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Abstract

Derived symplectic structures in generalized
Donaldson–Thomas theory and categorification

Vittoria Bussi

University College, Oxford University
A thesis submitted for the degree of Doctor of Philosophy, Trinity 2014

This thesis presents a series of results obtained in [13, 18, 19, 23–25, 87]. In [19], we prove a Darboux
theorem for derived schemes with symplectic forms of degree k < 0, in the sense of [142]. We use this to
show that the classical scheme X = t0(X) has the structure of an algebraic d-critical locus, in the sense of
Joyce [87]. Then, if (X, s) is an oriented d-critical locus, we prove in [18] that there is a natural perverse

sheaf P •X,s on X, and in [25], we construct a natural motive MFX,s, in a certain quotient ring Mµ̂
X of the

µ̂-equivariant motivic Grothendieck ring Mµ̂
X , and used in Kontsevich and Soibelman’s theory of motivic

Donaldson–Thomas invariants [102]. In [13], we obtain similar results for k-shifted symplectic derived
Artin stacks.

We apply this theory to categorifying Donaldson–Thomas invariants of Calabi–Yau 3-folds, and to
categorifying Lagrangian intersections in a complex symplectic manifold using perverse sheaves, and to
prove the existence of natural motives on moduli schemes of coherent sheaves on a Calabi–Yau 3-fold
equipped with ‘orientation data’, as required in Kontsevich and Soibelman’s motivic Donaldson–Thomas
theory [102], and on intersections L∩M of oriented Lagrangians L,M in an algebraic symplectic manifold
(S, ω). In [23] we show that if (S, ω) is a complex symplectic manifold, and L,M are complex Lagrangians
in S, then the intersection X = L∩M, as a complex analytic subspace of S, extends naturally to a complex
analytic d-critical locus (X, s) in the sense of Joyce [87]. If the canonical bundles KL,KM have square

roots K
1/2
L ,K

1/2
M then (X, s) is oriented, and we provide a direct construction of a perverse sheaf P •L,M on

X, which coincides with the one constructed in [18].

In [24] we have a more in depth investigation in generalized Donaldson–Thomas invariants D̄Tα(τ)

defined by Joyce and Song [85]. We propose a new algebraic method to extend the theory to algebraically

closed fields K of characteristic zero, rather than K = C, and we conjecture the extension of general-

ized Donaldson–Thomas theory to compactly supported coherent sheaves on noncompact quasi-projective

Calabi–Yau 3-folds, and to complexes of coherent sheaves on Calabi–Yau 3-folds.
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Introduction

In the following we will summarize some motivations and background which permit to allocate
our problem and state the main results. After that, we outline the contents of the thesis.

Notations and conventions

Throughout K will be an algebraically closed field with charK = 0. Classical K-schemes and
Artin K-stacks will be written W,X, Y, Z, . . . , and derived K-schemes and derived Artin K-stacks
in bold as W ,X,Y ,Z, . . . . Basic references for K-schemes are Hartshorne [65], for Artin K-stacks
Laumon and Moret-Bailly [109], and for derived K-schemes and derived Artin K-stacks Toën and
Vezzosi [142,171–175]. All (classical) K-schemes and Artin K-stacks X are assumed separated and
locally of finite type. All derived K-schemes and derived K-stacks X are assumed to be locally
finitely presented. We write SchK for the category of K-schemes, ArtK for the 2-category of Artin
K-stacks, dSchK for the ∞-category of derived K-schemes, and dArtK for the ∞-category of
derived Artin K-stacks, and t0 : dSchK → SchK, t0 : dArtK → ArtK for the classical truncation
functors. Finally, all complex analytic spaces Hausdorff and locally of finite type.

D-critical loci

In §2, we will introduce the theory of d-critical loci from [87]. Recall that to say that a scheme
X has an obstruction theory means, very roughly speaking, that one is endowed with a complex of
vector bundles encoding informations on the deformations and obstructions spaces of X. When
this obstruction theory is symmetric, Behrend [5] proved that X can be described as the zero locus
of an almost closed 1-form. Schemes with symmetric obstruction theories are the basis of Joyce
and Song’s theory of Donaldson–Thomas invariants of Calabi–Yau 3-folds [85]. In the attempt to
resolve the questions about categorification in Donaldson–Thomas theory, that is, to produce a
natural graded Q-vector space thought of as some kind of generalized cohomology of the moduli
space, whose graded dimension is the virtual counting of the moduli space itself, the author and
her collaborators tried for some time to construct perverse sheaves, and motivic Milnor fibres, from
a scheme with symmetric obstruction theory, but failed. Moreover, more recently, Pandharipande
and Thomas [140] gave examples of schemes X with symmetric obstruction theories with X not
locally isomorphic to a critical locus. This was the major signal that almost closed 1-forms were
not enough to resolve the questions.

Later, Pantev, Toën, Vaquié and Vezzosi [142,179] defined a new notion of derived critical locus.
It is set in the context of Toën and Vezzosi’s theory of derived algebraic geometry [173–175], and
consists of a quasi-smooth derived scheme X equipped with a −1-shifted symplectic structure
ω. Examples of −1-shifted symplectic derived schemes are the critical locus Crit(f) of a regular
function f : U → A1 on a smooth K-scheme U , or the intersection L ∩M of smooth Lagrangians
L,M in an algebraic symplectic manifold (S, ω), or the moduli scheme M of stable coherent
sheaves on a Calabi–Yau 3-fold. Behrend’s schemes with symmetric obstruction theories [5] can
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be interpreted as ‘semiclassical truncation’ of −1-shifted symplectic derived schemes. If (X, ω)
is a −1-shifted symplectic derived scheme in the sense of Pantev et al. [142], then the classical
scheme X = t0(X) has a symmetric obstruction theory φ : E• → LX with E• = i∗(LX) and
θ = i∗(ω0), where i : X ↪→X is the inclusion.

Very recently, and inspired by issues coming from the failed attempts to use schemes with
symmetric obstruction theory for applications especially in Donaldson–Thomas theory from one
hand, and from the other motivated by searching for a theory much more simpler than the
derived algebraic geometry, Joyce defined a new class of geometric objects called d-critical loci
(X, s), which are classical schemes X with an extra (classical, not derived) geometric structure
s that records information on how X may locally be written as a classical critical locus Crit(H)
of a regular function H : U → A1 on a smooth scheme U . They are much simpler than −1-
shifted symplectic derived schemes, and are entirely ‘classical’, in the sense that they are defined
up to isomorphism in an ordinary category using classical algebraic geometry in the style of
Hartshorne [65], rather than being defined up to equivalence in an ∞-category using homotopy
theory and derived algebraic geometry as in [173–175].

There is a (non-full) truncation functor from −1-shifted symplectic derived schemes to al-
gebraic d-critical loci. Given an algebraic d-critical locus (X, s), then Zariski locally on X we
can construct both a −1-shifted symplectic derived scheme (X, ω), and a symmetric obstruction
theory φ : E• → LX , uniquely up to equivalence, but we cannot combine these local models to
make (X, ω) or E•, φ globally on X because of difficulties with gluing ‘derived’ objects on open
covers. Schemes with symmetric obstruction theories can contain strictly less information than
algebraic d-critical loci. On the other hand, schemes with (symmetric) obstruction theories can
contain global, nonlocal information which is forgotten by algebraic d-critical loci. It turned out
that the theory of d-critical loci, and its extension to d-critical stacks, has applications to gener-
alizations of (motivic) Donaldson–Thomas theory of Calabi–Yau 3-folds, as in [85, 102, 104, 167]
and to categorification of Donaldson–Thomas invariants, and hence for constructing cohomological
Hall algebras, following Kontsevich and Soibelman [104].

Darboux theorem for derived symplectic schemes

In §1.1-§1.2 and §3, we present results in [19]. In the context of Toën and Vezzosi’s theory of
derived algebraic geometry [171–175], Pantev, Toën, Vaquié and Vezzosi [142,179] defined a notion
of k-shifted symplectic structure ω on a derived scheme or stack X, for k ∈ Z. If X is a derived
scheme and ω a 0-shifted symplectic structure, then X = X is a smooth classical scheme and
ω ∈ H0(Λ2T ∗X) a classical symplectic structure on X. Pantev et al. [142] introduced a notion of
Lagrangian i : L→ X in a k-shifted symplectic derived stack (X, ω), and showed that the fibre
product L×X M of Lagrangians i : L → X, j : M → X is (k − 1)-shifted symplectic. Thus,
(derived) intersections L ∩M of Lagrangians L,M in a classical algebraic symplectic manifold
(S, ω) are −1-shifted symplectic. They also proved that if Y is a Calabi–Yau m-fold then the
derived moduli stacks M of (complexes of) coherent sheaves on Y carry a natural (2−m)-shifted
symplectic structure.

In [19], in the case k = −1, we prove that a −1-shifted symplectic derived scheme (X, ω̃) is
Zariski locally equivalent to the derived critical locus Crit(H) of a regular function H : U → A1

on a smooth scheme U and that the underlying classical scheme X = t0(X) extends naturally
to an algebraic d-critical locus (X, s), that is, as above, we define a truncation functor from
−1-shifted symplectic derived schemes to algebraic d-critical loci.

More generally, we actually proved that if X is a derived scheme and ω̃ a k-shifted sym-
plectic structure on X for k < 0 with k 6≡ 2 mod 4, then (X, ω̃) is Zariski locally equivalent
to (SpecA,ω), for SpecA an affine derived scheme in which the cdga A is smooth in degree
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zero and quasi-free in negative degrees, and has Darboux-like coordinates xij , y
k−i
j with respect

to which the symplectic form ω =
∑

i,j ddRy
k−i
j ddRx

i
j is standard, and in which the differential

in A is given by a Poisson bracket with a Hamiltonian function H of degree k + 1. When k < 0
with k ≡ 2 mod 4 we give two statements, one Zariski local in X in which the symplectic form
ω on SpecA is standard except for the part in the degree k/2 variables, which depends on some
functions qi, and one étale local in X in which ω is entirely standard. Here is [19, Thm. 5.18]:

Theorem Let X be a derived K-scheme with k-shifted symplectic form ω̃ for k < 0, and x ∈X.
Then there exists a standard form cdga A over K which is minimal at p ∈ SpecH0(A) in the sense
of [19, §4], a k-shifted symplectic form ω on SpecA, and a morphism f : U = SpecA → X
with f(p) = x and f∗(ω̃) ∼ ω, such that if k is odd or divisible by 4, then f is a Zariski open
inclusion, and A,ω are in Darboux form, and if k ≡ 2 mod 4, then f is étale, and A,ω are in
strong Darboux form, as in [19, §5].

Let Y be a Calabi–Yau m-fold over K, that is, a smooth projective K-scheme with H i(OY ) = K
for i = 0,m and H i(OY ) = 0 for 0 < i < m. SupposeM is a classical moduli K-scheme of simple
coherent sheaves in coh(Y ), where we call F ∈ coh(Y ) simple if Hom(F, F ) = K. As we will
discuss in §3, there is a corresponding derived moduli scheme M with M = t0(M), and M has
a (2 −m)−shifted symplectic structure ω, so we deduce that (M, ω) is Zariski locally modelled
on (SpecA,ω), and M is Zariski locally modelled on SpecH0(A). In the case m = 3, so that
k = −1, we get [19, Cor. 5.19]:

Corollary Suppose Y is a Calabi–Yau 3-fold over a field K, and M is a classical moduli K-
scheme of simple coherent sheaves on Y . Then for each [F ] ∈M, there exist a smooth K-scheme
U with dimU = dim Ext1(F, F ), a regular function f : U → A1, and an isomorphism from
Crit(f) ⊆ U to a Zariski open neighbourhood of [F ] in M.

Here dimU = dim Ext1(F, F ) comes from A minimal at p and f(p) = [F ]. This is a new result
in Donaldson–Thomas theory. When K = C andM is a moduli space of simple coherent sheaves
on Y , using gauge theory and transcendental complex methods, Joyce and Song [85, Th. 5.4]
prove that the underlying complex analytic space Man of M is locally of the form Crit(f) for
U a complex manifold and f : U → C a holomorphic function. Behrend and Getzler announced
the analogue of [85, Th. 5.4] for moduli of complexes in Db coh(Y ), but the proof has not yet
appeared. Over general K, as in Kontsevich and Soibelman [102, §3.3] the formal neighbourhood
M̂[F ] of M at any [F ] ∈ M is isomorphic to the critical locus Crit(f̂) of a formal power series f̂

on Ext1(F, F ) with only cubic and higher terms.
In [19, Cor. 5.20] we studied the case m = 4, so that k = −2, and we deduce a local description

of Calabi–Yau 4-fold moduli schemes:

Corollary Suppose Y is a Calabi–Yau 4-fold over a field K, and M is a classical moduli K-
scheme of simple coherent sheaves on Y . Then for each [F ] ∈ M, there exist a smooth K-
scheme U with dimU = dim Ext1(F, F ), a vector bundle E → U with rankE = dim Ext2(F, F ), a
nondegenerate quadratic form Q on E, a section s ∈ H0(E) with Q(s, s) = 0, and an isomorphism
from s−1(0) ⊆ U to a Zariski open neighbourhood of [F ] in M.

If (S, ω) is an algebraic symplectic manifold over K, that is, a 0-shifted symplectic derived K-
scheme in the language of [142], and L,M ⊆ S are Lagrangians, then Pantev et al. [142, Th. 2.10]
show that the derived intersection X = L ×S M has a −1-shifted symplectic structure. Here
is [19, Cor. 5.21]:

Corollary Suppose (S, ω) is an algebraic symplectic manifold, and L,M are algebraic Lagrangian
submanifolds in S. Then the intersection X = L∩M, as a classical K-subscheme of S, is Zariski
locally modelled on the critical locus Crit(f) of a regular function f : U → A1 on a smooth
K-scheme U .
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In real or complex symplectic geometry, it is easy to prove analogues of that using Darboux’
Theorem or the Lagrangian Neighbourhood Theorem. However, these do not hold for algebraic
symplectic manifolds, so it is not obvious how to prove the above result using classical techniques.

Here are [19, Thm. 6.6 & Cor. 6.7]:

Theorem Suppose (X, ω̃) is a −1-shifted symplectic derived K-scheme, and let X = t0(X) be
the associated classical K-scheme of X. Then X extends uniquely to an algebraic d-critical locus
(X, s), with the property that whenever (SpecA,ω) is a −1-shifted symplectic derived K-scheme in
Darboux form with Hamiltonian H ∈ A(0), as in [19, Ex.s 5.8 & 5.15], and f : SpecA→X is an
equivalence in dSchK with a Zariski open derived K-subscheme R ⊆X with f∗(ω̃) ∼ ω, writing
U = SpecA(0), R = t0(R), f = t0(f) so that H : U → A1 is regular and f : Crit(H)→ R is an
isomorphism, for Crit(H) ⊆ U the classical critical locus of H, then (R,U,H, f−1) is a critical
chart on (X, s). The canonical bundle KX,s from Theorem 2.1.6 is naturally isomorphic to the
determinant line bundle det(LX)|Xred of the cotangent complex LX of X.

We can think of the above result as defining a truncation functor

F :
{

category of −1-shifted symplectic derived K-schemes (X, ω)
}

−→
{

category of algebraic d-critical loci (X, s) over K
}
,

where the morphisms f : (X, ω)→ (Y , ω′) in the first line are (homotopy classes of) étale maps
f : X → Y with f∗(ω′) ∼ ω, and the morphisms f : (X, s) → (Y, t) in the second line are étale
maps f : X → Y with f∗(t) = s. In [87, Ex. 2.17] Joyce gives an example of −1-shifted symplectic
derived schemes (X, ω), (Y , ω′), both global critical loci, such that X,Y are not equivalent as
derived K-schemes, but their truncations F (X, ω), F (Y , ω′) are isomorphic as algebraic d-critical
loci. Thus, the functor F is not full.

Suppose again Y is a Calabi–Yau 3-fold over K andM a classical moduli K-scheme of simple
coherent sheaves in coh(Y ). Then Thomas [167] defined a natural perfect obstruction theory
φ : E• → LM on M in the sense of Behrend and Fantechi [6], and Behrend [5] showed that
φ : E• → LM can be made into a symmetric obstruction theory. Now in derived algebraic
geometry M = t0(M) for M the corresponding derived moduli K-scheme, and the obstruction
theory φ : E• → LM from [167] is Lt0 : LM|M → LM. Pantev et al. [142, §2.1] prove M has
a −1-shifted symplectic structure ω, and the symmetric structure on φ : E• → LM from [5] is
ω0|M. So we have [19, Cor. 6.7]:

Corollary Suppose Y is a Calabi–Yau 3-fold over K, and M is a classical moduli K-scheme of
simple coherent sheaves in coh(Y ) with perfect obstruction theory φ : E• → LM as in Thomas
[167]. Then M extends naturally to an algebraic d-critical locus (M, s). The canonical bundle
KM,s from Theorem 2.1.6 is naturally isomorphic to det(E•)|Mred.

If (S, ω) is an algebraic symplectic manifold over K and L,M ⊆ S are Lagrangians, then Pantev
et al. [142, Th. 2.10] show that the derived intersection X = L×SM has a −1-shifted symplectic
structure. If X = t0(X) then LX |X ' [T ∗S|X → T ∗L|X ⊕T ∗M |X ] with T ∗S|X in degree −1 and
T ∗L|X ⊕ T ∗M |X in degree zero. Hence det(LX |X) ∼= KS |−1

X ⊗KL|X ⊗KM |X ∼= KL|X ⊗KM |X ,
since KS

∼= OS . So we obtain [19, Cor. 6.8]:

Corollary Suppose (S, ω) is an algebraic symplectic manifold over K, and L,M are algebraic
Lagrangians in S. Then the intersection X = L∩M, as a K-subscheme of S, extends naturally to
an algebraic d-critical locus (X, s). The canonical bundle KX,s from Theorem 2.1.6 is isomorphic
to KL|Xred ⊗KM |Xred.

Symmetries and stabilization for sheaves of vanishing cycles
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In §1.3 we introduce some background material on perverse sheaves, which are used in §4 to
present results obtain in [18]. Let U be a smooth C-scheme and f : U → C a regular function,
and write X = Crit(f), as a C-subscheme of U . Then following [18], one can define the perverse
sheaf of vanishing cycles PV•U,f on X. Formally, X =

∐
c∈f(X)

Xc, where Xc ⊆ X is the open and

closed C-subscheme of points x ∈ X with f(x) = c, and PV•U,f |Xc = φpf−c(AU [dimU ])|Xc for
each c ∈ f(X), where AU [dimU ] is the constant perverse sheaf on U over a base ring A, and
φpf−c : Perv(U)→ Perv(f−1(c)) is the vanishing cycle functor for f − c : U → C. In [18] we prove
some results on PV•U,f .

Let U, f,X be as above, and write Xred for the reduced C-subscheme of X. Suppose Φ : U → U
is an isomorphism with f ◦ Φ = f and Φ|X = idX . Then Φ induces a natural isomorphism
Φ∗ : PV•U,f → PV•U,f . In [18, Thm. 3.1] we prove that dΦ|TU |

Xred
: TU |Xred → TU |Xred has

determinant det
(
dΦ|Xred

)
: Xred → C \ {0} which is a locally constant map Xred → {±1}, and

Φ∗ : PV•U,f → PV•U,f is multiplication by det
(
dΦ|Xred

)
.

Let U, f,X be as above, and write IX ⊆ OU for the sheaf of ideals of regular functions U → C
vanishing on X. For each k = 1, 2, . . . , write X(k) for the kth order thickening of X in U , that is,
X(k) is the closed C-subscheme of U defined by the vanishing of the sheaf of ideals IkX in OU . Write
f (k) := f |X(k) : X(k) → C. In [18, Thm. 4.1] we prove that the perverse sheaf PV•U,f depends

only on the third-order thickenings (X(3), f (3)) up to canonical isomorphism. In fact, étale locally,
PV•U,f depends only on (X(2), f (2)) up to non-canonical isomorphism, with isomorphisms natural
up to sign.

Let U, V be smooth C-schemes, f : U → C, g : V → C be regular, and X = Crit(f),
Y = Crit(g) as C-subschemes of U, V . Let Φ : U ↪→ V be a closed embedding of C-schemes with
f = g ◦Φ : U → C, and suppose Φ|X : X → Y is an isomorphism. Then [18, Thm. 5.4] constructs
a natural isomorphism of perverse sheaves on X:

ΘΦ : PV•U,f −→ Φ|∗X
(
PV•V,g

)
⊗Z/2Z PΦ,

where πΦ : PΦ → X is a certain principal Z/2Z-bundle on X. Writing NUV for the normal bundle
of U in V , then the Hessian Hess g induces a nondegenerate quadratic form qUV on NUV |X , and
PΦ parametrizes square roots of det(qUV ) : K2

U |X → Φ|∗X(K2
V ). Moreover, ΘΦ are functorial in

a suitable sense under compositions of embeddings Φ : U ↪→ V , Ψ : V ↪→ W . The theorem is
proved by showing that étale locally there exist equivalences V ' U × Cn identifying Φ(U) with
U×{0} and g : V → C with f�z2

1 + · · ·+z2
n : U×Cn → C, and applying étale local isomorphisms

of perverse sheaves

PV•U,f ∼= PV•U,f
L

�PV•Cn,z2
1+···+z2

n

∼= PV•U×Cn,f�z2
1+···+z2

n

∼= PV•V,g,

using PV•Cn,z2
1+···+z2

n

∼= A{0} in the first step, and the Thom–Sebastiani Theorem for perverse

sheaves in the second. Passing from f : U → C to g = f � z2
1 + · · · + z2

n : U × Cn → C is an
important idea in singularity theory, and it is known as stabilization, and f and g are called stably
equivalent. So, this result concerns the behaviour of perverse sheaves of vanishing cycles under
stabilization.

We use this result in the proof of [18, Thm. 6.9], where we prove that if (X, s) is an algebraic
d-critical locus over C with an ‘orientation’, then we may define a natural perverse sheaf P •X,s on
X, such that if (X, s) is locally modelled on Crit(f : U → C) then P •X,s is locally modelled on
PV•U,f . Note that although we have explained our results only for C-schemes and perverse sheaves
upon them, the proofs are quite general and work in several contexts.

These results have exciting applications in the categorification of Donaldson–Thomas theory
on Calabi–Yau 3-folds, and in defining a new kind of ‘Fukaya category’ of complex Lagrangians
in complex symplectic manifold, as explained in [18, Cor. 6.10, 6.11 & 6.12]:
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Corollary Let (X, ω) be a −1-shifted symplectic derived scheme over C in the sense of Pantev
et al. [142], and X = t0(X) the associated classical C-scheme. Suppose we are given a square
root det(LX)|1/2X for det(LX)|X . Then we may define P •X,ω ∈ Perv(X), uniquely up to canonical
isomorphism, and isomorphisms ΣX,ω : P •X,ω → DX(P •X,ω), TX,ω : P •X,ω → P •X,ω. The same
applies for D-modules and mixed Hodge modules on X, and for l-adic perverse sheaves and D-
modules on X if X is over K with charK = 0.

Corollary Let Y be a Calabi–Yau 3-fold over C, and M a classical moduli K-scheme of simple
coherent sheaves in coh(Y ) with natural (symmetric) obstruction theory φ : E• → LM as in
Behrend [5], Thomas [167]. Suppose we are given a square root det(E•)1/2 for det(E•). Then
we may define P •M ∈ Perv(M), uniquely up to canonical isomorphism, and isomorphisms ΣM :
P •M → DM(P •M), TM : P •M → P •M. The same applies for D-modules and mixed Hodge modules
onM, and for l-adic perverse sheaves and D-modules onM if Y,M are over K with charK = 0.

Corollary Let (S, ω) be a complex symplectic manifold and L,M complex Lagrangian submani-
folds in S, and write X = L∩M, as a complex analytic subspace of S. Suppose we are given square

roots K
1/2
L ,K

1/2
M for KL,KM . Then we may define P •L,M ∈ Perv(X), uniquely up to canonical

isomorphism, and isomorphisms ΣL,M : P •L,M → DX(P •L,M ), TL,M : P •L,M → P •L,M . The same
applies for D-modules and mixed Hodge modules on X.

The above is relevant to the categorification of Donaldson–Thomas theory. As in [5, §1.2],
the perverse sheaf P •Mα

st(τ) constructed on the Donaldson–Thomas moduli spaceMα
st(τ) of stable

sheaves has pointwise Euler characteristic χ
(
P •Mα

st(τ)

)
= ν. This implies that when A is a field,

say A = Q, the (compactly-supported) hypercohomologies H∗
(
P •Mα

st(τ)

)
,H∗cs

(
P •Mα

st(τ)

)
satisfy∑

k∈Z
(−1)k dimHk

(
P •Mα

st(τ)

)
=
∑
k∈Z

(−1)k dimHk
cs

(
P •Mα

st(τ)

)
= χ

(
Mα

st(τ), ν
)

= DTα(τ), (0.0.1)

where Hk
(
P •Mα

st(τ)

) ∼= H−kcs

(
P •Mα

st(τ)

)∗ by Verdier duality. That is, we have produced a natural

graded Q-vector space H∗
(
P •Mα

st(τ)

)
, thought of as some kind of generalized cohomology ofMα

st(τ),

whose graded dimension is DTα(τ). This gives a new interpretation of the Donaldson–Thomas
invariant DTα(τ). In fact, as discussed at length in [166, §3], the first natural “refinement”
or “quantization” direction of a Donaldson–Thomas invariant DTα(τ) ∈ Z is not the Poincaré

polynomial of this cohomology, but its weight polynomial w
(
H∗(P •Mα

st(τ)), t
)
∈ Z

[
t±

1
2

]
, defined

using the mixed Hodge structure on the cohomology of the mixed Hodge module version of
P •Mα

st(τ), which exists assuming thatMα
st(τ) is projective. This is related to work by other authors.

The idea of categorifying Donaldson–Thomas invariants using perverse sheaves or D-modules is
probably first due to Behrend [5], and for Hilbert schemes Hilbn(Y ) of a Calabi–Yau 3-fold Y is
discussed by Dimca and Szendrői [35] and Behrend, Bryan and Szendrői [9, §3.4], using mixed
Hodge modules. Our result answers a question of Joyce and Song [85, Question 5.7(a)].

As in [85,102] representations of quivers with superpotentials (Q,W ) give 3-Calabi–Yau trian-
gulated categories, and one can define Donaldson–Thomas type invariants DTαQ,W (τ) ‘counting’
such representations, which are simple algebraic ‘toy models’ for Donaldson–Thomas invariants
of Calabi–Yau 3-folds. Kontsevich and Soibelman [104] explain how to categorify these quiver
invariants DTαQ,W (τ), and define an associative multiplication on the categorification to make a
Cohomological Hall Algebra. Our work [18] was strongly motivated by the aim of extending [104]
to define Cohomological Hall Algebras for Calabi–Yau 3-folds. We point out also that the square
root det(E•)1/2 corresponds roughly to orientation data in the work of Kontsevich and Soibel-
man [102, §5], [104].

Finally, we cite Kiem and Li [99] who have recently proved an analogue of Corollary 4.4.3 by
complex analytic methods, beginning from Joyce and Song’s result [85, Th. 5.4], proved using
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gauge theory, that Mα
st(τ) is locally isomorphic to Crit(f) as a complex analytic space, for V a

complex manifold and f : V → C holomorphic.

Motivic vanishing cycles and critical loci

In §1.4 we introduce some background material on motives, which are used in §5 to present
results obtain in [25]. Let K be an algebraically closed field of characteristic zero, U a smooth
K-scheme, f : U → A1 a regular function, and U0 = f−1(0), X = Crit(f) as closed K-subschemes
of U . Following Denef and Loeser [31, 32] and Looijenga [120], in [25] we define the motivic
nearby cycle MFmot

U,f in the monodromic Grothendieck group K µ̂
0 (U0) of µ̂-equivariant motives on

U0, and the motivic vanishing cycle MFmot,φ
U,f in the ring Mµ̂

X = K µ̂
0 (X)[L−1] with Tate motive

L = [A1] inverted. Here MFmot
U,f is the motivic analogue of the constructible complex of nearby

cycles ψf (QU ) ∈ Perv(U0) in [18], and MFmot,φ
U,f the motivic analogue of the perverse sheaf of

vanishing cycles PV•U,f = φf (QU [dimU − 1]) ∈ Perv(X) in [18] (at least when X ⊆ U0). The
fibre MFmot

U,f (x) of MFmot
U,f at x ∈ U0 is the motivic Milnor fibre of f at x from [31, 32, 120], the

algebraic analogue of the Milnor fibre MFf (x) at x of a holomorphic function f : U → C on a
complex manifold U .

In [25] we study MFmot
U,f . In [25, Thm. 4.2], we show that MFmot,φ

U,f ∈ Mµ̂
X depends only on

the third-order thickenings U (3), f (3) of U, f at X, where OU(3) = OU/I3
X , for IX ⊆ OU the ideal

of functions U → A1 vanishing on X, and f (3) = f |U(3) . We also show by example that U (2), f (2)

do not determine MFmot,φ
U,f .

Then, in [25, §3], we define a natural motive Υ(P ) ∈ Mµ̂
X for each principal Z2-bundle

P → X. As in Denef and Loeser [32] and Looijenga [120], there is a (non-obvious) commutative,

associative multiplication � on Mµ̂
X which appears in the motivic Thom–Sebastiani Theorem

[31,32,120]. Then we define a new ring of motivesMµ̂
Y for each K-scheme Y to be the quotient of(

Mµ̂
Y ,�

)
by the ideal generated by pushforwards φ∗

(
Υ(P⊗Z2Q)−Υ(P )�Υ(Q)

)
for all K-scheme

morphisms φ : X → Y and principal Z2-bundles P,Q→ X, and then Υ(P ⊗Z2 Q) = Υ(P )�Υ(Q)

holds in Mµ̂
X . Note that Kontsevich and Soibelman in [102, §4.5] defined the motivic rings

Mµ(X) in which their motivic Donaldson–Thomas invariants take values, imposing a relation

which implies that the motivic vanishing cycle MFmot,φ
E,q of a nondegenerate quadratic form q on a

vector bundle E → U depends only on the triple
(
rankE,ΛtopE,det q

)
. This implies our relation

Υ(P ⊗Z2 Q) = Υ(P )�Υ(Q). So Kontsevich and Soibelman’s ring Mµ(X) is a quotient of Mµ̂
X .

In [25, Thm. 4.4] we prove that if U, V are smooth K-schemes, f : U → A1, g : V → A1

are regular, X = Crit(f), Y = Crit(g), and Φ : U → V is an embedding with f = g ◦ Φ and

Φ|X : X → Y an isomorphism, then Φ|∗X
(
MFmot,φ

V,g

)
= MFmot,φ

U,f � Υ(PΦ) in Mµ̂
X , for PΦ → X

a principal Z2-bundle parametrizing orientations of the nondegenerate quadratic form Hess g on
NUV |X , with NUV → U the normal bundle of Φ(U) in V . The analogous result [18, Thm. 5.4] for
perverse sheaves of vanishing cycles PV•U,f , as above, says that Φ|∗X(PV•V,g) ∼= PV•U,f ⊗Z2 PΦ.

For these U, V, f, g,Φ, [87, Prop. 2.23] shows that étale locally on V we have equivalences
V ∼ U ×An identifying g ∼ f � z2

1 + · · ·+ z2
n and Φ ∼ idU × 0. So if we could work étale locally,

we would have

Φ|∗X
(
MFmot,φ

V,g

)
∼ (idX × 0)∗

(
MFmot,φ

U×An,f�z2
1+···+z2

n

)
= MFmot,φ

U,f �MFmot,φ
An,z2

1+···+z2
n

= MFmot,φ
U,f � 1{0} = MFmot,φ

U,f ,

using the motivic Thom–Sebastiani theorem in the second step. However, for motives we must
work Zariski locally, so we need a more complicated proof involving the (étale locally trivial)
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correction factor Υ(PΦ). In singularity theory, passing from f to f � z2
1 + · · · + z2

n is known as
stabilization, our result is about the behaviour of motivic vanishing cycles under stabilization.

Finally, we use that to prove [25, Thm. 5.10], which roughly says that if (X, s) is an algebraic

d-critical locus over K with an ‘orientation’, then we may define a natural motive MFX,s inMµ̂
X ,

such that if (X, s) is locally modelled on Crit(f : U → A1) then MFX,s is locally modelled on

MFmot,φ
U,f �Υ(P ), where P → X is a principal Z2-bundle relating the ‘orientations’ on (X, s) and

Crit(f).
The following are [25, Cor. 5.12, 5.13 & 5.14]:

Corollary Let (X, ω) be a −1-shifted symplectic derived scheme over K in the sense of Pantev
et al. [142], and X = t0(X) the associated classical K-scheme, assumed of finite type. Suppose
we are given a square root det(LX)|1/2X for det(LX)|X . Then we may define a natural motive

MFX,ω ∈Mµ̂
X .

Corollary Suppose Y is a Calabi–Yau 3-fold over K, and M is a finite type moduli K-scheme
of simple coherent sheaves in coh(Y ), with obstruction theory φ : E• → LM as in Thomas [167].
Suppose we are given a square root det(E•)1/2 for det(E•). Then we may define a natural motive

MFM ∈Mµ̂
M.

Kontsevich and Soibelman define a motive over Mα
st(τ), by associating a formal power series

to each (not necessarily closed) point, and taking its motivic Milnor fibre. The question of how
these formal power series and motivic Milnor fibres vary in families over the base Mα

st(τ) is not
really addressed in [102]. Our result answers this question, showing that Zariski locally inMα

st(τ)
we can take the formal power series and motivic Milnor fibres to all come from a regular function
f : U → A1 on a smooth K-scheme U . As before, the square root det(E•)1/2 required in Corollary
5.3.3 corresponds roughly to orientation data in Kontsevich and Soibelman [102, §5], [104].

Corollary Let (S, ω) be an algebraic symplectic manifold and L,M finite type algebraic La-
grangian submanifolds in S, and write X = L ∩M, as a subscheme of S. Suppose we are given

square roots K
1/2
L ,K

1/2
M for KL,KM . Then we may define a natural motive MFL,M ∈Mµ̂

X .

Generalization to symplectic derived stacks

In §6 we describe results obtained in [13], where we extend the results of [19], [18], [25] from
K-schemes to Artin K-stacks, using the notion of d-critical stack from [87]. Here is [13, Thm.
2.10]:

Theorem Let K be an algebraically closed field of characteristic zero, (X, ωX) a k-shifted sym-
plectic derived Artin K-stack as in [142] for k < 0, and p ∈ X(K) be a K-point of X. Then we
can construct the following data:

(a) Affine derived K-schemes U = SpecA, V = SpecB, where A,B are commutative differ-
ential graded K-algebras (cdgas) in degrees 6 0, of an explicit ‘standard form’ defined in
§3.

(b) A morphism of derived stacks ϕ : U = SpecA→X which is smooth of the minimal possible
relative dimension n = dimH1(LX |p).

(c) An inclusion ι : B ↪→ A of B as a dg-subalgebra of A, so that i = Spec ι : U → V is a
morphism of derived K-schemes. On classical schemes, i = t0(i) : U = t0(U)→ V = t0(V )
is an isomorphism.

(d) A K-point p̃ ∈ SpecH0(A) with ϕ(p̃) = p, such that the ‘standard form’ cdgas A,B have
the minimal possible numbers of generators dimHj(LU |p̃),dimHj(LV |i(p̃)) in each degree
j = 0,−1, . . . , k, k − 1.
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(e) An equivalence of relative (co)tangent complexes LU/V ' TU/X [1 − k]. Hence LU/V is a
vector bundle of rank n in degree k − 1.

(f) A k-shifted symplectic structure ωB = (ω0
B, 0, . . .) on V = SpecB which is in ‘Darboux

form’ in the sense of [19, §5] and §3, with ϕ∗(ωX) ∼ i∗(ωB) in k-shifted closed 2-forms on
U .

For example, if k = −2d − 1 for d = 0, 1, . . . then the ‘standard form’ and ‘Darboux form’
conditions above mean the following. The degree 0 part B0 of B is a smooth K-algebra of dimen-
sion m0, and we are given x0

1, . . . , x
0
m0
∈ B0 such that (x0

1, . . . , x
0
m0

) are étale coordinates on all
of V (0) = SpecB0. As a graded commutative algebra, B is freely generated over B0 by variables

x−i1 , . . . , x−imi in degree −i for i = 1, . . . , d,

yi−2d−1
1 , . . . , yi−2d−1

mi in degree i− 2d− 1 for i = 0, 1, . . . , d.

We have ω0
B =

d∑
i=0

mi∑
j=1

ddRy
i−2d−1
j ddRx

−i
j in (Λ2Ω1

B)−2d−1. The differential d on the cdga B

is db = {H, b} for b ∈ B, where { , } : B × B → B is the Poisson bracket defined using the
inverse of ω0

B, and H ∈ B−2d is a Hamiltonian function satisfying the classical master equation
{H,H} = 0. Also B ⊂ A, and A is freely generated as a graded commutative algebra over B by
additional variables w−2d−2

1 , . . . , w−2d−2
n in degree −2d− 2.

Theorem above says that given a k-shifted derived Artin stack (X, ωX) for k < 0, near each
p ∈ X we can find a smooth atlas ϕ : U → X with U = SpecA an affine derived scheme,
such that (U ,ϕ∗(ωX)) is in a standard ‘Darboux form’. Although (U ,ϕ∗(ωX)) is not k-shifted
symplectic, as ϕ∗(ωX) is not nondegenerate, we can build from (U ,ϕ∗(ωX)) in a natural way a
‘Darboux form’ k-shifted symplectic derived scheme(V , ωB), which is equivalent to (U ,ϕ∗(ωX))
except in degree k − 1.

The following are [13, Cor. 2.11 & Cor. 2.12]:

Corollary Let (X, ωX) be a −1-shifted symplectic derived Artin K-stack, and X = t0(X) the
corresponding classical Artin K-stack. Then for each p ∈ X there exist a smooth K-scheme U
with dimension dimH0

(
LX |p

)
, a point t ∈ U, a regular function f : U → A1 with ddRf |t = 0, so

that T := Crit(f) ⊆ U is a closed K-subscheme with t ∈ T, and a morphism ϕ : T → X which is
smooth of relative dimension dimH1

(
LX |p

)
, with ϕ(t) = p. We may take f |T red = 0.

Thus, the underlying classical stack X of a−1-shifted symplectic derived stack (X, ωX) admits
an atlas consisting of critical loci of regular functions on smooth schemes.

Now let Y be a Calabi–Yau 3-fold over K, andM a classical moduli stack of coherent sheaves
F on Y , or complexes F • in Db coh(Y ) with Ext<0(F •, F •) = 0. Then M = t0(M), for M the
corresponding derived moduli stack. The (open) condition Ext<0(F •, F •) = 0 is needed to make
M 1-geometric and 1-truncated (that is, a derived Artin stack, in our terminology); without
it, M,M would be a higher derived stack. Pantev et al. [142, §2.1] prove M has a −1-shifted
symplectic structure ωM. Applying the above Corollary and using H i

(
LM|[F ]

) ∼= Ext1−i(F, F )∗

yields a new result on classical 3-Calabi–Yau moduli stacks, the statement of which involves no
derived geometry:

Corollary Suppose Y is a Calabi–Yau 3-fold over K, and M a classical moduli K-stack of
coherent sheaves F, or more generally of complexes F • in Db coh(Y ) with Ext<0(F •, F •) = 0.
Then for each [F ] ∈M, there exist a smooth K-scheme U with dimU = dim Ext1(F, F ), a point
u ∈ U, a regular function f : U → A1 with ddRf |u = 0, and a morphism ϕ : Crit(f)→M which
is smooth of relative dimension dim Hom(F, F ), with ϕ(u) = [F ].
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This is an analogue of [19, Cor. 5.19]. When K = C, a related result for coherent sheaves only,
with U a complex manifold and f a holomorphic function, was proved by Joyce and Song [85,
Th. 5.5] using gauge theory and transcendental complex methods.

Here is [13, Thm. 3.18], a stack version of [19, Thm. 6.6]:

Theorem Let K be an algebraically closed field of characteristic zero, (X, ωX) a −1-shifted
symplectic derived Artin K-stack, and X = t0(X) the corresponding classical Artin K-stack.
Then there exists a unique d-critical structure s ∈ H0(S0

X) on X, making (X, s) into a d-critical
stack, with the following properties:

(a) Let U, f : U → A1, T = Crit(f) and ϕ : T → X be as in Corollary 6.1.5, with f |T red = 0.
There is a unique sT ∈ H0(S0

T ) on T with ιT,U (sT ) = i−1(f) + I2
T,U , and (T, sT ) is an

algebraic d-critical locus. Then s(T, ϕ) = sT in H0(S0
T ).

(b) The canonical bundle KX,s of (X, s) from Theorem 2.2.6 is naturally isomorphic to the
restriction det(LX)|Xred to Xred ⊆ X ⊆ X of the determinant line bundle det(LX) of the
cotangent complex LX of X.

We can think about it as defining a truncation functor

F :
{
∞-category of −1-shifted symplectic derived Artin K-stacks (X, ωX)

}
−→

{
2-category of d-critical stacks (X, s) over K

}
.

Let Y be a Calabi–Yau 3-fold over K, and M a classical moduli K-stack of coherent sheaves
in coh(Y ), or complexes of coherent sheaves in Db coh(Y ). There is a natural obstruction theory
φ : E• → LM on M, where E• ∈ Dqcoh(M) is perfect in the interval [−2, 1], and hi(E•)|F ∼=
Ext1−i(F, F )∗ for each K-point F ∈ M, regarding F as an object in coh(Y ) or Db coh(Y ). Now
in derived algebraic geometry M = t0(M) for M the corresponding derived moduli K-stack,
and φ : E• → LM is Lt0 : LM|M → LM. Pantev et al. [142, §2.1] prove M has a −1-shifted
symplectic structure ω. Thus we obtain [13, Cor. 3.19]:

Corollary Suppose Y is a Calabi–Yau 3-fold over K of characteristic zero, and M a classical
moduli K-stack of coherent sheaves F in coh(Y ), or complexes of coherent sheaves F • in Db coh(Y )
with Ext<0(F •, F •) = 0, with obstruction theory φ : E• → LM. Then M extends naturally to
an algebraic d-critical locus (M, s). The canonical bundle KM,s from Theorem 2.2.6 is naturally
isomorphic to det(E•)|Mred.

Here is [13, Cor. 4.13], the stack version of [18, Cor. 6.10]:

Corollary Let K be an algebraically closed field of characteristic zero, (X, ω) a −1-shifted sym-
plectic derived Artin K-stack, and X = t0(X) the associated classical Artin K-stack. Suppose we
are given a square root det(LX)|1/2X . Then working in l-adic perverse sheaves on stacks [13, §4] we
may define a perverse sheaf P̌ •X,ω on X uniquely up to canonical isomorphism, and Verdier dual-

ity and monodromy isomorphisms Σ̌X,ω : P̌ •X,ω → DX(P̌ •X,ω) and ŤX,ω : P̌ •X,ω → P̌ •X,ω. These are

characterized by the fact that given a diagram U = Crit(f : U → A1) V
ioo ϕ //X

such that U is a smooth K-scheme, ϕ smooth of dimension n, LV /U ' TV /X [2], ϕ∗(ωX) ∼
i∗(ωU ) for ωU the natural −1-shifted symplectic structure on U = Crit(f : U → A1), and

ϕ∗(det(LX)|1/2X ) ∼= i∗(KU ) ⊗ ΛnTV /X , then ϕ∗(P̌ •X,ω)[n], ϕ∗(Σ̌•X,ω)[n], ϕ∗(Ť•X,ω)[n] are canon-
ically isomorphic to i∗(PVU,f ), i∗(σU,f ), i∗(τU,f ), for PVU,f , σU,f , τU,f as in [13] . The same
applies in the other theories of perverse sheaves and D-modules on stacks.

Here is [13, Cor. 4.14], the stack version of [18, Cor. 6.11]:
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Corollary Let Y be a Calabi–Yau 3-fold over an algebraically closed field K of characteristic
zero, and M a classical moduli K-stack of coherent sheaves F in coh(Y ), or of complexes F • in
Db coh(Y ) with Ext<0(F •, F •) = 0, with obstruction theory φ : E• → LM. Suppose we are given a
square root det(E•)1/2. Then working in l-adic perverse sheaves on stacks [13, §4], we may define
a natural perverse sheaf P̌ •M ∈ Perv(M), and Verdier duality and monodromy isomorphisms
Σ̌M : P̌ •M → DM(P̌ •M) and ŤM : P̌ •M → P̌ •M. The pointwise Euler characteristic of P̌ •M is the
Behrend function νM of M from Joyce and Song [85, §4], so that P̌ •M is in effect a categorification
of the Donaldson–Thomas theory ofM. The same applies in the other theories of perverse sheaves
and D-modules on stacks.

Here is [13, Cor. 5.16], the stack version of [25, Cor. 5.12]:

Corollary Let (X, ω) be a −1-shifted symplectic derived Artin K-stack in the sense of Pantev et
al. [142], and X = t0(X) the associated classical Artin K-stack, assumed of finite type and locally

a global quotient. Suppose we are given a square root det(LX)|1/2X for det(LX)|X . Then we may

define a natural motive MFX,ω ∈Mst,µ̂
X , which is characterized by the fact that given a diagram

U = Crit(f : U → A1) V
ioo ϕ //X

such that U is a smooth K-scheme, ϕ is smooth of dimension n, LV /U ' TV /X [2], ϕ∗(ωX) ∼
i∗(ωU ) for ωU the natural −1-shifted symplectic structure on U = Crit(f : U → A1), and

ϕ∗(det(LX)|1/2X ) ∼= i∗(KU )⊗ ΛnTV /X , then ϕ∗(MFX,ω) = Ln/2 � i∗(MFmot,φ
U,f ) in Mst,µ̂

V .

Here is [13, Cor. 5.17], the stack version of [25, Cor. 5.13]:

Corollary Let Y be a Calabi–Yau 3-fold over K, and M a finite type classical moduli K-stack of
coherent sheaves in coh(Y ), with natural obstruction theory φ : E• → LM. Suppose we are given

a square root det(E•)1/2 for det(E•). Then we may define a natural motive MFM ∈Mst,µ̂
M .

This is relevant to Kontsevich and Soibelman’s theory of motivic Donaldson–Thomas invari-
ants [102]. Again, our square root det(E•)1/2 roughly coincides with their orientation data [102,
§5]. In [102, §6.2], given a finite type moduli stackM of coherent sheaves on a Calabi–Yau 3-fold

Y with orientation data, they define a motive
∫
M 1 in a ring Dµ isomorphic to our Mst,µ̂

K . We
expect this should agree with π∗(MFM) in our notation, with π : M → SpecK the projection.
This

∫
M 1 is roughly the motivic Donaldson–Thomas invariant ofM. Their construction involves

expressing M near each point in terms of the critical locus of a formal power series. Kontsevich
and Soibelman’s constructions were partly conjectural, and our results may fill some gaps in their
theory.

Donaldson–Thomas theory

Let K be an algebraically closed field of characteristic zero. A Calabi–Yau 3-fold is a smooth
projective 3-fold X over C or K, with trivial canonical bundle KX and H1(OX) = 0. Fix a
very ample line bundle OX(1) on X, and let τ be Gieseker stability on the abelian category of
coherent sheaves coh(X) on X with respect to OX(1). If E is a coherent sheaf on X then the class
[E] ∈ Knum(coh(X)) is in effect the Chern character ch(E) of E in the Chow ring A∗(X)Q as
in [46]. For a class α in the numerical Grothendieck group Knum(coh(X)), write Mα

ss(τ),Mα
st(τ)

for the coarse moduli schemes of τ -(semi)stable sheaves E with class [E] = α. Then Mα
ss(τ) is a

projective C or K-scheme whose points correspond to S-equivalence classes of τ -semistable sheaves,
and Mα

st(τ) is an open subscheme of Mα
ss(τ) whose points correspond to isomorphism classes of

τ -stable sheaves. Write M for the moduli stack of coherent sheaves E on X. It is an Artin C or
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K-stack, locally of finite type and has affine geometric stabilizers. For α ∈ Knum(coh(X)), write
Mα for the open and closed substack of E with [E] = α in Knum(coh(X)). Write Mα

ss(τ),Mα
st(τ)

for the substacks of τ -(semi)stable sheaves E in class [E] = α, which are finite type open substacks
of Mα.

In 1998, Thomas [167], following his proposal with Donaldson [36], motivates a holomor-
phic Casson invariant and defines the Donaldson–Thomas invariants DTα(τ) which are integers
‘counting’ τ -stable coherent sheaves with Chern character α on a Calabi–Yau 3-fold X over K,
where τ denotes Gieseker stability for some ample line bundle on X. Mathematically, and in
‘modern’ terms, he found that Mα

st(τ) is endowed with a symmetric obstruction theory and de-
fined

DTα(τ) =

∫
[Mα

st(τ)]vir

1

which is mathematical reflection of the heuristic that views Mα
st(τ) as the critical locus of the

holomorphic Chern-Simons functional and the shadow of a more deeper ‘derived’ geometry. A
crucial result is that the invariants are unchanged under deformations of the underlying geometry
of X. Finally we remark that the conventional definition of Thomas [167] works only for classes
α containing no strictly τ -semistable sheaves and this permits to work just with schemes rather
than stacks as the stable moduli scheme itself already encodes all the information about the Ext
groups, and thus about the tangent-obstruction complex of the moduli functor.

In 2005, Behrend [5] proved a virtual Gauss–Bonnet theorem which in particular yields that
Donaldson–Thomas type invariants can be written as a weighted Euler characteristic

DTα(τ) = χ
(
Mα

st(τ), νMα
st(τ)

)
of the stable moduli scheme Mα

st(τ) by a constructible function νMα
st(τ), as a consequence known

in literature as the Behrend function. It depends only on the scheme structure ofMα
st(τ), and it is

convenient to think about it as a multiplicity function. An important moral is that it is better to
‘count’ points in a moduli scheme by the weighted Euler characteristic rather than the unweighted
one as it often gives answers unchanged under deformations of the underlying geometry. It is worth
to point out that this equation is local, and ‘motivic’, and makes sense even for non-proper finite
type K-schemes. Anyway, using this formula to generalize the classical picture by defining the
Donaldson–Thomas invariants as χ

(
Mα

ss(τ), νMα
ss(τ)

)
when Mα

ss(τ) 6= Mα
st(τ) is not a good idea

as in the case there are strictly τ -semistable sheaves, the moduli schemeMα
ss(τ) is no more a good

model and suggest that schemes are no more ‘enough’ to extend the theory. The crucial work by
Behrend [5] suggests that Donaldson–Thomas invariants can be written as motivic invariants, like
those studied by Joyce in [75–80], and so it raises the possibility that one can extend the results
of [75–80] to Donaldson–Thomas invariants by including Behrend functions as weights.

Thus, in 2005, Joyce and Song [85] proposed a theory of generalized Donaldson–Thomas invari-
ants D̄Tα(τ). They are rational numbers which ‘count’ both τ -stable and τ -semistable coherent
sheaves with Chern character α on a compact Calabi–Yau 3-fold X over C; strictly τ -semistable
sheaves must be counted with complicated rational weights. The D̄Tα(τ) are defined for all classes
α, and are equal to DTα(τ) when it is defined. They are unchanged under deformations of X, and
transform by a wall-crossing formula under change of stability condition τ . The theory is valid
also for compactly supported coherent sheaves on compactly embeddable noncompact Calabi–Yau
3-folds in the complex analytic topology. To prove all this they study the local structure of the
moduli stack M of coherent sheaves on X. They first show that M is Zariski locally isomorphic to
the moduli stack Vect of algebraic vector bundles on X. Then they use gauge theory on complex
vector bundles and transcendental complex analytic methods to show that an atlas for M may be
written locally in the complex analytic topology as Crit(f) for f : U → C a holomorphic function
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on a complex manifold U . They use this to deduce identities on the Behrend function νM through
the Milnor fibre description of Behrend functions. These identities

νM(E1 ⊕ E2) = (−1)χ̄([E1],[E2])νM(E1)νM(E2),∫
[λ]∈P(Ext1(E2,E1)):
λ⇔ 0→E1→F→E2→0

νM(F ) dχ −
∫

[µ]∈P(Ext1(E1,E2)):
µ⇔ 0→E2→D→E1→0

νM(D) dχ = (e21 − e12) νM(E1 ⊕ E2),

where e21 = dim Ext1(E2, E1) and e12 = dim Ext1(E1, E2) for E1, E2 ∈ coh(X), are crucial for
the whole program of Joyce and Song, which is based on the idea that Behrend’s approach should
be integrated with Joyce’s theory [75–80]. As the proof uses gauge theory and transcendental
methods, it works only over C and forces them to put constraints on the Calabi–Yau 3-fold they
can define generalized Donaldson–Thomas invariants for. Finally, in [85, §4.5], when K = C,
the Chern character embeds Knum(coh(X)) in Heven(X;Q), and the Voisin Hodge conjecture
result [182] for Calabi–Yau over C completely characterize its image. They use this to show
Knum(coh(X)) is unchanged under deformations of X. This is important for the D̄Tα(τ) with
α ∈ Knum(coh(X)) to be invariant under deformations of X even to make sense.

In 2008 and 2010, with two subsequent papers [102, 104], Kontsevich and Soibelman also
studied generalizations of Donaldson–Thomas invariants, both in the direction of motivic and
categorified Donaldson–Thomas invariants. In [102], they proposed a very general version of
the theory, which, very roughly speaking, can be outlined saying that, supposing for the sake of
simplicity thatMα

st(τ) =Mα
ss(τ), their oversimplified idea is to define motivic Donaldson–Thomas

invariants DTαmot = Υ(Mα
st(τ), νmot), where νmot is a complicated constructible function which we

can refer to as the motivic Behrend function for a general motivic invariant Υ. Their construction
is closely related to Joyce and Song’s construction, even if they work in a more general context:
they consider derived categories of coherent sheaves, Bridgeland stability conditions, and general
motivic invariants, whereas Joyce and Song work with abelian categories of coherent sheaves,
Gieseker stability, and the Euler characteristic. However, the price to work in a more general
context is that most results depend on conjectures (motivic Behrend function identities, existence
of orientation data, absence of poles). In particular, Kontsevich and Soibelman’s parallel passages
of Joyce and Song’s proof of the Behrend function identities [102, §4.4 & §6.3] work over a field
K of characteristic zero, and say that the formal completion M̂[E] of M at [E] can be written in
terms of Crit(f) for f a formal power series on Ext1(E,E), with no convergence criteria. Their
analogue [102, Conj. 4], concerns the motivic Milnor fibre of the formal power series f . So the
Behrend function identities are related to a conjecture of Kontsevich and Soibelman [102, Conj. 4]
and its application in [102, §6.3], and could probably be deduced from it. Anyway, Joyce and
Song’s approach [85] is not wholly algebro-geometric – it uses gauge theory, and transcendental
complex analytic geometry methods. Therefore this method will not suffice to prove the parallel
conjectures in Kontsevich and Soibelman [102, Conj. 4], which are supposed to hold for general
fields K as well as C, and for general motivic invariants of algebraic K-schemes as well as for the
topological Euler characteristic. Recently, in 2012, Le Quy Thuong [112] provided a proof for this
conjecture using some deep high technology results from motivic integration.

Following Joyce and Song’s proposal, and using the machinery in [19, 87], we provide in §7
an extension of the theory of generalized Donaldson–Thomas invariants in [85] to algebraically
closed fields K of characteristic zero. Our argument provides the algebraic analogue of [85, Thm
5.5], [85, Thm 5.11] and [85, Cor. 5.28] which are enough to extend [85] at least for compact
Calabi–Yau 3-folds. Unfortunately, to extend the whole project to complexes of sheaves and to
compactly supported sheaves on a noncompact quasi-projective Calabi–Yau 3-fold, we would need
other results also from derived algebraic geometry which we do not have at the present. We hope
to come back on this point in a future work.



xix

We will show that an atlas for M near [E] ∈M(K) may be written locally in the étale topology
as the zero locus df−1(0) for a G-invariant regular function f defined on a étale neighborhood of
0 ∈ U(K) in the affine K-space Ext1(E,E), where G is a maximal torus of Aut(E).

Based on this picture, we give an algebraic proof of the Behrend function identities. We point
out that our approach is actually valid much more generally for any stack which is locally a global
quotient, and we actually do not use any particular properties of coherent sheaves on Calabi–Yau
3-folds. In the past, the author tried a picture in which the moduli stack of coherent sheaves was
locally described as a zero locus of an algebraic almost closed 1-form in the sense of [5], which
turned out later to be a wrong direction to follow.

Finally, we will study the deformation invariance properties of D̄Tα(τ) under changes of the
underlying geometry of X, characterizing a globally constant lattice containing the image through
the Chern character of Knum(coh(X)) and in which classes α vary.

The implications are quite exciting and far-reaching. Our algebraic method could lead to
the extension of generalized Donaldson–Thomas theory to the derived categorical context. The
plan to extend from abelian to derived categories the theory of Joyce and Song [85] starts by
reinterpreting the series of papers by Joyce [75–82] in this new general setup. We expect that a
well-behaved theory of invariants counting τ -semistable objects in triangulated categories in the
style of Joyce’s theory exists, and we hope to come back to it in a future work.

Categorifying complex Lagrangian intersections

Let (S, ω) be a complex symplectic manifold, i.e., a complex manifold S endowed with a
closed non-degenerate holomorphic 2-form ω ∈ Ω2

S . Denote the complex dimension of S by 2n.
A complex submanifold M ⊂ S is Lagrangian if the restriction of ω to a 2-form on M vanishes
and dimM = n. Let X = L ∩ M be the intersection as a complex analytic space. Then X
carries a canonical symmetric obstruction theory ϕ : E• → LX in the sense of [6], which can
be represented by the complex E• ' [T ∗S|X → T ∗L|X ⊕ T ∗M |X ] with T ∗S|X in degree −1 and
T ∗L|X ⊕ T ∗M |X in degree zero. Hence det(E•) ∼= KL|X ⊗ KM |X . Inspired by [102, §5.2] in
primis and then by [18, §2.4] and close to [87, §5.2], we will say that if we are given square roots

K
1/2
L ,K

1/2
M for KL,KM , then X has orientation data. In this case we will also say that L,M are

oriented Lagrangians, see Remark 8.1.4.
We start from well known facts from complex symplectic geometry. It is well established

that every complex symplectic manifold S is locally isomorphic to the cotangent bundle T ∗N of
a complex manifold N. The fibres of the induced vector bundle structure on S are Lagrangian
submanifolds, so complex analytically locally defining on S a foliation by Lagrangian submanifolds,
i.e., a polarization. The data of a polarization for us will be used as a way to describe locally in the
complex analytic topology the Lagrangian intersection X as a critical locus X ∼= Crit(f : U → C),
where f is a holomorphic function on a complex manifold U . One moral of this approach is that
every polarization defines a set of data for X which we will call a chart, by analogy with critical
charts defined by [87, §2.1], and thus the choice of a family of polarizations on a complex symplectic
manifold provides a family of charts which will be useful to defining some geometric structures
on them and consequently get a global object on X by gluing. This will become more clear later.
In conclusion, on each chart defined by the choice of a polarization, there is naturally associated
a perverse sheaf of vanishing cycles PV•U,f .

Now, a natural problem to investigate is the following. Given analytic open Ri, Rj ⊆ X with
isomorphisms Ri ∼= Crit(fi), Rj ∼= Crit(fj) for holomorphic fi : Ui → C and fj : Uj → C, we have
to understand whether the perverse sheaves P•Ri = PV•Ui,fi on Ri and P•Rj = PV•Uj ,fj on Rj are
isomorphic over Ri ∩ Rj , and if so, whether the isomorphism is canonical, for only then can we
hope to glue the P•Ri for i ∈ I to make P•L,M . Studying these issues led to this project.
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Our approach was inspired by a work of Behrend and Fantechi [8]. They also investigated
Lagrangian intersections in complex symplectic manifolds, but their project is probably more
ambitious, as they show the existence of deeply interesting structures carried by the intersection.
Unfortunately, their construction has some crucial mistakes. Our project started exactly with the
aim to fix them and develop then an independent theory. In the meantime, the author worked
with other collaborators on the large project [18,19,25] discussed also above, involving Lagrangian
intersections too, but our methods here want to be self contained and independent from that. In
particular, the analogue of our theorem below for algebraic symplectic manifolds and algebraic
manifolds follows from [18,19,142], but the complex analytic case is not available in [19,142].

In §8.2 we will state and prove the following result:

Theorem Let (S, ω) be a complex symplectic manifold and L,M oriented complex Lagrangian
submanifolds in S, and write X = L ∩M, as a complex analytic subspace of S. Then we may
define P •L,M ∈ Perv(X), uniquely up to canonical isomorphism, and isomorphisms ΣL,M : P •L,M →
DX(P •L,M ), TL,M : P •L,M → P •L,M , respectively the Verdier duality and the monodromy isomor-
phisms. These P •L,M ∈ Perv(X),ΣL,M ,TL,M are characterized by the following property.

Given a choice of local Darboux coordinates (x1, . . . , xn, y1, . . . , yn) in the sense of Definition
8.1.1 such that L is locally identified in coordinates with the graph Γdf(x1,...,xn) of df for f a
holomorphic function defined locally on an open U ⊂ Cn, and M is locally identified in coordinates
with the graph Γdg(x1,...,xn) of dg for g a holomorphic function defined locally on U , and the

orientations K
1/2
L ,K

1/2
M are the trivial square roots of KL

∼= 〈dx1 ∧ · · · ∧ dxn〉 ∼= KM , then
P •L,M

∼= PV•U,g−f , where PV•U,g−f is the perverse sheaf of vanishing cycles of g− f, and ΣL,M and
TL,M are respectively the Verdier duality σU,g−f and the monodromy τU,g−f introduced in §1.3.
The same applies for D-modules and mixed Hodge modules on X.

Here is a sketch of the method of proof, given in detail in §8.2.1–8.2.3.
Given (S, ω) a complex symplectic manifold we want to construct a global perverse sheaf

P •L,M ∈ Perv(X), by gluing together local data coming from choices of polarizations by isomor-
phisms. We consider an open cover {Si}i∈I of S and polarizations πi : Si → Ei, always assumed
to be transverse to both the Lagrangians L and M. We use the following method:

(i) For each polarization πi : Si → Ei transverse to both the Lagrangian submanifolds L and M ,
we define a perverse sheaf of vanishing cycle PV•fi , naturally defined on the chart induced
by the choice of a polarization. and a principal Z2-bundle Qfi , which roughly speaking

parametrizes isomorphisms K
1/2
L
∼= K

1/2
M compatible with πi.

(ii) For two such polarizations Ei and Ej , transverse to each other, and to both the Lagrangians,
we have a way to define two perverse sheaves of vanishing cycles, PV•fi and PV•fj , again with
principal Z2-bundles, each of them parametrizing choices of square roots of the canonical
bundles of L ∼= Γdfi and M ∼= Γdfj . In this case we find an isomorphism Ψij on double
overlap Si ∩ Sj between PV•fi ⊗Z2 Qfi and PV•fj ⊗Z2 Qfj .

(iii) For four such polarizations Ei, Ej , Ek and El with Ei not necessarily transverse to Ek, we
obtain equality between Ψij ◦Ψjk and Ψil ◦Ψlk on Si ∩ Sj ∩ Sk ∩ Sl.
As perverse sheaves form a stack, there exists P •L,M on X, unique up to canonical isomor-
phism, with P •L,M |Si ∼= PV

•
fi
⊗Z2 Qfi , for all i ∈ I.

Our perverse sheaf P •L,M categorifies Lagrangian intersection numbers, in the sense that the
constructible function

p→
∑
i

(−1)i dimCHi
{p}(X,P

•
L,M ),



xxi

is equal to the well known Behrend function νX in [5] by construction, using the expression of the
Behrend function of a critical locus in terms of the Milnor fibre, as in [5], and so

χ(X, νX) =
∑
i

(−1)i dimCHi(X,P •L,M ).

This resolves a long-standing question in the categorification of Lagrangian intersection num-
ber, and it may have exciting far reaching consequences in symplectic geometry and topologi-
cal field theory. In [89], Kapustin and Rozansky study boundary conditions and defects in a
three-dimensional topological sigma-model with a complex symplectic target space, the Rozansky-
Witten model. They conjecture the existence of an interesting 2-category, the 2-category of bound-
ary conditions. Their toy model for symplectic manifold is a cotangent bundle of some manifold.
In this case, this category is related to the category of matrix factorizations [139]. Thus, we
strongly believe that constructing a sheaf of Z2-periodic triangulated categories on Lagrangian
intersection would yield an answer to their conjecture. In the language of categorification, this
would give a second categorification of the intersection numbers, the first being given by the hyper-
cohomology of the perverse sheaf constructed in the present work. Also, this construction should
be compatible with the Gerstenhaber and Batalin–Vilkovisky structures in the sense of [4, Conj.
1.3.1].

Our second main result proved in §8.3 constitutes another bridge between our work and
[18, 19, 87]. Pantev et al. [142] show that derived intersections L ∩M of algebraic Lagrangians
L,M in an algebraic symplectic manifold (S, ω) have −1-shifted symplectic structures, so that
Theorem 6.6 in [18] gives them the structure of algebraic d-critical loci in the sense of [87]. Our
second main result shows a complex analytic version of this, which is not available from [19,142],
that is, the classical intersection L ∩M of complex Lagrangians L,M in a complex symplectic
manifold (S, ω) has the structure of an (oriented) complex analytic d-critical locus.

Theorem Suppose (S, ω) is a complex symplectic manifold, and L,M are (oriented) complex
Lagrangian submanifolds in S. Then the intersection X = L∩M, as a complex analytic subspace
of S, extends naturally to a (oriented) complex analytic d-critical locus (X, s). The canonical
bundle KX,s in the sense of [87, §2.4] is naturally isomorphic to KL|Xred ⊗KM |Xred.

It would be interesting to prove an analogous version of this also for a class of ‘derived La-
grangians’ in (S, ω). Some of the authors of [18] are working on defining a ‘Fukaya category’ of
(derived) complex Lagrangians in a complex symplectic manifold, using H∗(P •L,M ) as morphisms.



Chapter 1

Background material

This chapter contains the basic well established material needed to state our results in the following
chapters. Expert readers can skip it.

1.1 Commutative differential graded algebras

In this section we introduce general definitions and conventions from classical algebraic geometry.
We call it classical to distinguish it from the most recent theory of derived algebraic geometry.
We start by reviewing some definitions and notations from [19, §2].

Definition 1.1.1. A commutative graded algebra A over K concentrated in non-positive degrees is
an algebra A with a decomposition A =

⊕
i60A

i and an associative product m : Ai ⊗Aj → Ai+j

satisfying fg = (−1)|f ||g|gf for homogeneous elements f, g ∈ A.
Define a derivation of degree k from A to a graded module M to be a K-linear map δ :

A → M that is homogeneous of degree k and satisfies δ(fg) = δ(f)g + (−1)k|f |fδ(g). There
is a universal derivation into a module of Kähler differentials Ω1

A, which can be constructed as
I/I2 for I = Ker(m : A ⊗ A → A). The universal derivation δ : A → Ω1

A is then computed as
δ(a) = a⊗ 1− 1⊗ a ∈ I/I2.

In the particular case when M = A one sometimes refers to a derivation X : A→ A of degree
k as a vector field of degree k. Define the graded Lie bracket of two homogeneous vector fields
X,Y by [X,Y ] := XY − (−1)|X||Y |Y X. On any commutative graded algebra, there is a canonical
degree 0 Euler vector field E which acts on a homogeneous element f ∈ A via E(f) = |f |f .

Define the de Rham algebra of A to be the free commutative graded algebra over A on the
graded module Ω1

A[1]:

DR(A) := SymA(Ω1
A[1]) =

⊕
p

ΛpΩ1
A[p]. (1.1.1)

We endow DR(A) with the de Rham operator ddR, which is the unique square-zero derivation of
degree −1 on the commutative graded algebra DR(A) such that for f ∈ A, ddR(f) = δ(f)[1] ∈
Ω1
A[1]. Thus ddR(fg) = ddR(f)g + (−1)|f |f ddR(g) for f, g ∈ A and ddR(α · β) = ddR(α)β +

(−1)|α|αddR(β) for any two α, β ∈ DR(A). The de Rham algebra DR(A) has two gradings,
one induced by the grading on A and on the module Ω1[1] and the other given by p in the
decomposition DR(A) := SymA(Ω1

A[1]) ∼=
⊕

p ΛpΩ1
A[p]. We shall refer to the first grading as

degree and the second grading as weight. Thus the de Rham operator ddR has degree −1 and
weight +1.

Definition 1.1.2. Given a homogeneous vector field X on A of degree |X|, the contraction
operator ιX on DR(A) is defined to be the unique derivation of degree |X|+ 1 such that ιXf = 0
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and ιXddR(f) = X(f) for all f ∈ A. We define the Lie derivative LX along a vector field X by

LX = [ιX , ddR] = ιXddR − (−1)|X|+1ddRιX = ιXddR + (−1)|X|ddRιX .

It is a derivation of DR(A) of degree |X|. In particular, the Lie derivative along E is of degree 0.
Given f ∈ A, and a homogeneous form α ∈ ΛpΩ1

A[p], we have

LEf = ιEddRf = E(f) = |f |f, LEddRf = |f |ddRf, LEα = ιEddRα+ ddRιEα = (|α|+ p)α.

Note that a de Rham closed form α can fail to be exact only if it lives on A0 ⊂ A.

Given X,Y homogeneous vector fields on A, we have the following equalities of derivations:

[ddR, LX ] = 0, [ιX , ιY ] = 0, [LX , ιY ] = ι[X,Y ], [LX , LY ] = L[X,Y ] on DR(A).

Definition 1.1.3. A commutative differential graded algebra or cdga (A,d) is a commutative
graded algebra A over K, endowed with a square-zero derivation d of degree 1. Usually we write
A rather than (A, d), leaving d implicit. Note that the cohomology H∗(A) of A with respect to
the differential d is a commutative graded algebra.

Definition 1.1.4. Let (A, d) be a cdga. Then as in Definition 1.1.1, to the underlying commu-
tative graded algebra A we associate the module of Kähler differentials Ω1

A with universal degree
0 derivation δ : A → Ω1

A, and the de Rham algebra DR(A) = SymA

(
Ω1
A[1]

)
in (1.1.1), with

degree −1 de Rham differential ddR : DR(A)→ DR(A). The differential d on A induces a unique
differential on Ω1

A, also denoted d, satisfying d ◦ δ = δ ◦ d : A → Ω1
A, and making (Ω1

A, d) into a
dg-module. Moreover, d on Ω1

A[1] anti-commutes with the de Rham operator ddR : A → Ω1[1].
We extend the differential d uniquely to all of DR(A) by requiring it to be a derivation of degree
1 with respect to the multiplication on DR(A). We will basically work with (A,d) for which the
Kähler differentials (Ω1

A, d) give a model for the cotangent complex L(A,d) of (A,d), and we will
basically identify L(A,d) and (Ω1

A,d).
Similarly, given a map A→ B of cdgas, we can define the relative Kähler differentials Ω1

B/A,

and when the map A → B is nice enough (for example, B is obtained from A adding free
generators of some degree and imposing a differential, as in [19, Ex. 2.8]), then the relative
Kähler differentials give a model for the relative cotangent complex LB/A.

1.2 Derived algebraic geometry

We give a brief sketch on Toën and Vezzosi’s derived algebraic geometry [171–175], and Pantev,
Toën, Vaquié and Vezzosi’s theory of k-shifted symplectic structures on derived schemes and
stacks [142, 179], which is central to our program. Following our principal reference [142], we
prefer to use the Toën–Vezzosi version, instead of the Lurie one [121,122]. Our slogan will be that
a derived K-scheme is a geometric space locally modelled on SpecA for A a cdga over K, just as
a classical K-scheme is a space locally modelled on SpecA for A a commutative K-algebra. We
refer to [13,19] for more details.

1.2.1 Derived schemes and stacks

Fix an algebraically closed base field K, of characteristic zero. Toën and Vezzosi define the ∞-
category dStK of derived K-stacks (or D−-stacks) [175, Def. 2.2.2.14], [173, Def. 4.2]. All derived
K-stacks X in this paper are assumed to be locally finitely presented. There is a spectrum functor

Spec : {commutative differential graded K-algebras, degrees 6 0} −→ dStK .
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All cdgas will be in degrees 6 0. A derived K-stack X is called an affine derived K-scheme if
X is equivalent in dStK to SpecA for some cdga A over K. As in [173, §4.2], a derived K-stack
X is called a derived K-scheme if it may be covered by Zariski open Y ⊆ X with Y an affine
derived K-scheme. Write dSchK for the full ∞-subcategory of derived K-schemes in dStK.

We call a derived K-stack X a derived Artin K-stack if it is m-geometric for some m [175,
Def. 1.3.3.1] and the underlying classical stack is 1-truncated (that is, just a stack, not a higher
stack). Any such X admits a smooth surjective morphism ϕ : U →X, an atlas, with U a derived
K-scheme. Write dArtK for the full ∞-subcategory of derived Artin K-stacks in dStK. Then
dSchK⊂dArtK⊂dStK.

Write SchK for the category of K-schemes X, and ArtK for the 2-category of Artin K-stacks
X. By an abuse of notation we regard SchK as a discrete 2-subcategory of ArtK, so that SchK ⊂
ArtK. As in [175, Prop. 2.1.2.1], there is an inclusion functor i : ArtK → dArtK mapping
SchK → dSchK, and a classical truncation functor t0 : dArtK → ArtK mapping dSchK → SchK.

A derived Artin K-stack X has a cotangent complex LX of finite cohomological amplitude
[−m, 1] and a dual tangent complex TX [175, §1.4], [173, §4.2.4–§4.2.5] in a stable ∞-category
Lqcoh(X) defined in [173, §3.1.7, §4.2.4]. When X is a classical scheme or stack, then the homotopy
category of Lqcoh(X) is nothing but the triangulated category Dqcoh(X). These have the usual
properties of (co)tangent complexes. For instance, if f : X → Y is a morphism in dArtK there
is a distinguished triangle

f∗(LY )
Lf // LX

// LX/Y
// f∗(LY )[1], (1.2.1)

where LX/Y is the relative cotangent complex of f . Here f is smooth of relative dimension n if
and only if LX/Y is locally free of rank n, and f is étale if and only if LX/Y = 0. See [19, §3.3]
for a complete list of properties of cotangent complexes used in our results.

Now suppose A is a cdga over K, and X a derived K-scheme with X ' SpecA in dSchK.
Then we have an equivalence of triangulated categories Lqcoh(X) ' D(modA), where D(modA)
is the derived category of dg-modules over A. This equivalence identifies cotangent complexes
LX ' LA. If A is of standard form as §3.1 the Kähler differentials Ω1

A are a model for LA in
D(modA), and in §3 we will give a simple explicit description of Ω1

A. Thus, if X is a derived
K-scheme with X ' SpecA for A a standard form cdga, we can understand LX well. We will use
this to do computations with k-shifted p-forms and k-shifted closed p-forms on X, as in §1.2.2.

1.2.2 Shifted symplectic structures

Let X be a derived stack. Pantev, Toën, Vaquié and Vezzosi [142] defined k-shifted p-forms,
k-shifted closed p-forms, and k-shifted symplectic structures on X, for k ∈ Z and p > 0. One first
defines these notions on derived affine schemes and then defines the general notions by smooth
descent. Since our main theorems are statements about the local structure of derived schemes
and stacks endowed with shifted symplectic forms, it suffices for us to describe the affine case.
The basic idea is this:

(a) Define the exterior powers ΛpLX in Lqcoh(X) for p = 0, 1, . . . . Regard ΛpLX as a complex,
with differential d:

· · · d // (ΛpLX)k−1 d // (ΛpLX)k
d // (ΛpLX)k+1 d // · · · .

Then a k-shifted p-form, or p-form of degree k, is an element ω0 of (ΛpLX)k with dω0 = 0.
Mostly we are interested in the cohomology class [ω0] ∈ Hk(ΛpLX).

(b) There are de Rham differentials ddR : ΛpLX → Λp+1LX with ddR ◦ ddR = d ◦ ddR + ddR ◦
d = 0. Then a k-shifted closed p-form, or closed p-form of degree k, is a sequence ω =
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(ω0, ω1, ω2, . . .) with ωi in (Λp+iLX)k−i for i > 0, satisfying dω0 = 0 and ddRω
i+ dωi+1 = 0

for i = 0, 1, . . . . That is, ω = (ω0, ω1, ω2, . . .) is a k-cycle in the negative cyclic complex

(( ∞∏
i=0

(Λp+iLX)k−i
)
k∈Z,d + ddR

)
.

Mostly we are interested in the cohomology class [ω] = [ω0, ω1, . . .] in the cohomology of
this complex. We will write ω ∼ ω′ if ω, ω′ are k-shifted closed p-forms with the same
cohomology class [ω] = [ω′]. There is a map (ω0, ω1, ω2, . . .) 7→ ω0 from k-shifted closed
p-forms to k-shifted p-forms.

(c) A 2-form ω0 of degree k on X induces a morphism ω0 : TX → LX [k] in Lqcoh(X). We call
ω0 nondegenerate if ω0 : TX → LX [k] is an equivalence. A closed 2-form ω of degree k on
X for k ∈ Z is called a k-shifted symplectic structure if the corresponding 2-form ω0 = π(ω)
is nondegenerate.

The families (simplicial sets) of p-forms and of closed p-forms of degree k on X are written

ApK(X, k) and Ap,cl
K (X, k), respectively. There is a morphism π : Ap,cl

K (X, k)→ ApK(X, k), which
is in general neither injective nor surjective. In [142, Def. 1.7], Pantev et al. define a simplicial
set ApK(X, k) of p-forms of degree k ∈ Z on the derived K-scheme X = SpecA by

ApX(Y, k) =
∣∣ΛpLA[k]

∣∣. (1.2.2)

As explained above, in our case we may take ΛpLA = ΛpΩ1
A. Thus (1.2.2) yields

π0

(
ApK(X, k)

) ∼= Hk
(
ΛpΩ1

A,d
)

= Hk−p(ΛpΩ1
A[p],d

)
. (1.2.3)

So, (connected components of the simplicial set of) p-forms of degree k onX are just k-cohomology
classes of the complex

(
ΛpΩ1

A,d
)
. We prefer to deal with explicit representatives, rather than

cohomology classes. The definition of the simplicial set Ap,cl
K (X, k) of closed p-forms of degree

k ∈ Z on X = SpecA in Pantev et al. [142, Def. 1.7] yields

Ap,cl
K (X, k) =

∣∣ ∏
i>0

Λp+iLA[k − i]
∣∣. (1.2.4)

In our case we may take Λp+iLA[k − i] = Λp+iΩ1
A[k − i]. Thus, as for (1.2.2)–(1.2.3), equation

(1.2.4) implies that

π0

(
Ap,cl

K (X, k)
) ∼= H0

(∏
i>0

Λp+iΩ1
A[k − i],d + ddR

)
= Hk

(∏
i>0

Λp+iΩ1
A[−i],d + ddR

)
.

If a derived K-scheme X has a 0-shifted symplectic structure then X is a smooth K-scheme X
with a classical symplectic structure. Pantev et al. [142] construct k-shifted symplectic structures
on several classes of derived moduli stacks. If Y is a Calabi–Yau m-fold and M a derived moduli
stack of coherent sheaves or perfect complexes on Y , then M has a (2 −m)-shifted symplectic
structure. We are particularly interested in the case m = 3, so k = −1.

1.3 Perverse sheaves on schemes and stacks

Next, we review the theory of perverse sheaves on schemes §1.3.1 and stacks §1.3.2. Perverse
sheaves, and the related theories of D-modules and mixed Hodge modules, make sense in several
contexts, both algebraic and complex analytic: perverse sheaves on C-schemes [12, 34] and on
complex analytic spaces [34] with coefficients in a ring A (usually Z,Q or C), D-modules on
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C-schemes [16] and on complex analytic spaces [15, 155], perverse sheaves on K-schemes with
coefficients in Z/lnZ, Zl, Ql, or Q̄l for l 6= charK 6= 2 a prime [12], D-modules on K-schemes for
K an algebraically closed field [15], mixed Hodge modules on C-schemes, and on complex analytic
spaces [152,154]. Perverse sheaves are easiest to define, and have the nicest properties, for schemes
X over C, since then one can make use of the complex analytic topology. We follow [13, §2],
that is why we decided to focus more on those for this brief introduction on the subject. A
good introductory reference on perverse sheaves on C-schemes and complex analytic spaces is
Dimca [34]. Three other books are Kashiwara and Schapira [90], Schürmann [157], and Hotta,
Tanisaki and Takeuchi [67]. Massey [126] and Rietsch [146] are surveys on perverse sheaves, and
Beilinson, Bernstein and Deligne [12] is an important primary source, who cover both Q-perverse
sheaves on C-schemes, and Ql-perverse sheaves on K-schemes. An introduction to perverse sheaves
on schemes and to related theories mentioned above, suited to our purposes, can be found in [18, §2]
and [19, §4].

1.3.1 Perverse sheaves on C-schemes and K-schemes

Definition 1.3.1. Let X be a C-scheme (always assumed separated and of finite type) and A a
well-behaved commutative base ring, usually A = Z,Q or C. Write Xan for the set of C-points
of X with the complex analytic topology. Consider sheaves of A-modules S on Xan. A sheaf S
is called constructible if all the stalks Sx for x ∈ Xan are finite type A-modules, and there is a
locally finite stratification Xan =

∐
j∈J

Xan
j of Xan, where Xj ⊆ X for j ∈ J are C-subschemes of

X and Xan
j ⊆ Xan the corresponding subsets of C-points, such that S|Xan

j
is an A-local system

for all j ∈ J .
Write D(X) for the derived category of complexes C• of sheaves of A-modules on Xan. Write

Db
c(X) for the full subcategory of bounded complexes C• in D(X) whose cohomology sheaves
Hm(C•) are constructible for all m ∈ Z. Then D(X), Db

c(X) are triangulated categories. An
example of a constructible complex on X is the constant sheaf AX on X with fibre A at each
point.

Grothendieck’s “six operations on sheaves” f∗, f !, Rf∗, Rf!,RHom,
L

⊗ act on D(X) preserving
the subcategory Db

c(X). There is a functor DX : Db
c(X)→ Db

c(X)op with DX◦DX ∼= id : Db
c(X)→

Db
c(X), called Verdier duality. It reverses shifts, that is, DX

(
C•[k]

)
=
(
DX(C•)

)
[−k] for C• in

Db
c(X) and k ∈ Z.

For each x ∈ Xan, let ix : ∗ → X map ix : ∗ 7→ x. If C• ∈ Db
c(X), then the support suppm C•

and cosupport cosuppm C• of Hm(C•) for m ∈ Z are

suppm C• =
{
x ∈ Xan : Hm(i∗x(C•)) 6= 0

}
, cosuppm C• =

{
x ∈ Xan : Hm(i!x(C•)) 6= 0

}
,

where {· · · }means the closure inXan. We call C• perverse, or a perverse sheaf, if dimC supp−m C•6m
and dimC cosuppm C•6m for all m ∈ Z. Write Perv(X) for the full subcategory of perverse sheaves
in Db

c(X). Then Perv(X) is an abelian category, the heart of a t-structure on Db
c(X).

Next we recall Definition 4.2 from [13], where we extend Definition 1.3.1 to K-schemes X
over fields K 6= C. Then the complex analytic topology is not available, and the best we
can do is the étale topology. Finding good definitions of D(X), Db

c(X),Perv(X) turns out to
depend strongly on the base ring A, so we temporarily include A in our notation, writing
D(X,A), Db

c(X,A),Perv(X,A). The primary source is Beilinson, Bernstein and Deligne [12],
and useful references are Ekedahl [42], Freitag and Kiehl [43], and Kiehl and Weissauer [96].

Definition 1.3.2. Let K be an algebraically closed field with charK 6= 2, and X a K-scheme
(always assumed separated and of finite type). Then:
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(a) If A is a commutative ring with finite characteristic charA > 0 coprime to charK, then we
can define D(X,A) to be the derived category of sheaves of A-modules on X in the étale
topology, and Db

c(X,A) to be the full subcategory of bounded complexes with constructible
cohomology. This works in particular for A = Z/lnZ, with l a prime coprime to charK.

(b) Let l be a prime coprime to charK. The ring of l-adic integers Zl are Zl = lim←−nZ/l
nZ. It has

characteristic zero. We define Db
c(X,Zl) = lim←−nD

b
c(X,Z/lnZ), for Db

c(X,Z/lnZ) as in (a).

Objects of Db
c(X,Zl) are projective systems of Z/lnZ-sheaves on X in the étale topology.

(c) The l-adic rationals Ql is the field of fractions of Zl. We define Db
c(X,Ql) = Db

c(X,Zl)⊗ZlQl.
That is, objects P•,Q• of Db

c(X,Ql) are objects of Db
c(X,Zl), and HomDbc(X,Ql)(P

•,Q•) =
HomDbc(X,Zl)(P

•,Q•)⊗Zl Ql.

(d) The algebraic closure Q̄l of Ql is noncanonically isomorphic to C. We define Db
c(X, Q̄l) =

lim←−ED
b
c(X,E), where the limit is over finite field extensions E of Ql in Q̄l.

As in [12, 42, 43, 96], in each case the same package of properties as perverse sheaves over C-
schemes has been developed, including Grothendieck’s six operations f∗, f !, Rf∗, Rf!,RHom,

L

⊗
and Verdier duality DX , and an abelian category of perverse sheaves Perv(X,A) ⊂ Db

c(X,A)
which is the heart of a t-structure. We will refer to case (a) as perverse sheaves with finite
coefficients, and cases (b)–(d) as perverse sheaves with l-adic coefficients.

The rest of this section works for perverse sheaves over C-schemes and K-schemes, with co-
efficients in A, and we will not distinguish the two; by ‘X is a scheme’ we mean either X is a
C-scheme or X is a K-scheme.

Definition 1.3.3. Let U be a smooth scheme and f : U → A1 a regular function, and write U0 for
the subscheme f−1(0) ⊆ U . Then we can define the (shifted) nearby cycle functor ψpf : Db

c(U)→
Db
c(U0) and the (shifted) vanishing cycle functor φpf : Db

c(U) → Db
c(U0). Both map Perv(U) →

Perv(U0). The shift AU [dimU ] of the constant sheaf AU is perverse, so φpf (AU [dimU ]) ∈ Perv(U0).
Write X = Crit(f). Then f |Xred is locally constant on X, so we have a decomposition

X =
∐

c∈f(X)

Xc, where Xc ⊆ X is the open and closed subscheme of points p ∈ X with f(p) = c.

It turns out that φpf (AU [dimU ]) is supported on X0 ⊆ X ⊆ U . Define the perverse sheaf of

vanishing cycles PV•U,f of U, f in Perv(X) or Perv(U) to be PV•U,f =
⊕

c∈f(X)

φpf−c(AU [dimU ])|Xc .

Using an isomorphism DU (AU ) ∼= AU [2 dimU ] and a compatibility between φpf and DU ,DU0 ,

in [18, §2.4] we define a canonical Verdier duality isomorphism σU,f : PV•U,f
∼=−→DX

(
PV•U,f

)
.

There are monodromy natural transformations MU,f : ψpf ⇒ ψpf and MU,f : φpf ⇒ φpf , and

using these in [18, §2.4] we define the twisted monodromy operator τU,f : PV•U,f
∼=−→PV•U,f .

Here are some results connecting perverse sheaves and smooth morphisms [13, Prop.s 4.4 &
4.6, Thm. 4.5]. Theorem 1.3.5 (proved in [12, Th. 3.2.4], see also [106, §2.3]) is crucial in our
program [13, 18], and it is the reason why perverse sheaves extend to Artin stacks. In [18, Thm.
2.6], we give a version of Theorem 1.3.5 in the étale topology. The analogue for Db

c(X) or D(X)
rather than Perv(X) is false. One moral is that perverse sheaves behave like sheaves, rather than
like complexes.

Proposition 1.3.4. Let Φ : X → Y be a scheme morphism smooth of relative dimension d. Then
the (exceptional) inverse image functors Φ∗,Φ! : Db

c(Y ) → Db
c(X) satisfy Φ∗[d] ∼= Φ![−d], where

Φ∗[d],Φ![−d] are Φ∗,Φ! shifted by ±d. Furthermore Φ∗[d],Φ![−d] map Perv(Y )→ Perv(X).
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Theorem 1.3.5. Let X be a scheme. Then perverse sheaves on X form a stack (a kind of
sheaf of categories) on X in the smooth topology. Explicitly, this means the following. Let
{ui : Ui → X}i∈I be a smooth open cover for X, so that ui : Ui → X is a scheme morphism
smooth of relative dimension di for i ∈ I, with

∐
i ui surjective. Write Uij = Ui ×ui,X,uj Uj for

i, j ∈ I with projections

πiij : Uij −→ Ui, πjij : Uij −→ Uj , uij =ui ◦ πiij =uj ◦ πjij : Uij−→X.

Similarly, write Uijk = Ui×XUj×XUk for i, j, k ∈ I with projections

πijijk : Uijk −→ Uij , πikijk : Uijk −→ Uik, πjkijk : Uijk −→ Ujk,

πiijk : Uijk → Ui, π
j
ijk : Uijk → Uj , π

k
ijk : Uijk → Uk, uijk : Uijk → X,

so that πiijk = πiij◦π
ij
ijk, uijk = uij◦πijijk = ui◦πiijk, and so on. All these morphisms ui, π

i
ij , . . . , uijk

are smooth of known relative dimensions, so u∗i [di]
∼= u!

i[−di] maps Perv(X) → Perv(Ui) by
Proposition 1.3.4, and similarly for πiij , . . . , uijk. With this notation:

(i) Suppose P•,Q• ∈ Perv(X), and we are given αi : u∗i [di](P•)→ u∗i [di](Q•) in Perv(Ui) for all
i ∈ I such that for all i, j ∈ I we have

(πiij)
∗[dj ](αi) = (πjij)

∗[di](αj) : u∗ij [di + dj ](P•) −→ u∗ij [di + dj ](Q•).

Then there is a unique α : P• → Q• with αi = u∗i [di](α) for all i ∈ I.

(ii) Suppose we are given P•i ∈ Perv(Ui) for all i ∈ I and isomorphisms αij : (πiij)
∗[dj ](P•i ) →

(πjij)
∗[di](P•j ) in Perv(Uij) for all i, j ∈ I with αii = id and

(πjkijk)
∗[di](αjk) ◦ (πijijk)

∗[dk](αij) = (πikijk)
∗[dj ](αik) : (πiijk)

∗[dj + dk](P i) −→ (πkijk)
∗[di + dj ](Pk)

in Perv(Uijk) for all i, j, k ∈ I. Then there exists P• in Perv(X), unique up to canonical isomor-

phism, with isomorphisms βi : u∗i (P•)→ P•i for each i ∈ I, satisfying αij ◦(πiij)∗(βi) = (πjij)
∗(βj) :

u∗ij(P•)→ (πjij)
∗(P•j ) for all i, j ∈ I.

Proposition 1.3.6. Let Φ : U → V be a scheme morphism smooth of relative dimension d and
g : V → A1 be regular, and set f = g ◦ Φ : U → A1. Then

(a) There are natural isomorphisms of functors Perv(V )→ Perv(U0) :

Φ∗0[d] ◦ ψpg ∼= ψpf ◦ Φ∗[d] and Φ∗0[d] ◦ φpg ∼= φpf ◦ Φ∗[d], (1.3.1)

where U0 = f−1(0) ⊆ U, V0 = g−1(0) ⊆ V and Φ0 = Φ|U0 : U0 → V0.

(b) Write X = Crit(f) and Y = Crit(g), so that Φ|X : X → Y is smooth of dimension d. Then
there is a canonical isomorphism

ΞΦ : Φ|∗X [d](PV•V,g)
∼=−→PV•U,f in Perv(X), (1.3.2)

which identifies Φ|∗X [d](σV,g),Φ|∗X [d](τV,g) with σU,f , τU,f .

We recall [18, Def. 2.8]. If P → X is a principal Z/2Z-bundle on a C-scheme X, and
Q• ∈ Perv(X), we will define a perverse sheaf Q• ⊗Z/2Z P as follows:
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Definition 1.3.7. Let X be a C-scheme. A principal Z/2Z-bundle P → X is a proper, surjective,
étale morphism of C-schemes π : P → X together with a free involution σ : P → P , such that
the orbits of Z/2Z = {1, σ} are the fibres of π. We will use the ideas of isomorphism of principal
bundles ι : P → P ′, section s : X → P , tensor product P ⊗Z/2Z P

′, and pullback f∗(P ) → W
under a C-scheme morphism f : W → X, all of which are defined in the obvious ways. Let
P → X be a principal Z/2Z-bundle. Write LP ∈ Db

c(X) for the rank one A-local system on X
induced from P by the nontrivial representation of Z/2Z ∼= {±1} on A. It is characterized by

π∗(AP ) ∼= AX ⊕ LP . For each Q• ∈ Db
c(X), write Q• ⊗Z/2Z P ∈ Db

c(X) for Q•
L

⊗LP , and call it
Q• twisted by P . If Q• is perverse then Q• ⊗Z/2Z P is perverse.

There is a ‘Thom–Sebastiani Theorem for perverse sheaves’, due to Massey [125] and Schürmann
[157, Cor. 1.3.4]. Following [18, Thm. 2.12], applied to PV•U,f , it yields:

Theorem 1.3.8. Let U, V be smooth C-schemes and f : U → C, g : V → C be regular, so that
f � g : U ×V → C is regular with (f � g)(u, v) := f(u) + g(v). Set X = Crit(f) and Y = Crit(g)
as C-subschemes of U, V, so that Crit(f � g) = X × Y . Then there is a natural isomorphism

T SU,f,V,g : PV•U×V,f�g −→ PV•U,f
L

�PV•V,g (1.3.3)

in Perv(X × Y ), such that the following diagrams commute:

PV•U×V,f�g σU×V,f�g
//

T SU,f,V,g
��

DX×Y (PV•U×V,f�g)

PV•U,f
L

�
PV•V,g

σU,f
L
� σV,g //

DX(PV•U,f )
L

�
DY (PV•V,g)

∼= // DX×Y
(
PV•U,f

L

�PV•V,g
)
,

DX×Y (T SU,f,V,g)

OO

(1.3.4)

PV•U×V,f�g τU×V,f�g
//

T SU,f,V,g��

PV•U×V,f�g
T SU,f,V,g ��

PV•U,f
L

�PV•V,g
τU,f

L
� τV,g // PV•U,f

L

�PV•V,g.

(1.3.5)

1.3.2 Perverse sheaves on stacks

Note that because of Proposition 1.3.4 and Theorem 1.3.5, any of the theories of perverse sheaves
on C-schemes or K-schemes discussed in §1.3.1 can be extended to Artin C-stacks or Artin K-
stacks X in a näıve way, using the philosophy discussed in §2.2 and [87, §2.7] of defining sheaves
on X in terms of sheaves on schemes T for smooth t : T → X, in particular Proposition 2.2.1.
This is discussed in [13, §4.3]. We first recall [13, Def. 4.9]:

Definition 1.3.9. Fix one of the theories of perverse sheaves on K-schemes discussed in §1.3.1,
over an allowed base ring A, where we include the special case K = C and A is general as in [34].
Let X be an Artin K-stack, always assumed locally of finite type. We will explain how to define
an abelian category Pervnäı(X) of näıve perverse sheaves on X:

(A) Define an object P of Pervnäı(X) to assign

(a) For each K-scheme T and smooth 1-morphism t : T → X, a perverse sheaf P(T, t) ∈ Perv(T )
on T in our chosen K-scheme perverse sheaf theory.



1.3. Perverse sheaves on schemes and stacks 9

(b) For each 2-commutative diagram in ArtK:

U
u

**

KS
η

T

φ
55

t
// X,

(1.3.6)

where T,U are K-schemes and φ, t, u are smooth with φ of dimension d, an isomorphism
P(φ, η) : φ∗[d](P(U, u))→ P(T, t) in Perv(T ).

This data must satisfy the following condition:

(i) For each 2-commutative diagram in ArtK :

V
v

++

KS
ζ

U

ψ
33

u
// X,LT

η

T
φ
OO

t

33

with T,U, V K-schemes and φ, ψ, t, u, v smooth with φ, ψ of dimensions d, e, we must have

P
(
ψ ◦ φ, (ζ ∗ idφ)� η

)
= P(φ, η) ◦ φ∗[d](P(ψ, ζ)) as morphisms

(ψ ◦ φ)∗[d+ e](P(V, v)) = φ ∗ [d] ◦ ψ∗[e](P(V, v)) −→ P(T, t).

(B) Morphisms α : P → Q of Pervnäı(X) comprise a morphism α(T, t) : P(T, t) → Q(T, t) in
Perv(T ) for all smooth 1-morphisms t : T → X from a scheme T , such that for each diagram
(1.3.6) in (b) the following commutes:

φ∗[d](P(U, u))

φ∗[d](α(U,u))

��

P(φ,η)
// P(T, t)

α(T,t)

��
φ∗[d](Q(U, u))

Q(φ,η) // Q(T, t).

(C) Composition of morphisms P α−→Q β−→R in Pervnäı(X) is (β ◦ α)(T, t) = β(T, t) ◦ α(T, t).
Identity morphisms idP : P → P are idP(T, t) = idP(T,t).

We can also define a category of näıve D-modules on X in the same way.

However, for a satisfactory theory of perverse sheaves on Artin stacks, we want more: we would
like the category Perv(X) of perverse sheaves on X to be the heart of a t-structure on a triangu-
lated category Db

c(X) of ‘constructible complexes’, which may not be equivalent to Db Perv(X),

and we would like Grothendieck’s “six operations on sheaves” f∗, f !, Rf∗, Rf!,RHom,
L

⊗ , and
Verdier duality operators DX , to act on these ambient categories Db

c(X). Other than pullbacks
f∗, f ! by smooth 1-morphisms f : X → Y and operators DX , none of this is obvious using the
definition of perverse sheaves Pervnäı(X) above. Thus, the main issue in developing a good the-
ories of perverse sheaves on Artin stacks X is not defining the categories Perv(X) or Pervnäı(X)

themselves, but defining the categories Db
c(X) and the six operations f∗, . . . ,

L

⊗ upon them, and
then defining a perverse t-structure on Db

c(X) with heart Perv(X). If (a)–(c) of Definition 1.3.9
hold for these Db

c(X),Perv(X), it will then be automatic [108, §7] that Perv(X) ' Pervnäı(X) for
Pervnäı(X) as in Definition 1.3.9. In [13, §4.4], we summarize Laszlo and Olsson’s theory [106–108]
of perverse sheaves on Artin K-stacks, with finite or l-adic coefficient ring A. Then in [13, §4.5] we
outline a theory of perverse sheaves on Artin C-stacks over general base rings A, using the meth-
ods of [106–108]. There, we outline a way of extending Dimca’s theory [34] of perverse sheaves on
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C-schemes X, which uses the complex analytic topology on the underlying set of C-points Xan

and works over general coefficient rings A, to Artin C-stacks. The key is to work with sheaves on
a suitable site:

Definition 1.3.10. Let X be an Artin C-stack (always assumed locally of finite type). Define the
lisse-analytic site Lis-an(X) of X as follows. The underlying category of Lis-an(X) has objects
triples (P, T, t) where t : T → X is a smooth 1-morphism from a C-scheme T , and P ⊆ Tan is
an open subset in the complex analytic topology of the set Tan of C-points of T . A morphism
(φ, η) : (P, T, t)→ (Q,U, u) in the underlying category is a morphism of C-schemes φ : T → U with
φan(P ) ⊆ Q ⊆ Uan with a 2-morphism of Artin C-stacks η : u⇒ t ◦φ. Composition of morphisms

(P, T, t)
(φ,η)−→ (Q,U, u)

(ψ,ζ)−→ (R, V, v) is (ψ, ζ) ◦ (φ, η) :=
(
ψ ◦ φ, (ζ ∗ idφ) � η

)
. The coverings of an

object (P, T, t) in the Grothendieck topology on Lis-an(X) are those collections of morphisms{
(φi, ηi) : (Pi, Ti, ti)→ (P, T, t)

}
i∈I such that φi : Ti → T is étale with (φi)an|Pi : Pi → (φi)an(Pi)

a homeomorphism for i ∈ I, and
{

(φi)an(Pi) : i ∈ I
}

is an open cover of P .

To build our theory of constructible complexes Db
c(X,A) with six operations and perverse

sheaves Perv(X,A) over a general commutative ring A, we now follow the method of Laszlo and
Olsson [106,108] for finite coefficients, but using sheaves on the lisse-analytic site Lis-an(X) rather
than on the lisse-étale site Lis-ét(X). Since cohomology in the lisse-analytic topology yields the
answer one wants over even general rings A, their programme works without imposing finiteness
conditions on A. Laszlo and Olsson remark [106, p. 1] that their method applies to other situations
such as complex analytic stacks.

If X is a C-scheme, then the categories of sheaves of sets, A-modules, . . . on the lisse-analytic
site Lis-an(X) are equivalent to the categories of ordinary sheaves of sets, A-modules, . . . on
Xan with the complex analytic topology. Therefore, if X is a C-scheme then these definitions of
Db
c(X),Perv(X) for X an Artin C-stack are equivalent to those in Dimca [34] for X a C-scheme.

The conclusion is that one can extend Dimca’s theory of constructible complexes Db
c(X)

and perverse sheaves Perv(X) on C-schemes to Artin C-stacks, the six operations f∗, f !, Rf∗,

Rf!, RHom,
L

⊗ are defined on Db
c(X), the usual package of properties hold including the stack

analogues of Proposition 1.3.4 and Theorem 1.3.5, and Perv(X) is equivalent to the category
Pervnäı(X) in [13, §4.3].

1.4 Motives on schemes and stacks

Here we introduce some background material on motives. Our notation follows [13,25].

1.4.1 Rings of motives on K-schemes

We begin by defining rings of motives K0(SchX),MX ,K
µ̂
0 (SchX),Mµ̂

X for a K-scheme X. Some
references are Denef and Loeser [30–33], Looijenga [120], and Joyce [86].

Definition 1.4.1. Let X be a K-scheme (always assumed of finite type). Consider pairs (R, ρ),
where R is a K-scheme and ρ : R→ X is a morphism. Call two pairs (R, ρ), (R′, ρ′) equivalent if
there is an isomorphism ι : R→ R′ with ρ = ρ′ ◦ ι. Write [R, ρ] for the equivalence class of (R, ρ).
If (R, ρ) is a pair and S is a closed K-subscheme of R then (S, ρ|S), (R \ S, ρ|R\S) are pairs of
the same kind. Define the Grothendieck ring K0(SchX) of the category SchX of K-schemes over
X to be the abelian group generated by equivalence classes [R, ρ], with the relation that for each
closed K-subscheme S of R we have

[R, ρ] = [S, ρ|S ] + [R \ S, ρ|R\S ]. (1.4.1)
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Define a product ‘ · ’ on K0(SchX) by

[R, ρ] · [S, σ] = [R×ρ,X,σ S, ρ ◦ πR]. (1.4.2)

This is compatible with (1.4.1), and extends to a biadditive, commutative, associative product
· : K0(SchX)×K0(SchX)→ K0(SchX). It makes K0(SchX) into a commutative ring, with identity
1X = [X, idX ]. Define L = [A1 ×X,πX ] in K0(SchX). We denote by

MX = K0(SchX)[L−1] (1.4.3)

the ring obtained from K0(SchX) by inverting L. When X = SpecK we write K0(SchK),MK
instead of K0(SchX),MX .

The external tensor products � : K0(SchX)×K0(SchY )→ K0(SchX×Y ) and � :MX×MY →
MX×Y are (∑

i∈I
ci[Ri, ρi]

)
�
(∑
j∈J

dj [Sj , σj ]
)

=
∑

i∈I, j∈J
cidj [Ri × Sj , ρi × σj ], (1.4.4)

for finite I, J . They are biadditive, commutative, and associative. Taking Y = SpecK and using
X × SpecK ∼= X, we see that � makes K0(SchX),MX into modules over K0(SchK),MK.

Let φ : X → Y be a morphism of K-schemes. Define the pushforwards φ∗ : K0(SchX)→
K0(SchY ) and φ∗ :MX→MY by

φ∗ :
n∑
i=1

ci[Ri, ρi] 7−→
n∑
i=1

ci[Ri, φ ◦ ρi]. (1.4.5)

This intertwines the relation (1.4.1), and so is well-defined.
Define pullbacks φ∗ : K0(SchY )→ K0(SchX) and φ∗ :MY →MX by

φ∗ :
n∑
i=1

ci[Ri, ρi] 7−→
n∑
i=1

ci[Ri ×ρi,Y,φ X,πX ]. (1.4.6)

Pushforwards and pullbacks have the obvious functoriality properties. As in [86, Th. 3.5], push-
forwards and pullbacks commute in Cartesian squares, that is, if

W η
//

θ

��

Y

ψ

��
X

φ // Z

is a Cartesian square in

the category SchK then

the following commutes:

MW η∗
//MY

MX
φ∗ //

θ∗

OO

MZ ,

ψ∗

OO

(1.4.7)

and the analogue holds for K0(SchW ), . . . ,K0(SchZ).

Definition 1.4.2. For n = 1, 2, . . . , write µn for the group of all nth roots of unity in K, which
is assumed algebraically closed of characteristic zero, so that µn ∼= Zn. Then µn is the K-scheme
Spec(K[x]/(xn − 1)). The µn form a projective system, with respect to the maps µnd → µn
mapping x 7→ xd for all d, n = 1, 2, . . . . Define the group µ̂ to be the projective limit of the µn.
Note that µ̂ is not a K-scheme, but is a pro-scheme.

Let R be a K-scheme. A good µn-action on R is a group action rn : µn × R → R such that
such that each orbit is contained in an open affine subscheme of R and ρ◦rn(γ) ∼= ρ for all γ ∈ µn.
A good µ̂-action on R is a group action r̂ : µ̂ × R → R which factors through a good µn-action,
for some n. We will write ι̂ : µ̂ × R → R for the trivial µ̂-action on R, which is automatically
good.
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Consider triples (R, ρ, r̂), where R is a K-scheme, ρ : R→ X a morphism, and r̂ : µ̂×R→ R
a good µ̂-action on R. Call two such triples (R, ρ, r̂), (R′, ρ′, r̂′) equivalent if there exists a µ̂-
equivariant isomorphism ι : R → R′ with ρ = ρ′ ◦ ι. Write [R, ρ, r̂] for the equivalence class of
(R, ρ, r̂).

The monodromic Grothendieck group K µ̂
0 (SchX) is the abelian group generated by such equiv-

alence classes [R, ρ, r̂], with the relations:

(i) [R, ρ, r̂] = [S, ρ|S , r̂|S ] + [R \S, ρ|R\S , r̂|R\S ] for each closed µ̂-invariant K-subscheme S of R;

(ii) given [R1, ρ1, r̂1], [R2, ρ2, r̂2] with π : R2 → R1 a µ̂-equivariant vector bundle of rank d over
R1 and ρ2 = ρ1 ◦ π, then [R2, ρ2] = [R1 × Ad, ρ1 ◦ π, r̂1 × ι̂].

There is a natural biadditive product ‘ · ’ on K µ̂
0 (SchX) given by

[R, ρ, r̂] · [S, σ, ŝ] = [R×ρ,X,σ S, ρ ◦ πR, r̂ × ŝ], (1.4.8)

making K µ̂
0 (SchX) into a commutative ring, with identity 1X = [X, idX , ι̂].

Define L = [A1 ×X,πX , ι̂] in K µ̂
0 (SchX). We denote by

Mµ̂
X = K µ̂

0 (SchX)[L−1]

the ring obtained from K µ̂
0 (SchX) by inverting L. When X = SpecK we write K µ̂

0 (SchK),Mµ̂
K

instead of K µ̂
0 (SchX),Mµ̂

X .

The external tensor products � : K µ̂
0 (SchX)×K µ̂

0 (SchY )→K µ̂
0 (SchX×Y ) and � :Mµ̂

X×M
µ̂
Y →

Mµ̂
X×Y are (∑

i∈I
ci[Ri, ρi, r̂i]

)
�
(∑
j∈J

dj [Sj , σj , ŝj ]
)

=
∑

i∈I, j∈J
cidj [Ri×Sj , ρi×σj , r̂i×ŝj ], (1.4.9)

for finite I, J . Pushforwards φ∗ and pullbacks φ∗ are defined for K µ̂
0 (SchX),Mµ̂

X in the obvious
way, and the analogue of (1.4.7) holds.

There are natural morphisms of commutative rings

iX : K0(SchX) −→ K µ̂
0 (SchX), iX :MX −→Mµ̂

X ,

ΠX : K µ̂
0 (SchX) −→ K0(SchX), ΠX :Mµ̂

X −→MX ,
(1.4.10)

given by iX : [R, ρ] 7→ [R, ρ, ι̂] and ΠX : [R, ρ, r̂] 7→ [R, ρ].

Following Looijenga [120, §7] and Denef and Loeser [32, §5], we introduce a second multipli-

cation ‘�’ on K µ̂
0 (SchX),Mµ̂

X (written ‘∗’ in [32,120]).

Definition 1.4.3. Let X be a K-scheme and [R, ρ, r̂], [S, σ, ŝ] be generators of K µ̂
0 (SchX). Then

there exists n > 1 such that the µ̂-actions r̂, ŝ on R,S factor through µn-actions rn, sn. Define
Jn to be the Fermat curve Jn =

{
(t, u) ∈ (A1 \ {0})2 : tn + un = 1

}
. Let µn × µn act on

Jn× (R×X S) by (α, α′) ·
(
(t, u), (v, w)

)
=
(
(α · t, α′ · u), (rn(α)(v), sn(α′)(w))

)
. Write Jn(R,S) =

(Jn × (R×X S))/(µn × µn) for the quotient K-scheme, and define a µn-action υn on Jn(R,S) by
υn(α)

(
(t, u), v, w

)
(µn × µn) =

(
(α · t, α · u), v, w

)
(µn × µn). Let υ̂ be the induced good µ̂-action

on Jn(R,S), and set

[R, ρ, r̂]� [S, σ, ŝ] = (L− 1) ·
[
(R×X S)/µn, ι̂

]
−
[
Jn(R,S), υ̂

]
(1.4.11)

in K µ̂
0 (SchX) and Mµ̂

X . This turns out to be independent of n, and defines commutative, asso-

ciative products � on K µ̂
0 (SchX) and Mµ̂

X .
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Let X,Y be K-schemes. As for Definitions 1.4.1 and 1.4.2, we define products

� : K µ̂
0 (SchX)×K µ̂

0 (SchY )→K µ̂
0 (SchX×Y ), � :Mµ̂

X ×M
µ̂
X→M

µ̂
X×Y

by following the definition above for [R, ρ, r̂] ∈ K µ̂
0 (SchX), [S, σ, ŝ] ∈ K µ̂

0 (SchY ), but taking
products R×S rather than fibre products R×X S. These � are also commutative and associative
in the appropriate sense. Taking Y = SpecK and using X × SpecK ∼= X, we see that �
makes K µ̂

0 (SchX),Mµ̂
X into modules over K µ̂

0 (SchK),Mµ̂
K. For generators [R, ρ, r̂] and [S, σ, ι̂] =

iX([S, σ]) in K µ̂
0 (SchX) or Mµ̂

X where [S, σ, ι̂] has trivial µ̂-action ι̂, one can show that [R, ρ, r̂]�
[S, σ, ι̂] = [R, ρ, r̂] · [S, σ, ι̂]. Thus iX is a ring morphism

(
K0(SchX), ·

)
→
(
K µ̂

0 (SchX),�
)

and(
MX , ·

)
→
(
Mµ̂

X ,�
)
. However, ΠX is not a ring morphism

(
K µ̂

0 (SchX),�
)
→
(
K0(SchX), ·

)
or(

Mµ̂
X ,�

)
→
(
MX , ·

)
. Since L = [A1 × X,πX , ι̂] this implies that M · L = M � L for all M in

K µ̂
0 (SchX),Mµ̂

X .

Definition 1.4.4. Define the element L1/2 in K µ̂
0 (SchX) and Mµ̂

X by

L1/2 = [X, idX , ι̂]− [X × µ2, r̂], (1.4.12)

where [X, idX , ι̂] with trivial µ̂-action ι̂ is the identity 1X in K µ̂
0 (SchX),Mµ̂

X , and X × µ2 =
X×{1,−1} is two copies of X with nontrivial µ̂-action r̂ induced by the left action of µ2 on itself,
exchanging the two copies of X. Applying (1.4.11) with n = 2, we can show that L1/2�L1/2 = L.

Thus, L1/2 in (1.4.12) is a square root for L in the rings
(
K µ̂

0 (SchX),�
)
,
(
Mµ̂

X ,�
)
. Note that

L1/2 · L1/2 6= L.
Equivalently, we could have defined

L1/2
X = [X, idX , ι̂]� L1/2

K ∈ K µ̂
0 (SchX), (1.4.13)

where L1/2
K ∈ K µ̂

0 (SchK). We can now define unique elements Ln/2 in K µ̂
0 (SchX) for all n =

0, 1, 2, . . . and Ln/2 in Mµ̂
X for all n ∈ Z in the obvious way, such that Lm/2 � Ln/2 = L(m+n)/2

for all m,n > 0 or m,n ∈ Z.

Next, following [25, §2.5], which was motivated by ideas in Kontsevich and Soibelman [102,
§4.5], we define principal Z/2Z-bundles P → X, associated motives Υ(P ), and a quotient ring of

motives Mµ̂
X in which Υ(P ⊗Z/2Z Q) = Υ(P )�Υ(Q) for all P,Q.

Definition 1.4.5. Let X be a K-scheme. A principal Z/2Z-bundle P → X is a proper, surjective,
étale morphism of K-schemes π : P → X together with a free involution σ : P → P , such that
the orbits of Z/2Z = {1, σ} are the fibres of π. The trivial Z/2Z-bundle is πX : X × Z/2Z→ X.
We will use the ideas of isomorphism of principal bundles ι : P → Q, section s : X → P , tensor
product P ⊗Z/2Z Q, and pullback f∗(P ) → Y under a 1-morphism of stacks f : Y → X, all of
which are defined in the obvious ways. Write (Z/2Z)(X) for the abelian group of isomorphism
classes [P ] of principal Z/2Z-bundles P → X, with multiplication [P ] · [Q] = [P ⊗Z/2Z Q] and
identity [X × Z/2Z]. Since P ⊗Z/2Z P ∼= X × Z/2Z for each P → X, each element of (Z/2Z)(X)
is self-inverse, and has order 1 or 2. If π : P → X is a principal Z/2Z-bundle over X, define a
motive

Υ(P ) = L−1/2 �
(
[X, id, ι̂]− [P, π, r̂]

)
∈Mµ̂

X ,

where r̂ is the µ̂-action on P induced by the µ2-action on P from the principal Z/2Z-bundle
structure, as µ2

∼= Z/2Z. If P = X × Z/2Z is the trivial Z/2Z-bundle then

Υ(X × Z/2Z) = L−1/2 �
(
[X, id, ι̂]− [X × Z/2Z, π, r̂]

)
= L−1/2 � L1/2 � [X, id, ι̂] = [X, id, ι̂],
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using (1.4.12). Note that [X, id, ι̂] is the identity in the ringMµ̂
X . As Υ(P ) only depends on P up

to isomorphism, Υ factors via (Z/2Z)(X), and we may consider Υ as a map (Z/2Z)(X)→Mµ̂
X .

For our applications, we want Υ : (Z/2Z)(X)→Mµ̂
X to be a group morphism with respect to

the multiplication � onMµ̂
X , but we cannot prove that it is. Our solution is to pass to a quotient

ring Mµ̂
X of Mµ̂

X such that the induced map Υ : (Z/2Z)(X)→Mµ̂
X is a group morphism. If we

simply definedMµ̂
X to be the quotient ring ofMµ̂

X by the relations Υ(P⊗Z/2ZQ)−Υ(P )�Υ(Q) = 0

for all [P ], [Q] in (Z/2Z)(X) then pushforwards φ∗ :Mµ̂
X →M

µ̂
Y would not be defined for general

1-morphisms φ : X → Y . So we impose a more complicated relation.
For each K-scheme Y , define I µ̂Y to be the ideal in the commutative ring

(
Mµ̂

Y ,�
)

generated by
elements φ∗

(
Υ(P ⊗Z/2ZQ)−Υ(P )�Υ(Q)

)
for all K-scheme morphisms φ : X → Y and principal

Z/2Z-bundles P,Q → X, and define Mµ̂
Y = Mµ̂

Y /I
µ̂
Y to be the quotient, as a commutative ring

with multiplication ‘�’, with projection Πµ̂
Y :Mµ̂

Y →M
µ̂
Y . Kontsevich and Soibelman [102, §4.5]

introduce a relation in their motivic rings which has a similar effect.
Note that in Mµ̂

Y we do not have the second multiplication ‘ · ’, since we do not require I µ̂Y to

be an ideal in
(
Mµ̂

Y , ·
)
. Also � and ΠY : Mµ̂

Y → MY on Mµ̂
Y do not descend to Mµ̂

Y . Apart

from this, all the structures onMµ̂
Y above descend toMµ̂

Y : operations �,�, pushforwards φ∗ and

pullbacks φ∗, and elements L,L1/2,Υ(P ). By definition, Mµ̂
X has the property that

Υ(P ⊗Z/2Z Q) = Υ(P )�Υ(Q) in Mµ̂
X (1.4.14)

for all principal Z/2Z-bundles P,Q→ X.

Following Denef and Loeser [32], we define motivic nearby cycles, motivic Milnor fibres, and
motivic vanishing cycles:

Definition 1.4.6. Let U be a smooth K-scheme and f : U → A1 a regular function, and set
U0 = f−1(0) ⊆ U . Then Denef and Loeser [32, §3.5] and Looijenga [120, §5] define the motivic

nearby cycle of f , an element MFmot
U,f of Mµ̂

U0
or Mµ̂

U0
. It has an intrinsic definition using arc

spaces and the motivic zeta function, which we will not explain, but we will give a formula [32,
§3.3], [120, §5] for MFmot

U,f involving choosing a resolution of f .

If f = 0 then MFmot
U,f = 0, so suppose f is not constant. By Hironaka’s Theorem [66] we

can choose a resolution (Ũ , π) of f . That is, Ũ is a smooth K-scheme and π : Ũ → U a proper
morphism, such that π|Ũ\π−1(U0) : Ũ \ π−1(U0) → U \ U0 is an isomorphism, and π−1(U0)red has

only normal crossings as a K-subscheme of Ũ . Write Ei, i ∈ J for the irreducible components of
π−1(U0). For each i ∈ J , denote by Ni the multiplicity of Ei in the divisor of f ◦ π on Ũ , and by
νi−1 the multiplicity of Ei in the divisor of π∗(dx), where dx is a local non vanishing volume form
at any point of π(Ei). For I ⊂ J , we consider the smooth K-scheme E◦I =

(⋂
i∈I

Ei
)
\
( ⋃
j∈J\I

Ej
)
.

Let mI = gcd(Ni)i∈I . We introduce an unramified Galois cover Ẽ◦I of E◦I , with Galois group µmI ,
as follows. Let Ũ ′ be an affine Zariski open subset of Ũ , such that, on Ũ ′, f ◦ π = uvmI , with
u : Ũ ′ → A1 \{0} and v : Ũ ′ → A1. Then the restriction of Ẽ◦I above E◦I ∩ Ũ ′, denoted by Ẽ◦I ∩ Ũ ′,
is defined as

Ẽ◦I ∩ Ũ ′ =
{

(z, w) ∈ A1 × (E◦I ∩ Ũ ′) : zmI = u(w)−1
}
.

Gluing together the covers Ẽ◦I ∩ Ũ ′ in the obvious way, we obtain the cover Ẽ◦I of E◦I which
has a natural µmI -action ρI , obtained by multiplying the z-coordinate by elements of µmI . This
µmI -action on Ẽ◦I induces a µ̂-action ρ̂I on Ẽ◦I . Then

MFmot
U,f =

∑
∅6=I⊆J

(1− L)|I|−1
[
Ẽ◦I , πU0 , ρ̂I

]
in Mµ̂

U0
. (1.4.15)
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It is independent of the choice of resolution (Ũ , π). The fibre MFmot
U,f |x at each x ∈ U0 is called

the motivic Milnor fibre of f at x.
Now let X = Crit(f) ⊆ U , as a closed K-subscheme of U . Since f is constant on the reduced

scheme Xred, f(X) is finite, and we may write X =
∐

c∈f(X)

Xc, where Xc ⊆ X is the open and

closed K-subscheme with Xred
c = f |−1

Xred(c). Consider the restriction MFmot
U,f |U0\X0

in Mµ̂
U0\X0

or

Mµ̂
U0\X0

. We can choose (Ũ , π) above with π|Ũ\π−1(X0) : Ũ \ π−1(X0)→ U \X0 an isomorphism.

Write D1, . . . , Dk for the irreducible components of π−1(U0 \X0) ∼= U0 \X0. They are disjoint as
π−1(U0 \X0) is nonsingular. The closures D1, . . . , Dk (which need not be disjoint) are among the
divisors Ei, so we write Da = Eia for a = 1, . . . , k, with {i1, . . . , ik} ⊆ I. Clearly Nia = νia = 1 for
a = 1, . . . , k. Then in (1.4.15) the only nonzero contributions to MFmot

U,f |U0\X0
are from I = {ia}

for a = 1, . . . , k, with Ẽ◦{ia}
∼= E◦{ia}

∼= Da, and the µ̂-action on Ẽ◦{ia} is trivial as it factors through

the action of µ1 = {1}. Hence

MFmot
U,f |U0\X0

=
k∑
a=1

[
Ẽ◦{ia}, πU0\X0

, ι̂
]

=
k∑
a=1

[
Da, πU0\X0

, ι̂
]

=
[
U0 \X0, idU0\X0

, ι̂
]
.

Therefore [U0, idU0 , ι̂]−MFmot
U,f is supported on X0 ⊆ U0, and by restricting to X0 we regard it as

an element ofMµ̂
X0

orMµ̂
X0

. Define the motivic vanishing cycle MFmot,φ
U,f of f inMµ̂

X orMµ̂
X by

MFmot,φ
U,f

∣∣
Xc

= L− dimU/2 �
(
[Uc, idUc , ι̂]−MFmot

U,f−c
)∣∣
Xc

(1.4.16)

for each c ∈ f(X), where � and L− dimU/2 are as in Definitions 1.4.3 and 1.4.4.

Here is the motivic Thom–Sebastiani Theorem of Denef–Loeser and Looijenga [31, 32, 120],
stated using the notation of [25, §2.4].

Theorem 1.4.7. Let U, V be smooth K-schemes, f : U → A1, g : V → A1 regular functions,
and X = Crit(f), Y = Crit(g). Write f � g : U × V → A1 for the regular function mapping

f � g : (u, v) 7→ f(u) + g(v). Then MFmot,φ
U×V,f�g = MFmot,φ

U,f �MFmot,φ
V,g in Mµ̂

X×Y .

Example 1.4.8. Define f : An → A1 by f(z1, . . . , zn) = z2
1 + · · · + z2

n for n > 1. Then using
Theorem 1.4.7, induction on n, and

MFmot,φ

A1,z2 = L−1/2 �
(
1− [µ2, ρ̂]

)
= L−1/2 � L1/2 = 1,

shows that
MFmot,φ

An,z2
1+···+z2

n
= MFmot,φ

A1,z2 � · · ·�MFmot,φ

A1,z2 = 1� · · ·� 1 = 1. (1.4.17)

If V is a finite-dimensional K-vector space and q a nondegenerate quadratic form on V , then
(V, q) ∼= (An, z2

1 + · · · + z2
n) for n = dimV , so MFmot,φ

V,q = 1. That is the purpose of the factors

L− dimU/2.

In [25, Thm. 2.16], reported below, we show how motivic vanishing cycles change under

stabilization by a nondegenerate quadratic form. The term LdimU/2 �MFmot,φ
E,q in (1.4.18) may

be regarded as the relative motivic vanishing cycle of (E, q) relative to U .

Theorem 1.4.9. Let U be a smooth K-scheme, π : E → U a vector bundle over U, f : U → A1

a regular function, q a nondegenerate quadratic form on E, and X = Crit(f). Regard (the total
space of) E as a smooth K-scheme and q, f ◦ π : E → A1 as regular functions on E, so that
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f ◦ π + q : E → A1 is also a regular function. Identify U with the zero section in E, so that
X ⊆ U ⊆ E, and we have Mµ̂

X ⊆M
µ̂
U ⊆M

µ̂
E. Then in Mµ̂

E we have

MFmot,φ
E,f◦π+q = MFmot,φ

U,f �
(
LdimU/2 �MFmot,φ

E,q

)
. (1.4.18)

Theorem 2.20 in [25] gives an expression (1.4.19) for motivic vanishing cycles MFmot,φ
E,q of

nondegenerate quadratic forms on vector bundles. The proof uses (1.4.14), and so holds only in

Mµ̂
U rather than inMµ̂

U . Note that LdimU/2�MFmot,φ
E,q in (1.4.19) also occurs in equation (1.4.18)

of Theorem 1.4.9.

Theorem 1.4.10. Let U be a smooth K-scheme, E → U a vector bundle of rank r, and q ∈
H0(S2E∗) a nondegenerate quadratic form on the fibres of E. Regard q : E → A1 as a regular
function on the total space of E, which is a nondegenerate homogeneous quadratic polynomial on
each fibre Eu of E, so that Crit(q) ⊆ E is the zero section of E, which we identify with U .

Then ΛrE → U is a line bundle, and the determinant det(q) is a nonvanishing section of
(ΛrE∗)⊗

2
, or equivalently an isomorphism (ΛrE) ⊗OU (ΛrE) → OU . Thus there is a principal

Z2-bundle P → U, unique up to isomorphism, corresponding to
(
ΛrE,det(q)

)
under the 1-1

correspondence [25, Rem. 2.18]. We have

Υ(P ) = LdimU/2 �MFmot,φ
E,q in Mµ̂

U . (1.4.19)

Theorem 1.4.10 is more-or-less equivalent to material in Kontsevich and Soibelman [102, §5.1].

It implies that MFmot,φ
E,q depends only on U, r,ΛrE,det(q), which is important in their definition

of motivic Donaldson–Thomas invariants. As for our Mµ̂
X , Kontsevich and Soibelman [102, §4.5]

also introduce an extra relation in their ring of motives to make the analogue of Theorem 1.4.10
true. We defined the ringMµ̂

Y by imposing the pushforward φ∗ of relation (1.4.14) inMµ̂
X under

all morphisms φ : X → Y . We may rewrite (1.4.19) as

Υ(P ) = MFmot,φ,rel
E→U,q , (1.4.20)

for P → U the principal Z2-bundle corresponding to
(
ΛrE,det(q)

)
in the sense of [25, Rem. 2.18].

We may regard (1.4.20) as a relation inMµ̂
U , which is equivalent to (1.4.14). Thus, an alternative

definition of the rings Mµ̂
Y , closer in spirit to Kontsevich and Soibelman [102, §4.5 & §5.1], is to

impose the relation in Mµ̂
Y that for all K-scheme morphisms φ : U → Y , rank r vector bundles

E → U , and nondegenerate quadratic forms q ∈ H0(S2E∗), the pushforward φ∗
(
MFmot,φ,rel

E→U,q
)

depends only on U, φ and
(
ΛrE,det(q)

)
. See [25, Rem. 2.21] for a more detailed discussion.

1.4.2 Motives on stacks

We now generalize the material of §1.4.1 to Artin stacks following [13, §5]. Our definitions are new,
but very similar to work by Joyce [86] on ‘stack functions’, and Kontsevich and Soibelman [104,
§4.1–§4.2]. As in [86], we restrict our attention to Artin K-stacks X (always assumed of finite
type) with affine geometric stabilizers. Later we will restrict further, to stacks which are locally
a global quotient.

Definition 1.4.11. An Artin K-stack X has affine geometric stabilizers if the stabilizer group
IsoX(x) is an affine algebraic group for all points x ∈ X.
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An Artin K-stack X is locally a global quotient if we may cover X by Zariski open K-substacks
Y ⊆ X equivalent to global quotients [S/GL(n,K)], where S is a K-scheme with a GL(n,K)-
action. If X is locally a global quotient then it has affine geometric stabilizers, since the stabilizer
groups of [S/GL(n,K)] are closed K-subgroups of GL(n,K), and so are affine. The authors do
not know any example of an Artin K-stack with affine geometric stabilizers which is not locally a
global quotient.

Deligne–Mumford stacks have affine geometric stabilizers, and are locally a global quotient
if their stabilizers are generically trivial. If M is a moduli stack of coherent sheaves F on a
projective scheme Y , then using Quot-schemes one can show that M is locally a global quotient.
If M is a moduli stack of complexes F • in Db coh(Y ) with Ext<0(F •, F •) = 0 then M has
affine geometric stabilizers, since IsoM(F •) is the invertible elements in the finite-dimensional
algebra Hom(F •, F •), and so is affine. We require affine geometric stabilizers to use a result of
Kresch [105, Prop. 3.5.9]:

Proposition 1.4.12 (Kresch). Let X be a (finite type) Artin K-stack with affine geometric
stabilizers. Then X admits a stratification X =

∐
i∈I Xi, for I a finite set and Xi ⊆ X a locally

closed K-substack, such that Xi is equivalent to a global quotient stack [Si/GL(ni,K)] for each
i ∈ I, where Si is a (finite type) K-scheme with an action of GL(ni,K). Conversely, any Artin
K-stack X admitting such a stratification has affine geometric stabilizers.

For the rest of this paper, all Artin K-stacks X are assumed to have affine geometric stabilizers.
Here are [13, Def.s 5.11-5.13], the analogues of Definitions 1.4.1 and 1.4.2:

Definition 1.4.13. Let X be an Artin K-stack (always assumed to be of finite type, with affine
geometric stabilizers). Consider pairs (R, ρ), where R is a K-scheme and ρ : R→ X a 1-morphism.
Call two pairs (R, ρ), (R′, ρ′) equivalent if there exists an isomorphism ι : R→ R′ such that ρ′ ◦ ι
and ρ are 2-isomorphic 1-morphisms R → X. Write [R, ρ] for the equivalence class of (R, ρ).
Define the Grothendieck ring K0(SchX) of the category of K-schemes over X to be the abelian
group generated by equivalence classes [R, ρ], such that as for (1.4.1) for each closed K-subscheme
S of R we have

[R, ρ] = [S, ρ|S ] + [R \ S, ρ|R\S ].

When X = SpecK we write K0(SchK) instead of K0(SchX). Define a biadditive, commutative,
associative product ‘ · ’ on K0(SchX) as in (1.4.2). It makes K0(SchX) into a commutative ring,
in general without identity. If X is a K-scheme K0(SchX) is as in Definition 1.4.1, with iden-
tity [X, idX ]. For Artin K-stacks X,Y , define a biadditive, commutative, associative external
tensor product � : K0(SchX)×K0(SchY )→ K0(SchX×Y ) by (1.4.4). Taking Y = SpecK we see
that � makes K0(SchX) into a module over K0(SchK).

Next we will define a stack analogue Mstk
X of the motivic ring MX of (1.4.3) for K-schemes

X. Since we have no identity in K0(SchX) if X is not a scheme, and we have not defined a
Tate motive L in K0(SchX), the analogue of (1.4.3) does not make sense. Instead, we use the
K0(SchK)-module structure, and define

Mstk
X = K0(SchX)⊗K0(SchK) K0(SchK)

[
L−1, (Lk − 1)−1, k = 1, 2, . . .

]
, (1.4.21)

where L ∈ K0(SchK) is as in Definition 1.4.1. The product ‘ · ’ descends to Mstk
X . When X =

SpecK we write Mstk
K instead of Mstk

X . Note that for X a K-scheme, Mstk
X is not isomorphic to

MX in (1.4.3), since we invert Lk − 1 in Mstk
X but not in MX , but there is a natural projection

MX →Mstk
X . The reason we invert Lk − 1 as well as L is that the motive of GL(n,K) in MK is

[GL(n,K)] := [GL(n,K), πSpecK] = Ln(n−1)/2
n∏
k=1

(Lk − 1),
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so that [GL(n,K)] is invertible in Mstk
K .

Let X be an Artin K-stack (as usual of finite type, with affine geometric stabilizers). Then
Proposition 1.4.12 gives a finite stratification X =

∐
i∈I

Xi with Xi ' [Si/GL(ni,K)]. Write

πi : Si → X for the composition of 1-morphisms Si → [Si/GL(ni,K)]
∼−→Xi ↪→ X. Define

elements 1X ,L ∈Mstk
X by

1X =
∑
i∈I

[GL(ni,K)]−1 � [Si, πi], L =
∑
i∈I

[GL(ni,K)]−1 � [A1 × Si, πi ◦ πSi ], (1.4.22)

where [GL(ni,K)]−1 ∈Mstk
K exists as above. It is easy to verify that these 1X ,L are independent

of the choice of I,Xi, Si, ni, and that 1X is the identity in (Mstk
X , ·), see [13, §5] for a proof.

Let φ : X → Y be a 1-morphism of Artin K-stacks. Define the pushforwards φ∗ : K0(SchX)→
K0(SchY ) and φ∗ : Mstk

X → Mstk
Y by (1.4.5). If φ is representable we may also define pullbacks

φ∗ : K0(SchY ) → K0(SchX) and φ∗ : Mstk
Y → Mstk

X by (1.4.6). (Here φ is representable in K-
schemes if X ×φ,Y,u U is a K-scheme for all u : U → Y with U a K-scheme.) But if φ is not
representable then Ri×ρi,Y,φX in (1.4.6) may not be a K-scheme, so (1.4.6) does not make sense.

However, for general 1-morphisms φ : X → Y we can still define a pullback morphism φ∗ :
Mstk

Y → Mstk
X as follows. Proposition 1.4.12 gives a finite stratification X =

∐
i∈I

Xi with Xi '

[Si/GL(ni,K)]. Let πi : Si → X be as above, and define a group morphism φ∗ :Mstk
Y →Mstk

X by

φ∗ :
n∑
j=1

cj [Rj , ρj ] 7−→
n∑
j=1

cj
∑
i∈I

[GL(ni,K)]−1 � [Rj ×ρj ,Y,φ◦πi Si, πX ]. (1.4.23)

If φ is representable in K-schemes, this is the result of multiplying (1.4.6) by equation (1.4.22)
for 1X , and so the two definitions of φ∗ agree. One can show that φ∗ is independent of the choice
of I,Xi, Si, ni, and that pullbacks φ∗ have the usual functoriality properties. As in [86, Th. 3.5],
the analogue of (1.4.7) holds for 2-Cartesian squares in Artin K-stacks.

Definition 1.4.14. Let X be an Artin K-stack. Consider triples (R, ρ, r̂), where R is a K-
scheme, ρ : R → X a 1-morphism, and r̂ : µ̂ × R → R a good µ̂-action on R, in the sense of
Definition 1.4.2. Call two such triples (R, ρ, r̂), (R′, ρ′, r̂′) equivalent if there exists a µ̂-equivariant
isomorphism ι : R → R′ and a 2-isomorphism ρ ∼= ρ′ ◦ ι. Write [R, ρ, r̂] for the equivalence class
of (R, ρ, r̂).

The monodromic Grothendieck group K µ̂
0 (SchX) is the abelian group generated by such equiv-

alence classes [R, ρ, r̂], with relations (i),(ii) as in Definition 1.4.2, except that we require a 2-
isomorphism ρ2

∼= ρ1 ◦π rather than equality ρ2 = ρ1 ◦π in (ii). Define a biadditive, commutative,

associative product ‘ · ’ on K µ̂
0 (SchX) as in (1.4.8). As forK0(SchX) in Definition 1.4.13, this makes

K µ̂
0 (SchX) into a commutative ring, in general without identity. If X is a K-scheme K µ̂

0 (SchX)
is as in Definition 1.4.2, with identity [X, idX , ι̂]. For Artin K-stacks X,Y , define a biadditive,

commutative, associative external tensor product � : K µ̂
0 (SchX)×K µ̂

0 (SchY )→K µ̂
0 (SchX×Y ) by

(1.4.9). Taking Y = SpecK, this makes K µ̂
0 (SchX) into a module over K µ̂

0 (SchK).

As for (1.4.21), using the K µ̂
0 (SchK)-module structure on K µ̂

0 (SchX) define

Mst,µ̂
X = K µ̂

0 (SchX)⊗
Kµ̂

0 (SchK)
K µ̂

0 (SchK)
[
L−1, (Lk − 1)−1, k = 1, 2, . . .

]
.

The product ‘ · ’ descends to Mst,µ̂
X . When X = SpecK we write Mst,µ̂

K instead of Mst,µ̂
X . Using

the data Xi, Si, ni of Proposition 1.4.12, as in (1.4.22) define elements 1X ,L ∈Mst,µ̂
X by

1X =
∑
i∈I

[GL(ni,K)]−1 � [Si, πi, ι̂], L =
∑
i∈I

[GL(ni,K)]−1 � [A1 × Si, πi ◦ πSi , ι̂]. (1.4.24)
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These are independent of choices, and 1X is the identity in Mst,µ̂
X .

Let φ : X → Y be a 1-morphism of Artin K-stacks. Define the pushforwards φ∗ : K µ̂
0 (SchX)→

K µ̂
0 (SchY ) and φ∗ :Mst,µ̂

X →Mst,µ̂
Y by the analogue of (1.4.5). If φ is representable in K-schemes

we may also define pullbacks φ∗ : K µ̂
0 (SchY )→ K µ̂

0 (SchX) and φ∗ :Mst,µ̂
Y →Mst,µ̂

X by the analogue

of (1.4.6). If φ is not representable in K-schemes, we can still define φ∗ : Mst,µ̂
Y →Mst,µ̂

X by the
analogue of (1.4.23). Pushforwards and pullbacks have the usual functoriality properties, and the
analogue of (1.4.7) holds for 2-Cartesian squares in Artin K-stacks.

As for (1.4.10), there are natural morphisms of commutative rings

iX : K0(SchX) −→ K µ̂
0 (SchX), iX :Mstk

X −→M
st,µ̂
X ,

ΠX : K µ̂
0 (SchX) −→ K0(SchX), ΠX :Mst,µ̂

X −→Mstk
X ,

given by iX : [R, ρ] 7→ [R, ρ, ι̂] and ΠX : [R, ρ, r̂] 7→ [R, ρ]. If X is a K-scheme, there is a natural

projection Mµ̂
X →M

st,µ̂
X .

The analogue of Definition 1.4.3, defining another associative, commutative product ‘�’ on
K µ̂

0 (SchX) and Mst,µ̂
X and an external version ‘�’, works essentially without change. For the

analogue of Definition 1.4.4, following (1.4.13) we define L1/2 inMst,µ̂
X only by L1/2 = 1X�L1/2

K ∈
Mst,µ̂

X , where 1X is as in (1.4.24), and L1/2
K ∈Mst,µ̂

K as in (1.4.12). Then L1/2�L1/2 = L inMst,µ̂
X ,

and we can define Ln/2 inMst,µ̂
X for all n ∈ Z in the obvious way. Here is [25, Def. 5.13] the stack

analogue of Definition 1.4.5:

Definition 1.4.15. For each Artin K-stack Y , define Ist,µ̂
Y to be the ideal in the commutative ring(

Mst,µ̂
Y ,�

)
generated by elements φ∗

(
Υstk(P ⊗Z/2Z Q)−Υ(P )stk �Υstk(Q)

)
for all 1-morphisms

φ : X → Y with X a K-scheme and principal Z/2Z-bundles P,Q → X, where Υstk(P ), Υstk(Q),

Υstk(P ⊗Z/2ZQ) are the images inMst,µ̂
X of the elements Υ(P ),Υ(Q),Υ(P ⊗Z/2ZQ) inMµ̂

X from

Definition 1.4.5. Define Mst,µ̂
Y = Mst,µ̂

Y /Ist,µ̂
Y to be the quotient, as a commutative ring with

multiplication ‘�’, with projection Πµ̂
Y : Mµ̂

Y → M
µ̂
Y . The second multiplication ‘ · ’, external

product �, and projection ΠY : Mst,µ̂
Y → Mstk

Y on Mst,µ̂
Y do not descend to Mst,µ̂

Y . The other

structures �,�, 1Y ,L, φ∗, φ∗, iY ,L1/2 do descend to Mst,µ̂
Y .

If X is a K-scheme, we have a natural projectionMµ̂
X →M

st,µ̂
X . So in particular, the motives

MFX,s ∈Mµ̂
X in Theorem 5.3.1 also make sense in Mst,µ̂

X . We will use this in Theorem 6.4.2.



Chapter 2

D-critical loci

We summarize the theory of d-critical schemes and stacks introduced by Joyce [87]. There are two
versions of the theory, complex analytic and algebraic d-critical loci, sometimes we give results
for both the versions simultaneously, otherwise just briefly indicate the differences between the
two, referring to [87] for details. We will need this material for the following chapters.

2.1 D-critical schemes

Let X be a complex analytic space or a K-scheme. Then [87, Th. 2.1 & Prop. 2.3] associates
a natural sheaf SX to X, such that, very briefly, sections of SX parametrize different ways of
writing X as Crit(f) for U a complex manifold or smooth K-scheme and f : U → C holomorphic
or f : U → A1 regular. Let us state it for K-schemes. The natural sheaf of K-algebras SX on X
in either the Zariski or étale topologies, has the following properties:

(a) Suppose R ⊆ X is Zariski open, U is a smooth K-scheme, and i : R ↪→ U a closed embedding.
Define an ideal IR,U ⊆ i−1(OU ) by the exact sequence 0 // IR,U // i−1(OU )

i] // OX |R // 0,
where OX ,OU are the sheaves of regular functions on X,U . Then there is an exact sequence
on R, where d : f + I2

R,U 7→ df + IR,U · i−1(T ∗U)

0 // SX |R
ιR,U // i

−1(OU )

I2
R,U

d // i−1(T ∗U)

IR,U · i−1(T ∗U)
.

(b) Let R ⊆ S ⊆ X be Zariski open, U, V be smooth K-schemes, i : R ↪→ U, j : S ↪→ V closed
embeddings, and Φ : U → V a morphism with Φ ◦ i = j|R : R → V . Then the following
diagram of sheaves on R commutes:

0 // SX |R

id

��

ιS,V |R // j
−1(OV )

I2
S,V

∣∣∣
R

i−1(Φ])
��

d // j−1(T ∗V )

IS,V · j−1(T ∗V )

∣∣∣
R

i−1(dΦ)
��

0 // SX |R
ιR,U // i

−1(OU )

I2
R,U

d // i−1(T ∗U)

IR,U · i−1(T ∗U)
.

(2.1.1)

(c) There is a natural decomposition SX = S0
X ⊕ KX , where KX is the constant sheaf on X

with fibre K, and S0
X ⊂ SX is the kernel of the composition SX // OX

i]X // OXred ,

with iX : Xred ↪→ X the reduced K-subscheme of X.
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(d) Let φ : X → Y be a morphism of K-schemes. Then there is a unique morphism φ? :
φ−1(SY ) → SX of sheaves of K-algebras on X, which maps φ−1(S0

Y ) → S0
X , such that

if R ⊆ X, S ⊆ Y are Zariski open with φ(R) ⊆ S, U, V are smooth schemes, i : R ↪→ U,
j : S ↪→ V are closed embeddings, and Φ : U → V is a morphism with Φ◦i = j◦φ|R : R→ V,
then as for (2.1.1) the following diagram of sheaves on R commutes:

0 // φ−1(SY )|R
φ−1(ιS,V )|R

//

φ?|R

��

φ−1 ◦ j−1(OV )|R
φ−1(I2

S,V )|R

i−1(Φ])

��

φ−1(d)
// φ−1(j−1(T ∗V ))|R
φ−1(IS,V · j−1(T ∗V ))|R

i−1(dΦ)

��

0 // SX |R
ιR,U // i

−1(OU )
I2
R,U

d // i−1(T ∗U)
IR,U · i−1(T ∗U)

.

(2.1.2)

(e) If X
φ−→Y

ψ−→Z are smooth morphisms of K-schemes, then (ψ ◦ φ)? = φ? ◦ φ−1(ψ?) :
(ψ ◦ φ)−1(SZ) = φ−1 ◦ ψ−1(SZ) −→ SX . If φ : X → Y is idX : X → X then id?X = idSX :
id−1
X (SX) = SX → SX .

Remark 2.1.1. Suppose we have U a complex manifold, f : U → C an holomorphic function,
and X = Crit(f), as a closed complex analytic subspace of U . Write i : X ↪→ U for the inclusion,
and IX,U ⊆ i−1(OU ) for the sheaf of ideals vanishing on X ⊆ U . Then we obtain a natural section
s ∈ H0(SX). Essentially s = f + I2

df , where Idf ⊆ OU is the ideal generated by df . Note that
f |X = f + Idf , so s determines f |X . Basically, s remembers all of the information about f which
makes sense intrinsically on X, rather than on the ambient space U .

Following [87, Def. 2.5] we define algebraic d-critical loci:

Definition 2.1.2. An (algebraic) d-critical locus over a field K is a pair (X, s), where X is a
K-scheme and s ∈ H0(S0

X), such that for each x ∈ X, there exists a Zariski open neighbourhood
R of x in X, a smooth K-scheme U , a regular function f : U → A1 = K, and a closed embedding
i : R ↪→ U , such that i(R) = Crit(f) as K-subschemes of U , and ιR,U (s|R) = i−1(f) + I2

R,U .
We call the quadruple (R,U, f, i) a critical chart on (X, s). If U ′ ⊆ U is a Zariski open, and
R′ = i−1(U ′) ⊆ R, i′ = i|R′ : R′ ↪→ U ′, and f ′ = f |U ′ , then (R′, U ′, f ′, i′) is a critical chart on
(X, s), and we call it a subchart of (R,U, f, i), and we write (R′, U ′, f ′, i′) ⊆ (R,U, f, i).

Let (R,U, f, i), (S, V, g, j) be critical charts on (X, s), with R ⊆ S ⊆ X. An embedding of
(R,U, f, i) in (S, V, g, j) is a locally closed embedding Φ : U ↪→ V such that Φ ◦ i = j|R and
f = g ◦ Φ. As a shorthand we write Φ : (R,U, f, i) ↪→ (S, V, g, j). If Φ : (R,U, f, i) ↪→ (S, V, g, j)
and Ψ : (S, V, g, j) ↪→ (T,W, h, k) are embeddings, then Ψ ◦ Φ : (R,U, i, e) ↪→ (T,W, h, k) is also
an embedding.

A morphism φ : (X, s)→ (Y, t) of d-critical loci (X, s), (Y, t) is a K-scheme morphism φ : X →
Y with φ?(t) = s. This makes d-critical loci into a category.

Remark 2.1.3. (a) For (X, s) to be a (complex analytic or algebraic) d-critical locus places
strong local restrictions on the singularities of X. For example, Behrend [5] notes that if X has
reduced local complete intersection singularities then locally it cannot be the zeroes of an almost
closed 1-form on a smooth space, and hence not locally a critical locus, and Pandharipande and
Thomas [140] give examples which are zeroes of almost closed 1-forms, but are not locally critical
loci.

(b) If X = Crit(f) for holomorphic f : U → C, then f |Xred is locally constant, and we can write
f = f0 + c uniquely near X in U for f0 : U → C holomorphic with Crit(f0) = X = Crit(f),
f0|Xred = 0, and c : U → C locally constant with c|Xred = f |Xred . Defining d-critical loci using
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s ∈ H0(S0
X) corresponds to remembering only the function f0 near X in U , and forgetting the

locally constant function f |Xred : Xred → C.

(c) It is natural to ask what is the relation between d-critical loci and schemes with symmetric
obstruction theories. In [87, ex. 2.16], Joyce shows a case in which the algebraic d-critical locus
remembers more information, locally, than the symmetric obstruction theory. In [87, ex. 2.17],
Joyce shows that the (symmetric) obstruction theory remembers global, non-local information
which is forgotten by the algebraic d-critical locus.

(e) One could think about critical charts as Kuranishi neighbourhoods on a topological space,
and embeddings as analogous to coordinate changes between Kuranishi neighbourhoods.

Here are [87, Prop.s 2.8, 2.30, Th.s 2.20, 2.28, Def. 2.31, Rem 2.32 & Cor. 2.33]:

Proposition 2.1.4. Let φ : X → Y be a smooth morphism of K-schemes. Suppose t ∈ H0(S0
Y ),

and set s := φ?(t) ∈ H0(S0
X). If (Y, t) is a d-critical locus, then (X, s) is a d-critical locus, and

φ : (X, s) → (Y, t) is a morphism of d-critical loci. Conversely, if also φ : X → Y is surjective,
then (X, s) a d-critical locus implies (Y, t) is a d-critical locus.

Theorem 2.1.5. Suppose (X, s) is an algebraic d-critical locus, and (R,U, f, i), (S, V, g, j) are
critical charts on (X, s). Then for each x ∈ R ∩ S ⊆ X there exist subcharts (R′, U ′, f ′, i′) ⊆
(R,U, f, i), (S′, V ′, g′, j′) ⊆ (S, V, g, j) with x ∈ R′∩S′ ⊆ X, a critical chart (T,W, h, k) on (X, s),
and embeddings Φ : (R′, U ′, f ′, i′) ↪→ (T,W, h, k), Ψ : (S′, V ′, g′, j′) ↪→ (T,W, h, k).

Theorem 2.1.6. Let (X, s) be an algebraic d-critical locus, and Xred ⊆ X the associated reduced
K-subscheme. Then there exists a line bundle KX,s on Xred which we call the canonical bundle
of (X, s), which is natural up to canonical isomorphism, and is characterized by the following
properties:

(a) For each x ∈ Xred, there is a canonical isomorphism

κx : KX,s|x
∼=−→
(
ΛtopT ∗xX

)⊗2
, (2.1.3)

where TxX is the Zariski tangent space of X at x.

(b) If (R,U, f, i) is a critical chart on (X, s), there is a natural isomorphism

ιR,U,f,i : KX,s|Rred −→ i∗
(
K⊗

2

U

)
|Rred , (2.1.4)

where KU = ΛdimUT ∗U is the canonical bundle of U in the usual sense.

(c) In the situation of (b), let x ∈ R. Then we have an exact sequence

0 // TxX
di|x // Ti(x)U

Hessi(x) f // T ∗i(x)U
di|∗x // T ∗xX // 0, (2.1.5)

and the following diagram commutes:

KX,s|x

ιR,U,f,i|x ,,

κx
//
(
ΛtopT ∗xX

)⊗2

αx,R,U,f,i
��

KU |⊗
2

i(x),

where αx,R,U,f,i is induced by taking top exterior powers in (2.1.5).
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Proposition 2.1.7. Suppose φ : (X, s)→ (Y, t) is a morphism of d-critical loci with φ : X → Y
smooth, as in Proposition 2.1.4. The relative cotangent bundle T ∗X/Y is a vector bundle of
mixed rank on X in the exact sequence of coherent sheaves on X :

0 // φ∗(T ∗Y )
dφ∗ // T ∗X // T ∗X/Y

// 0. (2.1.6)

There is a natural isomorphism of line bundles on Xred :

Υφ : φ|∗Xred(KY,t)⊗
(
ΛtopT ∗X/Y

)∣∣⊗2

Xred

∼=−→KX,s, (2.1.7)

such that for each x ∈ Xred the following diagram of isomorphisms commutes:

KY,t|φ(x) ⊗
(
ΛtopT ∗X/Y |x

)⊗2

Υφ|x
//

κφ(x)⊗id
��

KX,s|x
κx
��(

ΛtopT ∗φ(x)Y
)⊗2

⊗
(
ΛtopT ∗X/Y |x

)⊗2 υ⊗
2

x // (ΛtopT ∗xX
)⊗2

,

(2.1.8)

where κx, κφ(x) are as in (2.1.3), and υx : ΛtopT ∗φ(x)Y ⊗ ΛtopT ∗X/Y |x → ΛtopT ∗xX is obtained by

restricting (2.1.6) to x and taking top exterior powers.

Definition 2.1.8. Let (X, s) be an algebraic d-critical locus, and KX,s its canonical bundle from

Theorem 2.1.6. An orientation on (X, s) is a choice of square root line bundle K
1/2
X,s for KX,s

on Xred. That is, an orientation is a line bundle L on Xred, together with an isomorphism
L⊗

2
= L ⊗ L ∼= KX,s. A d-critical locus with an orientation will be called an oriented d-critical

locus.

Remark 2.1.9. In view of equation (2.1.3), one might hope to define a canonical orientation K
1/2
X,s

for a d-critical locus (X, s) by K
1/2
X,s

∣∣
x

= ΛtopT ∗xX for x ∈ Xred. However, this does not work, as

the spaces ΛtopT ∗xX do not vary continuously with x ∈ Xred if X is not smooth. In [87, Ex. 2.39],
Joyce shows that d-critical loci need not admit orientations.

In the situation of Proposition 2.1.7, the factor (ΛtopT ∗X/Y )|⊗2

Xred in (2.1.7) has a natural square

root (ΛtopT ∗X/Y )|Xred . Thus we deduce:

Corollary 2.1.10. Let φ : (X, s) → (Y, t) be a morphism of d-critical loci with φ : X → Y

smooth. Then each orientation K
1/2
Y,t for (Y, t) lifts to a natural orientation K

1/2
X,s = φ|∗

Xred(K
1/2
Y,t )⊗

(ΛtopT ∗X/Y )|Xred for (X, s).

Remark 2.1.11. There is also an interpretation of orientations in terms of principal Z2-bundles.
The line bundle KX,s in Theorem 2.1.6 is characterized uniquely up to isomorphism equivalently
by part (ii) and the following property based on Definition 4.3.2 which we will discuss in §4: let
Φ : (R,U, f, i) ↪→ (S, V, g, j) be an embedding of critical charts on (X, s), and let JΦ be as in
Definition 4.3.2. Then

ιS,V,g,j |Rred = JΦ ◦ ιR,U,f,i : KX,s|Rred −→ j∗
(
K⊗

2

V

)∣∣
Rred . (2.1.9)

Using this equivalent characterization of canonical bundles, we can express orientations in terms
of principal Z2-bundles.

Proposition 2.1.12. Let (X, s) be a d-critical locus. Then Definition 4.3.2 induces an isomor-

phism between isomorphism classes of orientations K
1/2
X,s on (X, s), and isomorphism classes of

the following collections of data:
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(a) For each critical chart (R,U, f, i) on (X, s), a choice of principal Z2-bundle πR,U,f,i :
QR,U,f,i → R on R, and

(b) For each embedding of critical charts Φ : (R,U, f, i) ↪→ (S, V, g, j), a choice of isomorphism
ΛΦ : QS,V,g,j |R → PΦ ⊗Z2 QR,U,f,i as in Definition 4.3.2,

such that [87, eq 2.38] commutes for all embeddings Φ : (R,U, f, i) ↪→ (S, V, g, j), Ψ : (S, V, g, j) ↪→
(T,W, h, k), where PΦ, PΨ, PΨ◦Φ,ΞΨ,Φ are as in the first part of Definition 4.3.2.

Let Φ : (R,U, f, i) ↪→ (S, V, g, j) be an embedding of critical charts on a d-critical locus (X, s).
Define NUV , qUV as in Theorem 4.3.1, and πΦ : PΦ → R as in Definition 4.3.2. Then an alternative
interpretation of PΦ is as the principal Z2-bundle of orientations of the nondegenerate quadratic
form qUV on the vector bundle i∗(NUV ) over R. Thus, Proposition 2.1.12 shows that an orientation
K

1/2
X,s on (X, s) is equivalent to giving principal Z2-bundles QR,U,f,i → R for each chart (R,U, f, i)

on (X, s), such that QR,U,f,i and QS,V,g,j |R differ by the principal Z2-bundle of orientations of
qUV for each embedding Φ : (R,U, f, i) ↪→ (S, V, g, j). This is why the term orientation has
been chosen for K

1/2
X,s. It is closely relation to the notion of orientation data in Kontsevich and

Soibelman [102, §5].

2.2 D-critical stacks

In [87, §2.7–§2.8] Joyce extends the material of §2.1 from K-schemes to Artin K-stacks. He works
in the context of the theory of sheaves on Artin stacks by Laumon and Moret-Bailly [109], so for
the reader’s convenience we recall the following:

Proposition 2.2.1 (Laumon and Moret-Bailly [109]). Let X be an Artin K-stack. The category
of sheaves of sets on X in the lisse-étale topology is equivalent to the category Sh(X) defined as
follows:

(A) Objects A of Sh(X) comprise the following data:

(a) For each K-scheme T and smooth 1-morphism t : T → X in ArtK, we are given a sheaf of
sets A(T, t) on T, in the étale topology.

(b) For each 2-commutative diagram in ArtK :

U
u

''

KS
η

T

φ
77

t
// X,

(2.2.1)

where T,U are schemes and t : T → X, u : U → X are smooth 1-morphisms in ArtK, we
are given a morphism A(φ, η) : φ−1(A(U, u))→ A(T, t) of étale sheaves of sets on T .

This data must satisfy the following conditions:

(i) If φ : T → U in (b) is étale, then A(φ, η) is an isomorphism.

(ii) For each 2-commutative diagram in ArtK :

V
v

))

KS
ζ

U

ψ
55

u
// X,MU

η

T

φ

OO

t

44
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with T,U, V schemes and t, u, v smooth, we must have

A
(
ψ ◦ φ, (ζ ∗ idφ)� η

)
= A(φ, η) ◦ φ−1(A(ψ, ζ)) as morphisms

(ψ ◦ φ)−1(A(V, v)) = φ−1 ◦ ψ−1(A(V, v)) −→ A(T, t).

(B) Morphisms α : A → B of Sh(X) comprise a morphism α(T, t) : A(T, t) → B(T, t) of étale
sheaves of sets on a scheme T for all smooth 1-morphisms t : T → X, such that for each diagram
(2.2.1) in (b) the following commutes:

φ−1(A(U, u))

φ−1(α(U,u))

��

A(φ,η)
// A(T, t)

α(T,t)

��
φ−1(B(U, u))

B(φ,η) // B(T, t).

(C) Composition of morphisms A α−→B β−→C in Sh(X) is (β◦α)(T, t) = β(T, t)◦α(T, t). Identity
morphisms idA : A → A are idA(T, t) = idA(T,t).

The analogue of all the above also holds for (étale) sheaves of K-vector spaces, sheaves of
K-algebras, and so on, in place of (étale) sheaves of sets. Furthermore, the analogue of all the
above holds for quasi-coherent sheaves, (or coherent sheaves, or vector bundles, or line bundles)
on X, where in (a) A(T, t) becomes a quasi-coherent sheaf (or coherent sheaf, or vector bundle, or
line bundle) on T, in (b) we replace φ−1(A(U, u)) by the pullback φ∗(A(U, u)) of quasi-coherent
sheaves (etc.), and A(φ, η), α(T, t) become morphisms of quasi-coherent sheaves (etc.) on T .

We can also describe global sections of sheaves on Artin K-stacks in the above framework:
a global section s ∈ H0(A) of A in part (A) assigns a global section s(T, t) ∈ H0(A(T, t)) of
A(T, t) on T for all smooth t : T → X from a scheme T, such that A(φ, η)∗(s(U, u)) = s(T, t) in
H0(A(T, t)) for all 2-commutative diagrams (2.2.1) with t, u smooth.

In [87, Cor. 2.52] Joyce generalizes the sheaves SX ,S0
X in §2.1 to Artin K-stacks:

Proposition 2.2.2. Let X be an Artin K-stack, and write Sh(X)K-alg and Sh(X)K-vect for the
categories of sheaves of K-algebras and K-vector spaces on X defined in Proposition 2.2.1. Then:

(a) We may define canonical objects SX in both Sh(X)K-alg and Sh(X)K-vect by SX(T, t) := ST
for all smooth morphisms t : T → X for T ∈ SchK, for ST as in §2.1 taken to be a
sheaf of K-algebras (or K-vector spaces) on T in the étale topology, and SX(φ, η) := φ? :
φ−1(SX(U, u)) = φ−1(SU )→ ST = SX(T, t) for all 2-commutative diagrams (2.2.1) in ArtK
with t, u smooth, where φ? is as in §2.1.

(b) There is a natural decomposition SX = KX ⊕S0
X in Sh(X)K-vect induced by the splitting

SX(T, t)=ST =KT ⊕S0
T in §2.1, where KX is a sheaf of K-subalgebras of SX in Sh(X)K-alg,

and S0
X a sheaf of ideals in SX .

Here [87, Def. 2.53] is the generalization of Definition 2.1.2 to Artin stacks.

Definition 2.2.3. A d-critical stack (X, s) is an Artin K-stackX and a global section s ∈ H0(S0
X),

where S0
X is as in Proposition 2.2.2, such that

(
T, s(T, t)

)
is an algebraic d-critical locus in the

sense of Definition 2.1.2 for all smooth morphisms t : T → X with T ∈ SchK.

Here is a convenient way to understand d-critical stacks (X, s) in terms of d-critical structures
on an atlas t : T → X for X from [87, Prop. 2.54].
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Proposition 2.2.4. Suppose we are given a 2-commutative diagram in ArtK :

U
π1��

π2

//
GO

η
T
t ��

T
t // X,

(2.2.2)

where X is an Artin K-stack, T,U are K-schemes, t, π1, π2 are smooth 1-morphisms, t : T → X
is surjective, and the 1-morphism U → T ×t,X,t T induced by (2.2.2) is surjective. For instance,
this happens if U ⇒ T is a groupoid in K-schemes, and X = [U ⇒ T ] the associated groupoid
stack. Then:

(i) Let SX be as in Proposition 2.2.2, and ST ,SU be as in §2, regarded as sheaves on T,U in
the étale topology, and define π?i : π−1

i (ST )→ SU as in §?? for i = 1, 2. Consider the map
t∗ : H0(SX)→ H0(ST ) mapping t∗ : s 7→ s(T, t). This is injective, and induces a bijection

t∗ : H0(SX)
∼=−→
{
s′ ∈ H0(ST ) : π?1(s′) = π?2(s′) in H0(SU )

}
. (2.2.3)

The analogue holds for S0
X ,S0

T ,S0
U .

(ii) Suppose s ∈ H0(S0
X), so that t∗(s) ∈ H0(S0

T ) with π?1 ◦ t∗(s) = π?2 ◦ t∗(s). Then (X, s) is a d-
critical stack if and only if

(
T, t∗(s)

)
is an algebraic d-critical locus, and then

(
U, π?1 ◦ t∗(s)

)
is also an algebraic d-critical locus.

Next, we report [87, Ex. 2.55], where Joyce considers quotient stacks X = [T/G].

Example 2.2.5. Suppose an algebraic K-group G acts on a K-scheme T with action µ : G×T →
T , and write X for the quotient Artin K-stack [T/G]. Then as in (2.2.2) there is a natural
2-Cartesian diagram

G× T
πT
��

µ
//

HP
η

T

t
��

T
t // X = [T/G],

where t : T → X is a smooth atlas for X. If s′ ∈ H0(S0
T ) then π?1(s′) = π?2(s′) in (2.2.3) becomes

π?T (s′) = µ?(s′) on G×T , that is, s′ is G-invariant. Hence, Proposition 2.2.4 shows that d-critical
structures s on X = [T/G] are in 1-1 correspondence with G-invariant d-critical structures s′

on T .

Here [87, Th. 2.56] is an analogue of Theorem 2.1.6.

Theorem 2.2.6. Let (X, s) be a d-critical stack. Using the description of quasi-coherent sheaves
on Xred in Proposition 2.2.1 there is a line bundle KX,s on the reduced K-substack Xred of X
called the canonical bundle of (X, s), unique up to canonical isomorphism, such that:

(a) For each point x ∈ Xred ⊆ X we have a canonical isomorphism

κx : KX,s|x
∼=−→
(
ΛtopT ∗xX

)⊗2

⊗
(
ΛtopIsox(X)

)⊗2

, (2.2.4)

where T ∗xX is the Zariski cotangent space of X at x, and Isox(X) the Lie algebra of the
isotropy group (stabilizer group) Isox(X) of X at x.

(b) If T is a K-scheme and t : T → X a smooth 1-morphism, so that tred : T red → Xred is also
smooth, then there is a natural isomorphism of line bundles on T red :

ΓT,t : KX,s(T
red, tred)

∼=−→KT,s(T,t) ⊗
(
ΛtopT ∗T/X

)∣∣⊗−2

T red . (2.2.5)

Here
(
T, s(T, t)

)
is an algebraic d-critical locus by Definition 2.2.3, and KT,s(T,t) → T red is

its canonical bundle from Theorem 2.1.6.
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(c) If t : T → X is a smooth 1-morphism, we have a distinguished triangle in Dqcoh(T ) :

t∗(LX)
Lt // LT // T ∗T/X

// t∗(LX)[1], (2.2.6)

where LT ,LX are the cotangent complexes of T,X, and T ∗T/X the relative cotangent bundle of

t : T → X, a vector bundle of mixed rank on T . Let p ∈ T red ⊆ T, so that t(p) := t ◦ p ∈ X.
Taking the long exact cohomology sequence of (2.2.6) and restricting to p ∈ T gives an exact
sequence

0 −→ T ∗t(p)X −→ T ∗p T −→ T ∗T/X |p −→ Isot(p)(X)∗ −→ 0. (2.2.7)

Then the following diagram commutes:

KX,s|t(p)

κt(p)

��

KX,s(T
red, tred)|p

ΓT,t|p
// KT,s(T,t)|p ⊗

(
ΛtopT ∗T/X

)∣∣⊗−2

p

κp⊗id

��(
ΛtopT ∗t(p)X

)⊗2

⊗
(
ΛtopIsot(p)(X)

)⊗2 α2
p // (ΛtopT ∗p T

)⊗2

⊗
(
ΛtopT ∗T/X

)∣∣⊗−2

p
,

where κp, κt(p),ΓT,t are as in (2.1.3), (2.2.4) and (2.2.5), respectively, and αp : ΛtopT ∗t(p)X⊗

ΛtopIsot(p)(X)
∼=−→ΛtopT ∗p T⊗ΛtopT ∗T/X |

−1
p is induced by taking top exterior powers in (2.2.7).

Here [87, Def. 2.57] is the analogue of Definition 2.1.8:

Definition 2.2.7. Let (X, s) be a d-critical stack, and KX,s its canonical bundle from Theorem

2.2.6. An orientation on (X, s) is a choice of square root line bundle K
1/2
X,s for KX,s on Xred. That

is, an orientation is a line bundle L on Xred, together with an isomorphism L⊗
2

= L⊗L ∼= KX,s.
A d-critical stack with an orientation will be called an oriented d-critical stack.

Let (X, s) be an oriented d-critical stack. Then for each smooth t : T → X we have a square

root K
1/2
X,s(T

red, tred). Thus by (2.2.5), K
1/2
X,s(T

red, tred) ⊗ (ΛtopLT/X)|T red is a square root for
KT,s(T,t). This proves [87, Lem. 2.58]:

Lemma 2.2.8. Let (X, s) be a d-critical stack. Then an orientation K
1/2
X,s for (X, s) determines

a canonical orientation K
1/2
T,s(T,t) for the algebraic d-critical locus

(
T, s(T, t)

)
, for all smooth t :

T → X with T a K-scheme.

2.3 Equivariant d-critical loci

Here we summarizes some results about group actions on algebraic d-critical loci from [87].

Definition 2.3.1. Let (X, s) be an algebraic d-critical locus over K, and µ : G × X → X an
action of an algebraic K-group G on the K-scheme X. We also write the action as µ(γ) : X → X
for γ ∈ G. We say that (X, s) is G-invariant if µ(γ)?(s) = s for all γ ∈ G, or equivalently, if
µ?(s) = π?X(s) in H0(S0

G×X), where πX : G×X → X is the projection.
Let χ : G → Gm be a morphism of algebraic K-groups, that is, a character of G, where

Gm = K \ {0} is the multiplicative group. We say that (X, s) is G-equivariant, with character χ,
if µ(γ)?(s) = χ(γ) · s for all γ ∈ G, or equivalently, if µ?(s) = (χ ◦ πG) · (π?X(s)) in H0(S0

G×X),
where H0(OG) 3 χ acts on H0(S0

G×X) by multiplication, as G is a smooth K-scheme.
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Suppose (X, s) is G-invariant or G-equivariant, with χ = 1 in the G-invariant case. We call a
critical chart (R,U, f, i) on (X, s) with a G-action ρ : G×U → U a G-equivariant critical chart if
R ⊆ X is a G-invariant open subscheme, and i : R ↪→ U , f : U → A1 are equivariant with respect
to the actions µ|G×R, ρ, χ of G on R,U,A1, respectively.

We call a subchart (R′, U ′, f ′, i′) ⊆ (R,U, f, i) a G-equivariant subchart if R′ ⊆ R and
U ′ ⊆ U are G-invariant open subschemes. Then (R′, U ′, f ′, i′), ρ′ is a G-equivariant critical chart,
where ρ′ = ρ|G×U ′ .

Note that X may not be covered by G-equivariant critical charts without extra assumptions
on X,G. We will restrict to the case when G is a torus, with a ‘good’ action on X:

Definition 2.3.2. Let X be a K-scheme, G an algebraic K-torus, and µ : G×X → X an action
of G on X. We call µ a good action if X admits a Zariski open cover by G-invariant affine open
K-subschemes U ⊆ X.

A torus-equivariant d-critical locus (X, s) admits an open cover by equivariant critical charts
if and only if the torus action is good:

Proposition 2.3.3. Let (X, s) be an algebraic d-critical locus which is invariant or equivariant
under the action µ : G×X → X of an algebraic torus G.
(a) If µ is good then for all x ∈ X there exists a G-equivariant critical chart (R,U, f, i), ρ on
(X, s) with x ∈ R, and we may take dimU = dimTxX.
(b) Conversely, if for all x ∈ X there exists a G-equivariant critical chart (R,U, f, i), ρ on (X, s)
with x ∈ R, then µ is good.



Chapter 3

A Darboux theorem for symplectic
derived schemes

This chapter is based on [19]. In general, we will not go into details and proofs of results, for
which we refer to [19]. We will need this material for the following chapters.

3.1 ‘Standard form’ affine derived schemes

The next definition summarizes [19, Ex. 2.8, Def. 2.9 & Def. 2.13]. A useful review of [19] is
provided in [13, §2.3–2.4], which is our main reference.

Definition 3.1.1. We will explain how to inductively construct a sequence of commutative dif-
ferential graded algebras (cdgas) A(0), A(1), . . . , A(n) = A over K with A(0) a smooth K-algebra
and A(k) having underlying commutative graded algebra free over A(0) on generators of degrees
−1, . . . ,−k. We will call A a standard form cdga. We will write U(i) = SpecA(i) for i = 0, . . . , n
and U = U(n) = SpecA for the corresponding affine derived K-schemes, where U(0) = U(0) is
a smooth classical K-scheme, which contains SpecH0(A) as a closed K-subscheme.

Begin with a commutative algebra A(0) smooth over K. Choose a free A(0)-module M−1

of finite rank together with a map π−1 : M−1 → A(0). Define a cdga A(1) whose underlying
commutative graded algebra is free over A(0) with generators given by M−1 in degree −1 and with
differential d determined by the map π−1 : M−1 → A(0). By construction, we have H0(A(1)) =
A(0)/I, where the ideal I ⊆ A(0) is the image of the map π−1 : M−1 → A(0). Note that A(1)
fits in a homotopy pushout diagram of cdgas

SymA(0)(M
−1)

0∗
//

π−1
∗��

A(0)

��
A(0)

f−1
// A(1),

with morphisms π−1
∗ , 0∗ induced by π−1, 0 : M−1 → A(0). Write f−1 : A(0) → A(1) for the

resulting map of algebras.
Next, choose a free A(1)-module M−2 of finite rank together with a map π−2 : M−2[1]→ A(1).

Define a cdga A(2) whose underlying commutative graded algebra is free over A(1) with generators
given by M−2 in degree −2 and with differential d determined by the map π−2 : M−2[1]→ A(1).
Write f−2 for the resulting map of algebras A(1)→ A(2). As the underlying commutative graded
algebra of A(1) was free over A(0) on generators of degree −1, the underlying commutative graded
algebra of A(2) is free over A(0) on generators of degrees −1,−2. Since A(2) is obtained from
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A(1) by adding generators in degree −2, we have H0(A(1)) ∼= H0(A(2)) ∼= A(0)/I. Note that
A(2) fits in a homotopy pushout diagram of cdgas

SymA(1)(M
−2[1])

0∗
//

π−2
∗��

A(1)

��
A(1)

f−2
// A(2),

with morphisms π−2
∗ , 0∗ induced by π−2, 0 : M−2[1]→ A(1).

Continuing in this manner inductively, we define a cdga A(n) = A with A0 = A(0) and
H0(A) = A(0)/I, whose underlying commutative graded algebra is free over A(0) on generators
of degrees −1, . . . ,−n. We call any cdga A constructed in this way a standard form cdga.

If A is of standard form, we will call a cdga A′ a localization of A if A′ = A ⊗A0 A0[f−1]
for f ∈ A0, that is, A′ is obtained by inverting f in A. Then A′ is also of standard form, with
A′ 0 ∼= A0[f−1]. If p ∈ SpecH0(A) with f(p) 6= 0, we call A′ a localization of A around p.

Let A be a standard form cdga. We call A minimal at p ∈ SpecH0(A) if for all k = 1, . . . , n the
compositions H−k

(
LA(k)/A(k−1)

)
−→ H1−k(LA(k−1)

)
−→ H1−k(LA(k−1)/A(k−2)

)
in the cotangent

complexes restricted to SpecH0(A) vanish at p. For more on this point, see [19, Prop. 2.12].

Here are [19, Th.s 4.1 & 4.2]. They say that any derived scheme X is locally modelled on
SpecA for a (minimal) standard form cdga A, and give us a way to compare two such local
models f : SpecA ↪→X, g : SpecB ↪→X.

Theorem 3.1.2. Let X be a derived K-scheme, and x ∈ X. Then there exist a standard form
cdga A over K which is minimal at a point p ∈ SpecH0(A), in the sense of Definition 3.1.1, and
a morphism f : U = SpecA→X in dSchK which is a Zariski open inclusion with f(p) = x.

We think of A,f in Theorem 3.1.2 as like a coordinate system on X near x. As well as being
able to choose coordinates near any point, we want to be able to compare different coordinate
systems on their overlaps. That is, given local equivalences f : SpecA → X, g : SpecB → X,
we would like to compare the cdgas A,B on the overlap of their images in X. For general A,B
we cannot (even locally) find a cdga morphism α : B → A with f ' g ◦ Specα. However, the
next theorem, which is [19, Thm. 4.2] shows we can find a third cdga C and open inclusions
α : A → C, β : B → C with f ◦ Specα ' g ◦ Specβ. This will be important in the proof of
Theorem 3.3.1.

Theorem 3.1.3. Let X be a derived K-scheme, A,B be standard form cdgas over K, and f :
SpecA → X, g : SpecB → X be Zariski open inclusions in dSchK. Suppose p ∈ SpecH0(A)
and q ∈ SpecH0(B) with f(p) = g(q) in X. Then there exist a standard form cdga C over K
which is minimal at r in SpecH0(C) and morphisms of cdgas α : A → C, β : B → C which are
Zariski open inclusions, such that Specα : r 7→ p, Specβ : r 7→ q, and f ◦Specα ' g◦Specβ as
morphisms SpecC →X in dSchK. If instead f , g are étale rather than Zariski open inclusions,
the same holds with α, β étale rather than Zariski open inclusions.

One important advantage of working with derived schemes U = SpecA for A a standard form
cdga, is that the cotangent complex LU and its exterior powers ΛpLU can be written simply and
explicitly in terms of A. As in [19, §2, §3.3] the differential-graded module of Kähler differentials
Ω1
A is a model for LU . If U(0) = SpecA0 admits global étale coordinates (x0

1, . . . , x
0
m0

), then Ω1
A is

a finitely-generated free A-module, generated by ddRx
−i
1 , . . . ,ddRx

−i
mi in degree −i for i = 0, . . . , n,

where x−i1 , . . . , x−imi are A(i−1)-bases for the free finite rank A(i−1)-modules M−i for i = 1, . . . , n,
in the notation of Definition 3.1.1. Because of this, on U = SpecA, the k-shifted (closed) p-forms
from [142] discussed in §1.2.2 can be written down explicitly in coordinates. Here is [19, Prop. 5.7].
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Part (a) implies that for a k-shifted symplectic form ω = (ω0, ω1, ω2, . . .) on a standard form
U = SpecA, up to equivalence we may take ω1 = ω2 = · · · = 0, which simplifies calculations a
lot. Let us note here that the proof of [19, Prop. 5.7] uses the interpretation of shifted symplectic
forms as representing classes in negative cyclic homology. As this is a quite technical part, we
omit it here, referring to [19] for details.

Proposition 3.1.4. (a) Let ω = (ω0, ω1, ω2, . . .) be a closed 2-form of degree k < 0 on U =
SpecA, for A a standard form cdga over K. Then there exist Φ ∈ Ak+1 and φ ∈ (Ω1

A)k such that
dΦ = 0 in Ak+2 and ddRΦ + dφ = 0 in (Ω1

A)k+1 and ω ∼ (ddRφ, 0, 0, . . .).

(b) In the case k = −1 in (a) we have Φ ∈ A0 = A(0), so we can consider the restriction Φ|Ured of
Φ to the reduced K-subscheme U red of U = t0(U) = SpecH0(A). Then Φ|Ured is locally constant
on U red, and we may choose (Φ, φ) in (a) such that Φ|Ured = 0.

(c) Suppose (Φ, φ) and (Φ′, φ′) are alternative choices in part (a) for fixed ω, k,U , A, where if
k = −1 we suppose Φ|Ured = 0 = Φ′|Ured as in (b). Then there exist Ψ ∈ Ak and ψ ∈ (Ω1

A)k−1

with Φ− Φ′ = dΨ and φ− φ′ = ddRΨ + dψ.

3.2 ‘Darboux form’ shifted symplectic derived schemes

The next definition summarizes [19, Ex.s 5.8–5.10].

Definition 3.2.1. Fix d = 0, 1, . . . . We will explain how to define a class of explicit standard
form cdgas (A,d) = A(n) for n = 2d + 1 with a very simple, explicit k-shifted symplectic form
ω = (ω0, 0, 0, . . .) on U = SpecA for k = −2d− 1. We will say that A,ω are in Darboux form.

First choose a smooth K-algebra A(0) of dimension m0. Localizing A(0) if necessary, we
may assume that there exist x0

1, . . . , x
0
m0
∈ A(0) such that ddRx

0
1, . . . ,ddRx

0
m0

form a basis of
Ω1
A(0) over A(0). Geometrically, U(0) = SpecA(0) is a smooth K-scheme of dimension m0, and

(x0
1, . . . , x

0
m0

) : U(0)→ Am0 are global étale coordinates on U(0). Next, choose m1, . . . ,md ∈ N =
{0, 1, . . .}. Define A as a commutative graded algebra to be the free algebra over A(0) generated
by variables

x−i1 , . . . , x−imi in degree −i for i = 1, . . . , d, and

yi−2d−1
1 , . . . , yi−2d−1

mi in degree i− 2d− 1 for i = 0, 1, . . . , d.
(3.2.1)

So the upper index i in xij , y
i
j always indicates the degree. We will define the differential d in the

cdga (A,d) later. The spaces (ΛpΩ1
A)k and the de Rham differential ddR upon them depend only

on the commutative graded algebra A, not on the (not yet defined) differential d. Note that Ω1
A

is the free A-module with basis ddRx
−i
j , ddRy

i−2d−1
j for i = 0, . . . , d and j = 1, . . . ,mi. Define

ω0 =
d∑
i=0

mi∑
j=1

ddRy
i−2d−1
j ddRx

−i
j in (Λ2Ω1

A)−2d−1. (3.2.2)

Then ddRω
0 = 0 in (Λ3Ω1

A)−2d−1. Now choose H in A−2d, which we will call the Hamiltonian,
and which we require to satisfy the classical master equation

d∑
i=1

mi∑
j=1

∂H

∂x−ij

∂H

∂yi−2d−1
j

= 0 in A1−2d. (3.2.3)

The classical master equation can be expressed invariantly as {H,H} = 0, where {, } is a certain
shifted Poisson bracket. For more on this, consult [19, §5.7]. Note that (3.2.3) is trivial when
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d = 0, so that k = −1, as A1 = 0. Define the differential d on A by d = 0 on A(0), and

dx−ij =
∂H

∂yi−2d−1
j

, dyi−2d−1
j =

∂H

∂x−ij
,

i = 0, . . . , d,

j = 1, . . . ,mi.
(3.2.4)

Then d ◦ d = 0, and (A,d) is a standard form cdga A = A(n) as in Definition 3.1.1 for n =
2d + 1, defined using free modules M−i = 〈x−i1 , . . . , x−imi〉A(i−1) for i = 1, . . . , d and M i−2d−1 =

〈yi−2d−1
1 , . . . , yi−2d−1

mi 〉A(2d−i) for i = 0, . . . , d. Then ω = (ω0, 0, 0, . . .) is a k-shifted symplectic

structure on U = SpecA for k = −2d− 1. Define Φ ∈ A−2d and φ ∈ (Ω1
A)−2d−1 by Φ = − 1

2d+1 H
and

φ =
1

2d+ 1

d∑
i=0

mi∑
j=1

[
(2d+ 1− i)yi−2d−1

j ddRx
−i
j + i x−ij ddRy

i−2d−1
j

]
. (3.2.5)

Then dΦ = 0, ddRΦ + dφ = 0, and ω0 = ddRφ, as in Proposition 3.1.4(a). We say that A,ω are
in Darboux form for k = −2d− 1.

In [19, Ex.s 5.9 & 5.10] we give similar Darboux forms for k = −4d and k = −4d − 2 with
d = 0, 1, 2, . . . . We will not give all the details. In brief, when k = −4d, rather than (3.2.1), A is
freely generated over A(0) by the variables

x−i1 , . . . , x−imi in degree −i for i = 1, . . . , 2d− 1,

x−2d
1 , . . . , x−2d

m2d
, y−2d

1 , . . . , y−2d
m2d

in degree −2d, and

yi−4d
1 , . . . , yi−4d

mi in degree i− 4d for i = 0, 1, . . . , 2d− 1,

and ω0 ∈ (Λ2Ω1
A)−4d with ddRω

0 = 0 is given by

ω0 =

2d∑
i=0

mi∑
j=1

ddRy
i−4d
j ddRx

−i
j in (Λ2Ω1

A)−4d,

and d on A is defined as in (3.2.4) using H ∈ A1−4d satisfying the analogue of (3.2.3). We then
say that A,U = SpecA,ω are in Darboux form for k = −4d.

Similarly, when k = −4d− 2, A is freely generated over A(0) by the variables

x−i1 , . . . , x−imi in degree −i for i = 1, . . . , 2d,

z−2d−1
1 , . . . , z−2d−1

m2d+1
in degree −2d− 1, and

yi−4d−2
1 , . . . , yi−4d−2

mi in degree i− 4d− 2 for i = 0, 1, . . . , 2d,

and ω0 ∈ (Λ2Ω1
A)−4d−2 with ddRω

0 = 0 is given by

ω0 =
2d∑
i=0

mi∑
j=1

ddRy
i−4d−2
j ddRx

−i
j +

m2d+1∑
j=1

ddRz
−2d−1
j ddRz

−2d−1
j ,

and d is defined as in (3.2.4) using H ∈ A−4d−1 satisfying the classical master equation

2d∑
i=1

mi∑
j=1

∂H

∂x−ij

∂H

∂yi−4d−2
j

+
1

4

m2d+1∑
j=1

(
∂H

∂z−2d−1
j

)2

= 0 in A−4d.

We then say that A,ω are in strong Darboux form for k = −4d− 2. There is also a weak Darboux
form [19, Ex. 5.12] in this case, which we will not discuss.
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Here is [19, Th. 5.18], the main result of [19]. We consider it to be a shifted symplectic
analogue of Darboux’ Theorem, as it shows that we can choose ‘coordinate systems’ on a k-
shifted symplectic derived scheme (X, ω) in which ω assumes a standard form. Bouaziz and
Grojnowski [17] also independently prove a similar theorem.

Theorem 3.2.2. Let X be a derived K-scheme with k-shifted symplectic form ω̃ for k < 0, and
x ∈ X. Then there exists a standard form cdga A over K which is minimal at p ∈ SpecH0(A),
a k-shifted symplectic form ω on SpecA, and a morphism f : U = SpecA→ X with f(p) = x
and f∗(ω̃) ∼ ω, such that:

(i) If k is odd or divisible by 4, then f is a Zariski open inclusion, and A,ω are in Darboux
form, as in Definition 3.2.1.

(ii) If k ≡ 2 mod 4, then f is étale, and A,ω are in strong Darboux form, as in Definition 3.2.1.

Let Y be a Calabi–Yau m-fold over K for m > 3, that is, a smooth projective K-scheme
with H i(OY ) = K for i = 0,m and H i(OY ) = 0 for 0 < i < m. Suppose M is a classical
moduli K-scheme of simple coherent sheaves in coh(Y ), where we call F ∈ coh(Y ) simple if
Hom(F, F ) = K. We point out that our moduli scheme M of simple coherent sheaves is based
on Inaba’s definition [74, Dfn 0.1] of the moduli functor which allows an equivalence relation
tensoring by a line bundle over the base.

There is a corresponding definition of a derived moduli functor of coherent sheaves, also
including tensoring by a line bundle over the base in the definition of the image simplicial set,
yielding a derived enhancement M of M with M = t0(M). Initially we know that M is a
derived stack, but since the classical truncation t0(M) is a classical scheme, it follows that M is
a derived scheme.

Pantev et al. [142] do not including tensoring by a line bundle over the base in their definition,
so that they consider the corresponding classical moduli stack M′ of simple coherent sheaves,
which is a classical Artin stack in which each point has isotropy group Gm. Naively one might
guess that the relationship between M and M′ is that M′ = [M/Gm] as a quotient stack, with
a projection M → M′, which is a Gm-principal bundle, but this may be wrong. If we instead
defined a moduli space M̃ of simple sheaves with fixed determinant, then (at least for torsion-free

coherent sheaves, thus of positive rank) we would indeed get a projection M̃ → M′ which is a

Gm-principal bundle. However, in general M̃ would not be a scheme, but a Deligne-Mumford
stack, with stabilizer group Zn at [E] for n = rankE.

In fact, the relationship between M and M′ is more-or-less the opposite of this naive guess.
There is a projection π : M′ → M which is a Gm-gerbe, with fibre [∗/Gm] at each point. One
can regard [∗/Gm] as a kind of stacky algebraic group (a 2-group), which acts on M′, and then
M = [M′/[∗/Gm]], and π : M′ → M is a ‘[∗/Gm] - principal bundle’. For torsion-free sheaves,

the composition M̃ →M′ →M is étale, a Zn-principal bundle for sheaves of rank n.
Now we consider the derived picture. Let us denote the derived enhancement of M′ by M′,

with t0(M′) =M′. Pantev et al. [142, §2.1] prove M′ has a (2−m)-shifted symplectic structure.
We can deduce that also M has a (2 − m)-shifted symplectic structure, as follows. Joyce and
Song [85, Thm. 5.4] prove that for any finite type moduli stack of coherent sheaves U on a Calabi-
Yau m-fold Y (their definition requires Y smooth and projective with H i(OY ) = 0 for 0 < i < m,
as assumed above), then by applying a finite number of Seidel-Thomas twists by OY (−n) for
n � 0 and a shift [−m], we can identify U with a moduli stack of vector bundles E with rank
E � 0. Seidel–Thomas twists and shifts commute with forming derived moduli stacks, with or
without tensoring by a line bundle over the base. (Note that Seidel–Thomas twists and shifts do
not commute with fixing determinants, though).



3.2. ‘Darboux form’ shifted symplectic derived schemes 34

Thus, to show that the derived moduli scheme M has a (2−m)-shifted symplectic structure,
it is sufficient (at least for M of finite type and H i(OY ) = 0 for 0 < i < m) to consider the
case when M and M′ are derived moduli schemes/stacks of vector bundles of fixed rank n. In
this case M′ is an open derived substack of the mapping stack Map(Y, [∗/GL(n,K)]), which is
the derived moduli stack Vect′ nY of rank n vector bundles on Y. The (2 −m)-shifted symplectic
structure on M′ and Map(Y, [∗/GL(n,K)]) is then induced as in [142, §2.1] from the Calabi–
Yau m-fold structure on Y and the 2-shifted symplectic structure on [∗/GL(n,K)], which in turn
comes from the natural choice of a GL(n,K)-invariant nondegenerate quadratic form on the Lie
algebra gl(n,K).

Now M is in effect a derived moduli scheme of projective vector bundles, so that M is a
derived open substack of Map(Y, [∗/PGL(n,K)]). Thus, M has a (2 − m)-shifted symplectic
structure as in [142, §2.1] induced from the 2-shifted symplectic structure on [∗/PGL(n,K)],
which comes from the natural PGL(n,K)-invariant nondegenerate quadratic form on the Lie
algebra pgl(n,K) (the Killing form; any PGL(n,K)-invariant quadratic form on pgl(n,K) is
a multiple of the Killing form). The projection M′ → M is the restriction of the projec-
tion Map(Y, [∗/GL(n,K)]) → Map(Y, [∗/PGL(n,K)]) induced by composition with the mor-
phism [∗/GL(n,K)] → [∗/PGL(n,K)] coming from the algebraic group morphism GL(n,K) →
PGL(n,K).

If we instead define a derived Deligne–Mumford moduli stack M̃ with M̃ = t0(M̃) by fix-

ing determinants of vector bundles, then M̃ is open in Map(Y, [∗/ SL(n,K)]), and the maps

M̃→M′ →M above come from composition with the Artin stack morphisms [∗/ SL(n,K)]→
[∗/GL(n,K)]→ [∗/PGL(n,K)] induced by the algebraic group morphisms SL(n,K)→ GL(n,K)→
PGL(n,K).

We said above that at the classical level,we can regard M as a quotient [M′/[∗/Gm]] by the
stacky algebraic group [∗/Gm]. At the derived level, we can regard the (2−m)-shifted symplectic
derived scheme (M, ω) as a shifted symplectic quotient of the (2−m)-shifted symplectic derived
stack (M′, ω′) by [∗/Gm], using the derived shifted symplectic quotient construction of Safronov
[151]. Taking the zero set of the moment map modifies M′ in degree 1 −m < 0, which is not
visible at the level of the classical truncations M,M′.

We have shown that the classical moduli scheme M can be enhanced to a derived moduli
scheme M withM = t0(M), and M carries a (2−m)-shifted symplectic structure ω. Theorem
3.2.2 gives Zariski local models (SpecA,ω) for (M, ω) in Darboux form, with M Zariski locally
modelled on SpecH0(A). In the case m = 3, so that k = −1, we deduce [19, Cor. 5.19]:

Corollary 3.2.3. Suppose Y is a Calabi–Yau 3-fold over a field K, and M is a classical moduli
K-scheme of simple coherent sheaves on Y . Then for each [F ] ∈ M, there exist a smooth K-
scheme U with dimU = dim Ext1(F, F ), a regular function f : U → A1, and an isomorphism
from Crit(f) ⊆ U to a Zariski open neighbourhood of [F ] in M.

Here dimU = dim Ext1(F, F ) comes from A minimal at p and f(p) = [F ] in Theorem 3.2.2.
As we will discuss in details in §7, related results are important in Donaldson–Thomas theory
[85, 102, 104]. When K = C and M is a moduli space of simple coherent sheaves on Y , using
gauge theory and transcendental complex methods, Joyce and Song [85, Th. 5.4] prove that the
underlying complex analytic space Man of M is locally of the form Crit(f) for U a complex
manifold and f : U → C a holomorphic function. Behrend and Getzler announced the analogue
of [85, Th. 5.4] for moduli of complexes in Db coh(Y ), but the proof has not yet appeared. Over
general K, as in Kontsevich and Soibelman [102, §3.3] the formal neighbourhood M̂[F ] of M at

any [F ] ∈ M is isomorphic to the critical locus Crit(f̂) of a formal power series f̂ on Ext1(F, F )
with only cubic and higher terms.



3.2. ‘Darboux form’ shifted symplectic derived schemes 35

In the case m = 4, so that k = −2, from Example 5.16 in [19] we deduce in [19, Cor. 5.20] a
local description of Calabi–Yau 4-fold moduli schemes:

Corollary 3.2.4. Suppose Y is a Calabi–Yau 4-fold over a field K, and M is a classical moduli
K-scheme of simple coherent sheaves on Y . Then for each [F ] ∈ M, there exist a smooth K-
scheme U with dimU = dim Ext1(F, F ), a vector bundle E → U with rankE = dim Ext2(F, F ), a
nondegenerate quadratic form Q on E, a section s ∈ H0(E) with Q(s, s) = 0, and an isomorphism
from s−1(0) ⊆ U to a Zariski open neighbourhood of [F ] in M.

If (S, ω) is an algebraic symplectic manifold over K (that is, a 0-shifted symplectic derived K-
scheme in the language of [142]) and L,M ⊆ S are Lagrangians, then Pantev et al. [142, Th. 2.10]
show that the derived intersection X = L ×S M has a −1-shifted symplectic structure. So
Theorem 3.2.2 imply [19, Cor. 5.21]:

Corollary 3.2.5. Suppose (S, ω) is an algebraic symplectic manifold, and L,M are algebraic
Lagrangian submanifolds in S. Then the intersection X = L ∩M, as a classical K-subscheme of
S, is Zariski locally modelled on the critical locus Crit(f) of a regular function f : U → A1 on a
smooth K-scheme U .

We remark that in real or complex symplectic geometry, it is easy to prove analogues of
Corollary 3.2.5 using Darboux’ Theorem or the Lagrangian Neighbourhood Theorem. However,
these do not hold for algebraic symplectic manifolds, so it is not obvious how to prove Corollary
3.2.5 using classical techniques.

In [19, §5.7] we give an alternative point of view of Theorem 3.2.2 using a certain Hamiltonian
construction from the mathematical physics literature [27, §4]. We view the differential d on
A as being a cohomological vector field Q, which is to say a square-zero, degree 1 derivation of
the algebra A. Using the symplectic form ω, one defines Hamiltonian vector fields together with
a graded Poisson bracket, and shows that the cohomological vector field Q has a Hamiltonian
function H = kΦ satisfying the classical master equation {H,H} = 0, and that the action of Q
on an element f ∈ A is given by the Poisson bracket {H, f}. Here is [19, Def. 5.22]:

Definition 3.2.6. Let (A,d) be a standard form cdga. Recall that a 2-form ω0 : TA → LA[k] is
non-degenerate if it is a quasi-isomorphism. We say that a 2-form is strictly non-degenerate if it is
an isomorphism between the underlying graded modules of TA and LA[k] obtained by forgetting
the differentials. As in [19, Prop. 5.24], one can easily prove that given (A,d) a standard form
cdga minimal at p with non-degenerate 2-form ω0 : TA → LA[k] of degree k < 0, then ω0 is
strictly non-degenerate in a neighbourhood of p ∈ Spec(A0).

Definition 3.2.7. Given a homogeneous element H ∈ A, the associated Hamiltonian vector field
XH is uniquely defined by the requirement that ιXHω

0 = ddRH. Given homogeneous f, g ∈ A,
define the Poisson bracket {f, g} = (−1)|f |−k−1Xf (g). See also [19, Def. 5.29].

The following lemma singles out the condition to impose on a Hamiltonian H to get a useful
cohomological vector field [19, Lem. 5.31]:

Lemma 3.2.8. Let A be a graded commutative algebra with (strictly) non-degenerate 2-form ω0

of degree k < 0 together with the induced Poisson bracket { , } of degree −k. For a Hamiltonian
H ∈ A of degree k + 1, the Hamiltonian vector field XH gives a derivation of A of degree 1,
and for each f ∈ A we have the identity XH(f) = {H, f}. The vector field XH is square-
zero (‘cohomological’) with non-trivial H0(A) if and only if H satisfies the classical master
equation: {H,H} = 0. Defining a differential d on A by df = XH(f) = {H, f}, we have that
dω0 = 0, so that ω = (ω0, 0, 0, . . .) gives a k-shifted symplectic form on the cdga (A,d).



3.3. −1-shifted symplectic derived schemes and d-critical loci 36

Next, [19, Def. 5.33 & Thm. 5.34]:

Definition 3.2.9. A standard form cdga (A, d) with k-shifted symplectic form ω = (ω0, 0, . . .) is
said to be in Hamiltonian form if the 2-form ω0 is strictly non-degenerate and the differential d
on A is equal as a derivation to a Hamiltonian vector field XH for some function H ∈ A of degree
k + 1.

Theorem 3.2.10. A derived K-scheme X with symplectic form ω̃ of degree k < 0 is Zariski
locally of Hamiltonian form.

3.3 −1-shifted symplectic derived schemes and d-critical loci

Here we review [19, §6]. The following is [19, Thm. 6.6]:

Theorem 3.3.1. Suppose (X, ω̃) is a −1-shifted symplectic derived K-scheme, and let X = t0(X)
be the associated classical K-scheme of X. Then X extends uniquely to an algebraic d-critical
locus (X, s), with the property that whenever (SpecA,ω) is a −1-shifted symplectic derived K-
scheme in Darboux form with Hamiltonian H ∈ A(0), as in [19, Ex.s 5.8 & 5.15] and explained
in Definition 3.2.1, and f : SpecA→X is an equivalence in dSchK with a Zariski open derived
K-subscheme R ⊆ X with f∗(ω̃) ∼ ω, writing U = SpecA(0), R = t0(R), f = t0(f) so that
H : U → A1 is regular and f : Crit(H) → R is an isomorphism, for Crit(H) ⊆ U the classical
critical locus of H, then (R,U,H, f−1) is a critical chart on (X, s).

The canonical bundle KX,s from Theorem 2.1.6 is naturally isomorphic to the determinant
line bundle det(LX)|Xred of the cotangent complex LX of X.

We can think of Theorem 3.3.1 as defining a truncation functor

F :
{

category of −1-shifted symplectic derived K-schemes (X, ω)
}

−→
{

category of algebraic d-critical loci (X, s) over K
}
,

(3.3.1)

where the morphisms f : (X, ω)→ (Y , ω′) in the first line are (homotopy classes of) étale maps
f : X → Y with f∗(ω′) ∼ ω, and the morphisms f : (X, s) → (Y, t) in the second line are étale
maps f : X → Y with f∗(t) = s. In [87, Ex. 2.17] we give an example of −1-shifted symplectic
derived schemes (X, ω), (Y , ω′), both global critical loci, such that X,Y are not equivalent as
derived K-schemes, but their truncations F (X, ω), F (Y , ω′) are isomorphic as algebraic d-critical
loci. Thus, the functor F in (3.3.1) is not full. We briefly recall proof of Theorem 3.3.1, which is
in [19, §6.3].

Proof. Let (X, ω̃) be a −1-shifted symplectic derived K-scheme, and X = t0(X). For the first
part of Theorem 3.3.1, we must construct a section s ∈ H0(S0

X) such that (X, s) is a d-critical
locus, and if A,ω,H,f ,R, U,R, f are as in Theorem 3.3.1, then (R,U,H, f−1) is a critical chart
on (X, s). The condition that (R,U,H, f−1) is a critical chart determines s|R uniquely.

Theorem 3.2.2(i) implies that for any x ∈ X, we can find such A,ω,H,f ,R, U,R, f with
x ∈ R ⊆ X. So the condition in Theorem 3.3.1 determines s|R for Zariski open R ⊆ X in an open
cover of X. Thus s ∈ H0(S0

X) satisfying the conditions of the theorem is unique if it exists, and
it exists if and only if the prescribed values s|R, s|S agree on overlaps R ∩ S between open sets
R,S ⊆ X. So suppose A,ω,H,f ,R, U,R, f and B, ω̌, Ȟ, g,S, V, S, g are two choices above. Write
sR and sS for the sections of S0

X on R,S ⊆ X determined by the critical charts (R,U,H, f−1)
and (S, V, Ȟ, g−1), so that by the theory of d-critical loci in §2

ιR,U (sR) = (f−1)−1(H) + I2
R,U , ιS,V (sS) = (g−1)−1(Ȟ) + I2

S,V . (3.3.2)
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We must show that sR|R∩S = sS |R∩S . Let x ∈ R ∩ S, so that x = f(p) = g(q) for unique
p ∈ CritH ⊆ U and q ∈ Crit(Ȟ) ⊆ V . Then using the method of Theorem 3.1.3 constructs
a standard form cdga C minimal at r ∈ SpecH0(C), and Zariski open inclusions α : A → C,
β : B → C with f ◦ Specα ' g ◦ Specβ, such that the smooth K-scheme W = SpecC(0) and
K-scheme morphisms a = Specα(0) : W → U , b = Specβ(0) : W → V satisfy by [19, eq. 5.37]

a∗(H)−b∗(Ȟ)∈
(
dC−1

)
2 =
(
a∗(ddRH)

)
2 =
(
b∗(ddRȞ)

)
2⊂C(0). (3.3.3)

Write Z = SpecH0(C), regarded as a closed K-subscheme of W = SpecC(0). Then f ◦ a|Z =
g ◦ b|Z : Z → X is an isomorphism with a Zariski open K-subscheme T ⊆ R∩ S ⊆ X with x ∈ T .
Define sT ∈ H0

(
S0
X |T

)
by

ιT,W (sT ) =
(
(f ◦ a|Z)−1

)−1(a∗(H)) + I2
T,W =

(
(g ◦ b|Z)−1

)−1
(b∗(Ȟ)) + I2

T,W , (3.3.4)

using the notation of §2.1 for the embedding (f ◦a|Z)−1 = (g◦b|Z)−1 : T ↪→W of T in the smooth
K-scheme W , where the two expressions on the right hand side of (3.3.4) are equal by (3.3.3),
since IT,W =

(
(f ◦ a|Z)−1

)−1
(
(a∗(ddRH))

)
=
(
(g ◦ b|Z)−1

)−1
(
(b∗(ddRȞ))

)
. We now have

ιT,W (sR|T ) =
(
(f ◦ a|Z)−1

)−1(a#) ◦ ιR,U |T (sR|T ) =
(
(f ◦ a|Z)−1

)−1(a#) ◦
(
(f−1)−1(H) + I2

R,U

)∣∣
T

=
(
(f ◦ a|Z)−1

)−1(a∗(H)) + I2
T,W = ιT,W (sT ),

using (2.1.1) with T,W, (f ◦a|Z)−1, R, U, f−1, a in place of R,U, i, S, V, j,Φ in the first step, (3.3.2)
in the second, and (3.3.4) in the fourth. Hence sR|T = sT , as ιT,W is injective in §2.1. Similarly
sS |T = sT , so sR|T = sS |T . As we can cover R∩ S by such open x ∈ T ⊆ R∩ S, this implies that
sR|R∩S = sS |R∩S , and the first part of Theorem 3.3.1 follows.

For the second part of the theorem, let A,ω,H,f ,R, U,R, f be as in Theorem 3.3.1, so that
(R,U,H, f−1) is a critical chart on (X, s), and write Y = SpecH0(A) ⊆ U , so that f : Y → R is
an isomorphism. Then (2.1.4) gives a natural isomorphism

ιR,U,H,f−1 : KX,s|Rred −→ (f−1)∗
(
K⊗

2

U

)
|Rred . (3.3.5)

Also Lf : f∗(LX) → LA ' Ω1
A is a quasi-isomorphism as f is a Zariski open inclusion. Hence

det(Lf )|Y red : f∗(det(LX)|Rred) → det(Ω1
A)|Y red is an isomorphism, so pulling back by f−1|Rred

gives an isomorphism

(f−1|Rred)∗
(
det(Lf )|Y red

)
: det(LX)|Rred −→ (f−1|Rred)∗

(
det(Ω1

A)|Y red

)
. (3.3.6)

Now by the theory of obstruction theories as in [5], we have a natural isomorphism

Ω1
A|Y red

∼=
[
TU |Y red

∂2H|
Y red // T ∗U |Y red

]
,

with TU |Y red in degree −1 and T ∗U |Y red in degree 0. Thus we have a natural isomorphism

det(Ω1
A)|Y red

∼= K⊗
2

U |Y red . (3.3.7)

Combining (8.3.1)–(3.3.7) gives a natural isomorphism

KX,s|Rred −→ det(LX)|Rred , (3.3.8)

for each critical chart (R,U,H, f−1) constructed from A,ω,H,f ,R as above. Combining Theorem
3.1.3 on comparing the charts (R,U,H, f−1) with Definition 4.3.2 defining the isomorphism JΦ in
(2.1.9), one can show that the canonical isomorphisms (3.3.8) on Rred, Sred from two such charts
(R,U,H, f−1) and (S, V, Ȟ, g−1) are equal on the overlap (R∩S)red. Therefore the isomorphisms
(3.3.8) glue to give a global canonical isomorphism KX,s

∼= det(LX)|Xred . This completes the
proof of Theorem 3.3.1.
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Suppose Y is a Calabi–Yau 3-fold over K andM a classical moduli K-scheme of simple coherent
sheaves in coh(Y ). Then Thomas [167] defined a natural perfect obstruction theory φ : E• → LM
on M in the sense of Behrend and Fantechi [6], and Behrend [5] showed that φ : E• → LM can
be made into a symmetric obstruction theory. Now in derived algebraic geometry M = t0(M)
for M the corresponding derived moduli K-scheme, and the obstruction theory φ : E• → LM
from [70, 167] is Lt0 : LM|M → LM. As previously discussed, we can deduce from Pantev et
al. [142, §2.1] that M has a −1-shifted symplectic structure ω, and the symmetric structure on
φ : E• → LM from [5] is ω0|M. So as for Corollary 3.2.3, Theorem 3.3.1 implies [19, Cor. 6.7]:

Corollary 3.3.2. Suppose Y is a Calabi–Yau 3-fold over K, and M is a classical moduli K-
scheme of simple coherent sheaves in coh(Y ) with perfect obstruction theory φ : E• → LM as in
Thomas [167]. Then M extends naturally to an algebraic d-critical locus (M, s). The canonical
bundle KM,s from Theorem 2.1.6 is naturally isomorphic to det(E•)|Mred.

If (S, ω) is an algebraic symplectic manifold over K and L,M ⊆ S are Lagrangians, then Pantev
et al. [142, Th. 2.10] show that the derived intersection X = L×SM has a −1-shifted symplectic
structure. If X = t0(X) then LX |X ' [T ∗S|X → T ∗L|X ⊕T ∗M |X ] with T ∗S|X in degree −1 and
T ∗L|X ⊕ T ∗M |X in degree zero. Hence det(LX |X) ∼= KS |−1

X ⊗KL|X ⊗KM |X ∼= KL|X ⊗KM |X ,
since KS

∼= OS . So as for Corollary 3.2.5, Theorem 3.3.1 implies [19, Cor. 6.8]:

Corollary 3.3.3. Suppose (S, ω) is an algebraic symplectic manifold over K, and L,M are al-
gebraic Lagrangians in S. Then the intersection X = L ∩M, as a K-subscheme of S, extends
naturally to an algebraic d-critical locus (X, s). The canonical bundle KX,s from Theorem 2.1.6
is isomorphic to KL|Xred ⊗KM |Xred.

The author [23, §3] proves a complex analytic analogue of Corollary 3.3.3, explained in §8.
In §4 and §5, we will use these results explaining how these ideas turn out to be crucial in the
program of the author and her collaborators in [18] and [25].



Chapter 4

Symmetries and stabilization for
sheaves of vanishing cycles

This chapter is based on [18], in which we study sheaves of vanishing cycles introduced in §1.3.
In general, we will not go into details and proofs of results, for which we refer to [18].

4.1 Action of symmetries on vanishing cycles

We recall [18, Def. 2.14], which basically introduces some notation for pullbacks of PV•V,g by étale
morphisms. We use notation from §1.3.

Definition 4.1.1. Let U, V be smooth C-schemes, Φ : U → V an étale morphism, and g : V → C
a regular function. Write f = g ◦ Φ : U → C, and X = Crit(f), Y = Crit(g) as C-subschemes of
U, V . Then Φ|X : X → Y is étale. Define an isomorphism

PVΦ : PV•U,f −→ Φ|∗X
(
PV•V,g

)
in Perv(X) (4.1.1)

by the commutative diagram for each c ∈ f(X) ⊆ g(Y ):

PV•U,f |Xc =φpf−c(AU [dimU ])|Xc α
//

PVΦ|Xc��

φpf−c ◦ Φ∗(AV [dimV ]))|Xc
β
��

Φ|∗Xc
(
PV•V,g

)
Φ∗0 ◦ φ

p
g−c ◦ (AV [dimV ]))|Xc .

(4.1.2)

If U = V , f = g and Φ = idU then PV idU = idPV•U,f , and the isomorphisms PVΦ are functorial.

We recall [18, Thm. 3.1, Cor. 3.2]. Proof of them can be found in [18, §3.1-3.2].

Theorem 4.1.2. Let U, V be smooth C-schemes, Φ,Ψ : U → V étale morphisms, and f : U → C,
g : V → C regular functions with g ◦ Φ = f = g ◦ Ψ. Write X = Crit(f) and Y = Crit(g) as
C-subschemes of U, V, so that Φ|X ,Ψ|X : X → Y are étale morphisms. Suppose Φ|X = Ψ|X .
Then:

(a) As Φ,Ψ are étale, dΦ : TU → Φ∗(TV ), dΨ : TU → Ψ∗(TV ) are isomorphisms of vector
bundles. Restricting to the reduced C-subscheme Xred of X, and using Φ|Xred = Ψ|Xred

as Φ|X = Ψ|X , gives isomorphisms dΦ|Xred , dΨ|Xred : TU |Xred −→ Φ|∗
Xred(TV ), and thus

dΨ|−1
Xred ◦ dΦ|Xred : TU |Xred −→ TU |Xred . Hence det

(
dΨ|−1

Xred ◦ dΦ|Xred

)
: Xred → C \ {0} is

a regular function. Then det
(
dΨ|−1

Xred ◦ dΦ|Xred

)
is a locally constant map Xred → {±1} ⊂

C \ {0}.
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(b) Definition 4.1.1 defines isomorphisms PVΦ,PVΨ : PV•U,f → Φ|∗X
(
PV•V,g

)
in Perv(X).

These are related by
PVΦ = det

(
dΨ|−1

Xred ◦ dΦ|Xred

)
· PVΨ, (4.1.3)

regarding det
(
dΨ|−1

Xred ◦dΦ|Xred

)
: X → {±1} as a locally constant map of topological spaces,

where X,Xred have the same topological space.

The analogues of these results also hold for D-modules and mixed Hodge modules on C-
schemes, for l-adic perverse sheaves and D-modules on K-schemes, and (with Φ,Ψ local biholo-
morphisms and f, g analytic functions) for perverse sheaves, D-modules and mixed Hodge modules
on complex analytic spaces.

By taking U = V , f = g, Φ an isomorphism and Ψ = idU , we deduce a result on the action of
symmetries on perverse sheaves of vanishing cycles:

Corollary 4.1.3. Let U be a smooth C-scheme, Φ : U → U an isomorphism, and f : U → C
be regular with f ◦ Φ = f . Write X = Crit(f) as a C-subscheme of U and Xred for its reduced
C-subscheme, and suppose Φ|X = idX . Then det

(
dΦ|Xred : TU |Xred → TU |Xred

)
is a locally

constant map Xred → {±1}, and PVΦ : PV•U,f
∼=−→PV•U,f in Perv(X) from Definition 4.1.1 is

multiplication by det
(
dΦ|Xred

)
= ±1.

Here is a crucial example following [18, Ex.s 2.13, 2.15, 3.3].

Example 4.1.4. Define f : Cn → C by f(z1, . . . , zn) = z2
1+· · ·+z2

n for n > 1. Then Crit(f) = {0},
so PV•Cn,z2

1+···+z2
n

= φpf (ACn [n])|{0} is a perverse sheaf on the point {0}. Following Dimca [34,

Prop. 4.2.2, Ex. 4.2.3 & Ex. 4.2.6], we find that there is a canonical isomorphism

PV•Cn,z2
1+···+z2

n

∼= Hn−1
(
MFf (0);A

)
⊗A A{0}, (4.1.4)

where MFf (0) is the Milnor fibre of f at 0, as in [34, p. 103]. Since f(z) = z2
1 + · · · + z2

n is
homogeneous, we see that

MFf (0) ∼=
{

(z1, . . . , zn) ∈ Cn : f(z1, . . . , zn) = 1
} ∼= T ∗Sn−1,

so that Hn−1
(
MFf (0);A

) ∼= Hn−1
(
Sn−1;A

) ∼= A. Therefore we have

PV•Cn,z2
1+···+z2

n

∼= A{0}. (4.1.5)

This isomorphism (4.1.5) is natural up to sign (unless the base ring A has characteristic 2, in
which case (4.1.5) is natural), as it depends on the choice of isomorphism Hn−1(Sn−1, A) ∼= A,
which corresponds to an orientation for Sn−1. This uncertainty of signs will be important in §4.3.

We can also use Milnor fibres to compute the monodromy operator on PV•Cn,z2
1+···+z2

n
. There

is a monodromy map µf : MFf (0)→MFf (0), natural up to isotopy, which is the monodromy in
the Milnor fibration of f at 0. Under the identification MFf (0) ∼= T ∗Sn−1 we may take µf to be
the map d(−1) : T ∗Sn−1 → T ∗Sn−1 induced by −1 : Sn−1 → Sn−1 mapping −1 : (x1, . . . , xn) 7→
(−x1, . . . ,−xn). This multiplies orientations on Sn−1 by (−1)n. Thus, µf∗ : Hn−1(Sn−1, A) →
Hn−1(Sn−1, A) multiplies by (−1)n.

By [34, Prop. 4.2.2], equation (4.1.4) identifies the action of the monodromy operator MCn,f |{0}
on PV•Cn,z2

1+···+z2
n

with the action of µf∗ on Hn−1(Sn−1, A). So MCn,f |{0} is multiplication by

(−1)n. Combining this with the sign change (−1)dimU in [18, §2.4] for U = Cn shows that the
twisted monodromy is

τCn,z2
1+···+z2

n
= id : PV•Cn,z2

1+···+z2
n
−→ PV•Cn,z2

1+···+z2
n
. (4.1.6)
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Equations (4.1.5)–(4.1.6) also hold for n = 0, 1, though (4.1.4) does not.
In Definition 4.1.1, set U = V = Cn and f(z1, . . . , zn) = g(z1, . . . , zn) = z2

1 + · · · + z2
n, so

that X = Y = {0} ⊂ Cn. Let M ∈ O(n,C) be an orthogonal matrix, so that M : Cn → Cn is
an isomorphism with f = g ◦M and M |{0} = id{0}. As M |Y = idY , Definition 4.1.1 defines an
isomorphism

PVM : PV•Cn,z2
1+···+z2

n
−→ PV•Cn,z2

1+···+z2
n
. (4.1.7)

Equation (4.1.4) describes PV•Cn,z2
1+···+z2

n
in terms of MFf (0) ∼= T ∗Sn−1. Now M |MFf (0) :

MFf (0)→MFf (0) multiplies orientations on Sn−1 by detM , so

(M |MFf (0))∗ : Hn−1
(
MFf (0);A

)
→ Hn−1

(
MFf (0);A

)
is multiplication by detM . Thus (4.1.4) implies that PVM in (4.1.7) is multiplication by detM =
±1. Let Φ,Ψ ∈ O(n,C) be orthogonal matrices, so that det Φ,det Ψ ∈ {±1} and Φ,Ψ : Cn → Cn
are isomorphisms with f = g ◦Φ = g ◦Φ and Φ|{0} = Ψ|{0} = id{0}. In Theorem 4.1.2(a) we have

dΨ|−1
Xred ◦ dΦ|Xred = Ψ−1 ◦ Φ : Cn −→ Cn, so that det

(
dΨ|−1

Xred ◦ dΦ|Xred

)
= det Ψ−1 det Φ = ±1.

For Theorem 4.1.2(b), we get that PVΦ,PVΨ : A{0} → A{0} are multiplication by det Φ,det Ψ,
so PVΦ = (det Ψ−1 det Φ) · PVΨ, as in (4.1.3).

4.2 Dependence of PV•U,f on f

Here we present an independent result obtained in [18], but not necessary for the rest of the paper.
We will use the following notation from [18, §4].

Definition 4.2.1. Let U be a smooth C-scheme, f : U → C a regular function, and X = Crit(f)
as a closed C-subscheme of U . Write IX ⊆ OU for the sheaf of ideals of regular functions U → C
vanishing on X, so that IX = Idf . For each k = 1, 2, . . . , write X(k) for the kth order thickening
of X in U , that is, X(k) is the closed C-subscheme of U defined by the vanishing of the sheaf
of ideals IkX in OU . Also write Xred for the reduced C-subscheme of U , and X(∞) or Û for the
formal completion of U along X. Then we have a chain of inclusions of closed C-subschemes of U

Xred ⊆ X = X(1) ⊆ X(2) ⊆ X(3) ⊆ · · · ⊆ X(∞) = Û ⊆ U, (4.2.1)

although technically X(∞) = Û is not a scheme, but a formal scheme. Write f (k) := f |X(k) :
X(k) → C, and f red := f |Xred : Xred → C, and f (∞) or f̂ := f |Û : Û → C, so that f (k), f red

are regular functions on the C-schemes X(k), Xred, and f (∞) = f̂ a formal function on the formal
C-scheme X(∞) = Û . Note that f red : Xred → C is locally constant, since X = Crit(f). We also
use the same notation for complex analytic spaces and K-schemes.

Now we can ask: how much of the sequence (4.2.1) does PV•U,f depend on? That is, is PV•U,f
(canonically?) determined by (Xred, f red), or by (X(k), f (k)) for some k = 1, 2, . . . , or by (Û , f̂),
as well as by (U, f)? The next theorem [18, Thm. 4.2] shows that PV•U,f is determined up to

canonical isomorphism by (X(3), f (3)), and hence a fortiori also by (X(k), f (k)) for k > 3 and
by (Û , f̂):

Theorem 4.2.2. Let U, V be smooth C-schemes, f : U → C, g : V → C be regular functions,
and X = Crit(f), Y = Crit(g) as closed C-subschemes of U, V, so that we have perverse sheaves
PV•U,f ,PV•V,g on X,Y . Define X(3), f (3) and Y (3), g(3) as in Definition 4.2.1, and suppose Φ :

X(3) → Y (3) is an isomorphism with g(3) ◦ Φ = f (3), so that Φ|X : X → Y ⊆ Y (3) is an
isomorphism. Then there is a canonical isomorphism in Perv(X)

ΩΦ : PV•U,f −→ Φ|∗X(PV•V,g), (4.2.2)
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which is characterized by the property that if T is a smooth C-scheme and πU : T → U, πV : T →
V are étale morphisms with e := f ◦ πU = g ◦ πV : T → C, so that πU |Q : Q→ X, πV |Q : Q→ Y
are étale for Q := Crit(e), and Φ ◦ πU |Q(2) = πV |Q(2) : Q(2) → Y (2), then

πU |∗Q(ΩΦ) ◦ PVπU = PVπV : PV•T,e −→ πV |∗Q(PV•U,f ). (4.2.3)

Also the following commute, where σU,f , σV,g, τU,f , τV,g are as in §1.3.1:

PV•U,f σU,f
//

ΩΦ��

DX(PV•U,f )

Φ|∗X(PV•V,g)
Φ|∗X(σV,g)

// Φ|∗X
(
DY (PV•V,g)

) ∼= // DX(Φ|∗X(PV•V,g)
)
,

DX(ΩΦ)

OO
(4.2.4)

PV•U,f τU,f
//

ΩΦ��

PV•U,f
ΩΦ ��

Φ|∗X(PV•V,g)
Φ|∗X(τV,g)

// Φ|∗X(PV•V,g).
(4.2.5)

If there exists an étale morphism Ξ : U → V with g ◦Ξ = f : U → C and Ξ|X(3) = Φ : X(3) →
Y (3) then ΩΦ = PVΞ, for PVΞ as in (4.1.1).

If W is another smooth C-scheme, h : W → C is regular, Z = Crit(h), and Ψ : Y (3) → Z(3)

is an isomorphism with h(3) ◦Ψ = g(3) then

ΩΨ◦Φ = Φ|∗X(ΩΨ) ◦ ΩΦ : PV•U,f −→ (Ψ ◦ Φ)|∗X(PV•W,h). (4.2.6)

If U = V, f = g, X = Y and Φ = idX(3) then Ωid
X(3)

= idPV•U,f .
The analogues of all the above also hold with appropriate modifications for D-modules on

C-schemes, for perverse sheaves and D-modules on complex analytic spaces, for l-adic perverse
sheaves and D-modules on K-schemes, and for mixed Hodge modules on C-schemes and complex
analytic spaces.

See [18, Rem. 4.5] for a discussion about it, and [18, §4.1-4.3] for the proof.

4.3 Stabilizing perverse sheaves of vanishing cycles

To set up notation for Theorem 4.3.4 below, we need the following theorem, which is proved in
Joyce [87, Prop.s 2.22, 2.23 & 2.25]. There, it is stated in terms of critical charts as in §2, but
here we just need a simplified version.

Theorem 4.3.1 (Joyce [87]). Let U, V be smooth C-schemes, f : U → C, g : V → C be regular,
and X = Crit(f), Y = Crit(g) as C-subschemes of U, V . Let Φ : U ↪→ V be a closed embedding
of C-schemes with f = g ◦ Φ : U → C, and suppose Φ|X : X → V ⊇ Y is an isomorphism
Φ|X : X → Y . Then:

(i) For each x ∈ X ⊆ U there exist smooth C-schemes U ′, V ′, a point x′ ∈ U ′ and morphisms
ι : U ′ → U,  : V ′ → V, Φ′ : U ′ → V ′, α : V ′ → U and β : V ′ → Cn, where n = dimV − dimU,
such that ι(x′) = x, and ι,  and α × β : V → U × Cn are étale, and the following diagram
commutes

U

Φ
��

U ′ι
oo

ι
//

Φ′��

U

idU×0
��

V V ′
oo α×β // U × Cn,

(4.3.1)

and g ◦  = f ◦ α + (z2
1 + · · · + z2

n) ◦ β : V ′ → C. Thus, setting f ′ := f ◦ ι : U ′ → C, g′ :=
g ◦  : V ′ → C, X ′ := Crit(f ′) ⊆ U ′, and Y ′ := Crit(g′) ⊆ V ′, then f ′ = g′ ◦ Φ′ : U ′ → C,
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and Φ′|X′ : X ′ → Y ′, ι|X′ : X ′ → X, |Y ′ : Y ′ → Y, α|Y ′ : Y ′ → X are étale. We also require
that Φ ◦ α|Y ′ = |Y ′ : Y ′ → Y .
(ii) Write NUV for the normal bundle of Φ(U) in V, regarded as an algebraic vector bundle on U
in the exact sequence of vector bundles on U :

0 // TU
dΦ // Φ∗(TU)

ΠUV // NUV
// 0. (4.3.2)

Then there exists a unique qUV ∈ H0(S2N∗UV |X) which is a nondegenerate quadratic form on
NUV |X , such that whenever U ′, V ′, ι, ,Φ′, β, n,X ′ are as in (i), writing 〈dz1, . . . ,dzn〉U ′ for the
trivial vector bundle on U ′ with basis dz1, . . . ,dzn, there is a natural isomorphism β̂ : 〈dz1, . . . ,dzn〉U ′ →
ι∗(N∗UV ) making the following diagram commute:

ι∗(N∗UV )
ι∗(Π∗UV )

// ι∗ ◦ Φ∗(T ∗V ) = Φ′∗ ◦ ∗(T ∗V )

Φ′∗(d∗)
��

〈dz1, . . . ,dzn〉U ′ = Φ′∗ ◦ β∗(T ∗0 Cn)
Φ′∗(dβ∗) //

β̂

OO

Φ′∗(T ∗V ′),

(4.3.3)

and ι|∗X′(qUV ) = (S2β̂)|X′(dz1 ⊗ dz1 + · · ·+ dzn ⊗ dzn). (4.3.4)

(iii) Now suppose W is another smooth C-scheme, h : W → C is regular, Z = Crit(h) as a
C-subscheme of W, and Ψ : V ↪→W is a closed embedding of C-schemes with g = h◦Ψ : V → C
and Ψ|Y : Y → Z an isomorphism. Define NVW , qVW and NUW , qUW using Ψ : V ↪→ W and
Ψ ◦ Φ : U ↪→ W as in (ii) above. Then there are unique morphisms γUVW , δUVW which make the
following diagram of vector bundles on U commute, with straight lines exact:

0
~~ 0ss0

$$

TU
dΦ

ss
d(Ψ◦Φ)

zz

Φ∗(TV )
ΠUV

ss
Φ∗(dΨ)
$$0 ++

NUVss
γUVW ++

(Ψ ◦ Φ)∗(TW )

Φ∗(ΠVW )

$$

ΠUWzz
0

NUW

zz δUVW ++
0 Φ∗(NVW ) ++  0

0.

(4.3.5)

Restricting to X gives an exact sequence of vector bundles:

0 // NUV |X
γUVW |X // NUW |X

δUVW |X // Φ|∗X(NVW ) // 0. (4.3.6)

Then there is a natural isomorphism of vector bundles on X

NUW |X ∼= NUV |X ⊕ Φ|∗X(NVW ), (4.3.7)

compatible with the exact sequence (4.3.6), which identifies

qUW ∼= qUV ⊕ Φ|∗X(qVW )⊕ 0 under the splitting

S2NUW |∗X ∼= S2NUV |∗X ⊕ Φ|∗X
(
S2N∗VW |Y

)
⊕
(
N∗UV |X ⊗ Φ|∗X(N∗VW )

)
.

(4.3.8)

(iv) Parts (i)–(iii) also hold for K-schemes over an algebraically closed field K with charK 6= 2,
rather than C-schemes.
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(v) Analogues of (i)–(iii) hold for complex analytic spaces, replacing the smooth C-schemes
U, V,W by complex manifolds, the regular functions f, g, h by holomorphic functions, the C-
schemes X,Y, Z by complex analytic spaces, the étale open sets ι : U ′ → U,  : V ′ → V by
complex analytic open sets U ′ ⊆ U, V ′ ⊆ V, and with α×β : V ′ → U ×Cn a biholomorphism with
a complex analytic open neighbourhood of (x, 0) in U × Cn.

Following [87, Def.s 2.26 & 2.34], we define:

Definition 4.3.2. Let U, V be smooth C-schemes, f : U → C, g : V → C be regular, and
X = Crit(f), Y = Crit(g) as C-subschemes of U, V . Suppose Φ : U ↪→ V is a closed embedding
of C-schemes with f = g ◦Φ : U → C and Φ|X : X → Y an isomorphism. Then Theorem 4.3.1(ii)
defines the normal bundle NUV of U in V , a vector bundle on U of rank n = dimV − dimU , and
a nondegenerate quadratic form qUV ∈ H0(S2N∗UV |X). Taking top exterior powers in the dual of
(4.3.2) gives an isomorphism of line bundles on U

ρUV : KU ⊗ ΛnN∗UV
∼=−→Φ∗(KV ),

where KU ,KV are the canonical bundles of U, V . Write Xred for the reduced C-subscheme of
X. As qUV is a nondegenerate quadratic form on NVW |X , its determinant det(qVW ) is a nonzero

section of (ΛnN∗VW )|⊗2

X . Define an isomorphism of line bundles on Xred:

JΦ = ρ⊗
2

UV ◦
(
idK2

U |Xred
⊗ det(qUV )|Xred

)
: K⊗

2

U

∣∣
Xred

∼=−→Φ|∗Xred

(
K⊗

2

V

)
. (4.3.9)

Since principal Z/2Z-bundles π : P → X in the sense of Definition 1.3.7 are an (étale or
complex analytic) topological notion, and Xred and X have the same topological space (even in
the étale or complex analytic topology), principal Z/2Z-bundles on Xred and on X are equivalent.
Define πΦ : PΦ → X to be the principal Z/2Z-bundle which parametrizes square roots of JΦ on
Xred. That is, (étale or complex analytic) local sections sα : X → PΦ of PΦ correspond to local
isomorphisms α : KU |Xred → Φ|∗

Xred(KV ) on Xred with α⊗ α = JΦ.
Now suppose W is another smooth C-scheme, h : W → C is regular, Z = Crit(h) as a C-

subscheme of W , and Ψ : V ↪→ W is a closed embedding of C-schemes with g = h ◦ Ψ : V → C
and Ψ|Y : Y → Z an isomorphism. Then Theorem 4.3.1(iii) applies, and from (4.3.7)–(4.3.8) we
can deduce that

JΨ◦Φ = Φ|∗Xred(JΨ) ◦ JΦ : K⊗
2

U

∣∣
Xred

∼=−→ (Ψ ◦ Φ)|∗Xred

(
K⊗

2

W

)
= Φ|∗Xred

[
Ψ|∗Y red

(
K⊗

2

W

)]
. (4.3.10)

For the principal Z/2Z-bundles πΦ : PΦ → X, πΨ : PΨ → Y , πΨ◦Φ : PΨ◦Φ → X, equation (4.3.10)
implies that there is a canonical isomorphism

ΞΨ,Φ : PΨ◦Φ
∼=−→Φ|∗X(PΨ)⊗Z/2Z PΦ. (4.3.11)

It is also easy to see that these ΞΨ,Φ have an associativity property under triple compositions,
that is, given another smooth C-scheme T , regular e : T → C with Q := Crit(e), and Υ : T ↪→ U
a closed embedding with e = f ◦Υ : T → C and Υ|Q : Q→ X an isomorphism, then(

id(Φ◦Υ)|∗Q(PΨ) ⊗ ΞΦ,Υ

)
◦ ΞΨ,Φ◦Υ =

(
Υ|∗Q(ΞΨ,Φ)⊗ idPΥ

)
◦ ΞΨ◦Φ,Υ :

PΨ◦Φ◦Υ −→ (Φ ◦Υ)|∗Q(PΨ)⊗Z/2Z Υ|∗Q(PΦ)⊗Z/2Z PΥ.
(4.3.12)

Analogues of all the above also work for K-schemes over an algebraically closed field K with
charK 6= 2, as in Theorem 4.3.1(iv), and for complex manifolds and complex analytic spaces, as
in Theorem 4.3.1(v).
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The reason for restricting to Xred above is the following [87, Prop. 2.27], whose proof uses the
fact that Xred is reduced in an essential way.

Lemma 4.3.3. In Definition 4.3.2, the isomorphism JΦ in (4.3.9) and the principal Z/2Z-bundle
πΦ : PΦ → X depend only on U, V,X, Y, f, g and Φ|X : X → Y . That is, they do not depend on
Φ : U → V apart from Φ|X : X → Y .

Using the notation of Definition 4.3.2, we can state [18, Thm. 5.4].

Theorem 4.3.4. (a) Let U, V be smooth C-schemes, f : U → C, g : V → C be regular, and
X = Crit(f), Y = Crit(g) as C-subschemes of U, V . Let Φ : U ↪→ V be a closed embedding
of C-schemes with f = g ◦ Φ : U → C, and suppose Φ|X : X → V ⊇ Y is an isomorphism
Φ|X : X → Y . Then there is a natural isomorphism of perverse sheaves on X :

ΘΦ : PV•U,f −→ Φ|∗X
(
PV•V,g

)
⊗Z/2Z PΦ, (4.3.13)

where PV•U,f ,PV•V,g are the perverse sheaves of vanishing cycles from §1.3.1, and PΦ the principal
Z/2Z-bundle from Definition 4.3.2, and if Q• is a perverse sheaf on X then Q•⊗Z/2Z PΦ is as in
Definition 1.3.7. Also the following diagrams commute, where σU,f , σV,g, τU,f , τV,g are as in §1.3.1

PV•U,f ΘΦ

//

σU,f
��

Φ|∗X
(
PV•V,g

)
⊗Z/2Z PΦ

Φ|∗X(σV,g)⊗id

// Φ|∗X
(
DY (PV•V,g)

)
⊗Z/2ZPΦ

∼= ��
DX(PV•U,f ) DX

(
Φ|∗X(PV•V,g)⊗Z/2ZPΦ

)
,

DX(ΘΦ)oo

(4.3.14)

PV•U,f ΘΦ

//

τU,f
��

Φ|∗X
(
PV•V,g

)
⊗Z/2Z PΦ

Φ|∗X(τV,g)⊗id
��

PV•U,f
ΘΦ // Φ|∗X

(
PV•V,g

)
⊗Z/2Z PΦ.

(4.3.15)

If U = V, f = g, Φ = idU then πΦ : PΦ → X is trivial, and ΘΦ corresponds to idPV•U,f under

the natural isomorphism id∗X(PV•U,f )⊗Z/2Z PΦ
∼= PV•U,f .

(b) The isomorphism ΘΦ in (4.3.13) depends only on U, V,X, Y, f, g and Φ|X : X → Y . That is,
if Φ̃ : U → V is an alternative choice for Φ with Φ|X = Φ̃|X : X → Y, then ΘΦ = ΘΦ̃, noting
that PΦ = PΦ̃ by Lemma 4.3.3.

(c) Now suppose W is another smooth C-scheme, h : W → C is regular, Z = Crit(h), and Ψ :
V ↪→W is a closed embedding with g = h ◦Ψ : V → C and Ψ|Y : Y → Z an isomorphism. Then
Definition 4.3.2 defines principal Z/2Z-bundles πΦ : PΦ → X, πΨ : PΨ → Y, πΨ◦Φ : PΨ◦Φ → X
and an isomorphism ΞΨ,Φ in (4.3.11), and part (a) defines isomorphisms of perverse sheaves
ΘΦ,ΘΨ◦Φ on X and ΘΨ on Y . Then the following commutes in Perv(X) :

PV•U,f ΘΨ◦Φ
//

ΘΦ��

(Ψ ◦ Φ)|∗X
(
PV•W,h

)
⊗Z/2Z PΨ◦Φ

id⊗ΞΨ,Φ
��

Φ|∗X
(
PV•V,g

)
⊗Z/2ZPΦ

Φ|∗X(ΘΨ)⊗id
// Φ|∗X ◦Ψ|∗Y

(
PV•W,h

)
⊗Z/2ZΦ|∗X(PΨ)⊗Z/2ZPΦ.

(4.3.16)

(d) The analogues of (a)–(c) also hold for D-modules on C-schemes, for perverse sheaves and
D-modules on complex analytic spaces, for l-adic perverse sheaves and D-modules on K-schemes,
and for mixed Hodge modules on C-schemes and complex analytic spaces.

Theorem 4.3.4 has a long proof in [18, §5], which uses crucially material in §4.1 on the action
of symmetries on vanishing cycles.
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4.4 Perverse sheaves on oriented d-critical loci

We state [18, Thm. 6.9]. It is proved in [18, §6.3]. We decided to do not repeat the proof here,
as we use a similar technique in §8.

Theorem 4.4.1. Let (X, s) be an oriented algebraic d-critical locus over C, with orientation

K
1/2
X,s. Then for any well-behaved base ring A, such as Z,Q or C, there exists a perverse sheaf

P •X,s in Perv(X) over A, which is natural up to canonical isomorphism, and Verdier duality and
monodromy isomorphisms

ΣX,s : P •X,s −→ DX
(
P •X,s

)
, TX,s : P •X,s −→ P •X,s, (4.4.1)

which are characterized by the following properties:

(i) If (R,U, f, i) is a critical chart on (X, s), there is a natural isomorphism

ωR,U,f,i : P •X,s|R −→ i∗
(
PV•U,f

)
⊗Z/2Z QR,U,f,i, (4.4.2)

where πR,U,f,i : QR,U,f,i → R is the principal Z/2Z-bundle parametrizing local isomorphisms

α : K
1/2
X,s → i∗(KU )|Rred with α ⊗ α = ιR,U,f,i, for ιR,U,f,i as in (2.1.4). Furthermore the

following commute in Perv(R) :

P •X,s|R

ΣX,s|R

��

ωR,U,f,i
// i∗
(
PV•U,f

)
⊗Z/2Z QR,U,f,i

i∗(σU,f )⊗idQR,U,f,i

��

DR
(
P •X,s|R

) i∗
(
DCrit(f)(PV•U,f )

)
⊗Z/2Z QR,U,f,i

∼= DR
(
i∗(PV•U,f )⊗Z/2Z QR,U,f,i

)
,

DR(ωR,U,f,i)oo

(4.4.3)

P •X,s|R

TX,s|R

��

ωR,U,f,i
// i∗
(
PV•U,f

)
⊗Z/2Z QR,U,f,i

i∗(τU,f )⊗idQR,U,f,i

��
P •X,s|R

ωR,U,f,i // i∗
(
PV•U,f

)
⊗Z/2Z QR,U,f,i.

(4.4.4)

(ii) Let Φ : (R,U, f, i) ↪→ (S, V, g, j) be an embedding of critical charts on (X, s). Then there is
a natural isomorphism of principal Z/2Z-bundles

ΛΦ : QS,V,g,j |R
∼=−→ i∗(PΦ)⊗Z/2Z QR,U,f,i (4.4.5)

on R, for PΦ as in Definition 4.3.2, defined as follows: local isomorphisms

α : K
1/2
X,s|Rred −→ i∗(KU )|Rred , β : K

1/2
X,s|Rred −→ j∗(KV )|Rred , γ : i∗(KU )|Rred −→ j∗(KV )|Rred

with α⊗α = ιR,U,f,i, β⊗β = ιS,V,g,j |Rred , γ⊗γ = i|∗
Rred(JΦ) correspond to local sections sα :

R→ QR,U,f,i, sβ : R→ QS,V,g,j |R, sγ : R→ i∗(PΦ). Equation (2.1.9) shows that β = γ◦α is
a possible solution for β, and we define ΛΦ in (8.2.7) such that ΛΦ(sβ) = sγ ⊗Z/2Z sα if and
only if β = γ ◦α. Then the following diagram commutes in Perv(R), for ΘΦ as in (4.3.13):

P •X,s|R ωR,U,f,i
//

ωS,V,g,j |R

��

i∗
(
PV•U,f

)
⊗Z/2Z QR,U,f,i

i∗(ΘΦ)⊗idQR,U,f,i

��
j∗
(
PV•V,g

)
|R ⊗Z/2Z QS,V,g,j |R

idj∗(PV•
V,g

)⊗ΛΦ

// i∗
(
Φ∗(PV•V,g)⊗Z/2Z PΦ

)
⊗Z/2Z QR,U,f,i.

(4.4.6)



4.4. Perverse sheaves on oriented d-critical loci 47

The analogues of all the above also hold for D-modules on oriented algebraic d-critical loci
over C, for perverse sheaves and D-modules on oriented complex analytic d-critical loci, for l-
adic perverse sheaves and D-modules on oriented algebraic d-critical loci over K, and for mixed
Hodge modules on oriented algebraic d-critical loci over C and oriented complex analytic d-critical
loci.

From Theorem 3.3.1 and Corollaries 3.3.2 and 3.3.3 we deduce [18, Cor.s 6.10, 6.11 & 6.12]:

Corollary 4.4.2. Let (X, ω) be a −1-shifted symplectic derived scheme over C in the sense of
Pantev et al. [142], and X = t0(X) the associated classical C-scheme. Suppose we are given a
square root det(LX)|1/2X for det(LX)|X . Then we may define P •X,ω ∈ Perv(X), uniquely up to
canonical isomorphism, and isomorphisms ΣX,ω : P •X,ω → DX(P •X,ω), TX,ω : P •X,ω → P •X,ω. The
same applies for D-modules and mixed Hodge modules on X, and for l-adic perverse sheaves and
D-modules on X if X is over K with charK = 0.

Corollary 4.4.3. Let Y be a Calabi–Yau 3-fold over C, and M a classical moduli K-scheme of
simple coherent sheaves in coh(Y ) with natural (symmetric) obstruction theory φ : E• → LM as
in Behrend [5], Thomas [167]. Suppose we are given a square root det(E•)1/2 for det(E•). Then
we may define P •M ∈ Perv(M), uniquely up to canonical isomorphism, and isomorphisms ΣM :
P •M → DM(P •M), TM : P •M → P •M. The same applies for D-modules and mixed Hodge modules
onM, and for l-adic perverse sheaves and D-modules onM if Y,M are over K with charK = 0.

Corollary 4.4.4. Let (S, ω) be a complex symplectic manifold and L,M complex Lagrangian
submanifolds in S, and write X = L ∩M, as a complex analytic subspace of S. Suppose we are

given square roots K
1/2
L ,K

1/2
M for KL,KM . Then we may define P •L,M ∈ Perv(X), uniquely up

to canonical isomorphism, and isomorphisms ΣL,M : P •L,M → DX(P •L,M ), TL,M : P •L,M → P •L,M .
The same applies for D-modules and mixed Hodge modules on X.

We will go back in details to Donaldson–Thomas theory and Lagrangian intersections respec-
tively in §7 and §8.



Chapter 5

On motivic vanishing cycles of
critical loci

This chapter is based on [25], in which we study motivic vanishing cycles introduced in §1.4. We
keep the same notation as in §1.4. In general, we will not go into details and proofs of results, for
which we refer to [25].

5.1 Dependence of MFmot,φ
U,f on f

As done in §4.2, we can ask: how much of the sequence Xred ⊆ X = X(1) ⊆ X(2) ⊆ X(3) ⊆ · · · ⊆
X(∞) = Û ⊆ U of closed K-subschemes of U, does MFmot,φ

U,f depend on? That is, is MFmot,φ
U,f

determined by (Xred, f red), or by (X(k), f (k)) for some k = 1, 2, . . . , or by (Û , f̂), as well as by

(U, f)? In [25, Thm. 3.1] we show that MFmot,φ
U,f is determined by (X(3), f (3)), and hence a fortiori

also by (X(k), f (k)) for k > 3 and by (Û , f̂). Again, this is not necessary for the sequel, but we
include it for completeness and because we think it can be useful for other applications.

Theorem 5.1.1. Let U, V be smooth K-schemes, f : U → A1, g : V → A1 be regular functions,
and X = Crit(f), Y = Crit(g) as closed K-subschemes of U, V, so that the motivic vanishing

cycles MFmot,φ
U,f , MFmot,φ

V,g are defined on X,Y . Define X(3), f (3) and Y (3), g(3) as in Definition

4.2.1, and suppose Φ : X(3) → Y (3) is an isomorphism with g(3) ◦ Φ = f (3), so that Φ|X : X →
Y ⊆ Y (3) is an isomorphism. Then

MFmot,φ
U,f = Φ|∗X

(
MFmot,φ

V,g

)
in Mµ̂

X and Mµ̂
X . (5.1.1)

Remark 5.1.2. We can define motivic vanishing cycles MFmot,φ
Û ,f̂ for a class of formal functions

f̂ on formal schemes Û using Theorem 5.1.1. Let U be a smooth K-scheme, X ⊆ U a closed
K-subscheme, and Û the formal completion of U along X. Suppose f : Û → A1 is a formal
function with Crit(f) = X ⊆ Û . Then there is a unique MFmot,φ

Û ,f̂ in Mµ̂
X or Mµ̂

X with the
property that if U ′ ⊆ U is Zariski open with X ′ = X ∩ U ′ and g : U ′ → A1 is regular with
g + I3

X′ = f̂ |Û ′ + I3
X in H0(OU ′/I3

X′) then MFmot,φ
Û ,f̂ |X′ = MFmot,φ

U ′,g |X′ . Theorem 5.1.1 shows that

MFmot,φ
U ′,g |X′ is independent of the choice of g with g + I3

X′ = f̂ |Û ′ + I3
X , so MFmot,φ

Û ,f̂ is well-
defined. Motivic Milnor fibres for formal functions were also defined by Nicaise and Sebag [135]
in the context of formal geometry.

In [25, Ex. 3.4], we show that Theorem 5.1.1 with X(2), Y (2), f (2), g(2) in place of X(3), Y (3),
f (3), g(3) is false, so we cannot do better than (X(3), f (3)) in Theorem 5.1.1.

Taking U = V , X = Y and Φ = idX(3) we get an obvious corollary of Theorem 5.1.1:
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Theorem 5.1.3. Let U be a smooth K-scheme and f, g : U → A1 regular functions. Suppose
X := Crit(f) = Crit(g) and f (3) = g(3), that is, f + I3

X = g+ I3
X in H0(OU/I3

X), where IX ⊆ OU
is the ideal of regular functions vanishing on X. Then MFmot,φ

U,f = MFmot,φ
U,g in Mµ̂

X and Mµ̂
X .

5.2 Stabilizing motivic vanishing cycles

To set up notation for Theorem 5.2.2 below, we need the following theorem, which is proved in
Joyce [87, Prop.s 2.24 & 2.25(c)].

Theorem 5.2.1 (Joyce [87]). Let U, V be smooth K-schemes, f : U → A1, g : V → A1 be regular,
and X = Crit(f), Y = Crit(g) as K-subschemes of U, V . Let Φ : U ↪→ V be a closed embedding
of K-schemes with f = g ◦ Φ : U → A1, and suppose Φ|X : X → V ⊇ Y is an isomorphism
Φ|X : X → Y . Then:

(i) For each x ∈ X ⊆ U there exist a Zariski open neighbourhood U ′ of x in U, a smooth
K-scheme V ′, and morphisms  : V ′ → V, Φ′ : U ′ → V ′, α : V ′ → U ′, β : V ′ → An, and
q1, . . . , qn : U ′ → A1\{0}, where n = dimV −dimU, such that  : V ′ → V and α×β : V ′ → U ′×An
are étale, Φ|U ′ =  ◦ Φ′, α ◦ Φ′ = idU ′ , β ◦ Φ′ = 0, and

g ◦  = f ◦ α+ (q1 ◦ α) · (z2
1 ◦ β) + · · ·+ (qn ◦ α) · (z2

n ◦ β). (5.2.1)

Thus, setting f ′ = f |U ′ , g′ = g◦, X ′ = Crit(f ′) = X∩U ′, and Y ′ = Crit(g′), then f ′ = g′◦Φ′, and
Φ′|X′ : X ′ → Y ′, |Y ′ : Y ′ → Y, α|Y ′ : Y ′ → X are étale. We require that Φ◦α|Y ′ = |Y ′ : Y ′ → Y .

(ii) Write NUV for the normal bundle of Φ(U) in V, regarded as a vector bundle on U in the
exact sequence

0 // TU
dΦ // Φ∗(TV )

ΠUV // NUV
// 0, (5.2.2)

so that NUV |X is a vector bundle on X. Then there exists a unique qUV ∈ H0
(
S2NUV |∗X

)
which is

a nondegenerate quadratic form on NUV |X , such that whenever x, U ′, V ′, ,Φ′, α, β, n, qa are as in
(i), then there is an isomorphism β̂ : 〈dz1, . . . ,dzn〉U ′ → N∗UV |U ′ making the following commute:

N∗UV |U ′ Π∗UV |U′
// Φ|∗U ′(T ∗V ) = Φ′∗ ◦ ∗(T ∗V )

Φ′∗(d∗)
��

〈dz1, . . . ,dzn〉U ′ = Φ′∗ ◦ β∗(T ∗0 An)
Φ′∗(dβ∗) //

β̂

OO

Φ′∗(T ∗V ′),

and if X ′ = X ∩ U ′, then qUV |X′ =
[
q1 · S2β̂(dz1 ⊗ dz1) + · · ·+ qn · S2β̂(dzn ⊗ dzn)

]∣∣
X′
.

Here, we state [25, Thm. 4.4] and we recall briefly its proof.

Theorem 5.2.2. Let U, V be smooth K-schemes, f : U → A1, g : V → A1 be regular, and
X = Crit(f), Y = Crit(g) as K-subschemes of U, V . Let Φ : U ↪→ V be an embedding of
K-schemes with f = g ◦ Φ : U → A1, and suppose Φ|X : X → V ⊇ Y is an isomorphism
Φ|X : X → Y . Then

Φ|∗X
(
MFmot,φ

V,g

)
= MFmot,φ

U,f �Υ(PΦ) in Mµ̂
X , (5.2.3)

where PΦ is as in Definition 4.3.2 and Υ is defined in §1.4.1.

Proof. Suppose U, V, f, g,X, Y,Φ are as in Theorem 5.2.2, and use the notation NUV , qUV from
Theorem 5.2.1(ii) and JΦ, PΦ from Definition 4.3.2. Let x, U ′, V ′, ,Φ′, α, β, q1, . . . , qn, f

′, g′, X ′, Y ′



5.3. Motivic vanishing cycles on d-critical loci 50

be as in Theorem 5.2.1(i). Then in Mµ̂
X′ we have

Φ|∗X
(
MFmot,φ

V,g

)∣∣
X′

= Φ′|∗X ◦ |∗Y ′
(
MFmot,φ

V,g

)
= Φ′|∗X

(
MFmot,φ

V ′,g′
)

= Φ′|∗X ◦ (α× β)∗
(
MFmot,φ

U ′×An,f◦πU′+Σni=1(qi◦πU′ )·(z2
i ◦πAn )

)
= (idX′ × 0)∗

(
MFmot,φ

U ′,f ′ � LdimU/2 �MFmot,φ
U ′×An,Σni=1(qi◦πU′ )·(z2

i ◦πAn )

)
= (idX′ × 0)∗

(
MFmot,φ

U ′,f ′ �Υ(Pq1···qn)
)

= MFmot,φ
U ′,f ′ �Υ

(
Pq1···qn |X′

)
= MFmot,φ

U ′,f ′ �Υ
(
PΦ|X′

)
=
(
MFmot,φ

U,f �Υ(PΦ)
)∣∣
X′
, (5.2.4)

using Φ|U ′ =  ◦ Φ′ in the first step,  : V ′ → V étale with g′ = g ◦  in the second, α × β : V ′ →
U ′ × An étale and (5.2.1) in the third, and α ◦ Φ′ = idU ′ , β ◦ Φ′ = 0, and Theorem 1.4.9 in the
fourth.

In the fifth step of (5.2.4), we apply Theorem 1.4.10 to the vector bundle U ′ × An → U ′ and

nondegenerate quadratic form
n∑
i=1

(qi ◦πU ′) · (z2
i ◦πAn), and we write Pq1···qn → U ′ for the principal

Z2-bundle corresponding to
(
OU ′ , q1 · · · qn

)
under correspondence 2.19 in [25]. The sixth step uses

MFmot,φ
U ′,f ′ supported on X ′ ∼= X ′×{0}, the seventh that Pq1···qn |X′ ∼= PΦ|X′ since Theorem 5.2.1(ii)

implies an identification between q1 · · · qn and det(qUV ) on X ′ and Pq1···qn |X′ , PΦ|X′ parametrize
square roots of q1 · · · qn and det(qUV ) on X ′, and the eighth that U ′ ⊆ U is open with f ′ = f |U ′ .
Equation (5.2.4) proves the restriction of (5.2.3) to the Zariski open set X ′ ⊆ X. Since we can
cover X by such open X ′, Theorem 5.2.2 follows.

5.3 Motivic vanishing cycles on d-critical loci

Here is [25, Thm. 5.10]:

Theorem 5.3.1. Let (X, s) be a finite type algebraic d-critical locus with a choice of orientation

K
1/2
X,s. There exists a unique motive MFX,s ∈Mµ̂

X with the property that if (R,U, f, i) is a critical
chart on (X, s), then

MFX,s|R = i∗
(
MFmot,φ

U,f

)
�Υ(QR,U,f,i) in Mµ̂

R, (5.3.1)

where QR,U,f,i → R is the principal Z2-bundle parametrizing local isomorphisms α : K
1/2
X,s|Rred →

i∗(KU )|Rred with α⊗ α = ιR,U,f,i, for ιR,U,f,i as in (2.1.4).

Proof. Let (X, s) be an algebraic d-critical locus with orientation K
1/2
X,s. We must construct

MFX,s ∈ Mµ̂
X satisfying (5.3.1) for each critical chart (R,U, f, i). Since such R ⊆ X form a

Zariski open cover of X, and (5.3.1) determines MFX,s|R, there exists a unique MFX,s satisfying
(5.3.1) for all (R,U, f, i) if and only if the prescribed values MFX,s|R agree on overlaps between
critical charts. That is, we must prove that if (R,U, f, i) and (S, V, g, j) are critical charts, then[

i∗
(
MFmot,φ

U,f

)
�Υ(QR,U,f,i)

]∣∣
R∩S =

[
j∗
(
MFmot,φ

V,g

)
�Υ(QS,V,g,j)

]∣∣
R∩S . (5.3.2)

Fix x ∈ R ∩ S ⊆ X, and let (R′, U ′, f ′, i′), (S′, V ′, g′, j′), (T,W, h, k),Φ,Ψ be as in Theorem
2.1.5. Then as in Theorem 4.4.1 there is a natural isomorphism of principal Z2-bundles on R′

ΛΦ : QT,W,h,k|R′
∼=−→ i|∗R′(PΦ)⊗Z2 QR,U,f,i|R′ , (5.3.3)
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for PΦ → Crit(f ′) the principal Z2-bundle of orientations of
(
NU′W |Crit(f ′), qU′W

)
. We now have[

k∗
(
MFmot,φ

W,h

)
�Υ(QT,W,h,k)

]∣∣
R′

= i′∗
[
Φ|∗Crit(f ′)

(
MFmot,φ

W,h

)]
�Υ(QT,W,h,k)|R′

= i′∗
[
MFmot,φ

U ′,f ′ �Υ(PΦ)
]
�Υ(QT,W,h,k)|R′ = i|∗R′

[
MFmot,φ

U,f

]
�Υ

(
i|∗R′(PΦ)

)
�Υ

(
QT,W,h,k|R′

)
= i|∗R′

[
MFmot,φ

U,f

]
�Υ

(
i|∗R′(PΦ)⊗Z2 QT,W,h,k|R′

)
= i|∗R′

[
MFmot,φ

U,f

]
�Υ

(
QR,U,f,i|R′

)
=
[
i∗
(
MFmot,φ

U,f

)
�Υ(QR,U,f,i)

]∣∣
R′
, (5.3.4)

using Φ|Crit(f ′) ◦ i′ = k|R′ in the first step, Theorem 5.2.2 for Φ : (U ′, f ′)→ (W,h) in the second,
U ′ ⊆ U , f ′ = f |U ′ and functoriality of Υ in the third, (1.4.14) in the fourth, and (5.3.3) in the
fifth.

Similarly, from Ψ : (S′, V ′, g′, j′) ↪→ (T,W, h, k) we obtain[
k∗
(
MFmot,φ

W,h

)
�Υ(QT,W,h,k)

]∣∣
S′

=
[
j∗
(
MFmot,φ

V,g

)
�Υ(QS,V,g,j)

]∣∣
S′
. (5.3.5)

Combining the restrictions of (5.3.4)–(5.3.5) to R′ ∩S′ proves the restriction of (5.3.2) to R′ ∩S′.
Since we can cover R ∩ S by such Zariski open R′ ∩ S′ ⊆ R ∩ S, this proves (5.3.2), and hence
Theorem 5.3.1.

From Theorem 3.3.1 and Corollaries 3.3.2 and 3.3.3 we deduce [25, Cor.s 5.12, 5.13 & 5.14]:

Corollary 5.3.2. Let (X, ω) be a −1-shifted symplectic derived scheme over K in the sense
of [142], and X = t0(X) the associated classical K-scheme, assumed of finite type. Suppose
we are given a square root det(LX)|1/2X for det(LX)|X . Then we may define a natural motive

MFX,ω ∈Mµ̂
X .

Corollary 5.3.3. Suppose Y is a Calabi–Yau 3-fold over K, and M is a finite type moduli
K-scheme of simple coherent sheaves in coh(Y ) with obstruction theory φ : E• → LM as in
Thomas [167]. Suppose we are given a square root det(E•)1/2 for det(E•). Then we may define a

natural motive MFM ∈Mµ̂
M.

Corollary 5.3.4. Let (S, ω) be an algebraic symplectic manifold and L,M finite type algebraic
Lagrangian submanifolds in S, and write X = L∩M, as a subscheme of S. Suppose we are given

square roots K
1/2
L ,K

1/2
M for KL,KM . Then we may define a natural motive MFL,M ∈Mµ̂

X .

Corollary 5.3.3 has applications to Donaldson–Thomas theory, discussed in §7.

We conclude saying that recently Maulik proved a torus localization formula for the motives
MFX,s of Theorem 5.3.1, [133]. See [25, §5.3] for a brief discussion about it.



Chapter 6

A Darboux Theorem for shifted
symplectic structures on derived
Artin stacks, with applications

This chapter extend results of the previous chapters §3, §4 and §5 to Artin K-stacks, and it is
based on [13]. As usual, we will not go into details and proofs of results, for which we refer to [13].

6.1 ‘Darboux form’ atlases for shifted symplectic stacks

We follow [13, §2.5-2.7]. We start by generalizing Definition 3.1.1 and Theorems 3.1.2–3.1.3 to
derived Artin stacks [13, Def. 2.7, Thm.s 2.8 & 2.9]. The proofs can be found in [13, §2.5].

Definition 6.1.1. Let X be a derived Artin K-stack, and p a point of X. By this we mean
a morphism p : SpecK → X; we may also call p a K-point of X. A standard form open
neighbourhood (A,ϕ, p̃) of p, in the smooth topology, means a standard form cdga A over K in
the sense of Definition 3.1.1, so that U = SpecA is an affine derived K-scheme, and a morphism
ϕ : U →X which is smooth of some relative dimension n > 0, and a K-point p̃ inU with p = ϕ(p̃),
that is, there is an equivalence of morphisms p ' ϕ ◦ p̃ : SpecK → X. If we do not specify p, p̃,
we just call (A,ϕ) a standard form open neighbourhood in X. For such X, p, (A,ϕ, p̃), n, as for
(1.2.1) we have the standard fibre sequence

ϕ∗(LX)
Lϕ // LU

// LU/X
// ϕ∗(LX)[1], (6.1.1)

where LU/X is locally free of rank n. Restricting (6.1.1) to p̃ and taking cohomology, we have
the following:

(a) There are isomorphisms H i
(
LX |p

) ∼= H i
(
LU |p̃

)
for i < 0.

(b) Since U is not stacky, H1
(
LU |p̃

)
= 0 and so there is an exact sequence of K-vector spaces

0 // H0
(
LX |p

)
// H0

(
LU |p̃

)
// H0

(
LU/X |p̃

)
// H1

(
LX |p

)
// 0,

where H0
(
LU/X |p̃

) ∼= Kn. Therefore n > dimH1
(
LX |p

)
. Note that H1

(
LX |p

) ∼= IsoX(p)∗,
where IsoX(p) is the Lie algebra of the isotropy group IsoX(p) of X at p, which is an
algebraic K-group. In particular, the minimal possible relative dimension n = rank(LU/X)
of a neighbourhood ϕ : U →X of p is n = dimH1

(
LX |p

)
.
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(c) If ϕ is smooth of minimal relative dimension n = dimH1
(
LX |p

)
, then

H0
(
LX |p

) ∼= H0
(
LU |p̃

)
and H0

(
LU/X |p̃

) ∼= H1
(
LX |p

)
. (6.1.2)

We call a standard form open neighbourhood (A,ϕ, p̃) minimal at p if A is minimal at p̃ in the
sense of Definition 3.1.1 and n = dimH1

(
LX |p

)
. Then parts (a),(c) imply that A(0) is smooth

of dimension m0 = dimH0
(
LX |p

)
, and A has mi = dimH−i

(
LX |p

)
generators in degree −i for

i = 1, 2, . . . .

Theorem 6.1.2. Let X be a derived Artin K-stack, and p a point of X. Then there exists a
minimal standard form open neighbourhood (A,ϕ, p̃) of p, in the sense of Definition 6.1.1.

Theorem 6.1.3. Let X be a derived Artin K-stack and (A,ϕ), (B,ψ) standard form open neigh-
bourhoods in X, and write U = SpecA, V = SpecB. Then for each p ∈ U ×X V there exist a
standard form cdga C over K minimal at q ∈W = SpecC, an étale morphism i : W → U×X V
with i(q) = p, and cdga morphisms α : A→ C, β : B → C with πU ◦ i ' Specα : W → U and
πV ◦ i ' Specβ : W → V .

Here is [13, Thm. 2.10], a stack analogue of Theorem 3.2.2. Note that (a)(i)–(v) are modelled
closely on the first part of Definition 3.2.1, and equations (6.1.3)–(6.1.7) are analogues of or
identical to (3.2.1)–(3.2.5). The proof can be found in [13, §2.6].

Theorem 6.1.4. (a) Let (X, ωX) be a k-shifted symplectic derived Artin K-stack, where k =
−2d − 1 for d = 0, 1, 2, . . . , and p ∈ X. Then we can construct a minimal standard form open
neighbourhood (A,ϕ : U → X, p̃) of p in the sense of Definition 6.1.1, and a k-shifted closed
2-form ω = (ω0, 0, . . .) on U = SpecA for ω0 ∈ (Λ2Ω1

A)k, such that ϕ∗(ωX) ∼ ω in k-shifted
closed 2-forms on U = SpecA. Furthermore, A,ω are in a standard ‘Darboux form’, a modified
version of Definition 3.2.1, as follows:

(i) The degree 0 part A0 of A is a smooth K-algebra of dimension m0, and we are given
x0

1, . . . , x
0
m0
∈ A0 such that ddRx

0
1, . . . ,ddRx

0
m0

form a basis of Ω1
A0 over A0.

(ii) As a graded commutative algebra, A is freely generated over A0 by variables

x−i1 , . . . , x−imi in degree −i for i = 1, . . . , d,

yi−2d−1
1 , . . . , yi−2d−1

mi in degree i− 2d− 1 for i = 0, 1, . . . , d,

w−2d−2
1 , . . . , w−2d−2

n in degree −2d− 2,

(6.1.3)

for m0, . . . ,md > 0 with m0 as in (i), and n = dimH1
(
LX |p

)
the relative dimension of ϕ.

The upper index i in wij , x
i
j , y

i
j is the degree. Then

ω0 =
d∑
i=0

mi∑
j=1

ddRy
i−2d−1
j ddRx

−i
j in (Λ2Ω1

A)−2d−1. (6.1.4)

(iii) We are given H in A−2d, called the Hamiltonian, which satisfies the classical master
equation

d∑
i=1

mi∑
j=1

∂H

∂x−ij

∂H

∂yi−2d−1
j

= 0 in A1−2d. (6.1.5)

The differential d on A satisfies d = 0 on A0, and

dx−ij =
∂H

∂yi−2d−1
j

, dyi−2d−1
j =

∂H

∂x−ij
,

i = 0, . . . , d,

j = 1, . . . ,mi.
(6.1.6)

Note that (6.1.6) does not specify dw−2d−2
j for j = 1, . . . , n, and so does not completely

determine d on A.



6.1. ‘Darboux form’ atlases for shifted symplectic stacks 54

(iv) Define Φ ∈ A−2d and φ ∈ (Ω1
A)−2d−1 by Φ = − 1

2d+1 H and

φ =
1

2d+ 1

d∑
i=0

mi∑
j=1

[
(2d+ 1− i)yi−2d−1

j ddRx
−i
j + i x−ij ddRy

i−2d−1
j

]
. (6.1.7)

Then dΦ = 0, ddRΦ + dφ = 0, and ω0 = ddRφ.

(v) Minimality of (A,ϕ, p̃) means that dw−2d−2
j |p̃ = 0 for j = 1, . . . , n and

dx−ij
∣∣
p̃

=
∂H

∂yi−2d−1
j

∣∣∣∣
p̃

= 0 = dyi−2d−1
j

∣∣
p̃

=
∂H

∂x−ij

∣∣∣∣
p̃

,
i = 0, . . . , d,

j = 1, . . . ,mi.

(b) In part (a), let B be the graded subalgebra of A generated by A0 and the variables xij , y
i
j in

(ii) for all i, j, with inclusion ι : B ↪→ A. Then B is closed under d, and so is a dg-subalgebra
of A. For degree reasons H,Φ above cannot depend on the w−2d−2

j , so H,Φ ∈ B. Also the data

ω, ω0, φ in Ω1
A,Λ

2Ω1
A above are the images under ι of ωB, ω

0
B, φB in Ω1

B,Λ
2Ω1

B. Then ωB is a
k-shifted symplectic structure on V = SpecB, and B,ωB is in Darboux form as in Definition
3.2.1, and B is minimal at p̃ as in Definition 3.1.1.

Geometrically, we have a diagram of morphisms in dArtK :

V = SpecB U = SpecA
ϕ //i=Spec ιoo X,

where (X, ωX), (V , ωB) are k-shifted symplectic, with ϕ∗(ωX) ∼ i∗(ωB) in k-shifted closed 2-
forms on U . We can think of ϕ : U → X as a ‘submersion’, and i : U ↪→ V as an embedding
of U as a derived subscheme of V . On classical schemes, i = t0(i) : U = t0(U)→ V = t0(V ) is
an isomorphism. There is a natural equivalence of relative (co)tangent complexes

LU/V ' TU/X [1− k]. (6.1.8)

(c) The obvious analogues of (a),(b) also hold if (X, ωX) is a k-shifted symplectic derived
Artin K-stack for k < 0 with k ≡ 0 mod 4 or k ≡ 2 mod 4. In each case, the algebra A is
the corresponding algebra from Definition 3.2.1, modified by adding generators wk−1

1 , . . . , wk−1
n in

degree k − 1.

In the case k = −1, as in [19, Ex. 5.15] the classical K-schemes U ∼= V in Theorem 6.1.4(a),(b)
are isomorphic to Crit

(
H : U(0) → A1

)
. So changing notation from U(0), H, p̃ to U, f, u, using

H i
(
LX |p

) ∼= H i
(
LX |p

)
for X = t0(X) and i = 0, 1, and applying Proposition 3.1.4(b) to get

f |T red = 0, we deduce [13, Cor. 2.11]:

Corollary 6.1.5. Let (X, ωX) be a −1-shifted symplectic derived Artin K-stack, and X = t0(X)
the corresponding classical Artin K-stack. Then for each p ∈ X there exist a smooth K-scheme
U with dimension dimH0

(
LX |p

)
, a point t ∈ U, a regular function f : U → A1 with ddRf |t = 0,

so that T := Crit(f) ⊆ U is a closed K-subscheme with t ∈ T, and a morphism ϕ : T → X which
is smooth of relative dimension dimH1

(
LX |p

)
, with ϕ(t) = p. We may take f |T red = 0.

Here the derived critical locus Crit(f : U → A1), as a −1-shifted symplectic derived scheme,
agrees with (V , ωB) in Theorem 6.1.4, and ϕ : T → X corresponds to t0(ϕ) ◦ t0(i)−1 in Theo-
rem 6.1.4.

Thus, the underlying classical stack X of a−1-shifted symplectic derived stack (X, ωX) admits
an atlas consisting of critical loci of regular functions on smooth schemes.

Now let Y be a Calabi–Yau 3-fold over K, andM a classical moduli stack of coherent sheaves
F on Y , or complexes F • in Db coh(Y ) with Ext<0(F •, F •) = 0. Then M = t0(M), for M
the corresponding derived moduli stack. The (open) condition Ext<0(F •, F •) = 0 is needed to
make M 1-truncated (that is, a derived Artin stack, in our terminology), and so make M =
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t0(M) an ordinary, and not higher, stack. Pantev et al. [142, §2.1] prove M has a −1-shifted
symplectic structure ωM. Applying Corollary 6.1.5 and using H i

(
LM|[F ]

) ∼= Ext1−i(F, F )∗ yields
a new result on classical 3-Calabi–Yau moduli stacks, the statement of which involves no derived
geometry [13, Cor. 2.12]:

Corollary 6.1.6. Suppose Y is a Calabi–Yau 3-fold over K, and M a classical moduli K-stack
of coherent sheaves F, or more generally of complexes F • in Db coh(Y ) with Ext<0(F •, F •) = 0.
Then for each [F ] ∈M, there exist a smooth K-scheme U with dimU = dim Ext1(F, F ), a point
u ∈ U, a regular function f : U → A1 with ddRf |u = 0, and a morphism ϕ : Crit(f)→M which
is smooth of relative dimension dim Hom(F, F ), with ϕ(u) = [F ].

This is an analogue of Corollary 3.2.3. When K = C, a related result for coherent sheaves only,
with U a complex manifold and f a holomorphic function, was proved by Joyce and Song [85,
Th. 5.5] using gauge theory and transcendental complex methods. This will be important in §7.

Finally, we state [13, Thm. 2.13], on comparing Darboux form atlases on overlaps, as in §3.

Proposition 6.1.7. Let (X, ωX) be a −1-shifted symplectic derived Artin K-stack, and X =
t0(X) the corresponding classical Artin K-stack. Suppose U, f : U → A1, ϕ : T = Crit(f) → X
and U ′, f ′ : U ′ → A1, ϕ′ : T ′ = Crit(f ′)→ X are two choices of the data constructed in Corollary
6.1.5 for points p, p′ ∈ X, with f |T red = 0 = f ′|T ′red. Let q ∈ T ×ϕ,X,ϕ′ T ′. Then there exist a
smooth K-scheme V, a closed K-subscheme R ⊆ V, a point r ∈ R, and morphisms θ : V → U,
θ′ : V → U ′ with θ(R) ⊆ T, θ′(R) ⊆ T ′ such that the following diagram 2-commutes (homotopy
commutes) in ArtK :

V
θ′

//

θ

��

U ′
f ′
// A1

R7
Winc

jj

θ′|R
//

θ|R
��

FNη

T ′

ϕ′

��

7 W
inc

jj

U
f��

A1 T7
Winc

jj

ϕ // X,

and the induced morphism R→ T×XT ′ is étale and maps r 7→ q. Furthermore f ◦θ−f ′◦θ′ ∈ I2
R,V ,

where IR,V ⊆ OV is the ideal of functions vanishing on R ⊆ V .

6.2 A truncation functor to d-critical stacks

Here is [13, Thm. 3.18], a stack version of Theorem 3.3.1.

Theorem 6.2.1. Let K be an algebraically closed field of characteristic zero, (X, ωX) a −1-shifted
symplectic derived Artin K-stack, and X = t0(X) the corresponding classical Artin K-stack. Then
there exists a unique d-critical structure s ∈ H0(S0

X) on X, making (X, s) into a d-critical stack,
with the following properties:

(a) Let U, f : U → A1, T = Crit(f) and ϕ : T → X be as in Corollary 6.1.5, with f |T red = 0.
There is a unique sT ∈ H0(S0

T ) on T with ιT,U (sT ) = i−1(f) + I2
T,U , and (T, sT ) is an

algebraic d-critical locus. Then s(T, ϕ) = sT in H0(S0
T ).

(b) The canonical bundle KX,s of (X, s) from Theorem 2.2.6 is naturally isomorphic to the
restriction det(LX)|Xred to Xred ⊆ X ⊆ X of the determinant line bundle det(LX) of the
cotangent complex LX of X.
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We can think of Theorem 6.2.1 as defining a truncation functor

F :
{
∞-category of −1-shifted symplectic derived Artin K-stacks (X, ωX)

}
−→

{
2-category of d-critical stacks (X, s) over K

}
.

The following will be important in §7. Let Y be a Calabi–Yau 3-fold over K, andM a classical
moduli K-stack of coherent sheaves in coh(Y ), or complexes of coherent sheaves in Db coh(Y ).
There is a natural obstruction theory φ : E• → LM onM, where E• ∈ Dqcoh(M) is perfect in the
interval [−2, 1], and hi(E•)|F ∼= Ext1−i(F, F )∗ for each K-point F ∈M, regarding F as an object
in coh(Y ) or Db coh(Y ). Now in derived algebraic geometryM = t0(M) for M the corresponding
derived moduli K-stack, and φ : E• → LM is Lt0 : LM|M → LM. Pantev et al. [142, §2.1] prove
M has a −1-shifted symplectic structure ω. Thus Theorem 6.2.1 implies [13, Cor. 3.19]:

Corollary 6.2.2. Suppose Y is a Calabi–Yau 3-fold over K of characteristic zero, and M a
classical moduli K-stack of coherent sheaves F in coh(Y ), or complexes of coherent sheaves F •

in Db coh(Y ) with Ext<0(F •, F •) = 0, with obstruction theory φ : E• → LM. Then M extends
naturally to an algebraic d-critical locus (M, s). The canonical bundle KM,s from Theorem 2.2.6
is naturally isomorphic to det(E•)|Mred.

6.3 Perverse sheaves on d-critical stacks

We state [13, Prop. 4.8] on the behavior of the perverse sheaves P •X,s of Theorem 4.4.1 under
smooth pullback, which will be the main ingredient in the proof of our main result of the section
[13, Thm. 4.12], Theorem 6.3.2 below. It is proved in [13, §4.2].

Proposition 6.3.1. (a) Let φ : (X, s) → (Y, t) be a morphism of algebraic d-critical loci over

C, in the sense of §2 and suppose φ : X → Y is smooth of relative dimension d. Let K
1/2
Y,t be

an orientation for (Y, t), so that Corollary 2.1.10 defines an induced orientation K
1/2
X,s for (X, s).

Theorem 4.4.1 defines perverse sheaves P •X,s, P
•
Y,t on X,Y . Then there is a natural isomorphism

∆φ : φ∗[d](P •Y,t)
∼=−→P •X,s in Perv(X) (6.3.1)

which is characterized by the property that if (R,U, f, i), (S, V, g, j) are critical charts on (X, s), (Y, t)
with φ(R) ⊆ S and Φ : U → V is smooth of relative dimension d with f = g ◦Φ and Φ ◦ i = j ◦φ,
then the following commutes

φ|∗R[d](P •Y,t)

∆φ|R
��

φ|∗R[d](ωS,V,g,j)
// φ|∗R[d]

(
j∗
(
PV•V,g

)
⊗Z/2ZQS,V,g,j

)
i∗(ΞΦ)⊗αΦ

��
P •X,s|R

ωR,U,f,i // i∗
(
PV•U,f

)
⊗Z/2Z QR,U,f,i,

(6.3.2)

where ΞΦ is as in (1.3.2) and αΦ : φ|∗R[d](QS,V,g,j) → QR,U,f,i is the natural isomorphism. Also
∆φ identifies φ∗[d](ΣY,t), φ

∗[d](TY,t) with ΣX,s,TX,s.

(b) If ψ : (Y, t)→ (Z, u) is another morphism of algebraic d-critical loci over C smooth of relative
dimension e, then

∆ψ◦φ = ∆φ ◦ φ∗[d](∆ψ) : (ψ ◦ φ)∗[d+ e](P •Z,u)
∼=−→P •X,s. (6.3.3)

(c) Analogues of (a),(b) hold for algebraic d-critical loci (X, s) over general fields K in the
settings of l-adic perverse sheaves and of D-modules, and for algebraic d-critical loci (X, s) over
C in the setting of mixed Hodge modules.
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Here is [13, Thm. 4.12, Cor.s 4.13 & 4.14], the analogue of Theorem 4.4.1 and Corollaries
4.4.2-4.4.3.

Theorem 6.3.2. Let (X, s) be an oriented d-critical stack over K (allowing K = C) with orien-

tation K
1/2
X,s. Fix a theory of perverse sheaves on K-schemes from §1.3, and let Pervnäı(X) be the

corresponding category of näıve perverse sheaves on X. Then we may define PX,s ∈ Pervnäı(X)
and Verdier duality and monodromy isomorphisms

ΣX,s : PX,s −→ DX(PX,s), TX,s : PX,s −→ PX,s,

as follows:

(a) If t : T → X is smooth with T a K-scheme, so that (T, s(T, t)) is an algebraic d-critical locus

with natural orientation K
1/2
T,s(T,t) as in Lemma 2.2.8, then PX,s(T, t) = P •T,s(T,t) in Perv(T ),

where P •T,s(T,t) is the perverse sheaf on the oriented algebraic d-critical locus (T, s(T, t)) over

K given by Theorem 4.4.1. Also ΣX,s(T, t) = ΣT,s(T,t) and TX,s(T, t) = TT,s(T,t).

(b) For each 2-commutative diagram in ArtK

U

u

%%

KS
η

T

φ

99

t
// X

with T,U K-schemes and φ, t, u smooth with φ of dimension d, we have

PX,s(φ, η) = ∆φ : φ∗[d](PX,s(U, u)) = φ∗[d](P •U,s(U,u)) −→ PX,s(T, t) = P •T,s(T,t),

where ∆φ is as in Proposition 6.3.1.

If we work with perverse sheaves on K-schemes in the sense of [12] over a base ring A
with either charA > 0 coprime to charK, or A = Zl,Ql or Q̄l with l coprime to charK, then
Pervnäı(X) ' Perv(X) as in [13, §4.4] and §1.3, where Perv(X) ⊂ Db

c(X) is the category of
perverse sheaves on X over A defined by Laszlo and Olsson [106–108]. Thus PX,s corresponds to
P̌ •X,s ∈ Perv(X) unique up to canonical isomorphism, and ΣX,s,TX,s correspond to isomorphisms

Σ̌X,s : P̌ •X,s −→ DX(P̌ •X,s), ŤX,s : P̌ •X,s −→ P̌ •X,s in Perv(X).

The analogue will also hold in any other theory of perverse sheaves or D-modules on schemes
and Artin stacks with the package of properties discussed in §1.3 including the six operations

f∗, f !, Rf∗, Rf!,RHom,
L

⊗ , Verdier duality DX , and descent in the smooth topology as in Theorem
1.3.5.

Proof. Proposition 6.3.1(b) implies that the data PX,s(T, t),PX,s(φ, η) in (a),(b) satisfy Defini-
tion 1.3.9(A)(i). Thus PX,s is an object of Pervnäı(X). Similarly, the last part of Proposition
6.3.1(a) implies that ΣX,s,TX,s are morphisms in Pervnäı(X). The last part is immediate from
the discussion of [13, §4.3-4.5] and briefly recalled in §1.3.

Combining Theorems 6.1.4, 6.2.1 and 6.3.2 and Corollary 6.2.2 yields:

Corollary 6.3.3. Let K be an algebraically closed field of characteristic zero, (X, ω) a −1-
shifted symplectic derived Artin K-stack, and X = t0(X) the associated classical Artin K-stack.
Suppose we are given a square root det(LX)|1/2X . Then working in l-adic perverse sheaves on
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stacks [106–108], we may define a perverse sheaf P̌ •X,ω on X uniquely up to canonical isomorphism,

and Verdier duality and monodromy isomorphisms Σ̌X,ω : P̌ •X,ω → DX(P̌ •X,ω) and ŤX,ω : P̌ •X,ω →
P̌ •X,ω. These are characterized by the fact that given a diagram

U = Crit(f : U → A1) V
ioo ϕ //X

such that U is a smooth K-scheme, ϕ smooth of dimension n, LV /U ' TV /X [2], ϕ∗(ωX) ∼
i∗(ωU ) for ωU the natural −1-shifted symplectic structure on U = Crit(f : U → A1), and

ϕ∗(det(LX)|1/2X )∼= i∗(KU )⊗ΛnTV /X , then ϕ∗(P̌ •X,ω)[n], ϕ∗(Σ̌•X,ω)[n], ϕ∗(Ť•X,ω)[n] are canonically
isomorphic to i∗(PVU,f ), i∗(σU,f ), i∗(τU,f ), for PVU,f , σU,f , τU,f as in 1.3.1. The same applies in
the other theories of perverse sheaves and D-modules on stacks.

The following will be discussed also in §7:

Corollary 6.3.4. Let Y be a Calabi–Yau 3-fold over an algebraically closed field K of charac-
teristic zero, and M a classical moduli K-stack of coherent sheaves F in coh(Y ), or of complexes
F • in Db coh(Y ) with Ext<0(F •, F •) = 0, with obstruction theory φ : E• → LM. Suppose we
are given a square root det(E•)1/2. Then working in l-adic perverse sheaves on stacks [106–108],
we may define a natural perverse sheaf P̌ •M ∈ Perv(M), and Verdier duality and monodromy
isomorphisms Σ̌M : P̌ •M → DM(P̌ •M) and ŤM : P̌ •M → P̌ •M. The pointwise Euler characteristic
of P̌ •M is the Behrend function νM of M from Joyce and Song [85, §4], so that P̌ •M is in effect
a categorification of the Donaldson–Thomas theory of M. The same applies in the other theories
of perverse sheaves and D-modules on stacks.

For completeness, we conclude reporting an example [13, Ex. 4.15]:

Example 6.3.5. Suppose an algebraic K-group G acts on a K-scheme T with action µ : G×T →
T , and write X for the quotient Artin K-stack [T/G], and t : T → [T/G] for the natural quotient
1-morphism. As in Example 2.2.5, there is a 1-1 correspondence between d-critical structures s
on X = [T/G] and G-invariant d-critical structures s′ on T , such that s′ = s(T, t). Also, from

Lemma 2.2.8 we see that there is a 1-1 correspondence between orientations K
1/2
X,s for (X, s), and

G-invariant orientations K
1/2
T,s′ for (T, s′), given by K

1/2
T,s′ = K

1/2
X,s(T

red, tred) ⊗ (ΛtopLT/X)|T red .

Choose such s, s′,K
1/2
X,s,K

1/2
T,s′ , so that Theorems 4.4.1 and 6.3.2 give perverse sheaves P •T,s′ , P̌

•
X,s

on T,X.
We would like to relate the hypercohomologies H∗(T, P •T,s′) and H∗(X, P̌ •X,s). We have that

t∗(P̌ •X,s)[dimG] ∼= P •T,s′ and thus

Rqt∗P
•
T,s′
∼= Rqt∗t

∗(P̌ •X,s)[dimG] ∼= P̌ •X,s ⊗AX R
qt∗(AT )[dimG],

where AT is the constant sheaf on T with fibre the base ring A. Therefore, the Leray–Serre
spectral sequence for the fibration t : T → X with fibre G, twisted by P̌ •X,s, can be interpreted as
a spectral sequence

E•,• =⇒ H•(T, P •T,s′) with Ep,q2 = Hp
(
X, P̌ •X,s ⊗AX R

qt∗(AT )[dimG]
)
,

where Rqt∗(AT )[dimG] is locally constant on X with fibre Hq−dimG(G,A).
We also have a projection π : X = [T/G] → [∗/G] for ∗ = SpecK with fibre T . The Leray–

Serre spectral sequence for π gives a spectral sequence

E•,• =⇒ H•(X, P̌ •X,s) with Ep,q2 = Hp
(
[∗/G],Hq+dimG(T, P •T,s′)

)
.
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If G is finite we can consider the H∗(T, P •T,s′) as G-modules and H∗([∗/G],−) as group cohomology

H∗grp

(
G,−), giving a spectral sequence

Hp
grp

(
G,Hq(T, P •T,s′)

)
=⇒ Hp+q(X, P̌ •X,s).

6.4 Motives on d-critical stacks

We start by recalling [13, Prop. 5.8], a result on smooth pullbacks and pushforwards of the
motives MFX,s of Theorem 5.3.1, a motivic analogue of Proposition 6.3.1(a).

Proposition 6.4.1. Let φ : (X, s) → (Y, t) be a morphism of (finite type) algebraic d-critical

loci in the sense of §2 and suppose φ : X → Y is smooth of relative dimension n. Let K
1/2
Y,t be

an orientation for (Y, t), so that Corollary 2.1.10 defines an induced orientation K
1/2
X,s for (X, s).

Theorem 5.3.1 now defines motives MFX,s,MFY,t on X,Y . These are related by

φ∗
(
MFY,t

)
= Ln/2 �MFX,s ∈Mµ̂

X , (6.4.1)

φ∗
(
MFX,s

)
= L−n/2 �MFY,t � [X,φ, ι̂] ∈Mµ̂

Y . (6.4.2)

Proof. If x ∈ X with φ(x) = y ∈ Y then the proof of Proposition 2.1.4 in [87] shows we may
choose critical charts (R,U, f, i), (S, V, g, j) on (X, s), (Y, t) with x ∈ R, y ∈ φ(R) ⊆ S of minimal
dimensions dimU = dimTxX, dimV = dimTyY , and Φ : U → V smooth of relative dimension
n with f = g ◦ Φ and Φ ◦ i = j ◦ φ. Let π : Ṽ → V be an embedded resolution of singularities
of g. Then Ũ := U ×Φ,V,π Ṽ is an embedded resolution of singularities of f , since Φ is smooth
and f = g ◦ Φ. As in Definition 1.4.6, let Fi for i ∈ J be the irreducible components of π−1(V0),
so that π−1(V0) =

⋃
i∈J

Fi, with multiplicities Ni in the divisor of g ◦ π on Ṽ , and νi − 1 in the

divisor of π∗(dx), and define F ◦I =
(⋂
i∈I

Fi
)
\
( ⋃
j∈J\I

Fj
)

and covers F̃ ◦I → F ◦I for all I ⊆ J . Define

Ei = U ×Φ,V,π|Fi
Fi ⊂ π−1(U0) ⊂ Ũ . Then π−1(U0) =

⋃
i∈J

Ei. The Ei need not be irreducible, or

nonempty, but this is not important. Neglecting this, we can treat the Ei, i ∈ J as the components
for (Ũ , π) in Definition 1.4.6, and then they have the same multiplicities Ni, νi as the Fi for (Ṽ , π),
and the E◦I , Ẽ

◦
I for I ⊆ J defined in Definition 1.4.6 satisfy E◦I

∼= U ×V F ◦I and Ẽ◦I
∼= U ×V F̃ ◦I .

Thus we have

MFmot
U,f =

∑
∅6=I⊆J

(1− L)|I|−1
[
Ẽ◦I , πU0 , ρ̂I

]
=
∑
∅6=I⊆J

(1− L)|I|−1
[
F̃ ◦I ×πV0

,V0,Φ|U0
U0, πU0 , ρ̂I

]
= Φ|∗U0

[ ∑
∅6=I⊆J

(1− L)|I|−1
[
F̃ ◦I , πV0 , ρ̂I

]]
= Φ|∗U0

(
MFmot

V,g

)
.

So from (1.4.16) we deduce that

Φ|∗Crit(f)(MFmot,φ
V,g ) = Ln/2 �MFmot,φ

U,f , (6.4.3)

using Φ|∗Uc
(
[Vc, idVc , ι̂]

)
= [Uc, idUc , ι̂], where the factor Ln/2 is to convert the factor L− dimU/2

in MFmot,φ
U,f to the factor L− dimV/2 in MFmot,φ

V,g . Combining (6.4.3) with Theorem 5.3.1 for
(X, s), (R,U, f, i) and the pullback of Theorem 5.3.1 for (Y, t), (S, V, g, j) by φ|R : R → S, and
noting that φ∗ ◦ j∗ = i∗ ◦Φ|∗Crit(f) since j ◦φ = Φ◦ i, we deduce the restriction of (6.4.1) to R ⊆ X.

As we can cover X by such open R, this proves (6.4.1). Equation (6.4.2) follows by applying φ∗
and noting that φ∗ ◦ φ∗(M) = M � [X,φ, ι̂] for all φ : X → Y and M ∈Mµ̂

Y .
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Here is [13, Thm. 5.14], the analogue of Theorem 5.3.1.

Theorem 6.4.2. Let (X, s) be an oriented d-critical stack, with orientation K
1/2
X,s, where X is

assumed of finite type and locally a global quotient. Then there exists a unique motive MFX,s ∈
Mst,µ̂

X such that if T is a finite type K-scheme and t : T → X is smooth of relative dimension n,

so that (T, s(T, t)) is an algebraic d-critical locus over K with natural orientation K
1/2
T,s(T,t) as in

Lemma 2.2.8, then
t∗
(
MFX,s

)
= Ln/2 �MFT,s(T,t) in Mst,µ̂

T , (6.4.4)

where MFT,s(T,t) ∈M
st,µ̂
T is as in Theorem 5.3.1, projected from Mµ̂

T to Mst,µ̂
T , and t∗ :Mst,µ̂

X →
Mst,µ̂

T is the pullback.

We refer to [13, Rem. 5.15] for a discussion about how to relax the assumptions in Theorem
6.4.2 that X is of finite type, and locally a global quotient. Combining Theorems 6.1.4, 6.2.1, 6.4.2
and Corollary 6.2.2, and noting as in §7 that moduli stacks of coherent sheaves are locally global
quotients, yields [13, Cor.s 5.16 & 5.17], the analogue of Corollaries 5.3.2-5.3.3:

Corollary 6.4.3. Let (X, ω) be a −1-shifted symplectic derived Artin K-stack in the sense of
Pantev et al. [142], and X = t0(X) the associated classical Artin K-stack, assumed of finite type

and locally a global quotient. Suppose we are given a square root det(LX)|1/2X for det(LX)|X .

Then we may define a natural motive MFX,ω ∈ Mst,µ̂
X , which is characterized by the fact that

given a diagram U = Crit(f : U → A1) V
ioo ϕ //X such that U is a smooth K-scheme,

ϕ is smooth of dimension n, LV /U ' TV /X [2], ϕ∗(ωX) ∼ i∗(ωU ) for ωU the natural −1-shifted

symplectic structure on U = Crit(f : U → A1), and ϕ∗(det(LX)|1/2X ) ∼= i∗(KU ) ⊗ ΛnTV /X ,

then ϕ∗(MFX,ω) = Ln/2 � i∗(MFmot,φ
U,f ) in Mst,µ̂

V .

Corollary 6.4.4. Let Y be a Calabi–Yau 3-fold over K, and M a finite type classical moduli K-
stack of coherent sheaves in coh(Y ), with natural obstruction theory φ : E• → LM. Suppose we are

given a square root det(E•)1/2 for det(E•). Then we may define a natural motive MFM ∈Mst,µ̂
M .

Corollary 6.4.4 is relevant to Kontsevich and Soibelman’s theory of motivic Donaldson–Thomas
invariants [102]. Our square root det(E•)1/2 roughly coincides with their orientation data [102, §5].
In [102, §6.2], given a finite type moduli stack M of coherent sheaves on a Calabi–Yau 3-fold Y

with orientation data, they define a motive
∫
M 1 in a ring Dµ isomorphic to our Mst,µ̂

K . We
expect this should agree with π∗(MFM) in our notation, with π : M → SpecK the projection.
This

∫
M 1 is roughly the motivic Donaldson–Thomas invariant ofM. Their construction involves

expressing M near each point in terms of the critical locus of a formal power series. Kontsevich
and Soibelman’s constructions were partly conjectural, and our results may fill some gaps in their
theory. See also §7. We will not give the proof of Theorem 6.4.2 here, which can be found
in [13, §5.5]. We conclude with [13, Ex. 5.18]:

Example 6.4.5. As in [86, Def. 2.1], an algebraic K-group G is called special if every étale locally
trivial principal G-bundle over a K-scheme is Zariski locally trivial. Any special K-group can be
embedded as a closed K-subgroup G ⊆ GL(n,K), and then GL(n,K)→ GL(n,K)/G is a Zariski
locally trivial principal G-bundle, so taking motives inMstk

K gives [GL(n,K)] = [G]·[GL(n,K)/G].
Hence [G] is invertible in Mstk

K , with [G]−1 = [GL(n,K)/G] · [GL(n,K)]−1.
Some examples of special K-groups are Gm,GL(n,K), SL(n,K),Sp(2n,K), and the group of

invertible elements A× of any finite-dimensional K-algebra A. Products of special groups are
special. Special K-groups are always affine and connected, so nontrivial finite groups are not
special.
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Suppose a special K-group G of dimension n acts on a finite type, oriented algebraic d-

critical locus (T, s′) over K preserving s′ ∈ H0(S0
T ) and the orientation K

1/2
T,s′ . Write X = [T/G]

for the quotient stack and t : T → X for the projection. Then s′ descends to a unique d-
critical structure s on X with s′ = s(T, t) as in Example 2.2.5, and using Theorem 2.2.6 we

also find that the orientation K
1/2
T,s′ descends to a unique orientation K

1/2
X,s on the d-critical stack

(X, s) with K
1/2
X,s(T

red, tred) ∼= K
1/2
T,s′ ⊗

(
ΛtopT ∗T/X

)∣∣⊗−1

T red . Theorem 6.4.2 gives MFX,s ∈ Mst,µ̂
X

with t∗
(
MFX,s

)
= Ln/2 �MFT,s′ in Mst,µ̂

T . Applying t∗ and using t∗ ◦ t∗(M) = [T, t, ι̂] �M for

M ∈Mst,µ̂
X gives

MFX,s � [T, t, ι̂] = Ln/2 � t∗(MFT,s′). (6.4.5)

Now t : T → X is a principal G-bundle, and so Zariski locally trivial as G is special. Therefore
[T, t, ι̂] = [G, ι̂] � 1X , where [G, ι̂] = iK([G]) ∈ Mst,µ̂

K . As [G] is invertible, so is [G, ι̂]. Thus

multiplying (6.4.5) by [G, ι̂]−1 gives MFX,s = [G, ι̂]−1 �
(
Ln/2 � t∗(MFT,s′)

)
.



Chapter 7

Generalizations of
Donaldson–Thomas theory

Generalized Donaldson–Thomas invariants D̄Tα(τ) defined by Joyce and Song [85] are rational
numbers which ‘count’ both τ -stable and τ -semistable coherent sheaves with Chern character α
on a Calabi–Yau 3-fold X, where τ denotes Gieseker stability for some ample line bundle on
X. The D̄Tα(τ) are defined for all classes α, and are equal to the classical DTα(τ) defined by
Thomas [167] when it is defined. They are unchanged under deformations of X, and transform by
a wall-crossing formula under change of stability condition τ . Joyce and Song use gauge theory
and transcendental complex analytic methods, so that their theory of generalized Donaldson–
Thomas invariants is valid only in the complex case. This also forces them to put constraints
on the Calabi–Yau 3-fold they can define generalized Donaldson–Thomas invariants for. We will
review their theory in §7.1.

We will propose a new algebraic method extending the theory to algebraically closed fields
K of characteristic zero, and partly to triangulated categories and for non necessarily compact
Calabi–Yau 3-folds under some hypothesis.

We will use results discussed in §2–§6 to describe the local structure of the moduli stack M
of (complexes of) coherent sheaves on X, showing that an atlas for M carries the structure of a
GL(n,K)-invariant d-critical locus in the sense of [87] and thus it may be written locally as the
zero locus of a regular function defined on an étale neighborhood in the tangent space of M and
use this to deduce identities on the Behrend function νM.

Moreover, when K = C, [85, Thm. 4.9] uses the integral Hodge conjecture result by Voisin
for Calabi–Yau 3-folds over C to show that the numerical Grothendieck group Knum(coh(X))
is unchanged under deformations of X. This is important for the results that D̄Tα(τ) for α ∈
Knum(coh(X)) are invariant under deformations of X, even to make sense. We will provide an
algebraic proof of that result, characterizing the numerical Grothendieck group of a Calabi–Yau
3-fold in terms of a globally constant lattice described using the Picard scheme.

7.1 Donaldson–Thomas theory: background material

This section should be conceived as background picture in which next sections should be allocated.
The competent reader can skip directly to §7.2.

7.1.1 Obstruction theories and Donaldson–Thomas type invariants

This section will briefly recall material from [6], [114] and then [167] which provide both important
notions used in the sequel and a hopefully interesting picture of Donaldson–Thomas theory.
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Obstruction theories

Suppose that X is a subscheme of a smooth scheme M, cut out by a section s of a rank r vector
bundle E →M. Then the expected dimension, or virtual dimension, of X is n− r, the dimension
it would have if the section s was transverse. If it is not transverse, one wants to take a correct
(n− r)-cycle on X. As the section s induces a cone in E|X , one may then intersect this cone with
the zero section of X inside E to get a cycle of expected dimension on X. The key observation is
that one works entirely on X and not in the ambient scheme M. The deformation theory of the
moduli problem is often endowed with the infinitesimal version of s : M → E on X, namely the

linearization of s, yielding the exact sequence 0 // TX // TM|X
ds // E|X

// Ob // 0, for some

cokernel Ob, which in the moduli problem becomes the obstruction sheaf.
Moduli spaces in algebraic geometry often have an expected dimension at each point, which

is a lower bound for the dimension at that point. Sometimes it may not coincide with the actual
dimension of the moduli space and sometimes it is not possible to get a space of the expected
dimension. When one has a moduli space X one obtains numerical invariants by integrating
certain cohomology classes over the virtual moduli cycle, a class of the expected dimension in its
Chow ring.

One example is the moduli space of torsion-free, semi-stable vector bundles on a surface which
yields the Donaldson theory and which provides a set of differential invariants of 4-manifolds.
Another one is the moduli space of stable maps from curves of genus g to a fixed projective variety
which yields the Gromov–Witten invariants, a kind of generalization of the classical enumerative
invariant which counts the number of algebraic curves with appropriate constraints in a variety. In
both cases, these invariants are intersection theories on the moduli spaces, respectively, of vector
bundles over the surfaces, and of stable maps from curves to a variety. The fundamental class
is the core of an intersection theory. However, for Gromov–Witten invariants for example, one
cannot take the fundamental class of the whole moduli space directly. The virtual moduli cycle,
roughly speaking, plays the role of the fundamental class in an appropriate “good” intersection
theory.

A nice picture to start with is the following situation: when the expected dimension does
not coincide with the actual dimension of the moduli space, one may view this as if the moduli
space is a subspace of an ‘ambient’ space cut out by a set of ‘equations’ whose vanishing loci
do not meet transversely. Such a situation is well understood in the following setting described
in the Introduction of [114]: let X, Y and W be smooth varieties, X,Y → W and let Z =
X ×W Y. Then [X] · [Y ], the intersection of the cycle [X] and [Y ], is a cycle in A∗W of dimension
dimX+dimY −dimW . When dimZ = dimX+dimY −dimW , then [Z] = [X] · [Y ]. Otherwise,
[Z] may not be [X] · [Y ]. The excess intersection theory gives that one can find a cycle in A∗Z
so that it is [X] · [Y ]. One may view this cycle as the virtual cycle of Z representing [X] · [Y ].
Following Fulton–MacPherson’s normal cone construction (in [46–48]), this cycle is the image
of the cycle of the normal cone to Z in X, denoted by CZ/X , under the Gysin homomorphism
s∗ : A∗(CY/W ×Y Z)→ A∗Z, where s : Z → CY/W ×Y Z is the zero section. This theory does not
apply directly to moduli schemes, since, except for some isolated cases, it is impossible to find
pairs X → W and Y → W for smooth X,Y and W so that X ×W Y is the moduli space and
[X] · [Y ] so defined is the virtual moduli cycle one needs.

Behrend and Fantechi [6] and Li and Tian [114] give two different approaches to deal with
this. Very briefly, the strategy to Li and Tian’s approach in [114] is that rather than trying to
find an embedding of the moduli space into some ambient space, they will construct a cone in
a vector bundle directly, say C ⊂ V , over the moduli space and then define the virtual moduli
cycle to be s∗[C], where s is the zero section of V . The pair C ⊂ V will be constructed based on
a choice of the tangent-obstruction complex of the moduli functor. The construction commutes
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with Gysin maps and carries a good invariance property.
In [6] Behrend and Fantechi introduce the notion of cone stacks over a scheme X (or more

generally for Deligne–Mumford stacks). These are Artin stacks which are locally the quotient of a
cone by a vector bundle acting on it. They call a cone abelian if it is defined as Spec Sym F , where
F is a coherent sheaf on X. Every cone is contained as a closed subcone in a minimal abelian
one, which is called its abelian hull. The notions of being abelian and of abelian hull generalize
immediately to cone stacks. Then, for a complex E• in the derived category D(X) of quasicoherent
sheaves onX which satisfies some suitable assumptions (denoted by (∗), see Definition 7.1.1), there
is an associated abelian cone stack h1/h0((E•)∨). In particular the cotangent complex L•X of X
constructed by Illusie [72] (a helpful review is given in Illusie [73, §1]) satisfies condition (∗), so
one can define the abelian cone stack NX := h1/h0((L•X)∨), the intrinsic normal sheaf. More
directly, NX is constructed as follows: étale locally on X, embed an open set U of X in a smooth
scheme W , and take the stack quotient of the normal sheaf (viewed as abelian cone) NU/W by the
natural action of TW|U . One can glue these abelian cone stacks together to get NX . The intrinsic
normal cone CX is the closed subcone stack of NX defined by replacing NU/W by the normal
cone CU/W in the previous construction. In particular, the intrinsic normal sheaf NX of X carries
the obstructions for deformations of affine X-schemes. With this motivation, they introduce the
notion of obstruction theory for X. To say that a scheme X has an obstruction theory means, very
roughly speaking, that one is endowed with a complex of vector bundles encoding informations
on the deformations and obstructions spaces of X. That is, this is an object E• in the derived
category together with a morphism E• → L•X , satisfying Condition (∗) and such that the induced
map NX → h1/h0((E•)∨) is a closed immersion. One denotes the sheaf h1(E•∨) by Ob, the
obstruction sheaf of the obstruction theory. It contains the obstructions to the smoothness of
X. When an obstruction theory E• is perfect, E = h1/h0((E•)∨) is a vector bundle stack. Once
an obstruction theory is given, with the additional technical assumption that it admits a global
resolution, one can define a virtual fundamental class of the expected dimension: one has a vector
bundle stack E with a closed subcone stack CX , and to define the virtual fundamental class of
X with respect to E• one simply intersects CX with the zero section of E. To get round of the
problem of dealing with Chow groups for Artin stacks, Behrend and Fantechi choose to assume
that E• is globally given by a homomorphism of vector bundles F−1 → F 0. Then CX gives rise to
a cone C in F1 = F−1∨ and one intersects C with the zero section of F1 (see [105] for a statement
without this assumption).

So, recall the following definitions from Behrend and Fantechi [5–7]:

Definition 7.1.1. Let D(Y ) be the derived category of quasicoherent sheaves on a K-scheme Y .

(a) A complex E• ∈ D(Y ) is perfect of perfect amplitude contained in [a, b], if étale locally
on Y , E• is quasi-isomorphic to a complex of locally free sheaves of finite rank in degrees
a, a+ 1, . . . , b.

(b) A complex E• ∈ D(Y ) satisfies condition (∗) if

(i) hi(E•) = 0 for all i > 0,

(ii) hi(E•) is coherent for i = 0,−1.

(c) An obstruction theory for Y is a morphism ϕ : E• → LY in D(Y ), where LY = LY/SpecK
is the cotangent complex of Y , and E satisfies condition (∗), and h0(ϕ) is an isomorphism,
and h−1(ϕ) is an epimorphism.

(d) An obstruction theory ϕ : E• → LY is called perfect if E• is perfect of perfect amplitude
contained in [−1, 0].
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(e) A perfect obstruction theory ϕ : E• → LY on Y is called symmetric if there exists an
isomorphism ϑ : E• → E•∨[1], such that ϑ∨[1] = ϑ. Here E•∨=RHom (E•,OY ) is the dual
of E•, and ϑ∨ the dual morphism of ϑ.

(f) If moreover Y is a scheme with a G-action, where G is an algebraic group, an equivariant
perfect obstruction theory is a morphism E• → LY in the category D(Y )G, which is a perfect
obstruction theory as a morphism in D(Y ) (this definition is originally due to Graber–
Pandharipande [57]). Here D(Y )G denotes the derived category of the abelian category of
G-equivariant quasicoherent OY -modules.

(g) A symmetric equivariant obstruction theory (or an equivariant symmetric obstruction the-
ory) is a pair (E• → LY , E

• → E•∨[1]) of morphisms in the category D(Y )G, such that
E• → LY is an equivariant perfect obstruction theory and ϑ : E• → E•∨[1] is an iso-
morphism satisfying ϑ∨[1] = ϑ in D(Y )G. Note that this is more than requiring that the
obstruction theory be equivariant and symmetric, separately, as said in [7].

If instead Y
ψ−→ U is a morphism of K-schemes, so Y is a U -scheme, we define relative perfect

obstruction theories φ : E• → LY/U in the obvious way.

Behrend and Fantechi [6, Th. 4.5] prove the following theorem, which both explains the term
obstruction theory and provides a criterion for verification in practice:

Theorem 7.1.2. The following conditions are equivalent for E• ∈ D(Y ) satisfying condition (∗).

(a) The morphism φ : E• → LY is an obstruction theory.

(b) Suppose that we are given a square-zero extension T of T with ideal sheaf J , with T, T affine,
and a morphism g : T → Y. The morphism φ induces an element φ∗(ω(g)) ∈ Ext1(g∗E•, J)
from ω(g) ∈ Ext1(g∗LY , J) by composition. Then φ∗(ω(g)) vanishes if and only if there
exists an extension g of g. If it vanishes, then the set of extensions form a torsor un-
der Hom(g∗E•, J).

Some examples can be found in [7]: Lagrangian intersections, sheaves on Calabi–Yau 3-folds,
stable maps to Calabi–Yau 3-folds. Next section will concentrate on Donaldson–Thomas obstruc-
tion theory as in [167].

Donaldson–Thomas invariants of Calabi–Yau 3-folds

Donaldson–Thomas invariants DTα(τ) are the virtual counts of stable sheaves on Calabi–Yau
3-folds X. They were defined by Richard Thomas [167], following a proposal of Donaldson and
Thomas [36, §3], from the idea of defining an holomorphic analogue of the classical Casson invari-
ant.

More precisely, mathematically, Donaldson–Thomas invariants are constructed as follows. De-
formation theory gives rise to a perfect obstruction theory [6] (or a tangent-obstruction complex in
the language of [114]) on the moduli space of stable sheavesMα

st(τ). Recall that Thomas supposes
Mα

st(τ) =Mα
ss(τ), that is, there are no strictly semistable sheaves E in class α, which implies the

properness of Mα
st(τ). As Thomas points out in [167], the obstruction sheaf is equal to ΩMα

st(τ),
the sheaf of Kähler differentials, and hence the tangents TMα

st(τ) are dual to the obstructions.
This expresses a certain symmetry of the obstruction theory on Mα

st(τ) and is a mathematical
reflection of the heuristic that viewsMα

st(τ) as the critical locus of a holomorphic functional (the
holomorphic Chern-Simons functional). Associated to the perfect obstruction theory is the virtual
fundamental class, an element of the Chow group A∗(Mα

st(τ)) of algebraic cycles modulo rational
equivalence onMα

st(τ). One implication of the symmetry of the obstruction theory is the fact that
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the virtual fundamental class [Mα
st(τ)]vir is of degree zero. It can hence be integrated over the

proper space of stable sheaves to an integer, the Donaldson–Thomas invariant or ‘virtual count’
of Mα

st(τ)

DTα(τ) =

∫
[Mα

st(τ)]vir

1. (7.1.1)

In fact Thomas did not define invariantsDTα(τ) counting sheaves with fixed class α ∈ Knum(coh(X)),
but coarser invariants DTP (τ) counting sheaves with fixed Hilbert polynomial P (t) ∈ Q[t]. Thus

MP
ss(τ) =

∐
α:Pα=P

Mα
ss(τ)  DTP (τ) =

∑
α∈Knum(coh(X)):Pα=P

DTα(τ),

is the relationship with Joyce and Song’s version DTα(τ) reviewed in §7.1.3, where the r.h.s. has
only finitely many nonzero terms in the sum. Here, Thomas’ main result [167, §3]:

Theorem 7.1.3. For each Hilbert polynomial P (t), the invariant DTP (τ) is unchanged by con-
tinuous deformations of the underlying Calabi–Yau 3-fold X over K.

The same proof shows that DTα(τ) for α ∈ Knum(coh(X)) is deformation-invariant, provided
it is known that the group Knum(coh(X)) is deformation-invariant, so that this statement makes
sense. This issue is discussed in [85, §4.5]. There, it is shown that when K = C one can describe
Knum(coh(X)) in terms of cohomology groups H∗(X;Z), H∗(X;Q), so that Knum(coh(X)) is
manifestly deformation-invariant, and therefore DTα(τ) is also deformation-invariant. Theorem
[85, Thm. 4.19] crucially uses the integral Hodge conjecture result by [182] for Calabi–Yau 3-
folds over C. In [85, Rmk 4.20(e)], Joyce and Song propose to extend that description over an
algebraically closed base field K of characteristic zero by replacing H∗(X;Q) by the algebraic de
Rham cohomology H∗dR(X) of Hartshorne [64]. For X a smooth projective K-scheme, H∗dR(X) is
a finite-dimensional vector space over K. There is a Chern character map ch : Knum(coh(X)) ↪→
Heven

dR (X). In [64, §4], Hartshorne considers how H∗dR(Xt) varies in families Xt : t ∈ T , and defines
a Gauss–Manin connection, which makes sense of H∗dR(Xt) being locally constant in t. In §7.2.3
we will use another idea to characterize the numerical Grothendieck group of a Calabi–Yau 3-fold
in terms of a globally constant lattice described using the Picard scheme.

Next section will introduce the Behrend function and the work done by Behrend in [5], which
has been crucial for the development of Donaldson–Thomas theory.

7.1.2 Microlocal geometry and the Behrend function

This section briefly explains Behrend’s approach [5] to Donaldson–Thomas invariants as Euler
characteristics of moduli schemes weighted by the Behrend function. It was introduced by Behrend
[5] for finite type C-schemes X; in [85, §4.1] it has been generalized to Artin K-stacks. Behrend
functions are also defined for complex analytic spaces Xan, and the Behrend function of a C-
scheme X coincides with that of the underlying complex analytic space Xan. The theory is also
valid for K-schemes acted on by a reductive linear algebraic group. A good reference for this
section, other than the original paper by Behrend [5], are [85, §4] and [138] for the equivariant
version. We point out here that a detailed discussion about the Behrend function can be found
also in [26].

Microlocal approach to the Behrend function

In [5], Behrend suggests a microlocal approach to the problem. The first part of the discussion
describes how the Behrend function is defined while the second part, although not detailed and
not directly involved in the rest of the paper, aim to give a more complete picture.
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The definition of the Behrend function. Let K be an algebraically closed field of charac-
teristic zero, and X a finite type K-scheme. Suppose X ↪→ M is an embedding of X as a closed
subscheme of a smooth K-scheme M . Then one has a commutative diagram

Z∗(X)

cM0 **

∼=
Eu // CFZ(X)

cSM0��

∼=
Ch // LX(M)

0!tt
A0(X)

(7.1.2)

where the two horizontal arrows are isomorphisms. Here Z∗(X) denotes the group of algebraic
cycles on X, as in Fulton [46], and CFZ(X) the group of Z-valued constructible functions on X in
the sense of [75]. The local Euler obstruction is a group isomorphism Eu : Z∗(X)→ CFZ(X). The
local Euler obstruction was first defined by MacPherson [124] to solve the problem of existence of
covariantly functorial Chern classes, answering thus a Deligne–Grothendieck conjecture when K =
C, using complex analysis, but Gonzalez–Sprinberg [56] provides an alternative algebraic definition
which works over any algebraically closed field K of characteristic zero. It is the obstruction to
extending a certain section of the tautological bundle on the Nash blowup. More precisely, if V is
a prime cycle on X, the constructible function Eu(V ) is given by

Eu(V ) : x 7−→
∫

µ−1(x)

c(T̃ ) ∩ s(µ−1(x), Ṽ ),

where µ : Ṽ → V is the Nash blowup of V , T̃ the dual of the universal quotient bundle, c the total
Chern class and s the Segre class of the normal cone to a closed immersion. Kennedy [95, Lem.
4] proves that Eu(V ) is constructible.

As pointed out in the next section, it is worth observing that independently, at about the
same time, Kashiwara proved an index theorem over C for a holonomic D-module relating its local
Euler characteristic and the local Euler obstruction with respect to an appropriate stratification
(see [54] for details). It coincides with the one defined above and this is equivalent to saying that
the diagram (7.1.4) below commutes.

Observe that this part of the diagram exists without the embedding into M and is sufficient
to give the definition of the Behrend function as follow. Let CX/M be the normal cone of X in M ,
as in [46, p.73], and π : CX/M → X the projection. As in [5, §1.1], define a cycle CX/M ∈ Z∗(X)
by

CX/M =
∑
C′

(−1)dimπ(C′)mult(C ′)π(C ′),

where the sum is over all irreducible components C ′ of CX/M . It turns out that CX/M depends
only on X, and not on the embedding X ↪→ M . Behrend [5, Prop. 1.1] proves that given a
finite type K-scheme X, there exists a unique cycle CX ∈ Z∗(X), such that for any étale map
ϕ : U → X for a K-scheme U and any closed embedding U ↪→ M into a smooth K-scheme
M , one has ϕ∗(CX) = CU/M in Z∗(U). If X is a subscheme of a smooth M one takes U = X
and get CX = CX/M . Behrend calls CX the signed support of the intrinsic normal cone, or the
distinguished cycle of X. For each finite type K-scheme X, define the Behrend function νX in
CFZ(X) by νX = Eu(CX), as in Behrend [5, §1.2].

For completeness, the section now describes the other side of the diagram (7.1.2), which yields
another possible way to define the Behrend function. Write LX(M) for the free abelian group
generated by closed, irreducible, reduced, conical Lagrangian, K-subvariety in ΩM lying over
cycles contained in X. The isomorphism Ch : CFZ(X) → LX(M) maps a constructible function
to its characteristic cycle, which is a conic Lagrangian cycle on ΩM supported inside X defined
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in the following way. Consider the commutative diagram of group isomorphisms that fits in the
diagram (7.1.2):

Z∗(M)
Eu //

L

11CFZ(M)
Ch // L(M). (7.1.3)

Here L : Z∗(M) → L(M) is defined on any prime cycle V by L : V → (−1)dim(V )`(V ), where
`(V ) is the closure of the conormal bundle of any nonsingular dense open subset of V. Then Eu,
L are isomorphisms, and the characteristic cycle map Ch : CFZ(M) → L(M) ⊂ ZdimM (ΩM ) is
defined to be the unique isomorphism making (7.1.3) commute. In the complex case Ginsburg [54]
describes the inverse of this map as intersection multiplicity between two conical Lagrangian cycles.
This formula is crucial in [5, §4.3], where Behrend gives an expression for the Behrend function
in terms of linking numbers, which has a validity also in the case it is not known if a scheme
admitting a symmetric obstruction theory can locally be written as the critical locus of a regular
function on a smooth scheme (Theorem 7.1.10). See also [46, Ex. 19.2.4].

The maps to A0(X) are the degree zero Chern-Mather class, the degree zero Schwartz-
MacPherson Chern class, and the intersection with the zero section, respectively. The Mather
class is a homomorphism cM : Z∗(X) → A∗(X), whose definition is a globalization of the con-
struction of the local Euler obstruction. One has cM (V ) = µ∗

(
c(T̃ ) ∩ [Ṽ ]

)
, for a prime cycle

V of degree p on X with the same notation as above. For a the expression in terms of nor-
mal cones, see for example [148, §1]. Applying cM to the cycle CX , one obtains the Aluffi class
αX = cM (CX) ∈ A∗(X) defined in [1]. If X is smooth, its Aluffi class equals αX = c(ΩX) ∩ [X] .

Now given a symmetric obstruction theory on X, the cone of curvilinear obstructions cv ↪→
ob = ΩX , pulls back to a cone in ΩM|X

via the epimorphism ΩM|X
→ ΩX . Via the embedding

ΩM|X
↪→ ΩM one obtains a conic subscheme C ↪→ ΩM , the obstruction cone for the embedding

X ↪→ M . Behrend proves that the virtual fundamental class is [X]vir = 0![C]. The key fact
is that C is Lagrangian. Because of this, there exists a unique constructible function νX on
X such that Ch(νX) = [C] and cSM0 (νX) = [X]vir. Then Theorem 7.1.7 below follows as an
application of MacPherson’s theorem [124] (or equivalently from the microlocal index theorem of
Kashiwara [90]), which one can think of as a kind of generalization of the Gauss–Bonnet theorem
to singular schemes. See Theorem 7.1.7 below for its validity over K. The cycle CX such that
Eu(CX) = νX is as defined above, the (signed) support of the intrinsic normal cone of X. The
Aluffi class αX = cM (CX) = cSM (νX) has thus the property that its degree zero component is
the virtual fundamental class of any symmetric obstruction theory on X.

In the case K = C, using MacPherson’s complex analytic definition of the local Euler ob-
struction [124], the definition of νX makes sense in the framework of complex analytic geometry,
and so Behrend functions can be defined for complex analytic spaces Xan. Thus, as in [85, Prop.
4.2] one has that if X is a finite type K-scheme, then the Behrend function νX is a well-defined
Z-valued constructible function on X, in the Zariski topology. If Y is a complex analytic space
then the Behrend function νY is a well-defined Z-valued locally constructible function on Y, in the
analytic topology. Finally, if X is a finite type C-scheme, with underlying complex analytic space
Xan, then the algebraic Behrend function νX and the analytic Behrend function νXan coincide.
In particular, νX depends only on the complex analytic space Xan underlying X, locally in the
analytic topology. Finally, the definition of Behrend functions is valid over K-schemes, algebraic
K-spaces and Artin K-stacks, locally of finite type (see [85, Prop. 4.4]).

Categorifying the theory. We now relate the theory of Behrend functions to the categorifi-
cation program which was one of the main application of the whole program [13,18,19,25,87].

For this paragraph, restrict to K = C for simplicity. There exists a sophisticated modern
theory of linear partial differential equations on a smooth complex algebraic variety X, sometimes
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called microlocal analysis, because it involves analysis on the cotangent bundle T ∗X; this yields a
theory which is invariant with respect to the action of the whole group of canonical transformation
of T ∗X while the usual theory is only invariant under the subgroup induced by diffeomorphism of
X. It is sometimes called D-module theory, because it involves sheaves of modulesM over the sheaf
of rings of holomorphic linear partial differential operators of finite order D = DX ; these rings
are noncommutative, left and right Noetherian, and have finite global homological dimension.
It is also sometimes called algebraic analysis because it involves such algebraic constructions as
ExtiD(M,N ). The theory as it is known today grew out of the work done in the 1960s by the school
of Mikio Sato in Japan. During the 1970’s, one of the central themes in D-module theory was
David Hilbert’s twenty-first problem, now called the Riemann-Hilbert problem. A generalization
of it may be stated as the problem to solve the Riemann-Hilbert correspondence, which, roughly
speaking, describes the nature of the correspondence between a system of differential equations
and its solutions. A comprehensive reference is the book of Kashiwara and Shapira [90], while
an interesting eclectic vision on the subject is provided by Ginsburg [54]. One has the following
commutative diagram:

(perverse) constructible sheaves

χ

��

(regular) holonomic modules
∼
DR

oo

SS

��
constructible functions ∼

Ch // Lagrangian cycles in T ∗X.

(7.1.4)

Recall that here SS denotes the characteristic cycle map which to a D-module M associates
its characteristic cycle. It is the formal linear combination of irreducible components of the
characteristic variety (the support of the graded sheaf grM associated to M) counted with their
multiplicities. It looks like

SS(M) =
∑

mα(M) · T ∗XαX

for a stratification {Xα} of X, where mα(M) are positive integers and T ∗XαX is the closure of
the conormal bundle T ∗XαX. Each component of the characteristic variety has dimension at least
dim(X). A D-module M is called holonomic if its characteristic variety is pure of dimension
dim(X). To have also regular singularities means, very roughly speaking, that the system is
determined by its principal symbol.

So, to a holonomic system it has been associated an object of microlocal nature, the charac-
teristic cycle. On the other side, the Riemann-Hilbert correspondence associates to an holonomic
system M its De Rham complex,

DR(M) : 0 // Ω0(M)
d // Ω1(M)

d // . . .
d // Ωdim(X)(M)

d // 0,

where Ωp(M) is the sheaf of M-valued p-forms on X and d is the differential defined by Cartan
formula. As an object in the derived category it can be expressed as

DR(M) = RHomDX (OX ,M)[dim(X)]. (7.1.5)

IfM is holonomic, DR(M) is constructible and determinesM provided that the latter has regular
singularities.

Now, given a constructible sheaf C• there is associated a constructible function on X: define a
map χX : Obj(Db

Con(X))→ CFan
Z (X) by taking Euler characteristics of the cohomology of stalks

of complexes, given by

χX(C•) : x 7−→
∑
k∈Z

(−1)k dimHk(C•)x. (7.1.6)
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Since distinguished triangles in Db
Con(X) give long exact sequences on cohomology of stalks

Hk(−)x, this χX is additive over distinguished triangles, and so descends to a group mor-
phism χX : K0(Db

Con(X)) → CFan
Z (X). These maps χX : Obj(Db

Con(X)) → CFan
Z (X) and

χX : K0(Db
Con(X)) → CFan

Z (X) are surjective, since CFan
Z (X) is spanned by the characteristic

functions of closed analytic cycles Y in X, and each such Y lifts to a perverse sheaf in Db
Con(X).

In category-theoretic terms, X 7→ Db
Con(X) is a functor Db

Con from complex analytic spaces to
triangulated categories, and X 7→ CFan

Z (X) is a functor CFan
Z from complex analytic spaces to

abelian groups, and X 7→ χX is a natural transformation χ from Db
Con to CFan

Z .
Thus, if M is a regular holonomic D-module on X, then νX = χX(DR(M)), in the notation

of (7.1.5) and (7.1.6).
In the case X is the critical scheme of a regular function f on a smooth scheme M, Behrend [5]

gives the following expression for the Behrend function due to Parusiński and Pragacz [143]. This
formula has been crucial in [85]. For the definition of the Milnor fibres for holomorphic functions
on complex analytic spaces and the a review on vanishing cycles a survey paper on the subject is
Massey [126], and three books are Kashiwara and Schapira [90], Dimca [34], and Schürmann [159].
Over the field C, Saito’s theory of mixed Hodge modules [152] provides a generalization of the
theory of perverse sheaves with more structure, which may also be a context in which to generalize
Donaldson–Thomas theory.

Theorem 7.1.4. Let U be a complex manifold of dimension n, and f : U → C a holomorphic
function, and define X to be the complex analytic space Crit(f) contained in U0 = f−1({0}). Then
the Behrend function νX of X is given by

νX(x) = (−1)dimU
(
1− χ(MFf (x))

)
for x ∈ X. (7.1.7)

Moreover, the perverse sheaf of vanishing cycles φf (Q[n− 1]) on U0 is supported on X, and

χU0

(
φf (Q[n− 1])

)
(x) =

{
νX(x), x ∈ X,
0, x ∈ U0 \X,

(7.1.8)

where νX is the Behrend function of the complex analytic space X.

Thus, if X is the Donaldson–Thomas moduli space of stable sheaves, one can, heuristically,
think of νX as the Euler characteristic of the perverse sheaf of vanishing cycles of the holomorphic
Chern-Simons functional. This is naturally related to Corollary 4.4.3 in §4 and to the important
relation (0.0.1) discussed in the Introduction.

The Behrend function and its characterization

Here we will point out some important remarks and properties of the Behrend function.

Behrend function as a multiplicity function in the weighted Euler characteristic. It
is worth to report here [85, §1.2] which provides a good way to think of Behrend functions as
multiplicity functions. If X is a finite type C-scheme then the Euler characteristic χ(X) ‘counts’
points without multiplicity, so that each point of X(C) contributes 1 to χ(X). If Xred is the
underlying reduced C-scheme then Xred(C) = X(C), so χ(Xred) = χ(X), and χ(X) does not
see non-reduced behaviour in X. However, the weighted Euler characteristic χ(X, νX) ‘counts’
each x ∈ X(C) weighted by its multiplicity νX(x). The Behrend function νX detects non-reduced
behaviour, so in general χ(X, νX) 6= χ(Xred, νXred). For example, let X be the k-fold point
Spec

(
C[z]/(zk)

)
for k > 1. Then X(C) is a single point x with νX(x) = k, so χ(X) = 1 =

χ(Xred, νXred), but χ(X, νX) = k.
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An important moral of [5] is that (at least in moduli problems with symmetric obstruction
theories, such as Donaldson–Thomas theory) it is better to ‘count’ points in a moduli scheme
M by the weighted Euler characteristic χ(M, νM) than by the unweighted Euler characteristic
χ(M). One reason is that χ(M, νM) often gives answers unchanged under deformations of the
underlying geometry, but χ(M) does not. For example, consider the family of C-schemes Xt =
Spec

(
C[z]/(z2 − t2)

)
for t ∈ C. Then Xt is two reduced points ±t for t 6= 0, and a double point

when t = 0. So as above we find that χ(Xt, νXt) = 2 for all t, which is deformation-invariant, but
χ(Xt) is 2 for t 6= 0 and 1 for t = 0, which is not deformation-invariant.

Properties of the Behrend function. Here are some important properties of Behrend func-
tions. They are proved by Behrend [5, §1.2 & Prop. 1.5] when K = C, but his proof is valid for
general K.

Theorem 7.1.5. Let X,Y be Artin K-stacks locally of finite type. Then:

(i) If X is smooth of dimension n then νX ≡ (−1)n.

(ii) If ϕ : X→Y is smooth with relative dimension n then νX≡(−1)nϕ∗(νY ).

(iii) νX×Y ≡ νX � νY , where (νX � νY )(x, y) = νX(x)νY (y).

Let us recall [85, Thm 4.11]. It is stated using the Milnor fibre, but its proof works algebraically
over K.

Theorem 7.1.6. Let U be a smooth K-variety, f : U → A1
K a regular function over U, and V a

smooth K-subvariety of U, and v ∈ V ∩ Crit(f). Define Ũ to be the blowup of U along V, with
blowup map π : Ũ → U, and set f̃ = f ◦ π : Ũ → A1

K. Then π−1(v) = P(TvU/TvV ) is contained
in Crit(f̃), and

νCrit(f)(v) =

∫
w∈P(TvU/TvV )

νCrit(f̃)(w) dχ + (−1)dimU−dimV
(
1−dimU +dimV

)
νCrit(f |V )(v),

where w 7→ νCrit(f)(w) is a constructible function on P(TvU/TvV ), and the integral is the Euler
characteristic of P(TvU/TvV ) weighted by this.

One can see the next result as a kind of virtual Gauss–Bonnet formula. It is crucial for
Donaldson–Thomas theory. It is proved by Behrend [5, Th. 4.18] when K = C, but his proof is
valid for general K. It depends crucially on [5, Prop. 1.12] which again depend on an application
of MacPherson’s theorem [124] over C but valid over general K thanks to Kennedy [95] and the
definition of the Euler characteristic over algebraically closed field K of characteristic zero given
by Joyce [75]. See also an independent construction of the Schwartz–MacPherson Chern class
given by Aluffi [2].

Theorem 7.1.7. Let X a proper K-scheme with a symmetric obstruction theory, and [X]vir ∈
A0(X) the corresponding virtual class. Then∫

[X]vir

1 = χ(X, νX) ∈ Z,

where χ(X, νX) =
∫
X(K) νX dχ is the Euler characteristic of X weighted by the Behrend function

νX of X. In particular,
∫

[X]vir 1 depends only on the K-scheme structure of X, not on the choice
of symmetric obstruction theory.
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Theorem 7.1.7 implies that DTα(τ) in (7.1.1) is given by

DTα(τ) = χ
(
Mα

st(τ), νMα
st(τ)

)
. (7.1.9)

There is a big difference between the two equations (7.1.1) and (7.1.9) defining Donaldson–Thomas
invariants. Equation (7.1.1) is non-local, and non-motivic, and makes sense only if Mα

st(τ) is a
proper K-scheme. But (7.1.9) is local, and (in a sense) motivic, and makes sense for arbitrary finite
type K-schemesMα

st(τ). In fact, one could take (7.1.9) to be the definition of Donaldson–Thomas
invariants even whenMα

ss(τ) 6=Mα
st(τ), but in [85, §6.5] Joyce and Song argued that this is not a

good idea, as then DTα(τ) would not be unchanged under deformations of X. In [85, §6.5] Joyce
and Song say:

‘Equation (7.1.9) was the inspiration for this book. It shows that Donaldson–
Thomas invariants DTα(τ) can be written as motivic invariants, like those studied
in [77–81], and so it raises the possibility that we can extend the results of [77–81] to
Donaldson–Thomas invariants by including Behrend functions as weights.’

Almost closed 1-forms. In [140] Pandharipande and Thomas give a counterexample to the
idea that every scheme admitting a symmetric obstruction theory can locally be written as the
critical locus of a regular function on a smooth scheme. This limits the usefulness of the above
formula for νX(x) in terms of the Milnor fibre. Here is the more general approach due to Behrend
[5], which the author tried to use to give a strictly algebraic proof on the Behrend function
identities, but later this proof turned out to be not completely correct.

Definition 7.1.8. Let K be an algebraically closed field, and M a smooth K-scheme. Let ω be an
algebraic 1-form onM , that is, ω ∈ H0(T ∗M). Call ω almost closed if dω is a section of Iω·Λ2T ∗M ,
where Iω is the ideal sheaf of the zero locus ω−1(0) of ω. Equivalently, dω|ω−1(0) is zero as a section
of Λ2T ∗M |ω−1(0). In (étale) local coordinates (z1, . . . , zn) on M , if ω = f1dz1 + · · ·+ fndzn, then

ω is almost closed provided
∂fj
∂zk
≡ ∂fk

∂zj
mod (f1, . . . , fn).

Let M be a smooth Deligne–Mumford stack and ω an almost closed 1-form on M with zero
locus X = Z(ω). It is a general principle, that a section of a vector bundle defines a perfect
obstruction theory for the zero locus of the section. This obstruction theory is given by

[TM|X
d◦ω∨ //

ω∨

��

ΩM|X
]

1

��
[I/I2 d // ΩM|X

]

(7.1.10)

This obstruction theory is symmetric, in a canonical way, because under the assumption that
ω is almost closed one has that d ◦ ω∨ is self-dual, as a homomorphism of vector bundles over X.

Behrend [5, Prop. 3.14] proves a kind of converse of that, by a proof valid for general K, which
says that, at least locally, every symmetric obstruction theory is given in this way by an almost
closed 1-form.

Proposition 7.1.9. Let K be an algebraically closed field, and X a K-scheme with a symmetric
obstruction theory. Then X may be covered by Zariski open sets Y ⊆ X such that there exists a
smooth K-scheme M, an almost closed 1-form ω on M, and an isomorphism of K-schemes Y ∼=
ω−1(0).
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Restricting to K = C, Behrend [5, Prop. 4.22] gives an expression for the Behrend function of
the zero locus of an almost closed 1-form as a linking number. It is possible to use it to give an
algebraic proof of the first Behrend identity over C.

Proposition 7.1.10. Let M be a smooth scheme and ω an almost closed 1-form on M, and
let Y = ω−1(0) be the scheme-theoretic zero locus of ω. Fix p a closed point in Y , choose
étale coordinates (x1, . . . , xn) on M around p with (x1, . . . , xn, p1, . . . , pn) the associated canonical

coordinates for T ∗M. Write ω =
n∑
i=1

fidxi in these coordinates. One can identify T ∗M near p

with C2n. Then for all η ∈ C and ε ∈ R with 0 < |η| � ε� 1 one has

νY (p) = LSε
(
Γη−1ω ∩ Sε,∆ ∩ Sε

)
, (7.1.11)

where

• Sε=
{

(x1, . . . , pn)∈C2n : |x1|2+· · ·+|pn|2 =ε2
}

is the sphere of radius ε in C2n,

• Γη−1ω is the graph of η−1ω regarded locally as a complex submanifold of C2n of real dimen-
sion 2n oriented so that M −→ ΩM is orientation preserving and defined by the equations
{ηpi = fi(x)},
• ∆ =

{
(x1, . . . , pn)∈C2n : pj = x̄j , j=1, . . . , n

}
, i.e. the image of the smooth map M −→ ΩM

given by the section d% of ΩM , with

% =
∑
i

xix̄i +
∑
i

pip̄i

the square of the distance function defined on ΩM by the choice of coordinates of real di-
mension 2n,

• LSε( , ) is the linking number of two disjoint, closed, oriented (n−1)-submanifolds in Sε.

We remark here that ∆ is not a complex submanifold, but only a real submanifold. Thus,
there are no good generalizations of ∆ to other fields K.

7.1.3 Generalizations of Donaldson–Thomas theory

Next it will be briefly reviewed how the theory of generalized Donaldson–Thomas invariants has
been developed, starting from the series of papers [75–81] about constructible functions, stack
functions, Ringel–Hall algebras, counting invariants for Calabi–Yau 3-folds, and wall-crossing and
then summarizing the main results in [85] including the definition of generalized Donaldson–
Thomas invariants D̄Tα(τ) ∈ Q, their deformation-invariance, and wall-crossing formulae under
change of stability condition τ . In the sequel, there are two paragraphs on statements and a sketch
of proofs of the theorems [85, Thm 5.5] and [85, Thm 5.11] on which this paper is concentrated.
We conclude with a brief and rough remark on Kontsevich and Soibelman’s parallel approach
to Donaldson–Thomas theory [102], focusing more on analogies and differences with Joyce and
Song’s construction [85] rather than going into a detailed exposition.

Brief sketch of background from [75–81]

Here it will be recalled a few important ideas from [75–81]. They deal with Artin stacks rather
than coarse moduli schemes, as in [167]. Let X be a Calabi–Yau 3-fold over C, and write M for
the moduli stack of all coherent sheaves E on X. It is an Artin C-stack.
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The ring of stack functions SF(M) in [76] is basically the Grothendieck group K0(StaM) of the
2-category StaM of stacks over M. That is, SF(M) is generated by isomorphism classes [(R, ρ)]

of representable 1-morphisms ρ : R→M for R a finite type Artin C-stack, with the relation

[(R, ρ)] = [(S, ρ|S)] + [(R \S, ρ|R\S)]

when S is a closed C-substack of R. In [76] Joyce studies different kinds of stack function spaces
with other choices of generators and relations, and operations on these spaces. These include
projections Πvi

n : SF(M) → SF(M) to stack functions of virtual rank n, which act on [(R, ρ)] by
modifying R depending on its stabilizer groups.

In [78, §5.2] he defines a Ringel–Hall type algebra SFal(M) of stack functions with algebra
stabilizers on M, with an associative, non-commutative multiplication ∗ and in [78, §5.2] he defines
a Lie subalgebra SFind

al (M) of stack functions supported on virtual indecomposables. In [78, §6.5]
he defines an explicit Lie algebra L(X) to be the Q-vector space with basis of symbols λα for
α ∈ Knum(coh(X)), with Lie bracket

[λα, λβ] = χ̄(α, β)λα+β, (7.1.12)

for α, β ∈ Knum(coh(X)), where χ̄( , ) is the Euler form on Knum(coh(X)) defined as follows:

χ̄([E], [F ]) =
∑
i≥0

(−1)i dim Exti(E,F ) (7.1.13)

for all E,F ∈ coh(X). As X is a Calabi–Yau 3-fold, χ̄ is antisymmetric, so (7.1.12) satisfies the
Jacobi identity and makes L(X) into an infinite-dimensional Lie algebra over Q.

Then in [78, §6.6] Joyce defines a Lie algebra morphism Ψ : SFind
al (M)→ L(X), which, roughly

speaking, is of the form

Ψ(f) =
∑

α∈Knum(coh(X))

χstk
(
f |Mα

)
λα, (7.1.14)

where f =
m∑
i=1

ci[(Ri, ρi)] is a stack function on M , and Mα is the substack in M of sheaves E

with class α, and χstk is a kind of stack-theoretic Euler characteristic. But in fact the definition
of Ψ, and the proof that Ψ is a Lie algebra morphism, are highly nontrivial, and use many ideas
from [75, 76, 78], including those of ‘virtual rank’ and ‘virtual indecomposable’. The problem is
that the obvious definition of χstk usually involves dividing by zero, so defining (7.1.14) in a way
that makes sense is quite subtle. The proof that Ψ is a Lie algebra morphism uses Serre duality
and the assumption that X is a Calabi–Yau 3-fold.

Now let τ be a stability condition on coh(X), such as Gieseker stability. Then one has
open, finite type substacks Mα

ss(τ),Mα
st(τ) in M of τ -(semi)stable sheaves E in class α, for all

α ∈ Knum(coh(X)). Write δ̄αss(τ) for the characteristic function of Mα
ss(τ), in the sense of stack

functions [76]. Then δ̄αss(τ) ∈ SFal(M). In [79, §8], Joyce defines elements ε̄α(τ) in SFal(M) by

ε̄α(τ) =
∑

n>1, α1,...,αn∈Knum(coh(X)):
α1+···+αn=α, τ(αi)=τ(α), all i

(−1)n−1

n
δ̄α1

ss (τ) ∗ δ̄α2
ss (τ) ∗ · · · ∗ δ̄αnss (τ), (7.1.15)

where ∗ is the Ringel–Hall multiplication in SFal(M). Then [79, Thm. 8.7] shows that ε̄α(τ) lies
in the Lie subalgebra SFind

al (M), a nontrivial result. Thus one can apply the Lie algebra morphism
Ψ to ε̄α(τ). In [80, §6.6] he defines invariants Jα(τ) ∈ Q for all α ∈ Knum(coh(X)) by

Ψ
(
ε̄α(τ)

)
= Jα(τ)λα. (7.1.16)
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These Jα(τ) are rational numbers ‘counting’ τ -semistable sheaves E in class α. WhenMα
ss(τ) =

Mα
st(τ) then Jα(τ) = χ(Mα

st(τ)), that is, Jα(τ) is the näıve Euler characteristic of the moduli
space Mα

st(τ). This is not weighted by the Behrend function νMα
st(τ), and so in general does not

coincide with the Donaldson–Thomas invariant DTα(τ) in (7.1.12). As the Jα(τ) do not include
Behrend functions, they do not count semistable sheaves with multiplicity, and so they will not
in general be unchanged under deformations of the underlying Calabi–Yau 3-fold, as Donaldson–
Thomas invariants are. However, the Jα(τ) do have very good properties under change of sta-
bility condition. In [80] Joyce shows that if τ, τ̃ are two stability conditions on coh(X), then
it is possible to write ε̄α(τ̃) in terms of a (complicated) explicit formula involving the ε̄β(τ) for
β ∈ Knum(coh(X)) and the Lie bracket in SFind

al (M). Applying the Lie algebra morphism Ψ
shows that Jα(τ̃)λα may be written in terms of the Jβ(τ)λβ and the Lie bracket in L(X), and
hence [80, Thm. 6.28] yields an explicit transformation law for the Jα(τ) under change of stability
condition. In [81] he shows how to encode invariants Jα(τ) satisfying a transformation law in
generating functions on a complex manifold of stability conditions, which are both holomorphic
and continuous, despite the discontinuous wall-crossing behaviour of the Jα(τ).

Summary of the main results from [85]

The basic idea behind the project developed in [85] is that the Behrend function νM of the moduli
stack M of coherent sheaves in X should be inserted as a weight in the programme of [75–81]
summarized in §7.1.3. Thus one will obtain weighted versions Ψ̃ of the Lie algebra morphism Ψ of
(7.1.14), and D̄Tα(τ) of the counting invariant Jα(τ) ∈ Q in (7.1.16). Here is how this is worked
out in [85].

Joyce and Song define a modification L̃(X) of the Lie algebra L(X) above, the Q-vector space
with basis of symbols λ̃α for α ∈ Knum(coh(X)), with Lie bracket

[λ̃α, λ̃β] = (−1)χ̄(α,β)χ̄(α, β)λ̃α+β,

which is (7.1.14) with a sign change. Then they define a Lie algebra morphism Ψ̃ : SFind
al (M) →

L̃(X). Roughly speaking this is of the form

Ψ̃(f) =
∑

α∈Knum(coh(X))

χstk
(
f |Mα , νM

)
λ̃α, (7.1.17)

that is, in (7.1.14) we replace the stack-theoretic Euler characteristic χstk with a stack-theoretic
Euler characteristic weighted by the Behrend function νM. The proof that Ψ̃ is a Lie algebra mor-
phism combines the proof in [78] that Ψ is a Lie algebra morphism with the two Behrend function
identities (7.1.18)–(7.1.19) proved in [85, thm. 5.11] and reported below. Proving (7.1.18)–(7.1.19)
requires a deep understanding of the local structure of the moduli stack M, which is of interest in
itself. First they show using a composition of Seidel–Thomas twists by OX(−n) for n � 0 that
M is locally 1-isomorphic to the moduli stack Vect of vector bundles on X. Then they prove that
near [E] ∈ Vect(C), an atlas for Vect can be written locally in the complex analytic topology in
the form Crit(f) for f : U → C a holomorphic function on an open set U in Ext1(E,E). These
U, f are not algebraic, they are constructed using gauge theory on the complex vector bundle E
over X and transcendental methods. Finally, they deduce (7.1.18)–(7.1.19) using the Milnor fibre
expression (7.1.7) for Behrend functions applied to these U, f .

Before going on with the review of Joyce and Song’s program, it is worth to stop for a while
on some details about [85, Thm 5.5] and [85, Thm 5.11], the statements of the theorems and how
they prove it.
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Gauge theory and transcendental complex analytic geometry from [85]. In [85, Thm.
5.5] Joyce and Song give a local characterization of an atlas for the moduli stack M as the critical
points of a holomorphic function on a complex manifold. The statement and a sketch of its
proof are reported below. Some background references are Kobayashi [101, §VII.3], Lübke and
Teleman [118, §4.1 & §4.3], Friedman and Morgan [44, §4.1–§4.2] and Miyajima [129].

Theorem 7.1.11. Let X be a Calabi–Yau 3-fold over C, and M the moduli stack of coherent
sheaves on X. Suppose E is a coherent sheaf on X, so that [E] ∈ M(C). Let G be a maximal
reductive subgroup in Aut(E), and GC its complexification. Then GC is an algebraic C-subgroup
of Aut(E), a maximal reductive subgroup, and GC = Aut(E) if and only if Aut(E) is reductive.
There exists a quasiprojective C-scheme S, an action of GC on S, a point s ∈ S(C) fixed by GC,
and a 1-morphism of Artin C-stacks Φ : [S/GC] → M, which is smooth of relative dimension
dim Aut(E) − dimGC, where [S/GC] is the quotient stack, such that Φ(sGC) = [E], the induced
morphism on stabilizer groups Φ∗ : Iso[S/GC](sG

C) → IsoM([E]) is the natural morphism GC ↪→
Aut(E) ∼= IsoM([E]), and dΦ|sGC : TsS ∼= TsGC [S/GC]→ T[E]M ∼= Ext1(E,E) is an isomorphism.
Furthermore, S parametrizes a formally versal family (S,D) of coherent sheaves on X, equivariant
under the action of GC on S, with fibre Ds ∼= E at s. If Aut(E) is reductive then Φ is étale.

Write San for the complex analytic space underlying the C-scheme S. Then there exists an open
neighbourhood U of 0 in Ext1(E,E) in the analytic topology, a holomorphic function f : U → C
with f(0) = df |0 = 0, an open neighbourhood V of s in San, and an isomorphism of complex
analytic spaces Ξ : Crit(f) → V, such that Ξ(0) = s and dΞ|0 : T0 Crit(f) → TsV is the inverse
of dΦ|sGC : TsS → Ext1(E,E). Moreover we can choose U, f, V to be GC-invariant, and Ξ to be
GC-equivariant.

In [85], Theorem 7.1.11 gives Joyce and Song the possibility to use the Milnor fibre formula
(7.1.7) for the Behrend function of Crit(f) to study the Behrend function νM, crucially used in
proving Behrend identities. The proof of Theorem 7.1.11 comes in two parts. First it is shown
in [85, §8] that M near [E] is locally isomorphic, as an Artin C-stack, to the moduli stack Vect of
algebraic vector bundles on X near [E′] for some vector bundle E′ → X. The proof uses algebraic
geometry, and is valid for X a Calabi–Yau m-fold for any m > 0 over any algebraically closed
field K. The local morphism M→ Vect is the composition of shifts and m Seidel–Thomas twists
by OX(−n) for n � 0. Thus, it is enough to prove Theorem 7.1.11 with Vect in place of M.
This is done in [85, §9] using gauge theory on vector bundles over X. An interesting motivation
for this approach could be found in [36, §3] and [167, §2]. Let E → X be a fixed complex (not
holomorphic) vector bundle over X. Write A for the infinite-dimensional affine space of smooth
semiconnections (∂̄-operators) on E, and G for the infinite-dimensional Lie group of smooth gauge
transformations of E. Then G acts on A , and B = A /G is the space of gauge-equivalence classes
of semiconnections on E. Fix ∂̄E in A coming from a holomorphic vector bundle structure on E.
Then points in A are of the form ∂̄E +A for A ∈ C∞

(
End(E)⊗C Λ0,1T ∗X

)
, and ∂̄E +A makes

E into a holomorphic vector bundle if F 0,2
A = ∂̄EA+A ∧A is zero in C∞

(
End(E)⊗C Λ0,2T ∗X

)
.

Thus, the moduli space (stack) of holomorphic vector bundle structures on E is isomorphic to
{∂̄E + A ∈ A : F 0,2

A = 0}/G . In [167], it is observed that when X is a Calabi–Yau 3-fold, there
is a natural holomorphic function CS : A → C called the holomorphic Chern–Simons functional,
invariant under G up to addition of constants, such that {∂̄E + A ∈ A : F 0,2

A = 0} is the critical
locus of CS. Thus, Vect is (informally) locally the critical points of a holomorphic function CS
on an infinite-dimensional complex stack B = A /G . To prove Theorem 7.1.11 Joyce and Song
show that one can find a finite-dimensional complex submanifold U in A and a finite-dimensional
complex Lie subgroup GC in G preserving U such that the theorem holds with f = CS|U . These
U, f are not algebraic, they are constructed using gauge theory on the complex vector bundle E
over X and transcendental methods.
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The Behrend function identities from [85]. In [85, Thm. 5.11] Behrend function identities
are proven: they are the crucial step to define the Lie algebra morphism Ψ̃ below and then the
generalized Donaldson–Thomas invariants:

Theorem 7.1.12. Let X be a Calabi–Yau 3-fold over C, and M the moduli stack of coherent
sheaves on X. The Behrend function νM : M(C) → Z is a natural locally constructible function
on M. For all E1, E2 ∈ coh(X), it satisfies:

νM(E1 ⊕ E2) = (−1)χ̄([E1],[E2])νM(E1)νM(E2), (7.1.18)∫
[λ]∈P(Ext1(E2,E1)):
λ⇔ 0→E1→F→E2→0

νM(F ) dχ −
∫

[µ]∈P(Ext1(E1,E2)):
µ⇔ 0→E2→D→E1→0

νM(D) dχ = (e21 − e12) νM(E1 ⊕ E2), (7.1.19)

where e21 = dim Ext1(E2, E1) and e12 = dim Ext1(E1, E2) for E1, E2 ∈ coh(X). Here χ̄([E1], [E2])

in (7.1.18) is the Euler form as in (7.1.13), and in (7.1.19) the correspondence between [λ] ∈
P(Ext1(E2, E1)) and F ∈ coh(X) is that [λ] ∈ P(Ext1(E2, E1)) lifts to some 0 6= λ ∈ Ext1(E2, E1),
which corresponds to a short exact sequence 0→ E1 → F → E2 → 0 in coh(X) in the usual way.
The function [λ] 7→ νM(F ) is a constructible function P(Ext1(E2, E1)) → Z, and the integrals in
(7.1.19) are integrals of constructible functions using the Euler characteristic as measure.

Joyce and Song prove Theorem 7.1.12 using Theorem 7.1.11 and the Milnor fibre description
of Behrend functions from §7.1.3. They apply Theorem 7.1.11 to E = E1 ⊕ E2, and take the
maximal reductive subgroup G of Aut(E) to contain the subgroup

{
idE1 + λidE2 : λ ∈ U(1)

}
, so

that GC contains
{

idE1 + λidE2 : λ ∈ Gm

}
. Equations (7.1.18) and (7.1.19) are proved by a kind

of localization using this Gm-action on Ext1(E1 ⊕ E2, E1 ⊕ E2). More precisely, Theorem 7.1.11
gives an atlas for M near E as Crit(f) near 0, where f is a holomorphic function defined near 0
on Ext1(E1 ⊕E2, E1 ⊕E2) and f is invariant under the action of T =

{
idE1 + λidE2 : λ ∈ U(1)

}
on Ext1(E1 ⊕E2, E1 ⊕E2) by conjugation. The fixed points of T on Ext1(E1 ⊕E2, E1 ⊕E2) are
Ext1(E1, E1)⊕Ext1(E2, E2) and heuristically one can says that the restriction of f to these fixed
points is f1 + f2, where fj is defined near 0 in Ext1(Ej , Ej) and Crit(fj) is an atlas for M near
Ej . The Milnor fibre MFf (0) is invariant under T , so by localization one has

χ(MFf (0)) = χ(MFf (0)T ) = χ(MFf1+f2(0)).

A product property of Behrend functions, which may be seen as a kind of Thom-Sebastiani
theorem, gives

1− χ(MFf1+f2(0)) = (1− χ(MFf1(0)))(1− χ(MFf2(0))).

Then the identity (7.1.18) follows from Theorem 7.1.4:

νM(E) = (−1)dim Ext1(E,E)−dim Hom(E,E)(1− χ(MFf (0))),

and the analogues for E1 and E2. Equation (7.1.19) uses a more involved argument to do with the
Milnor fibres of f at non-fixed points of the U(1)-action. The proof of Theorem 7.1.12 uses gauge
theory, and transcendental complex analytic geometry methods, and is valid only over K = C.
However, as pointed out in [85, Question 5.12], Theorem 7.1.12 makes sense as a statement in
algebraic geometry, for Calabi–Yau 3-folds over K.

In [85, §5], Joyce and Song then define generalized Donaldson–Thomas invariants D̄Tα(τ) ∈ Q
by

Ψ̃
(
ε̄α(τ)

)
= −D̄Tα(τ)λ̃α, (7.1.20)
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as in (7.1.16). When Mα
ss(τ) =Mα

st(τ) then ε̄α(τ) = δ̄αss(τ), and (7.1.17) gives

Ψ̃
(
ε̄α(τ)

)
= χstk

(
Mα

st(τ), νMα
st(τ)

)
λ̃α. (7.1.21)

The projection π : Mα
st(τ) → Mα

st(τ) from the moduli stack to the coarse moduli scheme is
smooth of dimension −1, so νMα

st(τ) = −π∗(νMα
st(τ)) by (ii) in §7.1.2, and comparing (7.1.9),

(7.1.20), (7.1.21) shows that D̄Tα(τ) = DTα(τ). But the new invariants D̄Tα(τ) are also defined
for α with Mα

ss(τ) 6=Mα
st(τ), when conventional Donaldson–Thomas invariants DTα(τ) are not

defined.
Thanks to Theorem 7.1.11 and Theorem 7.1.12, Ψ̃ is a Lie algebra morphism [85, §5.3], thus

the change of stability condition formula for the ε̄α(τ) in [80] implies a formula for the elements
−D̄Tα(τ)λ̃α in L̃(X), and thus a transformation law for the invariants D̄Tα(τ), using combina-
torial coefficients.

To study the new invariants D̄Tα(τ), it is helpful to introduce another family of invariants
PIα,n(τ ′), similar to Pandharipande–Thomas invariants [140]. Let n � 0 be fixed. A stable
pair is a nonzero morphism s : OX(−n) → E in coh(X) such that E is τ -semistable, and if
Im s ⊂ E′ ⊂ E with E′ 6= E then τ([E′]) < τ([E]). For α ∈ Knum(coh(X)) and n � 0, the
moduli space Mα,n

stp (τ ′) of stable pairs s : OX(−n) → X with [E] = α is a fine moduli scheme,
which is proper and has a symmetric obstruction theory. Joyce and Song define

PIα,n(τ ′) =

∫
[Mα,n

stp (τ ′)]vir

1 = χ
(
Mα,n

stp (τ ′), νMα,n
stp (τ ′)

)
∈ Z, (7.1.22)

where the second equality follows from Theorem 7.1.7. By a similar proof to that for Donaldson–
Thomas invariants in [167], Joyce and Song find that PIα,n(τ ′) is unchanged under deformations
of the underlying Calabi–Yau 3-fold X. By a wall-crossing proof similar to that for D̄Tα(τ),
they show that PIα,n(τ ′) can be written in terms of the D̄T β(τ). As PIα,n(τ ′) is deformation-
invariant, one deduces from this relation by induction on rankα with dimα fixed that D̄Tα(τ) is
also deformation-invariant.

The pair invariants PIα,n(τ ′) are a useful tool for computing the D̄Tα(τ) in examples in [85,
§6]. The method is to describe the moduli spaces Mα,n

stp (τ ′) explicitly, and then use (7.1.22) to
compute PIα,n(τ ′), and their relation with D̄Tα(τ) to deduce the values of D̄Tα(τ). Their point
of view is that the D̄Tα(τ) are of primary interest, and the PIα,n(τ ′) are secondary invariants, of
less interest in themselves.

Motivic Donaldson–Thomas invariants: Kontsevich and Soibelman’s approach from
[102]. Kontsevich and Soibelman in [102] also studied generalizations of Donaldson–Thomas
invariants. They work in a more general context but their results are in great part based on
conjectures. They consider derived categories of coherent sheaves, Bridgeland stability conditions
[20], and general motivic invariants, whereas Joyce and Song work with abelian categories of
coherent sheaves, Gieseker stability, and the Euler characteristic. Kontsevich and Soibelman’s
motivic functions in the equivariant setting [102, §4.2], motivic Hall algebra [102, §6.1], motivic
quantum torus [102, §6.2] and their algebra morphism to define Donaldson–Thomas invariants
[102, Thm. 8] all have an analogue in Joyce and Song’s program.

It is worth to note here some points (see [85, §1.6] for the entire discussion).

(a) Joyce was probably the first to approach Donaldson–Thomas type invariants in an abstract
categorical setting. He developed the technique of motivic stack functions and understood
the relevance of motives to the counting problem [75–80]. The main limitation of his ap-
proach was due to the fact that he worked with abelian rather than triangulated categories.
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For many applications, especially to physics, one needs triangulated categories. The more
recent theory of Joyce and Song [85] fixes some of these gaps and fits well with the gen-
eral philosophy of [102] (and actually Joyce and Song use some ideas from Kontsevich and
Soibelman). They deal with concrete examples of categories (e.g. the category of coherent
sheaves) and construct numerical invariants via Behrend approach. It is difficult to prove
that they are in fact invariants of triangulated categories which is manifest in [102].

(b) Kontsevich and Soibelman write their wall-crossing formulae in terms of products in a pro-
nilpotent Lie group while Joyce and Song’s formulae are written in terms of combinatorial
coefficients.

(c) Equations (7.1.18)–(7.1.19) are related to a conjecture of Kontsevich and Soibelman [102,
Conj. 4] and its application in [102, §6.3], and could probably be deduced from it. Joyce
and Song got the idea of proving (7.1.18)–(7.1.19) by localization using the Gm-action on
Ext1(E1 ⊕ E2, E1 ⊕ E2) from [102]. However, Kontsevich and Soibelman approach [102,
Conj. 4] via formal power series and non-Archimedean geometry. Their analogue concerns
the ‘motivic Milnor fibre’ of the formal power series f . Instead, in Theorem 7.1.11 Joyce
and Song in effect first prove that they can choose the formal power series to be convergent,
and then use ordinary differential geometry and Milnor fibres.

(d) While Joyce’s series of papers [75–80] develops the difficult idea of ‘virtual rank’ and ‘virtual
indecomposables’, Kontsevich and Soibelman have no analogue of these. They come up
against the problem (specialization from virtual Poincaré polynomial to Euler characteristic)
this technology was designed to solve in the ‘absence of poles conjecture’ [102, §7].

Section 7.3 proposes new ideas for further research also in the direction of Kontsevich and
Soibelman’s paper [102].

7.2 The main results

We will prove and use the algebraic analogue of Theorem 7.1.11, which we can state as follows:

Theorem 7.2.1. Let X be a Calabi–Yau 3-fold over K, and write M for the moduli stack of
coherent sheaves on X. Then for each [E] ∈ M(K), there exists a smooth affine K-scheme U,
a point p ∈ U(K), an étale morphism u : U → Ext1(E,E) with u(p) = 0, a regular function
f : U → A1 with f |p = ∂f |p = 0, and a 1-morphism ξ : Crit(f) → M smooth of relative
dimension dim Aut(E), with ξ(p) = [E] ∈ M(K), such that if ι : Ext1(E,E) → T[E]M is the
natural isomorphism, then dξ|p = ι◦du|p : TpU → T[E]M. Moreover, let G be a maximal algebraic

torus in Aut(E), acting on Ext1(E,E) by γ : ε 7→ γ ◦ ε ◦ γ−1. Then we can choose U, p, u, f, ξ
and a G-action on U such that u is G-equivariant and p, f are G-invariant, so that Crit(f) is
G-invariant, and ξ : Crit(f)→M factors through the projection Crit(f)→ [Crit(f)/G].

Note that you can regard u : U → Ext1(E,E) as an étale open neighbourhood of 0 in
Ext1(E,E). Theorem 7.2.1 will be proved in §7.2.1, using §2. Next, we will use this to prove the
algebraic analogue of Theorem 7.1.12:

Theorem 7.2.2. Let X be a Calabi–Yau 3-fold over K, and M the moduli stack of coherent
sheaves on X. The Behrend function νM : M(K) → Z is a natural locally constructible function
on M. For all E1, E2 ∈ coh(X), it satisfies:

νM(E1 ⊕ E2) = (−1)χ̄([E1],[E2])νM(E1)νM(E2), (7.2.1)
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∫
[λ]∈P(Ext1(E2,E1)):
λ⇔ 0→E1→F→E2→0

νM(F ) dχ −
∫

[µ]∈P(Ext1(E1,E2)):
µ⇔ 0→E2→D→E1→0

νM(D) dχ = (e21 − e12) νM(E1 ⊕ E2), (7.2.2)

where e21 = dim Ext1(E2, E1) and e12 = dim Ext1(E1, E2) for E1, E2 ∈ coh(X). Here χ̄([E1], [E2])

in (7.2.1) is the Euler form as in (7.1.13), and in (7.2.2) the correspondence between [λ] ∈
P(Ext1(E2, E1)) and F ∈ coh(X) is that [λ] ∈ P(Ext1(E2, E1)) lifts to some 0 6= λ ∈ Ext1(E2, E1),
which corresponds to a short exact sequence 0→ E1 → F → E2 → 0 in coh(X) in the usual way.
The function [λ] 7→ νM(F ) is a constructible function P(Ext1(E2, E1)) → Z, and the integrals in
(7.2.2) are integrals of constructible functions using the Euler characteristic as measure.

As in §7.1.3, the identities (7.2.1)–(7.2.2) are crucial for the whole program in [85], and will
be proved in §7.2.2.

In the next theorem, the condition that Ext<0(E•, E•) = 0 is necessary for M̃ to be an
Artin stack, rather than a higher stack. Note that this condition is automatically satisfied by
complexes E• which are semistable in any stability condition, for example Bridgeland stability
conditions [20]. Therefore to prove wall-crossing formulae for Donaldson-Thomas invariants in
the derived category Db coh(X) under change of stability condition by the “dominant stability
condition” method of [78–81, 90], it is enough to know the Behrend function identities (7.2.1)–
(7.2.2) for complexes E• with Ext<0(E•, E•) = 0, and we do not need to deal with complexes E•

with Ext<0(E•, E•) 6= 0, or with higher stacks.

Theorem 7.2.3. Let X be a Calabi–Yau 3-fold over K, and write M̃ for the moduli stack of
complexes E• in Db coh(X) with Ext<0(E•, E•) = 0. This is an Artin stack by [70]. Let [E•] ∈
M̃(K), and suppose that a Zariski open neighbourhood of [E•] in M̃(K) is equivalent to a global
quotient [S/GL(n,K)] for S a K-scheme with a GL(n,K)-action. Then the analogues of Theorems
7.2.1 and 7.2.2 hold with M̃, E• in place of M, E.

The condition on M̃ that it should be locally a global quotient, is known for the moduli stack
of coherent sheaves M using Quot schemes. A proof of that can be found in [85, §9.3], where
Joyce and Song uses the standard method for constructing coarse moduli schemes of semistable
coherent sheaves in Huybrechts and Lehn [71], adapting it for Artin stacks, and an argument
similar to parts of that of Luna’s Etale Slice Theorem [119, §III]. However, this is not known for
the moduli stack of complexes. The author expects Theorem 7.2.3 to hold without this technical
assumption, but currently can’t prove it.

The proof of Theorem 7.2.3 is the same as the proof of Theorem 7.2.2, substituting sheaves
with complexes of sheaves, and accordingly making the obvious modifications.

Finally, in §7.2.3 we will characterize the numerical Grothendieck group of a Calabi–Yau 3-fold
in terms of a deformation invariant lattice described using the Picard group. First of all, using
existence results, and smoothness and properness properties of the relative Picard scheme in a
family of Calabi–Yau 3-folds, one proves that the Picard groups form a local system. Actually, it
is a local system with finite monodromy, so it can be made trivial after passing to a finite étale
cover of the base scheme, as formulated in the analogue of [85, Thm. 4.21], which studies the
monodromy of the Picard scheme instead of the numerical Grothendieck group in a family. Then,
Theorem 7.2.4, a substitute for [85, Thm. 4.19], which does not need the integral Hodge conjecture
result by Voisin [182] for Calabi–Yau 3-folds over C and which is valid over K, characterizes the
numerical Grothendieck group of a Calabi–Yau 3-fold in terms of a globally constant lattice
described using the Picard scheme:

Theorem 7.2.4. Let X be a Calabi–Yau 3-fold over K with H1(OX)=0. Define

ΛX =
{

(λ0, λ1, λ2, λ3) where λ0, λ3 ∈ Q, λ1 ∈ Pic(X)⊗Z Q, λ2 ∈ Hom(Pic(X),Q) such that

λ0 ∈ Z, λ1 ∈ Pic(X)/torsion, λ2 − 1
2λ

2
1 ∈ Hom(Pic(X),Z), λ3 + 1

12λ1c2(TX) ∈ Z
}
,
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where λ2
1 is defined as the map α ∈ Pic(X) → 1

2c1(λ1) · c1(λ1) · c1(α) ∈ A3(X)Q ∼= Q, and
1
12λ1c2(TX) is defined as 1

12c1(λ1) · c2(TX) ∈ A3(X)Q ∼= Q. Then for any family of Calabi-Yau
3-folds π : X → S over a connected base S with X = π−1(s0), the lattices ΛXs form a local system
of abelian groups over S with fibre ΛX . Furthermore, the monodromy of this system lies in a finite
subgroup of Aut(ΛX), so after passing to an étale cover S̃ → S of S, we can take the local system
to be trivial, and coherently identify ΛXs̃

∼= ΛX for all s̃ ∈ S̃. Finally, the Chern character gives
an injective morphism ch : Knum(coh(X)) ↪→ΛX .

Following [85], this yields

Theorem 7.2.5. The generalized Donaldson–Thomas invariants D̄Tα(τ) over K for α ∈ ΛX
are unchanged under deformations of the underlying Calabi–Yau 3-fold X, by which we mean
the following: let X

ϕ−→ T a smooth projective morphism of algebraic K-varieties X,T , with T
connected. Let OX(1) be a relative very ample line bundle for X

ϕ−→ T . For each t ∈ T (K),
write Xt for the fibre X ×ϕ,T,t SpecK of ϕ over t, and OXt(1) for OX(1)|Xt. Suppose that Xt is
a smooth Calabi–Yau 3-fold over K for all t ∈ T (K), with H1(OXt) = 0. Then the generalized
Donaldson–Thomas invariants D̄Tα(τ)t are independent of t ∈ T (K).

More precisely, the isomorphism ΛXt = ΛX is canonical up to action of a finite group Γ, the
monodromy on T, and DTα(τ)t are independent of the action of Γ on α, so whichever identification
ΛXt = ΛX is chosen, it is still true DTα(τ)t independent of t.

Now, recall that in [85] Joyce and Song used the assumption that the base field is the field of
complex numbers K = C for the Calabi–Yau 3-fold X in three main ways:

(a) Theorem 7.1.11 in §7.1.3 is proved using gauge theory and transcendental complex analytic
methods, and work only over K = C. It is used to prove the Behrend function identities
(7.1.18)–(7.1.19), which are vital for much of their results, including the wall crossing formula
for the D̄Tα(τ), and the relation between PIα,n(τ ′), D̄Tα(τ).

(b) In [85, §4.5], when K = C the Chern character embeds Knum(coh(X)) in Heven(X;Q),
and they use this to show Knum(coh(X)) is unchanged under deformations of X. This is
important for the results that D̄Tα(τ) and PIα,n(τ ′) for α ∈ Knum(coh(X)) are invariant
under deformations of X even to make sense.

(c) Their notion of ‘compactly embeddable’ noncompact Calabi-Yau 3-folds in [85, §6.7] is
complex analytic and does not make sense for general K. This constrains the noncompact
Calabi–Yau 3-folds they can define generalized Donaldson–Thomas invariants for.

Now Theorem 7.2.1 and Theorem 7.2.2 extend the results in (a) over algebraically closed field
K of characteristic zero. As noted in [75], constructible functions methods fail for K of positive
characteristic. Because of this, the alternative descriptions (7.1.9) and (7.1.22), for DTα(τ) and
PIα,n(τ ′) as weighted Euler characteristics, and the definition of D̄Tα(τ) in §7.1.3, cannot work
in positive characteristic, so working over an algebraically closed field of characteristic zero is
about as general as is reasonable.

The point (a) above has consequences also on (c), because Joyce and Song only need the
notion of ‘compactly embeddable’ as their complex analytic proof of (7.1.18)–(7.1.19) requires X
compact. Unfortunately the given algebraic version of (7.1.18)–(7.1.19) in Theorem 7.2.2 uses
results from derived algebraic geometry, and the author does not know if they apply also for
compactly supported sheaves on a noncompact X. We can prove a version of that under some
technical assumptions, as stated in §7.3. Observe, also, that in the noncompact case you cannot
expect to have the deformation invariance property unless in some particular cases in which the
moduli space is proper. The extension of (b) to K is given in Section 7.2.3, which yields Theorem
7.2.5, thanks to which it is possible to extend [85, Cor. 5.28] about the deformation invariance of
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the generalized Donaldson–Thomas invariants in the compact case to algebraically closed fields
K of characteristic zero. Thus, this proves our main theorem:

Theorem 7.2.6. The theory of generalized Donaldson–Thomas invariants defined in [85] is valid
over algebraically closed fields of characteristic zero.

Next, we will respectively prove Theorems 7.2.1, 7.2.2 and 7.2.4 in §7.2.1, §7.2.2 and §7.2.3.

7.2.1 Local description of the Donaldson–Thomas moduli space

Let us fix a moduli stack M which is locally a global quotient. In particular, M can be the moduli
stack of coherent sheaves over a Calabi-Yau 3-fold X, so that the theory exposed in §2 and §6
applies.

The first step in order to proving Theorem 7.2.1 is to show the existence of a quasiprojective
K-scheme S, an action of G on S, a point x ∈ S(K) fixed by G, and a 1-morphism of Artin
K-stacks ξ : [S/G] → M, which is smooth of relative dimension dim Aut(E) − dimG, where
[S/G] is the quotient stack, such that ξ(xG) = [E], the induced morphism on stabilizer groups
ξ∗ : Iso[S/G](xG) → IsoM([E]) is the natural morphism G ↪→ Aut(E) ∼= IsoM([E]), and dξ|xG :

TxS ∼= TxG[S/G]→ T[E]M ∼= Ext1(E,E) is an isomorphism.
As M is locally a global quotient, let’s say M is locally [Q/H] with H = GL(n,K), and a

K-scheme Q which is H-invariant, so that the projection [Q/H] → M is a 1-isomorphism with
an open K-substack Q of M. This 1-isomorphism identifies the stabilizer groups IsoM([E]) =
Aut(E) and Iso[Q/H](xH) = StabH(x), and the Zariski tangent spaces T[E]M ∼= Ext1(E,E) and

TxH [Q/H] ∼= TxQ/Tx(xH), so one has natural isomorphisms Aut(E) ∼= StabH(x) and Ext1(E,E) ∼=
TxQ/Tx(xH), and G is identified as a subgroup of H.

To obtain the 1-morphism with the required properties, following [85, §9.3] and Luna’s Etale
Slice Theorem [119, §III], we obtain an atlas S as a G-invariant, locally closed K-subscheme in Q
with x ∈ S(K), such that TxQ = TxS ⊕ Tx(xH), and the morphism µ : S ×H → Q induced by
the inclusion S ↪→ Q and the H-action on Q is smooth of relative dimension dim Aut(E). Here
x ∈ Q(K) project to the point xH in Q(K) identified with [E] ∈M(K) under the 1-isomorphism
Q ∼= [Q/H] and G, a K-subgroup of the K-group H, is as in the statement of Theorem 7.2.1, that is,
a maximal torus in Aut(E). Since S is invariant under the K-subgroup G of the K-group H acting
on Q, the inclusion i : S ↪→ Q induces a representable 1-morphism of quotient stacks i∗ : [S/G]→
[Q/H]. In [85], Joyce and Song found that i∗ is smooth of relative dimension dim Aut(E)−dimG.
Combining the 1-morphism i∗ : [S/G] → [Q/H], the 1-isomorphism Q ∼= [Q/H], and the open
inclusion Q ↪→M, yields a 1-morphism ξ : [S/G]→M, as required for Theorem 7.2.1. This ξ is
smooth of relative dimension dim Aut(E)−dimG, as i∗ is. The conditions that ξ(xG) = [E] and
that ξ∗ : Iso[S/G](xG) → IsoM([E]) is the natural G ↪→ Aut(E) ∼= IsoM([E]) in Theorem 7.1.11

are immediate from the construction. That dξ|xG : TxS ∼= TxG[S/G] → T[E]M ∼= Ext1(E,E) is
an isomorphism follows from T[E]M ∼= TxH [Q/H] ∼= TxQ/Tx(xH) and TxQ = TxS ⊕ Tx(xH).

In conclusion, we can summarize as follows: given a point [E] ∈M(K), that is an equivalence
class of a (complex of) coherent sheaves, we will denote by G a maximal torus in Aut(E). As M is
locally a global quotient, there exists an atlas S, which is a scheme over K, and a smooth morphism
π : S → M, with π smooth of relative dimension dimG. If x ∈ S is the point corresponding
to E ∈ M(K), then π smooth of dimG means that π has minimal dimension near E, that is
TxS = Ext1(E,E). Moreover, the atlas S is endowed with a G-action, so that π descends to a
morphism [S/G]→M. Note next that the maximal torus G acts on S preserving x. By replacing
S by a G-equivariant étale open neighbourhood S′ of x, we can suppose S is affine. Thus the atlas
S in the sense of Corollary 6.1.5 and Theorem 6.2.1 for the moduli stack M carries a d-critical
locus structure (S, sS) which is G-equivariant in the sense of §2.3.
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Using Proposition 2.3.3, there exists a G-invariant critical chart (R,U, f, i) in the sense of §2
for (S, s) with x in R, and dimU is minimal so that Ti(x)U = TxR = Ext1(E,E). Making U

smaller if necessary, we can choose G-equivariant étale coordinates U → An ∼= Ext1(E,E) near
i(x), sending i(x) to 0, and with Ti(x)U = Ext1(E,E) the given identification. Then we can

regard U → Ext1(E,E) as a G-equivariant étale open neighbourhood of 0 in Ext1(E,E), which
concludes the proof of Theorem 7.2.1.

7.2.2 Behrend function identities

Now we are ready to prove Theorem 7.2.2. Let X be a Calabi–Yau 3-fold over an algebraically
closed field K of characteristic zero, M the moduli stack of coherent sheaves on X, and E1, E2 be
coherent sheaves on X. Set E = E1 ⊕ E2. Using the splitting

Ext1(E,E)=Ext1(E1, E1)⊕Ext1(E2, E2)⊕Ext1(E1, E2)⊕Ext1(E2, E1), (7.2.3)

write elements of Ext1(E,E) as (ε11, ε22, ε12, ε21) with εij ∈ Ext1(Ei, Ej). For simplicity, we will
write eij = dim Ext1(Ei, Ej). Choose a maximal torus G of Aut(E) which contains the subgroup
T =

{
idE1 + λidE2 : λ ∈ Gm

}
, which acts on Ext1(E,E) by

λ : (ε11, ε22, ε12, ε21) 7→ (ε11, ε22, λ
−1ε12, λε21). (7.2.4)

Apply Theorem 7.2.1 with these E and G. This gives a G-equivariant étale morphism u :
U → Ext1(E,E) with U a smooth affine G-invariant K-scheme, and u(p) = 0, for p ∈ U(K), a
G-invariant regular function f : U → A1

K on U with f |p = ∂f |p = 0, an open neighbourhood V
of s in S, and a 1-morphism ξ : Crit(f) → M smooth of relative dimension dim Aut(E), with
ξ(p) = [E] ∈M(K) and dξ|p : Tp(Crit(f)) = Ext1(E,E)→ T[E]M the natural isomorphism. Then
the Behrend function νM at [E] = [E1 ⊕ E2] satisfies

νM(E1 ⊕ E2) = (−1)dim Aut(E)νCrit(f)(0), (7.2.5)

where one uses that ξ is smooth of relative dimension dim Aut(E), and Theorem 7.1.5 to say that

νCrit(f) = (−1)dim(Aut(E))ξ∗(νM).

On the other hand, the last part of the proof of (7.2.1) in [85, Section 10.1] uses algebraic
methods and gives

νM(E1)νM(E2) = νM×M(E1, E2) = (−1)dim Aut(E1)+dim Aut(E2)νCrit(fG)(0), (7.2.6)

where νCrit(fG)(0) = νCrit(f)G(0) = νCrit(f |
U∩Ext1(E,E)G

)(0) and U is as in Theorem 7.2.1 and

Ext1(E,E)G denotes the fixed point locus of Ext1(E,E) for the G-action. Thus what actually
remains to prove in order to establish identity (7.2.1) is

νCrit(f)(0) = (−1)dim Ext1(E1,E2)+dim Ext1(E2,E1)νCrit(fG)(0). (7.2.7)

This is a generalization of a result in [7] over C in the case of an isolated C∗-fixed point.
Combining equations (7.2.5), (7.2.6) and (7.2.7) and sorting out the signs as in [85, Section 10.1]
proves equation (7.2.1). Equation (7.2.7) will be crucial also for the proof of the second Behrend
identity (7.2.2).

Let us start by recalling an easy result similar to [85, Prop. 10.1], but now in the étale topology.
Let u : U → Ext1(E,E) be the étale map as in §7.2.1, and p ∈ U such that u(p) = 0. We will
consider points (0, 0, ε12, 0), (0, 0, 0, ε21) ∈ Ext1(E,E) basically like points in U . This is because we
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consider a unique lift α(e12) of (0, 0, ε12, 0) ∈ Ext1(E,E) to U , such that u(α(e12)) = (0, 0, e12, 0)
and lim

λ→0
λ.α(e12) = p, using that lim

λ→0
(0, 0, λ−1ε12, 0) = (0, 0, 0, 0). In the sequel we will also treat

points of the blow-up of u−1(ε12 = 0) in U like points of the blow-up of e12 = 0 in Ext1(E,E),
and so on.

So we can state the following result, for the proof of which we cite [85, Prop.10.1], with
appropriate obvious modifications, working in the étale topology.

Proposition 7.2.7. Let ε12 ∈ Ext1(E1, E2) and ε21 ∈ Ext1(E2, E1). Then

(i) (0, 0, ε12, 0), (0, 0, 0, ε21) ∈ Crit(f) ⊆ U ⊆ Ext1(E,E), and (0, 0, ε12, 0), (0, 0, 0, ε21) ∈ V ⊆
S(K) ⊆ Ext1(E,E);

(ii) ξ maps (0, 0, ε12, 0) 7→ (0, 0, ε12, 0) and (0, 0, 0, ε21) 7→ (0, 0, 0, ε21); and

(iii) the induced morphism on closed points [S/Aut(E)](K) → M(K) maps [(0, 0, 0, ε21)] 7→ [F ]
and [(0, 0, ε12, 0)] 7→ [F ′], where the exact sequences 0 → E1 → F → E2 → 0 and 0 →
E2 → F ′ → E1 → 0 in coh(X) correspond to ε21 ∈ Ext1(E2, E1) and ε12 ∈ Ext1(E1, E2),
respectively.

Now use the idea in [85, §10.2]. Set U ′ =
{

(ε11, ε22, ε12, ε21) ∈ U : ε21 6= 0
}

, an open
set in U , (this is using our informal notation of writing points of the étale open set U ↪→
Ext1(E,E) as if they were points of Ext1(E,E). Formally we should write U ′ = {p ∈ U : u(p) =
(ε11, ε22, ε12, ε21), ε21 6= 0}.) Write V ′ for the submanifold of (ε11, ε22, ε12, ε21) ∈ U ′ with ε12 = 0.
Let Ũ ′ be the blowup of U ′ along V ′, with projection π′ : Ũ ′ → U ′. With our convention on
the notation, points of Ũ ′ may be written (ε11, ε22, [ε12], λε12, ε21), where [ε12] ∈ P(Ext1(E1, E2)),
and λ ∈ K, and ε21 6= 0. Write f ′ = f |U ′ and f̃ ′ = f ′ ◦ π′. Then applying Theorem 7.1.6 to
U ′, V ′, f ′, Ũ ′, π′, f̃ ′ at the point (0, 0, 0, ε21) ∈ U ′ gives

νCrit(f)(0, 0, 0, ε21) =

∫
[ε12]∈P(Ext1(E1,E2))

νCrit(f̃ ′)(0, 0, [ε12], 0, ε21) dχ+

(−1)e12
(
1− e12

)
νCrit(f |V ′ )(0, 0, 0, ε21).

(7.2.8)

Here νCrit(f)(0, 0, 0, ε21) is independent of the choice of ε21 representing [ε21] ∈ P(Ext1(E2, E1)),
and is a constructible function of [ε21], so the integrals in (7.2.8) are well-defined. Note that νCrit(f)

and the other Behrend functions in the sequel are nonzero just on the zero loci of the corresponding
functions, so here and in the sequel the integrals over the whole P(Ext1(. . .)) actually are just
over the points that lie in these zero loci. Adopt this convention for the whole section.

Similarly consider the analogous situation exchanging the role of ε12 and ε21. Set U ′′ ={
(ε11, ε22, ε12, ε21) ∈ U : ε12 6= 0

}
, an open set in U , and write V ′′ =

{
(ε11, ε22, ε12, ε21) ∈ U ′′ :

ε21 = 0
}

. Let Ũ ′′ be the blowup of U ′′ along V ′′, with projection π′′ : Ũ ′′ → U ′′. Points of Ũ ′′

may be written (ε11, ε22, ε12, [ε21], λε21), where [ε21] ∈ P(Ext1(E2, E1)), and λ ∈ K, and ε12 6= 0.
Write f ′′ = f |U ′′ and f̃ ′′ = f ′′ ◦ π′′. Similarly to the previous situation, we can apply Theorem
7.1.6 to U ′′, V ′′, f ′′, Ũ ′′, π′′, f̃ ′′ at the point (0, 0, ε12, 0) ∈ U ′′ which gives

νCrit(f)(0, 0, ε12, 0) =

∫
[ε21]∈P(Ext1(E2,E1))

νCrit(f̃ ′′)(0, 0, ε12, 0, [ε21]) dχ+

(−1)e21
(
1− e21

)
νCrit(f |V ′′ )(0, 0, ε12, 0).

(7.2.9)

Let L12 → P(Ext1(E1, E2)) and L21 → P(Ext1(E2, E1)) be the tautological line bundles, so that
the fibre of L12 over a point [ε12] in P(Ext1(E1, E2)) is the 1-dimensional subspace {λ ε12 : λ ∈ K}
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in Ext1(E1, E2). Consider the fibre product

Z
étale //

��

Ext1(E1, E1)× Ext1(E2, E2)× (L12 ⊕ L21)

��
U

étale // Ext1(E,E)

where the horizontal maps are étale morphisms. Informally, this defines Z ⊆ Ext1(E1, E1) ×
Ext1(E2, E2)× (L12 ⊕L21) to be the étale open subset of points

(
ε11, ε22, [ε12], λ1 ε12, [ε21], λ2 ε21

)
for λi ∈ K, for which (ε21, ε22, λ1 ε12, λ2 ε21) lies in U. In other words, Ext1(E1, E1)×Ext1(E2, E2)×
(L12⊕L21) is obtained from Ext1(E,E) by two commuting blow-ups to Ext1(E,E) at the trans-
versely intersecting submanifolds {e12 = 0} and {e21 = 0} and Z is obtained doing two commut-
ing blow-ups to U at the transversely intersecting submanifolds in U pulling back {e12 = 0} and
{e21 = 0}. Observe that Z contains both Ũ ′ and Ũ ′′, which respectively have subspaces Crit(f̃ ′)
and Crit(f̃ ′′).

We claim that there is an étale open set W ↪→ Ext1(E1, E1) × Ext1(E2, E2) × (L12 ⊗ L21)
fitting into a Cartesian square:

Z
étale //

Π

��

Ext1(E1, E1)× Ext1(E2, E2)× (L12 ⊕ L21)

Π′

��
W

étale // Ext1(E1, E1)× Ext1(E2, E2)× (L12 ⊗ L21)

(7.2.10)

with Π a Gm-invariant morphism. Note that this does not define W as a fibre product, or
characterize W by a universal property: rather, it says Z is a fibre product involving W.

To see that such a W exists, first consider the morphism L12 ⊕ L21 → L12 ⊗ L21, which is
the right hand column of (7.2.10), omitting constant factors. This is a morphism of fibre bundles
over P(Ext1(E1, E2))×P(Ext1(E2, E1)), with each morphism of fibres modelled on the morphism
A2 → A1 mapping (x, y) 7→ xy. The group Gm acts on L12⊕L21 preserving the bundle structure,
on the fibres A2 as λ : (x, y) 7→ (λ−1x, λy), and the map L12 ⊕ L21 → L12 ⊗ L21 is Gm-invariant.

Now this map A2 → A1 mapping (x, y) 7→ xy is in fact a GIT quotient by the given Gm

action, using the trivial linearization in which all of A2 is GIT-semistable. Restricting to the
open subschemes {x 6= 0} or {y 6= 0} in A2, the Gm-action becomes free, and {x 6= 0} → A1,
{y 6= 0} → A1 are principal Gm-bundles.

Similarly, it is an easy exercise in GIT to show that the morphism L12⊕L21 → L12⊗L21 is a
GIT quotient by Gm, using the trivial linearization in which all of L12 ⊕ L21 is GIT semistable,
and restricting to the open subschemes {e12 6= 0} and {e21 6= 0} in L12 ⊕ L21 gives principal
Gm-bundles.

From all this, we see that we can define Π : Z →W to be the GIT quotient of Z by Gm, with
the trivial linearization in which all of Z is GIT semistable, and then W exists and fits into a
Cartesian square (7.2.10) with étale horizontal morphisms. Also, the restriction of Π to the open
subsets Ũ ′ and Ũ ′′ in Z, corresponding to {e21 6= 0} and {e12 6= 0}, are principal Gm-bundles. So
in particular, the restrictions of Π to Ũ ′ and Ũ ′′ are smooth.

Here is the crucial point: Crit(f̃ ′) ⊂ Ũ ′ and Crit(f̃ ′′) ⊂ Ũ ′′ are Gm-invariant subschemes,
where f̃ ′ and f̃ ′′ are the restriction respectively on Ũ ′ and Ũ ′′ of the G-invariant function f̃ on
Z, pullback of the G-invariant function f on U through the projection Z → U. Now, as f̃ is
Gm invariant, it pushes down to the GIT quotient W of Z by Gm. So there exists a function
f̂ : W → A1

K so that f̃ = f̂ ◦ Π. Define the scheme Q to be Crit(f̂). As the projection Π is
smooth on Ũ ′ and Ũ ′′, we get that Crit(f̃ ′) = Π−1(Q)∩ Ũ ′ and Crit(f̃ ′′) = Π−1(Q)∩ Ũ ′′ and both
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Π : Crit(f̃ ′)→ Q and Π : Crit(f̃ ′′)→ Q are smooth of relative dimension 1. Thus Theorem 7.1.5
yields that νCrit(f̃ ′) = −Π∗(νQ) and νCrit(f̃ ′′) = −Π∗(νQ) and then

νCrit(f̃ ′)(0, 0, [ε12], 0, ε21) = −νQ(0, 0, [ε12], [ε21], 0) = νCrit(f̃ ′′)(0, 0, ε12, 0, [ε21]), (7.2.11)

where the sign comes from the fact that the map Π is smooth of relative dimension 1. Moreover
observe that

νCrit(f |V ′ )(0, 0, 0, ε21) = (−1)e21νCrit(f)G(0, 0, 0, 0). (7.2.12)

This is because the G-invariance of f imply that its values on (ε11, ε22, 0, ε21) and (ε11, ε22, 0, 0)
are the same and the projection Crit(f |V ′)→ Crit(f |UG) is smooth of relative dimension e21. For
the same reason, one has

νCrit(f |V ′′ )(0, 0, ε12, 0) = (−1)e12νCrit(f)G(0, 0, 0, 0). (7.2.13)

Now, substitute equations (7.2.11), (7.2.12) and (7.2.13) into (7.2.8) and (7.2.9). One gets

νCrit(f)(0, 0, 0, ε21) = −
∫

[ε12]∈P(Ext1(E1,E2))

νQ(0, 0, [ε12], [ε21], 0) dχ+

(−1)e12+e21
(
1− e12

)
νCrit(f)G(0, 0, 0, 0),

(7.2.14)

νCrit(f)(0, 0, ε12, 0) = −
∫

[ε21]∈P(Ext1(E2,E1))

νQ(0, 0, [ε12], [ε21], 0) dχ+

(−1)e12+e21
(
1− e21

)
νCrit(f)G(0, 0, 0, 0).

(7.2.15)

Since χ
(
P(Ext1(E2, E1))

)
= e21 and χ

(
P(Ext1(E1, E2))

)
= e12, integrating (7.2.14) over [ε21] ∈

P(Ext1(E2, E1)), and (7.2.15) over [ε12] ∈ P(Ext1(E1, E2)), yields respectively∫
[ε21]∈P(Ext1(E2,E1))

νCrit(f)(0, 0, 0, ε21) dχ = −
∫

([ε12],[ε21])∈P(Ext1(E1,E2))×P(Ext1(E2,E1))

νQ(0, 0, [ε12], [ε21], 0) dχ

+ (−1)e12+e21
(
1− e12

)
e21νCrit(f)G(0),

(7.2.16)∫
[ε12]∈P(Ext1(E1,E2))

νCrit(f)(0, 0, ε12, 0) dχ = −
∫

([ε12],[ε21])∈P(Ext1(E1,E2))×P(Ext1(E2,E1))

νQ(0, 0, [ε12], [ε21], 0) dχ

+ (−1)e12+e21
(
1− e21

)
e12νCrit(f)G(0),

(7.2.17)

Subtracting (7.2.16) from (7.2.17), gives∫
[ε21]∈P(Ext1(E2,E1))

νCrit(f)(0, 0, 0, ε21) dχ −
∫

[ε12]∈P(Ext1(E1,E2))

νCrit(f)(0, 0, ε12, 0) dχ =

(−1)e12+e21
(
e21 − e12

)
νCrit(f)G(0).

(7.2.18)

Consider equation (7.2.18) applied substituting P(Ext1(E2, E1)⊕K) to P(Ext1(E2, E1)). This

adds one dimension to Ext1(E,E). Denote
˜̃
f the lift of f to Ext1(E,E)⊕K. In this case equation

(7.2.18) becomes∫
[ε21]∈P(Ext1(E2,E1)⊕K)

ν
Crit(

˜̃
f)

(0, 0, 0, ε21 ⊕ λ) dχ −
∫

[ε12]∈P(Ext1(E1,E2))

ν
Crit(

˜̃
f)

(0, 0, ε12, 0) dχ =

(−1)1+e12+e21
(
1 + e21 − e12

)
ν

Crit(
˜̃
f)G

(0),

(7.2.19)
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Now, observe that νCrit(f) = −ν
Crit(

˜̃
f)

from Theorem 7.1.5 and ν
Crit(

˜̃
f)G

(0) = νCrit(f)G(0) as

(Ext1(E,E)⊕K)G = Ext1(E,E)G ⊕ 0 and the map Crit(
˜̃
f)G → Crit(f)G is étale. Thus

−
∫

[ε21]∈P(Ext1(E2,E1))

νCrit(f)(0, 0, 0, ε21) dχ − νCrit(f)(0, 0, 0, 0) +

∫
[ε12]∈P(Ext1(E1,E2))

νCrit(f)(0, 0, ε12, 0) dχ =

(−1)1+e12+e21
(
1 + e21 − e12

)
νCrit(f)G(0).

(7.2.20)

Here, νCrit(f)(0) on the l.h.s. comes from the fact that the Gm-action over P(Ext1(E2, E1)⊕K)

fixes P(Ext1(E2, E1)) and [0, 1]; the free orbits of the Gm-action contribute zero to the weighted
Euler characteristic. Then one uses that ν

Crit(
˜̃
f)

valued over [0, 1] is equal to −νCrit(f)(0). Adding

(7.2.18) and (7.2.20) yields (7.2.7), which concludes the proof of identity (7.2.1).
The conclusion of the proof of identity (7.2.2) is now easy. Let 0 6= ε21 ∈ Ext1(E2, E1)

correspond to the short exact sequence 0→ E1 → F → E2 → 0 in coh(X). Then

νM(F ) = (−1)dim Aut(E)νCrit(f)(0, 0, 0, ε21) (7.2.21)

using ξ∗ : [(0, 0, 0, ε21)] 7→ [F ] from Proposition 7.2.7 and ξ smooth of relative dimension dim(Aut(E))
and properties of Behrend function in Theorem 7.1.5. Substituting (7.2.21) and its analogue
for D in the place of F into (7.2.2), using equation (7.2.5) and identity (7.2.7) to substitute
for νM(E1 ⊕ E2), and cancelling factors of (−1)dim Aut(E), one gets that (7.2.2) is equivalent to
(7.2.18), which concludes the proof.

7.2.3 Deformation invariance issue

Thomas’ original definition (7.1.1) of DTα(τ), and Joyce and Song’s definition (7.1.22) of the
pair invariants PIα,n(τ ′), are both valid over K. Joyce and Song suggest to solve problem (b)
in §7.2 to work in [85, Rmk 4.20 (e)], replacing H∗(X;Q) by the algebraic de Rham cohomology
H∗dR(X) of Hartshorne [64]. Here we suggest another argument which is based on the theory
of Picard schemes by Grothendieck [62, 63]. Other references are [3, 100]. Even if our argument
will not prove that the numerical Grothendieck groups are deformation invariant, as this last
fact depend deeply on the integral Hodge conjecture type result [182] which we are not able
to prove in this more general context, we will however find a deformation invariant lattice ΛXt
containing its image through the Chern character map and define D̄Tα(τ)t for α ∈ ΛXt which
will be deformation invariant. For the whole section we will work in the étale topology.

To prove deformation-invariance we need to work not with a single Calabi–Yau 3-fold X over
K, but with a family of Calabi–Yau 3-folds X

ϕ−→ T over a base K-scheme T . Taking T = SpecK
recovers the case of one Calabi–Yau 3-fold. Here are our assumptions and notation for such
families. Let X

ϕ−→ T be a smooth projective morphism of algebraic K-varieties X,T , with T
connected. Let OX(1) be a relative very ample line bundle for X

ϕ−→ T . For each t ∈ T (K),
write Xt for the fibre X ×ϕ,T,t SpecK of ϕ over t, and OXt(1) for OX(1)|Xt . Suppose that Xt is
a smooth Calabi–Yau 3-fold over K for all t ∈ T (K), with H1(OXt) = 0.

There are some important existence theorems which refine the original Grothendieck’s theorem
[62, Thm. 3.1]. In [3, Thm. 7.3], Artin proves that given f : X → S a flat, proper, and
finitely presented map of algebraic spaces cohomologically flat in dimension zero, then the relative
Picard scheme PicX/S exists as an algebraic space which is locally of finite presentation over S.
Its fibres are the Picard schemes Pic(Xs) of the fibres. They form a family whose total space
is PicX/S . In [63, Prop. 2.10] Grothendieck shows that if H2(Xs,OXs) = 0 for some s ∈ S,
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there exists a neighborhood U of s such that the scheme PicX/S|U is smooth, and in this case
dim(Pic(Xs)) = dim(H1(Xs,OXs)).

In our case, PicX/T exists and is smooth with 0-dimensional fibres which are the Picard
schemes Pic(Xt). These results yield that the Picard schemes Pic(Xt) for t ∈ T (K) are canonically
isomorphic locally in T (K) in the étale topology. Observe that at the moment we don’t have
canonical isomorphisms Pic(Xt) ∼= Pic(X) for all t ∈ T (K) (this would be canonically isomorphic
globally in T (K)). Instead, we mean that the groups Pic(Xt) for t ∈ T (K) form a local system of
abelian groups over T (K), with fibre Pic(X).

When K = C, Joyce and Song proved [85, §4] that Knum(coh(Xt)) form a local system of
abelian groups over T (K), with fibre Knum(coh(X)). This means that in simply-connected regions
of T (C) in the complex analytic topology the Knum(coh(Xt)) are all canonically isomorphic, and
isomorphic to K(coh(X)). But around loops in T (C), this isomorphism with K(coh(X)) can
change by monodromy, by an automorphism µ : K(coh(X))→ K(coh(X)) of K(coh(X)). In [85,
Thm 4.21] they showed that the group of such monodromies µ is finite, and so it is possible to
make it trivial by passing to a finite cover T̃ of T . If they worked instead with invariants PIP,n(τ ′)
counting pairs s : OX(−n) → E in which E has fixed Hilbert polynomial P , rather than fixed
class α ∈ Knum(coh(X)), as in Thomas’ original definition of Donaldson–Thomas invariants [167],
then they could drop the assumption on Knum(coh(Xt)) in Theorem [85, Thm. 5.25].

Similarly, we now study monodromy phenomena for Pic(Xt) in families of smooth K-schemes
X → T in the étale topology following the idea of [85, Thm. 4.21]. We find that we can always
eliminate such monodromy by passing to a finite cover T̃ of T . This is crucial to prove deformation-
invariance of the D̄Tα(τ), P Iα,n(τ ′) in [85, §12].

Theorem 7.2.8. Let K be an algebraically closed field of characteristic zero, ϕ : X→ T a smooth
projective morphism of K-schemes with T connected, and OX(1) a relative very ample line bundle
on X, so that for each t ∈ T (K), the fibre Xt of ϕ is a smooth projective K-scheme with very
ample line bundle OXt(1). Suppose the Picard schemes Pic(Xt) are locally constant in T (K),
so that t 7→ Pic(Xt) is a local system of abelian groups on T . Fix a base point s ∈ T (K), and
let Γ be the monodromy group of Pic(Xs). Then Γ is a finite group. There exists a finite étale
cover π : T̃ → T of degree |Γ|, with T̃ a connected K-scheme, such that writing X̃ = X×T T̃ and
ϕ̃ : X̃ → T̃ for the natural projection, with fibre X̃t̃ at t̃ ∈ T̃ (K), then Pic(X̃t̃) for all t̃ ∈ T̃ (K)
are all globally canonically isomorphic to Pic(Xs). That is, the local system t̃ 7→ Pic(X̃t̃) on T̃ is
trivial in the étale topology.

Proof. As Pic(Xs) is finitely generated, one can choose classes [L1], . . . , [Lk] ∈ Pic(Xs) as gen-
erators. Let P1, . . . , Pk be the Hilbert polynomials respectively of [L1], . . . , [Lk] with respect to
OXs(1). Let γ ∈ Γ, and consider the images γ · [Li] ∈ Pic(Xs) for i = 1, . . . , k. As we assume
OX(1) is globally defined on T and does not change under monodromy, it follows that the Hilbert
polynomials P1, . . . , Pk do not change under monodromy. Hence γ · [Li] has Hilbert polynomial
Pi. Again one uses properness to show that the set PicPi(Xs) composed by isomorphism classes
of line bundles in Pic(Xs) with Hilbert polynomial Pi for some i = 1, . . . , k is a finite set, that
is, every Pi is the Hilbert polynomial of only finitely many classes [R1], . . . , [Rni ] in Pic(Xs). It
follows that for each γ ∈ Γ we have γ · [Li] ∈ {[R1], . . . , [Rni ]}. So there are at most n1 · · ·nk
possibilities for (γ · [L1], . . . , γ · [Lk]). But (γ · [L1], . . . , γ · [Lk]) determines γ as [L1], . . . , [Lk]
generate Pic(Xs). Hence |Γ| 6 n1 · · ·nk, and Γ is finite.

We can now construct an étale cover π : T̃ → T which is a principal Γ-bundle, and so has
degree |Γ|, such that the K-points of T̃ are pairs (t, ι) where t ∈ T (K) and ι : Pic(Xt)→ Pic(Xs) is
an isomorphism from the properness and smoothness argument above, and Γ acts freely on T̃ (K)
by γ : (t, ι) 7→ (t, γ ◦ ι), so that the Γ-orbits correspond to points t ∈ T (K). Then for t̃ = (t, ι) we
have X̃t̃ = Xt, with canonical isomorphism ι : Pic(X̃t̃)→ Pic(Xs).
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So the conclusion is that from properness and smoothness argument, Pic(Xt) are canonically
isomorphic locally in T (K). But by Theorem 7.2.8, one can pass to a finite cover T̃ of T , so
that the Pic(X̃t̃) are canonically isomorphic globally in T̃ (K). So, replacing X, T by X̃, T̃ , we will
assume from here that the Picard schemes Pic(Xt) for t ∈ T (K) are all canonically isomorphic
globally in T (K), and we write Pic(X) for this group Pic(Xt) up to canonical isomorphism.

In Theorem [85, Thm. 4.19] Joyce and Song showed that when K = C and H1(OX) = 0
the numerical Grothendieck group Knum(coh(X)) is unchanged under small deformations of X
up to canonical isomorphism. As we said, here we will not prove this result. So, the idea is
to construct a globally constant lattice ΛX using the globally constancy of the Picard schemes
such that there exist an inclusion Knum(coh(X)) ↪→ ΛX . It could happen that the image of the
numerical Grothendieck group varies with t as it has to do with the integral Hodge conjecture
as in [85, Thm. 4.19], but this does not affect the deformation invariance of D̄Tα(τ) as for them
to be deformation invariant is enough to find a deformation invariant lattice in which the classes
α vary. Next, we describe such lattice ΛX and explain how the numerical Grothendieck group
Knum(coh(X)) is contained in it. Our idea follows [85, Thm. 4.19].

Let X be a Calabi–Yau 3-fold over K, with H1(OX) = 0 and consider the Chern character,
as in Hartshorne [65]: for each E ∈ coh(X) we have the rank r(E) ∈ A0(X) ∼= Z, and the Chern
classes ci(E) ∈ Ai(X) for i = 1, 2, 3. It is useful to organize these into the Chern character ch(E)
in A∗(X)Q, where ch(E) = ch0(E) + ch1(E) + ch2(E) + ch3(E) with chi(E) ∈ Ai(X)Q :

ch0(E) = r(E), ch1(E) = c1(E), ch2(E) = 1
2

(
c1(E)2 − 2c2(E)

)
,

ch3(E) = 1
6

(
c1(E)3 − 3c1(E)c2(E) + 3c3(E)

)
.

(7.2.22)

By the Hirzebruch–Riemann–Roch Theorem [65, Th. A.4.1], the Euler form on coherent
sheaves E,F is given in terms of their Chern characters by

χ̄
(
[E], [F ]

)
= deg

(
ch(E)∨ · ch(F ) · td(TX)

)
3, (7.2.23)

where (·)3 denotes the component of degree 3 in A∗(X)Q and where td(TX) is the Todd class of
TX, which is 1+ 1

12c2(TX) as X is a Calabi–Yau 3-fold, and (λ0, λ1, λ2, λ3)∨ = (λ0,−λ1, λ2,−λ3),
writing (λ0, . . . , λ3) ∈ A∗(X) with λi ∈ Ai(X). Define:

ΛX =
{

(λ0, λ1, λ2, λ3) where λ0, λ3 ∈ Q, λ1 ∈ Pic(X)⊗Z Q, λ2 ∈ Hom(Pic(X),Q) such that

λ0 ∈ Z, λ1 ∈ Pic(X)/torsion, λ2 − 1
2λ

2
1 ∈ Hom(Pic(X),Z), λ3 + 1

12λ1c2(TX) ∈ Z
}
,

where λ2
1 is defined as the map α ∈ Pic(X) → 1

2c1(λ1) · c1(λ1) · c1(α) ∈ A3(X)Q ∼= Q, and
1
12λ1c2(TX) is defined as 1

12c1(λ1) · c2(TX) ∈ A3(X)Q ∼= Q. Theorem 7.2.4 states that ΛX is
deformation invariant and the Chern character gives an injective morphism ch : Knum(coh(X)) ↪→
ΛX . The proof of Theorem 7.2.4 is straightforward:

Proof. The proof follows exactly as in [85, Thm. 4.19] and the fact the Picard scheme Pic(X) is
globally constant in families from the argument above yields that the lattice ΛX is deformation
invariant. Moreover, the proof that ch

(
Knum(coh(X))

)
⊆ ΛX is again as in [85, Thm. 4.19].

Observe that we do not prove that ch
(
Knum(coh(X))

)
= ΛX , fact which uses Voisin’s Hodge

conjecture proof for Calabi–Yau 3-folds over C [182].

Question 7.2.9. Does Voisin’s result [182] work over K in terms of Hom(Pic(X),Z)?

This concludes the discussion of problem (b) in §7.2 and yields the deformation-invariance of
DTα(τ), P Iα,n(τ ′) over K.
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7.3 Implications and conjectures

In this section we sketch some exciting implications of the theory and propose new ideas for
further research. One proposal is in the direction of extending Donaldson–Thomas invariants to
compactly supported coherent sheaves on noncompact quasi-projective Calabi–Yau 3-folds. A
second idea is in the derived categorical framework trying to establish a theory of generalized
Donaldson–Thomas invariants for objects in the derived category of coherent sheaves. Here we
expose the problems and illustrate some possible approaches when known.

7.3.1 Noncompact Calabi–Yau 3-folds

We start by recalling the following definition from [85, Def. 6.27]:

Definition 7.3.1. Let X be a noncompact Calabi-Yau 3-fold over C. We call X compactly
embeddable if whenever K ⊂ X is a compact subset, in the analytic topology, there exists an
open neighbourhood U of K in X in the analytic topology, a compact Calabi-Yau 3-fold Y over
C with H1(OY ) = 0, an open subset V of Y in the analytic topology, and an isomorphism of
complex manifolds ϕ : U → V.

Joyce and Song only need the notion of ‘compactly embeddable’ as their complex analytic
proof of (7.1.18)–(7.1.19) recalled in §7.1.3, requires X compact; but unfortunately the given
algebraic version of (7.1.18)–(7.1.19) in Theorem 7.2.2 uses results from derived algebraic geometry
[142,171–175], and the author does not know if they apply also for compactly supported sheaves
on a noncompact X.

More precisely, in [142] it is shown that if X is a projective Calabi-Yau m-fold then the derived
moduli stack MPerf(X) of perfect complexes of coherent sheaves on X is (2−m)-shifted symplectic.
It is not obvious that if X is a quasi-projective Calabi-Yau m-fold, possibly noncompact, then the
derived moduli stack MPerfcs(X) of perfect complexes on X with compactly-supported cohomology
is also (2−m)-shifted symplectic.

At the present, we can state the following result. We thank Bertrand Toën for explaining this
to us.

Theorem 7.3.2. Suppose Z is smooth projective of dimension m, and s ∈ H0(K−1
Z ), and X ⊂ Z

is Zariski open with s nonvanishing on X, so that X is a (generally non compact) quasi-projective
Calabi-Yau m-fold. Then the derived moduli stack MPerfcs(X) of compactly-supported coherent
sheaves on X, or of perfect complexes on X with compactly-supported cohomology, is (2 − m)-
shifted symplectic.

Proof. Let Z be smooth and projective of dimension m, and s be any section of K−1
Z . Let Y

be the derived scheme of zeros of s and X = Z \ Y. Then, Y is equipped with a canonical O-
orientation in the sense of [142] of dimension m − 1, so MPerf(Y ) is (3 − m)-symplectic, even
if Y is not smooth. The restriction map MPerf(Z) → MPerf(Y ) is moreover Lagrangian. The
map ∗ → MPerf(Y ), corresponding to the zero object is étale, and thus its pull-back provides a
Lagrangian map MPerfcs(X)→ ∗, or, equivalently, a (2−m)-symplectic structure on MPerfcs(X).
Now if X ′ is open in X, then MPerfcs(X

′)→MPerfcs(X) is an open immersion, so MPerfcs(X
′) is

also (2−m)-symplectic.

We remark the following:

(a) We point out that the condition of Theorem 7.3.2 is similar to the compactly-embeddable
condition in [85, Def. 6.27], but more general, as we do not require Z to be a Calabi-Yau.
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(b) Observe that in the non-compact case we cannot expect to have the deformation invariance
property of Donaldson–Thomas invariants, except in some particular cases in which the
moduli space is proper.

(c) Note that we need the noncompact Calabi–Yau to be quasi-projective in order to have a
quasi projective Quot scheme [136, Thm. 6.3].

We conclude the section with the following:

Conjecture 7.3.3. The theory of generalized Donaldson–Thomas invariants defined in [85] is
valid over algebraically closed fields of characteristic zero for compactly supported coherent sheaves
on noncompact quasi-projective Calabi–Yau 3-folds. In this last case, one can define D̄Tα(τ) and
prove the wall–crossing formulae and the relation with PIα,n(τ ′) is still valid, while one loses the
deformation invariance property and the properness of moduli spaces.

7.3.2 Derived categorical framework

Our algebraic method could lead to the extension of generalized Donaldson–Thomas theory to the
derived categorical context. The plan to extend the theory of Joyce and Song [85] from abelian
to derived categories starts by reinterpreting the series of papers by Joyce [75–82] in this new
general setup. In particular:

(a) Defining configurations in triangulated categories T requires to replace the exact sequences
by distinguished triangles.

(b) Constructing moduli stacks of objects and configurations in T . Again, the theory of derived
algebraic geometry [142,171–175] can give us a satisfactory answer.

(c) Defining stability conditions on triangulated categories can be approached using Bridge-
land’s results [20], and its extension by Gorodentscev et al. [51], which combines Bridge-
land’s idea with Rudakov’s definition for abelian categories [147]. Since Joyce’s stability
conditions [77] are based on Rudakov, the modifications should be straightforward.

(d) The ‘nonfunctoriality of the cone’ in triangulated categories causes that the triangulated
category versions of some operations on configurations are defined up to isomorphism, but
not canonically, which yields that corresponding diagrams may be commutative, but not
Cartesian as in the abelian case. In particular, one loses the associativity of the Ringel-Hall
algebra of stack functions, which is a crucial object in Joyce and Song framework. We expect
that derived Hall algebra approach of Toën [172] resolves this issue. See also [117].

The list above does not represent a big difficulty. The main issues actually are: proving
existence of Bridgeland stability conditions (or other type) on the derived category; proving that
semistable moduli schemes and stacks are finite type (permissible), and proving that two stability
conditions can be joined by a path of permissible stability conditions.

Theorem 7.2.3 is just one of the steps in developing this program. The author thus expects
that a well-behaved theory of invariants counting τ -semistable objects in triangulated categories
in the style of Joyce’s theory exists, that is, Theorem 7.2.6 should be valid also in the derived
categorical context:

Conjecture 7.3.4. The theory of generalized Donaldson–Thomas invariants defined in [85] is
valid for complexes of coherent sheaves on Calabi-Yau 3-folds over algebraically closed fields of
characteristic zero.



Chapter 8

Categorifying complex Lagrangian
intersections

This chapter begins with a section of background material on basic notions in symplectic geometry.
In §8.2, we state and prove our first main result on the construction of a canonical global perverse
sheaf on complex Lagrangian intersections. In §8.3 we prove our second main result on the d-
critical locus structure carried by Lagrangian intersections. Finally, the last section sketches some
implications of the theory and proposes new ideas for further research.

Throughout we will work in the complex analytic topology over C. We will denote by (S, ω) a
complex symplectic manifold endowed with a symplectic form ω, and its Lagrangian submanifolds
will be always assumed to be nonsingular. Note that all complex analytic spaces in this paper
are locally of finite type, which is necessary for the existence of embeddings i : X ↪→ U for U
a complex manifold. Fix a well-behaved commutative base ring A (where ‘well-behaved’ means
that we need assumptions on A such as A is regular noetherian, of finite global dimension or
finite Krull dimension, a principal ideal domain, or a Dedekind domain, at various points in the
theory), to study sheaves of A-modules. For some results A must be a field. Usually we take
A = Z,Q or C.

8.1 Lagrangian intersections in complex symplectic manifolds

We will start with a basic definition to fix the notation:

Definition 8.1.1. Let (S, ω) be a symplectic manifold, i.e., a complex manifold S endowed with
a closed non-degenerate holomorphic 2-form ω ∈ Ω2

S . Denote the complex dimension of S by 2n.
A complex submanifold M ⊂ S is Lagrangian if the restriction of the symplectic form ω on S

to a 2-form on M vanishes and dimM = n.
Holomorphic coordinates, x1, . . . , xn, y1, . . . . , yn on an open subset S′ ⊂ S in the complex

analytic topology, are called Darboux coordinates if ω =
n∑
i=1

dyi ∧ dxi.

Definition 8.1.2. Given an n-dimensional manifold N , let us denote by S = T ∗N its cotangent
bundle. For any chosen point p ∈ U ⊂ N, for U an open subset of N containing x, let us denote
by (x1, . . . , xn) a set of coordinates. Then for any x ∈ U, the differentials (dx1)x, . . . , (dxn)x form
a basis of T ∗xN.

Namely, if y ∈ T ∗xN then y =
n∑
i=1

yi(dxi)x for some complex coefficients y1, . . . , yn. This induces

a set of coordinates (x1, . . . , xn, y1, . . . , yn) on T ∗U, so a coordinate chart for T ∗N, induced by
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(x1, . . . , xn) on U . It is well known that transition functions on the overlaps are holomorphic and
this gives the structure of a complex manifold of dimension 2n to T ∗N .

Next, one can define a 2-form on T ∗U by ω =
n∑
i=1

dxi ∧ dyi. It is easy to check that the

definition is coordinate-independent. Define the 1-form α =
n∑
i=1

yi ∧ dxi. Clearly ω = −dα, and α

is intrinsically defined. The 1-form α is called in literature the Liouville form, and the 2-form ω
is the canonical symplectic form.

Next, we will review symmetric obstruction theories on Lagrangian intersections from [6], and
we state a crucial definition for our program.

Let (S, ω) be a complex symplectic manifold as above, and L,M ⊆ S be Lagrangian submani-
folds. Let X = L∩M be the intersection as a complex analytic space. Then X carries a canonical
symmetric obstruction theory ϕ : E• → LX in the sense of [6], which can be represented by the
complex E• ' [T ∗S|X → T ∗L|X ⊕ T ∗M |X ] with T ∗S|X in degree −1 and T ∗L|X ⊕ T ∗M |X in
degree zero. Hence

det(E•) ∼= KS |−1
X ⊗KL|X ⊗KM |X ∼= KL|X ⊗KM |X , (8.1.1)

since KS
∼= OS . This motivates the following:

Definition 8.1.3. We define an orientation of a complex Lagrangian submanifold L to be a

choice of square root line bundle K
1/2
L for KL.

Remark 8.1.4. The previous definition is inspired by [18] and close to ‘orientation data’ in
Kontsevich and Soibelman [102]. We point out that spin structure could have been a better
choice of name than orientation, but we use orientations for consistency with [18,19,25,87]. Also,

for real Lagrangians, a square root K
1/2
L induces an orientation on L in the usual sense.

Now, we recall well known established results in complex symplectic geometry which will be
used to prove our main results. We start with the complex Darboux theorem.

Theorem 8.1.5. Let (S, ω) be a complex symplectic manifold. Then locally in the complex analytic
topology around a point p ∈ S is always possible to choose holomorphic Darboux coordinates.

So, basically, every symplectic manifold S is locally isomorphic to the cotangent bundle T ∗N
of a manifold N. The fibres of the induced vector bundle structure on S are Lagrangian subman-
ifolds, so complex analytically locally defining on S a foliation by Lagrangian submanifolds, i.e.,
a polarization:

Definition 8.1.6. A polarization of a symplectic manifold (S, ω) is a holomorphic Lagrangian
fibration π : S′ → E, where S′ ⊆ S is open.

Note that it is always possible to choose locally near a point p ∈ S in the complex analytic
topology Darboux coordinates (x1, . . . , xn, y1, . . . , yn) and compatible coordinates xi on E such
that π can be identified with the projection (x1, . . . , xn, y1, . . . , yn)→ (x1, . . . , xn).

We will usually consider polarizations which are transverse to the Lagrangians whose intersec-
tion we wish to study. If L,M are complex Lagrangian submanifolds in (S, ω), and we consider
the projection

π : (x1, . . . , xn, y1, . . . , yn)→ (x1, . . . , xn)

defining local coordinates on L, then we can always assume to choose such coordinates xi, yi
transverse to L,M at a point, and transverse to other coordinate systems too. Very briefly,
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this is because, if the projection π : (x1, . . . , xn, y1, . . . , yn) → (x1, . . . , xn) is not transverse, we
can change coordinates (x̃1, . . . , x̃n, ỹ1, . . . , ỹn) by a linear transformation by a generic matrix
M ∈ Sp(2n,C). This matrix preserves the symplectic form, so ω =

∑
i

dx̃i ∧ dỹi, and the generic

Lagrangian plane < ∂
∂ỹ1

, . . . , ∂
∂ỹn

> intersects transversely TpL and TpM for p ∈ S. Thus π :
(x̃1, . . . , x̃n, ỹ1, . . . , ỹn) → (x̃1, . . . , x̃n) is a polarization transverse to L,M near p, and so π is a
transverse polarization for L,M on S′, for an open neighbourhood S′ of p in S. In conclusion, we
are using the projection π as a polarization, and we assume that the leaves are transverse to the
two Lagrangians.

Recall now the Lagrangian neighbourhood theorem:

Theorem 8.1.7. If M ⊂ (S, ω) is a complex Lagrangian submanifold, then there exists a complex
analytic neighbourhood V ⊂M of a point p ∈M isomorphic as a complex symplectic manifold to
a neighbourhood U of p in T ∗M, and M is identified with the zero section in T ∗M.

Note that (S, ω) need not be isomorphic to T ∗M in a neighbourhood of M, but just in a
neighbourhood of a point p ∈M. So, we may identify locally M with N and, by making L smaller
if necessary, we have the following picture:

Lemma 8.1.8. Choose locally near a point p ∈ S in the complex analytic topology Darboux
coordinates (x1, . . . , xn, y1, . . . , yn) and compatible coordinates xi on E such that π : S → E can
be identified with the projection (x1, . . . , xn, y1, . . . , yn)→ (x1, . . . , xn). Now, given a polarization
(x1, . . . , xn, y1, . . . , yn)→ (x1, . . . , xn) defining local coordinates on L, then L is given by{(

x1, . . . , xn,
df

dx1
, . . . ,

df

dxn

)
: x1, . . . , xn ∈M ′

}
for a holomorphic function f(x1, . . . , xn) defined locally on an open M ′ ⊂ M ⊂ S, where M is
the Lagrangian submanifold identified with the zero section, and the polarization π with projection
T ∗M →M .

So, in conclusion, if π : S′ → E is a polarization, and M a Lagrangian submanifold with
π : M → E transverse near x in M, then locally there is a unique isomorphism S′ ∼= T ∗M
identifying M with zero section and π with projection T ∗M →M . Then any other Lagrangian L
in S transverse to π is locally described by the graph of df , for a holomorphic function f locally
defined on M. It is now straightforward to deduce that, as M is graph of 0, and L is graph of df,
then the intersection X = L ∩M is the critical locus (df)−1(0).

We can summarize in this way. Let (S, ω) be a complex symplectic manifold, and L,M ⊆ S
be Lagrangian submanifolds. Let X = L ∩M be the intersection as a complex analytic space.
Then X is complex analytically locally modelled on the zero locus of the 1-form df, that is on
the critical locus Crit(f : U → C) for a holomorphic function f on a smooth manifold U. So, X
carries a natural perverse sheaf of vanishing cycles PV•U,f in the notation of §1.3, and a natural
problem to investigate is the following. Given open Ri, Rj ⊆ S with isomorphisms Ri ∼= Crit(fi),
Rj ∼= Crit(fj) for holomorphic fi : Ui → C and fj : Uj → C, we have to understand whether the
perverse sheaves P•Ri = PV•Ui,fi on Ri and P•Rj = PV•Uj ,fj on Rj are isomorphic over Ri∩Rj , and
if so, whether the isomorphism is canonical, for only then can we hope to glue the P•Ri for i ∈ I
to make P•L,M . We will develop this program in §8.2.

8.2 Canonical perverse sheaves on Lagrangian intersections

We can state our main result.
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Theorem 8.2.1. Let (S, ω) be a complex symplectic manifold and L,M oriented complex La-
grangian submanifolds in S, and write X = L ∩M, as a complex analytic subspace of S. Then
we may define P •L,M ∈ Perv(X), uniquely up to canonical isomorphism, and isomorphisms

ΣL,M : P •L,M → DX(P •L,M ), TL,M : P •L,M → P •L,M , (8.2.1)

respectively the Verdier duality and the monodromy isomorphisms. These P •L,M ∈ Perv(X),ΣL,M ,
TL,M are locally characterized by the following property.

Given a choice of local Darboux coordinates (x1, . . . , xn, y1, . . . , yn) in the sense of Definition
8.1.1 such that L is locally identified in coordinates with the graph Γdf(x1,...,xn) of df for f a
holomorphic function defined locally on an open U ⊂ Cn, and M is locally identified in coordinates
with the graph Γdg(x1,...,xn) of dg for g a holomorphic function defined locally on U , and the

orientations K
1/2
L ,K

1/2
M are the trivial square roots of KL

∼= 〈dx1 ∧ · · · ∧ dxn〉 ∼= KM , then there
is a canonical isomorphism P •L,M

∼= PV•U,g−f , where PV•U,g−f is the perverse sheaf of vanishing
cycles of g−f, and ΣL,M and TL,M are respectively the Verdier duality σU,g−f and the monodromy
τU,g−f introduced in §1.3. The same applies for D-modules and mixed Hodge modules on X.

A convenient way to express this is in terms of charts, by which we mean a set of data locally
defined by the choice of a polarization π : S → E. Charts are analogous to critical charts defined
by [87, §2], as in §2. We will show in §8.3 that they are actually critical charts and they define
the structure of a d-critical locus on the Lagrangian intersection, but for this section we will not
use it.

We explained in §8.1 that the local choice of a polarization on (S, ω) yields a local description
of the Lagrangian intersection as a critical locus P ∼= Crit(f) for a closed embedding i : P ↪→ U ,
P open in X, and a holomorphic function f : U ⊂ L → C, where U is an open submanifold
of L. We have a local symplectic identification S ∼= T ∗U ⊆ T ∗L, which identifies L ⊂ S with
the zero section in T ∗L, and M ⊂ S with the graph Γdf of df, and π : S → E ∼= L with the
projection T ∗L → L. So, for each polarization π : S → E we have naturally induced a set of
data (P,U, f, i), which we will call an L-chart. We will also consider M -charts, namely charts
coming from polarizations that identify the other Lagrangian M with the zero section, that is,
charts like (Q,V, g, j) where Q ∼= Crit(g) for a closed embedding j : Q ↪→ V , Q open in X, and a
holomorphic function g : V ⊂ M → C, where V is an open submanifold of M. We have a local
symplectic identification S ∼= T ∗V ⊆ T ∗M, which identifies M ⊂ S with the zero section in T ∗M,
and L ⊂ S with the graph Γdg of dg, and π : S → E ∼= M with the projection T ∗M → M. We
will use also LM -charts.

Using this general technique, let us fix the following notation we will use for the rest of the
paper. We will consider mainly three kinds of charts, where by charts we basically mean a set of
data associated to a choice of one or two polarizations for our complex symplectic manifold:

(a) L-charts (P,U, f, i) are induced by a polarizations π : S′ → E transverse to L,M with S′ ⊂ S
open, P ⊂ X open, and U ⊂ L open, and f : U → C holomorphic, and i : P ↪→ U ⊂ L the
inclusion, with i : P → Crit(f) an isomorphism, so that we have local identifications

• (S, ω) = T ∗U ;

• L = zero section;

• M = Γdf ;

• E = L = U ;

• π : S → E with π : T ∗U → U.
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(b) M -charts (Q,V, g, j) are induced by a polarization π̃ : S̃ → F transverse to L,M, with S̃ ⊂ S
open, Q ⊂ X open, and V ⊂ M open, and g : V → C holomorphic, and j : Q ↪→ V ⊂ M
the inclusion, with j : Q→ Crit(g) an isomorphism, so that we have local identifications

• (S,−ω) = T ∗V ;

• M = zero section;

• L = Γdg;

• F = M = V ;

• π̃ : S → F with π : T ∗V → V.

(c) LM -charts (R,W, h, k) are induced by polarizations π : S′ → E, π̃ : S̃ → F transverse to
L,M and to each other on Ŝ = S′∩ S̃. We have W ⊂ L×M open, h : W → C holomorphic,
k : R → W ⊂ L ×M the diagonal map, with k : R → Crit(h) an isomorphism, and local
identifications

• (S′, ω)× (S̃,−ω) = T ∗W ;

• L×M = zero section;

• diagonal ∆S = Γdh;

• E × F = L×M = W ;

• π × π̃ : Ŝ → E × F with π : T ∗W →W.

Note that R = P ∩ Q. These three kinds of charts will be related by Proposition 8.2.2,
which will give an embedding from an open subset of an L-chart (P,U, f, i) into an LM -
chart (R,W, h, k), and similarly an embedding from an open subset of an M -chart (Q,V, g, j)
into (R,W, h, k).

Moreover, we will explain in §8.2.1 that the choice of a polarization π : S → E naturally

induces local biholomorphisms L
∼=−→M or M

∼=−→L, and thus isomorphisms

Θ : KL|X
∼=−→KM |X or Ξ : KM |X

∼=−→KL|X (8.2.2)

between the canonical bundles of the Lagrangian submanifolds. We define πP,U,f,i : QP,U,f,i → P
to be the principal Z2-bundle parametrizing local isomorphisms

ϑ : K
1/2
L |X

∼=−→K1/2
M |X or ξ : K

1/2
M |X

∼=−→K1/2
L |X (8.2.3)

such that ϑ⊗ ϑ = Θ or ξ ⊗ ξ = Ξ.
Also, on each L-chart, M -chart, LM -chart, we have a natural perverse sheaf of vanishing cycles

associated to the local description of the Lagrangian intersection as a critical locus. So we get a
perverse sheaf of vanishing cycles i∗(PV•U,f ) on P, j∗(PV•V,g) on Q, and k∗(PV•W,h) on R. These
perverse sheaves together with principal Z2-bundles parametrizing square roots of isomorphisms
(8.2.2) are the objects we want to glue.

Then P •L,M ∈ Perv(X) is characterized by the following properties:

(i) If (P,U, f, i) is a an L-chart, M -chart, or LM -chart, there is a natural isomorphism

ωP,U,f,i : P •L,M |P −→ i∗
(
PV•U,f

)
⊗Z2 QP,U,f,i, . (8.2.4)
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Furthermore the following commute in Perv(P ) :

P •L,M |P

ΣL,M |P

��

ωP,U,f,i
// i∗
(
PV•U,f

)
⊗Z2 QP,U,f,i

i∗(σU,f )⊗idQP,U,f,i
��

DP
(
P •L,M |P

) i∗
(
DCrit(f)(PV•U,f )

)
⊗Z2 QP,U,f,i

∼= DP
(
i∗(PV•U,f )⊗Z2 QP,U,f,i

)
,

DP (ωP,U,f,i)oo

(8.2.5)

P •L,M |P

TL,M |P

��

ωP,U,f,i
// i∗
(
PV•U,f

)
⊗Z2 QP,U,f,i

i∗(τU,f )⊗idQP,U,f,i

��
P •L,M |R

ωP,U,f,i // i∗
(
PV•U,f

)
⊗Z2 QP,U,f,i.

(8.2.6)

(ii) Let π : S′ → E and π̃ : S̃ → F be polarizations transverse to L,M, and transverse to each
other on S′ ∩ S̃. Then from π we get an L-chart (P,U, f, i), from π̃ we get an M -chart
(Q,V, g, j), and from π and π̃ together we get an LM -chart (R,W, h, k). Write (P ′, U ′, f ′, i′)
for the L-chart determined by π|S′∩S̃ : S′ ∩ S̃ → E, and (Q′, V ′, g′, i′) for the M -chart

determined by π̃|S′∩S̃ : S′ ∩ S̃ → F. Then P ′ ⊆ P, U ′ ⊆ U are open and f ′ = f |U ′ , i′ = i|P ′ ,
so (P ′, U ′, f ′, i′) is a subchart of (P,U, f, i) in the sense of §2. We write this as (P ′, U ′, f ′, i′) ⊆
(P,U, f, i). Similarly, (Q′, V ′, g′, j′) ⊆ (Q,V, g, j). Also P ′ = Q′ = R = X ∩ S′ ∩ S̃.
In this situation, Proposition 8.2.2 will show that there exist closed embeddings Φ : U ′ ↪→W
and Ψ : V ′ ↪→ W such that so that h ◦ Φ = f : U ′ → C and h ◦Ψ = g : V ′ → C. Moreover
Crit(f) ∼= Crit(h) ∼= Crit(g) as complex analytic spaces, and f, h and g, h are pairs of
stably equivalent functions. Inspired by [87, Def. 2.18], we will say that Φ : (P ′, U ′, f ′, i′) ↪→
(R,W, h, k) is an embedding of charts if Φ is a locally closed embedding U ′ ↪→W of complex
manifolds such that Φ ◦ i′ = k|P ′ : P ′ → W and f = h ◦ Φ : U ′ → C. As a shorthand
we write Φ : (P ′, U ′, f ′, i′) ↪→ (R,W, h, k) to mean Φ is an embedding of (P ′, U ′, f ′, i′)
in (R,W, h, k). In brief, Proposition 8.2.2 in §8.2.1 will define two embeddings of charts
Φ : (P ′, U ′, f ′, i′) ↪→ (R,W, h, k) and Ψ : (Q′, V ′, g′, j′) ↪→ (R,W, h, k).

Given the embedding of charts Φ : (P ′, U ′, f ′, i′) ↪→ (R,W, h, k), there is a natural isomor-
phism of principal Z2-bundles

ΛΦ : QR,W,h,k|P ′
∼=−→ i∗(PΦ)⊗Z2 QP ′,U ′,f ′,i′ (8.2.7)

on P ′, for PΦ defined as follows: local isomorphisms

α : K
1/2
X |P ′red → i∗(KU ′)|P ′red , β : K

1/2
X |P ′red → j′∗(KW )|P ′red ,

γ : i′∗(KU ′)|P ′red → j∗(KW )|P ′red

(8.2.8)

with α⊗α = ιP ′,U ′,f ′,i′ , β⊗β = ιR,W,h,k|P ′red , γ⊗γ = i|∗
P ′red(JΦ) correspond to local sections

sα : P ′ → QP ′,U ′,f ′,i′ , sβ : P ′ → QR,W,h,k|P ′ , sγ : P ′ → i′∗(PΦ), for JΦ as in Definition 4.3.2,
and for isomorphisms ιR,W,h,k : KX → i∗(K⊗2

W )|P ′red induced by the polarization E1 × E2.

Then for each embedding of charts, the following diagram commutes in Perv(P ′), for ΘΦ as
in (4.3.13):

P •L,M |P ′ ωP ′,U′,f ′,i′
//

ωR,W,h,k|P ′

��

i∗
(
PV•U ′,f ′

)
⊗Z2 QP ′,U ′,f ′,i′

i′∗(ΘΦ)⊗idQP ′,U′,f ′,i′

��
j∗
(
PV•W,h

)
|P ′ ⊗Z2 QR,W,h,k|P ′

idj∗(PV•
W,h

)⊗ΛΦ

// i∗
(
Φ|∗X(PV•W,h)⊗Z2 PΦ

)
⊗Z2 QP ′,U ′,f ′,i′ .

(8.2.9)
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We will have an analogous commutative diagram induced by Ψ on Perv(Q′) :

P •L,M |Q′ ωQ′,V ′,g′,j′
//

ωR,W,h,k|Q′

��

i∗
(
PV•V,g

)
⊗Z2 QQ′,V ′,g′,j′

j′∗(ΘΨ)⊗idQQ′,V ′,g′,j′

��
j′∗
(
PV•W,h

)
|Q′ ⊗Z2 QR,W,h,k|Q′

idj′∗(PV•
W,h

)⊗ΛΨ

// i∗
(
Ψ|∗X(PV•W,h)⊗Z2 PΨ

)
⊗Z2 QQ′,V ′,g′,j′ .

(8.2.10)

Using Theorem 4.3.4, we get isomorphisms

α : (i′∗(PV•U ′,f ′)⊗QP ′,U ′,f ′,i′)|R ∼= (k∗(PV•W,h)⊗QR,W,h,k),

β : (j′∗(PV•V ′,g′)⊗QQ′,V ′,g′,j′)|R ∼= (k∗(PV•W,h)⊗QR,W,h,k).
Combining these, we get an isomorphism

β−1 ◦ α : (i′∗(PV•U ′,f ′)⊗QP ′,U ′,f ′,i′)|R ∼= (j′∗(PV•V ′,g′)⊗QQ′,V ′,g′,j′)|R, (8.2.11)

that is, an isomorphism of perverse sheaves from L-charts and M -charts in Perv(P ′ ∩Q′).
Later, in §8.2.2 we will involve also two other polarizations for an associativity result. More
precisely, following notation of §8.2.2 we want that if we have two L-charts (P1, U1, f1, i1)
and (P3, U3, f3, i3) and two M -charts (Q2, V2, g2, j2) and (Q4, V4, g4, j4) then

α32|−1
Y ◦β32|Y ◦ β12|−1

Y ◦ α12|Y = α34|−1
Y ◦ β34|Y ◦ β14|−1

Y ◦ α14|Y :(
PV•U1,f1

⊗Z2 QP1,U1,f1,i1

)
|Y −→

(
PV•U3,f3

⊗Z2 QP3,U3,f3,i3

)
|Y .

(8.2.12)

Theorem 8.2.1 will be proved in §8.2.1–§8.2.3. In §8.2.3, we will provide a descent argument,
which is the most technical part of the paper. We outline here our method of the proof.

Let {Ua}a∈I be an analytic open cover for X = L∩M, induced by polarizations πa : Sa → Ea
for a ∈ I, transverse to both L and M , and write Uab = Ua ∩ Ub for a, b ∈ I. Similarly, write
Uabc = Ua∩Ub∩Uc for a, b, c ∈ I. Define Pa to be i∗a(PV•Ua,fa)⊗Z2 QPa,Ua,fa,ia from the discussion
above, and isomorphisms γab : P•a|Uab → P•b |Uab in Perv(Uab) for all a, b ∈ I with βaa = id and

γbc|Uabc ◦ γab|Uabc = γac|Uabc : Pa|Uabc −→ Pc|Uabc
in Perv(Uabc) for all a, b, c ∈ I.

The construction is independent of the choice of {Ua}a∈I above. Then by Theorem 1.3.5, there
exists P• in Perv(X), unique up to canonical isomorphism, with isomorphisms ωa : P•|Ua → P•a
for each a ∈ I, satisfying γab ◦ ωa|Uab = ωb|Uab : P•|Uab → P•b |Uab for all a, b ∈ I, which concludes
the proof of Theorem 8.2.1. We will carry out this program in §8.2.1–§8.2.3.

Theorem 8.2.1 resolves a long-standing question in the categorification of Lagrangian intersec-
tion number: our perverse sheaf P •L,M categorifies Lagrangian intersection numbers, in the sense
that the constructible function

p→
∑
i

(−1)i−2n dimCHi
{p}(X,P

•
L,M ),

is equal to the well known Behrend function νX in [5] by construction, using the expression of the
Behrend function of a critical locus in terms of the Milnor fibre, as in [5] and recalled in §7.1, and
so

χ(X, νX) =
∑
i

(−1)i−2n dimAHi(X,P •L,M ), (8.2.13)

for a base ring A, which in this case is a field. If the intersection X is compact, then [L] ∩ [M ] is
given by (8.2.13), where [L], [M ] are the homology classes of L and M in S.

Theorem 8.2.1 and its proof provide thus a direct construction of the perverse sheaf defined
in Corollary 4.4.4 in §4. Moreover, our construction may have exciting far reaching applications
in symplectic geometry and topological field theory, as discussed in §8.4.
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8.2.1 Canonical isomorphism of perverse sheaves on double overlaps

Given a complex symplectic manifold (S, ω) and Lagrangian submanifolds L, M in S, define X
to be their intersection as a complex analytic space. Using results in §8.1, locally in the complex
analytic topology near a point x ∈ X, we can choose an open set S′ ⊂ S and a polarization
transverse to both L and M such that S′ ∼= T ∗L and M ∼= Γdf so that X = Crit(f) for a
holomorphic function f defined on U = L ∩ S′. Thus we get a perverse sheaf of vanishing cycle
PV•U,f . In this section we will investigate how two such local descriptions are related.

Consider π1, π2 : S1, S2 → E1, E2 two polarizations transverse to each other and both trans-
verse to both L and M. Choose open neighbourhoods U1 of X ∩ S1 in L ∩ S1 with π1(U1) ⊂
π1(M ∩ S1) and V2 of X ∩ S2 in M ∩ S2 with π2(V2) ⊂ π2(L ∩ S2). Then we get respectively the
local identifications

U1
∼= π1(U1) ⊂E1, S1 ⊃ π−1

1 (π1(U1)) ∼= T ∗U1, L ∩ π−1
1 (π1(U1)) ∼= Γ0,

M ∩ π−1
1 (π1(U1)) ∼= Γdf1 , f1 : U1 → C,

V2
∼= π2(V2) ⊂E2, S̄2 ⊃ π−1

2 (π2(V2)) ∼= T ∗V2, M ∩ π−1
2 (π2(V2)) ∼= Γ0,

L ∩ π−1
2 (π2(V2)) ∼= Γdg2 , g2 : V2 → C.

Choose an open neighbourhood W12 of {(x, x) : x ∈ X∩S1∩S2} in U1×V2 with (π1×π2)(W12) ⊂
(π1× π2)(∆S ∩ (S1×S2)). Choose open neighbourhoods U ′1 of X ∩S1 ∩S2 in U1 with {(l, π2|−1

M ◦
π2(l)) : l ∈ U ′1} ⊂W12 and V ′2 of X ∩ S1 ∩ S2 in V2 with {(π1|−1

L ◦ π1(m)) : m ∈ V ′2} ⊂W12. Then
we have:

Proposition 8.2.2. In the situation above, starting from polarizations π1, π2 : S1, S2 → E1, E2

and defining f1 : U1 → C using π1 and g2 : V2 → C using π2 and using the given notation, there
exists locally a holomorphic function h12 : W12 → C such that the following diagram

U ′1

Φ12=idU′1
×π1|−1

V ′2 //

f1|U′1

))

W12

h12

��

V ′2

Ψ12=π2|−1

U′1
×idV ′2oo

g2|V ′2

uuC

(8.2.14)

is commutative, that is

h12(l, π1|−1
V ′2

(l)) = f1(l), and h12(π2|−1
U ′1

(m),m) = g2(m), (8.2.15)

for every l ∈ U ′1, m ∈ V ′2 . Moreover, Φ12 = idU ′1 × π1|−1
V ′2

and Ψ12 = π2|−1
U ′1
× idV ′2 induce isomor-

phisms Crit(h12) ∼= Crit(f1) ∼= Crit(g2) as complex analytic spaces locally in the complex analytic
topology. In particular, from Theorem 4.3.1, we can choose (z1, . . . , zn) coordinates normal to
(idL × π1|−1

V ′2
)(U ′1) in W12, and (w1, . . . , wn) coordinates normal to (π2|−1

U ′1
× idV ′2 )(V ′2) in W12, un-

der which we can write h12
∼= f1 � z2

1 + . . .+ z2
n and h12

∼= g2 � w2
1 + . . .+ w2

n. Following §4, we
will say that f1 and g2 are both stably equivalent to h12.
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Proof. Consider the product symplectic manifold (S×S̄, ω⊕(−ω)), where S̄ denotes the symplectic
manifold S corresponding to the symplectic form with the opposite sign. In S × S̄ consider the
Lagrangian submanifolds N1 := L × M and N2 := ∆S , the diagonal. As explained in §8.1,
identify locally (S× S̄, ω⊕−ω) with (T ∗(L×M), ωL×M ), where ωL×M is the symplectic form on
T ∗(L×M), and thus π1×π2 is identified with the projection π : T ∗(L×M)→ L×M, that is N1

with the zero section, and N2 with the graph Γdh12 for a holomorphic function h12 : L×M → C
normalized by h12|(π1×π2)((L×M)∩∆S) = 0. Consider the submanifold P := S ×M ⊂ S × S̄ and
intersect the Lagrangians N1 and N2 with this submanifold, yielding respectively N1∩P = N1 and
N2 ∩ P = ∆M , which both lie in S ×M. Observe that ω ⊕ (−ω)|P = p−1

1 ω, where pi : S × S → S
are the projections to the i-th factor. Consider the following diagram of inclusions and projections
in S × S̄ and S:

N1 ∩ P = N1
p1

��

⊂
,,

N2 ∩ P = ∆M ⊂
//

p1

��

P = S ×M
p1

��

⊂
// S × S̄

p1

��
L ⊂

,,M
⊂ // S S.

(8.2.16)

Under the local symplectomorphisms S ∼= T ∗U1 and S × S̄ ∼= T ∗(U1 × V2), equation (8.2.16) is
identified with the diagram:

z(U1)× z(V2)
πT∗U1

��

⊂
,,

Γdh12 |(idU1
×π1|−1

V ′2
)(U1) ⊂

//

πT∗U1

��

T ∗U1 × z(V2)

πT∗U1

��

⊂
// T ∗(U1 × V2)

πT∗U1

��
z(U1) ⊂

,,
Γdf1

⊂ // T ∗U1 T ∗U1.

(8.2.17)

Here z : U1 → T ∗U1, z : V2 → T ∗V2 are the zero section maps. To see that N2 ∩ P = ∆V2 is
identified with Γdh12 |(idU1

×π1|−1

V ′2
)(U1), note that N2 is identified with Γdh12 , and

(π1 × π2)(∆V2) = (π1|V ′2 × idV2)(V2) = (idU1 × π1|−1
V ′2

)(U1) ⊂ U1 × V2,

so that ∆V2 is identified with a subset of T ∗(U1 × V2)|(idU1
×π1|−1

V ′2
)(U1) ⊂ T

∗(U1 × V2).

Equation (8.2.17) shows that πT ∗U1 maps

Γdh12 |(idU1
×π1|−1

V ′2
)(U1) → Γdf1 .

Writing points of T ∗U1 as (x, α) for x ∈ U1 and α ∈ T ∗xU1, and points of T ∗V2 as (y, β) for y ∈ V2

and β ∈ T ∗xV2, we have

Γdf1 =
{(
x,df1(x)

)
: x ∈ U1

}
,

Γdh12 |(idU1
×π1|−1

V ′2
)(U1) =

{(
x,dxh12(x, π1|−1

V ′2
(x)), π1|−1

V ′2
(x), 0

)
: x ∈ U1

}
,

where the final term β = 0 as Γdh12 |(idU1
×π1|−1

V ′2
)(U1) ⊂ T ∗U1 × z(V2). The projection πT ∗U1 :

T ∗U1×T ∗V2 → T ∗V2 maps (x, α, y, β) 7→ (x, α). So from (8.2.17) we see that dxh12(x, π1|−1
V ′2

(x)) =

dxf1(x) for x ∈ U1, that is, d
(
h12 ◦ (idU1×π1|−1

V ′2
)
)

= df1 in 1-forms on U1. Therefore h12 ◦
(
idU1×

π1|−1
V ′2

)
)

= f1+c for some c ∈ R. But f1 and h12 are normalized by f1|U1∩V2 = 0 and h12|N1∩N2 = 0,
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so as p1(N1 ∩ N2) ⊂ U1 ∩ V2 we see that c = 0. Hence h12 ◦
(
idU1 × π1|−1

V ′2
)
)

= f1, and the left

hand triangle of (8.2.14) commutes.
Using an analogous argument replacing (8.2.16)–(8.2.17) by the equations:

N1 ∩Q = N1
p2

��

⊂
,,

N2 ∩Q = ∆L ⊂
//

p2

��

Q := L× S
p2

��

⊂
// S × S̄

p2

��
M ⊂

,,L
⊂ // S̄ S̄,

z(U1)× z(V2)
πT∗V2

��

⊂
,,

Γdh12 |(π2|−1

U′1
×idV2

)(V2) ⊂
//

πT∗V2

��

z(U1)× T ∗V2

πT∗V2

��

⊂
// T ∗(U1 × V2)

πT∗V2

��
z(U1) ⊂

,,
Γdg2

⊂ // T ∗V2 T ∗V2.

we see that the right hand triangle of (8.2.14) commutes.
Finally, the last part of Proposition 8.2.2 follows directly from Theorem 4.3.1(i).

Note that the local biholomorphisms π1|−1
V ′2

, π2|−1
U ′1

coming from polarizations π1, π2, induce

isomorphisms (8.2.2) between the canonical bundles of the Lagrangian submanifolds. In terms of
charts, we have an L-chart (P1, U1, f1, i1), anM -chart (Q2, V2, g2, j2) and an LM -chart (R12,W12, h12, k12)
induced by E1, E2, E1 × E2 respectively, where P1 = X ∩ U1, Q2 = X ∩ V2, R12 = {x ∈ X :
(x, x) ∈ W12}. Let us denote the corresponding principal Z2-bundles QP1,U1,f1,i1 , QQ2,V2,g2,j2

and QR12,W12,h12,k12 parametrizing square roots of these isomorphisms of canonical bundles as
explained in the introduction of §8.2.

Note that Proposition 8.2.2 defined two embeddings Φ12 : U ′1 ↪→ W12 and Ψ12 : V ′2 ↪→ W12

which satisfy all the properties of Definition 4.3.2, giving embeddings of charts Φ12 : (P ′1, U
′
1, f
′
1, i
′
1) ↪→

(R12,W12, h12, k12) and Ψ12 : (Q′2, V
′

2 , g
′
2, j
′
2) ↪→ (R12,W12, h12, k12), where (P ′1, U

′
1, f
′
1, i
′
1) is a sub-

chart of (P1, U1, f1, i1), and (Q′2, V
′

2 , g
′
2, j
′
2) is a subchart of (Q2, V2, g2, j2) with P ′1 = Q′2 = R12.

Thus Definition 4.3.2 gives isomorphisms of line bundles on P red:

JΦ12 : K⊗
2

U1

∣∣
P ′red

1

∼=−→Φ12|∗P ′red
1

(
K⊗

2

W12

)
, (8.2.18)

induced by Φ12 : (P ′1, U
′
1, f
′
1, i
′
1) ↪→ (R12,W12, h12, k12), and

JΨ12 : K⊗
2

V2

∣∣
Q′red

2

∼=−→Ψ12|∗Q′red
2

(
K⊗

2

W12

)
, (8.2.19)

induced by Ψ12 : (Q′2, V
′

2 , g
′
2, j
′
2) ↪→ (R12,W12, h12, k12).

Following Definition 4.3.2, define πΦ12 : PΦ12 → P ′1, πΨ12 : PΨ12 → Q′2 to be the principal
Z2-bundles parametrizing square roots of JΦ12 , JΨ12 on Rred

12 . Then we naturally get isomorphisms
of principal Z2-bundles ΛΦ and ΛΨ

ΛΦ12 : QR12,W12,h12,k12

∼=−→PΦ12 ⊗Z2 QP1,U1,f1,i1 |R12 , (8.2.20)

ΛΨ12 : QR12,W12,h12,k12

∼=−→PΨ12 ⊗Z2 QQ2,V2,g2,j2 |R12 . (8.2.21)

Thus, we can apply Theorem 4.3.4, which yields natural isomorphisms of perverse sheaves

ΘΦ12 : PV•U ′1,f ′1 −→ Φ12|∗P ′1
(
PV•W12,h12

)
⊗Z2 PΦ12 , (8.2.22)
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ΘΨ : PV•V ′2 ,g′2 −→ Ψ12|∗Q′2
(
PV•W12,h12

)
⊗Z2 PΨ12 , (8.2.23)

where PV•U ′1,f ′1 ,PV
•
V ′2 ,g

′
2
,PV•W12,h12

are the perverse sheaves of vanishing cycles from §1.3, and if

Q• is a perverse sheaf on X then Q• ⊗Z2 PΦ12 is as in Definition 1.3.7. Also diagrams (4.3.14)
and (4.3.15) commute. Now, combining the isomorphisms (8.2.20)–(8.2.23) we get isomorphisms

α12 = ΘΦ12 ⊗ Λ−1
Φ12

:
(
PV•U1,f1

⊗Z2 QP1,U1,f1,i1

)
|R12 −→ PV•W12,h12

⊗Z2 QR12,W12,h12,k12 , (8.2.24)

β12 = ΘΨ12 ⊗ Λ−1
Ψ12

:
(
PV•V2,g2

⊗Z2 QQ2,V2,g2,j2

)
|R12 −→ PV•W12,h12

⊗Z2 QR12,W12,h12,k12 , (8.2.25)

β−1
12 ◦ α12 :

(
PV•U1,f1

⊗Z2 QP1,U1,f1,i1

)
|R12 −→

(
PV•V2,g2

⊗Z2 QQ2,V2,g2,j2

)
|R12 . (8.2.26)

8.2.2 Comparing perverse sheaves of vanishing cycles associated to polariza-
tions

Given a complex symplectic manifold (S, ω) and L, M Lagrangian submanifolds in S, define X
to be their intersection. From §8.1, locally in the complex analytic topology near a point x ∈ X,
we can choose an open set S′ ⊂ S and we can choose a polarization transverse to both L and M
such that S′ ∼= T ∗L and M ∼= Γdf so that X ∩ S′ = Crit(f) for a holomorphic function f defined
on U ⊆ L ∩ S′. Thus we get a perverse sheaf of vanishing cycle PV•U,f . In §8.2.1 we compared
perverse sheaves of vanishing cycles associated to two transverse polarizations. In this section we
will investigate about how they behave if we consider four polarizations, pairwise transverse in a
4-cycle. This result will be used in §8.2.3 to prove Theorem 8.2.1.

We choose four polarizations πi : S → Ei for i = 1, . . . , 4 all transverse to each other except per-
haps for the pairs E1, E3 and E2, E4. Define L-charts (P1, U1, f1, i1), (P3, U3, f3, i3) from π1, π3 and
M -charts (Q2, V2, g2, j2), (Q4, V4, g4, j4) from π2, π4, as in the beginning of §8.2. Define LM -charts
(R12,W12, h12, k12) from π1, π2, (R32,W32, h32, k32) from π3, π2, (R34,W34, h34, k34) from π3, π4,
(R14,W14, h14, k14) from π1, π4 as in §8.2.1, with embeddings of charts Φ12,Ψ12, . . . ,Φ14,Ψ14 from
subcharts of (Pa, Ua, fa, ia), (Qb, Vb, gb, jb) to (Rab,Wab, hab, kab).

Similarly to Proposition 8.2.2, we have the following result:

Proposition 8.2.3. Given a complex symplectic manifold (S, ω) and L,M Lagrangian submani-
folds in S, define X to be their intersection. Suppose we are given four polarizations π1, . . . , π4, and
choose data (Pa, Ua, fa, ia) for a = 1, 3, (Qb, Vb, gb, jb) for a = 2, 4 and (Rab,Wab, hab, kab),Φab,Ψab

for ab = 12, 32, 34, 14 as above.
Then there exist an open set Z in U1 × V2 ×U3 × V4, a holomorphic function F : Z → C, and

open neighbourhoods U ′a of X ∩ S1 ∩ S2 ∩ S3 ∩ S4 in Ua, and V ′b of X ∩ S1 ∩ S2 ∩ S3 ∩ S4 in Vb,
and Wab′ of

{
(x, x) : x ∈ X ∩ S1 ∩ S2 ∩ S3 ∩ S4

}
in Wab for all a = 1, 3, b = 2, 4 such that the



8.2. Canonical perverse sheaves on Lagrangian intersections 103

following diagram commutes:

U ′1

f1|U′1

!!

idU1
×π1|−1

M
×

(π3|M◦π1|−1
M

)×π1|−1
M

&&

Φ12|U′1
=idU1

×π1|−1
V2

//

Φ14|U′1
=

π1|−1
V4
×

idU1

��

W ′12

h12|W ′12

��

πU1
×πV2

×
(π3|M◦πV2

)×
πV2

��

V ′2

π2|−1
L
×id

M̃
×

π3|M̃×idV ′2

xx

g2|V ′2

		

Ψ12|V ′2
=π2|−1

L
×idV ′2

oo

Ψ32|V ′2
=

idV ′2
×

π2|−1
L

��
W ′14

h14|W ′14

&&

πU1
×(π2|L◦(π4|L×π1|M )−1)×

(π3|M◦(π4|L×π1|M )−1)×πV ′4 // Z

F

��

W ′32

h32|W ′32

��

πU′3
×(π2|L◦πU′3

)×(π3|M◦πV ′2
)×πV ′2oo

V ′4

π4|−1
L
×(π2|L◦π4|−1

L
)×

π4|−1
L
×idV ′4

88

g4|V ′4

,,

Ψ14|V ′4
=

idV ′4
×

π4|−1
L

OO

Ψ34|V ′4
=π4|−1

L
×idV ′4

// W ′34

h34|W ′34

((

πU′3
×

(π2|L◦πU′3
)×

πU′3
×πV ′4

OO

U ′3

idU′3
×π2|L×

idU′3
×π3|−1

M

ff

f3|U′3

xx

Φ34|U′3
=idU′3

×π3|−1
Moo

Φ32|U′3
=

π3|−1
M
×

idU′3

OO

C.

(8.2.27)

Moreover, locally in the complex analytic topology Crit(F ) ∼= Crit(hij) ∼= Crit(fi) ∼= Crit(gj) as
complex analytic spaces for all i, j. In particular, we can choose appropriate coordinate systems
under which we can write F as the sum of functions hij or fi or gj and non degenerate quadratic
forms, that is they are all stably equivalent to each other in the sense of Theorem 4.3.1.

Proof. In equation (8.2.27) there are three kinds of small triangles:

(i) Eight triangles with vertices U ′a,W
′
ab, Z or V ′b ,W

′
ab, Z.

(ii) Eight triangles with vertices U ′a,W
′
ab,C or V ′b ,W

′
ab,C.

(iii) Four triangles with vertices W ′ab, Z,C.

To show that (8.2.27) commutes, we must show all these triangles commute. For the triangles of
type (i) we can just check this by hand in an elementary way. The triangles of type (ii) commute
by Proposition 8.2.2 applied to π1, π2 or π3, π2 or π3, π4 or π1, π4. This leaves the triangles of type
(iii), which we will show commute by a similar proof to Proposition 8.2.2.

Consider the product symplectic manifold (S× S̄×S× S̄, ω⊕−ω⊕ω⊕−ω), where S̄ denotes
the symplectic manifold S corresponding to the symplectic form with the opposite sign. Write
pi : S×S×S×S → S for the projection to the i-th factor. In S×S̄×S×S̄ consider the Lagrangian
submanifolds N1 := L×∆S ×M and N2 := ∆S ×∆S . Identify it with T ∗(L×M ×L×M), and
thus π1 × π2 × π3 × π4 with π : T ∗(L×M ×L×M)→ L×M ×L×M, that is N1 with the zero
section, and N2 := ΓdF for a holomorphic function F : Z → C for open Z ⊆ L ×M × L ×M
normalized by F |(π1×π2×π3×π4)(N1∩N2) = 0. Consider the submanifolds

P12 := S × S ×∆34
S , P32 := L× S × S ×M, P34 := ∆12

S × S × S, P14 := S ×∆32
S × S.

In the same style as the proof of Proposition 8.2.14, intersect the Lagrangians with these
submanifolds. We can either identify N1 with the zero section and N2 = ΓdF , or N1 = Γ−dF

and N2 with the zero section. We will use both the options. Let us start with the submanifold
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P12, for which we use the second identification. Consider the following diagram of inclusions and
projections in S × S̄ × S × S̄ and S × S̄:

N1 ∩ P12 = L×∆234
M

p1×p2

��

⊂
,,

N2 ∩ P12 = N2 ⊂
//

p1×p2

��

P12 = S × S ×∆34
S

p1×p2

��

⊂
// S × S̄ × S × S̄

p1×p2

��
L×M

,,
∆S

⊂ // S × S̄ S × S̄.

(8.2.28)

Under the local symplectomorphisms S×S̄ ∼= T ∗(L×M) and S×S̄×S×S̄ ∼= T ∗(L×M×L×M),
equation (8.2.28) is identified with the diagram:

Γ−dF |(πL×πM×(π3|M◦πM )×πM )(W ′12)
⊂
++π12

��

z(L)×z(M)×z(L)×z(M) ⊂
//

π12

��

z(L)×z(M)×T ∗L×T ∗M

π12

��

⊂
// T ∗L×T ∗M×T ∗L×T ∗M

π12

��

Γ−dh12
⊂

++
z(L)× z(M)

⊂ // T ∗L× T ∗M T ∗L× T ∗M.

(8.2.29)
Here z : L → T ∗L, M → T ∗M are the zero section maps. To understand this, note that
π1×π2×π2×π4 maps N1∩P12 = L×∆234

M to the submanifold (πL×πM×(π3|M ◦πM )×πM )(L×M)
in L×M×L×M . Our identification S×S̄×S×S̄ ∼= T ∗(L×M×L×M) maps N1 7→ Γ−dF . Hence
the top term N1∩P12 in (8.2.28) is identified with the top term Γ−dF |(πL×πM×(π3|M◦πM )×πM )(W ′12)

in (8.2.29). As for (8.2.16)–(8.2.17), we see from (8.2.28)–(8.2.29) that the triangle of type (iii) in
(8.2.27) with vertices the top centre L×M , and L×M × L×M , and C, commutes.

Similarly, taking intersections with the submanifold P14 gives a diagram analogous to (8.2.28):

N1 ∩ P14 = N1
p1×p4

��

⊂
,,

N2 ∩ P14 = ∆1234
S ⊂

//

p1×p4

��

P14 = S ×∆23
S × S

p1×p4

��

⊂
// S × S̄ × S × S̄

p1×p4

��
L×M ⊂

,,
∆S

⊂ // S × S̄ S × S̄.

Using the first identification, this is identified with the diagram

z(L)× z(M)× z(L)× z(M)
⊂

++π14

��

ΓdF |(πL×(π2|L◦(π4|L×π1|M )−1)×
(π3|M◦(π4|L×π1|M )−1)×πM )(W ′14)

⊂
//

π14

��

z(L)× T ∗M × T ∗L× z(M)

π14

��

⊂
// T ∗(L×M × L×M)

π14

��

z(L)× z(M)
⊂

++
Γdh14

⊂ // T ∗(L×M) T ∗(L×M).

Here π1×π2×π2×π4 maps N2 ∩P14 = ∆1234
S to (πL× (π2|L ◦ (π4|L×π1|M )−1)× (π3|M ◦ (π4|L×

π1|M )−1) × πM )(L ×M), and we identify N2 with ΓdF , which is how we get the first term on
the middle line. From this we see that the triangle of type (iii) in (8.2.27) with vertices the left
hand L ×M , and L ×M × L ×M , and C, commutes. The remaining two type (iii) triangles
can be shown to commute in a similar way. Hence (8.2.27) commutes. Finally, the last part of
Proposition 8.2.3 follows directly from Theorem 4.3.1(i).
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In the situation of Proposition 8.2.3, set Y = X ∩S1∩S2∩S3∩S4. Then following the reason-
ing of (8.2.18)–(8.2.26) which defined the isomorphisms of perverse sheaves α12, β12 in (8.2.24)–
(8.2.25), from (8.2.27) we get a commutative diagram of isomorphisms of perverse sheaves:

(
PV•U1,f1

⊗Z2

QP1,U1,f1,i1

)
|Y

**

α12|Y
//

α14|Y��

(
PV•W12,h12

⊗Z2

QR12,W12,h12,k12

)
|Y

��

(
PV•V2,g2⊗Z2

QQ2,V2,g2,j2

)
|Y

tt

β12|Y
oo

β32|Y

��(
PV•W14,h14

⊗Z2

QR14,W14,h14,k14

)
|Y

// PV•Z,F ⊗Z2 QZ,F

(
PV•W32,h32

⊗Z2

QR32,W32,h32,k12

)
|Y

oo

(
PV•V4,g4⊗Z2

QQ4,V4,g4,j4

)
|Y

44

β14|Y

OO

β34|Y //
(
PV•W34,h34

⊗Z2

QR34,W34,h34,k34

)
|Y

OO

(
PV•U3,f3

⊗Z2

QP3,U3,f3,i3

)
|Y

jj

α34|Yoo

α32|Y

OO
(8.2.30)

Since (8.2.30) commutes, we deduce that

α32|−1
Y ◦β32|Y ◦ β12|−1

Y ◦ α12|Y = α34|−1
Y ◦ β34|Y ◦ β14|−1

Y ◦ α14|Y :(
PV•U1,f1

⊗Z2 QP1,U1,f1,i1

)
|Y −→

(
PV•U3,f3

⊗Z2 QP3,U3,f3,i3

)
|Y .

(8.2.31)

Equation (8.2.31) tells us something important. Suppose we start with polarizations π1 :
S1 → E1 and π3 : S3 → E3 transverse to L,M , and use them to define L-charts (P1, U1, f1, i1)
and (P3, U3, f3, i3), and hence perverse sheaves PV•U1,f1

⊗Z2 QP1,U1,f1,i1 on P1 = X ∩ S1 and
PV•U3,f3

⊗Z2 QP3,U3,f3,i3 on P3 = X ∩ S3. We wish to relate these perverse sheaves on the overlap
X ∩ S1 ∩ S3. To do this, we choose another polarization π2 : S2 → E2 transverse to L,M, π1, π3,
and define an M -chart (Q2, V2, g2, j2) and LM -charts (R12,W12, h12, k12) and (R32,W32, h32, k32).
Then as in (8.2.26), α−1

32 ◦ β32 ◦ β−1
12 ◦ α12 provides the isomorphism PV•U1,f1

⊗Z2 QP1,U1,f1,i1
∼=

PV•U3,f3
⊗Z2QP3,U3,f3,i3 we want on X∩S1∩S2∩S3. Equation (8.2.31) shows that this isomorphism

is independent of the choice of polarization π2 : S2 → E2.

8.2.3 Descent for perverse sheaves

To conclude the proof of Theorem 8.2.1, we use Theorem 1.3.5, so in particular a descent argument
to glue and get a global perverse sheaf. In this section we adopt the point of view of charts induced
by polarizations. This proof follows similar ideas to [18, §6.3].

Let (S, ω) be a complex symplectic manifold and L,M complex Lagrangian submanifolds in
S, and write X = L∩M, as a complex analytic subspace of S. Suppose we are given square roots

K
1/2
L ,K

1/2
M for KL,KM . We may choose a family of polarizations πa : Sa → Ea which defines

a family
{

(Pa, Ua, fa, ia) : a ∈ A
}

of L-charts (Pa, Ua, fa, ia) on X such that {Pa : a ∈ A} is
an analytic open cover of the analytic space X, so that Pa ∼= Crit(fa) for holomorphic functions
fa : Ua → C, and Ua complex manifolds (Lagrangians), and ia : Pa ↪→ Ua closed embeddings.

Then for each a ∈ A we have a perverse sheaf

i∗a
(
PV•Ua,fa

)
⊗Z2 QPa,Ua,fa,ia ∈ Perv(Pa), (8.2.32)

for QPa,Ua,fa,ia the principal Z2 bundle defined in §8.2 point (i) parametrizing choices of square

roots of canonical bundles K
1/2
L

∼=−→K1/2
M which square to isomorphisms (8.2.2). As explained

already in the introduction of §8.2, the idea of the proof is to use Theorem 1.3.5(ii) to glue the
perverse sheaves (8.2.32) on the analytic open cover {Pa : a ∈ A} to get a global perverse sheaf
P •L,M on X.
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We already know from Proposition 8.2.2 that, given an L-chart (P,U, f, i) and an M -chart
(Q,V, g, j) we have the isomorphism (8.2.11), which we recall here:

β−1 ◦ α : (i∗(PV•U,f )⊗QP,U,f,i)|P
∼= // (j∗(PV•V,g)⊗QQ,V,g,j)|P ,

that is, an isomorphism of perverse sheaves from L-charts and M -charts in Perv(P ∩Q).
Now, to develop our program, we have to show that if (Pa, Ua, fa, ia) and (Pb, Ub, fb, ib) are

L-charts, then we have a canonical isomorphism

δab : (i∗a(PV•Ua,fa)⊗QPa,Ua,fa,ia)|Pa∩Pb
∼= // (i∗b(PV

•
Ub,fb

)⊗QPb,Ub,fb,ib)|Pa∩Pb (8.2.33)

with the property that for any M -chart (Q,V, g, j) coming from π̃ : S̃ → F transverse to πa and
πb, we have

δab|Pa∩Pb∩Q = α−1
Ub,fb,W ′,h′

|Pa∩Pb∩Q ◦ βW ′,h′,V,g|Pa∩Pb∩Q ◦ β
−1
W,h,V,g|Pa∩Pb∩Q ◦ αUa,fa,W,h|Pa∩Pb∩Q.

(8.2.34)

To prove this, we first use Proposition 8.2.3, which provides an associativity result as in (8.2.12)
or (8.2.31). In particular, it shows that if (Q′, V ′, g′, j′) is another such M -chart, then

α−1Ub,fb,W ′,h′
|Pa∩Pb∩Q∩Q′ ◦ βW ′,h′,V,g|Pa∩Pb∩Q∩Q′ ◦ β

−1
W,h,V,g|Pa∩Pb∩Q∩Q′ ◦ αUa,fa,W,h|Pa∩Pb∩Q∩Q′ =

α−1Ub,fb,W ′′,h′′
|Pa∩Pb∩Q∩Q′ ◦ βW ′′,h′′,V ′,g′ |Pa∩Pb∩Q∩Q′ ◦ β

−1
W ′′′,h′′′,V ′,g′ |Pa∩Pb∩Q∩Q′ ◦ αUa,fa,W ′′′,h′′′ |Pa∩Pb∩Q∩Q′ .

Fix two charts (Pa, Ua, fa, ia) and (Pb, Ub, fb, ib), and choose a family
{

(Qc, Vc, gc, jc) : c ∈ I
}

of M -charts (Qc, Vc, gc, jc) on X transverse to both (Pa, Ua, fa, ia) and (Pb, Ub, fb, ib), such that
{Qc : c ∈ I} is an analytic open cover of Pa∩Pb. Then, we can use the sheaf property of morphisms
of perverse sheaves in the sense of Theorem 1.3.5, to get δab as in (8.2.34) by gluing

α−1
Ub,fb,W ′,h′

|Pa∩Pb∩Q ◦ βW ′,h′,V,g|Pa∩Pb∩Q ◦ β
−1
W,h,V,g|Pa∩Pb∩Q ◦ αUa,fa,W,h|Pa∩Pb∩Q

on the open cover {Qc : c ∈ I}. Also, δab satisfy (8.2.34) for all (Q,V, g, j), and this is independent
of choice of (Q,V, g, j). This is because we can run the construction above with the family{

(Pa, Ua, fa, ia) : a ∈ A
}
q
{

(Q,V, g, j)
}
, yielding the same result.

Moreover, on Pa ∩Pb ∩Pc we have δbc ◦ δab = δac. This is because, given locally a polarization
π̃ : S̃ → F transverse to all of πa, πb, πc, then on Pa ∩ Pb ∩ Pc ∩Q, we can easily check that

δbc ◦ δab|Pa∩Pb∩Pc∩Q =(α−1
Uc,fc,W ′′,h′′

◦ βW ′′,h′′,V,g ◦ β−1
W ′,h′,V,g ◦ αUb,fb,W ′,h′)◦

(α−1
Ub,fb,W ′,h′

◦ β−1
W ′,h′,V,g ◦ β

−1
W,h,V,g ◦ αUa,fa,W,h) =

(α−1
Uc,fc,W ′′,h′′

◦ βW ′′,h′′,V,g ◦ β−1
W,h,V,g ◦ αUa,fa,W,h) = δac|Pa∩Pb∩Pc∩Q.

As we can cover Pa ∩Pb ∩Pc by such open Pa ∩Pb ∩Pc ∩Q, we deduce that δbc ◦ δab = δac by the
sheaf property of morphisms of perverse sheaves in the sense of Theorem 1.3.5.

In conclusion, we have an open cover of X by L-charts (Pa, Ua, fa, ia), and isomorphisms
(8.2.33), satisfying δbc◦δab = δac. So by stack property of perverse sheaves in the sense of Theorem
1.3.5(ii), we get that there exists P •L,M in Perv(X), unique up to canonical isomorphism, with
isomorphisms

ωPa,Ua,fa,ia : P •L,M |Pa
∼= // i∗a

(
PV•Ua,fa

)
⊗Z2 QPa,Ua,fa,ia

as in (8.2.4) for each a ∈ A, with δab ◦ ωPa,Ua,fa,ia |Pa∩Pb = ωPb,Ub,fb,ib |Pa∩Pb for all a, b ∈ A. Also,
(8.2.5)–(8.2.6) with (Pa, Ua, fa, ia) in place of (P,U, f, i) define isomorphisms ΣL,M |Pa , TL,M |Pa
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for each a ∈ A. The prescribed values for ΣL,M |Pa ,TL,M |Pa and ΣL,M |Pb ,TL,M |Pb agree when re-
stricted to Pa∩Pb for all a, b ∈ A. Hence, Theorem 1.3.5(i) gives unique isomorphisms ΣL,M ,TL,M

in (8.2.1) such that (8.2.5)–(8.2.6) commute with (Pa, Ua, fa, ia) in place of (P,U, f, i) for all a ∈ A.
Also, the whole construction is independent of the choice of the family of L-charts and polar-

izations. This is because we can suppose
{

(Pa, Ua, fa, ia) : a ∈ A
}

and
{

(P̃a, Ũa, f̃a, ı̃a) : a ∈ Ã
}

are alternative choices above, yielding P •L,M ,ΣL,M ,TL,M and P̃ •L,M , Σ̃L,M , T̃L,M . Then applying

the same construction to the family
{

(Pa, Ua, fa, ia) : a ∈ A
}
q
{

(P̃a, Ũa, f̃a, ı̃a) : a ∈ Ã
}

to get

P̂ •L,M , we have canonical isomorphisms P •L,M
∼= P̂ •L,M

∼= P̃ •L,M , which identify ΣL,M ,TL,M with

Σ̃L,M , T̃L,M . Thus P •L,M ,ΣL,M ,TL,M are independent of choices up to canonical isomorphism.

8.3 Analytic d-critical locus structure on complex Lagrangian
intersections

Pantev et al. [142] show that derived intersections L ∩M of algebraic Lagrangians L,M in an
algebraic symplectic manifold (S, ω) have (−1)–shifted symplectic structures, so that Theorem
6.6 in [19], discussed also in §3, gives them the structure of algebraic d-critical loci. Here, we
will prove a complex analytic version of this. The result of this section, which is the complex
analytic version of Corollary 3.3.3 in §3, is Theorem 8.3.1, which states that the Lagrangian
intersection L ∩M of (oriented) complex Lagrangians L,M has the structure of an (oriented)
complex analytic d-critical locus. Notice at this point that we could have then used [18, Thm
6.9] to define a perverse sheaf P •L,M on L ∩M , instead of going through Theorem 8.2.1 in §8.2,
but we wanted to provide a clear and direct proof about how to glue perverse sheaves on complex
Lagrangian intersections in a complex analytic setup, and using only classical and symplectic
geometry. Note also that we cannot prove Theorem 8.3.1 by going via [142], as they do not do a
complex analytic version.

Here is the result of the section.

Theorem 8.3.1. Suppose (S, ω) is a complex symplectic manifold, and L,M are (oriented) com-
plex Lagrangian submanifolds in S. Then the intersection X = L ∩M, as a complex analytic
subspace of S, extends naturally to a (oriented) complex analytic d-critical locus (X, s). The
canonical bundle KX,s is naturally isomorphic to KL|Xred ⊗KM |Xred.

Proof. Let (S, ω) be a complex symplectic manifold, and L,M ⊂ S two complex Lagrangian
submanifolds of S. Given the complex analytic space X = L ∩M, we must construct a section
s ∈ H0(S0

X) such that (X, s) is a complex analytic d-critical locus. We use notation from §8.2,
and in particular the notions of L-chart, M -chart, and LM -chart.

We claim that there is a unique d-critical structure s on X, such that

1. every L-chart (P,U, f, i) from a polarization π1 : S1 → E1 transverse to L,M is a critical
chart on (X, s);

2. every M -chart (Q,V, g, j) from a polarization π2 : S2 → E2 transverse to L,M is a critical
chart on (X, s).

where L-charts and M -charts are defined using transverse polarizations. To show this we note
that the L-chart (P,U, f, i) determines a d-critical structure sP on P, and similarly the M -chart
(Q,V, g, j) determines a d-critical structure sQ on Q.

Next, for given L-charts and M -charts, we use the LM -charts (R,W, h, k) and Proposition
8.2.2 in §8.2 to show that sP |P∩Q = sQ|P∩Q.
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Then, we choose a locally finite cover of L-charts (Pa, Ua, fa, ia) for a ∈ A covering X, from
polarizations transverse to L,M. We choose M -charts (Qb, Ub, fb, ib) for b ∈ B covering X, from
polarizations transverse to L,M and all polarizations used to define the (Pa, Ua, fa, ia). Then we
get: sPa |Pa∩Qb = sQb |Pa∩Qb for all a, b. Hence sPa |Pa∩Pa′∩Qb = sPa′ |Pa∩Pa′∩Qb for all a, a′ ∈ A,
b ∈ B. As the Qb cover X, we have sPa |Pa∩Pa′ = sPa′ |Pa∩Pa′ , for all a, a′ ∈ A.

So there exists a unique section s with s|Pa = sPa , for all a ∈ A, as S0
X is a sheaf. Finally,

following the same technique of §8.2.3, the construction is independence of choices.

For the second part of the theorem, let (P,U, f, i), be a critical chart on (X, s). Then Theorem
2.1.6(i) gives a natural isomorphism

ιP,U,f,i : KX,s|P red −→ i∗
(
K⊗

2

U

)
|P red . (8.3.1)

Using (8.2.2), note that K2
U
∼= KL⊗KM , as the polarization π identifies both L,M with U locally,

giving isomorphisms KU |X ∼= KL|X ∼= KM |X . Now comparing with (8.1.1), we get KX,s|P red
∼=

det(LX)|P red for each (P,U, f, i), critical chart on (X, s). Comparing two critical charts, one
can show that the canonical isomorphisms constructed above from two such charts are equal on
the overlap. Therefore the isomorphisms glue to give a global canonical isomorphism KX,s

∼=
det(LX)|Xred . This completes the proof of Theorem 8.3.1.

Note that we did not use LMLM charts and Proposition 8.2.3 in §8.2.2. That is because
we are constructing a section s of a sheaf, (effectively, a morphism in a category), rather than a
(perverse) sheaf (an object in a category), so basically we only have to go up to double overlaps,
not triple overlaps.

8.4 Relation with other works and further research

In this section we briefly discuss related work in the literature, and outline some ideas for future
investigation.

The work of Behrend and Fantechi [8] The main inspiration for the present work was a
result by Behrend and Fantechi [8] in 2006. Their project aims to construct and study Gersten-
haber and Batalin–Vilkovisky structures on Lagrangian intersections. They consider a pair L,M,
of complex Lagrangian submanifolds in a complex symplectic manifold (S, ω), and they show that
one can equip the graded algebra T orOS−i (OL,OM ) with a Gerstenhaber bracket, and the graded
sheaf ExtiOS (OL,OM ) with a Batalin–Vilkovisky type differential. The approach is the same as
our approach, and in fact we were inspired by that: it is based on the holomorphic version of
the Darboux theorem, that is, any holomorphic symplectic manifold is locally isomorphic to a
cotangent bundle, thus reducing the case of a general Lagrangian intersection to the special case
where one of the two Lagrangian is identified with the zero section of the cotangent bundle of the
symplectic manifold, and the second one is the graph of a holomorphic function locally defined
on the first Lagrangian.

In particular, Behrend and Fantechi [8, Th.s 4.3 & 5.2] claim to construct canonical C-linear
differentials

d : ExtiOS (OL,OM ) −→ Exti+1
OS (OL,OM )

with d2 = 0, such that
(
Ext∗OS (OL,OM ),d

)
is a constructible complex, called the virtual de

Rham complex of the Lagrangian intersection X. Conjecturally, (E•,d) categorifies Lagrangian
intersection numbers, in the sense that the constructible function

p→
∑
i

(−1)i−dim(S) dimCHi
{p}(X, (Ext

•
OS (OL,OM ), d)),
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of fiberwise Euler characteristic of (Ext•OS (OL,OM ),d) is equal to the well known Behrend func-
tion νX in [5], and so

χ(X, νX) =
∑
i

(−1)i−dim(S) dimCHi(X, (Ext•OS (OL,OM ), d)).

Their main theorem [8, Th. 4.3] claims that the locally defined de Rham differentials coming
from the picture given by the holomorphic Darboux theorem, do not depend on the choices of
coordinates involved in the choice of a polarization of S, so that they can claim the existence
of a global canonical differential. Unfortunately, there is a mistake in the proof. To fix this one

should instead work with Ext∗OS (K
1/2
L ,K

1/2
M ) for square roots K

1/2
L ,K

1/2
M as in §8.2. Also the

relation between their virtual de Rham complex and vanishing cycles relies on a conjecture of
Kapranov [88, Rmk. 2.12(b)], which later turned out to be true just over the ring of Laurent
series - see Sabbah [148, Th. 1.1] (deformation–quantization setting, see discussion below).

The work of Kashiwara and Schapira [91] Kashiwara and Schapira [92] develop a theory
of deformation quantization modules, or DQ-modules, on a complex symplectic manifold (S, ω),
which roughly may be regarded as symplectic versions of D-modules. Holonomic DQ-modules
D• are supported on (possibly singular) complex Lagrangians L in S. If L is a smooth, closed,

complex Lagrangian in S and K
1/2
L a square root of KL, D’Agnolo and Schapira [29] show that

there exists a simple holonomic DQ-module D• supported on L.
If D•, E• are simple holonomic DQ-modules on S supported on smooth Lagrangians L,M ,

then Kashiwara and Schapira [91] show that RH om(D•, E•)[n] is a perverse sheaf on S over the
field C((~)), supported on X = L ∩M . Pierre Schapira explained to the authors of [18] how to
prove that RH om(D•, E•)[n] ∼= P •L,M , when P •L,M is defined over the base ring A = C((~)).

The work of Baranovsky and Ginzburg [4] Apart from the mistake in the proof, Behrend
and Fantechi’s work [8] gives a new important understanding of a rich structure on Lagrangian
intersection, investigated also by Baranovsky and Ginzburg [4], who obtained analogous results for
any pair of smooth coisotropic submanifolds L,M of arbitrary smooth Poisson algebraic varieties
S considering first order deformations of the structure sheaf OS to a sheaf of non-commutative
algebras and of the structure sheaves OL and OM to sheaves of right and left modules over the
deformed algebra. The construction is canonically defined and it is independent of the choices of
deformations involved. The proof of their main result, Theorem 4.3.1 in [4], shows that sometimes
the Gerstenhaber and Batalin–Vilkovisky structures on Tor or Ext are well-defined globally. In
their construction, this is the case, for instance, whenever in the setting of the proof of [4, Thm
4.3.1], some cocycles are defined globally.

The work of Kapustin and Rozansky [89] In [89], Kapustin and Rozansky study boundary
conditions and defects in a three-dimensional topological sigma-model with a complex symplectic
target space, the Rozansky-Witten model. It turns out that this model has a deep relation with
the problem of deformation quantization of the derived category of coherent sheaves on a complex
manifold, regarded as a symmetric monoidal category, and in particular with categorified algebraic
geometry in the sense of [14, 176]. Namely, in the case when the target space of the Rozansky-
Witten model has the form of the cotangent bundle T ∗Y , where Y is a complex manifold, the 2-
category of boundary conditions is very similar to the 2-category of derived categorical sheaves on
Y . More precisely, given a complex symplectic manifold (S, ω), Kapustin and Rozansky conjecture

the existence of an interesting 2-category, with objects complex Lagrangians L with K
1/2
L , such

that Hom(L,M) is a Z2-periodic triangulated category, and if L ∩ M is locally modelled on
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Crit(f : U → C) for f : U → C is a holomorphic function on a manifold U, then Hom(L,M) is
locally modelled on the matrix factorization category MF (U, f) as in [139].

Matrix factorization and second categorification It would be interesting to construct a
sheaf of Z2-periodic triangulated categories on Lagrangian intersection, which, in the language of
categorification, would yield a second categorification of the intersection numbers, the first being
given by the hypercohomology of the perverse sheaf constructed in the present work.

Also, this construction should be compatible with the Gerstenhaber and Batalin–Vilkovisky
structures in the sense of [4, Conj. 1.3.1].

Fukaya category for derived Lagrangian and d-critical loci It would be interesting to
extend Theorem 8.3.1 to a class of ‘derived Lagrangians’ in (S, ω).

Given a pair L,M, of derived complex Lagrangian submanifolds in the sense of [142] in a com-
plex symplectic manifold (S, ω), with dimC S = 2n, Joyce conjectures that there should be some
kind of approximate comparison Hk(P •L,M ) ≈ HF k+n(L,M), where HF ∗(L,M) is the Lagrangian
Floer cohomology of Fukaya, Oh, Ohta and Ono [45]. Some of the authors of [18] are working on
defining a ‘Fukaya category’ of (derived) complex Lagrangians in a complex symplectic manifold,
using H∗(P •L,M ) as morphisms. See [18] for a more detailed discussion.
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[35] A. Dimca and B. Szendrői, The Milnor fibre of the Pfaffian and the Hilbert scheme of four points on
C3, Math. Res. Lett. 16 (2009) 1037–1055. arXiv:0904.2419.

[36] S.K. Donaldson and R.P. Thomas, Gauge Theory in Higher Dimensions, Chapter 3 in S.A. Huggett,
L.J. Mason, K.P. Tod, S.T. Tsou and N.M.J. Woodhouse, editors, The Geometric Universe, Oxford
University Press, Oxford, 1998.
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