University of Oxford
Faculty of Mathematics and Natural Sciences

Department of Mathematics

Doctoral Thesis

Generalized Lagrangian mean curvature flow in
almost Calabi—Yau manifolds

MI | MINA
NVS TIO
ILLV | MEA

Submitted by Tapio Behrndt
born on 11th July 1983 in Berlin

Supervisor: Prof. Dominic Joyce

Oxford, 25th March 2011



Contents

1

Introduction

1.1 Motivation for this work . . . . . .. ... .. ... ... ...
1.2 Summary of the thesis . . . . . .. ... ... ... ...
1.3 Acknowledgements . . . . . . ... ... 0oL

Regularity theory for linear parabolic equations on domains

2.1 Holder and Sobolev spaces on Riemannian manifolds . . . . . . .
2.2 Parabolic Holder and Sobolev spaces . . . . . . .. ... .. ...
2.3 Linear parabolic equations on domains in R™ . . . ... ... ..

The heat equation on compact Riemannian manifolds
3.1 The Friedrichs heat kernel on Riemannian manifolds . . . . . . .
3.2 The Cauchy problem for the inhomogeneous heat equation . . . .

Background from Riemannian and symplectic geometry

4.1 Submanifolds in Riemannian manifolds . . . . . . ... ... ...
4.2 Symplectic manifolds and Lagrangian submanifolds . . . . . . . .
4.3  Almost Calabi—Yau manifolds and Lagrangian submanifolds . . .
4.4 Lagrangian submanifolds in cotangent bundles . . . ... .. ..

Generalized Lagrangian mean curvature flow of compact La-
grangian submanifolds

5.1 Generalized Lagrangian mean curvature flow . . . ... .. ...
5.2 Integrating the generalized Lagrangian mean curvature flow . . .
5.3 Smoothness of P as a map between Banach manifolds . . . . . .
5.4 Short time existence and regularity of solutions . . . . . . .. ..

The Laplace operator on Riemannian manifolds with conical
singularities

6.1 Weighted Holder and Sobolev spaces . . . . . . .. .. ... ...
6.2 The Laplace operator on weighted spaces . . . .. ... .. ...
6.3 Weighted Holder and Sobolev spaces with discrete asymptotics
6.4 The Laplace operator on weighted spaces with discrete asymptotics

The heat equation on Riemannian manifolds with conical sin-
gularities

7.1 Weighted parabolic Holder and Sobolev spaces . . . . . .. ...
7.2  Weighted Schauder and LP-estimates . . . . . . . . .. ... ...
7.3 Asymptotics of the Friedrichs heat kernel . . . . . . ... .. ..
7.4 The Cauchy problem for the inhomogeneous heat equation. I

7.5 The Cauchy problem for the inhomogeneous heat equation. IT . .

Lagrangian submanifolds with isolated conical singularities in

almost Calabi—Yau manifolds

8.1 Special Lagrangian cones in C™ . . . . . . . ... .. ... ....

8.2 Lagrangian submanifolds with isolated conical singularities

8.3 Lagrangian neighbourhoods for Lagrangian submanifolds with
isolated conical singularities . . . . . ... ... oL

15
15
17

19
19
20
21
24

27
27
29
31
33

50
50
52
53
o7
61

66
66
67



8.4 Lagrangian neighbourhoods for families of Lagrangian submani-
folds with isolated conical singularities . . . . . . ... ... ... 71

9 Generalized Lagrangian mean curvature flow with isolated con-

ical singularities 75

9.1 Deforming Lagrangian submanifolds with isolated conical singu-
larities . . . . . . . . 75

9.2 Integrating the generalized Lagrangian mean curvature flow with
isolated conical singularities . . . . . . .. .. oL 78
9.3 Smoothness of P as a map between Banach manifolds . . . . . . 80
9.4 The linearization of P and structure of the equation . . .. . .. 85
9.5 Short time existence with low regularity . . . . . ... ... ... 88
9.6 Regularity of solutions and short time existence of the flow . . . 92
10 Open problems related to the thesis 97

10.1 Parabolic equations of Laplace type on compact Riemannian man-
ifolds with conical singularities . . . . .. .. .. ... ... ... 97

10.2 Short time existence of the generalized Lagrangian mean curva-
ture flow with isolated conical singularities . . . . . . ... .. .. 101

10.3 Regularity theory for the generalized Lagrangian mean curvature
flow with isolated conical singularities . . . . .. ... ... ... 102



1 Introduction

1.1 Motivation for this work

In a Calabi—Yau manifold M with holomorphic volume form §2 there is a distin-
guished class of submanifolds called special Lagrangian submanifolds. These are
oriented Lagrangian submanifolds which are calibrated with respect to Re €.
There has been growing interest in special Lagrangian submanifolds in the past
decade since these are the key ingredient in the Strominger—Yau—Zaslow con-
jecture [53] which states mirror symmetry in terms of special Lagrangian torus
fibrations.

Proving the existence of special Lagrangian submanifolds in a Calabi—Yau
manifold is a hard problem. For instance Wolfson proved in [60] the existence
of a K3-surface which has no special Lagrangian submanifolds. This shows how
subtle the issue is. However, since special Lagrangian submanifolds are cali-
brated submanifolds, they are volume minimizers in their homology class. One
possible approach to the study of the existence of special Lagrangian subman-
ifolds is therefore through mean curvature flow, which is the negative gradient
flow of the volume functional. The key observation here is due to Smoczyk [50]
who proves that a compact Lagrangian submanifold in a Calabi—Yau manifold
(or even in a K&hler-Einstein manifold) remains Lagrangian under the mean
curvature flow. The naive idea is therefore to take a Lagrangian submanifold
in a Calabi—Yau manifold and to deform it under Lagrangian mean curvature
flow to a special Lagrangian submanifold. The long-time convergence of the
Lagrangian mean curvature flow to a special Lagrangian submanifold has so
far only been verified in several special cases, see for instance Smoczyk, Wang
[52] and Wang [59]. Also in [55] Thomas and Yau conjecture that for a given
Lagrangian submanifold in a Calabi—Yau manifold, which satisfies a certain sta-
bility condition, the Lagrangian mean curvature flow exists for all time and
converges to a special Lagrangian submanifold. In general however one ex-
pects that a Lagrangian submanifold will form a finite time singularity under
the mean curvature flow. In fact, recently Neves [44] constructed examples of
Lagrangian surfaces in two dimensional Calabi—Yau manifolds which develop a
finite time singularity under the mean curvature flow. The appearance of finite
time singularities in the Lagrangian mean curvature flow therefore seems to be
unavoidable in general.

When a finite time singularity occurs there are two possibilities, depending
on the kind of singularity, how the flow can be continued. The first possibility is
as in Perelman’s work [47] on the Ricci flow of three manifolds, where a surgery
is performed before the singularity occurs and the flow is then continued. The
other possibility to continue the Lagrangian mean curvature flow when a finite
time singularity occurs is to evolve the singular Lagrangian submanifold by
mean curvature flow in a specific class of singular Lagrangian submanifolds. In
this work we study the latter possibility in the special case of isolated conical
singularities.

The goal of this thesis is to study the (generalized) Lagrangian mean curva-
ture flow of Lagrangian submanifolds in (almost) Calabi-Yau manifolds which
have isolated conical singularities modelled on stable special Lagrangian cones.
We show that for a given Lagrangian submanifold Fj : L — M with isolated
conical singularities modelled on stable special Lagrangian cones one can find



for a short-time a solution F'(t,-) : L — M, 0 < t < T, to the (generalized)
Lagrangian mean curvature flow with initial condition Fy : L — M, by letting
the conical singularities move around in M. The Lagrangian mean curvature
flow of Fyy : L — M (here on the left) therefore looks after a short time like the
surface on the right.

Fo:L— M F(t,): L — M

1.2 Summary of the thesis

This work is split into four parts and we give a short overview over each of these
parts and also point out the new results we obtain.

The first part of this thesis consists of §2 and §3, where we discuss some stan-
dard theory of linear parabolic equations on domains of R™ and on compact
Riemannian manifolds. We first introduce Holder and Sobolev spaces on Rie-
mannian manifolds and also the notion of parabolic Hélder and Sobolev spaces.
Then we review some standard regularity theory for linear parabolic equations
on domains. In §3.1 we explain the construction of the Friedrichs heat kernel
on an arbitrary Riemannian manifold and then study existence and regular-
ity of solutions to the Cauchy problem for the inhomogeneous heat equation
on compact Riemannian manifolds. The material discussed in this first part is
standard in geometric analysis and lays the foundation for the study of linear
and nonlinear parabolic equations on Riemannian manifolds.

The second part is §4 and §5. In §4 we first review the necessary back-
ground material from Riemannian geometry and symplectic geometry. We then
introduce almost Calabi—Yau manifolds, the generalized mean curvature vector,
and discuss Lagrangian submanifold in almost Calabi—Yau manifolds. In §4.4
we study the deformation of Lagrangian submanifolds in cotangent bundles. In
85 we then introduce the generalized Lagrangian mean curvature flow in al-
most Calabi-Yau manifolds and present a new short time existence proof for
the generalized Lagrangian mean curvature flow, when the initial Lagrangian
submanifold is compact. Most of the material covered in §4 and §5 is well known
and can be found in the literature. The definition of the generalized mean cur-
vature vector field, however, and the method of proof of the short time existence
of the generalized Lagrangian mean curvature flow appear to be new.

In the third part of this thesis, §6 and §7, we study the Laplace operator
and the heat equation on Riemannian manifolds with conical singularities. We
begin by introducing weighted Holder and Sobolev spaces on Riemannian man-
ifolds with conical singularities and by reviewing some standard results about
the Laplace operator acting on weighted spaces. In §6.3 we then introduce the



notion of discrete asymptotics on Riemannian manifolds with conical singular-
ities and we define weighted spaces with discrete asymptotics. We then study
the Laplace operator acting on weighted spaces with discrete asymptotics. In
87 we begin with the definition of weighted parabolic Holder and Sobolev spaces
with discrete asymptotics and then proceed to prove weighted Schauder and LP-
estimates for solutions of the inhomogeneous heat equation. We then discuss
the asymptotics of the Friedrichs heat kernel on Riemannian manifolds with
conical singularities following Mooers [41]. Finally in §7.4 and §7.5 we prove
existence and maximal regularity of solutions to the Cauchy problem for the
inhomogeneous heat equation, when the free term lies in a weighted parabolic
Holder or Sobolev space with discrete asymptotics. Our existence and regularity
results generalize a result previously obtained by Coriasco, Schrohe, and Seiler
[13, Thm. 6]. The results of this part of the thesis can also be found in the
author’s paper [7].

The fourth and final part of this work consists of §8 and §9, where we study
the short time existence problem for the generalized Lagrangian mean curvature
flow, when the initial Lagrangian submanifold has isolated conical singularities.
In §8 we first introduce special Lagrangian cones and the notion of stability for
special Lagrangian cones. Then we define Lagrangian submanifolds with isolated
conical singularities and discuss several Lagrangian neighbourhood theorems
for Lagrangian submanifolds with isolated conical singularities. In §9 we then
study the generalized Lagrangian mean curvature flow with isolated conical
singularities. The analysis of this problem turns out to be involved and very
difficult from a technical point of view. The idea, however, is essentially the
same as in the short time existence proof for the generalized Lagrangian mean
curvature flow of compact Lagrangian submanifolds presented in §5. In §9.1
and §9.2 we first set up the short time existence problem and then in §9.3-§9.5
we prove short time existence of solutions. Finally in §9.6 we discuss some
regularity theory of the flow. The results from §8 were already known through
previous work of Joyce on special Lagrangian submanifolds with isolated conical
singularities, see [24] and [25]. The material covered in §9 is new and the results
of this section will also appear in the author’s paper [6].

In §10, the final section of this thesis, we discuss in a purely formal way some
open problems that are related to the material presented in this work. In §10.1
we first discuss differential operators of Laplace type and parabolic equations
of Laplace type on compact Riemannian manifolds with conical singularities.
The discussion essentially generalizes the results for the Laplace operator and
the heat equation on compact Riemannian manifolds with conical singularities
discussed in §6 and §7. Then in §10.2 and §10.3 we speculate about some further
existence and regularity results for the generalized Lagrangian mean curvature
flow with isolated conical singularities.

1.3 Acknowledgements

First I would like to thank my supervisor Dominic Joyce for suggesting the
short time existence problem of the Lagrangian mean curvature flow with con-
ical singularities to me and for helpful discussions about his work on special
Lagrangian submanifolds. I am also grateful to Tom Ilmanen for his continuing
support throughout my D.Phil. studies and for invitation to the ETH Ziirich
in Michaelmas Term 2009. In addition I would like to thank him for interesting



and stimulating discussions. Further I wish to thank André Neves for several
invitations to Imperial College London and for useful conversations, and my
former diploma supervisor Helga Baum for her continuing support. Finally I
would like to thank my girlfriend Judith for her patience and encouragement
during the last two years.

My D.Phil. studies were supported by a Sloane Robinson Foundation Grad-
uate Award 2008, 2009, and 2010 of the Lincoln College, a scholarship of the
British Chamber of Commerce in Germany in 2008, and an EPSRC Research
Studentship. I wish to thank all these institutions for their support.



2 Regularity theory for linear parabolic equa-
tions on domains

2.1 Holder and Sobolev spaces on Riemannian manifolds

In this subsection we introduce Holder and Sobolev spaces on Riemannian
manifolds and also discuss the Sobolev Embedding Theorem and the Rellich—
Kondrakov Theorem. Good references for the material presented in this section
are Adams [1], Aubin [4, Ch. 2], Gilbarg and Trudinger [27, Ch. 7], and also
Tartar [54].

We begin by introducing C*-spaces and Hélder spaces. Let (M,g) be a
Riemannian manifold. Throughout this thesis the term manifold means smooth
manifold without boundary. For k& € N we denote by CJ_(M) the space of
k-times continuously differentiable functions u : M — R and we set C*°(M) =
Mien CE(M), which is the space of smooth functions on M. We define the
C*-norm by

k
lullcr = Z su]\pl |Viu(z)| for u € CE . (M),
jzoxe

whenever it is finite, and we define the space C*(M) by
CH(M) = {u € Clye(M) - |lullcr < o0}

Then C*(M) is a Banach space.

In the regularity theory for elliptic and parabolic partial differential equa-
tions it is more convenient to work with Holder spaces than with C*-spaces,
since these turn out to have better regularity properties. Next we introduce
Holder spaces. Let o € (0,1) and T be a tensor field over M. Then we define a
seminorm T T

[T]la=  sup Lay”

rAyeEM dg ($7 y)
dg(2,y)<dg(x)

whenever it is finite. Here dy(x,y) denotes the Riemannian distance of = and y
with respect to g, and d,(z) denotes the injectivity radius of g at . Moreover,
|T'(x) —T(y)| is understood in the sense that we first take the parallel transport
of T'(x) along the unique minimizing geodesic connecting x and y, and then
compute the norm at the point y. We define the C**-norm by

3

lullee = luller + [VEulo  for u € Ol (M),

whenever it is finite. The number « is called the Holder exponent. We denote by
Cllf)ca(M) the space of functions in u € Cf (M) with finite C**-norm on every

N CcC M. Here N CC M means that N is a smoothly embedded and open

submanifold of M whose closure is compact in M, see §4.1 for the definition of
embedded submanifold. We define the Holder space C*<(M) by

che(M) = {ue Ch(M) : lufere < oo}
Then C*%(M) is a Banach space.

The next class of function spaces we introduce are Sobolev spaces. In the
definition of Sobolev spaces we will use of the notion of weak derivatives, which



can be found in Gilbarg and Trudinger [27, Ch. 7, §3]. Let k € Nand p € [1, c0).
For a k-times weakly differentiable function u : M — R we define the W*P-norm
by

1/p

k
fallwer = [ 3 / Vi av, |
j=07M

whenever it is finite. We denote by Wk P(M) the space of k-times weakly dif-
ferentiable functions on M that have ﬁnlte W*P_norm on every N cC M. The
Sobolev space W*?(M) is defined by

Whr(M) = {u e WEP(M) 5 Jlullwss < o0}
Then WP (M) is a Banach space. If k = 0, then we write LY (M) and LP(M)

instead of Wl?)cp (M) and WOoP(M), respectively. Moreover, if p = 2 we can
define a scalar product on W*2(M) by

(u, V) ez = Z/ (Viu, Viv) dV, for u,v € WH2(M). (1)

Thus W#2(M) is a Hilbert space.

An important tool in the existence and regularity theory for linear and non-
linear partial differential equations are the Sobolev Embedding Theorem and
the Rellich-Kondrakov Theorem. The Sobolev Embedding Theorem gives em-
beddings between different Sobolev spaces and embeddings of Sobolev spaces
into Holder spaces.

Theorem 2.1 (Sobolev Embedding Theorem). Let (M, g) be a compact m-
dimensional Riemannian manifold. Let k,1 € N, p,q € [1,00), and o € (0,1).
Then the followmg hold.

() I1f L > <3 Ly B2l then WEP(M) embeds continuously into WHI(M) by

mcluswn "
(ii) If k=2 > 1+ «, then WHEP(M) embeds continuously into CH*(M) by
inclusion.

Moreover (1) and (ii) continue to hold when M = §, where Q is an open and
bounded domain in R™.

The proof of the Sobolev Embedding Theorem can be found in Gilbarg and
Trudinger [27, Thm. 7.10] for domains in R™ and in Aubin [4, Thm. 2.20] for
compact Riemannian manifolds.

The next theorem is the Rellich-Kondrakov Theorem, which states under
what conditions the embeddings given by Sobolev Embedding Theorem are
compact.

Theorem 2.2 (Rellich—Kondrakov Theorem). Let (M, g) be a compact m-
dimensional Riemannian manifold. Let k,1 € N, p,q € [1,00), and a € (0,1).
Then the following hold.
(1) If < = —|— , then the inclusion of WFP (M) into WH9(M) is compact.
(ii) Ifk 2> l—l—a then the inclusion of WP (M) into O (M) is compact.



Moreover (i) and (ii) continue to hold when M = §, where § is an open and
bounded domain in R™.

A proof of the Rellich-Kondrakov Theorem for domains in R™ can be found in
Gilbarg and Trudinger [27, Thm. 7.22] and for compact Riemannian manifolds
in Aubin [4, Thm. 2.34].

2.2 Parabolic Holder and Sobolev spaces

In this subsection we introduce parabolic Hélder and Sobolev spaces. These are
Hélder and Sobolev spaces on (0,7) x M, T > 0, where one derivative in the
time direction compares to two derivatives in the spatial directions. By the time
direction of (0,7") x M we mean the first variable while the spatial directions
are in M. The reason for introducing these spaces is the heat operator maps
between parabolic Hélder and Sobolev spaces. Good references on parabolic
Hoélder and Sobolev spaces are Krylov [30, Ch. 2, §2] and [31, Ch. 8, §5].

We first define C*-spaces, Holder spaces, and Sobolev spaces of maps u :
I — X, where I C R is an open and bounded interval and X is a Banach
space. For k € N we define C _(I; X) to be the space of k-times continuously

loc

differentiable maps u : I — X. We define the C*-norm by
k .
lu)|cr = Zsu;l) |07u(t)||x for ue CF (I; X),
oo te

whenever it is finite, and we define
CHI; X)={ue Cl(I;X) : |luller < oo}.
Moreover for a € (0,1) we define the C**-norm by

il = [[uflon + sup 12E4(E) = FFuls)lx
1 t#£sel |t - s|a

for u € CF .(I; X),

whenever it is finite. By C/"*(I; X) we denote the space of maps u € Ck(I; X)

loc
with finite C**-norm on every J CC I, and we define

k(] X) = {u e CP LX) : ullore < oo}.

loc

Then C*(I; X) and C*<(I; X) are both Banach spaces.
Next we define Sobolev spaces of maps u: I — X. Let k € Nand p € [1,00).
For a k-times weakly differentiable map u : I — X we define the W*P-norm by

1/p

k
lullwer = [ S / lofu(t)n at |
=0

whenever it is finite. The notion of weak derivatives of maps u : I — X with
values in a Banach space can be found in Amann [2, Ch. III, §1.1]. We denote
by VV{ZCP(I ; X) the space of k-times weakly differentiable maps u : I — X with
finite W*P-norm on every J CC I, and we define

loc

WhP(I; X) = {u e WEP(L;X) + |lullwrs < oo}.

10



Then W*P(I; X) is a Banach space. If k = 0, then we write LI
LP(I; X) instead of WP (I; X) and WOP(I; X ), respectively.

An important result in the theory of linear and nonlinear parabolic equations
is the so called Aubin—Dubinskii Lemma. We will use the Aubin—Dubinskii
Lemma below in order to prove embedding results for parabolic Sobolev spaces.

(I; X) and

Lemma 2.3 (Aubin—Dubinskii Lemma). Let I C R be an open and bounded
interval, X, Y, Z Banach spaces, and p € (1,00). Assume that X embeds con-
tinuously into Y by inclusion, that the inclusion is compact, and that'Y embeds
continuously into Z by inclusion. Then the inclusion of LP(I; X) N WYP(I; Z)
into LP(I;Y") is compact.

The proof of the Aubin-Dubinskil Lemma can be found in J.-P. Aubin [3] for
the case when X and Z are reflexive and Dubinskii [17] without the reflexivity
assumption.

The next proposition is an important interpolation result for maps into Ba-
nach spaces. We will apply this result below in order to prove an interpolation
result for parabolic Sobolev spaces.

Proposition 2.4. Let I C R be an open and bounded interval, X,Y Banach
spaces, and p € (1,00). Assume that X embeds continuously into Y by inclu-
sion. Then LP(I; X) N WYP(I;Y) embeds continuously into CO(I; (X,Y)1/p.,)
by inclusion. Here (-,-)g, denotes the real interpolation method, see Amann [2,
Ch. 1, §2.4].

The proof of Proposition 2.4 can be found in Amann [2, Ch. III, Thm. 4.10.2].
Next we define parabolic C*-spaces and parabolic Holder spaces. Let (M, g)
be a Riemannian manifold and k,l € N with 2k < [. We define

k
CRU I x M) = ﬂ CI(I; 0% (M)).

Then C*!(I x M) is a Banach space with norm given by

fullore =" sup |0}V u(t,x)| for ue CH(I x M),

i (ba)EIxXM

where the sum is taken over ¢ = 1,...,kand j = 1,...,] with 2i +j < [. If
€ (0,1), then we define the parabolic Holder space C*:*(I x M) by

k
CREI x M) = () C22(I;C2 (M) 0 CY (I;CH =272 (M)).
j=0

Then C*L(T x M) is a Banach spaces with norm given by

lullonee =D sup 10V u(t,@)| + sup [V u(- )] 2

g (ta)elxM zeM

+ sup[0; VZu(t, )}a} for u € CPH(T x M),
tel

where the sum is taken over i = 1,...,kand j =1,...,l with 2i4+7 <[. Thus a
function u : I x M — R lies in C*52(I x M) if and only if all derivatives of the

11



form 8}Vju with ¢+ < k, j <, and 27 + 5 < [ exist and are Holder continuous
in time with Holder exponent «/2 and Holder continuous on M with Hélder
exponent «.

Finally we define parabolic Sobolev spaces. Let k,I € N with 2k < [, and
p € [1,00). Then we define the parabolic Sobolev space W*P(T x M) by

k
WHEP(I x M) = () WIP(I; W20P (M),
7=0

Then W*LP(I x M) is a Banach space with norm given by
1/p

llwll e = Z/I/M 01V u(t, )P AV, dt for u € WELP(T x M),
4,J

where the sum is taken over ¢ = 1,...;k and 7 = 1,...,l with 2i + j < [.
Thus W*LP(I x M) is the space of functions u : (0,7) x M — R, such that
all weak derivatives of the form 0;V/u with i < k, j <[, and 2i + j < [ lie in
WOOP(T x M). Note that WP (I x M) = LP(I x M).

When defining parabolic Holder and Sobolev spaces we assumed that 2k <
l, where k is the number of time derivatives and [ is the number of spatial
derivatives. These spaces can also be defined for arbitrary k,I € N, so the
restriction is not necessary. We feel, however, that this restriction makes the
definition of the spaces simpler and in our later applications we are allowed to
choose [ arbitrarily large anyway.

As a consequence of the Rellich-Kondrakov Theorem and the Aubin—Dubinskii
Lemma we obtain the following important embedding result for parabolic Sobolev
spaces.

Proposition 2.5. Let (M,g) be a compact Riemannian manifold, I C R an
open and bounded interval, k € N with k > 2, and p € (1,00). Then the
inclusion of WY*P(I x M) into WO*=LP(T x M) is compact. The same result
continues to hold if M = Q is an open and bounded domain in R™.

The next proposition gives an interpolation result for parabolic Sobolev
spaces.

Proposition 2.6. Let (M, g) be a compact m-dimensional Riemannian mani-
fold, I C R an open and bounded interval, k € N with k > 2, and p € (1,00).
If kp > 2 +m, then WYFP(I x M) embeds continuously into C%°(I x M) by
inclusion. The same result continues to hold if M =  is an open and bounded
domain in R™.

Proof. From Proposition 2.4 it follows that W*?(I x M) embeds continuously
into CO(I; (WHP (M), Wk=2P(M))1 ), where (-, )1 /p, is the real interpolation
method. It can be shown that (W"P(M), Wk=2P(M)),,,, = W5P(M) with
s =k— %, see for instance Tartar [54, Ch. 34]. Here W*P(M) is a Sobolev
space of fractional order, see Adams [1, Ch. VII, 7.36] and Tartar [54, Ch.
34]. The Sobolev Embedding Theorem continues to hold for Sobolev spaces of
fractional order [1, Ch. VII, Thm 7.57], so WP (M) embeds continuously into
C°(M) by inclusion provided s— % > 0, from which the proposition follows. [

12



2.3 Linear parabolic equations on domains in R™

In this subsection we discuss a standard interior regularity result for weak so-
lutions of linear parabolic equations on domains in R™ and also Schauder and
LP-estimates for solutions of linear parabolic equations. Useful reference about
linear parabolic equations on domains in R are Friedman [18], Ladyzhenskaja,
Solonnikov, and Ural’ceva [32], and Krylov [30] and [31].

Our discussion of weak solutions to linear parabolic equations follows Lady-
zhenskaja et al. [32, Ch. III, §1]. Let Q C R™ be an open and bounded domain
and T > 0. Let a¥,b',c : (0,T) x  — R be continuous with a* = a’* for
i,7 = 1,...,m, and define a linear differential operator L acting on functions
u € CL2((0,T) x Q) by

ou 0 ou . o
Lu@taﬂ( (¢, x)a ]>b(t,x)8xic(t,z)u. (2)

The functions a'/,b?, and c are called the coefficients of L. We assume that
(2) is parabolic. This means that there exists a constant A > 0, such that
TR < a1, 0)E; < MEP for (t,2) € (0,T) x Qand € = (&1, &) € R™,
Next we define the notion of a weak solution to a linear parabolic differential
equation of second order.

Definition 2.7. Let f : (0,7) x Q@ — R. A weak solution of Lu = [ is a
function u € L((0,T); WLQ( ) NCO(0,T); L?(Q)) that satisfies

T
// 92 4y dt = // i u 9¢ b%+cudxdt+//f@dxdt
Oz Oz’ 0.
Q

for every ¢ € WL2((0,7); L*(Q)) N L2((0,T); WH2(Q)) that vanishes on 9 x
(0,T) and {0,T} x Q. In Lu = f the function f is called the free term.

In the next theorem the Holder continuity of weak solutions to linear parabolic
equations of second order is established, provided the coefficients and the free
term are Holder continuous. The theorem can be found in Ladyzhenskaja et al.
[32, IIT, Thm. 12.1].

Theorem 2.8. Let u be a weak solution of Lu = f. Let k,l € N with 2k <
and o € (0,1). If the coefficients of L and f lie in C*L((0,T) x Q), then
u € CHHLIF2a(T 5 Q) for every I CC (0,T) and Q' CC Q. In particular, if
the coefficients of L and f are smooth, then every weak solution of Lu = f is
smooth.

The importance of Theorem 2.8 lies in the following fact. Often when
one studies existence of solutions to a nonlinear parabolic differential equation
P(u) = 0 one can apriori only show that solutions with low regularity exist.
For instance one may find a function u € WHFP((0,T) x Q) for some k € N
with & > 2 and p € (1,00) that satisfies P(u) = 0. If u has sufficiently much
regularity, then one can differentiate the equation P(u) = 0 and deduce that the
derivatives of u are weak solutions to a linear parabolic differential equations
with Holder continuous coefficients and free term. But then Theorem 2.8 implies
that the derivatives of u are Holder continuous, so w itself is Hélder continuous

13



as well. Often one is able to iterate this argument and to show that a solution to
a nonlinear parabolic differential equation that has apriori only low regularity
is in fact smooth. This procedure is often referred to as bootstrapping.

From now on let us assume that the coefficients of L are smooth on (0,7") x 2.
Then we have the following Schauder estimates for solutions of Lu = f.

Theorem 2.9. Let k € N with k > 2 and o € (0,1). Let u € CH52((0,T) x ),
f € CY%=22((0,T) x Q), and assume that Lu = f. Then for every Q' CC Q
there exists a constant ¢ > 0 depending only on ', k, o, \, and the C%*-norm
of the coefficients of L on (0,T) x Q, such that

[ullgrre < c(lfllcor-2e +ullcoo),

where the norm on the left side is on (0,T) x Q' and the norm on the right side
is on (0,T) x Q.

The proof of the Schauder estimates can be found in Friedman [18, Ch. 3, §2]
for instance.

Finally we state the LP-estimates for second order linear parabolic equations,
which can be found in Krylov [30, Ch. 5, §2, Thm. 5].

Theorem 2.10. Let k € N with k > 2 and p € (1,00). Let u € WH2P((0,T) x
Q), f € WOE=22((0,T)xQ), and assume that Lu = f. Thenu € W1FP((0,T)x
Q) for every Q' CC Q. Moreover for every Q' CC Q there exists a constant
¢ > 0 depending only on ', k,p,\, and the C%*-norm of the coefficients of L
on (0,T) x , such that

lullwrrr < c(lfllwons—2r + lullwoor),

where the norm on the left side is on (0,T) x Q' and the norm on the right side
is on (0,T) x 2.
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3 The heat equation on compact Riemannian
manifolds

3.1 The Friedrichs heat kernel on Riemannian manifolds

In this subsection we study the Friedrichs heat kernel on arbitrary Riemannian
manifolds. The existence of the Friedrichs heat kernel follows from the spectral
theorem for self-adjoint operators. Further we discuss the parametrix construc-
tion of Minakshisundaram and Pleijel [40] for the Friedrichs heat kernel. The
construction of the Friedrichs heat kernel can be found in Davies [15, Ch. 5, §2].
This construction involves some advanced techniques from functional analysis
including the Friedrichs extension, the spectral theorem for self-adjoint opera-
tors, and the functional calculus for self-adjoint operators, which can be found
in Yosida [62, Ch. XI].

Let (M,g) be a Riemannian manifold and consider the Laplace operator
acting as an unbounded operator

A, CX(M) C L*(M) — L*(M), (3)

where C22(M) is the space of smooth functions on M with compact support.
Then (3) is symmetric and nonpositive, i.e. (Agu,v)2 = (u,Agv)r2 and
(Agu,uyrz < 0 for u,v € CP(M). By Friedrichs’ theorem [62, Ch. XI, §7,
Thm. 2] there exists a closed and self-adjoint extension

A, :dom(A,) € L*(M) — L*(M), (4)

called the Friedrichs extension. Since (4) is self-adjoint, the spectral theorem
for self-adjoint operators [62, Ch. XI, §6, Thm. 1] shows that there exists a
unique resolution of the identity {E}rcr such that

Ag:/ A dE,. (5)

Using the functional calculus for self-adjoint operators [62, Ch XI, §12] we can
then define the Friedrichs heat semigroup {exp(tAg)}i>0 by

exp(tA,) = / exp(t)) dEy. (6)
—0o0
Then {exp(tAy)}i>o is a semigroup of bounded operators on L?(M) that maps
exp(tAg) : L*(M) — () dom(AJ) (7)
=0

for every ¢ > 0. Moreover, if ¢ € L?(M), then u(t,-) = exp(tA,) is the unique
solution to the Cauchy problem
ou
ot
u(0,x) = p(x) forx € M

(t,x) = Agu(t,z) for (t,z) € (0,T) x M,

with u(t, ) € dom(A,) for ¢ > 0.

The next proposition shows that the action of the Friedrichs heat semigroup
on L?(M) is given by an integral operator with a positive and symmetric integral
kernel.
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Proposition 3.1. Let (M,g) be a Riemannian manifold and {exp(tAg)}i>o0
the Friedrichs heat semigroup on (M,g). Then there exists a positive function
H € C*((0,00) x M x M), which is symmetric on M x M, such that for every
p € L*(M)

(exp(tAg)p) () = /M H(t,z,y)e(y) dVy(y). (8)

The function H is called the Friedrichs heat kernel on (M, g). In particular H
satisfies

%—i[(t,%y):AH(t,x,y) for (t,x,y) € (0,00) x M x M,
H(0,z,y) = 0.(y) forx,y e M,

where 6, (y) is the delta distribution on (M, g).

The proof of Proposition 3.1 can be found in Cheeger and Yau [12, §1] and also
in Davies [15, Thm 5.2.1].

On R™ an explicit formula for the heat kernel is known. In fact the Euclidean
heat kernel is given by

1 |z — y|?
H(t,z,y) = Wexp < 4ty > . (9)

This formula can be easily derived by solving the Cauchy problem

O (te) = AH(ta,y)  for (1,2) € (0,00) < B,
H(0,z,y) =0(z—y) for z € R™

and fixed y € R™ using the Fourier transform. Now if (M, ¢) is an m-dimensional
Riemannian manifold and x € M, then we can choose normal coordinates
(x1,...,2m) at € M. Then the Riemannian metric g at = is the Euclidean
metric on R™ and the Laplace operator A, at x is the Laplace operator on
R™. This suggests that (9) is at least locally a good approximation for the heat
kernel on M. In fact, this is the statement of the theorem of Minakshisundaram
and Pleijel [40, §1].

Theorem 3.2. Let (M, g) be an m-dimensional Riemannian manifold and let
H be the Friedrichs heat kernel on (M,g). Then near the diagonal in M x M,
H has an asymptotic expansion ast — 0 of the form

1 dg(xvy)z = 7
H(t,z,y) ~ (ntyn/? exp (_475 ;}aj(x,y)t ; (10)
where a; € C(M x M) for j € N and ag(x,x) =1 for z € M.

A detailed discussion of Theorem 3.2 can also be found in Berger, Gauduchon,
and Mazet [9, Ch. III, §E].
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3.2 The Cauchy problem for the inhomogeneous heat equa-
tion
In this subsection we study the existence and regularity of solutions to the
Cauchy problem for the inhomogeneous heat equation on compact Riemannian
manifolds, i.e. for a given function f : (0,7) x M — R we search for a function
u:(0,T) x M — R that extends continuously to ¢ = 0 and satisfies
ou
ot
u(0,2) =0 for z € M.

(t.2) = Agu(t,z) + f(t,2) for (t,2) € (0,T) x M, "

Here T > 0, (M, g) is a compact Riemannian manifold, and the function f is an
element of a parabolic Holder or Sobolev space. The results below follow from
Theorem 3.2 and the standard regularity theory for the heat equation on R™
from Ladyzhenskaja et al. [32, IV ,§1-83]. Some results about linear parabolic
equations on compact Riemannian manifolds can also be found in Aubin [4, Ch.
4, §4.2].

The following theorem is the main result about the existence and regularity
of solutions to the Cauchy problem (11) in parabolic Holder spaces.

Theorem 3.3. Let (M, g) be a compact Riemannian manifold, T > 0, k € N
with k > 2, and a € (0,1). Given f € COF=29((0,T) x M), there exists a
unique u € C*((0,T) x M) solving the Cauchy problem (11).

We only sketch the proof of Theorem 3.3, which is proved using Theorem 3.2
and the regularity theory for the heat equation on R". Let H be the Friedrichs
heat kernel on (M, g). For a given function f : (0,7) x M — R we define the
convolution H x f: (0,T) x M — R of H and f by

(H = f)(t,2) = / /M H(t — s,2,9)f(s,y) AVy(y) ds, (12)

whenever it is well defined. Denote u = H * f. Since H is a solution of the heat
equation with initial condition the delta distribution, we have at least formally

%(t,x) = (6; * f) (t,2) + /M H(0,2,y) f(t,y) dVy(y)

= (AgH * f)(t,.]?) + f(t,.l?) = Agu(tvx) + f(t7$)

for (t,z) € (0,T) x M. Moreover u(0,z) = 0 for x € M, so at least formally
u is a solution of the Cauchy problem (11). The problem is now to show that
the computation in (13) is rigorous for certain functions f and that u possesses
certain regularity. Let us consider the case when f € C%%%((0,T) x M). Then
we want to show that v € C12((0,T) x M). Using Theorem 3.2 it is straight-
forward to check that u € C%%((0,T) x M). Now consider the expression d;u.
We would like to switch differentiation and integration and we would like to
write Opu = (0¢H) * f. This, however, is not possible in general, since 9;H is
not locally integrable as we can see from Theorem 3.2. The trick to compute
Oyu is to use the Holder continuity of f. Using Theorem 3.2 and the Holder con-
tinuity of f it follows that O,H (t — s, x,y)(f(s,y) — f(s,x)) is locally integrable.
Moreover, since H is a solution to the heat equation, we have

OH
M M

(13)
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and thus we can write

Gt = [ [ G s (fo) ~ f5.0)) () ds + (t.0).

ot

It follows that u is once continuously differentiable in the time direction. In
a similar way one can show that u is twice continuously differentiable in the
spatial directions and hence u € C*2((0,T) x M). In particular the formal
computation in (13) is rigorous in this case and u is a solution of the Cauchy
problem (11). It is straightforward to estimate the C*%*“norm of u in terms of
H and the C%%-norm of f, so that in fact u € C12%((0,T) x M).

The next theorem is an analogue of Theorem 3.3 for the case, when f lies
in a parabolic Sobolev space.

Theorem 3.4. Let (M,g) be a compact Riemannian manifold, T > 0, k € N
with k > 2, and p € (1,00). Given f € WO*=2P((0,T) x M), there exists a
unique u € WH*P((0,T) x M) solving the Cauchy problem (11).

Theorem 3.4 is proved in a similar way as Theorem 3.3. For more details on the
regularity theory for uw = H * f we refer the interested reader to Ladyzhenskaja
et al. [32, IV,§1-§3].

For later applications we want to rephrase Theorem 3.4. Let (M,g) be
a compact Riemannian manifold and let T, k,[, and p be as in Theorem 3.4.
Denote

W17k7p((0=T) x M) = {u € W17k7p((07T> x M) : u(0,-) =0 on M}

Note that if u € W*?((0,T) x M), then u is uniformly Hélder continuous on
(0,T) by the Sobolev Embedding Theorem, and hence u extends continuously
to t = 0. In particular u(0,-) : M — R is well defined. Then the statement of
Theorem 3.4 is that

% — Ay WERP((0,T) x M) — WOF=2P((0,T) x M) (14)

is a bijection. In particular the Open Mapping Theorem [33, XV, Thm. 1.3]
implies that (14) is an isomorphism of Banach spaces. Theorem 3.3 can be
rephrased in a similar way.
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4 Background from Riemannian and symplectic
geometry

4.1 Submanifolds in Riemannian manifolds

In this subsection we recall some standard notions from Riemannian subman-
ifold geometry and also introduce the notion of calibrated submanifolds. For
more on Riemannian submanifolds we refer the interested reader to Kobayashi
and Nomizu [28, Ch. I, §1] and for an introduction to calibrated submanifolds
to Harvey and Lawson [19] and Joyce [23, Ch. 4].

Let (M, g) be an m-dimensional Riemannian manifold and N a manifold of
dimension n with n < m. An embedding of N into M is an injective C''-map
F : N — M, such that the differential dF'(x) : T,N — Tp(;)M is injective
for every x € N. The image F(N) of an embedding F' : N — M is then an
n-dimensional C'-submanifold of M. We say F : N — M is a C*-embedding if
F : N — M is an embedding and a C*-map from N into M, and we say that
F: N — M is a smooth embedding, if FF: N — M is an embedding and a
smooth map from N into M. If F : N — M is a C*-embedding, then F(N) is
a C*-submanifold of M. If F': N — M is a smooth embedding, then F(N) is
a smooth submanifold of M. Often we will refer to the embedding F': N — M
as a submanifold of M.

A submanifold F' : N — M defines an orthogonal decomposition of the
vector bundle F*(TM) into dF(T'N) ® vN. The vector bundle vN over N is
the normal bundle of F : N — M. By m,nx we will denote the orthogonal
projection F*(T'M) — vN onto the normal bundle of F': N — M.

The second fundamental form of a C'?-submanifold F': N — M is a section
of the vector bundle ®*T*N ® vN defined by II(X,Y) = m,n(Vapx)dF(Y))
for X, Y € TN. Here V is the Levi-Civita connection of g. The mean curvature
vector field of ' : N — M is a section of v N defined by H = tr II, where
the trace is taken with respect to the Riemannian metric F*(g) on N. A C?-
submanifold F' : N — M is a minimal submanifold if the mean curvature vector
field is zero. It can be shown that a compact C?-submanifold F : N — M is
minimal if and only if it is a critical point of the volume functional.

Next we define calibrated submanifolds. These are a special class of minimal
submanifolds, which were introduced by Harvey and Lawson [19].

Definition 4.1. Let (M, g) be a Riemannian manifold and let ¢ be a smooth
and closed n-form on M. Then ¢ is a calibration if for every x € M and
every oriented subspace V- C T, M with dimV = n we have o(z)|y < dVj), -
Here g(x)|v is the Riemannian metric in T, M restricted to the subspace V', and
dVy(a)|y 18 defined using the orientation on V.

If ¢ is a calibration on M, then an oriented n-dimensional submanifold

F: N — M is calibrated with respect to ¢ if F*(p) = dVp-(g).

It is not difficult to show that compact calibrated submanifolds minimize
volume among all submanifolds in their homology class, so that calibrated sub-
manifolds are minimal submanifolds, see for instance [23, Prop. 4.1.4]. We
will be interested in a particular class of calibrated submanifolds called special
Lagrangian submanifolds, which we define in §4.3.
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4.2 Symplectic manifolds and Lagrangian submanifolds

In this subsection we recall some basic definitions from symplectic geometry. A
standard reference for symplectic geometry is McDuff and Salamon [36].

We begin with the definition of symplectic manifolds and Lagrangian sub-
manifolds.

Definition 4.2. A 2m-dimensional symplectic manifold is a pair (M, w), where
M is a 2m-dimensional manifold and w is closed and non-degenerate two-form
on M, i.e. dw =0 and w™(x) # 0 for every x € M. Let L be an m-dimensional
manifold. A submanifold F : L — M of a symplectic manifold (M,w) is a
Lagrangian submanifold if F*(w) = 0.

The most elementary example of a symplectic manifold is (C™,w’), where
w = Z;n:l dzj Ady;, and (z1,...,ym) are the usual real coordinates on C™.
Denote by Bpr the open ball of radius R > 0 about the origin in C™. Then in
fact every symplectic manifold is locally isomorphic to (Bg,w’) for some small
R > 0. This is the statement of Darboux’ Theorem [36, Thm 3.15].

Theorem 4.3. Let (M,w) be a 2m-dimensional symplectic manifold, x € M,
and let A : C™ — T, M be an isomorphism with A*(w) = w’. Then there exists
R > 0 and a smooth embedding Y : Br — M, such that T*(w) =w’, T(0) =z,
and dY(0) = A.

An important example of a symplectic manifold is the cotangent bundle of a
manifold. If M is an m-dimensional manifold, then the cotangent bundle T M
of M is a 2m-dimensional manifold and it has a canonical symplectic structure
w defined as follows. Denote by 7 : T*M — M the canonical projection and
let A be the one-form on T*M defined by A(8) = (dr)*(8) for B € T*M. Set
w = —d;\7 then @ is a symplectic structure on T*M. For computations it is
convenient to have an alternative description of @ in local coordinates on T* M.
Let (x1, ..., %) be local coordinates on M and extend these to local coordinates
(T1, - Ty Y1y - - 5 Ym) o0 T*M | such that (z1, ...,y ) represents the one-form
ydxy + - - + ymdax,, in T M, where = (21, ...,2,,). Then one can show that
w= Z;n::[ dx; A dy;.

Next we define the notion of a Lagrangian neighbourhood of a Lagrangian
submanifold in a symplectic manifold.

Definition 4.4. Let (M,w) be a symplectic manifold and F : L — M a La-
grangian submanifold of M. A Lagrangian neighbourhood for F : L — M is
an embedding 1, : U, — M of an open neighbourhood Uy, of the zero section
in T*L onto an open neighbourhood of F(L) in M, such that ®} (w) = @ and
O (2,0) = F(x) forxz € L.

Our later study of the generalized Lagrangian mean curvature flow of com-
pact Lagrangian submanifolds is based on the existence of a Lagrangian neigh-
bourhood for compact Lagrangian submanifolds, which is established in the next
theorem.

Theorem 4.5 (Lagrangian Neighbourhood Theorem). Let (M,w) be a
symplectic manifold and F : L — M a Lagrangian submanifold with L compact.
Then there exists a Lagrangian neighbourhood ®, : Uy, — M for F : L — M.

A proof of the Lagrangian Neighbourhood Theorem for compact Lagrangian
submanifolds can be found in McDuff and Salamon [36, Thm. 3.32].
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4.3 Almost Calabi—Yau manifolds and Lagrangian sub-
manifolds

In this subsection we introduce almost Calabi—Yau manifolds, which are the
ambient spaces for the generalized Lagrangian mean curvature flow. We also in-
troduce the generalized mean curvature vector field and discuss Lagrangian and
special Lagrangian submanifolds in almost Calabi—Yau manifolds. The general
theory about almost Calabi—Yau manifolds and special Lagrangian submani-
folds in almost Calabi-Yau manifolds can be found in Joyce [23, Ch. 7 and 8§].
In the discussion of the generalized mean curvature vector field we follow the
author’s paper [8], where also some additional material can be found.

We begin with the definition of almost Calabi—Yau manifolds following Joyce
[23, Def. 8.4.3].

Definition 4.6. An m-dimensional almost Calabi—Yau manifold is a quadru-
ple (M, J,w,Q), where (M, J) is an m-dimensional complex manifold, w is the
Kahler form of a Kdhler metric g on M, and €2 is a holomorphic volume form
on M.

Let (M, J,w,$) be an m-dimensional almost Calabi-Yau manifold. The
Ricci-form is the complex (1, 1)-form given by p(X,Y) = Ric(JX,Y) for X, Y €
TM, where Ric is the Ricci-tensor of g. We define a function ¢p € C*°(M) by

2 "y (D)o g 15
¢ m! (=1) 2 ' (15)

Then |[Q| = 2™/2e™¥ so that € is parallel if and only if v is constant. One
can show that the Ricci-form of an almost Calabi-Yau manifold satisfies p =
dd¢log |9, see for instance Kobayashi and Nomizu [29, Ch. IX, §5]. Thus we
find p = mdd®y and it follows that g is Ricci-flat if and only if 1) is constant. If
¥ =0, then (M, J,w, Q) is a Calabi-Yau manifold [23, Ch. 8, §4].

Our motivation to work with almost Calabi—Yau manifolds and not only
with Calabi—Yau manifolds is the following. The first nice feature of almost
Calabi—Yau manifolds is that explicit almost Calabi—Yau metrics on compact
manifolds are known, while there are no non-trivial Calabi—Yau metrics on com-
pact manifolds explicitly known. For instance a quintic in CP* equipped with
the restriction of the Fubini-Study metric is an almost Calabi—Yau manifold.
An even more important property of compact almost Calabi—Yau manifolds
is that they appear in infinite dimensional families, while compact Calabi—-
Yau manifolds only appear in finite dimensional families due to the theorem
of Tian [56] and Todorov [57], and Yau’s proof of the Calabi conjecture [61]. In
fact, recall that by the theorem of Tian and Todorov the moduli space Moy
of Calabi—Yau structures on a compact Calabi—Yau manifold is of dimension
hYL (M) + 2hn= 11 (M) + 1, where h'J (M) are the Hodge numbers of M. In
particular My is finite dimensional. In the study of moduli spaces of J-
holomorphic curves in symplectic manifolds it turns out that for a generic al-
most complex structure J the moduli space M of embedded J-holomorphic
curves is a smooth manifold, while for a fixed almost complex structure J the
space M ; can have singularities, see McDuff and Salamon [37] for details. The
moduli space M gcy of almost Calabi—Yau metrics is infinite dimensional and
choosing a generic almost Calabi—Yau metric is therefore a more powerful thing
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to do than choosing a generic Calabi—Yau metric. We explain why this is of
certain interest. It was proved by McLean [38] that if F': L — M is a special
Lagrangian submanifold in a Calabi—Yau manifold, then the moduli space of
compact special Lagrangian submanifolds Mgy, is a smooth manifold of dimen-
sion b (L), the first Betti number of L (see Definition 4.9 below for the notion of
special Lagrangian submanifolds). An important question is whether it is pos-
sible to compactify Mgy, in order to define invariants of Calabi—Yau manifolds
by counting special Lagrangian submanifolds. One approach to this problem,
due to Joyce, is to study the moduli space of special Lagrangian submanifolds
with conical singularities in almost Calabi—Yau manifolds, see [26] for a survey
of his results. In particular Joyce conjectures that for generic almost Calabi—
Yau metrics the moduli space of special Lagrangian submanifolds with conical
singularities is a smooth finite dimensional manifold.

The most important example of an (almost) Calabi—Yau manifold is C™
with its standard structure. Denote by (x1,...,Zm,¥1,---,Ym) the usual real
coordinates on C™. We define a complex structure J’, a non-degenerate two
form «’, and a holomorphic volume form €’ on C™ by

0 0 0 0
/ = — / _— = - f :1 o
! <5%’) dy; and (ai‘/j> ga; T e

W= dej ANdyj, @ = (dzy +idyr) A A (day, + idy)-
j=1

Then (C™, J',w’, Q) is an (almost) Calabi-Yau manifold and the corresponding
Riemannian metric is the Euclidean metric ¢’ = dx? + --- + dy?2,.

Next we discuss Lagrangian submanifolds in almost Calabi—Yau manifolds.
Thus let (M, J,w,) be an m-dimensional almost Calabi-Yau manifold and
F : L — M a Lagrangian submanifold. We define a section a of the vector
bundle Hom (v L, T*L) by

all) =ag=F"(§ sw) for & e vL. (16)

Since F' : L. —- M is Lagrangian, « is an isomorphism in each fibre over L.
Moreover, a~*(du) = —J(dF(Vu)) for every u € C(L).

Assume that F : L — M is a C?-Lagrangian submanifold and let H be the
mean curvature vector field of F': L — M. The one-form oy = F*(H s w)on L
is the mean curvature form of F': L — M. Tt is true that day = F*(p), where
p is the Ricci-form, as first observed by Dazord [16]. Assume for the moment
that (M, J,w, ) is Calabi-Yau. Then p = 0, as g is Ricci-flat. In particular ay
is closed and it follows from Cartan’s formula that

F*(Lpw) = F*(d(H 2w)) =dag =0.

Thus, if (M, J,w, Q) is Calabi-Yau, then the deformation of a Lagrangian sub-
manifold in direction of the mean curvature vector field is an infinitesimal sym-
plectic motion. Now if (M, J,w, Q) is an almost Calabi-Yau manifold, then
the Ricci-form is given by p = mdd®y. In particular F*(Lyw) = mF*(ddy) is
nonzero in general. We therefore seek for a generalization of the mean curvature
vector field with the property that the deformation of a Lagrangian subman-
ifold in its direction is an infinitesimal symplectic motion. This leads to the
definition of the generalized mean curvature vector field, which was introduced
by the author in [8, §3].
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Definition 4.7. The generalized mean curvature vector field of F' : L — M
is the normal vector field K = H — mm,(Vv), where H denotes the mean
curvature vector field of F': L — M. The one-form ax = F*(K 1 w) is the
generalized mean curvature form of F': L — M.

Note that if ¢ is constant, then K = H. Further observe that if F': L — M
is Lagrangian, then we have

F*(Lgw) =mEF*(dd“Y) — mF*(d(m,(Vu)) s w)
= mF*(ddy) + mF*(d(dy o J)) = 0.

Thus if FF: L — M is a Lagrangian submanifold in an almost Calabi-Yau
manifold, then the deformation of F' : L — M in direction of the generalized
mean curvature vector field is an infinitesimal symplectic motion.

Next we define the Lagrangian angle of a Lagrangian submanifold. When
F: L — M is a Lagrangian submanifold, then the Lagrangian angle is the map
O(F): L — R/7Z defined by

FH(Q) = 0IDTmE W qy. . (17)

Since F' : L — M is a Lagrangian submanifold, 6(F) is in fact well defined,
see for instance Harvey and Lawson [19, ITII.1]. In general 0(F) : L — R/7Z
cannot be lifted to a continuous function §(F) : L — R. However, d[0(F)]
is a well defined closed one form on L, so it represents a cohomology class
pur € HY(L,R) in the first de Rham cohomology group of L. Thus if upr = 0,
then 6(F) : L — R/7Z can be lifted to a continuous function 6(F) : L — R and
vice versa. The cohomology class pp is called the Maslov class of F': L — M.

We now prove an important relation between the generalized mean curvature
form of a Lagrangian submanifold F': L — M and the Lagrangian angle.

Proposition 4.8. Let F': L — M be a Lagrangian submanifold in an almost
Calabi-Yau manifold. Then the generalized mean curvature form of F: L — M
satisfies ag = —d[0(F)].

Proof. For every complex manifold (M, J) we have a natural decomposition of
the bundle of complex m-forms given by
AMT*M®C=  APIT*M. (18)
ptg=m

See for instance [23, Ch. 5, §2] for a description of this decomposition. Since
g is a Kéahler metric, the complex structure J is parallel and therefore the
decomposition (18) is invariant under the holonomy representation of g. Hence
there exists a complex one-form n on M satisfying VQ = n® Q. Moreover, since
€ is holomorphic, 7 is in fact a one-form of type (1,0). Using QA Q = e2mvqy,
we find by computing V (Q A Q) that

M+ @QAAQ=2mdy @ QAQ.

It follows that 7 = 2m0dy and thus V) = 2moy ). Following the computation
of Thomas and Yau [55, Lem. 2.1] we find that

VQ = (d[0(F)] + mdy + iog) @ Q
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and hence ay — md“p = —d[f(F)]. By definition of the generalized mean cur-
vature vector field ay — md®y = ag, and hence it follows that ax = —d[0(F)]
as we wanted to show. O

Notice that as a consequence of Proposition 4.8, if F': L — M is a Lagrangian
submanifold with zero Maslov class, then ax is an exact one form and the
deformation of F' : L — M in direction of the generalized mean curvature
vector field is an infinitesimal Hamiltonian motion.

Next we define a special class of Lagrangian submanifolds in almost Calabi—
Yau manifolds called special Lagrangian submanifolds.

Definition 4.9. Let F : L — M be a Lagrangian submanifold in an almost
Calabi—Yau manifold (M7 Jow,Q). Then F : L — M is a special Lagrangian
submanifold with phase €, 6 € R, if and only if

F*(cosf Im  —sinf Re Q) = 0.

If F: L — M is a special Lagrangian submanifold with phase €', then there is
a unique orientation on L in which F*(cosf Re Q + sinf Im Q) s positive.

Note that a special Lagrangian submanifold F': L — M has zero Maslov-class,
since §(F) is constant on L and d[f(F')] represents pp by Proposition 4.8.

Definition 4.9 is not the usual definition of special Lagrangian submanifolds
in terms of calibrations. Our definition is, however, equivalent to the definition
of special Lagrangian submanifolds as a special class of calibrated submanifolds.
In fact, if we define g to be the conformally rescaled Riemannian metric on M
given by § = €2¥g, then Re () is a calibration on the Riemannian manifold (M, §)
and we have the following alternative characterization of special Lagrangian
submanifolds.

Proposition 4.10. Let F': L — M be a Lagrangian submanifold in an almost
Calabi—Yau manifold (M, J,w,Q). Then F : L — M is a special Lagrangian
submanifold with phase €%, § € R, if and only if F : L — M is calibrated with
respect to Re(e=%Q)) for the metric §.

Finally we mention that the definition of the generalized mean curvature
vector field from Definition 4.7 can be extended to submanifolds in K&hler man-
ifolds that are almost Einstein. Indeed, if (M, J,w) is an m-dimensional Kéhler
manifold with Kéhler metric g and p is the Ricci-form of g, then (M, J,w) is
said to be almost Einstein if there exists A € R and a function ¢ € C*(M)
with p = Aw + mdd®). Then if F : L — M is a C%-submanifold, then the
generalized mean curvature vector field of F': L — M is the normal vector field
K = H —mm,, (V). More about the generalized mean curvature vector field
can be found in the author’s paper [8].

4.4 Lagrangian submanifolds in cotangent bundles

In this subsection we discuss Lagrangian submanifolds in cotangent bundles and
their variations. This is of particular importance for the following reason. In
§5.1 we will define the generalized Lagrangian mean curvature flow, which is a
flow of Lagrangian submanifolds in an almost Calabi—Yau manifold. Later in
§5.2, however, we will show that the generalized Lagrangian mean curvature flow

24



can be seen as a flow of functions rather than of submanifolds. The differential
of a function defines a Lagrangian submanifold of the cotangent bundle through
its graph and therefore we first need to understand variations of Lagrangian
submanifolds in cotangent bundles.

Let (M, J,w,Q) be an m-dimensional almost Calabi—Yau manifold and L
an m-dimensional manifold. Let T*L be the cotangent bundle of L and S a
C'-one-form on L. The graph of 3 is the submanifold

F:L—T"L, F(z)=(z,0(zx)) €TL forzelL. (19)

We write T'g for F(L) = {(z,8(z)) : * € L}. As explained in §4.2, T"L has a
canonical symplectic structure w. Then F*( ) = —df, so that F:L—T*Lis
Lagrangian if and only if 3 is closed. In particular every function u € C*(L)
defines a Lagrangian submanifold ' : L — T*L by F(z) = (z,du(z)) for z € L.
Now let F': L — M be a Lagrangian submanifold and assume that we are
given a Lagrangian neighbourhood & : Uy — M for ' : L — M. If fis a
closed C'-one-form on L with 'y C Uy, then we can define a submanifold by

brof:L— M, (Ppop)(x)=2L(x,f(x)) forazelL.

Since @} (w) = &, @05 : L — M is a Lagrangian submanifold. Note that
if L is compact, then, after reparametrizing by a diffeomorphism on L, every
Lagrangian submanifold F' : L — M that is C'-close to F': L — M is given by
$r o : L — M for some closed one-form /3 on L.

When we study the generalized Lagrangian mean curvature flow as a flow of
functions, we will study deformations of Lagrangian submanifolds of the form
®po(B+sn): L — M, for small s € R and 3,7 are closed C'-one-forms on
L with I'g C Ur. The next important lemma gives a formula for the variation
vector field of ®;, 0 (8 + sn) : L — M along the submanifold &, 05 : L — M.

Lemma 4.11. Let 3,7 be closed C'-one-forms on L with Ts C Uy, and ¢ > 0
sufficiently small such that gy, C Ur for s € (—e,g). Then for every s €
(—¢e,e), P o(B+sn): L — M is a Lagrangian submanifold and

Sa0(3+sn)| _ = —a7 )+ V()

where o is defined in §4.3 and V(n) = d(®1, 0 B)(V (1)) is the tangential part of
the variation vector field.

Proof. We choose local coordinates (x1, ..., %) on L and extend these to local
coordinates (1, ...,%n,Y1,.--,Ym) on T*L, such that (z1,...,y,,) represents
the one-form y1dxy + -+ + yda,, in T) L, where © = (z1,...,2,,). Denote
n = n;dxz;, where we sum over repeated indices. Then

d 0dy,

L8+ @) =m0 G @A)

Here %‘bf is a section of the vector bundle (@1, 0 3)*(T'M). We need to compute

the normal part of a‘bL. Let F=®;0p8:L— M, then we have that
odr, y (0P oF oF
Ll == ) =¢g° —,J J| =—
() =00 (55 (5)) 7 ()

g (OF 000\ | (0F
-9 Ox’ Oyt oxb )’
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By definition F = &, o F, where F : L —T"L, F(x) = (z,B(x)) for z € L is
the graph of 8. Denote by (F1,..., Fay) the components of F : L — T*L in
the coordinates (x1,...,ym,) on T*L. Then

OF _ 0%y OF. 0%,
dze  Qxe  Jxe Oy°

Since @} (w) = @ and w = >°7", dx; A dy;, we find that
(P o (0 0
oze’ 9yt ) T \oxe oyt )

(P 0% (0 9

8yc’ ayz‘ - ayc73yz’ -
0DL\  we L (OF\ _ o (OF

o (yt) =0t (g3) =0 (555
and hence

d . OF -
TvL <d5<I>L o (B+ sn)!s_o> = g"miJ (axb) = —a ().

and similarly

It follows that
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5 Generalized Lagrangian mean curvature flow
of compact Lagrangian submanifolds

5.1 Generalized Lagrangian mean curvature flow

In this subsection we introduce the generalized Lagrangian mean curvature
flow in almost Calabi—Yau manifolds. For the definition of the generalized La-
grangian mean curvature flow we follow the author’s paper [8]. General texts on
the Lagrangian mean curvature flow are given by Wang [58] and with a special
emphasis on the regularity theory of the Lagrangian mean curvature flow by
Neves [43].

Throughout this subsection (M, J,w,)) will be an m-dimensional almost
Calabi-Yau manifold. We begin with the definition of the generalized La-
grangian mean curvature flow in almost Calabi—Yau manifolds.

Definition 5.1. Let Fy : L — M be a smooth Lagrangian submanifold in M. A
smooth one-parameter family {F(t,-)}ic(o,r) of smooth Lagrangian submanifolds
F(t,-) : L — M, which is continuous up to t = 0, is evolving by generalized
Lagrangian mean curvature flow with initial condition Fy : L — M if

ot
F(0,z) = Fy(z) for x € L.

OF
Tl ( > (t,z) = K(t,z) for (t,x) € (0,T) x L, (20)

Here K(t,-) is the generalized mean curvature vector field of F(t,) : L — M
fort € (0,T) as in Definition 4.7. If M is Calabi-Yau, then ¥ =0 and K = H.
Then we say that {F(t,-)}ic(o,1) evolves by Lagrangian mean curvature flow.

The next theorem, proved in §5.2-§5.4, establishes the short time existence
of the generalized Lagrangian mean curvature flow when L is compact.

Theorem 5.2. Let Fy : L — M be a smooth Lagrangian submanifold of an
almost Calabi—Yau manifold with L compact. Then there exists T > 0 and a
smooth one-parameter family {F(t,-)}+c(o,r) of smooth Lagrangian submanifolds
F(t,-) : L = M, which is continuous up to t = 0 and evolves by generalized
Lagrangian mean curvature flow with initial condition Fy: L — M.

The system of partial differential equations (20) is, after reparametrizing
by a family of diffecomorphisms on L, a quasilinear parabolic system. Hence,
if L is compact, then it follows from the standard theory for parabolic equa-
tions on compact manifolds, see for instance Aubin [4, §4.2], that for every
smooth submanifold Fy : L — M there exists a smooth one-parameter family
{F(t,-)}te(o,ry of smooth submanifolds F(t,-) : L — M, which is continuous up
to t = 0 and satisfies (20). Less obvious, however, is the fact that if Fo : L — M
is a Lagrangian submanifold, then F'(¢,-) : L — M is a Lagrangian submanifold
for every t € (0,T). The original proof of the fact that F'(¢,-) : L — M is a La-
grangian submanifold for ¢ € (0,7) uses long computations in local coordinates
and the parabolic maximum principle. In §5.2 we will show how the generalized
Lagrangian mean curvature flow can be integrated to a flow of functions on L
rather than of embeddings of L into M. Using this interpretation of the gener-
alized Lagrangian mean curvature flow we then present in §5.2-§5.4 a new proof
of Theorem 5.2.
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The idea of the Lagrangian mean curvature flow goes already back to Oh
[45] in the early nineties. The existence of the Lagrangian mean curvature flow,
however, was first proved by Smoczyk [50, Thm. 1.9] for the case when M is
a Kéahler-Einstein manifold. Recently there has been interest in generalizing
the idea of the Lagrangian mean curvature flow. This led to the notion of
generalized Lagrangian mean curvature flows first introduced by the author in
[8], when M is a Kéhler manifold that is almost Einstein, and later by Smoczyk
and Wang [51], when M is an almost Ké&hler manifold that admits an Einstein
connection.

The next proposition discusses another definition of the generalized La-
grangian mean curvature flow, which at least in the case when F' : L — M
is a compact Lagrangian submanifold, is equivalent to the previous one.

Proposition 5.3. Let L be a compact manifold, Fy : L — M a smooth La-
grangian submanifold, and {F(t,-)},r) a smooth one-parameter family of La-
grangian submanifolds F(t,-) : L — M, which is continuous up to t = 0 and
evolves by generalized Lagrangian mean curvature flow with initial condition
Fy : L — M. Then there exists a smooth one-parameter family {¢(t,-)}reo,1)
of smooth diffeomorphisms of L, which is continuous up to t = 0, such that
the following holds. The map ¢(0,-) : L — L is the identity on L and, if
we define a one-parameter family {F(t,~)}t€(0j) of Lagrangian submanifolds
F(t,-): L — M by

Ft,2) = F(tp(t,2)) for (te) € (0,T) x L, (21)
then {F(t, ) }ee(o,r) is continuous up to t =0 and satisfies

O (1) = K(t.a) for (12) € (0.T) x L.

F(0,2) = Fy(x) forz € L.

Proof. We define {¢(t,-) }+e(0,7), such that ©(0,-) : L — L is the identity on L
and

(22)

a[F(t, ) (?f(t,o):—w(t,)(m (%f(u-)) forte(0,7).  (23)

The existence of {¢(t, ) }+eo,1) is guaranteed by the Picard-Lindel6f Theorem

[33, XTIV, §3] and the compactness of L. It is then easy to see that {F(t, ) }eeco,)
as defined in (21) is a solution of the Cauchy problem (22). O

Often (22) is used for the definition of the generalized Lagrangian mean
curvature flow. Proposition 5.3 shows that (20) and (22) are equivalent up to
tangential diffeomorphisms, provided L is compact. It is important to note,
however, that in general (20) and (22) are not equivalent. For instance in the
generalized Lagrangian mean curvature flow with isolated conical singularities,
which we study in §9, we will find a solution to (20). The solution will then
consist of Lagrangian submanifolds with isolated conical singularities and the
singularities move around in the ambient space. In this case it is in general
not possible to find a solution of (23) for a short time. Note anyway that if we
are given solutions {F'(Z,-)},r) to the generalized Lagrangian mean curvature
flow (20) and {F(t, ) }ee(o,ry to (22), then F(t, L) = E(t,L) for t € (0,T). So
F(t,-): L — M and F(t,-) : L — M have the same image for each t € (0,T).
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5.2 Integrating the generalized Lagrangian mean curva-
ture flow

In this subsection we will show how the generalized Lagrangian mean curvature
flow (20) can be integrated to a nonlinear differential equation on functions. In
this way we get rid of the quasilinear system of parabolic differential equations
given in (20). The price we have to pay, however, is that the new equation does
depend in a nonlinear way on the second spatial derivatives of the function, i.e.
is not quasilinear anymore.

Let (M, J,w, ) be an m-dimensional almost Calabi-Yau manifold, L a com-
pact m-dimensional manifold, and Fy : L — M a Lagrangian submanifold.
Then by the Lagrangian Neighbourhood Theorem, Theorem 4.5, there exists
a Lagrangian neighbourhood & : Uy, — M for Fy : L — M. The main idea
for integrating the generalized Lagrangian mean curvature flow lies in the ob-
servation that every Lagrangian submanifold F : L — M that is C*-close to
Fy : L — M can be written as ' = & 03 : L — M for a closed one-form
B on L. Therefore if {F(t,-)}:e(0,r) evolves by generalized Lagrangian mean
curvature flow with initial condition Fy : L — M, then F(t,-) = @, o B(t) for
some smooth family {5(Z)}c(o,r) of closed one-forms on L, that extends contin-
uously to t = 0 with 3(0) = 0. By Proposition 4.8, ak .y = —d[0(F(t,-))] for
t € (0,T). Therefore we expect that 3(t) = d[u(t,-)] + By for t € (0,T), some
function w : (0,7) x L — R, that extends continuously to ¢ = 0 with «(0,-) = 0,
and some representative By € up,.

We now carry out these ideas in detail. Let Fy : L — M be a Lagrangian
submanifold with L compact and let ®;, : U, — M be a Lagrangian neighbour-
hood for Fy : L — M, which exists by Theorem 4.5. Let pp, be the Maslov
class of Fy : L — M, and choose a smooth map ag : L — R/7Z with dag € pp,.
Denote Sy = dag. Then there exists a smooth lift ©(Fy) : L — R of the map
0(Fp)—ap : L — R/7wZ, and ©(F}) satisfies d[©(Fp)] = d[0(Fy)] — Bo. Moreover,
if {n(s)}se(—c,e)» € > 0, is a continuous family of closed one-forms defined on L
with ') C Ug for s € (—¢,¢) and 7(0) = 0, then we can choose ©(®r, o n(s))
to depend continuously on s € (—¢,¢).

We define a nonlinear differential operator P now as follows. Define a smooth
one-parameter family {3(t)};c(o,r) of closed one-forms on L by 3(t) =ty for
t € (0,7). Then {3(t)}e(0,1) extends continuously to ¢t = 0 with 5(0) = 0.
Choose T' > 0 small enough so that I'gy) C Ug, for (0,7T). Then the domain of
P is given by

D ={ueC™((0,T)x L) : u extends continuously to t =0
and Iy 480 C UL fort € (O,T)}

and we define

Ju
ot
If w € D, then I'y 454 C Ur for every t € (0,7), and therefore the La-

grangian submanifold @, o (d[u(t,-)] + 8(t)) : L — M is well defined for every
t € (0,7). Hence O(Py, o (d[u(t, )] + B(t))) is well defined for every t € (0,T).

P:D—C®(0,T) x L), P(u) =% — (P o (du+ B)).
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We consider the Cauchy problem

P(u)(t,z) =0 for (t,z) € (0,T) x L,

24
u(0,2) =0 for x € L. 24)

If we are given a solution u € D of the Cauchy problem (24), then we obtain a
solution to the generalized Lagrangian mean curvature flow.

Proposition 5.4. Let u € D be a solution of (24). Define a one-parameter
family {F(t,-)}ie(o,r) of submanifolds by

F(t,-): L— M, F(t,-) = ®p o (d[ult, )] + B(1))- (25)

Then {F(t,-)}ic(o,r) is a smooth one-parameter family of smooth Lagrangian
submanifolds, continuous up to t = 0, which evolves by generalized Lagrangian
mean curvature flow with initial condition Fy : L — M.

Proof. Since u(0,z) = 0 for every « € L and S(0) = 0, it follows that F(0,z) =
Fo(z) for every x € L. To show that {F(t,-)}ie0,1) evolves by generalized
Lagrangian mean curvature flow it suffices to show that « ar = Q. Denote X =

L& 0(du+p). Then X is a section of the vector bundle (0 (du+3))*(TM).
By Lemma 4.11 the normal part of X is equal to —a~!(d[0;u] + By) and the
tangential part is equal to V(d[0yu] + Bp). Thus

%—I; =—a! (d [?9?] +ﬁo> +V (d Bﬂ +ﬁo> .

Since @7, o (du+ 8) : L — M is a family of Lagrangian submanifolds,

(@1 0 (du+ B))* (V (d Bﬂ +ﬁo> Jw> =0.

Thus we obtain

r=—(0p 0 (du+p))” <a1 (d Bﬂ +5O> Jw> =—d {‘;ﬂ — Bo.

Since P(u) = 0, Oyu = O(®y, o (du + )) and hence

«

@‘QJ
Q

ou
~a|5] - oo = 0] - 5o = ~lo(r)
with F' = @y o (du + 8). Thus asr = —d[f(F)]. By Proposition 4.8 we have
ax = —d[0(F)] and hence Qor = g, as we wanted to show. O

We come to the important conclusion that the short time existence for the
generalized Lagrangian mean curvature flow is equivalent to the short time
existence of solutions to the Cauchy problem (24). Note that if Fy : L — M
has zero Maslov class, then we can choose = 0 in Proposition 5.4.
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5.3 Smoothness of P as a map between Banach manifolds

In this subsection we will show that P : D — C*°((0,7) x L) extends to a
smooth map of certain Banach manifolds.

We first need to introduce some notation. For k € N and p € (1,00) with
k‘—%>2wedeﬁne

DMP = {u e WHFP((0,T) x L) : T, y+p0) C U for t € (0,7)} .

If w € DFP, then u(t,-) € C?(L) for almost every t € (0,T) by the Sobolev
Embedding Theorem as k — % > 2. In particular for almost every ¢t € (0,7,
P(u)(t,-) : L — R is well defined.

The goal of this section is to prove that P : DF? — WOk=2r((0,T) x L)
is smooth provided k € N and p € (1,00) are sufficiently large. Note that if
u € DFP then only the first time derivative of u is guaranteed to be in LP,
whereas the spatial derivative of u up to order k lie in L. In order to prove
that P : Db — WOk=2.,((0,T) x L) is smooth we make use of the fact that we
can take k to be arbitrarily large. On the other hand, when we prove short time
existence of solutions of the Cauchy problem (24) in Proposition 5.8 below, we
make use of the fact that u is only in WP in the time direction.

Let  be smooth and closed one-form on L with small C%-norm. We define
a function F,(z,du(x), Vdu(z)) = ©(®r o (n+ du))(x), where

E, - {(m,y,z) cx €L, yeTyLwithy+neUyg, z€®2T;L} — R.

Then F), is a smooth and nonlinear function on its domain, since 2, g, %, and
&, are smooth. Furthermore we define a function @, on the domain of F), by

Qn(xvyv Z) = F»,,(Z',y, Z) - F’r/(xa 070) - (6yFTI)(x707O) Y= (aZFn)(xv 0’ O) =z

50 @y, is the remainder in the Taylor expansion of [}, to first order. In particular,
by Taylor’s Theorem [33, XIII, §6] we have for a,b,c > 0 and small |y|, |z]

(V2)(0,)"(0:)°Qy(w,,2) = O (Iy| (02700 o [smex0:2=e) ) (2)

uniformly for x € L, since L is compact. We begin by computing the linear
terms in the Taylor expansion of F;,.

Lemma 5.5. Let u € C?(L) with Dqyyn C Ur. Denote 1, = (P, 0n)*(¥) and
0, = 0(®r, on), which are smooth functions on L. Then

(8,F,)(-,0,0) - du + (8.F,)(-,0,0) - Vdu = Au — mdyp, (Vdu) — d, (V (du)).

Here the Laplace operator and V are computed using the Riemannian metric
(Pr,on)*(g) on L, and V(du) is defined as in Lemma 4.11.

Proof. Define X = %@Lo(r]—i—sdu) |s=0. Then X is a section of the vector bundle
(&7, 0m)*(TM). By Lemma 4.11 the normal part of X is equal to —a~!(du) =
J(d(® on)(Vu)) and the tangential part is equal to V(du) = d(® on)(V (du))
with V(du) € TL. Denote by 6, the Lagrangian angle of ®70(n+sdu) : L — M.
Further denote 95 = (P, o (n + sdu))*(¢) and gs = (P, o (n + sdu))*(g). By

definition of the Lagrangian angle of @1, o (n+ sdu) : L — M we then have
(D1, 0 (5 + sdu))* () = e +mbeqy, (27)
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Differentiating (27) on the left side with respect to s at s = 0 gives
d
35 (Bro(m+sdu)™(Q)) = (2ron) (LxQ) = (2ron)"(d(X 2 Q)

by Cartan’s formula, since 2 is closed. Now we decompose X into its tangential
and normal part and we compute for the normal part

(@ on)*(d(J(d(PL on)(Vu)) 4 Q)
=i-d((®L on)*(d(Pr on)(Vu) 2 Q) =i d(e" ™1V 5 dV,,)
= et fid(Vu 5 dV,) — df, A (Vu 5 dVy,) + imd, A (Vu o dV,)}
= et fi Ay — imdip, (Vu) + 6, (Vu) }dV,,

where we use that Q is holomorphic and (27). In a similar way we compute for
the tangential part of X

(®1,0m)" (A(A(P 0 7)(V(duw) 5 Q) = d(@ ™V (du) 5 V)
= e PrtmUnlido, A (V(du) 5 dV,,) +mde, A (V(du) 5 dV,,) +d(V(du) 5 dV,,)}
= 0t { g, (V(du)) — mdd, (V(du)) YV, + e ™nd(V(du) 5 dV, ).
Thus we obtain
%(@L o (-+ sdw)* ()| = et i — iy (V)
+d6, (V) — idf, (V(du)) — mdiy(V (du)) }av, — (28)
+e Ot q(V (du) 5 dV,).

Differentiating the left side in (27) with respect to s at s = 0 we find that

d .
&el9s+mws dVgs‘ » —
5= a0 (29)

e tmiy {Zis
ds

|+ mdiy(V(du)) — g(Hy, X)}dVW

sS=

where H,, denotes the mean curvature vector field of ®yon : L — M. Comparing
(28) and (29) we conclude that

do, N
= Au — mdy, (Vu) — db, (V(du)),
dS s=0
from which the lemma follows. O

We can now prove the smoothness of P : DF? — WOk=2,((0,T) x L) for
sufficiently large k € N and p € (1, 00).

Proposition 5.6. Letk € N, p € (1,00) such that k > 6 and p > max{1, 4,?_2;” .

Then P : DkP — WOk=2P((0,T) x L) is a smooth map of Banach manifolds.

Proof. The first step is to show that P : D¥? — WOk=2P((0,T) x L) is well
defined. Let v € D*P. Using Lemma 5.5 we can write

P(u) = % — 05 — Au~+ mdyg(Vu) + d95(‘7(du)) —Qs(-,du, Vdu), (30)
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with 93 = (P o 8)*(¢) and g = (P o §). We show that each of the terms
on the right side of (30) lies in W% =22((0,T) x L). Recall that B(t) = tf3o
for t € (0,T). Since 63 is a smooth function on (0,T) x L, we have g €
WOk=2P((0,T) x L). Moreover, from the definition of D¥? it immediately
follows that

Ay, Au, dyg(Vu), dfg(V(du)) € WOE=2P((0,T) x L).

It remains to show that Qg(:,du, Vdu) lies in WO*=2P((0,T) x L). We first
show that Qs (-, du, Vdu) lies in W%%?((0,T) x L). By (26) we have

Qp(-,du, Vdu) = O (|dul® + [Vdu|?) .

Let us show that |Vdu|? lies in W%0P((0,T) x L). In a similar way one can show
that |du|? lies in WOP((0,T) x L). Since k > 4, |Vdu| lies in WHk=22((0,T) x
L). Since p > max{1, %}7 Proposition 2.6 implies that W*=2P((0,T) x L)
embeds continuously into C%°((0,7) x L) by inclusion and hence |Vdu|?* €
Wo9-2((0,T) x L). This shows that Qg(-,du, Vdu) € W%%P((0,T) x L). For
the derivatives of Q)3 we have by the chain rule

IV Qp(x,du, Vdu)| < j1 D [(Va)*(9,)"(9:)°Qp(x, du, Vdu)|
a(igﬁcz’ﬁoj

b c
x ) [TV @) [T 1V (=)
=1 =1

TN oo, M, M ey e > 1 ]
atmite My, N1+ +ne=j

(31)

for j =0,...,k—2. Using Proposition 2.6, the estimate (26), and the conditions
on k € Nand p € (1,00) it is straightforward to show that each of the terms
on the right side of (31) lies in W%?((0,T) x L) for j = 0,...,k — 2. Thus we
finally obtain that Qs(-, du, Vdu) € W9*=2P((0,T) x L) and hence P : D** —
WOk=2.P((0,T) x L) is well defined.

Next we show that P : D*P — W%*=2P((0,T) x L) is a continuous map of
Banach manifolds. Let u,v € D¥P. Writing P(u) and P(v) as in (30) we find

[|1P(u) — P(v)|lwor-20 = [[A(u —v) + Qa(-, du, Vdu) — Qs(-, dv, VAv)||yox—2.»
< |A(uw —v)|lwor—2 + |Qp(+, du, Vdu) — Qg (-, dv, Vdv)||wo.k—2.s

Clearly ||A(u—v)||yo.r—2 < c|Ju—2|prr» for some constant ¢ > 0. Moreover,
since 3 is a smooth function on its domain, the second term can be estimated
by the derivatives of Qg and ||u — v||yy1.x.» using the Mean Value Theorem [33,
XIII, §4]. It follows that P : DkP — WOk=2P((0,T) x L) is continuous. In
a similar way one can show that P : D¥P — WO%k=2P((0,T) x L) is in fact
smooth. This completes the proof. ]

5.4 Short time existence and regularity of solutions

In this subsection we first show that the Cauchy problem (24) has a solution
u € DFP for k € Nand p € (1,00) that satisfy the conditions of Proposition 5.6.
We then improve the regularity of « and show that w is in fact smooth. Finally
we give a proof of Theorem 5.2.

33



The first step in the short time existence proof is to show that the lineariza-
tion of P at the initial condition is an isomorphism. From now on we assume
that & € N and p € (1,00) satisfy the conditions of Proposition 5.6, so that
P :DFP — WOE=2P((0,T) x L) is smooth by Proposition 5.6. Denote

Dhr = {u e JDLR u(0,2) =0 for x € L}.

If w € D¥P, then u is uniformly Holder continuous on (0,7') and therefore
extends continuously to ¢+ = 0. Thus if u € D*P, then u(0,-) : L — R is well
defined. Then a solution u € D*? to the Cauchy problem (24) is the same as a
function u € D*P that solves the equation P(u) =0.

Next we study the linearization of the operator P : D** — WOk=2:2((0, T) x
L) at the initial condition.

Proposition 5.7. After making T' > 0 smaller if necessary, the linearization
of P:DkP — WOk=2P((0,T) x L) at the initial condition

dP(0) : WHEP((0,T) x L) — WOF=2P((0,T) x L) (32)
is an 1somorphism of Banach spaces.

Proof. From Lemma 5.5 it follows that

dP(0)(u) = % — Au+ mdyg(Vu) 4 dz(V (du)),
for u € WHFP((0,T) x L), where 13 = (®r, 0 8)*(¢), 5 = 0(Py, 0 3), and the
Laplace operator and V are computed using the time dependent Riemannian

metric (®r, o §)*(g) on L. Define Ku = mdyg(Vu) + dfg(V(du)) for u €
WLkP((0,T) x L), so that dP(0) = 8; — A + K. Clearly K is a bounded
operator from W15P((0,T) x L) into W *=12((0,T) x L). By Proposition 2.5,
the inclusion of Wh*=12((0,T) x L) into W*=27((0,T) x L) is compact and
it follows that

K :WUEP((0,T) x L) — WO9*=2P((0,T) x L) (33)

is a compact operator, as it is the composition of a bounded linear operator and
a compact operator.

Let gg be the time dependent Riemannian metric (®105)*(g) on L and gy =
Fj(g). Let Ag be the Laplace operator on L computed using the Riemannian
metric go. Then by Theorem 3.4 and the discussion following that theorem,

9 .
5 ~ Do WERP((0,T) x L) — WOF=2P((0,T) x L) (34)
is an isomorphism. We show that
0 -
5 A WEEP((0,T) x L) — WO*=2P((0,T) x L) (35)

is also an isomorphism, where the Laplace operator is computed using gz. Let
u € WHRP((0,T) x L). Then

T
Aot — Aull? s, = / | Agu(t, ) — Ault, )P s, dt
0

t
< sup \Igo—gmt)IIcm/ IV2ul§yi2y dt <lgo = gpllcor—1 [[ullwrks.
te(0,7) 0
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Since 5(t) = tfp for t € (0,T), we can make ||go — ga||co.x-1 arbitrarily small
by making 7' > 0 small. Hence (34) and (35) are arbitrarily close as bounded
operators from W1LEP((0,T) x L) into WO*k=22((0,T) x L). Since (34) is an
isomorphism, it follows that for sufficiently small 7' > 0, (35) is an isomorphism.
Since (35) is an isomorphism, it is a Fredholm operator of index zero. In par-
ticular, as (33) is a compact operator, it follows from the Fredholm alternative
[33, XVII, §2] that (32) is a Fredholm operator of index zero. Thus in order to
show that (32) is an isomorphism it suffices to show that (32) is injective.
Let w € WHYEP((0,T) x L) be a solution of the Cauchy problem

dP(0)(u)(t,z) =0 for (¢t,z) € (0,T) x L,
u(0,2) =0 for z € L.

Then wu is a solution of a linear parabolic equation with smooth coefficients,
and therefore u is smooth by Theorem 2.8. Moreover u extends continuously
to t = 0. Denote ¢ = %[u|?>. Then ¢(0,-) = 0 on L and a short computation
shows that dP(0)(y¢) < 0. The parabolic maximum principle, see for instance
Friedman [18, Ch. 2, Thm. 1], implies that ¢ = 0 and hence v = 0. Tt follows
that (32) is injective and therefore an isomorphism. O

We can now prove short time existence of solutions of the Cauchy problem
(24). The strategy of the proof follows Aubin [4, Ch. 4, §4.2].

Proposition 5.8. There exists 7 > 0 and u € D*P, such that P(u) = 0 on
(0,7) x L.

Proof. By Proposition 5.7 the linearization of P : D*? — WOk=2r((0,T) x L)
at 0 is an isomorphism. Since P : D*? — WOk=22((0,T) x L) is smooth by
Proposition 5.6, the Inverse Function Theorem for Banach manifolds [33, XIV,
Thm. 1.2] shows that there exist open neighbourhoods V of 0 in D*? and W of
P(0) in WOk=2,((0,T) x L), such that P : V — W is a smooth diffeomorphism.
For 7 € (0,T) we define a function w, : (0,7) x L — R by

w(t,7) = 0 fort<r, x €L,
T P(0)(t,x) fort>T, x € L.

Then w, € W% =22((0,T) x L) for every 7 > 0 and we can make w, — P(0)
arbitrarily small in W%*=2.2((0,T) x L) by making 7 > 0 small. In particular
for sufficiently small 7 > 0, w;, lies in W and there exists a unique u € V' with
P(u) = w;. But then P(u) =0 on (0,7) x L and u(0,-) = 0 on L as we wanted
to show. O

Since P is a nonlinear parabolic differential operator of second order, we can
use the local regularity theory from §2.3 to show that a solution u € D*P to
P(u) =0 is in fact smooth on (0,7") x L.

Proposition 5.9. Let u € D¥? with P(u) = 0. Then u € C=((0,T) x L).

Proof. The proof follows from the local regularity theory for linear parabolic
equations on domains and the bootstrapping method. We choose local coordi-
nates (z1,...,%m) € Q on L with @ C R™. Denote u; = % forj=1,...,m.
Differentiating P(u) = 0 with respect to z; we find that u; is a solution of a
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linear parabolic differential equation of second order, with coefficients and free
term being functions that depend smoothly on du and Vdu. Since k£ > 6 and
p € (1, 00) is sufficiently large, the Sobolev Embedding Theorem implies that the
coefficients and the free term are Holder continuous and lie in C%%%((0,T) x )
for some o € (0,1). But then Theorem 2.8 implies u; € C*%(I x Q') for every
I cc(0,T), ccQ andj=1,...,m Henceu € C13>*(I x L) for every
I CcC (0,T). Tterating this procedure then shows that u € C*°((0,7) x L). O

We can now prove Theorem 5.2.

Proof of Theorem 5.2. We choose a Lagrangian neighbourhood ®y : Uy, — M
for Fop : L — M. Let k € N and p € (1,00) satisfy the assumptions from
Proposition 5.6. Then by Proposition 5.8 there exists a solution u € DFP of
the Cauchy problem (24) on a short time interval (0,7"). Moreover, by Propo-
sition 5.9, u is smooth on (0,7") x L. We define a smooth one-parameter family
{F(t,")}te(o,r) of smooth Lagrangian submanifolds F(t,-) : L — M, t € (0,T),
by F(t,-) = @1 o (d[u(t,-)] + B(t)) for t € (0,T). Then by Proposition 5.4,
{F(t,-)}te(o,r) evolves by generalized Lagrangian mean curvature flow with ini-
tial condition Fy : L — M, as we wanted to show. ]
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6 The Laplace operator on Riemannian mani-
folds with conical singularities

6.1 Weighted Holder and Sobolev spaces

We begin this subsection with the definition of Riemannian manifolds with
conical singularities. We then proceed to define weighted Holder and Sobolev
spaces on Riemannian manifolds with conical singularities. Manifolds with ends
and differential operators on manifolds with ends are extensively discussed in
the literature, and we would like to mention the works of Lockhart and McOwen
[34], Melrose [39], and Schulze [48] in particular.

We begin with the definition of manifolds with ends.

Definition 6.1. Let M be an open and connected m-dimensional manifold with
m > 1. Assume that we are given a compact m-dimensional submanifold K C
M with boundary, such that M\K has a finite number of pairwise disjoint,
open, and connected components St,...,S,. Then M is a manifold with ends
S1,...,Sn if the following holds. There exist compact and connected (m — 1)-
dimensional manifolds ¥y, ...,%,, a constant R > 0, and diffeomorphisms ¢; :
i x (0,R) = S; fori=1,...,n. We say that Sy,...,S, are the ends of M
and that X; is the link of S;. Note that the boundary of K is diffeomorphic to
U?:l i

Next we define Riemannian cones.

Definition 6.2. Let (3,h) be an (m — 1)-dimensional compact and connected
Riemannian manifold, m > 1. Let C' = (X x (0,00)) LU {0} and C’' = X x (0, 00)
and write a general point in C' and C' as (o,r). Define a Riemannian metric
g = dr? +72h on C'. Then we say that (C,g) is the Riemannian cone over
(3, h) with Riemannian cone metric g.

Using the definition of manifolds with ends and of Riemannian cones we can
now define compact Riemannian manifolds with conical singularities.

Definition 6.3. Let (M, d) be a compact metric space, x1, . .., x, distinct points
in M, and denote M' = M\{x1,...,x,}. Suppose that M' is a smooth m-
dimensional manifold, and assume that we are given R > 0, such that if we
denote S; = {x € M : 0 < d(z,z;) < R} for i = 1,...,n, then M’ is
a manifold with ends Si,...,S, as in Definition 6.1. Let ¥; be the link of
S; fori = 1,...,n. Assume that we are given a Riemannian metric g on
M’ that induces the metric d on M'. Let h; be a Riemannian metric on %;
fori=1,...,n, and denote by (C;,g;) the Riemannian cone over (3;, h;) for
t=1,...,n.

Then we say that (M, g) is a compact m-dimensional Riemannian manifold
with conical singularities at x1, . .., x, modelled on (C1,q1),...,(Cn,gn), if there
exist diffeomorphisms ¢; : ¥; x (0,R) — S; fori =1,...,n, and p; € R with
w; >0 fori=1,...,n, such that

|Vk(¢?(g) - gz)’ = O(T‘”_k) asr — 0 forke N (36)

and i = 1,...,n. Here V and | -| are computed using the Riemannian cone
metric g; on %; X (0,R) fori=1,...,n.
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In Definition 6.3 we have chosen p; > 0 for i« = 1,...,n, since (36) then
implies that the Riemannian metric ¢ (g) on X; x (0, R) converges to the Rie-
mannian cone metric g; as r — 0 for ¢ = 1,...,n. Thus on each end of M’ the
Riemannian metric g is in fact asymptotic to a Riemannian cone metric. Note
in particular that if (M, g) is a compact Riemannian manifold and z1,...,z,
are distinct points in M, then (M, g) is a compact Riemannian manifold with
conical singularities at x1,...,x, with each singularity modelled on R™ with
the Euclidean metric in polar coordinates.

Before we can define weighted function spaces on Riemannian manifolds with
conical singularities we need to introduce the notion of a radius function.

Definition 6.4. Let (M, g) be a compact Riemannian manifold with conical sin-
gularities as in Definition 6.3 and denote K = M'\J}'_, S;. A radius function
on M' is a smooth function p : M' — (0,1], such that p =1 on K and

|6;(p) = 7| =0("*%) asr—0 (37)
for some e > 0. Here |- | is computed using the Riemannian cone metric g; on
¥ x (0,R) fori=1,...,n. A radius function always exists.

From now on let us fix a compact Riemannian manifold (M, g) with conical
singularities as in Definition 6.3, and let us choose a radius function p on M’.
If v = (71,...,7v) € R, then we define a function p¥ on M’ as follows. On
S; weset p¥ =p¥ifori=1,...,nand p¥ =1on K. If v,u € R”, then we
write y < pif v <p;fori=1,... . nand y < pif v, < p; fori=1,... ,n. If
v € R" and a € R, then we denote vy +a = (v1 +a,...,v, +a) € R™.

We can now define weighted C*-spaces on (M, g). Let k € N and v € R".
Then the C,’j-norm is defined by

j:01€

k
lulley = Z sup |p(x) "7V u(x)| for u € CF (M),

whenever it is finite. A different choice of radius function defines an equivalent
norm. Note that a function u € Cf (M’) has finite C¥-norm if and only if V/u

grows at most like p?¥~7 for j = 0,...,k as p — 0. We define the weighted
C*-space CE(M') by

Ch(M') = {u € Clho(M') + Jlully < oo}

Then CE(M') is a Banach space. We set C5°(M') = N,y C5(M’). The space
C5°(M’) is in general not a Banach space.
Next we define weighted Hélder spaces on (M, g). Let aw € (0,1) and T be a
tensor field over M’. Then we define a seminorm by
: - [ T(2) = T(y)|
Mo = s fmin {pla)7,p) 7} T =0
7 z#£yeM’ { } dg(z,y)>
dg(z,y)<dq(x)

whenever it is finite, and we define the C”;’a—norm by

lull = llulles + [V¥ulay— for ue CEZ (M),

loc
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whenever it is finite. A different choice of radius function defines an equivalent
norm. The weighted Holder space ij’a(M ") is defined by

loc

Cho (M) = {u € CheM') « fullge < oo}.

Then CE*(M’) is a Banach space.
The next proposition gives embeddings between different weighted Holder
spaces and states under which conditions these embeddings are compact.

Proposition 6.5. Let (M, g) be a compact Riemannian manifold with conical
singularities. Let k,l € N, o, 8 € (0,1), and ~v,§ € R™. Then the following
hold.

(1) Ifl+ 8 <k+a«a and § < =, then C,’;’O‘(M’) embeds continuously into
C’é’ﬁ(M’) by inclusion.

(ii) If I+ B < k+a and & <=, then the inclusion of C5*(M') into C’é’ﬁ(M’)
18 compact.

A proof of Proposition 6.5 can be found in Chaljub-Simon and Choquet-Bruhat
[10, Lem. 2 and 3] for weighted Holder spaces on asymptotically Euclidean
manifolds. The proof for weighted Holder spaces on compact Riemannian man-
ifolds with conical singularities is a simple modification of the proof given by
Chaljub-Simon and Choquet-Bruhat.

Finally we define weighted Sobolev spaces. Let k € N, p € [1,00), and
v € R™. Then we define the W,];’p—norm by

1/p

k
hss = (3 [ v av, | gorw e whz (),
=0

loc

whenever it is finite. A different choice of radius function defines an equivalent
norm. We define the weighted Sobolev space W,’;’p (M') by

W¢7P(M/) = {u € VVl]f)(f’(M’) : H“HW,’jP < oo}.
Then WEP(M') is a Banach space. If k = 0, then we write LE(M') instead of
W3P(M'). Note that LP(M') = L”  (M') and that CZ (M), the space of
smooth functions on M’ with compact support, is dense in W,’;’p(M ") for every
keN, pe[l,o0), and v € R™. Moreover if p = 2, then we can define a scalar

product by
k . . .
(u,v>W_;$,z = Z/ p~ T2 g(Viu, Viv)p~™ dV, for u,v € W,’;Q(M’)
=07 M

Thus W22(M’) is a Hilbert space.
The following proposition is easily verified using Holder’s inequality.

Proposition 6.6. Letp,q € (1,00) with %Jr% =1 and~y € R™. Then the scalar
product on L*(M") given in (1) defines a dual pairing Lt (M")x L?, _(M') —
R. Thus LE(M') and L%, (M') are Banach space duals of each other.
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The next theorem is a version of the Sobolev Embedding Theorem for
weighted Holder and Sobolev spaces.

Theorem 6.7. Let (M, g) be a compact m-dimensional Riemannian manifold
with conical singularities as in Definition 6.3. Let k,l € N, p,q € [1,00),
a € (0,1), and v,8 € R™. Then the following hold.

(1) If% < %—i— % and v > & then WP (M') embeds continuously into
Wea(M') by inclusion.

(ii) If k=2 > 1+ a and v > 8, then WEP(M') embeds continuously into
CYY(M') by inclusion.

The proof of the Sobolev Embedding Theorem for weighted spaces can be found
in Bartnik [5, Thm. 1.2] for the case of asymptotically Euclidean manifolds.
The proof of the Sobolev Embedding Theorem for weighted spaces on compact
Riemannian manifolds with conical singularities is then a simple modification
of Bartnik’s proof.

The next theorem is the Rellich-Kondrakov Theorem for weighted Holder
and Sobolev spaces on compact Riemannian manifolds with conical singularities.
For a proof of the Rellich-Kondrakov Theorem we again refer to Bartnik [5,
Thm. 1.2, Lem 1.4].

Theorem 6.8. Let (M,g) be a compact m-dimensional Riemannian manifold
with conical singularities as in Definition 6.3. Let k,l € N, p,q € [1,00),
a € (0,1), and let 4,8 € R™. Then the following hold.

(i) If% < % + =L and v > 8, then the inclusion of W,’Y”’(M’) into Wé’q(M’)
is compact.

(ii) If k== > 1+ and~y > &, then the inclusion of WEP(M') into C’é’a(M’)
is compact.

6.2 The Laplace operator on weighted spaces

In this subsection we discuss the Laplace operator on compact Riemannian man-
ifolds with conical singularities acting on weighted Holder and Sobolev spaces.
There is a more general theory of elliptic cone differential operators, which
generalizes the discussion of this subsection. The interested reader is referred
to Lockhart and McOwen [34], Melrose [39], and Schulze [48]. Our discussion
follows Lockhart and McOwen [34] and the presentation given by Joyce [24, §2].

Before we discuss the Laplace operator on compact Riemannian manifolds
with conical singularities we recall the following standard theorem from geomet-
ric analysis.

Theorem 6.9. Let (X,h) be a compact and connected Riemannian manifold.
Then the spectrum o(Ay) of the Laplace operator on ¥ consists of eigenvalues
only. The eigenvalues {\;}jen form a decreasing sequence 0 = Ao > Ay >
... = —o0 and every eigenspace is finite dimensional. Moreover there exists a
complete orthonormal basis {¢;}jen of L*(X) consisting of smooth functions,
such that App; = Xjp; for j € N.

The proof of Theorem 6.9 can be found in Aubin [4, Thm. 4.2] or in Shubin
[49, Ch. 1, Thm. 8.3] using pseudodifferential techniques.
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Let (X,h) be a compact and connected (m — 1)-dimensional Riemannian
manifold, m > 1, and let (C, g) be the Riemannian cone over (X, h). A function
u : C' — R is said to be homogeneous of order «, if there exists a function
¢ : 3 — R, such that u(o,r) = r*p(o) for (o,r) € C’. The Laplace operator on
(' is given by
0%u m—10u 1
w(ﬂ}?ﬂ)‘*‘TE(J,T)‘FﬁAhU(O}T) (38)
for u € C2.(C') and (o,7) € C'. Using (38) the following lemma is easily
verified.

Agu(o,r) =

Lemma 6.10. A homogeneous function u(o,r) = r%p(o) of order a € R on C’
with o € C%(X) is harmonic if and only if Ape = —ala+m — 2)p.
Define

Dy ={a€eR : —ala+m—2) € o(Ap)}. (39)
Then by Theorem 6.9, Dy; is a discrete subset of R with no other accumulation
points than +oc. Moreover Ds;N(2—m,0) = @, since Ay, is non-positive. Finally
from Lemma, 6.10 it follows that Ds; is the set of all & € R for which there exists
a nonzero homogeneous harmonic function of order o on C. Define a function

my :R— N, my(a) =dimker(Ap + a(a +m — 2)).

Then my(a) is the multiplicity of the eigenvalue —a(a + m — 2). Note that
dimker(Ap 4+ a(a + m — 2)) is finite for every o € R by Theorem 6.9 and that
myx(a) # 0 if and only if @ € Dy. Finally we define a function My, : R — Z by

Ms(d)=— > mg(a)if6<0, Mg(d)= Y ms(a)ifé>0.
a€DxN(4,0) a€DxNI0,0)

Then My is a monotone increasing function that is discontinuous exactly on
Ds. As Dy N (2 —m,0) = 0, we see that My, = 0 on (2 — m,0). The set
Ds; and the function My play an important role in the Fredholm theory of the
Laplace operator on compact Riemannian manifolds with conical singularities,
see Theorem 6.12 below.

The next proposition gives the weighted Schauder and LP-estimates for the
Laplace operator on compact Riemannian manifolds with conical singularities.

Proposition 6.11. Let (M, g) be a compact Riemannian manifold with conical
singularities as in Definition 6.5 and v € R™. Let u, f € L{, (M') and assume
that Agu = f holds in the weak sense. Then the following hold.

(i) Letk e N withk >2 and o € (0,1). If f € Cj:g’a(M’) and u € CH(M'),
then u € C,’;”(M’). Moreover there exists a constant ¢ > 0 independent
of u and f, such that

lulloge < e (1 lgxze + lulles ) - (40)
(i) Letk € Nwithk >2 andp € (1,00). If f € WEZ3P(M') andu € LE(M'),
then w € WEP(M'). Moreover there exists a constant ¢ > 0 independent

of u and f, such that

ullyso < ¢ (1 lye-z0 + lullzg ) - (41)
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The proof of Proposition 6.11 can be found in Marshall [35, Thm. 4.21].

Recall that a bounded linear operator A : X — Y between Banach spaces X
and Y is a Fredholm operator, if it has finite dimensional kernel and its image is a
closed subspace of Y of finite codimension. If A : X — Y is a Fredholm operator,
then the Fredholm index of A is the integer index A = dim ker A — dim coker A.
The next theorem is the main Fredholm theorem for the Laplace operator on
compact Riemannian manifolds with conical singularities.

Theorem 6.12. Let (M, g) be a compact m-dimensional Riemannian manifold
with conical singularities as in Definition 6.3, m > 3, and v € R™. Then the
following hold.

(i) Let k € N with k > 2 and o € (0,1). Then
Ag: CEO(M') — CE=3 (M) (42)

is a Fredholm operator if and only if v; ¢ Dsx, fori = 1,...,n. If
vi & Dx, for i = 1,...,n, then the Fredholm index of (42) is equal to
- Z:’L:l Mzi(f)/i)'

(ii) Let k € N with k > 2 and p € (1,00). Then

Ay WEP(M') — WEZ3P(M') (43)

is a Fredholm operator if and only if v; ¢ Dsx, fori = 1,...,n. If
vi & Dx, for i = 1,...,n, then the Fredholm index of (43) is equal to
- Z?:l Ms; (%)'
Furthermore the kernel of the operators (42) and (43) is constant in v € R™ on
the connected components of (R\Dx,) x -+ x (R\Dg,) ).

The proof of Theorem 6.12 can be found in Lockhart and McOwen [34, Thm.
6.1] and in Marshall [35, Thm. 6.9]. In fact, Lockhart and McOwen prove
the second part of Theorem 6.12 for the Laplace operator acting on weighted
Sobolev spaces and Marshall deduces the first part of Theorem 6.12 for the
Laplace operator acting on weighted Holder spaces from the results of Lockhart
and McOwen.

The following proposition is a simple consequence of Proposition 6.6 and
Theorem 6.12.

Proposition 6.13. Let (M, g) be a compact m-dimensional Riemannian mani-
fold with conical singularities as in Definition 6.3, m > 3. Let k € N with k > 2,
p,q € (1,00) with % +é =1, and v € R" with v; ¢ Dy, fori=1,...,n. Then
(43) is a Fredholm operator and its cokernel is isomorphic to the kernel of the
operator Ay : W;;quﬂl(M’) — W 2 ().

—m—

As before let (3, h) be a compact and connected (m — 1)-dimensional Rie-
mannian manifold, m > 1, and let (C,g) be the Riemannian cone over (X, h).
Define

Es=DsU{BER : f=a+ 2k for a € Dy, k € Nwith « >0 and k > 1}

and a function ny : R — N by

ns(B) = mz(8) + Z mx(8 — 2k).

k>1, 2k<B
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Clearly if 5 ¢ Es, then nx(5) = 0. Also note that if 8 < 2, then nx(5) = ms(5).
Finally, if 8 € £y, then ny counts the multiplicity of the eigenvalues

—BB+m—=2),=(B=2)((B-2)+m—=2),...,—(8—2k)((8 - 2k) +m —2)
for 2k < B. Finally we define a function Ny : R — N by

Nu@)=- > nx(B)ifd<0, Ns(@®) = > nx(8)ifd>0. (44)
BED=N(8,0) BED=N[0,5)
Then Ny (0) = Mx(9) for § <2 and
ME((S) :Nz(é)—Nz((5—2) for § € R with 6 > 2. (45)

The set & and the function Ny play a similar role in the study of the heat
equation on compact Riemannian manifolds with conical singularities as Dy
and My, do in the study of the Laplace operator, see Theorem 7.10 and 7.13
below.

6.3 Weighted Holder and Sobolev spaces with discrete
asymptotics

In this subsection we first explain the construction of discrete asymptotics on
Riemannian manifolds with conical singularities and then define weighted Holder
and Sobolev spaces with discrete asymptotics. The notion of discrete asymp-
totics in our specific setting appears to be new. There is however a strong
similarity between our definition of discrete asymptotics and the index sets for
polyhomogeneous conormal distributions considered by Melrose [39, Ch. 5, §10]
and especially with the asymptotic types considered by Schulze [48, Ch. 2, §3].

We first explain our motivation for the introduction of discrete asymptotics.
If (M, g) is a compact m-dimensional Riemannian manifold with conical singu-
larities as in Definition 6.3, m > 3, and v € R™ with 7; ¢ Dy, fori=1,...,n,
then for every k € N with k> 2 and p € (1,00), Ay : WEP(M') — W,’::g’p(M’)
is a Fredholm operator by Theorem 6.12. If v > 0, then it follows from Theorem

6.12 that the Fredholm index of Ay : WP (M') — Wj:g’p(M’) is negative, so

Ay : WhP(M') — Wf::g’p(M') has a cokernel. The main idea behind our defini-
tion of discrete asymptotics is to enlarge the spaces W,ff’p(M/) and Wf:g’p(M’)
by finite dimensional spaces of functions that decay slower than pY and p7~2,
respectively, and that cancel the cokernel of A, : WEP(M') — W,’::g’p (M.
More precisely our goal is to construct two finite dimensional spaces of func-
tions V4 and V5 with Vo C Vj consisting of functions that decay slower than
p”Y and p¥~2, respectively, such that the Laplace operator maps Wf;’p(M Nel

into Wf::g’p(M’) ® V, and
index { A, : WEP(M') @ Vi — WIZ3P(M') & Va | =0 (46)

We begin with the construction of the model space for the discrete asymp-
totics. Let (X, h) be a compact and connected (m — 1)-dimensional Riemannian
manifold, m > 1, and let (C, g) be the Riemannian cone over (X, h). For v € R
we denote

H,(C") =span{u=71% : 0 <a <7, ¢ € C(X), uis harmonic},
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which is the space of homogeneous harmonic functions of order o with 0 <
a < 7. Then dim H,(C") = Mx(y) for v > 2 —m, so H,(C") is at least one
dimensional for v > 0. We define a finite dimensional vector space Vp_(C') by

V. (C") = span {v = r?*u  keN, u=r" € H,(C") and a + 2k < 7}

~

Note that the Laplace operator on C” maps Vp_(C') — Vp__,(C") for every
v € R as a consequence of (38). In particular the Laplace operator is nilpo-
tent as a map Vp_(C") — Vp_(C’). Also note that dim Vp_ (C') = Nx(v) and
Ve (C') = H,(C') for v < 2. The space Vp_ (C') serves as the model space
in the definition of discrete asymptotics on general Riemannian manifolds with
conical singularities.

The definition of discrete asymptotics on general compact Riemannian man-
ifolds with conical singularities is based on the following proposition.

Proposition 6.14. Let (M, g) be a compact m-dimensional Riemannian man-
ifold with conical singularities as in Definition 6.3, m > 3, and v € R™. Then
for every e > 0 there exists a linear map

vy P Ve, (C)) — C(M),

i=1
such that the following hold.

(i) For every v € @, Vo, (C]) with v = (vy,...,v,) and v; = rBip; where

p; € C®(%;) fori=1,...,n we have
|Vk(¢f(\117(v)) — )| = O(rriThi==k) s r — 0 fork € N

andi=1,...,n.
(ii) For every v € @, Ve, (Cf

" with v = (vy,...,vy,) we have

Ag(V4(v) — Z\I"Y(Agﬂ’i) € G (M).

Proof. Let ¢ > 0 be arbitrary. We define linear maps W.,, : Vp_ (C}) — C>(M’)
for i =1,...,n, such that ¥,, =0 on M'\S; and the following hold.

(a) Forv e Vp (Cf) with v = rPip where ¢ € C>(%) we have
[V*(0; (W, (v) = )| = O H77=7F) as r — 0 for k € N.

(b) For every v € Vp_ (C}) we have Ay (¥, (v)) — W, (Agv) € CF(M).

The proposition then immediately follows by setting ¥V, =V, &...® ¥, .
Choose R > 0 with & < R’ < R and denote S} = ¢;(%; x (0, R')) for i =
1,...,n. Pick any i = 1...,n and choose a function x; € C*°(M’) with y; =1
on S and x; = 0 on M'\S;. We first define V., : Vp_ (C;) — C*(M’) for v €
Ve, (C}) with Ag,v = 0 and then proceed iteratively. Thuslet v € Vp_ (C7}) such
that A,v =0 and v = Py with p € C®(X). Denote u = x;A,((¢; 1) (v)).

K3
Then u is a smooth function on M’, since v and ; are smooth, is supported on

S;, and
|VE: (u)| = O(rPitHi=27k) asr — 0 for k€ N
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by (36). Choose arbitrary 1, ..., 8i—1, Bi+1,---,n € Randlet 8 = (S1,...,0n).
Since Ds;; C R is discrete for j = 1,...,n we can choose some arbitrary small
€1 > 0 with &1 < ¢, such that 38; + yu; —e1 ¢ Dy, for j = 1...,n. Then by
Theorem 6.12

Ay WEP (M) — WS 2P, (M)

Btp—e1 B+pu—2—e1
is a Fredholm operator for every k € N with £ > 2 and p € (1,00). Since
C2(M') is dense in Wg;i’f%gl (M'"), we can choose a finite dimensional sub-

space W C C2(M’) such that

Wheaty (M) =im { Ay WhP, (M) — W22, (M)} ew
for some k € N with £ > 2 and p € (1,00). Thus there exist unique v €
ngu—sl(M/) and w € W, such that w = Ay0 4+ w. Moreover, since u and
w are smooth, it follows from Theorem 6.7 and Proposition 6.11, (ii), that
b€ CF o, (M), Weset Wy (v) = xi((¢; ')*(v) — 0). Then it immediately
follows from the construction of ¥ that V., (v) satisfies (a) and (b). In this way
we define W, (v) for a basis of the subspace of Vp_ (C7) consisting of v € Vp_ (C7)
with Ag,v = 0, and then extend ¥, linearly to the whole subspace. This defines
U, (v) for every v € Vp_ (cr) with Ag,v = 0.

The next step is to define W.,, (v') for v € Vo, (Cf) with A v" = 0. Thus let
v € Vo, (CF) with AZ v = 0, such that v' = rfig’ with ¢’ € C(%). Denote
v =Ayv". Then v € Vp_(C}), Agv =0, and v = rPip with 8; = Bl — 2 and
¢ € C*(%). Furthermore U., (v) = x;((¢; ')*(v) — ), where @ is defined above.
Denote h = xi(Ay((67 ) (0)) = (6, 1) (Agv')), 50 that xiAg((67 1) (') =
Xi(¢;1)*(v) + h. Then h is a smooth function on M’ that is supported on S;
and satisfies

IVE(o; 1) (h)| = O(rPithi=2=ky a5 r — 0 for k € N.

Define f = x;0 + h. Then f is a smooth function on M’, since h, v, and Y;
are smooth. Furthermore x;Agv" = W, (v) + f. Since v € Cg,, . (M') and
Bi = B — 2 we find that

IVF (o)) ()| = O(rPitri=er=Fy ag — 0 for k € N.

Now we proceed as before. Choose arbitrary 81,...,8;_1, 8 1,---,0;, € R and
denote B8’ = (B,...,,). We can choose some arbitrary small e5 > 0 with
€1 < g2 < ¢, such that 8; + u; — e ¢ Dy, for 7 =1,...,n. Then by Theorem
6.12 the operator
Lk / k-2, /

Ag: WB’iu—Ez (M) — WB’+up—2—62 (M)
is a Fredholm operator for every k € N with & > 2 and p € (1,00). Thus we can
choose a finite dimensional subspace W C C2 (M), such that

k—2, . k, k—2,
Wﬁ’+2up—2—62(Ml) —m {Ag : Wﬁfﬂ—(iz (MI) — WB+12Lf2—sz (M/)} oW

for some k € N with k > 2 and p € (1, 00). We choose unique o' € W52 (M)

't+p—e2
and w € W, such that f = A 0" + w. Since f and w are smooth, Theo-
rem 6.7 and Proposition 6.11 then imply that ¢/ € 4 s (M"). We define
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., (v) = xi((¢; 1)*(v') — ). Then it is straightforward to check that ., (v')
satisfies (a) and (b).

Finally, since Ay, : Ve, (C}) — Ve, (C]) is nilpotent, W, can be defined for
every v € Vo (C7) by iteration. This completeb the proof. O

Let (M, g) be a compact m-dimensional Riemannian manifold with conical
singularities, m > 3. Then using Proposition 6.14 we can define weighted C*-
spaces, Holder spaces, and Sobolev spaces with discrete asymptotics as follows.
For k € N, a € (0,1), and v € R™ we define

Cho (M) =CEM)@im T,y and Cyp (M) =Co*(M')&im U,

Both C‘I;Pw (M') and ngw (M) are Banach spaces, where the norm on the
discrete asymptotics part is some finite dimensional norm. Finally if p € [1, 00),
then we define the weighted Sobolev space with discrete asymptotics Wf::gw (M)
by
WEE (M) = WEP(M') & im .y,

Clearly W (M ") is a Banach space, where the norm on the discrete asymp-
totics part 15 ‘Some finite dimensional norm. Note that the discrete asymptotics
are trivial if ¥ < 0, so that in this case the weighted spaces with discrete asymp-
totics are simply weighted spaces as defined in §6.1.

6.4 The Laplace operator on weighted spaces with discrete
asymptotics

In this subsection we discuss the Laplace operator acting on weighted Holder

and Sobolev spaces with discrete asymptotics and in particular we prove that

(46) holds with our definition of weighted spaces with discrete asymptotics.

If (M,g) is a compact Riemannian manifold, then the Laplace operator
defines an isomorphism of Banach spaces

Ay {ueCh*(M) : [,udVy=0} — {ueCF2*(M) : [,,udV, =0}
for every k € N with & > 2 and a € (0,1). In a similar way
Ag:{ue WFP(M) ¢ [, udVy =0} — {ue W 2P(M) : [, udV, =0}

defines an isomorphism of Banach spaces for every k € N with £ > 2 and
p € (1,00), see Aubin [4, Thm. 4.7]. Using the weighted Holder and Sobolev
spaces with discrete asymptotics we can now state a similar result for the Laplace
operator on Riemannian manifolds with conical singularities.

Let (M, g) be a compact m-dimensional Riemannian manifold with conical
singularities as in Definition 6.3, m > 3, and v € R™ with v > 2 — m. For
kEeN,ae(0,1), and p € [1,00) we then define

Cha (M) = {uechp (M)« [y, uav, =0},

and for p € [1,00)

WEE (M) = {u EWEE (M)« [, udV, = o} .
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From Proposition 6.14 it follows that for k¥ € N with & > 2 and a € (0,1),
Ay Ch3 (M) — CL733(M')g and for p € [1,00), Ay : WiE (M')g —
Wj:zg”&& (M")g are well defined linear operators. We then have the following

result, which also verifies (46).
Proposition 6.15. Let (M, g) be a compact m-dimensional Riemannian man-

ifold with conical singularities, m > 3, and v € R™ with v > 2—m and v; ¢ &y,
fori=1,...,n. Then the following hold.

(i) Let k € N with k > 2 and o € (0,1). Then
Ay CE3 (M')g — C5 38 (M) (47)

Y—2,Py_2

is an isomorphism of Banach spaces.
(ii) Let k € N with k > 2 and p € (1,00). Then
k, k-2,
Ayt WEE (M) — WE2E (M) (48)
is an isomorphism of Banach spaces.
Proof. We demonstrate the proof of (i), the proof of (ii) goes similarly. Thus
let k € Nwith £ > 2, a € (0,1), and v € R" with v > 2 —m and v; ¢ &,
for i = 1,...,n. Then by Theorem 6.12, Ay : CE(M")g — CLZ3*(M')g is a
Fredholm operator and

index {Ag L Che (M) — cjja(M')o} =3 Ms,(v).  (49)
i=1

First we show that the operator A, : C’f/j;i’a(M’)o — Cffz’PW%(M’)o has

zero Fredholm index, i.e. that (46) holds. When we replace C,’;fQ(M "o by

C’:f‘ZP%Z(M’)O in (49), then we enlarge the cokernel of the operator A, :

C’,’j’a(M’)o — Cj:g’o‘(M’)o by a finite dimensional space with dimension
dimim W._,. Thus we have
. (e} k— Nej
mdeX{Ag : C’];’ (Mg — O‘r—;Pw—z(M/)o} =
" (50)
— Y My, (y;) — dimim Wy .
i=1

Moreover, if we replace C”;”(M’)O by the space Cs’gw (M")o, then we enlarge the

kernel and reduce the cokernel of the operator A, : C,’;’O‘(M')o — 05:3:37,2 (M")o.
Thus it follows from (50) that

index {8, : C58 (M')o = C5735 (M')o} =

" (51)
Y My, (y;) — dimim ¥y, + dimim ¥,
i=1
By definition of ¥, and ¥._5 we have that

n n
dimim ¥, = Ny, () and  dimim ¥y = > Ny, (v - 2),

i=1 i=1
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where Ny, is defined in (44) for i = 1,...,n. Using (45) we then conclude from
(51) that

index { A, : 3 (M) = CA33. (M)} = 0.
Thus (46) holds and in order to show that A, : C:ZS_Y(M’)O — 05:3337_2(M/)()

is a bijection it suffices to show that the kernel is trivial.
Let u € C’j:gﬁ(M')o, such that Aju = 0, and let us first assume that v >

%(2 —m). Then integration by parts gives

0:/ uAgudVg:—/ |du|? dV,
’ ]Vl

and hence du = 0. So u is constant on M’, but [, u dV, = 0, and hence u = 0.
Since (2 — m,0)" is a connected subset of (R™\Dy,) X -+ x (R"\Dyg,) that

contains (3(2—m),..., 2(2—m)), it follows from Theorem 6.12 that the kernel
of Ay : C::SW(M/)O — 05:323772(]\4')0 is trivial for every v > 2 — m. Hence

A, Cf:gW(M')o — C’j:g:gWQ(M')o is a bijection, and the Open Mapping
Theorem [33, XV, Thm. 1.3] implies that this operator is an isomorphism of
Banach spaces. ]

The next proposition is a version of the Schauder and LP-estimates for the
Laplace operator acting on weighted spaces with discrete asymptotics.

Proposition 6.16. Let (M, g) be a compact m-dimensional Riemannian man-
ifold with conical singularities as in Definition 6.3, m > 3, and v € R"™ with
vi & Es, fori=1,...,n. Letu, f € LL (M') and assume that Ayu = f holds

in the weak sense. Then the following hold.
(i) Let k € N with k > 2 and o € (0,1). If f € CE=2¢  (M') and u €

Y—2,Py—_2
CO (M), then u € C™% (M'). Moreover there exists a constant ¢ > 0
. v¥,P~ ¥,P~
independent of u and f, such that

ol <e(Mlos-zg, + Ml )- (52)

(ii) Let k € N with k > 2 and p € (1,00). If f € W38 (M') and u €

L2, (M), then u € W5E (M’). Moreover there exists a constant ¢ > 0
] ~,P~y Py
independent of u and f, such that

sy <e(Wlwgzg |+ lulzs, ). (53)

Proof. We demonstrate the proof of (i), the proof of (ii) works similarly. We can
assume that v > 0, since otherwise the discrete asymptotics are trivial and we
are in the situation of Proposition 6.11. Let k € N with k£ > 2, « € (0,1), and
assume that f € 05:3:37_2 (M') and u € Cg,PA’(M’). Using that the discrete
asymptotics are bounded functions on M’ and the weighted Schauder estimates
(40) we find that u € C5**(M’). Hence Agu = fand [,, f dV, = 0. Choose

¢ € C2X(M') with [,,, ¢ AV, = 1 and write u = ug + Ap with ug € Cy*(M')o
and A € R. Then Proposition 6.15, (i), implies ug € C::SW(M/)O and thus

ue CPe (M) as we wanted to show.
Y Py
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It remains to prove the estimate (52). Write u = u; +ug with u; € C,’;’O‘(M’),
u €im oy and f = f1 + fo with f; € C4~53*(M’) and f € im W _5. Then

Agug + Toh-2e (Aguz) = f1 and  mim v, _,(Agu2) = fo.

Using the weighted Schauder estimates and the continuity of the linear operator
Tok-2.0 0 Ay 1im ¥, — C’f;:g’a(M’) we find
y—2

lurllgge < e (Illgz=ze + mes-s0(Aguz)lga-ze + furllos)
<ec (Hfl”c:‘:;,a + [Juzllim w., + ||u1||09,>
=c (Hfl”c};‘:;,a + H“HC&PJ :

Lastly we estimate us in terms of f. Choose some small € > 0 such that
[vi —€,7]NDx, =0 fori=1,...,n. Then by Theorem 6.12 and Proposition
6.13, Ay : W,];_ZE(M’) — W,’;:ffz(M’) is a Fredholm operator with cokernel
being isomorphic to the kernel of Ay : W§;2m7,7+€(M) — W]_C;LZ_%ﬁE(M’) Since
up € C’s’o‘(M’), also u; € W,I;f’s(M’). Using integration by parts we therefore
find that

<h7 f1>L2 = <h, Agul + Wc_l;zgvp (Agu2)>L2 = <h77rc_’;:§vp (Agu2)>L2

for h € ker{A, : W;;Qm_7+E(M’) — W’f;ffﬁe(M')} Therefore f; determines
Z?:l M, (v;) components of uy. Moreover iy v, _,(Aguz) = f2, and hence
f> determines Y7 | Ny, (v; — 2) different components of uy. Thus by (45), f
determines Y " | Ny, (7;) components of us. Since dimim W = Y"1 | Ny, (7;),

ug is uniquely determined by f. Hence [|us|im v, < CHf”Cf"jvg E O
(W
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7 The heat equation on Riemannian manifolds
with conical singularities

7.1 Weighted parabolic Holder and Sobolev spaces

In this subsection we define weighted parabolic Hélder and Sobolev spaces on
Riemannian manifolds with conical singularities. These are parabolic Holder
and Sobolev spaces as defined in §2.2, with the only difference that we take the
rate of decay of the functions into account. In fact, as for parabolic function
spaces on general Riemannian manifolds in §2.2 we require in the definition
of weighted parabolic function spaces on Riemannian manifolds with conical
singularities that one spatial derivative compares to one time derivative. On a
Riemannian manifold with conical singularities two spatial derivatives decrease
the rate of decay of a function by two, and hence we need to require that each
time derivative has to decrease the rate of decay of a function by two as well.

We begin with the definition of weighted parabolic C*-spaces and Holder
spaces. Let (M,g) be a compact m-dimensional Riemannian manifold with
conical singularities as in Definition 6.3, p a radius function on M’ and I C R
a bounded and open interval. For k,1 € N with 2k <[ and v € R" we define

CENI x M') = () CI(I; CL 5, (M)).

Y—2j

-

7=0

Then C”;’l(l x M') is a Banach space with norm given by

lullgra = Ll |p(2) Y FEHIOIVIu(t,x)|  for u € CRUI x M),
ij (¥

where the sum is taken over ¢ = 1,..., kand j = 1,...,] with 2i 4+ j < [. For
a € (0,1) we define the weighted parabolic Holder space CE5(I x M') by

k
Cs,l,a(]- « MI) _ m Cj,a/Q( Cl 2j ( /)) n Cj( Cl 27, a(M ))

~Y—2j Y—2j
§=0
The norm on C’,;J’a(l x M') is given by

lllogee =D2{ s |o(@) " EHVIut, )] + Suplo; VI ult, Va2
7 (L) ElxM’ tel

+ sujg [8}Vju(-,x)]a/2,7_2i_j} for u € C’fj’l’”‘(l x M"),
zeM’
where the sum is taken over i =1,... k and j =1,...,] with 2i + j <[. Then
CELe(I x M') is a Banach space.
Next we define weighted parabolic Sobolev spaces. Let k,l € N with 2k <[,
p € [1,00), and v € R™. Then the weighted parabolic Sobolev space W$>l’p(l X
M) is given by

WELP(T x M) ﬂ WP (I WA (M)).
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Then Wﬁ’l’p(I x M') is a Banach space with norm given by

1/p

[ —— Z/I/ o (e, )P v,
,J

for u € W.’;’l”’(IxM’)7 where the sum is taken over i = 1,...,kand j =1,...,1
with 2¢ + 5 <.

Similar to Proposition 2.5 we have the following important embedding result
for weighted parabolic Sobolev spaces.

Proposition 7.1. Let (M, g) be a compact Riemannian manifold manifold with
conical singularities as in Definition 6.3, I C R an open and bounded interval,
ke N withk > 2, pe (l,00), and v € R*. Then W,}’k”’([ x M') embeds

continuously into ngfl’p(l x M) by inclusion and the inclusion is compact.

The proof of Proposition 7.1 follows immediately from the Aubin—Dubinskii
Lemma and Theorem 6.8.

The next proposition is an interpolation result for weighted parabolic Sobolev
spaces, which can be seen as a generalization of the interpolation result for
parabolic Sobolev spaces from Proposition 2.6.

Proposition 7.2. Let (M, g) be a compact m-dimensional Riemannian mani-
fold with conical singularities as in Definition 6.3, I C R an open and bounded
interval, k € N with k > 2, p € (1,00), and v € R™. Let € > 0 and assume
that p > 2 and kp > 2+ m. Then WLEP(I x M') embeds continuously into

C,(;’_Oe(l x M") by inclusion.

Proof. From Proposition 2.4 it follows that W% (I x M") embeds continuously
into CO(I; (Whr(M'), Wk 5P(M"))1/p,p)- From a result of Coriasco et al. [14
Lem. 5.4] it follows that (WP (M), Wk 2”(M’))l/p)p embeds continuously
into WJ*_(M’) by inclusion for s < k — ;, where WJP(M') is a weighted
Sobolev space of fractional order. Theorem 6.7 continues to hold for weighted

Sobolev spaces of fractional order and hence W3 (M’) embeds continuously
into C9__(M’), from which the claim follows. O

Finally we define weighted parabolic spaces with discrete asymptotics. Thus
if m > 3, then for k,1 € N with 2k < [ we define the weighted parabolic C*-space
ij:f)w (I x M') with discrete asymptotics by

~¥—27, P-y 25

k
Chp (I x M) ﬂ ,c% (M),

and if a € (0, 1), then we define the weighted parabolic Holder space C,];f,j‘ (I x
M’) with discrete asymptotics by

ChE (I x M) ﬂcmﬂ LY e (M)NCHTCTES (M),

Y—25,P~— Y—27,Py—2j
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Then both Ck’l MURS M’) and Ck’l’o‘(f x M’) are Banach spaces. If p € [1,00),

then we define the weighted parabolic Sobolev space W ’ ’p (I x M) with discrete
asymptotics by

B

k,l 1—27
WEBE(I x M) ﬁ LW (M),

Clearly W,{f”é’f([ x M') is a Banach space.

7.2 Weighted Schauder and LP-estimates

In this subsection we prove weighted Schauder and LP-estimates for solutions
of the inhomogeneous heat equation on compact Riemannian manifolds with
conical singularities.

The following proposition is a version of the Schauder estimates for solutions
of the inhomogeneous heat equation on weighted parabolic Hélder spaces.

Proposition 7.3. Let (M, g) be a compact m-dimensional Riemannian mani-
fold with conical singularities as in Definition 6.5. Let T > 0, k € N with k > 2,

€ (0,1), and~y € R™. Let f € CY*52((0,T)x M') and u € C3°((0, T)x M").
Assume that u € C¥*((0,T) x K) for every K CC M’ and dyu = Agu + f.
Then u € C’,ly’k’“((O,T) x M') and there exists a constant ¢ > 0 independent of
u and f, such that

lullggre < e (1 lgossze + lullcgo) - (54)

Proof. Let f € CYF;%%((0,T) x M') and assume that u € C30((0,T) x M’)
with u € CL%2((0,T) x K) for every K CC M’. Then it follows from the
Schauder estimates in Theorem 2.9 that for every K, K/ cC M’ with K/ cC K
there exists a constant ¢ > 0, such that

[ullgrke < c(lfllcor-20 +[luflcoo), (55)

where the norm on the left side is over (0,7") x K’ and the norm on the right
side is over (0,T) x K. Thus it remains to prove the Schauder estimate (54) on
each end of M. Without loss of generality we can assume that R < VT. Then
for s € (0,R) and i = 1,...,n we define

551 (2,1) x % x (3,1) — (0,T) x S x (0,R),  6:(t,0,7) = (s°t, 7, 57).

3

Denote u; = ¢f(u) and f; = ¢F(f) for i = 1,...,n and define functions

uf (3, 1) XxEx(3,1) =R, uf =s77(6)" (w) (56)
and functions

FoG)xEx(3,1) =R, f=877(8)"(f) (57)
for s € (0, R) and i = 1,...,n. Then there exists a constant ¢ > 0, such that

[uillcoo, [Ifllcor—20 < e on (5,1) x B x (3,1) (58)

1
29
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for s € (0,R) and ¢ = 1,...,n. Using (38) and the definition of u and f7 in
(56) and (57) we find that

8uf S S, S S
5 = Aguf + Liuf + f{ on (3,1) x T x (3,1)
fori =1,...,n, where L is a second order differential operator defined by

Liv = 8 { Dy () (67" (0)) = 80, ((6*)* (W) } 0 07

From (36) it follows that the coefficients of L7 and their derivatives converge to
zero uniformly on compact subsets of X; x (1,1) as s — 0. Using (58) and again
the Schauder estimates from Theorem 2.9 it follows that there exists a constant
¢ > 0, such that for every s € (0, k), where x € (0, R) is sufficiently small, and
i=1,...,n we have

[u?llgrse < c(l[f7llcor—2a + [lufllcoo), (59)

where the norm on the left side is on (%, 1) x 3; x (%, %) and the norm on the

right side is on (3,1) x 3 x (3,1). Then it follows that u € C1%*((0,T) x M’)
and (55) and (59) together imply (54). O

The next proposition gives the LP-estimates for solutions of the inhomoge-
neous heat equation on weighted parabolic Sobolev spaces.

Proposition 7.4. Let (M,g) be a compact m-dimensional Riemannian man-
ifold with conical singularities as in Definition 6.3. Let T > 0, k € N with
k>2 pe (1,00), and v € R*. Let f € W,?f;?’p((O,T) x M) and u €
WOOP((0,T) x M'). Assume that u € WH2((0,T) x K) for every K cC M’
and dyu = Agu+ f. Then u € W3HP((0,T) x M') and there eists a constant
¢ > 0 independent of u and f, such that

lellwsr < ¢ (I lhos e + ol (60)

Proposition 7.4 is proved in exactly the same way as Proposition 7.3.

7.3 Asymptotics of the Friedrichs heat kernel

In this subsection we study the asymptotic behaviour of the Friedrichs heat
kernel on Riemannian manifolds with conical singularities. Our main reference is
Mooers [41]. The heat kernel on Riemannian cones is also study by Cheeger [11]
and on compact Riemannnian manifolds with conical singularities by Nagase [42]
under the assumption that the Riemannian metric is isometric to a Riemannian
cone metric near each singularity. Mooers’ arguments are in principle the same
as those given by Melrose in [39, Ch. 7], where the heat kernel on compact
Riemannian manifolds with boundary is studied.

Before we begin our discussion of the asymptotics of the Friedrichs heat
kernel on compact Riemannian manifolds with conical singularities let us con-
sider the heat kernel on R™ as a motivating example. By introducing polar
coordinates around the origin in R™ we can understand R™ as a Rieman-
nian manifold with conical singularities at the origin. If z,y € R"™\{0} with
= (o,7),y = (c/,7") € 8™ x (0,00), then the distance of x and y is given by

e =y & r =1/ + (r +7')*dn(0, ")
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Here h is the standard Riemannian metric on S™~1. On (0,00) x (R™\{0}) x
(R™\{0}) we then define functions py¢, pif, P1b, Prb, and pgp by

Vitlz—yl
t,x,y) = \t+r2+r2, t,x,y) = ,
pbf( y) ptf( y) /t+T2+'I"/2

r 7!

pb(t,z,y) = Wa prv(t, @, y) = W7
Vi
ptb(tvxay) = T 5
t+ ] —yl?

Then loosely speaking ppe(t, z,y) = 0 if and only if ¢ = 0 and r = v’ = 0,
pee(t,z,y) = 0if and only if t = 0 and « =y, pip(¢, z,y) = 0 if and only if r = 0,
pro(t,z,y) = 0 if and only if ' = 0, and finally pi(¢,2,y) = 0 if and only if
t =0 and = # y. Now let us consider the Euclidean heat kernel H on R™ as
given in (9). Then

2 2 2 2 9
H ~ p™ o™ pi™ exp <_beﬂif2 @bﬁébfﬂtf) =0 (o™ i 0205 ) -
PebPof Pt
Here O(p3) means O(pf,) for every k € N. It turns out that this is the leading
order asymptotic behaviour of the Friedrichs heat kernel on general compact

Riemannian manifolds with conical singularities.

Now let (M, g) be a compact m-dimensional Riemannian manifold with con-
ical singularities as in Definition 6.3, m > 3, and H the Friedrichs heat kernel
on (M,g). The next proposition examines a simple property of the function
x+— H(t,z,y) for fixed t >0 and y € M’.

Proposition 7.5. Lett > 0 and y € M’. Then the function x — H(t,z,y) lies
in m'yeR’" C'(:?P.,(M/)'

Proof. The Friedrichs heat semigroup {exp(tAg)}i>o as defined by (5) and (6)
is a semigroup of bounded operators on L2(M’). Moreover for every t > 0,
exp(tA,) maps L*(M') into N;=o dom (A7) as in (7). It follows that for fixed
t > 0and y € M’ the function x — H(t,z,y) lies in ()72, dom(AJ). Using
Proposition 6.15 and Theorem 6.7 we find that

() dom(ag) = () O, (M)
=0 vER™
from which the claim follows. O]

Let H; be the Friedrichs heat kernel on (C;,g;) for ¢ = 1,...,n, where
(C1,91)s---,(Cn,gn) are the model cones of (M, g) as in Definition 6.3. For
t=1,...,nand s € (0,00) define

65 :(0,00) x C; x O — (0,00) x C; x Cy, 65 (t,o,7r,0' ") = (s°t,0,87,0”,57").

Then
(67)" (tAg,0)(0,7) = tAg, (67)"(¢)(o,r)  for (o,7) € C; (61)
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and ¢ = 1,...,n and ¢ € dom(Ay,). Here dom(Ay,) is the domain of the
Friedrichs extension of the Laplace operator A,, : C2(C;) C L*(C;) — L*(C;).
Then (61) implies that

(67)" (exp(tAg, )p) = exp(tAg,)(67)"(¢) for ¢ € dom(Ay,) (62)
and i = 1,...,n. From (62) and Proposition 3.1 we then conclude that
(O (H;)(t,o,r 0" 1") = s " H,(t,r,0,r",0") for (t,o,r,0’,r") € (0,00)xC; xC;

andi=1,...,n.

The next proposition describes the homogeneity of the Friedrichs heat kernel
on (M, g) when g is isometric to the Riemannian cone metric g; on each end of
M fori=1,...,n.

Proposition 7.6. Let (M, g) be a Riemannian manifold with conical singulari-
ties as in Definition 6.3 and let § be a Riemannian metric on M with ¢} (3) = ¢
fori=1,...,n, 1.e. the Riemannian metric is isometric to the Riemannian cone
metric on each end of M'. Let H be the Friedrichs heat kernel on (M, §). Then

(07)(¢j (H)) —s ™"H; =0(s*) ass—0
fori=1,...,n.

The proof of Proposition 7.6 can be found in Nagase [42, §5].

We now discuss parts of Mooers’ parametrix construction for the Friedrichs
heat kernel [41]. We explain this construction only in an informal way and the
interested reader should consult Mooers’ paper for a detailed description. In
order to describe the asymptotics of the Friedrichs heat kernel it is convenient
to introduce functions pyg, pit, Pibs Prb, and pgp on (0,00) X M’ x M’ as follows.
Let p be a radius function on M’ and define

—_ )2 2 x = i dg(x’ 9)2
poe(t,2,y) = VE+p(@)2 + p(w)2, pu(t,,y) Vit p(@)? + p(y)?
p(x) p(y)

’ prb(tvxay) =

p(t,z,y) = Vit p@E 1 p(y)2 N ViE+p(z)? + p(y)?’

Vit

pbtax?y: —.
oY) = e

Loosely speaking we have that pue(t,z,y) = 0 if and only if ¢ = 0 and p(z) =
ply) =0, pie(t,z,y) = 0if and only if t = 0 and x = y, pip (¢, z,y) = 0 if and only
if p(z) =0, peb(t,x,y) = 0 if and only if p(y) = 0, and finally pe, (¢, z,y) = 0
if and only if ¢t = 0 and = # y. In fact the functions pys, pi, Pibs Prb, and pep
should be understood as boundary defining functions on the heat space of M,
see Melrose [39, Ch. 7, §4].

From Theorem 3.2 we have a good understanding of the asymptotics of
H(t,z,y), when z and y lie in a compact region, so we only have to study the
asymptotics of the heat kernel, when = and/or y are close to a singularity. The
first step in the parametrix construction for the heat kernel is to find a rough
parametrix Hy, i.e. a good first approximation, for H. The rough parametrix
Hy is constructed by gluing the heat kernels on the model cones of the conical
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singularities together with the heat kernel H. Since the Laplace operator on
M’ near each conical singularity is asymptotic to the Laplace operator on the
model cone of the singularity, it follows that Hy is a good first approximation
for the heat kernel H and determines the leading order terms in the asymptotic
expansion of H in terms of pyg, pif, Pib, Prb, and pip. Using the discussion from
above, we have a good understanding of the asymptotics of Hy, and, in fact, one
can determine the expansion of Hy in terms of the functions pyt, pit, p1b, prb, and
pep and show that Ho ~ p" pp" poe pih, 02, see Mooers [41, Prop. 3.3]. (Note,
however, that due to a mistake in [41, Lem. 3.2] the power —1 of the function
poe in Mooers’ result should be replaced by —m). What is left, is to solve away
the error terms caused by the gluing procedure and the asymptoticness of the
Laplace operator on M’ to the Laplace operators on the model cones. This is
done in Mooers [41, Prop. 3.4 — 3.8].

Of particular importance for us are the asymptotics of H when pyp,, prr, — 0,
since this is where the discrete asymptotics come into play. Let v € R™ and
define v+, v~ € R™ by

7 =min{e €&y, : >y} and v, =max{c €&y, : e<v} (63)
fori=1,...,n. For v € R" we choose a basis ’(/J,lw...,’(/J,J;[ for im V., where
N = dimim ¥,. Recall from above that the function x — H(¢,z,y) lies in
Myern Cyp, (M) for fixed ¢ > 0 and y € M’. Now one can deduce from [41,

Prop. 3.5] that there exist functions HY, ..., HY € C°°((0,00) x M') that admit
an asymptotic expansion of the form

ny ~ pt_fmpgfmptogp;;f forj=1,...,N, (64)

and such that we have an asymptotic expansion of the form
N . . _ -~ +
H — ijl Q/LJVH?V ~ ptfmpbfmptoﬁpﬁ; . (65)

The time derivatives of H then admit a similar expansion and from (64) and
(65) we then deduce the following result.

Theorem 7.7. Let (M,g) be a compact m-dimensional Riemannian manifold
with conical singularities as in Definition 6.3, m > 3, H the Friedrichs heat
kernel on (M, g), and v € R™. Forl € N choose a basis 1/),7 oy ,1/),17\,’_21 for
im W, _g;, where N; = dimim W, _o;. Then the following holds.

For each | € N there exist functions H) ... HN’ o € C*°((0,00) x M')
and constants ¢; > 0, such that for each l 6 N

m(y—21)"~
2

\HY oy (ty)] < e (t+ p(y)?)™ fort>0, ye M

and j=1,...,N;, and
H(t,x,y) Z 1/J7 21 Z, 21<t y))‘

(v=20F
2

i €z 2
ar - (t+ dg(,y)?) " (M) ;

fort >0, and x,y € M'. Here v and v~ are given in (63).
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We should remark at this point that the wrong asymptotics of the Friedrichs
heat kernel given by Mooers were also used by Jeffres and Loya in [22] in their
study of the regularity of solutions of the heat equation on Riemannian manifolds
with conical singularities.

7.4 The Cauchy problem for the inhomogeneous heat equa-
tion. I

In this subsection we prove existence and maximal regularity of solutions to the
Cauchy problem for the inhomogeneous heat equation, when the free term lies
in a weighted Holder space with discrete asymptotics. There are only a few
papers known to the author where parabolic equations on compact Riemannian
manifolds with conical singularities are studied. We would like to mention
the papers by Coriasco, Schrohe, and Seiler [13] and [14] in particular, since
these initially motivated our study of the heat equation. Their approach to
the study of linear parabolic equations on compact Riemannian manifolds with
conical singularities is through semigroup theory, and therefore lasts heavily on
techniques from functional analysis, while our approach using the heat kernel is
more PDE style. In the special case of the heat equation our results, Theorems
7.10 and 7.13 below, generalize those obtained by Coriasco, Schrohe, and Seiler.
We point out, however, that their results also apply to more general linear
parabolic equations than just the heat equation.

Throughout this subsection (M, ¢g) will be a compact m-dimensional Rieman-
nian manifold with conical singularities as in Definition 6.3, m > 3, p a radius
function on M’, and H will denote the Friedrichs heat kernel on (M, g). In the
next two propositions we prove two elementary, though important, estimates
for the convolution of H with powers of p.

Proposition 7.8. Let v € R™ with~y > 2 —m and v; ¢ Ex, fori=1,... n.
Then there exist a constants ¢; > 0 for I € N, such that

N . -
’((‘%H - ijlwz,zzHizo * p7 2) (t,x)

for every t € (0,00) and x € M’'. Here zbi_m and Hi—zl are given by Theorem
7.7 for j=1,...,N;.

<cp-pla)’ ™

Proof. We only consider the case [ = 0, the general case is proved essentially in
the same way. Denote

I(t,z) = ((H — Zjvjl wz‘YHg) * ,07—2) (t,z)

for t € (0,00) and « € M’. Using Theorem 7.7 we find that

s [ [

<eop@ [ ol ol + o) F [ (st dyfan)?)E ds Vi)

H(s.a) = Y2, ) ) o) V)
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where v is as in (63). Since m > 3, we can estimate the integral with respect
to s by

t
/0 (54 dy(2,)2)"F ds < - dy,y)>™

and thus obtain

+

)| < p@™ [ oo™ 2(ole)? + )7 dyfwy) ™ V(o). (60)

For the sake of simplicity we assume from now on that ¢;(g) = ¢; for i =
1,...,n. The general case then follows in a similar way because the error terms
caused by the asymptotic condition (36) can be controlled by the estimates
which we now prove. Let R’ > 0 with £ < R’ < R and assume that z lies in
Sl = ¢;(X; x (0,R')) for some i = 1,...,n. The case x € M'\S/ is dealt with in
a similar way. We now split the integral over M’ in (66) into two integrals, one
over S; and the other one over M’\S;. We first study the integral over S;.

If y € S;, then dy(z,y)* > c(r? + r"*)dp(o,0')* for every y € S; where
z = ¢i(o,r) and y = ¢;(¢’,r’). In particular dy(z,y)? > c(r? + r'?)dp(0,0")?
for every y € S;. Moreover we can assume that p(z) = r and p(y) = 7’. Using
dV, (o’ r") = r'™=1dr" AV}, (o’) we thus obtain

/ () 2(p(2)? + p()?) T dgl,5)> ™ Vi (y)

R m+'vj'
< C/ / P32 2 ImT  (0,07) 2™ AV (o) di!
o Jx,
R

+
m— _mty
SC/ pitm 3(T2+T/2)1 5 d?”l,
0

where in the last estimate we use that the integral with respect to ¢’ is finite,
since dimX; = m — 1. With the change of variables r’ — o = (%)? we find

T

m4~T

R + [e's)
mty; At itm—4 My
/r’%+m—3(r2+r’2)1—T dr' < e %-/ T (1T de
0 0

Now the integral with respect to g is finite if and only if 2F7=% > 1 and

2
) _ + . . .
%’M—i—l— MT% < —1, which holds if and only if 2 —m < v < ’y;".
Therefore we obtain that

+

p(x)? /S p(y)Y2(p(@)? + p(y)*) "= dy(z,y)* ™ AV, (y) < cp(a)?.  (67)

Now assume that y € M'\S;. Then dy(x,y) is uniformly bounded from
below, as z € S/. Hence we can estimate dy(z,y)? > c(p(x)* + p(y)?) uniformly
for y € M'\S;. From (66) we thus obtain

/ (1) 2(p(@)? + p(u)2) " d(, )™ AV (y)
M\S,

= c/ p(y)2(p()? + p(y)?) == AV, (y).
MN\S;
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Using the same estimates as before it is now straightforward to check that

mty T +

/ p(y)Y 2 (p(a)? + p(y)*)' =77 AVy(y) <c-p(x)777 .
M\S;

We find that

+

P [ o o)) e Vi) S epa)T (6

Finally from (66), (67), and (68) we conclude that |[I(t,x)| < ep(a)? for
t € (0,00) and z € M’, as we wanted to show. O

Proposition 7.9. Let v € R" with v; ¢ Es, fori=1,...,n. Then there exists
a constant ¢ > 0, such that |(H3772z * p"_2)(t)’ < ¢ for every t € (0,00) and

7=1,..., Ny, where Hi—zl is as in Theorem 7.7.

Proof. Again we only consider the case [ = 0. Fix some j = 1,..., Ny and
denote I(t) = (HI  p7=2)(t) for t € (0,00). Using the estimates from Theorem
7.7 we obtain that

101 < [l V)

e[y [ o) dsavi),

0

where v~ is as in (63). We can estimate the integral with respect to s by

t
_mAy— e~
/ (s 4+ p(y)?)~ 5= ds < c- ply)>"
0
and hence we obtain
I0l<e [ o av . (69)

Using that the Riemannian metric ¢} (g) is asymptotic to the Riemannian cone
metric g; on ¥; x (0, R) and using that dVi, (o,r) = r™~1dr dVj, (o) it follows
that the integral in (69) is finite if and only if v — v~ —m + (m — 1) > —1,
which holds if and only if v > ~~. O

For T > 0 and a given function f : (0,7) x M’ — R we now consider the
following Cauchy problem

%(t,x) = Agu(t,z) + f(t,x) for (t,z) € (0,T) x M, (70)
uw(0,2) =0 for z € M,

i.e. we look for a function u : (0,7) x M’ — R that extends continuously to
t = 0 and satisfies (70). Using Propositions 7.8 and 7.9 we are now able to prove
existence and maximal regularity of solutions to (70), when f lies in a weighted
Hoélder space with discrete asymptotics.
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Theorem 7.10. Let (M, g) be a compact m-dimensional Riemannian manifold
with conical singularities as in Definition 6.3, m > 3. Let T > 0, k € N with
kE>2, a€(0,1), and vy € R® withy >2—m and v; ¢ Es, fori=1,...,n.
Given f € C’g’f;)%’i?((O,T) x M'), there exists a unique u € C,lyiléf‘((O,T) x M)
solving the Cauchy problem (70).

Proof. Let f e C2*22% ((0,T) x M'), then we can write f = f1 4+ f» with

Y—2,Py—2
fr € CYETEY((0,T) x M') and  fo € CO/2((0,T);im Wy _s).

Define w = H * f, u; = H * f1, and uy = H * fo, where H is the Friedrichs heat
kernel and convolution is defined as in (12). Using Theorem 7.7 we can write

wito) = (1= X0 vhm}) « 1) () + 32, e @) 0

for t € (0,T) and z € M'. Using f1 € C3*;>*((0,T) x M’) and Proposition
7.8 we find that

(n ) )

Moreover, from Proposition 7.9 it follows that

|(H'Jr x f1)(t)] < CHleCS’fz

< el fillgoo, p(2)7-

forj=1,..., Nyg. Hence u; € 09,1(;7((0, T) x M’). In a similar way one can now
show that in fact u; € C,lyiléf((O,T) x M').
Alternatively one can show that u; € C1%2((0,T) x K) for every K CC M’.

If v < 0, then the discrete asymptotics are trivial and the weighted Schauder
estimates from Proposition 7.3 imply that u; € C,ly:];f‘((O,T) x M. It~ >

0, then u; € C3°((0,T) x M'), since the discrete asymptotics are bounded
functions on M’. Therefore again the weighted Schauder estimates imply that

in fact uy € Cg™*((0,T) x M’). But then using Proposition 6.15 and a simple

iteration argument we conclude that u; € C,l},:];’_yo‘(((), T)x M").

The same argument as before also shows that us = Hx* f5 lies in Cé’é;? ((0,T)x

M) for every | € N and § € R™. Hence u € C}Y”’;’:“((O,T) x M') and wu solves
the Cauchy problem (70).

In order to show that u is the unique solution of the Cauchy problem (70) it
suffices to show that if u € C’_ly:l;’j(((), T') x M") solves the Cauchy problem (11)
with f =0, then v = 0. Thus let u € C,l},:]éf‘((O,T) x M’) be a solution of (11)
with f = 0 and assume first that v > 1 — . Then for ¢ € (0,7)

d
g llet ze = 2(Agu(t, ), ult, )2 = =2[|Vult, )72 <0.

Since u(0,-) = 0, it follows that u = 0. Now assume that v € R" with 2 —m <
v < 1— 1. Then it easily follows that [, , u(t,x) dVy(xz) = 0 for t € (0,T).
Using Proposition 6.15 we can define u; = A 'u. Then u; € Cﬂl’f;?,ﬁz ((0,T) x
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M’) and wu; solves the Cauchy problem (11) with f = 0. We can iterate this
argument and define u; = Ag_lu for | € N with v + 2] > 1 — 7. Then u; €

CLERhe ((0,T) x M’) and wu; solves the Cauchy problem (11) with f = 0.
Y+21,Py 421
Then as above it follows that u; = 0 and hence u = 0. This completes the proof

of Theorem 7.10. O

7.5 The Cauchy problem for the inhomogeneous heat equa-
tion. II

In this subsection we prove existence and maximal regularity of solutions to
the Cauchy problem for the inhomogeneous heat equation on compact Rieman-
nian manifolds with conical singularities, when the free term lies in a weighted
Sobolev space with discrete asymptotics.

We first recall Young’s inequality which can be found in Krylov [30, Ch. 1,
§8, Lem. 1] for instance. For G, f € L{ (R™) the convolution of G and f is
given by (G * f)(z) = [ G(z — y)f(y) dy, whenever it is well defined. Then
Young’s inequality states that if G € L'(R™) and f € LP(R™) for p € [1,00),
then the convolution G x* f lies in LP(R™) and ||G * f|lo» < |G| f]lLe-

We now prove a generalization of Young’s inequality to Riemannian mani-
folds with conical singularities and weighted LP-norms.

Proposition 7.11. Let (M, g) be a compact m-dimensional Riemannian mani-
fold with conical singularities as in Definition 6.3, T > 0, p € (1,00), and §,€ €
R™. Let f € W2OP((0,T) x M') and G € C _(((0,T) x (0,T) x M" x M")\A),
where A = {(t,t,z,x) : t € (0,T), x € M'}. Assume that

sup p(2) |Gt 2, Ylyoos 5 sup p()PIGE, s, y)lyoon < oo
te(0,T) —R2=m 5e(0,T) —etép
zeM’ yeM'’

for some a1, o, By, By € R™ that satisfy
1 1
(Xl-&-ag(l—):O and '81—|-,32(1—):€+m. (71)
p p p p p

Then G x f € Wy'PP((0,T) x M') and moreover
1 1-2
G * fllwoos < IIflweor sup p(@)*2 = 2G(E, - 2, oo
o te(0,T) —By—m
zeM’
o 3
x sup p(y)» HG('»Sa'ay)Hwo,o.l
s€(0,T) —o1+6p
yeM’

Proof. Without loss of generality we can assume that f and G are non-negative.
We write

G(t,s,2.9)f(s.y) = (Gt 5.2,9) [ (5,9)")7 G(t,5,2,9)' "7
= (G(t,5,2.9) fe(5.9)")7 G(t,5,2,9) 77 p(y)=+F
= (p(x)* p(y)?* G(t, 5,2, y) fo(5,9)")
< (pl@)*2p(y) Gt s,2,)) 7,

D=

61



where fa(5,9) = p(y) =% f(5,5) and a1, a0, By, B, € R™ satisfy (71). Using
Holder’s inequality we find

P

(@ D) lta)] < ( L[ s o et sam i nravio ds)

17
T
x ( / / p(2)% o) Gt 5,2, y) AV (y) ds>
O i
It follows that

1G * Flly00s < /T/ {/T/p(x)‘;lp(y)ﬁlG(t,S,I,y)fe(svy)p dVy(y) d
0

0 M’ ’

T

p—1

T
x ( / / p(2)%2p(y) Gt 5,2, y) AV (y) ds) AV, (z) dt

0 M’

with {; = a1 — dp — m. Observe that

T
/ A p(x)a2p(y)52G(t7 87x7y) dVy(y) ds = p(x)GQ ||G(ta 5y )HWEgl
0 ! 2mm

Hence
p—1
G * 00p < su )G, -, x, - 0,0,1
| f||W te(O?T)P() IG( Mwoor
zeM’
//{// o) Gt 5,2, ) (5 9)P AV () d }dvgmdt
0 M’

Finally we have

//{// S ()P Gt s, 2,y) fe(s,)" dV()d}dV()dt
T

o a \0 m
=//{//p 4Gt 5..5) AV () d }p(y)ﬁlfs(s,y)” AV,(y) ds
o am \0 m
T
— [ [ 1665 lhusgs,, o) felon)” V(o) ds
0 M/
< £ sup p(y)PHG(, s, 9) [ yo0
s€(0,T) —o1tép
yeM’
from which the claim follows. O

The next proposition is proved in a similar way to Proposition 7.11.
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Proposition 7.12. Let (M, g) be a compact m-dimensional Riemannian man-
ifold with conical singularities as in Definition 6.3, T > 0, p € (1,00), and
d,e €R". Let f € W2OP((0,T) x M') and G € C2 (((0,T) x (0,T) x M")\A),
where A = {(t,t,x) : t€(0,T), z € M'}. Assume that

sup ||G(t, ,-)HW001 , sup p(x)*||G( 8,9l < o0
te(0,7) ™ s€(0,T)
zeM’

for some a1, a0 € R™ that satisfy
o 1 m
— taz|l—=)=e+—. (72)
p p p

Then G f € LP((0,T)) and moreover

1— oy 1

1G % Fller < W fllwzor sup GG sup o) P IG5, 2) 1.
te(0,T) —ez—m sc(0,T)
zeM’

For T > 0 and a given function f : (0,7) x M’ — R we now again consider
the Cauchy problem (70). Using Propositions 7.11 and 7.12 we are now able
to prove existence and maximal regularity of solutions to (70), when f lies in a
weighted Sobolev space with discrete asymptotics.

Theorem 7.13. Let (M, g) be a compact m-dimensional Riemannian manifold
with conical singularities as in Definition 6.3, m > 3. Let T > 0, k € N with
kE>2,pe(l,0), andy € R® withy >2—m and v; ¢ Es, fori=1,...,n
Given f € ng;g;”ﬁ((o, T)x M'), there exists a unique u € Wl k. p((o’ T)x M)
solving the Cauchy problem (70).

Proof. Let f € WSf;g;piz((O,T) x M'). Then we can write f = f1 + fo with

f1 € WORT2P((0,T) x M) and  fo € LP((0,T);im W.y_s).

Let H be the Friedrichs heat kernel on (M, g) and define u = H * f, uy = H * f1,
and us = H x fy, where convolution is defined as in (12).

The first step is to show that u; € Wg:gf((O,T) x M). Using Theorem 7.7
we write

w (t, ) = (< Z ¥ H. ) >m+z @) (HI  f1)(t) (73)

for t € (0,7) and € M’. We begin by showing that the first term on the right
side of (73) lies in W99 ((0,T) x M'). Define G € Cp (((0,T) x (0,T) x M’ x
M’)\A) by

G(t,S,I,y):H(“—SLJﬁ y Z W H] |t_8| y)
Notice that

(-0 w4 )« )| < (161 D ).
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We now apply Proposition 7.11 with § = v and € = v — 2. Then we have to
show that that

sup p(x)QQHG(ta'axa')||Wo>0'1 , sup p(y)ﬁlHG('7Sa'ay)”WO*O’l < 00,
te(0,T) “B2=m 5e(0,T) —eatar
xzeM’ yeM’

where a1, as, 81, By, € R™ satisfy (71). Since vT > 0, where vT is as in (63),
and p > 1, it suffices to prove that
sup_ (@) |Gt Yyoor o sup p(y)P G, s, y)lypeon < oo
te(0,T) ,BZ,erj_il s€(0,T) —op+p
zeM’ ? yeM’
(74)
We analyze the first term. Note that

N
1G(E, - ;) oo = |G pP27 7| (8, ).

76277"*;’?1
+
If —m < B, — p"’fl < vt — 2, then by Proposition 7.8 there exists a constant
¢ > 0, such that

ot ~t

[€ *pﬁrp,l \(t,z) < c,p(x)ﬁrp,ﬁrz'

Hence, if
+
p—1

+
+2>0 and fm<ﬂ271%<'y+—2, (75)

as + 35 —

then the first term in (74) is finite. In a similar way we find that if
—m<oa;—p-—m<2—~T and B;+a; —vp—m+2>0, (76)

then the second term in (74) is finite. A straightforward computation now shows
that (75) and (76) are equivalent to the existence of a 3 € R™ with

+ + 9 _ +
R ,m<13<77+7+,2 and £,2<ﬁ<w72
p—1 p—1 p—1 p—1
Such a B exists if and only if m > 3 and 2 —m < v < 7. It follows that
No . .
(H - Zj:1 w;H;) x f1 € WOP((0,T) x M). (77)

The next step is to show that H,JY x f1 € LP((0,T)) for j = 1,...,N. Fix
some j =1,..., N and define G € CP _(((0,T) x (0,T) x M")\A) by G(t, s,z) =

H%(|t — s|,x). We now apply Proposition 7.12 with € =« — 2. Then it suffices
to show that

sup [|G(t,+,-)[lyoor , sup p(x)*[|G(:,8,y)|[1 < oo (78)
te(0,T) Te2T™m e 5e(0,T)
zeM’

for some ay, s € R™ that satisfy (72). Using Proposition 7.9 it follows that if

az >~y +2 and a1 +2—-—m—~" >0, (79)
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then the two terms in (78) are finite. A straightforward calculation shows that
the conditions (72) and (79) are equivalent to v > v~. Together with (77) we
conclude that u; € WS:gf’((O,T) x M').

The same arguments as in the proof of Theorem 7.10 then show that in fact
u € Wi:g;p((O,T) x M'") and uy € Wéy’é’f((O,T) x M') for every | € N and
6 € R*. Hence u € W,i:l;;p((O,T) x M') as we wanted to show. Finally the
uniqueness follows as in the proof of Theorem 7.10. O
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8 Lagrangian submanifolds with isolated conical
singularities in almost Calabi—Yau manifolds

8.1 Special Lagrangian cones in C”

In this subsection we define special Lagrangian cones in C™ and introduce the
notion of stability of special Lagrangian cones. Good references on special La-
grangian cones are Haskins [20] and Ohnita [46].

We begin with the definition of special Lagrangian cones in C™.

Definition 8.1. Let t5; : ¥ — 8?™1 be a compact and connected (m — 1)-
dimensional submanifold of the (2m—1)-dimensional unit sphere S*™~1 in R?>™,
We identify ¥ with its image 1s(X) C S*™~L. Define 1 : ¥ x [0,00) — C™ by
t(o,r) = ro. Denote C = (X x (0,00)) U {0}, C" = X x (0,00) and identify C
and C" with their images 1(C) and «(C") under ¢ in C™. Then C is a special La-
grangian cone with phase €%, if 1 restricted to ¥ x (0, 00) is a special Lagrangian
submanifold of C™ with phase €' in the sense of Definition 4.9.

Let C be a special Lagrangian cone in C™. In §6.2 we discussed homogeneous
harmonic functions on Riemannian cones. On a special Lagrangian cone there
is a special class of homogeneous harmonic functions, namely those induced by
the moment maps of the automorphism group of (C™,J" ', ).

The automorphism group of (C™,w’, ¢') is the Lie group U(m) x C™, where
C™ acts by translations, and the automorphism group of (C™,w’, ¢’, Q') is the
Lie group SU(m) x C™. The Lie algebra of U(m) is the space of skew-adjoint
complex linear transformations, i.e.

u(m) = {A€gl(m,C) : A+ A" =0},

and the Lie algebra of SU (m) is the space of the trace-free, skew-adjoint complex
linear transformations, i.e.

su(m) ={A cu(m) : tr(4) =0}.

Note that u(m) = su(m) @ u(1).

Let X = (A,’U) S u(m) @ C™, with A = (aij)i7j:17,,,,m and v = (Ui)i:17,__7m.
Then X acts as a vector field on C™. Since U(m) x C™ preserves w’, X 4w’
is a closed one-form on C™ and thus there exists a unique smooth function
px : €™ — R, such that dux = X 5w’ and pux(0) = 0. Indeed, if X = (4,v) €
u(m) @ C™, then px is given by

i B i o
px =5 Z i %% + 3 Z(ULZZ — ;%) (80)
ij=1 i=1
Moreover, since a;; = —a;; for i,j = 1,...,n, we see that px is a real quadratic

polynomial. We call 1x a moment map for X. For X = (A4, v,¢) € u(m)®C"dR
we define px : C™ — R by requiring that

dux =X 4w’ and px(0)=c. (81)

A proof of the following proposition is given in Joyce [25, Prop. 3.5].
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Proposition 8.2. Let C' be a special Lagrangian cone in C™ as in Definition
8.1 and let G be the mazimal Lie subgroup of SU(m) that preserves C. Then
the following hold.

(i) Let X € su(m). Then t*(ux) is a homogeneous harmonic function of order
two on C'. Consequently the space of homogeneous harmonic functions of
order two on C' is at least of dimension m? —1 — dim G.

(ii) Let X € C™. Then t*(pux) is a homogeneous harmonic function of order
one on C'. Consequently the space of homogeneous harmonic functions of
order one on C' is at least of dimension 2m.

Also note that if C is a special Lagrangian cone in C™ and X € u(1), then
t*(ux) = cr? for some c € R.

Using Proposition 8.2 we can define the stability index of a special La-
grangian cone in C™ and the notion of stable special Lagrangian cones following
Joyce [25, Def. 3.6].

Definition 8.3. Let C be a special Lagrangian cone in C™ as in Definition 8.1
and let G be the mazimal Lie subgroup of SU(m) that preserves C. Then the
stability index of C' is the integer

s-index(C) = Mx(2) —m? — 2m + dim G,

where My, is defined in §6.2. From Proposition 8.2 it follows that the stability
index of a special Lagrangian cone is a non-negative integer. We say that a
special Lagrangian cone C in C™ is stable if s-index(C) = 0.

Note that if C' is a stable special Lagrangian cone as in Definition 8.1, then the
only homogeneous harmonic functions on C” with rate «, where 0 < « < 2, are
those induced by the SU(m) x C™-moment maps.

Examples of special Lagrangian cones can be found in Joyce [23, §8.3.2].
Examples of stable special Lagrangian cones, however, are hard to find and
there are only a few examples known. The simplest example of a stable special
Lagrangian cone is the Riemannian cone in C? over T? with its standard metric.
In this case C' is given by

C = {(Tei¢17rei¢2,rei(¢1—¢2)> :r€]0,00), 1,02 € [0727‘-)} cCd

together with the Riemannian metric induced by the Euclidean metric on C3.
Some other examples of stable special Lagrangian cones can be found in Ohnita’s
paper [46].

8.2 Lagrangian submanifolds with isolated conical singu-
larities

In this subsection we define Lagrangian submanifolds with isolated conical sin-
gularities and prove a simple property of the Maslov class of Lagrangian sub-
manifolds with isolated conical singularities. Related material about special
Lagrangian submanifolds with conical singularities can be found in Joyce [24],
[25], and [26] and also in Haskins and Pacini [21].

We now define Lagrangian submanifolds with isolated conical singularities
in almost Calabi—Yau manifolds following Joyce [24, Def. 3.6].
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Definition 8.4. Let (M, J,w, ) be an m-dimensional almost Calabi-Yau man-
ifold and define 1 € C°(M) as in (15). Let x1,...,2, € M be distinct points
in M, Cy,...,C, special Lagrangian cones in C™ as in Definition 8.1 with em-
beddings v; : ¥y X (0,00) = C™ fori=1,...,n, and L an m-dimensional man-
ifold with ends Sy,...,S, as in Definition 6.1. Then a Lagrangian submanifold
F: L — M is a Lagrangian submanifold with isolated conical singularities at
Z1,..., T, modelled on the special Lagrangian cones Cy,...,Cy, if the following
holds.

We are given isomorphisms A; : C"™ — T,. M for i =1,...,n with Af(w) =
W' oand AX(Q) = eOtme@EIQO for some 0; € R and i = 1,...,n. Then by
Theorem 4.3 there exist R > 0 and smooth embeddings Y; : Bgp — M with
T:(0) = 2, Yiw) = &, and dY;(0) = A; fori = 1,...,n. Making R >
0 smaller if necessary we can assume that Y1(BRr),..., Tn(Bgr) are pairwise
disjoint in M. Then there should exist diffeomorphisms ¢; : ¥; x (0,R) — S;
fori=1,...,n, such that F o ¢; maps ¥; x (0, R) — Y;(Bgr) fori=1,...,n,
and there should exist v; € (2,3) fori=1,...,n, such that

|Vk(Ti_1 oFo¢p; — 1,1)’ =0 %) asr — 0 fork € N. (82)

Here V and |-| are computed using the Riemannian cone metric 1} (g') on X; x
(0, R). A Lagrangian submanifold F : L — M with isolated conical singularities
modelled on special Lagrangian cones C4,...,C, is said to have stable conical
singularities, if C1,...,Cy are stable special Lagrangian cones in C™.

We have chosen v; € (2,3) in Definition 8.4 for the following reasons. We
need v; > 2 or otherwise (82) does not force the submanifold F' : L — M to
approach the cone A;(C;) in T,,M near z; for ¢ = 1,...,n. Moreover v; < 3
guarantees that the definition is independent of the choice of T;. Indeed, if
we are given a different smooth embedding Y, : By — M with TZ(O) = x;,
Ti(w) = ', and dY;(0) = A;, then Y; — T; = O(r?) on Bg by Taylor’s
Theorem. Therefore, since v; < 3, it follows that (82) holds with T, replaced

If F: L — M is a Lagrangian submanifold with isolated conical singu-
larities, then (82) implies that L together with the Riemannian metric F*(g)
is a Riemannian manifold with conical singularities in the sense of Definition
6.3. In particular the analytical results from §6 apply to L together with the
Riemannian metric F*(g).

The next proposition shows that the Maslov class of a Lagrangian subman-
ifold with isolated conical singularities is an element of H! (L,R), the first
compactly supported de Rham cohomology group of L.

Proposition 8.5. Let F : L — M be a Lagrangian submanifold with conical
singularities as in Definition 8.4. Then the Maslov class pr of F': L — M may
be defined as an element of HL,(L,R).

Proof. Let n be a smooth and closed one-form on L and assume that there exists
e > 0, such that |V*n| = O(p~!1*t¢~*%) for k € N. We first show that there exists
a function f € C2°(L), such that n 4+ df has compact support. Let n; = ¢ (n)
for i = 1,...,n. Then n;(o,7) = n}(o,r)dr + n?(o,r) for (o,7) € ; x (0, R)
and i = 1,...,n, where n!(o,7) € R and n?(o,r) € T:%; for r € (0,R) and
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i=1,...,n. Define functions
filo,r) = —/ ni(o,0) do for (o,7) € ¥; x (0, R)
0

and i =1,...,n. Since |n;| = O(r=*%) as r — 0 it follows that f; is well defined
for i =1,...,n. Moreover,

dfi(o,r) = — / ds,n} (0, 0) do — n (o, r)dr for (o,7) € %, x (0, R)
0

2
and i = 1,...,n. Since 7 is closed we have 0 = dn; = dgn} Adr+dsn? — ag’;‘ Adr

and thus dsn? = 0 and dsn} = 88—";'2 for i = 1,...,n. Then it follows that
df; = —n? — n}tdr. Now we choose functions x1,...,x, € C*°(L), such that
xi =1 on ¢;(%; x (0,%)) and x; =0 on L\ U, ¢:(Z; x (0, R)) and we define
f=xifi+ -+ xnfn Then f € C(M) and n + df has compact support as
we wanted to show.

By Proposition 4.8 the Maslov class of F': L — M is represented by a g, the
generalized mean curvature form of F': L — M. Since C,...,C, are special
Lagrangian cones, their mean curvature vector fields are zero. Then (82) implies
that |[VFag| = O(p?=27%) as p — 0 for k € N and hence |V*df| = O(p*—3F)
as p — 0 for k € N. Since v —2 >0, [V¥d0| = O(p~ 1T F)asp = 0for ke N
and some small € > 0. Hence up € H. (L, R). O

8.3 Lagrangian neighbourhoods for Lagrangian submani-
folds with isolated conical singularities

In this subsection we collect various Lagrangian neighbourhood theorems for
Lagrangian submanifolds with isolated conical singularities proved by Joyce [24,
§4].

Let C be a special Lagrangian cone in C™ as in Definition 8.1. Let o € 3,
7 € T:%Y and o € R. Then we denote by (o,7,7,0) the point 7 + pdr in
T7, (3% (0,00)). For s € (0,00) we define

0% : X x (0,00) = X x (0,00), &°(o,r) = (0,sr). (83)

Then 6° induces an action of (0,00) on T*(X x (0,00)) by 0:(o,7,7,0) =
(0, 87,527, 50). Also observe that the canonical symplectic structure & on 7% (X x
(0,00)) satisfies (6°)* () = 2.

The following theorem is a Lagrangian neighbourhood theorem for special
Lagrangian cones in C™. The proof can be found in Joyce [24, Thm 4.3].

Theorem 8.6. Let C' be a special Lagrangian cone in C™ as in Definition 8.1.
Then there exists an open neighbourhood U of the zero section in T* (X% (0, 00))
with 63(Uc) = Uc for s € (0,00) given by

Uc ={(o.7,7,0) € T*(¥ % (0,00)) : [(r,0)| <2(r} for some ¢ >0,

and there exists a Lagrangian neighbourhood ®¢ : Uc — C™ for . : 3x (0,00) —
C™, such that s - ®c = P 0 §° for s € (0,00).
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The next proposition is a result about the asymptotic behaviour of graphs
of functions over special Lagrangian cones. The proof can be found in Joyce
[24, Thm. 4.4].

Proposition 8.7. Let C be a special Lagrangian cone in C™ as in Definition
8.1 and ®¢ : Uo — C™ a Lagrangian neighbourhood for v : ¥ x (0,00) — C™
as in Theorem 8.6. Let R >0, p € R, and u € C*(X x (0, R)). Assume that

\Viu|=O0@"7) asr—0forj=0,....k

and Tq,, C Uc, where Tq,, = {(z,du(z)) €e T*(X x (0,R)) : 2 € X x (0,R)} is
the graph of du. Then

V/(®codu—1)| =00 7)) asr—0 forj=0,....k—1.

Here V and | - | are computed using the Riemannian cone metric t*(g') on
S % (0, R).

The next theorem provides a special coordinate system for a Lagrangian
submanifold with isolated conical singularities near each singular point. The
proof can be found in Joyce [24, Thm. 4.4 & Lem. 4.5].

Theorem 8.8. Let (M, J,w,Q) be an m-dimensional almost Calabi—Yau man-
ifold and let Cq,...,C, be special Lagrangian cones in C™ with embeddings
i+ 2 x (0,00) = C™ as in Definition 8.1 fori=1,...,n. Let F : L — M be
a Lagrangian submanifold with isolated conical singularities at x1,...,x, € M
modelled on the special Lagrangian cones Cq,...,C, as in Definition 8.4. For
C; we choose a Lagrangian neighbourhood ®¢, : Us, — M as in Theorem 8.6
fori=1,...,n.

After making R > 0 smaller if necessary, there exist unique functions a; :
Yix(0,R) = R fori=1,...,n, such that |da;(o,7)| < {r for (o,r) € £;x (0, R)
and

’V’“ai| =00 %) asr—0forkeN

and i = 1,...,n, where V and | - | are computed using the Riemannian cone
metric 1 (g") on X; x (0, R) fori=1,...,n, such that the following holds.

The map Y;0®¢, oda; : ¥; X (0, R) — M is a diffeomorphism ¥; x (0, R) —
F(S;) fori=1,...,n, and if we define

d)i:EX(O,R)—)Si, ¢i:F_1OTiO‘1)CiOdai
fori=1,...,n, then ¢; satisfies (82) fori=1,...,n.

Using the previous theorems we can now state a Lagrangian Neighbourhood
Theorem for Lagrangian submanifolds with isolated conical singularities [24,
Thm. 4.6].

Theorem 8.9. Let (M, J,w,Q) be an m-dimensional almost Calabi-Yau man-
ifold and let C1,...,Cy be special Lagrangian cones in C™ with embeddings
ti+ 2 x (0,00) = C™ fori=1,...,n as in Definition 8.1. Let F : L — M be
a Lagrangian submanifold with isolated conical singularities at x1,...,x, € M
modelled on the special Lagrangian cones C1,...,C, as in Definition 8.4. Fi-
nally let ®c,, a;, ¢i, and R be as in Theorem 8.8.
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Then there exists an open tubular neighbourhood Uy, of the zero section in
T*L, such that

()" (Ur) = {(o,7,7,0) € T*(%i x (0, R)) = [(7,0)] < (r}

fori=1,...,n and a Lagrangian neighbourhood ®, : Uy, — M for F : L — M,
such that
((I)L © d¢l)(aa T, 9) = (TZ o cbci, o dai)(ga T, Q)

for every (o,r,7,0) € T*(3; x (0, R)) with |(t, 0)| < (r.

8.4 Lagrangian neighbourhoods for families of Lagrangian
submanifolds with isolated conical singularities

So far we have only discussed Lagrangian neighbourhoods for a single La-
grangian submanifold with isolated conical singularities. Later, when we prove
short time existence of the generalized Lagrangian mean curvature flow for La-
grangian submanifolds with isolated conical singularities modelled on stable
special Lagrangian cones, we allow the singularities to move around in the am-
bient space. Therefore we need to extend Theorem 8.9 to families of Lagrangian
neighbourhoods for Lagrangian submanifolds with isolated conical singularities.
Let (M, J,w,Q) be an m-dimensional almost Calabi-Yau manifold, define
€ C®(M) as in (15), and let F': L — M be a Lagrangian submanifold with
isolated conical singularities at xy,...,x, € M modelled on special Lagrangian
cones C,...,C, as in Definition 8.4. We define a fibre bundle A over M by

A={(z,A) : e M, A:C" — T, M,
At (w) =w', A%(Q) = TV for some 0 € R}.

Then B € U(m) acts on (z,A4) € Ay by B(z,A) = (z,A o0 B). This action
of U(m) is free and transitive on the fibres of A and thus A is a principal
U(m)-bundle over M with dim A = m? + 2m.

Let G; be the maximal Lie subgroup of SU(m) that preserves C; for i =
1,0 n If (x4, A;) and (x4, /L) lie in the same G;-orbit, then they define equiv-
alent choices for (z;, A;) in Definition 8.4. To avoid this let &; be a small open
ball of dimension dim .4 — dim G; containing (x;, A;), which is transverse to the
orbits of G; for i = 1,...,n. Then G;-&; isopenin A. Weset £ =& x...x&,
and equip £ with the Riemannian metric induced by the Riemannian met-
ric on M. Then £ parametrizes all nearby alternative choices for (x;, 4;) in
Definition 8.4. Note that dim&; = m? 4+ 2m — dimG; for i = 1,...,n and
dim& = n(m? +2m) — 31", dim G;.

We now extend Theorem 8.9 to families {®§ }.cs of Lagrangian neighbour-
hoods. Here for e = (i‘l,fll,...,fen,fln) €&, 0 : U, — M is a Lagrangian
neighbourhood for a Lagrangian submanifold with isolated conical singularities
at 1,...,2Z, € M and isomorphisms A, Ccm T;,M fori=1,...,n as in
Definition 8.4. Such a theorem was proved by Joyce in [25, Thm. 5.2]. We will
explain the proof in detail because later we have to make explicit use of the
construction of the Lagrangian neighbourhoods. We begin with the following
lemma.
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Lemma 8.10. Let F' : L — M be a Lagrangian submanifold with isolated conical
singularities as in Definition 8.4. Denote ey = (21, A1,...,%n, Ayn) and define
E as above. Then, after making € smaller if necessary, there exists a family
{US teee of smooth diffeomorphisms VS, : M — M, which depends smoothly
on e € &, such that

(i) WSy is the identity on M,

(il) WS, is the identity on M\ U, Yi(Bgy2) foreec&,

(iii) (¥5))*(w) =w foree€é&,

(iv) (PG00, )( ) =&, d(US,071,)(0) =A; fori=1,....,n and e € & with

€= (xlaAlw- ;i‘naAn)-

Proof. We first construct families {¥§}.ce of diffeomorphisms ¥¢ : B — Bpg
for i = 1,...,n, which depend smoothly on e € £ and satisfy

(a) U is the identity on Bp fori =1,...,n,

(b) \I/e is the identity on Br\Bpg/s for e € 5 andi=1,...,n,
(c) (TH*(W)=w forecandi=1,...,n,
)

(d) (T;00)(0) = &y, d(T;005)(0) = A, for e € £ with e = (21, A1, ... 2, Ay)
andi=1,...,n.
Let e = (331,/11, . ,in,fln) € £. Making £ smaller if necessary we can

assume that #; € T;(Bgyy) for i = 1,...,n. Denote y; = Ti_l(:ii) for 1 =
1,...,n and define B; = (dY;|,,) ' o A; for i = 1,...,n. Since T¥(w) = ',
B; € Sp(2m,R) and so (B;,y;) € Sp(2m,R) x R*™. Here Sp(2m) = {A €
GL(2m,R) : A*(w') = W'} is the automorphism group of (R?*™ ). Us-
ing standard techniques from symplectic geometry we can now define families
{U¢}ece of diffeomorphisms ¥¢ : B — Bg for i = 1,...,n, which depend
smoothly on e € &, such that (a), (b), and (c) hold, and such that ¥§ = (B;,y;)
on Bgyy fori =1,...,n. But then by definition of (B, y;) we see that (d) holds
fori=1,...,n.

Now we define W§, : M — M to be Y; 0 W oY, on Y;(Bg) for i =
1,...,n and the identity on M\ |J;_, Y;(Bg). This is clearly possible, since
Y1(Bg),..., Tn(Bg) are pairwise disjoint in M. Since U¢ satisfies (a) — (d) for
i1 =1,...,n, it follows that ¥, : M — M is a family of smooth diffeomorphisms
of M, which depends smoothly on e € £ and satisfies (i) — (iv). O

Combining Theorem 8.9 and Lemma 8.10 we obtain the following Lagrangian
neighbourhood theorem for families of Lagrangian submanifolds with isolated
conical singularities.

Theorem 8.11. Let (M, J,w, Q) be an m-dimensional almost Calabi—Yau man-
ifold and F : L — M a Lagrangian submanifold with isolated conical singular-
ities as in Definition 8.4. Let ®c,,a;,¢i, R, UL, and @, fori=1,...,n be as
in Theorem 8.9. Denote eg = (11, A1, ..., xn, Ay), let £ be as above, and define
WS, M — M as in Lemma 8.10.

Define families of smooth embeddings {Y¢}eee, Y¢ : Br — M by T§ =
VS, 0, fori=1,...,n, and {®5 }ece, @5 : U — M by @5 = U5, 0PL. Then
{Y¢}ece and {DG teee depend smoothly one € € fori=1,...,n, and

(i) T = T;, (TO)*(w) = ', T0) = &, and AY(0) = A; for every e € €
with e = (&1, A1, ..., &n, An),
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(i) @7 = @1, (27)"(w) =@, and @, = p on 7~ (L\ Ui, 6i(Ei%(0, §))) €
UL for everye € &.

Moreover, for every (o,r,T,0) € T*(3; x (0, R)) with |(1,0)| < {r and e € £ we
have
( eL © d¢l)(aﬂ T, Q) = (Tze °o®¢, o dai)(07 T, Q)

fori=1,...,n. Finally fore € £, ®} : Uy, — M is a Lagrangian neighbourhood
for a Lagrangian submanifold with isolated conical singularities at &1, ...,%T, €
M modelled on the special Lagrangian cones C1, ..., C, with isomorphisms A;
C™ = T3 M fori=1,...,n as in Definition 8.4.

In §9 we will need an extension of Theorem 8.11. In fact, the manifold &£ cor-
responds to the rotations and translations of the model cones of the Lagrangian
submanifold with isolated conical singularities. The rotations and translations of
the model cones correspond to SU(m) x C™-moment maps. If X € su(m)®C™
and if px is a moment map on C™, then ux + ¢ with ¢ € R is another equiv-
alent choice for a moment map of X, as we already explained in §8.1. For this
reason we will now introduce a new manifold F, that also allows us to vary this
redundant parameter.

Let L be an m-dimensional manifold with ends Si,...,5, as in Definition
6.1. Choose R’ > 0 such that & < R’ < R and denote S! = ¢;(X; x (0, R'))
for i = 1,...,n. We choose functions ¢; € C*°(L) for i = 1,...,n, such that
¢ =1lon S and ¢ =0 on M\S; for i = 1,...,n. Let (M, J,w,Q) be an
m-~dimensional almost Calabi—Yau manifold and F : L — M a Lagrangian
submanifold with isolated conical singularities as in Definition 8.4. Denote eg =
(x1,A1,...,2n,Ay) and let O¢,,Uc,, R, a;, ¢i, r, Ur,E, 95, TS, and ®¢ for
i=1,...,n be as in Theorem 8.11.

Let Uy, ..., U, be open intervals in R containing 0 and let U = Uy X - - - X U,.
Define F = & xU and F; = & x U; for i = 1,...,n. Denote by f = (e,c) a
general point in F, where e € £ and ¢ = (c1,...,¢,) € U. Let fo = (eo,0). For
f € F we define families {T{}fe}- of smooth embeddings T{ : Bp — M simply
by Tlf =7T¢ fori=1,...,n. Denote

Uy = {(@gﬁ) €U : I'gysor caq, € Up for every c € L{}.

Making U smaller if necessary we can ensure that U] is non-empty and con-

tains the zero section in 7*L. Then we define a family {<I>£} rer of smooth
embeddings by

n
UL — M, @) =250 cdg. (84)
i=1

Then {T{}fe}- and {@i}f@r depend smoothly on f € F for i = 1,...,n.
Moreover (i) in Theorem 8.11 continues to hold with Y7° and Y¢ replaced by
T{ ° and Tf , respectively, for f € F and i = 1,...,n. Furthermore, since dg; is
supported on S;\S! for i =1,...,n, we have

(®7, 0 dgi)(o,7,7,0) = (Y] 0 ®c, 0 day)(0, 7,7, 0)
for every (o,r,7,0) € T*(X; X (0, R")) with |(, 0)| < ¢r fori =1,...,n. Finally,
since 5 = @7 on 7L\ U, #:(Z; x (0,4))) by Theorem 8.11, we have
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<I>£ =&, on 7 (K) C T*L for f € F, where K = L\|J;_, S;. Therefore (ii)
in Theorem 8.11 continues to hold with ®7°,®¢, and X; x (0, %) replaced by
fI)f’, Cbﬁ, and X; x (0, R), respectively.
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9 Generalized Lagrangian mean curvature flow
with isolated conical singularities

Throughout this section we fix the following data. Let (M, J,w,) an m-
dimensional almost Calabi—Yau manifold, m > 3, with Riemannian metric g
and define ¢ € C*°(M) as in (15). Let L be an m-dimensional manifold with
ends Si,...,S, as in Definition 6.1 and define R, S/, and ¢; for i = 1,...,n
as in the end of §8.4. Denote K = L\ U?:l S;. Let Cq,...,C), be stable spe-
cial Lagrangian cones in C” with embeddings ¢; : ¥; x (0,00) — C™ as in
Definition 8.1 for ¢ = 1,...,n, and let Fy : L. - M be a Lagrangian sub-
manifold with isolated conical singularities at z1,...,z, € M modelled on the
special Lagrangian cones C,...,C,. Later, from §9.5 on, we will also assume
that the special Lagrangian cones are stable. Denote by G; the maximal Lie
subgroup of SU(m) which preserves C; for i = 1,...,n. Choose identifica-
tions A; : C™ — T, ,M and embeddings Y; : B — M for i = 1,...,n
and let v = (vq1,...,v,) € R™ be as in Definition 8.4. Define £ and F as
in §8.4 and denote ey = (21, A1,...,2,,A,) € € and fo = (e9,0) € F. Let
®c,,Uc,, R, a;, 0,1, UL, E,¥5,, T, and ®§ for i =1,...,n be as in Theorem
8.11, and finally define Tl]-: @2, and U} for i =1,...,n as in the end of §8.4.

9.1 Deforming Lagrangian submanifolds with isolated con-

ical singularities

In this subsection we study the deformations of the conical singularities of La-
grangian submanifolds of the form @éodu : L — M, where f € Fandu € C?(L)
with I'q, C U},. Let v € Ty F. Differentiating @{Odu with respect to f in the di-
rection of v gives a C'l-section av(‘bé odu) of the vector bundle (@{ odu)*(TM),
since @{ odu: L — M is a C'-submanifold. In the first part of this section

we will show that 81,((1){ odu) can be extended to a smooth Hamiltonian vector
field on M.

We begin by showing that the functions ¢, ..., ¢, on L can be extended to
smooth functions on M.

Lemma 9.1. There exist q1,...,Gn € C°(M), such that §; =0 on M\Y;(Bg),
g =1on7Yi(Br) fori=1,...,n and for every u € C*(L) with Tq, C U} and
feF, (¥ odu)*(q) =q fori=1,...,n.

Proof. We set ¢; = 1 on Y;(Bg/) and ¢; = 0 on M\Y;(Bg) for i = 1,...,n.
Moreover using that @y, : Uy, — M is an embedding we can define ¢; on ®1,(Ur,N
7 1S \S))) by ¢:i(®L(z,B)) = qi(z) for x € L and B € T} L with (x,8) € Uy,
for  =1,...,n. Finally we extend ¢; for : = 1,...,n to a smooth function on
the whole of M. Using that ®§ = &, on U; Na~'(L\ ], S}) it follows that
q; satisfies (<I>£ odu)*(g) = gi for every uw € C*(L) with I'q,, C U} and f € F
fori=1,...,n. ]

Define a smooth vector field Xz, on M by dg; = Xg, swfori=1,...,n. Let
feFandv=(wc) € TyF =T.E & R". Differentiating ¥§, with respect to
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e € € in direction of w € T, gives a smooth vector field 9,,¥5, on M. Define

Xy(v) = (0w¥hy) 0 Zcz @ (85)

Then X ;(v) is a smooth vector field M, which depends linearly on v € Ty F and,
since ¥4, depends smoothly on e € £, X;(v) depends smoothly on f € F. In
fact Xs(v) is a Hamiltonian vector field as we will show in the next proposition.

Proposition 9.2. Let f € F and v € TyF. Then there exists a unique smooth

function Hy(v) on M, which depends linearly on v € TyF and smoothly on
f € F, such that d[Hf(v)] = X¢(v) sw and Hy(v) =0 on M\U]_, Ti(Br).

Proof. By Lemma 8.10, W, is the identity on M\J;_; Yi(Bg/2) for every
e € & Thus Xy(v) = =21, ¢ Xg on M\, Yi(Bgr/2). Define H(v)
on M\, Ti(Bry2) by Hf(v) = =31 | ¢;gi- Then we have Hy(v) = 0 on
M\U!_, Y;(Br),since g; = 0 on M\Y;(Bg) fori=1,...,n. Since (V$,)*(w) =
w, it follows that Lx (, w = 0. Then by Cartan’s formula Xy (v) 1w is a closed
one form on M. Since !, T;(Bgr/) is contractible, X(v) 1 w is exact on
Ui, Ti(Br') and we can extend H(v) to a smooth function on the whole of
M such that d[H;(v)] = X(v) 2w and Hy(v) depends linearly on v € Ty F. [

The next proposition shows that the Hamiltonian vector field X y(v) restricts
to the variation field 81,((1){ o du).

Proposition 9.3. Let f € F and v € TyF. Then for every u € C*(L) with
Ty, C Uy, we have

(@1 o du)*(d[H[(v)]) = (®] o du)*(9,(®] o du) L w).

Proof. Let u € C?(L), f € F, and v = (w,c) € TyF. By definition of H(v) we
have
(@] o du)*(d[Hy(v)]) = (®], o du)" (Xf(v) 5 w).

Denote X = %@{ o (du + s> 1, ¢;dgi)|s=o. Then X is a section of the
vector bundle ((I>£ o du)*(T'M) and by Lemma 4.11 the normal part of X is
— 3" | ;o (dg;) and the tangential part is 37 ¢;d(®] odu)(V(dg;)). Using
the definition of <I>£ from (84) we then find

0y(®) o du) = 9, (®] o du) Xn: Y(dg;) — d(®/ o du)(V(dg;))}. (86)

Using the definition of <I>£ again it follows that the pull back of the vector field
(0w VS,) 0 (U5,) "t with <I)£ odu: L — M is equal to 8w(<1>£ odu). Hence

(@7 0 du)* (90 ¥5s) 0 (T5) ™" s w) = (B, 0 du)* (9 (] 0 du) sw).  (87)
By definition of @ we clearly have

(@] o du)* (o™ (dg;) »w) = dg; (88)
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fori=1,...,n. Moreover, since <I>£ odu: L — M is a Lagrangian submanifold,
we find

(@, 0 du)* (d(®7 o du)(V(dg;)) sw) =0 (89)
for i = 1,...,n. The proposition now follows from (86)-(89) and the definition
of Xy(v) in (85). O

Let u € C¥(L), k > 1, with 'y, C U}, and f € F. Then <I>£odu :L— Mis
a C*~l-submanifold of M. We define a linear map

loc

Eugy : TF — CEUL),  Egup(v) = (@) o du)* (Hf(v)). (90)
Then Z(, )(v) =0 on K by Proposition 9.2 and
A[Z (. (v)] = (B4 0 du)*(9,(®F o du) s w)

by Proposition 9.3. We show that =, s)(v) is asymptotic to the pull back of a
U(m) x C™-moment map on each end of L.
Proposition 9.4. Let p € R" with 2 < p < v, k > 1, and u € C)i(L) with
Law CUp. Let f = (e,c) € F, denote f; = (23, Ai, i) fori=1,...,n, and let
v=(v1,...,0) €T, F1 D & Ty, Fp, where F; =& xXU; fori=1,....n as
in the end of §8.4. Then the following hold.

(i) Ifv; € T, Az, then there exists a unique X; € u(m) ® R, such that

V(5 (B, () = 4 (x,))| = O 77) asr =0
forj=0,....k—1.
(ii) If v; € Ty, M, then there exists a unique X; € C™ ® R, such that
‘VJ (E(u,p)(v)) ‘— (rti=1=0Y asr— 0

forj=0,...)k—1.
Moreover for every u € C*(L) with Tq, C U} and f € F the map (90) is a
monomorphism and dimim 2, ) = n(m? +2m+1) — " | dim G;.
Proof. We demonstrate the proof of (i). Choose some i = 1,...,n and assume
that v; € T; Ajz,. Pushing the vector field X (v) forward with (de )~1 gives

a smooth vector field X; on Bg. Then by construction of X;(v) and Tif we
find that X; = dV¥§(0,,¥¢), where U is as in the proof of Lemma 8.10. On
Bprys we have V¢ = A; and thus X; = A; ov;. In particular X; € u(m). Using
(T{)*(w) = w’ we can write

A[E ) (0)] = (0 ¢ ) (dpx,) + () 71 o (B 0 du) = 10 71" (Xi 4 ),

where px, is defined as in (80). Then using X; 4w’ = O(r) and (82) we find
that '

‘Vj(ﬁbf(d[g(u,f)( )]) — i (dpx,) | =0(r*17) asr =0
for j =0,...,k — 2. Hence by adding a constant to X; as in (80), if necessary,
we conclude that

(V9 (7 (Equ,p) (0) — ¢ (nx,)| = O™~ 77) asr =0
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for j =0,...,k — 1. This proves (i), and (ii) is proved in a similar way.

The injectivity of the map (90) follows directly from its definition. Moreover,
since dim F = n(m?+2m+1) — 3.1 | dim G, it follows that the image of Ty F
under =, r) has the same dimension. ]

Note in particular that if 2 < g < v with (2,u;]NEs, =P fori=1,....n
and the special Lagrangian cones C1,...,C, are stable, then dimim = ¢,) =
dimim ¥,. Here ¥, is defined as in Proposition 6.14 and/or Proposition 10.3.

9.2 Integrating the generalized Lagrangian mean curva-
ture flow with isolated conical singularities

As in §5.2 we show in this subsection how the generalized Lagrangian mean
curvature flow of Lagrangian submanifold with isolated conical singularities can
be written as a nonlinear equation of a function u on L and the parameter
f € F. The only major difference to the approach in §5.2 is that we have to
build in the parameter f € F into our equation, in order to be able to translate
and rotate the cones in M.

Since Fy : L — M is a Lagrangian submanifold with isolated conical singu-
larities modelled on stable special Lagrangian cones, it follows from Proposition
8.5 that the Maslov class ji, of Fy: L — M is an element of HL (L, R). Choose
a smooth map g : L — R/7Z with dag € pp,. Since L retracts onto K, we
can choose aq to be supported on K. We denote Sy = dagy which is a smooth
one-form on L, that is supported on K and represents the Maslov class of
Fo: L — M. Asin §5.2 we can then choose a smooth lift ©(Fy) : L — R
of 0(Fy) — ap : L — R/wZ. Then d[O(F,)] = d[0(Fy)] — Bo. Finally, if
{n(s)}se(—c,e)» € > 0, is a continuous family of closed one-forms defined on L
with 'y C Uy for s € (—¢,¢) and 7(0) = 0, then we may choose ©(®r, o n(s))
to depend continuously on s € (—¢,¢).

We now define an operator P as follows. We then define a smooth one-
parameter family of closed one forms {3(t) }+¢(0,r) by B(t) = tBo. Then {B(t)}+e(0,1)
extends continuously to t = 0 with 8(0) = 0. We define the domain of P is given
by

D=A{(u,f) : ueC®(0,T)x L), fe€C>®((0,T); F), uand f extend
continuously to ¢t = 0, and gy, y48¢) C Uy, for t € (0,7)}.

The operator P : D — C*°((0,T) x L) is then defined by

Plu, f) = Z2 — 0(®4 o (du + 8)) — Equp) <df> _

Ou
ot dt
In the remainder we will study the following Cauchy problem

P(u, f)(t,z) =0 for (t,x) € (0,T) x L,
u(0,2) =0 for x € L, (91)
f(0) = fo.
If we are given a solution (u, f) € D of (91), then we obtain a solution to the
generalized Lagrangian mean curvature flow with initial condition Fy : L — M.
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Proposition 9.5. Suppose (u, f) € D is a solution of the Cauchy problem (91).
Define a one-parameter family {F(t,-)}ic(o,r) of submanifolds by

F(t,): L — M, F(t,-) =&Y o (du(t, )] + B(t)). (92)

Then {F(t,-)}icqo,r) is a smooth one-parameter family of smooth Lagrangian
submanifolds, continuous up to t = 0, which evolves by generalized Lagrangian
mean curvature flow with initial condition Fy: L — M.

Proof. Let (u, f) € D be a solution of the Cauchy problem (91). Since u and f
extend continuously to ¢t = 0 with u(0,-) = 0 on L and f(0) = fo, {F(t,)}+c(0,7)
is a smooth one-parameter family of Lagrangian submanifolds, continuous up
to t = 0, with

F(0,2) = 21 (2, d[u(0, )]() + 5(0)) = 81 (2,0) = Fo(a)

for x € L. Thus it remains to show that {F(t,-)};c(,r) evolves by generalized
Lagrangian mean curvature flow. We show that « or = QK. Denote X =

%@{ o(du+ /). Then X is a section of the vector bundle (¢£ o(du+8))*(TM)
and using Lemma 4.11 it follows that

X =0 (qﬂ; o (du + ﬁ)) — (d [gﬂ + Bo> <d [gt] + Bo>

Since <I>{ o(du+ ) : L — M is a Lagrangian submanifold,

(@] o (du+ B))* (V (d {Zﬂ + ﬁ()) ; w) = 0.

Moreover, using P(u, f) = 0 and the definition of @(CD{ o (du+ f)) we find

ou d
d[at]Jrﬂ = d[0(®] o (du+B))] +d [ (uf)(d{ﬂ
and hence we obtain

Qor
at

= (@1 0 (du+ )" (Das (®1, 0 (du + ) 1 w)
d
—d [ Su) (d{ﬂ — d[8(®7, o (du + B))].
Since Z(,, 5y = 0 on K and §(t) is supported on K for every ¢t € (0,7, we have
(@ o (du+ 804y (2] o (@u+ ) ~d [0y ()]

= —d[G(F )]. By Proposition 4.8 the generalized mean curvature
—d[f(F)], from which the claim follows. O

and thus as

ol

@
m&"

form satisfi
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9.3 Smoothness of P as a map between Banach manifolds

The goal of this subsection is to prove that P : D — C'*°((0,T") x L) extends to
a smooth map between certain Banach manifolds. The main difference to §5.3
is that we now also have to study the regularity of the map P on the ends of L.

We first extend the domain of the operator P. The manifold F embeds into
R* for some sufficiently large s € N. Let p € (1,00) and f € W1P((0,T); R?).
Then f : (0,7) — F is continuous by the Sobolev Embedding Theorem and
the condition f(t) € F makes sense for every t € (0,7). We define the Banach
manifold W12 ((0,7T); F) by

WhP((0,T); F) = {f € W'P((0,T);R®) : f(t) € Ffort € (0,T)}.

Let k€N, p e (1,00) withk—%>2, and p € R” with 2 < pu < 3. For T >0
small enough, such that Iz, C Uy for t € (0,7"), we define

Dp? = {(u, f) : we WyHP((0,T) x L), f € WHP((0,T); F),
such that Tapy(, 480 C Up for t € (0,7)}.

Let (u, f) € Dﬁv”. Since k — 7 > 2, it follows from the Sobolev Embedding
Theorem that @é(t) o(d[u(t,-)]+B(t)) : L — M is a C'-Lagrangian submanifold
for almost every ¢ € (0,7). In particular @(@é(t) o (du(t, )] + B(¢))) is well
defined for almost every ¢ € (0,T) and P acts on Dj?.

In order to define the target space for P acting on Dﬁ’p we have to introduce
a weighted parabolic Sobolev space with discrete asymptotics. First we define
a weighted Sobolev space Wﬁ:gg(L) with discrete asymptotics by

Wﬁlj:g:g(L) = W;]jig’p(L) D Span{(hv s 7qn}

Note that this is a natural definition for a weighted Sobolev space with discrete
asymptotics in this case, since the ¢;’s are constant on each end of L and p > 2.
Further we define the weighted parabolic Sobolev space ng; é’p ((0,T) x L)
with discrete asymptotics by

WO EP(0,7) x L) = L((0,T); WE25(L)).

The main result of this subsection is that P : Dﬁ’p — Wg’f;Q’p((O, T)x L) is
a smooth map provided k € N and p € (1,00) are sufficiently large and p < v.
The idea of the proof follows Proposition 5.6, the new difficulty, however, is that
we have to deal with the regularity of the operator P on the ends of L.

Notice that for (u,f) € Df;p we only require u and f to have one time
derivative that lies in L?, whereas we are allowed to choose k € N and p € (1, 00)
arbitrary large. By choosing k € N and p € (1,00) sufficiently large we are
guaranteed that P maps ’Dﬁ’p smoothly into another Banach manifold. We
require u and f only to have one time derivative in L? to make an argument in
the short time existence proof in Proposition 9.13 work.

Let n € C*°(T*L) be a closed one-form with I';, C Uy, which is supported
on K, and define F,(f,z,du(x), Vdu(z)) = O(®4 o (du+n))(x), where

Fn:{(f,J?,y,Z) : fEJ:, QSEL,
y € TiL with y+n(z) € Uy, z € @*T;L} — R.
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Then F, is a smooth and nonlinear function on its domain, since €2, g, 1, and
<I>£ are smooth and <I>£ depends smoothly on f € F. Furthermore we define a
function @, on the domain of F), by

Qn(f;myyvz) = Fn(f,l‘,y,Z) - Ffl(f07m7070)

— 0y Fy)(fo,2,0,0) -y — (9.F,)(fo,,0,0) - 2. (93)

Since F}, is smooth, @, is a smooth and nonlinear function on its domain.
Next define F;(o,r, du;(o,r), Vdu;(o,r)) = 0(D¢, o du;)(o,r), where
Fi : {(0—7T7yiazi) : (O’,’I") € Ez X (OaR)v
Yi € T(y 1y (3i x (0, R)) NUg,, 2 € ®°T(, (% x (0,R))} — R

(o:7)

for i = 1,...,n. Then F;(o,r,y,2) is a smooth and nonlinear function on its
domain, since ', ¢’, and ®¢, are smooth for i = 1,...,n. Furthermore we
define functions @; on the domain of F; by

Qi(aa Y, Z) = Fi(aa Y, Z) - Fi(aa T, Oa 0)

L (OF)(0,7,0,0) -y — (0.F) (o, 0,0) - 2. OV

for : = 1,...,n. Then Q; is a smooth nonlinear function on its domain for
i=1,...,n, since F; is smooth for i = 1,...,n. Let u; € C*(3; x (0, R)) with
Tau, CUg, for i =1,...,n. Then it follows from Lemma 5.5 that

(0yF;)(0,1,0,0) - du;(o,7) + (0. F;)(0,7,0,0) - Vdu,(o,7) = Au,(o,7)  (95)

for (o,7) € ¥; x (0,R) and ¢ = 1,...,n. Moreover, since C; is a special La-
grangian cone, C; has constant phase ¢ and we can write

Fi (0', T, duz (O’, ’I"), Vdui(07 T)) =

0; + Au;(o,r) + Q; (o, r,du; (o, 1), Vdu; (o, 1)) (96)

for (o,r) € %; x (0,R) and i =1,...,n.
Next we prove some estimates for the functions Q);.

Lemma 9.6. For a,b,c >0 and small r—!|y|, |z| we have
(Vz)a(ay)b(ﬁz)ch(ﬂs,y, Z) -0 (rfafmax{lb}‘y|max{0,2fb} + T7a|z‘max{0,2fc})

uniformly for x = (o,7) € £; x (0,R) andi=1,...,n.
Proof. Since F; is smooth on its domain, Taylor’s Theorem implies that for
a,b,c¢ > 0 and small |y|,|z|,

(V) (0,)°(0:)°Qi(,, 2) = O (Jy|mx(02 0 4 [smaxtOz=el) - (g7)

for fixed © = (o,r) € ¥; x (0,R) and i = 1,...,n.

For s € (0,1) and ¢ = 1,...,n define 67 : 3; x (0,R) — %; x (0, R) by
0f(o,7) = (o, sr). Using the invariance of the Lagrangian angle under dilations
and (09)*(®¢,) = s- Pg,, we find (D¢, o du;) = 0(P¢, o duf) o 67, where
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u$ = s%u; 0 (65)71. Since Au; = (Auf) o &%, it follows from the definition of Q;
that

Qi(o,r,du(o,t), Vdu;(o,r)) = Q;i(a, sr,duf (o, sr), Vdu; (o, sr)) (98)

for s € (0,1) and (o,7) € X; x (0, R). Since |duf(o,sr)| = s%|du;(o,r)| and
|Vdui (o, sr)| = |Vdu,(o,r)| it follows from (97), (98), and the compactness of
¥, that for small 7—1|du,(o,7)| and |Vdu,(o,7)|,

Qi(o,r,du;(o,r), Vdu;(o,r)) = O (7"_2|dui(a7 7")\2 + |Vdu, (o, 7“)|2)

uniformly for (o,7) € X; x (0, R). The derivatives of @; are then estimated in
a similar way. This completes the proof of the lemma. ]

Let a € C*°(L) be a smooth function on L that satisfies ¢f(a) = a; for
i =1,...,n. Here a; is as defined in Theorem 8.11. Then we define functions
R; on the domain of F; by

Rz(fv 0,7, Yi, Z’L) = Fn(fvxvy - da’(x)v z— Vda(x)) - Fi(oa T Yiy Zi)v (99)

for i = 1,...,n, where z = ¢;(0,r),y; = ¢i(y), and z; = ¢} (z). Then R; is
smooth on its domain for ¢ = 1,...,n, since F,, and F; are smooth for i =
1,...,n.

Lemma 9.7. For a,b,c > 0 we have
(Va)*(9,)*(9:)°Ri(f, 0,1y, 2) = O(r' ")
uniformly for x = (o,7) € £; x (0,R) andi=1,...,n.
Proof. From Theorem 8.11 we obtain
Ri(f,o,r,du;(o, 1), Vdu,;(o,1)) = G(T{ o ®p, odu;)(o,r) — (P, o duy)(o,r)

for i = 1,...,n. Denote g} = (Y/ o ®¢, o duy)*(¢') and ¢2 = (B¢, o du;)*(¢')
fori=1,...,n. Since dTZf|0 = A;, we have by Taylor’s Theorem

Vs — ef’i@i*mw(ii)dvg? = O(r)
fori=1,...,n. Moreover (T{)*(Q)|o = eWitm¥(@)Q/ and hence
I (] (@) — @ = Ofr)

for i = 1,...,n by Taylor’s Theorem. Using the definition of the Lagrangian
angle we conclude that R;(f,o,r,y,2) = O(r) for i = 1,...,n. The derivatives
of R; are then estimated in a similar way using Lemma 9.6. O

Using Lemmas 9.6 and 9.7 we can prove the following estimates for the
function @,, as defined in (93).

Lemma 9.8. For a,b,c >0 and small p=(x)|yl, |z|, and d(f, fo) we have

(Vx)a(ay)b(az)‘:@n(f,x,y,z) =
o) (p(l‘)_a_maX{Q’b}|y|maX{0’2_b} + p(x)—a|z|max{0,2—c} + p(a:)l_“_bd(f, fo)) ’

uniformly for x € L. Here d(f, fo) denotes the distance of f to fy in F.
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Proof. By Taylor’s Theorem we have
(V)" (0)"(0:)°Qu(f,2,9,2) = O Iyl 0270 4 om=xl020) 1, fy))

uniformly for = in compact subsets of L and for small |y|, |z|, and d(f, fo). Let
x € S; with x = ¢;(o,r), (o,r) € X; x (0, R) for some ¢ = 1,...,n. Then using
(93), (94), and (99) we can write

Qn(f,z,y,2) = Qi(o,7,y; + da;(o,7), z; + Vda;(o,r))
— Qi(o,r,da;i(o,7),Vda,(o,1)) — (0,Q:)(0,r,da; (o, 1), Vdai(o,r)) - yi
—(0.Q:)(o,r,da;(0,7),Vda;(o,7)) - z; + Ri(f, 0,1, y; + da;(o,7), 2; + Vda,;(o,r))
— Ri(f,0,7r,da;(o,7),Vdai(o,r)) — (0,R:)(f,0,7,da;(o,7),Vda,;(o,7)) - y;

— (0.R)(f,o0,7,da;(o,r),Vda;(o,7)) - 2.

The lemma now follows from Taylor’s Theorem and Lemma 9.6 and 9.7. O

Finally let us define a function
S {(f,v,x,y) cfeF, velyF, xel, yeT;LﬂUL} — R

by S(f,v,z,du(x)) = E¢, 5 (v)(x), where Z(, 5)(v) is defined in (90). Since
<I>£ is smooth and depends smoothly on f € F, S is a smooth and nonlinear
function on its domain. By definition of P we can now write

ou
P(uaf):E_Fﬂ(f7adu7Vdu)_S( a%{a'adu)a (100)

where {3(t)}+e(0,1) is given by B(t) = tfy and we now use F;, with n = j3(t) for
te(0,7).

We can now prove the smoothness of P : DiiP — Wﬁf;é’p((O,T) x L) for
sufficiently large k € N and p € (1, c0).
Proposition 9.9. Let p € R™ with 2 < p < v, and define e € R by ¢ =
min—q ., ’“472. Letk € Nandp € (1,00) with k > 6 and p > max{m, 4,:2;”,% )

Then P : DjP — ng;,é’p((O,T) x L) is a smooth map of Banach manifolds.

Proof. We first show that P : ’Dﬁ’p — ng;é’p((O,T) x L) is well defined, i.e.

that for (u, f) € DEP we have P(u, f) € Wg’_kz_,é’p(((),T) x L). We show that
each of the terms on the right side of (100) lies in ng;gp((o, T) x L). Clearly
we have dyu € ng;é’p((o, T) x L) by definition of D};?. In order to show that

Fs(f,-,du,Vdu) € Wﬁfgép((o, T) x L) we first expand Fg by

) (101)
—dbs(V(du)) + Qp(f, -, du, Vdu).

We show separately that each of the terms on the right side of (101) lies in

Wﬁfié’p((O,T) x L). It is clear from the definition of DJ;? that Au and
dihs(Vu) both lie in Wi*, &P((0,T) x L). Next we show that Fs(fo,-,0,0)

lies in ng;é’p((O,T) x L). We choose functions x; € C*(L) for i =1,...,n,
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such that x; = 1 on ¢;(35; x (0,4)) and x; = 0 on L\S;. It is clear that
Fs(fo,+,0,0) € WOk=2P((0,T) x K') for every K' CC L. Using (96) and (99)

we can write

Fp(fo,2,0,0) = 0; + Aay(a,7) + Qi(0,7,dai(0,7), Vdai (o, 7))
+ Ri(fo; a,T, dai(07 T), Vdai(o, 7‘))

for z € S; with = ¢;(o, 1), where 6; is the Lagrangian angle of C;. Clearly

Xi(6; )7 (0:) € Wots &P ((0,T) x L) (102)

fori=1,...,n. Since a € C°(L) and p < v, it follows that
Xi(07 ) (Ba;) € W B 2P ((0,T) x L) (103)
fori=1,...,n. Since p — 2 < 1, it follows from Lemma 9.7 that

Xi(67 ) (Ri(fo, - da;, Vda;)) € WS >P((0,T) x L). (104)

7

Finally, by Lemma 9.6
Qi(o,r,da;(o,r),Vda;(o,r)) = O (r_2|dai(a, 7‘)|2 + |Vda;(o, r)|2)

uniformly in (o,7) € £; x (0, R). Since a € C(L), r=2|da;(o,r)|> = O(r?vi=1)
and |Vda;(o,7)|> = O(r?¥i=*) asr — 0 for i = 1,...,n. Since 2v —4 > p — 2,
it follows that

Xi(qb'_l)*(Qi('a 'adai>Vdai)) € ngép((o’T) X L)

3

The spatial derivatives of @; up to order k — 2 can now be estimated in the
same way as in the proof of Proposition 5.6 and we thus obtain that

Xi(67 ) (Qi(-, - day, Vda;)) € Wik 2P((0,T) x L). (105)

7

From (102)-(105) it follows that Fs(f,-,0,0) € Wﬁf;é’p((o, T) x L) and we also
conclude that dfs(V (du)) lies in Wg’fgzp((O,T) x L).

It remains to show that Qg(f,-,du, Vdu) € ng;z’p((O,T) x L). From
Lemma 9.8 we have the estimate

Qs(f, - du, Vdu) = O (p~?|dul® + |Vdu|* + p - d(f, fo))

uniformly on L. Since k > 4, |Vdu| € Wif;z’p((O,T) x L), and since p > 2,
Proposition 7.2 implies that |[Vdul? € 02’22_8((0, T) x L). Thus |Vdul? €
032)74726((0, T)xL). Since 2u—4—2¢ > pu—2, 085)74725((0, T')x L) embeds con-
tinuously into Wﬁff((o, T)x L) by inclusion and hence |Vdu|? € Wﬁf’;((o, T)x
L). In a similar way one can show that p~2|du|? € WB’B’QP((O,T) x L). For
t € (0,T) we have p-d(f(t), fo(t)) € CY(L) and since p—2 < 1, p-d(f(t), fo(t)) €
LZ_Q(L). Then it follows from the Mean Value Theorem [33, XIII, §4] that
p-d(f, fo) € WP ((0,T)x L). Thus Qa(f,-,du, Vdu) lies in W’ ((0,T) x L)
and using the same arguments as in the proof of Proposition 5.6 and as above
one can show that in fact Qs(f, -, du, Vdu) € Wﬁfﬁp((o, T) x L). Hence each

84



of the terms on the right side of (101) lies in ng;lp((Q T) x L) and therefore
Fyg(f,,du, Vdu) € WS >P((0,T) x L).

Finally we show that S( ,%, - du) € ng;é’p((O,T) x L). Since p > m,
Theorem 6.7 implies that u(t,-) € Ci~*(L) for almost every ¢ € (0,7). Then
by Proposition 9.4, S(f(t), % (t), -, d[u(t,-)]) lies in C} (L) ® span{qi, ....qn}
for almost every t € (0,7"). Since p — 2 < 1, Cf%(L) embeds continuously
into Wﬁ:g’p(L) by inclusion and hence S(f(t), SL(t), -, d[u(t,-)]) € Wﬁ:gg(L)

) dt
for almost every ¢ € (0,7). In particular, since S is smooth on its domain, the

Mean Value Theorem implies that S(f, %, - du) € Wﬁf;é"’((o, T) x L).

Thus we finally conclude that P(u, f) € ng; é’p ((0,T) x L) for every
(u, f) € DiP and therefore the map P : DEP — WOEZ2P((0,T) x L) is well

n—2,Q
defined. The smoothness of P : Dﬁ’p — Wﬁ_k; é’p ((0,T) x L) now follows from
smoothness of ()3 and S and the same arguments as in Proposition 5.6. O

9.4 The linearization of P and structure of the equation

In this subsection we compute the linearization of the operator P : ’Dﬁ’p —

Wﬁfgé”’((o, T) x L). But first we need to take a closer look at the operator P.
From now on we also assume that the special Lagrangian cones Ci,...,C,, are
stable, and we choose p € R™ with 2 < p < v, such that (2, ;] NEg, = 0. We
also fix k € N and p € (1,00) that satisfy the conditions of Proposition 9.9, so
that P : DiP — Wﬁf;é’p((O, T) x L) is a smooth map of Banach manifolds.
Let (u, f) € DZ*’. Then it follows from (90) that ¢ — Z(,«..),7(+)) is a section

of the vector bundle f*(Hom(TF,CL (L))) over the manifold (0, 7). Define

loc
Ve (L) =im {E, p) : f*(TF) — Croo(L)}. (106)

Then Ve, ., (L) is a finite dimensional vector bundle over (0,7") with fibre di-
mension dim F. Also note that if u is smooth, then each fibre of Vp , . (L)
consists of smooth functions on L. From Proposition 9.4 it follows that for ev-
ery (u, f) € DiP, Vo, , (L) has zero intersection with LE,(L) in each fibre over
(0,T). Hence we can define

k, B
Wik p (L) = WiP(L) & Ve, ,, (L)-

Then Wﬁ’f,( f)(L) is a Banach bundle over the Banach manifold Dﬁ’p with
fibres being weighted Sobolev spaces with discrete asymptotics. If v and f are

constant in time, so for instance at the initial condition v = 0 and f = fj, then

5’};@ H (L) is simply a weighted Sobolev space with discrete asymptotics.

In §6.3 we also defined the function space Wi:gu (L). Observe that the dis-
crete asymptotic parts of the Banach spaces W% (L) and Wﬁ:gu (L) are

2P, p)
isomorphic for every ¢ € (0,7), since (2,;] NEs, = O for i = 1,...,n and
Cq,...,C, are stable special Lagrangian cones. Note carefully, however, that

. . k, k, )
the discrete asymptotics of the spaces Wu,g(u,f) (L) and WH};M (L) are in general

not the same. The discrete asymptotics of the space Wﬁ’g“ (L) are defined using
the harmonic functions on the cones C1,...,C, and are in fact functions that
are harmonic on each end of L. On the other hand the discrete asymptotics
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of the space W*: P( 0 (L) are defined by the map =, s, which is defined by

the deformations of the Lagrangian neighbourhoods {‘I)é} ter in f € F. The

deformations of {@{} fer in f € F correspond to moment maps in C™ and
these restrict to homogeneous harmonic functions on C4, ..., C,, and by Propo-
sition 9.4, Z(, sy is asymptotic to one of these moment maps. Therefore the

discrete asymptotics of the space Wk (L) are in general only harmonic in

Pu
an asymptotic sense near each conlcal smgulamty. For this reason we need to

impose an extra condition on the generalized mean curvature form of the initial
Lagrangian submanifold Fy : L — R, when we prove short time existence in
§9.5.

Following §7.1 we can now define the weighted parabolic Sobolev space

W;’];’(p f)((O7T) x L) with discrete asymptotics by

Wopl, , (O0.T) x L) = (O, TR Wy (L) AW ((0,T): Wi 35 (L)):

Consider the linearization of the operator P : Di? — WO o 2’p((O T)x L)
at some (u, f) € Dﬁ’p , which is a linear operator

P(u, f) : WEP((0,T) x L) & W2((0,T); f*(TF)) — W &P((0,T) x L).

Using Z(y, ) to identify f*(T'F) with Vp , (L), we can understand the lin-

earization of P : Dk’p — WS kQ é’p((O, T) x L) at (u, f) as a linear operator

dP(u, f): WP ((0,T) x L) — W 587 ((0,T) x L). (107)

Let (u, f) € ’ijp, w € Ty F, and denote n = du + 3. Then ﬁw(i){ on)isa
section of the vector bundle (@{ on)*(T'M). From Proposition 9.3 it follows that
the normal part of 9, (<I>£ on) is equal to —J(d(@i on)(VE (s (w))). Moreover
we define W (2 E(u,f)(w)) € TL by requiring that —d(@é o n)(W(E(u,f) (w))) is
equal to the tangential part of 8w((I)£ on). Thus

0 (], 0 1) = =J(A(D] 0 ) (VE(, ) (w))) — (@], 0 ) (W (Eu g (w))).

In the next proposition we compute an explicit formula for the operator
(107).

Proposition 9.10. Let (u, f) € DEP and v—Z(, py(w) € W I;(p f)((O,T) x L),

) (w
where v € WLHP((0,T) x L) and w € WHP((0,T); f*(TF)). Then

dP(u, [)(v,Equ,p)(w)) = %(v = Eu.pnw)) = A(v = Eq,p(w))

+ mdYaurs(V(v = Equ,py () + Ay s (V(dv) = W (Ey,p) (w))) (108)
— d[Ew, ) (GDIV (d0) = W (Eu, ) (w))) + d[0su) (W (Equ, gy (w)))
+ A=, ) ()] (V(dBeu]) = W (Equ,n (5) — do(W (S5 (5)),
Here Yaurp = (¥4 o (du+ 8))* (1), Oaurp = (@) o (du+ B)), and the Laplace
operator and V are computed using the time dependent Riemannian metric (<I>£o
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(du+ 8))*(g) on L. In particular at (0, fo) € DEP we have

dP(0, fo) (v, Equ,p) (w)) = %(v = E(0.0) (w)) = A(v = E o, 1) (w))

+ mds(V(v — Eg, 1) () + dOs(V(dv) — W(Eg, ) (w))).

Proof. Denote n = du + 5. Recall that 3 is supported on K, so that n = du
on each end of L. We first compute dP(u, f)(v,0). From Lemma 5.5 we obtain
that

(109)

9 o@! o (n+ sdv))L:O = Av — mdi, (Vo) — db, (V(dv)).

ds
Moreover using Lemma 4.11 we find that
d _ d
qs—(utso, n(§h) o &Hf ) o (@] o (n+ sdv)) .
af 1

Thus we obtain
dP(u, f)(v,0) = (-3: Av + mdi, (Vo) + b, (V(dv))

~ (W (Ew,p(§) = dEw,n (V).

The next step is to compute dP(u, f)(0, ) Let {fs}sc(—ce)s € > 0, be a
smooth curve in ]-' with fo = f and dfg «—o = w. The normal part of the
vector field 9, ( on) along <I>f on: L — M is —J(d(@é o) (VE(,p)(w)))
and the tangentlal part is equal to —d(@i o n)(W(E(uyf)(w))). Then the same
computation as in Lemma 5.5 shows that

d - - &
SO on)| = A5 (w) +mdy(VE(p () + 40, (T (Eqp) ())):

Moreover, recalling the definition of Hy from Proposition 9.2 and of =, r) from
(90), we obtain

d —_ df fs
—Ew s Pls
ds ( 7fs)( ) -0 )O( L 077) =0

=Eu, f>< d0) + 0, Hy(SF) o (@] o n) + d[H (400w (@] o)),

d
Bl &
=% 1. (4

and in a similar way we find

d — — w
S E ) () = S (%) + Dar Hy(w) o (] o) + d[H ()} (01 (] o)

+ d[0pu) (W (Equ,p) () + d[E w1y (w)](V(d[Dru))-
Hence
Q)| = Sm ) + 0, () 0 (@ on)
0y Hy(w) o (9 0 1) + AL (4] (Dl @], o)
— d[H ()} (D (2], ) — Al (W (s, 1 (w))
— AE ) () V(A1)
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Next we compute the term 8wa(%) —8% Hy(w). Let {st}se(—aﬁ) be a smooth

curve in F with fo = f and % a—p = %. We extend w € Tt F to a parallel
vector field wy along the curve s — fs in F and we extend & e Ty F to a

dt
parallel vector field (%)s along the curve s+ fs in F. Then

d ,
OuH () 0 (B] 0n) = -Hy,((4)) o (2] o)

Dug Hy(w) o (®] o) = “LH (w,) o (8] o))

- d[Hf(%)](aw((pi © 77))7

s=0

— d[H(w))(@sr (@] o m)).

s=0

Thus in order to find 8wa(%) - a%fo(w) we need to compute the term
dfs

%Hfs( df£ ) — Hfs(ws)’szo' We have

L@ o) @HL ()] — @F o) (A ()|

d * f. * e
= (@ on) (9ap), (@f om) sw) — (@f o) (Bu.(@f 0om) sw)|
= (@ 00" (Lo @gon (9a@L om) 50)) = Lar (95,0100 (@ 01) 1))
* d f
+(®] on) (dﬁ(ms (@ 0m) 2w — 0, (2] 01) sw S_O>
= (@] 01)"(2- dlw(0ay (] 0 1), 0 (D 01))] + Du(®] 0 ). D (] 0 7)] )
= (7 0n)" (d[w(Das (L 0 1), D (®F 0 1))])-

Here [-,-] denotes the Lie bracket, and in the last step we use that for two
Hamiltonian vector fields X,Y, [X,Y] 1 w = djw(X,Y)] holds. Decomposing

Ow (<I>£ on) and Qs (<I>£ on) into their tangential and normal parts and using
dt

that ‘I)é on:L — M is Lagrangian we obtain
(27 0 1)" (w(Dar (P10 1), D (L 0 1))
= A=) (@)W (Eu ) (§))) = A1) (FONW (B ) (w)))-
We conclude that

_

d J d_ o
“ S| = 2 En (@) — A (7 (. p(w)

— d[Eq, 5 ()] (V(d[0eu]) + A[Equ, 1) (W) (W (Eu, 5 (51)))
— A[E ) (ST (Eu, ) (),

and the proposition follows. O

9.5 Short time existence with low regularity

In this subsection we show that there exists (u, f) € ’Dﬁ’p , which solves the
Cauchy problem (91). The regularity of u and f are then improved in §9.6.

If we make an extra assumption of the generalized mean curvature form of
the initial Lagrangian submanifold Fy : L — M, then we can prove the following
important lemma. In §10.2 we will discuss whether it is possible to drop this
extra condition on the generalized mean curvature form.
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Lemma 9.11. Assume that the special Lagrangian cones C1,...,Cy are stable
in the sense of Definition 8.3, and choose p € R™ with 2 < p < v small enough
such that (2,u;] N Es, =0 fori=1,...,n. Moreover, assume that there exists
e € R™ with € > 0, such that |ax| = O(p) as p — 0, where ax = —d[0(F)y)]
is the generalized mean curvature form of the initial Lagrangian submanifold

Fy:L— M. Then Wl’jjﬁ’,w’fo)(L) = Wﬁjgu(L).

Proof. By Proposition 9.10 the linearization of P : DE? — Wﬁ’gfg’p((Q T)x L)
at the initial condition (0, fo) € DJ? is a map

dP(0, fo) : W;’;’(ﬁ,fo)((o,T) x L) — W* 5P((0,T) x L) (110)

and is given by

0
dP(0, fo)(v,Z 0,5,y (w)) = a(v = Z(0,f0) (W) = A(v = E(0, £0) (w))

+mdips(V (v — Eg, 1) (w))) + dbs(V(dv) — W (E(o,1,) (W),

(111)

where the Laplace operator is computed using the time dependent Riemannian
metric (<I>£° o )*(g), and 93 and O3 are defined by ¥g = (@{0 o B)*(¢) and
0g = 9(@{0 o f3), respectively. Recall that {£(t)}+c(o,r) is given by B(t) = tf,
and [y is supported on K. In particular note that the Riemannian metric
(CI)£° o $)*(g) is constant on each end of L. Also notice carefully that even
after identifying 7', F with a space of discrete asymptotics on L, the operator

dP(0, fo) is not a differential operator on the sum v — =g z,)(w).
Define a linear operator A on Ws’g(o ; )(L) by
’ »Jo

A(v, Z0,50) () = A(v = 0, £0) (w))
— mda(V(v — o, o) (W) — dBs(V (dv) — W(Eo,5) (w)))

so that we can write dP(0, fo) = 0; — A. Clearly 0; is a bounded linear operator

Wii:];ﬁ,fm ((0,TYx L) — WSfié’p((O, T) x L), and therefore A is also a bounded

linear operator between these spaces. In particular it follows that for each fixed
t € (0,T), A is a bounded linear operator W"?2 (L) — W*=2P(L). Define

1P, 50) n=2,Q
linear operators K; and K> on Wﬁ:g(o . (L) by
K1(v,E0,f0)(w)) = =mdepo(V(v — Z (g, 1) (w))) (112)
and . .
K3(v,E(0, 1) (w)) = —dbo(V (dv) — W (w)) (113)

for v € WLEP((0,T) x L) and w € WP((0,T); Ty, F). We show that both, K,
and K5 define bounded linear operators

k, k—2,
Ki, Kz :Wyh (L) — W28 (L). (114)

We begin with K;. Since % is a smooth function on M, dig is a smooth
and bounded one-form on L. It follows that K; : W/?(L) — Wi:}’p(L)
is a well defined, bounded linear operator, so in particular K : W,’j’p(L) —
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Wﬁ:g’p (L) is a well defined bounded linear operator. It remains to study the
action of K7 on the discrete asymptotics part. By Proposition 9.4 we can write
E(0,70) (W) = (ti 0 ¢; ") *(x,) + O(p*~1) on each end of L, for some moment
map px,. Using Taylor’s Theorem to expand px,, it is then straightforward
to show that Ky : Ve, . (L) — Wf:zzv’g(L) is a well defined, bounded linear

operator. In particular, since v > p, Ky : Vp, . (L) — Wﬁ:;g([/) is a well
defined, bounded linear operator.

Next we show that K5 in (114) is a well defined, bounded operator. We now
use the extra assumption on the generalized mean curvature form of the ini-
tial Lagrangian submanifold Fy : L — M. Thus assume that |ax| = O(p%)
for some € € R" with e > 0. Using |ax| = O(p) it follows that Ky :
WkEP(L) — Wﬁ:ffE(L) is a well defined, bounded linear operator and hence

Ky : WhP(L) — Wﬁ:g’p(L) is a well defined, bounded linear operator. Note
that here it would be sufficient to assume that € > g — 2 (which holds anyway,
even without the extra assumption on the generalized mean curvature form).
It remains to study the action of K5 on the discrete asymptotics part, and this
is where we have to use € > 0. The vector field W(E(O,fo)(w)) on L is defined
by restricting a smooth vector field on M to the submanifold Fy : L — M. In
particular W(w) is a smooth and bounded vector field in L. The same argu-
ments as before and the extra assumption on the generalized mean curvature
form then imply that Ko : Ve, (L) — Wﬁ:gg(L) is a well defined, bounded
linear operator.

Now we have proved that both K; and K5 are bounded linear operators

Wﬁ:g(oﬁfo) (L) — Wi:gg(L) Since A is also a bounded linear operator between

. . k.p k—2,p
these spaces it follows that the Laplace operator A : WH»P(O.fO) (L) = W, 5q(L)

is a bounded linear operator. Since (2,;] NEs, = 0 for i = 1,...,n and the
special Lagrangian cones C,...,C, are stable the discrete asymptotics parts

of Wﬁ:g(o,fo)(L) and Wﬁ:f,u(L) are isomorphic, and it follows from Proposition

k, k,
6.15 that W”’g(ﬂ«fo)(L) =W,p (L) O

The rest of the short time existence proof now follows the same strategy as
in §5.4. We define

ﬁﬁ’p ={(u,f) € Df‘;p : w(0,-) =0on L, f(0)= fo}.

Recall that if (u, f) € Dﬁ’p, then u and f extend continuously to ¢ = 0, since
they are uniformly Holder continuous on (0,7"). Moreover observe that (u, f) €
Dﬁ’p is a solution of the Cauchy problem (91) if and only if (u, f) € @fﬂ’ and
P(u, f) = 0. We define

W,p? ((0,T)x L) = {ve W, 5" ((0,T)x L) : v(0,-) =0on L}.

In the next proposition we show that the linearization of the nonlinear operator
Ph‘: Dhv — W 2P((0,T) x L) at the initial condition (0, fo) is an isomor-
phism.

Proposition 9.12. Under the assumptions of Lemma 9.11 the linear operator

dP(0, fo) : Wig’;’g‘fo)((o,T) x L) — Wk, 5P((0,T) x L) (115)

is an isomorphism of Banach spaces for T > 0 sufficiently small.
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Proof. By Proposition 9.10 the linearization of P : 25,’3)7’ — Wﬁ”g“((o, T)x L)
at the initial condition (0, fo) € ﬁfﬁ’ is given by

- 0 - -
dP(0, fo) (v, Eqo,50) (w)) = 7, (v = E0,50) () = Alv = E(o, 1) (w))
+mdis(V (v = Zo 1) (w))) + dfs(V (dv) = W (E o, 50) (w)));
where again the Laplace operator is computed using the time dependent Rie-
mannian metric (<I>£° o 8)*(g), and 9 and 03 are given by 15 = (<I>J£° o B)*(¢)
and g = 19(<I>£0 o ), respectively.

We define two linear operators Ky and K as in (112) and (113). As proved
in Lemma 9.11, K; and K5 then define bounded linear operators

(116)

K, Ky : Wi’)’;’(i,fo) ((0,7) x L) — Wik, &P((0,T) x L). (117)
Write dP(0, fo) = 0 — A + K1 + K. From Lemma 9.11 it follows that

W;';lé’(i’fo) ((0,7) x L) = Wi:ﬁf((O,T) x L). Furthermore we clearly have that

W GP((0,7) x L) = Wt 2P ((0,T) x L) and hence
dP(0, fo) : W, 'B((0,T) x L) — Wk 2% ((0,T) x L)

is a well defined, bounded linear operator. Since

Ky, Ky s WypP((0,T) x L) — Wt 22 ((0,T) x L)

are well defined, bounded linear operators, it follows in particular that

0 k o
5~ A WopP((0,T) x L) — Wts 2P ((0,T) x L) (118)
is a well defined, bounded linear operator.

Next we show that (118) is an isomorphism. Define a Riemannian metric gg

on L by go = (@{0 o B0)*(g) and consider the linear operator

0 ~ _

5~ Do W BP((0,T) x L) — Wk 2P ((0,7) x L), (119)
where the Laplace operator is now defined using the Riemannian metric gg. By
Theorem 7.13 the linear operator (119) is an isomorphism of Banach spaces.
Since (118) and (119) map between the same spaces, the same argument as
in the proof of Proposition 5.7 implies that for 7" > 0 sufficiently small, the
operator (118) is also an isomorphism.

Now we are almost done. In fact, since (118) is an isomorphism the same
arguments as in the proof of Proposition 5.7 then imply that for 7' > 0 the
operator (115) is an isomorphism. In fact, by choosing T' > 0 small we can make
the operators dP(0, fo) and 9; — A to be arbitrary close in the operator norm
W;:];f((O,T) x L) — Wﬁ’f;gf_z((QT) x L). Since 9, — A is an isomorphism
between these spaces, it follows that for T > 0 sufficiently small the operator
(115) is an isomorphism. O

We can now prove short time existence of solutions with low regularity to
the Cauchy problem (91) as in §5.4.
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Proposition 9.13. Let p € R™ with 2 < pu < 3 and (2,u;) N Es, = O for

i =1,...,n. Then under the assumptions of Lemma 9.11 there exists T > 0
and (u, f) € Dﬁ’p, such that P(u, f) =0 on the time interval (0, 7).

Proof. By Proposition 9.12,

1.k, 0,k—2,
dP(0, fo) : WM,P:;,,«O)((O’T) x L) — W, 55 q7((0,T) x L) (120)
is an isomorphism of Banach spaces. Since P : 7524’ — ng;évp((o, T)x M) is
smooth by Proposition 9.9, the Inverse Function Theorem for Banach manifolds
[33, XTIV, Thm. 1.2] shows that there exist open neighbourhoods V' C Df;p of
(0, fo) and W C Wg’fié’p((O,T) x L) of P(0, fo), such that P : V. — W is a
smooth diffeomorphism. For 7 € (0,T) we define a function w, on (0,7) x L by
(t,2) = 0 fort <7Tand x € L,
Wrih @) = P(0, fo)(t,x) fort>7and z € L.

Then w, € ng;é’p((O, T) x L) for every 7 € (0,7T). In particular we can make

w, — P(0, fo) arbitrary small in ngié’p((O,T) x L) by making 7 > 0 small.
Thus for 7 > 0 sufficiently small we have w, € W and there exists (u, f) € V
with P(u, f) = w,. But then P(u, f) =0 on (0,7) as we wanted to show. [

9.6 Regularity of solutions and short time existence of the
flow

In this subsection we study the regularity of solutions to P(u, f) = 0. We define
the functions Fg, @g, F;, Q;, and R; for i = 1,...,n as in §9.3. We fix p € R"
with 2 < p < v and (2,;]NEs, =0 for i = 1,...,n, and we fix k € N and
p € (1,00) as in Proposition 9.9.

We begin with the study of the interior regularity of solutions to P(u, f) = 0.

Lemma 9.14. Let (u, f) € Dﬁ’p be a solution of P(u, f) = 0. Then u(t,-) €
C>®(L) for every t € (0,T).

Proof. Let (u, f) € ’DZ" be a solution of P(u, f) = 0. Then

8” d
0= a - Fg(f,,du,Vdu) - S(f??{vadu)
Since Fjg and S are smooth functions on their domains, and S depends on the
first derivative of w only, the same method as in the proof of Proposition 5.9
implies that u(t,-) is smooth on L for every ¢t € (0,7). Note at this point
however that we cannot conclude that u is smooth in the time direction, since

d
S depends on d—{ . O

Now we study the regularity of solutions to the Cauchy problem (91) on the
ends of L. We define functions

Si(f,v, 0,1, dui(av T)) = S(f,v, (bi(a’ r), (¢i)*(dui(07 7“))),
where

Si:{(f,v,a,r,yi) c feF, velrF,
(J,T‘) €3; X (O,R), (qu)*(yz) S Ui} — R
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for = 1,...,n. First we improve the regularity of the derivatives of the solu-
tions (u, f) € DEP to P(u, f) = 0 on each end of L.

Lemma 9.15. Let (u, f) € Dj;? be a solution of P(u, f) = 0 and let a € C*(L)
with ¢} (a) = a; fori=1,...,n. Assume that u+a € W3*P((0,T) x L) for
some v € R™ with v > 2. Then u+a € WLHP((0,T) x L)) for everyl € N.

Proof. By Lemma 9.14, u € WHbP((0,T) x K) for every compact K C L and
hence u +a € WHhP((0,T) x K) for every K CC L. Thus we only have
to improve the regularity of w4+ a on each end of L. Denote u; = ¢ (u) for
i =1,...,n and define v; = u; + a; and w; = O,v; for ¢ = 1,...,n. Since
P(u, f) =0 and dra; =0 for i = 1,...,n, it follows that v; satisfies

0% (5. v) = 6, + Avy(o,1) + Qi(0, 7, dvy(o, 1), Vdur (o, 7))

—, \0, = U i\O, i\O, T, i\O,T), i\O,

ot (121)

+ Rz(fv o, T, dvi(gv ’I"), Vd’Ui(U, T)) + Sz(f7 %v a,T, dUi(O', ’f’))

for (o,r) € ¥; x (0,R) and i = 1,...,n. Let K > 0 be sufficiently small. Then
for s € (0,k) and 7 = 1,...,n we define

67 (3,1) x 2 x (3,1) = (0,T) x E; x (0,R), 85(t,0,r) = (st,0,s7).

For s € (0,k) and ¢ = 1,...,n we define functions

Uf : (%71) X Ei X (%71)a 1) — Ra Uf = 37%(513)*(1}1)

fori=1,...,n, and further we define
wi(3,1) x5 x (3,1),1) >R, w) =s"77(67)* (w;)

for i =1,...,n. Then there exist constants ¢; > 0 for ¢ = 1,...,n independent
of s € (0, k), such that |[vf |12 < ¢; and [Jwf|lworr < ¢ on (5,1)x 5 x (3,1)
for s€ (0,k) and i =1,...,n.

Differentiating (121) on both sides with respect to r shows that w; satisfies

OO 0,7 = (L + K t,0,7) + f2(t,0,7) (122)

for (t,o,r) € (3,1) x £; x (3,1) and i = 1,...,n. Here L is a second order
differential operator that is given by

Lw;(o,7) = Awi(o,7) — (m — 2)r 2w} (o, 7)

for (o,7) € 8; x (0,R) and i =1,...,n, ff:(3,1) x ; x (3,1) = R is defined
by
fi(t,o,r) = — 2 3(Ap,v5)(t, 0, 1) + 837 71(0,8:)(t, 0, sr, 87 (57 (dvs))
+5°77(0,Qi) (0, 57,87 (67)« (dvf), 8767 )« (Vo))
+ 87TV Ri)(f 0, 57,87 (87)(d7), 87 (67« (Vdvy))
+ 850, S (f, G057, 87(87) (o)),
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fori=1,...,n, and K/ is a linear second order differential operator defined by

K (,7) =s2(0-Q0)(a, 57,57 (57). (), 87 (657). (V) - (7). (V)
2(6 R)(f, 0,87, 87(07)(dvs), s7(67) (Vdv])) - (67)«(Vdw)
s2(9yQi)(o, sr, 87 (87)(dv;), 87 (67)+ (Vdvy)) - (87 (duwf)
(0, S, 7,57, 57 (57). (007,57 (30 (Tl)) - (5. ()
20y S:)(f, Ghr 0y 57, 87(57)(d0f)) - (67)-(duf)
for i = 1,...,n. By Lemma 9.6 and 9.7, || f?||wo.0.» is uniformly bounded on
compact subsets of (3,1) x ¥; x (3,1) as s — 0 for i = 1,...,n. Moreover,
using Lemmas 9.6 and 9.7 again we see that the coefficients of the differential
operator K7 and their derivatives converge uniformly to zero on compact subsets
of (1,1) x £; x (3,1) as s — 0 for i = 1,...,n. Thus the LP-estimates from
Theorem 2.10 show that there exist constants ¢ > 0 fori = 1,...,n independent
of s € (0,k), such that ||wf|lyo2r < ¢ on (3, %) X ;X (% %) fori: 1,...,n,
and so ||’U,L||W03p <cdion (3,3)x%; x(2,2)fori= ,n. Hence
u+aeWYPP((0,T) x L) N W;’va((O,T) x L).

Iterating this argument then shows that v + a € W,}“’((O,T) x L)) for every
l € N, as we wanted to show. ]

Finally we show that the rate of decay of the function w + a improves for
positive time. Loosely speaking <I>£(t) o(d[u(t,-)]+B(t)) can be written near the
conical singularities as the graph of d[u(t, )] 4+ da, and therefore we expect that
the rate of decay of u 4 a, and not of u, improves for positive time. Another
way to state this is to say that the special Lagrangian cones are attractors for
the generalized Lagrangian mean curvature flow with conical singularities.

Lemma 9.16. Let (u, f) € D’”’ be a solution of the Cauchy problem (91) and
let a € CP (L) with ¢} (a) = a; forz =1,...,n. Thenu+a e W??(I x L) for
every I CC (0,T) and for every v € R” wzth 2 <y <3and ( vl NEs, =0
fori=1,....n

Proof. Denote v = u 4 a. Since p < v, we have u+a € W, HP((0,T) x L).

Denote u; = ¢f(u) and define v; = u; + a; for i = 1,...,n. Then v; satisfies
Ov; —(t,o,7) = Avi(t,0,7) + hi(t,o,r) for (t,0,7) € (0,T) x X; x (0, R)
ag, i\, 0, i\, O, , 0, ) 7 ) )
ot (123)

v;(0,0,7) = a;(o,7) for (o,r) € £; x (0, R)
and i = 1,...,n, where h; : (0,7) x 3; x (0, R) — R is given by

hi(t,o,r) = 6; + Qi(o,r,dv; (o, 1), Vdv;(o,7))(t)
+ Sl(fa %a o,T, dvi(aa T))(t) + Rl(fa o,T, d’l)i(O', T)v Vdvi(av T))(t)

fori=1,...,n and S; as defined above.
Now choose some Riemannian metric g on L with ¢ (g;) = gfori=1,...,n.
Let h € WOk=2P((0,T) x L) with ¢¥(h) = h; for i = 1,...,n. Then it follows
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from Lemma 9.6 and 9.7 that h € ng’ﬁf’p(((),T) x L). Moreover, since v;
satisfies (123) for i = 1,...,n, we find that

ov
a(t,x) = Aju(t,x) + h(t,x) + r(t,z) for (t,z) € (0,T) x L, (124)
v(0,2) = a(z) for z € L,

where 7 € WO#=22((0,T) x L) is supported on (0,T) x (L\UJ}, S;). Let H
be the Friedrichs heat kernel on (L, g). Then by uniqueness of solutions to the
heat equation we find that v is given by

v(t,x) = (H % (h+7))(t,2) + (exp(tAgz)a)(z) for (t,z) € (0,T) x L. (125)

Since h € Wg;tk:f’p((O,T) x L) it follows as in Theorem 7.10 that H * (h 4 r)

lies in W, l’Lk_”;$P2”_2((0,T) x L). Moreover from Proposition 7.5 it follows that
the second term on the right side of (125) lies in Cg$ (L) for every t € (0,7') and
d € R. Hence

; 1,k,
veWLMP(Ix L)N Wy, e, (I X L)

for every I CC (0,7). In particular, if (2,2u; —2]NEx, = B fori =1,...,n, then
it follows that v € ngllk;’; (I x L) for every I CC (0,T). Iterating this procedure

we find that v € W3 *P(I x L) for every I cC (0,T) and every v € R™ with
2<y<3and (2,v]NEs, =0 fori=1,...,n and the lemma follows. O

The next proposition summarizes the previous three regularity results and
shows that the generalized Lagrangian mean curvature flow we obtain is smooth
in time.

Proposition 9.17. Let (u, f) € Dl’j’p be a solution of the Cauchy problem (91).
Then f defines W'P-one-parameter families {x;(t)}ie0,r) of points in M for
i =1,...,n and of isomorphisms {A;(t) }reo,r) for i = 1,...,n with Ai(t) €
A,y fori = 1,...,n. Finally define a one-parameter family {F(t,-)}icco,1)
of Lagrangian submanifolds as in (92). Then {F(t,-)}ieo,r) is a WhP-one-
parameter family of smooth Lagrangian submanifolds with isolated conical sin-
gularities modelled on C,...,C,. Fort € (0,T) the Lagrangian submani-
fold F(t,-) : L — M has conical singularities at x1(t),...,2,(t) and isomor-
phisms A;(t) € Ay, ) fori=1,...,n as in Definition 8.4. Moreover for every
t e (0,T), F(t,") : L — M satisfies (82) for every v € R with 2 < v < 3 and
(2,v]NEs, =0 fori=1,...,n.

The proof of Proposition 9.17 follows immediately from Proposition 8.7, Theo-
rem 8.11, and Lemmas 9.14-9.16.

We are finally ready to prove our main theorem about the short time exis-
tence of the generalized Lagrangian mean curvature flow when the initial con-
dition is a Lagrangian submanifold with isolated stable conical singularities.

Theorem 9.18. Let (M, J,w, Q) be an m-dimensional almost Calabi—Yau man-
ifold, m > 3, C4,...,C, stable special Lagrangian cones in C"™, and Fy : L — M
a Lagrangian submanifold with isolated conical singularities at x4, ..., x,, mod-
elled on the stable special Lagrangian cones C4,...,C, as in Definition 8.4, and
assume that the generalized mean curvature form ax of Fy : L — M satisfies
lax| = O(p%) for some e € R™ with € > 0. Then there exists T > 0, Holder
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continuous one-parameter families of points {x;(t)}1eo,r) in M fori=1,...,n,
continuous up to t = 0, with x;(0) = x; for i = 1,...,n, and Holder contin-
uous one-parameter families {A;(t)}ie(o,ry of isomorphisms A;(t) € Ay, 1) for
i =1,...,n, continuous up to t = 0, with A;(0) = A; fori=1,...,n, such that
the following holds.

There exists a Hélder continuous one-parameter family {F(t,-)}ico,r) of
smooth Lagrangian submanifolds F(t,-) : L — M, continuous up to t = 0,
with isolated conical singularities at x1(t),...,x,(t) modelled on the special
Lagrangian cones Cy,...,C, and with isomorphisms A1(t),..., A.(t), A;(t) :
C™ = T,,yM fori=1,...,n asin Definition 8.4, which evolves by generalized
Lagrangian mean curvature flow with initial condition Fy : L — M. Moreover,
for every t € (0,T) the Lagrangian submanifold F(t,-) : L — M satisfies (82)
for every v € R™ with ; € (2,3) and (2,%]NEs, =0 fori =1,...,n. Fi-
nally {F(t,-)}teo,) is the unique solution to the generalized Lagrangian mean
curvature flow in this particular class of Lagrangian submanifolds.

Proof. Let Fy : L — M be as in the theorem and fy = (x1, A1,0,...,2,, Ay, 0).
Define F as in §8.4 and choose Lagrangian neighbourhoods {<I>£} fer asin §8.4.
Let p € R™ with 2 < pu < v and let k € N and p € (1,00) be sufficiently large.
Then by Proposition 9.13 there exists a solution (u, f) € Df;p of the Cauchy
problem (91). Then f defines W'P-one-parameter families {a;(t)}ie(0,7) of
points in M for i = 1,...,n and of isomorphisms {A;(t)}+c(o,r) for i =1,...,n
with A;(t) € Ay, for i = 1,...,n. In particular, by the Sobolev Embed-
ding Theorem the families {z;(t)}ic(o,r) and {A;(t)}ico,ry for i = 1,...,n
are uniformly Holder continuous with respect to ¢ € (0,7), and therefore
{zi(t) }reo,r) and {A;(t)}eeo,r) extend continuously to ¢ = 0. We define a
WhP-one-parameter family of Lagrangian submanifolds {F(t,-)}1c(o,r) as in
(92). Then {F(t,-)}+c(o,r) is a Holder continuous one parameter family of La-
grangian submanifolds. By Proposition 9.17, F(t,-) : L — M is a smooth La-
grangian submanifold with isolated conical singularities at x1(¢),...,z,(t) € M
modelled on the stable special Lagrangian cones C1, ..., C, with isomorphisms
Ai(t) : C™ = Ty, yM for i = 1,...,n as in Definition 8.4. Furthermore by
Lemma 9.17, for every t € (0,7T) the Lagrangian submanifold F(t,-) : L — M
satisfies (82) for every v € R™ with v € (2,3) and (2,v] Né&s, = 0 for
i =1,...,n. Finally Proposition 9.5 shows that { F'(t, ) }+(o,r) evolves by gener-
alized Lagrangian mean curvature flow with initial condition Fj : L — M. The
uniqueness of solutions to the Cauchy problem (91) follows immediately from
Proposition 9.12 and the Inverse Function Theorem and implies the uniqueness
of {F(t,-)}+c(o,r) in this particular class of Lagrangian submanifolds. O
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10 Open problems related to the thesis

In this section we discuss some open problems that are related to the material
presented in this work. We emphasize again that this discussion will be purely
formal and at many stages we do not attempt to give rigorous mathematical
proofs of the results, which we claim to be true.

10.1 Parabolic equations of Laplace type on compact Rie-
mannian manifolds with conical singularities

In this subsection we study differential operators of Laplace type and parabolic
equations of Laplace type. Differential operators of Laplace type are differential
operators of second order on compact Riemannian manifolds with conical singu-
larities that differ from the Laplace operator only by a lower order term that is
well behaved in a certain sense that we will make precise below. Our discussion
of parabolic equations of Laplace type follows the same ideas as in §7.3 and we
explain how a fundamental solution to parabolic equations of Laplace type can
be constructed. The reader is also referred to Melrose [39, Ch. 7, §], where the
fundamental solution for general second order parabolic equations on Rieman-
nian manifolds with boundary is constructed. Finally we present two existence
and maximal regularity results for parabolic equations of Laplace type which
generalize the results obtained in §7.4 and §7.5.

We begin with the definition of differential operators of Laplace type on
Riemannian manifolds with conical singularities.

Definition 10.1. Let (M, g) be a compact Riemannian manifold with conical
singularities as in Definition 6.3, p a radius functions on M', and L a linear
second order differential operator on M'. Then L is said to be a differential
operator of Laplace type if the following holds. There exist § € R™ with & > 0,
a smooth vector field X on M’ with |VIX| = O(p®~177) as p — 0 for j € N,
and a function b € C3° ,(M"), such that

Lu=Ayu+g(X,Vu) +b-u foruec CE (M. (126)

The reason we call these operators of Laplace type is that to leading order
these operators coincide with the Laplace operator. In fact, if L is a differen-
tial operator of Laplace type, then the principal symbol of L is equal to the
principal symbol of the Laplace operator, see Shubin [49, §5.1] for the definition
of the principal symbol of a differential operator. Thus away from the conical
singularities L and the Laplace operator coincide to leading order. Moreover,
close to the singularity the Laplace operator dominates the lower order terms
of L, essentially because the coefficients of the lower order terms of L decay
sufficiently fast near the singularity. A way to state this in terms of symbols of
differential operators is to say that L and the Laplace operator have the same
indicial operator in the sense of Melrose [39, Ch. 4, §15], or the same conormal
symbol in the sense of Schulze [48, Ch. 2, §1.2]. Therefore the Laplace operator
and L agree to leading order also near the singularities, and we expect that the
Laplace operator and L, and also the corresponding parabolic equations, have
a similar theory.

The Fredholm theory for differential operators of Laplace type follows im-
mediately from Proposition 6.12, the Fredholm alternative, and the observation
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that the lower order terms of a differential operator of Laplace type define a com-
pact operator between the weighted spaces under consideration. For instance
the lower order terms define a compact operator W,’Yf’p (M) — W,]::Q2 (M.

Proposition 10.2. Let (M, g) be a compact m-dimensional Riemannian man-
ifold with conical singularities as in Definition 6.3, m > 3, L a differential
operator of Laplace type, and v € R™. Then the following hold.

(i) Let k € N with k > 2 and o € (0,1). Then
L:CE(M') — CE 2 (M) (127)

is a Fredholm operator if and only if v; ¢ Dx, fori=1,...,n, where Dy,
is defined in (39). If v; ¢ Dx, fori =1,...,n, then the Fredholm index
of (127) is equal to — Y i, My, (7).

(ii) Let k € N with k> 2 and p € (1,00). Then

L:WEP(M') — WEZ3P (M) (128)

is a Fredholm operator if and only if v; ¢ Dx, fori = 1,...,n. If
vi & Dy, fori = 1,...,n, then the Fredholm index of (128) is equal to
= 2o M, (n).

Once we know the Fredholm theory for differential operators of Laplace type
it is straightforward to construct discrete asymptotics for these operators and to
define weighted spaces with discrete asymptotics. In fact we have the following
analogue of Proposition 6.14.

Proposition 10.3. Let (M, g) be a compact m-dimensional Riemannian man-
ifold with conical singularities as in Definition 6.3, m > 3, L a differential
operator of Laplace type, and v € R™. Then for every € > 0 there exists a linear
map

vh L Pve, (Ch) — C=(M),
i=1

such that the following hold.

(i) For every v € @;_, Ve, (Ci) with v = (v1,...,v,) and v; = rPip; where
i € C®(X) fori=1,...,n we have

|Vk(¢f(\ll§(v)) — )| = O TPk g5 — 0 forkeN
andi=1,...,n.
(il) For every v € @, Ve, (Ci) with v = (vy,...,v,) we have
L(W5(v)) = Y Wh(Agv) € CZ (M),
i=0
Moreover, if § > 1, then we may take \I/f/ = W, where W, is defined in Propo-
sition 6.14.

Note that since L and the Laplace operator coincide to leading order near each
conical singularities, we use the same model space in the construction of the
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discrete asymptotics for L in Proposition 10.3 as in the definition of the discrete
asymptotics for the Laplace operator in Proposition 6.14.

We can now proceed to define weighted C*-spaces, Hélder spaces, and Sobolev
spaces with discrete asymptotics. In fact, for k € N, « € (0,1), and v € R™ we
define

cj,% (M') = CE(M') & im UL and cj;gg (M') = CE(M') & im WL
and finally for p € [1,00) we define

W%fj# (M) =WEP(M') @ im Wk
Then C,’j pr (M), Cs’;‘L (M), and Wj’f,’L (M') are Banach spaces, where we
(e oy vy
choose some finite dimensional norm on the discrete asymptotics part.
Following the proof of Proposition 6.15 we find the following result.

Proposition 10.4. Let (M, g) be a compact m-dimensional Riemannian man-
ifold with conical singularities, m > 3, L a differential operator of Laplace type
as in (126), and v € R™ with v > 2—m and v; ¢ Ex,. Then the following hold.

(i) Let k e N with k > 2 and o € (0,1). Then

L: c,’;;gs (M) — C::;:‘;siz(M’) (129)
is a Fredholm operator of index zero.
(ii) Let k € N with k> 2 and p € (1,00). Then
L:WFE (M) — WFE22, (M) (130)

v.P% Y—2,P3
is a Fredholm operator of index zero.

We now begin our discussion of parabolic equations of Laplace type. The
next theorem establishes the existence of a fundamental solution to parabolic
equations of Laplace type and also states that the fundamental solution satisfies
similar estimates as the Friedrichs heat kernel in Theorem 7.7.

Theorem 10.5. Let (M, g) be a compact m-dimensional Riemannian manifold
with conical singularities as in Definition 6.3, m > 3, and L a differential
operator of Laplace type. Then there exists H € C*°((0,00) x M’ x M') solving
the Cauchy problem

o0H

E(t,x,y) = LH(t,z,y), for (t,z,y)€ (0,T)x M x M, (131)
H(0,z,y) = d.(y), forx e M'.
Moreover the following holds.
Let v € R™ with v; ¢ Es,. Forl € N choose a basis w}y_m, e 7¢£,V’;21 for the
vector space im \Il,g, where N; = dimim \Ilﬁ Then for each | € N there exist
functions HY o, ... 7H5i21 € C((0,00) x M') and constants ¢; > 0, such that

for everyl € N

mt(y—21)~
2

[HY (L) < e(t+ p(y)?) ™ fort>0, ye M
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and j =1,...,N;, and

H(t,z,y) Z w'y a1 'jy 2(t, y))‘

—ont
9 (72)

< alt + dy(z,y)?) ~"F (P(x)g(i)My)Q)

fort e (0,00) and z,y € M’.

The proof of Theorem 10.5 should more or less follow the same ideas as in the
construction of the Friedrichs heat kernel discussed in §7.3. By Theorem 7.7
we are given the Friedrichs heat kernel Hy, which is a fundamental solution for
the heat equation and satisfies a bunch of estimates. The fact that L and the
Laplace operator coincide to leading order implies that H satisfies

0Hy

ot
H(0,7,y) = d.(y), for x € M’,

(t € y) LHO(t7x7y) +R0(t,$,y)7 for (t7a:7y) € (O7T) X M/ X M/7

where Ry € C°((0,00) x M’ x M’) is a lower order remainder in a pseudodiffer-
ential calculus that can be defined on the heat space of M. Using the same ideas
as in [41, Prop. 3.4-3.8] and the discrete asymptotics given by Proposition 10.3
one can construct a function H € C°°((0,00) x M’ x M') that is a fundamental
solution of (131) and satisfies the estimates in Theorem 10.5.

Once Theorem 10.5 is known it is straightforward to generalize the results
from §7.4 and §7.5 to the Cauchy problem

%(t,x} = Lu(t,z) + f(t,x) for (t,z) € (0,T) x M,

u(0,2) =0 for x € M.

(132)

The next theorem gives an existence and maximal regularity result for solu-
tions of (132) in the case when the free term lies in a weighted parabolic Holder
space with discrete asymptotics.

Theorem 10.6. Let (M, g) be a compact m-dimensional Riemannian manifold
with conical singularities, m > 3, L a differential operator of Laplace type as
n (126), T > 0, k € N with k > 2, o € (0,1), and v € R™ with v > 2 —m

and v; ¢ Es,. Given [ € C’S k2 |2DLO‘ 2((O T) x M'), there exists a unique u €

C’1 k, a((O T) x M") solving the Cauchy problem (132).

Theorem 10.6 is proved in exactly the same way as Theorem 7.10. Note, how-
ever, that the discrete asymptotics are now defined using Proposition 10.3.

In a similar way we obtain the following theorem when the free term lies in
a weighted parabolic Sobolev space with discrete asymptotics.

Theorem 10.7. Let (M, g) be a compact m-dimensional Riemannian manifold
with conical singularities, m > 3, L a differential operator of Laplace type as
n (126), T > 0, k € Nwith k > 2, p € (1,00), and v € R™ with v > 2 —m

and ~; ¢ Es,. Given f € WP k2 E’Lp ((0,T) x M’), there exists a unique u €
2

Wi’gf((O,T) x M') solving the Cauchy problem (132).
Ty
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10.2 Short time existence of the generalized Lagrangian
mean curvature flow with isolated conical singulari-
ties

In this subsection we discuss why we think that it should be possible to drop the
extra assumption on the generalized mean curvature form in Proposition 9.12.
The problems discussed in this and the next subsection mainly deal with the fact
that we do not fully understand the operator P : DNI’“;?’ — Wg_kg é’p ((0,T) x L)
and the role of the discrete asymptotics in this geometric context.

The result we want to speculate about is a generalization of Proposition
9.12. In fact we believe that Proposition 9.12 can be replaced by the following

result.
Proposition 10.8. Choose p € R™ with 2 < pu < 3 and (2, ;) N Ex, = O for
i=1,...,n. Then for T > 0 sufficiently small, the linear operator

dP(0, fo) : W;;’;f;fo)((o,T) x L) — WE, 5P((0,T) x L) (133)

is an 1somorphism of Banach spaces.

In Proposition 10.8 we also used the extra assumption that the generalized
mean curvature form ag of the initial Lagrangian submanifold Fy : L — M
satisfies |ax | = O(p®) for some £ € R™ with € > 0. We then used this condition
in Lemma 9.11 to show that the discrete asymptotics defined by =g r,) are the
same as the ones defined by Proposition 6.14. Then we were able to use our
regularity results for the heat equation from Theorem 7.13 to show that the
linearization of P at the initial condition is an isomorphism.

Recall from Proposition 9.10 that the linearization of the operator P :
@ﬁ*p — WE’_k;é’p((O, T) x L) at the initial condition (0, fy) is an operator

dP(0, fo) : W;’;gfo)((o,T) x L) — Wk, 5P((0,T) x L) (134)

given by

0
dP(0, fo)(v,Zo,f)(w)) = g(v = E(0,50) (W) = A(v = (0, 50) (w))

+mdpg(V(v — E(o,5,)(w))) + dOs(V (dv) — W(E(o,5,)(w))),

for v e WL HP((0,T) x L) and w € WP((0,T); Ty,)F). It the proof of Propo-
sition 10.8 we made use of the fact that the spaces W;IE,(Z f0>((O’T) x L) and

W;:gf((O,T) x L) are the same, as proved in Lemma 9.11. This made it pos-

sible to compare the geometric operator in (134) and (135) together with the
geometric discrete asymptotics and the heat operator with the discrete asymp-
totics given by Proposition 6.14. In general it will not be true that the spaces

W;:l;’(ivfo)((O,T) x L) and Wi:{if((O,T) x L) are the same. However, using

Theorem 10.7 we can now argue as follows. Let us define operators

H K : W‘IL:’;’(’;JO)((O7T) x L) — W* 5P((0,T) x L) (136)

(135)

- 9 - =
H(v, E0,50)(w)) = 5, (v = Eo,50) (w)) = Av = E(o, 1) (w))

+ mdipg(V(v = Eg, 1) (w))) + dOs(W (v — Z g, 1) (w)))

(137)
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and K = dfz(V (dv) — W (v)). Note that H and K in (136) are well defined and
that dP(0, fo)(v,E(o,f,)(w)) = H+K. It is not hard to see that H is a parabolic
operator of Laplace type with discrete asymptotics defined by =g r,). Thus
Theorem 10.7 implies that H in (136) is an isomorphism for 7' > 0 sufficiently
small. The same techniques used in the proofs of Propositions 5.7 and 9.12 then
imply that (134) is an isomorphism.

From here on it is now straightforward to prove Proposition 10.8 and then
the short time existence of the generalized Lagrangian mean curvature flow with
isolated conical singularities without the extra assumption on the generalized
mean curvature form of the initial Lagrangian submanifold.

10.3 Regularity theory for the generalized Lagrangian mean
curvature flow with isolated conical singularities

In this subsection we speculate on some further regularity theory for the gener-
alized Lagrangian mean curvature flow with isolated conical singularities.

The first regularity problem we want to discuss is the time regularity of so-
lutions (u, f) € DEP to P(u, f) = 0. In fact we would like to show that the
functions u : (0,7) x L — R are smooth in the time variable and that the family
{f(t)}ic(o,r) C F is a smooth one-parameter family. Then it would follow that
the one-parameter family {F(t,-)}:c(,r) of smooth Lagrangian submanifolds
from Theorem 9.18 is in fact a smooth one-parameter family of smooth La-
grangian submanifolds. In particular it would follow that the translations and
rotations of the model cones of the Lagrangian submanifolds are smooth. The
problem in proving such a result come again from the structure of the equation
P(u, f) = 0, because we do not really understand the structure of this equation
and the discrete asymptotics involved in this problem.

Using the speculation from §10.1, §10.2, and this subsection we finish this
thesis with the following conjecture about the short time existence for the gen-
eralized Lagrangian mean curvature flow with isolated conical singularities.

Conjecture 10.9. Let (M, J,w,Q) be an m-dimensional almost Calabi—Yau
manifold, m > 3, C1,...,Cy stable special Lagrangian cones in C™, and Fy :
L — M a Lagrangian submanifold with isolated conical singularities at x1, . .., Ty,
modelled on the stable special Lagrangian cones C1,...,Cy as in Definition 8.4.
Then there exists T' > 0, smooth one-parameter families of points {x;(t)}ie(0,1)
in M fori=1,...,n, continuous up to t =0, with x;(0) = x; fori=1,...n,
and smooth one-parameter families { A;(t) }1e(0,1) of isomorphisms A;(t) € Ay,
fori=1,...,n, continuous up tot =0, with A;(0) = A; for i =1,...,n, such
that the following holds.

There exists a smooth one-parameter family {F(t,-)}ico,r) of smooth La-
grangian submanifolds F(t, ) : L — M, continuous up to t = 0, with isolated

conical singularities at x1(t),...,2,(t) modelled on the special Lagrangian cones
C1,...,Cy and with isomorphisms Ay(t),..., An(t), Ai(t) : C™ — Ty, )M for
i=1,...,n as in Definition 8.4, which evolves by generalized Lagrangian mean

curvature flow with initial condition Fy : L — M. Moreover, for everyt € (0,T)
the Lagrangian submanifold F(t,-) : L — M satisfies (82) for every v € R™ with
vi € (2,3) and (2,7 NEs, =0 fori=1,...,n. Finally {F(t,")}ic(o,r) is the
unique solution to the gemeralized Lagrangian mean curvature flow in this par-
ticular class of Lagrangian submanifolds.
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