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B.7 Comparing different categories Ṁan . . . . . . . . . . . . . . 264
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Introduction to the series

On the foundations of Symplectic Geometry

Several important areas of Symplectic Geometry involve ‘counting’ moduli
spaces M of J-holomorphic curves in a symplectic manifold (S, ω) satisfying
some conditions, where J is an almost complex structure on S compatible with
ω, and using the ‘numbers of curves’ to build some interesting theory, which
is then shown to be independent of the choice of J . Areas of this type include
Gromov–Witten theory [5, 30, 40, 46, 47, 51, 65, 67], Quantum Cohomology
[46, 51], Lagrangian Floer cohomology [2, 12, 15, 20, 59, 70], Fukaya categories
[9, 62, 64], Symplectic Field Theory [3, 7, 8], Contact Homology [6, 60], and
Symplectic Cohomology [63].

Setting up the foundations of these areas, rigorously and in full generality,
is a very long and difficult task, comparable to the work of Grothendieck and
his school on the foundations of Algebraic Geometry, or the work of Lurie and
Toën–Vezzosi on the foundations of Derived Algebraic Geometry. Any such
foundational programme for Symplectic Geometry can be divided into five steps:

(i) We must define a suitable class of geometric structures G to put on the
moduli spaces M of J-holomorphic curves we wish to ‘count’. This must
satisfy both (ii) and (iii) below.

(ii) Given a compact space X with geometric structure G and an ‘orientation’,
we must define a ‘virtual class’ [[X]virt] in some homology group, or a
‘virtual chain’ [X]virt in the chains of the homology theory, which ‘counts’ X.

Actually, usually one studies a compact, oriented G-space X with a ‘smooth
map’ f : X → Y to a manifold Y , and defines [[X]virt] or [X]virt in a
suitable (co)homology theory of Y , such as singular homology or de Rham
cohomology. These virtual classes/(co)chains must satisfy a package of
properties, including a deformation-invariance property.

(iii) We must prove that all the moduli spaces M of J-holomorphic curves
that will be used in our theory have geometric structure G, preferably
in a natural way. Note that in order to make the moduli spaces M
compact (necessary for existence of virtual classes/chains), we have to
include singular J-holomorphic curves in M. This makes construction of
the G-structure on M significantly more difficult.
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(iv) We combine (i)–(iii) to study the situation in Symplectic Geometry we are
interested in, e.g. to define Lagrangian Floer cohomology HF ∗(L1, L2) for
compact Lagrangians L1, L2 in a compact symplectic manifold (S, ω).

To do this we choose an almost complex structure J on (S, ω) and define
a collection of moduli spaces M of J-holomorphic curves relevant to the
problem. By (iii) these have structure G, so by (ii) they have virtual
classes/(co)chains [M]virt in some (co)homology theory.

There will be geometric relationships between these moduli spaces – for
instance, boundaries of moduli spaces may be written as sums of fibre
products of other moduli spaces. By the package of properties in (ii), these
geometric relationships should translate to algebraic relationships between
the virtual classes/(co)chains, e.g. the boundaries of virtual cochains may
be written as sums of cup products of other virtual cochains.

We use the virtual classes/(co)chains, and the algebraic identities they
satisfy, and homological algebra, to build the theory we want – Quantum
Cohomology, Lagrangian Floer Theory, and so on. We show the result
is independent of the choice of almost complex structure J using the
deformation-invariance properties of virtual classes/(co)chains.

(v) We apply our new machine to do something interesting in Symplectic
Geometry, e.g. prove the Arnold Conjecture.

Many authors have worked on programmes of this type, since the introduction
of J-holomorphic curve techniques into Symplectic Geometry by Gromov [32]
in 1985. Oversimplifying somewhat, we can divide these approaches into three
main groups, according to their answer to (i) above:

(A) (Kuranishi-type spaces.) In the work of Fukaya, Oh, Ohta and Ono
[10–30], moduli spaces are given the structure of Kuranishi spaces (we will
call their definition FOOO Kuranishi spaces).

Several other groups also work with Kuranishi-type spaces, including
McDuff and Wehrheim [49, 50, 52–55], Pardon [60, 61], and the author in
[42, 43] and this series.

(B) (Polyfolds.) In the work of Hofer, Wysocki and Zehnder [34–41], moduli
spaces are given the structure of polyfolds.

(C) (The rest of the world.) One makes restrictive assumptions on the
symplectic geometry – for instance, consider only noncompact, exact
symplectic manifolds, and exact Lagrangians in them – takes J to be
generic, and arranges that all the moduli spaces M we are interested
in are smooth manifolds (or possibly ‘pseudomanifolds’, manifolds with
singularities in codimension 2). Then we form virtual classes/chains as
for fundamental classes of manifolds. A good example of this approach is
Seidel’s construction [64] of Fukaya categories of Liouville domains.

We have not given complete references here, much important work is omitted.
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Although Kuranishi-type spaces in (A), and polyfolds in (B), do exactly
the same job, there is an important philosophical difference between them.
Kuranishi spaces basically remember the minimal information needed to form
virtual cycles/chains, and no more. Kuranishi spaces contain about the same
amount of data as smooth manifolds, and include manifolds as examples.

In contrast, polyfolds remember the entire functional-analytic moduli problem,
forgetting nothing. Any polyfold curve moduli space, even a moduli space of
constant curves, is a hugely infinite-dimensional object, a vast amount of data.

Approach (C) makes one’s life a lot simpler, but this comes at a cost. Firstly,
one can only work in rather restricted situations, such as exact symplectic
manifolds. And secondly, one must go through various contortions to ensure all
the moduli spaces M are manifolds, such as using domain-dependent almost
complex structures, which are unnecessary in approaches (A),(B).

The aim and scope of the series, and its novel features

The aim of this series of books is to set up the foundations of these areas of
Symplectic Geometry built using J-holomorphic curves following approach (A)
above, using the author’s own definition of Kuranishi space. We will do this
starting from the beginning, rigorously, in detail, and as the author believes the
subject ought to be done. The author hopes that in future, the series will provide
a complete framework which symplectic geometers can refer to for theorems and
proofs, and use large parts as a ‘black box’.

The author currently plans four or more volumes, as follows:

Volume I. Basic theory of (m-)Kuranishi spaces. Definitions of the cat-
egory µK̇ur of µ-Kuranishi spaces, and the 2-categories mK̇ur of
m-Kuranishi spaces and K̇ur of Kuranishi spaces, over a category
of ‘manifolds’ Ṁan such as classical manifolds Man or manifolds
with corners Manc. Boundaries, corners, and corner (2-)functors
for (m- and µ-)Kuranishi spaces with corners. Relation to similar
structures in the literature, including Fukaya–Oh–Ohta–Ono’s Ku-
ranishi spaces, and Hofer–Wysocki–Zehnder’s polyfolds. ‘Kuranishi
moduli problems’, our approach to putting Kuranishi structures
on moduli spaces, canonical up to equivalence.

Volume II. Differential Geometry of (m-)Kuranishi spaces. Tangent
and obstruction spaces for (m- and µ-)Kuranishi spaces. Canonical
bundles and orientations. (W-)transversality, (w-)submersions,
and existence of w-transverse fibre products in mK̇ur and K̇ur.
M-(co)homology of manifolds and orbifolds [44], virtual (co)chains
and virtual (co)cycles for compact, oriented (m-)Kuranishi spaces
in M-(co)homology. Orbifold strata of Kuranishi spaces. Bordism
and cobordism for (m-)Kuranishi spaces.

Volume III. Kuranishi structures on moduli spaces of J-holomorphic
curves. For very many moduli spaces of J-holomorphic curves
M of interest in Symplectic Geometry, including singular curves,

vii



curves with Lagrangian boundary conditions, marked points, etc.,
we show thatM can be made into a Kuranishi spaceM, uniquely
up to equivalence in K̇ur. We do this by a new method using
2-categories, similar to Grothendieck’s representable functor ap-
proach to moduli spaces in Algebraic Geometry. We do the same
for many other classes of moduli problems for nonlinear elliptic
p.d.e.s, including gauge theory moduli spaces. Natural relations
between moduli spaces, such as maps Fi :Mk+1 →Mk forgetting
a marked point, correspond to relations between the Kuranishi
spaces, such as a 1-morphism F i : Mk+1 →Mk in K̇ur. We
discuss orientations on Kuranishi moduli spaces.

Volumes IV– Big theories in Symplectic Geometry. To include Gromov–
Witten invariants, Quantum Cohomology, Lagrangian Floer coho-
mology, and Fukaya categories.

For steps (i)–(v) above, (i)–(iii) will be tackled in volumes I–III respectively, and
(iv)–(v) in volume IV onwards.

Readers familiar with the field will probably have noticed that our series
sounds a lot like the work of Fukaya, Oh, Ohta and Ono [10–30], in particular,
their 2009 two-volume book [15] on Lagrangian Floer cohomology. And it is
very similar. On the large scale, and in a lot of the details, we have taken many
ideas from Fukaya–Oh–Ohta–Ono, which the author acknowledges with thanks.
Actually this is true of most foundational projects in this field: Fukaya, Oh, Ohta
and Ono were the pioneers, and enormously creative, and subsequent authors
have followed in their footsteps to a great extent.

However, there are features of our presentation that are genuinely new, and
here we will highlight three:

(a) The use of Derived Differential Geometry in our Kuranishi space theory.

(b) The use of M-(co)homology to form virtual cycles and chains.

(c) The use of ‘Kuranishi moduli problems’, similar to Grothendieck’s rep-
resentable functor approach to moduli spaces in Algebraic Geometry, to
prove moduli spaces of J-holomorphic curves have Kuranishi structures.

We discuss these in turn.

(a) Derived Differential Geometry

Derived Algebraic Geometry, developed by Lurie [48] and Toën–Vezzosi [68,
69], is the study of ‘derived schemes’ and ‘derived stacks’, enhanced versions
of classical schemes and stacks with a richer geometric structure. They were
introduced to study moduli spaces in Algebraic Geometry. Roughly, a classical
moduli space M of objects E knows about the infinitesimal deformations of E,
but not the obstructions to deformations. The corresponding derived moduli
spaceM remembers the deformations, obstructions, and higher obstructions.

Derived Algebraic Geometry has a less well-known cousin, Derived Differential
Geometry, the study of ‘derived’ versions of smooth manifolds. Probably the first

viii



reference to Derived Differential Geometry is a short final paragraph in Lurie
[48, §4.5]. Lurie’s ideas were developed further in 2008 by his student David
Spivak [66], who defined an ∞-category DerManSpi of ‘derived manifolds’.

When I read Spivak’s thesis [66], armed with a good knowledge of Fukaya–
Oh–Ohta–Ono’s Kuranishi space theory [15], I had a revelation:

Kuranishi spaces are really derived smooth orbifolds.

This should not be surprising, as derived schemes and Kuranishi spaces are both
geometric structures designed to remember the obstructions in moduli problems.

This has important consequences for Symplectic Geometry: to understand
Kuranishi spaces properly, we should use the insights and methods of Derived
Algebraic Geometry. Fukaya–Oh–Ohta–Ono could not do this, as their Kuranishi
spaces predate Derived Algebraic Geometry by several years. Since they lacked
essential tools, their FOOO Kuranishi spaces are not really satisfactory as
geometric spaces, though they are adequate for their applications. For example,
they give no definition of morphism of FOOO Kuranishi spaces.

A very basic fact about Derived Algebraic Geometry is that it always happens
in higher categories, usually ∞-categories. We have written our theory in terms
of 2-categories, which are much simpler than ∞-categories. There are special
features of our situation which mean that 2-categories are enough for our purposes.
Firstly, the existence of partitions of unity in Differential Geometry means that
structure sheaves are soft, and have no higher cohomology. Secondly, we are
only interested in ‘quasi-smooth’ derived spaces, which have deformations and
obstructions, but no higher obstructions. As we are studying Kuranishi spaces
with deformations and obstructions – two levels of tangent directions – these
spaces need to live in a higher category C with at least two levels of morphism,
1- and 2-morphisms, so C needs to be at least a 2-category.

Our Kuranishi spaces form a weak 2-category K̇ur. One can take the
homotopy category Ho(K̇ur) to get an ordinary category, but this loses important
information. For example:

• 1-morphisms f : X → Y in K̇ur are a 2-sheaf (stack) onX, but morphisms
[f ] : X → Y in Ho(K̇ur) are not a sheaf on X, they are not ‘local’. This
is probably one reason why Fukaya et al. do not define morphisms for
FOOO Kuranishi spaces, as higher category techniques would be needed.

• As in Chapter 11 of volume II, there is a good notion of (w-)transverse
1-morphisms g : X → Z, h : Y → Z in K̇ur, and (w-)transverse fibre
products X ×g,Z,h Y exist in K̇ur, characterized by a universal property

involving the 2-morphisms in K̇ur. In Ho(K̇ur) this universal property
makes no sense, and (w-)transverse fibre products may not exist.

Derived Differential Geometry will be discussed in §4.8 of volume I.

(b) M-(co)homology and virtual cycles

In Fukaya–Oh–Ohta–Ono’s Lagrangian Floer theory [15], a lot of extra complexity
and hard work is due to the fact that their homology theory for forming virtual
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chains (singular homology) does not play nicely with FOOO Kuranishi spaces.
For example, they deal with moduli spacesMk(α) of stable J-holomorphic discs
Σ in (S, ω) with boundary in a Lagrangian L, with homology class [Σ] = α in
H2(S,L;Z), and k boundary marked points. These satisfy boundary equations

∂Mk(α) '
∐
α=β+γ, k=i+jMi+1(β)×evi+1,L,evj+1

Mj+1(γ).

One would like to choose virtual chains [Mk(α)]virt in homology satisfying

∂[Mk(α)]virt =
∑
α=β+γ, k=i+j [Mi+1(β)]virt •L [Mj+1(γ)]virt,

where •L is a chain-level intersection product/cup product on the (co)homology
of L. But singular homology has no chain-level intersection product.

In their later work [18, §12], [24], Fukaya et al. define virtual cochains in de
Rham cohomology, which does have a cochain-level cup product. But there are
disadvantages to this too, for example, one is forced to work in (co)homology
over R, rather than Z or Q.

As in Chapter 12 of volume II, the author [44] defined new (co)homology theo-
ries MH∗(X;R),MH∗(X;R) of manifolds and orbifolds X, called ‘M-homology’
and ‘M-cohomology’. They satisfy the Eilenberg–Steenrod axioms, and so are
canonically isomorphic to usual (co)homology H∗(X;R), H∗(X;R), e.g. singular
homology Hsi

∗ (X;R). They are specially designed for forming virtual (co)chains
for (m-)Kuranishi spaces, and have very good (co)chain-level properties.

In Chapter 13 of volume II we will explain how to form virtual (co)cycles
and (co)chains for (m-)Kuranishi spaces in M-(co)homology. There is no need
to perturb the (m-)Kuranishi space to do this. Our construction has a number
of technical advantages over competing theories: we can make infinitely many
compatible choices of virtual (co)chains, which can be made strictly compatible
with relations between (m-)Kuranishi spaces, such as boundary formulae.

These technical advantages mean that applying our machinery to define some
theory like Lagrangian Floer cohomology, Fukaya categories, or Symplectic Field
Theory, will be significantly easier. Identities which only hold up to homotopy
in the Fukaya–Oh–Ohta–Ono model, often hold on the nose in our version.

(c) Kuranishi moduli problems

The usual approaches to moduli spaces in Differential Geometry, and in Algebraic
Geometry, are very different. In Differential Geometry, one defines a moduli
space (e.g. of J-holomorphic curves, or instantons on a 4-manifold), initially
as a set M of isomorphism classes of the objects of interest, and then adds
extra structure: first a topology, and then an atlas of charts on M making the
moduli space into a manifold or Kuranishi-type space. The individual charts are
defined by writing the p.d.e. as a nonlinear Fredholm operator between Sobolev
or Hölder spaces, and using the Implicit Function Theorem for Banach spaces.

In Algebraic Geometry, following Grothendieck, one begins by defining a
functor F called the moduli functor, which encodes the behaviour of families of
objects in the moduli problem. This might be of the form F : (Schaff

C )op → Sets
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(to define a moduli C-scheme) or F : (Schaff
C )op → Groupoids (to define a

moduli C-stack), where Schaff
C ,Sets,Groupoids are the categories of affine

C-schemes, and sets, and groupoids, and (Schaff
C )op is the opposite category

of Schaff
C . Here if S is an affine C-scheme then F (S) is the set or groupoid of

families of objects in the moduli problem over the base C-scheme S.
We say that the moduli functor F is representable if there exists a C-scheme

M such that F is naturally isomorphic to Hom(−,M) : (Schaff
C )op → Sets,

or an Artin C-stack M such that F is naturally equivalent to Hom(−,M) :
(Schaff

C )op → Groupoids. Then M is unique up to canonical isomorphism or
canonical equivalence, and is called the moduli scheme or moduli stack.

As in Gomez [31, §2.1–§2.2], there are two equivalent ways to encode stacks, or
moduli problems, as functors: either as a functor F : (Schaff

C )op → Groupoids
as above, or as a category fibred in groupoids G : C → Schaff

C , that is, a category
C with a functor G to Schaff

C satisfying some lifting properties of morphisms in
Schaff

C to morphisms in C.
We introduce a new approach to constructing Kuranishi structures on

Differential-Geometric moduli problems, including moduli of J-holomorphic
curves, which is a 2-categorical analogue of the ‘category fibred in groupoids’
version of moduli functors in Algebraic Geometry. Our analogue of Schaff

C is
the 2-category GK̇N of global Kuranishi neighbourhoods (V,E,Γ, s), which are
basically Kuranishi spaces X covered by a single chart (V,E,Γ, s, ψ).

We define a Kuranishi moduli problem (KMP) to be a 2-functor F : C →
GK̇N satisfying some lifting properties, where C is a 2-category. For example,
ifM ∈ K̇ur is a Kuranishi space we can define a 2-category CM with objects
((V,E,Γ, s),f

)
for (V,E,Γ, s) ∈ GK̇N and f : (s−1(0)/Γ, (V,E,Γ, s, ids−1(0)/Γ))

→ M a 1-morphism, and a 2-functor FM : CM → GK̇N acting by FM :
((V,E,Γ, s),f) 7→ (V,E,Γ, s) on objects. A KMP F : C → GK̇N is called
representable if it is equivalent in a certain sense to FM : CM → GK̇N for some
M in K̇ur, which is unique up to equivalence. Then Kuranishi moduli problems
form a 2-category K̇MP, and the full 2-subcategory K̇MPre of representable
KMP’s is equivalent to K̇ur.

To construct a Kuranishi structure on some moduli space M, e.g. a moduli
space of J-holomorphic curves in some (S, ω), we carry out three steps:

(1) Define a 2-category C and 2-functor F : C → GK̇N, where objects A in C
with F (A) = (V,E,Γ, s) correspond to families of objects in the moduli
problem over the base Kuranishi neighbourhood (V,E,Γ, s).

(2) Prove that F : C → GK̇N is a Kuranishi moduli problem.

(3) Prove that F : C → GK̇N is representable.

Here step (1) is usually fairly brief — far shorter than constructions of curve
moduli spaces in [15, 30, 40], for instance. Step (2) is also short and uses standard
arguments. The major effort is in (3). Step (3) has two parts: firstly we must
show that a topological space M naturally associated to the KMP is Hausdorff
and second countable (often we can quote this from the literature), and secondly
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we must prove that every point of M admits a Kuranishi neighbourhood with a
certain universal property.

We compare our approach to moduli problems with other current approaches,
such as those of Fukaya–Oh–Ohta–Ono or Hofer–Wysocki–Zehnder:

• Rival approaches are basically very long ad hoc constructions, the effort
is in the definition itself. In our approach we have a short-ish definition,
followed by a theorem (representability of the KMP) with a long proof.

• Rival approaches may involve making many arbitrary choices to construct
the moduli space. In our approach the definition of the KMP is natural,
with no arbitrary choices. If the KMP is representable, the corresponding
Kuranishi spaceM is unique up to canonical equivalence in K̇ur.

• In our approach, morphisms between moduli spaces, e.g. forgetting a
marked point, are usually easy and require almost no work to construct.

Kuranishi moduli problems are introduced in Chapter 8 of volume I, and
volume III is dedicated to constructing Kuranishi structures on moduli spaces
using the KMP method.
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Chapter 9

Introduction to volume II

In volume I of this series, given a category Ṁan of ‘manifolds’ satisfying some
assumptions, such as classical manifolds Man or manifolds with corners Manc,
we defined a corresponding category µK̇ur of ‘µ-Kuranishi spaces’, and 2-
categories mK̇ur of ‘m-Kuranishi spaces’ and K̇ur of ‘Kuranishi spaces’.

In this volume II, we study the differential geometry of these (m- and µ-)
Kuranishi spaces, covering topics including tangent spaces TxX and obstruction
spaces OxX, canonical bundles KX and orientations, (w-)submersions and (w-)
transverse fibre products X ×g,Z,h Y in mK̇ur and K̇ur, virtual chains and
virtual cycles for compact, oriented (m-)Kuranishi spaces, orbifold strata of
Kuranishi spaces, and (co)bordism of (m-)Kuranishi spaces.

We will be constantly referring to volume I. As it would take many pages
to summarize the previous material we need, we have not tried to make this
volume independent of volume I. So most readers will need a copy of volume I on
hand to make sense of this book, unless they already know volume I well. The
chapter numbering in this volume continues on from volume I, so all references
to Chapters 1–8 and Appendices A, B are to volume I.

Chapter 10 defines and studies tangent spaces TxX and obstruction spaces
OxX for (µ- or m-)Kuranishi spaces X in mK̇ur,µK̇ur, K̇ur. These come from
a suitable notion of tangent space TxX in Ṁan, where for categories of manifolds
with corners Manc, . . . there may be several versions TxX,

bTxX, T̃xX, yielding
different notions TxX, bTxX, T̃xX, OxX, bOxX, ÕxX in mK̇ur,µK̇ur, K̇ur.
We also discuss applications, including orientations on (µ- and m-)Kuranishi
spaces. Tangent and obstruction spaces are functorial under (1-)morphisms in
mK̇ur,µK̇ur, K̇ur, and are useful for stating conditions on 1-morphisms. For
example, a 1-morphism f : X → Y in mKur is étale (a local equivalence) if
and only if Txf : TxX → TyY and Oxf : OxX → OyY are isomorphisms for
all x ∈X with f(x) = y in Y .

Chapter 11 studies transverse fibre products and submersions in mK̇ur and
K̇ur. Given suitable notions of when morphisms g : X → Z, h : Y → Z in
Ṁan are transverse, so that a fibre product W = X ×g,Z,h Y exists in Ṁan
with dimW = dimX + dimY − dimZ, or when g : X → Z is a submersion,
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so that g, h are transverse for any h : Y → Z, we define notions of when 1-
morphisms g : X → Z, h : Y → Z in mK̇ur or K̇ur are w-transverse, so
that a 2-category fibre product W = X ×g,Z,h Y exists in mK̇ur or K̇ur with
vdimW = vdimX + vdimY − vdimZ, or when g : X → Z is a w-submersion,
so that g,h are w-transverse for any h : Y → Z.

For example, in Kuranishi spaces Kur over classical manifolds, 1-morphisms
g : X → Z and h : Y → Z are w-transverse if

Oxg ⊕OyY : OxX ⊕OyY −→ OzZ

is surjective for all x ∈ X and y ∈ Y with g(x) = h(y) = z in Z, and then a
fibre product X ×g,Z,h Y exists in Kur. This is automatic if Z is a manifold or
orbifold, so that OzZ = 0 for all z ∈ Z. Such fibre products will be important
in applications in symplectic geometry.

In general, w-transverse fibre products do not exist in categories of µ-
Kuranishi spaces µK̇ur, nor in the homotopy categories Ho(mK̇ur),Ho(K̇ur).
The 2-category structure on mK̇ur and K̇ur is essential for forming fibre prod-
ucts, as the universal property of such fibre products involves 2-morphisms.
This is characteristic of ‘derived’ fibre products, and is an important reason for
working in a 2-category or ∞-category when doing derived geometry.

Chapters 12–15 are not written yet, but will discuss virtual classes/chains for
(m-)Kuranishi spaces using the author’s theory of M-(co)homology [44], orbifold
strata for Kuranishi spaces, and (co)bordism for (m-)Kuranishi spaces.

2



Chapter 10

Tangent and obstruction spaces

If X is a classical manifold then each x ∈ X has a tangent space TxX, and if
f : X → Y is a smooth map there are functorial tangent maps Txf : TxX → TyY
for x ∈ X with f(x) = y ∈ Y . For manifolds with corners Manc,Mangc, . . .
there are (at least) two notions of tangent space TxX,

bTxX, as in §2.3.
For (m- or µ-)Kuranishi spaces X, it turns out to be natural to define

functorial tangent spaces TxX and obstruction spaces OxX for x ∈ X. This
chapter studies tangent and obstruction spaces, and applies them in several ways,
for instance to define orientations on (m- or µ-)Kuranishi spaces X.

10.1 Optional assumptions on tangent spaces

Suppose for the whole of this section that Ṁan satisfies Assumptions 3.1–3.7.
We now give optional assumptions on tangent spaces in Ṁan.

10.1.1 Tangent spaces

We ask that our ‘manifolds’ X have a notion of ‘tangent space’ TxX satisfying
many of the properties one expects. Note that we do not require dimTxX =
dimX, or that tangent spaces are the fibres of a vector bundle TX → X, which
are both false in some examples.

Assumption 10.1. (Tangent spaces.) (a) We are given a discrete property
A of morphisms in Ṁan, in the sense of Definition 3.18, which may be trivial
(i.e. all morphisms in Ṁan may be A), and should satisfy:

(i) If f : X → Y is a morphism in Ṁan with Y ∈Man, then f is A.

(ii) If f : W → Y, g : X → Y, h : X → Z are A morphisms in Ṁan then the
product f × h : W ×X → Y × Z and direct product (g, h) : X → Y × Z
from Assumption 3.1(e) are also A.

Projections πX : X × Y → X, πY : X × Y → Y from products are A.
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(b) For all X ∈ Ṁan and x ∈ X, we are given a real vector space TxX called the
tangent space of X at x. For all A morphisms f : X → Y in Ṁan and all x ∈ X
with f(x) = y in Y , we are given a linear map Txf : TxX → TyY called the
tangent map. The dual vector space T ∗xX of TxX is the cotangent space, and the
dual linear map T ∗xf : T ∗y Y → T ∗xX of Txf is the cotangent map. If g : Y → Z is
another A morphism and g(y) = z ∈ Z then Tx(g ◦f) = Tyg ◦Txf : TxX → TzZ.
We have TxidX = idTxX : TxX → TxX.

(c) For all X,Y ∈ Ṁan and x ∈ X, y ∈ Y the morphism

T(x,y)πX ⊕ T(x,y)πY : T(x,y)(X × Y ) −→ TxX ⊕ TyY (10.1)

is an isomorphism, where πX , πY are A by (a)(ii).

(d) If i : U ↪→ X is an open submanifold in Ṁan then Txi : TxU → TxX is an
isomorphism for all x ∈ U ⊆ X, so we may identify TxU with TxX.

(e) If X ∈Man ⊆ Ṁan is a classical manifold and x ∈ X then TxX is (canon-
ically isomorphic to) the usual tangent space TxX of manifolds in differential
geometry. If f : X → Y is a morphism in Man ⊆ Ṁan, so that f is A by
(a)(i), and x ∈ X with f(x) = y ∈ Y , then Txf : TxX → TyY is the usual
derivative of f at x in differential geometry.

Example 10.2. (i) If Ṁan = Man then A must be trivial (i.e. all morphisms
in Man are A) by Assumption 10.1(a)(i), and TxX,Txf must be as usual in
differential geometry by Assumption 10.1(e), and then Assumption 10.1 holds.

(ii) Let Ṁan be Manc or Manc
we from Chapter 2, and let A be trivial. Then

as in §2.3, each X ∈ Ṁan has tangent spaces TxX for all x ∈ X and tangent
maps Txf : TxX → TyY for all morphisms f : X → Y in Ṁan and x ∈ X with
f(x) = y ∈ Y , which satisfy Assumption 10.1.

(iii) Let Ṁan be one of Manc,Mangc,Manac,Manc,ac from Chapter 2, and
let A be interior maps in this category. Then as in §2.3–§2.4, each X ∈ Ṁan has
b-tangent spaces bTxX for all x ∈ X, and each interior morphism f : X → Y in
Ṁan has b-tangent maps bTxf : bTxX → bTyY for all x ∈ X with f(x) = y ∈ Y ,
which satisfy Assumption 10.1.

(iv) Let Ṁan be one of Manc,Mangc,Manac,Manc,ac, and let A be trivial.
Then as in §2.2, each X ∈ Ṁan with dimX = m has a depth stratification
X =

∐m
k=0 S

k(X) with Sk(X) a classical manifold of dimension m− k, and any

morphism f : X → Y in Ṁan preserves depth stratifications. (The latter does
not hold for Manc

we, which we exclude).
For each x ∈ Sk(X) ⊆ X, define T̃xX = TxS

k(X). We call this the stratum
tangent space ofX at x. If f : X → Y is a morphism in Ṁan and x ∈ Sk(X) ⊆ X
with f(x) = y ∈ Sl(Y ) ⊆ Y then near f |Sk(X) is a smooth map of classical

manifolds Sk(X)→ Sl(Y ) near x. Define

T̃xf = Tx(f |Sk(X)) : T̃xX = TxS
k(X) −→ T̃yY = TyS

l(Y ).

Then these A, T̃xX, T̃xf satisfy Assumption 10.1.
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(v) Let Ṁan satisfy Assumptions 3.1–3.7, and let A be trivial. Then as in
§3.3.1(c) and §B.1.3, we define a functor FC∞Sch

Ṁan
: Ṁan→ C∞Schaff to the

category of affine C∞-schemes. Now C∞-schemes X = (X,OX) have a functorial
notion of tangent space TxX for x ∈ X, given by TxX = (ΩX,x⊗OX,x R)∗, where
ΩX is the cotangent sheaf of X from [45, §5.6] (which we used in §B.4 to define
T ∗X), and ΩX,x,OX,x are the stalks of ΩX ,OX at x.

Thus, for any Ṁan we can define TC
∞

x X,TC
∞

x f satisfying Assumption 10.1
by applying FC∞Sch

Ṁan
: Ṁan → C∞Schaff and taking tangent spaces of C∞-

schemes. The result is canonically isomorphic to the tangent spaces TxX in
(i),(ii) in those cases, but not isomorphic to bTxX, T̃xX in (iii),(iv).

Note that Manc has three different tangent spaces satisfying Assumption
10.1 in (ii)–(iv). Here is a way to compare different notions of tangent space:

Definition 10.3. Suppose we are given two notions of tangent space TxX,Txf
for f with discrete property A, and T ′xX,T

′
xf with discrete property A′, both

satisfying Assumption 10.1 in Ṁan. A natural transformation I : T⇒T ′ assigns
a linear map IxX : TxX → T ′xX for all X ∈ Ṁan and x ∈ X, such that:

(i) If f : X → Y is a morphism in Ṁan which is both A and A′, and x ∈ X
with f(x) = y ∈ Y , the following diagram commutes:

TxX
Txf

//

IxX��

TyY

IyY ��
T ′xX

T ′xf // T ′yY.

(ii) If X ∈Man ⊆ Ṁan, so that TxX,T
′
xX are both the usual tangent space

TxX by Assumption 10.1(e), then IxX = idTxX .

Example 10.4. (a) Let Ṁan = Manc. Then Example 10.2(ii),(iii) define
tangent spaces TxX with A trivial, and bTxX with A interior, satisfying As-
sumption 10.1. As in (2.10) in §2.3, there are natural maps IxX : bTxX → TxX
satisfying Definition 10.3.

(b) When Ṁan = Manc there are injective maps ιxX : T̃xX → TxX in Example
10.2(ii),(iv), the inclusions TxS

k(X) ↪→ TxX, satisfying Definition 10.3.

(c) Let Ṁan be one of Manc,Mangc,Manac,Manc,ac. Then there are nat-
ural surjective maps ΠxX : bTxX → T̃xX in Example 10.2(iii),(iv) satisfying
Definition 10.3.

We can also add a further assumption on dimensions of tangent spaces:

Assumption 10.5. Assumption 10.1 holds, and TxX is finite-dimensional with
dimTxX = dimX for all X ∈ Ṁan and x ∈ X.

This holds for Example 10.2(i)–(iii), but not for Example 10.2(iv)–(v).
To use Assumption 10.1, we will need the following notation:
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Definition 10.6. Let Assumption 10.1 hold for Ṁan, with discrete property
A and data TxX,Txf . Suppose π : E → X is a vector bundle in Ṁan, and
s ∈ Γ∞(E) be a section, and x ∈ s−1(0) ⊆ X. We will define a linear map
dxs : TxX → E|x, where E|x is the fibre of E at x, which we think of as the
derivative of s at x.

The section s, and the zero section 0E , are both morphisms X → E in Ṁan,
with s(x) = 0E(x) as x ∈ s−1(0). Write e = s(x) = 0E(x). Then π(e) = x.
Using Assumption 10.1(a) and Definition 3.18(iv) we can show that s, 0E , π are
all A. Hence Assumption 10.1 gives linear maps

Txs : TxX −→ TeE, Tx0E : TxX −→ TeE, Teπ : TeE −→ TxX,

with Teπ ◦ Txs = Teπ ◦ Tx0E = idTxX as π ◦ s = π ◦ 0E = idX . By definition
of vector bundles, there is an open neighbourhood U of x in X on which E is
trivial, so E|U ∼= U × Rk identifying π|U : E|U → U with πRk : U × Rk → Rk.
Thus from Assumption 10.1(c)–(e) we get a natural isomorphism

TeE ∼= TxX ⊕ Rk ∼= TxX ⊕ E|x, (10.2)

identifying Teπ : TeE → TxX with idTxX ⊕ 0 : TxX ⊕ E|x → TxX, and
Tx0E : TxX → TeE with idTxX⊕0 : TxX → TxX⊕E|x. Write dxs : TxX → E|x
for the composition of Txs : TxX −→ TeE with the projection TeE → E|x from
(10.2). When Ṁan = Man, this dxs : TxX → E|x is ∇s|x : TxX → E|x for any
connection ∇ on E, and is independent of the choice of ∇, as s(x) = 0.

10.1.2 Tangent spaces and differential geometry in Ṁan

Suppose throughout this section that Ṁan satisfies Assumptions 3.1–3.7 and
Assumption 10.1, so that we are given a discrete property A of morphisms in
Ṁan, and ‘manifolds’ V in Ṁan have tangent spaces TxX for x ∈ X, and A
morphisms f : X → Y in Ṁan have functorial tangent maps Txf : TxX → TyY
for all x ∈ X with f(x) = y ∈ Y . We will relate tangent spaces TxX to (relative)
tangent sheaves T X, TfY from §3.3.4 and §B.4.

Definition 10.7. Let f : X → Y be an A morphism in Ṁan, and α ∈ Γ(TfY ),
and x ∈ X with f(x) = y ∈ Y . We will define an element α|x in TyY .

By Definition B.16 we have α = [U, u] for i : U ↪→ X × R and u : U → Y in
a diagram (B.5), with u(x, 0) = y. Using Definition B.38(iii),(viii) and that f is
A we can show that u is A near X × {0}. Thus we have linear maps

TxX ⊕ R ∼=
// T(x,0)(X × R) ∼=

(T(x,0)i)
−1

// T(x,0)U
T(x,0)u // TyY, (10.3)

where the first two isomorphisms come from Assumption 10.1(c),(d),(e). Define
α|x to be the image of (0, 1) ∈ TxX ⊕ R under the composition of (10.3).

To show this is well defined, suppose also that α = [U ′, u′] for U ′, u′ in a
diagram (B.5). Then (U, u) ≈ (U ′, u′) in the notation of Definition B.16, so
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there exist open j : V ↪→ X × R2 and a morphism v : V → Y satisfying (B.6)
with x̃ = x. As for u we find that v is A near (x, 0, 0), so as for (10.3) we have

TxX ⊕ R⊕ R ∼=
// T(x,0,0)(X × R2) ∼=

(T(x,0,0)j)
−1

// T(x,0,0)V
T(x,0,0)v // TyY.

The equations of (B.6) imply that

T(x,0,0)v(w, s, 0) = T(x,0)u(w, s), T(x,0,0)v(w, 0, s′) = (T(x,0)u
′)(w, s′),

and T(x,0,0)v(0, s,−s) = 0,

for w ∈ TxX and s, s′ ∈ R. Hence T(x,0)u(0, 1) = T(x,0)u
′(0, 1) by linearity of

T(x,0,0)v, so α|x is independent of the choice of representative (U, u) for α, and
is well defined.

From the definition of the C∞(X)-module structure on Γ(TfY ) in §B.4.2,
we see that α 7→ α|x is R-linear, and satisfies (a · α)|x = a(x) · (α|x) for all
a ∈ C∞(X) and α ∈ Γ(TfY ).

Now let E → X be a vector bundle, and θ : E → TfY be a morphism in
the sense of §B.4.8. Then we have a map Γ∞(E) → TyY taking e 7→ (θ ◦ e)|x
for all e ∈ Γ∞(E), so that θ ◦ e ∈ Γ(TfY ). As this is R-linear and satisfies
(θ◦(a·e))|x = a(x)·(θ◦e)|x for a ∈ C∞(X) and e ∈ Γ∞(E), the map e 7→ (θ◦e)|x
factors via e|x ∈ E|x. That is, there is a unique linear map θ|x : E|x → TyY
with (θ ◦ e)|x = θ|x(e|x) for all e ∈ Γ∞(E).

Suppose θ : E → TfY is of the form θV,v in the notation of Definition B.32
for some open j : V ↪→ E and v : V → Y in a diagram (B.22). Then v is A near
(x, 0) in V , and as for (10.3) we have linear maps

TxX ⊕ E|x ∼=
// T(x,0)E ∼=

(T(x,0)j)
−1

// T(x,0)V
T(x,0)v // TyY, (10.4)

and we can show that θ|x(e) is the image of (0, e) under (10.4) for each e ∈ E|x.
In the case when Ṁan = Man and TxX is the ordinary tangent space, TfY is

the sheaf of sections of f∗(TY ), so θ : E → f∗(TY ) is a vector bundle morphism
on X, and θ|x : E|x → f∗(TY )|x = TyY is just the fibre of the morphism at x.

The next proposition can be deduced from the definitions in a fairly straight-
forward way, using functoriality of tangent maps in Assumption 10.1(b), and
writing θ using either (10.3) or (10.4). For example, in (a), if θ = θV,v then
T g ◦ θ = θV,g◦v, and (a) follows from (10.4) and T(x,0)(g ◦ v) = Tyg ◦ T(x,0)v.

Proposition 10.8. (a) Suppose f : X → Y, g : Y → Z are A morphisms in
Ṁan, and E → X is a vector bundle, and θ : E → TfY is a morphism, so that
T g ◦ θ : E → Tg◦fZ is a morphism as in §3.3.4(c),(d) and §B.4.6, §B.4.8. Then
for all x ∈ X with f(x) = y ∈ Y and g(y) = z ∈ Z, we have

Tyg ◦ θ|x = (T g ◦ θ)|x : E|x −→ TzZ. (10.5)

(b) Suppose f : X → Y, g : Y → Z are A morphisms in Ṁan, and F → Y
is a vector bundle, and θ : F → TgZ is a morphism on Y, so that we have
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a morphism f∗(θ) : f∗(F ) → Tg◦fZ as in §3.3.4(g) and §B.4.9. Then for all
x ∈ X with f(x) = y ∈ Y and g(y) = z ∈ Z, we have

f∗(θ)|x = θ|y : f∗(F )|x = F |y −→ TzZ. (10.6)

(c) Suppose f : X → Y is an A morphism in Ṁan, and E,F → X, G → Y
are vector bundles, and s ∈ Γ∞(E), t ∈ Γ∞(G) with f∗(t) = O(s), and Λ :
F → TfY is a morphism, and θ : F → f∗(G) is a vector bundle morphism with
θ = f∗(dt) ◦ Λ +O(s) in the sense of Definitions 3.15(vi) and B.36(vi). Then
for each x ∈ X with s(x) = 0 and f(x) = y ∈ Y, we have

θ|x = dyt ◦ Λ|x : E|x −→ F |y, (10.7)

where dyt is as in Definition 10.6.

(d) Suppose f, g : X → Y are A morphisms in Ṁan, and E → X is a
vector bundle, and s ∈ Γ∞(E), and Λ : E → TfY be a morphism with g =
f + Λ ◦ s+O(s2) as in Definitions 3.15(vii) and B.36(vii). Then for each x ∈ X
with s(x) = 0, so that f(x) = g(x) = y ∈ Y, we have

Txg = Txf + Λ|x ◦ dxs : TxX −→ TyY. (10.8)

10.1.3 Assumptions on f : X → Rn, and on local
diffeomorphisms

Supposing Assumption 10.1 holds, we give some more assumptions on Ṁan,
expressed in terms of tangent spaces TxX. They will be used in §10.4–§10.5.

Assumption 10.9. Let Assumption 10.1 hold for Ṁan, giving notions of
tangent space TxX and tangent maps Txf : TxX → TyY for f : X → Y in Ṁan
satisfying a discrete property A.

Suppose f : X → Rn is a morphism in Ṁan, so that f is A by Assumption
10.1(a)(i), and x ∈ X such that f(x) = 0 and Txf : TxX → T0Rn = Rn is
surjective. Then there exists a commutative diagram in Ṁan:

x ∈ U ∼=
k

//
� _

i
��

V ×W
πW

// W 3 0
� _
j
��

X
f // Rn,

(10.9)

where i : U ↪→ X, j : W ↪→ Rn are open submanifolds in Ṁan with x ∈ U ⊆ X
and 0 ∈ W ⊆ Rn, and V is an object in Ṁan with dimV = dimX − n, and
k : U → V ×W is a diffeomorphism in Ṁan.

Suppose further that a finite group Γ acts on X fixing x ∈ X, and Γ acts
linearly on Rn, and f : X → Rn is Γ-equivariant. Then we can choose U,W to
be Γ-invariant, and V to have a Γ-action making (10.9) Γ-equivariant.
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Example 10.10. (a) Assumption 10.9 holds for Example 10.2(i),(iii),(iv).

(b) As in Example 10.2(ii), let Ṁan be Manc or Manc
we, and A be trivial,

and TxX,Txf be as in §2.3. Then Assumption 10.9 does not hold. For example,
let f : X → Y be the inclusion map i : [0,∞) ↪→ R, and x = 0 ∈ [0,∞). Then
T0i : T0[0,∞)→ T0R is surjective, but no diagram (10.9) exists in Ṁan.

Assumption 10.11. Let Assumption 10.1 hold for Ṁan, giving notions of
tangent space TxX and tangent maps Txf : TxX → TyY for f : X → Y in Ṁan
satisfying a discrete property A. We should be given another discrete property
B of morphisms in Ṁan, such that B implies A.

Suppose f : X → Y is a B morphism in Ṁan, and x ∈ X with f(x) = y, and
Txf : TxX → TyY is an isomorphism. Then there should exist open submanifolds

i : U ↪→ X and j : V ↪→ Y in Ṁan with x ∈ U and V = f(U) ⊆ Y , so that
there is a unique f ′ : U → V in Ṁan with f ◦ i = j ◦ f ′ by Assumption 3.2(d),
and f ′ : U → V should be a diffeomorphism in Ṁan.

Example 10.12. (i) Let Ṁan = Man, and A be trivial, and TxX,Txf be as
usual in differential geometry, so that Assumption 10.1 holds as in Example
10.2(i). Take B to be trivial. Then Assumption 10.11 holds.

(ii) Let Ṁan = Manc from Chapter 2, and A be trivial, and TxX,Txf be as in
§2.3, so that Assumption 10.1 holds as in Example 10.2(ii). Take B to be simple
morphisms. Then Assumption 10.11 holds. That is, if f : X → Y is a simple
morphism in Manc and Txf : TxX → TyY is an isomorphism then f is a local
diffeomorphism in Manc near x ∈ X and y ∈ Y .

Note that we do not allow Ṁan = Manc
we in this example, although Example

10.2(ii) includes Manc
we. One can show that the only discrete property B of

morphisms in Manc
we is B trivial, and Assumption 10.11 does not hold.

(iii) Let Ṁan be one of Manc,Mangc,Manac,Manc,ac from Chapter 2, and
A be interior maps, and consider b-tangent spaces bTxX and b-tangent maps
bTxf : bTxX → bTyY for interior f in Ṁan as in §2.3–§2.4, so that Assumption
10.1 holds as in Example 10.2(iii). Take B to be simple morphisms. Then B
implies A, as simple morphisms are interior, and Assumption 10.11 holds.

(iv) Let Ṁan be one of Manc,Mangc,Manac,Manc,ac from Chapter 2, and
A be trivial, and consider stratum tangent spaces T̃xX and stratum tangent
maps T̃xf : T̃xX → T̃yY as in Example 10.2(iv), so that Assumption 10.1 holds.
Take B to be simple morphisms. Then Assumption 10.11 holds.

10.1.4 Assumptions on tangent bundles, and orientations

In the next assumption we suppose that tangent spaces TxX in Assumption 10.1
are the fibres of a vector bundle TX → X.

Assumption 10.13. (Tangent vector bundles.) (a) Let Assumption 10.1
hold for Ṁan, with tangent spaces TxX and discrete property A. For each
X ∈ Ṁan there is a natural vector bundle π : TX → X called the tangent
bundle, of rank dimX, whose fibre at each x ∈ X is the tangent space TxX.
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The dual vector bundle of TX is called the cotangent bundle T ∗X → X,
with fibres the cotangent spaces T ∗xX.

(b) If f : X → Y is an A morphism in Ṁan there is a natural vector bundle
morphism Tf : TX → f∗(TY ) on X, such that if x ∈ X with f(x) = y in Y
then the fibre Tf |x of Tf at x is the tangent map Txf : TxX → TyY .

The dual morphism is written T ∗f : f∗(T ∗Y )→ T ∗X.

Using part (b) and §10.1.2 we can show that if f : X → Y is an A morphism
in Ṁan, and E → X is a vector bundle, and θ : E → TfY is a morphism, then

there is a vector bundle morphism θ̃ : E → f∗(TY ) on X whose fibre at x ∈ X
with f(x) = y in Y is θ̃|x = θ|x : E|x → TyY from Definition 10.7.

Example 10.14. As in Chapter 2, Assumption 10.13 holds for tangent spaces
TxX in Man,Manc and Manc

we from Example 10.2(i),(ii), and for b-tangent
spaces bTxX in Manc,Mangc,Manac,Manc,ac from Example 10.2(iii). But
it fails for stratum tangent spaces T̃xX in Manc, . . . ,Manc,ac from Exam-
ple 10.2(iv).

In §2.6 we discussed orientations on objects X in Man,Manc,Mangc,
Manac,Manc,ac, using the vector bundles T ∗X → X or bT ∗X → X. Under
Assumption 10.13 we can make the same definitions in Ṁan.

Definition 10.15. Let Assumption 10.13 hold for Ṁan. An orientation oX
on an object X in Ṁan is an equivalence class [ω] of top-degree forms ω in
Γ∞(ΛdimXT ∗X) with ω|x 6= 0 for all x ∈ X, where two such ω, ω′ are equivalent
if ω′ = K ·ω for K : X → (0,∞) smooth. The opposite orientation is−oX = [−ω].
Then we call (X, oX) an oriented manifold. Usually we just refer to X as an
oriented manifold, and then we write −X for X with the opposite orientation.

We will call the real line bundle ΛdimXT ∗X → X the canonical bundle KX

of X. Then an orientation on X is an orientation on the fibres of KX .
If x ∈ X and (v1, . . . , vm) is a basis for TxX, then we call (v1, . . . , vm)

oriented if ω|x · v1 ∧ · · · ∧ vm > 0, and anti-oriented otherwise.
Let f : X → Y be a morphism in Ṁan. A coorientation cf on f is an

orientation on the fibres of the line bundle KX ⊗ f∗(K∗Y ) over X. That is, cf is
an equivalence class [γ] of nonvanishing sections γ ∈ Γ∞(KX ⊗ f∗(K∗Y )), where
two such γ, γ′ are equivalent if γ′ = K · γ for K : X → (0,∞) smooth. The
opposite coorientation is −cf = [−γ]. If Y is oriented then coorientations on
f are equivalent to orientations on X. Orientations on X are equivalent to
coorientations on π : X → ∗, for ∗ the point in Ṁan.

The reason we need Assumption 10.13 to define orientations, is that the
vector bundle structure on TX → X gives us a notion of when orientations on
TxX vary continuously with x ∈ X, which does not follow from Assumption 10.1
alone. We will use Convention 2.39 in Ṁan whenever it makes sense.

Here is an extension of Assumption 10.13 to manifolds with corners:

Assumption 10.16. Let Assumption 3.22 hold for Ṁanc. Suppose Assump-
tions 10.1 and 10.13 hold for Ṁanc, so that from Assumption 10.1 we have a
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discrete property A of morphisms in Ṁanc, and tangent spaces TxX for objects
X in Ṁanc which are fibres of the tangent bundle TX → X, and tangent maps
Txf : TxX → TyY for A morphisms f : X → Y in Ṁanc, which are fibres of
the vector bundle morphism Tf : TX → f∗(TY ).

Assumption 3.22 includes a discrete property of morphisms in Ṁanc called
simple maps. We require that all simple maps are A.

We require that either (a) or (b) holds for Ṁanc, where:

(a) For each X in Ṁanc, so that by Assumption 10.1(d) we have the boundary
∂X with morphism iX : ∂X → X, we are given a canonical exact sequence
of vector bundles on ∂X:

0 // N∂X
αX // i∗X(TX)

βX // T (∂X) // 0, (10.10)

where N∂X is a line bundle (rank 1 vector bundle) on ∂X, and there is
natural orientation on the fibres of N∂X . If f : X → Y is simple in Ṁanc,
so that we have ∂f : ∂X → ∂Y with iY ◦ ∂f = f ◦ iX by Assumption
10.1(g),(i), then the following commutes:

0 // N∂X
γf

��

αX
// i∗X(TX)

i∗X(Tf)
��

βX

// T (∂X)

T (∂f)

��

// 0

0 // (∂f)∗(N∂Y )

(∂f)∗(αY )

// i∗X(f∗(TY ))
=(∂f)∗(i∗Y (TY ))

(∂f)∗(βY )

// (∂f)∗(T (∂Y )) // 0.

(10.11)

Here a unique γf making (10.11) commute exists by exactness, and we
require that γf should be an orientation-preserving isomorphism.

If g : X → Z is a morphism in Ṁanc with Z ∈Man ⊆ Ṁanc, so that g
and g ◦ iX : ∂X → Y are A by Assumption 10.1(a)(i) and Tg, T (g ◦ iX)
are defined by Assumption 10.11(b), we have

i∗X(Tg) = T (g ◦ iX) ◦ βX : i∗X(TX) −→ (g ◦ iX)∗(TZ). (10.12)

(b) For each X in Ṁanc we have an exact sequence of vector bundles on ∂X:

0 // T (∂X)
αX // i∗X(TX)

βX // N∂X // 0, (10.13)

where N∂X is a line bundle on ∂X, with a natural orientation on its fibres.

If f : X → Y is simple in Ṁanc, then the following commutes:

0 // T (∂X)

T (∂f)

��

αX
// i∗X(TX)

i∗X(Tf)
��

βX

// N∂X
γf

��

// 0

0 // (∂f)∗(T (∂Y ))

(∂f)∗(αY )

// i∗X(f∗(TY ))
=(∂f)∗(i∗Y (TY ))

(∂f)∗(βY )

// (∂f)∗(N∂Y ) // 0.

(10.14)
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Here a unique γf making (10.14) commute exists by exactness, and we
require that γf should be an orientation-preserving isomorphism.

If g : X → Z is a morphism in Ṁanc with Z ∈ Man ⊆ Ṁanc, then
g, g ◦ iX are A, and in a similar way to (10.15) we have

T (g ◦ iX) = i∗X(Tg) ◦ αX : T (∂X) −→ (g ◦ iX)∗(TZ). (10.15)

In both cases we interpret N∂X as the normal bundle of ∂X in X. Our
convention is that N∂X should be oriented by outward-pointing vectors.

Example 10.17. (i) Let Ṁanc be Manc,Mangc,Manac or Manc,ac from
Chapter 2, and A be interior maps, and use b-tangent spaces bTxX and the
b-tangent bundle bTX from §2.3. Then Assumption 10.16(a) holds, where (10.10)
is equation (2.14) for Manc and Mangc (when bN∂X = O∂X is naturally trivial),
and (2.19) for Manac and Manc,ac (when bN∂X is not naturally trivial).

(ii) Let Ṁanc be Manc from §2.1, and A be trivial, and use ordinary tangent
spaces TxX and the tangent bundle TX from §2.3. Then Assumption 10.16(b)
holds, where (10.13) is equation (2.12).

As in Convention 2.39(c), from an orientation on a manifold with corners X
in Ṁanc, we can define an orientation on ∂X.

Definition 10.18. Work in the situation of Assumption 10.16, and let X ∈
Ṁanc with dimX = n. In both cases (a),(b) we will define an isomorphism

ΩX : Λn−1T ∗(∂X) −→ N∂X ⊗ i∗X(ΛnT ∗X) (10.16)

of line bundles on ∂X. In case (a), so that we have an exact sequence (10.10),
if U ⊆ ∂X is an open subset on which T (∂X), i∗X(TX), N∂X are trivial, and
(c1), (d1, . . . , dn), and (e2, . . . , en) are bases of sections of N∂X |U , i∗X(TX)|U ,
T (∂X)|U respectively with αX(c1) = d1 and βX(di) = ei for i = 2, . . . , n, and
(δ1, . . . , δn), (ε2, . . . , εn) are the bases of sections of i∗X(T ∗X)|U , T ∗(∂X)|U dual
to (d1, . . . , dn), (e2, . . . , en), then we define ΩX |U by

ΩX |U : ε2 ∧ · · · ∧ εn 7−→ c1 ⊗ (δ1 ∧ · · · ∧ δn). (10.17)

It is easy to show that ΩX |U is independent of the choice of bases, and that
such ΩX |U glue over open subsets U ⊆ X covering X to give a unique global
isomorphism ΩX in (10.16).

In case (b), so that we instead have an exact sequence (10.13), we again define
ΩX |U using bases (c1), . . . , (ε2, . . . , εn), as above, but now we instead require
that αX(ei) = di for i = 2, . . . , n and βX(d1) = c1.

If X is oriented, then we have an orientation on the fibres of ΛnT ∗X → X,
and thus on the fibres of i∗X(ΛnT ∗X)→ ∂X. But by Assumption 10.16(a),(b),
we have an orientation on the fibres of N∂X → ∂X. Tensoring these orientations
together and pulling back by ΩX in (10.16) gives an orientation on the fibres of
Λn−1T ∗(∂X)→ ∂X, that is, an orientation on the manifold with corners ∂X.
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Note that defining this orientation on ∂X involves an orientation convention,
as in Convention 2.39, which in this case is the choice of how to write (10.17),
together with the choice to orient N∂X by outward-pointing vectors.

If X is oriented then by induction ∂kX is oriented for k = 0, . . . ,dimX.

10.1.5 Quasi-tangent spaces

In Definition 2.16, for a manifold with corners X and x ∈ X we defined stratum
(b-)normal spaces ÑxX,

bÑxX and a commutative monoid M̃xX ⊆ bÑxX, which
are functorial under (interior) morphisms in Manc. In §2.4.1 the bÑxX, M̃xX
are extended to manifolds with g-corners. We call these quasi-tangent spaces, as
they behave rather like tangent spaces. Here is an assumption that will enable
us to extend quasi-tangent spaces to (m- and µ-)Kuranishi spaces in §10.3.

Assumption 10.19. (Quasi-tangent spaces.) (a) We are given a category
Q of some algebraic or geometric objects, which quasi-tangent spaces will take
values in. Some examples of categories Q we are interested in are:

(i) Finite-dimensional real vector spaces V and linear maps λ : V → V ′.

(ii) Monoids M with M ∼= Nk for k > 0, and monoid morphisms µ : M →M ′.

(iii) Toric monoids M , and monoid morphisms µ : M →M ′.

We require that Q should have a terminal object, which we write as 0.
Products Q1×Q2 of objects Q1, Q2 in Q (that is, fibre products Q1×0Q2) exist
in Q, with the usual universal property. We require that if {Qi : i ∈ I} is a set
of objects in Q, and qij : Qi → Qj are isomorphisms in Q for all i, j ∈ I such
that qik = qjk ◦ qij for all i, j, k ∈ I, then there should exist a natural object
Q = [

∐
i∈I Qi]/ ∼ in Q with canonical isomorphisms qi : Q→ Qi for i ∈ I such

that qj = qij ◦ qi for all i, j ∈ I. We think of Q as the quotient of the disjoint
union

∐
i∈I Qi (which may not be an object of Q) by the equivalence relation ∼

induced by the qij .

(b) We are given a discrete property C of morphisms in Ṁan, in the sense of
Definition 3.18, which may be trivial (i.e. all morphisms in Ṁan may be C),
and should satisfy:

(i) If f : X → Y is a morphism in Ṁan with Y ∈Man, then f is C.

(ii) If f : W → Y, g : X → Y, h : X → Z are C morphisms in Ṁan then the
product f × h : W ×X → Y × Z and direct product (g, h) : X → Y × Z
from Assumption 3.1(e) are also C.

Projections πX : X × Y → X, πY : X × Y → Y from products are C.

(c) For all X ∈ Ṁan and x ∈ X, we are given an object QxX in Q called the
quasi-tangent space of X at x. For all C morphisms f : X → Y in Ṁan and all
x ∈ X with f(x) = y in Y , we are given a morphism Qxf : QxX → QyY in Q
called the quasi-tangent map. These satisfy:
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(i) If f : X → Y , g : Y → Z are C morphisms in Ṁan and x ∈ X with
f(x) = y in Y and g(y) = z in Z then Qx(g◦f) = Qyg◦Qxf : QxX → QzZ.
Also QxidX = idQxX : QxX → QxX.

(ii) For all X,Y ∈ Ṁan and x ∈ X, y ∈ Y the morphism(
Q(x,y)πX , Q(x,y)πY

)
: Q(x,y)(X × Y ) −→ QxX ×QyY (10.18)

is an isomorphism in Q, where πX , πY are C by (b)(ii).

(iii) If i : U ↪→ X is an open submanifold in Ṁan then Qxi : QxU → QxX is
an isomorphism for all x ∈ U ⊆ X, so we may identify QxU with QxX.

(iv) If X ∈Man ⊆ Ṁan is a classical manifold and x ∈ X then QxX = 0.

(v) Let X,Y be objects of Ṁan, and E → X a vector bundle, and s ∈ Γ∞(E) a
section, and f, g : X → Y be C morphisms in Ṁan with g = f+O(s) as in
Definition 3.15(iii). Suppose x ∈ s−1(0) ⊆ X, so that f(x) = g(x) = y ∈ Y .
Then Qxf = Qxg : QxX → QyY .

Example 10.20. (a) Take Ṁan to be Manc from §2.1, and C to be trivial (i.e.
all morphisms in Manc areC), andQ to be the category of finite-dimensional real
vector spaces. Definition 2.16 defines the stratum normal space ÑxX, an object
in Q, for all X ∈ Manc and x ∈ X, and a linear map Ñxf : ÑxX → ÑyY ,
a morphism in Q, for all morphisms f : X → Y in Manc and x ∈ X with
f(x) = y ∈ Y . These satisfy Assumption 10.19.

(b) Take Ṁan to be Manc from §2.1, and C to be interior morphisms, and
Q to be the category of finite-dimensional real vector spaces. Definition 2.16
defines the stratum b-normal space bÑxX, an object in Q, for all X ∈Manc

and x ∈ X, and a morphism bÑxf : bÑxX → bÑyY in Q, for all interior
morphisms f : X → Y in Manc and x ∈ X with f(x) = y ∈ Y . These satisfy
Assumption 10.19.

(c) Take Ṁan to be Manc from §2.1, and C to be interior morphisms, and Q
to be the category of commutative monoids M with M ∼= Nk for some k > 0.
Definition 2.16 defines an object M̃xX in Q for all X ∈Manc and x ∈ X, and
a morphism M̃xf : M̃xX → M̃yY in Q, for all interior morphisms f : X → Y in
Manc and x ∈ X with f(x) = y ∈ Y . These satisfy Assumption 10.19.

(d) Take Ṁan to be Mangc from §2.4.1, and C to be interior morphisms, and
Q to be the category of finite-dimensional real vector spaces. As in §2.4.1, the
bÑxX and bÑxf : bÑxX → bÑyY in (b) are also defined for X,Y ∈ Mangc.
These satisfy Assumption 10.19.

(e) Take Ṁan to be Mangc from §2.4.1, and C to be interior morphisms, and
Q to be the category of toric commutative monoids M . As in §2.4.1, the M̃xX
and M̃xf : M̃xX → M̃yY in (c) are also defined for X,Y ∈Mangc, though now

M̃xX may be general toric monoids. These satisfy Assumption 10.19.
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10.2 The definition of tangent and obstruction spaces

In this section we suppose Ṁan satisfies Assumption 10.1 in §10.1.1 throughout,
so that we are given a discrete property A (possibly trivial) of morphisms in
Ṁan, and ‘manifolds’ V in Ṁan have tangent spaces TvV for v ∈ V , and A
morphisms f : V →W in Ṁan have functorial tangent maps Tvf : TvV → TwW
for all v ∈ V with f(v) = w ∈W . For each (m- or µ-)Kuranishi space X we will
define a tangent space TxX and obstruction space OxX for x ∈X, which behave
functorially under A (1-)morphisms f : X → Y in mK̇ur,µK̇ur, or K̇ur.

If we also suppose Assumption 10.5, which says that dimTvV = dimV , then
these satisfy dimTxX − dimOxX = vdimX.

10.2.1 Tangent and obstruction spaces for m-Kuranishi
spaces

We define tangent and obstruction spaces TxX, OxX for m-Kuranishi spaces.

Definition 10.21. Let X = (X,K) be an m-Kuranishi space, with K =
(
I, (Vi,

Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I
)

and Φij = (Vij , φij , φ̂ij), Λijk = [V́ijk, λ̂ijk]
for all i, j, k ∈ I, as in Definition 4.14, and let x ∈X.

For each i ∈ I with x ∈ Imψi, set vi = ψ−1
i (x), and define real vector spaces

Kx
i , C

x
i by the exact sequence

0 // Kx
i

// TviVi
dvisi // Ei|vi // Cxi // 0, (10.19)

where dvisi is as in Definition 10.6, so that Kx
i , C

x
i are the kernel and cokernel

of dvisi. If Assumption 10.5 holds then Definition 4.14(b) gives

dimKx
i −dimCxi =dimTviVi−dimEi|vi =dimVi−rankEi=vdimX. (10.20)

For i, j ∈ I with x ∈ Imψi ∩ Imψj we have vi ∈ Vij ⊆ Vi with φij(vi) = vj
in Vj . Proposition 4.34(d) and Definition 4.33 imply that φij is A near vi, so
Tviφij : TviVi → TvjVj is defined. Thus we may form a diagram with exact rows:

0 // Kx
i

//

κxΦij��

TviVi dvisi

//

Tviφij��

Ei|vi
φ̂ij |vi ��

// Cxi
γxΦij ��

// 0

0 // Kx
j

// TvjVj
dvj sj // Ej |vj // Cxj // 0.

(10.21)

By differentiating Definition 4.2(d) at vi we see the central square of (10.21)
commutes, so by exactness there are unique linear κxΦij , γ

x
Φij

making (10.21)
commute.
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If i, j, k ∈ I with x ∈ Imψi ∩ Imψj ∩ Imψk then we have a diagram

0 // Kx
i

//

κxΦij
��

κxΦik

��

TviVi dvisi

//

Tviφij��
Tviφik

��

Ei|vi
λ̂ijk|vi

{{

φ̂ij |vi ��
φ̂ik|vi





// Cxi
γxΦij
��
γxΦik

��

// 0

0 // Kx
j

//

κxΦjk
��

TvjVk dvj sj

//
Tvjφjk

��

Ej |vj
φ̂jk|vj ��

// Cxj
γxΦjk

��

// 0

0 // Kx
k

// TvkVk
dvksk // Ek|vk // Cxk // 0,

(10.22)

which combines (10.21) for i, j and j, k and i, k. Note that (10.22) may not

commute: we can have φik 6= φjk ◦ φij and φ̂ik 6= φ∗ij(φ̂jk) ◦ φ̂ij near vi in Vi,
allowing

Tviφik 6= Tvjφjk ◦ Tviφij and φ̂ik|vi 6= φ̂jk|vj ◦ φ̂ij |vi .

The 2-morphism Λijk = [V́ijk, λ̂ijk] : Φjk ◦ Φij ⇒ Φik includes a morphism

λ̂ijk : Ei|V́ijk → Tφjk◦φijVk|V́ijk , where vi ∈ V́ijk ⊆ Vi. Thus as in §10.1.2, we

have a linear map λ̂ijk|vi : Ei|vi → TvkVk, the arrow ‘99K’ in (10.22). Applying
(10.7)–(10.8) to equation (4.1) for Λijk at vi yields

Tviφik = Tvjφjk ◦ Tviφij + λ̂ijk|vi ◦ dvisi : TviVi −→ TvkVk,

φ̂ik|vi = φ̂jk|vj ◦ φ̂ij |vi + dvksk ◦ λ̂ijk|vi : Ei|vi −→ Ek|vk .
(10.23)

Comparing (10.22) and (10.23) and using exactness in the rows of (10.22), we
deduce that

κxΦik = κxΦjk ◦ κ
x
Φij and γxΦik = γxΦjk ◦ γ

x
Φij . (10.24)

When k = i we have Φii = id(Vi,Ei,si,ψi) by Definition 4.14(f), so κxΦii = idKx
i
,

γxΦii = idCxi , and from (10.24) we see that κxΦij , γ
x
Φij

are isomorphisms, with
inverses κxΦji , γ

x
Φji

.
Define the tangent space TxX and obstruction space OxX of X at x by

TxX =
∐
i∈I:x∈Imψi

Kx
i / ≈ and OxX =

∐
i∈I:x∈Imψi

Cxi / �, (10.25)

where ≈ is the equivalence relation ki ≈ kj if ki ∈ Kx
i and kj ∈ Kx

j with
κxΦij (ki) = kj , and � the equivalence relation ci � cj if ci ∈ Cxi and cj ∈ Cxj
with γxΦij (ci) = cj . Here (10.24) and κxΦij , γ

x
Φij

isomorphisms with κxΦii = id,
γxΦii = id imply that ≈,� are equivalence relations. Then TxX, OxX are real
vector spaces with canonical isomorphisms TxX ∼= Kx

i and OxX ∼= Cxi for each
i ∈ I with x ∈ Imψi; the work above is just to make the definition of TxX, OxX
independent of the choice of i.

If Assumption 10.5 holds then (10.20) gives

dimTxX − dimOxX = vdimX. (10.26)

The dual vector spaces of TxX, OxX will be called the cotangent space,
written T ∗xX, and the coobstruction space, written O∗xX.
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By (10.19), for any i ∈ I with x ∈ Imψi we have a canonical exact sequence

0 // TxX // TviVi
dvisi // Ei|vi // OxX // 0. (10.27)

More generally, the argument above shows that if (Va, Ea, sa, ψa) is any m-
Kuranishi neighbourhood on X in the sense of §4.7 with x ∈ Imψa, we have a
canonical exact sequence analogous to (10.27).

Now let f : X → Y be a 1-morphism of m-Kuranishi spaces which is A in
the sense of §4.5, with notation (4.6), (4.7), (4.9), and let x ∈X with f(x) = y
in Y , so we have TxX, OxX, TyY , OyY . Suppose i ∈ I with x ∈ Imχi and

j ∈ J with y ∈ Imψj , so we have a morphism f ij = (Uij , fij , f̂ij) in f , where

fij is A near χ−1
i (Imψj) by Definitions 4.33 and 4.35. As for (10.21), consider

the diagram

0 // TxX //

Txf
��

TuiUi duiri

//

Tuifij��

Di|ui
f̂ij |ui��

// OxX

Oxf
��

// 0

0 // TyY // TvjVj
dvj sj // Ej |vj // OyY // 0,

(10.28)

where the rows are (10.27) for X, x, i and Y , y, j and so are exact. As for (10.21)
the central square commutes, so there are unique linear maps Txf : TxX → TyY
and Oxf : OxX → OyY making (10.28) commute. A similar argument to the
proof of (10.24) above shows that these Txf , Oxf are independent of the choices
of i ∈ I and j ∈ J , and so are well defined.

If (Ua, Da, ra, χa) and (Vb, Eb, sb, ψb) are any m-Kuranishi neighbourhoods
on X,Y respectively in the sense of §4.7 with x ∈ Imψa, y ∈ Imψb, and
fab = (Uab, fab, f̂ab) is the 1-morphism of m-Kuranishi neighbourhoods over f
given by Theorem 4.56(b), then setting ua = χ−1

a (x), vb = ψ−1
b (y), the argument

of (10.28) shows that the following commutes, with exact rows:

0 // TxX //

Txf
��

TuaUa duara

//

Tuafab��

Da|ua
f̂ab|ua��

// OxX

Oxf
��

// 0

0 // TyY // TvbVb
dvbsb // Eb|vb // OyY // 0.

(10.29)

Suppose e : X → Y is another 1-morphism of m-Kuranishi spaces, and
η = (ηij, i∈I, j∈J) : e ⇒ f is a 2-morphism, so that e is A by Proposition
4.36(a). Then for x, y, i, j as above, consider the diagram

0 // TxX //

Txe �� Txf��

TuiUi
duiri //

Tuieij

��
Tuifij

��

Di|ui
η̂ij |vi

tt êij |ui �� f̂ij |ui��

// OxX
Oxe

��
Oxf

��

// 0

0 // TyY // TvjVj dvj sj

// Ej |vj // OyY // 0.

(10.30)

As for (10.23), applying (10.7)–(10.8) to (4.1) for ηij = [V́ij , η̂ij ] at vi yields

Tuifij = Tuieij + η̂ij |vi ◦ dvisi : TviVi −→ TvjVj ,

f̂ij |ui = êij |ui + dvjsj ◦ η̂ij |vi : Ei|vi −→ Ej |vj .
(10.31)

17



As for (10.24), combining (10.30) and (10.31) yields

Txe = Txf and Oxe = Oxf . (10.32)

Thus, the maps Txf , Oxf depend only on the A morphism [f ] : X → Y in
Ho(mK̇ur), and on x ∈X.

Now suppose g : Y → Z is another A 1-morphism of m-Kuranishi spaces
and g(y) = z ∈ Z. In a similar way to (10.22), considering the diagram

0 // TxX //

Txf
��

Tx(g◦f)

��

TuiUi duiri

//

Tuifij��
Tvi (g◦f)ik

��

Di|ui
θ̂g,fijk |vi

zz

f̂ij |ui ��
(ĝ◦f)ik|ui





// OxX

Oxf
��

OX(g◦f)





// 0

0 // TyY //

Tyg
��

TvjVk dvj sj

//
Tvj gjk

��

Ej |vj
ĝjk|vj ��

// OyY

Oyg
��

// 0

0 // TzZ // TwkWk

dwk tk // Fk|vk // OzZ // 0,

applying (10.7)–(10.8) to (4.1) for Θg,fijk = [V́ g,fijk , θ̂
g,f
ijk ] in (4.24), we show that

Tx(g ◦ f) = Tyg ◦ Txf : TxX −→ TzZ,

Ox(g ◦ f) = Oyg ◦Oxf : OxX −→ OzZ.
(10.33)

Also

TxidX = idTxX : TxX −→ TxX,

OxidX = idOxX : OxX −→ OxX.
(10.34)

So tangent and obstruction spaces are functorial on the 2-category mK̇urA.

Example 10.22. Let X,Y be m-Kuranishi spaces, so that Example 4.31 defines
the product m-Kuranishi space X × Y . In Definition 10.21, using Assumption
10.1(c) it is easy to see that for all (x, y) ∈X×Y we have canonical isomorphisms

T(x,y)(X × Y ) ∼= TxX ⊕ TyY , O(x,y)(X × Y ) ∼= OxX ⊕OyY . (10.35)

Lemma 10.23. In Definition 10.21 suppose f : X → Y is an equivalence in
mK̇ur, so that f is A by Proposition 4.36(c). Then Txf : TxX → TyY and
Oxf : OxX → OyY are isomorphisms for all x ∈X with f(x) = y in Y .

Proof. As f is an equivalence there exist an equivalence g : Y → X and 2-
morphisms η : g ◦ f ⇒ idX and ζ : f ◦ g ⇒ idY . If x ∈X with f(x) = y in Y
then g(y) = x. From (10.33), and (10.32) for η, and (10.34), we see that

Tyg ◦ Txf = Tx(g ◦ f) = TxidX = idTxX ,

Oyg ◦Oxf = Ox(g ◦ f) = OxidX = idOxX .

Similarly Txf ◦Tyg = idTyY and Oxf ◦Oyg = idOyY . Thus Tyg, Oyg are inverses
for Txf , Oxf , and Txf , Oxf are isomorphisms.
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Remark 10.24. (a) Even when Ṁan = Man, in contrast to classical manifolds,
dimTxX,dimOxX may not be locally constant functions of x ∈ X, but only
upper semicontinuous, so TxX, OxX are not fibres of vector bundles on X.

(b) In applications, tangent and obstruction spaces will often have the following
interpretation. Suppose an m-Kuranishi space X is the moduli space of solutions
of a nonlinear elliptic equation on a compact manifold, written as X ∼= Φ−1(0)
for Φ : V → E a Fredholm section of a Banach vector bundle E → V over
a Banach manifold V. Then dxΦ : TxV → Ex is a linear Fredholm map of
Banach spaces for x ∈X, and TxX ∼= Ker(dxΦ), OxX ∼= Coker(dxΦ), so that
dimTxX − dimOxX = vdimX is the Fredholm index ind(dxΦ).

Combining Definition 10.21 and Example 10.2 yields:

Example 10.25. (i) In the 2-categories mKur,mKurc,mKurc
we from (4.37),

we have notions of tangent space TxX and obstruction space OxX satisfying
dimTxX − dimOxX = vdimX, based on the usual notion of tangent spaces
TxX when Ṁan is Man,Manc or Manc

we. For any 1-morphism f : X → Y in
mKur,mKurc,mKurc

we we have functorial tangent maps Txf : TxX → TyY
and obstruction maps Oxf : OxX → OyY for all x ∈X with f(x) = y in Y .

(ii) In the 2-categories mKurc,mKurgc,mKurac,mKurc,ac from (4.37), we
have notions of b-tangent space bTxX and b-obstruction space bOxX satisfying
dim bTxX − dim bOxX = vdimX, based on b-tangent spaces bTxX from §2.3–
§2.4 for the categories Manc,Mangc,Manac,Manc,ac. For any interior 1-
morphism f : X → Y in mKurc, . . . ,mKurc,ac we have functorial b-tangent
maps bTxf : bTxX → bTyY and b-obstruction maps bOxf : bOxX → bOyY for
all x ∈ X with f(x) = y in Y . Since bTxf ,

bOxf are defined only for interior
1-morphisms f , it is better to think of b-tangent and b-obstruction spaces
bTxX,

bOxX as attached to the 2-subcategories mKurc
in,mKurgc

in ,mKurac
in ,

mKurc,ac
in from Definition 4.37.

(iii) In the 2-categories mKurc,mKurgc,mKurac,mKurc,ac from (4.37), we
have notions of stratum tangent space T̃xX and stratum obstruction space ÕxX,
based on stratum tangent spaces T̃xX from Example 10.2(iv) for the categories
Manc,Mangc,Manac,Manc,ac. They satisfy dim T̃xX−dim ÕxX 6 vdimX,
but equality may not hold.

For any 1-morphism f : X → Y in mKurc,mKurgc,mKurac,mKurc,ac

we have functorial stratum tangent maps T̃xf : T̃xX → T̃yY and stratum

obstruction maps Õxf : ÕxX → ÕyY for all x ∈X with f(x) = y in Y .

(iv) For any Ṁan satisfying Assumptions 3.1–3.7, the corresponding 2-category
of m-Kuranishi spaces mK̇ur has notions of C∞-tangent space TC

∞

x X and
C∞-obstruction space OC

∞

x X, functorial for all 1-morphisms in mK̇ur, based
on tangent spaces of C∞-schemes as in Example 10.2(v). They are canonically
isomorphic to TxX, OxX in (i) in those cases.

Definition 10.26. Suppose we are given two notions of tangent space TxX,Txf
with discrete property A, and T ′xX,T

′
xf with discrete property A′, in Ṁan

satisfying Assumption 10.1, and a natural transformation I : T ⇒ T ′, as in
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Definition 10.3. Then for each m-Kuranishi space X in mK̇ur and x ∈ X,
Definition 10.21 defines TxX, OxX and T ′xX, O′xX. Consider the diagram

0 // TxX

ITxX ��

// TviVi
IviVi ��

dvisi

// Ei|vi
id��

// OxX

IOx X��

// 0

0 // T ′xX // T ′viVi
d′vi

si
// Ei|vi // O′xX // 0,

(10.36)

where the rows are (10.27) for T, T ′, and are exact. Using Definitions 10.3 and
10.6 we can show that the central square of (10.36) commutes, so that by exactness
there are unique linear maps ITxX : TxX → T ′xX and IOx X : OxX → O′xX
making (10.36) commute. One can show that these are independent of the choice
of i ∈ I as for (10.28).

Note that IOx X is always surjective. If IviVi is injective then ITxX is injective.
If IviVi is surjective then ITxX is surjective and IOx X is an isomorphism.

Let f : X → Y be a 1-morphism of m-Kuranishi spaces which is both A and
A′, with notation (4.6), (4.7), (4.9), let x ∈X with f(x) = y in Y , and consider
the diagram

0 // TxX
ITxX��

//

Txf

��

TuiUi
IuiUi��

duiri

//

Tuifij

��

Di|ui
id
��f̂ij |ui

��

// OxX

Oxf

��

IOx X��

// 0

0 // T ′xX //

T ′xf��

T ′uiUi d′ui
ri

//

T ′ui
fij��

Di|ui

f̂ij |ui��

// O′xX

O′xf��

// 0

0 // TyY

ITy Y ��

// TvjVj

IvjVj ��

dvj sj // Ej |vj
id ��

// OyY

IOy Y ��

// 0

0 // T ′yY // T ′vjVj
d′vj

sj
// Ej |vj // O′yY // 0.

This combines (10.28) for T, T ′, and (10.36) for X, x and Y , y. As the central
cube commutes, by exactness the outer squares commute. That is, we have

ITy Y ◦ Txf = T ′xf ◦ ITxX and IOy Y ◦Oxf = O′xf ◦ IOx X, (10.37)

so the linear maps ITxX, IOx X form natural transformations IT : T ⇒ T ′,
IO : O ⇒ O′ in K̇ur.

Combining Definition 10.26 and Examples 10.4 and 10.25 yields:

Example 10.27. (a) For X in mKurc we have natural linear maps ITxX :
bTxX → TxX and IOx X : bOxX → OxX, for TxX, OxX, bTxX, bOXX as in
Example 10.25(i),(ii), where IOx X is always surjective.

(b) For X in mKurc we have natural linear maps ιTxX : T̃xX → TxX and
ιOxX : ÕxX → OxX, for TxX, OxX, T̃xX, ÕXX as in Example 10.25(i),(iii),
where ιTxX is always injective and ιOxX is surjective.

(c) For X in any of mKurc,mKurgc,mKurac,mKurc,ac, there are natu-
ral linear maps ΠT

xX : bTxX → T̃xX and ΠO
xX : bOxX → ÕxX, for

bTxX, bOxX, T̃xX, ÕXX as in Example 10.25(ii),(iii), where ΠT
xX is always

surjective and ΠO
xX is an isomorphism.
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10.2.2 Tangent and obstruction spaces for µ-Kuranishi spaces

For µ-Kuranishi spaces in Chapter 5, by essentially exactly the same arguments
as in §10.2.1, if Ṁan satisfies Assumption 10.1 with discrete property A then:

(a) For each µ-Kuranishi space X in µK̇ur and x ∈ X we can define the
tangent space TxX and obstruction space OxX, both real vector spaces.

(b) If Assumption 10.5 holds then dimTxX − dimOxX = vdimX.

(c) For each A morphism f : X → Y in µK̇ur and x ∈X with f(x) = y in
Y we can define linear maps Txf : TxX → TyY and Oxf : OxX → OyY .
These are functorial, that is, (10.33)–(10.34) hold.

(d) The analogues of Lemma 10.23, Examples 10.25, 10.27, Definition 10.26
hold.

10.2.3 Tangent and obstruction spaces for Kuranishi spaces

In §6.5, for a Kuranishi space X in K̇ur and x ∈X we defined a finite group
GxX called the isotropy group. It depends on arbitrary choices, and is natural
up to isomorphism, but not up to canonical isomorphism.

Supposing Assumption 10.1 with discrete property A, in §10.2.1, for an
m-Kuranishi space X, we defined a tangent space TxX and an obstruction space
OxX for each x ∈ X, which were unique up to canonical isomorphism and
behaved functorially under A 1-morphisms and 2-morphisms of m-Kuranishi
spaces. To define tangent and obstruction spaces for Kuranishi spaces, we must
combine these two stories:

Definition 10.28. Let X = (X,K) be a Kuranishi space, with K =
(
I, (Vi, Ei,

Γi, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I
)
, and let x ∈X.

In Definition 6.49 we defined the isotropy group GxX by choosing i ∈ I with
x ∈ Imψi and vi ∈ s−1

i (0) ⊆ Vi with ψ̄i(vi) = x, and setting GxX = StabΓi(vi)
as in (6.40). For these i, vi, define the tangent space TxX and obstruction space
OxX to be the kernel and cokernel of dvisi, where dvisi is as in Definition 10.6,
so that as in (10.27) we have an exact sequence

0 // TxX // TviVi
dvisi // Ei|vi // OxX // 0. (10.38)

The actions of Γi on Vi, Ei induce linear actions of GxX on TxX, OxX, by the
commutative diagram for each γ ∈ GxX:

0 // TxX //

γ·
��

TviVi dvisi

//

Tvi (γ·) ��

Ei|vi
γ·
��

// OxX

γ·
��

// 0

0 // TxX // TviVi
dvisi // Ei|vi // OxX // 0.

This makes TxX, OxX into representations of GxX. The dual vector spaces of
TxX, OxX are the cotangent space T ∗xX and the coobstruction space O∗xX.
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If Assumption 10.5 holds then (10.38) implies that

dimTxX − dimOxX = vdimX. (10.39)

Generalizing the discussion of Definition 6.49 on how GxX depends on the
choice of i, vi, we can show that if (GxX, TxX, OxX) come from i, vi, and
(G′xX, T ′xX, O′xX) come from alternative choices j, vj , then by picking a point
p in Sx in (6.41), we can define an isomorphism of triples

(IGx , I
T
x , I

O
x ) : (GxX, TxX, OxX) −→ (G′xX, T ′xX, O′xX).

If we instead picked p̃ ∈ Sx giving (ĨGx , Ĩ
T
x , Ĩ

O
x ), then there is a unique δ ∈ G′xX

with δ · p = p̃, and we can show that ĨGx (γ) = δIGx (γ)δ−1, ĨTx (v) = δ · ITx (v)
and ĨOx (w) = δ · IOx (w) for all γ ∈ GxX, v ∈ TxX, and w ∈ OxX. Such
isomorphisms of triples behave as expected under compositions.

Now let f : X → Y be anA 1-morphism in K̇ur, with notation (6.15), (6.16),
(6.18), and let x ∈X with f(x) = y in Y . As above we define GxX, TxX, OxX
using i ∈ I and ui ∈ Ui with χ̄i(ui) = x, and GyY , TyY , OyY using j ∈ J and
vj ∈ Vj with ψ̄j(vj) = y. By picking p ∈ Sx,f in (6.44), Definition 6.51 defines a
group morphism Gxf : GxX → GyY . As for (10.28), using the same p, define
Txf : TxX → TyY , Oxf : OxX → OyY by the commutative diagram

0 // TxX //

Txf
��

TuiUi duiri

//

Tpfij◦(Tpπij)−1

��

Di|ui
f̂ij |p
��

// OxX

Oxf
��

// 0

0 // TyY // TvjVj
dvj sj // Ej |vj // OyY // 0.

Then Txf , Oxf are Gxf -equivariant linear maps.
Generalizing Definition 6.51, if p̃ ∈ Sx,f is an alternative choice yielding

G̃xf , T̃xf , Õxf , there is a unique δ ∈ GyY with δ · p = p̃, and then G̃xf(γ) =

δ(Gxf(γ))δ−1, T̃xf(v) = δ · Txf(v), Õxf(w) = δ · Oxf(w) for all γ ∈ GxX,
v ∈ TxX, and w ∈ OxX. That is, the triple (Gxf , Txf , Oxf) is canonical up to
conjugation by an element of GyY .

Continuing with the same notation, suppose g : X → Y is another 1-
morphism and η : f ⇒ g a 2-morphism in K̇ur. Then g is A by Proposition
6.34(a), so as above we define Gxg, Txg, Oxg by choosing q ∈ Sx,g. As in

Definition 6.51, if ηij in η is represented by (Ṗij , ηij , η̂ij), there is a unique
element Gxη ∈ GyY with Gxη · ηij(p) = q. One can now check that

Gxg(γ) = (Gxη)(Gxf(γ))(Gxη)−1, Txg(v) = Gxη · Txf(v), and

Oxg(w) = Gxη ·Oxf(w) for all γ ∈ GxX, v ∈ TxX, and w ∈ OxX.

That is, (Gxg, Txg, Oxg) is conjugate to (Gxf , Txf , Oxf) under Gxη ∈ GyY ,
the same indeterminacy as in the definition of (Gxf , Txf , Oxf).

Suppose instead that g : Y → Z is another A 1-morphism of Kuranishi
spaces and g(y) = z ∈ Z. Then as in Definition 6.51 there is a canonical element
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Gx,g,f ∈ GzZ such that for all γ ∈ GxX, v ∈ TxX, w ∈ OxX we have

Gx(g ◦ f)(γ) = (Gx,g,f )((Gyg ◦Gxf)(γ))(Gx,g,f )−1,

Tx(g ◦ f)(v) = Gx,g,f · (Tyg ◦ Txf)(v),

Ox(g ◦ f)(w) = Gx,g,f · (Oyg ◦Oxf)(w).

That is, (Gx(g ◦ f), Tx(g ◦ f), Ox(g ◦ f)) is conjugate to (Gyg, Tyg, Oyg) ◦
(Gxf , Txf , Oxf) under Gx,g,f ∈ GzZ.

Remark 10.29. The definitions of GxX, TxX, OxX, Gxf , Txf , Oxf above de-
pend on arbitrary choices. We could use the Axiom of (Global) Choice as in
Remark 4.21 to choose particular values for GxX, . . . , Oxf for all X, x,f . But
this is not really necessary, we can just bear the non-uniqueness in mind when
working with them. All the definitions we make using GxX, . . . , Oxf will be
independent of the arbitrary choices in Definition 10.28.

The analogues of Lemma 10.23, Examples 10.25 and 10.27, and Definition
10.26 hold for our 2-categories of Kuranishi spaces.

10.3 Quasi-tangent spaces

In this section we suppose Ṁan satisfies Assumption 10.19 in §10.1.5 throughout,
so that we are given a discrete property C (possibly trivial) of morphisms in
Ṁan, and ‘manifolds’ V in Ṁan have quasi-tangent spaces QvV for v ∈ V ,
which are objects in a category Q, and C morphisms f : V → W in Ṁan
have functorial quasi-tangent maps Qvf : QvV → QwW for all v ∈ V with
f(v) = w ∈W , which are morphisms in Q.

For each (m- or µ-)Kuranishi space X we will define a quasi-tangent space
QxX for x ∈ X, with functorial morphisms Qxf : QxX → QyY under C

(1-)morphisms f : X → Y in mK̇ur,µK̇ur, or K̇ur. Unlike TxX, OxX in
§10.2, there is no ‘obstruction’ version of QxX. These QxX, Qxf are useful for
imposing conditions on objects and (1-)morphisms in mK̇ur,µK̇ur, and K̇ur,
for instance in defining (w-)transversality and (w-)submersions in Chapter 11.

10.3.1 Quasi-tangent spaces for m-Kuranishi spaces

Here is the analogue of Definition 10.21 for quasi-tangent spaces:

Definition 10.30. Let X = (X,K) be an m-Kuranishi space, with K =
(
I, (Vi,

Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I
)

and Φij = (Vij , φij , φ̂ij), Λijk = [V́ijk, λ̂ijk]
for all i, j, k ∈ I, as in Definition 4.14, and let x ∈X.

For each i ∈ I with x ∈ Imψi, set vi = ψ−1
i (x) in s−1

i (0) ⊆ Vi, so that we have
an object QviVi in Q by Assumption 10.19(c). For i, j ∈ I with x ∈ Imψi∩Imψj
we have vi ∈ Vij ⊆ Vi with φij = vj ∈ Vj . Proposition 4.34(d) and Definition
4.33 imply that φij is C near vi, so Qviφij : QviVi → QvjVj is defined. When
j = i we have φii = idVi , so Qviφii = idQviVi .
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If i, j, k ∈ I with x ∈ Imψi ∩ Imψj ∩ Imψk, Definition 4.3(b) for Λijk :
Φjk ◦ Φij ⇒ Φik implies that φik = φjk ◦ φij +O(si) near vi, so

Qviφik = Qvjφjk ◦Qviφij : QviVi −→ QvjVj

by Assumption 10.19(c)(i),(v). Putting k = i gives Qvjφji ◦ Qviφij = idQviVi ,
and similarly Qviφij ◦Qvjφji = idQvjVj , so Qviφij is an isomorphism. Hence by

Assumption 10.19(a), we may define a natural object QxX in Q by

QxX =
[∐

i∈I:x∈Imψi
QviVi

]
/ ∼, (10.40)

as in (10.25), where the equivalence relation ∼ is induced by the isomorphisms
Qviφij : QviVi → QvjVj , and there are canonical isomorphisms Qx,i : QxX →
QviVi in Q with Qx,j = Qviφij ◦Qx,i for all i, j ∈ I with x ∈ Imψi ∩ Imψj . We
call QxX the quasi-tangent space of X at x.

More generally, if (Va, Ea, sa, ψa), Φai, i∈I , Λaij, i,j∈I is any m-Kuranishi
neighbourhood on X in the sense of §4.7 with x ∈ Imψa, and va = ψ−1

a (x),
there is a canonical isomorphism Qx,a : QxX → QvaVa with Qx,i = Qvaφai◦Qx,a
for all i ∈ I with x ∈ Imψi.

Now let f : X → Y be a 1-morphism of m-Kuranishi spaces which is C in
the sense of §4.5, with notation (4.6), (4.7), (4.9), and let x ∈X with f(x) = y
in Y , so we have objects QxX, QyY in Q. We claim that there is a unique
morphism Qxf : QxX → QyY in Q, called the quasi-tangent map, such that
the following diagram commutes:

QxX
Qxf

//

Qx,i ∼=��

QyY

Qy,j ∼=��
QuiUi

Quifij // QvjVj

(10.41)

whenever i ∈ I with x ∈ Imχi and ui = χ−1
i (x), and j ∈ J with y ∈ Imψj

and vj = ψ−1
j (y). To see this, note that for fixed i, j there is a unique Qxf

making (10.41) commute. To show this Qxf is independent of i, j, let i′ be
an alternative choice for i. From Definition 4.3(b) applied to the 2-morphism
F jii′ : f i′j ◦ Tii′ ⇒ f ij in Definition 4.17(c), we see that fi′j ◦ τii′ = fij +O(ri)
near ui in Ui, so Qui′ fi′j ◦ Quiτii′ = Quifij by Assumption 10.19(c)(i),(v).
Together with Qx,i′ = Quiτii′ ◦ Qx,i, this implies that Qxf is unchanged by

replacing i by i′ in (10.41). Similarly, using F jj
′

i : Υjj′ ◦ f ij ⇒ f ij′ in Definition
4.17(d) we can show that Qxf is unchanged by replacing j by an alternative
choice j′.

More generally, if (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) are m-Kuranishi neigh-

bourhoods on X,Y with x ∈ Imχa, y ∈ Imψb, and fab = (Uab, fab, f̂ab) :
(Ua, Da, ra, χa)→ (Vb, Eb, sb, ψb) is a 1-morphism over (S,f) for open x ∈ S ⊆
Imχa ∩ f−1(Imψb) as in Theorem 4.56(b), then the following commutes:

QxX
Qxf

//

Qx,a ∼=��

QyY

Qy,b ∼=��
QuaUa

Quafab // QvbVb.

(10.42)

24



Suppose e : X → Y is another 1-morphism of m-Kuranishi spaces, and
η = (ηij, i∈I, j∈J) : e ⇒ f is a 2-morphism, so that e is C by Proposition
4.36(a). Then for x, y, i, j, ui, vj as above, Definition 4.3(b) applied to the 2-
morphism ηij : eij ⇒ f ij shows that fij = eij + O(ri) near ui in Ui, so
Quifij = Quieij by Assumption 10.19(c)(v). Thus comparing (10.41) for e,f
shows that Qxe = Qxf . Hence the morphisms Qxf depend only on the C
morphism [f ] : X → Y in Ho(mK̇ur), and on x ∈X.

Now suppose g : Y → Z is another C 1-morphism of m-Kuranishi spaces
and g(y) = z ∈ Z with notation (4.7)–(4.9), let i ∈ I, j ∈ J , k ∈ K with
x ∈ Imχi, y ∈ Imψj , z ∈ Imωk, and set ui = χ−1

i (x), vj = ψ−1
j (y) and

vk = ω−1
k (z). Then g ◦ f : X → Z is C, and Definition 4.20 gives a 2-morphism

Θg,fijk : gjk ◦ f ij ⇒ (g ◦ f)ik. Therefore (g ◦ f)ik = gjk ◦ fij +O(ri) near ui, so
Assumption 10.19(c)(i),(v) gives

Qui(g ◦ f)ik = Qvjgjk ◦Quifij : QuiVi −→ QwkWk.

Combining this with (10.41) for f , g and g ◦ f yields

Qx(g ◦ f) = Qyg ◦Qxf . (10.43)

Also the definition of idX yields

QxidX = idQxX : QxX → QxX. (10.44)

So quasi-tangent spaces are functorial on the 2-category mK̇urC .

As for Lemma 10.23, we can prove:

Lemma 10.31. In Definition 10.30 suppose f : X → Y is an equivalence in
mK̇ur, so that f is C by Proposition 4.36(c). Then Qxf : QxX → QyY is an
isomorphism in Q for all x ∈X with f(x) = y in Y .

Combining Definition 10.30 and Example 10.20 yields:

Example 10.32. (a) In the 2-category mKurc from (4.37), we have stratum
normal spaces ÑxX for allX ∈mKurc and x ∈X, which are finite-dimensional
real vector spaces, based on ÑvV in Definition 2.16 when V ∈Manc and v ∈ V .
For any 1-morphism f : X → Y in mKurc we have functorial linear maps
Ñxf : ÑxX → ÑyY for all x ∈X with f(x) = y in Y .

(b) In the 2-category mKurc, we have stratum b-normal spaces bÑxX for all X
in mKurc and x ∈X, which are finite-dimensional real vector spaces, based on
bÑvV in Definition 2.16 when V ∈Manc and v ∈ V . For any interior 1-morphism
f : X → Y in mKurc we have functorial linear maps bÑxf : bÑxX → bÑyY

for all x in X with f(x) = y in Y . We have dim ÑxX = dim bÑxX for all x,X,
since dim ÑvV = dim bÑvV for all V ∈Manc and v ∈ V . But in general there
are no canonical isomorphisms ÑxX ∼= bÑxX.

(c) In the 2-category mKurc, we have a commutative monoid M̃xX for all X in
mKurc and x ∈X, with M̃xX ∼= Nk for some k > 0, based on M̃vV in Definition
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2.16 when V ∈ Manc and v ∈ V . For any interior 1-morphism f : X → Y
in mKurc we have functorial monoid morphisms M̃xf : M̃xX → M̃yY for all
x ∈X with f(x) = y in Y .

We have canonical isomorphisms bÑxX ∼= M̃xX ⊗N R for all x,X, as there
are canonical isomorphisms bÑvV ∼= M̃vV ⊗NR, and these isomorphisms identify
bÑxf : bÑxX → bÑyY with M̃xf ⊗ idR : M̃xX ⊗N R→ M̃yY ⊗N R.

(d) In the 2-category mKurgc from (4.37), we have stratum b-normal spaces
bÑxX for all X in mKurgc and x ∈ X, based on bÑvV in §2.4.1 when V ∈
Mangc and v ∈ V . For any interior 1-morphism f : X → Y in mKurgc we
have functorial linear maps bÑxf : bÑxX → bÑyY for all x ∈X with f(x) = y
in Y . On mKurc ⊂mKurgc these agree with those in (b).

(e) In the 2-category mKurgc, we have a toric commutative monoid M̃xX for
all X in mKurgc and x ∈ X, based on M̃vV in §2.4.1 when V ∈Mangc and
v ∈ V . For any interior 1-morphism f : X → Y in mKurgc we have functorial
monoid morphisms M̃xf : M̃xX → M̃yY for all x ∈X with f(x) = y in Y . On
mKurc ⊂mKurgc these agree with those in (c).

We have canonical isomorphisms bÑxX ∼= M̃xX ⊗N R for all x,X, which
identify bÑxf : bÑxX → bÑyY with M̃xf ⊗ idR : M̃xX ⊗N R→ M̃yY ⊗N R.

Quasi-tangent spaces are useful for stating conditions on objects and 1-
morphisms in mK̇ur. For example:

• An object X in mKurgc lies in mKurc ⊂mKurgc if and only if M̃xX ∼=
Nk for all x ∈X, for k > 0 depending on x.

• An interior 1-morphism f : X → Y in mKurc or mKurgc is simple if
and only if M̃xf is an isomorphism for all x ∈X.

• An interior 1-morphism f : X → Y in mKurc or mKurgc is b-normal if
and only if bÑxf is surjective for all x ∈X.

Example 10.33. LetX be an object in mKurc, and x ∈X. Using the notation
of Definitions 10.21 and 10.30, choose i ∈ I with x ∈ Imψi, set vi = ψ−1

i (x) in
s−1
i (0) ⊆ Vi, and consider the commutative diagram

0

��

0

��

0

��

0

��
· · · 0 // 0

0��

0 // T̃viVi
ιviVi��

d̃viri // Ei|vi
id ��

0 // 0

0��

0 // · · ·

· · · 0 // 0

0��

0 // TviVi
πviVi��

dviri // Ei|vi
��

0 // 0

0��

0 // · · ·

· · · 0 // 0

��

0 // ÑviVi

��

0 // 0

��

0 // 0

��

0 // · · ·

0 0 0 0.

(10.45)

Here TviVi, T̃viVi are as in Example 10.2(ii),(iv), and ιviVi is as in Example
10.4(b). The second column is (2.15) for Vi, vi, which is exact, and the other
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columns are clearly exact. The rows of (10.45) are complexes. By equa-
tions (10.27), (10.40) and Examples 10.25(i),(iii) and 10.32(a), the first row
has cohomology groups T̃xX, ÕxX, the second row TxX, OxX, and the third
row ÑxX, 0.

Identifying (10.45) with equation (10.89), a standard piece of algebraic
topology explained in Definition 10.69 below gives an exact sequence (10.90):

0 // T̃xX
ιTxX // TxX

πxX // ÑxX
δxX // ÕxX

ιOxX // OxX // 0. (10.46)

Here ιTxX, ιOxX are as in Example 10.27(b), and πxX, δxX are natural linear
maps, with δxX a ‘connecting morphism’. One can show as in Definitions 10.21
and 10.30 that πxX, δxX are independent of the choice of i ∈ I.

Now let f : X → Y be a 1-morphism in mKurc, and x ∈X with f(x) = y
in Y . Then using equations (2.16), (10.28), (10.37), and (10.41), we can show
that the following commutes, where Txf , Oxf , T̃xf , Õxf are as in Example
10.25(i),(iii) and Ñxf as in Example 10.32(a), and the rows are (10.46):

0 // T̃xX

T̃xf ��
ιTxX

// TxX

Txf ��

πxX
// ÑxX

Ñxf ��
δxX

// ÕxX

Õxf ��
ιOxX

// OxX

Oxf ��

// 0

0 // T̃yY
ιTy Y // TyY

πyY // ÑyY
δyY // ÕyY

ιOy Y // OyY // 0.

(10.47)

Example 10.34. Let X lie in mKurc,mKurgc,mKurac or mKurc,ac, and
x ∈ X. Then by a similar but simpler proof to Example 10.33 using (2.17)
instead of (2.15), we find there is a natural exact sequence

0 // bÑxX
bιxX // bTxX

ΠTxX // T̃xX // 0, (10.48)

where bTxX, T̃xX are as in Example 10.25(ii),(iii), and ΠT
xX as in Example

10.27(c), and bÑxX as in Example 10.32(b). If f : X → Y is a 1-morphism in
mKurc,mKurgc,mKurac or mKurc,ac, and x ∈X with f(x) = y in Y then
as for (10.47) we have a commuting diagram

0 // bÑxX
bÑxf ��

bιxX

// bTxX
bTxf ��

ΠTxX

// T̃xX

T̃xf ��

// 0

0 // bÑyY
bιyY // bTyY

ΠTy Y // T̃yY // 0.

(10.49)

10.3.2 Quasi-tangent spaces for µ-Kuranishi spaces

For µ-Kuranishi spaces in Chapter 5, by essentially exactly the same arguments
as in §10.3.1, if Ṁan satisfies Assumption 10.19 then:

(a) For each µ-Kuranishi space X in µK̇ur and x ∈ X we can define the
quasi-tangent space QxX, an object in Q.
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(b) For each C morphism f : X → Y in µK̇ur and x ∈ X with f(x) = y
in Y we can define a morphism Qxf : QxX → QyY in Q. These are
functorial, that is, (10.43)–(10.44) hold.

(c) The analogues of Lemma 10.31 and Examples 10.32–10.34 hold.

10.3.3 Quasi-tangent spaces for Kuranishi spaces

For quasi-tangent spaces of Kuranishi spaces, we combine the ideas of §10.3.1
and §10.2.3 in a straightforward way. The main points are these:

(a) Let X = (X,K) be a Kuranishi space, with K =
(
I, (Vi, Ei,Γi, si, ψi)i∈I ,

Φij, i,j∈I , Λijk, i,j,k∈I
)
, and let x ∈ X. In Definition 6.49 we defined the

isotropy group GxX by choosing i ∈ I with x ∈ Imψi and vi ∈ s−1
i (0) ⊆ Vi

with ψ̄i(vi) = x, and setting GxX = StabΓi(vi) as in (6.40). For these
i, vi, we define the quasi-tangent space QxX in Q to be QviVi.

(b) There is a natural action of GxX on QxX by isomorphisms in Q.

(c) QxX is independent of choices up to isomorphism in Q, but not up to
canonical isomorphism. Given two choices QxX, Q′xX, the isomorphism
QxX → Q′xX is natural only up to the action of GxX on Q′xX.

(d) Let f : X → Y be a C 1-morphism in K̇ur, with notation (6.15), (6.16),
(6.18), and let x ∈X with y ∈ Y . By picking p ∈ Sx,f in (6.44), Definition
6.51 defines a group morphism Gxf : GxX → GyY . Using the same p,
define a morphism Qxf : QxX → QyY in Q by the commutative diagram

QxX
Qxf

// QyY

QuiUi QpPij
Qpfij //Qpπij

∼=
oo QvjVj ,

where Qpπij is invertible as πij is étale. Then Qxf is Gxf -equivariant. It
depends on the choice of p up to the action of GyY on QyY .

(e) Continuing from (d), suppose e : X → Y is another 1-morphism and
η : e ⇒ f a 2-morphism in K̇ur. Then e is C by Proposition 6.34(a).
Definition 6.51 gives Gxη ∈ GyY , and we have Qxf = Gxη ·Qxe.

(f) Continuing from (d), suppose g : Y → Z is another C 1-morphism and
g(y) = z ∈ Z. Then Definition 6.51 gives Gx,g,f ∈ GzZ, and we have

Qx(g ◦ f) = Gx,g,f · (Qyg ◦Qxf).

(f) The analogues of Lemma 10.31 and Examples 10.32–10.34 hold.

We leave the details to the reader.
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10.4 Minimal (m-, µ-)Kuranishi neighbourhoods at x∈X

In this section we suppose Ṁan satisfies Assumptions 10.1 and 10.9 in §10.1
throughout, so that we are given a discrete property A (possibly trivial) of
morphisms in Ṁan, and ‘manifolds’ V in Ṁan have tangent spaces TvV for
v ∈ V , and A morphisms f : V → W in Ṁan have functorial tangent maps
Tvf : TvV → TwW for all v ∈ V with f(v) = w ∈W . For some results we also
suppose Assumption 10.11.

We will use Assumption 10.9 to prove that if X is an m-Kuranishi space and
x ∈ X then we can find an m-Kuranishi neighbourhood (V,E, s, ψ) on X such
that x ∈ Imψ which is minimal at x in the sense that dψ−1(x)s = 0. Then we
will use Assumption 10.11 to show that if (V ′, E′, s′, ψ′) is another m-Kuranishi
neighbourhood on X with x ∈ Imψ′ then (V ′, E′, s′, ψ′) is locally isomorphic to
(V,E, s, ψ) near x if (V ′, E′, s′, ψ′) is minimal at x, and in general (V ′, E′, s′, ψ′)
is locally isomorphic to (V × Rn, π∗(E)⊕ Rn, π∗(s)⊕ idRn , ψ ◦ πV ) near x.

We also generalize the results to µ-Kuranishi spaces, and to Kuranishi spaces,
where a Kuranishi neighbourhood (V,E,Γ, s, ψ) on a Kuranishi space X is
minimal at x if x ∈ Imψ, and Γ ∼= GxX, so that ψ̄−1(x) is a single point v in V
fixed by Γ, and dvs = 0.

10.4.1 Minimal m-Kuranishi neighbourhoods at x ∈X
Definition 10.35. Let X be a topological space, and (V,E, s, ψ) be an m-
Kuranishi neighbourhood on X in the sense of §4.1, and x ∈ Imψ ⊆ X. Set
v = ψ−1(x) ∈ s−1(0) ⊆ V . Then Definition 10.6 defines a linear map of real
vector spaces dvs : TvV → E|v, the derivative of s at v, for TvV as in Assumption
10.1(b). We say that (V,E, s, ψ) is minimal at x if dvs = 0.

Similarly, let X = (X,K) be an m-Kuranishi space in mK̇ur, and (V,E, s, ψ)
be an m-Kuranishi neighbourhood on X in the sense of §4.7, and x ∈ Imψ ⊆ X
with v = ψ−1(x). Again we say that (V,E, s, ψ) is minimal at x if dvs = 0.

If (V,E, s, ψ) is an m-Kuranishi neighbourhood on X and x ∈ Imψ with
v = ψ−1(x) then as in (10.27) we have an exact sequence

0 // TxX // TvV
dvs // E|v // OxX // 0.

Also vdimX = dimV − rankE. From these we easily deduce:

Lemma 10.36. Let (V,E, s, ψ) be an m-Kuranishi neighbourhood on an m-
Kuranishi space X in mK̇ur, and x ∈ Imψ with v = ψ−1(x) ∈ V . Then

rankE > dimOxX and dimV > vdimX + dimOxX, (10.50)

and (V,E, s, ψ) is minimal at x if and only if equality holds in (10.50).
If (V,E, s, ψ) is minimal at x there are natural isomorphisms TxX ∼= TvV

and OxX ∼= E|v.
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We will be considering the question ‘how many different m-Kuranishi neigh-
bourhoods are there near x on an m-Kuranishi space X?’. To answer this we
need a notion of when two m-Kuranishi neighbourhoods on X are ‘the same’,
which we call strict isomorphism.

Definition 10.37. Let (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be m-Kuranishi neighbour-

hoods on a topological space X. A strict isomorphism (φij , φ̂ij) : (Vi, Ei, si,
ψi)→ (Vj , Ej , sj , ψj) satisfies:

(a) φij : Vi → Vj is a diffeomorphism in Ṁan.

(b) φ̂ij : Ei → φ∗ij(Ej) is an isomorphism of vector bundles on Vi.

(c) φ̂ij(si) = φ∗ij(sj) in Γ∞(φ∗ij(Ej)).

(d) ψi = ψj ◦ φij |s−1
i (0) : s−1

i (0)→ X, where φij(s
−1
i (0)) = s−1

j (0) by (a)–(c).

Then Φij = (Vi, φij , φ̂ij) : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) is a coordinate change
over Imψi = Imψj .

If instead (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) are m-Kuranishi neighbourhoods on
an m-Kuranishi space X, we define strict isomorphisms as above, except that
we also require Φij to be one of the possible choices in Theorem 4.56(a).

We call m-Kuranishi neighbourhoods (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) on X or
X strictly isomorphic near S ⊆ Imψi ∩ Imψj ⊆ X if there exist open neigh-
bourhoods Ui of ψ−1

i (S) in Vi and Uj of ψ−1
j (S) in Vj and a strict isomorphism

(φij , φ̂ij) : (Ui, Ei|Ui , si|Ui , ψi|Ui) −→ (Uj , Ej |Uj , sj |Uj , ψj |Uj ).

Given an m-Kuranishi neighbourhood (V,E, s, ψ) on X, we will construct a
family (V(n), E(n), s(n), ψ(n)) for n ∈ N with V(n) = V × Rn.

Definition 10.38. Let (V,E, s, ψ) be an m-Kuranishi neighbourhood on a
topological space X, and let n = 0, 1, . . . . Define an m-Kuranishi neighbourhood
(V(n), E(n), s(n), ψ(n)) on X by

(V(n), E(n), s(n), ψ(n)) =
(
V × Rn, π∗V (E)⊕ Rn, π∗V (s)⊕ idRn , ψ ◦ πV |s−1

(n)
(0)

)
.

In more detail, writing πV : V(n) = V ×Rn → V for the projection, we define
E(n) → V(n) to be the direct sum of π∗V (E) and the trivial vector bundle Rn, so
that E(n) = E × Rn × Rn as a manifold, and rankE(n) = rankE + n, so that

dimV(n) − rankE(n) = (dimV + n)− (rankE + n) = dimV − rankE.

Writing points of E as (v, e) for v ∈ V and e ∈ E|v, and s ∈ Γ∞(E) as mapping
v 7→ (v, s(v)) for s(v) ∈ E|v, we may write points of E(n) as (v,y, e,z) for v ∈ V ,
e ∈ E|v and y, z ∈ Rn, where π : E(n) → V(n) maps π : (v,y, e,z) 7→ (v,y).
Then s(n) maps s(n) : (v,y) 7→ (v,y, s(v),y). That is, the Rn-component of s(n)

in E(n) = π∗V (E)⊕Rn maps (v,y) 7→ y = idRn(y), so we write s(n) = π∗V (s)⊕idRn .
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Then s−1
(n)(0) = {(v, 0) : v ∈ s−1(0)} = s−1(0)× {0}. Thus ψ(n) = ψ ◦ πV maps

(v, 0) 7→ ψ(v), and is a homeomorphism with Imψ(n) = Imψ ⊆ X.
Define open submanifolds V∗(n) ↪→ V , V(n)∗ ↪→ V(n) by V∗(n) = V and

V(n)∗ = V(n), and morphisms φ∗(n) : V∗(n) → V(n), φ(n)∗ : V(n)∗ → V by
φ∗(n) = idV × 0 : V∗(n) = V → V(n) = V × Rn and φ(n)∗ = πV : V(n)∗ =

V × Rn → V . Define vector bundle morphisms φ̂∗(n) : E|V∗(n)
→ φ∗∗(n)(E(n)),

φ̂(n)∗ : E(n)|V(n)∗ → φ∗(n)∗(E) by the commutative diagrams

E|V∗(n)
φ̂∗(n)

// φ∗∗(n)(E(n))

E

idE⊕0
��

(idV × 0)∗(π∗V (E)⊕ Rn)

E ⊕ Rn (idV × 0)∗ ◦ π∗V (E)⊕ Rn,

E(n)|V(n)∗
φ̂(n)∗

// φ∗(n)∗(E)

E(n)

π∗V (E)⊕ Rn
idπ∗

V
(E)⊕0

// π∗V (E).

Then Φ∗(n) = (V∗(n), φ∗(n), φ̂∗(n)), Φ(n)∗ = (V(n)∗, φ(n)∗, φ̂(n)∗) are 1-morphisms
of m-Kuranishi neighbourhoods Φ∗(n) : (V,E, s, ψ)→ (V(n), E(n), s(n), ψ(n)) and
Φ(n)∗ : (V(n), E(n), s(n), ψ(n))→ (V,E, s, ψ) on X over S = Imψ = Imψ(n).

Now φ∗(n) ◦φ(n)∗ = idV ×0 : V ×Rn → V ×Rn. Thus we have isomorphisms

Tφ∗(n)◦φ(n)∗V(n) = TidV ×0(V × Rn) ∼= TπV V ⊕ T0Rn ∼= TπV V ⊕OV(n)
⊗ Rn.

Also E(n)|V(n)
= π∗V (E)⊕ Rn, so the sheaf of sections of E(n)|V(n)

is isomorphic

to π∗V (E) ⊕ OV(n)
⊗R Rn, where E is the sheaf of sections of E. Define λ̂ :

E(n)|V(n)
→ Tφ∗(n)◦φ(n)∗V(n) to be the OV(n)

-module morphism identified under
these isomorphisms with(

0 0
0 id

)
:

π∗V (E)⊕
OV(n)

⊗R Rn −→
TπV V⊕

OV(n)
⊗R Rn.

We claim that Λ = [V(n), λ̂] : Φ∗(n) ◦ Φ(n)∗ ⇒ id(V(n),E(n),s(n),ψ(n)) is a 2-
morphism of m-Kuranishi neighbourhoods over Imψ = Imψ(n). By Definition
4.3 we must show that

idV × idRn = idV × 0 + λ̂ ◦ s(n) +O(s2
(n)),(

idπ∗(E) 0
0 idRn

)
=

(
idπ∗(E)

0

)(
idπ∗(E) 0

)
+ (idV × 0)∗(ds(n)) ◦

(
0 0
0 idRn

)
+O(s(n)).

(10.51)

To prove these we must use the formal definitions in §B.3–§B.5. Define w :
E(n) → V(n) to act by w : (v,y, e,z) 7→ (v,z) on points. Then λ̂ = θE(n),w in
the notation of Definition B.32. Since

w ◦ 0E(n)
(v,y) = w(v,y, 0, 0) = (v, 0) = (idV × 0)(v,y),

w ◦ s(n)(v,y) = w(v,y, s(v),y) = (v,y) = (idV × idRn)(v,y),
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Definition B.36(vii) implies the first equation of (10.51). Choose a connection ∇
on E(n) = π∗V (E)⊕ Rn, in the sense of §B.3.2, which is the sum of a connection
on π∗V (E) and the trivial connection on the trivial vector bundle Rn. Then

(idV × 0)∗(∇s(n)) =

(
∇V s ∇Rns

0 id

)
:
TπV V⊕

OV(n)
⊗R Rn −→

π∗V (E)⊕
OV(n)

⊗R Rn.

The second equation of (10.51) then follows from Definition B.36(vi) and matrix
multiplication. Hence Λ : Φ∗(n) ◦ Φ(n)∗ ⇒ id(V(n),E(n),s(n),ψ(n)) is a 2-morphism
over Imψ. From the definitions we see that Φ(n)∗ ◦ Φ∗(n) = id(V,E,s,ψ), so
idid(V,E,s,ψ)

: Φ(n)∗ ◦ Φ∗(n) ⇒ id(V,E,s,ψ) is a 2-morphism over Imψ. There-

fore Φ∗(n) and Φ(n)∗ are equivalences in the 2-category mK̇NImψ(X), and are
coordinate changes over Imψ = Imψ(n) by Definition 4.10.

Now let (V,E, s, ψ) be an m-Kuranishi neighbourhood on an m-Kuranishi
space X in mK̇ur, as in §4.7, with implicit extra data Φ∗i, i∈I , Λ∗ij, i,j∈I , using
the notation of Definition 4.49. For n > 0 and i, j ∈ I define

Φ(n)i = Φ∗i ◦ Φ(n)∗ : (V(n), E(n), s(n), ψ(n)) −→ (Vi, Ei, si, ψi),

Λ(n)ij = Λ∗ij ∗ idΦ(n)∗ : Φij ◦ Φ(n)i =⇒ Φ(n)j .

Then as Φ(n)∗ is a coordinate change we see that (V(n), E(n), s(n), ψ(n)) is also
an m-Kuranishi neighbourhood on X, with extra data Φ(n)i, i∈I , Λ(n)ij, i,j∈I .
Furthermore, it is easy to see that Φ∗(n) : (V,E, s, ψ) → (V(n), E(n), s(n), ψ(n))
and Φ(n)∗ : (V(n), E(n), s(n), ψ(n))→ (V,E, s, ψ) are coordinate changes on X in
the sense of Definition 4.51.

The next two propositions prove minimal m-Kuranishi neighbourhoods exist.

Proposition 10.39. Suppose (Vi, Ei, si, ψi) is an m-Kuranishi neighbourhood
on a topological space X, and x ∈ Imψi ⊆ X. Then there exists an m-Kuranishi
neighbourhood (V,E, s, ψ) on X which is minimal at x, with Imψ ⊆ Imψi ⊆ X,
and a coordinate change Φ∗i : (V,E, s, ψ)→ (Vi, Ei, si, ψi) over S = Imψ.

Furthermore, (Vi, Ei, si, ψi) is strictly isomorphic to (V(n), E(n), s(n), ψ(n))
near S in the sense of Definition 10.37, where n = dimVi − dimV > 0 and
(V(n), E(n), s(n), ψ(n)) is constructed from (V,E, s, ψ) as in Definition 10.38, and
this strict isomorphism locally identifies Φ∗i : (V,E, s, ψ)→ (Vi, Ei, si, ψi) with
Φ∗(n) : (V,E, s, ψ)→ (V(n), E(n), s(n), ψ(n)) in Definition 10.38 near S.

Proof. Let vi = ψ−1
i (x) ∈ s−1

i (0) ⊆ Vi. Then Definition 10.6 gives a linear map
dvisi : TviVi → Ei|vi . Define n to be the dimension of the image of dvisi and
m = rankEi − n, so that we may choose an isomorphism Ei|vi ∼= Rm ⊕Rn with
Im dvisi

∼= {0} ⊕ Rn. Choose an open neighbourhood V ′i of vi in Vi with Ei|V ′i
trivial, and choose a trivialization Ei|V ′i ∼= V ′i × (Rm⊕Rn) which restricts to the
chosen isomorphism Ei|vi ∼= Rm ⊕ Rn at vi. Then we may identify si|V ′i with

s1 ⊕ s2, where s1 : V ′i → Rm, s2 : V ′i → Rn are morphisms in Ṁan, and dvisi :
TviVi → Ei|vi ∼= Rm ⊕ Rn is identified with Tvis1 ⊕ Tvis2 : TviVi → Rm ⊕ Rn.
Hence Tvis1 = 0 : TviVi → Rm, and Tvis2 : TviVi → Rn is surjective.
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Apply Assumption 10.9 to s2 : V ′i → Rn at vi ∈ V ′i , noting that s2 is A by
Assumption 10.1(a)(i). This gives open neighbourhoods U of vi in V ′i and W of
0 in Rn, an object V in Ṁan with dimV = dimVi − n, and a diffeomorphism
χ : U → V ×W identifying s2|U : U → Rn with πW : V ×W →W ⊆ Rn.

We now have morphisms s1 ◦χ−1 : V ×W → Rm and s2 ◦χ−1 : V ×W → Rn,
where 0 ∈ W ⊆ Rn is open, and s2 ◦ χ−1 maps (v,w) 7→ w for v ∈ V and
w = (w1, . . . , wn) ∈W , since χ identifies s2|U with πW . Apply Assumption 3.5
to construct morphisms gj : V ×W → Rm for j = 1, . . . , n such that

s1◦χ−1(v, (w1, . . . , wn))=s1◦χ−1(v, (0, . . . , 0))+
n∑
j=1

wj · gj(v, (w1, . . . , wn))

for all v ∈ V and w ∈ W . Here Tvis1 = 0 gives gj ◦ χ(vi) = 0 for j = 1, . . . , n.
Now we change the trivialization Ei|U ∼= U × (Rm ⊕Rn) by composing with the
vector bundle isomorphism U × (Rm ⊕ Rn)→ U × (Rm ⊕ Rn) acting by

(u,y, z) 7−→
(
u,y − z1 · g1 ◦ χ(u)− · · ·+ zn · gn ◦ χ(u), z

)
.

By definition of g1, . . . , gn, at the point u = χ−1(v,w) in U , this maps

s1(u)⊕ s2(u) = (s1 ◦ χ−1)(v,w)⊕w 7−→ (s1 ◦ χ−1)(v, 0)⊕w.

That is, changing s1, s2 along with the choice of trivialization, the effect is to
leave s2 unchanged, with s2 ◦ χ−1(v,w) = w, but to replace s1 ◦ χ−1(v,w) by
s1 ◦χ−1(v, 0), so that now s1 ◦χ−1(v,w) is independent of w. As gj ◦χ(vi) = 0,
this replacement preserves the condition dvis1 = 0. Write χ̂ : Ei|U → U × (Rm⊕
Rn) for the new choice of trivialization.

Define π : E → V to be the trivial vector bundle πV : V × Rm → V , and
define a section s ∈ Γ∞(E), as a morphism s : V → E, to be the composition

V
(idV ,0) // V ×W

(πV ,χ
−1) // V × U

idV ×s1|U // V × Rm E.

Observe that the diffeomorphism χ : U → V ×W identifies U ∩ s−1
i (0) with

(s1 ◦ χ−1)−1(0) ∩ (s2 ◦ χ−1)−1(0)=(s1 ◦ χ−1)−1(0) ∩ (V × {0})=s−1(0)× {0}.

Hence defining ψ : s−1(0) → X by ψ = ψi ◦ χ−1 ◦ (ids−1(0), 0), we see that ψ

is a homeomorphism from s−1(0) to the open neighbourhood ψi(U ∩ s−1
i (0))

of x in Imψi. Therefore (V,E, s, ψ) is an m-Kuranishi neighbourhood on X,
with x ∈ Imψ ⊆ Imψi. Also writing v = ψ−1(x) ∈ V , then χ(vi) = (v, 0), so
dv : TvV → E|v is identified with the restriction of Tvis1 : TviVi → Rm to the
subspace Tv(χ

−1)[TvV ⊕ 0] ⊆ TviVi. But Tvis1 = 0, so dvs = 0, and (V,E, s, ψ)
is minimal at x, as we have to prove.

Define a morphism φ∗i : V → Vi and a vector bundle morphism φ̂∗i : E →
φ∗∗i(Ei) by the commutative diagrams

V

idV ×0
��

φ∗i

// Vi

V ×W
χ−1

// U,
?�

OO E
φ̂∗i

// φ∗∗i(Ei)

V × Rm
idV×Rm×0 // V × Rm × Rn.

∼=
OO
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Then Φ∗i = (V, φ∗i, φ̂∗i) is a 1-morphism of m-Kuranishi neighbourhoods
Φ∗i : (V,E, s, ψ)→ (Vi, Ei, si, ψi) over S = Imψ, where Definition 4.2(d) holds

as φ̂∗i(s|V∗i) = φ∗∗i(si).
As U ⊆ Vi is open, (U,Ei|U , si|U , ψi|U ) is an m-Kuranishi neighbourhood

on X. Also Definition 10.38 constructs (V(n), E(n), s(n), ψ(n)) from (V,E, s, ψ), n
with V(n) = V × Rn, so V ×W ⊆ V(n) is open, and we have an m-Kuranishi
neighbourhood (V ×W,E(n)|V×W , s(n)|V×W , ψ(n)|V×W ) on X. From above we
have isomorphisms χ : U → V ×W and χ̂ : Ei|U → U × Rm × Rn = χ∗(E(n)),
since E(n) = V ×W × Rm × Rn. We claim that

(χ, χ̂) : (U,Ei|U , si|U , ψi|U ) −→ (V ×W,E(n)|V×W , s(n)|V×W , ψ(n)|V×W )

is a strict isomorphism. Here Definition 10.37(a),(b),(d) are immediate from
the definitions, and (c) follows from s1 ◦ χ−1(v,w) = s1 ◦ χ−1(v, 0) = s(v)
and s2 ◦ χ−1(v,w) = w = idRn(w) above, and the definition of s(n). Thus
(Vi, Ei, si, ψi) is strictly isomorphic to (V(n), E(n), s(n), ψ(n)) near S = Imψ.

From the definitions we see that φ∗(n) = χ ◦ φ∗i and φ̂∗(n) = χ̂ ◦ φ̂∗i, so
(χ, χ̂) locally identifies Φ∗i with Φ∗(n). By Definition 10.38, Φ∗(n) is a coordinate
change, so Φ∗i is also a coordinate change. This completes the proof.

Proposition 10.40. Suppose X is an m-Kuranishi space in mK̇ur and x ∈X.
Then there exists an m-Kuranishi neighbourhood (V,E, s, ψ) on X, in the sense
of §4.7, which is minimal at x.

Proof. Write X = (X,K) with K =
(
I, (Vi, Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
.

Then there exists h ∈ I with x ∈ Imψh. Proposition 10.39 constructs an m-
Kuranishi neighbourhood (V,E, s, ψ) on the topological space X minimal at
x with x ∈ Imψ ⊆ Imψh ⊆ X and a coordinate change Φ′∗h : (V,E, s, ψ) →
(Vh, Eh, sh, ψh). For all i ∈ I set Φ∗i = Φhi ◦ Φ′∗h : (V,E, s, ψ)→ (Vi, Ei, si, ψi),
and for all i, j ∈ I define

Λ∗ij = Λhij ∗ idΦ′∗h
: Φij ◦ Φ∗i = Φij ◦ Φhi ◦ Φ′∗h =⇒ Φhj ◦ Φ′∗h = Φ∗j .

Then (V,E, s, ψ) plus the data Φ∗i,Λ∗ij is an m-Kuranishi neighbourhood on
the m-Kuranishi space X in the sense of Definition 4.49, since applying −∗ idΦ′∗h
to (4.4) for K implies (4.57) for the Φ∗i,Λ∗ij .

Remark 10.41. Definition 10.35 involves a choice of notion of tangent space
TvV for V in Ṁan in Assumption 10.1. As in Example 10.2, one category
Ṁan can admit several different notions of tangent space, for example if Ṁan
is Manc,Mangc,Manac or Manc,ac then both b-tangent spaces bTvV and
stratum tangent spaces T̃vV satisfy Assumptions 10.1 and 10.9.

Combining Lemma 10.36 and Proposition 10.40 we see that an m-Kuranishi
neighbourhood (V,E, s, ψ) on X with x ∈ Imψ is minimal at x if and only if
dimV 6 dimV ′ for all m-Kuranishi neighbourhoods (V ′, E′, s′, ψ′) on X with
x ∈ Imψ′. This characterization does not involve tangent spaces. Thus, whether
or not (V,E, s, ψ) is minimal at x is independent of the notion of tangent space
bTvV, T̃vV, . . . used to define minimality, as long as there exists at least one
notion of tangent space for Ṁan satisfying Assumptions 10.1 and 10.9.
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10.4.2 Isomorphism of minimal m-Kuranishi neighbourhoods

In this section we also suppose Assumption 10.11, which was not needed in
§10.4.1. We show that any two m-Kuranishi neighbourhoods minimal at x ∈ X
are strictly isomorphic near x, in the sense of Definition 10.37.

Proposition 10.42. Let (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) be m-Kuranishi neigh-
bourhoods on X which are both minimal at x ∈ Imψi ∩ Imψj ⊆ X, and

Φij = (Vij , φij , φ̂ij) : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) be a coordinate change over
x ∈ S ⊆ Imψi ∩ Imψj . Then there exist open neighbourhoods Ui of vi = ψ−1

i (x)
in Vij ⊆ Vi and Uj of vj = ψ−1

j (x) in Vj such that φij |Ui : Ui → Uj is a

diffeomorphism, and φ̂ij |Ui : Ei|Ui → φ∗ij(Ej)|Ui is an isomorphism.

Furthermore there exists an isomorphism φ̂′ij : Ei|Ui → φ∗ij(Ej)|Ui with

φ̂′ij = φ̂ij |Ui +O(si) and φ̂′ij(si|Ui) = φ∗ij(sj)|Ui , so that

(φij |Ui , φ̂′ij) : (Ui, Ei|Ui , si|Ui , ψi|Ui) −→ (Uj , Ej |Uj , sj |Uj , ψj |Uj )

is a strict isomorphism of m-Kuranishi neighbourhoods over T = ψi(Ui∩s−1
i (0)).

Also [Ui, 0] : Φij ⇒ Φ′ij = (Ui, φij |Ui , φ̂′ij) is a 2-morphism over T .

Proof. As in Definition 10.21 we have a commutative diagram (10.21) with exact
rows, where κxΦij , γ

x
Φij

are isomorphisms as Φij is a coordinate change. But

dvisi = dvjsj = 0 as (Vi, Ei, si, ψi), (Vj , Ej , sj , ψj) are minimal at x. Hence

(10.21) implies that Tviφij : TviVi → TvjVj and φ̂ij |vi : Ei|vi → Ej |vj are both
isomorphisms. Also φij is B near vi by Proposition 4.34(d), for B the discrete
property in Assumption 10.11. Hence as Tviφij is an isomorphism, by Assumption
10.11 there exist open neighbourhoods Ui of vi in Vij and Uj of vj in Vj such

that φij |Ui : Ui → Uj is a diffeomorphism in Ṁan. Since φ̂ij |vi : Ei|vi → Ej |vj
is an isomorphism, φ̂ij is an isomorphism near vi, so making Ui, Uj smaller we

can suppose φ̂ij |Ui : Ei|Ui → φ∗ij(Ej)|Ui is an isomorphism.

We have φ̂ij(si|Ui) = φ∗ij(sj)|Ui +O(s2
i ) by Definition 4.2(d), so by Definition

3.15(i) there exists α ∈ Γ∞(E∗i ⊗ E∗i ⊗ φ∗ij(Ej)|Ui) such that

φ̂ij(si|Ui) = φ∗ij(sj)|Ui + α · (si|Ui ⊗ si|Ui).

Define a vector bundle morphism φ̂′ij : Ei|Ui → φ∗ij(Ej)|Ui by

φ̂′ij(ei) = φ̂ij |Ui(ei)− α · (ei ⊗ si|Ui)

for ei ∈ Γ∞(Ei|Ui). Clearly we have φ̂′ij = φ̂ij |Ui + O(si) and φ̂′ij(si|Ui) =

φ∗ij(sj)|Ui , as in the proposition. Also φ̂′ij |vi = φ̂ij |vi as si|vi = 0, and φ̂ij |vi is

an isomorphism, so φ̂′ij is an isomorphism near vi, and making Ui, Uj smaller we

can suppose φ̂′ij is an isomorphism. The rest of the proposition is immediate.

Combining Proposition 10.42 with the material of §4.7 yields:
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Proposition 10.43. Let X be an m-Kuranishi space and (Va, Ea, sa, ψa), (Vb,
Eb, sb, ψb) be m-Kuranishi neighbourhoods on X in the sense of §4.7 which are
minimal at x ∈X (these exist for any x ∈X by Proposition 10.40). Theorem

4.56(a) gives a coordinate change Φab = (Vab, φab, φ̂ab) : (Va, Ea, sa, ψa) →
(Vb, Eb, sb, ψb) on Imψa ∩ Imψb, canonical up to 2-isomorphism.

Then for small open neighbourhoods Ua of ψ−1
a (x) in Vab ⊆ Va and Ub of

ψ−1
b (x) in Vb, we may choose Φab such that

(φab|Ua , φ̂ab|Ua) : (Ua, Ea|Ua , sa|Ua , ψa|Ua)−→(Ub, Eb|Ub , sb|Ub , ψb|Ub)

is a strict isomorphism of m-Kuranishi neighbourhoods on X.

M-Kuranishi neighbourhoods (Va, Ea, sa, ψa) on X are classified up to strict
isomorphism near x by n = dimVa − vdimX − dimOxX ∈ N.

Theorem 10.44. Let X be an m-Kuranishi space in mK̇ur, and x ∈X, and
(V,E, s, ψ) be an m-Kuranishi neighbourhood on X minimal at x ∈ X, which
exists by Proposition 10.40. Suppose (Va, Ea, sa, ψa) is any other m-Kuranishi
neighbourhood on X with x ∈ Imψa. Then (Va, Ea, sa, ψa) is strictly isomorphic
to (V(n), E(n), s(n), ψ(n)) near x in the sense of Definition 10.37, where

n = dimVa − dimV = dimVa − vdimX − dimOxX > 0, (10.52)

and (V(n), E(n), s(n), ψ(n)) is the m-Kuranishi neighbourhood on X constructed
from (V,E, s, ψ), n in Definition 10.38.

Proof. Let X, x, (V,E, s, ψ), (Va, Ea, sa, ψa) be as in the theorem. Starting from
(Va, Ea, sa, ψa), Propositions 10.39 and 10.40 construct an m-Kuranishi neigh-
bourhood (V ′, E′, s′, ψ′) on X or X which is minimal at x, such that (V ′(n),

E′(n), s
′
(n), ψ

′
(n)) is strictly isomorphic to (Va, Ea, sa, ψa) near x, by a strict iso-

morphism Ψ say, for (V ′(n), E
′
(n), s

′
(n), ψ

′
(n)) constructed from (V ′, E′, s′, ψ′) and

n = dimVa− dimV ′ > 0 in Definition 10.38. Then Proposition 10.43 shows that
(V,E, s, ψ), (V ′, E′, s′, ψ′) are strictly isomorphic near x, by a strict isomorphism
Ξ say, so dimV = dimV ′, and (10.52) follows from (10.50).

Now consider the following diagram of coordinate changes of m-Kuranishi
neighbourhoods on X, defined near x, in the sense of Definition 4.51:

(V,E, s, ψ)

Ξ∼=
��

(V(n), E(n), s(n), ψ(n))

Φ′∗(n)◦Ξ◦Φ(n)∗ ⇒
��

Ξ(n)∼=
��

Ψ◦Ξ(n)

∼=
''

Φ(n)∗

oo

(V ′, E′, s′, ψ′)
Φ′∗(n) // (V ′(n), E

′
(n), s

′
(n), ψ

′
(n))

Ψ
∼=

// (Va, Ea, sa, ψa).

Here arrows marked ‘∼=’ are strict isomorphisms. The arrows ‘→’ exist from
above and by Definition 10.38. Thus Φ′∗(n) ◦ Ξ ◦ Φ(n)∗ exists as a coordinate
change on X, by composition of coordinate changes in Definition 4.51.

Clearly Ξ induces a strict isomorphism Ξ(n) : (V(n), E(n), s(n), ψ(n))→ (V ′(n),

E′(n), s
′
(n), ψ

′
(n)) near x, initially just as a coordinate change on X, not on
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X. However, there is a 2-morphism Φ′∗(n) ◦ Ξ ◦ Φ(n)∗ ⇒ Ξ(n), constructed
as for Λ : Φ∗(n) ◦ Φ(n)∗ ⇒ id(V(n),E(n),s(n),ψ(n)) in Definition 10.38. Therefore
Ξ(n) is a coordinate change on X, as Φ′∗(n) ◦ Ξ ◦ Φ(n)∗ is. Thus Ψ ◦ Ξ(n) :

(V(n), E(n), s(n), ψ(n))→ (Va, Ea, sa, ψa) is a strict isomorphism of m-Kuranishi
neighbourhoods on X near x, as required.

As in Example 4.30, we say that an m-Kuranishi space X in mK̇ur is a

manifold if X ' FmK̇ur
Ṁan

(X̃) in mK̇ur for some X̃ ∈ Ṁan. We use Proposition
10.40 to give a criterion for this.

Theorem 10.45. An m-Kuranishi space X in mK̇ur is a manifold, in the
sense of Example 4.30, if and only if OxX = 0 for all x ∈X.

Proof. The ‘only if’ part is obvious. For the ‘if’ part, suppose X = (X,K)
lies in mK̇ur with OxX = 0 for all x ∈ X. By Proposition 10.40, for each
x ∈ X we can choose an m-Kuranishi neighbourhood (Vx, Ex, sx, ψx) on X,
as in §4.7, such that x ∈ Imψx and (Vx, Ex, sx, ψx) is minimal at x. But
then rankEx = dimOxX = 0 by Lemma 10.36, so Ex = sx = 0. As the
{Imψx : x ∈ X} cover X, Theorem 4.58 constructs X ′ = (X,K′) in mK̇ur with
K′ =

(
X, (Vx, Ex, sx, ψx)x∈X ,Φxy, x,y∈X ,Λxyz, x,y,z∈X

)
and X 'X ′.

Since Ex = sx = 0 for all x ∈ X, following the proof of Proposition 6.63 we
can construct an object X̃ in Ṁan with topological space X̃ = X such that

FmK̇ur
Man (X̃) 'X ′, so that FmK̇ur

Man (X̃) 'X, and X is a manifold.

All the results of §10.4.1–§10.4.2 apply in any 2-category mK̇ur constructed
from a category Ṁan satisfying Assumptions 3.1–3.7, 10.1, 10.9 and 10.11. By
Examples 10.2, 10.10 and 10.12 and Definition 4.29, this includes the 2-categories

mKur,mKurc,mKurgc,mKurac,mKurc,ac. (10.53)

10.4.3 Extension to µ-Kuranishi spaces

All of §10.4.1–§10.4.2 extends essentially immediately to µ-Kuranishi spaces. As
in §5.2, µ-Kuranishi neighbourhoods are the same as m-Kuranishi neighbour-
hoods, and we call a µ-Kuranishi neighbourhood (V,E, s, ψ) on a topological
space X (or on a µ-Kuranishi space X) minimal at x ∈ X if it is minimal at x
as an m-Kuranishi neighbourhood. We leave the details to the reader.

10.4.4 Extension to Kuranishi spaces

Next we extend §10.4.1–§10.4.2 from m-Kuranishi spaces to Kuranishi spaces,
by including finite groups Γ and isotropy groups GxX throughout.

Here are the analogues of Definitions 10.35, 10.37 and 10.38.

Definition 10.46. Let (V,E,Γ, s, ψ) be a Kuranishi neighbourhood on a topo-
logical space X as in §6.1, and x ∈ Imψ. We call (V,E,Γ, s, ψ) minimal at x if

(a) ψ̄−1(x) is a single point {v} in V , and
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(b) dvs = 0, where v is as in (a) and dvs : TvV → E|v as in Definition 10.6.

Here ψ̄−1(x) is a Γ-orbit in s−1(0) ⊆ V , so (a) implies that v is fixed by Γ.
Similarly, let X = (X,K) be a Kuranishi space in K̇ur, and (V,E,Γ, s, ψ) be

a Kuranishi neighbourhood on X in the sense of §6.4, and x ∈ Imψ ⊆ X with
v = ψ−1(x). Again we call (V,E,Γ, s, ψ) minimal at x if (a),(b) hold. Then (a)
implies that GxX ∼= Γ, for GxX the isotropy group of X from §6.5.

Definition 10.47. Let Φij : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) be a coor-
dinate change of Kuranishi neighbourhoods on a topological space X. A strict
isomorphism (σij , ϕij , ϕ̂ij) : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) satisfies:

(a) σij : Γi → Γj is an isomorphism of finite groups.

(b) ϕij : Vi → Vj is a σij-equivariant diffeomorphism in Ṁan.

(c) ϕ̂ij : Ei → φ∗ij(Ej) is a σij-equivariant vector bundle isomorphism on Vi.

(d) ϕ̂ij(si) = ϕ∗ij(sj) in Γ∞(ϕ∗ij(Ej)).

(e) ψ̄i = ψ̄j ◦ ϕij |s−1
i (0) : s−1

i (0)→ X, where ϕij(s
−1
i (0)) = s−1

j (0) by (b)–(d).

Given a strict isomorphism (σij , ϕij , ϕ̂ij), we will define a coordinate change

Φij = (Pij , πij , φij , φ̂ij) : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) over Imψi =
Imψj . Set Pij = Vi × Γj , where Γi × Γj acts on Pij by (γi, γj) : (vi, δj) 7→ (γi ·
vi, γj δj σij(γi)

−1). Define πij : Pij → Vi by πij : (vi, δj) 7→ vi and φij : Pij → Vj
by φij : (vi, δj) 7→ δj · ϕij(vi). Then πij is Γi-equivariant and Γj-invariant, and
is a Γj-principal bundle, and φij is Γi-invariant and Γj-equivariant.

At (vi, δj) ∈ Pij , the morphism φ̂ij : π∗ij(Ei) → φ∗ij(Ej) must map Ei|vi →
Ej |δj ·ϕij(vi). Let φ̂ij |(vi,δj) be the composition of ϕ̂ij |vi : Ei|vi → Ej |ϕij(vi) with

the action of δj : Ej |ϕij(vi) → Ej |δj ·ϕij(vi). This defines φ̂ij . It is now easy to

show that Φij = (Pij , πij , φij , φ̂ij) is a 1-morphism Φij : (Vi, Ei,Γi, si, ψi) →
(Vj , Ej ,Γj , sj , ψj) over Imψi. Using the inverse of (σij , ϕij , ϕ̂ij) we construct a
quasi-inverse Φji for Φij in the same way, so that Φij is a coordinate change.

If instead (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj) are Kuranishi neighbourhoods
on a Kuranishi space X, we define strict isomorphisms as above, except that we
also require Φij above to be one of the possible choices in Theorem 6.45(a).

We call Kuranishi neighbourhoods (Vi, Ei,Γi, si, ψi), (Vj , Ej ,Γj , sj , ψj) on X
or X strictly isomorphic near S ⊆ Imψi ∩ Imψj ⊆ X if there exist Γi- and
Γj-invariant open neighbourhoods Ui of ψ̄−1

i (S) in Vi and Uj of ψ̄−1
j (S) in Vj ,

and a strict isomorphism

(σij , ϕij , ϕ̂ij) : (Ui, Ei|Ui ,Γi, si|Ui , ψi|Ui) −→ (Uj , Ej |Uj ,Γj , sj |Uj , ψj |Uj ).

Definition 10.48. Let (V,E,Γ, s, ψ) be a Kuranishi neighbourhood on a topo-
logical space X. Suppose we are given a finite group ∆, an injective morphism
ι : Γ ↪→ ∆, and a representation ρ of Γ on Rn for some n = 0, 1, . . . . We will
define a Kuranishi neighbourhood (V ∆,ι

(n),ρ, E
∆,ι
(n),ρ,∆, s

∆,ι
(n),ρ, ψ

∆,ι
(n),ρ) on X.
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Define V ∆,ι
(n),ρ = (V × Rn ×∆)/Γ, where Γ acts on V × Rn ×∆ by

γ : (v,y, δ) 7−→ (γ · v, ρ(γ)y, δ · ι(γ)−1).

As the Γ-action is free and Γ is finite we can show using Assumptions 3.2(e) and

3.3(b) that the quotient (V ×Rn ×∆)/Γ exists in Ṁan. Let ∆ act on V ∆,ι
(n),ρ by

δ′ : (v,y, δ)Γ 7−→ (v,y, δ′ · δ)Γ.

Define E∆,ι
(n),ρ = (E ×Rn ×Rn ×∆)/Γ, where Γ acts on E ×Rn ×Rn ×∆ by

γ :
(
(v, e),y, z, δ

)
7−→

(
γ · (v, e), ρ(γ)y, ρ(γ)z, δ · ι(γ)−1

)
.

Here we write points of E as (v, e) for v ∈ V and e ∈ E|v. The projection

π : E∆,ι
(n),ρ → V ∆,ι

(n),ρ making E∆,ι
(n),ρ into a vector bundle acts by

π :
(
(v, e),y, z, δ

)
Γ 7−→ (v,y, δ)Γ,

so that the fibre E∆,ι
(n),ρ|(v,y,δ) is E|v ⊕ Rn 3 (e, z). Let ∆ act on E∆,ι

(n),ρ by

δ′ :
(
(v, e),y, z, δ

)
Γ 7−→

(
(v, e),y, z, δ′ · δ

)
Γ.

Then π is ∆-equivariant. Define s∆,ι
(n),ρ : V ∆,ι

(n),ρ → E∆,ι
(n),ρ by

s∆,ι
(n),ρ : (v,y, δ)Γ 7−→

(
(v, s(v)),y,y, δ

)
Γ,

where we write the action of s : V → E on points as s : v 7→ (v, s(v)). Then

s∆,ι
(n),ρ ∈ Γ∞(E∆,ι

(n),ρ) is ∆-equivariant. We have

(s∆,ι
(n),ρ)

−1(0) =
{

(v,y, δ)Γ ∈ V ∆,ι
(n),ρ : s(v) = y = 0

}
= (s−1(0)× {0} ×∆)/Γ.

Hence we have a homeomorphism

I : (s∆,ι
(n),ρ)

−1(0)/∆ = [(s−1(0)× {0} ×∆)/Γ]/∆ −→ s−1(0)/Γ

mapping I : [(v, 0, δ)Γ]∆ 7→ vΓ. Define ψ∆,ι
(n),ρ = ψ ◦ I : (s∆,ι

(n),ρ)
−1(0)/∆ → X.

Then ψ∆,ι
(n),ρ is a homeomorphism with the open set Imψ∆,ι

(n),ρ = Imψ ⊆ X. Thus

(V ∆,ι
(n),ρ, E

∆,ι
(n),ρ,∆, s

∆,ι
(n),ρ, ψ

∆,ι
(n),ρ) is a Kuranishi neighbourhood on X.

Define a 1-morphism of Kuranishi neighbourhoods on X over Imψ

Φ∗(n) = (P∗(n), π∗(n), φ∗(n), φ̂∗(n)) : (V,E,Γ, s, ψ) −→ (V ∆,ι
(n),ρ, . . . , ψ

∆,ι
(n),ρ)

by P∗(n) = V × ∆ with Γ × ∆-action (γ, δ′) : (v, δ) 7→ (γ · v, δ′ · δ · ι(γ)−1),

and morphisms π∗(n) : P∗(n) → V , φ∗(n) : P∗(n) → V ∆,ι
(n),ρ, φ̂∗(n) : π∗∗(n)(E) →

φ∗∗(n)(E
∆,ι
(n),ρ) acting by

π∗(n) : (v, δ) 7−→ v, φ∗(n) : (v, δ) 7−→ (v, 0, δ)Γ,

φ̂∗(n) : ((v, δ), e) 7−→ ((v, δ), (e, 0)).
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It is easy to check Definition 6.2 holds. Similarly define a 1-morphism

Φ(n)∗ = (P(n)∗, π(n)∗, φ(n)∗, φ̂(n)∗) : (V ∆,ι
(n),ρ, . . . , ψ

∆,ι
(n),ρ) −→ (V,E,Γ, s, ψ)

by P(n)∗ = V × Rn ×∆ with ∆× Γ-action

(δ′, γ) : (v,y, δ) 7−→ (γ · v, ρ(γ)y, δ′ · δ · ι(γ)−1),

and π(n)∗ : P(n)∗ → V ∆,ι
(n),ρ, φ(n)∗ : P(n)∗ → V , φ̂(n)∗ : π∗(n)∗(E

∆,ι
(n),ρ) → φ∗(n)∗(E)

acting by

π(n)∗ : (v,y, δ) 7−→ (v,y, δ)Γ, φ(n)∗ : (v,y, δ) 7−→ v,

φ̂(n)∗ :
(
(v,y, δ), (e, z)

)
7−→

(
(v,y, δ), e

)
.

As in Definition 10.38 but with extra contributions from finite groups Γ,∆,
we can define explicit 2-morphisms K : Φ(n)∗ ◦ Φ∗(n) ⇒ id(V,E,Γ,s,ψ) and Λ :
Φ∗(n) ◦ Φ(n)∗ ⇒ id(V ∆,ι

(n),ρ
,...,ψ∆,ι

(n),ρ
) over Imψ, and we leave these as an exercise.

Then K,Λ imply that Φ∗(n),Φ(n)∗ are coordinate changes over Imψ.

Here is the analogue of Proposition 10.39:

Proposition 10.49. Suppose (Vi, Ei,Γi, si, ψi) is a Kuranishi neighbourhood
on a topological space X, and x ∈ Imψi ⊆ X. Then there exists a Kuranishi
neighbourhood (V,E,Γ, s, ψ) on X which is minimal at x as in Definition 10.46,
with Imψ ⊆ Imψi ⊆ X and Γ ⊆ Γi a subgroup, and a coordinate change
Φ∗i : (V,E,Γ, s, ψ)→ (Vi, Ei,Γi, si, ψi) over S = Imψ.

Furthermore, (Vi, Ei,Γi, si, ψi) is strictly isomorphic to (V Γi,ι
(n),ρ, E

Γi,ι
(n),ρ,Γi,

sΓi,ι
(n),ρ, ψ

Γi,ι
(n),ρ) near S as in Definition 10.47, where n = dimVi − dimV > 0

and (V Γi,ι
(n),ρ, . . . , ψ

Γi,ι
(n),ρ) is constructed from (V,E,Γ, s, ψ) as in Definition 10.48

using the inclusion ι : Γ ↪→ Γi and some representation ρ of Γ on Rn, and this
strict isomorphism locally identifies Φ∗i : (V,E,Γ, s, ψ)→ (Vi, Ei,Γi, si, ψi) with

Φ∗(n) : (V,E,Γ, s, ψ)→ (V Γi,ι
(n),ρ, . . . , ψ

Γi,ι
(n),ρ) in Definition 10.48 near S.

Proof. Pick vi ∈ ψ̄−1
i (x) ⊆ s−1

i (0) ⊆ Vi, and define Γ = StabΓi(vi) =
{
γ ∈ Γi :

γ(vi) = vi
}

, as a subgroup of Γi with inclusion ι : Γ ↪→ Γi. Then Γvi = ψ̄−1
i (x)

is |Γi|/|Γ| points in Vi. Definition 10.6 gives a linear map dvisi : TviVi → Ei|vi .
Here Γ acts linearly on TviVi, Ei|vi , and dvisi is Γ-equivariant. Define n to be
the dimension of the image of dvisi and m = rankEi−n, so that we may choose
a Γ-equivariant isomorphism Ei|vi ∼= Rm ⊕ Rn with Im dvisi

∼= {0} ⊕ Rn. Write
ρ for the corresponding representation of Γ on Rn.

Choose a Γ-invariant open neighbourhood V ′i of vi in Vi with Ei|V ′i trivial,
such that (δ ·V ′i )∩Vi = ∅ for all δ ∈ Γi \Γ. Choose a Γ-equivariant trivialization
Ei|V ′i ∼= V ′i × (Rm ⊕ Rn) which restricts to the chosen isomorphism Ei|vi ∼=
Rm ⊕ Rn at vi. Then we may identify si|V ′i with s1 ⊕ s2, where s1 : V ′i → Rm,

s2 : V ′i → Rn are Γ-equivariant morphisms in Ṁan, and dvisi : TviVi →
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Ei|vi ∼= Rm ⊕ Rn is identified with Tvis1 ⊕ Tvis2 : TviVi → Rm ⊕ Rn. Hence
Tvis1 = 0 : TviVi → Rm, and Tvis2 : TviVi → Rn is surjective.

We now follow the proof of Proposition 10.39 to construct vi ∈ U ⊆ V ′i ,

χ : U
∼=−→V ×W , χ̂ : Ei|U → U × (Rm ⊕ Rn), π : E → V , s : V → E, and

v ∈ V with χ(vi) = (v, 0) and s(v) = dvs = 0, but making everything Γ-
invariant/equivariant, noting that Assumption 10.9 includes Γ-equivariance, and
(g1, . . . , gn) can be made Γ-equivariant by averaging over the Γ-action. Define
ψ : s−1(0)/Γ→ X by the commutative diagram

s−1(0)/Γ

ψ
��

(ids−1(0),0)/Γ
// [s−1(0)× {0}]/Γ

χ|−1

U∩s−1(0)
/Γ

// (U ∩ s−1(0))/Γ

uΓ7→uΓi ��
X s−1(0)/Γi.

ψioo

Here each arrow is a homeomorphism with an open subset, the top right as
χ : U → V ×W identifies U ∩ s−1

i (0) with s−1(0)×{0} and is Γ-equivariant, the
right hand as U is Γ-invariant and (δ ·U)∩U = ∅ for δ ∈ Γi \Γ, and the bottom
by Definition 6.1(e). Thus (V,E,Γ, s, ψ) is a Kuranishi neighbourhood on X
with x ∈ Imψ ⊆ Imψi ⊆ X, and is minimal at x as in Definition 10.46. The rest
of the proof is a straightforward generalization of that of Proposition 10.39.

The next three results need Assumption 10.11. By modifying the proofs of
Propositions 10.40, 10.42 and 10.43 and Theorems 10.44 and 10.45 to include
finite groups, we can show:

Proposition 10.50. Suppose X is a Kuranishi space in K̇ur and x ∈X. Then
there exists a Kuranishi neighbourhood (V,E,Γ, s, ψ) on X, as in §6.4, which
is minimal at x as in Definition 10.46, with Γ ∼= GxX. Any two Kuranishi
neighbourhoods on X minimal at x are strictly isomorphic near x.

Theorem 10.51. Let X be a Kuranishi space in K̇ur, and x ∈ X, and (V,
E,Γ, s, ψ) be a Kuranishi neighbourhood on X minimal at x ∈X, which exists
by Proposition 10.50. Suppose (Va, Ea,Γa, sa, ψa) is any other Kuranishi neigh-
bourhood on X with x ∈ Imψa. Then (Va, Ea,Γa, sa, ψa) is strictly isomorphic

to (V Γa,ι
(n),ρ, E

Γa,ι
(n),ρ,Γa, s

Γa,ι
(n),ρ, ψ

Γa,ι
(n),ρ) near x as in Definition 10.47, where

n = dimVa − dimV = dimVa − vdimX − dimOxX > 0,

and (V Γa,ι
(n),ρ, . . . , ψ

Γa,ι
(n),ρ) is the Kuranishi neighbourhood on X constructed in

Definition 10.48 from (V,E,Γ, s, ψ), n, an injective morphism ι : Γ ↪→ Γa, and
some representation ρ of Γ on Rn.

Theorem 10.52. A Kuranishi space X in K̇ur is an orbifold, in the sense of
Proposition 6.64, if and only if OxX = 0 for all x ∈X.

The proof of Theorem 10.52 is simpler than that of Theorem 10.45, as we only
need the analogue of the first part of the proof showing that X 'X ′ = (X,K′)
in K̇ur for K′ =

(
I, (Vi, Ei,Γi, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
a Kuranishi
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structure with Ei = si = 0 for all i ∈ I. As for (10.53), the results of §10.4.4
above apply in the 2-categories

Kur,Kurc,Kurgc,Kurac,Kurc,ac.

10.5 Conditions for étale (1-)morphisms, equivalences,
and coordinate changes

A (1-)morphism f : X → Y in mK̇ur,µK̇ur, K̇ur is called étale if it is locally
an equivalence/isomorphism. We now prove necessary and sufficient conditions
for (1-)morphisms f to be étale, and to be equivalences/isomorphisms, and for a
(1-)morphism of (m- or µ-)Kuranishi neighbourhoods to be a coordinate change.

We suppose only that the category Ṁan used to define mK̇ur,µK̇ur, K̇ur
satisfies Assumptions 3.1–3.7, and specify additional assumptions as needed.

10.5.1 Étale 1-morphisms, equivalences, and coordinate
changes in mK̇ur

Definition 10.53. Let f : X → Y be a 1-morphism in mK̇ur. We call f étale
if it is a local equivalence. That is, f is étale if for all x ∈X with f(x) = y in
Y there exist open neighbourhoods X ′ of x in X and Y ′ of y in Y such that
f(X ′) ⊆ Y ′, and f |X′ : X ′ → Y ′ is an equivalence in mK̇ur.

Theorem 10.54. A 1-morphism f : X → Y in mK̇ur is an equivalence if and
only if f is étale and the underlying continuous map f : X → Y is a bijection.

Proof. For the ‘only if’ part, let f : X → Y be an equivalence. Then f is étale,
as we can take X ′ = X, Y ′ = Y in Definition 10.53, and f has a quasi-inverse
g : Y →X with g = f−1 : Y → X, so that f : X → Y is a bijection.

For the ‘if’ part, suppose f is étale and f : X → Y is a bijection, and write
g = f−1 : Y → X for the inverse map. As f is étale we can cover X,Y by open
X ′,Y ′ such that f |X′ : X ′ → Y ′ is an equivalence, and then g|Y ′ : Y ′ → X ′ is
continuous. Thus g is continuous, and f, g are homeomorphisms.

Use notation (4.6), (4.7), (4.9) for X,Y ,f . Then for all i ∈ I and j ∈ J
we have a 1-morphism f ij : (Ui, Di, ri, χi) → (Vj , Ej , sj , ψj) over (S, f) for
S = Imχi ∩ f−1(Imψj). Identifying X,Y using f , consider f ij as a 1-morphism
of m-Kuranishi neighbourhoods on X over S. Then f being étale means that
f ij is locally a coordinate change (i.e. locally an equivalence over idX).

Theorem 4.13 says Equ((Ui, Di, ri, χi), (Vj , Ej , sj , ψj)) is a stack over S,
so f ij locally a coordinate change implies it is globally a coordinate change.
Hence there exist a 1-morphism gji : (Vj , Ej , sj , ψj) → (Ui, Di, ri, χi) and 2-
morphisms ιij : gji ◦ f ij ⇒ id(Ui,Di,ri,χi), κji : f ij ◦ gji ⇒ id(Vj ,Ej ,sj ,ψj) over
S. By Proposition A.5 we choose these to satisfy κji ∗ idf ij = idf ij ∗ ιij and
ιij ∗ idgji = idgij ∗κji. No longer identifying X,Y , we consider gji a 1-morphism

over (T, g) for T = Imψj ∩ g−1(Imχi), and ιij ,κji as 2-morphisms over S, T .
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For all j, j′ ∈ J and i, i′ ∈ I, define 2-morphisms Gi
jj′ : gj′i ◦ Υjj′ ⇒ gji,

Gii′

j : Tii′ ◦ gji ⇒ gji′ by the commutative diagrams

gj′i ◦Υjj′

Gi
jj′
��

gj′i◦Υjj′ ◦id(Vj ,Ej ,sj ,ψj)
idg

j′i◦Υjj′
∗κ−1

ji

+3 gj′i◦Υjj′ ◦f ij◦gji
idg

j′i
∗F jj

′
i ∗idgji ��

gji id(Ui,Di,ri,χi) ◦ gji gj′i ◦ f ij′ ◦ gji,
ιij′∗idgjiks

(10.54)

Tii′ ◦ gji
Gii
′

j
��

id(Ui,Di,ri,χi)◦Tii′ ◦gji
ι−1

i′j∗idT
ii′ ◦gji

+3 gji′ ◦f i′j◦Tii′ ◦gji
idg

ji′
∗F j

ii′∗idgji ��
gji′ gji′ ◦ id(Vj ,Ej ,sj ,ψj)

gji′ ◦ f ij ◦ gji.
idg

ji′
∗κji

ks

(10.55)

We now claim that as in (4.9),

g =
(
g, gji, j∈J, i∈I , G

i, i∈I
jj′, j,j′∈J , G

ii′, i,i′∈I
j, j∈J

)
is a 1-morphism g : Y →X in mK̇ur. Definition 4.17(a)–(d) for g are immediate.
Part (e) follows from (10.54)–(10.55) and (e) for f and ιij ∗ idgji = idgij ∗ κji.
To prove (f), let i ∈ I and j, j′, j′′ ∈ J , and consider Figure 10.1. The small
rectangle near the bottom commutes by Definition 4.17(h) for f , the two parallel
arrows on the right are equal as κj′i ∗ idf ij′ = idf ij′ ∗ ιij′ , three quadrilaterals
commute by (10.54), and the rest of the diagram commutes by properties of
2-categories. Hence Figure 10.1 commutes, and the outside rectangle proves part
(f) for g. We can prove (g),(h) in a similar way. Thus g is a 1-morphism.

We claim that there are 2-morphisms η = (ηii′, i,i′∈I) : g ◦ f ⇒ idX and

ζ = (ζjj′, j,j′∈J) : f ◦ g ⇒ idY in mK̇ur, which are characterized uniquely by
the property that for all i, i′ ∈ I and j, j′ ∈ J , the following commute

gji′ ◦ f i′j ◦ Tii′

ιi′j∗idT
ii′��

idg
ji′
∗F j

ii′

+3 gji ◦ f ij
Θg,f

iji′

+3 (g ◦ f)ii′

ηii′
��

id(Ui′ ,Di′ ,ri′ ,χi′ )
◦ Tii′ Tii′ (idX)ii′ ,

(10.56)

f ij′ ◦ gj′i ◦Υjj′

κj′i∗idΥ
jj′��

idf
ij′
∗Gi

jj′

+3 f ij ◦ gji
Θf,g

jij′

+3 (f ◦ g)jj′

ζjj′ ��
id(Vj′ ,Ej′ ,sj′ ,ψj′ )

◦Υjj′ Υjj′ (idY )jj′ ,

(10.57)

where Θg,fiji′ ,Θ
f ,g
jij′ are as in Definition 4.20 for g ◦ f ,f ◦ g in mK̇ur, and (10.56),

(10.57) are in 2-morphisms of m-Kuranishi neighbourhoods over S = Imχi ∩
Imχi′ ∩ f−1(Imψj) ⊆ X and T = Imψj ∩ Imψj′ ∩ g−1(Imχi) ⊆ Y .

To prove this for η, first for i, i′ ∈ I and j, j′ ∈ J we show that (10.56) for
i, i′, j and for i, i′, j′ determine the same 2-morphism ηii′ on Imχi ∩ Imχi′ ∩
f−1(Imψj ∩ Imψj′). Thus, as the Imχi ∩ Imχi′ ∩ f−1(Imψj) for j ∈ J cover
Imχi ∩ Imχi′ , by the sheaf property of 2-morphisms in Theorem 4.13 there is
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gj′i ◦ Υjj′
Gi
jj′

+3 gji

gj′i◦Υjj′ ◦
f ij◦gji

id∗F jj
′

i ∗id +3

id∗κji
go

gj′i ◦
f ij′ ◦gji

ιij′∗id

7?

gj′′i◦f ij′′ ◦
gj′i◦Υjj′

ιij′′∗id

V^

gj′′i◦f ij′′ ◦gj′i◦
Υjj′ ◦f ij◦gji

ιij′′∗id
KS

id∗F jj
′

i ∗id +3id∗κjiks gj′′i◦f ij′′ ◦
gj′i◦f ij′ ◦gji

ιij′′∗id
KS

gj′′i◦Υj′j′′ ◦
f ij′ ◦gj′i◦Υjj′

id∗κj′i∗idqy

id∗F j
′j′′
i ∗id

KS

gj′′i◦Υj′j′′ ◦f ij′ ◦
gj′i◦Υjj′ ◦f ij◦gji

id∗κj′i∗idw�

id∗F jj
′

i ∗id +3id∗κjiks

id∗F j
′j′′
i ∗id

KS

gj′′i◦Υj′j′′ ◦f ij′

◦gj′i◦f ij′ ◦gji

id∗κj′i∗id 
�
id∗ιij′∗id	�

id∗F j
′j′′
i ∗id

KS

gj′′i ◦
Υj′j′′ ◦
Υjj′

Gi
j′j′′∗id

KS

id∗Λjj′j′′

��
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Figure 10.1: Proof of Definition 4.17(f) for g

a unique 2-morphism ηii′ over Imχi ∩ Imχi′ such that (10.56) commutes for
all j ∈ J . Then we fix j ∈ J , and show these ηii′ satisfy the restrictions of
Definition 4.18(a),(b) to the intersections of their domains with f−1(Imψj) using

(10.54)–(10.56) and properties of the Θg,fiji′ in Proposition 4.19. As f−1(Imψj)
for j ∈ J cover X, by the sheaf property of 2-morphisms this implies Definition
4.18(a),(b) for the ηii′ , and η : g ◦ f ⇒ idX is a 2-morphism in mK̇ur. The
proof for ζ is the same. Hence f is an equivalence in mK̇ur, as we have to
prove.

Here is a necessary and sufficient condition for 1-morphisms in mK̇ur to
be étale. Combining it with Theorem 10.54 gives a necessary and sufficient
condition for 1-morphisms to be equivalences.

Theorem 10.55. Suppose the category Ṁan used to define mK̇ur satisfies
Assumptions 3.1–3.7, 10.1, 10.9 and 10.11, with tangent spaces written TuU for
U ∈ Ṁan, and discrete properties A,B, where if f : U → V in Ṁan is A then
tangent maps Tuf : TuU → TvV are defined, and if f is B (which implies A)
and Tuf is an isomorphism then f is a local diffeomorphism near u.

Let f : X → Y be a 1-morphism in mK̇ur. Then f is étale if and only if f
is B and the linear maps Txf : TxX → TyY , Oxf : OxX → OyY from §10.2.1
are both isomorphisms for all x ∈X with f(x) = y in Y .
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The ‘only if ’ part does not require Assumptions 10.9 and 10.11.

Proof. For the ‘only if’ part, suppose f is étale. Then for each x ∈ X with
f(x) = y in Y there are open neighbourhoods X ′,Y ′ of x, y in X,Y with
f |X′ : X ′ → Y ′ an equivalence. Thus f |X′ is A and B by Proposition 4.36(c),
and Txf , Oxf are isomorphisms by Lemma 10.23. As such X ′ cover X, we see
that f is locally B, so it is B as this is a local condition by Definition 3.18(iv).

For the ‘if’ part, suppose f is B (which implies f is A), and Txf , Oxf are
isomorphisms for all x ∈ X. Let x ∈ X with f(x) = y in Y . By Proposition
10.40 we can choose m-Kuranishi neighbourhoods (Ua, Da, ra, χa), (Vb, Eb, sb, ψb)
on X,Y , as in §4.7, which are minimal at x ∈ Imχa and y ∈ Imψb, as in §10.4.1.
Making Ua smaller if necessary we can take f(Imχa) ⊆ Imψb. Theorem 4.56(b)

now gives a 1-morphism fab = (Uab, fab, f̂ab) : (Ua, Da, ra, χa)→ (Vb, Eb, sb, ψb)
of m-Kuranishi neighbourhoods over (Imχa,f) on X,Y , as in Definition 4.54.

Definition 4.2(d) says that f̂ab(ra) = f∗ab(sb) + O(r2
a). By the argument

in the proof of Proposition 10.42 we can choose f̂ ′ab : Da → f∗ab(Eb) with

f̂ ′ab = f̂ab + O(ra) and f̂ ′ab(ra) = f∗ab(sb). Then replacing f̂ab by f̂ ′ab, which is
allowed in Theorem 4.56(b) as it does not change fab up to 2-isomorphism, we

can suppose that f̂ab(ra) = f∗ab(sb).
Write ua = χ−1

a (x), vb = ψ−1
b (y). Then (10.29) gives a commutative diagram

0 // TxX ∼=
//

Txf∼=
��

TuaUa duara=0
//

Tuafab��

Da|ua
f̂ab|ua��

∼=
// OxX

Oxf∼=
��

// 0

0 // TyY
∼= // TvbVb

dvbsb=0
// Eb|vb

∼= // OyY // 0,

with exact rows. By assumption Txf , Oxf are isomorphisms, and duara =
dvbsb = 0 as (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) are minimal at x, y, so the maps
TxX → TuaUa, Da|ua → OxX, TyY → TvbVb, Eb|vb → OyY are isomorphisms.

Hence Tuafab : TuaUa → TvbVb and f̂ab|ua : Da|ua → Eb|vb are isomorphisms.
As f is B, fab is B, and fab is B near ua. Since Tuafab : TuaUa → TvbVb is

an isomorphism, Assumption 10.11 says that fab is a local diffeomorphism near
ua, so making Ua, Uab, Vb smaller we can suppose Uab = Ua and fab : Ua → Vb is
a diffeomorphism in Ṁan. Also f̂ab|ua : Da|ua → Eb|vb an isomorphism implies

that f̂ab : Da → f∗ab(Eb) is an isomorphism near ua, so making Ua, Uab, Vb smaller

again we can suppose f̂ab is an isomorphism.
Thus, we have a 1-morphism fab = (Ua, fab, f̂ab) : (Ua, Da, ra, χa) → (Vb,

Eb, sb, ψb) over (Imχa,f) such that fab : Ua → Vb is a diffeomorphism and

f̂ab : Da → f∗ab(Eb) is an isomorphism with f̂ab(ra) = f∗ab(sb). Let X ′ ⊆ X,
Y ′ ⊆ Y be the open neighbourhoods with topological spaces X ′ = Imχa ⊆ X,
Y ′ = Imψb ⊆ Y . Then f |X′ : X ′ → Y ′ is a homeomorphism, as fab|r−1

a (0) :

r−1
a (0)→ s−1

b (0) is, so we can define g = f |−1
X′ : Y ′ → X ′, and then

gba =
(
Vb, f

−1
ab , (f

−1
ab )∗(f̂−1

ab )
)

: (Vb, Eb, sb, ψb) −→ (Ua, Da, ra, χa)

is a 1-morphism of m-Kuranishi neighbourhoods over (g, Imψb) which is a strict
inverse for fab, that is, gba ◦ fab = id(Ua,Da,ra,χa), fab ◦ gba = id(Vb,Eb,sb,ψb).
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Clearly this implies that f |X′ : X ′ → Y ′ is an equivalence in mK̇ur. As we can
find such open x ∈X ′ ⊆X, y ∈ Y ′ ⊆ Y for all x ∈X with f(x) = y in Y , we
see that f is étale, as we have to prove.

We apply Theorems 10.54–10.55 to our examples of 2-categories mK̇ur:

Theorem 10.56. (a) Work in the 2-category of m-Kuranishi spaces mKur
constructed from Ṁan = Man, using ordinary tangent spaces TvV for V ∈Man.
Then a 1-morphism f : X → Y in mKur is étale if and only if Txf : TxX →
TyY , Oxf : OxX → OyY are isomorphisms for all x ∈X with f(x) = y in Y .
If this holds then f is an equivalence if and only if f : X → Y is a bijection.

(b) Work in the 2-category mKurc constructed from Ṁan = Manc, using
ordinary tangent spaces TvV for V ∈Manc. Then a 1-morphism f : X → Y
in mKurc is étale if and only if f is simple and Txf : TxX → TyY , Oxf :
OxX → OyY are isomorphisms for all x ∈X with f(x) = y in Y . If this holds
then f is an equivalence if and only if f : X → Y is a bijection.

(c) Work in one of mK̇ur = mKurc,mKurgc,mKurac or mKurc,ac con-
structed from Ṁan = Manc,Mangc,Manac or Manc,ac, using b-tangent
spaces bTvV for V ∈ Ṁan, as in §2.3. Then a 1-morphism f : X → Y
in mK̇ur is étale if and only if f is simple and bTxf : bTxX → bTyY ,
bOxf : bOxX → bOyY are isomorphisms for all x ∈ X with f(x) = y in
Y . If this holds then f is an equivalence if and only if f : X → Y is a bijection.

(d) Work in one of mK̇ur = mKurc,mKurgc,mKurac or mKurc,ac con-
structed from Ṁan = Manc,Mangc,Manac or Manc,ac, using stratum tan-
gent spaces T̃vV for V ∈ Ṁan, as in Example 10.2(iv). Then a 1-morphism
f : X → Y in mK̇ur is étale if and only if f is simple and T̃xf : T̃xX → T̃yY ,

Õxf : ÕxX → ÕyY are isomorphisms for all x ∈ X with f(x) = y in Y . If
this holds then f is an equivalence if and only if f : X → Y is a bijection.

Proof. Parts (a),(c),(d) follow from Theorems 10.54–10.55 and Examples 10.2,
10.10 and 10.12. Part (b) does not follow directly from Theorems 10.54–10.55,
since as in Example 10.10(b), Assumption 10.9 fails in Ṁanc for ordinary tangent
spaces TvV . Instead, we deduce (b) indirectly from (d). Suppose f : X → Y
is simple and x ∈ X with f(x) = y in Y . Then Ñxf : ÑxX → ÑyY from
Example 10.32(a) is an isomorphism as f is simple, so from equation (10.47) of
Example 10.33 with exact rows we see that Txf , Oxf are isomorphisms if and
only if T̃xf , Õxf are isomorpisms, and thus (b) follows from (d).

Here is a criterion for when a 1-morphism of m-Kuranishi neighbourhoods is
a coordinate change.

Theorem 10.57. Suppose Ṁan satisfies Assumptions 3.1–3.7, 10.1, 10.9 and
10.11, with tangent spaces TvV for V ∈ Ṁan, and discrete properties A,B.

Let Φij = (Vij , φij , φ̂ij) : (Vi, Ei, si, ψi) → (Vj , Ej , sj , ψj) be a 1-morphism

of m-Kuranishi neighbourhoods in Ṁan on a topological space X over an open
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S ⊆ X, as in §4.1, and suppose Φij is B. Let x ∈ S, and set vi = ψ−1
i (x) ∈ Vi

and vj = ψ−1
j (x) ∈ Vj. Consider the sequence of real vector spaces:

0 // TviVi
dvisi|vi⊕Tviφij // Ei|vi⊕TvjVj

−φ̂ij |vi⊕dvj sj // Ej |vj // 0. (10.58)

Here dvisi, dvjsj are as in Definition 10.6, and differentiating Definition 4.2(d)
at vi implies that (10.58) is a complex. Then Φij is a coordinate change over S
in the sense of Definition 4.10 if and only if (10.58) is exact for all x ∈ S.

The ‘only if ’ part does not require Assumptions 10.9 and 10.11.

Proof. We can regard Φij as a 1-morphism Φ′ij : X → Y in mK̇ur between
m-Kuranishi spaces X,Y with only one m-Kuranishi neighbourhood, where the
underlying continuous map of Φ′ij is idS : S → S. Then Φij is a coordinate

change if and only if Φ′ij is an equivalence in mK̇ur, which holds if and only if
Φ′ij is étale by Theorem 10.54, as idS : S → S is a bijection.

Let x ∈ S, and set vi = ψ−1
i (x) ∈ Vi and vj = ψ−1

j (x) ∈ Vj . As in (10.28)
we have a commutative diagram with exact rows

0 // TxX //

TxΦ′ij��

TviVi dvisi

//

Tviφij��

Ei|vi
φ̂ij |vi ��

// OxX

OxΦ′ij ��

// 0

0 // TxY // TvjVj
dvj sj // Ej |vj // OxY // 0.

By elementary linear algebra we can show that (10.58) is exact if and only if
TxΦ′ij and OxΦ′ij are isomorphisms. Thus (10.58) is exact for all x ∈ S if and
only if TxΦ′ij , OxΦ′ij are isomorphisms for all x ∈ S, if and only if Φ′ij is étale by
Theorem 10.55, if and only if Φij is a coordinate change.

We apply Theorem 10.57 to our examples of 2-categories mK̇ur. Here as for
Theorem 10.56, parts (a),(c),(d) follow from Theorem 10.57 and Examples 10.2,
10.10 and 10.12, and (b) can be deduced indirectly from (d), equation (10.47) of
Example 10.33, and the proof of Theorem 10.57.

Theorem 10.58. Working in a category Ṁan which we specify in (a)–(d)

below, let Φij = (Vij , φij , φ̂ij) : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) be a 1-morphism
of m-Kuranishi neighbourhoods on a topological space X over an open S ⊆ X,
and for each x ∈ S, set vi = ψ−1

i (x) ∈ Vi and vj = ψ−1
j (x) ∈ Vj. Then:

(a) If Ṁan = Man then Φij is a coordinate change over S if and only if the
following complex is exact for all x ∈ S:

0 // TviVi
dvisi|vi⊕Tviφij // Ei|vi⊕TvjVj

−φ̂ij |vi⊕dvj sj // Ej |vj // 0. (10.59)

(b) If Ṁan = Manc then Φij is a coordinate change over S if and only if
φij is simple near ψ−1

i (S) and (10.59) is exact for all x ∈ S.
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(c) If Ṁan is one of Manc,Mangc,Manac or Manc,ac then Φij is a coor-
dinate change over S if and only if φij is simple near ψ−1

i (S) and using
b-tangent spaces from §2.3, the following is exact for all x ∈ S:

0 // bTviVi
bdvisi|vi⊕

bTviφij // Ei|vi⊕bTvjVj
−φ̂ij |vi⊕

bdvj sj // Ej |vj // 0.

(d) If Ṁan is one of Manc,Mangc,Manac or Manc,ac then Φij is a coor-
dinate change over S if and only if φij is simple near ψ−1

i (S) and using

stratum tangent spaces T̃vV from Example 10.2(iv), the following is exact
for all x ∈ S:

0 // T̃viVi
d̃visi|vi⊕T̃viφij // Ei|vi⊕T̃vjVj

−φ̂ij |vi⊕d̃vj sj // Ej |vj // 0.

10.5.2 Étale morphisms, isomorphisms, and coordinate
changes in µK̇ur

All the material of §10.5.1 has analogues for µ-Kuranishi spaces µK̇ur from
Chapter 5. As µK̇ur is an ordinary category, we replace equivalences in mK̇ur
in §10.5.1 by isomorphisms in µK̇ur. So we define a morphism f : X → Y
in µK̇ur to be étale if it is a local isomorphism, that is, if for all x ∈ X with
f(x) = y in Y there exist open neighbourhoods X ′ of x in X and Y ′ of y in Y
such that f(X ′) ⊆ Y ′, and f |X′ : X ′ → Y ′ is an isomorphism in µK̇ur.

The analogue of Theorem 10.54 for µK̇ur is much easier than the mK̇ur
case in §10.5.1: it is a more-or-less immediate consequence of the sheaf property
Theorem 5.10. The analogues of Theorems 10.55–10.58 have essentially the same
proofs. We leave the details to the reader.

10.5.3 Étale 1-morphisms, equivalences, and coordinate
changes in K̇ur

We now extend the material of §10.5.1 to Kuranishi spaces K̇ur from Chapter 6.
Our analogue of Definition 10.53 for Kuranishi spaces is just the same:

Definition 10.59. Let f : X → Y be a 1-morphism in K̇ur. We call f étale if
it is a local equivalence. That is, f is étale if for all x ∈ X with f(x) = y in
Y there exist open neighbourhoods X ′ of x in X and Y ′ of y in Y such that
f(X ′) ⊆ Y ′, and f |X′ : X ′ → Y ′ is an equivalence in K̇ur.

If f : X → Y is étale and x ∈ X with f(x) = y in Y then Gxf : GxX →
GyY from §6.5 is an isomorphism, since this holds for equivalences in K̇ur.

Remark 10.60. Our definition of étale is stronger than the usual definition
of étale 1-morphisms of stacks in algebraic geometry, in which a 1-morphism
f : X → Y is étale if it is representable and a local isomorphism in the étale
topology, rather than the Zariski topology. With the algebro-geometric definition,
which we do not use, Gxf : GxX → GyY need only be injective, not an
isomorphism.
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Here is the analogue of Theorem 10.54. It is proved in the same way, except
that we ought to work in weak 2-categories rather than strict 2-categories, so
in expressions like gj′i ◦ f ij′ ◦ gji we have to insert brackets (gj′i ◦ f ij′) ◦ gji,
and insert extra 2-morphisms α∗,∗,∗,β∗,γ∗ from §6.1, which makes diagrams
like Figure 10.1 grow unreasonably large. Since any weak 2-category can be
strictified as in §A.3, the strict 2-category proof is guaranteed to extend.

Theorem 10.61. A 1-morphism f : X → Y in K̇ur is an equivalence if and
only if f is étale and the underlying continuous map f : X → Y is a bijection.

Here is the analogue of Theorem 10.55. Its proof is a straightforward modifi-
cation of that in §10.5.1 to include finite groups. We use Proposition 10.50 and
Theorem 6.45(b) in place of Proposition 10.40 and Theorem 4.56(b) to obtain the
1-morphism fab : (Ua, Da,Ba, ra, χa) → (Vb, Eb,Γb, sb, ψb) over (Imχa,f). As
(Ua, Da,Ba, ra, χa), (Vb, Eb,Γb, sb, ψb) are minimal at x, y we have Ba ∼= GxX,
Γb ∼= GyY , so Gxf : GxX → GyY an isomorphism implies that Ba ∼= Γb, which
is used in the proof that we can modify fab to a strict isomorphism of Kuranishi
neighbourhoods.

Theorem 10.62. Suppose the category Ṁan used to define K̇ur satisfies As-
sumptions 3.1–3.7, 10.1, 10.9 and 10.11, with tangent spaces written TuU for
U ∈ Ṁan, and discrete properties A,B, where if f : U → V in Ṁan is A then
tangent maps Tuf : TuU → TvV are defined, and if f is B (which implies A)
and Tuf is an isomorphism then f is a local diffeomorphism near u.

Let f : X → Y be a 1-morphism in K̇ur. Then f is étale if and only if f
is B and Gxf : GxX → GyY , Txf : TxX → TyY , Oxf : OxX → OyY from
§6.5 and §10.2.3 are isomorphisms for all x ∈X with f(x) = y in Y .

The ‘only if ’ part does not require Assumptions 10.9 and 10.11.

Here are the analogues of Theorem 10.56–10.58, all three proved in the same
way, but using Theorems 10.61–10.62 in place of Theorems 10.54–10.55.

Theorem 10.63. (a) Work in the 2-category of Kuranishi spaces Kur con-
structed from Ṁan = Man, using ordinary tangent spaces TvV for V ∈Man.
Then a 1-morphism f : X → Y in Kur is étale if and only if Gxf : GxX →
GyY , Txf : TxX → TyY , Oxf : OxX → OyY are isomorphisms for all x ∈X
with f(x) = y in Y . If this holds then f is an equivalence if and only if
f : X → Y is a bijection.

(b) Work in the 2-category Kurc constructed from Ṁan = Manc, using ordi-
nary tangent spaces TvV for V ∈ Manc. Then a 1-morphism f : X → Y in
Kurc is étale if and only if f is simple and Gxf : GxX → GyY , Txf : TxX →
TyY , Oxf : OxX → OyY are isomorphisms for all x ∈X with f(x) = y in Y .
If this holds then f is an equivalence if and only if f : X → Y is a bijection.

(c) Work in one of K̇ur = Kurc,Kurgc,Kurac or Kurc,ac constructed from
Ṁan = Manc,Mangc,Manac or Manc,ac, using b-tangent spaces bTvV for
V ∈ Ṁan, as in §2.3. Then a 1-morphism f : X → Y in K̇ur is étale if
and only if f is simple and Gxf : GxX → GyY ,

bTxf : bTxX → bTyY ,
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bOxf : bOxX → bOyY are isomorphisms for all x ∈X with f(x) = y in Y . If
this holds then f is an equivalence if and only if f : X → Y is a bijection.

(d) Work in one of K̇ur = Kurc,Kurgc,Kurac or Kurc,ac constructed from
Ṁan = Manc,Mangc,Manac or Manc,ac, using stratum tangent spaces T̃vV
for V ∈ Ṁan, as in Example 10.2(iv). Then a 1-morphism f : X → Y in K̇ur
is étale if and only if f is simple and Gxf : GxX → GyY , T̃xf : T̃xX → T̃yY ,

Õxf : ÕxX → ÕyY are isomorphisms for all x ∈ X with f(x) = y in Y . If
this holds then f is an equivalence if and only if f : X → Y is a bijection.

Theorem 10.64. Suppose Ṁan satisfies Assumptions 3.1–3.7, 10.1, 10.9 and
10.11, with tangent spaces TvV for V ∈ Ṁan, and discrete properties A,B.

Let Φij = (Pij , πij , φij , φ̂ij) : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) be a 1-
morphism of Kuranishi neighbourhoods over S ⊆ X, as in §6.1, and suppose Φij
is B. Let p ∈ π−1

ij (ψ̄−1
i (S)) ⊆ Pij , and set vi = πij(p) ∈ Vi and vj = φij(p) ∈ Vj .

As in (10.58), consider the sequence of real vector spaces:

0 // TviVi
dvisi⊕(Tpφij◦(Tpπij)−1)

// Ei|vi⊕TvjVj
−φ̂ij |p⊕dvj sj // Ej |vj // 0. (10.60)

Here Tpπij : TpPij → TviVi is invertible as πij is étale. Differentiating Definition
6.2(e) at p implies that (10.60) is a complex. Also consider the morphism of
finite groups

ρp :
{

(γi, γj) ∈ Γi × Γj : (γi, γj) · p = p
}
−→

{
γj ∈ Γj : γj · vj = vj

}
,

ρp : (γi, γj) 7−→ γj .
(10.61)

Then Φij is a coordinate change over S, in the sense of Definition 6.11, if and
only if (10.60) is exact and (10.61) is an isomorphism for all p ∈ π−1

ij (ψ̄−1
i (S)).

The ‘only if ’ part does not require Assumptions 10.9 and 10.11.

Theorem 10.65. Working in a category Ṁan which we specify in (a)–(d)

below, let Φij = (Pij , πij , φij , φ̂ij) : (Vi, Ei,Γi, si, ψi) → (Vj , Ej ,Γj , sj , ψj) be
a 1-morphism of Kuranishi neighbourhoods on a topological space X over an
open subset S ⊆ X. Let p ∈ π−1

ij (ψ̄−1
i (S)) ⊆ Pij , set vi = πij(p) ∈ Vi and

vj = φij(p) ∈ Vj , and consider the morphism of finite groups

ρp :
{

(γi, γj) ∈ Γi × Γj : (γi, γj) · p = p
}
−→

{
γj ∈ Γj : γj · vj = vj

}
,

ρp : (γi, γj) 7−→ γj .
(10.62)

Then:

(a) If Ṁan=Man then Φij is a coordinate change over S if and only if for all
p ∈ π−1

ij (ψ̄−1
i (S)), equation (10.62) is an isomorphism, and the following

is exact:

0 // TviVi
dvisi⊕(Tpφij◦(Tpπij)−1)

// Ei|vi⊕TvjVj
−φ̂ij |p⊕dvj sj // Ej |vj // 0. (10.63)

(b) If Ṁan = Manc then Φij is a coordinate change over S if and only if
φij is simple near π−1

ij (ψ̄−1
i (S)), and for all p ∈ π−1

ij (ψ̄−1
i (S)), equation

(10.62) is an isomorphism and (10.63) is exact.
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(c) If Ṁan is one of Manc,Mangc,Manac or Manc,ac then Φij is a coor-
dinate change over S if and only if φij is simple near π−1

ij (ψ̄−1
i (S)), and

using b-tangent spaces from §2.3, for all p ∈ π−1
ij (ψ̄−1

i (S)), equation (10.62)
is an isomorphism and the following is exact:

0 // bTviVi
bdvisi⊕(bTpφij◦(bTpπij)−1)

// Ei|vi⊕bTvjVj
−φ̂ij |p⊕bdvj sj // Ej |vj // 0.

(d) If Ṁan is one of Manc,Mangc,Manac or Manc,ac then Φij is a co-
ordinate change over S if and only if φij is simple near π−1

ij (ψ̄−1
i (S)),

and using stratum tangent spaces T̃vV from Example 10.2(iv), for all
p ∈ π−1

ij (ψ̄−1
i (S)), equation (10.62) is an isomorphism and the following is

exact:

0 // T̃viVi
d̃visi⊕(T̃pφij◦(T̃pπij)−1)

// Ei|vi⊕T̃vjVj
−φ̂ij |p⊕d̃vj sj // Ej |vj // 0.

Theorem 10.65(a)–(c) was quoted as Theorem 6.12 in volume I, and applied in
Chapter 7 of volume I to show that FOOO coordinate changes and MW coordinate
changes correspond to coordinate changes of Kuranishi neighbourhoods in our
sense. This was important in the proofs in §7.5 that the geometric structures
of Fukaya, Oh, Ohta and Ono [10–30], McDuff and Wehrheim [49, 50, 52–55],
Yang [71–73], and Hofer, Wysocki and Zehnder [34–41], can all be mapped to
our Kuranishi spaces.

10.6 Determinants of complexes

We now explain some homological algebra that will be needed in §10.7 to define
canonical line bundles and orientations of (m-)Kuranishi spaces.

If E is a finite-dimensional real vector space the determinant is detE =
ΛdimEE, so that detE ∼= R, and if F is another vector space with dimE = dimF
and α : E → F is a linear map, we write detα = ΛdimEα : detE → detF .
When E = Rn then detα : R→ R is multiplication by the usual determinant of
α as an n× n matrix. More generally, if E → X is a real vector bundle over a
space X we write detE = ΛrankEE, so that detE → X is a real line bundle.

Our aim is to extend determinants det(E•) to finite-dimensional complexes

E• =
(
· · · → Ek

dk−→Ek+1 → · · ·
)

of vector spaces or vector bundles, and
to relate det(E•) to det(H∗(E•)). In §10.7, if (V,E, s, ψ) is an m-Kuranishi

neighbourhood we will apply this to the complex TV |s−1(0)
ds−→E|s−1(0). Most of

our results will only be used for length 2 complexes, but we prove the general case
anyway. The subject involves many sign computations. Some of our orientation
conventions — how to define orientations on (m-)Kuranishi spaces X,Y ,Z, and
on products X × Y and fibre products X ×Z Y — are implicit in the choices of
signs in equations such as (10.66), (10.69), and (10.93).
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10.6.1 Determinants of complexes, and of their cohomology

If E• = (E∗,d) is a bounded complex of finite-dimensional real vector spaces,

we can form its determinant det(E•) =
⊗

k∈Z(ΛdimEkEk)(−1)k , a 1-dimensional
real vector space. We now define an isomorphism ΘE• between det(E•) and the
determinant det(H∗(E•)) of the cohomology of E•.

Definition 10.66. If E is a finite-dimensional real vector space we write detE
= ΛdimEE for its top exterior power, so that detE is a 1-dimensional real vector
space, with detE = R if E = 0, and we write (detE)−1 for the dual vector space
(detE)∗. We also use the same notation if E → X is a vector bundle over some
space X, so that detE = ΛrankEE is a real line bundle on X.

Suppose we are given a complex E• of real vector spaces

· · · dk−2
// Ek−1 dk−1

// Ek
dk // Ek+1 dk+1

// Ek+2 dk+2
// · · · , (10.64)

for k ∈ Z, with dk+1 ◦ dk = 0, where the Ek should be finite-dimensional with
Ek = 0 for |k| � 0, say Ek = 0 unless a 6 k 6 b for a 6 b ∈ Z. Write Hk(E•)
for the kth cohomology group of E•, so that Hk(E•) = Ker dk/ Im dk−1 for
k ∈ Z. We will define an isomorphism

ΘE• :
⊗b

k=a(detEk)(−1)k −→
⊗b

k=a(detHk(E•))(−1)k . (10.65)

If k < a or k > b we have Ek = Hk(E•) = 0 and detEk = detHk(E•) = R,
and such terms do not change the tensor products in (10.65), so the left and right
hand sides are independent of the choice of a, b with Ek = 0 unless a 6 k 6 b.

For each k ∈ Z define mk = dimHk(E•) and nk = dim Im dk, so that
dimEk = nk−1 +mk + nk. By induction on increasing k, choose bases uk1 , . . . ,
uknk−1 , v

k
1 , . . . , v

k
mk , w

k
1 , . . . , w

k
nk for Ek for each k ∈ Z, such that uk1 , . . . , u

k
nk−1 is a

basis for Im dk−1 ⊆ Ek, and uk1 , . . . , u
k
nk−1 , v

k
1 , . . . , v

k
mk is a basis for Ker dk ⊆ Ek,

which forces dkuki = dkvkj = 0 for all i, j, and dkwki = uk+1
i for i = 1, . . . , nk.

Then [vk1 ], . . . , [vkmk ] is a basis for Hk(E•), where [vki ] means vki + Im dk−1.
Define ΘE• to be the unique isomorphism in (10.65) such that

ΘE• :
b⊗

k=a

(
uk1∧· · ·∧uknk−1∧vk1∧· · ·∧vkmk∧w

k
1∧· · ·∧wknk

)
(−1)k 7−→

b∏
k=a

(−1)n
k(nk+1)/2 ·

b⊗
k=a

(
[vk1 ] ∧ · · · ∧ [vkmk ]

)
(−1)k .

(10.66)

To show that this is independent of the choice of uki , v
k
i , w

k
i , suppose ũki , ṽ

k
i , w̃

k
i

are alternative choices. Then the two bases for Ek are related by a matrix(ũki )n
k−1

i=1

(ṽki )m
k

i=1

(w̃ki )n
k

i=1

 =

Ak 0 0
∗ Bk 0
∗ ∗ Ck


(uki )n

k−1

i=1

(vki )m
k

i=1

(wki )n
k

i=1


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Here Ak, Bk, Ck are nk−1 × nk−1 and mk ×mk and nk × nk real matrices,
respectively, and the matrix has this lower triangular form as

〈ũk1 , . . . , ũknk−1〉 = Im dk−1 = 〈uk1 , . . . , uknk−1〉 and

〈ũk1 , . . . , ũknk−1 , ṽ
k
1 , . . . , ṽ

k
mk〉 = Ker dk = 〈uk1 , . . . , uknk−1 , v

k
1 , . . . , v

k
mk〉.

Also the two bases for Hk(E•) are related by the matrix(
[ṽki ]
)
mk

i=1 = Bk
(
[vki ]
)
mk

i=1.

Thus we see that

ũk1 ∧ · · · ∧ ũknk−1 ∧ ṽk1 ∧ · · · ∧ ṽkmk ∧ w̃
k
1 ∧ · · · ∧ w̃knk

= det(Ak) det(Bk) det(Ck) · uk1∧· · ·∧uknk−1∧vk1∧· · ·∧vkmk∧w
k
1∧· · ·∧wknk ,

[ṽk1 ] ∧ · · · ∧ [ṽkmk ] = det(Bk) · [vk1 ] ∧ · · · ∧ [vkmk ].

Hence, if we change from the basis uk1 , . . . , w
k
nk of Ek to the basis ũk1 , . . . , w̃

k
nk

for all k, then the left hand side of (10.66) is multiplied by the factor∏b
k=a

(
det(Ak) det(Bk) det(Ck)

)
(−1)k , (10.67)

but the right hand side of (10.66) is multiplied by the apparently different factor∏b
k=a

(
det(Bk)

)
(−1)k . (10.68)

However, as dkwki = uk+1
i , dkw̃ki = ũk+1

i we see that Ck = Ak+1, so that
det(Ck) = det(Ak+1), and also det(Aa) = 1 as na−1 = 0 and det(Cb) = 1 as
nb = 0. Therefore (10.67) and (10.68) are equal, so (10.66) is independent of the
choice of bases uk1 , . . . , w

k
nk of Ek, and ΘE• is well defined.

Suppose now that E• in (10.64) is exact. Then mk = 0 for all k, so as above
we choose bases uk1 , . . . , u

k
nk−1 , w

k
1 , . . . , w

k
nk for Ek for each k ∈ Z with dkuki = 0

and dkwki = uk+1
i for all i, k. Define

ΨE• =
⊗b

k=a

(
uk1∧· · ·∧uknk−1 ∧wk1∧· · ·∧wknk

)
(−1)k ∈

⊗b
k=a(detEk)(−1)k . (10.69)

This is independent of choices as above.

10.6.2 A continuity property of the isomorphisms ΘE•

We now prove a continuity property for the isomorphisms ΘE• in §10.6.1. It will
be used in §10.7.1 to define canonical line bundles KX of m-Kuranishi spaces X.
Here (10.72) determines Ξθ• |x for x ∈ X. The point is that these Ξθ• |x depend
continuously on x ∈ X, and so form an isomorphism of topological line bundles

Ξθ• in (10.71). The sign
∏
k(−1)n

k(nk+1)/2 in (10.66) is needed to ensure this.
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Proposition 10.67. Suppose that X is a topological space, and we are given a
commutative diagram of topological vector bundles and their morphisms on X :

· · ·
dk−2

// Ek−1

θk−1

��

dk−1

// Ek

θk��

dk
// Ek+1

θk+1

��

dk+1

// Ek+2

θk+2

��

dk+2

// · · ·

· · · ďk−2
// Ěk−1 ďk−1

// Ěk
ďk // Ěk+1 ďk+1

// Ěk+2 ďk+2
// · · · ,

(10.70)

such that dk+1 ◦ dk = ďk+1 ◦ ďk = 0 for all k ∈ Z, and Ek = Ěk = 0 unless
a 6 k 6 b for a 6 b in Z. That is, E•, Ě• are bounded complexes of topological
vector bundles on X, and θ• : E• → Ě• is a morphism of complexes.

For each x ∈ X we have a morphism θ•|x : E•|x → Ě•|x of complexes of
R-vector spaces, which induces morphisms Hk(θ•|x) : Hk(E•|x)→ Hk(Ě•|x) on
cohomology. Suppose Hk(θ•|x) is an isomorphism for all x ∈ X and k ∈ Z.
Then there exists a unique isomorphism of topological line bundles on X :

Ξθ• :
⊗b

k=a(detEk)(−1)k −→
⊗b

k=a(det Ěk)(−1)k (10.71)

such that for each x ∈ X, the following diagram of isomorphisms commutes⊗b
k=a(detEk)(−1)k |x Ξθ• |x

//

ΘE•|x��

⊗b
k=a(det Ěk)(−1)k |x

ΘĚ•|x ��⊗b
k=a(detHk(E•|x))(−1)k

⊗b
k=a(detHk(θ•|x))(−1)k

//⊗b
k=a(detHk(Ě•|x))(−1)k ,

(10.72)

where ΘE•|x ,ΘĚ•|x are as in Definition 10.66.

Proof. Fix x̃ ∈ X, and set m̃k = dimHk(E•|x̃) = dimHk(Ě•|x̃), and ñk =
dim Im dk|x̃, and ˇ̃nk = dim Im ďk|x̃. As in Definition 10.66, choose bases ũk1 ,
. . . , ũkñk−1 , ṽ

k
1 , . . . , ṽ

k
m̃k , w̃

k
1 , . . . , w̃

k
ñk for Ek|x̃ and ˇ̃uk1 , . . . , ˇ̃u

k
ˇ̃nk−1 , ˇ̃v

k
1 , . . . , ˇ̃v

k
m̃k ,

ˇ̃wk1 ,

. . . , ˇ̃wkˇ̃nk for Ěk|x̃, such that dkũki = dkṽki = 0, dkw̃ki = ũk+1
i , ďk ˇ̃uki = ďk ˇ̃vki = 0,

and ďk ˇ̃wki = ˇ̃uk+1
i for all i, k. As [ṽk1 ], . . . , [ṽkm̃k ] is a basis for Hk(E•|x̃), and

[ˇ̃vk1 ], . . . , [ˇ̃vkm̃k ] is a basis for Hk(Ě•|x̃), and Hk(θ•|x̃) : Hk(E•|x̃)→ Hk(Ě•|x̃) is

an isomorphism, we can also choose the ṽki , ˇ̃v
k
i with θk|x̃(ṽki ) = ˇ̃vki for all i, k.

Now let X̃ be a small open neighbourhood of x̃ in X on which the Ek, Ěk

are trivial for all k, and choose bases of sections ek1 , . . . , e
k
ñk−1 , f

k
1 , . . . , f

k
m̃k , g

k
1 ,

. . . , gkñk for Ek|X̃ and ěk1 , . . . , ě
k
ˇ̃nk−1 , f̌

k
1 , . . . , f̌

k
m̃k , ǧ

k
1 , . . . , ǧ

k
ˇ̃nk

for Ěk|X̃ , such that

eki |x̃ = ũki , fki |x̃ = ṽki , gki |x̃ = w̃ki , ěki |x̃ = ˇ̃uki , f̌ki |x̃ = ˇ̃vki , and ǧki |x̃ = ˇ̃wki . Making
X̃ smaller if necessary we can do this such that dkgki = ek+1

i and ďkǧki = ěk+1
i

for all i, k, as these hold for ũki , . . . , ˇ̃wki . Then dkeki = ďkěki = 0. Write

dkfki =
∑ñk

j=1A
k+1
ij ek+1

j +
∑m̃k+1

j=1 Bk+1
ij fk+1

j +
∑ñk+1

j=1 Ck+1
ij gk+1

j ,

for Ak+1
ij , Bk+1

ij , Ck+1
ij : X̃ → R continuous and zero at x. Replacing fki by

fki −
∑nk

i=1A
k+1
ij gkj we can make Ak+1

ij = 0 for all i, j, k. But then we have

0 = dk+1dkfki =
m̃k+1∑
j=1

Bk+1
ij

(m̃k+2∑
l=1

Bk+2
jl fk+2

l +
ñk+2∑
l=1

Ck+2
jl gk+2

l

)
+
ñk+1∑
j=1

Ck+1
ij ek+1

j ,
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so that Ck+1
ij = 0 for all i, j, k. Thus we have

dkeki = 0, dkfki =
∑m̃k+1

j=1 Bk+1
ij fk+1

j , dkgki = ek+1
i . (10.73)

Replace f̌ki by θk(fki ) for i = 1, . . . , m̃k. Making X̃ smaller we can still
suppose ěk1 , . . . , ě

k
ˇ̃nk−1 , f̌

k
1 , . . . , f̌

k
m̃k , ǧ

k
1 , . . . , ǧ

k
ˇ̃nk

is a basis of sections for Ěk|X̃ ,

since this holds at x, and as ďk ◦ θk = θk+1 ◦ dk we have

ďkěki = 0, ďkf̌ki =
∑m̃k+1

j=1 Bk+1
ij f̌k+1

j , ďkǧki = ěk+1
i . (10.74)

Now define an isomorphism of topological line bundles on X̃

Ξθ• |X̃ :
⊗b

k=a(detEk)(−1)k |X̃ −→
⊗b

k=a(det Ěk)(−1)k |X̃ by

Ξθ• |X̃ :
⊗b

k=a

(
ek1 ∧ · · · ∧ ekñk−1 ∧ fk1 ∧ · · · ∧ fkm̃k ∧ g

k
1 ∧ · · · ∧ gkñk

)
(−1)k 7−→∏b

k=a(−1)ñ
k(ñk+1)/2+ˇ̃nk(ˇ̃nk+1)/2 ·⊗b

k=a

(
ěk1 ∧ · · · ∧ ěkˇ̃nk−1 ∧ f̌k1 ∧ · · · ∧ f̌km̃k ∧ ǧ

k
1 ∧ · · · ∧ ǧkˇ̃nk

)
(−1)k . (10.75)

We claim that (10.72) commutes for Ξθ• |X̃ for all x ∈ X̃. To prove this, write

Ek|x =
〈
ek1 |x, . . . , ekñk−1 |x, fk1 |x, . . . , fkm̃k |x, g

k
1 |x, . . . , gkñk |x

〉
R,

Ěk|x =
〈
ěk1 |x, . . . , ěkˇ̃nk−1 |x, f̌k1 |x, . . . , f̌km̃k |x, ǧ

k
1 |x, . . . , ǧkˇ̃nk |x

〉
R,

and write dk|x : Ek|x → Ek+1|x and ďk|x : Ěk|x → Ěk+1|x using (10.73)–(10.74).
To define ΘE•|x in Definition 10.66 we choose bases uk1 , . . . , u

k
nk−1 , v

k
1 , . . . , v

k
mk ,

wk1 , . . . , w
k
nk for Ek|x, where nk = dim Im dk|x. Since dk|xgki |x = ek+1

i |x for
i = 1, . . . , ñk we see that nk > ñk, say nk = ñk + pk for pk > 0. Then
m̃k = pk−1 +mk + pk, since nk−1 +mk + nk = rankEk = ñk−1 + m̃k + ñk. We

can also write pk = rank
(
Bk+1
ij |x

)j=1,...,m̃k+1

i=1,...,m̃k
. We choose the bases such that

uk1 , . . . , u
k
pk−1 ∈

〈
fk1 |x, . . . , fkm̃k |x

〉
R, ukpk−1+i = eki |x, i = 1, . . . , ñk−1,

vk1 , . . . , v
k
mk ∈

〈
fk1 |x, . . . , fkm̃k |x

〉
R, (10.76)

wk1 , . . . , w
k
pk ∈

〈
fk1 |x, . . . , fkm̃k |x

〉
R, wkpk+i = gki |x, i = 1, . . . , ñk.

This is possible by (10.73). Let us write

uk1∧· · ·∧ukpk−1∧vk1∧· · ·∧vkmk∧w
k
1∧· · ·∧wkpk = Ak · fk1 |x∧· · ·∧fkm̃k |x (10.77)

for Ak ∈ R\{0}, which holds as uk1 , . . . , u
k
pk−1 , v

k
1 , . . . , v

k
mk , w

k
1 , . . . , w

k
pk is a basis

for
〈
fk1 |x, . . . , fkm̃k |x

〉
R. Combining (10.76) and (10.77) gives

uk1∧· · ·∧uknk−1∧vk1∧· · ·∧vkmk∧w
k
1∧· · ·∧wknk (10.78)

= (−1)p
k−1ñk−1

Ak · ek1 |x∧· · ·∧ekñk−1 |x∧fk1 |x∧· · ·∧fkm̃k |x∧g
k
1 |x∧· · ·∧gkñk |x.
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Similarly, to define ΘĚ•|x in Definition 10.66, we choose bases ǔk1 , . . . , ǔ
k
ňk−1 ,

v̌k1 , . . . , v̌
k
mk , w̌

k
1 , . . . , w̌

k
ňk for Ěk|x, where ňk = ˇ̃nk + pk, by

ǔki = θk(uki ), i = 1, . . . , pk−1, ǔkpk−1+i = ěki |x, i = 1, . . . , ˇ̃nk−1,

v̌ki = θk(vki ), i = 1, . . . ,mk, (10.79)

w̌ki = θk(wki ), i = 1, . . . , pk, w̌kpk+i = ǧki |x, i = 1, . . . , ˇ̃nk.

This is possible by (10.73), (10.74), (10.76), (10.79) and f̌ki = θk(fki ). Applying
θk to (10.77) yields

ǔk1∧· · ·∧ǔkpk−1∧v̌k1∧· · ·∧v̌kmk∧w̌
k
1∧· · ·∧w̌kpk = Ak · f̌k1 |x∧· · ·∧f̌km̃k |x. (10.80)

Combining (10.79) and (10.80) then gives

ǔk1∧· · ·∧ǔkňk−1∧v̌k1∧· · ·∧v̌kmk∧w̌
k
1∧· · ·∧w̌kňk (10.81)

= (−1)p
k−1 ˇ̃nk−1

Ak · ěk1 |x∧· · ·∧ěkˇ̃nk−1 |x∧f̌k1 |x∧· · ·∧f̌km̃k |x∧ǧ
k
1 |x∧· · ·∧ǧkˇ̃nk |x.

To prove (10.72) commutes at x ∈ X̃, consider the diagram

∏b
k=a(−1)n

k(nk+1)/2·⊗b
k=a

(
uk1∧· · ·∧uknk−1∧vk1∧

· · ·∧vkmk∧w
k
1∧· · ·∧wknk

)
(−1)k

=
∏b
k=a(−1)n

k(nk+1)/2·∏b
k=a(−1)p

kñkAk·⊗b
k=a

(
ek1 |x∧· · ·∧ekñk−1 |x

∧fk1 |x∧· · ·∧fkm̃k |x
∧gk1 |x∧· · ·∧gkñk |x

)
(−1)k

Ξθ• |x
//

ΘE•|x
��

∏b
k=a(−1)ň

k(ňk+1)/2·⊗b
k=a

(
ǔk1∧· · ·∧ǔkňk−1∧v̌k1∧

· · ·∧v̌kmk∧w̌
k
1∧· · ·∧w̌kňk

)
(−1)k

=
∏b
k=a(−1)ň

k(ňk+1)/2·∏b
k=a(−1)p

k ˇ̃nkAk·⊗b
k=a

(
ěk1 |x∧· · ·∧ěkˇ̃nk−1 |x

∧f̌k1 |x∧· · ·∧f̌km̃k |x
∧ǧk1 |x∧· · ·∧ǧkˇ̃nk |x

)
(−1)k

ΘĚ•|x
��⊗b

k=a

(
[vk1 ]∧· · ·∧[vkmk ]

)
(−1)k

⊗b
k=a(detHk(θ•|x))(−1)k

//⊗b
k=a

(
[v̌k1 ]∧· · ·∧[v̌kmk ]

)
(−1)k .

(10.82)

Here the alternative expressions on the top left and top right come from (10.78)
and (10.81). The left and right maps are ΘE•|x ,ΘĚ•|x by (10.66), and the

bottom map is
⊗

k(detHk(θ•|x))(−1)k as θk(vki ) = v̌ki . To see that the top map
is Ξθ• |x we use (10.75) and the sign identity∏b

k=a(−1)n
k(nk+1)/2 ·

∏b
k=a(−1)p

kñk =∏b
k=a(−1)ň

k(ňk+1)/2 ·
∏b
k=a(−1)p

k ˇ̃nk ·
∏b
k=a(−1)ñ

k(ñk+1)/2+ˇ̃nk(ˇ̃nk+1)/2,

which holds as nk = ñk + pk and ňk = ˇ̃nk + pk.
Equation (10.82) shows that (10.72) commutes for all x ∈ X̃ for the isomor-

phism Ξθ• |X̃ defined in (10.75). We can cover X by such open X̃ ⊆ X. Also
(10.72) determines Ξθ• |X̃ at each x ∈ X̃, and so determines Ξθ• |X̃ . Thus two
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such isomorphisms Ξθ• |X̃ ,Ξθ• |X̃′ on open X̃, X̃ ′ ⊆ X must agree on the overlap
X̃ ∩ X̃ ′. Hence these Ξθ• |X̃ glue to give a unique global isomorphism Ξθ• as in
(10.71) such that (10.72) commutes for all x ∈ X, as we have to prove.

The proof of Proposition 10.67 also works if X is an object in Ṁan, or some
other kind of space, and (10.70)–(10.71) are diagrams in an appropriate category
of vector bundles on X. We chose to use topological spaces and topological
vector bundles as they are sufficient to define orientations in §10.7.

10.6.3 Determinants of direct sums of complexes

The next proposition will be used in §10.7 to define orientations of products
X × Y of oriented (m-)Kuranishi spaces X,Y .

Proposition 10.68. Suppose E•, F • are complexes of finite-dimensional real
vector spaces with Ek = F k = 0 unless a 6 k 6 b for a 6 b ∈ Z. Then we have
a complex E• ⊕ F • given by

· · · // E
k−1⊕

F k−1

dk−1 0

0 dk−1


// E

k⊕
F k

dk 0

0 dk


// E

k+1⊕
F k+1

// · · · . (10.83)

Definition 10.66 defines isomorphisms

ΘE• :
⊗b

k=a(detEk)(−1)k −→
⊗b

k=a(detHk(E•))(−1)k ,

ΘF• :
⊗b

k=a(detF k)(−1)k −→
⊗b

k=a(detHk(F •))(−1)k ,

ΘE•⊕F• :
⊗b

k=a(det(Ek⊕F k))(−1)k −→
⊗b

k=a(det(Hk(E•)⊕Hk(E•)))(−1)k .

Define isomorphisms IEk,Fk : det(Ek ⊕ F k)→ detEk ⊗ detF k such that if
ek1 , . . . , e

k
Mk and fk1 , . . . , f

k
Nk are bases for Ek, F k then

IEk,Fk :ek1∧· · ·∧ekMk∧fk1 ∧· · ·∧fkNk−→
(
ek1∧· · ·∧ekMk

)
⊗
(
fk1 ∧· · ·∧fkNk

)
, (10.84)

and similarly define IHk(E•),Hk(F•). Then the following commutes:

⊗b
k=a(det(Ek ⊕ F k))(−1)k

ΘE•⊕F•

//

∏
a6l<k6b(−1)dimEk dimFl ·⊗b
k=a(I

Ek,Fk
)(−1)k

��

⊗b
k=a(det(Hk(E•)⊕Hk(F •)))(−1)k

∏
a6l<k6b(−1)dimHk(E•) dimHl(F•)·⊗b

k=a(I
Hk(E•),Hk(F•))

(−1)k

��⊗b
k=a(detEk)(−1)k⊗⊗b
k=a(detF k)(−1)k

ΘE•⊗ΘF• //
⊗b

k=a(detHk(E•))(−1)k⊗⊗b
k=a(detHk(F •))(−1)k .

(10.85)
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Proof. As in Definition 10.66, choose bases uk1 , . . . , u
k
nk−1 , v

k
1 , . . . , v

k
mk , w

k
1 , . . . ,

wknk for Ek for each k ∈ Z, such that dkuki = dkvki = 0 and dkwki = uk+1
i for all

i, k. And choose bases ǔk1 , . . . , ǔ
k
ňk−1 , v̌

k
1 , . . . , v̌

k
mk , w̌

k
1 , . . . , w̌

k
ňk for F k such that

dkǔki = dkv̌ki = 0 and dkw̌ki = ǔk+1
i for all i, k. Then (10.66) gives

ΘE• :
⊗b

k=a

(
uk1∧· · ·∧uknk−1∧vk1∧· · ·∧vkmk∧w

k
1∧· · ·∧wknk

)
(−1)k 7−→∏b

k=a(−1)n
k(nk+1)/2 ·

⊗b
k=a

(
[vk1 ] ∧ · · · ∧ [vkmk ]

)
(−1)k ,

(10.86)

ΘF• :
⊗b

k=a

(
ǔk1∧· · ·∧ǔkňk−1∧v̌k1∧· · ·∧v̌km̌k∧w̌

k
1∧· · ·∧w̌kňk

)
(−1)k 7−→∏b

k=a(−1)ň
k(ňk+1)/2 ·

⊗b
k=a

(
[v̌k1 ] ∧ · · · ∧ [v̌km̌k ]

)
(−1)k ,

(10.87)

ΘE•⊕F• :
⊗b

k=a

(
uk1∧· · ·∧uknk−1∧ǔk1∧· · ·∧ǔkňk−1∧vk1∧· · ·∧vkmk

∧v̌k1∧· · ·∧v̌km̌k∧w
k
1∧· · ·∧wknk∧w̌

k
1∧· · ·∧w̌kňk

)
(−1)k 7−→ (10.88)

b∏
k=a

(−1)(nk+ňk)(nk+ňk+1)/2 ·
b⊗

k=a

(
[vk1 ] ∧ · · · ∧ [vkmk ] ∧ [v̌k1 ] ∧ · · · ∧ [v̌km̌k ]

)
(−1)k .

Equation (10.85) now follows from (10.84) and (10.86)–(10.88) by a compu-
tation with signs, where we use

uk1∧· · ·∧uknk−1∧vk1∧· · ·∧vkmk∧w
k
1∧· · ·∧wknk∧ǔ

k
1∧· · ·∧ǔkňk−1∧v̌k1∧· · ·

∧v̌km̌k∧w̌
k
1∧· · ·∧w̌kňk = (−1)n

kňk+mkňk−1+m̌knk+nkňk−1

· uk1∧· · ·∧uknk−1

∧ǔk1∧· · ·∧ǔkňk−1∧vk1∧· · ·∧vkmk∧v̌
k
1∧· · ·∧v̌km̌k∧w

k
1∧· · ·∧wknk∧w̌

k
1∧· · ·∧w̌kňk

to compare the left hand sides of (10.84) and (10.88).

10.6.4 Determinants of short exact sequences of complexes

The next definition and proposition will be important in studying orientations
on w-transverse fibre products in mK̇ur or K̇ur in Chapter 11. The definition
is standard in (co)homology theory, as in Bredon [4, §IV.5] or Hatcher [33, §2.1].

Definition 10.69. Consider a commutative diagram of real vector spaces:

0
��

0
��

0
��

0
��

· · · dk−2
// Ek−1

θk−1

��

dk−1
// Ek

θk
��

dk // Ek+1

θk+1

��

dk+1
// Ek+2

θk+2

��

dk+2
// · · ·

· · · dk−2
// F k−1

ψk−1

��

dk−1
// F k

ψk

��

dk // F k+1

ψk+1

��

dk+1
// F k+2

ψk+2

��

dk+2
// · · ·

· · · dk−2
// Gk−1

��

dk−1
// Gk

��

dk // Gk+1

��

dk+1
// Gk+2

��

dk+2
// · · ·

0 0 0 0,

(10.89)

whose rows E•, F •, G• are complexes, and whose columns are exact. Then
θ• : E• → F •, ψ• : F • → G• are morphisms of complexes, and induce morphisms
Hk(θ•) : Hk(E•)→ Hk(F •), Hk(ψ•) : Hk(F •)→ Hk(G•) on cohomology.
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We will define connecting morphisms δkθ•,ψ• : Hk(G•) → Hk+1(E•). Let

γ ∈ Hk(G•), and write γ = [g] = g + Im dk−1 for g ∈ Gk with dk(g) = 0. Then
g = ψk(f) for some f ∈ F k, by exactness of columns in (10.89), so dk(f) ∈ F k+1.
We have

ψk+1(dkf) = dk ◦ ψk(f) = dk(g) = 0,

so dkf = θk+1(e) for some e ∈ Ek+1 by exactness of columns in (10.89). Then

θk+2 ◦ dk+1(e) = dk+1 ◦ θk+1(e) = dk+1 ◦ dkf = 0,

so dk+1(e) = 0 as θk+2 is injective by exactness of columns in (10.89). Hence
[e] ∈ Hk+1(E•). Define δkθ•,ψ•(γ) = [e]. A well known proof that can be found in
Bredon [4, Th. IV.5.6] or Hatcher [33, Th. 2.16] shows that δθ•,ψ• is well defined
and linear, and the following sequence is exact

· · · // Hk(E•)
Hk(θ•)// Hk(F •)

Hk(ψ•)// Hk(G•)
δkθ•,ψ• // Hk+1(E•) // · · · . (10.90)

In the next proposition, note the similarity between the signs in (10.85) and
(10.93). We can regard Proposition 10.68 as a special case of Proposition 10.70,

with 0→ E•
id⊕0−→E• ⊕ F • 0⊕id−→ F • → 0 in place of equation (10.89).

Proposition 10.70. Work in the situation of Definition 10.69, and suppose that
Ek, F k, Gk are finite-dimensional, and zero unless a 6 k 6 b. Then Definition
10.66 defines isomorphisms

ΘE• :
⊗b

k=a(detEk)(−1)k −→
⊗b

k=a(detHk(E•))(−1)k ,

ΘF• :
⊗b

k=a(detF k)(−1)k −→
⊗b

k=a(detHk(F •))(−1)k ,

ΘG• :
⊗b

k=a(detGk)(−1)k −→
⊗b

k=a(detHk(G•))(−1)k .

(10.91)

Consider (10.90) as an exact complex A• with A0 = H0(E•), and consider the
kth column of (10.89) as an exact complex B•k with B0

k = Ek. Then (10.69)
defines nonzero elements

ΨA• ∈
⊗b

k=a(detHk(E•))(−1)k ⊗
⊗b

k=a(detHk(F •))(−1)k+1

⊗
⊗b

k=a(detHk(G•))(−1)k ,

ΨB•k
∈ (detEk)⊗ (detF k)−1 ⊗ (detGk).

(10.92)

Then combining (10.91)–(10.92), we have∏
a6l<k6b

(−1)dimEk dimGl ·
(
ΘE• ⊗Θ−1

F• ⊗ΘG•
)(⊗b

k=a(ΨB•k
)(−1)k

)
=

∏
a6l<k6b

(−1)dimHk(E•) dimHl(G•) ·ΨA• .
(10.93)
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Proof. For k ∈ Z, define

lk = dim(ImHk(θ•)), mk = dim(ImHk(ψ•)), nk = dim(Im δkθ•,ψ•),

pk = dim(Im(dk : Ek → Ek+1)), qk = dim(Im(dk : Gk → Gk+1)).

Then from (10.89) we deduce that

dimEk = pk−1 + nk−1 + lk + pk,

dimF k = pk−1 + nk−1 + qk−1 + lk +mk + pk + nk + qk,

dimGk = qk−1 +mk + nk + qk, dimHk(E•) = nk−1 + lk,

dimHk(F •) = lk +mk, and dimHk(G•) = mk + nk.

(10.94)

For each k ∈ Z, choose bases

ck1 , . . . , c
k
pk−1 , b

k
1 , . . . , b

k
nk−1 , a

k
1 , . . . , a

k
lk , d

k
1 , . . . , d

k
pk for Ek,

c̄k1 , . . . , c̄
k
pk−1 , b̄

k
1 , . . . , b̄

k
nk−1 , g

k
1 , . . . , g

k
qk−1 , ā

k
1 , . . . , ā

k
lk ,

ek1 , . . . , e
k
mk , d̄

k
1 , . . . , d̄

k
pk , f

k
1 , . . . , f

k
nk , h

k
1 , . . . , h

k
qk for F k,

ḡk1 , . . . , ḡ
k
qk−1 , ē

k
1 , . . . , ē

k
mk , f̄

k
1 , . . . , f̄

k
nk , h̄

k
1 , . . . , h̄

k
qk for Gk,

such that dk in E•, F •, G• are given by

dk(aki ) = 0, dk(bki ) = 0, dk(cki ) = 0, dk(dki ) = ck+1
i ,

dk(āki ) = 0, dk(eki ) = 0, dk(b̄ki ) = 0, dk(fki ) = b̄k+1
i ,

dk(c̄ki ) = 0, dk(d̄ki ) = c̄k+1
i , dk(gki ) = 0, dk(hki ) = gk+1

i ,

dk(ēki ) = 0, dk(fki ) = 0, dk(ḡki ) = 0, dk(h̄ki ) = ḡk+1
i ,

and θk, ψk in (10.89) are given by

θk(aki ) = āki , θk(bki ) = b̄ki , θk(cki ) = c̄ki , θk(dki ) = d̄ki ,

ψk(āki ) = 0, ψk(eki ) = ēki , ψk(b̄ki ) = 0, ψk(fki ) = f̄ki ,

ψk(c̄ki ) = 0, ψk(d̄ki ) = 0, ψk(gki ) = ḡki , ψk(hki ) = h̄ki .

Then we have bases

[bk1 ], . . . , [bknk−1 ], [ak1 ], . . . , [aklk ] for Hk(E•),

[āk1 ], . . . , [āklk ], [ek1 ], . . . , [ekmk ] for Hk(F •),

[ēk1 ], . . . , [ēkmk ], [f̄k1 ], . . . , [f̄knk ] for Hk(G•),

where Hk(θ•), Hk(ψ•), δkθ•,ψ• in (10.90) act by

Hk(θ•) : [aki ] 7−→ [āki ], Hk(θ•) : [bki ] 7−→ 0, Hk(ψ•) : [āki ] 7−→ 0,

Hk(ψ•) : [eki ] 7−→ [ēki ], δkθ•,ψ• : [ēk1 ] 7−→ 0, δkθ•,ψ• : [f̄ki ] 7−→ [bk+1
i ].
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Definition 10.66 now implies that

ΨA• =
⊗b

k=a

(
[bk1 ]∧· · ·∧[bknk−1 ]∧[ak1 ]∧· · ·∧[aklk ]

)(−1)k

⊗
⊗b

k=a

(
[āk1 ]∧· · ·∧[āklk ]∧[ek1 ]∧· · ·∧[ekmk ]

)(−1)k+1

⊗
⊗b

k=a

(
[ēk1 ]∧· · ·∧[ēkmk ]∧[f̄k1 ]∧· · ·∧[f̄knk ]

)(−1)k

, (10.95)

ΨB•k
= (−1)q

k−1lk+qk−1pk+mkpk ·(
ck1∧· · ·∧ckpk−1∧bk1∧· · ·∧bknk−1∧ak1∧· · ·∧aklk∧d

k
1∧· · ·∧dkpk

)
⊗
(
c̄k1∧· · ·∧c̄kpk−1∧b̄k1∧· · ·∧b̄knk−1∧gk1∧· · ·∧gkqk−1∧āk1∧· · ·∧āklk

∧ek1∧· · ·∧ekmk∧d̄
k
1∧· · ·∧d̄kpk∧f

k
1 ∧· · ·∧fknk∧h

k
1∧· · ·∧hkqk

)−1

⊗
(
ḡk1∧· · ·∧ḡkqk−1∧ēk1∧· · ·∧ēkmk∧f̄

k
1 ∧· · ·∧f̄knk∧h̄

k
1∧· · ·∧h̄kqk

)
, (10.96)

ΘE• :
b⊗

k=a

(
ck1∧· · ·∧ckpk−1∧bk1∧· · ·∧bknk−1∧ak1∧· · ·∧aklk∧d

k
1∧· · ·∧dkpk

)(−1)k

7−→
b∏

k=a

(−1)p
k(pk+1)/2 ·

b⊗
k=a

(
[bk1 ]∧· · ·∧[bknk−1 ]∧[ak1 ]∧· · ·∧[aklk ]

)(−1)k

, (10.97)

ΘF• :
b⊗

k=a

(
c̄k1∧· · ·∧c̄kpk−1∧b̄k1∧· · ·∧b̄knk−1∧gk1∧· · ·∧gkqk−1∧āk1∧· · ·∧āklk

∧ek1∧· · ·∧ekmk∧d̄
k
1∧· · ·∧d̄kpk∧f

k
1 ∧· · ·∧fknk∧h

k
1∧· · ·∧hkqk

)(−1)k

7−→
b∏

k=a

(−1)
(pk+nk+qk)·
(pk+nk+qk+1)/2 ·

b⊗
k=a

(
[āk1 ]∧· · ·∧[āklk ]∧[ek1 ]∧· · ·∧[ekmk ]

)(−1)k

, (10.98)

ΘG• :
b⊗

k=a

(
ḡk1∧· · ·∧ḡkqk−1∧ēk1∧· · ·∧ēkmk∧f̄

k
1 ∧· · ·∧f̄knk∧h̄

k
1∧· · ·∧h̄kqk

)(−1)k

7−→
b∏

k=a

(−1)q
k(qk+1)/2 ·

b⊗
k=a

(
[ēk1 ]∧· · ·∧[ēkmk ]∧[f̄k1 ]∧· · ·∧[f̄knk ]

)(−1)k

. (10.99)

Here the sign in (10.96) is because, compared to the definition of ΨB•k
in (10.69),

we have reordered the basis elements for compatibility with (10.98). Equation
(10.93) now follows from (10.94)–(10.99), after a computation with signs.

10.7 Canonical line bundles and orientations

In this section we suppose throughout that Ṁan satisfies Assumptions 3.1–3.7,
10.1 and 10.13, so that objects X in Ṁan have functorial tangent spaces TxX
which are fibres of a tangent bundle TX → X of rank dimX. The dual vector
bundle is the cotangent bundle T ∗X → X. As in Definitions 2.38 and 10.15,
its top exterior power ΛdimXT ∗X is the canonical bundle KX of X, a real line
bundle on X, and an orientation on X is an orientation on the fibres of KX .

Our goal is to generalize this to (m- and µ-)Kuranishi spaces X. In §10.7.1,
for an m-Kuranishi space X = (X,K) in mK̇ur, we will define a topological
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real line bundle KX → X, the canonical bundle, whose fibre at x ∈ X is

KX |x = ΛdimT∗xXT ∗xX ⊗ ΛdimOxXOxX,

for TxX, OxX as in §10.2.1, using the material on determinants of complexes in
§10.6. Then in §10.7.2 we define an orientation on X to be an orientation on the
fibres of KX . Section 10.7.3 shows that if X is an oriented m-Kuranishi space
with corners in mK̇urc, then there is a natural orientation on ∂X, and hence
on ∂kX for k = 1, 2, . . . . Sections 10.7.5–10.7.6 extend all this to µ-Kuranishi
spaces and Kuranishi spaces.

The material of this section was inspired by Fukaya–Oh–Ohta–Ono’s defi-
nition of orientations on FOOO Kuranishi spaces, as in Definition 7.8 and [15,
Def. A1.17], [21, Def.s 3.1, 3.3, 3.5, & 3.10], and [30, Def. 5.8].

10.7.1 Canonical bundles of m-Kuranishi spaces

We now construct the canonical bundle KX → X of an m-Kuranishi space X
in mKur. Recall that we suppose mK̇ur is constructed using Ṁan satisfying
Assumptions 10.1 and 10.13, so that objects V ∈ Ṁan have tangent spaces TvV
which are the fibres of the tangent bundle TV → V with rank dimV , and as in
§10.2.1, X has tangent and obstruction spaces TxX, OxX for x ∈X.

Theorem 10.71. Let X = (X,K) be an m-Kuranishi space in mK̇ur. Then
there is a natural topological line bundle π : KX → X called the canonical
bundle of X, with fibres

KX |x = detT ∗xX ⊗ detOxX (10.100)

for each x ∈ X, for TxX, OxX as in §10.2.1, with the property that if (V,E, s,
ψ) is an m-Kuranishi neighbourhood on X in the sense of §4.7, then there is an
isomorphism of topological real line bundles on s−1(0) ⊆ V

ΘV,E,s,ψ : (detT ∗V ⊗ detE)|s−1(0) −→ ψ−1(KX), (10.101)

such that if v ∈ s−1(0) ⊆ V with ψ(v) = x ∈ X, so that as in (10.27) we have
an exact sequence

0 // TxX
ιx // TvV

dvs // E|v
πx // OxX // 0, (10.102)

and if (c1, . . . , cl), (d1, . . . , dl+m), (e1, . . . , em+n), (f1, . . . , fn) are bases for TxX,
TvV,E|v, OxX respectively with ιx(ci) = di, i = 1, . . . , l and dvs(dl+j) = ej ,
j = 1, . . . ,m and πx(em+k) = fk, k = 1, . . . , n, and (γ1, . . . , γl), (δ1, . . . , δl+m)
are dual bases to (c1, . . . , cl), (d1, . . . , dl+m) for T ∗xX, T ∗v V, then

ΘV,E,s,ψ|v : detT ∗v V ⊗ detE|v → detT ∗xX ⊗ detOxX maps

ΘV,E,s,ψ|v : (δ1 ∧ · · · ∧ δl+m)⊗ (e1 ∧ · · · ∧ em+n) 7−→
(−1)m(m+1)/2 · (γ1 ∧ · · · ∧ γl)⊗ (f1 ∧ · · · ∧ fn).

(10.103)
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Proof. Just as a set, define KX to be the disjoint union

KX =
∐
x∈X

(
detT ∗xX ⊗ detOxX

)
,

and define π : KX → X to map π : detT ∗xX ⊗ detOxX 7→ x, so that KX |x =
π−1(x) is as in (10.100) for x ∈ X. Define the structure of a 1-dimensional real
vector space on KX |x for each x ∈ X to be that coming from the right hand
side of (10.100). To make KX into a topological real line bundle, it remains to
define a topology on the set KX , such that π : KX → X is a continuous map,
and the usual local triviality condition for vector bundles holds.

Suppose (V,E, s, ψ) is an m-Kuranishi neighbourhood on X. Consider the
following complex F • of topological real vector bundles on s−1(0) ⊆ V :

· · ·
degree

0 // 0
−3

0 // 0
−2

0 // TV |s−1(0)
−1

ds // E|s−1(0)
0

0 // 0
1

0 // 0
2

0 // · · · ,

where TV |s−1(0) is in degree −1 and E|s−1(0) in degree 0, and ds is given by
ds|v = dvs for each v ∈ s−1(0), where dvs is as in Definition 10.6. One can show
that dvs depends continuously on v, so that ds is a morphism of topological
vector bundles.

Equation (10.102) shows that if v ∈ s−1(0) with ψ(v) = x ∈ X then the
cohomology of F •|v is TxX in degree −1, and OxX in degree 0, and 0 otherwise.
Thus Definition 10.66 defines an isomorphism

ΘF•|v : (detTvV )−1 ⊗ (detE|v)−→(detTxX)−1 ⊗ (detOxX).

Identifying (detTvV )−1 = detT ∗v V and (detTxX)−1 = detT ∗xX and expanding
Definition 10.66, we see that this ΘF•|v is exactly the map ΘV,E,s,ψ|v defined in
(10.103). Thus, Definition 10.66 shows that ΘV,E,s,ψ|v is independent of choices
of bases (c1, . . . , cl), . . . , (f1, . . . , fn).

Therefore we can define ΘV,E,s,ψ in (10.101), just as a map of sets without
yet considering topological line bundle structures, by taking ΘV,E,s,ψ|v for each
v ∈ s−1(0) to be as in (10.103) for any choice of bases (c1, . . . , cl), . . . , (f1, . . . , fn).
As ψ : s−1(0)→ Imψ is a homeomorphism, we can pushforward by ψ to obtain

ψ∗(ΘV,E,s,ψ) : ψ∗
(
(detT ∗V ⊗ detE)|s−1(0)

)
−→

KX |Imψ = π−1(Imψ) ⊆ KX ,
(10.104)

which maps by ΘV,E,s,ψ|v over x ∈ Imψ with v = ψ−1(x).
Now (10.104) is a bijection, with the left hand side a topological line bundle

over Imψ ⊆ X. Hence there is a unique topology on KX |Imψ = π−1(Imψ) ⊆
KX making KX |Imψ → Imψ into a topological line bundle, such that (10.104)
is an isomorphism of topological line bundles over Imψ.

Let (V ′, E′, s′, ψ′) be another m-Kuranishi neighbourhood on X, giving

ψ∗(ΘV ′,E′,s′,ψ′) : ψ′∗
(
(detT ∗V ′ ⊗ detE′)|s′−1(0)

)
−→

KX |Imψ′ = π−1(Imψ′) ⊆ KX .
(10.105)
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So we have topologies on KX |Imψ and KX |Imψ′ making (10.104)–(10.105) into
isomorphisms of topological line bundles. We claim that these topologies agree
on KX |Imψ∩Imψ′ . To prove this, note that Theorem 4.56(a) gives a coordinate

change Φ = (Ṽ , φ, φ̂) : (V,E, s, ψ)→ (V ′, E′, s′, ψ′) over Imψ∩ Imψ′ on X, and
consider the commutative diagram of topological vector bundles on Ṽ ∩ s−1(0):

· · · 0 // 0
0 // TV |Ṽ ∩s−1(0)

Tφ|Ṽ∩s−1(0)

��

ds // E|Ṽ ∩s−1(0)

φ̂|Ṽ∩s−1(0)
��

0 // 0
0 // · · ·

· · ·
degree

0 // 0
−2

0 // φ∗(TV ′)|Ṽ ∩s−1(0)
−1

φ∗(ds′) // φ∗(E′)|Ṽ ∩s−1(0)
0

0 // 0
1

0 // · · · ,
(10.106)

where Tφ|Ṽ ∩s−1(0) is defined by Assumption 10.13(b) since φ : Ṽ → V ′ is A

near Ṽ ∩ s−1(0) by Proposition 4.34(d).
As in (10.70), regard the rows of (10.106) as complexes F •, F ′• of topological

vector bundles, and the columns as a morphism of complexes θ• : F • → F ′•. If
v ∈ Ṽ ∩ s−1(0) with φ(v) = v′ ∈ s′−1(0) and ψ(v) = ψ′(v′) = x ∈ Imψ ∩ Imψ′,
then Definition 10.21 shows that θ• induces isomorphisms on cohomology groups
of F •, F ′•, and furthermore, under the identification of the cohomologies of
F •, F ′• with TxX in degree −1 and OxX in degree 0, these isomorphisms are
the identity maps on TxX, OxX. Thus, Proposition 10.67 gives an isomorphism
of topological line bundles on Ṽ ∩ s−1(0):

Ξθ• : (detT ∗V ⊗ detE)|Ṽ ∩s−1(0) −→ φ∗(detT ∗V ′ ⊗ detE′)|···,

such that for all v, v′, x as above, the following diagram (10.72) commutes

detT ∗v V ⊗detE|v
Ξθ• |v

//

ΘV,E,s,ψ|v
��

detT ∗v′V
′⊗detE′|v′

ΘV ′,E′,s′,ψ′ |v′
��

(detTxX)−1 ⊗ (detOxX) (detTxX)−1 ⊗ (detOxX),

(10.107)

using the identifications of ΘF•|v ,ΘF ′•|v′ with ΘV,E,s,ψ|v,ΘV ′,E′,s′,ψ′ |v′ above.
Now ψ∗(Ξθ•) is an isomorphism on Imψ ∩ Imψ′ between the line bundles on

the left hand sides of (10.104)–(10.105), and (10.107) for each x ∈ Imψ ∩ Imψ′

shows that ψ∗(Ξθ•) is compatible with (10.104)–(10.105). Thus, the topologies
on KX |Imψ and KX |Imψ′ from (10.104) and (10.105) agree on KX |Imψ∩Imψ′ ,
proving the claim.

Choose a family of m-Kuranishi neighbourhoods
{

(Vi, Ei, si, ψi) : i ∈ I
}

on
X with X =

⋃
i∈I Imψi (for instance, those in the m-Kuranishi structure K on

X = (X,K)). Then we have topologies on KX |Imψi for all i ∈ I which agree
on overlaps KX |Imψi∩Imψj for all i, j ∈ I, so they glue to give a global topology
on KX , which makes π : KX → X into a topological real line bundle. The
compatibility between KX |Imψ and KX |Imψ′ on Imψ∩ Imψ′ above implies that
this topology on KX is independent of choices.

If (V,E, s, ψ) is any m-Kuranishi neighbourhood on X, then by including
(V,E, s, ψ) in the family

{
(Vi, Ei, si, ψi) : i ∈ I

}
, by construction there is an

isomorphism ΘV,E,s,ψ in (10.101) with the properties required.
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Example 10.72. Using the notation of Example 4.30, let X ∈ Ṁan, and let

X = FmK̇ur
Ṁan

(X) be the corresponding m-Kuranishi space, so that X is covered

by a single m-Kuranishi neighbourhood (X, 0, 0, idX). Then KX is canonically
isomorphic to KX = detT ∗X → X, considered as a topological line bundle.

Canonical line bundles are functorial under étale 1-morphisms:

Proposition 10.73. Let f : X → Y be an étale 1-morphism in mK̇ur as in
§10.5.1 (for example, f could be an equivalence), so that Theorem 10.71 defines
canonical bundles KX → X, KY → Y . Then there is a natural isomorphism

Kf : f∗(KY ) −→ KX (10.108)

of topological line bundles on X, such that for all x ∈X with f(x) = y in Y

Kf |x = (detT ∗xf)⊗ (detOxf)−1 :

detT ∗yY ⊗ detOyY −→ detT ∗xX ⊗ detOxX,
(10.109)

where Txf : TxX → TyY , Oxf : OxX → OyY are as in §10.2.1 and are
isomorphisms by Theorem 10.55, and T ∗xf : T ∗yY → T ∗xX is dual to Txf .

Proof. As a map of sets, Kf in (10.108) is determined uniquely by (10.109), and
(10.109) is an isomorphism on the fibres at each x ∈ X. Thus, we need only show
that this map Kf is continuous. Let x ∈X with f(x) = y in Y , and choose m-
Kuranishi neighbourhoods (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) on X,Y respectively
with x ∈ Imχ and y ∈ Imψ. Then Theorem 4.56(b) gives a 1-morphism fab =

(Uab, fab, f̂ab) : (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) over (Imχa ∩ f−1(Imψb),f).
By the argument in the proof of Theorem 10.71, but replacing (10.106) by

· · · 0 // 0
0 // TUa|Uab∩r−1

a (0)

Tfab|Uab∩r−1
a (0)

��

dra // Da|Uab∩r−1
a (0)

f̂ab|Uab∩r−1
a (0)

��

0 // 0
0 // · · ·

· · ·
degree

0 // 0
−2

0 // f∗ab(TVb)|Uab∩r−1
a (0)

−1

f∗ab(dsb)// f∗ab(Eb)|Uab∩r−1
a (0)

0

0 // 0
1

0 // · · · ,

and noting that Txf , Oxf are isomorphisms, we obtain an isomorphism of
topological line bundles on Uab ∩ r−1

a (0):

Ξθ• : (detT ∗Uab ⊗ detDa)|Uab∩r−1
a (0) −→ f∗ab(detT ∗Vb ⊗ detEb)|···,

such that for all u ∈ Uab ∩ r−1
a (0) with χa(u) = x in X, fab(u) = v ∈ Vb

and f(x) = ψb(v) = y in Y as above, as in (10.72) and (10.107) the following
commutes:

detT ∗uUab ⊗ detDa|u
Ξθ• |u

//

ΘUa,Da,ra,χa |u
��

detT ∗v Vb ⊗ detEb|v
ΘVb,Eb,sb,ψb |v

��
(detTxX)−1 ⊗ (detOxX) (detTyY )−1 ⊗ (detOyY ).

χ∗a(Kf )|u = Kf |x in (10.109)

oo

(10.110)
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As the top, left and right morphisms of (10.110) are restrictions to u of
isomorphisms of topological line bundles Ξθ• ,ΘUa,Da,ra,χa ,ΘVb,Eb,sb,ψb , it follows
that χ∗a(Kf ) is an isomorphism of topological line bundles over Uab ∩ r−1

a (0),
so that Kf is an isomorphism (and in particular is continuous) over Imχa ∩
f−1(Imψb) ⊆ X. Since we can cover X by such open Imχa ∩ f−1(Imψb), this
shows Kf in (10.108) is an isomorphism of topological line bundles.

By Examples 10.2 and 10.14, the results above apply when mK̇ur is one of

mKur,mKurc,mKurc
we, (10.111)

with TxX, OxX and KX defined using ordinary tangent spaces TvV in Man,
Manc,Manc

we, and also when mK̇ur is one of

mKurc,mKurgc,mKurac,mKurc,ac, (10.112)

with bTxX, bOxX, bKX (using the obvious notation) defined using b-tangent
spaces bTvV in Manc,Mangc,Manac,Manc,ac. Note that in mKurc we have
two different notions of canonical bundle KX ,

bKX , defined using ordinary
tangent bundles TV → V and b-tangent bundles bTV → V in Manc. We will
see in §10.7.2 that these yield equivalent notions of orientation on X in mKurc.

10.7.2 Orientations on m-Kuranishi spaces

Definition 10.74. Let X = (X,K) be an m-Kuranishi space in mK̇ur, so that
Theorem 10.71 defines the canonical bundle π : KX → X. An orientation oX
on X is an orientation on the fibres of KX .

That is, as in Definitions 2.38 and 10.15, an orientation oX on X is an
equivalence class [ω] of continuous sections ω ∈ Γ0(KX) with ω|x 6= 0 for all
x ∈ X, where two such ω, ω′ are equivalent if ω′ = K · ω for K : X → (0,∞)
continuous. The opposite orientation is −oX = [−ω].

Then we call (X, oX) an oriented m-Kuranishi space. Usually we suppress
the orientation oX , and just refer to X as an oriented m-Kuranishi space, and
then we write −X for X with the opposite orientation.

Proposition 10.73 implies that if f : X → Y is an étale 1-morphism in mK̇ur
then orientations oY on Y pull back to orientations oX = f∗(oY ) on X, where
if oY = [ω] then oX = [Kf ◦ f∗(ω)]. If f is an equivalence, this defines a natural
1-1 correspondence between orientations on X and orientations on Y .

Let f : X → Y be a 1-morphism in mK̇ur. A coorientation cf on f is an
orientation on the fibres of the line bundle KX ⊗ f∗(K∗Y ) over X. That is, cf
is an equivalence class [γ] of γ ∈ Γ0(KX ⊗ f∗(K∗Y )) with γ|x 6= 0 for all x ∈ X,
where two such γ, γ′ are equivalent if γ′ = K · γ for K : X → (0,∞) continuous.
The opposite coorientation is −cf = [−γ]. If Y is oriented then coorientations
on f are equivalent to orientations on X. Orientations on X are equivalent to
coorientations on π : X → ∗, for ∗ the point in mK̇ur.

Remark 10.75. There are several equivalent ways to define orientations on
m-Kuranishi spaces X = (X,K) without first defining the canonical bundle KX .
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Writing K =
(
I, (Vi, Ei, si, ψi)i∈I , Φij, i,j∈I , Λijk, i,j,k∈I

)
, an orientation on X

is equivalent to the data of an orientation on the manifold Ei in Ṁan near
0Ei(s

−1
i (0)) ⊆ Ei, such that all the coordinate changes Φij : (Vi, Ei, si, ψi) →

(Vj , Ej , sj , ψj) are ‘orientation-preserving’ in a suitable sense.
The purpose of Definition 10.66 and Proposition 10.67 is to give us a good

notion of when Φij is orientation-preserving in the proof of Theorem 10.71. We
do this using tangent spaces and tangent bundles, and implicitly we use the exact
sequence (10.59) to compare orientations on (Vi, Ei, si, ψi) and (Vj , Ej , sj , ψj).

It should still be possible to define orientations in mK̇ur when the category
Ṁan does not have tangent bundles TV → V , but does have a well-behaved
notion of orientation. To do this we would need an alternative way to define
when Φij is ‘orientation-preserving’, not involving tangent bundles.

As for (10.111)–(10.112), Definition 10.74 defines orientations on m-Kuranishi
spaces X in the 2-categories mKur,mKurc,mKurc

we, with KX defined using
tangent bundles TV → V , and on X in the 2-categories mKurc,mKurgc,
mKurac,mKurc,ac, with bKX defined using b-tangent bundles bTV → V .

For X = (X,K) in mKurc, we have two canonical bundles KX and bKX ,
which are generally not canonically isomorphic. However, the notions of orien-
tation on X defined using KX and bKX are equivalent. This is because, as in
§2.6, the notions of orientation on Ei ∈Manc defined using TEi and bTEi are
equivalent, and as in Remark 10.75 an orientation on X is equivalent to local
orientations on Ei in m-Kuranishi neighbourhoods (Vi, Ei, si, ψi) in K.

Example 10.76. Using the notation of Example 4.30, let X ∈ Ṁan, and let

X = FmK̇ur
Ṁan

(X) be the corresponding m-Kuranishi space. Then combining
Example 10.72 and Definitions 10.15 and 10.74 shows that orientations on X in
Ṁan, and on X in mK̇ur, are equivalent.

10.7.3 Orienting boundaries of m-Kuranishi spaces with
corners

Now suppose Ṁanc satisfies Assumptions 3.22 and 10.16, so that as in §4.6
we have a 2-category mK̇urc of m-Kuranishi spaces with corners X which
have boundaries ∂X and 1-morphisms iX : ∂X →X as in §4.6.1. Also Ṁanc

satisfies Assumptions 10.1 and 10.13 by Assumption 10.16, so Theorem 10.71
defines canonical bundles KX → X and K∂X → ∂X. Our next theorem relates
these. One should compare ΩX in (10.113) with ΩX in (10.16) for X ∈ Ṁanc.

Theorem 10.77. Let Ṁanc satisfy Assumptions 3.22 and 10.16, and suppose
X is an m-Kuranishi space with corners in mK̇urc. Then there is a natural
isomorphism of topological line bundles on ∂X

ΩX : K∂X −→ N∂X ⊗ i∗X(KX), (10.113)

where N∂X is a line bundle on ∂X, with a natural orientation on its fibres.
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Suppose that (Va, Ea, sa, ψa) is an m-Kuranishi neighbourhood on X, as
in §4.7.1, with dimVa = ma and rankEa = na. Then §4.7.3 defines an m-
Kuranishi neighbourhood (V(1,a), E(1,a), s(1,a), ψ(1,a)) on ∂X with V(1,a) = ∂Va,
E(1,a) = i∗Va(Ea), and s(1,a) = i∗Va(sa). Also Assumption 10.16 gives a (smooth)
line bundle N∂Va → ∂Va, with an orientation on its fibres. Then there is a
natural isomorphism of topological line bundles on s−1

(1,a)(0) ⊆ ∂Va

ΦVa,Ea,sa,ψa : N∂Va |s−1
(1,a)

(0) −→ ψ−1
(1,a)(N∂X), (10.114)

which identifies the orientations on the fibres, such that the following commutes:

(detT ∗(∂Va)⊗
det i∗Va(Ea))|s−1

(1,a)
(0) ΩVa⊗iddet i∗

Va
(Ea)|···

//

ΘV(1,a),E(1,a),s(1,a),ψ(1,a)

��

N∂Va ⊗ i∗Va(detT ∗Va
⊗detEa)|s−1

(1,a)
(0)

ΦVa,Ea,sa,ψa⊗iVa |
∗
···(ΘVa,Ea,sa,ψa )

��
ψ−1

(1,a)(K∂X)
ΩX // ψ−1

(1,a)(N∂X ⊗ i
∗
X(KX)),

(10.115)

where ΩVa is as in (10.16), and ΘVa,Ea,sa,ψa ,ΘV(1,a),E(1,a),s(1,a),ψ(1,a)
are as in

(10.101), and ΩX is as in (10.113), and ΦVa,Ea,sa,ψa is as in (10.114).

Proof. Most of the theorem holds trivially, by definition. Define a topological
line bundle N∂X → ∂X by N∂X = K∂X ⊗ (i∗X(KX))∗, where (i∗X(KX))∗ is the
dual line bundle to i∗X(KX), and define ΩX in (10.113) to be the inverse of

N∂X ⊗ i∗X(KX) K∂X ⊗
(
i∗X(KX)

)∗ ⊗ i∗X(KX)
id⊗ dual pairing // K∂X .

For the second part, since (10.115) is a diagram of isomorphisms of topolog-
ical line bundles on s−1

(1,a)(0) with ΦVa,Ea,sa,ψa the only undefined term, we

define ΦVa,Ea,sa,ψa to be the unique isomorphism in (10.114) such that (10.115)
commutes.

We must construct an orientation on the fibres of N∂X such that (10.114)
is orientation-preserving for all m-Kuranishi neighbourhoods (Va, Ea, sa, ψa) on
X. Since ψ(1,a) : s−1

(1,a)(0) → Imψ(1,a) is a homeomorphism, there is a unique

orientation on N∂X |Imψ(1,a)
such that (10.114) is orientation-preserving. We will

prove that for any two such (Va, Ea, sa, ψa), (Vb, Eb, sb, ψb) on X we have

ΦVa,Ea,sa,ψa |V(1,a)(1,b)∩s−1
(1,a)

(0) = ∂φab|∗···(ΦVb,Eb,sb,ψb) ◦ γφab |··· :

N∂Va |V(1,a)(1,b)∩s−1
(1,a)

(0) −→ ψ−1
(1,a)(N∂X)|V(1,a)(1,b)∩s−1

(1,a)
(0),

(10.116)

where γφab : NVab → φ∗ab(NVb) is as in (10.11) or (10.14). As γφab is orientation
preserving by Assumption 10.16, equation (10.116) implies that the orientations
on N∂X |Imψ(1,a)

and N∂X |Imψ(1,b)
agree on Imψ(1,a)∩ Imψ(1,b). Because we can

cover ∂X by such open Imψ(1,a) ⊆ ∂X, there is a unique orientation on the
fibres of N∂X with (10.114) orientation-preserving for all (Va, Ea, sa, ψa).
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It remains to prove (10.116). Definition 4.60 constructs m-Kuranishi neigh-
bourhoods (V(1,a), E(1,a), s(1,a), ψ(1,a)), (V(1,b), E(1,b), s(1,b), ψ(1,b)) on ∂X from
(Va, Ea, sa, ψa), (Vb, Eb, sb, ψb). Theorem 4.56(a) gives a coordinate change

Φab = (Vab, φab, φ̂ab) : (Va, Easa, ψa) −→ (Vb, Eb, sb, ψb)

over Imψa ∩ Imψb on X. By Proposition 4.34(d), making Vab smaller we can
suppose φab : Vab → Vb is simple, so ∂φab is defined. Definition 4.61 constructs
a coordinate change over Imψ(1,a) ∩ Imψ(1,b) on ∂X

Φ(1,a)(1,b) = (V(1,a)(1,b), φ(1,a)(1,b), φ̂(1,a)(1,b)) : (V(1,a), E(1,a), s(1,a), ψ(1,a))

−→ (V(1,b), E(1,b), s(1,b), ψ(1,b)),

with V(1,a)(1,b) = ∂Vab, φ(1,a)(1,b) = ∂φab, and φ̂(1,a)(1,b) = i∗Vab(φ̂ab).

Suppose Assumption 10.16(a) holds for Ṁanc. Then by (10.11) we have a
commutative diagram of vector bundles on ∂Vab ⊆ ∂Va:

0 // N∂Vab
γφab

��

αVab

// i∗Vab(TVab)

i∗Vab
(Tφab)

��

βVab

// T (∂Vab)

T (∂φab)

��

// 0

0 // (∂φab)∗(N∂Vb)

(∂φab)
∗(αVb )

// i∗Vab(φ
∗
ab(TVb))

=(∂φab)
∗(i∗Vb(TVb))

(∂φab)
∗(βVb )

// (∂φab)∗(T (∂Vb)) // 0.

(10.117)

Let v′a ∈ V(1,a)(1,b) ∩ s−1
(1,a)(0) ⊆ ∂Vab ⊆ ∂Va, and set va = iVa(v′a) in Vab ∩

s−1
a (0) ⊆ Vab ⊆ Va, and v′b = ∂φab(v

′
a) in V(1,b) ∩ s−1

(1,b)(0) ⊆ ∂Vb, and vb =

iVb(v
′
b) = φab(va) in s−1

b (0) ⊆ Vb, and x′ = ψ(1,a)(v
′
a) = ψ(1,b)(v

′
b) in ∂X,

and x = ψa(va) = ψb(vb) = iX(x′) in X. Set ma = dimVa, na = rankEa,
mb = dimVb, nb = rankEb, m = dimTxX and n = dimOxX. Then ma − na =
mb−nb = m−n = vdimX, so we have ma = m+pa, na = n+pa, mb = m+pb,
nb = n+ pb for pa, pb > 0.

As in (10.21) and (10.102) we have commutative diagrams

0 // TxX
ιax

// TvaVa

Tvaφab
��

dvasa

// Ea|va
φ̂ab|va��

πax

// OxX // 0

0 // TxX
ιbx // TvbVb

dvbsb // Eb|vb
πbx // OxX // 0,

(10.118)

0 // Tx′(∂X)
ιa
x′

// Tv′a(∂Va)

Tv′a
(∂φab)

��

dv′a
s(1,a)

// Ea|va
φ̂ab|va��

πa
x′

// Ox′(∂X) // 0

0 // Tx′(∂X)
ιb
x′ // Tv′b(∂Vb)

dv′
b
s(1,b)

// Eb|vb
πb
x′ // Ox′(∂X) // 0,

(10.119)

with exact rows. Choose bases (c1, . . . , cm), (da1 , . . . , d
a
m+pa), (db1, . . . , d

b
m+pb

),

(ea1 , . . . , e
a
pa+n), (eb1, . . . , e

b
pb+n

), (f1, . . . , fn) for TxX, TvaVa, Ea|va , TvbVb, Eb|vb ,
OxX respectively with

ιax(ci)=dai , ι
b
x(ci)=dbi , i=1, . . . ,m, dvasa(dam+j)=eaj , j=1, . . . , pa, (10.120)

dvbsb(d
b
m+j)=ebj , j=1, . . . , pb, π

a
x(eapa+k)=πbx(ebpb+k)=fk, k=1, . . . , n.
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Let (γ1, . . . , γm), (δa1 , . . . , δ
a
m+pa), (δb1, . . . , δ

b
m+pb

) be the dual bases to (c1, . . . ,

cm), (da1 , . . . , d
a
m+pa), (db1, . . . , d

b
m+pb

). Then Theorem 10.71 gives

ΘVa,Ea,sa,ψa |va : (δa1 ∧ · · · ∧ δam+pa)⊗ (ea1 ∧ · · · ∧ eapa+n) 7−→

(−1)pa(pa+1)/2 · (γ1 ∧ · · · ∧ γm)⊗ (f1 ∧ · · · ∧ fn),
(10.121)

ΘVb,Eb,sb,ψb |vb : (δb1 ∧ · · · ∧ δbm+pb
)⊗ (eb1 ∧ · · · ∧ ebpb+n) 7−→

(−1)pb(pb+1)/2 · (γ1 ∧ · · · ∧ γm)⊗ (f1 ∧ · · · ∧ fn).
(10.122)

Now from (10.12) in Assumption 10.16(a) we can show that

dvasa = dv′as(1,a) ◦ βVab |v′a : TvaVa −→ Ea|va .

Exactness of the top line of (10.117) implies that

Im(dv′as(1,a)) = Im(dvasa) =
〈
ea1 , . . . , e

a
pa

〉
R,

R ∼= Im(αVab |v′a) ⊆ Ker(dvasa) =
〈
da1 , . . . , d

a
m

〉
R.

Choose (da1 , . . . , d
a
m+pa) with Im(αVab |v′a) = 〈da1〉R. From (10.118) and ιax(ci) =

dai , ι
b
x(ci) = dbi we see that Tvaφab(d

a
i ) = dbi for i = 1, . . . ,m, so from (10.117)

we deduce that Im(αVb |v′b) = 〈db1〉R. Thus there are unique ga1 ∈ N∂Vab |v′a and

gb1 ∈ N∂Vb |v′b with αVab |v′a(ga1 ) = da1 , αVb |v′b(g
b
1) = db1, and then γφab |v′a(ga1 ) = ga2 .

Set d′ai = βVab |v′a(dai ) for i = 2, . . . ,m+pa and d′bi = βVb |v′b(d
b
i ) for i = 2, . . . ,m+

pb. Then (d′a2 , . . . , d
′a
m+pa), (d′b2 , . . . , d

′b
m+pb

) are bases for Tv′a(∂Va), Tv′b(∂Vb), by

exactness in the rows of (10.117). Let (δ′a2 , . . . , δ
′a
m+pa), (δ′b2 , . . . , δ

′b
m+pb

) be the
dual bases for T ∗v′a(∂Va), T ∗v′b

(∂Vb). Then Definition 10.18 gives

ΩVa |v′a : δ′a2 ∧ · · · ∧ δ′am+pa 7−→ ga1 ⊗ (δa1 ∧ · · · ∧ δam+pa), (10.123)

ΩVb |v′b : δ′b2 ∧ · · · ∧ δ′bm+pb
7−→ gb1 ⊗ (δb1 ∧ · · · ∧ δbm+pb

). (10.124)

Using (10.118)–(10.120) we see there are unique bases (c′2, . . . , c
′
m), (f ′1, . . . ,

f ′n) for Tx′(∂X), Ox′(∂X) such that

ιax′(c
′
i) = d′ai , ι

b
x′(c

′
i) = d′bi , i = 2, . . . ,m,

πax′(e
a
pa+k) = f ′k, π

b
x′(e

b
pb+k

) = f ′k, k = 1, . . . , n.

Let (γ′2, . . . , γ
′
m) be the dual basis to (c′2, . . . , c

′
m) for T ∗x′(∂X). Then as for

(10.121)–(10.122), Theorem 10.71 gives

ΘV(1,a),E(1,a),s(1,a),ψ(1,a)
|v′a : (δ′a2 ∧ · · · ∧ δ′am+pa)⊗ (ea1 ∧ · · · ∧ eapa+n)

7−→ (−1)pa(pa+1)/2 · (γ′2 ∧ · · · ∧ γ′m)⊗ (f ′1 ∧ · · · ∧ f ′n),
(10.125)

ΘV(1,b),E(1,b),s(1,b),ψ(1,b)
|v′b : (δ′b2 ∧ · · · ∧ δ′bm+pb

)⊗ (eb1 ∧ · · · ∧ ebpb+n)

7−→ (−1)pb(pb+1)/2 · (γ′2 ∧ · · · ∧ γ′m)⊗ (f ′1 ∧ · · · ∧ f ′n).
(10.126)
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From (10.115) and (10.121)–(10.126) we see that

ΦVa,Ea,sa,ψa |v′a(ga1 ) = ΦVb,Eb,sb,ψb |v′b(g
b
1) =(

(γ1 ∧ · · · ∧ γm)⊗ (f1 ∧ · · · ∧ fn)
)
⊗
(
(γ′2 ∧ · · · ∧ γ′m)⊗ (f ′1 ∧ · · · ∧ f ′n)

)−1
.

This and γφab |v′a(ga1 ) = gb1 imply the restriction of (10.116) to v′a, for any v′a.

Therefore (10.116) holds when Ṁanc satisfies Assumption 10.16(a). The proof
for Assumption 10.16(b) is very similar, and we leave it to the reader.

Example 10.78. Work in the 2-category mKurc or mKurgc of m-Kuranishi
spaces with corners X defined using Ṁanc = Manc or Mangc from Chapter
2, with (b-)canonical bundles bKX defined using b-tangent bundles bTV → V
from §2.3 for V in Manc or Mangc. Then as in (2.14) and Example 10.17(i),
the normal bundle N∂X in (10.10) of Assumption 10.16(a) is naturally trivial,
N∂X = O∂X .

Thus, if X lies in mKurc or mKurgc then (10.114) in Theorem 10.77
implies that N∂X is naturally trivial on Imψ(1,a). As γΦab in (10.117) respects
the trivializations, they glue to a global natural trivialization N∂X ∼= O∂X .
Hence for X in mKurc or mKurgc, we can replace (10.113) by a canonical
isomorphism

bΩX : bK∂X −→ i∗X(bKX). (10.127)

Here is the analogue of Definition 10.18:

Definition 10.79. Let Ṁanc satisfy Assumptions 3.22 and 10.16, and suppose
(X, oX) is an oriented m-Kuranishi space with corners in mK̇urc, as in §10.7.2.
Then oX is an orientation on the fibres of KX → X, so i∗X(oX) is an orientation
on the fibres of i∗X(KX)→ ∂X. Theorem 10.77 gives a line bundle N∂X → ∂X
with an orientation νX on its fibres, and an isomorphism ΩX : K∂X → N∂X ⊗
i∗X(KX). Thus there is a unique orientation o∂X on the fibres of K∂X → ∂X
identified by ΩX with νX ⊗ i∗X(oX), and o∂X is an orientation on ∂X.

In this way, if X is an oriented m-Kuranishi space with corners, then ∂X is
oriented, and by induction ∂kX is oriented for all k = 0, 1, . . . . As for manifolds
with corners in §2.6, the k-corners Ck(X) for k > 2 need not be orientable.

10.7.4 Canonical bundles, orientations for products in mK̇ur

Products X × Y of m-Kuranishi spaces X,Y were defined in Example 4.31. If
X,Y are oriented, the next theorem defines an orientation on X × Y .

Theorem 10.80. Let X,Y be m-Kuranishi spaces in mK̇ur, so that Example
4.31 defines the product X×Y in mK̇ur with projections πX : X×Y →X, πY :
X × Y → Y , and Theorem 10.71 defines the canonical bundles KX ,KY ,KX×Y
of X,Y ,X × Y . There is a unique isomorphism of topological line bundles on
X × Y :

ΥX,Y : KX×Y −→ π∗X(KX)⊗ πY ∗(KY ), (10.128)
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such that if x ∈ Y , y ∈ Y and we identify T ∗(x,y)(X × Y ) = T ∗xX ⊕ T ∗yY ,

O(x,y)(X × Y ) ∼= OxX ⊕OyY as in (10.35), and define isomorphisms

IT∗xX,T∗y Y : detT ∗(x,y)(X × Y ) −→ det(T ∗xX)⊗ det(T ∗yY ),

IOxX,OyY : detO(x,y)(X × Y ) −→ det(OxX)⊗ det(OyY )

as in (10.84), then

ΥX,Y |(x,y) = (−1)dimOxX dimTyY · IT∗xX,T∗y Y ⊗ IOxX,OyY . (10.129)

Hence if X,Y are oriented there is a unique orientation on X × Y , called the
product orientation, such that (10.128) is orientation-preserving.

Proof. Equation (10.129) defines an isomorphism ΥX,Y |(x,y) : KX×Y |(x,y) →
π∗X(KX)⊗ πY ∗(KY )|(x,y) for each (x, y) ∈ X × Y . Thus there is a unique map
of sets ΥX,Y in (10.128) which satisfies (10.129) for all (x, y) ∈ X ×Y . We must
show that this map ΥX,Y is an isomorphism of topological line bundles. It is
sufficient to do this locally near each (x, y) in X × Y .

Fix (x, y) ∈ X × Y , and let (Ua, Da, ra, χa), (Vb, Eb, sb, ψb) be m-Kuranishi
neighbourhoods on X,Y with x ∈ Imχa ⊆ X, y ∈ Imψb ⊆ Y . Then as in
Example 4.53 we have an m-Kuranishi neighbourhood(

Ua × Vb, π∗Ua(Da)⊕ π∗Vb(Eb), π
∗
Ua(ra)⊕ π∗Vb(sb), χa × ψb

)
on X × Y , with (x, y) ∈ Im(χa × ψb). Let u = χ−1

a (x) ∈ r−1
a (0) ⊆ Ua, v =

ψ−1
b (y) ∈ s−1

b (0) ⊆ Vb, so that as in Definition 10.6 we have linear maps
dura : TuUa → Da|u and dvsb : TvVb → Eb|v.

As in the proof of Theorem 10.71, write F •, G• for the complexes

· · ·
degree

0 // 0
−3

0 // 0
−2

0 // TuUa
−1

dura // Da|u
0

0 // 0
1

0 // 0
2

0 // · · · ,

· · ·
degree

0 // 0
−3

0 // 0
−2

0 // TvVb
−1

dsb // Eb|v
0

0 // 0
1

0 // 0
2

0 // · · · .

Then Proposition 10.68 shows that the following commutes:

(det(TuUa ⊕ TvVb))−1

⊗det(Da|u ⊕ Eb|v)

(−1)rankDa dimVb ·
IT∗uUa,T∗v Vb⊗IDa|u,Eb|v
��

ΘF•⊕G•
// KX×Y |(x,y)

ΥX,Y |(x,y)=(−1)dimOxX dimTyY ·
IT∗xX,T∗y Y⊗IOxX,OyY

��
((detTuUa)−1 ⊗ detDa|u)
⊗((detTvVa)−1 ⊗ detEb|u)

ΘF•⊗ΘG• // KX |x ⊗KY |y.

(10.130)
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Now (10.130) is the fibre at (x, y) ∈ r−1
a (0) × s−1

b (0) of the commutative
diagram of topological line bundles on r−1

a (0)× s−1
b (0) ⊆ Ua × Vb:

det(T ∗(Ua × Vb)⊗
det((π∗Ua(Da)⊕ π∗Vb(Eb)))|r−1

a (0)×s−1
b (0)

(−1)rankDa dimVb ·
IT∗Ua,T∗Vb⊗IDa,Eb
��

ΘUa×Vb,··· ,χa×ψb // (χa × ψb)−1(KX×Y )

(χa×ψb)−1(ΥX,Y )

��
π∗
r−1
a (0)

(detT ∗Ua⊗detDa)

⊗π∗
s−1
b (0)

(detT ∗Va⊗detEb)

π∗
r
−1
a (0)

(ΘUa,Da,ra,χa )

⊗π∗
s
−1
b

(0)
(ΘVb,Eb,sb,ψb )

//
(χa◦πr−1

a (0))
∗(KX)

⊗(ψb◦πs−1
b (0))

∗(KY ),

(10.131)

where ΘUa,Da,ra,χa ,ΘVb,Eb,sb,ψb and ΘUa×Vb,··· ,χa×ψb are as in Theorem 10.71.
The top, bottom and left morphisms in (10.131) are isomorphisms of topo-

logical line bundles on r−1
a (0)× s−1

b (0). Hence the right hand morphism is an
isomorphism, so ΥX,Y is an isomorphism on the open subset Im(χa×ψb) ⊆ X×Y ,
as χa × ψb : r−1

a (0) × s−1
b (0) → Im(χa × ψb) is a homeomorphism. Since we

can cover X × Y by such open subsets Im(χa × ψb), we see that ΥX,Y is an
isomorphism of topological line bundles, as we have to prove.

The morphism ΥX,Y in (10.128), and hence the orientation on X × Y
above, depend on our choice of orientation conventions, as in Convention 2.39,
including various sign choices in §10.6–§10.7 and in (10.129). Different orientation
conventions would change ΥX,Y and the orientation onX×Y by a sign depending
on vdimX, vdimY . If X,Y are manifolds then the orientation on X×Y agrees
with that in Convention 2.39(a).

Proposition 10.81. Suppose X,Y ,Z are oriented m-Kuranishi spaces. As in
Example 4.31, products of m-Kuranishi spaces are commutative and associative
up to canonical 1-isomorphism. When we include orientations, (4.38) becomes

X×Y ∼= (−1)vdimX vdimY Y×X, (X×Y )×Z ∼= X×(Y×Z ). (10.132)

Proof. Let x ∈X and y ∈ Y , and consider the noncommutative diagram

KX×Y |(x,y)

ΥX,Y |(x,y)=(−1)dimOxX dimTyY ·IT∗xX,T∗y Y⊗IOxX,OyY

//

∼=

��

KX |x ⊗KY |y

∼=

��
KY×X |(y,x)

ΥY,X |(y,x)=(−1)dimOyY dimTxX ·IT∗y Y,T∗xX⊗IOyY,OxX

∼=(−1)dimOyY dimTxX+dimTxX dimTyY+dimOxX dimOyY ·
IT∗xX,T∗y Y⊗IOxX,OyY

// KY |y ⊗KX |x.

(10.133)

Here the columns are the natural isomorphisms, and for the bottom morphism
we use the fact that under the natural isomorphisms we have IT∗y Y ,T∗xX

∼=
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(−1)dimTxX dimTyY IT∗xX,T∗y Y and IOyY ,OxX
∼= (−1)dimOxX dimOyY IOxX,OyY .

Thus, (10.133) fails to commute by an overall factor of

(−1)dimOxX dimTyY · (−1)dimOyY dimTxX+dimTxX dimTyY+dimOxX dimOyY

= (−1)vdimX vdimY ,

since vdimX = dimTxX − dimOxX and vdimY = dimTyY − dimOyY by
(10.26). As this holds for all (x, y) ∈X×Y , the first equation of (10.132) follows,
since ΥX,Y and ΥY ,X are used to define the orientations on X ×Y and Y ×X.
The second equation is easier, as the analogue of (10.133) does commute.

10.7.5 Canonical bundles, orientations on µ-Kuranishi spaces

All the material of §10.7.1–§10.7.4 extends immediately to µ-Kuranishi spaces in
Chapter 5, with no significant changes.

10.7.6 Canonical bundles, orientations on Kuranishi spaces

To extend §10.7.1–§10.7.4 to Kuranishi spaces in Chapter 6, there is one new
issue. For a general Kuranishi space X in K̇ur, the näıve analogue of Theorem
10.71 is false, in that we may not be able to define a topological line bundle
π : KX → X over X considered just as a topological space.

Really we should make X into a Deligne–Mumford topological stack (a kind
of orbifold in topological spaces), as in Noohi [58], and then π : KX → X should
be a line bundle in the sense of stacks or orbifolds. That is, X has finite isotropy
groups GxX for x ∈ X as in §6.5, which may act nontrivially on the fibres KX |x.
The only possible nontrivial action is via {±1} acting on R. Thus, as topological
spaces, the fibres of π : KX → X may be either R or R/{±1}.

However, orientations on X only exist if GxX acts trivially on KX |x for each
x ∈ X, and then KX does exist as a topological line bundle on X as a topological
space. So we will restrict to this case, and not bother with topological stacks.

Definition 10.82. Let X be a Kuranishi space in K̇ur. Then as in §10.2.3, for
each x ∈X we have the isotropy group GxX, which acts linearly on the tangent
and obstruction spaces TxX, OxX. We call X locally orientable if the induced
action of GxX on detT ∗xX ⊗ detOxX is trivial for all x ∈X.

Here is the analogue of Theorem 10.71:

Theorem 10.83. Let X = (X,K) be a locally orientable Kuranishi space in
K̇ur. Then there is a natural topological line bundle π : KX → X called the
canonical bundle of X, with fibres for each x ∈ X given by

KX |x = detT ∗xX ⊗ detOxX

for TxX, OxX as in §10.2.3, with the property that if (V,E,Γ, s, ψ) is a Kuran-
ishi neighbourhood on X in the sense of §6.4, then there is an isomorphism of
topological real line bundles on s−1(0) ⊆ V

ΘV,E,Γ,s,ψ : (detT ∗V ⊗ detE)|s−1(0) −→ ψ̄−1(KX), (10.134)
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such that if v ∈ s−1(0) ⊆ V with ψ̄(v) = x ∈ X, so that as in (10.38) we have
an exact sequence

0 // TxX
ιx // TvV

dvs // E|v
πx // OxX // 0,

and if (c1, . . . , cl), (d1, . . . , dl+m), (e1, . . . , em+n), (f1, . . . , fn) are bases for TxX,
TvV,E|v, OxX respectively with ιx(ci) = di, i = 1, . . . , l and dvs(dl+j) = ej ,
j = 1, . . . ,m and πx(em+k) = fk, k = 1, . . . , n, and (γ1, . . . , γl), (δ1, . . . , δl+m)
are dual bases to (c1, . . . , cl), (d1, . . . , dl+m) for T ∗xX, T ∗v V, then

ΘV,E,Γ,s,ψ|v : detT ∗v V ⊗ detE|v → detT ∗xX ⊗ detOxX maps

ΘV,E,Γ,s,ψ|v : (δ1 ∧ · · · ∧ δl+m)⊗ (e1 ∧ · · · ∧ em+n) 7−→
(−1)m(m+1)/2 · (γ1 ∧ · · · ∧ γl)⊗ (f1 ∧ · · · ∧ fn).

Proof. The proof is similar to that of Theorem 10.71, with one additional step: in
the m-Kuranishi case, we make (10.104) by pushing ΘV,E,s,ψ in (10.101) forward
by the homeomorphism ψ : s−1(0) → Imψ. In the Kuranishi case, we have a
Γ-equivariant ΘV,E,Γ,s,ψ in (10.134) on s−1(0). Because of the locally orientable
condition on X, this pushes forward along the projection s−1(0)→ s−1(0)/Γ to
an isomorphism of topological line bundles on s−1(0)/Γ, and this then pushes
forward along the homeomorphism ψ : s−1(0)/Γ→ Imψ to give an analogue of
(10.104). Also the analogue of (10.106) should take place on π−1(s−1(0)) ⊆ P
for Φ = (P, π, φ, φ̂). We leave the details to the reader.

The analogue of Proposition 10.73 holds for étale f : X → Y between locally
orientable Kuranishi spaces X,Y . Here is the analogue of Definition 10.74:

Definition 10.84. Let X = (X,K) be a locally orientable Kuranishi space in
K̇ur, so that Theorem 10.83 defines the canonical bundle π : KX → X. An
orientation oX on X is an orientation on the fibres of KX . That is, oX is an
equivalence class [ω] of continuous sections ω ∈ Γ0(KX) with ω|x 6= 0 for all
x ∈ X, where two such ω, ω′ are equivalent if ω′ = K · ω for K : X → (0,∞)
continuous. The opposite orientation is −oX = [−ω]. Then we call (X, oX) an
oriented Kuranishi space. Usually we suppress oX , and just call X an oriented
Kuranishi space, and then we write −X for X with the opposite orientation.

By the analogue of Proposition 10.73, if f : X → Y is an étale 1-morphism
in K̇ur for X,Y locally orientable then orientations oY on Y pull back to
orientations oX = f∗(oY ) on X. If f is an equivalence, this defines a natural
1-1 correspondence between orientations on X and orientations on Y .

Let f : X → Y be a 1-morphism in K̇ur, with X,Y locally orientable. A
coorientation cf on f is an orientation on the fibres of the line bundle KX ⊗
f∗(K∗Y ) over X. That is, cf is an equivalence class [γ] of γ ∈ Γ0(KX ⊗ f∗(K∗Y ))
with γ|x 6= 0 for all x ∈ X, where two such γ, γ′ are equivalent if γ′ = K · γ
for K : X → (0,∞) continuous. The opposite coorientation is −cf = [−γ].
If Y is oriented then coorientations on f are equivalent to orientations on X.
Orientations on X are equivalent to coorientations on π : X → ∗, for ∗ the
point in K̇ur.
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The weak 2-functor F K̇ur
mK̇ur

: mK̇ur ↪→ K̇ur from §6.2.4 identifies canonical
bundles and orientations on an m-Kuranishi space X from §10.7.1–§10.7.2 with

canonical bundles and orientations on the Kuranishi space X ′ = F K̇ur
mK̇ur

(X),

which is automatically locally orientable as GxX
′ = {1} for all x ∈X ′.

Here are the analogues of Theorem 10.77 and Definition 10.79:

Theorem 10.85. Let Ṁanc satisfy Assumptions 3.22 and 10.16, and let X be
a locally orientable Kuranishi space with corners in K̇urc. Then ∂X is locally
orientable, and there is a natural isomorphism of topological line bundles on ∂X

ΩX : K∂X −→ N∂X ⊗ i∗X(KX), (10.135)

where N∂X is a line bundle on ∂X, with a natural orientation on its fibres.
Suppose that (Va, Ea,Γa, sa, ψa) is a Kuranishi neighbourhood on X, as

in §6.4, with dimVa = ma and rankEa = na. Then as in §6.4 we have a
Kuranishi neighbourhood (V(1,a), E(1,a),Γ(1,a), s(1,a), ψ(1,a)) on ∂X with V(1,a) =
∂Va, E(1,a) = i∗Va(Ea), Γ(1,a) = Γa, and s(1,a) = i∗Va(sa). Also Assumption 10.16
gives a (smooth) line bundle N∂Va → ∂Va, with an orientation on its fibres. Then
there is a natural isomorphism of topological line bundles on s−1

(1,a)(0) ⊆ ∂Va

ΦVa,Ea,Γa,sa,ψa : N∂Va |s−1
(1,a)

(0) −→ ψ̄−1
(1,a)(N∂X), (10.136)

which identifies the orientations on the fibres, such that the following commutes:

(detT ∗∂Va⊗
det i∗Va(Ea))|s−1

(1,a)
(0) ΩVa⊗iddet i∗

Va
(Ea)|···

//

ΘV(1,a),E(1,a),s(1,a),ψ(1,a)

��

N∂Va ⊗ i∗Va(detT ∗Va
⊗detEa)|s(1,a)−1(0)

ΦVa,Ea,sa,ψa⊗iVa |
∗
···(ΘVa,Ea,sa,ψa )

��
ψ̄−1

(1,a)(K∂X)
ΩX // ψ̄−1

(1,a)(N∂X ⊗ i
∗
X(KX)),

where ΩVa is as in (10.16), and ΘVa,Ea,Γa,sa,ψa ,ΘV(1,a),E(1,a),Γ(1,a),s(1,a),ψ(1,a)
as

in (10.134), and ΩX as in (10.135), and ΦVa,Ea,Γa,sa,ψa as in (10.136).

Proof. The proof is similar to that of Theorem 10.77, but with a few extra
steps. Firstly, if in the situation of the theorem we have v′a ∈ s−1

(1,a)(0) with

ψ̄(1,a)(v
′
a) = x′ ∈ ∂X and va = iVa(v′a) ∈ s−1

a (0) and iX(x′) = ψ̄a(va) = x in X,
then as in the proof of Theorem 10.77 we can construct an isomorphism

detT ∗x′(∂X)⊗ detOx′(∂X) ∼= N∂Va |v′a ⊗ detT ∗xX ⊗ detOxX,

which is equivariant under Gx′(∂X) ∼= StabΓ(1,a)
(v′a) ⊆ StabΓa(va) ∼= GxX. But

StabΓ(1,a)
(v′a) acts trivially on N∂Va |v′a , as the action is defined using the γf in

Assumption 10.16 which are orientation-preserving, and GxX acts trivially on
detT ∗xX ⊗ detOxX as X is locally orientable. Hence Gx′(∂X) acts trivially on
detT ∗x′(∂X)⊗ detOx′(∂X), so ∂X is locally orientable, as we have to prove.

Secondly, as the natural action of Γ(1,a) on N∂Va preserves orientations on the
fibres, we can use ΦVa,Ea,Γa,sa,ψa in (10.136) to induce a unique orientation on
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N∂X |Imψ(1,a)
, as the orientation on N∂Va |s−1

(1,a)
(0) descends through the quotient

s−1
(1,a)(0)→ s−1

(1,a)(0)/Γ(1,a). We leave the details to the reader.

As in Example 10.78, working in Kurc or Kurgc with b-canonical bundles
bKX in Theorem 10.85 defined using b-tangent bundles bTV → V in Manc

or Mangc, the normal bundle N∂X in Theorem 10.85 is canonically trivial,
N∂X ∼= O∂X , so we can replace (10.135) by (10.127).

Definition 10.86. Let Ṁanc satisfy Assumptions 3.22 and 10.16, and suppose
(X, oX) is an oriented Kuranishi space with corners in K̇urc. Then X is locally
orientable by Definition 10.84 with canonical bundle KX → X from Theorem
10.83, and oX is an orientation on the fibres of KX → X. Theorem 10.85 shows
that ∂X is locally orientable in K̇urc, so that K∂X → ∂X is defined, and
gives a line bundle N∂X → ∂X with an orientation νX on its fibres, and an
isomorphism ΩX : K∂X → N∂X ⊗ i∗X(KX). Hence there is a unique orientation
o∂X on the fibres of K∂X → ∂X identified by ΩX with νX ⊗ i∗X(oX), and o∂X
is an orientation on ∂X. Thus, if X is an oriented Kuranishi space with corners,
then ∂kX is naturally oriented for all k = 0, 1, . . . .

The analogues of Theorem 10.80 and Proposition 10.81 hold for products
X ×Y of Kuranishi spaces X ×Y defined as in Example 6.28, where we require
X,Y to be locally orientable, and then X × Y is also locally orientable, so that
KX ,KY ,KX×Y exist. The proofs combine those of Theorems 10.80 and 10.83
and Proposition 10.81.
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Chapter 11

Transverse fibre products and
submersions

In the category of classical manifolds Man, morphisms g : X → Z, h : Y → Z
are transverse if whenever x ∈ X and y ∈ Y with g(x) = h(y) = z ∈ Z, then

Txg ⊕ Tyh : TxX ⊕ TyY −→ TzZ

is surjective. If g, h are transverse then a fibre product W = X ×g,Z,h Y exists
in the category Man, as defined in §A.1, with dimW = dimX + dimY −dimZ,
in a Cartesian square in Man:

W
f

//

e��

Y
h ��

X
g // Z.

Also g : X → Z is a submersion if Txg : TxX → TzZ is surjective for all
x ∈ X with g(x) = z ∈ Z. If g is a submersion then g, h are transverse for any
morphism h : Y → Z in Man. Generalizations of all this to various categories
Manc,Manc

in,Mangc, . . . of manifolds with (g-)corners were discussed in §2.5.
This chapter studies transversality, fibre products, and submersions for m-

Kuranishi spaces and Kuranishi spaces. By ‘fibre products’ we mean 2-category
fibre products in mK̇ur and K̇ur (or more generally in certain 2-subcategories
mK̇urD ⊆ mK̇ur and K̇urD ⊆ K̇ur), as defined in §A.4, which satisfy a
complicated universal property involving 2-morphisms. Readers are advised to
familiarize themselves with fibre products in both ordinary categories in §A.1,
and in 2-categories in §A.4, before continuing.

As we explain in §11.4, these ideas do not extend nicely to the ordinary
category of µ-Kuranishi spaces µK̇ur ' Ho(mK̇ur). The 2-category structure
on mK̇ur is essential for defining well-behaved transverse fibre products, and the
universal property in mK̇ur does not descend to Ho(mK̇ur). We can still define
a kind of ‘transverse fibre product’ in µK̇ur, but it is not a category-theoretic
fibre product, and it is not characterized by a universal property in µK̇ur.
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Optional assumptions on transversality and submersions in categories Ṁan,
Ṁanc are given in §11.1, extending those in Chapter 3. Section 11.2 discusses
transverse fibre products in a general 2-category mK̇ur, and §11.3 works out
these results in mKur,mKurc

st,mKurgc and mKurc. Section 11.4 considers
fibre products of µ-Kuranishi spaces, and §11.5–§11.6 extend §11.2–§11.3 to
Kuranishi spaces. Long proofs are postponed to §11.7–§11.11.

11.1 Optional assumptions on transverse fibre products

Suppose for the whole of this section that Ṁan satisfies Assumptions 3.1–3.7.
We now give optional assumptions on transversality and submersions in Ṁan.

11.1.1 ‘Transverse morphisms’ and ‘submersions’ in Ṁan

Here is the basic assumption we will need to get a good notion of transverse fibre
product in mK̇ur, K̇ur — part (b) will be essential in the proof of Theorem
11.17 in §11.2 on the existence of fibre products of w-transverse 1-morphisms of
global m-Kuranishi neighbourhoods, which is the necessary local condition for
existence of fibre products in mK̇ur. We write the assumption using choices of
discrete properties D,E to fit in with the results of §2.5.

Assumption 11.1. (Transverse fibre products.) (a) We are given discrete
properties D,E of morphisms in Ṁan, in the sense of Definition 3.18, where D
implies E. We require that the projections πX : X × Y → X, πY : X × Y → Y
are D and E for all X,Y ∈ Ṁan. We write ṀanD, ṀanE for the subcategories
of Ṁan with all objects, and only D and E morphisms.

(b) Let g : X → Z and h : Y → Z be morphisms in ṀanD. We are given a
notion of when g, h are transverse. This satisfies:

(i) If g, h are transverse then a fibre product W = X×g,Z,hY exists in ṀanD,
as in Definition A.3, with dimW = dimX+ dimY −dimZ, in a Cartesian
square in ṀanD, so that e, f, g, h are D morphisms in Ṁan:

W
f

//

e��

Y
h ��

X
g // Z.

(11.1)

Furthermore, (11.1) is also Cartesian in ṀanE .

(ii) In the situation of (i), suppose c : V → X, d : V → Y are morphisms in
ṀanE , and E → V is a vector bundle, and s ∈ Γ∞(E) is a section, and
K : E → Tg◦cZ is a morphism, such that h ◦ d = g ◦ c+ K ◦ s+O(s2) in
the sense of Definition 3.15(vii). Then there exist an open neighbourhood
V ′ of s−1(0) in V , and a morphism b : V ′ →W in ṀanE , and morphisms
Λ : E|V ′ → Te◦bX, M : E|V ′ → Tf◦bY with

c|V ′ = e ◦ b+ Λ ◦ s+O(s2), d|V ′ = f ◦ b+ M ◦ s+O(s2), (11.2)
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and if K′ : E|V ′ → Tg◦e◦bZ is a morphism with K|V ′ = K′ + O(s) in
the sense of Definition 3.15(v), which exists and is unique up to O(s) by
Theorem 3.17(g), as g ◦ c|V ′ = g ◦ e ◦ b+O(s) by (11.2), then

K′ + T g ◦ Λ = T h ◦M +O(s) (11.3)

in the sense of Definition 3.15(ii), where T g, T h are as in §3.3.4(c).

(iii) In the situation of (ii), suppose Ṽ ′, b̃, Λ̃, M̃ are alternative choices for
V ′, b,Λ,M. Then there exists N : E|V ′∩Ṽ ′ → TbW |V ′∩Ṽ ′ with

b̃|V ′∩Ṽ ′ = b|V ′∩Ṽ ′ + N ◦ s+O(s2), (11.4)

and if Λ̃′ : E|V ′∩Ṽ ′ → Te◦bX|V ′∩Ṽ ′ , M̃′ : E|V ′∩Ṽ ′ → Tf◦bY |V ′∩Ṽ ′ are

morphisms with Λ̃|V ′∩Ṽ ′ = Λ̃′+O(s), M̃|V ′∩Ṽ ′ = M̃′+O(s), which exist and
are unique up to O(s) by Theorem 3.17(g), as e◦ b̃|V ′∩Ṽ ′ = e◦b|V ′∩Ṽ ′+O(s)
and f ◦ b̃|V ′∩Ṽ ′ = f ◦ b|V ′∩Ṽ ′ +O(s) by (11.4), then

Λ|V ′∩Ṽ ′ = Λ̃′ + T e ◦N +O(s), M|V ′∩Ṽ ′ = M̃′ + T f ◦N +O(s). (11.5)

If Ň : E|V ′∩Ṽ ′ → TbW |V ′∩Ṽ ′ satisfies (11.4)–(11.5) then Ň = N +O(s).

(c) Let g : X → Z be a morphism in ṀanD. We are given a notion of when g
is a submersion. If g is a submersion and h : Y → Z is any morphism in ṀanD,
then g, h are transverse.

In fact any category Ṁan can be made to satisfy Assumption 11.1:

Example 11.2. Let Ṁan be any category satisfying Assumptions 3.1–3.7, and
let D,E be any discrete properties of morphisms in Ṁan satisfying Assumption
11.1(a) (for instance, D,E could be trivial). Define morphisms g : X → Z,
h : Y → Z in ṀanD to be transverse if they satisfy Assumption 11.1(b). Define
a D morphism g : X → Z to be a submersion if it satisfies Assumption 11.1(c).
Then Assumption 11.1 holds, just by definition.

LetX,Y be any objects of Ṁan, and ∗ be the point in Ṁan, as in Assumption
3.1(c). Then the projections π : X → ∗, π : Y → ∗ satisfy Assumption 11.1(b),
and so are transverse. Here in (b)(i) we take W = X × Y , and in (b)(ii) we take
b = (c, d) and Λ = M = 0. We will use this in discussing products of m-Kuranishi
spaces in §11.2.3.

11.1.2 More assumptions on transversality and submersions

We now give six optional assumptions on transverse morphisms and submersions,
which will imply similar properties for (m-)Kuranishi spaces. For the first, in
Remark 2.37 we discuss when fibre products in Man,Manc

st, . . . are also fibre
products on the level of topological spaces.
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Assumption 11.3. (Transverse fibre products are fibre products of
topological spaces.) Suppose that Assumption 11.1 holds for Ṁan, and in

addition, the functor FTop

Ṁan
: Ṁan→ Top from Assumption 3.2 maps transverse

fibre products in Ṁan to fibre products in Top. That is, in the situation of
Assumption 11.1(b)(i) we have a homeomorphism

(e, f) : W −→
{

(x, y) ∈ X × Y : g(x) = h(y)
}
.

Assumption 11.4. (Properties of submersions.) Suppose Assumption 11.1
holds for Ṁan, and:

(a) If (11.1) is a Cartesian square in ṀanD with g a submersion, then f is a
submersion.

(b) Products of submersions are submersions. That is, if g : W → Y and
h : X → Z are submersions then g × h : W ×X → Y × Z is a submersion.

(c) The projection πX : X × Y → X is a submersion for all X,Y ∈ Ṁan.

Assumption 11.5. (Tangent spaces of transverse fibre products.) Let
Ṁan satisfy Assumption 10.1, with discrete property A and tangent spaces
TxX, and Assumption 11.1, with discrete properties D,E. Suppose that D
implies A, and whenever (11.1) is Cartesian in ṀanD with g, h transverse and
w ∈ W with e(w) = x in X, f(w) = y in Y and g(x) = h(y) = z in Z, the
following is an exact sequence of real vector spaces:

0 // TwW
Twe⊕Twf // TxX ⊕ TyY

Txg⊕−Tyh // TzZ // 0.

Assumption 11.6. (Quasi-tangent spaces of transverse fibre products.)
Let Ṁan satisfy Assumption 10.19, with discrete property C and quasi-tangent
spaces QxX in a category Q, and Assumption 11.1, with discrete properties
D,E. Suppose that D implies C, and whenever (11.1) is Cartesian in ṀanD
with g, h transverse and w ∈ W with e(w) = x in X, f(w) = y in Y and
g(x) = h(y) = z in Z, the following is Cartesian in Q:

QwW
Qwf

//

Qwe��

QyY

Qyh ��
QxX

Qxg // QzZ.

Assumption 11.7. (Compatibility with the corner functor.) Let Ṁanc

satisfy Assumption 3.22 in §3.4, so that we have a corner functor C : Ṁanc →
Ṁ̌anc, and let Assumption 11.1 hold with Ṁanc in place of Ṁan. Define
transverse morphisms and submersions in Ṁ̌anc

D in the obvious way: we call

g :
∐
l>0Xl →

∐
n>0 Zn and h :

∐
m>0 Ym →

∐
n>0 Zn transverse in Ṁ̌anc

D
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if g|··· : Xl ∩ g−1(Zn) → Zn and h|··· : Ym ∩ h−1(Zn) → Zn are transverse in
Ṁanc

D for all l,m, n, and similarly for submersions.

Suppose that C maps Ṁanc
D → Ṁ̌anc

D and Ṁanc
E → Ṁ̌anc

E , and whenever

(11.1) is a Cartesian square in Ṁanc with g, h transverse, then the following is
Cartesian in Ṁ̌anc

D and Ṁ̌anc
E , with C(g), C(h) transverse in Ṁ̌anc

D:

C(W )
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Also, suppose that if g is a submersion then C(g) is a submersion.

The next assumption is only nontrivial if D 6= E.

Assumption 11.8. (Fibre products with submersions in ṀanE.) Sup-
pose that Assumption 11.1 holds for Ṁan, and whenever g : X → Z is a
submersion in ṀanD, and h : Y → Z is any morphism in ṀanE (not neces-
sarily in ṀanD), then a fibre product W = X ×g,Z,h Y exists in ṀanE , with

dimW = dimX + dimY − dimZ, in a Cartesian square (11.1) in ṀanE , and
Assumption 11.1(b)(ii),(iii) hold for g, h. If Assumptions 11.3, 11.4(a) or 11.7
hold, then they also hold for fibre products W = X ×g,Z,h Y in ṀanE with g a
submersion.

11.1.3 Characterizing transversality and submersions

The next assumption gives necessary and sufficient conditions for when morphisms
g, h in Ṁanc are transverse, or when g is a (strong) submersion, that extend
nicely to (m-)Kuranishi spaces mK̇urc, K̇urc. The statement is complicated
to allow these conditions to depend on several different things — maps of
tangent spaces Txg, Tyh, of quasi-tangent spaces Qxg,Qyh, and the corner maps
C(g), C(h) — since our examples in §2.5 depend on these.

We state it using Ṁanc in §3.4, so our conditions can involve the corner
functor C : Ṁanc → Ṁ̌anc. But as in Example 3.24(i), we can take Ṁanc to
be any category Ṁan satisfying Assumptions 3.1–3.7 with Ck(X) = ∅ for all
X ∈ Ṁan and k > 0, so the corners are not needed in all examples.

Assumption 11.9. Suppose Ṁanc satisfies Assumption 3.22 in §3.4, so that
we have a corner functor C : Ṁanc → Ṁ̌anc.

Suppose Assumption 10.1 holds for Ṁanc, so we are given a discrete property
A of morphisms in Ṁanc, and notions of tangent space TxX for X in Ṁanc

and x ∈ X, and tangent map Txf : TxX → TyY for A morphisms f : X → Y in

Ṁanc and x ∈ X with f(x) = y in Y .
Suppose Assumption 10.19 holds for Ṁanc, so we are given a category Q, a

discrete property C of morphisms in Ṁanc, and notions of quasi-tangent space
QxX inQ forX in Ṁanc and x ∈ X, and quasi-tangent map Qxf : QxX → QyY
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in Q for C morphisms f : X → Y in Ṁanc and x ∈ X with f(x) = y in Y .
These may be trivial, i.e. Q could have one object and one morphism.

Suppose Assumption 11.1 holds for Ṁanc, so we are given discrete properties
D,E of morphisms in Ṁanc, where D implies E, and notions of transverse
morphisms g, h and submersions g in Ṁanc

D. We require that D implies A and
C, and:

(a) Let g : X → Z and h : Y → Z be morphisms in Ṁanc
D. Then g, h are

transverse if and only if for all x ∈ X and y ∈ Y with g(x) = h(y) = z in
Z, the following linear map is surjective:

Txg ⊕ Tyh : TxX ⊕ TyY −→ TzZ, (11.6)

and an explicit condition (which may be trivial) holds, which we call
‘condition T ’, involving only (i)–(ii) below:

(i) Condition T may involve the quasi-tangent maps Qxg : QxX → QzZ
and Qxh : QyY → QzZ in Q.

(ii) For all j, k, l > 0, condition T may involve the family of triples
(x,y, z) for x ∈ Cj(X), y ∈ Ck(Y ) with Πj(x) = x, Πk(y) = y, and
C(g)x = C(h)y = z in Cl(Z).

Condition T should only involve objects QxX, . . . in Q up to isomorphism,
and subsets Π−1

j (x) ⊆ Cj(X), . . . up to bijection.

(b) Taken together, the conditions in (a) are an open condition in x, y. That is,
if both conditions hold for some x, y, z, then there are open neighbourhoods
X ′ of x in X and Y ′ of y in Y such that both conditions also hold for all
x′ ∈ X ′ and y′ ∈ Y ′ with g(x′) = h(y′) = z′ ∈ Z.

(c) Suppose g : X → Z, h : Y → Z are morphisms in Ṁanc
D and x ∈ X,

y ∈ Y with g(x) = h(y) = z ∈ Z are such that condition T holds, though
(11.6) need not be surjective. Then there exist open X ′ ↪→ X × Rm and
Y ′ ↪→ Y ×Rn for m,n > 0 with (x, 0) ∈ X ′ and (y, 0) ∈ Y ′, and transverse
morphisms g′ : X ′ → Z, h′ : Y ′ → Z with g′(x̃, 0) = g(x̃), h′(ỹ, 0) = h(ỹ)
for all x̃ ∈ X, ỹ ∈ Y with (x̃, 0) ∈ X ′ and (ỹ, 0) ∈ Y ′.

(d) Let g : X → Z be a morphism in Ṁanc
D. Then g is a submersion if and

only if for all x ∈ X with g(x) = z in Z, the following is surjective:

Txg : TxX −→ TzZ, (11.7)

and an explicit condition (which may be trivial) holds, which we call
‘condition S’, involving only (i)–(ii) below:

(i) Condition S may involve Qxg : QxX → QzZ.

(ii) For all j, l > 0, condition S may involve the family of pairs (x, z)
where x ∈ Cj(X) with Πj(x) = x and C(g)x = z in Cl(Z).

Condition S should only involve objects QxX, . . . in Q up to isomorphism,
and subsets Π−1

j (x) ⊆ Cj(X), . . . up to bijection.
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(e) The conditions in (d) together are an open condition in x ∈ X.

(f) Suppose g : X → Z is a morphism in Ṁanc
D and x ∈ X with g(x) = z in

Z are such that condition S holds, though (11.7) need not be surjective.
Then there exist open X ′ ↪→ X × Rm for m > 0 with (x, 0) ∈ X ′ and a
submersion g′ : X ′ → Z with g′(x̃, 0) = g(x̃) for all x̃ ∈ X with (x̃, 0) ∈ X ′.

(g) Suppose f : X → Y and g : Y → Z are morphisms in Ṁanc
D and x ∈ X

with f(x) = y in Y and g(y) = z in Z. If condition S holds for f at x, y
and for g at y, z, then it holds for g ◦ f at x, z.

(h) Suppose g : X → Z is a morphism in Ṁanc with Z in Man ⊆ Ṁanc.
Then g is D, and condition S in (d) holds for all x, z.

11.1.4 Examples of categories satisfying the assumptions

Using the material of §2.5, we give several interesting examples in which As-
sumption 11.1 and various of Assumptions 11.3–11.9 hold:

Example 11.10. Take Ṁan to be the category of classical manifolds Man, and
D,E to be trivial (i.e. all morphisms in Man are D and E). As in Definition
2.21 in §2.5.1, define morphisms g : X → Z, h : Y → Z in Man to be transverse
if whenever x ∈ X and y ∈ Y with g(x) = h(y) = z ∈ Z, then

Txg ⊕ Tyh : TxX ⊕ TyY −→ TzZ

is surjective. Define g : X → Z to be a submersion if Txg : TxX → TzZ is
surjective for all x ∈ X with g(x) = z ∈ Z. We claim that:

• Assumption 11.1 holds.

• Assumptions 11.3–11.5 hold.

• For Assumption 11.9, we take Man to be a category Ṁanc as in Example
3.24(i), with Ck(X) = ∅ for all X ∈ Man and k > 0. We take tangent
spaces TxX to be as usual, and quasi-tangent spaces QxX to be trivial,
and conditions T and S are trivial. Then Assumption 11.9 holds.

Almost all the above is well known or obvious, but Assumption 11.1(b)(ii)–(iii)
are new, so we prove them in Proposition 11.14 below.

Example 11.11. (a) Take Ṁan to be Manc from §2.1, and D to be strongly
smooth morphisms, and E to be trivial, and define s-transverse morphisms and
s-submersions in Manc

st as in Definition 2.24 in §2.5.2. We claim that:

• Assumption 11.1 holds, where ‘transverse’ means s-transverse, and ‘sub-
mersions’ are s-submersions.

• Assumptions 11.3–11.4 hold.

• Assumption 11.5 holds for both ordinary tangent spaces TxX and stratum
tangent spaces T̃xX in Example 10.2(ii),(iv).
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• Assumption 11.6 holds for the stratum normal spaces ÑxX in Definition
2.16, as in Example 10.20(a).

• Assumption 11.8 holds, by Theorem 2.25(d).

• For Assumption 11.9, we take Manc to be a category Ṁanc as in Example
3.24(a), with corner functor C : Manc → M̌anc as in Definition 2.9. We
take tangent spaces to be stratum tangent spaces T̃xX, and quasi-tangent
spaces to be stratum normal spaces ÑxX. Condition T is that

Ñxg ⊕ Ñyh : ÑxX ⊕ ÑyY −→ ÑzZ (11.8)

is surjective. Condition S is that Ñxg : ÑxX → ÑzZ is surjective. Then
Assumption 11.9 holds.

Most of the above follows from §2.5.2, but Assumption 11.1(b)(ii)–(iii) are new,
and we prove them in Proposition 11.14 below.

(b) We can also modify part (a) as follows. In Assumption 11.1 we take
transversality in Manc

st to be t-transverse morphisms in Definition 2.24. In
Assumption 11.9, if g : X → Z and h : Y → Z are morphisms in Manc

st and
x ∈ X, y ∈ Y with g(x) = h(y) = z in Z, then the new condition T is that (11.8)
is surjective, and for all x ∈ Cj(X) and y ∈ Ck(Y ) with Πj(x) = x, Πk(y) = y,
and C(g)x = C(h)y = z in Cl(Z), we have j + k > l, and there is exactly one
triple (x,y, z) with j + k = l.

Then Assumptions 11.1, 11.3–11.6 and 11.8–11.9 hold as in (a), and in
addition, Assumption 11.7 holds for both corner functors C,C ′ : Manc → M̌anc

in Definitions 2.9 and 2.11, by Theorem 2.25(b).

Example 11.12. (a) Take Ṁan to be Mangc from §2.4.1, and D,E to be
interior morphisms, and define b-transverse morphisms and b-submersions in
Mangc

in as in Definition 2.27 in §2.5.3. We claim that:

• Assumption 11.1 holds, where ‘transverse’ means b-transverse, and ‘sub-
mersion’ means b-submersion.

• Assumption 11.3 does not hold, as Example 2.35 shows.

• Assumption 11.4 holds.

• Assumption 11.5 holds for b-tangent spaces bTxX in Example 10.2(iii).

• For Assumption 11.9, we take Mangc to be a category Ṁanc as in Example
3.24(h). We take tangent spaces to be b-tangent spaces bTxX, and quasi-
tangent spaces to be trivial. Conditions T and S are both trivial. Then
Assumption 11.9 holds.

Most of the above follows from §2.5.3, and we prove Assumption 11.1(b)(ii)–(iii)
in Proposition 11.14.

(b) Take Ṁan to be Mangc from §2.4.1, and D to be interior morphisms in
Mangc, and E to be trivial, and define c-transverse morphisms and b-fibrations
in Mangc

in as in Definition 2.27 in §2.5.3. Then as in (a) we find that:
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• Assumption 11.1 holds, where ‘transverse’ means c-transverse, and ‘sub-
mersion’ means b-fibration.

• Assumptions 11.3–11.4 hold.

• Assumption 11.5 holds for b-tangent spaces bTxX.

• Assumption 11.7 holds for the corner functor C : Mangc → M̌angc in
§2.4.1, by Theorem 2.28(b).

• For Assumption 11.9, we take Mangc to be a category Ṁanc as in Example
3.24(h), with corner functor C : Mangc → M̌angc as in §2.4.1. We take
tangent spaces to be b-tangent spaces bTxX, and quasi-tangent spaces to
be trivial.

If g : X → Z and h : Y → Z are morphisms in Mangc
in and x ∈ X, y ∈ Y

with g(x) = h(y) = z in Z, condition T is that for all x ∈ Cj(X) and
y ∈ Ck(Y ) with Πj(x) = x, Πk(y) = y, and C(g)x = C(h)y = z in Cl(Z),
we have either j + k > l or j = k = l = 0.

If g : X → Z is a morphism in Mangc
in and x ∈ X with g(x) = z ∈ Z,

condition S is that for all x ∈ Cj(X) with Πj(x) = x and C(g)x = z in
Cl(Z), we have j > l. Then Assumption 11.9 holds.

(c) We can also modify part (b) by instead taking ‘submersions’ to be c-fibrations
in Mangc

in , as in Definition 2.27. In Assumption 11.9, if g : X → Z is a morphism
in Mangc

in and x ∈ X with g(x) = z ∈ Z, the new condition S is that for all
x ∈ Cj(X) with Πj(x) = x and C(g)x = z in Cl(Z), we have j > l, and for
each such z there is exactly one such x with j = l.

Then Assumptions 11.1, 11.3–11.5, 11.7 and 11.9 hold as in (b), and in
addition, Assumption 11.8 holds, by Theorem 2.28(e).

Example 11.13. (a) Take Ṁan to be Manc from §2.1, and D,E to be interior
morphisms, and define sb-transverse morphisms and s-submersions in Manc

in

by Definitions 2.24 and 2.31, as in §2.5.4. Then by restriction from Mangc
in in

Example 11.12(a), we see that:

• Assumption 11.1 holds, where ‘transverse’ means sb-transverse, and ‘sub-
mersion’ means s-submersion.

• Assumption 11.3 does not hold, as Example 2.35 shows.

• Assumption 11.4 holds.

• Assumption 11.5 holds for b-tangent spaces bTxX in Example 10.2(iii).

• For Assumption 11.9, we take Manc to be a category Ṁanc as in Example
3.24(a). We take tangent spaces to be b-tangent spaces bTxX, and quasi-
tangent spaces to be monoids M̃xX as in Example 10.20(c). Condition
T is that M̃xX ×M̃xg,M̃zZ,M̃yh

M̃yY ∼= Nn for n > 0, as in Definition

2.31. Condition S is that the monoid morphism M̃xg : M̃xX → M̃zZ is
isomorphic to a projection Nm+n → Nn. Then Assumption 11.9 holds.
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(b) Take Ṁan to be Manc from §2.1, and D to be interior morphisms in Manc,
and E to be trivial, and define sc-transverse morphisms and s-submersions in
Manc

in by Definitions 2.24 and 2.31, as in §2.5.4. Then by Example 11.11(a)
and restriction from Mangc in Example 11.12(b), we see that:

• Assumption 11.1 holds, where ‘transverse’ means sb-transverse, and ‘sub-
mersion’ means s-submersion.

• Assumptions 11.3–11.4 hold.

• Assumption 11.5 holds for b-tangent spaces bTxX.

• Assumption 11.6 holds for monoids M̃xX.

• Assumption 11.7 holds for the corner functor C : Manc → M̌anc.

• Assumption 11.8 holds.

• For Assumption 11.9, we take Manc to be a category Ṁanc as in Example
3.24(a), with corner functor C : Manc → M̌anc as in §2.2. We take
tangent spaces to be b-tangent spaces bTxX, and quasi-tangent spaces
to be monoids M̃xX. If g : X → Z and h : Y → Z are morphisms in
Manc

in and x ∈ X, y ∈ Y with g(x) = h(y) = z in Z, condition T is that

M̃xX ×M̃xg,M̃zZ,M̃yh
M̃yY ∼= Nn for n > 0, and for all x ∈ Cj(X) and

y ∈ Ck(Y ) with Πj(x) = x, Πk(y) = y, and C(g)x = C(h)y = z in Cl(Z),
we have either j + k > l or j = k = l = 0.

If g : X → Z is a morphism in Manc
in and x ∈ X with g(x) = z ∈ Z,

condition S is that M̃xg : M̃xX → M̃zZ is isomorphic to a projection
Nm+n → Nn. Then Assumption 11.9 holds.

The next proposition will be proved in §11.7.

Proposition 11.14. Examples 11.10–11.13 satisfy Assumption 11.1(b)(ii),(iii).

11.2 Transverse fibre products and submersions in mK̇ur

We suppose throughout this section that the category Ṁan used to define
mK̇ur satisfies Assumptions 3.1–3.7 and 11.1, and will also specify additional
assumptions as needed. Here Assumption 11.1 gives discrete properties D,E
of morphisms in Ṁan, where D implies E, defining subcategories ṀanD ⊆
ṀanE ⊆ Ṁan with all objects and only D,E morphisms, and notions of when
morphisms g : X → Z, h : Y → Z in ṀanD are transverse (which implies
that a fibre product X ×g,Z,h Y exists in ṀanD, and is also a fibre product in

ṀanE), and when g : X → Z is a submersion (which implies that if h : Y → Z
is another morphism in ṀanD then g, h are transverse).

87



11.2.1 Fibre products of global m-Kuranishi neighbourhoods

We generalize transversality and submersions to 1-morphisms of m-Kuranishi
neighbourhoods. We give both weak versions, ‘w-transversality’ and ‘w-submer-
sions’, and strong versions, ‘transversality’ and ‘submersions’.

Definition 11.15. Suppose g : X → Z, h : Y → Z are continuous maps
of topological spaces, and (Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) are
m-Kuranishi neighbourhoods on X,Y, Z with Imχl ⊆ g−1(Imωn) and Imψm ⊆
h−1(Imωn), and

gln = (Uln, gln, ĝln) : (Ul, Dl, rl, χl) −→ (Wn, Fn, tn, ωn),

hmn = (Vmn, hmn, ĥmn) : (Vm, Em, sm, ψm) −→ (Wn, Fn, tn, ωn),

are D 1-morphisms of m-Kuranishi neighbourhoods over (Imχl, g), (Imψm, h).
We call gln,hmn weakly transverse, or w-transverse, if there exist open

neighbourhoods U̇ln of r−1
l (0) in Uln, and V̇mn of s−1

m (0) in Vmn, such that:

(i) gln|U̇ln : U̇ln →Wn and hmn|V̇mn : V̇mn →Wn are D morphisms in Ṁan,
which are transverse in the sense of Assumption 11.1(b); and

(ii) ĝln|u ⊕ ĥmn|v : Dl|u ⊕ Em|v → Fn|w is surjective for all u ∈ U̇ln and
v ∈ V̇mn with gln(u) = hmn(v) = w in Wn.

We call gln,hmn transverse if they are w-transverse and in (ii) ĝln|u ⊕ ĥmn|v is
an isomorphism for all u, v.

We call gln a weak submersion, or a w-submersion, if there exists an open
neighbourhood Üln of r−1

l (0) in Uln such that:

(iii) gln|Üln : Üln →Wn is a submersion in ṀanD, as in Assumption 11.1(c).

(iv) ĝln|u : Dl|u → Fn|w is surjective for all u ∈ Üln with gln(u) = w in Wn.

We call gln a submersion if it is a w-submersion and in (iv) ĝln|u is an isomorphism
for all u.

If gln is a w-submersion then gln,hmn are w-transverse for any D 1-morph-
ism hmn : (Vm, Em, sm, ψm)→ (Wn, Fn, tn, ωn) over (Imψm, h), by Assumption
11.1(c). Also if gln is a submersion then gln,hmn are transverse for any D 1-
morphism hmn : (Vm, Em, sm, ψm)→ (Wn, Fn, tn, ωn) over (Imψm, h) for which
Em = 0 is the zero vector bundle.

In Definition 4.8 we defined a strict 2-category GmK̇N of global m-Kuranishi
neighbourhoods, where:

• Objects (V,E, s) in GmK̇N are a manifold V (object in Ṁan), a vector
bundle E → V and a section s : V → E. Then (V,E, s, ids−1(0)) is an
m-Kuranishi neighbourhood on the topological space s−1(0) ⊆ V , as in
§4.1. They have virtual dimension vdim(V,E, s) = dimV − rankE.
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• 1-morphisms Φij : (Vi, Ei, si)→ (Vj , Ej , sj) in GmK̇N are triples Φij =

(Vij , φij , φ̂ij) satisfying Definition 4.2(a)–(d) with s−1
i (0) in place of ψ−1

i (S).
Then Φij : (Vi, Ei, si, ids−1

i (0)) → (Vj , Ej , sj , ids−1
j (0)) is a 1-morphism of

m-Kuranishi neighbourhoods over φij |s−1
i (0) : s−1

i (0)→ s−1
j (0), as in §4.1.

• For 1-morphisms Φij ,Φ
′
ij : (Vi, Ei, si) → (Vj , Ej , sj), a 2-morphism Λij :

Φij ⇒ Φ′ij in GmK̇N is as in Definition 4.3, with s−1
i (0) in place of ψ−1

i (S).

We write GmK̇ND ⊆ GmK̇N for the 2-subcategory with 1-morphisms Φij

which are D, in the sense of Definition 4.33.
We will prove that w-transverse fibre products exist in GmK̇ND:

Definition 11.16. Suppose we are given 1-morphisms in GmK̇ND

gln : (Ul, Dl, rl) −→ (Wn, Fn, tn), hmn : (Vm, Em, sm) −→ (Wn, Fn, tn),

which are w-transverse as in Definition 11.15. We will construct a fibre product

(Tk, Ck, qk) = (Ul, Dl, rl)×gln,(Wn,Fn,tn),hmn (Vm, Em, sm) (11.9)

in both GmK̇ND and GmK̇NE .
Write gln = (Uln, gln, ĝln) and hmn = (Vmn, hmn, ĥmn). Then ĝln(rl|Uln) =

g∗ln(tn) +O(r2
l ) by Definition 4.2(d), so Definition 3.15(i) gives ε : Dl⊗Dl|Uln →

g∗ln(Fn) with ĝln(rl|Uln) = g∗ln(tn) + ε(rl ⊗ rl|Uln). Define ĝ′ln : Dl|Uln → g∗ln(Fn)
by ĝ′ln(d) = ĝln(d)−ε(d⊗rl|Uln). Replacing ĝln by ĝ′ln, which does not change gln
up to 2-isomorphism as ĝ′ln = ĝln +O(rl), we suppose that ĝln(rl|Uln) = g∗ln(tn),

and similarly ĥmn(sm|Vmn) = h∗mn(tn). Making U̇ln, V̇mn smaller, we may

suppose Definition 11.15(ii) still holds for the new ĝln, ĥmn.
For U̇ln, V̇mn as in Definition 11.15(i),(ii), define

Tk = U̇ln ×gln|U̇ln ,Wn,hmn|V̇mn V̇mn

to be the transverse fibre product in ṀanD from Assumption 11.1(b), with
projections ekl : Tk → U̇ln ⊆ Ul and fkm : Tk → V̇mn ⊆ Vm in ṀanD. Then
gln ◦ ekl = hmn ◦ fkm and

dimTk = dimUl + dimVm − dimWn. (11.10)

We have a morphism of vector bundles on Tk:

e∗kl(ĝln)⊕−f∗km(ĥmn) : e∗kl(Dl)⊕ f∗km(Em) −→ e∗kl(g
∗
ln(Fn)). (11.11)

If t ∈ Tk with ekl(t) = u ∈ U̇ln and fkm(t) = v ∈ V̇mn then gln(u) = hmn(v) =

w ∈ Wn and the fibre of (11.11) at t is ĝln|u ⊕ −ĥmn|v : Dl|u ⊕ Em|v → Fn|w.
So Definition 11.15(ii) implies that (11.11) is surjective. Define Ck → Tk to be
the kernel of (11.11), as a vector subbundle of e∗kl(Dl)⊕ f∗km(Em) with

rankCk = rankDl + rankEm − rankFn. (11.12)
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Define vector bundle morphisms êkl : Ck → e∗kl(Dl) and f̂km : Ck → f∗km(Dl)
to be the compositions of the inclusion Ck ↪→ e∗kl(Dl) ⊕ f∗km(Em) with the
projections e∗kl(Dl)⊕ f∗km(Em)→ e∗kl(Dl) and e∗kl(Dl)⊕ f∗km(Em)→ f∗km(Em).

As Ck is the kernel of (11.11), noting the sign of −f∗km(ĥmn) in (11.11), we have

e∗kl(ĝln) ◦ êkl = f∗km(ĥmn) ◦ f̂km : Ck −→ e∗kl(g
∗
ln(Fn)) = f∗km(h∗mn(Fn)).

The section e∗kl(rl)⊕ f∗km(sm) of e∗kl(Dl)⊕ f∗km(Em) over Tk satisfies(
e∗kl(ĝln)⊕−f∗km(ĥmn)

)(
e∗kl(rl)⊕ f∗km(sm)

)
= e∗kl(ĝln(rl))− f∗km(ĥmn(sm)) = e∗kl ◦ g∗ln(tn)− f∗km ◦ h∗mn(tn) = 0,

as ĝln(rl|Uln) = g∗ln(tn) and ĥmn(sm|Vmn) = h∗mn(tn). Thus e∗kl(rl) ⊕ f∗km(sm)
lies in the kernel of (11.11), so it is a section of Ck. Define qk = e∗kl(rl)⊕f∗km(sm)

in Γ∞(Ck). Then êkl(qk) = e∗kl(rl) and f̂km(qk) = f∗km(sm).

Then (Tk, Ck, qk) is an object in GmK̇ND. By (11.10) and (11.12) we have

vdim(Tk, Ck, qk) = vdim(Ul, Dl, rl) + vdim(Vm, Em, sm)

− vdim(Wn, Fn, tn).
(11.13)

Set ekl = (Tk, ekl, êkl) and fkm = (Tk, fkm, f̂km). Then ekl : (Tk, Ck, qk) →
(Ul, Dl, rl) and fkm : (Tk, Ck, qk)→ (Vm, Em, sm) are 1-morphisms in GmK̇ND.

Since gln ◦ ekl = hmn ◦ fkm and e∗kl(ĝln) ◦ êkl = f∗km(ĥmn) ◦ f̂km we see that

gln ◦ ekl = hmn ◦ fkm. Hence we have a 2-commutative diagram in GmK̇ND:

(Tk, Ck, qk)
IQ

idgln◦ekl

fkm

//

ekl
��

(Vm, Em, sm)

hmn
��

(Ul, Dl, rl)
gln // (Wn, Fn, tn).

(11.14)

If gln,hmn are transverse, not just w-transverse, then (11.11) is an iso-
morphism, not just surjective, so Ck is the zero vector bundle, as it is the
kernel of (11.11). Thus (Tk, Ck, qk) = (Tk, 0, 0) lies in the image of the obvious
embedding ṀanD ↪→ GmK̇ND.

The next theorem will be proved in §11.8.

Theorem 11.17. In Definition 11.16, equation (11.14) is 2-Cartesian in both
GmK̇ND and GmK̇NE in the sense of Definition A.11, so that (Tk, Ck, qk)
is a fibre product in the 2-categories GmK̇ND,GmK̇NE , as in (11.9).

11.2.2 (W-)transversality and fibre products in mK̇urD

As in §4.5, for the discrete properties D,E of morphisms in Ṁan, we have
a notion of when a 1-morphism f : X → Y in mK̇ur is D or E, and 2-
subcategories mK̇urD ⊆ mK̇urE ⊆ mK̇ur with only D or E 1-morphisms.
We will define notions of (w-)transverse 1-morphisms and (w-)submersions
in mK̇urD.
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Definition 11.18. Let g : X → Z, h : Y → Z be 1-morphisms in mK̇urD.
We call g,h or w-transverse (or transverse), if whenever x ∈X and y ∈ Y with
g(x) = h(y) = z in Z, there exist m-Kuranishi neighbourhoods (Ul, Dl, rl, χl),
(Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) on X,Y ,Z as in §4.7 with x ∈ Imχl ⊆
g−1(Imωn), y ∈ Imψm ⊆ h−1(Imωn) and z ∈ Imωn, and 1-morphisms gln :
(Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn), hmn : (Vm, Em, sm, ψm) → (Wn, Fn, tn, ωn)
over (Imχl, g) and (Imψm,h), as in Definition 4.54, such that gln,hmn are
w-transverse (or transverse, respectively), as in Definition 11.16.

We call g a w-submersion (or a submersion), if whenever x ∈ X with
g(x) = z ∈ Z, there exist m-Kuranishi neighbourhoods (Ul, Dl, rl, χl), (Wn,
Fn, tn, ωn) on X,Z as in §4.7 with x ∈ Imχl ⊆ g−1(Imωn), z ∈ Imωn, and
a 1-morphism gln : (Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn) over (Imχl, g), as in
Definition 4.54, such that gln is a w-submersion (or a submersion, respectively),
as in Definition 11.16.

Suppose g : X → Z is a w-submersion, and h : Y → Z is any D 1-
morphism in mK̇ur. Let x ∈ X and y ∈ Y with g(x) = h(y) = z in Z.
As g is a w-submersion we can choose gln : (Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn)
with x ∈ Imχl ⊆ g−1(Imωn), z ∈ Imωn, and gln a w-submersion. Choose
any m-Kuranishi neighbourhood (Vm, Em, sm, ψm) on Y with y ∈ Imψm ⊆
h−1(Imωn). Then Theorem 4.56(b) gives a D 1-morphism hmn : (Vm, Em, sm,
ψm) → (Wn, Fn, tn, ωn) over (Imψm,h), and gln,hmn are w-transverse as gln
is a w-submersion. Hence g,h are w-transverse.

Similarly, suppose g : X → Z is a submersion, and h : Y → Z is a D
1-morphism in mK̇ur such that Y is a manifold as in Example 4.30, that is,

Y ' FmK̇ur
Ṁan

(Y ′) for Y ′ ∈ Ṁan. Then for x ∈X and y ∈ Y with g(x) = h(y) =
z in Z we can choose gln,hmn as above with gln a submersion and Em = 0, so
that gln,hmn are transverse. Hence g,h are transverse.

The next important theorem will be proved in §11.9:

Theorem 11.19. Let g : X → Z, h : Y → Z be w-transverse 1-morphisms in
mK̇urD. Then there exists a fibre product W = Xg,Z,hY in mK̇urD, as in
§A.4, with vdimW = vdimX + vdimY − vdimZ, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.15)

Equation (11.15) is also 2-Cartesian in mK̇urE , so W is also a fibre product
Xg,Z,hY in mK̇urE. Furthermore:

(a) If g,h are transverse then W is a manifold, as in Example 4.30. In
particular, if g is a submersion and Y is a manifold, then W is a manifold.

(b) Suppose (Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) are m-Kuranishi
neighbourhoods on X,Y ,Z, as in §4.7, with Imχl ⊆ g−1(Imωn) and Imψm ⊆
h−1(Imωn), and gln : (Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn), hmn : (Vm, Em, sm,
ψm) → (Wn, Fn, tn, ωn) are 1-morphisms of m-Kuranishi neighbourhoods on
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X,Y ,Z over (Imχl, g) and (Imψm,h), as in §4.7, such that gln,hmn are
w-transverse, as in §11.2.1. Then there exist an m-Kuranishi neighbourhood
(Tk, Ck, qk, ϕk) on W with Imϕk = e−1(Imχl) ∩ f−1(Imψm) ⊆ W, and 1-
morphisms ekl : (Tk, Ck, qk, ϕk) → (Ul, Dl, rl, χl) over (Imϕk, e) and fkm :
(Tk, Ck, qk, ϕk)→ (Vm, Em, sm, ψm) over (Imϕk,f) with gln ◦ekl = hmn ◦fkm,
such that (Tk, Ck, qk) and ekl,fkm are constructed from (Ul, Dl, rl), (Vm, Em,
sm), (Wn, Fn, tn) and gln,hmn exactly as in Definition 11.16.

Also the unique 2-morphism ηklmn : gln ◦ekl ⇒ hmn ◦fkm over (Imϕk, g ◦e)
constructed from η : g ◦ e⇒ h ◦ f in Theorem 4.56(c) is the identity.

(c) If Ṁan satisfies Assumption 11.3 then we can choose the topological space
W in W = (W,H) to be W =

{
(x, y) ∈ X × Y : g(x) = h(y)

}
, with e : W → X,

f : W → Y acting by e : (x, y) 7→ x and f : (x, y) 7→ y.

(d) If Ṁan satisfies Assumption 11.4(a) and (11.15) is a 2-Cartesian square in
mK̇urD with g a w-submersion (or a submersion) then f is a w-submersion
(or a submersion, respectively).

(e) If Ṁan satisfies Assumption 10.1, with tangent spaces TxX, and satisfies
Assumption 11.5, then using the notation of §10.2, whenever (11.15) is 2-
Cartesian in mK̇urD with g,h w-transverse and w ∈W with e(w) = x in X,
f(w) = y in Y and g(x) = h(y) = z in Z, the following is an exact sequence:

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW.
Owe⊕Owfoo

(11.16)

Here δg,hw : TzZ → OwW is a natural linear map defined as a connecting
morphism, as in Definition 10.69.

(f) If Ṁan satisfies Assumption 10.19, with quasi-tangent spaces QxX in a
category Q, and satisfies Assumption 11.6, then whenever (11.15) is 2-Cartesian
in mK̇urD with g,h w-transverse and w ∈W with e(w) = x in X, f(w) = y
in Y and g(x) = h(y) = z in Z, the following is Cartesian in Q:

QwW
Qwf

//

Qwe��

QyY

Qyh ��
QxX

Qxg // QzZ.

(11.17)

(g) If Ṁanc satisfies Assumption 3.22 in §3.4, so that we have a corner functor
C : Ṁanc → Ṁ̌anc which extends to C : mK̇urc → mK̇̌urc as in §4.6, and
Assumption 11.1 holds for Ṁanc, and Assumption 11.7 holds, then whenever
(11.15) is 2-Cartesian in mK̇urc

D with g,h w-transverse (or transverse), then the

following is 2-Cartesian in mK̇̌urc
D and mK̇̌urc

E , with C(g), C(h) w-transverse
(or transverse, respectively):

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

(11.18)
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Hence for i > 0 we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)
.

(11.19)

When i = 1, this computes the boundary ∂W. In particular, if ∂Z = ∅, so that
Cl(Z) = ∅ for all l > 0 by Assumption 3.22(f) with l = 1, we have

∂W '
(
∂X ×g◦iX ,Z,h Y

)
q
(
X ×g,Z,h◦iY ∂Y

)
. (11.20)

Also, if g is a w-submersion (or a submersion), then C(g) is a w-submersion
(or a submersion, respectively).

(h) If Ṁan satisfies Assumption 11.8, and g : X → Z is a w-submersion
in mK̇urD, and h : Y → Z is any 1-morphism in mK̇urE (not necessarily
in mK̇urD), then a fibre product W = X ×g,Z,h Y exists in mK̇urE , with

dimW = dimX + dimY − dimZ, in a 2-Cartesian square (11.15) in mK̇urE.
The analogues of (a)–(d) and (g) hold for these fibre products.

Example 11.20. Let g : X → Z, h : Y → Z be transverse morphisms in
ṀanD, and let W = X ×g,Z,h Y in ṀanD, with projections e : W → X,
f : W → Y . Write W,X,Y ,Z, e,f , g,h for the images of W,X, Y, Z, e, f, g, h

in mK̇ur under the 2-functor FmK̇ur
Ṁan

: Ṁan→mK̇ur from Example 4.30.

Then we have m-Kuranishi neighbourhoods (W, 0, 0, idW ) on W, as in §4.7,
and similarly for X,Y ,Z. We have a 1-morphism (W, e, 0) : (W, 0, 0, idW ) →
(X, 0, 0, idX) over (W, e), as in §4.7, and similarly for f , g,h.

These 1-morphisms (X, g, 0) : (X, 0, 0, idX) → (Z, 0, 0, idZ) and (Y, h, 0) :
(Y, 0, 0, idY )→ (Z, 0, 0, idZ) are transverse as in Definition 11.15, where (i) holds
as g, h are transverse in ṀanD, and (ii) is trivial as Dl, Em, Fn are zero. As
these m-Kuranishi neighbourhoods cover X,Y ,Z, we see that g,h are transverse
by Definition 11.18, so a fibre product X×g,Z,hZ exists in mK̇urD by Theorem

11.19. We claim that this fibre product is W = FmK̇ur
Ṁan

(W ).

To see this, note that applying Definition 11.16 to the transverse (X, g, 0),
(Y, h, 0) above yields (Tk, Ck, qk, ϕk) = (W, 0, 0, idW ), so (W, 0, 0, idW ) is an m-
Kuranishi neighbourhood onX×ZY by Theorem 11.19(b), which coversX×ZY ,

and this forces W 'X ×Z Y . Thus, FmK̇ur
Ṁan

takes transverse fibre products in

ṀanD and ṀanE to transverse fibre products in mK̇urD and mK̇urE .

11.2.3 Products of m-Kuranishi spaces

Let Ṁan be any category satisfying Assumptions 3.1–3.7. Apply Example 11.2
with D,E trivial to get notions of transverse morphisms and submersions in
Ṁan satisfying Assumption 11.1. As in Example 11.2, for any X,Y ∈ Ṁan the
projections π : X → ∗ and π : Y → ∗ are transverse in Ṁan.

From Definitions 11.15 and 11.18 we see that for any X,Y in mK̇ur the
projections π : X → ∗, π : Y → ∗ are w-transverse, so a fibre product X ×∗ Y
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exists in mK̇ur by Theorem 11.19. Now a product in a category or 2-category
is by definition a fibre product over the terminal object ∗. The fibre product
property only determines X ×∗ Y up to canonical equivalence in mK̇ur. But
from Theorem 11.19(b) we see that we can take X ×∗ Y and the 1-morphisms
e : X ×∗ Y → X, f : X ×∗ Y → Y to be the product X × Y in mK̇ur in
Example 4.31 and the projections πX : X × Y →X, πY : X × Y → Y , which
are uniquely defined.

This proves that the products X×Y defined in Example 4.31 have the univer-
sal property of products in the 2-category mK̇ur, that is, they are fibre products
X ×∗ Y in mK̇ur. The existence of product m-Kuranishi neighbourhoods on
X × Y in Example 4.53 follows from Theorem 11.19(b) with Wn = ∗.

As in Example 4.31, if g : W → Y , h : X → Z are 1-morphisms in mK̇ur
then we have a product 1-morphism g×h : W×X → Y×Z. Given 1-morphisms
of m-Kuranishi neighbourhoods on W,X,Y ,Z over g,h, we can write down a
product 1-morphism of m-Kuranishi neighbourhoods on W ×X,Y × Z over
g × h. Using these and Theorem 11.19(d) it is easy to prove:

Proposition 11.21. Let Ṁan satisfy Assumptions 11.1 and 11.4(b),(c). Then
products of w-submersions (or submersions) in mK̇ur are w-submersions (or
submersions, respectively). That is, if g : W → Y and h : X → Z are
(w-)submersions in mK̇ur, then g × h : W ×X → Y ×Z is a (w-)submersion.
Projections πX : X × Y →X, πY : X × Y → Y in mK̇ur are w-submersions.

11.2.4 Characterizing (w-)transversality and (w-)submersions

Assumption 11.9 in §11.1.3 gave necessary and sufficient conditions for morphisms
g, h in Ṁanc to be transverse, and for morphisms g to be submersions. The
next theorem, proved in §11.10, extends these to conditions for 1-morphisms g,h
in mK̇urc to be (w-)transverse, and for 1-morphisms g to be (w-)submersions.

Theorem 11.22. Let Ṁanc satisfy Assumption 3.22, so that we have a corner
functor C : Ṁanc → Ṁ̌anc, and suppose Assumption 11.9 holds for Ṁanc.
This requires that Assumption 10.1 holds, giving a notion of tangent spaces TxX
for X in Ṁanc, and that Assumption 10.19 holds, giving a notion of quasi-
tangent spaces QxX in a category Q for X in Ṁanc, and that Assumption 11.1
holds, giving discrete properties D,E of morphisms in Ṁanc and notions of
transverse morphisms g, h and submersions g in Ṁanc

D.

As in §4.6, §10.2 and §10.3, we define a 2-category mK̇urc, with a corner
2-functor C : mK̇urc → mK̇̌urc, and notions of tangent, obstruction and
quasi-tangent spaces TxX, OxX, QxX for X in mK̇urc.

Now Assumption 11.9(a),(d) involve a ‘condition T ’ on morphisms g : X →
Z, h : Y → Z in Ṁanc

D and points x ∈ X, y ∈ Y with g(x) = h(y) = z ∈ Z,
and a ‘condition S’ on morphisms g : X → Z in Ṁanc

D and points x ∈ X with
g(x) = z ∈ Z. These conditions depend on the corner morphisms C(g), C(h)
and on quasi-tangent maps Qxg,Qyh. Observe that condition T also makes

sense for 1-morphisms g : X → Z, h : Y → Z in mK̇urc
D and x ∈ X, y ∈ Y
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with g(x) = h(y) = z in Z, and condition S makes sense for 1-morphisms
g : X → Z in mK̇urc

D and x ∈X with g(x) = z ∈ Z. Then:

(a) Let g : X → Z, h : Y → Z be 1-morphisms in mK̇urc
D. Then g,h are

w-transverse if and only if for all x ∈X and y ∈ Y with g(x) = h(y) = z
in Z, condition T holds for g,h, x, y, z, and the following is surjective:

Oxg ⊕Oyh : OxX ⊕OyY −→ OzZ. (11.21)

If Assumption 10.9 also holds for tangent spaces TxX in Ṁanc then g,h
are transverse if and only if for all x ∈X and y ∈ Y with g(x) = h(y) = z
in Z, condition T holds for g,h, x, y, z, equation (11.21) is an isomorphism,
and the following linear map is surjective:

Txg ⊕ Tyh : TxX ⊕ TyY −→ TzZ. (11.22)

(b) Let g : X → Z be a 1-morphism in mK̇urc
D. Then g is a w-submersion

if and only if for all x ∈ X with g(x) = z in Z, condition S holds for
g, x, z, and the following linear map is surjective:

Oxg : OxX −→ OzZ. (11.23)

If Assumption 10.9 also holds then g is a submersion if and only if for all
x ∈X with g(x) = z in Z, condition S holds for g, x, z, equation (11.23)
is an isomorphism, and the following is surjective:

Txg : TxX −→ TzZ.

Combining Assumption 11.9(g) and Theorem 11.22(b) gives:

Corollary 11.23. Let Ṁanc satisfy Assumptions 3.22 and 11.9. Then compo-
sitions of w-submersions in mK̇urc are w-submersions. If Ṁanc also satisfies
Assumption 10.9 then compositions of submersions in mK̇urc are submersions.

Combining Assumption 11.9(h) and Theorems 11.19(a) and 11.22(b) yields:

Corollary 11.24. Let Ṁanc satisfy Assumptions 3.22 and 11.9, so that As-
sumption 11.1 holds with discrete properties D,E. Suppose that Z is a classical
manifold in mK̇urc, as in Example 4.30. Then any 1-morphism g : X → Z
in mK̇urc is D and a w-submersion. Hence any 1-morphisms g : X → Z,
h : X → Z in mK̇urc are w-transverse, and a fibre product W = X ×g,Z,h Y
exists in mK̇urc

D, and is also a fibre product in mK̇urc
E.
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11.2.5 Orientations on w-transverse fibre products in mK̇ur

In this section we suppose throughout that Ṁan satisfies Assumptions 3.1–3.7,
10.1, 10.13, 11.1, and 11.5. Thus, objects X in Ṁan have tangent spaces TxX
which are fibres of a tangent bundle TX → X of rank dimX, and these are
used to define canonical bundles KX and orientations on m-Kuranishi spaces X
as in §10.7, and we can form w-transverse fibre products W = X ×g,Z,h Y in

mK̇urD as in Theorem 11.19.
Given orientations on X,Y ,Z, the next theorem defines an orientation on

W. It will be proved in §11.11. It is a generalization of Theorem 10.80 in §10.7.4
on orientations of products X × Y , and reduces to this when Z = ∗, in which
case ΥX,Y in Theorem 10.80 coincides with ΥX,Y ,∗ below.

Theorem 11.25. Suppose g : X → Z, h : Y → Z are w-transverse 1-
morphisms in mK̇urD, so that a fibre product W = X ×g,Z,h Y exists in

mK̇urD by Theorem 11.19, in a 2-Cartesian square (11.15). Sections 10.7.1–
10.7.2 define the canonical line bundles KW,KX ,KY ,KZ of W,X,Y ,Z, us-
ing tangent spaces and tangent bundles in Ṁan from Assumptions 10.1 and
10.13, and define orientations on W, . . . ,Z to be orientations on the fibres
of KW, . . . ,KZ .

Then there is a unique isomorphism of topological line bundles on W :

ΥX,Y ,Z : KW −→ e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗ (11.24)

with the following property. Let w ∈W with e(w) = x in X, f(w) = y in Y and
g(x) = h(y) = z in Z. Then we can consider ΥX,Y ,Z |w as a nonzero element

ΥX,Y ,Z |w ∈ (KW|w)∗ ⊗KX |x ⊗KY |y ⊗ (KZ |z)∗

∼= (detT ∗wW ⊗ detOwW)−1 ⊗ detT ∗xX ⊗ detOxX

⊗ detT ∗yY ⊗ detOyY ⊗ (detT ∗zZ ⊗ detOzZ )−1.

By Theorem 11.19(e) we have an exact sequence

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW.
Owe⊕Owfoo

(11.25)

Consider (11.25) as an exact complex A• with OwW in degree 0, so that (10.69)
defines a nonzero element

ΨA• ∈ detT ∗wW ⊗ (det(T ∗xX ⊕ T ∗yY ))−1 ⊗ detT ∗zZ

⊗ detOwW ⊗ (det(OxX ⊕OyY ))−1 ⊗ detOzZ.

Then defining IT∗xX,T∗y Y , IOxX,OyY as in (10.84), we have(
IT∗xX,T∗y Y ⊗ IOxX,OyY

)
(ΥX,Y ,Z |w)

= (−1)dimOwW dimTzZ+dimOxX dimTyY ·Ψ−1
A• .

(11.26)
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Hence if X,Y ,Z are oriented there is a unique orientation on W, called
the fibre product orientation, such that (11.24) is orientation-preserving.

The morphism ΥX,Y ,Z in (11.24), and hence the orientation on W above,
depend on our choice of orientation conventions, as in Convention 2.39, including
various sign choices in §10.6–§10.7 and in (11.26). Different orientation conven-
tions would change ΥX,Y ,Z and the orientation on W by a sign depending on
vdimX, vdimY , vdimZ. If W,X,Y ,Z are manifolds then the orientation on
W agrees with that in Convention 2.39(b).

Fibre products have natural commutativity and associativity properties, up
to canonical equivalence in mK̇ur. For instance, for w-transverse g : X → Z
and h : Y → Z there is a natural equivalence X ×g,Z,h Y ' Y ×h,Z,gX. When
we lift these to (multiple) fibre products of oriented m-Kuranishi spaces, the
orientations on each side differ by some sign depending on the virtual dimensions
of the factors. The next proposition, the m-Kuranishi analogue of Proposition
2.40, is a generalization of Proposition 10.81, and may be proved using the
same method. Parts (b),(c) are the analogue of results by Fukaya et al. [15,
Lem. 8.2.3(2),(3)] for FOOO Kuranishi spaces.

Proposition 11.26. Suppose V , . . . ,Z are oriented m-Kuranishi spaces, and
e, . . . ,h are 1-morphisms, and all fibre products below are w-transverse. Then
the following canonical equivalences hold, in oriented m-Kuranishi spaces:

(a) For g : X → Z and h : Y → Z we have

X ×g,Z,h Y ' (−1)(vdimX−vdimZ)(vdimY−vdimZ)Y ×h,Z,g X.

(b) For e : V → Y , f : W → Y , g : W → Z, and h : X → Z we have

V ×e,Y ,f◦πW

(
W ×g,Z,hX

)
'
(
V ×e,Y ,f W

)
×g◦πW,Z,hX.

(c) For e : V → Y , f : V → Z, g : W → Y , and h : X → Z we have

V ×(e,f),Y×Z,g×h (W ×X) '
(−1)vdimZ(vdimY+vdimW)(V ×e,Y ,gW)×f◦πV ,Z,hX.

By the same method we can also prove the following, the analogue of Fukaya
et al. [15, Lem. 8.2.3(1)] for FOOO Kuranishi spaces:

Proposition 11.27. Suppose Ṁanc satisfies Assumptions 3.22, 10.1, 10.13,
10.16, 11.1, and 11.5. Let g : X → Z and h : Y → Z be w-transverse 1-
morphisms in mK̇urc with ∂Z = ∅, so that a fibre product W = X ×g,Z,h Y
exists in mK̇urc

D by Theorem 11.19. Suppose X,Y ,Z are oriented, so that W
is oriented by Theorem 11.25, and ∂W, ∂X, ∂Y , ∂Z are oriented by Definition
10.79. Then as in (11.20) we have a canonical equivalence of oriented m-Kuranishi
spaces:

∂W '
(
∂X ×g◦iX ,Z,h Y

)
q (−1)vdimX+vdimZ

(
X ×g,Z,h◦iY ∂Y

)
.
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11.3 Fibre products in mKur,mKurcst,mKurgc,mKurc

We now apply the results of §11.2 when Ṁan is Man,Manc
st,Mangc and

Manc, using the material of §2.5 on transversality and submersions in these
categories, and Examples 11.10–11.13 in §11.1.4.

11.3.1 Fibre products in mKur

Take Ṁan to be the category of classical manifolds Man, with corresponding
2-category of m-Kuranishi spaces mKur as in Definition 4.29. We will use
tangent spaces TxX for X in mKur defined using ordinary tangent spaces TvV
in Man, as in Example 10.25(i).

Definition 2.21 in §2.5.1 defines transverse morphisms and submersions in
Man, as usual in differential geometry. As in Example 11.10, these satisfy
Assumption 11.1 with D,E trivial, and Assumptions 11.3–11.5 and 11.9 also
hold. So Definition 11.18 defines (w-)transverse 1-morphisms g : X → Z,
h : Y → Z and (w-)submersions g : X → Z in mKur, in terms of the existence
of covers of X,Y ,Z by m-Kuranishi neighbourhoods on which we can represent
g,h in a special form. The next theorem summarizes Theorems 11.19, 11.22 and
11.25, Proposition 11.21, and Corollaries 11.23 and 11.24 in this case.

Theorem 11.28. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
mKur. Then g,h are w-transverse if and only if for all x ∈X and y ∈ Y with
g(x) = h(y) = z in Z, the following is surjective:

Oxg ⊕Oyh : OxX ⊕OyY −→ OzZ. (11.27)

This is automatic if Z is a manifold. Also g,h are transverse if and only if for
all x, y, z, equation (11.27) is an isomorphism, and the following is surjective:

Txg ⊕ Tyh : TxX ⊕ TyY −→ TzZ.

(b) If g : X → Z and h : Y → Z are w-transverse in mKur then a fibre
product W = X ×g,Z,h Y exists in mKur, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.28)

It has vdimW = vdimX + vdimY − vdimZ, and topological space W ={
(x, y) ∈ X × Y : g(x) = h(y)

}
. If w ∈W with e(w) = x in X, f(w) = y in

Y and g(x) = h(y) = z in Z, the following is an exact sequence:

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW.
Owe⊕Owfoo

(11.29)
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If g,h are transverse then W is a manifold.

(c) In part (b), using the theory of canonical bundles and orientations from
§10.7, there is a natural isomorphism of topological line bundles on W :

ΥX,Y ,Z : KW −→ e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗. (11.30)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.30) is orientation-preserving. Proposition
11.26 holds for these fibre product orientations.

(d) Let g : X → Z be a 1-morphism in mKur. Then g is a w-submersion if
and only if Oxg : OxX → OzZ is surjective for all x ∈X with g(x) = z in Z.
Also g is a submersion if and only if Oxg : OxX → OzZ is an isomorphism
and Txg : TxX → TzZ is surjective for all x, z.

(e) If g : X → Z and h : Y → Z are 1-morphisms in mKur with g a w-
submersion then g,h are w-transverse. If g is a submersion and Y is a manifold
then g,h are transverse.

(f) If (11.28) is 2-Cartesian in mKur with g a w-submersion (or a submersion)
then f is a w-submersion (or a submersion).

(g) Compositions and products of (w-)submersions in mKur are (w-)submer-
sions. Projections πX : X × Y →X in mKur are w-submersions.

Example 11.29. Suppose W is an m-Kuranishi space covered by a single m-
Kuranishi neighbourhood (V,E, s, ψ). Then we can write W as a w-transverse
fibre product W ' V ×s,E,0 V of manifolds in mKur, where s,0 : V → E are
the images of the sections s, 0 : V → E under FmKur

Man : Man ↪→mKur.

Example 11.30. Let W ⊆ Rn be any closed subset. By a lemma of Whitney’s,
we can write W as the zero set of a smooth function g : Rn → R. Let g :
RRRn → RRR and 0 : ∗ → RRR be the images of g : Rn → R and 0 : ∗ → R under
FmKur

Man : Man ↪→ mKur. Then g,0 are w-transverse, so W = RRRn ×g,RRR,0 ∗ is
an m-Kuranishi space in mKur, with vdimW = n − 1 and topological space
W , by Theorem 11.28. This means that the topological spaces of m-Kuranishi
spaces can be quite wild, fractals for example.

Example 11.31. Let g : X → Z and h : Y → Z be morphisms in Man,
and g : X → Z, h : Y → Z be their images under FmKur

Man . Then g,h are
w-transverse, so a fibre product W = X ×g,Z,h Y exists in mKur by Theorem
11.28. In Example 11.20 we showed that if g, h are transverse in Man, so that a
fibre product W = X ×g,Z,h Y exists in Man, then W ' FmKur

Man (W ).
If g, h are not transverse then the morphism Txg⊕−Tyh : TxX⊕TyY → TzZ

in (11.29) is not surjective for some w ∈W, and then OwW 6= 0 by (11.29), so
W is not a manifold. Hence, if a non-transverse fibre product W = X ×g,Z,h Y
exists in Man, as in Example 2.23(ii)–(iv), then W 6' FmKur

Man (W ).
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11.3.2 Fibre products in mKurcst and mKurc

In §2.5.2, working in the subcategory Manc
st ⊂ Manc from §2.1, we defined

s-transverse and t-transverse morphisms and s-submersions. Example 11.11
explained how to fit these into the framework of Assumptions 11.1 and 11.3–11.9.
The next theorem summarizes Theorems 11.19, 11.22 and 11.25, Proposition
11.21, and Corollaries 11.23 and 11.24 applied to Example 11.11. Equation
(11.35) being exact is equivalent to (11.17) for the ÑxX being Cartesian in real
vector spaces.

Here mKurc
st ⊂ mKurc are the 2-categories of m-Kuranishi spaces cor-

responding to Manc
st ⊂ Manc as in Definition 4.29, the corner 2-functors

C,C ′ : mKurc
st → mǨurc

st and C,C ′ : mKurc → mǨurc are as in Example
4.45, (stratum) tangent spaces TxX, T̃xX are as in Example 10.25(i),(iii), and
stratum normal spaces ÑxX are as in Example 10.32(a).

We use the notation ws-transverse, wt-transverse, and ws-submersions for
the notions of w-transverse and w-submersion in mKurc

st corresponding to s-
and t-transverse morphisms and s-submersions, and s-transverse, t-transverse,
and s-submersions for the corresponding notions of transverse and submersion.

Theorem 11.32. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
mKurc

st. Then g,h are ws-transverse if and only if for all x ∈ X and y ∈ Y
with g(x) = h(y) = z in Z, the following linear maps are surjective:

Õxg ⊕ Õyh : ÕxX ⊕ ÕyY −→ ÕzZ, (11.31)

Ñxg ⊕ Ñyh : ÑxX ⊕ ÑyY −→ ÑzZ. (11.32)

This is automatic if Z is a classical manifold. Also g,h are s-transverse if and
only if for all x, y, z, equation (11.31) is an isomorphism, and (11.32) and the
following are surjective:

T̃xg ⊕ T̃yh : T̃xX ⊕ T̃yY −→ T̃zZ. (11.33)

Furthermore, g,h are wt-transverse (or t-transverse) if and only if they are
ws-transverse (or s-transverse), and for all x, y, z as above, whenever x ∈ Cj(X)
and y ∈ Ck(Y ) with Πj(x) = x, Πk(y) = y, and C(g)x = C(h)y = z in
Cl(Z), we have j + k > l, and there is exactly one triple (x,y, z) with j + k = l.

(b) If g : X → Z and h : Y → Z are ws-transverse in mKurc
st then a fibre

product W = X ×g,Z,h Y exists in mKurc
st, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.34)

It has vdimW = vdimX+vdimY−vdimZ, and topological space W =
{

(x, y) ∈
X × Y : g(x) = h(y)

}
. Equation (11.34) is also 2-Cartesian in mKurc.
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If w ∈W with e(w) = x in X, f(w) = y in Y and g(x) = h(y) = z in Z,
the following sequences are exact:

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW,
Owe⊕Owfoo

0 // T̃wW
T̃we⊕T̃wf

// T̃xX ⊕ T̃yY
T̃xg⊕−T̃yh

// T̃zZ

δ̃g,hw ��
0 ÕzZoo ÕxX ⊕ ÕyY

Õxg⊕−Õyhoo ÕwW,
Õwe⊕Õwfoo

0 // ÑwW
Ñwe⊕Ñwf // ÑxX ⊕ ÑyY

Ñxg⊕−Ñyh // ÑzZ // 0. (11.35)

If g,h are s-transverse then W is a manifold.

(c) In part (b), if (11.34) is 2-Cartesian in mKurc
st with g,h wt-transverse

(or t-transverse), then the following is 2-Cartesian in mǨurc
st and mǨurc,

with C(g), C(h) wt-transverse (or t-transverse, respectively):

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Hence we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)

for i > 0. When i = 1, this computes the boundary ∂W.
Also, if g is a ws-submersion (or an s-submersion), then C(g) is a ws-

submersion (or an s-submersion, respectively).
The analogue of the above also holds for C ′ : mKurc

st →mǨurc
st.

(d) In part (b), using the theory of canonical bundles and orientations from
§10.7, there is a natural isomorphism of topological line bundles on W :

ΥX,Y ,Z : KW −→ e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗. (11.36)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.36) is orientation-preserving. Propositions
11.26 and 11.27 hold for these fibre product orientations.

(e) Let g : X → Z be a 1-morphism in mKurc
st. Then g is a ws-submersion

if and only if Õxg : ÕxX → ÕzZ and Ñxg : ÑxX → ÑzZ are surjective for
all x ∈X with g(x) = z in Z. Also g is an s-submersion if and only if Õxg :
ÕxX → ÕzZ is an isomorphism and T̃xg : T̃xX → T̃zZ, Ñxg : ÑxX → ÑzZ
are surjective for all x, z.
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(f) If g : X → Z and h : Y → Z are 1-morphisms in mKurc
st with g

a ws-submersion then g,h are ws-transverse and wt-transverse. If g is an
s-submersion and Y is a manifold then g,h are s-transverse and t-transverse.

(g) If (11.34) is 2-Cartesian in mKurc
st with g a ws-submersion (or an s-

submersion) then f is a ws-submersion (or an s-submersion).

(h) Compositions and products of ws- or s-submersions in mKurc
st are ws- or

s-submersions. Projections πX : X × Y →X in mKurc
st are ws-submersions.

(i) If g : X → Z is a ws-submersion in mKurc
st, and h : Y → Z is any

1-morphism in mKurc (not necessarily in mKurc
st), then a fibre product W =

X ×g,Z,h Y exists in mKurc, with dimW = dimX + dimY − dimZ, in a
2-Cartesian square (11.34) in mKurc. It has topological space W =

{
(x, y) ∈

X × Y : g(x) = h(y)
}

. The analogues of (c),(g) hold for these fibre products.
If g is an s-submersion and Y is a manifold then W is a manifold.

Example 11.33. Define X = Y = Z = [0,∞) and Z ′ = R, so that Z ⊂ Z ′ is
open. Define strongly smooth maps g : X → Z, h : Y → Z, g′ : X → Z ′ and
h′ : Y → Z ′ by g(x) = g′(x) = x, h(y) = h′(y) = y. Let X,Y ,Z,Z ′, g,h, g′,h′

be the images of X,Y, Z, Z ′, g, h, g′, h′ under F
mKurcst
Manc

st
.

Then g : X → Z, h : X → Z are s-transverse. Also g′ : X → Z ′,
h′ : X → Z ′ are ws-transverse, but are not s-transverse, as (11.33) for g′,h′ is
not surjective at x = y = z = 0. Hence fibre products W = X ×g,Z,h Y and

W′ = X ×g′,Z′,h′ Y exist in mKurc
st. Here W is F

mKurcst
Manc

st
([0,∞)), but W′ is

not a manifold. We may cover W′ by an m-Kuranishi neighbourhood (V,E, s, ψ),
where V = [0,∞)2, and E = [0,∞)2×R is the trivial vector bundle over V with
fibre R, and s : V → E maps (x, y) 7→ (x, y, x− y), and ψ : (x, x) 7→ x.

Since W 6'W′, this shows that the corners of Z can affect the fibre product
W = X ×g,Z,h Y in mKurc

st. This is not true for fibre products in Manc
st,

where we have X ×g,Z,h Y ∼= X ×g′,Z′,h′ Y when Z ⊂ Z ′ and g = g′, h = h′.

11.3.3 Fibre products in mKurgcin and mKurgc

In §2.5.3, working in the subcategory Mangc
in ⊂Mangc from §2.4.1, we defined

b-transverse and c-transverse morphisms and b-submersions, b-fibrations, and
c-fibrations. Example 11.12 explained how to fit these into the framework of
Assumptions 11.1 and 11.3–11.9. The next theorem summarizes Theorems 11.19,
11.22 and 11.25, Proposition 11.21, and Corollary 11.23 applied to Example 11.12.

Here mKurgc
in ⊂ mKurgc are the 2-categories of m-Kuranishi spaces cor-

responding to Mangc
in ⊂ Mangc as in Definition 4.29, the corner functor

C : mKurgc → mǨurgc is as in Example 4.45, and b-tangent spaces TxX
are as in Example 10.25(ii). We use the notation wb-transverse, wc-transverse,
wb-submersions, wb-fibrations, wc-fibrations for the weak versions of b-transverse,
. . . , c-fibrations in mKurgc

in from Definition 11.18, and b-transverse, c-transverse,
b-submersions, b-fibrations, and c-fibrations for the strong versions.
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Theorem 11.34. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
mKurgc

in . Then g,h are wb-transverse if and only if for all x ∈X and y ∈ Y
with g(x) = h(y) = z in Z, the following linear map is surjective:

bOxg ⊕ bOyh : bOxX ⊕ bOyY −→ bOzZ. (11.37)

This is automatic if Z is a manifold. Also g,h are b-transverse if and only if for
all x, y, z, equation (11.37) is an isomorphism, and the following is surjective:

bTxg ⊕ bTyh : bTxX ⊕ bTyY −→ bTzZ.

Furthermore, g,h are wc-transverse (or c-transverse) if and only if they are
wb-transverse (or b-transverse), and whenever x ∈ Cj(X) and y ∈ Ck(Y ) with
C(g)x = C(h)y = z in Cl(Z), we have either j + k > l, or j = k = l = 0.

(b) If g : X → Z and h : Y → Z are wb-transverse in mKurgc
in then a fibre

product W = X ×g,Z,h Y exists in mKurgc
in , in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.38)

It has vdimW = vdimX + vdimY − vdimZ. If w ∈W with e(w) = x in X,
f(w) = y in Y and g(x) = h(y) = z in Z, the following sequence is exact:

0 // bTwW bTwe⊕bTwf
// bTxX ⊕ bTyY bTxg⊕−bTyh

// bTzZ
bδg,hw ��

0 bOzZoo bOxX ⊕ bOyY
bOxg⊕−bOyhoo bOwW.

bOwe⊕bOwfoo

If g,h are b-transverse then W is a manifold.

(c) In (b), if g,h are wc-transverse then W has topological space W =
{

(x, y) ∈
X × Y : g(x) = h(y)

}
, and (11.38) is also 2-Cartesian in mKurgc, and the fol-

lowing is 2-Cartesian in mǨurgc
in and mǨurgc, with C(g), C(h) wc-transverse:

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Hence we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)

for i > 0. When i = 1, this computes the boundary ∂W.
Also, if g is a wb-fibration, or b-fibration, or wc-fibration, or c-fibration,

then C(g) is a wb-fibration, . . . , or c-fibration, respectively.
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(d) In part (b), using the theory of b-canonical bundles and orientations from
§10.7, there is a natural isomorphism of topological line bundles on W :

bΥX,Y ,Z : bKW −→ e∗(bKX)⊗ f∗(bKY )⊗ (g ◦ e)∗(bKZ)∗. (11.39)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.39) is orientation-preserving. Propositions
11.26 and 11.27 hold for these fibre product orientations.

(e) Let g : X → Z be a 1-morphism in mKurgc
in . Then g is a wb-submersion

if and only if bOxg : bOxX → bOzZ is surjective for all x ∈X with g(x) = z
in Z. Also g is a b-submersion if and only if bOxg : bOxX → bOzZ is an
isomorphism and bTxg : bTxX → bTzZ is surjective for all x, z.

Furthermore g is a wb-fibration (or a b-fibration) if it is a wb-submersion (or
b-submersion) and whenever there are x, z in Cj(X), Cl(Z) with C(g)x = z, we
have j > l. And g is a wc-fibration (or a c-fibration) if it is a wb-fibration (or a
b-fibration), and whenever x ∈ X and z ∈ Cl(Z) with g(x) = Πl(z) = z ∈ Z,
then there is exactly one x ∈ Cl(X) with Πl(x) = x and C(g)x = z.

(f) If g : X → Z and h : Y → Z are 1-morphisms in mKurgc
in with g a

wb-submersion (or wb-fibration) then g,h are wb-transverse (or wc-transverse,
respectively). If g is a b-submersion (or b-fibration) and Y is a manifold then
g,h are b-transverse (or c-transverse, respectively).

(g) If (11.38) is 2-Cartesian in mKurgc
in with g a wb-submersion, b-submersion,

wb-fibration, b-fibration, wc-fibration, or c-fibration, then f is a wb-submersion,
. . . , or c-fibration, respectively.

(h) Compositions and products of wb-submersions, b-submersions, wb-fibrations,
b-fibrations, wc-fibrations, and c-fibrations, in mKurgc

in are wb-submersions, . . . ,
c-fibrations. Projections πX : X × Y →X in mKurgc

in are wc-fibrations.

(i) If g : X → Z is a wc-fibration in mKurgc
in , and h : Y → Z is any

1-morphism in mKurgc (not necessarily in mKurgc
in ), then a fibre product

W = X×g,Z,h Y exists in mKurgc, with dimW = dimX + dimY −dimZ, in
a 2-Cartesian square (11.38) in mKurgc. It has topological space W =

{
(x, y) ∈

X × Y : g(x) = h(y)
}

. The analogues of (c),(g) hold for these fibre products.
If g is a c-fibration and Y is a manifold then W is a manifold.

11.3.4 Fibre products in mKurcin and mKurc

In §2.5.4, working in the subcategory Manc
in ⊂ Manc from §2.1, we defined

sb-transverse and sc-transverse morphisms. Example 11.13 explained how to
fit these into the framework of Assumptions 11.1 and 11.3–11.9, also using
s-submersions from §2.5.2. The next theorem summarizes Theorems 11.19, 11.22
and 11.25 and Corollary 11.24 applied to Example 11.13.

Here mKurc
in ⊂ mKurc are the 2-categories of m-Kuranishi spaces cor-

responding to Manc
in ⊂ Manc as in Definition 4.29, the corner 2-functor

C : mKurc →mǨurc is as in Example 4.45, b-tangent spaces bTxX are as in
Example 10.25(ii), and monoids M̃xX are as in Example 10.32(c).
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We use the notation wsb-transverse and wsc-transverse for the notions of
w-transverse in mKurc

in corresponding to sb- and sc-transverse morphisms, and
sb-transverse, sc-transverse for the notions of transverse. We omit some of the
results on ws- and s-submersions, as they appeared already in Theorem 11.32.

Theorem 11.35. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
mKurc

in. Then g,h are wsb-transverse if and only if for all x ∈X and y ∈ Y
with g(x) = h(y) = z in Z, the following linear map is surjective:

bOxg ⊕ bOyh : bOxX ⊕ bOyY −→ bOzZ, (11.40)

and we have an isomorphism of commutative monoids

M̃xX ×M̃xg,M̃zZ,M̃yh
M̃yY ∼= Nn for n > 0. (11.41)

This is automatic if Z is a classical manifold. Also g,h are sb-transverse if
and only if for all x, y, z, equations (11.40)–(11.41) are isomorphisms, and the
following is surjective:

bTxg ⊕ bTyh : bTxX ⊕ bTyY −→ bTzZ.

Furthermore, g,h are wsc-transverse (or sc-transverse) if and only if they
are wsb-transverse (or sb-transverse), and whenever x ∈ Cj(X) and y ∈ Ck(Y )
with C(g)x = C(h)y = z in Cl(Z), we have either j + k > l, or j = k = l = 0.

(b) If g : X → Z and h : Y → Z are wsb-transverse in mKurc
in then a fibre

product W = X ×g,Z,h Y exists in mKurc
in, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.42)

It has vdimW = vdimX + vdimY − vdimZ. If w ∈W with e(w) = x in X,
f(w) = y in Y and g(x) = h(y) = z in Z, the following sequence is exact:

0 // bTwW bTwe⊕bTwf
// bTxX ⊕ bTyY bTxg⊕−bTyh

// bTzZ
bδg,hw ��

0 bOzZoo bOxX ⊕ bOyY
bOxg⊕−bOyhoo bOwW.

bOwe⊕bOwfoo

If g,h are sb-transverse then W is a manifold.

(c) In (b), if g,h are wsc-transverse then W has topological space W =
{

(x, y) ∈
X × Y : g(x) = h(y)

}
, and (11.42) is also 2-Cartesian in mKurc, and the fol-

lowing is 2-Cartesian in mǨurc
in and mǨurc, with C(g), C(h) wsc-transverse:

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).
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Hence we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)

for i > 0. When i = 1, this computes the boundary ∂W.
Also, if g is a ws-submersion (or an s-submersion), then C(g) is a ws-

submersion (or an s-submersion, respectively).

(d) In part (b), using the theory of b-canonical bundles and orientations from
§10.7, there is a natural isomorphism of topological line bundles on W :

bΥX,Y ,Z : bKW −→ e∗(bKX)⊗ f∗(bKY )⊗ (g ◦ e)∗(bKZ)∗. (11.43)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the
fibre product orientation, such that (11.43) is orientation-preserving.

(e) Let g : X → Z be a 1-morphism in mKurc
in. Then g is a ws-submersion if

and only if bOxg : bOxX → bOzZ is surjective for all x ∈X with g(x) = z in
Z, and the monoid morphism M̃xg : M̃xX → M̃zZ is isomorphic to a projection
Nm+n → Nn. Also g is an s-submersion if and only if bOxg : bOxX → bOzZ is
an isomorphism, and bTxg : bTxX → bTzZ is surjective, and M̃xg is isomorphic
to a projection Nm+n → Nn, for all x, z.

(f) If g : X → Z and h : Y → Z are 1-morphisms in mKurgc
in with g a

ws-submersion then g,h are wsc-transverse. If g is an s-submersion and Y is a
manifold then g,h are sc-transverse.

11.4 Discussion of fibre products of µ-Kuranishi spaces

We now consider to what extent the results of §11.2–§11.3 may be extended to
categories of µ-Kuranishi spaces µK̇ur in Chapter 5. First consider an example:

Example 11.36. Let X = Y = ∗ be the point in Man, and Z = Rn for n > 0,
and g : X → Z, h : Y → Z map g : ∗ 7→ 0 and h : ∗ 7→ 0. Then g, h are not
transverse in Man, but a fibre product W = X ×g,Z,h Y exists in Man, with
W = ∗. Note that dimW > dimX + dimY − dimZ.

WriteX,Y ,Z, g,h for the images of X,Y, Z, g, h either in m-Kuranishi spaces
mKur under FmKur

Man : Man → mKur from Example 4.30, or in µ-Kuranishi
spaces µKur under FmKur

Man : Man→ µKur from Example 5.16.
Then g,h are w-transverse in mKur, so a fibre product W = X ×g,Z,h Y

exists in the 2-category mKur, with vdimW = −n. It is a point with obstruction
space Rn, covered by an m-Kuranishi neighbourhood (∗,Rn, 0, id∗).

As X = Y = ∗ are the terminal object in the ordinary category µKur, a
fibre product W̃ = X ×g,Z,h Y also exists in µKur, but it is the point ∗, as in

Man, with vdim W̃ = 0, so vdim W̃ > vdimX + vdimY − vdimZ.

In this example, the fibre product W̃ = X ×g,Z,h Y in µKur is ‘wrong’, not
the fibre product we want – it does not have the expected dimension, and is not
locally described in µ-Kuranishi neighbourhoods by Definition 11.16.
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As in Theorem 5.23 we have an equivalence Ho(mKur) ' µKur. The
moral is that the 2-category structure in mKur is crucial to get the ‘correct’
w-transverse fibre products, as the definition of 2-category fibre products in §A.4
involves the 2-morphisms in an essential way. Passing to the homotopy category
Ho(mKur), or to µKur, forgetting 2-morphisms, loses too much information
for (w-)transverse fibre products to be well-behaved.

Our conclusion is that we should not study (w-)transverse fibre products in
categories µK̇ur, but we should work in the 2-categories mK̇ur or K̇ur instead.

Despite this, there is nevertheless a sense in which well-behaved ‘w-transverse
fibre products’ do exist in categories of µ-Kuranishi spaces mK̇ur:

Definition 11.37. Suppose Ṁan satisfies Assumptions 3.1–3.7 and 11.1, giving
discrete properties D,E and notions of transverse morphisms and submersions.
Let g′ : X ′ → Z ′, h′ : Y ′ → Z ′ be D morphisms in µK̇ur. As in §5.6.4 we

can choose X,Y ,Z in mK̇ur with FµK̇ur

mK̇ur
(X) = X ′, FµK̇ur

mK̇ur
(Y ) = Y ′, and

FµK̇ur

mK̇ur
(Z) = Y ′, and as in §5.6.3 we can choose 1-morphisms g : X → Z,

h : Y → Z in mK̇ur, unique up to 2-isomorphism, such that FµK̇ur

mK̇ur
([g]) = g′

and FµK̇ur

mK̇ur
([h]) = h′. Then g,h are D. Define g′,h′ to be w-transverse in

µK̇ur if g,h are w-transverse in mK̇ur. This is independent of choices.
If g′,h′ are w-transverse then a fibre product W = X ×g,Z,h Y exists in

mK̇ur by Theorem 11.17, with projections e : W → X, f : W → Y . Define

W′ = FµK̇ur

mK̇ur
(Y ), e′ = FµK̇ur

mK̇ur
([e]) and f ′ = FµK̇ur

mK̇ur
([f ]). Then vdimW′ =

vdimX ′ + vdimY ′ − vdimZ ′, and we have a commutative square in µK̇ur:

W′
f ′

//

e′��

Y ′

h′ ��
X ′

g′ // Z ′.

(11.44)

In general (11.44) is not Cartesian in µK̇ur, and W′ is not a fibre product
X ′ ×g′,Z′,h′ Y ′ in µK̇ur, as Example 11.36 shows. But as W is unique up to

canonical equivalence in mK̇ur, this W′ is unique (that is, depends only on
X ′,Y ′,Z ′, g′,h′) up to canonical isomorphism in µK̇ur.

By an abuse of notation, we could decide to call W′ a ‘w-transverse fibre
product’ in µK̇ur, although it is not a fibre product in the category-theoretic
sense. With this convention, the results of §11.2–§11.3 extend to µ-Kuranishi
spaces in the obvious way. Such ‘w-transverse fibre products’ are an additional
structure on µK̇ur. Fukaya, Oh, Ohta and Ono [15, §A1.2] define non-category-
theoretic ‘fibre products’X×ZY of FOOO Kuranishi spacesX,Y over manifolds
Z in this sense, as in Definition 7.9.

11.5 Transverse fibre products and submersions in K̇ur

Next we generalize §11.2–§11.3 to Kuranishi spaces K̇ur. We suppose throughout
this section that the category Ṁan used to define K̇ur satisfies Assumptions
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3.1–3.7 and 11.1, and will also specify additional assumptions as needed.

11.5.1 Transverse fibre products of orbifolds

Transverse fibre products of orbifolds are well understood, and are discussed
by Adem, Leida and Ruan [1, Def. 1.41, Def. 2.7, Ex. 2.8], Chen and Ruan [5,
p. 83], Moerdijk [56, §2.1 & §3.3], and Moerdijk and Pronk [57, §5]. Here are
the analogues of Definition 2.21 and Theorem 2.22(a).

Definition 11.38. Write Orb for the 2-category of orbifolds, that is, for one
of the equivalent 2-categories OrbPr,OrbLe,OrbManSta,OrbC∞Sta,OrbKur in
§6.6. Orbifolds X have (weakly) functorial isotropy groups GxX and tangent
spaces TxX for x ∈ X, as in §6.5 and §10.2. We call 1-morphisms g : X → Z,
h : Y→ Z in Orb transverse if for all x ∈ X, y ∈ Y with g(x) = h(y) = z ∈ Z
and all γ ∈ GzZ, the tangent morphism Txg⊕ (γ · Tyh) : TxX⊕ TyY→ TzZ is
surjective.

Theorem 11.39. Suppose g : X→ Z and h : Y→ Z are transverse 1-morphisms
in Orb. Then a fibre product W = X×g,Z,hY exists in the 2-category Orb, with
dimW = dimX + dimY− dimZ, in a 2-Cartesian square:

W HP
η

f
//

e
��

Y

h ��
X

g // Z.

Just as a set, the underlying topological space may be written

W =
{

(x, y, C) : x ∈ X, y ∈ Y, C ∈ Gxg(GxX)\GzZ/Gyh(GyY)
}
, (11.45)

where e, f map e : (x, y, C) 7→ x, f : (x, y, C) 7→ y. The isotropy groups satisfy

G(x,y,C)W ∼=
{

(α, β) ∈ GxX×GyY : Gxg(α) γ Gyh(β−1) = γ
}

for fixed γ ∈ C ⊆ GzZ.

Remark 11.40. (a) It is important that we work in a 2-category of orbifolds in
Theorem 11.39. Transverse fibre products need not exist in the ordinary category
Ho(Orb), and if they do exist they may be the ‘wrong’ fibre product.

(b) Note that we need not have W ∼=
{

(x, y) ∈ X × Y : g(x) = h(y)
}

in
Theorem 11.39, as either a set or a topological space. We discussed a similar
phenomenon for fibre products in Mangc

in ,Manc
in in Remark 2.37, due to working

in categories of interior maps. But the reasons here are different, and due to the
2-category structure. When we are working with spaces in a 2-category, points
may have isotropy groups, and these isotropy groups modify the underlying
sets/topological spaces of fibre products as in (11.45). There does not seem to
be an easy description of the topology on (11.45) in terms of those on X,Y, Z.

(c) It may be surprising that we need Txg ⊕ (γ · Tyh) to be surjective for all
γ ∈ GzZ in Definition 11.38, rather than just requiring Txg⊕Tyh to be surjective.
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To see this is sensible, note that as in §10.2.3 the maps Txg : TxX→ TzZ and
Tyh : TyY→ TzZ are defined using arbitrary choices, and are only canonical up
to the actions γ · Txg, γ · Txh of γ ∈ GzZ. Also, surjectivity of Txg ⊕ (γ · Tyh)
is the transversality condition required at the point (x, y, C) ∈ W in (11.45),
where C = Gxg(GxX) γ Gyh(GyY).

11.5.2 Fibre products of global Kuranishi neighbourhoods

Here are the analogues of Definitions 11.15 and 11.16 and Theorem 11.17.

Definition 11.41. Suppose g : X → Z, h : Y → Z are continuous maps
of topological spaces, and (Ul, Dl,Bl, rl, χl), (Vm, Em,Γm, sm, ψm), (Wn, Fn,∆n,
tn, ωn) are Kuranishi neighbourhoods on X,Y, Z with Imχl ⊆ g−1(Imωn) and
Imψm ⊆ h−1(Imωn), and

gln = (Pln, πln, gln, ĝln) : (Ul, Dl,Bl, rl, χl) −→ (Wn, Fn,∆n, tn, ωn),

hmn = (Pmn, πmn, hmn, ĥmn) : (Vm, Em,Γm, sm, ψm)−→(Wn, Fn,∆n, tn, ωn),

are D 1-morphisms of Kuranishi neighbourhoods over (Imχl, g), (Imψm, h).
We call gln,hmn weakly transverse, or w-transverse, if there exist open neigh-

bourhoods Ṗln, Ṗmn of π∗ln(rl)
−1(0) and π∗mn(sm)−1(0) in Pln, Pmn, such that:

(i) gln|Ṗln : Ṗln →Wn and hmn|Ṗmn : Ṗmn →Wn are D morphisms in Ṁan,
which are transverse in the sense of Assumption 11.1(b).

(ii) ĝln|p ⊕ ĥmn|q : Dl|u ⊕ Em|v → Fn|w is surjective for all p ∈ Ṗln and

q ∈ Ṗmn with πln(p) = u ∈ Ul, πmn(q) = v ∈ Vm and gln(p) = hmn(q) = w
in Wn.

(iii) Ṗln is invariant under Bl ×∆n, and Ṗmn is invariant under Γm ×∆n.

We call gln,hmn transverse if they are w-transverse and in (ii) ĝln|p ⊕ ĥmn|q is
an isomorphism for all p, q.

We call gln a weak submersion, or a w-submersion, if there exists a Bl ×∆n-
invariant open neighbourhood P̈ln of π∗ln(rl)

−1(0) in Pln such that:

(iv) gln|P̈ln : P̈ln →Wn is a submersion in ṀanD, as in Assumption 11.1(c).

(v) ĝln|p : Dl|u → Fn|w is surjective for all p ∈ P̈ln with πln(p) = u ∈ Ul and
gln(p) = w in Wn.

We call gln a submersion if it is a w-submersion and in (v) ĝln|p is an isomorphism
for all p.

If gln is a w-submersion then gln,hmn are w-transverse for any D 1-mor-
phism hmn : (Vm, Em,Γm, sm, ψm) → (Wn, Fn,∆n, tn, ωn) over (Imψm, h), by
Assumption 11.1(c). Also if gln is a submersion then gln,hmn are transverse
for any D 1-morphism hmn : (Vm, Em,Γm, sm, ψm)→ (Wn, Fn,∆n, tn, ωn) over
(Imψm, h) for which Em = 0 is the zero vector bundle.
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In Definition 6.9 we defined a weak 2-category GK̇N of global Kuranishi
neighbourhoods, where:

• Objects (V,E,Γ, s) in GK̇N are a manifold V (object in Ṁan), a vector
bundle E → V , a finite group Γ acting on V,E preserving the structures,
and a Γ-equivariant section s : V → E. Then (V,E,Γ, s, ids−1(0)/Γ) is a
Kuranishi neighbourhood on the topological space s−1(0)/Γ, as in §6.1.
They have virtual dimension vdim(V,E,Γ, s) = dimV − rankE.

• 1-morphisms Φij : (Vi, Ei,Γi, si) → (Vj , Ej ,Γj , sj) in GK̇N are quadru-

ples Φij = (Pij , πij , φij , φ̂ij) satisfying Definition 6.2(a)–(e) with s−1
i (0)

in place of ψ̄−1
i (S). Then Φij : (Vi, Ei,Γi, si, ids−1

i (0)/Γi) → (Vj , Ej ,
Γj , sj , ids−1

j (0)/Γj ) is a 1-morphism of Kuranishi neighbourhoods over the

map s−1
i (0)/Γi → s−1

j (0)/Γj induced by φij , πij , as in §6.1.

• For 1-morphisms Φij ,Φ
′
ij : (Vi, Ei,Γi, si)→ (Vj , Ej ,Γj , sj), a 2-morphism

Λij : Φij ⇒ Φ′ij in GK̇N is as in Definition 6.4, with s−1
i (0) in place

of ψ̄−1
i (S).

We write GK̇ND ⊆ GK̇N for the 2-subcategory with 1-morphisms Φij which
are D, in the sense of Definition 6.31. The next (rather long) definition and
theorem prove that w-transverse fibre products exist in GK̇ND.

Definition 11.42. Suppose we are given 1-morphisms in GK̇ND

gln : (Ul, Dl,Bl, rl) −→ (Wn, Fn,∆n, tn),

hmn : (Vm, Em,Γm, sm) −→ (Wn, Fn,∆n, tn),

with gln,hmn w-transverse in the sense of Definition 11.41. We will construct a
fibre product

(Tk, Ck,Ak, qk)=(Ul, Dl,Bl, rl)×gln,(Wn,Fn,∆n,tn),hmn (Vm, Em,Γm, sm) (11.46)

in both GK̇ND and GK̇NE .
Write gln = (Pln, πln, gln, ĝln) and hmn = (Pmn, πmn, hmn, ĥmn). Then

ĝln(π∗ln(rl)) = g∗ln(tn)+O(π∗ln(rl)
2) by Definition 6.2(e), so Definition 3.15(i) gives

ε : π∗ln(Dl)⊗π∗ln(Dl)→ g∗ln(Fn) with ĝln(π∗ln(rl)) = g∗ln(tn) + ε(π∗ln(rl)⊗π∗ln(rl)).
By averaging over the (Bl×∆n)-action we can suppose ε is (Bl×∆n)-equivariant.
Define ĝ′ln : π∗ln(Dl) → g∗ln(Fn) by ĝ′ln(d) = ĝln(d) − ε(d ⊗ π∗ln(rl)). Replacing
ĝln by ĝ′ln, which does not change gln up to 2-isomorphism as ĝ′ln = ĝln +
O(π∗ln(rl)), we may suppose that ĝln(π∗ln(rl)) = g∗ln(tn). Similarly we suppose

that ĥmn(π∗mn(sm)) = h∗mn(tn).
For Ṗln, Ṗmn as in Definition 11.41(i)–(iii), define

Tk = Ṗln ×gln|Ṗln ,Wn,hmn|Ṗmn Ṗmn (11.47)

to be the transverse fibre product in ṀanD from Assumption 11.1(b). Then

dimTk = dimUl + dimVm − dimWn, (11.48)
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as dim Ṗln = dimUl, etc. Define a finite group Ak = Bl × Γm × ∆n. Since
gln|Ṗln is Bl-invariant and ∆n-equivariant, and hmn|Ṗmn is Γm-invariant and
∆n-equivariant, Ak is a symmetry group of the fibre product (11.47), so there is
a natural smooth action of Ak on Tk. If we can write points of Tk as (p, q) for
p ∈ Ṗln, q ∈ Ṗmn with gln(p) = hmn(q) ∈Wn then Ak acts on points by

(β, γ, δ) : (p, q) 7→ ((β, δ) · p, (γ, δ) · q),

noting that gln((β, δ) · p) = δ · gln(p) = δ · hmn(q) = hmn((γ, δ) · q).
We have a morphism of vector bundles on Tk:

π∗
Ṗln

(ĝln)⊕−π∗
Ṗmn

(ĥmn) : (πln ◦ πṖln)∗(Dl)⊕ (πmn ◦ πṖmn)∗(Em)

−→ (gln ◦ πṖln)∗(Fn).
(11.49)

If t ∈ Tk with πṖln(t) = p ∈ Ṗln, πṖmn(t) = q ∈ Ṗmn, πln(p) = u ∈ Uln,
πmn(q) = v ∈ Vmn and gln(p) = hmn(q) = w ∈ Wn then the fibre of (11.49) at

t is ĝln|p ⊕−ĥmn|q : Dl|u ⊕ Em|v → Fn|w. So Definition 11.41(ii) implies that
(11.49) is surjective. Define Ck → Tk to be the kernel of (11.49), as a vector
subbundle of (πln ◦ πṖln)∗(Dl)⊕ (πmn ◦ πṖmn)∗(Em) with

rankCk = rankDl + rankEm − rankFn. (11.50)

Definition 6.2(d) for gln,hmn says that ĝln is (Bl ×∆n)-equivariant and ĥln
is (Γm×∆n)-equivariant. Including the trivial actions of Γm on Dl, Fn, and of Bl
on Em, Fn, means that ĝln, ĥmn are equivariant under Ak = Bl × Γm ×∆n. The
pullbacks by πṖln , πṖmn are also Ak-equivariant, as πṖln , πṖmn are. So (11.49) is
equivariant under the natural actions of Ak, and thus Ck has a natural Ak-action
by restriction from the Ak-action on (πln ◦ πṖln)∗(Dl)⊕ (πmn ◦ πṖmn)∗(Em).

Write πDl : Ck → (πln ◦ πṖln)∗(Dl), πEm : Ck → (πmn ◦ πṖmn)∗(Em) for the
projections. Then as Ck is the kernel of (11.49) we have

π∗
Ṗln

(ĝln) ◦ πDl = π∗
Ṗmn

(ĥmn) ◦ πEm : Ck −→ (gln ◦ πṖln)∗(Fn). (11.51)

In sections of the left hand side of (11.49) over Tk, we have(
π∗
Ṗln

(ĝln)⊕−π∗
Ṗmn

(ĥmn)
)(

(πln ◦ πṖln)∗(rl)⊕ (πmn ◦ πṖmn)∗(sm)
)

= π∗
Ṗln
◦ ĝln ◦ π∗ln(rl)− π∗Ṗmn ◦ ĥmn ◦ π

∗
mn(sm)

= π∗
Ṗln
◦ g∗ln(tn)− π∗

Ṗmn
◦ h∗mn(tn) = 0,

as ĝln(π∗ln(rl)) = g∗ln(tn), ĥmn(π∗mn(sm)) = h∗mn(tn), and gln◦πṖln = hmn◦πṖmn .
Thus (πln ◦ πṖln)∗(rl)⊕ (πmn ◦ πṖmn)∗(sm) lies in the kernel of (11.49), so it is
a section of Ck. Write qk ∈ Γ∞(Ck) for this section. Then

πDl(qk) = (πln ◦ πṖln)∗(rl) and πEm(qk) = (πmn ◦ πṖmn)∗(sm). (11.52)

Also qk is Ak-equivariant, as (πln ◦ πṖln)∗(rl) and (πmn ◦ πṖmn)∗(sm) are.
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Then (Tk, Ck,Ak, qk) is an object in GK̇ND. By (11.48), (11.50) we have

vdim(Tk, Ck,Ak, qk) = vdim(Ul, Dl,Bl, rl)

+ vdim(Vm, Em,Γm, sm)− vdim(Wn, Fn,∆n, tn).

Define Pkl = Tk×Bl and Pkm = Tk×Γm, as objects in Ṁan. Define smooth
actions of Ak × Bl on Pkl, and of Ak × Γm on Pkm, at the level of points by

((β, γ, δ), β′) : (t, β′′) 7−→ ((β, γ, δ) · t, β′β′′β−1),

((β, γ, δ), γ′) : (t, γ′′) 7−→ ((β, γ, δ) · t, γ′γ′′γ−1).

Define morphisms πkl = πTk : Pkl = Tk × Bl → Tk and πkm = πTk : Pkm =
Tk × Γm → Tk in Ṁan. Then πkl is an Ak-equivariant principal Bl-bundle over
Tkl = Tk, and πkm an Ak-equivariant principal Γm-bundle over Tkm = Tk.

Define morphisms ekl : Pkl → Ul and fkm : Pkm → Vm in Ṁan by

ekl(t, β) = β · πln ◦ πṖln(t), fkm(t, γ) = γ · πlm ◦ πṖlm(t),

that is, ekl|Tk×{β} = β · (πln ◦ πṖln) and f̂km|Tk×{γ} = γ · (πlm ◦ πṖlm) for
β ∈ Bl and γ ∈ Γm. Then ekl is Ak-invariant and Bl-equivariant, and fkm is
Ak-invariant and Γm-equivariant. Also e◦ϕ̄k◦πkl = χ̄l◦ekl on π−1

kl (q−1
k (0)) ⊆ Pkl

and f ◦ ϕ̄k ◦ πkm = ψ̄m ◦ fkm on π−1
km(q−1

k (0)) ⊆ Pkm. And ekl, fkm are D, since

πṖln , πṖlm are as (11.47) is a fibre product in ṀanD, and β · πln, γ · πln are
étale.

Define morphisms êkl :π
∗
kl(Ck)→e∗kl(Dl) and f̂km :π∗km(Ck)→f∗km(Em) by

êkl|Tk×{β} = (πln ◦ πṖln)∗(β♥) ◦ πDl , f̂km|Tk×{γ} = (πlm ◦ πṖlm)∗(γ♥) ◦ πEm

for all β ∈ Bl and γ ∈ Γm, where β♥ : Dl → β∗(Dl) is the isomorphism from
the lift of the Bl-action on Ul to Dl, with β∗ the pullback by β · : Ul → Ul,
and similarly for γ♥. Then êkl is (Ak × Bl)-equivariant, and f̂km is (Ak × Γm)-
equivariant. We have

êkl(π
∗
kl(qk))|Tk×{β} = (πln ◦ πṖln)∗(β♥) ◦ πDl(π∗kl(qk))

= (πln ◦ πṖln)∗(β♥) ◦ (πln ◦ πṖln)∗(rl) = (πln ◦ πṖln)∗(β♥(rl))

= (πln ◦ πṖln)∗(β∗(rl)) = e∗kl(rl)|Tk×{β},

using (11.52) in the second step and β♥(rl) = β∗(rl) as rl is Bl-equivariant in
the fourth. As this holds for all β ∈ Bl we see that êkl(π

∗
kl(qk)) = e∗kl(rl), and

similarly f̂km(π∗km(qk)) = f∗km(sm).

Set ekl = (Pkl, πkl, ekl, êkl) and fkm = (Pkm, πkm, fkm, f̂km). Then ekl :
(Tk, Ck,Ak, qk)→ (Ul, Dl,Bl, rl) and fkm : (Tk, Ck,Ak, qk)→ (Vm, Em,Γm, sm)
are 1-morphisms in GK̇ND, as we have verified Definition 6.2(a)–(e) for ekl,fkm
above, and ekl, fkm are D.
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Form the compositions gln ◦ ekl,hmn ◦ fkn : (Tk, Ck,Ak, qk)→ (Wn, Fn,∆n,
tn) using Definition 6.5, where we write

gln ◦ ekl = (Pkln, πkln, akln, âkln), hmn ◦ fkm = (Pkmn, πkmn, bkmn, b̂kmn).

Then by Definition 6.5 we have

Pkln =
(
Pkl ×ekl,Ul,πln Pln

)
/Bl =

(
(Tk × Bl)×ekl,Ul,πln Pln

)
/Bl.

Define a morphism Φkln : Tk ×∆n → Pkln in Ṁan at the level of points by

Φkln(t, δ) =
(
(t, 1), δ · πṖln(t)

)
Bl.

We claim Φkln is a diffeomorphism. To see this, first note that the quotient
Bl-action acts freely on the Bl factor in Tk × Bl, so we can restrict to Tk × {1}
and omit the quotient, giving Pkln ∼= Tk ×πln◦πṖln ,Ul,πln Pln. Then observe

that if (t, p) ∈ Tk ×Ul Pln then πln[πṖln(t)] = πln[u], but πln : Pln → Ul is a
principal ∆n-bundle, so there exists a unique δ ∈ ∆n with p = δ · πṖln(t), and
therefore Tk ×∆n

∼= Tk ×Ul Pln.
If we identify Pkln = Tk ×∆n using Φkln, then we find from Definition 6.5

that Ak ×∆n acts on Pkln by

((β, γ, δ), δ′) : (t, δ′′) 7−→ ((β, γ, δ) · t, δ′δ′′δ−1), (11.53)

and πkln : Pkln → Tk, akln : Pkln →Wn, âkln : π∗kln(Ck)→ a∗kln(Fn) act by

πkln : (t, δ) 7−→ t, akln : (t, δ) 7−→ δ · gln ◦ πṖln(t),

âkln|(t,δ) = ĝln|δ·πṖln (t) ◦ πDl |t = δ♥|gln◦πṖln (t) ◦ ĝln|πṖln (t) ◦ πDl |t.

Similarly, there is a natural diffeomorphism Φkmn : Tk ×∆n → Pkmn, and if
we use it to identify Pkmn = Tk×∆n then Ak×∆n acts on Pkmn as in (11.53), and

πkmn : Pkmn → Tk, bkmn : Pkmn →Wn, b̂kmn : π∗kmn(Ck)→ b∗kmn(Fn) act by

πkmn : (t, δ) 7−→ t, bkmn : (t, δ) 7−→ δ · hmn ◦ πṖmn(t),

b̂kmn|(t,δ) = δ♥|hmn◦πṖmn (t) ◦ ĥmn|πṖmn (t) ◦ πEm |t.

Since gln ◦ πṖln = hmn ◦ πṖmn by (11.47), and (11.51) holds, we see that
these identifications Pkln = Tk × ∆n = Pkmn are Ak × ∆n-equivariant and
identify πkln, akln, âkln with πkmn, bkmn, b̂kmn. That is, we have found a strict
isomorphism between the 1-morphisms gln ◦ ekl,hmn ◦ fkn. It follows that

ηklmn = [Pkln,Φkmn ◦ Φ−1
kln, 0] : gln ◦ ekl =⇒ hmn ◦ fkn

is a 2-morphism in GK̇ND, and we have a 2-commutative diagram in GK̇ND:

(Tk, Ck,Ak, qk)
IQ

ηklmn

fkm

//

ekl
��

(Vm, Em,Γm, sm)

hmn
��

(Ul, Dl,Bl, rl)
gln // (Wn, Fn,∆n, tn).

(11.54)
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If gln,hmn are transverse, not just w-transverse, then (11.49) is an isomor-
phism, not just surjective, so Ck is the zero vector bundle, as it is the kernel of
(11.49). Thus (Tk, Ck,Ak, qk, ) is a quotient orbifold [Tk/Ak].

Theorem 11.43. In Definition 11.42, equation (11.54) is 2-Cartesian in both
GK̇ND and GK̇NE in the sense of Definition A.11, so that (Tk, Ck,Ak, qk) is
a fibre product in the 2-categories GK̇ND,GK̇NE , as in (11.46).

The proof of Theorem 11.43 is the orbifold analogue of the proof of Theorem
11.17 in §11.8, and we leave it as a (long and rather dull) exercise for the reader.

11.5.3 (W-)transversality and fibre products in K̇urD

Here are the analogues of Definition 11.18 and Theorem 11.19.

Definition 11.44. Let g : X → Z, h : Y → Z be 1-morphisms in K̇urD. We
call g,h or w-transverse (or transverse), if whenever x ∈ X and y ∈ Y with
g(x) = h(y) = z in Z, there exist Kuranishi neighbourhoods (Ul, Dl,Bl, rl, χl),
(Vm, Em,Γm, sm, ψm), (Wn, Fn,∆n, tn, ωn) on X,Y ,Z as in §6.4 with x ∈
Imχl ⊆ g−1(Imωn), y ∈ Imψm ⊆ h−1(Imωn) and z ∈ Imωn, and 1-morphisms
gln : (Ul, Dl,Bl, rl, χl) → (Wn, Fn,∆n, tn, ωn), hmn : (Vm, Em,Γm, sm, ψm) →
(Wn, Fn,∆n, tn, ωn) over (Imχl, g) and (Imψm,h), as in Definition 6.44, such
that gln,hmn are w-transverse (or transverse), as in Definition 11.42.

We call g a w-submersion (or a submersion), if whenever x ∈ X with
g(x) = z ∈ Z, there exist Kuranishi neighbourhoods (Ul, Dl,Bl, rl, χl), (Wn,
Fn,∆n, tn, ωn) on X,Z as in §6.4 with x ∈ Imχl ⊆ g−1(Imωn), z ∈ Imωn, and
a 1-morphism gln : (Ul, Dl,Bl, rl, χl)→ (Wn, Fn,∆n, tn, ωn) over (Imχl, g), as
in Definition 6.44, such that gln is a w-submersion (or a submersion, respectively),
as in Definition 11.42.

Suppose g : X → Z is a w-submersion, and h : Y → Z is any D 1-
morphism in K̇ur. Let x ∈ X and y ∈ Y with g(x) = h(y) = z in Z. As g
is a w-submersion we can choose gln : (Ul, Dl,Bl, rl, χl)→ (Wn, Fn,∆n, tn, ωn)
with x ∈ Imχl ⊆ g−1(Imωn), z ∈ Imωn, and gln a w-submersion. Choose
any Kuranishi neighbourhood (Vm, Em,Γm, sm, ψm) on Y with y ∈ Imψm ⊆
h−1(Imωn). Then Theorem 6.45(b) gives a D 1-morphism hmn : (Vm, Em,Γm,
sm, ψm)→ (Wn, Fn,∆n, tn, ωn) over (Imψm,h), and gln,hmn are w-transverse
as gln is a w-submersion. Hence g,h are w-transverse.

Similarly, suppose g : X → Z is a submersion, and h : Y → Z is a D
1-morphism in K̇ur such that Y is an orbifold as in Proposition 6.64, that is,

Y ' F K̇ur
Ȯrb

(Y) for Y ∈ Ȯrb. Then for x ∈X and y ∈ Y with g(x) = h(y) = z
in Z we can choose gln,hmn as above with gln a submersion and Em = 0, so
that gln,hmn are transverse. Hence g,h are transverse.

Theorem 11.45. Let g : X → Z, h : Y → Z be w-transverse 1-morphisms in
K̇urD. Then there exists a fibre product W = Xg,Z,hY in K̇urD, as in §A.4,
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with vdimW = vdimX + vdimY − vdimZ, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.55)

Equation (11.55) is also 2-Cartesian in K̇urE , so W is also a fibre product
Xg,Z,hY in K̇urE. Furthermore:

(a) If g,h are transverse then W is an orbifold, as in Proposition 6.64. In
particular, if g is a submersion and Y is an orbifold, then W is an orbifold.

(b) Suppose (Ul, Dl,Bl, rl, χl), (Vm, Em,Γm, sm, ψm), (Wn, Fn,∆n, tn, ωn) are
Kuranishi neighbourhoods on X,Y ,Z, as in §6.4, with Imχl ⊆ g−1(Imωn)
and Imψm ⊆ h−1(Imωn), and gln : (Ul, Dl,Bl, rl, χl) → (Wn, Fn,∆n, tn, ωn),
hmn : (Vm, Em,Γm, sm, ψm)→ (Wn, Fn,∆n, tn, ωn) are 1-morphisms of Kuran-
ishi neighbourhoods on X,Y ,Z over (Imχl, g) and (Imψm,h), as in §6.4, such
that gln,hmn are w-transverse, as in §11.5.2. Then there exist a Kuranishi neigh-
bourhood (Tk, Ck,Ak, qk, ϕk) on W with Imϕk = e−1(Imχl)∩f−1(Imψm) ⊆W,
and 1-morphisms ekl : (Tk, Ck,Ak, qk, ϕk) → (Ul, Dl,Bl, rl, χl) over (Imϕk, e)
and fkm : (Tk, Ck,Ak, qk, ϕk)→ (Vm, Em,Γm, sm, ψm) over (Imϕk,f), so that
Theorem 6.45(c) gives a unique 2-morphism ηklmn : gln ◦ ekl ⇒ hmn ◦ fkm over
(Imϕk, g ◦ e) constructed from η : g ◦ e ⇒ h ◦ f , such that Tk, Ck,Ak, qk and
ekl,fkm,ηklmn are constructed from (Ul, Dl,Bl, rl), (Vm, Em,Γm, sm), (Wn, Fn,∆n, tn)
and gln,hmn exactly as in Definition 11.42.

(c) If Ṁan satisfies Assumption 11.3 then just as a set, the underlying topological
space W in W = (W,H) may be written

W =
{

(x, y, C) : x ∈ X, y ∈ Y, C ∈ Gxg(GxX)\GzZ/Gyh(GyY )
}
, (11.56)

where e,f map e : (x, y, C) 7→ x, f : (x, y, C) 7→ y. The isotropy groups satisfy

G(x,y,C)W ∼=
{

(α, β) ∈ GxX ×GyY : Gxg(α) γ Gyh(β−1) = γ
}

for fixed γ ∈ C ⊆ GzZ.

(d) If Ṁan satisfies Assumption 11.4(a) and (11.55) is a 2-Cartesian square in
K̇urD with g a w-submersion (or a submersion) then f is a w-submersion (or
a submersion, respectively).

(e) If Ṁan satisfies Assumption 10.1, with tangent spaces TxX, and satisfies
Assumption 11.5, then using the notation of §10.2, whenever (11.55) is 2-
Cartesian in K̇urD with g,h w-transverse and w ∈ W with e(w) = x in
X, f(w) = y in Y and g(x) = h(y) = z in Z, for some possible choices of
Twe, Twf , Txg, Tyh, Owe, Owf , Oxg, Oyh in Definition 10.28 depending on w,
the following is an exact sequence:

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW.
Owe⊕Owfoo

(11.57)
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Here δg,hw : TzZ → OwW is a natural linear map defined as a connecting
morphism, as in Definition 10.69.

(f) If Ṁan satisfies Assumption 10.19, with quasi-tangent spaces QxX in a
category Q, and satisfies Assumption 11.6, then whenever (11.55) is 2-Cartesian
in K̇urD with g,h w-transverse and w ∈W with e(w) = x in X, f(w) = y in
Y and g(x) = h(y) = z in Z, the following is Cartesian in Q:

QwW
Qwf

//

Qwe��

QyY

Qyh ��
QxX

Qxg // QzZ.

(g) If Ṁanc satisfies Assumption 3.22 in §3.4, so that we have a corner functor
C : Ṁanc → Ṁ̌anc which extends to C : K̇urc → K̇̌urc as in §6.3, and
Assumption 11.1 holds for Ṁanc, and Assumption 11.7 holds, then whenever
(11.55) is 2-Cartesian in K̇urD with g,h w-transverse (or transverse), then the
following is 2-Cartesian in K̇̌urc

D and K̇̌urc
E , with C(g), C(h) w-transverse (or

transverse, respectively):

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Hence for i > 0 we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)
.

When i = 1, this computes the boundary ∂W. In particular, if ∂Z = ∅, so that
Cl(Z) = ∅ for all l > 0 by Assumption 3.22(f) with l = 1, we have

∂W '
(
∂X ×g◦iX ,Z,h Y

)
q
(
X ×g,Z,h◦iY ∂Y

)
.

Also, if g is a w-submersion (or a submersion), then C(g) is a w-submersion
(or a submersion, respectively).

(h) If Ṁan satisfies Assumption 11.8, and g : X → Z is a w-submersion
in K̇urD, and h : Y → Z is any 1-morphism in K̇urE (not necessarily in
K̇urD), then a fibre product W = X ×g,Z,h Y exists in K̇urE , with dimW =

dimX+dimY−dimZ, in a 2-Cartesian square (11.55) in K̇urE. The analogues
of (a)–(d) and (g) hold for these fibre products.

The proof of Theorem 11.45 is the orbifold analogue of the proof of Theorem
11.19 in §11.9, and we again leave it as an exercise for the reader. Most of the
proof requires only cosmetic changes. For the construction of the fibre product
W we use Theorem 11.43 rather than Theorem 11.17, and we must include extra
2-morphisms α∗,∗,∗, β∗, γ∗ from §6.1 as Kuranishi neighbourhoods form a weak
rather than a strict 2-category, but otherwise the proof is the same.
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Remark 11.46. Theorem 11.45(c) should be compared with Theorem 11.19(c)
and Theorem 11.39. In Theorem 11.45(c) we do not describe the topological
space W of W = X ×g,Z,h Y (as we did in Theorem 11.19(c)), but only the
underlying set, which is the same as for orbifold fibre products in Theorem 11.39.
As in Remark 11.40(b), the topological space does not have an easy description.

A good way to think about this is that just as an m-Kuranishi space W has
an underlying topological space W, so a Kuranishi space W has an underlying
Deligne–Mumford topological stack W, a kind of orbifold version of topological
spaces, as in Noohi [58]. Such stacks form a 2-category TopDM, and there is a
weak 2-functor FTopDM

K̇ur
: K̇ur→ TopDM mapping W 7→W .

If Ṁan satisfies Assumption 11.3, so that FTop

Ṁan
: Ṁan → Top takes

transverse fibre products in Man to fibre products in Top, then the 2-functor
FTopDM

K̇ur
: K̇ur → TopDM takes w-transverse fibre products in K̇ur to fibre

products in TopDM. So in Theorem 11.45(c) we could say that W = X×g,Z,h Y
is a fibre product of topological stacks.

All of §11.2.3–§11.2.5 can now be generalized to Kuranishi spaces, mostly with
only cosmetic changes. Here is the analogue of Theorem 11.22. The important
difference is that as for transversality for orbifolds in Definition 11.38, we must
include the action of γ ∈ GzZ on Qyh : QyY → QzZ in ‘condition T ’, and on
Oyh : OyY → OzZ and Tyh : TyY → TzZ in (11.58)–(11.59). This appears

in the proof when we show the fibre product (11.47) is transverse in Ṁan,
as several points in (11.47) can lie over each (x, y, z) for x ∈ X, y ∈ Y with
g(x) = h(y) = z in Z, and the transversality conditions at these points depend
on γ ∈ GzZ.

Theorem 11.47. Let Ṁanc satisfy Assumption 3.22, so that we have a corner
functor C : Ṁanc → Ṁ̌anc, and suppose Assumption 11.9 holds for Ṁanc.
This requires that Assumption 10.1 holds, giving a notion of tangent spaces TxX
for X in Ṁanc, and that Assumption 10.19 holds, giving a notion of quasi-
tangent spaces QxX in a category Q for X in Ṁanc, and that Assumption 11.1
holds, giving discrete properties D,E of morphisms in Ṁanc and notions of
transverse morphisms g, h and submersions g in Ṁanc

D.

As in §6.3, §10.2 and §10.3, we define a 2-category K̇urc, with a corner
2-functor C : K̇urc → K̇̌urc, and notions of tangent, obstruction and quasi-
tangent spaces TxX, OxX, QxX for X in K̇urc.

Now Assumption 11.9(a),(d) involve a ‘condition T ’ on morphisms g : X →
Z, h : Y → Z in Ṁanc

D and points x ∈ X, y ∈ Y with g(x) = h(y) = z ∈ Z,
and a ‘condition S’ on morphisms g : X → Z in Ṁanc

D and points x ∈ X with
g(x) = z ∈ Z. These conditions depend on the corner morphisms C(g), C(h)
and on quasi-tangent maps Qxg,Qyh. Then:

(a) Let g : X → Z, h : Y → Z be 1-morphisms in K̇urc
D. Then g,h are

w-transverse if and only if for all x ∈X, y ∈ Y with g(x) = h(y) = z in Z
and all γ ∈ GzZ, condition T holds for g,h, x, y, z, γ using the morphisms
Qxg : QxX → QzZ and γ · Qxh : QyY → QzZ in Q in Assumption
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11.9(a)(i), where GzZ acts on QzZ, and the following is surjective:

Oxg ⊕ (γ ·Oyh) : OxX ⊕OyY −→ OzZ. (11.58)

If Assumption 10.9 also holds for tangent spaces TxX in Ṁanc then g,h
are transverse if and only if for all x ∈X and y ∈ Y with g(x) = h(y) = z
in Z, condition T holds for g,h, x, y, z, γ as above, equation (11.58) is an
isomorphism, and the following linear map is surjective:

Txg ⊕ (γ · Tyh) : TxX ⊕ TyY −→ TzZ. (11.59)

(b) Let g : X → Z be a 1-morphism in K̇urc
D. Then g is a w-submersion if

and only if for all x ∈X with g(x) = z in Z, condition S holds for g, x, z,
and the following linear map is surjective:

Oxg : OxX −→ OzZ. (11.60)

If Assumption 10.9 also holds then g is a submersion if and only if for all
x ∈X with g(x) = z in Z, condition S holds for g, x, z, equation (11.60)
is an isomorphism, and the following is surjective:

Txg : TxX −→ TzZ.

For the analogue of Theorem 11.25 we require X,Y ,Z to be locally orientable
Kuranishi spaces, as in §10.7.6, so that the canonical bundles KX ,KY ,KZ
are defined as in Theorem 10.83. Then the w-transverse fibre product W =
X ×g,Z,h Y in K̇urD is also locally orientable, so that (11.24) makes sense.

Remark 11.48. We can relate Theorem 11.45(c),(e) and Theorem 11.47(a) as
follows. Let Ṁan satisfy all the relevant assumptions, consider a w-transverse
fibre product W = X ×g,Z,h Y in K̇ur, and suppose x ∈ X and y ∈ Y with
g(x) = h(y) = z ∈ Z. Defining the morphisms Gxg : GxX → GzZ and
Gyh : GyY → GzZ in §6.5 requires arbitrary choices. The same arbitrary
choices are involved in the description (11.56) of W as a set, and in the linear
maps Txg, Oxg, Txh, Oxh from §10.2.3 involved in (11.57)–(11.59).

If we take (11.56)–(11.59) all to be defined using the same arbitrary choices
for Gxg, Gyh, and we write w ∈W as (x, y, C) as in (11.56) with γ ∈ C ⊆ GzZ,
then we may rewrite (11.57) as the exact sequence:

0 // T(x,y,C)W // TxX⊕TyY
Txg⊕(γ·Tyh)

// TzZ

��
0 OzZoo OxX⊕OyY

Oxg⊕(γ·Oyh)oo O(x,y,C)W.oo
(11.61)

Thus we see that:
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• We need (11.61) to be exact for all C ∈ Gxg(GxX)\GzZ/Gyh(GyY ), and
hence for all γ ∈ GzZ. Thus it is necessary for Oxg ⊕ (γ · Oyh) to be
surjective for all γ ∈ GzZ for w-transverse g,h, as in Theorem 11.47(a).

• If g,h are transverse then W is a manifold, and O(x,y,C)W = 0 for
all (x, y, C). Thus by (11.61) it is necessary that Oxg ⊕ (γ · Oyh) is an
isomorphism and Txg⊕(γ ·Tyh) is surjective for all γ ∈ GzZ for transverse
g,h, as in Theorem 11.47(a).

11.6 Fibre products in Kur,Kurcst,Kurgc and Kurc

We now generalize §11.3 to Kuranishi spaces, using the material of §11.5.

11.6.1 Fibre products in Kur

As in §11.3.1, take Ṁan to be the category of classical manifolds Man, with
corresponding 2-category of Kuranishi spaces Kur as in Definition 6.29. We
will use tangent spaces TxX for X in Kur defined using ordinary tangent
spaces TvV in Man. Definition 2.21 in §2.5.1 defines transverse morphisms and
submersions in Man. As in Example 11.10, these satisfy Assumptions 11.1,
11.3–11.5 and 11.9. So Definition 11.44 defines (w-)transverse 1-morphisms and
(w-)submersions in Kur. Here is the analogue of Theorem 11.28:

Theorem 11.49. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
Kur. Then g,h are w-transverse if and only if for all x ∈ X, y ∈ Y with
g(x) = h(y) = z in Z and all γ ∈ GzZ, the following is surjective:

Oxg ⊕ (γ ·Oyh) : OxX ⊕OyY −→ OzZ. (11.62)

This is automatic if Z is an orbifold. Also g,h are transverse if and only if for
all x, y, z, γ, equation (11.62) is an isomorphism, and the following is surjective:

Txg ⊕ (γ · Tyh) : TxX ⊕ TyY −→ TzZ.

(b) If g : X → Z and h : Y → Z are w-transverse in Kur then a fibre product
W = X ×g,Z,h Y exists in Kur, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.63)

It has vdimW = vdimX + vdimY − vdimZ. Just as a set, the underlying
topological space W in W = (W,H) may be written

W =
{

(x, y, C) : x ∈ X, y ∈ Y, C ∈ Gxg(GxX)\GzZ/Gyh(GyY )
}
,

where e,f map e : (x, y, C) 7→ x, f : (x, y, C) 7→ y. The isotropy groups satisfy

G(x,y,C)W ∼=
{

(α, β) ∈ GxX ×GyY : Gxg(α) γ Gyh(β−1) = γ
}
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for fixed γ ∈ C ⊆ GzZ. If w ∈ W with e(w) = x in X, f(w) = y in Y
and g(x) = h(y) = z in Z, for some possible choices of Twe, Twf , . . . , Oyh in
Definition 10.28 depending on w, the following is an exact sequence:

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW.
Owe⊕Owfoo

If g,h are transverse then W is an orbifold.

(c) In part (b), using the theory of canonical bundles and orientations from
§10.7.6, suppose X,Y ,Z are locally orientable. Then W is also locally orientable,
and there is a natural isomorphism of topological line bundles on W :

ΥX,Y ,Z : KW −→ e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗. (11.64)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.64) is orientation-preserving. Proposition
11.26 holds for these fibre product orientations.

(d) Let g : X → Z be a 1-morphism in Kur. Then g is a w-submersion if and
only if Oxg : OxX → OzZ is surjective for all x ∈X with g(x) = z in Z. Also
g is a submersion if and only if Oxg : OxX → OzZ is an isomorphism and
Txg : TxX → TzZ is surjective for all x, z.

(e) If g : X → Z and h : Y → Z are 1-morphisms in Kur with g a w-
submersion then g,h are w-transverse. If g is a submersion and Y is an
orbifold then g,h are transverse.

(f) If (11.63) is 2-Cartesian in Kur with g a w-submersion (or a submersion)
then f is a w-submersion (or a submersion).

(g) Compositions and products of (w-)submersions in Kur are (w-)submersions.
Projections πX : X × Y →X in Kur are w-submersions.

11.6.2 Fibre products in Kurcst and Kurc

In §2.5.2, working in the subcategory Manc
st ⊂ Manc from §2.1, we defined

s-transverse and t-transverse morphisms and s-submersions. Example 11.11
explained how make these satisfy Assumptions 11.1 and x11.3–11.9.

The next theorem is the analogue of Theorem 11.32. Here Kurc
st ⊂ Kurc

are the 2-categories of Kuranishi spaces corresponding to Manc
st ⊂Manc as in

Definition 6.29, the corner functors C,C ′ : Kurc
st → Ǩurc

st and C,C ′ : Kurc →
Ǩurc are as in (6.36), (stratum) tangent spaces TxX, T̃xX are as in Example
10.25(i),(iii), and stratum normal spaces ÑxX are as in Example 10.32(a).

We use the notation ws-transverse, wt-transverse, and ws-submersions for
the notions of w-transverse and w-submersion in Kurc

st corresponding to s- and
t-transverse morphisms and s-submersions, and s-transverse, t-transverse, and
s-submersions for the corresponding notions of transverse and submersion.
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Theorem 11.50. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
Kurc

st. Then g,h are ws-transverse if and only if for all x ∈ X, y ∈ Y with
g(x) = h(y) = z in Z and all γ ∈ GzZ, the following linear maps are surjective:

Õxg ⊕ (γ · Õyh) : ÕxX ⊕ ÕyY −→ ÕzZ, (11.65)

Ñxg ⊕ (γ · Ñyh) : ÑxX ⊕ ÑyY −→ ÑzZ. (11.66)

This is automatic if Z is a classical orbifold. Also g,h are s-transverse if and
only if for all x, y, z, γ, equation (11.65) is an isomorphism, and (11.66) and the
following are surjective:

T̃xg ⊕ (γ · T̃yh) : T̃xX ⊕ T̃yY −→ T̃zZ.

Furthermore, g,h are wt-transverse (or t-transverse) if and only if they are
ws-transverse (or s-transverse), and for all x, y, z as above, whenever x ∈ Cj(X)
and y ∈ Ck(Y ) with Πj(x) = x, Πk(y) = y, and C(g)x = C(h)y = z in
Cl(Z), we have j + k > l, and there is exactly one triple (x,y, z) with j + k = l.

(b) If g : X → Z and h : Y → Z are ws-transverse in Kurc
st then a fibre

product W = X ×g,Z,h Y exists in Kurc
st, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.67)

It has vdimW = vdimX + vdimY − vdimZ. Just as a set, the underlying
topological space W in W = (W,H) may be written

W =
{

(x, y, C) : x ∈ X, y ∈ Y, C ∈ Gxg(GxX)\GzZ/Gyh(GyY )
}
, (11.68)

where e,f map e : (x, y, C) 7→ x, f : (x, y, C) 7→ y. The isotropy groups satisfy

G(x,y,C)W ∼=
{

(α, β) ∈ GxX ×GyY : Gxg(α) γ Gyh(β−1) = γ
}

for fixed γ ∈ C ⊆ GzZ. Equation (11.67) is also 2-Cartesian in Kurc.
If w ∈ W with e(w) = x in X, f(w) = y in Y and g(x) = h(y) = z in

Z, for some possible choices of Twe, . . . , Oyh, T̃we, . . . , Õyh, Ñwe, . . . , Ñyh in
Definition 10.28 and §10.3.3 depending on w, the following sequences are exact:

0 // TwW
Twe⊕Twf

// TxX ⊕ TyY
Txg⊕−Tyh

// TzZ

δg,hw ��
0 OzZoo OxX ⊕OyY

Oxg⊕−Oyhoo OwW,
Owe⊕Owfoo

0 // T̃wW
T̃we⊕T̃wf

// T̃xX ⊕ T̃yY
T̃xg⊕−T̃yh

// T̃zZ

δ̃g,hw ��
0 ÕzZoo ÕxX ⊕ ÕyY

Õxg⊕−Õyhoo ÕwW,
Õwe⊕Õwfoo

0 // ÑwW
Ñwe⊕Ñwf // ÑxX ⊕ ÑyY

Ñxg⊕−Ñyh // ÑzZ // 0.
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If g,h are s-transverse then W is an orbifold.

(c) In part (b), if (11.67) is 2-Cartesian in Kurc
st with g,h wt-transverse (or

t-transverse), then the following is 2-Cartesian in Ǩurc
st and Ǩurc, with C(g),

C(h) wt-transverse (or t-transverse, respectively):

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Hence we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)

for i > 0. When i = 1, this computes the boundary ∂W.
Also, if g is a ws-submersion (or an s-submersion), then C(g) is a ws-

submersion (or an s-submersion, respectively).
The analogue of the above also holds for C ′ : Kurc

st → Ǩurc
st.

(d) In part (b), using the theory of canonical bundles and orientations from
§10.7.6, suppose X,Y ,Z are locally orientable. Then W is also locally orientable,
and there is a natural isomorphism of topological line bundles on W :

ΥX,Y ,Z : KW −→ e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗. (11.69)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.69) is orientation-preserving. Propositions
11.26 and 11.27 hold for these fibre product orientations.

(e) Let g : X → Z be a 1-morphism in Kurc
st. Then g is a ws-submersion if and

only if Õxg : ÕxX → ÕzZ and Ñxg : ÑxX → ÑzZ are surjective for all x ∈X
with g(x) = z in Z. Also g is an s-submersion if and only if Õxg : ÕxX → ÕzZ
is an isomorphism and T̃xg : T̃xX → T̃zZ, Ñxg : ÑxX → ÑzZ are surjective
for all x, z.

(f) If g : X → Z and h : Y → Z are 1-morphisms in Kurc
st with g a

ws-submersion then g,h are ws-transverse and wt-transverse. If g is an s-
submersion and Y is an orbifold then g,h are s-transverse and t-transverse.

(g) If (11.67) is 2-Cartesian in Kurc
st with g a ws-submersion (or an s-submer-

sion) then f is a ws-submersion (or an s-submersion).

(h) Compositions and products of ws- or s-submersions in Kurc
st are ws- or

s-submersions. Projections πX : X × Y →X in Kurc
st are ws-submersions.

(i) If g : X → Z is a ws-submersion in Kurc
st, and h : Y → Z is any

1-morphism in Kurc (not necessarily in Kurc
st), then a fibre product W =

X ×g,Z,h Y exists in Kurc, with dimW = dimX + dimY − dimZ, in a 2-
Cartesian square (11.67) in Kurc. It has topological space W given as a set
by (11.68). The analogues of (c),(g) hold for these fibre products. If g is an
s-submersion and Y is an orbifold then W is an orbifold.
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11.6.3 Fibre products in Kurgcin and Kurgc

In §2.5.3, working in Mangc
in ⊂ Mangc from §2.4.1, we defined b-transverse

and c-transverse morphisms and b-submersions, b-fibrations, and c-fibrations.
Example 11.12 explained how to fit these into the framework of Assumptions
11.1 and 11.3–11.9. The next theorem is the analogue of Theorem 11.34.

Here Kurgc
in ⊂ Kurgc are the 2-categories of Kuranishi spaces corresponding

to Mangc
in ⊂ Mangc as in Definition 6.29, the corner 2-functor C : Kurgc →

Ǩurgc is as in (6.36), and b-tangent spaces TxX are as in Example 10.25(ii).
We use the notation wb-transverse, wc-transverse, wb-submersions, wb-fibrations,
wc-fibrations for the weak versions of b-transverse, . . . , c-fibrations in Kurgc

in

from Definition 11.44, and b-transverse, c-transverse, b-submersions, b-fibrations,
and c-fibrations for the strong versions.

Theorem 11.51. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
Kurgc

in . Then g,h are wb-transverse if and only if for all x ∈ X, y ∈ Y with
g(x) = h(y) = z in Z and all γ ∈ GzZ, the following linear map is surjective:

bOxg ⊕ (γ · bOyh) : bOxX ⊕ bOyY −→ bOzZ. (11.70)

This is automatic if Z is an orbifold. Also g,h are b-transverse if and only if for
all x, y, z, γ, equation (11.70) is an isomorphism, and the following is surjective:

bTxg ⊕ (γ · bTyh) : bTxX ⊕ bTyY −→ bTzZ.

Furthermore, g,h are wc-transverse (or c-transverse) if and only if they are
wb-transverse (or b-transverse), and whenever x ∈ Cj(X) and y ∈ Ck(Y ) with
C(g)x = C(h)y = z in Cl(Z), we have either j + k > l, or j = k = l = 0.

(b) If g : X → Z and h : Y → Z are wb-transverse in Kurgc
in then a fibre

product W = X ×g,Z,h Y exists in Kurgc
in , in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.71)

It has vdimW = vdimX + vdimY − vdimZ. If w ∈ W with e(w) = x in
X, f(w) = y in Y and g(x) = h(y) = z in Z, for some possible choices of
bTwe,

bTwf ,
bTxg,

bTyh,
bOwe,

bOwf ,
bOxg,

bOyh in Definition 10.28 depending
on w, the following sequence is exact:

0 // bTwW bTwe⊕bTwf
// bTxX ⊕ bTyY bTxg⊕−bTyh

// bTzZ
bδg,hw ��

0 bOzZoo bOxX ⊕ bOyY
bOxg⊕−bOyhoo bOwW.

bOwe⊕bOwfoo

If g,h are b-transverse then W is an orbifold.
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(c) In (b), if g,h are wc-transverse then just as a set, the underlying topological
space W in W = (W,H) may be written

W =
{

(x, y, C) : x ∈ X, y ∈ Y, C ∈ Gxg(GxX)\GzZ/Gyh(GyY )
}
, (11.72)

where e,f map e : (x, y, C) 7→ x, f : (x, y, C) 7→ y. The isotropy groups satisfy

G(x,y,C)W ∼=
{

(α, β) ∈ GxX ×GyY : Gxg(α) γ Gyh(β−1) = γ
}

for fixed γ ∈ C ⊆ GzZ. Also (11.71) is 2-Cartesian in Kurgc, and the following
is 2-Cartesian in Ǩurgc

in and Ǩurgc, with C(g), C(h) wc-transverse:

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Hence we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)

for i > 0. When i = 1, this computes the boundary ∂W.
Also, if g is a wb-fibration, or b-fibration, or wc-fibration, or c-fibration,

then C(g) is a wb-fibration, . . . , or c-fibration, respectively.

(d) In part (b), using the theory of (b-)canonical bundles and orientations from
§10.7.6, suppose X,Y ,Z are locally orientable. Then W is also locally orientable,
and there is a natural isomorphism of topological line bundles on W :

bΥX,Y ,Z : bKW −→ e∗(bKX)⊗ f∗(bKY )⊗ (g ◦ e)∗(bKZ)∗. (11.73)

Hence if X,Y ,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.73) is orientation-preserving. Propositions
11.26 and 11.27 hold for these fibre product orientations.

(e) Let g : X → Z be a 1-morphism in Kurgc
in . Then g is a wb-submersion if

and only if bOxg : bOxX → bOzZ is surjective for all x ∈ X with g(x) = z
in Z. Also g is a b-submersion if and only if bOxg : bOxX → bOzZ is an
isomorphism and bTxg : bTxX → bTzZ is surjective for all x, z.

Furthermore g is a wb-fibration (or a b-fibration) if it is a wb-submersion (or
b-submersion) and whenever there are x, z in Cj(X), Cl(Z) with C(g)x = z, we
have j > l. And g is a wc-fibration (or a c-fibration) if it is a wb-fibration (or a
b-fibration), and whenever x ∈ X and z ∈ Cl(Z) with g(x) = Πl(z) = z ∈ Z,
then there is exactly one x ∈ Cl(X) with Πl(x) = x and C(g)x = z.

(f) If g : X → Z and h : Y → Z are 1-morphisms in Kurgc
in with g a

wb-submersion (or wb-fibration) then g,h are wb-transverse (or wc-transverse,
respectively). If g is a b-submersion (or b-fibration) and Y is an orbifold then
g,h are b-transverse (or c-transverse, respectively).
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(g) If (11.71) is 2-Cartesian in Kurgc
in with g a wb-submersion, b-submersion,

wb-fibration, b-fibration, wc-fibration, or c-fibration, then f is a wb-submersion,
. . . , or c-fibration, respectively.

(h) Compositions and products of wb-submersions, b-submersions, wb-fibrations,
b-fibrations, wc-fibrations, and c-fibrations, in Kurgc

in are wb-submersions, . . . ,
c-fibrations. Projections πX : X × Y →X in Kurgc

in are wc-fibrations.

(i) If g : X → Z is a wc-fibration in Kurgc
in , and h : Y → Z is any 1-morphism

in Kurgc (not necessarily in Kurgc
in ), then a fibre product W = X ×g,Z,h Y

exists in Kurgc, with dimW = dimX+dimY −dimZ, in a 2-Cartesian square
(11.71) in Kurgc. It has topological space W given as a set by (11.72). The
analogues of (c),(g) hold for these fibre products. If g is a c-fibration and Y is
an orbifold then W is an orbifold.

11.6.4 Fibre products in Kurcin and Kurc

In §2.5.4, working in the subcategory Manc
in ⊂ Manc from §2.1, we defined

sb-transverse and sc-transverse morphisms. Example 11.13 explained how to
fit these into the framework of Assumptions 11.1 and 11.3–11.9, also using
s-submersions from §2.5.2. The next theorem is the analogue of Theorem 11.35.

Here Kurc
in ⊂ Kurc are the 2-categories of Kuranishi spaces corresponding

to Manc
in ⊂Manc as in Definition 6.29, the corner 2-functor C : Kurc → Ǩurc

is as in (6.36), b-tangent spaces bTxX are as in Example 10.25(ii), and monoids
M̃xX are as in Example 10.32(c). We use the notation wsb-transverse and
wsc-transverse for the notions of w-transverse in Kurc

in corresponding to sb-
and sc-transverse morphisms, and sb-transverse, sc-transverse for the notions of
transverse. Also ws-submersions and s-submersions are as in §11.6.2.

Theorem 11.52. (a) Let g : X → Z and h : Y → Z be 1-morphisms in
Kurc

in. Then g,h are wsb-transverse if and only if for all x ∈ X, y ∈ Y with
g(x) = h(y) = z in Z and all γ ∈ GzZ, the following linear map is surjective:

bOxg ⊕ (γ · bOyh) : bOxX ⊕ bOyY −→ bOzZ, (11.74)

and we have an isomorphism of commutative monoids

M̃xX ×M̃xg,M̃zZ,(γ·M̃yh) M̃yY ∼= Nn for n > 0. (11.75)

This is automatic if Z is a classical orbifold. Also g,h are sb-transverse if and
only if for all x, y, z, γ, equations (11.74)–(11.75) are isomorphisms, and the
following is surjective:

bTxg ⊕ (γ · bTyh) : bTxX ⊕ bTyY −→ bTzZ.

Furthermore, g,h are wsc-transverse (or sc-transverse) if and only if they
are wsb-transverse (or sb-transverse), and whenever x ∈ Cj(X) and y ∈ Ck(Y )
with C(g)x = C(h)y = z in Cl(Z), we have either j + k > l, or j = k = l = 0.
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(b) If g : X → Z and h : Y → Z are wsb-transverse in Kurc
in then a fibre

product W = X ×g,Z,h Y exists in Kurc
in, in a 2-Cartesian square:

W IQ
η

f
//

e��

Y
h ��

X
g // Z.

(11.76)

It has vdimW = vdimX + vdimY − vdimZ. If w ∈ W with e(w) = x in
X, f(w) = y in Y and g(x) = h(y) = z in Z, for some possible choices of
bTwe,

bTwf ,
bTxg,

bTyh,
bOwe,

bOwf ,
bOxg,

bOyh in Definition 10.28 depending
on w, the following sequence is exact:

0 // bTwW bTwe⊕bTwf
// bTxX ⊕ bTyY bTxg⊕−bTyh

// bTzZ
bδg,hw ��

0 bOzZoo bOxX ⊕ bOyY
bOxg⊕−bOyhoo bOwW.

bOwe⊕bOwfoo

If g,h are sb-transverse then W is an orbifold.

(c) In (b), if g,h are wsc-transverse then just as a set, the underlying topological
space W in W = (W,H) may be written

W =
{

(x, y, C) : x ∈ X, y ∈ Y, C ∈ Gxg(GxX)\GzZ/Gyh(GyY )
}
,

where e,f map e : (x, y, C) 7→ x, f : (x, y, C) 7→ y. The isotropy groups satisfy

G(x,y,C)W ∼=
{

(α, β) ∈ GxX ×GyY : Gxg(α) γ Gyh(β−1) = γ
}

for fixed γ ∈ C ⊆ GzZ. Also (11.76) is 2-Cartesian in Kurc, and the following
is 2-Cartesian in Ǩurc

in and Ǩurc, with C(g), C(h) wsc-transverse:

C(W)
HP

C(η)
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Hence we have

Ci(W) '
∐

j,k,l>0:
i=j+k−l

(
Cj(X) ∩ C(g)−1(Cl(Z))

)
×C(g),Cl(Z),C(h)(

Ck(Y ) ∩ C(h)−1(Cl(Z))
)

for i > 0. When i = 1, this computes the boundary ∂W.
Also, if g is a ws-submersion (or an s-submersion), then C(g) is a ws-

submersion (or an s-submersion, respectively).

(d) In part (b), using the theory of (b-)canonical bundles and orientations from
§10.7.6, suppose X,Y ,Z are locally orientable. Then W is also locally orientable,
and there is a natural isomorphism of topological line bundles on W :

bΥX,Y ,Z : bKW −→ e∗(bKX)⊗ f∗(bKY )⊗ (g ◦ e)∗(bKZ)∗. (11.77)
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Hence if X,Y ,Z are oriented there is a unique orientation on W, called the
fibre product orientation, such that (11.77) is orientation-preserving.

(e) Let g : X → Z be a 1-morphism in Kurc
in. Then g is a ws-submersion if

and only if bOxg : bOxX → bOzZ is surjective for all x ∈X with g(x) = z in
Z, and the monoid morphism M̃xg : M̃xX → M̃zZ is isomorphic to a projection
Nm+n → Nn. Also g is an s-submersion if and only if bOxg : bOxX → bOzZ is
an isomorphism, and bTxg : bTxX → bTzZ is surjective, and M̃xg is isomorphic
to a projection Nm+n → Nn, for all x, z.

(f) If g : X → Z and h : Y → Z are 1-morphisms in Kurgc
in with g a ws-

submersion then g,h are wsc-transverse. If g is an s-submersion and Y is an
orbifold then g,h are sc-transverse.

11.7 Proof of Proposition 11.14

11.7.1 The case of classical manifolds Man

First we prove the proposition for classical manifolds Man in Example 11.10. Let
g : X → Z, h : Y → Z be transverse morphisms in Man, with W = X ×g,Z,h Y
in a Cartesian square (11.1). Write ∆Z : Z → Z × Z for the diagonal map
∆Z : z 7→ (z, z). Then ∆Z(Z) is an embedded submanifold of Z×Z with normal
bundle νZ = T Z → Z in the exact sequence

0 // T Z id⊕id // T∆Z
(Z × Z)∼=T Z⊕T Z

id⊕−id // νZ =T Z // 0. (11.78)

Write points of the tangent bundle T Z as (z, u) for z ∈ Z and u ∈ TzZ. By
a well known construction called a ‘tubular neighbourhood’, we may choose open
neighbourhoods T1 of the zero section in T Z → Z and U1 of ∆Z(Z) in Z×Z and
a diffeomorphism Φ1 : T1 → U1 with Φ1(z, 0) = (z, z) for all z ∈ Z, such that
the derivative of Φ1 at the zero section 0(Z) induces the exact sequence (11.78).
We may also choose T1, U1,Φ1 so that Φ1(z, u) = (z, z′) for all (z, u) ∈ T1. This
and (11.78) imply that the derivative of Φ1 at the zero section 0(Z) ⊂ T1 is

T Φ1|0(Z) =

(
id 0
id −id

)
: T T1|0(Z)

∼= T Z⊕T Z −→ TΦ1U1|0(Z)
∼= T Z⊕T Z. (11.79)

The direct product (e, f) : W → X × Y embeds W as a submanifold in
X × Y , with normal bundle π : Tg◦eZ →W in the rightwards exact sequence

0 // TWoo
T e⊕T f // TeX⊕TfY
γ⊕δ

oo
T g⊕−T h // Tg◦eZ
α⊕β

oo // 0.oo (11.80)

Write points of Tg◦eZ as (w, v) for w ∈ W and v ∈ Tg◦e(w)Z. Again, we can
choose open neighbourhoods T2 of the zero section in Tg◦eZ and U2 of (e, f)(W )
in X×Y and a diffeomorphism Φ2 : T2 → U2 with Φ2(w, 0) = (e(w), f(w)) for all
w ∈W , such that the derivative of Φ2 at the zero section 0(W ) induces the exact
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sequence (11.80). Making T2, U2 smaller we can suppose that (g × h)(U2) ⊆ U1,
so Ψ := Φ−1

1 ◦ (g × h) ◦ Φ2 is a well-defined smooth map Ψ : T2 → T1.
We write the derivative of Φ2 at the zero section 0(W ) ⊂ T2 in the form

T Φ2|0(W ) =

(
T e α
T f β

)
: T T2|0(W )

∼= TW⊕Tg◦eZ
−→ TΦ2

U2|0(W )
∼= TeX⊕TfY.

(11.81)

As the derivative of Φ2 at 0(W ) induces (11.80), we see that α ⊕ β is a right
inverse for T g⊕−T h in (11.80). This induces a unique splitting of (11.80). That
is, there are unique morphisms γ, δ marked in (11.80) satisfying

T g ◦ α− T h ◦ β = idTg◦eZ , γ ◦ T e+ δ ◦ T f = idTW ,

α ◦ T g + T e ◦ γ = idTeX , T f ◦ δ − β ◦ T h = idTfY ,

γ◦α+δ◦β=0, β◦T g+T f ◦γ=0, T e◦δ−α◦T h = 0.

(11.82)

Combining the first equation of (11.82) with (11.79), (11.81), and g ◦ e = h ◦ f
yields

T Ψ|0(W ) = T (Φ−1
1 ◦ (g × h) ◦ Φ2)|0(W ) =

(
id 0
id −id

)(
T g 0
0 T h

)(
T e α
T f β

)
=

(
T (g◦e) T g◦α

0 idTg◦eZ

)
: T T2|0(W )

∼=TW⊕Tg◦eZ
→TΨT1|0(Z)

∼= Tg◦eZ⊕Tg◦eZ.
(11.83)

Suppose as in Assumption 11.1(b)(ii) that c : V → X, d : V → Y are
morphisms in Man, and E → V is a vector bundle, and s ∈ Γ∞(E) is a section,
and K : E → Tg◦cZ is a morphism, such that h ◦ d = g ◦ c+ K ◦ s+O(s2).

Define V ′ =
{
v ∈ V : (c(v), d(v)) ∈ U2

}
. If v ∈ s−1(0) then h◦d(v) = g ◦c(v)

as h ◦ d = g ◦ c+ K ◦ s+O(s2), so there is a unique w ∈ W with e(w) = c(v),
f(w) = d(v), so that (c(v), d(v)) ∈ U2, and v ∈ V ′. Hence V ′ is an open
neighbourhood of s−1(0) in V . Define smooth maps Ξ = Φ−1

2 ◦(c, d)|V ′ : V ′ → T2

and b = π ◦ Ξ : V ′ →W , where π : T2 →W is the restriction of π : Tg◦eZ →W .
Define t ∈ Γ∞(Tg◦e◦bZ) by Ξ(v) = (b(v),−t(v)) ∈ Tg◦eZ for v ∈ V ′. Define

u ∈ Γ∞(Tg◦cZ|V ′) by Ψ ◦ Ξ(v) = Φ−1
1 (g ◦ c(v), g ◦ d(v)) = (g ◦ c(v),−u(v))

for v ∈ V ′, noting that Φ1(z, u) = (z, z′) for (z, u) ∈ T1. Combining h ◦ d =
g ◦ c+ K ◦ s+O(s2), Φ−1

1 (g ◦ c(v), g ◦ d(v)) = (g ◦ c(v),−u(v)) and (11.79) we
see that

u = K ◦ s+O(s2). (11.84)

Now for v ∈ V ′ we have

Ψ(b(v), 0) = Φ−1
1 ◦ (g × h)(e ◦ b(v), f ◦ b(v))

= Φ−1
1 (g ◦ e ◦ b(v), g ◦ e ◦ b(v)) = (g ◦ e ◦ b(v), 0),

Ψ(b(v),−t(v)) = Φ−1
1 ◦ (g × h)(c(v), d(v))

= Φ−1
1 (g ◦ c(v), h ◦ d(v)) = (g ◦ c(v),−u(v)).

Together with (11.83) these give

g ◦ c = g ◦ e ◦ b+ 0 ◦ t+O(t2), u = t+O(t2),
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so inverting yields

g ◦ e ◦ b = g ◦ c+ 0 ◦ u+O(u2), t = u+O(u2). (11.85)

Substituting (11.84) into the first equation of (11.85) gives g◦e◦b = g◦c+O(s).
Thus by Theorem 3.17(g) there exists a morphism K′ : E|V ′ → Tg◦e◦bZ with
K|V ′ = K′ +O(s) in the sense of Definition 3.15(v), where K′ is unique up to
O(s). Then substituting (11.84) into the second equation of (11.85) gives

t = K′ ◦ s+O(s2). (11.86)

For v ∈ V ′ we have

Φ2(b(v), 0) = (e ◦ b(v), f ◦ b(v)), Φ2(b(v),−t(v)) = (c(v), d(v)).

From these and (11.81) we see that

c|V ′ = e ◦ b+ (−α) ◦ t+O(t2), d|V ′ = f ◦ b+ (−β) ◦ t+O(t2),

so substituting in (11.86) gives

c|V ′ = e ◦ b+ Λ ◦ s+O(s2), d|V ′ = f ◦ b+ M ◦ s+O(s2), (11.87)

as in equation (11.2) in Assumption 11.1, where Λ = −α ◦K′ and M = −β ◦K′.
Then composing the first equation of (11.82) on the right with K′ gives

K′ + T g ◦ Λ = T h ◦M = T h ◦M +O(s), (11.88)

which is equation (11.3). This proves Assumption 11.1(b)(ii) for Ṁan = Man.
Next suppose as in Assumption 11.1(b)(iii) that Ṽ ′, b̃, Λ̃, M̃, K̃′ are alternative

choices for V ′, b,Λ,M,K′ above, so that Ṽ ′ is an open neighbourhood of s−1(0) in
V , and b̃ : Ṽ ′ →W is a smooth map, and Λ̃ : E|Ṽ ′ → Te◦b̃X, M̃ : E|Ṽ ′ → Tf◦b̃Y
are morphisms with

c|Ṽ ′ = e ◦ b̃+ Λ̃ ◦ s+O(s2), d|Ṽ ′ = f ◦ b̃+ M̃ ◦ s+O(s2), (11.89)

K̃′ + T g ◦ Λ̃ = T h ◦ M̃ +O(s), (11.90)

for K̃′ : E|Ṽ ′ → Tg◦e◦b̃Z a morphism with K|Ṽ ′ = K̃′ +O(s).

By (11.87) and (11.89), in maps V ′ ∩ Ṽ ′ → X × Y we have

(c, d)|V ′∩Ṽ ′ = (e, f) ◦ b|V ′∩Ṽ ′ +O(s), (c, d)|V ′∩Ṽ ′ = (e, f) ◦ b̃|V ′∩Ṽ ′ +O(s),

so Theorem 3.17(c) implies that

(e, f) ◦ b̃|V ′∩Ṽ ′ = (e, f) ◦ b|V ′∩Ṽ ′ +O(s),

and thus b̃|V ′∩Ṽ ′ = b|V ′∩Ṽ ′ + O(s), since (e, f) is an embedding. Hence by

Theorem 3.17(g) there exist morphisms Λ̃′ : E|V ′∩Ṽ ′ → Te◦bX|V ′∩Ṽ ′ , M̃′ :
E|V ′∩Ṽ ′ → Tf◦bY |V ′∩Ṽ ′ with Λ̃|V ′∩Ṽ ′ = Λ̃′ + O(s), M̃|V ′∩Ṽ ′ = M̃′ + O(s),
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and Λ̃′, M̃′ are unique up to O(s). Equation (11.90) and K|V ′ = K′ + O(s),
K|Ṽ ′ = K̃′ +O(s) now imply that

K′|V ′∩Ṽ ′ + T g ◦ Λ̃′ = T h ◦ M̃′ +O(s). (11.91)

Also (11.87), (11.89), Λ̃|V ′∩Ṽ ′ = Λ̃′ +O(s), M̃|V ′∩Ṽ ′ = M̃′ +O(s) and Theorem
3.17(k),(l) imply that

(e, f) ◦ b̃|V ′∩Ṽ ′ = (e, f) ◦ b|V ′∩Ṽ ′ + (Λ− Λ̃′ ⊕M− M̃′) ◦ s+O(s2). (11.92)

Define N : E|V ′∩Ṽ ′ → TbW |V ′∩Ṽ ′ by

N = b∗(γ) ◦ (Λ− Λ̃′) + b∗(δ) ◦ (M− M̃′), (11.93)

for γ, δ as in (11.80) and (11.82). Now in maps V ′ ∩ Ṽ ′ →W we have

b|V ′∩Ṽ ′ = π ◦Φ−1
2 ◦ (e, f)◦ b|V ′∩Ṽ ′ , b̃|V ′∩Ṽ ′ = π ◦Φ−1

2 ◦ (e, f)◦ b̃|V ′∩Ṽ ′ . (11.94)

We have

b̃|V ′∩Ṽ ′ = b|V ′∩Ṽ ′ + [T π ◦ T Φ−1
2 ◦ (Λ− Λ̃′ ⊕M− M̃′)] ◦ s+O(s2)

= b|V ′∩Ṽ ′ +

[(
idTbW 0

)
b∗
(
T e α
T f β

)−1(
Λ− Λ̃′

M− M̃′

)]
◦ s+O(s2)

= b|V ′∩Ṽ ′ +

[(
idTbW 0

)
b∗
(
γ δ
T g −T h

)(
Λ− Λ̃′

M− M̃′

)]
◦ s+O(s2)

= b|V ′∩Ṽ ′ +
[
b∗(γ) ◦ (Λ− Λ̃′) + b∗(δ) ◦ (M− M̃′)

]
◦ s+O(s2)

= b|V ′∩Ṽ ′ + N ◦ s+O(s2). (11.95)

Here in the first step we use (11.92), (11.94), Theorem 3.17(k), and T (π ◦Φ−1
2 ) =

T π ◦ T Φ−1
2 . In the second we use (11.81), in the third we use (11.82) to invert

the matrix explicitly, and in the fourth we use (11.93). This proves equation
(11.4) in Assumption 11.1(b)(iii). Also we have

T e ◦N = T e ◦ b∗(γ) ◦ (Λ− Λ̃′) + T e ◦ b∗(δ) ◦ (M− M̃′)

= b∗(T e ◦ γ) ◦ (Λ− Λ̃′) + b∗(T e ◦ δ) ◦ (M− M̃′)

= b∗(idTeX − α ◦ T g) ◦ (Λ− Λ̃′) + b∗(α◦T h) ◦ (M− M̃′)

= Λ− Λ̃′ + b∗(α) ◦
[
−T g ◦ (Λ− Λ̃′) + T h ◦ (M− M̃′)

]
= Λ− Λ̃′ + b∗(α) ◦

[
K′|V ′∩Ṽ ′ −K′|V ′∩Ṽ ′ +O(s)

]
= Λ− Λ̃′ +O(s),

using (11.93) in the first step, (11.82) in the third, and (11.88), (11.91) in the
fifth. This proves the first equation of (11.5), and the second equation is similar.

Suppose Ň : E|V ′∩Ṽ ′ → TbW |V ′∩Ṽ ′ also satisfies (11.4)–(11.5). Subtracting
the equations of (11.5) for N, Ň gives

T e ◦ (N− Ň) = O(s), T f ◦ (N− Ň) = O(s).

Hence using (11.82) in the second step we have

N− Ň = idTW ◦ (N− Ň) = (γ ◦ T e+ δ ◦ T f) ◦ (N− Ň) = O(s).

This completes Assumption 11.1(b)(iii) for Ṁan = Man in Example 11.10.
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11.7.2 The cases Manc
in and Mangc

in

Next we explain how to modify the proof in §11.7.1 to work when both ṀanD
and ṀanE are Manc

in or Mangc
in , as in Examples 11.12(a) and 11.13(a). The

difficulty is that the ‘tubular neighbourhoods’ Φ1 : T1 → U1 and Φ2 : T2 → U2

defined at the beginning of §11.7.1 may not exist.
To see the problem, consider Z = [0,∞). Then T Z = bTZ ∼= [0,∞) × R,

where (x, u) ∈ [0,∞)× R represents u · x ∂
∂x ∈

bTx[0,∞), and Z × Z = [0,∞)2

with ∆Z(Z) =
{

(x, x) : x ∈ [0,∞)
}
⊆ [0,∞)2. Thus T Z near the zero section

0(Z) is not diffeomorphic to Z × Z near ∆Z(Z), as the corners are different at
(0, 0) ∈ T Z and (0, 0) ∈ Z ×Z. So there do not exist open 0(Z) ⊂ T1 ⊆ T Z and
∆Z(Z) ⊂ U1 ⊆ Z × Z and a diffeomorphism Φ1 : T1 → U1.

Nonetheless, there is a construction which shares many of the important
properties of tubular neighbourhoods in the corners case. We can choose open
neighbourhoods T1, T2 of 0(Z), 0(W ) in the vector bundles T Z = bTZ → Z and
Tg◦eZ = (g ◦ e)∗(bTZ) → W , and interior maps Φ1 : T1 → Z × Z, Φ2 : T2 →
X × Y , with the properties:

(a) Φ1(z, 0) = (z, z) and Φ2(w, 0) = (e(w), f(w)) for all z ∈ Z and w ∈W .

(b) Φ1(z, u) = (z, z′) for all (z, u) ∈ T1.

(c) bdΦ1 : bT (T1)→ Φ∗1(bT (Z × Z)) and bdΦ2 : bT (T2)→ Φ∗2(bT (X × Y )) are
vector bundle isomorphisms.

(d) The derivatives bdΦ1|0(Z),
bdΦ2|0(W ) satisfy (11.79) and (11.81), where

α⊕ β is a right inverse for T g ⊕−T h in (11.80), so that (11.82) holds for
some unique γ, δ.

(e) On the interiors, Φ1|T◦1 : T ◦1 → Z◦ × Z◦ and Φ2|T◦2 : T ◦2 → X◦ × Y ◦ are
diffeomorphisms with open subsets of their targets.

However, on T1 \ T ◦1 and T2 \ T ◦2 , Φ1,Φ2 are generally not injective, and
the images of Φ1,Φ2 are generally not open in Z × Z and X × Y . So in
particular, the inverses Φ−1

1 and Φ−1
2 may not exist.

(f) Although Φ−1
1 ,Φ−1

2 may not exist, under some conditions on interior maps
a, b : V → Z or c : V → X, d : V → Y , it may be automatic that
(a, b) : V → Z × Z factors via Φ1 : T1 → Z × Z, or (c, d) : V → X × Y
factors via Φ2 : T2 → X × Y . That is, there may exist unique interior
i : V → T1 and j : V → T2 with Φ1 ◦ i = (a, b) and Φ2 ◦ j = (c, d). If
Φ−1

1 ,Φ−1
2 existed we would have i = Φ−1

1 ◦ (a, b) and j = Φ−1
2 ◦ (c, d). So

we use factorization properties of this kind as a substitute for Φ−1
1 ,Φ−1

2 .

For example, when Z = [0,∞) we can take T1 = T Z = [0,∞)×R and define
Φ1 : T1 → Z × Z by Φ1(x, u) = (x, e−ux). Then Φ1(z, u) = (z, z′), as in (b).
In the natural bases x ∂

∂x ,
∂
∂u for bT (T Z) and y ∂

∂y , z
∂
∂z for bT (Z × Z), we see

that T Φ1|0(Z) maps x ∂
∂x 7→ y ∂

∂y + z ∂
∂z and ∂

∂u 7→ −z
∂
∂z , so T Φ1|0(Z) has matrix(

1 0
1 −1

)
, and (11.79) holds as in (c). We have Φ1({0} × R) = {(0, 0)}, so Φ1 is

not injective, and the image Φ1(T1) is not open in Z × Z, as in (e).
In the proof in §11.7.1, the problem is that we use Φ−1

1 ,Φ−1
2 as follows:
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(i) We define smooth Ψ : T2 → T1 by Ψ = Φ−1
1 ◦ (g × h) ◦ Φ2.

(ii) We define smooth Ξ : V ′ → T2 by Ξ = Φ−1
2 ◦ (c, d)|V ′ .

(iii) Equation (11.94) involves Φ−1
2 ◦ (e, f).

(iv) Equations (11.83) and (11.95) involve T (Φ−1
1 ) and T (Φ−1

2 ).

Here (i)–(iii) are dealt with by the factorization property of Φ1,Φ2 in (f)
above. For (i), if the open neighbourhood T2 of 0(W ) in Tg◦eZ is small enough
there is a unique interior map Ψ : T2 → T1 with Φ1 ◦Ψ = (g×h) ◦Φ2. For (ii), if
V ′ is small enough there is a unique interior map Ξ : V ′ → T2 with Φ2◦Ξ = (c, d).
For (iii), Φ−1

2 ◦ (e, f) is the zero section map 0 : W → T2 ⊆ Tg◦eZ. For part (iv)
we substitute T (Φ−1

1 ) = (T Φ1)−1 and T (Φ−1
2 ) = (T Φ2)−1, where T Φ1 = bdΦ1

and T Φ2 = bdΦ2 are vector bundle isomorphisms as in (c) above. With these
modifications, the proof in §11.7.1 extends to work in Manc

in and Mangc
in .

11.7.3 The cases Manc and Mangc

Finally we modify the proofs in §11.7.1–§11.7.2 to work in the remaining cases of
Examples 11.11–11.13, in which ṀanE is Manc or Mangc. In §11.7.2, it was
important that we worked with interior maps, which are functorial for b-tangent
bundles bTX in Manc

in,Mangc
in .

The new issues are that in the definition of the ‘tubular neighbourhood’
Φ2 : T2 → X × Y for (e, f)(W ) ⊆ X × Y , the map (e, f) : W → X × Y may no
longer be interior, which was essential in §11.7.2 to define Φ2, T2. Even if (e, f)
is interior and Φ2, T2 in §11.7.2 are well defined, the maps c : V → X, d : V → Y
in Assumption 11.1(b)(ii) need not be interior, and if they are not, the lifting
property of (c, d) : V → X × Y in §11.7.2(f) may not hold, so that we cannot
define Ξ : V ′ → T2 with Φ2 ◦ Ξ = (c, d) as in §11.7.1–§11.7.2.

Our solution is to use the corner functors C : Manc → M̌anc
in, C : Mangc →

M̌angc
in from §2.2 and §2.4.1, which map to interior morphisms. Given a trans-

verse Cartesian square (11.1) in Manc or Mangc in one of the remaining cases
of Examples 11.11–11.13, we can consider the commutative diagram in M̌anc

in

or M̌angc
in :

C(W )
C(f)

//

C(e)��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

(11.96)

We can show that in the cases we are interested in, (11.96) is locally Cartesian
and locally b-transverse on C(W ). That is, if w ∈ C(W ) with C(e)w = x ∈
C(X), C(f)w = y ∈ C(Y ) and C(g)x = C(h)y = z ∈ C(Z), then C(g), C(h)
are b-transverse near x,y, z as in §2.5.3, and (11.96) is Cartesian near w,x,y, z
in C(W ), . . . , C(Z). We do not claim (11.96) is Cartesian, nor that C(g), C(h)
are b-transverse, as these would be false in Example 2.26.

Thus (C(e), C(f)) embeds C(W ) as a submanifold of C(X)×C(Y ), and the
argument of §11.7.2 constructing ‘tubular neighbourhoods’ Φ1 : T1 → Z × Z,
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Φ2 : T2 → X × Y satisfying §11.7.2(a)–(f) works with C(W ), . . . , C(h) in place
of W,X, Y, Z, e, f, g, h, as C(e), . . . , C(h) are interior.

Now suppose as in Assumption 11.1(b)(ii) that c : V → X, d : V → Y are
morphisms in Manc or Mangc, and E → V is a vector bundle, and s ∈ Γ∞(E) is
a section, and K : E → Tg◦cZ is a morphism, such that h◦d = g◦c+K◦s+O(s2).
Then we have a diagram in M̌anc

in or M̌angc
in :

V ∼= C0(V )
C(d)|C0(V )

//

C(c)|C0(V )��

C(Y )

C(h) ��
C(X)

C(g) // C(Z).

Under the isomorphism V ∼= C0(V ) there is a natural identification

Tg◦cZ ∼= TC(g)◦C(c)|C0(V )
C(Z) ∼= C(g ◦ c)|∗C0(V )(

bT (C(Z))).

Let Ǩ : E → TC(g)◦C(c)|C0(V )
C(Z) correspond to K under this identification.

Then we find that C(h) ◦ C(d)|C0(V ) = C(g) ◦ C(c)|C0(V ) + Ǩ ◦ s + O(s2). So
we can repeat the argument of §11.7.1–§11.7.2 with C0(V ), C(W ), . . . , C(Z),
C(c)|C0(V ), C(d)|C0(V ), C(e), . . . , C(h), Ǩ in place of V,W, . . . , Z, c, d, e, . . . , h,K.

For Assumption 11.1(b)(ii) this constructs V̌ ′ ⊆ C0(V ), an interior morphism
b̌ : C0(V ) → C(W ) and morphisms Λ̌ : E|V ′ → TC(e)◦b̌C(X) and M̌ : E|V ′ →
TC(f)◦b̌C(Y ) with

C(c)|V̌ ′ = C(e)◦ b̌+ Λ̌◦ s+O(s2), C(d)|V̌ ′ = C(f)◦ b̌+ M̌◦ s+O(s2). (11.97)

Let V ′ ⊆ V be identified with V̌ ′ under V ∼= C0(V ), let b : V ′ →W be identified
with Π ◦ b̌ under V ′ ∼= V̌ ′, and let Λ : E|V ′ → Te◦bX, M : E|V ′ → Tf◦bY be
identified with Λ̌, M̌ as for K ∼= Ǩ. Then (11.97) corresponds to (11.2). The rest
of Assumption 11.1(b)(ii)–(iii) follow in the same way.

11.8 Proof of Theorem 11.17

Work in the situation of Definition 11.16. Since (11.14) is a 2-commutative square
in GmK̇ND, and GmK̇ND ⊆ GmK̇NE is an inclusion of 2-subcategories such
that the 2-morphisms in GmK̇ND,GmK̇NE between given 1-morphisms in
GmK̇ND coincide, if (11.14) is 2-Cartesian in GmK̇NE then it is 2-Cartesian
in GmK̇ND. Thus, we must verify the universal property of 2-category fibre
products in Definition A.11 for (11.14) in GmK̇NE .

Suppose we are given 1-morphisms in GmK̇NE :

cjl : (Sj , Bj , pj) −→ (Ul, Dl, rl), djm : (Sj , Bj , pj) −→ (Vm, Em, sm),

with cjl = (Sjl, cjl, ĉjl) and djm = (Sjm, djm, d̂jm), and let K = [Ṡj , κ̂] : gln ◦
cjl ⇒ hmn ◦djm be a 2-morphism in GmK̇NE . Then by Definition 4.3, Ṡj is an

133



open neighbourhood of p−1
j (0) in Sjl ∩ Sjm ⊆ Sj , and κ̂ : Bj |Ṡj → Tgln◦cjlWn|Ṡj

is a morphism with

hmn ◦ djm|Ṡj = gln ◦ cjl|Ṡj + κ̂ ◦ pj +O(p2
j ) and

d∗jm(ĥmn) ◦ d̂jm|Ṡj = c∗jl(ĝln) ◦ ĉjl|Ṡj + (gln ◦ cjl)∗(dt) ◦ κ̂+O(pj).
(11.98)

Assumption 11.1(b)(ii) now gives an open neighbourhood S̈j of p−1
j (0) in Ṡj ,

a morphism bjk : S̈j → Tk in ṀanE , and morphisms λ̂ : Bj |S̈j → Tekl◦bjkUl and
µ̂ : Bj |S̈j → Tfkm◦bjkVm such that (11.2) becomes

cjl|S̈j = ekl ◦ bjk + λ̂◦pj +O(p2
j ), djm|S̈j = fkm ◦ bjk + µ̂◦pj +O(p2

j ). (11.99)

Theorem 3.17(g) gives κ̌ : Bj |S̈j → Tgln◦ekl◦bjkWn with κ̌ = κ̂|S̈j +O(pj), since
gln ◦ cjl|S̈j = gln ◦ ekl ◦ bjk +O(pj) by (11.99), and then as in (11.3) we have

κ̌+ T gln ◦ λ̂ = T hmn ◦ µ̂+O(pj). (11.100)

Choose connections ∇Dl ,∇Em ,∇Fn on Dl → Ul, Em → Vm, Fn → Wn, as
in §3.3.3 and §B.3.2, and write ∇g∗ln(Fn),∇h∗mn(Fn) for the pullback connections
from ∇Fn on g∗ln(Fn) → Uln, h∗mn(Fn) → Vmn. Then in morphisms Bj |S̈j →
(gln ◦ ekl ◦ bjk)∗(Fn) we have:

b∗jk
[
e∗kl(ĝln)⊕−f∗km(ĥmn)

]
◦
[(
ĉjl|S̈j − (ekl ◦ bjk)∗(∇Dlrl) ◦ λ̂

)
⊕
(
d̂jm|S̈j − (fkm ◦ bjk)∗(∇Emsm) ◦ µ̂

)]
= (ekl ◦ bjk)∗(ĝln) ◦ ĉjl|S̈j − (ekl ◦ bjk)∗(ĝln) ◦ (ekl ◦ bjk)∗(∇Dlrl) ◦ λ̂

− (fkm◦bjk)∗(ĥmn)◦d̂jm|S̈j+(fkm◦bjk)∗(ĥmn)◦(fkm◦bjk)∗(∇Emsm)◦µ̂

= c∗jl(ĝln) ◦ ĉjl|S̈j − (ekl ◦ bjk)∗(∇g
∗
ln(Fn)(ĝln(rl))) ◦ λ̂

− d∗jm(ĥmn) ◦ d̂jm|S̈j + (fkm ◦ bjk)∗(∇h
∗
mn(Fn)(ĥmn(sm))) ◦ µ̂+O(pj)

= c∗jl(ĝln) ◦ ĉjl|S̈j − (ekl ◦ bjk)∗(∇g
∗
ln(Fn)(g∗ln(tn))) ◦ λ̂ (11.101)

− d∗jm(ĥmn) ◦ d̂jm|S̈j + (fkm ◦ bjk)∗(∇h
∗
mn(Fn)(h∗mn(tn))) ◦ µ̂+O(pj)

= c∗jl(ĝln) ◦ ĉjl|S̈j − (gln ◦ ekl ◦ bjk)∗(∇Fntn) ◦ T gln ◦ λ̂

− d∗jm(ĥmn) ◦ d̂jm|S̈j + (hmn ◦ fkm ◦ bjk)∗(∇Fntn) ◦ T hmn ◦ µ̂+O(pj)

= c∗jl(ĝln) ◦ ĉjl|S̈j − d∗jm(ĥmn) ◦ d̂jm|S̈j
+ (gln ◦ ekl ◦ bjk)∗(∇Fntn) ◦

[
−T gln ◦ λ̂+ T hmn ◦ µ̂

]
+O(pj)

= c∗jl(ĝln)◦ĉjl|S̈j−d∗jm(ĥmn)◦d̂jm|S̈j+(gln◦ekl◦bjk)∗(∇Fntn) ◦ κ̌+O(pj)

= c∗jl(ĝln)◦ĉjl|S̈j−d∗jm(ĥmn)◦d̂jm|S̈j+(gln◦cjl)∗(∇Fntn) ◦ κ̂|S̈j+O(pj)

= 0 +O(pj).

Here the second step uses (11.99) and

∇g
∗
ln(Fn)(ĝln(rl)) = ĝln ◦ ∇Dlrl +O(rl),

∇h
∗
mn(Fn)(ĥmn(sm)) = ĥmn ◦ ∇Emsm +O(sm).
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The third step uses ĝln(rl|Uln) = g∗ln(tn) and ĥmn(sm|Vmn) = h∗mn(tn). The
fourth step uses

(ekl ◦ bjk)∗(∇g
∗
ln(Fn)(g∗ln(tn))) = (gln ◦ ekl ◦ bjk)∗(∇Fntn) ◦ T gln,

(fkm◦bjk)∗(∇h
∗
mn(Fn)(h∗mn(tn))) = (hmn◦fkm◦bjk)∗(∇Fntn)◦T hmn.

(11.102)

The fifth follows from hmn ◦ fkm = gln ◦ ekl, the sixth from (11.100), the seventh
from (11.99) and κ̌ = κ̂|S̈j + O(pj), and the last from (11.98) and Definition
3.15(vi). This proves (11.101).

Now b∗jk(Ck)→ S̈j is the kernel of the surjective vector bundle morphism

b∗jk
[
e∗kl(ĝln)⊕−f∗km(ĥmn)

]
: (ekl ◦ bjk)∗(Dl)⊕ (fkm ◦ bjk)∗(Em)

−→ (gln ◦ ekl ◦ bjk)∗(Fn),

which occurs at the beginning of (11.101), and the inclusion of b∗jk(Ck) as the

kernel is b∗jk(êkl) ⊕ b∗jk(f̂km). Since taking kernels of surjective vector bundle
morphisms commutes with reducing modulo O(pj), equation (11.101) implies

that there is a morphism b̂jk : Bj |S̈j → b∗jk(Ck), unique up to O(pj), with(
b∗jk(êkl)⊕ b∗jk(f̂km)

)
(b̂jk) =

(
ĉjl|S̈j − (ekl ◦ bjk)∗(∇Dlrl) ◦ λ̂

)
⊕
(
d̂jm|S̈j − (fkm ◦ bjk)∗(∇Emsm) ◦ µ̂

)
+O(pj),

(11.103)

which by Definition 3.15(vi) is equivalent to

ĉjl|S̈j = b∗jk(êkl) ◦ b̂jk + (ekl ◦ bjk)∗(drl) ◦ λ̂+O(pj),

d̂jm|S̈j = b∗jk(f̂km) ◦ b̂jk + (fkm ◦ bjk)∗(dsm) ◦ µ̂+O(pj).
(11.104)

We have(
b∗jk(êkl)⊕ b∗jk(f̂km)

)
(b̂jk(pj)) =

(
ĉjl(pj)|S̈j − (ekl ◦ bjk)∗(∇Dlrl) ◦ λ̂ ◦ pj

)
⊕
(
d̂jm(pj)|S̈j − (fkm ◦ bjk)∗(∇Emsm) ◦ µ̂ ◦ pj

)
=
(
c∗jl(rl)|S̈j − (ekl ◦ bjk)∗(∇Dlrl) ◦ λ̂ ◦ pj

)
⊕
(
d∗jm(sm)|S̈j − (fkm ◦ bjk)∗(∇Emsm) ◦ µ̂ ◦ pj

)
+O(p2

j ) (11.105)

=
(
b∗jk ◦ e∗kl(rl)

)
⊕
(
b∗jk ◦ f∗km(sm)

)
+O(p2

j )

=
(
b∗jk(êkl(qk))

)
⊕
(
b∗jk(f̂km(qk))

)
+O(p2

j )

=
(
b∗jk(êkl)⊕ b∗jk(f̂km)

)
(b∗jk(qk)) +O(p2

j ),

where the first step comes from (11.103), the second from Definition 4.2(d) for
cjl,djm, the third can be proved by pulling back rl, sm using the equations of
(11.99), and the fourth follows from Definition 4.2(d) for ekl,fkm.

As b∗jk(êkl) ⊕ b∗jk(f̂km) is injective, (11.105) shows that b̂jk(pj) = b∗jk(qk) +

O(p2
j). Thus bjk = (S̈j , bjk, b̂jk) : (Sj , Bj , pj)→ (Tk, Ck, qk) is a 1-morphism

in GmK̇NE .
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Definition 4.3 and equations (11.99) and (11.104) now give 2-morphisms

Λ = [S̈j , λ̂] : ekl ◦ bjk =⇒ cjl,

M = [S̈j , µ̂] : fkm ◦ bjk =⇒ djm,

in GmK̇NE , and equation (11.100) is equivalent to the commutative diagram

gln ◦ ekl ◦ bjk idgln◦ekl∗idbjk

+3

idgln
∗Λ

��

hmn ◦ fkm ◦ bjk
idhmn∗M ��

gln ◦ cjl K +3 hmn ◦ djm,

which is equation (A.16) for the 2-commutative square (11.14). This proves the
first part of the universal property in Definition A.11.

For the second part, let b′jk = (S̈′j , b
′
jk, b̂

′
jk) : (Sj , Bj , pj)→ (Tk, Ck, qk) be a

1-morphism in GmK̇NE , and

Λ′ = [S̈′j , λ̂
′] : ekl ◦ b′jk =⇒ cjl,

M′ = [S̈′j , µ̂
′] : fkm ◦ b

′
jk =⇒ djm,

be 2-morphisms in GmK̇NE , such that the following commutes

gln ◦ ekl ◦ b
′
jk

idgln◦ekl∗idb′
jk

+3

idgln
∗Λ′

��

hmn ◦ fkm ◦ b
′
jk

idhmn∗M
′

��
gln ◦ cjl K +3 hmn ◦ djm,

(11.106)

where making S̈′j smaller, we use the same open p−1
j (0) ⊆ S̈′j ⊆ Sj in b′jk,Λ

′,M′.

Then b′jk : S̈′j → Tk is a morphism in ṀanE , and λ̂′ : Bj |S̈′j → Tekl◦b′jkUl
and µ̂′ : Bj |S̈′j → Tfkm◦b′jkVm are morphisms, where by Definition 4.3(b)

cjl|S̈′j = ekl◦b′jk+λ̂′◦pj+O(p2
j ), djm|S̈′j =fkm◦b′jk+µ̂′◦pj+O(p2

j ),

ĉjl|S̈′j = b′∗jk(êkl)◦b̂′jk + (ekl ◦ b′jk)∗(drl) ◦ λ̂′ +O(pj), (11.107)

d̂jm|S̈′j = b′∗jk(f̂km) ◦ b̂′jk + (fkm ◦ b′jk)∗(dsm) ◦ µ̂′ +O(pj),

as in (11.99) and (11.104). Theorem 3.17(g) gives κ̂′ : Bj |S̈′j → Tgln◦ekl◦b′jkWn

with κ̂′ = κ̂|S̈′j + O(pj), since gln ◦ cjl|S̈′j = gln ◦ ekl ◦ b′jk + O(pj) by the first
equation of (11.107), and then as in (11.100), equation (11.106) is equivalent to

κ̂′ + T gln ◦ λ̂′ = T hmn ◦ µ̂′ +O(pj). (11.108)

Applying Assumption 11.1(b)(iii) to the first line of (11.107), and (11.108),
shows that there exists a morphism ν̂ : Bj |S̈j∩S̈′j → TbjkTk|S̈j∩S̈′j with

b′jk|S̈j∩S̈′j = bjk|S̈j∩S̈′j + ν̂ ◦ pj +O(p2
j ), (11.109)
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and if λ̌′ : Bj |S̈j∩S̈′j → Tekl◦bjkUl|S̈j∩S̈′j , µ̌
′ : Bj |S̈j∩S̈′j → Tfkm◦bjkVm|S̈j∩S̈′j are

morphisms with λ̂′|S̈j∩S̈′j = λ̌′ +O(pj), µ̂
′|S̈j∩S̈′j = µ̌′ +O(pj), which exist and

are unique up to O(pj) by Theorem 3.17(g), then

λ̂|S̈j∩S̈′j = λ̌′ + T ekl ◦ ν̂ +O(pj), µ̂|S̈j∩S̈′j = µ̌′ + T fkm ◦ ν̂ +O(pj). (11.110)

Furthermore, ν̂ satisfying (11.109)–(11.110) is unique up to O(pj). Now

b′∗jk(êkl) ◦ b̂′jk|S̈j∩S̈′j = ĉjl|S̈j∩S̈′j − (ekl ◦ b′jk)∗(drl) ◦ λ̂′|S̈j∩S̈′j +O(pj)

= b∗jk(êkl) ◦ b̂jk|S̈j∩S̈′j + (ekl ◦ bjk)∗(drl) ◦ λ̂− (ekl ◦ bjk)∗(drl) ◦ λ̌′ +O(pj)

= b∗jk(êkl) ◦ b̂jk|S̈j∩S̈′j + (ekl ◦ bjk)∗(∇Dlrl) ◦ T ekl ◦ ν̂ +O(pj)

= b∗jk(êkl) ◦ b̂jk|S̈j∩S̈′j + b∗jk(∇e
∗
kl(Dl)(e∗kl(rl)) ◦ ν̂ +O(pj)

= b∗jk(êkl) ◦ b̂jk|S̈j∩S̈′j + b∗jk(∇e
∗
kl(Dl)(êkl(qk)) ◦ ν̂ +O(pj)

= b∗jk(êkl) ◦
[
b̂jk|S̈j∩S̈′j + b∗jk(∇Ckqk) ◦ ν̂

]
+O(pj), (11.111)

using the third equation of (11.107) in the first step, (11.104) and ekl◦bjk|S̈j∩S̈′j =

ekl ◦ b′jk|S̈j∩S̈′j +O(pj) by (11.109) and λ̂′|S̈j∩S̈′j = λ̌′ +O(pj) in the second step,

and (11.110) and choosing a connection ∇Dl on Dl → Ul in the third.
In the fourth step of (11.111), as in (11.102) we use

(ekl◦bjk)∗(∇Dlrl)◦T ekl=b∗jk(∇e
∗
kl(Dl)(e∗kl(rl)) : TbjkTk|S̈j∩S̈′j→(ekl ◦ bjk)∗(Dl),

where ∇e∗kl(Dl) is the pullback connection on e∗kl(Dl)→ Tk from ∇Dl . The fifth
step uses êkl(qk) = e∗kl(rl), and the sixth ∇e∗kl(Dl)(êkl(qk)) = êkl ◦∇Ckqk +O(qk)
for ∇Ck some connection on Ck, and b∗jk(qk) = O(pj). This proves (11.111).
Similarly we have

b′∗jk(f̂km)◦b̂′jk|S̈j∩S̈′j =b∗jk(f̂km)◦
[
b̂jk|S̈j∩S̈′j+b∗jk(∇Ckqk)◦ν̂

]
+O(pj). (11.112)

Since êkl⊕f̂km : Ck → e∗kl(Dl)⊕f∗km(Em) is injective, and b′jk|S̈j∩S̈′j = bjk|S̈j∩S̈′j+
O(pj), equations (11.111)–(11.112) imply that as in (4.1),

b̂′jk|S̈j∩S̈′j = b̂jk|S̈j∩S̈′j + b∗jk(dqk) ◦ ν̂ +O(pj). (11.113)

Equations (11.109) and (11.113) and b = b′ imply that

N = [S̈j ∩ S̈′j , ν̂] : bjk =⇒ b′jk

is a 2-morphism in GmK̇NE , and (11.110) is equivalent to

Λ = Λ′ � (idekl ∗N) and M = M′ � (idfkm ∗N).

That N is unique with these properties follows from the uniqueness of ν̂ satisfying
(11.109)–(11.110) up to O(pj). This proves the second part of the universal
property in Definition A.11, and completes the proof of Theorem 11.17.
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11.9 Proof of Theorem 11.19

Suppose Ṁan satisfies Assumptions 3.1–3.7 and 11.1. Let g : X → Z, h : Y →
Z be 1-morphisms in mK̇ur, which will usually be w-transverse in mK̇urD.
The aim will be to construct a fibre product W = X ×g,Z,h Y in mK̇urD
or mK̇urE , with projections e : W → X, f : W → Y and a 2-morphism
η : g ◦e⇒ h◦f in a 2-Cartesian square (11.15). We will use notation (4.6)–(4.8)
for X = (X, I), Y = (Y,J ), Z = (Z,K), and our usual notation for e, . . . ,h
and η as in (4.9) and Definition 4.18.

11.9.1 Constructing W, e,f ,η when Assumption 11.3 holds

Let g : X → Z, h : Y → Z be w-transverse 1-morphisms in mK̇ur. For
simplicity, we first suppose that Ṁan also satisfies Assumption 11.3. Then as in
Theorem 11.19(c) we will construct a fibre product W = X×g,Z,hY in mK̇urD
and mK̇urE , with topological space W =

{
(x, y) ∈ X × Y : g(x) = h(y)

}
,

and continuous maps e : W → X, f : W → Y acting by e : (x, y) 7→ x and
f : (x, y) 7→ y. The general case, which we tackle in §11.9.2, is more complicated,
as we also have to construct W, e, f .

So let W, e, f be as above, and let (x, y) ∈ W with g(x) = h(y) = z in Z.
Then by Definition 11.18 there exist m-Kuranishi neighbourhoods (Ul, Dl, rl,
χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) on X,Y ,Z as in §4.7 with x ∈ Imχl ⊆
g−1(Imωn), y ∈ Imψm ⊆ h−1(Imωn) and z ∈ Imωn, and 1-morphisms gln :
(Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn), hmn : (Vm, Em, sm, ψm) → (Wn, Fn, tn, ωn)
over (Imχl, g) and (Imψm,h), as in Definition 4.54, such that gln,hmn are
w-transverse as in Definition 11.16.

Apply Definition 11.16 and Theorem 11.17 to the 1-morphisms in GmK̇ND

gln : (Ul, Dl, rl) −→ (Wn, Fn, tn), hmn : (Vm, Em, sm) −→ (Wn, Fn, tn).

These construct a 2-Cartesian square (11.14) in GmK̇ND and GmK̇NE . From
(11.13) and Definition 4.14(b) for X,Y ,Z we see that

dimTk − rankCk = vdimX + vdimY − vdimZ.

Here by definition Tk is the transverse fibre product in Ṁan:

Tk = U̇ln ×gln|U̇ln ,Wn,hmn|V̇mn V̇mn, (11.114)

for open U̇ln ⊆ Uln, V̇mn ⊆ Vmn satisfying Definition 11.15(i),(ii). As we suppose
Assumption 11.3, by Assumption 3.2(e) we take Tk to have topological space

Tk =
{

(u, v) ∈ U̇ln × V̇mn : gln(u) = hmn(v) ∈Wn

}
, (11.115)

and then ekl : Tk → Ul, fkm : Tk → Vm map ekl : (u, v) 7→ u, fkm : (u, v) 7→ v.
Since qk = e∗kl(rl)⊕ f∗km(sm), we see that

q−1
k (0) =

{
(u, v) ∈ r−1

l (0)× s−1
m (0) : gln(u) = hmn(v)

}
.
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Define ϕk : q−1
k (0)→W by ϕk(u, v) = (χl(u), ψm(v)). This is well defined as

g ◦ χl(u) = ωn ◦ gln(u) = ωn ◦ hmn(v) = h ◦ ψm(v),

using Definition 4.2(e) for gln,hmn. As χl, ψm are homeomorphisms with their
open images, ϕk is a homeomorphism with the open subset

Imϕk=
{

(x, y)∈W : x∈ Imχl, y∈ Imψm
}

=e−1(Imχl)∩f−1(Imψm)⊆W.

Hence (Tk, Ck, qk, ϕk) is an m-Kuranishi neighbourhood on W . Since e ◦ ϕk =
χl ◦ekl and f ◦ϕk = ψm ◦fkm on q−1

k (0), ekl : (Tk, Ck, qk, ϕk)→ (Ul, Dl, rl, χl) is
a 1-morphism over (Imϕk, e) and fkm : (Tk, Ck, qk, ϕk)→ (Vm, Em, sm, ψm) is a
1-morphism over (Imϕk, f). Thus, generalizing (11.14) we have a 2-commutative
diagram in mK̇ND from Definition 4.8:

(W, Imϕk, (Tk, Ck, qk, ϕk))

IQ
id

(f,fkm)
//

(e,ekl)

��

(Y, Imψm, (Vm, Em, sm, ψm))

(h,hmn)

��
(X, Imχl, (Ul, Dl, rl, χl))

(g,gln) // (Z, Imωn, (Wn, Fn, tn, ωn)).

(11.116)

We can find such a diagram (11.116) with (x, y) ∈ Imϕk ⊆W for all (x, y) in
W . Thus we can choose a family of such diagrams indexed by a in an indexing
set A so that the subsets Imϕk cover W . We change notation from subscripts
k, l,m, n to subscripts a, ȧ, ä, ˙̇ȧ, where a ∈ A, and ȧ, ä, ˙̇ȧ correspond to a, but
have accents to help distinguish m-Kuranishi neighbourhoods on W,X, Y, Z.
Thus, for a ∈ A we have a family of 2-commutative diagrams in mK̇ND

(W, Imϕa, (Ta, Ca, qa, ϕa))

IQ
id

(f,faä)
//

(e,eaȧ)

��

(Y, Imψä, (Vä, Eä, sä, ψä))

(h,hä˙̇ȧ)

��
(X, Imχȧ, (Uȧ, Dȧ, rȧ, χȧ))

(g,gȧ˙̇ȧ) // (Z, Imω˙̇ȧ, (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ, ω˙̇ȧ)),

(11.117)

with W =
⋃
a∈A Imϕa, such that as in (11.14) the following is 2-Cartesian in

GmK̇ND and GmK̇NE :

(Ta, Ca, qa)
IQ

id

faä

//

eaȧ
��

(Vä, Eä, sä)

hä˙̇ȧ ��
(Uȧ, Dȧ, rȧ)

gȧ˙̇ȧ // (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ).

(11.118)

Let a, b ∈ A. Then Theorem 4.56(a) gives coordinate changes

Tȧḃ : (Uȧ, Dȧ, rȧ, χȧ) −→ (Uḃ, Dḃ, rḃ, χḃ) over Imχȧ ∩ Imχḃ on X,

Υäb̈ : (Vä, Eä, sä, ψä) −→ (Vb̈, Eb̈, sb̈, ψb̈) over Imψä ∩ Imψb̈ on Y ,

Φ
˙̇ȧ˙̇ḃ

: (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ, ω˙̇ȧ) −→ (W˙̇ḃ
, F˙̇ḃ

, t˙̇ḃ , ω˙̇ḃ
) over Imω˙̇ȧ ∩ Imω˙̇ḃ

on Z,
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where we choose Tȧȧ,Υää,Φ˙̇ȧ˙̇ȧ to be identities, and so Theorem 4.56(c) gives
unique 2-morphisms

G˙̇ȧ˙̇ḃ
ȧḃ

: g
ḃ˙̇ḃ
◦ Tȧḃ =⇒ Φ

˙̇ȧ˙̇ḃ
◦ gȧ˙̇ȧ over Imχȧ ∩ Imχḃ on X,

H ˙̇ȧ˙̇ḃ
äb̈

: h
b̈˙̇ḃ
◦Υäb̈ =⇒ Φ

˙̇ȧ˙̇ḃ
◦ hä˙̇ȧ over Imψä ∩ Imψb̈ on Y ,

such that the analogue of (4.62) commutes. When a = b these are identities, as
Tȧȧ,Υää,Φ˙̇ȧ˙̇ȧ are identities.

Writing Tȧḃ = (Uȧḃ, τȧḃ, τ̂ȧḃ) and Υäb̈ = (Väb̈, υäb̈, υ̂äb̈), set Tab = e−1
aȧ (Uȧḃ) ∩

f−1
aä (Väb̈). Then Tab is an open neighbourhood of ϕ−1

a (Imϕa ∩ Imϕb) in Ta.

Consider the 1-morphisms in GmK̇ND:

Tȧḃ ◦ eaȧ|Tab : (Tab, Ca|Tab , qa|Tab) −→ (Uḃ, Dḃ, rḃ),

Υäb̈ ◦ faä|Tab : (Tab, Ca|Tab , qa|Tab) −→ (Vb̈, Eb̈, sb̈),

and the 2-morphism(
(H ˙̇ȧ˙̇ḃ

äb̈
)−1∗idfaä

)
�
(
G˙̇ȧ˙̇ḃ
ȧḃ
∗ideaȧ

)
:g
ḃ˙̇ḃ
◦
[
Tȧḃ◦eaȧ|Tab

]
=⇒h

b̈˙̇ḃ
◦
[
Υäb̈◦faä|Tab

]
,

noting that gȧ˙̇ȧ ◦ eaȧ = hä˙̇ȧ ◦ faä as in (11.118). Since (11.118) with b in place
of a is 2-Cartesian in GmK̇ND by Theorem 11.17, the universal property in
Definition A.11 gives a 1-morphism in GmK̇ND, unique up to 2-isomorphism,

Σab : (Ta, Ca, qa)|Tab = (Tab, Ca|Tab , qa|Tab) −→ (Tb, Cb, qb),

and 2-isomorphisms in GmK̇ND

Eȧḃ
ab : ebḃ ◦ Σab =⇒ Tȧḃ ◦ eaȧ|Tab , F

äb̈
ab : f bb̈ ◦ Σab =⇒ Υäb̈ ◦ faä|Tab , (11.119)

such that the following diagram of 2-isomorphisms commutes:

g
ḃ˙̇ḃ
◦ ebḃ ◦ Σab

id
+3

idg
ḃ˙̇ḃ
∗Eȧḃab��

h
b̈˙̇ḃ
◦ f bb̈ ◦ Σab

idh
b̈˙̇ḃ
∗F äb̈ab ��

g
ḃ˙̇ḃ
◦ Tȧḃ ◦ eaȧ|Tab

((H ˙̇ȧ˙̇ḃ
äb̈

)−1∗idfaä
)�(G˙̇ȧ˙̇ḃ

ȧḃ
∗ideaȧ

)
+3 h
b̈˙̇ḃ
◦Υäb̈ ◦ faä|Tab .

(11.120)

As Tȧȧ,Υää,G
˙̇ȧ˙̇ȧ
ȧȧ ,H

˙̇ȧ˙̇ȧ
ää are identities, we can choose

Σaa = id(Ta,Ca,qa), Eȧȧ
aa = ideaȧ , and F ääaa = idfaä . (11.121)

Now let a, b, c ∈ A. Then Theorem 4.56(c) gives unique 2-morphisms

Kȧḃċ : Tḃċ ◦ Tȧḃ =⇒ Tȧċ over Imχȧ ∩ Imχḃ ∩ Imχċ on X,

Λäb̈c̈ : Υb̈c̈ ◦Υäb̈ =⇒ Υäc̈ over Imψä ∩ Imψb̈ ∩ Imψc̈ on Y ,

such that the analogue of (4.62) commutes. Using Theorem 4.56(d) we see that

Kȧċḋ�(idTċḋ
∗Kȧḃċ) = Kȧḃḋ�(Kḃċḋ ∗ idTȧḃ

) :Tċḋ◦Tḃċ◦Tȧḃ=⇒Tȧḋ,

Λäc̈d̈�(idΥc̈d̈
∗Λäb̈c̈) = Λäb̈d̈�(Λb̈c̈d̈∗idΥäb̈

) :Υc̈d̈◦Υb̈c̈◦Υäb̈=⇒Υäd̈.
(11.122)
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Compare the two 2-commutative diagrams:

(Ta, Ca, qa)|Tabc

eaȧ|Tabc

��

faä|Tabc

//

Σab|Tabc
))

EM
F äb̈ab

(Vä, Eä, sä)|V
äb̈c̈

Υ
äb̈
|V
äb̈c̈ ))

Υäc̈|V
äb̈c̈

��

HP
Λ
äb̈c̈

�
 Eȧḃab

(Tb, Cb, qb)|Tbc

e
bḃ
|Tbc

��

f
bb̈
|Tbc

//

Σbc

))

EM
F b̈c̈bc

(Vb̈, Eb̈, sb̈)|Vb̈c̈
Υ
b̈c̈ ))

(Uȧ, Dȧ, rȧ)|U
ȧḃċ

T
ȧḃ
|U
ȧḃċ

))
~� K

ȧḃċ

Tȧċ|U
ȧḃċ 11

�
 Eḃċbc

(Tc, Cc, qc)
fcc̈

//

ecċ

��

EM
id

(Vc̈, Ec̈, sc̈)

hc̈˙̇ċ

��

(Uḃ, Dḃ, rḃ)|Uḃċ
TU

ḃċ

))
(Uċ, Dċ, rċ)

gċ˙̇ċ // (W˙̇ċ , F˙̇ċ , t˙̇ċ),

(11.123)

(Ta, Ca, qa)|Tabc

eaȧ|Tabc

��

faä|Tabc

//

Σac|Tabc

))

EM
F äc̈ac

(Vä, Eä, sä)|V
äb̈c̈

Υäc̈|V
äb̈c̈

##
�
 Eȧċac(Uȧ, Dȧ, rȧ)|U

ȧḃċ

Tȧċ|U
ȧḃċ

--

(Tc, Cc, qc, ϕc)
fcc̈

//

ecċ

��

EM
id

(Vc̈, Ec̈, sc̈)

hc̈˙̇ċ

��
(Uċ, Dċ, rċ)

gċ˙̇ċ // (W˙̇ċ , F˙̇ċ , t˙̇ċ),

(11.124)

where Tabc = Tab ∩ Tbc, and Uȧḃċ, . . . are defined in a similar way. By the last
part of the universal property in Definition A.11 for (11.118) with c in place of
a, there exists a unique 2-isomorphism Iabc : Σbc ◦Σab|Tabc ⇒ Σac|Tabc , such that
the following commute:

ecċ ◦ Σbc ◦ Σab|Tabc
Eḃċbc∗idΣab

��

idecċ
∗Iabc

+3 ecċ ◦ Σac|Tabc
Eȧċac

��
Tḃċ ◦ ebḃ ◦ Σab|Tabc

idT
ḃċ
∗Eȧḃab
+3 Tḃċ ◦ Tȧḃ ◦ eaȧ|Tabc

Kȧḃċ∗ideaȧ

+3 Tȧċ ◦ eaȧ|Tabc ,

(11.125)

f cc̈ ◦ Σbc ◦ Σab|Tabc
F b̈c̈bc∗idΣab��

idfcc̈
∗Iabc

+3 f cc̈ ◦ Σac|Tabc
F äc̈ac
��

Υb̈c̈ ◦ f bb̈ ◦ Σab|Tabc
idΥ

b̈c̈
∗F äb̈ab
+3 Υb̈c̈ ◦Υäb̈ ◦ faä|Tabc

Λäb̈c̈∗idfaä

+3 Υäc̈ ◦ faä|Tabc .
(11.126)

From (11.121) and (11.122) with c = a we see that Σba ◦Σab ∼= id(Ta,Ca,qa,ϕa),
and similarly Σab ◦ Σba ∼= id(Tb,Cb,qb,ϕb). Hence Σab : (Ta, Ca, qa, ϕa)→ (Tb, Cb,
qb, ϕb) is a coordinate change over Imϕa ∩ Imϕb, with quasi-inverse Σba. Also
from (11.121) for a, b we can deduce that Iaab = Iabb = idΣab .

Let a, b, c, d ∈ A, and consider the diagram of 2-morphisms over Imϕa ∩
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Imϕb ∩ Imϕc ∩ Imϕd on W :

edḋ ◦ Σcd ◦ Σbc ◦ Σab

Eċḋcd∗id

"*

id∗Iabc
+3

id∗Ibcd∗id

��

edḋ ◦ Σcd ◦ Σac

id∗Iacd

��

Eċḋcd∗id

t|
Tċḋ ◦ ecċ ◦ Σbc ◦ Σab

id∗Eḃċbc∗id��

id∗Iabc +3 Tċḋ ◦ ecċ ◦ Σac

id∗Eȧċac ��
Tċḋ ◦ Tḃċ
◦ebḃ ◦ Σab

Kḃċḋ∗id��

id∗Eȧḃab+3 Tċḋ◦Tḃċ
◦Tȧḃ◦eaȧ

Kḃċḋ∗id ��

id∗Kȧḃċ∗id+3 Tċḋ◦
Tȧċ ◦ eaȧ

Kȧċḋ∗id
��Tḃḋ◦

ebḃ ◦ Σab

id∗Eȧḃab +3 Tḃḋ◦
Tȧḃ ◦ eaȧ

Kȧḃḋ∗id +3 Tȧḋ ◦ eaȧ

edḋ ◦ Σbd ◦ Σab

Eḃḋbd∗id

4<

id∗Iabd +3 edḋ ◦ Σad.

Eȧḋad

bj

(11.127)

Here four small quadrilaterals commute by (11.125), two commute by compati-
bility of vertical and horizontal composition, and one commutes by (11.122). So
(11.127) commutes, implying that

idedḋ ∗
(
Iacd � (idΣcd ∗ Iabc)

)
= idedḋ ∗

(
Iabd � (Ibcd ∗ idΣab)

)
. (11.128)

Similarly we can show that

idfdd̈ ∗
(
Iacd � (idΣcd ∗ Iabc)

)
= idedḋ ∗

(
Iabd � (Ibcd ∗ idΣab)

)
. (11.129)

By comparing two 2-commutative diagrams similar to (11.123)–(11.124) and
using (11.122) and uniqueness of ε in Definition A.11 for the 2-Cartesian square
(11.118) with d in place of a, we can use (11.128)–(11.129) to show that

Iacd � (idΣcd ∗ Iabc) = Iabd � (Ibcd ∗ idΣab).

Now define W = (W,A), where A =
(
A, (Ta, Ca, qa, ϕa)a∈A, Σab, a,b∈A,

Iabc, a,b,c∈A
)
. Then W is Hausdorff and second countable as X,Y are, and

we have already proved Definition 4.14(a)–(h) for A above, so that W is an
m-Kuranishi space in mK̇ur with vdimW = vdimX + vdimY − vdimZ.

Define a 1-morphism e : W →X in mK̇ur by

e =
(
e, eai, a∈A, i∈I , E

i, i∈I
ab, a,b∈A, E

ij, i,j∈I
a, a∈A

)
,

where eai = Tȧi ◦ eaȧ and Ei
ab,E

ij
a are defined by the 2-commutative diagrams

ebi ◦ Σab
Eiab

+3 eai

Tḃi ◦ ebḃ ◦ Σab
idT

ḃi
∗Eȧḃab +3 Tḃi ◦ Tȧḃ◦eaȧ

Kȧḃi∗ideaȧ +3 Tȧi ◦ eaȧ,
(11.130)

Tij ◦ eai
Eija

+3 eaj

Tij ◦ Tȧi ◦ eaȧ
Kȧij∗ideaȧ +3 Tȧj ◦ eaȧ.

(11.131)
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Here X = (X, I) in (4.6), and Tȧi,Kȧij are the implicit data in the definition
of the m-Kuranishi neighbourhood (Uȧ, Dȧ, rȧ, χȧ) on X in Definition 4.49,
and the Kȧḃi are the implicit data in the definition of the coordinate change
Tȧḃ : (Uȧ, Dȧ, rȧ, χȧ)→ (Uḃ, Dḃ, rḃ, χḃ) in Definition 4.51.

To show that e satisfies Definition 4.17, note that (a)–(d) are immediate, and
(e) follows from Σaa,E

ȧȧ
aa,Kȧȧi,Kȧii being identities, and (f)–(h) follow from the

2-commutative diagrams

eci ◦ Σbc ◦ Σab

ideci
∗Iabc

��

Eibc∗idΣab

+3 ebi ◦ Σab

Eiab

��

Tċi◦ecċ
◦Σbc◦Σab

id∗Iabc

��

id∗Eḃċbc∗id +3 Tċi◦Tḃċ
◦ebḃ◦Σab

id∗Eȧḃab��

K
ḃċi
∗id
+3 Tḃi◦
ebḃ◦Σab

id∗Eȧḃab��
Tċi◦Tḃċ
◦Tȧḃ◦eaȧ

K
ȧḃċ
∗id

��

K
ḃċi
∗id
+3 Tḃi◦
Tȧḃ◦eaȧ

K
ȧḃi
∗id

��
Tċi◦
ecċ◦Σac

id∗Eȧċac +3 Tċi◦
Tȧċ◦eaȧ

Kȧċi∗id +3 Tȧi◦eaȧ

eci ◦ Σac

Eiac +3 eai,

(11.132)

Tij ◦ ebi ◦ Σab

E
ij
b
∗idΣab

��

idTij
∗Eiab

+3 Tij ◦ eai

Eija

��

Tij◦Tḃi
◦ebḃ◦Σab

K
ḃij
∗id��

id∗Eȧḃab +3 Tij◦Tḃi
◦Tȧḃ◦eaȧ

K
ḃij
∗id��

id∗K
ȧḃi
∗id
+3 Tij◦
Tȧi◦eaȧ

Kȧij∗id
��Tḃj◦

ebḃ◦Σab

id∗Eȧḃab +3 Tḃj◦
Tȧḃ◦eaȧ

K
ȧḃj
∗id
+3 Tȧj◦eaȧ

ebj ◦ Σab

E
j
ab +3 eaj ,

(11.133)

Tjk ◦ Tij ◦ eai

idTjk
∗Eija

��

Kijk∗ideai

+3 Tik ◦ eai

Eika

��

Tjk◦Tij◦Tȧi◦eaȧ
id∗Kȧij∗id
��

Kijk∗id +3 Tik◦Tȧi◦eaȧ
Kȧik∗ideaȧ

��
Tjk◦Tȧj◦eaȧ

Kȧjk∗ideaȧ +3 Tȧk◦eaȧ

Tjk ◦ eaj
Ejka +3 eak,

(11.134)

for all a, b, c ∈ A and i, j, k ∈ I. Here (11.132) uses (4.62) for the 2-morphism
Kȧḃċ constructed using Theorem 4.56(c), and (11.125), (11.130). Equation
(11.133) uses (4.58) for the coordinate change Tȧḃ : (Uȧ, Dȧ, rȧ, χȧ)→ (Uḃ, Dḃ,
rḃ, χḃ), and (11.130)–(11.131). Equation (11.134) uses (4.57) for the m-Kuranishi
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neighbourhood (Uȧ, Dȧ, rȧ, χȧ) on X, and (11.131). All of (11.132)–(11.134) use
compatibility of vertical and horizontal composition.

We define a 1-morphism f : W → Y in mK̇ur as for e.
Definition 4.20 defines compositions g◦e,h◦f : X → Z, with 2-morphisms of

m-Kuranishi neighbourhoods Θg,eaik,Θ
h,f
ajk as in (4.24). We will define a 2-morphism

η : g ◦ e⇒ h ◦ f in mK̇ur, where η =
(
ηak, a∈A, k∈K

)
. Let a ∈ A and k ∈ K.

We claim that there is a unique 2-morphism ηak : (g ◦ e)ak ⇒ (h ◦ f)ak on
Imϕa ∩ (g ◦ e)−1(Imωk) in W , such that for all i ∈ I and j ∈ J , the following
commutes on Imϕa ∩ e−1(Imχi) ∩ f−1(Imψj) ∩ (g ◦ e)−1(Imωk) in W :

gik ◦ eai
Θg,e
aik

+3 (g ◦ e)ak ηak
+3 (h ◦ f)ak hjk ◦ faj

Θh,f
ajk

ks

gik◦Tȧi◦eaȧ Φ˙̇ȧk◦gȧ˙̇ȧ◦eaȧ
G˙̇ȧk
ȧi ∗idks Φ˙̇ȧk◦hä˙̇ȧ◦faä

H ˙̇ȧk
äj ∗id+3 hjk◦Υäj◦faä.

(11.135)

To prove the claim, write ηijak for the 2-morphism ηak which makes (11.135)
commute. Let i, i′ ∈ I and j, j′ ∈ J , and consider the diagram of 2-morphisms
over Imϕa ∩ e−1(Imχi ∩ (Imχi′) ∩ f−1(Imψj ∩ Imψj′) ∩ (g ◦ e)−1(Imωk):

(g ◦ e)ak

ηijak

//

ηi
′j′
ak

oo

gik◦Tȧi◦eaȧ

Θg,e
aik

33

gi′k◦Tii′
◦Tȧi◦eaȧ

Gk
ii′∗idoo id∗Kȧii′∗id // gi′k◦Tȧi′ ◦eaȧ

Θg,e

ai′k

kk

Φ˙̇ȧk◦gȧ˙̇ȧ◦eaȧ =
Φ˙̇ȧk◦hä˙̇ȧ◦faä

G˙̇ȧk
ȧi ∗id

kk
G˙̇ȧk
ȧi′∗id

33

H ˙̇ȧk
äj ∗id
ss

H ˙̇ȧk
äj′∗id
++

hjk◦Υäj◦faä
Θh,f
ajk ++

hj′k◦Υjj′

◦Υäj◦faä
Hk
jj′∗idoo

id∗Λäjj′∗id // hj′k◦Υäj′ ◦faä
Θh,f

aj′kss
(h ◦ f)ak.

(11.136)

Here the outer pentagons commute by (11.135), the top and bottom quadrilaterals
commute by (4.16) for g◦e and h◦f , and the central two quadrilaterals commute

by (4.59) for gȧ˙̇ȧ and hä˙̇ȧ. Thus (11.136) commutes, so ηijak = ηi
′j′

ak on the
intersection of their domains in W .

Now ηijak is defined on Imϕa ∩ e−1(Imχi) ∩ f−1(Imψj) ∩ (g ◦ e)−1(Imωk),
and for all i ∈ I and j ∈ J these form an open cover of the domain Imϕa ∩ (g ◦
e)−1(Imωk) of the 2-morphism ηak that we want. So by the sheaf property of
2-morphisms of m-Kuranishi neighbourhoods in Theorem 4.13 and Definition
A.17(iv), there is a unique 2-morphism ηak : (g ◦ e)ak ⇒ (h ◦ f)ak over Imϕa ∩
(g ◦ e)−1(Imωk) such that ηak|Imϕa∩e−1(Imχi)∩f−1(Imψj)∩(g◦e)−1(Imωk) = ηijak for
all i ∈ I and j ∈ J , so that (11.135) commutes, proving the claim.

To show η =
(
ηak, a∈A, k∈K

)
: g ◦ e⇒ h ◦ f is a 2-morphism in mK̇ur, let

144



a, a′ ∈ A, i ∈ I, j ∈ J and k ∈ K, and consider the diagram of 2-morphisms

(g ◦ e)a′k ◦ Σaa′

ηa′k∗idΣ
aa′

��

(G◦E)k
aa′

+3 (g ◦ e)ak

ηak

��

gik◦Tȧ′i
◦ ea′ȧ′ ◦Σaa′

Θ
g,e

a′ik∗id
`h

id∗
Eȧȧ

′
aa′ +3 gik◦Tȧ′i

◦Tȧȧ′ ◦eaȧ

id∗
Kȧȧ′i∗id +3 gik◦

Tȧi◦eaȧ

Θ
g,e
aik

6>

Φ˙̇ȧ′k◦gȧ′ ˙̇ȧ′

◦ ea′ȧ′ ◦Σaa′

G˙̇ȧ′k
ȧ′i ∗id

KS

id∗
Eȧȧ

′
aa′ +3 Φ˙̇ȧ′k◦gȧ′ ˙̇ȧ′

◦Tȧȧ′ ◦eaȧ

id∗
G˙̇ȧ˙̇ȧ′
ȧȧ′
∗id +3

G˙̇ȧ′k
ȧ′i ∗id

@H

Φ˙̇ȧ′k◦Φ˙̇ȧ˙̇ȧ′◦ gȧ˙̇ȧ◦eaȧ

M˙̇ȧ˙̇ȧ′k
∗id +3 Φ˙̇ȧk◦

gȧ˙̇ȧ◦eaȧ

G˙̇ȧk
ȧi ∗id

KS

Φ˙̇ȧ′k◦hä′ ˙̇ȧ′

◦ fa′ä′ ◦Σaa′

H ˙̇ȧ′k
ä′j ∗id ��

id∗
F ää

′
aa′ +3 Φ˙̇ȧ′k◦hä′ ˙̇ȧ′

◦Υää′ ◦faä

id∗
H ˙̇ȧ˙̇ȧ′
ää′
∗id +3

H ˙̇ȧ′k
ä′j ∗id��

Φ˙̇ȧ′k◦Φ˙̇ȧ˙̇ȧ′

◦ hä˙̇ȧ◦faä

M˙̇ȧ˙̇ȧ′k
∗id +3 Φ˙̇ȧk◦

hä˙̇ȧ◦faä

H ˙̇ȧk
äj ∗id��

hjk◦Υä′j◦
fa′ä′ ◦Σaa′

Θ
h,f

a′jk∗idv~

id∗
F ää

′
aa′

+3 hjk◦Υä′j◦
Υää′ ◦faä id∗

Λää′j∗id

+3 hjk◦
Υäj◦faä

Θ
h,f
ajk  (

(h ◦ f)a′k ◦ Σaa′
(H◦F )k

aa′ +3 (h ◦ f)ak.

(11.137)

Here the left and right hexagons commute by (11.135), the top and bottom
pentagons by (4.15) for g ◦e,h ◦f , the two centre left quadrilaterals by compati-
bility of vertical and horizontal composition, the centre left hexagon by (11.120),

and the two centre right pentagons by (4.62) for G˙̇ȧ˙̇ȧ′

ȧȧ′ ,H
˙̇ȧ˙̇ȧ′

ää′ . Thus (11.137)
commutes.

The outer rectangle of (11.137) proves the restriction of Definition 4.18(a) for
η to the intersection of its domain with e−1(Imχi)∩ f−1(Imψj). As these open
subsets cover the domain, the sheaf property of 2-morphisms of m-Kuranishi
neighbourhoods implies Definition 4.18(a) for η. We prove Definition 4.18(b) in
a similar way. Thus η : g ◦ e⇒ h ◦ f is a 2-morphism in mK̇ur, and we have
constructed the 2-commutative diagram (11.15) in mK̇urD, in the case when
Assumption 11.3 holds. We will show (11.15) is 2-Cartesian in §11.9.3.

11.9.2 Constructing W, e,f ,η in the general case

Next we generalize the work of §11.9.1 to the case when Assumption 11.3 does
not hold. Then in the first part of §11.9.1, we can no longer take W to have
topological space

{
(x, y) ∈ X × Y : g(x) = h(y)

}
with e : W → X, f : W → Y

acting by e : (x, y) 7→ x, f : (x, y) 7→ y. Also for the fibre product Tk in Ṁan in
(11.114), we cannot assume Tk has topological space (11.115).

We need to provide new definitions for W, e, f , and the continuous maps ϕa :
q−1
a (0)→W for a ∈ A. This is very similar to the definition of the topological

space Ck(X) and map Πk : Ck(X)→ X for Ck(X),Πk in Definition 4.39.
As in §11.9.1 we choose a family indexed by a ∈ A of m-Kuranishi neighbour-

hoods (Uȧ, Dȧ, rȧ, χȧ), (Vä, Eä, sä, ψä), (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ, ω˙̇ȧ) on X,Y ,Z as in §4.7
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with Imχȧ ⊆ g−1(Imω˙̇ȧ), Imψä ⊆ h−1(Imω˙̇ȧ) and Imω˙̇ȧ, and 1-morphisms gȧ˙̇ȧ :
(Uȧ, Dȧ, rȧ, χȧ) → (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ, ω˙̇ȧ), hä˙̇ȧ : (Vä, Eä, sä, ψä) → (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ, ω˙̇ȧ)
over (Imχȧ, g) and (Imψä,h), as in Definition 4.54, such that gȧä,hä˙̇ȧ are
w-transverse as in Definition 11.16, and{

(x, y) ∈ X × Y : g(x) = h(y)
}

=
⋃
a∈A

{
(x, y) ∈ Imχȧ × Imψä : g(x) = h(y)

}
.

Applying Definition 11.16 and Theorem 11.17 to the w-transverse 1-morphisms
gȧ˙̇ȧ,hä˙̇ȧ in GmK̇ND gives an object (Ta, Ca, qa) in GmK̇ND in a 2-Cartesian
square (11.118) in GmK̇ND and GmK̇NE , for all a ∈ A.

Now follow §11.9.1 between (11.118) and (11.126). For all a, b ∈ A this defines
an open subset Tab ⊆ Ta and a 1-morphism Σab : (Ta, Ca, qa)|Tab → (Tb, Cb, qb)
in GmK̇ND with Σaa = id(Ta,Ca,qa), and for all a, b, c ∈ A it defines an open
subset Tabc = Tab ∩ Tbc ⊆ Ta and a 2-morphism Iabc : Σbc ◦ Σab|Tabc ⇒ Σac|Tabc
in GmK̇ND. None of this uses W, e, f, ϕa, which are not yet defined.

Definition 4.2(d) for Σab shows we have a continuous map

Σab|q−1
a (0)∩Tab : q−1

a (0) ∩ Tab −→ q−1
b (0), a, b ∈ A. (11.138)

Also Σaa = id(Ta,Ca,qa) and Definition 4.3 for Iabc imply that

Σaa|q−1
a (0)∩Taa = id : q−1

a (0) −→ q−1
a (0),

Σbc|··· ◦ Σab|··· = Σac|··· : q−1
a (0) ∩ Tab ∩ Tac −→ q−1

c (0).
(11.139)

Setting c = a we see that Σab|q−1
a (0)∩Tab : q−1

a (0) ∩ Tab → q−1
b (0) ∩ Tba is a

homeomorphism, with inverse Σba|q−1
b (0)∩Tba .

As for the definition of Ck(X) in Definition 4.39, define a binary relation ≈ on∐
a∈A q

−1
a (0) by wa ≈ wb if a, b ∈ A and wa ∈ q−1

a (0) ∩ Tab with Σab(wa) = wb
in q−1

b (0). Then (11.138)–(11.139) imply that ≈ is an equivalence relation on∐
a∈A q

−1
a (0). As in (4.49), define W to be the topological space

W =
[∐

a∈A q
−1
a (0)

]/
≈,

with the quotient topology. For each a ∈ A define ϕa : q−1
a (0) → W by

ϕa : wa 7→ [wa], where [wa] is the ≈-equivalence class of wa.
Define e : W → X and f : W → Y by e([wa]) = χȧ ◦ eaȧ(wa) and f([wa]) =

ψä ◦ faä(wa) for a ∈ A and wa ∈ q−1
a (0). To see that e is well defined, note that

if wa ≈ wb as above, so that Σab(wa) = wb, then

χȧ ◦ eaȧ(wa) = χḃ ◦ Tȧḃ ◦ eaȧ(wa) = χḃ ◦ ebḃ ◦ Σab(wa) = χḃ ◦ ebḃ(wb),

using Definition 4.2(e) for the coordinate change Tȧḃ on X in the first step, and

the 2-morphism Eȧḃ
ab : ebḃ ◦ Σab ⇒ Tȧḃ ◦ eaȧ|Tab from (11.119) in the second. In

the same way, f is well defined.
Very similar proofs to those in Definition 4.39 show that ϕa : q−1

a (0)→W
is a homeomorphism with an open set in W , so that (Ta, Ca, qa, ϕa) is an m-
Kuranishi neighbourhood on W , and e, f are continuous with eaȧ : (Ta, Ca, qa,
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ϕa) → (Uȧ, Dȧ, rȧ, χȧ) a 1-morphism over (Imϕa, e) and faä : (Ta, Ca, qa, ϕa)
→ (Vä, Eä, sä, ψä) a 1-morphism over (Imϕa, f), and W is Hausdorff and second
countable with W =

⋃
a∈A Imϕa. Then the proofs in §11.9.1, but with these

new W, e, f, ϕa, construct an m-Kuranishi space W = (W,A) and 1-morphisms
e : W →X, f : W → Y and a 2-morphism η : g ◦ e⇒ h ◦ f in mK̇ur.

11.9.3 Proving the universal property of the fibre product

We continue in the situation of §11.9.2. There, given w-transverse 1-morphisms g :
X → Z, h : Y → Z in mK̇urD, we constructed W, e,f ,η in a 2-commutative
square (11.15) in mK̇urD. We will now prove that (11.15) is 2-Cartesian in
mK̇urE , by verifying the universal property in Definition A.11. This will also
imply that (11.15) is 2-Cartesian in mK̇urD, as D implies E.

Suppose we are given 1-morphisms c : V →X and d : V → Y in mK̇urE
and a 2-morphism κ : g ◦ c⇒ h ◦ d. Write V = (V,L) with

L =
(
L, (Sl, Bl, pl, υl)l∈L,Pll′, l,l′∈L,Hll′l′′, l,l′,l′′∈L

)
,

and use our usual notation for c,d,κ. Our goal is to construct a 1-morphism
b : V →W in mK̇urE and 2-morphisms ζ : e ◦ b⇒ c, θ : f ◦ b⇒ d such that
the following diagram (A.17) of 2-morphisms commutes:

(g ◦ e) ◦ b
αg,e,b��

η∗idb

+3 (h ◦ f) ◦ b
αh,f,b

+3 h ◦ (f ◦ b)
idh∗θ

��
g ◦ (e ◦ b)

idg∗ζ +3 g ◦ c κ +3 h ◦ d.
(11.140)

Let a ∈ A and l ∈ L. Then (Uȧ, Dȧ, rȧ, χȧ) is an m-Kuranishi neighbour-
hood on X, and (Sl, Bl, pl, υl) is an m-Kuranishi neighbourhood on V as in
Example 4.50. Thus Theorem 4.56(b) gives a 1-morphism clȧ : (Sl, Bl, pl, υl)→
(Uȧ, Dȧ, rȧ, χȧ) over (Im υl ∩ c−1(Imχȧ), c). Similarly we get a 1-morphism
dlä : (Sl, Bl, pl, υl) → (Vä, Eä, sä, ψä) over (Im υl ∩ d−1(Imψä),d). Composing
gives gȧ˙̇ȧ ◦clȧ over g ◦e and hä˙̇ȧ ◦dlä over h ◦f . Hence Theorem 4.56(c) gives a
unique 2-morphism κl˙̇ȧ : gȧ˙̇ȧ◦clȧ ⇒ hä˙̇ȧ◦dlä over Im υl∩c−1(Imχȧ)∩d−1(Imψä)
such that the analogue of (4.62) commutes.

Writing clȧ = (Slȧ, clȧ, ĉlȧ), dlä = (Slä, dlä, d̂lä) and setting Sla = Slȧ ∩ Slä,
we now have a 2-commutative diagram in GmK̇NE :

(Sl, Bl, pl)|Sla
IQ

κl˙̇ȧ

dlä|Sla
//

clȧ|Sla��

(Vä, Eä, sä)

hä˙̇ȧ ��
(Uȧ, Dȧ, rȧ)

gȧ˙̇ȧ // (W˙̇ȧ, F˙̇ȧ, t˙̇ȧ).

The 2-Cartesian property of (11.118) in GmK̇NE gives a 1-morphism

bla : (Sl, Bl, pl)|Sla −→ (Ta, Ca, qa),

and 2-morphisms

ζlaȧ : eaȧ ◦ bla =⇒ clȧ|Sla , θlaä : faä ◦ bla =⇒ dlä|Sla , (11.141)
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such that the following commutes

gȧ˙̇ȧ ◦ eaȧ ◦ bla
idgȧ˙̇ȧ

∗ζlaȧ��

hä˙̇ȧ ◦ faä ◦ bla
idhä˙̇ȧ

∗θlaä
��

gȧ˙̇ȧ ◦ clȧ|Sla
κl˙̇ȧ +3 hä˙̇ȧ ◦ dlä|Sla .

(11.142)

Now let a ∈ A and l, l′ ∈ L. Then we have 1-morphisms

bla|Sla∩Sll′ , bl′a ◦ Pll′ |Sla∩Sll′ : (Sl, Bl, pl)|Sla∩Sll′ −→ (Ta, Ca, qa),

and 2-morphisms ζlaȧ,θlaä in (11.141) such that (11.142) commutes, and

C ȧ
ll′ � (ζl′aȧ ∗ idPll′ ) : eaȧ ◦ bl′a ◦ Pll′ |Sla∩Sll′ =⇒ clȧ|Sla∩Sll′ ,

Dä
ll′ � (θl′aä ∗ idPll′ ) : faä ◦ bl′a ◦ Pll′ |Sla∩Sll′ =⇒ dlä|Sla∩Sll′ ,

for C ȧ
ll′ : cl′ȧ ◦ Pll′ ⇒ clȧ and Dä

ll′ : dl′ä ◦ Pll′ ⇒ dlä given by Theorem 4.56(c).
Using Theorem 4.56(c) we can show that the following commutes:

gȧ˙̇ȧ ◦ eaȧ ◦ bl′a ◦ Pll′ |Sla∩Sll′
idgȧ˙̇ȧ

∗(Cȧ
ll′�(ζl′aȧ∗idP

ll′
))

��

hä˙̇ȧ ◦ faä ◦ bl′a ◦ Pll′ |Sla∩Sll′
idhä˙̇ȧ

∗(Dä
ll′�(θl′aä∗idP

ll′
))
��

gȧ˙̇ȧ ◦ clȧ|Sla∩Sll′
κl˙̇ȧ +3 hä˙̇ȧ ◦ dlä|Sla∩Sll′ .

Hence the second part of the universal property for the 2-Cartesian square
(11.118) says that there is a unique 2-morphism in GmK̇NE

Ba
ll′ : bl′a ◦ Pll′ |Sla∩Sll′ =⇒ bla|Sla∩Sll′

such that

C ȧ
ll′ � (ζl′aȧ ∗ idPll′ ) = ζlaȧ � (ideaȧ ∗B

a
ll′),

Dä
ll′ � (θl′aä ∗ idPll′ ) = θlaä � (idfaä ∗B

a
ll′).

(11.143)

Note that the existence of Ba
ll′ implies that

bla|Im υl∩Im υl′∩c−1(Imχȧ)∩d−1(Imψä) = bl′a|···. (11.144)

Next let a, a′ ∈ A and l ∈ L. A similar argument to the above yields a unique
2-morphism in GmK̇NE

Baa′

l : Σaa′ ◦ bla|Sla∩Sla′ ⇒ bla′ |Sla∩Sla′

such that

C ȧȧ′

l � (idTȧȧ′ ∗ ζlaȧ)� (Eȧȧ′

aa′ ∗ idbla) = ζlaȧ′ � (idea′ȧ′ ∗B
aa′

l ),

Dää′

l � (idΥää′ ∗ θlaä)� (F ää
′

aa′ ∗ idbla) = θlaä′ � (idfa′ä′ ∗B
aa′

l ),
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where C ȧȧ′

l : Tȧȧ′ ◦clȧ ⇒ clȧ′ and Dää′

l : Υää′ ◦dlä ⇒ dlä′ are given by Theorem

4.56(c). Note that the existence of Baa′

l implies that

bla|Im υl∩c−1(Imχȧ∩Imχȧ′ )∩d−1(Imψä∩Imψä′ )
= bla′ |···. (11.145)

As the domains of bla for a ∈ A and l ∈ L cover V , equations (11.144)
and (11.145) imply that there is a unique continuous map b : V → W with
b|Im υl∩Im υl′∩c−1(Imχȧ)∩d−1(Imψä) = bla for all a ∈ A and l ∈ L. Define

b =
(
b, bla, l∈L, a∈A, B

a, a∈A
ll′, l,l′∈L, B

aa′, a,a′∈A
l, l∈L

)
.

We will show that b : V →W is a 1-morphism in mK̇ur. Definition 4.17(a)–(d)
are immediate. For (e), setting l = l′ we have C ȧ

ll = id = Dä
ll, so uniqueness of

Ba
ll satisfying (11.143) gives Ba

ll = idbla , and similarly Baa
l = idbla .

For (f), let l, l′, l′′ ∈ L and a ∈ A, and consider the diagram

eaȧ ◦ bl′′a ◦ Pl′l′′ ◦ Pll′

ζl′′aȧ∗id%-

id∗Hll′l′′

��

id∗Ba
l′l′′∗id

+3 eaȧ ◦ bl′a ◦ Pll′

id∗Ba
ll′

��

ζl′aȧ∗idqy
cl′′ȧ ◦ Pl′l′′ ◦ Pll′

id∗Hll′l′′��

Cȧ
l′l′′∗id +3 cl′ȧ ◦ Pll′

Cȧ
ll′��

cl′′ȧ ◦ Pll′′
Cȧ
ll′′ +3 clȧ

eaȧ ◦ bl′′a ◦ Pll′′

ζl′′aȧ∗id
19

id∗Ba
ll′′ +3 eaȧ ◦ bla.

ζlaȧ

em

(11.146)

Here the top, bottom and right quadrilaterals commute by (11.143), the left by
compatibility of vertical and horizontal composition, and the centre by Theorem
4.56(d). So (11.146) commutes, and so does the analogous diagram involving
faä,θlaä,D

ä
ll′ in place of eaȧ, ζlaȧ,C

ȧ
ll′ . Using these and uniqueness of Ba

ll′

satisfying (11.143), we deduce that the following commutes:

bl′′a ◦ Pl′l′′ ◦ Pll′

idb
l′′a
∗Hll′l′′��

Ba
l′l′′∗idP

ll′

+3 bl′a ◦ Pll′

Ba
ll′ ��

bl′′a ◦ Pll′′
Ba
ll′′ +3 bla.

This is Definition 4.17(f) for b, and we prove (g),(h) in a similar way.
By the method used to construct η : g ◦ e⇒ h ◦ f in §11.9.1, we can show

that there are unique 2-morphisms in mK̇ur

ζ =
(
ζli, l∈L, i∈I

)
: e ◦ b =⇒ c, θ =

(
θlj, l∈L, j∈J

)
: f ◦ b =⇒ d,
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such that the following commute for all l ∈ L, a ∈ A, i ∈ I and j ∈ J :

(e ◦ b)li
ζli

+3 cli

eai ◦ bla
Θe,b
lai

KS

Tȧi◦eaȧ◦bla
id∗ζlaȧ +3 Tȧi◦clȧ

Cȧill +3 cli ◦ Pll,

(11.147)

(f ◦ b)lj
θlj

+3 dlj

faj ◦ bla
Θf,b
laj

KS

Υäj◦faä◦bla
id∗θlaä +3 Υäj◦dlä

Däj
ll +3 dlj ◦ Pll.

(11.148)

Here Θe,blai ,Θ
f ,b
laj are as in Definition 4.20 for e ◦ b,f ◦ b, and C ȧi

ll : Tȧi ◦ clȧ ⇒
cli ◦ Pll, D

äj
ll : Υäj ◦ dlä ⇒ dlj ◦ Pll are as in Definition 4.54 for clȧ,dlä.

We now prove that (11.140) commutes by considering the diagram

((g ◦ e) ◦ b)lk

(αg,e,b)lk

��

(η∗idb)lk

+3 ((h ◦ f) ◦ b)lk
(αh,f,b)lk

+3 (h ◦ (f ◦ b))lk

(idh
∗θ)lk

��

(g ◦ e)ak ◦ bla

Θ
g◦e,b
lak

`h

ηak∗id
+3 (h ◦ f)ak ◦ bla

Θ
h◦f,b
lak

KS

hjk ◦ (f ◦ b)lj

Θ
g,f◦b
ljk

6>

id∗θlj

�


gik◦
eai◦bla

Θ
g,e
aik
∗id

KS

id∗Θe,b
lai

��

id∗ζlaȧ
 (

Φ˙̇ȧk◦hä˙̇ȧ◦faä◦bla =
Φ˙̇ȧk◦gȧ˙̇ȧ◦eaȧ◦bla

G˙̇ȧk
ȧi ∗idks

H ˙̇ȧk
äj ∗id

+3

id∗ζlaȧ ��
id∗θlaä
 (

hjk◦
faj◦bla

Θ
h,b
ajk
∗idfn

id∗Θf,b
laj

KS

id∗θlaä
��

gik◦
Tȧi◦clȧ

id∗Cȧill
��

Φ˙̇ȧk◦
gȧ˙̇ȧ◦clȧ

G˙̇ȧk
ȧi ∗idks

(G◦C)˙̇ȧkll

��

id∗κl˙̇ȧ +3 Φ˙̇ȧk◦
hä˙̇ȧ◦dlä

H ˙̇ȧk
äj ∗id+3

(H◦D)˙̇ȧkll

&.

hjk◦
Υäj◦dlä

id∗Däj
ll
��gik◦

(e ◦ b)li

Θ
g,e◦b
likv~

id∗ζli +3 gik ◦ cli
Θ

g,c
lik

 (

hjk ◦ dlj
Θ

h,d
ljk

 (
(g ◦ (e ◦ b))lk

(idg∗ζ)lk +3 (g ◦ c)lk
κlk +3 (h ◦ d)lk,

(11.149)
for all l ∈ L, a ∈ A, i ∈ I, j ∈ J and k ∈ K. Here the left and top right
pentagons commute by (4.27), the top left, bottom left, and rightmost quadri-
laterals by (4.30), the bottom right quadrilateral including κlk by (4.62) for
κlä, the quadrilaterals to left and right of this by (4.60), the bottom centre left
quadrilateral and the right semicircle by (11.147)–(11.148), the centre triangle
by (11.142), the two quadrilaterals to the left and right of this by compatibility
of vertical and horizontal composition, and the top centre pentagon by (11.135).

Thus (11.149) commutes. The outside of (11.149) proves the restriction of the
‘lk’ component of (11.140) to the intersection of its domain with b−1(Imϕa) ∩
c−1(Imχi) ∩ d−1(Imψj). As these intersections for all a ∈ A, i ∈ I, j ∈ J
cover the whole domain, the sheaf property of 2-morphisms of m-Kuranishi
neighbourhoods implies that (11.140) commutes. This proves the first part of the
universal property in Definition A.11, the existence of b, ζ,θ satisfying (11.140).

For the second part, suppose b̃ : V →W is a 1-morphism in mK̇urE and
ζ̃ : e ◦ b̃⇒ c, θ̃ : f ◦ b̃⇒ d are 2-morphisms such that the analogue of (11.140)
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commutes. Then b̃ contains 1-morphisms b̃la : (Sl, Bl, pl, υl)→ (Ta, Ca, qa, ϕa),
and running the construction of ζ,θ above in reverse, we find that as in (11.141)
there are unique 2-morphisms ζ̃laȧ : eaȧ ◦ b̃la ⇒ clȧ, θ̃laä : faä ◦ b̃la ⇒ dlä such
that the analogues of (11.147)–(11.148) commute for all i ∈ I and j ∈ J :

(e ◦ b̃)li
ζ̃li

+3 cli

eai ◦ b̃la

Θe,b̃
lai

KS

Tȧi◦eaȧ◦b̃la
id∗ζ̃laȧ +3 Tȧi◦clȧ

Cȧill +3 cli ◦ Pll,

(f ◦ b̃)lj
θ̃lj

+3 dlj

faj ◦ b̃la
Θf,b̃
laj

KS

Υäj◦faä◦b̃la
id∗θ̃laä +3 Υäj◦dlä

Däj
ll +3 dlj ◦ Pll.

From the analogue of (11.140) we can use the analogue of (11.149) in reverse
to prove that the analogue of (11.142) commutes:

gȧ˙̇ȧ ◦ eaȧ ◦ b̃la
idgȧ˙̇ȧ

∗ζ̃laȧ
��

hä˙̇ȧ ◦ faä ◦ b̃la
idhä˙̇ȧ

∗θ̃laä
��

gȧ˙̇ȧ ◦ clȧ
κl˙̇ȧ +3 hä˙̇ȧ ◦ dlä.

Then the second part of the universal property of the 2-Cartesian square (11.118)
shows that there is a unique 2-isomorphism εla : bla ⇒ b̃la with ζlȧ = ζ̃lȧ�(ideaȧ∗
εla) and θlä = θ̃lä � (idfaä ∗ εla). We can then check ε =

(
εla, l∈L, a∈A

)
: b⇒ b̃

is the unique 2-morphism with ζ = ζ̃ � (ide ∗ ε) and θ = θ̃ � (idf ∗ ε). This

completes the proof that (11.15) is 2-Cartesian in mK̇urE , and hence in mK̇urD.
We have now proved the first part of Theorem 11.19.

11.9.4 Proof of parts (a)–(h)

Finally we prove parts (a)–(h) of Theorem 11.19.

Part (a). Suppose g,h in §11.9.1–§11.9.3 are transverse, not just w-transverse.
Then in §11.9.1–§11.9.2 we can choose the diagrams (11.117)–(11.118) for a ∈ A
with gȧ˙̇ȧ,hä˙̇ȧ transverse, not just w-transverse. So as in Definition 11.16 we
have Ca = 0, as Ca is the kernel of (11.11), which is an isomorphism. Thus the
m-Kuranishi structure on W has m-Kuranishi neighbourhoods (Ta, Ca, qa, ϕa)
with Ca = qa = 0 for all a ∈ A. Therefore W is a manifold as in the proof of
Theorem 10.45.

Part (b). Suppose (Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn), gln,hmn
are as in Theorem 11.19(b), and (Tk, Ck, qk), ekl,fkm are constructed from
them as in Definition 11.16. Then in §11.9.2, we can choose the diagram
(11.117) for some a ∈ A to be (11.116), so that (Ta, Ca, qa) = (Tk, Ck, qk). Thus
(Ta, Ca, qa, ϕa) in the m-Kuranishi structure A of W = (W,A) in §11.9.1–§11.9.2
has Ta = Tk, Ca = Ck, and qa = qk, as in Theorem 11.19(b).
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By Example 4.50, (Ta, Ca, qa, ϕa) is an m-Kuranishi neighbourhood on W.
The definitions of e,f ,η in §11.9.1–§11.9.2 then imply that eaȧ = ekl and
faä = fkm are 1-morphisms of m-Kuranishi neighbourhoods over e : W →X,
f : W → Y as in §4.7, and comparing (4.62) and (11.135) shows that the
unique 2-morphism ηaȧä˙̇ȧ = ηklmn : gln ◦ ekl ⇒ hmn ◦ fkm constructed from
η : g ◦ e⇒ h ◦ f in Theorem 4.56(b) is the identity, as in (11.116) and (11.117).

This proves part (b) in the special case that we choose to construct W, e,f ,η
in §11.9.1–§11.9.2 including the given data (Ul, Dl, rl, χl), . . . ,hmn. But any other
possible choices of W′, e′,f ′,η′ in a 2-Cartesian square (11.15) are canonically
equivalent to W, e,f ,η, by properties of fibre products, and we can use the
canonical equivalence i : W → W′ and 2-morphisms e′ ◦ i ⇒ e, f ′ ◦ i ⇒
f to convert (Ta, Ca, qa, ϕa), eaȧ,faä to m-Kuranishi neighbourhoods and 1-
morphisms over W′, e′,f ′ satisfying the required conditions.

Part (c). We have already proved (c) in §11.9.1 and §11.9.3, as in §11.9.1, when
Ṁan satisfies Assumption 11.3 we constructed W, e,f with topological space
W =

{
(x, y) ∈ X × Y : g(x) = h(y)

}
, and maps e : (x, y) 7→ x, f : (x, y) 7→ y.

Part (d). Suppose Ṁan satisfies Assumption 11.4(a), and we are given a
2-Cartesian square (11.15) in mK̇urD with g a w-submersion, so that g,h are
w-transverse. Let w ∈W with e(w) = x in X and f(w) = y in Y . Then in (b)
we can choose gln : (Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn), hmn : (Vm, Em, sm, ψm)
→ (Wn, Fn, tn, ωn) with x ∈ Imχl, y ∈ Imψm and gln a w-submersion. So (b)
gives (Tk, Ck, qk, ϕk), ekl,fkm constructed as in Definition 11.16, and w ∈ Imϕk.

Then gln|U̇ln : U̇ln → Wn is a submersion in the fibre product (11.114) for
Tk by Definition 11.15(iii), so fkm : Tk → Vm is a submersion by Assumption
11.4(a). Also ĝln|U̇ln is surjective by Definition 11.15(iv), which implies that

f̂km : Ck → f∗km(Dm) is surjective by the definition of Ck, f̂km in Definition

11.16. Hence fkm = (Tk, fkm, f̂km) is a w-submersion by Definition 11.15. As
we can find such fkm over (Imϕk,f) with w ∈ Imϕk for all w ∈W, we see that
f : W →X is a w-submersion by Definition 11.18.

Part (e). Suppose Ṁan satisfies Assumptions 10.1 and 11.5, and we are
given a 2-Cartesian square (11.15) in mK̇urD with g,h w-transverse. Let
w ∈ W with e(w) = x in X, f(w) = y in Y , and g(x) = h(y) = z in
Z. Choose (Tk, Ck, qk, ϕk), . . . , (Wn, Fn, tn, ωn) and ekl, . . . ,hmn as in (b) with
w ∈ Imϕk, x ∈ Imχl, y ∈ Imψm and z ∈ Imωn. Set tk = ϕ−1

k (w), ul = χ−1
l (x),
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vm = ψ−1
m (y) and wn = ω−1

n (z), and consider the commutative diagram:

0

��

0

��

0

��

0

��
· · · 0 // 0

0

��

0 // TtkTk Ttkekl

Ttkfkm


��

dtkqk // Ck|tk êkl|tk
f̂km|tk


��

0 // 0

0

��

0 // · · ·

· · · 0 // 0

0

��

0 // TulUl⊕
TvmVm(

Tulgln −Tvmhmn
)

��

dulrl 0

0 dvmsm


// Dl|ul⊕
Em|vm

(
ĝln|ul −ĥmn|vm

)
��

0 // 0

0

��

0 // · · ·

· · · 0 // 0

��

0 // TwnWn

��

dwn tn // Fn|wn
��

0 // 0

��

0 // · · ·

0 0 0 0.

(11.150)

Here the second column is exact by Assumption 11.5 applied to the transverse
fibre product (11.114) at tk, and the third column is exact by Definition 11.16.

As in equation (10.27) of Definition 10.21, the cohomology groups of the
first row of (11.150) at the second and third columns are TwW and OwW, and
similarly the second and third rows have cohomology TxX ⊕ TyY , OxX ⊕OyY
and TzZ, OzZ.

In the setting of Definition 10.69, regard (11.150) as a diagram (10.89), a
short exact sequence of complexes E•, F •, G•, the first, second and third rows
of (11.150) respectively, with the third column of (11.150) in degree zero. Thus
Definition 10.69 constructs a long exact sequence (10.90) from (11.150). This
sequence is equation (11.16) in Theorem 11.19(d), as we want.

In more detail, our identification of the cohomology of the rows of (11.150)
shows that the vector spaces in (10.90) are 0, TwW, TxX ⊕ TyY , . . . , OzZ, 0 as
in (11.16). Comparing Definitions 10.21 and 10.69 we see that the morphisms
Hk(θ•), Hk(ψ•) in (10.90) for k = −1, 0 are Twe⊕ Twf , . . . , Oxg⊕−Oyh, as in
(11.16). We define δg,hw in (11.16) to be the connecting morphism δ−1

θ•,ψ• in (10.90)
from Definition 10.69. A proof similar to the definition of Txf , Oxf in Definition
10.21 shows δg,hw is independent of the choices of (Tk, Ck, qk, ϕk), . . . ,hmn above.

Part (f). Suppose Ṁan satisfies Assumptions 10.19 and 11.6, and we are
given a 2-Cartesian square (11.15) in mK̇urD with g,h w-transverse. Let
w ∈ W with e(w) = x in X, f(w) = y in Y , and g(x) = h(y) = z in
Z. Choose (Tk, Ck, qk, ϕk), . . . , (Wn, Fn, tn, ωn) and ekl, . . . ,hmn as in part (b)
with w ∈ Imϕk, x ∈ Imχl, y ∈ Imψm and z ∈ Imωn. Set tk = ϕ−1

k (w),
ul = χ−1

l (x), vm = ψ−1
m (y) and wn = ω−1

n (z).
As the fibre product (11.114) is transverse, Assumption 11.6 says that

QtkTk Qtkekl

//

Qtkfkm��

QvmVm
Qvmhmn ��

QulUl
Qulgln // QwnWn

(11.151)

153



is Cartesian in Q. Now Definition 10.30 gives isomorphisms Qw,k : QwW →
QtkTk, . . . , Qz,n : QzZ → QwnWn in Q such that (10.42) commutes for ekl,
fkm, gln,hmn. Thus (11.151) is isomorphic in Q to the commutative square
(11.17), so (11.17) is Cartesian in Q, as we have to prove.

Part (g). Suppose Ṁanc satisfies Assumptions 3.22, 11.1, and 11.7, and we
are given a 2-Cartesian square (11.15) in mK̇urD with g,h w-transverse. Since
C : Ṁanc → Ṁ̌anc maps Ṁanc

D → Ṁ̌anc
D by Assumption 11.7, the corner

2-functor C : mK̇urc → mK̇̌urc from §4.6 maps mK̇urc
D → mK̇̌urc

D. Thus

applying C to (11.15) shows (11.18) is a 2-commutative square in mK̇̌urc
D. We

must show that C(g), C(h) are w-transverse, and (11.18) is 2-Cartesian.
Choose (Tk, Ck, qk, ϕk), . . . , (Wn, Fn, tn, ωn) and ekl, . . . ,hmn as in part (b).

Then Definitions 4.60 and 4.61 construct m-Kuranishi neighbourhoods (T(a,k),
C(a,k), q(a,k), ϕ(a,k)) on Ca(W) for a > 0, and so on, and 1-morphisms e(a,k)(b,l),

. . . ,h(c,m)(d,n) over C(e), . . . , C(h) in a 2-commutative diagram in ǦmK̇Nc
D:∐

a>0(T(a,k), C(a,k), q(a,k))

HP
id

∐
a,c>0 f(a,k)(c,m)

//

∐
a,b>0 e(a,k)(b,l)

��

∐
c>0(V(c,m), E(c,m), s(c,m))

∐
c,d>0 h(c,m)(d,n)

��∐
b>0(U(b,l), D(b,l), r(b,l))

∐
b,d>0 g(b,l)(d,n)

//
∐
d>0(W(d,n), F(d,n), t(d,n)).

(11.152)

This is the result of applying the corner 2-functor to (11.14).
Applying C : Ṁanc → Ṁ̌anc to the transverse fibre product (11.114) in

Ṁanc and using Assumption 11.7 shows we have a fibre product in Ṁ̌anc

C(Tk) = C(U̇ln)×C(gln|U̇ln ),C(Wn),C(hmn|V̇mn ) C(V̇mn), (11.153)

where C(gln|U̇ln), C(hmn|V̇mn) are transverse in Ṁ̌anc. Note that the manifolds
and smooth maps in (11.152) are the Cartesian square from (11.153).

Also, the vector bundles and linear maps in (11.152) are pullbacks of those
in (11.14), so that C(a,k) = Π∗a(Ck), ê(a,k)(b,l) = Π∗a(êkl), and so on. There-
fore they satisfy the same surjectivity and exactness conditions as do those in
(11.14). Thus Definition 11.15(i),(ii) for gln,hmn imply Definition 11.15(i),(ii) for
g(b,l)(d,n),h(c,m)(d,n), so g(b,l)(d,n),h(c,m)(d,n) are w-transverse for all b, c, d > 0,
and the bottom and right 1-morphisms in (11.152) are w-transverse. As the
domains of such g(b,l)(d,n),h(c,m)(d,n) cover C(X)×C(g),C(Z),C(h) C(Y ), we see
that C(g), C(h) are w-transverse, as we want. The same proof shows that if
g,h are transverse then C(g), C(h) are transverse.

Given all this, equation (11.152) is built from the w-transverse 1-morphisms∐
b,d>0 g(b,l)(d,n) and

∐
c,d>0 h(c,m)(d,n) in exactly the same way that equation

(11.14) is built from the w-transverse 1-morphisms gln and hmn in Definition
11.16. Therefore Theorem 11.17 shows that (11.152) is 2-Cartesian in ǦmK̇Nc

D

and ǦmK̇Nc
E .

In §11.9.3 we showed that when the 2-commutative square (11.15) can be
covered by a family of diagrams (11.117)–(11.118) for a ∈ A with (11.118) 2-
Cartesian in GmK̇ND and GmK̇NE , then (11.15) is 2-Cartesian in mK̇urD
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and mK̇urE . Since (11.18) can be covered by a family of diagrams (11.152)
which are 2-Cartesian in ǦmK̇Nc

D and ǦmK̇Nc
E , the same proof shows that

(11.18) is 2-Cartesian in mK̇̌urc
D and mK̇̌urc

E , as we want.

In the w-transverse 2-Cartesian square (11.18) in mK̇̌urc
D, suppose w′ ∈

Ci(W) ⊆ C(W) with C(e)w′ = x′ in Cj(X), C(f)w′ = y′ in Ck(Y ) and
C(g)x′ = C(h)y′ = z′ in Cl(Z). Locally near w′ we have a w-transverse fibre
product Ci(W) ' Cj(X)×Cl(Z) Ck(Y ), so the first part of Theorem 11.19 gives

vdimW − i = vdimCi(W) = vdimCj(X) + vdimCk(Y )− vdimCl(Z)

= vdimX − j + vdimY − k − vdimZ + l.

But also vdimW = vdimX + vdimY −vdimZ, so that i = j+ k− l. Therefore
(11.18) being 2-Cartesian in mK̇̌urc

D implies equation (11.19) holds in mK̇urc
D.

When i = 1 and ∂Z = ∅, in the union over j, k, l in (11.19) the only possibilities
are (j, k, l) = (1, 0, 0) and (0, 1, 0), yielding equation (11.20).

Part (h). Suppose Ṁan satisfies Assumption 11.8, and g : X → Z is a
w-submersion in mK̇urD, and h : Y → Z is any morphism in mK̇urE .
Then we can construct the fibre product W = X ×g,Z,h Y in mK̇urE by

the method of §11.9.1–§11.9.3, but working in GmK̇NE ,mK̇urE rather than
GmK̇ND,mK̇urD throughout, and taking the gln, gȧ˙̇ȧ to be D w-submersions.
The proofs of (a)–(d) and (g) above still work, with the obvious modifications.

This completes the proof of Theorem 11.19.

11.10 Proof of Theorem 11.22

11.10.1 Proof of Theorem 11.22(a)

Let Ṁanc satisfy Assumptions 3.22 and 11.9. Suppose g : X → Z, h : Y → Z
are 1-morphisms in mK̇urc

D, and x ∈X, y ∈ Y with g(x) = h(y) = z in Z.
For the first ‘only if’ part of (a), suppose g,h are w-transverse. Then by

Definition 11.18 there exist m-Kuranishi neighbourhoods (Ul, Dl, rl, χl), (Vm,
Em, sm, ψm), (Wn, Fn, tn, ωn) on X,Y ,Z with x ∈ Imχl ⊆ g−1(Imωn), y ∈
Imψm ⊆ h−1(Imωn) and z ∈ Imωn, and 1-morphisms gln : (Ul, Dl, rl, χl)
→ (Wn, Fn, tn, ωn), hmn : (Vm, Em, sm, ψm) → (Wn, Fn, tn, ωn) over (Imχl, g)
and (Imψm,h), such that gln,hmn are w-transverse.

Write ul = χ−1
l (x) ∈ Ul, vm = ψ−1

m (y) ∈ Vm and wn = ω−1
n (z) ∈ Wn. By

(10.27)–(10.28) we have a commutative diagram with exact rows:

0 // TxX⊕
TyY

Txg⊕Tyh
��

// TulUl⊕
TvmVm

Tulgln⊕
Tvmhmn��

dulrl⊕dvmsm // Dl|ul⊕
Em|vm

ĝln|ul⊕
ĥmn|vm ��

// OxX⊕
OyY

Oxg⊕Oyh
��

// 0

0 // TzZ // TwnWn

dwn tn // Fn|wn // OzZ // 0.

(11.154)

As gln,hmn are w-transverse, the third column of (11.154) is surjective by
Definition 11.15(ii). Also gln : Uln →Wn and hmn : Vmn →Wn are transverse
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in Ṁanc near ul ∈ Uln and vm ∈ Vmn, so Assumption 11.9 says that the third
column of (11.154) is surjective, and ‘condition T ’ holds for the data:

(i) The quasi-tangent maps Qulgln : QulUl → QwnWn and Qvmhmn : QvmVm
→ QwnWn in Q.

(ii) For all i, j, k > 0, the family of triples (u,v,w) for u ∈ Ci(Ul), v ∈ Cj(Vm)
with Πi(u) = ul, Πj(v) = vm, and C(gln)u = C(hmn)v = w in Ck(Wn).

As the third column of (11.154) is surjective, the fourth column is surjective
by exactness of rows, so (11.21) is surjective.

Definition 10.30 gives isomorphisms Qx,l : QxX → QulUl, etc., which identify
Qxg : QxX → QzZ and Qyh : QyY → QzZ with Qulgln, Qvmhmn in (i)
above. Also the maps χ(i,l), ψ(j,m), ω(k,n) from the definition of Ci(X), Cj(Y ),
Ck(Z) in Definition 4.39 identify the sets in (ii) above with the corresponding
sets from C(g)|··· : Ci(X) → Ck(Z), C(h)|··· : Cj(Y ) → Ck(Z) over x, y, z.
Hence condition T holding for (i),(ii) above implies that condition T holds for
g,h at x, y, z, noting the requirement in Assumption 11.9(a) that condition T
only involves objects QxX, . . . in Q up to isomorphism, and subsets Π−1

i (x) ⊆
Ci(X), . . . up to bijection. This proves the first ‘only if’ part of (a).

For the second ‘only if’ part of (a), suppose also that g,h are transverse.
Then condition T still holds for g,h at x, y, z, and the third column of (11.154)
is an isomorphism by Definition 11.15, and the second column is still surjective,
so by exactness of rows the fourth column (which is (11.21)) is an isomorphism,
and the first column (which is (11.22)) is surjective, as we have to prove.

For the first ‘if’ part of (a), suppose condition T holds for g,h, x, y, z and
(11.21) is surjective, for all x, y, z as above. Choose m-Kuranishi neighbourhoods
(Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) on X,Y ,Z with x ∈ Imχl ⊆
g−1(Imωn), y ∈ Imψm ⊆ h−1(Imωn) and z ∈ Imωn. Theorem 4.56(b) gives
1-morphisms gln : (Ul, Dl, rl, χl)→ (Wn, Fn, tn, ωn), hmn : (Vm, Em, sm, ψm)→
(Wn, Fn, tn, ωn) over (Imχl, g) and (Imψm,h).

Write ul = χ−1
l (x) ∈ Ul, vm = ψ−1

m (y) ∈ Vm and wn = ω−1
n (z) ∈ Wn.

As condition T holds for g,h, x, y, z, it holds for the data in (i),(ii) above,
reversing the previous argument. Thus Assumption 11.9(c) says there exist
open (ul, 0) ∈ Ul′ ↪→ Uln × Ra and (vm, 0) ∈ Vm′ ↪→ Vmn × Rb for a, b > 0, and
transverse morphisms gl′n : Ul′ →Wn, hm′n : Vm′ →Wn with gl′n(u, 0) = gln(u),
hm′n(v, 0) = hmn(v) for all u ∈ Uln, v ∈ Vmn with (u, 0) ∈ Ul′ and (v, 0) ∈ Vm′ .

As for (V(n), E(n), s(n), ψ(n)) in Definition 10.38, define vector bundles Dl′ →
Ul′ , Em′ → Vm′ by Dl′ = π∗Ul(Dl)⊕ Ra, Em′ = π∗Vm(Em)⊕ Rb. Define sections
rl′ = π∗Ul(rl) ⊕ idRa in Γ∞(Dl′) and sm′ = π∗Vm(sm) ⊕ idRb in Γ∞(Em′). Then

r−1
l′ (0) = (r−1

l (0) × {0}) ∩ Ul′ and s−1
m′ (0) = (s−1

m (0) × {0}) ∩ Vm′ . Define χl′ :
r−1
l′ (0)→ X by χl′(u, 0) = χl(u), and ψm′ : s−1

m′ (0)→ Y by ψm′(v, 0) = ψm(v).
Then (Ul′ , Dl′ , rl′ , χl′) and (Vm′ , Em′ , sm′ , ψm′) are m-Kuranishi neighbourhoods
on X,Y , with x ∈ Imχl′ and y ∈ Imψm′ .
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As for Φ(n)∗ in Definition 10.38, we have coordinate changes

Tl′l = (Ul′ , πUl , idπ∗Ul
(Dl)⊕ 0) : (Ul′ , Dl′ , rl′ , χl′) −→ (Ul, Dl, rl, χl),

Υm′m=(Vm′ , πVm , idπ∗Vm (Em)⊕0) : (Vm′ , Em′ , sm′ , ψm′)−→(Vm, Em, sm, ψm).

Using notation (4.6)–(4.8) for X,Y ,Z and defining Tl′i = Tli ◦ Tl′l, Kl′ii′ =
Klii′ ∗ idTl′l , Υm′j = Υmj ◦ Υm′m, Λm′jj′ = Λmjj′ ∗ idΥm′m for i, i′ ∈ I and
j, j′ ∈ J , where Tli,Klii′ and Υmj ,Λmjj′ are the implicit extra data making
(Ul, Dl, rl, χl), (Vm, Em, sm, ψm) into m-Kuranishi neighbourhoods on X,Y as
in §4.7, then Tl′i,Kl′ii′ and Υm′j ,Λm′jj′ make (Ul′ , Dl′ , rl′ , χl′) and (Vm′ , Em′ ,
sm′ , ψm′) into m-Kuranishi neighbourhoods on X,Y . Similarly

gln ◦ Tl′l = (Ul′ , gln ◦ πUl , π∗Ul(ĝln) ◦ ππ∗Ul (Dl) ⊕ 0) :

(Ul′ , Dl′ , rl′ , χl′) −→ (Wn, Fn, tn, ωn),

hmn ◦Υm′m = (Vm′ , hmn ◦ πVm , π∗Vm(ĥmn) ◦ ππ∗Vm (Em) ⊕ 0) :

(Vm′ , Em′ , sm′ , ψm′) −→ (Wn, Fn, tn, ωn),

are 1-morphisms of m-Kuranishi neighbourhoods on X,Y ,Z over g,h.
We have morphisms gl′n : Ul′ → Wn and gln ◦ πUln : Ul′ → Wn in Ṁanc.

Define open T ⊆ Dl′ and a morphism t : T →Wn by

T =
{

((u, (x1, . . . , xa)), (d, (y1, . . . , ya)))∈Dl′ : (u, (y1, . . . , ya))∈Ul′
}
,

t : ((u, (x1, . . . , xa)), (d, (y1, . . . , ya))) 7−→ g′ln(u, (y1, . . . , ya)).

Then whenever both sides are defined we have

t ◦ 0Dl′ (u, (x1, . . . , xa)) = g′ln(u, (0, . . . , 0))=gln(u)=gln◦πUl(u, (x1, . . . , xa)),

t ◦ rl′(u, (x1, . . . , xa) = g′ln(u, (x1, . . . , xa)).

Thus if we define η̂ = θT,t : Dl′ → Tgln◦πUlWn, using the notation of Definition
B.32, then in the notation of Definitions 3.15(vii) and B.36(vii) we have

gl′n = gln ◦ πUln + η̂ ◦ rl′ +O(rl′)
2. (11.155)

Equation (11.155) implies that gl′n = gln ◦ πUln + O(rl′). So by Theorem
3.17(g) there exists ˆ̃gl′n : Dl′ → g∗l′n(Fn) with

ˆ̃gl′n = (ĝln ◦ ππ∗Ul (Dl) ⊕ 0) +O(rl′).

Define a vector bundle morphism ĝl′n : Dl′ → g∗l′n(Fn) by

ĝl′n = ˆ̃gl′n + g∗l′n(∇tn) ◦ η̂,

for ∇ some connection on Fn →Wn. Then we have

ĝl′n = (ĝln ◦ ππ∗Ul (Dl) ⊕ 0) + g∗l′n(dtn) ◦ η̂ +O(rl′), (11.156)
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in the sense of Definition 3.15(iv),(vi).
From Definitions 4.2 and 4.3 and (11.155)–(11.156) we can show that

gl′n = (Ul′ , gl′n, ĝl′n) : (Ul′ , Dl′ , rl′ , χl′) −→ (Wn, Fn, tn, ωn)

is a 1-morphism of m-Kuranishi neighbourhoods over (Imχl′ , g), and

η = [Ul′ , η̂] : gln ◦ Tl′l =⇒ gl′n

is a 2-morphism. Then using §4.7.1, we can make gl′n into a 1-morphism
over (Imχl′ , g) in a unique way such that η : gln ◦ Tl′l ⇒ gl′n is the unique
2-morphism given by Theorem 4.56(c). Similarly we construct

hm′n = (Vm′ , hm′n, ĥm′n) : (Vm′ , Em′ , sm′ , ψm′) −→ (Wn, Fn, tn, ωn)

over (Imψm′ ,h), and a 2-morphism ζ : hmn ◦Υm′m ⇒ hm′n.
Consider equation (11.154) for gl′n,hm′n at (ul, 0) ∈ Ul′ , (vm, 0) ∈ Vm′ ,

(wn, 0) ∈Wn. Then the second column of (11.154) is surjective as gl′n, hm′n are
transverse, and the fourth column is surjective as (11.21) is surjective. Hence
the third column is surjective by exactness. Thus Definition 11.15(ii) holds
at (ul, 0), (vm, 0), and this is an open condition. Also Definition 11.15(i) holds
as gl′n, hm′n are transverse. Thus making Ul′ , Vm′ smaller, we can suppose
gl′n,hm′n are w-transverse. As we can find such gl′n,hm′n with x ∈ Imχl′ and
y ∈ Imψm′ for any x, y, z as above, g,h are w-transverse by Definition 11.18.
This proves the first ‘if’ part of (a).

For the second ‘if’ part, suppose that Assumption 10.9 holds for Ṁanc,
and for all x ∈ X, y ∈ Y with g(x) = h(y) = z in Z, condition T holds for
g,h, x, y, z, (11.21) is an isomorphism, and (11.22) is surjective. For such x, y, z,
we use Assumption 10.9 and Proposition 10.39 to choose m-Kuranishi neighbour-
hoods (Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) on X,Y ,Z which are
minimal at x ∈ Imχl ⊆ g−1(Imωn), y ∈ Imψm ⊆ h−1(Imωn) and z ∈ Imωn.
Theorem 4.56(b) gives 1-morphisms gln : (Ul, Dl, rl, χl) → (Wn, Fn, tn, ωn),
hmn : (Vm, Em, sm, ψm)→ (Wn, Fn, tn, ωn) over (Imχl, g) and (Imψm,h).

Consider (11.154) for these g,h. Then the first column is (11.22), and so
surjective, and the fourth column is (11.21), and so an isomorphism. But the
middle morphisms dulrl,dvmsm,dwntn are zero by minimality at x, y, z with
ul = χ−1

l (x), vm = ψ−1
m (y) and wn = ω−1

n (z). Hence by exactness the second
column of (11.154) is surjective, and the third column is an isomorphism.

The argument for the first ‘if’ part shows that gln, hmn satisfy condition T at
ul, vm, wn. This, surjectivity of the second column of (11.154), and Assumption
11.9(a),(b) imply that gln, hmn are transverse near ul, vm. So making Ulm ⊆ Ul
and Vmn ⊆ Vm smaller we can suppose gln, hmn are transverse.

As the third column of (11.154) is an isomorphism, Definition 11.15(ii)
holds at ul, vm, so making Ulm ⊆ Ul, Vmn ⊆ Vm smaller again we can suppose
Definition 11.15(ii) holds at all u ∈ Uln, v ∈ Vmn with gln(u) = hmn(v) ∈ Wn.
Then gln,hmn are transverse. As we can find such gln,hmn with x ∈ Imχl and
y ∈ Imψm for any x, y, z as above, g,h are transverse by Definition 11.18. This
proves the second ‘if’ part, and completes Theorem 11.22(a).
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11.10.2 Proof of Theorem 11.22(b)

We can prove part (b) in a very similar way to part (a) in §11.10.1. We work
with g, x, z rather than g,h, x, y, z, and instead of (11.154) we use the equation

0 // TxX

Txg��

// TulUl
Tulgln��

dulrl

// Dl|ul
ĝln|ul ��

// OxX

Oxg��

// 0

0 // TzZ // TwnWn

dwn tn // Fn|wn // OzZ // 0.

We leave the details to the reader.

11.11 Proof of Theorem 11.25

Work in the situation of Theorem 11.25. Equation (11.26) defines an isomorphism
ΥX,Y ,Z |w : KW|w −→ e∗(KX) ⊗ f∗(KY ) ⊗ (g ◦ e)∗(KZ)∗|w for each w ∈ W .
Thus there is a unique map of sets ΥX,Y ,Z in (11.24) which satisfies (11.26)
for all w ∈ W . We must show that this map ΥX,Y ,Z is an isomorphism of
topological line bundles. It is sufficient to do this locally near each w in W .

Fix w ∈ W with e(w) = x in X, f(w) = y in Y and g(x) = h(y) = z
in Z. Let (Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn, ωn) be m-Kuranishi
neighbourhoods on X,Y ,Z, with x ∈ Imχl ⊆ g−1(Imωn), y ∈ Imψm ⊆
h−1(Imωn) and z ∈ Imωn, and let

gln = (Uln, gln, ĝln) : (Ul, Dl, rl, χl) −→ (Wn, Fn, tn, ωn),

hmn = (Vmn, hmn, ĥmn) : (Vm, Em, sm, ψm) −→ (Wn, Fn, tn, ωn),

be w-transverse 1-morphisms over (Imχl, g) and (Imψm,h).
Theorem 11.19(b) now gives an m-Kuranishi neighbourhood (Tk, Ck, qk, ϕk)

on W with Imϕk = e−1(Imχl) ∩ f−1(Imψm) ⊆ W , so that w ∈ Imϕk, and
1-morphisms

ekl = (Tk, ekl, êkl) : (Tk, Ck, qk, ϕk) −→ (Ul, Dl, rl, χl),

fkm = (Tk, fkm, f̂km) : (Tk, Ck, qk, ϕk) −→ (Vm, Em, sm, ψm)

over (Imϕk, e) and (Imϕk,f) with gln ◦ ekl = hmn ◦ fkm, such that Tk, Ck, qk
and ekl,fkm are constructed from (Ul, Dl, rl, χl), (Vm, Em, sm, ψm), (Wn, Fn, tn,
ωn) and gln,hmn as in Definition 11.16. Thus

Tk = U̇ln ×gln|U̇ln ,Wn,hmn|V̇mn V̇mn

is a transverse fibre product in ṀanD for U̇ln ⊆ Uln, V̇mn ⊆ Vmn open.
Set tk = ϕ−1

k (w), ul = χ−1
l (x), vm = ψ−1

m (y) and wn = ω−1
n (z), and as in

§11.9.4, consider the commutative diagram (11.150), with rows complexes and
columns exact. In the setting of Definition 10.69, regard (11.150) as a diagram
(10.89), a short exact sequence of complexes E•, F •, G•, the first, second and
third rows of (11.150) respectively, with the third column of (11.150) in degree
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zero, so that the second and third columns of (11.150) become complexes B•−1

and B•0 . Then (11.25) is the exact sequence (10.90) constructed from (11.150) in
Definition 10.69, by the proof of Theorem 11.19(e), so Proposition 10.70 yields

(−1)rankCk dimWn ·
(
ΘE• ⊗Θ−1

F• ⊗ΘG•
)(

(ΨB•−1
)−1 ⊗ΨB•0

)
= (−1)dimOwW dimTzZ ·ΨA• .

(11.157)

From Definition 10.66 and Theorem 10.71 we deduce that

ΘTk,Ck,qk,ϕk |tk = ΘE• : (detT ∗tkTk ⊗ detCk|tk) −→ KX |w, (11.158)

ΘWn,Fn,tn,ωn |wn = ΘG• : (detT ∗wnWn ⊗ detFn|wn) −→ KZ |z. (11.159)

Also F • in (11.150) is the direct sum of two complexes coming from (Ul, Dl,
rl, χl) and (Vm, Em, sm, ψm). So Proposition 10.68 implies that the following
commutes:

det(T ∗ulUl ⊕ T
∗
vmVm)⊗

det(Dl|ul ⊕ Em|vm) ΘF•
//

(−1)rankDl dimVm ·
IT∗ul

Ul,T
∗
vm

Vm⊗IDl|ul ,Em|vm
��

det(T ∗xX ⊕ T ∗yY )⊗
det(OxX ⊕OyY )

(−1)dimOxX dimTyY ·
IT∗xX,T∗y Y⊗IOxX,OyY

��(detT ∗ulUl ⊗ detDl|ul)⊗
(detT ∗vmVm ⊗ detEm|vm)

ΘUl,Dl,rl,χl |ul⊗
ΘVm,Em,sm,ψm |vm // KX |x ⊗KY |y.

(11.160)

Combining equations (11.26) and (11.157)–(11.160) implies that

(−1)rankCk dimWn+rankDl dimVm ·
(
ΘTk,Ck,qk,ϕk |

−1
tk
⊗

ΘUl,Dl,rl,χl |ul ⊗ΘVm,Em,sm,ψm |vm ⊗ΘWn,Fn,tn,ωn |−1
wn

)
◦
(
IT∗ulUl,T

∗
vm

Vm ⊗ IDl|ul ,Em|vm
)(

ΨB•−1
⊗ (ΨB•0

)−1
)

= ΥX,Y ,Z |w.
(11.161)

Now (11.161) is the restriction to tk ∈ q−1
k (0) of the equation

(−1)rankCk dimWn+rankDl dimVm ·
(
Θ−1
Tk,Ck,qk,ϕk

⊗ ekl|∗q−1
k (0)

(ΘUl,Dl,rl,χl)

⊗ fkm|∗q−1
k (0)

(ΘVm,Em,sm,ψm)⊗ (gln ◦ ekl)|∗q−1
k (0)

(Θ−1
Wn,Fn,tn,ωn

)
)

◦
(
Ie∗kl(T∗Ul),f∗km(T∗Vm) ⊗ Ie∗kl(Dl),f∗km(Em)

)
|q−1
k (0)

(
ΨB̃•−1

⊗ (ΨB̃•0
)−1
)

= ϕ∗k(ΥX,Y ,Z), (11.162)

where B̃•−1, B̃
•
0 are the complexes of topological vector bundles on q−1

k (0) whose
fibres at tk are the second and third columns of (11.150). Here ΘTk,Ck,qk,ϕk , . . . ,
ΘWn,Fn,tn,ωn are isomorphisms of topological line bundles by Theorem 10.71,
and Ie∗kl(T∗Ul),f∗km(T∗Vm), Ie∗kl(Dl),f∗km(Em) are also isomorphisms, and ΨB̃•−1

,ΨB̃•0

are nonvanishing continuous sections of topological line bundles.
Thus (11.162) implies that ϕ∗k(ΥX,Y ,Z) is a continuous, nonvanishing section

of ϕ∗k
(
(KW)∗⊗e∗(KX)⊗f∗(KY )⊗ (g ◦e)∗(KZ)∗

)
on q−1

k (0). Therefore ΥX,Y ,Z
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is a nonvanishing section of (KW)∗ ⊗ e∗(KX) ⊗ f∗(KY ) ⊗ (g ◦ e)∗(KZ)∗, or
equivalently an isomorphism KW → e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗, on the
open subset Imϕk ⊆W , as ϕk : q−1

k (0)→ Imϕk is a homeomorphism. Since we
can cover W by such open subsets Imϕk, we see that ΥX,Y ,Z is an isomorphism
of topological line bundles, as we have to prove.
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Chapter 12

M-homology and M-cohomology
(Not written yet.)

Review of ‘M-homology’ and ‘M-cohomology’, which are new (co)homology
theories MH∗(X;R),MH∗(X;R) of manifolds and orbifolds X, due to the
author [44]. They satisfy the Eilenberg–Steenrod axioms, and so are canonically
isomorphic to usual (co)homology H∗(X;R), H∗(X;R), e.g. singular homology
Hsi
∗ (X;R). They are specially designed for forming virtual (co)chains for (m-

)Kuranishi spaces, and have very good (co)chain level properties.
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Chapter 13

Virtual (co)cycles and (co)chains
for (m-)Kuranishi spaces in
M-(co)homology
(Not written yet.)

We define an additional structure on an (m-)Kuranishi space with corners X, and
on 1-morphisms f : X → Y , called a vc-structure. If X is a compact, oriented
(m-)Kuranishi space with corners, Y is a classical manifold, and f : X → Y is a
1-morphism equipped with a vc-structure, we will define a virtual chain [X]virt

in M-chains MCvdimX(Y ;Z) (in the m-Kuranishi case) or MCvdimX(Y ;Q) (in
the Kuranishi case).

These vc-structures and virtual chains have lots of nice properties, which will
be important in applications in symplectic geometry. If ∂X = ∅ then ∂[X]virt =
0, so we have a homology class [[X]virt] in M-homology MHvdimX(Y ;Z) or
MHvdimX(Y ;Q), the virtual class.

Such virtual chain and virtual cycle constructions are important in current
approaches to symplectic geometry, such as the work of Fukaya–Oh–Ohta–Ono,
Hofer–Wysocki–Zehnder and McDuff–Wehrheim discussed in §7.5 — see Remark
7.14 and Theorem 7.20. The point about our construction is that it will have very
good technical properties, which will make defining theories such as Lagrangian
Floer cohomology, Fukaya categories, and Symplectic Field Theory, much more
convenient.
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Chapter 14

Orbifold strata of Kuranishi
spaces (Not written yet.)
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Chapter 15

Bordism and cobordism for
(m-)Kuranishi spaces
(Not written yet.)
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Glossary of notation, all volumes

Page references are in the form volume-page number. So, for example, II-57
means page 57 of volume II.

Γ(E) global sections of a sheaf E , I-230

Γ∞(E) vector space of smooth sections of a vector bundle E, I-10, I-238

ΩX : K∂X → N∂X ⊗ i∗X(KX) isomorphism of canonical line bundles on bound-
ary of an (m- or µ-)Kuranishi space X, II-67, II-76

ΘV,E,Γ,s,ψ : (detT ∗V ⊗ detE)|s−1(0) → ψ̄−1(KX) isomorphism of line bundles
from a Kuranishi neighbourhood (V,E,Γ, s, ψ) on a Kuranishi space
X, II-75

ΘV,E,s,ψ : (detT ∗V ⊗ detE)|s−1(0) → ψ−1(KX) isomorphism of line bundles from
an m-Kuranishi neighbourhood (V,E, s, ψ) on an m-Kuranishi space
X, II-62

ΥX,Y ,Z : KW → e∗(KX)⊗ f∗(KY )⊗ (g ◦ e)∗(KZ)∗ isomorphism of canonical
bundles on w-transverse fibre product of (m-)Kuranishi spaces, II-96

αg,f,e : (g ◦ f) ◦ e⇒ g ◦ (f ◦ e) coherence 2-morphism in weak 2-category, I-224

βf : f ◦ idX ⇒ f coherence 2-morphism in weak 2-category, I-224

δg,hw : TzZ → OwW connecting morphism in w-transverse fibre product of (m-)
Kuranishi spaces, II-92, II-116

γf : idY ◦ f ⇒ f coherence 2-morphism in weak 2-category, I-224

γf : N∂X → (∂f)∗(N∂Y ) isomorphism of normal line bundles of manifolds with
corners, II-11

∇ connection on vector bundle E → X in Ṁan, I-38, I-241

C(X) corners
∐dimX
k=0 Ck(X) of a manifold with corners X, I-8

C(X) corners
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k=0 Ck(X) of an (m or µ-)Kuranishi space X, I-91, I-124,

I-161
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C : K̇urc → K̇̌urc corner 2-functor on Kuranishi spaces, I-161

C : Manc → M̌anc corner functor on manifolds with corners, I-9

C ′ : Manc → M̌anc second corner functor on manifolds with corners, I-9

C : mK̇urc →mK̇̌urc corner 2-functor on m-Kuranishi spaces, I-91

C : µK̇urc → µK̇̌urc corner functor on µ-Kuranishi spaces, I-124

C : Ȯrbc → Ȯ̌rbc corner 2-functor on orbifolds with corners, I-178

C∞(X) R-algebra of smooth functions X → R for a manifold X, I-10, I-233

Ck(X) k-corners of an (m- or µ-)Kuranishi space X, I-81, I-123, I-157

Ck(X) k-corners of an orbifold with corners X, I-178

Ck : K̇urc
si → K̇urc

si k-corner 2-functor on Kuranishi spaces, I-161

Ck : Manc
si →Manc

si k-corner functor on manifolds with corners, I-9

Ck : mK̇urc
si →mK̇urc

si k-corner 2-functor on m-Kuranishi spaces, I-91

Ck : µK̇urc
si → µK̇urc

si k-corner functor on µ-Kuranishi spaces, I-124

Ck : Ȯrbc
si → Ȯrbc

si k-corner 2-functor on orbifolds with corners, I-178

Cop opposite category of category C, I-221

C∞Rings category of C∞-rings, I-234

C∞Schaff category of affine C∞-schemes, I-37, I-236

∂ : K̇urc
si → K̇urc

si boundary 2-functor on Kuranishi spaces, I-161

∂ : Manc
si →Manc

si boundary functor on manifolds with corners, I-9

∂ : mK̇urc
si →mK̇urc

si boundary 2-functor on m-Kuranishi spaces, I-91

∂ : µK̇urc
si → µK̇urc

si boundary functor on µ-Kuranishi spaces, I-124

depthX x the codimension k of the corner stratum Sk(X) containing a point x
in a manifold with corners X, I-6

DerManBN Borisov and Noel’s ∞-category of derived manifolds, I-103

DerManSpi Spivak’s ∞-category of derived manifolds, I-103

det(E•) determinant of a complex of vector spaces or vector bundles, II-52

df : TX → f∗(TY ) derivative of a smooth map f : X → Y , I-11

bdf : bTX → f∗(bTY ) b-derivative of a smooth map f : X → Y of manifolds
with corners, I-12
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dMan 2-category of d-manifolds, a kind of derived manifold, I-103

∂X boundary of an (m- or µ-)Kuranishi space X, I-86, I-124, I-160, I-161

∂X boundary of an orbifold with corners X, I-178

ftop : Xtop → Ytop underlying continuous map of morphism f : X → Y in Ṁan,
I-31

GKN 2-category of global Kuranishi neighbourhoods over Man, I-142

GK̇N 2-category of global Kuranishi neighbourhoods over Ṁan, I-142

GKNc 2-category of global Kuranishi neighbourhoods over manifolds with
corners Manc, I-142

GmKN 2-category of global m-Kuranishi neighbourhoods over Man, I-59

GmK̇N 2-category of global m-Kuranishi neighbourhoods over Ṁan, I-58

GmKNc 2-category of global m-Kuranishi neighbourhoods over manifolds with
corners Manc, I-59

GµKN category of global µ-Kuranishi neighbourhoods over Man, I-111

GµK̇N category of global µ-Kuranishi neighbourhoods over Ṁan, I-110

GµKNc category of global µ-Kuranishi neighbourhoods over manifolds with
corners Manc, I-111

Gxf : GxX → GyY morphism of isotropy groups from 1-morphism f : X → Y

in K̇ur, I-168

GxX isotropy group of a Kuranishi space X at a point x ∈X, I-166

GxX isotropy group of an orbifold X at a point x ∈ X, I-176

Ho(C) homotopy category of 2-category C, I-226

I�f : Π−1
top(TfY )→ TC(f)C(Y ) morphism of tangent sheaves in Ṁanc, I-269

I�X : Π∗k(bTX)→ bT (Ck(X)) natural morphism of b-tangent bundles over a man-
ifold with corners X, I-12

iX : ∂X →X natural (1-)morphism of boundary of an (m- or µ-)Kuranishi
space X, I-86, I-124, I-160

IX : bTX → TX natural morphism of (b-)tangent bundles of a manifold with
corners X, I-11

Kf : f∗(KY )→ KX isomorphism of canonical bundles from étale (1-)morphism
of (m- or µ-)Kuranishi spaces f : X → Y , II-65
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KN 2-category of Kuranishi neighbourhoods over manifolds Man, I-142

K̇N 2-category of Kuranishi neighbourhoods over Ṁan, I-141

KNc 2-category of Kuranishi neighbourhoods over manifolds with corners
Manc, I-142
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discrete property P , I-154
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I-154
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st,bn 2-category of Kuranishi spaces with corners and a-corners, and strongly

a-smooth b-normal 1-morphisms, I-155

Kurc,ac
st,in 2-category of Kuranishi spaces with corners and a-corners, and strongly

a-smooth interior 1-morphisms, I-155

Kurgc 2-category of Kuranishi spaces with g-corners, I-153

Kurgc
bn 2-category of Kuranishi spaces with g-corners, and b-normal 1-morph-

isms, I-155

Kurgc
in 2-category of Kuranishi spaces with g-corners, and interior 1-morph-

isms, I-155

Kurgc
si 2-category of Kuranishi spaces with g-corners, and simple 1-morphisms,

I-155

KX canonical bundle of a ‘manifold’ X in Ṁan, II-10

KX canonical bundle of an (m- or µ-)Kuranishi space X, II-62, II-74

bKX b-canonical bundle of an (m- or µ-)Kuranishi space with corners X,
II-66

Man category of classical manifolds, I-7

Ṁan category of ‘manifolds’ satisfying Assumptions 3.1–3.7, I-31

M̈an another category of ‘manifolds’ satisfying Assumptions 3.1–3.7, I-46

Manac category of manifolds with a-corners, I-18
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Manac
bn category of manifolds with a-corners and b-normal maps, I-18

Manac
in category of manifolds with a-corners and interior maps, I-18

Manac
st category of manifolds with a-corners and strongly a-smooth maps, I-18

Manac
st,bn category of manifolds with a-corners and strongly a-smooth b-normal

maps, I-18

Manac
st,in category of manifolds with a-corners and strongly a-smooth interior

maps, I-18

Manb category of manifolds with boundary, I-7

Manb
in category of manifolds with boundary and interior maps, I-7

Manb
si category of manifolds with boundary and simple maps, I-7

Manc category of manifolds with corners, I-5

Ṁanc category of ‘manifolds with corners’ satisfying Assumption 3.22, I-47

Ṁ̌anc category of ‘manifolds with corners’ of mixed dimension, I-48

M̌anc category of manifolds with corners of mixed dimension, I-8

Manc
bn category of manifolds with corners and b-normal maps, I-5

Manc
in category of manifolds with corners and interior maps, I-5

M̌anc
in category of manifolds with corners of mixed dimension and interior

maps, I-8

Manc
si category of manifolds with corners and simple maps, I-5

Ṁ̌anc
si category of ‘manifolds with corners’ of mixed dimension, and simple

morphisms, I-48

Manc
st category of manifolds with corners and strongly smooth maps, I-5

M̌anc
st category of manifolds with corners of mixed dimension and strongly

smooth maps, I-8

Manc
st,bn category of manifolds with corners and strongly smooth b-normal

maps, I-5

Manc
st,in category of manifolds with corners and strongly smooth interior maps,

I-5

Manc
we category of manifolds with corners and weakly smooth maps, I-5

Manc,ac category of manifolds with corners and a-corners, I-18
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Manc,ac
bn category of manifolds with corners and a-corners, and b-normal maps,

I-19

Manc,ac
in category of manifolds with corners and a-corners, and interior maps,

I-18

Manc,ac
si category of manifolds with corners and a-corners, and simple maps,

I-19

Manc,ac
in category of manifolds with corners and a-corners, and strongly a-

smooth maps, I-19

Manc,ac
st,bn category of manifolds with corners and a-corners, and strongly a-

smooth b-normal maps, I-19

Manc,ac
st,in category of manifolds with corners and a-corners, and strongly a-

smooth interior maps, I-19

Mangc category of manifolds with g-corners, I-16

Mangc
in category of manifolds with g-corners and interior maps, I-16

mKN 2-category of m-Kuranishi neighbourhoods over manifolds Man, I-59

mK̇N 2-category of m-Kuranishi neighbourhoods over Ṁan, I-58

mKNc 2-category of m-Kuranishi neighbourhoods over manifolds with corners
Manc, I-59

mKNS(X) 2-category of m-Kuranishi neighbourhoods over S ⊆ X in Man,
I-59

mK̇NS(X) 2-category of m-Kuranishi neighbourhoods over S ⊆ X in Ṁan,
I-58

mKNc
S(X) 2-category of m-Kuranishi neighbourhoods over S ⊆ X in Manc,

I-59

mKur 2-category of m-Kuranishi spaces over classical manifolds Man, I-72

mK̇ur 2-category of m-Kuranishi spaces over Ṁan, I-72

mK̇urP 2-category of m-Kuranishi spaces over Ṁan, and 1-morphisms with
discrete property P , I-78

mKurac 2-category of m-Kuranishi spaces with a-corners, I-72

mKurac
bn 2-category of m-Kuranishi spaces with a-corners, and b-normal 1-

morphisms, I-79

mKurac
in 2-category of m-Kuranishi spaces with a-corners, and interior 1-mor-

phisms, I-79
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mKurac
si 2-category of m-Kuranishi spaces with a-corners, and simple 1-morph-

isms, I-79

mKurac
st 2-category of m-Kuranishi spaces with a-corners, and strongly a-smooth

1-morphisms, I-79

mKurac
st,bn 2-category of m-Kuranishi spaces with a-corners, and strongly a-

smooth b-normal 1-morphisms, I-79

mKurac
st,in 2-category of m-Kuranishi spaces with a-corners, and strongly a-

smooth interior 1-morphisms, I-79

mKurb 2-category of m-Kuranishi spaces with boundary, I-93

mKurb
in 2-category of m-Kuranishi spaces with boundary, and interior 1-mor-

phisms, I-93

mKurb
si 2-category of m-Kuranishi spaces with boundary, and simple 1-morph-

isms, I-93

mKurc 2-category of m-Kuranishi spaces with corners, I-72

mK̇̌urc 2-category of m-Kuranishi spaces with corners over Ṁanc of mixed
dimension, I-87

mK̇̌urc
P 2-category of m-Kuranishi spaces with corners over Ṁanc of mixed

dimension, and 1-morphisms which are P , I-91

mKurc
bn 2-category of m-Kuranishi spaces with corners, and b-normal 1-

morphisms, I-78

mKurc
in 2-category of m-Kuranishi spaces with corners, and interior 1-morph-

isms, I-78

mKurc
si 2-category of m-Kuranishi spaces with corners, and simple 1-morphisms,

I-78

mK̇̌urc
si 2-category of m-Kuranishi spaces with corners over Ṁanc of mixed

dimension, and simple 1-morphisms, I-87

mKurc
st 2-category of m-Kuranishi spaces with corners, and strongly smooth

1-morphisms, I-78

mKurc
st,bn 2-category of m-Kuranishi spaces with corners, and strongly smooth

b-normal 1-morphisms, I-78

mKurc
st,in 2-category of m-Kuranishi spaces with corners, and strongly smooth

interior 1-morphisms, I-78

mKurc
we 2-category of m-Kuranishi spaces with corners and weakly smooth

1-morphisms, I-72
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mK̇urc 2-category of m-Kuranishi spaces with corners associated to Ṁanc,
I-81

mKurc,ac 2-category of m-Kuranishi spaces with corners and a-corners, I-72

mKurc,ac
bn 2-category of m-Kuranishi spaces with corners and a-corners, and

b-normal 1-morphisms, I-79

mKurc,ac
in 2-category of m-Kuranishi spaces with corners and a-corners, and

interior 1-morphisms, I-79

mKurc,ac
si 2-category of m-Kuranishi spaces with corners and a-corners, and

simple 1-morphisms, I-79

mKurc,ac
st 2-category of m-Kuranishi spaces with corners and a-corners, and

strongly a-smooth 1-morphisms, I-79

mKurc,ac
st,bn 2-category of m-Kuranishi spaces with corners and a-corners, and

strongly a-smooth b-normal 1-morphisms, I-79

mKurc,ac
st,in 2-category of m-Kuranishi spaces with corners and a-corners, and

strongly a-smooth interior 1-morphisms, I-79

mK̇urc
si 2-category of m-Kuranishi spaces with corners associated to Ṁanc,

and simple 1-morphisms, I-81

mKurgc 2-category of m-Kuranishi spaces with g-corners, I-72

mKurgc
bn 2-category of m-Kuranishi spaces with g-corners, and b-normal 1-

morphisms, I-79

mKurgc
in 2-category of m-Kuranishi spaces with g-corners, and interior 1-mor-

phisms, I-79

mKurgc
si 2-category of m-Kuranishi spaces with g-corners, and simple 1-morph-

isms, I-79

µKN category of µ-Kuranishi neighbourhoods over manifolds Man, I-111

µK̇N category of µ-Kuranishi neighbourhoods over Ṁan, I-110

µKNc category of µ-Kuranishi neighbourhoods over manifolds with corners
Manc, I-111

µKNS(X) category of µ-Kuranishi neighbourhoods over S ⊆ X in Man, I-111

µK̇NS(X) category of µ-Kuranishi neighbourhoods over S ⊆ X in Ṁan, I-110

µKNc
S(X) category of µ-Kuranishi neighbourhoods over S ⊆ X in Manc, I-111

µKur category of µ-Kuranishi spaces over classical manifolds Man, I-117

µK̇ur category of µ-Kuranishi spaces over Ṁan, I-116
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µK̇urP category of µ-Kuranishi spaces over Ṁan, and morphisms with discrete
property P , I-119

µKurac category of µ-Kuranishi spaces with a-corners, I-117

µKurac
bn category of µ-Kuranishi spaces with a-corners, and b-normal mor-

phisms, I-120

µKurac
in category of µ-Kuranishi spaces with a-corners, and interior morphisms,

I-120

µKurac
si category of µ-Kuranishi spaces with a-corners, and simple morphisms,

I-120

µKurac
st category of µ-Kuranishi spaces with a-corners, and strongly a-smooth

morphisms, I-120

µKurac
st,bn category of µ-Kuranishi spaces with a-corners, and strongly a-smooth

b-normal morphisms, I-120

µKurac
st,in category of µ-Kuranishi spaces with a-corners, and strongly a-smooth

interior morphisms, I-120

µKurb category of µ-Kuranishi spaces with boundary, I-125

µKurb
in category of µ-Kuranishi spaces with boundary, and interior morphisms,

I-125

µKurb
si category of µ-Kuranishi spaces with boundary, and simple morphisms,

I-125

µKurc category of µ-Kuranishi spaces with corners, I-117

µK̇̌urc category of µ-Kuranishi spaces with corners over Ṁanc of mixed
dimension, I-124

µK̇̌urc
P category of µ-Kuranishi spaces with corners over Ṁanc of mixed

dimension, and morphisms which are P , I-124

µKurc
bn category of µ-Kuranishi spaces with corners, and b-normal morphisms,

I-119

µKurc
in category of µ-Kuranishi spaces with corners, and interior morphisms,

I-119

µKurc
si category of µ-Kuranishi spaces with corners, and simple morphisms,

I-119

µK̇̌urc
si category of µ-Kuranishi spaces with corners over Ṁanc of mixed

dimension, and simple morphisms, I-124
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µKurc
st category of µ-Kuranishi spaces with corners, and strongly smooth

morphisms, I-119

µKurc
st,bn category of µ-Kuranishi spaces with corners, and strongly smooth

b-normal morphisms, I-119

µKurc
st,in category of µ-Kuranishi spaces with corners, and strongly smooth

interior morphisms, I-119

µKurc
we category of µ-Kuranishi spaces with corners and weakly smooth mor-

phisms, I-117

µK̇urc category of µ-Kuranishi spaces with corners associated to Ṁanc, I-122

µKurc,ac category of µ-Kuranishi spaces with corners and a-corners, I-117

µKurc,ac
bn category of µ-Kuranishi spaces with corners and a-corners, and b-

normal morphisms, I-120

µKurc,ac
in category of µ-Kuranishi spaces with corners and a-corners, and interior

morphisms, I-120

µKurc,ac
si category of µ-Kuranishi spaces with corners and a-corners, and simple

morphisms, I-120

µKurc,ac
st category of µ-Kuranishi spaces with corners and a-corners, and

strongly a-smooth morphisms, I-120

µKurc,ac
st,bn category of µ-Kuranishi spaces with corners and a-corners, and

strongly a-smooth b-normal morphisms, I-120

µKurc,ac
st,in category of µ-Kuranishi spaces with corners and a-corners, and

strongly a-smooth interior morphisms, I-120

µK̇urc
si category of µ-Kuranishi spaces with corners associated to Ṁanc, and

simple morphisms, I-122

µKurgc category of µ-Kuranishi spaces with g-corners, I-117

µKurgc
bn category of µ-Kuranishi spaces with g-corners, and b-normal mor-

phisms, I-120

µKurgc
in category of µ-Kuranishi spaces with g-corners, and interior morphisms,

I-120

µKurgc
si category of µ-Kuranishi spaces with g-corners, and simple morphisms,

I-120

M̃xf : M̃xX → M̃yY monoid morphism for morphism f : X → Y in Manc
in,

I-14

M̃xX monoid at a point x in a manifold with corners X, I-14
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NCk(X) normal bundle of k-corners Ck(X) in a manifold with corners X, I-12

bNCk(X) b-normal bundle of k-corners Ck(X) in a manifold with corners X,
I-12

N∂X normal line bundle of boundary ∂X in a manifold with corners X, I-12

Ñxf : ÑxX → ÑyY stratum normal map for manifolds with corners X, I-13

bÑxf : bÑxX → bÑyY stratum b-normal map for morphism f : X → Y in
Manc

in, I-14

ÑxX stratum normal space at x in a manifold with corners X, I-13

bÑxX stratum b-normal space at x in a manifold with corners X, I-13

OrbCR Chen–Ruan’s category of orbifolds, I-171

OrbC∞Sta 2-category of orbifolds as stacks on site C∞Sch, I-172

OrbKur 2-category of orbifolds as examples of Kuranishi spaces, I-175

OrbLe Lerman’s 2-category of orbifolds, I-171

OrbManSta 2-category of orbifolds as stacks on site Man, I-171

OrbMP Moerdijk–Pronk’s category of orbifolds, I-171

OrbPr Pronk’s 2-category of orbifolds, I-171

OrbST Satake–Thurston’s category of orbifolds, I-171

Ȯrb 2-category of Kuranishi orbifolds associated to Ṁan, I-175

Orbac 2-category of orbifolds with a-corners, I-175

Ȯrbc 2-category of orbifolds with corners associated to Ṁanc, I-178

Orbc,ac 2-category of orbifolds with corners and a-corners, I-175

Ȯrbc
si 2-category of orbifolds with corners associated to Ṁanc, and simple

1-morphisms, I-178

Orbc
we 2-category of orbifolds with corners, and weakly smooth 1-morphisms,

I-175

Orbc
we 2-category of orbifolds with corners, I-175

Orbeff
sur 2-category of effective orbifolds with 1-morphisms surjective on isotropy

groups, I-35

Orbgc 2-category of orbifolds with g-corners, I-175

OX structure sheaf of object X in Ṁan, I-37, I-235
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Oxf : OxX → OyY obstruction map of (m- or µ-)Kuranishi spaces, II-17, II-21,
II-22

bOxf : bOxX → bOyY b-obstruction map of (m- or µ-)Kuranishi spaces with
corners, II-19

Õxf : ÕxX → ÕyY stratum obstruction map of (m- or µ-)Kuranishi spaces
with corners, II-19

OxX obstruction space at x of an (m- or µ-)Kuranishi space X, II-16, II-21

O∗xX coobstruction space at x of an (m- or µ-)Kuranishi space X, II-16,
II-21

bOxX b-obstruction space at x of an (m- or µ-)Kuranishi space with corners
X, II-19

ÕxX stratum obstruction space at x of an (m- or µ-)Kuranishi space with
corners X, II-19

Φij : (Vi, Ei,Γi, si, ψi)→ (Vj , Ej ,Γj , sj , ψj) 1-morphism or coordinate change
of Kuranishi neighbourhoods, I-136

Φij : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) 1-morphism or coordinate change of m-
Kuranishi neighbourhoods, I-55

[Φij ] : (Vi, Ei, si, ψi)→ (Vj , Ej , sj , ψj) morphism or coordinate change of µ-Kur-
anishi neighbourhoods, I-109

Qxf : QxX → QyY quasi-tangent map of morphism f : X → Y in Ṁan, II-13

Qxf : QxX → QyY quasi-tangent map of (m- or µ-)Kuranishi spaces, II-24,
II-28

QxX quasi-tangent space at x of ‘manifold’ X in Ṁan, II-13

QxX quasi-tangent space at x of an (m- or µ-)Kuranishi space X, II-24,
II-28

Sl(X) depth l stratum of a manifold with corners X, I-6

Tf : TX → TY derivative of a smooth map f : X → Y , I-11

bTf : bTX → bTY b-derivative of an interior map f : X → Y of manifolds with
corners, I-12

TfY tangent sheaf of morphism f : X → Y in Ṁan, I-38, I-251

T g : TfY → Tg◦fZ morphism of tangent sheaves for f : X → Y , g : Y → Z in

Ṁan, I-38, I-254

Top category of topological spaces, I-31
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TX tangent bundle of a manifold X, I-11

T ∗X cotangent bundle of a manifold X, I-11

T X tangent sheaf of ‘manifold’ X in Ṁan, I-38, I-251

T ∗X cotangent sheaf of ‘manifold’ X in Ṁan, I-37, I-240

bTX b-tangent bundle of a manifold with corners X, I-11

bT ∗X b-cotangent bundle of a manifold X, I-11

Txf : TxX → TyY tangent map of morphism f : X → Y in Ṁan, II-4

bTxf : bTxX → bTyY b-tangent map of interior map f : X → Y in Manc, I-12

T̃xf : T̃xX → T̃yY stratum tangent map of morphism f : X → Y of manifolds
with corners, II-4

Txf : TxX → TyY tangent map of (m- or µ-)Kuranishi spaces, II-17, II-21, II-22

bTxf : bTxX → bTyY b-tangent map of (m- or µ-)Kuranishi spaces with corners,
II-19

T̃xf : T̃xX → T̃yY stratum tangent map of (m- or µ-)Kuranishi spaces with
corners, II-19

TxX tangent space at x of ‘manifold’ X in Ṁan, II-4

T ∗xX cotangent space at x of ‘manifold’ X in Ṁan, II-4

bTxX b-tangent space at x of a manifold with corners X, I-11

T̃xX stratum tangent space at x of a manifold with corners X, II-4

TxX tangent space at x of an (m- or µ-)Kuranishi space X, II-16, II-21

T ∗xX cotangent space at x of an (m- or µ-)Kuranishi space X, II-16, II-21

bTxX b-tangent space at x of an (m- or µ-)Kuranishi space with corners X,
II-19

T̃xX stratum tangent space at x of an (m- or µ-)Kuranishi space with
corners X, II-19

(V,E,Γ, s) object in 2-category of global Kuranishi neighbourhoods GK̇N, I-142

(V,E,Γ, s, ψ) Kuranishi neighbourhood on topological space, I-135

(V,E, s) object in (2-)category of global m- or µ-Kuranishi neighbourhoods
GmK̇N or GµK̇N, I-58, I-110

(V,E, s, ψ) m- or µ-Kuranishi neighbourhood on topological space, I-55, I-109

X◦ interior of a manifold with corners X, I-6

Xtop underlying topological space of object X in Ṁan, I-31
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Index to all volumes

Page references are in the form volume-page number.

(2, 1)-category, I-59, I-142, I-225
2-Cartesian square, I-74, I-229, II-90,

II-114, II-115
2-category, I-223–I-229

1-isomorphism in, I-225
1-morphism, I-223
2-functor, I-226–I-228

weak 2-natural transformation,
I-227

2-morphism, I-223
horizontal composition, I-224
vertical composition, I-223

canonical equivalence of objects,
I-225

discrete, I-35
equivalence in, I-225

canonical, I-97
equivalence of, I-103, I-228
fibre product in, I-228–I-229, II-

78–II-162
homotopy category, I-103, I-109,

I-120, I-226, II-108
modification, I-228
strict, I-223
weak, I-67, I-72, I-223

2-functor, I-103, I-226–I-228
equivalence of, I-228
strict, I-226
weak, I-75–I-76, I-87, I-226
weak 2-natural transformation,

I-227
modification, I-228

2-sheaf, I-2

adjoint functor, I-231
Axiom of Choice, I-67–I-68, I-149,

I-152, I-169, II-23
Axiom of Global Choice, I-67–I-68,

I-149, I-152, I-169, II-23

C∞-algebraic geometry, I-36, I-128–
I-129, I-234–I-235

C∞-ring, I-36, I-128, I-234–I-235
C∞-derivation, I-239, I-248
cotangent module, I-240
definition, I-234
derived, I-104
module over, I-235

C∞-scheme, I-128–I-129, I-235, II-5
affine, I-37, I-236
derived, I-103, I-105

C∞-stack, I-235
Cartesian square, I-19–I-27, I-222
category, I-221–I-222

coproduct, I-31
definition, I-221
equivalence of, I-122, I-222
essentially small, I-221
fibre product, I-31, I-222
functor, see functor
groupoid, I-221
initial object, I-31
opposite category, I-221
product category, I-221
small, I-221
subcategory, I-221

full, I-222
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terminal object, I-31, I-74, I-
118, II-94

class, in Set Theory, I-67, I-221, I-
226

classical manifold, I-32–I-33
connecting morphism, II-27, II-59,

II-92, II-116, II-154
contact homology, I-iv, II-iv
coorientation, I-28, II-10

opposite, I-28, II-10
corner functor, I-8–I-10, I-17, I-19,

I-48
cotangent sheaf, I-239–I-242

d-manifold, I-103, I-122
Derived Algebraic Geometry, I-vii,

I-103, II-vii
Derived Differential Geometry, I-vii–

I-viii, I-103–I-105, II-vii–II-
viii

derived manifold, I-vii–I-viii, I-103–
I-105, I-122, II-vii–II-viii

derived orbifold, I-vii–I-viii, II-vii–II-
viii

derived scheme, I-vii, II-vii
derived stack, I-vii, II-vii
determinant, II-51–II-61
discrete property of morphisms in

Ṁan, I-44–I-45, I-77–I-80,
I-119–I-120, I-153–I-155, I-
178, I-263–I-264, II-3–II-14,
II-79–II-87

fibre product, I-31, I-222
in a 2-category, I-228–I-229, II-

78–II-162
transverse, I-19–I-27, II-78–II-

87
fine sheaf, I-37, I-129
FOOO Kuranishi space, I-v, I-1, I-

87, I-104, I-144, I-172, II-v,
II-62, II-97, II-107

Fukaya category, I-iv, I-v, I-ix, II-iv,
II-v, II-ix

functor, I-222
adjoint, I-231

contravariant, I-222
equivalence, I-222
faithful, I-222
full, I-222
natural isomorphism, I-222
natural transformation, I-12, I-

222, II-5, II-20

global Kuranishi neighbourhood, I-
142

w-transverse fibre product, II-
109–II-114

global m-Kuranishi neighbourhood,
I-55

submersion, II-88
transverse fibre product, II-88,

II-109
w-submersion, II-88
w-transverse fibre product, II-

88–II-90, II-134–II-138
Gromov–Witten invariant, I-iv, I-1,

II-iv
groupoid, I-59, I-221

Hadamard’s Lemma, I-33
Hilsum–Skandalis morphism, I-144,

I-171, I-173
homotopy category, I-103, I-106, I-

109, I-226, II-108

∞-category, I-68, I-103–I-104
isotropy group, I-166–I-170, II-21–II-

23, II-74, II-117–II-119

J-holomorphic curves
moduli space of, I-iv–I-vi, II-iv–

II-vi

Kuranishi atlas, by McDuff–Wehrheim,
I-104, I-172

Kuranishi moduli problem, I-3
Kuranishi neighbourhood, I-135–I-

145
1-morphism, I-136
2-category of, I-141
2-morphism, I-137
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coordinate change, I-2, I-143, II-
50–II-51

definition, I-135
footprint, I-136
global, I-142

w-transverse fibre product, II-
109–II-114

Kuranishi section, I-135
minimal, II-37–II-42
obstruction bundle, I-135
on Kuranishi space, I-162–I-165
stack property of, I-145, I-148,

I-164, I-179–I-187
strict isomorphism, II-38

Kuranishi space, I-135–I-187
1-morphism, I-147

étale, II-48–II-50
representable, I-169

2-category of, I-151
2-morphism, I-148
and m-Kuranishi spaces, I-155–

I-157
and orbifolds, I-176–I-177
boundary, I-160
canonical bundle, II-74–II-77
coobstruction space, II-21
coorientation, II-75

opposite, II-76
cotangent space, II-21
definition, I-146
discrete property of 1-morphisms,

I-153–I-155
equivalence, I-165, II-49
étale 1-morphism, II-48–II-50,

II-75
FOOO, see FOOO Kuranishi

space
is an orbifold, I-176, II-42, II-

114, II-115
isotropy group, I-166–I-170, II-

21–II-23, II-48, II-115
definition, I-166
trivial, I-169

k-corner functor, I-161
Kuranishi neighbourhood on, I-

162–I-165

1-morphism, I-163
coordinate change, I-162–I-163
definition, I-162
global, I-162

locally orientable, II-74–II-77,
II-118

obstruction space, II-1, II-3–II-
77

definition, II-21–II-23
orientation, II-74–II-77

definition, II-75
opposite, II-75

product, I-152
orientation, II-77

quasi-tangent space, II-28
submersion, II-1, II-2, II-108–II-

127
tangent space, II-1, II-3–II-77

definition, II-21–II-23
transverse fibre product, II-1–

II-2, II-108–II-127
virtual dimension, I-2, I-146
w-submersion, II-108–II-127
w-transverse fibre product, II-1–

II-2, II-108–II-127
Kuranishi space with a-corners, I-

153, I-155
b-normal 1-morphism, I-155
interior 1-morphism, I-155
simple 1-morphism, I-155
strongly a-smooth 1-morphism,

I-155
Kuranishi space with corners, I-153,

I-157–I-162, II-120–II-123,
II-125–II-127

b-normal 1-morphism, I-154, I-
162

boundary
orientation on, II-77

boundary 2-functor, I-161
equivalence, I-162
interior 1-morphism, I-154, I-

162
k-corners Ck(X), I-157–I-161
s-submersion, II-120–II-123, II-

125–II-127
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s-transverse fibre product, II-
120–II-123

sb-transverse fibre product, II-
125–II-127

sc-transverse fibre product, II-
125–II-127

simple 1-morphism, I-154
strongly smooth 1-morphism, I-

154
t-transverse fibre product, II-

120–II-123
ws-submersion, II-120–II-123, II-

125–II-127
ws-transverse fibre product, II-

120–II-123
wsb-transverse fibre product, II-

125–II-127
wsc-transverse fibre product, II-

125–II-127
wt-transverse fibre product, II-

120–II-123
Kuranishi space with corners and

a-corners, I-153, I-155
b-normal 1-morphism, I-155
interior 1-morphism, I-155
simple 1-morphism, I-155
strongly a-smooth 1-morphism,

I-155
Kuranishi space with g-corners, I-

153, I-155, II-123–II-125
b-fibration, II-123–II-125
b-normal 1-morphism, I-155
b-transverse fibre product, II-

123–II-125
c-fibration, II-123–II-125
c-transverse fibre product, II-

123–II-125
interior 1-morphism, I-155
simple 1-morphism, I-155
wb-fibration, II-123–II-125
wb-transverse fibre product, II-

123–II-125
wc-fibration, II-123–II-125
wc-transverse fibre product, II-

123–II-125
Kuranishi structure, I-146

Lagrangian Floer cohomology, I-iv,
I-v, I-ix, I-1, II-iv, II-v, II-
ix

M-cohomology, I-vii–I-ix, II-vii–II-ix
and virtual cocycles, I-viii–I-ix,

II-viii–II-ix
M-homology, I-vii–I-ix, II-vii–II-ix

and virtual cycles, I-viii–I-ix, II-
viii–II-ix

m-Kuranishi neighbourhood, I-54–I-
61

1-morphism, I-55
2-category of, I-58
2-morphism, I-56

gluing with a partition of unity,
I-106, I-108–I-109, I-113

linearity properties of, I-107–
I-109

coordinate change, I-2, I-59, II-
47–II-48

definition, I-55
footprint, I-55
global, I-55

submersion, II-88
transverse fibre product, II-

88, II-109
w-submersion, II-88
w-transverse fibre product, II-

88–II-90, II-134–II-138
Kuranishi section, I-55
minimal, II-29–II-37
obstruction bundle, I-55
on m-Kuranishi space, I-93–I-

102
stack property of, I-60–I-61, I-

64–I-68, I-95, I-96, I-99, I-
145, I-179–I-187

strict isomorphism, II-30
m-Kuranishi space, I-54–I-105

1-morphism, I-62
étale, II-42–II-47, II-65

2-category of, I-61–I-73
2-morphism, I-63
and Kuranishi spaces, I-155–I-

157
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and µ-Kuranishi spaces, I-120–
I-122

canonical bundle, II-62–II-74, II-
96

definition, II-62
coobstruction space, II-16
coorientation, II-66

opposite, II-66
corner 2-functor, I-87–I-93, I-

161–I-162
cotangent space, II-16
definition, I-61
discrete property of 1-morphisms,

I-77–I-80, I-91
equivalence, I-97–I-99, II-18, II-

65
étale 1-morphism, II-42–II-47,

II-65
fibre product, I-74
is a classical manifold, I-74, II-

95
is a manifold, I-73, II-37, II-91
k-corner functor, I-91
m-Kuranishi neighbourhood on,

I-93–I-102
1-morphism of, I-95
coordinate change, I-94
definition, I-94
global, I-94

obstruction space, II-1, II-3–II-
77

definition, II-15–II-20
orientation, II-66–II-74, II-96–

II-97
definition, II-66
opposite, II-66

oriented, II-66
product, I-74, II-93–II-94

orientation, II-71–II-74
quasi-tangent space, II-23–II-27
submersion, II-1, II-2, II-87–II-

106
tangent space, II-1, II-3–II-77

definition, II-15–II-20
transverse fibre product, II-1–

II-2, II-87–II-106

virtual dimension, I-2, I-61
w-submersion, II-87–II-106
w-transverse fibre product, II-

1–II-2, II-87–II-106, II-138–
II-156

orientation on, II-96–II-97
m-Kuranishi space with a-corners,

I-72, I-79
b-normal 1-morphism, I-79
interior 1-morphism, I-79
simple 1-morphism, I-79
strongly a-smooth 1-morphism,

I-79
m-Kuranishi space with boundary,

I-93
m-Kuranishi space with corners, I-

72, I-78, I-81–I-93, II-100–
II-102, II-104–II-106

b-normal 1-morphism, I-79, I-
92

boundary, I-86
orientation on, II-67–II-71

boundary 2-functor, I-91
interior 1-morphism, I-79, I-92
k-corners Ck(X), I-81–I-87
m-Kuranishi neighbourhoods on,

I-100–I-101
boundaries and corners of, I-

100–I-101
of mixed dimension, I-87
s-submersion, II-100–II-102, II-

105–II-106
s-transverse fibre product, II-

100–II-102
sb-transverse fibre product, II-

105–II-106
sc-transverse fibre product, II-

105–II-106
simple 1-morphism, I-79
strongly smooth 1-morphism, I-

79
t-transverse fibre product, II-

100–II-102
ws-submersion, II-100–II-102, II-

105–II-106
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ws-transverse fibre product, II-
100–II-102

wsb-transverse fibre product, II-
105–II-106

wsc-transverse fibre product, II-
105–II-106

wt-transverse fibre product, II-
100–II-102

m-Kuranishi space with corners and
a-corners, I-72, I-79

b-normal 1-morphism, I-79
interior 1-morphism, I-79
simple 1-morphism, I-79
strongly a-smooth 1-morphism,

I-79
m-Kuranishi space with g-corners,

I-72, I-79, II-102–II-104
b-fibration, II-102–II-104
b-normal 1-morphism, I-79
b-transverse fibre product, II-

102–II-104
c-fibration, II-102–II-104
c-transverse fibre product, II-

102–II-104
interior 1-morphism, I-79
simple 1-morphism, I-79
wb-fibration, II-102–II-104
wb-transverse fibre product, II-

102–II-104
wc-fibration, II-102–II-104
wc-transverse fibre product, II-

102–II-104
m-Kuranishi structure, I-61
manifold

classical, I-32–I-33
manifold with a-corners, I-17–I-19

a-diffeomorphism, I-18
a-smooth map, I-18
b-normal map, I-18
b-tangent bundle, I-19
corner functor, I-19
interior map, I-18
simple map, I-18
strongly a-smooth map, I-18

manifold with analytic corners, see
manifold with a-corners

manifold with boundary, I-4–I-29
manifold with corners, I-3–I-29, I-47–

I-53
atlas, I-5
b-cotangent bundle, I-11
b-map, I-6
b-normal map, I-4, I-5
b-tangent bundle, I-10–I-14, I-

17
definition, I-11

b-tangent functor, I-12
b-vector field, I-11
boundary, I-6–I-10, I-29, I-48

definition, I-7
boundary functor, I-9, I-49
canonical bundle, I-28, II-61
coorientation, I-28, II-10

opposite, I-28, II-10
corner functor, I-8–I-10, I-19, I-

48, I-268–I-276, II-81
cotangent bundle, I-11
cotangent sheaf, I-239–I-242
definition, I-5
differential geometry in Ṁanc,

I-268–I-278, II-10–II-12
interior X◦, I-6
interior map, I-4, I-5
k-corner functor, I-9, I-49
k-corners Ck(X), I-6–I-10, I-48
local boundary component, I-6
local k-corner component, I-6,

I-8, I-9
manifold with faces, I-5, I-36
orientation, I-27–I-29, II-9–II-

13, II-61
definition, I-28, II-10
opposite, I-28, II-10

orientation convention, I-28–I-
29, II-12–II-13

quasi-tangent space, I-14, II-13–
II-14, II-81

s-submersion, I-21–I-23, I-26, II-
84–II-87, II-100, II-104, II-
120, II-125

s-transverse fibre product, I-21–
I-23, II-84–II-85, II-100, II-
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120
sb-transverse fibre product, I-

25–I-27, II-86–II-87, II-104,
II-125

sc-transverse fibre product, I-
25–I-27, II-86–II-87, II-104,
II-125

simple map, I-5, I-48
smooth map, I-4, I-5
stratum b-normal space, I-13
stratum normal space, I-13
strongly smooth map, I-4, I-5,

I-21–I-23
submersion, I-19–I-27, II-78–II-

87
t-transverse fibre product, I-21–

I-23, II-84–II-85, II-100, II-
120

tangent bundle, I-10–I-14
definition, I-11

tangent functor, I-12
tangent sheaf, I-242–I-261, I-268–

I-276
tangent space, II-3–II-14
transverse fibre product, I-19–I-

27, I-29, II-78–II-87
vector bundle, I-10, I-37, I-237–

I-239
connection, I-38, I-241–I-242

vector field, I-11
weakly smooth map, I-4, I-5

manifold with corners and a-corners,
I-18–I-19

manifold with faces, I-5, I-36
manifold with g-corners, I-14–I-17, I-

23–I-25, II-85–II-86, II-102,
II-123

b-cotangent bundle, I-17
b-fibration, I-23–I-25, II-85–II-

86, II-102, II-123
b-normal map, I-16
b-submersion, I-23–I-25, II-85–

II-86, II-102, II-123
b-tangent bundle, I-17
b-transverse fibre product, I-23–

I-25, II-85–II-86, II-102, II-

123
c-transverse fibre product, I-23–

I-25, II-85–II-86, II-102, II-
123

definition, I-16
examples, I-16–I-17
interior X◦, I-15
interior map, I-16
simple map, I-16
smooth map, I-16

manifold with generalized corners,
see manifold with g-corners

moduli space
of J-holomorphic curves, I-iv–I-

vi, II-iv–II-vi
of J-holomorphic curves, I-ix,

II-ix
monoid, I-14–I-16

toric, I-15
weakly toric, I-14

rank, I-15
µ-Kuranishi neighbourhood, I-109–I-

114
category of, I-109–I-111
coordinate change, I-2, I-111
definition, I-109
minimal, II-37
morphism, I-109
on µ-Kuranishi space, I-125–I-

127
sheaf property of, I-112–I-116,

I-125
µ-Kuranishi space, I-106–I-134

and m-Kuranishi spaces, I-120–
I-122

canonical bundle, II-74
coordinate change, II-48
corner functor, I-124–I-125
definition, I-114
discrete property of morphisms,

I-119–I-120, I-124
étale morphism, II-48
fibre product, I-106, II-106–II-

107
k-corner functor, I-124
morphism, I-115
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étale, II-48
µ-Kuranishi neighbourhood on,

I-125–I-127
coordinate change, I-126
global, I-125
morphism of, I-126

obstruction space, II-1, II-3–II-
77

definition, II-21
orientation, II-74
product, I-118
quasi-tangent space, II-27–II-28
tangent space, II-1, II-3–II-77

definition, II-21
virtual dimension, I-2

µ-Kuranishi space with a-corners, I-
117, I-120

b-normal morphism, I-120
interior morphism, I-120
strongly a-smooth morphism, I-

120
µ-Kuranishi space with boundary, I-

125
µ-Kuranishi space with corners, I-

117, I-119, I-122–I-125
b-normal morphism, I-119, I-

125
boundary, I-124
boundary functor, I-124
interior morphism, I-119, I-125
isomorphism, I-125
k-corners Ck(X), I-122–I-124, I-

127
strongly smooth morphism, I-

119
µ-Kuranishi space with corners and

a-corners, I-117, I-120
b-normal morphism, I-120
interior morphism, I-120
strongly a-smooth morphism, I-

120
µ-Kuranishi space with g-corners, I-

117, I-120
b-normal morphism, I-120
interior morphism, I-120
simple morphism, I-120

µ-Kuranishi structure, I-114

O(s) and O(s2) notation, I-40–I-44,
I-55–I-58, I-136–I-139, I-261–
I-263, I-274–I-276, I-278–I-
297

orbifold, I-35, I-170–I-178
and Kuranishi spaces, I-176
as a 2-category, I-171, II-108
definitions, I-171–I-177
is a manifold, I-176
isotropy group, I-176, II-108
Kuranishi orbifold, I-175
transverse fibre product, II-108–

II-109
orbifold with corners, I-178

boundary ∂X, I-178
corner 2-functor, I-178
k-corners Ck(X), I-178

orientation, I-27–I-29, II-9–II-13, II-
61–II-77

opposite, I-28, II-10
orientation convention, I-28–I-29, II-

12–II-13, II-73, II-97
OX -module, I-239

partition of unity, I-106, I-108–I-109,
I-113, I-127–I-129, I-236–I-
237

polyfold, I-v–I-vi, I-3, II-v–II-vi
presheaf, I-106, I-230, I-240

sheafification, I-231, I-240

quantum cohomology, I-iv, II-iv
quasi-category, I-68
quasi-tangent space, I-14, II-13–II-

14, II-23–II-28

relative tangent sheaf, I-38

sheaf, I-2, I-32, I-36–I-39, I-104, I-
106, I-113, I-229–I-231

direct image, I-231
fine, I-37, I-129, I-237
inverse image, I-231
of abelian groups, rings, etc., I-

230
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presheaf, I-230, I-240
sheafification, I-231, I-240

pullback, I-231, I-259–I-261
pushforward, I-231
soft, I-237
stalk, I-230

site, I-232
stack, I-103, I-232, II-48

Artin, I-232
Deligne–Mumford, I-232
on topological space, I-2, I-60–

I-61, I-128, I-179–I-187, I-
231–I-232

topological stack, II-74, II-117
strict 2-functor, I-226
structure sheaf, I-235
subcategory, I-221

full, I-222
submersion, I-19–I-27
symplectic cohomology, I-iv, II-iv
Symplectic Field Theory, I-iv, I-ix,

I-1, II-iv, II-ix
symplectic geometry, I-iv–I-vi, I-1,

II-iv–II-vi

tangent sheaf, I-38, I-242–I-261, I-
268–I-276

relative, I-38
tangent space

in Ṁan, II-3–II-14
topological space

Hausdorff, I-61
locally compact, I-61
locally second countable, I-61
metrizable, I-62
paracompact, I-61
second countable, I-61

transverse fibre product, I-19–I-27,
II-78–II-87

orientation, I-29

vector bundle, I-10, I-37, I-237–I-239
connection, I-38, I-241–I-242
morphism, I-238
section, I-238
sheaf of sections, I-239

virtual chain, I-iv, II-iv
virtual class, I-iv, II-iv

weak 2-category, I-67, I-72
weak 2-functor, I-75–I-76, I-87, I-226
weak 2-natural transformation, I-227

modification, I-228
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