious identity
functor idC : C → C with idC(X) = X and idC(f) = f for all X, f . A functor F :
C → D is called full if the maps HomC(X,Y )→ HomD(F (X), F (Y )), f 7→ F (f)
are surjective for all X,Y ∈ Obj(C), and faithful if the maps HomC(X,Y ) →
HomD(F (X), F (Y )) are injective for all X,Y ∈ Obj(C).

Let C,D be categories and F,G : C → D be functors. A natural transforma-
tion η : F ⇒ G gives, for all objects X in C, a morphism η(X) : F (X)→ G(X)
in D such that if f : X → Y is a morphism in C then η(Y ) ◦F (f) = G(f) ◦ η(X)
as morphisms F (X)→ G(Y ) in D. We call η a natural isomorphism if η(X) is
an isomorphism for all X ∈ Obj(C).

A functor F : C → D is called an equivalence if there exist a functor G : D → C
and natural isomorphisms η : G ◦ F ⇒ idC and ζ : F ◦G⇒ idD. Then we call
C,D equivalent categories.

It is a fundamental principle of category theory that equivalent categories
C,D should be thought of as being ‘the same’, and naturally isomorphic functors
F,G : C → D should be thought of as being ‘the same’. Note that equivalence of
categories C,D is much weaker than strict isomorphism: isomorphism classes of
objects in C are naturally in bijection with isomorphism classes of objects in D,
but there need be no relation between the sizes of the isomorphism classes, so
that C could have many more objects than D, for instance.

Definition A.3. Let C be a category, and g : X → Z, h : Y → Z be morphisms
in C. A fibre product of g, h in C is an object W and morphisms e : W → X
and f : W → Y in C, such that g ◦ e = h ◦ f , with the universal property that
if e′ : W ′ → X and f ′ : W ′ → Y are morphisms in C with g ◦ e′ = h ◦ f ′ then
there is a unique morphism b : W ′ →W with e′ = e ◦ b and f ′ = f ◦ b. Then we
write W = X ×g,Z,h Y or W = X ×Z Y , and e = πX , f = πY . The diagram

W
f

//

e��

Y

h ��
X

g // Z

(A.1)

is called a Cartesian square. Fibre products need not exist, but if they do exist
they are unique up to canonical isomorphism in C.
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A.2 Strict and weak 2-categories

Definition A.4. A strict 2-category C consists of a class of objects Obj(C),
for all X,Y ∈ Obj(C) an essentially small category Hom(X,Y ), for all X,Y, Z
in Obj(C) a functor µX,Y,Z : Hom(X,Y ) ×Hom(Y, Z) → Hom(X,Z) called
composition, and for all X in Obj(C) an object idX in Hom(X,X) called the
identity 1-morphism. These must satisfy the associativity property, that

µW,Y,Z ◦ (µW,X,Y × idHom(Y,Z)) = µW,X,Z ◦ (idHom(W,X) × µX,Y,Z) (A.2)

as functors Hom(W,X)×Hom(X,Y )×Hom(Y,Z)→ Hom(W,X), and the
identity property, that

µX,X,Y (idX ,−) = µX,Y,Y (−, idY ) = idHom(X,Y ) (A.3)

as functors Hom(X,Y )→ Hom(X,Y ).
Objects f of Hom(X,Y ) are called 1-morphisms, written f : X → Y . For

1-morphisms f, g : X → Y , morphisms η in HomHom(X,Y )(f, g) are called 2-
morphisms, written η : f ⇒ g. Thus, a 2-category has objects X, and two
kinds of morphisms: 1-morphisms f : X → Y between objects, and 2-morphisms
η : f ⇒ g between 1-morphisms.

A weak 2-category, or bicategory, is like a strict 2-category, except that
the equations of functors (A.2), (A.3) are required to hold only up to spec-
ified natural isomorphisms. That is, a weak 2-category C consists of data
Obj(C),Hom(X,Y ), µX,Y,Z , idX as above, but in place of (A.2), a natural iso-
morphism of functors

α : µW,Y,Z ◦(µW,X,Y ×idHom(Y,Z)) =⇒ µW,X,Z ◦(idHom(W,X)×µX,Y,Z), (A.4)

and in place of (A.3), natural isomorphisms

β : µX,X,Y (idX ,−)=⇒ idHom(X,Y ), γ : µX,Y,Y (−, idY )=⇒ idHom(X,Y ). (A.5)

These α, β, γ must satisfy identities which we give below in (A.9) and (A.12).
A strict 2-category C can be regarded as an example of a weak 2-category, in

which the natural isomorphisms α, β, γ in (A.4)–(A.5) are the identities.

We now unpack Definition A.4, making it more explicit.
There are three kinds of composition in a 2-category, satisfying various

associativity relations. If f : X → Y and g : Y → Z are 1-morphisms then
µX,Y,Z(f, g) is the composition of 1-morphisms, written g ◦ f : X → Z. If
f, g, h : X → Y are 1-morphisms and η : f ⇒ g, ζ : g ⇒ h are 2-morphisms then
composition of η, ζ in Hom(X,Y ) gives the vertical composition of 2-morphisms,
written ζ � η : f ⇒ h, as a diagram

X

f

""�� η
<<

h

�� ζ
g

// Y // X

f
))

h

55�� ζ�η Y.
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Vertical composition is associative.
If f, ḟ : X → Y and g, ġ : Y → Z are 1-morphisms and η : f ⇒ ḟ , ζ : g ⇒ ġ

are 2-morphisms then µX,Y,Z(η, ζ) is the horizontal composition of 2-morphisms,

written ζ ∗ η : g ◦ f ⇒ ġ ◦ ḟ , as a diagram

X

f
((

ḟ

66�� η Y

g

((

ġ

66�� ζ Z // X

g◦f
((

ġ◦ḟ

66�� ζ∗η Z.

As µX,Y,Z is a functor, these satisfy compatibility of vertical and horizontal
composition: given a diagram of 1- and 2-morphisms

X

f

!!�� η
>>

f̈

�� η̇

ḟ // Y

g

!!�� ζ

==

g̈

�� ζ̇

ġ // Z,

we have
(ζ̇ � ζ) ∗ (η̇ � η) = (ζ̇ ∗ η̇)� (ζ ∗ η) : g ◦ f =⇒ g̈ ◦ f̈ . (A.6)

There are also two kinds of identity: identity 1-morphisms idX : X → X and
identity 2-morphisms idf : f ⇒ f .

In a strict 2-category C, composition of 1-morphisms is strictly associative,
(g ◦ f) ◦ e = g ◦ (f ◦ e), and horizontal composition of 2-morphisms is strictly
associative, (ζ ∗ η) ∗ ε = ζ ∗ (η ∗ ε). In a weak 2-category C, composition of
1-morphisms is associative up to specified 2-isomorphisms. That is, if e : W → X,
f : X → Y , g : Y → Z are 1-morphisms in C then the natural isomorphism α in
(A.4) gives a 2-isomorphism

αg,f,e : (g ◦ f) ◦ e =⇒ g ◦ (f ◦ e). (A.7)

As α is a natural isomorphism, given 1-morphisms e, ė : W → X, f, ḟ : X → Y ,
g, ġ : Y → Z and 2-morphisms ε : e⇒ ė, η : f ⇒ ḟ , ζ : g ⇒ ġ in C, the following
diagram of 2-morphisms must commute:

(g ◦ f) ◦ e
αg,f,e

+3

(ζ∗η)∗ε��

g ◦ (f ◦ e)
ζ∗(η∗ε) ��

(ġ ◦ ḟ) ◦ ė
αġ,ḟ,ė +3 ġ ◦ (ḟ ◦ ė).

(A.8)

The αg,f,e must satisfy the associativity coherence axiom: if d : V → W is
another 1-morphism, then the following diagram of 2-morphisms must commute:

((g ◦ f) ◦ e) ◦ d
αg,f,e∗idd

+3

αg◦f,e,d
��

(g ◦ (f ◦ e)) ◦ d
αg,f◦e,d

+3 g ◦ ((f ◦ e) ◦ d)

idg∗αf,e,d ��
(g ◦ f) ◦ (e ◦ d)

αg,f,d◦e +3 g ◦ (f ◦ (e ◦ d)).

(A.9)

In a strict 2-category C, given a 1-morphism f : X → Y , the identity 1-
morphisms idX , idY satisfy f ◦ idX = idY ◦ f = f . In a weak 2-category C, the
natural isomorphisms β, γ in (A.5) give 2-isomorphisms

βf : f ◦ idX =⇒ f, γf : idY ◦ f =⇒ f. (A.10)
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As β, γ are natural isomorphisms, if η : f ⇒ ḟ is a 2-morphism we must have

η � βf = βḟ � (η ∗ ididX ) : f ◦ idX ⇒ ḟ ,

η � γf = γḟ � (ididY ∗ η) : idY ◦ f ⇒ ḟ .
(A.11)

The βf , γf must satisfy the identity coherence axiom: if g : Y → Z is another
1-morphism, then the following diagram of 2-morphisms must commute:

(g ◦ idY ) ◦ f βg∗idf
*2αg,idY ,f�� g ◦ f.

g ◦ (idY ◦ f) idg∗γf

,4 (A.12)

A 2-category C is called a (2, 1)-category if all 2-morphisms in C are invertible
under vertical composition.

A basic example of a strict 2-category is the 2-category of categories Cat, with
objects small categories C, 1-morphisms functors F : C → D, and 2-morphisms
natural transformations η : F ⇒ G for functors F,G : C → D. Orbifolds
naturally form a 2-category (strict or weak, depending on the definition), and so
do stacks in algebraic geometry.

In a 2-category C, there are three notions of when objects X,Y in C are
‘the same’: equality X = Y , and 1-isomorphism, that is we have 1-morphisms
f : X → Y , g : Y → X with g ◦f = idX and f ◦g = idY , and equivalence, that is,
we have 1-morphisms f : X → Y , g : Y → X and 2-isomorphisms η : g◦f ⇒ idX
and ζ : f ◦ g ⇒ idY . Usually equivalence is the correct notion. By [3, Prop. B.8],
we can also choose η, ζ to satisfy some extra identities:

Proposition A.5. Let C be a weak 2-category, and f : X → Y be an equivalence
in C. Then there exist a 1-morphism g : Y → X and 2-isomorphisms η : g ◦ f ⇒
idX and ζ : f ◦ g ⇒ idY with ζ ∗ idf = (idf ∗ η) � αf,g,f as 2-isomorphisms
(f ◦ g) ◦ f ⇒ f, and η ∗ idg = (idg ∗ ζ)�αg,f,g as 2-isomorphisms (g ◦ f) ◦ g ⇒ g.

The next elementary lemma about 2-categories is easy to prove.

Lemma A.6. Suppose f : X → Y and g, h : Y → Z are 1-morphisms in a
(strict or weak) 2-category C, with f an equivalence. Then the map η 7→ η∗idf = ζ
induces a 1-1 correspondence between 2-morphisms η : g ⇒ h and 2-morphisms
ζ : g ◦ f ⇒ h ◦ f in C.

Definition A.7. Let C be a 2-category. When we say that objects X,Y in C are
canonically equivalent, we mean that there is a nonempty distinguished class E
of equivalences f : X → Y in C, and given any f, g in E there is a 2-isomorphism
η : f ⇒ g. Often there is a distinguished choice of such η.

When we say that an object X in C is unique up to canonical equivalence, we
mean that there is a nonempty class O of distinguished choices X,X ′, X ′′, . . . for
X, and given any X,X ′ in O there is a nonempty distinguished class EX,X′ of
equivalences f : X → X ′, and given any f, g in EX,X′ there is a 2-isomorphism
η : f ⇒ g, such that idX : X → X lies in EX,X , and if f : X → X ′ lies in EX,X′
and f ′ : X ′ → X ′′ in EX′,X′′ then f ′ ◦ f : X → X ′′ lies in EX,X′′ .
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Commutative diagrams in 2-categories should in general only commute up
to (specified) 2-isomorphisms, rather than strictly. A simple example of a
commutative diagram in a 2-category C is

Y
g

**
η
��X

f
44

h
// Z,

which means that X,Y, Z are objects of C, f : X → Y , g : Y → Z and h : X → Z
are 1-morphisms in C, and η : g ◦ f ⇒ h is a 2-isomorphism.

Let C be a 2-category. The homotopy category Ho(C) of C is the category
whose objects are objects of C, and whose morphisms [f ] : X → Y are 2-
isomorphism classes [f ] of 1-morphisms f : X → Y in C. The condition in
Definition A.4 that Hom(X,Y ) is essentially small ensures that HomHo(C)(X,Y )
is a set, rather than a proper class. Then equivalences in C become isomorphisms
in Ho(C), 2-commutative diagrams in C become commutative diagrams in Ho(C),
and so on.

A.3 2-functors, 2-natural transformations, modifications

Next we discuss 2-functors between 2-categories, following Borceux [6, §7.2, §7.5]
and Behrend et al. [3, §B.4].

Definition A.8. Let C,D be strict 2-categories. A strict 2-functor F : C → D
assigns an object F (X) in D for each object X in C, a 1-morphism F (f) :
F (X)→ F (Y ) in D for each 1-morphism f : X → Y in C, and a 2-morphism
F (η) : F (f) ⇒ F (g) in D for each 2-morphism η : f ⇒ g in C, such that F
preserves all the structures on C,D, that is,

F (g ◦ f) = F (g) ◦ F (f), F (idX) = idF (X), F (ζ ∗ η) =F (ζ)∗F (η), (A.13)

F (ζ � η) = F (ζ)� F (η), F (idf ) = idF (f). (A.14)

Now let C,D be weak 2-categories. Then strict 2-functors F : C → D are not
well-behaved. To fix this, we need to relax (A.13) to hold only up to specified 2-
isomorphisms. A weak 2-functor (or pseudofunctor) F : C → D assigns an object
F (X) in D for each object X in C, a 1-morphism F (f) : F (X)→ F (Y ) in D for
each 1-morphism f : X → Y in C, a 2-morphism F (η) : F (f)⇒ F (g) in D for
each 2-morphism η : f ⇒ g in C, a 2-isomorphism Fg,f : F (g) ◦ F (f)⇒ F (g ◦ f)
in D for all 1-morphisms f : X → Y , g : Y → Z in C, and a 2-isomorphism
FX : F (idX) ⇒ idF (X) in D for all objects X in C, such that (A.14) holds,
and for all e : W → X, f : X → Y , g : Y → Z in C the following diagram of
2-isomorphisms commutes in D:

(F (g) ◦ F (f)) ◦ F (e)

αF (g),F (f),F (e)
��

Fg,f∗idF (e)

+3 F (g ◦ f) ◦ F (e)
Fg◦f,e

+3 F ((g ◦ f) ◦ e)
F (αg,f,e) ��

F (g) ◦ (F (f) ◦ F (e))
idF (g)∗Ff,e +3 F (g) ◦ F (f ◦ e)

Fg,f◦e +3 F (g ◦ (f ◦ e)),
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and for all 1-morphisms f : X → Y in C, the following commute in D:

F (f) ◦ F (idX)
Ff,idX

+3

idF (f)∗FX��

F (f ◦ idX)

F (βf ) ��

F (idY ) ◦ F (f)
FidY ,f

+3

FY ∗idF (f)��

F (idY ◦ f)

F (γf ) ��
F (f) ◦ idF (X)

βF (f) +3 F (f), idF (Y ) ◦ F (f)
γF (f) +3 F (f),

and if f, ḟ : X → Y and g, ġ : Y → Z are 1-morphisms and η : f ⇒ ḟ , ζ : g ⇒ ġ
are 2-morphisms in C then the following commutes in D:

F (g) ◦ F (f)

F (ζ)∗F (η)��

Fg,f

+3 F (g ◦ f)

F (ζ∗η) ��
F (ġ) ◦ F (ḟ)

Fġ,ḟ +3 F (ġ ◦ ḟ).

There are obvious notions of composition G ◦F of strict and weak 2-functors
F : C → D, G : D → E, identity 2-functors idC, and so on.

If C,D are strict 2-categories, then a strict 2-functor F : C → D can be
made into a weak 2-functor by taking all Fg,f , FX to be identity 2-morphisms.

Here is the 2-category analogue of natural transformations of functors:

Definition A.9. Let C,D be weak 2-categories and F,G : C → D be weak
2-functors. A weak 2-natural transformation (or pseudo-natural transformation)
Θ : F ⇒ G assigns a 1-morphism Θ(X) : F (X) → G(X) in D for all objects
X in C and a 2-isomorphism Θ(f) : Θ(Y ) ◦ F (f) ⇒ G(f) ◦Θ(X) in D for all
1-morphisms f : X → Y in C, such that if η : f ⇒ g is a 2-morphism in C then

(G(η) ∗ idΘ(X))�Θ(f) = Θ(g)� (idΘ(Y ) ∗ F (η)) :

Θ(Y ) ◦ F (f) −→ G(g) ◦Θ(X),

and if f : X → Y , g : Y → Z are 1-morphisms in C then the following diagram
of 2-isomorphisms commutes in D:

(Θ(Z) ◦ F (g)) ◦ F (f)
αΘ(Z),F (g),F (f)

+3

Θ(g)∗idF (f)
��

Θ(Z) ◦ (F (g) ◦ F (f))
idΘ(Z)∗Fg,f

+3 Θ(Z) ◦ (F (g ◦ f))

Θ(g◦f)
��

(G(g) ◦Θ(Y )) ◦ F (f)

αG(g),Θ(Y ),F (f)

��

G(g ◦ f) ◦Θ(X)

G(g) ◦ (Θ(Y ) ◦ F (f))

idG(g)∗Θ(f)

+3 G(g) ◦ (G(f) ◦Θ(X))

α−1
G(g),G(f),Θ(X)

+3 (G(g) ◦G(f)) ◦Θ(X)),

Gg,f∗idΘ(X)

KS

and if X ∈ C then the following diagram of 2-isomorphisms commutes in D:

Θ(X) ◦ F (idX)
Θ(idX)

+3

idΘ(X)∗FX��

G(idX) ◦Θ(X)
GX∗idΘ(X)

+3 idG(X) ◦Θ(X)

γΘ(X)

��
Θ(X) ◦ idF (X)

βΘ(X) +3 Θ(X).
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Just as the ‘category of (small) categories’ is actually a (strict) 2-category, so
the ‘category of (weak) 2-categories’ is actually a 3-category (which we will not
define). The 3-morphisms in this 3-category, morphisms between weak 2-natural
transformations, are called modifications.

Definition A.10. Let C,D be weak 2-categories, F,G : C → D be weak 2-
functors, and Θ,Φ : F ⇒ G be weak 2-natural transformations. A modification
ℵ : F V G assigns a 2-isomorphism ℵ(X) : Θ(X)⇒ Φ(X) in D for all objects
X in C, such that for all 1-morphisms f : X → Y in C we have

(idG(f) ∗ ℵ(X))�Θ(f) = Φ(f)� (ℵ(Y ) ∗ idF (f)) :

Θ(Y ) ◦ F (f) =⇒ Φ(X) ◦G(Y ).

There are obvious notions of composition of modifications, identity modifications,
and so on.

A weak 2-natural transformation Θ : F ⇒ G is called an equivalence of
2-functors if there exist a weak 2-natural transformation Φ : G ⇒ F and
modifications ℵ : Φ ◦ΘV idF and i : Θ ◦ΦV idG. Equivalence of 2-functors is
a good notion of when weak 2-functors F,G : C → D are ‘the same’.

A weak 2-functor F : C → D is called an equivalence of weak 2-categories
if there exists a weak 2-functor G : D → C and equivalences of 2-functors
Θ : G ◦ F ⇒ idC, Φ : F ◦G⇒ idD. Equivalence of weak 2-categories is a good
notion of when weak 2-categories C,D are ‘the same’.

Here are some well-known facts about 2-categories:

(i) Every weak 2-category C is equivalent as a weak 2-category to a strict
2-category C′, that is, weak 2-categories can always be strictified.

(ii) If C,D are strict 2-categories, and F : C → D is a weak 2-functor, it may
not be true that F is equivalent to a strict 2-functor F ′ : C → D (though
this does hold if D = Cat, the strict 2-category of categories). That is,
weak 2-functors cannot necessarily be strictified.

Even if one is working with strict 2-categories, weak 2-functors are often
the correct notion of functor between them.

(iii) A weak 2-functor F : C → D is an equivalence of weak 2-categories, as in
Definition A.10, if and only if for all objects X,Y in C, the functor FX,Y :
HomC(X,Y )→ HomD(F (X), F (Y )) is an equivalence of categories, and
the map induced by F from equivalence classes of objects in C to equivalence
classes of objects in D is surjective (and hence a bijection).

A.4 Fibre products in 2-categories

Fibre products in ordinary categories were defined in Definition A.3. We now
define fibre products in 2-categories, following Behrend et al. [3, Def. B.13].
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Definition A.11. Let C be a strict 2-category and g : X → Z, h : Y → Z be
1-morphisms in C. A fibre product in C consists of an object W , 1-morphisms
e : W → X and f : W → Y and a 2-isomorphism η : g ◦ e⇒ h ◦ f in C, so that
we have a 2-commutative diagram

W
f

//
e��

GO
η

Y
h ��

X
g // Z

(A.15)

with the following universal property: suppose e′ : W ′ → X and f ′ : W ′ → Y are
1-morphisms and η′ : g ◦ e′ ⇒ h ◦ f ′ is a 2-isomorphism in C. Then there should
exist a 1-morphism b : W ′ →W and 2-isomorphisms ζ : e ◦ b⇒ e′, θ : f ◦ b⇒ f ′

such that the following diagram of 2-isomorphisms commutes:

g ◦ e ◦ b
η∗idb

+3

idg∗ζ��

h ◦ f ◦ b
idh∗θ ��

g ◦ e′
η′ +3 h ◦ f ′.

(A.16)

Furthermore, if b̃, ζ̃, θ̃ are alternative choices of b, ζ, θ then there should exist a
unique 2-isomorphism ε : b⇒ b̃ with

ζ = ζ̃ � (ide ∗ ε) and θ = θ̃ � (idf ∗ ε).

We call such a fibre product diagram (A.15) a 2-Cartesian square. We often
write W = X ×Z Y or W = X ×g,Z,h Y , and call W the fibre product.

If a fibre product X ×Z Y in C exists then it is unique up to canonical
equivalence in C. If C is an ordinary category, that is, all 2-morphisms are
identities idf : f ⇒ f , this definition of fibre products in C is equivalent to that
in Definition A.3.

If instead C is a weak 2-category, we must replace (A.16) by

(g ◦ e) ◦ b
αg,e,b
��

η∗idb
+3 (h ◦ f) ◦ b

αh,f,b
+3 h ◦ (f ◦ b)

idh∗θ ��
g ◦ (e ◦ b)

idg∗ζ +3 g ◦ e′
η′ +3 h ◦ f ′.

(A.17)

Orbifolds, and stacks in algebraic geometry, form 2-categories, and Definition
A.11 is the right way to define fibre products of orbifolds or stacks.

A.5 Sheaves on topological spaces

Next we discuss sheaves. These are a fundamental tool in Algebraic Geometry,
as in Hartshorne [43, §II.1], for instance. Although Differential Geometers may
not be familiar with sheaves, nonetheless they are everywhere in Differential
Geometry, and one uses properties of sheaves all the time without noticing.
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For something to be a sheaf on a space X just means that it is defined locally
on X. For example, if X is a manifold then smooth functions f : X → R form a
sheaf OX of R-algebras on X, since the condition that a function f : X → R is
smooth is a local condition near each x ∈ X. Some good references on sheaves
are Bredon [10], Godement [40], and Hartshorne [43, §II.1].

Definition A.12. Let X be a topological space. A presheaf of sets E on
X consists of the data of a set E(S) for every open set S ⊆ X, and a map
ρST : E(S)→ E(T ) called the restriction map for every inclusion T ⊆ S ⊆ X of
open sets, satisfying the conditions that:

(i) E(∅) = ∗ is a point.

(ii) ρSS = idE(S) : E(S)→ E(S) for all open S ⊆ X; and

(iii) ρSU = ρTU ◦ ρST : E(S)→ E(U) for all open U ⊆ T ⊆ S ⊆ X.

A presheaf of sets E on X is called a sheaf if it also satisfies

(iv) If S ⊆ X is open, {Ta : a ∈ A} is an open cover of S, and s, t ∈ E(S) have
ρSTa(s) = ρSTa(t) in E(Ta) for all a ∈ A, then s = t in E(S); and

(v) If S ⊆ X is open, {Ta : a ∈ A} is an open cover of S, and we are given
elements sa ∈ E(Ta) for all a ∈ A such that ρTa(Ta∩Tb)(sa) = ρTb(Ta∩Tb)(sb)
in E(Ta ∩ Tb) for all a, b ∈ A, then there exists s ∈ E(S) with ρSTa(s) = sa
for all a ∈ A. This s is unique by (iv).

Suppose E ,F are presheaves or sheaves of sets on X. A morphism φ : E → F
consists of a map φ(S) : E(S)→ F(S) for all open S ⊆ X, such that the following
diagram commutes for all open T ⊆ S ⊆ X

E(S)
φ(S)

//

ρST
��

F(S)

ρ′ST ��
E(T )

φ(T ) // F(T ),

where ρST is the restriction map for E , and ρ′ST the restriction map for F .

We have defined sheaves of sets, but one can also define sheaves of abelian
groups, rings, modules, . . . , by replacing sets by abelian groups, . . . , throughout.

If E is a sheaf of sets, abelian groups,. . . on X then we write Γ(E) for E(X),
the global sections of E , as a set, abelian group, . . . .

Definition A.13. Let E be a presheaf of sets on X. For each x ∈ X, the stalk
Ex is the direct limit of the sets E(U) for all x ∈ U ⊆ X, via the restriction maps
ρUV . A morphism φ : E → F induces morphisms φx : Ex → Fx for all x ∈ X. If
E ,F are sheaves then φ is an isomorphism if and only if φx is an isomorphism
for all x ∈ X.
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Definition A.14. Let E be a presheaf of sets on X. A sheafification of E is
a sheaf of sets Ê on X and a morphism of presheaves π : E → Ê , such that
whenever F is a sheaf of sets on X and φ : E → F is a morphism, there is
a unique morphism φ̂ : Ê → F with φ = φ̂ ◦ π. As in [43, Prop. II.1.2], a
sheafification always exists, and is unique up to canonical isomorphism; one can
be constructed explicitly using the stalks Ex of E .

Next we discuss pushforwards and pullbacks of sheaves by continuous maps.

Definition A.15. Let f : X → Y be a continuous map of topological spaces,
and E a sheaf of sets on X. Define the pushforward (direct image) sheaf f∗(E)
on Y by

(
f∗(E)

)
(U) = E

(
f−1(U)

)
for all open U ⊆ V , with restriction maps

ρ′UV = ρf−1(U)f−1(V ) :
(
f∗(E)

)
(U)→

(
f∗(E)

)
(V ) for all open V ⊆ U ⊆ Y . Then

f∗(E) is a sheaf of sets on Y .
If φ : E → F is a morphism of sheaves we define a morphism f∗(φ) : f∗(E)→

f∗(F) of sheaves on Y by
(
f∗(φ)

)
(u) = φ

(
f−1(U)

)
for all open U ⊆ Y . For

continuous maps f : X → Y , g : Y → Z we have (g ◦ f)∗ = g∗ ◦ f∗.

Definition A.16. Let f : X → Y be a continuous map of topological spaces,
and E a sheaf of sets on Y . Define a presheaf Pf−1(E) on X by

(
Pf−1(E)

)
(U) =

limA⊇f(U) E(A) for open A ⊆ X, where the direct limit is taken over all open
A ⊆ Y containing f(U), using the restriction maps ρAB in E . For open V ⊆
U ⊆ X, define ρ′UV :

(
Pf−1(E)

)
(U)→

(
Pf−1(E)

)
(V ) as the direct limit of the

morphisms ρAB in E for B ⊆ A ⊆ Y with f(U) ⊆ A and f(V ) ⊆ B. Then
we define the pullback (inverse image) f−1(E) to be the sheafification of the
presheaf Pf−1(E). It is unique up to canonical isomorphism.

If φ : E → F is a morphism of sheaves on Y , one can define a pullback
morphism f−1(φ) : f−1(E)→ f−1(F) of sheaves on X. As in [43, Ex. II.1.18],
pushforward f∗ is right adjoint to f−1. That is, there are natural bijections

HomX

(
f−1(E),F

) ∼= HomY

(
E , f∗(F)

)
(A.18)

for all sheaves E on Y and F on X, with functorial properties.

A.6 Stacks on topological spaces

In §A.5 we explained sheaves on topological spaces. We will also need a 2-category
analogue of sheaves, called stacks on a topological space.

Definition A.17. Let X be a topological space. A prestack (or prestack in
groupoids, or 2-presheaf ) E on X, consists of the data of a groupoid E(S) for
every open set S ⊆ X, and a functor ρST : E(S)→ E(T ) called the restriction
map for every inclusion T ⊆ S ⊆ X of open sets, and a natural isomorphism
of functors ηSTU : ρTU ◦ ρST ⇒ ρSU for all inclusions U ⊆ T ⊆ S ⊆ X of open
sets, satisfying the conditions that:

(i) ρSS = idE(S) : E(S)→ E(S) for all open S ⊆ X, and ηSST = ηSTT = idρST
for all open T ⊆ S ⊆ X; and
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(ii) ηSUV � (idρUV ∗ηSTU ) = ηSTV � (ηTUV ∗ idρST ) : ρUV ◦ρTU ◦ρST =⇒ ρSV
for all open V ⊆ U ⊆ T ⊆ S ⊆ X.

A prestack E on X is called a stack (or stack in groupoids, or 2-sheaf ) on X
if whenever S ⊆ X is open and {Ta : a ∈ A} is an open cover of S, and we write
Tab = Ta ∩ Tb and Tabc = Ta ∩ Tb ∩ Tc for a, b, c ∈ A, then:

(iii) If ε, ζ : E → F are morphisms in E(S) and ρSTa(ε) = ρSTa(ζ) : ρSTa(E)→
ρSTa(F ) in E(Ta) for all a ∈ A, then ε = ζ.

(iv) If E,F are objects of E(S) and εa : ρSTa(E)→ ρSTa(F ) are morphisms in
E(Ta) for all a ∈ A with

ηSTaTab(F ) ◦ ρTaTab(εa) ◦ ηSTaTab(E)−1

= ηSTbTab(F ) ◦ ρTbTab(εb) ◦ ηSTbTab(E)−1

in E(Tab) for all a, b ∈ A, then there exists ε : E → F in E(S) (necessarily
unique by (iii)) with ρSTa(ε) = εa for all a ∈ A.

(v) If Ea ∈ E(Ta) for a ∈ A and εab : ρTaTab(Ea)→ ρTbTab(Eb) are morphisms
in E(Tab) for all a, b ∈ A satisfying

ηTcTbcTabc(Ec) ◦ ρTbcTabc(εbc) ◦ ηTbTbcTabc(Eb)−1

◦ ηTbTabTabc(Eb) ◦ ρTabTabc(εab) ◦ ηTaTabTabc(Ea)−1

= ηTcTacTabc(Ec) ◦ ρTacTabc(εac) ◦ ηTaTacTabc(Ea)−1

for all a, b, c ∈ A, then there exist an object E in E(S) and morphisms
ζa : Ea → ρSTa(E) for a ∈ A such that for all a, b ∈ A we have

ηSTaTab(E) ◦ ρTaTab(ζa) = ηSTbTab(E) ◦ ρTbTab(ζb) ◦ εab.

If Ẽ, ζ̃a are alternative choices then (iii),(iv) imply there is a unique
isomorphism θ : E → Ẽ in E(S) with ρSTa(θ) = ζ̃a ◦ ζ−1

a for all a ∈ A.

Remark A.18. (a) Actually the term ‘stack’ is used in Algebraic Geometry
with a more general meaning, namely ‘stack on a site’, as in Olsson [93] for
instance. Here a ‘site’ S is a generalization of a topological space. When S is
the site of open subsets of a topological space X with the usual open covers, we
recover Definition A.17. When S is the site SchK of schemes over a field K with
the étale or smooth topology, we obtain Deligne–Mumford or Artin K-stacks in
Algebraic Geometry. There are several equivalent ways to define stacks; we have
chosen the definition which most obviously generalizes sheaves in §A.5.

(b) In the examples of stacks on topological spaces that will be important to us,
we will have ρTU ◦ ρST = ρSU and ηSTU = idρSU for all open U ⊆ T ⊆ S ⊆ X.
So (ii) is automatic, and all the η···(· · · ) terms in (iv),(v) can be omitted.
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Appendix B

Differential geometry in Ṁan and
Ṁanc

Suppose for the whole of §B.1–§B.6 that Ṁan satisfies Assumptions 3.1–3.7
in §3.1. Using the assumptions, we will define some notation and prove some
results on differential geometry in Ṁan. This is standard material for classical
manifolds Man, the main point is that it also works for any category Ṁan
satisfying Assumptions 3.1–3.7. In §B.7 we explain how to compare differential
geometry in two categories Ṁan, M̈an satisfying Assumptions 3.1–3.7 related

by a functor F M̈an
Ṁan

: Ṁan→ M̈an. Sections B.1–B.7 are summarized in §3.3.
Section B.8 explains how to extend §B.1–§B.7 to a category of manifolds with

corners Ṁanc satisfying Assumption 3.22 in §3.4. It is summarized in §3.4.3.
Section B.9 proves Theorem 3.17.

B.1 Functions on manifolds, and the structure sheaf

B.1.1 The R-algebra C∞(X)

Definition B.1. For each X ∈ Ṁan, write C∞(X) for the set of morphisms

a : X → R in Ṁan. Faithfulness of FTop

Ṁan
in Assumption 3.2(a) implies that

we may identify C∞(X) with a subset of the set C0(Xtop) of continuous maps
atop : Xtop → R. We will show that C∞(X) has a natural commutative R-algebra
structure, a subalgebra of the obvious R-algebra structure on C0(Xtop).

Given a, b ∈ C∞(X) and λ ∈ R we define a+ b, a · b, λ · a ∈ C∞(X) and the
elements 0, 1 ∈ C∞(X) by the following commutative diagrams in Ṁan:

X

(a,b) $$
a+b

// R, X

(a,b) $$
a·b

// R, X

a ##
λ·a

// R,

R2 (x,y)7→x+y

::

R2 (x,y)7→xy

::

R
x 7→λx

;;

X

π %%
0

// R, X

π %%
1

// R.

∗ 0

99

∗ 1

99
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Here (x, y) 7→ x + y and (x, y) 7→ xy mapping R2 → R are morphisms in
Man ⊆ Ṁan, and similarly for x 7→ λx and 0, 1 : ∗ → R. The map π : X → ∗
is as in Assumption 3.1(c).

One can now show that these operations make C∞(X) into a commutative
R-algebra by straightforward diagram-chasing. For example, to show that
multiplication is associative, consider the commutative diagram:

R3 (x,y,z)7→(xy,z) // R2
(x,y)7→xy

**
X

(a,b,c) --
(a,bc)

--
a(bc)

//
(ab)c //

(ab,c)

11
(a,b,c)

11

R.

R3

(x,y,z)7→(x,yz)
// R2 (x,y)7→xy

44

If f : X → Y is a morphism in Ṁan, define f∗ : C∞(Y ) → C∞(X) by
f∗ : a 7→ a ◦ f . Then f is an R-algebra morphism. If g : Y → Z is another
morphism in Ṁan then (g ◦ f)∗ = f∗ ◦ g∗ : C∞(Z)→ C∞(X).

B.1.2 Making C∞(X) into a C∞-ring

The subject of C∞-algebraic geometry treats differential-geometric problems
using the machinery of algebraic geometry, including sheaves, schemes and stacks.
Some references are the author [56, 65] and Dubuc [13]. A key idea is C∞-rings,
which are a generalization of R-algebras with a richer algebraic structure, such
that if X is a smooth manifold then C∞(X) is naturally a C∞-ring.

Definition B.2. A C∞-ring is a set C together with operations

Φf : Cn =
pn copies q
C × · · · × C −→ C

for all n > 0 and smooth maps f : Rn → R, where by convention when n = 0 we
define C0 to be the single point {∅}. These operations must satisfy the following
relations: suppose m,n > 0, and fi : Rn → R for i = 1, . . . ,m and g : Rm → R
are smooth functions. Define a smooth function h : Rn → R by

h(x1, . . . , xn) = g
(
f1(x1, . . . , xn), . . . , fm(x1 . . . , xn)

)
,

for all (x1, . . . , xn) ∈ Rn. Then for all (c1, . . . , cn) ∈ Cn we have

Φh(c1, . . . , cn) = Φg
(
Φf1

(c1, . . . , cn), . . . ,Φfm(c1, . . . , cn)
)
.

We also require that for all 1 6 j 6 n, defining πj : Rn → R by πj :
(x1, . . . , xn) 7→ xj , we have Φπj (c1, . . . , cn) = cj for all (c1, . . . , cn) ∈ Cn.

Usually we refer to C as the C∞-ring, leaving the operations Φf implicit.
A morphism between C∞-rings

(
C, (Φf )f :Rn→R C∞

)
,
(
D, (Ψf )f :Rn→R C∞

)
is a map φ : C → D such that Ψf

(
φ(c1), . . . , φ(cn)

)
= φ ◦ Φf (c1, . . . , cn) for

all smooth f : Rn → R and c1, . . . , cn ∈ C. We will write C∞Rings for the
category of C∞-rings. As in [65, §2.2], every C∞-ring C has the structure of a
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commutative R-algebra, in which addition and multiplication are the C∞-ring
operations Φf ,Φg for f, g : R2 → R mapping f(x, y) = x+ y and g(x, y) = xy.

A module M over a C∞-ring C is a module over C as an R-algebra.

As in [13, 56, 65], in C∞-algebraic geometry one studies C∞-schemes and
C∞-stacks, which are versions of schemes and stacks in Algebraic Geometry in
which rings are replaced by C∞-rings. C∞-algebraic geometry has been used
as the basis for Derived Differential Geometry, the study of ‘derived smooth
manifolds’ and ‘derived smooth orbifolds’, by defining derived manifolds (or
orbifolds) to be special examples of ‘derived C∞-schemes’ or ‘derived Deligne–
Mumford C∞-stacks’. See Spivak [103], Borisov and Noel [7, 8] and the author
[57, 58, 61] for different notions of derived manifolds and derived orbifolds.

Our Kuranishi spaces are an alternative approach to Derived Differential
Geometry, and the 2-categories mKur,Kur of (m-)Kuranishi spaces defined in
Chapters 4 and 6 using Ṁan = Man are equivalent to the 2-categories dMan,
dOrb of ‘d-manifolds’ and ‘d-orbifolds’ defined in [57, 58, 61] using C∞-algebraic
geometry.

Definition B.3. Let X ∈ Ṁan, and C∞(X) be as in §B.1.1. Then we can give
C∞(X) the structure of a C∞-ring, such that if f : Rn → R is smooth (and hence
a morphism in Ṁan) and a1, . . . , an ∈ C∞(X) then Φf (a1, . . . , an) ∈ C∞(X) is

defined by the commutative diagram in Ṁan:

X

(a1,...,an) ++
Φf (a1,...,an)

// R.

Rn f

33

The method of proof in §B.1.1 that C∞(X) is an R-algebra now also shows that
C∞(X) is a C∞-ring. The associated R-algebra structure is that in §B.1.1.

B.1.3 The structure sheaf OX

Definition B.4. Let X ∈ Ṁan. Then for each open U ′ ⊆ Xtop, Assumption
3.2(d) gives a unique open submanifold i : U ↪→ X with itop(Utop) = U ′. Set
OX(U ′) = C∞(U), where C∞(U) is regarded either as an R-algebra as in §B.1.1,
or as a C∞-ring as in §B.1.2.

For open V ′ ⊆ U ′ ⊆ Xtop we have open submanifolds i : U ↪→ X, j : V ↪→ X
with OX(U ′) = C∞(U) and OX(V ′) = C∞(V ). Since Vtop ⊆ Utop Assumption

3.2(d) gives a unique k : V → U in Ṁan with i ◦ k = j : V → X. Define
ρU ′V ′ : OX(U ′)→ OX(V ′) by ρU ′V ′ : a 7→ a ◦ k, for a : U → R in Ṁan.

It is now easy to check that ρU ′V ′ is a morphism of R-algebras, and of C∞-
rings, and so the data OX(U ′), ρU ′V ′ defines a sheaf of R-algebras or C∞-rings
OX on Xtop, as in Definition A.12(i)–(v), where the sheaf axiom (iv) follows
from faithfulness in Assumption 3.2(a), and (v) from Assumption 3.3(a). We
call OX the structure sheaf of X.

If f : X → Y is a morphism in Ṁan, then (ftop)∗(OX) and OY are sheaves
of R-algebras or C∞-rings on Y . Define a morphism f] : OY → (ftop)∗(OX) of

235



sheaves of R-algebras or C∞-rings on Ytop as follows. Let j : V ↪→ Y be an open
submanifold, and i : U ↪→ X the open submanifold with Utop = f−1

top(Vtop) ⊆
Xtop, and f ′ : U → V the unique morphism with j ◦ f ′ = f ◦ i : U → Y from
Assumption 3.2(d). Set

f](Vtop) = f ′∗ : OY (Vtop) = C∞(V ) −→ C∞(U) = OX(Utop)

= OX(f−1
top(Vtop)) = (ftop)∗(OX)(Vtop).

(B.1)

These f](Vtop) for all open j : V ↪→ Y form a sheaf morphism f] : OY →
(ftop)∗(OX). Let f ] : f−1

top(OY ) → OX be the adjoint morphism of sheaves of

R-algebras or C∞-rings on X under (A.18). Then (ftop, f
]) : (Xtop,OX) →

(Ytop,OY ) is a morphism of locally ringed spaces, or locally C∞-ringed spaces.

Now results in [65, §4.8] give sufficient criteria for when a locally C∞-ringed
space (X,OX) is an affine C∞-scheme, and Assumptions 3.2(b) and 3.6 imply
that these criteria hold. We then easily deduce:

Proposition B.5. (a) Let X be an object of Ṁan, so that Xtop is a topological
space and OX a sheaf of C∞-rings on Xtop. Then (Xtop,OX) is an affine C∞-
scheme in the sense of [13, 56, 65].

(b) Let f : X → Y be a morphism in Ṁan. Then (ftop, f
]) : (Xtop,OX) →

(Ytop,OY ) is a morphism of affine C∞-schemes in the sense of [13, 56, 65].

(c) Combining (a),(b) we may define a functor FC∞Sch
Ṁan

: Ṁan→ C∞Schaff

to the category of affine C∞-schemes, mapping X 7→ (Xtop,OX) on objects and
f 7→ (ftop, f

]) on morphisms. This functor is faithful, but need not be full.

This will help us to relate the (m-)Kuranishi spaces of Chapters 4 and 6 to
the d-manifolds and d-orbifolds of [57, 58, 61].

B.1.4 Partitions of unity

Definition B.6. Let X ∈ Ṁan. Then as in §B.1.1 we have an R-algebra
C∞(X), which as in §B.1.3 is the global sections C∞(X) = OX(Xtop) of a sheaf
of R-algebras OX on Xtop. Hence by sheaf theory each η ∈ C∞(X) has a support
supp η ⊆ Xtop, a closed subset of Xtop, such that Xtop \ supp f is the largest
open set U ′ ⊆ Xtop with η|U ′ = 0 in OX(U ′).

Consider formal sums
∑
a∈A ηa with ηa ∈ C∞(X) for all a in a possibly

infinite indexing set A. Such a sum is called locally finite if we can cover Xtop

by open U ′ ⊆ Xtop such that U ′ ∩ supp ηa = ∅ for all but finitely many a ∈ A.
By sheaf theory, for a locally finite sum

∑
a∈A ηa there is a unique η ∈ C∞(X)

with
∑
a∈A ηa|U ′ = η|U ′ whenever U ′ ⊆ Xtop is open with ηa|U ′ = 0 for all but

finitely many a ∈ A, so that
∑
a∈A ηa|U ′ makes sense. We write

∑
a∈A ηa = η.

Let {U ′a : a ∈ A} be an open cover of Xtop. A partition of unity {ηa : a ∈ A}
on X subordinate to {U ′a : a ∈ A} is ηa ∈ C∞(X) with supp ηa ⊆ U ′a for all
a ∈ A, with ηa,top(x) > 0 in R for all x ∈ Xtop, such that

∑
a∈A ηa is locally

finite with
∑
a∈A ηa = 1 in C∞(X).
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The next proposition can be proved following the standard method for
constructing partitions of unity on smooth manifolds, as in Lang [70, §II.3] or
Lee [71, Th. 2.23], or alternatively follows from Proposition B.5 and results on
partitions of unity on C∞-schemes in [65, §4.7]. The important points are:

• By Assumption 3.2(b), Xtop is Hausdorff, locally compact, and second
countable, which is used in [70, Th. II.1] and [71, Th. 1.15].

• Let U ′ ⊆ Xtop be open and x ∈ U ′. Assumption 3.6 gives a : X → R
in Ṁan with atop(x) > 0 and atop|Xtop\U ′ 6 0. Define b : R → R by

b(x) = e−1/x for x > 0 and b(x) = 0 for x 6 0. Then b is a morphism in
Man ⊆ Ṁan by Assumption 3.4, so b ◦ a : X → R is a morphism in Ṁan.
We have (b ◦ a)top(x) > 0, and (b ◦ a)top(x′) > 0 for all x′ ∈ Xtop, and
supp(b ◦ a) ⊆ U ′. Thus we can construct ‘bump functions’ on X.

This and Proposition B.5 are the main places we use Assumption 3.6.

Proposition B.7. Let X be an object of Ṁan, and {U ′a : a ∈ A} be an
open cover of Xtop. Then there exists a partition of unity {ηa : a ∈ A} on X
subordinate to {U ′a : a ∈ A}.

Therefore OX is a fine sheaf, and hence a soft sheaf, as in Godement [40,
§II.3.7] or Bredon [10, §II.9], and all OX -modules E are also fine and soft.

B.2 Vector bundles

B.2.1 Vector bundles and sections

Definition B.8. Let X be an object in Ṁan. A vector bundle E → X of rank
m is a morphism π : E → X in Ṁan, such that for each x ∈ Xtop the topological
fibre Ex,top := π−1

top(x) ⊆ Etop is given the structure of a real vector space of
dimension m, and X may be covered by open submanifolds i : U ↪→ X, such
that if j : EU ↪→ E is the open submanifold corresponding to π−1

top(Utop) ⊆ Etop,
and k : EU → U is unique with i ◦ k = π ◦ j : EU → X by Assumption 3.2(d),
then there is an isomorphism l : U × Rm → EU in Ṁan making the following
diagram commute:

U × Rm
l

//

πU
��

EU
� �

j
//

k��

E

π
��

U U
� � i // X,

and ltop identifies the vector space structure on {x} × Rm ∼= Rm with that on
Ex,top, for each x ∈ Utop.

The vector space structure on Ex,top may be encoded in morphisms µ+, µ·, z

in Ṁan as follows. Addition ‘+’ in Ex,top corresponds to a morphism µ+ :

E×π,X,πE → E, where the fibre product exists in Ṁan, with µ+,top(v, w) = v+w
for all x ∈ Xtop and v, w ∈ Ex,top. Multiplication by real numbers ‘·’ corresponds
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to a morphism µ· : R× E → E, with µ·,top(λ, v) = λ · v for all λ ∈ R, x ∈ Xtop

and v ∈ Ex,top. The zero element 0 ∈ Ex,top comes from 0E : X → E with
0E,top(x) = 0 ∈ Ex,top for all x ∈ Xtop.

A section of E is a morphism s : X → E in Ṁan with π ◦ s = idX . Write
Γ∞(E) for the set of sections of E. For C∞(X) as in §B.1.1, if a ∈ C∞(X) and
s, t ∈ Γ∞(E), we define a · s, s+ t ∈ Γ∞(E) by the commutative diagrams

R× E

µ·

��

E

π ''
X

(a,s) 66

a·s ((

X

s //

t ..

u //

s+t ''

E ×π,X,π E

µ+
uu

π1

55

π2

))

X,

E, E E

π
77

where the morphism u exists by the universal property of E ×X E.
At each point x ∈ Xtop we have

(a · s)top(x) = atop(x) · stop(x), (s+ t)top(x) = stop(x) + ttop(x),

where on the right hand sides we use operations ·,+ in the R-vector space Ex,top.
Thus for a, b ∈ C∞(X) and s, t, u ∈ Γ∞(E) we have

[a · (b · s)]top =[(a · b) · s]top, [s+ t]top =[t+ s]top, [s+ (t+u)]top =[(s+ t) +u]top

in maps Xtop → Etop, by identities in Ex,top for each x ∈ Xtop. Faithfulness in

Assumption 3.2(a) implies the corresponding identities in Ṁan. Therefore Γ∞(E)
is a C∞(X)-module, and hence an R-vector space. We will write 0E : X → E
for the zero section, the element 0 ∈ Γ∞(E).

If E,F → X are vector bundles, a morphism of vector bundles θ : E → F is
a morphism θ : E → F in Ṁan in a commutative diagram

E
θ

//

π
��

F
π
��

X X,

such that θtop|Ex,top
: Ex,top → Fx,top is a linear map for all x ∈ Xtop. We

write Hom(E,F ) for the set of vector bundle morphisms θ : E → F . As for
Γ∞(E), Hom(E,F ) is naturally a C∞(X)-module, and hence an R-vector space.
If θ : E → F is a vector bundle morphism and s ∈ Γ∞(E) then θ ◦ s ∈ Γ∞(F ).

The usual operations on vector bundles and sections in differential geometry
also work for vector bundles in Ṁan, so for instance if E,F → X are vector
bundles we can define vector bundles E∗ → X, E ⊕ F → X, E ⊗ F → X,
ΛkE → X, and so on, and if f : X → Y is a morphism in Ṁan and G→ Y is a
vector bundle we can define a pullback vector bundle f∗(G)→ X. To construct
E∗, E ⊕ F, . . . as objects of Ṁan, we build them using Assumptions 3.2(e) and
3.3(b) over an open cover {Ua : a ∈ A} of X with E,F → X trivial over each
Ua, by gluing together Ua × (Rm)∗, Ua × (Rm ⊕ Rn), . . . for all a ∈ A.
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B.2.2 The sheaf of sections of a vector bundle

Definition B.9. Let X be an object in Ṁan, and E → X be a vector bundle
of rank r. Then for each open U ′ ⊆ Xtop, Assumption 3.2(d) gives an open
submanifold i : U ↪→ X with Utop = U ′. Let E|U = i∗(E) as a vector bundle over
U , and write E(U ′) = Γ∞(E|U ), considered as a module over OX(U ′) = C∞(U).

For open V ′ ⊆ U ′ ⊆ Xtop we have open submanifolds i : U ↪→ X, j : V ↪→ X
with OX(U ′) = C∞(U) and OX(V ′) = C∞(V ). Since Vtop ⊆ Utop Assumption

3.2(d) gives a unique k : V → U in Ṁan with i ◦ k = j : V → X. Define
ρU ′V ′ : E(U ′) → E(V ′) by ρU ′V ′ : s 7→ k∗(s) = s|V . Then as for OX in §B.1.3,
this defines a sheaf E of OX -modules on Xtop, which is locally free of rank r.

For brevity, sheaves of OX -modules will just be called OX -modules.

As for vector bundles in algebraic geometry, working with vector bundles
E,F → X is equivalent to working with the corresponding OX -modules E ,F ,
and one can easily translate between the two languages. In particular:

• There is a 1-1 correspondence, up to canonical isomorphism, between
vector bundles E → X of rank r and locally free OX -modules E of rank r.

• If E,F → X are vector bundles, and E ,F the corresponding OX -modules,
there is a natural identification Hom(E,F ) ∼= HomOX -mod(E ,F) between
vector bundle morphisms θ : E→F and OX -module morphisms θ̃ : E→F .
These identifications preserve composition of morphisms.

• If f : X → Y is a morphism in Ṁan and E → Y is a vector bundle,
with E the corresponding OY -module, then the vector bundle f∗(E)→ X
corresponds to the OX -module f−1

top(E)⊗f−1
top(OY ) OX , using the morphism

f ] : f−1
top(OY )→ OX of sheaves of R-algebras on Xtop from §B.1.3.

As in [65, §5], a module over a C∞-ring is simply a module over the associated
R-algebra. So for sheaves of OX -modules, it makes no difference whether we
consider OX in §B.1.3 to be a sheaf of R-algebras or a sheaf of C∞-rings.

B.3 The cotangent sheaf, and connections

B.3.1 The cotangent sheaf T ∗X
In §B.1.2–§B.1.3 we showed that if X is an object of Ṁan then (Xtop,OX) is
an affine C∞-scheme in the sense of [13, 56, 65]. As in [65, §5.6], C∞-schemes
have a good notion of cotangent sheaf, which we will use as a substitute for the
cotangent bundle T ∗X of a classical manifold X. The next two definitions are
taken from [65, §5.2 & §5.6].

Definition B.10. Suppose C is a C∞-ring, as in Definition B.2, and M a
C-module. A C∞-derivation is an R-linear map d : C →M such that whenever
f : Rn → R is a smooth map and c1, . . . , cn ∈ C, we have

dΦf (c1, . . . , cn) =
n∑
i=1

Φ ∂f
∂xi

(c1, . . . , cn) · dci. (B.2)
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Note that d is not a morphism of C-modules. We call such a pair M,d a
cotangent module for C if it has the universal property that for any C∞-derivation
d′ : C → M ′, there exists a unique morphism of C-modules λ : M → M ′

with d′ = λ ◦ d.
There is a natural construction for a cotangent module: we take M to

be the quotient of the free C-module with basis of symbols dc for c ∈ C by
the C-submodule spanned by all expressions of the form dΦf (c1, . . . , cn) −∑n
i=1 Φ ∂f

∂xi

(c1, . . . , cn) · dci for f : Rn → R smooth and c1, . . . , cn ∈ C. Thus

cotangent modules exist, and are unique up to unique isomorphism. When we
speak of ‘the’ cotangent module, we mean that constructed above. We write
dC : C → ΩC for the cotangent module of C.

Let C,D be C∞-rings with cotangent modules ΩC ,dC , ΩD,dD, and φ :
C → D be a morphism of C∞-rings. Then we may regard ΩD as a C-module,
and dD ◦ φ : C → ΩD as a C∞-derivation. Thus by the universal property
of ΩC , there exists a unique morphism of C-modules Ωφ : ΩC → ΩD with
dD ◦ φ = Ωφ ◦ dC . If φ : C → D, ψ : D → E are morphisms of C∞-rings
then Ωψ◦φ = Ωψ ◦ Ωφ : ΩC → ΩE.

Definition B.11. Let X be an object in Ṁan, so that (Xtop,OX) is an affine
C∞-scheme as in §B.1.3. Define PT ∗X to associate to each open U ⊆ Xtop the
cotangent module ΩOX(U) of Definition B.10, regarded as a module over the
C∞-ring OX(U), and to each inclusion of open sets V ⊆ U ⊆ Xtop the morphism
of OX(U)-modules ΩρUV : ΩOX(U) → ΩOX(V ) associated to the morphism of
C∞-rings ρUV : OX(U)→ OX(V ). Then the following commutes:

OX(U)× ΩOX(U)

ρUV ×ΩρUV��

µOX (U)

// ΩOX(U)

ΩρUV ��
OX(V )× ΩOX(V )

µOX (V ) // ΩOX(V ),

where µOX(U), µOX(V ) are the module actions of OX(U),OX(V ) on ΩOX(U),
ΩOX(V ). Using this and functoriality of cotangent modules Ωψ◦φ = Ωψ ◦ Ωφ in
Definition B.10, we see that PT ∗X is a presheaf of OX -modules on Xtop. Define
the cotangent sheaf T ∗X of X to be the sheafification of PT ∗X.

Define a morphism Pd : OX → PT ∗X of presheaves of R-vector spaces by

Pd(U) = dΩOX (U)
: OX(U) −→ PT ∗X(U) = ΩOX(U),

and define the de Rham differential d : OX → T ∗X to be the corresponding
morphism of sheaves of R-vector spaces on Xtop. It satisfies (B.2) on each open
U ⊆ Xtop. Note that although OX , T ∗X are OX -modules, d is not a morphism
of OX -modules, as (B.2) is not compatible with OX -linearity.

Example B.12. (a) If Ṁan = Man and X ∈Man then T ∗X is canonically
isomorphic as an OX -module to the sheaf of sections of the usual cotangent
bundle T ∗X → X, as in §B.2.2. For general Ṁan, if X ∈Man ⊆ Ṁan then
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as the definition of T ∗X happens entirely inside Man ⊆ Ṁan, again T ∗X is
isomorphic to the sheaf of sections of T ∗X.

(b) If Ṁan is one of the following categories from Chapter 2:

Manc,Manc
in,Manc

st,Manc
st,in,Manc

we, (B.3)

then as in §2.3 there are two notions of cotangent bundle T ∗X, bT ∗X of X in
Ṁan. It turns out that T ∗X is isomorphic to the sheaf of sections of T ∗X.

(c) If Ṁan is one of the following categories from §2.4:

Mangc,Mangc
in ,Manac,Manac

in ,Manac
st ,

Manac
st,in,Manc,ac,Manc,ac

in ,Manc,ac
st ,Manc,ac

st,in,

then the cotangent bundle T ∗X of X ∈ Ṁan may not be defined, though the
b-cotangent bundle bT ∗X is. It turns out that T ∗X need not be isomorphic to
the sheaf of sections of any vector bundle on X in these cases.

B.3.2 Connections on vector bundles

We can use cotangent sheaves in §B.3.1 to define a notion of connection.

Definition B.13. Let X be an object in Ṁan, and E → X a vector bundle,
and E the OX -module of sections of E as in §B.2.2. A connection ∇ on E is a
morphism of sheaves of R-vector spaces on Xtop:

∇ : E −→ E ⊗OX T ∗X,

such that if U ⊆ Xtop is open and a ∈ OX(U), e ∈ E(U) then

∇(a · e) = a · (∇e) + e⊗ (d(U)a) in (E ⊗OX T ∗X)(U), (B.4)

where d : OX → T ∗X is the de Rham differential from §B.3.1.
Note that although E , E ⊗OX T ∗X are OX -modules, ∇ is not a morphism of

OX -modules, as (B.4) is not OX(U)-linear.

Proposition B.14. Let X ∈ Ṁan and E → X be a vector bundle. Then:

(a) There exists a connection ∇ on E.

(b) If ∇,∇′ are connections on E then ∇′ = ∇+ Γ, for Γ : E → E ⊗OX T ∗X
an OX-module morphism on Xtop.

(c) If ∇ is a connection on E and Γ : E → E ⊗OX T ∗X is an OX-module
morphism then ∇′ = ∇+ Γ is a connection on E.

Proof. For (a), first suppose E is trivial, say E = X × Rk → X. Then we can
define a connection ∇ on E by

∇(U) : (e1, . . . , ek) 7−→ (d(U)e1, . . . ,d(U)ek)
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whenever U ⊆ Xtop is open and e1, . . . , ek ∈ OX(U), using the obvious identifi-
cations E(U) ∼= OX(U)k and (E ⊗OX T ∗X)(U) ∼= T ∗X(U)k.

In the general case, choose an open cover {Ua : a ∈ A} of X by open
submanifolds Ua ↪→ X such that E|Ua → Ua is trivial for each a ∈ A. Then
there exists a connection ∇a on E|Ua . As in §B.1.4 we can choose a partition of
unity {ηa : a ∈ A} on X subordinate to {Ua : a ∈ A}. It is now easy to check
that ∇ =

∑
a∈A ηa · ∇a is a well defined connection on E.

For (b), define Γ = ∇′ −∇ : E → E ⊗OX T ∗X, as a sheaf of morphisms of
R-vector spaces. If U ⊆ Xtop is open and a ∈ OX(U), e ∈ E(U) then subtracting
(B.4) for ∇,∇′ implies that Γ(a · e) = a · (Γe) in (E ⊗OX T ∗X)(U), as the
e⊗ (d(U)a) terms cancel. Hence Γ is OX -linear, and a morphism of OX -modules.
Part (c) follows by the same argument in reverse.

Example B.15. If Ṁan = Man then connections ∇ on a vector bundle E → X
in the sense of Definition B.13 are in canonical 1-1 correspondence with the usual
notion of connections on E in differential geometry, with (B.4) the usual Leibniz
rule for connections. The same holds if Ṁan lies in (B.3).

B.4 Tangent sheaves

Let f : X → Y be a morphism in Ṁan, and E → X a vector bundle. To define
2-morphisms of m-Kuranishi neighbourhoods in Chapter 4, we will (roughly)
need a notion of ‘vector bundle morphism Λ : E → f∗(TY )’, where TY is the
‘tangent bundle’ of Y . For general categories Ṁan, there are two problems
with this. Firstly, objects X in Ṁan may not have tangent vector bundles
TX → X. And secondly, there are examples such as Ṁan = Manc in which
tangent bundles do exist, but f∗(TY ) is the wrong thing for our purpose.

Our solution is to define ‘TX’, and ‘f∗(TY )’, and ‘Hom(E, f∗(TY ))’ as
sheaves on X, rather than as vector bundles:

(i) For each X ∈ Ṁan we will define a sheaf T X of OX -modules on Xtop

called the tangent sheaf of X. Sections of T X parametrize infinitesimal
deformations of idX : X → X as a morphism in Ṁan. If Ṁan = Man
then T X is the sheaf of smooth sections of the usual tangent bundle TX.

(ii) For each morphism f : X → Y in Ṁan we will define a sheaf TfY of OX -
modules on Xtop called the tangent sheaf of f . Sections of TfY parametrize

infinitesimal deformations of f : X → Y . If Ṁan = Man then TfY is the
sheaf of smooth sections of f∗(TY ).

(iii) For each morphism f : X → Y in Ṁan and vector bundle E → X we
define morphisms E → TfY as morphisms of sheaves of OX -modules.

In §B.3.1 we defined the cotangent sheaf T ∗X. In general T X and T ∗X
are not dual to each other, though there is a natural pairing T X × T ∗X → OX .
We define T ∗X using morphisms X → R in Ṁan, and T X using morphisms
X × R→ X in Ṁan, so T X and T ∗X depend on different data in Ṁan.

242



B.4.1 Defining the f-vector fields just as a set Γ(TfY )

Definition B.16. Let f : X → Y be a morphism in Ṁan. Consider commuta-
tive diagrams in Ṁan of the form

X
(idX ,0)

ss
l��

f

**X × R U? _
ioo u // Y,

(B.5)

where i : U ↪→ X×R is an open submanifold with Xtop×{0} ⊆ Utop ⊆ Xtop×R,
and unique l : X → U with i ◦ l = (idX , 0) exists by Assumption 3.2(d), and
u : U → Y is a morphism in Ṁan with u ◦ l = f . We also require that Utop can
be written as a union of subsets X ′top× (−ε, ε) in Xtop×R for X ′top ⊆ Xtop open
and ε > 0 (this condition will only be used in the proof of Proposition B.43).
For brevity we write such a diagram as the pair (U, u).

Define a binary relation ≈ on such pairs (U, u) by (U, u) ≈ (U ′, u′) if for all
x̃ ∈ Xtop there exists an open submanifold j : V ↪→ X × R2 and a morphism
v : V → Y satisfying

(x̃, 0, 0) ∈ Vtop, vtop(x, s,−s) = ftop(x) ∀(x, s,−s) ∈ Vtop,

vtop(x, s, 0) = utop(x, s) ∀(x, s) ∈ Utop with (x, s, 0) ∈ Vtop,

vtop(x, 0, s′) = u′top(x, s′) ∀(x, s′) ∈ U ′top with (x, 0, s′) ∈ Vtop.

(B.6)

We will show ≈ is an equivalence relation. Suppose (U, u) is a pair, and let
j : V ↪→ X × R2 be the open submanifold and v : V → Y the morphism with

Vtop =
{

(x, s, s′)∈Xtop×R2 : (x, s+s′)∈Utop

}
, vtop : (x, s, s′) 7→utop(x, s+s′).

Then (V, v) implies that (U, u) ≈ (U, u), so ≈ is reflexive. By exchanging the two
factors of R in X×R2 we see that (U, u) ≈ (U ′, u′) for pairs (U, u), (U ′, u′) implies
that (U ′, u′) ≈ (U, u), so≈ is symmetric. Suppose (U, u) ≈ (U ′, u′) and (U ′, u′) ≈
(U ′′, u′′). Then for each x̃ ∈ Xtop there exist (V, v) as above for (U, u) ≈ (U ′, u′),
and (V ′, v′) for (U ′, u′) ≈ (U ′′, u′′). Apply Assumption 3.7(a) with k = 3 and
n = 1 to obtain an open submanifold k : W ↪→ X × R3 and a morphism
w : W → Y such that (x̃, 0, 0, 0) ∈ Wtop, and wtop(x, s, s′, 0) = vtop(x, s, s′) if
(x, s, s′) ∈ Vtop with (x, s, s′, 0) in Wtop, and wtop(x, 0, s′, s′′) = v′top(x, s′, s′′)
if (x, s′, s′′) ∈ V ′top with (x, 0, s′, s′′) in Wtop, and wtop(x, s, s′, s′′) = ftop(x) if
(x, s, s′, s′′) ∈Wtop with s+ s′ + s′′ = 0.

Here we change variables in R3 from (s, s′, s′′) to (y1, y2, y3) = (s+s′+s′′, s, s′′)
to apply Assumption 3.7(a), so that wtop(x, s, s′, s′′) = ftop(x) when s+s′+s′′ = 0
prescribes wtop when y1 = 0, and wtop(x, 0, s′, s′′) = v′top(x, s′, s′′) prescribes
wtop when y2 = 0, and wtop(x, s, s′, 0) = vtop(x, s, s′) prescribes wtop when
y3 = 0. Making W smaller, we suppose that (x, s, s′, 0) ∈ Wtop implies that
(x, s, s′) ∈ Vtop, and (x, 0, s′, s′′) ∈Wtop implies that (x, s′, s′′) ∈ V ′top.

Let j′′ : V ′′ ↪→ X × R2 be the open submanifold with

V ′′top =
{

(x, s, s′′) ∈ Xtop × R2 : (x, s, 0, s′′) ∈Wtop

}
.
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Then Assumption 3.2(d) applied to (idX × idR × 0× idR) ◦ j′′ : V ′′ → X × R3

gives a morphism h : V ′′ →W in Ṁan with htop(x, s, s′′) = (x, s, 0, s′′). Define
v′′ = w ◦ h : V ′′ → Y . Then such (V ′′, v′′) for all x̃ ∈ Xtop establish that
(U, u) ≈ (U ′′, u′′), since (x̃, 0, 0) ∈ V ′′top, and v′′top(x, s, 0) = wtop(x, s, 0, 0) =
vtop(x, s, 0) = utop(x, s), and v′′top(x, 0, s′′) = wtop(x, 0, 0, s′′) = v′top(x, 0, s′′) =
u′′top(x, s′′). Thus ≈ is transitive, and is an equivalence relation.

Write [U, u] for the ≈-equivalence class of pairs (U, u) as above. Write Γ(TfY )
for the set of all such ≈-equivalence classes [U, u]. (In §B.4.5 we will define a
sheaf of OX -modules TfY on Xtop whose global sections are this set Γ(TfY ),
but for now Γ(TfY ) is just our notation for the set of all [U, u].)

When Y = X and f = idX , we write Γ(T X) = Γ(TidXX).

Example B.17. Here is how to understand Definition B.16 in the case that
Ṁan = Man. Then we can use tangent spaces and derivatives of maps. Consider
a diagram (B.5) in Man. Write points in U ⊆ X × R as (x, s) with x ∈ X and
s ∈ R. Then for each x ∈ X with f(x) = y ∈ Y we have u(x, 0) = y ∈ Y and
∂u
∂s (x, 0) ∈ TyY = f∗(TY )|x. The map û : x 7→ ∂u

∂s (x, 0) is a smooth section û of
the vector bundle f∗(TY )→ X.

Now let (U, u), (U ′, u′) be two such diagrams, and û, û′ ∈ Γ∞(f∗(TY )) the
corresponding sections. Suppose (U, u) ≈ (U ′, u′), and let x̃ ∈ X with ỹ = f(x̃),
so that there exist j : V ↪→ X ×R2 and v : V → Y satisfying (B.6). Considering
points (x̃, s, s′) ∈ V with v(x̃, s, s′) ∈ Y , we have ∂v

∂s (x̃, 0, 0), ∂v∂s′ (x̃, 0, 0) ∈ TỹY .
Differentiating (B.6) in s, s′ at (x̃, 0, 0) yields

∂v
∂s (x̃, 0, 0)− ∂v

∂s′ (x̃, 0, 0) = 0, ∂v
∂s (x̃, 0, 0) = ∂u

∂s (x̃, 0) = û(x̃)

and ∂v
∂s′ (x̃, 0, 0) = ∂u′

∂s′ (x̃, 0) = û′(x̃),

so that û(x̃) = û′(x̃), for all x̃ ∈ X. Thus (U, u) ≈ (U ′, u′) forces û = û′ in
Γ∞(f∗(TY )). Conversely one can show that û = û′ implies (U, u) ≈ (U ′, u′).
Also every û ∈ Γ∞(f∗(TY )) comes from some (U, u) in (B.5). Hence ≈-
equivalence classes [U, u] are in 1-1 correspondence with û ∈ Γ∞(f∗(TY )) by
[U, u] 7→ û. So we can identify Γ(TfY ) with Γ∞(f∗(TY )) when Ṁan = Man.

B.4.2 Making Γ(TfY ) into a C∞(X)-module

Section B.1.1 discussed the R-algebra C∞(X). We will give Γ(TfY ) in §B.4.1
the structure of a C∞(X)-module.

Definition B.18. We continue in the situation of Definition B.16. To make
Γ(TfY ) into a C∞(X)-module we must define the product a · α in Γ(TfY ) for
all a ∈ C∞(X) and α ∈ Γ(TfY ), the sum α+ β in Γ(TfY ) for all α, β ∈ Γ(TfY ),
and the zero element 0 ∈ Γ(TfY ), and verify they satisfy

α+ β = β + α, (α+ β) + γ = α+ (β + γ),

0X · α = 0, 1X · α = α, a · (b · α) = (a · b) · α,
(a+ b) · α = (a · α) + (b · α), a · (α+ β) = (a · α) + (a · β),

(B.7)
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for all a, b ∈ C∞(X) and α, β, γ ∈ Γ(TfY ), where 0X , 1X ∈ C∞(X) are the
morphisms 0, 1 : X → R.

To define a · α, let a ∈ C∞(X) and α ∈ Γ(TfY ), and let (U, u) in (B.5)

represent α = [U, u]. Write ı̃ : Ũ ↪→ X × R for the open submanifold with

Ũtop =
{

(x, s) ∈ Xtop × R : (x, atop(x)s) ∈ Utop

}
.

Form the commutative diagram in Ṁan:

X × R
idX×(a·idR)
��

Ũ

?
��

? _

ı̃
oo

ũ

**

X

(idX ,0)

qq

l

tt

l̃

?oo

f
��

X × R U? _
ioo u // Y,

(B.8)

where morphisms labelled ‘?’ exist by Assumption 3.2(d), and idX × (a · idR)
maps (x, s) 7→ (x, atop(x)s) on Xtop × R. Then Ũ , ı̃, l̃, ũ are a diagram of type

(B.5). Define a · α = [Ũ , ũ] ∈ Γ(TfY ).
To show this is well defined, we must prove that if (U ′, u′) is another rep-

resentative for α, so that (U, u) ≈ (U ′, u′), and (Ũ ′, ũ′) is constructed from
a, (U ′, u′) as in (B.8), then (Ũ , ũ) ≈ (Ũ ′, ũ′), so that [Ũ , ũ] = [Ũ ′, ũ′]. We do this
by combining the data j : V ↪→ X×R2, v : V → Y satisfying (B.6) showing that
(U, u) ≈ (U ′, u′) with (B.8), now using idX×(a·idR)×(a·idR) : X×R2 → X×R2

in place of the left hand column of (B.8), to construct ̃, Ṽ , ṽ showing that
(Ũ , ũ) ≈ (Ũ ′, ũ′). So a · α is well defined.

To define α+ β, let α, β ∈ Γ(TfY ), and let (U, u), (Û , û) in (B.5) represent

α = [U, u] and β = [Û , û]. Assumption 3.7(a) with k = 2 and m1 = m2 = 1
applied to (U1, u1) = (U, u) and (U2, u2) = (Û , û) gives an open j : V ↪→ X ×R2

and v : V → Y such that Xtop × {(0, 0)} ⊆ Vtop and vtop(x, s, 0) = utop(x, s) for
all (x, s) in Utop with (x, s, 0) in Vtop and vtop(x, 0, s) = ûtop(x, s) for all (x, s)

in Ûtop with (x, 0, s) in Vtop. Let ı̌ : Ǔ → X × R be the open submanifold with

Ǔtop =
{

(x, s) ∈ Xtop × R : (x, s, s) ∈ Vtop ⊆ Xtop × R2
}
.

Form the commutative diagram in Ṁan:

X × R
idX×(idR,idR)��

Ǔ

?
��

? _

ı̌
oo

ǔ

**

X
m

tt

ľ

?oo

f
��

X × R2 V? _
joo v // Y,

where morphisms labelled ‘?’ exist by Assumption 3.2(d), and idX × (idR, idR)
maps (x, s) 7→ (x, s, s) on Xtop × R. Then Ǔ , ı̌, ľ, ǔ are a diagram (B.5). Write
α+ β = [Ǔ , ǔ] in Γ(TfY ).

To show this is well defined, suppose (U ′, u′), (Û ′, û′) are alternative rep-
resentatives for α, β, so that (U, u) ≈ (U ′, u′) and (Û , û) ≈ (Û ′, û′), and use
(V ′, v′) to construct (Ǔ ′, ǔ′) from (U ′, u′), (Û ′, û′) as above. We must prove that
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(Ǔ , ǔ) ≈ (Ǔ ′, ǔ′). Let x̃ ∈ Xtop, and let j : V ↪→ X × R2, v : V → Y satisfy

(B.6) for (U, u) ≈ (U ′, u′), and ̂ : V̂ ↪→ X × R2, v̂ : V̂ → Y satisfy (B.6) for
(Û , û) ≈ (Û ′, û′). We will apply Assumption 3.7(a) five times to construct an
open submanifold k : W ↪→ X × R4 with (x̃, 0, 0, 0, 0) ∈ Wtop and a morphism
w : W → Y , such that for all x ∈ Xtop and q, r, s, t ∈ R in the appropriate open
sets we have

wtop(x, q, 0, 0, 0) = utop(x, q), wtop(x, 0, r, 0, 0) = ûtop(x, r),

wtop(x, q, q, 0, 0) = ǔtop(x, q), wtop(x, 0, 0, s, 0) = u′top(x, s),

wtop(x, 0, 0, 0, t) = û′top(x, t), wtop(x, 0, 0, s, s) = ǔ′top(x, s),

wtop(x, q, r, 0, 0) = vtop(x, q, r), wtop(x, 0, 0, s, t) = v̂top(x, s, t),

wtop(x, q, 0, s, 0) = vtop(x, q, s), wtop(x, 0, r, 0, t) = v̂′′top(x, r, t),

wtop(x, q, r,−q,−r) = ftop(x).

(B.9)

We do this in the following steps:

(a) Choose values of wtop(x, q, r,−q, t) to satisfy the second, fifth, tenth, and
eleventh equations of (B.9), using Assumption 3.7(a) with k = 2, n = 1
and X × R with variables (x, x′) ∈ X ′top = Xtop × R in place of X, and
variables (x, q, r,−q, t) = (x, z1, z2 + x′,−z1,−x′).

(b) Choose values of wtop(x, q, 0, s, t) to satisfy the first, fourth, fifth, sixth,
eighth and ninth equations of (B.9), using Assumption 3.7(a) with k = 2,
n = 1 and X × R with variables (x, x′) ∈ X ′top = Xtop × R in place of X,
and variables (x, q, 0, s, t) = (x, z1, 0, x

′, z2).

(c) Choose values of wtop(x, q, r, 0, t) to satisfy the first, second, third, fifth,
seventh and tenth equations of (B.9), and with wtop(x, q, 0, 0, t) as already
determined in (b), using Assumption 3.7(a) with k = 3, n = 1 and variables
(x, q, r, 0, t) = (x, z1, z2, 0, z3).

(d) Choose values of wtop(x, q, r, s, 0) to satisfy the first–fourth, seventh and
ninth equations of (B.9), and with wtop(x, q, r,−q, 0) as already deter-
mined in (a), using Assumption 3.7(a) with k = 3, n = 1 and variables
(x, q, r, s, 0) = (x, z1 − z3, z2, z3, 0).

(e) Choose values of wtop(x, q, r, s, t) agreeing with the choices made in (a)–(d),
using Assumption 3.7(a) with k = 4, n= 1 and variables (x, q, r, s, t) =
(x, z1 − z3, z2, z3, z4).

Write ̈ : V̈ → X × R2 for the open submanifold with

V̈top =
{

(x, q, s) ∈ Xtop × R2 : (x, q, q, s, s) ∈Wtop ⊆ Xtop × R4
}
.

Form the commutative diagram in Ṁan:

X × R2

idX×(idR,idR)×(idR,idR)��

V̈

?
��

? _

̈
oo

v̈

**X × R4 W?
_koo w // Y,
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where the morphism ‘?’ exists by Assumption 3.2(d), and idX × (idR, idR) ×
(idR, idR) maps (x, q, s) 7→ (x, q, q, s, s) on Xtop × R2. Then ̈ : V̈ ↪→ X × R2

and v̈ : V̈ → Y satisfy (B.6) for (Û , û) ≈ (Û ′, û′) at x̃ ∈ Xtop, for all x̃. Hence

[Û , û] = [Û ′, û′], and α+ β is well defined.
Define 0 ∈ Γ(TfY ) to be 0 = [X × R, f ◦ πX ], so that (B.5) becomes

X
(idX ,0)

ss
l��

f

++X × R X × R? _idoo f◦πX // Y.

This defines all the data ·,+, 0 of the C∞(X)-module structure on Γ(TfY ). It is
now a long but straightforward calculation to show that the axioms (B.7) hold,
and we leave this as an exercise for the reader.

B.4.3 Action of v ∈ Γ(TfY ) as an f-derivation

If X is a classical manifold and α ∈ Γ∞(TX) is a vector field then α acts as a
derivation ∆α : C∞(X) → C∞(X) (and in fact as a C∞-derivation, as in the
author [65, §5.2]). We prove a relative version of this for Ṁan.

Definition B.19. Let f : X → Y be a morphism in Ṁan, and α ∈ Γ(TfY ).
We will define a map ∆α : C∞(Y )→ C∞(X). Write α = [U, u] for (U, u) as in
(B.5). Let a ∈ C∞(Y ), so that a : Y → R and a ◦ u : U → R are morphisms in
Ṁan. Apply Assumption 3.5 to f = a ◦ u : U → R. By (3.1)–(3.2), this gives a
morphism g : U → R in Ṁan such that

gtop(x, t) =

{
t−1[(a ◦ u)top(x, t)− (a ◦ u)top(x, 0)], t 6= 0,
∂
∂t (a ◦ u)top(x, t), t = 0,

(B.10)

and this determines g uniquely, by faithfulness in Assumption 3.2(a). Now define
∆α(a) = g ◦ l : X → R. Then ∆α(a) ∈ C∞(X), and (B.10) gives

∆α(a)top(x) = ∂
∂t (a ◦ u)top(x, t)|t=0 for x ∈ Xtop. (B.11)

Let (U ′, u′) be an alternative representative for α, and write ∆′α : C∞(Y )→
C∞(X) for the corresponding map. Then (U, u) ≈ (U ′, u′), so by Definition B.16
for each x̃ ∈ Xtop there exist open j : V ↪→ X × R2 and v : V → Y satisfying
(B.6). Then

∆α(a)top(x̃) = ∂
∂s (a ◦ u)top(x̃, s)|s=0 = ∂

∂s (a ◦ v)top(x̃, s, 0)|s=0

= ∂
∂s′ (a ◦ v)top(x̃, 0, s′)|s′=0 = ∂

∂s′ (a ◦ u
′)top(x̃, s′)|s′=0 = ∆′α(a)top(x̃),

using (B.11) in the first and last steps, and differentiating (B.6) in s, s′ at
s = s′ = 0 for the second–fourth. Hence ∆α = ∆′α, and ∆α is well defined.

It is clear from (B.11) that ∆α : C∞(Y ) → C∞(X) is an R-linear map.
We will show in Proposition B.20 that it is both a derivation of C∞(Y ) as an
R-algebra, and a C∞-derivation of C∞(Y ) as a C∞-ring.
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The next proposition follows easily from (B.11), the product and chain rules
for differentiation, and Definition B.18.

Proposition B.20. Work in the situation of Definition B.19. Then:

(a) Regard f∗ : C∞(Y )→ C∞(X) as a morphism of commutative R-algebras
as in §B.1.1. Then the R-linear map ∆α : C∞(Y )→ C∞(X) satisfies

∆α(a · b) = f∗(a) ·∆α(b) + f∗(b) ·∆α(a) for all a, b ∈ C∞(Y ).

That is, ∆α is a relative derivation for f∗ : C∞(Y )→ C∞(X).

(b) Regard f∗ : C∞(Y )→ C∞(X) as a morphism of C∞-rings as in §B.1.2,
and write the C∞-ring operations on C∞(X), C∞(Y ) as Φg,Ψg respectively
for smooth g : Rn → R. Then ∆α : C∞(Y )→ C∞(X) satisfies

∆α

(
Ψg(a1, . . . , an)

)
=

n∑
i=1

f∗
(
Ψ ∂g
∂xi

(a1, . . . , an)
)
·∆α(ai)

=

n∑
i=1

Φ ∂g
∂xi

(f∗(a1), . . . , f∗(an)) ·∆α(ai)

(B.12)

for all a1, . . . , an ∈ C∞(Y ). That is, ∆α is a relative C∞-derivation
for f∗ : C∞(Y )→ C∞(X).

(c) If α, β ∈ Γ(TfY ) then ∆α+β(a) = ∆α(a) + ∆β(a) for all a ∈ C∞(Y ).

(d) If a∈C∞(X) and α∈Γ(TfY ) then ∆a·α(b)=a ·∆α(b) for all b∈C∞(Y ).

When Ṁan = Man, one can show that the map α 7→ ∆α is a 1-1 correspon-
dence between elements of Γ(TfY ) and relative C∞-derivations. But for general

Ṁan, it is not clear that α 7→ ∆α need be either injective or surjective.

B.4.4 Acting on modules Γ(TfY ) with morphisms in Ṁan

Suppose f : X → Y and g : Y → Z are morphisms in Ṁan. We will define
natural morphisms Γ(T g) : Γ(TfY )→ Γ(Tg◦fZ) and f∗ : Γ(TgZ)→ Γ(Tg◦fZ).

Definition B.21. Let f : X → Y and g : Y → Z be morphisms in Ṁan.
Sections B.4.1–B.4.2 define C∞(X)-modules Γ(TfY ) and Γ(Tg◦fZ). Define a
map Γ(T g) : Γ(TfY ) → Γ(Tg◦fZ) by Γ(T g)([U, u]) = [U, g ◦ u]. It is easy to
check using §B.4.1–§B.4.2 that if (U, u) ≈ (U ′, u′) then (U, g ◦ u) ≈ (U ′, g ◦ u′),
so that Γ(T g) is well-defined, and that it is a C∞(X)-module morphism.
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For [U, u] ∈ Γ(TgZ) defined by a pair (U, u) in a diagram (B.5) with Y,Z, g

in place of X,Y, f , form the commutative diagram in Ṁan:

X
(idX ,0)

xx
l′

��
g◦f

,,

f
// Y

(idY ,0)

{{
l

��

g

%%
X × R

f×idR ,,

U ′?
_i′oo

u′=u◦m′
//

m′

))

Z.

Y × R U? _
ioo

u

88 (B.13)

Here i′ : U ′ ↪→ X × R is open with

U ′top =
{

(x, t) ∈ Xtop × R : (ftop(x), t) ∈ Utop

}
,

and unique l′,m′ exist making (B.13) commute by Assumption 3.2(d). Then
U ′, i′, l′, u′ in (B.13) are a diagram (B.5) for g ◦ f , so that [U ′, u′] ∈ Γ(Tg◦fZ).
Define f∗([U, u]) = [U ′, u′].

To show that [U ′, u′] is independent of the choice of representative (U, u) for
[U, u], so that f∗ is well defined, given another choice (Û , û) yielding (Û ′, û′),
as (U, u) ≈ (Û , û) there exist V, v for each ỹ ∈ Ytop satisfying (B.6) at ỹ over
g : Y → Z. Then for x̃ ∈ Xtop with ftop(x̃) = ỹ, we define V ′, v′ satisfying (B.6)

for (U ′, u′) ≈ (Û ′, û′) at x̃ over g ◦ f : X → Z, by constructing V ′, v′ from V, v
in the same way that (B.13) generalizes (B.5). Hence [U ′, u′] = [Û ′, û′], and
f∗([U, u]) is well defined.

It is easy to check using §B.4.1–§B.4.2 that f∗(α+ β) = f∗(α) + f∗(β) and
f∗(a · α) = f∗(a) · f∗(α), for all a ∈ C∞(Y ) and α, β ∈ Γ(TgZ). That is, f∗ :
Γ(TgZ)→ Γ(Tg◦fZ) is a module morphism relative to f∗ : C∞(Y )→ C∞(X).

If e : W → X is another morphism in Ṁan, we see that

Γ(T (g ◦ f)) = Γ(T g) ◦ Γ(T f) : Γ(TeX) −→ Γ(Tg◦f◦eZ),

(f ◦ e)∗ = e∗ ◦ f∗ : Γ(TgZ) −→ Γ(Tg◦f◦eZ),

Γ(T g) ◦ e∗ = e∗ ◦ Γ(T g) : Γ(TfY ) −→ Γ(Tg◦f◦eZ).

(B.14)

Example B.22. If f : X → Y is a morphism in Man ⊆ Ṁan, we have
Γ(TfY ) ∼= Γ∞(f∗(TY )) as in Example B.17. For morphisms f : X → Y ,

g : Y → Z in Man ⊆ Ṁan, these isomorphisms identify

Γ(T g) : Γ(TfY )→Γ(Tg◦fZ) ↔ f∗(Tg)◦ : Γ∞(f∗(TY ))→Γ∞((g ◦ f)∗(TZ)),

f∗ : Γ(TgZ)→ Γ(Tg◦fZ) ↔ f∗ : Γ∞(g∗(TZ))→ Γ∞((g ◦ f)∗(TZ)),

where Tg : TY → g∗(TZ) is the derivative of g. This justifies the notation Γ(T g)
and f∗ in Definition B.21.

Lemma B.23. Suppose f : X → Y and g : Y → Z are morphisms in Ṁan,
with g : Y ↪→ Z an open submanifold. Then Γ(T g) : Γ(TfY )→ Γ(Tg◦fZ) is an
isomorphism of C∞(X)-modules.
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Proof. We will define an inverse map I : Γ(Tg◦fZ) → Γ(TfY ) for Γ(T g). Let
α ∈ Γ(Tg◦fZ), and pick a representative (U, u) for α = [U, u], in a diagram (B.5).
Let i′ : U ′ ↪→ X × R be the open submanifold with

U ′top =
{

(x, t) ∈ Xtop × R : utop(x, t) ∈ Ytop ⊆ Ztop

}
.

Then (B.5) extends to a commutative diagram

X
(idX ,0)

rr
l��l′

}}

f

  

g◦f

++X × R U? _
ioo u // Z,

U ′
6 V

i′
ii

) 	 j′

66

u′ // Y
) 	

g
66 (B.15)

where j′, l′, u′ exist by Assumption 3.2(d) for the open submanifolds i : U ↪→
X × R, i′ : U ′ ↪→ X × R and g : Y ↪→ Z respectively. Then U ′, i′, l′, u′ are a
diagram (B.5) for f : X → Y , so [U ′, u′] ∈ Γ(TfY ). Define I(α) = [U ′, u′].

A similar argument for V, v satisfying (B.6) shows I(α) is independent of the
choice of (U, u), and so is well defined. To see that Γ(T g) ◦ I = id, note that

Γ(T g) ◦ I(α) = [U ′, g ◦ u′] = [U ′, u ◦ j′],

and use V, v in (B.6) with vtop(x, s, t) = utop(x, s + t) to show that (U, u) ≈
(U ′, u ◦ j′), so that Γ(T g) ◦ I(α) = [U, u] = α. To see that I ◦ Γ(T g) = id, let
β = [U ′, u′] ∈ Γ(TfY ), so that Γ(T g)(β) = [U ′, g ◦ u′], and consider (B.15) with
U = U ′, i = i′, l = l′, u = g ◦u′ to see that I ◦Γ(T g)(β) = [U, u′] = β. Therefore
Γ(T g) is a bijection, and so an isomorphism of C∞(X)-modules.

B.4.5 The sheaves of OX-modules T X and TfY
Next we define a sheaf of OX -modules TfY on Xtop, with global sections
TfY (Xtop) = Γ(TfY ). This justifies the notation Γ(TfY ) in §B.4.1.

Definition B.24. Let f : X → Y be a morphism in Ṁan. Section B.1.3 defines
a sheaf of R-algebras OX on Xtop. For each open submanifold χ′ : X ′ ↪→ X

in Ṁan, so that X ′top ⊆ Xtop is an open set and f ◦ χ′ : X ′ → Y a morphism

in Ṁan, write TfY (X ′top) = Γ(Tf◦χ′Y ) from Definition B.16, considered as
a module over OX(X ′top) = C∞(X ′) as in Definition B.18. Note that when
χ′ : X ′ ↪→ X is idX : X ↪→ X we have TfY (Xtop) = Γ(TfY ).

For each commutative triangle of open submanifolds in Ṁan:

X ′ �
y

χ′

++
X ′′
% �

ξ
33

� � χ′′ // X,
(B.16)

using the notation of §B.4.4 define a map

ρX′topX
′′
top

= ξ∗ : TfY (X ′top) = Γ(Tf◦χ′Y ) −→ TfY (X ′′top) = Γ(Tf◦χ′◦ξY ).
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From §B.4.4, ρX′topX
′′
top

intertwines the actions of OX(X ′top) = C∞(X ′) and

OX(X ′′top) = C∞(X ′′) on TfY (X ′top), TfY (X ′′top) via the morphism ρX′topX
′′
top

:

OX(X ′top)→ OX(X ′′top) from §B.1.3.

Proposition B.25. In Definition B.24, the data TfY (X ′top) and ρX′topX
′′
top

:

TfY (X ′top)→ TfY (X ′′top) for all open X ′′top ⊆ X ′top ⊆ Xtop form a sheaf of OX-
modules TfY on Xtop, which we call the tangent sheaf of f . When Y = X,
f = idX , we write T X = TidXX, and call it the tangent sheaf of X.

Proof. It is immediate from Definition B.24 and (B.14) that TfY is a presheaf
of OX -modules, that is, it satisfies Definition A.12(i)–(iii). Let χ′ : X ′ ↪→ X
and χ′′a : X ′′a ↪→ X for a ∈ A be open submanifolds with

⋃
a∈AX

′′
a,top = X ′top,

so that {X ′′a,top : a ∈ A} is an open cover of X ′top ⊆ Xtop. For each a ∈ A, as
X ′′a,top ⊆ X ′top ⊆ Xtop, Assumption 3.2(d) implies that there is a unique open
submanifold ξa : X ′′a ↪→ X ′ with χ′′a = χ′ ◦ ξa, as in (B.16).

For (iv), suppose α1, α2 ∈ TfY (X ′top) = Γ(Tf◦χ′Y ) with ρX′topX
′′
a,top

(α1) =

ρX′topX
′′
a,top

(α2) for all a ∈ A, so that ξ∗a(α1) = ξ∗a(α2) in Γ(Tf◦χ′◦ξaY ). Write

αc = [Uc, uc] for c = 1, 2, where Uc, uc live in a commutative diagram (B.5):

X ′
(idX′ ,0)

ss
lc��

f◦χ′

**X ′ × R Uc?
_icoo uc // Y.

From the definition of ξ∗a(αc) in §B.4.4, we see that if we define hac : Uac ↪→ Uc
to be the open submanifold with Uac,top = Uc,top∩ (X ′′a,top×R) ⊆ X ′top×R, then
ξ∗a(αc) = [Uac, uc ◦ hac]. Hence [Ua1, u1 ◦ ha1] = [Ua2, u2 ◦ ha2], so by Definition
B.16, for each x̃ ∈ X ′′a,top there exist j : V ↪→ X ′′a and v : V → Y satisfying
(B.6). Then ξa ◦ j : V ↪→ X ′ and v : V → Y satisfy (B.6) for (U1, u1) ≈ (U2, u2)
at x̃ ∈ X ′top. As this holds for all x̃ ∈ X ′′a,top, and

⋃
a∈AX

′′
a,top = X ′top, we see

that α1 = [U1, u1] = [U2, u2] = α2. Hence TfY satisfies Definition A.12(iv).
For (v), suppose that αa ∈ TfY (X ′′a,top) = Γ(Tf◦χ′′aY ) for all a ∈ A with

ρX′′a,top(X′′a,top∩X′′b,top)(αa) = ρX′′b,top(X′′a,top∩X′′b,top)(αb) for all a, b ∈ A. (B.17)

Write αa = [Ua, ua] for a ∈ A, where Ua, ua live in a diagram (B.5):

X ′′a
(idX′′a

,0)

tt
la��

f◦χ′′a

**X ′′a × R Ua?
_iaoo ua // Y.

Let SA be the set of all finite, nonempty subsets B ⊆ A. For each B ∈ SA write
χ′′B : X ′′B ↪→ X ′ for the open submanifold with X ′′B,top =

⋂
a∈B X

′′
a,top. When

B = {a} we have X ′′{a} = X ′′a , χ′′{a} = χ′′a. If C ⊆ B lie in SA then there is a

unique ξBC : X ′′B ↪→ X ′′C with χ′′B = χ′′C ◦ ξBC by Assumption 3.2(d).
For each B ∈ SA we will choose an open submanifold kB : WB ↪→ X ′′B ×∏

b∈B R and a morphism wB : WB → Y in Ṁan with the properties:
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(a) X ′′B,top × {(0, . . . , 0)} ⊆WB,top for all B ∈ SA.

(b) For a ∈ A we have W{a} = Ua ↪→ X ′′a × R = X ′′{a} × R and w{a} = ua.

(c) If C ( B lie in SA and (x, (sa)a∈C q (0)a∈B\C) ∈WB,top then (x, (sa)a∈C)
lies in WC,top with wC,top(x, (sa)a∈C) = wB,top(x, (sa)a∈C q (0)a∈B\C).

We do this by induction on |B|. For the first step, WB , wB are determined by
(b) when |B| = 1, and (a) holds by definition of Ua, ua. For the inductive step,
suppose that m > 1 and we have chosen WB , wB for all B ∈ SA with |B| 6 m,
such that (a),(c) hold whenever |B| 6 m. Let B ∈ SA with |B| = m+1, and write
B = {a1, . . . , am+1}. Apply Assumption 3.7(a) with k = m+ 1, n = 1, and X ′′B
in place of X, taking fi : Ui → Y to be the restriction of wB\{ai} : WB\{ai} → Y
to the intersection of WB\{ai} with X ′′B × Rm.

The compatibility condition between fi, fj in Assumption 3.7(a) follows from
(c) above for B \ {ai, aj} ⊂ B \ {ai} and B \ {ai, aj} ⊂ B \ {aj}. Therefore
Assumption 3.7(a) gives WB , wB satisfying (a), and (c) when C ( B with
|C| = m. Then (c) for |C| < m follows by taking C ( B \ {ai} ( B. Hence by
induction we can choose WB , wB satisfying (a)–(c) for all B ∈ SA.

Now apply Proposition B.7 to choose a partition of unity {ηa : a ∈ A}
on X ′ subordinate to the open cover {X ′′a,top : a ∈ A}. Choose an open
submanifold i : U ↪→ X ′ × R such that X ′top × {0} ⊆ Utop and if (x, s) ∈ Utop

and B =
{
a ∈ A : x ∈ supp ηa,top

}
then (x, (ηa,top(x)s)a∈B) ∈ WB,top. By (a)

above and local finiteness of {ηa : a ∈ A}, this holds for any small enough open
neighbourhood of X ′top × {0} in X ′ × R.

We claim that there is a unique morphism u : U → Y in Ṁan such that for
all (x, s) ∈ Utop with B =

{
a ∈ A : x ∈ supp ηa,top

}
in SA we have

utop(x, s) = wB,top(x, (ηa,top(x)s)a∈B). (B.18)

To see this, note that as ηa for a ∈ B and wB are morphisms in Ṁan, for each
B ∈ SA, equation (B.18) is the underlying continuous map of a morphism in
Ṁan from an open submanifold of U to Y . Part (c) above implies that these
continuous maps for C ⊆ B agree on the overlap of their domains. If a point
lies in the domain of the functions for B,B′ ∈ SA then it lies in the domain
for B ∩ B′ by (c), and considering B ∩ B′ ⊆ B and B ∩ B′ ⊆ B′ we see that
the continuous maps for B,B′ agree on the overlap of their domains. Hence by
Assumption 3.3(a) there is a unique u : U → Y satisfying (B.18).

Now put α = [U, u] ∈ TfY (X ′top) = Γ(Tf◦χ′Y ). Fix a ∈ A, and let x̃ ∈ X ′′a,top.

Set B =
{
b ∈ A : x̃ ∈ supp ηb,top

}
. Choose an open neighbourhood R ↪→ X ′′a of

x̃ in X ′′a such that Rtop ⊆ X ′′b,top for all b ∈ B, and Rtop ∩ supp ηc,top = ∅ for all
c ∈ A \ B. This is possible as supp ηb,top is contained in X ′′b,top and closed in
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X ′top, and {ηa : a ∈ A} is locally finite. We have

ρX′′a,topRtop
◦ ρX′topX

′′
a,top

(α) = ρX′topRtop
(α) =

∑
b∈B

ρX′′b,topRtop
(ηb|X′′b · αb)

=
∑
b∈B

ρX′topRtop
(ηb) · ρX′′b,topRtop

(αb)

=
∑
b∈B

ρX′topRtop
(ηb) · ρ(X′′a,top∩X′′b,top)Rtop

◦ ρX′′b,top(X′′a,top∩X′′b,top)(αb)

=
∑
b∈B

ρX′topRtop
(ηb) · ρ(X′′a,top∩X′′b,top)Rtop

◦ ρX′′a,top(X′′a,top∩X′′b,top)(αa)

=
∑
b∈B

ρX′topRtop
(ηb) · ρX′′a,topRtop

(αa) = ρX′topRtop

( ∑
b∈B

ηb
)
· ρX′′a,topRtop

(αa)

= ρX′topRtop
(1) · ρX′′a,topRtop

(αa) = ρX′′a,topRtop
(αa). (B.19)

Here the second step follows from comparing the definition (B.21) of α = [U, u]
with the definitions of addition and multiplication by functions in Γ(Tf |RY )
in §B.4.2, the fifth uses (B.17), the eighth holds as

∑
b∈B ηb is 1 on R since

{ηa : a ∈ A} is a partition of unity with Rtop ∩ supp ηc,top = ∅ for all c ∈ A \B,
and the other steps come from TfY being a presheaf of OX -modules as above.

Since X ′′a,top is covered by such open subsets Rtop ⊆ X ′′a,top, equation (B.19)
and Definition A.12(iv) for TfY (proved above) imply that ρX′topX

′′
a,top

(α) = αa,

for all a ∈ A. Therefore TfY satisfies Definition A.12(v), and is a sheaf.

Here are some examples:

Example B.26. (a) When Ṁan = Man, we have Γ(TfY ) ∼= Γ∞(f∗(TY )) as
in Example B.17, and one can show that TfY is canonically isomorphic to the
sheaf of smooth sections of the vector bundle f∗(TY ) → X, so that T X is
canonically isomorphic to the sheaf of smooth sections of TX → X.

(b) When Ṁan is one of the categories of manifolds with corners from Chapter 2:

Manc
in,Manc

st,in,Mangc
in ,Manac

in ,Manac
st,in,Manc,ac

in ,Manc,ac
st,in,

as in Example 3.8(ii), one can show that TfY is the sheaf of smooth sections of
the vector bundle f∗(bTY )→ X, so that T X is canonically isomorphic to the
sheaf of smooth sections of the b-tangent bundle bTX → X.

(c) When Ṁan is one of the categories of manifolds with corners from Chapter 2:

Manc,Manc
st,Mangc,Manac,Manac

st ,Manc,ac,Manc,ac
st ,

as in Example 3.8(ii), it turns out that TfY is the sheaf of sections of the vector
bundle of mixed rank C(f)∗(bTC(Y ))|C0(X) → X, using the corner functor
C(f) : C(X) → C(Y ) and the identification X ∼= C0(X) from §2.2. If f is
interior this reduces to f∗(bTY )→ X as in (b).

(d) When Ṁan = Manc
we from §2.1, as in Example 3.8(ii), and f : X → Y in

Manc
we is weakly smooth but not smooth, in general TfY is not even locally

the sheaf of sections of a vector bundle on X.
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B.4.6 Acting on sheaves TfY with morphisms in Ṁan

We now lift the material of §B.4.4 from global sections Γ(TfY ) to sheaves TfY .

Definition B.27. Let f : X → Y and g : Y → Z be morphisms in Ṁan. Define
a morphism T g : TfY → Tg◦fZ of sheaves of OX -modules on Xtop by, for each

open submanifold χ′ : X ′ ↪→ X in Ṁan,

T g(X ′top) = Γ(T g) : TfY (X ′top) = Γ(Tf◦χ′Y )→ Tg◦fZ(X ′top) = Γ(Tg◦f◦χ′Z).

Using (B.14) we see that T g is a sheaf morphism.
On Ytop we have TgZ, a sheaf of OY -modules, and (ftop)∗(Tg◦fZ), a sheaf of

(ftop)∗(OX)-modules. As in §B.1.3 we have a morphism f] : OY → (ftop)∗(OX)
of sheaves of R-algebras or C∞-rings on Ytop. We will define a sheaf morphism
f[ : TgZ → (ftop)∗(Tg◦fZ) on Ytop which is a module morphism under f].

Let ξ′ : Y ′ ↪→ Y be an open submanifold in Ṁan, and let χ′ : X ′ ↪→ X be
the open submanifold with X ′top = f−1

top(Y ′top) ⊆ Xtop. Then Assumption 3.2(d)
gives a unique f ′ : X ′ → Y ′ with ξ′ ◦ f ′ = f ◦ χ′. Define

f[(Y
′
top) = f ′∗ : TgZ(Y ′top) = Γ(Tg◦ξ′Z) −→ (ftop)∗(Tg◦fZ)(Y ′top)

= Tg◦fZ(X ′top) = Γ(Tg◦f◦χ′Z) = Γ(Tg◦ξ′◦f ′Z).

Using (B.14) we can prove that f[ is a sheaf morphism. The module morphism
property for f[ follows from the corresponding property for f ′∗.

Let f [ : f−1
top(TgZ)→Tg◦fZ on Xtop be adjoint to f[ : TgZ→ (ftop)∗(Tg◦fZ)

under (A.18). Then f−1
top(TgZ) is an f−1

top(OY )-module, and Tg◦fZ an OX -module,

and f [ is a module morphism under f ] : f−1
top(OY )→ OX .

If e : W → X is another morphism in Ṁan, using (B.14) we can prove that

T (g ◦ f) = T g ◦ T f : TeX −→ Tg◦f◦eZ,
(f ◦ e)[ = (ftop)∗(e[) ◦ f[ : TgZ −→ ((f ◦ e)top)∗(Tg◦f◦eZ),

(etop)∗(T g) ◦ e[ = e[ ◦ T g : TfY −→ (etop)∗(Tg◦f◦eZ).

Using the adjoint property for f[, f
[ above, the last two equations imply that

(f ◦ e)[ = e[ ◦ e−1
top(f [) : (f ◦ e)−1

top(TgZ) −→ Tg◦f◦eZ,

T g ◦ e[ = e[ ◦ e−1
top(T g) : e−1

top(TfY ) −→ Tg◦f◦eZ.

Lemma B.23 implies:

Lemma B.28. Suppose f : X → Y and g : Y → Z are morphisms in Ṁan, with
g : Y ↪→ Z an open submanifold. Then T g : TfY → Tg◦fZ is an isomorphism
of OX-modules.
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B.4.7 A pairing µX : T X × T ∗X → OX

Let X ∈ Ṁan. In §B.3.1 we defined the cotangent sheaf T ∗X, and in §B.4.5 the
tangent sheaf T X, both OX -modules on Xtop. Note that in general neither is

dual to the other. For example, when Ṁan = Manc, as in Example B.12(b) T ∗X
is the sheaf of sections of the cotangent bundle T ∗X → X, and as in Example
B.26(b),(c) T X is the sheaf of sections of the b-tangent bundle bTX → X,
but T ∗X, bTX are not dual vector bundles if ∂X 6= ∅. We defined T ∗X using
morphisms X → R in Ṁan, and T X using morphisms X ×R→ X in Ṁan, so
T X and T ∗X depend on different data in Ṁan.

We will define an OX -bilinear sheaf pairing µX : T X × T ∗X → OX on
Xtop, thought of as the pairing between vector fields and 1-forms on X. More

generally, if f : X → Y is a morphism in Ṁan we will define bilinear pairings
µf : (ftop)∗(TfY )× T ∗Y → (ftop)∗(OX) on Ytop, and µf : TfY × f−1

top(T ∗Y )→
OX on Xtop.

Definition B.29. Let f : X → Y be a morphism in Ṁan. Suppose j : V ↪→ Y
is an open submanifold in Ṁan, and let i : U ↪→ X be the open submanifold with
Utop = f−1

top(Vtop) ⊆ Xtop. Then Assumption 3.2(d) gives a unique morphism
f ′ : U → V with j ◦ f ′ = f ◦ i : U → Y .

From §B.1.3, §B.3.1 and §B.4.5 we have

(ftop)∗(OX)(Vtop) = OX(Utop) = C∞(U), PT ∗Y (Vtop) = ΩC∞(V ),

(ftop)∗(TfY )(Vtop)=TfY (Utop)=Γ(Tf◦iY )=Γ(Tj◦f ′Y )∼=Γ(Tf ′V ),
(B.20)

where for the last part Γ(T j) : Γ(Tf ′V ) → Γ(Tj◦f ′Y ) is an isomorphism by
Lemma B.23. Identify (ftop)∗(TfY )(Vtop) = Γ(Tf ′V ) as in (B.20).

If α ∈ (ftop)∗(TfY )(Vtop) = Γ(Tf ′V ) then §B.4.3 defines a relative C∞-
derivation ∆α : C∞(V )→ C∞(U) over f ′ : U ↪→ V , satisfying (B.12). Regard
C∞(V ) as a module over C∞(U) using f ′∗ : C∞(V ) → C∞(U). Then (B.12)
implies that ∆α is a C∞-derivation as in (B.2), so the universal property
of ΩC∞(V ) in Definition B.10 gives a unique C∞(V )-module morphism Γα :
ΩC∞(V ) → C∞(U) with ∆α = Γα ◦ dC∞(V ). Define

Pµf (Vtop) : (ftop)∗(TfY )(Vtop)× PT ∗Y (Vtop)→ (ftop)∗(OX)(Vtop),

Pµf (Utop) : (α, β) 7→ Γα(β).

Then Pµf (Utop) is linear over (ftop)∗(OX)(Vtop) = C∞(U) in α, since ∆α is
C∞(U)-linear in α by Proposition B.20(c),(d), and linear over OY (Vtop) =
C∞(V ) in β, via f](Vtop) in (B.1).

It is easy to check that these maps Pµf (Utop) are compatible with restriction
morphisms ρVtopWtop

for all open Wtop ⊆ Vtop ⊆ Ytop. Thus, they define a
bilinear pairing of presheaves Pµf : (ftop)∗(TfY )× PT ∗Y → (ftop)∗(OX). So
passing to the sheafification yields a bilinear pairing of sheaves

µf : (ftop)∗(TfY )× T ∗Y −→ (ftop)∗(OX).
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Using the adjoint property of (ftop)∗ and f−1
top as in (A.18), we can show that µf

corresponds to a unique pairing

µf : TfY × f−1
top(T ∗Y ) −→ OX .

Here µf (α, β) is OX -linear in α, but f−1
top(OY )-linear in β, using f ] : f−1

top(OY )

→ OX from §B.1.3. To make µf OX -bilinear, we extend it to

µf : TfY × (f−1
top(T ∗Y )⊗f−1

top(OY ) OX) −→ OX ,

or equivalently, to a morphism of OX -modules

µf∗ : TfY ⊗OX (f−1
top(T ∗Y )⊗f−1

top(OY ) OX) −→ OX . (B.21)

When X = Y and f = idX , both µf , µf become an OX -bilinear pairing

µX : T X × T ∗X −→ OX .

B.4.8 Morphisms E → TfY, TfY → F for vector bundles
E,F → X

Definition B.30. Let f : X → Y be a morphism in Ṁan, and E,F → X be
vector bundles on X. Then §B.2.2 defines the OX -modules E ,F of sections of
E,F , and §B.4.5 defines the OX -module TfY . Define a morphism θ : E → TfY
to be an OX -module morphism θ : E → TfY , and a morphism φ : TfY → F to
be an OX -module morphism φ : TfY → F . That is, in our notation we will not
distinguish between the vector bundles E,F and their sheaves of sections E ,F .

By composition of such morphisms with each other, with morphisms of vector
bundles, and with the OX -module morphisms in §B.4.6, we mean composition
of OX -module morphisms, but identifying vector bundle morphisms Hom(E,F )
with OX -module morphisms HomOX -mod(E ,F) as in §B.2.2. For example:

(a) If θ : E → TfY and φ : TfY → F are as above then φ ◦ θ : E → F is the
honest vector bundle morphism corresponding to φ ◦ θ : E → F .

(b) If θ : E → TfY is as above and λ : D → E is a vector bundle morphism as
above we get a morphism θ ◦ λ : D → TfY .

(c) If θ : E → TfY is as above, g : Y → Z is a morphism in Ṁan, and
T g : TfY → Tg◦fZ is as in §B.4.6, we get a morphism T g ◦ θ : E → Tg◦fZ.

Example B.31. When Ṁan = Man, morphisms θ : E → TfY , φ : TfY → F
above are in natural 1-1 correspondence with vector bundle morphisms θ′ : E →
f∗(TY ), φ′ : f∗(TY )→ F in the usual sense of differential geometry.

In Definition B.16 we wrote elements α of Γ(TfY ) in terms of diagrams (B.5)

in Ṁan. We will now show that any morphism θ : E → TfY may be written in
terms of a similar diagram.
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Definition B.32. Let f : X → Y be a morphism in Ṁan, and π : E → X be
a vector bundle. Generalizing (B.5), consider commutative diagrams in Ṁan:

X
0E

tt
l��

f

**E V? _
joo v // Y,

(B.22)

where 0E : X → E is the zero section morphism as in §B.2.1, and j : V ↪→ E is
an open submanifold with 0E,top(Xtop) ⊆ Vtop ⊆ Etop, and unique l : X → V
with j ◦ l = 0E exists by Assumption 3.2(d), and v : V → Y is a morphism in
Ṁan with v ◦ l = f . For brevity we write such a diagram as the pair (V, v).

Given such a pair (V, v) we will define a morphism θV,v : E → TfY , in the
sense of Definition B.30. Write E for the OX -module of sections of E. Let
χ′ : X ′ ↪→ X be an open submanifold in Ṁan, and set E′ = χ′∗(E) = E|X′ , so
that k : E′ ↪→ E is open in Ṁan. We must define a C∞(X ′)-module morphism

θV,v(X
′
top) : E(X ′top) = Γ∞(E′) −→ TfY (X ′top) = Γ(Tf◦χ′Y ).

Suppose e′ ∈ Γ∞(E′), so that e′ : X ′ → E′ with πE′ ◦ e′ = idX′ . Then there
is a unique morphism ẽ′ : X ′×R→ E′ in Ṁan with ẽ′top(x, t) = t·e′top(x) ∈ E′top

for all x ∈ X ′top and t ∈ R, where t · e′top(x) multiplies e′top(x) in the vector
space E′x ⊆ E′top by t ∈ R. Let i′ : U ′ ↪→ X ′ × R be the open submanifold with

U ′top = ẽ′−1
top (Vtop). Consider the commutative diagram in Ṁan:

X ′
(idX′ ,0)

uu
l′

?
((

� �

χ′
//

0E′
��

X

0E
��

l
''

f // Y

X ′ × R

ẽ′ ))

U ′
u′

33

_?
i′

oo m′

?
// V,jJ

jww

v

OO

E′
� � k // E

where morphisms ‘↪→’ are open submanifolds, and morphisms ‘?’ exist by Assump-
tion 3.2(d). Then U ′, i′, l′, u′ = v ◦m′ are a diagram (B.5) for f ◦ χ′ : X ′ → Y ,
so [U ′, u′] ∈ Γ(Tf◦χ′Y ) by Definition B.16. Define θV,v(X

′
top)(e′) = [U ′, u′].

It is now straightforward to show using §B.4.2 and §B.4.5 that θV,v(X
′
top) is

a C∞(X ′)-module morphism, and that the maps θV,v(X ′top), θV,v(X ′′top) for open
X ′′top ⊆ X ′top ⊆ Xtop are compatible with restriction morphisms ρX′topX

′′
top

, so
that θV,v : E → TfY is an OX -module morphism.

Proposition B.33. Let f : X → Y be a morphism in Ṁan, and π : E → X
be a vector bundle. Then every morphism θ : E → TfY in Definition B.30 is of
the form θ = θV,v in Definition B.32 for some diagram (B.22).

Proof. Let X,Y, f, E, θ be as in the proposition. Write r for the rank of E and
E for the OX -module of sections of E, so that θ : E → TfY is an OX -module
morphism. Choose an open cover {χa : X ′a ↪→ X} such that Ea := E|X′a = χ∗a(E)

257



is a trivial vector bundle over X ′a for each a ∈ A, and choose an isomorphism
Ψa : Ea → X ′a × Rr with the trivial vector bundle X ′a × Rr → X ′a. Write
e1
a, . . . , e

r
a for the basis of sections of Ea identified by Ψa with the canonical basis

of sections of X ′a × Rr. Then eka ∈ E(X ′a,top) = Γ∞(E|X′a), so θ(X ′a,top)(eka) ∈
TfY (X ′a,top) = Γ(Tf◦χaY ). Choose a representative (Uka , u

k
a) for θ(X ′a,top)(eka) =

[Uka , u
k
a] ∈ Γ(Tf◦χaY ) for all a ∈ A and k = 1, . . . , r, as in §B.4.1, so that Uka , u

k
a

fit into a commutative diagram (B.5):

X ′a
(idX′a

,0)

tt
lka��

f◦χa

**X ′a × R Uka?
_ikaoo uka // Y.

Apply Assumption 3.7(a) to construct a commutative diagram

X ′a
(idX′a

,0)

ss
ma
��

f◦χa

**E|X′a ∼= X ′a × Rr Va?
_jaoo va // Y,

such that ja : Va ↪→ X ′a × Rr is open, and if (x, (0, . . . , 0, sk, 0, . . . , 0)) ∈ Va,top

with sk the kth coordinate in Rr then (x, sk) ∈ Uka,top and uka,top(x, sk) =
va,top(x, (0, . . . , 0, sk, 0, . . . , 0)). Actually we apply Assumption 3.7(a) 2r − r − 1
times to choose va,top(x, (s1, . . . , sr)) with subsets of the s1, . . . , sr zero.

The next part of the proof follows that of part (v) of the sheaf property
of TfY in Proposition B.25. Let SA be the set of all finite, nonempty subsets
B ⊆ A. For each B ∈ SA write χB : X ′B ↪→ X for the open submanifold with
X ′B,top =

⋂
a∈B X

′
a,top. When B = {a} we have X ′{a} = X ′a, χ{a} = χa. If

C ⊆ B lie in SA then there is a unique ξBC : X ′B ↪→ X ′C with χB = χC ◦ ξBC
by Assumption 3.2(d).

By the same proof as in the proof of Proposition B.25, using induction on
|B| and Assumption 3.7(a), for each B ∈ SA we choose an open submanifold
kB : WB ↪→

⊕
b∈B E|X′B ∼=X ′B×

∏
b∈B Rr and a morphism wB : WB→Y with:

(a) X ′B,top × {(0, . . . , 0)} ⊆WB,top for all B ∈ SA.

(b) For a ∈ A we have W{a} = Va ↪→ E|X′a ∼= X ′{a} × Rr and w{a} = va.

(c) If C ( B lie in SA and (x, (sa)a∈C q (0)a∈B\C) ∈WB,top then (x, (sa)a∈C)
lies in WC,top with wC,top(x, (sa)a∈C) = wB,top(x, (sa)a∈C q (0)a∈B\C).

Now apply Proposition B.7 to choose a partition of unity {ηa : a ∈ A}
on X ′ subordinate to the open cover {X ′a,top : a ∈ A}. Choose an open
submanifold j : V ↪→ E such that 0E,top(Xtop) ⊆ Vtop and if e ∈ Vtop ⊆
Etop with πtop(e) = x ∈ Xtop and B =

{
a ∈ A : x ∈ supp ηa,top

}
then

(x, (ηa,top(x)πRr ◦Ψa,top(e))a∈B) ∈WB,top. By (a) above and local finiteness of
{ηa : a ∈ A}, this holds for any small enough open neighbourhood of 0E,top(Xtop)
in E.
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As for the construction of u : U → Y satisfying (B.18) in the proof of
Proposition B.25, there is a unique morphism v : V → Y such that for all
e ∈ Vtop with πtop(e) = x ∈ Xtop and B =

{
a ∈ A : x ∈ supp ηa,top

}
we have

vtop(e) = wB,top(x, (ηa,top(x) · πRr ◦Ψa,top(e))a∈B). (B.23)

Then j : V ↪→ E and v : V → Y fit into a diagram (B.22), and so give a
morphism θV,v : E → TfY by Definition B.32. We will show that θV,v = θ.

Let x̃ ∈ Xtop, and set B =
{
b ∈ A : x̃ ∈ supp ηb,top

}
in SA. Choose an

open neighbourhood R ↪→ X of x̃ in X such that Rtop ⊆ X ′b,top for all b ∈ B,
and Rtop ∩ supp ηc,top = ∅ for all c ∈ A \ B. This is possible as supp ηb,top is
contained in X ′b,top and closed in Xtop, and {ηa : a ∈ A} is locally finite. Let
e ∈ Γ∞(E|R). Then

θV,v(Rtop)(e) =
∑
a∈B

ηa|R · θVa,va(Rtop)(Ψa|R(e)) =
∑
a∈B

ηa|R · θ(Rtop)(e)

= 1 · θ(Rtop)(e) = θ(Rtop)(e). (B.24)

Here the first step follows from comparing the definition of θV,v, equation
(B.23), part (b) above, and the definitions of addition and multiplication by
functions in Γ(Tf |RY ) in §B.4.2. The second holds by definition of (Va, va)

above in terms of (Uka , u
k
a), where θ(X ′a,top)(eka) = [Uka , u

k
a], and e1

a, . . . , e
r
a are

mapped by Ψa to the canonical basis of sections of X ′a × Rr → X ′a. The third
holds as

∑
b∈B ηb is 1 on R since {ηa : a ∈ A} is a partition of unity with

Rtop ∩ supp ηc,top = ∅ for all c ∈ A \B.
Equation (B.24) shows that for any x̃ ∈ Xtop and any sufficiently small open

neighbourhood Rtop of x̃ in Xtop we have θV,v(Rtop) = θ(Rtop) : E(Rtop) →
TfY (Rtop). Since θV,v, θ are sheaf morphisms, this implies that θV,v = θ.

B.4.9 Notation for ‘pullbacks’ f∗ by morphisms f : X → Y

We will use the following notation for ‘pullbacks’ f∗ by morphisms f : X → Y .

Definition B.34. Let f : X → Y be a morphism in Ṁan, and E → Y be a
vector bundle on Y , and E the OY -module of sections of E from §B.2.2. Then
we can form the sheaf pullback f−1

top(E) as in §A.5, which is a sheaf of modules

over f−1
top(OY ) on Xtop. In §B.1.3 we defined a morphism f ] : f−1

top(OY )→ OX of
sheaves of R-algebras or C∞-rings on Xtop. Thus we may form the OX -module
f−1

top(E)⊗f−1
top(OY ) OX using f ].

We can also form the pullback vector bundle f∗(E)→ X as in §B.2.1. The
corresponding OX -module is canonically isomorphic to f−1

top(E) ⊗f−1
top(OY ) OX ,

and we will identify it with f−1
top(E)⊗f−1

top(OY ) OX , and write it f∗(E).

Let F → Y be another vector bundle, and θ : E → F a vector bundle
morphism, and θ̃ : E → F the corresponding OY -module morphism. Then we
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may form the OX -module morphism

f∗(θ̃) := f−1
top(θ̃)⊗ idOX : f∗(E) = f−1

top(E)⊗f−1
top(OY ) OX −→

f∗(F) = f−1
top(F)⊗f−1

top(OY ) OX .

This is the OX -module morphism corresponding to the vector bundle morphism
f∗(θ) : f∗(E)→ f∗(F ) on X, as in §B.2.2.

Now let g : Y → Z be another morphism in Ṁan, so we have an OY -module
TgZ and an OX -module Tg◦fZ. We will often treat Tg◦fZ as if it were the
pullback f∗(TgZ). This is an abuse of notation: for f [ as in §B.4.6 and using
f ] : f−1

top(OY )→ OX , we have an OX -module morphism

f [ ⊗ idOX : f−1
top(TgZ)⊗f−1

top(OY ) OX −→ Tg◦fZ ⊗OX OX = Tg◦fZ. (B.25)

It would be more consistent to write f∗(TgZ) = f−1
top(TgZ)⊗f−1

top(OY )OX (though

we will not), but then f∗(TgZ) and Tg◦fZ would be different, as (B.25) need not

be an isomorphism for general Ṁan.
Suppose E, E are as above, and θ : E → TgZ is a morphism (that is, θ : E →

TgZ is an OY -module morphism). Define a morphism f∗(θ) : f∗(E)→ Tg◦fZ
by the commutative diagram of OX -modules

f−1
top(E)⊗f−1

top(OY ) OX
f−1
top(θ)⊗idOX

//

f∗(θ)

--

f−1
top(TgZ)⊗f−1

top(OY ) OX

f[⊗idOX
��

Tg◦fZ ⊗OX OX = Tg◦fZ.

(B.26)

Here f−1
top(E)⊗f−1

top(OY )OX is the OX -module corresponding to the vector bundle

f∗(E) → X, as above. Using this notation f∗(θ) we will avoid using the
morphisms f [ in Chapters 4–6.

Note that if φ : TgZ → F is a morphism, we cannot define a pullback
f∗(φ) : Tg◦fZ → f∗(F ), because the morphism (B.25) goes the wrong way.

Definition B.35. Let f : X → Y be a morphism in Ṁan, and F → Y be a
vector bundle, and t ∈ Γ∞(F ). Suppose ∇ is a connection on F , as in §B.3.2.
Writing F for the OY -module corresponding to F , we have t ∈ Γ(F), so that
∇t ∈ Γ(F ⊗OY T ∗Y ). Define a morphism f∗(∇t) : TfY → f∗(F ), in the sense
of §B.4.8, by the commutative diagram of OX -modules

TfY

f∗(∇t)

��

⊗f−1
top(∇t)

// TfY ⊗f−1
top(OY ) (f−1

top(F ⊗OY T ∗Y ))

∼=
��

f−1
top(F)⊗f−1

top(OY ) OX
f−1

top(F)⊗f−1
top(OY )

(TfY ⊗OX (f−1
top(T ∗Y )⊗f−1

top(OY ) OX)),

id⊗µf∗oo

(B.27)
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where µf∗ is as in (B.21), and f−1
top(F) ⊗f−1

top(OY ) OX is the OX -module corre-

sponding to f∗(F )→ X, as in Definition B.34.

B.5 The O(s) and O(s2) notation

When X ∈ Ṁan, and E → X is a vector bundle, and s ∈ Γ∞(E), we now
define several related uses of the notation ‘O(s)’ and ‘O(s2)’. This will be
important in defining the (2-)categories of (m- and µ-)Kuranishi neighbourhoods
in Chapters 4–6.

Definition B.36. Let X be an object in Ṁan, and E → X be a vector bundle,
and s ∈ Γ∞(E) be a section. Then:

(i) If F → X is a vector bundle and t1, t2 ∈ Γ∞(F ), we write t2 = t1 +O(s)
if there exists a morphism α : E → F such that t2 = t1 + α ◦ s in Γ∞(F ).

Similarly, we write t2 = t1 +O(s2) if there exists β : E ⊗E → F such that
t2 = t1 + β ◦ (s⊗ s) in Γ∞(F ). This implies that t2 = t1 +O(s).

We can also apply this O(s), O(s2) notation to morphisms of vector bundles
θ1, θ2 : F → G, by regarding θ1, θ2 as sections of F ∗ ⊗G.

(ii) If F → X is a vector bundle, f : X → Y is a morphism in Ṁan, and
Λ1,Λ2 : F → TfY are morphisms as in §B.4.8, we write Λ2 = Λ1 +O(s) if
there exist open submanifolds i : U ↪→ X and j : V ↪→ E with s−1

top(0) ⊆
Utop and 0E,top(Utop), stop(Utop) ⊆ Vtop, so that we have a commutative

diagram in Ṁan:

U
k1

//
� _

i
��

V� _
j
��

U
k2

oo
� _

i
��

X

idX **

0E // E

π
��

X

idXtt

soo

X,

(B.28)

where the morphisms k1, k2 exist by Assumption 3.2(d). Also there should
exist a morphism M : π∗(F )|V → Tf◦πY |V with k∗1(M) = Λ1|U and
k∗2(M) = Λ2|U in morphisms F |U → TfY |U , where

k∗a(M) : k∗a ◦ π∗(F ) = F |U −→ Tf◦π◦kaY = TfY |U

for a = 1, 2 are as in §B.4.8.

(iii) If f, g : X → Y are morphisms in Ṁan, we write g = f +O(s) if there is a
diagram (B.28) as in (ii) with s−1

top(0) ⊆ Utop, and a morphism v : V → Y

in Ṁan with v ◦ k1 = f |U and v ◦ k2 = g|U in morphisms U → Y in Ṁan.
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(iv) Let f, g : X → Y with g = f +O(s) be as in (iii), and F → X, G→ Y be
vector bundles, and θ1 : F → f∗(G), θ2 : F → g∗(G) be morphisms. We
wish to compare θ1, θ2, though they map to different vector bundles.

We write θ2 = θ1 +O(s) if there is a diagram (B.28) with s−1
top(0) ⊆ Utop

and a morphism v : V → Y with v ◦ k1 = f |U and v ◦ k2 = g|U as in (iii),
and a morphism φ : π∗(F )|V → v∗(G) with k∗1(φ) = θ1|U and k∗2(φ) = θ2|U ,
where k∗1(φ), k∗2(φ) are as in §B.2.1.

(v) Let f, g : X → Y with g = f +O(s) be as in (iii), and F → X be a vector
bundle, and Λ1 : F → TfY , Λ2 : F → TgY be morphisms, as in §B.4.8.
We wish to compare Λ1,Λ2, though they map to different sheaves.

We write Λ2 = Λ1 +O(s) if there is a diagram (B.28) with s−1
top(0) ⊆ Utop

and a morphism v : V → Y with v◦k1 = f |U and v◦k2 = g|U as in (iii), and
a morphism M : π∗(F )|V → TvY with k∗1(M) = Λ1|U and k∗2(M) = Λ2|U ,
where k∗1(M), k∗2(M) are as in §B.4.8.

(vi) Suppose f : X → Y is a morphism in Ṁan, and F → X, G → Y are
vector bundles, and t ∈ Γ∞(G) with f∗(t) = O(s) in the sense of (i),
and Λ : F → TfY is a morphism, as in §B.4.8, and θ : F → f∗(G) is a
vector bundle morphism, as in §B.2.1. We write θ = f∗(dt) ◦ Λ + O(s)
if whenever ∇ is a connection on G we have θ = f∗(∇t) ◦ Λ + O(s) in
the sense of (i), where f∗(∇t) : TfY → f∗(G) is as in §B.4.9, so that
f∗(∇t) ◦ Λ : F → f∗(G) is a vector bundle morphism as in §B.4.8.

Note that there exists a connection ∇ on G by Proposition B.14(a). If
∇,∇′ are two such connections then ∇′ = ∇+ Γ for Γ : G → G ⊗OY T ∗Y
an OY -module morphism, by Proposition B.14(b). Then

f∗(∇′t) ◦ Λ = f∗(∇t) ◦ Λ + [f−1
top(Γ) ◦ Λ] · f∗(t),

where f−1
top(Γ) ◦ Λ ∈ Γ∞(F ∗ ⊗ f∗(G)⊗ f∗(G∗)) is a natural section. Thus

f∗(∇′t) ◦ Λ = f∗(∇t) ◦ Λ + O(s), since t = O(s). Hence the condition
θ = f∗(∇t) ◦ Λ +O(s) is independent of the choice of connection ∇ on G.

Note also that the ‘f∗(dt)’ in θ = f∗(dt)◦Λ+O(s) is just notation, intended
to suggest this independence of the choice of ∇.

(vii) Let f, g : X → Y with g = f +O(s) be as in (iii), and Λ : E → TfY be a
morphism in the sense of §B.4.8. We write g = f + Λ ◦ s+O(s2) if there
exists a commutative diagram in Ṁan

Y

U
k1

//
� _

i
��

V

v

OO

� _

j
��

U
k2

oo
� _

i
��

X

f
77

0E // E X,

g
gg

soo

(B.29)
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with s−1
top(0) ⊆ Utop, where morphisms i, j are open submanifolds, and mor-

phisms k1, k2 exist by Assumption 3.2(d), and Λ|U = θV,v as a morphism
E|U → TfY |U , in the notation of §B.4.8.

Theorem 3.17, proved in §B.9, gives a long list of properties of the O(s),
O(s2) notation that we need for our theories of (m- and µ-)Kuranishi spaces.

Remark B.37. (a) When Ṁan = Man, and to some extent for general Ṁan,
we can interpret the O(s) and O(s2) conditions in Definition B.36 in terms of
C∞-algebraic geometry, as in §B.1.2 and [56, 65]. As in Proposition B.5 we can
make X ∈ Ṁan into a C∞-scheme X = (Xtop,OX). Given a vector bundle
E → X and s ∈ Γ∞(E), we have closed C∞-subschemes S1 ⊆ S2 ⊆ X, where
S1 is defined by s = 0, and S2 by s⊗ s = 0.

The rough idea is that an equation on X holds up to O(s) if when translated
into C∞-scheme language, the restriction of the equation to S1 ⊆ X holds
exactly, and it holds up to O(s2) if its restriction to S2 ⊆ X holds exactly. For
example, t2 = t1 +O(s) ⇔ t2|S1 = t1|S1 and t2 = t1 +O(s2) ⇔ t2|S2 = t1|S2 in

Definition B.36(i), for general Ṁan.
Also morphisms f, g : X → Y in Ṁan translate to C∞-scheme morphisms

f, g : X → Y . Then g = f + O(s) implies that g|S1
= f |S1

for general Ṁan,

and when Ṁan = Man the two are equivalent. If we think of the O(s), O(s2)
conditions as restriction to S1, S2 then much of Theorem 3.17 becomes obvious.

(b) In Definition B.36(i), we could instead have defined t2 = t1 + O(s) in the
style of (ii), using a diagram (B.28). One can prove using Assumption 3.5 that
this would give an equivalent notion of when t2 = t1 +O(s), and we implicitly
show this in the second part of the proof of Theorem 3.17(f) in §B.9.

(c) We explain Definition B.36(vii). We have Λ ◦ s ∈ Γ(TfY ), where as in §B.4.1
elements of Γ(TfY ) are defined using infinitesimal deformations of f amongst

morphisms X → Y in Ṁan. The equation ‘g = f + Λ ◦ s+O(s2)’ means that
g = f +O(s), so that g is a small deformation of f near s−1

top(0) ⊆ Xtop, and to

leading order near s−1
top(0) is the infinitesimal deformation Λ ◦ s of f .

We could have generalized Definition B.36(vii) to define ‘g = f + v +O(s2)’
for any v ∈ Γ(TfY ) with v = O(s). It is not important that v = Λ ◦ s for some
Λ : E → TfY , but we will only use the case v = Λ ◦ s.

B.6 Discrete properties of morphisms in Ṁan

Here is a condition for classes of morphisms in Ṁan to lift nicely to classes of
(1-)morphisms in mK̇ur,µK̇ur, K̇ur in Chapters 4–6.

Definition B.38. Let P be a property of morphisms in Ṁan, so that for any
morphism f : X → Y in Ṁan, either f is P , or f is not P . For example, if
Ṁan is Manc from §2.1, then P could be interior, or b-normal.

We call P a discrete property of morphisms in Ṁan if:
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(i) All diffeomorphisms f : X → Y in Ṁan are P .

(ii) All open submanifolds i : U ↪→ X in Ṁan are P .

(iii) If f : X → Y and g : Y → Z in Ṁan are P then g ◦ f : X → Z is P .

(iv) For a morphism f : X → Y in Ṁan to be P is a local property on X, in
the sense that if we can cover X by open submanifolds i : U ↪→ X such
that f ◦ i : U → Y is P , then f is P .

Some notation: if f : X → Y in Ṁan and S ⊆ Xtop then we say that
f is P near S if there exists an open submanifold i : U ↪→ X such that
S ⊆ Utop ⊆ Xtop and f ◦ i : U → Y is P . This is a well behaved notion as
P is a local property, e.g. f is P if and only if f is P near each x ∈ Xtop.

(v) All morphisms in Man ⊆ Ṁan are P .

(vi) Suppose f : X ×R→ Y is a morphism in Ṁan. If f is P near Xtop×{0}
in Xtop × R, then f is P .

(vii) Suppose E → X is a vector bundle in Ṁan, and s ∈ Γ∞(E), so that
s−1

top(0) ⊆ Xtop, and f, g : X → Y are morphisms in Ṁan with g = f+O(s)

in the sense of Definition B.36(iii). Then f is P near s−1
top(0) if and only if

g is P near s−1
top(0).

(viii) Suppose we are given a diagram in Ṁan:

U ′
� �

i′
//

f ′

**

U �
�

i
//

f

**

X

V ′ ��
j′ //

g′

44

V ��
j //

g

44

Y,

where i, i′, j, j′ are open submanifolds in Ṁan, and f ◦ i′ = j ◦f ′ : U ′ → Y ,
g◦j′ = i◦g′ : V ′ → X, and we are given points x ∈ U ′top ⊆ Utop ⊆ Xtop and
y ∈ V ′top ⊆ Vtop ⊆ Ytop such that ftop(x) = y and gtop(y) = x. Suppose too
that there are vector bundles E → U ′ and F → V ′ and sections s ∈ Γ∞(E),
t ∈ Γ∞(F ) with s(x) = t(y) = 0, such that g ◦ f ′ = i ◦ i′ +O(s) on U ′ and
f ◦ g′ = j ◦ j′ +O(t) on V ′ in the sense of Definition B.36(iii). Then f, f ′

are P near x, and g, g′ are P near y.

Example B.39. (a) When Ṁan is Manc from §2.1, the following properties
of morphisms in Manc are discrete: interior, b-normal, strongly smooth, simple.

(b) When Ṁan is Mangc from §2.4.1, the following properties of morphisms in
Mangc are discrete: interior, b-normal, simple.

(c) When Ṁan is Manac or Manc,ac from §2.4.2, the following properties of
morphisms in Ṁan are discrete: interior, b-normal, strongly a-smooth, simple.
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B.7 Comparing different categories Ṁan

To each category Ṁan satisfying Assumptions 3.1–3.7, in Chapters 4–6 we will
associate (2-)categories mK̇ur,µK̇ur, K̇ur of (m- and µ-)Kuranishi spaces. As
in §3.2 there are many examples of such Ṁan, such as Ṁan = Man or Manc,
and many functors between them, such as the inclusion Man ↪→Manc.

Here is an important condition on functors between such categories Ṁan:

Condition B.40. Let Ṁan, M̈an satisfy Assumptions 3.1–3.7, and F M̈an
Ṁan

:

Ṁan→ M̈an be a functor in the commutative diagram

Ṁan

F M̈an
Ṁan��

FTop

Ṁan

--Man

⊂ 11

⊂ --
Top,

M̈an FTop

M̈an

11 (B.30)

where the functors FTop

Ṁan
, FTop

M̈an
are as in Assumption 3.2, and the inclusions

Man ↪→ Ṁan, M̈an as in Assumption 3.4. We require F M̈an
Ṁan

to take products,

disjoint unions, and open submanifolds in Ṁan to products, disjoint unions, and
open submanifolds in M̈an, and to preserve dimensions.

Note that F M̈an
Ṁan

must be faithful (injective on morphisms), as FTop

Ṁan
is.

Figure 3.1 on page I-47 gives a diagram of functors from Chapter 2 satisfying
Condition B.40. In Chapters 4–6, when Condition B.40 holds, we will define
natural (2)-functors

FmK̈ur
mK̇ur

: mK̇ur −→mK̈ur, FµK̈ur

µK̇ur
: µK̇ur −→ µK̈ur, F K̈ur

K̇ur
: K̇ur −→ K̈ur

between the (2-)categories mK̇ur,µK̇ur, K̇ur and mK̈ur,µK̈ur, K̈ur associ-
ated to Ṁan and M̈an. To do this, we must relate the material of §B.1–§B.5
on differential geometry and the O(s), O(s2) notation in Ṁan and in M̈an.

Definition B.41. Let Condition B.40 hold. We will use accents ‘ ˙ ’ and ‘ ¨ ’ to
denote objects associated to Ṁan and M̈an, respectively. When something is
independent of Ṁan or M̈an we omit the accent, so for instance we write Xtop

for the underlying topological space of Ẋ ∈Man.

Let Ẋ be an object in Ṁan, and set Ẍ = F M̈an
Ṁan

(Ẋ). Then all the material

of §B.1–§B.5 on Ẋ in Ṁan maps to corresponding material on Ẍ in M̈an in

a straightforward way. Where relevant we use F M̈an
Ṁan

to denote the functors

transforming structures on Ẋ to structures on Ẍ. In more detail:

(a) The commutative R-algebra C∞(Ẋ) in §B.1.1 is the set of morphisms

a : Ẋ → R in Ṁan. Applying F M̈an
Ṁan

gives a map

F M̈an
Ṁan

: C∞(Ẋ)→ C∞(Ẍ). (B.31)
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This is injective, as F M̈an
Ṁan

is faithful, and an R-algebra morphism, and a
C∞-ring morphism for the C∞-ring structures in §B.1.2.

(b) Section B.1.3 defines the structure sheaves OẊ on Xtop for Ẋ ∈ Ṁan, and

OẌ on Xtop for Ẍ ∈ M̈an. There is a natural morphism F M̈an
Ṁan

: OẊ →
OẌ of sheaves of R-algebras or C∞-rings on Xtop, such that if i : U̇ ↪→ Ẋ

is an open submanifold in Ṁan then

F M̈an
Ṁan

(Utop) : OẊ(Utop) = C∞(U̇) −→ OẌ(Utop) = C∞(Ü)

is the morphism (B.31) for U̇ .

(c) In §B.1.3–§B.2.2, F M̈an
Ṁan

takes partitions of unity, vector bundles, sections,

and OẊ -modules of sections of vector bundles in Ṁan, to their analogues
in M̈an, in the obvious way.

(d) In §B.3.1, we define the cotangent sheaf T ∗Ẋ as the sheafification of PT ∗Ẋ,
where if i : U̇ ↪→ Ẋ is open in Ṁan then PT ∗Ẋ(Utop) = ΩC∞(U̇).

Since F M̈an
Ṁan

: C∞(U̇)→ C∞(Ü) in (a) is a C∞-ring morphism, Definition
B.10 gives a module morphism

PF M̈an
Ṁan

(Utop) :=Ω
F M̈an

Ṁan

: PT ∗Ẋ(Utop)=ΩC∞(U̇) → PT ∗Ẍ(Utop)=ΩC∞(Ü).

These define a morphism PF M̈an
Ṁan

: PT ∗Ẋ → PT ∗Ẍ of presheaves on

Xtop. Sheafifying gives a morphism F M̈an
Ṁan

: T ∗Ẋ → T ∗Ẍ of sheaves on

Xtop, which is a module morphism under F M̈an
Ṁan

: OẊ → OẌ from (b).

(e) Let Ė → Ẋ be a vector bundle, and Ė the OẊ -module of sections of Ė
from §B.2.2, and ∇̇ : Ė → Ė ⊗OẊ T ∗Ẋ be a connection on Ė, as in §B.3.2.
Then one can show there is a unique connection ∇̈ on Ë such that the
following diagram of morphisms on sheaves on Xtop commutes:

Ė
F M̈an

Ṁan
from (c)

��

∇̇
// Ė ⊗OẊ T ∗Ẋ

F M̈an
Ṁan

from (b),(c),(d) ��
Ë

∇̈ // Ë ⊗OẌ T ∗Ẍ.

(f) Let ḟ : Ẋ → Ẏ be a morphism in Ṁan, and f̈ : Ẍ → Ÿ its image in M̈an

under F M̈an
Ṁan

. Then §B.4.1–§B.4.2 define a C∞(Ẋ)-module Γ(Tḟ Ẏ ). There
is an obvious map

F M̈an
Ṁan

: Γ(Tḟ Ẏ ) −→ Γ(Tf̈ Ÿ ), F M̈an
Ṁan

: [U̇ , u̇] 7−→ [Ü , ü]. (B.32)

To see this is well defined, note that in Definition B.16, if (U̇ , u̇) ≈ (U̇ ′, u̇′)
in Ṁan then (Ü , ü) ≈ (Ü ′, ü′) in M̈an, as j, V̇ , v̇ in Ṁan satisfying (B.6)
map to ̈, V̈ , v̈ in M̈an satisfying (B.6), so [Ü , ü] in (B.32) depends only
on the equivalence class [U̇ , u̇].

Equation (B.32) is a module morphism under (B.31).
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(g) Section B.4.5 defines the sheaves ofOẊ -modules T Ẋ and Tḟ Ẏ . Using (B.32)

we define sheaf morphisms F M̈an
Ṁan

: T Ẋ → T Ẍ and F M̈an
Ṁan

: Tḟ Ẏ → Tf̈ Ÿ
which are module morphisms over F M̈an

Ṁan
: OẊ → OẌ from (b).

(h) In §B.4.6–§B.4.9, F M̈an
Ṁan

is compatible with the definitions and operations
in the obvious way.

(i) In §B.5, F M̈an
Ṁan

maps all the O(ṡ) and O(ṡ2) conditions in Ṁan from

Definition B.36(i)–(vii) to the corresponding O(s̈) and O(s̈2) conditions in
M̈an, in the obvious way.

Remark B.42. The definitions of §B.1–§B.5 have been carefully designed so

that material for Ṁan all transforms functorially to M̈an under F M̈an
Ṁan

without
problems, as in Definition B.41. It would have been easy, and more obvious, to
write down definitions which lack this functorial behaviour.

Here is an example of this. Let ḟ : Ẋ → Ẏ be a morphism in Ṁan. In
§B.4.3 we discussed relative (C∞-)derivations ∆̇ : C∞(Ẏ )→ C∞(Ẋ). These are
a natural notion of vector field over ḟ , and we could have defined Γ(Tḟ Ẏ ) in
§B.4.1 as a C∞(Ẋ)-module of such derivations. However, in the diagram

C∞(Ẏ )
∆̇

//

F M̈an
Ṁan��

C∞(Ẋ)

F M̈an
Ṁan ��

C∞(Ÿ )
∆̈ // C∞(Ẍ),

it is unclear whether a relative (C∞-)derivation ∆̈ must exist, or if it is unique.

So defining Tḟ Ẏ using (C∞-)derivations would not be functorial under F M̈an
Ṁan

.

For an inclusion of subcategories Ṁan ⊆ M̈an we can say more:

Proposition B.43. Suppose F M̈an
Ṁan

: Ṁan ↪→ M̈an is an inclusion of subcate-
gories satisfying Condition B.40, and either:

(a) All objects of M̈an are objects of Ṁan, and all morphisms f : X → R in
M̈an are morphisms in Ṁan, and for a morphism f : X → Y in M̈an to
lie in Ṁan is a discrete condition, as in Definition B.38; or

(b) Ṁan is a full subcategory of M̈an closed under isomorphisms in M̈an.

Then all the material of §B.1–§B.5 for Ṁan is exactly the same if com-

puted in Ṁan or M̈an, and all the morphisms F M̈an
Ṁan

in Definition B.41 are the

identity maps. For example, if f : X → Y lies in Ṁan ⊆ M̈an then the relative
tangent sheaves (TfY )Ṁan, (TfY )M̈an on Xtop from §B.4 computed in Ṁan and

M̈an are not just canonically isomorphic, but actually the same sheaf.

Proof. Suppose we start with an object X in Ṁan, or a morphism f : X → Y
in Ṁan, and then construct differential-geometric data in §B.1–§B.5 such as
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C∞(X),OX , T ∗X, T X or TfY , either in Ṁan, or in M̈an. The point of the

proof is that when we do this in M̈an, the constructions only ever involve objects
and morphisms in Ṁan ⊆ M̈an, so that the data C∞(X),OX , . . . , TfY are the

same when computed in Ṁan or M̈an.
Mostly this is straightforward to check, and we leave this to the reader.

For example, for X ∈ Ṁan the C∞-rings C∞(X)Ṁan, C
∞(X)M̈an are the sets

of morphisms f : X → R in Ṁan and in M̈an. In case (a) these coincide
by assumption, and in case (b) they coincide as Ṁan ⊆ M̈an is full. Then
OX , T ∗X are the same in Ṁan and M̈an as they are constructed from C∞-rings
C∞(U) for open i : U ↪→ X, which are the same in Ṁan and M̈an.

We explain one subtle point concerning TfY . Let f : X → Y be a morphism

in Ṁan, and consider the definition of Γ(TfY ) in Definition B.16 in Ṁan

and M̈an. In case (a), for a diagram (B.5) in M̈an, it is clear that the data
X,Y,X×R, f, i, (idX , 0) lie in Ṁan ⊆ M̈an, but it is not obvious that u : U → Y
lies in Ṁan. However, we can prove this using Definition B.38.

Taking E = U ×R→ U to be the trivial line bundle and defining s ∈ Γ∞(E)
by s(x, t) = ((x, t), t), we see from (B.5) that u = f ◦ πX +O(s) in morphisms
U → Y in M̈an. But f ◦ πX lies in Ṁan, so u lies in Ṁan near Xtop × {0}
in Utop by Definition B.38(vii). Then using Definition B.38(i)–(iv),(vi) and the
assumption in Definition B.16 that Utop can be written as a union of subsets
X ′top × (−ε, ε) in Xtop × R for X ′top ⊆ Xtop open and ε > 0, we can deduce

that u : U → Y lies in Ṁan, so (B.5) is a diagram in Ṁan ⊆ M̈an. Similarly,
for j : V ↪→ X × R2, v : V → Y in M̈an satisfying (B.6) used to define the
equivalence relation ≈ on pairs (U, u), making V smaller we can suppose that
Vtop = X ′top × (−ε, ε)2 for x̃ ∈ X ′top, and then V, j, v lie in Ṁan ⊆ M̈an, so
that Γ(TfY )Ṁan = Γ(TfY )M̈an.

B.8 Differential geometry in Ṁanc

Suppose Ṁanc satisfies Assumption 3.22 in §3.4. Then Ṁanc satisfies Assump-
tions 3.1–3.7, so §B.1–§B.5 applies in Ṁanc. Section B.8.1 introduces new
material for the corners case, such as morphisms I�X : Π−1

k (T X) → T Ck(X)
analogous to those in (2.13). Section B.8.2 compares differential geometry in
two categories Ṁanc, M̈anc, as in §B.7.

B.8.1 Action of the corner functor on tangent sheaves

In §4.6, for an m-Kuranishi space with corners X in mK̇urc we define the
boundary ∂X and k-corners Ck(∂X), and we define the corner 2-functor C :
mK̇urc → mK̇̌urc. To do this, for a manifold with corners X in Ṁanc with
k-corner morphism Πk : Ck(X) → X as in Assumption 3.22(d), we must lift
differential geometry on X to differential geometry on Ck(X).

Much of this follows by applying pullbacks in §B.1–§B.5 to Πk. But we need
one extra structure relating (relative) tangent sheaves on X and Ck(X).
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Definition B.44. Suppose f : X → Y is a morphism in Ṁanc, so that
C(f) : C(X) → C(Y ) and Π : C(X) → X are morphisms in Ṁ̌anc. Then
§B.4.5 defines the relative tangent sheaves TfY on Xtop and TC(f)C(Y ) on

C(X)top =
∐
k>0 Ck(X)top, extending from Ṁanc to Ṁ̌anc in the obvious way.

We will define a morphism of sheaves on C(X)top:

I�f : Π−1
top(TfY ) −→ TC(f)C(Y ), (B.33)

which is a module morphism under Π] : Π−1
top(OX)→ OC(X) from §B.1.3, where

Π−1
top(TfY ), TC(f)C(Y ) are modules over Π−1

top(OX),OC(X) respectively, as in
§B.4.5. This does not follow from our previous constructions for C(f),Π, it is a
new feature for manifolds with corners Ṁanc.

First we define an R-linear map

Γ(If,�) : Γ(TfY ) −→ Γ(TC(f)C(Y )). (B.34)

Recall from §B.4.1 that Γ(TfY ) is the set of ≈-equivalence classes [U, u] of

diagrams (B.5) in Ṁanc, where ≈ is defined using j : V ↪→ X × R2, v : V → Y
in Ṁanc satisfying (B.6). We have canonical isomorphisms

C(X × R) ∼= C(X)× C(R) = C(X)× C0(R) ∼= C(X)× R, (B.35)

where the first step comes from Assumption 3.22(h), the second from Assumption
3.22(e), and the third from Π0 : C0(R) → R an isomorphism in Assumption
3.22(d). Applying the corner functor C : Ṁanc → Ṁ̌anc to (B.5) and making
the identification (B.35) gives a commutative diagram in Ṁ̌anc

C(X)
(idC(X),0)

ss
C(l)
��

C(f)

++
C(X)× R C(U)? _

C(i)oo C(u) // C(Y ),

which is a diagram (B.5) for C(f). Hence [C(U), C(u)] ∈ Γ(TC(f)C(Y )). Simi-

larly, applying C to j : V ↪→ X × R2, v : V → Y satisfying (B.6) shows that if
(U, u) ≈ (U ′, u′) then (C(U), C(u)) ≈ (C(U ′), C(u′)), so the ≈-equivalence class
[C(U), C(u)] depends only on [U, u]. Define Γ(If,�) in (B.34) by

Γ(If,�) : [U, u] 7−→ [C(U), C(u)].

Now Γ(TfY ) is a module over C∞(X) as in §B.4.2, and Γ(TC(f)C(Y )) a mod-
ule over C∞(C(X)), and §B.1.1 defines a morphism Π∗ : C∞(X)→ C∞(C(X)).
If a ∈ C∞(X), so that a : X → R is a morphism in Ṁanc, then Assumption
3.22(g) implies that

Π∗(a) = a ◦Π = Π0 ◦ C(a) : C(X) −→ R in Ṁ̌anc,

where Π0 : C0(R)
∼=−→R is used in the identification (B.35). Using this we can

easily show that (B.34) is a module morphism under Π∗ : C∞(X)→ C∞(C(X)).

269



Suppose f : X → Y and g : Y → Z are morphisms in Ṁanc. Then §B.4.4
defines morphisms Γ(T g) : Γ(TfY ) → Γ(Tg◦fZ) and f∗ : Γ(TgZ) → Γ(Tg◦fZ),
and similarly for Γ(T Π),Γ(T C(g)) and Π∗, C(f)∗. By applying the corner
functor C to the definitions we see that the following diagrams commute:

Γ(TfY )
Γ(If,�)

//

Π∗

��

Γ(TC(f)C(Y ))

Γ(T Π)
��

Γ(Tf◦ΠY ) Γ(TΠ◦C(f)Y ),

(B.36)

Γ(TfY )
Γ(If,�)

//

Γ(T g)
��

Γ(TC(f)C(Y ))

Γ(T C(g))
��

Γ(Tg◦fZ)
Γ(Ig◦f,�) // Γ(TC(g◦f)C(Z)) = Γ(TC(g)◦C(f)C(Z)),

(B.37)

Γ(TgZ)
Γ(Ig,�)

//

f∗

��

Γ(TC(g)C(Z))

C(f)∗

��
Γ(Tg◦fZ)

Γ(Ig◦f,�) // Γ(TC(g◦f)C(Z)) = Γ(TC(g)◦C(f)C(Z)).

(B.38)

Let i : X ′ ↪→ X be an open submanifold in Ṁanc, so that C(i) : C(X ′) ↪→
C(X) is an open submanifold in Ṁ̌anc by Assumption 3.22(j). Define

If,�(X
′
top) = Γ(If◦i,�) : (TfY )(X ′top) = Γ(Tf◦iY )

−→ (Πtop)∗(TC(f)C(Y ))(X ′top) = TC(f)C(Y )(Π−1
top(X ′top))

= TC(f)C(Y )(C(X ′)top) = Γ(TC(f)◦C(i)C(Y )) = Γ(TC(f◦i)C(Y )).

We claim that these If,�(X
′
top) : (TfY )(X ′top)→ (Πtop)∗(TC(f)C(Y ))(X ′top) for

all open X ′top⊆Xtop define a sheaf morphism

If,� : TfY −→ (Πtop)∗(TC(f)C(Y )) (B.39)

on Xtop, as in §A.5. To prove this let X ′′top ⊆ X ′top ⊆ Xtop be open, corresponding
to open submanifolds i : X ′ ↪→ X, j : X ′′ ↪→ X ′, and use (B.38) with j, f ◦ i in
place of f, g to show that If,�(X

′′
top) ◦ ρX′topX

′′
top

= ρX′topX
′′
top
◦ If,�(X ′top). Here

TfY, (Πtop)∗(TC(f)C(Y )) are modules over OX , (Πtop)∗(OC(X)). As (B.34) is a
module morphism under Π∗ : C∞(X)→ C∞(C(X)), we see that If,� in (B.39)
is a module morphism under Π] : OX → (Πtop)∗(OC(X)) from §B.1.3.

Write I�f in (B.33) for the sheaf morphism on C(X)top adjoint to If,� under
(A.18). Since If,� is a module morphism under Π] : OX → (Πtop)∗(OC(X)), and

Π] : Π−1
top(OX)→ OC(X) is adjoint to Π] under (A.18) as in §B.1.3, we see that

I�f is a module morphism under Π].
If f is simple, so that C(f) : C(X)→ C(Y ) maps Ck(X)→ Ck(Y ) for k > 0

by Assumption 3.22(i), then I�f restricts to I�f : Π−1
k,top(TfY )→ TCk(f)Ck(Y ) for

each k. When f = idX , which is simple, with T X = TidXX, we write I�idX as I�X :

Π−1
k,top(T X)→ T Ck(X). This is an analogue of I�X : Π∗k(bTX)→ bT (Ck(X)) in

(2.13) for ordinary manifolds with corners Manc.
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Suppose f : X → Y and g : Y → Z are morphisms in Ṁanc. Then by using
(B.36)–(B.38) for all open subsets X ′top ⊆ Xtop, Y ′top ⊆ Ytop, we can show that
the following diagrams of sheaves on Xtop and Ytop commute:

TfY
If,�

//

Π[
��

(Πtop)∗(TC(f)C(Y ))

(Πtop)∗(T Π)
��

(Πtop)∗(Tf◦ΠY ) (Πtop)∗(TΠ◦C(f)Y ),

TfY
If,�

//

T g
��

(Πtop)∗(TC(f)C(Y ))

T C(g)
��

Tg◦fZ
Ig◦f,� // (Πtop)∗(TC(g◦f)C(Z))=(Πtop)∗(TC(g)◦C(f)C(Z)),

TgZ
Ig,�

//

f[

��

(Πtop)∗(TC(g)C(Z))

(Πtop)∗(C(f)[) ��

(ftop)∗(Tg◦fZ)
(ftop)∗(Ig◦f,�) // (ftop)∗ ◦ (Πtop)∗(TC(g◦f)C(Z)) =

(Πtop)∗ ◦ (ftop)∗(TC(g)◦C(f)C(Z)),

where f[, T g are as in §B.4.6. Then using the adjoint property of If,�, f[ and
I�f , f

[ we deduce that the following diagrams of sheaves on C(X)top commute:

Π−1
top(TfY )

I�f

//

Π[

��

TC(f)C(Y )

T Π
��

Tf◦ΠY TΠ◦C(f)Y

(B.40)

Π−1
top(TfY )

I�f

//

Π−1
top(T g)
��

TC(f)C(Y )

T C(g)
��

Π−1
top(Tg◦fZ)

I�g◦f // TC(g◦f)C(Z) = TC(g)◦C(f)C(Z),

(B.41)

Π−1
top ◦ f−1

top(TgZ) =

C(f)−1
top ◦Π−1

top(TgZ) C(f)−1
top(I�g )

//

Π−1
top(f[)
��

C(f)−1
top(TC(g)C(Z))

C(f)[

��
Π−1

top(Tg◦fZ)
I�g◦f // TC(g◦f)C(Z) = TC(g)◦C(f)C(Z).

(B.42)

We use these I�f to pull back morphisms E → TfY by Π : C(X)→ X.

Definition B.45. Let f : X → Y be a morphism in Ṁanc, and E → X be
a vector bundle on X, and θ : E → TfY be a morphism on X in the sense
of §B.4.8, so that θ : E → TfY is an OX -module morphism, where E is the
OX -module of sections of E as in §B.2.2.
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Then we have a morphism C(f) : C(X)→ C(Y ) in Ṁ̌anc, and pulling back
by Π : C(X) → X gives a vector bundle Π∗(E) → C(X). Define a morphism
Π�(θ) : Π∗(E)→ TC(f)C(Y ) on C(X) by the commutative diagram

Π∗(E)

Π�(θ)
��

Π−1
top(E)⊗Π−1

top(OX) OC(X)

Π−1
top(θ)⊗idOC(X)

��

TC(f)C(Y )

TC(f)C(Y )⊗OC(X)
OC(X) Π−1

top(TfY )⊗Π−1
top(OX) OC(X),

I�f⊗idOC(X)oo

(B.43)

where Π∗(E) is the OC(X)-module of sections of Π∗(E)→ C(X), and the bottom

morphism in (B.43) is formed using the morphism Π] : Π−1(OX)→ OC(X) from

§B.1.3, and is well defined as I�f is a module morphism over Π].
In Definition B.32, given a diagram (B.22) involving v : V → Y for open

V ↪→ E with 0E,top(Xtop) ⊆ Vtop ⊆ Etop, we defined a morphism θV,v : E →
TfY , and Proposition B.33 showed that every morphism θ : E → TfY is of
the form θ = θV,v for some diagram (B.22). We can use this to interpret

Π�(θ): applying C : Ṁanc → Ṁ̌anc to (B.22) gives a diagram (B.22) for
C(f) : C(X)→ C(Y ) and Π∗(E)→ C(X) in place of f,E. Hence θC(V ),C(v) is
a morphism Π∗(E)→ TC(f)C(Y ), and it is easy to see that

Π�(θV,v) = θC(V ),C(v). (B.44)

We think of Π�(θ) as a kind of pullback of θ by Π : C(X)→ X.
We write the restriction Π�(θ)|Ck(X) for k = 0, 1, . . . as Π�k(θ). Thus if

f : X → Y is simple, so that C(f) maps Ck(X)→ Ck(Y ) by Assumption 3.22(i),
we have morphisms Π�k(θ) : Π∗k(E)→ TCk(f)Ck(Y ) for k = 0, 1, . . . .

Example B.46. Take Ṁanc = Manc, and let f : X → Y be an interior map
in Manc, and E → X be a vector bundle. Then TfY is the sheaf of sections
of f∗(bTY ) → X, as in Example B.26(b),(c), so morphisms θ : E → TfY
correspond to vector bundle morphisms θ̃ : E → f∗(bTY ) on X. Then Π�(θ)
corresponds to the composition of vector bundle morphisms on C(X):

Π∗(E)
Π∗(θ̃) // Π∗◦f∗(bTY )=C(f)∗◦Π∗(bTY )

C(f)∗(I�Y ) // C(f)∗(bTC(Y )),

where I�Y : Π∗(bTY )→ bTC(Y ) is as in (2.13).

Here are some properties of the morphisms Π�(θ):

Theorem B.47. (a) Let f : X → Y be a morphism in Ṁanc, and E → X be
a vector bundle, and θ : E → TfY be a morphism, in the sense of §B.4.8. Then
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the following diagram of sheaves on C(X)top commutes:

Π∗(E)
Π�(θ)

//

Π∗(θ)
��

TC(f)C(Y )

T Π ��
Tf◦ΠY TΠ◦C(f)Y,

where T Π and Π∗(θ) are defined in §B.4.6 and §B.4.9.

(b) Let f : X → Y be a morphism in Ṁanc, D,E → X be vector bundles,
λ : D → E a vector bundle morphism, and θ : E → TfY a morphism. Then

Π�(θ ◦ λ) = Π�(θ) ◦Π∗(λ) : Π∗(D) −→ TC(f)C(Y ).

(c) Let f : X → Y, g : Y → Z be morphisms in Ṁanc, and E → X be a vector
bundle, and θ : E → TfY be a morphism. Then the following diagram of sheaves
on C(X)top commutes:

Π∗(E)
Π�(θ)

//

Π�(T g◦θ)
��

TC(f)C(Y )

T C(g)
��

TC(g◦f)C(Z) TC(g)◦C(f)C(Z).

(d) Let f : X → Y, g : Y → Z be morphisms in Ṁanc, and F → Y be a vector
bundle, and φ : F → TgZ be a morphism. Then

C(f)∗(Π�(φ)) = Π�(f∗(φ)) : C(f)∗ ◦Π∗(F ) = Π∗ ◦ f∗(F )

−→ TC(g)◦C(f)C(Z) = TC(g◦f)C(Z).

Proof. Part (a) can be proved by combining equations (B.26), (B.40) and (B.43).
Part (b) follows from the commutative diagram

Π∗(D)

Π∗(λ)��
Π�(θ◦λ)

��

Π−1
top(D)⊗Π−1

top(OX) OC(X)

Π−1
top(λ)⊗idOC(X) ��

Π−1
top(θ◦λ)

⊗idOC(X)

��

Π∗(E)

Π�(θ)��

Π−1
top(E)⊗Π−1

top(OX) OC(X)

Π−1
top(θ)⊗idOC(X)

��
TC(f)C(Y )

TC(f)C(Y )⊗OC(X)
OC(X)

Π−1
top(TfY )

⊗Π−1
top(OX)OC(X),

I�f⊗idOC(X)oo

which combines equation (B.43) for θ and for θ ◦ λ.
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Part (c) follows from the commutative diagram

Π∗(E)

Π�(θ)

��
Π�(T g◦θ)

��

Π−1
top(E)⊗Π−1

top(OX) OC(X)

Π−1
top(θ)⊗idOC(X)

��
Π−1

top(T g◦θ)
⊗idOC(X)

��

TC(f)C(Y )⊗OC(X)
OC(X)

T C(g)

��

Π−1
top(TfY )
⊗Π−1

top(OX)OC(X)

I�f⊗idOC(X)oo

Π−1
top(T g)⊗idOC(X) ��

TC(g◦f)C(Z)⊗OC(X)
OC(X)

Π−1
top(Tg◦fZ)
⊗Π−1

top(OX)OC(X),

I�g◦f⊗idOC(X)oo

which combines (B.43) for θ and T g ◦ θ, and (B.41) in the bottom square.
Part (d) follows from the commutative diagram

Π∗ ◦ f∗(F)

Π�(φ)

��

C(f)∗(Π�(φ))
=Π�(f∗(φ))

��

Π−1
top ◦ f−1

top(F)⊗Π−1
top◦f

−1
top(OY ) OC(X)

Π−1
top◦f

−1
top(φ)⊗idOC(X)

��
Π−1

top(f∗(φ))

⊗idOC(X)

��

C(f)−1
top(TC(g)C(Z))

⊗C(f)−1
top(OC(Y ))

OC(X)

C(f)[⊗idOC(X)
��

Π−1
top ◦ f−1

top(TgZ)
⊗Π−1

top◦f
−1
top(OY )OC(X)

C(f)−1
top(I�g )

⊗idOC(X)oo

Π−1
top(f[)⊗idOC(X) ��

TC(g◦f)C(Z)
⊗OC(X)

OC(X)

Π−1
top(Tg◦fZ)

⊗Π−1
top(OX)OC(X),

I�g◦f⊗idOC(X)oo

which combines (B.43) for φ and f∗(φ), and (B.26) for f∗(φ) and C(f)∗(Π�(φ))
in the right and left triangles, and (B.42) in the bottom square.

We show that all the O(s) and O(s2) notation of Definition B.36(i)–(vii) on
X pulls back under Π : C(X)→ X to the corresponding O(Π(s)) and O(Π(s)2)
notation on C(X), using Π� to pull back morphisms Λ : E → TfY .

Theorem B.48. Let X be an object in Ṁanc, and E → X be a vector bundle,
and s ∈ Γ∞(E) be a section. Then:

(i) Suppose F → X is a vector bundle and t1, t2 ∈ Γ∞(F ) with t2 = t1 +O(s)
(or t2 = t1 + O(s2)) on X as in Definition B.36(i). Then Π∗(t2) =
Π∗(t1) +O(Π∗(s)) (or Π∗(t2) = Π∗(t1) +O(Π∗(s)2)) on C(X).

(ii) Suppose F → X is a vector bundle, f : X → Y is a morphism in Ṁanc,
and Λ1,Λ2 : F → TfY are morphisms with Λ2 = Λ1 +O(s) on X as in Def-
inition B.36(ii). Then Definition B.45 gives morphisms Π�(Λ1),Π�(Λ2) :
Π∗(F )→ TC(f)C(Y ) on C(X), which satisfy Π�(Λ2) = Π�(Λ1) +O(Π∗(s))
on C(X).
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(iii) Suppose f, g : X → Y are morphisms in Ṁanc with g = f +O(s) on X
as in Definition B.36(iii). Then C(g) = C(f) +O(Π∗(s)) on C(X).

(iv) Suppose f, g : X → Y with g = f + O(s) are in (iii), and F → X,
G → Y are vector bundles, and θ1 : F → f∗(G), θ2 : F → g∗(G) are
morphisms with θ2 = θ1 + O(s) on X as in Definition B.36(iv). Then
Π∗(θ2) = Π∗(θ1) +O(Π∗(s)) on C(X).

(v) Suppose f, g : X → Y with g = f + O(s) are in (iii), and F → X
is a vector bundle, and Λ1 : F → TfY, Λ2 : F → TgY are morphisms
with Λ2 = Λ1 + O(s) on X as in Definition B.36(v). Then C(g) =
C(f) +O(Π∗(s)) on C(X) by (iii), and Definition B.45 gives morphisms
Π�(Λ1) : Π∗(F ) → TC(f)C(Y ), Π�(Λ2) : Π∗(F ) → TC(g)C(Y ), which
satisfy Π�(Λ2) = Π�(Λ1) +O(Π∗(s)) on C(X).

(vi) Suppose f : X → Y is a morphism in Ṁanc, and F → X, G → Y are
vector bundles, and t ∈ Γ∞(G) with f∗(t) = O(s), and Λ : F → TfY
is a morphism, and θ : F → f∗(G) is a vector bundle morphism with
θ = f∗(dt) ◦ Λ + O(s) on X as in Definition B.36(vi). Then Π∗(θ) =
C(f)∗(dΠ∗(t)) ◦Π�(Λ) +O(Π∗(s)) on C(X).

(vii) Suppose f, g : X → Y with g = f +O(s) are in (iii), and Λ : E → TfY is
a morphism with g = f + Λ ◦ s+O(s2) on X as in Definition B.36(vii).
Then C(g) = C(f) + Π�(Λ) ◦Π∗(s) +O(Π∗(s)2) on C(X).

Proof. Part (i) is immediate on applying Π∗ to Definition B.36(i).
For (ii), Definition B.36(ii) gives a diagram (B.28) with s−1

top(0) ∈ Utop and
M : π∗(F )|V → Tf◦πY with k∗1(M) = Λ1|U and k∗2(M) = Λ2|U . Applying the
corner functor C to (B.28) gives a diagram (B.28) for Π∗(F ) and C(f) : C(X)→
C(Y ), with Π∗(s)−1

top(0) ⊆ C(U)top. We have

Π�(M) : C(π)∗ ◦Π∗(F )|C(V ) −→ TC(f)◦C(π)C(Y ),

and k∗1(M) = Λ1|U , k∗2(M) = Λ2|U and Theorem B.47(d) imply that

C(k1)∗ ◦Π�(M) = Π�(Λ1)|C(U) and C(k2)∗ ◦Π�(M) = Π�(Λ2)|C(U).

Thus Definition B.36(ii) implies that Π�(Λ2) = Π�(Λ1) +O(Π∗(s)).
Parts (iii),(iv) are immediate on applying the corner functor C to Definition

B.36(iii),(iv). Part (v) follows by a very similar argument to (ii).
For (vi), choose a connection ∇ on G→ Y , so that θ = f∗(∇t) ◦Λ +O(s) as
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in Definition B.36(i),(vi). Consider the diagram of sheaves on C(X):

TC(f)C(Y )

T Π

��

C(f)∗(∇ΠΠ∗(t))

%%
Π∗(F ) =
Π−1

top(F )
⊗Π−1

top(OX)OC(X)

Π�(Λ)

22

Π∗(Λ) //

Π−1
top(Λ)⊗idOC(X) **

TΠ◦C(f)Y =
Tf◦ΠY
⊗OC(X)

OC(X)

(f◦Π)∗(∇t) //
(f ◦Π)∗(G) =
Π−1

top(f∗(G))
⊗Π−1

top(OX)OC(X)

Π−1
top(TfY )⊗Π−1

top(OX) OC(X).
Π−1

top(f∗(∇t))⊗idOC(X)

99

Π[⊗idOC(X)

OO

(B.45)

Here the top left triangle commutes by Theorem B.47(a), and the bottom left
by (B.26). We can show using the ideas of §B.3–§B.4 that there is a natural
pullback connection ∇Π = Π∗(∇) on Π∗(G) → C(Y ) such that the top right
triangle of (B.45) commutes, for any t ∈ Γ∞(G).

We can prove from the definition of µf in §B.4.7 that the following commutes,
as Π : C(X)→ X, f : X → Y are morphisms in Ṁ̌anc:

Π−1
top(TfY )×Π−1

top ◦ f−1
top(T ∗Y )

Π−1
top(µf )

//

Π[×id��

Π−1
top(OX)

Π] ��
Tf◦ΠY × (f ◦Π)−1

top(T ∗Y )
µf◦Π // OC(X).

(B.46)

Then comparing (B.27) for (f ◦Π)∗(∇t) with the pullback of (B.27) for f∗(∇t)
by Π−1

top, and using (B.46), we find the bottom right triangle in (B.45) commutes.
Therefore (B.45) commutes, so that

C(f)∗(∇ΠΠ∗(t)) ◦Π�(Λ) = Π−1
top(f∗(∇t))⊗ idOC(X)

◦Π−1
top(Λ)⊗ idOC(X)

= Π∗(f∗(∇t) ◦ Λ).

Since θ = f∗(∇t) ◦ Λ + O(s) we have Π∗(θ) = Π∗(f∗(∇t) ◦ Λ) + O(Π∗(s)) by
part (i), so Π∗(θ) = C(f)∗(∇ΠΠ∗(t)) ◦Π�(Λ) +O(Π∗(s)), proving part (vi).

For (vii), Definition B.36(vii) gives a diagram (B.29) with s−1
top(0) ⊆ Utop and

Λ|U = θV,v. Applying the corner functor C to (B.29) gives a diagram (B.29) for
C(f), C(g) : C(X)→ C(Y ), with Π∗(s)−1

top(0) ⊆ C(U)top, and (B.44) yields

Π�(Λ)|C(U) = Π�(Λ|U ) = Π�(θV,v) = θC(V ),C(v).

Thus Definition B.36(vii) gives C(g) = C(f) + Π�(Λ) ◦Π∗(s) +O(Π∗(s)2).

B.8.2 Comparing different categories Ṁanc

Condition B.40 in §B.7 gave a way to compare two categories Ṁan, M̈an
satisfying Assumptions 3.1–3.7. Here is the corners analogue. Figure 3.2 on page
I-53 gives a diagram of functors from Chapter 2 satisfying Condition B.49.
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Condition B.49. Let Ṁanc, M̈anc satisfy Assumption 3.22, and F M̈anc

Ṁanc
:

Ṁanc → M̈anc be a functor in the commutative diagram, as in (B.30):

Ṁanc

F M̈anc

Ṁanc��

FTop

Ṁanc

--Man

⊂ 11

⊂ --
Top.

M̈anc FTop

M̈anc

11

We also require:

(i) F M̈anc

Ṁanc
should take products, disjoint unions, open submanifolds, and

simple maps in Ṁanc to products, disjoint unions, open submanifolds,
and simple maps in M̈anc, and preserve dimensions.

(ii) There are canonical isomorphisms F M̈anc

Ṁanc
(Ck(X)) ∼= Ck(F M̈anc

Ṁanc
(X)) for

all X in Ṁanc and k > 0, so k = 1 gives F M̈anc

Ṁanc
(∂X) ∼= ∂(F M̈anc

Ṁanc
(X)).

These isomorphisms commute with the projections Π : Ck(X)→ X and
Ik,l : Ck(Cl(X)) → Ck+l(X) in Ṁanc and M̈anc, and induce a natural

isomorphism F M̌̈anc

Ṁ̌anc ◦ C ⇒ C ◦ F M̈anc

Ṁanc
of functors Ṁanc → M̌̈anc.

Remark B.50. Condition B.49 implies that F M̈anc

Ṁanc
: Ṁanc → M̈anc satisfies

Condition B.40. Thus §B.7 applies, so that all the material of §B.1–§B.5 in
Ṁanc maps functorially to its analogue in M̈anc.

Because F M̈anc

Ṁanc
is compatible with the corner functors for Ṁanc, M̈anc by

Condition B.49(ii), these functorial maps from geometry in Ṁanc to geometry
in M̈anc are also compatible with the material of §B.8.1. In more detail:

(a) Use the notation of Definition B.41, so that accents ‘ ˙ ’ and ‘ ¨ ’ denote
objects associated to Ṁanc and M̈anc, respectively.

Suppose ḟ : Ẋ → Ẏ is a morphism in Ṁanc, so that C(ḟ) : C(Ẋ) →
C(Ẏ ) and Π̇ : C(Ẋ) → Ẋ are morphisms in Ṁ̌anc. We have relative
tangent sheaves Tḟ Ẏ on Xtop and TC(ḟ)C(Ẏ ) on C(X)top, defined using

differential geometry in Ṁanc, and Definition B.44 defines a morphism
I�
ḟ

: Π−1
top(Tḟ Ẏ )→ TC(ḟ)C(Ẏ ) of sheaves on C(X)top.

Write f̈ : Ẍ → Ÿ for the image of ḟ : Ẋ → Ẏ in M̈anc. Then we
have sheaves Tf̈ Ẏ on Xtop and TC(f̈)C(Ÿ ) on C(X)top and a morphism

I�
f̈

: Π−1
top(Tf̈ Ÿ )→ TC(f̈)C(Ÿ ), defined using differential geometry in M̈anc.

Definition B.41(g) gives sheaf morphisms F M̈anc

Ṁanc
: Tḟ Ẏ → Tf̈ Ÿ and F M̈anc

Ṁanc
:

TC(ḟ)C(Ẏ ) → TC(f̈)C(Ÿ ). Applying F M̈anc

Ṁanc
throughout Definition B.44
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and using Condition B.49(ii), we see the following commutes:

Π−1
top(Tḟ Ẏ )

I�
ḟ

//

Π−1
top(F M̈anc

Ṁanc )
��

TC(ḟ)C(Ẏ )

F M̈anc

Ṁanc ��
Π−1

top(Tf̈ Ÿ )
I�
f̈ // TC(f̈)C(Ÿ ).

(b) In a similar way to (a), if ḟ : Ẋ → Ẏ is a morphism in Ṁanc, and Ė → Ẋ
is a vector bundle on Ẋ, and θ̇ : Ė → Tḟ Ẏ is a morphism, then the
following diagram of sheaves on C(X)top commutes:

Π̇∗(Ė)
Π̇�(θ̇)

//

F M̈anc

Ṁanc��

TC(ḟ)C(Ẏ )

F M̈anc

Ṁanc ��
Π̈∗(Ë)

Π̈�(θ̈) // TC(f̈)C(Ÿ ).

B.9 Proof of Theorem 3.17

We now prove Theorem 3.17(a)–(v). Though the theorem refers to the informal
Definition 3.15, which summarizes Definition B.36, we use the precise notions
from Definition B.36. Throughout this section, let X be an object in Ṁan, and
π : E → X be a vector bundle, and s ∈ Γ∞(E) be a section.

Proof of Theorem 3.17(a), parts (i),(vi)

Let F → X be a vector bundle, t1, t2 ∈ Γ∞(F ), and {Xa : a ∈ A} be a
family of open submanifolds in X with s−1

top(0) ⊆
⋃
a∈AXa,top ⊆ Xtop, with

t2|Xa = t1|Xa +O(s) on Xa for a ∈ A. We will show that t2 = t1 +O(s) on X.
Set X∞ = X \ s−1(0), so that {Xa : a ∈ A} q {X∞} is an open cover of

X. Choose a subordinate partition of unity {ηa : a ∈ A} q {η∞} on X, as
in §B.1.4. As t2|Xa = t1|Xa + O(s) there exists αa : E|Xa → F |Xa such that
t2|Xa = t1|Xa + αa ◦ s|Xa in Γ∞(F |Xa) for a ∈ A, by Definition B.36(i). Since
s 6= 0 on X∞ = X \ s−1(0) there exists ε ∈ Γ∞(E∗|X∞) with ε · (s|X∞) = 1.
Define α : E → F on X by α =

∑
a∈A ηa · αa + η∞ · (t2 − t1)⊗ ε. It is easy to

check that t2 = t1 + α ◦ s, so t2 = t1 +O(s) on X. Thus the ‘O(s)’ condition in
Definition B.36(i) is local on s−1

top(0) ⊆ Xtop, as we have to prove.
The same method shows the ‘O(s2)’ condition in Definition B.36(i) is local

on s−1
top(0). Also Definition B.36(vi) is local on s−1

top(0), as it is defined using (i).

Proof of Theorem 3.17(a), part (ii)

Let F → X be a vector bundle, f : X → Y be a morphism in Ṁan, and Λ1,Λ2 :
F → TfY be morphisms. Suppose {Xa : a ∈ A} is a family of open submanifolds
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in X with s−1
top(0) ⊆

⋃
a∈AXa,top ⊆ Xtop, with Λ2|Xa = Λ1|Xa +O(s) on Xa for

a ∈ A. We will show that Λ2 = Λ1 +O(s) on X.
As Λ2|Xa = Λ1|Xa +O(s), by Definition B.36(ii), for each a ∈ A there exists

a commutative diagram (B.28) in Ṁan, with s−1
top(0)∩Xa,top ⊆ Ua,top ⊆ Xa,top:

Ua
k1,a

//
� _

��

Va� _

��

Ua
k2,a

oo
� _

��
Xa w�

**

0E |Xa // E

π
��

XagG

tt

s|Xaoo

X,

(B.47)

where morphisms ‘↪→’ are open submanifolds, and there is a morphism Ma :
π∗(F )|Va → Tf◦πY |Va with k∗1,a(Ma) = Λ1|Ua and k∗2,a(Ma) = Λ2|Ua .

Let U ↪→ X and V ↪→ E be the open submanifolds with Utop =
⋃
a∈A Ua,top

and Vtop =
⋃
a∈A Va,top. Then s−1

top(0) ⊆ Utop, since s−1
top(0) ∩Xa,top ⊆ Ua,top ⊆

Utop for a ∈ A and s−1
top(0) ⊆

⋃
a∈AXa,top. By taking the union of (B.47)

for a ∈ A, we see that U, V fit into a commutative diagram (B.28), including
morphisms k1, k2 : U → V with ki|Ua = ki,a for i = 1, 2 and a ∈ A.

Now {Va : a ∈ A} is an open cover of V . Choose a subordinate partition of
unity {ηa : a ∈ A} on V . Define a morphism M : π∗(F )|V → Tf◦πY |V on V by
M =

∑
a∈A ηa ·Ma. Here ηa ·Ma is initially defined only on Va ⊆ V , but extends

smoothly by zero to all of V as supp ηa ⊆ Va. For i = 1, 2 we have

k∗i (M) = k∗i
( ∑
a∈A

ηa ·Ma

)
=
∑
a∈A

k∗i (ηa) · k∗i,a(Ma) =
∑
a∈A

k∗i (ηa) · Λi|Ua = Λi,

using k∗i,a(Ma) = Λi|Ua in the second step and
∑
a ηa = 1 in the third. Thus

(B.28) and M imply that Λ2 = Λ1 +O(s) on X, by Definition B.36(ii).

Proof of Theorem 3.17(a), parts (iii),(iv),(v),(vii)

Let f, g : X → Y be morphisms in Ṁan, and {Xa : a ∈ A} be a family of open
submanifolds in X with s−1

top(0) ⊆
⋃
a∈AXa,top, such that g|Xa = f |Xa + O(s)

on Xa for a ∈ A. We will show that g = f +O(s) on X.
By replacing each Xa by a subcover {Xab : b ∈ Ba} of Xa with E|Xab trivial,

we can suppose that E|Xa is trivial for all a ∈ A, and choose a trivialization
E|Xa ∼= Xa × Rr, where r = rankE.

Since g|Xa = f |Xa +O(s) on Xa, by Definition B.36(iii) there exist a commu-
tative diagram (B.47) and a morphism va : Va → Y in Ṁan with va ◦k1,a = f |Ua
and va ◦ k2,a = g|Ua in morphisms Ua → Y , for all a ∈ A.

The next part of the proof follows that of Propositions B.25 and B.33. Let
SA be the set of all finite, nonempty subsets B ⊆ A. For each B ∈ SA write
XB ↪→ X for the open submanifold with XB,top =

⋂
a∈B Xa,top. Let X ′ ↪→ X

be the open submanifold with X ′top =
⋃
a∈AXa,top.

As in the proof of Proposition B.33, using induction on |B| and Assump-
tion 3.7(a), for each B ∈ SA we choose an open submanifold kB : WB ↪→⊕

b∈B E|XB ∼= XB ×
∏
b∈B Rr and a morphism vB : WB → Y such that:
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(a) s−1
top(0)× {(0, . . . , 0)} ⊆WB,top for all B ∈ SA.

(b) For a ∈ A we have W{a} = Va ↪→ E|X′a = X ′{a} × Rr and v{a} = va.

(c) If x ∈ Xtop and tb ∈ R for b ∈ B with
∑
b∈B tb = 1 and (x, (tb ·

stop(x))b∈B) ∈WB,top then vB,top(x, (tb · stop(x))b∈B) = gtop(x).

(d) If C ( B lie in SA and (x, (ea)a∈C q (0)a∈B\C) ∈WB,top then (x, (ea)a∈C)
lies in WC,top with vC,top(x, (ea)a∈C) = vB,top(x, (ea)a∈C q (0)a∈B\C).

Here to prove part (c), which does not occur in the proof of Proposition B.33,
we use va ◦ k2,a = g|Ua for k2,a as in (B.47) in the first step when B = {a}, and
Assumption 3.7(b) in the inductive step.

Now apply Proposition B.7 to choose a partition of unity {ηa : a ∈ A} on X ′

subordinate to the open cover {Xa,top : a ∈ A}. Choose an open submanifold
j : V ↪→ E such that 0E,top(s−1

top(0)) ⊆ Vtop and if e ∈ Vtop ⊆ Etop with πtop(e) =

x ∈ Xtop and B =
{
a ∈ A : x ∈ supp ηa,top

}
then (x, (ηa,top(x)·e)a∈B) ∈WB,top.

By (a) above and local finiteness of {ηa : a ∈ A}, this holds for any small enough
open neighbourhood of 0E,top(s−1

top(0)) in E.
As in the proof of Proposition B.33, there is a unique morphism v : V → Y

in Ṁan such that for all e ∈ Vtop with πtop(e) = x ∈ Xtop and B =
{
a ∈ A :

x ∈ supp ηa,top

}
we have

vtop(e) = vB,top(x, (ηa,top(x) · e)a∈B). (B.48)

Let U ↪→ X be the open submanifold with Utop = 0−1
E,top(Vtop)∩s−1

top(Vtop). Then

s−1
top(0) ⊆ Utop, as 0E,top(s−1

top(0)) ⊆ Vtop. Then by Assumption 3.2(d) there are
morphisms k1, k2 making a commutative diagram (B.28). For x ∈ Utop with
B =

{
a ∈ A : x ∈ supp ηa,top

}
we have

(v ◦ k1)top(x) = vtop ◦ 0E,top(x) = vB,top(x, (ηa,top(x) · 0)a∈B)

= vB,top(x, (0)a∈B) = v{b},top(x, 0) = vb,top(0E,top(x)) = (f |U )top(x),

(v ◦ k2)top(x)=vtop ◦ stop(x)=vB,top(x, (ηa,top(x) · stop(x))a∈B)=(g|U )top(x),

where for both equations we use (B.28) and (B.48), for the first we pick b ∈ B
and use (b),(d) above with C = {b} and vb ◦ k1,b = f |Ub , and for the second we
use (c) above. As this holds for all x ∈ Utop we have v◦k1 = f |U and v◦k2 = g|U .
Thus g = f +O(s) on X by Definition B.36(iii). Hence the ‘O(s)’ condition in
Definition B.36(iii) is local on s−1

top(0) ⊆ Xtop.
We prove locality of parts (iv),(v),(vii) by extensions of the proof above. For

(iv),(v) we start with {Xa ↪→ X : a ∈ A} covering s−1
top(0) in X, a diagram (B.47)

and a morphism va : Va → Y in Ṁan with va ◦ k1,a = f |Ua and va ◦ k2,a = g|Ua
for all a ∈ A, as above, together with morphisms φa : π∗(F )|Va → v∗a(G)
with k∗i,a(φ) = θi|Ua for a ∈ A and i = 1, 2 in case (iv), and morphisms
Ma : π∗(F )|Va → TvaY with k∗i,a(Ma) = Λi|Ua for a ∈ A and i = 1, 2 in case (v).

Then we construct V, v, U, k1, k2 in a diagram (B.28) from the data Xa, Ua,
Va, va for a ∈ A by an inductive argument as above. At the same time we
construct a morphism φ : π∗(F )|V → v∗(G) with k∗i (φ) = θi|U for i = 1, 2 in case
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(iv), and a morphism M : π∗(F )|V → TvY with k∗i (M) = Λi|U for i = 1, 2 in case
(v). We do this by gluing together the φa (or the Ma) to make φ (or M) using
the partition of unity {ηa : a ∈ A}, in a very similar way to the construction of
v above. Therefore (iv),(v) are local on s−1

top(0) ⊆ Xtop.
To prove locality of (vii), given Λ : E → TfY and {Xa ↪→ X : a ∈ A} with

g|Xa = f |Xa +Λ◦s|Xa +O(s2) on Xa for a ∈ A, we follow the proof of (iii) above
constructing V, v, U with s−1

top(0) ⊆ Utop exactly, except that at the beginning
we choose va : Va → Y with Λ|Ua = θVa,va in the notation of §B.4.8, which is
possible by Definition B.36(vii). The last part of the proof of Proposition B.33
then shows that Λ|U = θV,v, so g = f+Λ◦s+O(s2) on X by Definition B.36(vii),
and (vii) is local on s−1

top(0) ⊆ Xtop.

Proof of Theorem 3.17(b)

We will need the following lemma:

Lemma B.51. In Definition B.36(iv),(v), the condition is independent of the
choice of diagram (B.28) and morphism v : V → Y satisfying (iii). That is, if
(iv),(v) hold for one choice of (B.28), v, then they hold for all possible choices.

Proof. Let Definition B.36(iv) hold for U, V, k1, k2 as in (B.28) with s−1
top(0) ⊆

Utop ⊆ Xtop and v : V → Y with v ◦ k1 = f |U , v ◦ k2 = g|U and φ : π∗(F )|V →
v∗(G) with k∗1(φ) = θ1|U and k∗2(φ) = θ2|U . Suppose that we are given an
alternative diagram (B.28) involving Ũ , Ṽ , k̃1, k̃2 with s−1

top(0) ⊆ Ũtop ⊆ Xtop

and a morphism ṽ : Ṽ → Y with ṽ ◦ k̃1 = f |Ũ , ṽ ◦ k̃2 = g|Ũ , as in (iii). We must
construct a morphism φ̃ : π∗(F )|Ṽ → ṽ∗(G) with k̃∗1(φ̃) = θ1|Ũ and k̃∗2(φ̃) = θ2|Ũ ,
so that (iv) also holds for the alternative choices (B.28) and ṽ.

If we can prove such φ̃ exist near any point e ∈ Ṽtop, then by taking an

open cover of Ṽ on which choices of φ̃ exist, and combining them with a
partition of unity, we see that such φ̃ exists globally on Ṽ . The conditions
on φ̃ are only nontrivial near points e = 0E,top(x′) = stop(x′) in Ṽtop for

x′ ∈ s−1
top(0) ⊆ Xtop. We restrict to the preimages U ′, V ′, Ṽ ′, . . . in U, V, Ṽ , . . . of

an open neighbourhood X ′ of x′ in X with E|X′ trivial, so that we may identify
E|X′ ∼= X ′ × Rn, and regard s|X′ as a morphism s′ : X ′ → Rn.

Then we have open V ′, Ṽ ′ ↪→ X ′ × Rn with s′−1
top (0) × {0} ⊆ V ′top, Ṽ

′
top and

morphisms v′ : V ′ → Y , ṽ′ : Ṽ ′ → Y with v′top(x, 0) = ftop(x), v′top(x, s′top(x)) =
gtop(x), ṽ′top(x, 0) = ftop(x) and ṽ′top(x, s′top(x)) = gtop(x), for all x ∈ X ′top

with the left hand sides defined. Assumption 3.7(b) now shows that there exist
open W ′ ↪→ X ′ × Rn × Rn with s′−1

top (0) × {(0, 0)} ⊆ W ′top and a morphism
w′ : W ′ → Y with w′top(x, z, 0) = v′top(x, z) and w′top(x, 0, z) = ṽ′top(x, z) and
w′top(x, t · stop(x), (1− t) · stop(x)) = gtop(x) for all x ∈ X ′top, z ∈ Rn and t ∈ R
for which both sides are defined.

We now choose a morphism ψ : π∗X′(F ) → w′∗(G) with ψ|(x,z,0) = φ|(x,z)

for all (x, z) ∈ V ′top with (x, z, 0) ∈ W ′top, and ψ|(x,t·stop(x),(1−t)·stop(x)) = θ2(x)
for all x ∈ Xtop and t ∈ R with (x, t · stop(x), (1 − t) · stop(x)) ∈ W ′top. These
two conditions are consistent at points (x, stop(x), 0) as k∗2(φ) = θ2|U . They

281



prescribe ψ on cleanly-intersecting submanifolds of W ′, so making W ′ smaller if
necessary, we can use Assumption 3.7(a) to show such ψ exists.

Let Ṽ ′′ ↪→ E|X′ ∼= X ′ × Rn be the open submanifold with Ṽ ′′top =
{

(x, z) :

(x, 0, z) ∈ W ′top and (x, z) ∈ Ṽ ′top

}
, and Ũ ′′ ↪→ X ′ the open submanifold with

Ũ ′′top =
{
x ∈ Ũ ′top : (x, 0) ∈ Ṽ ′′top and (x, s′top(x)) ∈ Ṽ ′′top

}
. Let l̃ : Ṽ ′′ → W ′

be the morphism with l̃(x, z) = (x, 0, z) from Assumption 3.2(d). Define φ̃′′ :
π∗(F )|Ṽ ′′ → ṽ|∗̃V ′′(G) by φ̃′′ = l̃∗(ψ). Then x′ ∈ Ũ ′′top and e = 0E,top(x′) ∈ Ṽ ′′top,

and k̃1|∗̃U ′′(φ̃′′) = θ1|Ũ ′′ and k̃2|∗̃U ′′(φ̃′′) = θ2|Ũ ′′ . Hence φ̃ satisfying the required
conditions exists near e in Ṽtop as required.

This proves the lemma for case (iv). The proof for (v) is similar, noting that
we can use Assumption 3.7(a) and Proposition B.33 to show that morphisms
M : π∗(F )|V → TvY have the required extension properties at the point in the
proof where we choose ψ.

It is now more-or-less immediate from the definitions that the conditions of
Definition B.36(i),(ii),(iv)–(vi) are C∞(X)-linear. Here for (iv),(v) we must fix
a diagram (B.28) and morphism v : V → Y satisfying (iii), and use these for all
the different O(s) conditions to be combined. This is possible by Lemma B.51.

For example, in (iv) suppose we have morphisms θ1, θ
′
1 : F → f∗(G) and

θ2, θ
′
2 : F → g∗(G) with θ2 = θ1 + O(s) and θ′2 = θ′1 + O(s). Fix (B.28) and

v : V → Y as above, so that (iv) gives φ, φ′ : π∗(F )|V → v∗(G) with k∗i (φ) = θi|U
and k∗i (φ′) = θ′i|U for i = 1, 2. Then for a, b ∈ C∞(X), considering

π|∗V (a) · φ+ π|∗V (b) · φ′ : π∗(F )|V −→ v∗(G)

we see that aθ2 + bθ′2 = aθ1 + bθ′1 +O(s), so (iv) is C∞(X)-linear.

Proof of Theorem 3.17(c)

It is clear from the definitions that the O(s), O(s2) conditions in Definition B.36(i)
are equivalence relations. For (ii),(iii), reflexivity Λ1 = Λ1 +O(s), f = f+O(s) is
easy (take U = X, V = E, M = 0, v = f ◦ π), and symmetry Λ2 = Λ1 +O(s) ⇒
Λ1 = Λ2 +O(s), g = f +O(s) ⇒ f = g+O(s) is also easy (apply the involution
of E mapping (x, e) 7→ (x, stop(x)− e) on points to V,M, v). It remains to prove
transitivity for (ii),(iii).

For (ii), let F → X be a vector bundle, f : X → Y a morphism, and
Λ1,Λ2,Λ3 : F → TfY morphisms with Λ2 = Λ1 + O(s) and Λ3 = Λ2 + O(s).
Then by Definition B.36(ii) there exist a diagram (B.28) including U, V, k1, k2 with
s−1

top(0) ⊆ Utop and a morphism M : π∗(F )|V → Tf◦πY |V with k∗1(M) = Λ1|U and

k∗2(M) = Λ2|U . Also, there exist (B.28) including Ũ , Ṽ , k̃1, k̃2 with s−1
top(0) ⊆ Ũtop

and a morphism M̃ : π∗(F )|Ṽ → Tf◦πY |Ṽ with k̃∗1(M̃) = Λ2|Ũ and k̃∗2(M̃) = Λ3|Ũ .

Then taking Ǔ = U ∩ Ũ , V̌ = V ∩ Ṽ , ǩi = ki|Ǔ = k̃i|Ǔ for i = 1, 2 and
M̌ = M|Ǔ + M̃|Ǔ − π∗(Λ2)|Ǔ we find that ǩ∗1(M̌) = Λ1|Ǔ and ǩ∗2(M̌) = Λ3|Ǔ , so
Λ3 = Λ2 +O(s), and (ii) is an equivalence relation.

For (iii), suppose f, g, h : X → Y are morphisms in Ṁan with g = f +O(s)
and h = g +O(s). Then there exist a diagram (B.28) including U, V, k1, k2 with
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s−1
top(0) ⊆ Utop, and a morphism v : V → Y with v ◦ k1 = f |U and v ◦ k2 = g|U .

Also, there exist a diagram (B.28) including Ũ , Ṽ , k̃1, k̃2 with s−1
top(0) ⊆ Ũtop and

a morphism ṽ : Ṽ → Y with ṽ ◦ k̃1 = g|Ũ and ṽ ◦ k̃2 = h|Ũ .
We will prove that h = f +O(s). By Theorem 3.17(a), proved above, it is

enough to show that h = f + O(s) near each point x′ of s−1
top(0) ⊆ Xtop. We

restrict to the preimages U ′, V ′, Ũ ′, Ṽ ′, . . . in U, V, Ũ , Ṽ , . . . of an open neighbour-
hood X ′ of x′ in X with E|X′ trivial, so that we may identify E|X′ ∼= X ′ × Rn,
and regard s|X′ as a morphism s′ : X ′ → Rn.

Then we have open V ′, Ṽ ′ ↪→ X ′ × Rn with s′−1
top (0) × {0} ⊆ V ′top, Ṽ

′
top and

morphisms v′ : V ′ → Y , ṽ′ : Ṽ ′ → Y with v′top(x, 0) = ftop(x), v′top(x, s′top(x)) =
gtop(x), ṽ′top(x, 0) = gtop(x) and ṽ′top(x, s′top(x)) = htop(x), for all x ∈ Xtop with
the left hand sides defined. Assumption 3.7(a) now gives openW ′ ↪→ X ′×Rn×Rn
with s′−1

top (0)× {(0, 0)} ⊆W ′top and a morphism w′ : W ′ → Y with

w′top(x, z, 0) = v′top(x, z + s′top(x)) and w′top(x, 0, z) = ṽ′top(x, z)

for all x ∈ Xtop, z ∈ Rn for which both sides are defined. Here the z + s′top(x)
means both equations prescribe w′top(x, 0, 0) = gtop(x), so they are consistent.

Now define V̌ ↪→ E|X′ ∼= X ′ × Rn to be the open submanifold with V̌top ={
(x, z) : (x, z − s′top(x), z) ∈ W ′top

}
, and Ǔ ↪→ X ′ to be the open submanifold

with Ǔtop =
{
x : (x, 0) ∈ V̌top and (x, s′top(x)) ∈ V̌top

}
, and ǩ1, ǩ2 : Ǔ → V̌ ,

v̌ : V̌ → Y to be the morphisms with ǩ1,top(x) = (x, 0), ǩ2,top(x) = (x, s′top(x))
and v̌top(x, z) = w′top(x, z − s′top(x), z). Then

v̌top ◦ ǩ1,top(x) = v̌top(x, 0) = w′top(x,−s′top(x), 0) = v′top(x, 0) = ftop(x),

v̌top ◦ ǩ2,top(x)= v̌top(x, s′top(x))=w′top(x, 0, s′top(x))= ṽ′top(x, s′top(x))=htop(x),

so v̌ ◦ ǩ1 = f |Ǔ and v̌ ◦ ǩ2 = h|Ǔ , and h = f +O(s) on X ′. Hence h = f +O(s)
on X by Theorem 3.17(a), and (iii) is an equivalence relation.

Proof of Theorem 3.17(d)

This is a straightforward combination of the proofs that (i),(ii) are equivalence
relations and (iii) is an equivalence relation in the proof of Theorem 3.17(c)
above, and we leave it as an exercise.

Proof of Theorem 3.17(e), non Γ-equivariant case

As in the theorem, let Xa ↪→ X for a ∈ A be open submanifolds with s−1
top(0) ⊆⋃

a∈AXa,top. Write Xab ↪→ X for the open submanifold with Xab,top = Xa,top ∩
Xb,top for a, b ∈ A. Suppose we are given morphisms fa : Xa → Y in Ṁan for
all a ∈ A with fa|Xab = fb|Xab +O(s) on Xab for all a, b ∈ A. We must construct
an open submanifold X ′ ↪→ X with s−1

top(0) ⊆ X ′top and a morphism g : X ′ → Y
such that g|X′∩Xa = fa|X′∩Xa +O(s) for all a ∈ A.
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Since fa|Xab = fb|Xab + O(s) on Xab, by Definition B.36(iii) there exists a
diagram (B.28) including Uab, Vab, k1,ab, k2,ab with s−1

top(0) ∩Xab,top ⊆ Uab,top ⊆
Xab,top and a morphism vab : Vab → Y with vab ◦ k1,ab = fa|Uab and vab ◦
k2,ab = fb|Uab , for all a, b ∈ A. Making Vab smaller, we can suppose that
0E,top(x) ∈ Vab,top if and only if x ∈ Uab,top, and stop(x) ∈ Vab,top if and only
if x ∈ Uab,top.

We will divide the proof into three steps:

(A) A = {1, 2}.
(B) A = N and {Xa : a ∈ N} is locally finite, i.e. each x in Xtop has an open

neighbourhood intersecting only finitely many Xa,top.

(C) The general case.

We use the notation above in each step.

Step (A). Suppose A = {1, 2}. Let Ẋ ↪→ X be the open submanifold with
Ẋtop = X1,top ∪ X2,top. Then s−1

top(0) ⊆
⋃
a∈{1,2}Xa,top = Ẋtop. Choose a

partition of unity {η1, η2} on Ẋ subordinate to the open cover {X1, X2}. Let
X ′ ↪→ Ẋ be the open submanifold with

X ′top = (X1,top \ supp η2)q (X2,top \ supp η1)

q
{
x ∈ supp η1 ∩ supp η2 : (x, η2,top(x) · stop(x)) ∈ V12,top

}
.

Then s−1
top(0) ⊆ X ′top. By Assumption 3.3(a) there is a unique g : X ′ → Y with

gtop(x) =


f1,top(x), x ∈ X1,top \ supp η2,

f2,top(x), x ∈ X2,top \ supp η1,

v12,top(x, η2,top(x) · stop(x)), x ∈ X ′top ∩ U12,top.

This holds as the three possibilities for g are smooth maps on open subsets
of X ′ covering X ′, which agree on the overlaps, since v12,top(x, 0) = f1,top(x)
and v12,top(x, stop(x)) = f2,top(x).

To show that g|X′∩X1 = f1|X′∩X1 +O(s), define V1 ↪→ E, U1 ↪→ X to be the
open submanifolds and v1 : V1 → Y , k1,1, k2,1 : U1 → V1 the morphisms with

V1,top = π−1
top(X1,top \ supp η2)

q
{

(x, e) ∈ π−1
top(supp η2 ∩ U12,top) : (x, η2,top(x) · e) ∈ V12,top

}
,

U1,top =
{
x ∈ X ′top ∩X1,top : (x, 0) ∈ V1,top and (x, stop(x)) ∈ V1,top

}
,

v1,top(x, e) =

{
f1,top(x), x ∈ X1,top \ supp η2,

v12,top(x, η2,top(x) · e), (x, e) ∈ V1,top ∩ π−1
top(U12,top),

k1,1,top(x) = (x, 0), and k2,1,top(x) = (x, stop(x)).

Again, the two possibilities for v1 are smooth on an open cover of V1, which
agree on the overlap, since v12,top(x, 0) = f1,top(x). Then U1, V1, k1,1, k2,1 form
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a diagram (B.28), and this and v1 show that g|X′∩X1 = f1|X′∩X1 + O(s) by
Definition B.36(iii). Similarly g|X′∩X2

= f2|X′∩X2
+O(s), proving step (A).

Step (B). Suppose A = N and {Xa : a ∈ N} is locally finite. By induction on
m = 1, 2, . . . we will construct an open submanifold X ′m ↪→ X and a morphism
gm : X ′m → Y satisfying:

(i) s−1
top(0) ∩

(⋃m
a=1Xa,top

)
= s−1

top(0) ∩X ′m,top.

(ii) gm|X′m∩Xa = fa|X′m∩Xa +O(s) for a = 1, . . . ,m.

(iii) If m > 1 and x ∈ Xtop\Xm,top then x ∈ X ′m−1,top if and only if x ∈ X ′m,top,
and then gm−1,top(x) = gm,top(x).

For the first step m = 1 we put X ′1 = X1 and g1 = f1, and (i)–(iii) hold
trivially. For the inductive step, suppose m > 1 and we have constructed
X ′1, g1, . . . , X

′
m, gm satisfying (i)–(iii). For each a = 1, . . . ,m we have

gm|X′m∩Xa∩Xm+1 = fa|X′m∩Xa∩Xm+1 +O(s)

= fm+1|X′m∩Xa∩Xm+1 +O(s),
(B.49)

using (ii) for gm in the first step, and fa|Xa(m+1)
= fm+1|Xa(m+1)

+ O(s) and
Theorem 3.17(c) in the second. Now (i) implies that

s−1
top(0) ∩ (X ′m ∩Xm+1)top ⊆

⋃m
a=1(X ′m ∩Xa ∩Xm+1)top.

Hence (B.49) and Theorem 3.17(a) imply that gm|X′m∩Xm+1
= fa|X′m∩Xm+1

+O(s)
on X ′m ∩Xm+1.

We now apply step (A) to combine gm : X ′m → Y and fm+1 : Xm+1 → Y .
This yields an open X ′m+1 ↪→ X and a morphism gm+1 : X ′m+1 → Y with

gm+1|X′m+1∩X′m = gm|X′m+1∩X′m +O(s), (B.50)

gm+1|X′m+1∩Xm+1
= fm+1|X′m+1∩Xm+1

+O(s). (B.51)

Parts (i),(iii) for X ′m+1, gm+1 are immediate from the construction. For (ii), the
case a = m+ 1 for gm+1 is (B.51). For a = 1, . . . ,m we have

gm+1|X′m+1∩X′m∩Xa = gm|X′m+1∩X′m∩Xa +O(s) = fa|X′m+1∩X′m∩Xa +O(s),

using (B.50), part (ii) for gm, and Theorem 3.17(c) (proved above). Part (i) gives

s−1
top(0) ∩ (X ′m+1 ∩X ′m ∩Xa)top = s−1

top(0) ∩ (X ′m+1 ∩Xa)top,

so Theorem 3.17(a) gives gm+1|X′m+1∩Xa = gm|X′m+1∩Xa +O(s), proving (ii) for

gm+1. This completes the inductive step, so by induction we can choose X ′m, gm
satisfying (i)–(iii) for all m = 1, 2, . . . .

We now claim that there are a unique open submanifold X ′ ↪→ X and
morphism g : X ′ → Y with the property that x ∈ Xtop lies in X ′top if and only if
x ∈ X ′m,top for all m� 0 sufficiently large, and then gtop(x) = gm,top(x) for all
m� 0 sufficiently large. To see this, write X ′top for the set of x ∈ Xtop satisfying
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this condition. Fix x̃ ∈ Xtop. Then local finiteness of {Xa : a ∈ N} means that
x̃ has an open neighbourhood U ↪→ X in X such that Utop ∩Xm,top = ∅ for all
m > N , for some N � 0.

Part (iii) implies that if m > N and x ∈ Utop then x ∈ X ′m,top if and only if
x ∈ X ′m+1,top. Thus Utop ∩X ′N,top = Utop ∩X ′N+1,top = Utop ∩X ′N+2,top = · · · ,
so that Utop ∩X ′top = Utop ∩X ′N,top, which is open. Hence we can cover Xtop

by open Utop ⊆ Xtop with Utop ∩X ′top open, so X ′top is open in Xtop, and the
open submanifold X ′ ↪→ X is well defined.

For x̃, U,N as above, part (iii) also gives gm,top(x) = gm+1,top(x) for any
x ∈ Utop ∩X ′top and m > N , so gN,top(x) = gN+1,top(x) = gN+2,top(x) = · · · .
Hence there is a unique map gtop : X ′top → Ytop with gtop(x) = gm,top(x) for all
m � 0 sufficiently large, where in U we have gtop|Utop∩X′top

= gN,top|Utop∩X′top
.

As gN |U∩X′ : U ∩X ′ → Y is a morphism in Ṁan, and we can cover X ′top by such
open (U ∩X ′)top, Assumption 3.3(a) implies that there is a unique morphism

g : X ′ → Y in Ṁan with the prescribed gtop.
Let a ∈ N. Then as above we can cover X ′ ∩ Xa by open U ↪→ X ′ ∩ Xa

such that Utop ⊆ X ′m,top and g|U = gm|U for m � 0, so that m > a. Then
g|U = gm|U = fa|U +O(s) by (ii), so Theorem 3.17(a) implies that g|X′∩Xa =
fa|X′∩Xa +O(s), as we want. This completes step (B).

Step (C). Now consider the general case, with {Xa ↪→ X : a ∈ A} any open
cover of X. Since Xtop is Hausdorff, locally compact, and second countable by
Assumption 3.2(b), it is also paracompact (i.e. every open cover has a locally
finite refinement), and Lindelöf (i.e. every open cover has a countable subcover).
So by paracompactness we can choose an open cover {X̂b ↪→ X : b ∈ B} of
X which is locally finite, such that for all b ∈ B there exists ab ∈ A with
X ′b,top ⊆ Xab,top ⊆ Xtop. And by the Lindelöf property we can choose a

countable subset C ⊆ B such that {X̂c ↪→ X : c ∈ C} is still an open cover of
X. Thus (adding extra empty X̂c if C is finite) we can take C = N.

For each c ∈ N set f̂c = fac |X̂c : X̂c → Y . Then for all c, d ∈ N we have

f̂c|X̂cd = f̂d|X̂cd + O(s) since fac |Xacad = fad |Xacad + O(s). Apply step (B) to

{X̂c ↪→ X : c ∈ N} and the f̂c : X̂c → Y . This gives an open submanifold
X ′ ↪→ X with s−1

top(0) ⊆ X ′top and a morphism g : X ′ → Y such that g|X′∩X̂c =

f̂c|X′∩X̂c +O(s) for all c ∈ N. Let a ∈ A and c ∈ N. Then

g|X′∩X̂c∩Xa = f̂c|X′∩X̂c∩Xa+O(s)=fac |X′∩X̂c∩Xa+O(s)=fa|X′∩X̂c∩Xa+O(s),

using fac |Xaca = fa|Xaca +O(s) and Theorem 3.17(c) (proved above). As this

holds for all c ∈ N and the X̂c, c ∈ N cover s−1
top(0), Theorem 3.17(a) implies that

g|X′∩Xa = fa|X′∩Xa +O(s), as we want. This proves the first part of Theorem
3.17(e), without Γ-invariance/equivariance.

Proof of Theorem 3.17(e), the Γ-equivariant case

For the second part, we must show that if the initial data X,Y , Xa ↪→ X,
fa : Xa → Y is invariant/equivariant under a finite group Γ, then we can choose
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X ′, g to be invariant/equivariant under Γ. To do this we must go through the
whole proof above checking that each step can be done Γ-equivariantly. Most
of this is easy or automatic – for example, when we choose the partition of
unity {η1, η2} in step (A), we can average η1, η2 over the Γ-action to make them
Γ-invariant. But there is one point that needs a nontrivial proof.

Suppose as above we have X,Y , open Xa ↪→ X for a ∈ A, and morphisms
fa : Xa → Y with fa|Xab = fb|Xab +O(s), and Γ acts on X,Y preserving the Xa,
and the fa are Γ-equivariant. Then by Definition B.36(iii) there exists a diagram
(B.28) including Uab, Vab, k1,ab, k2,ab with s−1

top(0) ∩Xab,top ⊆ Uab,top ⊆ Xab,top

and a morphism vab : Vab → Y with vab ◦ k1,ab = fa|Uab and vab ◦ k2,ab = fb|Uab ,
and these Uab, Vab, vab were used in the proof of step (A).

We can choose Uab ↪→ X and Vab ↪→ E to be Γ-invariant by replacing them
by
⋂
γ∈Γ γ

−1(Uab) and
⋂
γ∈Γ γ

−1(Vab), and then k1,ab, k2,ab are automatically
Γ-equivariant. However, vab : Vab → Y need not be Γ-equivariant.

We will show using Assumption 3.7(c) that given some choice of Uab, Vab, k1,ab,
k2,ab, vab that may not be Γ-invariant/equivariant, we can construct alternative
choices U ′ab, V

′
ab, k

′
1,ab, k

′
2,ab, v

′
ab which are Γ-invariant/equivariant.

First consider the case in which E|Xab is trivial, with a Γ-equivariant trivi-
alization E|Xab ∼= Xab × Rn, in which Γ acts linearly on the left on Rn. Write
(Rn)|Γ| as

⊕
γ∈Γ Rn, and elements of (Rn)|Γ| as (zγ)γ∈Γ for zγ ∈ Rn. Let Γ act

linearly on (Rn)|Γ|, such that δ ∈ Γ acts in the given way on each copy of Rn,
but also δ permutes the indexing set Γ by right multiplication, so that

δ : (zγ)γ∈Γ 7−→ (δ · zγδ)γ∈Γ,

which gives a left action of Γ on (Rn)|Γ|.
We will use Assumption 3.7(c) to choose a Γ-invariant open submanifold

Wab ↪→Xab×
⊕

γ∈Γ Rn and a Γ-equivariant morphism wab : Wab → Y such that

(i) (s−1
top(0) ∩Xab,top)× {(0)γ∈Γ} ⊆Wab,top.

(ii) if (x, z) ∈ Vab,top and δ ∈ Γ with
(
x, (δ · z)δ q (0)γ∈Γ\{δ}

)
∈Wab,top then

wab,top

(
x, (δ · z)δ q (0)γ∈Γ\{δ}

)
= δ · vab,top(x, z).

(iii) If x ∈ Xab,top and tγ ∈ R for γ ∈ Γ with
∑
γ∈Γ tγ = 1 and

(
x, (tγ ·

stop(x))γ∈Γ

)
∈Wab,top then wab,top

(
x, (tγ · stop(x))γ∈Γ

)
= fb,top(x).

In fact we have to apply Assumption 3.7(c) finitely many times to choose
wab,top

(
x, (zγ)γ∈B q (0)γ∈Γ\B

)
for all subsets ∅ 6= B ⊆ Γ, by induction on

increasing |B| = 1, 2, . . . , |Γ|, following the proof of Proposition B.25 closely.
When B = {δ} the values of wab,top are given by (ii). The condition that wab be
Γ-equivariant means that the values of wab,top for B ⊆ Γ determine the values
for Bδ for all δ ∈ Γ, so we choose values of wab,top for one set B in each Γ-orbit
of subsets B′ ⊆ Γ. The values of wab,top for B must be chosen equivariant
under StabΓ(B) = {δ ∈ γ : Bδ = B}, which is allowed by Assumption 3.7(c).
Condition (iii) above comes from Assumption 3.7(b).
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Now define V ′ab ↪→ E, U ′ab ↪→ X to be the open submanifolds and v′ab : V ′ab →
Y , k′1,ab, k

′
2,ab : U ′ab → V ′ab the morphisms defined on points by

V ′ab,top =
{

(x, z) ∈
(
E|Xab

)
top

:
(
x,
(

1
|Γ|z

)
γ∈Γ

)
∈Wab,top

}
U ′ab,top =

{
x ∈ Xab,top : (x, 0) ∈ V ′ab,top and (x, stop(x)) ∈ V ′ab,top

}
,

v′ab,top(x, z) = wab,top

(
x,
(

1
|Γ|z

)
γ∈Γ

)
,

k′1,ab,top(x) = (x, 0), and k′2,ab,top(x) = (x, stop(x)).

Then we have s−1
top(0) ∩Xab,top ⊆ U ′ab,top ⊆ Xab,top and v′ab ◦ k′1,ab = fa|U ′ab and

v′ab◦k′2,ab = fb|U ′ab , as required to show that fa|Xab = fb|Xab+O(s). Furthermore,
as Wab is Γ-invariant and wab is Γ-equivariant, we see that U ′ab, V

′
ab are Γ-invariant

and v′ab, k
′
1,ab, k

′
2,ab are Γ-equivariant, as we want.

Proof of Theorem 3.17(f)

Let f, g : X → Y be morphisms in Ṁan with g = f +O(s), and F → X, G→ Y
be vector bundles, and θ1 : F → f∗(G) be a morphism. We must show that
there exists a morphism θ2 : F → g∗(G) with θ2 = θ1 + O(s) as in Definition
B.36(iv), and that such θ2 are unique up to O(s) as in Definition B.36(i).

First suppose G→ Y is trivial, and choose a trivialization G ∼= Y ×Rk. Then
f∗(G) and g∗(G) have induced trivializations f∗(G) ∼= X × Rk ∼= g∗(G), giving
an isomorphism f∗(G) ∼= g∗(G). Let θ2 : F → g∗(G) be the morphism identified
with θ1 : F → f∗(G) by f∗(G) ∼= g∗(G). We claim that θ2 = θ1 +O(s). To see
this, let (B.28) and v : V → Y be as in Definition B.36(iii) for g = f +O(s), and
let φ : π∗(F )|V → v∗(G) be the morphism identified with π∗(θ1)|V : π∗(F )|V →
(f ◦ π)∗(G)|V by the isomorphisms v∗(G) ∼= V × Rk × (f ◦ π)∗(G)|V . Then
k∗1(φ) = θ1|U and k∗2(φ) = θ2|U , so θ2 = θ1 +O(s) by Definition B.36(iv).

Let x ∈ s−1
top(0) ⊆ Xtop, with ftop(x) = gtop(x) = y ∈ Ytop. Choose an open

neighbourhood Y y ↪→ Y of y in Y with G|Y y trivial. Let Xx ↪→ X be the
open submanifold with Xx

top = f−1
top(Y ytop) ∩ g−1

top(Y ytop), so that x ∈ Xx
top. Then

we have morphisms f |Xx , g|Xx : Xx → Y y with g|Xx = f |Xx + O(s), and we
have θ1|Xx : F |Xx → f |∗Xx(G) with G|Y y trivial. Hence from above there exists
θx2 : F |Xx → g|∗Xx(G) with θx2 = θ1|Xx + O(s). Let X∞ ↪→ X be the open
submanifold with X∞top = Xtop \ s−1

top(0). Set θ∞2 = 0 : F |X∞ → g|∗X∞(G). Then
θ∞2 = θ1|X∞ +O(s), as s 6= 0 on X∞.

Now {Xx : x ∈ s−1
top(0)}q{X∞} is an open cover of X. Choose a subordinate

partition of unity {ηx : x ∈ s−1
top(0)} q {η∞} as in §B.1.4. Define θ2 : F → g∗(G)

by θ2 =
∑
x∈s−1

top(0) η
x · θx2 + η∞ · θ∞. Then using locality and C∞(X)-linearity

in Theorem 3.17(a),(b) we see that θ2 = θ1 +O(s) on X, as we have to prove.
Now suppose we have morphisms θ2, θ̃2 : F → g∗(G) with θ2 = θ1 +O(s) and

θ̃2 = θ1 +O(s) as in Definition B.36(iv). We must show that θ̃2 = θ2 +O(s) as in
Definition B.36(i). By Theorem 3.17(a) it is enough to prove this locally near each
x ∈ s−1

top(0). So choose a small open neighbourhood X ′ of x. By Lemma B.51 we
can use the same diagram (B.28) involving U, V, k1, k1 and morphism v : V → Y
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for verifying the conditions θ2|X′ = θ1|X′ + O(s) and θ̃2|X′ = θ1|X′ + O(s).
Thus by Definition B.36(iv) there exist morphisms φ, φ̃ : π∗(F )|V → v∗(G) with
k∗1(φ) = k∗1(φ̃) = θ1|U , k∗2(φ) = θ2|U and k∗2(φ̃) = θ̃2|U .

Making X ′, U ′, V ′ smaller we can suppose E|X′ , F |X′ , f∗(G)|X′ , g∗(G)|X′ ,
v∗(G) are trivial, and choose isomorphisms E|X′ ∼= X ′ × Rn, F |X′ ∼= X ′ × Rr,
f∗(G)|X′ ∼= X ′ × Rs ∼= g∗(G)|X′ , v∗(G) ∼= V × Rs which are compatible with
k∗1(v∗(G)) = f∗(G)|U , k∗2(v∗(G)) = g∗(G)|U for U ⊆ X ′. Then we can interpret
s|X′ as a morphism s′ = (s′1, . . . , s

′
n) : X ′ → Rn in Ṁan, and θ1|X′ , θ2|X′ , θ̃2|X′

as θ′1, θ
′
2, θ̃
′
2 : X ′ → (Rr)∗ ⊗ Rs, and φ, φ̃ as φ′, φ̃′ : V → (Rr)∗ ⊗ Rs.

We then have V ↪→ E|X′ ∼= X ′ × Rn open, so writing points of Vtop as (x, z)
for x ∈ X ′top and z = (z1, . . . , zn) ∈ Rn, for all x ∈ Utop ⊆ X ′top we have

φ′top(x, 0) = θ′1,top(x), φ′top(x, stop(x)) = θ′2,top(x),

φ̃′top(x, 0) = θ′1,top(x), φ̃′top(x, stop(x)) = θ̃′2,top(x).
(B.52)

Applying Assumption 3.5 to φ̃′ − φ′ : V → (Rr)∗ ⊗ Rs, we see that there exist
morphisms g1, . . . , gn : V → (Rr)∗ ⊗ Rs with

φ̃′top(x, z)− φ′top(x, z) =
∑n
i=1 zi · gi,top(x, z). (B.53)

Define a vector bundle morphism α : E|U → F ∗|U ⊗ g∗(G)|U on points by

α|x : (e1, . . . , en) =
∑n
i=1 ei · gi,top(x, stop(x)),

for x ∈ Utop ⊆ X ′top and (e1, . . . , en) ∈ E|x ∼= Rn, using the chosen trivializations.

Then (B.52)–(B.53) imply that α ◦ s = θ̃2|U − θ2|U , so θ̃2|U = θ2|U +O(s) on U
as in Definition B.36(i). As x ∈ Utop and we can find such U for any x ∈ s−1

top(0),

Theorem 3.17(a) implies that θ̃2 = θ2 +O(s), as we have to prove.

Proof of Theorem 3.17(g)

Let f, g : X → Y be morphisms with g = f + O(s), and F → X be a vector
bundle, and Λ1 : F → TfY be a morphism. We want to construct a morphism
Λ2 : F → TgY with Λ2 = Λ1 +O(s) as in Definition B.36(v), and show that such
Λ2 are unique up to O(s) as in Definition B.36(ii).

As g = f + O(s), by Definition B.36(iii) there is a commutative diagram
(B.28) involving U, V, k1, k2 and a morphism v : V → Y with v ◦ k1 = f |U and
v ◦ k2 = g|U . By Proposition B.33 there exists a diagram (B.22)

X
0E

tt
l��

f

**F W? _
joo w // Y,

such that Λ1 = θW,w. Let x ∈ s−1
top(0) ⊆ Utop ⊆ Xtop, and choose an open

neighbourhood Xx ↪→ U of x in U such that E|Xx , F |Xx are trivial, and choose
trivializations E|Xx ∼= Xx × Rn, F |Xx ∼= Xx × Rr.
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We now use Assumption 3.7(a) with k = 2 to construct open Z ↪→ Xx ×
Rn × Rr with Xx

top × {(0, 0)} ⊆ Ztop and a morphism z : Z → Y such that
ztop(x′, e, 0) = vtop(x′, e) and ztop(x′, 0,f) = wtop(x′,f) for all x′ ∈ Xx

top,
e ∈ Rn and f ∈ Rr for which both sides are defined. (Here to get Rn ⊕ Rn
rather than Rn ⊕Rr, as in Assumption 3.7(a), we replace both n, r by max(n, r)

and add an extra trivial factor of R|n−r| to E|Xx or F |Xx .)
Let V ′ ↪→ V and U ′ ↪→ Xx be the open submanifolds and k′1, k

′
2 : U ′ → V ′

the morphisms with

V ′top =
{

(x′, e) : (x′, e, 0) ∈ Ztop, (x′, e) ∈ Vtop

}
,

U ′top =
{
x′ : (x′, 0) ∈ V ′top, (x′, stop(x′)) ∈ V ′top

}
,

k′1,top(x′) = (x′, 0), k′2,top(x′) = (x′, stop(x′)).

Then x ∈ U ′top. Define M : π∗(F )|V ′ → TvY |V ′ by M = θZ,z, in the notation
of Definition B.32. Then ztop(x′, 0,f) = wtop(x′,f) with Λ1 = θW,w and
k′1,top(x′) = (x′, 0) imply that k′∗1 (M) = Λ1|U ′ . Define Λ′2 : F |U ′ → TgY |U ′ by
Λ′2 = k′∗2 (M). Then Definition B.36(v) says that Λ′2 = Λ1|U ′ +O(s) on U ′.

This shows that we can construct Λ2 : F → TgY with Λ2 = Λ1 +O(s) locally
near each x in s−1

top(0). The proof can now be completed in a similar way to
part (f).

Proof of Theorem 3.17(h)

Let X,E, s, f, Y, F,G, t,Λ be as in Definition B.36(vi). By Proposition B.14(a)
we may choose a connection ∇ on G. Then θ = f∗(∇t) ◦ Λ : F → f∗(G) is a
vector bundle morphism as in §B.4.8, with θ = f∗(dt) ◦Λ +O(s), so such θ exist
as we want. Uniqueness of θ up to O(s) in the sense of Definition B.36(i) is
immediate from Definition B.36(vi) and Theorem 3.17(a).

Proof of Theorem 3.17(i)

Suppose f, g : X → Y are morphisms with g = f + O(s). Then by Definition
B.36(iii) there exists a diagram (B.28) involving U, V, k1, k2 with s−1

top(0) ⊆ Utop ⊆
Xtop and a morphism v : V → Y with v ◦ k1 = f |U and v ◦ k2 = g|U . Then
Definition B.32 gives θV,v : E|U → TfY |U with g = f + θV,v ◦ s + O(s2) on U .
Let W ↪→ X be the open submanifold with Wtop = Xtop \ s−1

top(0). Then {U,W}
is an open cover of X. Choose a subordinate partition of unity {ηU , ηW } as in
§B.1.4, and define Λ = ηU · θV,v : E → TfY . Then g = f + Λ ◦ s+O(s2) on X,
since near s−1

top(0) in Xtop we have Λ = θV,v with g = f + θV,v ◦ s+O(s2), and

the condition is local near s−1
top(0) by Theorem 3.17(a).

Proof of Theorem 3.17(j)

Let f, g : X → Y be morphisms in Ṁan with g = f +O(s), and Λ, Λ̃ : E → TfY
be morphisms with g = f+Λ◦s+O(s2) as in Definition B.36(vii) and Λ̃ = Λ+O(s)

290



as in Definition B.36(ii). We must prove that g = f + Λ̃◦ s+O(s2). By Theorem
3.17(a) it is enough to prove this near each x̌ in s−1(0) ⊆ X.

So fix x̌ ∈ s−1(0), and let X̌ be a small open neighbourhood of x in X on
which Ě = E|X̌ is trivial, and identify Ě ∼= X̌ × Rn. Write points of Ětop as
(x, z) for x ∈ X̌top and z ∈ Rn, and regard š = s|X̌ as a morphism š : X̌ → Rn.
By Definition B.36(vii) there is a commutative diagram

Y

U1

k1
1

//
� _

��

V 1

v1

OO

� _

��

U1

k1
2

oo
� _

��
X̌

f
44

idX̌×0 // Ě = X̌ × Rn X̌,

g
jj

idX̌×šoo

(B.54)

with š−1
top(0) ⊆ U1

top and Λ|U1 = θV 1,v1 , with morphisms ‘↪→’ open submanifolds.
By Definition B.36(ii) there is a commutative diagram

U2

k2
1

//
� _

��

V 2
� _

��

U2

k2
2

oo
� _

��
X̌

idX̌×0 // Ě = X̌ × Rn X̌,
idX̌×šoo

with š−1
top(0) ⊆ U2

top and a morphism M : π∗(Ě)|V 2 → Tf◦πY |V 2 with k2∗
1 (M) =

Λ|U2 and k2∗
2 (M) = Λ̃|U2 .

By Proposition B.33 there exists a diagram

V 2

0Ě
rr ��

f◦π◦j′

++π∗(Ě)|V 2 = V 2 × Rn W 1? _oo w1
// Y,

(B.55)

with M = θW 1,w1 . Define V 3, V 4 ↪→ Ě = X̌ × Rn to be the open submanifolds
and v3 : V 3 → Y , v4 : V 4 → Y the morphisms with

V 3
top =

{
(x, z) ∈ X̌top × Rn : (x, 0, z) ∈W 1

top

}
,

V 4
top =

{
(x, z) ∈ X̌top × Rn : (x, štop(x), z) ∈W 1

top

}
,

v3
top(x, z) = w1

top(x, 0, z), v4
top(x, z) = w1

top(x, štop(x), z).

(B.56)

Then k2∗
1 (M) = Λ|U2 and k2∗

2 (M) = Λ̃|U2 give Λ|U2 = θV 3,v3 and Λ̃|U2 = θV 4,v4 .
Let U3 ↪→ X̌ be the open submanifold with U3

top = U1
top ∩ U2

top. Then
θV 1,v1 |U3 = Λ|U3 = θV 3,v3 |U3 . Therefore, extending Definition B.16, and making
X̌ smaller if necessary, we can find an open submanifold W 2 ↪→ X̌ × Rn × Rn
with U3

top × {(0, 0)} ⊆W 2
top and a morphism w2 : W 2 → Y with

w2
top(x, z1, 0) = v1

top(x, z1), w2
top(x, 0, z2) = v3

top(x, z2),

and w2
top(x, z1,−z1) = ftop(x).

(B.57)
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When n = 1 the existence of W 2, w2 follows from θV 1,v1 |U3 = θV 3,v3 |U3 and
Definition B.16, where w2

top(x, z1,−z1) = ftop(x) in (B.57) corresponds to
vtop(x, s,−s) = ftop(x) in (B.6). For n > 1, we split θV 1,v1 |U3 , θV 3,v3 |U3 into n
components in Γ(TfY |U3), each of which admits an extension to W 2

i ↪→ X̌×R×R,
w2
i : W 2

i → Y as in (B.57) for i = 1, . . . , n, and then we use Assumption 3.7(a)
repeatedly to construct W 2, w2 in a similar way to the proof in Definition B.18
choosing wtop to satisfy (B.9).

Next we apply Assumption 3.7(a) with k = 3 to choose open Z ↪→ X̌ × (Rn)3

with š−1
top(0)× {(0, 0, 0)} ⊆ Ztop and a morphism z : Z → Y with

ztop(x, z1, z2, 0) = ftop(x), ztop(x, z1, 0, z3) = w1
top(x, z1, z3),

and ztop(x, 0, z2, z3) = w2
top(x, z2, z3 − z2).

(B.58)

Here pairs of equations in (B.58) give the same values on intersections

ztop(x, z1, 0, 0)=ftop(x), ztop(x, 0, z2)=ftop(x), ztop(x, 0, 0, z3)=v3
top(x, z3),

by (B.54)–(B.57), so Assumption 3.7(a) applies.
Define U4 ↪→ X̌, V 5 ↪→ X̌ × Rn, W 3 ↪→ X̌ × Rn × Rn to be the open

submanifolds and v5 : V 5 → Y , w3 : W 3 → Y the morphisms with

U4
top =

{
x ∈ X̌top : (x, stop(x), 0, 0) ∈ Ztop, (x, 0, stop(x), stop(x)) ∈ Ztop

}
,

V 5
top =

{
(x, z1) ∈ X̌top × Rn : (x, stop(x)− z1, z1, z1) ∈ Ztop

}
,

W 3
top =

{
(x, z1, z2) ∈ X̌top × Rn × Rn : (x, stop(x)− z1, z1, z1 + z2) ∈ Ztop

}
,

v5
top(x, z1) = ztop(x, stop(x)− z1, z1, z1),

w3
top(x, z1, z2) = ztop(x, stop(x)− z1, z1, z1 + z2). (B.59)

Then s−1
top(0) ⊆ U4

top. From (B.56), (B.58) and (B.59) we see that

w3
top(x, z1)=v5

top(x, z1), w3
top(x, 0, z2)=v4

top(x, z2), w3
top(x, z1,−z1)=ftop(x).

Hence combining Definitions B.16, B.32 shows that θV 5,v5 = θV 4,v4 |U4 . Now

v5
top(x, štop(x)) = ztop(x, 0, štop(x), štop(x)) = w2

top(x, štop(x), 0)

= v1
top(x, štop(x)) = gtop(x)

for x ∈ U4
top, by (B.54), (B.57), (B.58), and (B.59). Thus Definition B.36(vii) with

U4, V 5, v5 in (B.29) shows that g|U4 = f |U4 + θV 5,v5 ◦ s+O(s2). But from above

Λ̃|U2 = θV 4,v4 and θV 5,v5 = θV 4,v4 |U4 . Therefore g|U4 = f |U4 + Λ̃|U4 ◦ s+O(s2)
on U4. Since x̌ ∈ U4

top and this holds for all x̌ ∈ s−1(0), Theorem 3.17(a) implies

that g = f + Λ̃ ◦ s+O(s2) on X, proving part (j).

Proof of Theorem 3.17(k)

Let f, g : X → Y be morphisms in Ṁan with g = f +O(s), and Λ : E → TfY
be a morphism with g = f + Λ ◦ s+O(s2). Theorem 3.17(g) gives Λ̃ : F → TgY
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with Λ̃ = Λ +O(s) as in Definition B.36(v), where Λ̃ is unique up to O(s). We
must show that f = g + (−Λ̃) ◦ s+O(s2).

By Definition B.36(vii) there is a commutative diagram (B.29) involving
U, V, k1, k2, v, with s−1

top(0) ⊆ Utop and Λ|U = θV,v. Define V ′, V ′′ ↪→ E to be the
open submanifolds and v′ : V ′ → Y , v′′ : V ′′ → Y the morphisms with

V ′top =
{

(x, e) ∈ Etop : (x, stop(x) + e) ∈ Vtop

}
,

V ′′top =
{

(x, e) ∈ Etop : (x, stop(x)− e) ∈ Vtop

}
,

v′top(x, e) = vtop(x, stop(x) + e), v′′top(x, e) = vtop(x, stop(x)− e).
(B.60)

Then (B.29) implies that 0E,top(Utop) ⊆ V ′top, V
′′
top and v′top(x, 0) = v′′top(x, 0) =

gtop(x) for x ∈ Utop. Hence Definition B.32 defines morphisms

θV ′,v′ : E|U −→ TgY |U , θV ′′,v′′ : E|U −→ TgY |U .

Since (B.60) gives v′′top(x, e) = v′top(x,−e) for all (x, e) ∈ V ′′top we see from §B.4.2
that θV ′′,v′′ = −θV ′,v′ . For x ∈ Utop we have v′′top(x, stop(x)) = vtop(x, 0) =
ftop(x) by (B.29) and (B.60). Hence f |U = g|U + θV ′′,v′′ ◦ s + O(s2) on U by
Definition B.36(vii).

Writing π : V → X for the projection we have a vector bundle π∗(E) →
V . Write points of π∗(E) as (x, e1, e2) where πtop : π∗(E)top → Vtop maps
(x, e1, e2) 7→ (x, e1). Define W ↪→ π∗(E) to be the open submanifold and
w : W → Y the morphism with

Wtop =
{

(x, e1, e2) ∈ π∗(E)top : (x, e1 + e2) ∈ Vtop

}
,

wtop(x, e1, e2) = vtop(x, e1 + e2).

Since 0π∗(E),top(Vtop) ⊆Wtop with wtop(x, e1, 0) = vtop(x, e1) for (x, e1) ∈ Vtop,
Definition B.32 defines a morphism θW,w : π∗(E) −→ TvY . As k1(x) = (x, 0) and
wtop(x, 0, e) = vtop(x, e) we have k∗1(θW,w) = θV,v|U . Since k2(x) = (x, stop(x))
and wtop(x, stop(x), e) = v′top(x, e) we have k∗2(θW,w) = θV ′,v′ . Thus θV ′,v′ =
θV,v|U +O(s) by Definition B.36(ii).

We now have morphisms Λ|U , θV,v|U : E|U → TfY |U and Λ̃|U , θV ′,v′ : E|U →
TgY |U with Λ|U = θV,v|U and Λ̃|U = Λ|U + O(s), θV ′,v′ = θV,v|U + O(s) as
in Definition B.36(v). Thus uniqueness up to O(s) in Theorem 3.17(g) shows
that Λ̃|U = θV ′,v′ + O(s) as in Definition B.36(ii). Also θV ′′,v′′ = −θV ′,v′ , so

θV ′′,v′′ = −Λ̃|U +O(s), and f |U = g|U + θV ′′,v′′ ◦ s+O(s2). Therefore Theorem

3.17(j) shows that f |U = g|U +(−Λ̃|U )◦s+O(s2). Since s−1
top(0) ⊆ Utop, Theorem

3.17(a) now yields f = g + (−Λ̃) ◦ s+O(s2), as we have to prove.

Proof of Theorem 3.17(l)

Let f, g, h : X → Y be morphisms in Ṁan with g = f + O(s), h = g + O(s)
and Λ1 : E → TfY , Λ2 : E → TgY be morphisms with g = f + Λ1 ◦ s+ O(s2)

and h = g + Λ2 ◦ s + O(s2). Theorem 3.17(g) gives Λ̃2 : E → TfY with
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Λ̃2 = Λ2 + O(s) as in Definition B.36(v), unique up to O(s). We must show
that h = f + (Λ1 + Λ̃2) ◦ s+O(s2).

Suppose first that E → X is trivial, and identify E ∼= X × Rn. Write points
of Etop as (x, z) for x ∈ Xtop and z ∈ Rn, and regard s as a morphism X → Rn.
By Definition B.36(vii) there are commutative diagrams

Y

U1

k1
1

//
� _

��

V 1

v1

OO

� _

��

U1

k1
2

oo
� _

��
X

f
44

idX×0 // E = X × Rn X,

g
jj

idX×soo

(B.61)

Y

U2

k2
1

//
� _

��

V 2

v2

OO

� _

��

U2

k2
2

oo
� _

��
X

g
44

idX×0 // E = X × Rn X,

h
jj

idX×soo

(B.62)

with s−1
top(0) ⊆ U1

top, U
2
top and Λ1|U1 = θV 1,v1 , Λ2|U2 = θV 2,v2 .

Apply Assumption 3.7(a) with k = 2 to choose open W 1 ↪→ X × Rn × Rn
with s−1

top(0)× {(0, 0)} ⊆W 1
top and a morphism w1 : W 1 → Y with

w1
top(x, z1, 0) = v1

top(x, z1 + stop(x)), w1
top(x, 0, z2) = v2

top(x, z2). (B.63)

Both equations have w1
top(x, 0, 0) = gtop(x) by (B.61)–(B.62), so Assumption

3.7(a) applies. Define open submanifolds U3 ↪→ X, V 3, V 4, V 5 ↪→ X × Rn,
W 2 ↪→ X × Rn × Rn and morphisms v3 : V 3 → Y , v4 : V 4 → Y , v5 : V 5 → Y ,
w2 : W 2 → Y , k3

1, k
3
2 : U3 → V 5 with

U3
top =

{
x ∈ U1

top ∩ U2
top : (x, 0, 0), (x,−stop(x), 0), (x, 0, stop(x)) ∈W 1

top

}
V 3

top =
{

(x, z) ∈ Xtop × Rn : (x,−stop(x), z) ∈W 1
top

}
,

V 4
top =

{
(x, z) ∈ Xtop × Rn : (x, z − stop(x), z) ∈W 1

top

}
,

V 5
top =

{
(x, z) ∈ Xtop × Rn : (x, z − stop(x), 0) ∈W 1

top

}
,

W 2
top =

{
(x, z1, z2) ∈ Xtop × Rn × Rn : (x, z1 − stop(x), z2) ∈W 1

top

}
,

v3
top(x, z) = w1

top(x,−stop(x), z), v4
top(x, z) = w1

top(x, z − stop(x), z),

v5
top(x, z) = w1

top(x, z − stop(x), 0), w2
top(x, z1, z2) = w1

top(x, z1 − stop(x), z2),

k3
1,top(x) = (x, 0) and k3

2,top(x) = (x, stop(x)). (B.64)

Then (B.61)–(B.64) imply that

v3
top(x, 0) = v4

top(x, 0) = w2
top(x, 0, 0) = ftop(x), w2

top(x, z1, 0) = v1
top(x, z1),

w2
top(x, 0, z2) = v3

top(x, z2), w2
top(x, z1, z1) = v4

top(x, z1).
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The first equation shows there are morphisms θV 3,v3 , θV 4,v4 : E|U3 → TfY |U3 ,
and the last three equations and the definition of addition in Γ(TfY ) in §B.4.2
imply that θV 4,v4 = θV 1,v1 |U3 + θV 3,v3 . Also for x ∈ U3

top we have

v4
top(x, stop(x)) = w1

top(x, 0, stop(x)) = v2
top(x, stop(x)) = htop(x)

by (B.62)–(B.64). Thus h|U3 = f |U3 + θV 4,v4 ◦ s+O(s2) by Definition B.36(vii).
Consider W 2 as an open set in the vector bundle π : π∗(E) → E act-

ing on points by πtop : (x, z1, z2) 7→ (z, z1). Then we have a morphism
θW 2,w2 : π∗(E)|V 5 → Tv5Y . Since k3

1,top(x) = (x, 0) with w2
top(x, 0, z2) =

v3
top(x, z2) we have k3∗

1 (θW 2,w2) = θV 3,v3 |U3 , and as k3
2,top(x) = (x, stop(x)) with

w2(x, stop(x), z2) = v2
top(x, z2) we have k3∗

2 (θW 2,w2) = θV 2,v2 |U3 . Therefore
θV 3,v3 = θV 2,v2 |U3 +O(s) by Definition B.36(ii).

We now have Λ̃2|U3 , θV 3,v3 : E|U3 → TfY |U3 and Λ2|U3 , θV 2,v2 |U3 : E|U3 →
TgY |U3 with Λ2|U3 = θV 2,v2 |U3 and Λ̃2|U3 = Λ|U3 +O(s), θV 3,v3 = θV 2,v2 |U3 +
O(s) as in Definition B.36(v). Thus uniqueness up to O(s) in Theorem 3.17(g)
shows that Λ̃2|U3 = θV 3,v3+O(s) as in Definition B.36(ii). Also Λ1|U3 = θV 1,v1 |U3

and θV 4,v4 = θV 1,v1 |U3 + θV 3,v3 from above, so θV 4,v4 = Λ1|U3 + Λ̃2|U3 +O(s).
But h|U3 = f |U3 + θV 4,v4 ◦ s + O(s2), so Theorem 3.17(j) shows that h|U3 =

f |U3 + (Λ1 + Λ̃2)|U3 ◦ s + O(s2). Since s−1
top(0) ⊆ U3

top, Theorem 3.17(a) now

yields h = f + (Λ1 + Λ̃2) ◦ s+O(s2).
This proves Theorem 3.17(l) when E → X is trivial. But h = f + (Λ1 + Λ̃2) ◦

s+O(s2) is a local condition by Theorem 3.17(a), so by restricting to an open
cover of subsets of X on which E is trivial, part (l) follows.

Proof of Theorem 3.17(m)

Let f, g : X → Y be morphisms with g = f+O(s), and Λ1, . . . ,Λk : E → TfY be
morphisms with g = f+Λa ◦s+O(s2) for a = 1, . . . , k, and α1, . . . , αk ∈ C∞(X)
with α1+· · ·+αk = 1. We must show that g = f+(α1 ·Λ1+· · ·+αk ·Λk)◦s+O(s2).

Suppose first that E → X is trivial, and identify E ∼= X × Rn. Write points
of Etop as (x, z) for x ∈ Xtop and z ∈ Rn, and regard s as a morphism X → Rn.
By Definition B.36(vii), for i = 1, . . . , k there are commutative diagrams

Y

U i
ki1

//
� _

��

V i
vi

OO

� _

��

U i
ki2

oo
� _

��
X

f
44

idX×0 // E = X × Rn X,

g
jj

idX×soo

(B.65)

with s−1
top(0) ⊆ U itop and Λi|Ui = θV i,vi for i = 1, . . . , k.

Apply Assumption 3.7(b) to choose an open submanifold W ↪→ X × (Rn)k

and a morphism w : W → Y satisfying:

(i) s−1
top(0)× {(0, . . . , 0)} ⊆Wtop ⊆ Xtop × (Rn)k.
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(ii) if (x, (0, . . . , 0, zi, 0, . . . , 0)) ∈ Wtop with zi in the ith copy of Rn for i =
1, . . . , k then (x, zi)∈V itop and vitop(x, zi)=wtop(x, (0, . . . , 0, zi, 0, . . . , 0)).

(iii) If x ∈ Xtop and t1, . . . , tk ∈ R with
∑k
i=1 ti = 1 and (x, (t1 ·stop(x), . . . , tk ·

stop(x))) ∈Wtop then wtop(x, (t1 · stop(x), . . . , tk · stop(x))) = gtop(x).

Actually we use Assumption 3.7(b) inductively 2k − k − 1 times to choose
wtop(x, (z1, . . . ,zk)) with subsets of the z1, . . . ,zk zero, as for (a)–(d) in the
proof of Theorem 3.17(a)(iii),(iv),(v),(vii) above.

Define open submanifolds U ′ ↪→ X, V ′ ↪→ E = X × Rn and morphisms
v′ : V ′ → Y , k′1, k

′
2 : U ′ → V ′ with

V ′top =
{

(x, z) ∈ Xtop × Rn : (x, (α1,top(x)z, . . . , αk,top(x)z) ∈Wtop

}
,

U ′top =
{
x ∈ Xtop : (x, 0) ∈ V ′top, (x, stop(x)) ∈ V ′top

}
,

v′top(x, z) = wtop(x, (x, (α1,top(x)z, . . . , αk,top(x)z)),

k′1,top(x) = (x, 0) and k′2,top(x) = (x, stop(x)). (B.66)

Then v′top(x, 0) = wtop(x, (0, . . . , 0)) = vitop(x, 0) = ftop(x) for all x ∈ U ′top by
(B.65)–(B.66) and (ii), so Definition B.32 gives θV ′,v′ : E|U ′ → TfY |U ′ . Also

v′top(x, stop(x))=wtop(x, (α1,top(x) · stop(x), . . . , αk,top(x) · stop(x)))=gtop(x)

for all x ∈ U ′top by (B.66), (iii) and
∑k
i=1 αi = 1, so g|U ′ = f |U ′+θV ′,v′ ◦s+O(s2)

by Definition B.36(vii). But comparing the definitions of W,w in (i)–(iii) above
and the C∞(X)-module structure on Γ(TfY ) in §B.4.2 we see that

θV ′,v′ =
∑k
i=1 αi · θV i,vi |U ′ =

∑k
i=1 αi · Λi|U ′ .

Hence g|U ′ = f |U ′ + (α1 · Λ1 + · · · + αk · Λk)|U ′ ◦ s + O(s2), so that g =
f + (α1 · Λ1 + · · ·+ αk · Λk) ◦ s+O(s2) by Theorem 3.17(a), as s−1

top(0) ⊆ U ′top.
This proves Theorem 3.17(m) when E → X is trivial. But g = f + (α1 ·Λ1 +

· · ·+αk ·Λk)◦s+O(s2) is a local condition by Theorem 3.17(a), so by restricting
to an open cover of subsets of X on which E is trivial, part (m) follows.

Proofs of Theorem 3.17(n)–(v)

Theorem 3.17(n)–(v) all deal with pullbacks or pushforwards of the O(s), O(s2)
conditions in Definition B.36 along a morphism f : X → Y or g : Y → Z. Most
of the proofs are pretty straightforward: we take a commutative diagram (etc.)
that demonstrates the initial O(s) or O(s2) condition, and pull back by f or
compose with g, to get the commutative diagram (etc.) that demonstrates the
final O(s) or O(s2) condition. The most complex proof is for the second part of
(p), so we explain this here, and leave the others as an exercise for the reader.

Suppose that f : X → Y and g, h : Y → Z are morphisms in Ṁan, and
F → Y is a vector bundle, and t ∈ Γ∞(F ), and θ : E → f∗(F ) is a morphism with
θ ◦ s = f∗(t) +O(s2), and Λ : F → TgZ is a morphism with h = g+ Λ ◦ t+O(t2).
We must show that h ◦ f = g ◦ f + [f∗(Λ) ◦ θ] ◦ s+O(s2).
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As θ ◦s = f∗(t)+O(s2), by Definition B.36(i) there exists β : E⊗E → f∗(F )
such that θ ◦ s = f∗(t) + β ◦ (s⊗ s) in Γ∞(f∗(F )). Since h = g + Λ ◦ t+O(t2),
by Definition B.36(vii) there exists a commutative diagram in Ṁan

Z

U
k1

//
� _

��

V

v

OO

� _

��

U
k2

oo
� _

��
Y

g
77

0F // F Y,

h

gg

too

(B.67)

with t−1
top(0) ⊆ Utop, and Λ|U = θV,v.

Define open submanifolds U ′ ↪→ X, V ′ ↪→ E and morphisms v′ : V ′ → Z,
k′1, k

′
2 : U ′ → V ′ with

V ′top =
{

(x, e) ∈ Etop : (ftop(x), θtop|x(e)− βtop|x(stop(x)⊗ e)) ∈ Vtop

}
,

U ′top =
{
x ∈ Xtop : (x, 0) ∈ V ′top, (x, stop(x)) ∈ V ′top

}
,

v′top(x, e) = vtop(ftop(x), θtop|x(e)− βtop|x(stop(x)⊗ e)),
k′1,top(x) = (x, 0) and k′2,top(x) = (x, stop(x)). (B.68)

Then s−1
top(0) ⊆ U ′top, as ftop(s−1

top(0)) ⊆ t−1
top(0), and for x ∈ U ′top we have

v′top(x, 0) = vtop(ftop(x), 0) = gtop ◦ ftop(x) = (g ◦ f)top(x)

by (B.67)–(B.68), so Definition B.32 gives θV ′,v′ : E|U ′ → Tg◦fY |U ′ . Also

v′top(x, stop(x)) = vtop(ftop(x), θtop|x(stop(x))− βtop|x(stop(x)⊗ stop(x)))

= vtop(ftop(x), (θ ◦ s− β · (s⊗ s))top|x) = vtop(ftop(x), (f∗(t))top|x)

= vtop(ftop(x), ttop(ftop(x))) = htop ◦ ftop(x) = (h ◦ f)top(x),

for x ∈ U ′top by (B.67)–(B.68) and θ ◦ s = f∗(t) + β ◦ (s ⊗ s), so h ◦ f |U ′ =
g ◦ f |U ′ + θV ′,v′ ◦ s+O(s2) by Definition B.36(vii).

Now from the definition of pullbacks f∗(θ) in §B.4.9 we deduce that

θV ′,v′=f∗(θV,v) ◦ (θ−β · (s⊗−))|∗U ′(θV,v)=f∗(Λ) ◦ θ|U ′−f∗(Λ) ◦ [β · (s⊗−)]|U ′ ,

as Λ|U = θV,v. Since the final term is linear in s we have f∗(Λ) ◦ θ|U ′ =
θV ′,v′ + O(s). So h ◦ f |U ′ = g ◦ f |U ′ + θV ′,v′ ◦ s + O(s2) and Theorem 3.17(j)
imply that h ◦ f |U ′ = g ◦ f |U ′ + f∗(Λ) ◦ θ|U ′ ◦ s + O(s2), and then Theorem
3.17(a) and s−1

top(0) ⊆ U ′top give h ◦ f = g ◦ f + f∗(Λ) ◦ θ ◦ s+O(s2). This proves
the second part of Theorem 3.17(p).
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Glossary of notation, all volumes

Page references are in the form volume-page number. So, for example, II-57
means page 57 of volume II.

Γ(E) global sections of a sheaf E , I-230

Γ∞(E) vector space of smooth sections of a vector bundle E, I-10, I-238

ΩX : K∂X → N∂X ⊗ i∗X(KX) isomorphism of canonical line bundles on bound-
ary of an (m- or µ-)Kuranishi space X, II-67, II-76

ΘV,E,Γ,s,ψ : (detT ∗V ⊗ detE)|s−1(0) → ψ̄−1(KX) isomorphism of line bundles
from a Kuranishi neighbourhood (V,E,Γ, s, ψ) on a Kuranishi space
X, II-75

ΘV,E,s,ψ : (detT ∗V ⊗ detE)|s−1(0) → ψ−1(KX) isomorphism of line bundles from
an m-Kuranishi neighbourhood (V,E, s, ψ) on an m-Kuranishi space
X, II-62

ΥX,Y ,Z : KW → e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗ isomorphism of canonical
bundles on w-transverse fibre product of (m-)Kuranishi spaces, II-96

αg,f,e : (g ◦ f) ◦ e⇒ g ◦ (f ◦ e) coherence 2-morphism in weak 2-category, I-224

βf : f ◦ idX ⇒ f coherence 2-morphism in weak 2-category, I-224

δg,hw : TzZ → OwW connecting morphism in w-transverse fibre product of (m-)
Kuranishi spaces, II-92, II-116

γf : idY ◦ f ⇒ f coherence 2-morphism in weak 2-category, I-224

γf : N∂X → (∂f)∗(N∂Y ) isomorphism of normal line bundles of manifolds with
corners, II-11

∇ connection on vector bundle E → X in Ṁan, I-38, I-241

C(X) corners
∐dimX
k=0 Ck(X) of a manifold with corners X, I-8

C(X) corners
∐∞
k=0 Ck(X) of an (m or µ-)Kuranishi space X, I-91, I-124,

I-161
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C : K̇urc → K̇̌urc corner 2-functor on Kuranishi spaces, I-161

C : Manc → M̌anc corner functor on manifolds with corners, I-9

C ′ : Manc → M̌anc second corner functor on manifolds with corners, I-9

C : mK̇urc →mK̇̌urc corner 2-functor on m-Kuranishi spaces, I-91

C : µK̇urc → µK̇̌urc corner functor on µ-Kuranishi spaces, I-124

C : Ȯrbc → Ȯ̌rbc corner 2-functor on orbifolds with corners, I-178

C∞(X) R-algebra of smooth functions X → R for a manifold X, I-10, I-233

Ck(X) k-corners of an (m- or µ-)Kuranishi space X, I-81, I-123, I-157

Ck(X) k-corners of an orbifold with corners X, I-178

Ck : K̇urc
si → K̇urc

si k-corner 2-functor on Kuranishi spaces, I-161

Ck : Manc
si →Manc

si k-corner functor on manifolds with corners, I-9

Ck : mK̇urc
si →mK̇urc

si k-corner 2-functor on m-Kuranishi spaces, I-91

Ck : µK̇urc
si → µK̇urc

si k-corner functor on µ-Kuranishi spaces, I-124

Ck : Ȯrbc
si → Ȯrbc

si k-corner 2-functor on orbifolds with corners, I-178

Cop opposite category of category C, I-221

C∞Rings category of C∞-rings, I-234

C∞Schaff category of affine C∞-schemes, I-37, I-236

∂ : K̇urc
si → K̇urc

si boundary 2-functor on Kuranishi spaces, I-161

∂ : Manc
si →Manc

si boundary functor on manifolds with corners, I-9

∂ : mK̇urc
si →mK̇urc

si boundary 2-functor on m-Kuranishi spaces, I-91

∂ : µK̇urc
si → µK̇urc

si boundary functor on µ-Kuranishi spaces, I-124

depthX x the codimension k of the corner stratum Sk(X) containing a point x
in a manifold with corners X, I-6

DerManBN Borisov and Noel’s ∞-category of derived manifolds, I-103

DerManSpi Spivak’s ∞-category of derived manifolds, I-103

det(E•) determinant of a complex of vector spaces or vector bundles, II-52

df : TX → f∗(TY ) derivative of a smooth map f : X → Y , I-11

bdf : bTX → f∗(bTY ) b-derivative of a smooth map f : X → Y of manifolds
with corners, I-12
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dMan 2-category of d-manifolds, a kind of derived manifold, I-103

∂X boundary of an (m- or µ-)Kuranishi space X, I-86, I-124, I-160, I-161

∂X boundary of an orbifold with corners X, I-178

ftop : Xtop → Ytop underlying continuous map of morphism f : X → Y in Ṁan,
I-31

GKN 2-category of global Kuranishi neighbourhoods over Man, I-142

GK̇N 2-category of global Kuranishi neighbourhoods over Ṁan, I-142

GKNc 2-category of global Kuranishi neighbourhoods over manifolds with
corners Manc, I-142

GmKN 2-category of global m-Kuranishi neighbourhoods over Man, I-59

GmK̇N 2-category of global m-Kuranishi neighbourhoods over Ṁan, I-58

GmKNc 2-category of global m-Kuranishi neighbourhoods over manifolds with
corners Manc, I-59

GµKN category of global µ-Kuranishi neighbourhoods over Man, I-111

GµK̇N category of global µ-Kuranishi neighbourhoods over Ṁan, I-110

GµKNc category of global µ-Kuranishi neighbourhoods over manifolds with
corners Manc, I-111

Gxf : GxX → GyY morphism of isotropy groups from 1-morphism f : X → Y

in K̇ur, I-168

GxX isotropy group of a Kuranishi space X at a point x ∈X, I-166

GxX isotropy group of an orbifold X at a point x ∈ X, I-176

Ho(C) homotopy category of 2-category C, I-226

I�f : Π−1
top(TfY )→ TC(f)C(Y ) morphism of tangent sheaves in Ṁanc, I-269

I�X : Π∗k(bTX)→ bT (Ck(X)) natural morphism of b-tangent bundles over a man-
ifold with corners X, I-12

iX : ∂X →X natural (1-)morphism of boundary of an (m- or µ-)Kuranishi
space X, I-86, I-124, I-160

IX : bTX → TX natural morphism of (b-)tangent bundles of a manifold with
corners X, I-11

Kf : f∗(KY )→ KX isomorphism of canonical bundles from étale (1-)morphism
of (m- or µ-)Kuranishi spaces f : X → Y , II-65
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KN 2-category of Kuranishi neighbourhoods over manifolds Man, I-142

K̇N 2-category of Kuranishi neighbourhoods over Ṁan, I-141

KNc 2-category of Kuranishi neighbourhoods over manifolds with corners
Manc, I-142

KNS(X) 2-category of Kuranishi neighbourhoods over S ⊆ X in Man, I-142

K̇NS(X) 2-category of Kuranishi neighbourhoods over S ⊆ X in Ṁan, I-142

KNc
S(X) 2-category of Kuranishi neighbourhoods over S ⊆ X in Manc, I-142

Kur 2-category of Kuranishi spaces over classical manifolds Man, I-153

K̇ur 2-category of Kuranishi spaces over Ṁan, I-151

K̇urP 2-category of Kuranishi spaces over Ṁan, and 1-morphisms with
discrete property P , I-154

K̇urtrG 2-subcategory of Kuranishi spaces in K̇ur with all GxX = {1}, I-169

K̇urtrΓ 2-subcategory of Kuranishi spaces in K̇ur with all Γi = {1}, I-169

Kurac 2-category of Kuranishi spaces with a-corners, I-153

Kurc 2-category of Kuranishi spaces with corners, I-153

K̇̌urc 2-category of Kuranishi spaces with corners over Ṁanc of mixed
dimension, I-161

K̇̌urc
P 2-category of Kuranishi spaces with corners over Ṁanc of mixed

dimension, and 1-morphisms which are P , I-161

Kurc
bn 2-category of Kuranishi spaces with corners, and b-normal 1-morphisms,

I-154

Kurc
in 2-category of Kuranishi spaces with corners, and interior 1-morphisms,

I-154

Kurc
si 2-category of Kuranishi spaces with corners, and simple 1-morphisms,

I-154

K̇̌urc
si 2-category of Kuranishi spaces with corners over Ṁanc of mixed

dimension, and simple 1-morphisms, I-161

Kurc
st 2-category of Kuranishi spaces with corners, and strongly smooth

1-morphisms, I-154

Kurc
st,bn 2-category of Kuranishi spaces with corners, and strongly smooth

b-normal 1-morphisms, I-154

Kurc
st,in 2-category of Kuranishi spaces with corners, and strongly smooth

interior 1-morphisms, I-154
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Kurc
we 2-category of Kuranishi spaces with corners and weakly smooth 1-

morphisms, I-153

K̇urc 2-category of Kuranishi spaces with corners associated to Ṁanc, I-157

K̇urc
si 2-category of Kuranishi spaces with corners associated to Ṁanc, and

simple 1-morphisms, I-157

Kurc,ac 2-category of Kuranishi spaces with corners and a-corners, I-153

Kurc,ac
bn 2-category of Kuranishi spaces with corners and a-corners, and b-normal

1-morphisms, I-155

Kurc,ac
in 2-category of Kuranishi spaces with corners and a-corners, and interior

1-morphisms, I-155

Kurc,ac
si 2-category of Kuranishi spaces with corners and a-corners, and simple

1-morphisms, I-155

Kurc,ac
st 2-category of Kuranishi spaces with corners and a-corners, and strongly

a-smooth 1-morphisms, I-155

Kurc,ac
st,bn 2-category of Kuranishi spaces with corners and a-corners, and strongly

a-smooth b-normal 1-morphisms, I-155

Kurc,ac
st,in 2-category of Kuranishi spaces with corners and a-corners, and strongly

a-smooth interior 1-morphisms, I-155

Kurgc 2-category of Kuranishi spaces with g-corners, I-153

Kurgc
bn 2-category of Kuranishi spaces with g-corners, and b-normal 1-morph-

isms, I-155

Kurgc
in 2-category of Kuranishi spaces with g-corners, and interior 1-morph-

isms, I-155

Kurgc
si 2-category of Kuranishi spaces with g-corners, and simple 1-morphisms,

I-155

KX canonical bundle of a ‘manifold’ X in Ṁan, II-10

KX canonical bundle of an (m- or µ-)Kuranishi space X, II-62, II-74

bKX b-canonical bundle of an (m- or µ-)Kuranishi space with corners X,
II-66

Man category of classical manifolds, I-7

Ṁan category of ‘manifolds’ satisfying Assumptions 3.1–3.7, I-31

M̈an another category of ‘manifolds’ satisfying Assumptions 3.1–3.7, I-46

Manac category of manifolds with a-corners, I-18
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Manac
bn category of manifolds with a-corners and b-normal maps, I-18

Manac
in category of manifolds with a-corners and interior maps, I-18

Manac
st category of manifolds with a-corners and strongly a-smooth maps, I-18

Manac
st,bn category of manifolds with a-corners and strongly a-smooth b-normal

maps, I-18

Manac
st,in category of manifolds with a-corners and strongly a-smooth interior

maps, I-18

Manb category of manifolds with boundary, I-7

Manb
in category of manifolds with boundary and interior maps, I-7

Manb
si category of manifolds with boundary and simple maps, I-7

Manc category of manifolds with corners, I-5

Ṁanc category of ‘manifolds with corners’ satisfying Assumption 3.22, I-47

Ṁ̌anc category of ‘manifolds with corners’ of mixed dimension, I-48

M̌anc category of manifolds with corners of mixed dimension, I-8

Manc
bn category of manifolds with corners and b-normal maps, I-5

Manc
in category of manifolds with corners and interior maps, I-5

M̌anc
in category of manifolds with corners of mixed dimension and interior

maps, I-8

Manc
si category of manifolds with corners and simple maps, I-5

Ṁ̌anc
si category of ‘manifolds with corners’ of mixed dimension, and simple

morphisms, I-48

Manc
st category of manifolds with corners and strongly smooth maps, I-5

M̌anc
st category of manifolds with corners of mixed dimension and strongly

smooth maps, I-8

Manc
st,bn category of manifolds with corners and strongly smooth b-normal

maps, I-5

Manc
st,in category of manifolds with corners and strongly smooth interior maps,

I-5

Manc
we category of manifolds with corners and weakly smooth maps, I-5

Manc,ac category of manifolds with corners and a-corners, I-18
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Manc,ac
bn category of manifolds with corners and a-corners, and b-normal maps,

I-19

Manc,ac
in category of manifolds with corners and a-corners, and interior maps,

I-18

Manc,ac
si category of manifolds with corners and a-corners, and simple maps,

I-19

Manc,ac
in category of manifolds with corners and a-corners, and strongly a-

smooth maps, I-19

Manc,ac
st,bn category of manifolds with corners and a-corners, and strongly a-

smooth b-normal maps, I-19

Manc,ac
st,in category of manifolds with corners and a-corners, and strongly a-

smooth interior maps, I-19

Mangc category of manifolds with g-corners, I-16

Mangc
in category of manifolds with g-corners and interior maps, I-16

mKN 2-category of m-Kuranishi neighbourhoods over manifolds Man, I-59

mK̇N 2-category of m-Kuranishi neighbourhoods over Ṁan, I-58

mKNc 2-category of m-Kuranishi neighbourhoods over manifolds with corners
Manc, I-59

mKNS(X) 2-category of m-Kuranishi neighbourhoods over S ⊆ X in Man,
I-59

mK̇NS(X) 2-category of m-Kuranishi neighbourhoods over S ⊆ X in Ṁan,
I-58

mKNc
S(X) 2-category of m-Kuranishi neighbourhoods over S ⊆ X in Manc,

I-59

mKur 2-category of m-Kuranishi spaces over classical manifolds Man, I-72

mK̇ur 2-category of m-Kuranishi spaces over Ṁan, I-72

mK̇urP 2-category of m-Kuranishi spaces over Ṁan, and 1-morphisms with
discrete property P , I-78

mKurac 2-category of m-Kuranishi spaces with a-corners, I-72

mKurac
bn 2-category of m-Kuranishi spaces with a-corners, and b-normal 1-

morphisms, I-79

mKurac
in 2-category of m-Kuranishi spaces with a-corners, and interior 1-mor-

phisms, I-79
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mKurac
si 2-category of m-Kuranishi spaces with a-corners, and simple 1-morph-

isms, I-79

mKurac
st 2-category of m-Kuranishi spaces with a-corners, and strongly a-smooth

1-morphisms, I-79

mKurac
st,bn 2-category of m-Kuranishi spaces with a-corners, and strongly a-

smooth b-normal 1-morphisms, I-79

mKurac
st,in 2-category of m-Kuranishi spaces with a-corners, and strongly a-

smooth interior 1-morphisms, I-79

mKurb 2-category of m-Kuranishi spaces with boundary, I-93

mKurb
in 2-category of m-Kuranishi spaces with boundary, and interior 1-mor-

phisms, I-93

mKurb
si 2-category of m-Kuranishi spaces with boundary, and simple 1-morph-

isms, I-93

mKurc 2-category of m-Kuranishi spaces with corners, I-72

mK̇̌urc 2-category of m-Kuranishi spaces with corners over Ṁanc of mixed
dimension, I-87

mK̇̌urc
P 2-category of m-Kuranishi spaces with corners over Ṁanc of mixed

dimension, and 1-morphisms which are P , I-91

mKurc
bn 2-category of m-Kuranishi spaces with corners, and b-normal 1-

morphisms, I-78

mKurc
in 2-category of m-Kuranishi spaces with corners, and interior 1-morph-

isms, I-78

mKurc
si 2-category of m-Kuranishi spaces with corners, and simple 1-morphisms,

I-78

mK̇̌urc
si 2-category of m-Kuranishi spaces with corners over Ṁanc of mixed

dimension, and simple 1-morphisms, I-87

mKurc
st 2-category of m-Kuranishi spaces with corners, and strongly smooth

1-morphisms, I-78

mKurc
st,bn 2-category of m-Kuranishi spaces with corners, and strongly smooth

b-normal 1-morphisms, I-78

mKurc
st,in 2-category of m-Kuranishi spaces with corners, and strongly smooth

interior 1-morphisms, I-78

mKurc
we 2-category of m-Kuranishi spaces with corners and weakly smooth

1-morphisms, I-72

312



mK̇urc 2-category of m-Kuranishi spaces with corners associated to Ṁanc,
I-81

mKurc,ac 2-category of m-Kuranishi spaces with corners and a-corners, I-72

mKurc,ac
bn 2-category of m-Kuranishi spaces with corners and a-corners, and

b-normal 1-morphisms, I-79

mKurc,ac
in 2-category of m-Kuranishi spaces with corners and a-corners, and

interior 1-morphisms, I-79

mKurc,ac
si 2-category of m-Kuranishi spaces with corners and a-corners, and

simple 1-morphisms, I-79

mKurc,ac
st 2-category of m-Kuranishi spaces with corners and a-corners, and

strongly a-smooth 1-morphisms, I-79

mKurc,ac
st,bn 2-category of m-Kuranishi spaces with corners and a-corners, and

strongly a-smooth b-normal 1-morphisms, I-79

mKurc,ac
st,in 2-category of m-Kuranishi spaces with corners and a-corners, and

strongly a-smooth interior 1-morphisms, I-79

mK̇urc
si 2-category of m-Kuranishi spaces with corners associated to Ṁanc,

and simple 1-morphisms, I-81

mKurgc 2-category of m-Kuranishi spaces with g-corners, I-72

mKurgc
bn 2-category of m-Kuranishi spaces with g-corners, and b-normal 1-

morphisms, I-79

mKurgc
in 2-category of m-Kuranishi spaces with g-corners, and interior 1-mor-

phisms, I-79

mKurgc
si 2-category of m-Kuranishi spaces with g-corners, and simple 1-morph-

isms, I-79

µKN category of µ-Kuranishi neighbourhoods over manifolds Man, I-111

µK̇N category of µ-Kuranishi neighbourhoods over Ṁan, I-110

µKNc category of µ-Kuranishi neighbourhoods over manifolds with corners
Manc, I-111

µKNS(X) category of µ-Kuranishi neighbourhoods over S ⊆ X in Man, I-111

µK̇NS(X) category of µ-Kuranishi neighbourhoods over S ⊆ X in Ṁan, I-110

µKNc
S(X) category of µ-Kuranishi neighbourhoods over S ⊆ X in Manc, I-111

µKur category of µ-Kuranishi spaces over classical manifolds Man, I-117

µK̇ur category of µ-Kuranishi spaces over Ṁan, I-116
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µK̇urP category of µ-Kuranishi spaces over Ṁan, and morphisms with discrete
property P , I-119

µKurac category of µ-Kuranishi spaces with a-corners, I-117

µKurac
bn category of µ-Kuranishi spaces with a-corners, and b-normal mor-

phisms, I-120

µKurac
in category of µ-Kuranishi spaces with a-corners, and interior morphisms,

I-120

µKurac
si category of µ-Kuranishi spaces with a-corners, and simple morphisms,

I-120

µKurac
st category of µ-Kuranishi spaces with a-corners, and strongly a-smooth

morphisms, I-120

µKurac
st,bn category of µ-Kuranishi spaces with a-corners, and strongly a-smooth

b-normal morphisms, I-120

µKurac
st,in category of µ-Kuranishi spaces with a-corners, and strongly a-smooth

interior morphisms, I-120

µKurb category of µ-Kuranishi spaces with boundary, I-125

µKurb
in category of µ-Kuranishi spaces with boundary, and interior morphisms,

I-125

µKurb
si category of µ-Kuranishi spaces with boundary, and simple morphisms,

I-125

µKurc category of µ-Kuranishi spaces with corners, I-117

µK̇̌urc category of µ-Kuranishi spaces with corners over Ṁanc of mixed
dimension, I-124

µK̇̌urc
P category of µ-Kuranishi spaces with corners over Ṁanc of mixed

dimension, and morphisms which are P , I-124

µKurc
bn category of µ-Kuranishi spaces with corners, and b-normal morphisms,

I-119

µKurc
in category of µ-Kuranishi spaces with corners, and interior morphisms,

I-119

µKurc
si category of µ-Kuranishi spaces with corners, and simple morphisms,

I-119

µK̇̌urc
si category of µ-Kuranishi spaces with corners over Ṁanc of mixed

dimension, and simple morphisms, I-124
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µKurc
st category of µ-Kuranishi spaces with corners, and strongly smooth

morphisms, I-119

µKurc
st,bn category of µ-Kuranishi spaces with corners, and strongly smooth

b-normal morphisms, I-119

µKurc
st,in category of µ-Kuranishi spaces with corners, and strongly smooth

interior morphisms, I-119

µKurc
we category of µ-Kuranishi spaces with corners and weakly smooth mor-

phisms, I-117

µK̇urc category of µ-Kuranishi spaces with corners associated to Ṁanc, I-122

µKurc,ac category of µ-Kuranishi spaces with corners and a-corners, I-117

µKurc,ac
bn category of µ-Kuranishi spaces with corners and a-corners, and b-

normal morphisms, I-120

µKurc,ac
in category of µ-Kuranishi spaces with corners and a-corners, and interior

morphisms, I-120

µKurc,ac
si category of µ-Kuranishi spaces with corners and a-corners, and simple

morphisms, I-120

µKurc,ac
st category of µ-Kuranishi spaces with corners and a-corners, and

strongly a-smooth morphisms, I-120

µKurc,ac
st,bn category of µ-Kuranishi spaces with corners and a-corners, and

strongly a-smooth b-normal morphisms, I-120

µKurc,ac
st,in category of µ-Kuranishi spaces with corners and a-corners, and

strongly a-smooth interior morphisms, I-120

µK̇urc
si category of µ-Kuranishi spaces with corners associated to Ṁanc, and

simple morphisms, I-122

µKurgc category of µ-Kuranishi spaces with g-corners, I-117

µKurgc
bn category of µ-Kuranishi spaces with g-corners, and b-normal mor-

phisms, I-120

µKurgc
in category of µ-Kuranishi spaces with g-corners, and interior morphisms,

I-120

µKurgc
si category of µ-Kuranishi spaces with g-corners, and simple morphisms,

I-120

M̃xf : M̃xX → M̃yY monoid morphism for morphism f : X → Y in Manc
in,

I-14

M̃xX monoid at a point x in a manifold with corners X, I-14
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NCk(X) normal bundle of k-corners Ck(X) in a manifold with corners X, I-12

bNCk(X) b-normal bundle of k-corners Ck(X) in a manifold with corners X,
I-12

N∂X normal line bundle of boundary ∂X in a manifold with corners X, I-12

Ñxf : ÑxX → ÑyY stratum normal map for manifolds with corners X, I-13

bÑxf : bÑxX → bÑyY stratum b-normal map for morphism f : X → Y in
Manc

in, I-14

ÑxX stratum normal space at x in a manifold with corners X, I-13

bÑxX stratum b-normal space at x in a manifold with corners X, I-13

OrbCR Chen–Ruan’s category of orbifolds, I-171

OrbC∞Sta 2-category of orbifolds as stacks on site C∞Sch, I-172

OrbKur 2-category of orbifolds as examples of Kuranishi spaces, I-175

OrbLe Lerman’s 2-category of orbifolds, I-171

OrbManSta 2-category of orbifolds as stacks on site Man, I-171

OrbMP Moerdijk–Pronk’s category of orbifolds, I-171

OrbPr Pronk’s 2-category of orbifolds, I-171

OrbST Satake–Thurston’s category of orbifolds, I-171

Ȯrb 2-category of Kuranishi orbifolds associated to Ṁan, I-175

Orbac 2-category of orbifolds with a-corners, I-175

Ȯrbc 2-category of orbifolds with corners associated to Ṁanc, I-178

Orbc,ac 2-category of orbifolds with corners and a-corners, I-175

Ȯrbc
si 2-category of orbifolds with corners associated to Ṁanc, and simple

1-morphisms, I-178

Orbc
we 2-category of orbifolds with corners, and weakly smooth 1-morphisms,

I-175

Orbc
we 2-category of orbifolds with corners, I-175

Orbeff
sur 2-category of effective orbifolds with 1-morphisms surjective on isotropy

groups, I-35

Orbgc 2-category of orbifolds with g-corners, I-175

OX structure sheaf of object X in Ṁan, I-37, I-235

316



Oxf : OxX → OyY obstruction map of (m- or µ-)Kuranishi spaces, II-17, II-21,
II-22

bOxf : bOxX → bOyY b-obstruction map of (m- or µ-)Kuranishi spaces with
corners, II-19

Õxf : ÕxX → ÕyY stratum obstruction map of (m- or µ-)Kuranishi spaces
with corners, II-19

OxX obstruction space at x of an (m- or µ-)Kuranishi space X, II-16, II-21

O∗xX coobstruction space at x of an (m- or µ-)Kuranishi space X, II-16,
II-21

bOxX b-obstruction space at x of an (m- or µ-)Kuranishi space with corners
X, II-19

ÕxX stratum obstruction space at x of an (m- or µ-)Kuranishi space with
corners X, II-19

Φij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) 1-morphism or coordinate change
of Kuranishi neighbourhoods, I-136

Φij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) 1-morphism or coordinate change of m-
Kuranishi neighbourhoods, I-55

[Φij ] : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) morphism or coordinate change of µ-Kur-
anishi neighbourhoods, I-109

Qxf : QxX → QyY quasi-tangent map of morphism f : X → Y in Ṁan, II-13

Qxf : QxX → QyY quasi-tangent map of (m- or µ-)Kuranishi spaces, II-24,
II-28

QxX quasi-tangent space at x of ‘manifold’ X in Ṁan, II-13

QxX quasi-tangent space at x of an (m- or µ-)Kuranishi space X, II-24,
II-28

Sl(X) depth l stratum of a manifold with corners X, I-6

Tf : TX → TY derivative of a smooth map f : X → Y , I-11

bTf : bTX → bTY b-derivative of an interior map f : X → Y of manifolds with
corners, I-12

TfY tangent sheaf of morphism f : X → Y in Ṁan, I-38, I-251

T g : TfY → Tg◦fZ morphism of tangent sheaves for f : X → Y , g : Y → Z in

Ṁan, I-38, I-254

Top category of topological spaces, I-31
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TX tangent bundle of a manifold X, I-11

T ∗X cotangent bundle of a manifold X, I-11

T X tangent sheaf of ‘manifold’ X in Ṁan, I-38, I-251

T ∗X cotangent sheaf of ‘manifold’ X in Ṁan, I-37, I-240

bTX b-tangent bundle of a manifold with corners X, I-11

bT ∗X b-cotangent bundle of a manifold X, I-11

Txf : TxX → TyY tangent map of morphism f : X → Y in Ṁan, II-4

bTxf : bTxX → bTyY b-tangent map of interior map f : X → Y in Manc, I-12

T̃xf : T̃xX → T̃yY stratum tangent map of morphism f : X → Y of manifolds
with corners, II-4

Txf : TxX → TyY tangent map of (m- or µ-)Kuranishi spaces, II-17, II-21, II-22

bTxf : bTxX → bTyY b-tangent map of (m- or µ-)Kuranishi spaces with corners,
II-19

T̃xf : T̃xX → T̃yY stratum tangent map of (m- or µ-)Kuranishi spaces with
corners, II-19

TxX tangent space at x of ‘manifold’ X in Ṁan, II-4

T ∗xX cotangent space at x of ‘manifold’ X in Ṁan, II-4

bTxX b-tangent space at x of a manifold with corners X, I-11

T̃xX stratum tangent space at x of a manifold with corners X, II-4

TxX tangent space at x of an (m- or µ-)Kuranishi space X, II-16, II-21

T ∗xX cotangent space at x of an (m- or µ-)Kuranishi space X, II-16, II-21

bTxX b-tangent space at x of an (m- or µ-)Kuranishi space with corners X,
II-19

T̃xX stratum tangent space at x of an (m- or µ-)Kuranishi space with
corners X, II-19

(V,E,Γ, s) object in 2-category of global Kuranishi neighbourhoods GK̇N, I-142

(V,E,Γ, s, ψ) Kuranishi neighbourhood on topological space, I-135

(V,E, s) object in (2-)category of global m- or µ-Kuranishi neighbourhoods
GmK̇N or GµK̇N, I-58, I-110

(V,E, s, ψ) m- or µ-Kuranishi neighbourhood on topological space, I-55, I-109

X◦ interior of a manifold with corners X, I-6

Xtop underlying topological space of object X in Ṁan, I-31
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Page references are in the form volume-page number.

(2, 1)-category, I-59, I-142, I-225
2-Cartesian square, I-74, I-229, II-90,

II-114, II-115
2-category, I-223–I-229

1-isomorphism in, I-225
1-morphism, I-223
2-functor, I-226–I-228

weak 2-natural transformation,
I-227

2-morphism, I-223
horizontal composition, I-224
vertical composition, I-223

canonical equivalence of objects,
I-225

discrete, I-35
equivalence in, I-225

canonical, I-97
equivalence of, I-103, I-228
fibre product in, I-228–I-229, II-

78–II-162
homotopy category, I-103, I-109,

I-120, I-226, II-108
modification, I-228
strict, I-223
weak, I-67, I-72, I-223

2-functor, I-103, I-226–I-228
equivalence of, I-228
strict, I-226
weak, I-75–I-76, I-87, I-226
weak 2-natural transformation,

I-227
modification, I-228

2-sheaf, I-2

adjoint functor, I-231
Axiom of Choice, I-67–I-68, I-149,

I-152, I-169, II-23
Axiom of Global Choice, I-67–I-68,

I-149, I-152, I-169, II-23

C∞-algebraic geometry, I-36, I-128–
I-129, I-234–I-235

C∞-ring, I-36, I-128, I-234–I-235
C∞-derivation, I-239, I-248
cotangent module, I-240
definition, I-234
derived, I-104
module over, I-235

C∞-scheme, I-128–I-129, I-235, II-5
affine, I-37, I-236
derived, I-103, I-105

C∞-stack, I-235
Cartesian square, I-19–I-27, I-222
category, I-221–I-222

coproduct, I-31
definition, I-221
equivalence of, I-122, I-222
essentially small, I-221
fibre product, I-31, I-222
functor, see functor
groupoid, I-221
initial object, I-31
opposite category, I-221
product category, I-221
small, I-221
subcategory, I-221

full, I-222

319



terminal object, I-31, I-74, I-
118, II-94

class, in Set Theory, I-67, I-221, I-
226

classical manifold, I-32–I-33
connecting morphism, II-27, II-59,

II-92, II-116, II-154
contact homology, I-iv, II-iv
coorientation, I-28, II-10

opposite, I-28, II-10
corner functor, I-8–I-10, I-17, I-19,

I-48
cotangent sheaf, I-239–I-242

d-manifold, I-103, I-122
Derived Algebraic Geometry, I-vii,

I-103, II-vii
Derived Differential Geometry, I-vii–

I-viii, I-103–I-105, II-vii–II-
viii

derived manifold, I-vii–I-viii, I-103–
I-105, I-122, II-vii–II-viii

derived orbifold, I-vii–I-viii, II-vii–II-
viii

derived scheme, I-vii, II-vii
derived stack, I-vii, II-vii
determinant, II-51–II-61
discrete property of morphisms in

Ṁan, I-44–I-45, I-77–I-80,
I-119–I-120, I-153–I-155, I-
178, I-263–I-264, II-3–II-14,
II-79–II-87

fibre product, I-31, I-222
in a 2-category, I-228–I-229, II-

78–II-162
transverse, I-19–I-27, II-78–II-

87
fine sheaf, I-37, I-129
FOOO Kuranishi space, I-v, I-1, I-

87, I-104, I-144, I-172, II-v,
II-62, II-97, II-107

Fukaya category, I-iv, I-v, I-ix, II-iv,
II-v, II-ix

functor, I-222
adjoint, I-231

contravariant, I-222
equivalence, I-222
faithful, I-222
full, I-222
natural isomorphism, I-222
natural transformation, I-12, I-

222, II-5, II-20

global Kuranishi neighbourhood, I-
142

w-transverse fibre product, II-
109–II-114

global m-Kuranishi neighbourhood,
I-55

submersion, II-88
transverse fibre product, II-88,

II-109
w-submersion, II-88
w-transverse fibre product, II-

88–II-90, II-134–II-138
Gromov–Witten invariant, I-iv, I-1,

II-iv
groupoid, I-59, I-221

Hadamard’s Lemma, I-33
Hilsum–Skandalis morphism, I-144,

I-171, I-173
homotopy category, I-103, I-106, I-

109, I-226, II-108

∞-category, I-68, I-103–I-104
isotropy group, I-166–I-170, II-21–II-

23, II-74, II-117–II-119

J-holomorphic curves
moduli space of, I-iv–I-vi, II-iv–

II-vi

Kuranishi atlas, by McDuff–Wehrheim,
I-104, I-172

Kuranishi moduli problem, I-3
Kuranishi neighbourhood, I-135–I-

145
1-morphism, I-136
2-category of, I-141
2-morphism, I-137
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coordinate change, I-2, I-143, II-
50–II-51

definition, I-135
footprint, I-136
global, I-142

w-transverse fibre product, II-
109–II-114

Kuranishi section, I-135
minimal, II-37–II-42
obstruction bundle, I-135
on Kuranishi space, I-162–I-165
stack property of, I-145, I-148,

I-164, I-179–I-187
strict isomorphism, II-38

Kuranishi space, I-135–I-187
1-morphism, I-147

étale, II-48–II-50
representable, I-169

2-category of, I-151
2-morphism, I-148
and m-Kuranishi spaces, I-155–

I-157
and orbifolds, I-176–I-177
boundary, I-160
canonical bundle, II-74–II-77
coobstruction space, II-21
coorientation, II-75

opposite, II-76
cotangent space, II-21
definition, I-146
discrete property of 1-morphisms,

I-153–I-155
equivalence, I-165, II-49
étale 1-morphism, II-48–II-50,

II-75
FOOO, see FOOO Kuranishi

space
is an orbifold, I-176, II-42, II-

114, II-115
isotropy group, I-166–I-170, II-

21–II-23, II-48, II-115
definition, I-166
trivial, I-169

k-corner functor, I-161
Kuranishi neighbourhood on, I-

162–I-165

1-morphism, I-163
coordinate change, I-162–I-163
definition, I-162
global, I-162

locally orientable, II-74–II-77,
II-118

obstruction space, II-1, II-3–II-
77

definition, II-21–II-23
orientation, II-74–II-77

definition, II-75
opposite, II-75

product, I-152
orientation, II-77

quasi-tangent space, II-28
submersion, II-1, II-2, II-108–II-

127
tangent space, II-1, II-3–II-77

definition, II-21–II-23
transverse fibre product, II-1–

II-2, II-108–II-127
virtual dimension, I-2, I-146
w-submersion, II-108–II-127
w-transverse fibre product, II-1–

II-2, II-108–II-127
Kuranishi space with a-corners, I-

153, I-155
b-normal 1-morphism, I-155
interior 1-morphism, I-155
simple 1-morphism, I-155
strongly a-smooth 1-morphism,

I-155
Kuranishi space with corners, I-153,

I-157–I-162, II-120–II-123,
II-125–II-127

b-normal 1-morphism, I-154, I-
162

boundary
orientation on, II-77

boundary 2-functor, I-161
equivalence, I-162
interior 1-morphism, I-154, I-

162
k-corners Ck(X), I-157–I-161
s-submersion, II-120–II-123, II-

125–II-127
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s-transverse fibre product, II-
120–II-123

sb-transverse fibre product, II-
125–II-127

sc-transverse fibre product, II-
125–II-127

simple 1-morphism, I-154
strongly smooth 1-morphism, I-

154
t-transverse fibre product, II-

120–II-123
ws-submersion, II-120–II-123, II-

125–II-127
ws-transverse fibre product, II-

120–II-123
wsb-transverse fibre product, II-

125–II-127
wsc-transverse fibre product, II-

125–II-127
wt-transverse fibre product, II-

120–II-123
Kuranishi space with corners and

a-corners, I-153, I-155
b-normal 1-morphism, I-155
interior 1-morphism, I-155
simple 1-morphism, I-155
strongly a-smooth 1-morphism,

I-155
Kuranishi space with g-corners, I-

153, I-155, II-123–II-125
b-fibration, II-123–II-125
b-normal 1-morphism, I-155
b-transverse fibre product, II-

123–II-125
c-fibration, II-123–II-125
c-transverse fibre product, II-

123–II-125
interior 1-morphism, I-155
simple 1-morphism, I-155
wb-fibration, II-123–II-125
wb-transverse fibre product, II-

123–II-125
wc-fibration, II-123–II-125
wc-transverse fibre product, II-

123–II-125
Kuranishi structure, I-146

Lagrangian Floer cohomology, I-iv,
I-v, I-ix, I-1, II-iv, II-v, II-
ix

M-cohomology, I-vii–I-ix, II-vii–II-ix
and virtual cocycles, I-viii–I-ix,

II-viii–II-ix
M-homology, I-vii–I-ix, II-vii–II-ix

and virtual cycles, I-viii–I-ix, II-
viii–II-ix

m-Kuranishi neighbourhood, I-54–I-
61

1-morphism, I-55
2-category of, I-58
2-morphism, I-56

gluing with a partition of unity,
I-106, I-108–I-109, I-113

linearity properties of, I-107–
I-109

coordinate change, I-2, I-59, II-
47–II-48

definition, I-55
footprint, I-55
global, I-55

submersion, II-88
transverse fibre product, II-

88, II-109
w-submersion, II-88
w-transverse fibre product, II-

88–II-90, II-134–II-138
Kuranishi section, I-55
minimal, II-29–II-37
obstruction bundle, I-55
on m-Kuranishi space, I-93–I-

102
stack property of, I-60–I-61, I-

64–I-68, I-95, I-96, I-99, I-
145, I-179–I-187

strict isomorphism, II-30
m-Kuranishi space, I-54–I-105

1-morphism, I-62
étale, II-42–II-47, II-65

2-category of, I-61–I-73
2-morphism, I-63
and Kuranishi spaces, I-155–I-

157
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and µ-Kuranishi spaces, I-120–
I-122

canonical bundle, II-62–II-74, II-
96

definition, II-62
coobstruction space, II-16
coorientation, II-66

opposite, II-66
corner 2-functor, I-87–I-93, I-

161–I-162
cotangent space, II-16
definition, I-61
discrete property of 1-morphisms,

I-77–I-80, I-91
equivalence, I-97–I-99, II-18, II-

65
étale 1-morphism, II-42–II-47,

II-65
fibre product, I-74
is a classical manifold, I-74, II-

95
is a manifold, I-73, II-37, II-91
k-corner functor, I-91
m-Kuranishi neighbourhood on,

I-93–I-102
1-morphism of, I-95
coordinate change, I-94
definition, I-94
global, I-94

obstruction space, II-1, II-3–II-
77

definition, II-15–II-20
orientation, II-66–II-74, II-96–

II-97
definition, II-66
opposite, II-66

oriented, II-66
product, I-74, II-93–II-94

orientation, II-71–II-74
quasi-tangent space, II-23–II-27
submersion, II-1, II-2, II-87–II-

106
tangent space, II-1, II-3–II-77

definition, II-15–II-20
transverse fibre product, II-1–

II-2, II-87–II-106

virtual dimension, I-2, I-61
w-submersion, II-87–II-106
w-transverse fibre product, II-

1–II-2, II-87–II-106, II-138–
II-156

orientation on, II-96–II-97
m-Kuranishi space with a-corners,

I-72, I-79
b-normal 1-morphism, I-79
interior 1-morphism, I-79
simple 1-morphism, I-79
strongly a-smooth 1-morphism,

I-79
m-Kuranishi space with boundary,

I-93
m-Kuranishi space with corners, I-

72, I-78, I-81–I-93, II-100–
II-102, II-104–II-106

b-normal 1-morphism, I-79, I-
92

boundary, I-86
orientation on, II-67–II-71

boundary 2-functor, I-91
interior 1-morphism, I-79, I-92
k-corners Ck(X), I-81–I-87
m-Kuranishi neighbourhoods on,

I-100–I-101
boundaries and corners of, I-

100–I-101
of mixed dimension, I-87
s-submersion, II-100–II-102, II-

105–II-106
s-transverse fibre product, II-

100–II-102
sb-transverse fibre product, II-

105–II-106
sc-transverse fibre product, II-

105–II-106
simple 1-morphism, I-79
strongly smooth 1-morphism, I-

79
t-transverse fibre product, II-

100–II-102
ws-submersion, II-100–II-102, II-

105–II-106
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ws-transverse fibre product, II-
100–II-102

wsb-transverse fibre product, II-
105–II-106

wsc-transverse fibre product, II-
105–II-106

wt-transverse fibre product, II-
100–II-102

m-Kuranishi space with corners and
a-corners, I-72, I-79

b-normal 1-morphism, I-79
interior 1-morphism, I-79
simple 1-morphism, I-79
strongly a-smooth 1-morphism,

I-79
m-Kuranishi space with g-corners,

I-72, I-79, II-102–II-104
b-fibration, II-102–II-104
b-normal 1-morphism, I-79
b-transverse fibre product, II-

102–II-104
c-fibration, II-102–II-104
c-transverse fibre product, II-

102–II-104
interior 1-morphism, I-79
simple 1-morphism, I-79
wb-fibration, II-102–II-104
wb-transverse fibre product, II-

102–II-104
wc-fibration, II-102–II-104
wc-transverse fibre product, II-

102–II-104
m-Kuranishi structure, I-61
manifold

classical, I-32–I-33
manifold with a-corners, I-17–I-19

a-diffeomorphism, I-18
a-smooth map, I-18
b-normal map, I-18
b-tangent bundle, I-19
corner functor, I-19
interior map, I-18
simple map, I-18
strongly a-smooth map, I-18

manifold with analytic corners, see
manifold with a-corners

manifold with boundary, I-4–I-29
manifold with corners, I-3–I-29, I-47–

I-53
atlas, I-5
b-cotangent bundle, I-11
b-map, I-6
b-normal map, I-4, I-5
b-tangent bundle, I-10–I-14, I-

17
definition, I-11

b-tangent functor, I-12
b-vector field, I-11
boundary, I-6–I-10, I-29, I-48

definition, I-7
boundary functor, I-9, I-49
canonical bundle, I-28, II-61
coorientation, I-28, II-10

opposite, I-28, II-10
corner functor, I-8–I-10, I-19, I-

48, I-268–I-276, II-81
cotangent bundle, I-11
cotangent sheaf, I-239–I-242
definition, I-5
differential geometry in Ṁanc,

I-268–I-278, II-10–II-12
interior X◦, I-6
interior map, I-4, I-5
k-corner functor, I-9, I-49
k-corners Ck(X), I-6–I-10, I-48
local boundary component, I-6
local k-corner component, I-6,

I-8, I-9
manifold with faces, I-5, I-36
orientation, I-27–I-29, II-9–II-

13, II-61
definition, I-28, II-10
opposite, I-28, II-10

orientation convention, I-28–I-
29, II-12–II-13

quasi-tangent space, I-14, II-13–
II-14, II-81

s-submersion, I-21–I-23, I-26, II-
84–II-87, II-100, II-104, II-
120, II-125

s-transverse fibre product, I-21–
I-23, II-84–II-85, II-100, II-
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120
sb-transverse fibre product, I-

25–I-27, II-86–II-87, II-104,
II-125

sc-transverse fibre product, I-
25–I-27, II-86–II-87, II-104,
II-125

simple map, I-5, I-48
smooth map, I-4, I-5
stratum b-normal space, I-13
stratum normal space, I-13
strongly smooth map, I-4, I-5,

I-21–I-23
submersion, I-19–I-27, II-78–II-

87
t-transverse fibre product, I-21–

I-23, II-84–II-85, II-100, II-
120

tangent bundle, I-10–I-14
definition, I-11

tangent functor, I-12
tangent sheaf, I-242–I-261, I-268–

I-276
tangent space, II-3–II-14
transverse fibre product, I-19–I-

27, I-29, II-78–II-87
vector bundle, I-10, I-37, I-237–

I-239
connection, I-38, I-241–I-242

vector field, I-11
weakly smooth map, I-4, I-5

manifold with corners and a-corners,
I-18–I-19

manifold with faces, I-5, I-36
manifold with g-corners, I-14–I-17, I-

23–I-25, II-85–II-86, II-102,
II-123

b-cotangent bundle, I-17
b-fibration, I-23–I-25, II-85–II-

86, II-102, II-123
b-normal map, I-16
b-submersion, I-23–I-25, II-85–

II-86, II-102, II-123
b-tangent bundle, I-17
b-transverse fibre product, I-23–

I-25, II-85–II-86, II-102, II-

123
c-transverse fibre product, I-23–

I-25, II-85–II-86, II-102, II-
123

definition, I-16
examples, I-16–I-17
interior X◦, I-15
interior map, I-16
simple map, I-16
smooth map, I-16

manifold with generalized corners,
see manifold with g-corners

moduli space
of J-holomorphic curves, I-iv–I-

vi, II-iv–II-vi
of J-holomorphic curves, I-ix,

II-ix
monoid, I-14–I-16

toric, I-15
weakly toric, I-14

rank, I-15
µ-Kuranishi neighbourhood, I-109–I-

114
category of, I-109–I-111
coordinate change, I-2, I-111
definition, I-109
minimal, II-37
morphism, I-109
on µ-Kuranishi space, I-125–I-

127
sheaf property of, I-112–I-116,

I-125
µ-Kuranishi space, I-106–I-134

and m-Kuranishi spaces, I-120–
I-122

canonical bundle, II-74
coordinate change, II-48
corner functor, I-124–I-125
definition, I-114
discrete property of morphisms,

I-119–I-120, I-124
étale morphism, II-48
fibre product, I-106, II-106–II-

107
k-corner functor, I-124
morphism, I-115
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étale, II-48
µ-Kuranishi neighbourhood on,

I-125–I-127
coordinate change, I-126
global, I-125
morphism of, I-126

obstruction space, II-1, II-3–II-
77

definition, II-21
orientation, II-74
product, I-118
quasi-tangent space, II-27–II-28
tangent space, II-1, II-3–II-77

definition, II-21
virtual dimension, I-2

µ-Kuranishi space with a-corners, I-
117, I-120

b-normal morphism, I-120
interior morphism, I-120
strongly a-smooth morphism, I-

120
µ-Kuranishi space with boundary, I-

125
µ-Kuranishi space with corners, I-

117, I-119, I-122–I-125
b-normal morphism, I-119, I-

125
boundary, I-124
boundary functor, I-124
interior morphism, I-119, I-125
isomorphism, I-125
k-corners Ck(X), I-122–I-124, I-

127
strongly smooth morphism, I-

119
µ-Kuranishi space with corners and

a-corners, I-117, I-120
b-normal morphism, I-120
interior morphism, I-120
strongly a-smooth morphism, I-

120
µ-Kuranishi space with g-corners, I-

117, I-120
b-normal morphism, I-120
interior morphism, I-120
simple morphism, I-120

µ-Kuranishi structure, I-114

O(s) and O(s2) notation, I-40–I-44,
I-55–I-58, I-136–I-139, I-261–
I-263, I-274–I-276, I-278–I-
297

orbifold, I-35, I-170–I-178
and Kuranishi spaces, I-176
as a 2-category, I-171, II-108
definitions, I-171–I-177
is a manifold, I-176
isotropy group, I-176, II-108
Kuranishi orbifold, I-175
transverse fibre product, II-108–

II-109
orbifold with corners, I-178

boundary ∂X, I-178
corner 2-functor, I-178
k-corners Ck(X), I-178

orientation, I-27–I-29, II-9–II-13, II-
61–II-77

opposite, I-28, II-10
orientation convention, I-28–I-29, II-

12–II-13, II-73, II-97
OX -module, I-239

partition of unity, I-106, I-108–I-109,
I-113, I-127–I-129, I-236–I-
237

polyfold, I-v–I-vi, I-3, II-v–II-vi
presheaf, I-106, I-230, I-240

sheafification, I-231, I-240

quantum cohomology, I-iv, II-iv
quasi-category, I-68
quasi-tangent space, I-14, II-13–II-

14, II-23–II-28

relative tangent sheaf, I-38

sheaf, I-2, I-32, I-36–I-39, I-104, I-
106, I-113, I-229–I-231

direct image, I-231
fine, I-37, I-129, I-237
inverse image, I-231
of abelian groups, rings, etc., I-

230
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presheaf, I-230, I-240
sheafification, I-231, I-240

pullback, I-231, I-259–I-261
pushforward, I-231
soft, I-237
stalk, I-230

site, I-232
stack, I-103, I-232, II-48

Artin, I-232
Deligne–Mumford, I-232
on topological space, I-2, I-60–

I-61, I-128, I-179–I-187, I-
231–I-232

topological stack, II-74, II-117
strict 2-functor, I-226
structure sheaf, I-235
subcategory, I-221

full, I-222
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Introduction to the series

On the foundations of Symplectic Geometry

Several important areas of Symplectic Geometry involve ‘counting’ moduli
spaces M of J-holomorphic curves in a symplectic manifold (S, ω) satisfying
some conditions, where J is an almost complex structure on S compatible with
ω, and using the ‘numbers of curves’ to build some interesting theory, which
is then shown to be independent of the choice of J . Areas of this type include
Gromov–Witten theory [5, 30, 40, 46, 47, 51, 65, 67], Quantum Cohomology
[46, 51], Lagrangian Floer cohomology [2, 12, 15, 20, 59, 70], Fukaya categories
[9, 62, 64], Symplectic Field Theory [3, 7, 8], Contact Homology [6, 60], and
Symplectic Cohomology [63].

Setting up the foundations of these areas, rigorously and in full generality,
is a very long and difficult task, comparable to the work of Grothendieck and
his school on the foundations of Algebraic Geometry, or the work of Lurie and
Toën–Vezzosi on the foundations of Derived Algebraic Geometry. Any such
foundational programme for Symplectic Geometry can be divided into five steps:

(i) We must define a suitable class of geometric structures G to put on the
moduli spaces M of J-holomorphic curves we wish to ‘count’. This must
satisfy both (ii) and (iii) below.

(ii) Given a compact space X with geometric structure G and an ‘orientation’,
we must define a ‘virtual class’ [[X]virt] in some homology group, or a
‘virtual chain’ [X]virt in the chains of the homology theory, which ‘counts’ X.

Actually, usually one studies a compact, oriented G-space X with a ‘smooth
map’ f : X → Y to a manifold Y , and defines [[X]virt] or [X]virt in a
suitable (co)homology theory of Y , such as singular homology or de Rham
cohomology. These virtual classes/(co)chains must satisfy a package of
properties, including a deformation-invariance property.

(iii) We must prove that all the moduli spaces M of J-holomorphic curves
that will be used in our theory have geometric structure G, preferably
in a natural way. Note that in order to make the moduli spaces M
compact (necessary for existence of virtual classes/chains), we have to
include singular J-holomorphic curves in M. This makes construction of
the G-structure on M significantly more difficult.
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(iv) We combine (i)–(iii) to study the situation in Symplectic Geometry we are
interested in, e.g. to define Lagrangian Floer cohomology HF ∗(L1, L2) for
compact Lagrangians L1, L2 in a compact symplectic manifold (S, ω).

To do this we choose an almost complex structure J on (S, ω) and define
a collection of moduli spaces M of J-holomorphic curves relevant to the
problem. By (iii) these have structure G, so by (ii) they have virtual
classes/(co)chains [M]virt in some (co)homology theory.

There will be geometric relationships between these moduli spaces – for
instance, boundaries of moduli spaces may be written as sums of fibre
products of other moduli spaces. By the package of properties in (ii), these
geometric relationships should translate to algebraic relationships between
the virtual classes/(co)chains, e.g. the boundaries of virtual cochains may
be written as sums of cup products of other virtual cochains.

We use the virtual classes/(co)chains, and the algebraic identities they
satisfy, and homological algebra, to build the theory we want – Quantum
Cohomology, Lagrangian Floer Theory, and so on. We show the result
is independent of the choice of almost complex structure J using the
deformation-invariance properties of virtual classes/(co)chains.

(v) We apply our new machine to do something interesting in Symplectic
Geometry, e.g. prove the Arnold Conjecture.

Many authors have worked on programmes of this type, since the introduction
of J-holomorphic curve techniques into Symplectic Geometry by Gromov [32]
in 1985. Oversimplifying somewhat, we can divide these approaches into three
main groups, according to their answer to (i) above:

(A) (Kuranishi-type spaces.) In the work of Fukaya, Oh, Ohta and Ono
[10–30], moduli spaces are given the structure of Kuranishi spaces (we will
call their definition FOOO Kuranishi spaces).

Several other groups also work with Kuranishi-type spaces, including
McDuff and Wehrheim [49, 50, 52–55], Pardon [60, 61], and the author in
[42, 43] and this series.

(B) (Polyfolds.) In the work of Hofer, Wysocki and Zehnder [34–41], moduli
spaces are given the structure of polyfolds.

(C) (The rest of the world.) One makes restrictive assumptions on the
symplectic geometry – for instance, consider only noncompact, exact
symplectic manifolds, and exact Lagrangians in them – takes J to be
generic, and arranges that all the moduli spaces M we are interested
in are smooth manifolds (or possibly ‘pseudomanifolds’, manifolds with
singularities in codimension 2). Then we form virtual classes/chains as
for fundamental classes of manifolds. A good example of this approach is
Seidel’s construction [64] of Fukaya categories of Liouville domains.

We have not given complete references here, much important work is omitted.
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Although Kuranishi-type spaces in (A), and polyfolds in (B), do exactly
the same job, there is an important philosophical difference between them.
Kuranishi spaces basically remember the minimal information needed to form
virtual cycles/chains, and no more. Kuranishi spaces contain about the same
amount of data as smooth manifolds, and include manifolds as examples.

In contrast, polyfolds remember the entire functional-analytic moduli problem,
forgetting nothing. Any polyfold curve moduli space, even a moduli space of
constant curves, is a hugely infinite-dimensional object, a vast amount of data.

Approach (C) makes one’s life a lot simpler, but this comes at a cost. Firstly,
one can only work in rather restricted situations, such as exact symplectic
manifolds. And secondly, one must go through various contortions to ensure all
the moduli spaces M are manifolds, such as using domain-dependent almost
complex structures, which are unnecessary in approaches (A),(B).

The aim and scope of the series, and its novel features

The aim of this series of books is to set up the foundations of these areas of
Symplectic Geometry built using J-holomorphic curves following approach (A)
above, using the author’s own definition of Kuranishi space. We will do this
starting from the beginning, rigorously, in detail, and as the author believes the
subject ought to be done. The author hopes that in future, the series will provide
a complete framework which symplectic geometers can refer to for theorems and
proofs, and use large parts as a ‘black box’.

The author currently plans four or more volumes, as follows:

Volume I. Basic theory of (m-)Kuranishi spaces. Definitions of the cat-
egory µK̇ur of µ-Kuranishi spaces, and the 2-categories mK̇ur of
m-Kuranishi spaces and K̇ur of Kuranishi spaces, over a category
of ‘manifolds’ Ṁan such as classical manifolds Man or manifolds
with corners Manc. Boundaries, corners, and corner (2-)functors
for (m- and µ-)Kuranishi spaces with corners. Relation to similar
structures in the literature, including Fukaya–Oh–Ohta–Ono’s Ku-
ranishi spaces, and Hofer–Wysocki–Zehnder’s polyfolds. ‘Kuranishi
moduli problems’, our approach to putting Kuranishi structures
on moduli spaces, canonical up to equivalence.

Volume II. Differential Geometry of (m-)Kuranishi spaces. Tangent
and obstruction spaces for (m- and µ-)Kuranishi spaces. Canonical
bundles and orientations. (W-)transversality, (w-)submersions,
and existence of w-transverse fibre products in mK̇ur and K̇ur.
M-(co)homology of manifolds and orbifolds [44], virtual (co)chains
and virtual (co)cycles for compact, oriented (m-)Kuranishi spaces
in M-(co)homology. Orbifold strata of Kuranishi spaces. Bordism
and cobordism for (m-)Kuranishi spaces.

Volume III. Kuranishi structures on moduli spaces of J-holomorphic
curves. For very many moduli spaces of J-holomorphic curves
M of interest in Symplectic Geometry, including singular curves,
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curves with Lagrangian boundary conditions, marked points, etc.,
we show thatM can be made into a Kuranishi spaceM, uniquely
up to equivalence in K̇ur. We do this by a new method using
2-categories, similar to Grothendieck’s representable functor ap-
proach to moduli spaces in Algebraic Geometry. We do the same
for many other classes of moduli problems for nonlinear elliptic
p.d.e.s, including gauge theory moduli spaces. Natural relations
between moduli spaces, such as maps Fi :Mk+1 →Mk forgetting
a marked point, correspond to relations between the Kuranishi
spaces, such as a 1-morphism F i : Mk+1 →Mk in K̇ur. We
discuss orientations on Kuranishi moduli spaces.

Volumes IV– Big theories in Symplectic Geometry. To include Gromov–
Witten invariants, Quantum Cohomology, Lagrangian Floer coho-
mology, and Fukaya categories.

For steps (i)–(v) above, (i)–(iii) will be tackled in volumes I–III respectively, and
(iv)–(v) in volume IV onwards.

Readers familiar with the field will probably have noticed that our series
sounds a lot like the work of Fukaya, Oh, Ohta and Ono [10–30], in particular,
their 2009 two-volume book [15] on Lagrangian Floer cohomology. And it is
very similar. On the large scale, and in a lot of the details, we have taken many
ideas from Fukaya–Oh–Ohta–Ono, which the author acknowledges with thanks.
Actually this is true of most foundational projects in this field: Fukaya, Oh, Ohta
and Ono were the pioneers, and enormously creative, and subsequent authors
have followed in their footsteps to a great extent.

However, there are features of our presentation that are genuinely new, and
here we will highlight three:

(a) The use of Derived Differential Geometry in our Kuranishi space theory.

(b) The use of M-(co)homology to form virtual cycles and chains.

(c) The use of ‘Kuranishi moduli problems’, similar to Grothendieck’s rep-
resentable functor approach to moduli spaces in Algebraic Geometry, to
prove moduli spaces of J-holomorphic curves have Kuranishi structures.

We discuss these in turn.

(a) Derived Differential Geometry

Derived Algebraic Geometry, developed by Lurie [48] and Toën–Vezzosi [68,
69], is the study of ‘derived schemes’ and ‘derived stacks’, enhanced versions
of classical schemes and stacks with a richer geometric structure. They were
introduced to study moduli spaces in Algebraic Geometry. Roughly, a classical
moduli space M of objects E knows about the infinitesimal deformations of E,
but not the obstructions to deformations. The corresponding derived moduli
spaceM remembers the deformations, obstructions, and higher obstructions.

Derived Algebraic Geometry has a less well-known cousin, Derived Differential
Geometry, the study of ‘derived’ versions of smooth manifolds. Probably the first
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reference to Derived Differential Geometry is a short final paragraph in Lurie
[48, §4.5]. Lurie’s ideas were developed further in 2008 by his student David
Spivak [66], who defined an ∞-category DerManSpi of ‘derived manifolds’.

When I read Spivak’s thesis [66], armed with a good knowledge of Fukaya–
Oh–Ohta–Ono’s Kuranishi space theory [15], I had a revelation:

Kuranishi spaces are really derived smooth orbifolds.

This should not be surprising, as derived schemes and Kuranishi spaces are both
geometric structures designed to remember the obstructions in moduli problems.

This has important consequences for Symplectic Geometry: to understand
Kuranishi spaces properly, we should use the insights and methods of Derived
Algebraic Geometry. Fukaya–Oh–Ohta–Ono could not do this, as their Kuranishi
spaces predate Derived Algebraic Geometry by several years. Since they lacked
essential tools, their FOOO Kuranishi spaces are not really satisfactory as
geometric spaces, though they are adequate for their applications. For example,
they give no definition of morphism of FOOO Kuranishi spaces.

A very basic fact about Derived Algebraic Geometry is that it always happens
in higher categories, usually ∞-categories. We have written our theory in terms
of 2-categories, which are much simpler than ∞-categories. There are special
features of our situation which mean that 2-categories are enough for our purposes.
Firstly, the existence of partitions of unity in Differential Geometry means that
structure sheaves are soft, and have no higher cohomology. Secondly, we are
only interested in ‘quasi-smooth’ derived spaces, which have deformations and
obstructions, but no higher obstructions. As we are studying Kuranishi spaces
with deformations and obstructions – two levels of tangent directions – these
spaces need to live in a higher category C with at least two levels of morphism,
1- and 2-morphisms, so C needs to be at least a 2-category.

Our Kuranishi spaces form a weak 2-category K̇ur. One can take the
homotopy category Ho(K̇ur) to get an ordinary category, but this loses important
information. For example:

• 1-morphisms f : X → Y in K̇ur are a 2-sheaf (stack) onX, but morphisms
[f ] : X → Y in Ho(K̇ur) are not a sheaf on X, they are not ‘local’. This
is probably one reason why Fukaya et al. do not define morphisms for
FOOO Kuranishi spaces, as higher category techniques would be needed.

• As in Chapter 11 of volume II, there is a good notion of (w-)transverse
1-morphisms g : X → Z, h : Y → Z in K̇ur, and (w-)transverse fibre
products X ×g,Z,h Y exist in K̇ur, characterized by a universal property

involving the 2-morphisms in K̇ur. In Ho(K̇ur) this universal property
makes no sense, and (w-)transverse fibre products may not exist.

Derived Differential Geometry will be discussed in §4.8 of volume I.

(b) M-(co)homology and virtual cycles

In Fukaya–Oh–Ohta–Ono’s Lagrangian Floer theory [15], a lot of extra complexity
and hard work is due to the fact that their homology theory for forming virtual
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chains (singular homology) does not play nicely with FOOO Kuranishi spaces.
For example, they deal with moduli spacesMk(α) of stable J-holomorphic discs
Σ in (S, ω) with boundary in a Lagrangian L, with homology class [Σ] = α in
H2(S,L;Z), and k boundary marked points. These satisfy boundary equations

∂Mk(α) '
∐
α=β+γ, k=i+jMi+1(β)×evi+1,L,evj+1

Mj+1(γ).

One would like to choose virtual chains [Mk(α)]virt in homology satisfying

∂[Mk(α)]virt =
∑
α=β+γ, k=i+j [Mi+1(β)]virt •L [Mj+1(γ)]virt,

where •L is a chain-level intersection product/cup product on the (co)homology
of L. But singular homology has no chain-level intersection product.

In their later work [18, §12], [24], Fukaya et al. define virtual cochains in de
Rham cohomology, which does have a cochain-level cup product. But there are
disadvantages to this too, for example, one is forced to work in (co)homology
over R, rather than Z or Q.

As in Chapter 12 of volume II, the author [44] defined new (co)homology theo-
ries MH∗(X;R),MH∗(X;R) of manifolds and orbifolds X, called ‘M-homology’
and ‘M-cohomology’. They satisfy the Eilenberg–Steenrod axioms, and so are
canonically isomorphic to usual (co)homology H∗(X;R), H∗(X;R), e.g. singular
homology Hsi

∗ (X;R). They are specially designed for forming virtual (co)chains
for (m-)Kuranishi spaces, and have very good (co)chain-level properties.

In Chapter 13 of volume II we will explain how to form virtual (co)cycles
and (co)chains for (m-)Kuranishi spaces in M-(co)homology. There is no need
to perturb the (m-)Kuranishi space to do this. Our construction has a number
of technical advantages over competing theories: we can make infinitely many
compatible choices of virtual (co)chains, which can be made strictly compatible
with relations between (m-)Kuranishi spaces, such as boundary formulae.

These technical advantages mean that applying our machinery to define some
theory like Lagrangian Floer cohomology, Fukaya categories, or Symplectic Field
Theory, will be significantly easier. Identities which only hold up to homotopy
in the Fukaya–Oh–Ohta–Ono model, often hold on the nose in our version.

(c) Kuranishi moduli problems

The usual approaches to moduli spaces in Differential Geometry, and in Algebraic
Geometry, are very different. In Differential Geometry, one defines a moduli
space (e.g. of J-holomorphic curves, or instantons on a 4-manifold), initially
as a set M of isomorphism classes of the objects of interest, and then adds
extra structure: first a topology, and then an atlas of charts on M making the
moduli space into a manifold or Kuranishi-type space. The individual charts are
defined by writing the p.d.e. as a nonlinear Fredholm operator between Sobolev
or Hölder spaces, and using the Implicit Function Theorem for Banach spaces.

In Algebraic Geometry, following Grothendieck, one begins by defining a
functor F called the moduli functor, which encodes the behaviour of families of
objects in the moduli problem. This might be of the form F : (Schaff

C )op → Sets

x



(to define a moduli C-scheme) or F : (Schaff
C )op → Groupoids (to define a

moduli C-stack), where Schaff
C ,Sets,Groupoids are the categories of affine

C-schemes, and sets, and groupoids, and (Schaff
C )op is the opposite category

of Schaff
C . Here if S is an affine C-scheme then F (S) is the set or groupoid of

families of objects in the moduli problem over the base C-scheme S.
We say that the moduli functor F is representable if there exists a C-scheme

M such that F is naturally isomorphic to Hom(−,M) : (Schaff
C )op → Sets,

or an Artin C-stack M such that F is naturally equivalent to Hom(−,M) :
(Schaff

C )op → Groupoids. Then M is unique up to canonical isomorphism or
canonical equivalence, and is called the moduli scheme or moduli stack.

As in Gomez [31, §2.1–§2.2], there are two equivalent ways to encode stacks, or
moduli problems, as functors: either as a functor F : (Schaff

C )op → Groupoids
as above, or as a category fibred in groupoids G : C → Schaff

C , that is, a category
C with a functor G to Schaff

C satisfying some lifting properties of morphisms in
Schaff

C to morphisms in C.
We introduce a new approach to constructing Kuranishi structures on

Differential-Geometric moduli problems, including moduli of J-holomorphic
curves, which is a 2-categorical analogue of the ‘category fibred in groupoids’
version of moduli functors in Algebraic Geometry. Our analogue of Schaff

C is
the 2-category GK̇N of global Kuranishi neighbourhoods (V,E,Γ, s), which are
basically Kuranishi spaces X covered by a single chart (V,E,Γ, s, ψ).

We define a Kuranishi moduli problem (KMP) to be a 2-functor F : C →
GK̇N satisfying some lifting properties, where C is a 2-category. For example,
ifM ∈ K̇ur is a Kuranishi space we can define a 2-category CM with objects
((V,E,Γ, s),f

)
for (V,E,Γ, s) ∈ GK̇N and f : (s−1(0)/Γ, (V,E,Γ, s, ids−1(0)/Γ))

→ M a 1-morphism, and a 2-functor FM : CM → GK̇N acting by FM :
((V,E,Γ, s),f) 7→ (V,E,Γ, s) on objects. A KMP F : C → GK̇N is called
representable if it is equivalent in a certain sense to FM : CM → GK̇N for some
M in K̇ur, which is unique up to equivalence. Then Kuranishi moduli problems
form a 2-category K̇MP, and the full 2-subcategory K̇MPre of representable
KMP’s is equivalent to K̇ur.

To construct a Kuranishi structure on some moduli space M, e.g. a moduli
space of J-holomorphic curves in some (S, ω), we carry out three steps:

(1) Define a 2-category C and 2-functor F : C → GK̇N, where objects A in C
with F (A) = (V,E,Γ, s) correspond to families of objects in the moduli
problem over the base Kuranishi neighbourhood (V,E,Γ, s).

(2) Prove that F : C → GK̇N is a Kuranishi moduli problem.

(3) Prove that F : C → GK̇N is representable.

Here step (1) is usually fairly brief — far shorter than constructions of curve
moduli spaces in [15, 30, 40], for instance. Step (2) is also short and uses standard
arguments. The major effort is in (3). Step (3) has two parts: firstly we must
show that a topological space M naturally associated to the KMP is Hausdorff
and second countable (often we can quote this from the literature), and secondly
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we must prove that every point of M admits a Kuranishi neighbourhood with a
certain universal property.

We compare our approach to moduli problems with other current approaches,
such as those of Fukaya–Oh–Ohta–Ono or Hofer–Wysocki–Zehnder:

• Rival approaches are basically very long ad hoc constructions, the effort
is in the definition itself. In our approach we have a short-ish definition,
followed by a theorem (representability of the KMP) with a long proof.

• Rival approaches may involve making many arbitrary choices to construct
the moduli space. In our approach the definition of the KMP is natural,
with no arbitrary choices. If the KMP is representable, the corresponding
Kuranishi spaceM is unique up to canonical equivalence in K̇ur.

• In our approach, morphisms between moduli spaces, e.g. forgetting a
marked point, are usually easy and require almost no work to construct.

Kuranishi moduli problems are introduced in Chapter 8 of volume I, and
volume III is dedicated to constructing Kuranishi structures on moduli spaces
using the KMP method.
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Chapter 9

Introduction to volume II

In volume I of this series, given a category Ṁan of ‘manifolds’ satisfying some
assumptions, such as classical manifolds Man or manifolds with corners Manc,
we defined a corresponding category µK̇ur of ‘µ-Kuranishi spaces’, and 2-
categories mK̇ur of ‘m-Kuranishi spaces’ and K̇ur of ‘Kuranishi spaces’.

In this volume II, we study the differential geometry of these (m- and µ-)
Kuranishi spaces, covering topics including tangent spaces TxX and obstruction
spaces OxX, canonical bundles KX and orientations, (w-)submersions and (w-)
transverse fibre products X ×g,Z,h Y in mK̇ur and K̇ur, virtual chains and
virtual cycles for compact, oriented (m-)Kuranishi spaces, orbifold strata of
Kuranishi spaces, and (co)bordism of (m-)Kuranishi spaces.

We will be constantly referring to volume I. As it would take many pages
to summarize the previous material we need, we have not tried to make this
volume independent of volume I. So most readers will need a copy of volume I on
hand to make sense of this book, unless they already know volume I well. The
chapter numbering in this volume continues on from volume I, so all references
to Chapters 1–8 and Appendices A, B are to volume I.

Chapter 10 defines and studies tangent spaces TxX and obstruction spaces
OxX for (µ- or m-)Kuranishi spaces X in mK̇ur,µK̇ur, K̇ur. These come from
a suitable notion of tangent space TxX in Ṁan, where for categories of manifolds
with corners Manc, . . . there may be several versions TxX,

bTxX, T̃xX, yielding
different notions TxX, bTxX, T̃xX, OxX, bOxX, ÕxX in mK̇ur,µK̇ur, K̇ur.
We also discuss applications, including orientations on (µ- and m-)Kuranishi
spaces. Tangent and obstruction spaces are functorial under (1-)morphisms in
mK̇ur,µK̇ur, K̇ur, and are useful for stating conditions on 1-morphisms. For
example, a 1-morphism f : X → Y in mKur is étale (a local equivalence) if
and only if Txf : TxX → TyY and Oxf : OxX → OyY are isomorphisms for
all x ∈X with f(x) = y in Y .

Chapter 11 studies transverse fibre products and submersions in mK̇ur and
K̇ur. Given suitable notions of when morphisms g : X → Z, h : Y → Z in
Ṁan are transverse, so that a fibre product W = X ×g,Z,h Y exists in Ṁan
with dimW = dimX + dimY − dimZ, or when g : X → Z is a submersion,
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so that g, h are transverse for any h : Y → Z, we define notions of when 1-
morphisms g : X → Z, h : Y → Z in mK̇ur or K̇ur are w-transverse, so
that a 2-category fibre product W = X ×g,Z,h Y exists in mK̇ur or K̇ur with
vdimW = vdimX + vdimY − vdimZ, or when g : X → Z is a w-submersion,
so that g,h are w-transverse for any h : Y → Z.

For example, in Kuranishi spaces Kur over classical manifolds, 1-morphisms
g : X → Z and h : Y → Z are w-transverse if

Oxg ⊕OyY : OxX ⊕OyY −→ OzZ

is surjective for all x ∈ X and y ∈ Y with g(x) = h(y) = z in Z, and then a
fibre product X ×g,Z,h Y exists in Kur. This is automatic if Z is a manifold or
orbifold, so that OzZ = 0 for all z ∈ Z. Such fibre products will be important
in applications in symplectic geometry.

In general, w-transverse fibre products do not exist in categories of µ-
Kuranishi spaces µK̇ur, nor in the homotopy categories Ho(mK̇ur),Ho(K̇ur).
The 2-category structure on mK̇ur and K̇ur is essential for forming fibre prod-
ucts, as the universal property of such fibre products involves 2-morphisms.
This is characteristic of ‘derived’ fibre products, and is an important reason for
working in a 2-category or ∞-category when doing derived geometry.

Chapters 12–15 are not written yet, but will discuss virtual classes/chains for
(m-)Kuranishi spaces using the author’s theory of M-(co)homology [44], orbifold
strata for Kuranishi spaces, and (co)bordism for (m-)Kuranishi spaces.

2



Chapter 10

Tangent and obstruction spaces

If X is a classical manifold then each x ∈ X has a tangent space TxX, and if
f : X → Y is a smooth map there are functorial tangent maps Txf : TxX → TyY
for x ∈ X with f(x) = y ∈ Y . For manifolds with corners Manc,Mangc, . . .
there are (at least) two notions of tangent space TxX,

bTxX, as in §2.3.
For (m- or µ-)Kuranishi spaces X, it turns out to be natural to define

functorial tangent spaces TxX and obstruction spaces OxX for x ∈ X. This
chapter studies tangent and obstruction spaces, and applies them in several ways,
for instance to define orientations on (m- or µ-)Kuranishi spaces X.

10.1 Optional assumptions on tangent spaces

Suppose for the whole of this section that Ṁan satisfies Assumptions 3.1–3.7.
We now give optional assumptions on tangent spaces in Ṁan.

10.1.1 Tangent spaces

We ask that our ‘manifolds’ X have a notion of ‘tangent space’ TxX satisfying
many of the properties one expects. Note that we do not require dimTxX =
dimX, or that tangent spaces are the fibres of a vector bundle TX → X, which
are both false in some examples.

Assumption 10.1. (Tangent spaces.) (a) We are given a discrete property
A of morphisms in Ṁan, in the sense of Definition 3.18, which may be trivial
(i.e. all morphisms in Ṁan may be A), and should satisfy:

(i) If f : X → Y is a morphism in Ṁan with Y ∈Man, then f is A.

(ii) If f : W → Y, g : X → Y, h : X → Z are A morphisms in Ṁan then the
product f × h : W ×X → Y × Z and direct product (g, h) : X → Y × Z
from Assumption 3.1(e) are also A.

Projections πX : X × Y → X, πY : X × Y → Y from products are A.
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(b) For all X ∈ Ṁan and x ∈ X, we are given a real vector space TxX called the
tangent space of X at x. For all A morphisms f : X → Y in Ṁan and all x ∈ X
with f(x) = y in Y , we are given a linear map Txf : TxX → TyY called the
tangent map. The dual vector space T ∗xX of TxX is the cotangent space, and the
dual linear map T ∗xf : T ∗y Y → T ∗xX of Txf is the cotangent map. If g : Y → Z is
another A morphism and g(y) = z ∈ Z then Tx(g ◦f) = Tyg ◦Txf : TxX → TzZ.
We have TxidX = idTxX : TxX → TxX.

(c) For all X,Y ∈ Ṁan and x ∈ X, y ∈ Y the morphism

T(x,y)πX ⊕ T(x,y)πY : T(x,y)(X × Y ) −→ TxX ⊕ TyY (10.1)

is an isomorphism, where πX , πY are A by (a)(ii).

(d) If i : U ↪→ X is an open submanifold in Ṁan then Txi : TxU → TxX is an
isomorphism for all x ∈ U ⊆ X, so we may identify TxU with TxX.

(e) If X ∈Man ⊆ Ṁan is a classical manifold and x ∈ X then TxX is (canon-
ically isomorphic to) the usual tangent space TxX of manifolds in differential
geometry. If f : X → Y is a morphism in Man ⊆ Ṁan, so that f is A by
(a)(i), and x ∈ X with f(x) = y ∈ Y , then Txf : TxX → TyY is the usual
derivative of f at x in differential geometry.

Example 10.2. (i) If Ṁan = Man then A must be trivial (i.e. all morphisms
in Man are A) by Assumption 10.1(a)(i), and TxX,Txf must be as usual in
differential geometry by Assumption 10.1(e), and then Assumption 10.1 holds.

(ii) Let Ṁan be Manc or Manc
we from Chapter 2, and let A be trivial. Then

as in §2.3, each X ∈ Ṁan has tangent spaces TxX for all x ∈ X and tangent
maps Txf : TxX → TyY for all morphisms f : X → Y in Ṁan and x ∈ X with
f(x) = y ∈ Y , which satisfy Assumption 10.1.

(iii) Let Ṁan be one of Manc,Mangc,Manac,Manc,ac from Chapter 2, and
let A be interior maps in this category. Then as in §2.3–§2.4, each X ∈ Ṁan has
b-tangent spaces bTxX for all x ∈ X, and each interior morphism f : X → Y in
Ṁan has b-tangent maps bTxf : bTxX → bTyY for all x ∈ X with f(x) = y ∈ Y ,
which satisfy Assumption 10.1.

(iv) Let Ṁan be one of Manc,Mangc,Manac,Manc,ac, and let A be trivial.
Then as in §2.2, each X ∈ Ṁan with dimX = m has a depth stratification
X =

∐m
k=0 S

k(X) with Sk(X) a classical manifold of dimension m− k, and any

morphism f : X → Y in Ṁan preserves depth stratifications. (The latter does
not hold for Manc

we, which we exclude).
For each x ∈ Sk(X) ⊆ X, define T̃xX = TxS

k(X). We call this the stratum
tangent space ofX at x. If f : X → Y is a morphism in Ṁan and x ∈ Sk(X) ⊆ X
with f(x) = y ∈ Sl(Y ) ⊆ Y then near f |Sk(X) is a smooth map of classical

manifolds Sk(X)→ Sl(Y ) near x. Define

T̃xf = Tx(f |Sk(X)) : T̃xX = TxS
k(X) −→ T̃yY = TyS

l(Y ).

Then these A, T̃xX, T̃xf satisfy Assumption 10.1.
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(v) Let Ṁan satisfy Assumptions 3.1–3.7, and let A be trivial. Then as in
§3.3.1(c) and §B.1.3, we define a functor FC∞Sch

Ṁan
: Ṁan→ C∞Schaff to the

category of affine C∞-schemes. Now C∞-schemes X = (X,OX) have a functorial
notion of tangent space TxX for x ∈ X, given by TxX = (ΩX,x⊗OX,x R)∗, where
ΩX is the cotangent sheaf of X from [45, §5.6] (which we used in §B.4 to define
T ∗X), and ΩX,x,OX,x are the stalks of ΩX ,OX at x.

Thus, for any Ṁan we can define TC
∞

x X,TC
∞

x f satisfying Assumption 10.1
by applying FC∞Sch

Ṁan
: Ṁan → C∞Schaff and taking tangent spaces of C∞-

schemes. The result is canonically isomorphic to the tangent spaces TxX in
(i),(ii) in those cases, but not isomorphic to bTxX, T̃xX in (iii),(iv).

Note that Manc has three different tangent spaces satisfying Assumption
10.1 in (ii)–(iv). Here is a way to compare different notions of tangent space:

Definition 10.3. Suppose we are given two notions of tangent space TxX,Txf
for f with discrete property A, and T ′xX,T

′
xf with discrete property A′, both

satisfying Assumption 10.1 in Ṁan. A natural transformation I : T⇒T ′ assigns
a linear map IxX : TxX → T ′xX for all X ∈ Ṁan and x ∈ X, such that:

(i) If f : X → Y is a morphism in Ṁan which is both A and A′, and x ∈ X
with f(x) = y ∈ Y , the following diagram commutes:

TxX
Txf

//

IxX��

TyY

IyY ��
T ′xX

T ′xf // T ′yY.

(ii) If X ∈Man ⊆ Ṁan, so that TxX,T
′
xX are both the usual tangent space

TxX by Assumption 10.1(e), then IxX = idTxX .

Example 10.4. (a) Let Ṁan = Manc. Then Example 10.2(ii),(iii) define
tangent spaces TxX with A trivial, and bTxX with A interior, satisfying As-
sumption 10.1. As in (2.10) in §2.3, there are natural maps IxX : bTxX → TxX
satisfying Definition 10.3.

(b) When Ṁan = Manc there are injective maps ιxX : T̃xX → TxX in Example
10.2(ii),(iv), the inclusions TxS

k(X) ↪→ TxX, satisfying Definition 10.3.

(c) Let Ṁan be one of Manc,Mangc,Manac,Manc,ac. Then there are nat-
ural surjective maps ΠxX : bTxX → T̃xX in Example 10.2(iii),(iv) satisfying
Definition 10.3.

We can also add a further assumption on dimensions of tangent spaces:

Assumption 10.5. Assumption 10.1 holds, and TxX is finite-dimensional with
dimTxX = dimX for all X ∈ Ṁan and x ∈ X.

This holds for Example 10.2(i)–(iii), but not for Example 10.2(iv)–(v).
To use Assumption 10.1, we will need the following notation:
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Definition 10.6. Let Assumption 10.1 hold for Ṁan, with discrete property
A and data TxX,Txf . Suppose π : E → X is a vector bundle in Ṁan, and
s ∈ Γ∞(E) be a section, and x ∈ s−1(0) ⊆ X. We will define a linear map
dxs : TxX → E|x, where E|x is the fibre of E at x, which we think of as the
derivative of s at x.

The section s, and the zero section 0E , are both morphisms X → E in Ṁan,
with s(x) = 0E(x) as x ∈ s−1(0). Write e = s(x) = 0E(x). Then π(e) = x.
Using Assumption 10.1(a) and Definition 3.18(iv) we can show that s, 0E , π are
all A. Hence Assumption 10.1 gives linear maps

Txs : TxX −→ TeE, Tx0E : TxX −→ TeE, Teπ : TeE −→ TxX,

with Teπ ◦ Txs = Teπ ◦ Tx0E = idTxX as π ◦ s = π ◦ 0E = idX . By definition
of vector bundles, there is an open neighbourhood U of x in X on which E is
trivial, so E|U ∼= U × Rk identifying π|U : E|U → U with πRk : U × Rk → Rk.
Thus from Assumption 10.1(c)–(e) we get a natural isomorphism

TeE ∼= TxX ⊕ Rk ∼= TxX ⊕ E|x, (10.2)

identifying Teπ : TeE → TxX with idTxX ⊕ 0 : TxX ⊕ E|x → TxX, and
Tx0E : TxX → TeE with idTxX⊕0 : TxX → TxX⊕E|x. Write dxs : TxX → E|x
for the composition of Txs : TxX −→ TeE with the projection TeE → E|x from
(10.2). When Ṁan = Man, this dxs : TxX → E|x is ∇s|x : TxX → E|x for any
connection ∇ on E, and is independent of the choice of ∇, as s(x) = 0.

10.1.2 Tangent spaces and differential geometry in Ṁan

Suppose throughout this section that Ṁan satisfies Assumptions 3.1–3.7 and
Assumption 10.1, so that we are given a discrete property A of morphisms in
Ṁan, and ‘manifolds’ V in Ṁan have tangent spaces TxX for x ∈ X, and A
morphisms f : X → Y in Ṁan have functorial tangent maps Txf : TxX → TyY
for all x ∈ X with f(x) = y ∈ Y . We will relate tangent spaces TxX to (relative)
tangent sheaves T X, TfY from §3.3.4 and §B.4.

Definition 10.7. Let f : X → Y be an A morphism in Ṁan, and α ∈ Γ(TfY ),
and x ∈ X with f(x) = y ∈ Y . We will define an element α|x in TyY .

By Definition B.16 we have α = [U, u] for i : U ↪→ X × R and u : U → Y in
a diagram (B.5), with u(x, 0) = y. Using Definition B.38(iii),(viii) and that f is
A we can show that u is A near X × {0}. Thus we have linear maps

TxX ⊕ R ∼=
// T(x,0)(X × R) ∼=

(T(x,0)i)
−1

// T(x,0)U
T(x,0)u // TyY, (10.3)

where the first two isomorphisms come from Assumption 10.1(c),(d),(e). Define
α|x to be the image of (0, 1) ∈ TxX ⊕ R under the composition of (10.3).

To show this is well defined, suppose also that α = [U ′, u′] for U ′, u′ in a
diagram (B.5). Then (U, u) ≈ (U ′, u′) in the notation of Definition B.16, so
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there exist open j : V ↪→ X × R2 and a morphism v : V → Y satisfying (B.6)
with x̃ = x. As for u we find that v is A near (x, 0, 0), so as for (10.3) we have

TxX ⊕ R⊕ R ∼=
// T(x,0,0)(X × R2) ∼=

(T(x,0,0)j)
−1

// T(x,0,0)V
T(x,0,0)v // TyY.

The equations of (B.6) imply that

T(x,0,0)v(w, s, 0) = T(x,0)u(w, s), T(x,0,0)v(w, 0, s′) = (T(x,0)u
′)(w, s′),

and T(x,0,0)v(0, s,−s) = 0,

for w ∈ TxX and s, s′ ∈ R. Hence T(x,0)u(0, 1) = T(x,0)u
′(0, 1) by linearity of

T(x,0,0)v, so α|x is independent of the choice of representative (U, u) for α, and
is well defined.

From the definition of the C∞(X)-module structure on Γ(TfY ) in §B.4.2,
we see that α 7→ α|x is R-linear, and satisfies (a · α)|x = a(x) · (α|x) for all
a ∈ C∞(X) and α ∈ Γ(TfY ).

Now let E → X be a vector bundle, and θ : E → TfY be a morphism in
the sense of §B.4.8. Then we have a map Γ∞(E) → TyY taking e 7→ (θ ◦ e)|x
for all e ∈ Γ∞(E), so that θ ◦ e ∈ Γ(TfY ). As this is R-linear and satisfies
(θ◦(a·e))|x = a(x)·(θ◦e)|x for a ∈ C∞(X) and e ∈ Γ∞(E), the map e 7→ (θ◦e)|x
factors via e|x ∈ E|x. That is, there is a unique linear map θ|x : E|x → TyY
with (θ ◦ e)|x = θ|x(e|x) for all e ∈ Γ∞(E).

Suppose θ : E → TfY is of the form θV,v in the notation of Definition B.32
for some open j : V ↪→ E and v : V → Y in a diagram (B.22). Then v is A near
(x, 0) in V , and as for (10.3) we have linear maps

TxX ⊕ E|x ∼=
// T(x,0)E ∼=

(T(x,0)j)
−1

// T(x,0)V
T(x,0)v // TyY, (10.4)

and we can show that θ|x(e) is the image of (0, e) under (10.4) for each e ∈ E|x.
In the case when Ṁan = Man and TxX is the ordinary tangent space, TfY is

the sheaf of sections of f∗(TY ), so θ : E → f∗(TY ) is a vector bundle morphism
on X, and θ|x : E|x → f∗(TY )|x = TyY is just the fibre of the morphism at x.

The next proposition can be deduced from the definitions in a fairly straight-
forward way, using functoriality of tangent maps in Assumption 10.1(b), and
writing θ using either (10.3) or (10.4). For example, in (a), if θ = θV,v then
T g ◦ θ = θV,g◦v, and (a) follows from (10.4) and T(x,0)(g ◦ v) = Tyg ◦ T(x,0)v.

Proposition 10.8. (a) Suppose f : X → Y, g : Y → Z are A morphisms in
Ṁan, and E → X is a vector bundle, and θ : E → TfY is a morphism, so that
T g ◦ θ : E → Tg◦fZ is a morphism as in §3.3.4(c),(d) and §B.4.6, §B.4.8. Then
for all x ∈ X with f(x) = y ∈ Y and g(y) = z ∈ Z, we have

Tyg ◦ θ|x = (T g ◦ θ)|x : E|x −→ TzZ. (10.5)

(b) Suppose f : X → Y, g : Y → Z are A morphisms in Ṁan, and F → Y
is a vector bundle, and θ : F → TgZ is a morphism on Y, so that we have
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a morphism f∗(θ) : f∗(F ) → Tg◦fZ as in §3.3.4(g) and §B.4.9. Then for all
x ∈ X with f(x) = y ∈ Y and g(y) = z ∈ Z, we have

f∗(θ)|x = θ|y : f∗(F )|x = F |y −→ TzZ. (10.6)

(c) Suppose f : X → Y is an A morphism in Ṁan, and E,F → X, G → Y
are vector bundles, and s ∈ Γ∞(E), t ∈ Γ∞(G) with f∗(t) = O(s), and Λ :
F → TfY is a morphism, and θ : F → f∗(G) is a vector bundle morphism with
θ = f∗(dt) ◦ Λ +O(s) in the sense of Definitions 3.15(vi) and B.36(vi). Then
for each x ∈ X with s(x) = 0 and f(x) = y ∈ Y, we have

θ|x = dyt ◦ Λ|x : E|x −→ F |y, (10.7)

where dyt is as in Definition 10.6.

(d) Suppose f, g : X → Y are A morphisms in Ṁan, and E → X is a
vector bundle, and s ∈ Γ∞(E), and Λ : E → TfY be a morphism with g =
f + Λ ◦ s+O(s2) as in Definitions 3.15(vii) and B.36(vii). Then for each x ∈ X
with s(x) = 0, so that f(x) = g(x) = y ∈ Y, we have

Txg = Txf + Λ|x ◦ dxs : TxX −→ TyY. (10.8)

10.1.3 Assumptions on f : X → Rn, and on local
diffeomorphisms

Supposing Assumption 10.1 holds, we give some more assumptions on Ṁan,
expressed in terms of tangent spaces TxX. They will be used in §10.4–§10.5.

Assumption 10.9. Let Assumption 10.1 hold for Ṁan, giving notions of
tangent space TxX and tangent maps Txf : TxX → TyY for f : X → Y in Ṁan
satisfying a discrete property A.

Suppose f : X → Rn is a morphism in Ṁan, so that f is A by Assumption
10.1(a)(i), and x ∈ X such that f(x) = 0 and Txf : TxX → T0Rn = Rn is
surjective. Then there exists a commutative diagram in Ṁan:

x ∈ U ∼=
k

//
� _

i
��

V ×W
πW

// W 3 0
� _
j
��

X
f // Rn,

(10.9)

where i : U ↪→ X, j : W ↪→ Rn are open submanifolds in Ṁan with x ∈ U ⊆ X
and 0 ∈ W ⊆ Rn, and V is an object in Ṁan with dimV = dimX − n, and
k : U → V ×W is a diffeomorphism in Ṁan.

Suppose further that a finite group Γ acts on X fixing x ∈ X, and Γ acts
linearly on Rn, and f : X → Rn is Γ-equivariant. Then we can choose U,W to
be Γ-invariant, and V to have a Γ-action making (10.9) Γ-equivariant.
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Example 10.10. (a) Assumption 10.9 holds for Example 10.2(i),(iii),(iv).

(b) As in Example 10.2(ii), let Ṁan be Manc or Manc
we, and A be trivial,

and TxX,Txf be as in §2.3. Then Assumption 10.9 does not hold. For example,
let f : X → Y be the inclusion map i : [0,∞) ↪→ R, and x = 0 ∈ [0,∞). Then
T0i : T0[0,∞)→ T0R is surjective, but no diagram (10.9) exists in Ṁan.

Assumption 10.11. Let Assumption 10.1 hold for Ṁan, giving notions of
tangent space TxX and tangent maps Txf : TxX → TyY for f : X → Y in Ṁan
satisfying a discrete property A. We should be given another discrete property
B of morphisms in Ṁan, such that B implies A.

Suppose f : X → Y is a B morphism in Ṁan, and x ∈ X with f(x) = y, and
Txf : TxX → TyY is an isomorphism. Then there should exist open submanifolds

i : U ↪→ X and j : V ↪→ Y in Ṁan with x ∈ U and V = f(U) ⊆ Y , so that
there is a unique f ′ : U → V in Ṁan with f ◦ i = j ◦ f ′ by Assumption 3.2(d),
and f ′ : U → V should be a diffeomorphism in Ṁan.

Example 10.12. (i) Let Ṁan = Man, and A be trivial, and TxX,Txf be as
usual in differential geometry, so that Assumption 10.1 holds as in Example
10.2(i). Take B to be trivial. Then Assumption 10.11 holds.

(ii) Let Ṁan = Manc from Chapter 2, and A be trivial, and TxX,Txf be as in
§2.3, so that Assumption 10.1 holds as in Example 10.2(ii). Take B to be simple
morphisms. Then Assumption 10.11 holds. That is, if f : X → Y is a simple
morphism in Manc and Txf : TxX → TyY is an isomorphism then f is a local
diffeomorphism in Manc near x ∈ X and y ∈ Y .

Note that we do not allow Ṁan = Manc
we in this example, although Example

10.2(ii) includes Manc
we. One can show that the only discrete property B of

morphisms in Manc
we is B trivial, and Assumption 10.11 does not hold.

(iii) Let Ṁan be one of Manc,Mangc,Manac,Manc,ac from Chapter 2, and
A be interior maps, and consider b-tangent spaces bTxX and b-tangent maps
bTxf : bTxX → bTyY for interior f in Ṁan as in §2.3–§2.4, so that Assumption
10.1 holds as in Example 10.2(iii). Take B to be simple morphisms. Then B
implies A, as simple morphisms are interior, and Assumption 10.11 holds.

(iv) Let Ṁan be one of Manc,Mangc,Manac,Manc,ac from Chapter 2, and
A be trivial, and consider stratum tangent spaces T̃xX and stratum tangent
maps T̃xf : T̃xX → T̃yY as in Example 10.2(iv), so that Assumption 10.1 holds.
Take B to be simple morphisms. Then Assumption 10.11 holds.

10.1.4 Assumptions on tangent bundles, and orientations

In the next assumption we suppose that tangent spaces TxX in Assumption 10.1
are the fibres of a vector bundle TX → X.

Assumption 10.13. (Tangent vector bundles.) (a) Let Assumption 10.1
hold for Ṁan, with tangent spaces TxX and discrete property A. For each
X ∈ Ṁan there is a natural vector bundle π : TX → X called the tangent
bundle, of rank dimX, whose fibre at each x ∈ X is the tangent space TxX.
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The dual vector bundle of TX is called the cotangent bundle T ∗X → X,
with fibres the cotangent spaces T ∗xX.

(b) If f : X → Y is an A morphism in Ṁan there is a natural vector bundle
morphism Tf : TX → f∗(TY ) on X, such that if x ∈ X with f(x) = y in Y
then the fibre Tf |x of Tf at x is the tangent map Txf : TxX → TyY .

The dual morphism is written T ∗f : f∗(T ∗Y )→ T ∗X.

Using part (b) and §10.1.2 we can show that if f : X → Y is an A morphism
in Ṁan, and E → X is a vector bundle, and θ : E → TfY is a morphism, then

there is a vector bundle morphism θ̃ : E → f∗(TY ) on X whose fibre at x ∈ X
with f(x) = y in Y is θ̃|x = θ|x : E|x → TyY from Definition 10.7.

Example 10.14. As in Chapter 2, Assumption 10.13 holds for tangent spaces
TxX in Man,Manc and Manc

we from Example 10.2(i),(ii), and for b-tangent
spaces bTxX in Manc,Mangc,Manac,Manc,ac from Example 10.2(iii). But
it fails for stratum tangent spaces T̃xX in Manc, . . . ,Manc,ac from Exam-
ple 10.2(iv).

In §2.6 we discussed orientations on objects X in Man,Manc,Mangc,
Manac,Manc,ac, using the vector bundles T ∗X → X or bT ∗X → X. Under
Assumption 10.13 we can make the same definitions in Ṁan.

Definition 10.15. Let Assumption 10.13 hold for Ṁan. An orientation oX
on an object X in Ṁan is an equivalence class [ω] of top-degree forms ω in
Γ∞(ΛdimXT ∗X) with ω|x 6= 0 for all x ∈ X, where two such ω, ω′ are equivalent
if ω′ = K ·ω for K : X → (0,∞) smooth. The opposite orientation is−oX = [−ω].
Then we call (X, oX) an oriented manifold. Usually we just refer to X as an
oriented manifold, and then we write −X for X with the opposite orientation.

We will call the real line bundle ΛdimXT ∗X → X the canonical bundle KX

of X. Then an orientation on X is an orientation on the fibres of KX .
If x ∈ X and (v1, . . . , vm) is a basis for TxX, then we call (v1, . . . , vm)

oriented if ω|x · v1 ∧ · · · ∧ vm > 0, and anti-oriented otherwise.
Let f : X → Y be a morphism in Ṁan. A coorientation cf on f is an

orientation on the fibres of the line bundle KX ⊗ f∗(K∗Y ) over X. That is, cf is
an equivalence class [γ] of nonvanishing sections γ ∈ Γ∞(KX ⊗ f∗(K∗Y )), where
two such γ, γ′ are equivalent if γ′ = K · γ for K : X → (0,∞) smooth. The
opposite coorientation is −cf = [−γ]. If Y is oriented then coorientations on
f are equivalent to orientations on X. Orientations on X are equivalent to
coorientations on π : X → ∗, for ∗ the point in Ṁan.

The reason we need Assumption 10.13 to define orientations, is that the
vector bundle structure on TX → X gives us a notion of when orientations on
TxX vary continuously with x ∈ X, which does not follow from Assumption 10.1
alone. We will use Convention 2.39 in Ṁan whenever it makes sense.

Here is an extension of Assumption 10.13 to manifolds with corners:

Assumption 10.16. Let Assumption 3.22 hold for Ṁanc. Suppose Assump-
tions 10.1 and 10.13 hold for Ṁanc, so that from Assumption 10.1 we have a
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discrete property A of morphisms in Ṁanc, and tangent spaces TxX for objects
X in Ṁanc which are fibres of the tangent bundle TX → X, and tangent maps
Txf : TxX → TyY for A morphisms f : X → Y in Ṁanc, which are fibres of
the vector bundle morphism Tf : TX → f∗(TY ).

Assumption 3.22 includes a discrete property of morphisms in Ṁanc called
simple maps. We require that all simple maps are A.

We require that either (a) or (b) holds for Ṁanc, where:

(a) For each X in Ṁanc, so that by Assumption 10.1(d) we have the boundary
∂X with morphism iX : ∂X → X, we are given a canonical exact sequence
of vector bundles on ∂X:

0 // N∂X
αX // i∗X(TX)

βX // T (∂X) // 0, (10.10)

where N∂X is a line bundle (rank 1 vector bundle) on ∂X, and there is
natural orientation on the fibres of N∂X . If f : X → Y is simple in Ṁanc,
so that we have ∂f : ∂X → ∂Y with iY ◦ ∂f = f ◦ iX by Assumption
10.1(g),(i), then the following commutes:

0 // N∂X
γf

��

αX
// i∗X(TX)

i∗X(Tf)
��

βX

// T (∂X)

T (∂f)

��

// 0

0 // (∂f)∗(N∂Y )

(∂f)∗(αY )

// i∗X(f∗(TY ))
=(∂f)∗(i∗Y (TY ))

(∂f)∗(βY )

// (∂f)∗(T (∂Y )) // 0.

(10.11)

Here a unique γf making (10.11) commute exists by exactness, and we
require that γf should be an orientation-preserving isomorphism.

If g : X → Z is a morphism in Ṁanc with Z ∈Man ⊆ Ṁanc, so that g
and g ◦ iX : ∂X → Y are A by Assumption 10.1(a)(i) and Tg, T (g ◦ iX)
are defined by Assumption 10.11(b), we have

i∗X(Tg) = T (g ◦ iX) ◦ βX : i∗X(TX) −→ (g ◦ iX)∗(TZ). (10.12)

(b) For each X in Ṁanc we have an exact sequence of vector bundles on ∂X:

0 // T (∂X)
αX // i∗X(TX)

βX // N∂X // 0, (10.13)

where N∂X is a line bundle on ∂X, with a natural orientation on its fibres.

If f : X → Y is simple in Ṁanc, then the following commutes:

0 // T (∂X)

T (∂f)

��

αX
// i∗X(TX)

i∗X(Tf)
��

βX

// N∂X
γf

��

// 0

0 // (∂f)∗(T (∂Y ))

(∂f)∗(αY )

// i∗X(f∗(TY ))
=(∂f)∗(i∗Y (TY ))

(∂f)∗(βY )

// (∂f)∗(N∂Y ) // 0.

(10.14)
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Here a unique γf making (10.14) commute exists by exactness, and we
require that γf should be an orientation-preserving isomorphism.

If g : X → Z is a morphism in Ṁanc with Z ∈ Man ⊆ Ṁanc, then
g, g ◦ iX are A, and in a similar way to (10.15) we have

T (g ◦ iX) = i∗X(Tg) ◦ αX : T (∂X) −→ (g ◦ iX)∗(TZ). (10.15)

In both cases we interpret N∂X as the normal bundle of ∂X in X. Our
convention is that N∂X should be oriented by outward-pointing vectors.

Example 10.17. (i) Let Ṁanc be Manc,Mangc,Manac or Manc,ac from
Chapter 2, and A be interior maps, and use b-tangent spaces bTxX and the
b-tangent bundle bTX from §2.3. Then Assumption 10.16(a) holds, where (10.10)
is equation (2.14) for Manc and Mangc (when bN∂X = O∂X is naturally trivial),
and (2.19) for Manac and Manc,ac (when bN∂X is not naturally trivial).

(ii) Let Ṁanc be Manc from §2.1, and A be trivial, and use ordinary tangent
spaces TxX and the tangent bundle TX from §2.3. Then Assumption 10.16(b)
holds, where (10.13) is equation (2.12).

As in Convention 2.39(c), from an orientation on a manifold with corners X
in Ṁanc, we can define an orientation on ∂X.

Definition 10.18. Work in the situation of Assumption 10.16, and let X ∈
Ṁanc with dimX = n. In both cases (a),(b) we will define an isomorphism

ΩX : Λn−1T ∗(∂X) −→ N∂X ⊗ i∗X(ΛnT ∗X) (10.16)

of line bundles on ∂X. In case (a), so that we have an exact sequence (10.10),
if U ⊆ ∂X is an open subset on which T (∂X), i∗X(TX), N∂X are trivial, and
(c1), (d1, . . . , dn), and (e2, . . . , en) are bases of sections of N∂X |U , i∗X(TX)|U ,
T (∂X)|U respectively with αX(c1) = d1 and βX(di) = ei for i = 2, . . . , n, and
(δ1, . . . , δn), (ε2, . . . , εn) are the bases of sections of i∗X(T ∗X)|U , T ∗(∂X)|U dual
to (d1, . . . , dn), (e2, . . . , en), then we define ΩX |U by

ΩX |U : ε2 ∧ · · · ∧ εn 7−→ c1 ⊗ (δ1 ∧ · · · ∧ δn). (10.17)

It is easy to show that ΩX |U is independent of the choice of bases, and that
such ΩX |U glue over open subsets U ⊆ X covering X to give a unique global
isomorphism ΩX in (10.16).

In case (b), so that we instead have an exact sequence (10.13), we again define
ΩX |U using bases (c1), . . . , (ε2, . . . , εn), as above, but now we instead require
that αX(ei) = di for i = 2, . . . , n and βX(d1) = c1.

If X is oriented, then we have an orientation on the fibres of ΛnT ∗X → X,
and thus on the fibres of i∗X(ΛnT ∗X)→ ∂X. But by Assumption 10.16(a),(b),
we have an orientation on the fibres of N∂X → ∂X. Tensoring these orientations
together and pulling back by ΩX in (10.16) gives an orientation on the fibres of
Λn−1T ∗(∂X)→ ∂X, that is, an orientation on the manifold with corners ∂X.
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Note that defining this orientation on ∂X involves an orientation convention,
as in Convention 2.39, which in this case is the choice of how to write (10.17),
together with the choice to orient N∂X by outward-pointing vectors.

If X is oriented then by induction ∂kX is oriented for k = 0, . . . ,dimX.

10.1.5 Quasi-tangent spaces

In Definition 2.16, for a manifold with corners X and x ∈ X we defined stratum
(b-)normal spaces ÑxX,

bÑxX and a commutative monoid M̃xX ⊆ bÑxX, which
are functorial under (interior) morphisms in Manc. In §2.4.1 the bÑxX, M̃xX
are extended to manifolds with g-corners. We call these quasi-tangent spaces, as
they behave rather like tangent spaces. Here is an assumption that will enable
us to extend quasi-tangent spaces to (m- and µ-)Kuranishi spaces in §10.3.

Assumption 10.19. (Quasi-tangent spaces.) (a) We are given a category
Q of some algebraic or geometric objects, which quasi-tangent spaces will take
values in. Some examples of categories Q we are interested in are:

(i) Finite-dimensional real vector spaces V and linear maps λ : V → V ′.

(ii) Monoids M with M ∼= Nk for k > 0, and monoid morphisms µ : M →M ′.

(iii) Toric monoids M , and monoid morphisms µ : M →M ′.

We require that Q should have a terminal object, which we write as 0.
Products Q1×Q2 of objects Q1, Q2 in Q (that is, fibre products Q1×0Q2) exist
in Q, with the usual universal property. We require that if {Qi : i ∈ I} is a set
of objects in Q, and qij : Qi → Qj are isomorphisms in Q for all i, j ∈ I such
that qik = qjk ◦ qij for all i, j, k ∈ I, then there should exist a natural object
Q = [

∐
i∈I Qi]/ ∼ in Q with canonical isomorphisms qi : Q→ Qi for i ∈ I such

that qj = qij ◦ qi for all i, j ∈ I. We think of Q as the quotient of the disjoint
union

∐
i∈I Qi (which may not be an object of Q) by the equivalence relation ∼

induced by the qij .

(b) We are given a discrete property C of morphisms in Ṁan, in the sense of
Definition 3.18, which may be trivial (i.e. all morphisms in Ṁan may be C),
and should satisfy:

(i) If f : X → Y is a morphism in Ṁan with Y ∈Man, then f is C.

(ii) If f : W → Y, g : X → Y, h : X → Z are C morphisms in Ṁan then the
product f × h : W ×X → Y × Z and direct product (g, h) : X → Y × Z
from Assumption 3.1(e) are also C.

Projections πX : X × Y → X, πY : X × Y → Y from products are C.

(c) For all X ∈ Ṁan and x ∈ X, we are given an object QxX in Q called the
quasi-tangent space of X at x. For all C morphisms f : X → Y in Ṁan and all
x ∈ X with f(x) = y in Y , we are given a morphism Qxf : QxX → QyY in Q
called the quasi-tangent map. These satisfy:
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(i) If f : X → Y , g : Y → Z are C morphisms in Ṁan and x ∈ X with
f(x) = y in Y and g(y) = z in Z then Qx(g◦f) = Qyg◦Qxf : QxX → QzZ.
Also QxidX = idQxX : QxX → QxX.

(ii) For all X,Y ∈ Ṁan and x ∈ X, y ∈ Y the morphism(
Q(x,y)πX , Q(x,y)πY

)
: Q(x,y)(X × Y ) −→ QxX ×QyY (10.18)

is an isomorphism in Q, where πX , πY are C by (b)(ii).

(iii) If i : U ↪→ X is an open submanifold in Ṁan then Qxi : QxU → QxX is
an isomorphism for all x ∈ U ⊆ X, so we may identify QxU with QxX.

(iv) If X ∈Man ⊆ Ṁan is a classical manifold and x ∈ X then QxX = 0.

(v) Let X,Y be objects of Ṁan, and E → X a vector bundle, and s ∈ Γ∞(E) a
section, and f, g : X → Y be C morphisms in Ṁan with g = f+O(s) as in
Definition 3.15(iii). Suppose x ∈ s−1(0) ⊆ X, so that f(x) = g(x) = y ∈ Y .
Then Qxf = Qxg : QxX → QyY .

Example 10.20. (a) Take Ṁan to be Manc from §2.1, and C to be trivial (i.e.
all morphisms in Manc areC), andQ to be the category of finite-dimensional real
vector spaces. Definition 2.16 defines the stratum normal space ÑxX, an object
in Q, for all X ∈ Manc and x ∈ X, and a linear map Ñxf : ÑxX → ÑyY ,
a morphism in Q, for all morphisms f : X → Y in Manc and x ∈ X with
f(x) = y ∈ Y . These satisfy Assumption 10.19.

(b) Take Ṁan to be Manc from §2.1, and C to be interior morphisms, and
Q to be the category of finite-dimensional real vector spaces. Definition 2.16
defines the stratum b-normal space bÑxX, an object in Q, for all X ∈Manc

and x ∈ X, and a morphism bÑxf : bÑxX → bÑyY in Q, for all interior
morphisms f : X → Y in Manc and x ∈ X with f(x) = y ∈ Y . These satisfy
Assumption 10.19.

(c) Take Ṁan to be Manc from §2.1, and C to be interior morphisms, and Q
to be the category of commutative monoids M with M ∼= Nk for some k > 0.
Definition 2.16 defines an object M̃xX in Q for all X ∈Manc and x ∈ X, and
a morphism M̃xf : M̃xX → M̃yY in Q, for all interior morphisms f : X → Y in
Manc and x ∈ X with f(x) = y ∈ Y . These satisfy Assumption 10.19.

(d) Take Ṁan to be Mangc from §2.4.1, and C to be interior morphisms, and
Q to be the category of finite-dimensional real vector spaces. As in §2.4.1, the
bÑxX and bÑxf : bÑxX → bÑyY in (b) are also defined for X,Y ∈ Mangc.
These satisfy Assumption 10.19.

(e) Take Ṁan to be Mangc from §2.4.1, and C to be interior morphisms, and
Q to be the category of toric commutative monoids M . As in §2.4.1, the M̃xX
and M̃xf : M̃xX → M̃yY in (c) are also defined for X,Y ∈Mangc, though now

M̃xX may be general toric monoids. These satisfy Assumption 10.19.
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10.2 The definition of tangent and obstruction spaces

In this section we suppose Ṁan satisfies Assumption 10.1 in §10.1.1 throughout,
so that we are given a discrete property A (possibly trivial) of morphisms in
Ṁan, and ‘manifolds’ V in Ṁan have tangent spaces TvV for v ∈ V , and A
morphisms f : V →W in Ṁan have functorial tangent maps Tvf : TvV → TwW
for all v ∈ V with f(v) = w ∈W . For each (m- or µ-)Kuranishi space X we will
define a tangent space TxX and obstruction space OxX for x ∈X, which behave
functorially under A (1-)morphisms f : X → Y in mK̇ur,µK̇ur, or K̇ur.

If we also suppose Assumption 10.5, which says that dimTvV = dimV , then
these satisfy dimTxX − dimOxX = vdimX.

10.2.1 Tangent and obstruction spaces for m-Kuranishi
spaces

We define tangent and obstruction spaces TxX, OxX for m-Kuranishi spaces.

Definition 10.21. Let X = (X,K) be an m-Kuranishi space, with K =
(
I, (Vi,

Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I
)

and Φij = (Vij , φij , φ̂ij), Λijk = [V́ijk, λ̂ijk]
for all i, j, k ∈ I, as in Definition 4.14, and let x ∈X.

For each i ∈ I with x ∈ Imψi, set vi = ψ−1
i (x), and define real vector spaces

Kx
i , C

x
i by the exact sequence

0 // Kx
i

// TviVi
dvisi // Ei|vi // Cxi // 0, (10.19)

where dvisi is as in Definition 10.6, so that Kx
i , C

x
i are the kernel and cokernel

of dvisi. If Assumption 10.5 holds then Definition 4.14(b) gives

dimKx
i −dimCxi =dimTviVi−dimEi|vi =dimVi−rankEi=vdimX. (10.20)

For i, j ∈ I with x ∈ Imψi ∩ Imψj we have vi ∈ Vij ⊆ Vi with φij(vi) = vj
in Vj . Proposition 4.34(d) and Definition 4.33 imply that φij is A near vi, so
Tviφij : TviVi → TvjVj is defined. Thus we may form a diagram with exact rows:

0 // Kx
i

//

κxΦij��

TviVi dvisi

//

Tviφij��

Ei|vi
φ̂ij |vi ��

// Cxi
γxΦij ��

// 0

0 // Kx
j

// TvjVj
dvj sj // Ej |vj // Cxj // 0.

(10.21)

By differentiating Definition 4.2(d) at vi we see the central square of (10.21)
commutes, so by exactness there are unique linear κxΦij , γ

x
Φij

making (10.21)
commute.
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If i, j, k ∈ I with x ∈ Imψi ∩ Imψj ∩ Imψk then we have a diagram

0 // Kx
i

//

κxΦij
��

κxΦik

��

TviVi dvisi

//

Tviφij��
Tviφik

��

Ei|vi
λ̂ijk|vi

{{

φ̂ij |vi ��
φ̂ik|vi





// Cxi
γxΦij
��
γxΦik

��

// 0

0 // Kx
j

//

κxΦjk
��

TvjVk dvj sj

//
Tvjφjk

��

Ej |vj
φ̂jk|vj ��

// Cxj
γxΦjk

��

// 0

0 // Kx
k

// TvkVk
dvksk // Ek|vk // Cxk // 0,

(10.22)

which combines (10.21) for i, j and j, k and i, k. Note that (10.22) may not

commute: we can have φik 6= φjk ◦ φij and φ̂ik 6= φ∗ij(φ̂jk) ◦ φ̂ij near vi in Vi,
allowing

Tviφik 6= Tvjφjk ◦ Tviφij and φ̂ik|vi 6= φ̂jk|vj ◦ φ̂ij |vi .

The 2-morphism Λijk = [V́ijk, λ̂ijk] : Φjk ◦ Φij ⇒ Φik includes a morphism

λ̂ijk : Ei|V́ijk → Tφjk◦φijVk|V́ijk , where vi ∈ V́ijk ⊆ Vi. Thus as in §10.1.2, we

have a linear map λ̂ijk|vi : Ei|vi → TvkVk, the arrow ‘99K’ in (10.22). Applying
(10.7)–(10.8) to equation (4.1) for Λijk at vi yields

Tviφik = Tvjφjk ◦ Tviφij + λ̂ijk|vi ◦ dvisi : TviVi −→ TvkVk,

φ̂ik|vi = φ̂jk|vj ◦ φ̂ij |vi + dvksk ◦ λ̂ijk|vi : Ei|vi −→ Ek|vk .
(10.23)

Comparing (10.22) and (10.23) and using exactness in the rows of (10.22), we
deduce that

κxΦik = κxΦjk ◦ κ
x
Φij and γxΦik = γxΦjk ◦ γ

x
Φij . (10.24)

When k = i we have Φii = id(Vi,Ei,si,ψi) by Definition 4.14(f), so κxΦii = idKx
i
,

γxΦii = idCxi , and from (10.24) we see that κxΦij , γ
x
Φij

are isomorphisms, with
inverses κxΦji , γ

x
Φji

.
Define the tangent space TxX and obstruction space OxX of X at x by

TxX =
∐
i∈I:x∈Imψi

Kx
i / ≈ and OxX =

∐
i∈I:x∈Imψi

Cxi / �, (10.25)

where ≈ is the equivalence relation ki ≈ kj if ki ∈ Kx
i and kj ∈ Kx

j with
κxΦij (ki) = kj , and � the equivalence relation ci � cj if ci ∈ Cxi and cj ∈ Cxj
with γxΦij (ci) = cj . Here (10.24) and κxΦij , γ

x
Φij

isomorphisms with κxΦii = id,
γxΦii = id imply that ≈,� are equivalence relations. Then TxX, OxX are real
vector spaces with canonical isomorphisms TxX ∼= Kx

i and OxX ∼= Cxi for each
i ∈ I with x ∈ Imψi; the work above is just to make the definition of TxX, OxX
independent of the choice of i.

If Assumption 10.5 holds then (10.20) gives

dimTxX − dimOxX = vdimX. (10.26)

The dual vector spaces of TxX, OxX will be called the cotangent space,
written T ∗xX, and the coobstruction space, written O∗xX.
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By (10.19), for any i ∈ I with x ∈ Imψi we have a canonical exact sequence

0 // TxX // TviVi
dvisi // Ei|vi // OxX // 0. (10.27)

More generally, the argument above shows that if (Va, Ea, sa, ψa) is any m-
Kuranishi neighbourhood on X in the sense of §4.7 with x ∈ Imψa, we have a
canonical exact sequence analogous to (10.27).

Now let f : X → Y be a 1-morphism of m-Kuranishi spaces which is A in
the sense of §4.5, with notation (4.6), (4.7), (4.9), and let x ∈X with f(x) = y
in Y , so we have TxX, OxX, TyY , OyY . Suppose i ∈ I with x ∈ Imχi and

j ∈ J with y ∈ Imψj , so we have a morphism f ij = (Uij , fij , f̂ij) in f , where

fij is A near χ−1
i (Imψj) by Definitions 4.33 and 4.35. As for (10.21), consider

the diagram

0 // TxX //

Txf
��

TuiUi duiri

//

Tuifij��

Di|ui
f̂ij |ui��

// OxX

Oxf
��

// 0

0 // TyY // TvjVj
dvj sj // Ej |vj // OyY // 0,

(10.28)

where the rows are (10.27) for X, x, i and Y , y, j and so are exact. As for (10.21)
the central square commutes, so there are unique linear maps Txf : TxX → TyY
and Oxf : OxX → OyY making (10.28) commute. A similar argument to the
proof of (10.24) above shows that these Txf , Oxf are independent of the choices
of i ∈ I and j ∈ J , and so are well defined.

If (Ua, Da, ra, χa) and (Vb, Eb, sb, ψb) are any m-Kuranishi neighbourhoods
on X,Y respectively in the sense of §4.7 with x ∈ Imψa, y ∈ Imψb, and
fab = (Uab, fab, f̂ab) is the 1-morphism of m-Kuranishi neighbourhoods over f
given by Theorem 4.56(b), then setting ua = χ−1

a (x), vb = ψ−1
b (y), the argument

of (10.28) shows that the following commutes, with exact rows:

0 // TxX //

Txf
��

TuaUa duara

//

Tuafab��

Da|ua
f̂ab|ua��

// OxX

Oxf
��

// 0

0 // TyY // TvbVb
dvbsb // Eb|vb // OyY // 0.

(10.29)

Suppose e : X → Y is another 1-morphism of m-Kuranishi spaces, and
η = (ηij, i∈I, j∈J) : e ⇒ f is a 2-morphism, so that e is A by Proposition
4.36(a). Then for x, y, i, j as above, consider the diagram

0 // TxX //

Txe �� Txf��

TuiUi
duiri //

Tuieij

��
Tuifij

��

Di|ui
η̂ij |vi

tt êij |ui �� f̂ij |ui��

// OxX
Oxe

��
Oxf

��

// 0

0 // TyY // TvjVj dvj sj

// Ej |vj // OyY // 0.

(10.30)

As for (10.23), applying (10.7)–(10.8) to (4.1) for ηij = [V́ij , η̂ij ] at vi yields

Tuifij = Tuieij + η̂ij |vi ◦ dvisi : TviVi −→ TvjVj ,

f̂ij |ui = êij |ui + dvjsj ◦ η̂ij |vi : Ei|vi −→ Ej |vj .
(10.31)
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As for (10.24), combining (10.30) and (10.31) yields

Txe = Txf and Oxe = Oxf . (10.32)

Thus, the maps Txf , Oxf depend only on the A morphism [f ] : X → Y in
Ho(mK̇ur), and on x ∈X.

Now suppose g : Y → Z is another A 1-morphism of m-Kuranishi spaces
and g(y) = z ∈ Z. In a similar way to (10.22), considering the diagram

0 // TxX //

Txf
��

Tx(g◦f)

��

TuiUi duiri

//

Tuifij��
Tvi (g◦f)ik

��

Di|ui
θ̂g,fijk |vi

zz

f̂ij |ui ��
(ĝ◦f)ik|ui





// OxX

Oxf
��

OX(g◦f)





// 0

0 // TyY //

Tyg
��

TvjVk dvj sj

//
Tvj gjk

��

Ej |vj
ĝjk|vj ��

// OyY

Oyg
��

// 0

0 // TzZ // TwkWk

dwk tk // Fk|vk // OzZ // 0,

applying (10.7)–(10.8) to (4.1) for Θg,fijk = [V́ g,fijk , θ̂
g,f
ijk ] in (4.24), we show that

Tx(g ◦ f) = Tyg ◦ Txf : TxX −→ TzZ,

Ox(g ◦ f) = Oyg ◦Oxf : OxX −→ OzZ.
(10.33)

Also

TxidX = idTxX : TxX −→ TxX,

OxidX = idOxX : OxX −→ OxX.
(10.34)

So tangent and obstruction spaces are functorial on the 2-category mK̇urA.

Example 10.22. Let X,Y be m-Kuranishi spaces, so that Example 4.31 defines
the product m-Kuranishi space X × Y . In Definition 10.21, using Assumption
10.1(c) it is easy to see that for all (x, y) ∈X×Y we have canonical isomorphisms

T(x,y)(X × Y ) ∼= TxX ⊕ TyY , O(x,y)(X × Y ) ∼= OxX ⊕OyY . (10.35)

Lemma 10.23. In Definition 10.21 suppose f : X → Y is an equivalence in
mK̇ur, so that f is A by Proposition 4.36(c). Then Txf : TxX → TyY and
Oxf : OxX → OyY are isomorphisms for all x ∈X with f(x) = y in Y .

Proof. As f is an equivalence there exist an equivalence g : Y → X and 2-
morphisms η : g ◦ f ⇒ idX and ζ : f ◦ g ⇒ idY . If x ∈X with f(x) = y in Y
then g(y) = x. From (10.33), and (10.32) for η, and (10.34), we see that

Tyg ◦ Txf = Tx(g ◦ f) = TxidX = idTxX ,

Oyg ◦Oxf = Ox(g ◦ f) = OxidX = idOxX .

Similarly Txf ◦Tyg = idTyY and Oxf ◦Oyg = idOyY . Thus Tyg, Oyg are inverses
for Txf , Oxf , and Txf , Oxf are isomorphisms.
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Remark 10.24. (a) Even when Ṁan = Man, in contrast to classical manifolds,
dimTxX,dimOxX may not be locally constant functions of x ∈ X, but only
upper semicontinuous, so TxX, OxX are not fibres of vector bundles on X.

(b) In applications, tangent and obstruction spaces will often have the following
interpretation. Suppose an m-Kuranishi space X is the moduli space of solutions
of a nonlinear elliptic equation on a compact manifold, written as X ∼= Φ−1(0)
for Φ : V → E a Fredholm section of a Banach vector bundle E → V over
a Banach manifold V. Then dxΦ : TxV → Ex is a linear Fredholm map of
Banach spaces for x ∈X, and TxX ∼= Ker(dxΦ), OxX ∼= Coker(dxΦ), so that
dimTxX − dimOxX = vdimX is the Fredholm index ind(dxΦ).

Combining Definition 10.21 and Example 10.2 yields:

Example 10.25. (i) In the 2-categories mKur,mKurc,mKurc
we from (4.37),

we have notions of tangent space TxX and obstruction space OxX satisfying
dimTxX − dimOxX = vdimX, based on the usual notion of tangent spaces
TxX when Ṁan is Man,Manc or Manc

we. For any 1-morphism f : X → Y in
mKur,mKurc,mKurc

we we have functorial tangent maps Txf : TxX → TyY
and obstruction maps Oxf : OxX → OyY for all x ∈X with f(x) = y in Y .

(ii) In the 2-categories mKurc,mKurgc,mKurac,mKurc,ac from (4.37), we
have notions of b-tangent space bTxX and b-obstruction space bOxX satisfying
dim bTxX − dim bOxX = vdimX, based on b-tangent spaces bTxX from §2.3–
§2.4 for the categories Manc,Mangc,Manac,Manc,ac. For any interior 1-
morphism f : X → Y in mKurc, . . . ,mKurc,ac we have functorial b-tangent
maps bTxf : bTxX → bTyY and b-obstruction maps bOxf : bOxX → bOyY for
all x ∈ X with f(x) = y in Y . Since bTxf ,

bOxf are defined only for interior
1-morphisms f , it is better to think of b-tangent and b-obstruction spaces
bTxX,

bOxX as attached to the 2-subcategories mKurc
in,mKurgc

in ,mKurac
in ,

mKurc,ac
in from Definition 4.37.

(iii) In the 2-categories mKurc,mKurgc,mKurac,mKurc,ac from (4.37), we
have notions of stratum tangent space T̃xX and stratum obstruction space ÕxX,
based on stratum tangent spaces T̃xX from Example 10.2(iv) for the categories
Manc,Mangc,Manac,Manc,ac. They satisfy dim T̃xX−dim ÕxX 6 vdimX,
but equality may not hold.

For any 1-morphism f : X → Y in mKurc,mKurgc,mKurac,mKurc,ac

we have functorial stratum tangent maps T̃xf : T̃xX → T̃yY and stratum

obstruction maps Õxf : ÕxX → ÕyY for all x ∈X with f(x) = y in Y .

(iv) For any Ṁan satisfying Assumptions 3.1–3.7, the corresponding 2-category
of m-Kuranishi spaces mK̇ur has notions of C∞-tangent space TC

∞

x X and
C∞-obstruction space OC

∞

x X, functorial for all 1-morphisms in mK̇ur, based
on tangent spaces of C∞-schemes as in Example 10.2(v). They are canonically
isomorphic to TxX, OxX in (i) in those cases.

Definition 10.26. Suppose we are given two notions of tangent space TxX,Txf
with discrete property A, and T ′xX,T

′
xf with discrete property A′, in Ṁan

satisfying Assumption 10.1, and a natural transformation I : T ⇒ T ′, as in
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Definition 10.3. Then for each m-Kuranishi space X in mK̇ur and x ∈ X,
Definition 10.21 defines TxX, OxX and T ′xX, O′xX. Consider the diagram

0 // TxX

ITxX ��

// TviVi
IviVi ��

dvisi

// Ei|vi
id��

// OxX

IOx X��

// 0

0 // T ′xX // T ′viVi
d′vi

si
// Ei|vi // O′xX // 0,

(10.36)

where the rows are (10.27) for T, T ′, and are exact. Using Definitions 10.3 and
10.6 we can show that the central square of (10.36) commutes, so that by exactness
there are unique linear maps ITxX : TxX → T ′xX and IOx X : OxX → O′xX
making (10.36) commute. One can show that these are independent of the choice
of i ∈ I as for (10.28).

Note that IOx X is always surjective. If IviVi is injective then ITxX is injective.
If IviVi is surjective then ITxX is surjective and IOx X is an isomorphism.

Let f : X → Y be a 1-morphism of m-Kuranishi spaces which is both A and
A′, with notation (4.6), (4.7), (4.9), let x ∈X with f(x) = y in Y , and consider
the diagram

0 // TxX
ITxX��

//

Txf

��

TuiUi
IuiUi��

duiri

//

Tuifij

��

Di|ui
id
��f̂ij |ui

��

// OxX

Oxf

��

IOx X��

// 0

0 // T ′xX //

T ′xf��

T ′uiUi d′ui
ri

//

T ′ui
fij��

Di|ui

f̂ij |ui��

// O′xX

O′xf��

// 0

0 // TyY

ITy Y ��

// TvjVj

IvjVj ��

dvj sj // Ej |vj
id ��

// OyY

IOy Y ��

// 0

0 // T ′yY // T ′vjVj
d′vj

sj
// Ej |vj // O′yY // 0.

This combines (10.28) for T, T ′, and (10.36) for X, x and Y , y. As the central
cube commutes, by exactness the outer squares commute. That is, we have

ITy Y ◦ Txf = T ′xf ◦ ITxX and IOy Y ◦Oxf = O′xf ◦ IOx X, (10.37)

so the linear maps ITxX, IOx X form natural transformations IT : T ⇒ T ′,
IO : O ⇒ O′ in K̇ur.

Combining Definition 10.26 and Examples 10.4 and 10.25 yields:

Example 10.27. (a) For X in mKurc we have natural linear maps ITxX :
bTxX → TxX and IOx X : bOxX → OxX, for TxX, OxX, bTxX, bOXX as in
Example 10.25(i),(ii), where IOx X is always surjective.

(b) For X in mKurc we have natural linear maps ιTxX : T̃xX → TxX and
ιOxX : ÕxX → OxX, for TxX, OxX, T̃xX, ÕXX as in Example 10.25(i),(iii),
where ιTxX is always injective and ιOxX is surjective.

(c) For X in any of mKurc,mKurgc,mKurac,mKurc,ac, there are natu-
ral linear maps ΠT

xX : bTxX → T̃xX and ΠO
xX : bOxX → ÕxX, for

bTxX, bOxX, T̃xX, ÕXX as in Example 10.25(ii),(iii), where ΠT
xX is always

surjective and ΠO
xX is an isomorphism.
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10.2.2 Tangent and obstruction spaces for µ-Kuranishi spaces

For µ-Kuranishi spaces in Chapter 5, by essentially exactly the same arguments
as in §10.2.1, if Ṁan satisfies Assumption 10.1 with discrete property A then:

(a) For each µ-Kuranishi space X in µK̇ur and x ∈ X we can define the
tangent space TxX and obstruction space OxX, both real vector spaces.

(b) If Assumption 10.5 holds then dimTxX − dimOxX = vdimX.

(c) For each A morphism f : X → Y in µK̇ur and x ∈X with f(x) = y in
Y we can define linear maps Txf : TxX → TyY and Oxf : OxX → OyY .
These are functorial, that is, (10.33)–(10.34) hold.

(d) The analogues of Lemma 10.23, Examples 10.25, 10.27, Definition 10.26
hold.

10.2.3 Tangent and obstruction spaces for Kuranishi spaces

In §6.5, for a Kuranishi space X in K̇ur and x ∈X we defined a finite group
GxX called the isotropy group. It depends on arbitrary choices, and is natural
up to isomorphism, but not up to canonical isomorphism.

Supposing Assumption 10.1 with discrete property A, in §10.2.1, for an
m-Kuranishi space X, we defined a tangent space TxX and an obstruction space
OxX for each x ∈ X, which were unique up to canonical isomorphism and
behaved functorially under A 1-morphisms and 2-morphisms of m-Kuranishi
spaces. To define tangent and obstruction spaces for Kuranishi spaces, we must
combine these two stories:

Definition 10.28. Let X = (X,K) be a Kuranishi space, with K =
(
I, (Vi, Ei,

Γi, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I
)
, and let x ∈X.

In Definition 6.49 we defined the isotropy group GxX by choosing i ∈ I with
x ∈ Imψi and vi ∈ s−1

i (0) ⊆ Vi with ψ̄i(vi) = x, and setting GxX = StabΓi(vi)
as in (6.40). For these i, vi, define the tangent space TxX and obstruction space
OxX to be the kernel and cokernel of dvisi, where dvisi is as in Definition 10.6,
so that as in (10.27) we have an exact sequence

0 // TxX // TviVi
dvisi // Ei|vi // OxX // 0. (10.38)

The actions of Γi on Vi, Ei induce linear actions of GxX on TxX, OxX, by the
commutative diagram for each γ ∈ GxX:

0 // TxX //

γ·
��

TviVi dvisi

//

Tvi (γ·) ��

Ei|vi
γ·
��

// OxX

γ·
��

// 0

0 // TxX // TviVi
dvisi // Ei|vi // OxX // 0.

This makes TxX, OxX into representations of GxX. The dual vector spaces of
TxX, OxX are the cotangent space T ∗xX and the coobstruction space O∗xX.
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If Assumption 10.5 holds then (10.38) implies that

dimTxX − dimOxX = vdimX. (10.39)

Generalizing the discussion of Definition 6.49 on how GxX depends on the
choice of i, vi, we can show that if (GxX, TxX, OxX) come from i, vi, and
(G′xX, T ′xX, O′xX) come from alternative choices j, vj , then by picking a point
p in Sx in (6.41), we can define an isomorphism of triples

(IGx , I
T
x , I

O
x ) : (GxX, TxX, OxX) −→ (G′xX, T ′xX, O′xX).

If we instead picked p̃ ∈ Sx giving (ĨGx , Ĩ
T
x , Ĩ

O
x ), then there is a unique δ ∈ G′xX

with δ · p = p̃, and we can show that ĨGx (γ) = δIGx (γ)δ−1, ĨTx (v) = δ · ITx (v)
and ĨOx (w) = δ · IOx (w) for all γ ∈ GxX, v ∈ TxX, and w ∈ OxX. Such
isomorphisms of triples behave as expected under compositions.

Now let f : X → Y be anA 1-morphism in K̇ur, with notation (6.15), (6.16),
(6.18), and let x ∈X with f(x) = y in Y . As above we define GxX, TxX, OxX
using i ∈ I and ui ∈ Ui with χ̄i(ui) = x, and GyY , TyY , OyY using j ∈ J and
vj ∈ Vj with ψ̄j(vj) = y. By picking p ∈ Sx,f in (6.44), Definition 6.51 defines a
group morphism Gxf : GxX → GyY . As for (10.28), using the same p, define
Txf : TxX → TyY , Oxf : OxX → OyY by the commutative diagram

0 // TxX //

Txf
��

TuiUi duiri

//

Tpfij◦(Tpπij)−1

��

Di|ui
f̂ij |p
��

// OxX

Oxf
��

// 0

0 // TyY // TvjVj
dvj sj // Ej |vj // OyY // 0.

Then Txf , Oxf are Gxf -equivariant linear maps.
Generalizing Definition 6.51, if p̃ ∈ Sx,f is an alternative choice yielding

G̃xf , T̃xf , Õxf , there is a unique δ ∈ GyY with δ · p = p̃, and then G̃xf(γ) =

δ(Gxf(γ))δ−1, T̃xf(v) = δ · Txf(v), Õxf(w) = δ · Oxf(w) for all γ ∈ GxX,
v ∈ TxX, and w ∈ OxX. That is, the triple (Gxf , Txf , Oxf) is canonical up to
conjugation by an element of GyY .

Continuing with the same notation, suppose g : X → Y is another 1-
morphism and η : f ⇒ g a 2-morphism in K̇ur. Then g is A by Proposition
6.34(a), so as above we define Gxg, Txg, Oxg by choosing q ∈ Sx,g. As in

Definition 6.51, if ηij in η is represented by (Ṗij , ηij , η̂ij), there is a unique
element Gxη ∈ GyY with Gxη · ηij(p) = q. One can now check that

Gxg(γ) = (Gxη)(Gxf(γ))(Gxη)−1, Txg(v) = Gxη · Txf(v), and

Oxg(w) = Gxη ·Oxf(w) for all γ ∈ GxX, v ∈ TxX, and w ∈ OxX.

That is, (Gxg, Txg, Oxg) is conjugate to (Gxf , Txf , Oxf) under Gxη ∈ GyY ,
the same indeterminacy as in the definition of (Gxf , Txf , Oxf).

Suppose instead that g : Y → Z is another A 1-morphism of Kuranishi
spaces and g(y) = z ∈ Z. Then as in Definition 6.51 there is a canonical element
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Gx,g,f ∈ GzZ such that for all γ ∈ GxX, v ∈ TxX, w ∈ OxX we have

Gx(g ◦ f)(γ) = (Gx,g,f )((Gyg ◦Gxf)(γ))(Gx,g,f )−1,

Tx(g ◦ f)(v) = Gx,g,f · (Tyg ◦ Txf)(v),

Ox(g ◦ f)(w) = Gx,g,f · (Oyg ◦Oxf)(w).

That is, (Gx(g ◦ f), Tx(g ◦ f), Ox(g ◦ f)) is conjugate to (Gyg, Tyg, Oyg) ◦
(Gxf , Txf , Oxf) under Gx,g,f ∈ GzZ.

Remark 10.29. The definitions of GxX, TxX, OxX, Gxf , Txf , Oxf above de-
pend on arbitrary choices. We could use the Axiom of (Global) Choice as in
Remark 4.21 to choose particular values for GxX, . . . , Oxf for all X, x,f . But
this is not really necessary, we can just bear the non-uniqueness in mind when
working with them. All the definitions we make using GxX, . . . , Oxf will be
independent of the arbitrary choices in Definition 10.28.

The analogues of Lemma 10.23, Examples 10.25 and 10.27, and Definition
10.26 hold for our 2-categories of Kuranishi spaces.

10.3 Quasi-tangent spaces

In this section we suppose Ṁan satisfies Assumption 10.19 in §10.1.5 throughout,
so that we are given a discrete property C (possibly trivial) of morphisms in
Ṁan, and ‘manifolds’ V in Ṁan have quasi-tangent spaces QvV for v ∈ V ,
which are objects in a category Q, and C morphisms f : V → W in Ṁan
have functorial quasi-tangent maps Qvf : QvV → QwW for all v ∈ V with
f(v) = w ∈W , which are morphisms in Q.

For each (m- or µ-)Kuranishi space X we will define a quasi-tangent space
QxX for x ∈ X, with functorial morphisms Qxf : QxX → QyY under C

(1-)morphisms f : X → Y in mK̇ur,µK̇ur, or K̇ur. Unlike TxX, OxX in
§10.2, there is no ‘obstruction’ version of QxX. These QxX, Qxf are useful for
imposing conditions on objects and (1-)morphisms in mK̇ur,µK̇ur, and K̇ur,
for instance in defining (w-)transversality and (w-)submersions in Chapter 11.

10.3.1 Quasi-tangent spaces for m-Kuranishi spaces

Here is the analogue of Definition 10.21 for quasi-tangent spaces:

Definition 10.30. Let X = (X,K) be an m-Kuranishi space, with K =
(
I, (Vi,

Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I
)

and Φij = (Vij , φij , φ̂ij), Λijk = [V́ijk, λ̂ijk]
for all i, j, k ∈ I, as in Definition 4.14, and let x ∈X.

For each i ∈ I with x ∈ Imψi, set vi = ψ−1
i (x) in s−1

i (0) ⊆ Vi, so that we have
an object QviVi in Q by Assumption 10.19(c). For i, j ∈ I with x ∈ Imψi∩Imψj
we have vi ∈ Vij ⊆ Vi with φij = vj ∈ Vj . Proposition 4.34(d) and Definition
4.33 imply that φij is C near vi, so Qviφij : QviVi → QvjVj is defined. When
j = i we have φii = idVi , so Qviφii = idQviVi .
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If i, j, k ∈ I with x ∈ Imψi ∩ Imψj ∩ Imψk, Definition 4.3(b) for Λijk :
Φjk ◦ Φij ⇒ Φik implies that φik = φjk ◦ φij +O(si) near vi, so

Qviφik = Qvjφjk ◦Qviφij : QviVi −→ QvjVj

by Assumption 10.19(c)(i),(v). Putting k = i gives Qvjφji ◦ Qviφij = idQviVi ,
and similarly Qviφij ◦Qvjφji = idQvjVj , so Qviφij is an isomorphism. Hence by

Assumption 10.19(a), we may define a natural object QxX in Q by

QxX =
[∐

i∈I:x∈Imψi
QviVi

]
/ ∼, (10.40)

as in (10.25), where the equivalence relation ∼ is induced by the isomorphisms
Qviφij : QviVi → QvjVj , and there are canonical isomorphisms Qx,i : QxX →
QviVi in Q with Qx,j = Qviφij ◦Qx,i for all i, j ∈ I with x ∈ Imψi ∩ Imψj . We
call QxX the quasi-tangent space of X at x.

More generally, if (Va, Ea, sa, ψa), Φai, i∈I , Λaij, i,j∈I is any m-Kuranishi
neighbourhood on X in the sense of §4.7 with x ∈ Imψa, and va = ψ−1

a (x),
there is a canonical isomorphism Qx,a : QxX → QvaVa with Qx,i = Qvaφai◦Qx,a
for all i ∈ I with x ∈ Imψi.

Now let f : X → Y be a 1-morphism of m-Kuranishi spaces which is C in
the sense of §4.5, with notation (4.6), (4.7), (4.9), and let x ∈X with f(x) = y
in Y , so we have objects QxX, QyY in Q. We claim that there is a unique
morphism Qxf : QxX → QyY in Q, called the quasi-tangent map, such that
the following diagram commutes:

QxX
Qxf

//

Qx,i ∼=��

QyY

Qy,j ∼=��
QuiUi

Quifij // QvjVj

(10.41)

whenever i ∈ I with x ∈ Imχi and ui = χ−1
i (x), and j ∈ J with y ∈ Imψj

and vj = ψ−1
j (y). To see this, note that for fixed i, j there is a unique Qxf

making (10.41) commute. To show this Qxf is independent of i, j, let i′ be
an alternative choice for i. From Definition 4.3(b) applied to the 2-morphism
F jii′ : f i′j ◦ Tii′ ⇒ f ij in Definition 4.17(c), we see that fi′j ◦ τii′ = fij +O(ri)
near ui in Ui, so Qui′ fi′j ◦ Quiτii′ = Quifij by Assumption 10.19(c)(i),(v).
Together with Qx,i′ = Quiτii′ ◦ Qx,i, this implies that Qxf is unchanged by

replacing i by i′ in (10.41). Similarly, using F jj
′

i : Υjj′ ◦ f ij ⇒ f ij′ in Definition
4.17(d) we can show that Qxf is unchanged by replacing j by an alternative
choice j′.

More generally, if (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) are m-Kuranishi neigh-

bourhoods on X,Y with x ∈ Imχa, y ∈ Imψb, and fab = (Uab, fab, f̂ab) :
(Ua, Da, ra, χa)→ (Vb, Eb, sb, ψb) is a 1-morphism over (S,f) for open x ∈ S ⊆
Imχa ∩ f−1(Imψb) as in Theorem 4.56(b), then the following commutes:

QxX
Qxf

//

Qx,a ∼=��

QyY

Qy,b ∼=��
QuaUa

Quafab // QvbVb.

(10.42)

24



Suppose e : X → Y is another 1-morphism of m-Kuranishi spaces, and
η = (ηij, i∈I, j∈J) : e ⇒ f is a 2-morphism, so that e is C by Proposition
4.36(a). Then for x, y, i, j, ui, vj as above, Definition 4.3(b) applied to the 2-
morphism ηij : eij ⇒ f ij shows that fij = eij + O(ri) near ui in Ui, so
Quifij = Quieij by Assumption 10.19(c)(v). Thus comparing (10.41) for e,f
shows that Qxe = Qxf . Hence the morphisms Qxf depend only on the C
morphism [f ] : X → Y in Ho(mK̇ur), and on x ∈X.

Now suppose g : Y → Z is another C 1-morphism of m-Kuranishi spaces
and g(y) = z ∈ Z with notation (4.7)–(4.9), let i ∈ I, j ∈ J , k ∈ K with
x ∈ Imχi, y ∈ Imψj , z ∈ Imωk, and set ui = χ−1

i (x), vj = ψ−1
j (y) and

vk = ω−1
k (z). Then g ◦ f : X → Z is C, and Definition 4.20 gives a 2-morphism

Θg,fijk : gjk ◦ f ij ⇒ (g ◦ f)ik. Therefore (g ◦ f)ik = gjk ◦ fij +O(ri) near ui, so
Assumption 10.19(c)(i),(v) gives

Qui(g ◦ f)ik = Qvjgjk ◦Quifij : QuiVi −→ QwkWk.

Combining this with (10.41) for f , g and g ◦ f yields

Qx(g ◦ f) = Qyg ◦Qxf . (10.43)

Also the definition of idX yields

QxidX = idQxX : QxX → QxX. (10.44)

So quasi-tangent spaces are functorial on the 2-category mK̇urC .

As for Lemma 10.23, we can prove:

Lemma 10.31. In Definition 10.30 suppose f : X → Y is an equivalence in
mK̇ur, so that f is C by Proposition 4.36(c). Then Qxf : QxX → QyY is an
isomorphism in Q for all x ∈X with f(x) = y in Y .

Combining Definition 10.30 and Example 10.20 yields:

Example 10.32. (a) In the 2-category mKurc from (4.37), we have stratum
normal spaces ÑxX for allX ∈mKurc and x ∈X, which are finite-dimensional
real vector spaces, based on ÑvV in Definition 2.16 when V ∈Manc and v ∈ V .
For any 1-morphism f : X → Y in mKurc we have functorial linear maps
Ñxf : ÑxX → ÑyY for all x ∈X with f(x) = y in Y .

(b) In the 2-category mKurc, we have stratum b-normal spaces bÑxX for all X
in mKurc and x ∈X, which are finite-dimensional real vector spaces, based on
bÑvV in Definition 2.16 when V ∈Manc and v ∈ V . For any interior 1-morphism
f : X → Y in mKurc we have functorial linear maps bÑxf : bÑxX → bÑyY

for all x in X with f(x) = y in Y . We have dim ÑxX = dim bÑxX for all x,X,
since dim ÑvV = dim bÑvV for all V ∈Manc and v ∈ V . But in general there
are no canonical isomorphisms ÑxX ∼= bÑxX.

(c) In the 2-category mKurc, we have a commutative monoid M̃xX for all X in
mKurc and x ∈X, with M̃xX ∼= Nk for some k > 0, based on M̃vV in Definition
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2.16 when V ∈ Manc and v ∈ V . For any interior 1-morphism f : X → Y
in mKurc we have functorial monoid morphisms M̃xf : M̃xX → M̃yY for all
x ∈X with f(x) = y in Y .

We have canonical isomorphisms bÑxX ∼= M̃xX ⊗N R for all x,X, as there
are canonical isomorphisms bÑvV ∼= M̃vV ⊗NR, and these isomorphisms identify
bÑxf : bÑxX → bÑyY with M̃xf ⊗ idR : M̃xX ⊗N R→ M̃yY ⊗N R.

(d) In the 2-category mKurgc from (4.37), we have stratum b-normal spaces
bÑxX for all X in mKurgc and x ∈ X, based on bÑvV in §2.4.1 when V ∈
Mangc and v ∈ V . For any interior 1-morphism f : X → Y in mKurgc we
have functorial linear maps bÑxf : bÑxX → bÑyY for all x ∈X with f(x) = y
in Y . On mKurc ⊂mKurgc these agree with those in (b).

(e) In the 2-category mKurgc, we have a toric commutative monoid M̃xX for
all X in mKurgc and x ∈ X, based on M̃vV in §2.4.1 when V ∈Mangc and
v ∈ V . For any interior 1-morphism f : X → Y in mKurgc we have functorial
monoid morphisms M̃xf : M̃xX → M̃yY for all x ∈X with f(x) = y in Y . On
mKurc ⊂mKurgc these agree with those in (c).

We have canonical isomorphisms bÑxX ∼= M̃xX ⊗N R for all x,X, which
identify bÑxf : bÑxX → bÑyY with M̃xf ⊗ idR : M̃xX ⊗N R→ M̃yY ⊗N R.

Quasi-tangent spaces are useful for stating conditions on objects and 1-
morphisms in mK̇ur. For example:

• An object X in mKurgc lies in mKurc ⊂mKurgc if and only if M̃xX ∼=
Nk for all x ∈X, for k > 0 depending on x.

• An interior 1-morphism f : X → Y in mKurc or mKurgc is simple if
and only if M̃xf is an isomorphism for all x ∈X.

• An interior 1-morphism f : X → Y in mKurc or mKurgc is b-normal if
and only if bÑxf is surjective for all x ∈X.

Example 10.33. LetX be an object in mKurc, and x ∈X. Using the notation
of Definitions 10.21 and 10.30, choose i ∈ I with x ∈ Imψi, set vi = ψ−1

i (x) in
s−1
i (0) ⊆ Vi, and consider the commutative diagram

0

��

0

��

0

��

0

��
· · · 0 // 0

0��

0 // T̃viVi
ιviVi��

d̃viri // Ei|vi
id ��

0 // 0

0��

0 // · · ·

· · · 0 // 0

0��

0 // TviVi
πviVi��

dviri // Ei|vi
��

0 // 0

0��

0 // · · ·

· · · 0 // 0

��

0 // ÑviVi

��

0 // 0

��

0 // 0

��

0 // · · ·

0 0 0 0.

(10.45)

Here TviVi, T̃viVi are as in Example 10.2(ii),(iv), and ιviVi is as in Example
10.4(b). The second column is (2.15) for Vi, vi, which is exact, and the other
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columns are clearly exact. The rows of (10.45) are complexes. By equa-
tions (10.27), (10.40) and Examples 10.25(i),(iii) and 10.32(a), the first row
has cohomology groups T̃xX, ÕxX, the second row TxX, OxX, and the third
row ÑxX, 0.

Identifying (10.45) with equation (10.89), a standard piece of algebraic
topology explained in Definition 10.69 below gives an exact sequence (10.90):

0 // T̃xX
ιTxX // TxX

πxX // ÑxX
δxX // ÕxX

ιOxX // OxX // 0. (10.46)

Here ιTxX, ιOxX are as in Example 10.27(b), and πxX, δxX are natural linear
maps, with δxX a ‘connecting morphism’. One can show as in Definitions 10.21
and 10.30 that πxX, δxX are independent of the choice of i ∈ I.

Now let f : X → Y be a 1-morphism in mKurc, and x ∈X with f(x) = y
in Y . Then using equations (2.16), (10.28), (10.37), and (10.41), we can show
that the following commutes, where Txf , Oxf , T̃xf , Õxf are as in Example
10.25(i),(iii) and Ñxf as in Example 10.32(a), and the rows are (10.46):

0 // T̃xX

T̃xf ��
ιTxX

// TxX

Txf ��

πxX
// ÑxX

Ñxf ��
δxX

// ÕxX

Õxf ��
ιOxX

// OxX

Oxf ��

// 0

0 // T̃yY
ιTy Y // TyY

πyY // ÑyY
δyY // ÕyY

ιOy Y // OyY // 0.

(10.47)

Example 10.34. Let X lie in mKurc,mKurgc,mKurac or mKurc,ac, and
x ∈ X. Then by a similar but simpler proof to Example 10.33 using (2.17)
instead of (2.15), we find there is a natural exact sequence

0 // bÑxX
bιxX // bTxX

ΠTxX // T̃xX // 0, (10.48)

where bTxX, T̃xX are as in Example 10.25(ii),(iii), and ΠT
xX as in Example

10.27(c), and bÑxX as in Example 10.32(b). If f : X → Y is a 1-morphism in
mKurc,mKurgc,mKurac or mKurc,ac, and x ∈X with f(x) = y in Y then
as for (10.47) we have a commuting diagram

0 // bÑxX
bÑxf ��

bιxX

// bTxX
bTxf ��

ΠTxX

// T̃xX

T̃xf ��

// 0

0 // bÑyY
bιyY // bTyY

ΠTy Y // T̃yY // 0.

(10.49)

10.3.2 Quasi-tangent spaces for µ-Kuranishi spaces

For µ-Kuranishi spaces in Chapter 5, by essentially exactly the same arguments
as in §10.3.1, if Ṁan satisfies Assumption 10.19 then:
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(a) For each µ-Kuranishi space X in µK̇ur and x ∈ X we can define the
quasi-tangent space QxX, an object in Q.

(b) For each C morphism f : X → Y in µK̇ur and x ∈ X with f(x) = y
in Y we can define a morphism Qxf : QxX → QyY in Q. These are
functorial, that is, (10.43)–(10.44) hold.

(c) The analogues of Lemma 10.31 and Examples 10.32–10.34 hold.

10.3.3 Quasi-tangent spaces for Kuranishi spaces

For quasi-tangent spaces of Kuranishi spaces, we combine the ideas of §10.3.1
and §10.2.3 in a straightforward way. The main points are these:

(a) Let X = (X,K) be a Kuranishi space, with K =
(
I, (Vi, Ei,Γi, si, ψi)i∈I ,

Φij, i,j∈I , Λijk, i,j,k∈I
)
, and let x ∈ X. In Definition 6.49 we defined the

isotropy group GxX by choosing i ∈ I with x ∈ Imψi and vi ∈ s−1
i (0) ⊆ Vi

with ψ̄i(vi) = x, and setting GxX = StabΓi(vi) as in (6.40). For these
i, vi, we define the quasi-tangent space QxX in Q to be QviVi.

(b) There is a natural action of GxX on QxX by isomorphisms in Q.

(c) QxX is independent of choices up to isomorphism in Q, but not up to
canonical isomorphism. Given two choices QxX, Q′xX, the isomorphism
QxX → Q′xX is natural only up to the action of GxX on Q′xX.

(d) Let f : X → Y be a C 1-morphism in K̇ur, with notation (6.15), (6.16),
(6.18), and let x ∈X with y ∈ Y . By picking p ∈ Sx,f in (6.44), Definition
6.51 defines a group morphism Gxf : GxX → GyY . Using the same p,
define a morphism Qxf : QxX → QyY in Q by the commutative diagram

QxX
Qxf

// QyY

QuiUi QpPij
Qpfij //Qpπij

∼=
oo QvjVj ,

where Qpπij is invertible as πij is étale. Then Qxf is Gxf -equivariant. It
depends on the choice of p up to the action of GyY on QyY .

(e) Continuing from (d), suppose e : X → Y is another 1-morphism and
η : e ⇒ f a 2-morphism in K̇ur. Then e is C by Proposition 6.34(a).
Definition 6.51 gives Gxη ∈ GyY , and we have Qxf = Gxη ·Qxe.

(f) Continuing from (d), suppose g : Y → Z is another C 1-morphism and
g(y) = z ∈ Z. Then Definition 6.51 gives Gx,g,f ∈ GzZ, and we have

Qx(g ◦ f) = Gx,g,f · (Qyg ◦Qxf).

(f) The analogues of Lemma 10.31 and Examples 10.32–10.34 hold.

We leave the details to the reader.
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10.4 Minimal (m-, µ-)Kuranishi neighbourhoods at x∈X

In this section we suppose Ṁan satisfies Assumptions 10.1 and 10.9 in §10.1
throughout, so that we are given a discrete property A (possibly trivial) of
morphisms in Ṁan, and ‘manifolds’ V in Ṁan have tangent spaces TvV for
v ∈ V , and A morphisms f : V → W in Ṁan have functorial tangent maps
Tvf : TvV → TwW for all v ∈ V with f(v) = w ∈W . For some results we also
suppose Assumption 10.11.

We will use Assumption 10.9 to prove that if X is an m-Kuranishi space and
x ∈ X then we can find an m-Kuranishi neighbourhood (V,E, s, ψ) on X such
that x ∈ Imψ which is minimal at x in the sense that dψ−1(x)s = 0. Then we
will use Assumption 10.11 to show that if (V ′, E′, s′, ψ′) is another m-Kuranishi
neighbourhood on X with x ∈ Imψ′ then (V ′, E′, s′, ψ′) is locally isomorphic to
(V,E, s, ψ) near x if (V ′, E′, s′, ψ′) is minimal at x, and in general (V ′, E′, s′, ψ′)
is locally isomorphic to (V × Rn, π∗(E)⊕ Rn, π∗(s)⊕ idRn , ψ ◦ πV ) near x.

We also generalize the results to µ-Kuranishi spaces, and to Kuranishi spaces,
where a Kuranishi neighbourhood (V,E,Γ, s, ψ) on a Kuranishi space X is
minimal at x if x ∈ Imψ, and Γ ∼= GxX, so that ψ̄−1(x) is a single point v in V
fixed by Γ, and dvs = 0.

10.4.1 Minimal m-Kuranishi neighbourhoods at x ∈X
Definition 10.35. Let X be a topological space, and (V,E, s, ψ) be an m-
Kuranishi neighbourhood on X in the sense of §4.1, and x ∈ Imψ ⊆ X. Set
v = ψ−1(x) ∈ s−1(0) ⊆ V . Then Definition 10.6 defines a linear map of real
vector spaces dvs : TvV → E|v, the derivative of s at v, for TvV as in Assumption
10.1(b). We say that (V,E, s, ψ) is minimal at x if dvs = 0.

Similarly, let X = (X,K) be an m-Kuranishi space in mK̇ur, and (V,E, s, ψ)
be an m-Kuranishi neighbourhood on X in the sense of §4.7, and x ∈ Imψ ⊆ X
with v = ψ−1(x). Again we say that (V,E, s, ψ) is minimal at x if dvs = 0.

If (V,E, s, ψ) is an m-Kuranishi neighbourhood on X and x ∈ Imψ with
v = ψ−1(x) then as in (10.27) we have an exact sequence

0 // TxX // TvV
dvs // E|v // OxX // 0.

Also vdimX = dimV − rankE. From these we easily deduce:

Lemma 10.36. Let (V,E, s, ψ) be an m-Kuranishi neighbourhood on an m-
Kuranishi space X in mK̇ur, and x ∈ Imψ with v = ψ−1(x) ∈ V . Then

rankE > dimOxX and dimV > vdimX + dimOxX, (10.50)

and (V,E, s, ψ) is minimal at x if and only if equality holds in (10.50).
If (V,E, s, ψ) is minimal at x there are natural isomorphisms TxX ∼= TvV

and OxX ∼= E|v.
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We will be considering the question ‘how many different m-Kuranishi neigh-
bourhoods are there near x on an m-Kuranishi space X?’. To answer this we
need a notion of when two m-Kuranishi neighbourhoods on X are ‘the same’,
which we call strict isomorphism.

Definition 10.37. Let (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be m-Kuranishi neighbour-

hoods on a topological space X. A strict isomorphism (φij , φ̂ij) : (Vi, Ei, si,
ψi)→ (Vj , Ej , sj , ψj) satisfies:

(a) φij : Vi → Vj is a diffeomorphism in Ṁan.

(b) φ̂ij : Ei → φ∗ij(Ej) is an isomorphism of vector bundles on Vi.

(c) φ̂ij(si) = φ∗ij(sj) in Γ∞(φ∗ij(Ej)).

(d) ψi = ψj ◦ φij |s−1
i (0) : s−1

i (0)→ X, where φij(s
−1
i (0)) = s−1

j (0) by (a)–(c).

Then Φij = (Vi, φij , φ̂ij) : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) is a coordinate change
over Imψi = Imψj .

If instead (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) are m-Kuranishi neighbourhoods on
an m-Kuranishi space X, we define strict isomorphisms as above, except that
we also require Φij to be one of the possible choices in Theorem 4.56(a).

We call m-Kuranishi neighbourhoods (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) on X or
X strictly isomorphic near S ⊆ Imψi ∩ Imψj ⊆ X if there exist open neigh-
bourhoods Ui of ψ−1

i (S) in Vi and Uj of ψ−1
j (S) in Vj and a strict isomorphism

(φij , φ̂ij) : (Ui, Ei|Ui , si|Ui , ψi|Ui) −→ (Uj , Ej |Uj , sj |Uj , ψj |Uj ).

Given an m-Kuranishi neighbourhood (V,E, s, ψ) on X, we will construct a
family (V(n), E(n), s(n), ψ(n)) for n ∈ N with V(n) = V × Rn.

Definition 10.38. Let (V,E, s, ψ) be an m-Kuranishi neighbourhood on a
topological space X, and let n = 0, 1, . . . . Define an m-Kuranishi neighbourhood
(V(n), E(n), s(n), ψ(n)) on X by

(V(n), E(n), s(n), ψ(n)) =
(
V × Rn, π∗V (E)⊕ Rn, π∗V (s)⊕ idRn , ψ ◦ πV |s−1

(n)
(0)

)
.

In more detail, writing πV : V(n) = V ×Rn → V for the projection, we define
E(n) → V(n) to be the direct sum of π∗V (E) and the trivial vector bundle Rn, so
that E(n) = E × Rn × Rn as a manifold, and rankE(n) = rankE + n, so that

dimV(n) − rankE(n) = (dimV + n)− (rankE + n) = dimV − rankE.

Writing points of E as (v, e) for v ∈ V and e ∈ E|v, and s ∈ Γ∞(E) as mapping
v 7→ (v, s(v)) for s(v) ∈ E|v, we may write points of E(n) as (v,y, e,z) for v ∈ V ,
e ∈ E|v and y, z ∈ Rn, where π : E(n) → V(n) maps π : (v,y, e,z) 7→ (v,y).
Then s(n) maps s(n) : (v,y) 7→ (v,y, s(v),y). That is, the Rn-component of s(n)

in E(n) = π∗V (E)⊕Rn maps (v,y) 7→ y = idRn(y), so we write s(n) = π∗V (s)⊕idRn .
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Then s−1
(n)(0) = {(v, 0) : v ∈ s−1(0)} = s−1(0)× {0}. Thus ψ(n) = ψ ◦ πV maps

(v, 0) 7→ ψ(v), and is a homeomorphism with Imψ(n) = Imψ ⊆ X.
Define open submanifolds V∗(n) ↪→ V , V(n)∗ ↪→ V(n) by V∗(n) = V and

V(n)∗ = V(n), and morphisms φ∗(n) : V∗(n) → V(n), φ(n)∗ : V(n)∗ → V by
φ∗(n) = idV × 0 : V∗(n) = V → V(n) = V × Rn and φ(n)∗ = πV : V(n)∗ =

V × Rn → V . Define vector bundle morphisms φ̂∗(n) : E|V∗(n)
→ φ∗∗(n)(E(n)),

φ̂(n)∗ : E(n)|V(n)∗ → φ∗(n)∗(E) by the commutative diagrams

E|V∗(n)
φ̂∗(n)

// φ∗∗(n)(E(n))

E

idE⊕0
��

(idV × 0)∗(π∗V (E)⊕ Rn)

E ⊕ Rn (idV × 0)∗ ◦ π∗V (E)⊕ Rn,

E(n)|V(n)∗
φ̂(n)∗

// φ∗(n)∗(E)

E(n)

π∗V (E)⊕ Rn
idπ∗

V
(E)⊕0

// π∗V (E).

Then Φ∗(n) = (V∗(n), φ∗(n), φ̂∗(n)), Φ(n)∗ = (V(n)∗, φ(n)∗, φ̂(n)∗) are 1-morphisms
of m-Kuranishi neighbourhoods Φ∗(n) : (V,E, s, ψ)→ (V(n), E(n), s(n), ψ(n)) and
Φ(n)∗ : (V(n), E(n), s(n), ψ(n))→ (V,E, s, ψ) on X over S = Imψ = Imψ(n).

Now φ∗(n) ◦φ(n)∗ = idV ×0 : V ×Rn → V ×Rn. Thus we have isomorphisms

Tφ∗(n)◦φ(n)∗V(n) = TidV ×0(V × Rn) ∼= TπV V ⊕ T0Rn ∼= TπV V ⊕OV(n)
⊗ Rn.

Also E(n)|V(n)
= π∗V (E)⊕ Rn, so the sheaf of sections of E(n)|V(n)

is isomorphic

to π∗V (E) ⊕ OV(n)
⊗R Rn, where E is the sheaf of sections of E. Define λ̂ :

E(n)|V(n)
→ Tφ∗(n)◦φ(n)∗V(n) to be the OV(n)

-module morphism identified under
these isomorphisms with(

0 0
0 id

)
:

π∗V (E)⊕
OV(n)

⊗R Rn −→
TπV V⊕

OV(n)
⊗R Rn.

We claim that Λ = [V(n), λ̂] : Φ∗(n) ◦ Φ(n)∗ ⇒ id(V(n),E(n),s(n),ψ(n)) is a 2-
morphism of m-Kuranishi neighbourhoods over Imψ = Imψ(n). By Definition
4.3 we must show that

idV × idRn = idV × 0 + λ̂ ◦ s(n) +O(s2
(n)),(

idπ∗(E) 0
0 idRn

)
=

(
idπ∗(E)

0

)(
idπ∗(E) 0

)
+ (idV × 0)∗(ds(n)) ◦

(
0 0
0 idRn

)
+O(s(n)).

(10.51)

To prove these we must use the formal definitions in §B.3–§B.5. Define w :
E(n) → V(n) to act by w : (v,y, e,z) 7→ (v,z) on points. Then λ̂ = θE(n),w in
the notation of Definition B.32. Since

w ◦ 0E(n)
(v,y) = w(v,y, 0, 0) = (v, 0) = (idV × 0)(v,y),

w ◦ s(n)(v,y) = w(v,y, s(v),y) = (v,y) = (idV × idRn)(v,y),
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Definition B.36(vii) implies the first equation of (10.51). Choose a connection ∇
on E(n) = π∗V (E)⊕ Rn, in the sense of §B.3.2, which is the sum of a connection
on π∗V (E) and the trivial connection on the trivial vector bundle Rn. Then

(idV × 0)∗(∇s(n)) =

(
∇V s ∇Rns

0 id

)
:
TπV V⊕

OV(n)
⊗R Rn −→

π∗V (E)⊕
OV(n)

⊗R Rn.

The second equation of (10.51) then follows from Definition B.36(vi) and matrix
multiplication. Hence Λ : Φ∗(n) ◦ Φ(n)∗ ⇒ id(V(n),E(n),s(n),ψ(n)) is a 2-morphism
over Imψ. From the definitions we see that Φ(n)∗ ◦ Φ∗(n) = id(V,E,s,ψ), so
idid(V,E,s,ψ)

: Φ(n)∗ ◦ Φ∗(n) ⇒ id(V,E,s,ψ) is a 2-morphism over Imψ. There-

fore Φ∗(n) and Φ(n)∗ are equivalences in the 2-category mK̇NImψ(X), and are
coordinate changes over Imψ = Imψ(n) by Definition 4.10.

Now let (V,E, s, ψ) be an m-Kuranishi neighbourhood on an m-Kuranishi
space X in mK̇ur, as in §4.7, with implicit extra data Φ∗i, i∈I , Λ∗ij, i,j∈I , using
the notation of Definition 4.49. For n > 0 and i, j ∈ I define

Φ(n)i = Φ∗i ◦ Φ(n)∗ : (V(n), E(n), s(n), ψ(n)) −→ (Vi, Ei, si, ψi),

Λ(n)ij = Λ∗ij ∗ idΦ(n)∗ : Φij ◦ Φ(n)i =⇒ Φ(n)j .

Then as Φ(n)∗ is a coordinate change we see that (V(n), E(n), s(n), ψ(n)) is also
an m-Kuranishi neighbourhood on X, with extra data Φ(n)i, i∈I , Λ(n)ij, i,j∈I .
Furthermore, it is easy to see that Φ∗(n) : (V,E, s, ψ) → (V(n), E(n), s(n), ψ(n))
and Φ(n)∗ : (V(n), E(n), s(n), ψ(n))→ (V,E, s, ψ) are coordinate changes on X in
the sense of Definition 4.51.

The next two propositions prove minimal m-Kuranishi neighbourhoods exist.

Proposition 10.39. Suppose (Vi, Ei, si, ψi) is an m-Kuranishi neighbourhood
on a topological space X, and x ∈ Imψi ⊆ X. Then there exists an m-Kuranishi
neighbourhood (V,E, s, ψ) on X which is minimal at x, with Imψ ⊆ Imψi ⊆ X,
and a coordinate change Φ∗i : (V,E, s, ψ)→ (Vi, Ei, si, ψi) over S = Imψ.

Furthermore, (Vi, Ei, si, ψi) is strictly isomorphic to (V(n), E(n), s(n), ψ(n))
near S in the sense of Definition 10.37, where n = dimVi − dimV > 0 and
(V(n), E(n), s(n), ψ(n)) is constructed from (V,E, s, ψ) as in Definition 10.38, and
this strict isomorphism locally identifies Φ∗i : (V,E, s, ψ)→ (Vi, Ei, si, ψi) with
Φ∗(n) : (V,E, s, ψ)→ (V(n), E(n), s(n), ψ(n)) in Definition 10.38 near S.

Proof. Let vi = ψ−1
i (x) ∈ s−1

i (0) ⊆ Vi. Then Definition 10.6 gives a linear map
dvisi : TviVi → Ei|vi . Define n to be the dimension of the image of dvisi and
m = rankEi − n, so that we may choose an isomorphism Ei|vi ∼= Rm ⊕Rn with
Im dvisi

∼= {0} ⊕ Rn. Choose an open neighbourhood V ′i of vi in Vi with Ei|V ′i
trivial, and choose a trivialization Ei|V ′i ∼= V ′i × (Rm⊕Rn) which restricts to the
chosen isomorphism Ei|vi ∼= Rm ⊕ Rn at vi. Then we may identify si|V ′i with

s1 ⊕ s2, where s1 : V ′i → Rm, s2 : V ′i → Rn are morphisms in Ṁan, and dvisi :
TviVi → Ei|vi ∼= Rm ⊕ Rn is identified with Tvis1 ⊕ Tvis2 : TviVi → Rm ⊕ Rn.
Hence Tvis1 = 0 : TviVi → Rm, and Tvis2 : TviVi → Rn is surjective.
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Apply Assumption 10.9 to s2 : V ′i → Rn at vi ∈ V ′i , noting that s2 is A by
Assumption 10.1(a)(i). This gives open neighbourhoods U of vi in V ′i and W of
0 in Rn, an object V in Ṁan with dimV = dimVi − n, and a diffeomorphism
χ : U → V ×W identifying s2|U : U → Rn with πW : V ×W →W ⊆ Rn.

We now have morphisms s1 ◦χ−1 : V ×W → Rm and s2 ◦χ−1 : V ×W → Rn,
where 0 ∈ W ⊆ Rn is open, and s2 ◦ χ−1 maps (v,w) 7→ w for v ∈ V and
w = (w1, . . . , wn) ∈W , since χ identifies s2|U with πW . Apply Assumption 3.5
to construct morphisms gj : V ×W → Rm for j = 1, . . . , n such that

s1◦χ−1(v, (w1, . . . , wn))=s1◦χ−1(v, (0, . . . , 0))+
n∑
j=1

wj · gj(v, (w1, . . . , wn))

for all v ∈ V and w ∈ W . Here Tvis1 = 0 gives gj ◦ χ(vi) = 0 for j = 1, . . . , n.
Now we change the trivialization Ei|U ∼= U × (Rm ⊕Rn) by composing with the
vector bundle isomorphism U × (Rm ⊕ Rn)→ U × (Rm ⊕ Rn) acting by

(u,y, z) 7−→
(
u,y − z1 · g1 ◦ χ(u)− · · ·+ zn · gn ◦ χ(u), z

)
.

By definition of g1, . . . , gn, at the point u = χ−1(v,w) in U , this maps

s1(u)⊕ s2(u) = (s1 ◦ χ−1)(v,w)⊕w 7−→ (s1 ◦ χ−1)(v, 0)⊕w.

That is, changing s1, s2 along with the choice of trivialization, the effect is to
leave s2 unchanged, with s2 ◦ χ−1(v,w) = w, but to replace s1 ◦ χ−1(v,w) by
s1 ◦χ−1(v, 0), so that now s1 ◦χ−1(v,w) is independent of w. As gj ◦χ(vi) = 0,
this replacement preserves the condition dvis1 = 0. Write χ̂ : Ei|U → U × (Rm⊕
Rn) for the new choice of trivialization.

Define π : E → V to be the trivial vector bundle πV : V × Rm → V , and
define a section s ∈ Γ∞(E), as a morphism s : V → E, to be the composition

V
(idV ,0) // V ×W

(πV ,χ
−1) // V × U

idV ×s1|U // V × Rm E.

Observe that the diffeomorphism χ : U → V ×W identifies U ∩ s−1
i (0) with

(s1 ◦ χ−1)−1(0) ∩ (s2 ◦ χ−1)−1(0)=(s1 ◦ χ−1)−1(0) ∩ (V × {0})=s−1(0)× {0}.

Hence defining ψ : s−1(0) → X by ψ = ψi ◦ χ−1 ◦ (ids−1(0), 0), we see that ψ

is a homeomorphism from s−1(0) to the open neighbourhood ψi(U ∩ s−1
i (0))

of x in Imψi. Therefore (V,E, s, ψ) is an m-Kuranishi neighbourhood on X,
with x ∈ Imψ ⊆ Imψi. Also writing v = ψ−1(x) ∈ V , then χ(vi) = (v, 0), so
dv : TvV → E|v is identified with the restriction of Tvis1 : TviVi → Rm to the
subspace Tv(χ

−1)[TvV ⊕ 0] ⊆ TviVi. But Tvis1 = 0, so dvs = 0, and (V,E, s, ψ)
is minimal at x, as we have to prove.

Define a morphism φ∗i : V → Vi and a vector bundle morphism φ̂∗i : E →
φ∗∗i(Ei) by the commutative diagrams

V

idV ×0
��

φ∗i

// Vi

V ×W
χ−1

// U,
?�

OO E
φ̂∗i

// φ∗∗i(Ei)

V × Rm
idV×Rm×0 // V × Rm × Rn.

∼=
OO
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Then Φ∗i = (V, φ∗i, φ̂∗i) is a 1-morphism of m-Kuranishi neighbourhoods
Φ∗i : (V,E, s, ψ)→ (Vi, Ei, si, ψi) over S = Imψ, where Definition 4.2(d) holds

as φ̂∗i(s|V∗i) = φ∗∗i(si).
As U ⊆ Vi is open, (U,Ei|U , si|U , ψi|U ) is an m-Kuranishi neighbourhood

on X. Also Definition 10.38 constructs (V(n), E(n), s(n), ψ(n)) from (V,E, s, ψ), n
with V(n) = V × Rn, so V ×W ⊆ V(n) is open, and we have an m-Kuranishi
neighbourhood (V ×W,E(n)|V×W , s(n)|V×W , ψ(n)|V×W ) on X. From above we
have isomorphisms χ : U → V ×W and χ̂ : Ei|U → U × Rm × Rn = χ∗(E(n)),
since E(n) = V ×W × Rm × Rn. We claim that

(χ, χ̂) : (U,Ei|U , si|U , ψi|U ) −→ (V ×W,E(n)|V×W , s(n)|V×W , ψ(n)|V×W )

is a strict isomorphism. Here Definition 10.37(a),(b),(d) are immediate from
the definitions, and (c) follows from s1 ◦ χ−1(v,w) = s1 ◦ χ−1(v, 0) = s(v)
and s2 ◦ χ−1(v,w) = w = idRn(w) above, and the definition of s(n). Thus
(Vi, Ei, si, ψi) is strictly isomorphic to (V(n), E(n), s(n), ψ(n)) near S = Imψ.

From the definitions we see that φ∗(n) = χ ◦ φ∗i and φ̂∗(n) = χ̂ ◦ φ̂∗i, so
(χ, χ̂) locally identifies Φ∗i with Φ∗(n). By Definition 10.38, Φ∗(n) is a coordinate
change, so Φ∗i is also a coordinate change. This completes the proof.

Proposition 10.40. Suppose X is an m-Kuranishi space in mK̇ur and x ∈X.
Then there exists an m-Kuranishi neighbourhood (V,E, s, ψ) on X, in the sense
of §4.7, which is minimal at x.

Proof. Write X = (X,K) with K =
(
I, (Vi, Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
.

Then there exists h ∈ I with x ∈ Imψh. Proposition 10.39 constructs an m-
Kuranishi neighbourhood (V,E, s, ψ) on the topological space X minimal at
x with x ∈ Imψ ⊆ Imψh ⊆ X and a coordinate change Φ′∗h : (V,E, s, ψ) →
(Vh, Eh, sh, ψh). For all i ∈ I set Φ∗i = Φhi ◦ Φ′∗h : (V,E, s, ψ)→ (Vi, Ei, si, ψi),
and for all i, j ∈ I define

Λ∗ij = Λhij ∗ idΦ′∗h
: Φij ◦ Φ∗i = Φij ◦ Φhi ◦ Φ′∗h =⇒ Φhj ◦ Φ′∗h = Φ∗j .

Then (V,E, s, ψ) plus the data Φ∗i,Λ∗ij is an m-Kuranishi neighbourhood on
the m-Kuranishi space X in the sense of Definition 4.49, since applying −∗ idΦ′∗h
to (4.4) for K implies (4.57) for the Φ∗i,Λ∗ij .

Remark 10.41. Definition 10.35 involves a choice of notion of tangent space
TvV for V in Ṁan in Assumption 10.1. As in Example 10.2, one category
Ṁan can admit several different notions of tangent space, for example if Ṁan
is Manc,Mangc,Manac or Manc,ac then both b-tangent spaces bTvV and
stratum tangent spaces T̃vV satisfy Assumptions 10.1 and 10.9.

Combining Lemma 10.36 and Proposition 10.40 we see that an m-Kuranishi
neighbourhood (V,E, s, ψ) on X with x ∈ Imψ is minimal at x if and only if
dimV 6 dimV ′ for all m-Kuranishi neighbourhoods (V ′, E′, s′, ψ′) on X with
x ∈ Imψ′. This characterization does not involve tangent spaces. Thus, whether
or not (V,E, s, ψ) is minimal at x is independent of the notion of tangent space
bTvV, T̃vV, . . . used to define minimality, as long as there exists at least one
notion of tangent space for Ṁan satisfying Assumptions 10.1 and 10.9.
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10.4.2 Isomorphism of minimal m-Kuranishi neighbourhoods

In this section we also suppose Assumption 10.11, which was not needed in
§10.4.1. We show that any two m-Kuranishi neighbourhoods minimal at x ∈ X
are strictly isomorphic near x, in the sense of Definition 10.37.

Proposition 10.42. Let (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be m-Kuranishi neigh-
bourhoods on X which are both minimal at x ∈ Imψi ∩ Imψj ⊆ X, and

Φij = (Vij , φij , φ̂ij) : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) be a coordinate change over
x ∈ S ⊆ Imψi ∩ Imψj . Then there exist open neighbourhoods Ui of vi = ψ−1

i (x)
in Vij ⊆ Vi and Uj of vj = ψ−1

j (x) in Vj such that φij |Ui : Ui → Uj is a

diffeomorphism, and φ̂ij |Ui : Ei|Ui → φ∗ij(Ej)|Ui is an isomorphism.

Furthermore there exists an isomorphism φ̂′ij : Ei|Ui → φ∗ij(Ej)|Ui with

φ̂′ij = φ̂ij |Ui +O(si) and φ̂′ij(si|Ui) = φ∗ij(sj)|Ui , so that

(φij |Ui , φ̂′ij) : (Ui, Ei|Ui , si|Ui , ψi|Ui) −→ (Uj , Ej |Uj , sj |Uj , ψj |Uj )

is a strict isomorphism of m-Kuranishi neighbourhoods over T = ψi(Ui∩s−1
i (0)).

Also [Ui, 0] : Φij ⇒ Φ′ij = (Ui, φij |Ui , φ̂′ij) is a 2-morphism over T .

Proof. As in Definition 10.21 we have a commutative diagram (10.21) with exact
rows, where κxΦij , γ

x
Φij

are isomorphisms as Φij is a coordinate change. But

dvisi = dvjsj = 0 as (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) are minimal at x. Hence

(10.21) implies that Tviφij : TviVi → TvjVj and φ̂ij |vi : Ei|vi → Ej |vj are both
isomorphisms. Also φij is B near vi by Proposition 4.34(d), for B the discrete
property in Assumption 10.11. Hence as Tviφij is an isomorphism, by Assumption
10.11 there exist open neighbourhoods Ui of vi in Vij and Uj of vj in Vj such

that φij |Ui : Ui → Uj is a diffeomorphism in Ṁan. Since φ̂ij |vi : Ei|vi → Ej |vj
is an isomorphism, φ̂ij is an isomorphism near vi, so making Ui, Uj smaller we

can suppose φ̂ij |Ui : Ei|Ui → φ∗ij(Ej)|Ui is an isomorphism.

We have φ̂ij(si|Ui) = φ∗ij(sj)|Ui +O(s2
i ) by Definition 4.2(d), so by Definition

3.15(i) there exists α ∈ Γ∞(E∗i ⊗ E∗i ⊗ φ∗ij(Ej)|Ui) such that

φ̂ij(si|Ui) = φ∗ij(sj)|Ui + α · (si|Ui ⊗ si|Ui).

Define a vector bundle morphism φ̂′ij : Ei|Ui → φ∗ij(Ej)|Ui by

φ̂′ij(ei) = φ̂ij |Ui(ei)− α · (ei ⊗ si|Ui)

for ei ∈ Γ∞(Ei|Ui). Clearly we have φ̂′ij = φ̂ij |Ui + O(si) and φ̂′ij(si|Ui) =

φ∗ij(sj)|Ui , as in the proposition. Also φ̂′ij |vi = φ̂ij |vi as si|vi = 0, and φ̂ij |vi is

an isomorphism, so φ̂′ij is an isomorphism near vi, and making Ui, Uj smaller we

can suppose φ̂′ij is an isomorphism. The rest of the proposition is immediate.

Combining Proposition 10.42 with the material of §4.7 yields:
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Proposition 10.43. Let X be an m-Kuranishi space and (Va, Ea, sa, ψa), (Vb,
Eb, sb, ψb) be m-Kuranishi neighbourhoods on X in the sense of §4.7 which are
minimal at x ∈X (these exist for any x ∈X by Proposition 10.40). Theorem

4.56(a) gives a coordinate change Φab = (Vab, φab, φ̂ab) : (Va, Ea, sa, ψa) →
(Vb, Eb, sb, ψb) on Imψa ∩ Imψb, canonical up to 2-isomorphism.

Then for small open neighbourhoods Ua of ψ−1
a (x) in Vab ⊆ Va and Ub of

ψ−1
b (x) in Vb, we may choose Φab such that

(φab|Ua , φ̂ab|Ua) : (Ua, Ea|Ua , sa|Ua , ψa|Ua)−→(Ub, Eb|Ub , sb|Ub , ψb|Ub)

is a strict isomorphism of m-Kuranishi neighbourhoods on X.

M-Kuranishi neighbourhoods (Va, Ea, sa, ψa) on X are classified up to strict
isomorphism near x by n = dimVa − vdimX − dimOxX ∈ N.

Theorem 10.44. Let X be an m-Kuranishi space in mK̇ur, and x ∈X, and
(V,E, s, ψ) be an m-Kuranishi neighbourhood on X minimal at x ∈ X, which
exists by Proposition 10.40. Suppose (Va, Ea, sa, ψa) is any other m-Kuranishi
neighbourhood on X with x ∈ Imψa. Then (Va, Ea, sa, ψa) is strictly isomorphic
to (V(n), E(n), s(n), ψ(n)) near x in the sense of Definition 10.37, where

n = dimVa − dimV = dimVa − vdimX − dimOxX > 0, (10.52)

and (V(n), E(n), s(n), ψ(n)) is the m-Kuranishi neighbourhood on X constructed
from (V,E, s, ψ), n in Definition 10.38.

Proof. Let X, x, (V,E, s, ψ), (Va, Ea, sa, ψa) be as in the theorem. Starting from
(Va, Ea, sa, ψa), Propositions 10.39 and 10.40 construct an m-Kuranishi neigh-
bourhood (V ′, E′, s′, ψ′) on X or X which is minimal at x, such that (V ′(n),

E′(n), s
′
(n), ψ

′
(n)) is strictly isomorphic to (Va, Ea, sa, ψa) near x, by a strict iso-

morphism Ψ say, for (V ′(n), E
′
(n), s

′
(n), ψ

′
(n)) constructed from (V ′, E′, s′, ψ′) and

n = dimVa− dimV ′ > 0 in Definition 10.38. Then Proposition 10.43 shows that
(V,E, s, ψ), (V ′, E′, s′, ψ′) are strictly isomorphic near x, by a strict isomorphism
Ξ say, so dimV = dimV ′, and (10.52) follows from (10.50).

Now consider the following diagram of coordinate changes of m-Kuranishi
neighbourhoods on X, defined near x, in the sense of Definition 4.51:

(V,E, s, ψ)

Ξ∼=
��

(V(n), E(n), s(n), ψ(n))

Φ′∗(n)◦Ξ◦Φ(n)∗ ⇒
��

Ξ(n)∼=
��

Ψ◦Ξ(n)

∼=
''

Φ(n)∗

oo

(V ′, E′, s′, ψ′)
Φ′∗(n) // (V ′(n), E

′
(n), s

′
(n), ψ

′
(n))

Ψ
∼=

// (Va, Ea, sa, ψa).

Here arrows marked ‘∼=’ are strict isomorphisms. The arrows ‘→’ exist from
above and by Definition 10.38. Thus Φ′∗(n) ◦ Ξ ◦ Φ(n)∗ exists as a coordinate
change on X, by composition of coordinate changes in Definition 4.51.

Clearly Ξ induces a strict isomorphism Ξ(n) : (V(n), E(n), s(n), ψ(n))→ (V ′(n),

E′(n), s
′
(n), ψ

′
(n)) near x, initially just as a coordinate change on X, not on
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X. However, there is a 2-morphism Φ′∗(n) ◦ Ξ ◦ Φ(n)∗ ⇒ Ξ(n), constructed
as for Λ : Φ∗(n) ◦ Φ(n)∗ ⇒ id(V(n),E(n),s(n),ψ(n)) in Definition 10.38. Therefore
Ξ(n) is a coordinate change on X, as Φ′∗(n) ◦ Ξ ◦ Φ(n)∗ is. Thus Ψ ◦ Ξ(n) :

(V(n), E(n), s(n), ψ(n))→ (Va, Ea, sa, ψa) is a strict isomorphism of m-Kuranishi
neighbourhoods on X near x, as required.

As in Example 4.30, we say that an m-Kuranishi space X in mK̇ur is a

manifold if X ' FmK̇ur
Ṁan

(X̃) in mK̇ur for some X̃ ∈ Ṁan. We use Proposition
10.40 to give a criterion for this.

Theorem 10.45. An m-Kuranishi space X in mK̇ur is a manifold, in the
sense of Example 4.30, if and only if OxX = 0 for all x ∈X.

Proof. The ‘only if’ part is obvious. For the ‘if’ part, suppose X = (X,K)
lies in mK̇ur with OxX = 0 for all x ∈ X. By Proposition 10.40, for each
x ∈ X we can choose an m-Kuranishi neighbourhood (Vx, Ex, sx, ψx) on X,
as in §4.7, such that x ∈ Imψx and (Vx, Ex, sx, ψx) is minimal at x. But
then rankEx = dimOxX = 0 by Lemma 10.36, so Ex = sx = 0. As the
{Imψx : x ∈ X} cover X, Theorem 4.58 constructs X ′ = (X,K′) in mK̇ur with
K′ =

(
X, (Vx, Ex, sx, ψx)x∈X ,Φxy, x,y∈X ,Λxyz, x,y,z∈X

)
and X 'X ′.

Since Ex = sx = 0 for all x ∈ X, following the proof of Proposition 6.63 we
can construct an object X̃ in Ṁan with topological space X̃ = X such that

FmK̇ur
Man (X̃) 'X ′, so that FmK̇ur

Man (X̃) 'X, and X is a manifold.

All the results of §10.4.1–§10.4.2 apply in any 2-category mK̇ur constructed
from a category Ṁan satisfying Assumptions 3.1–3.7, 10.1, 10.9 and 10.11. By
Examples 10.2, 10.10 and 10.12 and Definition 4.29, this includes the 2-categories

mKur,mKurc,mKurgc,mKurac,mKurc,ac. (10.53)

10.4.3 Extension to µ-Kuranishi spaces

All of §10.4.1–§10.4.2 extends essentially immediately to µ-Kuranishi spaces. As
in §5.2, µ-Kuranishi neighbourhoods are the same as m-Kuranishi neighbour-
hoods, and we call a µ-Kuranishi neighbourhood (V,E, s, ψ) on a topological
space X (or on a µ-Kuranishi space X) minimal at x ∈ X if it is minimal at x
as an m-Kuranishi neighbourhood. We leave the details to the reader.

10.4.4 Extension to Kuranishi spaces

Next we extend §10.4.1–§10.4.2 from m-Kuranishi spaces to Kuranishi spaces,
by including finite groups Γ and isotropy groups GxX throughout.

Here are the analogues of Definitions 10.35, 10.37 and 10.38.

Definition 10.46. Let (V,E,Γ, s, ψ) be a Kuranishi neighbourhood on a topo-
logical space X as in §6.1, and x ∈ Imψ. We call (V,E,Γ, s, ψ) minimal at x if
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(a) ψ̄−1(x) is a single point {v} in V , and

(b) dvs = 0, where v is as in (a) and dvs : TvV → E|v as in Definition 10.6.

Here ψ̄−1(x) is a Γ-orbit in s−1(0) ⊆ V , so (a) implies that v is fixed by Γ.
Similarly, let X = (X,K) be a Kuranishi space in K̇ur, and (V,E,Γ, s, ψ) be

a Kuranishi neighbourhood on X in the sense of §6.4, and x ∈ Imψ ⊆ X with
v = ψ−1(x). Again we call (V,E,Γ, s, ψ) minimal at x if (a),(b) hold. Then (a)
implies that GxX ∼= Γ, for GxX the isotropy group of X from §6.5.

Definition 10.47. Let Φij : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) be a coor-
dinate change of Kuranishi neighbourhoods on a topological space X. A strict
isomorphism (σij , ϕij , ϕ̂ij) : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) satisfies:

(a) σij : Γi → Γj is an isomorphism of finite groups.

(b) ϕij : Vi → Vj is a σij-equivariant diffeomorphism in Ṁan.

(c) ϕ̂ij : Ei → φ∗ij(Ej) is a σij-equivariant vector bundle isomorphism on Vi.

(d) ϕ̂ij(si) = ϕ∗ij(sj) in Γ∞(ϕ∗ij(Ej)).

(e) ψ̄i = ψ̄j ◦ ϕij |s−1
i (0) : s−1

i (0)→ X, where ϕij(s
−1
i (0)) = s−1

j (0) by (b)–(d).

Given a strict isomorphism (σij , ϕij , ϕ̂ij), we will define a coordinate change

Φij = (Pij , πij , φij , φ̂ij) : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) over Imψi =
Imψj . Set Pij = Vi × Γj , where Γi × Γj acts on Pij by (γi, γj) : (vi, δj) 7→ (γi ·
vi, γj δj σij(γi)

−1). Define πij : Pij → Vi by πij : (vi, δj) 7→ vi and φij : Pij → Vj
by φij : (vi, δj) 7→ δj · ϕij(vi). Then πij is Γi-equivariant and Γj-invariant, and
is a Γj-principal bundle, and φij is Γi-invariant and Γj-equivariant.

At (vi, δj) ∈ Pij , the morphism φ̂ij : π∗ij(Ei) → φ∗ij(Ej) must map Ei|vi →
Ej |δj ·ϕij(vi). Let φ̂ij |(vi,δj) be the composition of ϕ̂ij |vi : Ei|vi → Ej |ϕij(vi) with

the action of δj : Ej |ϕij(vi) → Ej |δj ·ϕij(vi). This defines φ̂ij . It is now easy to

show that Φij = (Pij , πij , φij , φ̂ij) is a 1-morphism Φij : (Vi, Ei,Γi, si, ψi) →
(Vj , Ej ,Γj , sj , ψj) over Imψi. Using the inverse of (σij , ϕij , ϕ̂ij) we construct a
quasi-inverse Φji for Φij in the same way, so that Φij is a coordinate change.

If instead (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj) are Kuranishi neighbourhoods
on a Kuranishi space X, we define strict isomorphisms as above, except that we
also require Φij above to be one of the possible choices in Theorem 6.45(a).

We call Kuranishi neighbourhoods (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj) on X
or X strictly isomorphic near S ⊆ Imψi ∩ Imψj ⊆ X if there exist Γi- and
Γj-invariant open neighbourhoods Ui of ψ̄−1

i (S) in Vi and Uj of ψ̄−1
j (S) in Vj ,

and a strict isomorphism

(σij , ϕij , ϕ̂ij) : (Ui, Ei|Ui ,Γi, si|Ui , ψi|Ui) −→ (Uj , Ej |Uj ,Γj , sj |Uj , ψj |Uj ).

Definition 10.48. Let (V,E,Γ, s, ψ) be a Kuranishi neighbourhood on a topo-
logical space X. Suppose we are given a finite group ∆, an injective morphism
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ι : Γ ↪→ ∆, and a representation ρ of Γ on Rn for some n = 0, 1, . . . . We will
define a Kuranishi neighbourhood (V ∆,ι

(n),ρ, E
∆,ι
(n),ρ,∆, s

∆,ι
(n),ρ, ψ

∆,ι
(n),ρ) on X.

Define V ∆,ι
(n),ρ = (V × Rn ×∆)/Γ, where Γ acts on V × Rn ×∆ by

γ : (v,y, δ) 7−→ (γ · v, ρ(γ)y, δ · ι(γ)−1).

As the Γ-action is free and Γ is finite we can show using Assumptions 3.2(e) and

3.3(b) that the quotient (V ×Rn ×∆)/Γ exists in Ṁan. Let ∆ act on V ∆,ι
(n),ρ by

δ′ : (v,y, δ)Γ 7−→ (v,y, δ′ · δ)Γ.

Define E∆,ι
(n),ρ = (E ×Rn ×Rn ×∆)/Γ, where Γ acts on E ×Rn ×Rn ×∆ by

γ :
(
(v, e),y, z, δ

)
7−→

(
γ · (v, e), ρ(γ)y, ρ(γ)z, δ · ι(γ)−1

)
.

Here we write points of E as (v, e) for v ∈ V and e ∈ E|v. The projection

π : E∆,ι
(n),ρ → V ∆,ι

(n),ρ making E∆,ι
(n),ρ into a vector bundle acts by

π :
(
(v, e),y, z, δ

)
Γ 7−→ (v,y, δ)Γ,

so that the fibre E∆,ι
(n),ρ|(v,y,δ) is E|v ⊕ Rn 3 (e, z). Let ∆ act on E∆,ι

(n),ρ by

δ′ :
(
(v, e),y, z, δ

)
Γ 7−→

(
(v, e),y, z, δ′ · δ

)
Γ.

Then π is ∆-equivariant. Define s∆,ι
(n),ρ : V ∆,ι

(n),ρ → E∆,ι
(n),ρ by

s∆,ι
(n),ρ : (v,y, δ)Γ 7−→

(
(v, s(v)),y,y, δ

)
Γ,

where we write the action of s : V → E on points as s : v 7→ (v, s(v)). Then

s∆,ι
(n),ρ ∈ Γ∞(E∆,ι

(n),ρ) is ∆-equivariant. We have

(s∆,ι
(n),ρ)

−1(0) =
{

(v,y, δ)Γ ∈ V ∆,ι
(n),ρ : s(v) = y = 0

}
= (s−1(0)× {0} ×∆)/Γ.

Hence we have a homeomorphism

I : (s∆,ι
(n),ρ)

−1(0)/∆ = [(s−1(0)× {0} ×∆)/Γ]/∆ −→ s−1(0)/Γ

mapping I : [(v, 0, δ)Γ]∆ 7→ vΓ. Define ψ∆,ι
(n),ρ = ψ ◦ I : (s∆,ι

(n),ρ)
−1(0)/∆ → X.

Then ψ∆,ι
(n),ρ is a homeomorphism with the open set Imψ∆,ι

(n),ρ = Imψ ⊆ X. Thus

(V ∆,ι
(n),ρ, E

∆,ι
(n),ρ,∆, s

∆,ι
(n),ρ, ψ

∆,ι
(n),ρ) is a Kuranishi neighbourhood on X.

Define a 1-morphism of Kuranishi neighbourhoods on X over Imψ

Φ∗(n) = (P∗(n), π∗(n), φ∗(n), φ̂∗(n)) : (V,E,Γ, s, ψ) −→ (V ∆,ι
(n),ρ, . . . , ψ

∆,ι
(n),ρ)
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by P∗(n) = V × ∆ with Γ × ∆-action (γ, δ′) : (v, δ) 7→ (γ · v, δ′ · δ · ι(γ)−1),

and morphisms π∗(n) : P∗(n) → V , φ∗(n) : P∗(n) → V ∆,ι
(n),ρ, φ̂∗(n) : π∗∗(n)(E) →

φ∗∗(n)(E
∆,ι
(n),ρ) acting by

π∗(n) : (v, δ) 7−→ v, φ∗(n) : (v, δ) 7−→ (v, 0, δ)Γ,

φ̂∗(n) : ((v, δ), e) 7−→ ((v, δ), (e, 0)).

It is easy to check Definition 6.2 holds. Similarly define a 1-morphism

Φ(n)∗ = (P(n)∗, π(n)∗, φ(n)∗, φ̂(n)∗) : (V ∆,ι
(n),ρ, . . . , ψ

∆,ι
(n),ρ) −→ (V,E,Γ, s, ψ)

by P(n)∗ = V × Rn ×∆ with ∆× Γ-action

(δ′, γ) : (v,y, δ) 7−→ (γ · v, ρ(γ)y, δ′ · δ · ι(γ)−1),

and π(n)∗ : P(n)∗ → V ∆,ι
(n),ρ, φ(n)∗ : P(n)∗ → V , φ̂(n)∗ : π∗(n)∗(E

∆,ι
(n),ρ) → φ∗(n)∗(E)

acting by

π(n)∗ : (v,y, δ) 7−→ (v,y, δ)Γ, φ(n)∗ : (v,y, δ) 7−→ v,

φ̂(n)∗ :
(
(v,y, δ), (e, z)

)
7−→

(
(v,y, δ), e

)
.

As in Definition 10.38 but with extra contributions from finite groups Γ,∆,
we can define explicit 2-morphisms K : Φ(n)∗ ◦ Φ∗(n) ⇒ id(V,E,Γ,s,ψ) and Λ :
Φ∗(n) ◦ Φ(n)∗ ⇒ id(V ∆,ι

(n),ρ
,...,ψ∆,ι

(n),ρ
) over Imψ, and we leave these as an exercise.

Then K,Λ imply that Φ∗(n),Φ(n)∗ are coordinate changes over Imψ.

Here is the analogue of Proposition 10.39:

Proposition 10.49. Suppose (Vi, Ei,Γi, si, ψi) is a Kuranishi neighbourhood
on a topological space X, and x ∈ Imψi ⊆ X. Then there exists a Kuranishi
neighbourhood (V,E,Γ, s, ψ) on X which is minimal at x as in Definition 10.46,
with Imψ ⊆ Imψi ⊆ X and Γ ⊆ Γi a subgroup, and a coordinate change
Φ∗i : (V,E,Γ, s, ψ)→ (Vi, Ei,Γi, si, ψi) over S = Imψ.

Furthermore, (Vi, Ei,Γi, si, ψi) is strictly isomorphic to (V Γi,ι
(n),ρ, E

Γi,ι
(n),ρ,Γi,

sΓi,ι
(n),ρ, ψ

Γi,ι
(n),ρ) near S as in Definition 10.47, where n = dimVi − dimV > 0

and (V Γi,ι
(n),ρ, . . . , ψ

Γi,ι
(n),ρ) is constructed from (V,E,Γ, s, ψ) as in Definition 10.48

using the inclusion ι : Γ ↪→ Γi and some representation ρ of Γ on Rn, and this
strict isomorphism locally identifies Φ∗i : (V,E,Γ, s, ψ)→ (Vi, Ei,Γi, si, ψi) with

Φ∗(n) : (V,E,Γ, s, ψ)→ (V Γi,ι
(n),ρ, . . . , ψ

Γi,ι
(n),ρ) in Definition 10.48 near S.

Proof. Pick vi ∈ ψ̄−1
i (x) ⊆ s−1

i (0) ⊆ Vi, and define Γ = StabΓi(vi) =
{
γ ∈ Γi :

γ(vi) = vi
}

, as a subgroup of Γi with inclusion ι : Γ ↪→ Γi. Then Γvi = ψ̄−1
i (x)

is |Γi|/|Γ| points in Vi. Definition 10.6 gives a linear map dvisi : TviVi → Ei|vi .
Here Γ acts linearly on TviVi, Ei|vi , and dvisi is Γ-equivariant. Define n to be
the dimension of the image of dvisi and m = rankEi−n, so that we may choose
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a Γ-equivariant isomorphism Ei|vi ∼= Rm ⊕ Rn with Im dvisi
∼= {0} ⊕ Rn. Write

ρ for the corresponding representation of Γ on Rn.
Choose a Γ-invariant open neighbourhood V ′i of vi in Vi with Ei|V ′i trivial,

such that (δ ·V ′i )∩Vi = ∅ for all δ ∈ Γi \Γ. Choose a Γ-equivariant trivialization
Ei|V ′i ∼= V ′i × (Rm ⊕ Rn) which restricts to the chosen isomorphism Ei|vi ∼=
Rm ⊕ Rn at vi. Then we may identify si|V ′i with s1 ⊕ s2, where s1 : V ′i → Rm,

s2 : V ′i → Rn are Γ-equivariant morphisms in Ṁan, and dvisi : TviVi →
Ei|vi ∼= Rm ⊕ Rn is identified with Tvis1 ⊕ Tvis2 : TviVi → Rm ⊕ Rn. Hence
Tvis1 = 0 : TviVi → Rm, and Tvis2 : TviVi → Rn is surjective.

We now follow the proof of Proposition 10.39 to construct vi ∈ U ⊆ V ′i ,

χ : U
∼=−→V ×W , χ̂ : Ei|U → U × (Rm ⊕ Rn), π : E → V , s : V → E, and

v ∈ V with χ(vi) = (v, 0) and s(v) = dvs = 0, but making everything Γ-
invariant/equivariant, noting that Assumption 10.9 includes Γ-equivariance, and
(g1, . . . , gn) can be made Γ-equivariant by averaging over the Γ-action. Define
ψ : s−1(0)/Γ→ X by the commutative diagram

s−1(0)/Γ

ψ
��

(ids−1(0),0)/Γ
// [s−1(0)× {0}]/Γ

χ|−1

U∩s−1(0)
/Γ

// (U ∩ s−1(0))/Γ

uΓ7→uΓi ��
X s−1(0)/Γi.

ψioo

Here each arrow is a homeomorphism with an open subset, the top right as
χ : U → V ×W identifies U ∩ s−1

i (0) with s−1(0)×{0} and is Γ-equivariant, the
right hand as U is Γ-invariant and (δ ·U)∩U = ∅ for δ ∈ Γi \Γ, and the bottom
by Definition 6.1(e). Thus (V,E,Γ, s, ψ) is a Kuranishi neighbourhood on X
with x ∈ Imψ ⊆ Imψi ⊆ X, and is minimal at x as in Definition 10.46. The rest
of the proof is a straightforward generalization of that of Proposition 10.39.

The next three results need Assumption 10.11. By modifying the proofs of
Propositions 10.40, 10.42 and 10.43 and Theorems 10.44 and 10.45 to include
finite groups, we can show:

Proposition 10.50. Suppose X is a Kuranishi space in K̇ur and x ∈X. Then
there exists a Kuranishi neighbourhood (V,E,Γ, s, ψ) on X, as in §6.4, which
is minimal at x as in Definition 10.46, with Γ ∼= GxX. Any two Kuranishi
neighbourhoods on X minimal at x are strictly isomorphic near x.

Theorem 10.51. Let X be a Kuranishi space in K̇ur, and x ∈ X, and (V,
E,Γ, s, ψ) be a Kuranishi neighbourhood on X minimal at x ∈X, which exists
by Proposition 10.50. Suppose (Va, Ea,Γa, sa, ψa) is any other Kuranishi neigh-
bourhood on X with x ∈ Imψa. Then (Va, Ea,Γa, sa, ψa) is strictly isomorphic

to (V Γa,ι
(n),ρ, E

Γa,ι
(n),ρ,Γa, s

Γa,ι
(n),ρ, ψ

Γa,ι
(n),ρ) near x as in Definition 10.47, where

n = dimVa − dimV = dimVa − vdimX − dimOxX > 0,

and (V Γa,ι
(n),ρ, . . . , ψ

Γa,ι
(n),ρ) is the Kuranishi neighbourhood on X constructed in

Definition 10.48 from (V,E,Γ, s, ψ), n, an injective morphism ι : Γ ↪→ Γa, and
some representation ρ of Γ on Rn.
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Theorem 10.52. A Kuranishi space X in K̇ur is an orbifold, in the sense of
Proposition 6.64, if and only if OxX = 0 for all x ∈X.

The proof of Theorem 10.52 is simpler than that of Theorem 10.45, as we only
need the analogue of the first part of the proof showing that X 'X ′ = (X,K′)
in K̇ur for K′ =

(
I, (Vi, Ei,Γi, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
a Kuranishi

structure with Ei = si = 0 for all i ∈ I. As for (10.53), the results of §10.4.4
above apply in the 2-categories

Kur,Kurc,Kurgc,Kurac,Kurc,ac.

10.5 Conditions for étale (1-)morphisms, equivalences,
and coordinate changes

A (1-)morphism f : X → Y in mK̇ur,µK̇ur, K̇ur is called étale if it is locally
an equivalence/isomorphism. We now prove necessary and sufficient conditions
for (1-)morphisms f to be étale, and to be equivalences/isomorphisms, and for a
(1-)morphism of (m- or µ-)Kuranishi neighbourhoods to be a coordinate change.

We suppose only that the category Ṁan used to define mK̇ur,µK̇ur, K̇ur
satisfies Assumptions 3.1–3.7, and specify additional assumptions as needed.

10.5.1 Étale 1-morphisms, equivalences, and coordinate
changes in mK̇ur

Definition 10.53. Let f : X → Y be a 1-morphism in mK̇ur. We call f étale
if it is a local equivalence. That is, f is étale if for all x ∈X with f(x) = y in
Y there exist open neighbourhoods X ′ of x in X and Y ′ of y in Y such that
f(X ′) ⊆ Y ′, and f |X′ : X ′ → Y ′ is an equivalence in mK̇ur.

Theorem 10.54. A 1-morphism f : X → Y in mK̇ur is an equivalence if and
only if f is étale and the underlying continuous map f : X → Y is a bijection.

Proof. For the ‘only if’ part, let f : X → Y be an equivalence. Then f is étale,
as we can take X ′ = X, Y ′ = Y in Definition 10.53, and f has a quasi-inverse
g : Y →X with g = f−1 : Y → X, so that f : X → Y is a bijection.

For the ‘if’ part, suppose f is étale and f : X → Y is a bijection, and write
g = f−1 : Y → X for the inverse map. As f is étale we can cover X,Y by open
X ′,Y ′ such that f |X′ : X ′ → Y ′ is an equivalence, and then g|Y ′ : Y ′ → X ′ is
continuous. Thus g is continuous, and f, g are homeomorphisms.

Use notation (4.6), (4.7), (4.9) for X,Y ,f . Then for all i ∈ I and j ∈ J
we have a 1-morphism f ij : (Ui, Di, ri, χi) → (Vj , Ej , sj , ψj) over (S, f) for
S = Imχi ∩ f−1(Imψj). Identifying X,Y using f , consider f ij as a 1-morphism
of m-Kuranishi neighbourhoods on X over S. Then f being étale means that
f ij is locally a coordinate change (i.e. locally an equivalence over idX).
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Theorem 4.13 says Equ((Ui, Di, ri, χi), (Vj , Ej , sj , ψj)) is a stack over S,
so f ij locally a coordinate change implies it is globally a coordinate change.
Hence there exist a 1-morphism gji : (Vj , Ej , sj , ψj) → (Ui, Di, ri, χi) and 2-
morphisms ιij : gji ◦ f ij ⇒ id(Ui,Di,ri,χi), κji : f ij ◦ gji ⇒ id(Vj ,Ej ,sj ,ψj) over
S. By Proposition A.5 we choose these to satisfy κji ∗ idf ij = idf ij ∗ ιij and
ιij ∗ idgji = idgij ∗κji. No longer identifying X,Y , we consider gji a 1-morphism

over (T, g) for T = Imψj ∩ g−1(Imχi), and ιij ,κji as 2-morphisms over S, T .
For all j, j′ ∈ J and i, i′ ∈ I, define 2-morphisms Gi

jj′ : gj′i ◦ Υjj′ ⇒ gji,

Gii′

j : Tii′ ◦ gji ⇒ gji′ by the commutative diagrams

gj′i ◦Υjj′

Gi
jj′
��

gj′i◦Υjj′ ◦id(Vj ,Ej ,sj ,ψj)
idg

j′i◦Υjj′
∗κ−1

ji

+3 gj′i◦Υjj′ ◦f ij◦gji
idg

j′i
∗F jj

′
i ∗idgji ��

gji id(Ui,Di,ri,χi) ◦ gji gj′i ◦ f ij′ ◦ gji,
ιij′∗idgjiks

(10.54)

Tii′ ◦ gji
Gii
′

j
��

id(Ui,Di,ri,χi)◦Tii′ ◦gji
ι−1

i′j∗idT
ii′ ◦gji

+3 gji′ ◦f i′j◦Tii′ ◦gji
idg

ji′
∗F j

ii′∗idgji ��
gji′ gji′ ◦ id(Vj ,Ej ,sj ,ψj)

gji′ ◦ f ij ◦ gji.
idg

ji′
∗κji

ks

(10.55)

We now claim that as in (4.9),

g =
(
g, gji, j∈J, i∈I , G

i, i∈I
jj′, j,j′∈J , G

ii′, i,i′∈I
j, j∈J

)
is a 1-morphism g : Y →X in mK̇ur. Definition 4.17(a)–(d) for g are immediate.
Part (e) follows from (10.54)–(10.55) and (e) for f and ιij ∗ idgji = idgij ∗ κji.
To prove (f), let i ∈ I and j, j′, j′′ ∈ J , and consider Figure 10.1. The small
rectangle near the bottom commutes by Definition 4.17(h) for f , the two parallel
arrows on the right are equal as κj′i ∗ idf ij′ = idf ij′ ∗ ιij′ , three quadrilaterals
commute by (10.54), and the rest of the diagram commutes by properties of
2-categories. Hence Figure 10.1 commutes, and the outside rectangle proves part
(f) for g. We can prove (g),(h) in a similar way. Thus g is a 1-morphism.

We claim that there are 2-morphisms η = (ηii′, i,i′∈I) : g ◦ f ⇒ idX and

ζ = (ζjj′, j,j′∈J) : f ◦ g ⇒ idY in mK̇ur, which are characterized uniquely by
the property that for all i, i′ ∈ I and j, j′ ∈ J , the following commute

gji′ ◦ f i′j ◦ Tii′

ιi′j∗idT
ii′��

idg
ji′
∗F j

ii′

+3 gji ◦ f ij
Θg,f

iji′

+3 (g ◦ f)ii′

ηii′
��

id(Ui′ ,Di′ ,ri′ ,χi′ )
◦ Tii′ Tii′ (idX)ii′ ,

(10.56)

f ij′ ◦ gj′i ◦Υjj′

κj′i∗idΥ
jj′��

idf
ij′
∗Gi

jj′

+3 f ij ◦ gji
Θf,g

jij′

+3 (f ◦ g)jj′

ζjj′ ��
id(Vj′ ,Ej′ ,sj′ ,ψj′ )

◦Υjj′ Υjj′ (idY )jj′ ,

(10.57)
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gj′i ◦ Υjj′
Gi
jj′

+3 gji

gj′i◦Υjj′ ◦
f ij◦gji

id∗F jj
′

i ∗id +3

id∗κji
go

gj′i ◦
f ij′ ◦gji

ιij′∗id

7?

gj′′i◦f ij′′ ◦
gj′i◦Υjj′

ιij′′∗id

V^

gj′′i◦f ij′′ ◦gj′i◦
Υjj′ ◦f ij◦gji

ιij′′∗id
KS

id∗F jj
′

i ∗id +3id∗κjiks gj′′i◦f ij′′ ◦
gj′i◦f ij′ ◦gji

ιij′′∗id
KS

gj′′i◦Υj′j′′ ◦
f ij′ ◦gj′i◦Υjj′

id∗κj′i∗idqy

id∗F j
′j′′
i ∗id

KS

gj′′i◦Υj′j′′ ◦f ij′ ◦
gj′i◦Υjj′ ◦f ij◦gji

id∗κj′i∗idw�

id∗F jj
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Figure 10.1: Proof of Definition 4.17(f) for g

where Θg,fiji′ ,Θ
f ,g
jij′ are as in Definition 4.20 for g ◦ f ,f ◦ g in mK̇ur, and (10.56),

(10.57) are in 2-morphisms of m-Kuranishi neighbourhoods over S = Imχi ∩
Imχi′ ∩ f−1(Imψj) ⊆ X and T = Imψj ∩ Imψj′ ∩ g−1(Imχi) ⊆ Y .

To prove this for η, first for i, i′ ∈ I and j, j′ ∈ J we show that (10.56) for
i, i′, j and for i, i′, j′ determine the same 2-morphism ηii′ on Imχi ∩ Imχi′ ∩
f−1(Imψj ∩ Imψj′). Thus, as the Imχi ∩ Imχi′ ∩ f−1(Imψj) for j ∈ J cover
Imχi ∩ Imχi′ , by the sheaf property of 2-morphisms in Theorem 4.13 there is
a unique 2-morphism ηii′ over Imχi ∩ Imχi′ such that (10.56) commutes for
all j ∈ J . Then we fix j ∈ J , and show these ηii′ satisfy the restrictions of
Definition 4.18(a),(b) to the intersections of their domains with f−1(Imψj) using

(10.54)–(10.56) and properties of the Θg,fiji′ in Proposition 4.19. As f−1(Imψj)
for j ∈ J cover X, by the sheaf property of 2-morphisms this implies Definition
4.18(a),(b) for the ηii′ , and η : g ◦ f ⇒ idX is a 2-morphism in mK̇ur. The
proof for ζ is the same. Hence f is an equivalence in mK̇ur, as we have to
prove.

Here is a necessary and sufficient condition for 1-morphisms in mK̇ur to
be étale. Combining it with Theorem 10.54 gives a necessary and sufficient
condition for 1-morphisms to be equivalences.

Theorem 10.55. Suppose the category Ṁan used to define mK̇ur satisfies
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Assumptions 3.1–3.7, 10.1, 10.9 and 10.11, with tangent spaces written TuU for
U ∈ Ṁan, and discrete properties A,B, where if f : U → V in Ṁan is A then
tangent maps Tuf : TuU → TvV are defined, and if f is B (which implies A)
and Tuf is an isomorphism then f is a local diffeomorphism near u.

Let f : X → Y be a 1-morphism in mK̇ur. Then f is étale if and only if f
is B and the linear maps Txf : TxX → TyY , Oxf : OxX → OyY from §10.2.1
are both isomorphisms for all x ∈X with f(x) = y in Y .

The ‘only if ’ part does not require Assumptions 10.9 and 10.11.

Proof. For the ‘only if’ part, suppose f is étale. Then for each x ∈ X with
f(x) = y in Y there are open neighbourhoods X ′,Y ′ of x, y in X,Y with
f |X′ : X ′ → Y ′ an equivalence. Thus f |X′ is A and B by Proposition 4.36(c),
and Txf , Oxf are isomorphisms by Lemma 10.23. As such X ′ cover X, we see
that f is locally B, so it is B as this is a local condition by Definition 3.18(iv).

For the ‘if’ part, suppose f is B (which implies f is A), and Txf , Oxf are
isomorphisms for all x ∈ X. Let x ∈ X with f(x) = y in Y . By Proposition
10.40 we can choose m-Kuranishi neighbourhoods (Ua, Da, ra, χa), (Vb, Eb, sb, ψb)
on X,Y , as in §4.7, which are minimal at x ∈ Imχa and y ∈ Imψb, as in §10.4.1.
Making Ua smaller if necessary we can take f(Imχa) ⊆ Imψb. Theorem 4.56(b)

now gives a 1-morphism fab = (Uab, fab, f̂ab) : (Ua, Da, ra, χa)→ (Vb, Eb, sb, ψb)
of m-Kuranishi neighbourhoods over (Imχa,f) on X,Y , as in Definition 4.54.

Definition 4.2(d) says that f̂ab(ra) = f∗ab(sb) + O(r2
a). By the argument

in the proof of Proposition 10.42 we can choose f̂ ′ab : Da → f∗ab(Eb) with

f̂ ′ab = f̂ab + O(ra) and f̂ ′ab(ra) = f∗ab(sb). Then replacing f̂ab by f̂ ′ab, which is
allowed in Theorem 4.56(b) as it does not change fab up to 2-isomorphism, we

can suppose that f̂ab(ra) = f∗ab(sb).
Write ua = χ−1

a (x), vb = ψ−1
b (y). Then (10.29) gives a commutative diagram

0 // TxX ∼=
//

Txf∼=
��

TuaUa duara=0
//

Tuafab��

Da|ua
f̂ab|ua��

∼=
// OxX

Oxf∼=
��

// 0

0 // TyY
∼= // TvbVb

dvbsb=0
// Eb|vb

∼= // OyY // 0,

with exact rows. By assumption Txf , Oxf are isomorphisms, and duara =
dvbsb = 0 as (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) are minimal at x, y, so the maps
TxX → TuaUa, Da|ua → OxX, TyY → TvbVb, Eb|vb → OyY are isomorphisms.

Hence Tuafab : TuaUa → TvbVb and f̂ab|ua : Da|ua → Eb|vb are isomorphisms.
As f is B, fab is B, and fab is B near ua. Since Tuafab : TuaUa → TvbVb is

an isomorphism, Assumption 10.11 says that fab is a local diffeomorphism near
ua, so making Ua, Uab, Vb smaller we can suppose Uab = Ua and fab : Ua → Vb is
a diffeomorphism in Ṁan. Also f̂ab|ua : Da|ua → Eb|vb an isomorphism implies

that f̂ab : Da → f∗ab(Eb) is an isomorphism near ua, so making Ua, Uab, Vb smaller

again we can suppose f̂ab is an isomorphism.
Thus, we have a 1-morphism fab = (Ua, fab, f̂ab) : (Ua, Da, ra, χa) → (Vb,

Eb, sb, ψb) over (Imχa,f) such that fab : Ua → Vb is a diffeomorphism and

f̂ab : Da → f∗ab(Eb) is an isomorphism with f̂ab(ra) = f∗ab(sb). Let X ′ ⊆ X,
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Y ′ ⊆ Y be the open neighbourhoods with topological spaces X ′ = Imχa ⊆ X,
Y ′ = Imψb ⊆ Y . Then f |X′ : X ′ → Y ′ is a homeomorphism, as fab|r−1

a (0) :

r−1
a (0)→ s−1

b (0) is, so we can define g = f |−1
X′ : Y ′ → X ′, and then

gba =
(
Vb, f

−1
ab , (f

−1
ab )∗(f̂−1

ab )
)

: (Vb, Eb, sb, ψb) −→ (Ua, Da, ra, χa)

is a 1-morphism of m-Kuranishi neighbourhoods over (g, Imψb) which is a strict
inverse for fab, that is, gba ◦ fab = id(Ua,Da,ra,χa), fab ◦ gba = id(Vb,Eb,sb,ψb).

Clearly this implies that f |X′ : X ′ → Y ′ is an equivalence in mK̇ur. As we can
find such open x ∈X ′ ⊆X, y ∈ Y ′ ⊆ Y for all x ∈X with f(x) = y in Y , we
see that f is étale, as we have to prove.

We apply Theorems 10.54–10.55 to our examples of 2-categories mK̇ur:

Theorem 10.56. (a) Work in the 2-category of m-Kuranishi spaces mKur
constructed from Ṁan = Man, using ordinary tangent spaces TvV for V ∈Man.
Then a 1-morphism f : X → Y in mKur is étale if and only if Txf : TxX →
TyY , Oxf : OxX → OyY are isomorphisms for all x ∈X with f(x) = y in Y .
If this holds then f is an equivalence if and only if f : X → Y is a bijection.

(b) Work in the 2-category mKurc constructed from Ṁan = Manc, using
ordinary tangent spaces TvV for V ∈Manc. Then a 1-morphism f : X → Y
in mKurc is étale if and only if f is simple and Txf : TxX → TyY , Oxf :
OxX → OyY are isomorphisms for all x ∈X with f(x) = y in Y . If this holds
then f is an equivalence if and only if f : X → Y is a bijection.

(c) Work in one of mK̇ur = mKurc,mKurgc,mKurac or mKurc,ac con-
structed from Ṁan = Manc,Mangc,Manac or Manc,ac, using b-tangent
spaces bTvV for V ∈ Ṁan, as in §2.3. Then a 1-morphism f : X → Y
in mK̇ur is étale if and only if f is simple and bTxf : bTxX → bTyY ,
bOxf : bOxX → bOyY are isomorphisms for all x ∈ X with f(x) = y in
Y . If this holds then f is an equivalence if and only if f : X → Y is a bijection.

(d) Work in one of mK̇ur = mKurc,mKurgc,mKurac or mKurc,ac con-
structed from Ṁan = Manc,Mangc,Manac or Manc,ac, using stratum tan-
gent spaces T̃vV for V ∈ Ṁan, as in Example 10.2(iv). Then a 1-morphism
f : X → Y in mK̇ur is étale if and only if f is simple and T̃xf : T̃xX → T̃yY ,

Õxf : ÕxX → ÕyY are isomorphisms for all x ∈ X with f(x) = y in Y . If
this holds then f is an equivalence if and only if f : X → Y is a bijection.

Proof. Parts (a),(c),(d) follow from Theorems 10.54–10.55 and Examples 10.2,
10.10 and 10.12. Part (b) does not follow directly from Theorems 10.54–10.55,
since as in Example 10.10(b), Assumption 10.9 fails in Ṁanc for ordinary tangent
spaces TvV . Instead, we deduce (b) indirectly from (d). Suppose f : X → Y
is simple and x ∈ X with f(x) = y in Y . Then Ñxf : ÑxX → ÑyY from
Example 10.32(a) is an isomorphism as f is simple, so from equation (10.47) of
Example 10.33 with exact rows we see that Txf , Oxf are isomorphisms if and
only if T̃xf , Õxf are isomorpisms, and thus (b) follows from (d).
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Here is a criterion for when a 1-morphism of m-Kuranishi neighbourhoods is
a coordinate change.

Theorem 10.57. Suppose Ṁan satisfies Assumptions 3.1–3.7, 10.1, 10.9 and
10.11, with tangent spaces TvV for V ∈ Ṁan, and discrete properties A,B.

Let Φij = (Vij , φij , φ̂ij) : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) be a 1-morphism

of m-Kuranishi neighbourhoods in Ṁan on a topological space X over an open
S ⊆ X, as in §4.1, and suppose Φij is B. Let x ∈ S, and set vi = ψ−1

i (x) ∈ Vi
and vj = ψ−1

j (x) ∈ Vj. Consider the sequence of real vector spaces:

0 // TviVi
dvisi|vi⊕Tviφij // Ei|vi⊕TvjVj

−φ̂ij |vi⊕dvj sj // Ej |vj // 0. (10.58)

Here dvisi, dvjsj are as in Definition 10.6, and differentiating Definition 4.2(d)
at vi implies that (10.58) is a complex. Then Φij is a coordinate change over S
in the sense of Definition 4.10 if and only if (10.58) is exact for all x ∈ S.

The ‘only if ’ part does not require Assumptions 10.9 and 10.11.

Proof. We can regard Φij as a 1-morphism Φ′ij : X → Y in mK̇ur between
m-Kuranishi spaces X,Y with only one m-Kuranishi neighbourhood, where the
underlying continuous map of Φ′ij is idS : S → S. Then Φij is a coordinate

change if and only if Φ′ij is an equivalence in mK̇ur, which holds if and only if
Φ′ij is étale by Theorem 10.54, as idS : S → S is a bijection.

Let x ∈ S, and set vi = ψ−1
i (x) ∈ Vi and vj = ψ−1

j (x) ∈ Vj . As in (10.28)
we have a commutative diagram with exact rows

0 // TxX //

TxΦ′ij��

TviVi dvisi

//

Tviφij��

Ei|vi
φ̂ij |vi ��

// OxX

OxΦ′ij ��

// 0

0 // TxY // TvjVj
dvj sj // Ej |vj // OxY // 0.

By elementary linear algebra we can show that (10.58) is exact if and only if
TxΦ′ij and OxΦ′ij are isomorphisms. Thus (10.58) is exact for all x ∈ S if and
only if TxΦ′ij , OxΦ′ij are isomorphisms for all x ∈ S, if and only if Φ′ij is étale by
Theorem 10.55, if and only if Φij is a coordinate change.

We apply Theorem 10.57 to our examples of 2-categories mK̇ur. Here as for
Theorem 10.56, parts (a),(c),(d) follow from Theorem 10.57 and Examples 10.2,
10.10 and 10.12, and (b) can be deduced indirectly from (d), equation (10.47) of
Example 10.33, and the proof of Theorem 10.57.

Theorem 10.58. Working in a category Ṁan which we specify in (a)–(d)

below, let Φij = (Vij , φij , φ̂ij) : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) be a 1-morphism
of m-Kuranishi neighbourhoods on a topological space X over an open S ⊆ X,
and for each x ∈ S, set vi = ψ−1

i (x) ∈ Vi and vj = ψ−1
j (x) ∈ Vj. Then:

(a) If Ṁan = Man then Φij is a coordinate change over S if and only if the
following complex is exact for all x ∈ S:

0 // TviVi
dvisi|vi⊕Tviφij // Ei|vi⊕TvjVj

−φ̂ij |vi⊕dvj sj // Ej |vj // 0. (10.59)
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(b) If Ṁan = Manc then Φij is a coordinate change over S if and only if
φij is simple near ψ−1

i (S) and (10.59) is exact for all x ∈ S.

(c) If Ṁan is one of Manc,Mangc,Manac or Manc,ac then Φij is a coor-
dinate change over S if and only if φij is simple near ψ−1

i (S) and using
b-tangent spaces from §2.3, the following is exact for all x ∈ S:

0 // bTviVi
bdvisi|vi⊕

bTviφij // Ei|vi⊕bTvjVj
−φ̂ij |vi⊕

bdvj sj // Ej |vj // 0.

(d) If Ṁan is one of Manc,Mangc,Manac or Manc,ac then Φij is a coor-
dinate change over S if and only if φij is simple near ψ−1

i (S) and using

stratum tangent spaces T̃vV from Example 10.2(iv), the following is exact
for all x ∈ S:

0 // T̃viVi
d̃visi|vi⊕T̃viφij // Ei|vi⊕T̃vjVj

−φ̂ij |vi⊕d̃vj sj // Ej |vj // 0.

10.5.2 Étale morphisms, isomorphisms, and coordinate
changes in µK̇ur

All the material of §10.5.1 has analogues for µ-Kuranishi spaces µK̇ur from
Chapter 5. As µK̇ur is an ordinary category, we replace equivalences in mK̇ur
in §10.5.1 by isomorphisms in µK̇ur. So we define a morphism f : X → Y
in µK̇ur to be étale if it is a local isomorphism, that is, if for all x ∈ X with
f(x) = y in Y there exist open neighbourhoods X ′ of x in X and Y ′ of y in Y
such that f(X ′) ⊆ Y ′, and f |X′ : X ′ → Y ′ is an isomorphism in µK̇ur.

The analogue of Theorem 10.54 for µK̇ur is much easier than the mK̇ur
case in §10.5.1: it is a more-or-less immediate consequence of the sheaf property
Theorem 5.10. The analogues of Theorems 10.55–10.58 have essentially the same
proofs. We leave the details to the reader.

10.5.3 Étale 1-morphisms, equivalences, and coordinate
changes in K̇ur

We now extend the material of §10.5.1 to Kuranishi spaces K̇ur from Chapter 6.
Our analogue of Definition 10.53 for Kuranishi spaces is just the same:

Definition 10.59. Let f : X → Y be a 1-morphism in K̇ur. We call f étale if
it is a local equivalence. That is, f is étale if for all x ∈ X with f(x) = y in
Y there exist open neighbourhoods X ′ of x in X and Y ′ of y in Y such that
f(X ′) ⊆ Y ′, and f |X′ : X ′ → Y ′ is an equivalence in K̇ur.

If f : X → Y is étale and x ∈ X with f(x) = y in Y then Gxf : GxX →
GyY from §6.5 is an isomorphism, since this holds for equivalences in K̇ur.

Remark 10.60. Our definition of étale is stronger than the usual definition
of étale 1-morphisms of stacks in algebraic geometry, in which a 1-morphism
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f : X → Y is étale if it is representable and a local isomorphism in the étale
topology, rather than the Zariski topology. With the algebro-geometric definition,
which we do not use, Gxf : GxX → GyY need only be injective, not an
isomorphism.

Here is the analogue of Theorem 10.54. It is proved in the same way, except
that we ought to work in weak 2-categories rather than strict 2-categories, so
in expressions like gj′i ◦ f ij′ ◦ gji we have to insert brackets (gj′i ◦ f ij′) ◦ gji,
and insert extra 2-morphisms α∗,∗,∗,β∗,γ∗ from §6.1, which makes diagrams
like Figure 10.1 grow unreasonably large. Since any weak 2-category can be
strictified as in §A.3, the strict 2-category proof is guaranteed to extend.

Theorem 10.61. A 1-morphism f : X → Y in K̇ur is an equivalence if and
only if f is étale and the underlying continuous map f : X → Y is a bijection.

Here is the analogue of Theorem 10.55. Its proof is a straightforward modifi-
cation of that in §10.5.1 to include finite groups. We use Proposition 10.50 and
Theorem 6.45(b) in place of Proposition 10.40 and Theorem 4.56(b) to obtain the
1-morphism fab : (Ua, Da,Ba, ra, χa) → (Vb, Eb,Γb, sb, ψb) over (Imχa,f). As
(Ua, Da,Ba, ra, χa), (Vb, Eb,Γb, sb, ψb) are minimal at x, y we have Ba ∼= GxX,
Γb ∼= GyY , so Gxf : GxX → GyY an isomorphism implies that Ba ∼= Γb, which
is used in the proof that we can modify fab to a strict isomorphism of Kuranishi
neighbourhoods.

Theorem 10.62. Suppose the category Ṁan used to define K̇ur satisfies As-
sumptions 3.1–3.7, 10.1, 10.9 and 10.11, with tangent spaces written TuU for
U ∈ Ṁan, and discrete properties A,B, where if f : U → V in Ṁan is A then
tangent maps Tuf : TuU → TvV are defined, and if f is B (which implies A)
and Tuf is an isomorphism then f is a local diffeomorphism near u.

Let f : X → Y be a 1-morphism in K̇ur. Then f is étale if and only if f
is B and Gxf : GxX → GyY , Txf : TxX → TyY , Oxf : OxX → OyY from
§6.5 and §10.2.3 are isomorphisms for all x ∈X with f(x) = y in Y .

The ‘only if ’ part does not require Assumptions 10.9 and 10.11.

Here are the analogues of Theorem 10.56–10.58, all three proved in the same
way, but using Theorems 10.61–10.62 in place of Theorems 10.54–10.55.

Theorem 10.63. (a) Work in the 2-category of Kuranishi spaces Kur con-
structed from Ṁan = Man, using ordinary tangent spaces TvV for V ∈Man.
Then a 1-morphism f : X → Y in Kur is étale if and only if Gxf : GxX →
GyY , Txf : TxX → TyY , Oxf : OxX → OyY are isomorphisms for all x ∈X
with f(x) = y in Y . If this holds then f is an equivalence if and only if
f : X → Y is a bijection.

(b) Work in the 2-category Kurc constructed from Ṁan = Manc, using ordi-
nary tangent spaces TvV for V ∈ Manc. Then a 1-morphism f : X → Y in
Kurc is étale if and only if f is simple and Gxf : GxX → GyY , Txf : TxX →
TyY , Oxf : OxX → OyY are isomorphisms for all x ∈X with f(x) = y in Y .
If this holds then f is an equivalence if and only if f : X → Y is a bijection.
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(c) Work in one of K̇ur = Kurc,Kurgc,Kurac or Kurc,ac constructed from
Ṁan = Manc,Mangc,Manac or Manc,ac, using b-tangent spaces bTvV for
V ∈ Ṁan, as in §2.3. Then a 1-morphism f : X → Y in K̇ur is étale if
and only if f is simple and Gxf : GxX → GyY ,

bTxf : bTxX → bTyY ,
bOxf : bOxX → bOyY are isomorphisms for all x ∈X with f(x) = y in Y . If
this holds then f is an equivalence if and only if f : X → Y is a bijection.

(d) Work in one of K̇ur = Kurc,Kurgc,Kurac or Kurc,ac constructed from
Ṁan = Manc,Mangc,Manac or Manc,ac, using stratum tangent spaces T̃vV
for V ∈ Ṁan, as in Example 10.2(iv). Then a 1-morphism f : X → Y in K̇ur
is étale if and only if f is simple and Gxf : GxX → GyY , T̃xf : T̃xX → T̃yY ,

Õxf : ÕxX → ÕyY are isomorphisms for all x ∈ X with f(x) = y in Y . If
this holds then f is an equivalence if and only if f : X → Y is a bijection.

Theorem 10.64. Suppose Ṁan satisfies Assumptions 3.1–3.7, 10.1, 10.9 and
10.11, with tangent spaces TvV for V ∈ Ṁan, and discrete properties A,B.

Let Φij = (Pij , πij , φij , φ̂ij) : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) be a 1-
morphism of Kuranishi neighbourhoods over S ⊆ X, as in §6.1, and suppose Φij
is B. Let p ∈ π−1

ij (ψ̄−1
i (S)) ⊆ Pij , and set vi = πij(p) ∈ Vi and vj = φij(p) ∈ Vj .

As in (10.58), consider the sequence of real vector spaces:

0 // TviVi
dvisi⊕(Tpφij◦(Tpπij)−1)

// Ei|vi⊕TvjVj
−φ̂ij |p⊕dvj sj // Ej |vj // 0. (10.60)

Here Tpπij : TpPij → TviVi is invertible as πij is étale. Differentiating Definition
6.2(e) at p implies that (10.60) is a complex. Also consider the morphism of
finite groups

ρp :
{

(γi, γj) ∈ Γi × Γj : (γi, γj) · p = p
}
−→

{
γj ∈ Γj : γj · vj = vj

}
,

ρp : (γi, γj) 7−→ γj .
(10.61)

Then Φij is a coordinate change over S, in the sense of Definition 6.11, if and
only if (10.60) is exact and (10.61) is an isomorphism for all p ∈ π−1

ij (ψ̄−1
i (S)).

The ‘only if ’ part does not require Assumptions 10.9 and 10.11.

Theorem 10.65. Working in a category Ṁan which we specify in (a)–(d)

below, let Φij = (Pij , πij , φij , φ̂ij) : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) be
a 1-morphism of Kuranishi neighbourhoods on a topological space X over an
open subset S ⊆ X. Let p ∈ π−1

ij (ψ̄−1
i (S)) ⊆ Pij , set vi = πij(p) ∈ Vi and

vj = φij(p) ∈ Vj , and consider the morphism of finite groups

ρp :
{

(γi, γj) ∈ Γi × Γj : (γi, γj) · p = p
}
−→

{
γj ∈ Γj : γj · vj = vj

}
,

ρp : (γi, γj) 7−→ γj .
(10.62)

Then:

(a) If Ṁan=Man then Φij is a coordinate change over S if and only if for all
p ∈ π−1

ij (ψ̄−1
i (S)), equation (10.62) is an isomorphism, and the following

is exact:

0 // TviVi
dvisi⊕(Tpφij◦(Tpπij)−1)

// Ei|vi⊕TvjVj
−φ̂ij |p⊕dvj sj // Ej |vj // 0. (10.63)
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(b) If Ṁan = Manc then Φij is a coordinate change over S if and only if
φij is simple near π−1

ij (ψ̄−1
i (S)), and for all p ∈ π−1

ij (ψ̄−1
i (S)), equation

(10.62) is an isomorphism and (10.63) is exact.

(c) If Ṁan is one of Manc,Mangc,Manac or Manc,ac then Φij is a coor-
dinate change over S if and only if φij is simple near π−1

ij (ψ̄−1
i (S)), and

using b-tangent spaces from §2.3, for all p ∈ π−1
ij (ψ̄−1

i (S)), equation (10.62)
is an isomorphism and the following is exact:

0 // bTviVi
bdvisi⊕(bTpφij◦(bTpπij)−1)

// Ei|vi⊕bTvjVj
−φ̂ij |p⊕bdvj sj // Ej |vj // 0.

(d) If Ṁan is one of Manc,Mangc,Manac or Manc,ac then Φij is a co-
ordinate change over S if and only if φij is simple near π−1

ij (ψ̄−1
i (S)),

and using stratum tangent spaces T̃vV from Example 10.2(iv), for all
p ∈ π−1

ij (ψ̄−1
i (S)), equation (10.62) is an isomorphism and the following is

exact:

0 // T̃viVi
d̃visi⊕(T̃pφij◦(T̃pπij)−1)

// Ei|vi⊕T̃vjVj
−φ̂ij |p⊕d̃vj sj // Ej |vj // 0.

Theorem 10.65(a)–(c) was quoted as Theorem 6.12 in volume I, and applied in
Chapter 7 of volume I to show that FOOO coordinate changes and MW coordinate
changes correspond to coordinate changes of Kuranishi neighbourhoods in our
sense. This was important in the proofs in §7.5 that the geometric structures
of Fukaya, Oh, Ohta and Ono [10–30], McDuff and Wehrheim [49, 50, 52–55],
Yang [71–73], and Hofer, Wysocki and Zehnder [34–41], can all be mapped to
our Kuranishi spaces.

10.6 Determinants of complexes

We now explain some homological algebra that will be needed in §10.7 to define
canonical line bundles and orientations of (m-)Kuranishi spaces.

If E is a finite-dimensional real vector space the determinant is detE =
ΛdimEE, so that detE ∼= R, and if F is another vector space with dimE = dimF
and α : E → F is a linear map, we write detα = ΛdimEα : detE → detF .
When E = Rn then detα : R→ R is multiplication by the usual determinant of
α as an n× n matrix. More generally, if E → X is a real vector bundle over a
space X we write detE = ΛrankEE, so that detE → X is a real line bundle.

Our aim is to extend determinants det(E•) to finite-dimensional complexes

E• =
(
· · · → Ek

dk−→Ek+1 → · · ·
)

of vector spaces or vector bundles, and
to relate det(E•) to det(H∗(E•)). In §10.7, if (V,E, s, ψ) is an m-Kuranishi

neighbourhood we will apply this to the complex TV |s−1(0)
ds−→E|s−1(0). Most of

our results will only be used for length 2 complexes, but we prove the general case
anyway. The subject involves many sign computations. Some of our orientation
conventions — how to define orientations on (m-)Kuranishi spaces X,Y ,Z, and
on products X × Y and fibre products X ×Z Y — are implicit in the choices of
signs in equations such as (10.66), (10.69), and (10.93).
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10.6.1 Determinants of complexes, and of their cohomology

If E• = (E∗,d) is a bounded complex of finite-dimensional real vector spaces,

we can form its determinant det(E•) =
⊗

k∈Z(ΛdimEkEk)(−1)k , a 1-dimensional
real vector space. We now define an isomorphism ΘE• between det(E•) and the
determinant det(H∗(E•)) of the cohomology of E•.

Definition 10.66. If E is a finite-dimensional real vector space we write detE
= ΛdimEE for its top exterior power, so that detE is a 1-dimensional real vector
space, with detE = R if E = 0, and we write (detE)−1 for the dual vector space
(detE)∗. We also use the same notation if E → X is a vector bundle over some
space X, so that detE = ΛrankEE is a real line bundle on X.

Suppose we are given a complex E• of real vector spaces

· · · dk−2
// Ek−1 dk−1

// Ek
dk // Ek+1 dk+1

// Ek+2 dk+2
// · · · , (10.64)

for k ∈ Z, with dk+1 ◦ dk = 0, where the Ek should be finite-dimensional with
Ek = 0 for |k| � 0, say Ek = 0 unless a 6 k 6 b for a 6 b ∈ Z. Write Hk(E•)
for the kth cohomology group of E•, so that Hk(E•) = Ker dk/ Im dk−1 for
k ∈ Z. We will define an isomorphism

ΘE• :
⊗b

k=a(detEk)(−1)k −→
⊗b

k=a(detHk(E•))(−1)k . (10.65)

If k < a or k > b we have Ek = Hk(E•) = 0 and detEk = detHk(E•) = R,
and such terms do not change the tensor products in (10.65), so the left and right
hand sides are independent of the choice of a, b with Ek = 0 unless a 6 k 6 b.

For each k ∈ Z define mk = dimHk(E•) and nk = dim Im dk, so that
dimEk = nk−1 +mk + nk. By induction on increasing k, choose bases uk1 , . . . ,
uknk−1 , v

k
1 , . . . , v

k
mk , w

k
1 , . . . , w

k
nk for Ek for each k ∈ Z, such that uk1 , . . . , u

k
nk−1 is a

basis for Im dk−1 ⊆ Ek, and uk1 , . . . , u
k
nk−1 , v

k
1 , . . . , v

k
mk is a basis for Ker dk ⊆ Ek,

which forces dkuki = dkvkj = 0 for all i, j, and dkwki = uk+1
i for i = 1, . . . , nk.

Then [vk1 ], . . . , [vkmk ] is a basis for Hk(E•), where [vki ] means vki + Im dk−1.
Define ΘE• to be the unique isomorphism in (10.65) such that

ΘE• :
b⊗

k=a

(
uk1∧· · ·∧uknk−1∧vk1∧· · ·∧vkmk∧w

k
1∧· · ·∧wknk

)
(−1)k 7−→

b∏
k=a

(−1)n
k(nk+1)/2 ·

b⊗
k=a

(
[vk1 ] ∧ · · · ∧ [vkmk ]

)
(−1)k .

(10.66)

To show that this is independent of the choice of uki , v
k
i , w

k
i , suppose ũki , ṽ

k
i , w̃

k
i

are alternative choices. Then the two bases for Ek are related by a matrix(ũki )n
k−1

i=1

(ṽki )m
k

i=1

(w̃ki )n
k

i=1

 =

Ak 0 0
∗ Bk 0
∗ ∗ Ck


(uki )n

k−1

i=1

(vki )m
k

i=1

(wki )n
k

i=1


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Here Ak, Bk, Ck are nk−1 × nk−1 and mk ×mk and nk × nk real matrices,
respectively, and the matrix has this lower triangular form as

〈ũk1 , . . . , ũknk−1〉 = Im dk−1 = 〈uk1 , . . . , uknk−1〉 and

〈ũk1 , . . . , ũknk−1 , ṽ
k
1 , . . . , ṽ

k
mk〉 = Ker dk = 〈uk1 , . . . , uknk−1 , v

k
1 , . . . , v

k
mk〉.

Also the two bases for Hk(E•) are related by the matrix(
[ṽki ]
)
mk

i=1 = Bk
(
[vki ]
)
mk

i=1.

Thus we see that

ũk1 ∧ · · · ∧ ũknk−1 ∧ ṽk1 ∧ · · · ∧ ṽkmk ∧ w̃
k
1 ∧ · · · ∧ w̃knk

= det(Ak) det(Bk) det(Ck) · uk1∧· · ·∧uknk−1∧vk1∧· · ·∧vkmk∧w
k
1∧· · ·∧wknk ,

[ṽk1 ] ∧ · · · ∧ [ṽkmk ] = det(Bk) · [vk1 ] ∧ · · · ∧ [vkmk ].

Hence, if we change from the basis uk1 , . . . , w
k
nk of Ek to the basis ũk1 , . . . , w̃

k
nk

for all k, then the left hand side of (10.66) is multiplied by the factor∏b
k=a

(
det(Ak) det(Bk) det(Ck)

)
(−1)k , (10.67)

but the right hand side of (10.66) is multiplied by the apparently different factor∏b
k=a

(
det(Bk)

)
(−1)k . (10.68)

However, as dkwki = uk+1
i , dkw̃ki = ũk+1

i we see that Ck = Ak+1, so that
det(Ck) = det(Ak+1), and also det(Aa) = 1 as na−1 = 0 and det(Cb) = 1 as
nb = 0. Therefore (10.67) and (10.68) are equal, so (10.66) is independent of the
choice of bases uk1 , . . . , w

k
nk of Ek, and ΘE• is well defined.

Suppose now that E• in (10.64) is exact. Then mk = 0 for all k, so as above
we choose bases uk1 , . . . , u

k
nk−1 , w

k
1 , . . . , w

k
nk for Ek for each k ∈ Z with dkuki = 0

and dkwki = uk+1
i for all i, k. Define

ΨE• =
⊗b

k=a

(
uk1∧· · ·∧uknk−1 ∧wk1∧· · ·∧wknk

)
(−1)k ∈

⊗b
k=a(detEk)(−1)k . (10.69)

This is independent of choices as above.

10.6.2 A continuity property of the isomorphisms ΘE•

We now prove a continuity property for the isomorphisms ΘE• in §10.6.1. It will
be used in §10.7.1 to define canonical line bundles KX of m-Kuranishi spaces X.
Here (10.72) determines Ξθ• |x for x ∈ X. The point is that these Ξθ• |x depend
continuously on x ∈ X, and so form an isomorphism of topological line bundles

Ξθ• in (10.71). The sign
∏
k(−1)n

k(nk+1)/2 in (10.66) is needed to ensure this.
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Proposition 10.67. Suppose that X is a topological space, and we are given a
commutative diagram of topological vector bundles and their morphisms on X :

· · ·
dk−2

// Ek−1

θk−1

��

dk−1

// Ek

θk��

dk
// Ek+1

θk+1

��

dk+1

// Ek+2

θk+2

��

dk+2

// · · ·

· · · ďk−2
// Ěk−1 ďk−1

// Ěk
ďk // Ěk+1 ďk+1

// Ěk+2 ďk+2
// · · · ,

(10.70)

such that dk+1 ◦ dk = ďk+1 ◦ ďk = 0 for all k ∈ Z, and Ek = Ěk = 0 unless
a 6 k 6 b for a 6 b in Z. That is, E•, Ě• are bounded complexes of topological
vector bundles on X, and θ• : E• → Ě• is a morphism of complexes.

For each x ∈ X we have a morphism θ•|x : E•|x → Ě•|x of complexes of
R-vector spaces, which induces morphisms Hk(θ•|x) : Hk(E•|x)→ Hk(Ě•|x) on
cohomology. Suppose Hk(θ•|x) is an isomorphism for all x ∈ X and k ∈ Z.
Then there exists a unique isomorphism of topological line bundles on X :

Ξθ• :
⊗b

k=a(detEk)(−1)k −→
⊗b

k=a(det Ěk)(−1)k (10.71)

such that for each x ∈ X, the following diagram of isomorphisms commutes⊗b
k=a(detEk)(−1)k |x Ξθ• |x

//

ΘE•|x��

⊗b
k=a(det Ěk)(−1)k |x

ΘĚ•|x ��⊗b
k=a(detHk(E•|x))(−1)k

⊗b
k=a(detHk(θ•|x))(−1)k

//⊗b
k=a(detHk(Ě•|x))(−1)k ,

(10.72)

where ΘE•|x ,ΘĚ•|x are as in Definition 10.66.

Proof. Fix x̃ ∈ X, and set m̃k = dimHk(E•|x̃) = dimHk(Ě•|x̃), and ñk =
dim Im dk|x̃, and ˇ̃nk = dim Im ďk|x̃. As in Definition 10.66, choose bases ũk1 ,
. . . , ũkñk−1 , ṽ

k
1 , . . . , ṽ

k
m̃k , w̃

k
1 , . . . , w̃

k
ñk for Ek|x̃ and ˇ̃uk1 , . . . , ˇ̃u

k
ˇ̃nk−1 , ˇ̃v

k
1 , . . . , ˇ̃v

k
m̃k ,

ˇ̃wk1 ,

. . . , ˇ̃wkˇ̃nk for Ěk|x̃, such that dkũki = dkṽki = 0, dkw̃ki = ũk+1
i , ďk ˇ̃uki = ďk ˇ̃vki = 0,

and ďk ˇ̃wki = ˇ̃uk+1
i for all i, k. As [ṽk1 ], . . . , [ṽkm̃k ] is a basis for Hk(E•|x̃), and

[ˇ̃vk1 ], . . . , [ˇ̃vkm̃k ] is a basis for Hk(Ě•|x̃), and Hk(θ•|x̃) : Hk(E•|x̃)→ Hk(Ě•|x̃) is

an isomorphism, we can also choose the ṽki , ˇ̃v
k
i with θk|x̃(ṽki ) = ˇ̃vki for all i, k.

Now let X̃ be a small open neighbourhood of x̃ in X on which the Ek, Ěk

are trivial for all k, and choose bases of sections ek1 , . . . , e
k
ñk−1 , f

k
1 , . . . , f

k
m̃k , g

k
1 ,

. . . , gkñk for Ek|X̃ and ěk1 , . . . , ě
k
ˇ̃nk−1 , f̌

k
1 , . . . , f̌

k
m̃k , ǧ

k
1 , . . . , ǧ

k
ˇ̃nk

for Ěk|X̃ , such that

eki |x̃ = ũki , fki |x̃ = ṽki , gki |x̃ = w̃ki , ěki |x̃ = ˇ̃uki , f̌ki |x̃ = ˇ̃vki , and ǧki |x̃ = ˇ̃wki . Making
X̃ smaller if necessary we can do this such that dkgki = ek+1

i and ďkǧki = ěk+1
i

for all i, k, as these hold for ũki , . . . , ˇ̃wki . Then dkeki = ďkěki = 0. Write

dkfki =
∑ñk

j=1A
k+1
ij ek+1

j +
∑m̃k+1

j=1 Bk+1
ij fk+1

j +
∑ñk+1

j=1 Ck+1
ij gk+1

j ,

for Ak+1
ij , Bk+1

ij , Ck+1
ij : X̃ → R continuous and zero at x. Replacing fki by

fki −
∑nk

i=1A
k+1
ij gkj we can make Ak+1

ij = 0 for all i, j, k. But then we have

0 = dk+1dkfki =
m̃k+1∑
j=1

Bk+1
ij

(m̃k+2∑
l=1

Bk+2
jl fk+2

l +
ñk+2∑
l=1

Ck+2
jl gk+2

l

)
+
ñk+1∑
j=1

Ck+1
ij ek+1

j ,
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so that Ck+1
ij = 0 for all i, j, k. Thus we have

dkeki = 0, dkfki =
∑m̃k+1

j=1 Bk+1
ij fk+1

j , dkgki = ek+1
i . (10.73)

Replace f̌ki by θk(fki ) for i = 1, . . . , m̃k. Making X̃ smaller we can still
suppose ěk1 , . . . , ě

k
ˇ̃nk−1 , f̌

k
1 , . . . , f̌

k
m̃k , ǧ

k
1 , . . . , ǧ

k
ˇ̃nk

is a basis of sections for Ěk|X̃ ,

since this holds at x, and as ďk ◦ θk = θk+1 ◦ dk we have

ďkěki = 0, ďkf̌ki =
∑m̃k+1

j=1 Bk+1
ij f̌k+1

j , ďkǧki = ěk+1
i . (10.74)

Now define an isomorphism of topological line bundles on X̃

Ξθ• |X̃ :
⊗b

k=a(detEk)(−1)k |X̃ −→
⊗b

k=a(det Ěk)(−1)k |X̃ by

Ξθ• |X̃ :
⊗b

k=a

(
ek1 ∧ · · · ∧ ekñk−1 ∧ fk1 ∧ · · · ∧ fkm̃k ∧ g

k
1 ∧ · · · ∧ gkñk

)
(−1)k 7−→∏b

k=a(−1)ñ
k(ñk+1)/2+ˇ̃nk(ˇ̃nk+1)/2 ·⊗b

k=a

(
ěk1 ∧ · · · ∧ ěkˇ̃nk−1 ∧ f̌k1 ∧ · · · ∧ f̌km̃k ∧ ǧ

k
1 ∧ · · · ∧ ǧkˇ̃nk

)
(−1)k . (10.75)

We claim that (10.72) commutes for Ξθ• |X̃ for all x ∈ X̃. To prove this, write

Ek|x =
〈
ek1 |x, . . . , ekñk−1 |x, fk1 |x, . . . , fkm̃k |x, g

k
1 |x, . . . , gkñk |x

〉
R,

Ěk|x =
〈
ěk1 |x, . . . , ěkˇ̃nk−1 |x, f̌k1 |x, . . . , f̌km̃k |x, ǧ

k
1 |x, . . . , ǧkˇ̃nk |x

〉
R,

and write dk|x : Ek|x → Ek+1|x and ďk|x : Ěk|x → Ěk+1|x using (10.73)–(10.74).
To define ΘE•|x in Definition 10.66 we choose bases uk1 , . . . , u

k
nk−1 , v

k
1 , . . . , v

k
mk ,

wk1 , . . . , w
k
nk for Ek|x, where nk = dim Im dk|x. Since dk|xgki |x = ek+1

i |x for
i = 1, . . . , ñk we see that nk > ñk, say nk = ñk + pk for pk > 0. Then
m̃k = pk−1 +mk + pk, since nk−1 +mk + nk = rankEk = ñk−1 + m̃k + ñk. We

can also write pk = rank
(
Bk+1
ij |x

)j=1,...,m̃k+1

i=1,...,m̃k
. We choose the bases such that

uk1 , . . . , u
k
pk−1 ∈

〈
fk1 |x, . . . , fkm̃k |x

〉
R, ukpk−1+i = eki |x, i = 1, . . . , ñk−1,

vk1 , . . . , v
k
mk ∈

〈
fk1 |x, . . . , fkm̃k |x

〉
R, (10.76)

wk1 , . . . , w
k
pk ∈

〈
fk1 |x, . . . , fkm̃k |x

〉
R, wkpk+i = gki |x, i = 1, . . . , ñk.

This is possible by (10.73). Let us write

uk1∧· · ·∧ukpk−1∧vk1∧· · ·∧vkmk∧w
k
1∧· · ·∧wkpk = Ak · fk1 |x∧· · ·∧fkm̃k |x (10.77)

for Ak ∈ R\{0}, which holds as uk1 , . . . , u
k
pk−1 , v

k
1 , . . . , v

k
mk , w

k
1 , . . . , w

k
pk is a basis

for
〈
fk1 |x, . . . , fkm̃k |x

〉
R. Combining (10.76) and (10.77) gives

uk1∧· · ·∧uknk−1∧vk1∧· · ·∧vkmk∧w
k
1∧· · ·∧wknk (10.78)

= (−1)p
k−1ñk−1

Ak · ek1 |x∧· · ·∧ekñk−1 |x∧fk1 |x∧· · ·∧fkm̃k |x∧g
k
1 |x∧· · ·∧gkñk |x.
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Similarly, to define ΘĚ•|x in Definition 10.66, we choose bases ǔk1 , . . . , ǔ
k
ňk−1 ,

v̌k1 , . . . , v̌
k
mk , w̌

k
1 , . . . , w̌

k
ňk for Ěk|x, where ňk = ˇ̃nk + pk, by

ǔki = θk(uki ), i = 1, . . . , pk−1, ǔkpk−1+i = ěki |x, i = 1, . . . , ˇ̃nk−1,

v̌ki = θk(vki ), i = 1, . . . ,mk, (10.79)

w̌ki = θk(wki ), i = 1, . . . , pk, w̌kpk+i = ǧki |x, i = 1, . . . , ˇ̃nk.

This is possible by (10.73), (10.74), (10.76), (10.79) and f̌ki = θk(fki ). Applying
θk to (10.77) yields

ǔk1∧· · ·∧ǔkpk−1∧v̌k1∧· · ·∧v̌kmk∧w̌
k
1∧· · ·∧w̌kpk = Ak · f̌k1 |x∧· · ·∧f̌km̃k |x. (10.80)

Combining (10.79) and (10.80) then gives

ǔk1∧· · ·∧ǔkňk−1∧v̌k1∧· · ·∧v̌kmk∧w̌
k
1∧· · ·∧w̌kňk (10.81)

= (−1)p
k−1 ˇ̃nk−1

Ak · ěk1 |x∧· · ·∧ěkˇ̃nk−1 |x∧f̌k1 |x∧· · ·∧f̌km̃k |x∧ǧ
k
1 |x∧· · ·∧ǧkˇ̃nk |x.

To prove (10.72) commutes at x ∈ X̃, consider the diagram

∏b
k=a(−1)n

k(nk+1)/2·⊗b
k=a

(
uk1∧· · ·∧uknk−1∧vk1∧

· · ·∧vkmk∧w
k
1∧· · ·∧wknk

)
(−1)k

=
∏b
k=a(−1)n

k(nk+1)/2·∏b
k=a(−1)p

kñkAk·⊗b
k=a

(
ek1 |x∧· · ·∧ekñk−1 |x

∧fk1 |x∧· · ·∧fkm̃k |x
∧gk1 |x∧· · ·∧gkñk |x

)
(−1)k

Ξθ• |x
//

ΘE•|x
��

∏b
k=a(−1)ň

k(ňk+1)/2·⊗b
k=a

(
ǔk1∧· · ·∧ǔkňk−1∧v̌k1∧

· · ·∧v̌kmk∧w̌
k
1∧· · ·∧w̌kňk

)
(−1)k

=
∏b
k=a(−1)ň

k(ňk+1)/2·∏b
k=a(−1)p

k ˇ̃nkAk·⊗b
k=a

(
ěk1 |x∧· · ·∧ěkˇ̃nk−1 |x

∧f̌k1 |x∧· · ·∧f̌km̃k |x
∧ǧk1 |x∧· · ·∧ǧkˇ̃nk |x

)
(−1)k

ΘĚ•|x
��⊗b

k=a

(
[vk1 ]∧· · ·∧[vkmk ]

)
(−1)k

⊗b
k=a(detHk(θ•|x))(−1)k

//⊗b
k=a

(
[v̌k1 ]∧· · ·∧[v̌kmk ]

)
(−1)k .

(10.82)

Here the alternative expressions on the top left and top right come from (10.78)
and (10.81). The left and right maps are ΘE•|x ,ΘĚ•|x by (10.66), and the

bottom map is
⊗

k(detHk(θ•|x))(−1)k as θk(vki ) = v̌ki . To see that the top map
is Ξθ• |x we use (10.75) and the sign identity∏b

k=a(−1)n
k(nk+1)/2 ·

∏b
k=a(−1)p

kñk =∏b
k=a(−1)ň

k(ňk+1)/2 ·
∏b
k=a(−1)p

k ˇ̃nk ·
∏b
k=a(−1)ñ

k(ñk+1)/2+ˇ̃nk(ˇ̃nk+1)/2,

which holds as nk = ñk + pk and ňk = ˇ̃nk + pk.
Equation (10.82) shows that (10.72) commutes for all x ∈ X̃ for the isomor-

phism Ξθ• |X̃ defined in (10.75). We can cover X by such open X̃ ⊆ X. Also
(10.72) determines Ξθ• |X̃ at each x ∈ X̃, and so determines Ξθ• |X̃ . Thus two
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such isomorphisms Ξθ• |X̃ ,Ξθ• |X̃′ on open X̃, X̃ ′ ⊆ X must agree on the overlap
X̃ ∩ X̃ ′. Hence these Ξθ• |X̃ glue to give a unique global isomorphism Ξθ• as in
(10.71) such that (10.72) commutes for all x ∈ X, as we have to prove.

The proof of Proposition 10.67 also works if X is an object in Ṁan, or some
other kind of space, and (10.70)–(10.71) are diagrams in an appropriate category
of vector bundles on X. We chose to use topological spaces and topological
vector bundles as they are sufficient to define orientations in §10.7.

10.6.3 Determinants of direct sums of complexes

The next proposition will be used in §10.7 to define orientations of products
X × Y of oriented (m-)Kuranishi spaces X,Y .

Proposition 10.68. Suppose E•, F • are complexes of finite-dimensional real
vector spaces with Ek = F k = 0 unless a 6 k 6 b for a 6 b ∈ Z. Then we have
a complex E• ⊕ F • given by

· · · // E
k−1⊕

F k−1

dk−1 0

0 dk−1


// E

k⊕
F k

dk 0

0 dk


// E

k+1⊕
F k+1

// · · · . (10.83)

Definition 10.66 defines isomorphisms

ΘE• :
⊗b

k=a(detEk)(−1)k −→
⊗b

k=a(detHk(E•))(−1)k ,

ΘF• :
⊗b

k=a(detF k)(−1)k −→
⊗b

k=a(detHk(F •))(−1)k ,

ΘE•⊕F• :
⊗b

k=a(det(Ek⊕F k))(−1)k −→
⊗b

k=a(det(Hk(E•)⊕Hk(E•)))(−1)k .

Define isomorphisms IEk,Fk : det(Ek ⊕ F k)→ detEk ⊗ detF k such that if
ek1 , . . . , e

k
Mk and fk1 , . . . , f

k
Nk are bases for Ek, F k then

IEk,Fk :ek1∧· · ·∧ekMk∧fk1 ∧· · ·∧fkNk−→
(
ek1∧· · ·∧ekMk

)
⊗
(
fk1 ∧· · ·∧fkNk

)
, (10.84)

and similarly define IHk(E•),Hk(F•). Then the following commutes:

⊗b
k=a(det(Ek ⊕ F k))(−1)k

ΘE•⊕F•

//

∏
a6l<k6b(−1)dimEk dimFl ·⊗b
k=a(I

Ek,Fk
)(−1)k

��

⊗b
k=a(det(Hk(E•)⊕Hk(F •)))(−1)k

∏
a6l<k6b(−1)dimHk(E•) dimHl(F•)·⊗b

k=a(I
Hk(E•),Hk(F•))

(−1)k

��⊗b
k=a(detEk)(−1)k⊗⊗b
k=a(detF k)(−1)k

ΘE•⊗ΘF• //
⊗b

k=a(detHk(E•))(−1)k⊗⊗b
k=a(detHk(F •))(−1)k .

(10.85)
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Proof. As in Definition 10.66, choose bases uk1 , . . . , u
k
nk−1 , v

k
1 , . . . , v

k
mk , w

k
1 , . . . ,

wknk for Ek for each k ∈ Z, such that dkuki = dkvki = 0 and dkwki = uk+1
i for all

i, k. And choose bases ǔk1 , . . . , ǔ
k
ňk−1 , v̌

k
1 , . . . , v̌

k
mk , w̌

k
1 , . . . , w̌

k
ňk for F k such that

dkǔki = dkv̌ki = 0 and dkw̌ki = ǔk+1
i for all i, k. Then (10.66) gives

ΘE• :
⊗b

k=a

(
uk1∧· · ·∧uknk−1∧vk1∧· · ·∧vkmk∧w

k
1∧· · ·∧wknk

)
(−1)k 7−→∏b

k=a(−1)n
k(nk+1)/2 ·

⊗b
k=a

(
[vk1 ] ∧ · · · ∧ [vkmk ]

)
(−1)k ,

(10.86)

ΘF• :
⊗b

k=a

(
ǔk1∧· · ·∧ǔkňk−1∧v̌k1∧· · ·∧v̌km̌k∧w̌

k
1∧· · ·∧w̌kňk

)
(−1)k 7−→∏b

k=a(−1)ň
k(ňk+1)/2 ·

⊗b
k=a

(
[v̌k1 ] ∧ · · · ∧ [v̌km̌k ]

)
(−1)k ,

(10.87)

ΘE•⊕F• :
⊗b

k=a

(
uk1∧· · ·∧uknk−1∧ǔk1∧· · ·∧ǔkňk−1∧vk1∧· · ·∧vkmk

∧v̌k1∧· · ·∧v̌km̌k∧w
k
1∧· · ·∧wknk∧w̌

k
1∧· · ·∧w̌kňk

)
(−1)k 7−→ (10.88)

b∏
k=a

(−1)(nk+ňk)(nk+ňk+1)/2 ·
b⊗

k=a

(
[vk1 ] ∧ · · · ∧ [vkmk ] ∧ [v̌k1 ] ∧ · · · ∧ [v̌km̌k ]

)
(−1)k .

Equation (10.85) now follows from (10.84) and (10.86)–(10.88) by a compu-
tation with signs, where we use

uk1∧· · ·∧uknk−1∧vk1∧· · ·∧vkmk∧w
k
1∧· · ·∧wknk∧ǔ

k
1∧· · ·∧ǔkňk−1∧v̌k1∧· · ·

∧v̌km̌k∧w̌
k
1∧· · ·∧w̌kňk = (−1)n

kňk+mkňk−1+m̌knk+nkňk−1

· uk1∧· · ·∧uknk−1

∧ǔk1∧· · ·∧ǔkňk−1∧vk1∧· · ·∧vkmk∧v̌
k
1∧· · ·∧v̌km̌k∧w

k
1∧· · ·∧wknk∧w̌

k
1∧· · ·∧w̌kňk

to compare the left hand sides of (10.84) and (10.88).

10.6.4 Determinants of short exact sequences of complexes

The next definition and proposition will be important in studying orientations
on w-transverse fibre products in mK̇ur or K̇ur in Chapter 11. The definition
is standard in (co)homology theory, as in Bredon [4, §IV.5] or Hatcher [33, §2.1].

Definition 10.69. Consider a commutative diagram of real vector spaces:

0
��

0
��

0
��

0
��

· · · dk−2
// Ek−1

θk−1

��

dk−1
// Ek

θk
��

dk // Ek+1

θk+1

��

dk+1
// Ek+2

θk+2

��

dk+2
// · · ·

· · · dk−2
// F k−1

ψk−1

��

dk−1
// F k

ψk

��

dk // F k+1

ψk+1

��

dk+1
// F k+2

ψk+2

��

dk+2
// · · ·

· · · dk−2
// Gk−1

��

dk−1
// Gk

��

dk // Gk+1

��

dk+1
// Gk+2

��

dk+2
// · · ·

0 0 0 0,

(10.89)

whose rows E•, F •, G• are complexes, and whose columns are exact. Then
θ• : E• → F •, ψ• : F • → G• are morphisms of complexes, and induce morphisms
Hk(θ•) : Hk(E•)→ Hk(F •), Hk(ψ•) : Hk(F •)→ Hk(G•) on cohomology.
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We will define connecting morphisms δkθ•,ψ• : Hk(G•) → Hk+1(E•). Let

γ ∈ Hk(G•), and write γ = [g] = g + Im dk−1 for g ∈ Gk with dk(g) = 0. Then
g = ψk(f) for some f ∈ F k, by exactness of columns in (10.89), so dk(f) ∈ F k+1.
We have

ψk+1(dkf) = dk ◦ ψk(f) = dk(g) = 0,

so dkf = θk+1(e) for some e ∈ Ek+1 by exactness of columns in (10.89). Then

θk+2 ◦ dk+1(e) = dk+1 ◦ θk+1(e) = dk+1 ◦ dkf = 0,

so dk+1(e) = 0 as θk+2 is injective by exactness of columns in (10.89). Hence
[e] ∈ Hk+1(E•). Define δkθ•,ψ•(γ) = [e]. A well known proof that can be found in
Bredon [4, Th. IV.5.6] or Hatcher [33, Th. 2.16] shows that δθ•,ψ• is well defined
and linear, and the following sequence is exact

· · · // Hk(E•)
Hk(θ•)// Hk(F •)

Hk(ψ•)// Hk(G•)
δkθ•,ψ• // Hk+1(E•) // · · · . (10.90)

In the next proposition, note the similarity between the signs in (10.85) and
(10.93). We can regard Proposition 10.68 as a special case of Proposition 10.70,

with 0→ E•
id⊕0−→E• ⊕ F • 0⊕id−→ F • → 0 in place of equation (10.89).

Proposition 10.70. Work in the situation of Definition 10.69, and suppose that
Ek, F k, Gk are finite-dimensional, and zero unless a 6 k 6 b. Then Definition
10.66 defines isomorphisms

ΘE• :
⊗b

k=a(detEk)(−1)k −→
⊗b

k=a(detHk(E•))(−1)k ,

ΘF• :
⊗b

k=a(detF k)(−1)k −→
⊗b

k=a(detHk(F •))(−1)k ,

ΘG• :
⊗b

k=a(detGk)(−1)k −→
⊗b

k=a(detHk(G•))(−1)k .

(10.91)

Consider (10.90) as an exact complex A• with A0 = H0(E•), and consider the
kth column of (10.89) as an exact complex B•k with B0

k = Ek. Then (10.69)
defines nonzero elements

ΨA• ∈
⊗b

k=a(detHk(E•))(−1)k ⊗
⊗b

k=a(detHk(F •))(−1)k+1

⊗
⊗b

k=a(detHk(G•))(−1)k ,

ΨB•k
∈ (detEk)⊗ (detF k)−1 ⊗ (detGk).

(10.92)

Then combining (10.91)–(10.92), we have∏
a6l<k6b

(−1)dimEk dimGl ·
(
ΘE• ⊗Θ−1

F• ⊗ΘG•
)(⊗b

k=a(ΨB•k
)(−1)k

)
=

∏
a6l<k6b

(−1)dimHk(E•) dimHl(G•) ·ΨA• .
(10.93)
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Proof. For k ∈ Z, define

lk = dim(ImHk(θ•)), mk = dim(ImHk(ψ•)), nk = dim(Im δkθ•,ψ•),

pk = dim(Im(dk : Ek → Ek+1)), qk = dim(Im(dk : Gk → Gk+1)).

Then from (10.89) we deduce that

dimEk = pk−1 + nk−1 + lk + pk,

dimF k = pk−1 + nk−1 + qk−1 + lk +mk + pk + nk + qk,

dimGk = qk−1 +mk + nk + qk, dimHk(E•) = nk−1 + lk,

dimHk(F •) = lk +mk, and dimHk(G•) = mk + nk.

(10.94)

For each k ∈ Z, choose bases

ck1 , . . . , c
k
pk−1 , b

k
1 , . . . , b

k
nk−1 , a

k
1 , . . . , a

k
lk , d

k
1 , . . . , d

k
pk for Ek,

c̄k1 , . . . , c̄
k
pk−1 , b̄

k
1 , . . . , b̄

k
nk−1 , g

k
1 , . . . , g

k
qk−1 , ā

k
1 , . . . , ā

k
lk ,

ek1 , . . . , e
k
mk , d̄

k
1 , . . . , d̄

k
pk , f

k
1 , . . . , f

k
nk , h

k
1 , . . . , h

k
qk for F k,

ḡk1 , . . . , ḡ
k
qk−1 , ē

k
1 , . . . , ē

k
mk , f̄

k
1 , . . . , f̄

k
nk , h̄

k
1 , . . . , h̄

k
qk for Gk,

such that dk in E•, F •, G• are given by

dk(aki ) = 0, dk(bki ) = 0, dk(cki ) = 0, dk(dki ) = ck+1
i ,

dk(āki ) = 0, dk(eki ) = 0, dk(b̄ki ) = 0, dk(fki ) = b̄k+1
i ,

dk(c̄ki ) = 0, dk(d̄ki ) = c̄k+1
i , dk(gki ) = 0, dk(hki ) = gk+1

i ,

dk(ēki ) = 0, dk(fki ) = 0, dk(ḡki ) = 0, dk(h̄ki ) = ḡk+1
i ,

and θk, ψk in (10.89) are given by

θk(aki ) = āki , θk(bki ) = b̄ki , θk(cki ) = c̄ki , θk(dki ) = d̄ki ,

ψk(āki ) = 0, ψk(eki ) = ēki , ψk(b̄ki ) = 0, ψk(fki ) = f̄ki ,

ψk(c̄ki ) = 0, ψk(d̄ki ) = 0, ψk(gki ) = ḡki , ψk(hki ) = h̄ki .

Then we have bases

[bk1 ], . . . , [bknk−1 ], [ak1 ], . . . , [aklk ] for Hk(E•),

[āk1 ], . . . , [āklk ], [ek1 ], . . . , [ekmk ] for Hk(F •),

[ēk1 ], . . . , [ēkmk ], [f̄k1 ], . . . , [f̄knk ] for Hk(G•),

where Hk(θ•), Hk(ψ•), δkθ•,ψ• in (10.90) act by

Hk(θ•) : [aki ] 7−→ [āki ], Hk(θ•) : [bki ] 7−→ 0, Hk(ψ•) : [āki ] 7−→ 0,

Hk(ψ•) : [eki ] 7−→ [ēki ], δkθ•,ψ• : [ēk1 ] 7−→ 0, δkθ•,ψ• : [f̄ki ] 7−→ [bk+1
i ].
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Definition 10.66 now implies that

ΨA• =
⊗b

k=a

(
[bk1 ]∧· · ·∧[bknk−1 ]∧[ak1 ]∧· · ·∧[aklk ]

)(−1)k

⊗
⊗b

k=a

(
[āk1 ]∧· · ·∧[āklk ]∧[ek1 ]∧· · ·∧[ekmk ]

)(−1)k+1

⊗
⊗b

k=a

(
[ēk1 ]∧· · ·∧[ēkmk ]∧[f̄k1 ]∧· · ·∧[f̄knk ]

)(−1)k

, (10.95)

ΨB•k
= (−1)q

k−1lk+qk−1pk+mkpk ·(
ck1∧· · ·∧ckpk−1∧bk1∧· · ·∧bknk−1∧ak1∧· · ·∧aklk∧d

k
1∧· · ·∧dkpk

)
⊗
(
c̄k1∧· · ·∧c̄kpk−1∧b̄k1∧· · ·∧b̄knk−1∧gk1∧· · ·∧gkqk−1∧āk1∧· · ·∧āklk

∧ek1∧· · ·∧ekmk∧d̄
k
1∧· · ·∧d̄kpk∧f

k
1 ∧· · ·∧fknk∧h

k
1∧· · ·∧hkqk

)−1

⊗
(
ḡk1∧· · ·∧ḡkqk−1∧ēk1∧· · ·∧ēkmk∧f̄

k
1 ∧· · ·∧f̄knk∧h̄

k
1∧· · ·∧h̄kqk

)
, (10.96)

ΘE• :
b⊗

k=a

(
ck1∧· · ·∧ckpk−1∧bk1∧· · ·∧bknk−1∧ak1∧· · ·∧aklk∧d

k
1∧· · ·∧dkpk

)(−1)k

7−→
b∏

k=a

(−1)p
k(pk+1)/2 ·

b⊗
k=a

(
[bk1 ]∧· · ·∧[bknk−1 ]∧[ak1 ]∧· · ·∧[aklk ]

)(−1)k

, (10.97)

ΘF• :
b⊗

k=a

(
c̄k1∧· · ·∧c̄kpk−1∧b̄k1∧· · ·∧b̄knk−1∧gk1∧· · ·∧gkqk−1∧āk1∧· · ·∧āklk

∧ek1∧· · ·∧ekmk∧d̄
k
1∧· · ·∧d̄kpk∧f

k
1 ∧· · ·∧fknk∧h

k
1∧· · ·∧hkqk

)(−1)k

7−→
b∏

k=a

(−1)
(pk+nk+qk)·
(pk+nk+qk+1)/2 ·

b⊗
k=a

(
[āk1 ]∧· · ·∧[āklk ]∧[ek1 ]∧· · ·∧[ekmk ]

)(−1)k

, (10.98)

ΘG• :
b⊗

k=a

(
ḡk1∧· · ·∧ḡkqk−1∧ēk1∧· · ·∧ēkmk∧f̄

k
1 ∧· · ·∧f̄knk∧h̄

k
1∧· · ·∧h̄kqk

)(−1)k

7−→
b∏

k=a

(−1)q
k(qk+1)/2 ·

b⊗
k=a

(
[ēk1 ]∧· · ·∧[ēkmk ]∧[f̄k1 ]∧· · ·∧[f̄knk ]

)(−1)k

. (10.99)

Here the sign in (10.96) is because, compared to the definition of ΨB•k
in (10.69),

we have reordered the basis elements for compatibility with (10.98). Equation
(10.93) now follows from (10.94)–(10.99), after a computation with signs.

10.7 Canonical line bundles and orientations

In this section we suppose throughout that Ṁan satisfies Assumptions 3.1–3.7,
10.1 and 10.13, so that objects X in Ṁan have functorial tangent spaces TxX
which are fibres of a tangent bundle TX → X of rank dimX. The dual vector
bundle is the cotangent bundle T ∗X → X. As in Definitions 2.38 and 10.15,
its top exterior power ΛdimXT ∗X is the canonical bundle KX of X, a real line
bundle on X, and an orientation on X is an orientation on the fibres of KX .

Our goal is to generalize this to (m- and µ-)Kuranishi spaces X. In §10.7.1,
for an m-Kuranishi space X = (X,K) in mK̇ur, we will define a topological
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real line bundle KX → X, the canonical bundle, whose fibre at x ∈ X is

KX |x = ΛdimT∗xXT ∗xX ⊗ ΛdimOxXOxX,

for TxX, OxX as in §10.2.1, using the material on determinants of complexes in
§10.6. Then in §10.7.2 we define an orientation on X to be an orientation on the
fibres of KX . Section 10.7.3 shows that if X is an oriented m-Kuranishi space
with corners in mK̇urc, then there is a natural orientation on ∂X, and hence
on ∂kX for k = 1, 2, . . . . Sections 10.7.5–10.7.6 extend all this to µ-Kuranishi
spaces and Kuranishi spaces.

The material of this section was inspired by Fukaya–Oh–Ohta–Ono’s defi-
nition of orientations on FOOO Kuranishi spaces, as in Definition 7.8 and [15,
Def. A1.17], [21, Def.s 3.1, 3.3, 3.5, & 3.10], and [30, Def. 5.8].

10.7.1 Canonical bundles of m-Kuranishi spaces

We now construct the canonical bundle KX → X of an m-Kuranishi space X
in mKur. Recall that we suppose mK̇ur is constructed using Ṁan satisfying
Assumptions 10.1 and 10.13, so that objects V ∈ Ṁan have tangent spaces TvV
which are the fibres of the tangent bundle TV → V with rank dimV , and as in
§10.2.1, X has tangent and obstruction spaces TxX, OxX for x ∈X.

Theorem 10.71. Let X = (X,K) be an m-Kuranishi space in mK̇ur. Then
there is a natural topological line bundle π : KX → X called the canonical
bundle of X, with fibres

KX |x = detT ∗xX ⊗ detOxX (10.100)

for each x ∈ X, for TxX, OxX as in §10.2.1, with the property that if (V,E, s,
ψ) is an m-Kuranishi neighbourhood on X in the sense of §4.7, then there is an
isomorphism of topological real line bundles on s−1(0) ⊆ V

ΘV,E,s,ψ : (detT ∗V ⊗ detE)|s−1(0) −→ ψ−1(KX), (10.101)

such that if v ∈ s−1(0) ⊆ V with ψ(v) = x ∈ X, so that as in (10.27) we have
an exact sequence

0 // TxX
ιx // TvV

dvs // E|v
πx // OxX // 0, (10.102)

and if (c1, . . . , cl), (d1, . . . , dl+m), (e1, . . . , em+n), (f1, . . . , fn) are bases for TxX,
TvV,E|v, OxX respectively with ιx(ci) = di, i = 1, . . . , l and dvs(dl+j) = ej ,
j = 1, . . . ,m and πx(em+k) = fk, k = 1, . . . , n, and (γ1, . . . , γl), (δ1, . . . , δl+m)
are dual bases to (c1, . . . , cl), (d1, . . . , dl+m) for T ∗xX, T ∗v V, then

ΘV,E,s,ψ|v : detT ∗v V ⊗ detE|v → detT ∗xX ⊗ detOxX maps

ΘV,E,s,ψ|v : (δ1 ∧ · · · ∧ δl+m)⊗ (e1 ∧ · · · ∧ em+n) 7−→
(−1)m(m+1)/2 · (γ1 ∧ · · · ∧ γl)⊗ (f1 ∧ · · · ∧ fn).

(10.103)
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Proof. Just as a set, define KX to be the disjoint union

KX =
∐
x∈X

(
detT ∗xX ⊗ detOxX

)
,

and define π : KX → X to map π : detT ∗xX ⊗ detOxX 7→ x, so that KX |x =
π−1(x) is as in (10.100) for x ∈ X. Define the structure of a 1-dimensional real
vector space on KX |x for each x ∈ X to be that coming from the right hand
side of (10.100). To make KX into a topological real line bundle, it remains to
define a topology on the set KX , such that π : KX → X is a continuous map,
and the usual local triviality condition for vector bundles holds.

Suppose (V,E, s, ψ) is an m-Kuranishi neighbourhood on X. Consider the
following complex F • of topological real vector bundles on s−1(0) ⊆ V :

· · ·
degree

0 // 0
−3

0 // 0
−2

0 // TV |s−1(0)
−1

ds // E|s−1(0)
0

0 // 0
1

0 // 0
2

0 // · · · ,

where TV |s−1(0) is in degree −1 and E|s−1(0) in degree 0, and ds is given by
ds|v = dvs for each v ∈ s−1(0), where dvs is as in Definition 10.6. One can show
that dvs depends continuously on v, so that ds is a morphism of topological
vector bundles.

Equation (10.102) shows that if v ∈ s−1(0) with ψ(v) = x ∈ X then the
cohomology of F •|v is TxX in degree −1, and OxX in degree 0, and 0 otherwise.
Thus Definition 10.66 defines an isomorphism

ΘF•|v : (detTvV )−1 ⊗ (detE|v)−→(detTxX)−1 ⊗ (detOxX).

Identifying (detTvV )−1 = detT ∗v V and (detTxX)−1 = detT ∗xX and expanding
Definition 10.66, we see that this ΘF•|v is exactly the map ΘV,E,s,ψ|v defined in
(10.103). Thus, Definition 10.66 shows that ΘV,E,s,ψ|v is independent of choices
of bases (c1, . . . , cl), . . . , (f1, . . . , fn).

Therefore we can define ΘV,E,s,ψ in (10.101), just as a map of sets without
yet considering topological line bundle structures, by taking ΘV,E,s,ψ|v for each
v ∈ s−1(0) to be as in (10.103) for any choice of bases (c1, . . . , cl), . . . , (f1, . . . , fn).
As ψ : s−1(0)→ Imψ is a homeomorphism, we can pushforward by ψ to obtain

ψ∗(ΘV,E,s,ψ) : ψ∗
(
(detT ∗V ⊗ detE)|s−1(0)

)
−→

KX |Imψ = π−1(Imψ) ⊆ KX ,
(10.104)

which maps by ΘV,E,s,ψ|v over x ∈ Imψ with v = ψ−1(x).
Now (10.104) is a bijection, with the left hand side a topological line bundle

over Imψ ⊆ X. Hence there is a unique topology on KX |Imψ = π−1(Imψ) ⊆
KX making KX |Imψ → Imψ into a topological line bundle, such that (10.104)
is an isomorphism of topological line bundles over Imψ.

Let (V ′, E′, s′, ψ′) be another m-Kuranishi neighbourhood on X, giving

ψ∗(ΘV ′,E′,s′,ψ′) : ψ′∗
(
(detT ∗V ′ ⊗ detE′)|s′−1(0)

)
−→

KX |Imψ′ = π−1(Imψ′) ⊆ KX .
(10.105)
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So we have topologies on KX |Imψ and KX |Imψ′ making (10.104)–(10.105) into
isomorphisms of topological line bundles. We claim that these topologies agree
on KX |Imψ∩Imψ′ . To prove this, note that Theorem 4.56(a) gives a coordinate

change Φ = (Ṽ , φ, φ̂) : (V,E, s, ψ)→ (V ′, E′, s′, ψ′) over Imψ∩ Imψ′ on X, and
consider the commutative diagram of topological vector bundles on Ṽ ∩ s−1(0):

· · · 0 // 0
0 // TV |Ṽ ∩s−1(0)

Tφ|Ṽ∩s−1(0)

��

ds // E|Ṽ ∩s−1(0)

φ̂|Ṽ∩s−1(0)
��

0 // 0
0 // · · ·

· · ·
degree

0 // 0
−2

0 // φ∗(TV ′)|Ṽ ∩s−1(0)
−1

φ∗(ds′) // φ∗(E′)|Ṽ ∩s−1(0)
0

0 // 0
1

0 // · · · ,
(10.106)

where Tφ|Ṽ ∩s−1(0) is defined by Assumption 10.13(b) since φ : Ṽ → V ′ is A

near Ṽ ∩ s−1(0) by Proposition 4.34(d).
As in (10.70), regard the rows of (10.106) as complexes F •, F ′• of topological

vector bundles, and the columns as a morphism of complexes θ• : F • → F ′•. If
v ∈ Ṽ ∩ s−1(0) with φ(v) = v′ ∈ s′−1(0) and ψ(v) = ψ′(v′) = x ∈ Imψ ∩ Imψ′,
then Definition 10.21 shows that θ• induces isomorphisms on cohomology groups
of F •, F ′•, and furthermore, under the identification of the cohomologies of
F •, F ′• with TxX in degree −1 and OxX in degree 0, these isomorphisms are
the identity maps on TxX, OxX. Thus, Proposition 10.67 gives an isomorphism
of topological line bundles on Ṽ ∩ s−1(0):

Ξθ• : (detT ∗V ⊗ detE)|Ṽ ∩s−1(0) −→ φ∗(detT ∗V ′ ⊗ detE′)|···,

such that for all v, v′, x as above, the following diagram (10.72) commutes

detT ∗v V ⊗detE|v
Ξθ• |v

//

ΘV,E,s,ψ|v
��

detT ∗v′V
′⊗detE′|v′

ΘV ′,E′,s′,ψ′ |v′
��

(detTxX)−1 ⊗ (detOxX) (detTxX)−1 ⊗ (detOxX),

(10.107)

using the identifications of ΘF•|v ,ΘF ′•|v′ with ΘV,E,s,ψ|v,ΘV ′,E′,s′,ψ′ |v′ above.
Now ψ∗(Ξθ•) is an isomorphism on Imψ ∩ Imψ′ between the line bundles on

the left hand sides of (10.104)–(10.105), and (10.107) for each x ∈ Imψ ∩ Imψ′

shows that ψ∗(Ξθ•) is compatible with (10.104)–(10.105). Thus, the topologies
on KX |Imψ and KX |Imψ′ from (10.104) and (10.105) agree on KX |Imψ∩Imψ′ ,
proving the claim.

Choose a family of m-Kuranishi neighbourhoods
{

(Vi, Ei, si, ψi) : i ∈ I
}

on
X with X =

⋃
i∈I Imψi (for instance, those in the m-Kuranishi structure K on

X = (X,K)). Then we have topologies on KX |Imψi for all i ∈ I which agree
on overlaps KX |Imψi∩Imψj for all i, j ∈ I, so they glue to give a global topology
on KX , which makes π : KX → X into a topological real line bundle. The
compatibility between KX |Imψ and KX |Imψ′ on Imψ∩ Imψ′ above implies that
this topology on KX is independent of choices.

If (V,E, s, ψ) is any m-Kuranishi neighbourhood on X, then by including
(V,E, s, ψ) in the family

{
(Vi, Ei, si, ψi) : i ∈ I

}
, by construction there is an

isomorphism ΘV,E,s,ψ in (10.101) with the properties required.
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Example 10.72. Using the notation of Example 4.30, let X ∈ Ṁan, and let

X = FmK̇ur
Ṁan

(X) be the corresponding m-Kuranishi space, so that X is covered

by a single m-Kuranishi neighbourhood (X, 0, 0, idX). Then KX is canonically
isomorphic to KX = detT ∗X → X, considered as a topological line bundle.

Canonical line bundles are functorial under étale 1-morphisms:

Proposition 10.73. Let f : X → Y be an étale 1-morphism in mK̇ur as in
§10.5.1 (for example, f could be an equivalence), so that Theorem 10.71 defines
canonical bundles KX → X, KY → Y . Then there is a natural isomorphism

Kf : f∗(KY ) −→ KX (10.108)

of topological line bundles on X, such that for all x ∈X with f(x) = y in Y

Kf |x = (detT ∗xf)⊗ (detOxf)−1 :

detT ∗yY ⊗ detOyY −→ detT ∗xX ⊗ detOxX,
(10.109)

where Txf : TxX → TyY , Oxf : OxX → OyY are as in §10.2.1 and are
isomorphisms by Theorem 10.55, and T ∗xf : T ∗yY → T ∗xX is dual to Txf .

Proof. As a map of sets, Kf in (10.108) is determined uniquely by (10.109), and
(10.109) is an isomorphism on the fibres at each x ∈ X. Thus, we need only show
that this map Kf is continuous. Let x ∈X with f(x) = y in Y , and choose m-
Kuranishi neighbourhoods (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) on X,Y respectively
with x ∈ Imχ and y ∈ Imψ. Then Theorem 4.56(b) gives a 1-morphism fab =

(Uab, fab, f̂ab) : (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) over (Imχa ∩ f−1(Imψb),f).
By the argument in the proof of Theorem 10.71, but replacing (10.106) by

· · · 0 // 0
0 // TUa|Uab∩r−1

a (0)

Tfab|Uab∩r−1
a (0)

��

dra // Da|Uab∩r−1
a (0)

f̂ab|Uab∩r−1
a (0)

��

0 // 0
0 // · · ·

· · ·
degree

0 // 0
−2

0 // f∗ab(TVb)|Uab∩r−1
a (0)

−1

f∗ab(dsb)// f∗ab(Eb)|Uab∩r−1
a (0)

0

0 // 0
1

0 // · · · ,

and noting that Txf , Oxf are isomorphisms, we obtain an isomorphism of
topological line bundles on Uab ∩ r−1

a (0):

Ξθ• : (detT ∗Uab ⊗ detDa)|Uab∩r−1
a (0) −→ f∗ab(detT ∗Vb ⊗ detEb)|···,

such that for all u ∈ Uab ∩ r−1
a (0) with χa(u) = x in X, fab(u) = v ∈ Vb

and f(x) = ψb(v) = y in Y as above, as in (10.72) and (10.107) the following
commutes:

detT ∗uUab ⊗ detDa|u
Ξθ• |u

//

ΘUa,Da,ra,χa |u
��

detT ∗v Vb ⊗ detEb|v
ΘVb,Eb,sb,ψb |v

��
(detTxX)−1 ⊗ (detOxX) (detTyY )−1 ⊗ (detOyY ).

χ∗a(Kf )|u = Kf |x in (10.109)

oo

(10.110)
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As the top, left and right morphisms of (10.110) are restrictions to u of
isomorphisms of topological line bundles Ξθ• ,ΘUa,Da,ra,χa ,ΘVb,Eb,sb,ψb , it follows
that χ∗a(Kf ) is an isomorphism of topological line bundles over Uab ∩ r−1

a (0),
so that Kf is an isomorphism (and in particular is continuous) over Imχa ∩
f−1(Imψb) ⊆ X. Since we can cover X by such open Imχa ∩ f−1(Imψb), this
shows Kf in (10.108) is an isomorphism of topological line bundles.

By Examples 10.2 and 10.14, the results above apply when mK̇ur is one of

mKur,mKurc,mKurc
we, (10.111)

with TxX, OxX and KX defined using ordinary tangent spaces TvV in Man,
Manc,Manc

we, and also when mK̇ur is one of

mKurc,mKurgc,mKurac,mKurc,ac, (10.112)

with bTxX, bOxX, bKX (using the obvious notation) defined using b-tangent
spaces bTvV in Manc,Mangc,Manac,Manc,ac. Note that in mKurc we have
two different notions of canonical bundle KX ,

bKX , defined using ordinary
tangent bundles TV → V and b-tangent bundles bTV → V in Manc. We will
see in §10.7.2 that these yield equivalent notions of orientation on X in mKurc.

10.7.2 Orientations on m-Kuranishi spaces

Definition 10.74. Let X = (X,K) be an m-Kuranishi space in mK̇ur, so that
Theorem 10.71 defines the canonical bundle π : KX → X. An orientation oX
on X is an orientation on the fibres of KX .

That is, as in Definitions 2.38 and 10.15, an orientation oX on X is an
equivalence class [ω] of continuous sections ω ∈ Γ0(KX) with ω|x 6= 0 for all
x ∈ X, where two such ω, ω′ are equivalent if ω′ = K · ω for K : X → (0,∞)
continuous. The opposite orientation is −oX = [−ω].

Then we call (X, oX) an oriented m-Kuranishi space. Usually we suppress
the orientation oX , and just refer to X as an oriented m-Kuranishi space, and
then we write −X for X with the opposite orientation.

Proposition 10.73 implies that if f : X → Y is an étale 1-morphism in mK̇ur
then orientations oY on Y pull back to orientations oX = f∗(oY ) on X, where
if oY = [ω] then oX = [Kf ◦ f∗(ω)]. If f is an equivalence, this defines a natural
1-1 correspondence between orientations on X and orientations on Y .

Let f : X → Y be a 1-morphism in mK̇ur. A coorientation cf on f is an
orientation on the fibres of the line bundle KX ⊗ f∗(K∗Y ) over X. That is, cf
is an equivalence class [γ] of γ ∈ Γ0(KX ⊗ f∗(K∗Y )) with γ|x 6= 0 for all x ∈ X,
where two such γ, γ′ are equivalent if γ′ = K · γ for K : X → (0,∞) continuous.
The opposite coorientation is −cf = [−γ]. If Y is oriented then coorientations
on f are equivalent to orientations on X. Orientations on X are equivalent to
coorientations on π : X → ∗, for ∗ the point in mK̇ur.

Remark 10.75. There are several equivalent ways to define orientations on
m-Kuranishi spaces X = (X,K) without first defining the canonical bundle KX .
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Writing K =
(
I, (Vi, Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
, an orientation on X

is equivalent to the data of an orientation on the manifold Ei in Ṁan near
0Ei(s

−1
i (0)) ⊆ Ei, such that all the coordinate changes Φij : (Vi, Ei, si, ψi) →

(Vj , Ej , sj , ψj) are ‘orientation-preserving’ in a suitable sense.
The purpose of Definition 10.66 and Proposition 10.67 is to give us a good

notion of when Φij is orientation-preserving in the proof of Theorem 10.71. We
do this using tangent spaces and tangent bundles, and implicitly we use the exact
sequence (10.59) to compare orientations on (Vi, Ei, si, ψi) and (Vj , Ej , sj , ψj).

It should still be possible to define orientations in mK̇ur when the category
Ṁan does not have tangent bundles TV → V , but does have a well-behaved
notion of orientation. To do this we would need an alternative way to define
when Φij is ‘orientation-preserving’, not involving tangent bundles.

As for (10.111)–(10.112), Definition 10.74 defines orientations on m-Kuranishi
spaces X in the 2-categories mKur,mKurc,mKurc

we, with KX defined using
tangent bundles TV → V , and on X in the 2-categories mKurc,mKurgc,
mKurac,mKurc,ac, with bKX defined using b-tangent bundles bTV → V .

For X = (X,K) in mKurc, we have two canonical bundles KX and bKX ,
which are generally not canonically isomorphic. However, the notions of orien-
tation on X defined using KX and bKX are equivalent. This is because, as in
§2.6, the notions of orientation on Ei ∈Manc defined using TEi and bTEi are
equivalent, and as in Remark 10.75 an orientation on X is equivalent to local
orientations on Ei in m-Kuranishi neighbourhoods (Vi, Ei, si, ψi) in K.

Example 10.76. Using the notation of Example 4.30, let X ∈ Ṁan, and let

X = FmK̇ur
Ṁan

(X) be the corresponding m-Kuranishi space. Then combining
Example 10.72 and Definitions 10.15 and 10.74 shows that orientations on X in
Ṁan, and on X in mK̇ur, are equivalent.

10.7.3 Orienting boundaries of m-Kuranishi spaces with
corners

Now suppose Ṁanc satisfies Assumptions 3.22 and 10.16, so that as in §4.6
we have a 2-category mK̇urc of m-Kuranishi spaces with corners X which
have boundaries ∂X and 1-morphisms iX : ∂X →X as in §4.6.1. Also Ṁanc

satisfies Assumptions 10.1 and 10.13 by Assumption 10.16, so Theorem 10.71
defines canonical bundles KX → X and K∂X → ∂X. Our next theorem relates
these. One should compare ΩX in (10.113) with ΩX in (10.16) for X ∈ Ṁanc.

Theorem 10.77. Let Ṁanc satisfy Assumptions 3.22 and 10.16, and suppose
X is an m-Kuranishi space with corners in mK̇urc. Then there is a natural
isomorphism of topological line bundles on ∂X

ΩX : K∂X −→ N∂X ⊗ i∗X(KX), (10.113)

where N∂X is a line bundle on ∂X, with a natural orientation on its fibres.
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Suppose that (Va, Ea, sa, ψa) is an m-Kuranishi neighbourhood on X, as
in §4.7.1, with dimVa = ma and rankEa = na. Then §4.7.3 defines an m-
Kuranishi neighbourhood (V(1,a), E(1,a), s(1,a), ψ(1,a)) on ∂X with V(1,a) = ∂Va,
E(1,a) = i∗Va(Ea), and s(1,a) = i∗Va(sa). Also Assumption 10.16 gives a (smooth)
line bundle N∂Va → ∂Va, with an orientation on its fibres. Then there is a
natural isomorphism of topological line bundles on s−1

(1,a)(0) ⊆ ∂Va

ΦVa,Ea,sa,ψa : N∂Va |s−1
(1,a)

(0) −→ ψ−1
(1,a)(N∂X), (10.114)

which identifies the orientations on the fibres, such that the following commutes:

(detT ∗(∂Va)⊗
det i∗Va(Ea))|s−1

(1,a)
(0) ΩVa⊗iddet i∗

Va
(Ea)|···

//

ΘV(1,a),E(1,a),s(1,a),ψ(1,a)

��

N∂Va ⊗ i∗Va(detT ∗Va
⊗detEa)|s−1

(1,a)
(0)

ΦVa,Ea,sa,ψa⊗iVa |
∗
···(ΘVa,Ea,sa,ψa )

��
ψ−1

(1,a)(K∂X)
ΩX // ψ−1

(1,a)(N∂X ⊗ i
∗
X(KX)),

(10.115)

where ΩVa is as in (10.16), and ΘVa,Ea,sa,ψa ,ΘV(1,a),E(1,a),s(1,a),ψ(1,a)
are as in

(10.101), and ΩX is as in (10.113), and ΦVa,Ea,sa,ψa is as in (10.114).

Proof. Most of the theorem holds trivially, by definition. Define a topological
line bundle N∂X → ∂X by N∂X = K∂X ⊗ (i∗X(KX))∗, where (i∗X(KX))∗ is the
dual line bundle to i∗X(KX), and define ΩX in (10.113) to be the inverse of

N∂X ⊗ i∗X(KX) K∂X ⊗
(
i∗X(KX)

)∗ ⊗ i∗X(KX)
id⊗ dual pairing // K∂X .

For the second part, since (10.115) is a diagram of isomorphisms of topolog-
ical line bundles on s−1

(1,a)(0) with ΦVa,Ea,sa,ψa the only undefined term, we

define ΦVa,Ea,sa,ψa to be the unique isomorphism in (10.114) such that (10.115)
commutes.

We must construct an orientation on the fibres of N∂X such that (10.114)
is orientation-preserving for all m-Kuranishi neighbourhoods (Va, Ea, sa, ψa) on
X. Since ψ(1,a) : s−1

(1,a)(0) → Imψ(1,a) is a homeomorphism, there is a unique

orientation on N∂X |Imψ(1,a)
such that (10.114) is orientation-preserving. We will

prove that for any two such (Va, Ea, sa, ψa), (Vb, Eb, sb, ψb) on X we have

ΦVa,Ea,sa,ψa |V(1,a)(1,b)∩s−1
(1,a)

(0) = ∂φab|∗···(ΦVb,Eb,sb,ψb) ◦ γφab |··· :

N∂Va |V(1,a)(1,b)∩s−1
(1,a)

(0) −→ ψ−1
(1,a)(N∂X)|V(1,a)(1,b)∩s−1

(1,a)
(0),

(10.116)

where γφab : NVab → φ∗ab(NVb) is as in (10.11) or (10.14). As γφab is orientation
preserving by Assumption 10.16, equation (10.116) implies that the orientations
on N∂X |Imψ(1,a)

and N∂X |Imψ(1,b)
agree on Imψ(1,a)∩ Imψ(1,b). Because we can

cover ∂X by such open Imψ(1,a) ⊆ ∂X, there is a unique orientation on the
fibres of N∂X with (10.114) orientation-preserving for all (Va, Ea, sa, ψa).
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It remains to prove (10.116). Definition 4.60 constructs m-Kuranishi neigh-
bourhoods (V(1,a), E(1,a), s(1,a), ψ(1,a)), (V(1,b), E(1,b), s(1,b), ψ(1,b)) on ∂X from
(Va, Ea, sa, ψa), (Vb, Eb, sb, ψb). Theorem 4.56(a) gives a coordinate change

Φab = (Vab, φab, φ̂ab) : (Va, Easa, ψa) −→ (Vb, Eb, sb, ψb)

over Imψa ∩ Imψb on X. By Proposition 4.34(d), making Vab smaller we can
suppose φab : Vab → Vb is simple, so ∂φab is defined. Definition 4.61 constructs
a coordinate change over Imψ(1,a) ∩ Imψ(1,b) on ∂X

Φ(1,a)(1,b) = (V(1,a)(1,b), φ(1,a)(1,b), φ̂(1,a)(1,b)) : (V(1,a), E(1,a), s(1,a), ψ(1,a))

−→ (V(1,b), E(1,b), s(1,b), ψ(1,b)),

with V(1,a)(1,b) = ∂Vab, φ(1,a)(1,b) = ∂φab, and φ̂(1,a)(1,b) = i∗Vab(φ̂ab).

Suppose Assumption 10.16(a) holds for Ṁanc. Then by (10.11) we have a
commutative diagram of vector bundles on ∂Vab ⊆ ∂Va:

0 // N∂Vab
γφab

��

αVab

// i∗Vab(TVab)

i∗Vab
(Tφab)

��

βVab

// T (∂Vab)

T (∂φab)

��

// 0

0 // (∂φab)∗(N∂Vb)

(∂φab)
∗(αVb )

// i∗Vab(φ
∗
ab(TVb))

=(∂φab)
∗(i∗Vb(TVb))

(∂φab)
∗(βVb )

// (∂φab)∗(T (∂Vb)) // 0.

(10.117)

Let v′a ∈ V(1,a)(1,b) ∩ s−1
(1,a)(0) ⊆ ∂Vab ⊆ ∂Va, and set va = iVa(v′a) in Vab ∩

s−1
a (0) ⊆ Vab ⊆ Va, and v′b = ∂φab(v

′
a) in V(1,b) ∩ s−1

(1,b)(0) ⊆ ∂Vb, and vb =

iVb(v
′
b) = φab(va) in s−1

b (0) ⊆ Vb, and x′ = ψ(1,a)(v
′
a) = ψ(1,b)(v

′
b) in ∂X,

and x = ψa(va) = ψb(vb) = iX(x′) in X. Set ma = dimVa, na = rankEa,
mb = dimVb, nb = rankEb, m = dimTxX and n = dimOxX. Then ma − na =
mb−nb = m−n = vdimX, so we have ma = m+pa, na = n+pa, mb = m+pb,
nb = n+ pb for pa, pb > 0.

As in (10.21) and (10.102) we have commutative diagrams

0 // TxX
ιax

// TvaVa

Tvaφab
��

dvasa

// Ea|va
φ̂ab|va��

πax

// OxX // 0

0 // TxX
ιbx // TvbVb

dvbsb // Eb|vb
πbx // OxX // 0,

(10.118)

0 // Tx′(∂X)
ιa
x′

// Tv′a(∂Va)

Tv′a
(∂φab)

��

dv′a
s(1,a)

// Ea|va
φ̂ab|va��

πa
x′

// Ox′(∂X) // 0

0 // Tx′(∂X)
ιb
x′ // Tv′b(∂Vb)

dv′
b
s(1,b)

// Eb|vb
πb
x′ // Ox′(∂X) // 0,

(10.119)

with exact rows. Choose bases (c1, . . . , cm), (da1 , . . . , d
a
m+pa), (db1, . . . , d

b
m+pb

),

(ea1 , . . . , e
a
pa+n), (eb1, . . . , e

b
pb+n

), (f1, . . . , fn) for TxX, TvaVa, Ea|va , TvbVb, Eb|vb ,
OxX respectively with

ιax(ci)=dai , ι
b
x(ci)=dbi , i=1, . . . ,m, dvasa(dam+j)=eaj , j=1, . . . , pa, (10.120)

dvbsb(d
b
m+j)=ebj , j=1, . . . , pb, π

a
x(eapa+k)=πbx(ebpb+k)=fk, k=1, . . . , n.
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Let (γ1, . . . , γm), (δa1 , . . . , δ
a
m+pa), (δb1, . . . , δ

b
m+pb

) be the dual bases to (c1, . . . ,

cm), (da1 , . . . , d
a
m+pa), (db1, . . . , d

b
m+pb

). Then Theorem 10.71 gives

ΘVa,Ea,sa,ψa |va : (δa1 ∧ · · · ∧ δam+pa)⊗ (ea1 ∧ · · · ∧ eapa+n) 7−→

(−1)pa(pa+1)/2 · (γ1 ∧ · · · ∧ γm)⊗ (f1 ∧ · · · ∧ fn),
(10.121)

ΘVb,Eb,sb,ψb |vb : (δb1 ∧ · · · ∧ δbm+pb
)⊗ (eb1 ∧ · · · ∧ ebpb+n) 7−→

(−1)pb(pb+1)/2 · (γ1 ∧ · · · ∧ γm)⊗ (f1 ∧ · · · ∧ fn).
(10.122)

Now from (10.12) in Assumption 10.16(a) we can show that

dvasa = dv′as(1,a) ◦ βVab |v′a : TvaVa −→ Ea|va .

Exactness of the top line of (10.117) implies that

Im(dv′as(1,a)) = Im(dvasa) =
〈
ea1 , . . . , e

a
pa

〉
R,

R ∼= Im(αVab |v′a) ⊆ Ker(dvasa) =
〈
da1 , . . . , d

a
m

〉
R.

Choose (da1 , . . . , d
a
m+pa) with Im(αVab |v′a) = 〈da1〉R. From (10.118) and ιax(ci) =

dai , ι
b
x(ci) = dbi we see that Tvaφab(d

a
i ) = dbi for i = 1, . . . ,m, so from (10.117)

we deduce that Im(αVb |v′b) = 〈db1〉R. Thus there are unique ga1 ∈ N∂Vab |v′a and

gb1 ∈ N∂Vb |v′b with αVab |v′a(ga1 ) = da1 , αVb |v′b(g
b
1) = db1, and then γφab |v′a(ga1 ) = ga2 .

Set d′ai = βVab |v′a(dai ) for i = 2, . . . ,m+pa and d′bi = βVb |v′b(d
b
i ) for i = 2, . . . ,m+

pb. Then (d′a2 , . . . , d
′a
m+pa), (d′b2 , . . . , d

′b
m+pb

) are bases for Tv′a(∂Va), Tv′b(∂Vb), by

exactness in the rows of (10.117). Let (δ′a2 , . . . , δ
′a
m+pa), (δ′b2 , . . . , δ

′b
m+pb

) be the
dual bases for T ∗v′a(∂Va), T ∗v′b

(∂Vb). Then Definition 10.18 gives

ΩVa |v′a : δ′a2 ∧ · · · ∧ δ′am+pa 7−→ ga1 ⊗ (δa1 ∧ · · · ∧ δam+pa), (10.123)

ΩVb |v′b : δ′b2 ∧ · · · ∧ δ′bm+pb
7−→ gb1 ⊗ (δb1 ∧ · · · ∧ δbm+pb

). (10.124)

Using (10.118)–(10.120) we see there are unique bases (c′2, . . . , c
′
m), (f ′1, . . . ,

f ′n) for Tx′(∂X), Ox′(∂X) such that

ιax′(c
′
i) = d′ai , ι

b
x′(c

′
i) = d′bi , i = 2, . . . ,m,

πax′(e
a
pa+k) = f ′k, π

b
x′(e

b
pb+k

) = f ′k, k = 1, . . . , n.

Let (γ′2, . . . , γ
′
m) be the dual basis to (c′2, . . . , c

′
m) for T ∗x′(∂X). Then as for

(10.121)–(10.122), Theorem 10.71 gives

ΘV(1,a),E(1,a),s(1,a),ψ(1,a)
|v′a : (δ′a2 ∧ · · · ∧ δ′am+pa)⊗ (ea1 ∧ · · · ∧ eapa+n)

7−→ (−1)pa(pa+1)/2 · (γ′2 ∧ · · · ∧ γ′m)⊗ (f ′1 ∧ · · · ∧ f ′n),
(10.125)

ΘV(1,b),E(1,b),s(1,b),ψ(1,b)
|v′b : (δ′b2 ∧ · · · ∧ δ′bm+pb

)⊗ (eb1 ∧ · · · ∧ ebpb+n)

7−→ (−1)pb(pb+1)/2 · (γ′2 ∧ · · · ∧ γ′m)⊗ (f ′1 ∧ · · · ∧ f ′n).
(10.126)
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From (10.115) and (10.121)–(10.126) we see that

ΦVa,Ea,sa,ψa |v′a(ga1 ) = ΦVb,Eb,sb,ψb |v′b(g
b
1) =(

(γ1 ∧ · · · ∧ γm)⊗ (f1 ∧ · · · ∧ fn)
)
⊗
(
(γ′2 ∧ · · · ∧ γ′m)⊗ (f ′1 ∧ · · · ∧ f ′n)

)−1
.

This and γφab |v′a(ga1 ) = gb1 imply the restriction of (10.116) to v′a, for any v′a.

Therefore (10.116) holds when Ṁanc satisfies Assumption 10.16(a). The proof
for Assumption 10.16(b) is very similar, and we leave it to the reader.

Example 10.78. Work in the 2-category mKurc or mKurgc of m-Kuranishi
spaces with corners X defined using Ṁanc = Manc or Mangc from Chapter
2, with (b-)canonical bundles bKX defined using b-tangent bundles bTV → V
from §2.3 for V in Manc or Mangc. Then as in (2.14) and Example 10.17(i),
the normal bundle N∂X in (10.10) of Assumption 10.16(a) is naturally trivial,
N∂X = O∂X .

Thus, if X lies in mKurc or mKurgc then (10.114) in Theorem 10.77
implies that N∂X is naturally trivial on Imψ(1,a). As γΦab in (10.117) respects
the trivializations, they glue to a global natural trivialization N∂X ∼= O∂X .
Hence for X in mKurc or mKurgc, we can replace (10.113) by a canonical
isomorphism

bΩX : bK∂X −→ i∗X(bKX). (10.127)

Here is the analogue of Definition 10.18:

Definition 10.79. Let Ṁanc satisfy Assumptions 3.22 and 10.16, and suppose
(X, oX) is an oriented m-Kuranishi space with corners in mK̇urc, as in §10.7.2.
Then oX is an orientation on the fibres of KX → X, so i∗X(oX) is an orientation
on the fibres of i∗X(KX)→ ∂X. Theorem 10.77 gives a line bundle N∂X → ∂X
with an orientation νX on its fibres, and an isomorphism ΩX : K∂X → N∂X ⊗
i∗X(KX). Thus there is a unique orientation o∂X on the fibres of K∂X → ∂X
identified by ΩX with νX ⊗ i∗X(oX), and o∂X is an orientation on ∂X.

In this way, if X is an oriented m-Kuranishi space with corners, then ∂X is
oriented, and by induction ∂kX is oriented for all k = 0, 1, . . . . As for manifolds
with corners in §2.6, the k-corners Ck(X) for k > 2 need not be orientable.

10.7.4 Canonical bundles, orientations for products in mK̇ur

Products X × Y of m-Kuranishi spaces X,Y were defined in Example 4.31. If
X,Y are oriented, the next theorem defines an orientation on X × Y .

Theorem 10.80. Let X,Y be m-Kuranishi spaces in mK̇ur, so that Example
4.31 defines the product X×Y in mK̇ur with projections πX : X×Y →X, πY :
X × Y → Y , and Theorem 10.71 defines the canonical bundles KX ,KY ,KX×Y
of X,Y ,X × Y . There is a unique isomorphism of topological line bundles on
X × Y :

ΥX,Y : KX×Y −→ π∗X(KX)⊗ πY ∗(KY ), (10.128)
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such that if x ∈ Y , y ∈ Y and we identify T ∗(x,y)(X × Y ) = T ∗xX ⊕ T ∗yY ,

O(x,y)(X × Y ) ∼= OxX ⊕OyY as in (10.35), and define isomorphisms

IT∗xX,T∗y Y : detT ∗(x,y)(X × Y ) −→ det(T ∗xX)⊗ det(T ∗yY ),

IOxX,OyY : detO(x,y)(X × Y ) −→ det(OxX)⊗ det(OyY )

as in (10.84), then

ΥX,Y |(x,y) = (−1)dimOxX dimTyY · IT∗xX,T∗y Y ⊗ IOxX,OyY . (10.129)

Hence if X,Y are oriented there is a unique orientation on X × Y , called the
product orientation, such that (10.128) is orientation-preserving.

Proof. Equation (10.129) defines an isomorphism ΥX,Y |(x,y) : KX×Y |(x,y) →
π∗X(KX)⊗ πY ∗(KY )|(x,y) for each (x, y) ∈ X × Y . Thus there is a unique map
of sets ΥX,Y in (10.128) which satisfies (10.129) for all (x, y) ∈ X ×Y . We must
show that this map ΥX,Y is an isomorphism of topological line bundles. It is
sufficient to do this locally near each (x, y) in X × Y .

Fix (x, y) ∈ X × Y , and let (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) be m-Kuranishi
neighbourhoods on X,Y with x ∈ Imχa ⊆ X, y ∈ Imψb ⊆ Y . Then as in
Example 4.53 we have an m-Kuranishi neighbourhood(

Ua × Vb, π∗Ua(Da)⊕ π∗Vb(Eb), π
∗
Ua(ra)⊕ π∗Vb(sb), χa × ψb

)
on X × Y , with (x, y) ∈ Im(χa × ψb). Let u = χ−1

a (x) ∈ r−1
a (0) ⊆ Ua, v =

ψ−1
b (y) ∈ s−1

b (0) ⊆ Vb, so that as in Definition 10.6 we have linear maps
dura : TuUa → Da|u and dvsb : TvVb → Eb|v.

As in the proof of Theorem 10.71, write F •, G• for the complexes

· · ·
degree

0 // 0
−3

0 // 0
−2

0 // TuUa
−1

dura // Da|u
0

0 // 0
1

0 // 0
2

0 // · · · ,

· · ·
degree

0 // 0
−3

0 // 0
−2

0 // TvVb
−1

dsb // Eb|v
0

0 // 0
1

0 // 0
2

0 // · · · .

Then Proposition 10.68 shows that the following commutes:

(det(TuUa ⊕ TvVb))−1

⊗det(Da|u ⊕ Eb|v)

(−1)rankDa dimVb ·
IT∗uUa,T∗v Vb⊗IDa|u,Eb|v
��

ΘF•⊕G•
// KX×Y |(x,y)

ΥX,Y |(x,y)=(−1)dimOxX dimTyY ·
IT∗xX,T∗y Y⊗IOxX,OyY

��
((detTuUa)−1 ⊗ detDa|u)
⊗((detTvVa)−1 ⊗ detEb|u)

ΘF•⊗ΘG• // KX |x ⊗KY |y.

(10.130)
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Now (10.130) is the fibre at (x, y) ∈ r−1
a (0) × s−1

b (0) of the commutative
diagram of topological line bundles on r−1

a (0)× s−1
b (0) ⊆ Ua × Vb:

det(T ∗(Ua × Vb)⊗
det((π∗Ua(Da)⊕ π∗Vb(Eb)))|r−1

a (0)×s−1
b (0)

(−1)rankDa dimVb ·
IT∗Ua,T∗Vb⊗IDa,Eb
��

ΘUa×Vb,··· ,χa×ψb // (χa × ψb)−1(KX×Y )

(χa×ψb)−1(ΥX,Y )

��
π∗
r−1
a (0)

(detT ∗Ua⊗detDa)

⊗π∗
s−1
b (0)

(detT ∗Va⊗detEb)

π∗
r
−1
a (0)

(ΘUa,Da,ra,χa )

⊗π∗
s
−1
b

(0)
(ΘVb,Eb,sb,ψb )

//
(χa◦πr−1

a (0))
∗(KX)

⊗(ψb◦πs−1
b (0))

∗(KY ),

(10.131)

where ΘUa,Da,ra,χa ,ΘVb,Eb,sb,ψb and ΘUa×Vb,··· ,χa×ψb are as in Theorem 10.71.
The top, bottom and left morphisms in (10.131) are isomorphisms of topo-

logical line bundles on r−1
a (0)× s−1

b (0). Hence the right hand morphism is an
isomorphism, so ΥX,Y is an isomorphism on the open subset Im(χa×ψb) ⊆ X×Y ,
as χa × ψb : r−1

a (0) × s−1
b (0) → Im(χa × ψb) is a homeomorphism. Since we

can cover X × Y by such open subsets Im(χa × ψb), we see that ΥX,Y is an
isomorphism of topological line bundles, as we have to prove.

The morphism ΥX,Y in (10.128), and hence the orientation on X × Y
above, depend on our choice of orientation conventions, as in Convention 2.39,
including various sign choices in §10.6–§10.7 and in (10.129). Different orientation
conventions would change ΥX,Y and the orientation onX×Y by a sign depending
on vdimX, vdimY . If X,Y are manifolds then the orientation on X×Y agrees
with that in Convention 2.39(a).

Proposition 10.81. Suppose X,Y ,Z are oriented m-Kuranishi spaces. As in
Example 4.31, products of m-Kuranishi spaces are commutative and associative
up to canonical 1-isomorphism. When we include orientations, (4.38) becomes

X×Y ∼= (−1)vdimX vdimY Y×X, (X×Y )×Z ∼= X×(Y×Z ). (10.132)

Proof. Let x ∈X and y ∈ Y , and consider the noncommutative diagram

KX×Y |(x,y)

ΥX,Y |(x,y)=(−1)dimOxX dimTyY ·IT∗xX,T∗y Y⊗IOxX,OyY

//

∼=

��

KX |x ⊗KY |y

∼=

��
KY×X |(y,x)

ΥY,X |(y,x)=(−1)dimOyY dimTxX ·IT∗y Y,T∗xX⊗IOyY,OxX

∼=(−1)dimOyY dimTxX+dimTxX dimTyY+dimOxX dimOyY ·
IT∗xX,T∗y Y⊗IOxX,OyY

// KY |y ⊗KX |x.

(10.133)

Here the columns are the natural isomorphisms, and for the bottom morphism
we use the fact that under the natural isomorphisms we have IT∗y Y ,T∗xX

∼=
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(−1)dimTxX dimTyY IT∗xX,T∗y Y and IOyY ,OxX
∼= (−1)dimOxX dimOyY IOxX,OyY .

Thus, (10.133) fails to commute by an overall factor of

(−1)dimOxX dimTyY · (−1)dimOyY dimTxX+dimTxX dimTyY+dimOxX dimOyY

= (−1)vdimX vdimY ,

since vdimX = dimTxX − dimOxX and vdimY = dimTyY − dimOyY by
(10.26). As this holds for all (x, y) ∈X×Y , the first equation of (10.132) follows,
since ΥX,Y and ΥY ,X are used to define the orientations on X ×Y and Y ×X.
The second equation is easier, as the analogue of (10.133) does commute.

10.7.5 Canonical bundles, orientations on µ-Kuranishi spaces

All the material of §10.7.1–§10.7.4 extends immediately to µ-Kuranishi spaces in
Chapter 5, with no significant changes.

10.7.6 Canonical bundles, orientations on Kuranishi spaces

To extend §10.7.1–§10.7.4 to Kuranishi spaces in Chapter 6, there is one new
issue. For a general Kuranishi space X in K̇ur, the näıve analogue of Theorem
10.71 is false, in that we may not be able to define a topological line bundle
π : KX → X over X considered just as a topological space.

Really we should make X into a Deligne–Mumford topological stack (a kind
of orbifold in topological spaces), as in Noohi [58], and then π : KX → X should
be a line bundle in the sense of stacks or orbifolds. That is, X has finite isotropy
groups GxX for x ∈ X as in §6.5, which may act nontrivially on the fibres KX |x.
The only possible nontrivial action is via {±1} acting on R. Thus, as topological
spaces, the fibres of π : KX → X may be either R or R/{±1}.

However, orientations on X only exist if GxX acts trivially on KX |x for each
x ∈ X, and then KX does exist as a topological line bundle on X as a topological
space. So we will restrict to this case, and not bother with topological stacks.

Definition 10.82. Let X be a Kuranishi space in K̇ur. Then as in §10.2.3, for
each x ∈X we have the isotropy group GxX, which acts linearly on the tangent
and obstruction spaces TxX, OxX. We call X locally orientable if the induced
action of GxX on detT ∗xX ⊗ detOxX is trivial for all x ∈X.

Here is the analogue of Theorem 10.71:

Theorem 10.83. Let X = (X,K) be a locally orientable Kuranishi space in
K̇ur. Then there is a natural topological line bundle π : KX → X called the
canonical bundle of X, with fibres for each x ∈ X given by

KX |x = detT ∗xX ⊗ detOxX
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for TxX, OxX as in §10.2.3, with the property that if (V,E,Γ, s, ψ) is a Kuran-
ishi neighbourhood on X in the sense of §6.4, then there is an isomorphism of
topological real line bundles on s−1(0) ⊆ V

ΘV,E,Γ,s,ψ : (detT ∗V ⊗ detE)|s−1(0) −→ ψ̄−1(KX), (10.134)

such that if v ∈ s−1(0) ⊆ V with ψ̄(v) = x ∈ X, so that as in (10.38) we have
an exact sequence

0 // TxX
ιx // TvV

dvs // E|v
πx // OxX // 0,

and if (c1, . . . , cl), (d1, . . . , dl+m), (e1, . . . , em+n), (f1, . . . , fn) are bases for TxX,
TvV,E|v, OxX respectively with ιx(ci) = di, i = 1, . . . , l and dvs(dl+j) = ej ,
j = 1, . . . ,m and πx(em+k) = fk, k = 1, . . . , n, and (γ1, . . . , γl), (δ1, . . . , δl+m)
are dual bases to (c1, . . . , cl), (d1, . . . , dl+m) for T ∗xX, T ∗v V, then

ΘV,E,Γ,s,ψ|v : detT ∗v V ⊗ detE|v → detT ∗xX ⊗ detOxX maps

ΘV,E,Γ,s,ψ|v : (δ1 ∧ · · · ∧ δl+m)⊗ (e1 ∧ · · · ∧ em+n) 7−→
(−1)m(m+1)/2 · (γ1 ∧ · · · ∧ γl)⊗ (f1 ∧ · · · ∧ fn).

Proof. The proof is similar to that of Theorem 10.71, with one additional step: in
the m-Kuranishi case, we make (10.104) by pushing ΘV,E,s,ψ in (10.101) forward
by the homeomorphism ψ : s−1(0) → Imψ. In the Kuranishi case, we have a
Γ-equivariant ΘV,E,Γ,s,ψ in (10.134) on s−1(0). Because of the locally orientable
condition on X, this pushes forward along the projection s−1(0)→ s−1(0)/Γ to
an isomorphism of topological line bundles on s−1(0)/Γ, and this then pushes
forward along the homeomorphism ψ : s−1(0)/Γ→ Imψ to give an analogue of
(10.104). Also the analogue of (10.106) should take place on π−1(s−1(0)) ⊆ P
for Φ = (P, π, φ, φ̂). We leave the details to the reader.

The analogue of Proposition 10.73 holds for étale f : X → Y between locally
orientable Kuranishi spaces X,Y . Here is the analogue of Definition 10.74:

Definition 10.84. Let X = (X,K) be a locally orientable Kuranishi space in
K̇ur, so that Theorem 10.83 defines the canonical bundle π : KX → X. An
orientation oX on X is an orientation on the fibres of KX . That is, oX is an
equivalence class [ω] of continuous sections ω ∈ Γ0(KX) with ω|x 6= 0 for all
x ∈ X, where two such ω, ω′ are equivalent if ω′ = K · ω for K : X → (0,∞)
continuous. The opposite orientation is −oX = [−ω]. Then we call (X, oX) an
oriented Kuranishi space. Usually we suppress oX , and just call X an oriented
Kuranishi space, and then we write −X for X with the opposite orientation.

By the analogue of Proposition 10.73, if f : X → Y is an étale 1-morphism
in K̇ur for X,Y locally orientable then orientations oY on Y pull back to
orientations oX = f∗(oY ) on X. If f is an equivalence, this defines a natural
1-1 correspondence between orientations on X and orientations on Y .

Let f : X → Y be a 1-morphism in K̇ur, with X,Y locally orientable. A
coorientation cf on f is an orientation on the fibres of the line bundle KX ⊗
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f∗(K∗Y ) over X. That is, cf is an equivalence class [γ] of γ ∈ Γ0(KX ⊗ f∗(K∗Y ))
with γ|x 6= 0 for all x ∈ X, where two such γ, γ′ are equivalent if γ′ = K · γ
for K : X → (0,∞) continuous. The opposite coorientation is −cf = [−γ].
If Y is oriented then coorientations on f are equivalent to orientations on X.
Orientations on X are equivalent to coorientations on π : X → ∗, for ∗ the
point in K̇ur.

The weak 2-functor F K̇ur
mK̇ur

: mK̇ur ↪→ K̇ur from §6.2.4 identifies canonical
bundles and orientations on an m-Kuranishi space X from §10.7.1–§10.7.2 with

canonical bundles and orientations on the Kuranishi space X ′ = F K̇ur
mK̇ur

(X),

which is automatically locally orientable as GxX
′ = {1} for all x ∈X ′.

Here are the analogues of Theorem 10.77 and Definition 10.79:

Theorem 10.85. Let Ṁanc satisfy Assumptions 3.22 and 10.16, and let X be
a locally orientable Kuranishi space with corners in K̇urc. Then ∂X is locally
orientable, and there is a natural isomorphism of topological line bundles on ∂X

ΩX : K∂X −→ N∂X ⊗ i∗X(KX), (10.135)

where N∂X is a line bundle on ∂X, with a natural orientation on its fibres.
Suppose that (Va, Ea,Γa, sa, ψa) is a Kuranishi neighbourhood on X, as

in §6.4, with dimVa = ma and rankEa = na. Then as in §6.4 we have a
Kuranishi neighbourhood (V(1,a), E(1,a),Γ(1,a), s(1,a), ψ(1,a)) on ∂X with V(1,a) =
∂Va, E(1,a) = i∗Va(Ea), Γ(1,a) = Γa, and s(1,a) = i∗Va(sa). Also Assumption 10.16
gives a (smooth) line bundle N∂Va → ∂Va, with an orientation on its fibres. Then
there is a natural isomorphism of topological line bundles on s−1

(1,a)(0) ⊆ ∂Va

ΦVa,Ea,Γa,sa,ψa : N∂Va |s−1
(1,a)

(0) −→ ψ̄−1
(1,a)(N∂X), (10.136)

which identifies the orientations on the fibres, such that the following commutes:

(detT ∗∂Va⊗
det i∗Va(Ea))|s−1

(1,a)
(0) ΩVa⊗iddet i∗

Va
(Ea)|···

//

ΘV(1,a),E(1,a),s(1,a),ψ(1,a)

��

N∂Va ⊗ i∗Va(detT ∗Va
⊗detEa)|s(1,a)−1(0)

ΦVa,Ea,sa,ψa⊗iVa |
∗
···(ΘVa,Ea,sa,ψa )

��
ψ̄−1

(1,a)(K∂X)
ΩX // ψ̄−1

(1,a)(N∂X ⊗ i
∗
X(KX)),

where ΩVa is as in (10.16), and ΘVa,Ea,Γa,sa,ψa ,ΘV(1,a),E(1,a),Γ(1,a),s(1,a),ψ(1,a)
as

in (10.134), and ΩX as in (10.135), and ΦVa,Ea,Γa,sa,ψa as in (10.136).

Proof. The proof is similar to that of Theorem 10.77, but with a few extra
steps. Firstly, if in the situation of the theorem we have v′a ∈ s−1

(1,a)(0) with

ψ̄(1,a)(v
′
a) = x′ ∈ ∂X and va = iVa(v′a) ∈ s−1

a (0) and iX(x′) = ψ̄a(va) = x in X,
then as in the proof of Theorem 10.77 we can construct an isomorphism

detT ∗x′(∂X)⊗ detOx′(∂X) ∼= N∂Va |v′a ⊗ detT ∗xX ⊗ detOxX,
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which is equivariant under Gx′(∂X) ∼= StabΓ(1,a)
(v′a) ⊆ StabΓa(va) ∼= GxX. But

StabΓ(1,a)
(v′a) acts trivially on N∂Va |v′a , as the action is defined using the γf in

Assumption 10.16 which are orientation-preserving, and GxX acts trivially on
detT ∗xX ⊗ detOxX as X is locally orientable. Hence Gx′(∂X) acts trivially on
detT ∗x′(∂X)⊗ detOx′(∂X), so ∂X is locally orientable, as we have to prove.

Secondly, as the natural action of Γ(1,a) on N∂Va preserves orientations on the
fibres, we can use ΦVa,Ea,Γa,sa,ψa in (10.136) to induce a unique orientation on
N∂X |Imψ(1,a)

, as the orientation on N∂Va |s−1
(1,a)

(0) descends through the quotient

s−1
(1,a)(0)→ s−1

(1,a)(0)/Γ(1,a). We leave the details to the reader.

As in Example 10.78, working in Kurc or Kurgc with b-canonical bundles
bKX in Theorem 10.85 defined using b-tangent bundles bTV → V in Manc

or Mangc, the normal bundle N∂X in Theorem 10.85 is canonically trivial,
N∂X ∼= O∂X , so we can replace (10.135) by (10.127).

Definition 10.86. Let Ṁanc satisfy Assumptions 3.22 and 10.16, and suppose
(X, oX) is an oriented Kuranishi space with corners in K̇urc. Then X is locally
orientable by Definition 10.84 with canonical bundle KX → X from Theorem
10.83, and oX is an orientation on the fibres of KX → X. Theorem 10.85 shows
that ∂X is locally orientable in K̇urc, so that K∂X → ∂X is defined, and
gives a line bundle N∂X → ∂X with an orientation νX on its fibres, and an
isomorphism ΩX : K∂X → N∂X ⊗ i∗X(KX). Hence there is a unique orientation
o∂X on the fibres of K∂X → ∂X identified by ΩX with νX ⊗ i∗X(oX), and o∂X
is an orientation on ∂X. Thus, if X is an oriented Kuranishi space with corners,
then ∂kX is naturally oriented for all k = 0, 1, . . . .

The analogues of Theorem 10.80 and Proposition 10.81 hold for products
X ×Y of Kuranishi spaces X ×Y defined as in Example 6.28, where we require
X,Y to be locally orientable, and then X × Y is also locally orientable, so that
KX ,KY ,KX×Y exist. The proofs combine those of Theorems 10.80 and 10.83
and Proposition 10.81.
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Chapter 11

Transverse fibre products and
submersions

In the category of classical manifolds Man, morphisms g : X → Z, h : Y → Z
are transverse if whenever x ∈ X and y ∈ Y with g(x) = h(y) = z ∈ Z, then

Txg ⊕ Tyh : TxX ⊕ TyY −→ TzZ

is surjective. If g, h are transverse then a fibre product W = X ×g,Z,h Y exists
in the category Man, as defined in §A.1, with dimW = dimX + dimY −dimZ,
in a Cartesian square in Man:

W
f

//

e��

Y
h ��

X
g // Z.

Also g : X → Z is a submersion if Txg : TxX → TzZ is surjective for all
x ∈ X with g(x) = z ∈ Z. If g is a submersion then g, h are transverse for any
morphism h : Y → Z in Man. Generalizations of all this to various categories
Manc,Manc

in,Mangc, . . . of manifolds with (g-)corners were discussed in §2.5.
This chapter studies transversality, fibre products, and submersions for m-

Kuranishi spaces and Kuranishi spaces. By ‘fibre products’ we mean 2-category
fibre products in mK̇ur and K̇ur (or more generally in certain 2-subcategories
mK̇urD ⊆ mK̇ur and K̇urD ⊆ K̇ur), as defined in §A.4, which satisfy a
complicated universal property involving 2-morphisms. Readers are advised to
familiarize themselves with fibre products in both ordinary categories in §A.1,
and in 2-categories in §A.4, before continuing.

As we explain in §11.4, these ideas do not extend nicely to the ordinary
category of µ-Kuranishi spaces µK̇ur ' Ho(mK̇ur). The 2-category structure
on mK̇ur is essential for defining well-behaved transverse fibre products, and the
universal property in mK̇ur does not descend to Ho(mK̇ur). We can still define
a kind of ‘transverse fibre product’ in µK̇ur, but it is not a category-theoretic
fibre product, and it is not characterized by a universal property in µK̇ur.
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Optional assumptions on transversality and submersions in categories Ṁan,
Ṁanc are given in §11.1, extending those in Chapter 3. Section 11.2 discusses
transverse fibre products in a general 2-category mK̇ur, and §11.3 works out
these results in mKur,mKurc

st,mKurgc and mKurc. Section 11.4 considers
fibre products of µ-Kuranishi spaces, and §11.5–§11.6 extend §11.2–§11.3 to
Kuranishi spaces. Long proofs are postponed to §11.7–§11.11.

11.1 Optional assumptions on transverse fibre products

Suppose for the whole of this section that Ṁan satisfies Assumptions 3.1–3.7.
We now give optional assumptions on transversality and submersions in Ṁan.

11.1.1 ‘Transverse morphisms’ and ‘submersions’ in Ṁan

Here is the basic assumption we will need to get a good notion of transverse fibre
product in mK̇ur, K̇ur — part (b) will be essential in the proof of Theorem
11.17 in §11.2 on the existence of fibre products of w-transverse 1-morphisms of
global m-Kuranishi neighbourhoods, which is the necessary local condition for
existence of fibre products in mK̇ur. We write the assumption using choices of
discrete properties D,E to fit in with the results of §2.5.

Assumption 11.1. (Transverse fibre products.) (a) We are given discrete
properties D,E of morphisms in Ṁan, in the sense of Definition 3.18, where D
implies E. We require that the projections πX : X × Y → X, πY : X × Y → Y
are D and E for all X,Y ∈ Ṁan. We write ṀanD, ṀanE for the subcategories
of Ṁan with all objects, and only D and E morphisms.

(b) Let g : X → Z and h : Y → Z be morphisms in ṀanD. We are given a
notion of when g, h are transverse. This satisfies:

(i) If g, h are transverse then a fibre product W = X×g,Z,hY exists in ṀanD,
as in Definition A.3, with dimW = dimX+ dimY −dimZ, in a Cartesian
square in ṀanD, so that e, f, g, h are D morphisms in Ṁan:

W
f

//

e��

Y
h ��

X
g // Z.

(11.1)

Furthermore, (11.1) is also Cartesian in ṀanE .

(ii) In the situation of (i), suppose c : V → X, d : V → Y are morphisms in
ṀanE , and E → V is a vector bundle, and s ∈ Γ∞(E) is a section, and
K : E → Tg◦cZ is a morphism, such that h ◦ d = g ◦ c+ K ◦ s+O(s2) in
the sense of Definition 3.15(vii). Then there exist an open neighbourhood
V ′ of s−1(0) in V , and a morphism b : V ′ →W in ṀanE , and morphisms
Λ : E|V ′ → Te◦bX, M : E|V ′ → Tf◦bY with

c|V ′ = e ◦ b+ Λ ◦ s+O(s2), d|V ′ = f ◦ b+ M ◦ s+O(s2), (11.2)
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and if K′ : E|V ′ → Tg◦e◦bZ is a morphism with K|V ′ = K′ + O(s) in
the sense of Definition 3.15(v), which exists and is unique up to O(s) by
Theorem 3.17(g), as g ◦ c|V ′ = g ◦ e ◦ b+O(s) by (11.2), then

K′ + T g ◦ Λ = T h ◦M +O(s) (11.3)

in the sense of Definition 3.15(ii), where T g, T h are as in §3.3.4(c).

(iii) In the situation of (ii), suppose Ṽ ′, b̃, Λ̃, M̃ are alternative choices for
V ′, b,Λ,M. Then there exists N : E|V ′∩Ṽ ′ → TbW |V ′∩Ṽ ′ with

b̃|V ′∩Ṽ ′ = b|V ′∩Ṽ ′ + N ◦ s+O(s2), (11.4)

and if Λ̃′ : E|V ′∩Ṽ ′ → Te◦bX|V ′∩Ṽ ′ , M̃′ : E|V ′∩Ṽ ′ → Tf◦bY |V ′∩Ṽ ′ are

morphisms with Λ̃|V ′∩Ṽ ′ = Λ̃′+O(s), M̃|V ′∩Ṽ ′ = M̃′+O(s), which exist and
are unique up to O(s) by Theorem 3.17(g), as e◦ b̃|V ′∩Ṽ ′ = e◦b|V ′∩Ṽ ′+O(s)
and f ◦ b̃|V ′∩Ṽ ′ = f ◦ b|V ′∩Ṽ ′ +O(s) by (11.4), then

Λ|V ′∩Ṽ ′ = Λ̃′ + T e ◦N +O(s), M|V ′∩Ṽ ′ = M̃′ + T f ◦N +O(s). (11.5)

If Ň : E|V ′∩Ṽ ′ → TbW |V ′∩Ṽ ′ satisfies (11.4)–(11.5) then Ň = N +O(s).

(c) Let g : X → Z be a morphism in ṀanD. We are given a notion of when g
is a submersion. If g is a submersion and h : Y → Z is any morphism in ṀanD,
then g, h are transverse.

In fact any category Ṁan can be made to satisfy Assumption 11.1:

Example 11.2. Let Ṁan be any category satisfying Assumptions 3.1–3.7, and
let D,E be any discrete properties of morphisms in Ṁan satisfying Assumption
11.1(a) (for instance, D,E could be trivial). Define morphisms g : X → Z,
h : Y → Z in ṀanD to be transverse if they satisfy Assumption 11.1(b). Define
a D morphism g : X → Z to be a submersion if it satisfies Assumption 11.1(c).
Then Assumption 11.1 holds, just by definition.

LetX,Y be any objects of Ṁan, and ∗ be the point in Ṁan, as in Assumption
3.1(c). Then the projections π : X → ∗, π : Y → ∗ satisfy Assumption 11.1(b),
and so are transverse. Here in (b)(i) we take W = X × Y , and in (b)(ii) we take
b = (c, d) and Λ = M = 0. We will use this in discussing products of m-Kuranishi
spaces in §11.2.3.

11.1.2 More assumptions on transversality and submersions

We now give six optional assumptions on transverse morphisms and submersions,
which will imply similar properties for (m-)Kuranishi spaces. For the first, in
Remark 2.37 we discuss when fibre products in Man,Manc

st, . . . are also fibre
products on the level of topological spaces.

80



Assumption 11.3. (Transverse fibre products are fibre products of
topological spaces.) Suppose that Assumption 11.1 holds for Ṁan, and in

addition, the functor FTop

Ṁan
: Ṁan→ Top from Assumption 3.2 maps transverse

fibre products in Ṁan to fibre products in Top. That is, in the situation of
Assumption 11.1(b)(i) we have a homeomorphism

(e, f) : W −→
{

(x, y) ∈ X × Y : g(x) = h(y)
}
.

Assumption 11.4. (Properties of submersions.) Suppose Assumption 11.1
holds for Ṁan, and:

(a) If (11.1) is a Cartesian square in ṀanD with g a submersion, then f is a
submersion.

(b) Products of submersions are submersions. That is, if g : W → Y and
h : X → Z are submersions then g × h : W ×X → Y × Z is a submersion.

(c) The projection πX : X × Y → X is a submersion for all X,Y ∈ Ṁan.

Assumption 11.5. (Tangent spaces of transverse fibre products.) Let
Ṁan satisfy Assumption 10.1, with discrete property A and tangent spaces
TxX, and Assumption 11.1, with discrete properties D,E. Suppose that D
implies A, and whenever (11.1) is Cartesian in ṀanD with g, h transverse and
w ∈ W with e(w) = x in X, f(w) = y in Y and g(x) = h(y) = z in Z, the
following is an exact sequence of real vector spaces:

0 // TwW
Twe⊕Twf // TxX ⊕ TyY

Txg⊕−Tyh // TzZ // 0.

Assumption 11.6. (Quasi-tangent spaces of transverse fibre products.)
Let Ṁan satisfy Assumption 10.19, with discrete property C and quasi-tangent
spaces QxX in a category Q, and Assumption 11.1, with discrete properties
D,E. Suppose that D implies C, and whenever (11.1) is Cartesian in ṀanD
with g, h transverse and w ∈ W with e(w) = x in X, f(w) = y in Y and
g(x) = h(y) = z in Z, the following is Cartesian in Q:

QwW
Qwf

//

Qwe��

QyY

Qyh ��
QxX

Qxg // QzZ.

Assumption 11.7. (Compatibility with the corner functor.) Let Ṁanc

satisfy Assumption 3.22 in §3.4, so that we have a corner functor C : Ṁanc →
Ṁ̌anc, and let Assumption 11.1 hold with Ṁanc in place of Ṁan. Define
transverse morphisms and submersions in Ṁ̌anc

D in the obvious way: we call

g :
∐
l>0Xl →

∐
n>0 Zn and h :

∐
m>0 Ym →

∐
n>0 Zn transverse in Ṁ̌anc

D
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if g|··· : Xl ∩ g−1(Zn) → Zn and h|··· : Ym ∩ h−1(Zn) → Zn are transverse in
Ṁanc

D for all l,m, n, and similarly for submersions.

Suppose that C maps Ṁanc
D → Ṁ̌anc

D and Ṁanc
E → Ṁ̌anc

E , and whenever

(11.1) is a Cartesian square in Ṁanc with g, h transverse, then the following is
Cartesian in Ṁ̌anc

D and Ṁ̌anc
E , with C(g), C(h) transverse in Ṁ̌anc

D:

C(W )
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Also, suppose that if g is a submersion then C(g) is a submersion.

The next assumption is only nontrivial if D 6= E.

Assumption 11.8. (Fibre products with submersions in ṀanE.) Sup-
pose that Assumption 11.1 holds for Ṁan, and whenever g : X → Z is a
submersion in ṀanD, and h : Y → Z is any morphism in ṀanE (not neces-
sarily in ṀanD), then a fibre product W = X ×g,Z,h Y exists in ṀanE , with

dimW = dimX + dimY − dimZ, in a Cartesian square (11.1) in ṀanE , and
Assumption 11.1(b)(ii),(iii) hold for g, h. If Assumptions 11.3, 11.4(a) or 11.7
hold, then they also hold for fibre products W = X ×g,Z,h Y in ṀanE with g a
submersion.

11.1.3 Characterizing transversality and submersions

The next assumption gives necessary and sufficient conditions for when morphisms
g, h in Ṁanc are transverse, or when g is a (strong) submersion, that extend
nicely to (m-)Kuranishi spaces mK̇urc, K̇urc. The statement is complicated
to allow these conditions to depend on several different things — maps of
tangent spaces Txg, Tyh, of quasi-tangent spaces Qxg,Qyh, and the corner maps
C(g), C(h) — since our examples in §2.5 depend on these.

We state it using Ṁanc in §3.4, so our conditions can involve the corner
functor C : Ṁanc → Ṁ̌anc. But as in Example 3.24(i), we can take Ṁanc to
be any category Ṁan satisfying Assumptions 3.1–3.7 with Ck(X) = ∅ for all
X ∈ Ṁan and k > 0, so the corners are not needed in all examples.

Assumption 11.9. Suppose Ṁanc satisfies Assumption 3.22 in §3.4, so that
we have a corner functor C : Ṁanc → Ṁ̌anc.

Suppose Assumption 10.1 holds for Ṁanc, so we are given a discrete property
A of morphisms in Ṁanc, and notions of tangent space TxX for X in Ṁanc

and x ∈ X, and tangent map Txf : TxX → TyY for A morphisms f : X → Y in

Ṁanc and x ∈ X with f(x) = y in Y .
Suppose Assumption 10.19 holds for Ṁanc, so we are given a category Q, a

discrete property C of morphisms in Ṁanc, and notions of quasi-tangent space
QxX inQ forX in Ṁanc and x ∈ X, and quasi-tangent map Qxf : QxX → QyY
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in Q for C morphisms f : X → Y in Ṁanc and x ∈ X with f(x) = y in Y .
These may be trivial, i.e. Q could have one object and one morphism.

Suppose Assumption 11.1 holds for Ṁanc, so we are given discrete properties
D,E of morphisms in Ṁanc, where D implies E, and notions of transverse
morphisms g, h and submersions g in Ṁanc

D. We require that D implies A and
C, and:

(a) Let g : X → Z and h : Y → Z be morphisms in Ṁanc
D. Then g, h are

transverse if and only if for all x ∈ X and y ∈ Y with g(x) = h(y) = z in
Z, the following linear map is surjective:

Txg ⊕ Tyh : TxX ⊕ TyY −→ TzZ, (11.6)

and an explicit condition (which may be trivial) holds, which we call
‘condition T ’, involving only (i)–(ii) below:

(i) Condition T may involve the quasi-tangent maps Qxg : QxX → QzZ
and Qxh : QyY → QzZ in Q.

(ii) For all j, k, l > 0, condition T may involve the family of triples
(x,y, z) for x ∈ Cj(X), y ∈ Ck(Y ) with Πj(x) = x, Πk(y) = y, and
C(g)x = C(h)y = z in Cl(Z).

Condition T should only involve objects QxX, . . . in Q up to isomorphism,
and subsets Π−1

j (x) ⊆ Cj(X), . . . up to bijection.

(b) Taken together, the conditions in (a) are an open condition in x, y. That is,
if both conditions hold for some x, y, z, then there are open neighbourhoods
X ′ of x in X and Y ′ of y in Y such that both conditions also hold for all
x′ ∈ X ′ and y′ ∈ Y ′ with g(x′) = h(y′) = z′ ∈ Z.

(c) Suppose g : X → Z, h : Y → Z are morphisms in Ṁanc
D and x ∈ X,

y ∈ Y with g(x) = h(y) = z ∈ Z are such that condition T holds, though
(11.6) need not be surjective. Then there exist open X ′ ↪→ X × Rm and
Y ′ ↪→ Y ×Rn for m,n > 0 with (x, 0) ∈ X ′ and (y, 0) ∈ Y ′, and transverse
morphisms g′ : X ′ → Z, h′ : Y ′ → Z with g′(x̃, 0) = g(x̃), h′(ỹ, 0) = h(ỹ)
for all x̃ ∈ X, ỹ ∈ Y with (x̃, 0) ∈ X ′ and (ỹ, 0) ∈ Y ′.

(d) Let g : X → Z be a morphism in Ṁanc
D. Then g is a submersion if and

only if for all x ∈ X with g(x) = z in Z, the following is surjective:

Txg : TxX −→ TzZ, (11.7)

and an explicit condition (which may be trivial) holds, which we call
‘condition S’, involving only (i)–(ii) below:

(i) Condition S may involve Qxg : QxX → QzZ.

(ii) For all j, l > 0, condition S may involve the family of pairs (x, z)
where x ∈ Cj(X) with Πj(x) = x and C(g)x = z in Cl(Z).

Condition S should only involve objects QxX, . . . in Q up to isomorphism,
and subsets Π−1

j (x) ⊆ Cj(X), . . . up to bijection.

83



(e) The conditions in (d) together are an open condition in x ∈ X.

(f) Suppose g : X → Z is a morphism in Ṁanc
D and x ∈ X with g(x) = z in

Z are such that condition S holds, though (11.7) need not be surjective.
Then there exist open X ′ ↪→ X × Rm for m > 0 with (x, 0) ∈ X ′ and a
submersion g′ : X ′ → Z with g′(x̃, 0) = g(x̃) for all x̃ ∈ X with (x̃, 0) ∈ X ′.

(g) Suppose f : X → Y and g : Y → Z are morphisms in Ṁanc
D and x ∈ X

with f(x) = y in Y and g(y) = z in Z. If condition S holds for f at x, y
and for g at y, z, then it holds for g ◦ f at x, z.

(h) Suppose g : X → Z is a morphism in Ṁanc with Z in Man ⊆ Ṁanc.
Then g is D, and condition S in (d) holds for all x, z.

11.1.4 Examples of categories satisfying the assumptions

Using the material of §2.5, we give several interesting examples in which As-
sumption 11.1 and various of Assumptions 11.3–11.9 hold:

Example 11.10. Take Ṁan to be the category of classical manifolds Man, and
D,E to be trivial (i.e. all morphisms in Man are D and E). As in Definition
2.21 in §2.5.1, define morphisms g : X → Z, h : Y → Z in Man to be transverse
if whenever x ∈ X and y ∈ Y with g(x) = h(y) = z ∈ Z, then

Txg ⊕ Tyh : TxX ⊕ TyY −→ TzZ

is surjective. Define g : X → Z to be a submersion if Txg : TxX → TzZ is
surjective for all x ∈ X with g(x) = z ∈ Z. We claim that:

• Assumption 11.1 holds.

• Assumptions 11.3–11.5 hold.

• For Assumption 11.9, we take Man to be a category Ṁanc as in Example
3.24(i), with Ck(X) = ∅ for all X ∈ Man and k > 0. We take tangent
spaces TxX to be as usual, and quasi-tangent spaces QxX to be trivial,
and conditions T and S are trivial. Then Assumption 11.9 holds.

Almost all the above is well known or obvious, but Assumption 11.1(b)(ii)–(iii)
are new, so we prove them in Proposition 11.14 below.

Example 11.11. (a) Take Ṁan to be Manc from §2.1, and D to be strongly
smooth morphisms, and E to be trivial, and define s-transverse morphisms and
s-submersions in Manc

st as in Definition 2.24 in §2.5.2. We claim that:

• Assumption 11.1 holds, where ‘transverse’ means s-transverse, and ‘sub-
mersions’ are s-submersions.

• Assumptions 11.3–11.4 hold.

• Assumption 11.5 holds for both ordinary tangent spaces TxX and stratum
tangent spaces T̃xX in Example 10.2(ii),(iv).
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• Assumption 11.6 holds for the stratum normal spaces ÑxX in Definition
2.16, as in Example 10.20(a).

• Assumption 11.8 holds, by Theorem 2.25(d).

• For Assumption 11.9, we take Manc to be a category Ṁanc as in Example
3.24(a), with corner functor C : Manc → M̌anc as in Definition 2.9. We
take tangent spaces to be stratum tangent spaces T̃xX, and quasi-tangent
spaces to be stratum normal spaces ÑxX. Condition T is that

Ñxg ⊕ Ñyh : ÑxX ⊕ ÑyY −→ ÑzZ (11.8)

is surjective. Condition S is that Ñxg : ÑxX → ÑzZ is surjective. Then
Assumption 11.9 holds.

Most of the above follows from §2.5.2, but Assumption 11.1(b)(ii)–(iii) are new,
and we prove them in Proposition 11.14 below.

(b) We can also modify part (a) as follows. In Assumption 11.1 we take
transversality in Manc

st to be t-transverse morphisms in Definition 2.24. In
Assumption 11.9, if g : X → Z and h : Y → Z are morphisms in Manc

st and
x ∈ X, y ∈ Y with g(x) = h(y) = z in Z, then the new condition T is that (11.8)
is surjective, and for all x ∈ Cj(X) and y ∈ Ck(Y ) with Πj(x) = x, Πk(y) = y,
and C(g)x = C(h)y = z in Cl(Z), we have j + k > l, and there is exactly one
triple (x,y, z) with j + k = l.

Then Assumptions 11.1, 11.3–11.6 and 11.8–11.9 hold as in (a), and in
addition, Assumption 11.7 holds for both corner functors C,C ′ : Manc → M̌anc

in Definitions 2.9 and 2.11, by Theorem 2.25(b).

Example 11.12. (a) Take Ṁan to be Mangc from §2.4.1, and D,E to be
interior morphisms, and define b-transverse morphisms and b-submersions in
Mangc

in as in Definition 2.27 in §2.5.3. We claim that:

• Assumption 11.1 holds, where ‘transverse’ means b-transverse, and ‘sub-
mersion’ means b-submersion.

• Assumption 11.3 does not hold, as Example 2.35 shows.

• Assumption 11.4 holds.

• Assumption 11.5 holds for b-tangent spaces bTxX in Example 10.2(iii).

• For Assumption 11.9, we take Mangc to be a category Ṁanc as in Example
3.24(h). We take tangent spaces to be b-tangent spaces bTxX, and quasi-
tangent spaces to be trivial. Conditions T and S are both trivial. Then
Assumption 11.9 holds.

Most of the above follows from §2.5.3, and we prove Assumption 11.1(b)(ii)–(iii)
in Proposition 11.14.

(b) Take Ṁan to be Mangc from §2.4.1, and D to be interior morphisms in
Mangc, and E to be trivial, and define c-transverse morphisms and b-fibrations
in Mangc

in as in Definition 2.27 in §2.5.3. Then as in (a) we find that:
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• Assumption 11.1 holds, where ‘transverse’ means c-transverse, and ‘sub-
mersion’ means b-fibration.

• Assumptions 11.3–11.4 hold.

• Assumption 11.5 holds for b-tangent spaces bTxX.

• Assumption 11.7 holds for the corner functor C : Mangc → M̌angc in
§2.4.1, by Theorem 2.28(b).

• For Assumption 11.9, we take Mangc to be a category Ṁanc as in Example
3.24(h), with corner functor C : Mangc → M̌angc as in §2.4.1. We take
tangent spaces to be b-tangent spaces bTxX, and quasi-tangent spaces to
be trivial.

If g : X → Z and h : Y → Z are morphisms in Mangc
in and x ∈ X, y ∈ Y

with g(x) = h(y) = z in Z, condition T is that for all x ∈ Cj(X) and
y ∈ Ck(Y ) with Πj(x) = x, Πk(y) = y, and C(g)x = C(h)y = z in Cl(Z),
we have either j + k > l or j = k = l = 0.

If g : X → Z is a morphism in Mangc
in and x ∈ X with g(x) = z ∈ Z,

condition S is that for all x ∈ Cj(X) with Πj(x) = x and C(g)x = z in
Cl(Z), we have j > l. Then Assumption 11.9 holds.

(c) We can also modify part (b) by instead taking ‘submersions’ to be c-fibrations
in Mangc

in , as in Definition 2.27. In Assumption 11.9, if g : X → Z is a morphism
in Mangc

in and x ∈ X with g(x) = z ∈ Z, the new condition S is that for all
x ∈ Cj(X) with Πj(x) = x and C(g)x = z in Cl(Z), we have j > l, and for
each such z there is exactly one such x with j = l.

Then Assumptions 11.1, 11.3–11.5, 11.7 and 11.9 hold as in (b), and in
addition, Assumption 11.8 holds, by Theorem 2.28(e).

Example 11.13. (a) Take Ṁan to be Manc from §2.1, and D,E to be interior
morphisms, and define sb-transverse morphisms and s-submersions in Manc

in

by Definitions 2.24 and 2.31, as in §2.5.4. Then by restriction from Mangc
in in

Example 11.12(a), we see that:

• Assumption 11.1 holds, where ‘transverse’ means sb-transverse, and ‘sub-
mersion’ means s-submersion.

• Assumption 11.3 does not hold, as Example 2.35 shows.

• Assumption 11.4 holds.

• Assumption 11.5 holds for b-tangent spaces bTxX in Example 10.2(iii).

• For Assumption 11.9, we take Manc to be a category Ṁanc as in Example
3.24(a). We take tangent spaces to be b-tangent spaces bTxX, and quasi-
tangent spaces to be monoids M̃xX as in Example 10.20(c). Condition
T is that M̃xX ×M̃xg,M̃zZ,M̃yh

M̃yY ∼= Nn for n > 0, as in Definition

2.31. Condition S is that the monoid morphism M̃xg : M̃xX → M̃zZ is
isomorphic to a projection Nm+n → Nn. Then Assumption 11.9 holds.
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(b) Take Ṁan to be Manc from §2.1, and D to be interior morphisms in Manc,
and E to be trivial, and define sc-transverse morphisms and s-submersions in
Manc

in by Definitions 2.24 and 2.31, as in §2.5.4. Then by Example 11.11(a)
and restriction from Mangc in Example 11.12(b), we see that:

• Assumption 11.1 holds, where ‘transverse’ means sb-transverse, and ‘sub-
mersion’ means s-submersion.

• Assumptions 11.3–11.4 hold.

• Assumption 11.5 holds for b-tangent spaces bTxX.

• Assumption 11.6 holds for monoids M̃xX.

• Assumption 11.7 holds for the corner functor C : Manc → M̌anc.

• Assumption 11.8 holds.

• For Assumption 11.9, we take Manc to be a category Ṁanc as in Example
3.24(a), with corner functor C : Manc → M̌anc as in §2.2. We take
tangent spaces to be b-tangent spaces bTxX, and quasi-tangent spaces
to be monoids M̃xX. If g : X → Z and h : Y → Z are morphisms in
Manc

in and x ∈ X, y ∈ Y with g(x) = h(y) = z in Z, condition T is that

M̃xX ×M̃xg,M̃zZ,M̃yh
M̃yY ∼= Nn for n > 0, and for all x ∈ Cj(X) and

y ∈ Ck(Y ) with Πj(x) = x, Πk(y) = y, and C(g)x = C(h)y = z in Cl(Z),
we have either j + k > l or j = k = l = 0.

If g : X → Z is a morphism in Manc
in and x ∈ X with g(x) = z ∈ Z,

condition S is that M̃xg : M̃xX → M̃zZ is isomorphic to a projection
Nm+n → Nn. Then Assumption 11.9 holds.

The next proposition will be proved in §11.7.

Proposition 11.14. Examples 11.10–11.13 satisfy Assumption 11.1(b)(ii),(iii).

11.2 Transverse fibre products and submersions in mK̇ur

We suppose throughout this section that the category Ṁan used to define
mK̇ur satisfies Assumptions 3.1–3.7 and 11.1, and will also specify additional
assumptions as needed. Here Assumption 11.1 gives discrete properties D,E
of morphisms in Ṁan, where D implies E, defining subcategories ṀanD ⊆
ṀanE ⊆ Ṁan with all objects and only D,E morphisms, and notions of when
morphisms g : X → Z, h : Y → Z in ṀanD are transverse (which implies
that a fibre product X ×g,Z,h Y exists in ṀanD, and is also a fibre product in

ṀanE), and when g : X → Z is a submersion (which implies that if h : Y → Z
is another morphism in ṀanD then g, h are transverse).
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11.2.1 Fibre products of global m-Kuranishi neighbourhoods

We generalize transversality and submersions to 1-morphisms of m-Kuranishi
neighbourhoods. We give both weak versions, ‘w-transversality’ and ‘w-submer-
sions’, and strong versions, ‘transversality’ and ‘submersions’.

Definition 11.15. Suppose g : X → Z, h : Y → Z are continuous maps
of topological spaces, and (Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) are
m-Kuranishi neighbourhoods on X,Y, Z with Imχl ⊆ g−1(Imωn) and Imψm ⊆
h−1(Imωn), and

gln = (Uln, gln, ĝln) : (Ul, Dl, rl, χl) −→ (Wn, Fn, tn, ωn),

hmn = (Vmn, hmn, ĥmn) : (Vm, Em, sm, ψm) −→ (Wn, Fn, tn, ωn),

are D 1-morphisms of m-Kuranishi neighbourhoods over (Imχl, g), (Imψm, h).
We call gln,hmn weakly transverse, or w-transverse, if there exist open

neighbourhoods U̇ln of r−1
l (0) in Uln, and V̇mn of s−1

m (0) in Vmn, such that:

(i) gln|U̇ln : U̇ln →Wn and hmn|V̇mn : V̇mn →Wn are D morphisms in Ṁan,
which are transverse in the sense of Assumption 11.1(b); and

(ii) ĝln|u ⊕ ĥmn|v : Dl|u ⊕ Em|v → Fn|w is surjective for all u ∈ U̇ln and
v ∈ V̇mn with gln(u) = hmn(v) = w in Wn.

We call gln,hmn transverse if they are w-transverse and in (ii) ĝln|u ⊕ ĥmn|v is
an isomorphism for all u, v.

We call gln a weak submersion, or a w-submersion, if there exists an open
neighbourhood Üln of r−1

l (0) in Uln such that:

(iii) gln|Üln : Üln →Wn is a submersion in ṀanD, as in Assumption 11.1(c).

(iv) ĝln|u : Dl|u → Fn|w is surjective for all u ∈ Üln with gln(u) = w in Wn.

We call gln a submersion if it is a w-submersion and in (iv) ĝln|u is an isomorphism
for all u.

If gln is a w-submersion then gln,hmn are w-transverse for any D 1-morph-
ism hmn : (Vm, Em, sm, ψm)→ (Wn, Fn, tn, ωn) over (Imψm, h), by Assumption
11.1(c). Also if gln is a submersion then gln,hmn are transverse for any D 1-
morphism hmn : (Vm, Em, sm, ψm)→ (Wn, Fn, tn, ωn) over (Imψm, h) for which
Em = 0 is the zero vector bundle.

In Definition 4.8 we defined a strict 2-category GmK̇N of global m-Kuranishi
neighbourhoods, where:

• Objects (V,E, s) in GmK̇N are a manifold V (object in Ṁan), a vector
bundle E → V and a section s : V → E. Then (V,E, s, ids−1(0)) is an
m-Kuranishi neighbourhood on the topological space s−1(0) ⊆ V , as in
§4.1. They have virtual dimension vdim(V,E, s) = dimV − rankE.
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• 1-morphisms Φij : (Vi, Ei, si)→ (Vj , Ej , sj) in GmK̇N are triples Φij =

(Vij , φij , φ̂ij) satisfying Definition 4.2(a)–(d) with s−1
i (0) in place of ψ−1

i (S).
Then Φij : (Vi, Ei, si, ids−1

i (0)) → (Vj , Ej , sj , ids−1
j (0)) is a 1-morphism of

m-Kuranishi neighbourhoods over φij |s−1
i (0) : s−1

i (0)→ s−1
j (0), as in §4.1.

• For 1-morphisms Φij ,Φ
′
ij : (Vi, Ei, si) → (Vj , Ej , sj), a 2-morphism Λij :

Φij ⇒ Φ′ij in GmK̇N is as in Definition 4.3, with s−1
i (0) in place of ψ−1

i (S).

We write GmK̇ND ⊆ GmK̇N for the 2-subcategory with 1-morphisms Φij

which are D, in the sense of Definition 4.33.
We will prove that w-transverse fibre products exist in GmK̇ND:

Definition 11.16. Suppose we are given 1-morphisms in GmK̇ND

gln : (Ul, Dl, rl) −→ (Wn, Fn, tn), hmn : (Vm, Em, sm) −→ (Wn, Fn, tn),

which are w-transverse as in Definition 11.15. We will construct a fibre product

(Tk, Ck, qk) = (Ul, Dl, rl)×gln,(Wn,Fn,tn),hmn (Vm, Em, sm) (11.9)

in both GmK̇ND and GmK̇NE .
Write gln = (Uln, gln, ĝln) and hmn = (Vmn, hmn, ĥmn). Then ĝln(rl|Uln) =

g∗ln(tn) +O(r2
l ) by Definition 4.2(d), so Definition 3.15(i) gives ε : Dl⊗Dl|Uln →

g∗ln(Fn) with ĝln(rl|Uln) = g∗ln(tn) + ε(rl ⊗ rl|Uln). Define ĝ′ln : Dl|Uln → g∗ln(Fn)
by ĝ′ln(d) = ĝln(d)−ε(d⊗rl|Uln). Replacing ĝln by ĝ′ln, which does not change gln
up to 2-isomorphism as ĝ′ln = ĝln +O(rl), we suppose that ĝln(rl|Uln) = g∗ln(tn),

and similarly ĥmn(sm|Vmn) = h∗mn(tn). Making U̇ln, V̇mn smaller, we may

suppose Definition 11.15(ii) still holds for the new ĝln, ĥmn.
For U̇ln, V̇mn as in Definition 11.15(i),(ii), define

Tk = U̇ln ×gln|U̇ln ,Wn,hmn|V̇mn V̇mn

to be the transverse fibre product in ṀanD from Assumption 11.1(b), with
projections ekl : Tk → U̇ln ⊆ Ul and fkm : Tk → V̇mn ⊆ Vm in ṀanD. Then
gln ◦ ekl = hmn ◦ fkm and

dimTk = dimUl + dimVm − dimWn. (11.10)

We have a morphism of vector bundles on Tk:

e∗kl(ĝln)⊕−f∗km(ĥmn) : e∗kl(Dl)⊕ f∗km(Em) −→ e∗kl(g
∗
ln(Fn)). (11.11)

If t ∈ Tk with ekl(t) = u ∈ U̇ln and fkm(t) = v ∈ V̇mn then gln(u) = hmn(v) =

w ∈ Wn and the fibre of (11.11) at t is ĝln|u ⊕ −ĥmn|v : Dl|u ⊕ Em|v → Fn|w.
So Definition 11.15(ii) implies that (11.11) is surjective. Define Ck → Tk to be
the kernel of (11.11), as a vector subbundle of e∗kl(Dl)⊕ f∗km(Em) with

rankCk = rankDl + rankEm − rankFn. (11.12)
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Define vector bundle morphisms êkl : Ck → e∗kl(Dl) and f̂km : Ck → f∗km(Dl)
to be the compositions of the inclusion Ck ↪→ e∗kl(Dl) ⊕ f∗km(Em) with the
projections e∗kl(Dl)⊕ f∗km(Em)→ e∗kl(Dl) and e∗kl(Dl)⊕ f∗km(Em)→ f∗km(Em).

As Ck is the kernel of (11.11), noting the sign of −f∗km(ĥmn) in (11.11), we have

e∗kl(ĝln) ◦ êkl = f∗km(ĥmn) ◦ f̂km : Ck −→ e∗kl(g
∗
ln(Fn)) = f∗km(h∗mn(Fn)).

The section e∗kl(rl)⊕ f∗km(sm) of e∗kl(Dl)⊕ f∗km(Em) over Tk satisfies(
e∗kl(ĝln)⊕−f∗km(ĥmn)

)(
e∗kl(rl)⊕ f∗km(sm)

)
= e∗kl(ĝln(rl))− f∗km(ĥmn(sm)) = e∗kl ◦ g∗ln(tn)− f∗km ◦ h∗mn(tn) = 0,

as ĝln(rl|Uln) = g∗ln(tn) and ĥmn(sm|Vmn) = h∗mn(tn). Thus e∗kl(rl) ⊕ f∗km(sm)
lies in the kernel of (11.11), so it is a section of Ck. Define qk = e∗kl(rl)⊕f∗km(sm)

in Γ∞(Ck). Then êkl(qk) = e∗kl(rl) and f̂km(qk) = f∗km(sm).

Then (Tk, Ck, qk) is an object in GmK̇ND. By (11.10) and (11.12) we have

vdim(Tk, Ck, qk) = vdim(Ul, Dl, rl) + vdim(Vm, Em, sm)

− vdim(Wn, Fn, tn).
(11.13)

Set ekl = (Tk, ekl, êkl) and fkm = (Tk, fkm, f̂km). Then ekl : (Tk, Ck, qk) →
(Ul, Dl, rl) and fkm : (Tk, Ck, qk)→ (Vm, Em, sm) are 1-morphisms in GmK̇ND.

Since gln ◦ ekl = hmn ◦ fkm and e∗kl(ĝln) ◦ êkl = f∗km(ĥmn) ◦ f̂km we see that

gln ◦ ekl = hmn ◦ fkm. Hence we have a 2-commutative diagram in GmK̇ND:

(Tk, Ck, qk)
IQ

idgln◦ekl

fkm

//

ekl
��

(Vm, Em, sm)

hmn
��

(Ul, Dl, rl)
gln // (Wn, Fn, tn).

(11.14)

If gln,hmn are transverse, not just w-transverse, then (11.11) is an iso-
morphism, not just surjective, so Ck is the zero vector bundle, as it is the
kernel of (11.11). Thus (Tk, Ck, qk) = (Tk, 0, 0) lies in the image of the obvious
embedding ṀanD ↪→ GmK̇ND.

The next theorem will be proved in §11.8.

Theorem 11.17. In Definition 11.16, equation (11.14) is 2-Cartesian in both
GmK̇ND and GmK̇NE in the sense of Definition A.11, so that (Tk, Ck, qk)
is a fibre product in the 2-categories GmK̇ND,GmK̇NE , as in (11.9).

11.2.2 (W-)transversality and fibre products in mK̇urD

As in §4.5, for the discrete properties D,E of morphisms in Ṁan, we have
a notion of when a 1-morphism f : X → Y in mK̇ur is D or E, and 2-
subcategories mK̇urD ⊆ mK̇urE ⊆ mK̇ur with only D or E 1-morphisms.
We will define notions of (w-)transverse 1-morphisms and (w-)submersions
in mK̇urD.
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Definition 11.18. Let g : X → Z, h : Y → Z be 1-morphisms in mK̇urD.
We call g,h or w-transverse (or transverse), if whenever x ∈X and y ∈ Y with
g(x) = h(y) = z in Z, there exist m-Kuranishi neighbourhoods (Ul, Dl, rl, χl),
(Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) on X,Y ,Z as in §4.7 with x ∈ Imχl ⊆
g−1(Imωn), y ∈ Imψm ⊆ h−1(Imωn) and z ∈ Imωn, and 1-morphisms gln :
(Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn), hmn : (Vm, Em, sm, ψm) → (Wn, Fn, tn, ωn)
over (Imχl, g) and (Imψm,h), as in Definition 4.54, such that gln,hmn are
w-transverse (or transverse, respectively), as in Definition 11.16.

We call g a w-submersion (or a submersion), if whenever x ∈ X with
g(x) = z ∈ Z, there exist m-Kuranishi neighbourhoods (Ul, Dl, rl, χl), (Wn,
Fn, tn, ωn) on X,Z as in §4.7 with x ∈ Imχl ⊆ g−1(Imωn), z ∈ Imωn, and
a 1-morphism gln : (Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn) over (Imχl, g), as in
Definition 4.54, such that gln is a w-submersion (or a submersion, respectively),
as in Definition 11.16.

Suppose g : X → Z is a w-submersion, and h : Y → Z is any D 1-
morphism in mK̇ur. Let x ∈ X and y ∈ Y with g(x) = h(y) = z in Z.
As g is a w-submersion we can choose gln : (Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn)
with x ∈ Imχl ⊆ g−1(Imωn), z ∈ Imωn, and gln a w-submersion. Choose
any m-Kuranishi neighbourhood (Vm, Em, sm, ψm) on Y with y ∈ Imψm ⊆
h−1(Imωn). Then Theorem 4.56(b) gives a D 1-morphism hmn : (Vm, Em, sm,
ψm) → (Wn, Fn, tn, ωn) over (Imψm,h), and gln,hmn are w-transverse as gln
is a w-submersion. Hence g,h are w-transverse.

Similarly, suppose g : X → Z is a submersion, and h : Y → Z is a D
1-morphism in mK̇ur such that Y is a manifold as in Example 4.30, that is,

Y ' FmK̇ur
Ṁan

(Y ′) for Y ′ ∈ Ṁan. Then for x ∈X and y ∈ Y with g(x) = h(y) =
z in Z we can choose gln,hmn as above with gln a submersion and Em = 0, so
that gln,hmn are transverse. Hence g,h are transverse.

The next important theorem will be proved in §11.9:

Theorem 11.19. Let g : X → Z, h : Y → Z be w-transverse 1-morphisms in
mK̇urD. Then there exists a fibre product W = Xg,Z,hY in mK̇urD, as in
§A.4, with vdimW = vdimX + vdimY − vdimZ, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.15)

Equation (11.15) is also 2-Cartesian in mK̇urE , so W is also a fibre product
Xg,Z,hY in mK̇urE. Furthermore:

(a) If g,h are transverse then W is a manifold, as in Example 4.30. In
particular, if g is a submersion and Y is a manifold, then W is a manifold.

(b) Suppose (Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) are m-Kuranishi
neighbourhoods on X,Y ,Z, as in §4.7, with Imχl ⊆ g−1(Imωn) and Imψm ⊆
h−1(Imωn), and gln : (Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn), hmn : (Vm, Em, sm,
ψm) → (Wn, Fn, tn, ωn) are 1-morphisms of m-Kuranishi neighbourhoods on
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X,Y ,Z over (Imχl, g) and (Imψm,h), as in §4.7, such that gln,hmn are
w-transverse, as in §11.2.1. Then there exist an m-Kuranishi neighbourhood
(Tk, Ck, qk, ϕk) on W with Imϕk = e−1(Imχl) ∩ f−1(Imψm) ⊆ W, and 1-
morphisms ekl : (Tk, Ck, qk, ϕk) → (Ul, Dl, rl, χl) over (Imϕk, e) and fkm :
(Tk, Ck, qk, ϕk)→ (Vm, Em, sm, ψm) over (Imϕk,f) with gln ◦ekl = hmn ◦fkm,
such that (Tk, Ck, qk) and ekl,fkm are constructed from (Ul, Dl, rl), (Vm, Em,
sm), (Wn, Fn, tn) and gln,hmn exactly as in Definition 11.16.

Also the unique 2-morphism ηklmn : gln ◦ekl ⇒ hmn ◦fkm over (Imϕk, g ◦e)
constructed from η : g ◦ e⇒ h ◦ f in Theorem 4.56(c) is the identity.

(c) If Ṁan satisfies Assumption 11.3 then we can choose the topological space
W in W = (W,H) to be W =

{
(x, y) ∈ X × Y : g(x) = h(y)

}
, with e : W → X,

f : W → Y acting by e : (x, y) 7→ x and f : (x, y) 7→ y.

(d) If Ṁan satisfies Assumption 11.4(a) and (11.15) is a 2-Cartesian square in
mK̇urD with g a w-submersion (or a submersion) then f is a w-submersion
(or a submersion, respectively).

(e) If Ṁan satisfies Assumption 10.1, with tangent spaces TxX, and satisfies
Assumption 11.5, then using the notation of §10.2, whenever (11.15) is 2-
Cartesian in mK̇urD with g,h w-transverse and w ∈W with e(w) = x in X,
f(w) = y in Y and g(x) = h(y) = z in Z, the following is an exact sequence:

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW.
Owe⊕Owfoo

(11.16)

Here δg,hw : TzZ → OwW is a natural linear map defined as a connecting
morphism, as in Definition 10.69.

(f) If Ṁan satisfies Assumption 10.19, with quasi-tangent spaces QxX in a
category Q, and satisfies Assumption 11.6, then whenever (11.15) is 2-Cartesian
in mK̇urD with g,h w-transverse and w ∈W with e(w) = x in X, f(w) = y
in Y and g(x) = h(y) = z in Z, the following is Cartesian in Q:

QwW
Qwf

//

Qwe��

QyY

Qyh ��
QxX

Qxg // QzZ.

(11.17)

(g) If Ṁanc satisfies Assumption 3.22 in §3.4, so that we have a corner functor
C : Ṁanc → Ṁ̌anc which extends to C : mK̇urc → mK̇̌urc as in §4.6, and
Assumption 11.1 holds for Ṁanc, and Assumption 11.7 holds, then whenever
(11.15) is 2-Cartesian in mK̇urc

D with g,h w-transverse (or transverse), then the

following is 2-Cartesian in mK̇̌urc
D and mK̇̌urc

E , with C(g), C(h) w-transverse
(or transverse, respectively):

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

(11.18)
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Hence for i > 0 we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)
.

(11.19)

When i = 1, this computes the boundary ∂W. In particular, if ∂Z = ∅, so that
Cl(Z) = ∅ for all l > 0 by Assumption 3.22(f) with l = 1, we have

∂W '
(
∂X ×g◦iX ,Z,h Y

)
q
(
X ×g,Z,h◦iY ∂Y

)
. (11.20)

Also, if g is a w-submersion (or a submersion), then C(g) is a w-submersion
(or a submersion, respectively).

(h) If Ṁan satisfies Assumption 11.8, and g : X → Z is a w-submersion
in mK̇urD, and h : Y → Z is any 1-morphism in mK̇urE (not necessarily
in mK̇urD), then a fibre product W = X ×g,Z,h Y exists in mK̇urE , with

dimW = dimX + dimY − dimZ, in a 2-Cartesian square (11.15) in mK̇urE.
The analogues of (a)–(d) and (g) hold for these fibre products.

Example 11.20. Let g : X → Z, h : Y → Z be transverse morphisms in
ṀanD, and let W = X ×g,Z,h Y in ṀanD, with projections e : W → X,
f : W → Y . Write W,X,Y ,Z, e,f , g,h for the images of W,X, Y, Z, e, f, g, h

in mK̇ur under the 2-functor FmK̇ur
Ṁan

: Ṁan→mK̇ur from Example 4.30.

Then we have m-Kuranishi neighbourhoods (W, 0, 0, idW ) on W, as in §4.7,
and similarly for X,Y ,Z. We have a 1-morphism (W, e, 0) : (W, 0, 0, idW ) →
(X, 0, 0, idX) over (W, e), as in §4.7, and similarly for f , g,h.

These 1-morphisms (X, g, 0) : (X, 0, 0, idX) → (Z, 0, 0, idZ) and (Y, h, 0) :
(Y, 0, 0, idY )→ (Z, 0, 0, idZ) are transverse as in Definition 11.15, where (i) holds
as g, h are transverse in ṀanD, and (ii) is trivial as Dl, Em, Fn are zero. As
these m-Kuranishi neighbourhoods cover X,Y ,Z, we see that g,h are transverse
by Definition 11.18, so a fibre product X×g,Z,hZ exists in mK̇urD by Theorem

11.19. We claim that this fibre product is W = FmK̇ur
Ṁan

(W ).

To see this, note that applying Definition 11.16 to the transverse (X, g, 0),
(Y, h, 0) above yields (Tk, Ck, qk, ϕk) = (W, 0, 0, idW ), so (W, 0, 0, idW ) is an m-
Kuranishi neighbourhood onX×ZY by Theorem 11.19(b), which coversX×ZY ,

and this forces W 'X ×Z Y . Thus, FmK̇ur
Ṁan

takes transverse fibre products in

ṀanD and ṀanE to transverse fibre products in mK̇urD and mK̇urE .

11.2.3 Products of m-Kuranishi spaces

Let Ṁan be any category satisfying Assumptions 3.1–3.7. Apply Example 11.2
with D,E trivial to get notions of transverse morphisms and submersions in
Ṁan satisfying Assumption 11.1. As in Example 11.2, for any X,Y ∈ Ṁan the
projections π : X → ∗ and π : Y → ∗ are transverse in Ṁan.

From Definitions 11.15 and 11.18 we see that for any X,Y in mK̇ur the
projections π : X → ∗, π : Y → ∗ are w-transverse, so a fibre product X ×∗ Y
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exists in mK̇ur by Theorem 11.19. Now a product in a category or 2-category
is by definition a fibre product over the terminal object ∗. The fibre product
property only determines X ×∗ Y up to canonical equivalence in mK̇ur. But
from Theorem 11.19(b) we see that we can take X ×∗ Y and the 1-morphisms
e : X ×∗ Y → X, f : X ×∗ Y → Y to be the product X × Y in mK̇ur in
Example 4.31 and the projections πX : X × Y →X, πY : X × Y → Y , which
are uniquely defined.

This proves that the products X×Y defined in Example 4.31 have the univer-
sal property of products in the 2-category mK̇ur, that is, they are fibre products
X ×∗ Y in mK̇ur. The existence of product m-Kuranishi neighbourhoods on
X × Y in Example 4.53 follows from Theorem 11.19(b) with Wn = ∗.

As in Example 4.31, if g : W → Y , h : X → Z are 1-morphisms in mK̇ur
then we have a product 1-morphism g×h : W×X → Y×Z. Given 1-morphisms
of m-Kuranishi neighbourhoods on W,X,Y ,Z over g,h, we can write down a
product 1-morphism of m-Kuranishi neighbourhoods on W ×X,Y × Z over
g × h. Using these and Theorem 11.19(d) it is easy to prove:

Proposition 11.21. Let Ṁan satisfy Assumptions 11.1 and 11.4(b),(c). Then
products of w-submersions (or submersions) in mK̇ur are w-submersions (or
submersions, respectively). That is, if g : W → Y and h : X → Z are
(w-)submersions in mK̇ur, then g × h : W ×X → Y ×Z is a (w-)submersion.
Projections πX : X × Y →X, πY : X × Y → Y in mK̇ur are w-submersions.

11.2.4 Characterizing (w-)transversality and (w-)submersions

Assumption 11.9 in §11.1.3 gave necessary and sufficient conditions for morphisms
g, h in Ṁanc to be transverse, and for morphisms g to be submersions. The
next theorem, proved in §11.10, extends these to conditions for 1-morphisms g,h
in mK̇urc to be (w-)transverse, and for 1-morphisms g to be (w-)submersions.

Theorem 11.22. Let Ṁanc satisfy Assumption 3.22, so that we have a corner
functor C : Ṁanc → Ṁ̌anc, and suppose Assumption 11.9 holds for Ṁanc.
This requires that Assumption 10.1 holds, giving a notion of tangent spaces TxX
for X in Ṁanc, and that Assumption 10.19 holds, giving a notion of quasi-
tangent spaces QxX in a category Q for X in Ṁanc, and that Assumption 11.1
holds, giving discrete properties D,E of morphisms in Ṁanc and notions of
transverse morphisms g, h and submersions g in Ṁanc

D.

As in §4.6, §10.2 and §10.3, we define a 2-category mK̇urc, with a corner
2-functor C : mK̇urc → mK̇̌urc, and notions of tangent, obstruction and
quasi-tangent spaces TxX, OxX, QxX for X in mK̇urc.

Now Assumption 11.9(a),(d) involve a ‘condition T ’ on morphisms g : X →
Z, h : Y → Z in Ṁanc

D and points x ∈ X, y ∈ Y with g(x) = h(y) = z ∈ Z,
and a ‘condition S’ on morphisms g : X → Z in Ṁanc

D and points x ∈ X with
g(x) = z ∈ Z. These conditions depend on the corner morphisms C(g), C(h)
and on quasi-tangent maps Qxg,Qyh. Observe that condition T also makes

sense for 1-morphisms g : X → Z, h : Y → Z in mK̇urc
D and x ∈ X, y ∈ Y
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with g(x) = h(y) = z in Z, and condition S makes sense for 1-morphisms
g : X → Z in mK̇urc

D and x ∈X with g(x) = z ∈ Z. Then:

(a) Let g : X → Z, h : Y → Z be 1-morphisms in mK̇urc
D. Then g,h are

w-transverse if and only if for all x ∈X and y ∈ Y with g(x) = h(y) = z
in Z, condition T holds for g,h, x, y, z, and the following is surjective:

Oxg ⊕Oyh : OxX ⊕OyY −→ OzZ. (11.21)

If Assumption 10.9 also holds for tangent spaces TxX in Ṁanc then g,h
are transverse if and only if for all x ∈X and y ∈ Y with g(x) = h(y) = z
in Z, condition T holds for g,h, x, y, z, equation (11.21) is an isomorphism,
and the following linear map is surjective:

Txg ⊕ Tyh : TxX ⊕ TyY −→ TzZ. (11.22)

(b) Let g : X → Z be a 1-morphism in mK̇urc
D. Then g is a w-submersion

if and only if for all x ∈ X with g(x) = z in Z, condition S holds for
g, x, z, and the following linear map is surjective:

Oxg : OxX −→ OzZ. (11.23)

If Assumption 10.9 also holds then g is a submersion if and only if for all
x ∈X with g(x) = z in Z, condition S holds for g, x, z, equation (11.23)
is an isomorphism, and the following is surjective:

Txg : TxX −→ TzZ.

Combining Assumption 11.9(g) and Theorem 11.22(b) gives:

Corollary 11.23. Let Ṁanc satisfy Assumptions 3.22 and 11.9. Then compo-
sitions of w-submersions in mK̇urc are w-submersions. If Ṁanc also satisfies
Assumption 10.9 then compositions of submersions in mK̇urc are submersions.

Combining Assumption 11.9(h) and Theorems 11.19(a) and 11.22(b) yields:

Corollary 11.24. Let Ṁanc satisfy Assumptions 3.22 and 11.9, so that As-
sumption 11.1 holds with discrete properties D,E. Suppose that Z is a classical
manifold in mK̇urc, as in Example 4.30. Then any 1-morphism g : X → Z
in mK̇urc is D and a w-submersion. Hence any 1-morphisms g : X → Z,
h : X → Z in mK̇urc are w-transverse, and a fibre product W = X ×g,Z,h Y
exists in mK̇urc

D, and is also a fibre product in mK̇urc
E.
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11.2.5 Orientations on w-transverse fibre products in mK̇ur

In this section we suppose throughout that Ṁan satisfies Assumptions 3.1–3.7,
10.1, 10.13, 11.1, and 11.5. Thus, objects X in Ṁan have tangent spaces TxX
which are fibres of a tangent bundle TX → X of rank dimX, and these are
used to define canonical bundles KX and orientations on m-Kuranishi spaces X
as in §10.7, and we can form w-transverse fibre products W = X ×g,Z,h Y in

mK̇urD as in Theorem 11.19.
Given orientations on X,Y ,Z, the next theorem defines an orientation on

W. It will be proved in §11.11. It is a generalization of Theorem 10.80 in §10.7.4
on orientations of products X × Y , and reduces to this when Z = ∗, in which
case ΥX,Y in Theorem 10.80 coincides with ΥX,Y ,∗ below.

Theorem 11.25. Suppose g : X → Z, h : Y → Z are w-transverse 1-
morphisms in mK̇urD, so that a fibre product W = X ×g,Z,h Y exists in

mK̇urD by Theorem 11.19, in a 2-Cartesian square (11.15). Sections 10.7.1–
10.7.2 define the canonical line bundles KW,KX ,KY ,KZ of W,X,Y ,Z, us-
ing tangent spaces and tangent bundles in Ṁan from Assumptions 10.1 and
10.13, and define orientations on W, . . . ,Z to be orientations on the fibres
of KW, . . . ,KZ .

Then there is a unique isomorphism of topological line bundles on W :

ΥX,Y ,Z : KW −→ e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗ (11.24)

with the following property. Let w ∈W with e(w) = x in X, f(w) = y in Y and
g(x) = h(y) = z in Z. Then we can consider ΥX,Y ,Z |w as a nonzero element

ΥX,Y ,Z |w ∈ (KW|w)∗ ⊗KX |x ⊗KY |y ⊗ (KZ |z)∗

∼= (detT ∗wW ⊗ detOwW)−1 ⊗ detT ∗xX ⊗ detOxX

⊗ detT ∗yY ⊗ detOyY ⊗ (detT ∗zZ ⊗ detOzZ )−1.

By Theorem 11.19(e) we have an exact sequence

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW.
Owe⊕Owfoo

(11.25)

Consider (11.25) as an exact complex A• with OwW in degree 0, so that (10.69)
defines a nonzero element

ΨA• ∈ detT ∗wW ⊗ (det(T ∗xX ⊕ T ∗yY ))−1 ⊗ detT ∗zZ

⊗ detOwW ⊗ (det(OxX ⊕OyY ))−1 ⊗ detOzZ.

Then defining IT∗xX,T∗y Y , IOxX,OyY as in (10.84), we have(
IT∗xX,T∗y Y ⊗ IOxX,OyY

)
(ΥX,Y ,Z |w)

= (−1)dimOwW dimTzZ+dimOxX dimTyY ·Ψ−1
A• .

(11.26)
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Hence if X,Y ,Z are oriented there is a unique orientation on W, called
the fibre product orientation, such that (11.24) is orientation-preserving.

The morphism ΥX,Y ,Z in (11.24), and hence the orientation on W above,
depend on our choice of orientation conventions, as in Convention 2.39, including
various sign choices in §10.6–§10.7 and in (11.26). Different orientation conven-
tions would change ΥX,Y ,Z and the orientation on W by a sign depending on
vdimX, vdimY , vdimZ. If W,X,Y ,Z are manifolds then the orientation on
W agrees with that in Convention 2.39(b).

Fibre products have natural commutativity and associativity properties, up
to canonical equivalence in mK̇ur. For instance, for w-transverse g : X → Z
and h : Y → Z there is a natural equivalence X ×g,Z,h Y ' Y ×h,Z,gX. When
we lift these to (multiple) fibre products of oriented m-Kuranishi spaces, the
orientations on each side differ by some sign depending on the virtual dimensions
of the factors. The next proposition, the m-Kuranishi analogue of Proposition
2.40, is a generalization of Proposition 10.81, and may be proved using the
same method. Parts (b),(c) are the analogue of results by Fukaya et al. [15,
Lem. 8.2.3(2),(3)] for FOOO Kuranishi spaces.

Proposition 11.26. Suppose V , . . . ,Z are oriented m-Kuranishi spaces, and
e, . . . ,h are 1-morphisms, and all fibre products below are w-transverse. Then
the following canonical equivalences hold, in oriented m-Kuranishi spaces:

(a) For g : X → Z and h : Y → Z we have

X ×g,Z,h Y ' (−1)(vdimX−vdimZ)(vdimY−vdimZ)Y ×h,Z,g X.

(b) For e : V → Y , f : W → Y , g : W → Z, and h : X → Z we have

V ×e,Y ,f◦πW

(
W ×g,Z,hX

)
'
(
V ×e,Y ,f W

)
×g◦πW,Z,hX.

(c) For e : V → Y , f : V → Z, g : W → Y , and h : X → Z we have

V ×(e,f),Y×Z,g×h (W ×X) '
(−1)vdimZ(vdimY+vdimW)(V ×e,Y ,gW)×f◦πV ,Z,hX.

By the same method we can also prove the following, the analogue of Fukaya
et al. [15, Lem. 8.2.3(1)] for FOOO Kuranishi spaces:

Proposition 11.27. Suppose Ṁanc satisfies Assumptions 3.22, 10.1, 10.13,
10.16, 11.1, and 11.5. Let g : X → Z and h : Y → Z be w-transverse 1-
morphisms in mK̇urc with ∂Z = ∅, so that a fibre product W = X ×g,Z,h Y
exists in mK̇urc

D by Theorem 11.19. Suppose X,Y ,Z are oriented, so that W
is oriented by Theorem 11.25, and ∂W, ∂X, ∂Y , ∂Z are oriented by Definition
10.79. Then as in (11.20) we have a canonical equivalence of oriented m-Kuranishi
spaces:

∂W '
(
∂X ×g◦iX ,Z,h Y

)
q (−1)vdimX+vdimZ

(
X ×g,Z,h◦iY ∂Y

)
.
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11.3 Fibre products in mKur,mKurcst,mKurgc,mKurc

We now apply the results of §11.2 when Ṁan is Man,Manc
st,Mangc and

Manc, using the material of §2.5 on transversality and submersions in these
categories, and Examples 11.10–11.13 in §11.1.4.

11.3.1 Fibre products in mKur

Take Ṁan to be the category of classical manifolds Man, with corresponding
2-category of m-Kuranishi spaces mKur as in Definition 4.29. We will use
tangent spaces TxX for X in mKur defined using ordinary tangent spaces TvV
in Man, as in Example 10.25(i).

Definition 2.21 in §2.5.1 defines transverse morphisms and submersions in
Man, as usual in differential geometry. As in Example 11.10, these satisfy
Assumption 11.1 with D,E trivial, and Assumptions 11.3–11.5 and 11.9 also
hold. So Definition 11.18 defines (w-)transverse 1-morphisms g : X → Z,
h : Y → Z and (w-)submersions g : X → Z in mKur, in terms of the existence
of covers of X,Y ,Z by m-Kuranishi neighbourhoods on which we can represent
g,h in a special form. The next theorem summarizes Theorems 11.19, 11.22 and
11.25, Proposition 11.21, and Corollaries 11.23 and 11.24 in this case.

Theorem 11.28. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
mKur. Then g,h are w-transverse if and only if for all x ∈X and y ∈ Y with
g(x) = h(y) = z in Z, the following is surjective:

Oxg ⊕Oyh : OxX ⊕OyY −→ OzZ. (11.27)

This is automatic if Z is a manifold. Also g,h are transverse if and only if for
all x, y, z, equation (11.27) is an isomorphism, and the following is surjective:

Txg ⊕ Tyh : TxX ⊕ TyY −→ TzZ.

(b) If g : X → Z and h : Y → Z are w-transverse in mKur then a fibre
product W = X ×g,Z,h Y exists in mKur, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.28)

It has vdimW = vdimX + vdimY − vdimZ, and topological space W ={
(x, y) ∈ X × Y : g(x) = h(y)

}
. If w ∈W with e(w) = x in X, f(w) = y in

Y and g(x) = h(y) = z in Z, the following is an exact sequence:

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW.
Owe⊕Owfoo

(11.29)
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If g,h are transverse then W is a manifold.

(c) In part (b), using the theory of canonical bundles and orientations from
§10.7, there is a natural isomorphism of topological line bundles on W :

ΥX,Y ,Z : KW −→ e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗. (11.30)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.30) is orientation-preserving. Proposition
11.26 holds for these fibre product orientations.

(d) Let g : X → Z be a 1-morphism in mKur. Then g is a w-submersion if
and only if Oxg : OxX → OzZ is surjective for all x ∈X with g(x) = z in Z.
Also g is a submersion if and only if Oxg : OxX → OzZ is an isomorphism
and Txg : TxX → TzZ is surjective for all x, z.

(e) If g : X → Z and h : Y → Z are 1-morphisms in mKur with g a w-
submersion then g,h are w-transverse. If g is a submersion and Y is a manifold
then g,h are transverse.

(f) If (11.28) is 2-Cartesian in mKur with g a w-submersion (or a submersion)
then f is a w-submersion (or a submersion).

(g) Compositions and products of (w-)submersions in mKur are (w-)submer-
sions. Projections πX : X × Y →X in mKur are w-submersions.

Example 11.29. Suppose W is an m-Kuranishi space covered by a single m-
Kuranishi neighbourhood (V,E, s, ψ). Then we can write W as a w-transverse
fibre product W ' V ×s,E,0 V of manifolds in mKur, where s,0 : V → E are
the images of the sections s, 0 : V → E under FmKur

Man : Man ↪→mKur.

Example 11.30. Let W ⊆ Rn be any closed subset. By a lemma of Whitney’s,
we can write W as the zero set of a smooth function g : Rn → R. Let g :
RRRn → RRR and 0 : ∗ → RRR be the images of g : Rn → R and 0 : ∗ → R under
FmKur

Man : Man ↪→ mKur. Then g,0 are w-transverse, so W = RRRn ×g,RRR,0 ∗ is
an m-Kuranishi space in mKur, with vdimW = n − 1 and topological space
W , by Theorem 11.28. This means that the topological spaces of m-Kuranishi
spaces can be quite wild, fractals for example.

Example 11.31. Let g : X → Z and h : Y → Z be morphisms in Man,
and g : X → Z, h : Y → Z be their images under FmKur

Man . Then g,h are
w-transverse, so a fibre product W = X ×g,Z,h Y exists in mKur by Theorem
11.28. In Example 11.20 we showed that if g, h are transverse in Man, so that a
fibre product W = X ×g,Z,h Y exists in Man, then W ' FmKur

Man (W ).
If g, h are not transverse then the morphism Txg⊕−Tyh : TxX⊕TyY → TzZ

in (11.29) is not surjective for some w ∈W, and then OwW 6= 0 by (11.29), so
W is not a manifold. Hence, if a non-transverse fibre product W = X ×g,Z,h Y
exists in Man, as in Example 2.23(ii)–(iv), then W 6' FmKur

Man (W ).
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11.3.2 Fibre products in mKurcst and mKurc

In §2.5.2, working in the subcategory Manc
st ⊂ Manc from §2.1, we defined

s-transverse and t-transverse morphisms and s-submersions. Example 11.11
explained how to fit these into the framework of Assumptions 11.1 and 11.3–11.9.
The next theorem summarizes Theorems 11.19, 11.22 and 11.25, Proposition
11.21, and Corollaries 11.23 and 11.24 applied to Example 11.11. Equation
(11.35) being exact is equivalent to (11.17) for the ÑxX being Cartesian in real
vector spaces.

Here mKurc
st ⊂ mKurc are the 2-categories of m-Kuranishi spaces cor-

responding to Manc
st ⊂ Manc as in Definition 4.29, the corner 2-functors

C,C ′ : mKurc
st → mǨurc

st and C,C ′ : mKurc → mǨurc are as in Example
4.45, (stratum) tangent spaces TxX, T̃xX are as in Example 10.25(i),(iii), and
stratum normal spaces ÑxX are as in Example 10.32(a).

We use the notation ws-transverse, wt-transverse, and ws-submersions for
the notions of w-transverse and w-submersion in mKurc

st corresponding to s-
and t-transverse morphisms and s-submersions, and s-transverse, t-transverse,
and s-submersions for the corresponding notions of transverse and submersion.

Theorem 11.32. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
mKurc

st. Then g,h are ws-transverse if and only if for all x ∈ X and y ∈ Y
with g(x) = h(y) = z in Z, the following linear maps are surjective:

Õxg ⊕ Õyh : ÕxX ⊕ ÕyY −→ ÕzZ, (11.31)

Ñxg ⊕ Ñyh : ÑxX ⊕ ÑyY −→ ÑzZ. (11.32)

This is automatic if Z is a classical manifold. Also g,h are s-transverse if and
only if for all x, y, z, equation (11.31) is an isomorphism, and (11.32) and the
following are surjective:

T̃xg ⊕ T̃yh : T̃xX ⊕ T̃yY −→ T̃zZ. (11.33)

Furthermore, g,h are wt-transverse (or t-transverse) if and only if they are
ws-transverse (or s-transverse), and for all x, y, z as above, whenever x ∈ Cj(X)
and y ∈ Ck(Y ) with Πj(x) = x, Πk(y) = y, and C(g)x = C(h)y = z in
Cl(Z), we have j + k > l, and there is exactly one triple (x,y, z) with j + k = l.

(b) If g : X → Z and h : Y → Z are ws-transverse in mKurc
st then a fibre

product W = X ×g,Z,h Y exists in mKurc
st, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.34)

It has vdimW = vdimX+vdimY−vdimZ, and topological space W =
{

(x, y) ∈
X × Y : g(x) = h(y)

}
. Equation (11.34) is also 2-Cartesian in mKurc.
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If w ∈W with e(w) = x in X, f(w) = y in Y and g(x) = h(y) = z in Z,
the following sequences are exact:

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW,
Owe⊕Owfoo

0 // T̃wW
T̃we⊕T̃wf

// T̃xX ⊕ T̃yY
T̃xg⊕−T̃yh

// T̃zZ

δ̃g,hw ��
0 ÕzZoo ÕxX ⊕ ÕyY

Õxg⊕−Õyhoo ÕwW,
Õwe⊕Õwfoo

0 // ÑwW
Ñwe⊕Ñwf // ÑxX ⊕ ÑyY

Ñxg⊕−Ñyh // ÑzZ // 0. (11.35)

If g,h are s-transverse then W is a manifold.

(c) In part (b), if (11.34) is 2-Cartesian in mKurc
st with g,h wt-transverse

(or t-transverse), then the following is 2-Cartesian in mǨurc
st and mǨurc,

with C(g), C(h) wt-transverse (or t-transverse, respectively):

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Hence we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)

for i > 0. When i = 1, this computes the boundary ∂W.
Also, if g is a ws-submersion (or an s-submersion), then C(g) is a ws-

submersion (or an s-submersion, respectively).
The analogue of the above also holds for C ′ : mKurc

st →mǨurc
st.

(d) In part (b), using the theory of canonical bundles and orientations from
§10.7, there is a natural isomorphism of topological line bundles on W :

ΥX,Y ,Z : KW −→ e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗. (11.36)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.36) is orientation-preserving. Propositions
11.26 and 11.27 hold for these fibre product orientations.

(e) Let g : X → Z be a 1-morphism in mKurc
st. Then g is a ws-submersion

if and only if Õxg : ÕxX → ÕzZ and Ñxg : ÑxX → ÑzZ are surjective for
all x ∈X with g(x) = z in Z. Also g is an s-submersion if and only if Õxg :
ÕxX → ÕzZ is an isomorphism and T̃xg : T̃xX → T̃zZ, Ñxg : ÑxX → ÑzZ
are surjective for all x, z.
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(f) If g : X → Z and h : Y → Z are 1-morphisms in mKurc
st with g

a ws-submersion then g,h are ws-transverse and wt-transverse. If g is an
s-submersion and Y is a manifold then g,h are s-transverse and t-transverse.

(g) If (11.34) is 2-Cartesian in mKurc
st with g a ws-submersion (or an s-

submersion) then f is a ws-submersion (or an s-submersion).

(h) Compositions and products of ws- or s-submersions in mKurc
st are ws- or

s-submersions. Projections πX : X × Y →X in mKurc
st are ws-submersions.

(i) If g : X → Z is a ws-submersion in mKurc
st, and h : Y → Z is any

1-morphism in mKurc (not necessarily in mKurc
st), then a fibre product W =

X ×g,Z,h Y exists in mKurc, with dimW = dimX + dimY − dimZ, in a
2-Cartesian square (11.34) in mKurc. It has topological space W =

{
(x, y) ∈

X × Y : g(x) = h(y)
}

. The analogues of (c),(g) hold for these fibre products.
If g is an s-submersion and Y is a manifold then W is a manifold.

Example 11.33. Define X = Y = Z = [0,∞) and Z ′ = R, so that Z ⊂ Z ′ is
open. Define strongly smooth maps g : X → Z, h : Y → Z, g′ : X → Z ′ and
h′ : Y → Z ′ by g(x) = g′(x) = x, h(y) = h′(y) = y. Let X,Y ,Z,Z ′, g,h, g′,h′

be the images of X,Y, Z, Z ′, g, h, g′, h′ under F
mKurcst
Manc

st
.

Then g : X → Z, h : X → Z are s-transverse. Also g′ : X → Z ′,
h′ : X → Z ′ are ws-transverse, but are not s-transverse, as (11.33) for g′,h′ is
not surjective at x = y = z = 0. Hence fibre products W = X ×g,Z,h Y and

W′ = X ×g′,Z′,h′ Y exist in mKurc
st. Here W is F

mKurcst
Manc

st
([0,∞)), but W′ is

not a manifold. We may cover W′ by an m-Kuranishi neighbourhood (V,E, s, ψ),
where V = [0,∞)2, and E = [0,∞)2×R is the trivial vector bundle over V with
fibre R, and s : V → E maps (x, y) 7→ (x, y, x− y), and ψ : (x, x) 7→ x.

Since W 6'W′, this shows that the corners of Z can affect the fibre product
W = X ×g,Z,h Y in mKurc

st. This is not true for fibre products in Manc
st,

where we have X ×g,Z,h Y ∼= X ×g′,Z′,h′ Y when Z ⊂ Z ′ and g = g′, h = h′.

11.3.3 Fibre products in mKurgcin and mKurgc

In §2.5.3, working in the subcategory Mangc
in ⊂Mangc from §2.4.1, we defined

b-transverse and c-transverse morphisms and b-submersions, b-fibrations, and
c-fibrations. Example 11.12 explained how to fit these into the framework of
Assumptions 11.1 and 11.3–11.9. The next theorem summarizes Theorems 11.19,
11.22 and 11.25, Proposition 11.21, and Corollary 11.23 applied to Example 11.12.

Here mKurgc
in ⊂ mKurgc are the 2-categories of m-Kuranishi spaces cor-

responding to Mangc
in ⊂ Mangc as in Definition 4.29, the corner functor

C : mKurgc → mǨurgc is as in Example 4.45, and b-tangent spaces TxX
are as in Example 10.25(ii). We use the notation wb-transverse, wc-transverse,
wb-submersions, wb-fibrations, wc-fibrations for the weak versions of b-transverse,
. . . , c-fibrations in mKurgc

in from Definition 11.18, and b-transverse, c-transverse,
b-submersions, b-fibrations, and c-fibrations for the strong versions.
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Theorem 11.34. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
mKurgc

in . Then g,h are wb-transverse if and only if for all x ∈X and y ∈ Y
with g(x) = h(y) = z in Z, the following linear map is surjective:

bOxg ⊕ bOyh : bOxX ⊕ bOyY −→ bOzZ. (11.37)

This is automatic if Z is a manifold. Also g,h are b-transverse if and only if for
all x, y, z, equation (11.37) is an isomorphism, and the following is surjective:

bTxg ⊕ bTyh : bTxX ⊕ bTyY −→ bTzZ.

Furthermore, g,h are wc-transverse (or c-transverse) if and only if they are
wb-transverse (or b-transverse), and whenever x ∈ Cj(X) and y ∈ Ck(Y ) with
C(g)x = C(h)y = z in Cl(Z), we have either j + k > l, or j = k = l = 0.

(b) If g : X → Z and h : Y → Z are wb-transverse in mKurgc
in then a fibre

product W = X ×g,Z,h Y exists in mKurgc
in , in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.38)

It has vdimW = vdimX + vdimY − vdimZ. If w ∈W with e(w) = x in X,
f(w) = y in Y and g(x) = h(y) = z in Z, the following sequence is exact:

0 // bTwW bTwe⊕bTwf
// bTxX ⊕ bTyY bTxg⊕−bTyh

// bTzZ
bδg,hw ��

0 bOzZoo bOxX ⊕ bOyY
bOxg⊕−bOyhoo bOwW.

bOwe⊕bOwfoo

If g,h are b-transverse then W is a manifold.

(c) In (b), if g,h are wc-transverse then W has topological space W =
{

(x, y) ∈
X × Y : g(x) = h(y)

}
, and (11.38) is also 2-Cartesian in mKurgc, and the fol-

lowing is 2-Cartesian in mǨurgc
in and mǨurgc, with C(g), C(h) wc-transverse:

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Hence we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)

for i > 0. When i = 1, this computes the boundary ∂W.
Also, if g is a wb-fibration, or b-fibration, or wc-fibration, or c-fibration,

then C(g) is a wb-fibration, . . . , or c-fibration, respectively.
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(d) In part (b), using the theory of b-canonical bundles and orientations from
§10.7, there is a natural isomorphism of topological line bundles on W :

bΥX,Y ,Z : bKW −→ e∗(bKX)⊗ f∗(bKY )⊗ (g ◦ e)∗(bKZ)∗. (11.39)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.39) is orientation-preserving. Propositions
11.26 and 11.27 hold for these fibre product orientations.

(e) Let g : X → Z be a 1-morphism in mKurgc
in . Then g is a wb-submersion

if and only if bOxg : bOxX → bOzZ is surjective for all x ∈X with g(x) = z
in Z. Also g is a b-submersion if and only if bOxg : bOxX → bOzZ is an
isomorphism and bTxg : bTxX → bTzZ is surjective for all x, z.

Furthermore g is a wb-fibration (or a b-fibration) if it is a wb-submersion (or
b-submersion) and whenever there are x, z in Cj(X), Cl(Z) with C(g)x = z, we
have j > l. And g is a wc-fibration (or a c-fibration) if it is a wb-fibration (or a
b-fibration), and whenever x ∈ X and z ∈ Cl(Z) with g(x) = Πl(z) = z ∈ Z,
then there is exactly one x ∈ Cl(X) with Πl(x) = x and C(g)x = z.

(f) If g : X → Z and h : Y → Z are 1-morphisms in mKurgc
in with g a

wb-submersion (or wb-fibration) then g,h are wb-transverse (or wc-transverse,
respectively). If g is a b-submersion (or b-fibration) and Y is a manifold then
g,h are b-transverse (or c-transverse, respectively).

(g) If (11.38) is 2-Cartesian in mKurgc
in with g a wb-submersion, b-submersion,

wb-fibration, b-fibration, wc-fibration, or c-fibration, then f is a wb-submersion,
. . . , or c-fibration, respectively.

(h) Compositions and products of wb-submersions, b-submersions, wb-fibrations,
b-fibrations, wc-fibrations, and c-fibrations, in mKurgc

in are wb-submersions, . . . ,
c-fibrations. Projections πX : X × Y →X in mKurgc

in are wc-fibrations.

(i) If g : X → Z is a wc-fibration in mKurgc
in , and h : Y → Z is any

1-morphism in mKurgc (not necessarily in mKurgc
in ), then a fibre product

W = X×g,Z,h Y exists in mKurgc, with dimW = dimX + dimY −dimZ, in
a 2-Cartesian square (11.38) in mKurgc. It has topological space W =

{
(x, y) ∈

X × Y : g(x) = h(y)
}

. The analogues of (c),(g) hold for these fibre products.
If g is a c-fibration and Y is a manifold then W is a manifold.

11.3.4 Fibre products in mKurcin and mKurc

In §2.5.4, working in the subcategory Manc
in ⊂ Manc from §2.1, we defined

sb-transverse and sc-transverse morphisms. Example 11.13 explained how to
fit these into the framework of Assumptions 11.1 and 11.3–11.9, also using
s-submersions from §2.5.2. The next theorem summarizes Theorems 11.19, 11.22
and 11.25 and Corollary 11.24 applied to Example 11.13.

Here mKurc
in ⊂ mKurc are the 2-categories of m-Kuranishi spaces cor-

responding to Manc
in ⊂ Manc as in Definition 4.29, the corner 2-functor

C : mKurc →mǨurc is as in Example 4.45, b-tangent spaces bTxX are as in
Example 10.25(ii), and monoids M̃xX are as in Example 10.32(c).
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We use the notation wsb-transverse and wsc-transverse for the notions of
w-transverse in mKurc

in corresponding to sb- and sc-transverse morphisms, and
sb-transverse, sc-transverse for the notions of transverse. We omit some of the
results on ws- and s-submersions, as they appeared already in Theorem 11.32.

Theorem 11.35. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
mKurc

in. Then g,h are wsb-transverse if and only if for all x ∈X and y ∈ Y
with g(x) = h(y) = z in Z, the following linear map is surjective:

bOxg ⊕ bOyh : bOxX ⊕ bOyY −→ bOzZ, (11.40)

and we have an isomorphism of commutative monoids

M̃xX ×M̃xg,M̃zZ,M̃yh
M̃yY ∼= Nn for n > 0. (11.41)

This is automatic if Z is a classical manifold. Also g,h are sb-transverse if
and only if for all x, y, z, equations (11.40)–(11.41) are isomorphisms, and the
following is surjective:

bTxg ⊕ bTyh : bTxX ⊕ bTyY −→ bTzZ.

Furthermore, g,h are wsc-transverse (or sc-transverse) if and only if they
are wsb-transverse (or sb-transverse), and whenever x ∈ Cj(X) and y ∈ Ck(Y )
with C(g)x = C(h)y = z in Cl(Z), we have either j + k > l, or j = k = l = 0.

(b) If g : X → Z and h : Y → Z are wsb-transverse in mKurc
in then a fibre

product W = X ×g,Z,h Y exists in mKurc
in, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.42)

It has vdimW = vdimX + vdimY − vdimZ. If w ∈W with e(w) = x in X,
f(w) = y in Y and g(x) = h(y) = z in Z, the following sequence is exact:

0 // bTwW bTwe⊕bTwf
// bTxX ⊕ bTyY bTxg⊕−bTyh

// bTzZ
bδg,hw ��

0 bOzZoo bOxX ⊕ bOyY
bOxg⊕−bOyhoo bOwW.

bOwe⊕bOwfoo

If g,h are sb-transverse then W is a manifold.

(c) In (b), if g,h are wsc-transverse then W has topological space W =
{

(x, y) ∈
X × Y : g(x) = h(y)

}
, and (11.42) is also 2-Cartesian in mKurc, and the fol-

lowing is 2-Cartesian in mǨurc
in and mǨurc, with C(g), C(h) wsc-transverse:

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).
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Hence we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)

for i > 0. When i = 1, this computes the boundary ∂W.
Also, if g is a ws-submersion (or an s-submersion), then C(g) is a ws-

submersion (or an s-submersion, respectively).

(d) In part (b), using the theory of b-canonical bundles and orientations from
§10.7, there is a natural isomorphism of topological line bundles on W :

bΥX,Y ,Z : bKW −→ e∗(bKX)⊗ f∗(bKY )⊗ (g ◦ e)∗(bKZ)∗. (11.43)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the
fibre product orientation, such that (11.43) is orientation-preserving.

(e) Let g : X → Z be a 1-morphism in mKurc
in. Then g is a ws-submersion if

and only if bOxg : bOxX → bOzZ is surjective for all x ∈X with g(x) = z in
Z, and the monoid morphism M̃xg : M̃xX → M̃zZ is isomorphic to a projection
Nm+n → Nn. Also g is an s-submersion if and only if bOxg : bOxX → bOzZ is
an isomorphism, and bTxg : bTxX → bTzZ is surjective, and M̃xg is isomorphic
to a projection Nm+n → Nn, for all x, z.

(f) If g : X → Z and h : Y → Z are 1-morphisms in mKurgc
in with g a

ws-submersion then g,h are wsc-transverse. If g is an s-submersion and Y is a
manifold then g,h are sc-transverse.

11.4 Discussion of fibre products of µ-Kuranishi spaces

We now consider to what extent the results of §11.2–§11.3 may be extended to
categories of µ-Kuranishi spaces µK̇ur in Chapter 5. First consider an example:

Example 11.36. Let X = Y = ∗ be the point in Man, and Z = Rn for n > 0,
and g : X → Z, h : Y → Z map g : ∗ 7→ 0 and h : ∗ 7→ 0. Then g, h are not
transverse in Man, but a fibre product W = X ×g,Z,h Y exists in Man, with
W = ∗. Note that dimW > dimX + dimY − dimZ.

WriteX,Y ,Z, g,h for the images of X,Y, Z, g, h either in m-Kuranishi spaces
mKur under FmKur

Man : Man → mKur from Example 4.30, or in µ-Kuranishi
spaces µKur under FmKur

Man : Man→ µKur from Example 5.16.
Then g,h are w-transverse in mKur, so a fibre product W = X ×g,Z,h Y

exists in the 2-category mKur, with vdimW = −n. It is a point with obstruction
space Rn, covered by an m-Kuranishi neighbourhood (∗,Rn, 0, id∗).

As X = Y = ∗ are the terminal object in the ordinary category µKur, a
fibre product W̃ = X ×g,Z,h Y also exists in µKur, but it is the point ∗, as in

Man, with vdim W̃ = 0, so vdim W̃ > vdimX + vdimY − vdimZ.

106



In this example, the fibre product W̃ = X ×g,Z,h Y in µKur is ‘wrong’, not
the fibre product we want – it does not have the expected dimension, and is not
locally described in µ-Kuranishi neighbourhoods by Definition 11.16.

As in Theorem 5.23 we have an equivalence Ho(mKur) ' µKur. The
moral is that the 2-category structure in mKur is crucial to get the ‘correct’
w-transverse fibre products, as the definition of 2-category fibre products in §A.4
involves the 2-morphisms in an essential way. Passing to the homotopy category
Ho(mKur), or to µKur, forgetting 2-morphisms, loses too much information
for (w-)transverse fibre products to be well-behaved.

Our conclusion is that we should not study (w-)transverse fibre products in
categories µK̇ur, but we should work in the 2-categories mK̇ur or K̇ur instead.

Despite this, there is nevertheless a sense in which well-behaved ‘w-transverse
fibre products’ do exist in categories of µ-Kuranishi spaces mK̇ur:

Definition 11.37. Suppose Ṁan satisfies Assumptions 3.1–3.7 and 11.1, giving
discrete properties D,E and notions of transverse morphisms and submersions.
Let g′ : X ′ → Z ′, h′ : Y ′ → Z ′ be D morphisms in µK̇ur. As in §5.6.4 we

can choose X,Y ,Z in mK̇ur with FµK̇ur

mK̇ur
(X) = X ′, FµK̇ur

mK̇ur
(Y ) = Y ′, and

FµK̇ur

mK̇ur
(Z) = Y ′, and as in §5.6.3 we can choose 1-morphisms g : X → Z,

h : Y → Z in mK̇ur, unique up to 2-isomorphism, such that FµK̇ur

mK̇ur
([g]) = g′

and FµK̇ur

mK̇ur
([h]) = h′. Then g,h are D. Define g′,h′ to be w-transverse in

µK̇ur if g,h are w-transverse in mK̇ur. This is independent of choices.
If g′,h′ are w-transverse then a fibre product W = X ×g,Z,h Y exists in

mK̇ur by Theorem 11.17, with projections e : W → X, f : W → Y . Define

W′ = FµK̇ur

mK̇ur
(Y ), e′ = FµK̇ur

mK̇ur
([e]) and f ′ = FµK̇ur

mK̇ur
([f ]). Then vdimW′ =

vdimX ′ + vdimY ′ − vdimZ ′, and we have a commutative square in µK̇ur:

W′
f ′

//

e′��

Y ′

h′ ��
X ′

g′ // Z ′.

(11.44)

In general (11.44) is not Cartesian in µK̇ur, and W′ is not a fibre product
X ′ ×g′,Z′,h′ Y ′ in µK̇ur, as Example 11.36 shows. But as W is unique up to

canonical equivalence in mK̇ur, this W′ is unique (that is, depends only on
X ′,Y ′,Z ′, g′,h′) up to canonical isomorphism in µK̇ur.

By an abuse of notation, we could decide to call W′ a ‘w-transverse fibre
product’ in µK̇ur, although it is not a fibre product in the category-theoretic
sense. With this convention, the results of §11.2–§11.3 extend to µ-Kuranishi
spaces in the obvious way. Such ‘w-transverse fibre products’ are an additional
structure on µK̇ur. Fukaya, Oh, Ohta and Ono [15, §A1.2] define non-category-
theoretic ‘fibre products’X×ZY of FOOO Kuranishi spacesX,Y over manifolds
Z in this sense, as in Definition 7.9.
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11.5 Transverse fibre products and submersions in K̇ur

Next we generalize §11.2–§11.3 to Kuranishi spaces K̇ur. We suppose throughout
this section that the category Ṁan used to define K̇ur satisfies Assumptions
3.1–3.7 and 11.1, and will also specify additional assumptions as needed.

11.5.1 Transverse fibre products of orbifolds

Transverse fibre products of orbifolds are well understood, and are discussed
by Adem, Leida and Ruan [1, Def. 1.41, Def. 2.7, Ex. 2.8], Chen and Ruan [5,
p. 83], Moerdijk [56, §2.1 & §3.3], and Moerdijk and Pronk [57, §5]. Here are
the analogues of Definition 2.21 and Theorem 2.22(a).

Definition 11.38. Write Orb for the 2-category of orbifolds, that is, for one
of the equivalent 2-categories OrbPr,OrbLe,OrbManSta,OrbC∞Sta,OrbKur in
§6.6. Orbifolds X have (weakly) functorial isotropy groups GxX and tangent
spaces TxX for x ∈ X, as in §6.5 and §10.2. We call 1-morphisms g : X → Z,
h : Y→ Z in Orb transverse if for all x ∈ X, y ∈ Y with g(x) = h(y) = z ∈ Z
and all γ ∈ GzZ, the tangent morphism Txg⊕ (γ · Tyh) : TxX⊕ TyY→ TzZ is
surjective.

Theorem 11.39. Suppose g : X→ Z and h : Y→ Z are transverse 1-morphisms
in Orb. Then a fibre product W = X×g,Z,hY exists in the 2-category Orb, with
dimW = dimX + dimY− dimZ, in a 2-Cartesian square:

W HP
η

f
//

e
��

Y

h ��
X

g // Z.

Just as a set, the underlying topological space may be written

W =
{

(x, y, C) : x ∈ X, y ∈ Y, C ∈ Gxg(GxX)\GzZ/Gyh(GyY)
}
, (11.45)

where e, f map e : (x, y, C) 7→ x, f : (x, y, C) 7→ y. The isotropy groups satisfy

G(x,y,C)W ∼=
{

(α, β) ∈ GxX×GyY : Gxg(α) γ Gyh(β−1) = γ
}

for fixed γ ∈ C ⊆ GzZ.

Remark 11.40. (a) It is important that we work in a 2-category of orbifolds in
Theorem 11.39. Transverse fibre products need not exist in the ordinary category
Ho(Orb), and if they do exist they may be the ‘wrong’ fibre product.

(b) Note that we need not have W ∼=
{

(x, y) ∈ X × Y : g(x) = h(y)
}

in
Theorem 11.39, as either a set or a topological space. We discussed a similar
phenomenon for fibre products in Mangc

in ,Manc
in in Remark 2.37, due to working

in categories of interior maps. But the reasons here are different, and due to the
2-category structure. When we are working with spaces in a 2-category, points
may have isotropy groups, and these isotropy groups modify the underlying
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sets/topological spaces of fibre products as in (11.45). There does not seem to
be an easy description of the topology on (11.45) in terms of those on X,Y, Z.

(c) It may be surprising that we need Txg ⊕ (γ · Tyh) to be surjective for all
γ ∈ GzZ in Definition 11.38, rather than just requiring Txg⊕Tyh to be surjective.
To see this is sensible, note that as in §10.2.3 the maps Txg : TxX→ TzZ and
Tyh : TyY→ TzZ are defined using arbitrary choices, and are only canonical up
to the actions γ · Txg, γ · Txh of γ ∈ GzZ. Also, surjectivity of Txg ⊕ (γ · Tyh)
is the transversality condition required at the point (x, y, C) ∈ W in (11.45),
where C = Gxg(GxX) γ Gyh(GyY).

11.5.2 Fibre products of global Kuranishi neighbourhoods

Here are the analogues of Definitions 11.15 and 11.16 and Theorem 11.17.

Definition 11.41. Suppose g : X → Z, h : Y → Z are continuous maps
of topological spaces, and (Ul, Dl,Bl, rl, χl), (Vm, Em,Γm, sm, ψm), (Wn, Fn,∆n,
tn, ωn) are Kuranishi neighbourhoods on X,Y, Z with Imχl ⊆ g−1(Imωn) and
Imψm ⊆ h−1(Imωn), and

gln = (Pln, πln, gln, ĝln) : (Ul, Dl,Bl, rl, χl) −→ (Wn, Fn,∆n, tn, ωn),

hmn = (Pmn, πmn, hmn, ĥmn) : (Vm, Em,Γm, sm, ψm)−→(Wn, Fn,∆n, tn, ωn),

are D 1-morphisms of Kuranishi neighbourhoods over (Imχl, g), (Imψm, h).
We call gln,hmn weakly transverse, or w-transverse, if there exist open neigh-

bourhoods Ṗln, Ṗmn of π∗ln(rl)
−1(0) and π∗mn(sm)−1(0) in Pln, Pmn, such that:

(i) gln|Ṗln : Ṗln →Wn and hmn|Ṗmn : Ṗmn →Wn are D morphisms in Ṁan,
which are transverse in the sense of Assumption 11.1(b).

(ii) ĝln|p ⊕ ĥmn|q : Dl|u ⊕ Em|v → Fn|w is surjective for all p ∈ Ṗln and

q ∈ Ṗmn with πln(p) = u ∈ Ul, πmn(q) = v ∈ Vm and gln(p) = hmn(q) = w
in Wn.

(iii) Ṗln is invariant under Bl ×∆n, and Ṗmn is invariant under Γm ×∆n.

We call gln,hmn transverse if they are w-transverse and in (ii) ĝln|p ⊕ ĥmn|q is
an isomorphism for all p, q.

We call gln a weak submersion, or a w-submersion, if there exists a Bl ×∆n-
invariant open neighbourhood P̈ln of π∗ln(rl)

−1(0) in Pln such that:

(iv) gln|P̈ln : P̈ln →Wn is a submersion in ṀanD, as in Assumption 11.1(c).

(v) ĝln|p : Dl|u → Fn|w is surjective for all p ∈ P̈ln with πln(p) = u ∈ Ul and
gln(p) = w in Wn.

We call gln a submersion if it is a w-submersion and in (v) ĝln|p is an isomorphism
for all p.

If gln is a w-submersion then gln,hmn are w-transverse for any D 1-mor-
phism hmn : (Vm, Em,Γm, sm, ψm) → (Wn, Fn,∆n, tn, ωn) over (Imψm, h), by

109



Assumption 11.1(c). Also if gln is a submersion then gln,hmn are transverse
for any D 1-morphism hmn : (Vm, Em,Γm, sm, ψm)→ (Wn, Fn,∆n, tn, ωn) over
(Imψm, h) for which Em = 0 is the zero vector bundle.

In Definition 6.9 we defined a weak 2-category GK̇N of global Kuranishi
neighbourhoods, where:

• Objects (V,E,Γ, s) in GK̇N are a manifold V (object in Ṁan), a vector
bundle E → V , a finite group Γ acting on V,E preserving the structures,
and a Γ-equivariant section s : V → E. Then (V,E,Γ, s, ids−1(0)/Γ) is a
Kuranishi neighbourhood on the topological space s−1(0)/Γ, as in §6.1.
They have virtual dimension vdim(V,E,Γ, s) = dimV − rankE.

• 1-morphisms Φij : (Vi, Ei,Γi, si) → (Vj , Ej ,Γj , sj) in GK̇N are quadru-

ples Φij = (Pij , πij , φij , φ̂ij) satisfying Definition 6.2(a)–(e) with s−1
i (0)

in place of ψ̄−1
i (S). Then Φij : (Vi, Ei,Γi, si, ids−1

i (0)/Γi) → (Vj , Ej ,
Γj , sj , ids−1

j (0)/Γj ) is a 1-morphism of Kuranishi neighbourhoods over the

map s−1
i (0)/Γi → s−1

j (0)/Γj induced by φij , πij , as in §6.1.

• For 1-morphisms Φij ,Φ
′
ij : (Vi, Ei,Γi, si)→ (Vj , Ej ,Γj , sj), a 2-morphism

Λij : Φij ⇒ Φ′ij in GK̇N is as in Definition 6.4, with s−1
i (0) in place

of ψ̄−1
i (S).

We write GK̇ND ⊆ GK̇N for the 2-subcategory with 1-morphisms Φij which
are D, in the sense of Definition 6.31. The next (rather long) definition and
theorem prove that w-transverse fibre products exist in GK̇ND.

Definition 11.42. Suppose we are given 1-morphisms in GK̇ND

gln : (Ul, Dl,Bl, rl) −→ (Wn, Fn,∆n, tn),

hmn : (Vm, Em,Γm, sm) −→ (Wn, Fn,∆n, tn),

with gln,hmn w-transverse in the sense of Definition 11.41. We will construct a
fibre product

(Tk, Ck,Ak, qk)=(Ul, Dl,Bl, rl)×gln,(Wn,Fn,∆n,tn),hmn (Vm, Em,Γm, sm) (11.46)

in both GK̇ND and GK̇NE .
Write gln = (Pln, πln, gln, ĝln) and hmn = (Pmn, πmn, hmn, ĥmn). Then

ĝln(π∗ln(rl)) = g∗ln(tn)+O(π∗ln(rl)
2) by Definition 6.2(e), so Definition 3.15(i) gives

ε : π∗ln(Dl)⊗π∗ln(Dl)→ g∗ln(Fn) with ĝln(π∗ln(rl)) = g∗ln(tn) + ε(π∗ln(rl)⊗π∗ln(rl)).
By averaging over the (Bl×∆n)-action we can suppose ε is (Bl×∆n)-equivariant.
Define ĝ′ln : π∗ln(Dl) → g∗ln(Fn) by ĝ′ln(d) = ĝln(d) − ε(d ⊗ π∗ln(rl)). Replacing
ĝln by ĝ′ln, which does not change gln up to 2-isomorphism as ĝ′ln = ĝln +
O(π∗ln(rl)), we may suppose that ĝln(π∗ln(rl)) = g∗ln(tn). Similarly we suppose

that ĥmn(π∗mn(sm)) = h∗mn(tn).
For Ṗln, Ṗmn as in Definition 11.41(i)–(iii), define

Tk = Ṗln ×gln|Ṗln ,Wn,hmn|Ṗmn Ṗmn (11.47)
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to be the transverse fibre product in ṀanD from Assumption 11.1(b). Then

dimTk = dimUl + dimVm − dimWn, (11.48)

as dim Ṗln = dimUl, etc. Define a finite group Ak = Bl × Γm × ∆n. Since
gln|Ṗln is Bl-invariant and ∆n-equivariant, and hmn|Ṗmn is Γm-invariant and
∆n-equivariant, Ak is a symmetry group of the fibre product (11.47), so there is
a natural smooth action of Ak on Tk. If we can write points of Tk as (p, q) for
p ∈ Ṗln, q ∈ Ṗmn with gln(p) = hmn(q) ∈Wn then Ak acts on points by

(β, γ, δ) : (p, q) 7→ ((β, δ) · p, (γ, δ) · q),

noting that gln((β, δ) · p) = δ · gln(p) = δ · hmn(q) = hmn((γ, δ) · q).
We have a morphism of vector bundles on Tk:

π∗
Ṗln

(ĝln)⊕−π∗
Ṗmn

(ĥmn) : (πln ◦ πṖln)∗(Dl)⊕ (πmn ◦ πṖmn)∗(Em)

−→ (gln ◦ πṖln)∗(Fn).
(11.49)

If t ∈ Tk with πṖln(t) = p ∈ Ṗln, πṖmn(t) = q ∈ Ṗmn, πln(p) = u ∈ Uln,
πmn(q) = v ∈ Vmn and gln(p) = hmn(q) = w ∈ Wn then the fibre of (11.49) at

t is ĝln|p ⊕−ĥmn|q : Dl|u ⊕ Em|v → Fn|w. So Definition 11.41(ii) implies that
(11.49) is surjective. Define Ck → Tk to be the kernel of (11.49), as a vector
subbundle of (πln ◦ πṖln)∗(Dl)⊕ (πmn ◦ πṖmn)∗(Em) with

rankCk = rankDl + rankEm − rankFn. (11.50)

Definition 6.2(d) for gln,hmn says that ĝln is (Bl ×∆n)-equivariant and ĥln
is (Γm×∆n)-equivariant. Including the trivial actions of Γm on Dl, Fn, and of Bl
on Em, Fn, means that ĝln, ĥmn are equivariant under Ak = Bl × Γm ×∆n. The
pullbacks by πṖln , πṖmn are also Ak-equivariant, as πṖln , πṖmn are. So (11.49) is
equivariant under the natural actions of Ak, and thus Ck has a natural Ak-action
by restriction from the Ak-action on (πln ◦ πṖln)∗(Dl)⊕ (πmn ◦ πṖmn)∗(Em).

Write πDl : Ck → (πln ◦ πṖln)∗(Dl), πEm : Ck → (πmn ◦ πṖmn)∗(Em) for the
projections. Then as Ck is the kernel of (11.49) we have

π∗
Ṗln

(ĝln) ◦ πDl = π∗
Ṗmn

(ĥmn) ◦ πEm : Ck −→ (gln ◦ πṖln)∗(Fn). (11.51)

In sections of the left hand side of (11.49) over Tk, we have(
π∗
Ṗln

(ĝln)⊕−π∗
Ṗmn

(ĥmn)
)(

(πln ◦ πṖln)∗(rl)⊕ (πmn ◦ πṖmn)∗(sm)
)

= π∗
Ṗln
◦ ĝln ◦ π∗ln(rl)− π∗Ṗmn ◦ ĥmn ◦ π

∗
mn(sm)

= π∗
Ṗln
◦ g∗ln(tn)− π∗

Ṗmn
◦ h∗mn(tn) = 0,

as ĝln(π∗ln(rl)) = g∗ln(tn), ĥmn(π∗mn(sm)) = h∗mn(tn), and gln◦πṖln = hmn◦πṖmn .
Thus (πln ◦ πṖln)∗(rl)⊕ (πmn ◦ πṖmn)∗(sm) lies in the kernel of (11.49), so it is
a section of Ck. Write qk ∈ Γ∞(Ck) for this section. Then

πDl(qk) = (πln ◦ πṖln)∗(rl) and πEm(qk) = (πmn ◦ πṖmn)∗(sm). (11.52)
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Also qk is Ak-equivariant, as (πln ◦ πṖln)∗(rl) and (πmn ◦ πṖmn)∗(sm) are.
Then (Tk, Ck,Ak, qk) is an object in GK̇ND. By (11.48), (11.50) we have

vdim(Tk, Ck,Ak, qk) = vdim(Ul, Dl,Bl, rl)

+ vdim(Vm, Em,Γm, sm)− vdim(Wn, Fn,∆n, tn).

Define Pkl = Tk×Bl and Pkm = Tk×Γm, as objects in Ṁan. Define smooth
actions of Ak × Bl on Pkl, and of Ak × Γm on Pkm, at the level of points by

((β, γ, δ), β′) : (t, β′′) 7−→ ((β, γ, δ) · t, β′β′′β−1),

((β, γ, δ), γ′) : (t, γ′′) 7−→ ((β, γ, δ) · t, γ′γ′′γ−1).

Define morphisms πkl = πTk : Pkl = Tk × Bl → Tk and πkm = πTk : Pkm =
Tk × Γm → Tk in Ṁan. Then πkl is an Ak-equivariant principal Bl-bundle over
Tkl = Tk, and πkm an Ak-equivariant principal Γm-bundle over Tkm = Tk.

Define morphisms ekl : Pkl → Ul and fkm : Pkm → Vm in Ṁan by

ekl(t, β) = β · πln ◦ πṖln(t), fkm(t, γ) = γ · πlm ◦ πṖlm(t),

that is, ekl|Tk×{β} = β · (πln ◦ πṖln) and f̂km|Tk×{γ} = γ · (πlm ◦ πṖlm) for
β ∈ Bl and γ ∈ Γm. Then ekl is Ak-invariant and Bl-equivariant, and fkm is
Ak-invariant and Γm-equivariant. Also e◦ϕ̄k◦πkl = χ̄l◦ekl on π−1

kl (q−1
k (0)) ⊆ Pkl

and f ◦ ϕ̄k ◦ πkm = ψ̄m ◦ fkm on π−1
km(q−1

k (0)) ⊆ Pkm. And ekl, fkm are D, since

πṖln , πṖlm are as (11.47) is a fibre product in ṀanD, and β · πln, γ · πln are
étale.

Define morphisms êkl :π
∗
kl(Ck)→e∗kl(Dl) and f̂km :π∗km(Ck)→f∗km(Em) by

êkl|Tk×{β} = (πln ◦ πṖln)∗(β♥) ◦ πDl , f̂km|Tk×{γ} = (πlm ◦ πṖlm)∗(γ♥) ◦ πEm

for all β ∈ Bl and γ ∈ Γm, where β♥ : Dl → β∗(Dl) is the isomorphism from
the lift of the Bl-action on Ul to Dl, with β∗ the pullback by β · : Ul → Ul,
and similarly for γ♥. Then êkl is (Ak × Bl)-equivariant, and f̂km is (Ak × Γm)-
equivariant. We have

êkl(π
∗
kl(qk))|Tk×{β} = (πln ◦ πṖln)∗(β♥) ◦ πDl(π∗kl(qk))

= (πln ◦ πṖln)∗(β♥) ◦ (πln ◦ πṖln)∗(rl) = (πln ◦ πṖln)∗(β♥(rl))

= (πln ◦ πṖln)∗(β∗(rl)) = e∗kl(rl)|Tk×{β},

using (11.52) in the second step and β♥(rl) = β∗(rl) as rl is Bl-equivariant in
the fourth. As this holds for all β ∈ Bl we see that êkl(π

∗
kl(qk)) = e∗kl(rl), and

similarly f̂km(π∗km(qk)) = f∗km(sm).

Set ekl = (Pkl, πkl, ekl, êkl) and fkm = (Pkm, πkm, fkm, f̂km). Then ekl :
(Tk, Ck,Ak, qk)→ (Ul, Dl,Bl, rl) and fkm : (Tk, Ck,Ak, qk)→ (Vm, Em,Γm, sm)
are 1-morphisms in GK̇ND, as we have verified Definition 6.2(a)–(e) for ekl,fkm
above, and ekl, fkm are D.

112



Form the compositions gln ◦ ekl,hmn ◦ fkn : (Tk, Ck,Ak, qk)→ (Wn, Fn,∆n,
tn) using Definition 6.5, where we write

gln ◦ ekl = (Pkln, πkln, akln, âkln), hmn ◦ fkm = (Pkmn, πkmn, bkmn, b̂kmn).

Then by Definition 6.5 we have

Pkln =
(
Pkl ×ekl,Ul,πln Pln

)
/Bl =

(
(Tk × Bl)×ekl,Ul,πln Pln

)
/Bl.

Define a morphism Φkln : Tk ×∆n → Pkln in Ṁan at the level of points by

Φkln(t, δ) =
(
(t, 1), δ · πṖln(t)

)
Bl.

We claim Φkln is a diffeomorphism. To see this, first note that the quotient
Bl-action acts freely on the Bl factor in Tk × Bl, so we can restrict to Tk × {1}
and omit the quotient, giving Pkln ∼= Tk ×πln◦πṖln ,Ul,πln Pln. Then observe

that if (t, p) ∈ Tk ×Ul Pln then πln[πṖln(t)] = πln[u], but πln : Pln → Ul is a
principal ∆n-bundle, so there exists a unique δ ∈ ∆n with p = δ · πṖln(t), and
therefore Tk ×∆n

∼= Tk ×Ul Pln.
If we identify Pkln = Tk ×∆n using Φkln, then we find from Definition 6.5

that Ak ×∆n acts on Pkln by

((β, γ, δ), δ′) : (t, δ′′) 7−→ ((β, γ, δ) · t, δ′δ′′δ−1), (11.53)

and πkln : Pkln → Tk, akln : Pkln →Wn, âkln : π∗kln(Ck)→ a∗kln(Fn) act by

πkln : (t, δ) 7−→ t, akln : (t, δ) 7−→ δ · gln ◦ πṖln(t),

âkln|(t,δ) = ĝln|δ·πṖln (t) ◦ πDl |t = δ♥|gln◦πṖln (t) ◦ ĝln|πṖln (t) ◦ πDl |t.

Similarly, there is a natural diffeomorphism Φkmn : Tk ×∆n → Pkmn, and if
we use it to identify Pkmn = Tk×∆n then Ak×∆n acts on Pkmn as in (11.53), and

πkmn : Pkmn → Tk, bkmn : Pkmn →Wn, b̂kmn : π∗kmn(Ck)→ b∗kmn(Fn) act by

πkmn : (t, δ) 7−→ t, bkmn : (t, δ) 7−→ δ · hmn ◦ πṖmn(t),

b̂kmn|(t,δ) = δ♥|hmn◦πṖmn (t) ◦ ĥmn|πṖmn (t) ◦ πEm |t.

Since gln ◦ πṖln = hmn ◦ πṖmn by (11.47), and (11.51) holds, we see that
these identifications Pkln = Tk × ∆n = Pkmn are Ak × ∆n-equivariant and
identify πkln, akln, âkln with πkmn, bkmn, b̂kmn. That is, we have found a strict
isomorphism between the 1-morphisms gln ◦ ekl,hmn ◦ fkn. It follows that

ηklmn = [Pkln,Φkmn ◦ Φ−1
kln, 0] : gln ◦ ekl =⇒ hmn ◦ fkn

is a 2-morphism in GK̇ND, and we have a 2-commutative diagram in GK̇ND:

(Tk, Ck,Ak, qk)
IQ

ηklmn

fkm

//

ekl
��

(Vm, Em,Γm, sm)

hmn
��

(Ul, Dl,Bl, rl)
gln // (Wn, Fn,∆n, tn).

(11.54)
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If gln,hmn are transverse, not just w-transverse, then (11.49) is an isomor-
phism, not just surjective, so Ck is the zero vector bundle, as it is the kernel of
(11.49). Thus (Tk, Ck,Ak, qk, ) is a quotient orbifold [Tk/Ak].

Theorem 11.43. In Definition 11.42, equation (11.54) is 2-Cartesian in both
GK̇ND and GK̇NE in the sense of Definition A.11, so that (Tk, Ck,Ak, qk) is
a fibre product in the 2-categories GK̇ND,GK̇NE , as in (11.46).

The proof of Theorem 11.43 is the orbifold analogue of the proof of Theorem
11.17 in §11.8, and we leave it as a (long and rather dull) exercise for the reader.

11.5.3 (W-)transversality and fibre products in K̇urD

Here are the analogues of Definition 11.18 and Theorem 11.19.

Definition 11.44. Let g : X → Z, h : Y → Z be 1-morphisms in K̇urD. We
call g,h or w-transverse (or transverse), if whenever x ∈ X and y ∈ Y with
g(x) = h(y) = z in Z, there exist Kuranishi neighbourhoods (Ul, Dl,Bl, rl, χl),
(Vm, Em,Γm, sm, ψm), (Wn, Fn,∆n, tn, ωn) on X,Y ,Z as in §6.4 with x ∈
Imχl ⊆ g−1(Imωn), y ∈ Imψm ⊆ h−1(Imωn) and z ∈ Imωn, and 1-morphisms
gln : (Ul, Dl,Bl, rl, χl) → (Wn, Fn,∆n, tn, ωn), hmn : (Vm, Em,Γm, sm, ψm) →
(Wn, Fn,∆n, tn, ωn) over (Imχl, g) and (Imψm,h), as in Definition 6.44, such
that gln,hmn are w-transverse (or transverse), as in Definition 11.42.

We call g a w-submersion (or a submersion), if whenever x ∈ X with
g(x) = z ∈ Z, there exist Kuranishi neighbourhoods (Ul, Dl,Bl, rl, χl), (Wn,
Fn,∆n, tn, ωn) on X,Z as in §6.4 with x ∈ Imχl ⊆ g−1(Imωn), z ∈ Imωn, and
a 1-morphism gln : (Ul, Dl,Bl, rl, χl)→ (Wn, Fn,∆n, tn, ωn) over (Imχl, g), as
in Definition 6.44, such that gln is a w-submersion (or a submersion, respectively),
as in Definition 11.42.

Suppose g : X → Z is a w-submersion, and h : Y → Z is any D 1-
morphism in K̇ur. Let x ∈ X and y ∈ Y with g(x) = h(y) = z in Z. As g
is a w-submersion we can choose gln : (Ul, Dl,Bl, rl, χl)→ (Wn, Fn,∆n, tn, ωn)
with x ∈ Imχl ⊆ g−1(Imωn), z ∈ Imωn, and gln a w-submersion. Choose
any Kuranishi neighbourhood (Vm, Em,Γm, sm, ψm) on Y with y ∈ Imψm ⊆
h−1(Imωn). Then Theorem 6.45(b) gives a D 1-morphism hmn : (Vm, Em,Γm,
sm, ψm)→ (Wn, Fn,∆n, tn, ωn) over (Imψm,h), and gln,hmn are w-transverse
as gln is a w-submersion. Hence g,h are w-transverse.

Similarly, suppose g : X → Z is a submersion, and h : Y → Z is a D
1-morphism in K̇ur such that Y is an orbifold as in Proposition 6.64, that is,

Y ' F K̇ur
Ȯrb

(Y) for Y ∈ Ȯrb. Then for x ∈X and y ∈ Y with g(x) = h(y) = z
in Z we can choose gln,hmn as above with gln a submersion and Em = 0, so
that gln,hmn are transverse. Hence g,h are transverse.

Theorem 11.45. Let g : X → Z, h : Y → Z be w-transverse 1-morphisms in
K̇urD. Then there exists a fibre product W = Xg,Z,hY in K̇urD, as in §A.4,
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with vdimW = vdimX + vdimY − vdimZ, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.55)

Equation (11.55) is also 2-Cartesian in K̇urE , so W is also a fibre product
Xg,Z,hY in K̇urE. Furthermore:

(a) If g,h are transverse then W is an orbifold, as in Proposition 6.64. In
particular, if g is a submersion and Y is an orbifold, then W is an orbifold.

(b) Suppose (Ul, Dl,Bl, rl, χl), (Vm, Em,Γm, sm, ψm), (Wn, Fn,∆n, tn, ωn) are
Kuranishi neighbourhoods on X,Y ,Z, as in §6.4, with Imχl ⊆ g−1(Imωn)
and Imψm ⊆ h−1(Imωn), and gln : (Ul, Dl,Bl, rl, χl) → (Wn, Fn,∆n, tn, ωn),
hmn : (Vm, Em,Γm, sm, ψm)→ (Wn, Fn,∆n, tn, ωn) are 1-morphisms of Kuran-
ishi neighbourhoods on X,Y ,Z over (Imχl, g) and (Imψm,h), as in §6.4, such
that gln,hmn are w-transverse, as in §11.5.2. Then there exist a Kuranishi neigh-
bourhood (Tk, Ck,Ak, qk, ϕk) on W with Imϕk = e−1(Imχl)∩f−1(Imψm) ⊆W,
and 1-morphisms ekl : (Tk, Ck,Ak, qk, ϕk) → (Ul, Dl,Bl, rl, χl) over (Imϕk, e)
and fkm : (Tk, Ck,Ak, qk, ϕk)→ (Vm, Em,Γm, sm, ψm) over (Imϕk,f), so that
Theorem 6.45(c) gives a unique 2-morphism ηklmn : gln ◦ ekl ⇒ hmn ◦ fkm over
(Imϕk, g ◦ e) constructed from η : g ◦ e ⇒ h ◦ f , such that Tk, Ck,Ak, qk and
ekl,fkm,ηklmn are constructed from (Ul, Dl,Bl, rl), (Vm, Em,Γm, sm), (Wn, Fn,∆n, tn)
and gln,hmn exactly as in Definition 11.42.

(c) If Ṁan satisfies Assumption 11.3 then just as a set, the underlying topological
space W in W = (W,H) may be written

W =
{

(x, y, C) : x ∈ X, y ∈ Y, C ∈ Gxg(GxX)\GzZ/Gyh(GyY )
}
, (11.56)

where e,f map e : (x, y, C) 7→ x, f : (x, y, C) 7→ y. The isotropy groups satisfy

G(x,y,C)W ∼=
{

(α, β) ∈ GxX ×GyY : Gxg(α) γ Gyh(β−1) = γ
}

for fixed γ ∈ C ⊆ GzZ.

(d) If Ṁan satisfies Assumption 11.4(a) and (11.55) is a 2-Cartesian square in
K̇urD with g a w-submersion (or a submersion) then f is a w-submersion (or
a submersion, respectively).

(e) If Ṁan satisfies Assumption 10.1, with tangent spaces TxX, and satisfies
Assumption 11.5, then using the notation of §10.2, whenever (11.55) is 2-
Cartesian in K̇urD with g,h w-transverse and w ∈ W with e(w) = x in
X, f(w) = y in Y and g(x) = h(y) = z in Z, for some possible choices of
Twe, Twf , Txg, Tyh, Owe, Owf , Oxg, Oyh in Definition 10.28 depending on w,
the following is an exact sequence:

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW.
Owe⊕Owfoo

(11.57)
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Here δg,hw : TzZ → OwW is a natural linear map defined as a connecting
morphism, as in Definition 10.69.

(f) If Ṁan satisfies Assumption 10.19, with quasi-tangent spaces QxX in a
category Q, and satisfies Assumption 11.6, then whenever (11.55) is 2-Cartesian
in K̇urD with g,h w-transverse and w ∈W with e(w) = x in X, f(w) = y in
Y and g(x) = h(y) = z in Z, the following is Cartesian in Q:

QwW
Qwf

//

Qwe��

QyY

Qyh ��
QxX

Qxg // QzZ.

(g) If Ṁanc satisfies Assumption 3.22 in §3.4, so that we have a corner functor
C : Ṁanc → Ṁ̌anc which extends to C : K̇urc → K̇̌urc as in §6.3, and
Assumption 11.1 holds for Ṁanc, and Assumption 11.7 holds, then whenever
(11.55) is 2-Cartesian in K̇urD with g,h w-transverse (or transverse), then the
following is 2-Cartesian in K̇̌urc

D and K̇̌urc
E , with C(g), C(h) w-transverse (or

transverse, respectively):

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Hence for i > 0 we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)
.

When i = 1, this computes the boundary ∂W. In particular, if ∂Z = ∅, so that
Cl(Z) = ∅ for all l > 0 by Assumption 3.22(f) with l = 1, we have

∂W '
(
∂X ×g◦iX ,Z,h Y

)
q
(
X ×g,Z,h◦iY ∂Y

)
.

Also, if g is a w-submersion (or a submersion), then C(g) is a w-submersion
(or a submersion, respectively).

(h) If Ṁan satisfies Assumption 11.8, and g : X → Z is a w-submersion
in K̇urD, and h : Y → Z is any 1-morphism in K̇urE (not necessarily in
K̇urD), then a fibre product W = X ×g,Z,h Y exists in K̇urE , with dimW =

dimX+dimY−dimZ, in a 2-Cartesian square (11.55) in K̇urE. The analogues
of (a)–(d) and (g) hold for these fibre products.

The proof of Theorem 11.45 is the orbifold analogue of the proof of Theorem
11.19 in §11.9, and we again leave it as an exercise for the reader. Most of the
proof requires only cosmetic changes. For the construction of the fibre product
W we use Theorem 11.43 rather than Theorem 11.17, and we must include extra
2-morphisms α∗,∗,∗, β∗, γ∗ from §6.1 as Kuranishi neighbourhoods form a weak
rather than a strict 2-category, but otherwise the proof is the same.
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Remark 11.46. Theorem 11.45(c) should be compared with Theorem 11.19(c)
and Theorem 11.39. In Theorem 11.45(c) we do not describe the topological
space W of W = X ×g,Z,h Y (as we did in Theorem 11.19(c)), but only the
underlying set, which is the same as for orbifold fibre products in Theorem 11.39.
As in Remark 11.40(b), the topological space does not have an easy description.

A good way to think about this is that just as an m-Kuranishi space W has
an underlying topological space W, so a Kuranishi space W has an underlying
Deligne–Mumford topological stack W, a kind of orbifold version of topological
spaces, as in Noohi [58]. Such stacks form a 2-category TopDM, and there is a
weak 2-functor FTopDM

K̇ur
: K̇ur→ TopDM mapping W 7→W .

If Ṁan satisfies Assumption 11.3, so that FTop

Ṁan
: Ṁan → Top takes

transverse fibre products in Man to fibre products in Top, then the 2-functor
FTopDM

K̇ur
: K̇ur → TopDM takes w-transverse fibre products in K̇ur to fibre

products in TopDM. So in Theorem 11.45(c) we could say that W = X×g,Z,h Y
is a fibre product of topological stacks.

All of §11.2.3–§11.2.5 can now be generalized to Kuranishi spaces, mostly with
only cosmetic changes. Here is the analogue of Theorem 11.22. The important
difference is that as for transversality for orbifolds in Definition 11.38, we must
include the action of γ ∈ GzZ on Qyh : QyY → QzZ in ‘condition T ’, and on
Oyh : OyY → OzZ and Tyh : TyY → TzZ in (11.58)–(11.59). This appears

in the proof when we show the fibre product (11.47) is transverse in Ṁan,
as several points in (11.47) can lie over each (x, y, z) for x ∈ X, y ∈ Y with
g(x) = h(y) = z in Z, and the transversality conditions at these points depend
on γ ∈ GzZ.

Theorem 11.47. Let Ṁanc satisfy Assumption 3.22, so that we have a corner
functor C : Ṁanc → Ṁ̌anc, and suppose Assumption 11.9 holds for Ṁanc.
This requires that Assumption 10.1 holds, giving a notion of tangent spaces TxX
for X in Ṁanc, and that Assumption 10.19 holds, giving a notion of quasi-
tangent spaces QxX in a category Q for X in Ṁanc, and that Assumption 11.1
holds, giving discrete properties D,E of morphisms in Ṁanc and notions of
transverse morphisms g, h and submersions g in Ṁanc

D.

As in §6.3, §10.2 and §10.3, we define a 2-category K̇urc, with a corner
2-functor C : K̇urc → K̇̌urc, and notions of tangent, obstruction and quasi-
tangent spaces TxX, OxX, QxX for X in K̇urc.

Now Assumption 11.9(a),(d) involve a ‘condition T ’ on morphisms g : X →
Z, h : Y → Z in Ṁanc

D and points x ∈ X, y ∈ Y with g(x) = h(y) = z ∈ Z,
and a ‘condition S’ on morphisms g : X → Z in Ṁanc

D and points x ∈ X with
g(x) = z ∈ Z. These conditions depend on the corner morphisms C(g), C(h)
and on quasi-tangent maps Qxg,Qyh. Then:

(a) Let g : X → Z, h : Y → Z be 1-morphisms in K̇urc
D. Then g,h are

w-transverse if and only if for all x ∈X, y ∈ Y with g(x) = h(y) = z in Z
and all γ ∈ GzZ, condition T holds for g,h, x, y, z, γ using the morphisms
Qxg : QxX → QzZ and γ · Qxh : QyY → QzZ in Q in Assumption
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11.9(a)(i), where GzZ acts on QzZ, and the following is surjective:

Oxg ⊕ (γ ·Oyh) : OxX ⊕OyY −→ OzZ. (11.58)

If Assumption 10.9 also holds for tangent spaces TxX in Ṁanc then g,h
are transverse if and only if for all x ∈X and y ∈ Y with g(x) = h(y) = z
in Z, condition T holds for g,h, x, y, z, γ as above, equation (11.58) is an
isomorphism, and the following linear map is surjective:

Txg ⊕ (γ · Tyh) : TxX ⊕ TyY −→ TzZ. (11.59)

(b) Let g : X → Z be a 1-morphism in K̇urc
D. Then g is a w-submersion if

and only if for all x ∈X with g(x) = z in Z, condition S holds for g, x, z,
and the following linear map is surjective:

Oxg : OxX −→ OzZ. (11.60)

If Assumption 10.9 also holds then g is a submersion if and only if for all
x ∈X with g(x) = z in Z, condition S holds for g, x, z, equation (11.60)
is an isomorphism, and the following is surjective:

Txg : TxX −→ TzZ.

For the analogue of Theorem 11.25 we require X,Y ,Z to be locally orientable
Kuranishi spaces, as in §10.7.6, so that the canonical bundles KX ,KY ,KZ
are defined as in Theorem 10.83. Then the w-transverse fibre product W =
X ×g,Z,h Y in K̇urD is also locally orientable, so that (11.24) makes sense.

Remark 11.48. We can relate Theorem 11.45(c),(e) and Theorem 11.47(a) as
follows. Let Ṁan satisfy all the relevant assumptions, consider a w-transverse
fibre product W = X ×g,Z,h Y in K̇ur, and suppose x ∈ X and y ∈ Y with
g(x) = h(y) = z ∈ Z. Defining the morphisms Gxg : GxX → GzZ and
Gyh : GyY → GzZ in §6.5 requires arbitrary choices. The same arbitrary
choices are involved in the description (11.56) of W as a set, and in the linear
maps Txg, Oxg, Txh, Oxh from §10.2.3 involved in (11.57)–(11.59).

If we take (11.56)–(11.59) all to be defined using the same arbitrary choices
for Gxg, Gyh, and we write w ∈W as (x, y, C) as in (11.56) with γ ∈ C ⊆ GzZ,
then we may rewrite (11.57) as the exact sequence:

0 // T(x,y,C)W // TxX⊕TyY
Txg⊕(γ·Tyh)

// TzZ

��
0 OzZoo OxX⊕OyY

Oxg⊕(γ·Oyh)oo O(x,y,C)W.oo
(11.61)

Thus we see that:
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• We need (11.61) to be exact for all C ∈ Gxg(GxX)\GzZ/Gyh(GyY ), and
hence for all γ ∈ GzZ. Thus it is necessary for Oxg ⊕ (γ · Oyh) to be
surjective for all γ ∈ GzZ for w-transverse g,h, as in Theorem 11.47(a).

• If g,h are transverse then W is a manifold, and O(x,y,C)W = 0 for
all (x, y, C). Thus by (11.61) it is necessary that Oxg ⊕ (γ · Oyh) is an
isomorphism and Txg⊕(γ ·Tyh) is surjective for all γ ∈ GzZ for transverse
g,h, as in Theorem 11.47(a).

11.6 Fibre products in Kur,Kurcst,Kurgc and Kurc

We now generalize §11.3 to Kuranishi spaces, using the material of §11.5.

11.6.1 Fibre products in Kur

As in §11.3.1, take Ṁan to be the category of classical manifolds Man, with
corresponding 2-category of Kuranishi spaces Kur as in Definition 6.29. We
will use tangent spaces TxX for X in Kur defined using ordinary tangent
spaces TvV in Man. Definition 2.21 in §2.5.1 defines transverse morphisms and
submersions in Man. As in Example 11.10, these satisfy Assumptions 11.1,
11.3–11.5 and 11.9. So Definition 11.44 defines (w-)transverse 1-morphisms and
(w-)submersions in Kur. Here is the analogue of Theorem 11.28:

Theorem 11.49. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
Kur. Then g,h are w-transverse if and only if for all x ∈ X, y ∈ Y with
g(x) = h(y) = z in Z and all γ ∈ GzZ, the following is surjective:

Oxg ⊕ (γ ·Oyh) : OxX ⊕OyY −→ OzZ. (11.62)

This is automatic if Z is an orbifold. Also g,h are transverse if and only if for
all x, y, z, γ, equation (11.62) is an isomorphism, and the following is surjective:

Txg ⊕ (γ · Tyh) : TxX ⊕ TyY −→ TzZ.

(b) If g : X → Z and h : Y → Z are w-transverse in Kur then a fibre product
W = X ×g,Z,h Y exists in Kur, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.63)

It has vdimW = vdimX + vdimY − vdimZ. Just as a set, the underlying
topological space W in W = (W,H) may be written

W =
{

(x, y, C) : x ∈ X, y ∈ Y, C ∈ Gxg(GxX)\GzZ/Gyh(GyY )
}
,
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where e,f map e : (x, y, C) 7→ x, f : (x, y, C) 7→ y. The isotropy groups satisfy

G(x,y,C)W ∼=
{

(α, β) ∈ GxX ×GyY : Gxg(α) γ Gyh(β−1) = γ
}

for fixed γ ∈ C ⊆ GzZ. If w ∈ W with e(w) = x in X, f(w) = y in Y
and g(x) = h(y) = z in Z, for some possible choices of Twe, Twf , . . . , Oyh in
Definition 10.28 depending on w, the following is an exact sequence:

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW.
Owe⊕Owfoo

If g,h are transverse then W is an orbifold.

(c) In part (b), using the theory of canonical bundles and orientations from
§10.7.6, suppose X,Y ,Z are locally orientable. Then W is also locally orientable,
and there is a natural isomorphism of topological line bundles on W :

ΥX,Y ,Z : KW −→ e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗. (11.64)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.64) is orientation-preserving. Proposition
11.26 holds for these fibre product orientations.

(d) Let g : X → Z be a 1-morphism in Kur. Then g is a w-submersion if and
only if Oxg : OxX → OzZ is surjective for all x ∈X with g(x) = z in Z. Also
g is a submersion if and only if Oxg : OxX → OzZ is an isomorphism and
Txg : TxX → TzZ is surjective for all x, z.

(e) If g : X → Z and h : Y → Z are 1-morphisms in Kur with g a w-
submersion then g,h are w-transverse. If g is a submersion and Y is an
orbifold then g,h are transverse.

(f) If (11.63) is 2-Cartesian in Kur with g a w-submersion (or a submersion)
then f is a w-submersion (or a submersion).

(g) Compositions and products of (w-)submersions in Kur are (w-)submersions.
Projections πX : X × Y →X in Kur are w-submersions.

11.6.2 Fibre products in Kurcst and Kurc

In §2.5.2, working in the subcategory Manc
st ⊂ Manc from §2.1, we defined

s-transverse and t-transverse morphisms and s-submersions. Example 11.11
explained how make these satisfy Assumptions 11.1 and x11.3–11.9.

The next theorem is the analogue of Theorem 11.32. Here Kurc
st ⊂ Kurc

are the 2-categories of Kuranishi spaces corresponding to Manc
st ⊂Manc as in

Definition 6.29, the corner functors C,C ′ : Kurc
st → Ǩurc

st and C,C ′ : Kurc →
Ǩurc are as in (6.36), (stratum) tangent spaces TxX, T̃xX are as in Example
10.25(i),(iii), and stratum normal spaces ÑxX are as in Example 10.32(a).

We use the notation ws-transverse, wt-transverse, and ws-submersions for
the notions of w-transverse and w-submersion in Kurc

st corresponding to s- and
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t-transverse morphisms and s-submersions, and s-transverse, t-transverse, and
s-submersions for the corresponding notions of transverse and submersion.

Theorem 11.50. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
Kurc

st. Then g,h are ws-transverse if and only if for all x ∈ X, y ∈ Y with
g(x) = h(y) = z in Z and all γ ∈ GzZ, the following linear maps are surjective:

Õxg ⊕ (γ · Õyh) : ÕxX ⊕ ÕyY −→ ÕzZ, (11.65)

Ñxg ⊕ (γ · Ñyh) : ÑxX ⊕ ÑyY −→ ÑzZ. (11.66)

This is automatic if Z is a classical orbifold. Also g,h are s-transverse if and
only if for all x, y, z, γ, equation (11.65) is an isomorphism, and (11.66) and the
following are surjective:

T̃xg ⊕ (γ · T̃yh) : T̃xX ⊕ T̃yY −→ T̃zZ.

Furthermore, g,h are wt-transverse (or t-transverse) if and only if they are
ws-transverse (or s-transverse), and for all x, y, z as above, whenever x ∈ Cj(X)
and y ∈ Ck(Y ) with Πj(x) = x, Πk(y) = y, and C(g)x = C(h)y = z in
Cl(Z), we have j + k > l, and there is exactly one triple (x,y, z) with j + k = l.

(b) If g : X → Z and h : Y → Z are ws-transverse in Kurc
st then a fibre

product W = X ×g,Z,h Y exists in Kurc
st, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.67)

It has vdimW = vdimX + vdimY − vdimZ. Just as a set, the underlying
topological space W in W = (W,H) may be written

W =
{

(x, y, C) : x ∈ X, y ∈ Y, C ∈ Gxg(GxX)\GzZ/Gyh(GyY )
}
, (11.68)

where e,f map e : (x, y, C) 7→ x, f : (x, y, C) 7→ y. The isotropy groups satisfy

G(x,y,C)W ∼=
{

(α, β) ∈ GxX ×GyY : Gxg(α) γ Gyh(β−1) = γ
}

for fixed γ ∈ C ⊆ GzZ. Equation (11.67) is also 2-Cartesian in Kurc.
If w ∈ W with e(w) = x in X, f(w) = y in Y and g(x) = h(y) = z in

Z, for some possible choices of Twe, . . . , Oyh, T̃we, . . . , Õyh, Ñwe, . . . , Ñyh in
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Definition 10.28 and §10.3.3 depending on w, the following sequences are exact:

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW,
Owe⊕Owfoo

0 // T̃wW
T̃we⊕T̃wf

// T̃xX ⊕ T̃yY
T̃xg⊕−T̃yh

// T̃zZ

δ̃g,hw ��
0 ÕzZoo ÕxX ⊕ ÕyY

Õxg⊕−Õyhoo ÕwW,
Õwe⊕Õwfoo

0 // ÑwW
Ñwe⊕Ñwf // ÑxX ⊕ ÑyY

Ñxg⊕−Ñyh // ÑzZ // 0.

If g,h are s-transverse then W is an orbifold.

(c) In part (b), if (11.67) is 2-Cartesian in Kurc
st with g,h wt-transverse (or

t-transverse), then the following is 2-Cartesian in Ǩurc
st and Ǩurc, with C(g),

C(h) wt-transverse (or t-transverse, respectively):

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Hence we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)

for i > 0. When i = 1, this computes the boundary ∂W.
Also, if g is a ws-submersion (or an s-submersion), then C(g) is a ws-

submersion (or an s-submersion, respectively).
The analogue of the above also holds for C ′ : Kurc

st → Ǩurc
st.

(d) In part (b), using the theory of canonical bundles and orientations from
§10.7.6, suppose X,Y ,Z are locally orientable. Then W is also locally orientable,
and there is a natural isomorphism of topological line bundles on W :

ΥX,Y ,Z : KW −→ e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗. (11.69)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.69) is orientation-preserving. Propositions
11.26 and 11.27 hold for these fibre product orientations.

(e) Let g : X → Z be a 1-morphism in Kurc
st. Then g is a ws-submersion if and

only if Õxg : ÕxX → ÕzZ and Ñxg : ÑxX → ÑzZ are surjective for all x ∈X
with g(x) = z in Z. Also g is an s-submersion if and only if Õxg : ÕxX → ÕzZ
is an isomorphism and T̃xg : T̃xX → T̃zZ, Ñxg : ÑxX → ÑzZ are surjective
for all x, z.
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(f) If g : X → Z and h : Y → Z are 1-morphisms in Kurc
st with g a

ws-submersion then g,h are ws-transverse and wt-transverse. If g is an s-
submersion and Y is an orbifold then g,h are s-transverse and t-transverse.

(g) If (11.67) is 2-Cartesian in Kurc
st with g a ws-submersion (or an s-submer-

sion) then f is a ws-submersion (or an s-submersion).

(h) Compositions and products of ws- or s-submersions in Kurc
st are ws- or

s-submersions. Projections πX : X × Y →X in Kurc
st are ws-submersions.

(i) If g : X → Z is a ws-submersion in Kurc
st, and h : Y → Z is any

1-morphism in Kurc (not necessarily in Kurc
st), then a fibre product W =

X ×g,Z,h Y exists in Kurc, with dimW = dimX + dimY − dimZ, in a 2-
Cartesian square (11.67) in Kurc. It has topological space W given as a set
by (11.68). The analogues of (c),(g) hold for these fibre products. If g is an
s-submersion and Y is an orbifold then W is an orbifold.

11.6.3 Fibre products in Kurgcin and Kurgc

In §2.5.3, working in Mangc
in ⊂ Mangc from §2.4.1, we defined b-transverse

and c-transverse morphisms and b-submersions, b-fibrations, and c-fibrations.
Example 11.12 explained how to fit these into the framework of Assumptions
11.1 and 11.3–11.9. The next theorem is the analogue of Theorem 11.34.

Here Kurgc
in ⊂ Kurgc are the 2-categories of Kuranishi spaces corresponding

to Mangc
in ⊂ Mangc as in Definition 6.29, the corner 2-functor C : Kurgc →

Ǩurgc is as in (6.36), and b-tangent spaces TxX are as in Example 10.25(ii).
We use the notation wb-transverse, wc-transverse, wb-submersions, wb-fibrations,
wc-fibrations for the weak versions of b-transverse, . . . , c-fibrations in Kurgc

in

from Definition 11.44, and b-transverse, c-transverse, b-submersions, b-fibrations,
and c-fibrations for the strong versions.

Theorem 11.51. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
Kurgc

in . Then g,h are wb-transverse if and only if for all x ∈ X, y ∈ Y with
g(x) = h(y) = z in Z and all γ ∈ GzZ, the following linear map is surjective:

bOxg ⊕ (γ · bOyh) : bOxX ⊕ bOyY −→ bOzZ. (11.70)

This is automatic if Z is an orbifold. Also g,h are b-transverse if and only if for
all x, y, z, γ, equation (11.70) is an isomorphism, and the following is surjective:

bTxg ⊕ (γ · bTyh) : bTxX ⊕ bTyY −→ bTzZ.

Furthermore, g,h are wc-transverse (or c-transverse) if and only if they are
wb-transverse (or b-transverse), and whenever x ∈ Cj(X) and y ∈ Ck(Y ) with
C(g)x = C(h)y = z in Cl(Z), we have either j + k > l, or j = k = l = 0.

(b) If g : X → Z and h : Y → Z are wb-transverse in Kurgc
in then a fibre

product W = X ×g,Z,h Y exists in Kurgc
in , in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.71)
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It has vdimW = vdimX + vdimY − vdimZ. If w ∈ W with e(w) = x in
X, f(w) = y in Y and g(x) = h(y) = z in Z, for some possible choices of
bTwe,

bTwf ,
bTxg,

bTyh,
bOwe,

bOwf ,
bOxg,

bOyh in Definition 10.28 depending
on w, the following sequence is exact:

0 // bTwW bTwe⊕bTwf
// bTxX ⊕ bTyY bTxg⊕−bTyh

// bTzZ
bδg,hw ��

0 bOzZoo bOxX ⊕ bOyY
bOxg⊕−bOyhoo bOwW.

bOwe⊕bOwfoo

If g,h are b-transverse then W is an orbifold.

(c) In (b), if g,h are wc-transverse then just as a set, the underlying topological
space W in W = (W,H) may be written

W =
{

(x, y, C) : x ∈ X, y ∈ Y, C ∈ Gxg(GxX)\GzZ/Gyh(GyY )
}
, (11.72)

where e,f map e : (x, y, C) 7→ x, f : (x, y, C) 7→ y. The isotropy groups satisfy

G(x,y,C)W ∼=
{

(α, β) ∈ GxX ×GyY : Gxg(α) γ Gyh(β−1) = γ
}

for fixed γ ∈ C ⊆ GzZ. Also (11.71) is 2-Cartesian in Kurgc, and the following
is 2-Cartesian in Ǩurgc

in and Ǩurgc, with C(g), C(h) wc-transverse:

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Hence we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)

for i > 0. When i = 1, this computes the boundary ∂W.
Also, if g is a wb-fibration, or b-fibration, or wc-fibration, or c-fibration,

then C(g) is a wb-fibration, . . . , or c-fibration, respectively.

(d) In part (b), using the theory of (b-)canonical bundles and orientations from
§10.7.6, suppose X,Y ,Z are locally orientable. Then W is also locally orientable,
and there is a natural isomorphism of topological line bundles on W :

bΥX,Y ,Z : bKW −→ e∗(bKX)⊗ f∗(bKY )⊗ (g ◦ e)∗(bKZ)∗. (11.73)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.73) is orientation-preserving. Propositions
11.26 and 11.27 hold for these fibre product orientations.

(e) Let g : X → Z be a 1-morphism in Kurgc
in . Then g is a wb-submersion if

and only if bOxg : bOxX → bOzZ is surjective for all x ∈ X with g(x) = z
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in Z. Also g is a b-submersion if and only if bOxg : bOxX → bOzZ is an
isomorphism and bTxg : bTxX → bTzZ is surjective for all x, z.

Furthermore g is a wb-fibration (or a b-fibration) if it is a wb-submersion (or
b-submersion) and whenever there are x, z in Cj(X), Cl(Z) with C(g)x = z, we
have j > l. And g is a wc-fibration (or a c-fibration) if it is a wb-fibration (or a
b-fibration), and whenever x ∈ X and z ∈ Cl(Z) with g(x) = Πl(z) = z ∈ Z,
then there is exactly one x ∈ Cl(X) with Πl(x) = x and C(g)x = z.

(f) If g : X → Z and h : Y → Z are 1-morphisms in Kurgc
in with g a

wb-submersion (or wb-fibration) then g,h are wb-transverse (or wc-transverse,
respectively). If g is a b-submersion (or b-fibration) and Y is an orbifold then
g,h are b-transverse (or c-transverse, respectively).

(g) If (11.71) is 2-Cartesian in Kurgc
in with g a wb-submersion, b-submersion,

wb-fibration, b-fibration, wc-fibration, or c-fibration, then f is a wb-submersion,
. . . , or c-fibration, respectively.

(h) Compositions and products of wb-submersions, b-submersions, wb-fibrations,
b-fibrations, wc-fibrations, and c-fibrations, in Kurgc

in are wb-submersions, . . . ,
c-fibrations. Projections πX : X × Y →X in Kurgc

in are wc-fibrations.

(i) If g : X → Z is a wc-fibration in Kurgc
in , and h : Y → Z is any 1-morphism

in Kurgc (not necessarily in Kurgc
in ), then a fibre product W = X ×g,Z,h Y

exists in Kurgc, with dimW = dimX+dimY −dimZ, in a 2-Cartesian square
(11.71) in Kurgc. It has topological space W given as a set by (11.72). The
analogues of (c),(g) hold for these fibre products. If g is a c-fibration and Y is
an orbifold then W is an orbifold.

11.6.4 Fibre products in Kurcin and Kurc

In §2.5.4, working in the subcategory Manc
in ⊂ Manc from §2.1, we defined

sb-transverse and sc-transverse morphisms. Example 11.13 explained how to
fit these into the framework of Assumptions 11.1 and 11.3–11.9, also using
s-submersions from §2.5.2. The next theorem is the analogue of Theorem 11.35.

Here Kurc
in ⊂ Kurc are the 2-categories of Kuranishi spaces corresponding

to Manc
in ⊂Manc as in Definition 6.29, the corner 2-functor C : Kurc → Ǩurc

is as in (6.36), b-tangent spaces bTxX are as in Example 10.25(ii), and monoids
M̃xX are as in Example 10.32(c). We use the notation wsb-transverse and
wsc-transverse for the notions of w-transverse in Kurc

in corresponding to sb-
and sc-transverse morphisms, and sb-transverse, sc-transverse for the notions of
transverse. Also ws-submersions and s-submersions are as in §11.6.2.

Theorem 11.52. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
Kurc

in. Then g,h are wsb-transverse if and only if for all x ∈ X, y ∈ Y with
g(x) = h(y) = z in Z and all γ ∈ GzZ, the following linear map is surjective:

bOxg ⊕ (γ · bOyh) : bOxX ⊕ bOyY −→ bOzZ, (11.74)

and we have an isomorphism of commutative monoids

M̃xX ×M̃xg,M̃zZ,(γ·M̃yh) M̃yY ∼= Nn for n > 0. (11.75)
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This is automatic if Z is a classical orbifold. Also g,h are sb-transverse if and
only if for all x, y, z, γ, equations (11.74)–(11.75) are isomorphisms, and the
following is surjective:

bTxg ⊕ (γ · bTyh) : bTxX ⊕ bTyY −→ bTzZ.

Furthermore, g,h are wsc-transverse (or sc-transverse) if and only if they
are wsb-transverse (or sb-transverse), and whenever x ∈ Cj(X) and y ∈ Ck(Y )
with C(g)x = C(h)y = z in Cl(Z), we have either j + k > l, or j = k = l = 0.

(b) If g : X → Z and h : Y → Z are wsb-transverse in Kurc
in then a fibre

product W = X ×g,Z,h Y exists in Kurc
in, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.76)

It has vdimW = vdimX + vdimY − vdimZ. If w ∈ W with e(w) = x in
X, f(w) = y in Y and g(x) = h(y) = z in Z, for some possible choices of
bTwe,

bTwf ,
bTxg,

bTyh,
bOwe,

bOwf ,
bOxg,

bOyh in Definition 10.28 depending
on w, the following sequence is exact:

0 // bTwW bTwe⊕bTwf
// bTxX ⊕ bTyY bTxg⊕−bTyh

// bTzZ
bδg,hw ��

0 bOzZoo bOxX ⊕ bOyY
bOxg⊕−bOyhoo bOwW.

bOwe⊕bOwfoo

If g,h are sb-transverse then W is an orbifold.

(c) In (b), if g,h are wsc-transverse then just as a set, the underlying topological
space W in W = (W,H) may be written

W =
{

(x, y, C) : x ∈ X, y ∈ Y, C ∈ Gxg(GxX)\GzZ/Gyh(GyY )
}
,

where e,f map e : (x, y, C) 7→ x, f : (x, y, C) 7→ y. The isotropy groups satisfy

G(x,y,C)W ∼=
{

(α, β) ∈ GxX ×GyY : Gxg(α) γ Gyh(β−1) = γ
}

for fixed γ ∈ C ⊆ GzZ. Also (11.76) is 2-Cartesian in Kurc, and the following
is 2-Cartesian in Ǩurc

in and Ǩurc, with C(g), C(h) wsc-transverse:

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Hence we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)
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for i > 0. When i = 1, this computes the boundary ∂W.
Also, if g is a ws-submersion (or an s-submersion), then C(g) is a ws-

submersion (or an s-submersion, respectively).

(d) In part (b), using the theory of (b-)canonical bundles and orientations from
§10.7.6, suppose X,Y ,Z are locally orientable. Then W is also locally orientable,
and there is a natural isomorphism of topological line bundles on W :

bΥX,Y ,Z : bKW −→ e∗(bKX)⊗ f∗(bKY )⊗ (g ◦ e)∗(bKZ)∗. (11.77)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the
fibre product orientation, such that (11.77) is orientation-preserving.

(e) Let g : X → Z be a 1-morphism in Kurc
in. Then g is a ws-submersion if

and only if bOxg : bOxX → bOzZ is surjective for all x ∈X with g(x) = z in
Z, and the monoid morphism M̃xg : M̃xX → M̃zZ is isomorphic to a projection
Nm+n → Nn. Also g is an s-submersion if and only if bOxg : bOxX → bOzZ is
an isomorphism, and bTxg : bTxX → bTzZ is surjective, and M̃xg is isomorphic
to a projection Nm+n → Nn, for all x, z.

(f) If g : X → Z and h : Y → Z are 1-morphisms in Kurgc
in with g a ws-

submersion then g,h are wsc-transverse. If g is an s-submersion and Y is an
orbifold then g,h are sc-transverse.

11.7 Proof of Proposition 11.14

11.7.1 The case of classical manifolds Man

First we prove the proposition for classical manifolds Man in Example 11.10. Let
g : X → Z, h : Y → Z be transverse morphisms in Man, with W = X ×g,Z,h Y
in a Cartesian square (11.1). Write ∆Z : Z → Z × Z for the diagonal map
∆Z : z 7→ (z, z). Then ∆Z(Z) is an embedded submanifold of Z×Z with normal
bundle νZ = T Z → Z in the exact sequence

0 // T Z id⊕id // T∆Z
(Z × Z)∼=T Z⊕T Z

id⊕−id // νZ =T Z // 0. (11.78)

Write points of the tangent bundle T Z as (z, u) for z ∈ Z and u ∈ TzZ. By
a well known construction called a ‘tubular neighbourhood’, we may choose open
neighbourhoods T1 of the zero section in T Z → Z and U1 of ∆Z(Z) in Z×Z and
a diffeomorphism Φ1 : T1 → U1 with Φ1(z, 0) = (z, z) for all z ∈ Z, such that
the derivative of Φ1 at the zero section 0(Z) induces the exact sequence (11.78).
We may also choose T1, U1,Φ1 so that Φ1(z, u) = (z, z′) for all (z, u) ∈ T1. This
and (11.78) imply that the derivative of Φ1 at the zero section 0(Z) ⊂ T1 is

T Φ1|0(Z) =

(
id 0
id −id

)
: T T1|0(Z)

∼= T Z⊕T Z −→ TΦ1
U1|0(Z)

∼= T Z⊕T Z. (11.79)
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The direct product (e, f) : W → X × Y embeds W as a submanifold in
X × Y , with normal bundle π : Tg◦eZ →W in the rightwards exact sequence

0 // TWoo
T e⊕T f // TeX⊕TfY
γ⊕δ

oo
T g⊕−T h // Tg◦eZ
α⊕β

oo // 0.oo (11.80)

Write points of Tg◦eZ as (w, v) for w ∈ W and v ∈ Tg◦e(w)Z. Again, we can
choose open neighbourhoods T2 of the zero section in Tg◦eZ and U2 of (e, f)(W )
in X×Y and a diffeomorphism Φ2 : T2 → U2 with Φ2(w, 0) = (e(w), f(w)) for all
w ∈W , such that the derivative of Φ2 at the zero section 0(W ) induces the exact
sequence (11.80). Making T2, U2 smaller we can suppose that (g × h)(U2) ⊆ U1,
so Ψ := Φ−1

1 ◦ (g × h) ◦ Φ2 is a well-defined smooth map Ψ : T2 → T1.
We write the derivative of Φ2 at the zero section 0(W ) ⊂ T2 in the form

T Φ2|0(W ) =

(
T e α
T f β

)
: T T2|0(W )

∼= TW⊕Tg◦eZ
−→ TΦ2

U2|0(W )
∼= TeX⊕TfY.

(11.81)

As the derivative of Φ2 at 0(W ) induces (11.80), we see that α ⊕ β is a right
inverse for T g⊕−T h in (11.80). This induces a unique splitting of (11.80). That
is, there are unique morphisms γ, δ marked in (11.80) satisfying

T g ◦ α− T h ◦ β = idTg◦eZ , γ ◦ T e+ δ ◦ T f = idTW ,

α ◦ T g + T e ◦ γ = idTeX , T f ◦ δ − β ◦ T h = idTfY ,

γ◦α+δ◦β=0, β◦T g+T f ◦γ=0, T e◦δ−α◦T h = 0.

(11.82)

Combining the first equation of (11.82) with (11.79), (11.81), and g ◦ e = h ◦ f
yields

T Ψ|0(W ) = T (Φ−1
1 ◦ (g × h) ◦ Φ2)|0(W ) =

(
id 0
id −id

)(
T g 0
0 T h

)(
T e α
T f β

)
=

(
T (g◦e) T g◦α

0 idTg◦eZ

)
: T T2|0(W )

∼=TW⊕Tg◦eZ
→TΨT1|0(Z)

∼= Tg◦eZ⊕Tg◦eZ.
(11.83)

Suppose as in Assumption 11.1(b)(ii) that c : V → X, d : V → Y are
morphisms in Man, and E → V is a vector bundle, and s ∈ Γ∞(E) is a section,
and K : E → Tg◦cZ is a morphism, such that h ◦ d = g ◦ c+ K ◦ s+O(s2).

Define V ′ =
{
v ∈ V : (c(v), d(v)) ∈ U2

}
. If v ∈ s−1(0) then h◦d(v) = g ◦c(v)

as h ◦ d = g ◦ c+ K ◦ s+O(s2), so there is a unique w ∈ W with e(w) = c(v),
f(w) = d(v), so that (c(v), d(v)) ∈ U2, and v ∈ V ′. Hence V ′ is an open
neighbourhood of s−1(0) in V . Define smooth maps Ξ = Φ−1

2 ◦(c, d)|V ′ : V ′ → T2

and b = π ◦ Ξ : V ′ →W , where π : T2 →W is the restriction of π : Tg◦eZ →W .
Define t ∈ Γ∞(Tg◦e◦bZ) by Ξ(v) = (b(v),−t(v)) ∈ Tg◦eZ for v ∈ V ′. Define

u ∈ Γ∞(Tg◦cZ|V ′) by Ψ ◦ Ξ(v) = Φ−1
1 (g ◦ c(v), g ◦ d(v)) = (g ◦ c(v),−u(v))

for v ∈ V ′, noting that Φ1(z, u) = (z, z′) for (z, u) ∈ T1. Combining h ◦ d =
g ◦ c+ K ◦ s+O(s2), Φ−1

1 (g ◦ c(v), g ◦ d(v)) = (g ◦ c(v),−u(v)) and (11.79) we
see that

u = K ◦ s+O(s2). (11.84)
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Now for v ∈ V ′ we have

Ψ(b(v), 0) = Φ−1
1 ◦ (g × h)(e ◦ b(v), f ◦ b(v))

= Φ−1
1 (g ◦ e ◦ b(v), g ◦ e ◦ b(v)) = (g ◦ e ◦ b(v), 0),

Ψ(b(v),−t(v)) = Φ−1
1 ◦ (g × h)(c(v), d(v))

= Φ−1
1 (g ◦ c(v), h ◦ d(v)) = (g ◦ c(v),−u(v)).

Together with (11.83) these give

g ◦ c = g ◦ e ◦ b+ 0 ◦ t+O(t2), u = t+O(t2),

so inverting yields

g ◦ e ◦ b = g ◦ c+ 0 ◦ u+O(u2), t = u+O(u2). (11.85)

Substituting (11.84) into the first equation of (11.85) gives g◦e◦b = g◦c+O(s).
Thus by Theorem 3.17(g) there exists a morphism K′ : E|V ′ → Tg◦e◦bZ with
K|V ′ = K′ +O(s) in the sense of Definition 3.15(v), where K′ is unique up to
O(s). Then substituting (11.84) into the second equation of (11.85) gives

t = K′ ◦ s+O(s2). (11.86)

For v ∈ V ′ we have

Φ2(b(v), 0) = (e ◦ b(v), f ◦ b(v)), Φ2(b(v),−t(v)) = (c(v), d(v)).

From these and (11.81) we see that

c|V ′ = e ◦ b+ (−α) ◦ t+O(t2), d|V ′ = f ◦ b+ (−β) ◦ t+O(t2),

so substituting in (11.86) gives

c|V ′ = e ◦ b+ Λ ◦ s+O(s2), d|V ′ = f ◦ b+ M ◦ s+O(s2), (11.87)

as in equation (11.2) in Assumption 11.1, where Λ = −α ◦K′ and M = −β ◦K′.
Then composing the first equation of (11.82) on the right with K′ gives

K′ + T g ◦ Λ = T h ◦M = T h ◦M +O(s), (11.88)

which is equation (11.3). This proves Assumption 11.1(b)(ii) for Ṁan = Man.
Next suppose as in Assumption 11.1(b)(iii) that Ṽ ′, b̃, Λ̃, M̃, K̃′ are alternative

choices for V ′, b,Λ,M,K′ above, so that Ṽ ′ is an open neighbourhood of s−1(0) in
V , and b̃ : Ṽ ′ →W is a smooth map, and Λ̃ : E|Ṽ ′ → Te◦b̃X, M̃ : E|Ṽ ′ → Tf◦b̃Y
are morphisms with

c|Ṽ ′ = e ◦ b̃+ Λ̃ ◦ s+O(s2), d|Ṽ ′ = f ◦ b̃+ M̃ ◦ s+O(s2), (11.89)

K̃′ + T g ◦ Λ̃ = T h ◦ M̃ +O(s), (11.90)
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for K̃′ : E|Ṽ ′ → Tg◦e◦b̃Z a morphism with K|Ṽ ′ = K̃′ +O(s).

By (11.87) and (11.89), in maps V ′ ∩ Ṽ ′ → X × Y we have

(c, d)|V ′∩Ṽ ′ = (e, f) ◦ b|V ′∩Ṽ ′ +O(s), (c, d)|V ′∩Ṽ ′ = (e, f) ◦ b̃|V ′∩Ṽ ′ +O(s),

so Theorem 3.17(c) implies that

(e, f) ◦ b̃|V ′∩Ṽ ′ = (e, f) ◦ b|V ′∩Ṽ ′ +O(s),

and thus b̃|V ′∩Ṽ ′ = b|V ′∩Ṽ ′ + O(s), since (e, f) is an embedding. Hence by

Theorem 3.17(g) there exist morphisms Λ̃′ : E|V ′∩Ṽ ′ → Te◦bX|V ′∩Ṽ ′ , M̃′ :
E|V ′∩Ṽ ′ → Tf◦bY |V ′∩Ṽ ′ with Λ̃|V ′∩Ṽ ′ = Λ̃′ + O(s), M̃|V ′∩Ṽ ′ = M̃′ + O(s),

and Λ̃′, M̃′ are unique up to O(s). Equation (11.90) and K|V ′ = K′ + O(s),
K|Ṽ ′ = K̃′ +O(s) now imply that

K′|V ′∩Ṽ ′ + T g ◦ Λ̃′ = T h ◦ M̃′ +O(s). (11.91)

Also (11.87), (11.89), Λ̃|V ′∩Ṽ ′ = Λ̃′ +O(s), M̃|V ′∩Ṽ ′ = M̃′ +O(s) and Theorem
3.17(k),(l) imply that

(e, f) ◦ b̃|V ′∩Ṽ ′ = (e, f) ◦ b|V ′∩Ṽ ′ + (Λ− Λ̃′ ⊕M− M̃′) ◦ s+O(s2). (11.92)

Define N : E|V ′∩Ṽ ′ → TbW |V ′∩Ṽ ′ by

N = b∗(γ) ◦ (Λ− Λ̃′) + b∗(δ) ◦ (M− M̃′), (11.93)

for γ, δ as in (11.80) and (11.82). Now in maps V ′ ∩ Ṽ ′ →W we have

b|V ′∩Ṽ ′ = π ◦Φ−1
2 ◦ (e, f)◦ b|V ′∩Ṽ ′ , b̃|V ′∩Ṽ ′ = π ◦Φ−1

2 ◦ (e, f)◦ b̃|V ′∩Ṽ ′ . (11.94)

We have

b̃|V ′∩Ṽ ′ = b|V ′∩Ṽ ′ + [T π ◦ T Φ−1
2 ◦ (Λ− Λ̃′ ⊕M− M̃′)] ◦ s+O(s2)

= b|V ′∩Ṽ ′ +

[(
idTbW 0

)
b∗
(
T e α
T f β

)−1(
Λ− Λ̃′

M− M̃′

)]
◦ s+O(s2)

= b|V ′∩Ṽ ′ +

[(
idTbW 0

)
b∗
(
γ δ
T g −T h

)(
Λ− Λ̃′

M− M̃′

)]
◦ s+O(s2)

= b|V ′∩Ṽ ′ +
[
b∗(γ) ◦ (Λ− Λ̃′) + b∗(δ) ◦ (M− M̃′)

]
◦ s+O(s2)

= b|V ′∩Ṽ ′ + N ◦ s+O(s2). (11.95)

Here in the first step we use (11.92), (11.94), Theorem 3.17(k), and T (π ◦Φ−1
2 ) =

T π ◦ T Φ−1
2 . In the second we use (11.81), in the third we use (11.82) to invert

the matrix explicitly, and in the fourth we use (11.93). This proves equation
(11.4) in Assumption 11.1(b)(iii). Also we have

T e ◦N = T e ◦ b∗(γ) ◦ (Λ− Λ̃′) + T e ◦ b∗(δ) ◦ (M− M̃′)

= b∗(T e ◦ γ) ◦ (Λ− Λ̃′) + b∗(T e ◦ δ) ◦ (M− M̃′)

= b∗(idTeX − α ◦ T g) ◦ (Λ− Λ̃′) + b∗(α◦T h) ◦ (M− M̃′)

= Λ− Λ̃′ + b∗(α) ◦
[
−T g ◦ (Λ− Λ̃′) + T h ◦ (M− M̃′)

]
= Λ− Λ̃′ + b∗(α) ◦

[
K′|V ′∩Ṽ ′ −K′|V ′∩Ṽ ′ +O(s)

]
= Λ− Λ̃′ +O(s),
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using (11.93) in the first step, (11.82) in the third, and (11.88), (11.91) in the
fifth. This proves the first equation of (11.5), and the second equation is similar.

Suppose Ň : E|V ′∩Ṽ ′ → TbW |V ′∩Ṽ ′ also satisfies (11.4)–(11.5). Subtracting
the equations of (11.5) for N, Ň gives

T e ◦ (N− Ň) = O(s), T f ◦ (N− Ň) = O(s).

Hence using (11.82) in the second step we have

N− Ň = idTW ◦ (N− Ň) = (γ ◦ T e+ δ ◦ T f) ◦ (N− Ň) = O(s).

This completes Assumption 11.1(b)(iii) for Ṁan = Man in Example 11.10.

11.7.2 The cases Manc
in and Mangc

in

Next we explain how to modify the proof in §11.7.1 to work when both ṀanD
and ṀanE are Manc

in or Mangc
in , as in Examples 11.12(a) and 11.13(a). The

difficulty is that the ‘tubular neighbourhoods’ Φ1 : T1 → U1 and Φ2 : T2 → U2

defined at the beginning of §11.7.1 may not exist.
To see the problem, consider Z = [0,∞). Then T Z = bTZ ∼= [0,∞) × R,

where (x, u) ∈ [0,∞)× R represents u · x ∂
∂x ∈

bTx[0,∞), and Z × Z = [0,∞)2

with ∆Z(Z) =
{

(x, x) : x ∈ [0,∞)
}
⊆ [0,∞)2. Thus T Z near the zero section

0(Z) is not diffeomorphic to Z × Z near ∆Z(Z), as the corners are different at
(0, 0) ∈ T Z and (0, 0) ∈ Z ×Z. So there do not exist open 0(Z) ⊂ T1 ⊆ T Z and
∆Z(Z) ⊂ U1 ⊆ Z × Z and a diffeomorphism Φ1 : T1 → U1.

Nonetheless, there is a construction which shares many of the important
properties of tubular neighbourhoods in the corners case. We can choose open
neighbourhoods T1, T2 of 0(Z), 0(W ) in the vector bundles T Z = bTZ → Z and
Tg◦eZ = (g ◦ e)∗(bTZ) → W , and interior maps Φ1 : T1 → Z × Z, Φ2 : T2 →
X × Y , with the properties:

(a) Φ1(z, 0) = (z, z) and Φ2(w, 0) = (e(w), f(w)) for all z ∈ Z and w ∈W .

(b) Φ1(z, u) = (z, z′) for all (z, u) ∈ T1.

(c) bdΦ1 : bT (T1)→ Φ∗1(bT (Z × Z)) and bdΦ2 : bT (T2)→ Φ∗2(bT (X × Y )) are
vector bundle isomorphisms.

(d) The derivatives bdΦ1|0(Z),
bdΦ2|0(W ) satisfy (11.79) and (11.81), where

α⊕ β is a right inverse for T g ⊕−T h in (11.80), so that (11.82) holds for
some unique γ, δ.

(e) On the interiors, Φ1|T◦1 : T ◦1 → Z◦ × Z◦ and Φ2|T◦2 : T ◦2 → X◦ × Y ◦ are
diffeomorphisms with open subsets of their targets.

However, on T1 \ T ◦1 and T2 \ T ◦2 , Φ1,Φ2 are generally not injective, and
the images of Φ1,Φ2 are generally not open in Z × Z and X × Y . So in
particular, the inverses Φ−1

1 and Φ−1
2 may not exist.

(f) Although Φ−1
1 ,Φ−1

2 may not exist, under some conditions on interior maps
a, b : V → Z or c : V → X, d : V → Y , it may be automatic that
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(a, b) : V → Z × Z factors via Φ1 : T1 → Z × Z, or (c, d) : V → X × Y
factors via Φ2 : T2 → X × Y . That is, there may exist unique interior
i : V → T1 and j : V → T2 with Φ1 ◦ i = (a, b) and Φ2 ◦ j = (c, d). If
Φ−1

1 ,Φ−1
2 existed we would have i = Φ−1

1 ◦ (a, b) and j = Φ−1
2 ◦ (c, d). So

we use factorization properties of this kind as a substitute for Φ−1
1 ,Φ−1

2 .

For example, when Z = [0,∞) we can take T1 = T Z = [0,∞)×R and define
Φ1 : T1 → Z × Z by Φ1(x, u) = (x, e−ux). Then Φ1(z, u) = (z, z′), as in (b).
In the natural bases x ∂

∂x ,
∂
∂u for bT (T Z) and y ∂

∂y , z
∂
∂z for bT (Z × Z), we see

that T Φ1|0(Z) maps x ∂
∂x 7→ y ∂

∂y + z ∂
∂z and ∂

∂u 7→ −z
∂
∂z , so T Φ1|0(Z) has matrix(

1 0
1 −1

)
, and (11.79) holds as in (c). We have Φ1({0} × R) = {(0, 0)}, so Φ1 is

not injective, and the image Φ1(T1) is not open in Z × Z, as in (e).
In the proof in §11.7.1, the problem is that we use Φ−1

1 ,Φ−1
2 as follows:

(i) We define smooth Ψ : T2 → T1 by Ψ = Φ−1
1 ◦ (g × h) ◦ Φ2.

(ii) We define smooth Ξ : V ′ → T2 by Ξ = Φ−1
2 ◦ (c, d)|V ′ .

(iii) Equation (11.94) involves Φ−1
2 ◦ (e, f).

(iv) Equations (11.83) and (11.95) involve T (Φ−1
1 ) and T (Φ−1

2 ).

Here (i)–(iii) are dealt with by the factorization property of Φ1,Φ2 in (f)
above. For (i), if the open neighbourhood T2 of 0(W ) in Tg◦eZ is small enough
there is a unique interior map Ψ : T2 → T1 with Φ1 ◦Ψ = (g×h) ◦Φ2. For (ii), if
V ′ is small enough there is a unique interior map Ξ : V ′ → T2 with Φ2◦Ξ = (c, d).
For (iii), Φ−1

2 ◦ (e, f) is the zero section map 0 : W → T2 ⊆ Tg◦eZ. For part (iv)
we substitute T (Φ−1

1 ) = (T Φ1)−1 and T (Φ−1
2 ) = (T Φ2)−1, where T Φ1 = bdΦ1

and T Φ2 = bdΦ2 are vector bundle isomorphisms as in (c) above. With these
modifications, the proof in §11.7.1 extends to work in Manc

in and Mangc
in .

11.7.3 The cases Manc and Mangc

Finally we modify the proofs in §11.7.1–§11.7.2 to work in the remaining cases of
Examples 11.11–11.13, in which ṀanE is Manc or Mangc. In §11.7.2, it was
important that we worked with interior maps, which are functorial for b-tangent
bundles bTX in Manc

in,Mangc
in .

The new issues are that in the definition of the ‘tubular neighbourhood’
Φ2 : T2 → X × Y for (e, f)(W ) ⊆ X × Y , the map (e, f) : W → X × Y may no
longer be interior, which was essential in §11.7.2 to define Φ2, T2. Even if (e, f)
is interior and Φ2, T2 in §11.7.2 are well defined, the maps c : V → X, d : V → Y
in Assumption 11.1(b)(ii) need not be interior, and if they are not, the lifting
property of (c, d) : V → X × Y in §11.7.2(f) may not hold, so that we cannot
define Ξ : V ′ → T2 with Φ2 ◦ Ξ = (c, d) as in §11.7.1–§11.7.2.

Our solution is to use the corner functors C : Manc → M̌anc
in, C : Mangc →

M̌angc
in from §2.2 and §2.4.1, which map to interior morphisms. Given a trans-

verse Cartesian square (11.1) in Manc or Mangc in one of the remaining cases
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of Examples 11.11–11.13, we can consider the commutative diagram in M̌anc
in

or M̌angc
in :

C(W )
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

(11.96)

We can show that in the cases we are interested in, (11.96) is locally Cartesian
and locally b-transverse on C(W ). That is, if w ∈ C(W ) with C(e)w = x ∈
C(X), C(f)w = y ∈ C(Y ) and C(g)x = C(h)y = z ∈ C(Z), then C(g), C(h)
are b-transverse near x,y, z as in §2.5.3, and (11.96) is Cartesian near w,x,y, z
in C(W ), . . . , C(Z). We do not claim (11.96) is Cartesian, nor that C(g), C(h)
are b-transverse, as these would be false in Example 2.26.

Thus (C(e), C(f)) embeds C(W ) as a submanifold of C(X)×C(Y ), and the
argument of §11.7.2 constructing ‘tubular neighbourhoods’ Φ1 : T1 → Z × Z,
Φ2 : T2 → X × Y satisfying §11.7.2(a)–(f) works with C(W ), . . . , C(h) in place
of W,X, Y, Z, e, f, g, h, as C(e), . . . , C(h) are interior.

Now suppose as in Assumption 11.1(b)(ii) that c : V → X, d : V → Y are
morphisms in Manc or Mangc, and E → V is a vector bundle, and s ∈ Γ∞(E) is
a section, and K : E → Tg◦cZ is a morphism, such that h◦d = g◦c+K◦s+O(s2).
Then we have a diagram in M̌anc

in or M̌angc
in :

V ∼= C0(V )
C(d)|C0(V )

//

C(c)|C0(V )��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Under the isomorphism V ∼= C0(V ) there is a natural identification

Tg◦cZ ∼= TC(g)◦C(c)|C0(V )
C(Z) ∼= C(g ◦ c)|∗C0(V )(

bT (C(Z))).

Let Ǩ : E → TC(g)◦C(c)|C0(V )
C(Z) correspond to K under this identification.

Then we find that C(h) ◦ C(d)|C0(V ) = C(g) ◦ C(c)|C0(V ) + Ǩ ◦ s + O(s2). So
we can repeat the argument of §11.7.1–§11.7.2 with C0(V ), C(W ), . . . , C(Z),
C(c)|C0(V ), C(d)|C0(V ), C(e), . . . , C(h), Ǩ in place of V,W, . . . , Z, c, d, e, . . . , h,K.

For Assumption 11.1(b)(ii) this constructs V̌ ′ ⊆ C0(V ), an interior morphism
b̌ : C0(V ) → C(W ) and morphisms Λ̌ : E|V ′ → TC(e)◦b̌C(X) and M̌ : E|V ′ →
TC(f)◦b̌C(Y ) with

C(c)|V̌ ′ = C(e)◦ b̌+ Λ̌◦ s+O(s2), C(d)|V̌ ′ = C(f)◦ b̌+ M̌◦ s+O(s2). (11.97)

Let V ′ ⊆ V be identified with V̌ ′ under V ∼= C0(V ), let b : V ′ →W be identified
with Π ◦ b̌ under V ′ ∼= V̌ ′, and let Λ : E|V ′ → Te◦bX, M : E|V ′ → Tf◦bY be
identified with Λ̌, M̌ as for K ∼= Ǩ. Then (11.97) corresponds to (11.2). The rest
of Assumption 11.1(b)(ii)–(iii) follow in the same way.
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11.8 Proof of Theorem 11.17

Work in the situation of Definition 11.16. Since (11.14) is a 2-commutative square
in GmK̇ND, and GmK̇ND ⊆ GmK̇NE is an inclusion of 2-subcategories such
that the 2-morphisms in GmK̇ND,GmK̇NE between given 1-morphisms in
GmK̇ND coincide, if (11.14) is 2-Cartesian in GmK̇NE then it is 2-Cartesian
in GmK̇ND. Thus, we must verify the universal property of 2-category fibre
products in Definition A.11 for (11.14) in GmK̇NE .

Suppose we are given 1-morphisms in GmK̇NE :

cjl : (Sj , Bj , pj) −→ (Ul, Dl, rl), djm : (Sj , Bj , pj) −→ (Vm, Em, sm),

with cjl = (Sjl, cjl, ĉjl) and djm = (Sjm, djm, d̂jm), and let K = [Ṡj , κ̂] : gln ◦
cjl ⇒ hmn ◦djm be a 2-morphism in GmK̇NE . Then by Definition 4.3, Ṡj is an
open neighbourhood of p−1

j (0) in Sjl ∩ Sjm ⊆ Sj , and κ̂ : Bj |Ṡj → Tgln◦cjlWn|Ṡj
is a morphism with

hmn ◦ djm|Ṡj = gln ◦ cjl|Ṡj + κ̂ ◦ pj +O(p2
j ) and

d∗jm(ĥmn) ◦ d̂jm|Ṡj = c∗jl(ĝln) ◦ ĉjl|Ṡj + (gln ◦ cjl)∗(dt) ◦ κ̂+O(pj).
(11.98)

Assumption 11.1(b)(ii) now gives an open neighbourhood S̈j of p−1
j (0) in Ṡj ,

a morphism bjk : S̈j → Tk in ṀanE , and morphisms λ̂ : Bj |S̈j → Tekl◦bjkUl and
µ̂ : Bj |S̈j → Tfkm◦bjkVm such that (11.2) becomes

cjl|S̈j = ekl ◦ bjk + λ̂◦pj +O(p2
j ), djm|S̈j = fkm ◦ bjk + µ̂◦pj +O(p2

j ). (11.99)

Theorem 3.17(g) gives κ̌ : Bj |S̈j → Tgln◦ekl◦bjkWn with κ̌ = κ̂|S̈j +O(pj), since
gln ◦ cjl|S̈j = gln ◦ ekl ◦ bjk +O(pj) by (11.99), and then as in (11.3) we have

κ̌+ T gln ◦ λ̂ = T hmn ◦ µ̂+O(pj). (11.100)

Choose connections ∇Dl ,∇Em ,∇Fn on Dl → Ul, Em → Vm, Fn → Wn, as
in §3.3.3 and §B.3.2, and write ∇g∗ln(Fn),∇h∗mn(Fn) for the pullback connections
from ∇Fn on g∗ln(Fn) → Uln, h∗mn(Fn) → Vmn. Then in morphisms Bj |S̈j →
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(gln ◦ ekl ◦ bjk)∗(Fn) we have:

b∗jk
[
e∗kl(ĝln)⊕−f∗km(ĥmn)

]
◦
[(
ĉjl|S̈j − (ekl ◦ bjk)∗(∇Dlrl) ◦ λ̂

)
⊕
(
d̂jm|S̈j − (fkm ◦ bjk)∗(∇Emsm) ◦ µ̂

)]
= (ekl ◦ bjk)∗(ĝln) ◦ ĉjl|S̈j − (ekl ◦ bjk)∗(ĝln) ◦ (ekl ◦ bjk)∗(∇Dlrl) ◦ λ̂

− (fkm◦bjk)∗(ĥmn)◦d̂jm|S̈j+(fkm◦bjk)∗(ĥmn)◦(fkm◦bjk)∗(∇Emsm)◦µ̂

= c∗jl(ĝln) ◦ ĉjl|S̈j − (ekl ◦ bjk)∗(∇g
∗
ln(Fn)(ĝln(rl))) ◦ λ̂

− d∗jm(ĥmn) ◦ d̂jm|S̈j + (fkm ◦ bjk)∗(∇h
∗
mn(Fn)(ĥmn(sm))) ◦ µ̂+O(pj)

= c∗jl(ĝln) ◦ ĉjl|S̈j − (ekl ◦ bjk)∗(∇g
∗
ln(Fn)(g∗ln(tn))) ◦ λ̂ (11.101)

− d∗jm(ĥmn) ◦ d̂jm|S̈j + (fkm ◦ bjk)∗(∇h
∗
mn(Fn)(h∗mn(tn))) ◦ µ̂+O(pj)

= c∗jl(ĝln) ◦ ĉjl|S̈j − (gln ◦ ekl ◦ bjk)∗(∇Fntn) ◦ T gln ◦ λ̂

− d∗jm(ĥmn) ◦ d̂jm|S̈j + (hmn ◦ fkm ◦ bjk)∗(∇Fntn) ◦ T hmn ◦ µ̂+O(pj)

= c∗jl(ĝln) ◦ ĉjl|S̈j − d∗jm(ĥmn) ◦ d̂jm|S̈j
+ (gln ◦ ekl ◦ bjk)∗(∇Fntn) ◦

[
−T gln ◦ λ̂+ T hmn ◦ µ̂

]
+O(pj)

= c∗jl(ĝln)◦ĉjl|S̈j−d∗jm(ĥmn)◦d̂jm|S̈j+(gln◦ekl◦bjk)∗(∇Fntn) ◦ κ̌+O(pj)

= c∗jl(ĝln)◦ĉjl|S̈j−d∗jm(ĥmn)◦d̂jm|S̈j+(gln◦cjl)∗(∇Fntn) ◦ κ̂|S̈j+O(pj)

= 0 +O(pj).

Here the second step uses (11.99) and

∇g
∗
ln(Fn)(ĝln(rl)) = ĝln ◦ ∇Dlrl +O(rl),

∇h
∗
mn(Fn)(ĥmn(sm)) = ĥmn ◦ ∇Emsm +O(sm).

The third step uses ĝln(rl|Uln) = g∗ln(tn) and ĥmn(sm|Vmn) = h∗mn(tn). The
fourth step uses

(ekl ◦ bjk)∗(∇g
∗
ln(Fn)(g∗ln(tn))) = (gln ◦ ekl ◦ bjk)∗(∇Fntn) ◦ T gln,

(fkm◦bjk)∗(∇h
∗
mn(Fn)(h∗mn(tn))) = (hmn◦fkm◦bjk)∗(∇Fntn)◦T hmn.

(11.102)

The fifth follows from hmn ◦ fkm = gln ◦ ekl, the sixth from (11.100), the seventh
from (11.99) and κ̌ = κ̂|S̈j + O(pj), and the last from (11.98) and Definition
3.15(vi). This proves (11.101).

Now b∗jk(Ck)→ S̈j is the kernel of the surjective vector bundle morphism

b∗jk
[
e∗kl(ĝln)⊕−f∗km(ĥmn)

]
: (ekl ◦ bjk)∗(Dl)⊕ (fkm ◦ bjk)∗(Em)

−→ (gln ◦ ekl ◦ bjk)∗(Fn),

which occurs at the beginning of (11.101), and the inclusion of b∗jk(Ck) as the

kernel is b∗jk(êkl) ⊕ b∗jk(f̂km). Since taking kernels of surjective vector bundle
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morphisms commutes with reducing modulo O(pj), equation (11.101) implies

that there is a morphism b̂jk : Bj |S̈j → b∗jk(Ck), unique up to O(pj), with(
b∗jk(êkl)⊕ b∗jk(f̂km)

)
(b̂jk) =

(
ĉjl|S̈j − (ekl ◦ bjk)∗(∇Dlrl) ◦ λ̂

)
⊕
(
d̂jm|S̈j − (fkm ◦ bjk)∗(∇Emsm) ◦ µ̂

)
+O(pj),

(11.103)

which by Definition 3.15(vi) is equivalent to

ĉjl|S̈j = b∗jk(êkl) ◦ b̂jk + (ekl ◦ bjk)∗(drl) ◦ λ̂+O(pj),

d̂jm|S̈j = b∗jk(f̂km) ◦ b̂jk + (fkm ◦ bjk)∗(dsm) ◦ µ̂+O(pj).
(11.104)

We have(
b∗jk(êkl)⊕ b∗jk(f̂km)

)
(b̂jk(pj)) =

(
ĉjl(pj)|S̈j − (ekl ◦ bjk)∗(∇Dlrl) ◦ λ̂ ◦ pj

)
⊕
(
d̂jm(pj)|S̈j − (fkm ◦ bjk)∗(∇Emsm) ◦ µ̂ ◦ pj

)
=
(
c∗jl(rl)|S̈j − (ekl ◦ bjk)∗(∇Dlrl) ◦ λ̂ ◦ pj

)
⊕
(
d∗jm(sm)|S̈j − (fkm ◦ bjk)∗(∇Emsm) ◦ µ̂ ◦ pj

)
+O(p2

j ) (11.105)

=
(
b∗jk ◦ e∗kl(rl)

)
⊕
(
b∗jk ◦ f∗km(sm)

)
+O(p2

j )

=
(
b∗jk(êkl(qk))

)
⊕
(
b∗jk(f̂km(qk))

)
+O(p2

j )

=
(
b∗jk(êkl)⊕ b∗jk(f̂km)

)
(b∗jk(qk)) +O(p2

j ),

where the first step comes from (11.103), the second from Definition 4.2(d) for
cjl,djm, the third can be proved by pulling back rl, sm using the equations of
(11.99), and the fourth follows from Definition 4.2(d) for ekl,fkm.

As b∗jk(êkl) ⊕ b∗jk(f̂km) is injective, (11.105) shows that b̂jk(pj) = b∗jk(qk) +

O(p2
j). Thus bjk = (S̈j , bjk, b̂jk) : (Sj , Bj , pj)→ (Tk, Ck, qk) is a 1-morphism

in GmK̇NE .
Definition 4.3 and equations (11.99) and (11.104) now give 2-morphisms

Λ = [S̈j , λ̂] : ekl ◦ bjk =⇒ cjl,

M = [S̈j , µ̂] : fkm ◦ bjk =⇒ djm,

in GmK̇NE , and equation (11.100) is equivalent to the commutative diagram

gln ◦ ekl ◦ bjk idgln◦ekl∗idbjk

+3

idgln
∗Λ

��

hmn ◦ fkm ◦ bjk
idhmn∗M ��

gln ◦ cjl K +3 hmn ◦ djm,

which is equation (A.16) for the 2-commutative square (11.14). This proves the
first part of the universal property in Definition A.11.

136



For the second part, let b′jk = (S̈′j , b
′
jk, b̂

′
jk) : (Sj , Bj , pj)→ (Tk, Ck, qk) be a

1-morphism in GmK̇NE , and

Λ′ = [S̈′j , λ̂
′] : ekl ◦ b′jk =⇒ cjl,

M′ = [S̈′j , µ̂
′] : fkm ◦ b

′
jk =⇒ djm,

be 2-morphisms in GmK̇NE , such that the following commutes

gln ◦ ekl ◦ b
′
jk

idgln◦ekl∗idb′
jk

+3

idgln
∗Λ′

��

hmn ◦ fkm ◦ b
′
jk

idhmn∗M
′

��
gln ◦ cjl K +3 hmn ◦ djm,

(11.106)

where making S̈′j smaller, we use the same open p−1
j (0) ⊆ S̈′j ⊆ Sj in b′jk,Λ

′,M′.

Then b′jk : S̈′j → Tk is a morphism in ṀanE , and λ̂′ : Bj |S̈′j → Tekl◦b′jkUl
and µ̂′ : Bj |S̈′j → Tfkm◦b′jkVm are morphisms, where by Definition 4.3(b)

cjl|S̈′j = ekl◦b′jk+λ̂′◦pj+O(p2
j ), djm|S̈′j =fkm◦b′jk+µ̂′◦pj+O(p2

j ),

ĉjl|S̈′j = b′∗jk(êkl)◦b̂′jk + (ekl ◦ b′jk)∗(drl) ◦ λ̂′ +O(pj), (11.107)

d̂jm|S̈′j = b′∗jk(f̂km) ◦ b̂′jk + (fkm ◦ b′jk)∗(dsm) ◦ µ̂′ +O(pj),

as in (11.99) and (11.104). Theorem 3.17(g) gives κ̂′ : Bj |S̈′j → Tgln◦ekl◦b′jkWn

with κ̂′ = κ̂|S̈′j + O(pj), since gln ◦ cjl|S̈′j = gln ◦ ekl ◦ b′jk + O(pj) by the first
equation of (11.107), and then as in (11.100), equation (11.106) is equivalent to

κ̂′ + T gln ◦ λ̂′ = T hmn ◦ µ̂′ +O(pj). (11.108)

Applying Assumption 11.1(b)(iii) to the first line of (11.107), and (11.108),
shows that there exists a morphism ν̂ : Bj |S̈j∩S̈′j → TbjkTk|S̈j∩S̈′j with

b′jk|S̈j∩S̈′j = bjk|S̈j∩S̈′j + ν̂ ◦ pj +O(p2
j ), (11.109)

and if λ̌′ : Bj |S̈j∩S̈′j → Tekl◦bjkUl|S̈j∩S̈′j , µ̌
′ : Bj |S̈j∩S̈′j → Tfkm◦bjkVm|S̈j∩S̈′j are

morphisms with λ̂′|S̈j∩S̈′j = λ̌′ +O(pj), µ̂
′|S̈j∩S̈′j = µ̌′ +O(pj), which exist and

are unique up to O(pj) by Theorem 3.17(g), then

λ̂|S̈j∩S̈′j = λ̌′ + T ekl ◦ ν̂ +O(pj), µ̂|S̈j∩S̈′j = µ̌′ + T fkm ◦ ν̂ +O(pj). (11.110)

Furthermore, ν̂ satisfying (11.109)–(11.110) is unique up to O(pj). Now

b′∗jk(êkl) ◦ b̂′jk|S̈j∩S̈′j = ĉjl|S̈j∩S̈′j − (ekl ◦ b′jk)∗(drl) ◦ λ̂′|S̈j∩S̈′j +O(pj)

= b∗jk(êkl) ◦ b̂jk|S̈j∩S̈′j + (ekl ◦ bjk)∗(drl) ◦ λ̂− (ekl ◦ bjk)∗(drl) ◦ λ̌′ +O(pj)

= b∗jk(êkl) ◦ b̂jk|S̈j∩S̈′j + (ekl ◦ bjk)∗(∇Dlrl) ◦ T ekl ◦ ν̂ +O(pj)

= b∗jk(êkl) ◦ b̂jk|S̈j∩S̈′j + b∗jk(∇e
∗
kl(Dl)(e∗kl(rl)) ◦ ν̂ +O(pj)

= b∗jk(êkl) ◦ b̂jk|S̈j∩S̈′j + b∗jk(∇e
∗
kl(Dl)(êkl(qk)) ◦ ν̂ +O(pj)

= b∗jk(êkl) ◦
[
b̂jk|S̈j∩S̈′j + b∗jk(∇Ckqk) ◦ ν̂

]
+O(pj), (11.111)
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using the third equation of (11.107) in the first step, (11.104) and ekl◦bjk|S̈j∩S̈′j =

ekl ◦ b′jk|S̈j∩S̈′j +O(pj) by (11.109) and λ̂′|S̈j∩S̈′j = λ̌′ +O(pj) in the second step,

and (11.110) and choosing a connection ∇Dl on Dl → Ul in the third.
In the fourth step of (11.111), as in (11.102) we use

(ekl◦bjk)∗(∇Dlrl)◦T ekl=b∗jk(∇e
∗
kl(Dl)(e∗kl(rl)) : TbjkTk|S̈j∩S̈′j→(ekl ◦ bjk)∗(Dl),

where ∇e∗kl(Dl) is the pullback connection on e∗kl(Dl)→ Tk from ∇Dl . The fifth
step uses êkl(qk) = e∗kl(rl), and the sixth ∇e∗kl(Dl)(êkl(qk)) = êkl ◦∇Ckqk +O(qk)
for ∇Ck some connection on Ck, and b∗jk(qk) = O(pj). This proves (11.111).
Similarly we have

b′∗jk(f̂km)◦b̂′jk|S̈j∩S̈′j =b∗jk(f̂km)◦
[
b̂jk|S̈j∩S̈′j+b∗jk(∇Ckqk)◦ν̂

]
+O(pj). (11.112)

Since êkl⊕f̂km : Ck → e∗kl(Dl)⊕f∗km(Em) is injective, and b′jk|S̈j∩S̈′j = bjk|S̈j∩S̈′j+
O(pj), equations (11.111)–(11.112) imply that as in (4.1),

b̂′jk|S̈j∩S̈′j = b̂jk|S̈j∩S̈′j + b∗jk(dqk) ◦ ν̂ +O(pj). (11.113)

Equations (11.109) and (11.113) and b = b′ imply that

N = [S̈j ∩ S̈′j , ν̂] : bjk =⇒ b′jk

is a 2-morphism in GmK̇NE , and (11.110) is equivalent to

Λ = Λ′ � (idekl ∗N) and M = M′ � (idfkm ∗N).

That N is unique with these properties follows from the uniqueness of ν̂ satisfying
(11.109)–(11.110) up to O(pj). This proves the second part of the universal
property in Definition A.11, and completes the proof of Theorem 11.17.

11.9 Proof of Theorem 11.19

Suppose Ṁan satisfies Assumptions 3.1–3.7 and 11.1. Let g : X → Z, h : Y →
Z be 1-morphisms in mK̇ur, which will usually be w-transverse in mK̇urD.
The aim will be to construct a fibre product W = X ×g,Z,h Y in mK̇urD
or mK̇urE , with projections e : W → X, f : W → Y and a 2-morphism
η : g ◦e⇒ h◦f in a 2-Cartesian square (11.15). We will use notation (4.6)–(4.8)
for X = (X, I), Y = (Y,J ), Z = (Z,K), and our usual notation for e, . . . ,h
and η as in (4.9) and Definition 4.18.

11.9.1 Constructing W, e,f ,η when Assumption 11.3 holds

Let g : X → Z, h : Y → Z be w-transverse 1-morphisms in mK̇ur. For
simplicity, we first suppose that Ṁan also satisfies Assumption 11.3. Then as in
Theorem 11.19(c) we will construct a fibre product W = X×g,Z,hY in mK̇urD
and mK̇urE , with topological space W =

{
(x, y) ∈ X × Y : g(x) = h(y)

}
,
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and continuous maps e : W → X, f : W → Y acting by e : (x, y) 7→ x and
f : (x, y) 7→ y. The general case, which we tackle in §11.9.2, is more complicated,
as we also have to construct W, e, f .

So let W, e, f be as above, and let (x, y) ∈ W with g(x) = h(y) = z in Z.
Then by Definition 11.18 there exist m-Kuranishi neighbourhoods (Ul, Dl, rl,
χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) on X,Y ,Z as in §4.7 with x ∈ Imχl ⊆
g−1(Imωn), y ∈ Imψm ⊆ h−1(Imωn) and z ∈ Imωn, and 1-morphisms gln :
(Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn), hmn : (Vm, Em, sm, ψm) → (Wn, Fn, tn, ωn)
over (Imχl, g) and (Imψm,h), as in Definition 4.54, such that gln,hmn are
w-transverse as in Definition 11.16.

Apply Definition 11.16 and Theorem 11.17 to the 1-morphisms in GmK̇ND

gln : (Ul, Dl, rl) −→ (Wn, Fn, tn), hmn : (Vm, Em, sm) −→ (Wn, Fn, tn).

These construct a 2-Cartesian square (11.14) in GmK̇ND and GmK̇NE . From
(11.13) and Definition 4.14(b) for X,Y ,Z we see that

dimTk − rankCk = vdimX + vdimY − vdimZ.

Here by definition Tk is the transverse fibre product in Ṁan:

Tk = U̇ln ×gln|U̇ln ,Wn,hmn|V̇mn V̇mn, (11.114)

for open U̇ln ⊆ Uln, V̇mn ⊆ Vmn satisfying Definition 11.15(i),(ii). As we suppose
Assumption 11.3, by Assumption 3.2(e) we take Tk to have topological space

Tk =
{

(u, v) ∈ U̇ln × V̇mn : gln(u) = hmn(v) ∈Wn

}
, (11.115)

and then ekl : Tk → Ul, fkm : Tk → Vm map ekl : (u, v) 7→ u, fkm : (u, v) 7→ v.
Since qk = e∗kl(rl)⊕ f∗km(sm), we see that

q−1
k (0) =

{
(u, v) ∈ r−1

l (0)× s−1
m (0) : gln(u) = hmn(v)

}
.

Define ϕk : q−1
k (0)→W by ϕk(u, v) = (χl(u), ψm(v)). This is well defined as

g ◦ χl(u) = ωn ◦ gln(u) = ωn ◦ hmn(v) = h ◦ ψm(v),

using Definition 4.2(e) for gln,hmn. As χl, ψm are homeomorphisms with their
open images, ϕk is a homeomorphism with the open subset

Imϕk=
{

(x, y)∈W : x∈ Imχl, y∈ Imψm
}

=e−1(Imχl)∩f−1(Imψm)⊆W.

Hence (Tk, Ck, qk, ϕk) is an m-Kuranishi neighbourhood on W . Since e ◦ ϕk =
χl ◦ekl and f ◦ϕk = ψm ◦fkm on q−1

k (0), ekl : (Tk, Ck, qk, ϕk)→ (Ul, Dl, rl, χl) is
a 1-morphism over (Imϕk, e) and fkm : (Tk, Ck, qk, ϕk)→ (Vm, Em, sm, ψm) is a
1-morphism over (Imϕk, f). Thus, generalizing (11.14) we have a 2-commutative
diagram in mK̇ND from Definition 4.8:

(W, Imϕk, (Tk, Ck, qk, ϕk))

IQ
id

(f,fkm)
//

(e,ekl)

��

(Y, Imψm, (Vm, Em, sm, ψm))

(h,hmn)

��
(X, Imχl, (Ul, Dl, rl, χl))

(g,gln) // (Z, Imωn, (Wn, Fn, tn, ωn)).

(11.116)
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We can find such a diagram (11.116) with (x, y) ∈ Imϕk ⊆W for all (x, y) in
W . Thus we can choose a family of such diagrams indexed by a in an indexing
set A so that the subsets Imϕk cover W . We change notation from subscripts
k, l,m, n to subscripts a, ȧ, ä, ˙̇ȧ, where a ∈ A, and ȧ, ä, ˙̇ȧ correspond to a, but
have accents to help distinguish m-Kuranishi neighbourhoods on W,X, Y, Z.
Thus, for a ∈ A we have a family of 2-commutative diagrams in mK̇ND

(W, Imϕa, (Ta, Ca, qa, ϕa))

IQ
id

(f,faä)
//

(e,eaȧ)

��

(Y, Imψä, (Vä, Eä, sä, ψä))

(h,hä˙̇ȧ)

��
(X, Imχȧ, (Uȧ, Dȧ, rȧ, χȧ))

(g,gȧ˙̇ȧ) // (Z, Imω˙̇ȧ, (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ, ω˙̇ȧ)),

(11.117)

with W =
⋃
a∈A Imϕa, such that as in (11.14) the following is 2-Cartesian in

GmK̇ND and GmK̇NE :

(Ta, Ca, qa)
IQ

id

faä

//

eaȧ
��

(Vä, Eä, sä)

hä˙̇ȧ ��
(Uȧ, Dȧ, rȧ)

gȧ˙̇ȧ // (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ).

(11.118)

Let a, b ∈ A. Then Theorem 4.56(a) gives coordinate changes

Tȧḃ : (Uȧ, Dȧ, rȧ, χȧ) −→ (Uḃ, Dḃ, rḃ, χḃ) over Imχȧ ∩ Imχḃ on X,

Υäb̈ : (Vä, Eä, sä, ψä) −→ (Vb̈, Eb̈, sb̈, ψb̈) over Imψä ∩ Imψb̈ on Y ,

Φ
˙̇ȧ˙̇ḃ

: (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ, ω˙̇ȧ) −→ (W˙̇ḃ
, F˙̇ḃ

, t˙̇ḃ , ω˙̇ḃ
) over Imω˙̇ȧ ∩ Imω˙̇ḃ

on Z,

where we choose Tȧȧ,Υää,Φ˙̇ȧ˙̇ȧ to be identities, and so Theorem 4.56(c) gives
unique 2-morphisms

G˙̇ȧ˙̇ḃ
ȧḃ

: g
ḃ˙̇ḃ
◦ Tȧḃ =⇒ Φ

˙̇ȧ˙̇ḃ
◦ gȧ˙̇ȧ over Imχȧ ∩ Imχḃ on X,

H ˙̇ȧ˙̇ḃ
äb̈

: h
b̈˙̇ḃ
◦Υäb̈ =⇒ Φ

˙̇ȧ˙̇ḃ
◦ hä˙̇ȧ over Imψä ∩ Imψb̈ on Y ,

such that the analogue of (4.62) commutes. When a = b these are identities, as
Tȧȧ,Υää,Φ˙̇ȧ˙̇ȧ are identities.

Writing Tȧḃ = (Uȧḃ, τȧḃ, τ̂ȧḃ) and Υäb̈ = (Väb̈, υäb̈, υ̂äb̈), set Tab = e−1
aȧ (Uȧḃ) ∩

f−1
aä (Väb̈). Then Tab is an open neighbourhood of ϕ−1

a (Imϕa ∩ Imϕb) in Ta.

Consider the 1-morphisms in GmK̇ND:

Tȧḃ ◦ eaȧ|Tab : (Tab, Ca|Tab , qa|Tab) −→ (Uḃ, Dḃ, rḃ),

Υäb̈ ◦ faä|Tab : (Tab, Ca|Tab , qa|Tab) −→ (Vb̈, Eb̈, sb̈),

and the 2-morphism(
(H ˙̇ȧ˙̇ḃ

äb̈
)−1∗idfaä

)
�
(
G˙̇ȧ˙̇ḃ
ȧḃ
∗ideaȧ

)
:g
ḃ˙̇ḃ
◦
[
Tȧḃ◦eaȧ|Tab

]
=⇒h

b̈˙̇ḃ
◦
[
Υäb̈◦faä|Tab

]
,
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noting that gȧ˙̇ȧ ◦ eaȧ = hä˙̇ȧ ◦ faä as in (11.118). Since (11.118) with b in place
of a is 2-Cartesian in GmK̇ND by Theorem 11.17, the universal property in
Definition A.11 gives a 1-morphism in GmK̇ND, unique up to 2-isomorphism,

Σab : (Ta, Ca, qa)|Tab = (Tab, Ca|Tab , qa|Tab) −→ (Tb, Cb, qb),

and 2-isomorphisms in GmK̇ND

Eȧḃ
ab : ebḃ ◦ Σab =⇒ Tȧḃ ◦ eaȧ|Tab , F

äb̈
ab : f bb̈ ◦ Σab =⇒ Υäb̈ ◦ faä|Tab , (11.119)

such that the following diagram of 2-isomorphisms commutes:

g
ḃ˙̇ḃ
◦ ebḃ ◦ Σab

id
+3

idg
ḃ˙̇ḃ
∗Eȧḃab��

h
b̈˙̇ḃ
◦ f bb̈ ◦ Σab

idh
b̈˙̇ḃ
∗F äb̈ab ��

g
ḃ˙̇ḃ
◦ Tȧḃ ◦ eaȧ|Tab

((H ˙̇ȧ˙̇ḃ
äb̈

)−1∗idfaä
)�(G˙̇ȧ˙̇ḃ

ȧḃ
∗ideaȧ

)
+3 h
b̈˙̇ḃ
◦Υäb̈ ◦ faä|Tab .

(11.120)

As Tȧȧ,Υää,G
˙̇ȧ˙̇ȧ
ȧȧ ,H

˙̇ȧ˙̇ȧ
ää are identities, we can choose

Σaa = id(Ta,Ca,qa), Eȧȧ
aa = ideaȧ , and F ääaa = idfaä . (11.121)

Now let a, b, c ∈ A. Then Theorem 4.56(c) gives unique 2-morphisms

Kȧḃċ : Tḃċ ◦ Tȧḃ =⇒ Tȧċ over Imχȧ ∩ Imχḃ ∩ Imχċ on X,

Λäb̈c̈ : Υb̈c̈ ◦Υäb̈ =⇒ Υäc̈ over Imψä ∩ Imψb̈ ∩ Imψc̈ on Y ,

such that the analogue of (4.62) commutes. Using Theorem 4.56(d) we see that

Kȧċḋ�(idTċḋ
∗Kȧḃċ) = Kȧḃḋ�(Kḃċḋ ∗ idTȧḃ

) :Tċḋ◦Tḃċ◦Tȧḃ=⇒Tȧḋ,

Λäc̈d̈�(idΥc̈d̈
∗Λäb̈c̈) = Λäb̈d̈�(Λb̈c̈d̈∗idΥäb̈

) :Υc̈d̈◦Υb̈c̈◦Υäb̈=⇒Υäd̈.
(11.122)

Compare the two 2-commutative diagrams:

(Ta, Ca, qa)|Tabc

eaȧ|Tabc

��

faä|Tabc

//

Σab|Tabc
))

EM
F äb̈ab

(Vä, Eä, sä)|V
äb̈c̈

Υ
äb̈
|V
äb̈c̈ ))

Υäc̈|V
äb̈c̈

��

HP
Λ
äb̈c̈

�
 Eȧḃab

(Tb, Cb, qb)|Tbc

e
bḃ
|Tbc

��

f
bb̈
|Tbc

//

Σbc

))

EM
F b̈c̈bc

(Vb̈, Eb̈, sb̈)|Vb̈c̈
Υ
b̈c̈ ))

(Uȧ, Dȧ, rȧ)|U
ȧḃċ

T
ȧḃ
|U
ȧḃċ

))
~� K

ȧḃċ

Tȧċ|U
ȧḃċ 11

�
 Eḃċbc

(Tc, Cc, qc)
fcc̈

//

ecċ

��

EM
id

(Vc̈, Ec̈, sc̈)

hc̈˙̇ċ

��

(Uḃ, Dḃ, rḃ)|Uḃċ
TU

ḃċ

))
(Uċ, Dċ, rċ)

gċ˙̇ċ // (W˙̇ċ , F˙̇ċ , t˙̇ċ),

(11.123)
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(Ta, Ca, qa)|Tabc

eaȧ|Tabc

��

faä|Tabc

//

Σac|Tabc

))

EM
F äc̈ac

(Vä, Eä, sä)|V
äb̈c̈

Υäc̈|V
äb̈c̈

##
�
 Eȧċac(Uȧ, Dȧ, rȧ)|U

ȧḃċ

Tȧċ|U
ȧḃċ

--

(Tc, Cc, qc, ϕc)
fcc̈

//

ecċ

��

EM
id

(Vc̈, Ec̈, sc̈)

hc̈˙̇ċ

��
(Uċ, Dċ, rċ)

gċ˙̇ċ // (W˙̇ċ , F˙̇ċ , t˙̇ċ),

(11.124)

where Tabc = Tab ∩ Tbc, and Uȧḃċ, . . . are defined in a similar way. By the last
part of the universal property in Definition A.11 for (11.118) with c in place of
a, there exists a unique 2-isomorphism Iabc : Σbc ◦Σab|Tabc ⇒ Σac|Tabc , such that
the following commute:

ecċ ◦ Σbc ◦ Σab|Tabc
Eḃċbc∗idΣab

��

idecċ
∗Iabc

+3 ecċ ◦ Σac|Tabc
Eȧċac

��
Tḃċ ◦ ebḃ ◦ Σab|Tabc

idT
ḃċ
∗Eȧḃab
+3 Tḃċ ◦ Tȧḃ ◦ eaȧ|Tabc

Kȧḃċ∗ideaȧ

+3 Tȧċ ◦ eaȧ|Tabc ,

(11.125)

f cc̈ ◦ Σbc ◦ Σab|Tabc
F b̈c̈bc∗idΣab��

idfcc̈
∗Iabc

+3 f cc̈ ◦ Σac|Tabc
F äc̈ac
��

Υb̈c̈ ◦ f bb̈ ◦ Σab|Tabc
idΥ

b̈c̈
∗F äb̈ab
+3 Υb̈c̈ ◦Υäb̈ ◦ faä|Tabc

Λäb̈c̈∗idfaä

+3 Υäc̈ ◦ faä|Tabc .
(11.126)

From (11.121) and (11.122) with c = a we see that Σba ◦Σab ∼= id(Ta,Ca,qa,ϕa),
and similarly Σab ◦ Σba ∼= id(Tb,Cb,qb,ϕb). Hence Σab : (Ta, Ca, qa, ϕa)→ (Tb, Cb,
qb, ϕb) is a coordinate change over Imϕa ∩ Imϕb, with quasi-inverse Σba. Also
from (11.121) for a, b we can deduce that Iaab = Iabb = idΣab .

Let a, b, c, d ∈ A, and consider the diagram of 2-morphisms over Imϕa ∩
Imϕb ∩ Imϕc ∩ Imϕd on W :

edḋ ◦ Σcd ◦ Σbc ◦ Σab

Eċḋcd∗id

"*

id∗Iabc
+3

id∗Ibcd∗id

��

edḋ ◦ Σcd ◦ Σac

id∗Iacd

��

Eċḋcd∗id

t|
Tċḋ ◦ ecċ ◦ Σbc ◦ Σab

id∗Eḃċbc∗id��

id∗Iabc +3 Tċḋ ◦ ecċ ◦ Σac

id∗Eȧċac ��
Tċḋ ◦ Tḃċ
◦ebḃ ◦ Σab

Kḃċḋ∗id��

id∗Eȧḃab+3 Tċḋ◦Tḃċ
◦Tȧḃ◦eaȧ

Kḃċḋ∗id ��

id∗Kȧḃċ∗id+3 Tċḋ◦
Tȧċ ◦ eaȧ

Kȧċḋ∗id
��Tḃḋ◦

ebḃ ◦ Σab

id∗Eȧḃab +3 Tḃḋ◦
Tȧḃ ◦ eaȧ

Kȧḃḋ∗id +3 Tȧḋ ◦ eaȧ

edḋ ◦ Σbd ◦ Σab

Eḃḋbd∗id

4<

id∗Iabd +3 edḋ ◦ Σad.

Eȧḋad

bj

(11.127)
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Here four small quadrilaterals commute by (11.125), two commute by compati-
bility of vertical and horizontal composition, and one commutes by (11.122). So
(11.127) commutes, implying that

idedḋ ∗
(
Iacd � (idΣcd ∗ Iabc)

)
= idedḋ ∗

(
Iabd � (Ibcd ∗ idΣab)

)
. (11.128)

Similarly we can show that

idfdd̈ ∗
(
Iacd � (idΣcd ∗ Iabc)

)
= idedḋ ∗

(
Iabd � (Ibcd ∗ idΣab)

)
. (11.129)

By comparing two 2-commutative diagrams similar to (11.123)–(11.124) and
using (11.122) and uniqueness of ε in Definition A.11 for the 2-Cartesian square
(11.118) with d in place of a, we can use (11.128)–(11.129) to show that

Iacd � (idΣcd ∗ Iabc) = Iabd � (Ibcd ∗ idΣab).

Now define W = (W,A), where A =
(
A, (Ta, Ca, qa, ϕa)a∈A, Σab, a,b∈A,

Iabc, a,b,c∈A
)
. Then W is Hausdorff and second countable as X,Y are, and

we have already proved Definition 4.14(a)–(h) for A above, so that W is an
m-Kuranishi space in mK̇ur with vdimW = vdimX + vdimY − vdimZ.

Define a 1-morphism e : W →X in mK̇ur by

e =
(
e, eai, a∈A, i∈I , E

i, i∈I
ab, a,b∈A, E

ij, i,j∈I
a, a∈A

)
,

where eai = Tȧi ◦ eaȧ and Ei
ab,E

ij
a are defined by the 2-commutative diagrams

ebi ◦ Σab
Eiab

+3 eai

Tḃi ◦ ebḃ ◦ Σab
idT

ḃi
∗Eȧḃab +3 Tḃi ◦ Tȧḃ◦eaȧ

Kȧḃi∗ideaȧ +3 Tȧi ◦ eaȧ,
(11.130)

Tij ◦ eai
Eija

+3 eaj

Tij ◦ Tȧi ◦ eaȧ
Kȧij∗ideaȧ +3 Tȧj ◦ eaȧ.

(11.131)

Here X = (X, I) in (4.6), and Tȧi,Kȧij are the implicit data in the definition
of the m-Kuranishi neighbourhood (Uȧ, Dȧ, rȧ, χȧ) on X in Definition 4.49,
and the Kȧḃi are the implicit data in the definition of the coordinate change
Tȧḃ : (Uȧ, Dȧ, rȧ, χȧ)→ (Uḃ, Dḃ, rḃ, χḃ) in Definition 4.51.

To show that e satisfies Definition 4.17, note that (a)–(d) are immediate, and
(e) follows from Σaa,E

ȧȧ
aa,Kȧȧi,Kȧii being identities, and (f)–(h) follow from the
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2-commutative diagrams

eci ◦ Σbc ◦ Σab

ideci
∗Iabc

��

Eibc∗idΣab

+3 ebi ◦ Σab

Eiab

��

Tċi◦ecċ
◦Σbc◦Σab

id∗Iabc

��

id∗Eḃċbc∗id +3 Tċi◦Tḃċ
◦ebḃ◦Σab

id∗Eȧḃab��

K
ḃċi
∗id
+3 Tḃi◦
ebḃ◦Σab

id∗Eȧḃab��
Tċi◦Tḃċ
◦Tȧḃ◦eaȧ

K
ȧḃċ
∗id

��

K
ḃċi
∗id
+3 Tḃi◦
Tȧḃ◦eaȧ

K
ȧḃi
∗id

��
Tċi◦
ecċ◦Σac

id∗Eȧċac +3 Tċi◦
Tȧċ◦eaȧ

Kȧċi∗id +3 Tȧi◦eaȧ

eci ◦ Σac
Eiac +3 eai,

(11.132)

Tij ◦ ebi ◦ Σab

E
ij
b
∗idΣab

��

idTij
∗Eiab

+3 Tij ◦ eai

Eija

��

Tij◦Tḃi
◦ebḃ◦Σab

K
ḃij
∗id��

id∗Eȧḃab +3 Tij◦Tḃi
◦Tȧḃ◦eaȧ

K
ḃij
∗id��

id∗K
ȧḃi
∗id
+3 Tij◦
Tȧi◦eaȧ

Kȧij∗id
��Tḃj◦

ebḃ◦Σab

id∗Eȧḃab +3 Tḃj◦
Tȧḃ◦eaȧ

K
ȧḃj
∗id
+3 Tȧj◦eaȧ

ebj ◦ Σab
E
j
ab +3 eaj ,

(11.133)

Tjk ◦ Tij ◦ eai

idTjk
∗Eija

��

Kijk∗ideai

+3 Tik ◦ eai

Eika

��

Tjk◦Tij◦Tȧi◦eaȧ
id∗Kȧij∗id
��

Kijk∗id +3 Tik◦Tȧi◦eaȧ
Kȧik∗ideaȧ

��
Tjk◦Tȧj◦eaȧ

Kȧjk∗ideaȧ +3 Tȧk◦eaȧ

Tjk ◦ eaj
Ejka +3 eak,

(11.134)

for all a, b, c ∈ A and i, j, k ∈ I. Here (11.132) uses (4.62) for the 2-morphism
Kȧḃċ constructed using Theorem 4.56(c), and (11.125), (11.130). Equation
(11.133) uses (4.58) for the coordinate change Tȧḃ : (Uȧ, Dȧ, rȧ, χȧ)→ (Uḃ, Dḃ,
rḃ, χḃ), and (11.130)–(11.131). Equation (11.134) uses (4.57) for the m-Kuranishi
neighbourhood (Uȧ, Dȧ, rȧ, χȧ) on X, and (11.131). All of (11.132)–(11.134) use
compatibility of vertical and horizontal composition.

We define a 1-morphism f : W → Y in mK̇ur as for e.
Definition 4.20 defines compositions g◦e,h◦f : X → Z, with 2-morphisms of

m-Kuranishi neighbourhoods Θg,eaik,Θ
h,f
ajk as in (4.24). We will define a 2-morphism

η : g ◦ e⇒ h ◦ f in mK̇ur, where η =
(
ηak, a∈A, k∈K

)
. Let a ∈ A and k ∈ K.
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We claim that there is a unique 2-morphism ηak : (g ◦ e)ak ⇒ (h ◦ f)ak on
Imϕa ∩ (g ◦ e)−1(Imωk) in W , such that for all i ∈ I and j ∈ J , the following
commutes on Imϕa ∩ e−1(Imχi) ∩ f−1(Imψj) ∩ (g ◦ e)−1(Imωk) in W :

gik ◦ eai
Θg,e
aik

+3 (g ◦ e)ak ηak
+3 (h ◦ f)ak hjk ◦ faj

Θh,f
ajk

ks

gik◦Tȧi◦eaȧ Φ˙̇ȧk◦gȧ˙̇ȧ◦eaȧ
G˙̇ȧk
ȧi ∗idks Φ˙̇ȧk◦hä˙̇ȧ◦faä

H ˙̇ȧk
äj ∗id+3 hjk◦Υäj◦faä.

(11.135)

To prove the claim, write ηijak for the 2-morphism ηak which makes (11.135)
commute. Let i, i′ ∈ I and j, j′ ∈ J , and consider the diagram of 2-morphisms
over Imϕa ∩ e−1(Imχi ∩ (Imχi′) ∩ f−1(Imψj ∩ Imψj′) ∩ (g ◦ e)−1(Imωk):

(g ◦ e)ak

ηijak

//

ηi
′j′
ak

oo

gik◦Tȧi◦eaȧ

Θg,e
aik

33

gi′k◦Tii′
◦Tȧi◦eaȧ

Gk
ii′∗idoo id∗Kȧii′∗id // gi′k◦Tȧi′ ◦eaȧ

Θg,e

ai′k

kk

Φ˙̇ȧk◦gȧ˙̇ȧ◦eaȧ =
Φ˙̇ȧk◦hä˙̇ȧ◦faä

G˙̇ȧk
ȧi ∗id

kk
G˙̇ȧk
ȧi′∗id

33

H ˙̇ȧk
äj ∗id
ss

H ˙̇ȧk
äj′∗id
++

hjk◦Υäj◦faä
Θh,f
ajk ++

hj′k◦Υjj′

◦Υäj◦faä
Hk
jj′∗idoo

id∗Λäjj′∗id // hj′k◦Υäj′ ◦faä
Θh,f

aj′kss
(h ◦ f)ak.

(11.136)

Here the outer pentagons commute by (11.135), the top and bottom quadrilaterals
commute by (4.16) for g◦e and h◦f , and the central two quadrilaterals commute

by (4.59) for gȧ˙̇ȧ and hä˙̇ȧ. Thus (11.136) commutes, so ηijak = ηi
′j′

ak on the
intersection of their domains in W .

Now ηijak is defined on Imϕa ∩ e−1(Imχi) ∩ f−1(Imψj) ∩ (g ◦ e)−1(Imωk),
and for all i ∈ I and j ∈ J these form an open cover of the domain Imϕa ∩ (g ◦
e)−1(Imωk) of the 2-morphism ηak that we want. So by the sheaf property of
2-morphisms of m-Kuranishi neighbourhoods in Theorem 4.13 and Definition
A.17(iv), there is a unique 2-morphism ηak : (g ◦ e)ak ⇒ (h ◦ f)ak over Imϕa ∩
(g ◦ e)−1(Imωk) such that ηak|Imϕa∩e−1(Imχi)∩f−1(Imψj)∩(g◦e)−1(Imωk) = ηijak for
all i ∈ I and j ∈ J , so that (11.135) commutes, proving the claim.

To show η =
(
ηak, a∈A, k∈K

)
: g ◦ e⇒ h ◦ f is a 2-morphism in mK̇ur, let
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a, a′ ∈ A, i ∈ I, j ∈ J and k ∈ K, and consider the diagram of 2-morphisms

(g ◦ e)a′k ◦ Σaa′

ηa′k∗idΣ
aa′

��

(G◦E)k
aa′

+3 (g ◦ e)ak

ηak

��

gik◦Tȧ′i
◦ ea′ȧ′ ◦Σaa′

Θ
g,e

a′ik∗id
`h

id∗
Eȧȧ

′
aa′ +3 gik◦Tȧ′i

◦Tȧȧ′ ◦eaȧ

id∗
Kȧȧ′i∗id +3 gik◦

Tȧi◦eaȧ

Θ
g,e
aik

6>

Φ˙̇ȧ′k◦gȧ′ ˙̇ȧ′
◦ ea′ȧ′ ◦Σaa′

G˙̇ȧ′k
ȧ′i ∗id

KS

id∗
Eȧȧ

′
aa′ +3 Φ˙̇ȧ′k◦gȧ′ ˙̇ȧ′

◦Tȧȧ′ ◦eaȧ

id∗
G˙̇ȧ˙̇ȧ′
ȧȧ′
∗id +3

G˙̇ȧ′k
ȧ′i ∗id

@H

Φ˙̇ȧ′k◦Φ˙̇ȧ˙̇ȧ′◦ gȧ˙̇ȧ◦eaȧ

M˙̇ȧ˙̇ȧ′k
∗id +3 Φ˙̇ȧk◦

gȧ˙̇ȧ◦eaȧ

G˙̇ȧk
ȧi ∗id

KS

Φ˙̇ȧ′k◦hä′ ˙̇ȧ′
◦ fa′ä′ ◦Σaa′

H ˙̇ȧ′k
ä′j ∗id ��

id∗
F ää

′
aa′ +3 Φ˙̇ȧ′k◦hä′ ˙̇ȧ′

◦Υää′ ◦faä

id∗
H ˙̇ȧ˙̇ȧ′
ää′
∗id +3

H ˙̇ȧ′k
ä′j ∗id��

Φ˙̇ȧ′k◦Φ˙̇ȧ˙̇ȧ′

◦ hä˙̇ȧ◦faä

M˙̇ȧ˙̇ȧ′k
∗id +3 Φ˙̇ȧk◦

hä˙̇ȧ◦faä
H ˙̇ȧk
äj ∗id��

hjk◦Υä′j◦
fa′ä′ ◦Σaa′

Θ
h,f

a′jk∗idv~

id∗
F ää

′
aa′

+3 hjk◦Υä′j◦
Υää′ ◦faä id∗

Λää′j∗id

+3 hjk◦
Υäj◦faä

Θ
h,f
ajk  (

(h ◦ f)a′k ◦ Σaa′
(H◦F )k

aa′ +3 (h ◦ f)ak.

(11.137)

Here the left and right hexagons commute by (11.135), the top and bottom
pentagons by (4.15) for g ◦e,h ◦f , the two centre left quadrilaterals by compati-
bility of vertical and horizontal composition, the centre left hexagon by (11.120),

and the two centre right pentagons by (4.62) for G˙̇ȧ˙̇ȧ′

ȧȧ′ ,H
˙̇ȧ˙̇ȧ′

ää′ . Thus (11.137)
commutes.

The outer rectangle of (11.137) proves the restriction of Definition 4.18(a) for
η to the intersection of its domain with e−1(Imχi)∩ f−1(Imψj). As these open
subsets cover the domain, the sheaf property of 2-morphisms of m-Kuranishi
neighbourhoods implies Definition 4.18(a) for η. We prove Definition 4.18(b) in
a similar way. Thus η : g ◦ e⇒ h ◦ f is a 2-morphism in mK̇ur, and we have
constructed the 2-commutative diagram (11.15) in mK̇urD, in the case when
Assumption 11.3 holds. We will show (11.15) is 2-Cartesian in §11.9.3.

11.9.2 Constructing W, e,f ,η in the general case

Next we generalize the work of §11.9.1 to the case when Assumption 11.3 does
not hold. Then in the first part of §11.9.1, we can no longer take W to have
topological space

{
(x, y) ∈ X × Y : g(x) = h(y)

}
with e : W → X, f : W → Y

acting by e : (x, y) 7→ x, f : (x, y) 7→ y. Also for the fibre product Tk in Ṁan in
(11.114), we cannot assume Tk has topological space (11.115).

We need to provide new definitions for W, e, f , and the continuous maps ϕa :
q−1
a (0)→W for a ∈ A. This is very similar to the definition of the topological

space Ck(X) and map Πk : Ck(X)→ X for Ck(X),Πk in Definition 4.39.
As in §11.9.1 we choose a family indexed by a ∈ A of m-Kuranishi neighbour-

hoods (Uȧ, Dȧ, rȧ, χȧ), (Vä, Eä, sä, ψä), (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ, ω˙̇ȧ) on X,Y ,Z as in §4.7
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with Imχȧ ⊆ g−1(Imω˙̇ȧ), Imψä ⊆ h−1(Imω˙̇ȧ) and Imω˙̇ȧ, and 1-morphisms gȧ˙̇ȧ :
(Uȧ, Dȧ, rȧ, χȧ) → (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ, ω˙̇ȧ), hä˙̇ȧ : (Vä, Eä, sä, ψä) → (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ, ω˙̇ȧ)
over (Imχȧ, g) and (Imψä,h), as in Definition 4.54, such that gȧä,hä˙̇ȧ are
w-transverse as in Definition 11.16, and{

(x, y) ∈ X × Y : g(x) = h(y)
}

=
⋃
a∈A

{
(x, y) ∈ Imχȧ × Imψä : g(x) = h(y)

}
.

Applying Definition 11.16 and Theorem 11.17 to the w-transverse 1-morphisms
gȧ˙̇ȧ,hä˙̇ȧ in GmK̇ND gives an object (Ta, Ca, qa) in GmK̇ND in a 2-Cartesian
square (11.118) in GmK̇ND and GmK̇NE , for all a ∈ A.

Now follow §11.9.1 between (11.118) and (11.126). For all a, b ∈ A this defines
an open subset Tab ⊆ Ta and a 1-morphism Σab : (Ta, Ca, qa)|Tab → (Tb, Cb, qb)
in GmK̇ND with Σaa = id(Ta,Ca,qa), and for all a, b, c ∈ A it defines an open
subset Tabc = Tab ∩ Tbc ⊆ Ta and a 2-morphism Iabc : Σbc ◦ Σab|Tabc ⇒ Σac|Tabc
in GmK̇ND. None of this uses W, e, f, ϕa, which are not yet defined.

Definition 4.2(d) for Σab shows we have a continuous map

Σab|q−1
a (0)∩Tab : q−1

a (0) ∩ Tab −→ q−1
b (0), a, b ∈ A. (11.138)

Also Σaa = id(Ta,Ca,qa) and Definition 4.3 for Iabc imply that

Σaa|q−1
a (0)∩Taa = id : q−1

a (0) −→ q−1
a (0),

Σbc|··· ◦ Σab|··· = Σac|··· : q−1
a (0) ∩ Tab ∩ Tac −→ q−1

c (0).
(11.139)

Setting c = a we see that Σab|q−1
a (0)∩Tab : q−1

a (0) ∩ Tab → q−1
b (0) ∩ Tba is a

homeomorphism, with inverse Σba|q−1
b (0)∩Tba .

As for the definition of Ck(X) in Definition 4.39, define a binary relation ≈ on∐
a∈A q

−1
a (0) by wa ≈ wb if a, b ∈ A and wa ∈ q−1

a (0) ∩ Tab with Σab(wa) = wb
in q−1

b (0). Then (11.138)–(11.139) imply that ≈ is an equivalence relation on∐
a∈A q

−1
a (0). As in (4.49), define W to be the topological space

W =
[∐

a∈A q
−1
a (0)

]/
≈,

with the quotient topology. For each a ∈ A define ϕa : q−1
a (0) → W by

ϕa : wa 7→ [wa], where [wa] is the ≈-equivalence class of wa.
Define e : W → X and f : W → Y by e([wa]) = χȧ ◦ eaȧ(wa) and f([wa]) =

ψä ◦ faä(wa) for a ∈ A and wa ∈ q−1
a (0). To see that e is well defined, note that

if wa ≈ wb as above, so that Σab(wa) = wb, then

χȧ ◦ eaȧ(wa) = χḃ ◦ Tȧḃ ◦ eaȧ(wa) = χḃ ◦ ebḃ ◦ Σab(wa) = χḃ ◦ ebḃ(wb),

using Definition 4.2(e) for the coordinate change Tȧḃ on X in the first step, and

the 2-morphism Eȧḃ
ab : ebḃ ◦ Σab ⇒ Tȧḃ ◦ eaȧ|Tab from (11.119) in the second. In

the same way, f is well defined.
Very similar proofs to those in Definition 4.39 show that ϕa : q−1

a (0)→W
is a homeomorphism with an open set in W , so that (Ta, Ca, qa, ϕa) is an m-
Kuranishi neighbourhood on W , and e, f are continuous with eaȧ : (Ta, Ca, qa,
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ϕa) → (Uȧ, Dȧ, rȧ, χȧ) a 1-morphism over (Imϕa, e) and faä : (Ta, Ca, qa, ϕa)
→ (Vä, Eä, sä, ψä) a 1-morphism over (Imϕa, f), and W is Hausdorff and second
countable with W =

⋃
a∈A Imϕa. Then the proofs in §11.9.1, but with these

new W, e, f, ϕa, construct an m-Kuranishi space W = (W,A) and 1-morphisms
e : W →X, f : W → Y and a 2-morphism η : g ◦ e⇒ h ◦ f in mK̇ur.

11.9.3 Proving the universal property of the fibre product

We continue in the situation of §11.9.2. There, given w-transverse 1-morphisms g :
X → Z, h : Y → Z in mK̇urD, we constructed W, e,f ,η in a 2-commutative
square (11.15) in mK̇urD. We will now prove that (11.15) is 2-Cartesian in
mK̇urE , by verifying the universal property in Definition A.11. This will also
imply that (11.15) is 2-Cartesian in mK̇urD, as D implies E.

Suppose we are given 1-morphisms c : V →X and d : V → Y in mK̇urE
and a 2-morphism κ : g ◦ c⇒ h ◦ d. Write V = (V,L) with

L =
(
L, (Sl, Bl, pl, υl)l∈L,Pll′, l,l′∈L,Hll′l′′, l,l′,l′′∈L

)
,

and use our usual notation for c,d,κ. Our goal is to construct a 1-morphism
b : V →W in mK̇urE and 2-morphisms ζ : e ◦ b⇒ c, θ : f ◦ b⇒ d such that
the following diagram (A.17) of 2-morphisms commutes:

(g ◦ e) ◦ b
αg,e,b��

η∗idb

+3 (h ◦ f) ◦ b
αh,f,b

+3 h ◦ (f ◦ b)
idh∗θ

��
g ◦ (e ◦ b)

idg∗ζ +3 g ◦ c κ +3 h ◦ d.
(11.140)

Let a ∈ A and l ∈ L. Then (Uȧ, Dȧ, rȧ, χȧ) is an m-Kuranishi neighbour-
hood on X, and (Sl, Bl, pl, υl) is an m-Kuranishi neighbourhood on V as in
Example 4.50. Thus Theorem 4.56(b) gives a 1-morphism clȧ : (Sl, Bl, pl, υl)→
(Uȧ, Dȧ, rȧ, χȧ) over (Im υl ∩ c−1(Imχȧ), c). Similarly we get a 1-morphism
dlä : (Sl, Bl, pl, υl) → (Vä, Eä, sä, ψä) over (Im υl ∩ d−1(Imψä),d). Composing
gives gȧ˙̇ȧ ◦clȧ over g ◦e and hä˙̇ȧ ◦dlä over h ◦f . Hence Theorem 4.56(c) gives a
unique 2-morphism κl˙̇ȧ : gȧ˙̇ȧ◦clȧ ⇒ hä˙̇ȧ◦dlä over Im υl∩c−1(Imχȧ)∩d−1(Imψä)
such that the analogue of (4.62) commutes.

Writing clȧ = (Slȧ, clȧ, ĉlȧ), dlä = (Slä, dlä, d̂lä) and setting Sla = Slȧ ∩ Slä,
we now have a 2-commutative diagram in GmK̇NE :

(Sl, Bl, pl)|Sla
IQ

κl˙̇ȧ

dlä|Sla
//

clȧ|Sla��

(Vä, Eä, sä)

hä˙̇ȧ ��
(Uȧ, Dȧ, rȧ)

gȧ˙̇ȧ // (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ).

The 2-Cartesian property of (11.118) in GmK̇NE gives a 1-morphism

bla : (Sl, Bl, pl)|Sla −→ (Ta, Ca, qa),

and 2-morphisms

ζlaȧ : eaȧ ◦ bla =⇒ clȧ|Sla , θlaä : faä ◦ bla =⇒ dlä|Sla , (11.141)
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such that the following commutes

gȧ˙̇ȧ ◦ eaȧ ◦ bla
idgȧ˙̇ȧ

∗ζlaȧ��

hä˙̇ȧ ◦ faä ◦ bla
idhä˙̇ȧ

∗θlaä
��

gȧ˙̇ȧ ◦ clȧ|Sla
κl˙̇ȧ +3 hä˙̇ȧ ◦ dlä|Sla .

(11.142)

Now let a ∈ A and l, l′ ∈ L. Then we have 1-morphisms

bla|Sla∩Sll′ , bl′a ◦ Pll′ |Sla∩Sll′ : (Sl, Bl, pl)|Sla∩Sll′ −→ (Ta, Ca, qa),

and 2-morphisms ζlaȧ,θlaä in (11.141) such that (11.142) commutes, and

C ȧ
ll′ � (ζl′aȧ ∗ idPll′ ) : eaȧ ◦ bl′a ◦ Pll′ |Sla∩Sll′ =⇒ clȧ|Sla∩Sll′ ,

Dä
ll′ � (θl′aä ∗ idPll′ ) : faä ◦ bl′a ◦ Pll′ |Sla∩Sll′ =⇒ dlä|Sla∩Sll′ ,

for C ȧ
ll′ : cl′ȧ ◦ Pll′ ⇒ clȧ and Dä

ll′ : dl′ä ◦ Pll′ ⇒ dlä given by Theorem 4.56(c).
Using Theorem 4.56(c) we can show that the following commutes:

gȧ˙̇ȧ ◦ eaȧ ◦ bl′a ◦ Pll′ |Sla∩Sll′
idgȧ˙̇ȧ

∗(Cȧ
ll′�(ζl′aȧ∗idP

ll′
))

��

hä˙̇ȧ ◦ faä ◦ bl′a ◦ Pll′ |Sla∩Sll′
idhä˙̇ȧ

∗(Dä
ll′�(θl′aä∗idP

ll′
))
��

gȧ˙̇ȧ ◦ clȧ|Sla∩Sll′
κl˙̇ȧ +3 hä˙̇ȧ ◦ dlä|Sla∩Sll′ .

Hence the second part of the universal property for the 2-Cartesian square
(11.118) says that there is a unique 2-morphism in GmK̇NE

Ba
ll′ : bl′a ◦ Pll′ |Sla∩Sll′ =⇒ bla|Sla∩Sll′

such that

C ȧ
ll′ � (ζl′aȧ ∗ idPll′ ) = ζlaȧ � (ideaȧ ∗B

a
ll′),

Dä
ll′ � (θl′aä ∗ idPll′ ) = θlaä � (idfaä ∗B

a
ll′).

(11.143)

Note that the existence of Ba
ll′ implies that

bla|Im υl∩Im υl′∩c−1(Imχȧ)∩d−1(Imψä) = bl′a|···. (11.144)

Next let a, a′ ∈ A and l ∈ L. A similar argument to the above yields a unique
2-morphism in GmK̇NE

Baa′

l : Σaa′ ◦ bla|Sla∩Sla′ ⇒ bla′ |Sla∩Sla′

such that

C ȧȧ′

l � (idTȧȧ′ ∗ ζlaȧ)� (Eȧȧ′

aa′ ∗ idbla) = ζlaȧ′ � (idea′ȧ′ ∗B
aa′

l ),

Dää′

l � (idΥää′ ∗ θlaä)� (F ää
′

aa′ ∗ idbla) = θlaä′ � (idfa′ä′ ∗B
aa′

l ),
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where C ȧȧ′

l : Tȧȧ′ ◦clȧ ⇒ clȧ′ and Dää′

l : Υää′ ◦dlä ⇒ dlä′ are given by Theorem

4.56(c). Note that the existence of Baa′

l implies that

bla|Im υl∩c−1(Imχȧ∩Imχȧ′ )∩d−1(Imψä∩Imψä′ )
= bla′ |···. (11.145)

As the domains of bla for a ∈ A and l ∈ L cover V , equations (11.144)
and (11.145) imply that there is a unique continuous map b : V → W with
b|Im υl∩Im υl′∩c−1(Imχȧ)∩d−1(Imψä) = bla for all a ∈ A and l ∈ L. Define

b =
(
b, bla, l∈L, a∈A, B

a, a∈A
ll′, l,l′∈L, B

aa′, a,a′∈A
l, l∈L

)
.

We will show that b : V →W is a 1-morphism in mK̇ur. Definition 4.17(a)–(d)
are immediate. For (e), setting l = l′ we have C ȧ

ll = id = Dä
ll, so uniqueness of

Ba
ll satisfying (11.143) gives Ba

ll = idbla , and similarly Baa
l = idbla .

For (f), let l, l′, l′′ ∈ L and a ∈ A, and consider the diagram

eaȧ ◦ bl′′a ◦ Pl′l′′ ◦ Pll′

ζl′′aȧ∗id%-

id∗Hll′l′′

��

id∗Ba
l′l′′∗id

+3 eaȧ ◦ bl′a ◦ Pll′

id∗Ba
ll′

��

ζl′aȧ∗idqy
cl′′ȧ ◦ Pl′l′′ ◦ Pll′

id∗Hll′l′′��

Cȧ
l′l′′∗id +3 cl′ȧ ◦ Pll′

Cȧ
ll′��

cl′′ȧ ◦ Pll′′
Cȧ
ll′′ +3 clȧ

eaȧ ◦ bl′′a ◦ Pll′′

ζl′′aȧ∗id
19

id∗Ba
ll′′ +3 eaȧ ◦ bla.

ζlaȧ

em

(11.146)

Here the top, bottom and right quadrilaterals commute by (11.143), the left by
compatibility of vertical and horizontal composition, and the centre by Theorem
4.56(d). So (11.146) commutes, and so does the analogous diagram involving
faä,θlaä,D

ä
ll′ in place of eaȧ, ζlaȧ,C

ȧ
ll′ . Using these and uniqueness of Ba

ll′

satisfying (11.143), we deduce that the following commutes:

bl′′a ◦ Pl′l′′ ◦ Pll′

idb
l′′a
∗Hll′l′′��

Ba
l′l′′∗idP

ll′

+3 bl′a ◦ Pll′

Ba
ll′ ��

bl′′a ◦ Pll′′
Ba
ll′′ +3 bla.

This is Definition 4.17(f) for b, and we prove (g),(h) in a similar way.
By the method used to construct η : g ◦ e⇒ h ◦ f in §11.9.1, we can show

that there are unique 2-morphisms in mK̇ur

ζ =
(
ζli, l∈L, i∈I

)
: e ◦ b =⇒ c, θ =

(
θlj, l∈L, j∈J

)
: f ◦ b =⇒ d,

150



such that the following commute for all l ∈ L, a ∈ A, i ∈ I and j ∈ J :

(e ◦ b)li
ζli

+3 cli

eai ◦ bla
Θe,b
lai

KS

Tȧi◦eaȧ◦bla
id∗ζlaȧ +3 Tȧi◦clȧ

Cȧill +3 cli ◦ Pll,

(11.147)

(f ◦ b)lj
θlj

+3 dlj

faj ◦ bla
Θf,b
laj

KS

Υäj◦faä◦bla
id∗θlaä +3 Υäj◦dlä

Däj
ll +3 dlj ◦ Pll.

(11.148)

Here Θe,blai ,Θ
f ,b
laj are as in Definition 4.20 for e ◦ b,f ◦ b, and C ȧi

ll : Tȧi ◦ clȧ ⇒
cli ◦ Pll, D

äj
ll : Υäj ◦ dlä ⇒ dlj ◦ Pll are as in Definition 4.54 for clȧ,dlä.

We now prove that (11.140) commutes by considering the diagram

((g ◦ e) ◦ b)lk

(αg,e,b)lk

��

(η∗idb)lk

+3 ((h ◦ f) ◦ b)lk
(αh,f,b)lk

+3 (h ◦ (f ◦ b))lk

(idh
∗θ)lk

��

(g ◦ e)ak ◦ bla

Θ
g◦e,b
lak

`h

ηak∗id
+3 (h ◦ f)ak ◦ bla

Θ
h◦f,b
lak

KS

hjk ◦ (f ◦ b)lj

Θ
g,f◦b
ljk

6>

id∗θlj

�


gik◦
eai◦bla

Θ
g,e
aik
∗id

KS

id∗Θe,b
lai

��

id∗ζlaȧ
 (

Φ˙̇ȧk◦hä˙̇ȧ◦faä◦bla=
Φ˙̇ȧk◦gȧ˙̇ȧ◦eaȧ◦bla

G˙̇ȧk
ȧi ∗idks

H ˙̇ȧk
äj ∗id

+3

id∗ζlaȧ ��
id∗θlaä
 (

hjk◦
faj◦bla

Θ
h,b
ajk
∗idfn

id∗Θf,b
laj

KS

id∗θlaä
��

gik◦
Tȧi◦clȧ

id∗Cȧill
��

Φ˙̇ȧk◦
gȧ˙̇ȧ◦clȧ

G˙̇ȧk
ȧi ∗idks

(G◦C)˙̇ȧkll

��

id∗κl˙̇ȧ +3 Φ˙̇ȧk◦
hä˙̇ȧ◦dlä

H ˙̇ȧk
äj ∗id+3

(H◦D)˙̇ȧkll

&.

hjk◦
Υäj◦dlä

id∗Däj
ll
��gik◦

(e ◦ b)li

Θ
g,e◦b
likv~

id∗ζli +3 gik ◦ cli
Θ

g,c
lik

 (

hjk ◦ dlj
Θ

h,d
ljk

 (
(g ◦ (e ◦ b))lk

(idg∗ζ)lk +3 (g ◦ c)lk
κlk +3 (h ◦ d)lk,

(11.149)
for all l ∈ L, a ∈ A, i ∈ I, j ∈ J and k ∈ K. Here the left and top right
pentagons commute by (4.27), the top left, bottom left, and rightmost quadri-
laterals by (4.30), the bottom right quadrilateral including κlk by (4.62) for
κlä, the quadrilaterals to left and right of this by (4.60), the bottom centre left
quadrilateral and the right semicircle by (11.147)–(11.148), the centre triangle
by (11.142), the two quadrilaterals to the left and right of this by compatibility
of vertical and horizontal composition, and the top centre pentagon by (11.135).

Thus (11.149) commutes. The outside of (11.149) proves the restriction of the
‘lk’ component of (11.140) to the intersection of its domain with b−1(Imϕa) ∩
c−1(Imχi) ∩ d−1(Imψj). As these intersections for all a ∈ A, i ∈ I, j ∈ J
cover the whole domain, the sheaf property of 2-morphisms of m-Kuranishi
neighbourhoods implies that (11.140) commutes. This proves the first part of the
universal property in Definition A.11, the existence of b, ζ,θ satisfying (11.140).

For the second part, suppose b̃ : V →W is a 1-morphism in mK̇urE and
ζ̃ : e ◦ b̃⇒ c, θ̃ : f ◦ b̃⇒ d are 2-morphisms such that the analogue of (11.140)
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commutes. Then b̃ contains 1-morphisms b̃la : (Sl, Bl, pl, υl)→ (Ta, Ca, qa, ϕa),
and running the construction of ζ,θ above in reverse, we find that as in (11.141)
there are unique 2-morphisms ζ̃laȧ : eaȧ ◦ b̃la ⇒ clȧ, θ̃laä : faä ◦ b̃la ⇒ dlä such
that the analogues of (11.147)–(11.148) commute for all i ∈ I and j ∈ J :

(e ◦ b̃)li
ζ̃li

+3 cli

eai ◦ b̃la

Θe,b̃
lai

KS

Tȧi◦eaȧ◦b̃la
id∗ζ̃laȧ +3 Tȧi◦clȧ

Cȧill +3 cli ◦ Pll,

(f ◦ b̃)lj
θ̃lj

+3 dlj

faj ◦ b̃la
Θf,b̃
laj

KS

Υäj◦faä◦b̃la
id∗θ̃laä +3 Υäj◦dlä

Däj
ll +3 dlj ◦ Pll.

From the analogue of (11.140) we can use the analogue of (11.149) in reverse
to prove that the analogue of (11.142) commutes:

gȧ˙̇ȧ ◦ eaȧ ◦ b̃la
idgȧ˙̇ȧ

∗ζ̃laȧ
��

hä˙̇ȧ ◦ faä ◦ b̃la
idhä˙̇ȧ

∗θ̃laä
��

gȧ˙̇ȧ ◦ clȧ
κl˙̇ȧ +3 hä˙̇ȧ ◦ dlä.

Then the second part of the universal property of the 2-Cartesian square (11.118)
shows that there is a unique 2-isomorphism εla : bla ⇒ b̃la with ζlȧ = ζ̃lȧ�(ideaȧ∗
εla) and θlä = θ̃lä � (idfaä ∗ εla). We can then check ε =

(
εla, l∈L, a∈A

)
: b⇒ b̃

is the unique 2-morphism with ζ = ζ̃ � (ide ∗ ε) and θ = θ̃ � (idf ∗ ε). This

completes the proof that (11.15) is 2-Cartesian in mK̇urE , and hence in mK̇urD.
We have now proved the first part of Theorem 11.19.

11.9.4 Proof of parts (a)–(h)

Finally we prove parts (a)–(h) of Theorem 11.19.

Part (a). Suppose g,h in §11.9.1–§11.9.3 are transverse, not just w-transverse.
Then in §11.9.1–§11.9.2 we can choose the diagrams (11.117)–(11.118) for a ∈ A
with gȧ˙̇ȧ,hä˙̇ȧ transverse, not just w-transverse. So as in Definition 11.16 we
have Ca = 0, as Ca is the kernel of (11.11), which is an isomorphism. Thus the
m-Kuranishi structure on W has m-Kuranishi neighbourhoods (Ta, Ca, qa, ϕa)
with Ca = qa = 0 for all a ∈ A. Therefore W is a manifold as in the proof of
Theorem 10.45.

Part (b). Suppose (Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn), gln,hmn
are as in Theorem 11.19(b), and (Tk, Ck, qk), ekl,fkm are constructed from
them as in Definition 11.16. Then in §11.9.2, we can choose the diagram
(11.117) for some a ∈ A to be (11.116), so that (Ta, Ca, qa) = (Tk, Ck, qk). Thus
(Ta, Ca, qa, ϕa) in the m-Kuranishi structure A of W = (W,A) in §11.9.1–§11.9.2
has Ta = Tk, Ca = Ck, and qa = qk, as in Theorem 11.19(b).
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By Example 4.50, (Ta, Ca, qa, ϕa) is an m-Kuranishi neighbourhood on W.
The definitions of e,f ,η in §11.9.1–§11.9.2 then imply that eaȧ = ekl and
faä = fkm are 1-morphisms of m-Kuranishi neighbourhoods over e : W →X,
f : W → Y as in §4.7, and comparing (4.62) and (11.135) shows that the
unique 2-morphism ηaȧä˙̇ȧ = ηklmn : gln ◦ ekl ⇒ hmn ◦ fkm constructed from
η : g ◦ e⇒ h ◦ f in Theorem 4.56(b) is the identity, as in (11.116) and (11.117).

This proves part (b) in the special case that we choose to construct W, e,f ,η
in §11.9.1–§11.9.2 including the given data (Ul, Dl, rl, χl), . . . ,hmn. But any other
possible choices of W′, e′,f ′,η′ in a 2-Cartesian square (11.15) are canonically
equivalent to W, e,f ,η, by properties of fibre products, and we can use the
canonical equivalence i : W → W′ and 2-morphisms e′ ◦ i ⇒ e, f ′ ◦ i ⇒
f to convert (Ta, Ca, qa, ϕa), eaȧ,faä to m-Kuranishi neighbourhoods and 1-
morphisms over W′, e′,f ′ satisfying the required conditions.

Part (c). We have already proved (c) in §11.9.1 and §11.9.3, as in §11.9.1, when
Ṁan satisfies Assumption 11.3 we constructed W, e,f with topological space
W =

{
(x, y) ∈ X × Y : g(x) = h(y)

}
, and maps e : (x, y) 7→ x, f : (x, y) 7→ y.

Part (d). Suppose Ṁan satisfies Assumption 11.4(a), and we are given a
2-Cartesian square (11.15) in mK̇urD with g a w-submersion, so that g,h are
w-transverse. Let w ∈W with e(w) = x in X and f(w) = y in Y . Then in (b)
we can choose gln : (Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn), hmn : (Vm, Em, sm, ψm)
→ (Wn, Fn, tn, ωn) with x ∈ Imχl, y ∈ Imψm and gln a w-submersion. So (b)
gives (Tk, Ck, qk, ϕk), ekl,fkm constructed as in Definition 11.16, and w ∈ Imϕk.

Then gln|U̇ln : U̇ln → Wn is a submersion in the fibre product (11.114) for
Tk by Definition 11.15(iii), so fkm : Tk → Vm is a submersion by Assumption
11.4(a). Also ĝln|U̇ln is surjective by Definition 11.15(iv), which implies that

f̂km : Ck → f∗km(Dm) is surjective by the definition of Ck, f̂km in Definition

11.16. Hence fkm = (Tk, fkm, f̂km) is a w-submersion by Definition 11.15. As
we can find such fkm over (Imϕk,f) with w ∈ Imϕk for all w ∈W, we see that
f : W →X is a w-submersion by Definition 11.18.

Part (e). Suppose Ṁan satisfies Assumptions 10.1 and 11.5, and we are
given a 2-Cartesian square (11.15) in mK̇urD with g,h w-transverse. Let
w ∈ W with e(w) = x in X, f(w) = y in Y , and g(x) = h(y) = z in
Z. Choose (Tk, Ck, qk, ϕk), . . . , (Wn, Fn, tn, ωn) and ekl, . . . ,hmn as in (b) with
w ∈ Imϕk, x ∈ Imχl, y ∈ Imψm and z ∈ Imωn. Set tk = ϕ−1

k (w), ul = χ−1
l (x),
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vm = ψ−1
m (y) and wn = ω−1

n (z), and consider the commutative diagram:

0

��

0

��

0

��

0

��
· · · 0 // 0

0

��

0 // TtkTk Ttkekl

Ttkfkm


��

dtkqk // Ck|tk êkl|tk
f̂km|tk


��

0 // 0

0

��

0 // · · ·

· · · 0 // 0

0

��

0 // TulUl⊕
TvmVm(

Tulgln −Tvmhmn
)

��

dulrl 0

0 dvmsm


// Dl|ul⊕
Em|vm

(
ĝln|ul −ĥmn|vm

)
��

0 // 0

0

��

0 // · · ·

· · · 0 // 0

��

0 // TwnWn

��

dwn tn // Fn|wn
��

0 // 0

��

0 // · · ·

0 0 0 0.

(11.150)

Here the second column is exact by Assumption 11.5 applied to the transverse
fibre product (11.114) at tk, and the third column is exact by Definition 11.16.

As in equation (10.27) of Definition 10.21, the cohomology groups of the
first row of (11.150) at the second and third columns are TwW and OwW, and
similarly the second and third rows have cohomology TxX ⊕ TyY , OxX ⊕OyY
and TzZ, OzZ.

In the setting of Definition 10.69, regard (11.150) as a diagram (10.89), a
short exact sequence of complexes E•, F •, G•, the first, second and third rows
of (11.150) respectively, with the third column of (11.150) in degree zero. Thus
Definition 10.69 constructs a long exact sequence (10.90) from (11.150). This
sequence is equation (11.16) in Theorem 11.19(d), as we want.

In more detail, our identification of the cohomology of the rows of (11.150)
shows that the vector spaces in (10.90) are 0, TwW, TxX ⊕ TyY , . . . , OzZ, 0 as
in (11.16). Comparing Definitions 10.21 and 10.69 we see that the morphisms
Hk(θ•), Hk(ψ•) in (10.90) for k = −1, 0 are Twe⊕ Twf , . . . , Oxg⊕−Oyh, as in
(11.16). We define δg,hw in (11.16) to be the connecting morphism δ−1

θ•,ψ• in (10.90)
from Definition 10.69. A proof similar to the definition of Txf , Oxf in Definition
10.21 shows δg,hw is independent of the choices of (Tk, Ck, qk, ϕk), . . . ,hmn above.

Part (f). Suppose Ṁan satisfies Assumptions 10.19 and 11.6, and we are
given a 2-Cartesian square (11.15) in mK̇urD with g,h w-transverse. Let
w ∈ W with e(w) = x in X, f(w) = y in Y , and g(x) = h(y) = z in
Z. Choose (Tk, Ck, qk, ϕk), . . . , (Wn, Fn, tn, ωn) and ekl, . . . ,hmn as in part (b)
with w ∈ Imϕk, x ∈ Imχl, y ∈ Imψm and z ∈ Imωn. Set tk = ϕ−1

k (w),
ul = χ−1

l (x), vm = ψ−1
m (y) and wn = ω−1

n (z).
As the fibre product (11.114) is transverse, Assumption 11.6 says that

QtkTk Qtkekl

//

Qtkfkm��

QvmVm
Qvmhmn ��

QulUl
Qulgln // QwnWn

(11.151)
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is Cartesian in Q. Now Definition 10.30 gives isomorphisms Qw,k : QwW →
QtkTk, . . . , Qz,n : QzZ → QwnWn in Q such that (10.42) commutes for ekl,
fkm, gln,hmn. Thus (11.151) is isomorphic in Q to the commutative square
(11.17), so (11.17) is Cartesian in Q, as we have to prove.

Part (g). Suppose Ṁanc satisfies Assumptions 3.22, 11.1, and 11.7, and we
are given a 2-Cartesian square (11.15) in mK̇urD with g,h w-transverse. Since
C : Ṁanc → Ṁ̌anc maps Ṁanc

D → Ṁ̌anc
D by Assumption 11.7, the corner

2-functor C : mK̇urc → mK̇̌urc from §4.6 maps mK̇urc
D → mK̇̌urc

D. Thus

applying C to (11.15) shows (11.18) is a 2-commutative square in mK̇̌urc
D. We

must show that C(g), C(h) are w-transverse, and (11.18) is 2-Cartesian.
Choose (Tk, Ck, qk, ϕk), . . . , (Wn, Fn, tn, ωn) and ekl, . . . ,hmn as in part (b).

Then Definitions 4.60 and 4.61 construct m-Kuranishi neighbourhoods (T(a,k),
C(a,k), q(a,k), ϕ(a,k)) on Ca(W) for a > 0, and so on, and 1-morphisms e(a,k)(b,l),

. . . ,h(c,m)(d,n) over C(e), . . . , C(h) in a 2-commutative diagram in ǦmK̇Nc
D:∐

a>0(T(a,k), C(a,k), q(a,k))

HP
id

∐
a,c>0 f(a,k)(c,m)

//

∐
a,b>0 e(a,k)(b,l)

��

∐
c>0(V(c,m), E(c,m), s(c,m))

∐
c,d>0 h(c,m)(d,n)

��∐
b>0(U(b,l), D(b,l), r(b,l))

∐
b,d>0 g(b,l)(d,n)

//
∐
d>0(W(d,n), F(d,n), t(d,n)).

(11.152)

This is the result of applying the corner 2-functor to (11.14).
Applying C : Ṁanc → Ṁ̌anc to the transverse fibre product (11.114) in

Ṁanc and using Assumption 11.7 shows we have a fibre product in Ṁ̌anc

C(Tk) = C(U̇ln)×C(gln|U̇ln ),C(Wn),C(hmn|V̇mn ) C(V̇mn), (11.153)

where C(gln|U̇ln), C(hmn|V̇mn) are transverse in Ṁ̌anc. Note that the manifolds
and smooth maps in (11.152) are the Cartesian square from (11.153).

Also, the vector bundles and linear maps in (11.152) are pullbacks of those
in (11.14), so that C(a,k) = Π∗a(Ck), ê(a,k)(b,l) = Π∗a(êkl), and so on. There-
fore they satisfy the same surjectivity and exactness conditions as do those in
(11.14). Thus Definition 11.15(i),(ii) for gln,hmn imply Definition 11.15(i),(ii) for
g(b,l)(d,n),h(c,m)(d,n), so g(b,l)(d,n),h(c,m)(d,n) are w-transverse for all b, c, d > 0,
and the bottom and right 1-morphisms in (11.152) are w-transverse. As the
domains of such g(b,l)(d,n),h(c,m)(d,n) cover C(X)×C(g),C(Z),C(h) C(Y ), we see
that C(g), C(h) are w-transverse, as we want. The same proof shows that if
g,h are transverse then C(g), C(h) are transverse.

Given all this, equation (11.152) is built from the w-transverse 1-morphisms∐
b,d>0 g(b,l)(d,n) and

∐
c,d>0 h(c,m)(d,n) in exactly the same way that equation

(11.14) is built from the w-transverse 1-morphisms gln and hmn in Definition
11.16. Therefore Theorem 11.17 shows that (11.152) is 2-Cartesian in ǦmK̇Nc

D

and ǦmK̇Nc
E .

In §11.9.3 we showed that when the 2-commutative square (11.15) can be
covered by a family of diagrams (11.117)–(11.118) for a ∈ A with (11.118) 2-
Cartesian in GmK̇ND and GmK̇NE , then (11.15) is 2-Cartesian in mK̇urD
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and mK̇urE . Since (11.18) can be covered by a family of diagrams (11.152)
which are 2-Cartesian in ǦmK̇Nc

D and ǦmK̇Nc
E , the same proof shows that

(11.18) is 2-Cartesian in mK̇̌urc
D and mK̇̌urc

E , as we want.

In the w-transverse 2-Cartesian square (11.18) in mK̇̌urc
D, suppose w′ ∈

Ci(W) ⊆ C(W) with C(e)w′ = x′ in Cj(X), C(f)w′ = y′ in Ck(Y ) and
C(g)x′ = C(h)y′ = z′ in Cl(Z). Locally near w′ we have a w-transverse fibre
product Ci(W) ' Cj(X)×Cl(Z) Ck(Y ), so the first part of Theorem 11.19 gives

vdimW − i = vdimCi(W) = vdimCj(X) + vdimCk(Y )− vdimCl(Z)

= vdimX − j + vdimY − k − vdimZ + l.

But also vdimW = vdimX + vdimY −vdimZ, so that i = j+ k− l. Therefore
(11.18) being 2-Cartesian in mK̇̌urc

D implies equation (11.19) holds in mK̇urc
D.

When i = 1 and ∂Z = ∅, in the union over j, k, l in (11.19) the only possibilities
are (j, k, l) = (1, 0, 0) and (0, 1, 0), yielding equation (11.20).

Part (h). Suppose Ṁan satisfies Assumption 11.8, and g : X → Z is a
w-submersion in mK̇urD, and h : Y → Z is any morphism in mK̇urE .
Then we can construct the fibre product W = X ×g,Z,h Y in mK̇urE by

the method of §11.9.1–§11.9.3, but working in GmK̇NE ,mK̇urE rather than
GmK̇ND,mK̇urD throughout, and taking the gln, gȧ˙̇ȧ to be D w-submersions.
The proofs of (a)–(d) and (g) above still work, with the obvious modifications.

This completes the proof of Theorem 11.19.

11.10 Proof of Theorem 11.22

11.10.1 Proof of Theorem 11.22(a)

Let Ṁanc satisfy Assumptions 3.22 and 11.9. Suppose g : X → Z, h : Y → Z
are 1-morphisms in mK̇urc

D, and x ∈X, y ∈ Y with g(x) = h(y) = z in Z.
For the first ‘only if’ part of (a), suppose g,h are w-transverse. Then by

Definition 11.18 there exist m-Kuranishi neighbourhoods (Ul, Dl, rl, χl), (Vm,
Em, sm, ψm), (Wn, Fn, tn, ωn) on X,Y ,Z with x ∈ Imχl ⊆ g−1(Imωn), y ∈
Imψm ⊆ h−1(Imωn) and z ∈ Imωn, and 1-morphisms gln : (Ul, Dl, rl, χl)
→ (Wn, Fn, tn, ωn), hmn : (Vm, Em, sm, ψm) → (Wn, Fn, tn, ωn) over (Imχl, g)
and (Imψm,h), such that gln,hmn are w-transverse.

Write ul = χ−1
l (x) ∈ Ul, vm = ψ−1

m (y) ∈ Vm and wn = ω−1
n (z) ∈ Wn. By

(10.27)–(10.28) we have a commutative diagram with exact rows:

0 // TxX⊕
TyY

Txg⊕Tyh
��

// TulUl⊕
TvmVm

Tulgln⊕
Tvmhmn��

dulrl⊕dvmsm // Dl|ul⊕
Em|vm

ĝln|ul⊕
ĥmn|vm ��

// OxX⊕
OyY

Oxg⊕Oyh
��

// 0

0 // TzZ // TwnWn

dwn tn // Fn|wn // OzZ // 0.

(11.154)

As gln,hmn are w-transverse, the third column of (11.154) is surjective by
Definition 11.15(ii). Also gln : Uln →Wn and hmn : Vmn →Wn are transverse
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in Ṁanc near ul ∈ Uln and vm ∈ Vmn, so Assumption 11.9 says that the third
column of (11.154) is surjective, and ‘condition T ’ holds for the data:

(i) The quasi-tangent maps Qulgln : QulUl → QwnWn and Qvmhmn : QvmVm
→ QwnWn in Q.

(ii) For all i, j, k > 0, the family of triples (u,v,w) for u ∈ Ci(Ul), v ∈ Cj(Vm)
with Πi(u) = ul, Πj(v) = vm, and C(gln)u = C(hmn)v = w in Ck(Wn).

As the third column of (11.154) is surjective, the fourth column is surjective
by exactness of rows, so (11.21) is surjective.

Definition 10.30 gives isomorphisms Qx,l : QxX → QulUl, etc., which identify
Qxg : QxX → QzZ and Qyh : QyY → QzZ with Qulgln, Qvmhmn in (i)
above. Also the maps χ(i,l), ψ(j,m), ω(k,n) from the definition of Ci(X), Cj(Y ),
Ck(Z) in Definition 4.39 identify the sets in (ii) above with the corresponding
sets from C(g)|··· : Ci(X) → Ck(Z), C(h)|··· : Cj(Y ) → Ck(Z) over x, y, z.
Hence condition T holding for (i),(ii) above implies that condition T holds for
g,h at x, y, z, noting the requirement in Assumption 11.9(a) that condition T
only involves objects QxX, . . . in Q up to isomorphism, and subsets Π−1

i (x) ⊆
Ci(X), . . . up to bijection. This proves the first ‘only if’ part of (a).

For the second ‘only if’ part of (a), suppose also that g,h are transverse.
Then condition T still holds for g,h at x, y, z, and the third column of (11.154)
is an isomorphism by Definition 11.15, and the second column is still surjective,
so by exactness of rows the fourth column (which is (11.21)) is an isomorphism,
and the first column (which is (11.22)) is surjective, as we have to prove.

For the first ‘if’ part of (a), suppose condition T holds for g,h, x, y, z and
(11.21) is surjective, for all x, y, z as above. Choose m-Kuranishi neighbourhoods
(Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) on X,Y ,Z with x ∈ Imχl ⊆
g−1(Imωn), y ∈ Imψm ⊆ h−1(Imωn) and z ∈ Imωn. Theorem 4.56(b) gives
1-morphisms gln : (Ul, Dl, rl, χl)→ (Wn, Fn, tn, ωn), hmn : (Vm, Em, sm, ψm)→
(Wn, Fn, tn, ωn) over (Imχl, g) and (Imψm,h).

Write ul = χ−1
l (x) ∈ Ul, vm = ψ−1

m (y) ∈ Vm and wn = ω−1
n (z) ∈ Wn.

As condition T holds for g,h, x, y, z, it holds for the data in (i),(ii) above,
reversing the previous argument. Thus Assumption 11.9(c) says there exist
open (ul, 0) ∈ Ul′ ↪→ Uln × Ra and (vm, 0) ∈ Vm′ ↪→ Vmn × Rb for a, b > 0, and
transverse morphisms gl′n : Ul′ →Wn, hm′n : Vm′ →Wn with gl′n(u, 0) = gln(u),
hm′n(v, 0) = hmn(v) for all u ∈ Uln, v ∈ Vmn with (u, 0) ∈ Ul′ and (v, 0) ∈ Vm′ .

As for (V(n), E(n), s(n), ψ(n)) in Definition 10.38, define vector bundles Dl′ →
Ul′ , Em′ → Vm′ by Dl′ = π∗Ul(Dl)⊕ Ra, Em′ = π∗Vm(Em)⊕ Rb. Define sections
rl′ = π∗Ul(rl) ⊕ idRa in Γ∞(Dl′) and sm′ = π∗Vm(sm) ⊕ idRb in Γ∞(Em′). Then

r−1
l′ (0) = (r−1

l (0) × {0}) ∩ Ul′ and s−1
m′ (0) = (s−1

m (0) × {0}) ∩ Vm′ . Define χl′ :
r−1
l′ (0)→ X by χl′(u, 0) = χl(u), and ψm′ : s−1

m′ (0)→ Y by ψm′(v, 0) = ψm(v).
Then (Ul′ , Dl′ , rl′ , χl′) and (Vm′ , Em′ , sm′ , ψm′) are m-Kuranishi neighbourhoods
on X,Y , with x ∈ Imχl′ and y ∈ Imψm′ .
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As for Φ(n)∗ in Definition 10.38, we have coordinate changes

Tl′l = (Ul′ , πUl , idπ∗Ul
(Dl)⊕ 0) : (Ul′ , Dl′ , rl′ , χl′) −→ (Ul, Dl, rl, χl),

Υm′m=(Vm′ , πVm , idπ∗Vm (Em)⊕0) : (Vm′ , Em′ , sm′ , ψm′)−→(Vm, Em, sm, ψm).

Using notation (4.6)–(4.8) for X,Y ,Z and defining Tl′i = Tli ◦ Tl′l, Kl′ii′ =
Klii′ ∗ idTl′l , Υm′j = Υmj ◦ Υm′m, Λm′jj′ = Λmjj′ ∗ idΥm′m for i, i′ ∈ I and
j, j′ ∈ J , where Tli,Klii′ and Υmj ,Λmjj′ are the implicit extra data making
(Ul, Dl, rl, χl), (Vm, Em, sm, ψm) into m-Kuranishi neighbourhoods on X,Y as
in §4.7, then Tl′i,Kl′ii′ and Υm′j ,Λm′jj′ make (Ul′ , Dl′ , rl′ , χl′) and (Vm′ , Em′ ,
sm′ , ψm′) into m-Kuranishi neighbourhoods on X,Y . Similarly

gln ◦ Tl′l = (Ul′ , gln ◦ πUl , π∗Ul(ĝln) ◦ ππ∗Ul (Dl) ⊕ 0) :

(Ul′ , Dl′ , rl′ , χl′) −→ (Wn, Fn, tn, ωn),

hmn ◦Υm′m = (Vm′ , hmn ◦ πVm , π∗Vm(ĥmn) ◦ ππ∗Vm (Em) ⊕ 0) :

(Vm′ , Em′ , sm′ , ψm′) −→ (Wn, Fn, tn, ωn),

are 1-morphisms of m-Kuranishi neighbourhoods on X,Y ,Z over g,h.
We have morphisms gl′n : Ul′ → Wn and gln ◦ πUln : Ul′ → Wn in Ṁanc.

Define open T ⊆ Dl′ and a morphism t : T →Wn by

T =
{

((u, (x1, . . . , xa)), (d, (y1, . . . , ya)))∈Dl′ : (u, (y1, . . . , ya))∈Ul′
}
,

t : ((u, (x1, . . . , xa)), (d, (y1, . . . , ya))) 7−→ g′ln(u, (y1, . . . , ya)).

Then whenever both sides are defined we have

t ◦ 0Dl′ (u, (x1, . . . , xa)) = g′ln(u, (0, . . . , 0))=gln(u)=gln◦πUl(u, (x1, . . . , xa)),

t ◦ rl′(u, (x1, . . . , xa) = g′ln(u, (x1, . . . , xa)).

Thus if we define η̂ = θT,t : Dl′ → Tgln◦πUlWn, using the notation of Definition
B.32, then in the notation of Definitions 3.15(vii) and B.36(vii) we have

gl′n = gln ◦ πUln + η̂ ◦ rl′ +O(rl′)
2. (11.155)

Equation (11.155) implies that gl′n = gln ◦ πUln + O(rl′). So by Theorem
3.17(g) there exists ˆ̃gl′n : Dl′ → g∗l′n(Fn) with

ˆ̃gl′n = (ĝln ◦ ππ∗Ul (Dl) ⊕ 0) +O(rl′).

Define a vector bundle morphism ĝl′n : Dl′ → g∗l′n(Fn) by

ĝl′n = ˆ̃gl′n + g∗l′n(∇tn) ◦ η̂,

for ∇ some connection on Fn →Wn. Then we have

ĝl′n = (ĝln ◦ ππ∗Ul (Dl) ⊕ 0) + g∗l′n(dtn) ◦ η̂ +O(rl′), (11.156)
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in the sense of Definition 3.15(iv),(vi).
From Definitions 4.2 and 4.3 and (11.155)–(11.156) we can show that

gl′n = (Ul′ , gl′n, ĝl′n) : (Ul′ , Dl′ , rl′ , χl′) −→ (Wn, Fn, tn, ωn)

is a 1-morphism of m-Kuranishi neighbourhoods over (Imχl′ , g), and

η = [Ul′ , η̂] : gln ◦ Tl′l =⇒ gl′n

is a 2-morphism. Then using §4.7.1, we can make gl′n into a 1-morphism
over (Imχl′ , g) in a unique way such that η : gln ◦ Tl′l ⇒ gl′n is the unique
2-morphism given by Theorem 4.56(c). Similarly we construct

hm′n = (Vm′ , hm′n, ĥm′n) : (Vm′ , Em′ , sm′ , ψm′) −→ (Wn, Fn, tn, ωn)

over (Imψm′ ,h), and a 2-morphism ζ : hmn ◦Υm′m ⇒ hm′n.
Consider equation (11.154) for gl′n,hm′n at (ul, 0) ∈ Ul′ , (vm, 0) ∈ Vm′ ,

(wn, 0) ∈Wn. Then the second column of (11.154) is surjective as gl′n, hm′n are
transverse, and the fourth column is surjective as (11.21) is surjective. Hence
the third column is surjective by exactness. Thus Definition 11.15(ii) holds
at (ul, 0), (vm, 0), and this is an open condition. Also Definition 11.15(i) holds
as gl′n, hm′n are transverse. Thus making Ul′ , Vm′ smaller, we can suppose
gl′n,hm′n are w-transverse. As we can find such gl′n,hm′n with x ∈ Imχl′ and
y ∈ Imψm′ for any x, y, z as above, g,h are w-transverse by Definition 11.18.
This proves the first ‘if’ part of (a).

For the second ‘if’ part, suppose that Assumption 10.9 holds for Ṁanc,
and for all x ∈ X, y ∈ Y with g(x) = h(y) = z in Z, condition T holds for
g,h, x, y, z, (11.21) is an isomorphism, and (11.22) is surjective. For such x, y, z,
we use Assumption 10.9 and Proposition 10.39 to choose m-Kuranishi neighbour-
hoods (Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) on X,Y ,Z which are
minimal at x ∈ Imχl ⊆ g−1(Imωn), y ∈ Imψm ⊆ h−1(Imωn) and z ∈ Imωn.
Theorem 4.56(b) gives 1-morphisms gln : (Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn),
hmn : (Vm, Em, sm, ψm)→ (Wn, Fn, tn, ωn) over (Imχl, g) and (Imψm,h).

Consider (11.154) for these g,h. Then the first column is (11.22), and so
surjective, and the fourth column is (11.21), and so an isomorphism. But the
middle morphisms dulrl,dvmsm,dwntn are zero by minimality at x, y, z with
ul = χ−1

l (x), vm = ψ−1
m (y) and wn = ω−1

n (z). Hence by exactness the second
column of (11.154) is surjective, and the third column is an isomorphism.

The argument for the first ‘if’ part shows that gln, hmn satisfy condition T at
ul, vm, wn. This, surjectivity of the second column of (11.154), and Assumption
11.9(a),(b) imply that gln, hmn are transverse near ul, vm. So making Ulm ⊆ Ul
and Vmn ⊆ Vm smaller we can suppose gln, hmn are transverse.

As the third column of (11.154) is an isomorphism, Definition 11.15(ii)
holds at ul, vm, so making Ulm ⊆ Ul, Vmn ⊆ Vm smaller again we can suppose
Definition 11.15(ii) holds at all u ∈ Uln, v ∈ Vmn with gln(u) = hmn(v) ∈ Wn.
Then gln,hmn are transverse. As we can find such gln,hmn with x ∈ Imχl and
y ∈ Imψm for any x, y, z as above, g,h are transverse by Definition 11.18. This
proves the second ‘if’ part, and completes Theorem 11.22(a).
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11.10.2 Proof of Theorem 11.22(b)

We can prove part (b) in a very similar way to part (a) in §11.10.1. We work
with g, x, z rather than g,h, x, y, z, and instead of (11.154) we use the equation

0 // TxX

Txg��

// TulUl
Tulgln��

dulrl

// Dl|ul
ĝln|ul ��

// OxX

Oxg��

// 0

0 // TzZ // TwnWn

dwn tn // Fn|wn // OzZ // 0.

We leave the details to the reader.

11.11 Proof of Theorem 11.25

Work in the situation of Theorem 11.25. Equation (11.26) defines an isomorphism
ΥX,Y ,Z |w : KW|w −→ e∗(KX) ⊗ f∗(KY ) ⊗ (g ◦ e)∗(KZ)∗|w for each w ∈ W .
Thus there is a unique map of sets ΥX,Y ,Z in (11.24) which satisfies (11.26)
for all w ∈ W . We must show that this map ΥX,Y ,Z is an isomorphism of
topological line bundles. It is sufficient to do this locally near each w in W .

Fix w ∈ W with e(w) = x in X, f(w) = y in Y and g(x) = h(y) = z
in Z. Let (Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) be m-Kuranishi
neighbourhoods on X,Y ,Z, with x ∈ Imχl ⊆ g−1(Imωn), y ∈ Imψm ⊆
h−1(Imωn) and z ∈ Imωn, and let

gln = (Uln, gln, ĝln) : (Ul, Dl, rl, χl) −→ (Wn, Fn, tn, ωn),

hmn = (Vmn, hmn, ĥmn) : (Vm, Em, sm, ψm) −→ (Wn, Fn, tn, ωn),

be w-transverse 1-morphisms over (Imχl, g) and (Imψm,h).
Theorem 11.19(b) now gives an m-Kuranishi neighbourhood (Tk, Ck, qk, ϕk)

on W with Imϕk = e−1(Imχl) ∩ f−1(Imψm) ⊆ W , so that w ∈ Imϕk, and
1-morphisms

ekl = (Tk, ekl, êkl) : (Tk, Ck, qk, ϕk) −→ (Ul, Dl, rl, χl),

fkm = (Tk, fkm, f̂km) : (Tk, Ck, qk, ϕk) −→ (Vm, Em, sm, ψm)

over (Imϕk, e) and (Imϕk,f) with gln ◦ ekl = hmn ◦ fkm, such that Tk, Ck, qk
and ekl,fkm are constructed from (Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn,
ωn) and gln,hmn as in Definition 11.16. Thus

Tk = U̇ln ×gln|U̇ln ,Wn,hmn|V̇mn V̇mn

is a transverse fibre product in ṀanD for U̇ln ⊆ Uln, V̇mn ⊆ Vmn open.
Set tk = ϕ−1

k (w), ul = χ−1
l (x), vm = ψ−1

m (y) and wn = ω−1
n (z), and as in

§11.9.4, consider the commutative diagram (11.150), with rows complexes and
columns exact. In the setting of Definition 10.69, regard (11.150) as a diagram
(10.89), a short exact sequence of complexes E•, F •, G•, the first, second and
third rows of (11.150) respectively, with the third column of (11.150) in degree

160



zero, so that the second and third columns of (11.150) become complexes B•−1

and B•0 . Then (11.25) is the exact sequence (10.90) constructed from (11.150) in
Definition 10.69, by the proof of Theorem 11.19(e), so Proposition 10.70 yields

(−1)rankCk dimWn ·
(
ΘE• ⊗Θ−1

F• ⊗ΘG•
)(

(ΨB•−1
)−1 ⊗ΨB•0

)
= (−1)dimOwW dimTzZ ·ΨA• .

(11.157)

From Definition 10.66 and Theorem 10.71 we deduce that

ΘTk,Ck,qk,ϕk |tk = ΘE• : (detT ∗tkTk ⊗ detCk|tk) −→ KX |w, (11.158)

ΘWn,Fn,tn,ωn |wn = ΘG• : (detT ∗wnWn ⊗ detFn|wn) −→ KZ |z. (11.159)

Also F • in (11.150) is the direct sum of two complexes coming from (Ul, Dl,
rl, χl) and (Vm, Em, sm, ψm). So Proposition 10.68 implies that the following
commutes:

det(T ∗ulUl ⊕ T
∗
vmVm)⊗

det(Dl|ul ⊕ Em|vm) ΘF•
//

(−1)rankDl dimVm ·
IT∗ul

Ul,T
∗
vm

Vm⊗IDl|ul ,Em|vm
��

det(T ∗xX ⊕ T ∗yY )⊗
det(OxX ⊕OyY )

(−1)dimOxX dimTyY ·
IT∗xX,T∗y Y⊗IOxX,OyY

��(detT ∗ulUl ⊗ detDl|ul)⊗
(detT ∗vmVm ⊗ detEm|vm)

ΘUl,Dl,rl,χl |ul⊗
ΘVm,Em,sm,ψm |vm // KX |x ⊗KY |y.

(11.160)

Combining equations (11.26) and (11.157)–(11.160) implies that

(−1)rankCk dimWn+rankDl dimVm ·
(
ΘTk,Ck,qk,ϕk |

−1
tk
⊗

ΘUl,Dl,rl,χl |ul ⊗ΘVm,Em,sm,ψm |vm ⊗ΘWn,Fn,tn,ωn |−1
wn

)
◦
(
IT∗ulUl,T

∗
vm

Vm ⊗ IDl|ul ,Em|vm
)(

ΨB•−1
⊗ (ΨB•0

)−1
)

= ΥX,Y ,Z |w.
(11.161)

Now (11.161) is the restriction to tk ∈ q−1
k (0) of the equation

(−1)rankCk dimWn+rankDl dimVm ·
(
Θ−1
Tk,Ck,qk,ϕk

⊗ ekl|∗q−1
k (0)

(ΘUl,Dl,rl,χl)

⊗ fkm|∗q−1
k (0)

(ΘVm,Em,sm,ψm)⊗ (gln ◦ ekl)|∗q−1
k (0)

(Θ−1
Wn,Fn,tn,ωn

)
)

◦
(
Ie∗kl(T∗Ul),f∗km(T∗Vm) ⊗ Ie∗kl(Dl),f∗km(Em)

)
|q−1
k (0)

(
ΨB̃•−1

⊗ (ΨB̃•0
)−1
)

= ϕ∗k(ΥX,Y ,Z), (11.162)

where B̃•−1, B̃
•
0 are the complexes of topological vector bundles on q−1

k (0) whose
fibres at tk are the second and third columns of (11.150). Here ΘTk,Ck,qk,ϕk , . . . ,
ΘWn,Fn,tn,ωn are isomorphisms of topological line bundles by Theorem 10.71,
and Ie∗kl(T∗Ul),f∗km(T∗Vm), Ie∗kl(Dl),f∗km(Em) are also isomorphisms, and ΨB̃•−1

,ΨB̃•0

are nonvanishing continuous sections of topological line bundles.
Thus (11.162) implies that ϕ∗k(ΥX,Y ,Z) is a continuous, nonvanishing section

of ϕ∗k
(
(KW)∗⊗e∗(KX)⊗f∗(KY )⊗ (g ◦e)∗(KZ)∗

)
on q−1

k (0). Therefore ΥX,Y ,Z
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is a nonvanishing section of (KW)∗ ⊗ e∗(KX) ⊗ f∗(KY ) ⊗ (g ◦ e)∗(KZ)∗, or
equivalently an isomorphism KW → e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗, on the
open subset Imϕk ⊆W , as ϕk : q−1

k (0)→ Imϕk is a homeomorphism. Since we
can cover W by such open subsets Imϕk, we see that ΥX,Y ,Z is an isomorphism
of topological line bundles, as we have to prove.
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Chapter 12

M-homology and M-cohomology
(Not written yet.)

Review of ‘M-homology’ and ‘M-cohomology’, which are new (co)homology
theories MH∗(X;R),MH∗(X;R) of manifolds and orbifolds X, due to the
author [44]. They satisfy the Eilenberg–Steenrod axioms, and so are canonically
isomorphic to usual (co)homology H∗(X;R), H∗(X;R), e.g. singular homology
Hsi
∗ (X;R). They are specially designed for forming virtual (co)chains for (m-

)Kuranishi spaces, and have very good (co)chain level properties.
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Chapter 13

Virtual (co)cycles and (co)chains
for (m-)Kuranishi spaces in
M-(co)homology
(Not written yet.)

We define an additional structure on an (m-)Kuranishi space with corners X, and
on 1-morphisms f : X → Y , called a vc-structure. If X is a compact, oriented
(m-)Kuranishi space with corners, Y is a classical manifold, and f : X → Y is a
1-morphism equipped with a vc-structure, we will define a virtual chain [X]virt

in M-chains MCvdimX(Y ;Z) (in the m-Kuranishi case) or MCvdimX(Y ;Q) (in
the Kuranishi case).

These vc-structures and virtual chains have lots of nice properties, which will
be important in applications in symplectic geometry. If ∂X = ∅ then ∂[X]virt =
0, so we have a homology class [[X]virt] in M-homology MHvdimX(Y ;Z) or
MHvdimX(Y ;Q), the virtual class.

Such virtual chain and virtual cycle constructions are important in current
approaches to symplectic geometry, such as the work of Fukaya–Oh–Ohta–Ono,
Hofer–Wysocki–Zehnder and McDuff–Wehrheim discussed in §7.5 — see Remark
7.14 and Theorem 7.20. The point about our construction is that it will have very
good technical properties, which will make defining theories such as Lagrangian
Floer cohomology, Fukaya categories, and Symplectic Field Theory, much more
convenient.
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Chapter 14

Orbifold strata of Kuranishi
spaces (Not written yet.)
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Chapter 15

Bordism and cobordism for
(m-)Kuranishi spaces
(Not written yet.)
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arXiv: 1009.1648.

[27] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Shrinking good coordinate
systems associated to Kuranishi structures, J. Symplectic Geom. 14 (2016),
1295–1310. arXiv: 1405.1755.

[28] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Anti-symplectic involution
and Floer cohomology, Geom. Topol. 21 (2017), 1–106. arXiv: 0912.2646.

[29] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Kuranishi structure, Pseudo-
holomorphic curve, and virtual fundamental chain: Part 2, arXiv: 1704.
01848, 2017.

[30] K. Fukaya and K. Ono, Arnold Conjecture and Gromov–Witten invariant,
Topology 38 (1999), 933–1048.

[31] T. L. Gómez, Algebraic stacks, Proc. Indian Acad. Sci. Math. Sci. 111
(2001), 1–31. arXiv: math.AG/9911199.

[32] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent.
Math. 82 (1985), 307–347.

[33] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge,
2002.

[34] H. Hofer, Polyfolds and Fredholm Theory, arXiv: 1412.4255, 2014.

[35] H. Hofer, K. Wysocki, and E. Zehnder, A general Fredholm theory I: A
splicing-based differential geometry, J. Eur. Math. Soc. 9 (2007), 841–876.
arXiv: math.FA/0612604.

[36] H. Hofer, K. Wysocki, and E. Zehnder, Integration theory for zero sets of
polyfold Fredholm sections, arXiv: 0711.0781, 2007.

[37] H. Hofer, K. Wysocki, and E. Zehnder, A general Fredholm theory II:
Implicit function theorems, Geom. Funct. Anal. 18 (2009), 206–293. arXiv:
0705.1310.

[38] H. Hofer, K. Wysocki, and E. Zehnder, A general Fredholm theory III:
Fredholm functors and polyfolds, Geom. Topol. 13 (2009), 2279–2387.
arXiv: 0810.0736.

[39] H. Hofer, K. Wysocki, and E. Zehnder, Sc-smoothness, retractions and
new models for smooth spaces, Discrete Contin. Dyn. Syst. 28 (2010),
665–788. arXiv: 1002.3381.

[40] H. Hofer, K. Wysocki, and E. Zehnder, Applications of polyfold theory I:
the polyfolds of Gromov–Witten theory, arXiv: 1107.2097, 2011.

[41] H. Hofer, K. Wysocki, and E. Zehnder, Polyfold and Fredholm theory I:
basic theory in M-polyfolds, arXiv: 1407.3185, 2014.

[42] D. Joyce, A new definition of Kuranishi space, arXiv: 1409.6908, 2014.

[43] D. Joyce, Kuranishi spaces as a 2-category, arXiv: 1510.07444, 2015.

169

http://arxiv.org/abs/1009.1648
http://arxiv.org/abs/1405.1755
http://arxiv.org/abs/0912.2646
http://arxiv.org/abs/1704.01848
http://arxiv.org/abs/1704.01848
http://arxiv.org/abs/math.AG/9911199
http://arxiv.org/abs/1412.4255
http://arxiv.org/abs/math.FA/0612604
http://arxiv.org/abs/0711.0781
http://arxiv.org/abs/0705.1310
http://arxiv.org/abs/0810.0736
http://arxiv.org/abs/1002.3381
http://arxiv.org/abs/1107.2097
http://arxiv.org/abs/1407.3185
http://arxiv.org/abs/1409.6908
http://arxiv.org/abs/1510.07444


[44] D. Joyce, Some new homology and cohomology theories of manifolds,
arXiv: 1509.05672, 2015.

[45] D. Joyce, Algebraic Geometry over C∞-rings, to appear in Memoirs of
the A.M.S., arXiv: 1001.0023, 2016.

[46] M. Kontsevich and Yu. Manin, Gromov–Witten classes, quantum co-
homology, and enumerative geometry, Comm. Math. Phys. 164 (1994),
525–562. arXiv: hep-th/9402147.

[47] J. Li and G. Tian, Comparison of algebraic and symplectic Gromov–Witten
invariants, Asian J. Math. 3 (1999), 689–728. arXiv: alg-geom/9712035.

[48] J. Lurie, Derived Algebraic Geometry V: Structured spaces, arXiv: 0905.
0459, 2009.

[49] D. McDuff, Notes on Kuranishi Atlases, arXiv: 1411.4306, 2015.

[50] D. McDuff, Strict orbifold atlases and weighted branched manifolds, arXiv:
1506.05350, 2015.

[51] D. McDuff and D. Salamon, J-holomorphic curves and quantum coho-
mology, vol. 6, University Lecture Series, American Mathematical Society,
Providence, RI, 1994.

[52] D. McDuff and K. Wehrheim, Kuranishi atlases with trivial isotropy - the
2013 state of affairs, arXiv: 1208.1340, 2013.

[53] D. McDuff and K. Wehrheim, Smooth Kuranishi atlases with isotropy,
arXiv: 1508.01556, 2015.

[54] D. McDuff and K. Wehrheim, The fundamental class of smooth Kuranishi
atlases with trivial isotropy, arXiv: 1508.01560, 2015.

[55] D. McDuff and K. Wehrheim, The topology of Kuranishi atlases, arXiv:
1508.01844, 2015.

[56] I. Moerdijk, Orbifolds as groupoids: an introduction, in: Orbifolds in Math-
ematics and Physics, ed. by A. Adem, J. Morava, and Y. Ruan, vol. 310,
Contemporary Mathematics, A.M.S./International Press, Providence, RI,
2002, 205–222. arXiv: math.DG/0203100.

[57] I. Moerdijk and D. A. Pronk, Orbifolds, sheaves and groupoids, K-theory
12 (1997), 3–21.

[58] B. Noohi, Foundations of topological stacks. I, arXiv: math.AG/0503247,
2005.

[59] Y.-G. Oh and K. Fukaya, Floer homology in symplectic geometry and in
mirror symmetry, in: International Congress of Mathematicians. Vol. II,
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Glossary of notation, all volumes

Page references are in the form volume-page number. So, for example, II-57
means page 57 of volume II.

Γ(E) global sections of a sheaf E , I-230

Γ∞(E) vector space of smooth sections of a vector bundle E, I-10, I-238

ΩX : K∂X → N∂X ⊗ i∗X(KX) isomorphism of canonical line bundles on bound-
ary of an (m- or µ-)Kuranishi space X, II-67, II-76

ΘV,E,Γ,s,ψ : (detT ∗V ⊗ detE)|s−1(0) → ψ̄−1(KX) isomorphism of line bundles
from a Kuranishi neighbourhood (V,E,Γ, s, ψ) on a Kuranishi space
X, II-75

ΘV,E,s,ψ : (detT ∗V ⊗ detE)|s−1(0) → ψ−1(KX) isomorphism of line bundles from
an m-Kuranishi neighbourhood (V,E, s, ψ) on an m-Kuranishi space
X, II-62

ΥX,Y ,Z : KW → e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗ isomorphism of canonical
bundles on w-transverse fibre product of (m-)Kuranishi spaces, II-96

αg,f,e : (g ◦ f) ◦ e⇒ g ◦ (f ◦ e) coherence 2-morphism in weak 2-category, I-224

βf : f ◦ idX ⇒ f coherence 2-morphism in weak 2-category, I-224

δg,hw : TzZ → OwW connecting morphism in w-transverse fibre product of (m-)
Kuranishi spaces, II-92, II-116

γf : idY ◦ f ⇒ f coherence 2-morphism in weak 2-category, I-224

γf : N∂X → (∂f)∗(N∂Y ) isomorphism of normal line bundles of manifolds with
corners, II-11

∇ connection on vector bundle E → X in Ṁan, I-38, I-241

C(X) corners
∐dimX
k=0 Ck(X) of a manifold with corners X, I-8

C(X) corners
∐∞
k=0 Ck(X) of an (m or µ-)Kuranishi space X, I-91, I-124,

I-161
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C : K̇urc → K̇̌urc corner 2-functor on Kuranishi spaces, I-161

C : Manc → M̌anc corner functor on manifolds with corners, I-9

C ′ : Manc → M̌anc second corner functor on manifolds with corners, I-9

C : mK̇urc →mK̇̌urc corner 2-functor on m-Kuranishi spaces, I-91

C : µK̇urc → µK̇̌urc corner functor on µ-Kuranishi spaces, I-124

C : Ȯrbc → Ȯ̌rbc corner 2-functor on orbifolds with corners, I-178

C∞(X) R-algebra of smooth functions X → R for a manifold X, I-10, I-233

Ck(X) k-corners of an (m- or µ-)Kuranishi space X, I-81, I-123, I-157

Ck(X) k-corners of an orbifold with corners X, I-178

Ck : K̇urc
si → K̇urc

si k-corner 2-functor on Kuranishi spaces, I-161

Ck : Manc
si →Manc

si k-corner functor on manifolds with corners, I-9

Ck : mK̇urc
si →mK̇urc

si k-corner 2-functor on m-Kuranishi spaces, I-91

Ck : µK̇urc
si → µK̇urc

si k-corner functor on µ-Kuranishi spaces, I-124

Ck : Ȯrbc
si → Ȯrbc

si k-corner 2-functor on orbifolds with corners, I-178

Cop opposite category of category C, I-221

C∞Rings category of C∞-rings, I-234

C∞Schaff category of affine C∞-schemes, I-37, I-236

∂ : K̇urc
si → K̇urc

si boundary 2-functor on Kuranishi spaces, I-161

∂ : Manc
si →Manc

si boundary functor on manifolds with corners, I-9

∂ : mK̇urc
si →mK̇urc

si boundary 2-functor on m-Kuranishi spaces, I-91

∂ : µK̇urc
si → µK̇urc

si boundary functor on µ-Kuranishi spaces, I-124

depthX x the codimension k of the corner stratum Sk(X) containing a point x
in a manifold with corners X, I-6

DerManBN Borisov and Noel’s ∞-category of derived manifolds, I-103

DerManSpi Spivak’s ∞-category of derived manifolds, I-103

det(E•) determinant of a complex of vector spaces or vector bundles, II-52

df : TX → f∗(TY ) derivative of a smooth map f : X → Y , I-11

bdf : bTX → f∗(bTY ) b-derivative of a smooth map f : X → Y of manifolds
with corners, I-12
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dMan 2-category of d-manifolds, a kind of derived manifold, I-103

∂X boundary of an (m- or µ-)Kuranishi space X, I-86, I-124, I-160, I-161

∂X boundary of an orbifold with corners X, I-178

ftop : Xtop → Ytop underlying continuous map of morphism f : X → Y in Ṁan,
I-31

GKN 2-category of global Kuranishi neighbourhoods over Man, I-142

GK̇N 2-category of global Kuranishi neighbourhoods over Ṁan, I-142

GKNc 2-category of global Kuranishi neighbourhoods over manifolds with
corners Manc, I-142

GmKN 2-category of global m-Kuranishi neighbourhoods over Man, I-59

GmK̇N 2-category of global m-Kuranishi neighbourhoods over Ṁan, I-58

GmKNc 2-category of global m-Kuranishi neighbourhoods over manifolds with
corners Manc, I-59

GµKN category of global µ-Kuranishi neighbourhoods over Man, I-111

GµK̇N category of global µ-Kuranishi neighbourhoods over Ṁan, I-110

GµKNc category of global µ-Kuranishi neighbourhoods over manifolds with
corners Manc, I-111

Gxf : GxX → GyY morphism of isotropy groups from 1-morphism f : X → Y

in K̇ur, I-168

GxX isotropy group of a Kuranishi space X at a point x ∈X, I-166

GxX isotropy group of an orbifold X at a point x ∈ X, I-176

Ho(C) homotopy category of 2-category C, I-226

I�f : Π−1
top(TfY )→ TC(f)C(Y ) morphism of tangent sheaves in Ṁanc, I-269

I�X : Π∗k(bTX)→ bT (Ck(X)) natural morphism of b-tangent bundles over a man-
ifold with corners X, I-12

iX : ∂X →X natural (1-)morphism of boundary of an (m- or µ-)Kuranishi
space X, I-86, I-124, I-160

IX : bTX → TX natural morphism of (b-)tangent bundles of a manifold with
corners X, I-11

Kf : f∗(KY )→ KX isomorphism of canonical bundles from étale (1-)morphism
of (m- or µ-)Kuranishi spaces f : X → Y , II-65
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KN 2-category of Kuranishi neighbourhoods over manifolds Man, I-142

K̇N 2-category of Kuranishi neighbourhoods over Ṁan, I-141

KNc 2-category of Kuranishi neighbourhoods over manifolds with corners
Manc, I-142

KNS(X) 2-category of Kuranishi neighbourhoods over S ⊆ X in Man, I-142

K̇NS(X) 2-category of Kuranishi neighbourhoods over S ⊆ X in Ṁan, I-142

KNc
S(X) 2-category of Kuranishi neighbourhoods over S ⊆ X in Manc, I-142

Kur 2-category of Kuranishi spaces over classical manifolds Man, I-153

K̇ur 2-category of Kuranishi spaces over Ṁan, I-151

K̇urP 2-category of Kuranishi spaces over Ṁan, and 1-morphisms with
discrete property P , I-154

K̇urtrG 2-subcategory of Kuranishi spaces in K̇ur with all GxX = {1}, I-169

K̇urtrΓ 2-subcategory of Kuranishi spaces in K̇ur with all Γi = {1}, I-169

Kurac 2-category of Kuranishi spaces with a-corners, I-153

Kurc 2-category of Kuranishi spaces with corners, I-153

K̇̌urc 2-category of Kuranishi spaces with corners over Ṁanc of mixed
dimension, I-161

K̇̌urc
P 2-category of Kuranishi spaces with corners over Ṁanc of mixed

dimension, and 1-morphisms which are P , I-161

Kurc
bn 2-category of Kuranishi spaces with corners, and b-normal 1-morphisms,

I-154

Kurc
in 2-category of Kuranishi spaces with corners, and interior 1-morphisms,

I-154

Kurc
si 2-category of Kuranishi spaces with corners, and simple 1-morphisms,

I-154

K̇̌urc
si 2-category of Kuranishi spaces with corners over Ṁanc of mixed

dimension, and simple 1-morphisms, I-161

Kurc
st 2-category of Kuranishi spaces with corners, and strongly smooth

1-morphisms, I-154

Kurc
st,bn 2-category of Kuranishi spaces with corners, and strongly smooth

b-normal 1-morphisms, I-154

Kurc
st,in 2-category of Kuranishi spaces with corners, and strongly smooth

interior 1-morphisms, I-154
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Kurc
we 2-category of Kuranishi spaces with corners and weakly smooth 1-

morphisms, I-153

K̇urc 2-category of Kuranishi spaces with corners associated to Ṁanc, I-157

K̇urc
si 2-category of Kuranishi spaces with corners associated to Ṁanc, and

simple 1-morphisms, I-157

Kurc,ac 2-category of Kuranishi spaces with corners and a-corners, I-153

Kurc,ac
bn 2-category of Kuranishi spaces with corners and a-corners, and b-normal

1-morphisms, I-155

Kurc,ac
in 2-category of Kuranishi spaces with corners and a-corners, and interior

1-morphisms, I-155

Kurc,ac
si 2-category of Kuranishi spaces with corners and a-corners, and simple

1-morphisms, I-155

Kurc,ac
st 2-category of Kuranishi spaces with corners and a-corners, and strongly

a-smooth 1-morphisms, I-155

Kurc,ac
st,bn 2-category of Kuranishi spaces with corners and a-corners, and strongly

a-smooth b-normal 1-morphisms, I-155

Kurc,ac
st,in 2-category of Kuranishi spaces with corners and a-corners, and strongly

a-smooth interior 1-morphisms, I-155

Kurgc 2-category of Kuranishi spaces with g-corners, I-153

Kurgc
bn 2-category of Kuranishi spaces with g-corners, and b-normal 1-morph-

isms, I-155

Kurgc
in 2-category of Kuranishi spaces with g-corners, and interior 1-morph-

isms, I-155

Kurgc
si 2-category of Kuranishi spaces with g-corners, and simple 1-morphisms,

I-155

KX canonical bundle of a ‘manifold’ X in Ṁan, II-10

KX canonical bundle of an (m- or µ-)Kuranishi space X, II-62, II-74

bKX b-canonical bundle of an (m- or µ-)Kuranishi space with corners X,
II-66

Man category of classical manifolds, I-7

Ṁan category of ‘manifolds’ satisfying Assumptions 3.1–3.7, I-31

M̈an another category of ‘manifolds’ satisfying Assumptions 3.1–3.7, I-46

Manac category of manifolds with a-corners, I-18
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Manac
bn category of manifolds with a-corners and b-normal maps, I-18

Manac
in category of manifolds with a-corners and interior maps, I-18

Manac
st category of manifolds with a-corners and strongly a-smooth maps, I-18

Manac
st,bn category of manifolds with a-corners and strongly a-smooth b-normal

maps, I-18

Manac
st,in category of manifolds with a-corners and strongly a-smooth interior

maps, I-18

Manb category of manifolds with boundary, I-7

Manb
in category of manifolds with boundary and interior maps, I-7

Manb
si category of manifolds with boundary and simple maps, I-7

Manc category of manifolds with corners, I-5

Ṁanc category of ‘manifolds with corners’ satisfying Assumption 3.22, I-47

Ṁ̌anc category of ‘manifolds with corners’ of mixed dimension, I-48

M̌anc category of manifolds with corners of mixed dimension, I-8

Manc
bn category of manifolds with corners and b-normal maps, I-5

Manc
in category of manifolds with corners and interior maps, I-5

M̌anc
in category of manifolds with corners of mixed dimension and interior

maps, I-8

Manc
si category of manifolds with corners and simple maps, I-5

Ṁ̌anc
si category of ‘manifolds with corners’ of mixed dimension, and simple

morphisms, I-48

Manc
st category of manifolds with corners and strongly smooth maps, I-5

M̌anc
st category of manifolds with corners of mixed dimension and strongly

smooth maps, I-8

Manc
st,bn category of manifolds with corners and strongly smooth b-normal

maps, I-5

Manc
st,in category of manifolds with corners and strongly smooth interior maps,

I-5

Manc
we category of manifolds with corners and weakly smooth maps, I-5

Manc,ac category of manifolds with corners and a-corners, I-18
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Manc,ac
bn category of manifolds with corners and a-corners, and b-normal maps,

I-19

Manc,ac
in category of manifolds with corners and a-corners, and interior maps,

I-18

Manc,ac
si category of manifolds with corners and a-corners, and simple maps,

I-19

Manc,ac
in category of manifolds with corners and a-corners, and strongly a-

smooth maps, I-19

Manc,ac
st,bn category of manifolds with corners and a-corners, and strongly a-

smooth b-normal maps, I-19

Manc,ac
st,in category of manifolds with corners and a-corners, and strongly a-

smooth interior maps, I-19

Mangc category of manifolds with g-corners, I-16

Mangc
in category of manifolds with g-corners and interior maps, I-16

mKN 2-category of m-Kuranishi neighbourhoods over manifolds Man, I-59

mK̇N 2-category of m-Kuranishi neighbourhoods over Ṁan, I-58

mKNc 2-category of m-Kuranishi neighbourhoods over manifolds with corners
Manc, I-59

mKNS(X) 2-category of m-Kuranishi neighbourhoods over S ⊆ X in Man,
I-59

mK̇NS(X) 2-category of m-Kuranishi neighbourhoods over S ⊆ X in Ṁan,
I-58

mKNc
S(X) 2-category of m-Kuranishi neighbourhoods over S ⊆ X in Manc,

I-59

mKur 2-category of m-Kuranishi spaces over classical manifolds Man, I-72

mK̇ur 2-category of m-Kuranishi spaces over Ṁan, I-72

mK̇urP 2-category of m-Kuranishi spaces over Ṁan, and 1-morphisms with
discrete property P , I-78

mKurac 2-category of m-Kuranishi spaces with a-corners, I-72

mKurac
bn 2-category of m-Kuranishi spaces with a-corners, and b-normal 1-

morphisms, I-79

mKurac
in 2-category of m-Kuranishi spaces with a-corners, and interior 1-mor-

phisms, I-79
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mKurac
si 2-category of m-Kuranishi spaces with a-corners, and simple 1-morph-

isms, I-79

mKurac
st 2-category of m-Kuranishi spaces with a-corners, and strongly a-smooth

1-morphisms, I-79

mKurac
st,bn 2-category of m-Kuranishi spaces with a-corners, and strongly a-

smooth b-normal 1-morphisms, I-79

mKurac
st,in 2-category of m-Kuranishi spaces with a-corners, and strongly a-

smooth interior 1-morphisms, I-79

mKurb 2-category of m-Kuranishi spaces with boundary, I-93

mKurb
in 2-category of m-Kuranishi spaces with boundary, and interior 1-mor-

phisms, I-93

mKurb
si 2-category of m-Kuranishi spaces with boundary, and simple 1-morph-

isms, I-93

mKurc 2-category of m-Kuranishi spaces with corners, I-72

mK̇̌urc 2-category of m-Kuranishi spaces with corners over Ṁanc of mixed
dimension, I-87

mK̇̌urc
P 2-category of m-Kuranishi spaces with corners over Ṁanc of mixed

dimension, and 1-morphisms which are P , I-91

mKurc
bn 2-category of m-Kuranishi spaces with corners, and b-normal 1-

morphisms, I-78

mKurc
in 2-category of m-Kuranishi spaces with corners, and interior 1-morph-

isms, I-78

mKurc
si 2-category of m-Kuranishi spaces with corners, and simple 1-morphisms,

I-78

mK̇̌urc
si 2-category of m-Kuranishi spaces with corners over Ṁanc of mixed

dimension, and simple 1-morphisms, I-87

mKurc
st 2-category of m-Kuranishi spaces with corners, and strongly smooth

1-morphisms, I-78

mKurc
st,bn 2-category of m-Kuranishi spaces with corners, and strongly smooth

b-normal 1-morphisms, I-78

mKurc
st,in 2-category of m-Kuranishi spaces with corners, and strongly smooth

interior 1-morphisms, I-78

mKurc
we 2-category of m-Kuranishi spaces with corners and weakly smooth

1-morphisms, I-72
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mK̇urc 2-category of m-Kuranishi spaces with corners associated to Ṁanc,
I-81

mKurc,ac 2-category of m-Kuranishi spaces with corners and a-corners, I-72

mKurc,ac
bn 2-category of m-Kuranishi spaces with corners and a-corners, and

b-normal 1-morphisms, I-79

mKurc,ac
in 2-category of m-Kuranishi spaces with corners and a-corners, and

interior 1-morphisms, I-79

mKurc,ac
si 2-category of m-Kuranishi spaces with corners and a-corners, and

simple 1-morphisms, I-79

mKurc,ac
st 2-category of m-Kuranishi spaces with corners and a-corners, and

strongly a-smooth 1-morphisms, I-79

mKurc,ac
st,bn 2-category of m-Kuranishi spaces with corners and a-corners, and

strongly a-smooth b-normal 1-morphisms, I-79

mKurc,ac
st,in 2-category of m-Kuranishi spaces with corners and a-corners, and

strongly a-smooth interior 1-morphisms, I-79

mK̇urc
si 2-category of m-Kuranishi spaces with corners associated to Ṁanc,

and simple 1-morphisms, I-81

mKurgc 2-category of m-Kuranishi spaces with g-corners, I-72

mKurgc
bn 2-category of m-Kuranishi spaces with g-corners, and b-normal 1-

morphisms, I-79

mKurgc
in 2-category of m-Kuranishi spaces with g-corners, and interior 1-mor-

phisms, I-79

mKurgc
si 2-category of m-Kuranishi spaces with g-corners, and simple 1-morph-

isms, I-79

µKN category of µ-Kuranishi neighbourhoods over manifolds Man, I-111

µK̇N category of µ-Kuranishi neighbourhoods over Ṁan, I-110

µKNc category of µ-Kuranishi neighbourhoods over manifolds with corners
Manc, I-111

µKNS(X) category of µ-Kuranishi neighbourhoods over S ⊆ X in Man, I-111

µK̇NS(X) category of µ-Kuranishi neighbourhoods over S ⊆ X in Ṁan, I-110

µKNc
S(X) category of µ-Kuranishi neighbourhoods over S ⊆ X in Manc, I-111

µKur category of µ-Kuranishi spaces over classical manifolds Man, I-117

µK̇ur category of µ-Kuranishi spaces over Ṁan, I-116
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µK̇urP category of µ-Kuranishi spaces over Ṁan, and morphisms with discrete
property P , I-119

µKurac category of µ-Kuranishi spaces with a-corners, I-117

µKurac
bn category of µ-Kuranishi spaces with a-corners, and b-normal mor-

phisms, I-120

µKurac
in category of µ-Kuranishi spaces with a-corners, and interior morphisms,

I-120

µKurac
si category of µ-Kuranishi spaces with a-corners, and simple morphisms,

I-120

µKurac
st category of µ-Kuranishi spaces with a-corners, and strongly a-smooth

morphisms, I-120

µKurac
st,bn category of µ-Kuranishi spaces with a-corners, and strongly a-smooth

b-normal morphisms, I-120

µKurac
st,in category of µ-Kuranishi spaces with a-corners, and strongly a-smooth

interior morphisms, I-120

µKurb category of µ-Kuranishi spaces with boundary, I-125

µKurb
in category of µ-Kuranishi spaces with boundary, and interior morphisms,

I-125

µKurb
si category of µ-Kuranishi spaces with boundary, and simple morphisms,

I-125

µKurc category of µ-Kuranishi spaces with corners, I-117

µK̇̌urc category of µ-Kuranishi spaces with corners over Ṁanc of mixed
dimension, I-124

µK̇̌urc
P category of µ-Kuranishi spaces with corners over Ṁanc of mixed

dimension, and morphisms which are P , I-124

µKurc
bn category of µ-Kuranishi spaces with corners, and b-normal morphisms,

I-119

µKurc
in category of µ-Kuranishi spaces with corners, and interior morphisms,

I-119

µKurc
si category of µ-Kuranishi spaces with corners, and simple morphisms,

I-119

µK̇̌urc
si category of µ-Kuranishi spaces with corners over Ṁanc of mixed

dimension, and simple morphisms, I-124
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µKurc
st category of µ-Kuranishi spaces with corners, and strongly smooth

morphisms, I-119

µKurc
st,bn category of µ-Kuranishi spaces with corners, and strongly smooth

b-normal morphisms, I-119

µKurc
st,in category of µ-Kuranishi spaces with corners, and strongly smooth

interior morphisms, I-119

µKurc
we category of µ-Kuranishi spaces with corners and weakly smooth mor-

phisms, I-117

µK̇urc category of µ-Kuranishi spaces with corners associated to Ṁanc, I-122

µKurc,ac category of µ-Kuranishi spaces with corners and a-corners, I-117

µKurc,ac
bn category of µ-Kuranishi spaces with corners and a-corners, and b-

normal morphisms, I-120

µKurc,ac
in category of µ-Kuranishi spaces with corners and a-corners, and interior

morphisms, I-120

µKurc,ac
si category of µ-Kuranishi spaces with corners and a-corners, and simple

morphisms, I-120

µKurc,ac
st category of µ-Kuranishi spaces with corners and a-corners, and

strongly a-smooth morphisms, I-120

µKurc,ac
st,bn category of µ-Kuranishi spaces with corners and a-corners, and

strongly a-smooth b-normal morphisms, I-120

µKurc,ac
st,in category of µ-Kuranishi spaces with corners and a-corners, and

strongly a-smooth interior morphisms, I-120

µK̇urc
si category of µ-Kuranishi spaces with corners associated to Ṁanc, and

simple morphisms, I-122

µKurgc category of µ-Kuranishi spaces with g-corners, I-117

µKurgc
bn category of µ-Kuranishi spaces with g-corners, and b-normal mor-

phisms, I-120

µKurgc
in category of µ-Kuranishi spaces with g-corners, and interior morphisms,

I-120

µKurgc
si category of µ-Kuranishi spaces with g-corners, and simple morphisms,

I-120

M̃xf : M̃xX → M̃yY monoid morphism for morphism f : X → Y in Manc
in,

I-14

M̃xX monoid at a point x in a manifold with corners X, I-14
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NCk(X) normal bundle of k-corners Ck(X) in a manifold with corners X, I-12

bNCk(X) b-normal bundle of k-corners Ck(X) in a manifold with corners X,
I-12

N∂X normal line bundle of boundary ∂X in a manifold with corners X, I-12

Ñxf : ÑxX → ÑyY stratum normal map for manifolds with corners X, I-13

bÑxf : bÑxX → bÑyY stratum b-normal map for morphism f : X → Y in
Manc

in, I-14

ÑxX stratum normal space at x in a manifold with corners X, I-13

bÑxX stratum b-normal space at x in a manifold with corners X, I-13

OrbCR Chen–Ruan’s category of orbifolds, I-171

OrbC∞Sta 2-category of orbifolds as stacks on site C∞Sch, I-172

OrbKur 2-category of orbifolds as examples of Kuranishi spaces, I-175

OrbLe Lerman’s 2-category of orbifolds, I-171

OrbManSta 2-category of orbifolds as stacks on site Man, I-171

OrbMP Moerdijk–Pronk’s category of orbifolds, I-171

OrbPr Pronk’s 2-category of orbifolds, I-171

OrbST Satake–Thurston’s category of orbifolds, I-171

Ȯrb 2-category of Kuranishi orbifolds associated to Ṁan, I-175

Orbac 2-category of orbifolds with a-corners, I-175

Ȯrbc 2-category of orbifolds with corners associated to Ṁanc, I-178

Orbc,ac 2-category of orbifolds with corners and a-corners, I-175

Ȯrbc
si 2-category of orbifolds with corners associated to Ṁanc, and simple

1-morphisms, I-178

Orbc
we 2-category of orbifolds with corners, and weakly smooth 1-morphisms,

I-175

Orbc
we 2-category of orbifolds with corners, I-175

Orbeff
sur 2-category of effective orbifolds with 1-morphisms surjective on isotropy

groups, I-35

Orbgc 2-category of orbifolds with g-corners, I-175

OX structure sheaf of object X in Ṁan, I-37, I-235
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Oxf : OxX → OyY obstruction map of (m- or µ-)Kuranishi spaces, II-17, II-21,
II-22

bOxf : bOxX → bOyY b-obstruction map of (m- or µ-)Kuranishi spaces with
corners, II-19

Õxf : ÕxX → ÕyY stratum obstruction map of (m- or µ-)Kuranishi spaces
with corners, II-19

OxX obstruction space at x of an (m- or µ-)Kuranishi space X, II-16, II-21

O∗xX coobstruction space at x of an (m- or µ-)Kuranishi space X, II-16,
II-21

bOxX b-obstruction space at x of an (m- or µ-)Kuranishi space with corners
X, II-19

ÕxX stratum obstruction space at x of an (m- or µ-)Kuranishi space with
corners X, II-19

Φij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) 1-morphism or coordinate change
of Kuranishi neighbourhoods, I-136

Φij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) 1-morphism or coordinate change of m-
Kuranishi neighbourhoods, I-55

[Φij ] : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) morphism or coordinate change of µ-Kur-
anishi neighbourhoods, I-109

Qxf : QxX → QyY quasi-tangent map of morphism f : X → Y in Ṁan, II-13

Qxf : QxX → QyY quasi-tangent map of (m- or µ-)Kuranishi spaces, II-24,
II-28

QxX quasi-tangent space at x of ‘manifold’ X in Ṁan, II-13

QxX quasi-tangent space at x of an (m- or µ-)Kuranishi space X, II-24,
II-28

Sl(X) depth l stratum of a manifold with corners X, I-6

Tf : TX → TY derivative of a smooth map f : X → Y , I-11

bTf : bTX → bTY b-derivative of an interior map f : X → Y of manifolds with
corners, I-12

TfY tangent sheaf of morphism f : X → Y in Ṁan, I-38, I-251

T g : TfY → Tg◦fZ morphism of tangent sheaves for f : X → Y , g : Y → Z in

Ṁan, I-38, I-254

Top category of topological spaces, I-31
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TX tangent bundle of a manifold X, I-11

T ∗X cotangent bundle of a manifold X, I-11

T X tangent sheaf of ‘manifold’ X in Ṁan, I-38, I-251

T ∗X cotangent sheaf of ‘manifold’ X in Ṁan, I-37, I-240

bTX b-tangent bundle of a manifold with corners X, I-11

bT ∗X b-cotangent bundle of a manifold X, I-11

Txf : TxX → TyY tangent map of morphism f : X → Y in Ṁan, II-4

bTxf : bTxX → bTyY b-tangent map of interior map f : X → Y in Manc, I-12

T̃xf : T̃xX → T̃yY stratum tangent map of morphism f : X → Y of manifolds
with corners, II-4

Txf : TxX → TyY tangent map of (m- or µ-)Kuranishi spaces, II-17, II-21, II-22

bTxf : bTxX → bTyY b-tangent map of (m- or µ-)Kuranishi spaces with corners,
II-19

T̃xf : T̃xX → T̃yY stratum tangent map of (m- or µ-)Kuranishi spaces with
corners, II-19

TxX tangent space at x of ‘manifold’ X in Ṁan, II-4

T ∗xX cotangent space at x of ‘manifold’ X in Ṁan, II-4

bTxX b-tangent space at x of a manifold with corners X, I-11

T̃xX stratum tangent space at x of a manifold with corners X, II-4

TxX tangent space at x of an (m- or µ-)Kuranishi space X, II-16, II-21

T ∗xX cotangent space at x of an (m- or µ-)Kuranishi space X, II-16, II-21

bTxX b-tangent space at x of an (m- or µ-)Kuranishi space with corners X,
II-19

T̃xX stratum tangent space at x of an (m- or µ-)Kuranishi space with
corners X, II-19

(V,E,Γ, s) object in 2-category of global Kuranishi neighbourhoods GK̇N, I-142

(V,E,Γ, s, ψ) Kuranishi neighbourhood on topological space, I-135

(V,E, s) object in (2-)category of global m- or µ-Kuranishi neighbourhoods
GmK̇N or GµK̇N, I-58, I-110

(V,E, s, ψ) m- or µ-Kuranishi neighbourhood on topological space, I-55, I-109

X◦ interior of a manifold with corners X, I-6

Xtop underlying topological space of object X in Ṁan, I-31
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Index to all volumes

Page references are in the form volume-page number.

(2, 1)-category, I-59, I-142, I-225
2-Cartesian square, I-74, I-229, II-90,

II-114, II-115
2-category, I-223–I-229

1-isomorphism in, I-225
1-morphism, I-223
2-functor, I-226–I-228

weak 2-natural transformation,
I-227

2-morphism, I-223
horizontal composition, I-224
vertical composition, I-223

canonical equivalence of objects,
I-225

discrete, I-35
equivalence in, I-225

canonical, I-97
equivalence of, I-103, I-228
fibre product in, I-228–I-229, II-

78–II-162
homotopy category, I-103, I-109,

I-120, I-226, II-108
modification, I-228
strict, I-223
weak, I-67, I-72, I-223

2-functor, I-103, I-226–I-228
equivalence of, I-228
strict, I-226
weak, I-75–I-76, I-87, I-226
weak 2-natural transformation,

I-227
modification, I-228

2-sheaf, I-2

adjoint functor, I-231
Axiom of Choice, I-67–I-68, I-149,

I-152, I-169, II-23
Axiom of Global Choice, I-67–I-68,

I-149, I-152, I-169, II-23

C∞-algebraic geometry, I-36, I-128–
I-129, I-234–I-235

C∞-ring, I-36, I-128, I-234–I-235
C∞-derivation, I-239, I-248
cotangent module, I-240
definition, I-234
derived, I-104
module over, I-235

C∞-scheme, I-128–I-129, I-235, II-5
affine, I-37, I-236
derived, I-103, I-105

C∞-stack, I-235
Cartesian square, I-19–I-27, I-222
category, I-221–I-222

coproduct, I-31
definition, I-221
equivalence of, I-122, I-222
essentially small, I-221
fibre product, I-31, I-222
functor, see functor
groupoid, I-221
initial object, I-31
opposite category, I-221
product category, I-221
small, I-221
subcategory, I-221

full, I-222
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terminal object, I-31, I-74, I-
118, II-94

class, in Set Theory, I-67, I-221, I-
226

classical manifold, I-32–I-33
connecting morphism, II-27, II-59,

II-92, II-116, II-154
contact homology, I-iv, II-iv
coorientation, I-28, II-10

opposite, I-28, II-10
corner functor, I-8–I-10, I-17, I-19,

I-48
cotangent sheaf, I-239–I-242

d-manifold, I-103, I-122
Derived Algebraic Geometry, I-vii,

I-103, II-vii
Derived Differential Geometry, I-vii–

I-viii, I-103–I-105, II-vii–II-
viii

derived manifold, I-vii–I-viii, I-103–
I-105, I-122, II-vii–II-viii

derived orbifold, I-vii–I-viii, II-vii–II-
viii

derived scheme, I-vii, II-vii
derived stack, I-vii, II-vii
determinant, II-51–II-61
discrete property of morphisms in

Ṁan, I-44–I-45, I-77–I-80,
I-119–I-120, I-153–I-155, I-
178, I-263–I-264, II-3–II-14,
II-79–II-87

fibre product, I-31, I-222
in a 2-category, I-228–I-229, II-

78–II-162
transverse, I-19–I-27, II-78–II-

87
fine sheaf, I-37, I-129
FOOO Kuranishi space, I-v, I-1, I-

87, I-104, I-144, I-172, II-v,
II-62, II-97, II-107

Fukaya category, I-iv, I-v, I-ix, II-iv,
II-v, II-ix

functor, I-222
adjoint, I-231

contravariant, I-222
equivalence, I-222
faithful, I-222
full, I-222
natural isomorphism, I-222
natural transformation, I-12, I-

222, II-5, II-20

global Kuranishi neighbourhood, I-
142

w-transverse fibre product, II-
109–II-114

global m-Kuranishi neighbourhood,
I-55

submersion, II-88
transverse fibre product, II-88,

II-109
w-submersion, II-88
w-transverse fibre product, II-

88–II-90, II-134–II-138
Gromov–Witten invariant, I-iv, I-1,

II-iv
groupoid, I-59, I-221

Hadamard’s Lemma, I-33
Hilsum–Skandalis morphism, I-144,

I-171, I-173
homotopy category, I-103, I-106, I-

109, I-226, II-108

∞-category, I-68, I-103–I-104
isotropy group, I-166–I-170, II-21–II-

23, II-74, II-117–II-119

J-holomorphic curves
moduli space of, I-iv–I-vi, II-iv–

II-vi

Kuranishi atlas, by McDuff–Wehrheim,
I-104, I-172

Kuranishi moduli problem, I-3
Kuranishi neighbourhood, I-135–I-

145
1-morphism, I-136
2-category of, I-141
2-morphism, I-137
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coordinate change, I-2, I-143, II-
50–II-51

definition, I-135
footprint, I-136
global, I-142

w-transverse fibre product, II-
109–II-114

Kuranishi section, I-135
minimal, II-37–II-42
obstruction bundle, I-135
on Kuranishi space, I-162–I-165
stack property of, I-145, I-148,

I-164, I-179–I-187
strict isomorphism, II-38

Kuranishi space, I-135–I-187
1-morphism, I-147

étale, II-48–II-50
representable, I-169

2-category of, I-151
2-morphism, I-148
and m-Kuranishi spaces, I-155–

I-157
and orbifolds, I-176–I-177
boundary, I-160
canonical bundle, II-74–II-77
coobstruction space, II-21
coorientation, II-75

opposite, II-76
cotangent space, II-21
definition, I-146
discrete property of 1-morphisms,

I-153–I-155
equivalence, I-165, II-49
étale 1-morphism, II-48–II-50,

II-75
FOOO, see FOOO Kuranishi

space
is an orbifold, I-176, II-42, II-

114, II-115
isotropy group, I-166–I-170, II-

21–II-23, II-48, II-115
definition, I-166
trivial, I-169

k-corner functor, I-161
Kuranishi neighbourhood on, I-

162–I-165

1-morphism, I-163
coordinate change, I-162–I-163
definition, I-162
global, I-162

locally orientable, II-74–II-77,
II-118

obstruction space, II-1, II-3–II-
77

definition, II-21–II-23
orientation, II-74–II-77

definition, II-75
opposite, II-75

product, I-152
orientation, II-77

quasi-tangent space, II-28
submersion, II-1, II-2, II-108–II-

127
tangent space, II-1, II-3–II-77

definition, II-21–II-23
transverse fibre product, II-1–

II-2, II-108–II-127
virtual dimension, I-2, I-146
w-submersion, II-108–II-127
w-transverse fibre product, II-1–

II-2, II-108–II-127
Kuranishi space with a-corners, I-

153, I-155
b-normal 1-morphism, I-155
interior 1-morphism, I-155
simple 1-morphism, I-155
strongly a-smooth 1-morphism,

I-155
Kuranishi space with corners, I-153,

I-157–I-162, II-120–II-123,
II-125–II-127

b-normal 1-morphism, I-154, I-
162

boundary
orientation on, II-77

boundary 2-functor, I-161
equivalence, I-162
interior 1-morphism, I-154, I-

162
k-corners Ck(X), I-157–I-161
s-submersion, II-120–II-123, II-

125–II-127
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s-transverse fibre product, II-
120–II-123

sb-transverse fibre product, II-
125–II-127

sc-transverse fibre product, II-
125–II-127

simple 1-morphism, I-154
strongly smooth 1-morphism, I-

154
t-transverse fibre product, II-

120–II-123
ws-submersion, II-120–II-123, II-

125–II-127
ws-transverse fibre product, II-

120–II-123
wsb-transverse fibre product, II-

125–II-127
wsc-transverse fibre product, II-

125–II-127
wt-transverse fibre product, II-

120–II-123
Kuranishi space with corners and

a-corners, I-153, I-155
b-normal 1-morphism, I-155
interior 1-morphism, I-155
simple 1-morphism, I-155
strongly a-smooth 1-morphism,

I-155
Kuranishi space with g-corners, I-

153, I-155, II-123–II-125
b-fibration, II-123–II-125
b-normal 1-morphism, I-155
b-transverse fibre product, II-

123–II-125
c-fibration, II-123–II-125
c-transverse fibre product, II-

123–II-125
interior 1-morphism, I-155
simple 1-morphism, I-155
wb-fibration, II-123–II-125
wb-transverse fibre product, II-

123–II-125
wc-fibration, II-123–II-125
wc-transverse fibre product, II-

123–II-125
Kuranishi structure, I-146

Lagrangian Floer cohomology, I-iv,
I-v, I-ix, I-1, II-iv, II-v, II-
ix

M-cohomology, I-vii–I-ix, II-vii–II-ix
and virtual cocycles, I-viii–I-ix,

II-viii–II-ix
M-homology, I-vii–I-ix, II-vii–II-ix

and virtual cycles, I-viii–I-ix, II-
viii–II-ix

m-Kuranishi neighbourhood, I-54–I-
61

1-morphism, I-55
2-category of, I-58
2-morphism, I-56

gluing with a partition of unity,
I-106, I-108–I-109, I-113

linearity properties of, I-107–
I-109

coordinate change, I-2, I-59, II-
47–II-48

definition, I-55
footprint, I-55
global, I-55

submersion, II-88
transverse fibre product, II-

88, II-109
w-submersion, II-88
w-transverse fibre product, II-

88–II-90, II-134–II-138
Kuranishi section, I-55
minimal, II-29–II-37
obstruction bundle, I-55
on m-Kuranishi space, I-93–I-

102
stack property of, I-60–I-61, I-

64–I-68, I-95, I-96, I-99, I-
145, I-179–I-187

strict isomorphism, II-30
m-Kuranishi space, I-54–I-105

1-morphism, I-62
étale, II-42–II-47, II-65

2-category of, I-61–I-73
2-morphism, I-63
and Kuranishi spaces, I-155–I-

157
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and µ-Kuranishi spaces, I-120–
I-122

canonical bundle, II-62–II-74, II-
96

definition, II-62
coobstruction space, II-16
coorientation, II-66

opposite, II-66
corner 2-functor, I-87–I-93, I-

161–I-162
cotangent space, II-16
definition, I-61
discrete property of 1-morphisms,

I-77–I-80, I-91
equivalence, I-97–I-99, II-18, II-

65
étale 1-morphism, II-42–II-47,

II-65
fibre product, I-74
is a classical manifold, I-74, II-

95
is a manifold, I-73, II-37, II-91
k-corner functor, I-91
m-Kuranishi neighbourhood on,

I-93–I-102
1-morphism of, I-95
coordinate change, I-94
definition, I-94
global, I-94

obstruction space, II-1, II-3–II-
77

definition, II-15–II-20
orientation, II-66–II-74, II-96–

II-97
definition, II-66
opposite, II-66

oriented, II-66
product, I-74, II-93–II-94

orientation, II-71–II-74
quasi-tangent space, II-23–II-27
submersion, II-1, II-2, II-87–II-

106
tangent space, II-1, II-3–II-77

definition, II-15–II-20
transverse fibre product, II-1–

II-2, II-87–II-106

virtual dimension, I-2, I-61
w-submersion, II-87–II-106
w-transverse fibre product, II-

1–II-2, II-87–II-106, II-138–
II-156

orientation on, II-96–II-97
m-Kuranishi space with a-corners,

I-72, I-79
b-normal 1-morphism, I-79
interior 1-morphism, I-79
simple 1-morphism, I-79
strongly a-smooth 1-morphism,

I-79
m-Kuranishi space with boundary,

I-93
m-Kuranishi space with corners, I-

72, I-78, I-81–I-93, II-100–
II-102, II-104–II-106

b-normal 1-morphism, I-79, I-
92

boundary, I-86
orientation on, II-67–II-71

boundary 2-functor, I-91
interior 1-morphism, I-79, I-92
k-corners Ck(X), I-81–I-87
m-Kuranishi neighbourhoods on,

I-100–I-101
boundaries and corners of, I-

100–I-101
of mixed dimension, I-87
s-submersion, II-100–II-102, II-

105–II-106
s-transverse fibre product, II-

100–II-102
sb-transverse fibre product, II-

105–II-106
sc-transverse fibre product, II-

105–II-106
simple 1-morphism, I-79
strongly smooth 1-morphism, I-

79
t-transverse fibre product, II-

100–II-102
ws-submersion, II-100–II-102, II-

105–II-106
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ws-transverse fibre product, II-
100–II-102

wsb-transverse fibre product, II-
105–II-106

wsc-transverse fibre product, II-
105–II-106

wt-transverse fibre product, II-
100–II-102

m-Kuranishi space with corners and
a-corners, I-72, I-79

b-normal 1-morphism, I-79
interior 1-morphism, I-79
simple 1-morphism, I-79
strongly a-smooth 1-morphism,

I-79
m-Kuranishi space with g-corners,

I-72, I-79, II-102–II-104
b-fibration, II-102–II-104
b-normal 1-morphism, I-79
b-transverse fibre product, II-

102–II-104
c-fibration, II-102–II-104
c-transverse fibre product, II-

102–II-104
interior 1-morphism, I-79
simple 1-morphism, I-79
wb-fibration, II-102–II-104
wb-transverse fibre product, II-

102–II-104
wc-fibration, II-102–II-104
wc-transverse fibre product, II-

102–II-104
m-Kuranishi structure, I-61
manifold

classical, I-32–I-33
manifold with a-corners, I-17–I-19

a-diffeomorphism, I-18
a-smooth map, I-18
b-normal map, I-18
b-tangent bundle, I-19
corner functor, I-19
interior map, I-18
simple map, I-18
strongly a-smooth map, I-18

manifold with analytic corners, see
manifold with a-corners

manifold with boundary, I-4–I-29
manifold with corners, I-3–I-29, I-47–

I-53
atlas, I-5
b-cotangent bundle, I-11
b-map, I-6
b-normal map, I-4, I-5
b-tangent bundle, I-10–I-14, I-

17
definition, I-11

b-tangent functor, I-12
b-vector field, I-11
boundary, I-6–I-10, I-29, I-48

definition, I-7
boundary functor, I-9, I-49
canonical bundle, I-28, II-61
coorientation, I-28, II-10

opposite, I-28, II-10
corner functor, I-8–I-10, I-19, I-

48, I-268–I-276, II-81
cotangent bundle, I-11
cotangent sheaf, I-239–I-242
definition, I-5
differential geometry in Ṁanc,

I-268–I-278, II-10–II-12
interior X◦, I-6
interior map, I-4, I-5
k-corner functor, I-9, I-49
k-corners Ck(X), I-6–I-10, I-48
local boundary component, I-6
local k-corner component, I-6,

I-8, I-9
manifold with faces, I-5, I-36
orientation, I-27–I-29, II-9–II-

13, II-61
definition, I-28, II-10
opposite, I-28, II-10

orientation convention, I-28–I-
29, II-12–II-13

quasi-tangent space, I-14, II-13–
II-14, II-81

s-submersion, I-21–I-23, I-26, II-
84–II-87, II-100, II-104, II-
120, II-125

s-transverse fibre product, I-21–
I-23, II-84–II-85, II-100, II-
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120
sb-transverse fibre product, I-

25–I-27, II-86–II-87, II-104,
II-125

sc-transverse fibre product, I-
25–I-27, II-86–II-87, II-104,
II-125

simple map, I-5, I-48
smooth map, I-4, I-5
stratum b-normal space, I-13
stratum normal space, I-13
strongly smooth map, I-4, I-5,

I-21–I-23
submersion, I-19–I-27, II-78–II-

87
t-transverse fibre product, I-21–

I-23, II-84–II-85, II-100, II-
120

tangent bundle, I-10–I-14
definition, I-11

tangent functor, I-12
tangent sheaf, I-242–I-261, I-268–

I-276
tangent space, II-3–II-14
transverse fibre product, I-19–I-

27, I-29, II-78–II-87
vector bundle, I-10, I-37, I-237–

I-239
connection, I-38, I-241–I-242

vector field, I-11
weakly smooth map, I-4, I-5

manifold with corners and a-corners,
I-18–I-19

manifold with faces, I-5, I-36
manifold with g-corners, I-14–I-17, I-

23–I-25, II-85–II-86, II-102,
II-123

b-cotangent bundle, I-17
b-fibration, I-23–I-25, II-85–II-

86, II-102, II-123
b-normal map, I-16
b-submersion, I-23–I-25, II-85–

II-86, II-102, II-123
b-tangent bundle, I-17
b-transverse fibre product, I-23–

I-25, II-85–II-86, II-102, II-

123
c-transverse fibre product, I-23–

I-25, II-85–II-86, II-102, II-
123

definition, I-16
examples, I-16–I-17
interior X◦, I-15
interior map, I-16
simple map, I-16
smooth map, I-16

manifold with generalized corners,
see manifold with g-corners

moduli space
of J-holomorphic curves, I-iv–I-

vi, II-iv–II-vi
of J-holomorphic curves, I-ix,

II-ix
monoid, I-14–I-16

toric, I-15
weakly toric, I-14

rank, I-15
µ-Kuranishi neighbourhood, I-109–I-

114
category of, I-109–I-111
coordinate change, I-2, I-111
definition, I-109
minimal, II-37
morphism, I-109
on µ-Kuranishi space, I-125–I-

127
sheaf property of, I-112–I-116,

I-125
µ-Kuranishi space, I-106–I-134

and m-Kuranishi spaces, I-120–
I-122

canonical bundle, II-74
coordinate change, II-48
corner functor, I-124–I-125
definition, I-114
discrete property of morphisms,

I-119–I-120, I-124
étale morphism, II-48
fibre product, I-106, II-106–II-

107
k-corner functor, I-124
morphism, I-115
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étale, II-48
µ-Kuranishi neighbourhood on,

I-125–I-127
coordinate change, I-126
global, I-125
morphism of, I-126

obstruction space, II-1, II-3–II-
77

definition, II-21
orientation, II-74
product, I-118
quasi-tangent space, II-27–II-28
tangent space, II-1, II-3–II-77

definition, II-21
virtual dimension, I-2

µ-Kuranishi space with a-corners, I-
117, I-120

b-normal morphism, I-120
interior morphism, I-120
strongly a-smooth morphism, I-

120
µ-Kuranishi space with boundary, I-

125
µ-Kuranishi space with corners, I-

117, I-119, I-122–I-125
b-normal morphism, I-119, I-

125
boundary, I-124
boundary functor, I-124
interior morphism, I-119, I-125
isomorphism, I-125
k-corners Ck(X), I-122–I-124, I-

127
strongly smooth morphism, I-

119
µ-Kuranishi space with corners and

a-corners, I-117, I-120
b-normal morphism, I-120
interior morphism, I-120
strongly a-smooth morphism, I-

120
µ-Kuranishi space with g-corners, I-

117, I-120
b-normal morphism, I-120
interior morphism, I-120
simple morphism, I-120

µ-Kuranishi structure, I-114

O(s) and O(s2) notation, I-40–I-44,
I-55–I-58, I-136–I-139, I-261–
I-263, I-274–I-276, I-278–I-
297

orbifold, I-35, I-170–I-178
and Kuranishi spaces, I-176
as a 2-category, I-171, II-108
definitions, I-171–I-177
is a manifold, I-176
isotropy group, I-176, II-108
Kuranishi orbifold, I-175
transverse fibre product, II-108–

II-109
orbifold with corners, I-178

boundary ∂X, I-178
corner 2-functor, I-178
k-corners Ck(X), I-178

orientation, I-27–I-29, II-9–II-13, II-
61–II-77

opposite, I-28, II-10
orientation convention, I-28–I-29, II-

12–II-13, II-73, II-97
OX -module, I-239

partition of unity, I-106, I-108–I-109,
I-113, I-127–I-129, I-236–I-
237

polyfold, I-v–I-vi, I-3, II-v–II-vi
presheaf, I-106, I-230, I-240

sheafification, I-231, I-240

quantum cohomology, I-iv, II-iv
quasi-category, I-68
quasi-tangent space, I-14, II-13–II-

14, II-23–II-28

relative tangent sheaf, I-38

sheaf, I-2, I-32, I-36–I-39, I-104, I-
106, I-113, I-229–I-231

direct image, I-231
fine, I-37, I-129, I-237
inverse image, I-231
of abelian groups, rings, etc., I-

230
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presheaf, I-230, I-240
sheafification, I-231, I-240

pullback, I-231, I-259–I-261
pushforward, I-231
soft, I-237
stalk, I-230

site, I-232
stack, I-103, I-232, II-48

Artin, I-232
Deligne–Mumford, I-232
on topological space, I-2, I-60–

I-61, I-128, I-179–I-187, I-
231–I-232

topological stack, II-74, II-117
strict 2-functor, I-226
structure sheaf, I-235
subcategory, I-221

full, I-222
submersion, I-19–I-27
symplectic cohomology, I-iv, II-iv
Symplectic Field Theory, I-iv, I-ix,

I-1, II-iv, II-ix
symplectic geometry, I-iv–I-vi, I-1,

II-iv–II-vi

tangent sheaf, I-38, I-242–I-261, I-
268–I-276

relative, I-38
tangent space

in Ṁan, II-3–II-14
topological space

Hausdorff, I-61
locally compact, I-61
locally second countable, I-61
metrizable, I-62
paracompact, I-61
second countable, I-61

transverse fibre product, I-19–I-27,
II-78–II-87

orientation, I-29

vector bundle, I-10, I-37, I-237–I-239
connection, I-38, I-241–I-242
morphism, I-238
section, I-238
sheaf of sections, I-239

virtual chain, I-iv, II-iv
virtual class, I-iv, II-iv

weak 2-category, I-67, I-72
weak 2-functor, I-75–I-76, I-87, I-226
weak 2-natural transformation, I-227

modification, I-228
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