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Introduction to the series

On the foundations of Symplectic Geometry

Several important areas of Symplectic Geometry involve ‘counting’ moduli
spaces M of J-holomorphic curves in a symplectic manifold (S,w) satisfying
some conditions, where J is an almost complex structure on S compatible with
w, and using the ‘numbers of curves’ to build some interesting theory, which
is then shown to be independent of the choice of J. Areas of this type include
Gromov-Witten theory [5] 130L |40} |46, |47, 51, 65, 67], Quantum Cohomology
|46l |51], Lagrangian Floer cohomology |2, (12} |15, 20, |59} |70], Fukaya categories
196 162, |64], Symplectic Field Theory [3, |7} 8], Contact Homology [6| 60], and
Symplectic Cohomology [63].

Setting up the foundations of these areas, rigorously and in full generality,
is a very long and difficult task, comparable to the work of Grothendieck and
his school on the foundations of Algebraic Geometry, or the work of Lurie and
Toén—Vezzosi on the foundations of Derived Algebraic Geometry. Any such
foundational programme for Symplectic Geometry can be divided into five steps:

(i) We must define a suitable class of geometric structures G to put on the
moduli spaces M of J-holomorphic curves we wish to ‘count’. This must
satisfy both (ii) and (iii) below.

(ii) Given a compact space X with geometric structure G and an ‘orientation’,
we must define a ‘virtual class’ [[X]yirt] in some homology group, or a
‘virtual chain’ [X]yirt in the chains of the homology theory, which ‘counts’ X.

Actually, usually one studies a compact, oriented G-space X with a ‘smooth
map’ f : X — Y to a manifold Y, and defines [[X]virt] or [X]virt in a
suitable (co)homology theory of Y, such as singular homology or de Rham
cohomology. These virtual classes/(co)chains must satisfy a package of
properties, including a deformation-invariance property.

(ili) We must prove that all the moduli spaces M of J-holomorphic curves
that will be used in our theory have geometric structure G, preferably
in a natural way. Note that in order to make the moduli spaces M
compact (necessary for existence of virtual classes/chains), we have to
include singular J-holomorphic curves in M. This makes construction of
the G-structure on M significantly more difficult.



(iv) We combine (i)—(iii) to study the situation in Symplectic Geometry we are
interested in, e.g. to define Lagrangian Floer cohomology HF*(Ly, Ls) for
compact Lagrangians Lj, Ly in a compact symplectic manifold (S,w).

To do this we choose an almost complex structure J on (S, w) and define
a collection of moduli spaces M of J-holomorphic curves relevant to the
problem. By (iii) these have structure G, so by (ii) they have virtual
classes/(co)chains [M]yiy in some (co)homology theory.

There will be geometric relationships between these moduli spaces — for
instance, boundaries of moduli spaces may be written as sums of fibre
products of other moduli spaces. By the package of properties in (ii), these
geometric relationships should translate to algebraic relationships between
the virtual classes/(co)chains, e.g. the boundaries of virtual cochains may
be written as sums of cup products of other virtual cochains.

We use the virtual classes/(co)chains, and the algebraic identities they
satisfy, and homological algebra, to build the theory we want — Quantum
Cohomology, Lagrangian Floer Theory, and so on. We show the result
is independent of the choice of almost complex structure J using the
deformation-invariance properties of virtual classes/(co)chains.

(v) We apply our new machine to do something interesting in Symplectic
Geometry, e.g. prove the Arnold Conjecture.

Many authors have worked on programmes of this type, since the introduction
of J-holomorphic curve techniques into Symplectic Geometry by Gromov [32]
in 1985. Oversimplifying somewhat, we can divide these approaches into three
main groups, according to their answer to (i) above:

(A) (Kuranishi-type spaces.) In the work of Fukaya, Oh, Ohta and Ono
[10H30], moduli spaces are given the structure of Kuranishi spaces (we will
call their definition FOOO Kuranishi spaces).

Several other groups also work with Kuranishi-type spaces, including
McDuff and Wehrheim [49, |50} [52-55], Pardon [60| [61], and the author in
[42] 43] and this series.

(B) (Polyfolds.) In the work of Hofer, Wysocki and Zehnder [34-41], moduli
spaces are given the structure of polyfolds.

(C) (The rest of the world.) One makes restrictive assumptions on the
symplectic geometry — for instance, consider only noncompact, exact
symplectic manifolds, and exact Lagrangians in them — takes J to be
generic, and arranges that all the moduli spaces M we are interested
in are smooth manifolds (or possibly ‘pseudomanifolds’, manifolds with
singularities in codimension 2). Then we form virtual classes/chains as
for fundamental classes of manifolds. A good example of this approach is
Seidel’s construction [64] of Fukaya categories of Liouville domains.

We have not given complete references here, much important work is omitted.
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Although Kuranishi-type spaces in (A), and polyfolds in (B), do exactly
the same job, there is an important philosophical difference between them.
Kuranishi spaces basically remember the minimal information needed to form
virtual cycles/chains, and no more. Kuranishi spaces contain about the same
amount of data as smooth manifolds, and include manifolds as examples.

In contrast, polyfolds remember the entire functional-analytic moduli problem,
forgetting nothing. Any polyfold curve moduli space, even a moduli space of
constant curves, is a hugely infinite-dimensional object, a vast amount of data.

Approach (C) makes one’s life a lot simpler, but this comes at a cost. Firstly,
one can only work in rather restricted situations, such as exact symplectic
manifolds. And secondly, one must go through various contortions to ensure all
the moduli spaces M are manifolds, such as using domain-dependent almost
complex structures, which are unnecessary in approaches (A),(B).

The aim and scope of the series, and its novel features

The aim of this series of books is to set up the foundations of these areas of
Symplectic Geometry built using J-holomorphic curves following approach (A)
above, using the author’s own definition of Kuranishi space. We will do this
starting from the beginning, rigorously, in detail, and as the author believes the
subject ought to be done. The author hopes that in future, the series will provide
a complete framework which symplectic geometers can refer to for theorems and
proofs, and use large parts as a ‘black box’.
The author currently plans four or more volumes, as follows:

Volume [l Basic theory of (m-)Kuranishi spaces. Definitions of the cat-
egory uKur of p~-Kuranishi spaces, and the 2-categories mKur of
m-Kuranishi spaces and Kur of Kuranishi spaces, over a category
of ‘manifolds’ Man such as classical manifolds Man or manifolds
with corners Man®. Boundaries, corners, and corner (2-)functors
for (m- and p-)Kuranishi spaces with corners. Relation to similar
structures in the literature, including Fukaya—Oh—Ohta—Ono’s Ku-
ranishi spaces, and Hofer—-Wysocki—Zehnder’s polyfolds. ‘Kuranishi
moduli problems’, our approach to putting Kuranishi structures
on moduli spaces, canonical up to equivalence.

Volume [l Differential Geometry of (m-)Kuranishi spaces. Tangent
and obstruction spaces for (m- and u-)Kuranishi spaces. Canonical
bundles and orientations. (W-)transversality, (w-)submersions,
and existence of w-transverse fibre products in mKur and Kur.
M-(co)homology of manifolds and orbifolds |44], virtual (co)chains
and virtual (co)cycles for compact, oriented (m-)Kuranishi spaces
in M-(co)homology. Orbifold strata of Kuranishi spaces. Bordism
and cobordism for (m-)Kuranishi spaces.

Volume [Tl Kuranishi structures on moduli spaces of .J-holomorphic
curves. For very many moduli spaces of J-holomorphic curves
M of interest in Symplectic Geometry, including singular curves,
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curves with Lagrangian boundary conditions, marked points, etc.,
we show that M can be made into a Kuranishi space M, uniquely
up to equivalence in Kur. We do this by a new method using
2-categories, similar to Grothendieck’s representable functor ap-
proach to moduli spaces in Algebraic Geometry. We do the same
for many other classes of moduli problems for nonlinear elliptic
p-d.e.s, including gauge theory moduli spaces. Natural relations
between moduli spaces, such as maps Fj : My, 1 — M, forgetting
a marked point, correspond to relations between the Kuranishi
spaces, such as a l-morphism F; : ./\7lk+1 — M, in Kur. We
discuss orientations on Kuranishi moduli spaces.

Volumes IV— Big theories in Symplectic Geometry. To include Gromov—
Witten invariants, Quantum Cohomology, Lagrangian Floer coho-
mology, and Fukaya categories.

For steps (i)—(v) above, (i)—(iii) will be tackled in volumes I-III respectively, and
(iv)—(v) in volume IV onwards.

Readers familiar with the field will probably have noticed that our series
sounds a lot like the work of Fukaya, Oh, Ohta and Ono [10-30], in particular,
their 2009 two-volume book [15] on Lagrangian Floer cohomology. And it is
very similar. On the large scale, and in a lot of the details, we have taken many
ideas from Fukaya—Oh—Ohta—Ono, which the author acknowledges with thanks.
Actually this is true of most foundational projects in this field: Fukaya, Oh, Ohta
and Ono were the pioneers, and enormously creative, and subsequent authors
have followed in their footsteps to a great extent.

However, there are features of our presentation that are genuinely new, and
here we will highlight three:

(a) The use of Derived Differential Geometry in our Kuranishi space theory.
(b) The use of M-(co)homology to form virtual cycles and chains.

(¢) The use of ‘Kuranishi moduli problems’, similar to Grothendieck’s rep-
resentable functor approach to moduli spaces in Algebraic Geometry, to
prove moduli spaces of J-holomorphic curves have Kuranishi structures.

We discuss these in turn.

(a) Derived Differential Geometry

Derived Algebraic Geometry, developed by Lurie [48] and Toén—Vezzosi 68|
69, is the study of ‘derived schemes’ and ‘derived stacks’, enhanced versions
of classical schemes and stacks with a richer geometric structure. They were
introduced to study moduli spaces in Algebraic Geometry. Roughly, a classical
moduli space M of objects E knows about the infinitesimal deformations of E,
but not the obstructions to deformations. The corresponding derived moduli
space M remembers the deformations, obstructions, and higher obstructions.
Derived Algebraic Geometry has a less well-known cousin, Derived Differential
Geometry, the study of ‘derived’ versions of smooth manifolds. Probably the first
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reference to Derived Differential Geometry is a short final paragraph in Lurie
[48, §4.5]. Lurie’s ideas were developed further in 2008 by his student David
Spivak [66], who defined an oco-category DerMangp,; of ‘derived manifolds’.
When I read Spivak’s thesis [66], armed with a good knowledge of Fukaya—
Oh-Ohta—Ono’s Kuranishi space theory [15], I had a revelation:

Kuranishi spaces are really derived smooth orbifolds.

This should not be surprising, as derived schemes and Kuranishi spaces are both
geometric structures designed to remember the obstructions in moduli problems.

This has important consequences for Symplectic Geometry: to understand
Kuranishi spaces properly, we should use the insights and methods of Derived
Algebraic Geometry. Fukaya—Oh—Ohta—Ono could not do this, as their Kuranishi
spaces predate Derived Algebraic Geometry by several years. Since they lacked
essential tools, their FOOO Kuranishi spaces are not really satisfactory as
geometric spaces, though they are adequate for their applications. For example,
they give no definition of morphism of FOOO Kuranishi spaces.

A very basic fact about Derived Algebraic Geometry is that it always happens
in higher categories, usually oo-categories. We have written our theory in terms
of 2-categories, which are much simpler than co-categories. There are special
features of our situation which mean that 2-categories are enough for our purposes.
Firstly, the existence of partitions of unity in Differential Geometry means that
structure sheaves are soft, and have no higher cohomology. Secondly, we are
only interested in ‘quasi-smooth’ derived spaces, which have deformations and
obstructions, but no higher obstructions. As we are studying Kuranishi spaces
with deformations and obstructions — two levels of tangent directions — these
spaces need to live in a higher category C with at least two levels of morphism,
1- and 2-morphisms, so C needs to be at least a 2-category.

Our Kuranishi spaces form a weak 2-category Kur. One can take the
homotopy category Ho(Kur) to get an ordinary category, but this loses important
information. For example:

e 1-morphisms f : X — Y in Kur are a 2-sheaf (stack) on X, but morphisms
[f] : X = Y in Ho(Kur) are not a sheaf on X, they are not ‘local’. This
is probably one reason why Fukaya et al. do not define morphisms for
FOOO Kuranishi spaces, as higher category techniques would be needed.

e As in Chapter [L1] of volume [lI} there is a good notion of (w-)transverse
l-morphisms g : X — Z, h: Y — Z in Kur, and (w-)transverse fibre
products X Xg z p Y exist in Kur, characterized by a universal property
involving the 2-morphisms in Kur. In Ho(Kur) this universal property
makes no sense, and (w-)transverse fibre products may not exist.

Derived Differential Geometry will be discussed in of volume [[}

(b) M-(co)homology and virtual cycles

In Fukaya—Oh—-Ohta—Ono’s Lagrangian Floer theory [15], a lot of extra complexity
and hard work is due to the fact that their homology theory for forming virtual
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chains (singular homology) does not play nicely with FOOO Kuranishi spaces.
For example, they deal with moduli spaces My () of stable J-holomorphic discs
Y in (S,w) with boundary in a Lagrangian L, with homology class [X] = « in
Hy(S,L;Z), and k boundary marked points. These satisfy boundary equations

6/\7"k(a) = ]_[o[:,@Jr'y7 k=i+j Mi+1(/8) Xevii1,L,ev i1 Mj+1(7)'

One would like to choose virtual chains [Mj(a)]virs in homology satisfying

a[ﬂk (@)]vire = Z(x:ﬂ’-&-’y, k=i+j [MiJrl(ﬂ)]virt °r [Mj+1('7)]virt,

where o7, is a chain-level intersection product/cup product on the (co)homology
of L. But singular homology has no chain-level intersection product.

In their later work [18| §12], [24], Fukaya et al. define virtual cochains in de
Rham cohomology, which does have a cochain-level cup product. But there are
disadvantages to this too, for example, one is forced to work in (co)homology
over R, rather than Z or Q.

As in Chapter [12]of volume[[I] the author [44] defined new (co)homology theo-
ries M H,(X; R), M H*(X; R) of manifolds and orbifolds X, called ‘M-homology’
and ‘M-cohomology’. They satisfy the Eilenberg—Steenrod axioms, and so are
canonically isomorphic to usual (co)homology H.(X; R), H*(X; R), e.g. singular
homology H%(X; R). They are specially designed for forming virtual (co)chains
for (m-)Kuranishi spaces, and have very good (co)chain-level properties.

In Chapter [13| of volume [II| we will explain how to form virtual (co)cycles
and (co)chains for (m-)Kuranishi spaces in M-(co)homology. There is no need
to perturb the (m-)Kuranishi space to do this. Our construction has a number
of technical advantages over competing theories: we can make infinitely many
compatible choices of virtual (co)chains, which can be made strictly compatible
with relations between (m-)Kuranishi spaces, such as boundary formulae.

These technical advantages mean that applying our machinery to define some
theory like Lagrangian Floer cohomology, Fukaya categories, or Symplectic Field
Theory, will be significantly easier. Identities which only hold up to homotopy
in the Fukaya—Oh-Ohta—Ono model, often hold on the nose in our version.

(c¢) Kuranishi moduli problems

The usual approaches to moduli spaces in Differential Geometry, and in Algebraic
Geometry, are very different. In Differential Geometry, one defines a moduli
space (e.g. of J-holomorphic curves, or instantons on a 4-manifold), initially
as a set M of isomorphism classes of the objects of interest, and then adds
extra structure: first a topology, and then an atlas of charts on M making the
moduli space into a manifold or Kuranishi-type space. The individual charts are
defined by writing the p.d.e. as a nonlinear Fredholm operator between Sobolev
or Hélder spaces, and using the Implicit Function Theorem for Banach spaces.

In Algebraic Geometry, following Grothendieck, one begins by defining a
functor F' called the moduli functor, which encodes the behaviour of families of
objects in the moduli problem. This might be of the form F : (Sch2¥)°P — Sets



(to define a moduli C-scheme) or F : (Sch2f)°P — Groupoids (to define a
moduli C-stack), where Schéﬂ,Sets,Groupoids are the categories of affine
C-schemes, and sets, and groupoids, and (Scthf)Op is the opposite category
of Schgﬁ. Here if S is an affine C-scheme then F'(S) is the set or groupoid of
families of objects in the moduli problem over the base C-scheme S.

We say that the moduli functor F' is representable if there exists a C-scheme
M such that F is naturally isomorphic to Hom(—, M) : (Sch3f)op _ Sets,
or an Artin C-stack M such that F' is naturally equivalent to Hom(—, M) :
(Schf‘:ﬁ)Op — Groupoids. Then M is unique up to canonical isomorphism or
canonical equivalence, and is called the moduli scheme or moduli stack.

As in Gomez [31}, §2.1-§2.2], there are two equivalent ways to encode stacks, or
moduli problems, as functors: either as a functor F : (Sch3®)°P — Groupoids
as above, or as a category fibred in groupoids G : C — Schéff, that is, a category
C with a functor G to Schéff satisfying some lifting properties of morphisms in
Sch2® to morphisms in C.

We introduce a new approach to constructing Kuranishi structures on
Differential-Geometric moduli problems, including moduli of J-holomorphic
curves, which is a 2-categorical analogue of the ‘category fibred in groupoids’
version of moduli functors in Algebraic Geometry. Our analogue of SchEfr is
the 2-category GKN of global Kuranishi neighbourhoods (V,E,T, s), which are
basically Kuranishi spaces X covered by a single chart (V, E, T, s, ).

We define a Kuranishi moduli problem (KMP) to be a 2-functor F : C —
GKN satisfying some lifting properties, where C is a 2-category. For example,
if M € Kur is a Kuranishi space we can define a 2-category Caq with objects
(V.E.L,s), f) for (V,E,T,s) € GKN and f : (s71(0)/T, (V, E, T, s,ids-1(0)/r))
— M a l-morphism, and a 2-functor Faq : Caq — GKN acting by Faq :
(V,E,L,s),f) — (V,E,T,s) on objects. A KMP F :C — GKN is called
representable if it is equivalent in a certain sense to Faq : Caq — GKN for some
M in Kur, which is unique up to equivalence. Then Kuranishi moduli problems
form a 2-category KMP, and the full 2-subcategory KMPr® of representable
KMP’s is equivalent to Kur.

To construct a Kuranishi structure on some moduli space M, e.g. a moduli
space of J-holomorphic curves in some (S,w), we carry out three steps:

(1) Define a 2-category C and 2-functor F' : C — GKN, where objects A in C
with F(A) = (V, E,T',s) correspond to families of objects in the moduli
problem over the base Kuranishi neighbourhood (V| E, T, s).

(2) Prove that F : C — GKN is a Kuranishi moduli problem.
(3) Prove that F : C — GKN is representable.

Here step (1) is usually fairly brief — far shorter than constructions of curve
moduli spaces in [15} 30, |40], for instance. Step (2) is also short and uses standard
arguments. The major effort is in (3). Step (3) has two parts: firstly we must
show that a topological space M naturally associated to the KMP is Hausdorff
and second countable (often we can quote this from the literature), and secondly
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we must prove that every point of M admits a Kuranishi neighbourhood with a
certain universal property.

We compare our approach to moduli problems with other current approaches,
such as those of Fukaya—Oh-Ohta—Ono or Hofer-Wysocki-Zehnder:

e Rival approaches are basically very long ad hoc constructions, the effort
is in the definition itself. In our approach we have a short-ish definition,
followed by a theorem (representability of the KMP) with a long proof.

e Rival approaches may involve making many arbitrary choices to construct
the moduli space. In our approach the definition of the KMP is natural,
with no arbitrary choices. If the KMP is representable, the corresponding
Kuranishi space M is unique up to canonical equivalence in Kur.

e In our approach, morphisms between moduli spaces, e.g. forgetting a
marked point, are usually easy and require almost no work to construct.

Kuranishi moduli problems are introduced in Chapter [§ of volume [I, and
volume [[T]] is dedicated to constructing Kuranishi structures on moduli spaces
using the KMP method.
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Chapter 9

Introduction to volume [II

In volume [I| of this series, given a category Man of ‘manifolds’ satisfying some
assumptions, such as classical manifolds Man or manifolds with corners Man®,
we defined a corresponding category uKur of ‘u-Kuranishi spaces’, and 2-
categories mKur of ‘m-Kuranishi spaces’ and Kur of ‘Kuranishi spaces’.

In this volume [II} we study the differential geometry of these (m- and p-)
Kuranishi spaces, covering topics including tangent spaces T,, X and obstruction
spaces O, X, canonical bundles K x and orientations, (w-)submersions and (w-)
transverse fibre products X xg zp Y in mKur and Kur, virtual chains and
virtual cycles for compact, oriented (m-)Kuranishi spaces, orbifold strata of
Kuranishi spaces, and (co)bordism of (m-)Kuranishi spaces.

We will be constantly referring to volume [l As it would take many pages
to summarize the previous material we need, we have not tried to make this
volume independent of volume[ll So most readers will need a copy of volume [[] on
hand to make sense of this book, unless they already know volume [[| well. The
chapter numbering in this volume continues on from volume [[} so all references
to Chapters [[H8| and Appendices [A] [B] are to volume [l

Chapter [I0] defines and studies tangent spaces T, X and obstruction spaces
0, X for (- or m-)Kuranishi spaces X in mKur, pKur, Kur. These come from
a suitable notion of tangent space T, X in Man, where for categomes of manifolds
with corners Man®, ... there may be several versions T, X, b X T, X ', yielding
different notions T X T, X T, X, 0,X,°0,X,0,X in mKur, uKur Kur.
We also discuss apphcatlons, 1nclud1ng orientations on (u- and m-)Kuranishi
spaces. Tangent and obstruction spaces are functorial under (1-)morphisms in
mKur, uKur, Kur, and are useful for stating conditions on 1-morphisms. For
example, a 1-morphism f : X — Y in mKur is étale (a local equivalence) if
and only if T, f : T, X — T,Y and O, f : O, X — O,Y are isomorphisms for
all z € X with f(z) =y inY.

Chapter [11] studies transverse fibre products and submersions in mKur and
Kur. Given suitable notions of when morphisms g : X —- Z, h:Y — Z in
Man are transverse, so that a fibre product W = X x, 75, Y exists in Man
with dimW = dim X + dimY — dim Z, or when g : X — Z is a submersion,



so that g, h are transverse for any h : ¥ — Z, we deﬁne notions of when 1-
morphisms g : X — Z, h:Y — Z in mKur or Kur are w- transverse, so
that a 2-category fibre product W = X x4 z p Y exists in mKur or Kur with
vdim W = vdim X + vdimY — vdim Z, or When g: X — Z is a w-submersion,
so that g, h are w-transverse for any h: Y — Z.

For example, in Kuranishi spaces Kur over classical manifolds, 1-morphisms
g: X — Z and h: Y — Z are w-transverse if

0.990,Y:0,X®0,Y — 0.2

is surjective for all x € X and y € Y with g(x) = h(y) = z in Z, and then a
fibre product X x4 7z Y exists in Kur. This is automatic if Z is a manifold or
orbifold, so that O, Z = 0 for all z € Z. Such fibre products will be important
in applications in symplectic geometry.

In general, w-transverse fibre products do not exist in categories of u-
Kuranishi spaces pKur, nor in the homotopy categories Ho(mKur), Ho(Kur).
The 2-category structure on mKur and Kur is essential for forming fibre prod-
ucts, as the universal property of such fibre products involves 2-morphisms.
This is characteristic of ‘derived’ fibre products, and is an important reason for
working in a 2-category or co-category when doing derived geometry.

Chapters are not written yet, but will discuss virtual classes/chains for
(m-)Kuranishi spaces using the author’s theory of M-(co)homology [44], orbifold
strata for Kuranishi spaces, and (co)bordism for (m-)Kuranishi spaces.



Chapter 10

Tangent and obstruction spaces

If X is a classical manifold then each z € X has a tangent space 7, X, and if
f+X — Y is a smooth map there are functorial tangent maps 77 f : T, X — T,)Y
for x € X with f(x) =y € Y. For manifolds with corners Man®, Man®®, ...
there are (at least) two notions of tangent space T, X, T, X, as in

For (m- or p-)Kuranishi spaces X, it turns out to be natural to define
functorial tangent spaces T, X and obstruction spaces O, X for x € X. This
chapter studies tangent and obstruction spaces, and applies them in several ways,
for instance to define orientations on (m- or p-)Kuranishi spaces X.

10.1 Optional assumptions on tangent spaces

Suppose for the whole of this section that Man satisfies Assumptions 3.7
We now give optional assumptions on tangent spaces in Man.

10.1.1 Tangent spaces

We ask that our ‘manifolds’ X have a notion of ‘tangent space’ T, X satisfying
many of the properties one expects. Note that we do not require dim 7, X =
dim X, or that tangent spaces are the fibres of a vector bundle TX — X, which
are both false in some examples.

Assumption 10.1. (Tangent spaces.) (a) We are given a discrete property
A of morphisms in Man, in the sense of Definition which may be trivial
(i.e. all morphisms in Man may be A), and should satisfy:

(i) If f: X = Y is a morphism in Man with Y € Man, then f is A.

i) I f:W—-Y, g: X—>Y,h: X — Z are A morphisms in Man then the
product f x h: W x X — Y x Z and direct product (g,h): X - Y x Z
from Assumption e) are also A.

Projections nx : X XY — X, w1y : X XY — Y from products are A.



(b) For all X € Man and z € X, we are given a real vector space T, X called the
tangent space of X at x. For all A morphisms f: X — Y in Man and all z € X
with f(z) = y in Y, we are given a linear map T, f : T, X — T,,Y called the
tangent map. The dual vector space Ty X of T, X is the cotangent space, and the
dual linear map T3 f : T;Y — T; X of T, f is the cotangent map. If g1 Y — Z is
another A morphism and ¢(y) = z € Z then T, (go f) = TygoTof : To X = T.Z.
We have T,idx =idr, x : T X — T, X.

(c) For all X,Y € Man and z € X, y € Y the morphism
T(w,y)ﬂX D T(Ly)ﬁy : T(z,y)(X X Y) — T, X® TyY (101)

is an isomorphism, where 7x, Ty are A by (a)(ii).

(d) If i : U — X is an open submanifold in Man then Tyi : T, U — T, X is an
isomorphism for all x € U C X, so we may identify T, U with T, X.

(e) If X € Man C Man is a classical manifold and = € X then T, X is (canon-
ically isomorphic to) the usual tangent space T, X of manifolds in differential
geometry. If f: X — Y is a morphism in Man C Man, so that f is A by
(a)(i), and z € X with f(z) =y € Y, then T, f : T, X — T,)Y is the usual
derivative of f at x in differential geometry.

Example 10.2. (i) If Man = Man then A must be trivial (i.e. all morphisms
in Man are A) by Assumption [10.1(a)(i), and T, X, T, f must be as usual in
differential geometry by Assumption [10.1fe), and then Assumption holds.

(ii) Let Man be Man® or ManS,, from Chapter [2| and let A be trivial. Then
as in each X € Man has tangent spaces T, X for all z € X and tangent
maps T, f : T, X — T,Y for all morphisms f: X — Y in Man and z € X with
f(x) =y €Y, which satisfy Assumption m

(iii) Let Man be one of Man®, Man8®, Man®®, Man®?¢ from Chapter [2| and
let A be interior maps in this category. Then as in each X € Man has
b-tangent spaces *T, X for all z € X, and each interior morphism f: X — Y in
Man has b-tangent maps *T, f : °T, X — ’T,Y forall z € X with f(z) =y €Y,
which satisfy Assumption [10.1

(iv) Let Man be one of Man®, Man&°, Man®®, Man®?¢, and let A be trivial.
Then as in each X € Man with dim X = m has a depth stratification
X =T, S*(X) with S*(X) a classical manifold of dimension m — k, and any
morphism f : X — Y in Man preserves depth stratifications. (The latter does
not hold for Man$,., which we exclude).

For each z € S*(X) C X, define T, X = T,,S*(X). We call this the stratum
tangent space of X at z. If f : X — Y is a morphism in Man and z € Sk(X)CXx
with f(z) = y € S{(Y) C Y then near flsk(x) is a smooth map of classical
manifolds S*¥(X) — S'(Y) near z. Define

Tof = To(flse(x)) : TuX = TpSH(X) — T,Y = T,S(Y).
Then these A, T, X, T, f satisfy Assumption m

4



(v) Let Man satisfy Assumptions [3.1 and let A be trivial. Then as in
(c) and qB.1.3 we define a functor Fl\?[:nSCh : Man — C*°Sch® to the
category of affine C*°-schemes. Now C'*°-schemes X = (X, Ox) have a functorial
notion of tangent space T, X for x € X, given by T, X = (2x o ®0, , R)*, where
QUx is the cotangent sheaf of X from |45, §5.6] (which we used in to define
T*X), and Qx o, Ox o are the stalks of Qx,Ox at .

Thus, for any Man we can define T¢ X, TS ~f satisfying Assumption m
by applying FK(/JI:HSCh : Man — C°Sch®® and taking tangent spaces of C'>°-
schemes. The result is canonically isomorphic to the tangent spaces T, X in
(i),(ii) in those cases, but not isomorphic to *T, X, T, X in (iii),(iv).

Note that Man® has three different tangent spaces satisfying Assumption
in (ii)—(iv). Here is a way to compare different notions of tangent space:

Definition 10.3. Suppose we are given two notions of tangent space T, X, T, f
for f with discrete property A, and T/.X, T/ f with discrete property A’, both
satisfying Assumption in Man. A natural transformation I : T=T' assigns
a linear map I, X : T, X — T/ X for all X € Man and z € X, such that:

(i) If f: X =Y is a morphism in Man which is both A and A’, and = € X
with f(z) =y € Y, the following diagram commutes:

T.X T,Y
T.f

\Lle IyY\L
T, f

TIX T)Y.

(ii) If X € Man C Man, so that T}, X, T X are both the usual tangent space
T, X by Assumption [10.1fe), then I, X = idr, x.

Example 10.4. (a) Let Man = Man®. Then Example M(ii),(iii) define
tangent spaces T, X with A trivial, and ®T, X with A interior, satisfying As-
sumption‘lO.ll As in [2.10) in there are natural maps I, X : X - T, X
satisfying Definition [10.3}

b) When Man = Man® there are injective maps ¢, X : T,X — T, X in Example
ii),(iv), the inclusions T;,S*(X) < T, X, satisfying Definition [10.3]

(c) Let Man be one of Man®, Man®®, Man®®, Man®?¢. Then there are nat-
ural surjective maps I, X : *T, X — T,X in Example ii1),(iv) satisfying
Definition [0.3

We can also add a further assumption on dimensions of tangent spaces:

Assumption 10.5. Assumption [I0.1] holds, and T}, X is finite-dimensional with
dim 7T, X = dim X for all X € Man and x € X.

This holds for Example [10.2|i)-(iii), but not for Example [10.2]iv)~(v).
To use Assumption [[0.1] we will need the following notation:
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Definition 10.6. Let Assumption hold for Man, with discrete property
A and data T, X, T, f. Suppose w : E — X is a vector bundle in Man, and
s € I'°(E) be a section, and z € s71(0) C X. We will define a linear map
dys : T, X — E|,, where E|, is the fibre of E at z, which we think of as the
derivative of s at x.

The section s, and the zero section Og, are both morphisms X — F in Man,
with s(z) = Og(z) as # € s71(0). Write e = s(x) = Og(z). Then n(e) = z.
Using Assumption [10.1(a) and Definition iv) we can show that s,0p, 7 are
all A. Hence Assumption [I0.1] gives linear maps

Tps: ToX — T.E, T,0p:ToX — T,B, Tr:T,F — T, X,

with TeroTys = Tem o T,0p = idr,x as mos = wo0g = idy. By definition
of vector bundles, there is an open neighbourhood U of x in X on which F is
trivial, so E|ly 2 U x R” identifying 7ly : Ely = U with e : U x R* — RE.
Thus from Assumption ¢)—(e) we get a natural isomorphism

T.E=T,X®R*~T,X & F|,, (10.2)

identifying T,w : T.E — T,X with idp,x ®0 : T, X ® E|, — T.X, and
T.0p : Tp X — T.E withidy, x ®0: T, X - T, X®FE|,. Writed,s: T, X — E|,
for the composition of T, s : T, X — T, FE with the projection T.E — E|, from
. When Man = Man, this d s : T, X — E|, is Vs, : T, X — E|, for any
connection V on E| and is independent of the choice of V, as s(z) = 0.

10.1.2 Tangent spaces and differential geometry in Man

Suppose throughout this section that Man satisfies Assumptions and
Assumption [10.1] so that we are given a discrete property A of morphisms in
Man, and ‘manifolds’ V in Man have tangent spaces T, X for z € X, and A
morphisms f : X — Y in Man have functorial tangent maps T} f : T, X — T,Y
for all x € X with f(z) =y € Y. We will relate tangent spaces T,, X to (relative)
tangent sheaves 7X,7;Y from §3.3.4) and §B.4}

Definition 10.7. Let f : X — Y be an A morphism in Man, and a € I(7;Y),
and z € X with f(z) =y € Y. We will define an element «|, in T,Y.

By Definition [B.16] we have a = [U,u] for i : U = X x Rand u: U —» Y in
a diagram (B.F)), with u(z,0) = y. Using Definition [B.3§[(iii),(viii) and that f is
A we can show that u is A near X x {0}. Thus we have linear maps

T(z,0%) " Te,0)U
ToX &R —> T(s0)(X x R) ((T>> Ty U ——2—=T,Y, (10.3)

where the first two isomorphisms come from Assumption ¢),(d),(e). Define
al, to be the image of (0,1) € T, X & R under the composition of (10.3).

To show this is well defined, suppose also that o = [U’,v] for U',«/ in a
diagram (B.F]). Then (U,u) ~ (U’,u’) in the notation of Definition S0



there exist open j : V < X x R? and a morphism v : V — Y satisfying
with Z = z. As for u we find that v is A near (z,0,0), so as for (10.3]) we have

Tie0,07) " T(z.0,0)V
ToX ®R® R —> T4 0,0)(X x R?) % Tiwo0)V —2 = T,Y.

The equations of imply that

T(z,O,O)v(w7 S, 0) = T(z,O)u(wa 5)7 T(w,O,O)v(wa 07 5/) = (T(J,O)ul)(wv S/)7
and T(z,0,0v(0,8,—s) =0,

for w € T, X and s,s" € R. Hence T, 0)u(0,1) = T(,0)u'(0,1) by linearity of
T(2,0,0)0; 0 &, is independent of the choice of representative (U, u) for o, and
is well defined.

From the definition of the C°°(X)-module structure on I'(7;Y") in
we see that o — «f, is R-linear, and satisfies (a - )|, = a(z) - () for all
a€C™®(X)and a € I'(TFY).

Now let £ — X be a vector bundle, and 6 : E — T;Y be a morphism in
the sense of Then we have a map I'*°(E) — T,Y taking e — (0 o ¢e)|,
for all e € I'™°(E), so that foe € T'(7;Y). As this is R-linear and satisfies
(fo(a-€))|e = a(x)-(foe)|, for a € C®°(X) and e € I'*°(E), the map e — (foe)|,
factors via e|, € E|,. That is, there is a unique linear map 6|, : E|, — T,Y
with (foe)|, = 0|.(el,) for all e € T™(E).

Suppose 0 : E — T;Y is of the form 6y, in the notation of Definition
for some open j: V < E and v : V — Y in a diagram . Then v is A near
(2,0) in V, and as for we have linear maps

1
T.X @ E|, — T, O)E%T@ 0)X/Lxry (10.4)

and we can show that 6| (e) is the image of (0,e) under ) for each e € E|,.
In the case when Man = Man and 7}, X is the ordlnary tangent space, TY is

the sheaf of sections of f*(TY),so 0 : E — f*(TY) is a vector bundle morphism

on X, and 0|, : E|, — f*(TY)|, = T,Y is just the fibre of the morphism at z.

The next proposition can be deduced from the definitions in a fairly straight-
forward way, using functoriality of tangent maps in Assumption b)7 and
writing 6 using either (|10.3)) or (10.4). For example, in (a), if § = 6y, then
Tgob=0vg0,, and (a) follows from M and T, 0y(g 0 v) = Tyg o T(z 0)v-

Proposition 10.8. (a) Suppose f : X — Y, g: Y — Z are A morphisms in
Man, and E — X is a vector bundle, and 9 E —> TfY is a morphism so that

Tgol:E = TyrZ is a morphism as in ) and § . Then

forall x € X with f(xr) =y €Y and gy )—ZGZ wehcwe
T,g00l, = (Tgo0)s: Ele — T.Z. (10.5)

(b) Suppose f: X =Y, g:Y — Z are A morphisms in Man, and F — Y
is a vector bundle, and 6 : F — T,Z is a morphism on Y, so that we have
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a morphism f*(0) : f*(F) = TgorZ as in §3.3.4g) and §B.4.9| Then for all
x € X with f(x) =y €Y and g(y) = z € Z, we have

F O)e =0y : f*(F)le = Fly — T.Z. (10.6)

(c) Suppose f: X =Y is an A morphism in Man, and E,F - X, G > Y
are vector bundles, and s € T'°(E), t € T'>°(G) with f*(t) = O(s), and A :
F = T:Y is a morphism, and 0 : F — f*(G) is a vector bundle morphism with
0 = f*(dt) o A+ O(s) in the sense of Definitions [3.15(vi) and [B.36(vi). Then
for each x € X with s(x) =0 and f(z) =y €Y, we have

0l, = dytoAl, : B, — FJ,, (10.7)

where dyt is as in Definition [10.6]

(d) Suppose f,g : X — Y are A morphisms in Man, and E — X is a
vector bundle, and s € T°(E), and A : E — T;Y be a morphism with g =
f+Aos+0O(s?) as in Definitions vii) and mvii), Then for each x € X
with s(x) =0, so that f(z) = g(x) =y € Y, we have

Tog=Tof +Alyodys: T, X — T,Y. (10.8)

10.1.3 Assumptions on f: X — R", and on local
diffeomorphisms

Supposing Assumption holds, we give some more assumptions on 1\'/Ian7
expressed in terms of tangent spaces T, X. They will be used in §10.4-410.5

Assumption 10.9. Let Assumption hold for Man, giving notions of
tangent space T, X and tangent maps T, f : T, X = T,Y for f: X = Y in Man
satisfying a discrete property A.

Suppose f: X — R" is a morphism in Man, so that f is A by Assumption
[10.1(a)(i), and € X such that f(z) = 0 and T, f : T,X — TopR" = R" is
surjective. Then there exists a commutative diagram in Man:

reU = Vx W W>0
k ™W
& @ (10.9)
! n
X R™,

where i : U < X, j: W — R" are open submanifolds in Man with z € U C X
and 0 € W C R", and V is an object in Man with dimV = dim X — n, and
k:U — V x W is a diffeomorphism in Man.

Suppose further that a finite group I' acts on X fixing x € X, and IT" acts
linearly on R", and f : X — R" is I-equivariant. Then we can choose U, W to
be T'-invariant, and V' to have a I'-action making T'-equivariant.



Example 10.10. (a) Assumption holds for Example i),(iii),(iv).

(b) As in Example ii), let Man be Man® or ManS,,, and A be trivial,
and T, X, T, f be as in Then Assumption does not hold. For example,
let f: X =Y be the inclusion map i : [0,00) — R, and = 0 € [0,00). Then

Toi : Tp[0,00) — ToR is surjective, but no diagram (10.9) exists in Man.

Assumption 10.11. Let Assumption hold for Man, giving notions of
tangent space 1T, X and tangent maps T, f : T, X — T,Y for f: X — Y in Man
satisfying a discrete property A. We should be given another discrete property
B of morphisms in Man, such that B implies A.

Suppose f : X — Y is a B morphism in Man, and z € X with f(z) =y, and
T.f : Ty X — T,Y is an isomorphism. Then there should exist open submanifolds
i:U< Xand j:V < Y in Man with € U and V = f(U) C Y, so that
there is a unique f’: U — V in Man with foi = jo f’ by Assumption (d),
and f': U — V should be a diffeomorphism in Man.

Example 10.12. (i) Let Man = Man, and A be trivial, and T, X, T, f be as
usual in differential geometry, so that Assumption holds as in Example
i). Take B to be trivial. Then Assumption [10.11] holds.

(ii) Let Man = Man® from Chapter and A be trivial, and T, X, T, f be as in
so that Assumption holds as in Example ii). Take B to be simple
morphisms. Then Assumption holds. That is, if f: X — Y is a simple
morphism in Man® and T, f : T, X — T,Y is an isomorphism then f is a local
diffeomorphism in Man® near x € X and y € Y.

Note that we do not allow Man = Man$,, in this example, although Example
ii) includes Man$,,. One can show that the only discrete property B of
morphisms in Man$,, is B trivial, and Assumption does not hold.

(iii) Let Man be one of Man®, Man2®, Man®°, Man®2¢ from Chapter 2| and
A be interior maps, and consider b-tangent spaces T, X and b-tangent maps
ST f : YT, X — *T,Y for interior f in Man as in so that Assumption
holds as in Example [10.2[(iii). Take B to be simple morphisms. Then B
implies A, as simple morphisms are interior, and Assumption holds.

(iv) Let Man be one of Man®, Man&¢, Man?¢, Man®2¢ from Chapter [2| and
A be trivial, and consider stratum tangent spaces T, X and stratum tangent
maps Ty f : Tu X — TyY as in Example Miv), so that Assumption holds.
Take B to be simple morphisms. Then Assumption holds.

10.1.4 Assumptions on tangent bundles, and orientations

In the next assumption we suppose that tangent spaces 7, X in Assumption [10.1
are the fibres of a vector bundle TX — X.

Assumption 10.13. (Tangent vector bundles.) (a) Let Assumption
hold for Man, with tangent spaces T, X and discrete property A. For each
X € Man there is a natural vector bundle 7 : TX — X called the tangent
bundle, of rank dim X, whose fibre at each z € X is the tangent space T, X.
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The dual vector bundle of T'X is called the cotangent bundle T*X — X,
with fibres the cotangent spaces T); X.

(b) If f: X — Y is an A morphism in Man there is a natural vector bundle
morphism Tf : TX — f*(TY) on X, such that if z € X with f(z) =y inY
then the fibre T'f|, of T'f at x is the tangent map T, f : T, X — T,Y.

The dual morphism is written T f : f*(T*Y) - T*X.

Using part (b) and §10.1.2] we can show that if f : X — Y is an A morphism
in Man, and £ — X is a vector bundle, and § : E — T;Y is a morphism, then
there is a vector bundle morphism 6 : E — f*(TY) on X whose fibre at x € X
with f(z) =y in Y is 0|, = 0|, : E|, — T,Y from Definition

Example 10.14. As in Chapter [2] Assumption holds for tangent spaces
T,X in Man,Man® and Man$,, from Example [10.2{i),(ii), and for b-tangent
spaces °T, X in Man®, Man&®, Man?®, Man®?2¢ from Example iii). But
it fails for stratum tangent spaces T,X in Man®, ..., Man®2° from Exam-

ple iv).

In §2.6| we discussed orientations on objects X in Man, Man® Man8°,
Man?¢, Man®2¢, using the vector bundles 7*X — X or *T*X — X. Under
Assumption |10.13| we can make the same definitions in Man.

Definition 10.15. Let Assumption hold for Man. An orientation ox
on an object X in Man is an equivalence class [w] of top-degree forms w in
0o (AU X7 X)) with wl, # 0 for all z € X, where two such w,w’ are equivalent
ifw = K-wifor K : X — (0,00) smooth. The opposite orientation is —ox = [—w].
Then we call (X,0x) an oriented manifold. Usually we just refer to X as an
oriented manifold, and then we write —X for X with the opposite orientation.

We will call the real line bundle AT XT*X — X the canonical bundle K x
of X. Then an orientation on X is an orientation on the fibres of Kx.

If £ € X and (v1,...,v,,) is a basis for T, X, then we call (v1,...,v)
oriented if w|; - vy A+ Avy, > 0, and anti-oriented otherwise.

Let f : X — Y be a morphism in Man. A coorientation cy on fis an
orientation on the fibres of the line bundle Kx ® f*(K3) over X. That is, ¢ is
an equivalence class [y] of nonvanishing sections v € T*°(Kx ® f*(K3)), where
two such ~,+" are equivalent if v/ = K -~ for K : X — (0,00) smooth. The
opposite coorientation is —cy = [—7]. If Y is oriented then coorientations on
f are equivalent to orientations on X. Orientations on X are equivalent to
coorientations on w : X — *, for * the point in Man.

The reason we need Assumption to define orientations, is that the
vector bundle structure on T X — X gives us a notion of when orientations on
T,. X vary continuously with x € X, which does not follow from Assumption [10.1
alone. We will use Convention in Man whenever it makes sense.

Here is an extension of Assumption to manifolds with corners:

Assumption 10.16. Let Assqmption hold for Man®. Suppose Assump-
tions and |10.13| hold for Man®, so that from Assumption we have a

10



discrete property A of morphisms in Man€, and tangent spaces T, X for objects
X in Man® which are fibres of the tangent bundle TX — X, and tangent maps
T.f : To X — T,Y for A morphisms f: X — Y in Man®, which are fibres of
the vector bundle morphism T'f : TX — f*(TY).

Assumption includes a discrete property of morphisms in Man® called
simple maps. We require that all simple maps are A.

We require that either (a) or (b) holds for Man®, where:

(a) For each X in Man®, so that by Assumption M(d) we have the boundary
0X with morphism iy : X — X, we are given a canonical exact sequence
of vector bundles on 9.X:

0> Noxy — X o 5 (TX) — X~ 7@OX)—=0, (10.10)

where Nyx is a line bundle (rank 1 vector bundle) on X, and there is
natural orientation on the fibres of Nyx. If f : X — Y is simple in Manc,
so that we have 0f : 0X — 9Y with iy 0 0f = f oix by Assumption
10.1)(g),(i), then the following commutes:

T(OX) —=0
lT(c’?f)

0 Nox = (T X) —
Vi li}(Tf)
@) (ay) ., ) 0F)" (By)

s (f(TY) N

! (10.11)
0 — (0f)*(Noy) — =(0f)* (it (TY)) — (0f)"(T(9Y)) = 0.

Here a unique vy making (10.11) commute exists by exactness, and we
require that ¢ should be an orientation-preserving isomorphism.

If g : X — Z is a morphism in Man® with Z € Man C Manc, so that g
and goiyx : X — Y are A by Assumption a)(i) and Tg, T(goix)
are defined by Assumption [10.11{(b), we have

ix(Tg) =T(goix)o fx : ix(TX) — (goix)"(T2). (10.12)
(b) For each X in Man® we have an exact sequence of vector bundles on §X:

0—>T(OX) — X~ i (TX) — 2 = Nox —=0,  (10.13)

where Ny is a line bundle on 90X, with a natural orientation on its fibres.

If f: X =Y is simple in Man®, then the following commutes:

0— > T(3X)

J{T(c’?f)
(0)" (av)
0= (0f)(T(0Y)) —

5 (TX) —— Nox 0

\Liﬁ( (Tf) vr
.. ©H (By) v
= (Za)}gf(g()})})) — (9f)*(Nay) — 0.

ax

(10.14)

11



Here a unique vy making (10.14) commute exists by exactness, and we
require that y¢ should be an orientation-preserving isomorphism.

If g : X — Z is a morphism in Man® with Z € Man C Manc, then
g,goix are A, and in a similar way to (10.15)) we have

T(goix)=1i%x(Tg)oax : T(0X) — (goix)* (TZ). (10.15)

In both cases we interpret Nyx as the normal bundle of X in X. Our
convention is that Nyx should be oriented by outward-pointing vectors.

Example 10.17. (i) Let Man® be Man®, Man®®, Man®® or Man®?¢ from
Chapter [2 and A be interior maps, and use b-tangent spaces ?7T, X and the
b-tangent bundle *7'X from Then Assumption a) holds, where ((10.10)
is equation (2.14) for Man® and Man8® (when *Nyx = Opx is naturally trivial),
and for Man®® and Man®2¢ (when ®Npx is not naturally trivial).

(ii) Let Man® be Man® from and A be trivial, and use ordinary tangent
spaces 1, X and the tangent bundle TX from Then Assumption [10.16{(b)

holds, where ([10.13)) is equation (2.12)).

As in Convention ¢), from an orientation on a manifold with corners X
in Man®, we can define an orientation on 0.X.

Definition 10.18. Work in the situation of Assumption [10.16] and let X €
Man® with dim X = n. In both cases (a),(b) we will define an isomorphism

Qx : A" 'T*(0X) — Nox ® i% (A"T*X) (10.16)

of line bundles on 0X. In case (a), so that we have an exact sequence ,
it U C 90X is an open subset on which T(0X),i%(TX), Nox are trivial, and
(c1),(d1,...,dy), and (es,...,e,) are bases of sections of Nox|v,i% (TX)|v,
T(0X)|u respectively with ax(c1) = d; and Sx(d;) =e; for i =2,...,n, and
(61,...,0n), (€2, ..., €) are the bases of sections of % (T*X)|y, T*(0X)|y dual
to (di,...,dy), (ea,...,e,), then we define Qx|y by

Qx|U162/\‘-‘/\6,1i—>01®((51/\"'/\5n). (1017)

It is easy to show that Qx|y is independent of the choice of bases, and that
such Qx |y glue over open subsets U C X covering X to give a unique global
isomorphism Qx in .

In case (b), so that we instead have an exact sequence , we again define
Qx| using bases (c¢1),..., (€2,...,€,), as above, but now we instead require
that ax(e;) =d; for i =2,... ,n and Bx(d) = ¢1.

If X is oriented, then we have an orientation on the fibres of A"T*X — X,
and thus on the fibres of i% (A"T*X) — 0X. But by Assumption [10.16{a),(b),
we have an orientation on the fibres of Ngx — 0X. Tensoring these orientations
together and pulling back by Qx in gives an orientation on the fibres of
A"1IT*(0X) — 0X, that is, an orientation on the manifold with corners 9.X.

12



Note that defining this orientation on d.X involves an orientation convention,
as in Convention which in this case is the choice of how to write ,
together with the choice to orient Nyx by outward-pointing vectors.

If X is oriented then by induction 9*X is oriented for k =0, ..., dim X.

10.1.5 Quasi-tangent spaces

In Definition [2:16] for a manifold with corners X and z € X we defined stratum
(b-)normal spaces NzX, bNIX and a commutative monoid MzX C szX, which
are functorial under (interior) morphisms in Man®. In the *N, X, M, X
are extended to manifolds with g-corners. We call these quasi-tangent spaces, as
they behave rather like tangent spaces. Here is an assumption that will enable
us to extend quasi-tangent spaces to (m- and p-)Kuranishi spaces in

Assumption 10.19. (Quasi-tangent spaces.) (a) We are given a category
Q of some algebraic or geometric objects, which quasi-tangent spaces will take
values in. Some examples of categories Q we are interested in are:

(i) Finite-dimensional real vector spaces V and linear maps A: V — V.
(ii) Monoids M with M 22 N* for k > 0, and monoid morphisms p : M — M.

(iii) Toric monoids M, and monoid morphisms p: M — M’.

We require that Q should have a terminal object, which we write as 0.
Products Q1 x Q2 of objects Q1, Q2 in Q (that is, fibre products Q1 X Q2) exist
in Q, with the usual universal property. We require that if {Q; : ¢ € I} is a set
of objects in @, and ¢;; : Q; — @; are isomorphisms in Q for all 7,j € I such
that g;r = q;i o qi; for all 4, j,k € I, then there should exist a natural object
Q = [[L;e; Qil/ ~ in Q with canonical isomorphisms ¢; : Q — Q; for i € I such
that ¢; = ¢;5 0 ¢; for all 4, j € I. We think of @) as the quotient of the disjoint
union J[,;.; Qi (which may not be an object of Q) by the equivalence relation ~
induced by the g;;.

(b) We are given a discrete property C of morphisms in 1\./Iar.17 in the sense of
Definition which may be trivial (i.e. all morphisms in Man may be C),
and should satisfy:

(i) If f: X =Y is a morphism in Man with Y € Man, then f is C.

@) X f:W—=Y,g: X >Y, h: X = Z are C morphisms in Man then the
product f x h: W x X =Y x Z and direct product (g,h) : X =Y x Z
from Assumption e) are also C.

Projections nx : X XY — X, 1y : X XY — Y from products are C.
(c) For all X € Man and z € X, we are given an object X in Q called the
quasi-tangent space of X at x. For all C morphisms f: X — Y in Man and all
x € X with f(x) =y in Y, we are given a morphism @, f : QX — Q,Y in Q
called the quasi-tangent map. These satisfy:

13



(i) Iff: X =Y, g:Y — Z are C morphisms in Man and z € X with
f(x) =yinY and g(y) = z in Z then Qz(g0f) = QygoQaf : QX — Q.Z
Also Qxldx = ideX : QxX — QxX

(ii) For all X,Y € Man and = € X, y € Y the morphism

(Q(l.’y)’/'rx, Q(Ly)’/'ry) : Q(L7y)(X X Y) — QIX X QyY (1018)

is an isomorphism in Q, where wx, 7y are C by (b)(ii).

(iii) If ¢ : U < X is an open submanifold in Man then Q,i: Q.U — Q. X is
an isomorphism for all x € U C X, so we may identify Q,U with Q,X

(iv) If X € Man C Man is a classical manifold and z € X then Q,X = 0.

(v) Let X,Y be objects of Man, and E — X a vector bundle, and s € I°(E) a
section, and f,g X —YbeC morphisms in Man with g = f+0(s) asin
Definition (111) Suppose z € s71(0) C X, so that f(z) =g(z) =y €Y.
Then Qo f — Qug: QuX — QY

Example 10.20. (a) Take Man to be Man® from and C to be trivial (i.e.
all morphisms in Man€ are C'), and Q to be the category of finite-dimensional real
vector spaces. Definition deﬁnes the stratum normal space N, X, an object
in Q, for all X € Man*® and:ceX and a linear map N, f : NX—)NY
a morphism in Q, for all morphisms f : X — Y in Man® and z € X With

f(z) =y € Y. These satisfy Assumption

(b) Take Man to be Man® from §2.1, and C to be interior morphisms, and
Q to be the category of finite-dimensional real vector spaces. Definition [2.16]
defines the stratum b-normal space *N, X, an object in Q, for all X € Man*®
and z € X, and a morphism N, f : °N, X — bNyY in Q, for all interior
morphisms f: X — Y in Man® and z € X with f(z) =y € Y. These satisfy
Assumption

(c) Take Man to be Man® from and C to be interior morphisms, and Q
to be the category of commutative monoids M with M = N* for some k > 0.
Definition defines an object M, X in Q for all X € Man® and z € X, and
a morphism xf M, X — MyY in Q, for all interior morphisms f: X — Y in
Man® and x € X with f(z) =y € Y. These satisfy Assumption

(d) Take Man to be Man8® from and C to be interior morphisms, and
Q to be the category of finite-dimensional real vector spaces. As in §2.4.1] the
PN, X and N, f : "N, X — bNyY in (b) are also defined for X,Y € Man8°.
These satisfy Assumption

(e) Take Man to be Man&¢ from §2.4.1} and C' to be interior mor hisms, and
Q to be the category of toric commutative monoids M. As in | the M, X
and M, f : M, X — M,Y in (c) are also defined for X,Y € Mangc though now
M, X may be general toric monoids. These satisfy Assumption
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10.2 The definition of tangent and obstruction spaces

In this section we suppose Man satisfies Assumption in € throughout,
so that we are given a discrete property A (possibly trivial) of morphisms in
Man, and ‘manifolds’ V in Man have tangent spaces T,V for v € V, and A
morphisms f : V — W in Man have functorial tangent maps T, f : T,V — T\ W
for all v € V with f(v) = w € W. For each (m- or u-)Kuranishi space X we will
define a tangent space T, X and obstruction space O, X for x € X, which behave
functorially under A (1-)morphisms f: X — Y in mKur, pKur, or Kur.

If we also suppose Assumption [I0.5} which says that dim 7,V = dim V/, then
these satisfy dim 7, X — dim O, X = vdim X.

10.2.1 Tangent and obstruction spaces for m-Kuranishi
spaces

We define tangent and obstruction spaces T, X, 0O, X for m-Kuranishi spaces.

Definition 10.21. Let X = (X, K) be an m-Kuranishi space, with K = (I, (V;
Ei,si,0)icr, ®ij,ijer, Nijr, ijker) and @45 = (Vij, dij, dij), Nije = [Viji, Aiji)
for all 4, j, k € I, as in Definition and let z € X.

For each 7 € I with « € Im ), set v; = ¢, 1(96)7 and define real vector spaces
K¥,C?¥ by the exact sequence

dy. si

0 K? T,V —*" s E,

ce 0, (10.19)

7

where d,, s; is as in Definition [T0.6} so that K, Cf are the kernel and cokernel
of dy, s;. If Assumption holds then Definition b) gives

dim K7 —dim Cf =dim T,,, V; —dim E;|,, =dim V; —rank F; =vdim X. (10.20)
For i,j € I with € Im; NIm1; we have v; € V;; C V; with ¢;;(v;) = v;

in Vj. Proposition d) and Definition imply that ¢;; is A near v;, so
Ty, 05 Ty, Vi — T, Vj is defined. Thus we may form a diagram with exact rows:

Sy iTvim » Bislon | By (10.21)
0 K¥ T, V; Ejly, —= C¥ ——0.

By differentiating Definition d) at v; we see the central square of ((10.21
commutes, so by exactness there are unique linear mgij,fyg;ij making (10.21
commute.
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If 4,7,k € I with z € Imvy; NIm1; N Im1y, then we have a diagram

0—> K7 T,V —— Eil, Ccr —=0
ngik l/ﬁiﬁij Ty, dik \LTuM’ij j\ijklvi $1J|U\L d;ik‘vi "/(i”.i/ \)w?{;m
0 —|K? TV ————— Byl C7l—0 (10.22)
Z Ty, bjn. U{ ’ z
ik binlo, T
# duy, Sk o
0— K¢ Ty, Vi Ek |, Cy —0,

which combines (10.21f) for ¢,j and j,k and ¢, k. Note that (10.22)) may not
commute: we can have @i # ¢jr © ¢i; and ¢, # qbfj(quk) o ¢i; near v; in V;,
allowing

v; 7é (bjk'vj © ¢ij

Ty i # To, 01 © Toypij and gy

(P

, ~

The 2-morphism Aj;x = [Vijk, Aiji] : @jr 0 P;j = @i, includes a morphism
Aijk - Ei|\?1-jk — ﬁjko@jVMVUk, where v; € Vijr C V;. Thus as in §10.1.2] we
have a linear map Ajji|v, : Eilv, = Tu, Vi, the arrow ‘--»" in (10.22). Applying
(10.7)—(10.8) to equation (4.1)) for A;jx at v; yields

Ty, 0ik = To, ik © To,bij + Nijilw, 0 du, s+ T, Vi — T, Vi,
dsik|vi = &jk‘vj o Qgij v, + dvksk o 5\1'j.1f|vi : E1|v7 — Ek|vk~

Comparing (10.22)) and (10.23]) and using exactness in the rows of ((10.22]), we
deduce that

(10.23)

x _ .z x x _ T x
Ko, = Kg,, ©rs,, and g, =73, °7s,, - (10.24)

When k = i we have ®;; = id(v; g, s, 4,) by Definition f), so kg, =idks,
Vs, = idcz, and from (10.24) we see that mgw,ygu are 1somorphisms, with

inverses nf{,ji , 'y&”,ji.
Define the tangent space T, X and obstruction space O, X of X at = by

X =]] Kf/~ and 0,X =]] Cr/=, (10.25)

i€l:x€lm; i€l:x€lm;

where =~ is the equivalence relation k; ~ k; if k; € K and k; € K7 with
kg, (ki) = k;, and < the equivalence relation ¢; < ¢; if ¢; € Cf and ¢; € C7
with 13, (¢i) = ¢;. Here and K30V, isomorphisms with x§ = = id,
Vg, = id imply that ~, =< are equivalence relations. Then T, X, 0, X are real
vector spaces with canonical isomorphisms 7, X = K and O, X = C¥ for each
i € I with x € Im1);; the work above is just to make the definition of 7, X, O, X
independent of the choice of i.

If Assumption holds then (|10.20)) gives
dim 7T, X —dim O, X = vdim X. (10.26)

The dual vector spaces of T, X,0,X will be called the cotangent space,
written 77y X, and the coobstruction space, written O} X.
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By (10.19)), for any i € I with = € Im; we have a canonical exact sequence

v Si
v; S

0 T, X T, V; Eilo, 0, X 0. (10.27)

More generally, the argument above shows that if (V,, Fq, Sq,%,) is any m-
Kuranishi neighbourhood on X in the sense of §4.7| with = € Im,, we have a
canonical exact sequence analogous to .

Now let f: X — Y be a l-morphism of m-Kuranishi spaces which is A in
the sense of with notation , , , and let x € X with f(z) =y
in Y, so we have T, X,0, X, T,Y,0,Y. Suppose i € I with z € Imy; and
j € J with y € Im;, so we have a morphism f,; = (Uij,fij,fij) in f, where
fij is A near X;l(Im ;) by Definitions and As for , consider

the diagram

0 T,X T, Ui ——— Diluy, —= 0, X —0
= T, fij o fiilu, O, .
[Tt | . st 07 (10.28)
0 T,Y T,V : Ej|,, —> 0, —0,

where the rows are for X,z,i and Y,y,j and so are exact. As for
the central square commutes, so there are unique linear maps T, f : T, X — T,,)Y
and O, f : O, X — O,Y making commute. A similar argument to the
proof of above shows that these T}, f, O, f are independent of the choices
of i € I and j € J, and so are well defined.

If (Ua, DayTa, Xa) and (Vi By, $p, 1) are any m-Kuranishi neighbourhoods
on X,Y respectively in the sense of §4.7 with € Im,, y € Im1), and
Far = Uab, fab, fab is the 1-morphism of m-Kuranishi neighbourhoods over f
given by Theorem b), then setting u, = x; (), vp = z/ng(y), the argument
of shows that the following commutes, with exact rows:

0 TIX TuaUa T‘D(Jua HOIXHO
|z.s e ) ) [iuskur |00 (10.29)
0 T,Y TV —— 25 By, 0,Y 0.

Suppose e : X — Y is another 1-morphism of m-Kuranishi spaces, and
1M = (Mij ic1, jes) : € = f is a 2-morphism, so that e is A by Proposition
a). Then for z,y,14,j as above, consider the diagram

Tme“/Tzf Tu,€ij \L\LTuifij Al o \wﬁ”“i Oxe\wwa (10.30)
0—T, Y —=To,V; Ejlo, 0,Y 0.

dvj S5

As for (|10.23)), applying 1}1] to 1) for m;; = [Vmﬁij] at v; yields
Tu, fij = Tu,ei5 + ﬁij‘vi ody,s;: Ty, Vi — TUjVj7

7. B (10.31)
17 v 4

u; +do; 85 07; vi — Ejlu;-

u; = Cij
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As for ((10.24)), combining (|10.30)) and (10.31)) yields
T,e=T,f and O,e=0,f. (10.32)

Thus, the maps T, f,O.f depend only on the A morphism [f] : X — Y in
Ho(mKur), and on z € X.

Now suppose g : Y — Z is another A 1-morphism of m-Kuranishi spaces
and g(y) = z € Z. In a similar way to (10.22)), considering the diagram

0—>T,X T,,U; —— Dila, 0, X —=0
T, (gof) \LTIf Ty, (90f )ik iT“' fy 6L, i i (958 ik, Ozfl/ Ox(gof)
0—={T,Y T, Vi —— Ej, 0,Y|—=0
Ty. gik vy 83
Vme A Md] el
w k
0 1.Z T Wi - Filu, 0.Z —0,

applying (10.7)-(10.8) to (4.1) for 6% = [V47 09:7] in (4.24), we show that
Tu(gof)=Tygo T, f : T, X —T,Z,

10.33
Oz(gof)=0ygoO0,f:0,X — O.Z. ( )

Also

Tidx =idp, x : T X — T, X,

10.34

So tangent and obstruction spaces are functorial on the 2-category mKur 4.

Example 10.22. Let X,Y be m-Kuranishi spaces, so that Example defines
the product m-Kuranishi space X x Y. In Definition [10.21] using Assumption
¢) it is easy to see that for all (z,y) € X xY we have canonical isomorphisms

T (X xY) 2T, X BT,Y, OL,)(XxY)=0,X®0,Y. (10.35)

Lemma 10.23. In Definition [10.21] suppose f : X — Y is an equivalence in
mKur, so that f is A by Proposition c). ThenTyf : T, X — T,Y and
O, f : 0, X — O,Y are isomorphisms for all x € X with f(z) =y inY.

Proof. As f is an equivalence there exist an equivalence g : Y — X and 2-
morphisms 7:go f = idx and {: fog=idy. If z € X with f(z)=yinY
then g(y) = . From ((10.33)), and ((10.32)) for n, and (10.34)), we see that

Tyg ol f = Tl(g © f) =T,idx = idme,
0yg 00, f =0y(go f)=0,idx =ido,x.

Similarly 7% foTyg = idr,y and O, foO,g = ido,y. Thus T, g, O,g are inverses
for T, f, O, f, and T, f, O, f are isomorphisms. ]
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Remark 10.24. (a) Even when Man = Man, in contrast to classical manifolds,
dim 7T, X, dim O, X may not be locally constant functions of z € X, but only
upper semicontinuous, so T, X, 0, X are not fibres of vector bundles on X.

(b) In applications, tangent and obstruction spaces will often have the following
interpretation. Suppose an m-Kuranishi space X is the moduli space of solutions
of a nonlinear elliptic equation on a compact manifold, written as X = ®~1(0)
for ® : V — £ a Fredholm section of a Banach vector bundle £ — V over
a Banach manifold V. Then d,® : T,V — &, is a linear Fredholm map of
Banach spaces for € X, and T, X = Ker(d,®?), O, X = Coker(d,®), so that
dim 7, X — dim 0, X = vdim X is the Fredholm index ind(d,®).

Combining Definition [10.21] and Example yields:

Example 10.25. (i) In the 2-categories mKur, mKur®, mKur,, from ,
we have notions of tangent space T, X and obstruction space O, X satisfying
dimT,X — dim O, X = vdim X, based on the usual notion of tangent spaces
T, X when Man is Man, Man€ or Man$,,. For any 1-morphism f: X — Y in
mKur, mKur®, mKurg,, we have functorial tangent maps 1T, f : T, X — T,,)Y
and obstruction maps Oz f : O, X — O,Y for all x € X with f(z) =y inY.

(ii) In the 2-categories mKur®, mKurs®, mKur?®, mKur®?° from (4.37)), we
have notions of b-tangent space T, X and b-obstruction space *O, X satisfying
dim T, X — dim %0, X = vdim X, based on b-tangent spaces T, X from
for the categories Man®, Man®°, Man®¢, Man®?°. For any interior 1-
morphism f: X — Y in mKur®, ... mKur®?® we have functorial b-tangent
maps *T, f : T, X — bTyY and b-obstruction maps *O,f : 0, X — bOyY for
all z € X with f(z) =y in Y. Since °T, f,%0, f are defined only for interior
1- morphisms f, it is better to think of b-tangent and b-obstruction spaces
’T, X,%0, X as attached to the 2-subcategories mKurf, , mKur®, mKur2®,
mKurfmac from Definition m

(iii) In the 2-categories mKur®, mKur8®, mKur?®, mKur®?° from , we
have notions of stratum tangent space T, X and stratum obstruction space O, X,
based on stratum tangent spaces T, X from Example iv) for the categories
Man®, Man8¢, Man®®, Man®?2°. They satisfy dim T,X —dim 0, X < vdim X,
but equality may not hold.

For any 1-morphism f: X — Y in mKur®, mKur8®, mKur?®, mKur®
we have functorial stratum tangent maps T, f T.X — T Y and stratum
obstruction maps Oy f : O, X — O Y for all z € X with f(z) =yinY.

(iv) For any Man satisfying Assumptions the corresponding 2-category
of m-Kuranishi spaces mKur has notlons of Coo—tangent space T C*X and
C*-obstruction space OS~ X, functorial for all 1-morphisms in mKur based
on tangent spaces of C“—schemes as in Example [10.2|v). They are canonically
isomorphic to T, X, 0, X in (i) in those cases.

in’ in>

c,ac

Definition 10.26. Suppose we are given two notions of tangent space T, X, T, f
with discrete property A, and T.X,T.f with discrete property A’ in Man
satisfying Assumption and a natural transformation I : T' = T’, as in
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Definition [10.3] Then for each m-Kuranishi space X in mKur and z € X,
Definition [10.21| defines T, X, 0, X and T, X,0,. X. Consider the diagram

0 T,X T,.V; ——— Eil,, 0. X 0
rx, Il,ivijl & \Lid X (10.36)
0 T'X ..V : Eilo, 0.X 0,

where the rows are for T,T', and are exact. Using Definitions and
We can show that the central square of commutes, so that by exactness
there are unique linear maps I7'X : T, X — T/ X and I?X : 0,X — O.X
making commute. One can show that these are independent of the choice
of i € I as for .

Note that I X is always surjective. If I, V; is injective then I X is injective.
If 1,,V; is surjective then IZ X is surjective and Ixo X is an isomorphism.

Let f: X — Y be a 1l-morphism of m-Kuranishi spaces which is both A and
A’ with notation , , , let € X with f(z) =y in Y, and consider

the diagram

Tof ‘ \ImTX T, fij \IuiUi u; T Firls \id O.f \ITQX
\L ‘ \L dvj Sj i ‘
0 TéY Tlﬁj Vi : E; "Uj O;Y 0.

This combines ((10.28)) for T, T’, and (10.36|) for X,z and Y,y. As the central

cube commutes, by exactness the outer squares commute. That is, we have
T _ T O —_ (@]
LYoT,f=T,fol, X and [/YoO,f=0,fol;X, (10.37)

so the linear maps ITX, 19X form natural transformations I7 : T = T,
I°: 0= O in Kur.

Combining Definition [10.26] and Examples and [10.25] yields:
Example 10.27. (a) For X in mKur® we have natural linear maps I7 X :
7. X — T, X and ImOX 120, X = 0,X, for T, X,0,X,°T, X,°0Ox X as in
Example [10.25(1),(ii), where I@ X is always surjective.
(b) For X in mKur® we have natural linear maps IX T,X — T,X and
X 0, X = 0,X, for T, X,0,X,T,X,0xX as in Example [10.25(i),(iii),
where (I X is always injective and 19X is surjective.
(c) For X in any of mKur®, mKur8®, mKur®®, mKur®?¢, there are natu-
ral linear maps HE:X X — T,X and HwOX 0, X - 0,X, for
°T, X0, X, T, X,0xX as in Example [10.25(ii),(iii), where IIZ X is always
surjective and 119 X is an isomorphism.
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10.2.2 Tangent and obstruction spaces for p-Kuranishi spaces

For p-Kuranishi spaces in Chapter |5} by essentially exactly the same arguments
as in §10.2.1} if Man satisfies Assumption with discrete property A then:

(a) For each p-Kuranishi space X in pKur and z € X we can define the
tangent space T, X and obstruction space O, X, both real vector spaces.

(b) If Assumption holds then dim 7, X — dim O, X = vdim X.

(¢) For each A morphism f: X — Y in pKur and z € X with flz)=yin
Y we can define linear maps T, f : T, X — T,Y and O, f : 0, X — O,Y.
These are functorial, that is, (10.33[)—(10.34)) hold.

(d) The analogues of Lemma [10.23] Examples [10.25] [10.27] Definition [10.26
hold.

10.2.3 Tangent and obstruction spaces for Kuranishi spaces

In for a Kuranishi space X in Kur and 2 € X we defined a finite group
G, X called the isotropy group. It depends on arbitrary choices, and is natural
up to isomorphism, but not up to canonical isomorphism.

Supposing Assumption [I0.1] with discrete property A, in §10.2.1] for an
m-Kuranishi space X, we defined a tangent space 1, X and an obstruction space
0, X for each x € X, which were unique up to canonical isomorphism and
behaved functorially under A 1-morphisms and 2-morphisms of m-Kuranishi
spaces. To define tangent and obstruction spaces for Kuranishi spaces, we must
combine these two stories:

Definition 10.28. Let X = (X, K) be a Kuranishi space, with I = (I, Vi, E;,
T, si,¥i)ict, ®ij, ijer, Nijk, ijker), and let z € X.

In Definition we defined the isotropy group G, X by choosing ¢ € I with
x € Im; and v; € 5;1(0) C V; with ¢;(v;) = , and setting G, X = Stabr, (v;)
as in . For these i, v;, define the tangent space T, X and obstruction space
0. X to be the kernel and cokernel of d,,s;, where d,,s; is as in Definition
so that as in we have an exact sequence

v; Si

d
0 T.X T, Vi - E;

0.X 0. (10.38)

The actions of I'; on V;, E; induce linear actions of G, X on T, X,0,X, by the
commutative diagram for each v € G, X:

0—1T,X —1T,V; e Eily, 0,X 0
v, Tl . | 5
0—>T,X — =T,V ‘ Eil, 0.X 0.

This makes T, X, 0, X into representations of G, X. The dual vector spaces of
T,X,0,X are the cotangent space T: X and the coobstruction space O%X.
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If Assumption holds then (10.38]) implies that
dim T, X —dim O, X = vdim X. (10.39)

Generalizing the discussion of Definition [6.49] on how G, X depends on the
choice of i,v;, we can show that if (G,X,T,X,0,X) come from i,v;, and
(GLX,T.X,0,X) come from alternative choices j,v;, then by picking a point
pin S, in (6.41), we can define an isomorphism of triples

(IG, 17, 19): (G, X, T,X,0,X) — (G.X,T.X,0.X).

b s b B

If we instead picked p € S, giving (ff, fg, fg), then there is a unique 6 € G/ X
with § - p = p, and we can show that IG(y) = 6IG(7)6~ Y, IT(v) = 6 - IL (v)
and I9(w) = § - I9(w) for all v € G, X, v € T, X, and w € O, X. Such
isomorphisms of triples behave as expected under compositions.

Now let f: X — Y be an A 1-morphism in Kur, with notation , ,
(6.18), and let € X with f(z) =y in Y. As above we define G, X,T,X,0,X
using ¢ € I and u; € U; with x;(w;) =z, and G,Y,T,Y,0,Y using j € J and
v; € V; with ¢;(v;) = y. By picking p € S, ¢ in (6.44), Definition defines a
group morphism G, f : G, X — G, Y. As for (10.28]), using the same p, define
T.f:T.X = 1T,Y, Oy f : O, X — O,Y by the commutative diagram

0——T, X —1T,U; — Dy, 0. X 0
T.f \LTpfijO(Tpmjfl lfij\p Oz f
Y dvj 55 Y
0 T,Y T, V; Ej\vj o,Y 0.

Then T, f, O, f are G, f-equivariant linear maps.

Generalizing Definition [6.51] if p € S, 7 is an alternative choice yielding
Gof,Tuf,Of, there is a unique 6 € G,Y with ¢ - p = p, and then ég;f(v) =
§(Gmf('7))6_lv Txf(v) =6-T.f(v), Ozf(w) =00y f(w) for all v € Gz X,
veT,X,and we€ O, X. That is, the triple (G, f, T, f,O,f) is canonical up to
conjugation by an element of G,Y.

Continuing with the same notation, suppose g : X — Y is another 1-
morphism and 1 : f = g a 2-morphism in Kur. Then g is A by Proposition
a), so as above we define G,g,7,g,0,g by choosing ¢ € S, 4. As in
Definition if m;; in 7 is represented by (Pz-j,mj,ﬁij), there is a unique
element Gyn € G, Y with G;n - 1;;(p) = ¢. One can now check that

G.g(7) = (Gan)(Gof (1))(Gem) ™!, Tug(v) = Gom - Tof(v), and
0.9(w) =Gy - Oy f(w) forallye G, X,veT, X, and we 0, X.

That is, (G.9,1%g,0.g) is conjugate to (Gof, T f, O f) under G,n € G,Y,
the same indeterminacy as in the definition of (G, f, T, f, O, f).

Suppose instead that g : Y — Z is another A 1-morphism of Kuranishi
spaces and g(y) = z € Z. Then as in Definition [6.51] there is a canonical element
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Gyug, € G.Z such that for all v € G, X, v € T, X, w € 0, X we have

Go(90 F)(7) = (Gargr)(Gyg 0 Gof)(1)(Gagp) ",
T.(go flv) =G ng (Tyg o Tw f)(v),
Oz(go f)(w) = Grg,5 (Oyg o O f)(w).

That is, (Gu(g o f),Tz(g © f),Oz(g o f)) is conjugate to (Gyg,T,g,0yg) o
(Gof, Tof, O, f) under G, g 5 € G, Z.

Remark 10.29. The definitions of G, X, T, X, 0, X, G, f, T, f,O.f above de-
pend on arbitrary choices. We could use the Axiom of (Global) Choice as in
Remark [£:21] to choose particular values for G, X,...,0,f for all X, z, f. But
this is not really necessary, we can just bear the non-uniqueness in mind when
working with them. All the definitions we make using G, X, ..., O, f will be
independent of the arbitrary choices in Definition [10.28

The analogues of Lemma [10.23] Examples [10.25] and [10.27] and Definition
[10:26] hold for our 2-categories of Kuranishi spaces.

10.3 Quasi-tangent spaces

In this section we suppose Man satisfies Assumptionm in § throughout
so that we are given a discrete property C' (possibly trivial) of morphlsms in
Man, and ‘manifolds’ V in Man have quasi-tangent spaces Q,V for v € V,
which are objects in a category Q, and C morphisms f : V — W in Man
have functorial quasi-tangent maps Q,f : Q,V — Q,W for all v € V with
f(w) = w € W, which are morphisms in Q.

For each (m- or p-)Kuranishi space X we will define a quasi-tangent space
QX for x € X, with functorial morphisms Q. f : @.X — Q,Y under C
( )morphisms f: X — Y in mKur, uKur, or Kur. Unlike 7,X,0,X in
110.2] there is no ‘obstruction’ version of Q,X. These QmX Q. f are useful for
1mp051ng conditions on objects and (1-)morphisms in mKur, pKur, and Kur,
for instance in defining (w-)transversality and (w-)submersions in Chapter

10.3.1 Quasi-tangent spaces for m-Kuranishi spaces

Here is the analogue of Definition for quasi-tangent spaces:

Definition 10.30. Let X = (X, K) be an m-Kuranishi space, with K = (I7 (Vi
Ei, si,0:)icr, ®ij, ijer, Nijr, ijker) and @45 = (Vij, dij, dij), N = [Vijk7>\ijk]
for all 4,5,k € I, as in Definition [£.14] and let z € X.

For each i € I with x € Tmq);, set v; = ; () in 571 (0) C V;, so that we have
an object Qy,V; in @ by Assumption [10.19(c). For i,j € I with z € Im¢); NIm ),
we have v; € V;; CV; with ¢;; = v; € V;. Proposition [4.34(d) and Definition
imply that ¢;; is C near v;, 0 Qy,¢ij : Qu, Vi = Qy,Vj is defined. When
j =i we have ¢;; = idv;, so Qu, i = idq,, v;-
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If 4,5,k € I with z € Im; N Im; N Imay, Definition (b) for Ak :
@, 0 @;; = Py, implies that ¢ = ¢k © ¢i; + O(s;) near v;, so

Qu, bik = Qu; Dji © Qu, Pij + Qu, Vi — Qu,; V)

by Assumption (10.19(c)(i),(v). Putting k = i gives Qu,¢ji © Qu,¢i; = idq, v;,
and similarly Q. @sj © Qu,; @5 = idij V;» 80 Qy,Pi; is an isomorphism. Hence by
Assumption [10.19|(a), we may define a natural object @, X in Q by

Q2 X = [icrwetmey, QuiVil/ ~ (10.40)

as in , where the equivalence relation ~ is induced by the isomorphisms
Qu, bij : Qu;Vi — Qy,;Vj, and there are canonical isomorphisms Q;; : Q. X —
Q. Vi in Q with Q. ; = Qu,¢ij © Qu for all i,5 € T with x € Im¢); NTm ;. We
call Q,X the quasi-tangent space of X at x.

More generally, if (V,, Eq, Sa, ¥a)s Pai, ict, Naij, ijer is any m-Kuranishi
neighbourhood on X in the sense of with z € Im,, and v, = ¥, (z),
there is a canonical isomorphism Qg ¢ : @2z X — Qu, Vo With Qz s = Qu, 9ai0Qq.a
for all ¢ € I with € Im 1);.

Now let f: X — Y be a l-morphism of m-Kuranishi spaces which is C' in
the sense of with notation , , , and let z € X with f(x) =y
in Y, so we have objects Q,X,Q,Y in Q. We claim that there is a unique
morphism Q. f : @, X — Q,Y in O, called the quasi-tangent map, such that
the following diagram commutes:

Qui | o Qu.i |2 (10.41)
Qu,Us Qu,Vj

whenever ¢ € I with z € Imy; and u; = Xi_l(x), and j € J with y € Im;
and v; = ¥ (y). To see this, note that for fixed i,j there is a unique Q, f
making commute. To show this Q. f is independent of i, j, let i’ be
an alternative choice for i. From Definition (b) applied to the 2-morphism
Fl,: firjoTir = f,; in Definition (c)7 we see that fir; o Ty = fij + O(r;)
near u; in U;, 50 Qu, firj © QuTivr = Qu,fi; by Assumption c)(i),(v).
Together with Qp s = Qu,Tiir © Qu,i, this implies that Q. f is unchanged by
replacing ¢ by ¢’ in (10.41)). Similarly, using Ffjl : Xjjr 0 fi; = fijr in Definition
4.17(d) we can show that @, f is unchanged by replacing j by an alternative
choice j'.

More generally, if (Uy, Da,7a;Xa); (Vb, Eb,y Sp,%p) are m-Kuranishi neigh-
bourhoods on X,Y with v € Imy,, y € Imy, and f,, = (Uab,famfab) :
(Uay DasTas Xa) = (Vi, Ep, Sp,9p) is a 1I-morphism over (S, f) for open 2 € S C
Im y, N f~1(Imy) as in Theorem b), then the following commutes:

Q. X . QY
of
Qz,a\Lg Qy,b\Lg (1042)
Qug fa
Qu,,, Ua ’ vavb'
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Suppose e : X — Y is another 1-morphism of m-Kuranishi spaces, and
n = (Mij ic1, jes) : € = f is a 2-morphism, so that e is C by Proposition
4.36[a). Then for z,vy,1,7,u;,v; as above, Definition b) applied to the 2-
morphism n,; : e;; = f;; shows that f;; = e;; + O(r;) near u; in U;, so
Qu, fij = Qu,eij by Assumption [10.19(c)(v). Thus comparing for e, f
shows that Q,e = Q,f. Hence the morphisms @, f depend only on the C
morphism [f] : X — Y in Ho(mKur), and on = € X.

Now suppose g : Y — Z is another C' 1-morphism of m-Kuranishi spaces
and g(y) = z € Z with notation 7, let i € I, j € J, k € K with
z € Imx;, y € Imy;, 2 € Imwy, and set u; = Xgl(x), v; = w;l(y) and
v = w;l(z). Then go f : X — Z is C, and Definition m gives a 2-morphism
(9%’{ :gji© fi; = (g o f)ik. Therefore (go f)ix = gjx o fij + O(ri) near u;, so

Assumption c)(i),(v) gives
Qu; (90 ik = Qu,9jk © Qu, fij : Qu,Vi — Qu, Wi
Combining this with for f,g and g o f yields
Qz(gof) =QygoQuf. (10.43)
Also the definition of id x yields
Qidx =idg, x : @, X — Q@ X. (10.44)
So quasi-tangent spaces are functorial on the 2-category mKurC.

As for Lemma, [10.23] we can prove:

mKur, so that f is C by Proposition ¢). Then Q. f : QX — Q,Y is an
isomorphism in Q for all x € X with f(z) =y inY.

Combining Definition [10.30| and Example [10.20] yields:

Example 10.32. (a) In the 2-category mKur® from , we have stratum
normal spaces N, X for all X € mKur® and 2 € X, which are finite-dimensional
real vector spaces, based on N,V in Definition when V € Man® and v € V.
For any 1-morphism f : X — Y in mKur® we have functorial linear maps
N.f: N,X — N,Y for all z € X with f(z) =y in Y.

(b) In the 2-category mKur®, we have stratum b-normal spaces PN, X for all X
in mKur® and x € X, which are finite-dimensional real vector spaces, based on
PN,V in Deﬁnitionwhen V € Man® and v € V. For any interior 1-morphism
f:X — Y in mKur® we have functorial linear maps *N, f : °N, X — bNyY
for all  in X with f(z) =y in Y. We have dim N, X = dim’N, X for all z, X,
since dim N,V = dim®N,V for all V € Man® and v € V. But in general there
are no canonical isomorphisms NzX i szX .

Lemma 10.31. In Definition [10.30| suppose f : X — Y is an equivalence in
ﬂ

(c) In the 2-category mKur®, we have a commutative monoid Z\:@X for all X in
mKur® and z € X, with M, X = N* for some k > 0, based on M,V in Definition
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[2.16] when V € Man® and v € V. For any interior 1- morphism f : X - Y
in mKur® we have functorial monoid morphisms M. P M,X — M Y for all
x € X with f(z) =y in Y.

We have canonical isomorphisms * N, X = M, X @y R for all z, X, as there
are canonical isomorphisms PN,V = M, V @nR, and these 1somorphlsms identify
PN, f:'N, X—>bN Y with M, f®1dR.M X®NR—>M(Y®NR.

(d) In the 2-category mKur®® from , we have stratum b-normal spaces
PN, X for all X in mKur8® and z € X based on *N,V in 42.4.1) when V €
Man®¢ and v € V. For any interior 1-morphism f : X — Y in mKurgc we
have functorial linear maps *N, f : *N, X — *N,Y for all z € X with f(z) =y
in Y. On mKur® C mKurg® these agree with those in (b).

(e) In the 2-category mKur®8®, we have a toric commutative monoid M,X for
all X in mKur8® and z € X, based on M,V in when V' € Man®&® and
v € V. For any interior 1-morphism f: X — Y in mKur8® we have functorial
monoid morphisms M, f : M, X — M,Y for all z € X with f(z) =y in Y. On
mKur® C mKur8® these agree with those in (c).

We have canonical isomorphisms "N, X = M, X @y R for all x, X, which
identify bNIf ONLX bN Y with M, f ®idg : M, X @nxR — M, Y®NR.

Quasi-tangent spaces are useful for stating conditions on objects and 1-
morphisms in mKur. For example:

e An object X in mKur®® lies in mKur® ¢ mKurg if and only if M, X =
N* for all z € X, for k > 0 depending on z.

e An interior l-morphism f : X — Y in mKur® or mKur&® is simple if
and only if M, f is an isomorphism for all z € X.

e An interior 1-morphism f: X — Y in mKur® or mKur®® is b-normal if
and only if * N, f is surjective for all z € X.

Example 10.33. Let X be an object in mKur®, and x € X. Using the notation
of Definitions [10.21) and [10.30} choose i € I with € Im;, set v; = w;l(m) in
5;71(0) C V;, and consider the commutative diagram

b .
0 00— T,V Eily, —~—>0—2
0 Lo, Vi id 0
0 g 0, 1, v, 2 E{, 0 g 0, ... (10.45)
0 7o 0
0 (\% 0 ]\N]WV 0 g 0 (JS 0
) J ! !
0 0 0 0.

Here T,,,V;, T,,V; are as in Example [10.2[(ii),(iv), and u,,V; is as in Example
b). The second column is (2.15) for V;,v;, which is exact, and the other
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columns are clearly exact. The rows of (10.45) are complexes. By equa-
tions , and Examples [10.25(i),(iii) and [10.32(a), the first row
has cohomology groups 7, X, 0, X, the second row 7, X, 0, X, and the third
row N, X, 0.

Identifying (10.45)) with equation (10.89)), a standard piece of algebraic
topology explained in Definition [10.69| below gives an exact sequence (10.90)):

T

~ Ly X T X
0 T.X T.X — N, X

o
0. X = Ly X
0, X

0.X 0. (10.46)

Here (7 X ,12 X are as in Example b), and 7, X,0,X are natural linear
maps, with §, X a ‘connecting morphism’. One can show as in Definitions
and that 7, X, 0, X are independent of the choice of i € I.

Now let f : X — Y be a l-morphism in mKur®, and x € X with f(z) =
in Y. Then using equations (2.16)), (10.28), (10.37), and (10.41)), we can show
that the following commutes, where T, f, O, f, T, f,0~z f are as in Example
M(i)7(iii) and N, f as in Example a), and the rows are :

01X —>TX —>NX ——>0.X 0. X —=0
Tol G, T No sy ﬂ 0.1 (10.47)
0 T,Y — T,Y i NYy 0,Y O(Y—>0.

Example 10.34. Let X lie in mKur®, mKurg®, mKur?® or mKur®2¢ and

z € X. Then by a similar but simpler proof to Example [10.33| using ([2.17])
instead of (2.15)), we find there is a natural exact sequence

T

. b, n’x -
0 PN, X — =X v x T, X 0,  (10.48)

where bTxX,Tm~X are as in Example [10.25(ii),(iii), and TIZ X as in Example
10.27|(c), and * N, X as in Example b). If f: X — Y is a 1-morphism in
mKur®, mKurg® mKur?® or mKur®?®, and x € X with f(z) =y in Y then

as for (10.47)) we have a commuting diagram

0 "N X —— "X T.X 0
"N F T ong 7.f| (10.49)
- hLyY -
0 'N,Y 'T,Y T,Y 0.

10.3.2 Quasi-tangent spaces for u-Kuranishi spaces

For p- Kuran1sh1 spaces in Chapter [l by essentlally exactly the same arguments
as in §10.3.1} if Man satisfies Assumption 9| then:

(a) For each p-Kuranishi space X in pKur and # € X we can define the
quasi-tangent space @, X, an object in Q.

27



(b) For each C morphism f : X — Y in uKur and z € X with f(z) =y
in Y we can define a morphism Q. f : @, X — @Q,Y in Q. These are
functorial, that is, (10.43)—(10.44)) hold.

(¢) The analogues of Lemma [10.31] and Examples [10.32H10.34] hold.

10.3.3 Quasi-tangent spaces for Kuranishi spaces

For quasi-tangent spaces of Kuranishi spaces, we combine the ideas of §10.3.1
and §10.2.3|in a straightforward way. The main points are these:

(a) Let X = (X,K) be a Kuranishi space, with K = (I, (V;, E;, T, 5,93 )ic1,
D5 i5er, Nijk, i,j7k€1), and let x € X. In Definition we defined the
isotropy group G X by choosing i € I with z € Im1); and v; € 5;1(0) cV
with ;(v;) = x, and setting G, X = Stabr, (v;) as in (6.40). For these
i,v;, we define the quasi-tangent space QX in Q to be @Q,,Vi.

(b) There is a natural action of G, X on @, X by isomorphisms in Q.

(¢) Q+X is independent of choices up to isomorphism in Q, but not up to
canonical isomorphism. Given two choices @, X, Q" X, the isomorphism
Q.X — QX is natural only up to the action of G, X on Q. X.

(d) Let f: X — Y be a C 1-morphism in Kur, with notation (6.15), ,
(6.18), and let z € X with y € Y. By picking p € S, ¢ in (6.44), Definition
defines a group morphism G, f : G, X — G,Y. Using the same p,
define a morphism Q. f : Q. X — @,Y in Q by the commutative diagram

QaX Quf @Y

0uU Qpij Qp fij

Qppij —> ij‘/j7

where Q,m;; is invertible as m;; is étale. Then Q. f is G f-equivariant. It
depends on the choice of p up to the action of G, Y on Q,Y.

(e) Continuing from (d), suppose e : X — Y is another 1-morphism and
7 : e = f a 2-morphism in Kur. Then e is C by Proposition [6.34(a).
Definition [6.51] gives G,n € G, Y, and we have Q. f = G.n - Q€.

(f) Continuing from (d), suppose g : Y — Z is another C' 1-morphism and
g(y) = z € Z. Then Definition gives G g7 € G.Z, and we have

Qz(g o f) = Gm,g,f . (ng o sz)
(f) The analogues of Lemma [10.31{ and Examples [10.32H10.34] hold.

We leave the details to the reader.
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10.4 Minimal (m-, u-)Kuranishi neighbourhoods at z€ X

In this section we suppose Man satisfies Assumptions [10.1] and [10.9| in §10.1|
throughout, so that we are given a discrete property A (possibly trivial) of
morphisms in 1\'/Ian7 and ‘manifolds’ V in Man have tangent spaces T,V for
v € V, and A morphisms f : V — W in Man have functorial tangent maps
Tof : T,V = T, for all v € V with f(v) = w € W. For some results we also
suppose Assumption [T0.17]

We will use Assumption to prove that if X is an m-Kuranishi space and
z € X then we can find an m-Kuranishi neighbourhood (V, E, s,%) on X such
that = € Imt which is minimal at = in the sense that dy-1(;)s = 0. Then we
will use Assumption to show that if (V', E’ s’ 4’) is another m-Kuranishi
neighbourhood on X with « € Im )’ then (V', E’, s’,4’) is locally isomorphic to
(V, E,s,¢) near z if (V' E',s',4’) is minimal at x, and in general (V' E’ s’ ")
is locally isomorphic to (V x R", 7#*(E) & R", 7*(s) ® idgn, 1 o my ) near x.

We also generalize the results to p-Kuranishi spaces, and to Kuranishi spaces,
where a Kuranishi neighbourhood (V, E,T,s,) on a Kuranishi space X is
minimal at z if z € Im, and ' = G, X, so that 1~!(x) is a single point v in V/
fixed by I', and d,s = 0.

10.4.1 Minimal m-Kuranishi neighbourhoods at z € X

Definition 10.35. Let X be a topological space, and (V, E,s,%) be an m-
Kuranishi neighbourhood on X in the sense of §4.1] and x € Imy C X. Set
v =1"Yz) € s71(0) C V. Then Definition ﬁnes a linear map of real
vector spaces dys : T,V — E|,, the derivative of s at v, for T,V as in Assumption
b). We say that (V, E, s, ) is minimal at x if d,,s = 0.

Similarly, let X = (X, K) be an m-Kuranishi space in mKur, and (V,E,s,%)
be an m-Kuranishi neighbourhood on X in the sense of §4.7 and € Im¢y) C X
with v = ¥~ 1(x). Again we say that (V, E, s,v) is minimal at z if d,s = 0.

If (V,E,s,v) is an m-Kuranishi neighbourhood on X and z € Im with

v =1"1(x) then as in ((10.27) we have an exact sequence

0 T, X v —2" g, 0,X —>0.

Also vdim X = dim V — rank E. From these we easily deduce:

Lemma 10.36. Let (V,E,s,w) be an m-Kuranishi neighbourhood on an m-
Kuranishi space X in mKur, and z € Im with v =~1(z) € V. Then

rank F > dim O, X and dimV > vdim X +dim O, X, (10.50)
and (V, E,s,1) is minimal at x if and only if equality holds in (10.50]).

If (V,E,s,) is minimal at x there are natural isomorphisms T, X = T,V
and 0, X 2 E|,.
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We will be considering the question ‘how many different m-Kuranishi neigh-
bourhoods are there near x on an m-Kuranishi space X?’. To answer this we
need a notion of when two m-Kuranishi neighbourhoods on X are ‘the same’,
which we call strict isomorphism.

Definition 10.37. Let (V;, E;, s;, ), (V}, Ej, s4,%;) be m-Kuranishi neighbour-
hoods on a topological space X. A strict isomorphism (d)ij,éij) : (Vi, By, si,
;) = (V}, Ej, sj,1;) satisfies:

: Vi = Vj is a diffeomorphism in Man.

(a
(b
(c
(d

: By — ¢;(E;) is an isomorphism of vector bundles on V;.

( ) - (rsz(sj) m FOO( z](E]))'

) &
) ¢
) ¢
) d)l]‘ 1 © S 1(0) — X, where ¢1]( 1(0)) = 5;1(0) by (a)f(c)'
Then ®;; = (VL@‘@@]‘) : (Vi, By, si,15) = (V;, Ej, s5,1;) is a coordinate change
over Im ¢l = Imwj

If instead (V;, B, s4,:), (Vj, Ej, sj,1;) are m-Kuranishi neighbourhoods on
an m-Kuranishi space X, we define strict isomorphisms as above, except that
we also require ®;; to be one of the possible choices in Theorem a).

We call m-Kuranishi neighbourhoods (V;, E;, s;, ), (V;, Ej, s;,1;) on X or
X strictly isomorphic near S C Imy; NIm1; C X if there exist open neigh-
bourhoods U; of ;' (S) in V; and U; of 1/1]._1(5) in V; and a strict isomorphism

(¢ig, dij) = (U, v:) — (Uj, Ejlu,, siluys ¥ilu;)-
Given an m-Kuranishi neighbourhood (V, E, s,v) on X, we will construct a
family (V(n), E(n), S(n)s 1/)(71)) for n € N with V(n) =V xR".

Definition 10.38. Let (V, E,s,¢) be an m-Kuranishi neighbourhood on a
topological space X, and let n = 0,1,.... Define an m-Kuranishi neighbourhood
(Vinys Eny» 5(n)> Y(ny) on X by

(Vinys By 8y, Ymy) = (V X R, 7, (B) @ R™, () @ i, 0 v -1 ) )-

In more detail, writing 7y : Vi,y = V x R™ — V for the projection, we define
E(ny = V(n) to be the direct sum of 7y, (E) and the trivial vector bundle R", so
that Eq,) = E x R" x R" as a manifold, and rank £,y = rank E' 4+ n, so that

dim V() — rank E(,y = (dim V +n) — (rank E' +n) = dim V' — rank E.

Writing points of E as (v,e) for v € V and e € E|,, and s € I'*°(E) as mapping
v = (v, 8(v)) for s(v) € E|,, we may write points of E,) as (v,y,e, z) forv eV,
e € E|, and y,z € R", where 7 : E(,,) — V() maps 7 : (v,9,¢,2) — (v,y).
Then s(,) maps s¢,) : (v,y) = (v,y,5(v),y). That is, the R"-component of s(,)
in B,y = 7, (E)®R" maps (v, y) — y = idr~ (y), so we write s,y = 77, (s) Didgn.
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Then s(rbl) (0) = {(v,0) : v € s71(0)} = s71(0) x {0}. Thus 9(,) = ) o Ty maps
(v,0) = (v), and is a homeomorphism with Im ), = Im¢ C X.

Define open submanifolds V) <= V, Vi < Vi) by Vi) = V and
‘/(n)* = ‘/(n)v and morphisms ¢*(n) : V*(n) — ‘/(n)a ¢(n)* : ‘/(n)* — V by
(b*(n) = idy x 0 : V*(n) =V - V(n) =V x R" and ¢(n)* = Ty - V(n)* =

V x R"™ — V. Define vector bundle morphisms é*(n) D Elv,,, — (b:(n)(E(n)),

qg(n)* Y O qbz‘n)*(E) by the commutative diagrams

E|V*('n,) - (b:(n) (E(")) E(n) |V(n)* - E(n)* (E)
H |
i/idE@O H id,ri«/(E)GBO

E@®R"=(idy x 0)*om{,(E)®R", =} (E)®R"

Then @,(,) = (Vi(nys Gu(n)s Pu(n))s Linye = (Vin)us G(n)es G(n)«) are l-morphisims

of m-Kuranishi neighbourhoods @,y : (V, E,5,%) = (Vin), En), S(n), ¥ (n)) and

(I)(n)* : (Wn)v E(n)a S(n),’l/)(n)) — (V,E, S,w) on X over S = Im’l/) = Imw(n)
Now ¢, (n) © P(n)s = idy x 0 : V x R"™ — V x R". Thus we have isomorphisms

T imyob i Vin) = Tidyxo(V X R*) 2 T, V& ToR" 2 T2, V& Oy, @ R™.

Also E(nylv,,, = 7y (E) © R™, so the sheaf of sections of E(,)|v,,, is isomorphic

to 7, (€) ® Oy, ®r R", where & is the sheaf of sections of E. Define A
By Vi, = Téumyobm. Vin) to be the Oy, -module morphism identified under
these isomorphisms with

0 0\ 7y . Tay VO

0 id/ - Ov(n) Qr R" Ov(n) Qr R™.

We claim that A = [Viu), Al 1 @uin) © C(upe = 1d(vi) By usiny o) 15 @ 2
morphism of m-Kuranishi neighbourhoods over Im¢) = Im 1 ,,). By Definition
we must show that

idy x idge = idy x 0+ Ao s + O(sf,,)),

idemy 00\ _ (idee(m) -
< 0 ian>_( o ) (dee 0) (10.51)

. " 0 0
+ (idy x 0)*(ds(y,)) © (0 ian) + O(5(n))-

To prove these we must use the formal definitions in §B.3[-4B.5] Define w :
En) = Viny to act by w: (v,y,€,2) + (v,2) on points. Then A\ = 0p, . in
the notation of Definition [B.32l Since

w o OE(n) (v,y) = ’LU(’U/y,0,0) = (070) = (ldV X 0)(U,y),
W O S(n) (va) = w(vayas(v)vy) = (Ury) = (ldV X ian)(’U,y),
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Definition vii) implies the first equation of (10.51f). Choose a connection V
on Eq,y = 7y (E) ® R", in the sense of §B.3.2, which is the sum of a connection
on 7, (E) and the trivial connection on the trivial vector bundle R™. Then

. . Vvs Vgns T VO T ()P
(idv x 0)"(Vs(n)) = ( 0 i ) : Ov(n)V®R i OV(,,Z op R,
The second equation of then follows from Definition vi) and matrix
multiplication. Hence A : @,y 0 @), = id(‘/(n)7E<n)7s("),w(")) is a 2-morphism
over Im. From the definitions we see that ®(,), 0 P.(,) = id(v g sy), SO
ididy gy @ Pys © Pun) = 1d(v,E,s,9) 1S @ 2-morphism over Im. There-
fore @,(,) and ®(,), are equivalences in the 2-category mKNImw(X ), and are
coordinate changes over Imv = Im1)(,,) by Deﬁnition: .

Now let (V, E, s,%) be an m-Kuranishi neighbourhood on an m-Kuranishi
space X in mKur, as in §4.7, with implicit extra data ®.; icr, Asij, i,jer, Using
the notation of Definition 4.49] For n > 0 and 4,5 € I define

Q)i = Pui © Prnyu : (Viny, Etnys S(n)s Y(n)) — Vi, Biy 81, 9),
A(n)z’j = Nyij * idq)(n)* i P50 q)(n)i == (b(”)j'

Then as ®(,), is a coordinate change we see that (Vi,), E(,), S(n); ¥(n)) is also
an m-Kuranishi neighbourhood on X, with extra data ®,); icr, An)ij, i,jer-
Furthermore, it is easy to see that ®,(,) : (V, E,s,9) = (V(n), Etn); 5(n), ¥(n))
and (). 1 (Vin), Enys 5(n), ¥(n)) — (V, E, 5,%) are coordinate changes on X in
the sense of Definition

The next two propositions prove minimal m-Kuranishi neighbourhoods exist.

Proposition 10.39. Suppose (V;, E;, s;,1;) is an m-Kuranishi neighbourhood
on a topological space X, and = € Im; C X. Then there exists an m-Kuranishi
neighbourhood (V, E| s,1) on X which is minimal at x, with Im1 C Im; C X
and a coordinate change @.; : (V,E,s,v) — (Vi, E;, si,1;) over S =Im1.
Furthermore, (Vi, E;,54,1;) is strictly isomorphic to (Viny, Emy, S(n)s Y(n))
near S in the sense of Definition where n = dimV; — dimV > 0 and
(Vinys Emy» 8(n), ¥(ny) s constructed from (V, E, s,%) as in Definition and
this strict isomorphism locally identifies @, : (V, E, s,4) — (Vi, Ey, 8;,1;) with
Q.n) : (VE,5,0) = (Vin), En), $(n), ¥(n)) in Definition near S.
Proof. Let v; = 1; *(z) € s;1(0) C V;. Then Definition m gives a linear map
dy, 8; : Ty, Vi = Ej;|y,. Define n to be the dimension of the image of d,,s; and
m = rank E; — n, so that we may choose an isomorphism FE;|,, &2 R™ @ R" with
Imd,,s; = {0} @ R". Choose an open neighbourhood V; of v; in V; with Ez‘|V,/
trivial, and choose a trivialization E; |y, = V/ x (R™ @R") which restricts to the
chosen isomorphism E;|,, =2 R™ & R" at v;. Then we may identify Si‘v/ with

$1 D sg, where s1 : V) = R™, s5: V/ — R" are morphisms in Man, and dy, 8;
T,,Vi = Eily, 2 R™ @ R" is identified with T, s1 & Ty, 82 : Tp,,V; — R™ @ R"™.
Hence Ty,81 = 0: T, V; = R™, and T,,s2 : Tp,,V; — R" is surjective.
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Apply Assumption [10.9) to s5 : V/ — R™ at v; € V/, noting that s, is A by
Assumption a)(i). This gives open neighbourhoods U of v; in V/ and W of
0 in R™, an object V in Man with dim V = dim V; — n, and a diffeomorphism
X : U =V x W identifying so|y : U — R" with myy : V x W — W C R".

We now have morphisms s;ox ' : VxW — R™ and spox ™' : VxW — R”,
where 0 € W C R" is open, and sp o x~! maps (v, w) — w for v € V and
w = (wy,...,w,) € W, since y identifies s3]y with my. Apply Assumption
to construct morphisms g; : V. x W — R™ for j = 1,...,n such that

51°X_1(Ua (w17 cee 7wn)):510X_1(Ua (07 .. ,0))+ Z Wi 'gj(U, (wla s 7w’n))
j=1

for all v € V and w € W. Here T,,s1 = 0 gives g; o x(v;) =0 for j =1,...,n.
Now we change the trivialization E;|y 2 U x (R™ @ R") by composing with the
vector bundle isomorphism U x (R™ @ R") — U x (R™ @& R") acting by

(u,y,2) = (u,y —21- g1 o x(u) = -+ 2 - gn © x(u), 2).
By definition of g1, ..., gn, at the point u = x~!(v,w) in U, this maps
s1(u) @ so(u) = (s10x H(v,w) ®w +— (510 x ) (v,0) ®w.

That is, changing s1, so along with the choice of trivialization, the effect is to
leave s unchanged, with sg o x~!(v, w) = w, but to replace s; o x (v, w) by
s10x (v, 0), so that now s1 o x ! (v, w) is independent of w. As g; o x(v;) =0,
this replacement preserves the condition d,,s; = 0. Write x : E;|ly — U x (R™ @
R™) for the new choice of trivialization.

Define m : E — V to be the trivial vector bundle 7y, : V x R™ — V, and
define a section s € I'°(E), as a morphism s : V' — E, to be the composition

TS B VAV 0 SV VA o4

idv><51|U

VxR™=—=E.
Observe that the diffecomorphism x : U — V x W identifies U N s;*(0) with
(s10x™)7HO) N (s20x7H)TH0)=(s10x ™) TH0) N (V x {0})=57"(0) x {0}.

Hence defining ¢ : s71(0) = X by ¢ = ¢; o x~* o (ids-1(g), 0), we see that 1
is a homeomorphism from s~!(0) to the open neighbourhood ;(U N s;'(0))
of z in Imv;. Therefore (V| E,s,1) is an m-Kuranishi neighbourhood on X,
with z € Im¢ C Im;. Also writing v = ¢~1(x) € V, then x(v;) = (v,0), so
d, : T,V — E|, is identified with the restriction of Ty, sy : T,,,V; = R™ to the
subspace T, (x 1[I,V @ 0] C T,,V;. But T,,s1 =0, so dps = 0, and (V, E, s, 1)
is minimal at z, as we have to prove.

Define a morphism ¢,; : V. — V; and a vector bundle morphism giA)*z B —

*.(E;) by the commutative diagrams

|4 : Vi E - 1020
oo 7 S -4
X~ idy xpm X0
VxW U VxR?" ——V xR"™ x R".
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Then ., = (V, q’)*i,q’;*i) is a 1-morphism of m-Kuranishi neighbourhoods
®,;: (V,E,s,9) = (Vi, Ei, si,1;) over S =Im1), where Definition [£.2(d) holds
as Pui(slv.,) = ¢3;(s:)-

As U C V; is open, (U, E;|u, silu, ¥:|v) is an m-Kuranishi neighbourhood
on X. Also Definition constructs (Vin), E(n); 8(n), Y(ny) from (V, E,s,9),n
with Vi) = V x R", s0 V. x W C V{; is open, and we have an m-Kuranishi
neighbourhood (V' x W, E¢)|vsxw s 8(n)|lvxw, ¥m)lvxw) on X. From above we
have isomorphisms x : U — V x W and x : Eily — U x R™ x R" = x*(E(,,)),
since B,y =V x W x R™ x R". We claim that

06GX) = (U Bilu, silu, vilu) — (VX W, Egy)lvxw, sy lvxw, Ym)lvxw)

is a strict isomorphism. Here Definition a),(b),(d) are immediate from
the definitions, and (c) follows from s; o X~ !(v,w) = s1 o x "} (v,0) = s(v)
and s3 0 x 7' (v,w) = w = idg»(w) above, and the definition of s(,). Thus
(Vi, B, si,4;) is strictly isomorphic to (Vin), E(n), S(n); ¥(n)) near S = Imap.
From the definitions we see that ¢,,) = X © ¢« and q;*(n) =xo é*i, SO
(X, X) locally identifies ®.; with ®.(,). By Definition [10.38} .,y is a coordinate
change, so ®,; is also a coordinate change. This completes the proof. O

Proposition 10.40. Suppose X is an m-Kuranishi space in mKur and z € X.
Then there exists an m-Kuranishi neighbourhood (V, E, s,¢) on X, in the sense
of 47 which is minimal at x.

Proof. Write X = (X, K) with K = (I, (Vi, E;, 5i,¥:)ier, ®ij, ijer, Mgk, ijker)-
Then there exists h € I with € Imy,. Proposition [I0.39] constructs an m-
Kuranishi neighbourhood (V, E, s,1) on the topological space X minimal at
xz with z € Imv C Im¢y, C X and a coordinate change @, : (V,E,s,1) —
(Vh,Eh,Sh,’l/Jh). For all ¢ € T set (I>*i = CI)}”‘ o (I);h : (‘/, E,S,’Q/J) — (‘/;,Ei781‘,1/)i)7
and for all ,j € I define

A*ij = Ahij * id@;h : q)ij od,, = (I)ij o Py, 0 (I);h — (I)hj o q);h = @*]‘.

Then (V, E, s,v) plus the data ®,;, A,;; is an m-Kuranishi neighbourhood on
the m-Kuranishi space X in the sense of Definition since applying — *ide,

to (4.4) for K implies (4.57)) for the ®.;, Ayij. O

Remark 10.41. Definition involves a choice of notion of tangent space
T,V for V in Man in Assumption As in Example one category
Man can admit several different notions of tangent space, for example if Man
is Man®, Man8®, Man®® or Man®2° then both b-tangent spaces T,V and
stratum tangent spaces TvV satisfy Assumptions and

Combining Lemma [T0.36] and Proposition [I0.40] we see that an m-Kuranishi
neighbourhood (V, E, s,%) on X with € Im is minimal at z if and only if
dimV < dim V' for all m-Kuranishi neighbourhoods (V’, E’,s’,4’) on X with
2 € Im+)’. This characterization does not involve tangent spaces. Thus, whether
or not (V, E, s,1) is minimal at x is independent of the notion of tangent space
YTV, T,V, ... used to define minimality, as long as there exists at least one
notion of tangent space for Man satisfying Assumptions and
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10.4.2 Isomorphism of minimal m-Kuranishi neighbourhoods

In this section we also suppose Assumption [I0.11] which was not needed in
§10.4.1} We show that any two m-Kuranishi neighbourhoods minimal at z € X
are strictly isomorphic near z, in the sense of Definition [10.37]

Proposition 10.42. Let (V;, E;, s;,v;), (V;, Ej, sj, ;) be m-Kuranishi neigh-
bourhoods on X which are both minimal at x € Imvy; NImy; C X, and
O, = (Vij,(;ﬁij,qgij) : (Viy By, si,s) — (V;, Ej, 85,15) be a coordinate change over
z €S CImey; NImap;. Then there exist open neighbourhoods U; of v; = z/{l(ac)
in Vi; C Vi and U; of v; = 1/)]_1(37) in V; such that ¢ijlu, : Ui — Uj is a
v, : Bilu, = ¢3;(E;)
Furthermore there exists an isomorphism ¢A>;j : E;

& = ijlu, + O(s:) and ¢;(silu,) = ¢3;(s;)|u,, so that

(i

diffeomorphism, and ¢;; U, %8 an isomorphism.

v, = 05(E;j)

U; with

Uia(%j) : (Uzv Ez

Ui» 'l/}z

U;s Si Uz‘)—>(Uj7Ej|Uj’Sj|Uj’¢j|Uj)
is a strict isomorphism of m-Kuranishi neighbourhoods over T = 1;(U; N s; *(0)).

Also [U;,0] : @i = @, = (Ui, ¢ij Umd;{ij) is a 2-morphism over T.

Proof. As in Definition [10.21] we have a commutative diagram with exact
rows, where néij,'yéf,ij are isomorphisms as ®;; is a coordinate change. But
dy,si = dy;55 = 0 as (Vi, By, s4,94), (Vj, Ej, s5,1;) are minimal at 2. Hence
implies that T,,; : T, Vi = T,V and ¢yjly, : Eilw, — Ejlu, are both
isomorphisms. Also ¢;; is B near v; by Proposition d), for B the discrete
property in Assumption Hence as T, ¢;; is an isomorphism, by Assumption
there exist open neighbourhoods U; of v; in V;; and U; of v; in V; such
that ¢;j|y, : Ui — Uj; is a diffeomorphism in Man. Since (;Abij|vi D Eily, = Ejly,
is an isomorphism, éij is an isomorphism near v;, so making U;, U; smaller we
can suppose qASij v+ Bilu, — ¢7;(E5)|u, is an isomorphism.

We have ¢y (si|v,) = 75(85)u; +O(s7) by Definition Md), so by Definition
3.15((1) there exists a € I'°(E} ® E} ® ¢7;(£;)|u,) such that

Gij(silu,) = 65;(55)|u, + o (silu, ® silv,).

Define a vector bundle morphism qung : EBilu, = ¢5(E5)|u, by

i (i) —a- (e @ silu,)

;) = by

for e; € T™°(E; v, + O(s;) and é{L](S'L u) =

qﬁz‘j(sj)m7 as in the proposition. Also (;ASQJ|U1 = ngSij|vi as S|y, = 0, and qﬁij

v;). Clearly we have é;] = (;A%j

v; 18
an isomorphism, so ¢/ ; 1s an isomorphism near v;, and making U;, U; smaller we

can suppose g%] is an isomorphism. The rest of the proposition is immediate. [J

Combining Proposition [10.42] with the material of §4.7] yields:
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Proposition 10.43. Let X be an m-Kuranishi space and (Vy, Eq, Sa,%a), (Vb,

Ey, sp, 1) be m-Kuranishi neighbourhoods on X in the sense of §4.7) which are
minimal at x € X (these exist for any x € X by Proposition [10.40]). Theorem

M(a) gives a coordinate change ®q, = (Vab,qbam(ﬁab) i (Va, Ea,y Saya) —
Vi, Ep, 8, 10p) on Ima, N Imay, canonical up to 2-isomorphism.

Then for small open neighbourhoods U, of ¢ (x) in Vo €V, and Uy of
'L/)b_l(:v) in Vy, we may choose @4, such that

(¢ab|Ua,,anb|Ua) : (Uaa Ea|U,,,>sa|Ua37/)a|Ua) ‘)(Uba Eb‘Ub’ Sb‘Ub,wb|Ub)

1s a strict isomorphism of m-Kuranishi neighbourhoods on X .

M-Kuranishi neighbourhoods (V,, E,, Sq,%,) on X are classified up to strict
isomorphism near x by n = dim V, — vdim X — dim O, X € N.

Theorem 10.44. Let X be an m-Kuranishi space in mKur, and x € X, and
(V, E,s,v) be an m-Kuranishi neighbourhood on X minimal at x € X, which
exists by Proposition . Suppose (Vy, Eq, Sa,a) is any other m-Kuranishi
neighbourhood on X with © € Im,. Then (Vu, Eq, Sq,%a) is strictly isomorphic

to (Viny, E(ny, S(n)s ¥Y(n)) near x in the sense of Definition where
n=dimV, —dimV =dimV, — vdim X — dim O, X > 0, (10.52)

and (V(n),E(n), S(n),z/)(n)) 18 the m-Kuranishi neighbourhood on X constructed
from (V, E,s,v),n in Definition [10.38|

Proof. Let X, x,(V, E,s,v),(Va, Eq, Sa,%¥4) be as in the theorem. Starting from

(Vay Eq, Say %), Propositions [10.39| and [10.40| construct an m-Kuranishi neigh-
bourhood (V',E’,s',4') on X or X which is minimal at z, such that (V(’n)7

EEn)’ San qun)) is strictly isomorphic to (Vg, Eq, Sa,%s) near z, by a strict iso-

U

morphism ¥ say, for (V(’n)7 E(n), s'(n),w’n ) constructed from (V' E’ s’ ¢)') and
n =dimV, —dim V'’ > 0 in Definition Then Proposition shows that
(V,E,s,v),(V',E', s ,4') are strictly isomorphic near x, by a strict isomorphism
= say, so dim V' = dim V', and follows from .

Now consider the following diagram of coordinate changes of m-Kuranishi
neighbourhoods on X, defined near x, in the sense of Definition .51

(V,E,s,%)

P (Vinys By S(n)s Yn))
(n)* -..””‘fI/OE(n)
ZLE P, () 0Z0P (1) = 2 EMm &
A \ BN

(Viny Elny Sty Yy (Va, Ea, 80, Ya)-

(1]

!
P (n)

S

(‘/’/7 El’ Sl,w/)

IR

Here arrows marked ‘=’ are strict isomorphisms. The arrows ‘—’ exist from
above and by Definition [10.38] Thus ‘I’;(n) o Z o ®(,), exists as a coordinate
change on X, by composition of coordinate changes in Definition

Clearly = induces a strict isomorphism Z,) : (Vin), E(n), S(n), Y(n)) — (V(’n),
Egn),szn),ipén)) near z, initially just as a coordinate change on X, not on
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X. However, there is a 2-morphism <I>;(n) oEo @y = E(y), constructed
as for A : ®,(,) 0 @y, = (V1) By 8y thmy) 110 Definition Therefore
E(n) 1s a coordinate change on X, as <I>;(n) 0 =0 P, is. us WoZEp, :
(Vinys By 8(n)> Y(n)) = (Vas Ea, 8a,%a) is a strict isomorphism of m-Kuranishi
neighbourhoods on X near z, as required. O

As in Example we say that an m-Kuranishi space X in mKur is a
manifold if X ~ Flgl‘;“r(X) in mKur for some X € Man. We use Proposition
10.40| to give a criterion for this.

Theorem 10.45. An m-Kuranishi space X in mKur is a manifold, in the
sense of Example if and only if O, X =0 forall x € X.

Proof. The ‘only if’ part is obvious. For the ‘if’ part, suppose X = (X,K)
lies in mKur with O, X = 0 for all z € X. By Proposition for each
x € X we can choose an m-Kuranishi neighbourhood (V, E., s,,%,) on X,
as in §4.7] such that = € Im, and (V,, E;, $z,1,) is minimal at x. But
then rank £, = dimO0,X = 0 by Lemma so B, = s, = 0. As the
{Im7), : z € X} cover X, Theoremconstructs X' = (X,K) in mKur with
K' = (X7 (Vac7 Ey, s, wx)xEXv Doy, wyex, Axyz, x,y,zEX) and X ~ X',

Since FE, = s, = 0 for all x € X, following the proof of Proposition [6.63] we
can construct an object X in'l\./Ian with topological space X = X such that
FmKur (X)) ~ X' s0 that FE(X) ~ X, and X is a manifold. O

All the results of §10.4.11-§10.4.2 apply in any 2-category mKur constructed
h 3.7,

from a category Man satisfying Assumptions [10.1} [10.9] and [10.11] By
Examples [10.2] [10.10 and [T0.12] and Definition [£:29] this includes the 2-categories

mKur, mKur®, mKur®®, mKur®®, mKur®2°¢. (10.53)

10.4.3 Extension to u-Kuranishi spaces

All of §10.4.1}-810.4.2] extends essentially immediately to p-Kuranishi spaces. As
in p-Kuranishi neighbourhoods are the same as m-Kuranishi neighbour-

hoods, and we call a pu-Kuranishi neighbourhood (V; E, s,%) on a topological
space X (or on a p-Kuranishi space X)) minimal at x € X if it is minimal at «
as an m-Kuranishi neighbourhood. We leave the details to the reader.

10.4.4 Extension to Kuranishi spaces

Next we extend §10.4.11-410.4.2] from m-Kuranishi spaces to Kuranishi spaces,
by including finite groups I' and isotropy groups G, X throughout.
Here are the analogues of Definitions [10.35} [[0.37] and [10.38]

Definition 10.46. Let (V, E,T, s, ) be a Kuranishi neighbourhood on a topo-
logical space X as in and z € Imvy. We call (V,E, T, s,v) minimal at x if

(a) ¥~ !(x) is a single point {v} in V, and
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(b) dys =0, where v is as in (a) and dys : T,V — E|, as in Definition [10.6]

Here ¢~ 1(z) is a T-orbit in s7(0) C V, so (a) implies that v is fixed by T

Similarly, let X = (X, K) be a Kuranishi space in Kur, and (V,E,T,s,v) be
a Kuranishi neighbourhood on X in the sense of §6.4] and z € Im¢ C X with
v =1"1(z). Again we call (V, E,T, s,9) minimal at z if (a),(b) hold. Then (a)
implies that G, X =T, for G, X the isotropy group of X from

Definition 10.47. Let ®;; : (V;, E;, T, s:,%:) = (V;, Ej, T, 85,1;) be a coor-
dinate change of Kuranishi neighbourhoods on a topological space X. A strict
isomorphism (05, ij, Pij) + (Vi, B, Ty, s5,0:) — (V, E;, T, 85,1;) satisfies:

(a) 045 : Ty = T'; is an isomorphism of finite groups.

(b) @ij : Vi = Vj is a 0y;-equivariant diffeomorphism in Man.

(¢) ¢ij: Ei — ¢};(E;) is a 0yj-equivariant vector bundle isomorphism on V;.
(d) @z‘j(sz) pij(s5) in FO"(S%(E )

(e) i =1j 04, ~10) 71(0) = X, where ¢;;(s;1(0)) = 551(0) by (b)—(d).

Given a strict isomorphism (05, ¢;j, %i;), we will define a coordinate change
q)ij = ( 7/]7771]7¢l]7¢)1]) : (‘/i)Ei;FiaSiv'(/)i) — (‘G)Ejarj73j7wj) over Im% =
Im);. Set P; = V; x I';, where I'; x I'; acts on P;; by (vi,7;) : (vi, 65) — (75 -
Vi, Y5 5]' Uij(’yi)il). Define Tij - Pij — V; by Tij - (’Ul',(Sj) — V; and (,25” Pl] — V
by ¢ij : (vi,9;) = 0; - i (v;). Then m;; is I';-equivariant and I';-invariant, and
is a I';-principal bundle, and ¢;; is I';-invariant and I';-equivariant.

At (vi,d;) € Py, the morphism ¢;; @ 7 (E;) — ¢7;(F;) must map E;|,, —
E; |‘sa “pij(vi): K
the action of &; : Ejly. (v) = Ejls; -, (v;)- This defines ¢;;. It is now easy to
show that ®;; = (Plj,mj,(,zbw,gb”) is a 1-morphism ®;; : (V;, E;, Ty, 85, ¢;) —
(V;,E;,T;,85,%;) over Im);. Using the inverse of (o4, ¢ij, $i;) we construct a
quasi-inverse ®;; for ®;; in the same way, so that ®;; is a coordinate change.

If instead (V;, By, T, 84, %:), (V;, E;, T, 85,1,) are Kuranishi neighbourhoods
on a Kuranishi space X, we define strict isomorphisms as above, except that we
also require ®;; above to be one of the possible choices in Theorem a).

We call Kuranishi neighbourhoods (V;, E;,I's, s;,%5), (V;, E;, T, s5,%;) on X
or X strictly isomorphic near S C Im; NIm; C X if there exist I';- and
Tj-invariant open neighbourhoods U; of ¢; *(S) in V; and U; of w;l(S) in Vj,
and a strict isomorphism

Let qASZ-j|(v. 5;) be the composition of pyjlv, : Eilo, = Ejly,; (v,) With

iwi

(045, @ijy Pij) = (Us, is

v.) — Uy, Ejlu;, Ly, 85luy, ¥slu; )-

Definition 10.48. Let (V, E, T, s,%) be a Kuranishi neighbourhood on a topo-
logical space X. Suppose we are given a finite group A, an injective morphism

t: T < A, and a representation p of I' on R" for some n=20,1,.... We will
define a Kuranishi neighbourhood (V(A)Lp, E(Aan, A, s (n) o w(n ) on X.
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Define V(ﬁ)’Lp =(V xR" x A)/T, where I" acts on V' x R" x A by

v (Y, 8) — (v v, p(V)y, 8- u(y) ).

As the T-action is free and T is finite we can show using Assumptions [3.2[e) and

b) that the quotient (V x R™ x A)/I exists in Man. Let A act on V(ﬁ)’bp by

8 (v,y,0)T — (v,y,8 - 5)T.
Define B, = (E x R" x R" x A)/T, where T' acts on E x R" x R" x A by

n),p
v:((v,e),y,2,6) — (v (v,e), p(Vy, p(7)2,6 - (1) ).

Here we write points of E as (v,e) for v € V and e € E|,. The projection

e E(An’)b’p — V(ﬁ)’fp making E(An’)b’p into a vector bundle acts by

(A ((U’e)ayaz75)r — (’vaaa)rv

A, . n A
so that the fibre E(n)L,p|(v,y,5) is E|, ®R" 5 (e, 2). Let A act on EL, by

o ((v76)7y7za5)r — ((v,6)7y,z,5’ . 5)F

Then 7 is A-equivariant. Define s(An’)L_ﬁ : V(ﬁ)’fp — E(An’)ip by

S(A,;)ﬁp (09,0 — ((v,5(v)),y,9,0)T,

where we write the action of s : V' — E on points as s : v — (v,s(v)). Then
sfn; , €T (E(An’)bp) is A-equivariant. We have

(500y.,) 1 (0) = {(v,9,0)T € V', s s(v) =y =0} = (s71(0) x {0} x A)/T.

Hence we have a homeomorphism

I: (s )7 (0)/A = [(s71(0) x {0} x A)/T]/A — s71(0)/T

).
mapping I : [(v,0,0)TJA — oI'. Define 1/)(An’)Lp =ol: (s(An’)L p)fl(O)/A - X.

Then w(An’)Lp is a homeomorphism with the open set Im z/J(An’)Lp =Imvy C X. Thus

(V(ﬁ)’bp, E(An’)bp, A, S(An’)bp, w(An’)Lp) is a Kuranishi neighbourhood on X.

Define a 1-morphism of Kuranishi neighbourhoods on X over Im v

(I)*(n) = (P*(n)7 Tx(n)» ¢*(n)a é*(n)) : (Vv E7 Fa S, 1/}) — (Vv(ﬁ)’fpa s 7¢(An7)b’p)

by P,y = V x A with I x A-action (v,4") : (v,0) (7; v,8 -5 u(y)7h),
and morphisms 7.(n) : Piny = V, ¢u(n) + Pign) — V(ﬁ)’bp, Pi(n) W;‘(n)(E) —
:(n)(E(An’)L’p) acting by
Tx(n) (Uaé) v, ¢*(n) : ('U,(S) — (1)70,(5)F,

Qg*(n) : ((U75)7e) — ((U’(S)? (670))
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It is easy to check Definition [6.2 holds. Similarly define a 1-morphism
n A A
(I)(n)* = (P(n)*v T (n)*> ¢(n)*a ¢(n)*) : (Vv(n)’pv cee J/Jm),p) — (V, Ev Fa S, 'l/])

by Py =V x R" x A with A x I'-action
(8,7)  (v,9,0) — (- v, p(V)y, 0" -6 (7)),

A 7 * A *
and (nys + Pnye = Vgl Omys 2 Plnys = Vs dnys 2 100 (B ) = 910y (E)
acting by

Tyt (U,4,0) — (0,4,0)T, Py : (v,Y,0) — v,
Sy ((0,9,6), (e,2)) — ((v,9,0), ¢).

As in Definition but with extra contributions from finite groups I, A,
we can define explicit 2-morphisms K : @y, 0 ®,(,) = id(y,p,rs,¢) and A :

D, (n) 0 Py = ld(VA C By Over Im, and we leave these as an exercise.
(n),p> P ()0
Then K, A imply that <I>*(n), ®(,,), are coordinate changes over Im 1.

Here is the analogue of Proposition [10.39}

Proposition 10.49. Suppose (V;, E;, T, s;,;) is a Kuranishi neighbourhood
on a topological space X, and x € Imp; C X. Then there exists a Kuranishi
neighbourhood (V, E\T',s,1) on X which is minimal at = as in Definition
with Imvy C Imy; € X and I' C T'; a subgroup, and a coordinate change
O, (V,E,T,s,9) = (Vi, E;, T, 85,1;) over S =TIm1p.

Furthermore, (V;, E;, Ty, 84,;) is strictly isomorphic to (V(EL)LP,E(F)L Iy,

{;pr,d)g’;;p) near S as in Definition |10.47, where n = dimV; — dimV > 0
and (V(nl);, . ,z/J(n) p) is constructed from (V, E,T,s,v) as in Definition |10.48
using the inclusion ¢ : ' — T'; and some representation p of I' on R", and this
strict isomorphism locally identiﬁes <I>*z :(V,E,T,s,v¢) = (V;, E;, T, 8i,1;) with

@y (V,E, T, 8,9) — ( () p, e ,1/)(n ) in Definition [10.48| near S.

Proof. Pick v; € ¢;*(z) C s7'(0) C Vi, and define T' = Stabr, (v;) = {y € T
v(v;) = v;}, as a subgroup of I; with inclusion ¢ : T' < T';. Then T'v; = w;l(x)
is |I';|/|T'| points in V;. Definition gives a linear map d,;s; : Ty, Vi — Eily,-
Here I' acts linearly on T, V;, E;l.,, and dy, s; is I'-equivariant. Define n to be
the dimension of the image of d,,s; and m = rank E; —n, so that we may choose
a I-equivariant isomorphism F;|,, & R™ @ R" with Imd,,s; = {0} & R". Write
p for the corresponding representation of I" on R™.

Choose a I'-invariant open neighbourhood V; of v; in V; with Ei|V,; trivial,
such that (§-V/)NV; =0 for all 6 € I'; \T'. Choose a I'-equivariant trivialization
Eily, = V] x (R™ @ R") which restricts to the chosen isomorphism FE;l,, =
R™ @ R"™ at v;. Then we may identify si|Vi/ with s1 @ sq, where s; : V/ — R"™,
sg : V! — R"™ are I'-equivariant morphisms in Man, and dy,si 2 Ty, Vi —
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Eil,, 2 R™ @& R" is identified with T,,s1 ® Ty, 82 : Tp,,V; = R™ @ R". Hence
Ty;51=0:T,V; = R™ and T,,s2 : T, V; = R" is surjective.

We now follow the proof of Proposition to construct v; € U C V/,
Y:USVXW,{:Elyu 2UxR"®R"), n:E—>V,s:V — E, and
v € V with x(v;) = (v,0) and s(v) = dps = 0, but making everything I'-
invariant /equivariant, noting that Assumption includes I'-equivariance, and
(g1,--.,9n) can be made I'-equivariant by averaging over the I'-action. Define
1 :571(0)/T — X by the commutative diagram

s~1(0)/T RN [s71(0) x {0}]/T N (Uns(0)/T
\Lw Uns=2(0) uFHuFi\L
X v s~1(0)/T,.

Here each arrow is a homeomorphism with an open subset, the top right as
x: U — V x W identifies U N's; *(0) with s71(0) x {0} and is T-equivariant, the
right hand as U is [-invariant and (6-U)NU = for 6 € I'; \ I, and the bottom
by Definition e). Thus (V, E,T,s,v) is a Kuranishi neighbourhood on X
with z € Im¢ C Im); C X, and is minimal at z as in Definition [I0.46] The rest
of the proof is a straightforward generalization of that of Proposition[10.39] O

The next three results need Assumption By modifying the proofs of
Propositions [10.40] [10.42] and [10.43] and Theorems [10.44] and [10.45] to include

finite groups, we can show:

Proposition 10.50. Suppose X is a Kuranishi space in Kur and z € X. Then
there exists a Kuranishi neighbourhood (V, E,T',s,1) on X, as in §6.4] which
is minimal at x as in Definition with T' 2 G, X. Any two Kuranishi
neighbourhoods on X minimal at x are strictly isomorphic near x.

Theorem 10.51. Let X be a Kuranishi space in Kur, and x € X, and (V,
E.T,s,v) be a Kuranishi neighbourhood on X minimal at x € X, which exists
by Proposition |10.50, Suppose (V, Eq,Ta, Sa,¥a) is any other Kuranishi neigh-
bourhood on X with « € Imp,. Then (V,, Eq, Ty, Sa,a) is strictly isomorphic
to (V(l;l”),;, E{;;;,Fa, s{y‘z)’fp,w{;)’fp) near x as in Definition |10.47) where

n=dimV, —dimV =dimV, — vdim X — dim O, X > 0,

and (V(I;”);, .. .,7,/1{7;‘)’;) is the Kuranishi neighbourhood on X constructed in
Definition [10.48| from (V, E,T', s,v),n, an injective morphism ¢ : ' — T',, and

some representation p of T' on R™.

Theorem 10.52. A Kuranishi space X in Kur is an orbifold, in the sense of
Proposition if and only if O,X =0 for all x € X.

The proof of Theorem [10.52]is simpler than that of Theorem [10.45] as we only
need the analogue of the first part of the proof showing that X ~ X' = (X,K)
in Kur for K = (I, (V;, E;, T, si,¢:)icr, Pij, ijers Nijk, ijker) a Kuranishi
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structure with F; = s; = 0 for all ¢ € I. As for (10.53), the results of §10.4.4

above apply in the 2-categories

Kur, Kur®, Kur®®, Kur®®, Kur®2°.

10.5 Conditions for étale (1-)morphisms, equivalences,
and coordinate changes

A (1-)morphism f : X — Y in mKur, uKur, Kur is called étale if it is locally
an equivalence/isomorphism. We now prove necessary and sufficient conditions
for (1-)morphisms f to be étale, and to be equivalences/isomorphisms, and for a
(1-)morphism of (m- or u-)Kuranishi neighbourhoods to be a coordinate change.
We suppose only that the category Man used to define mKur, uKur, Kur
satisfies Assumptions (3.1 and specify additional assumptions as needed.

10.5.1 Etale 1-morphisms, equivalences, and coordinate
changes in mKur

Definition 10.53. Let f : X — Y be a 1-morphism in mKur. We call f étale
if it is a local equivalence. That is, f is étale if for all z € X with f(z) =y in
Y there exist open neighbourhoods X’ of z in X and Y’ of y in Y such that
F(X')CY, and f|x: : X' = Y is an equivalence in mKur.

Theorem 10.54. A 1-morphism f : X — Y in mKur is an equivalence if and
only if f is étale and the underlying continuous map f: X — Y is a bijection.

Proof. For the ‘only if’ part, let f: X — Y be an equivalence. Then f is étale,
as we can take X’ = X, Y’ =Y in Definition and f has a quasi-inverse
g:Y > X withg=f"':Y - X, sothat f: X = Y is a bijection.

For the ‘if’ part, suppose f is étale and f: X — Y is a bijection, and write
g=f"':Y — X for the inverse map. As f is étale we can cover X,Y by open
X', Y’ such that f|x:: X' — Y’ is an equivalence, and then g|y: : Y’ — X' is
continuous. Thus g is continuous, and f, g are homeomorphisms.

Use notation , , for X,Y,f. Then for alli € [ and j € J
we have a l-morphism f,; : (Ui, Di 14, x:) — (Vj, Ej, 85,1;) over (S, f) for
S =Imy; N f~*(Ime;). Identifying X,Y using f, consider fij as a l-morphism
of m-Kuranishi neighbourhoods on X over S. Then f being étale means that
Fi; is locally a coordinate change (i.e. locally an equivalence over idx ).

Theorem says Equ((U;, Di,ri, xi), (Vj, Ej, s5,%;)) is a stack over S,
so f;; locally a coordinate change implies it is globally a coordinate change.
Hence there exist a 1-morphism g;; : (V, Ej,s5,v;) — (Ui, Di, 73, xi) and 2-
morphisms ¢;5 : g;; © fi; = 1w, D, rixi)s Kji * Fij ©95 = 1dw, B;,s; 0, OVer
S. By Proposition we choose these to satisfy k;; *idy = idg,  *¢;; and
Lij *idgﬁ = idg,_-j *Kji. No longer identifying X, Y, we consider g,; a 1-morphism
over (T, g) for T =Ime; Ng ' (Imy;), and ¢;;, K;; as 2-morphisms over S, 7.
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For all 5,57’ € J and 4,7’ € I, define 2-morphisms Géj, 2950 Y = g4
G : T ogj = g, by the commutative diagrams
g] i © T]j — g],ZOTJJ/Old(V Ej,s5,;5) :>gj ZOTJJ’szJOng
idg , . oT 5 *K
HG;j, 9 J dg,,A*F. *idg_ﬁﬂ (10.54)
L /*1d
9ji == 1dw, . p,.r:x:) © i —_— gji° fijr09jis
Tii/ [¢] g],L ld(UZ,D 7"17X1)OT“, Ogjl :} gjl/ Ofl ]OT”/ Og]z
. Ly *ldT 19950 .
\H/Gy ldg”/*F”l*ldgﬂ\U (1055)
dg LT
gji/ _— ng, le) 1d(‘/‘]7E_])s_]wa) : g_]’L' o -ij Og]z.

We now claim that as in (4.9)),

_ i, €1 ii’ ) i, €1
9=19.95, jes,ict» Gijr.jjrer GmeJ )

is a 1-morphism g : ¥ — X in mKur. Definition a)—(d) for g are immediate.
Part (e) follows fromjm (10.55) and (e) for f and ¢;; * 1d =idg,, * Kj;.
To prove (f), let i € I and j,5", 7" € J, and consider Figure The small
rectangle near the bottom commutes by Definition uh for f, the two parallel
arrows on the right are equal as K;/; * 1df , 1df , * Li;, three quadrilaterals
commute by ((10.54] m, and the rest of the dlagram commutes by properties of
2-categories. Hence Figure [10.1] commutes, and the outside rectangle proves part
(f) for g. We can prove (g),(h) in a similar way. Thus g is a 1-morphism.

We claim that there are 2-morphisms n = (UW, m/el) :gof = idx and
¢=(Cjjr, jjes) : fFog=idyin mKur, which are characterized uniquely by
the property that for all ¢,4' € I and j,j’ € J, the following commute

gjl/o-fZ]OTZZ, :>gjlof :>(g f)”/

dg /*F ii! i"i'
\U/Lz/]*ld"[‘u, 7 771:7:'\U/ (1056)
id(Ui/,Di/,ri/,Xi/) o Tii’ T“‘/ (id}()“/7
Jijrogjo Yy :1>f”°gji:f>(fog)jj’
iy *G phog
\M/K/]/Z*ldr " C]‘j/ (1057)
1,508,000 © Lis Y (idy)j,

where @f’ﬂf, @f J» are as in Definition for go f, f o g in mKur, and (10.56)),
(10.57)) are in 5 morphisms of m-Kuranishi neighbourhoods over S = Im x; N

Imyxy N f~ (Ime;) € X and T =Ime; NImypy Ng ' (Imy;) C Y.

To prove this for n, first for 7,7’ € I and 7,5’ € J we show that for
i,i',j and for ¢,i',j determine the same 2-morphism 7),;, on Im x; N Imy; N
F (Ime; NImapj). Thus, as the Im x; N Im x; N f~1(Imep;) for j € J cover
Im x; N Im x;/, by the sheaf property of 2-morphisms in Theorem there is
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gjr; 0 YTjjr 9ji

G,
i iy ii
X LU/%
-
v, xid gj’ioTjj’o id*F,JL.] *id gj’i o

ij
fijo9; fijr09;
ﬂ‘b J//*id L Jll*idﬂ\
. gj”io-fij”o idxk j; g;i;© i j170G,1;0 1d*FJ7 *id g],,_bof 110
Gl juxid g].,ioTjj/ é Tjj/of”ogﬂ gj,lof”,ogji
ﬂ\id*Fjle *id ﬂ\ d*Fj/jN *id 1d*Fjle *1d/ﬂ\

d a i OT i’ 5 10 idxkjg g]”zOT //Of ., O 1d*F]7 *id g "5 OT //szj
ids i/, x <=
gji; © %fzj/og]’zopr j’ g],loT“/of”ogﬂ ogg’lofzj’oggz

?j/j” o %*n 1 y¥id id*nj/i*idU/ ‘U’id*bij, *id
. . o
” *9]” OT j’§11 O ld*FgL] *id gj”iOTj/j//

TJ]/OfZ]og]’L Ofij’ogji
idxA s \U]id*/\,. 1o wid id*F{le*id\H/
vy
i oT 1 0 id«FJ7 «id

gj//i o fij” o g]l

fzy ogjl
id*kj; L,ij//*id
G,

Jj
OTjj// gji'

Figure 10.1: Proof of Definition f) for g

a unique 2-morphism 7;;; over Im x; N Im y,; such that ( commutes for
all j € J. Then we fix j € J, and show these n,;/ satlsfy the restrictions of
Definition 4. 18‘ a),(b) to the intersections of their domains Wlth f L(Im z[)j) using
1) and properties of the @g in Proposition As f71(Im1p;)
or j € J cover X, by the sheaf property of 2-morphisms thls 1mphes Definition
4.18(a),(b) for the N, and m : g o f = idx is a 2-morphism in mKur. The
proof for ¢ is the same. Hence f is an equivalence in mKur, as we have to
prove. O

Here is a necessary and sufficient condition for 1-morphisms in mKur to
be étale. Combining it with Theorem gives a necessary and sufficient
condition for 1-morphisms to be equivalences.

Theorem 10.55. Suppose the category Man used to define mKur satisfies
Assumptwns [B-IH3:7] [10-1] [10.9] and [I0-11] with tangent spaces written T, U for
U € Man, and discrete properties A, B, where if f:U — V in Man is A then
tangent maps T, f : T, U — T,V are defined, and if [ is B (which implies A)
and Ty f is an isomorphism then f is a local diffeomorphism near u.

Let f: X — Y be a 1-morphism in mKur. Then f is étale if and only if f
is B and the linear maps To f : T, X — T,Y, O, f : 0, X — O,Y from §10.2.1]
are both isomorphisms for all x € X with f(x) =y inY.
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The ‘only if’ part does not require Assumptions and |10.11}

Proof. For the ‘only if’ part, suppose f is étale. Then for each x € X with
f(z) = y in Y there are open neighbourhoods X', Y’ of z,y in X,Y with
flx : X' =Y an equivalence. Thus f|x' is A and B by Proposition c),
and T, f, O, f are isomorphisms by Lemma As such X' cover X, we see
that f is locally B, so it is B as this is a local condition by Definition iv).

For the ‘if’ part, suppose f is B (which implies f is A), and T, f, O, f are
isomorphisms for all z € X. Let x € X with f(z) = y in Y. By Proposition
we can choose m-Kuranishi neighbourhoods (U,, Dy, 74, Xa), Vb, Eb, S, ¥p)
on X,Y, as in §4.7] which are minimal at z € Im x, and y € Im )y, as in §10.4.1]
Making U, smaller if necessary we can take f(Im x,) C Imt,. Theorem b)
now gives a l—morphism -fab = (Uaba fab; fab) : (Um Dm""aaXa) - (va Ey, sp, ¢b)
of m-Kuranishi neighbourhoods over (Im x,, f) on X,Y, as in Definition m

Definition d) says that fo(ra) = f5(s5) + O(r2). By the argument
in the proof of Proposition we can choose f(;b : Dy — f5(Ey) with
flo = fap +O(ra) and f!,(ra) = f(s5). Then replacing fo by f.,, which is
allowed in Theorem b) as it does not change f,, up to 2-isomorphism, we
can suppose that fap(rq) = £ (sp).

Write ug = x5 ' (2), vp = 10, *(y). Then gives a commutative diagram

0 T, X —=Ty,Up ————> Dylu, —> 0 X 0
g\LTIf i/Tuafabd ‘ o ifabhza %J/Ozf
0 T,Y —=>T, Vi — "~ By, —> 0,Y 0,

with exact rows. By assumption 7, f,O,f are isomorphisms, and d, r, =
dy,sp = 0 as (Uy, DayTay Xa)s (Vb, Ep, Sp, %) are minimal at x,y, so the maps
T,X - T,,Us, Doy, = 0. X, T,)Y — T, Vs, Ep|,, — O,Y are isomorphisms.
Hence T, fop : Tu,Us — T, Vi and fab|ua : Dglu, — Ebly, are isomorphisms.

As fis B, f,, is B, and f,p is B near u,. Since Ty, fop : Ty, Uy = T, Vb is
an isomorphism, Assumption says that fu; is a local diffeomorphism near
Ug, SO making U, Uyp, Vi, smaller we can suppose Uy, = U, and fup : Uy — Vi
a diffeomorphism in Man. Also fab|ua : Dglu, — Ebly, an isomorphism implies
that fab : Dy — £, (Ep) is an isomorphism near u,, so making Ug, Uqp, Vp smaller
again we can suppose fab is an isomorphism.

Thus, we have a 1-morphism f,, = (Ua,fab,fab) : (Uas DayrayXa) = (Wb,
Ey, sp, 1) over (Im g, f) such that fu, : U, — V} is a diffeomorphism and
fab : Dy — f1,(Ep) is an isomorphism with fab(ra) = fr(sp). Let X' C X,
Y’ C Y be the open neighbourhoods with topological spaces X' = Imx, C X,
Y =Imy, CY. Then f|x/ : X’ — Y’ is a homeomorphism, as fab|7,;1(0) :

r71(0) — s, (0) is, so we can define g = f|y7 : Y’ — X', and then

a
9pa = (Vba f&;lv (f@l)*(fa_bl)) : (‘/ba Ebv Sb ¢b) — (Uﬂﬂ Daa Ta, Xa)
is a 1-morphism of m-Kuranishi neighbourhoods over (g, Im 1)) which is a strict
inverse for f;,, that is, g,, © fop = 1., Daraixa)s Fab © Goa = (V4. By 5p,0) -
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Clearly this implies that f|x’ : X' — Y is an equivalence in mKur. As we can
find such open x € X' C X,y €Y' CY for all x € X with f(z) =y in Y, we
see that f is étale, as we have to prove. O

We apply Theorems [10.54H10.55| to our examples of 2-categories mKur:

Theorem 10.56. (a) Work in the 2-category of m-Kuranishi spaces mKur
constructed from Man = Man, using ordinary tangent spaces T,V for V€ Man.
Then a 1-morphism f : X —'Y in mKur is étale if and only if T, f : T, X —
T,Y, O, f : 0, X — O,Y are isomorphisms for all x € X with f(z) =y inY.
If this holds then f is an equivalence if and only if f: X — Y is a bijection.

(b) Work in the 2-category mKur® constructed from Man = Man®, using
ordinary tangent spaces T,V for V€ Man®. Then a 1-morphism f: X —Y
in mKur® is étale if and only if f is simple and T, f : T, X — T,Y, O f :
0, X — O,Y are isomorphisms for all x € X with f(xz) =y in' Y. If this holds
then f is an equivalence if and only if f: X — Y is a bijection.

(c¢) Work in one of mKur = mKur®, mKurg® mKur?® or mKur®?® con-
structed from Man = Man€, Man®°, Man®® or Man®2¢ wusing b-tangent
spaces YT,V for V. € Man, as in . Then a 1-morphism f : X — Y
in mKur is étale if and only if f is simple and *T.f : *T,X — *T,Y,
Y0, f : 0. X — *0,Y are isomorphisms for all x € X with f(x) = y in
Y. If this holds then f is an equivalence if and only if f: X — Y is a bijection.

(d) Work in one of mKur = mKur®, mKurg®, mKur®® or mKur®2¢ con-
structed from Man = Man€, Man&¢, Man?°¢ or Man®?2¢, using stratum tan-
gent spaces T,V forV e Man, as in Ezample iv). Then a 1-morphism
f:X—->Yin mKur is étale if and only if f is simple and Ty f : T, X — TyY,
O.f : 0, X — OyY are isomorphisms for all x € X with f(z) =y inY. If
this holds then f is an equivalence if and only if f: X — Y is a bijection.

Proof. Parts (a),(c),(d) follow from Theorems and Examples [10.2
10.10] and [10.12] Part (b) does not follow directly from Theorems [10.54H10.55

since as in Example|10.10{(b), Assumptionfails in Man® for ordinary tangent
spaces T, V. Instead, we deduce (b) indirectly from (d). Suppose f: X — Y
is simple and € X with f(z) = y in Y. Then N,f : N,X — N,Y from
Example @(a) is an isomorphism as f is simple, so from equation of
Example [10.33] with exact rows we see that T f, O, f are isomorphisms if and
only if T, f, O, f are isomorpisms, and thus (b) follows from (d). O

Here is a criterion for when a 1-morphism of m-Kuranishi neighbourhoods is
a coordinate change.

Theorem 10.57. Suppose Man satisfies Assumptions and

10.11} with tangent spaces T,V for V € Man, and discrete properties A, B.
Let @;; = (Vij, ¢ij, 0ig) = (Vi, Eiysi,0:) — (Vj, Ej, s5,%;) be a 1-morphism
of m-Kuranishi neighbourhoods in Man on a topological space X over an open
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SCX, asin and suppose ®;; is B. Let x € S, and set v; = ¢; ' (z) € V;

?
and vj; = z/Jj_l(x) € V. Consider the sequence of real vector spaces:

dy; Silv; BT, dij _é'ijlviead'uj s
0—T,V, = B e T,

Ejlo, —=0. (10.58)

Here d,,;s;,dy,;s; are as in Definition and differentiating Definition d)

at v; 1mplies that is a complex. Then ®;; is a coordinate change over S

in the sense of Definition if and only if is exact for all x € S.
The ‘only if  part does not require Assumptions and [10.17]

Proof. We can regard ®;; as a 1-morphism <I>§j : X = Y in mKur between
m-Kuranishi spaces X ,Y with only one m-Kuranishi neighbourhood, where the
underlying continuous map of <I>;j is idg : S — S. Then ®;; is a coordinate
change if and only if <I>;j is an equivalence in mKur, which holds if and only if
<I>;j is étale by Theorem as idg : S — S is a bijection.

Let z € S, and set v; = ¥; '(x) € V; and v; = ’gfij_l(x) €V, Asin

we have a commutative diagram with exact rows

0—1T, X —1T,V; e Eily, 0. X 0
\LTIq);j iTvi b il i 0:®; \L
0 T,Y T,,V; ———— Ejl,, 0.Y 0.

By elementary linear algebra we can show that is exact if and only if
T,®;; and O, ®;; are isomorphisms. Thus ([10.58) is exact for all z € S if and
only if 7, ®;;, O, ®;; are isomorphisms for all x € S, if and only if ®;; is étale by
Theorem if and only if ®;; is a coordinate change. O

We apply Theorem [10.57| to our examples of 2-categories mKur. Here as for

Theorem 10'561-2 parts (a),(c),(d) follow from Theorem [10.57 and Examples

and [10.12} and (b) can be deduced indirectly from (d), equation (10.47) of
Example [10.33] and the proof of Theorem [10.57]

Theorem 10.58. Working in a category Man which we specify in (a)—(d)
below, let ®;; = (Vij,(éij,qgij) 2 (Vi, By, si,15) = (V;, Ej, s5,;) be a 1-morphism
of m-Kuranishi neighbourhoods on a topological space X over an open S C X,
and for each x € S, set v; = ; '(x) € V; and vj = 7,/1;1(:17) € V;. Then:

(a) If Man = Man then ®;; is a coordinate change over S if and only if the
following complex is exact for all x € S:

do,; 8i|v, ®Tv; dij —Bijlo; ©do; 55
01T, v T e T, Y

Ejly, —= 0. (10.59)

b) If Man = Man€ then ®,; is a coordinate change over S if and only 1
J
¢ij is simple near wi_l(S) and (10.59)) is exact for all x € S.
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(c) If Man is one of Man®, Man&, Man®® or Man®2° then ®;; is a coor-
dinate change over S if and only if ¢;; is simple near wi_l(S) and using
b-tangent spaces from §2.3] the following is exact for all x € S:

—(Zgij|v,,@bduj<8j

bdviSHvi@bTvitbij 0
—— 0.

0 bT’UZ‘/Z E7,|’Ul @bTvJV]

J I'Uj
(d) If Man is one of Man®, Mang¢, Man?®® or Man®?° then ®,; is a coor-
dinate change over S if and only if ¢;; is simple near wi_l(S) and using
stratum tangent spaces T,V from Ezample iv)7 the following is exact
forall x € S:
~ avisi‘ui@f‘vi Pij ~ *Qgij"ui@avj Sj
0 TUV; Ez v @TUJ‘/]

i

— 0.

j"Uj

10.5.2 Etale morphisms, isomorphisms, and coordinate
changes in uKur

All the material of §10.5.1 has analogues for p-Kuranishi spaces pKur from
Chapter |5| As uKur is an ordlnary category, we replace equivalences in mKur
in §10.5.1| by isomorphisms in uKur So we define a morphism f: X — Y
in pKur to be étale if it is a local isomorphism, that is, if for all x € X with
f(z) =y in Y there exist open neighbourhoods X’ of z in X and Y’ of y in Y’
such that f(X') CY’, and f|x X’ — Y is an isomorphism in pKur.

The analogue of Theorem 4| for uKur is much easier than the mKur
case in it is a more-or- less immediate consequence of the sheaf property
Theorem The analogues of Theorems [T0.55HI0.58| have essentially the same
proofs. We leave the details to the reader.

10.5.3 Etale 1-morphisms, equivalences, and coordinate
changes in Kur

We now extend the material of §10.5.1| to Kuranishi spaces Kur from Chapter @
Our analogue of Definition |[10.53| for Kuranishi spaces is just the same:

Definition 10.59. Let f: X — Y be a 1-morphism in Kur. We call [ étale if
it is a local equivalence. That is, f is étale if for all z € X with f(z) =y in
Y there exist open nelghbourhoods X' of xin X and Y’ of y in Y such that
f(X')CY, and f|x : X' — Y is an equivalence in Kur.

Iff.X—)YlS étale and x € X with f(z) =y in Y then G, f : G, X —
G,Y from is an isomorphism, since this holds for equivalences in Kur.

Remark 10.60. Our definition of étale is stronger than the usual definition
of étale 1-morphisms of stacks in algebraic geometry, in which a 1-morphism
f: X — Y is étale if it is representable and a local isomorphism in the étale
topology, rather than the Zariski topology. With the algebro-geometric definition,
which we do not use, G.f : G, X — G,Y need only be injective, not an
isomorphism.
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Here is the analogue of Theorem It is proved in the same way, except
that we ought to work in weak 2-categories rather than strict 2-categories, so
in expressions like g;,; o f,; 0 g;; we have to insert brackets (g0 Fijr) ©Gjis
and insert extra 2- morphlsms O s 5, By, Y, from § which makes dlagrams
like Figure grow unreasonably large. Since any Weak 2-category can be
strictified as in the strict 2-category proof is guaranteed to extend.

Theorem 10.61. A 1-morphism f: X — 'Y in Kur is an equivalence if and
only if f is étale and the underlying continuous map f: X — Y is a bijection.

Here is the analogue of Theorem Its proof is a straightforward modifi-
cation of that in to include finite groups. We use Proposition and
Theorem [6.45(b) in place of Proposition [10.40]and Theorem [£.56(b) to obtain the
1-morphism f_; : (Us, Do, Ba, 7, Xa) = Vo, Ep, Ty, sp, 1) over (Im xq, f). As
(Uas DayBa,ray Xa), Vs Ep, Ty, Sp,10p) are minimal at x,y we have B, = G, X,
I'n=G,Y,s0 Gy f : G, X — G,Y an isomorphism implies that B, = I'y, which
is used in the proof that we can modify f,, to a strict isomorphism of Kuranishi
neighbourhoods.

Theorem 10.62. Suppose the category Man used to define Kur satisfies As-
sumptions [3.1}{3.7, [10.1} [10.9] and [10.11} with tangent spaces written T,U for
U € Man, and discrete properties A, B, where if f:U — V in Man is A then
tangent maps T, f : T, U — T,V are defined, and if f is B (which implies A)
and Ty f is an isomorphism then f is a local diffeomorphism near u.

Let f: X =Y be a 1-morphism in Kur. Then [ is étale if and only if f
is B and G, f : G, X = G,)Y, T, f : T, X = T,Y, O, f : 0, X — O,Y from
and are isomorphisms for all x € X with f(z) =y inY.

The ‘only if’ part does not require Assumptions and [10.11]

Here are the analogues of Theorem [10.56H10.58] all three proved in the same
way, but using Theorems [10.61H10.62| in place of Theorems 10.55

Theorem 10.63. (a) Work in the 2-category of Kuranishi spaces Kur con-
structed from Man = Man, using ordinary tangent spaces T,V for V € Man.
Then a 1-morphism f : X — 'Y in Kur is étale if and only if G, f: G, X —
G)Y, T.f : T, X =-T,Y, O f : O, X — O,Y are isomorphisms for all x € X
with f(x) = y in Y. If this holds then f is an equivalence if and only if
f: X =Y is a bijection.

(b) Work in the 2-category Kur® constructed from Man = Man€, using ordi-
nary tangent spaces T,V for V.€ Man®. Then a 1-morphism f: X — Y in
Kur® is étale if and only if f is simple and G, f : Go X — G, Y, T.f : T, X —
T,Y, O f : 0, X — O,Y are isomorphisms for all x € X with f(z) =y inY.
If this holds then f is an equivalence if and only if f: X — Y is a bijection.

(c) Work in one of Kur = Kur®, Kurg®, Kur®® or Kur®?2° constructed from
Man = Man® Mangc Man?¢ or Man®?¢, using b-tangent spaces T,V for
Ve Man, as in . Then a 1-morphism f : X — Y in Kur is étale if
and only if f is simple and G, f : G, X — G,Y, ’T.f T X — bTyY,
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b0, F : 20, X — *0,Y are isomorphisms for all x € X with f(z) =y inY. If
this holds then f is an equivalence if and only if f: X — Y is a bijection.

(d) Work in one of Kur = Kur®, Kurg®, Kur?® or Kur®?® constructed from
Man = Man®, Mang¢, Man®° or Man®2°, using stratum tangent spaces T,V
for Ve Man, as in Ezample (iv). Then a 1-morphism f : X —'Y in Kur
is étale if and only if f is simple and G, f : G, X — G,Y, T,f : T, X — TyY,
O.f : 0, X — OyY are isomorphisms for all x € X with f(x) =y in Y. If
this holds then f is an equivalence if and only if f: X — Y is a bijection.

Theorem 10.64. Suppose Man satisfies Assumptions “ -, n and
with tangent spaces T,V for V & Man, and discrete properties A, B.

Let (I)U = ( 1]’7TZJ7¢’LJ’¢U) . (‘/ﬂEHFZ’SH’L/}Z) ( ’E ’F]’ 8.77’(/)]) be a 1-
morphism of Kummshz neighbourhoods over S C X, as z'n @ and suppose ®;;
is B. Letp €7 L(71(9)) C Py, and set v; = mi;(p) € Vi and v; = ¢i;(p) € V;
As in , conszder the sequence of real vector spaces:

du; 5i®(Tpigo(Tpmiz) ") —$ijlp®do, 55
0— T’Ui Vi Vi EBTUJ‘ ij -

Ejl,, — 0. (10.60)

Here Tymy; : T Py — T, Vi is invertible as ;5 is étale. Differentiating Definition
e) at p implies that (10.60|) is a complex. Also consider the morphism of
finite groups
po A (i) €T x Ty (viyy) p=p} — {y €Ty v =
Py = (Yis V) > -

Then ®,; is a coordinate change over S, in the sense of Definition [6.11] if and
only if (10.60) is exact and (10.61)) is an isomorphism for all p € m;. (w-fl(S)).

vk (10.61)

ij i
The “only if  part does not require Assumptions and [10.17]

Theorem 10.65. Working in a category Man which we specify in (a)—(d)

below, let (plj = ( Zjaﬂ-z_ﬂqst]agb’tj) : (‘/iaEivI‘i7Siaq/}i) — (V?zEJaijs_]?w]) be
a 1-morphism of Kuranishi neighbourhoods on a topological space X over an
open subset S C X. Let p € w;jl(d?;l(S)) C Py, set v; = m;(p) € Vi and
v; = ¢i5(p) € Vj, and consider the morphism of finite groups

pp: {(vi,v) €T x Ty (viy) - p=p} — {y €Ty v =
Py (Vi) — 5
Then:

vk (10.62)

(a) If Man Man then ®;; is a coordinate change over S if and only if for all
pEm; (w 1(9)), equation 1} is an isomorphism, and the following
18 exact

dwsi@(Tp@jo(Tp"ij)fl) —¢ijlp@d v;Sj
0—=T,V, Eily, T, V; — L F], —=0. (10.63)

b) If Man = Man® then ®;; is a coordinate change over S if and only if
J
¢ij is simple near ﬂzjl(wi_l(S)), and for all p € m;; L(71(S)), equation

(110.62) is an isomorphism and ( is exact.
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(c) If Man is one of Man®, Man&®, Man®® or Man®2° then ;5 is a coor-
dinate change over S if and only if ¢;; is simple near Wi_jl(wi_l(S)), and

using b-tangent spaces from forall p € W[jl(zﬁfl(S)), equation (10.62)
1 an isomorphism and the following is exact:

*dy, i ®("Tppijo(*Tpmij)~

b —$ijlp®°du; 5
0—"°T,,V;

1
)
Ei|vi@bij‘/j EjI'Uj — 0
(d) If Man is one of Man®, Man&®, Man®® or Man®?° then ®;; is a co-
ordinate change over S if and only if ¢;; is simple near Wigl(z/}i_l(S)),
and using stratum tangent spaces T,V from Ezample 10.2{(iv), for all
pE W;jl(qﬁ;l(S)), equation (10.62)) is an isomorphism and the following is
exact:

- du, 5:®(Tppijo(Tpmis) ")

—$ijlp@do; s,
0—T,V; E;

Vg @ij‘/}

Ej|vj — 0.

Theorem|[10.65(a)—(c) was quoted as Theorem in volumell} and applied in
Chapter[7]of volume[[|to show that FOOO coordinate changes and MW coordinate

changes correspond to coordinate changes of Kuranishi neighbourhoods in our
sense. This was important in the proofs in §7.5] that the geometric structures
of Fukaya, Oh, Ohta and Ono [10H30], McDuff and Wehrheim [49} 50 [52-55],
Yang [71H73], and Hofer, Wysocki and Zehnder [34-41], can all be mapped to
our Kuranishi spaces.

10.6 Determinants of complexes

We now explain some homological algebra that will be needed in to define
canonical line bundles and orientations of (m-)Kuranishi spaces.

If F is a finite-dimensional real vector space the determinant is det £ =
A E R 5o that det E = R, and if F is another vector space with dim F = dim F
and o : E — F is a linear map, we write detaw = AY™Fq : det E — det F.
When E = R"” then det o : R — R is multiplication by the usual determinant of
« as an n X n matrix. More generally, if E — X is a real vector bundle over a
space X we write det £ = A% FE 5o that det E — X is a real line bundle.

Our aim is to extend determinants det(E*®) to finite-dimensional complexes

E* = ( .. — E* d—k>Ek+1 — ) of vector spaces or vector bundles, and
to relate det(E*®) to det(H*(E*)). In §10.7} if (V, E, s,v¢) is an m-Kuranishi
neighbourhood we will apply this to the complex TV'[;-1q) s, E|s-1(0). Most of
our results will only be used for length 2 complexes, but we prove the general case
anyway. The subject involves many sign computations. Some of our orientation
conventions — how to define orientations on (m-)Kuranishi spaces X,Y, Z, and
on products X X Y and fibre products X Xz Y — are implicit in the choices of

signs in equations such as (|10.66)), (|10.69)), and (10.93)).
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10.6.1 Determinants of complexes, and of their cohomology

If E* = (E*,d) is a bounded complex of finite-dimensional real vector spaces,
we can form its determinant det(E®) = @y (AT™ E* Ek)(_l)k7 a 1-dimensional
real vector space. We now define an isomorphism © e between det(E*®) and the
determinant det(H*(E®)) of the cohomology of E*.

Definition 10.66. If F is a finite-dimensional real vector space we write det F/
= A E R for its top exterior power, so that det E is a 1-dimensional real vector
space, with det E = R if E = 0, and we write (det E)~! for the dual vector space
(det E)*. We also use the same notation if E — X is a vector bundle over some
space X, so that det E = A™% P E ig a real line bundle on X.

Suppose we are given a complex E*® of real vector spaces

ak—2 Ek—l gk-1 Ek ak Ek+1 gk+1 Ek+2 gqk+2

-, (10.64)

for k € Z, with d**! o d* = 0, where the E* should be finite-dimensional with
E* =0 for |k| > 0, say E¥ = 0 unless a < k < b for a < b € Z. Write H*(E®)
for the k' cohomology group of E®, so that H*(E®) = Kerd*/Imd*~! for
k € Z. We will define an isomorphism

Ope : @0_,(det EF)D" — @ _ (det HF(E®))(-D". (10.65)

If k <aork>bwehave E¥ = H¥(E®) = 0 and det E¥ = det H*(E*®) = R,
and such terms do not change the tensor products in ((10.65)), so the left and right
hand sides are independent of the choice of a,b with E* = 0 unless a < k < b.

For each k € Z define m* = dim H*(E®) and n* = dimImd*, so that

dim E¥ = n*~! 4+ mF 4+ n*. By induction on increasing k, choose bases u¥, ...,

uﬁk,l,vf, e ,vﬁlk,w’ﬁ . ,wflk for E* for each k € Z, such that u¥,... u*,_, isa
basis for Imnd*~! C E* and uf, ... ,uflk_l,vf, . ,vfnk is a basis for Ker d* C E¥,
which forces d*uf = d’“véC =0 for all 4,7, and d*w} = uf“ fori=1,...,n".
Then [vf],...,[v¥,] is a basis for H*(E®), where [v¥] means v} 4+ Imd*~?.

Define ©ge to be the unique isomorphism in (10.65]) such that

b
Ope : @ (ubA---Auk,_ AVEA- - AVE AW A- - -/\wflk)(_l)k —
k= b (10.66)
I (—1)n" * 41/ ® (k] A=A [vfnk])(_l)k-
k=a k=a

To show that this is independent of the choice of uf vk wf, suppose @F, 0F W

s Ui RR

are alternative choices. Then the two bases for E* are related by a matrix

k

%

@\ A 0 0y (wh
(@’“)Z’Ll = B* Ok (vf)l’il
( ~f)?:1 « C (wf)?:l
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Here A%, B¥ C* are n*=1' x n*~! and m* x mF and n* x n* real matrices,
respectively, and the matrix has this lower triangular form as

(@, .. ab ) =Tmd =t = (@Wf, ... uf) and

~k ~k ~k ~k k k k k k
(A, ..o Uy, 07, Opi) = Kerd™ = (uy, ...,y i1, 07, . Upn)

Also the two bases for H*(E®) are related by the matrix

~k1ymF k (1, k7ym*
([%]):11 =B ([%D:&
Thus we see that
PN NG NTEA AT A A Ak
= det(A*) det(B*) det(C*) - uf A+ - AuF  AVE AL AVE  AWE A AWE
[GF] A - A [OF k] = det(B®) - [of] A -+ Ao L]

mk

Hence, if we change from the basis u¥, ... 7U/Zk of E* to the basis @}, ... 77115,9
for all k, then the left hand side of (10.66)) is multiplied by the factor

[15_, (det(A*) det(BF) det(C*))(~1", (10.67)
but the right hand side of (10.66)) is multiplied by the apparently different factor
15, (det(BF))=1". (10.68)

However, as d*uwF = uf“, dkaf = ﬂf“ we see that CF = AF*! so that

det(C*) = det(A¥*1), and also det(A%) = 1 as n®~ ! = 0 and det(C?) = 1 as
n® = 0. Therefore (10.67) and (10.68) are equal, so (10.66)) is independent of the

choice of bases uf, ... ’U/Zk of E¥F, and Og. is well defined.
Suppose now that E® in (10.64) is exact. Then m* = 0 for all k, so as above
we choose bases uf, ... u¥, _, wy,...,wk, for E¥ for each k € Z with d*uf =0

and dFwk = uf“ for all i, k. Define
e = @b, (WA AUk, AwbA - pwk, ) DT € @0 (det BF)D'. (10.69)

This is independent of choices as above.

10.6.2 A continuity property of the isomorphisms Oge.

We now prove a continuity property for the isomorphisms @ ge in It will

be used in §10.7.1] to define canonical line bundles Kx of m-Kuranishi spaces X.

Here @ determines Zge |, for € X. The point is that these Zgs |, depend

continu on x € X, and so form an isomorphism of topological line bundles
ilO.?l

Elge in . The sign ]_[k(fl)”k("hrl)/2 in (|10.66) is needed to ensure this.
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Proposition 10.67. Suppose that X is a topological space, and we are given a
commutative diagram of topological vector bundles and their morphisms on X :
Ek-1 Ek Ek+1 EFk+2

qk—? gkt q* ket qk+2 o
igk—l \Lek \Lek+1 gk+2 (10,70)

ak‘—Z Ek*l ak—l Ek dk Ek+1 ak+1 Ek+2 ak+2

such that d*t1odk = dFt1odk =0 for all k € Z, and E¥ = EF = 0 unless
a<k<bfora<binZ. Thatis, E*, E* are bounded complexes of topological
vector bundles on X, and 0° : E® — E' is a morphism of complexes.

For each x € X we have a morphism 0°|, : E*|, — E°*|, of complexes of
R-vector spaces, which induces morphisms H*(6°|,) : H*(E®|,) — H*(E*|,) on
cohomology. Suppose H*(6*|,) is an isomorphism for all x € X and k € 7.
Then there exists a unique isomorphism of topological line bundles on X :

Epe : @0_, (det EX) D" — @P_ (det EF) D" (10.71)

such that for each x € X, the following diagram of isomorphisms commutes

b _1\k b ~ _1\k
&y, (det EF)DT|, &y, (det EF)DT|,

Ege |a

josei ®}_, (det H*(0%])) " Ornl  (1072)

@l (det HH(E®[,) D" ———> @}, (det HH(E*[,)) ",
where @E'Iz’QE'Igc are as in Definition [10.66]

Proof. Fix & € X, and set m* = dim H*(E*|;) = dim H*(E*|z), and ¥ =
dimIm d*|z, and 7* = dimIm d”“|z As in Deﬁmtlon 10 66, choose bases ¥,

. aka LOF, Lok o, L Wk, for EF|; and ak, ... ~,€ L vkk,w’f,
w~k for E*|;, such that dk k =d*oF =0, d*af = u’chl d*a k= = d*% k=0,
and dk oF = 4 for all i, k. As [0F], ..., [0k ] is a Dbasis for Hk(E'|w), and
[0%], ..., [éfhk] is a basis for H*(E*|;), and H*(0°|;) : H*(E®|3) — H*(E*|3) is

an isomorphism, we can also choose the oF, 0¥ with 6|5 (0F) = 0¥ for all 4, k.
Now let X be a small open neighbourhood of # in X on which the E*, E*

are trivial for all k, and choose bases of sections e, ..., egk,l I f%k,gf,

k k| sk sk ik ik o=k & Sk
s gy for E¥|g and €7, ... €2, f7, .. fk, 155 G5, for B¥|%, such that
k. — ~k k| _~k k| _ =k sk|_ _ *k fk|__ Xk B — ok Maki
€g|i*ui7f¢‘§*U¢a9i|i*wivei|§f*uiafi|i*”ivandgi‘§r*wi- aking

X smaller if necessary we can do this such that d’“gﬁC = ef“ and a’cgf = éf“

for all i, k, as these hold for @F,...,w". Then d¥ef = d*eF = 0. Write
k+1

k ¢k k+1 k+1 k+1 pk+1 AP k41 k1
dUfi = Za 1A + 30 BT L O et

for Af*l,Bffl,Cf*l : X — R continuous and zero at z. Replacing Ik vy

k
fE=>" Af;“lg’? we can make Af;l = 0 for all 4, j, k. But then we have

2

~ k+1 ~ k+2 -k+2 ~k+1

0= dr+igk fh = E Bk:+1< Z Bk+2fk:+2 Z le_cl+2 k+2)+ Z Ck+1 k+1
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so that Cl-k;rl = 0 for all 4, j, k. Thus we have

k+

dbef =0,  dffF =T

i j=1 1 ij“ff“» drgk = efﬂ. (10.73)

Replace fF by 0F(fF) for i = 1,...,m*. Making X smaller we can still
suppose é¥, ..., éiﬁlk_l,ff, R ,’%m!ﬁ, e g:{k is a basis of sections for E*|x,
since this holds at z, and as d* o 9% = **! o d¥ we have

k+

dkéf =0, akf“ik _ Z;;; 1 ijﬂffﬂ, akgzk — é;c+1. (10.74)
Now define an isomorphism of topological line bundles on X

—_ _ k ~ _ k

Spe| % - ®U_, (det EF)D" |5 — @F_ (det E¥)"D"| 5 by

Spe 5 @ (E AN ANEN AR AGEA - AgE )Y
Hif (_1>ﬁk(ﬁ"+1)/2+fw’“(ﬁk+1>/2 )

We claim that ((10.72) commutes for Zge |5 for all z € X. To prove this, write

Ek|$ = <elf|$7"'76’;Lk71|raf{c|m7"'afrl%khagﬂm?'"’ggk|$>R’

Elk|w = <élf|wa '7égk—1|a:afvf|a:a' afrgk|w7gf|zvaggk|w>ﬂy

and write d*|, : E¥|, — E**|, and d*|, : E¥|, — E**1|, using (10.73)(10.74).
To define O e, in Definition |L0.66[ we choose bases uk ... ,u’ka,l T L

mk s
wh, ..., wk, for E¥|,, where n* = dimImd*|,. Since d*|,gF|, = el T, for

i = 1,...,7F we see that n* > a* say n* = faF + p* for p*¥ > 0. Then
mF = pF~t £ mF + p*, since =1 + m* + nF = rank EF = aF~1 + mF + k. We

. = k41
can also write p* = raunk(ijJrl m)]fl"”’m . We choose the bases such that

i=1,...,mk

U’f, e ,'U,];k_1 S <f1k|x, .. "f7];lk|$>R’ ul;k_l-‘ri = 67];6|$, 7= 1,. . .7’;Lk—17
Ufa"'vvfnk € <f{€|$""7frl%k|$>R7 (1076)
w’f,...7w§k € <f{€|:c7--~7f7]%k‘z>R; wgkﬂ :gﬂx, i=1,..., 7"

This is possible by ((10.73|). Let us write

U A AU AV A AR AT A Awly = AP FE A A fR e (10.77)

for A¥ € R\ {0}, which holds as uf, ... ,u’;k_l,vf, vkl ,w}’;k is a basis
for (ffls,. .., f%r|z)r. Combining (10.76) and (10.77) gives
UF A AU AN AR AW A AR (10.78)

k*lﬁk—l

=(=1)P A elﬂx/\' : '/\egkfl|x/\f1k|x/\' : '/\f%ku/\glﬂx/\' : '/\ggk‘x-
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Similarly, to define OE'\I in Definition [10.66 we choose bases a’f7 . ,ﬁgk,l,

@f,...,@fnk,w’f,...,wgk for E¥|,, where n* = n*F + p* by
-k _ pky(, k . k—1 “k _ <k . Zl—1
ui_e(ui)77’_17"'7p ) upk—lJri—ei‘m, Z—l,...,n s
oF =0Fh), i=1,...,mF, (10.79)
ok ke kY s E ok <k . <k
wy =60%(w), i=1,...,p% wpk+i:gi|m,z:1,...7n.

This is possible by (10.73), (10.74), (10.76)), (10.79) and fF = 6*(f¥). Applying

0% to (10.77) yields

WA N AT A AT NN A = AR oA A fE . (10.80)

Combining (10.79) and (10.80) then gives

WA NGE  AOE A AT ADEA- AR, (10.81)
= (—

k—1zk—1 . .
1)19 n Ak'é’flz/\"'/\é%k71|z/\f1k|z/\'"/\f:%kLv/\gﬂa:/\”'/\ggk‘x-

To prove (10.72) commutes at z € X, consider the diagram

[Ty (- "0/ [T (1) 0/

Qb (WA~ AuF, AVEA sotle Q0 _ (@A Ak, ATEA
k
.. ./\vfnk/\w’f/\. . ./\wzk)(*l)k .. ./\@:Ik/\w’f/\. . ./\wgk_)(*l)
b k¢ k b “k(xk
=L, (=1)" (n"+1)/2, :ka:a(_lk)nk (n°+1)/2,
b K~k oz
le:a(_l)p " Ak. Hkl:):a(_l)p " Ak'
Qo (VoA Ak, ®k£=a(é’f|m/\.v../\é§1kil|z (10.82)
/\f1k|x/\/\f7]%k|x /\fik:‘ﬂf/\/\f'r]%k|x
—1)k . . _\k
Ag’f|m/\-~-/\g§k|m)( 1) /\g’f|x/\.../\ggk|w)( 1)
Ope . O e -
i o ®L_, (det HF(0°],)) D" : “i

@, ([WhA - Alu,]) V" @ ([T A[e,]) D"

Here the alternative expressions on the top left and top right come from (|10.78))
and (|10.81). The left and right maps are ®E'|I’@E°|I by (10.66)), and the
bottom map is ®, (det H*(6*,.))"D" as 0% (vF) = 8F. To see that the top map
is Zge |, we use ((10.75)) and the sign identity

koo k kxk
[Tma (1) D2 T ()P =

k

[T (=)™ 02 T (S 1P [T ()7 /2 i 2,
which holds as n* = 7% 4+ p* and 2¥ = nk + pk.

Equation (10.82) shows that (10.72)) commutes for all 2 € X for the isomor-

phism Zge | defined in (10.75). We can cover X by such open X C X. Also
(110.72)) determines Zge| % at each x € X, and so determines Zge|%. Thus two
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such isomorphisms Zge |, Zge| %’ on open X, X’ C X must agree on the overlap
X N X'. Hence these Zg«| % glue to give a unique global isomorphism Ege as in
(10.71)) such that (10.72) commutes for all x € X, as we have to prove. O

The proof of Proposition 10.67: also works if X is an object in Man, or some

other kind of space, and (|10.70)—(10.71)) are diagrams in an appropriate category
of vector bundles on X. We chose to use topological spaces and topological

vector bundles as they are sufficient to define orientations in §10.7}

10.6.3 Determinants of direct sums of complexes

The next proposition will be used in to define orientations of products
X x Y of oriented (m-)Kuranishi spaces X,Y.

Proposition 10.68. Suppose E°®, F* are complezes of finite-dimensional real
vector spaces with E¥ = F* =0 unless a < k < b for a < b € Z. Then we have
a complex E* ® F* given by

a1t o d* o
EF—1g 0 dkF? LTS 0 d* Ek+lg

"“>Fk—1 Jas k1 — . (10-83)

Definition defines isomorphisms
Ope : ®@b_, (det EF)D" — ®°_(det HF(E*))(—D",
Ope : @L_, (det FF)-D" 5 @b (det HF(F*))(-1",
Opeare : @y (det(E*0 F*) D" — @, (det(HM(B*) o HF (%)) )"

Define isomorphisms Igx pr det(E* @ F*) — det E¥ ® det F* such that if
ek ..., e’jw and fF, ..., f}f,k are bases for E* F* then

Ipe pr€f A AR AFEN A fre — (eX A Aek )@ (FEA- - AfR), (10.84)

and similarly define Ik pey mr(pey- Then the following commutes:

®) o (det(E* & F*) (D" —= @) (det(H*(E*) & H*(F*))D"

E®*®F®
Ha<t<k<b(_1)dim E* dim Fl Ha<l<k<b(71)dim HF¥(E®) dim H (F®)
®Y o i i)D" ®b Uy oy st o))" (10.85)
®"_, (det EF) (D' O e @O e ®°_. (det HF(E*))D'e
®}_q (det FF) D" R, (det HE(F))-D",
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Proof. As in Definition [10.66] choose bases uf,... ,u’;k,l,vf, . ,vfﬂk,wlf, cee
k. for E* for each k € Z, such that d*u = d*vF = 0 and d*w¥ = uF** for all
i, k. And choose bases @, ... ,ﬂ’;k,l,bf, e ﬁfnk,u?]f, ..., ¥, for F¥ such that
d*af = d*oF = 0 and d*wF = @ for all i, k. Then (10.66) gives
Ope : @y (WA~ AuE  AVEA-AVE  AWEA- - AwE ) DT (10.86)
HZ NES GRS JET A A [oF ])(—1)’“

e @0 (@A ATE L ATEA - ATE AN Ak ) D" (1087)
Hk:a<— O @i ([0 A A [, ]) |
Opeore : Qpoy (WA AuE NTEA--ATE AN AUE

NG A ABE AW A AwE AGE A A ) DT (10.88)

[T (—1) 0 002 (o] Ao A o] A 6] A - A i) 1"

m mk
k=a k=a

Equation ((10.85)) now follows from ([10.84)) and (10.86[)—(10.88)) by a compu-
tation with signs, where we use

UF A AU AV A AR AW A AR AT A AGE AT A
kxk kxk—1 kyk—1
AOE A A A, = (=1t et mEnt enEa kAR

AGEA- NGB AT A AR AT A AR AW A AwE A A Ak

to compare the left hand sides of (10.84]) and (|10.88]). O

10.6.4 Determinants of short exact sequences of complexes

The next definition and proposition will be important in stud mg orientations
on w-transverse fibre products in mKur or Kur in Chapter The definition
is standard in (co)homology theory, as in Bredon [4, §IV.5] or Hatcher [33, §2.1].

Definition 10.69. Consider a commutative diagram of real vector spaces:

0 0 0 0
\ _ \ \i

\
dk—2 Ekfl dk—l Ek dk Ek+1 dk+1 Ek}+2 dk+2

J{ek—l \Lek J{ek-u J{ek+2
dk71 dk‘, dk:+1 dk+2
Fk—1 Fk Fkt1 Fk+2 -+ (10.89)
i/l/)kil \ka \ka+1 P2
dk—2 Gk;—l dk—l Gk dk Gk+1 dk+1 ij+2 dk+2

v v v v

0 0 0 0,

whose rows E°®, F'*,G® are complexes, and whose columns are exact. Then
0® : E®* — F* ¢*: F* — G* are morphisms of complexes, and induce morphisms
H%(0®) : H*(E®*) — H*(F*), H*(y*) : H*(F*) — H*(G*®) on cohomology.
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We will define connecting morphisms 8je 4o = H*(G®*) — H"'(E®). Let
v € H¥(G*), and write v = [g] = g + Imd*~! for g € G* with d*(g) = 0. Then
g =¥ (f) for some f € F*, by exactness of columns in (10.89), so d*(f) € FF+!.
We have

P (ahf) = d¥out(f) = d*(g) =0,
so d* f = §F*+1(e) for some e € E¥! by exactness of columns in (10.89). Then

9k+2 o dk)+1(6) _ dk+1 o 9k+1 (6) _ dk+l o dkf _ 0’

so d**1(e) = 0 as 0%+ is injective by exactness of columns in (10.89). Hence
[e] € HF1(E®). Define 55.’1&. (7) = le]. A well known proof that can be found in
Bredon [4, Th. IV.5.6] or Hatcher Th. 2.16] shows that dge e is well defined
and linear, and the following sequence is exact

k(pe i (o),® 55 o
e LU ph(Ge) 2L gER(BY) = . (10.90)

> H*(E®) H*(F*)

In the next proposition, note the similarity between the signs in (10.85[) and
(110.93). We can regard Proposition [10.68| as a special case of Proposition [10.70

with 0 — E* 9% pe @ e %9 pe 4 0 in place of equation ((10.89).

Proposition 10.70. Work in the situation of Definition [10.69} and suppose that
EF Fk G* are finite-dimensional, and zero unless a < k < b. Then Definition

10.66| defines isomorphisms
Ope : ®b_, (det E¥)D" — Q°_(det HF(E*))(-D",
Ope : @_,(det FF)D" 5 @ (det HF(F*))(-1", (10.91)
Oce : @°_,(det GF)D" — QP (det HF(G*))(-1".

Consider (10.90) as an ezact compler A* with A° = H°(E®), and consider the
k™ column of (10.89) as an exact complex By, with B,? = E*. Then (10.69)

defines monzero elements

)k+1

Vae € @j(det HE(E) D" @ @) _, (det H*(F*))—
® ®7_, (det HF(G*))-1", (10.92)
Ups € (det E*) @ (det F*) ™' @ (det G¥).

Then combining (10.91)—(10.92)), we have

im EF dim G* _ b ok
. k<b(_1)d ERdmG . (O pe @ Ope ® Ocs ) (®y_,(¥pe) 1)
a<I<k<
= _1\dim H*(E®*) dim HY(G*) . (10.93)
[I (-1 U ge.
a<l<k<b
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Proof. For k € Z, define

lk = dlIIl(IIn[{k(e-))7 mk — dlm(Im Hk(¢°))7 nk _ dim(Im6§.7w.),
p* = dim(Im(d* : B¥ — E*1)), g% = dim(Im(d" : G* — G*T1)).

Then from (10.89)) we deduce that

dim E* = pF=1 4 nFt 1k 4 ph,
dim F¥ = pF= 1 4 nf 1 4 g" 1 P 4 pF P 4 g,

10.94
dimGF = ¢* L+ m* +nF + ¢, dim H¥(E®) =nF 1 +1F, ( )
dim H*(F®*) =1 +m"*,  and dim H*(G*) = m* + n".
For each k € Z, choose bases
Cllc, ,Czk):k bk 7bnk 1,a1,...,afk,dlf,...,d];k fOI‘E‘k7
Elfa 7C];k labla"' bnk 17g17'"7g];k*17a]1€7"'aafk7
elf, fnkvdlfa"'a pk,fla"'vf:k7h]1€a"'vhl(;k’ fOI‘ Fka
glf7'--;qu—17elf7-~~7éi€nk7f{€7~-~7f7é:kyhlf7~~~7ﬁ§k fOr Gk,
such that d* in E*, '*, G* are given by
d*(af) =0, d*(vf) =0, d*(cf) =0, d(d}) = e,
d*(@;) =0,  d"(e) =0, d*@r) =0,  d*(fFF) = ot
d*(ef) =0, d¥(dy) =, d*(gf) =0, d*(h;) = g/t
d*(e}) =0, d*(ff) =0, d*(gf) =0, d¥(hf) = gitt,
and 0% % in (10.89) are given by
0" (af) = aj, 0" (b)) = bf, 0" (cf) = ¢, 0" (d}) = dy,
¢*(ay) =0, P*(ef) = &y, P* (b)) =0, GE(F) = FF
P*(e) =0, P*(dy) =0, *(g) =gt ¢* (ki) = hy.
Then we have bases
[b’f],...7[bﬁk,l],[alf],...,[aﬂ] for H’“(E')7
[”f],...,[dfk],[e’f],...,[e%k] for Hk(F'),
[ N S N R Y for H*(G*),
where Hk(ﬁ'),Hk(w‘),ég.yw. in (10.90)) act by
H*(6%) : [af] — [af],  HF(0°): [bf]—0, H"(¥*):[af] — 0,
Hk(w') : [ef] — [éﬂ, 55.#,. : [é’f] — 0, 55.,¢. : [fzk] — [bf“].

60



Definition [10.66| now implies that

Yoo = ®Z:a([blﬂ/\' CABE A aRTA- - 'A[afk])(_l)k
® @t (@]A- - Alah]Alef] A ALk, ) T

@l ([El]A- AL AN AL T (10.95)
Upe = (_1)q’“‘1lk+qk‘1p’“+m’“pk,
(XA Ak s AVE A ABE A A Aafi AT A- - Adiy)
® (EF A NGt ADYA- - ABE s AGEA- - - Aghi oy AGY A+ - - A
NN Nk AEA - NEAFEN A FEAREA- - ARE) T
® (GEA- - AGh 1 ABEA- - NEE L AFEN- - AFEABE A+ AREL), (10.96)
Ops é (c’f/\~~-Ac’;k,lAb’fA~~Ab’;k,1/\a’fA-~-Aa§€,€Ad’fA~~AdI’§k)(’1)k

=a

(S

— TP 0072 @ (BAIA A A Lad]A-a b)) T, (1097)
k=a k=a
b

Ope : @ (A Ak L ADTA---ADE L AGEA- - Agh s AaEA- - Ay,

=

]

_ _ _1\k
NS AE W ATE A NTEAFEN- - AEAREA- - ARE) Y

(P"+n*+¢")- b

b K
— H(fl)(i’k%kﬂkﬂ)/?~®([a’f]A~-~/\[afk}A[e’f]A--~/\[e’;nk])( ve (10.98)
k=a k=a
b _ _ _ _ _\k
Ogs : ®(g’f/\-~~/\§§k,1/\é’f/\~~~AéfnkAf1’“A~~~/\ffk/\h’f/\~~/\h’;k)( 2
k=a
b ks ke b _ _ (71)k
s TT D702 @ (1ehlA--Alek AL A ALED) T (1099)
k=a k=a

Here the sign in (10.96) is because, compared to the definition of ¥pgs in (10.69),
we have reordered the basis elements for compatibility with (10.98]). Equation
(110.93)) now follows from (10.94)—({10.99)), after a computation with signs. O]

10.7 Canonical line bundles and orientations

In this section we suppose throughout that Man satisfies Assumptions 3.7
and [10.13] so that objects X in Man have functorial tangent spaces T, X
which are fibres of a tangent bundle TX — X of rank dim X. The dual vector
bundle is the cotangent bundle 7*X — X. As in Definitions 2:3§ and [10.15]
its top exterior power AY™ X T*X is the canonical bundle Kx of X, a real line
bundle on X, and an orientation on X is an orientation on the fibres of Kx.
Our goal is to generalize this to (m- and p-)Kuranishi spaces X. In
for an m-Kuranishi space X = (X, K) in mKur, we will define a topological
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real line bundle Kx — X, the canonical bundle, whose fibre at x € X is
KX|ac _ AdlmT:XT;X ® AdimOZXOxX,

for T, X,0,X as in using the material on determinants of complexes in
§10.6l Then in we define an orientation on X to be an orientation on the
fibres of K x. Section [10.7.3 shows that if X is an oriented m-Kuranishi space
with corners in mKurC, then there is a natural orientation on X, and hence
on "X for k =1,2,.... Sections extend all this to u-Kuranishi
spaces and Kuranishi spaces.

The material of this section was inspired by Fukaya—Oh—Ohta—Ono’s defi-
nition of orientations on FOOO Kuranishi spaces, as in Definition and [15]
Def. A1.17], |21} Def.s 3.1, 3.3, 3.5, & 3.10], and [30, Def. 5.8].

10.7.1 Canonical bundles of m-Kuranishi spaces

We now construct the canonical bundle Kx — X of an m-Kuranishi space X
in mKur. Recall that we suppose mKur is constructed using Man satisfying
Assumptions |10 n and |1 so that objects V € Man have tangent spaces T,V
which are the fibres of the tangent bundle TV — V with rank dim V', and as in
§10.2.1] X has tangent and obstruction spaces 7, X,0,X for x € X.

Theorem 10.71. Let X = (X,K) be an m-Kuranishi space in mKur. Then
there is a natural topological line bundle m : Kx — X called the canonical
bundle of X, with fibres

Kx|ps = det T* X @ det 0, X (10.100)

for each x € X, for T, X,0,X as in §10.2.1) with the property that if (V,E, s,
¥) is an m-Kuranishi neighbourhood on X in the sense of then there is an
isomorphism of topological real line bundles on s~*(0) C V

Ov,psy ¢ (det T*V @ det E)|s-1(9) — ¥ (Kx), (10.101)

such that if v € s71(0) CV with ¢¥(v) =z € X, so that as in (10.27) we have
an ezact sequence

La dys T

0—T,X T,V El, 0,X —0, (10.102)

and Zf (Cla cee Cl)7 (dl, sy dl+m)7 (ela ceey 6m+n)7 (fla SR fn) are bases fOT’ sza
TV, Ely, O X respectively with 15(c;) = d;, i = 1,...,1 and dys(diyj) = e;,
j=1,....m and myp(emir) = fr, k=1,...,m, and (y1,..., %), (01, -, 014m)
are dual bases to (c1,...,¢1),(d1,...,diwm) for TEX,TXV, then
OvEesyly:detT,V@det E|l, - detT, X @ det O, X maps
@V,E',s,w|v : (61 ANRREA 5l+m) & (61 ANRRRAN em+n) — (10103)

(=)™ (A A @ (fL A A f).
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Proof. Just as a set, define Kx to be the disjoint union
Kx =] ex (det Ty X @ det 0, X)),

and define 7 : Kx — X tomap 7 :det Ty X ® det O, X — x, so that Kx|, =
771(x) is as in for € X. Define the structure of a 1-dimensional real
vector space on K x|, for each z € X to be that coming from the right hand
side of . To make Kx into a topological real line bundle, it remains to
define a topology on the set Kx, such that 7 : Kx — X is a continuous map,
and the usual local triviality condition for vector bundles holds.

Suppose (V, E, s,1) is an m-Kuranishi neighbourhood on X. Counsider the
following complex F'® of topological real vector bundles on s~1(0) C V:

0 0 0 d 0 0 0
-%OHOHTVLQ?%O)‘S>E|871(0)*>0‘>0‘>-~-7
degree —3 -2 -1 0 1 2

where TV |,-1(gy is in degree —1 and E|;-1(g) in degree 0, and ds is given by
ds|, = d,s for each v € s71(0), where d,s is as in Deﬁnition One can show
that d,s depends continuously on v, so that ds is a morphism of topological
vector bundles.

Equation shows that if v € s71(0) with ¢¥(v) = z € X then the
cohomology of F'*|, is T, X in degree —1, and O, X in degree 0, and 0 otherwise.
Thus Definition defines an isomorphism

Ops, :(det T,V) ™! @ (det E,) — (det T, X) ™' ® (det O, X).

Identifying (detT,V)~! = det TV and (det T, X )~ = det T X and expanding
Definition @ we see that this O pe| is exactly the map Oy g s |, defined in
. Thus, Definition shows that ©v g s 4|, is independent of choices
of bases (c1,...,¢)y- oy (f1s--s fr)-

Therefore we can define Oy g, in , just as a map of sets without
yet considering topological line bundle structures, by taking Oy, g s 4|, for each
v € s71(0) to be as in (10.103) for any choice of bases (c1,...,¢)s .-+, (fis+--» fn)-
As 9 : s71(0) — Im1) is a homeomorphism, we can pushforward by 9 to obtain

Ve (Ov.Esp) - 1[)*((det TV ® det E)|s—1(0)) —

¢ (10.104)
Kx|my =7 (Imy) C Kx,

which maps by Ov,g s u|v over x € Im¢) with v = ¢~ (z).

Now is a bijection, with the left hand side a topological line bundle
over Im¢) C X. Hence there is a unique topology on Kx|imy = 7~ (Ime) C
Kx making Kx|m ¢ — Im1) into a topological line bundle, such that
is an isomorphism of topological line bundles over Im .

Let (V/,E',s',4’) be another m-Kuranishi neighbourhood on X, giving

¢*(@V/7E/75/7¢/) : '(/);((det T*V/ ® det E/)lsl—l(o)) —

o (10.105)
KX|Im'¢J’ =T (Imw)gKX
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So we have topologies on Kx|im ¢ and Kx|m ¢ making (10.104)—(10.105) into

isomorphisms of topological line bundles. We claim that these topologies agree
on K x |tm ynim - To prove this, note that Theorem a) gives a coordinate
change ® = (f/,gb,d;) (V,E,s,¢) — (V/,E's',¢") over ImyyNIm )’ on X, and
consider the commutative diagram of topological vector bundles on VN s71(0):

0 0 ds 0 0
=0 4>TV|X~/OS—1(O) - E|f/ms—1(o) — 00—

|Felenio [#enro (10.106)
0 0 " (ds’) |, 0 0
—s0—¢ (TV’)|‘~,QS,1(O) — 0 (E’)|‘~ms,1(0) — 0,

degree —2 -1 0 1

where T'¢|y,-1(g) is defined by Assumption [10.13(b) since ¢ : VoVisA
near V N s~1(0) by Proposition M(d)
As in (10.70]), regard the rows of (10.106)) as complexes F'®, F’® of topological

vector bundles, and the columns as a morphism of complexes 6°® : F* — F’®. If
v eV Ns10) with ¢(v) =" € &~1(0) and ¥(v) = ¢/ (v') = z € Im 1 N Tm ¢,
then Definition [T10.21] shows that 6#* induces isomorphisms on cohomology groups
of F*, F'®, and furthermore, under the identification of the cohomologies of
F* F'* with T, X in degree —1 and O, X in degree 0, these isomorphisms are
the identity maps on T, X, O, X. Thus, Proposition [T10.67] gives an isomorphism
of topological line bundles on V N s~1(0):

Ege : (det TV @ det B[y 109y — ¢ (det TV’ @ det E')...,
such that for all v,v’, z as above, the following diagram ((10.72) commutes

det T}V @det E|, - det T, V' @det E' |,
\LGv,E,s,w\v B @v',E',s’,w'|v’i (10.107)
(det T, X) ' ® (det 0, X) ———= (det T, X )~ ® (det 0, X),

using the identifications of ©pe| , O pre| , With Ov g s ylv, Ovr B s | above.

Now 14 (Zge) is an isomorphism on Im ) NIm )’ between the line bundles on
the left hand sides of (10.104)—(10.105]), and (10.107)) for each x € Im ) N Im v’
shows that 1, (Zgs) is compatible with (10.104])—(10.105)). Thus, the topologies
on Kx|1m¢ and Kthw/ from (]10.104') and 10.105[) agree on Kthwmmw/,
proving the claim.

Choose a family of m-Kuranishi neighbourhoods {(Vi, E; s;,;) i € I} on
X with X = (J;c; Im4; (for instance, those in the m-Kuranishi structure K on
X = (X,K)). Then we have topologies on K x |im, for all i € I which agree
on overlaps K x |tm y;nim ¥; for all 4,5 € I, so they glue to give a global topology
on Kx, which makes m : Kx — X into a topological real line bundle. The
compatibility between K x |1m ¢ and K x |mm ¢ on Im¢NIm )’ above implies that
this topology on K x is independent of choices.

If (V, E, s,v) is any m-Kuranishi neighbourhood on X, then by including
(V,E, s,v) in the family {(V;, E;, s;,1;) @ € I}, by construction there is an

isomorphism Oy g sy in with the properties required. ]
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Example 10.72. Using the notation of Example let X € Man, and let
X = Fl\‘.‘/[‘il“r(X ) be the corresponding m-Kuranishi space, so that X is covered
by a single m-Kuranishi neighbourhood (X,0,0,idx). Then Kx is canonically
isomorphic to Kx = det T*X — X, considered as a topological line bundle.

Canonical line bundles are functorial under étale 1-morphisms:

Proposition 10.73. Let f: X — Y be an étale 1-morphism in mKur as in
§10.5.1| (for example, f could be an equivalence), so that Theorem [10.71| defines

canonical bundles Kx — X, Ky — Y. Then there is a natural isomorphism
Ky f"(Ky) — Kx (10.108)
of topological line bundles on X, such that for all x € X with f(z) =y inY

K|y = (det Ty f) @ (det O, f) "

. ; (10.109)
detT)Y @ det Oy Y —> det T X @ det O, X,

where T f © To X — T,Y, Ouf : 0. X — O,Y are as in §10.2.1] and are
isomorphisms by Theorem |10.55, and T, f : T)Y — T X is dual to T, f.

Proof. As a map of sets, K¢ in ((10.108) is determined uniquely by (10.109), and
(10.109)) is an isomorphism on the fibres at each x € X. Thus, we need only show

that this map Ky is continuous. Let x € X with f(z) =y in Y, and choose m-
Kuranishi neighbourhoods (Ug, Da, 74, Xa)s (Vs, Ep, Sp, ¥p) on X, Y respectively
with z € Im x and y € Im . Then Theorem b) gives a 1-morphism f,, =

(Uab7 faba fab) : (Ua7 Day Ta, Xa)v (%7 Eln Sb, "/}b) OVer (ImXa n fﬁl(Imwb)a f)
By the argument in the proof of Theorem [10.71} but replacing (10.106| by

0 0 drg 0 0
= 0—=>TUly,,ar;10) = Dalu,yary 1) == 00—

\LTfab‘Uabﬁ"'gl«)) lfﬂb‘Uabﬁer(O)

0 0 s fap(ds) .,
- >0 > fab(TVb)‘Ua,,mr;l(o)b‘> fab(Eb)|Uabmr
—1 0

degree —2

0 0
gy =0

‘ 1
and noting that T, f, O, f are isomorphisms, we obtain an isomorphism of
topological line bundles on Uy, N7, 1(0):

Ege 1 (det T"Uap @ det Da)yy,, 19y — fap(det TV, @ det Ey)|..,

such that for all u € Uy N7y 1 (0) with yu(u) = z in X, fu(u) = v €V
and f(z) = ¢¥p(v) =y in Y as above, as in (10.72)) and (10.107) the following
commutes:

det T Uqp @ det Dy

\L@UaeDa,-,Ta’Xalu

det TV, @ det Ey |,

OV, By sy v
X5 (Ef)|lu = K¢, in (T0.109) e i (10.110)
(det TxX)_l ® (det O X ) <— (det Tyy)—l ® (det OyY>

o0 lu

65



As the top, left and right morphisms of are restrictions to u of
isomorphisms of topological line bundles Zge, O, D, ro.xas OVi, Ey .55, 16 fOllOWs
that x7(Ky) is an isomorphism of topological line bundles over Uy, Nr; 1 (0),
so that Ky is an isomorphism (and in particular is continuous) over Im x, N
f~1(Imy) € X. Since we can cover X by such open Im x, N f~!(Im1;), this

shows K¢ in (10.108]) is an isomorphism of topological line bundles. O
By Examples and [10.14} the results above apply when mKur is one of
mKur, mKur®, mKurg,, (10.111)

with 7, X, 0, X and Kx defined using ordinary tangent spaces T,V in Man,

Man€®, Mang,, and also when mKur is one of

mKur®, mKur®®, mKur?® mKur®2¢, (10.112)

with *T,X,%0,X,*Kx (using the obvious notation) defined using b-tangent
spaces *T,V in Man®, Man8®, Man?®, Man®2°. Note that in mKur® we have
two different notions of canonical bundle Kx,’Kx, defined using ordinary
tangent bundles TV — V and b-tangent bundles *TV — V in Man®. We will
see in §10.7.2] that these yield equivalent notions of orientation on X in mKur®.

10.7.2 Orientations on m-Kuranishi spaces

Definition 10.74. Let X = (X, K) be an m-Kuranishi space in mKur, so that
Theorem defines the canonical bundle 7 : Kx — X. An orientation ox
on X is an orientation on the fibres of Kx.

That is, as in Definitions and an orientation ox on X is an
equivalence class [w] of continuous sections w € I'Y(Kx) with w|, # 0 for all
2z € X, where two such w,w’ are equivalent if ' = K -w for K : X — (0,00)
continuous. The opposite orientation is —ox = [—w].

Then we call (X,0x) an oriented m-Kuranishi space. Usually we suppress
the orientation ox, and just refer to X as an oriented m-Kuranishi space, and
then we write —X for X with the opposite orientation.

Propositionimplies that if f: X — Y is an étale 1-morphism in mKur
then orientations oy on Y pull back to orientations ox = f*(oy) on X, where
if oy = [w] then ox = [Kyo f*(w)]. If f is an equivalence, this defines a natural
1-1 correspondence between orientations on X and orientations on Y.

Let f: X — Y be a 1-morphism in mKur. A coorientation cgon fis an
orientation on the fibres of the line bundle Kx ® f*(K3,) over X. That is, cy
is an equivalence class [y] of v € TY(Kx ® f*(K3)) with 7|, # 0 for all z € X,
where two such v,~' are equivalent if v/ = K - v for K : X — (0,00) continuous.
The opposite coorientation is —cg = [—~]. If Y is oriented then coorientations
on f are equivalent to orientations on X. Orientations on X are equivalent to
coorientations on 7 : X — *, for * the point in mKur.

Remark 10.75. There are several equivalent ways to define orientations on
m-Kuranishi spaces X = (X, K) without first defining the canonical bundle Kx.
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Writing K= (I, (‘/;, Ei; Siawi)ieh (bij, i,j€I5 Aijk:, i,j,k61)7 an orientation on X
is equivalent to the data of an orientation on the manifold F; in Man near
O, (351(0)) C E;, such that all the coordinate changes ®;; : (V;, E;, 54, %) —
(V;, Ej, s5,1;) are ‘orientation-preserving’ in a suitable sense.

The purpose of Definition and Proposition is to give us a good
notion of when ®;; is orientation-preserving in the proof of Theorem We
do this using tangent spaces and tangent bundles, and implicitly we use the exact
sequence to compare orientations on (V;, E;, s;,v;) and (V}, Ej, s;,%;).

It should still be possible to define orientations in mKur when the category
Man does not have tangent bundles TV — V', but does have a well-behaved
notion of orientation. To do this we would need an alternative way to define
when ®;; is ‘orientation-preserving’, not involving tangent bundles.

As for (10.111)—(10.112f), Definition [10.74] defines orientations on m-Kuranishi

spaces X in the 2-categories mKur, mKur®, mKurs,,, with Kx defined using
tangent bundles TV — V|, and on X in the 2-categories mKur®, mKurg®,
mKur?®, mKur®2°, with °Kx defined using b-tangent bundles *TV — V.
For X = (X,K) in mKur®, we have two canonical bundles Kx and *Kx,
which are generally not canonically isomorphic. However, the notions of orien-
tation on X defined using Kx and ?Kx are equivalent. This is because, as in
the notions of orientation on E; € Man® defined using TE; and °TFE; are
equivalent, and as in Remark an orientation on X is equivalent to local

orientations on F; in m-Kuranishi neighbourhoods (V;, E;, s;, ;) in K.

Example 10.76. Using the notation of Example let X € Man, and let
X =F ’.““’(X ) be the corresponding m-Kuranishi space. Then combining

Example 10.72] and Definitions [10.15[ and [10.74] shows that orientations on X in

Man, and on X in mKur, are equivalent.

10.7.3 Orienting boundaries of m-Kuranishi spaces with
corners

Now suppose Man® satisfies Assumptions and so that as in §4.6}
we have a 2-category mKur® of m-Kuranishi spaces with corners X which
have boundaries 90X and 1-morphisms ix : X — X as in Also Man®
satisfies Assumptions and by Assumption so Theorem

defines canonical bundles Kx — X and Kyx — 0X. Our next theorem r.elates
these. One should compare Qx in (10.113)) with Qx in (10.16)) for X € Man€.

Theorem 10.77. Let Man® satisfy Assumptior_zs and [10.16, and suppose
X is an m-Kuranishi space with corners in mKur®. Then there is a natural
isomorphism of topological line bundles on 0X

where Ngx is a line bundle on X, with a natural orientation on its fibres.
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Suppose that (Va, Eq, Sa,q) is an m-Kuranishi neighbourhood on X, as
in with dimV, = m, and rank E, = n,. Then defines an m-
Kuranishi neighbourhood (V(1,4), E(1,a), 5(1,a)> ¥(1,a)) 00 0X with V(1 q) = V4,
Eqa) =iy, (Ea), and s1,q) = iy, (84). Also Assumption gives a (smooth)
line bundle Nay, — OV,, with an orientation on its fibres. Then there is a
natural isomorphism of topological line bundles on s(fl%a)(O) C oV,

OV Busawa t Novalt o) — ¥y (Nox), (10.114)

which identifies the orientations on the fibres, such that the following commutes:

(det T*(0V,)® Nov, @iy, (det T*V,

det iy, (Ea))|5<—1{a>(o) Q, Oidaet if, (5a)).. ® det Ea)|saa)(0)
j{@V(l,a)’E(l,a)us(l,a)ﬂ/’(l,a) (PVG’EE’SU'%wa@iVa|f-(eVa,Ea,sa;¢a)i (10.115)
_ Q _ »

1/)(lil)(KaX) = ¢(1,1a)(NaX ®ix(Kx)),

where Qy, is as in (10.16), and Ov, E, 5,10, OV 0y Ea)50.0, 000 OTE S i1

(110.101), and Qx is as in (10.113)), and Py, g, s..v, s as in (10.114).

Proof. Most of the theorem holds trivially, by definition. Define a topological
line bundle Nox — 0X by Nox = Kox ® (Z*X(Kx))*, where (Z&(Kx))* is the
dual line bundle to % (Kx), and define Qx in (10.113) to be the inverse of

% - * % id® dual pairin,
Nox ®@i%(Kx) =—— Kox @ (i% (Kx)) ®i%(Kx) P S Kox.

For the second part, since (10.115)) is a diagram of isomorphisms of topolog-
ical line bundles on s(_lla) (0) with ®v, g, s, the only undefined term, we

define ®v, g, s, to be the unique isomorphism in ((10.114)) such that (10.115])

commutes.

We must construct an orientation on the fibres of Ngx such that (10.114])
is orientation-preserving for all m-Kuranishi neighbourhoods (V,, Eq, $4, %) on
X. Since ¥(1,q) : 5(_1%(1)(0) — Im(q,4) is @ homeomorphism, there is a unique
orientation on Ngx |im P10y such that (10.114) is orientation-preserving. We will
prove that for any two such (Vg, Eq, Sa,¥a), (Vb, Eb, S, %) on X we have

¢Va7Ea73a7wa|‘/(1’a>(1’b)ﬁs(711a) (0) = 6¢ab|f~((bvb7Eb13b7wb) o ry(ﬁab' :
’ (10.116)

—1
Nov, |V<1,a)(1,b)ﬁs(_1%a)(0) w(l,a) (Nox) |V<1,a)(1,b)ﬁs(_1%a)(0)’

where 74, : Nv,, = ¢%,(Ny,) is as in (10.11)) or (10.14). As v, is orientation
preserving by Assumption equation ([10.116)) implies that the orientations
on N3X|1m¢,(1ﬁa) and Npx |im b1y dgTee on Im iy o) NIm ey ). Because we can
cover X by such open Im(; 4y € 0X, there is a unique orientation on the
fibres of Nox with orientation-preserving for all (V,, E,, Sq,%4)-
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It remains to prove (10.116). Definition constructs m-Kuranishi neigh-
bourhoods (V(1,4), E(1,a), 5(1,a)s ¥(1,0))s (Viw,p)s E(1.6)5 5(1,6)> Y1) on 90X from
(Va, Eq, Sa, ¢a) Vi, Ep, sb, 1/);,) Theorem 4.56a) gives a coordinate change

(I)ab = (Vaba ¢ab7 éab) : (VLM Easaa 'l/}a) — (va Eba Sb, wb)

over Im ), NIm, on X. By Proposition [4.34 ud ), making V,; smaller we can
suppose ¢ap : Vap — V4 is simple, so O¢yy is defined. Definition constructs
a coordinate change over Im ¢y ,) N Im (1 ) on X

D10y = Vita) 1) @) 1.0)> D)) * (Vita)s Bt.a)s S(1a)s V(1.a))
— (Vap), E,p), 51,0), Y(1,0))s
with Visay1,0) = Vb, d(La)) = Oabs and d(1a)(1,0) = i, (Pab)-

Suppose Assumption [10.16{a) holds for Man®. Then by (10.11)) we have a
commutative diagram of vector bundles on 9V, C 0Vj:

W, (TVap)
Vab
Ybap iit/ab (T¢ab) T(a(bab)

(Odan)*(avy) (0ab)™ (Bvy,)
= @6 o) = _ 52 S (10— (00w (F0Ve) =

T(0Vy) —0

0 HN@VM avo,
a

(10.117)

Let v}, € Vi1, N 8(1 )( ) C OV C 9V, and set v, = iy, (v,) in Vg N

21(0) € Vo C Vo, and vy = 9ap(v),) in Vi) N salb)( ) C OV, and v, =
va(vb) = ¢ap(ve) in 5;,1(0) C Vi, and 2’ = 9(1,0)(v)) = P (v)) in OX,
and x = ¥,(v,) = Yp(vp) = ix(2’) in X. Set m, = dimV,, n, = rank E,,
myp = dim Vp, ny = rank Ep, m = dim 7T, X and n = dim O, X. Then m, — n, =
mp —np = m—n = vdim X, so we have m, = m+pg, ng = N+ pa, Mmp = M+ pp,
ny = n + pp for pe,py = 0.

As in (10.21}) and (10.102)) we have commutative diagrams

0—>T.X ———>T,Vi— Eoly, ——> 0,X —0
l o b i‘?’“’b‘““ ‘ (10.118)
o doy, sp T34
0—>T,X — " =T,V Byl — = 0,X — 0,
0> Ty (0X) —> Ty (IV,) Eal, ——> 04/(0X) >
Lo ¢ vl S(1,a) Tyt
H lTua(am) i‘z’“b‘“” H (10.119)
&2, dyrsa,e) L
0Ty *>Tv{7(8%) Eb|7jb O 8X) >0
with exact rows. Choose bases (c1,...,cm), (df, ... d% ), (d5, ... d iy, ),
(ef,..., egtﬁn)7 (e’{7 e prrn) (f1,.-y fn) for TxX,TvaVa, E, |va,Tbeb7 Eblv,,

0. X respectively with
Wlei)=d¢, L(c)=dl, i=1,...,m, dy,s4(d% ;) =€, j=1,...,ps, (10.120)
dvbsb(dfnﬂ):eg, J=1 oy, ma(ep, 1) = b(ezb+k):fk, k=1,...,n
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Let (y1,-- -5 Ym), (0,02 4,0, (8%, ..., 65,1 ,,) be the dual bases to (c1,...,
em), (dS, o dh ) (d8,..., dfnerb) Then Theorem |10.71| gives
C—)Va;ansa;wa|va : (6(11 A 61('1n+p ) ® (etll AREERA epa+n) —
(—1)“(”””/2 A Am) @ (FL A A f),
®Vb7Eby5b,wb|’0b : (6l1) ARRRNA 6zm+pb) ® (el{ ARRRNA epb+n) —
(*1)””(’“1““)/2 S A Ym) ® (fi A A f).

Now from ([10.12)) in Assumption [10.16|a) we can show that
dy, 80 = dv{ls(l,a) © 5Vab|v{1 Ty Vo — Ea|va-

(10.121)

(10.122)

Exactness of the top line of (10.117)) implies that

Im(dy 8(1,q)) = Im(d <617 s >

R = Im(av,, | ) € Ker(d =(df,..., m>R'

Choose (df,...,d},,. ) with Im(ay,,|.;) = (df)r. From and (%(¢;) =
d?, b (c;) = d° we see that T, ¢ap(d?) = d? for i = 1,...,m, so from
we deduce that Im(ay,[,;) = (d%)r. Thus there are unique g € Nay,,|,, and
91 € Nov, |y with av,, |o; (97) = df, av, |y (97) = df, and then v4,, |, (91) = g5
Set di* = By, |v (df) fori =2,...,m+p, and db = ﬂvb\vg(d?) fori=2,...,m+
py. Then (df,...,d%, ), (d¥,...,d", ) are bases for T, (OV,), T, v (OVh), b

s Ym~4p, » 'm+py

exactness in the rows of (|10. 1‘1/7 Let (05, ...,0,8..,.), (5§b,...,5;z+pb) be the
/ oVy

dual bases for T}, (0Va), T, Then Definition [10.18| gives

Qu, oy @ 08 NG > G @ (O A NG, (10.123)
Qug |y 1 69 5;,’;+pb g @ (OY A AL ) (10.124)

Using (10.118)—(10.120]) we see there are unique bases (¢, ..., c.,), (f1, ...,
1) for Ty (0X), 0, (0X) such that

() =dit, () =df, i=2,...,m,
ﬂ.g'(ega-‘rk) = f/::’ ﬂ-all)c’( pb+k) fk:? k= 1a sy

Let (v,...,7,) be the dual basis to (c,...,c,) for T (0X). Then as for

(10.121)—(10.122)), Theorem [T0.71] gives

®V(1,a),E(l,a)78<1,a>7¢<1,a) |U{l : (551 : 6;$L+p ) (6(11 ARERNA ega-&-n) (10 125)
— (_1)pa(pa+1)/2 : (’Y /\/\/Ym) (fl /\f/)u .
evv(l,b)’E(l,b);S(l,b)aw(l,b) |v{, : (6/2b ) 6;z+pb) (el{ ARRENA engrn) (10 126)
— (—1)’””“"””/2 (B A AT D (LA A )
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From (10.115) and (10.121)—(10.126)) we see that

(I)VmEa,sa,wa|v; (97) = @VmEvabawb"Uz (gllj) =
(A Avm) @ (A Afa) @ (o A Av) @ (FL A A fr))

This and 74, |/ (97) = ¢ imply the restriction of (10.116) to v/, for any v.,.
Therefore (10.116)) holds when Man® satisfies Assumption [10.16 a). The proof

for Assumption [10.16{(b) is very similar, and we leave it to the reader. O

-1

Example 10.78. Work in the 2-category mKur® or mKur8® of m-Kuranishi
spaces with corners X defined using Man® = Man® or Man&® from Chapter
with (b-)canonical bundles K x defined using b-tangent bundles *TV — V
from for V' in Man® or Man&°. Then as in and Example [10.17(i),
the normal bundle Nyx in (10.10]) of Assumption [10.16{a) is naturally trivial,
Nox = Opx.

Thus, if X lies in mKur® or mKur&® then (10.114) in Theorem [10.77]
implies that Nyx is naturally trivial on Im ) 4). As vs,, in 110.112) respects
the trivializations, they glue to a global natural trivialization Nyx = Ogx.
Hence for X in mKur® or mKur8®, we can replace by a canonical

isomorphism

"Ox "Kox — i% ("Kx). (10.127)

Here is the analogue of Definition [T0.18}

Definition 10.79. Let Man® satisfy Assumptions and and suppose
(X, 0x) is an oriented m-Kuranishi space with corners in mKur®, as in
Then ox is an orientation on the fibres of Kx — X, so i% (0x) is an orientation
on the fibres of i% (Kx) — 0X. Theorem gives a line bundle Ngx — 0X
with an orientation vx on its fibres, and an isomorphism Qx : Kgx — Nox ®
i% (Kx). Thus there is a unique orientation ogx on the fibres of Kpx — 0X
identified by Qx with vx ® i% (ox), and opx is an orientation on 0.X.

In this way, if X is an oriented m-Kuranishi space with corners, then 0X is
oriented, and by induction 0% X is oriented for all k = 0,1,.... As for manifolds
with corners in the k-corners Cj(X) for k > 2 need not be orientable.

10.7.4 Canonical bundles, orientations for products in mKur

Products X X Y of m-Kuranishi spaces X,Y were defined in Example If
X,Y are oriented, the next theorem defines an orientation on X x Y.

Theorem 10.80. Let X,Y be m-Kuranishi spaces in mKur, so that Ezxample
defines the product X XY in mKur with projections wx : X XY — X, wy :
X xY =Y, and Theorem defines the canonical bundles Kx, Ky, Kx xy
of X, Y, X xY. There is a unique isomorphism of topological line bundles on
X xY:

TX’YZKXXy—>7T;((Kx)®7TY*(Ky), (10128)
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such that if © € Y, y € Y and we identify T, y)(X xY)=T;Xa1T,Y,

OGy(X xY) =20, X ®0,Y as in (10.35), and define isomorphisms

IT;X,T;Y : det T(*xyy) (X X Y) — det(T;X) ® det(T;Y)7
IOIX,OyY : det O(x7y) (X X Y) — det(OxX) 024 det(OyY)

as in (10.84)), then

TX,Y‘(z,y) _ (_1)dimOzX dimT,Y IT;

X,T;Y®IOwX,OyY- (10.129)
Hence if X,Y are oriented there is a unique orientation on X XY, called the
product orientation, such that (10.128)) is orientation-preserving.

Proof. Equation (10.129)) defines an isomorphism Yx y|(z.y) : Kxxvl(z,y) —
x (Kx) ® 1y*(Ky)|(s,y) for each (z,y) € X x Y. Thus there is a unique map
of sets Tx y in which satisfies (10.129) for all (z,y) € X x Y. We must
show that this map Y x y is an isomorphism of topological line bundles. It is
sufficient to do this locally near each (x,y) in X x Y.

Fix (z,y) € X x Y, and let (Uy, Da, 7a, Xa)s Vo, Eb, Sp, 1) be m-Kuranishi
neighbourhoods on X,Y with x € Imyx, C X, y € Im¢, C Y. Then as in
Example we have an m-Kuranishi neighbourhood

(Ua x Vb, 7T(*]a (Da) & 7T€/b (Eb), 77[*]a (Ta) D 7'r?/b (Sb)a Xa X ¢b)

on X x Y, with (z,y) € Im(xa X ¥). Let u = x;'(z) € r;1(0) C Uy, v =
U, ' (y) € s,'(0) C Vi, so that as in Definition we have linear maps
dyre : TuUy = Dyl and dysp : T,V — Epy.
As in the proof of Theorem [I0.71} write F'*,G* for the complexes
0 0 0

dyre 0

S0 00 T,U, Dale 00000 ...

degree —3 -2 -1 0 1 9
ds

,00000 TV, bEb|v0000$~

degree —3 -2 -1 0 1 5
Then Proposition [10.68 shows that the following commutes:

(det(T,U, & T,V;)) ! %
®@det(Dalu & Eplo) Orence X x¥](2.9)

(—1)rank Da dim Vp, _1)dim Op X dim Ty Y,

Tx,v|(a,y)=(
Irxu,, 15v, ®ID g 0 By ly Iy x rpvy®lo, x,0,Y

(10.130)

((det T,U,) L @ det Dy|y)  ©re®Oge
®@((det T, V) ™! @ det Ep|,)

Kxl|. @ Kyly.
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Now (10.130: is the fibre at (z,y) € 7;'(0) x s, *(0) of the commutative
diagram of topological line bundles on r;*(0) x s, '(0) C U, x V4:

a

det(T*(Ua X Vb)® @Uavav"anXd)b 1
det((”TI*Ja (Da) D ﬂ—ik/b (Eb)))‘rgl(o)xsb_l(o) - (Xa X wb) (KXxy)

(—1)rank Da dim Vj,

(xaxw) ' (Tx,v) | (10.131)

Ir+y,,1+v,,®IDg By

Tl ) (det T*Uy@det Dy) @721 () (Ove sy ) (Xa©T,-1(0))" (Kx)
®7T:b_1 det T*V,@det E) ®(¢bo7rs;1(0))*(KY)v

(0)(

where ©v, D, ru.xa> OVy.Ey,sp.p a0A OU, x 13- v, xu, are as in Theorem [T0.71}
The top, bottom and left morphisms in are isomorphisms of topo-
logical line bundles on 7;(0) x s;*(0). Hence the right hand morphism is an
isomorphism, so T x y is an isomorphism on the open subset Im(x, x95) € X XY,
as Xa X Uy : 75 1(0) x s 1(0) — Im(xq X ¥p) is a homeomorphism. Since we
can cover X x Y by such open subsets Im(x, X ¢»), we see that Tx y is an
isomorphism of topological line bundles, as we have to prove. O

The morphism T x y in (10.128), and hence the orientation on X x Y
above, depend on our choice of orientation conventions, as in Convention [2.39]

including various sign choices in §10.6-§10.7|and in (10.129)). Different orientation

conventions would change T x y and the orientation on X xY by a sign depending
on vdim X, vdim Y. If X,Y are manifolds then the orientation on X x Y agrees
with that in Convention a).

Proposition 10.81. Suppose X,Y, Z are oriented m-Kuranishi spaces. As in
Ezample [£31] products of m-Kuranishi spaces are commutative and associative
up to canonical 1-isomorphism. When we include orientations, (4.38) becomes

X xY = (—1)vdmXvdmYy ¥ (XxY)xZ = Xx(YxZ). (10.132)

Proof. Let x € X and y € Y, and consider the noncommutative diagram

Kxxvl(z,y) Kx|. ® Kyl

)dim O X dimTyY

Tx,vl(e,y=(—1 Aryx mpy®lo, x,0,Y

IR
IR

71)dimOdeimeX_IT* (10.133)

Ty, x|(y,a)=( v, 1:x®lo, v 0,x
u(_l)dim Oy Y dim Ty X +dim Ty X dim Ty Y+dim Oz X dim Oy Y|

IT;X,TJY®IOIX,OyY

Ky x|(y.2) Kyly ® Kx|a-

Here the columns are the natural isomorphisms, and for the bottom morphism
we use the fact that under the natural isomorphisms we have ITy*ny‘; x =
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(_1)dimeXdimTyYIT;X,T;Y and IOyY,OzX o~ (_1)dimomxdimOyYIOIX,OyY~

Thus, ((10.133)) fails to commute by an overall factor of
(—1)dimO:X dimT, Y (_1)dimO, Y dim Tx X+dim To X dim T, Y+dim 0, X dim 0, ¥

_ (_l)vdimX vdim Y

since vdim X = dim7,X — dimO,X and vdimY = dim7,Y — dimO,Y by

(10.26)). As this holds for all (x,y) € X x Y, the first equation of ((10.132)) follows,
since Tx y and Yy, x are used to define the orientations on X x Y and ¥ x X.

The second equation is easier, as the analogue of (10.133]) does commute. O]

10.7.5 Canonical bundles, orientations on y-Kuranishi spaces

All the material of §10.7.1}-§10.7.4] extends immediately to pu-Kuranishi spaces in
Chapter [5] with no significant changes.

10.7.6 Canonical bundles, orientations on Kuranishi spaces

To extend §10.7.1-410.7.4] to Kuranishi spaces in Chapter [6] there is one new
issue. For a general Kuranishi space X in Kur, the naive analogue of Theorem
is false, in that we may not be able to define a topological line bundle
m: Kx — X over X considered just as a topological space.

Really we should make X into a Deligne—Mumford topological stack (a kind
of orbifold in topological spaces), as in Noohi [58], and then 7 : Kx — X should
be a line bundle in the sense of stacks or orbifolds. That is, X has finite isotropy
groups G, X for z € X asin which may act nontrivially on the fibres Kx/|.
The only possible nontrivial action is via {#1} acting on R. Thus, as topological
spaces, the fibres of 7 : Kx — X may be either R or R/{£1}.

However, orientations on X only exist if G, X acts trivially on K x|, for each
z € X, and then Kx does exist as a topological line bundle on X as a topological
space. So we will restrict to this case, and not bother with topological stacks.

Definition 10.82. Let X be a Kuranishi space in Kur. Then as in 410.2.3] for
each z € X we have the isotropy group G, X, which acts linearly on the tangent
and obstruction spaces T, X, 0, X. We call X locally orientable if the induced
action of G, X on detT; X ® det O, X is trivial for all z € X.

Here is the analogue of Theorem [10.71

Theorem 10.83. Let X = (X,K) be a locally orientable Kuranishi space in
Kur. Then there is a natural topological line bundle m : Kx — X called the
canonical bundle of X, with fibres for each x € X given by

Kxl|, =det Ty X @ det 0, X

for T, X,0,X as in §10.2.3] with the property that if (V,E,T,s,¢) is a Kuran-
ishi neighbourhood on X in the sense of then there is an isomorphism of
topological real line bundles on s~1(0) CV

Ov,Br,sy ¢ (det T*V @ det E)|s-10) — ¥~ (Kx), (10.134)
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such that if v € s71(0) C V with ¥ (v) =z € X, so that as in (10.38) we have
an ezact sequence
0—>T,X = ~1,v -2,

and Zf (Cla SR Cl)? (dla sy dl+m)7 (617 ceey em+n)7 (fla cee fn) are bases fOT’ TZX7
TV, Ely, O X respectively with 15(c;) = d;, i = 1,...,1 and dys(diyj) = e,
j=1,....m and my(emir) = fr, k=1,...,m, and (v1,..., %), (01, -, 014m)
are dual bases to (c1,...,¢1),(d1,...,dipm) for TE X, TXV, then

T

0, X —0,

Ove syl detTyV @det El, - detT; X ® det O, X  maps
GV,E,F,s,w|'u : (51 ANRREA 6l+m) ® (el ARRRIA 677L+7l) —
(=)D (A A @ (fr A A f).

Proof. The proof is similar to that of Theorem with one additional step: in
the m-Kuranishi case, we make by pushing Oy g s in forward
by the homeomorphism 1 : s71(0) — Im4). In the Kuranishi case, we have a
I-equivariant Oy, g1 sy in on 5’1(0). Because of the locally orientable
condition on X, this pushes forward along the projection s~1(0) — s71(0)/T to
an isomorphism of topological line bundles on s~1(0)/I", and this then pushes
forward along the homeomorphism ¢ : s71(0)/T" — Im1) to give an analogue of
(10.104). Also the analogue of should take place on 7= 1(s71(0)) C P

for ® = (P, 7, ¢, (ﬁ) We leave the details to the reader. O

The analogue of Proposition holds for étale f : X — Y between locally
orientable Kuranishi spaces X,Y. Here is the analogue of Definition [10.74}

Definition 10.84. Let X = (X, K) be a locally orientable Kuranishi space in
I'(ur7 so that Theorem defines the canonical bundle 7 : Kx — X. An
orientation ox on X is an orientation on the fibres of Kx. That is, ox is an
equivalence class [w] of continuous sections w € I'Y(Kx) with w|, # 0 for all
z € X, where two such w,w’ are equivalent if w’ = K -w for K : X — (0, 00)
continuous. The opposite orientation is —ox = [—w]. Then we call (X,0x) an
oriented Kuranishi space. Usually we suppress ox, and just call X an oriented
Kuranishi space, and then we write —X for X with the opposite orientation.

By the analogue of Proposition [T10.73] if f : X — Y is an étale 1-morphism
in Kur for X ,Y locally orientable then orientations oy on Y pull back to
orientations ox = f*(oy) on X. If f is an equivalence, this defines a natural
1-1 correspondence between orientations on X and orientations on Y.

Let f: X — Y be a 1-morphism in Kur, with X, Y locally orientable. A
coorientation cy on f is an orientation on the fibres of the line bundle Kx ®
[*(K%) over X. That is, ¢y is an equivalence class [y] of v € (K x @ f*(K3))
with 7], # 0 for all z € X, where two such 7,7’ are equivalent if v/ = K - v
for K : X — (0,00) continuous. The opposite coorientation is —cy = [—7].
If Y is oriented then coorientations on f are equivalent to orientations on X.
Orientations on X are equivalent to coorientations on 7 : X — *, for * the
point in Kur.
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The weak 2-functor FIISI‘ZH : mKur < Kur from E identifies canonical
bundles and orientations on an m-Kuranishi space X from §10.7.1}-410.7.2) with

canonical bundles and orientations on the Kuranishi space X' = FL(I‘?;H(X ),

which is automatically locally orientable as G, X' = {1} for all z € X.
Here are the analogues of Theorem [L0.77] and Definition [10.79

Theorem 10.85. Let Man® satisfy Assumptions and [10.16 and let X be
a locally orientable Kuranishi space with corners in Kur®. Then 0X is locally
orientable, and there is a natural isomorphism of topological line bundles on 0X

where Ngx is a line bundle on 0X, with a natural orientation on its fibres.
Suppose that (Va, Eq,Ta, Sa,®a) is a Kuranishi neighbourhood on X, as
in §6.4, with dimV, = m, and rank E, = n,. Then as in §6.4] we have a
Kuranishi neighbourhood (V(1,a), E(1,a), ' (1,0), 5(1,a)s ¥(1,a)) 01 0X with V(1 o) =
OVa, E1,0) = 1y, (Fa)s T1,0) = Tay and s(1,q) = iy, (8a). Also Assumption
gives a (smooth) line bundle Npy, — OV, with an orientation on its fibres. Then

there is a natural isomorphism of topological line bundles on s&%a)(O) C Vv,
Dy, By Tuseribe ;NWH\S&)(O) — ¢a}a)(NaX), (10.136)

which identifies the orientations on the fibres, such that the following commutes:

(det T*0V,® Nav, @iy, (det T*V,
detlva(Eams(—ﬁa)(o) Qv ®idaer i3, (Ba)l... ®det Eq)|s1,0)-1(0)
\L@V(La)=E<1,a>*5(1,a>””<1,a> ‘I’Va,Ea,SQ,wa@)iVa\f.»(gva,Ea,Sa,wa)l
¥ o _ .

z/}(lala) (Kox) = w(l?a) (Nox ®ix (Kx)),

where Sy, 1s as in (10.16), and Ov, B, T,s50,00: OVi1 0y, B ay.T as

1,a):5(1 a)ﬂ/J(La)
in (10.134), and Qx as in (10.135)), and Py, g, 1. 5.0, a5 in (10.136).

Proof. The proof is similar to that of Theorem but with a few extra
steps. Firstly, if in the situation of the theorem we have v), € s(_lla)(O) with
V1,0 (vh) =2’ € 90X and v, =iy, (v}) € s;'(0) and ix (') = ta(ve) =z in X,
then as in the proof of Theorem we can construct an isomorphism

det T (0X) @ det O, (0X) = Ny, |, @ det Ti X @ det 0, X,

which is equivariant under G,/ (0X) = Stabr, , (v;,) C Stabr, (v,) = G, X. But
Stabr, , (v,) acts trivially on Nav, |, , as the action is defined using the 7y in
Assumption which are orientation-preserving, and G, X acts trivially on
det T X ®@det O, X as X is locally orientable. Hence G/ (0X) acts trivially on
det T2 (0X) ® det O, (0X), so 90X is locally orientable, as we have to prove.
Secondly, as the natural action of I'(; 4y on Nay, preserves orientations on the
fibres, we can use ®v, g, 1, 5.0, I to induce a unique orientation on
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Nox |tm Y10y B8 the orientation on Nay, \8(71 (0) descends through the quotient
) 1,a

sala)(O) — s(fl%a) (0)/T'(1,4)- We leave the details to the reader. O

As in Example working in Kur® or Kur8® with b-canonical bundles
®Kx in Theorem defined using b-tangent bundles TV — V in Man®
or Man®¢, the normal bundle Nyx in Theorem is canonically trivial,
Nox = Ogx, so we can replace (10.135]) by (10.127)).

Definition 10.86. Let Man® satisfy Assumptions and [10.16] and suppose
(X, 0x) is an oriented Kuranishi space with corners in Kur®. Then X is locally
orientable by Definition with canonical bundle Kx — X from Theorem
110.83] and ox is an orientation on the fibres of Kx — X. Theorem shows
that 0X is locally orientable in Kur®, so that Kyx — 0X is defined, and
gives a line bundle Ngx — 90X with an orientation vx on its fibres, and an
isomorphism Qx : Kox — Nox ® i% (K x ). Hence there is a unique orientation
osx on the fibres of Kyx — 0X identified by Qx with vx ® i% (0x), and osx
is an orientation on 0X. Thus, if X is an oriented Kuranishi space with corners,
then 0% X is naturally oriented for all k =0,1,....

The analogues of Theorem and Proposition hold for products
X XY of Kuranishi spaces X x Y defined as in Example [6.28] where we require
X, Y to be locally orientable, and then X x Y is also locally orientable, so that
Kx, Ky, Kxxy exist. The proofs combine those of Theorems [10.80] and [10.83]

and Proposition [10.81
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Chapter 11

Transverse fibre products and
submersions

In the category of classical manifolds Man, morphisms g : X - Z, h:Y — Z
are transverse if whenever x € X and y € Y with g(z) = h(y) = z € Z, then

Tog&Tyh:ToX &T,Y — T.Z

is surjective. If g, h are transverse then a fibre product W = X x4 75 Y exists
in the category Man, as defined in with dim W = dim X 4+ dim Y — dim Z,
in a Cartesian square in Man:

w ; Y
Ve g

X—7

Also g : X — Z is a submersion if T,g : T, X — T,Z is surjective for all
x € X with g(z) =z € Z. I g is a submersion then g, h are transverse for any
morphism A : Y — Z in Man. Generalizations of all this to various categories
Man®, ManS,, Man®¢, ... of manifolds with (g-)corners were discussed in

This chapter studies transversality, fibre products, and submersions for m-
Kuranishi spaces and Kuranishi spaces. By ‘fibre products’ we mean 2-category
fibre products in mKur and Kur (or more generally in certain 2-subcategories
mKurD - mKur and KurD - Kur), as defined in which satisfy a
complicated universal property involving 2-morphisms. Readers are advised to
familiarize themselves with fibre products in both ordinary categories in
and in 2-categories in before continuing.

As we explain in these ideas do not extend nicely to the ordinary
category of p-Kuranishi spaces uKur o Ho(mKur). The 2-category structure
on mKur is essential for defining well-behaved transverse fibre products, and the
universal property in mKur does not descend to Ho(mKur). We can still define
a kind of ‘transverse fibre product’ in uKur, but it is not a category-theoretic
fibre product, and it is not characterized by a universal property in uKur.
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Man€ are given in §11.1] extending those in Chapter [3 l Section |11.2| discusses
transverse fibre products in a general 2-category mKur, and §11.3[ works out
these results in mKur, mKurg,, mKur#® and mKur®. Section considers

fibre products of p-Kuranishi spaces, and §11.51-411.6| extend §11.2}-411.3| to

Kuranishi spaces. Long proofs are postponed to §I1.7}-§11.11

Optional assumptions on transversality and submersions in categories Man,
'

11.1 Optional assumptions on transverse fibre products

Suppose for the whole of this section that Man satisfies Assumptions

We now give optional assumptions on transversality and submersions in Man.

11.1.1 ‘Transverse morphisms’ and ‘submersions’ in Man

Here is the basic assumption we will need to get a good notion of transverse fibre
product in mKur, Kur — part (b) will be essential in the proof of Theorem
in on the existence of fibre products of w-transverse 1-morphisms of
global m-Kuranishi neighbourhoods, which is the necessary local condition for
existence of fibre products in mKur. We write the assumption using choices of
discrete properties D, E to fit in with the results of

Assumption 11.1. (Transverse fibre products.) (a) We are iven discrete
properties D, E of morphisms in Man in the sense of Definition where D
implies E. We require that the projections 7x : X x Y — X, my : X XY =Y
are D and FE for all X,Y € Man. We write Man D, Man E for the subcategories
of Man with all objects, and only D and E morphisms.

(b) Let g: X — Z and h : Y — Z be morphisms in Manp. We are given a
notion of when g, h are transverse. This satisfies:

(i) If g, h are transverse then a fibre product W = X x4 7, Y exists in Manp,
as in Deﬁmtlon 3l with dim W = dim X +dim Y — dim Z, in a Cartesian
square in Manp, so that e, f,g,h are D morphisms in Man:

W—F"">Y

Ve ! hy (11.1)
X 2 z

Furthermore, (11.1) is also Cartesian in Mang.

(ii) In the situation of (i), suppose ¢: V — X, d: V — Y are morphisms in
Mang, and E — V is a vector bundle, and s € T°(E) is a section, and
K: E — TyocZ is a morphism, such that hod = goc+ Ko s+ O(s?) in
the sense of Definition vii). Then there exist an open neighbourhood
V' of s71(0) in V, and a morphism b : V/ — W in Mang, and morphisms
A E|V/ — 7;01,)(7 M : E|V/ — 7}obY with

clyr=eob+Aos+0(s?), dy=fob+Mos+0(s?), (11.2)
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and if K" : Elys — TgoeopZ is a morphism with K|y = K’ + O(s) in
the sense of Definition [3.15|(v), which exists and is unique up to O(s) by
Theorem |3.17((g), as goc|yr =goeob+ O(s) by (11.2)), then

K'+TgoA=ThoM+O(s) (11.3)

in the sense of Definition [3.15((ii), where T g, Th are as in §3.3.4{c).

(iii) In the situation of (ii), suppose V' b, A,M are alternative choices for
V' b, A, M. Then there exists N : E|y'qy — ToW|y/qpr with

blvnv = bly'ap + Nos+O0(s?), (11.4)

and if ]\/ : E|V’~mf/’ — 7~€ng|‘//0‘7'7~ M/ : E|V’~mf/’ — ﬂoby‘v'ﬁf/’ are
morphisms with Aly/qy = A'+0(s), Mly'ny7 = M'+0O(s), which exist and
are unique up to O(s) by Theorem as eob|y /Ay = eoblyap +0(s)

g)
and f o bly/npr = fobly'ap + O(s) by (L1.4), then
Alyiapr =N +TeoN+0(s), Mlyrapr =M +TfoN+0O(s). (11.5)

IfN: Elvinp — ToWvnp satisfies (11.4)—(11.5) then N = N + O(s).

(c) Let g : X — Z be a morphism in Manp. We are given a notion of when g
is a submersion. If g is a submersion and h : Y — Z is any morphism in Manp,
then g, h are transverse.

In fact any category Man can be made to satisfy Assumption m

Example 11.2. Let Man be any category satisfying Assumptions and
let D, E be any discrete properties of morphisms in Man satisfying Assumption
[[1.3a) (for instance, D, E could be trivial). Define morphisms g : X — Z,
h:Y — Z in Manp to be transverse if they satisfy Assumption b). Define
a D morphism g : X — Z to be a submersion if it satisfies Assumption c).
Then Assumption holds, just by definition.

Let X,Y be any objects of 1\'/Ian7 and * be the point in 1\'/Ian7 as in Assumption
[B.1(c). Then the projections 7 : X — *, m: ¥ — « satisfy Assumption [11.1|b),
and so are transverse. Here in (b)(i) we take W = X x Y, and in (b)(ii) we take
b= (c¢,d) and A =M = 0. We will use this in discussing products of m-Kuranishi

spaces in §11.2.3

11.1.2 More assumptions on transversality and submersions

We now give six optional assumptions on transverse morphisms and submersions,
which will imply similar properties for (m-)Kuranishi spaces. For the first, in
Remark we discuss when fibre products in Man, Man$,, ... are also fibre
products on the level of topological spaces.
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Assumption 11.3. (Transverse fibre products are fibre products of
topological spaces.) Suppose that Assumption holds for Man, and in
addition, the functor FI\T/I';I; : Man — Top from Assumption maps transverse
fibre products in Man to fibre products in Top. That is, in the situation of
Assumption b)(i) we have a homeomorphism

(e,f): W — {(x,y) EX XY :g(x)= h(y)}

Assumption 11.4. (Properties of submersions.) Suppose Assumpmon-
holds for Man, and:

(a) If (11.1) is a Cartesian square in Manp with g a submersion, then f is a
submersion.

(b) Products of submersions are submersions. That is, if g : W — Y and
h: X — Z are submersions then g x h: W x X — Y x Z is a submersion.

(¢) The projection 7x : X x ¥ — X is a submersion for all X,Y € Man.

Assumption 11.5. (Tangent spaces of transverse fibre products.) Let
Man satisfy Assumption with discrete property A and tangent spaces
T, X, and Assumption [['j W1th discrete properties D, E. Suppose that D
1mphes A, and wheneve is Cartesian in Manp w1th g, h transverse and
wEWw1the()—x1nX7f()—meandg() h(y) = z in Z, the
following is an exact sequence of real vector spaces:

e®T T, g®—Tyh
0 T, W — 0l x Ty 20 1.7 0.

Assumption 11.6. (Quasi-tangent spaces of transverse fibre products.)
Let Man satisfy Assumption with discrete property C and quasi-tangent
spaces QX in a category Q, and Assumption [11.1] with discrete properties
D, E. Suppose that D implies C, and whenever is Cartesian in Manp
with g, h transverse and w € W with e(w) = z in X, f(w) = y in Y and
g(x) = h(y) = z in Z, the following is Cartesian in Q:

QwW Qy
|Que ool Q,h|
QX —% ..z

Assumption 11.7. (Compatibility with the corner functor.) Let Man®
satisfy Assumption in §3.4l so that we have a corner functor C : Man® —
Manc, and let Assumption hold with Man® in place of Man. Define
transverse morphisms and submersions in Man‘j:, in the obvious way: we call
9 is0Xi = [s0%n and b2 1,50 Ym — [l,50 Zn transverse in Man$,
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if gl.. : X;Ng™"(Zn) = Zn and h|... : Y;u N W™ (Z,) — Z, are transverse in
Man€, for all I,m,n, and similarly for submersions.

Suppose that C' maps MancD.—> Man$, and Man$, — Man$,, and whenever
1' isa Ca}rt.esian square in Man® with g, h transverse, then the following is
Cartesian in Man§, and Man$;, with C(g), C(h) transverse in Man$,:

o @ o)
C C(9)
(X) C(2)

Also, suppose that if ¢ is a submersion then C(g) is a submersion.
The next assumption is only nontrivial if D # E.

Assumption 11.8. (Fibre products with submersions in ManE.) Sup-
pose that Assumption holds for Man, and whenever g : X — Z is a
submersion in ManD, and h : Y — Z is any morphism in Mang (not neces-
sarily in ManD), then a fibre product W = X X, 7, Y exists in ManE, with
dimW =dim X + dimY — dim Z, in a Cartesian square () in ManE, and
Assumption [T1.1|(b)(ii), (iii) hold for g, h. If Assumptions[11.3} [[1.4|a) or [I1.7]
hold, then they also hold for fibre products W = X x4 75 Y in Mang with g a
submersion.

11.1.3 Characterizing transversality and submersions

The next assumption gives necessary and sufficient conditions for when morphisms
g,h in Man® are transverse, or when g is a (strong) submersion, that extend
nicely to (m-)Kuranishi spaces mKur®, Kur®. The statement is complicated
to allow these conditions to depend on several different things — maps of
tangent spaces T,g,Tyh, of quasi-tangent spaces Q),g, Q,h, and the corner maps
C(g),C(h) — since our examples in depend on these.

We state it using Man® in 31 so our conditions can involve the corner
functor C' : Man® — Man®. But as in Example i), we can take Man® to
be any category Man satisfying Assumptions [3.113.7 with Cj(X) = 0 for all
X € Man and k > 0, so the corners are not needed in all examples.

Assumption 11.9. Suppose Man® satisfies Assumption in so that
we have a corner functor C : Man® — Man®.

Suppose Assumption holds for Manc, so we are given a discrete property
A of morphisms in Man€, and notions of tangent space T, X for X in Man®
and z € X, and tangent map 1, f : T, X — T,Y for A morphisms f: X — Y in
Man€ and 2 € X with f(z) =y in Y.

Suppose Assumption holds for Man", SO we are given a category Q, a
discrete property C' of morphisms in Man€, and notions of quasi-tangent space
Q. X in Q for X in Man® and z € X, and quasi-tangent map Qo f : @z X — QY
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in Q for C morphisms f : X — Y in Man® and z € X with f(z) =y in Y.
These may be trivial, i.e. @ could have one object and one morphism.

Suppose Assumptionholds for 1\./Ian°7 so we are given discrete properties
D, E of morphisms in Man®, where D implies E, and notions of {ransverse

morphisms g, h and submersions g in Man§,. We require that D implies A and
C, and:

(a) Let g: X — Z and h : Y — Z be morphisms in Man$,. Then g,k are

transverse if and only if for all z € X and y € Y with g(z) = h(y) = z in
Z, the following linear map is surjective:

Tog®Tyh: T,X &T,Y — T.Z, (11.6)

and an explicit condition (which may be trivial) holds, which we call
‘condition T7, involving only (i)—(ii) below:

(i) Condition T may involve the quasi-tangent maps Q,¢g: Q. X — Q.2
and Qzh: QY — Q.7 in Q.

(ii) For all j,k,l > 0, condition T' may involve the family of triples
(z,y,2) for x € C;(X), y € Cp(Y) with IT;(x) = z, Hx(y) =y, and
C(g)x =C(h)y = z in C;(2).

Condition T should only involve objects Q. X, ... in Q up to isomorphism,
and subsets H;l(gc) C Cj(X),... up to bijection.

Taken together, the conditions in (a) are an open condition in z,y. That is,
if both conditions hold for some z, , z, then there are open neighbourhoods
X' of x in X and Y’ of y in Y such that both conditions also hold for all
e X and y € Y with g(2') = h(y') =2 € Z.

Suppose g : X — Z, h : Y — Z are morphisms in l\./Ian‘j:, and xz € X,
y € Y with g(z) = h(y) = z € Z are such that condition T holds, though
need not be surjective. Then there exist open X’ — X x R™ and
Y —= Y xR" for m,n > 0 with (x,0) € X’ and (y,0) € Y’, and transverse
morphisms ¢’ : X' — Z, ' : Y’ — Z with ¢'(£,0) = g(&), #'(9,0) = h(9)
forall z € X, gy € Y with (Z,0) € X’ and (9,0) € Y.

Let g : X — Z be a morphism in MancD. Then ¢ is a submersion if and
only if for all z € X with g(z) = z in Z, the following is surjective:

Tog: T X — T.Z, (11.7)

and an explicit condition (which may be trivial) holds, which we call
‘condition S’, involving only (i)—(ii) below:

(i) Condition S may involve Q,g : Q. X — Q.Z.
(ii) For all 5,1 > 0, condition S may involve the family of pairs (x, z)
where ¢ € C;(X) with II;(z) = z and C(g)xz = z in C;(Z).

Condition S should only involve objects @, X, ... in @ up to isomorphism,
and subsets Hj_l(x) C Cj(X),... up to bijection.
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(e) The conditions in (d) together are an open condition in = € X.

(f) Suppose g : X — Z is a morphism in Man% and z € X with g(z) =z in
Z are such that condition S holds, though need not be surjective.
Then there exist open X’ — X x R™ for m > 0 with (z,0) € X’ and a
submersion ¢’ : X’ — Z with ¢'(%,0) = ¢(Z) for all £ € X with (z,0) € X'.

(g) Suppose f: X — Y and g: Y — Z are morphisms in Man% and z € X
with f(z) =y in Y and g(y) = z in Z. If condition S holds for f at x,y
and for g at y, z, then it holds for go f at x, z.

(h) Suppose ¢g : X — Z is a morphism in Man® with Z in Man C Man®.
Then g is D, and condition S in (d) holds for all , z.

11.1.4 Examples of categories satisfying the assumptions

Using the material of §2.5 we give several interesting examples in which As-

sumption and various of Assumptions hold:

Example 11.10. Take Man to be the category of classical manifolds Man, and
D, FE to be trivial (i.e. all morphisms in Man are D and E). As in Definition
in define morphisms g : X — Z, h: Y — Z in Man to be transverse
if whenever x € X and y € Y with g(x) = h(y) = z € Z, then

T,g®Tyh:ToX & T,Y — T.Z

is surjective. Define g : X — Z to be a submersion if T,g : T, X — T,7Z is
surjective for all z € X with g(z) = z € Z. We claim that:

e Assumption holds.

e Assumptions [I1.3] hold.

e For Assumption we take Man to be a category Man® as in Example
3-24]i), with Cy(X) = @ for all X € Man and k > 0. We take tangent
spaces T, X to be as usual, and quasi-tangent spaces @, X to be trivial,
and conditions T and S are trivial. Then Assumption [I1.9] holds.

Almost all the above is well known or obvious, but Assumption b)(ii)—(iii)
are new, so we prove them in Proposition |11.14] below.

Example 11.11. (a) Take Man to be Man® from and D to be strongly
smooth morphisms, and E to be trivial, and define s-transverse morphisms and
s-submersions in Man¢, as in Definition in §2.5.21 We claim that:

e Assumption holds, where ‘transverse’ means s-transverse, and ‘sub-
mersions’ are s-submersions.

e Assumptions hold.

e Assumption [IT.5 holds for both ordinary tangent spaces T, X and stratum
tangent spaces T, X in Example [10.2(ii),(iv).
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e Assumption holds for the stratum normal spaces N, X in Definition
2.16] as in Example [10.20(a).

e Assumption holds, by Theorem d).

e For Assumption we take Man€ to be a category Man® as in Example
a), with corner functor C': Man® — Man® as in Definition We
take tangent spaces to be stratum tangent spaces 7, X, and quasi-tangent
spaces to be stratum normal spaces N, X. Condition T is that

N,g® Nyh: N,X & N,Y — N.Z (11.8)

is surjective. Condition 8 is that N,g : N, X — N.Z is surjective. Then
Assumption holds.

Most of the above follows from §2.5.2) but Assumption [11.1{(b)(ii)—(iii) are new,
and we prove them in Proposition below.

(b) We can also modify part (a) as follows. In Assumption we take
transversality in Man$, to be t-transverse morphisms in Definition In
Assumption ifg: X - Zand h:Y — Z are morphisms in Man$, and
x € X,y €Y with g(z) = h(y) = z in Z, then the new condition T is that
is surjective, and for all € C;(X) and y € Ci(Y') with II;(x) = z, i (y) =y,
and C(g)x = C(h)y = z in C)(Z), we have j+ k > [, and there is exactly one
triple (x,y, z) with j +k =L

Then Assumptions [11.1} [11.3H11.6| and [11.8H11.9| hold as in (a), and in
addition, Assumptionlll_.? holds for both corner functors C, ¢’ : Man® — Man®

in Definitions and [2.11] by Theorem b).

Example 11.12. (a) Take Man to be Mang¢ from §2.4.1, and D, E to be
interior morphisms, and define b-transverse morphisms and b-submersions in

Man§? as in Definition in §2.5.3] We claim that:

e Assumption holds, where ‘transverse’ means b-transverse, and ‘sub-
mersion’ means b-submersion.

Assumption does not hold, as Example shows.

Assumption holds.
Assumption holds for b-tangent spaces *T,, X in Example iii).
For Assumption we take Man®€ to be a category Man® as in Example

h). We take tangent spaces to be b-tangent spaces *T, X, and quasi-
tangent spaces to be trivial. Conditions T and S are both trivial. Then

Assumption holds.

Most of the above follows from §2.5.3] and we prove Assumption b)(ii)—(iii)
in Proposition
(b) Take Man to be Man2® from i and D to be interior morphisms in

Man®¢, and F to be trivial, and define c-transverse morphisms and b-fibrations
in Man§? as in Definition in §2.5.3] Then as in (a) we find that:

in
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Assumption holds, where ‘transverse’ means c-transverse, and ‘sub-
mersion’ means b-fibration.

Assumptions hold.

Assumption holds for b-tangent spaces °T}, X.

Assumption holds for the corner functor C' : Man8® — Man2® in
§2.4.1) by Theorem b).

e For Assumption we take Man8€ to be a category Man® as in Example
h), with corner functor C' : Man8® — Man8® as in §2.4.1, We take

tangent spaces to be b-tangent spaces *T, X, and quasi-tangent spaces to
be trivial.

Ifg: X - Z and h: Y — Z are morphisms in Manf, andz € X,y €Y
with g(z) = h(y) = z in Z, condition T is that for all x € C;(X) and
y € Cp(Y) with I (x) = x, Il (y) =y, and C(g)z = C(h)y = z in C;(Z),
we have either j+k>lor j=k=10=0.

If g: X — Z is a morphism in Manf, and z € X with g(z) = z € Z,
condition S is that for all € C;(X) with II;(x) = z and C(g)z = z in
Ci(Z), we have j > I. Then Assumption holds.

(c) We can also modify part (b) by instead taking ‘submersions’ to be c-fibrations
in Manf?, as in Deﬁnition In Assumptionm if g: X — Z is a morphism
in Manf® and z € X with g(x) = z € Z, the new condition S is that for all
x € C;(X) with II;(x) =  and C(g9)x = z in C;(Z), we have j > [, and for
each such z there is exactly one such  with j =1[.

Then Assumptions [11.1} [11.3H11.5} [11.7] and [11.9| hold as in (b), and in
addition, Assumption [L1.8| holds, by Theorem [2.28(e).

Example 11.13. (a) Take Man to be Man® from and D, E to be interior
morphisms, and define sb-transverse morphisms and s-submersions in Mang,
by Definitions [2.24| and [2.31} as in §2.5.4] Then by restriction from Man$® in
Example [11.12{a), we see that:

e Assumption holds, where ‘transverse’ means sb-transverse, and ‘sub-
mersion’ means s-submersion.

Assumption does not hold, as Example [2.35] shows.

Assumption holds.

Assumption holds for b-tangent spaces *T,, X in Example iii).
For Assumption we take Man® to be a category Man® as in Example
3.24|(a). We take tangent spaces to be b-tangent spaces T}, X, and quasi-

tangent spaces to be monoids ]\Z},X as in Example [10.20{c). Condition
T is that M, X X Nty g, 01 2,1, h M,Y = N" for n > 0, as in Definition

Condition S is that the monoid morphism ]\meg s M, X — M.Z is
isomorphic to a projection N™" — N™. Then Assumption holds.
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(b) Take Man to be Man® from and D to be interior morphisms in Man¢,
and FE to be trivial, and define sc-transverse morphisms and s-submersions in

Man§, by Definitions [2.24] and [2.31] as in §2.5.4 Then by Example [11.11](a)
and restriction from Man®° in Example [11.12(b), we see that:

e Assumption holds, where ‘transverse’ means sb-transverse, and ‘sub-
mersion’ means s-submersion.

e Assumptions [11.3] hold.

e Assumption holds for b-tangent spaces *T}, X.

e Assumption holds for monoids M, X .

e Assumption holds for the corner functor C' : Man® — Man®.

e Assumption holds.

e For Assumption we take Man€ to be a category Man€ as in Example
a), with corner functor C' : Man® — Man® as in We take
tangent spaces to be b-tangent spaces ®T, X, and quasi-tangent spaces
to be monoids M, X. If g: X — Z and h : Y — Z are morphisms in
Man§, and z € X, y € Y with g(z) = h(y) = z in Z, condition T is that
Mo X X yp 0 51, 2,051, MyY = N" for n > 0, and for all € C;(X) and
y € Cp(Y) with I (x) = z, IIx(y) =y, and C(g)xz = C(h)y = z in Ci(Z),
we have either j+k>lorj=k=101=0.

If g: X — Z is a morphism in Mang, and = € X with g(z) = z € Z,
condition S is that M,g : M, X — M,Z is isomorphic to a projection
N"*" 5 N". Then Assumption holds.

The next proposition will be proved in §I1.7]

Proposition 11.14. Ezamples [L11.10H11.13| satisfy Assumption b)(ii), (iii).

11.2 Transverse fibre products and submersions in mKur

We suppose throughout this section that the category Man used to define
mKur satisfies Assumptions and and will also specify additional
assumptions as needed. Here Assumption [11.1| gives discrete properties D, E
of morphisms in Man, where D implies E, defining subcategories Manp C
Mang C Man with all objects and only D, E morphisms, and notions of when
morphisms g : X = Z, h:Y — Z in Manp are transverse (which implies
that a fibre product X x4 7, Y exists in 1\./IanD7 and is also a fibre product in
Mang), and when g : X — Z is a submersion (which implies that if h: Y — Z
is another morphism in Manp then g, h are transverse).
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11.2.1 Fibre products of global m-Kuranishi neighbourhoods

We generalize transversality and submersions to 1-morphisms of m-Kuranishi
neighbourhoods. We give both weak versions, ‘w-transversality’ and ‘w-submer-
sions’, and strong versions, ‘transversality’ and ‘submersions’.

Definition 11.15. Suppose g : X — Z, h : Y — Z are continuous maps
of topological spaces, and (U;, Dy, 71, X1)s Vi, By Sms Ym)s Way Fytn, wy) are
m-Kuranishi neighbourhoods on X,Y, Z with Im y; € ¢~ !(Imw,,) and Im,, C
h='(Imw,), and

9gin = (Uln7 gl'rugln) : (Uh Dy, Xl) — (Wru Fy, tn>wn)7
hpn = (anv hmna iLmn) : (Vma Emv Sm, d)m) — (Wru Fna th, Wn)a
are D 1-morphisms of m-Kuranishi neighbourhoods over (Im x;, g), (Im ¢,,,, h).

We call g;,,, himy weakly transverse, or w-transverse, if there exist open
neighbourhoods Uy, of r;l(O) in Uy, and Vi, of 5,1(0) in Vi, such that:

A Vi — W, are D morphisms in Man,
which are transverse in the sense of Assumption b); and

(i) gln|u'@ izmn|v : Dily ® Em|y — Fulw is surjective for all u € Uy, and
v € Vippn with gp(0) = by (v) = w in W,

(1) gln|Uln : Uln — Wn a'nd hmn|V

We call g;,,, bmn transverse if they are w-transverse and in (ii) gin |y ® ﬁmn|v is
an isomorphism for all u,v.

We call g;,, a weak submersion, or a w-submersion, if there exists an open
neighbourhood Uy, of rl_l(O) in Uj, such that:

(iii) ginlir, : Ui — W, is a submersion in Manp, as in Assumption [11.1{c).

(iv) Ginlu @ Dilu = Fnlw is surjective for all u € U, with in(u) = w in W,.

We call g,,, a submersion if it is a w-submersion and in (iv) §ip |, is an isomorphism
for all w.

If g;,, is a w-submersion then g;,,, By are w-transverse for any D 1-morph-
ism Apnn 0 (Vin, By Sy Um) = (W, Foy iy, wy) over (Imapy,, h), by Assumption
[[1.1]c). Also if g,,, is a submersion then g;,,, by, are transverse for any D 1-
morphism Py, 0 (Vin, By Sy Um) = (Wh, Fyy ty, wy) over (Im ), h) for which
FE,, = 0 is the zero vector bundle.

In Deﬁnitionwe defined a strict 2-category GmKN of global m-Kuranishi
neighbourhoods, where:

e Objects (V,E,s) in GmKN are a manifold V (object in Man), a vector
bundle £ — V and a section s : V. — E. Then (V, E, s,ids-1(g)) is an
m-Kuranishi neighbourhood on the topological space s~1(0) C V, as in
They have virtual dimension vdim(V, E, s) = dimV — rank E.
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e l-morphisms ®;; : (V;, E;, s;) = (V;, Ej,s5) in GmKN are triples o, =
(Vij, dij, di;) satisfying Definition a)f(d) with s;71(0) in place of v; *(S).
Then @;; : (Vi, By, si,ids-1(0)) — (Vj,Ej,sj,idS]ﬂ(o)) is a 1-morphism of
m-Kuranishi neighbourhoods over ¢ij|si—1(0) :s;1(0) — s}l(O), as in

K3
e For l-morphisms ®;;, ®;; : (V;, B, s;) = (Vj, Ej, s5), a 2-morphism A;;
®;; = @, in GmKN is as in Definition , with 5571 (0) in place of 1; *(S).

We write GmKNp C GmKN for the 2-subcategory with 1-morphisms ®;;
which are D, in the sense of Definition [£.33] )
We will prove that w-transverse fibre products exist in GmKN p:

Definition 11.16. Suppose we are given 1-morphisms in GmKNp
gin - U, D) — Wa, Foytn)y, B 2 (Vin, By Sm) — (Wa, B tn),
which are w-transverse as in Definition We will construct a fibre product
(Tk, Cry q) = (Ur, Diy11) X g, (Wo Bt b (Vs By $m) (11.9)

in both GmKNp and GmKNg. A

Write gin = (Ulnaglnvgln) and hmn - (an; hmn7 hmn) Then gln(rl|Uln) =
g}, (tn) + O(r?) by Definition [4.2(d), so Definition i) gives € : D; ® Dy|y,, —
9in(Fn) With gin(rilv,,,) = 97, (tn) + €(re ® 1i|u,,, ). Define gg,, : Dilv,, — g7,,(Fn)
by §},,(d) = Gin(d)—e(d®r|v,, ). Replacing g, by §j,,, which does not change g;,,
up to 2-isomorphism as g;,, = gin + O(17), we suppose that G, (r1|v,,) = g}, (tn),
and similarly hpn(smlv,,,) = ki (tn). Making Upns Vi smaller, we may
suppose Definition [11.15(ii) still holds for the new gi,, hyn.

For Uy, Vinn as in Definition [11.15(1),(ii), define

Tk: = Uln X an

9l s Wi Bmn Vi,

to be the transverse fibre product in Manp from Assumption 11.1|(b), with
projections ey : T — U, C Up and frm : Tk — Vinn € Vi, in Manp. Then
Gin © €l = hmp © frm and

dim Ty = dim U; 4+ dim V;,, — dim W,,. (11.10)
We have a morphism of vector bundles on Tj:
€51 (Gin) © = fim (hmn) : €51(D1) © fin(Em) — €fi(g7 (Fn))- (11.11)

If t € Ty, with ey (t) =u € U,,, and fim(t) =v € Vion then in (1) = hpp(v) =
w € W, and the fibre of (11.11)) at ¢ iS Gin|u S —hmnlv : Dilu ® Emle = Fulw-

So Definition [11.15((ii) implies that (11.11]) is surjective. Define Cy, — T} to be
the kernel of (11.11)), as a vector subbundle of e},(D;) & f7,,,(Em) with

rank Cy, = rank D; 4+ rank E,,, — rank F,. (11.12)
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Define vector bundle morphisms éy; : C, — €j,(D;) and fom : C — fa (Dy)
to be the compositions of the inclusion Cy — ej,(D;) & fi,,(En) with the

projections f,(Dy) ® £ (Em) — efy(D1) and 5y(D) & fin (Eon) = i (Bm).
As C}, is the kernel of (11.11)), noting the sign of —f} (Amy) in (11.11), we have
€1 (Jin) © exr = fkm( mn) © frm + Ck — €5(91,(Fn)) = fiom (hon (F)).-

)
The section ey, (1) @ f7,,(sm) of ef,(D1) @ fr,,(Em) over Ty, satisfies

(€2 (Gin) @ = Fim (hann)) (€52 (1) @ fiin (5m))
= e (gin(re)) — fkm( n(sm)) = €51 © Gin(tn) = frm © P (tn) = 0,
as Gun(rlur,) = 97, (tn) and honn(3mlv,,,,) = B (tn). Thus €fy (1) © Sy, (sm)
lies in the kernel of (11.11)), so it is a section of Cy. Define g = e}, (1) ® fi,, (Sm)

in I'°(C%). Then éx(qx) = e}, (r) and fk.m(qk) = fr (Sm)-
Then (Tk, Ck, q&) is an object in GmKNp. By (11.10) and (11.12) we have

vdim(Ty, Ck, qr) = vdim(Uy, Dy, ) + vdim(Vy,, En, i)

11.13
— vdim(W,,, Fy, tp). ( )

Set ex = (Th, ext, éxt) and Frp, = (Th, foms fom). Then ews : (Th, Ch, q) —
(Ui, Dyyry) and f,,, 0 (T, Cry qk) = (Vin, B,y $m) are 1- morphisms in GmKNp.

Since gin © €kl = Rmn © fk:m and ekl(gln) 0 ey = fk:m( mn) fk:m we See. that
91y, © €kl = Rpn © f,,,- Hence we have a 2-commutative diagram in GmKN p:

(leCk,Qk) r (VmaEmvsm)
s gppoen ) B | (11.14)
(U, Dy, ) I (W, Foy t).

If g;,,, hmn are transverse, not just w-transverse, then is an iso-
morphism, not just surjective, so C} is the zero vector bundle, as it is the
kernel of (11.11)). Thus (T%, Ck, qx) = (Tk,0,0) lies in the image of the obvious
embedding Manp — GmKND.

The next theorem will be proved in §11.8|

Theorem 11.17. In Deﬁmtzon 11. 16 equation (11.14) is 2-Cartesian in both
GmKNp and GmKNg in the sense of Deﬁmtzon A 11} so that T Ck,qk
18 a fibre product in the 2-categories GmKND, GmKNE, as in

11.2.2 (W-)transversality and fibre products in mKurp

As in for the discrete properties D, E of morphisms in Man, we have
a notion of when a l-morphism f : X — Y in mKur is D or E, and 2-
subcategories mKurD C mKur E C mKur with only D or E 1-morphisms.
We will define notions of (w-)transverse 1-morphisms and (w-)submersions
in mKur D-
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Definition 11.18. Let g : X — Z, h : Y — Z be 1-morphisms in mKurp.
We call g, h or w-transverse (or transverse), if whenever z € X and y € Y with
g(x) = h(y) = z in Z, there exist m-Kuranishi neighbourhoods (U;, Dy, r1, x1),
(VmaEm,Smawm)’ (Wn7Fn;tn;wn) on X,Y,Z as in with € Imy; C
g '(Imwy,), y € Imv,, € h~(Imw,) and z € Imw,, and I-morphisms g,, :
(Uh Dl7rl7Xl) — (Wn7 Fnytn>wn)7 hmn : (Vma Ema Sm, ¢m) — (Wn; Fnytnywn)
over (Imy;,g) and (Im,,, h), as in Definition such that g,,,, by are
w-transverse (or transverse, respectively), as in Definition

We call g a w-submersion (or a submersion), if whenever x € X with
g(z) = z € Z, there exist m-Kuranishi neighbourhoods (U;, Dy, 7, x1), (Wh,
F, tyh,wy) on X, Z as in With r€Imy; C g '(Imw,), z € Imw,, and
a l-morphism g, : (U, Dy,ri,xi) = (Wa, Fuytn,wy) over (Imy;,g), as in
Definition such that g;,, is a w-submersion (or a submersion, respectively),
as in Definition

Suppose g : X — Z is a w-submersion, and h : Y — Z is any D 1-
morphism in mKur. Let z € X and y € Y with g(z) = h(y) = z in Z.
As g is a w-submersion we can choose g;,, : (Ui, D, 71, x1) = (W, B, tn,wn)
with z € Imx; C g~ '(Imw,), z € Imw,, and g, a w-submersion. Choose
any m-Kuranishi neighbourhood (V,,, Ep,, $m,¥m) on Y with y € Im, C
h~'(Imw,). Then Theorem b) gives a D 1-morphism h,,,, : (Vin, B, Sims
Ym) = (W, Fy, tn,wy) over (Im,, h), and g;,,, Ry, are w-transverse as gy,
is a w-submersion. Hence g, h are w-transverse.

Similarly, suppose g : X — Z is a submersion, and h : Y = Z is a D
l-morphism in mKur such that Y is a manifold as in Example that is,
Y ~ Fl\‘?ﬁ“r( /) for Y’ € Man. Then for z € X and y € Y with g(x ) h(y) =
z in Z we can choose g;,,, by as above with g;,, a submersion and E,, = 0, so
that g;,,, hmn are transverse. Hence g, h are transverse.

The next important theorem will be proved in §11.9

Theorem 11.19. Let g: X — Z, h: Y — Z be w-transverse 1-morphisms in
mKurp. Then there exists a fibre product W = X4 z Y in mKurD, as in
A4 with vdim W = vdim X + vdimY — vdim Z, in a 2-Cartesian square:

Y
Je d n4) Ry (11.15)
X Z

Equation (11.15)) is also 2-Cartesian in mKurE, so W is also a fibre product
Xg,zrY in mKurg. Furthermore:

(a) If g,h are transverse then W is a manifold, as in FEzample m In
particular, if g is a submersion and Y is a manifold, then W is a manifold.

(b) Suppose (U, Dy, 71, X10)s Viny By Sy W)y (Wh, Fry b, wn) are m-Kuranishi
neighbourhoods on X,Y,Z, as in with ITm y; C gil(Im wn) and Im, C
h=Y(Imwy,), and g,, : (U, Di,ri,x1) = Wa, Eoyto,wn), B @ (Vin, By Sm,
Ym) = (Wy, Fu,tn,wn) are 1-morphisms of m-Kuranishi neighbourhoods on
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X.,Y,Z over (Imx;,g) and (Im,,h), as in such that g, hpm, are
w-transverse, as in §11.2.1] Then there exist an m-Kuranishi neighbourhood
(Tx, Cr i o) on W owith Tmgy, = e '(Imx;) N f~'(Imep,,) € W, and 1-
morphisms exr : (Tk, Ck, qr, 1) — (U, Diyri, xa) over (Imgy,e) and fh,, :
(Tkv Ck, qk, @k) - (Vm7 En, S, 7/fm) over (Im Pk f) with gin €kl = hpn o fkm?
such that (Ty,Ck,qr) and ey, fi,, are constructed from (U, Dy, 1), (Vin, Em,
$m)y Wa, Foytn) and gy, R exactly as in Definition .

Also the unique 2-morphism Ny © Gin © €kl = Pmn © 1 over (Im gy, goe)
constructed fromm:goe = ho f in Theorem c) is the identity.
(c) If Man satisfies Assumption then we can choose the topological space
W in W= (W,H) to be W = {:cy €EX XY :g(x)=nh(y)}, withe: W — X,
f:W =Y acting by e: (x,y) — z and f: (z,y) »—>y.
(d) If Man satisfies Assumption a) and (11.13) is a 2-Cartesian square in
mKurp with g a w-submersion (or a submersion) then f is a w-submersion
(or a submersion, respectively).

(e) If Man satisfies Assumption with tangent spaces T, X, and satisfies
Assumption [L1.5] then using the notation of §10.2) whenever (11.15) is 2-

Cartesian in mKurp with g, h w-transverse and w € W with e(w) = x in X,
fw)=y inY and g(z) = h(y) = z in Z, the following is an exact sequence:

0 T.W LXol)Y ———1T1T.7Z
T,e®&T, f T.g®—Tyh
wl (11.16)
0:9®—0Oyh weDOy
0 0.2 g y OmXEBOwa OuW.

Here 69" . T.Z — O,W is a natural linear map defined as a connecting
morphism, as in Definition [10.69]

£) If Man satisfies Assumption with quasi-tangent spaces QX in a
category Q, and satisfies Assumption [L1.6) then whenever is 2-Cartesian
in mKurp with g, h w-transverse and w € W with e(w) = z in X, f(w) =
in'Y and g(x) = h(y) = z in Z, the following is Cartesian in Q:

QwW Q f QyY
JQue Q,h| (11.17)
QX Qeg Q.7

(g) If Man® satisfies Assumption m in g so that we have a corner iunctor

C : Man® — Man® which exztends to C : mKur — mKur as in §4.6) and
Assumption |1_| 1| holds for Man€, and Assumption holds, then whenever
(11.15) is 2-Cartesian in mKurD with g, h w- tmnsverse (or transverse), then the
following is 2-Cartesian in mKur$, and mKur$,, with C(g), C(h) w-transverse
(or transverse, respectively):

W) —5 c(y)
jce C(m)q) cm)| (11.18)
O(X) ‘@ oz).
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Hence for i > 0 we have

cw)~ J] (Ci(X)NC(g) " (Cu(2))) % cig).cuiz)cin)

O (Ch(Y) N C(R)™H(Ci(2))).

(11.19)

When i = 1, this computes the boundary OW. In particular, if 0Z =0, so that
Ci(Z) =0 for all | > 0 by Assumption f) with | =1, we have

OW =~ (0X Xgoix,z,n Y) 1 (X Xg 7 hoiy OY). (11.20)

Also, if g is a w-submersion (or a submersion), then C(g) is a w-submersion
(or a submersion, respectively).

(h) If Man satisfies Assumption and g : X — Z is a w-submersion
mn mKurD, and h :' Y — Z is any 1 morphism in mKurg (not _necessarily
mn mKurD) then a fibre product W = X xg zp Y exists in mKurE, with
dimW =dim X +dimY — dim Z, in a 2-Cartesian square m mKurE.
The analogues of (a)—(d) and (g) hold for these fibre products.

Example 11.20. Let g : X — Z, h : Y — Z be transverse morphisms in
ManD, and let W = X x4 7, Y in ManD, with projections e : W — X,
fW-=Y. erteWXYZefg,hforthelmagesofWXYZe h
in mKur under the 2-functor Fli’/I‘K“r : Man — mKur from Example

Then we have m-Kuranishi neighbourhoods (W,0,0,idy ) on W, as in
and similarly for X,Y, Z. We have a 1-morphism (VV7 e,0) : (W,0,0, 1dW)
(X,0,0,idx) over (W, e), as in and similarly for f, g, h

These 1-morphisms (X, g,0) : (X,0,0,idx) — (Z,0,0,idz) and (Y, h,0) :
(Y,0,0,idy) — (Z,0,0,idz) are transverse as in Definition [[T.15] where (i) holds
as g, h are transverse in ManD, and (ii) is trivial as Dy, B, F,, are zero. As
these m-Kuranishi neighbourhoods cover X,Y, Z, we see that g, h are transverse
by Deﬁnition so a fibre product X x4 z p Z exists in mKurp by Theorem
We claim that this fibre product is W = FmKn“r(W).

To see this, note that applying Definition to the transverse (X, g,0),
(Y, h,0) above yields (Ty, Ck, gk, ¢r) = (W, O,O,idW), so (W,0,0,idwy ) is an m-
Kuranishi neighbourhood on X x z Y by Theorem b), which covers X xzY,
and this forces W ~ X xz Y. Thus, FMm;“r takes transverse fibre products in

ManD and ManE to transverse fibre products in mKurD and mKurE.

11.2.3 Products of m-Kuranishi spaces

Let Man be any category satisfying Assumptions |3 .—. Apply Example
with D, E trivial to get notions of transverse mo rhlsms and submerswns in
Man satisfying Assumption [11 u As in Example [11.2} for any X,Y € Man the
projections 7 : X — x and 7 : Y — * are transverse in Man.

From Definitions and we see that for any X,Y in mKur the
projections 7w : X — %, w: Y — % are w-transverse, so a fibre product X x, Y
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exists in mKur by Theorem Now a product in a category or 2-category
is by definition a fibre product over the terminal object *. The fibre product
property only determines X X, Y up to canonical equivalence in mKur. But
from Theorem b) we see that we can take X X, Y and the 1-morphisms
e: XX, Y—=> X, f: Xx,Y =Y to be the product X xY in mKur in
Example and the projections mx : X xY — X, wy : X x Y — Y, which
are uniquely defined.

This proves that the products X x Y defined in Example have the univer-
sal property of products in the 2-category mKur, that is, they are fibre products
X x, Y in mKur. The existence of product m-Kuranishi neighbourhoods on
X XY in Example follows from Theorem [I1.19(b) with W,, = x.

As in Example ifg: W—Y,h: X — Z are l-morphisms in mKur
then we have a product 1-morphism gxh : Wx X — Y x Z. Given 1-morphisms
of m-Kuranishi neighbourhoods on W, XY, Z over g, h, we can write down a
product 1-morphism of m-Kuranishi neighbourhoods on W x X,Y x Z over
g X h. Using these and Theorem d) it is easy to prove:

Proposition 11.21. Let Man satisfy Assumptions and b),(c). Then
products of w-submersions (or submersions) in mKur are w-submersions (or
submersions, respectively). That is, if g : W = Y and h : X — Z are
(w-)submersions in mKur, then g x h: W x X =Y x Z is a (w-)submersion.
Projections tx : X XY > X,y : X XY =Y in mKur are w-submersions.

11.2.4 Characterizing (w-)transversality and (w-)submersions

Assumption [I1.9]in §T1.1.3| gave necessary and sufficient conditions for morphisms
g,h in Man® to be transverse, and for morphisms g to be submersions. The
next theorem, proved in extends these to conditions for 1-morphisms g, h
in mKur® to be (w-)transverse, and for 1-morphisms g to be (w-)submersions.

Theorem 11.22. Let Man® satisfy Assumption so that we have a corner
functor C : Man® — Man®, and suppose Assumption holds for Man®.
This requires that Assumption [10.1] holds, giving a notion of tangent spaces T, X
for X in Manc, and that Assumption [10.19| holds, giving a notion of quasi-
tangent spaces Q. X in a category Q for X in Man®, and that Assumptionm
holds, giving discrete properties D, E of morphisms in Man® and notions of
transverse morphisms g, h and submersions g in MancD.

As in and we define a 2-category mKurC7 with a corner
2-functor C : mKur® — mKur®, and notions of tangent, obstruction and
quasi-tangent spaces Ty X ,0,X, Q. X for X in mKur®.

Now Assumption a),(d) involve a ‘condition T’ on morphisms g : X —
Z, h:Y — Z in Man$, and points x € X, y € Y with g(z) = h(y) = z € Z,
and a ‘condition S’ on morphisms g : X — Z in Man% and points x € X with
g(x) = z € Z. These conditions depend on the corner morphisms C(g),C(h)
and on quasi-tangent maps Qzg,Qyh. Observe that condition T also makes
sense for 1-morphisms g: X — Z, h:Y — Z in mKurcD and x € X, yeY
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with

g(z) = h(y) = z in Z, and condition S makes sense for 1-morphisms

g: X — Z inmKur$, and v € X with g(x) =z € Z. Then:

(a)

(b)

Let g: X - Z, h:Y — Z be 1-morphisms in mKur‘b. Then g, h are
w-transverse if and only if for all x € X and y € Y with g(z) = h(y) = 2
in Z, condition T holds for g, h,x,y, z, and the following is surjective:

0,9 0,h: 0, X0,Y — O,Z. (11.21)

If Assumption also holds for tangent spaces T, X in Man® then g,h
are transverse if and only if for all x € X and y € Y with g(z) = h(y) = 2
in Z, condition T holds for g, h,x,y, z, equation 18 an isomorphism,
and the following linear map is surjective:

T.g©Tyh: T, X & T,Y — T.Z. (11.22)

Let g : X — Z be a 1-morphism in mKurcD. Then g is a w-submersion
if and only if for all x € X with g(x) = z in Z, condition S holds for
g,x,z, and the following linear map is surjective:

0.9:0,X — 0.Z. (11.23)

If Assumption [10.9] also holds then g is a submersion if and only if for all
x € X with g(x) = z in Z, condition S holds for g, z, z, equation (11.23))
s an isomorphism, and the following is surjective:

T,g:T.X — T.Z.

Combining Assumption g) and Theorem [11.22|b) gives:

Corollary 11.23. Let Man® satisfy Assumptions and [11.9] Then compo-
sitions of w-submersions in mKur® are w-submersions. If Man€ also satisfies
Assumption then compositions of submersions in mKur® are submersions.

Combining Assumption h) and Theorems [11.19(a) and [11.22|(b) yields:

Corollary 11.24. Let Man® satisfy Assumptions and so that As-
sumption holds with discrete properties D, E. Suppose that Z is a classical
manifold in mKurC, as in Erample . Then any 1-morphism g : X — Z
in mKur® is D and a w-submersion. Hence any 1-morphisms g : X — Z,
h:X — Z in mKur® are w-transverse, and a fibre product W = X Xg.Zh Y
exists in mKur$y, and is also a fibre product in mKur$,.
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11.2.5 Orientations on w-transverse fibre products in mKur

In this section we suppose throughout that Man satisfies Assumptions
|1().1|7 |10.13|, |11.1|, and 11.5l Thus, objects X in Man have tangent spaces T, X
which are fibres of a tangent bundle TX — X of rank dim X, and these are
used to define canonical bundles K x and orientations on m-Kuranishi spaces X
as in §10.7] and we can form w-transverse fibre products W = X x4 zp Y in
mKurp as in Theorem

Given orientations on X,Y, Z, the next theorem defines an orientation on
W. It will be proved in It is a generalization of Theorem in
on orientations of products X x Y, and reduces to this when Z = %, in which
case Tx y in Theorem coincides with Tx y . below.

Theorem 11.25. Suppose g : X — Z, h :' Y — Z are w-transverse 1-
morphisms in mKurp, so that a fibre product W = X Xg zpn Y exists in

mKurp by Theorem [11.19 in a 2-Cartesian square (11.15)). Sections|10.7.1

[10.7:2] define the canonical line bundles Kw, Kx,Ky, Kz of W, X,Y.Z, us-
ing tangent spaces and tangent bundles in Man from Assumptions and
and define orientations on W,..., Z to be orientations on the fibres
Of Kw,...7Kz.

Then there is a unique isomorphism of topological line bundles on W:

TX,Y,Z :Kw—>6*(Kx)®f*(Ky)®(goe)*(Kz)* (1124)

with the following property. Let w € W with e(w) =z in X, f(w) =y inY and
g(z) = h(y) =z in Z. Then we can consider Tx y z|w as a nonzero element

Txvzlw€ (Ewlw) @Kx|s ®Kyl,® (Kz|.)"
>~ (det T/ W @ det O, W) ' @ det T X ® det O, X
®detT;Y @ det O, Y @ (det 77 Z @ det O, Z) "

By Theorem [11.19(e) we have an ezxact sequence

0 T, W LXol)Y———1T1T.7Z
Twe®Ty f T.9®—Tyh
5g,hj/ (11.25)
0,e®0 f

O,9®—0Oyh
R0, X80,y <2 o W

0 0.Z

Consider (11.25)) as an exact complex A® with O, W in degree 0, so that ((10.69)
defines a nonzero element

Ve €Edet TpW R (det(Th X @ T;Y)) ' @ det TF Z
® det O, W ® (det(0,. X @ 0,Y)) ' @det 0, Z.

Then defining IT,;X,T;Ya Io,x,0,vy as in (10.84), we have

(IT;X,T;Y ®Io,x,0,v)(Tx,v,z|w)

(—1)dim OuWdim T, Z+dim Os X dim T, Y -1 (11.26)
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Hence if X,Y,Z are oriented there is a unique orientation on W, called
the fibre product orientation, such that (11.24)) is orientation-preserving.

The morphism Y x y, z in , and hence the orientation on W above,
depend on our choice of orientation conventions, as in Convention [2.39] including
various sign choices in and in . Different orientation conven-
tions would change T x y,z and the orientation on W by a sign depending on
vdim X, vdimY,vdim Z. If W, XY, Z are manifolds then the orientation on
W agrees with that in Convention [2.39(b).

Fibre products have natural commutativity and associativity properties, up
to canonical equivalence in mKur. For instance, for w-transverse g:X—-Z
and h : Y — Z there is a natural equivalence X x4 zp Y @Y Xp, z 4 X. When
we lift these to (multiple) fibre products of oriented m-Kuranishi spaces, the
orientations on each side differ by some sign depending on the virtual dimensions
of the factors. The next proposition, the m-Kuranishi analogue of Proposition
2.40] is a generalization of Proposition and may be proved using the
same method. Parts (b),(c) are the analogue of results by Fukaya et al. [15]
Lem. 8.2.3(2),(3)] for FOOO Kuranishi spaces.

Proposition 11.26. Suppose V..., Z are oriented m-Kuranishi spaces, and
e,...,h are 1-morphisms, and all fibre products below are w-transverse. Then
the following canonical equivalences hold, in oriented m-Kuranishi spaces:

(a) Forg: X — Z and h: Y — Z we have

X Xg.Z.h Y ~ (71)(vdim X —vdim Z)(vdim Y—vdim Z)Y Xh.Z.g X.

(b) Fore:V =Y, f WY, g:W—Z, and h: X — Z we have
\4 Xe,Y,forw (W Xg,Z,h X) = (V Xe,Y,f W) Xgomw,Z,h X.

(c) Fore: V=Y, f:V>Z g:W-=Y, and h: X — Z we have

Vv X(e,f),Y*xZ,gxh (W x X) ~

(_1)vdim Z(VdimY—'rVdil’nW)(V XeY.q W) X forry . Z.h X.

By the same method we can also prove the following, the analogue of Fukaya
et al. |15, Lem. 8.2.3(1)] for FOOO Kuranishi spaces:

Proposition 11.27. Suppose Man® satisfies Assumptions |3.22L |10.1|, |10.13L
(10.16} (11.1} and |11.5. Let g : X — Z and h :' Y — Z be w-transverse 1-
morphisms in mKur® with 0Z = (), so that a fibre product W = X Xg zp Y
exrists in mKur‘j:, by Theorem . Suppose XY, Z are oriented, so that W
is oriented by Theorem [11.25] and OW,0X,0Y,0Z are oriented by Definition
. Then as in (11.20]) we have a canonical equivalence of oriented m-Kuranishi

spaces:

OW ~ (8X Xgoix,Z,h Y) II (71)vdimX+vdimZ(X Xg,Z hoiy aY)
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11.3 Fibre products in mKur, mKurg,, mKur&®, mKur®

We now apply the results of & when Man is Man, Mang,, Man&® and
Man®€, using the material of on transversality and submersions in these

categories, and Examples [I[1.10HIT.13]in I1.1.4]

11.3.1 Fibre products in mKur

Take Man to be the category of classical manifolds Man, with corresponding
2-category of m-Kuranishi spaces mKur as in Definition We will use
tangent spaces T, X for X in mKur defined using ordinary tangent spaces T,V
in Man, as in Example i).

Definition in defines transverse morphisms and submersions in
Man, as usual in differential geometry. As in Example [11.10] these satisfy
Assumption with D, E trivial, and Assumptions [[1.3-{I1.5] and [T1.9] also
hold. So Definition defines (w-)transverse l-morphisms g : X — Z,
h:Y — Z and (w-)submersions g : X — Z in mKur, in terms of the existence
of covers of X,Y, Z by m-Kuranishi neighbourhoods on which we can represent
g, h in a special form. The next theorem summarizes Theorems and
Proposition and Corollaries and in this case.

Theorem 11.28. (a) Let g : X — Z and h :' Y — Z be 1-morphisms in
mKur. Then g, h are w-transverse if and only if for all x € X and y € Y with
g(x) = h(y) =z in Z, the following is surjective:

0,9 0,h:0,X®0,Y — O,Z. (11.27)

This is automatic if Z is a manifold. Also g,h are transverse if and only if for
all x,y, z, equation (L1.27)) is an isomorphism, and the following is surjective:

T.g®Th:T,X &T,Y — T.Z.

) If g: X - Z and h :' Y — Z are w-transverse in mKur then a fibre
product W = X xg4 zpn Y exists in mKur, in a 2-Cartesian square:

; Y
Je n4) Ry (11.28)
X Z.

It has vdimW = vdim X + vdimY — vdim Z, and topological space W =
{(z,y) e X xY : g(z) = h(y)}. If w e W with e(w) =z in X, f(w) =y in
Y and g(z) = h(y) = z in Z, the following is an exact sequence:

0 T, W LXeT,Y — ~T.2Z
Twe®Ty f T.9®—-Tyh
5g,hj/ (11.29)
O,gd—-0,h Opwed0,y
0 0.2 9T 0,X ®0,Y 22T o w.
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If g, h are transverse then W is a manifold.

(c) In part (b), using the theory of canonical bundles and orientations from
q10.7] there is a natural isomorphism of topological line bundles on W:

Txyvz:Kw—e(Kx)® f"(Ky)®(goe) (Kz)". (11.30)

Hence if X,Y,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.30) is orientation-preserving. Proposition
11.26] holds for these fibre product orientations.

(d) Let g : X — Z be a 1-morphism in mKur. Then g is a w-submersion if
and only if O,g: 0, X — O.Z is surjective for all x € X with g(x) =z in Z.
Also g is a submersion if and only if Opg : O, X — O,Z is an isomorphism
and Tpg : T, X — T,Z is surjective for all x,z.

() If g: X - Z and h :' Y — Z are 1-morphisms in mKur with g a w-
submersion then g, h are w-transverse. If g is a submersion and Y is a manifold
then g, h are transverse.

(f) If (11.28) is 2-Cartesian in mKur with g a w-submersion (or a submersion)
then f is a w-submersion (or a submersion).

(g) Compositions and products of (w-)submersions in mKur are (w-)submer-
stons. Projections wx : X XY — X in mKur are w-submersions.

Example 11.29. Suppose W is an m-Kuranishi space covered by a single m-
Kuranishi neighbourhood (V| E, s,4). Then we can write W as a w-transverse
fibre product W ~ V x4 g o V of manifolds in mKur, where 5,0: V — E are
the images of the sections s,0: V — E under Fi3Kur : Man — mKur.

Example 11.30. Let W C R"” be any closed subset. By a lemma of Whitney’s,
we can write W as the zero set of a smooth function g : R"™ — R. Let g :
R™ — R and 0 : * — R be the images of g : R” —+ R and 0 : * — R under
Fl\n/}glur : Man — mKur. Then g,0 are w-transverse, so W =R"™ xgr o * is
an m-Kuranishi space in mKur, with vdim W = n — 1 and topological space
W, by Theorem [I1.28] This means that the topological spaces of m-Kuranishi

spaces can be quite wild, fractals for example.

Example 11.31. Let g : X — Z and h : Y — Z be morphisms in Man,
and g : X — Z, h : Y — Z be their images under F3Eur Then g, h are
w-transverse, so a fibre product W = X x4 z » Y exists in mKur by Theorem
In Example we showed that if g, h are transverse in Man, so that a
fibre product W = X x, 75 Y exists in Man, then W ~ FgKur(jy7),

If g, h are not transverse then the morphism T,g®—-Tyh : T, X®T,Y — T, Z
in is not surjective for some w € W, and then O, W # 0 by , SO

W is not a manifold. Hence, if a non-transverse fibre product W = X x4z, Y
exists in Man, as in Example ii)—(iv), then W o FmKur (),
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11.3.2 Fibre products in mKur§; and mKur®

n working in the subcategory Mang, C Man® from §2.1 we defined
s-transverse and t-transverse morphisms and s-submersions. Example [T1.11
explained how to fit these into the framework of Assumptions and [TT.3HI1.0
The next theorem summarizes Theorems [T1.19] [I1.22] and [T1.25] Proposition
and Corollaries [T1.29] and [I1.24] applied to Example Equation
l) being exact is equivalent to (11.17) for the N, X being Cartesian in real
vector spaces.

Here mKurg, C mKur® are the 2-categories of m-Kuranishi spaces cor-
responding to Mang, C Man® as in Definition [4.29, the corner 2-functors
C,C": mKurS, — mKur$, and C,C’ : mKur® — mKur are as in Example
4.45| (stratum) tangent spaces T, X, T, X are as in Example 1) (iii), and
stratum normal spaces N, X are as in Example a).

We use the notation ws-transverse, wt-transverse, and ws-submersions for
the notions of w-transverse and w-submersion in mKurg, corresponding to s-
and t-transverse morphisms and s-submersions, and s-transverse, t-transverse,
and s-submersions for the corresponding notions of transverse and submersion.

Theorem 11.32. (a) Let g : X — Z and h :' Y — Z be 1-morphisms in
mKurg,. Then g, h are ws-transverse if and only if for all x € X and y € Y
with g(x) = h(y) = z in Z, the following linear maps are surjective:

0,9®0,h:0,X30,Y — 0.2, (11.31)
N,g® N,h: N, X & N,Y — N.Z. (11.32)

This is automatic if Z is a classical manifold. Also g, h are s-transverse if and

only if for all x,y, z, equation (11.31)) is an isomorphism, and (11.32) and the

following are surjective:
T.geTh:T.XoT,Y —T.Z. (11.33)

Furthermore, g, h are wi-transverse (or t-transverse) if and only if they are
ws-transverse (or s-transverse), and for all x,y, z as above, whenever & € C;(X)
and y € Cp(Y) with IL;(x) = z, Iy (y) = y, and C(g)x = C(h)y = z in
Ci(Z), we have j+ k > 1, and there is exactly one triple (x,y, z) with j+k = 1.
D) If g: X = Z and h : Y — Z are ws-transverse in mKur$, then a fibre
product W = X xg4 z1n Y exists in mKurg,, in a 2-Cartesian square:

Y
Je d n4) Ry (11.34)
X Z.

It has vdim W = vdim X +vdim Y—vdim Z, and topological space W = {(a:, y) €
X xY :g(x)=h(y)}. Equation (11.34) is also 2-Cartesian in mKur®.
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If we W with e(w) =z in X, f(w)=y inY and g(z) = h(y) =z in Z,
the following sequences are exact:

0 TwW — oty LXOLY T.g®—Tyh .z
5ghi
0.9®—0,h 0we®0,
0 0.7 <2 0.X ®0,Y <2227 w,
0 TyW —— LXoT,Y ———>1T.Z
Twe®Tw f Tog®—Tyh
5;3%
~ 0.,9®-0y,h ~ ~ O.e®0., -
0 0.2 <2 0,X 0,Y <22 5 w
\ 7 ~w ~w ] > Nz *Nyh ~
0— > N,W ef g xanN,y 22 K.z 0. (11.35)

If g, h are s-transverse then W is a manifold.

(c) In part (b), if (11.34) is 2-Cartesian in mKurS, with g, h wt-transverse
(or t-transverse), then the following is 2-Cartesian in mKurS, and mKur®,
with C(g), C(h) wt-transverse (or t-transverse, respectively):

‘W) —5 c(y)
joe@ ) o)
C(X) 9 oz

Hence we have

cw)~ J] (Ci(X)nC(g) " (Cu(2))) % cig).cuz)cim)
zfjlfkoiz (Ck(Y) N C(h)_l(C’l(Z)))

fori>0. When i =1, this computes the boundary OW.

Also, if g is a ws-submersion (or an s-submersion), then C(g) is a ws-
submersion (or an s-submersion, respectively).

The analogue of the above also holds for C' : mKurS, — mKurS,.
(d) In part (b), using the theory of canonical bundles and orientations from
there is a natural isomorphism of topological line bundles on W:

YTxyvz:Kw— e (Kx)® [ (Ky)®(goe) (Kz)". (11.36)

Hence if X,Y,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that 1s orientation-preserving. Propositions
0] and [T1.27] hold for these fibre product orientations.

(e) Let g : X — Z be a 1-morphism in mKurg,. Then g is a ws-submersion
if and only if Oug: 0, X — O.Z and Nyg : Ny, X — N.Z are surjective for
all x € X with g(x) = z in Z. Also g is an s-submersion if and only if Owg

0.X — 0,7 is an isomorphism andTIg T,X - T.Z, Nggg N,X — N,Z
are surjective for all x, z.
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) If g: X - Z and h :' Y — Z are 1-morphisms in mKurS, with g
a ws-submersion then g,h are ws-transverse and wt-transverse. If g is an
s-submersion and Y is a manifold then g, h are s-transverse and t-transverse.

(g) If (11.34) is 2-Cartesian in mKurS, with g a ws-submersion (or an s-
submersion) then f is a ws-submersion (or an s-submersion,).

(h) Compositions and products of ws- or s-submersions in mKurg, are ws- or
s-submersions. Projections wx : X x Y — X in mKurg, are ws-submersions.

(1) If g : X — Z is a ws-submersion in mKurS, and h :' Y — Z is any
1-morphism in mKur® (not necessarily in mKur$, ), then a fibre product W =
X xg.znY exists in mKur®, with dimW = dim X +dimY —dim Z, in a
2-Cartesian square in mKur®. It has topological space W = {(as,y) €
XxY:g(x)= h(y)} The analogues of (c),(g) hold for these fibre products.
If g is an s-submersion and Y is a manifold then W is a manifold.

Example 11.33. Define X =Y = Z = [0,00) and Z' = R, so that Z C Z' is
open. Define strongly smooth maps g : X — Z, h:Y = Z, ¢ : X — 7' and
R:Y = Z'byg(z) =g (x) =, h(y) =h'(y) =y. Let X,Y,Z,Z',g,h,g',h’
be the images of X,Y,Z,Z’, g, h,g’,h’ under Fﬁ;{té:;

Then g : X — Z, h : X — Z are s-transverse. Also g : X — Z/,
h': X — Z’ are ws-transverse, but are not s-transverse, as for g’,h’ is
not surjective at * = y = z = 0. Hence fibre products W = X x4 z 1 Y and
W' = X Xg 7/ p Y exist in mKurS. Here W is Fﬁ;‘ggt([(), 00)), but W is
not a manifold. We may cover W’ by an m-Kuranishi neighbourhood (V, E, s,v),
where V = [0,00)?, and E = [0,00)? x R is the trivial vector bundle over V with
fibre R, and s : V — E maps (z,y) — (z,y,z —y), and ¢ : (z,z) — .

Since W % W, this shows that the corners of Z can affect the fibre product
W = X xXg4.zn Y in mKurg,. This is not true for fibre products in Mang,
where we have X X 7, Y =2 X Xy 2/ Y when Z C Z' and g=g¢', h=N'.

11.3.3 Fibre products in mKur{, and mKur&®

In working in the subcategory Manfs C Man®® from §2.4.1] we defined
b-transverse and c-transverse morphisms and b-submersions, b-fibrations, and
c-fibrations. Example [T1.12] explained how to fit these into the framework of
Assumptions [TT.1] and [TT.3HIT1.9] The next theorem summarizes Theorems [I1.19]
[11.22]and [I1.25] Proposition [11.21] and Corollary [I1.23|applied to Example [I1.12]
Here mKurf] C mKurg® are the 2-categories of m-Kuranishi spaces cor-
responding to Manfl C Man®° as in Definition the corner functor
C : mKur®® — mKur®® is as in Example and b-tangent spaces T, X
are as in Example ii). We use the notation wb-transverse, wc-transverse,
wb-submersions, wb-fibrations, we-fibrations for the weak versions of b-transverse,
..., c-fibrations in mKur§{? from Deﬁnition and b-transverse, c-transverse,
b-submersions, b-fibrations, and c-fibrations for the strong versions.
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Theorem 11.34. (a) Let g : X — Z and h :' Y — Z be 1-morphisms in
mKurfy. Then g, h are wb-transverse if and only if for all z € X and y € Y
with g(x) = h(y) = z in Z, the following linear map is surjective:

0,9 ®°0,h :*0, X ©%0,Y — *0.Z. (11.37)

This is automatic if Z is a manifold. Also g, h are b-transverse if and only if for
all z,y, z, equation (L1.37) is an isomorphism, and the following is surjective:

"T.g®"Tyh:"T.X &'T,Y — "T.Z.

Furthermore, g, h are wc-transverse (or c-transverse) if and only if they are
wb-transverse (or b-transverse), and whenever € C;(X) and y € Ci(Y) with
C(g)x = C(h)y =z in C|(Z), we have either j+k>1, or j=k=1=0.

(b) If g: X - Z and h: Y — Z are wb-transverse in mKur$: then a fibre

n
product W = X Xg z 1 Y ezists in mKurfs, in a 2-Cartesian square:

Y
e T n (11.38)
X Z.

It has vdim W = vdim X + vdimY —vdim Z. If w € W with e(w) =z in X,
fw)=y inY and g(z) = h(y) = z in Z, the following sequence is exact:

0o——=T,W—————='T, X &'T,Y
bTwe@bTw.f ’

A

bég,h\L

b b
04,e®’ Oy f
~%0,W.

szg@—bTyh

*0,9®-0,h
-~

0~—-"0.2 0, X ®'0,Y

If g,h are b-transverse then W is a manifold.

(c) In (b), if g,h are we-transverse then W' has topological space W = {(z,y) €
X xY :g(x)=h(y)}, and (11.38) is also 2-Cartesian in mKure®, and the fol-
lowing is 2-Cartesian in mKurfS and mKurg®, with C(g), C(h) we-transverse:

W) —— C(Y)
jce@ Cm) ) TN
C(X) ‘9 oz).

Hence we have

W)= J[ (Ci(X)nClg) " (Ci(2)))xcig).cuiz)om
S0 (CL(Y) N C(h)~H(C1(2)))

i=j+k—1

fori>0. When i =1, this computes the boundary OW.
Also, if g is a wb-fibration, or b-fibration, or wc-fibration, or c-fibration,
then C(g) is a wb-fibration, ..., or c-fibration, respectively.
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(d) In part (b), using the theory of b-canonical bundles and orientations from
there is a natural isomorphism of topological line bundles on W:

bTX’Y’Z : bKW — 6*(be) ® f*(be) ® (g o 6)*(sz)*. (1139)

Hence if X,Y,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that 1s orientation-preserving. Propositions
and hold for these fibre product orientations.

(e) Let g : X — Z be a 1-morphism in mKurfs. Then g is a wb-submersion
if and only if *O,g :°0,X —°0,Z is surjective for all x € X with g(x) = z
in Z. Also g is a b-submersion if and only if *Oyg : YO, X — Y0.Z is an
isomorphism and *Tyg : *T, X — YT, Z is surjective for all x, z.

Furthermore g is a wb-fibration (or a b-fibration) if it is a wb-submersion (or

b-submersion) and whenever there are x, z in C;(X), Ci(Z) with C(g)x = z, we
have j = 1. And g is a we-fibration (or a c-fibration) if it is a wb-fibration (or a
b-fibration), and whenever x € X and z € C|(Z) with g(z) =1IL)(2) =z € Z,
then there is exactly one x € C)(X) with II;(x) = © and C(g)x = =z.
(f) If g: X = Z and h : Y — Z are 1-morphisms in mKurf, with g a
wb-submersion (or wb-fibration) then g, h are wb-transverse (or wc-transverse,
respectively). If g is a b-submersion (or b-fibration) and Y is a manifold then
g, h are b-transverse (or c-transverse, respectively).

(g) If (11.38) is 2-Cartesian in mKurf, with g a wb-submersion, b-submersion,
wb-fibration, b-fibration, we-fibration, or c-fibration, then f is a wb-submersion,
.., or c-fibration, respectively.

(h) Compositions and products of wb-submersions, b-submersions, wb-fibrations,
b-fibrations, we-fibrations, and c-fibrations, in mKurfs are wb-submersions, ...
c-fibrations. Projections wx : X x Y — X in mKurf, are we-fibrations.

(i) If g : X — Z is a we-fibration in mKurfy, and h 'Y — Z is any
1-morphism in mKurg® (not necessarily in mKurfs ), then a fibre product
W =X Xg.znY exists in mKur®®, with dimW = dim X +dimY —dim Z, in
a 2-Cartesian square i mKurg®. It has topological space W = {(ac, y) €
X xY :g(z) =h(y)}. The analogues of (c),(g) hold for these fibre products.

If g is a c-fibration and Y is a manifold then W is a manifold.

K

11.3.4 Fibre products in mKur{ and mKur®

In working in the subcategory Man§, C Man® from we defined
sb-transverse and sc-transverse morphisms. Example explained how to
fit these into the framework of Assumptions [T1.1] and [T1.53HI1.9} also using
s-submersions from The next theorem summarizes Theorems
and and Corollary applied to Example

Here mKur{,, C mKur® are the 2-categories of m-Kuranishi spaces cor-
responding to Man§, C Man® as in Definition the corner 2-functor

C : mKur® —» mKur® is as in Example 4.45 b-tangent spaces *T, X are as in
Example [10.25((ii), and monoids M, X are as in Example |10.32c).
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We use the notation wsb-transverse and wsc-transverse for the notions of
w-transverse in mKur{, corresponding to sb- and sc-transverse morphisms, and
sb-transverse, sc-transverse for the notions of transverse. We omit some of the
results on ws- and s-submersions, as they appeared already in Theorem

Theorem 11.35. (a) Let g : X — Z and h :' Y — Z be 1-morphisms in
mKur{, . Then g, h are wsb-transverse if and only if for all v € X and y €Y
with g(x) = h(y) = z in Z, the following linear map is surjective:

*0,9g ®°0,h : "0, X ©%0,Y — *0.Z, (11.40)
and we have an isomorphism of commutative monoids
M, X Xy g .z 01, MyY N for n > 0. (11.41)

This is automatic if Z is a classical manifold. Also g, h are sb-transverse if
and only if for all x,y, z, equations (11.40)—(11.41)) are isomorphisms, and the

following is surjective:
"Tg & T,h : T, X &°T,Y — "T.Z.

Furthermore, g, h are wsc-transverse (or sc-transverse) if and only if they
are wsb-transverse (or sb-transverse), and whenever © € C;(X) and y € Cr(Y)
with C(g)x = C(h)y = z in Ci(Z), we have either j +k > 1, or j=k=1=0.
D) Ifg: X - Z and h:' Y — Z are wsb-transverse in mKur$, then a fibre
product W = X xg zp Y exists in mKurf,, in a 2-Cartesian square:

in’

Y
e T n (11.42)
X Z.

It has vdim W = vdim X 4+ vdimY — vdim Z. If w € W with e(w) =z in X,
fw)=vy inY and g(z) = h(y) = z in Z, the following sequence is exact:

0—— TU,W—> L. X @ bT Y ——'T.Z
* T e®’ Ty f *T,98—Tyh
bag h\L

*0,98-"0,h 20, e®" O
B — -

! b0, W.

0 0.7 b0, X ®°0,Y

If g, h are sb-transverse then W is a manifold.

(c) In (b), if g, h are wsc- tmnsverse then W has topological space W = { z,9)
XxY :g(x)= } and is also 2-Cartesian in mKur®, and the fol—
lowing is 2—C’artesmn in mKur and mKur®, with C(g), C(h) wsc-transverse:

c(w) c(Y)
ic o) C(m) ) C(h)l/
C(X) ‘@ oz).
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Hence we have

W)~ [ (Ci(X)nClg)™(Ci(2)))%c(g).ci(z).cim)
PRz (CrL(Y)NC(h)~H(C1(2)))

fori>0. When i =1, this computes the boundary OW.
Also, if g is a ws-submersion (or an s-submersion), then C(g) is a ws-
submersion (or an s-submersion, respectively).

(d) In part (b), using the theory of b-canonical bundles and orientations from
there is a natural isomorphism of topological line bundles on W:

bTX’Y’Z : bKW — 6*(be) ® f*(be) ® (g o 6)*(sz)*. (1143)

Hence if X,Y,Z are oriented there is a unique orientation on W, called the
fibre product orientation, such that (11.43)) is orientation-preserving.

(e) Let g: X — Z be a 1-morphism in mKur§,. Then g is a ws-submersion if
and only if O,g : *0, X — 10, Z is surjective for all x € X with g(x) = z in
Z, and the monoid morphism MIg M, X — M.Z is isomorphic to a projection
N"*"  N". Also g is an s-submersion if and only if *O,g : "0, X — 0. Z is
an isomorphism, and *Tyg : *T, X — YT.Z is surjective, and M,g is isomorphic
to a projection N — N"_ for all z, z.

(f) If g: X = Z and h :' Y — Z are 1-morphisms in mKur{> with g a
ws-submersion then g, h are wsc-transverse. If g is an s-submersion and Y is a
manifold then g, h are sc-transverse.

11.4 Discussion of fibre products of u-Kuranishi spaces

We now consider to what extent the results of §11.21-411.3] may be extended to
categories of p-Kuranishi spaces uKur in Chapter 5| First consider an example:

Example 11.36. Let X =Y = % be the point in Man, and Z = R" for n > 0,
andg: X > Z, h:Y > Zmapg:*+— 0and h:*— 0. Then g, h are not
transverse in Man, but a fibre product W = X X, 7, Y exists in Man, with
W = %. Note that dim W > dim X +dimY — dim Z.

Write X,Y, Z, g, h for the images of X, Y, Z, g, h either in m-Kuranishi spaces
mKur under FEur : Man — mKur from Example or in pu-Kuranishi
spaces pKur under FgEur : Man — pKur from Example

Then g, h are w-transverse in mKur, so a fibre product W =X xg 7z, Y
exists in the 2-category mKur, with vdim W = —n. It is a point with obstruction
space R", covered by an m-Kuranishi neighbourhood (*,R™,0,id.).

As X =Y = % are the terminal object in the ordinary category uKur, a
fibre product W=X Xg,z.n Y also exists in uKur, but it is the point *, as in
Man, with vdim W = 0, so vdim W > vdim X + vdimY — vdim Z.

In this example, the fibre product W=X Xg,z,n Y in pKur is ‘wrong’, not
the fibre product we want — it does not have the expected dimension, and is not
locally described in p-Kuranishi neighbourhoods by Definition [T1.16}
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As in Theorem we have an equivalence Ho(mKur) ~ pKur. The
moral is that the 2-category structure in mKur is crucial to get the ‘correct’
w-transverse fibre products, as the definition of 2-category fibre products in §A-4]
involves the 2-morphisms in an essential way. Passing to the homotopy category
Ho(mKur), or to pKur, forgetting 2-morphisms, loses too much information
for (w-)transverse fibre products to be well-behaved.

Our conclusion is that we should not study (W—)transverse fibre products in
categories uKur but we should work in the 2-categories mKur or Kur instead.

Despite this, there is nevertheless a sense in which well-behaved ‘w-transverse
fibre products’ do exist in categories of pu-Kuranishi spaces mKur:

Definition 11.37. Suppose Man satisfies Asbumptlonsﬂ-and- giving

discrete properties D, E and notions of transverse morphisms and submersions.

Let g’ : X' > Z',h : Y — Z be D morphisms in uKu?. As in We

can choose X,Y, Z in mKur with FFE™ (X)) = X/, FFEY™ (Y) = Y7, and
3 mKur mKur

F:III{(E:(Z) =Y, and as in §5.6.3| we can choose 1-morphisms g : X — Z,

h:Y — Z in mKur, unique up to 2-isomorphism, such that F:liii([g]) =g
and F:lit'l:([h]) = h'. Then g,h are D. Define g, h’ to be w-transverse in

pKur if g, h are w-transverse in mKur. This is independent of choices.

If g',h’ are w-transverse then a fibre product W = X x,4 z 5 Y exists in
mKur by Theorem with projections e : W — X, f : W — Y. Define
W' = FEER(Y), e = FEE([e]) and f' = FEEU0([f]). Then vdim W’ =

mKur Kur mKur .
. ! . . ! . .
vdim X' + vdim Y’ — vdim Z’, and we have a commutative square in pKur:

w - Y’
Ve n (11.44)
X' z

In general (11.44) is not Cartesian in Kur, and W is not a fibre product
X' x g,z n Y in uKur as Example|11.36[ shows. But as W is unique up to

canomcal equlvalence in mKur this W’ is unique (that is, depends only on
X',Y',Z',g',h) up to canonical isomorphism in uKur

By an abuse of notation, we could decide to call W’ a ‘w-transverse fibre
product’ in uKur, although it is not a fibre product in the category-theoretic
sense. With this convention, the results of §I1.2}-11.3] extend to p-Kuranishi
spaces in the obvious way. Such ‘w-transverse fibre products’ are an additional
structure on pKur. Fukaya, Oh, Ohta and Ono [15, §A1.2] define non-category-
theoretic ‘fibre products’ X x z Y of FOOO Kuranishi spaces X, Y over manifolds
Z in this sense, as in Definition

11.5 Transverse fibre products and submersions in Kur

Next we generahze 11.3|to Kuranishi spaces Kur We suppose throughout
this section that the category Man used to define Kur satisfies Assumptions
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3.1 and and will also specify additional assumptions as needed.

11.5.1 Transverse fibre products of orbifolds

Transverse fibre products of orbifolds are well understood, and are discussed
by Adem, Leida and Ruan [1, Def. 1.41, Def. 2.7, Ex. 2.8], Chen and Ruan [5|
p. 83], Moerdijk [56, §2.1 & §3.3], and Moerdijk and Pronk [57, §5]. Here are
the analogues of Definition and Theorem [2.22(a).

Definition 11.38. Write Orb for the 2-category of orbifolds, that is, for one
of the equivalent 2-categories Orbp,, Orbye, Orbyansta, Orbocsia, Orbgy, in
Orbifolds X have (weakly) functorial isotropy groups G, X and tangent
spaces T, X for x € X, as in and We call 1-morphisms g : X — 3,
h:9 — 3 in Orb transverse if for all x € X, y € Y with g(z) =h(y) =2€ 3
and all v € G.3, the tangent morphism 7,9 @ (v - Tyh) : T,X ® T, — 1.3 is
surjective.

Theorem 11.39. Supposeg: X — 3 and b : Q) — 3 are transverse 1-morphisms
in Orb. Then a fibre product 2 = X X4 3.4, exists in the 2-category Orb, with
dim W = dim X + dim %) — dim 3, in a 2-Cartesian square:

)
i/e ' nﬁ h\L
x 3

Just as a set, the underlying topological space may be written
W={(z,y,0):x€ X, yeV, CeGa(G.X)\G.3/Gyb(G,D)}, (11.45)
where e,f map ¢: (z,y,C) — z, §: (z,y,C) — y. The isotropy groups satisfy

G(w,y,C)m = {(aaﬂ) € G X x GyQJ : Grg(a)’yGyh(Bil) = ’7}
for fixed v € C C G,3.

Remark 11.40. (a) It is important that we work in a 2-category of orbifolds in
Theorem [11.39] Transverse fibre products need not exist in the ordinary category
Ho(Orb), and if they do exist they may be the ‘wrong’ fibre product.

(b) Note that we need not have W = {(z,y) € X x Y : g(z) = bh(y)} in
Theorem as either a set or a topological space. We discussed a similar
phenomenon for fibre products in Man{y, Mang, in Remark due to working
in categories of interior maps. But the reasons here are different, and due to the
2-category structure. When we are working with spaces in a 2-category, points
may have isotropy groups, and these isotropy groups modify the underlying

sets/topological spaces of fibre products as in (11.45)). There does not seem to

be an easy description of the topology on ([11.45)) in terms of those on X,Y, Z.

(c) It may be surprising that we need T,g & (v - T,,h) to be surjective for all
v € G.3 in Definition [TT.38] rather than just requiring T,,g ® Ty, h to be surjective.
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To see this is sensible, note that as in §10.2.3| the maps T,g: T,X — 1,3 and
Tyb : T, — T.3 are defined using arbitrary choices, and are only canonical up
to the actions v - T,g, v - Tpxh of v € G,3. Also, surjectivity of T,,g & (v - T,h)
is the transversality condition required at the point (z,y,C) € W in ,
where C = G,g9(G.X%) v G, h(G,Y).

11.5.2 Fibre products of global Kuranishi neighbourhoods

Here are the analogues of Definitions [11.15| and [11.16| and Theorem [11.17

Definition 11.41. Suppose g : X — Z, h : Y — Z are continuous maps
of topological spaces, and (Ula Dl7 Bl7 T, Xl)v (va En, Fma Sm "/}m)a (Wna Fna An7
tn,wy) are Kuranishi neighbourhoods on X,Y, Z with Im x; C g_l(Im wp) and
Im v, € A~ (Imw,), and

g = (-Pl'nuﬂ—lnvglnvgln) : (UlaDlaBbTle) — (WnaanAnatnaWn)a

hyn = (Pmnaﬂmna P s hmn) : (va Ep,I'p, va'(ybm) —>(Wna Fy, Ana tnvwn)v

are D 1-morphisms of Kuranishi neighbourhoods over (Im x;, g), (Imt,,, h).
We call g;,,, Rmn weakly transverse, or w-transverse, if there exist open neigh-

bourhoods Py, Py of mf, (1) ~1(0) and 71, (S,n) "1 (0) in Piy, Py, such that:

(1) ginlp, : P, — W, and honl By Ppn — W,, are D morphisms in Man,
which are transverse in the sense of Assumption b).

(i) Ginlp @ iLmn|q : Di|y ® Em|o — Fplw is surjective for all p € P, and
qc Pmn with 7Tln(p) =uc Ula 7Tmn(q) =vE Vm and gln(p) = hmn(Q) =w
in W,.

(iii) Py, is invariant under B; x A,,, and P,,,, is invariant under T, X A,,.

We call g;,,, by transverse if they are w-transverse and in (ii) gin|p @ ﬁmn\q is
an isomorphism for all p, q.

We call g;,, a weak submersion, or a w-submersion, if there exists a B; x A,,-
invariant open neighbourhood Py, of 7}, (r;)~(0) in P, such that:

(iv) gin|B,, : P — W, is a submersion in Manp, as in Assumption c).

(V) Ginlp : Dily = Fy|w is surjective for all p € P, with min(p) = u € U; and
Jin(p) = w in W,

We call g;,, a submersion if it is a w-submersion and in (v) g, |p is an isomorphism
for all p.

If g;,, is a w-submersion then g,,,, hy, are w-transverse for any D 1-mor-
phism Aup 0 (Vi By Uiy Sy ) = (W, Fry Ap, tn, wy) over (Imah,,, h), by
Assumption c¢). Also if g;,, is a submersion then g;,,, Ay, are transverse
for any D 1-morphism Ry 0 (Vin, By Doy Sy Um) = (Wh, Fry Ap t, wy) over
(Im ¢y, h) for which E,, = 0 is the zero vector bundle.
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In Definition we defined a weak 2-category GKN of global Kuranishi
neighbourhoods, where:

e Objects (V, E,T,s) in GKN are a manifold V (object in Man), a vector
bundle £ — V, a finite group I' acting on V, E preserving the structures,
and a I'-equivariant section s : V' — E. Then (V, E,T',s,idg-1(0)/r) is a

q

Kuranishi neighbourhood on the topological space s~1(0)/T, as in §6.1
They have virtual dimension vdim(V, E,T',s) = dimV — rank E.

e l-morphisms ®;; : (V;, E;, T, 8;) — (V;,E;,T;,s;) in GKN are quadru-
ples (I)ij = (Piijaﬂ'ij»d)ijvqsij) satisfying Definition a)f(e) with 5:1(0)
in place of 1/1;1(5). Then ®;; : (Vi, B, Ty, 8,ids-10y/1,) — (Vj, Ej,
Iy, s;, idsj—l(o)/r‘j) is a 1-morphism of Kuranishi neighbourhoods over the
map s; *(0)/T; — sj_l(O)/Fj induced by ¢;;,m;;, as in

e For l-morphisms ®;;, &}, : (V;, E;, Ty, ;) = (Vj, E;, T, 55), a 2-morphism
Ayj © ®;; = @), in GKN is as in Definition [6.4] with s;(0) in place
of ;7 1(S).

We write GKIN p C GKN for the 2-subcategory with 1-morphisms ®;; which
are D, in the sense of Definition [6.31] The next (rather long) definition and
theorem prove that w-transverse fibre products exist in GKNp.

Definition 11.42. Suppose we are given 1-morphisms in GKNp

9in: (Ul,DlaBlvrl) — (WnaFnaAmtn)a
h’m’ﬂ : (VM?EWHFWHSM) — (WnaanAnatn)v

with g;,,, Ryn w-transverse in the sense of Definition [T1.41] We will construct a
fibre product

(Th, Crs Ak, qr) = (U1, Di, By, 1) X g, (W P o Atn) b (Vs By Dy 8m) (11.46)

in both GKNp and GKNg. A

Write 9gin = (Pln77rlnagln7gln) and h.,, = (Pmn77rmnahmn;hmn)~ Then
Gin (7}, (1)) = g7, (tn)+O(m}, (r1)?) by Definition|6.2((e), so Definition i) gives
e 7 (D) @7, (Do) = g7y, (Fn) with gin (77, (1)) = g7y, (tn) + €(a;, (r1) @ 77, (1))
By averaging over the (B; x A,,)-action we can suppose € is (B; X A, )-equivariant.
Define gy, : 7}, (Di) = g5, (Fn) by §;,,(d) = Gin(d) — e(d ® 7}, (17)). Replacing
Gin by §;,,, which does not change g;, up to 2-isomorphism as §;, = gin +
O(ry, (1)), we may suppose that G, (77, (1)) = g, (tn). Similarly we suppose
that hm’r} (ﬂ—:rm (Sm)) = hnn (tn)

For Py, Ppy as in Definition |11.41)i)—(iii), define

Ty = P, x P (11.47)

Ginl 2y s Washmn | P,

to be the transverse fibre product in Manp from Assumption (b) Then

dim T} = dim U; + dim V,,, — dim W,,, (11.48)
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as dim P, = dim U;, etc. Define a finite group Ay = B; x I';;, X A,,. Since
ginl By, is Bi-invariant and A,-equivariant, and hpp|p,,, is T'p-invariant and
A, -equivariant, Ay, is a symmetry group of the fibre product (11.47)), so there is
a natural smooth action of Ay on Ty. If we can write points of Ty as (p, q) for
pE Pln, q € Py, with Jin(p) = himn(q) € W, then Ay acts on points by

(B,7:0) = (psq) = ((B,0) - p, (7,6) - q),

We have a morphism of vector bundles on T}:

e, (Gin) ©® _WP,nﬂ,(hmn) H(mmomp, ) (D) @ (Tmn 0 7p, ) *(Em) (11.49)
— (gin © ﬂpln) (Fp).-

If t € T), with Wpln(t) —p e P, Fpmn(t) = q € P, Tin(p) = u € Upy,
Tmn(q) = v € Vinn and g1, (p) = himn(q) = w € W, then the fibre of (11.49) at
tis Ginlp @ —an|q : Dyl ® Eply — Frlw. So Definition |11.41|(ii) implies that
is surjective. Define Cp — Ty to be the kernel of (11.49)), as a vector
subbundle of (71, 0 Tp )*(Di) ® (Tmn 0 Tp, ) () with

rank Cy, = rank D; 4+ rank F,,, — rank F,. (11.50)

Definition d) for g;,,, Ry says that g, is (B; x A, )-equivariant and Py
is (T X Ay )-equivariant. Including the trivial actions of Ty, on Dy, F,, and of B,

on E,,, F,,, means that §;,, hyn are equivariant under Ay, = B; x I'),, x A,,. The
pullbacks by mp, ,mp —are also Ag-equivariant, as 7p ,mp are. So is
equivariant under the natural actions of Ay, and thus C} has a natural Aj-action
by restriction from the Aj-action on (m, o mp )*(Di) © (T 0 Tp ) (Eim)-

Write mp, : Cx = (mn o mp, )*(Di), T, : Ck = (Tmn 0 mp ) (Ehy) for the
projections. Then as C}, is the kernel of we have

* *

Tp (Gim) 07D, = me(ilmn) 07, : Cp —> (gmomp, )" (Fn). (11.51)
In sections of the left hand side of (11.49)) over T}, we have

(W;;ln (gln) 2 _ﬂ-;;nzn (ﬁmn)) ((7Tln o 7715[”)*(7'!) D (Wmn OTp )*(Sm))

mn

T o P © 5, ()

mn

R AR
= ﬂ-;ki)ln © gl*n(tn) - W;mn ° h;knn(tn) = 0’

as Gin (77, (1)) = 91, (tn), P (T30 (8m)) = B (tn), and gin oy, = himnomp,,,.
Thus (74, 0 7p, ) (1) ® (Tmn 0 7Tp )*(m) lies in the kernel of (11.49)), so it is

a section of Cy. Write g € I'°°(Cf) for this section. Then

7o, (qk) = (M omp, ) (1) and 7g, (k) = (Tmnomp )" (sm).  (11.52)

mn

Also qy, is Aj-equivariant, as (m, o wp, )* (1) and (T 0 7p,,, )*(sm) are.
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Then (T}, Ck, Ak, gr) is an object in GKNp. By (11.48)), (11.50) we have

vdim (T}, Ck, Ak, qr) = vdim(U;, Dy, By, ry)
+ vdim(V,,, By Doy 8i) — vdim(W,, Fy, Ap, ty).

Define Py; = Ty x B; and Py, = Tx X 'y, as objects in Man. Define smooth
actions of Ay X B; on Py, and of Ay x T',, on Py, at the level of points by

((8,7,6),8) : (t,B") — ((B,7,6) - t,B8"B71),
((B,7,6),7) : (t,7") — (8,7, 0) - t,7'7"v 7).

Define morphisms 7y = 7, @ Po = T x By = T and mgp, = 71, @ P, =

T), x Ty — T in Man. Then my; is an A -equivariant principal B;-bundle over

Ty = Ty, and 7y, an Ag-equivariant principal I'),-bundle over T}, = Tj.
Define morphisms ey; : Py — U; and fip, @ Pem — Vi In Man by

ekl(ta /8) = /B *Tn O Tp, (t)v fkm(t7 fY) =7 TmOTp, (t)a

that is, eri|r, x{8y = B (M © Tp, ) and fkm|TkX{7} = v (T o wle) for
8 € By and v € I',;,. Then ey is Ag-invariant and B;-equivariant, and fg,, is
Aj-invariant and I',,-equivariant. Also eo@pyomy; = X0 on ﬂ,:ll(q,zl(o)) C Py
and f o @ 0 Trm = Y © flem ON w,c_é(qk_l(())) C Py And ey, frm are D, since
Tp,  Tp, Aare as 1] is a fibre product in Manp, and (- 7y, 7y - T, are
étale. R

Define morphisms éx; : 75, (Cx) —ef; (Dr) and fm, 175, (Ck) = fr,(Em) by

érilrix(sy = (M omp ) (BY) omp,, famltixiyy = (Mmomp, )*(47)oms,

for all # € B; and v € T,,,, where 3% : D; — *(D;) is the isomorphism from
the lift of the B;-action on U; to D;, with g* the pullback by g - : Uy — Uj,
and similarly for v¥. Then é; is (Ag x B;)-equivariant, and fkm is (Ag x T'yp)-
equivariant. We have

et (mi ()1 x gy = (Tin o5, ) (BY) 0 7o, (i (ak))
= (mmomp ) (BY) o (mmomp ) (r) = (mm omp ) (BY(r))

= (mnomp, ) (B"(r)) = ep(ro)lm. x5}

using in the second step and 3% (r;) = B8*(r) as 7; is Bj-equivariant in
the fourth. As this holds for all § € B; we see that éx(7};(qx)) = €5;(r1), and
Siilarly fon (7, (04)) = Fi(5m). A

Set exr = (Priy Tki, €xts €k1) and fir,, = (Prm, Thms froms fiom). Then eg :
(Tk7 Ck, Ak, Qk> — (Ul ,.Dl, Bl, T[) and -fkm : (Tk, Ck, A;C, q;i) (Vm, Em, Fm, Sm)
are 1-morphisms in GKN p, as we have verified Definition|6.2(a)—(e) for exs, fim
above, and ey, frm are D.
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Form the compositions g;,, © €xi, Rmn © frn + (Tky Chy Ak, @) = (W, Frny Ap,
t,) using Definition where we write

91 © €kt = (Prin, Thtn, Gkin, @kin)s Fomn © Frm = (Pemns Temns bemns Demn)-
Then by Definition [6.5] we have
Prin = (Prt X ey, U1, Pin) /Bt = (Th % B1) Xep,01,m Pin) /B
Define a morphism ®g;, : T X A, — Py in Man at the level of points by

(I)kln(ta 5) = ((t, 1), - 7T1'3ln (t))Bl

We claim ®g;,, is a diffeomorphism. To see this, first note that the quotient
By-action acts freely on the B; factor in Ty x By, so we can restrict to Tj x {1}
and omit the quotient, giving Py, = Tk Xminomp, Utmin P;,,. Then observe
that if (t,p) € Tr Xy, Pin then ﬂ'ln[ﬂ'[;,ln (t)] = mnful, but m, : Py — Up is a
principal A,,-bundle, so there exists a unique 6 € A,, with p=4-7p (), and
therefore Ty, x A,, =2 T}, Xy, Piy.

If we identify Py, = T X A, using ®g;,, then we find from Definition
that Ax x A, acts on Py, by

((B,7,6),08") : (£,8") — ((8,7,0) - 1,8"6"671), (11.53)
and Tgip @ Pein = Tk, Qkin @ Pon = Wa, Gn @ 75, (Ck) = afy, (Fy) act by
Tkin @ (£,0) —> €, akin * (t,6) —> 6 - g omp (1),
akinl(1.6) = Ginlsxp (1) © 7D, e = §®|gl"o7'rpl”(t) © Ginlxp, (1) © 7D, o
Similarly, there is a natural diffeomorphism ®pp,n : Tk X Ay — Pimn, and if

we use it to identify Pgpny = Tk X A, then Ag X A, acts on P,y asin (11.53)), and
Tkmn * Prmn — Tk, brmn @ Pemn — W, brmn : 7T'ltmn(cvk) — by, (Fn) act by

kmn

®),

Thmn : (£,0) — &, bemn : (£,0) — 0 - hyn 0 Tp

mn

Bkmnl(t,&) = 5®|hmn0ﬂp () © hmn|7r}-, () OTE,, |t

Since g omp = hmpomp 1 1.47), and { 1.51)) holds, we see that
these 1dent1ﬁcat10ns Py, = Tk X A Pimn are ‘ L X An—equlvarlant and
identify mgin, Ggin, Grin With Temn, bkmn, bkmn That is, we have found a strict
isomorphism between the 1-morphisms g;,, © €k, Byn © fi,- It follows that

Nkimn = [Pklna (I)kmn o q)];l}nv O] “91p © €kl — hmn o fkn

is a 2-morphism in GKND, and we have a 2-commutative diagram in GKNp:

(Tk, Ck, Ak, qx) (Vin, By Ty Sm)

\Lekl nklmnﬁ\ hmn\L (11.54)
(Ulle;Blle) (WTHFnaATLvtn)'




If g;,,, hmn are transverse, not just w-transverse, then (11.49) is an isomor-
phism, not just surjective, so C} is the zero vector bundle, as it is the kernel of
(11.49). Thus (T, Ck, Ak, gk, ) is a quotient orbifold [Ty /Ag].

Theorem 11.43. In Definition [11.42] equation (11.54) is 2-Cartesian in both
GKNp and GKNg in the sense of Definition |A.11} so that (Ty, Ck, Ak, qx) is

a fibre product in the 2-categories GKND, GKNg, as in (11.46).

The proof of Theorem [11.43]is the orbifold analogue of the proof of Theorem
11.17/in §11.8 and we leave it as a (long and rather dull) exercise for the reader.

11.5.3 (W-)transversality and fibre products in Kurp
Here are the analogues of Definition [11.18 and Theorem [11.19

Definition 11.44. Let g: X — Z, h: Y — Z be 1-morphisms in Kurp. We
call g, h or w-transverse (or transverse), if whenever x € X and y € Y with
g(x) = h(y) = z in Z, there exist Kuranishi neighbourhoods (U, Dy, By, 11, x1),
Vs B, Doy Sy Wi )y (Way Fry Ayt wp) on XY, Z as in §6.4] with = €
Imy; C g ' (Imwy,), y € Ime,, € h~ (Imw,) and z € Imw,, and 1-morphisms
9in: (Ul7 Dy, By, 1, Xl) - (an Fo,Apty, wn) mn - (va Ep, T, 5m, wm)
(W, Fry Apy tn,wy) over (Im g, g) and (Im )y, k), as in Definition [6.44] such
that g;,,, hmn are w-transverse (or transverse), as in Definition @FL

We call g a w-submersion (or a submersion), if whenever x € X with
g(z) = z € Z, there exist Kuranishi neighbourhoods (U;, Dy, By, 7y, x1), (Wi,
Fo, Ay ty,wy) on X, Z as in with r€Imy; C g '(Imw,), z € Imw,, and
a 1—morphism 9in (Ulv -Dh Blv T, Xl) - (an an Anv tn7 wn) over (Im Xlug)a as
in Deﬁnition such that g,,, is a w-submersion (or a submersion, respectively),
as in Definition IT.421

Suppose g : X — Z is a w-submersion, and h : Y — Z is any D 1-
morphism in Kur. Let z € X and y € Y with glx)=h(y)=2in Z. As g
is a w-submersion we can choose g,,, : (Ui, Dy, By, i, x1) = (Wa, By Ap by wi)
with z € Imy; C ¢~ '(Imw,), 2 € Imw,, and g;, a w-submersion. Choose
any Kuranishi neighbourhood (Vi,, Epn, Uiy Sy ) on Y with y € Im ), C
h~'(Imw,). Then Theorem b) gives a D 1-morphism A, : (Vin, By T,
Sy Wm) = (Wh, Fry Ay, b, wy) over (Im,,, h), and g;,,, Ry, are w-transverse
as g;,, is a w-submersion. Hence g, h are w-transverse.

Similarly, suppose g : X — Z is a submersion, and h : Y — Z is a D
I-morphism in Kur such that Y is an orbifold as in Proposition m that is,
Y ~ Fg&f(ﬁj) for 2) € Orb. Then for z € X and y € Y with g(z) = h(y) = 2
in Z we can choose g;,,, by as above with g;,, a submersion and E,, = 0, so
that g;,,, hmn are transverse. Hence g, h are transverse.

Theorem 11.45. Let g: X — Z, h: Y — Z be w-transverse 1-morphisms in
Kurp. Then there exists a fibre product W = X4 z Y in Kurp, as in
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with vdim W = vdim X + vdimY — vdim Z, in a 2-Cartesian square:

Y
Ve d n4) hy (11.55)
X Z.

Equation (11.55) is also 2-Cartesian in Kurg, so W is also a fibre product
Xg.znY in Kurg. Furthermore:

(a) If g,h are transverse then W is an orbifold, as in Proposition . In
particular, if g is a submersion and Y is an orbifold, then W is an orbifold.
(b) Suppose (Ui, D1, B, 711, X1)s Viny Emy Timy Sy Win )y (Wh,y Fry Ayt wy) are
Kuranishi neighbourhoods on X,Y,Z, as in §6.4) with Imy; C ¢ *(Imw,)
and Tm,, € h=(Imwy,), and gy, : (U, D;, B, x1) = (W, Fry Mgyt wn),
R : (Vins By Ty Sy ) = (W, Fry Ayt wy) are 1-morphisms of Kuran-
ishi neighbourhoods on X,Y,Z over (Imyy,g) and (Im,,, h), as in §6.4 such
that gy, Ry are w-transverse, as in §11.5.21 Then there exist a Kuranishi neigh-
bourhood (T, C, A, qr, o) on W with Tm ¢y, = e~ (Im ;) N f =1 (Imp,,) C W,
and 1-morphisms ey : (Tk, Cr, Ak, qr, px) — (U, Di, By, 1, x1) over (Im gy, €)
and fr., : (T, Cr, Ak, @k, 0k) = Viny By Ty Sy ) over (Impyg, f), so that
Theorem c) gwes a unique 2-morphism Nypmmn * Gin © €kl = Bmn © f1., over
(Im ¢y, g o e) constructed fromn : goe = ho f, such that Ty, Ck, Ak, qr and
exls Fims Mitmn € constructed from (U, Dy, B, 1)y Vi, By Uiy Sm)y, (W, Fry Ay tn)
and g, A exactly as in Definition [11.42]

(c) If Man satisfies Assumption m then just as a set, the underlying topological
space W in W = (W, H) may be written

W={(z,y,0):z€X, yeV, Ce€G,9(G,X)\G.Z/G,h(G,Y)}, (11.56)
where e, f map e : (x,y,C) — x, f: (x,y,C) — y. The isotropy groups satisfy
Gayc)W = {(a,B) € G, X x G,Y : Gog(a)yG,h(B71) = W}

for fited vy e C C G, Z.

(d) If Man satisfies Assumption a) and (11.55) is a 2-Cartesian square in
Kurp with g a w-submersion (or a submersion) then f is a w-submersion (or
a submersion, respectively).

(e) If Man satisfies Assumption with tangent spaces T, X, and satisfies
Assumption then using the notation of §10.2) whenever (11.55|) is 2-
Cartesian in Kurp with g,h w-transverse and w € W with e(w) = x in
X, f(w) =y inY and g(x) = h(y) = z in Z, for some possible choices of
Twe,Twf,Tog, Tyh,Oye, O f,0.9,0yh in Definition depending on w,

the following is an exact sequence:

0 T,W LXel,Y—— >T.Z
Twe®Ty f T.9®—Tyh
5ghl (11.57)
0,e®0, f

O0,g®—0Oyh
0, X80,y <2 o W

0 0.Z
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Here 69" : T,Z — O,W is a natural linear map defined as a connecting
morphism, as in Definition [10.69]

() If Man satisfies Assumption with quasi-tangent spaces Q. X in a
category Q, and satisfies Assumption [11.6) then whenever is 2-Cartesian
in Kurp with g, h w-transverse and w € W with e(w)=zin X, f(w)y=y in
Y and g(z) = h(y) = z in Z, the following is Cartesian in Q:

e
- Q9 N il
QX Q.Z.

(g) If Man® satisfies Assumption n so that we have a corner _functor
. 2 . < i

C : Man® — Man® which extends to C' : Kur® — Kur® as in 6.3, and
Assumption m holds for Man€, and Assumption holds, then whenever
(11.55) is 2-Cartesian in Kurp with g, h w-transverse (or transverse), then the
following is 2-Cartesian in Kur$, and Kur$y, with C(g), C(h) w-transverse (or
transverse, respectively):

CW) —5 C(Y)
|ete c o)
o(X) ‘9 oz

Hence for i > 0 we have

cw)y~ ] (Ci(X)nClg) " (Cu2)) % cig).cuz)cim)
o (CL(¥) N C(h)™H(C1(2))).
When i = 1, this computes the boundary OW. In particular, if 0Z =0, so that
Ci(Z) =0 for all I >0 by Assumption f) with | =1, we have

OW ~ (8X xgoix,Z,h Y) II (X Xg,Z,hoiy 8Y)

Also, if g is a w-submersion (or a submersion), then C(g) is a w-submersion
(or a submersion, respectively).

(h) If Man satisfies Assumption and g : X — Z is a w-submersion
in Kurp, and h : Y — Z is any l-morphism in Kurg (not necessarily in
Kurp), then a fibre product W = X xXg zpn Y exists in KurE, with dim W =
dim X +dim Y —dim Z, in a 2-Cartesian square inKurg. The analogues
of (a)—(d) and (g) hold for these fibre products.

The proof of Theorem [TT.45]is the orbifold analogue of the proof of Theorem
in and we again leave it as an exercise for the reader. Most of the
proof requires only cosmetic changes. For the construction of the fibre product
W we use Theorem [11.43|rather than Theorem |11.17] and we must include extra
2-morphisms o « «, Bx, Y« from as Kuranishi neighbourhoods form a weak
rather than a strict 2-category, but otherwise the proof is the same.
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Remark 11.46. Theorem [I1.45(c) should be compared with Theorem [I1.19]c)
and Theorem In Theorem [I1.45(c) we do not describe the topological
space W of W = X xg zp Y (as we did in Theorem [11.19(c)), but only the
underlying set, which is the same as for orbifold fibre products in Theorem
As in Remark b), the topological space does not have an easy description.

A good way to think about this is that just as an m-Kuranishi space W has
an underlying topological space W, so a Kuranishi space W has an underlying
Deligne—Mumford topological stack W, a kind of orbifold version of topological
spaces, as in Noohi [58]. Such stacks form a 2-category Toppm, and there is a
weak 2-functor FEﬁfDM Kur — Toppm mapping Wi— W.

If Man satisfies Assumption \Eé so that Flac’p Man — Top takes
transverse ﬁbre products in Man t re products in Top, then the 2- functor
F TOPDM - Kur — Toppwm takes w-transverse fibre products in Kur to fibre
products in Toppm. So in Theorem c) we could say that W = X XgzpY
is a fibre product of topological stacks.

All of can now be generalized to Kuranishi spaces, mostly with
only cosmetic changes. Here is the analogue of Theorem The important
difference is that as for transversality for orbifolds in Definition we must
include the action of vy € G,Z on Q,h : Q,Y — Q). Z in ‘condition T”, and on
Oyh :0,Y = 0,Z and T)h : T,)Y = T,Z in 7. This appears
in the proof when we show the fibre product li is transverse in 1\./Ian7
as several points in can lie over each (z,y,2) for x € X, y € Y with
g(x) = h(y) = z in Z, and the transversality conditions at these points depend
onvyeG,Z.

Theorem 11.47. Let Man® satisfy Assumption|3.22] so that we have a corner
functor C : Man® — Man®, and suppose Assumptzon u 9| holds for Man®.
This requires that Assumption |1_| 1| holds, giving a notion of tangent spaces T, X
for X in Man®, and that Assumption |10.19| holds, giving a notion of quasi-
tangent spaces Q. X in a category Q for X in 1\'/Ian°7 and that Assumptionm
holds, giving discrete properties D, E of morphisms in Man® and notions of
transverse morphisms g, h and submersions g in Man‘b.

As in and §10.3] we define a 2-category Kur®, with a corner
2-functor C' : Kur® — Kurc, and notions of tangent, obstruction and quasi-
tangent spaces Ty X ,0,X,Q.X for X in Kur®.

Now Assumption a),(d) involve a ‘condition T’ on morphisms g : X —
Z,h:Y = Zin Man‘jj and points x € X, y € Y with g(z) = h(y) = z € Z,
and a ‘condition S’ on morphisms g : X — Z in Man% and points x € X with
g(x) = z € Z. These conditions depend on the corner morphisms C(g),C(h)
and on quasi-tangent maps Qzg, Qyh. Then:

(a) Let g: X — Z, h:' Y — Z be 1-morphisms in KurcD. Then g, h are
w-transverse if and only if for all x € X,y € Y with g(z) = h(y) =z in Z
and all v € G,Z, condition T holds for g, h,x,y, z,7 using the morphisms
Q9 1 Q: X — Q.Z and v - Q.h : Q)Y — Q.Z in Q in Assumption
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11.9(a)(i), where G,Z acts on Q.Z, and the following is surjective:

0.9 @ (v-Oyh) : 0,X &0,Y — 0.Z. (11.58)

If Assumption also holds for tangent spaces Ty X in Man® then g, h
are transverse if and only if for all x € X and y € Y with g(z) = h(y) = 2z
in Z, condition T holds for g, h,x,y,z,7v as above, equation s an
isomorphism, and the following linear map is surjective:

T,g & (v-Tyh): T.X 6 T,Y — T.Z. (11.59)

(b) Let g: X — Z be a 1-morphism in Kur‘j:,. Then g is a w-submersion if
and only if for all x € X with g(x) = z in Z, condition S holds for g, x, z,
and the following linear map is surjective:

0.9: 0,X — 0.Z. (11.60)

If Assumption also holds then g is a submersion if and only if for all
x € X with g(z) = z in Z, condition S holds for g, z, z, equation (11.60)
is an isomorphism, and the following is surjective:

T.9 T, X —T.Z.

For the analogue of Theorem [11.25|we require X ,Y, Z to be locally orientable
Kuranishi spaces, as in so that the canonical bundles Kx, Ky, Kz
are defined as in Theorem [10.83] Then the w-transverse fibre product W =
X Xg.zrY in KurD is also locally orientable, so that makes sense.

Remark 11.48. We can relate Theorem [[1.45(c),(e) and Theorem [I1.47|(a) as
follows. Let Man satisfy all the relevant assumptions, consider a w-transverse
fibre product W = X X4z Y in Kur, and suppose z € X and y € Y with
g(z) = h(y) = z € Z. Defining the morphisms G,g : G, X — G,Z and
Gyh : G)Y — G.Z in requires arbitrary choices. The same arbitrary
choices are involved in the description (11.56)) of W as a set, and in the linear
maps 19, 0.g, T.h, O h from §10.2.3|involved in (11.57)—(11.59).

If we take (11.56)—(11.59) all to be defined using the same arbitrary choices
for G,g,Gyh, and we write w € W as (z,y,C) as in withye C C G, Z,
then we may rewrite as the exact sequence:

00— T(I’y’C)W TQ;X@TyY Trg@('y-Tyh) TZZ
| avey
Oy -:Oyh
0 0.2 <2200 6 X60,Y < Oy oy W,

Thus we see that:
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e We need (11.61]) to be exact for all C' € G,g(G, X )\G.Z/G,h(G,Y), and
hence for all v € G,Z. Thus it is necessary for Ozg & (v - Oyh) to be
surjective for all v € G, Z for w-transverse g, h, as in Theorem [11.47|(a).

e If g,h are transverse then W is a manifold, and O, cyW = 0 for
all (z,y,C). Thus by (11.61)) it is necessary that O,g & (v - Oyh) is an
isomorphism and T,g @ (v-Tyh) is surjective for all v € G, Z for transverse

g, h, as in Theorem [11.47|a).

11.6 Fibre products in Kur, Kur,, Kur®® and Kur®

We now generalize §11.3|to Kuranishi spaces, using the material of §11.5|

11.6.1 Fibre products in Kur

As in take Man to be the category of classical manifolds Man, with
corresponding 2-category of Kuranishi spaces Kur as in Definition We
will use tangent spaces 7, X for X in Kur defined using ordinary tangent
spaces T,V in Man. Definition 2:21] in defines transverse morphisms and
submersions in Man. As in Example these satisfy Assumptions [T1.1]
[11.3H11.5{and |11.9] So Definition defines (w-)transverse 1-morphisms and
(w-)submersions in Kur. Here is the analogue of Theorem

Theorem 11.49. (a) Let g : X — Z and h :' Y — Z be 1-morphisms in
Kur. Then g,h are w-transverse if and only if for all x € X, y € Y with
g(x) =h(y) =z in Z and all v € G, Z, the following is surjective:

0,9% (v-Oyh): 0, X ®0,Y — O.Z. (11.62)

This is automatic if Z is an orbifold. Also g, h are transverse if and only if for
all x,y, 2,7, equation (11.62) is an isomorphism, and the following is surjective:

T.9® (v - Tyh) : T, X &T,Y — T.Z.

() If g: X = Z and h: Y — Z are w-transverse in Kur then a fibre product
W =X Xg,zrY ezists in Kur, in a 2-Cartesian square:

; Y
Je ) Ry (11.63)
X Z.

It has vdim W = vdim X + vdimY — vdim Z. Just as a set, the underlying
topological space W in W = (W, H) may be written

W={(z,y,C):z€X, yeY, CeG,g9(G.X)\G.Z/G,h(G,Y)},
where e, f map e : (x,y,C) — x, f: (z,y,C) — y. The isotropy groups satisfy

Gy )W = {(a,ﬂ) € G X xG,)Y: ng(oz)yGyh(B*l) = 'y}
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for fized v € C C G,Z. If w € W with e(w) =z in X, flw)y=y inY
and g(x) = h(y) = z in Z, for some possible choices of Tie,Tyf,...,Oyh in
Definition [10.28] depending on w, the following is an ezact sequence:

_— _—
0 TwW ToeaTuf I.XoT,)Y To90-Toh T.Z
2|
O:g®—-0Oyh 0,ed®0, f

0~——0,Z 0.X ®0,Y <21 0,W.

If g, h are transverse then W' is an orbifold.

(c) In part (b), using the theory of canonical bundles and orientations from
suppose X,Y, Z are locally orientable. Then W is also locally orientable,

and there is a natural isomorphism of topological line bundles on W:
TX,Y,Z c Kw — 6*(Kx) ® f*(Ky) ® (g o 6)*(Kz)*. (11.64)

Hence if X,Y,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.64)) is orientation-preserving. Proposition
11.26| holds for these fibre product orientations.

(d) Let g : X — Z be a 1-morphism in Kur. Then g is a w-submersion if and
only if Org:0,X — O,Z is surjective for all x € X with g(x) = z in Z. Also
g is a submersion if and only if O,g : O, X — O,Z is an isomorphism and
T.9:T,X —T,Z is surjective for all x, z.

() If g: X = Z and h :' Y — Z are 1-morphisms in Kur with g a w-
submersion then g,h are w-transverse. If g is a submersion and Y is an
orbifold then g, h are transverse.

(£) If (11.63)) is 2-Cartesian in Kur with g a w-submersion (or a submersion)
then f is a w-submersion (or a submersion).

(g) Compositions and products of (w-)submersions in Kur are (w-)submersions.
Projections mx : X XY — X in Kur are w-submersions.

11.6.2 Fibre products in Kurg, and Kur®
In working in the subcategory Mang, C Man® from §2.1 we defined

s-transverse and t-transverse morphisms and s-submersions. Example [T1.1]]
explained how make these satisfy Assumptions [11.1]and x11.3H11.9]

The next theorem is the analogue of Theorem [I1.32} Here Kurg, C Kur®
are the 2-categories of Kuranishi spaces corresponding to Mang, C Man® as in
Deﬁnition the corner functors C,C’ : KurS, — KurS, and C,C" : Kur® —
Kur® are as in , (stratum) tangent spaces T, X, T, X are as in Example
(i),(iii), and stratum normal spaces N, X are as in Example a).

We use the notation ws-transverse, wt-transverse, and ws-submersions for
the notions of w-transverse and w-submersion in Kurg, corresponding to s- and
t-transverse morphisms and s-submersions, and s-transverse, t-transverse, and
s-submersions for the corresponding notions of transverse and submersion.
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Theorem 11.50. (a) Let g : X — Z and h :' Y — Z be 1-morphisms in
Kurg,. Then g, h are ws-transverse if and only if for all x € X, y € Y with
g(x) =h(y) =z in Z and all v € G, Z, the following linear maps are surjective:

0.9 ® (y-0,h): 0, X ®0,Y — 0.Z, (11.65)
N,g@® (y-Nyh): N, X &N, Y — N,Z. (11.66)

This is automatic if Z is a classical orbifold. Also g, h are s-transverse if and

only if for all x,y, z,7, equation (11.65) is an isomorphism, and (11.66|) and the

following are surjective:
T.9® (v -T,h) T, X ®T,Y — T.Z.

Furthermore, g, h are wt-transverse (or t-transverse) if and only if they are
ws-transverse (or s-transverse), and for all x,y, z as above, whenever x € C;(X)
and y € Cp(Y) with IL;(x) = z, IIx(y) = y, and C(g)x = C(h)y = z in
Ci(Z), we have j+ k > 1, and there is exactly one triple (x,y, z) with j+k = 1.
) If g: X - Z and h :' Y — Z are ws-transverse in Kuré, then a fibre
product W = X x4 zpn Y exists in Kurg,, in a 2-Cartesian square:

Y
e T n (11.67)
X Z.

It has vdimW = vdim X + vdimY — vdim Z. Just as a set, the underlying
topological space W in W = (W, H) may be written

W={(z,y,0):x€X, yeV, CeGg(G,X)\G.Z/G,h(G,Y)}, (11.68)
where e, f map e : (x,y,C) — x, f: (z,y,C) — y. The isotropy groups satisfy
Gy )W = {(a,ﬂ) € G X xG,)Y: Gxg(oz)yGyh(,B*l) = 'y}

for fized v € C C G,Z. Equation is also 2-Cartesian in Kur®.

If we W with e(w) =2 in X, f(w) =y inY and g(x) = h(y) = z in
Z, for some possible choices of Tye,...,Oyh, Tee, ..., Oyh, Nye, ..., Nyh m
Definition [10.28] and §10.3.3] depending on w, the following sequences are exact:

0 4>TwW TwedTuf TxX &b ﬂJYWTZZ
|
O, @7Oyh Oy Ow
0~ 0,2 <22"  0,Xx30,Yy <22 o,w,
0— =T W—— .XoT,Y — . 1.2
Twed®Tw f ng@_Tyh
Sg;hi
- 0,99—0,h ~ ~ 0. e®00, ~
0 0.2 <2227 5.x 00,y <22 5 w,
< Vi e® N,y - ~ N.g®&—N,h -~
0 N,w el N x o N,y S N.Z ——>0.

121



If g, h are s-transverse then W is an orbifold.

(c) In part (b), if (11.67) is 2-Cartesian in Kurgy with g, h wt-transverse (or
t-transverse), then the followmg is 2-Cartesian in KurS, and Kur®, with C(g),
C(h) wt-transverse (or t-transverse, respectively):

c(w) o c(Y)
ic(e cmq) C(h)i/
C(X) ‘9. oz

Hence we have

cw)~ [ (Ci(X)nClg) ™ (Ci(2)))%cig).ciz).cim)
el (Cr(Y)nC(h)"(Ci(2)))
fori>0. When i =1, this computes the boundary OW.
Also, if g is a ws-submersion (or an s-submersion), then C(g) is a ws-
submersion (or an s-submersion, respectively). 3
The analogue of the above also holds for C' : Kurf, — Kurg,.

(d) In part (b), using the theory of canonical bundles and orientations from
q10.7.6] suppose X,Y, Z are locally orientable. Then W is also locally orientable,
and there is a natural isomorphism of topological line bundles on W:

Txyz:Kw—e(Kx)® f"(Ky)®(goe) (Kz)". (11.69)

Hence if X,Y,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that (11.69)) is orientation-preserving. Propositions
0] and [L1.27] hold for these fibre product orientations.

(e) Let g : X — Z be a 1-morphism in Kurgy. Then g is a ws-submersion if and
only if Ozg 0,X — 0.Z and N,g : N, X — N.Z are surjective for all x € X
with g(x) = z in Z. Also g is an s-submersion if and only if Omg 0,X - 0.2
is an isomorphism and T, =g T,X - T.Z, N. 29 N,X — N.Z are surjective
for all x, z.

) If g: X - Z and h :' Y — Z are 1-morphisms in Kur$, with g a
ws-submersion then g,h are ws-transverse and wt-transverse. If g is an s-
submersion and Y is an orbifold then g, h are s-transverse and t-transverse.
(g) If (11.67) is 2-Cartesian in KurS, with g a ws-submersion (or an s-submer-
sion) then f is a ws-submersion (or an s-submersion).

(h) Compositions and products of ws- or s-submersions in Kur$, are ws- or
s-submersions. Projections mx : X x Y — X in Kurg, are ws-submersions.
(i) If g : X — Z is a ws-submersion in Kurs,, and h :' Y — Z is any
1-morphism in Kur® (not necessarily in Kur§, ), then a fibre product W =
X xg.znY exists in Kur®, with dimW = dim X +dimY — dim Z, in a 2-
Cartesian square (11.67)) in Kur®. It has topological space W given as a set
by (11.68)). The analogues of (c),(g) hold for these fibre products. If g is an
s-submersion and Y is an orbifold then W is an orbifold.
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11.6.3 Fibre products in Kurigrf and Kur8®

In §2.5.3, working in Manf, C Man&° from §2.4.1] we defined b-transverse
and c-transverse morphisms and b-submersions, b-fibrations, and c-fibrations.
Example [11.12] explained how to fit these into the framework of Assumptions
11.1] and [TT.3HI1.9] The next theorem is the analogue of Theorem

Here Kurf, C Kur8® are the 2-categories of Kuranishi spaces corresponding
to Manf C Man2° as in Definition the corner 2-functor C' : Kurg® —
Kurg® is as in (6.36)), and b-tangent spaces T}, X are as in Example [10.25(ii).
We use the notation wb-transverse, we-transverse, wb-submersions, wb-fibrations,
we-fibrations for the weak versions of b-transverse, ..., c-fibrations in Kurfy
from Definition [[1.44] and b-transverse, c-transverse, b-submersions, b-fibrations,
and c-fibrations for the strong versions.

Theorem 11.51. (a) Let g : X — Z and h :' Y — Z be 1-morphisms in
KurfS. Then g, h are wb-transverse if and only if for all x € X, y € Y with
g(x) =h(y) =z in Z and all v € G, Z, the following linear map is surjective:

0.9 @ (v-"0O,h) : 0. X ©*0,Y — '0.Z. (11.70)

This is automatic if Z is an orbifold. Also g, h are b-transverse if and only if for
all x,y,z,7, equation (11.70) is an isomorphism, and the following is surjective:

"T.9® (v-"Tyh) : ’T, X & "T,)Y — "T.Z.

Furthermore, g, h are wc-transverse (or c-transverse) if and only if they are
wb-transverse (or b-transverse), and whenever x € C;(X) and y € Ci(Y) with
C(g)x = C(h)y =z in C|(Z), we have either j+k>1, or j=k=1=0.

() If g: X - Z and h :' Y — Z are wb-transverse in Kurf; then a fibre

n
product W = X Xg 7z Y exists in Kurfs, in a 2-Cartesian square:

Y
Ve d n4) Ry (11.71)
X Z.

It has vdimW = vdim X + vdimY — vdim Z. If w € W with e(w) = z in
X, flw) =y inY and g(x) = h(y) = z in Z, for some possible choices of
"T,e,’Tyf,T.g, bTyh, ®O,e, 0, f,%0.g, bOyh in Definition depending
on w, the following sequence is exact:

0—— bTwW . - ngCX D bTyY . - bTZZ
Twed Ty f T.g®—"Tyh
béﬂ,hl
*0,9®—"0yh L0,e®’ 0.
0——20.2 <22 00, X 000,y <222 %L 0w

If g,h are b-transverse then W is an orbifold.

123



(c) In (b), if g,h are we-transverse then just as a set, the underlying topological
space W in W = (W, H) may be written

W={(z,y,0):z€X, yeY, CeG,g9(G,X)\G.Z/G,h(G,Y)}, (11.72)
where e, f map e : (x,y,C) — x, f: (x,y,C) —y. The isotropy groups satisfy
Glay o)W 2 {(o, B) € Go X x G,Y : Gog(a) yGyh(B7") = v}

for fized v € C C G,Z. Also (11.71)) is 2-Cartesian in Kur8®, and the following
is 2-Cartesian in Kurf, and Kurs®, with C(g),C(h) we-transverse:

‘W) —5 c(y)
jcee C(m) ) )|
o(X) ‘@ oz

Hence we have

cw)~ ] (Ci(X)NClg)  (Cu(2)))xcig).cuiz)cim)
A (Cu(Y)NC(R)"H(Ci(2)))
fori>0. When i =1, this computes the boundary OW.
Also, if g is a wb-fibration, or b-fibration, or wc-fibration, or c-fibration,
then C(g) is a wb-fibration, ..., or c-fibration, respectively.
(d) In part (b), using the theory of (b-)canonical bundles and orientations from
§10.7.6} suppose X,Y, Z are locally orientable. Then W is also locally orientable,
and there is a natural isomorphism of topological line bundles on W:

bTX,Y,Z : bKW — 6*(be) ® f*(be) ® (g o e)*(sz)*. (1173)

Hence if X,Y,Z are oriented there is a unique orientation on W, called the fibre
product orientation, such that 18 orientation-preserving. Propositions
and hold for these fibre product orientations.

(e) Let g: X — Z be a 1-morphism in Kurfs. Then g is a wb-submersion if
and only if *O,g : *0,X — *0.Z is surjective for all x € X with g(z) = z
in Z. Also g is a b-submersion if and only if *O.g : YO, X — Y0.Z is an
isomorphism and *Tyg : *Tp, X — *T,Z is surjective for all x, z.

Furthermore g is a wb-fibration (or a b-fibration) if it is a wb-submersion (or

b-submersion) and whenever there are x, z in C;(X), Ci(Z) with C(g)x = =z, we
have j 2 1. And g is a we-fibration (or a c-fibration) if it is a wb-fibration (or a
b-fibration), and whenever x € X and z € Ci(Z) with g(x) =1II)(z) =z € Z,
then there is exactly one x € C)(X) with II;(x) = « and C(g)x = =z.
(f) If g : X — Z and h : Y — Z are 1-morphisms in Kurf, with g a
wb-submersion (or wb-fibration) then g, h are wb-transverse (or wc-transverse,
respectively). If g is a b-submersion (or b-fibration) and Y is an orbifold then
g, h are b-transverse (or c-transverse, respectively).
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(g) If (11.71)) is 2-Cartesian in Kurfy with g a wb-submersion, b-submersion,

wb-fibration, b-fibration, wc-fibration, or c-fibration, then f is a wb-submersion,
.., or c-fibration, respectively.

(h) Compositions and products of wb-submersions, b-submersions, wb-fibrations,

b-fibrations, we-fibrations, and c-fibrations, in Kurf are wb-submersions, . ..
c-fibrations. Projections 7x : X x Y — X in Kurf, are we-fibrations.

’

(i) If g: X — Z is a we-fibration in Kurfs, and h 'Y — Z is any 1-morphism
in Kur8® (not necessarily in Kurf, ), then a fibre product W = X xg zp Y
ezists in Kur8®, with dim W = dim X +dim Y —dim Z, in a 2-Cartesian square
in Kur8©. It has topological space W given as a set by . The
analogues of (c),(g) hold for these fibre products. If g is a c-fibration and Y is
an orbifold then W is an orbifold.

11.6.4 Fibre products in Kur{, and Kur®

In §2.5.4] working in the subcategory Man§, C Man® from we defined
sb-transverse and sc-transverse morphisms. Example explained how to
fit these into the framework of Assumptions [T1.1] and [T1.39HI1.9] also using
s-submersions from The next theorem is the analogue of Theorem
Here Kur{, C Kur® are the 2-categories of Kuranishi spaces corresponding
to Man{, C Man€ as in Deﬁnition the corner 2-functor C' : Kur® — Kur®
is as in , b-tangent spaces T, X are as in Example ii), and monoids
M,X are as in Example (c) We use the notation wsb-transverse and
wsc-transverse for the notions of w-transverse in Kur{, corresponding to sb-
and sc-transverse morphisms, and sb-transverse, sc-transverse for the notions of
transverse. Also ws-submersions and s-submersions are as in

Theorem 11.52. (a) Let g : X — Z and h :' Y — Z be 1-morphisms in
Kur{,. Then g, h are wsb-transverse if and only if for all x € X, y € Y with
g(x)=h(y) =z in Z and oll v € G, Z, the following linear map is surjective:

*0O.g @ (v-Oyh) : 0, X ©°0,Y — 0, Z, (11.74)
and we have an isomorphism of commutative monoids
My X Xy g iz, ityny MyY =N for n>0. (11.75)

This is automatic if Z is a classical orbifold. Also g,h are sb-transverse if and

only if for all z,y,z,7v, equations (11.74)—(11.75)) are isomorphisms, and the

following is surjective:
"T.9® (v-"Tyh) : "7, X & "T,)Y — "T.Z.

Furthermore, g, h are wsc-transverse (or sc-transverse) if and only if they
are wsb-transverse (or sb-transverse), and whenever & € C;(X) and y € Cy(Y)
with C(g)x = C(h)y = z in C;(Z), we have either j +k > 1, or j=k=1=0.
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() If g: X - Z and h :' Y — Z are wsb-transverse in Kur§, then a fibre
product W = X x4 zp Y exists in Kury,, in a 2-Cartesian square:

mn’

; Y
Ve n4) Ry (11.76)
X Z.

It has vdimW = vdim X + vdimY — vdim Z. If w € W with e(w) = z in
X, f(w) =y inY and g(x) = h(y) = z in Z, for some possible choices of
"T,e,’Tyf,T.g, bTyh, ®O,e,’0,f,%0.g, bOyh in Definition depending
on w, the following sequence is exact:

0o—"Ty)W—— =T, X',y ————= T, 7
*Te® Ty f *T.g®—-"Tyh
bég,h\L

*0,g®—"0,h Y0, e®"Ou f
0, X0, Y <——=b0,W.

0 v0,Z

If g, h are sb-transverse then W is an orbifold.

(c) In (b), if g, h are wsc-transverse then just as a set, the underlying topological
space W in W = (W, H) may be written

W={(z,y,0):z€X, yeV, Ce€Gg9(G.X)\G.Z/G,h(G,Y)},
where e, f map e : (x,y,C) — x, f: (x,y,C) — y. The isotropy groups satisfy
Glay o)W 2 {(a, B) € Gu X x G,Y : Gog(a)YyGyh(B7) =7}

for fized v € C C G.Z. Also (11.76) is 2-Cartesian in Kur®, and the following
is 2-Cartesian in Kurf, and Kur®, with C(g),C(h) wsc-transverse:

CW) —— oY)
joe@ Cmq) o)
o(X) @ oz

Hence we have

Wy~ [ (Ci(X)NClg)~(Ci(2)) % cg).ciz).cm

Pz (CLY)NC(h)™H(Ci(2)))

fori>0. When i =1, this computes the boundary OW.
Also, if g is a ws-submersion (or an s-submersion), then C(g) is a ws-
submersion (or an s-submersion, respectively).

(d) In part (b), using the theory of (b-)canonical bundles and orientations from
410.7.6| suppose X,Y, Z are locally orientable. Then W is also locally orientable,
and there is a natural isomorphism of topological line bundles on W:

bTX,Y7Z . bKW — e*(be) ® f*(be) ® (g o 6)*(sz)*. (1177)
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Hence if X,Y,Z are oriented there is a unique orientation on W, called the
fibre product orientation, such that (L1.77)) is orientation-preserving.

(e) Let g : X — Z be a 1-morphism in Kurg,. Then g is a ws-submersion if
and only if 0,g : °0, X — 20, Z is surjective for all x € X with g(x) = z in
Z, and the monoid morphism ng : M, X — M,Z is isomorphic to a projection
Nt  N". Also g is an s-submersion if and only if *O,g : Y0, X — *0.Z is
an isomorphism, and *Tyg : *T, X — T.Z is surjective, and Mg is isomorphic
to a projection Nt — N"_ for all z, z.

) If g: X - Z and h : Y — Z are 1-morphisms in Kurf, with g a ws-
submersion then g, h are wsc-transverse. If g is an s-submersion and Y is an
orbifold then g, h are sc-transverse.

11.7 Proof of Proposition [11.14

11.7.1 The case of classical manifolds Man

First we prove the proposition for classical manifolds Man in Example Let
g: X = Z,h:Y — Z be transverse morphisms in Man, with W =X X, 7z, Y
in a Cartesian square . Write Az : Z — Z x Z for the diagonal map
Ay :z+ (z,2). Then Az(Z) is an embedded submanifold of Z x Z with normal
bundle vz = TZ — Z in the exact sequence

idid id—id

0—TZ

Ta,(Zx 2)=2TZOTZ

vy=TZ—=0. (11.78)

Write points of the tangent bundle 7Z as (z,u) for z € Z and uw € T.Z. By
a well known construction called a ‘tubular neighbourhood’, we may choose open
neighbourhoods 77 of the zero section in 7Z — Z and Uy of Az(Z) in Z x Z and
a diffeomorphism ®; : T} — U; with ®1(z,0) = (z,2) for all z € Z, such that
the derivative of ®; at the zero section 0(Z) induces the exact sequence ((11.78]).
We may also choose Ty, Uy, @1 so that ®1(z,u) = (2, 2’) for all (z,u) € Ty. This
and imply that the derivative of @1 at the zero section 0(Z) C Tj is

id 0 _TZas L TZ®
T®1loz) = (id —id) ‘TThiloz) = 77 — TaUiloz) = 7,7 (11.79)

The direct product (e, f) : W — X x Y embeds W as a submanifold in
X x Y, with normal bundle 7 : TgoeZ — W in the rightwards exact sequence

TedTf Tgd-Th
0= TW = TXOT;Y = ; TyoeZ == 0. (11.80)
v® ad

Write points of TgoeZ as (w,v) for w € W and v € Tyoe(w)Z. Again, we can
choose open neighbourhoods T of the zero section in Tgo.Z and Us of (e, f)(W)
in X xY and a diffeomorphism ®5 : Tp — Us with ®2(w, 0) = (e(w), f(w)) for all
w € W, such that the derivative of ®5 at the zero section 0(WW) induces the exact
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sequence ([11.80). Making 7%, Us smaller we can suppose that (g x h)(Usz) C Uy,
so U :=®] " o (g x h)o Py is a well-defined smooth map ¥ : Ty — T;.
We write the derivative of ®5 at the zero section 0(W) C T in the form

~TW ~ TeX
T%bme(Tf/Q TTalow) = Too ?—%T@%bm» TY@(HBU

As the derivative of ®5 at 0(W) induces (11.80)), we see that o @ 3 is a right
inverse for 7g@® —7 h in (11.80)). This induces a unique splitting of (11.80). That
is, there are unique morphisms v, § marked in (11.80f) satisfying

Tgoa—ThopB =idr,,. 2z, yoTe+doTf=idrw,
aoTg+Teory=idrx, Tfod—pBoTh=idry, (11.82)
yoa+603=0, [oTg+T foy=0, Teod—aoTh=0.

Combining the first equation of (11.82) with (11.79)), (11.81f), and goe = ho f
yields

- id 0\ (Tg 0\(T
TWoqwy = T(27" 0 (g x h) 0 P2)loqw) = (id —id) ( 09 Th) (7_; g)

(T (goe) Tgoa TWae ~ Tgoe Z®
= ( 0 iy, 2 : TTaloow) = =T, Z—>7'\IIT1|0 ) Toe 2. (11.83)
Suppose as in Assumption b)(ii) that ¢ : V. — X, d : V — Y are
morphisms in Man, and E — V is a vector bundle, and s € I'*°(E) is a section,
and K : E — Tyo.Z is a morphism, such that hod = goc+ Ko s+ O(s?).
Define V' = {v € V : (c(v),d(v)) € Uz}. If v € s71(0) then hod(v) = goc(v)
as hod = goc+Kos+ 0O(s?), so there is a unique w € W with e(w) = ¢(v),
f(w) = d(v), so that (c¢(v),d(v)) € Us, and v € V'. Hence V'’ is an open
neighbourhood of s7(0) in V. Define smooth maps = = &, o (¢, d)|v: : V! — Ty
and b=moZ: V' — W, where 7 : To, — W is the restriction of 7 : Tgoe Z — W.
Define t € I'®(Tgoeob Z) by Z(v) = (b(v), —t(v)) € TgoeZ for v € V'. Define
W € T (TyeZlyr) by ¥ oE(v) = &7 (g o cfv),g 0 d(v)) = (g © c(v), —u(v))
for v € V', noting that ®1(z,u) = (z,2’) for (z,u) € T;. Combining hod =
goc+Kos+0(s?), d7(goc(v),god(v)) = (goc(v), —u(v)) and (11.79) we
see that
u=FKos+0(s?). (11.84)
Now for v € V' we have
U(b(v),0) = 1" o (g x h)(eob(v), fob(v))
= @7 (goeob(v),goeob(v)) = (goeob(v),0),
U(b(v), —t(v)) = 7" 0 (g x h)(c(v), d(v))
= 7' (g0 c(v),hod(v)) = (goc(v), ~u(v)).
Together with (11.83) these give

goc:goeob+00t+0(t2)7 u:t—|—0(t2),

128



so inverting yields
goeob=goc+0ou+0?), t=u+O0(u?. (11.85)

Substituting (11.84]) into the first equation of (11.85)) gives goeob = goc+O(s).
Thus by Theorem g) there exists a morphism K’ : Ely/ — TgocopZ with

K|y = K’ 4 O(s) in the sense of Definition v), where K’ is unique up to
O(s). Then substituting (11.84)) into the second equation of (11.85]) gives

t=K os+0(s%). (11.86)
For v € V' we have
o(b(v),0) = (0 b(v), Fob(v)),  By(b(v),—t(v)) = (e(v), d(v)).
From these and we see that
clyr=eob+ (—a)ot+ 0,  dlyv: = fob+ (=B)ot+O(t?),
so substituting in gives
clyy =eob+Aos+0(s?), dly=fob+Mos+O(s?), (11.87)

as in equation ([11.2)) in Assumption [11.1} where A = —a oK’ and M = —f o K'.
Then composing the first equation of (11.82]) on the right with K’ gives

K'—|—TgoA:'Thol\/[z’Thol\/[—i—O(s)7 (11.88)

which is equation (11.3)). This proves Assumption (b) (ii) for Man = Man.

Next suppose as in Assumption b)(iii) that V', b, A, M, K’ are alternative

choices for V', b, A, M, K" above, so that V' is an open neighbourhood of s71(0) in

V,and b: V' — W is a smooth map, and A : By, = T_;X, M: E|;, — 7}05Y
are morphisms with

cly, =eo b+ Aos+0(s?), dlg,=fo b+ Mo s+ O(s?), (11.89)

K +TgoA=ThoM+O(s), (11.90)

for K’ : Ely) = TyoeopZ @ morphism with K|y, = K' +O(s).

By (11.87) and (11.89), in maps V' NV’ — X x Y we have
(& d)|V’m\7' =(e,f)o b|v’mf/' +0(s), (¢, d)|V’m\7’ =(e,f)o l~7|v’m\7' + O(s),
so Theorem ¢) implies that

(e, ) 0 blyinpr = (€, f) 0 blyumps + O(s),

and thus b|y, ¢ = blyqpr + O(s), since (e, f) is an embedding. Hence by
Theorem g) there exist morphisms A" : Elv/ny = TeopX|v/nvr, M’ :
Elviay = TrpY |lviav with Alyayr = A 4+ O(s), Mlyayr = M + O(s),
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and /N\’,1~\~/I’ are unique up to O(s). Equation (11.90) and K]y = K’ + O(s),
Kl = K’ 4+ O(s) now imply that

K'|ypr +TgoN =ThoM +0(s). (11.91)

Also (11.87] m ), Alynap = A+ O(s), M|y7qy = M’ 4+ O(s) and Theorem
-(k) (1) 1mply that

(e, f) oblyimer = (e, f) oblyinp + (A=A @M~ M)os+0(s%). (11.92)
Define N : Ely'ayr = ToW/|yv/av by
N =0b*(y) o (A —A) +b*(8) o (M — M), (11.93)
for 7,0 as in (11.80) and (11.82). Now in maps V' NV’ — W we have

blvinp =mo®y o(e, f)oblynp, B|V’m\7’ =mod; o(e, f) OB|V’m"/’~ (11.94)
We have
blviny = blynv + [TroTdy o (A=A &M —M)]os+ O(s?)

71 "‘/
— Byni + [(idTbW 0) b* (:rr; g) (1\A4:1/\X4'>] o5+ 0(s)

3 . « [ ) A=A

= v {(ldw 0 (Tg —Th> (M )] °e O

=ty + ) o 4 - A') £ 5(8) o (M= )] o5+ O(s?)

—b|V'ﬁV’ +NOS+O (1195)
Here in the first step we use ( m 11.94), Theorem [3.17(k), and T (o ®; ') =
TroT®; . In the second we use (11.8]] 1 11.81)), in the third we use (11.82) to 1nvcrt
the matrix exphCltly, and in the fourth we use (11.93)). This proves equation
(11.4) in Assumption b)(iii). Also we have

TeoN="Teob*(y)o(A—A)+Teob*(§)o(M—M)
=b*(Teoy)o(A—A)+b*(Teod)o(M—M)
=b*(idx —aoTg)o(A—A)+b*(aoTh)o (M- M)
=A—AN+b(@)o[~Tgo(A—A)+Tho(M—NM)]
=A— N +b"(a)o [KI|V’m\7’ —K'[ynp +0(s)] = A= N +0(s),
using (|1 in the first step, in the third, and | m, in the

fifth. Thlb proves the first equatlon of , and the second equatlon is blmllal".

Suppose N : E|y/qpr — %W\V AV’ also satlsﬁes - - Subtracting

the equations of (11.5)) for N, N gives
Teo(N—-N)=0(s), Tfo(N—-N)=0(s).
Hence using in the second step we have
N—N:idTWo(N—N) =(yoTe+d0Tf)o(N—-N)=0(s).
This completes Assumption [11.1|(b)(iii) for Man = Man in Example
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11.7.2 The cases Man{, and Manignc

Next we explain how to modify the proof in §11.7.1 to work when both Manp
and Mang are Man§, or Manf?, as in Examples .11'12|‘ a) and Ma). The
difficulty is that the ‘tubular neighbourhoods’ ®; : 77 — Uy and ®5 : To — Us
defined at the beginning of may not exist.

To see the problem, consider Z = [0,00). Then TZ = *TZ = [0,00) x R,
where (z,u) € [0,00) x R represents u - 22 € *T,[0,00), and Z x Z = [0, 00)?
with Az (Z) = {(z,2) : 2 € [0,00)} C [0,00)2. Thus TZ near the zero section
0(Z) is not diffeomorphic to Z x Z near Az(Z), as the corners are different at
(0,0) € TZ and (0,0) € Z x Z. So there do not exist open 0(Z) C 71 € T Z and
Az(Z) c Uy C Z x Z and a diffeomorphism &4 : Ty — Uj.

Nonetheless, there is a construction which shares many of the important
properties of tubular neighbourhoods in the corners case. We can choose open
neighbourhoods 771, T of 0(Z),0(W) in the vector bundles TZ = *TZ — Z and
TgoeZ = (g o e)*(*TZ) — W, and interior maps ®; : T} — Z x Z, &g : Ty —
X x Y, with the properties:

(a) ®1(z,0) = (z,2) and Po(w,0) = (e(w), f(w)) for all z € Z and w € W.

(b) ®1(z,u) = (z,2') for all (z,u) € T}.

(c) bd®, : T (Ty) — @3 (*T(Z x Z)) and *d®, : °T(Tz) — ®3(*T(X x Y)) are
vector bundle isomorphisms.

(d) The derivatives *d®1]o(z), *dPa|ow) satisfy (11.79) and (11.81), where
a @ B is a right inverse for Tg ® —7Th in (11.80)), so that (11.82)) holds for
some unique 7, 9.

(e) On the interiors, ®1|re : TY — Z° x Z° and ®a|7p : Ty — X° x Y° are
diffeomorphisms with open subsets of their targets.

However, on T7 \ 7Y and Tx \ Ty, @1, ®o are generally not injective, and
the images of ®,, @, are generally not open in Z x Z and X x Y. So in
particular, the inverses ®7' and ®5' may not exist.

(f) Although <I>f1, o, ! may not exist, under some conditions on interior maps
a,b: V- Zorc:V — X, d:V — Y, it may be automatic that
(a,0) 1V = Z x Z factors via ®1 : Ty - Z x Z, or (¢,d) : V - X xY
factors via @5 : T — X x Y. That is, there may exist unique interior
1:V =>Tyand j: V — Ty with ®; 04 = (a,b) and $30j = (¢,d). If
7', @, existed we would have i = &' o (a,b) and j = ®; "' o (¢,d). So
we use factorization properties of this kind as a substitute for 7!, &5 .

For example, when Z = [0, 00) we can take T3 = TZ = [0,00) x R and define
O : Ty = ZxZby & (x,u) = (z,e "z). Then ®(z,u) = (z,2'), as in (b).

In the natural bases z-2, -2 for *T(7Z) and ya%,z% for °T(Z x Z), we see
9

that T®1]o(z) maps z% — ya% —|—z% and % = —25-, 50 T®1o(z) has matrix
(1 %), and (11.79) holds as in (c). We have ®1({0} x R) = {(0,0)}, so ®; is
not injective, and the image ®1(7}) is not open in Z X Z, as in (e).

In the proof in §11.7.1] the problem is that we use ®;', &, as follows:
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(1) We define smooth W : Ty — T} by ¥ = & 0 (g x h) o ®,.
(ii) We define smooth Z: V’ — Ty by Z = &, o (¢,d)|v.

)
)
(iii) Equation involves @5 o (e, f).
(iv) Equations (11.83) and (11.95) involve T(®; ') and 7(®51).

Here (i)—(iii) are dealt with by the factorization property of ®1,®s in (f)
above. For (i), if the open neighbourhood T5 of 0(W) in TgeeZ is small enough
there is a unique interior map ¥ : 7o — T with ®; 0¥ = (g x h) o ®5. For (ii), if
V' is small enough there is a unique interior map = : V' — Ty with ®30Z= = (¢, d).
For (iii), @5 o (e, f) is the zero section map 0 : W — Ty C Ty Z. For part (iv)
we substitute 7(®; ") = (T®;)~! and T(®;') = (T®2)~", where Td; = bdd,
and T®y = *d®, are vector bundle isomorphisms as in (c) above. With these
modifications, the proof in extends to work in Mang, and Mang; .

11.7.3 The cases Man® and Man&°

Finally we modify the proofs in to work in the remaining cases of
Examples in which Mang is Man® or Man®°¢. In it was
important that we worked with interior maps, which are functorial for b-tangent
bundles °TX in Man§, , Man$:.

The new issues are that in the definition of the ‘tubular neighbourhood’
Oy : Ty — X XY for (e, (W) C X xY, the map (e, f) : W — X x Y may no
longer be interior, which was essential in to define ®5,T5. Even if (e, f)
is interior and @5, T in §I1.7.2 are well defined, the maps c¢: V — X, d:V =Y
in Assumption [I1.1[(b)(ii) need not be interior, and if they are not, the lifting
property of (¢,d) : V — X x Y in §11.7.2(f) may not hold, so that we cannot
define Z: V' — T, with ®3 0 2 = (c,d) as in §11.7.1]-411.7.2

Our solution is to use the corner functors C' : Man® — Man§, , C' : Man&® —
Manf from and §2.4.1} which map to interior morphisms. Given a trans-
verse Cartesian square (11.1]) in Man® or Man8® in one of the remaining cases

of Examples (11.11

or Maniglf:
cw) oG Cc(Y)
NEE) . ch| (11.96)
C(X) o) c(2)

We can show that in the cases we are interested in, is locally Cartesian
and locally b-transverse on C(W). That is, if w € C(W) with C(e)w = x €
C(X), C(flrw =y € C(Y) and C(g)x = C(h)y = z € C(Z), then C(g),C(h)
are b-transverse near x,y, z as in §2.5.3) and ([11.96) is Cartesian near w, x, y, z
in C(W),...,C(Z). We do not claim (11.96)) is Cartesian, nor that C(g),C(h)
are b-transverse, as these would be false in Example

Thus (C(e), C(f)) embeds C(W) as a submanifold of C'(X) x C(Y'), and the
argument of constructing ‘tubular neighbourhoods’ ®; : Ty — Z x Z,
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Py : Ty — X x Y satisfying §11.7.2)(a)—(f) works with C(W),...,C(h) in place
of W, X,Y,Z,e, f,g,h, as C(e),...,C(h) are interior.

Now suppose as in Assumption [I1.1[b)(ii) that ¢ : V = X, d: V = Y are
morphisms in Man® or Man&®, and F — V is a vector bundle, and s € I'*°(F) is
a section, and K : E' — TgocZ is a morphism, such that hod = goc+Kos+0(s?).
Then we have a diagram in Man§, or Man£’:

o~ Y
v CO(V) C(d)|cyv)y C( )
i,c(c)\co(w c C(h)\L
C(X) @ c(2).

Under the isomorphism V 22 Cy(V) there is a natural identification
7-gOCZ = TC(g)oC(c)\co(v)C(Z) = C(g © C)|Z‘Q(V)(bT(C(Z)))

Let K: E — Tc(g)oc C)|CO(V)C'(Z) correspond to K under this identification.
Then we find that C'(h) o C(d)|c,(v) = C(g) o C(C)\Cg(v) +Kos+0(s?). So
we can repeat the argument of " 11.7.2| with Co(V ) C(W),...,C(2),

C(c)leyvy, C(d)| ey (v Kln place of VVW,....Z ¢c,d,e,...,h K.
_ For Assumptlon b (ii) thls Constructs V' C Cy(V), an interior morphism
b:Co(V) = C(W and morphlsms A:Elv — Tg ()opC(X) and M : Elys —
Te(5)opC(Y) with

C(c)|g = Cle)ob+Aos+0(s?), C(d)|y = C(f)ob+Mos+0(s%). (11.97)

Let V' C V be identified with V’ under V 22 Co(V), let b: V' — W be identified
with ITo b under V/ 2 V', and let A : E|y: — Toop X, M : Elyv: = TrabY be
identified with A, M as for K = K. Then corresponds to . The rest
of Assumption [TT.1|(b)(ii)—(iii) follow in the same way.

11.8 Proof of Theorem

Work in the situation of Definition Since is a 2-commutative square
in GmKN D, and GmKN p € GmKNg is an inclusion of 2-subcategories such
that the 2-morphisms in GmKN D, GmKNg between given 1-morphisms in
GmKND coincide, if is 2-Cartesian in GmKNg then it is 2-Cartesian
in GmKNp. Thus, we must Verlf the universal property of 2-category fibre
products in Definition m for in GmKNg.

Suppose we are given 1- HlOI‘phlSmS in GmKNg:

(S B]apj) (Uthvrl)v (S Bj7p]) (VmaEmaSm)a

with ¢;; = (Sj1, ¢ji, ¢1) and djp, = (Sjm,djm,cijm), and let K = [S;, 4] : g;,
¢ji = hmnodjy, be a 2-morphism in GmKNg. Then by Deﬁnition S; is an
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open neighbourhood of P;l(o) in Sji N Sjm € Sj, and & = Bjlg; = Tgioc, Wals,
is a morphism with

honn © djmlg, = gim 0 clg, +Rop; +O0@F)  and (11.98)
d;m(ﬁmn) o dAjm|S = dﬁl(.@ln) o é]l|S + (gln © le)*(dt) ok + O(pj) |

Assumption [11.1(b)(ii) now gives an open neighbourhood S of p; 1(0) in Sj,
a morphism bjy, : S — T} in ManE, and morphisms N B; |5 — 7;“0;) U; and

f: Bjlg, — 7}kmobgkv such that (11.2) becomes
cilg, = exobjp+Aop;+0(p3),  djmlg, = frmobjk+iop;+O0(p3). (11.99)

Theorem (g) gives & : Bjlg, — Ty o0enob; Wn With & = /]5, 4+ O(py), since
Gin © Cj1]8; = Gin © egr 0 bjx + O(p;) by (11.99), and then as in (11.3) we have

B+ T gm0 X = Thn o i + O(p)). (11.100)

Choose connections VP, VEn Vi on D) — U, E,, — Vin, Fn — W, as
in §3.3.3|and dB.3 2L and write V9in(Fn) hmn(Fn) for the pullback connections
from VI on gf (F,) — Ui, b, (Fn) — Vipn. Then in morphisms Bjlg, —
(gln O €1 O bjk)*(F ) we have:

bk leriGin) @ = Fim (honn)] © [(&j0]8; — (exi 0 bjr)*(VP0rr) 0 A)
® (djml3, = (fum 0 bjr)*(VEmsm) 0 f1)]

= (ext 0 bjr) " (Gin) © &2l 3, — (ext 0 bjx)* (Gin) © (exs 0 bjr)* (V1) o A

— (FrmObjn) " (hann) 0|3, + (Frm 0bjk) " (Rimn)© (Frm 0bjn)* (VE™ 530 ) 0
= ¢31(Gim) 0 &1l g, — (er 0 bji) " (VInE) (g (1)) 0 A

= 5 (Bnn) © djm8; + (from © bjx)* (V"m0 (R, ( m))) o i+ O(p;)
= (Gin) 0 Elg, — (ert 0 byw) " (VInE) (g (t,))) 0 (11.101)

(

= 5 (Bnn) © djm|8, + (frm © bjx)* (Vmn ) (B, ( n))) o i+ O(p;)
= ¢5y(Gin) © 513, — (gm0 ex1 0 bji) " (V™" tn) 0 Tgin 0 A

= & (frnn) © djml 8, + (B © from © b31)* (V™ ) © Thinn © 1 + O(p;)
= ¢51(Gin) © &tl3, = (hnn) © djm3,

+ (gin 0 ert 0 ) (V" t0) o [~ T gin © A+ Thunn 0 1] + O(p;)
= (Gin) 051l 3, — A (Pumn) 0djm| 3, + (ginoer1obsi) (VI t,) 0 +O(p;)
= ¢1(Gin)0€5l3, = () 0djim |3, + (gino i) (V7 t,) 0 &[5, +0(p;)
=0+ O(p,).

Here the second step uses and
VI (1, (1)) = Gin © V21 + O(1),
VhnnFn) (B () = omn © VE™ 8,0 + O(8m)-
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The third step uses G (71|0,,) = g5, (tn) and B (sm
fourth step uses

(ext © bji)* (VInE) (g (£4))) = (gin © ext 0 bjr)* (VI t0) o T gim,
(Frem0bjie)* (Vmn ED (B2 () = (hinn © frm ©bsi) (VI ) 0T R

The fifth follows from hy,n © fum = gin © €x1, the sixth from (11.100]), the seventh
from (11.99) and & = &|g, + O(p;), and the last from (11.98) and Definition

vi). This proves (11.101].

Now b7, (C)) — S; is the kernel of the surjective vector bundle morphism

Vinn ) = h:nn (tn) . The

(11.102)

bk [ei(Gin) @ = firm (Bnn)] = (€1 © )" (D1) @ (frm © bjs)*(Bnm)
— (gin © €1 0 bjx) " (Fr),
which occurs at the beginning of (11.101), and the inclusion of b7, (Cr) as the

kernel is b7, (1) @ b7 ( fem). Since taking kernels of surjective vector bundle
morphisms commutes with reducing modulo O(p;), equation ((11.101)) implies
that there is a morphism by : Bj|g; — b7, (C%), unique up to O(p;), with

(U5 () @ Ui (frm)) (b)) = (E1ls, — (ext 0 i) (VPiry) 0 A)

A Sy ' (11.103)
® (djmlg; — (frm 0 bje)"(VE7sm) 0 1) + O(p;),
which by Definition vi) is equivalent to
&1l g, = b3 (r) © bk + (exs © bjr)*(dre) o A+ O(py), (11.104)

djm|8, = U5 (Fem) © bk + (fom © bjk)*(dsm) o i + O(p;).
We have

(03 (ext) ® i (Fom)) (bjie(p)) = (E1(ps)1g, — (e 0 bjw)* (V) 0 Ao p;)
@ (djm ()3, = (frm © bjx)* (V™ sm) 0 i o p;)
= (c5u(r)lg, — (ert 0 bjr)* (VP'r1) 0 Ao py)
(A5 (sm)lg, = (frm 0 bj)* (V" sm) 0 Lo p;) + O(p3) (11.105)
= (b g 0 e (r)) @ (b ik o frm(5m)) +O(P?)
= (bk(Eri(ar))) @( (frm(ax))) +O(p3)
= (b51(Ext) ® b3 (fom)) (Ol (a)) + O03),

where the first step comes from ((11.103]), the second from Definition (d) for
i, djm, the third can be proved by pulling back 7, s, using the equations of
(11.99)), and the fourth follows from Definition E(d) for ewr, frm-

As b3 (é) @ b;k(fkm) is injective, (11.105) shows that br(p;) = b3y (qx) +
O(p?). Thus b, = (Sj,bk,bjx) : (S5, Bj,pj) = (Tk, Ck,qx) is a 1-morphism
in GmKN.
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Definition and equations ([11.99)) and (11.104) now give 2-morphisms

A= [Sj,)\] e bjk = Cji,
M = [Sj,ﬂ] : -fkm o bjk — djma

in GmKNg, and equation ((11.100)) is equivalent to the commutative diagram

gln O ey Objk o hmnofkm Objk
) 1dg;,0ep
\H/ldgl"*A

idhmn *M\U/
K

gin © Cji hyn Odjmv

*ldbjk

which is equation (A.16) for the 2-commutative square (11.14)). This proves the
first part of the universal property in Definition [A-TT}

For the second part, let b;k =( é,b;k,b;k) 1 (S5, Bj,pj) = (Tk, Ck, qi) be a
1-morphism in GmKNEg, and

be 2-morphisms in GmKNE, such that the following commutes

/ /
gy, © €kl objk hmnofkmobjk
id *id
ﬂ/idgln*/\’ 9imoekl T00G, idn,,,, *M’ﬂ (11.106)
K
9in © Cjl hmn o djma

where making S; smaller, we use the same open p}l(O) - S; CS;in b;-k, AN, M.
Then b, : S — T}, is a morphism in Mang, and A’ : Bjlg — ’Euob}kUl
and 0 : Bj|g; — ﬂkmob;ka are morphisms, where by Definition (b)

cjilg; = eniobl,+X op;+0(p?), djm| ;= om0l +0 op; +0(p7),
&jilg; = i (Ert) oy, + (et 0 bjy,) " (drr) o X + O(py), (11.107)
djm\S; = 5. (frm) © Vg + (frm © bj)* (dsm) 0 i/ + O(p;),

as in (11.99) and (11.104). Theorem 3.17(g) gives & : Bj|g — Tginoeriot), Wn
with &' = &|g + O(p;), since gin © ¢ji|§ = gin 0 exr 0 b, + O(p;) by the first
equation of (11.107)), and then as in (11.100)), equation (11.106) is equivalent to

R+ Tgin o N = Thupn o i/ +O(p;). (11.108)
Applying Assumption [T1.1|(b)(iii) to the first line of (I1.107)), and (I1.108)),

shows that there exists a morphism 7 : Bj|5jn§; — 77,],ka|5‘_7.ng( with

b;'k|éjm§; = bjk|SJmS';. +vop;+ O(Z’?)a (11.109)
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and if N : Bjlg,ns = Tepob, Utlgng, i 2 Bilg,n8 = Thinoby, Vinl§,ng: are
morphisms with X'|g;n57 = A+ O(p;), &'[3,ng; = " + O(p;), which exist and
are unique up to O(p;) by Theorem g), then

Ngng =N+ Tewov+0(p;),  filg,ng;, =i + T frm o2+ O(p;). (11.110)
Furthermore, ¥ satisfying (11.109)—(11.110) is unique up to O(p;). Now

e (ér) o I;}k\é ng = &ji|g;ng; — (ex o bjy,) " (dry) o X’léjnéj’, +O(pj)
bjk(ekl) o bjilg, ng, + (e 0 bjk)"(dr) o A — (exs 0 bjx)™(dry) o N+ O(p;)
bjkl 5,08, + (en 0 bjx)*(VP'11) 0 Tep o & + O(p))

bjr(Crt) ©
= b* k(Enn) 0 bjkl 5,08, + b3 (VP (e, (1)) 0 0+ O(p;)
= b3y, (ér) 0 bjnlg,ng; + b (VP (6 (qr)) 0 & + O(p;)
=31, (em) © [bjnlg,ng; + b3 (V% qr) 0 7] + O(py), (11.111)

using the third equation of ((11.107)) in the first step, (11.104)) and Eklobjk|,§jﬁ§;_ =
erl 0 b'»k|§jm§; + O(p;) by (11.109) and X|5jmgja =N+ O(p;) in the second step,
and (11.110)) and choosing a connection V' on D; — U; in the third.

In the fourth step of (11.111)), as in (11.102f) we use

(er1objr)* (Vim0 Tew =3 (VR P (ef, (1)) = Tr, Tel 3,08, — (exs © bjx)* (Dy),

where Ve (PV) is the pullback connection on ef,(D;) — T}, from Vi, The fifth
step uses éx(qr) = ef;(r1), and the sixth Ve (P (64 (q)) = ér 0 VO g +O(q )
for VO some connection on Cj, and bir(ar) = O(p;). This proves (11.111).
Similarly we have ‘

b (Frm) oV 13,080 =5 (fem) o [bjkl 3,08, +05 (Vo qr)00] +O(p;).  (11.112)

Since ékl®fkm Ck — ekl(Dl)@fkm( ') s injective, and b]k|s ng = kg, ng +

O(p;), equations (11.111)—(11.112)) imply that as in ,
8;k|s~jng;. = bjk|g;ng; + b3 (dax) 0 0+ O(p;). (11.113)
Equations and and b = b’ imply that
[S N S V] by = bjk
is a 2-morphism in GmKNg, and 1' is equivalent to
A=A ©(ide, *N) and M =M © (idg, *N).

That N is unique with these properties follows from the uniqueness of o satisfying

(11.109)—(11.110) up to O(p;). This proves the second part of the universal
property in Definition [AT1] and completes the proof of Theorem [T1.17]
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11.9 Proof of Theorem [11.19

Suppose Man satisfies Assumptions and Letg: X > Z, h:Y —
Z be 1-morphisms in mKur, which will usually be w-transverse in mKurp.
The aim will be to construct a fibre product W = X x4z 5 Y in mKurD
or mKurE, with projections e : W — X, f : W — Y and a 2-morphism
71 :goe = ho f in a 2-Cartesian square . We will use notation 7
for X = (X,7),Y =(Y,J), Z = (Z,K), and our usual notation for e, ..., h
and 7 as in and Definition

11.9.1 Constructing W e, f,n when Assumption holds

Let g : X = Z, h :' Y — Z be w-transverse l-morphisms in mKur. For
simplicity, we first suppose that Man also satisfies Assumption m Then as in
Theorem c) we will construct a fibre product W = X x4 zp Y in mKur D
and mKurg, with topological space W = {(z,y) € X xY : g(z) = h(y)},
and continuous maps e : W — X, f : W — Y acting by e : (z,y) — x and
f: (z,y) — y. The general case, which we tackle in is more complicated,
as we also have to construct W, e, f.

So let W,e, f be as above, and let (z,y) € W with g(z) = h(y) = z in Z.
Then by Definition there exist m-Kuranishi neighbourhoods (U;, Dy, ry,
X1); Vins By Sms )y, W, Frytn,wy) on X, Y, Z as in With xz€Imy; C
g tImwy,), y € Ime,, € h~(Imw,) and z € Imw,, and 1-morphisms g,, :
(Ula Dy, i, Xl) — (Wvu F, tnywn)a hmn : (Vma Ep, S, ¢m) — (Wna Frytn, wn)
over (Imx;,g) and (Im,,, k), as in Definition such that g,,,, by are
w-transverse as in Definition

Apply Definition and Theorem to the 1-morphisms in GmKN p

9in: (UlyDlaTl) — (Wnaantn)a o (VmaEnuSm) — (WnaFnatn)-

These construct a 2-Cartesian square (11.14]) in GmKN p and GmKN E. From
(11.13) and Definition [4.14{(b) for X,Y, Z we see that

dim Ty — rank Cy, = vdim X 4+ vdimY — vdim Z.
Here by definition T} is the transverse fibre product in Man:

Ty = Uy % (11.114)

Ginloy, s W hamn Vi an’

for open Uy, C U, Vinn C Vinn satisfying Definition [11.15 i),(ii). As we suppose
Assumption by Assumption e) we take T} to have topological space

Ty = {(u>v) € Uln X an : gln(u) = hmn(’U) S Wn}, (11.115)

and then ey : Ty — Ui, fim : Tk — Vi, map ey : (u,v) = u, from : (u,v) — v.
Since qi = e, (1) ® fF,,(Sm), we see that

g, (0) = {(u,v) € r71(0) x 5,"(0) : gin () = humn(v) }-
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Define ¢y, : g, '(0) — W by ¢g(u,v) = (x1(u), ¥m(v)). This is well defined as
g o xi(u) = wn 0 gin(u) = wy © hmn(v) = h ot (v),

using Definition e) for g;,,, Rmn. As X1, ¥ are homeomorphisms with their
open images, ¢y is a homeomorphism with the open subset

Im o ={(z,y)eW : z€lmy;, y€lm ¢y, } =e " (Imx)Nf~ (Im ey, ) SW.

Hence (T, Ck, gk, ¢k) is an m-Kuranishi neighbourhood on W. Since e o ¢}, =
xioex and ok = 1m0 fim on g (0), e : (T, Chy qi, 1) — (Ui, Dy, xa) s
a 1-morphism over (Im ¢y, e) and fy,, : (Tk, Ck, @k, k) = Vin, By Sm, ¥m) is a
1-morphism over (Im ¢y, f). Thus, generalizing we have a 2-commutative
diagram in mKNp from Definition

(M/a Im Pk (Tka Ck:vaa on;)) W (Y7 Im¢m7 (Vm7Em7 vawm))
J km

(esert) id fp (hohmn) | (11.116)

(9.910)

(X7 Im y;, (Ulv Dy, Xl)) (Zv Im w,,, (anFna tnawn))-

We can find such a diagram with (z,y) € Imy,, C W for all (z,y) in
W. Thus we can choose a family of such diagrams indexed by a in an indexing
set A so that the subsets Im ¢ cover W. We change notation from subscripts
k,l,m,n to subscripts a,a, d, @, where a € A, and a, d, d@ correspond to a, but
have accents to help distinguish m-Kuranishi neighbourhoods on W, XY, Z.
Thus, for a € A we have a family of 2-commutative diagrams in mKNp

(VV7 Im(ptﬂ (Ta7 Cav Ga; Qﬁa)) W (K Im¢da (Vda E&ia Sis 7/1('1'))

l(‘%em) idﬂ (hhisw l (11.117)
(Xa Im Xas (Ul'la Dd7 Ta, Xd)) (9:9:) (Z7 Im Wiy (Wiﬁh Fd’) t?i'7 (.Ud‘)),

with W = |J,c4 Im@,, such that as in (11.14) the following is 2-Cartesian in
GmKNp and GmKNg:

(Tavcaafh) f B (VdvEdan)
e “ id f) R (11.118)
(Ua, Da,ra) i (Wa, Fa, t5).

Let a,b € A. Then Theorem a) gives coordinate changes

T.i: (Ua,Dayrayxa) — Uy, Dy, i X) over Imx; NImy; on X,
T o Var Ea, sastha) — (Vy, By, s, 05) over Im¢; NImy; on Y,
(I)ii"l; : (Wav Faa t?i'7 wa) — (Wb’ Fb’ tb’ wb) over Im Wy N Im wb on Z7
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unique 2- morphlsms

sz 9ii© Toy = P70 Guur over Im x4 N Im x; on X,
HZIZ)’ thpo Y o= @ -0hyy over Im; NIm; on Y,

1V\/mtmg T = (Uais Tais ab) and Y.; = (Vii, U5 ab) set Top = e, (Uy;) N
[z (Vii). Then Ty, is an open neighbourhood of ¢ ! (Imp, N Imey) in Ty,.

aa

Consider the 1-morphisms in GmKN p:

Tdi) ° ealeab : (Tab? Ca|Tab’ QalTab) — (Ui,a Di,» 7"1}),
Td?} ° faii|Tab : (Tabv Ca|Ta,ba Qa|Ta,,) — (V57 E‘b'7 SB)’

and the 2-morphism
(H) 'eidg,,) ©(Glp vide,) 9350 [Tapoeaalr ] = hipo [T apo Faalria

noting that g,; © €aa = hyi 0 fqs as in (11.118). Since (11.118) with b in place
of a is 2- Cartesmn in GmKND by Theorem |11.1 L the universal property in

Definition 1| gives a 1-morphism in GmKN D, unique up to 2-isomorphism,

Zab : (Ta7ca7Qa)|Tab = (Tab7ca|Ta57Qa|Tab) — (Tb,Cb,(]b),

and 2-isomorphisms in GmKNp
Eab €pp © Yap = T b © eaa|Tab’ F -fbb 0 Xap = T b © faa|Tab’ (11'119)

such that the following diagram of 2-isomorphisms commutes:

9 © €y © Lap Ry o iy o Xab

id
[ idh.....*Fz;éﬁ 11.120
(HGy) "' #idy, )O(Gyp *ide, ) " ( :

g OT Oeaa|Tab h OT O.faa|Tab

As Tea, Yaa, G, H““ are identities, we can choose
Sea = id(1, 0000y, ELt=ide,,, and Fi =idy . (11.121)
Now let a,b,c € A. Then Theorem M(c) gives unique 2-morphisms

Kiic: Tio T,y = Tae over Im x4 NImy; NImy: on X,
Agis: Tiao Yoy = T over Im; NImv; NImz on Y,

such that the analogue of (4.62]) commutes. Using Theorem d) we see that

Kacd © (ldT * Kabc) = Kabd © (Kbcd * ldT ) Tcd OTbc oTab = r:[‘ad7

(11.122)
AaCdQ(ldT KN p) = AziBJ@(Abcd*ldT )TcdoTbcoT =T,
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Compare the two 2-commutative diagrams:

(Ta, Ca qa)lT,,, ™. (Va, Ea, sa)lv,;, Taclv, ;. (11.123)
adlTqpe
Zab| Ty, Foyz) TiblV,ps Aase )
€ailTgpe (Ty, Co, av) |, o (Vi By, sp)lvs,
vb!The bé
ﬂEgg Sbe Fbcﬂ ’rgé
(Uévadvrd)|Udl;é Ebj,\TbC (TC,C’C,qc) ,f—> (V67E67 36)
T |y, . | “°
wb. \ﬂEzz
ﬂKb (UbyDb7rb)|ch €ce idﬁ‘ hye
Tug,
Taclvy, 9ez
(Ugy Dgyre) ———>= (We, Fiey ty),
(TaaCaHIa)‘Tabc —_— > (Va‘:E&’Sé)ldeé (11124)

Failry,,

SaclTyy, Fii//\

€aalT,y,

(Tm Ce, qe, ‘Pe) P —— (V67 Eg, 36)

Uas Dasra)lu,,.  Ypoe —

ece idﬁ Ry

gee

where Tope = Top N The, and Uy, ... are defined in a similar way. By the last
part of the universal property in Definition [A.11|for (11.118]) with ¢ in place of
a, there exists a unique 2-isomorphism Ipe @ Xpe © Bap|1,,. = ZaclT,,., Such that
the following commute:

€ce O Upe O Zab|Tabc €ce © Eac‘Tabc

ide . *lqpe

be eC‘C P
be
RE i B (1112s)
idr, *E Kgie*ide,,
be a abe ad
T 0 €y © Zav|1,,. => Tj 0 Ty 0 €aalT,,. == Ta¢ © €aalt,.
S et © Bve © Tab| 1, T Fei 0 Bac|T,
FYxidy " cé Fiiu
| © dy, o Aperidy, (11.126)

C
Yis© fri © Zab| T = Tiz 0 Ty © Failtin. === Yic © FoilTup.-

From (11.121)) and (11.122) with ¢ = a we see that Xy, 0 Xap = id(1,,0, 90,00)
and similarly Yoy 0 Xpa = id(1,,04,q0,05)- Hence Xap @ (Ta, Ca, qa, 0a) — (Tt, Cb,
db, ©b) is a coordinate change over Im ¢, N Im ¢}, with quasi-inverse Xp,. Also

from ((11.121)) for a,b we can deduce that I,qp = Iapy = idy,, -
Let a,b,¢,d € A, and consider the diagram of 2-morphisms over Im ¢, N
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Impy, NImp. NIm ey on W:

eddoZCdOZchZab edd'OECdOEac

) id*Igpe ‘
wﬂd Ey
id*Igpe
Téd O €ce © ZJbc o Z:ab Tcd O €ce © Eac
idsTy e xid \uid*Egi*id - Eﬂ idsTpeq
. idsE T 0T, idsK,;, xid .
Tc’doTbé id«Egy TédOTbél 4 pe ¥ Tédo (11.127)
o€y © Map oT,;0€aqq Teae 0 €44
JKiearid K gid]) Kdéd*id\H/
T .0  ids«E* T, .0 Kg,*id
bd ——at Lbd A
€y © Yab T(’li) O €qq ad aa
%ﬁj*id " Egg\
1d*lagbd
edd'OZdeZab eddoZad.

Here four small quadrilaterals commute by (11.125]), two commute by compati-
bility of vertical and horizontal composition, and one commutes by (11.122]). So

(11.127) commutes, implying that

idedd * (I‘wd © (dg,, * IabC)) = idedd * (Iabd © (Tpea * idEab))~ (11.128)
Similarly we can show that
idg,; * (Iacd © (ids,, * Iabc)) =ide,; * (Iabd O (Tpea * idzab)). (11.129)

By comparing two 2-commutative diagrams similar to (11.123[)—(11.124}) and
using (11.122)) and uniqueness of € in Definition [A.11] for the 2-Cartesian square
11.118)) with d in place of a, we can use (11.128)—(11.129)) to show that
Toca © (ids,, * Iobe) = Labd © (Tpea * idx,,)-
Now define W = (VV7 A)7 where A = (A7 (Tavc’aaqa7(pa)a€A7 Zab, a,beA;
Tabe, a’b,ceA). Then W is Hausdorff and second countable as X,Y are, and
we have already proved Definition a)—(h) for A above, so that W is an

m-Kuranishi space in mKur with vdim W = vdim X + vdim Y’ — vdim Z.
Define a 1-morphism e : W — X in mKur by

_ i, 1€1 i, i,J€1
€ = (67 €ai, acA, icl, Eab, a,beA> Ea, acA )7
I3

where e,; = Ty 0 ey and E Efj are defined by the 2-commutative diagrams

abs

@ S E! €aqi

-7 ab
I idr, «B% K, *ide,, | (11.130)
Ti)i 0 € © Ygp —> Tfn’ o Taboeaiz Tsi © €qs,
Tijoeq _ eus

EY
I Kaijide, , | (11.131)
TijoTaioeqq Ty o eas.
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Here X = (X,7) in , and T4;, Kei; are the implicit data in the definition
of the m-Kuranishi neighbourhood (Ug, D4, 74, Xxs) on X in Definition m
and the K ;. are the implicit data in the definition of the coordinate change
T.i : (Ua,Day7a, Xxa) = (Uy, Dy, 7, x;) in Deﬁnitionm

To show that e satisfies Definition note that (a)—(d) are immediate, and
(e) follows from Yuq, E% Keaai, Kai being identities, and (f)—(h) follow from the
2-commutative diagrams

€ci O Xpe © Lap €p; 0 Map

\ Eperids,, /
Teioeg rEerd TejoTy, Kicirid, Tyo
0Ype0Xab 0€,;,0ab €02 ab
iasE3 JiasE2t
TeoT:, Kpe*id T o )
ide .. *Igpe id I be - bi Et .
ec; *labe abe oT,;0€as T,;0€as o (11 132)
\U]deé*id M/Kdm*id
Teio 1d*Eat Teo Kaeitld, . ve
eCéOEac Tacoeaa “ aa\
/ n \
€c; O z:ac = €ai,
Tij O €p; O Eab - ” Ti]' O €qi
\ i /
. ab . L
Tij OT[n- id«Eqgy Tij OTI}@' id*K ; xid Tijo
OebeEab OTdi,oeaiz T[u’oea(z
B xids, \U,Ki)ij*id . \U/Ki)ij*id ﬁ;{mj*id g7 (11.133)
T; .o id«E3 T .o Kyp;*id
bj :a> bj —— T4 0e,q4
ebbozab Tdéoead “ ”‘a\
/ Eib \
ey 0 Yap €aj)
TjroT50eq — Tir 0 ey
\ ijk*ide,; /
\ Kijk*id /
TjkoTijoniOea(z TikoTaioead
idr,, +Ey ﬂid*Kdij*id ﬂKaik*idem E*| (11.134)
Kejuride,,
TjroTs0€q4 Taroeqq

ik
Ea

Tjk o eaj

€k,

for all a,b,c € A and i,j,k € I. Here

11.132)) uses

4.62) for the 2-morphism

K,;. constructed using Theorem [4.56

c), and ((11.1

25), (11.130). Equation

(11.133)) uses (4.58
T, Xb), and (11.130)

for the coordinate change Tap : (Ua, Da,7a, xa) — (Ui, D,

—(11.131)). Equation (11.134) uses (4.57) for the m-Kuranishi
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neighbourhood (Us, D¢, 74, Xa) on X, and (11.131)). All of (11.132))—(11.134)) use

compatibility of vertical and horizontal composition.
We define a 1-morphism f: W — Y in mKur as for e.
Definition [£:20] defines compositions goe, ho f : X — Z, with 2-morphisms of

m-Kuranishi neighbourhoods ©9:7, @Zji as in 1' We will define a 2-morphism

n:goe= ho fin mKur, where n = (nak’aeAykGK). Let a € Aand k € K.
We claim that there is a unique 2-morphism 7, : (g o €)ar = (h o f)uk on
Imy, N(goe) ! (Imwy) in W, such that for all i € I and j € J, the following
commutes on Im ¢, Ne ! (Imyx;) N f~ (Ime;) N (goe)  (Imwy) in W:

gzkoeal:>(goe)ak:>(hof)ak<:hjkofaj

e oh
| N ak‘”’“ H (11.135)
GiFxid H&%xid

giroTaioew, <= Q410945°€aa = Parohazofaa = hjroYijof q;

To prove the claim, write 772]; for the 2-morphism 7,;, which makes (11.135|)
commute. Let ¢,4 € I and j,7’ € J, and consider the diagram of 2-morphisms

over Im ¢, Ne ™ (Imx; N (Imx;) N f~ (Imep; NImepy ) N (goe) ™ (Imwy):

(goe)
,*1d id*K ;0 xid

OT s7
ginoTai0en, <———Jik ——> i OTaz’ C€qq

OTG/L o ea/a/
X %ff,:id

Guixid 7 Py 0g,:0€04 = " i

ij it
Mak Qs ohizof it Mok (11.136)
/*1d h .0 ,1d*A jrxid
E® L5y
thOTaj f OTa]Ofaa /kOTaJ/Ofaa

h.f h,f
\ Oai Ouilh J

Here the outer pentagons commute by , the top and bottom quadrilaterals
commute by - 4.16)) for goe and ho f, and the central two quadrilaterals commute
by (4 for g,; and h;;. Thus commutes, so 1.}, = n.; on the
1ntersectlor.1‘ of their domains in W.

Now 0% is defined on Im ¢, N e~ (Imx;) N f~ (Im ;) N (goe)  (Imwy),
and for all 4 € I and j € J these form an open cover of the domain Im ¢, N (g o
e) " '(Imwy,) of the 2-morphism 71, that we want. So by the sheaf property of
2-morphisms of m-Kuranishi neighbourhoods in Theorem and Definition
iv) there is a unique 2-morphism 7, : (g o €)qax = (ho f) % over Im @q N

(goe) (Imwk) such that nak|1m paNe~1(Im x;)Nf~1(Im e, )N(goe) ~ (Imwy) = nfljk for
all i € I and j € J, so that (11.135)) commutes, proving the claim. .
To show n = (nak, acA, kek) - 9o €= ho fisa 2-morphism in mKur, let
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a,a’ € A,i€l,je Jandk € K, and consider the diagram of 2-morphisms

(g o e)a’k o Eaa’ (g o e)ak

k
ge (GoE)aa, v
ea rik* *id . eazk
ldf,/ id#*

aa
90T ars Faa'  gpoTar; _Kaarixid 9,1,
O €yra! oZaa/ OTaa/ O€qa T(‘“‘Oeag"

-
G,k yid .
ngk*idﬂ idx o idx) Gikxid
’ Gaa/ M 1

(l(l
q)d,kog.,..., Ela @ W kOG ,*1d (I) 9. 0® i, wid ®d..,.0
a’'a — a'a k: ai —= ak

&C€aa

0 €474’ 9Dga’ oTgar0€44 9i5°€aa
Morrids : ids ‘ na|| (11.137)
R H‘w My,
q)'d-/koha/h-/ g' (o /koha/a/*g (I) ’koq)aa’ wid (bako
o .fg/‘g‘/ OEaa’ OTaa’ Of o haa .faa haa'ofa'g;
" 'k .
H;,}“*idﬂ/ \Hg’j *id HHif*id
hjkoTii’jO hjkOTd/jO hjko

fa’ii’ OEW/ id=* T&d/ ofaii idx deofa&

FZZ; A0 5*id
%’;;‘k*id ot
(HOF)k ’

(hof)a’kozaa’ = (hof)ak-

Here the left and right hexagons commute by (11.135]), the top and bottom
pentagons by (4.15)) for goe, ho f, the two centre left quadrilaterals by compati-

bility of vertical and horizontal composition, the centre left hexagon by (11.120)),
11.137)

and the two centre right pentagons by (4 for Gaa/ ZZ, Thus (1
commutes.

The outer rectangle of proves the restriction of Definition a) for
7 to the intersection of its domain with e *(Im x;) N f~!(Im1);). As these open
subsets cover the domain, the sheaf property of 2-morphisms of m-Kuranishi
neighbourhoods implies Definition a) for . We prove Definition [£.18|b) in
a similar way. Thus n: goe = ho f is a 2-morphism in mKur, and we have
constructed the 2-commutative diagram 1) in mKur D, in the case when

Assumption holds. We will show (11.15)) is 2-Cartesian in §11.9.3

11.9.2 Constructing W e, f,n in the general case

Next we generalize the work of to the case when Assumption does
not hold. Then in the first part of we can no longer take W to have
topological space {(z,y) € X x Y : g(z) =h(y)} withe: W - X, f: W =Y
acting by e : (z,y) — z, f : (z,y) — y. Also for the fibre product T} in Man in
, we cannot assume T} has topological space (11.115|).

We need to provide new definitions for W, e, f, and the continuous maps ¢, :
q;1(0) — W for a € A. This is very similar to the definition of the topological
space Ci(X) and map IIj, : Cx(X) — X for Cy(X),TI}, in Definition [£.39]

As in we choose a family indexed by a € A of m-Kuranishi neighbour-
hoods (Uga, DayTas Xa)s (Vay Eay Sa,®a), Wy, Fy ty,wy) on X, Y, Z as in §4.7|
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with Im x; C ¢~ (Imwy), Im; € A~ (Imwy) and Im wy;, and 1-morphisms g, :
(U(M D(u Ta, Xd) - (Wd‘v Fd‘v Ly Wy ) hii?i' : (Va7 Ea7 Siis '(/)a) - (Wav Fa7 i w&‘)
over (Imxg,g) and (Im;, h), as in Definition such that g, hsy are
w-transverse as in Definition [11.16] and

{(xay) EXXY: g(lL’) = h(y)} = UaGA{(xvy) € ImXil X Im,‘/}d : g(lL’) = h(y)}

Applymg Definition and Theorem [T1.17] to the w-transverse 1-morphisms
i P in GmKND gives an object (T4, Cy, gq) in GmKNp in a 2-Cartesian
square in GmKND and GmKNE, for all a € A.

Now follow 11.9.1]between (I1.118) and (I1.126). For all a,b € A this defines
an open subset Tab C T, and a l-morphism 34 : (To, Ca, qa)|T,, — (T5: Ch, @)
in GmKNp with 3., = id(1,,c.,q.), and for all a,b,c € A it defines an open
subset Tope = Top N The € Ty, and a 2-morphism Ipe @ Xpe © Tapl1,,. = Zacl|Tos.
in GmKN p. None of this uses W.,e, f, pa, which are not yet defined.

Definition [£.2(d) for ¥, shows we have a continuous map

Sablg 10y, e (0)N Ty — q, ' (0), a,be A (11.138)

Also ¥,, = id(Ta,Ca,qa) and Definition for Iype imply that

Saalgt )nr,, =1 q; 1 (0) — ¢, 1(0),

. ) (11.139)
Ybel 0 Bap]. = Bael 1@ (0) N Tap N Toe — g2~ (0).

Setting ¢ = a we see that Y| -1 g)nr,, * 9o (0) N Tap — g, (0) N Ty, is a
homeomorphism, with inverse Eba| ~1(0)NTha

As for the definition of Cj(X) in Deﬁmtlonu 9} define a binary relation ~ on
e aa'(0) by wg = wp if a,b € A and w, € g, '(0) N Top with Xep(we) = wp
in g 1(0). Then 1} imply that =~ is an equivalence relation on
oca ¢;1(0). Asin (4.49), define W to be the topological space

W= [llaea ' (0)]/ =,

with the quotient topology. For each a € A define ¢, : ¢;1(0) — W by
©Va : Wa —> [we], where [w,] is the ~&-equivalence class of w,.

Definee: W — X and f: W = Y by e([wa]) = xa © €aa(wa) and f([wq]) =
s 0 faa(wy) for a € A and w, € q;1(0). To see that e is well defined, note that
if w, & wy, as above, so that Xy, (w,) = wp, then

Xa © €aa(wa) = Xj 0 Tyj 0 €aa(Wa) = Xj © €y © Lap(wa) = X, © €3 (W),

using Definition e) for the coordinate change Ty; on X in the first step, and

the 2-morphism E iy 0Xa = Ty 0 €qa|T,, from in the second. In
the same way, f is Well defined.

Very similar proofs to those in Definition show that ¢, : ¢;1(0) = W
is & homeomorphism with an open set in W, so that (T,,C4, qa, ¢,) is an m-
Kuranishi neighbourhood on W, and e, f are continuous with ey : (T4, Cq, qa,
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©va) = (Ua, Da, e, Xa) @ 1-morphism over (Im,,e) and f.; : (Ta, Cayda, o)
— (Va, By, 84, %s) a 1-morphism over (Im ¢, f), and W is Hausdorff and second
countable with W = [J,c o Tm,. Then the proofs in §11.9.1} but with these
new W,e, f, pq, construct an m-Kuranishi space W = (W, A) and 1-morphisms
e:W— X, f: WY and a 2-morphism n: goe = ho f in mKur.

11.9.3 Proving the universal property of the fibre product
We continue in the situation of §11.9.2} There, given w-transverse 1-morphisms g :

X -7 h Y — Zi in mKurD7 we constructed W.e, in a 2-commutative
square in mKurp. We will now prove that (11.15) is 2 Cartesian in
mKurg, by Verlf ing the universal property in Definition This will also
imply that 1) is 2-Cartesian in mKur D, as D implies E

Suppose we are given 1-morphisms ¢: V — X andd: V — Y in mKurg

and a 2-morphism Kk : goc= hod. Write V = (V, £) with
L= (L,(S;,Bi,pi,v)ier, P, iwen, Hur, 1o rer),

and use our usual notation for ¢, d, k. Our goal is to construct a 1-morphism
b:V - Win mKurg and 2-morphisms ( :eob = ¢, 8 : f o b= d such that
the following diagram (A.17)) of 2-morphisms commutes:

(goe)ob————= (ho f)ob———=ho(fob)

n*idp Qh,f,b
Jeaes - ) 1dh*0u (11.140)
go(eob)=—————goc hod.

Let a € Aand ! € L. Then (U, D4, 74, Xe) is an m-Kuranishi neighbour-
hood on X, and (S;, By, pi,v;) is an m-Kuranishi neighbourhood on V' as in
Example Thus Theorem b) gives a 1-morphism ¢, : (Sy, By, pr,v1) —
(Ua, Dy 7ay xa) over (Imwv; N e 1 (Imy,),e). Similarly we get a l-morphism
dla : (Sl,Bl,pl,vl) (Va,Ea,sa,wa) over (Imvl Nd 1(Im1y),d). Composing

unique 2 morphlsm Ky gaaocla = hyzodp; over Imv;Ne~ ! (Im Xa)ﬂdfl(Im Vi)
such that the analogue of (4.62]) commutes.

Writing Cly = (Sla,cla,éla), dlti = (Slii7dld; C?lti) and setting Sla = Sl(‘z n Sliia
we now have a 2-commutative diagram in GmKNg:

(S1, Bi,pi)ls,, 2 (Va, B, s4)
1ilsy,

\LC""I‘SZQ ®ug fp h‘m‘L

(Ua, Da,ra) Jat (W, Fa, ty).

The 2-Cartesian property of (11.118) in GmKNg gives a 1-morphism
bla . (SlaBlvpl)|Sl,l I (Ta7ca7qa)7

and 2-morphisms

Claa © €aa © bl = Cials,,,  Bai : fas © bla = diidls,., (11.141)
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such that the following commutes

G © €ai © blg ———— i 0 £ 0 bia

ﬂidgad*cm idhw*ezaaﬂ (11.142)
Kig

9ai © Clalsy, hii o dials,, -

Now let @ € A and [,I’ € L. Then we have 1-morphisms
bialsi.ns,, > bra o Purls.ns,, : (St, Bi,pi)lsi.ns,, — (Ta,Casqa),
and 2-morphisms ¢;,;, @iaa in (11.141) such that (11.142)) commutes, and

a ; .
Ciir © (Crraa * 1dP”,) P €44 0 by o Py |SlamS”/ g cld|SlaﬁS”/a

a .
Dll/ @ (el’ad * 1dP”/) : faii o bl/a o Pll/|SlaﬁS”/ — dl&|SlaﬁS”/7

for C?l, tcpg o Py = ¢ and D?l, 2 dyg o Py = dyy given by Theorem c).
Using Theorem c¢) we can show that the following commutes:

G © €aq 0 byg o Py |slans”, ——hzzo faaobrao Pzz/|5mnsw
\U/idga.d_*(cz,@(Cl/ad*idp”, ) id, (Dl O (6,15 %idp ))u
Kig
9ai © Clals.ns,, hii o diils,.ns,, -

Hence the second part of the universal property for the 2-Cartesian square
(11.118) says that there is a unique 2-morphism in GmKNEg

a
Bj), : by o Pyrls,.ns,, = bials,.ns,,

such that
CL O (Cprgs ¥ idp,,) = Crug @ (ide,, * B,
fil (€ . p) =¢ ( aa li) (11.143)
Dll/ O) (Ol/a(-i * ldp”,) =045 ® (ldfaa * B”/).
Note that the existence of Bjj, implies that
bla|ImUlﬁImv,/ﬁc_l(lmxa)ﬂd_l(lm'(pd) = bl’a|---~ (11144)

Next let a,a’ € A and [ € L. A similar argument to the above yields a unique
2-morphism in GmKNg

!
aa’
B} : Y4 0 bials,.ns,, = bialsi..ns,,
such that

C?d/ © (idTa(l/ * Clad) © (Eggi * idbl,a) = Claz’z’ © (idea’a’ * B?a/)’
Di (idy,, * 6raa) © (F9 xidy,, ) = 0 © (idg,,, * B;"),
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where Cfm/ : Taar 0 €1y = €1 and D?d/ : Yya odyzg = dyjg are given by Theorem
c¢). Note that the existence of B} implies that

bla‘lm viNe= ! (Im xoNIm x4/ )Nd— (Im ¢z NIm ) — bla’lm- (11145)

As the domains of b, for a € A and | € L cover V, equations ((11.144))
and (11.145)) imply that there is a unique continuous map b : V' — W with
b/ m vy Im vy Ne=1 (Im xa )Nd—1 (Im ) = bia for all a € A and [ € L. Define

_ a, a€A aa’, a,a’ €A
b= (bv bia, 1cL, aca; Bll’,l,l’€L7 Bz, leL )

We will show that b: V' — W is a 1-morphism in_mKur. Definition a)—(d)
are immediate. For (e), setting [ = I’ we have Cj; = id = Dj;, so uniqueness of

Bj; satisfying (|11.143) gives Bj; = idy,,, and similarly Bj* = idy,,.
For (f), let I,I',1” € L and a € A, and consider the diagram

€aq © byrg o Py o Py . . €ai © bira © Piiv
1d*Bf,L,,*1d
Gt g ¥id . Citga*id
! Clyyrwid !
Cyrrg O Pl/l// o Pll/ Cirg © Pll’
id«H, ﬂ/id*H”/lu o ucfl, id«B, || (11.146)
ll//

Cyrrg © Pll” Cii

Cl:\

€44 © bla .

%l”aa*id
id«BY,

17
€aq © byrg o Py =

Here the top, bottom and right quadrilaterals commute by 7 the left by
compatibility of vertical and horizontal composition, and the centre by Theorem
4.56/(d). So commutes, and so does the analogous diagram involving
F i 01aa, D in place of €44, ¢ 10, Ctii. Using these and uniqueness of B,
satisfying , we deduce that the following commutes:

byrq o Py o Py — birg o Py
By +idp,,

1 a
\U/ldbl"a*H”/lN B”/\M/
B
birg o Py bia.

This is Definition f) for b, and we prove (g),(h) in a similar way.
By the method used to construct n:goe = ho fin §11.9.1] we can show
that there are unique 2-morphisms in mKur

¢= (Clz’,leL, ieI) ceob=¢c, 0= (elm ZELJG]) i fob=d,
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such that the following commute for alll € L, a € A, i€ [ and j € J:

(eob)y; c i
li
flo: ) | (1147
id* . e
€q; 0 bjg =———="Ty;0€,;0b4 % Taioci, === c;; o Py,
(fob)y 5 dij
1y
fefs N | (11.148)
Jajobia —="T;jof,;0bi e Yijodis =——=>di; o Pu.

b b . ...
Here ©%% 07 are as in Definition

lai? _laj

for eob,fob, andC?f:Tdiocmé

cy; o Py, DZJ : T4 0 dizg = dyj o Py are as in Definition for ¢, dy;.
We now prove that ((11.140)) commutes by considering the diagram

((goe)ob)k

((ho f)ob)

(ho(fob)

(n*idp )k

(h,#,6)1k

b g,fob
lak
ak la N ak la jk ly
goe oby, —— (ho f ob h.. o f ob
Nk *id oMb 4id f.b
ﬂegﬁc*id ajk id*@)l{;jﬂ‘
ak .
9,10 Gy *id Pyrohyzof 500 = hjro id+6;
€q;0big D, 09440€ai0bla HE% i fajobia
i R i .. id*0;44
(@g,e,b)1i (dr©eP 9;1° Ggg' *:1d¢'ﬁjko ld*“lg D0 Hijrd hjro
* e
i Tyioci 9ui°Cla hizodis Tajodia
L o (idp
ﬂld*cf; 1d*D;llJ\U/ oy
9,10 id*Cy, -
(8 o b)lz — 9,1 ° Clii (GoO)j} (HOD);le i h.d
o9 Lk
g,eob i
Olik
(idg*¢) 1k Kk
(go(eod)) (goch (hod)u,
(11.149)

foralll € L,a€ A, i €I, je€ Jand k € K. Here the left and top right
pentagons commute by , the top left, bottom left, and rightmost quadri-
laterals by , the bottom right quadrilateral including &;; by for
K13, the quadrilaterals to left and right of this by (4.60)), the bottom centre left
quadrilateral and the right semicircle by 7, the centre triangle
by , the two quadrilaterals to the left and right of this by compatibility
of vertical and horizontal composition, and the top centre pentagon by .

Thus commutes. The outside of proves the restriction of the
‘lk’ component of to the intersection of its domain with b= (Im ¢,) N
c'(Imy;) Nd~'(Ime;). As these intersections for all a € A, i € I, j € J
cover the whole domain, the sheaf property of 2-morphisms of m-Kuranishi
neighbourhoods implies that (11.140) commutes. This proves the first part of the
universal property in Deﬁniti the existence of b, {, 8 satisfying .
For the second part, suppose b : V. — W is a 1-morphism in mKurg and

b 9 : f ob= d are 2-morphisms such that the analogue of

(:eob=c¢ 0
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commutes. Then b contains 1-morphisms by, : (S, Bi,pi,v1) = (To, Cay oy Pa)s
and running the construction of ¢, @ above in reverse, we find that as in (11.141)
there are unique 2-morphisms ¢, : €aa © bia = €ia, Glai : fai © bl = dis such

that the analogues of (|11.147)—(11.148]) commute for all € I and j € J:

(e o b)lz f Ci;
fest . ’ |
~ ~ id*Cyq4a Cyy
€qi 0 by Tai0eqq0b1, Tyi0c1, =———>c;; 0 Py,
(fob)yy = dij
fles? Y H
i :
- ” = id#By.4 1 e dioP
fajobla=——="Tsjof50bia gjodiy =——=>d;j o Py.

From the analogue of (11.140) we can use the analogue of (11.149) in reverse
11.142

to prove that the analogue of (11.142]) commutes:

9 © €aq © big hii o f 4 0 bia
ﬂidgda*ém idhd&_*éladu
.
ga,a 0 Ciq = haa ] dla.

Then the second part of the universal property of the 2-Cartesian square (11.118)
shows that there is a unique 2-isomorphism €, : bjy = by With ¢}, = CldQ(ideadf
€1,) and 05 = 0; © (idg,, * €4). We can then check € = (ela, leL, aeA) :b=0b
is the unique 2-morphism with ¢ = ¢ © (ide * €) and 8 = 6 © (idy * €). This
completes the proof that is 2-Cartesian in mKur E, and hence in mKurp.
We have now proved the first part of Theorem [T1.19]

11.9.4 Proof of parts (a)—(h)

Finally we prove parts (a)—(h) of Theorem

Part (a). Suppose g, h in §11_91|»§11_93| are transverse, not just w-transverse.
Then in §11.9.1-§11.9.2) we can choose the diagrams 7 forae A
with g44, hay transverse, not just w-transverse. So as in Definition [T1.16] we
have C, =0, as C, is the kernel of , which is an isomorphism. Thus the
m-Kuranishi structure on W has m-Kuranishi neighbourhoods (7, C4, ¢a, ¢a)
with C, = g, = 0 for all a € A. Therefore W is a manifold as in the proof of

Theorem [10.45]

Part (b)' Suppose (Ula Dlﬂnla Xl)» (Vm7 Em7 Smuwm)v (anFnatnuwn)vglna hmn
are as in Theorem [11.19(b), and (Tk, Ck, qr), €ki, fim are constructed from
them as in Definition [11.16 Then in §11.9.2] we can choose the diagram
(11.117)) for some a € A to be (11.116)), so that (T, Ca,qa) = (Tk, Ck, qr). Thus

(T4, Cl, qa, 9a) in the m-Kuranishi structure A of W = (W, A) in §11.9.1}-§11.9.2
has T, = Ty, C, = C, and q, = gy, as in Theorem [11.19(b).
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By Example (Ty, Cayqa, o) is an m-Kuranishi neighbourhood on W.
The definitions of e, f,n in §11.9.1}-411.9.2] then imply that e,; = ex and

fai = frm are 1I-morphisms of m-Kuranishi neighbourhoods over e : W — X,

f:W—=Yasin and comparing (4.62)) and (11.135) shows that the

unique 2-morphism 7,,:5 = Mimn : 9in © €kl = Rmn 0 f,, constructed from

n:goe= hofin Theorem b) is the identity, as in (11.116]) and (11.117).

This proves part (b) in the special case that we choose to construct W, e, f,n
in §11.9.1] including the given data (U, Dy, ri, x1), - - - , Rmn. But any other
possible choices of W’ €', f',n in a 2-Cartesian square are canonically
equivalent to W e, f,n, by properties of fibre products, and we can use the
canonical equivalence i : W — W’ and 2-morphisms €’ 0i = e, f 01 =
f to convert (T,,Ca,qas©a); €ads fas 10 m-Kuranishi neighbourhoods and 1-
morphisms over W', e/, f’ satisfying the required conditions.

Part (c). We have already proved (c) in §11.9.1] and §11.9.3] as in when
Man satisfies Assumption we constructed W, e, f with topological space
W ={(z,y) € X xY : g(x) =h(y)}, and maps e : (z,y) — z, f: (z,y) — y.

Part (d). Suppose Man satisfies Assumption a), and we are given a
2-Cartesian square in mKurp with g a w-submersion, so that g, h are
w-transverse. Let w € W with e(w) =z in X and f(w) =y in Y. Then in (b)
we can choose 9in ¢ (Ul,Dl,Tl, Xl) - (Wnu Fnytnywn)7 - (Vma En, smawm)
— Wy, Fpytn, wy,) with € Im x;, y € Im 4, and g;,, a w-submersion. So (b)
gives (T, Cky Qks Pk )s €1y fpm constructed as in Definition [11.16] and w € Im .
Then gin |, : Uln — W, is a submersion in the fibre product (|11.114)) for
Ty, by Definition iii), 80 fim : Ty — Vi is a submersion by Assumption
a). Also gin|0,, is surjective by Definition [I1.15[iv), which implies that
frem : Cx = i, (D) is surjective by the definition of C’k,fkm in Definition
Hence f,, = (Tks frm, fom) is a w-submersion by Definition As
we can find such f,, over (Im @y, f) with w € Im ¢, for all w € W, we see that
f: W — X is a w-submersion by Definition [11.1§
Part (e). Suppose Man satisfies Assumptions and and we are
given a 2-Cartesian square in mKurp with g,h w-transverse. Let
w € W with e(w) = z in X, f(w) = y in Y, and g(z) = h(y) = z in
Z. Choose (Tx, Ck, qk, ©k);s - - -y (W, Fruytn,wn) and ek, ..., Ay as in (b) with
w € Imyg, x € Imy;, y € Im, and z € Imw,,. Set t = go,;l(w), up = Xfl(x),

152



V= ¥ (y) and w, = w, *(2), and consider the commutative diagram:
0 0 0 0
0 i 0 \L dey, qr i 0 J’ 0
—0—T3, T Cilt, —0——---
0

Toy, ert €xiley, 0
Lo P fkmltk.

(dulrl 0 )
0 d'UnLSm
T, Ui® Dilu® 9 0 _ ... (11.150)

Tvm Vm m|vm
0 (Tuzgln ~Top, hmn) 0
(gtnluy  —Pomnlon)
00T, W, donlr Foly, 20" s ...
b b
0 0 0 0.

Here the second column is exact by Assumption [11.5| applied to the transverse
fibre product ((11.114)) at t, and the third column is exact by Definition

As in equ of Definition the cohomology groups of the
first row of at the second and third columns are T, W and O, W, and
similarly the second and third rows have cohomology 7. X © T,,Y,0, X ® O,Y
and 1, 7,0, Z.

In the setting of Definition regard as a diagram , a
short exact sequence of complexes E°, F'*, G*, the first, second and third rows
of respectively, with the third column of (11.150) in degree zero. Thus
Definition constructs a long exact sequence from . This

sequence is equation (11.16) in Theorem [11.19{d), as we want.
In more detail, our identification of the cohomology of the rows of (11.150))

shows that the vector spaces in (]W[) are 0, T, W, T, X ®1T,Y,...,0,Z,0 as
in . Comparing Deﬁnitions 10.21| and [10.69| we see that the morphisms
HF 9') k(p® )m for k = —1,0 are Tyye ® T f, ..., O 29— —Oyh, as in
. We define §9," in ( ) to be the connecting morphism 59. . in 1}
rom eﬁnltlonm A proof similar to the definition of T, f, O, f in Definition
shows 69" is independent of the choices of (T, Ck, @k, cpk) ., by above.
Part (f). Suppose Man satlsﬁes Assumptions and |1 and we are
given a 2-Cartesian square in mKurp Wlth g,h W—transverse Let
w € W with e(w )—me f( ) =y inY, and g(z) = h(y) = z in
Z. Choose (T, Cr, @y ©k)s - s Why Frytn,wy) and egy, . .., Ay, as in part (b)
with w 6 Impg, € Imy;, y € Imepy, and z € Imw,. Set t, = ¢; ' (w),
=X (@), vm = U (y ) and wn = w; ' (2).
As the fibre product ((11.114) is transverse, Assumption says that

th Tk va m
Qe erl
| Qi From Qupnhnn | (11.151)
u;9in
Quz Ui l an W,
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is Cartesian in Q. Now Definition gives isomorphisms Q@ QuW —
Qe Tiy. .., Q2 t Q. Z — Qy, Wy, in Q such that ( m commutes for ey,
Fims 9ins Bmn. Thus (11.151) is isomorphic in Q to the commutative square
(T1.17), so (T1.17) is Cartesian in Q, as we have to prove.
Part (g). Suppose Man® satlsﬁes Assumptlons 13.22] [11.1} and [11.7] and we
are given a 2-Cartesian square in mKurp with g,h w- transverse Since
C : Man® — Man® maps Man b — ManC by Assumptlon 7, the corner
2-functor €' : mKur® — mKurc from maps mKur$, — mKur 4. Thus
applying C to shows is a 2 commutative square in mKur¢ D We
must show that C(g),C (h) are w- transverse and (11.18) is 2-Cartesian.
Choose (T}, Ck,qk, ©Ok)s - (Wn, Fmtmwn) and ey, ..., Ry, as in part (b).
Then Definitions and [4.61] construct m-Kuranishi neighbourhoods (7| (a,k)>
Clak)» 4(a,k)s Plak)) ON Ca( for a > 0, and so on, and 1-morphisms €(a,k) (b,1)>
shicmy@ny over C(e),...,C(h) in a 2-commutative diagram in GrmKNC :

as0(Ta: Clamy aky)
Ha,cgo f(a,k)(cym)

L b>0 @m0 ldﬂ e a0 Pe,mycd,n) (11.152)

Iy 420 9,1y (d,n)
=0y, Dy o))

This is the result of applying the corner 2-functor to (11.14)).
. Applying C' : Man® — Man to the transverse fibre product 1) in
Man® and using Assumption shows we have a fibre product in Man®

C(Tk) = C(Uin) X (gin ity 1,CWa)Clhimnlvnn) C Vi), (11.153)

where C(gin|tn,,)s C(hmn|v,,,,,) are transverse in Man®. Note that the manifolds

and smooth maps in are the Cartesian square from (11.153)).

Also, the vector bundles and linear maps in (11.152)) are pullbacks of those
in , so that C(a7k) = HZ(Ck), é(a,k)(b,l) = HZ(ékl)y and so on. There-
fore they satisfy the same surjectivity and exactness conditions as do those in
(11.14). Thus Definition [T1.15(i),(ii) for g;,,, Fumn imply Definition [TT.15{i),(ii) for
9(b.0)(dn)> h(cm)(,n), 5O 9(b.0)(dn)> R (c,m)(d,n) are w-transverse for all b, c,d > 0,
and the bottom and right 1-morphisms in are w-transverse. As the
domains of such g, ;y(4,n)> P(e.m)(d,n) cover C(X) Xc(g),c(2),cn) C(Y), we see
that C(g),C(h) are w-transverse, as we want. The same proof shows that if
g, h are transverse then C(g), C'(h) are transverse.

Given all this, equation is built from the w-transverse 1-morphisms
050 90,0y (@) a0 1 450 P(e,m)(an) in exactly the same way that equation

11.14)) is built from the w-transverse 1-morphisms g;,, and h,,, in Definition
11. 16E Therefore Theorem shows that is 2-Cartesian in GmKN$,
and GmKNC

In §11.9.3| we showed that when the 2-commutative square (11.15) can be

Hc>0(‘/(c,m)7 E(c,m)a S(C,m))

HasoWianys Fianys tdn))-

covered by a family of diagrams (11.117)—(11.118) for a € A with (11.118)) 2-
Cartesian in GmKNp and GmKNg, then (11.15)) is 2-Cartesian in mKurp
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and mKurg. Since can be covered by a family of diagrams (11.152)
which are 2-Cartesian in GmKN}, and GmKNE, the same proof shows that
(11.18]) is 2-Cartesian in mKur% and mKur$ , as we want.

In the w-transverse 2-Cartesian square in mKurCD, suppose w' €
C;(W) C C(W) with C(e)w' = 2’ in Cj(X), C(f)w’ = ¢y’ in Cr(Y) and
C(g)z’ = C(h)y = 7 in Ci(Z). Locally near w’ we have a w-transverse fibre
product C;(W) ~ C(X) x¢,(z) Cx(Y), so the first part of Theorem gives

vdim W — i = vdim C;(W) = vdim C;(X) 4+ vdim C(Y) — vdim C;(Z)
=vdimX —j+vdimY — k —vdim Z +[.

But also vdim W = vdim X + vdim Y — vdim Z, so that i = j+ k — [. Therefore
being 2-Cartesian in mKurCD implies equation QD holds in mKur‘b.
When i =1 and Z = (), in the union over j, k,[ in (11.19) the only possibilities
are (j,k,1) = (1,0,0) and (0,1,0), yielding equation ([11.20)).
Part (h). Suppose Man satisfies Assumption andg: X — Zisa
w-submersion in mKurD, and h : Y — Z is any morphism in mKurE.
Then we can construct the fibre product W = X x4z, Y in mKurg by
the method of but working in GmKNE, mKurE rather than
GmKND, mKurp throughout, and taking the g;,,, g, to be D w-submersions.
The proofs of (a)—(d) and (g) above still work, with the obvious modifications.
This completes the proof of Theorem [11.19

11.10 Proof of Theorem [11.22

11.10.1 Proof of Theorem (11.22|(a)

Let Man® satisfy Assumptions and Supposeg: X - Z, h:Y — Z
are 1-morphisms in mKur$,, and z € X, y € Y with g(z) = h(y) = z in Z.

For the first ‘only if’ part of (a), suppose g, h are w-transverse. Then by
Definition there exist m-Kuranishi neighbourhoods (U, Dy, 7y, x1), (Vin,
By $msUm)y, Wi,y Foytn,wn) on X, Y, Z with € Imy; € g7 '(Imw,,), y €
Im4,, € h~!(Imw,) and z € Imw,, and l-morphisms g,,, : (U, Dy, 71, x1)
= W, Fuytn, wn)s Bmn : (Vins By Smsy, Ym) — (W, Foy t, wp) over (Imxg, g)
and (Im )y, k), such that g;,,, hm, are w-transverse.

Write u; = x; (%) € Uy, v = ¥t (y) € Vi and w,, = w;, }(2) € W,. By

(110.27)—(10.28) we have a commutative diagram with exact rows:

L LXe | T,U® dan®dmin Dify,® _ 0.X®
0 TyY — e Vim Em|ym —>OyY —0

szgeaTyh l%ﬁﬁ fngLf@i lomg@oyh (11.154)
O —> TZZ e Twan L Fn|wn OZZ 0.

As g;,, hmn are w-transverse, the third column of (11.154)) is surjective by
Definition [11.15(ii). Also gin : Uy = W, and by ¢ Vi — W, are transverse
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in Man® near u; € Uy, and v,, € Vinn, s0 Assumption says that the third
column of ((11.154) is surjective, and ‘condition T’ holds for the data:

(i) The quasi-tangent maps Qu, gin : Qu,Ui = Qu,, Wy, and Qu, himn : Qu,, Vin
= Qu, Wy, in Q.

(i) For all4,j,k > 0, the family of triples (u, v, w) for u € C;(U;), v € C;j(Vi)
with II;(u) = w, IL;(v) = vy, and C(gin)u = C(hpmp)v = w in Ci(W,).

As the third column of (11.154]) is surjective, the fourth column is surjective
11.21]

by exactness of rows, so (|{11.21) is surjective.

Definition [10.30] gives isomorphisms Q; : Q2 X — Q, Uy, etc., which identify
Q29 + Q:X — Q.Z and th : QyY — Q.Z with Qu,gin, Qu,, hmn in (1)
above. Also the maps x(i,1), ¥(j,m),W(k,n) from the definition of C;(X), C;(Y),
Cx(Z) in Definition identify the sets in (ii) above with the corresponding
sets from C(g)|... : Ci(X) — Cx(Z), C(h)|... : C;(Y) = Ci(Z) over z,y, 2.
Hence condition T holding for (i),(ii) above implies that condition T holds for
g,h at x,y, z, noting the requirement in Assumption a) that condition T'
only involves objects @, X, ... in @ up to isomorphism, and subsets Hi_l(m) -
Ci(X), ... up to bijection. This proves the first ‘only if’ part of (a).

For the second ‘only if’ part of (a), suppose also that g, h are transverse.
Then condition T still holds for g, h at x,y, z, and the third column of
is an isomorphism by Definition [11.15] and the second column is still surjective,
so by exactness of rows the fourth column (which is ) is an isomorphism,
and the first column (which is (11.22)) is surjective, as we have to prove.

For the first ‘if’ part of (a), suppose condition T holds for g, h,z,y, z and
(11.21]) is surjective, for all x,y, z as above. Choose m-Kuranishi neighbourhoods
(U, Diy v, x0)s (Viny By Sy W)y (Wh,y Frytnywp) on XY, Z with € Imy; C
g '(Imw,), y € Imep,, € h~!'(Imw,) and z € Imw,,. Theorem b) gives
I-morphisms g, : (Ul7 Dy, i, Xl) - (Wna Fr, tn7wn)7 hpy (va B, Sm, wm) -
(Wi, Byt wy) over (Imx;, g) and (Im,,, h).

Write w; = x; '(z) € Ui, vm = ¥ (y) € Vi and w, = w;,1(2) € W,
As condition T holds for g, h,z,y,z, it holds for the data in (i),(ii) above,
reversing the previous argument. Thus Assumption M(c) says there exist
open (u;,0) € Uy <= Up, x R® and (04, 0) € Vipr = Vi X R’ for a,b > 0, and
transverse morphisms g/, : Uy — W, by 2 Vi — W, with gy, (u, 0) = gipn (w),
o (V,0) = By (v) for all w € Uy, v € Vi with (w,0) € Uy and (v,0) € Vs,

As for (Viny, Eny, 5(n), ¥ (n)) in Definition define vector bundles Dy —
Uy, Epy — Vi by Dy = 713y (Dy) ©@ R*, Epyy = 75, (Em) ® R”. Define sections
ry =7, (1) ©idge in [°°(Dy) and s,y = 71}, (8y) © idge in T%°(Ey,r). Then
1 (0) = (r,71(0) x {0}) N Uy and s,,7(0) = (s;,5(0) x {0}) N V;,r. Define yy :
rl_’l(o) — X by Xl/(U,O) = xi(u), and Y, : 8;; (0) = Y by ¢ (v, O) = wm(v)'
Then (Ul/, Dl/, T, Xl/) and (‘/Ym/7 Em/, Sm/, ¢m/) are m-Kuranishi neighbourhoods
on X,Y, with z € Im xp and y € Im,,,/.
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As for ®(,,), in Definition [10.38] we have coordinate changes
Ty = (Ul’7 U idﬂi‘]l (Dl) D O) : (Ul’v Dy, ry, Xl’) — (Ula Dy, 7y, Xl)v
Yorm= (Vm/, TV, ldﬂ-{f/ (Em)@()) : (Vm/, EonySmr, QZJm/) — (Vm, Eo, Sm, wm)

Using notation 7 for XY, Z and defining Ty; = Ty 0 Ty, Ky =
Ky * idTl’l’ Tm/j = ij o Yorm, Am/jj/ = Amjj/ * idTm,m for i,i/ € I and
3,3 € J, where Ty;, K;;;» and Yinj, Amjjo are the implicit extra data making
(Ui, Diyriy xt)y (Vs By Smi, ¥m) into m-Kuranishi neighbourhoods on X, Y as
in then Ty, Kpjir and Yo g, Ay jjo make (Up, Dy, xir) and (Vi By,
Sm’ W) into m-Kuranishi neighbourhoods on X, Y. Similarly

9in © Tvir = (Ur, gin © vy, 75, (Gin) © My (D) ® 0):
(Ul/7Dl’?rl/7Xl’) — (WnaFn7tn7wn)7

hmn o ’rm’m = (Vm’7 hmn o 7era7Tik/m (ilmn) o Trfr;‘/ (Em) ) 0) :
(Vm’y Ery S, '(/)m’) — (Wna Foytn, wn)v
are 1-morphisms of m-Kuranishi neighbourhoods on X,Y, Z over g, h.

We have morphisms gy, : Uy — W), and g1, 0o 7y, : Uy — W, in Man¢.
Define open T' C D;» and a morphism ¢t : T'— W, by

T:{((u7 ($17"'7$a))’(d’ (y17"'7ya)))eDl' : (u7 (yla“'aya))EUl’}y
t: ((u’ (ml" .- ,l‘a)), (d’ (ylv' .- 7?/(1))) — glln(u7 (y17 ce aya))'

Then whenever both sides are defined we have

to ODl/ (ua (xla s 7xa)) = g;n(uv (07 AR 0)):gln(u):glno7rUl (ua (xla s ,.’L'a)),

tory(u, (z1,...,74) = g1, (u, (T1,...,24)).

Thus if we define 7} = 07, : Dy — Ty, 0my,, W, using the notation of Definition

[B:32] then in the notation of Definitions vii) and vii) we have
Gim = gin © T, + Ao re +O(ry)?. (11.155)

Equation ([11.155)) implies that gy, = gin © 7y, + O(rr). So by Theorem
(g) there exists gy, : Dy — g}y, (F,,) with

Gim = (Gin © Ty, (D) P 0) + O(ry).

Define a vector bundle morphism g, : Dy — g5, (F,) by
Gin = Girm + 9 (Vtn) 011,
for V some connection on F,, — W,,. Then we have

gl’n = (gln © 7T7rz}l(Dl) S5 O) + gl*’n(dtn) © ’f’ + O(’I"l/), (11156)
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in the sense of Definition [3.15(iv),(vi).
.3

From Definitions and [4.3[ and (11.155)—(11.156) we can show that
9im = U, gy Gin) = (U, Dyt xer) — (W, Fryy by, wn)

is a 1-morphism of m-Kuranishi neighbourhoods over (Im x;, g), and
n=[Ur.n]: g, °Ti= gy,

is a 2-morphism. Then using we can make g;,, into a l-morphism
over (Imxy,g) in a unique way such that n : g;, o Ty = gy, is the unique
2-morphism given by Theorem ¢). Similarly we construct

hm/n = (Vm/vhm’naﬁm’n) : (Vm’vEm/vsm’,wm/) — (anFn,tn,wn)

over (Im,,/, h), and a 2-morphism ¢ : Ry © Tonren = Rpin.

Consider equation for gy, R at (u,0) € Uy, (v, 0) € Vi,
(wy,,0) € W,,. Then the second column of is surjective as gyn, hmrn are
transverse, and the fourth column is surjective as ({11.21)) is surjective. Hence
the third column is surjective by exactness. Thus Definition [11.15ii) holds
at (u,0), (vm,0), and this is an open condition. Also Definition 11.15|(i) holds
as gyn, hmyn are transverse. Thus making Uy, V,, smaller, we can suppose
Gyrny Pm/n are w-transverse. As we can find such g;/,,, by, with € Im x; and
y € Im ), for any z,y, z as above, g, h are w-transverse by Definition [11.18
This proves the first ‘if” part of (a).

For the second ‘if’ part, suppose that Assumption holds for Man®,
and for all z € X, y € Y with g(z) = h(y) = z in Z, condition T holds for
g, h,x,y,z, is an isomorphism, and is surjective. For such x,y, z,
we use Assumption and Proposition to choose m-Kuranishi neighbour-
hoods (U, Di, 71, X1)s (Vs By Smis Ym )y (Wi, Frytn, wyn) on X, Y, Z which are
minimal at z € Imy; € ¢~ '(Imw,), y € Imv,,, € h™(Imw,) and 2z € Imw,.
Theorem b) gives l-morphisms g;,, : (U, Dy, 1, x1) — (W, Foytn, wn),
honn : (Vi By Sy m) = (W, Fioy ty,wy) over (Im g, g) and (Im )y, h).

Consider for these g, h. Then the first column is , and so
surjective, and the fourth column is , and so an isomorphism. But the
middle morphisms dy,r;,ds,, Sm, dw, tn are zero by minimality at z,y, z with
u = x; H(x), v = Y (y) and w, = w,(2). Hence by exactness the second
column of is surjective, and the third column is an isomorphism.

The argument for the first ‘if” part shows that g;,,, Ay satisfy condition T at
Uy, Um, Wyn. This, surjectivity of the second column of , and Assumption
a),(b) imply that g;n, Ams are transverse near u;, v,,. So making U, C U,
and V,,, C V,, smaller we can suppose gi,, hmp are transverse.

As the third column of is an isomorphism, Definition ii)
holds at u;, vy, so making Uy, C Uj, Vi C V,,, smaller again we can suppose
Definition ii) holds at all u € Uy, v € Vipp with gin(u) = hpp(v) € Wi,
Then g,,,, hmn are transverse. As we can find such g;,,, by with € Im x; and
y € Im),, for any x,4, 2 as above, g, h are transverse by Definition This
proves the second ‘if” part, and completes Theorem [11.22]a).
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11.10.2 Proof of Theorem (11.22|(b)

We can prove part (b) in a very similar way to part (a) in §11.10.1 We work
with g, x, z rather than g, h,z,y, z, and instead of (11.154)) we use the equation

0 T, X T, Uy - Di|y, —> 0, X ——>0
u; Tl
| = [rasn T | |o-9
wp tn
0 T.Z —> Ty, Wy ——" > Fplu, —> 0.2 0.

We leave the details to the reader.

11.11 Proof of Theorem [11.25|

Work in the situation of Theorem Equation defines an isomorphism
Yxvzw: KEwlw — ¢(Kx)® f*(Ky) ® (9o e)*(Kz)*|y for each w € W.
Thus there is a unique map of sets Tx y,z in which satisfies (|11.26))
for all w € W. We must show that this map Y x y,z is an isomorphism of
topological line bundles. It is sufficient to do this locally near each w in W.

Fix w € W with e(w) = z in X, f(w) = yin Y and g(z) = h(y) = =
in Z. Let (U, Dy,ri,x1), Vins Emy Smy ¥m), (Wh, Frytn, w,) be m-Kuranishi
neighbourhoods on X,Y,Z, with € Imy; C g '(Imw,), ¥y € Im,, C
h~'(Imw,) and z € Imw,,, and let

9gin = (Ulnaglnmgln) : (UlaDl7rl7Xl) — (anFnytTHC‘}n)?
hmn = (an7hmnyﬁmn) : (VmaEmasm;wm) — (WnyFnatnywn)y

be w-transverse 1-morphisms over (Imyy, g) and (Im ¢,,, h).

Theorem [11.19(b) now gives an m-Kuranishi neighbourhood (T}, Ck, gk, ¢x)
on W with Imgy = e~ 1(Imx;) N f~1(Im,,) € W, so that w € Im gy, and
1-morphisms

ew = (Tk, ert, xt) : (Th, Cry ai, 1) — (U, Diy iy xa)s
fkm = (Tkyfkmafkm) : (Tkac’kanvSﬁk) — (vaEmaSmawm)

over (Im ¢y, e) and (Im ¢, f) with g;,, 0 €x; = Ry © Fipm, such that Ty, Ck, gk
and ey, f,, are constructed from (Uy, Dy, 11, X1)s Viny, Emy Smy W)y (Wi, Foytn,
wy,) and gy,,, By as in Definition [11.16] Thus

T = Uin X g1 |0, .Wa s honn vy Vmn
is a transverse fibre product in ManD for Uln C Uy, an C Vun open.

Set tr = ¢ (W), w = x; (%), vm = Yt (y) and w,, = w;1(2), and as in
§11.9.4] consider the commutative diagram (T1.150]), with rows complexes and
columns exact. In the setting of Definition [10.69} regard (11.150) as a diagram
, a short exact sequence of complexes E°®, F'*, G*, the first, second and

third rows of (|11.150)) respectively, with the third column of (11.150) in degree
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zero, so that the second and third columns of ((11.150) become complexes B*
and Bj. Then (11.25) is the exact sequence ((10.90) constructed from (11.150)) in
Definition [10.69] by the proof of Theorem [11.19e), so Proposition [10.70| yields

(—1)rank CrdimWo . (©pe @ Ofe ® Oge) (Vpe )71 @ Upy)

— (—1)ImOWdnTZ g (11.157)
From Definition [[0.66] and Theorem [0.71] we deduce that
@Tk,ck;Qk#Pk'tk = Ope : (det TtZTk ® det Clt,) — Kx|w, (11.158)

@memtmwn|wn = Oge : (det T:)an ® det Fn|wn) — Kz‘z. (11159)

Also F* in (11.150) is the direct sum of two complexes coming from (U;, D,
ri,x1) and (Vi,, By Smy ¥m ). So Proposition [10.68| implies that the following
commutes:

det(T{:l U ® qum Vin)® det(TrX @ T;Y)@
det(Dylu, © Enlo..) Ore det(0,X & 0,Y)
(—1)renk Dy dim Vin (—1)dim Oz X dim Ty Y,
Ity vprg, Vi ®ID) 10y B, Iy x,rpy®lo,x.0yY (11.160)
Ou,, Dy ey xy lu @
(det U ® det D]y, )® OV B o |vm Kxle ® Ky
(det T} Vyp @ det Epy)y,,) Xlz & BYly:
Combining equations (11.26)) and (11.157)—(11.160|) implies that
(_1)rank Cj dim W, +rank Dy dim V;,, | (@Tk,ck,qk,wk |;C1®
®UlaDlaTl,Xl |U1, ® ®Vm7Em7sm»wm |7Jm ® @anFn7tngwn ‘;,IL) (11'161)

° (ITu*l ULTs Vi @ 1Dy B, ) (UBe, @ (Upe) ™) = Tx v, 2|

Um

Now (11.161)) is the restriction to t; € g;, ' (0) of the equation

rank C dim W, 4+rank D; dim V, —1 *
(_1) " " (eTk,Ck,Qk,tﬁ’k ® ekl‘qgl(o)(@U“Dl’”’Xl)

® fkm|221(0)(G)vnuEmySnuw'm) ® (gln © ekl)|;;1(0) (9;‘/17Fn;tn7wn>)
—1
© (Leg (@001, @ Vin) @ Loz, (D), 17, (B a1 (0) (Wige, @ (W) ™)
=orn(Tx,v,z), (11.162)

where B:l, B(; are the complexes of topological vector bundles on qlzl(O) whose
fibres at ¢, are the second and third columns of (I1.150). Here Or, . g 005 - - »
OW, ,F,,tn.w, are isomorphisms of topological line bundles by Theorem [T0.71}
and I(iZZ(T*Ul)J,:m(T*Vm)’ IeZz(Dl)vam(Em) are also isomorphisms, and \IIB:l’ \IJE6
are nonvanishing continuous sections of topological line bundles.

Thus (11.162)) implies that ¢} (T x y,z) is a continuous, nonvanishing section
of o (Kw)* ®e*(Kx)® f*(Ky)®(goe)*(Kz)*) on g; ' (0). Therefore Tx y,z
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is a nonvanishing section of (Kw)* ® e*(Kx) ® f*(Ky) ® (goe)*(Kz)*, or
equivalently an isomorphism Kw — e*(Kx) ® f*(Ky) ® (goe)*(Kz)*, on the
open subset Im ¢, C W, as ¢y, : qk_l(()) — Im ¢y, is a homeomorphism. Since we
can cover W by such open subsets Im ¢y, we see that T x y, z is an isomorphism
of topological line bundles, as we have to prove.
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Chapter 12

M-homology and M-cohomology
(Not written yet.)

Review of ‘M-homology’ and ‘M-cohomology’, which are new (co)homology
theories M H,(X; R), MH*(X; R) of manifolds and orbifolds X, due to the
author [44]. They satisfy the Eilenberg—Steenrod axioms, and so are canonically
isomorphic to usual (co)homology H.(X; R), H*(X; R), e.g. singular homology
H$(X; R). They are specially designed for forming virtual (co)chains for (m-
)Kuranishi spaces, and have very good (co)chain level properties.
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Chapter 13

Virtual (co)cycles and (co)chains
for (m-)Kuranishi spaces in
M-(co)homology

(Not written yet.)

We define an additional structure on an (m-)Kuranishi space with corners X, and
on l-morphisms f: X — Y, called a vc-structure. If X is a compact, oriented
(m-)Kuranishi space with corners, Y is a classical manifold, and f: X — Y is a
1-morphism equipped with a ve-structure, we will define a virtual chain [X]yirt
in M-chains M Cyaim x (Y;Z) (in the m-Kuranishi case) or M Cygim x(Y;Q) (in
the Kuranishi case).

These ve-structures and virtual chains have lots of nice properties, which will
be important in applications in symplectic geometry. If X = () then 9[X]vir =
0, so we have a homology class [[X]yirt] in M-homology M Hyaim x (Y;Z) or
MH,4im x (Y;Q), the virtual class.

Such virtual chain and virtual cycle constructions are important in current
approaches to symplectic geometry, such as the work of Fukaya—Oh—Ohta—Ono,
Hofer-Wysocki-Zehnder and McDuff-Wehrheim discussed in §7.5]— see Remark
and Theorem[7.20] The point about our construction is that it will have very
good technical properties, which will make defining theories such as Lagrangian
Floer cohomology, Fukaya categories, and Symplectic Field Theory, much more
convenient.
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Chapter 14

Orbifold strata of Kuranishi
spaces (Not written yet.)
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Chapter 15

Bordism and cobordism for
(m-)Kuranishi spaces
(Not written yet.)
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Glossary of notation, all volumes

Page references are in the form volume-page number. So, for example, 1I-57
means page 57 of volume II.

INES) global sections of a sheaf &, [[-230
I'*>°(E) vector space of smooth sections of a vector bundle E, [-238

Ox : Kopx = Nox ® i% (Kx) isomorphism of canonical line bundles on bound-

ary of an (m- or p-)Kuranishi space X, [[I-67} [II-76

Ov.Ersy : (det T*V @ det E)|s-1(0) — Y"1 (Kx) isomorphism of line bundles
from a Kuranishi neighbourhood (V, E, T, s,%) on a Kuranishi space

X, [I-75

Ov,E,s,yp ¢ (det T*V @ det E)|;-1(g) — 1~ (Kx) isomorphism of line bundles from
an m-Kuranishi neighbourhood (V, E, s,1) on an m-Kuranishi space

X, [152

Txvz:Kw—e(Kx)® f*(Ky)® (goe)*(Kz)* isomorphism of canonical
bundles on w-transverse fibre product of (m-)Kuranishi spaces, [[I-96

ag fe:(gof)oe=go(foe) coherence 2-morphism in weak 2-category, [[-224
By : foidx = f coherence 2-morphism in weak 2-category,

§9h . T,Z — O,W connecting morphism in w-transverse fibre product of (m-)

Kuranishi spaces,
v¢ :idy o f = f coherence 2-morphism in weak 2-category,

s Nox — (0f)*(Npy) isomorphism of normal line bundles of manifolds with

corners,
\% connection on vector bundle E — X in Man, 1-241
C(X)  corners ]_[zi:n%X Ck(X) of a manifold with corners X,

C(X)  corners [[72,Cx(X) of an (m or p-)Kuranishi space X, [-124
[-161]
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C : Kur® — Kur® corner 2-functor on Kuranishi spaces,

C : Man® — Man® corner functor on manifolds with corners,

¢’ : Man® — Man® second corner functor on manifolds with corners,

C : mKur® — mKur® corner 2-functor on m-Kuranishi spaces,

C: pKurC — /,LKUI‘C corner functor on u-Kuranishi spaces,

C : Orb® — Orb® corner 2-functor on orbifolds with corners, [[-178

C*(X) R-algebra of smooth functions X — R for a manifold X,
Cr(X)  k-corners of an (m- or pu-)Kuranishi space X, [[-81] [-123] [[-157]
Cr(X)  k-corners of an orbifold with corners X,

Cy : I.(urgi — Kurgi k-corner 2-functor on Kuranishi spaces,

Cy : Mang, — Mang; k-corner functor on manifolds with corners,
Cy : mKurgi — mI.{urgi k-corner 2-functor on m-Kuranishi spaces,
Oy : pKurs, — pKurS, k-corner functor on pu-Kuranishi spaces, [[-124
Cy : Orbgi — (')rbgi k-corner 2-functor on orbifolds with corners, [[-178
c°P opposite category of category C,

C*°Rings category of C*°-rings,

C>®Sch®® category of affine C>°-schemes,

0: Kurgi — Kurgi boundary 2-functor on Kuranishi spaces,

0 : Mang; — Mang; boundary functor on manifolds with corners, [[-9]
a: mI'{urgi — mKurgi boundary 2-functor on m-Kuranishi spaces,
d: uKurgi — uKurgi boundary functor on p-Kuranishi spaces,

depthy = the codimension k of the corner stratum S*(X) containing a point =
in a manifold with corners X, [[-6]

DerMangy Borisov and Noel’s co-category of derived manifolds,
DerMang,; Spivak’s co-category of derived manifolds, @

det(E*®) determinant of a complex of vector spaces or vector bundles,
df :TX — f*(TY) derivative of a smooth map f: X — Y,

bdf T X — f*(°TY) b-derivative of a smooth map f : X — Y of manifolds
with corners, [-12]
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dMan 2-category of d-manifolds, a kind of derived manifold,

0X boundary of an (m- or u-)Kuranishi space X, [I-86} [I-124] [I-160} [-161]

0x boundary of an orbifold with corners X,

frop : Xtop = Yiop underlying continuous map of morphism f: X — Y in Man,

GKN  2-category of global Kuranishi neighbourhoods over Man,
GKN 2-category of global Kuranishi neighbourhoods over Man, [I-142

GKN¢ 2-category of global Kuranishi neighbourhoods over manifolds with

. c
corners Man€, [[-142]

GmKN 2-category of global m-Kuranishi neighbourhoods over Man,
GmKN 2-category of global m-Kuranishi neighbourhoods over Man, m

GmKN® 2-category of global m-Kuranishi neighbourhoods over manifolds with
corners Man®, [[-59]

GpKN category of global p-Kuranishi neighbourhoods over Man, [[-117]
GMKN category of global u-Kuranishi neighbourhoods over Man, [I-110

GuKN€ category of global u-Kuranishi neighbourhoods over manifolds with
corners Man€, [-111]

G.f : G X — G,Y morphism of isotropy groups from 1-morphism f: X =Y

in Kur,
G, X isotropy group of a Kuranishi space X at a point x € X,
G.X isotropy group of an orbifold X at a point z € X,
Ho(C) homotopy category of 2-category C,
I3 Ht_oi)(’]}Y) — Te(pC(Y) morphism of tangent sheaves in Man®,

I% T (°TX) — *T(Ck(X)) natural morphism of b-tangent bundles over a man-
ifold with corners X,

ix : 0X — X natural (1-)morphism of boundary of an (m- or p-)Kuranishi

space X, [[-86] [-124] [[-160

Ix :*TX — TX natural morphism of (b-)tangent bundles of a manifold with
corners X,

Ky : f*(Ky) = Kx isomorphism of canonical bundles from étale (1-)morphism
of (m- or p-)Kuranishi spaces f: X — Y, [[I-65
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KN 2-category of Kuranishi neighbourhoods over manifolds Man,
KN 2-category of Kuranishi neighbourhoods over Man, [[-141

KN°¢ 2-category of Kuranishi neighbourhoods over manifolds with corners
Man®,

KNg(X) 2-category of Kuranishi neighbourhoods over S C X in Man,
KNg (X) 2-category of Kuranishi neighbourhoods over S C X in Man,
KN¢g(X) 2-category of Kuranishi neighbourhoods over S C X in Man®,
Kur 2-category of Kuranishi spaces over classical manifolds Man, [[-153]
Kur 2-category of Kuranishi spaces over Man,

Kurp 2-category of Kuranishi spaces over Man, and 1-morphisms with

discrete property P,
Kurg.¢ 2-subcategory of Kuranishi spaces in Kur with all G, X = {1},
Kurtrp 2-subcategory of Kuranishi spaces in Kur with all r; ={1},
Kur?®  2-category of Kuranishi spaces with a-corners, [[153]
Kur® 2-category of Kuranishi spaces with corners,

Kur® 2-category of Kuranishi spaces with corners over Man® of mixed

dimension,

Kur‘j;. 2-category of Kuranishi spaces with corners over Man® of mixed
dimension, and 1-morphisms which are P,

Kurg,, 2-category of Kuranishi spaces with corners, and b-normal 1-morphisms,

154

Kur{, 2-category of Kuranishi spaces with corners, and interior 1-morphisms,
=154

Kurg, 2-category of Kuranishi spaces with corners, and simple 1-morphisms,
[-154]

KurS  2-category of Kuranishi spaces with corners over Man® of mixed
dimension, and simple 1-morphisms,

Kurg, 2-category of Kuranishi spaces with corners, and strongly smooth

1-morphisms,

Kurg, ,,,, 2-category of Kuranishi spaces with corners, and strongly smooth
b-normal 1-morphisms,

2-category of Kuranishi spaces with corners, and strongly smooth
interior 1-morphisms, [[154]

Kur¢

st,in
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Kurt

Se 2-category of Kuranishi spaces with corners and weakly smooth 1-

morphisms,
Kur® 2-category of Kuranishi spaces with corners associated to Man®, [[-157

Kur®. 2-category of Kuranishi spaces with corners associated to Man¢®, and

S1
simple 1-morphisms,
Kur®?2¢ 2-category of Kuranishi spaces with corners and a-corners,

Kury?® 2-category of Kuranishi spaces with corners and a-corners, and b-normal
1-morphisms,

Kur*® 2-category of Kuranishi spaces with corners and a-corners, and interior
1-morphisms,

Kur®® 2-category of Kuranishi spaces with corners and a-corners, and simple
1-morphisms,

Kurg;®® 2-category of Kuranishi spaces with corners and a-corners, and strongly
a-smooth 1-morphisms,

Kurg%  2-category of Kuranishi spaces with corners and a-corners, and strongly

a-smooth b-normal 1-morphisms,

Kurg%, 2-category of Kuranishi spaces with corners and a-corners, and strongly
.

a-smooth interior 1-morphisms,
Kur8® 2-category of Kuranishi spaces with g-corners,

Kurfs  2-category of Kuranishi spaces with g-corners, and b-normal 1-morph-
isms, [F155]

Kurf® 2-category of Kuranishi spaces with g-corners, and interior 1-morph-
isms, [F155]

Kur®® 2-category of Kuranishi spaces with g-corners, and simple 1-morphisms,
-159)

Kx canonical bundle of a ‘manifold’ X in 1\'/Ian7 11-10

Kx canonical bundle of an (m- or pu-)Kuranishi space X, [[1-62} [[I-74

PKx b-canonical bundle of an (m- or p-)Kuranishi space with corners X,

=66l

Man  category of classical manifolds, [[-7]

Man category of ‘manifolds’ satisfying Assumptions
Man another category of ‘manifolds’ satisfying Assumptions 3.7]

Man?® category of manifolds with a-corners, [[-18]
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Man2¢ category of manifolds with a-corners and b-normal maps,
Man2¢ category of manifolds with a-corners and interior maps,

ManZf category of manifolds with a-corners and strongly a-smooth maps,

ManZf,,, category of manifolds with a-corners and strongly a-smooth b-normal

tmaps,
ManZ¢;,, category of manifolds with a-corners and strongly a-smooth interior
tmaps,

ManP  category of manifolds with boundary,

ManP, category of manifolds with boundary and interior maps,

ManP?  category of manifolds with boundary and simple maps,

Man® category of manifolds with corners,

Man® category of ‘manifolds with corners’ satisfying Assumption
Man® category of ‘manifolds with corners’ of mixed dimension, m

Man® category of manifolds with corners of mixed dimension,

Mang , category of manifolds with corners and b-normal maps,

Man{  category of manifolds with corners and interior maps,

Man$  category of manifolds with corners of mixed dimension and interior
maps, [-§|

Man¢, category of manifolds with corners and simple maps,

Mans, category of ‘manifolds with corners’ of mixed dimension, and simple
morphisms,

Mang, category of manifolds with corners and strongly smooth maps,

Mangt category of manifolds with corners of mixed dimension and strongly

smooth maps,

Mang, ;,, category of manifolds with corners and strongly smooth b-normal
maps, [[-5]

Mang, ;,, category of manifolds with corners and strongly smooth interior maps,

Man¢

we

category of manifolds with corners and weakly smooth maps,

Man®?¢ category of manifolds with corners and a-corners,
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Man;2¢ category of manifolds with corners and a-corners, and b-normal maps,

Man{*¢ category of manifolds with corners and a-corners, and interior maps,
[-18]

Mang;* category of manifolds with corners and a-corners, and simple maps,
-19

Man{?¢ category of manifolds with corners and a-corners, and strongly a-
smooth maps,

Man_;°y ~category of manifolds with corners and a-corners, and strongly a-

smooth b-normal maps,

Mang;%, category of manifolds with corners and a-corners, and strongly a-

smooth interior maps,
Man8¢ category of manifolds with g-corners,
Man§] category of manifolds with g-corners and interior maps,
mKN  2-category of m-Kuranishi neighbourhoods over manifolds Man,
mKN 2-category of m-Kuranishi neighbourhoods over Man,

mKN¢ 2-category of m-Kuranishi neighbourhoods over manifolds with corners

Man®,

mKNg(X) 2-category of m-Kuranishi neighbourhoods over S C X in Man,
[-59i

mKN(X) 2-category of m-Kuranishi neighbourhoods over S C X in Man,
-5}

mKN¢g(X) 2-category of m-Kuranishi neighbourhoods over S C X in Man®,
[-59

mKur 2-category of m-Kuranishi spaces over classical manifolds Man,
mKur 2-category of m-Kuranishi spaces over Man,

mKurp 2-category of m-Kuranishi spaces over Man, and 1-morphisms with
discrete property P,

mKur?® 2-category of m-Kuranishi spaces with a-corners,

mKurp? 2-category of m-Kuranishi spaces with a-corners, and b-normal 1-

morphisms,

mKur{$ 2-category of m-Kuranishi spaces with a-corners, and interior 1-mor-

phisms,
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mKur2$ 2-category of m-Kuranishi spaces with a-corners, and simple 1-morph-

isms,

mKur?f 2-category of m-Kuranishi spaces with a-corners, and strongly a-smooth
1-morphisms, [[-79]

mKurff, 2-category of m-Kuranishi spaces with a-corners, and strongly a-

smooth b-normal 1-morphisms, [-79]

stin 2-category of m-Kuranishi spaces with a-corners, and strongly a-

smooth interior 1-morphisms,

mKur

b

mKur® 2-category of m-Kuranishi spaces with boundary, [[-93

mKurﬁ1 2-category of m-Kuranishi spaces with boundary, and interior 1-mor-
phisms,

mKurEi 2-category of m-Kuranishi spaces with boundary, and simple 1-morph-

isms,
mKur® 2-category of m-Kuranishi spaces with corners,

mKur® 2-category of m-Kuranishi spaces with corners over Man® of mixed

dimension,

mKurg 2-category of m-Kuranishi spaces with corners over Man® of mixed
dimension, and 1-morphisms which are P,

mKurg  2-category of m-Kuranishi spaces with corners, and b-normal 1-
morphisms, [-7§]

mKur{, 2-category of m-Kuranishi spaces with corners, and interior 1-morph-
isms, [275)

mKurg, 2-category of m-Kuranishi spaces with corners, and simple 1-morphisms,

mKurg;, 2-category of m-Kuranishi spaces with corners over Man® of mixed
dimension, and simple 1-morphisms,

mKurg, 2-category of m-Kuranishi spaces with corners, and strongly smooth

1-morphisms,

mKurg, ;,, 2-category of m-Kuranishi spaces with corners, and strongly smooth
b-normal 1-morphisms, [-7§]

mKurg, ;, 2-category of m-Kuranishi spaces with corners, and strongly smooth

interior 1-morphisms, [-7§]

mKurS,, 2-category of m-Kuranishi spaces with corners and weakly smooth

1-morphisms,
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mKur® 2-category of m-Kuranishi spaces with corners associated to Man€,

mKur®?2¢ 2-category of m-Kuranishi spaces with corners and a-corners,

mKury2¢ 2-category of m-Kuranishi spaces with corners and a-corners, and

b-normal 1-morphisms,

c,ac
in

mKur 2-category of m-Kuranishi spaces with corners and a-corners, and

interior 1-morphisms,

c,ac
si

mKur 2-category of m-Kuranishi spaces with corners and a-corners, and

simple 1-morphisms,

mKurg*® 2-category of m-Kuranishi spaces with corners and a-corners, and

strongly a-smooth 1-morphisms,

mKur%  2-category of m-Kuranishi spaces with corners and a-corners, and
,

strongly a-smooth b-normal 1-morphisms,

oie 2-category of m-Kuranishi spaces with corners and a-corners, and
;

strongly a-smooth interior 1-morphisms,

mKur

mI'{ur;fi 2-category of m-Kuranishi spaces with corners associated to Man¢,
and simple 1-morphisms,

mKur8® 2-category of m-Kuranishi spaces with g-corners,

mKurfy 2-category of m-Kuranishi spaces with g-corners, and b-normal 1-
morphisms,

mKurf? 2-category of m-Kuranishi spaces with g-corners, and interior 1-mor-
phisms,

mKurg® 2-category of m-Kuranishi spaces with g-corners, and simple 1-morph-

isms, [[-79]

pKN  category of p-Kuranishi neighbourhoods over manifolds Man,
[LKN category of u-Kuranishi neighbourhoods over Man, [[-110

pKN€¢  category of u-Kuranishi neighbourhoods over manifolds with corners

Man¢, [-11]]
pKN(X) category of p-Kuranishi neighbourhoods over S C X in Man,
;LKNS(X ) category of p-Kuranishi neighbourhoods over S C X in Man,
pKNE(X) category of u-Kuranishi neighbourhoods over S C X in Man®,
pKur  category of p-Kuranishi spaces over classical manifolds Man,

uKur category of u-Kuranishi spaces over Man, [[-116
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pKur p category of pu-Kuranishi spaces over Man, and morphisms with discrete

property P,
pKur?® category of y-Kuranishi spaces with a-corners, [[117]

pKurp® category of p-Kuranishi spaces with a-corners, and b-normal mor-

phisms,
pKurfS category of u-Kuranishi spaces with a-corners, and interior morphisms,
=120

pKuri’ category of y-Kuranishi spaces with a-corners, and simple morphisms,
[-120

pKurds category of u-Kuranishi spaces with a-corners, and strongly a-smooth
morphisms,

pKurdd, - category of p-Kuranishi spaces with a-corners, and strongly a-smooth
b-normal morphisms,

stin category of u-Kuranishi spaces with a-corners, and strongly a-smooth

interior morphisms,

pKur

pKur?  category of u-Kuranishi spaces with boundary, [I-125

pKurp category of y-Kuranishi spaces with boundary, and interior morphisms,

[-125

b . . y . . . .
pKury, category of p-Kuranishi spaces with boundary, and simple morphisms,

U-125)
pKur®  category of y-Kuranishi spaces with corners, [[117]

uKurC category of p-Kuranishi spaces with corners over Man® of mixed
dimension,

uKur‘}s category of p-Kuranishi spaces with corners over Man® of mixed
dimension, and morphisms which are P,

pKurg  category of p-Kuranishi spaces with corners, and b-normal morphisms,
[-179

pKurf, category of p-Kuranishi spaces with corners, and interior morphisms,

pKurg, category of pu-Kuranishi spaces with corners, and simple morphisms,
[-179

pKurg;, category of pu-Kuranishi spaces with corners over Man® of mixed
dimension, and simple morphisms, [-124]
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pKurg, category of pu-Kuranishi spaces with corners, and strongly smooth
morphisms,

pKurg, ,, category of p-Kuranishi spaces with corners, and strongly smooth
b-normal morphisms, [-119]

st.in category of p-Kuranishi spaces with corners, and strongly smooth

interior morphisms, [[119]

pKur

pKurg,, category of p-Kuranishi spaces with corners and weakly smooth mor-

phisms,
/,LKUI‘C category of p-Kuranishi spaces with corners associated to Manc, 1-122

pKur®2¢ category of p-Kuranishi spaces with corners and a-corners,

c,ac

pKury© category of p-Kuranishi spaces with corners and a-corners, and b-
normal morphisms,

c,ac
in

pKur category of u-Kuranishi spaces with corners and a-corners, and interior

morphisms,

pKur*® category of p-Kuranishi spaces with corners and a-corners, and simple
morphisms,

pKurg®® category of p-Kuranishi spaces with corners and a-corners, and

strongly a-smooth morphisms, [-120]

c,ac

<t bn category of u-Kuranishi spaces with corners and a-corners, and
strongly a-smooth b-normal morphisms, [[-120]

pKur

c,ac

<t in category of p-Kuranishi spaces with corners and a-corners, and
strongly a-smooth interior morphisms,

pKur

uKurgi category of pu-Kuranishi spaces with corners associated to Manc, and
simple morphisms,

pKurg® category of y-Kuranishi spaces with g-corners, [-117]

pKurfS category of p-Kuranishi spaces with g-corners, and b-normal mor-
phisms,

pKurfS category of y-Kuranishi spaces with g-corners, and interior morphisms,

=120

pKurf’ category of p-Kuranishi spaces with g-corners, and simple morphisms,
[-120

fo c M, X — MyY monoid morphism for morphism f : X — Y in Mang ,

M, X monoid at a point x in a manifold with corners X,
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N¢,(x) normal bundle of k-corners Cy(X) in a manifold with corners X,

bNCk( x) b-normal bundle of k-corners Cy(X) in a manifold with corners X,
-12)

Nox normal line bundle of boundary dX in a manifold with corners X,

Nxf (N, X — NyY stratum normal map for manifolds with corners X, [[-13

PNLf PN, X — bNyY stratum b-normal map for morphism f : X — Y in
Mang,, [-14]

N, X stratum normal space at z in a manifold with corners X,

PN,X  stratum b-normal space at z in a manifold with corners X, [[-13

Orbcr  Chen—Ruan’s category of orbifolds,

Orbcesta 2-category of orbifolds as stacks on site C*°Sch, [-172]

Orbk,: 2-category of orbifolds as examples of Kuranishi spaces,

Orbr. Lerman’s 2-category of orbifolds, [-17]]

Orbyansta 2-category of orbifolds as stacks on site Man,

Orbyp Moerdijk—Pronk’s category of orbifolds,

Orbp, Pronk’s 2-category of orbifolds,

Orbgr Satake—Thurston’s category of orbifolds,

Orb 2-category of Kuranishi orbifolds associated to Man,

Orb2¢  2-category of orbifolds with a-corners,

Orbe 2-category of orbifolds with corners associated to Man®©,

Orb®2¢ 2-category of orbifolds with corners and a-corners,

Orbgi 2-category of orbifolds with corners associated to Man®, and simple

1-morphisms, [[-17§]

Orbs,, 2-category of orbifolds with corners, and weakly smooth 1-morphisms,

173
Orbs,, 2-category of orbifolds with corners,

Orb®®  2-category of effective orbifolds with 1-morphisms surjective on isotropy

groups, [-35]

Orb8¢  2-category of orbifolds with g-corners,

Ox structure sheaf of object X in Man, 1-37 [I-235
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O.f : 0, X — O,Y obstruction map of (m- or u-)Kuranishi spaces, [II-17] [II-21]
=22

%0, f :°0,X — *0,Y b-obstruction map of (m- or y-)Kuranishi spaces with

corners, [[I-19]

O,f :0,X — O,Y stratum obstruction map of (m- or p-)Kuranishi spaces

with corners, [I-19]
0, X obstruction space at x of an (m- or u-)Kuranishi space X, [[I-16] [[I-21]

0:X coobstruction space at  of an (m- or u-)Kuranishi space X, |I[I-16
=21

®0,X  b-obstruction space at x of an (m- or u-)Kuranishi space with corners
X, =19

0, X stratum obstruction space at « of an (m- or p-)Kuranishi space with
corners X,

;i (Vi, Bi, 1y, s5,10:) — (V, E;,T,85,1;) 1-morphism or coordinate change
of Kuranishi neighbourhoods,

;- (Vi, By, si,¢0:) = (Vy, Ej, 84,%;) 1l-morphism or coordinate change of m-
Kuranishi neighbourhoods,

[@4;] : (Vi, By, 8i,¢5) — (V;, Ej, s4,%,) morphism or coordinate change of p-Kur-
anishi neighbourhoods,

Qof 1 QX — QY quasi-tangent map of morphism f: X — Y in 1\./Ian7 11-13

Qzf 1 QX — Q,Y quasi-tangent map of (m- or p-)Kuranishi spaces, [II-24
UI-28

Q. X quasi-tangent space at z of ‘manifold’ X in Man, [[I-13

Q. X quasi-tangent space at x of an (m- or p-)Kuranishi space X, [[I-24
[1-28

SY(X)  depth I stratum of a manifold with corners X, [I-6
Tf:TX — TY derivative of a smooth map f: X — Y,

bTf T X — PTY b-derivative of an interior map f : X — Y of manifolds with

corners, [[-12]
TrY tangent sheaf of morphism f: X — Y in Man, [-251

Tg:TsY — TyorZ morphism of tangent sheaves for f: X =Y, ¢g:Y — Zin
1\'/Ian7 1-254

Top category of topological spaces,
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TX tangent bundle of a manifold X,

X cotangent bundle of a manifold X,

TX tangent sheaf of ‘manifold’ X in Man,

T*X cotangent sheaf of ‘manifold” X in Man,

bTX b-tangent bundle of a manifold with corners X,

bT*X  b-cotangent bundle of a manifold X,

T.f:1T,X —T,Y tangent map of morphism f: X — Y in Man, m

O f T, X — bTyY b-tangent map of interior map f: X — Y in Man€,

T.f T, X — TyY stratum tangent map of morphism f : X — Y of manifolds
with corners, [[I-4]

T.f : T.X — T,Y tangent map of (m- or u-)Kuranishi spaces, [[I-17} [[I-21] [[I-22

T, f : °T. X — °T,Y b-tangent map of (m- or p-)Kuranishi spaces with corners,
LI-19

T.f T, X — TyY stratum tangent map of (m- or p-)Kuranishi spaces with
corners, [[I-19]

T.X tangent space at x of ‘manifold’ X in Man, m

X cotangent space at x of ‘manifold’ X in Man, m

®T,X  b-tangent space at = of a manifold with corners X, [I-11

T,X stratum tangent space at x of a manifold with corners X, [[I-4

T.X tangent space at x of an (m- or p-)Kuranishi space X,

X cotangent space at  of an (m- or p-)Kuranishi space X,

bT, X b-tangent space at  of an (m- or u-)Kuranishi space with corners X,
=191

T,X stratum tangent space at = of an (m- or u-)Kuranishi space with

corners X, [[I-19]

(V,E,T, s) object in 2-category of global Kuranishi neighbourhoods GKN, 1-142
(V, E,T', s,%) Kuranishi neighbourhood on topological space, [I-135

(V,E, s) object in ( categor of global m- or p-Kuranishi neighbourhoods
GmKN or G[,LKN i h

(V, E,s,1) m- or u-Kuranishi neighbourhood on topological space, [[-55| [I-109)|
X° interior of a manifold with corners X, [[-6|

Xiop underlying topological space of object X in Man,
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Index to all volumes

Page references are in the form volume-page number.

(2, 1)-category, [[-59 adjoint functor, [[-:237]
2-Cartesian square, [[-74] [[-229] [[T-90} Axiom of Choice,
[-114} [[-115) [-152] [[-169} [T-23]
2-category, Axiom of Global Choice,
1-isomorphism in, [Z149] =152 [I-169], [[1-23]
1-morphism, [[-223]
2-functor, C>-algebraic geometry,
weak 2-natural transformation, [[-129] [1-234}HI-235]
C*-ring, [[-36} [-128] [-234{[-235]
2-morphism, C°°-derivation, [[:239] [[-245|
horizontal composition, [[-224] cotangent module,
vertical composition, definition, [[-234]
canonical equivalence of objects, derived, [-104]
005 module over,
discrete, [[-35 C*°-scheme, IT—TEIM [-235] [I1-5]
equivalence in, [[-225] affine,
canonical, [F97] derived, -105
equivalence of, =228 C>-stack,
fibre product in, [2228/ 2229} [T} Cartesian square,
category,
homotopy category, coproduct, [I-31]
[[-120] =226}, [[TI-108| definition, [-221]
modification, equivalence of,
strict, [F223] essentially small,
wealk, 72 fibre product, 222
2-functor, [[-103] [-226}{-228 functor, see functor
equivalence of, [-228] groupoid,
strict, [[F226] initial object,
weak, [-75HI-76] [[-87], [[-226] opposite category,
weak 2-natural transformation, product category,
227 small, [22]]
modification, [[-22§] subcategory,
2-sheaf, [[-2] full,
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terminal object, 74 @
oy
class, in Set Theory, [67} [221] [{
classical manifold,
connecting morphism,
[[1-92] MI-116] [T-154]
contact homology,
coorientation, [[-28] [[I-10]
opposite, [[-28] [I-10]
corner functor,

[-48]

cotangent sheaf, [-239HI-242]

d-manifold,
Derived Algebraic Geometry,

s
Derived Differential Geometry,

il

derived manifold, [[=viiH{I=viii}, [[-103}
[[=105], =122, [T=viiHIT-viiy]

derived orbifold,
il

derived scheme,
derived stack,
determinant,

discrete property of morphisms in
Man, [[-44}I-45] [I-77HI-80]
mm [153HI-155] [
[[78} [-263}H-264] [[T-3HI1-14]

[1-79HII-87]

fibre product,
in a 2-category, [-228H[-229] [T}
transverse, [[T9H[-27] [I-78T]
fine sheaf,
FOOO Kuranishi space, [-v] 0
[1-62} [1-97} [[I-107]
Fukaya category, [
I
functor, [-222]
adjoint,

186

contravariant, ([-222

equivalence, [[222]
faithful, [222]
full,

natural isomorphism,
natural transformation, 18]

global Kuranishi neighbourhood, [
w-transverse fibre product, [
TO9HIT-114]
global m-Kuranishi neighbourhood,
[-55)
submersion,
transverse fibre product,
T1-109
w-submersion, [[I-8§|
w-transverse fibre product, [
Gromov—Witten invariant,

M=y
groupoid, [-59] [[-221]

Hadamard’s Lemma,
Hilsum-Skandalis morphism, [[-144]

[LI71) [-173]
homotopy category, 1-106] [
[L09}, [-226} [IT-108]

oo-category, [[568] [F103HI-104]
isotropy group, [F166HI-170] HmHm
23} [0-7) [T [I-119)

J-holomorphic curves

moduli space of,
M=yl

Kuranishi atlas, by McDuff-Wehrheim,

Kuranishi moduli problem,
Kuranishi neighbourhood, s
1-morphism,
2-category of,
2-morphism,



coordinate change, M
definition, [-135]
footprint,

global,

w-transverse fibre product, [[[

[O9HIT-114!
Kuranishi section,
minimal,
obstruction bundle,
on Kuranishi space,
stack property of, 148

strict isomorphism, [[I-3§|

Kuranishi space,

1-morphism, [[-147]
étale, [[I-48
representable,
2-category of, [[-151]
2-morphism,
and m-Kuranishi spaces,
and orbifolds,
boundary, [-160]
canonical bundle, [I-74HII-77]
coobstruction space,
coorientation, [I=75]
opposite,
cotangent space,
definition, [[-146]

discrete property of 1-morphisms,
equivalence,
étale 1-morphism, |[I-48HII-50]
FOOO, see FOOO Kuranishi
space
is an orbifold, 108
isotropy group, [ZI66HI-170], [IT}
definition,
trivial,
k-corner functor,
Kuranishi neighbourhood on, [
162HI-165)

187

1-morphism,
coordinate change,
definition, [[162]
global,
locally orientable, [[I-74HII-77
=118
obstruction space,
7
definition, [I-2THIT-23]
orientation, [I-74HIT=77]
definition, [[I-75]
opposite,
product,
orientation, [I-77]
quasi-tangent space, [[I-28]
submersion,
2]
tangent space, [T=3HIT=77]
definition, [I-2THIT-23]
transverse fibre product, [I-1}-
-2} [T-TO8HIT-127)
virtual dimension,
w-submersion,
w-transverse fibre product,

-2} [-108} [-127

Kuranishi space with a-corners, [[

b-normal 1-morphism,

interior 1-morphism,

simple 1-morphism, [-155]

strongly a-smooth 1-morphism,
[-159)

Kuranishi space with corners, [[-153

[-157H-162} [[T-T20HTT-123]
- 125HI1-127]
b-normal 1-morphism, 1]
boundary
orientation on, [[I-77]
boundary 2-functor, [[-161]
equivalence, [[162]
interior 1-morphism, 18}
102
k-corners Ci(X),
s-submersion, M

[120HII-12'7}




s-transverse fibre product, [
120HIT-123

sb-transverse fibre product, [}

sc-transverse fibre product, [T}
1 20HI1-127]

simple 1-morphism, [[-154

strongly smooth 1-morphism, [

g

t-transverse fibre product, [
1 20HI1-123]

ws-submersion, -

ws-transverse fibre product, [}
1 20HI1-123]

wsb-transverse fibre product, [}

%

wsc-transverse fibre product, [T}
125HIT-127]
wt-transverse fibre product, [}

1 20H1]-123]

Kuranishi space with corners and

a-Corners,
b-normal 1-morphism,
interior 1-morphism, [-155]
simple 1-morphism,
strongly a-smooth 1-morphism,

g

Kuranishi space with g-corners, [[

53] (155, [I-T23, {1125
b-fibration,
b-normal 1-morphism,
b-transverse fibre product, [

123HIT-125

c-fibration, [I-T23 125

c-transverse fibre product, [
interior 1-morphism,
simple 1-morphism,
whb-fibration,
wh-transverse fibre product, [T}
1 23HI1-125]
we-fibration, 11-125
we-transverse fibre product, [}
123HIT-125

Kuranishi structure, [-146]

Lagrangian Floer cohomology,

v} [ [T} [T} [T [
5%

M-cohomology, [FviiHix), [-vilHIT-ix]
and virtual cocycles,
i
M-homology, [-viiH[-ix], [T-viiHIT-i
and virtual cycles, [-viiH[-1x] [[T]
RAHITx]
m-Kuranishi neighbourhood,
0 1]
1-morphism,
2-category of,
2-morphism,
gluing with a partition of unity,
linearity properties of, [[-107}-
[-109]
coordinate change, 108]
ATHIT-48]
definition,
footprint, [[-55]
global,
submersion,
transverse fibre product, [
w-submersion, [[T-8§]

w-transverse fibre product, [

Kuranishi section,
minimal, 1-37]
obstruction bundle,

on m-Kuranishi space, [-93}{[

E

stack property of,

strict isomorphism, [[I-30]
m-Kuranishi space, |[-54]

1-morphism, [-62]

étale, [[T-4211-47], [TT=65)|

2-category of,

2-morphism, [[-63]

and Kuranishi spaces, [ZI55H
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and p-Kuranishi spaces,
[-122)
canonical bundle, [I-62HII-74] [T}
0]
definition,
coobstruction space,
coorientation,
opposite, [[1-66]
corner 2-functor, [[-87H[-93] [[§
cotangent space, [[I-16]
definition, [I-61
discrete property of 1-morphisms,

[77 50, (201
equivalence, I

étale 1-morphism,
=65

fibre product, [74]

is a classical manifold, 108
is a manifold, [[=73] (=37}, [[T-91]
k-corner functor,

m-Kuranishi neighbourhood on,
1-morphism of, [[-95]
coordinate change, [-94]
definition,
global, [[-94]

obstruction space, [[I-1}, [I=3HIM
e

definition,

orientation, [[TI=66|-T1-74], [[T-06]-
11-97]

definition, [[I-66]

opposite, [[1-66]
oriented,
product, [[-74] [T-93HI1-94

orientation, [[I-71HII-74
quasi-tangent space, [[I-23HI1-27]
submersion, [[I-1} [[I-2] [[I-87HIT]

100

tangent space, [T} [E3ETT
definition,
transverse fibre product,

-2} [1-87 [-106]
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virtual dimension,
w-submersion,
w-transverse fibre product, [

11-150

orientation on, [[I-96HI1-97]

m-Kuranishi space with a-corners,

72 79

b-normal 1-morphism, [[-79]

interior 1-morphism,

simple 1-morphism,

strongly a-smooth 1-morphism,
[-79

m-Kuranishi space with boundary,

2

m-Kuranishi space with corners, [

[=78] =8 THI-93], [T-100}-
[[T=102] IT=104}{[T-106]
b-normal 1-morphism, @l, |H
92
boundary,
orientation on, [I=67HII=71]

boundary 2-functor, [[-91
interior 1-morphism, [[-79] [-92]

k-corners Cy,(X),

m-Kuranishi neighbourhoods on,
boundaries and corners of, [
of mixed dimension, [[-87]
s-suibmersion, 10|
s-transverse fibre product, [
sb-transverse fibre product, [
sc-transverse fibre product, [T}
simple 1-morphism,
strongly smooth 1-morphism, [[]
(9
t-transverse fibre product, [

ws-submersion, [
105HII-106

B




ws-transverse fibre product, [}

wsb-transverse fibre product, [T}
10oHI]-106

wsc-transverse fibre product, [}
10oHII-100

wt-transverse fibre product, [}
100HIT-102

m-Kuranishi space with corners and

a-corners, [[-72] [-79]

b-normal 1-morphism,

interior 1-morphism,

simple 1-morphism, [[-79]

strongly a-smooth 1-morphism,
1-79

m-Kuranishi space with g-corners,

[-72} [-79] [[I-102HTT-104]
b-fibration, [[I-102HI1-104
b-normal 1-morphism, [[-79]
b-transverse fibre product, [

102HI1-104]
c-fibration, 11-104]
c-transverse fibre product, [

102HIT-104
interior 1-morphism, [[-79]
simple 1-morphism,
wb-fibration, 11-104
wh-transverse fibre product, [T}
102HIT-104
we-fibration, [I-T02} [I-T04)
we-transverse fibre product, [}
102HI1-104]

m-Kuranishi structure,
manifold

classical, [[-32H[=33]

manifold with a-corners,

a-diffeomorphism,
a-smooth map,
b-normal map,
b-tangent bundle,
corner functor, [-19]

interior map, [[-18]

simple map,

strongly a-smooth map,

manifold with analytic corners, see

manifold with a-corners
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manifold with boundary,
manifold with corners, [[-3H{-29] [[-47]-

[-53)

atlas,
b-cotangent bundle,
b-map,
b-normal map, [[-4]
b-tangent bundle, [[T0H[-14] [[§
1|
definition,
b-tangent functor,
b-vector field,
boundary, [0, [ET0L [E29} [T
definition, [[-7]
boundary functor,
canonical bundle,
coorientation,
opposite, [-28]
corner functor, [-8H-10] [-19} [}
cotangent bundle, [[-11]
cotangent sheaf,
definition,

differential geometry in Man®,

.- k
interior X°, [[-6]

interior map, [[-4] [-5]
k-corner functor,
k-corners Cy,(X), [I-6{{I-10} [I-4

local boundary component,
local k-corner component,

[029]

L8, 9]
manifold with faces,
orientation, -9
(13} [T-6T]

definition,
opposite, [-28] [T-10]
orientation convention, [[-28H[]
quasi-tangent space, [-14] [I-13]-
-1,

[-81]
s-submersion, [-26] [I1}
B3 E57 [100, 108 ]
s-transverse fibre product, [-21}-

23, (157 {55, (1100, 1
I




[ 20)

sb-transverse fibre product, [[j
[[-125

sc-transverse fibre product, [[J

[I-125

simple map, [[-5] [[-4§|
smooth map, [[-4] [[-5]

stratum b-normal space,
stratum normal space,

strongly smooth map, [[-4]
[-21H[-23

submersion, [FT0}[-27) [[I78 [

i
t-transverse fibre product,

(23] [1-84}{[1-85}, [[-100} [T}
20

tangent bundle, [-T0H[-14]
definition,

tangent functor,

tangent sheaf, [[-242}{I-261], [[-268]-

tangent space, [[I-3HII-14]

transverse fibre product, [[I9H[]
[-29) [I-78HT-87)

vector bundle,
=239

connection, 38} [224TH-242]
vector field, [-11]

weakly smooth map,

manifold with corners and a-corners,
manifold with faces, [[-5] [[=36]
manifold with g-corners, [-T4HI-17] [[§
1[-123
b-cotangent bundle,
b-fibration,
86} [1-102}
b-normal map, [[-16]
b-submersion,
[I-86} [IT-102} [I-123]

b-tangent bundle,
b-transverse fibre product, [-:23}-

25 (155 [5G {1102 [
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[ 20]
c-transverse fibre product, [-23]-
[E25} (155} 156, (1103 [
[ 2]
definition,
examples,
interior X°,
interior map, [[-16]
simple map, [[-16]
smooth map,
manifold with generalized corners,
see manifold with g-corners
moduli space
of J-holomorphic curves, [[-ivH[]

of J-holomorphic curves,

i
monoid,
toric, [-15]
weakly toric,

rank,
u-Kuranishi neighbourhood, -
114

category of,
coordinate change, [-2} [[-111]
definition,

minimal,

morphism,

on p-Kuranishi space, [

2]
sheaf property of,
[-125)

p-Kuranishi space, 1-134
and m-Kuranishi spaces, [[120}-
canonical bundle,
coordinate change,
corner functor, [[-124]
definition,
discrete property of morphisms,
étale morphism,
fibre product,

Iz

k-corner functor,
morphism, [-1T5]




étale,
p-Kuranishi neighbourhood on,
coordinate change,
global,
morphism of,
obstruction space,
7
definition, [[I-2]]
orientation, [[I-74]
product,
quasi-tangent space, [[1-27]
tangent space, [-3HIT-77]
definition, [[I-2]

virtual dimension,
p-Kuranishi space with a-corners, [
b-normal morphism,
interior morphism, [[-120]
strongly a-smooth morphism, [[}

120
p-Kuranishi space with boundary, [
[ 20
p-Kuranishi space with corners, [[
[T [ETT9} (122 125
b-normal morphism, 0
[ 20

boundary,
boundary functor, [[-124]

interior morphism, [[-119] [[-125]
isomorphism,
k-corners C (X m El
strongly smooth morphism, [[
[ 19
p-Kuranishi space with corners and
a-corners, [-117] [-120]
b-normal morphism, [[-120]
interior morphism,
strongly a-smooth morphism, [}
[ 20)
p-Kuranishi space with g-corners, [[

b-normal morphism,
interior morphism,
simple morphism, [[-120]
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p-Kuranishi structure,

O(s) and O(s?) notation, [[-40HI-44
H‘S’Slmmm [-261}-
m [-274HI-276] [-278HT

orbifold, m [[=T70HI-178]
and Kuranishi spaces, [[[170]
as a 2-category, [F171] [[I-10§]
definitions,
is a manifold,

isotropy group,
Kuranishi orbifold,

transverse fibre product, [[I-108]-
11-109
orbifold with corners,
boundary 9%,
corner 2-functor, [[-178
k-corners Cy(X), [[-178|
orientation, [[27HI-29} [[I-9HII-13] [
opposite, [-28] [I-10]
orientation convention, 108
Ox-module, [:239]

partition of unity, [[-106] [Z108HI-109]
237

polyfold, 3
presheaf, 1-230}
shealfification, [[-231]

quantum cohomology,
quasi-category, [[-68|

quasi-tangent space, [14} [I-13H[T
[[4} [T-23HIT-2§]

relative tangent sheaf,

sheaf, [[-2] [[-32] [[-36H-39] [[-104] [{
[LG6} [-113) [I- QQQHI 231]
direct image,
fine, [[=37], [[-129] |I—237|
inverse image,
of abelian groups, rings, etc., [[]
200




presheaf, [[-230] [[-240]
sheafification, [[-231] - [-240]
pullback, [[-231] [-259HI-261]
pushforward, [[-231]
soft,
stalk,
site,
stack, [-103} [-232] [[T-4§]
Artin, [[-:232]
Deligne-Mumford,
on topological space,
[-61}, [-128) [-179H-187] [{
topological stack, [I-74] [[I-117]
strict 2-functor,
structure sheaf,
subcategory,

full, [£229]
submersion, [[-T9H[-27]
symplectic cohomology,
Symplectic Field Theory,
L1}
symplectic geometry,
[EivHIT=vi

tangent sheaf, [[-38] [[[2421[-261], [[§
relative, [-3§]

tangent space
in Man,

topological space
Hausdorff,
locally compact, [[-6]]
locally second countable, [-61]
metrizable,
paracompact, [[-61]
second countable, [[-61]

transverse fibre product,
11-78HII-87]

orientation, [-29]

vector bundle, [[=10] [[537] [2237H[=239]
connection, [[-38] [F24THI-242]
morphism,

section, [[-238|

sheaf of sections,

193

virtual chain,
virtual class,

weak 2-category,
weak 2-functor, [[-75HI-76}, [[-87] [[-226]

weak 2-natural transformation, [-227]

modification, [-22§]




	Contents of volume II
	Contents of volume I
	Introduction to the series
	Introduction to volume II
	Tangent and obstruction spaces
	Optional assumptions on tangent spaces
	The definition of tangent and obstruction spaces
	Quasi-tangent spaces
	Minimal (m-, µ-)Kuranishi neighbourhoods at x∈��X
	Conditions for étale (1-)morphisms, equivalences, and coordinate changes
	Determinants of complexes
	Canonical line bundles and orientations

	Transverse fibre products and submersions
	Optional assumptions on transverse fibre products
	Transverse fibre products and submersions in m�Ḱur
	Fibre products in mKur,mKurᶜˢᵗ,mKurᵍᶜ,mKurᶜ
	Discussion of fibre products of µ-Kuranishi spaces
	Transverse fibre products and submersions in �Ḱur
	Fibre products in Kur,Kurᶜˢᵗ,Kurᵍᶜ and Kurᶜ
	Proof of Proposition 11.14
	Proof of Theorem 11.17
	Proof of Theorem 11.19
	Proof of Theorem 11.22
	Proof of Theorem 11.25

	M-homology and M-cohomology (Not written yet.)
	Virtual (co)cycles and (co)chains for (m-)Kuranishi spaces in M-(co)homology (Not written yet.)
	Orbifold strata of Kuranishi spaces (Not written yet.)
	Bordism and cobordism for (m-)Kuranishi spaces (Not written yet.)
	References for volume II
	Glossary of notation, all volumes
	Index to all volumes

