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Abstract

C*°-schemes are a generalisation of manifolds that have nice properties such as the exis-
tence of fibre products. C'°°-schemes have been used as a model for synthetic differential
geometry, as in Dubuc [21], Kock [55], and Moerdijk and Reyes [72], and for defining
derived differential geometry as in Lurie [62, §4.5], and Spivak [84].

Manifolds with corners are a generalisation of manifolds locally modelled on [0, 00)* x
R"~*and their smooth maps behave well with respect to the corners as in Melrose [68].
In particular, Joyce [47] describes a corner functor from the category of manifolds with
corners to the category of ‘interior’ manifolds with corners with mixed dimension.

C™-algebraic geometry with corners is the study of C'*°-rings and C°°-schemes with
corners, which we define in this thesis. We define (local/interior/firm) C*°-rings with
corners, and study categorical properties such as the existence of limits and colimits using
various adjoint functors. We describe a spectrum functor from C*°-rings with corners to
local C*°-ringed spaces with corners, and show this a right adjoint to a global sections
functor. We define C'*°-schemes with corners using this spectrum functor.

We show there is a full and faithful embedding of the category of manifolds with
corners into the category of firm C'°°-schemes with corners, and that fibre products of firm
(C*°-schemes with corners exist. We show that manifolds with corners are affine under
geometric conditions. We define (b-)cotangent sheaves of C'*°-schemes with corners and
show they correspond to the (b-)cotangent bundles of manifolds with corners of Joyce [47].

We describe the categories of interior local C'*°-ringed spaces with corners and interior
firm C'*°-schemes with corners. We construct corner functors for both of these categories,
which are right adjoint to the inclusion of these interior spaces/schemes into the non-
interior ones. We show that these corner functors correspond to the corner functor for
manifolds with corners.

We expect applications of this work in defining derived spaces with corners in derived
differential geometry, and we explore the connections of this work to log geometry and the

positive log differentiable spaces of Gillam and Molcho [28].
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Chapter 1

Introduction

Algebraic Geometry was revolutionised in the 1960’s when Alexander Grothendieck in-
troduced the concept of a ‘scheme’ and encouraged the use of category theory to study
these objects. Schemes generalise ‘varieties’, which are the solution sets of polynomial
equations. While both concepts (locally) correspond to an algebraic object called a ‘com-
mutative ring’, schemes allow more general commutative rings. This means they hold
more algebraic information about the polynomials and more specific information about
the functions between these solution sets. Schemes reflected Grothendieck’s sentiment
that we should care less about the objects studied and more about the functions between
the objects.

Differential Geometry studies ‘nice’ solutions to differential equations and the geometry
of these solutions, which are the spaces known as manifolds. While schemes generalise
varieties using commutative rings, in a similar way manifolds can be generalised by C'*°-
schemes using C'*°-rings. This is known as C'*°-algebraic geometry, and was originally
suggested by William Lawvere in the late 1960’s.

Recently, both Algebraic Geometry and Differential Geometry have been further gen-
eralised in Derived Geometry, which is based on the notions of schemes and C'°°-schemes.
One of the motivations for Derived Geometry is to study the parameter spaces of solu-
tions to equations known as moduli spaces. Moduli spaces appear prolifically in all areas
of Geometry, and in Mathematics more generally. In many cases, these moduli spaces are
well behaved and we can deduce many facts about possible solutions from their geometry,
topology and algebra. However, poorly behaved moduli spaces are also of importance,
and one of the aims of Derived Geometry is to understand these more complicated moduli
spaces.

Poor behaviour of moduli spaces includes the appearance of boundaries and corners



in their geometry, particularly when considering the process of compactification. To
study these moduli spaces in Differential Geometry requires understanding manifolds with
boundary and corners, and suggests generalising to their corresponding C'*°-rings and C*°-
schemes with corners.

This thesis defines these new concepts of C'*°-rings and C°°-schemes with corners and
studies their properties. We call this the study of C'*-algebraic geometry with corners,
and we aim to provide the foundational material necessary to describe moduli spaces with
boundary and corners in Derived Geometry.

We now make all of this more precise. We first introduce and motivate the key concepts,
then describe the main results and layout of thesis, and finally describe future work and

potential applications of C'**°-algebraic geometry with corners.

1.1 Motivation

We start by motivating why we should generalise manifolds using C'*°-algebraic geometry,

then consider manifolds with corners.

1.1.1 The category of manifolds

The category of smooth manifolds with smooth morphisms does not have particularly nice
properties. Firstly, the space of morphisms between two manifolds is not a manifold, as
it is an infinite dimensional space, however it has many similar properties to a manifold.
Secondly, fibre products of manifolds do not always exist. Let us be more precise about
fibre products.

Take the smooth morphisms f : R — R and g : R — R such that f(z) = 2? and
g(y) = y? for each x,y € R. The fibre product of the diagram (1.1.1)

R R

\f % (1.1.1)

R
if it exists, is a manifold X with morphisms p1,p2 : X — R such that fop; = gops. It
satisfies a universal property, that is, if any other space X’ comes equipped with morphisms
Py, P : X' — R with fop] = goph, then there is a unique map X’ — X that commutes
with all the other morphisms. Intuitively, the universal property makes X into the smallest
manifold that has the right morphisms pq, po.
Two pieces of information allow the calculation of fibre products of manifolds, with

further details in Appendix A.1. The first is that if the fibre product of manifolds exists,



its underlying set is equal to the fibre product of sets, which always exists and is well
known. Explicitly, for sets A, B, C' with set maps o : A — C, and 8 : B — C, then the
fibre product is the following set

Axc B ={(a,b) € Ax Bla(a) = B(b)}.

This is a subset of the usual cartesian product of sets A x B. Then the underlying set of
X is the set
X = {(z,y) € R*[z® = ¢*},

depicted in Figure 1.1.1.
The second important fact (Lemma A.1.3) tells us that in this case the topology of X
must be the topology from R?, so that X must be a submanifold of R2.

Figure 1.1.1: The fibre product X C R? as a set.

Yet X can be shown to not be a submanifold of R? (as we explain in Example A.1.4),
so the fibre product X cannot exist in the category of manifolds.

However, X is not a particularly badly behaved space. For example, there are mor-
phisms between it and manifolds that behave like smooth morphisms. It is also a simple
example of an algebraic variety, which can be studied by ordinary algebraic geometry. This
motivates considering generalisations of the category of manifolds to include such spaces.
C*-algebraic geometry is a way of doing this that considers generalising the R-algebra of

smooth maps from a manifold to R.

1.1.2 (C*-rings and C*°-schemes

For an R-algebra (R, +, %) we have the following maps: + : R x R — R the addition map;
— : R — R the additive inverse map; * : R X R — R the multiplication map; and for any

3



scalar A € R the scalar multiplication maps A : R — R,r — Ar. We also have two objects
0,1, which can be written as maps R® — R. These maps obey certain identities, and they
imply that all real polynomials p : R™ — R give operations R"™ — R.

For a smooth manifold X, the set of smooth functions to the real numbers, C*°(X), has
a natural R-algebra structure as well as a richer structure: For each smooth map f : R" —
R we can define an operation ®f : C®°(X)" — C®(X) by ®f(g1,..-,9n) = f(91,---,9n)-
This motivates our definition of C"*°-ring, as a set € such that for all smooth functions
[+ R" = R we have an operation ®; : ¢" — €. These operations ®; behave in a
reasonable way with respect to compositions of functions and coordinate projections.

Indeed, all C'*°-rings are commutative R-algebras. Examples of C°*°-rings include the
ring of k-th differentiable functions C*(X) for a manifold X and for all k = 0,1,..., 00,
quotients of C*°-rings by ideals, and Weil algebras. This category can be thought of as
an algebraic way to generalise manifolds.

C*°-rings were first mentioned in a lecture series by W. Lawvere [59] in 1967, although
examples existed before this. (C'°°-schemes are analogous to ordinary schemes in Alge-
braic Geometry, as they are locally ringed spaces that are locally isomorphic to spectra
of C*°-rings. Unlike ordinary schemes, the spectrum functor used for C'**°-rings has topo-
logical space constructed from only maximal ideals with residue field R. There is another
approach, as in Moerdijk, van Qué and Reyes [70], for defining a spectrum functor that
uses a different definition of local, however we do not consider this here. In each case, the
spectrum functor is a right adjoint to the global sections functor.

For a smooth manifold X, the spectrum functor applied to the C*°-ring C*°(X) returns
the C'°°-scheme with topological space X and the sheaf of smooth functions on X. This
gives a full and faithful embedding of the category of manifolds into the category of
C°-schemes, as in Moerdijk and Reyes [72, Th. 1.2.8]. Importantly, the category of C'*>°-
schemes addresses several shortcomings of the category of smooth manifolds, for instance
while the space of smooth maps between two manifolds is not a manifold, nor are arbitrary
fibre products of manifolds, both of these are C'*°-schemes. In fact all finite limits exist in
the category of C'*°-schemes. In this sense, the category of C*°-schemes can be considered
as geometric way to generalise the category of manifolds so that the resulting category
has better categorical properties.

This embedding of the category of manifolds motivated studying C'°°-rings and C'*°-
schemes as a model for synthetic differential geometry, which aims to understand differ-
ential geometry by using ‘infinitesimals’ to replace the ‘¢/d’ limit approach. Work along

these lines has been carried out in Moerdijk and Reyes [71-73], Moerdijk, van Qué and



Reyes [70], Kock [55], and Dubuc [19-21].

The study of C'*°-rings and C'°°-schemes has been called C*-algebraic geometry. Re-
cent motivation to study C'°°-algebraic geometry is to develop a version of derived geom-
etry for Differential Geometry, as originally suggested in Lurie [62, §4.5], and developed
by Spivak [84]. This has led to further studies in derived geometry by Borisov [8], Borisov
and Noel [10], and the ‘d-manifolds’/‘d-orbifolds’ of Joyce [41], and further refinement
of C*-algebraic geometry as in Joyce [40] and in Borisov [9]. Note that a d-manifold
is essentially a C'°°-scheme that is isomorphic to the fibre product of manifolds, with an
extra sheaf structure. This motivates using a category that contains manifolds and their

fibre products.

1.1.3 Other generalisations of the category of manifolds

C*°-schemes can be viewed as starting with the maps C°°(X) and asking how can this
structure be generalised. This is an example of the ‘maps out’ generalisation of manifolds:
we generalise smooth maps out of the space X to R. There are several other ‘maps out’
approaches, such as those defined in Sikorski [81], and several papers by Spallek starting
with [83]. Many of the ‘maps out’ approaches are also summarised in great detail by
Buchner et al. [7].

One of the approaches by Spallek has been further studied in the book Navarro
Gonzdlez and Sancho de Salas [76]. In this book, it is known as the category of C°°-
differentiable spaces, and this category also has all finite limits. C°°-differentiable spaces
are equivalent to a subcategory of C'*°-schemes, specifically to C'*°-schemes that are lo-
cally isomorphic to the spectrum of certain quotients of C°°(R") known as differentiable
algebras. Then the category of manifolds also embeds fully and faithfully into affine C°°-
differentiable spaces, and this embeds fully and faithfully into the category of C°°-schemes.
The spaces defined in Sikorski [81] are a nice subcategory of C'*°-differentiable spaces, and
these have been expanded to a sheaf-theoretic version in Mostow [75], who also compares
these notions in more detail.

Reversing the viewpoint, there have been several ‘maps in’ approaches that generalise
the idea of smooth maps from a (subset of) a Euclidean space to the space X. These
approaches include the Diffeological Spaces of Souriau [82] described further in Iglesias-
Zemmour [36], and the various Chen spaces from Chen [12-15]. These notions work
particularly well for considering infinite dimensional spaces (as the morphisms R" — X
capture information of finite dimensional subspaces), and to describe quotient spaces.

In each of these ‘maps in’ approaches, one begins by taking a set (or topological space)



and a collection of maps out of the space (often called plots) that satisfy certain conditions,
such as allowing composition with the usual smooth morphisms and requiring that if a
map is a plot locally, then it is a global plot. Stacey [85] compares these various different
notions, and their relations to Sikorski’s ‘maps out’ approach. However, while each of
these notions generalises smooth manifolds in ways to allow fibre products, they do not
do this by considering spectra of rings in ways similar to Algebraic Geometry, and this

approach is not well suited for derived geometry.

1.1.4 Derived geometry

We are motivated to develop the theory of C'°°-algebraic geometry with corners so it can
be used in derived differential geometry as in Joyce [41]. Let us explain the origins of
derived geometry.

Derived geometry was initially conceptualised for algebraic geometry. The motivation
arose from trying to define invariants from moduli spaces that were very singular, as in
Kontsevich [56]. To say something is singular, usually one means either it has quotient
singularities or it has intersection singularities. On the level of spaces, schemes can handle
intersection singularities well and stacks can handle quotient singularities well, but coho-
mology theories do not necessarily behave well without additional assumptions. Here, the
usual notion of cotangent bundle is not sufficient to capture the singular nature of the
space, instead cotangent complexes are more appropriate.

Bertand Toén, Gabriele Vezzossi and Jacob Lurie developed many of the initial ideas
of Derived Algebraic Geometry, and the survey paper Toén [86] details the extensive
applications and further developments of this work in the wider mathematical community.
A more recent survey paper by Anel [4] also describes the ideas in derived geometry to
motivate its use. In Derived Algebraic Geometry, the cotangent complexes live naturally
and hold the information required about the singular nature of a space.

Lurie in [62] first described how to apply many of the ideas of Derived Algebraic
Geometry to differential geometry. Much of the foundational work was carried out by
Lurie’s student David Spivak in his thesis [84]. Further work has been undertaken by
Borisov [8], and Borisov and Noel [10], although their derived objects formed an oo-
category. The derived differential geometry of Joyce [41] involves only a 2-category of
derived spaces. All of these approaches are built from C°-rings, C*°-schemes and C°°-
stacks.

The motivation behind the ‘d-manifolds’ of [41] is also related to defining invariants

of certain moduli spaces. This results in requiring additional structure on the moduli



spaces, which may be spaces with corners. A manifold with corners is one such space with
corners. The thesis involves building a model of C*°-rings and C'*°-schemes with corners
that describes manifolds with corners, not just manifolds. One can then define C'°*°-stacks
with corners and derived spaces with corners to capture the structure of these moduli

spaces with corners.

1.1.5 Manifolds with corners

The definition of manifold with corners involves generalising the local model of a manifold
from R" to R} = [0, o0)F x R™ %, and generalising the smooth maps between the local
models, for which there are several different approaches in the literature. We will use the
notion of smooth maps of manifolds with corners that are called ‘b-maps’ in Melrose [68].
These are also used in more recent work by Joyce as in [47]. These b-maps respect the
boundary and corners of a manifold with corners. This allows for a definition of a corner
functor, that takes manifolds to their ‘space of corners’, which is a manifold with corners
of mixed dimension.

Manifolds with corners have been studied in a variety of contexts, beginning with
Cerf [11] and Douady [18] in 1961, as natural ways to extend the notion of a manifold
with boundary. Their work was motivated by understanding questions from differential
topology, for example, to understand homotopy types of diffeomorphism groups of spheres
and other compact manifolds of dimension 3, and they gave many foundational results.

There have been a variety of applications from this work on manifolds with corners in
differential topology, including those of Jénich [37]. Jénich considered the classification
of manifolds with an O(n) action (called O(n)-manifolds) by decomposing into certain
‘parts’ that are often manifolds with corners. Previously, if such a manifold with corners
was obtained, the corners were often smoothed in some way, eliminating the need to study
manifolds with corners in general. However, Jénich explains this approach is not helpful
for this decomposition, and uses the manifold with corners results of Cerf and Douady to
give a ‘classification by parts’ of certain O(n)-manifolds.

Other applications in differential topology include defining the cobordism category of
a manifold with corners as in Laures [58], and to define ‘extended topological quantum
field theories’, which are functors between cobordism categories and categories of vector
spaces as in Kerler [54].

Manifolds with corners arise naturally in many contexts. They can arise directly
such as when considering solutions to the partial differential equation that governs the

motion of a square drum when struck. They can also arise indirectly. For example, many



results work well for compact manifolds and such results may need to be extended to
non-compact manifolds by compactifying them. Upon compactifying, the manifold may
become a manifold with corners, so the results need to be generalised for manifolds with
corners. One example is from Monthubert and Nistor [74] who recently extended results
from index theory to non-compact manifolds using manifolds with corners.

For many such applications in analysis, fundamental theorems on the geometry and
analysis of manifolds and manifolds with boundary were extended to manifolds with cor-
ners, as in Melrose [68]. There have also been generalisations of manifolds with corners
along these lines, including the manifolds with analytic corners of Joyce [48].

Another generalisation of manifolds with corners is manifolds with g-corners, as in
Joyce [47]. These allow a more general local model and we will show that many of our

results on manifolds with corners extend to these manifolds with g-corners.

1.1.6 Motivations from symplectic geometry

Some of the specific invariants that have motived derived differential geometry have arisen
in symplectic geometry, as in Joyce [41].

In symplectic geometry, the objects of interest are symplectic manifolds, and classifying
these spaces involves understanding how maps, called J-holomorphic curves, into the
manifold behave. J-holomorphic curves, also known as pseudo-holomorphic curves, are
curves from a Riemann surface (often the Riemann sphere) to the symplectic manifold that
commute with the complex structure from the Riemann surface and an almost complex
structure (called J) on the symplectic manifold.

Recent research in symplectic geometry concerns defining invariants (e.g. numbers,
cohomology classes, categories) on a symplectic manifold using J-holomorphic curves.
Specifically, it aims to define invariants (akin to Gromov-Witten invariants) by ‘counting’
the moduli spaces of J-holomorphic curves arising from a symplectic manifold.

When the J-holomorphic curves are generic, they create families called moduli spaces,
M(J, A), that are parameterised by J and the integer homology classes A of the manifold
that this curve represents. In the nice cases, each family is in fact a finite dimensional
manifold and, while not necessarily compact, there are ways to define invariants such as
the Gromov-Witten invariants as described in McDuff and Salamon [65].

However, to define invariants on these moduli spaces of J-holomorphic curves in general
(for example for symplectic manifolds that are not weakly monotone), more structure
on the moduli spaces is needed. There are several proposed options for this structure:

Kuranishi spaces, polyfolds, and derived spaces. Kuranishi spaces were first defined in



Fukaya and Ono, [24], and expanded upon in Fukaya et al. [25]. While they have made a
lot of progress on this, their definition of Kuranishi space has issues, such as not having a
nice notion of morphism and relying on many arbitrary choices.

Polyfolds are an alternative theory to Kuranishi spaces. They were first defined by
Hofer, and developed in a series of papers by Hofer, Wysocki and Zehnder [35]. They
were proposed to solve several issues with Kuranishi spaces. While there has been much
work on foundations of this area, there is still progress to be made on the applications of
defining invariants.

Joyce has proposed ‘d-orbifolds with corners’ as the model for the moduli spaces of
J-holomorphic curves. This model first uses C'*°-rings and C°°-schemes to describe C*°-
stacks, as in Joyce [40]. It then considers C'*°-stacks that come from fibre products of
orbifolds, and adds an extra sheaf to become a d-orbifold. Then d-orbifolds form a 2-
category with nicely behaved morphisms. There is a provisional notion of corners structure
on a d-orbifold, which adds another sheaf to the d-orbifolds. Joyce [43] shows d-orbifolds
with such corners structure are equivalent to a version of Kuranishi spaces as a 2-category,
and that these M (J, A) indeed have such a structure. However, this definition of ‘d-orbifold
with corners’ is provisional, as it currently has problems with identifying the correct corners
structure.

This thesis is motivated by ideas to refine the definition of d-orbifolds with corners (and
other derived spaces with corners). Instead of adding a sheaf at the end of the construction
that defines the corners, one should start with a C°°-schemes with corners structure (or
C*°-stack with corners structure). This should make the d-orbifolds with corners easier
to define for each M (J, A), and also describe properties between the C°°-schemes and the
corners precisely. It is intended by Joyce that final version of a d-orbifold with corners

will use the C°°-schemes with corners defined in this thesis.

1.2 What is in this thesis

This thesis defines C*°-rings with corners and C'*°-schemes with corners. It explores several
properties of both ideas. It shows, under certain conditions, fibre products of C*°-schemes
with corners exist. It describes how the category of manifolds with corners can be fully and
faithfully embedded into this category. It also describes a corner functor, which returns
the space of corners associated to certain C'°°-schemes with corners. Our C°°-schemes
with corners are related to log geometry, in the sense of ‘positive log differentiable spaces’

described in Gillam and Molcho [28], which extend the notion of C'*°-differentiable space.



In Chapter 2, we recall background on C°°-rings and C°°-schemes; this section is
mostly a summary of background material found in Dubuc [21], Joyce [40, §2-§5] and
Moerdijk and Reyes [72]. We recall the two definitions of C'*°-rings, and that the category
of C*°-rings is the category of algebras over an algebraic theory (in the sense of Addmek,
Rosicky and Vitale [3]) so it has all small limits, directed colimits, and small colimits.
We recall the definition of local C'*°-rings and discuss their limits and colimits. We recall
the definition of C'*°-scheme, and we describe a subcategory of C°°-rings called complete
C*°-rings for which there is an equivalence of categories with the category of affine C*°-
schemes. We use this to show that finite limits of C'"*°-schemes exist. Section 2.4.1 is new,
where we discuss infinite products of (affine) C*°-schemes.

Chapter 3 describes background on manifolds with corners, as in Joyce [39,47], and
Melrose [68], and recalls important facts on monoids to describe manifolds with g-corners.
It defines smooth maps of manifolds with (g-)corners, the boundary and corners of a
manifold with (g-)corners, and the corner functor. It also describes their (co)tangent
bundles and, briefly, how their fibre products behave.

The content of Chapter 4 is mostly new and is joint work with Dominic Joyce. We
describe two notions of pre C'*°-ring with corners, one as a functor from Euclidean spaces
with corners to sets, and one as a pair (€, €4y ) where € is a C*°-ring and €ex is a monoid,
such that the pair behaves well under smooth maps of manifolds with corners. These
notions were first considered in the masters thesis by Kalashnikov [51]. Similar to C'°°-
rings, pre C°°-rings with corners are also algebras over an algebraic theory and have all
small limits, directed colimits, and small colimits. We add an additional condition to
define C'*°-rings with corners, and show that limits, directed colimits and small colimits
exist in this category too. We describe free C*°-rings with corners, and how to add
relations, and then give a notion of local C*°-rings with corners and localisations, which
we use to define C'>°-schemes with corners in Chapter 5. We describe many functors and
their adjoints to study limits and colimits of these categories. We also describe modules
and (b-)cotangent modules of C'*°-rings with corners, and prove that they are isomorphic
to the global sections of the (b-)cotangent bundles of both manifolds with corners and
manifolds with g-corners locally and, under certain conditions, globally.

Chapter 5 is new work and comprises of just under half the material in this thesis.
It introduces C*°-ringed spaces with corners and shows small colimits and small limits
exist in this category. We construct a spectrum functor that is right adjoint to a global
sections functor. We define C*°-schemes with corners and show that manifolds with (g-)

corners embed fully and faithfully into this category. We originally aimed to show that
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all finite limits of C'°°-schemes with corners exist, however, there are many interesting
differences between the category of C'°°-schemes and C'*°-schemes with corners that cre-
ated difficulties for this. Instead, we show that finite limits exist under a certain finitely
generated assumption (which we call firm), where manifolds with (g-)corners considered as
C*°-schemes with corners satisfy this assumption. We use the category of semi-complete
C*°-rings with corners to do this, and we study this category for this purpose.

In Chapter 5 we also define the subcategory of interior C'°°-schemes with corners
and describe how all our categories relate with functors and their adjoints. We show
that there is a corner functor for firm C*°-rings with corners that is right adjoint to the
inclusion of interior firm C'°°-schemes with corners into firm C'°°-schemes with corners.
Similarly, we show there is a corner functor between interior and non-interior local C°°-
ringed spaces with corners, and we explain how these two corner functors relate. We
describe the boundary and corners of a C°°-scheme with corners, and match this with
the definitions of boundary and corners of a manifold with (g-)corners. Chapter 5 also
surveys log geometry, log schemes, and positive log differentiable spaces, and explains how

our C*°-schemes with corners relate to these.

1.3 Summary of main results

1.3.1 (C*°-rings and C'*°-schemes with corners

The new work of Chapter 4 is joint work with Dominic Joyce. We define pre C*°-rings
with corners and categorical pre C°°-rings with corners, which originally appeared in
Kalashnikov [51]. We show these are equivalent, so pre C*°-rings with corners can be
identified as the category of algebras over an algebraic theory. This gives results on
existence of small limits and colimits. We describe forgetful functors between pre C'°-
rings with corners and the category of C*°-rings, and describe adjoints to this. We add
an extra condition to define C'"*°-rings with corners, and give an adjoint functor from pre
C*°-rings with corners to describe how their limits and colimits relate. We also define
subcategories of C*°-rings with corners (interior, local, finitely generated, free, firm), and
explore whether these categories also have colimits and limits using adjoint functors.

We define localisations of C'*°-rings with corners, and explicitly describe localising at
an ‘R-point’. This is important for defining a spectrum functor. We then define modules
over C'°-rings with corners and give notions of cotangent and b-cotangent modules.

The new work of Chapter 5 is in defining C'*°-schemes with corners and their properties.

First we describe a suitable category of local C*°-ringed spaces with corners, and then a
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spectrum functor for both C'*°-rings with corners and interior C°°-rings with corners.
We show each spectrum functor is right adjoint to a global sections functor. The aim
was to show that finite limits in the category of C°°-schemes existed, but this was more

complicated than originally thought.

1.3.2 Finite limits

For an ordinary ring R, then I' o Spec(R) = R where Spec is the spectrum functor in
ordinary algebraic geometry, and I' is the global sections functor. Here Spec is right
adjoint to I' considered as functors between ordinary rings and ordinary local ringed
spaces with corners. Then these functors give an equivalence of categories between the
(opposite) category of ordinary rings and ordinary affine schemes. As finite colimits exist
in the category of ordinary rings, then finite limits exist in the category of ordinary affine
schemes. One can then show finite limits of ordinary schemes exist, by either glueing
together the finite limits of affine neighbourhoods, or describing the finite limits of local
ringed spaces with corners and showing these are locally isomorphic to the finite limits of
affine neighbourhoods.

For C*°-ring €, then I' o Spec € 2 € in general, where we are now using the spectrum
functor for C*°-rings. However, Spec is still a right adjoint to I" considered as functors
between the (opposite) category of C*°-rings and local C*°-ringed spaces with corners, and
there is a canonical isomorphism Spec oI’ o Spec € = Spec €. Using this isomorphism, we
can define ‘complete’ C*°-rings to be C*°-rings such that I' o Spec € = €, and show there
is an equivalence of categories between complete C°°-rings and affine C°°-schemes as in
Joyce [40]. As complete C'*°-rings have all finite colimits, then affine C'*°-schemes have all
finite limits. Constructing limits of C'°°-schemes in the category of local C'"*°-ringed spaces
and showing they are locally isomorphic to finite limits of affine C°°-schemes implies that
the category of C'°°-schemes has all finite limits.

For a C*°-ring with corners (€, €.y), not only is I'® o Spec(€, €oy) Z (€, €ex), but we
also have Spec®oI'® o Spec®(€, Cex) 2 Spec(€, €ey) in general. Here Spec® and I'® are the
spectrum and global section functors for C'*°-rings with corners. We can still show that
Spec® is right adjoint to I'°, however because Spec® oI o Spec®(€, €qy) 2 Spect(€, Cex) in
general we do not expect an equivalence of categories between a (sub)category of C*°-rings
with corners and affine C'*°-schemes with corners.

Instead we use the category of semi-complete C*°-rings with corners, and start by
showing that the category of local C*°-ringed spaces with corners has all finite limits.

Then we show that when a finitely generated condition on € holds, finite limits of
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C*°-schemes with corners exist and are equal to finite limits in the category of local C°°-
ringed spaces with corners using these semi-complete C'*°-rings with corners. This finitely
generated condition we call firm and manifolds with (g-)corners considered as C*°-schemes
with corners satisfy this condition. We also describe a similar result for interior C'**°-ringed

spaces/schemes with corners.

1.3.3 Embedding manifolds (with corners)

As mentioned in the background of §2, the category of manifolds embeds fully and faith-
fully into the category of C°°-schemes, in fact into the category of affine C'°°-schemes.
Transverse fibre products of manifolds exist in the category of manifolds and respect this
embedding. There is a cotangent module for each C°°-ring and cotangent bundle for each
C*°-scheme that correspond with the cotangent module and bundle of a manifold.

In this thesis, we show the category of manifolds with corners embeds fully and faith-
fully into the category of C°°-schemes with corners, but the image is only affine when
the manifolds with corners have faces, which is a nice geometric property. This geometric
property means ‘local behaviour comes from global behaviour’, which we explain further in
Theorem 5.5.2. Manifolds with g-corners also embed fully and faithfully into the category
of C*°-schemes with corners, however an equivalent geometric property to faces does not
imply that local behaviour comes from global behaviour, and the image is not affine in
general.

This issue extends to cotangent modules and bundles, where there is also another ver-
sion of this, the b-cotangent module and b-cotangent bundle. These b-cotangent modules
and bundles behave better with respect to the smooth maps of manifolds with corners.
We show the cotangent module and b-cotangent module are isomorphic to the global sec-
tions of the cotangent and b-cotangent bundles on coordinate charts of manifolds with
corners and manifolds with g-corners. If we consider manifolds with faces (with finitely
many boundary components), then this is true globally not just on coordinate charts,
but this does not apply for manifolds with g-corners. However, the cotangent sheaf and
b-cotangent sheaf do match the cotangent bundles and b-cotangent bundles of manifolds

with (g-)corners globally.

1.3.4 Corner functors

Manifolds with (g-)corners have a notion of corner functor as in Joyce [47], which takes
a manifold with (g-)corners to a manifold with corners of mixed dimension with interior

maps, and which behaves well when using the smooth maps (called b-maps) of Melrose
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[66-68]. Manifolds with (g-)corners also have a boundary and k-corners as defined in §3.3.

We generalise this corners functor in §5.7 and §5.8. We show that there is a corner
functor C'°¢ for local C'*®-ringed spaces with corners, which is right adjoint to the inclusion
of interior local C'*°-ringed spaces with corners into the category of C'*°-ringed spaces
with corners. This means the inclusion preserves colimits and the corner functor preserves
limits. The corner functors are related to a description of boundary from Gillam and
Molcho [28] for positive log differentiable spaces.

We use a different definition of corner functor C for firm C°-schemes with corners,
and show this is right adjoint to the inclusion of interior firm C'°°-schemes with corners
into firm C'*°-schemes with corners. We show C' is equivalent to the restriction of C'°¢ to
firm C*-schemes with corners. To define C, we could have just restricted C'°¢ to firm
(C*°-schemes with corners and showed that its image lies in interior firm C'*°-schemes with
corners, however with our definition of C' the corners of the schemes can understood and
studied without needing to consider ringed spaces. We suspect this may be useful from a
derived geometry perspective.

We show that C'°¢ applied to an arbitrary C>°-scheme with corners is not always a
(C*°-scheme with corners, so we do not expect to be able to extend the notion of corners
to C°°-schemes with corners that are not firm. We define the boundary and k-corners
of firm C°°-schemes with corners and local C*°-ringed spaces with corners, then describe
how they match with the boundary and k-corners of manifolds with (g-)corners and how
they relate to the boundary defined in [28]. As a corollary we show the corners functors
of manifolds with (g-)corners are also right adjoints, and satisfy a universal property.

While we were motivated to study finite limits/fibre products from derived geometry,
the corner functor for firm C'*°-schemes with corners is constructed from colimits of C'*°-
schemes with corners and motivates studying how colimits behave too. We have done
this following colimit results from ordinary (locally) ringed spaces from Demazure and

Gabriel [17, Prop. 1.1.1.6], and then describing colimits for C*°-schemes with corners.

1.4 Future work and applications of ("*°-algebraic geometry
with corners

There are a few loose ends and potential extensions of C'°°-algebraic geometry. For exam-

ple, in §4.5 we define various subcategories of C*°-rings with corners (e.g. toric, integral,

saturated), and we expect their corresponding C'*°-schemes with corners to behave better

than arbitrary C'°°-schemes with corners, and to have nice results about the corners and
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boundary.

We would also like to prove that transverse fibre products of manifolds with (g-)
corners respect the embedding into C*°-schemes with corners. In Remark 5.5.5 we suggest
appropriate notions of transverse for manifolds with (g-)corners to do this. Some tentative
calculation suggests restricting to the category of toric C*°-rings/schemes with corners may
be required here.

Remark 5.4.9 discusses a left adjoint to a certain functor that would describe how
limits of C°°-schemes with corners behave and relate to C°°-schemes. There is an issue
with showing the existence of this adjoint with the current method we have, and further
insight on this would be appreciated.

Proposition 5.4.7 characterises interior firm C°°-schemes with corners as firm C°-
schemes with corners that are interior C'*°-ringed spaces with corners. It would be in-
teresting to see whether all C"*°-schemes with corners that are interior C°°-ringed spaces
with corners are interior C'*°-schemes with corners, as we mention in Remark 5.4.6.

In Proposition 5.4.10 we show fibre products of C*°-schemes with corners exist under
certain conditions. In Remark 5.4.11 we suggest a counterexample to the existence of fibre
products in general, which would be interesting to verify.

Originally C'*°-rings and C*°-schemes were studied as a model for synthetic differential
geometry, and our (firm) C*°-rings with corners and C°°-schemes with corners could be
investigated as a model for synthetic differential geometry with corners.

The corner functor could possibly motivate a corner functor for log geometry, and some
of our ideas of boundary and corners could be translated over to this field.

We should be able to define and study C'°°-stacks with corners and C'°°-orbifolds with
corners, and then consider derived spaces with corners. We expect that only firm C°°-
schemes/stacks with corners will be necessary, which will mean fibre products exist and
there is a possibility of a corner functor for these derived spaces.

Along these lines, we expect a relationship between Kuranishi spaces and C'*°-schemes
with corners. Joyce [43] describes a modification of the Kuranishi spaces (with corners) of
Fukaya and Ono [24], which has nice morphisms, and shows that there is an equivalence
of 2-categories between these modified Kuranishi spaces (with corners) and d-orbifolds
(with corners). The original notion of d-orbifold with corners in Joyce [43] was considered
without the definition of C'"*°-scheme with corners and Joyce is intending to refine this
notion using the work in this thesis, so that there are corner functors for these categories.
There is a truncation functor from d-orbifolds to C'*°-schemes, and we expect that there

will be a truncation functor from d-orbifolds with corners to C°°-schemes with corners.
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Chapter 2

Background on ('°“-rings and

C'*®-schemes

We begin with background material and results on C'°°-rings and C°°-schemes, which we
will later generalise to C°°-rings with corners and C°°-schemes with corners. References
for this section include Dubuc [20,21], Moerdijk and Reyes [72], and Kock [55], which all
have a view towards synthetic differential geometry, and Adamek, Rosicky and Vitale [3]
who consider algebraic theories and their algebras, which generalise C*°-rings from a
categorical perspective.

In this chapter, we follow closely the work of Joyce [40, §2—§5], particularly in notation.

First, we remark on the notation used from category theory.

Remark 2.0.1. We do not define basic notions of a category nor constructions such as
functors, adjoints, limits, colimits, fibre products etc. which can be found in standard texts
such as Mac Lane [63], Leinster [61] and Awodey [5]. However, we write the following for
notational purposes.

Limits of a diagram in a category, where they exist, are an object in the category
with a universal property, such that it has morphisms from the limit into each element
of the diagram. Colimits are similar with morphisms to the colimit from each element of
the diagram. When we say small limit or colimit, we mean a diagram whose collection
of objects and morphisms form sets. When we say finite limit or colimit we mean the
collection of objects in the diagram is finite.

(Co)products are (co)limits over a diagram that has no morphisms between each
element of the diagram. If the category has a final/terminal (or initial) object, then
(co)products are the same as (co)limits over the same diagram with added morphisms to

this final object (from this initial object). When we say fibre product, we mean a limit over
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the diagram of the form A — B < C, which is a finite limit. If B is the terminal object,
then the fibre product is just the product of A and C'. All finite limits exist if and only if
there is a terminal object and all fibre products exist in this category, as each finite limit
is an iterated number of fibre products over the terminal object. When we say pushout
we mean fibre coproduct, that is a colimit over the diagram of the form A < B — C, and
there are similar observations about existence with initial objects.

If a functor is a right adjoint, it preserves limits, and its corresponding left adjoint
preserves colimits. Adjoints are defined in several equivalent ways, using unit and counits,
using natural transformations, using initial and final objects, and we will make use of all

of them. These different definitions can be found for example in Leinster [61, Ch. 2].

2.1 Two definitions of C'*°-ring

Here we recall two different notions of C*°-rings. This section follows results of Dubuc [21],
Joyce [40], and Moerdijk and Reyes [72]. Proposition 2.1.11 expands on details suggested
in [21, Prop. 5], but other than this, there is no new material and we keep notation similar
to [40].

We first define C'"*°-rings as functors using the category of Euclidean spaces, as in
Joyce [40].

Definition 2.1.1. Let Euc be the category of Euclidean spaces with objects R™, for non-
negative n, and morphisms all smooth maps. Let Man be the category of manifolds with
smooth morphisms. Let Sets be the category of sets with set maps. The notions of finite
products in Euc and Sets are well defined, where R™™" = R™ x R" is the product of R"
and R™, and A x B is the product of sets A, B.

A product-preserving functor F' : Euc — Sets is called a categorical C*°-ring. We
require that F preserves the empty product, so it maps RY in Euc to the point *, the final
object in Sets.

A morphism n: F — G between categorical C*°-rings F, G : Euc — Sets is a natural
transformation 7 : F' = G. These will automatically preserve products. We use the
notation CC°°Rings for the category of categorical C'*°-rings and these morphisms. C°°-
rings in this sense are an examples of algebras over the algebraic theory Euc in the sense
of Addmek, Rosicky and Vitale [3], and many categorical properties of C'*°-rings follow
from [3].

Here is an alternative definition of C'"*°-rings as in classical algebra:
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Definition 2.1.2. A C*-ring is a set € that is equipped with operations

" n copies

Qp:C"=Cx---xC€—C
for all non-negative integers n and all smooth maps f : R" — R. We use the convention
that when n = 0, then €° is the single point {0}. We require that these operations
satisfy the following composition and projection relations. For the composition relations,
take non-negative integers m,n, and smooth functions f; : R® — R for s = 1,...,m and

g :R™ — R. Let h be the composition

h(z1,..., %) :g(fl(xl,...,xn),...,fm(xl,...,a;n)),

for all (z1,...,z,) € R™. For any (ci,...,c,) € €" we require

Pp(ct,. .. ) =Pg(Pp(cr,icn)y s Py (1,0 cn)).

For the projection relations, let 7; : R — R, 7 : (z1,...,2y) — x; be the j-th projection
map for each 1 < j < n, then we require @, (c1,...,c,) = ¢; for all (c1,...,c,) € €".

We call each ¢ a C°°-operation. Usually we refer to € as the C°°-ring, and leave the
C*°-operations implicit.

A morphism between C'°-rings ¢ : € — © is a map of sets ¢ : € — © such that for
all smooth f:R"” — R and ¢1,...,¢, € € then \I'f(gb(cl), . .,gi)(cn)) =¢po®s(cr,... cn),
where @y and ¥ are the C*°-operations for € and D respectively. We will write C*°Rings
for the category of C°°-rings.

There is a forgetful functor II : C*°Rings — Sets mapping a C*®-ring € to its
underlying set €, forgetting the C'*°-operations.

Each C*®-ring ¢ has the structure of a commutative R-algebra. Here, let f : R? - R
is f(z,y) = = + y be the smooth addition map, then addition ‘+’ on € can be defined
by ¢ +d = ®f(c,d) for ¢,d € €. Similarly, the smooth multiplication map g : R? -5 R
is g(z,y) = wy gives multiplication ‘-’ on € by c¢-d = ®4(c,d). For each A € R and
scalar multiplication map A\ : R — R is X (z) = Az, we define scalar multiplication by
Ae = @y (c). Let 0/ : R — R be the zero map, then we can show that 0 = &g (()) gives
a zero element for €, and 1 = ®1/(()), for the unit map 1’ : ) — 1, gives an identity
element for €. The projection and composition relations show this gives € the structure

of a commutative R-algebra.

Remark 2.1.3. There is an equivalence of categories CC°°Rings = C*°Rings. Here,
F € CC*Rings is identified with a € € C*°Rings such that F(R) = ¢, and for any
smooth f : R"™ — R, then F(f) is identified with ®;.
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The following example of smooth functions on a manifold motivates our definitions.

Example 2.1.4. Let X be a smooth manifold. Let C°°(X) be the set of smooth functions
¢ : X — R. For non-negative integers n and smooth f : R" — R, define C"*°-operations
@y C®(X)" = C°(X) by composition

(Prler,... ) (@) = fler(@),. .., en(x)), (2.1.1)

for all ¢1,...,¢, € C*°(X) and = € X. The composition and projection relations follow
directly from the definition of ®f, so that C*°(X) forms a C*°-ring. If we consider the
R-algebra structure of C*°(X) as a C°-ring, this is the canonical R-algebra structure
on C®(X). If f: X — Y is a smooth map of manifolds, then f*: C>®(Y) — C*®(X)
mapping ¢ +— co f is a morphism of C*°-rings.

Define a functor Fﬁ:nRings : Man — C°°Rings®? to map X — C°°(X) on objects

and f — f* on morphisms.

Moerdijk and Reyes show that FISI:HRingS : Man — C°°Rings®P is a full and faithful
functor [72, Th. 1.2.8], and takes transverse fibre products in Man to fibre products in
C*°Rings°®P.

There are many more C*°-rings than those that come from manifolds. For example,
given any k-differentiable manifold X of dim X > 0, then the set C7(X) of j-differentiable
maps f: X — R is a C*°-ring with operations ®; defined as in (2.1.1), and each of these
C*°-rings is different for each integer 0 > j > k.

Example 2.1.5. Consider X = * the point, so dim X = 0, then C®(x) = R = C°(X)
and Example 2.1.4 shows the C*°-operations ®; : R" — R given by ®f(xq,...,2,) =
f(z1,...,x,) make R into a C°°-ring. This is the initial object in C*°Rings, and the
simplest nonzero example of a C*°-ring. The zero C*°-ring is the set {0} where all C'*°-

operations @5 : {0} — {0} send 0 — 0, and this is the final object in C*°Rings.

By Moerdijk and Reyes [72, p. 21-22] and Addmek et al. [3, Prop. 1.21, Prop. 2.5 &
Th. 4.5] we have:

Proposition 2.1.6. The category C°Rings of C*°-rings has all small limits and all
small colimits. The forgetful functor 11 : C°Rings — Sets preserves limits and directed
colimits, and can be used to compute such (co)limits, however it does not preserve general

colimits such as pushouts.

This proposition is important for several reasons, including that a C'*°-scheme is defined

in terms of sheaves of C'*°-rings, which require (small) limits to exist. Also, for these
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sheaves to be well behaved, a notion of stalk (which uses directed colimit) and a way
to sheafify (which uses small limits and colimits) is needed. We are also particularly
interested in fibre products, that is, finite limits of C*°-schemes, which require pushouts
to exist for C'*°-rings.

For the pushout of morphisms ¢ : € =D, ¢ : € — € in C*°Rings, we write D [l ¢, €
or © Il¢ €. In the special case € =R the coproduct © IIr € will be written as ® R4, €.
Recall that coproduct of R-algebras A, B is the tensor product A ® B, however D ®o, € is
usually different from their tensor product ® ® €. For example, for non-negative integers
m,n, then C®(R™) @y C®°(R™) = C°(R™1") as in [72, p. 22], which contains the tensor
product C*°(R"™)®@C>°(R"™) but is larger than this, as it includes elements such as exp(zy).

Definition 2.1.7. An ideal I in € is an ideal in € when € is considered as a commutative
R-algebra. We do not require it to be closed under all C'"*-operations, as if we did and we
consider the smooth function exp : R — R, then ®¢y,(0) = 1, and the ideal would have to
be the entire set €.

We can make the R-algebra quotient € /I into a C*°-ring using Hadamard’s Lemma.
That is, if f: R" — R is smooth, define &% : (¢/I)" — /I by

(¢§(01 +1,....ch+1))(z) = Ps(c1(z),...,cn(z)) + 1.

Then Hadamard’s Lemma says for any smooth function f : R" — R, there exists g; :

R>™ R for i =1,...,n, such that

n

f(xlw"ax?) - f(yla" . 7y’n) = Z(xl - yi)gi(xlw"axnvyla" . 7yn)'
=1

If dy,...,d, are alternative choices for ¢y, ..., ¢, then ¢; —d; € I foreachi=1,...,n and

n

@f(cl,.. . ,Cn) — (I)f(dl,.. . ,dn> = Z(CZ — di)q)f(cl,.. . ,Cn,dl,... ,dn) S I,
=1

SO <I>5f is independent of the choice of representatives c1,...,c, in € and is well defined.
We can consider the ideal of a C'*°-ring € generated by a collection of elements ¢, € €

with @ € A, in the sense of commutative R-algebras. We denote this (¢, : a € A), so that

(ca:aeA):{Zyzlcai-di:nQO, ai,...,a, € A, dl,...,dnEC}.

Definition 2.1.8. Let € be a C°°-ring such that there are a finite number of elements
C1,-..,Cyp in € that generate € under the C*°-operations, then € is called a finitely gener-

ated C*°-ring. Note that then every element of ¢ € € can be written as ®f(cy,...,c,) for
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some ¢; € €. Then C*°(R) is finitely generated as a C°°-ring but not as an R-algebra, so
this condition is much weaker than being a finitely generated R-algebra.

In fact, C*°(R") is the free C*°-ring with n generators, as in Kock [55, Prop. IIL.5.1].
As in Joyce [40], if € is finitely generated, then € = C°°(R")/I where I is the kernel of
the map ¢ : C°(R") = €, ¢(f) = ®s(ct,...,cn).

An ideal I in a C*-ring € is called finitely generated if I = (¢4 : a € A) for A a
finite set. A C*°-ring € is called finitely presented if there is a finitely generated ideal I in
C*>°(R™) such that € = C*°(R")/I for some n > 0. Note that C°°(R") is not noetherian,
so ideals in a finitely generated C'°°-ring may not be finitely generated themselves. This
implies finitely presented C'°°-rings are a subcategory of finitely generated C°-rings, in

contrast to ordinary algebraic geometry where they are equal.

Definition 2.1.9. Recall that a local R-algebra, R, is an R-algebra with a unique maximal
ideal m. The residue field of R is the field isomorphic to R/m. A C®-ring € is called
local if, regarded as an R-algebra, € is a local R-algebra with residue field R. The quotient
morphism gives a (necessarily unique) morphism of C*°-rings 7 : € — R with the property
that ¢ € € is invertible if and only if 7w(c) # 0. Equivalently, if such a morphism 7 : € — R
exists with this property, then € is local with maximal ideal mg = Ker(m).

Usually morphisms of local rings are required to send maximal ideals into maximal
ideals. However, if ¢ : € — © is any morphism of local C'°*°-rings, then because the
residue fields in both cases are R, then ¢~!(mp) = m¢, so there is no difference between
local morphisms and morphisms for C*°-rings. This also shows that morphisms of local

C*°-rings commute with the morphisms 7 : € — R.

Remark 2.1.10. We use the term ‘local C*°-ring’ following Dubuc [21, Def. 4] and Joyce
[40]. They are known by different names in other references, such as Archimedean local
C*°-rings in [70, §3], C*°-local rings in Dubuc [20, Def. 2.13], and pointed local C*°-rings
in [72, §1.3]. Moerdijk and Reyes [70-72] use ‘local C*°-ring’ to mean a C*°-ring which is

a local R-algebra, and require no restriction on its residue field.

Proposition 2.1.11. The category of local C*°-rings has all small colimits and small
limits. Small colimits commute with small colimits in C°°Rings, and there is a right
adjoint to the inclusion of local C*°-rings into C*-rings. Small limits commute with
small limits in C°Rings only in certain cases, outlined in the proof below, so there is no
left adjoint.

It is already known in the literature that finite colimits (for example, pushouts) of

local C*°-rings exist, for instance in Moerdijk and Reyes [72, §1.3], although their proof is
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different to the following proof. This proof for colimits expands on the proof of Dubuc [21,
Prop. 5] for finite colimits.

Proof. We first consider pushouts of local C**°-rings.
Let €,9, € be local C*°-rings with morphisms € — ® and € — €. Let § be their
pushout in C'*°-rings, with maps ¢; : ® — § and ¢2 : € — §. By definition of pushout in

(C°°-rings, we can show that § consists of elements of the form

Qy(q1(dr), ..., q1(dm),q2(e1), ..., q2(en))

for smooth g : R™™" — R, with dy,...,d,, € € and ey,...,e, €D. As €,D, €& are local,
there exists unique morphisms 71 : € — R, : © — R, 73 : € — R, which define their

maximal ideals, and such that the diagram below commutes.

/
N

As § is the pushout, there must be a unique morphism ¢t : § — R that makes the
diagram commute. Take f € § such that ¢(f) # 0 € R. We need to show f has an inverse

/

in §, so that ¢t makes § into a local C*°-ring.

As f € §, then f = ®,(p) for p = (p1,p2) with p1 = (q1(d1),...,q1(dn)) and py =
(q2(e1), - .., q2(em)) for some smooth g : R"*™ — R, ¢1,...,¢, € € and dy,...,dp € D.
Then

t(f) == g(ﬂ'l(dl), PN ,Wl(dn),ﬂ'z(el), PN ,7T2(€m)) 75 0.

As g is non-zero at this point, then it must be non-zero in a neighbourhood of this point,
and there must be a function h # 0,h : R"™™ — R such that gh = 1 in an open
neighbourhood V' of the point. We will show that ®;(p) is the inverse of f.

There are open sets U; C R" and Us C R™ such that U; x Uy C V, and functions
hi :R™ — R, hy : R™ — R such that hq, hy are zero outside of Uy and U, respectively, and
are equal to 1 in open balls about #(py),t(p2) contained in U; and Us respectively. Hence
(gh — 1)h1he = 0 on R™™ which implies that

0= P(gh—1)h1hs (P) = P(gh—1)(P)Phy (P1) Phy (P2)-
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As © and €& are local, and h; and ho are non-zero at these points, which lie in U
and Us, then @, (dy,...,d,) is invertible in ©, and q1(®p,(d1,...,dn)) = Pp,(p1) is
invertible in §, and similarly for ha. So we must have 0 = ®(y,_1)(p), which implies that
Qy(p)®u(p) = f®n(p) =1, and § is a local C*°-ring.

We have shown the category of local C'*°-rings is closed under pushouts, and the
pushouts are exactly those in C*°Rings. As R is the initial object in local C'*°-rings,
then all finite colimits can be written as a combination of (iterated) pushouts, which
shows that the category of local C°°-rings has all finite colimits.

To extend this to small colimits, consider that by Proposition 2.1.6, all small colimits
exist for C*°-rings. Again, we can show each element in the colimit is generated from
finitely many elements from the C*°-rings in the diagram, and if all C'*°-rings in the
diagram are local, then there must be a unique morphism from the colimit to R. The
same method can then be applied to show that this element is invertible if and only if its
image in R is non-zero. Hence the small colimit of local C*°-rings exists and commutes
with small colimits in the category of C'°°-rings.

One can then construct the right adjoint F' to the inclusion of local C'°°-rings into
C°-rings by taking F(€) of a C*°-ring € to be the colimit of all the local C*°-rings ©
that have morphisms ©® — €. For a morphism ¢ : €; — €3 € C°Rings then F(¢)
is constructed using the universal property of colimits. The unit is the identity natural
transformation, and the counit is the unique morphism from the colimit to €, and it is
straightforward to see that they form an adjoint pair.

To consider limits of local C'*°-rings let us consider two cases. If we take a fibre product
diagram f : € — € < © : g of local C"*°-rings with corners, then the limit in C°°-rings is

€ X¢ D as in the diagram below.

Q:X@:D

e
N4

As €,9, ¢ are local they each have unique morphisms to R, 7 : € - R, mp : © —

¢

R, m3 : € — R and, by uniqueness, these morphisms must commute with the diagram
¢ — € <« ®. This gives a morphism 7 : € xg ® — R. We need only check that for
c € €xe®, then 7(c) # 0 if and only if ¢ is invertible. Say ¢ € € X¢® has 7(¢) = 0. Then
mop(c) =meoq(c) =0, so p(c) and g(c) are not invertible, so ¢ = (p(c), ¢(c)) cannot be
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invertible either. So € x¢ ® is local.

Consider now a pair of local C"*°-rings €, with no morphisms between them. Their
product in C'*°-rings is € x ©, which is not local as it has two distinct R-points. However,
if one instead takes the fibre product over their morphisms to R, that is over the diagram
¢ — R « ®, then the fibre product € xg ® in C*°-rings is local. It then follows that
this fibre product is actually the product in local C*°-rings: if any other local C*°-ring &
maps into both € and ®, then it must commute with their morphisms to R by uniqueness
of its own morphism to R.

Using this it is not hard to show that all small limits of local C'"*°-rings exist and are
equal to their limits as C'°°-rings taken over diagrams that include the morphisms to R as
a vertex. That is, diagrams like the one below. (One might want to call this a ‘directed’
or ‘inverse’ limit but the diagram is in the opposite direction to the usual inverse/directed

limit diagrams in the literature.)

(]

(D) ¢3 (]
N\
Do D3 Dy R

7

¢ & &3 &y

(2.1.3)

This implies that all small limits of local C'*°-rings exist, but they are equal to their limits

taken in C°°Rings only when the diagrams are already in the form of (2.1.3). O

Remark 2.1.12. The right adjoint to the inclusion of local C'*°-rings into C*°-rings also
follows abstractly from checking that the inclusion satisfies Freyd’s Adjoint Functor The-
orem (see Awodey [5, Th. 9.28]), or applying a special case of this. One such special case
is Riehl [79, Th. 4.6.17(a)] provided one recognises C*°Rings as a locally (finitely) pre-
sentable category as in Addmek and Rosicky [2]. Another special case involves recognising
C>°Rings as a total category and applying Wood [87, Th. 1].

One can check that this right adjoint applied to a local C'*°-ring returns the local
C*°-ring, and also that applied to C*°(R") it returns R. However we have not found a

constructive formula for it in general.

Localisations of rings are important in ordinary algebraic geometry, for instance, re-
stricting a scheme to a (nice) open set involves localising the ring, also stalks of schemes
are isomorphic to localisations of rings. Localisations of C'*°-rings have been studied
in [20,21,70,71], [72, p. 23] and [40].

Definition 2.1.13. A localisation €[s!: s € S] =D of a C®-ring € at a subset S C €
is a C*°-ring © and a morphism 7 : € — © such that 7(s) is invertible in ® for all s € S.
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We call 7 : € — D the localisation morphism for ®. This has the universal property that
for any morphism of C*°-rings ¢ : € — & such that ¢(s) is invertible in € for all s € S,
then there is a unique morphism ¢ : ® — & with ¢ =y o 7.

Adding an extra generator s~ and extra relation s- st — 1 = 0 for each s € S to €,
then it can be shown that localisations € [3_1 : s € S] always exist and are unique up to
unique isomorphism. When S = {c} then €[c71] & € ®,, C*°(R)/I, where I is the ideal
generated by ¢1(c) - ta(x) — 1, x is the generator of C*°(R), and ¢y, ¢ are the coproduct
morphisms ¢1 : € = € R CP(R), 12 : C®(R) = € ®s CP(R).

An example of this is that if f € C°°(R") is a smooth function, and U = f~1(R™\ 0),
then partitions of unity show that C>°(U) = C*®(R™)[f~!] as in [72, Prop. 1.1.6].

The following definition is crucial for defining C°*°-schemes.

Definition 2.1.14. A C*°-ring morphism z : € — R, where R is regarded as a C'"*°-ring
as in Example 2.1.5, is called an R-point. Note that a map =z : € — R is a morphism of
C*°-rings whenever it is a morphism of the underlying R-algebras, as in [72, Prop. 1.3.6].
We define €, as the localisation €, = €[s™! : s € €, z(s) # 0], and denote the projection
morphism 7 : € — €,. Importantly, [71, Lem. 1.1] shows €, is a local C**°-ring.

There is a one to one correspondence between the R-points of C°°(R") and evaluation
at points x € R". This also true for C°>°(X) for any smooth manifold X, which is a
consequence of [72, Cor. 1.3.7].

We can describe €, explicitly as in Joyce [40, Prop. 2.14].

Proposition 2.1.15. Let x : € — R be an R-point of a C*°-ring €, and consider the

projection morphism w, : € — €,. Then €, = €/ Kerm,. This kernel is Ker m, = I where

I ={ceC: there exists d € € with x(d) #0 in R and c-d =0 in C}. (2.1.4)

While this localisation morphism m, : € — €, is surjective, general localisations of

C*°-rings do not have surjective localisation morphisms.

Example 2.1.16. Let C;°(R") to be the set of germs of smooth functions ¢ : R" — R
at p € R" forn > 0 and p € R". We can give C;°(R") a C°-ring structure by using
(2.1.1) on germs of functions. There are many equivalent ways to consider the set germs:
as a quotient of C°°(R"™) by an ideal, as a localisation, and as an equivalence class of
pairs as in Joyce [40, Ex. 2.15]. As set of germs [(¢,U)] for ¢ € C*°(U) for some U C X
with p € U, there is a unique maximal ideal m, = {[(c,U)] € C°(R") : ¢(z) = 0} and
CyP(R™)/m;, = R. Then Cp°(R") is a local C*°-ring.
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2.2 Modules and cotangent modules of C*°-rings

The following is a summary of the theory of modules and cotangent modules for C*°-rings

as defined in Joyce [40, §5], with reference to Fermat Theories in Dubuc and Kock [23].

Definition 2.2.1. A module M over a C*°-ring € is a module over € as a commutative
R-algebra, and morphisms of €-modules are the usual morphisms of R-algebra modules.
Denote pps : € x M — M the multiplication map, and write pps(c,m) = c¢-m for c € €
and m € M. The category €-mod of €-modules is an abelian category.

If a €-module M fits into an exact sequence € ® R® — M — 0 in €-mod then it is
finitely generated; if it further fits into an exact sequence €  R™ - €@ R" — M — 0
it is finitely presented. This second condition is not automatic from the first as C*°-rings
are not generally noetherian.

For a morphism ¢ : € — © of C*-rings and M € €-mod then we have ¢.(M) =
M ®¢ ® € ®-mod, which gives a functor ¢, : €-mod — ®-mod. For N € ®-mod there
is a corresponding €-module ¢*(N) = N where the €-action is defined by jig«(n)(c,n) =
pn(p(c),n). This also defines a functor ¢* : ®-mod — €-mod. Here ¢, respects the

finitely generated and finitely presented properties, however ¢* does not.

Example 2.2.2. Let I'*°(E) be the collection of smooth sections e of a vector bundle
E — X of a manifold X, so I'*°(F) is a vector space and a module over C*°(X). If
A: E — F is a morphism of vector bundles over X, then there is a morphism of C*°(X)-
modules A\, : I'°(E) — I'*°(F) where A\, : e — Aoe.

For each smooth map of manifolds f : X — Y there is a morphism of C*°-rings
[¥:C®(Y) — C>®(X). Each vector bundle E — Y gives a vector bundle f*(F) — X.
Using (f*)« : C*°(Y)-mod — C°°(X)-mod from Definition 2.2.1, then (f*).(T>®(E)) =
I'®(E) ®ce(yy C*°(X) is isomorphic to I (f*(E)) in C*°(X)-mod.

Remark 2.2.3. Let E — X be a vector bundle over a manifold X. Then I'*°(F) is finitely
presented. In fact, any manifold has a finite atlas of (disconnected) charts, see for example
Greub, Halperin and Valstone, [31, p. 20-21]. Using bump functions, one can extend local
bases for the sections of the vector bundle restricted to these charts to global spanning
sections ey, ..., e, € I'°°(FE) for n > 0. This gives a surjective morphism ¢ : X x R" — E
of vector bundles. The kernel is also a vector bundle F'.

For any other surjective morphism ¢ : X x R™ — F, we then have the following exact

sequence of vector bundles

P

XxR"—2 » X xR" E 0.
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Taking sections, we have an exact sequence of C*°(X)-modules

O (X) ®p R™ —2 % (X) @g R —2 > 1%(B) —= 0.

This means I'*°(E) is finitely presented as a C*°(X)-module.

The definition of €-module only used the commutative R-algebra structure of €, how-
ever the cotangent module ¢ of € does use the C*°-ring structure. It is related to the mod-
ule of Kdhler differentials (or module of relative differential forms) as in Hartshorne [33,
p. 172]. In their language, there is a morphism of modules from the module of Kéhler
differentials of € over R to the module {2¢ that is surjective but not in general injective,
with further discussion on this available on the nLab page [77].

Cotangent modules are an example of a construction defined in Dubuc and Kock [23]
for Fermat Theories, which are types of algebraic theories that have derivatives, and so

this construction can be applied to C'*°-rings.

Definition 2.2.4. Take a C*°-ring € and M € €-mod, then a C*°-derivation is a map
d: € — M that is R-linear and satisfies the following: for any smooth f : R" — R and
elements cy,...,c, € €, then

d®s(c1,...,cn) =2 Doy (c1,...,cpn) - de. (2.2.1)
=1

i= oz,

The pair (M,d) is called a cotangent module for € if it is universal in the sense that for
any M’ € €-mod with C*-derivation d’ : € — M’, there exists a unique morphism of
¢-modules A : M — M’ with d = X od. Then a cotangent module is unique up to
unique isomorphism. We can explicitly construct a cotangent module for € by considering
the free €-module over the symbols dc and quotienting by relations d®f(ci,...,cn) —
Yoy @%(Cl, ..., Cp) -de; where we have smooth f : R” — R and elements ¢y, ..., ¢, € €.
We call this construction ‘the’ cotangent module of € and write it as dg : € — Q¢

If we have a morphism of C*®-rings € — © then Qgp = ¢*(29) can be considered as
a ®-module with C°°-derivation dp o ¢ : € — Qg. The universal property of Qg, gives
a unique morphism €y : Q¢ — Qgp of €-modules such that dg o ¢ = 2y 0o d¢. From this
we have a morphism of ®-modules (Q4)s : Q¢ e © — Qp. If we have two morphisms of

C°-rings ¢ : € — D, ¢ : © — € then uniqueness means Qyop = 2y 0 Qg : Qg — Q.

Example 2.2.5. As in Example 2.2.2 if X is a manifold, then its cotangent bundle 7% X
is a vector bundle over X and its global sections I'**(7T*X) are a C*°(X)-module, with

C*>°-derivation d : C*°(X) — I'*°(T*X), d : ¢ — dc the usual exterior derivative and

equation (2.2.1) following from the chain rule.
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As in Remark 2.2.3, I'*°(7T*X) is a finitely presented module. One can then show
that (I'*°(7*X), d) has the universal property in Definition 2.2.4, and so form a cotangent
module for C*°(X). Joyce [40, Ex. 5.4] states this result without proof for manifolds and,
while this result seems known in the literature, we cannot find a proof. We extend this
result to manifolds with corners and describe the proof precisely in Proposition 4.7.5 where
we consider cotangent modules for C°°-rings with corners.

If we have a smooth map of manifolds f : X — Y, then f*(T*Y),T*X are vector
bundles over X, and the derivative df : f*(T*Y) — T*X is a vector bundle morphism.
This induces a morphism of C°°(X)-modules (df), : I*°(f*(T*Y)) — I'*°(T*X), which is
identified with (€« ). from Definition 2.2.4 using that I'*°(f*(T*Y)) 2 T*(T"*Y) ®ceo(v)
C™(X).

This example shows that Definition 2.2.4 abstracts the notion of sections of a cotangent

bundle of a manifold to a concept that is well defined for any C*°-ring.

2.3 Sheaves on topological spaces

Here we consider the definitions of presheaves and sheaves. The standard definition of a
presheaf on a category C valued in a category A is a functor £ : C°P — A, where C°P is
the opposite category of C' (as in Kashiwara and Schapira [52, §17]).

For a topological space X, let Open(X) be the category of open subsets of X with
inclusion morphisms. In this thesis, we need only consider presheaves and sheaves & :
C°P — A where C = Open(X) for some topological space X, and A is some ‘nice’
category, such as the category of abelian groups, rings, C°°-rings, monoids etc. We will
call these (pre)sheaves of sets, groups, rings, C'*°-rings, monoids etc. over X.

By ‘nice’ we mean categories that are complete, that is, having all (small) limits, and,
for this thesis, we will only consider categories A whose objects are sets with some extra
structure, so that there is a faithful functor from these categories to the category of sets
that takes each object to their underlying set. Abelian groups, rings, C*°-rings, monoids
etc are are all algebras over algebraic theories, so they satisfy this and their faithful functor
to sets respects limits and colimits, which is important in the definition of sheaf. In §4
we define interior C'*°-rings with corners, and while these are constructed from algebraic
theories and are ‘nice’ in the sense above, they are not algebras over algebraic theories
themselves and the functor(s) from interior C'*°-rings with corners to their underlying
set(s) respect colimits but not limits, so their sheaves behave differently.

The above discussion gives the following definition, following Godement [30] and Mac
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Lane and Moerdijk [64].

Definition 2.3.1. A presheaf £ on a topological space X valued in A is a functor & :
Open(X)°P — A. This equivalently means that £(U) € A for every open set U C X,
and there is a morphism pyy : E(U) — E(V) in A called the restriction map for every

inclusion V' C U C X of open sets, satisfying the conditions that
(i) puv = idgy : E(U) — E(U) for all open U C X; and
(ii) puw = pyvw o pyy : E(U) — E(W) for all open W CV CU C X.

A presheaf £ : Open(X)°P — A is called a sheaf if for all open covers {U;};c; of
U € Open(X), then

W) - [[ew = [ winuy)
i€l i,jel

forms an equaliser diagram in A. This implies
(iii) £(0) = 0 where 0 is the final object in A.

If there is a faithful functor F' : A — Sets taking an object of A to its underlying set that
preserves limits, then a presheaf £ valued in A on X is sheaf if it equivalently satisfies the

following

(iv) (Uniqueness) If U C X is open, {V; : ¢ € I'} is an open cover of U, and s,t € F(E(U))
with F(puv,)(s) = F(puv,)(t) in F(E(V;)) for all i € I, then s =t in F(E(U)); and

(v) (Glueing) If U C X is open, {V; : i € I} is an open cover of U, and we are given
elements s; € F(E(V;)) for all i € I such that F(py,(v;nv;))(si) = Flpv,viny;))(s5)
in F(E(V;NVj;)) for all i, j € I, then there exists s € F(E(U)) with F(pyv;)(s) = si
for all ¢ € I.

Note that (iv) implies (iii) using the empty cover of the empty set. If s € F(E(U)) and
open V C U, we write s|y = F(puy)(s).

If £, F are presheaves or sheaves valued in A on X, then a morphism ¢ : € — F is
a natural transformation of functors £ = F. That is, for each open U C X, it gives a
morphism in A ¢(U) : E(U) — F(U) such that the following diagram commutes for all
open VCUCX

i(U) — f’(Uf
puv Uy
ev)—2 Fw),

where pyy is the restriction map for £, and pj;, the restriction map for F. We define

Sh(X,.A) as the category of sheaves on a topological space X valued in .A.
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This second equivalent definition applies for sheaves of C*°-rings and C*°-rings with
corners. The functor from interior C*°-rings with corners to sets (€, €, [1{0}) — &;, [1{0}
does not respect limits (even though the functor I, : (€, &;, I1{0}) — i, does respect
limits as in Theorem 4.3.7), so only the definition of sheaves in terms of equalisers makes
sense for this category.

It is often required in ordinary Algebraic Geometry for presheaves to satisfy (iii) as
in Hartshorne [33, §II.1]. However, this would imply sheaves of interior C'*°-rings with
corners are not presheaves of C°°-rings with corners and create additional difficulties, so
we do not require this. We discuss this further in §5.1 and in Remark 5.1.5.

We now assume that A is also cocomplete, that is, it has small colimits and equalisers.
Abelian groups, rings, C'*°-rings, monoids etc. all satisfy this, as will (interior) C*°-rings

with corners.

Definition 2.3.2. For £ a presheaf valued in A on a topological space X, then we can
define the stalk £ at a point € X to be the direct limit of the £(U) in A for all U C X
with x € U, using the restriction maps pyy .

If there is a faithful functor F': A — Sets taking an object of A to its underlying set
that preserves colimits, then explicitly it can be written as a set of equivalence classes of
sections s € F(E(U)) for any open U which contains x, where the equivalence relation is
such that s; ~ s9 for s € F(E(U)) and sp € F(E(V)) with € U,V if there is an open
set W CVNU with z € W and s1|w = solw € F(E(W)).

The stalk is also an element of A and the restriction morphisms give rise to morphisms
pug : E(U) — Ez. A morphism ¢ : £ — F induces morphisms ¢, : £, — F, for all z € X;

this is an isomorphism if and only if ¢, is an isomorphism for all z € X.

Definition 2.3.3. There is a sheafification functor which takes the category of presheaves
over a topological space X valued in A and their natural transformations to Sh(X,.4).
This is defined as a left adjoint to the inclusion of Sh(X, A) into the category of presheaves
over X. We say the image of a presheaf £ over X is the sheaf £, and the adjoint property
gives a morphism 7 : £ — & and a universal property: whenever we have a morphism
¢ : £ — F of presheaves of abelian groups on X and F is a sheaf, then there is a unique
morphism qg & = F with o= qgo 7. This implies sheafification is unique up to canonical
isomorphism.

The sheafification always exists for our categories A, and there is an isomorphism of
stalks £, = &,. If there is a faithful functor F' : A — Sets taking an object of A to

its underlying set that preserves colimits and limits, it can be constructed (as in [33,
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Prop. 11.1.2]) by defining £(U) as the subset of all functions t : U — I,epE, such that
for all x € U, then t(z) = F(pys)(s) € €, for some s € F(E(V)) foropen V C U,z € V.

If f: X — Y is a continuous map of topological spaces, we can consider pushforwards
and pullbacks of sheaves by f. We will use both of these definitions when defining C°°-

schemes (with corners).

Definition 2.3.4. If f : X — Y is a continuous map of topological spaces, and & is
a sheaf valued in A on X, then the direct image (or pushforward) sheaf f.(£) on Y is
defined by (f.(€))(U) = £(f~1(U)) for all open U C V. Here, we have restriction maps
puy = Py i-1vy () (U) = (f«(€))(V) for all open V C U C Y so that f.(£) is
a sheaf valued in A on Y.

For a morphism ¢ : & — F in Sh(X,A) we can define fi(¢) : fu(E) — fu«(F) by
(f(¢))(U) = ¢(f~1(U)) for all open U C Y. This gives a morphism f.(¢) in Sh(Y,A4),
and a functor f, : Sh(X, A) — Sh(Y,.A). For two continuous maps of topological spaces,
[: X =Y, 9:Y — Z then (go f). = g« 0 fu.

Definition 2.3.5. For a continuous map f : X — Y topological spaces and a sheaf £
valued in A on Y, then we define the pullback (inverse image) of £ under f to be the
sheafification of the presheaf U + lim 45 (1) £(A) for open U C X, where the direct limit
is taken over all open A C Y containing f(U), using the restriction maps pap in €. We
write this sheaf as f~1(&).

If ¢ : £ — F is a morphism in Sh(Y,.A), then there is a pullback morphism f~!(¢) :

F7HE) = 1)
Remark 2.3.6. (a) Pullbacks written f~1(€) as in Definition 2.3.5 are used for sheaves

of abelian groups or C*°-rings, however there are different notions f*(£) or f*(&) for

pullbacks of sheaves of Oy-modules £ that are more involved and discussed in §2.5.

(b) For a continuous map f : X — Y of topological spaces we have functors f, :
Sh(X,A) — Sh(Y,A), and f~! : Sh(Y,A) — Sh(X,A). Hartshorne [33, Ex. I1.1.18]

gives a natural bijection
Hom (f~'(€), F) = Homy (€, f.(F)) (2.3.1)

for all £ € Sh(Y,A) and F € Sh(X,.A), so that f, is right adjoint to f~!. This will be

important in many proofs we consider.
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2.4 (C*-ringed spaces and C'*°-schemes

We now define (local) C*°-ringed spaces and C'*°-schemes and consider their properties.
New material includes the proof of Lemma 2.4.6, a discussion of limits and colimits in

Remark 2.4.16, and §2.4.1, which considers products of C'"*°-schemes.

Definition 2.4.1. A C*°-ringed space X = (X, Ox) is a topological space X with a sheaf
Ox of C*°-rings on X.

A morphism f = (f, ff) @ (X,0x) — (Y,0y) of C* ringed spaces consists of a
continuous map f : X — Y and a morphism f*: f~1(Oy) — Ox of sheaves of C*°-rings
on X, for f~1(Oy) the inverse image sheaf as in Definition 2.3.5. From (2.3.1), we know

f« is right adjoint to f~!, so there is a natural bijection
Homy (f~'(Oy),Ox) = Homy (Oy, f.(Ox)). (2.4.1)

We will write fy : Oy — fi(Ox) for the morphism of sheaves of C*°-rings on Y corre-

sponding to the morphism of sheaves of C®°-rings on X f¥ under (2.4.1), so that
N Oy) — Ox e fi: Oy — £(Ox). (2.4.2)

Given two C'°°-ringed space morphisms f: X — Y and g : ¥ — Z we can compose
them to form
gof=1(g0f.(gof)f) = (g0f fFof " (g")

If we consider f; : Oy — f«(Ox), then the composition is

(gof)ti :g*(fti)ogti 10z — (90 )«(Ox) = g« 0 fu(Ox).

We call X = (X,0x) a local C*®-ringed space if it is C*°-ringed space for which
the stalks Ox, of Ox at = are local C*°-rings for all € X. As in Definition 2.1.9,
since morphisms of local C*°-rings are automatically local morphisms, morphisms of local
C°-ringed spaces (X, Ox), (Y, Oy) are just morphisms of C'*°-ringed spaces without any
additional locality condition. Local C*°-ringed spaces are called Archimedean C*°-spaces
in Moerdijk, van Qué and Reyes [70, §3].

We will follow the notation of Joyce [40] and write C*°RS for the category of C°-
ringed spaces, and LC°°RS for the full subcategory of local C°°-ringed spaces. We
write underlined upper case letters such as X,Y,Z,... to represent C*°-ringed spaces
(X,0x),(Y,0y),(Z,0z),..., and underlined lower case letters f,g, ... to represent mor-
phisms of C*-ringed spaces (f, f*),(g,¢%),.... When we write ‘z € X’ we mean that
X = (X,0x) and z € X. If we write ‘U is open in X’ we will mean that U = (U, Oyp)
and X = (X, Ox) with U C X an open set and Oy = Ox|y.
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Example 2.4.2. For a manifold X, we have a C*-ringed space X = (X,Ox) with
topological space X and its sheaf of smooth functions Ox(U) = C*°(U) for each open
subset U C X, with C*°(U) defined in Example 2.1.4. If V C U C X then the restriction
morphisms pyy @ C°(U) — C°(V) are the usual restriction of a function to an open
subset pyy : ¢ cly.

Partitions of unity allow us to verify that Ox is a sheaf of C*°-rings on X (not just
a presheaf), so X = (X,0x) is a C*-ringed space. As the stalks Ox, at x € X are
local C*°-rings, isomorphic to the ring of germs as in Example 2.1.16, then X is a local
C*°-ringed space.

For a smooth map of manifolds f : X — Y with corresponding local C°°-ringed
spaces (X,Ox), (Y, Oy) as above we define f3(U) : Oy (U) = C®(U) = Ox(f~1(U)) =
C>®(f~1(U)) for each open U C Y by f4(U) : ¢+ co f for all ¢ € C(U). This gives a
morphism f; : Oy — f«(Ox) of sheaves of C*°-rings on Y. Then f = (f, (X, 0x) =
(Y, Oy) is a morphism of (local) C*-ringed spaces with f* : f~1(Oy) — Ox corresponding
to fy under (2.4.2)

Definition 2.4.3. Let € be a C°-ring, and write X¢ for the set of all R-points = of
¢, as in Definition 2.1.13. Write T¢ for the topology on Xy that has basis of open sets
U. = {m € Xe¢ :z(c) # 0} for all ¢ € €. For each ¢ € € define a map ¢, : X¢ — R such
that ¢, : x — x(c).

For a morphism ¢ : € — ® of C*°-rings, we can define f4 : Xp — X¢ by fo(z) =z 09,

which is continuous.

From Joyce [40, Lem. 4.15], this definition implies T¢ is the weakest topology on X¢
such that the ¢, : X¢ — R are continuous for all ¢ € €, and it implies that (X¢, 7¢) is a

regular, Hausdorff topological space.

Definition 2.4.4. For a C*°-ring €, we define the spectrum of €, and write it as Spec €.
Here, Spec € is a C*°-ringed space (X, Ox), with X the topological space X¢ from Defini-
tion 2.4.3. For open U C X, then Ox (U) is the set of functions s : U — [[,c;; €4, where
we write s, for the image of x under s, such that around each point x € U there is an
open subset z € W C U and element ¢ € € with s, = m,(c) € €, for all x € W. This is a
C*°-ring with the operations ®; on Ox (U) defined using the operations ®; on €,.

For s € Ox(U), the restriction map of functions s — s|y for open VC U C X is
a morphism of C*°-rings, giving the restriction map pyy : Ox(U) — Ox (V). The stalk
Ox, at o € X is isomorphic to €, by Joyce [40, Lem. 4.18], which is a local C*°-ring.
Hence (X, Ox) is a local C*°-ringed space.
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For a morphism ¢ : € — ® of C*°-rings, then we have an induced morphism of local
C*-rings, ¢p : € () = Dy If we let (X,0x) = Spec€, (Y,0y) = Spec®, then for
open U C X define (fy)3(U) : Ox(U) — Oy(fd)_l(U)) by (f3)s(U)s : & = ¢u(ss,(a))-
This gives a morphism (fy); : Ox — (fg)+(Oy) of sheaves of C*°-rings on X. Then
fo= (f¢,fi) : (Y,0y) — (X,0x) is a morphism of local C*°-ringed spaces, where fi
corresponds to (fg); under (2.4.2). Then Spec is a functor C*°Rings®® — LC*RS,
called the spectrum functor, where Spec ¢ : Spec® — Spec € is defined by Spec¢ = f.

Example 2.4.5. For a manifold X then Spec C*°(X) is isomorphic to the local C*°-ringed

space X constructed in Example 2.4.2.

The following lemma will be important for considering C'*°-schemes with corners. As

the lemma is stated without proof in [40, Lem 4.28], we include a proof here.

Lemma 2.4.6. Take element ¢ € € in a C*®-ring € and let X = Spec€ = (X,0x). If
we consider U, = {x € X : xz(c) # 0} as in Definition 2.4.3, then U. C X is open and
X|v. = (Ue, Ox|v.) = SpecClc™1].

Proof. Let ¢ : € — €[c™!] be the localisation morphism, and write Spec(€[c™!]) =
(Y,Oy) = Y. Consider the morphism Spec(¢) = (¢*,¢*) : ¥ — X and the restric-
tion px . : Ox — Ox|y.. We will show that ¢* : Y — X is an isomorphism onto its
image, U, and that ¢y : Ox — ¢.(Oy) is an isomorphism upon restriction to U, so that
Spec(¢) is an isomorphism onto its image X]|y..

Firstly, as ¢ : € — €[c!] is a C*°-ring morphism, any R-point, & of €[c!] corresponds
to a unique R-point, z, of €. If x € X\U, is an R-point of &€, then z ¢ U,, and the definition
of U, means z(c) = 0. However, in €[c™!], ¢ is invertible, so x cannot give a corresponding
an R-point of ¢[c™!].

For any = € U., z(c) # 0, then the universal property of €[c~!] implies there is a
unique corresponding R-point & of €[c!]. Hence Y is isomorphic as a set to U.. Using
the definition of ¢*, then this correspondence is the continuous map ¢* : ¥ — X with
image U,.. That is, any open set U C X, gives an open set U N U, in Y.

To see it is a homeomorphism, consider a base element of the topology Uy = {y €
Y :y(d) # 0} CY = U, for some d € €[c"!]. We show that around any point § € Uy,
there is an open set Uy, with k € ¢(€), such that § € Uy C Uy, so the topology is the
subset topology. Now d must be of the form ®¢(a, ¢ 1) for some a € ¢ and some smooth
f:R? = R. Take § € Uy, then §(d) = f(§(a),5(c™")), with §(c™1) = §(c)~* # 0. Assume
r = §i(c) > 0 without loss of generality. Then consider that {y € Y : y(c) € (5, %)} =

Us, (¢ is open in Y, where g : R — R is a smooth bump function with support (5, %),
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and Ug, (¢ contains y. Let h : R — R be any smooth function with h(t) = +fort e (%,%)
and positive elsewhere. Then for all y € Uy N Ug, (), we have

0# y(d) = f(y(a),y(c ™)) = f(y(a), h(y(c))) = y(® (. n(y)(a,¢) = y(b)
for b= @ ) (a,c) € $(€). So Uy D UgNUg, (e and it follows that
Y€ Upp,c) =UpNUs,(c)y = UaNUg, () C Ua

is open in Ue, with k = b®,4(c) € ¢(€), as required.

To show the map of sheaves ¢y : Ox — ¢+(Oy) is an isomorphism upon restriction to
U., we show it is an isomorphism on stalks, that is €, and €[c™!]; are isomorphic for each
x € U, and corresponding z € Y.

For © € U, then the image of ¢ under the map m, : € — €&, is invertible. By
the universal property of €[c™!], there is a unique map aj : €[c~!] — €,. The universal
property of ¢, then gives a unique morphism as : €, — €[c~!];, and the universal property
of €[c™1]; then gives a unique morphism asz : €[c7!; — €,. As the following diagram

commutes, these two maps must be inverses, and the localisations must be isomorphic.

¢ ¢ Cle™!]
Wx\L ()412 ¢7T1
N 2 [l P
a3

By definition, ag is the stalk map qﬁg;, which implies Spec(¢) : Y — X is an isomorphism

onto its image X |y, as required. O

Definition 2.4.7. There is a global sections functor T' : LC°RS — C*°Rings®P, which
takes (X,Ox) to Ox(X) and morphisms (f, f*) : (X,0x) — (Y,Oy) to T : (f, f*) —
fy(Y), for fy relating f*asin (2.4.2).

For each C*°-ring € we can define a morphism Z¢ : € — I' o Spec €. Here, for ¢ € €
then E¢(c) : Xe = [l ex, €o is defined by Z¢(c)s = ma(c) € &y, 50 Z¢(c) € Ox, (Xe) =
I' o Spec€. This Z¢ is a C*°-ring morphism as it it composed of C°°-ring morphism
7z : € = €, and the C™-operations on Ox, (X¢ ) are defined pointwise in the €,. In fact, it
defines a natural transformation Z : idgeoRings = I'oSpec of functors idgeoRings, I'oSpec :
C*°Rings — C°°Rings.

Theorem 2.4.8. The functor Spec : C*°Rings®® — LC*°RS is right adjoint to T" :
LC*RS — C°°Rings®P. Here, = is the unit of the adjunction between T' and Spec. This

implies Spec preserves limits as in [21, p. 687]. Hence if we have C*-ring morphisms
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o:85 =9, ¢ :§ — €in C®Rings then their pushout € = D llz € has image that is
isomorphic to the fibre product Spec € = Spec® Xgpec g Spec €.

We extend this theorem to C'*°-schemes with corners in §5.1.

Remark 2.4.9. The definition of spectrum functor follows Dubuc [21] and Joyce [40],
and it is called the Archimedean spectrum in Moerdijk et al. [70, §3]. They also show it is
a right adjoint to the global sections functor as above.

In [70, §1] they consider another definition of spectrum Spec € which uses ‘C*°-radical
prime ideals’ not R-points. This means they use a different, less restrictive, definition of
local C*°-ring. This is not an equivalent definition to our definition, as the image of the
functor is not contained in LC*°RS, but in a larger subcategory of C*°RS which they
call C*-spaces. However, in [70, §3] they show there is a right adjoint to the inclusion
of LC°°RS into the category of C*°-spaces. Their definition of spectrum composed with
this right adjoint gives a right adjoint to our global sections functor. As right adjoints
are naturally isomorphic, then this composition is naturally isomorphic to our spectrum

functor.

Definition 2.4.10. Elements X € LC®RS that are isomorphic to Spec @ for some
¢ € C°Rings are called affine C°-schemes. Elements X € LC®RS that are locally
isomorphic to Spec € for some € € C*°Rings (depending upon the open sets) are called
C*°-schemes. We define C*°Sch and AC®°Sch to be the full subcategories of C**°-schemes
and affine C'*°-schemes in LC*°RS respectively.

Remark 2.4.11. Unlike ordinary algebraic geometry, affine C*°-schemes are very general
objects. All manifolds are affine, and all their fibre products are affine, suggesting that
the use of C*°-schemes in Derived Differential Geometry can (and usually is) confined to
only affine (finitely presentable) C'*°-schemes. Contrary to this, we will need non-affine
C*°-schemes with corners in §5, which will require understanding non-affine C°°-schemes.
More generally, all second countable, metrizable C*°-schemes are affine, and it is nec-
essary that affine C°°-schemes are Hausdorff and regular. Joyce [40, Th. 4.41] shows that
a local C*°-ringed space that is Hausdorff, Lindel6f and has smoothly generated topology
is an affine C'°°-scheme. Here, X € LC*°RS has smoothly generated topology if the sets
U.={zx € X :mom(c) # 0 € R} where ¢ € Ox(X) form a basis for the topology of X.

As in Joyce [40, Prop. 4.34] we have the following crucial isomorphism that allows us

to define complete C'*°-rings.

Proposition 2.4.12. For each C*°-ring €, SpecZ¢ : Specol’ o Spec € — Spec€ is an
isomorphism in LC°RS.
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Definition 2.4.13. A C*-ring € is called complete if =¢ : € — I' o Spec€ is an iso-
morphism. We define C®°Rings® to be the full subcategory in C*°Rings of complete
C™>-rings.

Using Proposition 2.4.12 we see that complete C'°°-rings are isomorphic to the image of
the functor I' o Spec : C*°Rings — C°°Rings, which gives a left adjoint to the inclusion
of C*°Rings®® into C*°Rings. Let this left adjoint be the functor R} : C*°Rings —
C°°Rings®°.

An example of a C*°-ring that is not complete is the quotient of C°*°(R") by the ideal of
compactly supported functions, and RS} applied to this quotient returns the zero C'°°-ring.

In ordinary algebraic geometry, we have a contravariant equivalence of categories be-
tween ordinary affine schemes and commutative rings. This is used to show all (finite)
limits of ordinary schemes exist. However, this is not true in the case of affine C'"*°-schemes;
in some sense, there are more C'°°-rings than affine C°°-schemes, and Spec is not full nor
faithful on C*°Rings®P. The next theorem tells us that the category of complete C*°-rings
gives an equivalence of categories instead.

The following is a summary of results from [40, Prop. 4.11,Th. 4.25].

Theorem 2.4.14. (a) Spec|(ceoRingscoyer : (C°Rings®)°P — LC*RS is full and
faithful, and an equivalence of categories Spec |... : (C*°Rings®®)°P — AC>°Sch.

(b) Let X be an affine C*°-scheme. Then X = Spec Ox(X), where Ox(X) is a complete
C*-ring.

(c) The functor RS : C*°Rings — C*°Rings®® is left adjoint to the inclusion functor
inc : C*°Rings® — C*°Rings. That is, R} is a reflection functor.

(d) All small colimits exist in C°Rings®, although they may not coincide with the
corresponding small colimits in C°°Rings.

(e) Spec|(cooRingseoyer = Specoinc : (C*Rings®)°P — LC*RS is right adjoint to
R ol : LC*°RS — (C*°Rings®)°P. Thus Spec|.. takes limits in (C°°Rings®®)°P
(equivalently, colimits in C*°Rings®®) to limits in LC*°RS.

Using (a), that small limits exist in the category of C*°Rings, and that I' : LC*°RS —
C>Rings is a left adjoint with image in (C°°Rings®)°P when restricted to AC*Sch,
then small limits of C*°Rings®® exist and coincide with small limits in C*°Rings. As
we have an equivalence of categories, (C*°Rings®)°P — AC*Sch, then AC*°Sch also
has all small colimits and small limits. As Spec is a right adjoint, then limits in AC°°Sch
coincide with limits in C*°Sch and LC*°RS, however it is not necessarily true that

colimits in AC®°Sch coincide with colimits in C*°Sch and LC*°RS.
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We have the following theorem on limits in C*°RS and subcategories.
Theorem 2.4.15. (i) All finite limits exist in the category C°RS.
(ii) The full subcategory LC°RS is closed under finite limits in C°RS.

(iii) The full subcategories AC*°Sch and C*°Sch of LC*°RS are closed under all finite

limits in LC*°RS. Hence fibre products and all finite limits exist in these categories.

Remark 2.4.16. In the previous Theorem, for (i) and (ii) refer to Joyce [40, Prop. 4.11,
Th. 4.25], and for (ii) refer to Dubuc [21, Prop. 7]. Note however that the proof of (iii)
relies on the existence of complete C'*°-rings; this part of the theorem is mentioned in [40]
however the proof is not detailed.

One can prove this using the following: Theorem 2.4.14(a) shows all limits are exactly
those from colimits of complete C*°-rings, then Theorem 2.4.14(d) implies all small colimits
exist, and therefore all small limits exist in AC®Sch. One then shows they coincide
with small limits in LC®RS. Finite limits of C*°Sch in LC*°RS are then shown to
be locally affine, giving the result. Alternatively, following the standard proof in ordinary
algebraic geometry, see Hartshorne [33, Th. 3.3]), one could show that glueing C'*°-schemes
together on affine neighbourhoods is a scheme, then glue the fibre products of the local
affine neighbourhoods, which gives the same result.

In Section 5, we have similar results for local C*°-ringed spaces with corners and C'*°-
schemes with corners, where we describe the proofs in more detail. In fact, all small limits
exist in C*°RS and LC*°RS, we show this is true in §5.1.1 with our more general results
on C'*°-ringed spaces with corners.

Demazure and Gabriel, [17, T §1 1.6] construct small colimits in the categories of
ordinary ringed and locally ringed spaces. This construction also applies for (local) C'*°-
ringed spaces; the underlying topological space is the colimit of the underlying topological
spaces and the sheaf is essentially the limit of the sheaves. For locally ringed spaces, the
main issue is to show the stalks are local, where in the C*°-ring case, this follows from
Proposition 2.1.11. We describe this proof explicitly when we consider C*°-ringed spaces

with corners in §5.1.1.

Finally, we consider the embedding of manifolds into C*°-schemes and whether fibre
products respect this embedding. In the following theorem we summarise results found in

Dubuc [21, Th. 16], Moerdijk and Reyes [71, § II. Prop. 1.2], and Joyce [40, Cor. 4.27].

Theorem 2.4.17. There is a full and faithful functor FﬁaC:SCh : Man — AC®°Sch that
takes a manifold X to the affine C*°-scheme X = (X,Ox), where Ox(U) = C*(U) is
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the usual smooth sections on U. Here (X,0Ox) = Spec(C*°(X)) and hence X is affine.
The functor FﬁS:SCh sends transverse fibre products of manifolds to fibre products of

C>®-schemes with corners.

2.4.1 Products of C*°-schemes
This section is new and we discuss products of C'°°-schemes.

Remark 2.4.18. When considering infinite products of schemes we will need to consider
whether or not measurable cardinals exist. We will not define measurable cardinals, but
refer the reader to Jech [38, Ch. 10] and Gillman and Jerison [29, Ch. 12] for further
details. Measurable cardinals are a type of large cardinal number, that is, a cardinal
number that cannot be accessed by the standard arithmetic operations using Ng. This
means that Rg, 81, Ry ..., 280, 22N0, . 72N1,22N07 ... and many other cardinal numbers are
not measurable cardinals, (cf. [29, p. 161-166]). We say such non-measurable cardinals are
less than any measurable cardinal.

The existence of measurable cardinals is an axiom of set theory that is independent
from the usual ZFC axioms (Zermelo—Fraenkel set axioms and the Axiom of Choice), as in
Jech [38, p. 33, 77]. None of our examples or intended applications would need to assume
measurable cardinals exist, however the definitions of C"*°-rings and C'*°-rings with corners
do not preclude this assumption, so we note carefully where this assumption impacts the

theory.

The author would like to acknowledge assistance from Professor George Bergman for

details in the proof of the following lemma.

Lemma 2.4.19. Let I be a set and define € = [[,.;R. Then any R-point z : € — R

el
factors through precisely one of the R in the product provided the cardinality of I is less

than any measurable cardinal.

Proof. This follows by considering Bergman and Nahlus [6, Th. 9], which implies that
whenever the cardinality of I is less than any measurable cardinal, then z : € — R
factors as a R-algebra morphism through a product of finitely many of the R in €, say
R ,R

and zero otherwise, such that z(¢) = 1.

irs- -+, Ry, . This means that there is an element ¢ = (¢;)ier € €, with ¢; = 1 for ¢ = i,

Letting di, = (d;)ics, with d; = 5?, then Zle di, = ¢ and z(&) =1 = Zle x(d;,).
However, dikl -d% =0, so :z:(czzkl) a:(cz%) = x(czzkl d}kz) = 0, so precisely one d;, is such
that x(d;,) = 1 with all others evaluating to 0. Then x must factor through only this

R O

i
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Remark 2.4.20. One can deduce Lemma 2.4.19 using the language of ultrafilters (in the
sense of Comfort and Negrepontis [16]), which forms part of the reasoning behind [6, Th. 9].
First one shows that any such x : € — R gives an ultrafilter on I, and that factoring
through precisely one of the R in the product requires it to be a principal/fized ultrafilter.
Showing that there are no ultrafilters that do not factor through one of the R in the product
requires showing there are no non-principal/free ultrafilters to come from such an z. In
Gillman and Jerison [29], this is a property called realcompact and they show in [29, p. 163]
that such an ultrafilter I only has this property if and only if it has cardinality less that

any measurable cardinal, giving the result.

Lemma 2.4.21. Let I be a set and € =[]
C®-rings €;. If v : € — R factors through € then there is a canonical isomorphism
(Cr)z =2 €,

ic1 €i be a C°°-ring that is the product of the

Proof. Consider the following commutative diagram.

Hiel ¢;

T

(2.4.3)

Here 7y, is the projection onto the k-th factor and 7., 7 ., are the localisation projections,
which are surjective. Note that the dotted arrow ¢ exists by the universal property of
localisation of €.

The map t : ([T;c; €i)e — (€k)z sends mo((¢i)icr) € ([Tie; €i)e to mee 0 T2 ((ci)icr) =
Thz(ck) € (€k),. This implies ¢ is surjective. To show it is injective, say t(m;((c;)ier)) =
t(m2((di)ier)) € (€k)a, then mp (k) = 7 o(dy), so by Proposition 2.1.15 there exists
a € ¢ with 2(a) # 0 such that a - (c; — di) = 0. Then define (a;)icr € [[;c; €i by ar = a
and a; = 0 for ¢ # k. Then (a;)icr - ((¢i)ier — (di)ier) and z((a;)icr) # 0, which implies

e ((¢i)ier) = m2((di)ier) € (I;er €i)es 50 t is injective and must be an isomorphism. [

Proposition 2.4.22. If I is a set with cardinality less than any measurable cardinal and
if {€i}ier is a collection of C*-rings, then Spec(][;c;€i) = [lic; Spec(€;). That is,
coproducts in C°°-schemes and affine C°°-schemes are the same.

Proof. Let X = Spec([[;c;€:) and ¥ = [[;c;Spec(€;). Firstly note that any R-point
yr : € — R, k € I, gives a unique R-point = : [[;c; €; — R by z((ci)ier) = yr(ck), so

there is an inclusion of sets ¥ < X.
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Take z € X, so that = : [[,.; €; — R is an R-point. We have an inclusion morphism
of C*-rings i : [[;c; Ry — [[;c; €, so that the composition z o : [[,c;R; — R is an
R-point of [[;c;R. By Lemma 2.4.19, this R-point factors through one of the R in the
product; denote this R;. Then the element dy, = (di)ier € [l R with d; = 55 maps
to a similarly described element in J[,.; €; and then maps to 1 under x. This gives a
morphism from €}, — R that commutes with the projection from [[,.; €; — €. However,
dy = (di)ier € [;c; R with d; = 511-“, and k' # k will map to a similarly described element
in [[,c; € and then to 0 under z, so that = factors through €, uniquely. Hence Y = X
as sets.

Take a basic open set U, = {z : [[;c; € — R : 2(c) # 0} C X for some ¢ = (c¢;)ier €
HZ-GI ¢;. Then each z € U, corresponds to an R-point yi : € — R for some k € I, and
z(c) # 0 if and only if yx(ck) # 0. Then each U, is in one-to-one correspondence with
disjoint unions of basic opens [[;c; UE C Y, where UE = {yp : € — R : yp(cp) # 0}. As
such disjoint unions of basic opens form a basis for the topology of Y then the topologies
are the same, and X =Y as topological spaces.

Taking Spec of the projections 7, : [[;c; € — € gives corresponding morphisms

Spec(my,) : Spec(€y) — Spec(] [;c; €i), which we can amalgamate to a morphism

I =% : [T Spec(&:) = Spec(] ] &)
icl iel
using the universal property of a coproduct. We have shown that f is an isomorphism
of topological spaces. Take yr € Y and x = f(yx), then f:gk : Oxgz — Oy, is the

isomorphism ¢ in Lemma 2.4.21, so f is an isomorphism. ]

Remark 2.4.23. Proposition 2.4.22 is unlike the case of ordinary algebraic geometry,
which we discuss here. In ordinary algebraic geometry, if I is a set and A; is a collection

of rings, then the projections [[,.; A; — A; and the universal property of coproducts give

icl

a canonical morphism ¢ : [],.; Spec(A4;) — Spec(][;c; As). This is an isomorphism if I is

i€l
finite. Let X = Spec([[;c; 4i), Xi = Spec(4;) so ¢ = (¢, &%) : [T, Xi — X.

If I is infinite (and enough of the A; are non-zero) then ¢ is not an isomorphism, as
then the topological space of the target is larger than the topological space of the domain.
To see this, note first that the inclusion of each X; in X is both open and closed. Here,

the prime ideal p; C A; corresponds to a point p; € [[..; X;, and under ¢ p; is sent to

jel
prime ideal p; = (a;)jer € X with a; = A; for i # j and a; = p;. This means ¢ is a
bijection onto its image.

Take ideals in [],c; A; defined as b; = (b;;)icr with b;; = A; and b; ; = 0 the zero

ideal of A; whenever i # j. Let V(b;) be the basic closed set in [[;.; A; corresponding to

el
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b; (defined in Hartshorne [33, p. 70] as the set of all prime ideals that contain b;), then
its complement is equal to the image of X; in X. Hence each image of X; is open. Also

an ideal ¢; C A; gives an open set X; \ V(¢;), and then

A(Xi\ V(gi)) = ¢(Xi) \ V(4:)

where ¢; = (¢j)jer € X with ¢;j = Aj for @ # j and ¢; = ¢;. This implies ¢ is a
homeomorphism onto its image.

Now take ideals d; = (d; j)icr C [l;c; Ai with dj; = 0 the zero ideal of A; and d; ; = A;
for all i # j. These define closed sets V' (d;) that are equal to the image of each X; in X,
so this image is also closed.

However, the direct sum ) . ; A; (which contains all finite linear combinations of
elements of the A;’s) is an ideal of [[;c; A;. It is equal to [[,c; A; when I is finite.
However, when I is infinite it is not equal to [],.; A;, so must be contained in a maximal
(prime) ideal that is not of the form p; for some p;. This prime ideal is not in the image
of ¢, and hence ¢ is not an isomorphism.

X; when [ is infinite in more detail. We

We can examine the topology of X and []
see that

i€l

(][ Xi) = Vierd(Xi) = Ujer(X \ V(b)) = X \ (NjerV (b)) = X\ V(D _ b)) C X,
i€l jeJ
where ). ; bj is the direct sum of ideals. As V(3 ;. ;b)) is the complement of ¢(] [;c; Xi),
then all prime ideals of [],.; A; either are equal to p; for some p; C X; and are in the

b;)

el
image of ¢, or they contain the direct sum and are not in the image of ¢. Then V(> jeJ

is closed in X and not open, and ¢(][,.; Xi) is open in X but not closed.

i€l

This is important because while X is an affine scheme, ], ; X; is not affine for I
infinite. If it were affine, it would be quasi-compact, that is every open cover would have
a finite subcover. [This follows as, say {Y \ V(d;)};c is an open cover of an affine scheme

Y = Spec(B) for some ring B, then

Y = Ujes(Y\V(d)) = Y \UjesV(dy) =Y\ V(D dy)
jeJ
implies the direct sum ) jed d; = B, so there is a finite linear combination of the d; that
equals 1 € B. The elements in this finite linear combination correspond to the subcover.
For more on quasi-compact, see Hartshorne [33, p. 80, 2.13(b)].] However, {X;}icr is an
open cover of [[,.; X; and it has no finite subcover, so [[;.; X; is not affine.

We can also show that any open set of X that contains V(3 .. ;b;) must contain all

jeJ
but finitely many of the ¢(X;). Here an open set is of the form X \ V(K) for some ideal
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K Cllie 4 I V(ng] bj) C X \ V(K), then

0=V(E)NV() b)) =V(K+) b)),
JjeJ JjeJ
sol€K+3 c;bj =]lics Ai- Then K must contain an element that is equal to 1 in all
but finitely many of the entries, and the result follows.
We conclude that X is affine, it has (open and closed) affine subschemes ¢(X;) = X;
and has the (non-affine when I is infinite) open subscheme ¢(][;.; X;). Hence, the image
of [[;,c; Xi under ¢ when I is infinite is open but does not cover X, so ¢ is not an

isomorphism when [ is infinite.

2.5 Sheaves of Ox-modules and cotangent modules

This section follows Joyce [40, §5.3], recalling their definition of cotangent sheaves.
Our definition of sheaf of Ox-module is the usual definition of sheaf of modules on a
ringed space as in Hartshorne [33, §I1.5] and Grothendieck [32, §0.4.1], using the underlying

R-algebra structure on our (sheaves of) C*°-rings.

Definition 2.5.1. For an element X € C®°RS we define the category Ox-mod. The
objects are sheaves of Ox-modules (or simply Ox-modules) £ on X. Here, £ is a functor
onopen sets U C X such that £ : U — E(U) € Ox(U)-mod is a sheaf as in Definition 2.3.1.
This means we have linear restriction maps Eyy : £(U) — E(V) for each inclusion of open

sets V C U C X, such that the following commutes

Ox (U) x E(U) £(U)
J(pUVXEUV SUV\L (2.5.1)
Ox (V) x (V) eV),

where the horizontal arrows are module multiplication.
Morphisms in Ox-mod are natural transformations ¢ : &€ — F. An Ox-module & is
called a wvector bundle of rank n if it is locally free, that is, around every point there is an

open set U C X with &|y = Ox |y @r R™.

Definition 2.5.2. We define the pullback f*(€) of a sheaf of modules £ on Y by a
morphism f = (f,f*) : X — Y of C*-ringed spaces as f*(£) = f~1(€) ®@p-1(0y) Ox-
Here f~1(€) is as in Definition 2.3.5, so that f*(£) is a sheaf of modules on X. Morphisms
of Oy-modules ¢ : &€ — F give morphisms of Ox-modules f*(¢) = f(¢) ® ido, :
(&) = f(F).
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Definition 2.5.3. We define the cotangent sheaf PT*X of a C°-ringed space X =
(X,0x) as follows. To each open U C X we define a presheaf by taking the cotangent
module Q¢ 7y of Definition 2.2.4, regarded as a module over the C*°-ring Ox (U). Here,
for open sets V. C U C X we have restriction morphisms €2, : Qo @) = Qo)
associated to the morphisms of C*-rings pyy : Ox(U) — Ox (V) so that the following
commutes:

Ox(U) x Qox ) —5 -3 Qo)

iva XQpry Qoyy i

Ox (V) x Qo) Fox®) Qoxv)-
Definition 2.2.4 implies Q04 = €y 0 0y so that this is a well defined presheaf of Ox-
modules on X. The cotangent sheaf T*X of X is the sheafification of PT*X.

The universal property of sheafification shows that for open U C X we have an iso-

morphism of Ox |y-modules
(U, 0xlu) =T Xy.

For a morphism f: X —Y € C®RS then f*(T*Y) = f~1(T*Y) ®-1(0,) Ox. The
universal properties of sheafification show that f*(7Y’) is the sheafification of the presheaf
P(f*(T*Y)) where

Ur— P(f(T7Y)(U) = limys ) Qoy (v) @oy (v) Ox (U).
This gives a morphism of presheaves P2y : P(f*(1"Y)) — PT*X on X where

(PQ)(U) = limy 510y (R, ) o fu(v))5-

Here, we have morphisms f;(V) : Oy (V) = Ox(f~1(V)) from f; : Oy — f.(Ox) corre-
sponding to f* in f as in (2.4.2), and Pr-1(V)U Ox(f~YV)) = Ox(U) in Ox so that
(prfl(v)yofu(‘/))* : Qoy(v) oy vy Ox(U) = Qo) = (PT*X)(U) is constructed as
in Definition 2.2.4. Then write Qy : f*(T"Y) — T*X for the induced morphism of the
associated sheaves. This corresponds to the morphism df : f*(T*Y) — T*X of vector

bundles over manifold X and smooth map of manifolds f : X — Y as in Example 2.2.2.
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Chapter 3

Background on manifolds with

(g-)corners

We now give some background material on manifolds with (g-)corners. While manifolds
with corners were originally studied in Cerf [11] and Douady [18] to generalise manifolds
with boundary, we will focus on the more recent work of Melrose [66-68] and Joyce [39,47],
who are of particular interest for their descriptions of smooth maps and the corner functor.
In particular, Joyce [47] studied ‘manifolds with generalised corners’, or ‘manifolds with
g-corners’ for short, a generalisation of manifolds with corners. Here we will present the
fundamental definitions of manifold with corners and manifolds with g-corners, and explain

how they relate to each other.

3.1 Monoids and the local model

While manifolds are locally modelled on R™, manifolds with corners are more generally
modelled on R? = [0, 00)¥ x R"¥. Manifolds with g-corners are more general still, where
for any weakly toric commutative monoid P, we have a corresponding local model Xp,
and if P = NF x Z"7% then Xp = R].

To make this precise, we start by recalling facts about monoids in the style of log
geometry. References for monoids include Ogus [78, §I], Gillam [26, §1-§2], and Gillam
and Molcho [28, §1]. The only thing new here is the definition of firm monoid.

Definition 3.1.1. A (commutative) monoid is a set P equipped with an associative com-
mutative binary operation + : P x P — P that has an identity element 0. All monoids

in this thesis will be commutative. A morphism of monoids P — () is a morphism of
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sets that respects the binary operation and sends identity to identity. Write Mon for the

category of monoids.

r "

n copies

For any n € N = {0,1,...} and p € P we will write np =n-p=p+---+p, and
require 0 - p = 0.

A submonoid Q of a monoid P is a subset that is closed under the binary operation
and contains the identity element. We can form the quotient monoid P/(Q) which is the
set of all ~-equivalence classes [p] of p € P such that p ~ p’ if there are ¢,¢' € Q with
p+q=1p +q € P. It has an induced monoid structure from the monoid P. There is
a morphism 7 : P — P/Q. This quotient satisfies the following universal property: it is
a monoid P/@Q with a morphism of monoids 7 : P — P/Q such that 7(Q) = {0} and if
g : P — R is a monoid morphism with x(Q) = {0} then = v o7 for a unique morphism
v:P/Q — R.

A wunit in P is an element p € P that has a (necessarily unique) inverse under the
binary operation, p’, so that p’ +p = 0. Write P* as the set of all units of P. It is a
submonoid of P, in fact it is an abelian group. A monoid is an abelian group if and only
if it is equal to its set of units.

An ideal I in a monoid P is a proper subset I C P such that if p € P and i € I then
ip € I, so it is necessarily closed under P’s binary operation. It must not contain any
units. An ideal [ is called prime if whenever a + b € I for a,b € P then either a or b is
in P. We say the complement P \ I of a prime ideal I is a face which is automatically a
submonoid of P. If we have elements p; € P for j in some indexing set J then we can
consider the ideal generated by the p;, which we write as (p;);es. It consists of all elements
in P of the form a + p; for any a € P and any j € J. Note that if any of the p; are units
then the ‘ideal’ generated by these p; is a misnomer, as (p;);je. is not an ideal and instead
equal to P. We do not usually consider the empty set to be an ideal.

For any monoid P there is an associated abelian group P#P and morphism 7&P : P —
PeP. This has the universal property that any morphism from P to an abelian group
factors through 78P, so P8P is unique up to canonical isomorphism. It can be shown to
be isomorphic to the quotient monoid (P x P)/Ap, where Ap = {(p,p) : p € P} is the
diagonal submonoid of P x P, and 78P : p — [p, 0].

For a monoid P we have the following properties:

(i) If there is a surjective morphism N¥ — P for some k > 0, we call P finitely gener-
ated. This morphism can be uniquely written as (ni,...,ng) — nip1 + - - - ngpg for
some p1,...,pr € P which we call the generators of P. This implies P8P is finitely

generated. If there is an isomorphism P = N¥ then P is called free.
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(i)

(iif)

(vii)

If the group of units P* is only the identity element we call P sharp. Any monoid
has an associated sharpening P* which is the sharp quotient monoid P/P* with
surjection 7f : P — P! If the sharpening of P is finitely generated we call P firm,

so finitely generated P are firm.

If 7w8P : P — PS®P is injective we call P integral or cancellative. This occurs if and
only if p+p' = p+ p” implies p’ = p” for all p,p’,p” € P. Then P is isomorphic to

its image under 7P, so we can consider it a subset of PSP.

If P is integral and whenever p € P8P with np € P C P®P for some n > 1 implies
p € P then we call P saturated.

If P®P is a torsion free group, then we call P torsion free. That is, if there is n > 0

and p € P8P such that np = 0 then p = 0.

If P is finitely generated, integral, saturated and torsion free then it is called weakly
toric, so weakly toric implies firm. It has rank rank P = dimg (P ®ynR). For a weakly
toric P then there is an isomorphism P* 2 Z! and P! is a toric monoid (defined
below). The exact sequence 0 — P* — P — P! — 0 splits, so that P = P! x Z'.
Then the rank of P is equal to rank P = rank P8 = rank P + [.

If P is a weakly toric monoid and is also sharp we call P toric (note that saturated
and sharp together imply torsion free.) For a toric monoid P its associated group
P2P s a finitely generated, torsion-free abelian group, so P& = Z* for k > 0. Then
the rank of P is rank P = k.

These definitions are not standard in the literature. For example, Ogus [78, p. 13|, refer

to our weakly toric monoids as toric monoids, and to our toric monoids as sharp toric

monoids.

We will write Monf®, Mon™t, Mon®® for the full subcategories of Mon that con-

tain finitely generated, weakly toric, and toric monoids, respectively, so that Mon®® C
Mon"* ¢ Mon'8 ¢ Mon.

In many examples, we may use multiplication - instead of addition as the binary

operation with identity element 1. Such a monoid P may have an element 0 € P such

that Op = 0 for all p € P which we call a zero element of P. Important examples for this

thesis are the following;:

Example 3.1.2. (a) The most basic toric monoid is N* under addition for & = 0,1,.. .,
with (NF)ep = 7F,
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(b) Z* under addition is weakly toric, but not toric as it is not sharp with (Z¥)* = Z* #£ 0.
An example of generators are (1,0,...,0),(0,1,0,...,0),...,(0,...,1),(=1,—=1,...,=1).
(c) ([0,00),-,1) under multiplication is a monoid that is not finitely generated. It has
identity 1 and zero element 0. We have [0,00)8? = {0}, so [0,00) is not integral, and
[0,00)* = (0,00), so [0,00) is not sharp. However, the sharpening is isomorphic to {0}
and so it is firm. Similarly, (R, : 1) is not finitely generated, not integral and not sharp,

but it is firm and has zero element 0.

Definition 3.1.3. Let P be a weakly toric monoid (considered under addition). We
define Xp = Hom(P,[0,00)) as in Joyce [47, §3.2] to be the set of monoid morphisms
x : P — [0,00) where the target is considered as a monoid under multiplication as in
Example 3.1.2(c). The interior of Xp is defined to be X3 = Hom(P, (0, 00)) where (0, co)
is a submonoid of [0, 00), so that X3 C Xp.

For p € P there is a corresponding function A, : Xp — [0, 00) such that \,(z) = z(p).
For any p,q € P then A\,14 = Ay - Ay and Ao = 1. Then we can define a topology on Xp
to be the weakest topology such that each A, is continuous. Then Xp is locally compact,
Hausdorff and X3 is an open subset of Xp. The interior U° of an open set U C Xp is
defined to be U N X 3.

As P is weakly toric, then we can take a presentation for P with generators p1,...,pm

and relations
apr+- 4 alpm=blp +-+bpm inPlorj=1..F

for a{,bg eN i=1,....mand j = 1,..., k. Then we have a continuous function
Apy X o= X Ayt Xp —[0,00)™ that is a homeomorphism onto its image
/ m b{ bl .
Xp = {(ml,...,mm) €[0,00)™ iyt =xt o), j = 1,...,k},
which is closed subset of [0, 00)™.

Example 3.1.4. If P = N*¥ x Z™ % then P is weakly toric. We can take generators
p1 = (1,0,...,0),p2 = (0,1,0,...,0),...,pm = (0,...,0,1), prr1 = (0,...,0,—1,...,—1)
with pp,+1 having —1 in the £ + 1 to m + 1 entries, so that the only relation on P is
Pk+1+ -+ Pmy1 = 0. Then Xp is homeomorphic to

Xp={(x1,- -, Tmy1) € [0,00)™ gy - zpgr = 1)
This means that for (z1,...,2m,+1) € X we have Zj41, ..., Ty positive with 177_n1+1 =
Tht1- Tm. So there is a homeomorphism from Xp to Ry® where (1,...,2m+1) —
(1, ...,z log(Trr1), - .., log(zm))-
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3.2 Smooth maps and manifolds with (g-)corners

We start by defining smooth maps with target and domain (open subsets of) R}, then
extend this to define smooth maps with target and domain (open subsets of) Xp. We will

use the notion of smooth map from Melrose [66-68] who calls them b-maps.

Definition 3.2.1. Let f : U — R be a continuous map for open U C R}!. We say that f

: . o oot : :
is smooth if all derivatives M f(u,...,um) : U — R exist and are continuous for
all ai,...,am, = 0, including one-sided derivatives where u; =0 for i =1,..., k.

Let f : U — [0,00) be a continuous map. We say that f is weakly smooth if if all

. . o1t tam
rivatives ~ar——a—
derivatives DT Dl

0, including one-sided derivatives where u; = 0 for i« = 1,..., k. We say f is smooth

flug, ..., up) : U — R exist and are continuous for all aq,...,a,;, >

if it is weakly smooth and it is either identically 0, or for every point in U there is an
open neighbourhood in U containing this point such that f is of the form f(uy,...,u,) =
uft - ugF Fug, ... up) for a weakly smooth positive function F' : U — (0,00) and non-
negative integers aq,...,ar. In the latter case, f is called interior.

Let m; : R — [0,00) be the projection onto the i-th factor for i = 1,...,k and let
m; : R}y — R be the projection onto the i-th factor for i = £+ 1,...,n. For open sets
U CR™ and V C R} we say a continuous function f: U — V is weakly smooth if m; o f is
weakly smooth for ¢ = 1,...,k and smooth for i = k+1,...,n. We say f is smooth if it
is weakly smooth and 7; o f is smooth for ¢ = 1,..., k. We say f is interior if it is smooth
and no composition 7; o f is zero for i = 1,..., k, which implies f(U°) C V°. Then we
say f is a diffeomorphism if it is a smooth bijection with smooth inverse, which requires
n=m,k=1I.

Let P be a weakly toric monoid and Xp its corresponding topological space as in
Definition 3.1.3. Let P have generators p1,. .., pn, and take the homeomorphism A, x---x
App © Xp — X € [0,00)™. Let U be an open subset of Xp, and U’ = \p, x---x\,, (U) C
X'5. Then we say a continuous function f: U — Ror f: U — [0,00) is smooth if there
exists an open neighbourhood W' of U’ in [0, 00)™ and a smooth function g : W' — R or
g: W' —[0,00) that is smooth in the sense above, such that f = go X, x---x A, . This
can be shown to be independent of the choice of generators of P, and if P = N¥ x zn~*
it matches with the definition above.

If @ is another weakly toric monoid and we consider open V' C X and continuous
function f : U — V. Then f is smoothif A\jo f : U — [0, 00) is smooth for all ¢ € @ in the
sense above. We call f interior if f(U°) C V°, and a diffeomorphism if it bijective with

smooth inverse. Again if P = N* x Z"~* this matches with the definitions above.
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We now define charts and atlases to give the definitions of a manifold with corners and

a manifold with g-corners, as in Joyce [47, §3].

Definition 3.2.2. For a Hausdorff, second countable topological space X we define an
g-chart on X to be a triple (P, U, ¢). Here, P is a weakly toric monoid, so it is a submonoid
of P&P = 7" for some n > 0. We require U C Xp to be open and ¢ : U — X to be a
homeomorphic onto its image in X. If rank P = m we call (P, U, ¢) m-dimensional.

If (P,U,¢) and (Q,V,v) are m-dimensional g-charts on X then they are called com-
patible if we have a diffeomorphism ¢! o ¢ : ¢ (d(U) NY(V)) — v~ (¢(U) Ny(V))
between open subsets of Xp and Xqg. A g-atlas on X is a family of pairwise compatible
charts with the same dimension where the union of the images of the ¢ in each chart
cover X. A mazimal g-atlas on X is a g-atlas that is not properly contained in any other
g-atlas; each g-atlas is contained in a unique maximal g-atlas, which contains all g-charts
compatible with each chart in the g-atlas.

We call X a manifold with g-corners if it can be equipped with a maximal g-atlas. We
say X has dimension m if the g-atlas has dimension m. We say that X is a manifold with
corners if each g-chart (P, U, $) of X then P 22 N* x Z™* for some k = 1,...,m. In this
case, the data of the g-chart (P, U, ¢) is equivalent to the data of a chart (¢, U) for open
U CR} and ¢ : U — X a homeomorphism onto its image, as in [47, §2]. If £ = 0 for each
g-chart, then X is a (smooth) manifold in the usual sense.

If X,Y are two manifolds with g-corners then a continuous map f: X — Y is smooth
(or interior) if for all g-charts (P, U, ¢), (@, V, ) then

Y lofop:(fop) (W(V) —V

is smooth (or interior) between open sets of Xp and Xg. Then we let Man®® be the
category of manifolds with g-corners and their smooth maps, and Maniglf the non-full
subcategory of manifolds with g-corners and interior maps. We also have Man® the full
subcategory of Man®® of manifolds with corners, and Mang, the full subcategory of
Manigrf of manifolds with corners with interior maps.

We will also like to consider Hausdorff, second countable topological spaces that consist
of disjoint unions [[°_, X, where X,, is a manifold with g-corners of dimension m. We
write Man®° for the category with these objects (which we call of manifolds with g-corners
with mized dimension), and morphisms that are continuous morphisms and restrict to
smooth morphisms of manifolds with g-corners on each m-dimensional pieces. That is,
continuous f : [[0_y Xpm — [In2 Ya, such that fly ~p-1(y,) @ X 0 f7HYn) = Yy, is

smooth for all m,n > 0.
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We write Manigrf C Man&® for the subcategory with the same objects, and morphisms
f with f|Xmmf—1(Yn) interior for all m,n > 0. We write Man® for the full subcategory
of Man®® that consists of disjoint unions of manifolds with corners, and Manfn for the
full subcategory of l\v/IanignC with objects in Man®. We call objects of Man® and Man‘-fn
manifolds with corners with mized dimension.

For a manifold with (g-)corners (of possibly mixed dimension) we will write C*°(X)
to be the set of smooth functions from X to R, which is a C*°-ring and an R-algebra (in a
similar way to Example 2.1.4). We will write Ex(X) to be the set smooth functions from
X to [0,00) and In(X) to be the set of interior functions from X to [0, c0), which are both
monoids, as in Definition 4.1.1 and discussed further in §4. Similarly to Example 2.1.16,
we will also consider the germs of these functions at a point x € X, and write these sets
as C°(X), Exy(X), Ing(X).

Remark 3.2.3. We know that a weakly toric monoid P is isomorphic to P¥ x 7!, where
P! is toric and [ is a non-negative integer. This implies Xp = Xp; X X, = Xpi X R!.
This means that manifolds with g-corners have local models Xg x R for toric monoids Q
and [ > 0, where X = [0, 00)F.

Each toric monoid ) has a natural point dg € X called the vertex of X¢, which acts by
taking 0 € @ to 1 € [0, 00) and all non-zero ¢ € @ to zero. Given a manifold with g-corners
X and a point x € X, there is a neighbourhood of x and a toric monoid @ such that this
neighbourhood is modelled on X x R near (Jy,0) € X % R!, where rank Q +1 = dim X.

From [47, Ex. 3.23] we have the simplest example of a manifold with g-corners that is

not a manifold with corners.

Example 3.2.4. Let P be the weakly toric monoid of rank 3 with
P={(a,b,c)€Z*:a>0,b>0, a+b>c>0}.

This has generators p; = (1,0,0), p2 = (0,1,1), p3 = (0,1,0), and ps = (1,0,1) and one
relation p; + p2 = p3 + pa. The local model it induces is

Xp = Xp = {(21,72,73,74) € [0,00)" : z122 = 2374} (3.2.1)

Figure 3.2.1 is a three dimensional sketch of X}, as a square-based 3-dimensional in-
finite pyramid. From Remark 3.2.3, we can see X} has a vertex (0,0,0,0) corresponding
to dp € Xp. It also has one-dimensional edges consisting of points (z1,0,0,0), (0, z2,0,0),
(0,0,23,0),(0,0,0,z4), and 2-dimensional faces of consisting of the points (z1,0, z3,0),

(21,0,0,24), (0,22, x3,0), (0, 22,0, z4). Its interior X5 = R? consists of points (1, 2, 23, 24)

o1



Figure 3.2.1: 3-manifold with g-corners X, = Xp in (3.2.1)

with 21, ..., 24 non-zero and x1z9 = x3x4. Without the vertex, Xp \ {do} is a 3-manifold
with corners, however Xp is not a manifold with corners near its vertex, as it is not

isomorphic to R}! around dy.

Remark 3.2.5. References on manifolds with corners include Cerf [11], Douady [18],
Gillam and Molcho [28, §6.7], Melrose [66-68], and Joyce [39,47]. Most authors define
manifolds with corners to have local model R} as we do. In addition, Melrose [66-68] and
authors who follow him restrict to manifolds with faces as in our Definition 3.3.3 below,
which we will not do, although we will make use of this notion.

There is no consensus on the definition of smooth maps/morphisms of manifolds with

corners in the literature, for example:

(i) Melrose [68, §1.12], [66, §1], first defined our notion of (interior) smooth maps and

calls them (interior) b-maps.

(ii) In Joyce [39], the author required smooth maps to be ‘strongly smooth maps’ (which
were just called ‘smooth maps’ in [39]), where for example if f : Rf — [0,00) is
strongly smooth, then it is either identically zero or it is smooth in our sense but
with f(u1,...,up) = wfF(u1,...,uy) for some i = 1,...,k and a € {0,1}, and
weakly smooth F': R} — (0,00). .

(iii) Our interior maps coincide with Gillam and Molcho’s morphisms of manifolds with
corners [28, §6.7].

(iv) Cerf [11, §1.1.2] and many other authors define smooth maps of manifolds with

corners to be only weakly smooth maps in our notation.

Manifolds with g-corners were defined in [47] and we follow this presentation. They have
also been studied in Kottke [57], which considers their blow ups, and Joyce [49, §2.4] for

their applications for moduli spaces in Symplectic Geometry.
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3.3 Boundaries and corners of manifolds with (g-)corners

The material of this section broadly follows Joyce [39], [47, §2.2 & §3.4]. In the following
definition we will consider the empty set and the whole set to be prime ideals of a monoid,

which we will not need to do later.

Definition 3.3.1. Take a weakly toric monoid P and corresponding topological space
Xp. For each x € Xp define the support of x, suppx,x = {p € P : z(p) # 0}. Then
suppx, « is a face of P. Define the depth of x to be depthy , x = rank P —ranksuppy,, ,
which is an integer valued in 0, ... ,rank P. Define the depth [ stratrum of Xp to be

S{(Xp) = {z € Xp : depthy, z =1}.

The interior of Xp is S°(X).
For any face F' C P there is an inclusion i? : Xr — Xp where y € Xr maps to the
x € Xp such that 2(p) = y(p) if p € F and z(p) = 0 otherwise. Then iL(X$) = {z € Xp :

Rrank F

suppy, = I'} and this is isomorphic to , a manifold without boundary. Then we

see that
s'(xp) = [T ik(XE),
F
where this disjoint union is over the faces F' of P that have rank(F) + [ = rank(P). Also,

S!(Xp) is a smooth manifold without boundary, and we see

rank P
I s'(xp)=Xp
=0

stratifies Xp into manifolds without boundary.
We can restrict this stratification to open sets, U C Xp, so that S'(U) = U N S'(Xp)
are the depth [ elements of U, and

rank P

v= [ s
=0

This is shown to be invariant under diffeomorphism in [47, §3.4].

For a manifold with g-corners, X, then for each x € X we can choose a chart (P, U, ¢)
with ¢(u) = x for some u € U and let the depth of & be the depth of u. As the depth is
invariant under diffeomorphisms, this is independent of the chart. Then we can similarly
define the stratification

SH(X) = {z € X : depthy z =1}

93



forl =0,1,...,dim X. The disjoint union of the stratum is equal to X, and each stratum
is a manifold without boundary of codimension .

For x € R} the depth of x simplifies to the number of zeros of its coordinates. Then
for a manifold with corners X the depth of an element z € X is the depth of its image
¢(z) € U C R} in a coordinate chart (U, ¢).

Definition 3.3.2. For a manifold with g-corners X of dimension n, take x € X, and
k=0,1,...,n. Then we define a local k-corner component ~v of X at x to be a local choice
of connected component of S¥(X) near x. More precisely, for any open neighbourhood
V of x in X that is small enough, then ~+ is a choice of connected component W of
VN S*(X). So z is in the closure of W in X and if we chose another open neighbourhood
V' and connected component W’ of V' N S*(X) then 2 € W NW’'. The local 1-corner
components are called local boundary components of X.

We define the boundary and k-corners of X to be the sets

0X = {(x,ﬁ) :x € X, (B is a local boundary component of X at x},

Cr(X) = {(x,’y) :x € X, ~vis alocal k-corner component of X at x},

for k =0,1,...,n. This implies 0X = C1(X) and Cp(X) = X.

One can define charts on C%(X) so that each are a manifold with g-corners of codi-
mension k. If X is a manifold with corners then Cj(X) is a manifold with corners for each
k=0,...,n.

The corners of X is the manifold with (g-)corners with mixed dimension

dim X

cx)=J] ().
k=0

There are canonical smooth maps ix : Cx(X) — X where (x,3) — x, which are not

interior and may also not be injective.

The property that ix is injective on connected components of 90X is of particular
importance for manifolds with corners, although it is not considered for manifolds with

g-corners as discussed in Remark 4.7.10.

Definition 3.3.3. A manifold with corners X is called a manifold with faces if for each
connected component F' of X, the map ix|p : FF — X is injective. Then the faces of X
are the connected components of 0.X, which can be regarded as subsets of X. In his work
on analysis on manifolds with corners, Melrose [66—68| restricts to manifolds with faces,

as some things can then be done globally.
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Here is an example of a manifold with corners that does not have faces that is from [47,
Ex. 2.8].

Example 3.3.4. We define the teardrop as the subset T = {(z,y) € R?:2>0,y%<a?—
x4}. As shown in Figure 3.3.1, T is a manifold with corners of dimension 2. The teardrop
is not a manifold with faces as the boundary is diffeomorphic to [0, 1], and so is connected,

while the map i : 9T — T is not injective.

Y

Figure 3.3.1: The teardrop T

We now show that the corners of X is in fact a functor in a specific sense by considering

how it acts on morphisms. The following is from [47, Lem. 3.33].

Lemma 3.3.5. A smooth map of manifolds with g-corners f : X — Y is compatible
with the depth stratifications X =[], SKX), Y = =0 SYY) in Definition 3.3.1.
That is, if we take a connected subset ) # W C S*(X) for some k > 0, then f(X) is

contained in some S'(Y') for a unique | > 0.

In general, a smooth f : X — Y does not induce a map 9f : X — JY nor a map
Cr(f) : C(Y) — Cx(Y). This means that boundaries and k-corners do not give functors
on Man® by themselves. If we allow mixed dimension and the full corners C(X) =
[>0 Cx(X) from Definition 3.3.2, we can define a functor as in Joyce [47, Def. 3.34].

Definition 3.3.6. Take a smooth map f : X — Y of manifolds with corners, and let ~
be a local k-corner component at € X. For a small enough neighbourhood V of z in X,
then + gives a connected component W of V N S¥(X) with « in the closure of W. Then
Lemma 3.3.5 says there is an [ > 0 such that f(W) C SY(Y). Now f(W) is connected as
f is continuous, and f(z) € f(W). This gives a unique l-corner component f,(y) of Y’
at f(z), such that for a small enough neighbourhood V of f(z) in Y, then f,(7) has the
corresponding connected component W of V' N SYY) where W N f(W) # (. This f.(7) is
well defined as it is independent of the choice of sufficiently small V, V.

We define a map C(f) : C(X) — C(Y) by C(f) : (z,v) — (f(z), f«()), which is
smooth by [47, Def. 2.10,Def. 3.34]. Then C(f) is a morphism in Man® and this defines
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the functor C' : Man8® — Man®8°, and restriction to manifolds with corners defines a
functor C': Man® — Man®, both of which we call the corner functor.

By [47, Prop. 2.11, Prop. 3.36] C(f) is interior for each smooth map of manifolds with
(g-)corners f : X — Y. We can also consider taking the domain category to be Man®
and Man&® so that the corner functors can be extended to the functors C' : Man® —
l\v/Ianicn and C' : Man&°® — Maniglf . We will show these are right adjoint to the inclusions

Mang, — Man® and Manf’ — Man®® in §5.8.

3.4 Tangent bundles and b-tangent bundles

We now discuss tangent bundles of manifolds with (g-)corners. For a manifold with corners
there are two relevant constructions: the (ordinary) tangent bundle which is a standard
generalisation of the tangent space of a manifold with corners, and the b-tangent bundle
defined in Melrose [67, §2.2], [68, §1.10], [66, §2]. Manifolds with g-corners do not have
well behaved (ordinary) tangent bundles in that the dimension of the tangent spaces is
not locally constant, however their b-tangent bundles are well behaved. The duals of
the tangent bundle and b-tangent bundle give the cotangent and b-cotangent bundles
respectively. We follow the presentation of Joyce [47, §2.3, §3.5].

Definition 3.4.1. For a manifold with corners X of dimension m we define the tangent
bundle m : TX — X of X. This is a natural vector bundle on X that is unique up to
canonical isomorphism. There are many equivalent ways to characterise T'X, let us first
consider how to do this using coordinate charts.

For a chart (U,¢) on X, with U C R} open, then T'X|y) is the trivial bundle.
If (u1,...,um) are coordinates on U then T'X |4 has a basis of sections 8%1, A %.
Then TX has a corresponding chart (TU,T¢) where TU = U x R™ C R?™. A point
(U1, s Um, q1s---,qm) € TU can be represented by the vector qla%l 4+ -+ qm% over
(Uty...,upm) €U or ¢(ug,...,um) € X.

Where two charts (U, ¢) to (U, $) of X overlap, we can consider their change of coor-
dinates (ui,...,upm) ~ (41,..., %), which gives a corresponding change from (TU,T¢)

to (TU,T¢) where (u1,...,Um;q1,---qm) ~> (@1, Tm,G1,---,Gm). This is given by

ou; . . . ~ Ol
3‘1 =2 e (U1, ) - 8%]* which implies §; = > /"4 Tz(ul, ey Um) G-
We can also define T'X intrinsically using the elements of I'>°(7°X) which are called
vector fields. For each x € X the fibre of T X at x is denoted T, X and there is a canonical

isomorphism
T, X = {linear maps v : C*(X) = R : v(fg) = v(f)g(z)+f(z)v(g) for all f,g € C®(X)}.
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There is also a canonical isomorphism of C'*°(X)-modules
I>°(TX) = {linear v : C*°(X) — C™(X) : v(fg) = v(f)-g+f-v(g) for all f,g € C®(X)}.

For a smooth map of manifolds with corners f : X — Y there is a corresponding
smooth map T'f : TX — TY (as defined in [47, Def. 2.14]), which commutes around the

following diagram

TX 7 TY
.
X Y.

For another smooth map of manifolds with corners g : ¥ — Z we have T'(go f) =
TgoTf : TX — TZ, and also T(idx) = idpx : TX — TX. This means that we
have a tangent functor X — TX, f — Tf, T : Man® — Man®, which restricts to
T : Man§, — Man,. Here T'f is also a vector bundle morphism df : TX — f*(TY)
on X.

The dual vector bundle T*X of T'X is called the cotangent bundle. This is not func-
torial, but for smooth maps of manifolds with corners f : X — Y there are vector bundle
morphisms (df)* : f*(T*Y) - T*X on X

We now define b-(co)tangent bundles for manifolds with corners and manifolds with

g-corners.

Definition 3.4.2. For a manifold with g-corners X of dimension m we define the b-
tangent bundle m : PTX — X of X. This is a natural vector bundle on X that is
unique up to canonical isomorphism. For a manifold with corners, there is a natural map
Ix :*TX — TX, that is an isomorphism over the interior X°, but is not an isomorphism
over the boundary strata S*(X) for k > 1. We consider three ways to characterise *T'X
for a manifold with corners, one of which gives a nice characterisation for a manifold with
g-corners. We start by considering charts (U, ¢) on a manifold with corners, X, with
U C R} open.

If (u1,...,un) the coordinates on U then over ¢(U), bTX|¢(U) has basis of sections
“18%1’ . ,uk%, %}M, ey %. Then °T X has a corresponding chart (*TU,°T¢), where
PTU =U x R™ C R%m. Then a point (u1,...,Un,S1,-..,5m) € °TU can be represented
by the vector

o) o) le) o)
81U1TM+"'+SkUkm+Sk+1m+"‘+Smﬁ

over (Uq,...,Un) in U or ¢(u,..., upy) in X.
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Where two charts (U, ¢) and (U, ¢) overlap we can consider their change of coordinates
(U1, Um) ~ (@1, ..., Un), which give a change of coordinates (*TU,*T¢) to (*TU,"T¢)

where (U1, ..., Um, S1,.. .y Sm) ~ (U1,...,Um,S1,...,5m) With

k a1 ou, ~ 104 .
Ez 1Y uzaTsl—i_Zz k+1uj Bu Si’ J <k,

S; =
J
k .
DRTLLR o R j> k.

In coordinate charts (*TU,°T¢), (TU,T¢), Ix : *TX — TX acts by
(Uly e vy Uy STy e ey Sm) > (Uly e ooy Uy UWLSTy v oy URSEy Skt1y -« - 5 Sm)-

A more intrinsic definition uses elements of T (T X), which are called b-vector fields.

Then there is a canonical isomorphism of C'°°(X)-modules
r°¢trXx) =~ {v e T(TX) : v|gr(x) is tangent to S*(X) for all k}. (3.4.1)

This gives an inclusion of I'*°*(*TX) into I'*°(T'X), which corresponds to the morphism
Ix :"TX - TX.

Finally, in terms of germs, there is a canonical isomorphism

T, X = {(v,v) :v: CP(X) — R is a linear map ,
v' 1 Ex;(X) — R is a morphism of monoids,

v([a][b]) = v([a]) ev(b) + v([b]) ev(a), for all [a], [b] € CT°(X),
v' o exp([a]) = v([a]), for all [a] € CX°(X),
v oinc([b]) = ev([b])v'([b]), for all [b] € C°(X)}

Here ev([a]) = a(x) is evaluation at the point z € X and inc : Ex,(X) — C°(X) is the
natural inclusion. If the manifold with corners has faces then this can be extended to a
global definition but otherwise it cannot be. Then Ix : *TX — TX for a manifold with
corners acts by (v,v’) — v.

This last definition in terms of germs is also well behaved for a manifold with g-corners,
defining *T X for a manifold with g-corners as in [47, §3.5]. For the model spaces Xp, we
have *TXp = Xp x Hompgon(P,R). Also, for a manifold with g-corners X and a point
z € X then Remark 3.2.3 tells us that X near x is locally modelled on Xg x R near (d,0)

for a toric monoid (), which gives an isomorphism

T, X = Homppon(Q,R) x RL.
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For a smooth morphism of manifolds with (g-)corners that is interior there is a corre-

sponding interior map *T'f : *TX — *TY as in [66, §2] that makes the following commute:

brx by
& bTf K
TX s TY
T i/ - ; ﬂ\ \LW
X Y.

In terms of germs, *T'f : (z,v,v") = (f(z),vo f,v' o f). This gives functors *T : Man§, —
Mang , b Manigrf — Maniglf called the tangent functor where X +— °TX, f — bTf.
The maps Iy : T X — TX correspond to a natural transformations I : *T — T of functors
b : ; b . b

on Mang, and Maniglf . The map °T'f is also a vector bundle morphism °df : °TX —
f*C®TY) on X.

The dual vector bundle of *T'X is called the b-cotangent bundle *T*X of X. This is
not functorial, although for an interior map f : X — Y of manifolds with (g-)corners we
have a vector bundle morphism (°df)* : f*(*T*Y) — *T*X.

One reason for considering manifolds with g-corners is that they are specially well

behaved under fibre products, as the next result from [47, §4.3] shows:

Theorem 3.4.3. Let g : X — Z and h : Y — Z be interior maps of manifolds with
g-corners. Call g,h b-transverse if *T,g @ bTyh X @ bTyY — T, 7 is a surjective
linear map for all v € X and y € Y with g(x) = h(y) =z € Z.

If g,h are b-transverse then the fibre product X x4 7, Y exists in Manig:.

The analogue is false for manifolds with corners, unless we impose complicated extra
restrictions on g, h over 7X,0%Y,0'Z so that the maps are what is called sb-transverse
in Joyce [49]. Note that b-transverse fibre products of manifolds with corners in Manf;
can be manifolds with g-corners, not corners. For example, from (3.2.1) we see that Xp in
Example 3.2.4 may be written as [0,00)% X 10,005 [0,00)%, where g, h : [0,00)* — [0, 00)
given by g(z,y) = h(x,y) = zy are b-transverse. So manifolds with g-corners can be seen
as a type of completion of the category of manifolds with corners under fibre products
of b-transverse maps. We discuss fibre products of manifolds with (g-)corners further in
Remark 5.5.5.
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Chapter 4
C°-rings with corners

We now develop a theory of C*°-rings with corners, a generalisation of C*°-rings in which
manifolds are replaced by manifolds with corners, as in §3. This chapter is based on joint
work with Professor Dominic Joyce.

Some of these ideas were introduced in the MSc thesis of Kalashnikov [51], who studied
the category of (categorical) pre C°°-ring with corners PC*°Rings{, (CPC*Rings{,)) as
in §4.1 and §4.2, although they did not use the pre-fix ‘pre’. Apart from this, the author
knows of no previous work on this subject. However, the theory is related to ‘log geometry’
in algebraic geometry, as discussed in §5.9, and our C*°-rings with corners could in some

sense be regarded as ‘log C'*°-rings’.

4.1 Categorical pre C'*°-rings with corners

There is a natural generalisation of C°°-rings to the corners case. We will call these ‘pre
C*°-rings with corners’, as we will reserve the name ‘C*°-rings with corners’ for pre C°°-
rings with corners satisfying an additional condition given in §4.3. The name comes from

an analogy with ‘pre log rings’ and ‘log rings’ in log geometry, as in §5.9.

Definition 4.1.1. Let X be a manifold with corners (or with g-corners). Smooth maps
g : X — [0,00) will be called exterior maps, to contrast them with interior maps. We
write In(X) for the set of interior maps g : X — [0, 00), and Ex(X) for the set of exterior
maps g : X — [0,00). Thus, we have three sets:

(a) C*°(X) of smooth maps f: X — R;

(b) In(X) of interior maps g : X — [0, 00); and

(c¢) Ex(X) of exterior (smooth) maps g : X — [0, 00), with In(X) C Ex(X).
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Much of this chapter concerns properties of these three sets.

In §2.1 we gave two equivalent definitions for C'*°-rings. Similarly, we will give two
equivalent definitions for pre C*°-rings with corners. We start with the analogue of Defi-

nition 2.1.1.

Definition 4.1.2. Let Euc € Man and CC*°Rings be as in Definition 2.1.1. Write
Euc®, Euc§, for the full subcategories of Man®, Man{, with objects R™ x [0,00)" for all

m,n > 0. Note that products are defined in Euc®, Euc{, with

(R x [0,00)") x (R™ x [0,00)") = R¥"™ x [0, 00) ", (4.1.1)
where if the coordinates on R¥ x [0, 00)! are (w1, ..., wg, z1,...,2;) and on R™ x [0, 00)™
are (Y1, ..., Ym, 21, - - - » Zn), then the coordinates on R¥+™ x [0, 00)!*™ are

(wlv'")wk7y17"‘7yM)xl7' 3 Ty R, e 'azn)'

We have inclusions
Euc C Eucj, C Euc®. (4.1.2)

Define a categorical pre C*°-ring with corners as in Kalashnikov [51, Def. 4.17] to be
a product-preserving functor F' : Euc® — Sets. Here F' should also preserve the empty
product, i.e. it maps R® x [0,00)° = {0} in Euc® to the terminal object in Sets, the
point .

If F,G : Euc® — Sets are categorical pre C'*°-rings with corners, a morphism n: F —
G is a natural transformation n : F' = G. Such natural transformations are automatically
product-preserving. We write CPC*°Rings® for the category of categorical pre C*°-ring
with corners.

Define a categorical interior pre C°-ring with corners to be a product-preserving
functor I’ : Eucf, — Sets. These form a category CPC*Rings{ , with morphisms
natural transformations.

[ee) 3 oo . . .
Define functors IS, T2 TIY” in a commutative triangle

CPC°°Rings® o= CC°°Rings
I
T e~ (4.1.3)
CPC>Rings{, e

by restriction to subcategories in (4.1.2), so that for example T2t maps F : Euc® — Sets

to F]Eucicn : Eucf,, — Sets.
Here is the motivating example.
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Example 4.1.3. (a) Let X be a manifold with corners. Define a categorical pre C*°-ring
with corners F' : Euc® — Sets by F' = Hompjane (X, —). That is, for objects R x [0, 00)™

in Euc® C Man® we have
F(R™ x [0,00)") = Hompgane (X, R™ X [0,00)"),
and for morphisms ¢ : R™ x [0,00)" — R™ x [0, 00)" in Euc® we have
F(g) = go : Hompgane (X, R™ x [0,00)") — Hompgane (X, R™ x [0,00)™)

mapping F(g) : h — goh. Let f: X — Y be a smooth map of manifolds with corners, and
F,G : Euc® — Sets the functors corresponding to X, Y. Define a natural transformation
n:G = F by

n(R™ x [0,00)") = of : Hom(Y,R™ x [0, 00)") — Hom(X,R™ x [0, 00)")

mapping 1 : h+— ho f.

Define a functor Fybe T"8° . Man® — (CPC*®Rings®)°P to map X — F on
objects, and f — 1 on morphisms, for X,Y, I, G, f,n as above.

All of this also works if X, Y are manifolds with g-corners, as in Definition 3.2.2, giving
a functor Fﬁiizomngsc : Man8¢ — (CPC*°Rings®)°P.

b) Similarly, if X is a manifold with corners, define a categorical interior pre C°*°-ring with
y g g

. . CPC*°Rings¢
corners F': Euc§, — Sets by F' = Hommang, (X, —). This gives functors FMam?n in .

Man¢, — (CPC*®Rings¢ )°P and Fﬁ‘a’rig;m“gs?n : Man£® — (CPC>®Rings¢, )°P.

In the language of Algebraic Theories, as in Addmek, Rosicky and Vitale [3], Euc, Euc®,
Euc{,, are examples of algebraic theories (that is, small categories with finite products),
and CC*°Rings, CPC*°Rings®, CPC>Rings{ are the corresponding categories of al-
gebras. Also the inclusions of subcategories (4.1.2) are morphisms of algebraic theories, and
the functors (4.1.3) the corresponding morphisms. So, as for Proposition 2.1.6, Addmek et

al. [3, Prop.s 1.21, 2.5, 9.3 & Th. 4.5] give important results on their categorical properties:

Theorem 4.1.4. (a) The categories CC*°Rings, CPC*°Rings®, CPC>RingsS, , have
all small limits and directed colimits and they may be computed objectwise in Euc, Euc®,

Eucg, by taking the corresponding small limits/directed colimits in Sets.

(b) All small colimits exist in CC*°Rings, CPC*°Rings®, CPC*°Ringsf{ , though in

m’

general they are not computed objectwise in Euc, Euc®, Eucf, by taking colimits in Sets.

(c) There are functors I%, IWS | IS which are left adjoints of TIS; , TIS, THE in (4.1.3).

int cor int » ~cor
o0 oo H
As TIE TIC 11Nt

cor » Wi S IIES, are right adjoints, they preserve limits. Since I&%ﬂ,[int IS are left

C “int
adjoints, they preserve colimits.
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In (a), Addmek et al. prove that all sifted colimits exist in CC*°Rings, ... and may be
computed objectwise in Euc, ... by taking sifted colimits in Sets. Here sifted colimits |3,
§2] are a class of limits in categories which include filtered colimits and directed colimits.

We only mainly interested in directed colimits.

4.2 Pre C*®-rings with corners

We now give the analogue of §4.1 using an alternative definition of pre C'*°-ring with

corners similar to Definition 2.1.2, as in Kalashnikov [51, Def. 4.18].
Definition 4.2.1. A pre C°°-ring with corners € assigns the data:

(a) Two sets € and Cey.
(b) Operations @ : €™ x € — € for all smooth maps f : R™ x [0,00)" — R.
(c) Operations W, : €™ x € — €y for all exterior g : R™ x [0,00)" — [0, 00).

Here we allow one or both of m,n to be zero, and consider SY to be the single point {(}

for any set S. These operations must satisfy the following relations:

(i) Suppose k,l,m,n > 0, and e; : R* x [0,00)! — R is smooth for i = 1,...,m, and
fi: R x [0,00)! — [0, 00) is exterior for j = 1,...,n, and g : R™ x [0,00)" — R is
smooth. Define smooth h : R¥ x [0,00)! — R by

h(xlv"'a$k7y17"'7yl) :g(el(l‘la"'ayl)a"'7em($17"'7yl)7

(4.2.1)
fl(scl,...,yl),...,fn(ml,...,yl)).
Then for all (c1,...,cp, ¢, .. c) € €8 x € we have
Bp(cry o Cp,dyyenn, ) :q)g(q)el(cl,...,cg),...,q)em(cl,...,cg),
Up et .yq)), Uy (c1,..., ).
(ii) Suppose k,l,m,n > 0, and e; : RF x [0,00)! — R is smooth for i = 1,...,m, and
fi : R* x [0, 00)! — [0, 00) is exterior for j =1,...,n, and g : R™ x [0, 00)™ — [0, c0)

is exterior. Define exterior h : R* x [0,00)) — [0,00) by (4.2.1). Then for all

(Clyeeseryhye,c)) € €F x el we have

\Ifh(cl,...,ck,cll,...,cg) = ‘I’g(q)el(cl,~--,CE),---,(I)em(Cl,.--,CE),

\I'fl(cl,...,CE),...7\Ilfn(cl,...,cg)).
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(iii) Write m; : R™ x [0,00)" — R for projection to the i*" coordinate of R™ for i =

1,...,m, and 7r3- : R™ x [0,00)" — [0,00) for projection to the j* coordinate of
[0,00)™ for j = 1,...,n. Then for all (ci1,...,¢m,c},...,c),) in €™ x € and all
i=1,....,m,j=1,...,n we have

D (Cly.esCmy i) =ci, \Ilﬁ;(cl,...,cm,cll,...,c%) = c}.

We will refer to the operations ®;, ¥, as the C*°-operations, and we often write a pre
C*°-ring with corners as a pair € = (€, € ), leaving the C* operations implicit. If ¢ € €
and ¢ € €q, by a slight abuse of notation we will write ¢ = (¢,¢’) € €, which will be
useful for §5.

Let € = (€,C) and ® = (D,Dex) be pre C°-rings with corners. A morphism
¢: € — D isapair ¢ = (¢, pex) of maps ¢ : € = D and Pey : Cox — Dex, Which commute
with all the operations ®;, W, on €,®. That is, whenever f : R™ x [0,00)" — R is
smooth, g : R™ x [0,00)" — [0,00) is exterior and (c1,...,¢m, ¢, ..., c,) € € x €L we

have

¢o (pf(clv .- .7cm,c/1, .- .,C;L) = (I)f((b(cl)v cee 7¢(Cm)7¢ex(cll)7 .- ‘7¢6X(C;1))7
Pex 0 Wg(ct, ... em, sy ) = TUg(dlcr),. .., d(em), Pex(ch)s -, Pex(cy))-

Morphisms compose in the obvious way. Write PC*°Rings® for the category of pre C°°-
rings with corners.

Define functors Ilgy,, [Iex : PC*°Rings® — Sets by Ilgy, : € — €, Iy : € — € 0n
objects, and Ilgy, : ¢ — ¢, ey : @ +— Pex on morphisms, where ‘sm’, ‘ex’ are short for
‘smooth’ and ‘exterior’.

As for TIS in (4.1.3), there is a natural functor IS, : PC®Rings® — C*Rings

acting on objects by € = (€, Ce) — €, where € has the C*°-operations ¢ : €™ — € from
smooth f:R™ — R in (b) above with n = 0, and on morphisms by ¢ = (¢, Pex) — ¢.

Here is our motivating example.

Example 4.2.2. Let X be a manifold with corners. Define a pre C°°-ring with corners
€ = (€,C) by € = C°(X) and €ex = Ex(X), as sets. If f: R™ x [0,00)" — R is
smooth, define the operation ®;: €™ x €7 — € by

/

Pr(cry.yCm,Clyennscy) iz — fla(@), ..., em(2),d)(2),. .., d,(2)). (4.2.2)
If g : R™ x [0,00)" — [0,00) is exterior, define ¥, : €™ x € — Cex by
/

Uo(cryensCmyChyennydy) i x— g(cl(x), oo em(T), (), . ,c;l(x)) (4.2.3)
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This makes € into a pre C'*°-ring with corners.

Suppose f: X — Y is a smooth map of manifolds with corners, and let €, be the
pre C*°-rings with corners corresponding to X, Y. Write ¢ = (¢, pex), where ¢ : © — €
maps ¢(d) = do f and ¢ex : Dex — Cex maps ¢(d') = d o f. Then ¢ : ® — € is a
morphism of pre C'*°-rings with corners.

Define a functor FI\F/’[S;RingSC : Man® — (PC°°Rings®)°P to map X — € on objects,
and f — ¢ on morphisms, for X, Y, & D, f, ¢ as above.

We will also write C*(X) = Fﬁg::Ringsc(X), and write f* : C*(Y) — C™(X)
for Fyo o rines (), pPOTRings® (yy _, pPO=Rings® vy

All of this also works if X, Y are manifolds with g-corners, as in Definition 3.2.2, giving

PC°°Rings® c oD * c\o
a functor Fyp, ee : Mang® — (PC*°Rings®)°P.

Remark 4.2.3. An important difference between ordinary manifolds, and manifolds with
corners, is that if X is a manifold with corners, g; : X — [0, 00) for i € I are exterior (or
interior) maps, and {n; : i € I} is a smooth partition of unity on X, then >, ;nig; : X —
[0,00) is generally not exterior (or interior).

This means that the geometry of manifolds with corners is more global. If g : X —
[0,00) is an exterior map, then there is a locally constant map ng : 0X — {0,1,2,..., 00}
such that g vanishes to order n, along X locally, and if 2/, 2” lie in the same connected
component of X then ny(z") = ng(2") even if ix(z'),ix(z"”) are far away in X.

Recall the notion of ‘manifold with faces’ in Definition 3.3.3. If X is a manifold
with corners, but not a manifold with faces, then there are not enough exterior maps
g: X — [0,00) to properly describe the local geometry of X. That is, X near some z is
locally modelled on R" ™ x [0, 00)% near 0 with coordinates (x1,...,Zn_k, Y1,---,Yx), but
there do not exist exterior g; : X — [0, 00) locally modelled on y; : R x [0, 00)*¥ — [0, 00)
for all ¢ = 1,...,k. For example, the teardrop T in Example 3.3.4 is locally modelled
near (0,0) on [0,00)2, but we can only find exterior g : T — [0, 00) locally modelled on
Y4y [0,00)? — [0,00) when a = b, as the multiplicities ny on the y;- and ya-axes must
be the same.

In the notation of §5, a manifold with corners X corresponds to a natural C'*°-scheme
with corners X, but X is affine with X = Spec® C*°(X) only if X is a manifold with
faces. If X does not have faces then X 2 Spec® C*°(X).

In fact Fﬁg;mngsc : Man® — (PC°Rings®)°P above is full and faithful. Despite
this, if X does not have faces then we regard C*°(X) as somehow ‘wrong’ (e.g. its local
C°-rings with corners in §4.6 and b-cotangent modules in §4.7 do not behave as expected),

and we will not make much use of it.
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This also means that results on C'°°-schemes relying on partitions of unity should not

be expected to extend to C*°-schemes with corners.
Similar to Remark 2.1.3, we have the following equivalence.

Proposition 4.2.4. There is a natural equivalence of categories between CPC*°Rings®
and PC*°Rings®, which identifies F' : Euc® — Sets in CPC*>Rings® with € = (€, C)
in PC*Rings® such that F(R™ x [0,00)") = €™ x €% for m,n > 0.

Under this equivalence, for a smooth function f : R} — R, we identify F'(f) with ®,
and for an exterior function g : R} — [0, 00), we identify F'(g) with W . The proof of this
proposition then follows from F' being a product preserving functor, and the definition of
C*°-ring with corners, similar to the discussion in Joyce [40, p. 7].

The operations ®f, U, on a pre C*°-ring with corners € = (&, €qy) comprise a huge
amount of data. It is often helpful to work with a small subset of this structure. The next

definition explains this small subset. We use the theory of monoids from §3.1.

Definition 4.2.5. Let € = (€, ) be a pre C®-ring with corners. Then € = IS (€)
is a C'°°-ring, and thus a commutative R-algebra. The R-algebra structure makes € into a
monoid in two ways: under multiplication ‘-’ with identity 1, and under addition ‘4’ with
identity 0.

Define g : [0,00)? — [0,00) by g(z,y) = zy. Then g induces ¥, : Cex X Cox — Cox.
Define multiplication - : €ex X Cox — Cox by ¢ - " = ¥y(, ). The map 1 : R? — [0, 00)
gives an operation ¥y : {0} — C€e. The identity in Cex is 1lg,, = PU1(0). This makes
(Cex, *s Le,,. ) into a monoid.

The functor Il : PC*®Rings® — Sets in Definition 4.2.1 extends to a functor Il :
PC°Rings® — Mon mapping [ley : € — Co and Ilex : ¢ — oy, where €y is now
regarded as a monoid.

The map 0 : R® — [0,00) gives an operation Wy : {#} — €e. Thus we have a
distinguished element Og,, = Wo(()) in €y, which is not the monoid identity element. It
is uniquely characterised by the property that ¢ - O¢_ = O¢,, for all ¢/ € €.

Write ¢ : [0,00) < R for the inclusion. Then we have a map ®; : € — €. This is a
monoid morphism, for € a monoid under multiplication.

The exterior map exp : R — [0, 00) induces Weyp : € — Cox. It is a monoid morphism,
for € a monoid under addition.

The smooth map exp : R — R induces @eyp, : € — €, with Py, = P; 0 Wy,

To summarise, the following data in € = (€, € ) are particularly important:

(a) € is a commutative R-algebra.
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(b) €ex is a monoid. It has a special O¢_, € €ox with ¢’ - 0g_ =0¢.,, all ¢ € Cey.

c) D;: € — € is a monoid morphism, for € a monoid under multiplication.

d) Wexp : € — €qx is a monoid morphism, for € a monoid under addition.

)
()
(d)
(€) Pexp = Pj0 Weyp : € — €.

Many of our definitions will use only the structures (a)—(e). When we write ®;, Veyp,, Pexp

without further explanation, we mean those in (c)—(e).

The monoid morphism ®; : € — € makes € into a prelog ring, in the sense of log
geometry discussed in §5.9. We will define C'°°-rings with corners in §4.3 to be pre C°°-
rings with corners satisfying an additional condition similar to requiring ®; : €ox — € to
be a log ring.

Now we could define ‘interior pre C'"*°-rings with corners’ following Definition 4.2.1,
but replacing exterior maps by interior maps throughout. Instead we will do something
more complicated. The functor I} : CPC*°Rings; — CPC°Rings® in Theorem
4.1.4(c) is faithful, and thus an equivalence from CPC®°Rings{ to a subcategory of
CPC*Rings®, the essential image of I{}'.

We will define PC*°Rings{,, C PC*Rings® to be the subcategory corresponding to
the essential image of IS7" under the equivalence CPC*°Rings® = PC*°Rings® from
Proposition 4.2.4. That is, we will define interior pre C*°-rings with corners as special
examples of pre C'*°-rings with corners, and interior morphisms as special morphisms
between (interior) pre C'*°-rings with corners.

The advantage of this is that rather than having two separate theories, we will be able
to work with both interior and non-interior (pre) C*°-rings with corners, and both interior

and non-interior morphisms, all in a single theory.

Definition 4.2.6. Let € = (€, ¢y ) be a pre C*°-ring with corners. Then €¢ is a monoid
and Og,, € Cex with ¢ - 0¢, = Og,, for all ¢/ € Cy.

We call € an interior pre C°°-ring with corners if O¢_, # l¢.,, and there do not exist
d, " € Cex with ¢ # Og,, # " and /- " = O¢,,. That is, €eyx should have no zero divisors.
Write €, = Cex \ {O¢,, }. Then €y = € 1T {0¢,, }, where IT is the disjoint union. Since
Cex has no zero divisors, €, is closed under multiplication, and 1¢_, € €i, as O¢,, # le,,-
Thus €, is a submonoid of €. We write 1l¢, = lg... This implies (€, Ce) is in the
essential image of I} considered as a subcategory of PC*°Rings®.

Let €, be interior pre C*-rings with corners, and ¢ = (¢, pex) : € — D be
a morphism in PC*®Rings®. We call ¢ interior if ¢ex(€in) € Din. Then we write
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®in = Yex|e,, * €in — Din. Interior morphisms are closed under composition and include
the identity morphisms.

Write PC*°Rings{, for the (non-full) subcategory of PC*°Rings® with objects inte-
rior pre C*°-rings with corners, and morphisms interior morphisms.

As in §4.1, define functors Ily, I, : PC*°Rings{, — Sets by Ily, : € — €, II;; :
¢ — €, on objects, and Ilgy, : @ — ¢, I, : ¢ — @i, on morphisms, where ‘sm’, ‘in’
are short for ‘smooth’ and ‘interior’. Also define II;, : PC*Rings;, — Mon to map
Iy : € — iy, where €, is regarded as a monoid.

Define ¢ PC*Rings;, — C°°Rings to be the restriction of the functor e

int cor °

PC*Rings® — C°°Rings in Definition 4.2.1 to PC*°Ringsj,.

Example 4.2.7. Let X be a manifold with corners. Define an interior pre C'°*°-ring with
corners € = (€,€) by € = C*(X) and Ce = In(X) II {0} the disjoint union, as sets,
where 0 is the zero function X — [0, 00).

If f:R™ x[0,00)" — R is smooth and g : R™ x [0,00)" — [0,00) is exterior, define
Py €M x Y — Cand ¥, : €™ x €7 — Co by (4.2.2)(4.2.3). Here to check that ¥,
does map to €ex € Ex(X), we verify that Wy(c, -+ ,em, ), ...,c,) : X — [0,00) is either
interior or zero, since ¢, ..., ¢, are either interior or zero.

Suppose f : X — Y is an interior map of manifolds with corners, and let €, be
the interior pre C*°-rings with corners corresponding to X,Y. Write ¢ = (¢, ¢ex), where
¢: D — € maps ¢(d) =do f and Pex : Dex — Cex maps ¢(d') =d' o f. Then p: D — &€

is a morphism in PC*°Ringsy, .
PC°°Rings{

Define a functor Fy,. . : Man{, — (PC°Rings )°P to map X — € on
objects, and f +— ¢ on morphisms, for X,Y, €, D, f, ¢ as above.

If X is a manifold with corners, then Fﬁg;mngsc (X) from Example 4.2.2 agrees with
F;SEangsic" (X) if and only if X is nonempty and connected, since then Ex(X) is the
disjoint union In(X) II {0}.

We will also write C{Y(X) = FI\:F/’I(;::RIHgS?n (X), and write fi, : CX(Y) — C(X)
for Fygame 5 (f)  Frgans 5 (V) = Fygane. E(X). Thus CfF(X) = C%(X) if

and only if X is nonempty and connected.
This example also works if X, Y are manifolds with g-corners, as in Definition 3.2.2,

.. PC>°Rings’ gc .
giving a functor Fy e i»: Man;, — (PC*°Rings{,)°P.

Lemma 4.2.8. Let € = (€, &) be an interior pre C*°-ring with corners. Then € C
Cin. If g:R™x[0,00)" = [0,00) is interior, then Wy : € x €L — Co maps € x CF —
Cin.
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Proof. As O¢,, is not invertible, then O¢,, ¢ €%, and €5 C Cex \ {O¢,. } = Cin. As g is

ex?

interior we may write

g(gjla e Ty Y1, - - ayn) = yllll o y;lzn : eXpOh(xla sy Ty Y1, - - 7yn)a (424)

for ay,...,a, € N and h : R™ x [0,00)" — R smooth. Then for c¢i,...,¢, € € and

..., e, € €y we have
/ / _ JJay /a / /
\I/g(cl,...,cm,cl,...,cn) =c ---cn”-\Ilexp[@h(cl,...,cm,cl,...,cn)].
Here c'la1 s cin € €y as €y is a submonoid of Cey, and Pegp[ -] € €iy as Weyp, maps to
X / /
¢ € Cin € Co. Thus \Ilg(cl, ce ey Cmy Yy e ,cn) € Ciy. O

Here is the analogue of Remark 2.1.3 and Proposition 4.2.4.

Proposition 4.2.9. There is an equivalence CPC*°Rings{ = PC°Rings;, , which
identifies F : Eucf,, — Sets in CPC*Rings;, with € = (€, Cq) in PC>*Rings{, such
that F(R™ x [0,00)") = €™ x €}, for m,n > 0.

Proof. Let F': Euc;, — Sets be a categorical interior pre C'°°°-ring with corners. Define
sets € = F(R), €, = F([0,00)), and €y = €5, T {0¢_ }, where IT is the disjoint union.
Then F(R™ x [0,00)") = €™ x €}, as F is product-preserving. Let f : R™ x [0,00)" — R
and g : R™ x [0,00)" — [0, 00) be smooth. We must define maps ®¢: €™ x €, — € and
R L S

Let ¢1,...,¢cm € € and ¢),...,c, € €ex. Then some of ¢},...,c, lie in €, and the
rest in {Oc,, }. For simplicity suppose that ¢,...,¢; € &y and ¢}, = --- = ¢}, = O¢,, for
0 < k < n. Define smooth d : R™ x [0,00)F — R, e : R™ x [0,00)* — [0, 00) by

A1, Ty Y1y Yk) = f(T1, o s Ty Y1 - - - Yk, 0, .., 0),
( " )= 1 " ) (4.2.5)

(X1, Ty Y1y -5 Uk) = 9(T15 oo, Ty Y1y - - -5 Yk 0, ..., 0).
Then F(d) maps €™ x ¢F — €. Set
Dr(cty s Cmy €l G Ocess - -+, 0en) = F(d) (1, ooy Cmy €y, ).
Either e : R™ x [0,00)* — [0, 00) is interior, or e = 0. If e is interior define
Uo(ctye oy CmyChyeee sy Ocees -y 00 ) = F(e)(c1, ..o yem, chyenn, ).

Ife=0set Uy(ci,...,em, ¢, ., ¢ 0es - - -, 0c,, ) = Og,.. This defines @7, ¥y, and makes

€ = (€, ¢¢) into an interior pre C*°-ring with corners.
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Conversely, let € = (€, €e) be an interior pre C*°-ring with corners. Then €¢, =
Cin II {0}. As in the proof of Proposition 4.2.4 we define a product-preserving functor
F : Euc§, — Sets with F(R™ x [0,00)") = €™ x €}

ins using the fact from Lemma 4.2.8

that U, : €™ x €5 — Cex maps €™ x € — €, for g interior. The rest of the proof
follows that of Proposition 4.2.4. O

We define analogues of the functors I5%, I¢%, T in Theorem 4.1.4.

Definition 4.2.10. Let € be a C*°-ring, and write ®, : €" — € for the C*°-ring operations
on € for e : R" — R smooth. Set €ox = € 11 {0¢,, }, where II is the disjoint union.

Let f : R™ x [0,00)" — R be smooth. We must define ®; : €™ x €7, — €. Let
Cly..oy0m € €and d),...,c, € €. Then some of ¢},...,c, lie in €, = € and the rest
in {O¢,,}. For simplicity suppose that c,...,c;, € € and ¢}, = --- = ¢, = Og,, for
0 < k < n. Define smooth d : R™T* 5 R by

d(xh'"?mm?ylu"'?yk) :f(iUl,...,ZL‘m,eXpyl,...,eXpyk,O,...,0)7

and set ®¢(ci,...,cm,c),...,¢,) =Ph(ct, ..., cm, ¢, ..., c)). This defines ®y.
Suppose g : R™ x [0,00)™ — [0, 00) is exterior. Let ¢1,...,¢y, € Cand ¢, ..., ¢, € Cey,
and again for simplicity suppose that ¢},...,c; € € and ¢} | = --- = ¢, = Og,,. Define

exterior b : R™ x [0,00)% — [0, 00) by
h(xla"wxmayla"'ayk) :g(l‘la"'vl‘maylw"aykaoa"'ao)'

Then either h = 0 or h is interior. If h = 0 set ¥y(c1,...,cm, ], .., cp,) = Og,.. If his

interior it maps R™ x (0, 00)¥ — (0,00), so we define e : R™** — R by

e(T1, .y Ty Y1y, Yk) = log(h(:cl, ey T, €XP YL, - - - ,expyk)).

Set Uy(ct,...,em, ... ) =®l(ct,. . ¢m, ¢, ..., ¢). This defines U,

These @, ¥, make € = (€, €ey) into a pre C®-ring with corners, which has II$ (€) =
€. Also € has no zero divisors, so € is interior.

Define a functor Ii(j}go : C*°Rings — PC*Rings{, to map € — &€ on objects, for €
as above, and to map morphisms ¢ : € — © in C*°Rings to ¢ = (¢, pex) : € = D in
PC*°Rings{ , where ¢ey : €I1{0¢  } = D1{0p,, } maps ¢ex|e = ¢ and ¢ex(0¢,,) = Op,, .
Define I¢% : C*°Rings — PC®Rings® by I&% = I5%. Both I&%, IXL are full and
faithful.
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Suppose now that € is a C°°-ring, and ® an interior pre C°°-ring with corners, and

set € = JI% (€). Then we can define a 1-1 correspondence

HomceeRings (€, 1If; (D)) = HomgeeRings (€, D) = HompceoRingse, (€, D)

int
= HomPCwRingsfn (Ilcrvlgo (@), @) ,

identifying ¢ : € — © with ¢ = (), Pex) : € = D, where ey : €11 {0¢,, } — Dex is given
by dexle = Wexp © ¢ and ¢ex(0¢,,) = 0p,,. This is functorial in €,®, and so shows that

Ig}go is left adjoint to Hl(fl:o The same proof shows that I7% is left adjoint to " . There
COO

cor » which we define for C°*°-rings with corners in Theorem

is also a right adjoint to II
4.3.9.

Definition 4.2.11. We define a functor I\ : PC*®Rings® — PC>Rings{, right
adjoint to inc : PC*°Rings{ — PC>Rings®. Let € = (&, &) be a pre C*°-ring
with corners. We will define an interior pre C°°-ring with corners € = (¢, é:ex) where

Cex = Cex L1 {0g_}, and set 1 () = €. Here € already contains a zero element Og,_,
but we are adding an extra Oz with O¢,, # Og_ .

Let f:R™ x [0,00)" = R and g : R™ x [0,00)"™ — [0, 00) be smooth, and write ®¢, ¥,
for the operations in €. We must define maps (ff :CMx ¢l — Cand T, Cmx Cl = Cox.
Let ¢1,...,¢m € € and d),...,c, € Cex. Then some of Ay...,c, lie in € and the rest
in {0g_}. For simplicity suppose that c},...,¢; € €ex and ¢, = --- = ¢, = 0g__ for
0 < k < n. Define smooth d : R™ x [0,00)F — R, e : R™ x [0,00)* — [0,00) by (4.2.5).
Set

T / / / /
Prer, o oyemyCpyeees 06 5,05 ) = D41y vy Cmy Clyee ey Cp)-

Either e : R™ x [0,00)* — [0, 00) is interior, or e = 0. If e is interior define

/ / / /
\I’g(Cl,-.-,Cm,Cl,---,Ck,Oéex,---,0@ ) =Ye(cr, ooy Cm, Clyee ey Cp)-

ex

If ¢ = 0 define \Ifg(cl,...,cm,c’l,...,cﬁg,()é "’Oéex) = 0g_ - This defines the maps

<i>f, \i/g. This makes € = (¢, QN:eX) into an inteerior pre C*°-ring with corners.

Now let ¢ : € — ® be a morphism in PC*Rings®, and define ¢, D as above. Define
Pex + Cox = Dox DY Pexler = dex and Gex (05, ) = 05 . Then ¢ = (¢, dex) : € —» D is a
morphism in PC*°Rings; .

Define a functor I : PC*®Rings® — PC*Ringsf, by ITt
and ITint

i q,'; on morphisms, for €, D, €, D, o, d~) as above.

Suppose now that €, are pre C*°-rings with corners with € interior. Then we can

. € — € on objects
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define a 1-1 correspondence

HOmpcooRingsc (iIlC(Q:), @) = HompcooRingsc (Q:7 @)

=~ Homp cooRingsg, (€ iy (D)),

identifying ¢ : inc(€) — D with ¢ : € — I (D), where ¢ = (¢, pex) and ¢ = (¢, dex)

with Qf;ex|¢in = ¢ex|e;, and q?)ex(()@ex) = 0g, - This is functorial in €,®, and so shows that
T is right adjoint to inc : PC°°Rings;, — PC>Rings®.

cor

We have now given the analogue of all of §4.1 in terms of our new definitions. Remark

2.1.3, and Propositions 4.2.4 and 4.2.9 give equivalences
CC*°Rings = C*°Rings, CPCRings® = PC*Rings®, (4.2.6)
CPC*Ringst, = PC®RingsC,. -

These identify I IS TR in (4.1.3) with TS, IS TR in Definitions 4.2.6 and

cor » ~Tint ’ ~—cor cor ’ ~Tint ’ ~-cor
4.2.11. Theorem 4.1.4(c) gives left adjoints IE%, I8, I for TIS) IS TIE in (4.1.3).

Definitions 4.2.10 and 4.2.11 give left adjoints Ig?;,]g‘; and inc : PC*Rings;, —
PC>Rings® for IS, 11", I8 above. Therefore (4.2.6) identifies I¢%, I, IS in

§4.1 with IgL, I35, inc above.

Thus from Theorem 4.1.4 we deduce:

Theorem 4.2.12. (a) In the categories PC>®Rings®, PC*°Rings{, of (interior) pre
C*®-rings with corners, all small limits and all directed colimits exist. The functors
g, ey : PC®Rings® — Sets, I, : PC®Rings® — Mon, I, ITj, : PC*°Rings;, —
Sets and I, : PC®Rings;, — Mon preserve limits and directed colimits, so these may

be used to compute such (co)limits.

(b) All small colimits exist in PC*°Rings®, PC*°Rings{ , though in general they are not
preserved by Tgm, Hey, Hex and e, iy, iy

(c) The functors TIS  TIC . TTint

cor » ~7int ’ ~cor

PC>Ringsf, — PC*®Rings®. Since 11, , 1T I

cor » ~~int *~-cor

described above are right adjoint to Iéooro,lgl& and inc :
are right adjoints, they preserve
limits. Since Ig%ﬂ,[icr}go and inc : PC*°Rings{, — PC°Rings® are left adjoints, they

preserve colimits.

Remark 4.2.13. Kalashnikov [51, §4.6] also showed small colimits of pre C*°-rings with
corners exist using an argument similar to Moerdijk and Reyes proof that small colimits
of C*-rings exist as in [72, p. 21-23].
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Example 4.2.14. The inclusion inc : PC®°Rings;, — PC°Rings® in general does not
preserve limits, and therefore cannot have a left adjoint. Let 7 be a small category and
A : J — PCRings{, be a functor. Then by Theorem 4.2.12(a), limits @jeJA(j) exist
in both PC*°Rings® and PC*°Rings{ . But these limits may not be the same, and the
limit in PC*°Rings® may not be an object in PC*°Ringsy, .

We illustrate this for products in PC*°Rings® and PC*°Rings{ . Suppose €, are
interior pre C'*°-rings with corners, and write € = € x® and § = € x;,® for the products
in PC*°Rings® and PC*°Rings{, . Then Theorem 4.2.12(a) implies that € = € x D,
Cox = Cox X Doy, § =€ XD, Fin = Cin X Djy. Since Cox = &y, 1 {0¢, }, etec., where 1T is

the disjoint union, this gives

Cex = (Cin X Din) I (Cin X {0p,, }) I ({O¢,, } X Din) I ({O¢,. } x {00, }),
Fex = (Cin X Din) I ({Oc,, } % {09, })-

Thus € 2 §F. Moreover in €. we have (1¢_,00.,) - (O¢..,lo..) = (O¢.,,09.,), S0 Eex has
zero divisors, and € is not an object in PC*°Ringsy, .

Another way to see this is that the final object in the category of pre C'°-rings with
corners is ({0}, {0}), however the final object in the category of interior pre C*°-rings with
corners is ({0}, {0,1}). Taking the product of two objects in interior pre C*°-rings with
corners is the same as taking the fibre product (in both PC*°Ringsf,, and PC*°Rings®)
over these two objects and their unique morphisms to ({0},{0,1}). This is different to
taking their product in pre C*°-rings with corners, which is a fibre product over these two
objects and their unique morphisms to ({0}, {0}) in PC*°Rings® only.

In contrast, the initial object in both categories is (R, [0,00)), and their coproducts

are the same.

4.3 (C°°-rings with corners

Here are some properties of ®;, ®eyp, in Definition 4.2.5(c),(e).

Proposition 4.3.1. (a) Let € be a C*°-ring. Then the C*°-ring operation Peyxp : € — €
induced by exp : R — R is injective.

(b) Let € = (€,C) be a pre C*-ring with corners, and suppose ¢ lies in the group

X, of invertible elements in the monoid €ey. Then there exists a unique ¢ € € such that
Pexp(c) = @i(c) in €, for i :[0,00) — R the inclusion.

Proof. For (a), let a € € with b = ®eyp(a) € €. Then ®eyp(—a) is the inverse b1 of b.
The map t — exp(t) — exp(—t) is a diffeomorphism R — R. Let e : R — R be its inverse.

73



Define smooth f : R?> — R by f(z,y) = e(z — y). Then f(expt,exp(—t)) = t. Hence in
the C*°-ring € we have

(I)f(b’ b_l) = (I)f(q)exp(a)v (I)GXP O*(a)) = (I)fO(exp,exp 0—)(a) = (I)id(a) = a.

But b determines b~! uniquely, so ®(b,b~!) = a implies that b = Peyp(a) determines a
uniquely, and @y, : € — € is injective.

For (b), as ¢ € €% we have a unique inverse ¢! € €. Define smooth g : [0,00)? — R

by g(z,y) = e(x —y), for e : R — R as above. Observe that if (z,) € [0,00)? with xy = 1
then = = expt, y = exp(—t) for t = logz, and so
expog(z,y) = expog(expt,exp(—t)) = expoe(expt — exp(—t)) = exp(t) = z.

Therefore there is a unique smooth function A : [0,00)? — R with

expog(x,y) —z = h(z,y)(zy — 1). (4.3.1)

We have operations ®,, ®), : €2 — €. Define ¢ = ®,(c/,"1). Then

(bexp(c) - q)i<cl) = (I)exp Og(x,y)f:t:(clv 0/71) = (I)h(x,y)(xyfl)(cla Clil)
=0p,(d, 7Y (@(c - 7Y = 1g) =0,

using Definition 4.1.2(i) in the first and third steps, and (4.3.1) in the second. Hence
Pexp(c) = @i(c’). Uniqueness of ¢ follows from part (a). O

We can now define C'*°-rings with corners.

Definition 4.3.2. Let € = (€, €.y ) be a pre C*°-ring with corners. We call € a C*-ring

with corners if any (hence all) of the following hold:
(1) ®slex : €5 — € is injective.

(i) Wexp : € — € is surjective.

(ili) Wexp : € — € is a bijection.
Here Proposition 4.3.1(b) implies that (i),(ii) are equivalent, and Definition 4.2.5(e) and
Proposition 4.3.1(a) imply that ey, : € — € is injective, so (ii),(iii) are equivalent, and
therefore (i)—(iii) are equivalent. Write C*°Rings® for the full subcategory of C*°-rings
with corners in PC*°Rings®.

We call a C*°-ring with corners € interior if it is an interior pre C°°-ring with corners,

as in §4.2. Write C*°Rings;, C C*°Rings® for the subcategory of interior C*°-rings with

corners, and interior morphisms between them.
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Remark 4.3.3. We can interpret the condition that € = (€, ) be a C*-ring with
corners as follows. Imagine there is some ‘space with corners’ X, such that € = {Smooth
maps ¢ : X — R}, and Cop = {exterior maps ¢ : X — [0, oo)} If ¢ € € is invertible
(that is, ¢ € €) then ¢’ should map X — (0, 00), and we require that there should exist

smooth ¢ =logc : X — R in € with ¢ = expec.

Example 4.3.4. The functors Fﬁg;Ringsc,FﬁgrzB ings® i Example 4.2.2 map to the

functors (C*°Rings®)°? C (PC*°Rings®)°P, and so we will write them as Fﬁ:ﬂ%ingsc,
Fl\c/i:ngcingsc. To see this, note that if X is a manifold with corners and € = (€, &) =

(C*(X),Ex(X)) as in Example 4.2.2, and ¢ € €

o then ¢ : X — [0,00) is smooth and
invertible, so ¢ actually maps X — (0,00). Thus ¢ = logc’ : X — R is smooth and
lies in € = C°(X), with Weep(c) = ¢. Hence € is a C*°-ring with corners by Definition

4.3.2(ii). Similarly, F;g;mngsic", FEOT RIngsh 4 Example 4.2.7 map to the functors

Manig:
(C>*Rings{,)°? C (PC°°Rings{,)°P, and so we will write them as FooRinesi and
g in g in ) Man;:n

C*°Rings{,
FManigtf :
Proposition 4.3.5. The inclusion functor inc : C*°Rings® — PC*°Rings® has a left
adjoint Hg:coo : PC*°Rings® — C*°Rings® and a right adjoint Hg:coo. Their restric-
tions to PC*°Rings{ are left and right adjoints respectively for inc : C*°Ringsf, —

PC*Rings;,, so the inclusion respects limits and colimits.

Proof. Let € = (€,€) be a pre C*°-ring with corners. We will define a C*°-ring with
corners € = (¢, éex). As a set, define Coy = Cex/~, where ~ is the equivalence relation
on Cey given by ¢ ~ ¢ if there exists ¢ € € with ®;(¢"") =1 and ¢ =’ -”. That is,
é:ex is the quotient of €. by the group Ker(®i|¢exx) C ¢X. There is a natural surjective
projection 7 : €ox — @ex.

If f:R™ x[0,00)" — R is smooth and ¢ : R™ x [0,00)" — [0, 00) is exterior, then we
can show there exist unique maps ® €M x ¢r — ¢ and ‘ifg ;€™ x €7 — €y making

the following diagrams commute:

L o — LV —C
CI)f \I/g
\Lidm X7 ) id\L iidm X" X Tri (4.3.2)
. é . ¥ .
Cm % €N foise, emxén foroom

and these make € into a pre C®-ring with corners. Also, € satisfies Definition 4.3.2(i).
Therefore € is a C®°-ring with corners.
Suppose ¢ = (¢, ex) : € — D is a morphism of pre C*°-rings with corners, and define

¢, D as above. Then by a similar argument to (4.3.2), we find that there is a unique map
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bex such that the following commutes:

Q:BX ¢ex Qex
|# : 7
Cox I

and then qAb = (o, Qgex) ¢ 5 Dis a morphism of C*°-rings with corners. Define a
functor Hgfeocoo : PC°°Rings® — C*°Rings® to map € — ¢ on objects and ¢ — (,5 on
morphisms.

Now let € be a pre C°°-ring with corners, ® a C'*°-ring with corners, and ¢ : € — ®
a morphism. Then we have a morphism (,ZAS €D, as®D =D, and o & q,?) gives a 1-1
correspondence

HomPCC’oRingSc (Q:, ll’lC(g)) = HOmPCOORingsC (Q:? 9) (4 3 3)

[e’s}

= HOIHC‘”RimgsC (Hg;e [0 (Q:)v @),

which is functorial in €,®. Hence Hg::coo is left adjoint to inc.

If € above is interior then € is interior, and if ¢ : € — ® is interior then ¢ is interior,
SO ngzocoo restricts to HS:CDO : PC*°Rings{,, — C°°Rings; . The 1-1 correspondence
(4.3.3) restricts to a 1-1 correspondence on interior morphisms. Hence HS:COO is left
adjoint to inc : C*°Rings;, — PC*°Rings; .

For the right adjoint, take (€, &) = € a pre C-ring with corners and consider
the C*°-ring with corners (€, @ex) = € where € is the submonoid of €y generated by
Uexp(€) and Cex \ €. We see that Cox = Uexp(€) U (Cex \ €F) C €ex. To make this a
C®°-ring with corners, we take the C'°°-operations on ¢ corresponding to smooth maps

f R} — R to be the restrictions of these C'"*°-operations on € to ¢.

Non-zero smooth maps f : R} — [0, 00) are of the form

flxy,.. xy) =2t -z exp(g(z1, ..., 2n))

for a smooth function g : Ri = R. Then we see that

Ue(ch, ooy ChyChgts ey Cn) = e c%ak\llexp(g(cll, ey Cly Cht 1y -5 Cn)))

is indeed an element of Ve, (€) U (Cex \ €5 ). This tells us that the images of the C'*°-
operations corresponding to these f are already in €ey, so that € = Hg;iocoo(Q) is a well
defined sub pre C"°°-ring with corners of €. As Uqy, : € — é:x is now surjective, then €
is a C*°-ring with corners. (We could in fact define ¢ to be the largest sub pre C°°-ring
with corners of € such that Uey, : € — éﬁ:x is surjective, so that € is a C*-ring with

corners.)
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If we have a pre C°°-rings with corners morphism ¢ : € — ® then we can consider
the restriction ¢[z. On the C*°-ring this is the identity, on the monoid we see that
elements of Wey,(€) have image in Ve, (D) as ¢ex commutes with the C>°-operations,
however there may be non-invertible elements ¢’ that map into ©* \ Wexp (D). We define
¢ = ngiocoo((b) : € — ® to be the restriction of ¢ to € except for elements ¢ that
map into D \ Wexp (D). These elements we define to map to their corresponding unique
d' € Vexp (D) from Proposition 4.3.1(b) such that ®;(¢ex(c’)) = ®;(d’). It follows that ¢
respects the C*°-operations and is a morphism of C'*°-rings with corners.

To check that ngiocw is right adjoint to inc : C*°Rings® — PC*°Rings®, we see that

the unit is the identity natural transformation and the counit is the inclusion morphism.

.. . . & . . & ) . So
TheN compositions inc = inc nge (oo INC ? inc and Hg;e Coo = nge (oo I1IC Hg;e Ccoo =
ngfCoo are the identity morphisms as Hg:coo takes a C*°-ring with corners to itself.

If € above is interior then € and € are interior, and if ¢ : € — ® is interior then (j; and
{b are interior, so ngzocoo and Hg;oscoo restrict to functors PC*°Rings;, — C°°Ringsy,,
and considering the proofs above we see that they are left and right adjoint respectively

to inc : C*°Rings;,, — PC*>°Rings;, . O
Remark 4.3.6. Note that the € defined above is actually the pushout of monoids
Pexp(€) g -1 (g, (e)) Cex, and we discuss this further in §5.9.1.

The categories C*°Rings®, C*°RingsS, behave well under (co)limits.

Theorem 4.3.7. (a) C*°Rings®, C*°Rings{, are closed under limits and colimits in

PC°°Rings®, PC>°Rings{, , respectively. Thus, all small limits and small colimits ewist

in C*°Rings®, C*°Rings;, . The functors

Igm, ey : C*°Rings® — Sets, Iy : C*°Rings® — Mon,
gy, iy : C°°Rings;, — Sets, II;, : C*°Rings{, — Mon,

preserve limits and directed colimits, and may be used to compute such (co)limits. The
inclusion inc : C*°Ringsf, — C*°Rings® has a right adjoint (€, Ceyx) = (€, Cox [T {06x }),
and hence preserves colimits; it does not preserve limits, hence it does not have a left

adjoint.

Proof. This proof follows from applying Proposition 4.3.5 to Theorem 4.2.12. The same
proof from Example 4.2.14 shows inc : C*°Ringsf,, — C°°Rings® does not preserve

limits, hence there is no left adjoint. O
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Remark 4.3.8. Theorem 4.3.7 is essential for sheaves of (interior) C*°-rings with corners
to be well behaved. In particular, to construct the sheafification Ox of a presheaf of
C®°-rings with corners POx on X we need to take small limits in C*°Rings®, and to

define the stalk Ox , of Ox at x € X we need to take a directed colimit in C*°Rings®.

Theorem 4.3.9. The forgetful functor G : C*°Rings® — C°°Rings has a left adjoint
Fexp : C*°Rings — C°°Rings®. Hence G preserves limits. G also has a right adjoint,

Fyo: C°°Rings — C*°Rings®, hence G preserves colimits.

Proof. We construct Fegp, on objects by € — (€, @y, (€) I1 {0}) = (€, Cex), where II is
the disjoint union. Here €y is a subset of € and ®; : €, — € is the inclusion morphism,

and consequently injective. The C*°-operations are defined as follows. For elements

Ay € Cox, Cht1, - - ., ¢ € € and for a smooth function f : R} — R we have
B (s s ity oo Cn) = Pp(Pexp(c1)s - -, Pesp(Ch )y Chit1s - - -5 Cn)-
For a smooth function g : R} — [0,00), if g = 0, then Wy(c},..., ¢, Cht1,--.,0n) =0 €
Cex-
Otherwise, we have g(x1,...,2n) = 21" - - - xp* F (21, ..., x2) for a positive smooth func-

tion F: R? — (0,00). Then F can be extended to a smooth positive function F': R" — R
such that F |rp = io F. Then we define

W (s ey Cs Chigls oo s Cn) = () ()™ Pp(CL, o, Gy Chit1s - Cn)s
which is independent of the choice of extension of F'.

For a morphism ¢ : € — D, then we define Foxp(¢) 1 Fexp(€) = Fexp(D), such that
Foxp (@) (Pexp(c)) = Pexp(Fexp(@(c))) for all ¢ € € and Fexp(¢)(0) = 0. This is well defined
as ¢ respects the C*°-operations.

Then Fiyp, is a left adjoint to G, where the unit of the adjunction 1 : id = GFep is
the identity natural transformation, as G Fixp, is the identity functor GFeyp, : C°Rings —
C°°Rings. The counit is € : Fox, G = id, where for any € = (€, €y) € C*°Rings®, then
ee 1 (€, Py (€) I {0}) — € is the identity on the C*°-ring, and it is the injective map
Pexp(€) {0} 3 Pexp(c) = Vexp(c) € Cex, 0+ 0 on the monoid. Proposition 4.3.1 implies
this is well defined and forms a natural transformation.

The compositions Fexp = FexpGFoxp = Foxp and G = GFo;,G = G are the identity

natural transformations, and this gives the required adjunction. This also implies that

I_IOIHC""“RingSc (Fexp(Q:)y CD) = HomC‘X’Rings(Qza G(:D)),
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for a C*°-ring € and a C*°-ring with corners ® = (D, D). That is,
HOH]C°°Rings°((¢a (Dexp(e:) I {O})7 (@, Qex)) = HomaRings(Q:a @)

This adjunction is a different but equivalent construction to the left adjoint constructed
in Definition 4.2.10.

For the second part of the theorem, we begin by constructing F>o on objects. Here
¢ — (€, €50) where €5 is the subset of elements c of € that satisfy the following condition:
for all smooth f : R®™ — R such that f|[0700)an71 = 0 and for dq,...,d,—1 € €, then
Ps(c,dy,...,dn—1) = 0 € €. Note that €5 is non-empty, as it contains Pey,(€) II {0}.
Also, any C*-ring with corners (€, €ey) has ®;(Ccx) C €.

We need to show that (€,€5() is a C*®-ring with corners. Take a smooth function
f R — [0,00). Then there is a (non-unique) smooth extension g : R” — R such that

glrp =io f fori:[0,00) — R the inclusion function. We define

/ / / /
Uiy Gy Chipts -y Cn) = Pyl o,y g, - -5 Cn)

for ¢, € €0 and ¢; € €. Then ®; : €59 — € is the inclusion morphism.
To show this is well defined, say h is another such extension, then g — h|RZ =0. We

want to show that

/ /
Py n(cly- s Chy Chip1s--sCn) =0

for ¢/ € €5 and ¢; € €. As g — h satisfies the hypothesis of Lemma 4.3.10, we can assume

g—h=fi+- -+ fr with fi|Ri—1X[0’OO)><Rn—i—1 = 0. Then

Py pn (e Chitty ooy n) = Pt (Kl Gy Clgts -5 Cn)
=®p (e Chtts )
+ D (s s Chy Chtts - Cn)
=0+---4+0

as ¢, are in €>q. Therefore ¥y is a well defined C*°-operation. A similar approach shows
smooth functions f : R} — R give well defined C*°-operations. Hence (€,€>p) is a
C*°-ring with corners.

On morphisms, Fsg sends ¢ : € — D t0 (¢, Pex) : (€,C50) = (D,D>0) where ¢y =
¢]¢>0. As ¢ respects the C'°°-operations, then the image of €>( under ¢ is contained in
D=0, 50 ¢ex is well defined.

We describe the unit and counit of the adjunction to show that Fy is right adjoint to G.

The counit is the identity natural transformation. The unit is the identity on the C'*°-ring
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and it is ®; on the monoid. It then follows that the compositions Fso = F>0GF>o = F>o
and G = GF>oG = G are the identity compositions, so Fxg is a right adjoint to G. This

also implies that
HomceoRingse (€, F>0(D)) = HomceoRings (G(€), D),

for a C"*°-ring with corners € and a C*°-ring D. O

Lemma 4.3.10. If f : R" — R is smooth such that f|R}Z = 0, then there are smooth
fi : R" - R fori = 1,...,k such that fi’Ri—lx[O’oo)XRn—i—l =0 fori=1,...,k, and
f=H+...+ f&.

Proof. Let f be as in the statement of the lemma. Consider the following open subset
U =81\ {(x1,...,7) : 7, > 0} of the dimension k — 1 unit sphere S*~! € R*. Take an
open cover Uy, ..., Uy of U such that U; = {(x1,...,zx) € Ulz; < 0}. Take a partition of
unity p; : U — [0,1] for i = 1,..., k, subordinate to {U,...,U,}, with p; having support
on U; and Zle pi = 1.
Define the f; as follows
£ = flx1, ... mn)pi (M), if z; < 0 for some i =1,...,k,

0, otherwise,

where |(x1,...,x3)| is the length of the vector (x1,...,2) € R*. These f; are smooth
where the p; are defined. The p; are not defined in the first quadrant of R¥, where all
x; = 0, however approaching the boundary of this quadrant, the p; are all constant. As
f ’Rg = 0, then all derivatives of f are zero in this quadrant, so the f; are smooth on R"

and identically zero on R}. In addition, fi|gi—1 <rr—i—1 = 0, as the p; are zero outside

x[0,00)

of U;. Finally, as ) p; =1 and f|gp =0, then f = fi + ... + fi as required. O

Remark 4.3.11. The definition of the left adjoint Fex, in Theorem 4.3.9 shows its im-
age actually lies in C*°Rings{ , and the first part of this theorem is then also true for
interior C'*°-rings with corners. Also, F~¢ composed with the right adjoint C*°Rings® —
C°°Rings{, defined in Theorem 4.3.7(b) gives a right adjoint to C*°Rings{,, — C*°Rings,
and so the second part of Theorem 4.3.9 is also true for interior C'*°-rings with corners.
In Section 4.6, we define local C'*°-rings with corners, and, in this case, the functors
Fexp and Fx restricted to local C*°-rings are also left and right adjoints respectively to
G restricted to local C'°°-rings with corners. This implies G preserves limits and colimits

of local C*°-rings with corners.
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Relating to log geometry, discussed in §5.9, if € is a C'°°-ring, we could say that Fex,(€)
is the trivial corners structure on €, as it is the initial object in the category of C*°-rings

with corners that have C*°-ring €. Also, F>((€) is the final object in this category.

We can summarise the adjoints from Definition 4.2.10, Definition 4.2.11, Theorem

4.2.12, Proposition 4.3.5, Theorem 4.3.7 and Theorem 4.3.9 in the following diagram.
PC°Rings® T PC°Rings{,

Cmf{ingsc T C°Rings{

C°°Rings

The following lemma considers how localisations of C*°-rings (with corners) behave
with respect to Fp, and we use this in Remark 5.4.9. It also gives some intuition into
what elements of a C*-ring € are in €-q. For example, it implies that ¢ € €5 for all

ceC.

Lemma 4.3.12. Let € be a C*-ring. If g : R" — R is smooth such that g(R™) C [0, 00),
then ®y(cy,...,cn) € € for all ¢; € €.

Proof. Let € be a C*-ring and g : R” — R smooth such that g(R™) C [0,00). Take any
¢i,...,¢n € €. Take smooth f : R™*! — R such that flio,00)xrm = 0. We need to show
that for any dy,...,dy, € € then we have that ®(®4(c1,...,cn),d1,...,dy) = 0.

However

q)f(q)g(cl,... ,Cn),dl,. . ,dm) = @h(cl,... ,Cn,dl,...,dm>

where h(x1,...,Zn, Y1, Ym) = f(g(z1, ..., 20), Y1, ..., Ym) = 0 from the definition of f
and g. Hence ®¢(®y(c1,...,¢n),d1,...,dn) =0 as required. O

Definition 4.3.13. A morphism ¢ : € — ® in C°°Rings® or PC*°Rings® is called
injective, or surjective, if the maps of sets ¢ : € — ® and @eyx : Cox = Dex are injective, or
surjective, respectively.

Let ¢ : € — ® be a morphism, and define € = ¢(€) C D and Eex = Pex(Cex) C Dex- If
[ :R™x[0,00)" = R is smooth and g : R™ x [0, 00)™ — [0, 00) is exterior, then since ¢, pex
commute with operations ®;, U , we see that @y : D™ x Dg; — D maps €™ x € — €,
and W, : D™ x Df — Dex maps €™ x € — Eex. Define @ = gl : €™ x € — € and
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\Il; = Wgyl|..: €M x €, — €. Then these operations ’f, Wy, for all f, g make € = (€&, Eey)
into a pre C*°-ring with corners, and a C*°-ring with corners if €,® are. We call & the
image of ¢, and write it Im ¢.

Write m = ¢ : € — € and Tex = Pex : Cox — Cex, and let 1 : E — D, 1oy : Eox — Doy
be the inclusions. Then 7 = (7, 7ex) : € = € and 1 = (1,16x) : € — D are morphisms
of (pre) C*-rings with corners, with 7 surjective and ¢ injective. This shows that every

morphism ¢ : € — ® in C*°Rings® or PC®Rings® fits into a commutative triangle

\ qb/

Im ¢

with 7 surjective and 2 injective, and this characterises Im ¢, 7, 2 uniquely up to canonical
isomorphism.

If €,, ¢ are interior, then Im ¢, 7, ¢ are also interior.

If ¢ : € —» D is an injective morphism in C*°Rings® or PC*°Rings® with ® interior,
then € is also interior, since ¢ex : Cex — Dex maps zero divisors to zero divisors as it is

injective, but there are no zero divisors in ®ey.

4.4 Free (°-rings with corners, generators and relations
We define free C*°-rings with corners.

Definition 4.4.1. We defined categorical pre C'*°-rings with corners as product-preserving
functors F' : Euc® — Sets, so that we have a full embedding of C*°Rings® C PC*°Rings®
in the functor category Fun(Euc®, Sets). The Yoneda embedding Y : (Euc®)°P —
Fun(Euc®, Sets) maps to C*°Rings® C Fun(Euc®, Sets), which gives a full embedding
(Euc®)°P — C*°Rings®. Explicitly, this embedding maps R™ x [0,00)" in Euc® to
the C*-ring with corners F™" := C™(R™ x [0,00)") from Example 4.2.2 with X =
R™ x [0, 00)™.

These C'*°-rings with corners F™" corresponding to objects R™ x [0, 00)" in Euc® are
important from the point of view of Algebraic Theories [3], where they are called finitely
generated free algebras [3, Rem. 14.12], and §"™" is the free C*°-ring with corners with
(m,n) generators in this 2-sorted case. Free C'°°-rings with corners were considered in
Kalashnikov [51, Lem. 4.21].

It has the universal property that if € = (&, €) is any (pre) C*°-ring with corners

and c1,...,¢;m € €, d),...,c, € Ce, then there is a unique morphism ¢ = (¢, pex) :

r n
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™" — € such that ¢(z;) = ¢; for i =1,...,m and ¢ex(y;) = c} for j =1,...,n, where
(1, Tm, Y1,---,Yn) are the coordinates on R x [0, 00)".

Explicitly, if f € §™", so that f : R™ x [0,00)" — R is smooth, we define ¢(f) =
Pr(cty . sem,ch,...,c,) € € and if g € F", so that g : R™ x [0,00)" — [0,00) is

exterior, we set ¢ex(9) = Vy(ci,...,m, ..., ¢),) € Cox.

More generally, if A, Aex are sets then by [3, Rem. 14.12] we can define the free C*°-
ring with corners FhAe = (SA’AGX, S{;Aex) generated by (A, Aex). We may think of FAA
as COO(RA x [0,00)4ex), where RA = {(%a)aca : To € R} and [0,00) = {(ya)aea.,
Yo € [0,00)}. Explicitly, we define F44e 0 be the set of maps ¢ : R4 x [0, 00)4x — R
which depend smoothly on only finitely many variables x,, 3./, and S?X’Aex to be the set of

A,

maps ¢ : R? x [0, 00)%4x — [0, 00) which depend smoothly on only finitely many variables

Za, Yo, and operations @y, ¥, are defined as in (4.2.2)—(4.2.3). Regarding z, : R4 - R

Aex _y [0,00) as functions for a € A, a’ € Ae, we have z, € F44e and

and yq : [0,00)
Yo' € SégAeX, and we call z,,y, the generators of FhAe

Then F4e< has the property that if € = (€, €ey) is any (pre) C-ring with corners
then a choice of maps a : A — € and Qex : Aex — €ex uniquely determine a morphism
¢ : F = € with ¢(z,) = a(a) for a € A and dex(yor) = aex(a’) for @/ € Aex. We have
FAAx = F™" when A = {1,...,m} and A, = {1,...,n}.

The analogue of all this also holds in C*°Rings{,, C PC°Rings; , with the same
objects F™" and F4i», which are interior C*°-rings with corners, and the difference that
(interior) morphisms §*" — € in PC*°Rings{, are uniquely determined by elements
cly...,cm €Cand ¢,,...,c, € €y (rather than ¢, ..., ¢, € €), and similarly for Fh4n

with aip @ Ain — Cin.

As in Addmek et al. [3, §5, §11, §14], see in particular [3, Prop.s 11.26, 11.28, 11.30,
Cor. 11.33, & Rem. 14.14], every object in PC*°Rings®, PC*°Rings{, can be built out

of free C*°-rings with corners, in a certain sense.

Proposition 4.4.2. (a) Every object € in PC*°Rings® admits a surjective morphism ¢ :
FA4ex 5 € from some free C°-ring with corners F4e. We call € finitely generated
if this holds with A, Aex finite sets.

(b) Every object € in PC*Rings® fits into a coequaliser diagram

sB,ch SA’ACX ¢ Q:’ (441)

B
that is, € is the colimit of the diagram FPP> = Fh4e in PC®Rings®, where ¢ :
FA4ex 5 & is automatically surjective. We call € finitely presented if this holds with
A, Aex, B, Bex finite sets.
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The analogues of (a) and (b) also hold in PC*°RingsS, .

In (b), if € € C>°Rings® then (4.4.1) is a coequaliser diagram in C*°Rings®, since
¢ preserves colimits, and similarly for € € C*>°Ringsy.

For C*°-rings in §2, we often wrote a C*°-ring € as a quotient € = C>°(R™)/I for
I C C*°(R™) an ideal. Suppose I is finitely generated by fi,..., fr € C°(R™). Then we

have a coequaliser diagram in C*°Rings

(f1,fi)*

C>(RY) C*(R™) e,

0*

an analogue of (4.4.1). That is, € is the C*°-ring we get by imposing the relations f; =
0,...,fr =0in C°°(R™). This is the general finitely presented C'*°-ring.

For C'°°-rings with corners, things are more complicated in two ways. Firstly, we have
two kinds of generators, and two kinds of relations, corresponding to the two generating
objects R, [0, 00) of Euc®. And secondly, we must now write the [0, c0)-type relations in
the form g; = hj, rather than in the form f; = 0.

As in (4.4.1) the general finitely presented C'*°-ring with corners € fits into a co-

equaliser diagram in C*°Rings®

<,

C*> (R* x [0, 00)!) —Z C®(R™ x [0,00)")

where eq,...,eg, f1,..., fr lie in Coo(Rm x [0, oo)”) and g1,...,91,h1,...,h in Ex(Rm X
[0, oo)”) That is, € has m generators 7 ..., Z,;, of type R and n generators y1, ..., y, of
type [0, 00), where (z1,...,Zm,Y1,...,Yn) are the coordinates on R™ x [0, 00)", and these
generators satisfy k relations e; = f; in € of type R, and [ relations g; = h; in €y of type
[0, 00).

By replacing e;, f; by e; — f;,0 we may suppose that f; = --- = fr = 0, and so write
the R type relations as ey = 0,...,ex = 0in €, as for ideals in C"*°-rings. However, for the
[0, 00)-type relations g; = h; in e, we are not able to replace g;, h; by g; — hj,0, since
g; — h; does not make sense in the monoid Ex(Rm x [0, oo)”). Thus [0, 00) type relations
must be written as g; = h;.

We can also modify a given C°°-ring with corners € by adding extra generators and

relations. We will use the following notation for this:

Definition 4.4.3. Let € be a C'°°-ring with corners, and A, Acx be sets. We will write
C(zy : a € A)fyy : d € A for the C®°-ring with corners obtained by adding extra
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generators z, for a € A of type R and y, for a’ € Ak of type [0,00) to €. That is, by
definition

C(zq:0 € Ay : d € Any] = € oo FhAex, (4.4.2)

where F4e is the free C-ring with corners from Definition 4.4.1, with generators z,
for a € A of type R and y, for a’ € Aex of type [0,00), and ® is the coproduct in
C*>°Rings®. As coproducts are a type of colimit, Theorem 4.3.7(b) implies that €(z, :
a € A)fyy : a’ € Ay is well defined. Since F4ex is interior, if € is interior then (4.4.2)
is a coproduct in both C*°Rings® and C®°RingsS,, so €(z4 : a € A)[yy : ¢’ € Aex is
interior by Theorem 4.3.7(b).

By properties of coproducts and free C*°-rings with corners, morphisms ¢ : €(z, : a €
A)[yg : d' € Aex] — D in C*°Rings® are uniquely determined by a morphism v : € — ®
and maps @ : A = D, Qex : Aex = Dex. If €, D are interior and qex(Aex) C Dj, then ¢ is
interior.

Next suppose B, Bey are sets and f, € € for b € B, gy, hy € Cox for b/ € Boy. We will
write €/(fy, =0 :b € B)[gy = hy : b € Be] for the C*°-ring with corners obtained by
imposing relations f, = 0, b € B in € of type R, and gy = hy, b/ € Bex in €ey of type

[0,00). That is, we have a coequaliser diagram

B,Bex —— ™ —0:beB)gy=hy:V €B 4.4
5 __/7Q:4>Q:/(fb—0. S )[gb/— p 2 b e ex], (3)

B

where a, B are determined uniquely by a(xp) = fi, aex(yp) = gvr, B(xp) = 0, Bex(ypr) = hyy
for all b € B and V' € Bex. As coequalisers are a type of colimit, Theorem 4.3.7(b) shows
that €/(f, =0:b € B)[gy = hy : U/ € Bex] is well defined. If € is interior and gy, hy € iy
for all b' € Bex (that is, gy, by # O, ) then (4.4.2) is also a coequaliser in C*°Rings{, , so
Theorem 4.3.7(b) implies that €/(f, =0:b € B)[gy = hy : b/ € Bex] and 7 are interior.

Note that round brackets (---) denote generators or relations of type R, and square
brackets [-- -] generators or relations of type [0,00). If we add generators or relations of

only one type, we use only these brackets.

We construct two explicit examples of quotients in C'°°-rings with corners, which we

will use in §5.

Example 4.4.4. (a) Say we wish to quotient a C*°-ring with corners, (€, €.y ) by an ideal
I in €. Quotienting the C"*°-ring by the ideal will result in additional relations on the
monoid. While this quotient, (D, D) is the coequaliser of a diagram such as (4.4.3), it

is also equivalent to the following construction:
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(*) The quotient is a C'*°-ring with corners (D, D) with a morphism 7 = (7, Tex) :
(€, Cex) = (D, Dex) such that I is contained in the kernel of 7, and is universal with respect
to this property. That is, if (&, €s) is another C*°-ring with corners with morphism
' = (n',7ly) 1 (€, Cx) — (€, Esx) with I contained in the kernel of 7', then there is a
unique morphism p : (D, Dex) — (€, Eox) such that pow = w’.

As a coequaliser is a colimit, by Theorem 4.3.9 we have © = €/I, the quotient in C*°-
rings. For the monoid, we require that smooth f : R — [0, 00) give well defined operations
Ui D — Dex. This means we require that if a — b € I, then Wy(a) ~ ¥y(b) € Co, and
this needs to generate a monoid equivalence relation on €., so that a quotient by this
relation is well defined. If f : R — [0, 00) is identically zero, this follows. If f : R — [0, 00)
is non-zero and smooth this means that f is positive, and hence that f = expologof is
well defined. By Hadamards lemma, if a —b € I, then ®4(a) — ®4(b) € I, forallg: R — R
smooth, and therefore Wioeof(a) — Wiggor(b) € I. Hence in Ce we only require that if
a—>b e I, then Uep(a) ~ Verp(b) € €. The monoid equivalence relation that this
generates is equivalent to ¢} ~y ¢, € €ey if there exists d € I such that ¢} = Wexp(d) - cb.

We claim that (€/I,Cc/~r) is indeed the required C*°-ring with corners. If f :
[0,00) — R is smooth, and ¢] ~j ¢, € Cex, then P(c)) = P¢(Vexp(d)ch) € € for some

d € I. Then applying Hadamard’s lemma twice, we have

Dyp(cy) = () =P(z—y)g(ay) (Vexp(d)ch, ¢5)
(I)exp(d) - 1)@9(‘I’exp(d)cl27 C,Q)
d—0)®, h(z, y)(d 0)® (\Ilexp(d)C,Q’ 0/2)7

for smooth maps g,k : R* - R. Asd € I, then ®;(c})—®(ch) € I, and ®; is well defined.
A similar proof shows all the C*°-operations are well defined, and so (€/1,&/~1) is a
pre C*°-ring with corners.

We must show that Weyp, : €/ — €ox/~1 has image equal to (not just contained in)
the invertible elements (Cex/~1)*. Say [c]] € (Cex/~1)*, then there is [¢)] € (Cex/~1)*
such that [c}][c] = [¢d'] = [1]. So there is d € I such that ¢|c, = Wexp(d). However,
Uexp(d) is invertible, so each of ¢}, ¢/, must be invertible in €y, and using that Wey, is
surjective onto invertible elements in €, gives the result. Thus (€/I,Cex/~) is a C°-
ring with corners. The quotient morphisms € — €/I and €y — Cox/~; give the required
map .

To show that this satisfies the required universal property of either (4.4.3) or (*), take
(€, €ex) another C*°-ring with corners with morphism 7/ = (7', 7.,) : (€, €ex) = (&, Ecx).
Then the unique morphism p : (D, Dex) — (&, Eoy) is defined by p([c], [']) = [7'(¢), 7' ()].
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The requirement of (&, €« ) to factor through each diagram shows that this morphism is
well defined and unique, giving the result.
(b) Say we wish to quotient a C*°-ring with corners, (€, €. ) by an ideal P in the monoid
Cex. By this we mean quotient €ex by the equivalence relation ¢} ~ ¢, if ¢} = ¢}, or ¢}, ¢ €
P. This is known as a Rees quotient of semigroups, see Rees [80, p. 389]. Quotienting
the monoid by this ideal will result in additional relations on both the monoid and the
C*°-ring, which we will now show. While this quotient, (D, D.x) is the coequaliser of a
diagram such as (4.4.3), it is also equivalent to the following construction:

(**) The quotient is a C'*°-ring with corners (D, Dex) with a morphism 7 = (7, Tex) :
(€, Cex) — (D, Dex) such that P is contained in the kernel of ey, and is universal with
respect to this property. That is, if (&, € ) is another C*°-ring with corners with morphism

' = (7 7ly) : (€, Cex) — (&, Ex) with P contained in the kernel of 7

x, then there is a

unique morphism p : (D, Dex) — (&, Ecx) such that pom = w’.

Similar to part (a), we being with quotienting € by P, and then require that the C'*°-
operations are well defined. As all smooth f : [0,00) — R are equal to foi: [0,00) = R
for a smooth function f : R — R, we need only require that if ¢} ~ ¢, then ®;(c}) ~
®;(c4). This generates a C*°-ring equivalence relation on the C*-ring €; such a C*°-ring
equivalence relation is the same data as giving an ideal I C € such that ¢; ~ cp € €
whenever ¢; — ¢ € I. Here, this equivalence relation will be given by the ideal (®;(P)),
that is, the ideal generated by the image of P under ®;. Quotienting € by this ideal
generates a further condition on the monoid €, as in part (a), that is ¢} ~ ¢, if there is
d € (®;(P)) such that ¢ = Wexp(d)ch.

The claim then is that we may take (D,Dx) equal to (€/(®;(P)),Cex/~p) where
¢, ~p dy if either ¢}, ¢}, € P or there is d € (®;(P)) such that ] = Wexp(d)(ch). Similar
applications of Hadamard’s lemma as in (a) show that (D, Dey) is a C*°-ring with corners,
and similar discussions show that this is isomorphic to the quotient. We will use the

notation
(CD,CDEX) = (@, ¢eX)/’\‘P = (¢/<(I)i(P)>7 CBX/"’P) = (Q/NPv 6eX/’\“P)
to refer to this quotient in §5.

Remark 4.4.5. Say ¢ : € — ® is a morphism of C*°-rings with corners and we quotient
€ by relations. If we quotient ® by relations that include the image of all relations of
€ under ¢ then there is a unique map from one quotient to the other that commutes
with ¢ and the projections to the quotients. For example, if we can take a prime ideal

P C €, such that ¢(P) C (Q) for some prime ideal Q C D¢y, then the universal property
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of quotients tells us there is a unique morphism ¢p : €/~p = ®/~g. We will use this
in §5.

Kalashnikov [51, §4.4] considered taking a pre C*°-rings with corners and considering
what conditions on an ideal of €, and a submonoid or monoidal equivalence relation in
Cex, allow a quotient to be defined without needing to add additional relations. Such pairs
of ideals and monoidal equivalences/submonoids they denoted corner equivalences. They

then considered similar results to Example 4.4.4 in [51, §4.6].

4.5 Special classes of ("°-rings with corners

We use the theory of monoids from §3.1 to give special classes of C'*°-rings with corners.

The first definition is important for properties of C'**°-schemes with corners.

Definition 4.5.1. We call a C*°-ring with corners, (&€, €cy), firm if the sharpening QIEX is
a finitely generated monoid. We denote by C*°Rings§ the full subcategory of C*°Rings®

consisting of firm C*°-rings with corners.

Note that if (€,Cq) is a firm C*-ring with corners, then there are ¢; € Cq, for
i = 1,...,n such that the images of ¢, under the quotient €c — ¢t generate CF_ .
This implies each element in €y can be written as Wexp(c)ci® -+ - ¢t for some smooth

f: Rg“ — [0,00), ¢ € €, and non-negative integers a;.
Proposition 4.5.2. C°Ringsg is closed under finite colimits.

Proof. (R,[0,00)) is an initial object in this category, where the sharpening of [0,00) is
generated by 0. As our category has an initial object then all finite colimits are composed
of a finite number of (iterated) pushouts, hence we need only to show the category is closed
under pushouts. We show that the pushout of elements in C*°Rings§ in the category of
C°°-rings with corners is an element of C°°Ringsg and is therefore the pushout in this
full subcategory.

Take €,®, € € C°Ringsg with morphisms € — ® and € — €, and consider the
pushout D Ilg &, with its morphisms ¢ : ® — D 1lle € and ¢ : € — D [lg E. Then every
element of (D Il¢ €)ey is of the form

\ij(¢(d1)7 R ¢(dn)7 ¢(€1), s 7¢(€m)7 d)ex(d/l)a s 7¢ex(d;c)a zﬁva((e/l), ) ¢ex(eg))>

for f : RTk”J:Ll” — [0,00), where d; € D,d, € Dex, €; € €, €} € €, and d; are generators of

the sharpening of ey, and €] generate the sharpening of €. We may write

__..a Ak+1
F@1, s Tmgns Y1y - - - Yketl) = Y7 Yy F(z1,. . Tomtns YLy -« s Yktl),
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for F : [0,00)"*™ — (0, 00) smooth.

In the sharpening of (D g &)ex, the above element corresponds to

Pex(d1)™ - Dex(dr) M hex (€)1 .. ex(eg) .

Hence every element (D Ilg Qf)gx is the generated by the images of the generators of @ﬁx
and &%, and therefore (D1l e)ﬁx is finitely generated. Thus C*°Ringsg is closed under

ex’

pushouts. ]

Remark 4.5.3. A finitely generated C'*°-ring with corners is always firm, however the
reverse is not true. For example, take an infinitely generated C'*°-ring, €, and apply the
functor Feyp from Theorem 4.3.9, to get a C°°-ring with corners (€, ®exp (€) I1{0}), where
IT is the disjoint union. The sharpening of ®ey,(€) I {0} is {0} and therefore it is a firm
C*°-ring with corners, but it is not finitely generated. In other words, firm C'*°-rings with
corners may have infinitely many generators of their C'°°-ring, but finitely many generators
of the non-invertible elements of their monoid.

The difference between firm C*°-rings with corners and interior C'*°-rings with corners
is that the former has finitely generated sharpening, whereas the latter has sharpening

with no zero-divisors.
We now use §3.1 to define some important classes of interior C°°-rings with corners:

Definition 4.5.4. Suppose € = (€, ) is an interior C*°-ring with corners, and let
Cin C €y be the submonoid of §4.2. Then:

(i) We call € integral if €, is an integral monoid.

(ii) We call € torsion-free if it is integral, and €;y, is a torsion-free monoid.

(iii) We call € saturated if it is integral, and €, is a saturated monoid. Note that € = €
as abelian groups since € is a C*°-ring with corners, so €. is torsion-free. Therefore

€ saturated implies that € is torsion-free.

(iv) We call € toric if it is saturated, and the sharpening (’:?n = Cin /€ is a toric monoid.
This implies € is firm. Here € saturated implies Qiiﬁn is integral, torsion-free, and

sharp. Thus @?n is toric if and only if it is saturated and finitely generated.

(v) We call € simplicial if it is saturated, and Qf?n >~ NF for some k € N. Simplicial

implies toric which implies firm.

We will write
C*>°Ringsi C C*Rings;, C CRingsg, C C*°Rings{; C C*°Rings; C C°Rings{,
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for the full subcategories of simplicial, toric, saturated, torsion-free, and integral objects

in C*°Rings{, , respectively.

Example 4.5.5. Let X be a manifold with corners, and Ciy(X) be the interior C*°-ring
with corners from Example 4.2.7. Let S be the set of connected components of 9X. For
each F' € S, we choose an interior map cp : X — [0,00) which vanishes to order 1 on
F, and to order zero on 90X \ F, such that cp = 1 outside a small neighbourhood Up of
ix(F) in X, where we choose {Up : F' € S} to be locally finite in X. Then every interior
map g : X — [0,00) may be written uniquely as g = exp(f) - [[peg ¢y, for f € C®(X)
and ap € N, F € S.

Hence as monoids we have In(X) = C®(X) x N°. Therefore C°(X) is integral,
torsion-free, and saturated, and it is simplicial and toric if and only if X has finitely
many connected components. A more complicated proof shows that if X is a manifold
with g-corners then Cf{Y(X) is integral, torsion-free, and saturated, and it is toric if 0X

has finitely many connected components.

The next proposition is proved as for Theorem 4.3.7(a), noting that writing Mong, C
Monis C Mongy for the full subcategories in Mon of saturated, torsion free, integral
monoids, and torsion free, integral monoids, and integral monoids, respectively, then

Mong,, Mongs, Mony, are closed under limits and directed colimits in Mon.

Proposition 4.5.6. C*°Ringsg,, C*°Rings{; and C°°Rings7, are closed under limits
and under directed colimits in C°Rings; . Thus, all small limits and directed colimits

exist in C°Ringsg,, C*°Ringsg;, C°°Rings7.

sa’

Recall that if D is a category and C C D a full subcategory, then C is a reflective subcat-
egory if the inclusion inc : C < D has a left adjoint II : D — C, which is called a reflection
functor. Proposition 4.3.5 shows that C*°Rings® C PC®°Rings® and C*°Rings;{, C
PC*Rings;, are reflective subcategories. We will show that C*°Ringsg,, C*°Rings{,

C>°Ringsj, C C°°Rings;, are too.

Z

Theorem 4.5.7. There are reflection functors Hm,Htf, it IEY in a diagram

sa
in

sa Htf HZ
tf Z in

C*°RingsS, == C*°Rings{; = C*°Ringsj; = C°°Rings{,, (4.5.1)
mc mc mc

such that each of H%l, Hth, IL3, 1153 is left adjoint to the corresponding inclusion functor inc.
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Proof. Let € be an object in C*°Rings;,. We will construct an object ® = H%l(ci) in
C>°Ringsy and a projection w : € — ®, with the property that if ¢ : € — € is a
morphism in C*°Rings{, with & € C*°Rings] then ¢ = 1 o 7 for a unique morphism
Y : D — &. Consider the diagram:

//ﬂ.l:—ﬂ.\
¢ =" ¢! ¢’ o D (4.5.2)

¢,

Define €° = & and ¢° = ¢. By induction on n = 0,1,..., if €", ¢" are defined,
define an object €™t C*°Rings{,, and morphisms a" : €" — gntl gntl.gntl L ¢

as follows. We have a monoid €}, which as in §3.1 has an abelian group (€]} )8P with

m>

projection 8P : €7 — (€1 )8P, where €]

o, €™ are integral if 7®P is injective. Using the

notation of Definition 4.4.3, we define
entl = ¢ /[d="if ¢, " € €F with w8 (') = 7P (c")]. (4.5.3)

Write o™ : €" — €"F! for the natural surjective projection. Then €"*! a™ are both
interior, since the relations ¢ = ¢’ in (4.5.3) are all interior.
We have a morphism ¢" : €" — & with € integral, so by considering the diagram

with bottom morphism injective

e ()

o (@)=
8P

innC ( ein ) &P )

we see that if ¢, ¢’ € € with 78P(¢/) = @8P(”) then ¢I (') = ¢ (c”). Thus by the
universal property of (4.5.3), there is a unique morphism ¢" ! : €"!l — & with ¢" =
@™ o o™ This completes the inductive step, so we have defined €",a”, " for all
n=0,1,..., where €", a" are independent of &, ¢.

Now define © to be the directed colimit ® = limz? ,&" in C*°Rings{,, using the
morphisms a” : €" — €""1. This exists by Theorem 4.3.7(a), and commutes with
i, C*°Rings{, — Mon. It has a natural projection 7 : € — ®, and also projections
7" . €" — ® for all n. By the universal property of colimits, there is a unique morphism
¥ in C*°Rings{, making (4.5.2) commute.

The purpose of the quotient (4.5.3) is to modify €" to make it integral, since if €"
were integral then 78P(¢') = 78P(¢”) implies ¢ = ¢”. It is not obvious that €"*1 in (4.5.3)

is integral, as the quotient modifies (€]} )8P. However, the direct limit ® is integral. To
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see this, suppose d’,d" € Dip with 78P(d') = 7#P(d") in (Din)P. Since Dy = Hmp_, i
in Mon, for m > 0 we may write d' = 7l7'(c'), d" = 7l (c") for ¢, " € €. As (D)8 =

HmP? o (€f,)8P and 7¢P(d’) = w#P(d"), for some n > m we have

1 1

P ol " o0 al'(d) =P o al"to---o0 al’(d’) in (€1)EP.

But then (4.5.3) implies that o, o --- 0ol () = a0 ---0a™(c") in € so d' = d".
Therefore 78P : ©;, — (Diy )P is injective, and D is integral.
Set IZ(€) =D. If £ : € — €' is a morphism in C*Rings{ , by taking € = I1Z (&)

and ¢ = 7' o £ in (4.5.2) we see that there is a unique morphism IIZ (¢) in C*°Rings,

making the following commute:

< = I, (€)
e %6 |
¢’ u nZ (e').

This defines the functor Hﬁ. For any € € C°°Rings}, the correspondence between ¢

and v in (4.5.2) implies that we have a natural bijection
. ~ Z
HomC"oRingsicn (Q:, IHC(@)) = HomcooRingS% (Hin(c:), (’3) .

This is functorial in €, &, and so IIZ is left adjoint to inc : C>°Rings] — C°°Rings; ,
as we have to prove.
The constructions of thf, ILf are very similar. For Hth, if € is an object in C*°Rings?,

the analogue of (4.5.3) is
¢rtl = C"/[c' =c"if d, " € € with Wtf(c') = Wtf(c")],
where 7' : €fL — (€I)8P /torsion is the natural projection. For II$2, if € is an object in
C>°Ringsy;, the analogue of (4.5.3) is
€ = €" /(5w € € C (€)% and there exists ¢’ € (€)8\ €7
with ¢ =ne ', n, =2,3,...)[ng - s¢ =, all ¢, ny, so].
Finally we set 1LY = II{f o Hth o H%l. This completes the proof. O

Remark 4.5.8. One can prove Theorem 4.5.7 without constructing H%l, Hth, ILE, 15T ex-
plicitly, using Freyd’s Adjoint Functor Theorem, as in Mac Lane [63, Th. V.6.2]. This says
that given a functor F': C — D, if (i) C has all small limits, (ii) F' preserves small limits,
and (iii) the ‘solution set condition’ holds, then F' has a left adjoint G : D — C. For the

functors inc in (4.4.2), conditions (i),(ii) follow from Proposition 4.5.6.
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Condition (iii) is set-theoretic. For II% one can it check by considering the set of
surjective morphisms ¢ : € — ® in C>°Rings{, with ® € C°°Rings} and D, D¢y
the quotients of €, €. by equivalence relations, and similarly for Hth. As in Addmek
and Rosicky [2, §6.D], if we assume the large-cardinal axiom in Set Theory known as
‘Vopénka’s Principle’, then the Adjoint Functor Theorem holds in this case without (iii),
so Proposition 4.5.6 implies Theorem 4.5.7.

As for Theorem 4.3.7(b), we deduce:

Corollary 4.5.9. Small colimits exist in C*°Ringsg,,C*°Ringsg;,C>Rings7.

sa’

In Definition 4.4.3 we explained how to modify a C°°-ring with corners € by adding

generators €(z, : a € A)[yy : d € Al and imposing relations €/(f, = 0 : b €
B)lgy = hy : b € Bex). This is just notation for certain small colimits in C*°Rings®
or C*Rings{,. Corollary 4.5.9 implies that we can also add generators and relations in
C*°Ringsg,, C*°Rings{;, C°°Rings7, provided the relations g,y = hy are interior, that
is, gy hy # Ocgey -
Remark 4.5.10. We do not expect to have arbitary limits or colimits in C*°Rings$,
C>°Rings{, or C*°Ringsg, as the finitely generated conditions could not be expected to
hold for infinite limits or colimits. However, finite limits and finite colimits in C*°Ringsg,
or C*°Ringsg do exist. We can show finite colimits exist in C*°Rings{, by using a similar
proof to showing they exist in C*°Rings§ as in Proposition 4.5.2. Finite limits can be
shown to exist by considering the finite limit in C*°Rings® using Theorem 4.3.7(a), and
checking it is finitely generated, and then applying Proposition 4.5.6.

Finite products and coproducts exist in C*°Rings{ , however fibre products and fibre
coproducts do not exist in general. For example, the fibre product of N> — N, (a,b)
a+b, and N> = N, (¢,d) — ¢+ d is the set {(a,b,c,d) € N*|a + b = ¢ + d}, which has
generators (1,0, 1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1) and relations between them. This is
not isomorphic to N* for any non-negative integer k. This example relates to elements in
C>°Rings} where N? correspond to the sharpening of the monoid part of C*([0, c0)),
and the N to the sharpening of the monoid part of C*°([0, c0)), and it is related to Example
3.2.4.

4.6 Local C'*°-rings with corners, and localisation

Here is the corners analogue of local C*°-rings. To understand the first definition, recall
from Definition 2.1.9 that a C*°-ring € is local if and only if there exists a (necessarily

unique) R-algebra morphism 7 : € — R such that ¢ € € is invertible if and only if 7(c) # 0.
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Definition 4.6.1. Let € = (€, &) be a C*°-ring with corners. We say that € is local
if there exists a C'°-ring morphism (or equivalently, an R-algebra morphism) 7 : € — R
such that each ¢ € € is invertible in € if and only if m(c) # 0 in R, and each ¢ € € is
invertible in €¢y if and only if 7 o ®;(¢/) # 0 in R, where ®; : €, — € is induced by the
inclusion ¢ : [0,00) < R. Note that if € is local then 7 : € — R is determined uniquely

by Kerm = {c € € : ¢ is not invertible}, and € is a local C*°-ring.

Alternatively, we could say € = (€, €) is a local C*°-ring with corners, if € is local,

and ¢ € € is invertible if and only if ®;(¢’) € € is invertible.

Remark 4.6.2. Let € = (€, &) and © = (D, D) be local C*°-rings with corners and
¢ = (¢, Pex) : € — D be a morphism of C*°-rings with corners. As in Definition 2.1.9,
¢ : € — D is already a local morphism, which is equivalent to requiring that ¢ € € is
invertible if and only if ¢(c) is invertible in ©. The definition of local C*°-ring with corners
then ensures that ¢ € €¢ is invertible if and only if ¢ex(c) is invertible in Dex. Thus
we do not define local morphisms of local C*°-rings with corners, as morphisms already

respect locality conditions.

Proposition 4.6.3. The category of (interior) local C*°-rings with corners has all small
colimits, and they commute with colimits in C°°Rings®, and there is a right adjoint
functor to the inclusion of local C'*°-rings with corners into non-local ones. The category
of (interior) local C*°-rings with corners has all small limits, and they commute with limits
in (interior) C*°Rings® in certain cases. The forgetful functor from (interior) local C*-
rings with corners to local C*°-rings, (€, Cex) — €, has both a left and right adjoint, so it

respects colimits and limits.

This proof is similar to that of Proposition 2.1.11, and uses Theorem 4.3.9.

Proof. As in Proposition 2.1.11, we first consider pushouts of C*°-rings with corners.
Take C°°-rings with corners €,®, & and morphisms € — ® and € — &, and let § =
(§,Fex) be the pushout in C*°-rings with corners, with morphisms p = (p,pex) : ® — &
and ¢ = (¢, ¢ex) : € — §. From Theorem 4.3.9, § is the pushout of the C*°-rings €, D
and €&, and it is local by Proposition 2.1.11.
Elements of §cyx are generated by elements of the form W;(p) for some smooth f :

RSTI;” — [0, 00), with

p - (p(d1)7 e ,p(dm), Q(€1>7 e 7Q(€n);pex<d€[)a M ,pe)((d;'), qex(ell)7 o 7Qex(e§g)>7

where dy,...,dm €D, €1,...,em € €, d],...,d,, € Dex, €],...,€, € Ee. Therefore, all

m

elements of Fex are of this form.
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Take w’ = Ws(p) € Fex such that ®;(w’) is invertible in §. We need to show that
w’ is invertible in Fex. We may write f = hihoF for smooth hy : [0,00)7 — [0,00),
hy @ [0,00)% = [0,00), F : RTG" — (0,00), where hi(a),...,a}) = :U'l‘“...x;aj and
ha(yi, -, yp) = yibl . y,;bk. Then

w' = Up, (pex(dll)v S 7pex(d;')>\llh2 (Qex(ell)7 e 7QEx(e;c))\I’F(B)~

As F is positive, it has an inverse G, and then Wp(p) is invertible with inverse Wg(p).
As ®;(w') is invertible, the both ®;op, (pex(d}); - - -, Pex(d})) and Pion, (gex(e]), - - - gex(€},))
must be invertible.

Now @iopn, (Pex(d}), - - -, Pex(d)) = p(Pion, (d7, - . ., d})). Aspisamap of local C*-rings,
then ®;op, (df, . . ., d;) is invertible in ®. As ® is a local C*°-ring with corners, this holds if
and only if Wy, (dy,...,d},) is invertible in Dex. Applying p, then ¥y, (pex(dy), - - -, pex(d}))
must be invertible. The same argument applied to ®;on, (gex(€]); - - -, gex(€},)) shows that
Up, (gex(€h), - - -, gex(€),)) is invertible. Therefore w’ is a product of three invertible elements
and is invertible itself.

Hence w' is invertible in Fey, and local C*°-rings with corners are closed under pushouts
in C*°Rings®. As pushouts in C*°Rings;, coincide with pushouts in C*°Rings®, using
Theorem 4.3.7(b), then this is also true for interior local C*°-rings with corners.

As the initial object (R, [0, 00)) is local (and interior), then the category of (interior) lo-
cal C*°-rings with corners has all finite colimits, and the construction shows they commute
with colimits taken in C*°Rings®.

For a small colimit of local C*°-rings with corners, again take the colimit in C*°-rings
with corners. The C'°°-ring part is local by Theorem 4.3.9 and Proposition 2.1.11. We can
observe that every element in the monoid is again generated by finitely many elements
from the monoids in the diagram, and that there must be a unique morphism from the
colimit to R. Applying the same proof above shows that elements in the colimit are
invertible if and only if their image in R is non-zero, showing that the colimit is local, as
required. If the C*°-rings with corners in the diagram are also interior, Theorem 4.3.7(b)
shows that the colimit is also interior.

As in Proposition 2.1.11, one can construct a right adjoint F' to the inclusion of local
C*°-rings with corners into C*°-rings with corners by taking F'(€) to be the colimit of all
local C*°-rings with corners that have morphisms into €.

If one takes a diagram of local C*°-rings with corners in the form of (2.1.3), then the
limit in C*°-rings with corners exists and it is local by the same reasoning as Proposition
2.1.11, so this is the limit in local C*°-rings with corners. Theorem 4.3.9 shows its under-

lying C°°-ring is the limit of the underlying local C'**°-rings. If the diagram is not of the
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form of (2.1.3) we can add all the morphisms to R to form a vertex so that it is of the
form of (2.1.3) and then take the limit in C*°-rings with corners. This will be the limit
of the original diagram in the category of local C*°-rings with corners, so all small limits
exist in the category of local C*°-rings with corners, and they are equal to their limits in
C*°-rings with corners when their diagrams are of the form of (2.1.3).

If we take a diagram of interior local C*°-rings with corners, the same reasoning above
shows that the limit exists, and it commutes with limits in interior C**°-rings with corners
only when the diagram has the form of (2.1.3). For example, the product of interior local
C*°-rings with corners (€, Cey), (D, Dex) Will be (€ xr D, Cin X |9 00) Din 1 {0}). Note that
limits of interior C*°-rings with corners do not in general commute with limits of C*°-rings
with corners due to Theorem 4.3.7(b), so it is also not true that limits of interior local
C*°-rings with corners commute with limits of local C*°-rings with corners.

From Theorem 4.3.9, the forgetful functor from (interior) local C*°-rings with cor-
ners to local C'*°-rings preserves both limits and colimits; then as in Theorem 4.3.9 the
left adjoint and right adjoints constructed in Theorem 4.3.9 are left and right adjoints

respectively when restricted to local C*°-rings. This completes the proof. O

Definition 4.6.4. Let € = (€, €e) be a C*°-ring with corners, and A C €, Agx C Cox
be subsets. A localisation €(a™! :a € A)[a’™! : a' € Aey of € at (A, Aex) is a C®-ring
with corners ® = €(a~! :a € A)[a’~! : @’ € Ax] and a morphism 7 : € — D such that
7(a) is invertible in © for all a € A and 7ex(a’) is invertible in Dey for all @’ € Agy, with
the universal property that if & = (&, o) is a C*-ring with corners and ¢ : € — &
a morphism with ¢(a) invertible in € for all @ € A and ¢ex(a’) invertible in € for all
a' € Aey, then there is a unique morphism v : ® — & with ¢ = 1 o 7.

A localisation €(a™! :a € A)[a’~! : a’ € Aex] always exists (as proved in Kalashnikov
[51, §4.7] for localisations of pre C°°-rings with corners), and is unique up to unique

isomorphism. In the notation of Definition 4.4.3 we may write
Clat:acA)d ™ :d € Ayl =
(€(zg:a€A)|yy :d € Aex])/(a-za=1:a€ A)[d yo =1:d € Acx].
That is, we add an extra generator x, of type R and an extra relation a - x, = 1 of type

R for each a € A, so that z, = a~!, and similarly for each a’ € Aey.

If € is interior and Aex C @iy then €(a™! 1 a € A)[a/~! : @/ € Ae] makes sense and

exists in C*°Rings{, as well as in C*°Rings®, and Theorem 4.3.7(b) implies that the two

localisations are the same.

The following lemma will be important in the theory of C°°-schemes with corners.
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Lemma 4.6.5. Let € = (€, Coy) be a C®-ring with corners and take c € €. Let €(c™!) =
(D, Dex) be the localisation, then ® = €[c™1], the localisation of the C*-ring.

Proof. As localisation is a colimit, this follows directly from Theorem 4.3.9. Explicitly, let
€ =(C,C), ¢, and D = (D, Dex) be as in the statement. Then ® = &€(z.)/(c-xz. =1) =
(€ ®oo C°(R))/(c- x. = 1), where z. is the generator of C*°(R). Theorem 4.3.9 implies
the underlying C*°-ring of € @y C°(R) is equal to € @ C*°(R). Example 4.4.4(a)
shows that the quotient (€ ®. C*°(R))/(c -z, = 1) must have underlying C*°-ring,
€ R C®(R)/(c 2, =1) = €[c"}] = D. In fact, we can conclude that D = (D, Dey) =
(€[, (€ ®oo C®(R))ex/~1) where I is the ideal (¢ - z. = 1), using the notation of
Example 4.4.4(a). O

Lemma 4.6.6. If € = (€, &) is a (pre) C*°-ring with corners and r : € — R a (pre)
C°-ring morphism, then we have a morphism of (pre) C*°-rings with corners (x,Zex) :
(€, Cx) — (R, [0,00)), where xex(¢') = x 0 ®;()) for ¢ € Ce.

Proof. Let € = (€,€) and = : € — R be as in the statement. Take ¢’ € €. To show
Tex = 0Dy 1 Co — [0,00) is well defined, assume for a contradiction that z o ®;(¢) =
e <0€R Let f: R — R be asmooth function such that f is the identity on [0, c0)
and it is zero on (—o00,€/2). Then foi =i fori: [0,00) — R the inclusion. So we have
0>e=x00;() =20Pso®;(c') = f(zo®i(c')) = f(e) =0, and zex = 20DP; : Cox — [0, 00)
is well defined.

For (x,zex) to be a morphism of (pre) C*°-rings with corners, it must respect the
C>-operations. For example, let f : [0,00) — [0,00) be smooth, then there is a smooth
function g : R — R that extends f, so that goi = io f. Then ze(¥f(c)) = z o
Qi(Vs(c) = Pg(x 0 Pi(c)) = Py(zex(c’)) as required. A similar proof holds for the other

(C'*-operations. ]

Definition 4.6.7. Let € = (€, Cc) be a C®-ring with corners. An R-point x of € is a
C*°-ring morphism (or equivalently, an R-algebra morphism) z : € — R. Define €, to be

the localisation
¢, = €(c_1 cce, z(c) £0) [C'_l € Cox, o By(c) £ 0], (4.6.1)

with projection 7, : € — €,. Lemma 4.6.6 shows x o ®;(¢) > 0 so the localisation is well
defined.

If € is interior then €, is interior by Definition 4.6.4. Theorem 4.6.8 shows €, is local.
Part (c) of Theorem 4.6.8 is the analogue of Proposition 2.1.15. The point of the proof
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is to give an alternative construction of €, from € by imposing relations, but adding no

new generators.
Theorem 4.6.8. Let 7, : € — &, be as in Definition 4.6.7. Then:

(a) €, is a local C*®-ring with corners.

(b) €, = (€4, Cpex) and 7y = (Mg, Tyex), Where Ty © € — &4 is the local C*°-ring
associated to x : € — R in Definition 2.1.13.

(c) mp: € = €4 and Ty ex : Cox — €y ox are surjective.

Proof. Proposition 2.1.15 says that the local C*°-ring €, is €/I, for I C € the ideal defined
in (2.1.4), with 7, : € — €, the projection € — €/I. Define

@:Q:m:Q:/I and @eX:Q:eX/Na

where ~ is the equivalence relation on €qy given by ¢ ~ ¢ if there exists i € I with
"= Wexp(i) -, and ¢ : € =5 D = /I, ¢ex : Cox = Dex = Cex/~ to be the natural
surjective projections. Let f : R x [0,00)" — R be smooth and g : R™ x [0, 00)" — [0, 00)
be exterior, and write ®¢, ¥, for the operations in €. Then as for (4.3.2), we can show

there exist unique maps @}, \If; making the following diagrams commute:

¢ x En A Y v —

Oy g
o= o oo x| (4.6.2)
DM x DN ~D, D™ x D - Do,

and these @', ¥y make ® = (D,Dex) into a C°-ring with corners, and ¢ = (¢, dex) :
¢ — ® into a surjective morphism.

Suppose that § is a C*°-ring with corners and x = (X, Xex) : € — & a morphism such
that x(c) is invertible in § for all ¢ € € with x(c) # 0. The definition ® =€, =€[c t:c€
¢, z(c) # 0] in C*°Rings in Definition 2.1.13 implies that y : € — § factorises uniquely
as x = o¢ for £ : ® — §F a morphism in C*°Rings. Hence x(i) = 0in § for all ¢ € I, so
Xex(Wexp(t)) = 15, for all i € I. Thus if ¢/, " € Cex with ¢ = Ve (i) - ¢ for i € I then
Xex(€') = Xex(¢”). Hence xex factorises uniquely as Yex = Eex © Pex 10T ox : Dex — Tex-

As x, ¢ are morphisms in C*°Rings® with ¢ surjective we see that £ = (§,&ex) : © —
& is a morphism. Therefore x : € — § factorises uniquely as x = £ o ¢. Also ¢(c) is
invertible in © = €, for all ¢ € € with z(c) # 0, by definition of €, in Definition 2.1.13.

Therefore we have a canonical isomorphism
D = C(c_l cce€, x(c) #0)
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identifying ¢ : € — ® with the projection € — Q:(c_l cce € x(c) # O). Note that
z : € — R factorises as x = T o ¢ for a unique morphism z : ® — R.
Next define
¢=D=¢, and Cu =D/ ~,

where ~ is the monoidal equivalence relation on ®¢x generated by the conditions that
d =~ d" whenever d',d" € D¢ with ®(d') = ®,(d”) in © and & o ®)(d") # 0. Write
Y =1d : ® — €, and let ey : Dex — Eox be the natural surjective projection. Suppose
f:R™ x[0,00)" — R is smooth and g : R™ x [0,00)" — [0,00) is exterior. Then as for

(4.6.2), we claim there are unique maps <I>3£, W} making the following diagrams commute:

D™ x DY , D OO > Dy

(Df \I/g
mewéfx o wi melpgx o wexi (4.6.3)
M x @ ! - ¢ E™x En R

To see that @ in (4.6.3) is well defined, note that as ®; : Dex — D is a monoid
morphism and ~ is a monoidal equivalence relation generated by d’ ~ d” when ®(d') =
@’ (d"), we have a factorisation ®; = @, 01he. We may extend f to smooth f:R™" SR,

and then @’f factorises as

DM X D" .

<I>/f /
im <I>}~

®m+n

Using @, = @/ 0 9y, We see that @’ in (4.6.3) exists and is unique.
For Wy, if g = 0 then ¥{ = O¢,, = [0p,,] in (4.6.3). Otherwise we may write g using
ai,...,an and h: R™ x [0,00)" — R as in (4.2.4), and then

Uy (diy ooy dydyy oy dl) = (d5) - () - UL [ (s oy dhy o dl)].

exp

Since ey : Dex — Eex is @ monoid morphism, as it is a quotient by a monoidal equivalence
relation, we see from this and the previous argument applied to ®p(dy, ..., dpm,d}, ..., d))
that Uy in (4.6.3) exists and is unique. These @7, ¥y make € = (€, €) into a C*°-ring
with corners, and 19 = (¥, ex) : ® — € into a surjective morphism.

We will show that there is a canonical isomorphism & = &€, which identifies 9 o ¢ :
¢ — € with w, : € — &€,. Firstly, suppose ¢ € € with z(c) # 0. Then 9 o ¢(c) is
invertible in & = €, by definition of €, in Definition 2.1.13. Secondly, suppose ¢ € Cey
with z o ®;(¢) # 0. Set d = ¢ex(c’). Then ®)(d') = ¢ o ®;(¢) is invertible in D.
Now in the proof of Proposition 4.3.1(b), we do not actually need ¢’ to be invertible in

Cex, it is enough that ®;(¢’) is invertible in €. Thus this proof shows that there exists
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a unique d € ® with ®j(d) = @y (d) = @; o ¥y (d). But then d' ~ ¥y (d), so
Vex(d') = tex 0 Vi (d) = Vg, (¥(d)). Hence tex © dpex(c’) = hex(d’) is invertible in €,
with inverse Wy, . (—(d)).

Thirdly, suppose that & is a C*°-ring with corners and ¢ = ((,(ex) : € — & a
morphism such that ((c) is invertible in & for all ¢ € € with z(c) # 0 and (e () is
invertible in B¢y for all ¢ € Cox with z o ®;(¢/) # 0. Then ¢ = n o ¢ for a unique
N : D — &, by the universal property of ®. Since ¢ex : Cex — Dex is surjective and
x = T o ¢ we see that nex(d') is invertible in Gey for all d’ € Dex with & o P}(d’) # 0.

Let d',d" € Dex with ®(d') = ®;(d") in © and Z o ®(d') # 0, so that d’ ~ d”. Then
Nex(d'), Nex(d") are invertible in Gex With ®; 0 7ex(d’) = @; 0 Nex(d”) in &, so Definition
4.3.2(i) for & implies that Nex(d') = Nex(d”). Since Nex : Dex — Bex is @ monoid morphism,
and = is a monoidal equivalence relation, and 7ex(d') = nex(d”) for the generating relations
d =~ d’, we see that ne factorises via Dey/ ~. Thus there exists unique Oey : Eox — Feox
With Nex = Oox 0 Yex. Set 0 =n: € =9 — & Then n = 0o as ¥ = idp. As ¢ is
surjective we see that 8 = (6,0c) : € — § is a morphism in C*°Rings®, with n = 0 o 1),
so that ( =0 oo ¢.

This proves that @ o ¢ : € — € satisfies the universal property of 7, : € — &, from
the localisation (4.6.1), so € = €, as we claimed. Parts (b),(c) of the theorem are now
immediate, as € = €, and ¢, 1 are surjective. For (a), observe that z : € — R factorises
as mom, for 7 : €, — R a morphism. If ¢ € €, with 7(¢) # 0 then as 7, : € — €,
is surjective by (c) we have ¢ = m,(c) with z(c) # 0, so ¢ = m,(c) is invertible in €, by
(4.6.1). Similarly, if & € € ox with 7o ®;(¢) # 0 then as Ty ex : Cex — € ex IS surjective

we find that ¢ is invertible in €y ex- Hence €, is a local C*°-ring with corners. O

Note that the first equivalence relation in this proof is an example of the quotient from
Example 4.4.4(a), which enforces the correct invertibility condition (¢ € €, is invertible if
and only if z(c) # 0) on the C*°-ring. The second equivalence relation enforces the correct
invertibility condition (¢ € €, ey is invertible if and only if 2 o ®;(¢’) # 0) on the monoid.
We can characterise the equivalence relations that define €, x = € in the above proof

using the following lemma.

Lemma 4.6.9. Let € = (€, ) be a C*-ring with corners and x : € — R an R-point of
¢. Let wp, : € — €, be as in Definition 4.6.7, and I the ideal defined in (2.1.4). For any
iy € Cox, then Ty ex(c)) = Tpex(ch) if and only if there are elements o',V € Cox such
that ®;(a’) — ®;(b') € I, o ®;(a’) # 0 and d'd) =V cy. Hence €, = (€/I,&ex/~) where
cy ~ dy € Cox if and only if there are elements a’',b' € Cex such that ®;(a’) — ®;(V) € I,
xo®;(a’) #0 and d'c} =b'c}.
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Proof. We first show that if m; ex(c}]) = 7zex(ch), then there are o/, satisfying the con-
ditions.

In Theorem 4.6.8, we constructed C*°-rings with corners ® = (D,D¢) and & =
(€, Eex) and surjective morphisms ¢ = (@, dex) : € = D, VP = (Y, Vex) : ® — &, where

C=0=0C,=C/I, Dex=Cex/~ and CEox =D/ ~,

and I C € is the ideal defined in (2.1.4), and ~, ~ are explicit equivalence relations. Then
we showed that there is a unique isomorphism & = €, identifying o ¢ : € — & with
Tyt € = €p As Ty ex(C]) = Trex(ch) we have ey 0 Gex(€]) = tex 0 Pex(ch) In Eex.
Thus ¢ex(c]) & Pex(ch).

By definition = is the monoidal equivalence relation on Dy generated by the condition
that d’ ~ d” whenever d’,d" € D¢, with ®(d") = ®}(d") in ® and & o ®(d") # 0, where
P! : Dex — D is the C*°-ring operation from the inclusion i : [0,00) < R, and z : € — R
factorises as * = Z o ¢ for a unique morphism z : © — R. Hence ¢ex(c)) & ¢ex(ch)
means that there is a finite sequence ¢ex(c)) = dfy, dy, d, ..., d),_1,d), = Pex(ch) In Dex,
and elements €}, !, gi € Dex such that ®%(e}) = PL(f]), o Pi(e}) # 0, and d}_, = €] - g/,
di=fl-g,in e fori=1,...,n.

AS dex : Cox — Dex s surjective we can choose e;, fi,gi € Cex with €} = pex(e;),
Il = bex(fi), gi = dex(gi) for i =1,...,n. Then the conditions become

Di(e;) = Di(fi) €I, woPi(e)) #0eR, i=1,...,n, (4.6.4)

/ . /
cp~er-g1, €l Gir1~ficgi, i=1,...,n—=1, cy~ fn-gn,

since equality in D¢ lifts to ~-equivalence in €. By definition of ~, this means that

there exist elements hg, hi, ..., h, in the ideal I C € in (2.1.4) such that

c/1 = \Ilexp(h()) - €141, C/2 = \I]exp(hn) : fn *n, (4 6 5)

and €41 giy1 = Yexp(hi) - fi- 9, i=1,...,n—1

In fact, for any element h € I, then the conditions ®;(e;)—®;(f;) € I and zo®;(e;) #0 € R
hold if and only if ®;(Vexp(h)ei) — Pi(fi) € I and x o @;(Vexp(h)e;) # 0 € R hold. So we
can remove the h; in (4.6.5). We have that 7y ox(¢)) = 7y ex(ch) if and only if there are

elements e;, f;, g; € €ex such that

cll = €191, CIZan'gnu
€i+1 " Ji+1 :fzgu i = 1,...,TL—1, (466)
and zo®;(e;)) #0€R, i=1,...,n.
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We define o’ = f1- fo-...- fpand b/ =ej-ey-...-e,. Then using (4.6.6), we see that
a'dy =Vdy, ®(a') — ®;(b') € I and z o ®;(a’) # 0 as required.

For the reverse argument, say we have a/,b' € €o with ®;(a’) — ®;(V') € I and x o
Pi(a) #0. Let n=1,e; =d/, g1 =0 and f; = b in (4.6.5) then we see that 7, ex(a') =
Trex(t). As x o ®;(a’) # 0, then 7y ex(a’) is invertible in €ec. If we also have that

a'cy = 'cly, then as Ty ex is a morphism, 7y ex(¢}) = Tzex(ch) and the result follows. [

This lemma is important as it characterises localising at a point in the monoid as
a global condition, that is we have a global equality a'c]; = b'¢y. In the C*°-ring, this
condition can be made local as a’,b’ can be described using bump functions, however
bump functions do not exist in the monoid in general. This creates interesting issues for

(C*°-schemes with corners, discussed in §5.3.

Remark 4.6.10. Let (€, Cq) be a C®-ring with a/,0 € €., and, such that for an R-
point z : € — R, we have z o ®;(a’) # 0 and ®;(a’) — ®;(V') € I. Then if we take ¢ = o
and d’ = b in Lemma 4.6.9 we have 7 ex(a’) = 7z ex(V'). That is, invertible elements in
Cex are equal in the stalk €, ¢« whenever their images under ®; are equal in €,. This is
also a consequence of the definition of C'*°-rings with corners, as ®; must be injective on
invertible elements of €y, and €, cx.

Also, say ¢’ € €y such that 7 ex(¢’) = 0. Then Lemma 4.6.9 implies there must be an
a' € € such that x o ®;(a’) # 0, with a’¢’ = 0. As x o ®;(a’) # 0 then o’ # 0. If ¢ # 0,

then a’ and ¢’ must be a zero divisors.

Example 4.6.11. Let X be a manifold with corners (or with g-corners), and z € X.
Define a C*°-ring with corners € = (€, €ey) such that € is the set of germs at = of smooth
functions ¢ : X — R, and €y is the set of germs at x of exterior functions ¢’ : X — [0, 00).

That is, elements of € are ~-equivalence classes [U, ¢| of pairs (U, c), where U is an
open neighbourhood of # in X and ¢ : U — R is smooth, and (U, ¢) ~ (U, é) if there exists
an open neighbourhood U of z in U N U with ¢

i = €lp. Similarly, elements of €cx are
equivalence classes [U, |, where U is an open neighbourhood of z in X and ¢ : U — [0, 00)
is exterior. The C'*°-ring operations ® ¢, ¥, are defined as in (4.2.2)—(4.2.3), but for germs.

As the set of germs only depends on the local behaviour, then the set of germs at x
of exterior functions is equal to the set of germs at x of interior functions and the zero
function. In particular, for an exterior function defined locally on an open set U of x, we
can shrink the open set around z until the function is either interior or zero in that set.

This implies that € is an interior C'*°-ring with corners.
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There is a morphism 7 : € — R mapping 7 : [U, ¢] — ¢(x). If 7([U,¢]) # 0 then [U, c|
is invertible in €, and if 7 o ®;([U, ]) = /(x) # 0 then [U, ] is invertible in €qy. Hence
€ is a local C*°-ring with corners. Write C°(X) = €. Then C5°(X) depends only on an
arbitrarily small neighbourhood of z in X, so if X has corners then C;°(X) = C (R})
forn=dimX and 0 < k < n.

In Remark 4.2.3 we noted that the C*°-ring with corners C*°(X) in Example 4.2.2
captures the geometric structure of X more faithfully if X is a manifold with faces. If X
has faces, then a smooth, exterior or interior function that is defined locally around a point
can be extended to a smooth, exterior or interior function defined globally. In particular,
for an exterior function defined locally on an open set U, we can shrink the open set until
the function is either interior or zero, and then extend it to an interior function or the
zero function respectively.

We conclude that if X has faces then
CP(X) = (C®(X))z, = (CR(X))q. forall zeX.

As in Definition 4.6.7, here (C* (X)), is the localisation of C*°(X) at z, : C>*(X) — R
where for f € C*°(X) then z*(f) = f(x), and (C{y (X)) is the localisation at z, of C{ (X),
the interior C'*°-ring with corners of Example 4.2.7.

However, if X does not have faces then there is a point z € X such that (C*°(X)),,
C°(X). That is, there are elements of the exterior germs in C5°(X) that correspond
to exterior maps defined locally, but cannot be extended to global exterior maps. Again
recall the example of the teardrop 7' in Example 3.3.4. As in Remark 4.2.3, we noted
that exterior maps locally modelled near (0,0) on y¢y5 : [0,00)2 — [0,00) when a # b
cannot be extended to the entire teardrop. In this case, (C*(T)),, € C°(T) where

Zs 1 C°(T) — R is the C*°-ring morphism which evaluates the function at = (0, 0).

4.7 Modules, and (b-)cotangent modules

In §2.2 we discussed modules over C'*°-rings. Here is the corners analogue:

Definition 4.7.1. Let € = (€, €¢) be a C*°-ring with corners. A module M over &€, or
€-module, is a module over € regarded as a commutative R-algebra as in Definition 2.2.1,
and morphisms of €-modules are morphisms of R-algebra modules. Then €-modules form
an abelian category, which we write as €-mod.

The basic theory of §2.2 extends trivially to the corners case. So if ¢ = (P, pex) : € —
® is a morphism in C*°Rings® then using ¢ : € — © we get functors ¢, : €-mod —
®-mod mapping M — M ®¢ D, and ¢* : ®-mod — €-mod mapping N — N.
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One might expect that modules over € = (€, €) should also include some kind of

monoid module over €.y, but we do not do this.

Example 4.7.2. Let X be a manifold with corners (or g-corners) and F — X be a vector
bundle, and write I'*°(E) for the vector space of smooth sections e of E. This is a module
over C*°(X), and hence over both the C*°-ring with corners C*°(X) from Example 4.2.2,

and also over the interior C*°-ring with corners Ciy(X) from Example 4.2.7.

Section 2.2 studied cotangent modules of C*°-rings, the analogues of (co)tangent bun-
dles of manifolds. As in §3.4 manifolds with corners X have (co)tangent bundles TX, T*X
which are functorial over smooth maps, and b-(co)tangent bundles T X, *T* X, which are
functorial only over interior maps. In a similar way, for a C*°-ring with corners € we will
define the cotangent module Q¢, and if € is interior we will also define the b-cotangent

module *Qe.

Definition 4.7.3. Let € = (€,C.) be a C*°-ring with corners. Define the cotangent
module Q¢ of € to be the cotangent module Q¢ of §2.2, regarded as a €-module. If
@ = (¢, Pex) : € — D is a morphism in C*°Rings® then from €y in §2.2 we get functorial
morphisms Qg : Q¢ = Qp = ¢* (o) in €-mod and (2p)+ : P, () = Qe Re D — Op in
-mod.

Example 4.7.4. Let X be a manifold with corners. Then I'*°(7T*X) is a module over
the R-algebra C°°(X), and so over the C*°-rings with corners C*°(X) and C{;(X) from
Examples 4.2.2 and 4.2.7. The exterior derivative d : C®°(X) — I'*°(T*X) is a C*°-
derivation, and there is a unique morphism A : Qcee(x) — '*°(T*X) such that d = Ao d.

Proposition 4.7.5. Let X be a manifold with corners. Then I'*°(T*X) is the cotangent
module of C*(X). That is, A from Example 4.7.4 is an isomorphism.

Proof. To show that I'>°(T*X) is the cotangent module of both C*°(X) and C{7(X), we
will first show that A is surjective by exhibiting a finite set of globally generating sections
of I'*°(T*X) of the form de for some ¢ € C*°(X). By Melrose [68, Prop, 1.14.1], any man-
ifold with corners can be embedded into a manifold without boundary. As every manifold
without boundary admits a finite atlas (with charts having possibly disconnected, uncon-
tractable open sets, see for example Greub et al. [31, p. 20-21]), we can take coordinate
functions ¢, ..., 2% for each coordinate patch U;, i = 1,..., k. On U;, the dzt, ... dx}
span the cotangent bundle restricted to this neighbourhood.

By Melrose [68, Lem. 1.6.1], we can take partitions of unity for manifolds with corners,

so we can take a partition of unity {p;};=1 . x subordinate to the open cover {U;}i=1 . k.
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Rescaling the p;, we can assume that Zle p? = 1. Then we can extend the coordinate
functions to the entire manifold by taking :I:; = plm; € C®(X) for each i = 1,...,k,

j=1,...,n. Using the local relation
pid(pix}) = pjdat; + pixdpi
we deduce that
p?d:vg- = pid(pixé-) — pixé-dpi = pidﬁﬁé — ﬁ;dpi, (4.7.1)

where the right hand side is defined globally. We can then show that the collection of
global sections {dig-,dpi} span the cotangent bundle at each point, and therefore they
span the cotangent bundle. That is, if we have a one form ¢ € I'*°(T*X) such that
Olu, = >0 fida’; for fi € C®(X), then

E = E =
o= D pAfidal =" fipdd; - &dpi).
i=1 j=1 i=1 j=1

Hence I'*°(T*X) is globally generated by sections of the form de for some ¢ € C*°(X),
and so A is surjective.

To show A\ is injective, we first proceed by making a series of embeddings. From
Melrose [68, Prop. 1.14.1] we can embed X into a manifold without boundary U, and
we can use the Whitney Embedding Theorem to embed this first embedding into RY for
some N >> 0. We will then use, as in Lee [60, Th. 6.24, Prop. 6.25], that there is a
tubular open neighbourhood V. RY of U and a smooth submersion r : V — U that is a
retraction.

Now, take elements a;,b; € C*°(X), i = 1,...,n such that ), a;db; € Qg (x) and
say that their image in I'>°(7*X) under X is 0, that is » ; a;db; = 0 € I'*°(T*X). As X
can be embedded as a submanifold with corners of U, then these functions a;, b; can be
extended to functions on U using Seeley’s Extension theorem and Borel’s Lemma. While
>;aidb; = 0 on X it is not clear that this is true on U \ X.

As U is a manifold, then, as in the previous part of the proof, there is a finite atlas
{Uk}k=1,..m of U and we can take coordinate functions aho. ,33’; for each coordinate
patch U, k=1,...,m. On U, the dx'f, e ,d:vfl span the cotangent bundle restricted to
this neighbourhood. Take a partition of unity {p}r=1,. m subordinate to the open cover

{Ui}i=1,. k and rescale the p; so that > ", p% = 1. Then the a; and b; are functions of

-----

105



these xf locally, and we can use eq. (4.7.1) to write

Zaidbi = Zp%zaidbi = Zai\Uk 82 |Uk 2d k
% k 7

'7j k

U
= aily, o~ Z' £ (ppda — 25dpy)
1,5,k

= Z(fi,j,kdi‘? — i kdpr), (4.7.2)
—

z|Uk

where f;jx : U — R, g;jx : U — R are smooth functions with f; ; = ai|Uk pr and

8b|Uk .

These are both defined on all of U and are zero outside of U, and
b \Uk

9ijk = az\Uk

forx € XN Uk, we have 0 = ) . a;db; = Zwka,]Uk
ob; |Uk .

dz k. As dxj are a basis of

[°°(T*Uy) then 3, ailu, —

zero on X NUg. In partlcular, fijks 9i 4k are zero on all of X. We have that

=0 for x € X N Uy, which implies that f; ;x, gi 1 are also

Zazdb Z fz,j,kdﬁ:? — gijxdpr) =0

4,5,k

on U. Relabel and define a;, l;j so that on U
Z a;db; + Z djdi)j =0,
( J

where the I;j correspond to the :@?, Pk, and the a; correspond to the f; ;x, g j k-

We can now pull back -, a;db; + 3 a;b; = 0 € I'*°(T*U) to V using r so that we
have 0 = 3 (a; or)d(b;or) + > ;(a; or)d(bjor) € I°°(T*V). Take coordinate functions
Z1,...,znx on RN, then a; o, b; or, a;jor, I;j or are functions of the z; restricted to V.

Take a smooth bump function p : R™ — [0,1] that is 1 near U and (the closure of) the
support is contained in V. Then define f; : RN — Rby fi =p-a;or foreachi=1,...,n
and f] :RY - R by fj =p-a;or foreach j=1,...,N. So we have f;|y = a; or|y = a;,
f;-]U = a; or|y = a;, and we still have

= (filv)d(bior)+ > (fj)lvd(bjor) € T®(T*V),
i J

Then take smooth bump functions p;, p; : RN — [0,1] that are 1 in a neighbourhood
of the closed support of f;, fj respectively, and have closed support inside U, and define
gi = pi-bior : RY - Rand § = ﬁj-l;z-or. So gily = biom, §ily = biom, and
> fidgi + Zj ﬁ-dgi = 0, as this is zero outside of V' by definition of g;, g; and zero inside
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V by definition of f;, fj and g;, gj. This implies that
0=> fidgi+>_ fidg = Zfi%dx* + Zf“%dmk € T(T*RY),
: j 0z 7 AT Oy

with the sums over i = 1,...,n,5=1,..., Nk =1,...,N. As dxy,...,dxy are a basis

~

for °°(T*R"), then this implies >, f,g% +2; fj% =0foreach k=1,...,N.

Now, in Q¢ (x) we have that
Zaidbi + Z&jd(ﬁij :Z(I)fi(xl‘x, .. .,.%N‘X)dq)gi(lj’x, - ,l‘N’)()
i j i
+) 0 (w1lx, 2] x)dg (@ x, - 2N x)

J
=> p(wilx, .-, xN‘X)(I)%(«Tl‘X; o onlx)d|x

oz

’-]
+Z(I)fj(($1|X,---7$N|X)(I)%dl‘kz|X
7.k

:Zk:q)xlfz 99; +ijj%($1’)(7 s ’xN‘X)d$k|X

oz, oz

=Z¢o($1|xa oo xn|x)drglx =0 € QC""(X)'
k

However, a;|x : X — R are all identically zero, so that Zj ddej =0 € Qgee(x). Hence
we have that ), a;db; = 0 € Qgeo(x) and A is injective, so I'*°(T*X) is the cotangent
module of both C*(X) and C{¥(X), extending Joyce [40, Ex. 5.4]. Note that if X is a
manifold without boundary, we can skip the first part of the proof and just embed X in

RY with a tubular neighbourhood and use the retract as above. O

Definition 4.7.6. Let € = (€, €¢) be an interior C*°-ring with corners, so that €y =
Cin II {O¢,, } with €, a monoid. Let M be a €-module. A b-derivation is a monoid
morphism dj, : €, — M, where M is a monoid over addition, such that d = dj; o
Vexp : € = M is a C*-derivation in the sense of Definition 2.2.4 and we require that
din 0 Yexp(Pi()) = @i()dinc for all ¢ € €.

We call such a pair (M, di,) a b-cotangent module for € if it has the universal property
that for any b-derivation d{, : €, — M’, there exists a unique morphism of €-modules
A M — M with di, = Xodjy.

There is a natural construction for a b-cotangent module: we take M to be the quotient
of the free €-module with basis of symbols dj, ¢’ for ¢’ € €;, by the €-submodule spanned

by all expressions of the form
(1) din(¢ - ") — dind — dind” for all ¢, ¢” € €4y, and
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(i1) din © Yexpof(Ci,--.scn) — Doy ®Pos(c1,...,¢n) - din 0 Uexp(cy) for all f: R" — R
oz,

smooth and ¢q,...,¢c, € €.
(iii) din © Wexp(Pi(c')) — @i()dind for all ¢ € €.

Here (i) makes di, : €in — M a monoid morphism, and (ii) makes dinoWexp : € — M a C°-
derivation. Thus b-cotangent modules exist, and are unique up to unique isomorphism.
When we speak of ‘the’ b-cotangent module, we mean that constructed above, and we
write it as deg in : Cin — ’Qe.

Since dg in © Yeyxp : € — bQ¢ is a C™°-derivation, the universal property of Q¢ = Q¢ in
§2.2 implies that there is a unique €-module morphism I¢ : Q¢ — *Qe with deinoWexp =
Ie ode : € = Q.

Let ¢ : € — ® be a morphism in C*°Rings; . Then we have a monoid morphism
Gin : Cin — Din. Regarding ng as a €-module using ¢ : € — D, then do iy © din : Cin —
’Q5 becomes a b-derivation. Thus by the universal property of *Qe, there exists a unique
¢-module morphism bQ¢ Q¢ — "Qp with dD in © in = bQ¢ odg,in. This then induces a
morphism of ®-modules (bQ¢)* 10, (") =" @D - . Ifp: €D, YD = E
are morphisms in C*°Rings{,, then bQ¢o¢ = bQ¢ o bQ¢ 0Qe — M.

Remark 4.7.7. In Definition 4.7.6 we could have omitted the condition that € be interior,
and considered monoid morphisms dex : €ex — M such that d = dex 0 Weyp : € — M is
a C-derivation and dex © Wexp(Pi()) = Pi()dexd for all ¢ € €o. However, since
- 0¢,,. = 0¢,, for all ¢ € €¢ we would have dexd + dexO¢., = dexO¢., in M, so dexd =0,
and this modified definition would give *Q¢ = 0 for any €. To get a nontrivial definition
we took € to be interior, and defined d;, only on €;;, = €ey \ {O¢,, }-

If € lies in the image of the functor I : C*°Rings® — C*°Ringsf, of Definition
4.2.11 then *Q¢ = 0, since €;, then contains a zero element O¢,, with ¢’ - O¢,, = O, for
all d € ¢;,.

If di, : €5 — M is a b-derivation then it is a morphism from a monoid to an abelian
group, and so factors through 78P : €;;, — (€;,)8P. This suggests that b-cotangent modules

may be most interesting for integral C°°-rings with corners, as in §4.5, for which 7&P :

Cin — (€8P is injective.

Example 4.7.8. Let X be a manifold with corners (or g-corners), with b-cotangent bundle
bT*X as in §3.4. Example 4.2.7 defines a C*-ring with corners C{°(X) = € with ¢;, =
In(X), the monoid of interior maps ¢ : X — [0, 00). We have a C°°(X)-module I'*°(*T*X).
Define dy, : In(X) — I'°(*T*X) by

din(¢) = ¢71-bdd = bd(log ¢), (4.7.3)
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where °d = I% o d is the composition of the exterior derivative d : C°°(X) — I'*°*(T*X)
with the projection I : T*X — *T*X. Here (4.7.3) makes sense on the interior X° where
¢ > 0, but has a unique smooth extension over X \ X°.

We can now show that dj, : In(X) — I'*°(*T*X) is a b-derivation in the sense of
Definition 4.7.6, so there is a unique morphism \ : bQCoo(X) — I'®(*T*X) such that
din = A o djp.

Proposition 4.7.9. If X is a manifold with faces with finitely many boundary components
then T°(*T*X) is the b-cotangent module of CSX(X). That is, X from Example 4.7.8 is

an isomorphism.

Proof. Say X has dimension n and let € = (C°*°(X),In(X) II {0}). Each element of *Q¢
is a linear combination of elements of the form dj,¢’ for some ¢ € In(X). On the other
hand, T (*T*X) contains elements that are locally spanned by d;,c’ for some ¢’ € In(X)
restricted to the local neighbourhood. As in Example 4.7.8, the universal property of *Q¢
gives a morphism \ : Q¢ — T>°(°T*X). We break this proof into two parts: showing A

is surjective and injective.

To show A is surjective, we need to show that there is a global spanning set for
I°(*T*X) of elements of the form dj,¢ for ¢ € In(X). We will not need to use that
X has finitely many boundary components for this part of the proof.

Firstly, using paracompactness of X, it can be shown that there are a countable num-
ber of boundary components. We label these boundary components X;, ¢ € N, so that
0X = UX;. Take elements fi,..., f, € In(X) such that in a neighbourhood of boundary
component X; (away from any > 2-corners), then f; = 2}/ F for a smooth positive func-
tion F'. Here z; is the coordinate corresponding to boundary component X;. As X has
faces, we can prescribe the values of a; ; € N independently, as we do below.

Near a k-corner, where boundaries X;,...,X;, meet, f; = 2 PR for a

i1 i

positive smooth function F’. Now,

1 1 1 oF
din(fj) = aihjgdxil 4+ ...+ aik,jadxik + F ; ﬁltdxzt

near this k-corner.

From the proof of Proposition 4.7.5, we have elements & = p,a] € C*°(X), where
pr € C(X) is a partition of unity for an open cover {U,},—1,. n. We see that d2] =
din(exp o2]) = d27 and dp, = din(expop,) = ’dp, in T®(*T*X). We will show that we
can pick the set {(ai, j,..., i ;) 1 j=1,...,n} so that

{dz],dinfj,dpr :j=1,...,n,r=1,...,n+1,l=1,...,n}
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spans I'°(*T*X). To do this, we first ensure that the set {(a;, j,...,ai ;) :j=1,...,n}is
linearly independent over R for all distinct selections of i1,...,ix € Nforall k =1,...,n.
We assume, without loss of generality, that k = n.

Let a; ; = (i + 1)/~1. Then linear dependence is equivalent to showing that for choice
of distinct i1, ...,4, € N, there are non-zero by, ..., b,—1 such that by + by (iy + 1) + ba(i¢ +
1)2+...4+b,1(ig+1)""1 =0 for each t = 1,...,n. However, this requires n distinct roots
to a non-zero degree n — 1 polynomial, giving a contradiction. Hence the coefficients are
linearly independent.

Then we have fi,..., fn, such that diy(f1),...,din(fn), locally span the b-cotangent
bundle’s ‘corner elements’ at each k-corner.

That is, if we take a point € X, and a coordinate neighbourhood U, of x, such that
U, &2 RY, then an element s € T®°(*T*X) is locally of the form s; xild:vl +..., skﬁdxk +
Spr1degi1+. . .+spda,. Heres; € C*°(U,) and x1, ..., x, € C*(U,) are coordinate charts
on U,. From the proof of Proposition 4.7.5, we can write sx1dxgy1+. . .+spdx, as alinear
combination of the di]’s and dp,’s, with coeflicients Ufw € C®(Uy) and wl, € C*(Uy)
respectively. From the definition of the f]’-s, we can write slx—lldarl + ...,skidxk as a
linear combination of di, f;’s, with coefficients uf € C®(Uy).

Take a cover {U,} of X by coordinate patches, and a partition of unity {¢,} sub-
ordinate to this cover. Then we can glue the coefficients vi,r,w;, uj € C*(X) together
to define vl = Yow vi7T¢x, w' =) whdy and u; = ), uf¢z. Then s is a global linear
combination of the dZ;’s, dp,’s and diy f;’s with coefficients vk, w" and u; respectively.

Hence, any element in I'*°(°T*X) is generated by elements of the form di,(c/) with
¢ €In(X), and so X : *Qe¢ — I'®(*T*X) is surjective when X has faces.

To show that A is injective, we follow a similar method to the proof of Proposition
4.7.5. Firstly, take X = R} and assume we have a; € C*°(X) and b; € In(X) such that
> aidinb; € ’Q¢ but with image under X such that > aidinb; =0 € ' (*T*X). Write

b; = xill .. 332’“ exp(f;) for some smooth function f; : R} — R and non-negative integers
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c; We have di, = d o log in I'™°(*T*X), and using this we can write

0=> aidinbi =) a Z “’d +Zaf”’d
% i j= 1
kod af; b " 0fi,
:Zai Z(xjj Ox] dej + Z Ox;j dz;
4 Jj=1 j=k+1
= Zai Z(Cz + -I’jaij)dinxj + Z aijdin\pexp(xj>
i j=1 J j=k+1 7

Here the % make sense on the interior of R} and have unique smooth extension over the
boundary, and we use that bd:vj = xjdinz;. As the dj,z; and din\I/eXp(acj) are a basis for
[°°(*T* X)) then this implies >, az(c +a; afl) =0foreach j=1,...,kand ) a;3 8f1 =0
foreach j=k+1,...,n

We note that each x; for j = 1,..., k are coordinate projections, so z; : R} — [0,00) €
In(X) and we have b; = xfl...a:?“‘lfexpofi(@i(xl),...,@i(xk),a:kﬂ,...,xn). In *Q¢ we
use (i),(ii),(iii) from Definition 4.7.6 to write

k
Zaidinbi = Z (Zc dinx; + ZQ) (x; <I>afl (®i(x1),..., Pi(xk), Tha1, - - - Tn)dinT;
i i j=1 =

+ Z (D%<(I)i(x1)7“'7¢.i(xk)7$k+17"'7xn)din\1,exp(xj)>

ox ;

j=k+1 %3

k
= Z((I)ZZ al(c Y ng )((I)i(.l‘l), ey (I)i(.l‘k), Lh41y--- ,l‘n))dinxj

Jj=1
n

+ 'zk;;pz al(g::i)(q)i(xl), o Qi) Tt 1 - - T din Ve (25)
]:

k
= (Ro(®i(21), ..., Bi(Tk), Tt - - -, Tn))din;

n
+ Z Do (Pi(x1), - -+ Pi(Tk), Tty - - -, Tn)dinPexp (@) = 0.
j=kt1

So A is injective for X = Ry.

We now show A is injective more generally. Let X be a manifold with corners with
faces with finitely many boundary components {(0X);}i=1,.. k. We will show X can
be embedded in R% for some N > K and use this embedding to show A is injective
for this X. In this ‘embedding’ the boundary and corners of X are embedded into the

boundary and corners of R %, so that each boundary component of X is in a different
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boundary component of RY. (This means X is embedded as a ‘p-submanifold’ of RY in
the language of Melrose [68, Def. 1.7.4].)

To do this, we see that by Melrose [68, Lem. 1.8.1] there are smooth functions 7; :
X — [0,00) for i = 1,..., K, such that if we take a coordinate chart V of X that
intersects boundary component ix ((0X);) and let x; be the coordinate of V' that is zero
along ix((0X);), then we have n;(x) = z;H;(z) for some positive function H;. In other
coordinate charts, 7; is strictly positive.

By Melrose [68, Prop. 1.14.1] we can embed X into a manifold without boundary U,
and the Whitney embedding theorem says we can embed U into RM via w : U — RM
for some large M. Let g : X — U — RM be the composition of these embeddings. Then
define h : X — RY by h(z) = (ni(x),...,nx(x),g(z)) so that N = M + K. As g is an
embedding, then A is an embedding, and we have each different boundary component (0.X);
embedding into a different boundary component of R%, so X embeds as a p-submanifold
of R%. In fact, this is an even stronger form of embedding where locally the target is
of the form X x RM for some large M, so that the b-tangent and b-cotangent spaces
also respect this decomposition. More details on this type of embedding can be found in
Joyce [47, Def. 4.8].

Lee [60, Th. 6.24, Prop. 6.25] tells us we can take a tubular neighbourhood 7" of w(U) in
RY=K and this has a smooth retract 7 : T — w(U). Then our embedding of & : X — RY
breaks into a series of embeddings along the bottom line of the commutative diagram
(4.7.4). Note that the upward arrows in the diagram are the canonical projections, and

that r is really w_lyw(U) or.

(4.7.4)

Now assume we have a;, € C®(X) and b; € In(X) for i« = 1,...,m, such that
> aidinb; € ®Q¢ but with image under A such that > aidinb; = 0 € *(®T*X). For
a coordinate patch V' = R} in X with coordinates zi,...,zy, then b;j(z1,...,2,) =
x(ﬁ . -xz};Fi(xl, ..., xy) for a positive smooth function F; and non-negative integers C,Z
Then for (global) coordinates yi,...,yn of RY, we have b; o g~ (y1,...,yn) € [0,00)
for (y1,...,yn) € g(X) C R}. However, we know that n;(x) = z;H;(z) for posi-

tive smooth function H; and z; the coordinate on [0,00), so x; = n;(z)/H;(x), so if
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g(xlv'” 7:1:]\7) - (y17- 7yN) then T = y’b/Hl(x) and

biog '(y1,...,yn) = avil x '$2kFi(l‘1, cey Ty)
G () %

T Hi(x) | Hylw) Frog ™ o oum)

o Ck
=Y Yy Gi(y17"‘7yN))

for a positive smooth function G; : g(V)) — [0,00). Note that G; is only defined locally on
the image of the coordinate patch V. Also, note that on the k-th boundary component,
foreachi=1,...,mand j=1,..., K the cé- are the same integer in any coordinate patch

V', so we can relabel the G; to write

J i
biog (Wi, yn) = Ui YE Gy, - YN

with the same c§ in each coordinate patch V of X. We can then take a partition of unity

on the coordinate patches of g(X) C ]R% to glue the G; so that we can globally write

J i
biog (Y1, yn) =Y YK Gy, - YN

for a positive smooth function G; : g(X) — (0,00) foreach i =1,...,m. For j =1,..., K
we have

yi=ni0g "oy, ., yn) = n5(0 (Yk41s-- - YN))

then each y; for j =1,..., K is dependent upon the other y; for j = K +1,..., N so we
can consider G; as a function of y; for j = K +1,..., N only.

1. g(X) — R is smooth and we can consider

Similarly we can also see that a; o g~
it as a function of the yg,...,yn only, and we have that >, a; 0 g din(b; 0 g™!) = 0 in
I (*T*g(X)). Relabel a; o g~ as a; and b; 0 g~ as b;.

As G; and a; are functions of the yx 11, ..., yn only, then we can use Seeley’s Extension
Theorem and Borel’s Lemma to extend them to functions on w(U), so that composing
with restriction implies they are functions on [0, 00)% x w(U).

Then ), a;dinb; = Z” aicé-dinyj + >, aidinG; € ' (*T*[0,00)F x w(U)). As in the
proof of Proposition 4.7.5, we have a finite atlas {Uj}i=1,.. , of w(U) and coordinate
functions a:’f, ...,xF for each coordinate patch Uy, k = 1,...,p. We take {Pr}i=1,.p a
partition of unity subordinate to this open cover that have been rescaled so that >, pi =
1. On Uy, the di, o exp(x¥), ..., din oexp(zF) span the cotangent bundle of Uy. We see we

have an analogous relation to (4.7.1)

prdin 0 exp(a}) = prdin 0 exp(ppa}) — praidin © exp p
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so that if ﬁ:? = pkmé? the collection {dj, o exp ﬁcf, din 0 €xXp P} j=1,....nk=1,..p Span the cotan-
gent bundle of w(U). We can write, as in eq. (4.7.2),

Zazdmb = Z aic} dmyj + Zalde € Foo(bT* [0, oo) x w(U))

7]
= Z aiC;‘dinyj + E (fijedin 0 exp i’j — Gij,kdin © €xp pg).
4,5 1,5,k

In the first sum, j sums from 1 to K. In the second sum, j sums from 1 to n. Here,
0log(Gy)|uy,

Axk k and
J

fijk : U =R, gjr: U — R are smooth functions with f; ;» = aily,

1 i N .
Gijk = ai]Uk%yf. These are both defined on all of U and are zero outside of Uy,

and in g(X)N Uk.,]vve have

0log(Gi)|u
0= Z a;db; = Zalc diny; + Za1|Uka(k)|kdin o expazf.
A i,J 1,7,k J

As da; are a basis of I'*°(T*Uy,) then ), ,\UkM =0 in g(X) N Uy, which implies
that f; ;k, gi .k are also zero in g(X)NUj. In partlcular, fijik» Gijk are zero on all of g(X).
Hence, in T (*T*([0,00)% x g(U))) have that

> aidinbi = aicdiny; + Y (fijkdin 0 exp &F — g jrdin 0 exp pi) = 0,
i i.j 07,k

Relabel so that

Z a;dinb; + Z djdin o exp(lA)j) =0€ POO(bT*([O, OO)K X U))

and the a; correspond to the f; ;x,g;jk, and the l;j correspond to the i’f and pg which
are all smooth functions on g(U) only, and composition with restriction implying they are
smooth functions on [0, 00)* x g(U).

Consider now using the retraction r : T' — U to pull back the a;, b;, a;, I;j as we did in

Proposition 4.7.5, so that

Z(alor in(bjor +Z ;o r)dip 0 exp(bj o) = 0 € T (*T*([0, 00)K x T)).

Note that here that by b; o r we really mean composing with id xr : [0,00)% x T —
[0,00)% x g(U). The rest of the proof follows using the method in Proposition 4.7.5 and
the relations we used to show A is injective for X = R}.

Hence T>°(*T*X) is the cotangent module of C$°(X) when X has faces and finitely

many boundary components.
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Note that if X does not have faces, then there are not enough global elements to
generate I'°(*T*X) (as there will be restrictions on the powers a; ;), and if it does not

have finitely many boundary components we cannot use the embeddings in (4.7.4). O

Remark 4.7.10. Note that a compact manifold with faces will have finitely many bound-
ary components and satisfy Proposition 4.7.9.

Let X be a manifold with g-corners. Say that for each connected component F' of 0.X,
the map ix|r : F — X is injective. Here, ix : (z,) + x, where z € X and f is a local
boundary component of X at x. If X is also a manifold with corners, then it would be a
manifold with faces and Ex,(X) = Ex(X),, for all x € X. However, for general manifolds
with g-corners satisfying this condition, it is not necessarily true that Ex,(X) = Ex(X),,,
as we show in Example 5.5.4.

This means that there are conditions on the powers a; ; for global sections and hence
there are not enough global sections of the form din(f) for f € In(X) to show that
din : In(X) — I'°(®T*X) is the b-cotangent module. This suggests defining a manifold
with g-corners with faces to satisfy Ex,(X) = Ex(X),, for all z € X, a stronger condition
than injectivity of ix|p : F — X.

However, for Xp, the local model for a manifold with g-corners, we will be able to show
both surjectivity and injectivity in an analogous proof to Proposition 4.7.9, so that the
b-cotangent modules of charts of a manifold with g-corners are isomorphic to the sections

of °T* X over g-charts.

Example 4.7.11. Suppose € = (€, Cq) is a C°-ring with corners such that €¢x =
¢S5 I {0¢,, }, where II is the disjoint union. Then € is interior, with €3, = €, and
lies in the essential image of I, : C*°Rings — C*°Rings;, in Definition 4.2.10, so €
holds only information from a C*°-ring. An example of this is when € = C*°(X) for X a
connected manifold without boundary.

Then Weyp, : € — €4y is a bijection, and setting di, = doWey, gives a 1-1 correspondence
between C*°-derivations d : € — M and b-derivations dj, : €i, — M, for €-modules M. It
follows that I¢ : Q¢ — *Qe is an isomorphism, so the cotangent and b-cotangent modules

of € coincide.
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Chapter 5

C'*®-schemes with corners

We define and study C°°-schemes with corners, generalising the results of §2. We begin
with describing local C'*°-ringed spaces with corners, and a corners version of a spectrum

functor.

5.1 (C*°-ringed spaces with corners

Definition 5.1.1. A C*-ringed space with corners X = (X,Ox) is a topological space
X with a sheaf O x of C'°°-rings with corners on X. That is, for each open set U C X, then
Ox(U) =(0x(U),0%(U)) is a C*°-ring with corners and Ox satisfies the sheaf axioms
in §2.3. With a slight abuse of notation, we will write elements s € Ox(U),s" € OF(U)
as s = (s,5') € Ox(U).

A morphism f = (f, f) : (X,0x) — (Y, Oy) of C*°-ringed spaces with corners is a
continuous map f : X — Y and a morphism f* = (f%, fgx) : f7H(Oy) — Ox of sheaves of
C*>-rings with corners on X, for f~1(Oy) = (f~1(Oy), f~HO)) as in Definition 2.3.5.
Note that f* is adjoint to a morphism o= (fs, ffx) 10y = f.(Ox) onY asin (2.4.2).

A local C*°-ringed space with corners X = (X,Ox) is a C*°-ringed space for which
the stalks Ox, = (OX’m,OgéI) of Ox at z are local C*-rings with corners for all
x € X. As in Remark 4.6.2, we define morphisms of local C"*°-ringed spaces with cor-
ners (X, Ox), (Y, Oy) to be morphisms of C'*°-ringed spaces with corners, without any
additional locality condition.

Write C*°RS€ for the category of C°°-ringed spaces with corners, and LC*°RS€ for
the full subcategory of local C*°-ringed spaces with corners.

For brevity, we will use the notation that bold upper case letters X,Y , Z, ... represent
C*°-ringed spaces with corners (X, Ox), (Y, Oy), (Z,0%), ..., and bold lower case letters

116



f.g, ... represent morphisms of C*®-ringed spaces with corners (f, f*), (g,g%),.... When
we write ‘z € X’ we mean that X = (X,0x) and z € X. When we write ‘U is open
in X’ we mean that U = (U,Op) and X = (X,0x) with U C X an open set and
Oy = Ox|u.

Let X = (X, Ox, 0%) € LC®°RS€, and let U be open in X. Take elements s € Ox (U)
and s’ € OF(U). Then s and s’ induce functions s : U — R, s’ : U — [0, 00), that at each

x € U are the compositions

PX,x X

Ox(U) 2555 Oy, ™= R, and OF(U) 255 0%, 75 [0, 00).

Here, px ., ,og?’x are the restriction morphism to the stalks, and m,, 7S* are the unique
morphisms that exist as Ox , is local for each z € X, as in Definition 4.6.1 and Lemma
4.6.6. We denote s(z) and s'(x) the values of s : U — R and s’ : U — [0, 00) respectively
at the point x € U. We denote s, € Ox , and s/, € (’)%I the values of s and s’ under the

restriction morphisms to the stalks px , and p¥ . respectively.
Lemma 5.1.2. The functions s : U = R and ' : U — [0,00) are continuous.

Proof. Let X, U, s and s’ be as in the statement. Assume for a contradiction that
s: U — R is not continuous. So there is an open set V C R such that s~ (V) C U is not
open. Hence there is a u € s71(V) such that for every open set U’ C U with u € U’, then
there is a v/ € U’ with s(u') ¢ V. Let p : R — R be a smooth bump function with support
on V, and let s; = ®,(s) so that s1(u) = p(s(u)) # 0.

As Ox,, is local and s1(u) = p(s(u)) # 0, then s; is invertible in Ox . So there is an
open set W C X with u € W and ¢t € Ox (W) such that ts1|y =1 € Ox(W’) for an open
set W/ C W NU with u € W’. However, as s is not continuous, there is a v/ € W’ such
that s(u’) ¢ V, so s1(u') = p(s(u’)) = 0. Then 1 = t(u)s1(u) = t(u')s1(v/) = (/)0 =0 €
Ox (W"). However, as X has local stalks, then 0 # 1 € Ox(W'), which gives the required
contradiction.

For &', note that ' : U — [0,00) is continuous if and only if ®;(s’) : U — R is
continuous, as s'71([0,a)) = ®;(s') "1 ((—o0,a)) for any element a > 0 € R. Then ®;(s’) :

U — R is continuous by the discussion above, so s’ : U — [0, 00) is continuous. O
Definition 5.1.3. Let X = (X, Ox) be a C*-ringed space with corners. We call X an

interior C°-ringed space with corners if one of the following equivalent conditions hold:

(a) For all open U C X and each s € OF(U), then Uy = {z € U : s}, # 0 € OF_},
which is always closed in U, is open in U, and the stalks O x , are interior C'*°-rings

with corners.
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(b) For all open U C X and each s’ € OF(U), then U\ Uy =Uy ={z €U :5,=0¢
Og?,x}, which is always open in U, is closed in U, and the stalks Ox , are interior

C*°-rings with corners.

(c) O% is the sheafification of a presheaf of the form O 1T {0}, where O} is a sheaf of
monoids, such that (Ox(U),O'2(U) I {0}) is an interior C*°-ring with corners for
each open U C X.

In each case, we can define a sheaf of monoids O, such that OB (U) = {s' € OF(U)|s, #
0€OF, forall z € U}.

We call X an interior local C*°-ringed space with corners if X is a local C*°-ringed
space with corners that is also an interior C°°-ringed space with corners.

If X,Y are interior (local) C*°-ringed spaces with corners, a morphism f : X —
Y is called interior if the induced maps on stalks fi 0 Oy pe) = Ox, are interior
morphisms of interior C'**°-rings with corners for all x € X. This gives a morphism of
sheaves f~1(O}) — OR. Write C**RS{, C C°RS® (and LC®RS{, ¢ LC®RS®) for
the non-full subcategories of interior (local) C*°-ringed spaces with corners and interior

morphisms.
Lemma 5.1.4. (a)-(c) in Definition 5.1.8 are equivalent.

Proof. (a) and (b) are equivalent by definition. The set Uy is open, as the requirement
that an element is zero in the stalk is a local requirement. That is, s, = 0 if and only if
sy =0e€ OF(V) for some V C U.

Suppose (a) and (b) hold, then we will show they imply (c). Define O2(U) = {s’ €
OF(U)ls, #0 € OF, forallz € U}. If s}, 85 € OB (U) then 810052, 7 0, and as the
stalks are interior, then s} , - s, #0 € OF . So s - s) € OR(U), and O% is a monoid.
Then (Ox(U),OB(U) 11 {0}) is a pre C*°-ring with corners, where the C°*°-operations
come from restriction from Ox(U). As the invertible elements of the monoid and the
C*-rings of (Ox (U), O8(U)11{0}) are the same as those from Ox(U), this is a C*°-ring
with corners. Let (’)Agé‘ be the sheafification of O I1 {0}, which is a subsheaf of O%. Note
that OB(U) 11 {0} already satisfies uniqueness, so the sheafification process means (9%?
now satisfies glueing. Then (Ox, (’)i‘;?) is a sheaf of C°°-rings with corners.

There is a morphism (id, id?, i&) : (X, Ox, O%) — (X, Ox,0%). This is the identity
on the topological spaces and the sheaves of C'*°-rings. On the sheaves of monoids, we
have an inclusion Lgx(U ): (’)%?(U) — OF(U). On stalks, any non-zero element of OF is
an equivalence class represented by a section s’ € OF(U). As (a) is true, we can choose

U so that s’ # 0 for all z € U. Then s’ € O%(U), so there is an element s” € OF(U)
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that maps to s’ under LEX(U). Then s — s/, and, as 0 — 0, then Ay s surjective on

stalks. As Oé? is a subsheaf of O, then LEX is injective on stalks. Then (id, id*, Lﬁx) is an
isomorphism.

Suppose (c) holds, then we will show it implies (a), firstly if s € O (U), where O
is the sheafification of O IT {0}, then if s/, # 0 € OF ;» then there is an open set V' and
an element s” € O'¥(V) that represents s’ on z € V C U, and therefore s’, # 0 € OF_,
for all 2’ € V, and the Uy defined in (a) is open.

Now if 57,85 € OF(U), and s ,, 85, # 0 € OF,, then there is an open set V' and
elements s, sy € OB(V) that represent these s},s) upon restriction to O(V). Then

$1u S5, € an7x§§O, so the stalk Ox , = (Ox 4, l)lgx IT{0}) is interior. O

1,x

Remark 5.1.5. Note that, for an element X = (X,0x,0%) € LC*RSY,, then Ox
is not a sheaf of interior C'*°-rings with corners even if X is connected. For example,
Ox(0) = ({0},{0}) where ({0},{0}) is the final object in C*°-rings with corners, and it
is not equal to ({0},{0,1}), the final object in interior C'*°-rings with corners. This is
important for considering colimits and limits in both LC*°RS® and LC*°RS{, , and for
defining the corner functors of §5.8.

In fact something more subtle occurs here: (Ox, O 11 {0}) is a sheaf of interior C°-
rings with corners in the sense of sheaves valued in arbitrary categories, not those valued
in the category of sets (as discussed in §2.3). The issue is that products (limits) of interior
C*°-rings with corners are not products of their underlying sets (as in Theorem 4.3.7(b)
and Example 4.2.14). This means the glueing condition (stated in Definition 2.3.1 for
abelian groups), which is formed by considering equalisers of products in Sets (or Abelian
groups), is different from considering such equalisers of products in interior C*°-rings with
corners. However, (Ox, OBI1{0}) is a presheaf of the underlying sets, so we can sheafify to
form O x, which is a sheaf of sets as well as a sheaf of C"*°-rings with corners. Conditions
(a)-(c) characterise all sheaves of C*°-rings with corners that come from sheafifications of
sheaves of interior C*°-rings with corners.

Notably, conditions (a)-(c) are stronger than just requiring that the stalks are interior,
as we show in the following example. This is important as we would like sections of our
sheaves to identify the boundary and corners of the underlying spaces, so that the corner
functor studied in §5.8 is well behaved.

In particular, the boundary and corners of elements of LC*RS®, LC*°RS;S , should
result from points in the space where sections change from invertible to a non-invertible
in the stalks at these points. However, in the following example, adding a ‘bump function’

that changes from zero to non-zero to invertible in the interior of the topological space
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suggests the topological space should have boundary in the interior. Imposing (a)-(c)
removes cases such as this for interior C'*°-ringed spaces with corners. Note also that
when we define interior C°°-schemes with corners as spectra of interior C°°-rings with

corners, then (a)-(c) are already satisfied.

Example 5.1.6. Let X = R, and take K any non-empty closed subset of R. Define
a sheaf of C*°-rings with corners on X by Ox(U) = C*°(U) and OF(U) = In(U) II
{constant functions UNK — {0,0'}} where 0,0 act as zeros with 0-0’ = 0. Any constant
function f: U N K — {0,0} is the zero function under ®;.

If UNK is empty, then OF = In(U)I1{0} = Ex(U). At points € K, we have Oy, =
(CP(X),Ex,(X) I {0'}), and at points z € X \ K we have Ox, = (C(X),Ex,(X)).
These stalks are local C*°-rings with corners where the localisation morphism is evaluation
at z and 0 evaluates to 0 € R. There are no zero divisors so each stalk is interior. This
gives an interior local C'"*°-ringed space with corners.

Let s’ € OF(X) such that s =0 for z € X \ K and s’ = 0/ for z € K. Then the set
{z € X|s;, #0 € OF,} = K is not open in X, so this is not an interior C*-ringed space
with corners.

In particular, if we consider the corner functor C'°¢ for LC®RS® as defined in §5.7,
and apply it to (X, Ox), it will have underlying set R II K, so this has extra boundary
over the set K.

5.1.1 Limits and colimits

Proposition 5.1.7. The categories C*RS®, LCRS®, C*°RS;, and LCRS{, have

all small colimats.

Proof. This follows from the construction of small colimits of ordinary ringed and local
ringed spaces in Demazure and Gabriel, [17, I §1 1.6]. As in Remark 2.4.16, the hard part
of the proof for LC*°RS® and LC*°RS;, involves showing that fibre products of local
C*°-rings with corners are local, which follows from Proposition 4.6.3.

One also needs to check that small colimits in C*°RS{, and LC*°RS{, constructed
in the same way are interior. We explain the details for the pushout W = (W, Ow, Of)
of f=(ff% f&) : X = (X,0x,0%) = (Y,0r,0%) = Y and g = (g,¢%, &) : X —
(Z,07,0%) = Z as elements of LC*°RSY, . We will construct morphisms p = (p,pﬁ,pgx) :
Y - W and q = (q,qﬁ,qu) : Z — W for the morphisms from the definition of the

pushout, as in the diagram below.
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Y z (5.1.1)

Here the topological space W =2 Y Iy Z is the pushout of the topological spaces
X,Y, Z, that is, it is the disjoint union of Y and Z quotiented by the equivalence relation
generated by Y > y ~ z € Z if there is x € X such that f(x) = y and g(z) = z. Then
p:Y — W and q: Z — W are the morphisms from the pushout of topological spaces.

If we take an open set U C W 2 Y Ilx Z, then U = Uy Uy-1(y,)ng-1(1,) U2 for some
p~ Y (U) = Uy C Y,qg'(U) = Uy C Z. For the sheaf of C*-rings with corners Oy, we
have Ow (U) = Oy (U1) Xo (-1 (U1 )ng-1 (Us) Oz(Uz)), the fibre product of C*°-rings with
corners. Then (py,pi™)(U) : Ow(U) — Oy (U1) and (g4,¢5)(U) : Ow(U) — Oz(U2)
are the canonical maps coming from the fibre product. Note that any s’ € Of5(U) is
represented by (s, s5) € OF(Ur) x OF(Us).

We will show W is interior and local. Take an open set U C W and s’ € Of5(U), and
say at w € U we have s, # 0 € Ow,,. Then s is represented by (s],s5) € Oy (Ur) x
Oz(Us), and we must have (s}), € Oy, non-zero and (s5), € Oz, non-zero, for any
y € p~H(w) and z € ¢ *(w). As Y, Z are interior, then s} and s, must be non-zero
locally, so ' must be non-zero locally, and the set {w € W|sl, # 0 € Ole/l);,w} is open. We
now need to show that the stalks are interior and local.

Say p~!(w) = y is non-empty but ¢~ !'(w) is empty, and such that y is not on the
boundary f(X)NU; C Y. Then the stalk Oy, is isomorphic to Oy, which is both local
and interior. Similarly, if ¢~'(w) = z is non-empty but p~!(w) is empty, and z is not on
the boundary of g(X) N Uy C Z, the stalk is isomorphic to O ., which is both local and
interior.

Say p~!(w) = y and ¢ !(w) = z are both non-empty. Pick any = € f~!(y) U g !(2).
As X is local, there is a unique morphism Ox ; — R, and the morphisms of sheaves give
the composition Ow,, — Ox » — R factoring through either Oy, or Oz .. There may be
more than one z in f~!(w)Ug~!(w), therefore more than one morphism Oy, — Ox o —
R, however as Oy, and Oz, are local, any morphism to R with the local property is
necessarily unique, so these morphisms are identical. An element s/, € O%’iw is represented
by an element s € Of(U), which is represented by (s}, s5) € Oy (U1) x Oz(Uz) such that
fi(s1) = g¥(s2) € Ox(f~'(Uy) N g~ (Uz)). Then s, is invertible if and only if s’ is

invertible locally, which is if and only if s} and s/, are invertible locally, which is if and
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only if the image of s/, under this unique morphism is non-zero, which makes Oyy,,, into
a local C*°-ring with corners.

Additionally, if s’ € O, is a non-zero zero divisor, then it must be represented by
zero-divisor (8], s5) € OY, x Oz, and requiring that it factor through to Ox ; means that
both s/, s, are non-zero. However, as Oy, and Oz . are interior, the only zero divisors in
their product have one zero entry (as in Example 4.2.14), so s’ cannot be a zero divisor.
Hence Oy, is interior.

Here we have assumed there is only one element in both p~!(w) and ¢~ !(w), how-
ever it is possible there is more than one element. In this case, we have several maps
Oww — Oyyj — Ox g, = Rand Ow,y — Oz, — Ox, — R for elements x;, i, 2.
Each pair (y;, 2) are related by a finite number of relations such as f(z1) = i, 9(z1) =
g(x2), f(x2) = f(x3),9(x3) = g(x4),...,9(zn) = 2zj, and we get a diagram of maps as

below.

/ OW’w \
Oy, Oz,g(a1) Oy, f(a2) Oz,g(a2) OY.f(a3)

I N

\ |

However, the top rectangles commute by definition of the pushout, and the lower rectangles
commute by definition of local morphisms, so all these compositions are the same, and we
can again show these maps make Oy, into a local interior C*°-ring with corners.

Now consider p~!(w) = y but on the boundary of f(X)NU; C Y. There is still a
morphism from Ow,, — Oy,, — R, but we do not necessarily know that O, = Oy,,.
However, this morphism is well defined, and s,, € Ow,, is sent to s1,, € Oy, which is
non-zero under the map to R if and only if s1,, is invertible and hence if and only if s,
is invertible, so Oy, is local. A similar proof shows Oyy,, is local, and a similar proof
as above shows Oyy,,, is also interior. Hence W is an interior local C"°°-ringed space with
corners.

Note that W satisfies the universal property of the pushout by using the universal
properties of the pushout of topological spaces and of the pullbacks of (interior/local)
C*°-rings with corners.

As C*°RS°, LC>*RS®, C*RS{, and LC*°RS¢, all have an initial object, (0, {0}, {0})

the empty set with the zero C'*°-ring with corners sheaf, and we can construct finite col-
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imits as iterated pushouts using the initial objects. This shows that all finite colimits in
these categories exist. This result can be extended to show all small colimits exist by
showing small products exist. In this case, again the topological space is the coproduct of
the topological spaces, the sheaves are the product of the sheaves, local and interior follow
as above, and the universal properties follow from the universal properties of coproducts

and products. ]

Corollary 5.1.8. The inclusion and forgetful functors in the following diagram respect

small colimits.

LC*>RS;, C>*RSS,
| !
LC"IRSC C°°lRSc
LC*RS C*°RS Top

Proposition 5.1.9. The forgetful functor LC®°RSS,, — LC*RS® has a left adjoint,

therefore it preserves limits.

This proof uses the right adjoint to inc : C*°Rings,, — C°°Rings® defined in Theo-
rem 4.3.7(b). We also show this forgetful functor preserves small limits directly in Theorem
5.1.10.

In contrast to Example 4.2.14, which shows that inc : C*°Rings{,, — C°°Rings® has
no left adjoint, in §5.8 we show that LC*RS{ — LC°RS® also has a right adjoint,
and hence preserves colimits, extending Proposition 5.1.7. While interior local C'*°-ringed
spaces with corners have interior stalks, they do not have sheaves of interior C°°-rings
with corners. This means this result does not contradict Example 4.2.14, as, from Propo-
sition 5.1.7, colimits of interior local C'*°-ringed spaces with corners have stalks that are
constructed using only certain types of limits of interior C'**°-rings with corners, which are

also interior.

Proof. A left adjoint can be constructed as follows. On objects, take (X,Ox,0F) €
LC>®RS® to (X, Ox, O%) where O is the sheafification of the presheaf O IT{0c }, and
II is the disjoint union. Here O¢x becomes the new zero object. On connected components
UcC X, O%(U) 2 OX(U) I {0cx }. This is an interior C*-ring with corners, as it is the
image of Ox (U) under the right adjoint to the inclusion inc : C*°Rings{, — C*°Rings®
defined in Theorem 4.3.7(b).

A morphism (¢, ¢F, qng) : X — Y in LC*®RS® is mapped to the morphism (¢, ¢f, qng),
where ¢Ex sends s € ¢~ HO)(U) to P (U) () € OS¥(U), and Oex to Ocx. This defines
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qb:ﬂex on connected open sets U of X. The glueing property of sheaves then defines this on
all of X.

To show this is an adjoint, we construct the unit and counit at elements X € LC*°RS®
and Y € LC*RS;S respectively. They are both the identity on the topological space and
the sheaves of C'*°-rings. On the monoid scheaves, the unit sends (;)g? to OF as sheaves
on X. On a connected component U C X, it does this by sending s’ € OF(U) to s’ and
Oex to 0, and the glueing property of sheaves defines this on all of X. The counit is defined
by the inclusion of OF* into @f}‘ as sheaves on Y. Checking that the unit and counit are
natural transformations and that they form an adjunction follows immediately from the

definitions. O

Theorem 5.1.10. The categories C°RS®, LC*®RS®, C*°RS;, and LC*RS{, have
all small limits. Small limits commute with the inclusion and forgetful functors in the

following diagram, where Top is the category of topological spaces and continuous maps.

LCRSE, C®RS¢,
i i

LCOIRSc Cwlec

LC°°RS® C>®RS® Top

The proof is essentially the same as showing ordinary ringed spaces have all small limits,
however as this is not well known in the literature (see the discussion in the introduction
to Gillam [27]), we include the proof here. Note that limits in ordinary locally ringed
spaces are different from their limits as ordinary ringed spaces; this is due the fact that
pushouts of local rings are not always local. However pushouts of local C*°-rings (with
corners) are local, and so small limits of local C*°-ringed spaces (with corners) coincide

with small limits of C*°-ringed spaces (with corners).

Proof. We first show that all fibre products of (local) C*°-ringed spaces with corners exist;
as there is also a final object, (x, (R, [0,00)) the point with local C'*°-ring with corners
(R, [0,00)), then all finite limits exist. When then explain how to show all small products
exist, which shows all small limits exist.

Let X,Y,Z be (local) C*-ringed spaces with corners, and let there be morphisms
(f, fﬁ) = f:X = Z, (9,9") = g:Y — Z. We will construct the fibre product
X XpzgqY =W = (W,0) in LC®RS®. We define W = X xyz,Y to be the
fibre product of the topological spaces of X,Y,Z. At each point (z,y) € W, where
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f(z) = g(y) = %, we define the C*°-ring with corners 23, , = Ox, Il ¢ Oyy

5027,
to be the pushout of the stalks, with projections gy, (z,y) : Ox.2 — Q,'ULyfandZ’qz;y(w,y) :
Oy,y — 23,,. Note that 203, , is a local C*°-ring with corners if each stalk is also local,
by Proposition 4.6.3.

Let U be an open set in W. We define Ow (U) = {s: U = [], y)ev Wa,y} such that
for all s € Ow (U), for all (z,7) € U, there are open sets V; C X, Vo C Y, and V3 C Z,
with f(V1) C V3,9(V2) C V3, and (2,7) € V1 xy; Vo C U such that s, ) = 7,y (w) for
some w in the pushout Ox(V;) Ho, (vs) Oy (V3) for all (z,y) € Vi xy, Vo. Here m,, is
the unique map m,, : Ox (V1) o, 3 Oy (V2) = Ox . o, , Oy,y, which exists by the
universal property of the pushout in the domain.

We give Oy (U) the structure of a C'*°-ring with corners using the C*°-ring with
corners structure from the stalks 283, ,. For example, for a smooth function f : R" — R,
then ®(s) () = T2y (Pr(w)). Then O is a sheaf of (local) C*°-rings with corners on
W, with stalks 283, ,, at points (x,y) € W.

We define maps (¢1,q1%) = g1 : W — X and (q2,¢2%) = g2 : W — Y, where
q: W —= X, (z,y) »xand ¢ : W = Y, (z,y) — y are the usual projection maps defined
in the fibre product of topological spaces. On stalks, we have that ql,wti 1 Oxa = Ow,(ay)
is the map gy (z,y), and similarly qg,yti = q2,(z,y)- We need to show that these maps glue
to form maps q1* and gof. We describe this for q14(U) : Ox(U) — Ow(q; 1 (U)), where
q1 4 corresponds to q:f by (2.4.2).

Take s € Ox(U), then, by definition of pushout, there is a map q1,u : Ox(U) —
Ox(U)lp,z)Oy(Y). This pushout is not necessarily isomorphic to Ow (g, 1 (U)), how-
ever we can define q1 4(8) () = T2y 0 q1,u(s) for all (z,y) € q;'(U) =U xzY, and this
is a well defined element of Oy (¢, 1(U )). Using the universal properties of pushouts, this
map at the level of stalks is the stalk map gy, (4,y), and that a1’ : Ox — f.(Ow) is a well
behaved map of sheaves. A similar construction gives ga.

Finally, we must show the universal property holds for W. This follows from the
universal property of the fibre product X xz Y. Here, we again glue maps that result

from the universal properties from the pushouts of the stalks O x ; II ¢ Oy, using

f
the universal properties from O x (V1) e, (v;) Oy (V2) for open sets ‘j/c?(;Z;(’?yVQ CY, and
Va3 C Z, with f(V1) C V3,9(V2) C V3.
Hence (W,0w) = X xz Y is the fibre product and all finite limits exist in the
categories C°RS¢ and LC*°RS®. These fibre products commute with the forgetful
functor LC*°RS® — C°°RS€, as the pushout of local C'*°-rings is local. The construction

of W shows that the limits in both C*°RS® and LC*RS¢ commute with the forgetful
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functor to topological spaces.

To show the same construction applies for fibre products in the categories of C*°RS¢

and LC*°RS;,

¢,» we need to check that the resulting sheaf is interior. From Proposition

4.6.3, we know the stalks are interior. Take an open set U C W and s’ € Oy (U). Say that
sgul #0¢€ %}Zwl for some wy € U, we need to show that s’ is non-zero in every stalk in a
neighbourhood of w;. Now, in a neighbourhood V' C U of w1, we have s;, = 5% (c') for
all w € V, and some ¢’ in the monoid part of the pushout Ox (V1) e, (1;) Oy (V2), where
Vi xy; Va2 = V. Then s, # 0 implies 75% (¢') # 0 in the monoid part of Ox , o, Oy,y,
and that ¢’ # 0.

This means

d =Uu(qi(ar),. .., q1(am), q2(br), .. ., g2(bn),

™ (a1),- -, 47 (ag), 45" (0), - -, 457 (b))

for some smooth h : RZZ:?” — [0,00) where a; € Ox(V1), by € Oy (Va), a;, € OF(WV1)

and b; S O?;((‘/é) Here, qi : Ox(vl) — Ox<V1) HOz(V3) OY(VQ) and qe : 0y(V2) —

Ox (V1) o, 15) Oy (V2) are the inclusion morphisms coming from the fibre product.
Then

_ ot tm+
h(l’l, e Tmdny Y1y - - - ,Z/kH) - yll o ynﬁﬂf?\pF(fph <o s Tmtn, Y1y - - - 7yk+l)

with F' : RZ‘JZ” — [0, 00) smooth and positive, and t; non-negative integers. As Ty
respects the C°*°-operations, then applying it to ¢, and given that the stalks are interior, we
see that 75" (¢') # 0 if and only for all non-zero ¢; then 75% 0qi*(a;) # 0 and 7%, 0g5* (b)) #
0. This implies these a; and b} are non-zero in the stalks Ox , and Oy,,. As X and Y are
interior, then these a; and b, must be non-zero in open neighbourhoods containing z and
y respectively.

As there are finitely many o} and b/, intersecting these open neighbourhoods, we must
have an open neighbourhood V, C V; of x and an open neighbourhood V,, C V3 of y
where these a and b} are all non-zero in their respective neighbourhoods. Then ¢ must
be non-zero in every stalk in the open neighbourhood V; xy, V;, € W of wy, and so s’
must be non-zero in this open neighbourhood, as required. Therefore the fibre product of
interior (local) C'*°-ringed spaces with corners is interior, and all fibre products exist in
C*>°RS;, and LC*RS].

We can extend this proof to small products. If {X;}ier is a collection of (local)
C*°-ringed spaces with corners, then we can construct the product X. Its underlying

topological space is the product of the X;’s. Its stalks are the coproduct of the stalks, and

126



its sheaf of C°°-rings with corners is constructed in the same way as above. Proposition
4.6.3 again says that if the X; are local, then X is local, and that if the X; are interior, the
stalks of X are interior. To show that X is interior follows as above, by understanding
that each element ¢ in the monoid part of a coproduct is generated by finitely many
elements from the monoids in the coproduct. The universal properties follow directly
from the universal properties of C'°°-ring with corners coproducts and topological space

products. O

Definition 5.1.11. Let X = (X, Ox) be a local C*-ringed space with corners. We have
that Ox = (Ox,0%), where Ox is a sheaf of C*°-rings on X. We define a forgetful
functor 7 : LC*RS® — LC*RS by sending objects X = (X,0x) — (X,0x) and
morphisms f = (f, f) = (f, (fﬁ,fgx)) — (f, f*). We define a forgetful functor 7y, :
LC*RS§, — LC*RS by 7in = 7|Lc~Rss, -

Proposition 5.1.12. The forgetful functor T : LC®RS® — LC®°RS has a right adjoint,

hence it preserves colimits. It also has a left adjoint, so it preserves limits.

Proof. We begin by constructing the right adjoint on objects. Take (X,Ox) € LC>RS
and construct @3? by sheafifying the following presheaf of monoids 77@‘5? where, for an open
set U C X, then PO (U) = ®eyp(Ox (U))I1{0cy }, for IT the disjoint union. The restriction
map on the presheaf is pyy (s') = Pexp(puyv(s)) where s’ = Peypp(s), and zero otherwise.
Then (Ox, @g?) is a sheaf of C°°-rings with corners, as on connected components, it is
defined using the Feyp from Theorem 4.3.9. The right adjoint then sends (X,0Ox) €
LC>RS to (X, Ox, O%).

A morphism (f, f%) : (X, 0x) — (Y, Oy)) naturally extends to a morphism (f, f*, fgx) :
(X, (’)X,@%‘) - (Y, (’)y,@?}‘). Here, on a connected component U C X, then s’ €
FHOF)W) is cither in =L (Pep(Or))(U) 2 Bexp(F7H(Oy))(U) or s in F~(0)(U) =
Ocx- If it is in @eypy (f~H(Ox))(U), then s' = Beyp(s) = Bexp(fH(s)) € OF(U) and other-
wise it maps to Oex € OF(U).

This construction gives the right adjoint to the forgetful functor. The counit is the
identity, and the unit at the object (X, Ox, OF) € LC>®RS€ is the identity on the sheaves
of C"*°-rings and on the topological spaces. On the sheaves of monoids, for a connected
component U C X, then s’ € @?}‘(U) is either in ®ex,(Ox (U)) or it is equal to Ocx. In
the former case, the unit maps s’ to Wexp(s') € OF(U), and in the latter case it maps to
0e O%(U).

As the forgetful functor is then a left adjoint, it preserves colimits.

Recalling in the proof of the existence of fibre products from Theorem 5.1.10, fibre
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products in LC°°RS€ are constructed by glueing the pushout of the stalks using the
pushouts of C'*°-rings with corners. By Theorem 4.3.9, the C°°-ring of these pushouts is
the pushout of the underlying C'*°-rings. As the construction for fibre products in LC*°RS
is the same as in LC®°RS€ just using C'*°-rings, and all finite limits in a category with a
terminal object are composed of a finite number of iterated fibre products, then 7 preserves
finite limits. However, more generally, we can construct a left adjoint to 7, showing that
7 preserves all limits (not just finite ones.)

The left adjoint is constructed as follows. On objects, (X, Ox) € LC*RS, construct
OF' 5 as the sheaf OF _(U) = F>o(Ox (U)), where F is defined in Theorem 4.3.9. The
definition of F>o ensures this is already a sheaf, and that (X, Ox, 0% ) is in LC*RS®.

On morphisms, (f, f*) : (X, Ox) — (Y, Oy) naturally extends to a morphism (f, f¥, fgx) :
(X, 0x,0% o) = (Y, Oy, 0F). Here, for open U C X, then s’ € f_l((’)?}f}O)(U) maps
to fHU)(s) € O%50(U), which is well defined as OF ., is a subsheaf of Ox, and ft
respects the C'°°-operations.

This functor is a left adjoint to the forgetful functor. The unit is the identity natural
transformation. The counit is the identity on the topological space and the sheaves of C'*°-
rings. On the sheaves of monoids, the counit is the C'*°-operation ®;. This gives a well

defined natural transformation, and makes this functor the left adjoint, as required. [

Remark 5.1.13. The forgetful functor 7 : LC*°RS® — LC®RS in Proposition 5.1.12
restricted to LC>°RSS, has the same right adjoint, and therefore the restriction of this
functor, 7y, also preserves colimits in LC*°RSY, . Composing the left adjoint in Proposi-
tion 5.1.12 and the left adjoint in Proposition 5.1.9 gives a left adjoint to LC*°RSf{, —
LC°°RS, showing that 7,, also preserves limits in LC*°RSY, .

We have that small limits and small colimits commute around the following diagram

of forgetful functors and inclusion functors.

LC°°RSE, C®RSE,
/| |

LCTRSC cwlec

LC>®RS C>™RS Top
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5.2 Spectrum functor

Note that as in §5.1 we are using the notation that for a sheaf Ox of local C*°-rings and
an element s € Ox(U) for open U C X, then s, is value of s in the stalk Oy, and s(x)
value of s, under the stalk map Ox, — R.

We now define a spectrum functor for C*°-rings with corners, in a similar way to
Definition 2.4.4.

Definition 5.2.1. Let € = (€, €¢y) be a C*°-ring with corners, and use the notation from
Definition 4.6.7. As in Definition 2.4.3, write X¢ for the set of R-points of € with topology
Te. For each open U C X¢, define Ox, (U) = (Ox, (U), 0%, (U)). Here Ox,(U) is the
set of functions s : U — [[,cy €2 (Where we write s, for its value at the point 2 € U)
such that s, € €, for all € U, and such that U may be covered by open W C U for
which there exist ¢ € € with s; = 7,(c) in €, for all x € W. Similarly, OF, (U) is the set
of 8 : U = [ ey Caex With s, € € oy for all z € U, and such that U may be covered by
open W C U for which there exist ¢/ € Cex with s/, = Ty ex(¢/) in €4 ex for all x € W.

Define operations ®; and ¥, on Ox, (U) pointwise in x € U using the operations ®;
and ¥, on €,. This makes Oy, (U) into a C*°-ring with corners. If V. C U C X¢ are open,
the restriction maps pyy = (puv, puviex) : Ox, (U) = Ox, (V) mapping pyv : s — s|y
and pyvex : ' — §'|y are morphisms of C*°-rings with corners.

The local nature of the definition implies that Ox, = (O X@,OS’?G) is a sheaf of C"°°-
rings with corners on X¢. In fact, Ox, is the sheaf of C*°-rings in Definition 2.4.4. By
Proposition 5.2.3 below, the stalk O x, , at € X¢ is naturally isomorphic to €, which is
a local C'*°-ring with corners by Theorem 4.6.8(a). Hence (X¢, Ox,) is a local C*°-ringed
space with corners, which we call the spectrum of €, and write as Spec® €.

Now let ¢ = (¢, dex) : € — D be a morphism of C°-rings with corners. As in
Definition 2.4.4, define the continuous function fy : X9 — X¢ by fs(x) = x 0 ¢. For
U € Xe open define (£,);(U) : Ox, (U) = Oy (£5 (1) by (F)s(U)ss = bu(ss,0):
where ¢, : €y ;) = Dy is the induced morphism of local C'*°-rings with corners and
s = (58) € Ox (U). Then (fy)s : Ox, — (f4)«(Ox,) is a morphism of sheaves of
C*°-rings with corners on Xg.

Let fi : f(gl((’) x¢) — Ox, be the corresponding morphism of sheaves of C'*°-rings
with corners on Xgp under (2.4.2). The stalk map fgb,x P Oxe fo(z) = Oxou Of fg) at
x € Xp is identified with ¢, : Crix) = Da under the isomorphisms OXq,f,;a(a:) =&,
Oxpo = D, in Proposition 5.2.3. Then f, = (f,, %) : (X0,0x,) = (Xe,Ox,) is a

morphism of local C*°-ringed spaces with corners. Define Spec® ¢ : Spec®® — Spec® €
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by Spec®® = f,. Then Spec® is a functor (C*°Rings®)°? — LC*°RS¢, the spectrum

functor.

Remark 5.2.2. Kalashnikov [51, §4.8] defined the real spectrum of a pre C*°-ring with
corners using the same topological space as our spectrum. However they required it to
have a sheaf of pre C*°-rings with corners that uses localisations of the pre C'*°-ring with
corners on subsets that correspond to open sets. Lemma 5.4.4 and an argument using
universal properties will show the stalks are isomorphic in both definitions so that the real

spectrum is equivalent to our spectrum on C'°*°-rings with corners.

Proposition 5.2.3. In Definition 5.2.1, the stalk Ox, » of Ox, at x € X¢ is naturally

isomorphic to €.

Proof. We have Ox, » = (Ox, z, OF, ) where elements [U, s] € Ox, » and [U, s'] € OF
are ~-equivalence classes of pairs (U, s) and (U, s’), where U is an open neighbourhood of
zin X¢ and s € Ox, (U), 8" € OF (U), and (U, s) ~ (V, 1), (U,s') ~ (V,¥') if there exists
openz € W CUNV with slw = tlw in Ox, (W) and s'|w = t'|w in OF, (W). Define a
morphism of C*°-rings with corners IT = (II, Ilex) : Ox,z — €, by I1: [U, 5] — s, € €,
and Ilex : [U, 8] — s}, € €gex.

Suppose ¢; € €, and ¢, € €, . Then ¢; = my(c) for ¢ € €, and ¢, = 7y ex(c)) for
¢ € €4 ex by Theorem 4.6.8(c). Define s : X¢ — HyEXQ ¢, and ¢’ : X¢ — Hy€X¢ Cyex
by s, = my(c) and s, = Ty ex(c’). Then s € Ox,(X¢), so that [X¢,s] € Ox, . with
II([X¢, s]) = sz = mz(c) = ¢z, and similarly s’ € OF (X¢) with Hex([Xe, s']) = ¢}. Hence
IT:Ox,n — €, and ey - Ogé(e,x — €, ex are surjective.

Let [Uy,s1], [Uz, s2] € Ox, o with II([U1,s1]) = s12 = s2. = II([Uz, s2]). Then by
definition of Ox, (U1), Ox,(Uz2) there exists an open neighbourhood V' of x in Uy N Us
and ¢y, ¢y € € with s1, = my(c1) and sg,, = my(c2) for all v € V. Thus m,(c1) = m(c2) as
S14 = S2. Hence ¢; — ¢p lies in the ideal I in (2.1.4) by Proposition 2.1.15. Thus there
exists d € € with z(d) 0 e Rand d- (¢; —c2) =0 € €.

Making V' smaller we can suppose that v(d) # 0 for all v € V, as this is an open
condition. Then 7,(c1) = my(c2) € €, for v € V, since 7,(d) - my(c1) = my(d) - my(c2) as
d-cy =d-cp and my(d) is invertible in €,. Thus s, = my(c1) = my(c2) = 52, for v € V,
so s1|lv = s2lv, and [Uy, s1] = [V, s1|v] = [V, s2]v] = [Us, s2|. Therefore II : Ox, » — €, is
injective, and an isomorphism.

Suppose [U1, s1], [Us, s3] € OF, , with Ile([U1, 81]) = 81, = s5, = I([U2, 85]). As
above there exist an open neighbourhood V of x in U; N Uy and ¢}, ¢} € € with S’M =

Twex(cy) and sy, = Ty ex(cy) for all v € V. At this point we can use Lemma 4.6.9, which
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says that 7y ex(75) = Tzex(c}) if and only if there are a, b € €ex such that ®;(a)—P;(b) € I,
x o ®;(a) # 0 and ac; = bcg, where I is the ideal in (2.1.4). The third condition does
not depend on x, whereas the first two conditions are open conditions in z, that is, if
®;(a) — ®;(b) € I, v o P;(a) # 0, then there is an open neighbourhood of X such that
®;(a) — ®;(b) € Iy, vo Pi(a) # 0 for all v in that neighbourhood.

Making V' above smaller if necessary, we can suppose that these conditions hold in V'
and thus that m, ex(c}) = myex(cy) for all v € V. Hence 57, = s5, for all v € V, and
silv = shlv, so that [U1,s1] = [V,s1]v] = [V, sy|v] = [Uz, s5]. Therefore Ilex : OF, , —
C.ex is injective, and an isomorphism. So IT = (II,Ile) : Ox, » — €, is an isomorphism,

as we have to prove. O

Definition 5.2.4. As C*°Rings, is a subcategory of C*°Rings® we can define the
functor Specf, by restricting Spec® to (C°°RingsS, )°P. Let € = (€, &) be an inte-
rior C*°-ring with corners, and X = Specf, (€) = (X, Ox). Definition 4.6.4 implies the
localisations €, are interior C*°-rings with corners, and €, = Ox , by Proposition 5.2.3.

If s € OF(U) such that s, # 0 € Ox, at some x € X, then we know s/, = 75(c)
for some ¢ for all 2’ an open set V containing x. As €, = Ox,, and s/, # 0 then
T () # 0 € Cpex and ¢ # 0 in €. As € is interior, then ¢ must be non-zero in
every stalk by Remark 4.6.10, hence s’ must be non-zero in U. So X is an interior local
C*°-ringed space with corners as in Definition 5.1.3.

If ¢ : € — @ is a morphism of interior C*®-rings with corners, then Specg, ¢ = (f, f*)
has stalk map fg =¢,: € o(z) = Oa- This map fits into the commutative diagram

¢ 5 D
[ 7o , | (5.2.1)
Cs,(a) g -,

As ¢ is interior, and the maps ,(z): Ta are interior and surjective, then fﬁx is interior.
This implies Spec;, ¢ is an interior morphism of interior local C'*°-ringed spaces with
corners. Hence Specf, : (C*°Rings{, )°P — LC>°RS{, is a well defined functor, which we

call the interior spectrum functor.

Definition 5.2.5. The global sections functor ' : LC®RS® — (C*°Rings®)°P takes
element (X,0x) € LC®RS® to Ox(X) and takes morphisms (f, f*) : (X,0x) —
(Y,Oy) to I¢ : (f, fH) — F4(Y). Here fy : Oy — f.(Ox) corresponds to F% under
(2.4.2).

The composition I'® o Spec® is a functor (C*°Rings®)°P — (C*°Rings®)°P, or equiv-

alently a functor C*°Rings® — C°Rings®. For each C°°-ring with corners € and
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c = (¢,d) € €, we define E¢(c) = (E(c),E(c')) where E(c) : X¢ = [l ex, € with
E(e) + & = my(c), and E%(c) : Xe = [l ex, Caex With E(c) 1 2 = mpex(c’). We will
write this as Eg¢(c) : ¢ = my(c) € €,. Then Eg(c) € Ox,(Xe¢) = I'“ o Spec® € by
Definition 5.2.1, so E¢ : € — I'° 0 Spec® € is a map. Since 7, : € — &€, is a morphism of
C*°-rings with corners and the C*°-ring with corners operations on Ox, (X¢) are defined
pointwise in the €, this B¢ is a C*°-ring with corners morphism. It is functorial in &,
so that the E¢ for all € define a natural transformation E : idgeoRingse = I'“ 0 Spec® of

functors idceoRingse, I'¢ © Spec® : C*°Rings® — C*°Rings®.

Theorem 5.2.6. The functor Spec® : (C*°Rings®)°? — LC*°RSC® is right adjoint
to ' : LC®°RS® — (C°°Rings®)°P. This implies for all € € C*°Rings® and all
X € LC°°RSE€ there are inverse bijections

Le x

HomcooRingsc (Q:, FC(X)) HOInLCooRSc (X, SpecC Q:) (5.2.2)

Re x

If we let X = Spec®€ then B¢ = Re x(idx), and Ee¢ is the unit of the adjunction

between I'° and Spec®.

Proof. This proof follows the proof of [40, Th. 4.20]. Take X € LC°°RS® and € €
C>°Rings®, and let Y = (Y, Oy ) = Spec® €. Define a functor R¢ x in (5.2.2) by taking
Re x(f) : € = I'°(X) to be the composition

[1

re(f)

¢ € ~T°oSpect € =T°(Y)

Te(X) (5.2.3)

for each morphism f : X — Y in LC®RS¢ If X = Spec®€ then we have E¢ =
Re x(idx). We see that Re x is an extension of the functor Re x constructed in [40,
Th. 4.20] for the adjunction between Spec and I'. This will also occur for L¢ x.

In fact, if we take a morphism ¢ = (@, pex) : € — I'“(X) in C°Rings® then we
define Le x(¢p) = g = (g9, 9%, gx) where (g,¢%) = L¢ x(¢) with Le x constructed in [40,
Th. 4.20]. Here, g acts by = +— z, o ¢ where z, : Ox(X) — R is the composition of the
oz : Ox(X) = Ox, with the unique morphism 7 : Ox, — R, as Ox, is a local C*°-ring
with corners. The morphisms ¢f, ggx are constructed as g% is constructed for [40, Th. 4.20],
and we explain this explicitly now.

For z € X and g(z) = y € Y, take the stalk map o, = (04,05°) : Ox(X) = Ox .

This gives the following diagram of C'*°-rings with corners

¢ 5 I(X)
£ o | (5.2.4)
€20y, ”  =O0x TR



We know €, = Oy, by Proposition 5.2.3 and 7 : Ox, — R is the unique local morphism.
If we have (¢,d) € € with y(c) # 0, and y o ®;(¢/) # 0 then o, 0 ¢(c,c’) € Ox, with
7[oz 0 ¢(c)] # 0 and

T[®; 0 07" 0 Pex(¢)] = w0z 0 ¢ 0 Pi(c)] # 0.

As Ox, is a local C*-ring with corners then o, o ¢(c,c’) is invertible in Ox ,. The
universal property of w, : € — &€, gives a unique morphism ¢, : Oy, — Ox, that
makes (5.2.4) commute.

We define

g;(V) = (g:(V), g5(V)) : Oy (V) = g«(Ox)(V) = Ox(U)

for each open V C Y with U = g~ }(V) C X by

95(V)(8)z = ¢,(84())

for s = (s,8') € Oy (V) and x € U C X, which means g(z) € V, s4(,) = (sg(x),s;(x))
€ Oyy(z), and @, (8g)) € Oxo. We can identify elements, p, of Ox(U) with maps
t=(t,t) where t : U = [[,cy Oxz and t : U — [[,cpy OF, With t; = 04(p) € Oxz and
ty =05(p) € OF, forz € U. For s € Oy(V)andz € U C X, g(x) =y € V C Y, then
Definition 5.2.1 tells us around y there is an open neighbourhood W, in V' and there is
(¢,) € € such that

/
sy =my(c,c) € €y = Oy,

for all y' € W,. This means

9;(V)s(2') = o (¢(c, )

for all ' € g~1(W,), which is an open neighbourhood of z in U, by (5.2.4). These subsets
g~ Y(W,) cover U so by Definition 2.3.1(v), gy(V)s is a section of O x|y, and gy (V') is well
defined.

This defines a morphism g, : Oy — g«(Ox) of sheaves of C"°-rings with corners on
Y, and gf : g 1(Oy) — Oy is the corresponding morphism of sheaves of C*-rings with
corners on X under (2.4.2). At a point z € X such that g(z) = y € Y, then the stalk map
is gﬁx : Oyy = Ox, is equal to ¢,. Then g = (g,g") is a morphism in LC®RS®, and
Lex(¢) =g

It now remains to show that these define natural bijections, but this follows very
similarly to [40, Th. 4.20]. O
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Definition 5.2.7. We define the interior global sections functor I'y : LC*RS{, —
(C>*Ringsy, )°P to act on objects (X, Ox) by I, : (X, Ox) = (€, Cex) where € = Ox (X)
and Cex to be the set containing the zero element of O (X) and the elements of O (X)

that are non-zero in every stalk. That is,
Cox ={ € OF(X) : =0 € OF(X), or 0*(') # 0 € OF, Vo € X}, (5.2.5)

where o7 is the stalk map og* : OF — OF,. This is an interior C'*°-ring with corners,
where the C*°-ring with corners structure is given by restriction from (Ox(X), O (X)).
We define T¢, to act on morphisms (f, f*) : (X,0x) — (Y,0y) by IS, : (f, f*) —
Fi(Y)l(e,een) for fy: Oy — fi(Ox) corresponding to f% under (2.4.2).

In a similar way to Definition 5.2.5, for each interior C'*°-ring with corners €, we can
define Eif(c) = (E™(c),En(¢')) for each element ¢ = (¢,c’) € € where Z(c) : X¢ —
[.ex, €o with Ein(e) 1 x> m(e), and ZL(c) 1 Xg — Hocx, Coex with Eine) : x>
Trex(¢). We will write this as Ei(¢) : 2 + m,(c) € €,. We need to check that =2 (/)
is an element of (5.2.5), that is, whether o$*(Z5(¢)) = 75(¢/) = 0 € Cpex = OF, , for
some ¢’ # 0 and for some = € X¢. However, as w, = (7, Ty ex) : € — € is interior, then
this is immediate and hence Eif(c) is a well defined element of TS, o Spec{, (€).

As in Definition 5.2.5, E‘é“ is a C'°°-ring with corners morphism Elcn € = I o
Specs, €, and it is functorial in &€, so that the Eg‘ for all € define a natural transformation
= . idC°°Ringsi°n = I'{, o Spec, of functors idcooRingsicn,an o Specj, : C*°Rings;, —
C>°Ringsy,.

Theorem 5.2.8. The functor Speci, : (C*°Rings{, )°P — LC>®RSY, is right adjoint to
I¢ : LO®RSE, — (C®Rings¢, )P,

Proof. This proof is identical to that of Theorem 5.2.6. We need only check that the
definition of I'¢, (X), which may not be equal to Ox(X), gives well defined maps o :
I'C (X) = Ox,y. As I, (X) is a subobject of Ox(X), these maps are the restriction of
the stalk maps o, : Ox(X) = Ox, to I'f,(X). The definition of I'{ (X) implies these

maps are interior. O

5.3 Semi-complete C*-rings with corners

There is an equivalence of categories between complete C'*°-rings and affine C°°-schemes,
and one uses this equivalence to show that fibre products of C*°-schemes exist. Complete
C*°-rings € are such that I' o Spec € = €, which form a particularly nice category due to

canonical isomorphisms Spec oI’ o Spec € = Spec € for all € € C*°Rings as in Proposition
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2.4.12. These isomorphisms imply that Specol’ is the identity functor on affine C°°-
schemes and other nice results listed in Theorem 2.4.14.
Using this, we see that
Homa ceosen(Specol'(X, Ox),(Y, Oy))
= Homaceesch (Spec ol Specol' (X, Ox), (Y, Oy))
2 Hom geosch (Spec ol Spec ol'(X, Ox ), Spec ol'(Y, Oy ))
= Hom(geoRingseo)er (I' 0 Spec ol'(X, Ox), T'(Y, Oy))
= Homy,ceors((X, Ox), Specol'(Y, Oy))
= Homp,cors((X, Ox), (Y, Oy))

is functorial in both (X,0x) € LC®RS and (Y,0y) € AC>Sch. Here the first iso-
morphism follows from Proposition 2.4.12, the second from Theorem 2.4.14(b), the third
from Theorem 2.4.14(a), the fourth from Theorem 2.4.14(e) and the fifth from Theorem
2.4.14(b). These isomorphisms imply that Specol’ : LC*°RS — AC>Sch is left adjoint
to the inclusion AC®*°Sch — LC®RS, so this inclusion respects limits. An equivalent
result holds in ordinary algebraic geometry.

In this section we show that, unlike C'*°-rings, it is not true that Spec®ol'® o Spec® € =
Spec® € for all C*°-rings with corners €. This shows that C'*°-schemes with corners will
not be as well behaved as C*°-schemes (or ordinary schemes), and that the inclusion of
(affine) C*°-schemes with corners into LC*°RS® may not respect limits. We then define
a category of ‘semi-complete’ C'*°-rings with corners. In §5.4.1 we will use this category
to prove existence of fibre products (and finite limits) of C°°-schemes with corners under

certain conditions.

Remark 5.3.1. For C'*°-rings, we have a canonical isomorphism Spec¢ : Specol o
Spec € — Spec€ = (X, Ox) for all € € C*°Rings as in Proposition 2.4.12. This means
there is an isomorphism ¢, between the stalks of Spec € at R-points  : € — R and the
localisations of the global sections, Ox(X) of Spec € at R-points z, : Ox(X) — R, with
x corresponding to x4 as in the proof of Theorem 5.2.6.

The following example describes a C*°-ring with corners € = (€, €¢y) such that the
canonical morphism Spec®(¢, ¢ex) : Spec® oI'® o Spec® € — Spec® € = (X, Ox, OF) is not
an isomorphism. Explicitly, it describes a case where the lower triangle in the following
diagram does not commute for an x € X, and hence ¢, ¢x is not an isomorphism. Note
that we always have the outer rectangle commuting and the upper triangle commuting,
and ¢ e is injective but not necessarily surjective. This example says that if two elements

of OF(X) agree locally, then while they have the same image in the stalk 0%, they do
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not necessarily have the same value in the localisation of O (X) at x4, S0 ¢gex is not

always surjective.

Cox o G = OF
\L(ﬁex X,z? i/(bm’ex (531)
0% (X) (OF(X))e.

Tx,ex

Here (¢, ¢ex) : (€, Cex) = I'“0Spect(€, Cox) = (Ox (X)), OF (X)) is the canonical morphism
taking ¢ € € to the section s € Ox(X) where s; = m;(c) for all x € X, and similarly for
Cex. Also, px » is the morphism that takes an element s € Ox (X) to its value in the stalk
Ox,z, and similarly for p¥ .

One reason this diagram may not commute for the corners case is the following: for
two elements, ¢/,d’ € €, equality in €ex , requires a global equality. That is, there need
to be a’, b € €o such that a’c = V'd' € € with d’, b satisfying additional conditions as in
Lemma 4.6.9. In the C*°-ring €, this equality is only a local equality, as the @’ and o’ can
come from bump functions. However, in the monoid, bump functions do not necessarily
exist, meaning this condition is stronger and harder to satisfy.

In the following example, the C*°-ring with corners € is interior, and here I'¢ (€) =
I'°(€), so the above discussion for C*°-rings with corners is also true for interior C*°-rings

with corners.

Example 5.3.2. Let X = R? and € = (C*®(X), €;, IT{0cx }). Here 1T is the disjoint union
of sets, and €;, is the monoid generated by Ex(X) and the bump functions ¢y, ¢, c3, ¢4,
where each ¢; € C°°(X) has support in the region A; (defined in Figure 5.3.1) and zero
elsewhere. We have that cic; = cocj = cicp = 0 € Ex(X) for j = 3,4. Note that
Ex(X) 5 0 # 0cx, S0 Cin IT {0ex } = €ex has no zero divisors.

We make € into a C'*°-ring with corners using composition of functions. That is,

for a non-zero smooth function f : [0,00)" x R™ — [0,00), we define the C*°-operation

Uy €O x €™ = Coy by
Ve(di, ... dn, g1, 9m) = f(di,...,dn, 91, .., 9m) € Cin,
where d; € €¢y and g; € €. For the zero function 0 : [0,00)" x R™ — [0, 00), we define
Uo(di, .. dn, g1,y gm) = Oex.

If f:]0,00)" x R™ — R is smooth, then we define the C*°-operation ®; : €7, x €™ — €
by
q)f(dl,...,dn,gl,...,gm) :f(dl,...,dn,gl,...,gm).
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As €% = Ex(X)* = In(X) and (C*°(X),Ex(X)) is a C*°-ring with corners, then € is a
C®-ring with corners. As €.y has no zero divisors, then € is an interior C'°°-ring with

corners.
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Figure 5.3.1: Region of X = R? with open sets A;, and points & and y
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By Proposition 5.2.3, we know Ox , is isomorphic to €,, and we know (Ox (X)),
Oxq = €, for all x € X. We will show that (OF(X))z 2 Ciex = Oxz, where T is a
point in R? outside of the regions A;, Aa, A3, A4, as in Figure 5.3.1. This will show that
Spec® oI o Spec® € 2 Spec® €. Note that R-points of Ox(X) are in 1-1 correspondence
with elements of X by Example 2.4.5, so localising at £ € X makes sense.

Firstly, note that in Ox z, the elements ¢; under the map 7z ex : Cex — €z ex are distinct
for each j =1,2,3,4, using Lemma 4.6.9 and that if a € €¢y such that Z o ®;(a) # 0 then
a € In(X). We can define the element s} € OF(X) such that s} , = 7z ex(c1) for all
z € X. Now using Lemma 4.6.9, for any x € A3 U A4, we have that 7, ex(c1) = Ty ex(c2).
Using this and the locations of Ai, As, A3, A4 in Figure 5.3.1, then we can also define
sy € OF(X) such that s, = 7z ex(c1) for all x outside of Az U Ay, and s5 , = 7y ex(c2)
for all x inside of A3 U A4, and 5’271 = Ty ex(C1) = Ty ex(c2) for all x € A3 U Ay.

The canonical map (OF(X)): — Cex = Ox;z takes Tz ex(s') — Tzex(d) for s €
O (X) where s; = 75 ex(c’). This means that s} and s} have the same image under this
map. However, we will show that 7zex(s]) # 7z.ex(sy) despite s7; = s5; in an open
neighbourhood of Z € X.

If 75 ex(8)) was equal to 7z ex(s5), then by Lemma 4.6.9, there would be 5, s, € Ox(X)
with s3 ; = s} ; # 0 and s3 = s} in an open neighbourhood of 7, such that s}s3 = sjs). If

sy = Sy ; 7 0, then we have that sj . = 7y ex(e1) with 1 € In(X), and s , = 7z ex(€2)
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with es € In(X), for all z in a neighbourhood of Z.

As s st = shs), then for x € Ay we must have s)(z) = 0 € Ex(X). However, the only
way for ) to go from sﬁ,ﬁx = Tz ex(€2), which is invertible at Z, to 0 in A4 would mean that
sﬁm = Tyex(ag) for z € Az and sg’z = Tgex(aa) for all z € Ay, where a3 = cjhy for some
positive integer n and some h; € In(z), and a4 = cJ*hy for some positive integer m and
some hg € In(z). In particular, this must be true at the point y in Figure 5.3.1, which lies
on the intersection of the boundaries of A3 and A4. However, Lemma 4.6.9 shows that
Tzex(€3) # Tgex(ca) and that 7y ex(a3) # Ty ex(asa) at this point, as there are no elements
of In(X) that are non-zero at y and zero in A3\ A4 and A4 \ As. So this s} cannot exist.

This means 73 cx(5]) # Tz ex(s5). Therefore, the canonical map (O (X))z — Coxp =

Ox s is not injective. Hence Spec® oI'® o Spec® € 2 Spec® €.

If X is an affine C*°-scheme, then Joyce [40, Th. 4.36(a)] tells us that Spec(Ox (X)) =
X. Also, [40, §4.6] tells us that C*°-rings that are isomorphic to Ox(X) for some affine
(C°-scheme X are called complete C'*°-rings and there is an equivalence of categories
between complete C'*°-rings and affine C'°°-schemes.

However, if X is an affine C'"°°-scheme with corners, then Example 5.3.2 shows that
Spect(Ox (X)) 2 X in general, as the sheaf of monoids may be different. This means we
do not expect there to be a subcategory of C*°-rings with corners that gives an equivalence
of categories to affine C°°-schemes with corners. However, we use the following lemma
to define semi-complete C'*°-rings with corners, which have similar properties to complete

C*°-rings.

Lemma 5.3.3. Let (€,Cq) be a C®-ring with corners and let X = (X,0x,0%) =
Spect(€,Cex). Then there is a C°-ring with corners (D, Dex) with ® = T o Spec(<)
a complete C*°-ring, such that Spec®(D,Dex) = X and the canonical map (D, Dex) —
I'o Spec(D,Dex) is an isomorphism on ®, and injective on Dex. If (€, Cex) is firm, then
(D,Dex) 18 firm. If (€, Coy) is interior, then (D, Dex) is interior.

Note that Example 5.3.2 gives an example where no choice of ®., can make the canon-

ical map (D, Dex) — I' 0 Spect(D, Dex) surjective on the monoids.

Proof. We define (D, D.x) such that ® = T' o Spec€ = Ox(X), and let Doy be the sub-
monoid of OF(X) generated by the invertible elements Ve, (D) and the image gex(Cex).
One can check that the C*°-operations from (Ox (X), OF(X)) restrict to C°°-operations
on (D,Dey), and make (D, Dex) into a C°-ring with corners. Let Y = Spec®(D, Deyx). If
(€, Cey) is firm, then (D,Dey) is firm, as the sharpening DF, is the image of €% under
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dex, hence the image of the generators generates DF_ . If (€, €y) is interior, then (D, Dey)
is interior, as elements in both We, (D) and ¢ex(€ex) have no zero divisors.

Now the canonical morphism (¢, dex) : (€, Cex) — I' 0 Spect(€, €ox) gives a morphism
(0, Yex) 1 (€,Cex) = (D, Dex) where 1 = ¢, and ex = Pox With its image restricted to
the submonoid Dex of Ox ex(X). As D is complete, then Spec(®D) = Spec(€) = (X, Ox),
and Spec®(1,vex) : Y = Spect(D,Dex) — Spect(€,Cey) = X is an isomorphism on
the topological space and the sheaves of C*°-rings. To show that Spec®(1),1ex) is an
isomorphism on the sheaves of monoids, we show ey induces an isomorphism on the
stalks (’)géz = €y ex and Of}fx = Dyex, for all R-points z € X.

The stalk map corresponds to the morphism v cx @ €z ex — Dy ex, Which is defined
by Vg ex(Trex(€))) = Tpex(Vex(c')), Where Tpex 1 Cox = Chex and Mpex @ Dex — Dypex
are the localisation morphisms. Now, as Spec®(1), 1ex) is an isomorphism on the sheaves
of C'*°-rings, we know that v, : €, — ®, is an isomorphism, which implies we have an

isomorphism ¢z ex|ex € o — D of invertible elements in the monoids. This gives

T,ex T,ex

the following commutative diagram of monoids.

Cex L Dex C O(X)
¢7ra:,ex &ﬁz,ex (532)
wz,cx
Q:;c(,exc—> Q:JT,GX Qﬂ%ex )gg,ex

o)

To show 9, ey is injective, first use that 7, ex is surjective so that for al,, b, € €, ey, then

al, = Ty ex(a'), Uy = Mg ex(b') € Cpex for @', 0 € Cox. Assume that 1, ox(al) = Vg ex(bl,).

Then we have

'frm,ex(wex(a,)) = ¢x,ex(7rx,ex(a/)) = wx,ex(ﬂz,ex(ab)) = ﬁm,ex(wex(b/)) c Qx,exy

so by Lemma 4.6.9, there are €/, f' € D such that €'ihex(a’) = fhex (V) € D, with &;(e’) —
®;(f’) € I and xo®;(e’) # 0. This implies 7y ex(€') = Taex(f') € D7 ex, and as Yy ex|ex
Crex — D o is an isomorphism and 7, ex is surjective, there must be ", f” € Cex SilCh
that Yex(€”) = € € Dex and VYex (") = [’ € Dex, Trpex(€”) = Tpex (") € €pex, and we
have o (€'a) = (/") € Des.

Recall that the map tex sends ¢ — s’ € Dex C Ox ex(X) where §'(Z) = 7y ex(c) for
all Z € X. So Yex(€a’) = thex (f"V') implies 75 ex(€”a’) = T4 ex (V') for all z € X. At our

value of z € X, we have that 7 ex(€”) = Tz ex(f”) € € o, hence we have af, = 7, ex(a) =

,ex)
Trex(b) = b, so the map is injective.
To show 1) ex is surjective, take an element 7y ex(d') = d, € Dy ex for ' € ©. Then

d' = tex() - € where €' € ey, (D) is invertible, and ¢ € €. Then d, = 7y ex(Vex(c’)) -
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Trex(€). As € is invertible, then 7y ex(e’) € Dyex is invertible. Then as ¢z ex|ex
x,ex
X X
Q::v,ex - Qz,ex

wex<€”> = 6/7 with wm,ex<7rz,ex(e//)) = 7ATr,eX(el)- Then wr,ex o Wm,ex(elcl> = 'frm,ex(d/) = d;;

and the map is surjective. Hence, 1, ¢ is an isomorphism, and Spec®(9,Yex) : Y =

is an isomorphism and 7, cx is surjective, there must be e’ € €q such that

Spec(D, Dex) — Spec®(€, €ox) = X is an isomorphism.

Finally, as © is complete, we known that the canonical morphism (¢, Yex) : (D, Dex) —
I" o Spec®(D, Dex) is an isomorphism on the C*°-rings. On the monoids, say d},d) € Dex
such that Yex(d]) = @ex(ds). Then @ex(d)), pex(ds) are sections of O$¥(Y) and their

equality implies

7Ty,t%X(d/l) = ‘PeX(dll)y = ‘Pex(dé)y = 7ry7e>c<d,2) € Oyy = Dyex

for all y € Y. We have dy,dy € OF(X), so say that dj , = 7z ex(c]) and d , = 7y ex(ch)
at a point x € X. From the above, we know ®,x = €, where y € Y corre-
sponds to x € X via the isomorphism Spec®(1),1ex). This isomorphism implies that
7Ty,eX(alll) = ww,eX(Wa:,ex(C/l)) and 7Ty7eX(d,2) = wm,ex(ﬂx,eX(C/Q))a so we have 1/’x7ex(77a:,ex(0/1)) =
Y.ex(Tzex(ch)). However, as ¢y ex is an isomorphism, we must have 7y ex(¢]) = Ty ex(ch).
This means that d’Lx = dl?,oc for all x € X. As d},d, are sections of OF¥(Y’), then this is

only possible if d] = dj. Hence pey is injective. O

Definition 5.3.4. Let € = (€, &) be a C*-ring with corners, and let (D, D) = D
be the C*°-ring with corners constructed in Lemma 5.3.3 corresponding to €. We call ®

a semi-complete C°°-ring with corners, and the category of semi-complete C*°-rings with

C
sc?

¢ — ® gives a functor R}, : C°Rings® — C®°Ringsg., which is left adjoint to the

sc?

corners, denoted C*°Ringsg., is a full subcategory of C'"*°-rings with corners. The map
inclusion functor C*°Ringsg, — C*°Rings®. Here the counit is the identity morphism,
and the unit is the morphism (¢, 1ex) defined in the proof of Lemma 5.3.3.

Composing the functor R}, with the forgetful functor C*°Rings® — C°°Rings,
(€,Cex) — € is the same as applying the forgetful functor first and then applying the
completion functor R}, for C°°-rings defined in Definition 2.4.13.

If € is a C*°-ring with corners and X = Spec® €, Y = Spec® o['®oSpec® €, then taking
Spec® of the unit E¢ : € — ' o Spec® € from Theorem 5.2.6 gives a morphism ¥ — X,
while the counit on X gives a morphism X — Y. The composition X — Y — X is the
identity, by definition of the counit. Applying the global sections functor I'® implies that
I’ o Spec® € is a semi-complete C*°-ring with corners for all C*°-rings with corners €.

However the composition Y — X — Y is not the identity in general, in particular if €

is the C'*°-ring with corners from Example 5.3.2. Instead, this second composition gives a
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morphism Y — Y that is not Spec® ¢ for some morphism ¢ : I'°(X) — I'°(X). What this

C
sc)

the category of affine C*°-schemes with corners (AC®°Sch€® defined in Definition 5.4.1),

means is that, if we restrict Spec® to C*°Rings¢., then Spec® is essentially surjective onto
and it is faithful, but it is not full. So we do not have an equivalence of categories between
C°°RingsS, and AC*°Sch®.

Remark 5.3.5. To show the category of C'°°-schemes has all fibre products, we first
take the fibre product of the C*°-schemes in LC*°RS using Theorem 2.4.15. We then
use the contravariant equivalence of categories between complete C*°-rings and affine C'*°-
schemes on affine neighbourhoods from Theorem 2.4.14(a). This translates a fibre product
of affine C'°°°-schemes to a pushout of complete C*°-rings. As complete C'*°-rings have all
pushouts (Theorem 2.4.14(d)), then the fibre product of the affine neighbourhoods of the
(C*°-schemes exist, and can be shown to be isomorphic to open neighbourhoods of the fibre
product of the C'*°-schemes. This means that the fibre product of the C'°°-schemes exist
and are equal to the fibre product taken in LC°°RS, which we expect from the discussion
at the start of this section.

As there is no such equivalence of categories for affine C°°-schemes with corners, we
cannot use this proof for the corners case. Importantly, we cannot show that morphisms
between affine C°°-schemes with corners Spec®(€, €ex) — Spec(D, Dex) give morphisms
(D,Dex) = (€, €ex), even if the C°-rings are semi-complete. However, in §5.4.1, we show

that we can do this under certain conditions on (D, Dex).

5.4 (C°°-schemes with corners

We define the categories of C*°-schemes with corners and firm C°°-schemes with corners.
Firm C®°-schemes with corners have important properties that allow fibre products to

exist.

Definition 5.4.1. A local C*°-ringed space with corners that is isomorphic in LC*°RS®
to Spec® € for some C*°-ring with corners € is called an affine C°°-scheme with corners.
We define the category AC®°Sch® of affine C"*°-schemes with corners to be the full sub-
category of affine C"*°-schemes with corners in LC®°RS€. If X € AC®°Sch€ is isomorphic
to Spec® € for a firm C*°-ring with corners, €, we call X a firm affine C'"*°-scheme with
corners, and denote AC®°Schg the full subcategory of AC®°Sch® of firm affine C°°-
schemes with corners.

Let X = (X,Ox) be a local C*°-ringed space with corners. We call X a (firm) C*>°-
scheme with corners if X can be covered by open sets U C X such that (U, Ox|y) is
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a (firm) affine C'°°-scheme with corners. We define the category (C°°Schg) C*°Sch® of
(firm) C°°-schemes with corners to be the full sub-category of (firm) C°°-schemes with
corners in LC*°RS®. Then C*°Schg, AC*>°Sch§ and AC®Sch€ are a full subcategories
of C*°Sch®, and AC®°Schg is a full subcategory of C>°Schg.

Remark 5.4.2. Kalashnikov [51, §4.8] defined a different notion of (affine) C*°-scheme
with corners using their ‘real spectrum’ functor (as in Remark 5.2.3). This definition is

more general than our definition as they use spectrums of pre C'°°-rings with corners.

Definition 5.4.3. A local C*°-ringed space with corners that is isomorphic in LC*RSS,
to Specf, € for some interior C°°-ring with corners € is called an interior affine C°°-scheme
with corners. We define the category AC®°Schf of interior affine C'°°-schemes with
corners to be the full sub-category of interior affine C*°-schemes with corners in LC*RSY ,
so AC®°Schf is a non-full subcategory of AC*>°Sch®. A firm interior affine C'°°-scheme
with corners is an interior affine C°°-scheme with corners that is also a firm affine C'*°-
scheme with corners. We denote AC"°Schf°i7in the full subcategory of AC®°Sch® of firm
interior affine C'*°-schemes with corners.

We call an object X € LC*RS{, a (firm) interior C°°-scheme with corners if it
can be covered by open sets U C X such that (U, Ox|y) is a (firm) interior affine C'°°-
scheme with corners. We define the category (C*°Schg ;) C*°Schf, of (firm) interior
C*°-schemes with corners to be the full sub-category of (firm) interior C'*°-schemes with
corners in LC*°RS{;,. This implies that (AC°Schg ;) AC®°Schy, is a full subcategory

of (C>Schg ;,,) C®Schg,.

The following lemma will be useful when considering fibre products of C*°-schemes with
corners in this section. It also tells us that open subsets of (interior/firm) C'°°-schemes

with corners are (interior/firm) C*°-schemes with corners.

Lemma 5.4.4. Let € be a C*-ring with corners, and X = Spec®&. For any element
c € €, let U. be as in Definition 2.4.4. Then X|y, = Spec®(€[c!]). Note that if € is

firm, then so is €[c™Y; if € is interior, then €[c ] is also interior.

Proof. Write €[c1] = (D,Dcx). By Lemma 4.6.5, then ® = ¢[c"!]. By Lemma 2.4.6,
we need only show there is an isomorphism of stalks €;cx — Dz ex. However, using
the universal properties of €, €[c™!] and €[c!]; this follows by the same reasoning as
Lemma 2.4.6.

If € is firm, then so is €[c™!], as the sharpening of the monoid of €[c™!] is generated
by the image of €% under the morphism € — €[c¢!]. If € is interior, then €[c¢~'] is also

interior, as otherwise zero-divisors would have to come from zero divisors in €. O
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In the following proposition, we find a sufficient condition for affine C'*°-schemes with

corners that have interior stalks to be interior affine C°°-schemes with corners.

Proposition 5.4.5. Let (€, Cqy) be a C™-ring with corners and let (X, Ox) = Spec®(€, €ox)
be an affine C°°-scheme with corners such that all stalks are interior C*°-rings with cor-
ners. Then for each x € X, if every zero-divisor ¢ € Cqy has 7r$7ex(c’) € Cpex either

invertible or zero, then (X,Ox) is an interior affine C°°-scheme with corners.

Proof. Let (€,Cq) = € be a C*°-ring with corners such that the conditions in the propo-
sition hold. Let Z = {¢ € €¢x : ¢ # 0,dc = 0 for some d # 0,d € €} be the set of all zero
divisors in €ex. Then Z U {0} is an ideal of €e. Consider €L, = €o \ Z. We claim that
(€,¢l,) =€ is a C*-ring with corners and Spec®(€, €L, ) = (X, Ox).

We still have ®; : €. — € injective, as it is a restriction and Z N €S = 0. If we

take a function f : R} — [0,00), we must show that the image of (’:gxk x €"~* under U,

is contained in €. Assume f is non-zero, then f(z1,...,z,) = 2% -+ 2% F(x1,...,2,)
where F': R} — (0,00) and aq,...,a; € N.
Assume for a contradiction that Wr(c|,... ¢}, cry1,...,¢n) € Z, then
/a /a / /
U R(C], e Gy Chgl -5 Cn)d =0

for some d € Z. As F is non-zero at all points, it is invertible and hence so is element
Wp(c)y .y ChyChiplsescn). Then 4™ ...c;f"’d = 0, and at least one a; must be non-zero.
But then the corresponding ¢} is a zero-divisor. Hence, the image of ng’“ x €" % under
U s is contained in €, and (€, €L, ) is a C*°-ring with corners.

We now show that the spectra are isomorphic. We have an inclusion (&,€. ) —
(€, Cex). Taking the spectrum of this morphism, we have an isomorphism on the topolog-
ical spaces and the sheaves of C'"*°-rings. On the sheaves of monoids, we show the stalks
are isomorphic. That is, we show that for any element z € Z, then for each z € X,
T ex(2) = Ty ex(/) for some ¢ € €., for all 2’ in some open neighbourhood around
zeX.

Take z € Z, then by assumption, we know 7, cx(2) is either invertible or zero. If it
is zero, then by Lemma 4.6.9, there is an element a € € such that z o ®;(a) # 0 and
az = 0. Then, by the definition of topology of X, there is an open set U C X such that
x' o ®;(a) # 0 in this neighbourhood. So again by Lemma 4.6.9, we have that m, ex(2) =0
in this neighbourhood, as required.

If 7y ex(2) is invertible, then there is an element c, in the localisation €, such that
Verp(€) = Tpex(2). Asc € €, and 1, : € — €, is surjective, then there is an element ¢ € €

such that m,(c) = ¢;. So we have Ty ox(2) = Vexp(m2(¢)) = Ty ex(Vexp(c)) and by Lemma
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4.6.9, there are a,b € Cc such that ®;(a) — ®;(b) € I, x 0 ®;j(a) # 0 and aWep(c) = bz,
where [ is as defined in (2.1.4). Now ®;(a) — ®;(b) € I is a local condition, and so is
x o ®;(a) # 0 by the previous paragraph, and aWep(c) = bz is a global condition, so we
have that m; ex(2) = Mg ex(Wexp(c)) locally as required.

Hence, Spec® € = Spec® €’ is an interior affine C*°-scheme with corners. O

Remark 5.4.6. In this proposition, (€, €ex) may not be firm, however the resulting C'*°-
ring with corners (€, €. ) may be firm. Example 5.8.8 involves such a case.

This proposition uses that if 7rx7ex(c’ ) € €, ex is either invertible or zero for zero divisors
¢ € Cex then 7y (') is equal to 7, ex(d’) for some other element d’ € € that is not a
zero divisor of €ey in every stalk. So it might be possible to generalise this proposition by
requiring that for all zero-divisors ¢ € €¢x and all R-points z, then whenever 7, x(c’) €
C.ex is not invertible or zero, it must be equal to m; ex(d’) for d’ € €ex such that d’ is not
a zero-divisor.

It would be interesting to consider whether this is true for all C°°-rings with corners
€ such that Spec®(€) € LC*RSY,; we show in the following proposition that this is true

at least locally for firm C'°°-schemes with corners.

Proposition 5.4.7. Let X be a firm C°°-scheme with corners that is an interior C*>°-

ringed space with corners. Then X is an interior firm C°°-scheme with corners.

Proof. Assume X 2= Spec®(€) is affine with € semi-complete and firm. Take a point
x € X. We will construct an interior C°*°-ring with corners ® such that X |y = Spec®(D)
for some neighbourhood U C X with z € U.

Take generators ¢}, ..., ¢, in € that generate the sharpening. Assume, without loss
of generality, that myex(c)) # 0 € Cpex for i = 1,...,k and Ty ex(c)) = 0 € €4 ex for
i=k+1,...,n for some integer 1 < k < n. As X is an interior C*°-ringed space with
corners then the sets

Xcg ={reX: WaC,eX(C;C) #0€ Cpext

and
X\ Xy =Xy ={2€ X : Toex(d)) =0 € Cpox}

are both open and closed in X. If we consider V' = (ﬂleXC;) N(Niigi1Xe), then z €V
and V is open. As the topology on X is generated by basic open sets of the form U, =
{z € X : z(c) # 0} for some ¢ € €, then there is a ¢ € € such that U, C V with x € U..
Let ® be the semi-complete C*-ring with corners corresponding to €[c~!]. Then we
know X |y, = Spec®(€[c!]) = Spec’(®) by Lemma 5.4.4 and Definition 5.3.4. We claim

that ® is an interior C*°-scheme with corners.
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We need to show that there are no zero-divisors in Dey. Firstly, note that there is a
morphism € — ® and that under this morphism, the ¢; also generate the sharpening of
Dex and so ® is firm. So the candidates for zero-divisors in ey are these generators. Now
if 73 ex(c;) =0 € €, e for all o € Ue, we claim that the image of ¢ is zero in Dey. This
follows as the morphism € — ® induces a morphism €, — ®,, which commutes with the
localisation morphisms €y — €4 ox and Dex — Dy ex. This means that cg is sent to zero
in ©, ox whenever it is zero in €, ox. As D is semi complete we have that Dex C Ox(U.),
and if 7y ex(c)) = 0 € D, ex for all x € U, then it must be the zero section of Ox(U,) so it
must be zero in Dy, as required.

Similarly, if 7, ex(c}) # 0 € €4ex for some z € U, then the image of ¢, under this
morphism is non-zero. So the only candidates for zero-divisors of Dex are the ¢ for
i=1,...,k. These are all non-zero in each stalk in .. If they were zero-divisors, then
they would be zero-divisors in the stalks. However, we know X has interior stalks, so
these ¢ cannot be zero-divisors. So there must be no zero divisors in Dex. Hence D is
interior and semi-complete, with X |7, = Spec®(®). As we can do this around any point,
then X is an interior firm C°°-scheme with corners.

If X is not affine, we can do this on affine open covers and again show that X is an

interior firm C®°-scheme with corners. O

5.4.1 Limits and colimits

Let us consider how limits and colimits behave in the category of C'*°-schemes with corners.

We start by considering adjoints.

Proposition 5.4.8. There are right adjoints to the forgetful functors C*°Sch® — C*°Sch,
AC®°Sch® — AC>Sch, C*°Sch;, — C®°Sch and AC>Sch;, — AC®Sch hence the

forgetful functors preserve colimits.
This result uses the adjoints constructed in Proposition 5.1.12 and Theorem 4.3.9.

Proof. Let (X,0x) = Spec(€), where € = Ox(X) is complete. We show that the image
of (X,0x) under the right adjoint LC*°RS — LC°RS® constructed in Proposition
5.1.12 ies in AC™Sch®, and its image is (X, Ox, OF) 22 Spect(Fuxp(€)) where Fogp(€) =
(€, Pexp(€) I {0ex }) is the left adjoint constructed in Theorem 4.3.9. This means that
Spec oFexp : (C*°Rings®)°P — AC*°Sch® is the right adjoint under the equivalence of
categories AC*Sch = (C*°Rings®)°P from Theorem 2.4.14(b).

Note that for an R-point x : € — R, then we have Fixp(€),; = Foxp(€,), as all non-zero

elements of the monoid of Fip,(€) are already invertible. There is a canonical morphism
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(X, O0x,0%) — Spect(Fuyp(€)), which is the identity on topological spaces and on C>-
rings. We will define it on the sheaves of monoids, and show it is an isomorphism.

On the monoid sheaf, the section s’ : U — ey (Pexp(€s) I {0cx}) is locally such
that §'(x) = Pexp(mz(c)) or s'(z) = Ocx. Then locally it is either Ocx or it is Pexp(s)
for some section s in the C°-ring sheaf. Now if §'(x) = 0Oex, it must be zero in the
connected component V of U that contains x. Otherwise, s’(z) is non-zero in the connected
component, and, using the glueing and uniqueness property of Oy, it is equal to Pexp(s) on
V, for a unique element s € Ox (V). This means that s’ corresponds to a unique element
of the sheafification of @ex,(Ox ) I1{0ex }, which is the definition of @gz—‘ So the morphism
of sheaves of monoids is well defined. Now if s’ € @ﬁ?, we can run this argument in reverse
to see that s’ corresponds to a unique element of the monoid sheaf of Spec(Fexp(€)), giving
the result.

As AC*°Schf, is a subcategory of AC*°Sch® and Fey,(€) is interior, then Spec® oFiyp,
C°°Rings®)°P — AC>°Schy, is the right adjoint to AC*°Schf, — AC>°Sch.

For the right adjoint to C*°Sch® — C°°Sch, take X = (X,Ox) € C>Sch and let
U be an affine open set of X, so that X|y = Spec®(€) for € complete. Then, by the
discussion above, the right adjoint from Proposition 5.1.12 applied to X will be locally
isomorphic to Spec®(Fexp(€)), and hence in C*°Sch®. Again as C*°Sch® is a full sub-
category of LC®RS€®, then this must be the right adjoint to C*°Sch® — C*°Sch. The

same discussion describes the right adjoint to C*°Schj, — C>°Sch. O

Remark 5.4.9. Ideally we would also like left adjoints to the functors C®°Sch® —
C>°Sch, AC*°Sch® — AC*°Sch, C*°Sch{, — C>°Sch and AC*°Sch{, — AC>Sch,
as this would show that these functors preserve limits. This would be helpful in our un-
derstanding of fibre products of C*°-schemes with corners. A candidate for the left adjoint
to AC®°Sch® — AC°Sch is Spec(€) — Spec®(F>o(€)) where F5o(€) is the right adjoint
constructed in Theorem 4.3.9. We would like to proceed as follows:

There is a canonical morphism (X, Ox, O%.) — Spec(F>0(€)). On topological spaces
and on the sheaves of C'*°-rings, it is the identity morphism. On the sheaves of monoids,
if &' € OF(U) is such that s/, = 75*(¢) for all x € V C U, and ¢’ € €, then s’ comes
from an element s € Ox(U) with s, = m,() as ¢ € €59 C €. As ¢ € €, then if
S1,...,8, € Ox(U) and f:R"™" — R is smooth such that flj0,00)xr" = 0, then

Qr(s,51,.--18n)e = Pr(se, 1,2, Sna) = Pr(ma(c),S12)5- -5 Sn2) =0€C,

hence ®(s, s1,. .., sy,) is locally 0, and the glueing property of sheaves says this is globally

0. Therefore s is an element in O, and this gives a well defined morphism of sheaves
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0% — 0%

Considering the stalks of the map, we need to show for any R-point z : € — R, the
localisation (€, €>), is isomorphic to F5o(€,) = (€4, (€;)>0). The universal property of
the localisation shows there exists a unique morphism (€, €~¢); — (€4, (€4)>0), which is
the stalk map of our morphism, and Theorem 4.6.8 says this is an isomorphism on the C'*°-
rings. On the monoids, surjectivity of the localisation (7, 75¥) : (€, €xp) — (€, Cxp), says
elements in (€>g), can be represented as 75*(c) for some ¢ € €. Then, for an element
¢ € €0, the monoid morphism sends (€=¢), 3 75(c) = m(c) € (€1)>0.

To show injectivity of this map, take c¢,d € € such that m,(c) = m,(d) € €, are in
(€4)s0. By Proposition 2.1.15, 7,(c) = m,(d) if and only if there is a k € € such that
k-(c—d) =0 € ¢, with x(k) # 0. Then k? € €0 by Lemma 4.3.12, and k?-¢ = k?-d € €
with k2(z) > 0. Hence 7¢%(c) = 7X(d) € (€0)., and the map is injective.

However, we cannot at present show this map is surjective in general, although it is

surjective when X = R" for example.
We now consider fibre products of C'°°-schemes with corners.

Proposition 5.4.10. Let X — Z, Y — Z be morphisms of C°°-schemes with corners. If
Z is a firm C*°-scheme with corners, then the fibre product X x zY exists in the category
of C*°-schemes with corners, and is equal to the fibre product in the category LC*°RSC.
Similarly, if X — Z,Y — Z are morphisms of interior C*°-schemes with corners
and Z is a firm interior C*°-scheme with corners, then the fibre product X xz Y exists

in the category of interior C°°-schemes with corners, and is equal to the fibre product in

the category LC°RSY, .

Proof. Let f: X — Z,g:Y — Z be morphisms of C*-schemes with corners, Z a firm
C*°-scheme with corners. Take the fibre product X xz Y € LC®RS€, constructed as in
Theorem 5.1.10.

Pick a point (z,y) € X xz Y with f(z) = g(y) = z € Z, and take affine open sets
reViCcX,yeW CY,ze Vs C Z with Z|y, isomorphic to the spectrum of a firm
C*-ring with corners. If necessary, use Lemma 5.4.4 to shrink V; and V5 to affine open
sets so that f(V1) C V3 D g(V2). Then choosing €,®, & to be semi-complete C*°-rings
with corners (using Lemma 5.3.3 and Definition 5.3.4), we have Spec(€) = (V1,Ox|v,),
Spec® = (V2,0y|v,), and Spec € = (V3,0z|y,), with € firm, and the morphisms ¢, :
€ =T oSpec®€ = Ox(V1), ¢y : ® — I'oSpec’ D = Oy(V3), ¢p3 : € — I' o Spec® € =
Oz(V3) are isomorphisms on their C*°-rings, and injective on their monoids.

The morphism f gives the morphism of C*°-rings with corners fy(V3) : Oz(V3) —

Ox(f~1(V3)) which we can compose with the restriction map py-1(y;) v, to get a morphism
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of C*-rings with corners f : O@z(V3) = I'oSpect € — I'oSpec® € = O (V;) and similarly
we can define a § for g. Now, we would like to find morphisms € — €, ® — € that
have spectra f and g respectively. We can do this on the C'°°-rings as ¢1, @2, 3 are
isomorphisms. On the monoid g, the invertible elements are generated by Weyxp(€). As
€ is firm, every element in €. is of the form d’e; ...e, where a € Wey,(€) is invertible,
and the image of the eq,...,e, under the quotient morphism &, — (’ng generate the
sharpening & .

Now, for each i = 1,...,n, fox o ¢ (e;) € OF(V1), but it may not ‘lift” to Cex (by ‘lift’
we mean that it has an inverse image under ¢{*). However, locally around = we have that
fox 0 65 (€:)s = Tz ex (') for all & in some open set € V{ C V;. Taking the intersection
Vi = mg;lvf , we can restrict further to an open set € U, C V{ for some ¢ € €, using
Lemma 5.4.4. Then each f o ¢§(e;) € OF(U,) does lift to an element of (€[¢™!])ex. Then
every element d’e; ... e, lifts in this neighbourhood U,.. This gives a well defined C*°-ring
with corners morphism from & to €[c™!]. Similarly, we have a well defined morphism
between & and D [d~!] for some element of d € ®. This gives a diagram of C*°-rings with
corners, and we can take the pushout €[c™!] ITg D[d}].

As Spec® : (C*°Rings®)°P — LC*°RSE€ is a right adjoint, then it preserves limits, so
Spect(€[c ! e D[d7Y]) = X|v, X zly, Y |u,- However, the construction of X Xz Y in
Theorem 5.1.10 implies (X xz Y)|v.xy,v, = X|v. Xz, Ylv,, and hence X xzY is a
C*°-scheme with corners. As C®°Sch€ is a full subcategory of LC®°RS€¢, then X xz Y
is the fibre product in C*°Sch®.

Similarly, if f : X — Z, g : Y — Z are morphisms of interior C*°-schemes with
corners, Z a firm interior C'*°-scheme with corners, we can construct the fibre product as
above in the category of LC*°RSS . The same method will show that it is an interior C'*°-
scheme with corners; one needs to check that if € is interior then €[c™!] in C*°Rings¢, is
interior and matches with this localisation in C*°Rings®, but this follows from Theorem
4.3.7(b) and Lemma 5.4.4. O

Remark 5.4.11. If f: X — Z and g : Y — Z are morphisms of affine C*°-schemes with
corners where X = Spec® €, Y 2 Spec®®, Z = Spec® €, and such that f = Spec®(¢ :
¢ — D), g = Spec®(¢p : € — €), then using that Spec® is a right adjoint we can show
directly that the fibre product in both LC*°RS® and AC®°Sch® exists and is isomorphic
to Spec®(€ Ilg ®). In Proposition 5.4.10 we see that if Z if firm, then we call locally find
such ¢ and v for any morphisms f: X - Z andg:Y — Z.

However, as in Remark 5.3.5 and Definition 5.3.4, there is no equivalence of categories

between C'*°-rings with corners and affine C°°-schemes with corners. This means mor-
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phisms of affine C°°-schemes with corners may not correspond to morphisms of C*°-rings
with corners. So while we can take the fibre product of affine C*°-schemes with corners
in LC®°RS€, it is unclear if this should be the spectrum of a C'*°-ring with corners.

Proposition 5.4.10 suggests fibre products of affine C°°-schemes with corners where
they exist may not even be affine, as it involves shrinking open neighbourhoods to find
affine neighbourhoods. Also, if the C°°-schemes are not firm then the neighbourhoods
may need to be shrunk to a set that is not longer open, which suggests that fibre products
of arbitrary C°°-schemes with corners may not exist.

We suspect a counterexample to the existence of arbitrary fibre products of (affine) C*°-
schemes with corners may be constructed using a version of Example 5.3.2. While the C"°°-
ring with corners in this example is firm, potentially one could construct a counterexample
using some decreasing sequence of open sets and appropriate monoid generators (as in
Figure 5.3.1) around a particular point, which would create infinitely many generators in
the monoid. This would no longer be firm. Whether this does give a counter-example or

not we will not consider this here, as all the examples we would like to consider are firm.

Corollary 5.4.12. The subcategories C>°Schg and C°°Schg ; are closed under finite
limits in LC*°RS® and LC°RS{,,. Hence, fibre products and all finite limits exist in

these subcategories.

Proof. The proof of Proposition 5.4.10 shows that the fibre product in LC*°RS® is a C*°-
scheme with corners and is locally isomorphic to Spec®(€[c™ 1|l D[d~!]). The application
of Lemma 5.3.3 allows €, 3, & to be firm, then using Lemma 5.4.4 and Proposition 4.5.2,
shows €[c™1] Ig D[d~] is firm, so the fibre product is a firm C*°-scheme with corners.
As C°°Schg is a full subcategory of LC*°RS€, then this is the fibre product in C*°Schg.

As C*°Schg has a final object Spec®(R, [0,00)), and all fibre products in a category
with a final object are (iterated) fibre products, then C*°Schg is closed under finite limits
in LC*°RS®, and all such fibre products and finite limits exist in C*°Sch§. A similar
argument holds for C°°Schf°i7in. O

Now we consider coproducts and colimits of C'*°-schemes with corners. We will use [
for the product of C'"*°-rings with corners and Hin for products of interior C'*°-rings with

corners. We will refer to results in §2.4.1.

Remark 5.4.13. Firstly, some general colimits of C°°-schemes with corners exist. That
is, if we have a collection of C'°*°-schemes with corners such that there are isomorphisms
between open sets of the schemes, then we can ‘glue together’ to create another C*°-scheme

with corners.
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This works as follows: Let {X;}ier be a collection of C'*°-schemes with corners and
say there are open subsets U; ; for each 4, j € I with the induced C°°-scheme with corners

structure as in Lemma 5.4.4. Say we have isomorphisms of C°°-schemes with corners
-1
J?

¢, ;(UijNU;x) =U;;iNUjy, and ¢; ; = ¢y, ; © $; ;.- Then this gives a diagram of C>°-

schemes with corners with objects {X;,U; ;}i jer, and inclusion morphisms U; ; — X;

2 U;; — U,;, which are the identity morphism when ¢ = j, and such that ¢, ; =
1,7 5J Js 1,7

and isomorphisms ¢, ; : U; ; = Uj . By Proposition 5.1.7, we can take the colimit of this
diagram in local C'*°-ringed spaces with corners. However, the construction of this colimit
is such that every point in the colimit has an open set isomorphic to an open subset of
one of the X, so this colimit is a C'°°-scheme with corners.

For ordinary algebraic geometry the proof is the same, and this result appears in
Hartshorne [33, Ex. 1.2.12]. This tells us, for example, if we take each U;; to be the
empty set, that all coproducts of C*°-schemes with corners exist and are equal to their
products in LC*°RS¢€.

The following lemma extends Lemma 2.4.21.

Lemma 5.4.14. Let I be a set and € = [, ;(€;,C;ex). If x: € = R factors through
€ = (€, Chex) then there is a canonical isomorphism (€y)y = €,. If each &; is interior,
and €™ = H?él(@i, Ciex) then there is a canonical isomorphism (€,), = €, = €1,

Proof. Consider the following commutative diagram, where the right hand side exists when

all €; are interior.

Hie[ <; <—)H?él ¢;

T e

(5.4.1)
¢ (Hie[ <)o <P (H?é[ <)y

Here 7y, is the projection onto the k-th factor and m,, 7w, T}, are the localisation projec-
tions, which are surjective. Note that the dotted arrows exist by the universal properties
of localisations of € and €;,, and that if each €; is interior, then t o p is interior.

On the C*°-rings, the map t : ([[;c;€i)e — (€k)z sends 7. ((ci)ier) € (Ier €i)e
to mge o T2((¢;)ier) = Trz(ck) € (€)z, and similarly on the monoids. This implies ¢
is surjective. To show it is injective, say t(m.((¢;)icr)) = t(m((di)icr)) € (€)sz, then
Tz (Ck) = Tz (dk), so by Proposition 2.1.15 there exists a € €, with z(a) # 0 such that
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a-(ck —d) = 0. Then define (a;)icr € [[;c;€i by arp = a and a; = 0 for i # k. Then
(ai)ier - ((ci)ier — (di)ier) and x((ai)ier) # 0, which implies 72((¢i)ier) = m2((di)icr) €
(ILicsr €i)a, so t is injective on the C*°-rings. On the monoids similar reasoning gives the
same result showing t is an isomorphism.

We now consider the interior case. Note that p is the identity on the C°°-rings.
Say each €; is interior so top : (H;rél Ci)e — (Ck)y is an interior morphism, then
(tex©Pex) 1(0) = 0 € (T, €i)a- S0 88Y tex ©Pex (Taex((¢)ier)) = tex©Pex(Taex((df)icr)) €
(€k)zex Where (¢h)ier, (d))icr € H?&I ¢; are non-zero. Then Lemma 4.6.9 says there are
a,b € € such that z o ®;(a) # 0 and acy = bdy, and there is e € € such that
e(®;(a) — ®;(b)) # 0 with z(e) # 0. Define (a;);es in the monoid of Hfél ¢; such that
ar, = a and a; = d; for all i # k, define (b;);es in the monoid of Hfé[ ¢, such that
by = b and b; = ¢; for all i # k, and define (e;)ic; € [[;c; i with e, = e and ¢; = 0
for all i@ # k. Then we have z o ®;((a;)ier)) # 0, (ai)ier(c})ier = (bi)ier(d)icr, and
(€i)icr(Pi((ai)ier — ®i((bi)ier)) = 0, which implies that 74 ex((¢})icr) = (Tz.ex((d})icr)), sO

that tex 0 pex is injective. Hence ¢t and ¢ o p are isomorphisms. ]
The following proposition extends Proposition 2.4.22 to C"**°-schemes with corners.

Proposition 5.4.15. If I is a set with cardinality less than any measurable cardinal (c.f
Remark 2.4.18) and {€;}icr is a collection of C*°-rings with corners, then there is a
canonical isomorphism Spec®(][;c; €i) = [1,c; Spec®(&€;). If {€i}icr is a collection of
interior C*°-rings with corners, then
SpecC(HmQIi) = H Spec®(€&;) = SpeCC(H ).
icl icl icl

Proof. As in the proof of Proposition 2.4.22, the projections 7, : [[;c;€; — € give
morphisms Spec®(mg) : Spec®(€y) — SpecC(HEienl) ¢;), which we can amalgamate to a
morphism f = (f, f¥, fgx) : [ier Spec(€;) — Spec(HgienI) ¢;) using the universal property
of a coproduct. Proposition 2.4.22 shows that f is an isomorphism on the topological
spaces and the sheaves of C*°-rings, and Lemma 5.4.14 shows that the stalks of monoids

are isomorphic, so that f is an isomorphism of (interior) C*°-schemes with corners.  [J

Remark 5.4.16. This proposition tells us that provided the cardinality of I is less than
any measurable cardinal, then the coproducts of interior and non-interior affine C°°-
schemes with corners are the same despite Theorem 4.3.7(b) telling us the interior and
non-interior products of interior C*°-rings with corners are different.

In addition, Joyce [40, Th. 4.41] gives a criterion for a C*°-scheme to be affine: the
sufficient conditions are Hausdorff, and Lindelof with smoothly generated topology. The
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coproduct [[,.; Spec®(€;) always has smoothly generated topology and is Hausdorff. How-
ever, it is not Lindel6f unless I is countable, as otherwise it has an open cover {U; };cs such
that each Spec®(€;) is in exactly one of the U; and does not intersect any of the others and
this open cover has no countable subcover if I has uncountable cardinality. This means
that if I has uncountable cardinality but has cardinality less than any measurable cardi-
nal, then the underlying C*°-scheme of [, ; Spec®(€;) is an example of an C*°-scheme
that does not satisfy the sufficient conditions, yet is affine nonetheless.

Finally, for any cardinality of I, if [],.; Spec®(&;) is affine, then its underlying C'*°-
scheme must be isomorphic to the spectrum of its global sections, but its global sections
are [ [;c; €;. This means that if I has measurable cardinality, we know that [ [,.; Spec®(&;)

is not affine.

5.5 Relation to manifolds with corners

Here we describe how the category of manifolds with corners can be embedded into the

category of C'*°-schemes with corners.
Definition 5.5.1. Define a functor FI\C/JI:HSCCh?‘ : Man® — C°°Sch§ that acts on ob-
jects X € Man® by Fﬁ:onic}lg(X) = (X,0x), where we have Ox(U) = C*(U) =
(C>°(U),Ex(U)) for each open subset U C X. That is, C*°(U) is the C*°-ring of smooth
maps ¢ : U — R and Ex(U) is the monoid of exterior (smooth) maps ¢ : U — [0,00), as
in Definition 4.1.1.

Example 4.3.4 shows that C*°(U) is a C°-ring with corners for each open U. If
V C U C X are open we define piryy = (puv, pfyy) : C(U) = C(V) by pyv : ¢ — cly
and pgy, 1 d = v

One can verify that Ox is not just a presheaf but a sheaf of C'°°-rings with corners
on X, so X = (X,Ox) is a C*-ringed space with corners. We show in Theorem 5.5.2(b)

that X is a firm C°°-scheme with corners, and it is also interior.
°Schg
an®

Let f: X — Y be a smooth map of manifolds with corners. Writing Fl\c/I

(X,0Ox), and Fﬁ:nséChg(Y) = (Y, Oy ), then for all open U C Y, we define

(X) =

£:(U) : Oy (U) = C®(U) = fu(Ox)(U) = Ox(f7H(U)) = C=(f7(U))

by f¢(U) : ¢ co f for all c € C*°(U) and f{*(U) : ¢+ ¢/ o f for all ¢ € Ex(U). Then
F:(U) is a morphism of C*° rings with corners, and f; : Oy — f.(Ox) is a morphism
of sheaves of C-rings with corners on V. Let f* : f1(Oy) — Ox correspond to Iy
under (2.4.2). Then ic/[:onSCChg(f) =f=(f,f9:(X,0x) = (Y,Oy) is a morphism of

C*°-schemes with corners.
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oo SCh?‘i,in C°°Sch$

C
Define a functor Fy, : Man§, — C°°Schg’in by restriction of Fy;, . ° to

Manf

m-

c
ang,

Theorem 5.5.2. Let X be a manifold with corners and X = Fh(/j[:onscChg (X).

(a) If X has faces, then X is an affine C°-scheme with corners, and is isomorphic
to Spect(C>®(X),Ex(X)). It is also an interior affine C*°-scheme with corners, with
X = Specf (C*°(X),In(X) L1 {0}). Here 11 is the disjoint union.

(b) In general, X is a firm interior C*°-scheme with corners.

oo c C°°Schs .
(c) The functors Fl\c/:[ Seha and FMancc i are fully faithful.

an®

Proof. For (a), let X be a manifold with corners and write X = Fﬁ:nichg(X ) = (X, O0x).

Note that I'“(X) = Ox(X) = C*>(X) by the definition of Ox. Consider the functor
L¢ x in (5.2.2). In the notation of Theorem 5.2.6, if we let € =I'*(X) = C*°(X), then

L= (x),x is a bijection
L (x),x : HomgeoRingse (C™°(X), C* (X)) — Hompceorse (X, Spec® C™(X)).

Let idgee(x) be the identity morphism in HomgeoRingse(C*(X), C*(X)) and define
(9.9°) = g = Lee(x),x (idg=(x)). We will show that g : X — Spec® C*(X) is an
isomorphism in LC*°RS® when X is a manifold with faces.

Denote Spec® C*°(X) = Y, then the continuous map g : X — Y is defined in the
proof of Theorem 5.2.6 by g(z) = x, o idx where idx : C*°(X) — C*°(X) is the identity
morphism and z, is the evaluation map at the point x € X. This is a homeomorphism of
topological spaces, as shown in the proof of [40, Th. 4.41].

The map g corresponds to gy by (2.4.2). For each open V C Y with U = g (V)
then g, is defined by g4(V')(s)z + i(sz,), where s € Oy(V), z € U C X, and i is the
inclusion C*°-ring with corners morphism ¢ : (C*(X)),, — C°(X) for the localisation
(C*°(X))z, and the germs of functions C3°(X) as defined in Example 4.6.11. On stalks,
we have gh = i : (C®(X))z, — C°(X). In Example 4.6.11, we showed that if X has
faces, then (C*°(X)),, = C7°(X) and then ¢ is the identity map, which is indeed an
isomorphism of local C'**°-rings with corners. This implies gﬁ is an isomorphism on stalks,
so g is an isomorphism of local C*°-ringed spaces with corners. Hence X = Spec® C*°(X)
is an affine C°°-scheme with corners.

Now let C59(X) = (C*°(X),In(X)I1{0}), where II is the disjoint union. To show that
if X has faces, then X = Spec® C7(X), we follow the same method above. Here we use

the bijection
Loex),x HomgeoRingse (Chy (X ), C (X)) — Hompceorse (X, Spec® Cf (X))
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from Theorem 5.2.6, and the result from Example 4.6.11, that if X has faces, then

CF(X) = (C¥(X))a. = (CF(X))a

e

The same reasoning above gives the result.

For (b), for any point z € X, we can find a neighbourhood U, of z such that U, is a
manifold with faces. For example, U, can be the coordinate neighbourhood of x, which
is diffeomorphic to R} for some n > k with k,n € N. Then if &€, = (C*(U,), Ex(Uy)),
by the argument for part (a), we have X |y, = Spec® €y, for each x € X. That is, X is a
(C*°-scheme with corners.

As U, = RY%, it is connected and there are k connected components of the boundary
in U,. From Example 4.5.5, we have that Ex(U,) = In(U,) IT {0} = C>=(X) x N¥1II {0}.
Hence X is locally isomorphic to the spectrum of a firm interior C'°°-ring with corners,
and is therefore a firm interior C*°-scheme with corners.

For (c), we know that F. 58 |5 o : Euc® — (C®°Rings®)°P, as defined in Ex-
ample 4.3.4, is full and faithful as it is the Yoneda embedding. Note that the composition
Spec® oFl\c/i:nfcﬁngsc is equal to FI\(/}IC:nSCChlé when restricted to manifolds with faces, by the
proof of (a).

Let X and Y be manifolds with faces. Let X = Fyyo o 2 (X) and Y = Fyyo e 3 (Y).
As above, we know I'(X) = C*(X) and I'°(Y) = C*°(Y), and (a) above shows that
Spec® C*(X) is naturally isomorphic to X, and Spec® C*°(Y") is naturally isomorphic to

Y. Using these isomorphisms, Theorem 5.2.6 gives a bijection

HomesoRingse (C™(Y), C%(X)) 2 Homp,ceorse (Spect C*(X), Spect C*(Y)).

This shows that Spec® is full and faithful on the image of Fﬁ:nrcungsc restricted to manifolds
with faces, in particular when restricted to Euclidean spaces with corners, Euc®. We
conclude that Spect o Fo Bm&s g o — Fﬁ:nscChﬁ\Eucc is full and faithful.

Now if f, g are smooth maps f,g : X — Y and (f, fﬁ) = FISI:;SCChg (f) = FISI:HSCCh% (9) =
(g,g"), this directly implies f = g, so Fﬁ:nSCChg is faithful.
To show FI\C/[:nScCh‘E‘ is full, let g = (g, g*) € Homp,coorse(X,Y). We want to show that

g: X —Y is smooth and g = Fﬁ:ﬂiehg (9). Let x € X and say g(z) =y €Y. As X and

Y are manifolds, there are coordinate neighbourhoods U, C X of z and V;, C Y that are
isomorphic to Ry, Rj" C Euc® for n = dim X,m = dimY".
Shrinking U, and V, if necessary, we can consider the restriction gy, : X|v, = Yy,

. . . . C°°Sch$ .
As U, and Vj, are isomorphic to Euclidean spaces with corners, then as Fy;, . A Buce 18

full, then there is a smooth map h, : U, — V,, such that FI\C,I:nScCh%\EuCc (hg) = (hg, hmﬁ) =

154



(9lv., 9%v,) = glu,. That is, gly, = hs. So g is smooth in a neighbourhood of z for all
x € X, so g is smooth on X.

Now Fﬁ:nSCChg (9|, = Fﬁ:nsc(:hg (9lv,) = glu,- As the morphisms Fl\(/jI:nSCChg (9) and g
agree on the open sets U, for each x € X, and U, cover X, then the sheaf property of Ox
and the definition of morphism of sheaves, implies that Fl\(/i:ls':hg (g) and g are equal, as

required. ]

Remark 5.5.3. Note that if X is a manifold with faces then X = FI\C/I:nScchg (X) is

isomorphic to Spec®(C*(X), Ex(X)) but (C*(X), Ex(X)) is not firm unless X has finitely
many boundary components. This occurs, for example, when X is compact.

We can also consider the functors Fﬁ:onsgihﬁ : Man&® — C*°Sch§, X — (X,0Ox)

C°°Schg .
with Ox(U) = (C*(U),Ex(U)), and FManigE %" Man§ — C*Schg ;, the restriction
of Fﬁ:nsgihg to Manf,. We then can consider whether part (a) or (b) hold for X =
C°°Schg

Fytange 1(X). As a manifold with g-corners is Hausdorff and second countable, and the
topology is smoothly generated, we can apply [40, Th. 4.41] as in the proof, and we find
is that (a) is true for all open subsets U C Xp for Xp as in Definition 3.1.3, as on these

subsets can we guarantee that we have

CX(X) = (C*(X))a (5.5.1)

%

This means that part (b) above is then true for all manifolds with g-corners.

We would like to have some geometrical condition (such as ‘with faces’) that would
allow part (a) to be true more generally. That is, a geometric condition that ensures a
manifold with g-corners satisfies (5.5.1) at all points € X, so that it is an affine C*°-
scheme with corners. We could consider the following condition as a candidate: (*) the
map ix : 0X — X is injective on connected components of the boundary map, as in
Definition 3.3.3. However, we will show below that (*) is not enough to guarantee that

part (a) above holds for all of manifolds with g-corners.

Example 5.5.4. Recall Example 3.2.4 of a manifold with g-corners that is not a manifold

with corners. We have
Xp = {(21, 32,23, 34) € [0, 00)  wywy = T3T4 ). (5.5.2)

Figure 5.5.1 shows a three dimensional representation of this manifold as a square
based infinite pyramid such that the ‘faces of the pyramid’ are actually the 2-corners,
where two of the coordinates are zero. Consider compactifying this pyramid by attaching

another pyramid to the bottom as in Figure 5.5.2.
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Figure 5.5.1: 3-manifold with g-corners X}, in (5.5.2)

This is a manifold with g-corners satisfying condition (*) in Remark 5.5.3. Around
do and &), the manifold is isomorphic to Xps, and at all other points, the manifold is
a manifold with corners. The dashed lines indicate open lines and are not boundary or
corners. The ‘faces’, F;, for i = 1,...,4, near dp and 4, are described by the pairs of the
variables x1, x9, 3,4 and y1,y2,y3,ys set equal to zero as in the following table. Here,
F, would be the ‘face’ on the back. Note that there is a ‘tunnel’ where F5 is the ‘face’ on

the inside of the tunnel and F} is the face on the top of the tunnel.

13 B Fs F,

00 | T1,T3 | T2,X3 | T1,T4 | T2, T4

6 | v2,us | y1,ys | v1.Ys | Y2, 4

Table 5.1: The faces F; are described by two variables vanishing near dy and &y.

If we take a smooth non-zero function f: X — [0,00) then in an open neighbourhood
around O, f(z1,22,23,24) = 2] 25?2532y F (21, 22, 23, 24) such that a1 + a2 = a3z + as
and F, a smooth function, is greater than zero in this neighbourhood, and around 0,
f(y1, 92,93, y4) = yll’lylz’zyg3yi4F’(y1, Y2, Y3, y4) such that by + by = b3 + by and smooth F’ is
greater than zero in this neighbourhood. However, as F} is the vanishing of two variables,
then a; and a3 must match up with by and b3. Similarly with all other ‘faces’.

Using this, we can deduce that the only smooth functions f : X — [0, 00) must have
a; = ag = a3 = ag = by = by = by = by, and equivalence classes in (Ex(X))s,« are of the
form [(z1222324)" F] and [0], for n = 0,1,2,... and F' a smooth non-zero function defined
in a neighbourhood of d.

However, for a local function f : U — [0,00) for U a small neighbourhood around
80, then we may have a; # ag, and hence there are equivalence classes in Exs,(X) of
the form [z]'25?25%2* F| for F' a smooth non-zero function defined in a neighbourhood

of §p, and the only requirement on the integers a; is that they are non-negative and
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Figure 5.5.2: The ‘faces’ of the manifold with g-corners, X.

a; + a2 = ag + a4. As any C*°-ring morphism between (Ex(X))s,« and Exs,(X) must
send [(z1z22324)"F| € (Ex(X))syx to [(z1222324)" F] € Exs,(X), then this can never be
surjective and hence

CY(X) % (C¥(X))a. = (CR(X))e.,

for © = ¢, and similarly at the point z = 4.

Remark 5.5.5. We would also like to consider whether the functors Fﬁ:nsc(:hg and
Fl\(,:[:onsgih% respect fibre products, so here is some discussion related to this. As all mani-
folds with (g-)corners are locally firm, we know that all fibre products of manifolds with
(g-)corners exist in C*°Schg by Corollary 5.4.12.

FGoSeh o X s Spec(C*(X)) preserves transverse

From Theorem 2.4.17 we know
fibre products of manifolds without boundary. From Proposition 5.4.10, fibre products in
C>°Sch§ have C"°°-scheme that is the underlying fibre product of the C'°°-schemes, which
implies Fl\c/i:nidlg respects transverse fibre products of manifolds without boundary on the
topological spaces and the sheaves of C'*°-rings, but we do not know what happens on the
sheaves of monoid.

To extend this to manifolds with corners, we also need an appropriate definition of

transverse for manifolds with corners. Joyce [47, §4.3] and particularly [49, §2.5] have
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explored fibre products of manifolds with (g-)corners. Notably, manifolds with g-corners
enlarge the category of manifolds with corners under certain types of fibre products, but
in both cases, the fibre products may not exist in general, or they may exist but have
topological space that is not the fibre product of the topological spaces. They also may
not coincide with fibre products in the category of manifolds with (g-)corners and interior
maps.

In [49, §2.5.4] two definitions of transverse are given for manifolds with corners, sb-
transverse and the more restrictive sc-transverse. In [49, Th. 2.32, §2.5.4], we see that
only sc-transverse guarantees that the topological space of the fibre product is the fibre

*>°Schg
anc respects sc-transverse fibre

product of the topological spaces. It is possible that Fl\(/i
products.

In [47, §4.3] and [49, §2.5] there are two corresponding definitions of transverse for
manifolds with g-corners, b-transverse (as in Theorem 3.4.3) and the more restrictive c-
transverse, and similarly only c-transverse guarantees that the topological space of the
fibre product is the fibre product of the topological spaces. It is possible that ic/[:nsgih%
respects c-transverse fibre products.

Preliminary investigations of this suggests restricting to toric C*°-rings/C°°-schemes

with corners may be necessary to prevent torsion occurring in the fibre products.

5.6 Sheaves of Ox-modules and cotangent modules

We define sheaves of O x-modules on a C'*°-ringed space with corners, as in §2.5.

Definition 5.6.1. Let (X,Ox) be a C*-ringed space with corners. A sheaf of Ox-
modules, or simply an O x-module, £ on X, is a sheaf of Ox-modules on X, as in Definition
2.5.1. A morphism of sheaves of Ox-modules is a morphism of sheaves of Ox-modules.
Then O x-modules form an abelian category, which we write as O x-mod.

An O x-module € is called a vector bundle of rank n if we may cover X by open U C X
with &|y = Ox |y ®@r R™.

Pullback sheaves are defined analogously to Definition 2.5.2.

Definition 5.6.2. Let f = (f, f%, f&) : (X, Ox,0%) — (Y,0y,0f) be a morphism of
C°-ringed spaces with corners, and £ be an Oy-module. Define the pullback f*(E) by
f (&) = f*(€), the pullback in Definition 2.5.2 for f = (f, ) (X,0x) = (Y,0y). If
¢ : & — F is a morphism of Oy-modules we have a morphism of O x-modules f*(¢) =

[ (@)= 1 (¢) ®idoy : F1(€) = f*(F).

158



Definition 5.6.3. Let X = (X,Ox) be a C*-ringed space with corners, and X =
(X, Ox) the underlying C*-ringed space. Define the cotangent sheaf T*X of X to be
the cotangent sheaf T* X of X, as defined in Definition 2.5.3.

If U C X is open then we have an equality of sheaves of O x|y-modules
(U, 0x|y) =T"X|v.

Let f = (f, fﬁ,fgx) : X — Y be a morphism of C"°-ringed spaces. Define Qg :
fY(T*Y) — T*X to be a morphism of the cotangent sheaves by Q1 = Qy, where f =
(f?fﬁ) : (X7OX) — (Y7OY)

Definition 5.6.4. Let X = (X, Ox) be an interior local C*°-ringed space with corners.
For each open U C X, let dy i, : OR(U) — bQ¢U be the b-cotangent module associated to
the interior C*°-ring with corners €y = (Ox(U), OB(U) 11 {0}), where II is the disjoint
union. Here OB(U) is the set of all elements of O$¥(U) that are non-zero in each stalk
O%x for all x € U. Note that Oan is a sheaf of monoids on X.

For each open U C X, the b-cotangent modules ngU define a presheaf P*T*X of
bl
Definition 4.7.6. This exists by the universal property of *Q as the b-cotangent module
associated to (Ox(U), O%(U) 1 {0}), and makes the diagram in (2.5.1) commute for this
setup. Denote the sheafification of this presheaf the b-cotangent sheaf *T*X of X.

O x-modules, with restriction map °Q — bQ¢V defined as the unique map from

pUv U

The definition of sheafification implies that, for each open set U, there is a canonical

morphism *Q¢,, — *T* X (U), and we have an equality of sheaves of O x|y-modules
"THU, Oxy) ="T*X|u.

Also, for each x € X, the stalk bT*X|$ = bQoX’z, where bQoX,x is the b-cotangent module
of the interior C°°-ring with corners Ox ;.

For a morphism f = (f, f%, fgx) : X = Y of interior local C*°-ringed spaces, then we
define the morphism of b-cotangent sheaves Q) £ F*(T*Y) — *T*X by firstly noting
that £*(°T*Y) is the sheafification of the presheaf P(f*(*T*Y")) acting by

Ur— P T*Y))(U) = limys 40 "Qoy (v) @0y (1) Ox (U),

as in Definition 2.5.3. Then, following Definition 2.5.3, define a morphism of presheaves
P Qs P(F*(PT*Y)) — PT*X on X by

(P*Q)(U) = limy s 01 ("Qp, ) pos, ()
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where (bQPf—lw)Uofu(V))* : bQoY(V) ®oy(v) Ox(U) — bQOX(U) = (P*T*X)(U) is con-
structed as in Definition 2.2.4 from the C*°-ring with corners morphisms f(V) : Oy (V) —
Ox(f~1(V)) from fi: + Oy — fi(Ox) corresponding to fPin f as in (2.4.2), and
Pr-1(vyU Ox(f~1(V)) - Ox(U) in Ox. Define *Q¢ : f*(*T*Y) — "T*X to be

the induced morphism of the associated sheaves.

Example 5.6.5. Let X be a manifold with (g-)corners and X the associated C'°°-scheme
with corners. For each open set U C X we can show *T* X (U) = I'°(*T*X,U) and
T*X(U) = T(T*X,U). That is, as sheaves, *T*X = T(T*X,~) and T*X =
*>°(T*X,—). To do this, consider that for every open set U C X, there is a unique
map ¢y : P'T*X(U) — I'>°(*T*X,U) using the universal property of the b-cotangent
module as in Example 4.7.8.

If we shrink U to a coordinate patch, then U is a manifold with (g-)corners (with
faces) such that C°(U) = (C*°(U)),, for each x € U, and corresponding R-point z, :
C>(U) — R. Hence, by Proposition 4.7.9 (and Remark 4.7.10), there is an isomorphism
Yy PT*X(U) = bQCoo(U) — I'°(*T*X,U). Using the uniqueness of v for each open
U C X, we can show that 1y extends to a map of presheaves 1 : P*T*X — I'®(*T* X, —)
that is an isomorphism on stalks.

As ®T* X is the sheafification of P*T™* X, there is a unique map of sheaves ¢ : *T* X —
I'°(*T*X, —) that is the same as 1) on stalks. Since 1) is an isomorphism on stalks, then
Y’ is an isomorphism of sheaves as required. A similar proof shows T*X = I'°(T*X, —)

for X a manifold with corners.

5.7 Corner functor for LC>*°RS¢

In this section, we define a corner functor, C'°¢, that describes the boundary and corners
of a local C'*°-ringed space with corners. We show this is a right adjoint and show how it
relates to the definition of boundary in Gillam and Molcho [28, §4.4] if we consider a local

C*°-ringed space with corners to be a pre-log locally ringed space, as in §5.9.

Definition 5.7.1. Let X = (X, Ox) be a local C*-ringed space with corners. As a set,
we define
C°°(X) = {(z,P) : z € X, P is a prime ideal in OX .}

There is a function of sets 7 : C°°(X) — X, (x, P) + .
We define a topology on C'°°(X) to be the weakest topology such that 7 is continuous,
so 7~ 1(U) is open for all U C X, and such that for all open U C X, for all elements
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s' € OF(U), then
Uy = {(z,P)|lz €U, s, ¢ P} Cc n~ Y (U)

is both open and closed in 7~ 1(U). We denote Uy = 7~ (U) \ Uy. Then 7~ (U) = Uy =
Ui, and 0 = Uy = Uy for 0,1 € O (U). The collection {Ug, Uy :open U C X,s €
O (U)} is a subbase for the topology.

We can pullback the sheaves Ox and O$F using 7 to get the sheaves 7—!(Ox) and

77 HO%) on C°¢(X). The identity morphisms induced from =, that is, #* : 771(Ox) —

#
w(z,P)

) O%e = (77 1(O%))(z,p)- Then for each prime P in 0% 2

7 1(Ox) and &l : 7 HOY) — 771 (OF), give isomorphisms on stalks 7 1 Oxp —

(r7H(Ox))(@,py and 75, p
we can identify

Tril(ogg)m - 7Arvgx,Tr(:l:,P)(

P)=PCOfX,
and

7 (Ox)s D 7 oy (R:(P))) = (@4(P)) C Ox.o.

Here (®;(P)) is the ideal generated by the image of P under ®; : OF, = Ox .
We define the sheaf of C*°-rings Ogioc(x) to be the sheafification of the presheaf of
C>-rings U — 7 1(Ox)/I where

I(U) = {s e Y Ox)(U) : S(z,p) € (®i(P)) for all (x, P) € U}.

Similarly, define Ogj,. (x) to be the sheafification of the presheaf U +— 7= 1(O)(U)/~
where, for 57, sy € 1 (OF)(U), then | ~ s if for each (z, P) € U either s ,, 5, € P,
or there is p € (®;(P)) such that s} , = Weyp(p)sy - This is a similar process to quotienting
the C*-ring with corners (7~ 1(Ox)(U), 7 1(O%¥)(U)) by a prime ideal in 7= 1(O)(U),
which we described in Example 4.4.4(b), and creates a sheaf of C'*°-rings with corners
Ocroe(x) = (Ocoe (x), Oiioc ) )-

In Lemma 5.7.2 we show that Ocuoe(y) is interior and the stalks at the point (z, P)
are local C*°-rings with corners isomorphic to Ox ,/~p, using the notation of Example
4.4.4(b). This means that (ClOC(X),OCIOC(X)7 2(100()()) = C'¢(X) is an interior local
(C°°-ringed space with corners.

The continuous function 7 and the identity morphisms it induces (#%, #%) : 77 1(Ox) —
7 1(Ox) can be used to define a canonical morphism in LC®RS®, 7 : C'°¢(X) — X.
This is equal to 7 on the topological spaces, and, on the sheaves of C*°-rings with cor-
ners, then 7#(U) : 771 Ox)(U) — Ocloc(X)(Tr_l(U)) sends s € 7 1(Ox) to the image of
74 (U)(s) € 7 1(Ox) (7~ 1(U)) under the quotient map to Oc1oc(X)(7r_1(U)), and similarly

for the sheaves of monoids map.
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Let f = (f, f*, fgx) : X =Y be a morphism in LC*®RS€, we will define a morphism
Clo¢(f) : CP°(X) — C"¢(Y). On topological spaces, we define Cl°°(f) : C'°¢(X) —
C(Y) by (z, P) = (f(z), (fio)L(P)) where fi, : OVt = OX Is the stalk map
of fi. This is continuous as if ¢ € O$X(U) for some open U C Y then C¢(f)~Y(U;) =
f_l(U)fuex(U)(t) is open, and similarly C¢(f)~1(T,) = f_l(U)f;X(U)(t) is open. It follows
that mo C°¢(f) = fom.

On sheaves, for s’ € Ogﬁoc(y)
s" € 7 HO)(U), and an element s” € O$(U) for some open U C Y with U D (V).
Then we can map s’ — ng(f_l(U)) o fX(U)(s")|x-1(v)- (Note that this is really a map

of the presheaves 7= 1(O%F) /~ — 71 (O%)/~ but definition of sheafification in Definition

V), then as above, s can be represented by an element
) , P y

2.3.3 and its universal property give the required morphisms of sheaves.) The restriction to
7~ (V) means this map is independent of the choice of s”, and the definition of O, ) (V)
as a quotient of 7~ 1(O%)(U) means this map is independent of the choice of s”. This
gives a morphism O%OC(Y)(V) — 830% X)(CIOC( £)7Y(V)). A similar definition gives a
morphism Ogioc(y) (V) = Ogioc(x (f ~1(V)). As both of these morphisms behave well with
restriction, this gives a morphism of sheaves C°°(f); : Ocioc(yy = Cloc( F)e(Ocioc(x))
adjoint to Cl°(f)F : C’loc(f)_l(O@oc(y)) — Ogioc(xy as in (2.4.2), and a morphism in
LC*>RS¢,
Clo°(f) : C°°(X) — C°(Y).

We see that o C1°¢(f) = f o .

On the stalks, we have Cloc(f)jéwyp) : OY,f(fﬁ)/N(fgx,x)*l(P) — Ox,z/~p. On the
monoid sheaf, if s’ — 0 in the stalk, then s’ = [s”] for some element s” € O‘;,’ff(m), and
fng(xf)(s”)x € P. Then s’Jﬁ(x) € (f&2) Y (P), so " ~p 0 giving that s’ = 0. Therefore
C'°¢(f) is an interior morphism.

Then CU°C¢(f) = (C'°(f),Clc(f)E, Cloc(f)by) :+ Cl°(X) — C'°(Y) is an interior
morphism of interior local C*°-ringed spaces with corners, where C°¢(f)%, C1°%( f)gx re-
late to the morphisms C°°(f)y, C’l‘m(f)’tiEX by (2.4.2). One can check that C'°¢(f o g) =
C¢(f) o C'°¢(g) and hence that C'°¢ : LC®°RS® — LC®RSE, is a well defined functor.

If we now assume X is interior, then {(z, (0)) : # € X} is contained in C'°°(X), and
there is an inclusion of sets 1x : X — C°°(X), x ~ (z,(0)). The image of X under
tx @ X < C'°°(X) is closed in C'°¢(X), that is, for all open U C X, then

ix(U) = W_I(U) \ Us’eOan(U)US’ = ms’eoi)gl(U)US’
is closed in 7 }(U). Also, iy is continuous, as the definition of interior implies i (Uy) =
{z eU:s, #0¢€ OF,} is open, and iy (Ug)={zcU:s,=0¢ 0%} is open for all
e OF(U).
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Now any element s € Ox (U) gives an equivalence class in 7~ 1(Ox)(7~1(U)), which
gives an equivalence class in 7~ 1(Ox)(7~}(U))/~, which gives an equivalence class in
Ocroc( X)(Wfl(U)), which gives an equivalence class in L;(I(OCloc( x))(U). So there is a map
Ox(U) — L;(l(OCloc(X))(U) and a similar map can be formed for elements in O (U).
These maps respect restriction and form morphisms of sheaves of C'*°-rings with corners.
The stalks of L;(l(OCloc( x)) are isomorphic to the stalks of O¢ioc(xy, which are isomorphic
to Ox 2/~ = Ox by Lemma 5.7.2. This means the inverse image sheaf L;(l(OCloc(X))
is canonically isomorphic to Ox. So provided X is interior, this isomorphism gives a
morphism of local C*-ringed spaces with corners ¢x : X — C'°°(X), which is essentially
the inclusion of X into {(x,(0)) : # € X} C C'°°(X) and the restriction of the sheaves to

this set. This is interior, as the stalk maps are isomorphisms. In addition, wx otx = idx.

Lemma 5.7.2. The sheaf of C*-rings with corners O cioc(x) described in Definition 5.7.1
is interior and the stalks at the point (x, P) are local C*°-rings with corners isomorphic

to Ox g /~p, using the notation of Example 4.4.4(b).

Proof. For each s’ € Ofioc ( X)(U ), consider the set

K = {(x,P) & U . S,(‘,LP) = 0 € OecziOC(X),(x,P)}'

Then there is an open cover {U; }ier of U such that §|y, corresponds to a ~-equivalence
class [s}] in 771 (O%)(U;), and we must have that s; € P at every point (z, P) € KNUj;, and
s, ¢ P for all (z, P) € (U\ K)NU;. Now the definition of the inverse image sheaf implies
there is an open cover {I/I/;}jeji of U; such that si|w,; = [s] ;] for some s} ; € OF(Vi;)
where we have open V;; C X such that V;; D m(W; ;). Now we must have s} . € P for

%,J,%
all (z,P)e KNW,;,and s, ¢ P forall (z,P) € (U\ K)NW,;,;. Then

1,5,T
Wii N (Vig)s, = KNWi;
Wij N (Vig)s,, = U\ K) N Wi

are both open in X. Taking the union over i € I, j € J;, and using that Uier je s, Wi ,; = U,
we see that K and U \ K are both open in U.

The stalks of (Octoc(x), (98§OC(X))
Ox o/(®i(P)) and OF . /~p, where 5] ~p s in OF if 7,55 € P or thereis ap € (®;(P))
such that Wee,(p)s] = sb, as in Example 4.4.4(b). To see this, consider that the definitions

at a point (z,P) € C'¢(X) are isomorphic to

give us the following diagram, where we will show the arrow ¢ exists and is an isomorphism.

OX,J: - 7T_I(C)X)(:E,P) WOCIOC(X%(@P)
¢ : T (5.7.1)
Oxyf~p-———"" 't
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To see that t exists at the point (x, P), we use the universal property of Ox ,/~p
as in Example 4.4.4(b)(**). Let U be an open set in X and take s’ € OF(U) such that

s, € P. Then s’ maps to an equivalence class in Ogi.

U = {(z,P) € C(X) : z € U,s, € P}, then restricting to this open set, we see that our

(X)(Wfl(U)). Consider the open set

(z,P) is in U/  771(U) and so we can restrict the equivalence class of s’ to Uy. In this
open set however, s, € P for all (z,P) € Uy so ' ~ 0, and so s is in the kernel of the
composition of the top row of (5.7.1). Then the universal property of Ox ,/~p says that
t must exist and commute with the diagram. Also, ¢ must be surjective as the top line is
surjective.

To see that t is injective is straightforward. For example, in the monoid case, if
81 2)s [85 2] € OF,./~p with representatives s}, sy € OF(U), and if tex([s] ,]) = tex([55 ,])
then s} ,~ s}, for all (z, P) € V for some open V' C 7~ !(U). This means at every (z, P) €
V' then s} , ~p s ,, so this must be true at our (z, P), so that [} ,] = [s5,] € OF,/~p
as required.

Now O ,/~p is interior as the complement of P € OF, has no zero-divisors. It
is also local, as the unique morphism Ox , — R must have P in its kernel so it factors
through the morphism Ox , — OF,/~p giving a unique morphism O%. /~p — R with
the correct properties to be local.

This means that (C'°°(X), Ocroc(x) Ogﬁoc(X))

space with corners. O

= C'°¢(X) is an interior local C*-ringed

Theorem 5.7.3. The corner functor C°¢ : LC®RS® — LC*°RS;, is right adjoint
to the inclusion functor i : LC°RS;, — LC*°RS®. Thus we have natural, functorial

isomorphisms Homp,corsg, (C'°¢(X),Y) = Hompceorse (X, i(Y)).

Proof. We describe the unit 7 : id = C% and counit € : i{C' = id of the adjunction. Here
ex = wx for X a C°°-scheme with corners, and nx = tx, for X an interior C*°-scheme
with corners. That € is a natural transformation follows directly from the definition of
C(f) for each morphism of C'*°-schemes with corners f.

To show 7 is a natural transformation, we need to show ny o f = Ci(f) o nx for all
f: X =Y € C>®Sch{,. On topological spaces we have x — f(x) — (f(x),(0)) under
ny o f, and z > (z, (0)) —~ (f(@), (ffex)"1(0)) under Ci(f) o mx. As f is interior, then
( fgﬁx)_l(O) = (0) so we have equality on topological spaces.

On the sheaves of C°°-rings with corners, elements of Ogiec(y)(U) are equivalence
classes [[[s]]] where s € Oy (V) for some open set V D 7(U), [s] € 7~ HOy)(U), [[s]] €
71 (Oy)(U)/~ and [[[s]]] € Ocroc(yy(U). The map ty(U) sends [[[s]] to s|,~1r). So
Ny o f sends [[[s]]] to fy(¢71(U))(s],-1(1)), and Ci(f) o mx sends [[[s]]] to [[f(V)(s)]]] to

164



fs(V)(8)],~1(t), which is equal to fﬁ(L_l(U))(Shfl(U)) as required. (Again, this is actually
a map of the underlying presheaves, but the properties of the sheafification functor from
Definition 2.3.3 implies this gives a map of the corresponding sheaves.) The same occurs
for the sheaves of monoids, hence n is a natural transformation.

Finally, to show naturality, we need to show that C' = CiC' = C is the identity natural
transformation and i = iC'i = i is the identity natural transformation. However, both of

these follow as 7x ot x = idx. O]

Remark 5.7.4. If a functor F': C' — D from a category C to a category D has a right
adjoint G : D — C, then one of the equivalent definitions of adjoint (cf. Awodey [5, §9])
says that for elements d € D there is a morphism f; : FG(d) — d, such that for all ¢ € C
and d € D, and for all morphisms g : ¢ — G(d), there is a unique morphism A : ¢ — FG(d)
with fyoh =g.

For the corner functor C°¢ : LC®RS® — LC°°RS;,, this means if X is a local
C*>-ringed space with corners, then we could instead define C'°°(X) to be the (unique
up to isomorphism) interior local C'*°-ringed space with corners with morphism wx :
C'°¢(X) — X that satisfies the following universal property: for all interior local C'*°-
ringed spaces with corners Y and morphisms f : Y — X, there is a unique interior
morphism f : Y — C'¢(X) such that wx o f = f. For any morphism f: X — Y in
LC>®RS®, we can then define C'°°(f) = ﬂw\x.

For all interior local C"*°-ringed spaces with corners X, then the identity morphism
idx : X — X gives a unique interior morphism idx : X — C'°¢(X), such that 7x o
iaX =idx : X — X. Wedefinetx = iaX, and by uniqueness we see }' = Cloc(f)OLX for

all morphisms f : Y — X for interior Y. This is consistent with our previous definition.

5.7.1 Boundary

We now consider defining a notion of boundary of local C*°-ringed spaces with corners.

For this, we need the following;:

Definition 5.7.5. A prime ideal P in a non-trivial monoid M (under multiplication with
a zero element 0) is a minimal non-trivial prime ideal if P # {0} and there are no prime
ideals P’ with P’ C P.

Definition 5.7.6. If X is a local C*°-ringed space with corners, then the boundary 9'°°X
of X is a sub-local C*-ringed space with corners of C'°°(X). It is the restriction of
C'°¢(X) to the set

9°°X = {(z, P) € C'°°(X) : z € X, P is a minimal prime ideal of OF% 2}
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That is, if we consider the inclusion of topological spaces §'°°X — C'°°(X) then the inverse

image sheaf of Ocioc(x) under this map gives the sheaf of C°°°-rings with corners on ocx.
Note that we would not expect X — 9°°X, X € LC®RS® to be a functor.

Remark 5.7.7. Gillam and Molcho [28, §4.4] define a notion of the boundary AX of
a pre-log locally ringed space X, discussed in §5.9. In Remark 5.9.4 we explain that
our local C*-ringed spaces with corners are indeed pre-log locally ringed spaces. Then
for X € LC®RS® we can compare AX and 9°°X. Considering their definition of
boundary AX, we see the underlying sets of the topological spaces are identical, however
the topology on 0'°°X is finer than the topology on AX, so there is a morphism of
topological spaces 9°°X — AX. Notably, the sets Uy, Uy defined in Definition 5.7.1
form a subbase for the topology on 0'°°X, however only the sets Uy form a base for the
topology on AX.

The sheaves on 9°°X, AX are constructed in identical ways, so there is actually a
morphism 9'°°X — AX of pre-log locally ringed spaces (in fact, both are local C*°-ringed
spaces with corners whenever X is), and the stalks are isomorphic. Then X — AX

is an isomorphism whenever the topology on AX is as fine as the topology on 0'°°X.

5.8 Corner functor for C>*Schg

In this section, we define a corner functor for firm C°°-schemes with corners and compare
it to the corner functor for local C'*°-ringed spaces with corners. We first consider the

prime ideals necessary for this construction.

Definition 5.8.1. For a C*°-ring with corners €, define the following two sets of prime
ideals
Pre = {P C €c|P is a prime ideal}

and

Prlp = {P C €x|P = 7, L (P') for some x € X for a prime ideal P’ C O% . }-

T,ex

Here, mpex @ Cox — €ex is the surjective localisation morphism. While Pr’¢ C Pre¢,
Example 5.8.3 shows these two sets are not always equal. In the following lemma we
will show some facts about prime ideals including that any P € Pre \ Prg are such that

Spec(€/~p) is the empty set with the zero-sheaf.

Lemma 5.8.2. (a) If we consider any R-point z : € — R and the localisation 7 : € — €,

then g ex takes prime ideals in Cex to prime ideals in €4 ex (o1 to the entire monoid).
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(b) For a C*®-ring with corners € if P € Prg \ Pry then Spec®(€/~p) is the empty
set with the zero-sheaf. Also, an R-point z : € — R factors through €/~p whenever
P C 27 Y0), which implies Ty ex(P) # Cexn. So we have P € Pre \ Prly if and only if for
all R-points x : € = R then 7y ox(P) = €4 ex under the localisation 7w : € — €.

(c) If we have P € Prg and an element ¢ € €y such that ¢ ¢ P then for each R-point
z: € = R we have Ty ex(c) € Ty ex(P) if and only if Ty ex(P) = Cgex. This implies if we
have two prime ideals P, Py € Pre with Py C Py, then for allx € X, 7y ox(P1) C Ty ex(P2)

with equality only occurring when Ty ex(P1) = Ty ex(P2) = €4 ox.

Proof. Firstly, if P is a prime ideal in €¢x and we have a morphism of C*°-rings with

corners ¢ : ® — € then it follows that ¢_!(P) is a prime ideal in Dcx. We now prove (a).
(a) Take a prime ideal P C Cex. To see that 7y ex(P) take any ¢, € m; ox(P) then as

Tz.ex 18 surjective there is ¢ € Coy is such that 7, (') = ¢, and we have
CpTz,ex(P) = T,ex () Ty ex(P) = Mg ex(eP) C Taex(P).

Now say ¢, d, € Tz ex(P), then there are ¢/,d’ € €cx such that 7, ex(¢’) = ¢, and 7, ox(d) =
dl.. So Tgpex(d) € myex(P). So there are a/,b' € €¢ such that a'dd’ = v'p’ for some
p € P, and with z o ®;(a’) # 0 and ®;(a’) — ®;(0') € I as in Lemma 4.6.9. However,
p' € Psobp € Pandsoddd € P. This means either ¢d € P, in which case, as P is
prime, then either ¢ € P or d’ € P and so either ¢, or d/, are in 7, x(P); or we have that
a’ € P. However, this a’ € P is such that z o ®;(a’) # 0, which means that 7, ex(a’) € Cex
is invertible, which would imply that 7y ex(a’) € Ty ex(P) = €4ex. In this case, both
and dfv will be in Wm’eX(P). Hence FI,eX(P) is either prime in €, ¢« or equal to all of €, .

(b) Take P € Prg \ Prg, this means that for all 2 : € — R then P C 7} (s ex(P)).
So for each z there is a ¢ € €qx such that ¢ ¢ P but 7y ex(¢) = 7z ex(p’) for some p’ € P.
However, similar to the above, we must then have o/, € € with z o ®;(a’) # 0 and
®;(a’) — @;(b') € I and such that o'c’ =V'p'. As p’ € P, then b'p’ € P so a’¢ € P and as
¢ ¢ P then o’ € P. However, again m, ex(a’) € ey is invertible, which would imply that
Tpex(P) = Cpex forallz : € — R. P € Prg \ Pri implies 7y ox(P) = €4 ex for all R-points
z. The reverse implication follows from the definition of Prj.

If Ty ex(P) = €4 ex for all R-points = then there are no R-points y : €/~p — R, as if
there was such an R-point then composing it with the projection ¢ : € — €/~p gives an
R-point z = y o ¢ : € — R. Then taking the a’ corresponding to this R-point as in the
previous paragraph implies that x o ®;(a’) # 0, however a’ € P 80 ¢ex(a') = 0 € Cox/~p.
This gives

0#20®;(d) =yod;0pe(d) =0,
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which is a contradiction to the existence of y.

Hence Spec®(€/~p) is the empty set with the zero-sheaf. Notably, if €/~p is not
the zero ring, then this will give an example of C*°-rings with corners that is not semi-
complete.

(c) If we have P € Pre and an element ¢ € € such that ¢ ¢ P and say we have
Tyex(€) € Typex(P) for some R-point  : € — R. Then there is a p € P such that
Tzex(€) = Tz ex(p). Then, as above, there are a,b € €qy satisfying certain conditions such
that ac = bp. However, as ¢ ¢ P and P is prime, then a € P. Yet 7, x(a) is invertible in

Crexs S0 Mg ex(P) = €4 ox for this R-point z. O

Example 5.8.3. If € = C®°(RIIRIIR) then we will show Pr¢ \ Pry is non-empty. Label

each R as Ry, Ry, R3 then the prime ideals in €4y are
P={f:RiI IRy IIR3 — [0,00) : f(R;) =0}
fori=1,2,3 and
Py = (P, Py), Ps = (P, P3), Ps = (P, P3), P = (P1, Py, Ps3).

If we take elements ¢, ch, ¢y € €ex such that ¢, = 0in R; and ¢, = 1 in R; for j # ¢ for

1,7 = 1,2,3, then these prime ideals are finitely generated with
Py = <C/1>’P2 = <C,2>3P3 = <C§’>>7P4 = <C,1,C/2>,P5 = <C,2,C§>,P6 = <C,1,Cg>,P7 = <C,170/2?Cé>'

Then €/~p, = C*(R;) is semi-complete for i = 1,2,3, and €/~p, = 0. In every stalk
Trex(Pi) = Cpex for ¢ = 4,5,6,7 for each z : € — R so the primes Py, P, Ps, P; are in
Pre \ Pris. As for example, ¢4 maps to a non-zero element under the quotient morphism

¢ — &€/~p,, the €/~p, for i =4,5,6 are non-zero but are not semi-complete.

Proposition 5.8.4. Let X = Spec®(€) with € a firm C*-ring with corners. Then
c . X [pepre SPec(€/~p) is a functor c# . AC*®Schg — C°°Schg ;,,. The
points of the topological space of C*(X) are in a one-to-one correspondence with pairs
(x, P"), for some x € X and prime ideal P' C €, ex. The stalks at a point (z,P') are

isomorphic to
Ey/mpr <¢/Nﬂl__éx(P,)>x : (5.8.1)

Proof. Firstly, let € be any firm C*°-ring with corners and P C C€ex prime. Let ¢, ¢}, € Cex
and [c]], [¢}] be their equivalence classes in €ex/~p. Then if [¢}][c)] = 0 € Cex/~p, the

explicit description of quotient from Example 4.4.4(b) implies ¢jc¢, € P. As P is prime,
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then, without loss of generality, ¢| € P. However, then [¢]] = 0 € €cx/~p. Hence there
are no zero divisors in €¢y/~p, and €/~p is interior and firm, so C*(X) is an interior
firm C*°-scheme with corners.

If X = Spec(€) with € firm, then the elements of the topological space of C*(X)
are the disjoint unions of the topological spaces of Spec®(€/~p) for P € Pre. Note
that for any P € Prg \ Pry we have Spec®(€/~p) is the empty set with zero-sheaf by
Lemma 5.8.2, 0 [ [ pcp,, Spec®(€/~p) = ]_[PeprlC Spec®(€/~p). As we have the surjective
quotient morphism € — €/~p then any R-point, y of €/~p comes from an R-point of
€ by composition with this morphism. However, the only R-points = of € that factor
through this composition must have P C x71(0), so these are precisely the R-points of
¢/~p. Primes P C 271(0) € Pr¢ must be in Pry by Lemma 5.8.2, so they are in one-
to-one correspondence with primes P’ = 7y ex(P) C €4 ex. So an R-point of CM(X) is
determined uniquely by a R-point € X and a prime P’ C €, ¢ (equivalently a prime
P € Prlp with P C 27(0) € Cey).

To show that (5.8.1) holds, note that the coproduct of C°°-schemes with corners has
sheaf of C*°-rings with corners that is the product of the sheaves of C'"*°-rings with corners.
This means the stalks at a point (z, P') are isomorphic to the localisations (&€/~p), for
Toex(P) = P, as in Lemma 5.4.14. It is then an exercise in universal properties of
quotients and localisations to see that this is isomorphic to €, /~pr.

We will use the notation in the following commutative diagram to define the func-
tor on morphisms. Note that wp : € — €/~p gives a morphism gp = Spec®mp :
Spec®(€/~p) — Spec®(€). The universal property of coproduct allows these to be amal-
gamated to give g : [[pcp,, Spec®(€/~p) — Spec(&).

N
¢, ¢/~p
wpw wz,P (5.8.2)
Cy/~p = (€/~p),
N
Let f : X — Y be a morphism of firm affine C°°-schemes with corners with X =
Spec(€) and Y = Spec®(®) with € and ® firm. We define a morphism C*T(f) :
CM(X) — C*(Y). On topological spaces, it takes (x, P’) to (f(m),(fﬁ(m)ﬁx)_l(P’))
and we show this is continuous in Lemma 5.8.5. On the sheaves of C*°-rings, take

an element s € Ocan(y)(U) and we show how to define CH(f)(U) - Ocanyy(U) —
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OCaH(X)(CaH(f)_l(U)) for open U C C*(Y). The same method will show how to define
ca(f )§*(U) for the sheaves of monoids.

For all points (y, Q) € U, there is an open set U, o C U such that s(y/, Q') = my o/ (dy)
for some d, € ©/~¢ and all (v, Q") € Uy,. We can restrict this open set further around
(y, Q) by requiring @ = Q. Then there is an element (iy € © such that ﬂQ(ciy) = d,.
Then there is an §; € Oy (Y) such that § dyy = ﬂy/(d) for all ¥ € Y. Then we can apply
f+(Y) to this element to get an element £ € Ox (X).

Now we reverse the process: for all 2’ € X there is an open set Vs such that #(z) =
T2 (6y) for some ¢y € € and all 2 € V. Then we can define t pr € Ocix) (97 (Va))
by ty p(x, P) = 7y p o mp(éy). On overlaps (x,P) € g_l(Vx/l) N g_l(VI/Q), then 7, p o
ﬂp(émll) =Tpy owx(éx/l) =Tply orrm(éxé) = Tz.p o7rp(éx/2), with the first and last equality
holding as diagram (5.8.2) is commutative, and the second equality from # being a well
defined element of Ox(X). So t, pr agree on overlaps, and we can glue to an element
te OCaH(X)(CaH(X)).

Now this ¢ was created from s restricted to an open set U, g, so there is a t for each open
set Uy o and we need to restrict each ¢ to C*(f)~1(U, o), to create a collection of sections
ty.Q € Ocaff(x)(CaH(f)_l(U%Q)). Finally we need to show that these agree on overlaps.
Say (2, P) € C¥(£) " (Uyy.0) NC™ () Uy 02), then Q1 = Qs = Q = (i)' (P) and
CH(f)(x, P) = (y,Q) € Uy, 0 NUyy.q- Then s(y, Q) = m,.0(dy,) = my.0(dy,). We want to

show that in the stalks, we have gf](x P)© fﬁ(x)(%yl) - gﬁ

o(e.P) © fﬁ(i)(%”). However, this

follows directly from Remark 4.4.5.

Finally, we can glue the sections t, g € OCaE(X)(Caﬁ‘(f)_l(Uny)) to create a section
te (’)Caff(X)(C’aH(f)*l(U)), which gives the map C*(f);(U). By construction, it behaves
well with respect to restriction, so this defines C?( f)¢- The same construction on the
monoid sheaves gives C’aﬁ(f)gx. This gives a morphism (C*T(f), CaF(f):, Caff(f)k,) -
C(X) — C*(Y) using (2.4.2). This construction respects compositions of morphism,
so C* is a functor from affine C'°°-schemes with corners to interior C*°-schemes with

corners. OJ

Lemma 5.8.5. The morphism C*(f) : C*(X) — ¥ (Y), (z, P) — (f(x), (fg,ex)_l(P))
in the previous proof is continuous provided f : X — 'Y is a morphism of firm affine C°-

schemes with corners.

Proof. As in the proof of Proposition 5.8.4, we have f : X = Spec®(€) — Y = Spec®(D)
a morphism of firm affine C'*°-schemes with corners with € and ® firm. We will use the

following commutative diagram, where we have prime ideals P C Cey, () C Dex and points
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reX,y=f(x)eY.

Q:ex/NP = ¢ex gex ° CDGX/NQ
me OF(X) OF(Y)  mex (5.8.3)

)

i

~ (ex
Q:x,ex - OX@

l

ex ~v
fﬁ OY,y - @y»ex

The topology of C*(Y) = [ pepr, Spect(€/~p) is generated by open sets Ur,(4) C
Spec®(®D/~(q) for d € ® and prime ideal () € Prp where
Unga) ={(, Q) : (. Q) (mq(d)) = y(d) # 0,Q" = my.ex(Q)}-

To show C**(f) is continuous then it is enough to show C’aﬂ(f)_l(UﬁQ
Ccf(X).
Firstly, we can consider f~1(Uy) where Uy is the basic open set of Spec®(D) with

(4)) is open in

Us={y: D — R:y(d) # 0} C Spec’(D).
We can then take open set
V = Spec(mp) N (f 1 (Ua)) C Spec®(€/~p) C C*(X)

for P a prime ideal of €. that we need to determine. Here 7p is as in (5.8.3).

Consider that

CH () Unga) = {(2, P') : (f(2), (fie) ' (P")) € Ua}

(,P') : f(2)(d) # 0, (fiex) ' (P') = Taex(@Q)}-
So we need prime ideals P’ C €, ex = OF, such that (ffn,ex)_l(P’) = Trex(@). Fix

(2', P') € CH(f) " (Uryy(a), let C*H(f)(a', P') = (v, Q') € Ury(a), and let P = myr ox (P') C
Cex. We will show there is an open set W C Spec®(€/~p) such that

—~

W NV C Spect(€/~p) C C(X)

contains (z/, P') and is contained in C’aﬁ(f)_l(UﬁQ(d)).

To do this, we need to use that ® is firm. Take generators di,...,d, € Do that
generate the sharpening @QX. Order them so that dy,...,d; generate Q and dgy1,...,d,
are not in Q. Then my o(d;) generate Q' for i = 1,...,k and 7y ex(d;) ¢ Q" by Lemma
5.8.2(c). As (fi,yex)*l(P’) = Ty ex(Q) = @', then there are elements c1, ..., ¢, € Cox with

Wm’,ex(cl)a ce 7Wm’,ex<ck) eP = 7T:):’,ex(P>7 and ﬂ_:l:’,ex(ck+l)a cee 77rz’,ex(cn> §é P = 7Tm’,ex(lj)a
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which implies ¢1,...,c, € P and ¢gy1,...,¢, ¢ P by Lemma 5.8.2(c), and are such that
fi/,ex(ﬂy’,eX(di)) = Ty ex(c;) for each i =1,...,n.

Now take sections s1,...,s, € OF(X),t1,...,t, € OF(Y) such that (s;); = 7 ex(ci)
for all x € X and (t;)s = my ex(d;) for all y € Y. The previous paragraph implies that for

eachi=1,...,n,

FEWV) )z = fhex(Tyex(di)) = Toex(ci) = (5i)a (5.8.4)

when r = 2/ € X, and that this must be true for all z in an open neighbourhood W; of a2’
in X. Let
W' =nk W, c X, W =0,  W; C X,

W = Spec®(mp) L(W' N W") C Spec(€/~p) C C*(X).

We see that 2 € W N W” so that (z/, P') € W.
We now show that W NV C C*(f)"1(Us,(g)- Take (2", P") e WNV. As (2", P") €
V then f(z")(d) # 0 and P" = 7y ex(P), so P contains my» ex(c1), . . ., Ty ex(c1) and does
not contain mp ex(Crq1)s - - - T ex(cn). As (2", P") € W then z” € W', which implies
that
(£ o) L") D (fh ) T (o ex(€)) D Ty ex(di) €

for all i =1,...,k, and as these d; generate @, then my (Q) = Q' C (fg,,’ex)_l(P”).

Now say that Q' # (fi,,ﬁx)*l(P’/), so that there is d € D¢ such that myr o (d) €
(ff:/,’ex)_l(P”) but myr ex(d) ¢ Q', which means d ¢ Q. Then d is a product of some
of the d; for j = k+1,...,n, and as (f:g,,’ex)_l(P”) is a prime ideal in ©, ¢ then
ﬂ;gx((fi,,,ex)*l(P”)) is prime in Dex, so a least one of the d; is such that myr o (d;) €
(fﬁ//ﬁx)_l(P”) but 7y ex(d;) ¢ Q' for some j = k+1,...,n. However, as (2", P") € W
then 7 € W”, and we know that fi,,’ex(wyn’ex(dj)) = Ty ex(cj) € P” by (5.8.4), which
implies a contradiction to the existence of such a d.

Hence myrex(Q) = Q = (ff ) '(P") for all (a",P") € WAV, 50 WNV C
()~

ro(d)) as required. So Caﬁ:(f)*l(U,rQ(d)) is open, and C*f( f) is continuous. [
Corollary 5.8.6. The image of C* : AC™Schg — C°°Schg;, is an affine firm
C™-scheme with corners, and we can consider it as a functor C* . AC®°Schg —

AC™Sch ;.

Proof. For any firm C°°-ring with corners € the prime ideals of € are finitely gener-
ated and there are finitely many of them. Then Pr¢ has finite cardinality, so this is a

consequence of Proposition 5.4.15 and Proposition 5.8.4. ]
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Remark 5.8.7. The only place the condition firm is used in the proof of Proposition 5.8.4
and Lemma 5.8.5 is in showing the morphism C*(f) on topological spaces is continuous.
The intuition for the lemma is similar to Proposition 5.4.10, where we showed that lo-
cally a morphism between affine C'"*°-schemes with corners with firm target comes from
a morphism of the C*°-rings with corners. By Remark 4.4.5, a morphism ¢ : € — ®
of C*°-rings with corners gives morphisms €/~p — ®/~( for all prime ideals P € Pre
and Q € Prp such that P = ¢_1(Q), here mp(c) — mg(d(c)), 75(c) — 7o (¢ex(c)) for
ce €, € €. Then this gives a morphism

H Q:/NP—> H :D/ND,

PePre QePrp
(WP(CP))PEPTQ — (FQ(¢(CP)))Q€Pr®,P:¢;x1(Q)

(75 (cp)) Pepre = (Wg((ﬁbex(c%)))erro»P:‘?&l(Q)’

where cp € € and c’P € Ce for each P € Prg. Taking Spec® of this morphism gives the
morphism C*(f) = (z, P) — (f(z), (fﬁyex)_l(P)) on topological spaces.

In the following example we show that the construction for C*(f) can fail to be con-
tinuous if € is not firm. Specifically, we have X = Spec®(€) with € firm but we have a rep-
resentation ¢ : X = Spec®(®) with ® not firm, and we show the C*>°-scheme with corners
[Ipep:y Spect(D/~p) is not in general isomorphic to CcM(X) = [pepre Spect(€/~p),

and C*¥(¢) is not continuous.

Example 5.8.8. Consider the set X = {(0,1/n) : n € Z\ {0}} U {(0,0)} C R? with the
induced topology from R?. While this is not a manifold with corners, we can still consider
the smooth maps from it to R and [0, c0), which make X into a C*°-scheme with corners
that is isomorphic to both Spec®(C*(X), Ex(X)) and Spec®(C*°(X),In(X) II1{0}). Here
C*°, Ex, In are as defined in Definition 4.1.1. Let ¢ : Spec®(C*>(X),In(X) II {0}) —
Spec®(C*(X), Ex(X) be the isomorphism.

Now (C*(X),In(X) I1{0}) = € is a firm C°°-ring with corners, where the only non-
invertible element in €¢ is 0. We can use this to determine the corners of X as in

Proposition 5.8.4. As the sharpening is {0} the only prime ideal is {0} and we have

cl(X) = H Spec®(€/~p) = Spec®(&€/~(p}) = Spec’(€) = X.
PGPI‘Q

This is the same as C'°°(X) € LC®RSC. As C!°° is a right adjoint it respects limits, so
we can also calculate the corners as the fibre product of f : R — R?,z +— (0, ) and the
inclusion g : Y — R? where Y = {(e ¥’ sin(n/y),y) : y € R} C R?}.
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However, (C*°(X),Ex(X)) = ® is not firm. An example of generators of Ex(X) are
the smooth maps f, : X — [0,00) for n € Z \ {0} with f,(0,1/n) = 0, and equal to 1
elsewhere, along with g, : X — [0, 00) for m € Z\ {0} with ¢,,(0,1/n) =0 for all n > m
gm(0,0) = 0, and g,, equal to 1 elsewhere. Of this collection of generators, we see that
while we can remove many of the g,,,, we must have at least infinitely many g,,.

The prime ideals of Ex(X) are

P, = {(fn) ={f:X —[0,00) smooth : f(0,1/n) =0} for n € Z\ {0},
Py = (gm)mezjoy = {f : X — [0,00) smooth : f(0,0) = 0}.

Quotienting (C*(X),Ex(X)) by the P, for n € Z gives (R, [0, 00)) where Spec®(R, [0, c0))
= (0,1/n) or (0,0) as expected. Then [[pcp,  Spec’(®D/~p) is isomorphic to X with the
discrete topology, not C*(X) = X with the induced topology from R% Also C?f(¢) :

X — X is the identity function of sets but is not continuous on the topological spaces.

Theorem 5.8.9. The functor C*F : AC>Schg — AC®Schg;, is right adjoint to the
inclusion % AC®°Schg ;, — AC®Schg. The functor C can be used to define a
functor C': C*°Schg — C°°Sch19_i’in with C‘ACoosch% = C* such that C is right adjoint
to the inclusion functor i : C°°Schg; — C°°Schg. Hence i3 respect colimits and

C,C™ respect limits.

Remark 5.8.10. Before we prove Theorem 5.8.9, let us remark that the maps F() .
(S HgZ)Pm ¢ /~p are functors from C*-rings with corners to (interior) C'*°-rings with
corners. Note that when we take the interior product, we still take the quotient as non-
interior C'"*°-rings with corners, even if € is interior.

Here, if ¢ : € — ®© is a morphism of C*°-rings with corners, then by Remark 4.4.5
there is a morphism ¢, : € / ~ )y = ®/~ for each prime () € Prp. The definition of
quotient gives non-interior morphlsms wp: € — €/~p for each prime P. If ¢ex () =0

then for any ¢ € 7~ C Cox, then ¢ex(¢) € Q, which implies ¢ € P so ¢ = 0.

ex ¢ '@ )( ‘)
Hence each ¢, is interior.

Then the functors F(™) take ¢ to F(™(¢) : Hgfépr@ C/~p— Hgéprg ®©/~q. These
take an element (cp)pepre € HPer €/~p to (dQ)qepry, where dg = @g(c,. (Q))’
which is an interior morphism in both cases. In the non-interior case, the morphlsms
mp can be amalgamated to give a projection 7w : € — HPePrQ; ¢ /~p by the universal
property of product, and then F'(¢) commutes with these projections.

However, in general there is no interior morphism 7 : € — H pepre € /~p. For exam-

ple, if € = ({0},{0}) then its image under F™ is ({0}, {0,1}) but there is no morphism
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from ({0},{0}) to ({0},{0,1}). This is important as it means F'" is not a left adjoint
to the forgetful functor i : C*°Rings{ — C°Rings®. Specifically, it means there is
no unit for the adjunction, so this does not contradict Theorem 4.3.7(b) which tells us a
left adjoint cannot exist. This discussion is the same if we restrict to firm C°°-rings with

corners.

Proof of Theorem 5.8.9. Let X = Spec®(€) for € a firm C*-ring with corners and take
cM(X) = [pepre Spect(€/~p). We have morphisms mx : CM(X) —» X, and vx :
X — C¥(X) for interior X. Here we take gp = Spec®(mwp) : Spect(€/~p) — Spec(€&)
as in Proposition 5.8.4, and then amalgamate these maps using the universal property
of coproduct to get mx = g : C*(X) = [ pepr, Spect(€/~p) — X. If € is interior,
then (0) is a prime ideal of €cx and Spec®(€/~ ) = Spec®(€), so there is an inclusion
tx : X = CM(X) = [{pepre SpeC(€/~p).

In fact, as O (X) = [ pepr, Spect(€/~p) = Spec®([[pecp,, €/~p), then we can
write wx = Spec’(€ = [[pep,, €/~p), and tx = Spec®([[pep,, €/~p — €) where €
and X are interior for the latter. Showing these are natural transformations, commute
with morphisms f : X — Spec®(®) 2 Y and C*(f) : C*#(X) — C*¥(Y"), and that these
form an adjoint pair follows from the definitions, where 7 x is the unit of the adjunction
and ¢x is the counit.

Now, take X € C°°Schg, so that there is a cover of X by open affines {U; }ics, with
X |y, = Spec®(€;) with €; firm C*°-schemes with corners. Then C*(X|y;,) makes sense
for each i. We would like to use Remark 5.4.13 to glue these together to define C(X), so
that C'(X) is the colimit of all C*¥(X|y.) for U; = X |y, affine in X. We will show that

aff ~ aff
CHX ) ) = C (X0 =1 w00,

where 7; : C(X|y,) — X is the unit of the adjunction defined above, which will imply
that the properties in Remark 5.4.13 hold. To do this, we need only show that the
isomorphisms Spec®(€;)|y = Spec®(€;)|yv for open V C U; NU; C X give isomorphisms
CaH(X‘Ui)’ﬂ;l(v) = Caﬁ(X’Uj>‘ﬂ;1(V)'

This is straightforward. In both cases the topological spaces are isomorphic to
{(z,P):z €V,P C OY, prime ideal},

where we use that OF , = €;ox s = €jex . This creates a morphism of the topological
spaces. If s € Ocan(y,)(mi(V)) then s, = m; p o mp(¢) for some ¢ € €. Then take § €
Oy, (V') defined by s, = m,(c) for all c. Apply the isomorphism Spec®(€;)|y = Spec®(€;)|v
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to get an element of ¢ € Ouy; (V). Then apply m; to this element. This gives a morphism of
the sheaves of C*°-rings, and a similar process gives a morphism of the sheaves of monoids.

To check these morphisms of sheaves are well defined, respect restrictions and do not
depend on choices follows similarly to the proof of the functor in Lemma 5.4.16, and
we see that we get a morphism CaH(X|UZ.)|7T;1(V) — CaH(X|Uj)|7r;1(V) that commutes
with each 7, ;. As € ex s = €jexa, then (€;/~p)m p,) = (Q:Z‘/NP].)(LP].), so this is an
isomorphism of sheaves of C*-rings with corners. Hence these C*(U;) are isomorphic
on overlaps.

This means we can glue these C*f(U;) to form C(X) using Remark 5.4.13. We now
show this is a functor. Take a morphism f : X — Y of firm C'°°-schemes with corners.
Then take an open cover of Y by affine firm open sets {V;}ic;. Then take an affine
firm open cover of f~1(V;) in X, say {U;;}jes, so we have morphisms through f from
each U; ; to V; and then inclusions to Y. The functor caft . AC®°Schg§ — C°’°Sch19_i7in
gives morphisms C*(U; ;) — C*(V;) and the definition of colimit gives morphisms
C(V;) = C(Y). The universal property of C(X) as a colimit allows us to amalgamate
these morphisms to a unique morphism C(f) : C(X) — C(Y) that commutes with all
the other morphisms. This defines C': C*°Schg — C"°Schﬁyin on morphisms.

To show C' : C*°Schg — C°°Schg ;, is aright adjoint to the inclusion ¢ : C*°Schg ;,, —
C°°Schg, we use the mx and ¢x defined above for affine firm C'°°-schemes with corners
to give morphisms C*(U) — X|y and X|y — C(X)|car () on affine firm neighbour-
hoods U. We again amalgamate these morphisms to wx and ¢x defined on all of C(X)
and X, using that any firm C°°-scheme with corners is the colimit of any (firm) affine
cover and the definition of C'(X) as a colimit of affine (firm) covers. That these are natural

transformations and the unit and counit of the adjunction follows from the definitions. [

Remark 5.8.11. As in Remark 5.7.4 we can actually define the corners C(X) of a firm
C°-scheme with corners X to be the unique (up to isomorphism) firm C'*°-scheme with
corners with morphism 7 x : C(X) — X that satisifies the following universal property:
for all interior firm C°°-schemes with corners Y and morphisms f : Y — X, there is
a unique interior morphism }' : Y — C(X) such that wx o jc = f. For any morphism
f: X — Y in C*Sch§, we can then define C(f) = qu\x.

For all interior C'**°-schemes with corners X, then the identity morphismidx : X — X
gives a unique interior morphism id x : X — C(X), such that wx o iEiX =idx : X —
X. We define tx = idx, and by uniqueness we see j" = C(f) o tx for all morphisms

f:Y — X for interior Y. This is consistent with our previous definition.

Example 5.8.12. If X is a manifold without boundary, then there is an isomorphism
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C Schg

C>°Sch¢ . . . .
O (Fygare (X)) & Fypane P(X) with 7y = id. This occurs because any morphism
C=°Schg . . . . .. .
Y - F . B(X), where Y is an interior C*°-scheme with corners, is interior, as the
Man 9 9 )
Cee Sch

monoid elements of the stalks of F};, . #(X) are either invertible or zero.

In general, if X is a manifold with corners (possible with mixed dimension), then the

functors C' and Flslanic}l commute. That is, there is an isomorphism C(F; l\c/:[anSCChﬁ (X))
C°°Sch§ C°°Sch§ oo
> Fyrane H(C(X)), with 7x = Fyg, o 2(ix) and C : Man® — Mang, from Definition
C°°Schg

3.3.6. As Fype "(X) = X is interior, then we have tx : X — C(X), which includes
X in C(X) by « — (z,(0)). Here (0) is the zero prime ideal in each stalk. The sheaves
of C*-rings with corners are isomorphisms over the image ¢tx (X).

The corners functor of manifolds with g-corners also behaves like this. This implies
the following corollary, which appears to be new and tells us that the corners of manifolds

with (g-)corners satisfy a universal property.

Corollary 5.8.13. The corners functor of manifolds with (g-)corners with mixzed dimen-
sion C': Man® — Man (C : Man8&° — Mang ) in Definition 3.3.2 is a right adjoint to
the inclusion Mang, — Man® (Manf® — Man&®).

Proposition 5.8.14. For X € C°Sch§ there is a morphism C(X) — C°%(X) in

LC*°RS;, commuting with the projections to X. This is an isomorphism.

Proof. As C(X) is interior then we have the following commutative diagram in LC*°RS€.

C(X) UES X
7"C(X)< )/LC(X) Tﬂ'x (5.8.5)
1 CIOC(‘KX) loc
Cle(C(X)) C(X)

Then the composition C'°¢(wx) o Lox) » O(X) — C'°¢(X) is the required interior mor-
phism. From the definition of C' and C?f as described in Proposition 5.8.4 and Theorem
5.8.9, then elements of C'(X) can be described as pairs (x, P) € C(X) where P is a prime
ideal of Ox ;. This composition of morphisms then sends (:r P) first to ((z, P), (0)) where
(0) is the zero ideal of Ox ;. /~p, and then to (7(x, P), 7rX WX((x Py, o ((0)). Here m(z, P) =

xand T is the quotient morphism O, — OF,/~p, so wg( (@, P))@(((O)) =

X Wl)(((x,P)),ex
P, and the composition is an isomorphism of underlymg sets of the topological spaces.

Now say X = Spec®(€) € AC™Sch§ with € firm. Then €% is generated by ¢}, . . ., c,.
The prime ideals P € Prg are generated by subsets of this set of generators. We want to
check C'¢(rx) o tox)  C(X) — C'°¢(X) is an isomorphism. We already know that it

is a continuous morphism on the topological spaces and we can check that as follows.
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First we have that 7= 1(U) in C'°°(X) is isomorphic to 7~ }(U) in C*(X). We will
show that for any (z,P) € Uy there is an open set V € C*(X) with V C Uy and
(z,P) € V. For (2/,P') € Uy, then s, = myex(c') for some ¢ € € for all x € W C U
with 2’ € W, with 7 ex(¢) € P'. Then 7y ex(¢)) ¢ Tpex(my s (P')) for all z € X. So

(@', P)ex ' (V)N SpeCC(C/Nw;iX(P/)) C Uy

Similarly, for (2, P') € Uy, then

(z/,P) e H(V)n SpeCC(C/Nﬂ;éX(P,)) cUy.
As the underlying set of SpecC(Q/Nﬂ;ix(P,)) is open in C*f(X), then these sets are open
in C*(X). So we have a continuous map of topological spaces C*(X) — C°¢(X),
(x,P) — (z,P). To show this a homeomorphism, we will use the firm assumption to
check that the inverse map is continuous.
Let U be an open set in C'(X), so it is the union of open sets in Spec®(€/~p) for some

P € Prg. Pick a particular (z/, P’) € U. Then there is a basic open set

Unp(e) = {(@, P) € Spec*(€/~, 1 (p) : (. P)(mp(c)) # 0},

in Spec®(€/~p) with Uy ) C U and (', P') € U. Here, we have projection 7p : € —¢€
(’:/Nw;éx(P') and ¢ € €, so (z,P)(mp(c)) = x(c), and any (z,P) € Uy, must have

P = P’. We must then have a basic open set
U.={z € X :xz(c) # 0},

in X.
As P’ is a prime ideal in € ¢ it is finitely generated by subsets of the images of the
..., ¢, under my oy 1 Cox — €4 oy Say the subset is {¢],...,c,}. Then in C'°°(X) there

is an open set
k n

V= 7'['_I(Uc) N (m(Uc)si) N ( m (UC)S/-)’

i=1 i=k+1 '
where s} € Ox(Ur, () With s; . = Tz ex(c;) for each i € 1,...,n. Here, (UC)S; and (Ue)y
are the open sets corresponding to U. C X from Definition 5.7.1. As € is firm, each prime
ideal is finitely generated and the set V is an intersection of only finitely many open sets,
so it is open. Also V non-empty as it contains (2/, P’). If (z, P) € V then P must contain
Trex(c;) for i = 1,...,k and must not contain 7, ex(c}) for i = k+1,...,n, so P must
be equal to P’. We must also have z € U,. This implies any (x, P) € V is also in U. As
we can do this for all point (2/, P') € U then the image of U under C*(X) — C°¢(X),
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(xz, P) — (x, P) is open so the inverse map is continuous and we have an isomorphism of
topological spaces.

Finally we check the morphisms of sheaves. However, we already know that the stalks
of the sheaves of C*(X) and C'°(X) at the point (x, P) are both isomorphic to O%./~p
and it is straightforward to check that the morphisms of the sheaves respect this isomor-
phism, so are isomorphisms themselves and C'°°(mwx) o tox) » C(X) — C°¢(X) is an
isomorphism for firm affine C*°-schemes with corners.

For X € C°°Schg, this result follows as C(X)|,-1(y) is isomorphic to (X |y) on
affine open subsets U of X. O

In the following example, we will take an affine C'°°-scheme with corners X and show

C'°¢(X) is not a C*®-scheme with corners.

Example 5.8.15. Take interior C*°-ring with corners € = (R, €;,IT{0}) with €;, a subset
of the monoid (0, 00) x NN (with (0, 00) a monoid under multiplication and NN a monoid
under addition) such that all elements have only finite support. That is, if we write (6;) en
for the element of NN with a 1 in the ith position and 0 elsewhere, then every element of
€y is of the form a ), ;-n(0i)jen for I a finite subset of N, a € (0, 00).

The C*°-operations are defined as follows. For each smooth function f : R} — R,
then ®¢(c},..., ¢ Cht1,---,cn) = flar - 0Xien 5i, ce,ak 0ien, 64, Ck+1,---,Cn), Where
¢} = @) er,(i)jen. For each smooth function f : R — [0,00), then either f = 0
and Wy = 0, or f is of the form f(xy,...,2,) = xll’l . -ml{kF(xl, ..., Tp) with F strictly
positive, so that there is a smooth function g = logoF : R} — R with F' = expog.
Then Ws(c), ..., ChyChits--vscn) = ()01 ()" Werp 0 Py(ch, .., Chy Chity - - - Cn) and
we define Weyp,(c) = exp(c) € (0,00) C &€y, for any ¢ € € = R. This gives a C*°-ring with
corners with one R-point, so that X = Spec®(€) = (x, Ox, OF) with Ox(x) = €.

The prime ideals in €y are either the zero ideal (0) or of the form ((6;);jen)icscn for
any subset J C N, that is, they are generated by the (0;);jen. Then the topological space
of C'°°(X) as a set is isomorphic to the collection of these prime ideals, but has a coarse

topology. For example, (0) is a closed point but it is not open. Its complement is the

union UieNU(a-

Dien which is open but not closed.

In fact, as a local C*°-ringed space with corners, C'°(X) is not a C*-scheme with
corners. Suppose it were, then around every point, there must be an open set such C'°¢(X)
is affine on this open set. So by Joyce [40, Lem. 4.15] the topology must be Hausdorff on
this open set. Consider that any open set around the point (0) must contain the open set
Uy = {(*,P) : s, ¢ P} for some s’ € Ox(x). So 8" = a;c;-n(0i)jen for I a finite subset

of N, a € (0,00). Consider that the prime ideals {(0;)jen)icon s and ((;)jen)icon1\s are
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contained in Uy, however there are no open sets in X or in Uy that separate these two

points. That is, Uy is not Hausdorff, and no open set containing Uy is Haursdorff. So

C'°¢(X) is not affine in a neighbourhood of (0) and is not a C*-scheme with corners.
Note that if €, = (0,00) x N, not just the finitely supported ones, C'°°(X) can be

shown to be a C°°-scheme with corners.

5.8.1 Boundary

Finally we can consider the boundary of a firm C'*°-scheme with corners, where we use

the definition of minimal prime ideal from §5.7.1.

Definition 5.8.16. If X is a firm C°°-scheme with corners, then the boundary X of X is
a sub-C*°-scheme with corners of C'(X). If locally X |y = Spec® € for an open set U C X
and € firm, then 0X is locally isomorphic to [[p Spec(€/~p) where the coproduct is
over prime ideals P such that there is an € X with 7, ¢x(P) a minimal prime ideal in

ex o~
(/)sz - Cac,ex-

Note that we would not expect X — 90X, X € C°°Schg§ to be a functor.
This gives a corollary to Proposition 5.8.14 that the two notions of boundary, X and

0°¢ X from §5.7.1 are the same for firm C'*-schemes with corners.
Corollary 5.8.17. If X is a firm C*-scheme with corners, then 0X = 9'°°X .

Proof. Proposition 5.8.14 explains that for any firm C'*°-scheme with corners X there is
an isomorphism C(X) — C°¢(X). As X is firm, then 9'°°X is an open subset and sub-
local C*-ringed space with corners of C'°°(X), and that the image of X C C(X) under
the isomorphism lies in 9'°°X. This gives a morphism p : X — 9'°°X. From Definition
5.7.1 and Proposition 5.8.4 we see that the topological spaces as sets are both isomorphic

to the collection of pairs
{(z,P) : z € X, P minimal prime ideal in OY , },

and that p respects this. As C(X) — C'°¢(X) is an isomorphism, then p must be an

isomorphism. O

Remark 5.8.18. For a firm C'*°-scheme with corners X we can also compare 0.X to AX
where the latter is Gillam and Molcho’s [28, §4.4] definition of boundary as in Remark 5.7.7.
Then there are morphisms 0X — 0'°°X — AX. The first morphism is an isomorphism
by Corollary 5.8.17.
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The second can also be shown to be an isomorphism using a similar proof to Proposition
5.8.14. All that needs to be done is to show that the topology of AX is as fine as the
topologies of 90X ,0'°°X . To do this, if Spec®(€) = X |;; for some open U C X and € firm,
then take ci, ..., ¢, € € that generate the sharpening of €ey. Take sections s; € OF(U)
such that s;(z) = 75*(¢;) for @ = 1,...,n. Then for a section s € Ox(U), around each
point € U we have that there is an open set V' 3 z such that s = Fs]*--- s for q;
non-negative integers. Let I be the subset of {1,...,n} such that for ¢ € I then a; # 0,
and take J = {1,...,n} \ I. Then consider that

Vs = {(x, P) : * € V, P minimial non-trivial prime in O%,,s(r) ¢ P}

is a basic open set in 90X, 9°°X, AX, however

Vs = {(z, P) : x € V, P minimial non-trivial prime ideal in O, s(x) € P}

is a basic open set in 9X,0"°°X but not in AX. However, we can show that

Vs =NjesVs;.

As J is a finite set, then V, is open in AX. Using this, we can see that the topology on
AX is as fine as 0X,0°°X so that 90X — 9"°°X — AX is an isomorphism.

Finally, we could also consider how our definitions of corners give a stratification that
aligns with the stratification of a manifold with (g-)corners from Definition 3.3.2. To do

this, let P* be the collection of non-units of a monoid P, which is a prime ideal.

Definition 5.8.19. Let P be a monoid. The dimension of a monoid is the maximal length

d (or oo if there is no maximum length) of a chain of prime ideals

®:Q0CQ1...CQd:PX.

If @ is a prime ideal of P, then the codimension or height of @) is the maximal length d of

a chain of prime ideals
Q=Q1D>Q1...2Qs=10.

If F is the corresponding face to @, then the dimension of the quotient monoid P/F is
the same as the height of Q.

Then our boundary definitions correspond to the codimension 1 prime ideals, and
the stratification of C(X) and C'°¢(X) into the k-corners can occur by considering the

codimension k£ prime ideals in an analogous way to Definitions 5.8.16 and 5.7.6. For

181



. [ . . . C*=°Sch$
example, if X is in the image of a manifold with corners under Fy;, . ® : Man® —

C>°Sch§; from Definition 5.5.1, then locally X = Spec®(C*(R}), Ex(R})). The prime
ideals in Ex(R}) are generated by different choices of the coordinate functions xy, ...,z :
RE — [0, 00). If we consider a prime ideal P = (z;,,...,;,,) which will have codimension
m < k where iy, .. .1y, are distinct integers in {1,...,k}, then

(C=(R), Ex(RE))/~p = (C=(R,Zy), Ex(REZ))

m

and taking Spec® of this gives the appropriate m-corner component in C,,(X) (defined
in §3.3) locally. Hence, these k-corners will correspond to the images of the k-corners

(defined in §3.3) under FISI:HSCC}I%

5.9 Log geometry and log schemes

Log geometry was originally used to understand a certain type of cohomology theory
for schemes, such as in Kato [53], who was influenced by Fontaine and Illusie. It was
further developed to deal with issues of degeneration and non-compactness of schemes,
particularly when considering moduli spaces; Ogus [78] has a comprehensive introduction
to log geometry, and a survey paper by Abramovich et al. [1] details how it is used in the
context of moduli schemes.

Our C*°-schemes with corners in Section 5.1 are related to the ‘positive log differen-
tiable spaces’ of Gillam and Molcho [28].

We define pre-log rings as in Gillam [26], which form a category that are related to
the category of pre C*°-rings with corners. We then explain log rings, (pre-)log schemes,
log differentiable spaces and positive log differentiable spaces, and their relation to our
C*°-rings with corners and C°°-schemes with corners. In this section, we assume all rings

and monoids are commutative.

Definition 5.9.1. A pre-log ring (R, M, a), is a ring, (R, +,-) and a monoid (M, *) with
a morphism of monoids a : M — R, where we consider R a monoid under the operation
“ . A morphism of pre-log rings (f, f') : (R1, M1,01) — (Ra, M2, as) is a morphism of
rings f : Ry — Ry and a morphism of monoids f’ : M; — My such that as o f/ = fo ;.
We call a pre-log ring (R, M, «) a pre-log structure on the ring R. Pre-log rings and their
morphisms form a category.

A pre-log ring (R, M,«) is a log ring if the morphism « induces an isomorphism
a1 (R*) = R*, where R* is the group of units of R. If (Ry, My, 1) and (R, Ma, ag) are
log rings and (f, ') : (R1, M1, 1) — (R2, M2, az) is a morphism of pre-log rings, then we
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call (f, f') a morphism of log rings. We call a log ring (M, R, «) a log structure on the ring

R. Log rings and their morphisms form a category.

Ogus [78, p. 274-275] uses ‘log-rings’ for our notion of pre-log rings. Note that
a1 (R*) = R* implies that a;|yx : M* — R* is an isomorphism, but the converse
may not be true in general.

If R is a ring, then the trivial log structure on R is the log ring (R, R*,4) where i is the
inclusion map. This is the initial object in the category of log rings with ring R, and gives a
left adjoint to the forgetful functor (R, M, ) — R. There is also a final object, (R, R, id),
which gives a right adjoint to the forgetful functor (R, M,a) — R. These adjoints imply
colimits and limits commute with the forgetful functor.

For any pre-log ring (R, M, «), there is a log ring associated to it (R, M’,a’). Here,
M’ is the monoid pushout M’ = R* Bg,a-1r*),; M and o' : M" — R is defined using the
universal property of pushouts. This defines a left adjoint to the inclusion of the category

of log rings into pre-log rings.

Definition 5.9.2. A pre-log structure on a scheme (X,Ox) is a sheaf of monoids My
and a morphism of sheaves of monoids ax : Mx — Ox, where Ox is considered a sheaf
of monoids under multiplication from the rings. We call (X, Ox, Mx) a pre-log scheme.
A morphism of pre-log schemes (X1,0x,, Mx,) and (X2,Ox,, Mx,) is a morphism of
schemes f = (f, f%) : (X1,0x,) — (X2,0x,) with a morphism of sheaves of monoids
f°: My, — f.(Mx,) such that

ffoax, = filax,)o f. (5.9.1)

A log structure on a  scheme (X,0x) is a prelog scheme
(X,0x, Mx) such that ax induces an isomorphism ay'(O%) = O% where O% is the
sheaf of units of Ox. Then (X, Ox, Mx) is called a log scheme. Morphisms of log schemes
are morphisms of the underlying pre-log schemes.

The trivial log structure on a scheme (X, Ox) is given by (X, Ox,0%), with ax the
inclusion morphism. This is the final object in the category of log structures on a scheme
(X,Ox). This induces an inclusion functor from the category of schemes to the category
of log schemes, right adjoint to the forgetful functor (X,Ox,O0%) — (X,Ox), realising
schemes as a full subcategory of log schemes. The log scheme (X, Ox,Ox), with ax the
identity morphism, is the initial object in the category of log structures on (X, Ox), which
gives a left adjoint to the forgetful functor (X, Ox,0%) — (X, Ox).

Definition 5.9.3. To any pre-log ring o : M — R, Ogus [78, p. 275] and Gillam [26,
p. 76] give a description of a spectrum functor Spec : (o : M — R) — (X,0x,Mx)
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where (X, Ox) = Spec(R) is the usual spectrum of a ring, and My is the log structure
associated to the pre-log structure M — Ox which is induced by M — R. Precisely,
R = Ox(X) so restriction gives a morphism M — R = Ox(X) — Ox(U) for each open
U C X. Then we define the presheaf of monoids My such that My (U) is the pushout
M @105 @y*) Ox(U)*. Here Ox(U)* is the group of invertible elements of Ox (U).
Note that the presheaf restriction property is satisfied using the universal property of
pushouts, and that this universal property also gives morphisms M x(U) = Ox(U). Then
let Mx be the sheafification of this presheaf, so we have that (X, Ox, Mx) is a log scheme.
Here, universal properties show that Mx , is isomorphic to the pushout M ® a=1(0%.,) O)X(, .

This spectrum construction is very similar to the notion of a chart for a log scheme,
(see for example [28, p. 33]) where if (X,Ox,Mx) is a log scheme, then a chart is a
morphism of monoids P — Mx(X) such that the associated log structure, (X, Ox, Px)
is isomorphic to (X,Ox,Mx). Here Py is the sheafification of the presheaf Px where
Px(U) is the pushout P Ra-1(0x (1)) Ox(U)* using the composition P — Mx(X) —
Ox(X) —» Ox(U). If @« : M — R is a pre-log ring then M — Mx(X) is a chart for
Spec(ae : M — R) = (X,0x, Mx). In [28, p. 33] a log scheme is called quasi-coherent if
there exists charts locally. It is straight forward to show that a log scheme with a chart
(or with local charts) is locally the spectrum of a pre-log ring, however the notion of chart
applies more generally for log locally ringed spaces (as in the remark below) whereas the

spectrum functor does not.

Remark 5.9.4. In Definition 5.9.2, we can change the word ‘scheme’ to ‘locally ringed
space’ to define (pre-)log locally ringed spaces. Our local C*°-ringed spaces with corners
are examples of pre-log locally ringed spaces. Gillam and Molcho [28, §4.4] define a notion
of boundary on pre-log locally ringed spaces which related to our notions of corners, as
we discuss in §5.7.1.

There are some similarities in the definitions of C*°-schemes with corners and log
schemes. However, log schemes are based on ordinary schemes, not C'°°-schemes. Also,
for a log scheme (X, Ox, Mx) we have (X, Ox) locally isomorphic to the spectrum of a
ring, however (X,Ox,Mx) is not required to locally be isomorphic to the spectrum of
a log ring. In this sense, C*°-schemes with corners are analogous to quasi-coherent log

schemes.

The categories of differentiable spaces, log differentiable spaces, and positive log dif-
ferentiable spaces consider ways to construct log structures for manifolds and manifolds
with corners. These are based on the notion of a differentiable algebra, which we recall

the following definitions from Navarro Gonzalez and Sancho de Salas [76], and are closely
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related to C*°-rings.

Definition 5.9.5. A differentiable algebra ® is an R-algebra isomorphic to a quotient
of C*°(R") by an ideal a such that a is closed in the C*°-Whitney topology of C*°(R").
A reference for the C*°-Whitney topology can be found in [34, p. 35-36]. Morphisms of
differentiable algebras are morphisms of R-algebras.

A locally ringed R-space is a topological space X equipped with a sheaf Ox of R-
algebras, such that the stalks are local rings. Morphisms of locally ringed R-spaces
(X,0x) — (Y, Oy) are of the form (f, f*) with f : X — Y a continuous map of topological
spaces, and f!: f~10Oy — Ox a morphism of sheaves.

The spectrum, Spec D, of a differentiable algebra @, is a locally ringed R-space (X, Ox).
The topological space X is the set of all maximal ideals m of ©® with residue field R = © /m,
equipped with the Gelfand topology. This is the smallest topology such that for all d € ©,
the corresponding morphism d* : Spec® — R, that sends m € Spec® to the value of d
under the isomorphism R = ® /m, is continuous.

The sheaf is defined by Ox(U) = Dy for open U C X. Here Dy is the localisation
of © at U, that is, the R-algebra of (equivalence classes) of fractions d/m with d,m € D,
and with m* non-zero on U.

An affine differentiable space is a locally ringed R-space that is isomorphic to Spec®
for some differentiable algebra ©. A differentiable space is a locally ringed R-space (X, Ox)
that is locally isomorphic to an affine differentiable space.

Morphisms of differentiable spaces are morphisms of locally ringed R-spaces.

The category of differentiable algebras has all finite colimits, and the category of differ-
entiable spaces has all finite limits, these commute with the forgetful functor to topological
spaces.

We now define log differentiable spaces and positive log differentiable spaces following
Gillam and Molcho [28].

Definition 5.9.6. A log differentiable space (X, Ox, Mx) is a differentiable space (X, Ox)
equipped with a log structure. That is, Mx is a sheaf of monoids on X, and there is a
morphism of sheaves ax : Mx — Ox such that o induces an isomorphism 04)_(1((’);() o~ (’))X(.

A positive log differentiable space, (X, Ox, Mx), is a differentiable space (X, Ox), with
a sheaf of monoids My on X, and a morphism of sheaves ax : Mx — O?(O such that ax
induces an isomorphism a ' (03°%) = 03°. Here 03 and O3 are the sheaves of monoids

such that for any open U C X, then
O0F(U) ={s € Ox(U) : s(x) >0 € R for all 2 € U}
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and
0F(U) ={s € Ox(U):s(x) >0 €Rfor all z € U}.

In this definition, s(z) is the value of s under the composition of the following maps
O)((U) — OXJ; — (’)Xﬂ;/mx = R,

where m, is the maximal ideal in the local differentiable algebra Ox ..

Morphisms of (positive) log differentiable spaces are composed of a morphism of dif-
ferentiable spaces and a morphism of sheaves of monoids, such that the morphisms behave
well with respect to each «, as in (5.9.1).

A positive log differentiable space (X, Ox, Mx) gives the data of a log differentiable
space (X,Ox, M%). We have that ax : Mx — (’)?{0 < Ox is a morphism of sheaves, and
we can take the log structure associated to this morphism, which is given by the pushout
My = Mx HO;(O O%, where O% is the sheaf of invertible elements on X. In fact there
is an isomorphism to the coproduct M% = My ® Z/(2Z), where Z/(2Z) is the locally

constant sheaf with stalk Z/(2Z). This gives a faithful but not full functor from positive
log differentiable spaces to log differentiable spaces (c.f [28, p. 50]).
Similarly, a log differentiable space (X, Ox, Mx) with morphism ax gives the data of
a positive log differentiable space (X, Ox, M;O) where M ;0 is the sheaf of monoids such
that
MPP(U) ={s' € Mx(U)|s'(z) >0 € R for all z € U}.

Here ax|,,>o0 gives the required morphism. This is full but not faithful, and a left adjoint
X
to the previous functor. The composition of both of these functors is the identity functor

on positive log differentiable spaces, but not on log differentiable spaces.

The categories of log differentiable spaces and positive log differentiable spaces have

all finite limits and all coproducts.

5.9.1 Comparison to C'*°-algebraic geometry

We now describe the relations of these logarithmic geometry constructions to C*°-algebraic
geometry.

A (pre) C*°-ring with corners (€, €.) is a pre-log ring with morphism o = ®; : €, —
¢. However, a C*-ring with corners (€, €4y ) is not a log ring, as our Definition 4.3.2,
does not mean that ®; 1(¢X) >~ ¢*. In fact, it is never an isomorphism, as if we take a
C*-ring with corners, (€, €qy), one can show that there is no element a € €2 such that

®;(a) = —1¢ € €%, where 1¢ is the identity element of €.
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In the following Lemma and its corollaries, we see that for a semi-complete C*°-ring

with corners the invertible elements of €.y correspond only to the ‘positive’ elements of €.

Lemma 5.9.7. Let € be a complete C*°-ring. Then for each ¢ € € such that xoc > 0
for each R-point x : € — R, there is d € € such that Pexp(d) = c. Define the monoid
Coo={ceC:x(c) #0 for each R-point x : € — R}, then this is equal to Pexp(€) and

element is invertible.

Proof. Let € be complete and take ¢ € € such that z(c) > 0 for all R-points z : € — R.
Fix an R-point , let €; = #(c) and take the open set Uz = {z: € - R | z(c) > €;/2} 2 &
which is open in Spec €. Choose a smooth function f,, : R — R such that f,(t) = log(t)
for t € [1/n,00). Then @y, (c) exists for all n € (0,00). For each & take n; such that
ng > 2/¢€z.

Now, say & € U, for some R-point . Then we claim ®ey, 0 @y, (c) is equal to ¢ in the
stalk at . As € is complete and Py, is injective by Proposition 4.3.1(a), then this will
tell us the ®;, (c) are equal in every stalk in appropriate Uz, and there is an element d
such that d|y, = @y, (c)|u, and Pexp(d) = c.

For this & we know that & o ¢ > 1/n,. So choose smooth g : R — R such that
g(t) = 0 for all t € (—o00,1/ng] and t > 0 otherwise, so that g(expofy,, (t) —id(t)) = 0
for all t € R, and & o (®4(c)) = g(2(c)) # 0. Then letting e = ®,4(c) we have that
e(Pexp o Py, (c) = Pig(c)) = 0, so Proposition 2.1.15 implies Pexp 0 Py, (c) is equal to ¢ in
the stalk at 2. So such an element d exists and we must have €~g C Py (€).

Also, if d € € then z 0 Peypp(d) = exp(x(d)) > 0 for all z : € = R, 80 Pexp(€) = Cp.
In addition, elements of ®exp,(€) are invertible, as Pexp(d) has inverse Peyp(—d) for all
decd. O

Corollary 5.9.8. If € is semi-complete C'°°-ring with corners, then ®; : €ox — € induces

an isomorphism ®; : €5 — €5 = Pexp ().

Proof. If ¢ € €+ then by Lemma 5.9.7 there is d € € such that ®exp(d) = ¢. Then
Uexp(d) € €5 and ; 0 Wy (d) = Pexp(d) = . So there is a map

o0 = €%, Pexp(d) > Pexp(d).

ex’

As @y is injective by Proposition 4.3.1(a) and Weyp, : € — € is a bijection by Definition
4.3.2(iii), then €59 — € is a bijection, with inverse ®;|yx . Alsoifa,b € €5, a = Pexp(c),
b = Pexp(d) then ab = Pexp(c + d) = Vexp(cd) = Wexp(€)Vexp(d), so €59 — € is an

isomorphism of monoids (and in fact an isomorphism of abelian groups.) O
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Corollary 5.9.9. For € € C*°Rings®, ®; induces an isomorphism @;1(¢>0) — €.

Proof. Corollary 5.9.8 implies there is canonical isomorphism of monoids (or groups)
Dilex 1 €5 — €50, 50 D7 1(€50) contains €. As elements of ®;'(€¢) are isomorphic

to @, (Pexp(€)), then ®; 1 (€g) is equal to Weyp(€), which is equal to € by Definition

-1

4.3.2(iii). This implies @[gx : €5 — €50 is equal to Dilg-1(¢.4) * Py ( Zo) = €50 and

so the latter is an isomorphism. O

Remark 5.9.10. In Lemma 5.9.7, we did not need to assume that € was a complete
C*-ring, but we just needed to assume that € was some C'*°-ring that is isomorphic to
(a subring of) Ox(U) where Ox is some sheaf of C*°-rings on a topological space X and
open U C X. This property is equivalent to the property of ‘germ determined’ defined in
Moerdijk and Reyes [72, Def. 4.1] for C*°-rings.

Similarly, in Corollary 5.9.8 and Corollary 5.9.9 we did not need to assume that (€, €ey)
is a semi-complete C*°-ring with corners, but that it is isomorphic to (a subring of)
Ox (U) where Ox is some sheaf of C*°-rings with corners on a topological space X and
open U C X. Joyce [40] defined a notion of fair C*°-ring, which is equivalent to germ
determined and finitely generated, and are called ‘C*°-rings of finite type presented by an
ideal of local character’ in Dubuc [20,21]. Kalashnikov [51, §. 4.8] extended this notion
of fair to pre C°°-rings with corners, so C'°°-rings with corners that satisfy Kalashnikov’s
notion of fair would be sufficient for these corollaries, although we can weaken this as we

do not need to require finitely generated.

We would like to compare the notions of spectrum of a log scheme to our notion of
spectrum of C°°-rings with corners. Consider the following definition along the lines of a

spectrum of (pre-)log rings as in [78], [26] and [28] but instead for C*°-rings with corners.

Definition 5.9.11. Let € be a C*°-ring with corners then define Spec®(®; : €ox — €)
to be the local C*°-ringed space with corners (X, Ox, M) with (X, Ox) = Spec(€) an
affine C°°-scheme and M§* is the sheafification of the presheaf M}}X, where for each U C X
we let M§(U) be the pushout Cex g1 (020(17)) o3 (U).

We will show that this definition matches our definition of Spec® in Definition 5.2.1.
This definition would also work for pre C*°-rings with corners, in which case this definition
of Spec® would match our definition of Spec® applied to Hgfeocoo(éi) where Hg:eocoo is
defined in Proposition 4.3.5.

Proposition 5.9.12. If € = (€, &) is a C*-ring with corners then Spec®(®; : Cex —
¢) = (X,0x,Mx) from Definition 5.9.11 is isomorphic to Spec® € = (X,Ox,O0F) in
Definition 5.2.1.
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Proof. We can assume € is semi-complete by Lemma 5.3.3. By definition they are iso-
morphic on topological spaces and as sheaves of C*°-rings. Corollary 5.9.8 gives a map
O0F%(U) — OS5(U) for each open U C X. As there is a map €ex — OX(U), the universal
property of Cey H@;l((’);O(U)) 03(U) gives a unique map Mx(U) — OS5(U), which re-
spects restriction and descends to a morphism of stalks. So there is a morphism of sheaves
of monoids Mx — OF.

On the stalks, we can show we have isomorphisms My , = Cex Hq’fl(@O) QZ;O S Crex
using the universal properties of My , as a colimit, Cex H¢;1(¢;o) ¢ Y as a pushout, and
Crex as a localisation. This means Mx — OY is an isomorphism on stalks. This gives
an isomorphism Spec® € — Spec®(®; : €x — €) which is the identity on the topological

spaces and the sheaves of C'*°-rings, and an isomorphism on the sheaves of monoids. [

This suggests that C'">°-schemes with corners are related to quasi-coherent log schemes.
Gillam [26, p. 76] points out that it can be difficult to determine the log scheme correspond-
ing to Spec(M — R). This sentiment aligns with our observations: in general O (X) is
not isomorphic to €, when X = Spec® €. We now see that our C°°-schemes with corners
are more closely related to positive log differentiable spaces.

The R-algebra structure of a differentiable algebra can be extended to a unique C*°-
ring structure by Definition 2.1.7. In particular, using the Whitney embedding theorem,
C*°(X) is a differentiable algebra for all manifolds X. Morphisms of differentiable al-
gebras are R-algebra morphisms, which respect the unique C°°-ring structures of the
differentiable algebras, as shown below in Lemma 5.9.13. This realises the category of
differentiable algebras as a full subcategory of C®°Rings, and similarly the category of
(affine) differentiable spaces is a full subcategory of (AC*°Sch) C*°Sch.

Lemma 5.9.13. Morphisms of differentiable algebras respect the C*°-operations from the
unique C-ring structures corresponding to the differentiable algebras. Hence morphisms

of differentiable spaces correspond to morphisms of C*°-schemes.

Proof. Let A= C>(R")/a and B = C*°(R™)/b be differentiable algebras, and ¢ : A — B
a morphism of differentiable algebras, that is, an R-algebra morphism. Let 71 : C*°(R") —
A and 7 : C*°(R™) — B be the quotient maps. As a and b are closed in the Whitney
topology of C*°(R"), then by Navarro Gonzalez and Sancho de Salas [76, Cor. 2.21], there
is a morphism of R-algebras ¢ : C°(R") — C*°(R™) such that s 0t = ¢ o 7.

By Moerdijk and Reyes [72, Cor. 3.7], all R-algebra morphisms ¢ : C*°(R") — C*°(R™)
come from smooth maps F': R™ — R", and by Moerdijk and Reyes [72, Th. 2.8], then 1)

is a morphism of C'*°-rings. As quotient maps are C'°°-ring morphisms and are surjective,
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then ¢ is a C°°-ring morphism.

If we choose a different presentation of A = C°°(R™)/a;, then because C*°(R"!)/a; =
C>°(R™)/a as R-algebras, the above implies they are isomorphic as C*°-rings. The same
holds for different choices of presentation for B. Hence, morphisms of differential spaces

are precisely morphisms of C*°-rings. O

This result gives a partial answer to the question of whether C'°°-ring morphisms are
just morphisms of the underlying R-algebras; if there are R-algebra morphisms of C*°-rings
that are not C*°-ring morphisms, at least one of the C*°-rings must not be isomorphic to
a differentiable algebra. Lemma 5.9.13 is also a corollary of Kainz et al. [50, Th. 2.4 (3)],
and Navarro Gonzalez and Sancho de Salas [76, Cor. 2.22].

Next we will show that a local C*°-ringed space with corners, (X, Ox, OF), for which
(X, Ox) is a differentiable space, is a positive log differentiable space. In fact, there is a
containment of subcategories, as all positive log differentiable spaces can be considered as
local C*°-ringed spaces with corners.

Also, a C*°-scheme with corners (X, Ox, OF), for which (X, Ox) a differentiable space,
is positive log differentiable space. However, there is no containment of subcategories here,
as not all C*°-schemes are differentiable spaces, and C'°°-schemes are locally required to
be Spec® € for a C*°-ring with corners, which is stronger than the definition of a positive

log differentiable space.

Proposition 5.9.14. A positive log differentiable space is equivalent to the data of a local
C*°-ringed space with corners, (X, Ox,0F), such that (X,Ox) is a differentiable space.

Proof. Let (X, Ox,O%) be as in the statement of the proposition. We first want to show
this is a positive log differentiable space. To do this, we need only show that ®; induces an
isomorphism <I>Z._1((’))><O) >~ 03°. However, for each open set U C X, then Remark 5.9.10
implies we can apply Corollary 5.9.9 to (Ox(U), O (U)) to deduce this.

Now let (X, Ox, Mx) be a positive log differentiable space, with morphism ax : Mx —
Ox. We need to show that (Ox, M) has a sheaf of C*°-rings with corners structure with
local stalks. To do this, we first show that the differentiable algebra and monoid structures
extend uniquely to a C'*°-ring with corners structure.

Firstly, Ox is a sheaf of differentiable algebras, so it extends to a unique C*°-ring
sheaf, with the usual C'*°-operations. The operation ®; : Mx — Ox corresponds to ax.
Take open U C X and s},...,s;, € Mx(U) and Spy1,...,5, € Ox(U). For any smooth
f R} = R, extend f to a smooth function f:R" > R, and define

P r(shse ey S Skt1se -y 8Sn) = CI)f(aX(sll), e X (8%), Skaly -+ Sn),s
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where the right hand side ® 7 is the operation on the C*°-ring Ox(U). To check this is
well defined, let § be a different extension of f, then we need to check that

(I)f_g(aX(Sll)7 cees O‘X(‘S?f)a Sk+1y .- ,Sn) =0.

We know that f—ghgz = 0. However, as Ox (U) is a differentiable algebra, then Ox (U) =
C*®(R™)/a for some non-negative integer m. Then any s € Ox(U) is an equivalence
class represented by a function h € C*°(R™), and we can write h = ®p(7,...,my) for

m; : R™ — R the projection onto the ith factor. Then

(I’f_g(@X(slﬁa s X (8])y Skl - Sn) = (I)(f_g)(hh_,_,hn)([m]a s [mml),

where [m;] is the equivalence class of m; in Ox(U) = C*°(R™)/a, and h; is the function
representing s} for: = 1,...,k and s; for i = k+1,...,n. As ax(s]) are non-negative, then
h; are non-negative for i = 1,..., k. However as f—g|RZ = 0, then (f—g)(hl, ceoyhy) =0
and therefore

@f_g(ax(sll), ey x(SE)s Skaly -+ 8n) =0,

as required.

Now define the operation Wey, : Ox(U) — Mx(U) by Wep(s) = ay' (Pexp(s))
for s € Ox(U). Note that ®exp(s) € OF°(U), and that ay induces an isomorphism
ax (0F0(U) 2 0F0(U) =2 ME(U), 50 ey, is well defined.

For any non-zero smooth g : R} — [0, 00), then we have
g(x1,...,xn) =2t 2 Gy, . )

where G : R} — (0,00) is smooth and positive. Here a; are non-negative integers. Then

define

/ /
Wo(ST s ShyShtls -y 8n) =

s'la’c e s;f’“\Ilexp(CI)bgog(aX(s'l), e X (8%), Skaly -+ Sn))-
Here s;‘” means applying the monoid operation a; times to s}. For the zero function,
0 : Ry — [0,00) then define Wo(s),...,s),Skt1,---,5,) = 0. A subtlety here is that
Mx (U) may not have a zero, so we may need to add a zero to each Mx(U) and then
sheafify to do this, and also extend ax to send 0 € Mx to 0 in Ox.

Direct calculation shows that this gives a pre C°°-ring with corners structure to
(Ox(U), Mx(U)). Also, (I)Z"M;;(U) : M3 (U) — Ox is injective as its image is O3°(U), on

which is it an isomorphism as it is equal to ax. Hence (Ox, Mx) is a sheaf of C*°-rings
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with corners. Each stalk (Ox ;, Mx ;) is local, as we know Ox , is local, and that elements
in Mx , are invertible if and only if they are invertible under the morphism ax = ®; to

Ox 2. Hence (X,Ox, Mx) is a local C*°-ringed space with corners. O

Gillam and Molcho [28] have a different notion of manifold with corners than we do,
“a positive log smooth differentiable space with free log structure”. If (X,Ox, Mx) is a
positive log differentiable space then a free log structure means for all x € X, there is an
open set U C X, such that the sharpening of Mx (U) is isomorphic to free finitely generated
monoid, that is, N¥ for some non-negative integer k that may depend upon X and U. This
implies the sharpening of the stalk Mg(x is also isomorphic to N for some non-negative
integer I. Here N¥ N! are considered as monoids under addition. This condition does not
require the underlying topological space to be Hausdorff, nor of constant dimension, nor
second countable.

If X is a manifold with corners as in our Definition 3.2.2, then
(X, C*()) = (X,C%(), Ex(-))

is a positive log differentiable space. As in Example 4.5.5, (X, C°(+)) is such that for a
coordinate neighbourhood U C X, we have that

Ex(U) = (N* x C*°(U)) I1 {0} = In(U) 11 {0}

for some non-negative integer k, where C°°(U) represents the invertible functions. Then
the sharpening is isomorphic to N¥ IT{0}. This means (X, C*(-)) does not have a free log
structure, as we have an additional 0 appearing. However, while (X,C°(-),In(-)) is not
a C*°-scheme with corners, it is a positive log smooth differentiable space with free log
structure, that is, we can remove the ‘0’ because a manifold with corners is an interior C'*°-
scheme with corners. In this sense, manifold with corners from [28] correspond to interior
C*°-schemes with corners without the ‘0’, and our manifolds with corners correspond to
constant dimension, Hausdorff, second countable, positive log smooth differentiable spaces

with free log structure from [28] with the ‘0’.

192



Appendix A

Additional Material

A.1 Fibre products of manifolds

We describe the two facts needed for the details in the example of §1.1.1 where the fibre
product of manifolds does not exist. Here we will write | X| for the underlying set of a

manifold X. These results are referred to in Joyce [49, 2.37].

Lemma A.1.1. The fibre product of manifolds, if it exists, has set equal to the fibre

product of its underlying sets.

Proof. Take manifolds X, Y, Z with smooth maps g : X — Z and f:Y — Z. Assume the
fibre product exists in category of manifolds and denote it X Xz Y. We know the fibre
products of sets exists and is equal to |X| x|z [Y] = {(z,y) : f(z) = 9(v)}

Then the fibre product X Xz Y induces the following isomorphism of sets
Hom(U, X xzY) = Hom(U, X) Xgom(v,z) Hom(U,Y),

where U is a manifold, Hom(A, B) is the set of smooth maps from A to B, and the left
hand side is the fibre product of sets. If we consider U to be the O-manifold *, then
the right hand side involves all maps from * to X and Y that commute to Z, which is
equivalent to picking points x € X,y € Y with f(z) = g(y). So the right hand side is
isomorphic as a set to |X| x|z [Y|. Any element of the left hand side is equivalent to
picking a point of X x 7z Y so the left hand side is isomorphic as a set to |X Xz Y. This
implies | X| x|z [Y| = |X xz Y] as required. O

Lemma A.1.2. For manifolds X,Y, Z with smooth maps g: X — Z and f:Y — Z, then
the topology of their fibre product X Xz Y is at least as coarse as the topology induced on
| X[ X2 IY] = |X xy Z| coming from X xY = |X|x |Y].
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Proof. The universal property of the product X x Y gives a unique smooth morphism
X xzY — X xY, and there is also the inclusion of sets i : X xzY — X xY. As
both morphisms commute with the other maps in the diagram, the explicit descriptions
of X xY and X Xz Y as sets implies these two morphisms are equal, that is the inclusion

1: X XzY — X xY is smooth.

XXZY
z(/ JET
p1 A p2
X xY
% &t
X Y

O]

Lemma A.1.3. Take manifolds X,Y, Z with smooth mapsg: X — Z and f : Y — Z. For
all subsets M of the fibre product X xzY (assuming this exists) that under the inclusion
1: X XzY = X XY are a submanifold of X XY, then the topology from X Xz Y on M
is the same as the topology from X xY on i(M).

Proof. Take M C X xz Y and assume (M) is a submanifold of X x Y. Then we have
M C XxzY

juM j

i(M) € XxV,

where i is a smooth inclusion by Lemma A.1.2, and the bottom inclusion (M) C X x Y
is also smooth.

However, M is a submanifold of X x Y and the restriction of p; : X xz Y — X and
p2: X XzY — Y to M give morphisms from M to X and Y that commute with the
morphisms ¢ : X XY — X, g2 : X xY — Y. This means that pi|p; and ps|ps are smooth,
so the universal property of X Xz Y gives a smooth morphism j : M — X xz Y that
commutes with the following diagram (where only ¢; and g2 do not commute with f and
g). However, as j commutes with p; and pg, and we know [ X xz Y| = |X] x|z |Y], we
see that j must be the inclusion M — X Xz Y, so the inclusion must be smooth. This

implies the topology on M is the same as the topology on i(M).
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p1lm X xzY p2lm
|
p1 X xY P2
@ a2
X Y
\ /
A

So there is homeomorphism from (M) with topology from X x Y and M with topology
from X xz Y. ]

Example A.1.4. Assume fibre product of manifolds R X2 ,2 R exists, then by Lemma
A.1.1 it is equal to
R X2 g2 R = {(z, +z) € R*}.

Then applying Lemma A.1.3 to {(z,z) € R%}, {(z, —z) € R?} and {(z,4+2) € R*} \ {0}
we see the topology on fibre product must be induced from the topology on R2.

Around the point (0,0), if X were a submanifold, it would have to be locally home-
omorphic to R* for some integer k. Let U be a connected open neighbourhood of X
containing (0,0), and remove the point (0,0). Then there are four remaining connected
components. However, removing a point from any connected open set of R¥ gives one
connected component if £ > 1, two connected components when k = 1, the empty set if
k = 0, and it never gives four connected components. So there can be no homeomorphism
to R¥, and X cannot be a submanifold of R2. So the fibre product must not exist in the

category of manifolds.
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Glossary

Sets Sets, Definition 2.1.1

Euc Euclidean Spaces, Definition 2.1.1

Euc® Euclidean Spaces with corners, Definition 5.4.1

Euc{, Euclidean Spaces with corners with interior maps, Definition 5.4.1
Man Manifolds, Definition 2.1.1

ManP Manifolds with boundary, Definition 5.4.1

Man® Manifolds with corners, Definition 5.4.1

Man®® Manifolds with g-corners, Definition 5.4.1

Man;, Manifolds with corners with interior maps, Definition 5.4.1

Maniglf Manifolds with g-corners with interior maps, Definition 5.4.1
Man® Manifolds with corners with mixed dimension, Definition 5.4.1
Manfn Manifolds with corners with mixed dimension with interior maps, Definition 5.4.1

Man®&® Manifolds with g-corners with mixed dimension, Definition 5.4.1

Manigrf Manifolds with g-corners with mixed dimension with interior maps, Definition
5.4.1

Mon Monoids, Definition 5.4.1

C*°Rings C'*°-rings Definition 2.1.2

CC*°Rings Categorical C'°°-rings, Definition 2.1.1
C>°Rings® Complete C'*°-rings, Definition 2.4.13
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CPC*°Rings® Categorical pre C'*°-rings with corners, Definition 4.1.2
CPC*Rings;, Categorical interior pre C*°-rings with corners, Definition 4.1.2
PC*°Rings® Pre C"*°-rings with corners, Definition 4.2.1

PC*Rings;, Interior pre C*°-rings with corners, Definition 4.2.6
C*°Rings® C*°-rings with corners Definition 4.3.2

C>°Rings{,, Interior C*°-rings with corners Definition 4.3.2
C°°RingsS, Semi-complete C'*°-rings with corners, Definition 5.3.4
C*>°Ringsg Firm C°°-rings with corners, Definition 4.5.1

C*>°RS C°-ringed spaces, Definition 2.4.1

LC*°RS Local C*°-ringed spaces, Definition 2.4.1

C*°RS¢ (C°°-ringed spaces with corners, Definition 5.1.1

LC*°RS€® Local C*°-ringed spaces with corners, Definition 5.1.1
C*>°RSS, Interior C*°-ringed spaces with corners,, Definition 5.1.3
LC*RSS, Interior local C*°-ringed spaces with corners, Definition 5.1.3
AC>°Sch Affine C*°-schemes, Definition 2.4.10

C°Sch C°°-schemes, Definition 2.4.10

AC®°Sch® Affine C*°-schemes with corners, Definition 5.4.1

AC®°Sch§ Firm affine C°°-schemes with corners, Definition 5.4.1
AC®°Schy, Interior affine C°°-schemes with corners, Definition 5.4.3
AC""Schain Firm interior affine C*°-schemes with corners, Definition 5.4.3
C>°Sch® (C°°-schemes with corners, Definition 5.4.1

C>°Sch§ Firm C°°-schemes with corners, Definition 5.4.1

C>°Schyf,, Interior C°°-schemes with corners, Definition 5.4.1

C>°Schg ;,, Firm interior C*°-schemes with corners, Definition 5.4.1
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Spec Spectrum for C'°°-rings, Definition 2.4.4

Spec® Spectrum for C*°-rings with corners, Definition 5.2.1

Spec§, Spectrum for interior C*°-rings with corners, Definition 5.2.4

I' Global sections of C*°-ringed spaces, Definition 2.4.7

I'® Global sections of C*°-ringed spaces with corners, Definition 5.2.5

I'{, Global sections of interior C*°-ringed spaces with corners, Definition 5.2.7
¢-mod Modules over the C'°°-ring &€, Definition 2.2.1

€-mod Modules over the C'"*°-ring with corners € Definition 4.7.1

Ox-mod Sheaves of modules over the sheaf of C'°°-rings Ox, Definition 2.5.1

O x-mod Sheaves of modules over the sheaf of C'°°-rings with corners O x, Definition 5.6.2
Q¢ Cotangent module of a C"*°-ring €, Definition 2.2.4

Q¢ Cotangent module of a C'*°-ring with corners, Definition 4.7.3

’Q¢ b-cotangent module of a C*°-ring with corners, Definition 4.7.6

Prg Prime ideals in €y of a C*°-ring with corners € = (€, €qy), Definition 5.8.1
C'¢ Corners functor for local C™-ringed spaces with corners, Definition 5.7.1
C* Corners functor for affine firm C™-schemes with corners, Proposition 5.8.4
C' Corners functor for firm C'°°-schemes with corners, Theorem 5.8.9

®; C°-operation corresponding to the inclusion i : [0, 00) — R, Definition 4.2.5

Ueyp C-operation corresponding to the exponential map exp : R — [0, 00), Definition
4.2.5

Doyp = D 0 Wey, C°°-operation corresponding to the exponential map exp : R — R, Def-
inition 4.2.5
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